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RÉSUMÉ EN FRANÇAIS

Cette thèse a abordé le problème du guidage d’un personnage. Ce travail con-
siste à trouver une méthode pour générer duLE mouvement d’un personnage dans
un environnement soumis à certaines contraintes. Les agents peuvent avoir besoin
d’atteindre un certain objectif ou de conserver une certaine formation [Rey99] avec
d’autres agents. Sur le chemin, il peut y avoir des obstacles qui doivent être détec-
tés et évités. Le guidage d’un personnage peut inclure des comportements faisant en
sorte qu’un agent navigue dans un environnement comme dans la figure 1. Par con-
séquent, la conduite d´un personnage doit générer une trajectoire, généralement une
courbe 2D, en percevant le monde qui l’entoure pour effectuer une tâche de navigation
donnée. La perception de l’environnement dépend d’une mèthode particulière.

Figure 1 – Exemple de LA trajectoire dU personnage. L’Agent se déplaçant dans une
scène virtuelle en évitant les collisions.

Le problème du guidage d’un personnage a été abordé par diverses disciplines
telles que la simulation de foule, la robotique et les sciences cognitives. La résolution
du pilotage a un large éventail d’applications dont quelques-unes sont illustrées à la
figure 2. La communauté de simulation de foule a proposé de nombreuses solutions
pour animer des êtres humains, des animaux et d’autres personnages dans des envi-
ronnements virtuels. Leur objectif est de simuler un grand nombre d’individus le plus

15
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Figure 2 – Exigences de performance et réalisme de la conduite du personnage dans
diverses applications.

rapidement possible. Il existe différentes applications de la simulation de foule:

Cinéma. Dans l’industrie du cinéma, les algorithmes de pilotage sont utilisés pour
remplir des scènes du film avec des personnages virtuels. Cela permet aux
réalisateurs de réduire les coûts en réduisant le nombre de suppléments néces-
saires ou en animant des créatures de fiction. L’industrie cinématographique
n’exige pas de performance en temps réel et insiste sur le réalisme de ses per-
sonnages. Reynolds a initialement proposé l’algorithme de pilotage de Boids
[Rey87] pour générer le mouvement des troupeaux. Néanmoins, les artistes
veulent garder le contrôle total du personnage virtuel pour répondre aux be-
soins du scénario en question.

Jeux vidéo. Les jeux vidéo nécessitent généralement la simulation d’un grand
nombre de personnages virtuels en temps réel avec les ressources de calcul
limitées d’un ordinateur personnel. Cela impose une grande contrainte sur la
complexité et le réalisme du comportement des humains. De nombreux jeux
implémentent une version de RVO [vdBLM08] [vdBGLM11] qui n’essaie pas de
reproduire un comportement réaliste des humains mais fournit une solution très
rapide pour éviter les collisions.

Planification architecturale. Les architectes cherchent à améliorer la disposition
des bâtiments afin de réduire les encombrements et de faciliter la circulation

16



Résumé en Français

des personnes. Ils ont donc besoin d’un modèle de pilotage reproduisant le
plus fidèlement possible le comportement et la perception humaine. Ceci est
particulièrement important pour la conception de plans d’évacuation.

La communauté de la robotique a exploré des solutions à ce problème. Leur objectif
est de permettre aux robots de naviguer dans des environnements réels. Un robot n’a
qu’une perception limitée de l’environnement, ce qui augmente la puissance de traite-
ment requise, mais il a également besoin d’un temps de réaction rapide pour naviguer
en toute sécurité. Certaines applications de la communauté robotique incluent les en-
trepôts automatisés, le transport de robots et la gestion des marchandises stockées
dans ces derniers. Dans cette situation, les robots sont généralement conscients de
l’emplacement de tous les autres robots et un algorithme de pilotage rapide peut pi-
loter plusieurs robots dans une petite zone. Une autre application est la création de
robots entièrement autonomes naviguant le long d’êtres humains dans les villes et
autres environnements. Cela signifie qu’ils ne peuvent compter que sur des capteurs
locaux, tels que des caméras, pour percevoir leur environnement, ce qui entraîne une
augmentation spectaculaire du traitement requis pour traiter leur perception limitée.

La communauté des sciences cognitives a également proposé plusieurs méthodes
de pilotage. Ils étudient le comportement humain réel en s’appuyant sur des données
expérimentales. Ensuite, ils construisent des modèles pour reproduire le plus fidèle-
ment possible les données enregistrées. Leur objectif est d’étudier comment l’homme
perçoit l’environnement et sa réaction. Notre travail s’inscrit dans le champ des sci-
ences cognitives car nous proposons un nouveau modèle de contrôle du personnage
virtuel qui utilise une perception visuelle simulée similaire à la façon dont les humains
perçoivent leur environnement.

Les humains naviguent dans un monde dynamique où les sources d’information
sont limitées. Quoi qu’il en soit, ils sont très capables de traverser tout type d’environnement
connu ou non. Explorer les règles qui contrôlent la navigation humaine est un problème
ouvert. En simulation, de nombreuses approches basent le comportement sur la con-
naissance de la géométrie de la scène, souvent simplifiée. Cela simplifie beaucoup le
problème et un grand nombre de propositions ont été présentées pour produire des
trajectoires réalisables sans collision. Cependant, les vrais humains ne peuvent utiliser
que leurs sens limités pour traverser leur environnement, principalement la vision et
le son. Ces capteurs fournissent une connaissance de l’environnement d’une manière
très différente comme dans les simulations mentionnées. Cette distinction affecte la
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façon dont les humains traversent la scène.

Figure 3 – Représentation du flux optique [Gib86].

De nombreux travaux ont été réalisés pour apprendre comment un être humain
réel interagit avec l’environnement. À l’aide de dispositifs de capture de mouvement,
la trajectoire de l’individu peut être enregistrée et étudiée. En particulier, le rôle de la
vision en navigation a fait l’objet de beaucoup d’attention car c’est l’une des principales
sources d’information sur l’environnement. Warren et al. [WKZ+01] à montrer comment
le flux optique joue un rôle clé dans la navigation humaine. Le flux optique est un champ
vectoriel qui code le mouvement perçu au fil du temps dans le champ de vision. Il code
toutes sortes de mouvements visuels allant du mouvement des objets à la variation de
l’intensité de la couleur due au mouvement des sources lumineuses.

Notre hypothèse est que, pour reproduire fidèlement le comportement humain, un
agent virtuel a besoin de la même information sensorielle pour traverser l’environnement.
Afin de se rapprocher de cet objectif, des approches synthétiques basées sur la vision
ont été proposées. Ondrej et al. [OPOD10] et Dutra et al. [DMCN+17] a proposé dif-
férents algorithmes pour permettre à l’agent de naviguer dans une scène virtuelle en
utilisant la vision synthétique. Ces algorithmes n’enregistrent pas d’informations vi-
suelles, mais ils enregistrent les propriétés géométriques de la scène dans le champ
de vision. Par conséquent, dans cette thèse, nous proposons et étudions un nouvel
algorithme de navigation de caractères basé sur le flux optique. Nos agents enreg-
istreront le flux optique perçu dans leur champ de vision et détecteront les indices qui
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Figure 4 – Exemple de navigation par flux optique. (gauche) Vue de dessus de la scène
et de la trajectoire de l’agent. (milieu) Scène perçue du point de vue de l’agent. (droite)
Flux optique perçut par l’agent.

leur permettront de suivre une trajectoire sans collision. La figure 4 donne un exemple
de la perception de nos agents.

Navigation avec Flux Optique

Dans cette thèse, nous fournissons deux boucles de contrôle distinctes utilisant
des informations de perception différentes. Cette section fournit un aperçu général des
boucles de contrôle qui seront décrites dans cette thèse. La figure 5 est un résumé
des étapes détaillées dans les sections suivantes.

Perception

La phase de perception de notre boucle de contrôle correspond à l’enregistrement
d’informations de la scène. Nos agents virtuels sont équipés de plusieurs capteurs, qui
sont des caméras virtuelles placées au sommet de leur tête et jouant le rôle de l’œil.
Les agents peuvent percevoir les images en couleur, les flux optiques synthétiques,
la profondeur et les images sémantiques. L’image en couleur est un rendu complet
de la scène du point de vue de l’agent. L’image de flux optique synthétique CODE le
mouvement relatif réel des objets dans la scène par rapport à l’agent et est générée
à l’aide de shaders. La profondeur est simplement la carte de profondeur du cadre de
l’agent. Enfin, l’image sémantique CODE l’identifiant de l’objet derrière chaque pixel
perçu par l’agent.
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Figure 5 – Illustration des 4 étapes de la boucle de contrôle basée sur la vision pour la
navigation de personnage.

Un seul sous-ensemble de ces capteurs est utilisé à la fois, lorsque des images en
couleur à flux optique synthétique et des informations sémantiques ne sont générale-
ment pas nécessaires. D’autre part, le flux optique peut être calculé numériquement
à partir d’une séquence d’images couleur. Dans cette situation, le flux résultant est
bruyant et moins précis, nécessitant l’utilisation d’une segmentation sémantique.

Extraction de caractéristiques visuelles

Dans cette phase, les images perçues doivent être traitées pour extraire des in-
formations utilisables sur l’environnement. La première étape consiste à segmenter
les objets de l’arrière-plan. Ceci est fait en utilisant l’image sémantique. S’il n’est pas
disponible, il peut être calculé en détectant les discontinuités dans le flux optique.

Ensuite, pour chaque segment, un ensemble d’entités est calculé. À l’aide de la
carte de flux optique, nous pouvons calculer le centre d’expansion (FOE), le délai
de collision, etc. Ces caractéristiques sont liées au mouvement relatif de l’objet avec
l’agent et peuvent être utilisées pour corriger la trajectoire.
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Fonctions de navigation

Cette phase utilise les fonctionnalités visuelles extraites pour définir la tâche de
navigation. Un ensemble de fonctions de contrôle qui sont des fonctions d’erreur ex-
primant une petite tâche telle que l’atteinte d’un objectif ou l’évitement de collision.
Ensuite, ces fonctions de contrôle sont fusionnées dans la fonction de navigation.

Adaptation des variables de contrôle

Enfin, la fonction de navigation est optimisée à chaque image pour mettre à jour
les variables de contrôle de l’agent. Plusieurs méthodes sont possibles pour effectuer
cette minimisation. Dans ce travail, nous utilisons une simple descente de gradient qui
s’est avérée suffisante.

Conclusion

Cette thèse propose un nouvel algorithme de pilotage pour les personnages virtuels.
Notre objectif est de réduire davantage l’écart entre la simulation humaine virtuelle et
le mouvement humain réel en utilisant un système de perception visuelle virtuelle qui
émule la façon dont les humains perçoivent leur environnement. En particulier, nous
introduisons l’utilisation du flux optique, composant clé de la locomotion humaine, en
tant que source du mouvement relatif de l’environnement dans les scènes dynamiques.

Notre première contribution consiste à établir l’ensemble des caractéristiques vi-
suelles pertinentes pour la navigation. Nous proposons un nouveau pipeline de per-
ception qui enregistre d’abord les informations dans le champ de vision de l’agent
sous forme d’images. Ces images, qui contiennent le flux optique, la profondeur, la
couleur, etc., doivent être analysées et traitées afin de pouvoir être utilisées pour la
navigation. Le flux optique code le mouvement de chaque point du champ de vision,
ce qui signifie que nous pouvons en déduire le mouvement relatif des objets et leur
temps de collision. Nous fournissons ici deux pipelines, le premier utilisant un flux op-
tique synthétique calculé à partir de la connaissance du monde virtuel qui fournit un
flux de haute qualité. Le second pipeline utilise un flux optique numérique, calculé à
partir d’une séquence d’images. Cela se traduit par un flux optique de qualité inférieure
mais se rapproche mieux de la perception humaine.
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La deuxième contribution établit les relations entre le mouvement humain et les
caractéristiques visuelles extraites du système de perception. Pour chaque objet dé-
tecté dans les images perçues, nous calculons sa position, son centre d’expansion et
son délai de collision. Ces caractéristiques et les vecteurs de flux eux-mêmes sont
pris en compte pour la navigation. Nous fournissons l’expression de la motion de ces
caractéristiques en ce qui concerne les actions de l’agent.

La dernière contribution est la conception d’un schéma de contrôle utilisant les car-
actéristiques visuelles et leurs relations avec les variables de contrôle de l’agent. Nous
exprimons des tâches simples telles que l’atteinte des objectifs ou l’évitement de colli-
sion en termes de caractéristiques visuelles. Ensuite, ces tâches sont combinées dans
des fonctions de navigation qui expriment un comportement plus complexe, comme
atteindre un objectif tout en évitant les obstacles. De plus, nous concevons une tâche
de navigation capable de prendre en compte les conditions d’éclairage sans aucune
connaissance préalable de la lumière de la scène et en s’appuyant uniquement sur
leurs capteurs visuels.
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INTRODUCTION

This thesis addresses the problem of character steering. This problem consists in
solving how to generate the motion of a character through an environment subject
to certain constraints. Agents may need to reach a certain goal or to keep a certain
formation [Rey99] with other agents. On the way there may be obstacles which need
to be detected and avoided. Character steering may include any behavior that causes
an agent to navigate an environment such as in Figure 6. Therefore, character steering
needs to generate a trajectory, typically a 2D curve, by perceiving the world around
the character to complete a certain navigation task. The perception of the environment
depends on the particular application.

Figure 6 – Character trajectory example. Agent moving in a virtual scene avoiding
collisions.

The steering problem has been addressed by various disciplines such as crowd
simulation, robotics and cognitive science. Solving the steering has a wide array of
applications with a few of them shown in Figure 7. The crowd simulation community
has proposed many solutions to animate humans, animals and other characters in
virtual environments. Their goal is the simulation of a large number of individuals as
fast as possible. There are various applications of crowd simulation:

Cinema. Steering algorithms are used in the cinema industry to fill movie scenes
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Figure 7 – Requirements of performance and realism of character steering in various
applications.

with virtual characters. This allows filmmakers to reduce cost by reducing the
number of extras needed for animating large crowds or fictional creatures. The
film industry does not require real-time performance and it emphasises the real-
ism of their characters. Reynolds initially proposed the Boids steering algorithm
[Rey87] to generate the motion of flocks and herds. Still, artists want to keep full
control of the virtual character to satisfy the needs of the particular scenario.

Video Games. Video games typically require large number of virtual characters
to be simulated in real-time with the limited computation resources of a personal
computer. This imposes a big constraint on how complex and realistic the behav-
ior of the humans may be. Many games implement a version of RVO [vdBLM08]
[vdBGLM11] which does not try to reproduce realistic behavior of humans but
provides a very fast solution to collision avoidance.

Architectural Planning. Architects seek to improve the layout of buildings to re-
duce congestion and facilitate the flow of people. Therefore, they require a steer-
ing model that reproduces as closely as possible the human behavior and per-
ception. This is particularly important for designing evacuation plans.

The robotics community has explored solutions to this problem. Their goal is to
enable robots to navigate real environments. A robot has only a limited perception of
the environment and requires a fast reaction time to navigate safely. Some applications
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of the robotics community include automated warehouses were robots transport and
manage the goods stored in them. In this situation, robots are usually aware of every
other robot’s location and fast steering algorithm can drive multiple robots in a small
area. Another application is the creation of fully autonomous robots navigating along
real humans in cities and other environment. This means that they can only rely on local
sensors such as cameras to perceive their environment typically the using expensive
image processing algorithms.

The cognitive science community has also proposed several steering methods.
They study real human behavior relying on experimental data. Then, they build models
to reproduce the recorded data as close as possible. Their goal is to study how human
perceive the environment and their reaction. Our work falls in the scope of cognitive
science as we propose a new virtual character control model that uses a simulated
visual perception similar to how real humans perceive their environment.

Humans navigate in a dynamic world with limited sources of information about it.
Regardless, they are very capable of traversing any kind of environment known or new.
Exploring the rules that control human navigation is an open problem. In simulation,
many approaches base behavior on the knowledge of the geometry of the scene, often
simplified. This makes the problem much simpler and a large number of proposals have
been presented to produce feasible, collision-free trajectories. However, real humans
can only use their limited senses to traverse their environment, mainly vision, sound
and haptic. These sensors provide knowledge of the environment in a very different
way as in the mentioned simulations. This distinction affects the way humans traverse
the scene.

There have been many works aimed to learn how a real human interacts with the
environment. Using motion capture devices, the trajectory of the individual can be
recorded and studied. In particular, the role of vision in navigation has received a lot
of attention as it is one of the main sources of information regarding the environment.
Warren et al. [WKZ+01] showed how optical flow plays a key role in human navigation.
Optical flow is a vector field that encodes the perceived motion over time in the field of
view (see Figure 8). It encodes all kinds of visual motions from the motion of objects to
the variation of color intensity due to the motion of light sources.

Our hypothesis is that a way to truthfully reproduce human behavior, is to use the
same sensory information that humans use to traverse the environment. In order to
move closer to this goal synthetic vision-based approaches were proposed. Ondrej et
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Figure 8 – Representation of optical flow [Gib86].

Figure 9 – Optical flow navigation example. (left) Top view of the scene and trajectory
of the agent. (middle) Scene perceived from the agent’s point of view. (right) Optical
flow perceived by the agent.

al. [OPOD10] and Dutra et al. [DMCN+17] proposed different algorithms to allow agent
navigate a virtual scene using synthetic vision. These algorithms do not record visual
information but instead they record geometrical properties of the scene in the field
of view. Therefore, in this thesis we propose and study new algorithms for character
navigation based on optical flow. Our agents record optical flow perceived in their field
of view and detect the clues that allow them to follow a collision-free trajectory. Figure 9
provides an example of the perception of our agents.
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Figure 10 – Illustration of the 4 stages of the vision-based control loop for character
navigation.

Optical Flow Navigation

In this thesis we provide two distinct control loops using different perceptual infor-
mation. This section provides a general overview of the control loops that are described
through this thesis. Figure 10 is a summary of the steps that are detailed in the following
sections.

Perception

The perception phase of our control loop corresponds to the recording of informa-
tion of the scene. Our virtual agents are provided with only one visual sensor that
provides different types of data which is virtual camera placed at the top of their head,
playing the role of eyes. Agents can perceive color, synthetic or estimated optical flow,
depth and semantic images. The color image is a full render of the scene from the point
of view of the agent. The synthetic optical flow image encodes the true relative motion
of the objects in the scene with respect to the agent and is generated using shaders.
The depth is simply the depth map from the agent’s frame which humans acquire using
stereoscopic vision. Finally, the semantic image encodes the id of the object behind
every pixel perceived by the agent.
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Only a subset of these data can be used: when using synthetic optical flow, color
images and semantic information are usually not necessary. On the other hand, when
optical flow is numerically computed from a sequence of color images, the resulting
flow is noisy and less accurate, requiring the use of semantic segmentation.

Visual Feature Extraction

In this phase the perceived images need to be processed to extract usable informa-
tion about the environment. The first step is to segment objects from the background.
This is done using the semantic image. If it is not available, then it can be computed by
detecting discontinuities in optical flow.

Then, for each object, a set of features are computed. Using the optical flow map we
can compute the focus of expansion (FOE), time-to-collision (TTC), etc. These features
are related to the relative motion of the object with the agent and are used to determine
the agent motion.

Navigation Functions

This phase uses the visual features extracted to define the navigation task. A set of
control functions which are objective functions expressing low-level task such as goal
reaching or collision avoidance are selected, then, these control functions are blended
into the navigation function.

Agent Update

Finally, the navigation function is optimized at every frame to update the control
variables of the agent. Several methods are possible to perform this minimization. In
this work we use a simple gradient descent which proved to be sufficient.

Contributions

This thesis proposes new steering algorithms for virtual characters. Our goal is to
further close the gap between virtual human simulation and real human motion using
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a virtual visual perception system that emulates the way humans perceive their envi-
ronment. In particular we introduce the use of optical flow, a key component in human
locomotion, as a source of the relative motion of the environment in dynamic scenes.

Our first contribution is establishing the set of visual features relevant for navigation.
We propose a new perception pipeline that first, records information in the field of view
of the agent in form of images. These images, which contain optical flow, depth, color,
etc, need to be analyzed an processed in order to be usable for navigation. Optical flow
encodes the motion of every point in the field of view, which means that we can deduce
the relative motion of objects and their time-to-collision. We provide two pipelines here,
the first one uses synthetic optical flow computed from the knowledge of the virtual
world which provides a high quality flow. The second pipeline uses numeric optical
flow, computed from a sequence of images. This result in a lower quality optical flow
but approximates better the human perception.

The second contribution establishes the relations between the human motion and
the visual features extracted from the perception system. For every object detected
in the perceived images we compute its position, FOE and TTC. These features as
well as flow vectors themselves are taken into account for navigation. We provide the
expression of the motion of these features with respect to the agent’s possible actions.

The last contribution is the design of a control scheme using the visual features
and their relations with the agent’s control variables. We express simple tasks such as
goal reaching or collision avoidance in terms of the visual features. Then these tasks
are combined into navigation functions which express a more complex behavior such
as reaching a goal while avoiding obstacles. In addition, we design a navigation task
which is able to consider lighting conditions without any previous knowledge of the light
in the scene and solely relying on the visual perception.

Thesis Outline

This thesis is structured as follows. Chapter 1 provides an overview of previous
works related to this subject. It describes what solutions were proposed to address
the steering problem and how this thesis improves upon that. Chapter 2 describes in
detail how agents perceive the environment and how the visual features are extracted.
Agent’s are equipped with a visual sensor that allows the extraction of visual features.
We describe the relevance of these features and how they relate with the motion of
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the agent. Chapter 3 defines a navigation framework that uses visual information. It
defines different navigation tasks using the visual features and how to adapt the agent’s
motion accordingly. We present two different control loops that use different perceptual
information and result in different behaviors. Chapter 4 shows several examples of our
control loops in different scenarios. We compare our control loops to previous models
and analyze the effect of parameters. Chapter 5 provides a discussion upon the results
of our framework, its limitations and future work. Finally, this document ends with a
conclusion to summarize the contributions.
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CHAPTER 1

STATE-OF-THE-ART

This thesis seeks to steer virtual characters in a dynamic environment using visual
information, therefore, simulating the human vision-locomotion loop. This problem is
directly related to the fields of Computer Graphics and Robotics as they both attempt
to achieve agents or robots capable of autonomously navigating an environment. The
main distinction between a robot and a virtual agent is the way they perceive the envi-
ronment as robots need to be equipped with sensors and filter the information while a
virtual agent may directly access the information from the simulation. In this PhD we at-
tempt to reduce this distinction by providing agents with virtual sensors similar to what
a robot may have access. This work also relates to Crowd Simulation as this discipline
works in a very dynamic environment where agents need to take into account the mo-
tion of other agents and moving obstacles. Furthermore, our work seeks to be a step
forward towards human-like navigation as we propose a control loop based on vision
and optical flow, information that are well known to be used by humans and animals to
navigate an environment. Therefore, this work is related to experimental psychology,
the community that studies how real humans behave.

1.1 Character Motion: planning and controlling the lo-

comotion of characters

The simulation of virtual characters is a problem with many variants. Character
steering consists on computing the trajectory of agents from an initial state to a final
destination. When generating trajectories it is also important to be able to generate
a feasible set of animations and behaviors. The resulting trajectories are required to
satisfy constraints such as avoid obstacles, make the character jump to overcome a
gap in the ground or approach an object in a certain way to grab it (similar to how real
humans react). Many approaches have been proposed to plan the motion of agents in
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Figure 1.1 – Illustration from [ALHB08]. Example of goal reaching experiments of real
humans with motion capture devices.

a variety of environments.

To be able to realistically simulate human navigation we need to study how they
actually traverse their environment, what kind of trajectories they produce and how
they reach their goal. Several authors [BC89] [ALHB08] [HPA+07] have studied how
they move using motion capture techniques to record the human position over time as
illustrated in Figure 1.1. The idea is to study how humans change their path to reach a
goal in a particular orientation starting from different initial positions. Using these data
they generate new trajectories with similar properties to the real data recorded.

Another problem is how a virtual human should traverse the scene given a complex
environment and limited amount of indication as actions or goals. As depicted in Fig-
ure 1.2, the whole animation needs to be generated to take into account the terrain,
obstacles and the requested actions. Many approaches have been proposed to solve
this problem [SH07] [CLS03] [KL00] typically using finite state machines and a pool of
simple animations. These animations are then blended to produce the final result of
agent. Some approaches focus on footstep planning [CLC+05], the simulation of many
characters in dynamic environments [LK05] or cooperative planning [EAPL06].

In searching for higher realism to move characters, human models have also been
proposed to represent their locomotion. Boulic et al. [BTT90] proposed a human skele-
ton model capable of walking using a cinematic model in real-time which was then used
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1.1. Character Motion: planning and controlling the locomotion of characters

Figure 1.2 – Illustration from [SH07]. Example of motion planning. In the upper image
the user defines a path or only a set of way-points with a set of actions that need to be
completed. The lower image shows the generated animation.

by Glardon [GBT04] to develop a human walking engine. This allows the generation of
better walking animations that adapt to the motion of the character. Later Baerlocher
[BB04] proposed a skeleton model and reproduced various poses using inverse kine-
matics while satisfying the constraints in the joints of the human body.

Discussion

Typically, agents have access to a precise representation of the 3D environment to
plan the entire motion which allows to easily generate good-looking trajectories but it
misses the perceptive capabilities of real humans. In this work, we describe a reac-
tive behavior, our agents have only limited knowledge of the environment from their
visual sensors that reproduce human the vision system. Existing reactive behaviors
are described in Section 1.2
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1.2 Crowd Simulation: steering agents in highly dynamic

environment

Crowd simulation attempts to reproduce the behavior of real crowds in a virtual
environment. This problem has been typically addressed in two different ways. First,
the so-called macroscopic models, where crowds are modeled as continuous fluid-
like matter [NGCL09] [TCP06] and they obey fluid dynamic equations. These methods
provide an accurate high level description of the crowd (density, flow, etc) in high den-
sity scenarios. However, real crowds exhibit behaviors as complex as the humans that
are part of it. In order to accurately model the details of a crowd it is necessary to
model human behavior and locomotion system individually, these are the microscopic
models. Several approaches have been proposed to imitate humans [DDH13] such as
physically-based models, velocity-based, behavioral models, rule-based models and
more.

Physically-based models

Physically-based models propose considering virtual agents as point particles. Then,
the interaction of an agent with the rest of the world is modeled with forces. Tasks such
as goal reaching are modeled with an attractive force and collision avoidance as a re-
pulsive force. Social forces [HM95] is a well-known example of this kind of model. Sev-
eral improvements to this model have been proposed. Bouvier et al. [EB97] proposed a
generic particle system to demonstrate its applicability to model crowds. These models
are capable of generating large crowds in real-time and can be easily calibrated to pro-
duce different types of crowd behavior. With the capability of simulating large crowds
some studies focused on model panic scenarios [HFV00].

Further approaches such as predictive models [KHvBO09] improve realism in physically-
based approaches. Future possible collisions are predicted, then the repulsive force is
computed for this situation and it is applied in the present configuration as shown in
Figure 1.3.

Later Karamouzas et al. [KSG14] designed a repulsive interaction between agents
to reproduce a power-law pattern present in the evolution of time-to-collision over time
when real humans perform collision avoidance.

Kuffner et al. [KL99] used the idea of label images and introduced the use of mem-
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Figure 1.3 – Illustration from [KHvBO09]. The right panel shows the typical repulsion in
a social forces model. The left panel shows the approach presented by Karamouzas et
al. where the repulsive force is computed at the position of the future collision.

ory and learning. Objects are registered when they are first seen and forgotten after
some time if they are not seen again. Therefore, the agent builds an internal represen-
tation of the world while navigating it.

However, human navigation is an extremely complex system that exhibits behaviors
that a simple physics model cannot reproduce. These models rely on a very simple rep-
resentation of the environment and agents and simple repulsive and attractive forces
produce simple behaviors.

Rule-based models

A way to obtain a greater variety of behaviors for virtual agents is to combine differ-
ent tasks. With this in mind Reynolds [Rey87] [Rey99] pioneered rule-based models.
The interactions of agents consisted of a set of rules to perform a complex navigation
task. For example Figure 1.4 illustrates the multiple rules that define flocking, which is
a crowd moving in a flexible formation. Figure 1.5 shows multiples behaviors (collision
avoidance, target reaching, fleeing, etc.) that need to be combined to enable agents to
complete these tasks at the same time. Many of the rules proposed for collision avoid-
ance and other tasks may be contradictory with each other and need to be blended in
particular ways [SKH+11].

Shao W. [ST05] proposed a complete model taking into account multiple needs and
desires to simulate humans in a scene for generating crowd behavior. Each agent has
a set of priorities that drive his behavior while performing collision detection and avoid-
ance with other agents and static objects. Static obstacles are detected by performing
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Figure 1.4 – Rules defining flocking proposed by Reynolds [Rey99].

Figure 1.5 – Rules defining different behaviors (seeking, flee, collision avoidance, etc.)
proposed by Reynolds [Rey99]

ray tracing with the geometry of the world. Then the agent selects a path with the far-
thest collision distance. Regarding dynamic obstacles, a set of basic interactions with
other dynamic obstacles are modeled and agents select a combination of these rules
to solve every situation.

Moussaïd et al. [MHT11] included aspects from cognitive science to study possible
dangers within a crowd. They simulated human perception by computing the time to
collision with objects in the scene across the horizontal field of view. Then they used
an heuristic model to select a new direction with greater time to collision that does not
deviate too much from the desired destination of the agent.

Kapadia et al. [KSHF09] [KSH+12] proposed affordance fields. These fields eval-
uate how easy it is for the agent to navigate the local vicinity. They vary their value
according to obstacles and proximity to the goal. This information is used to plan the
trajectory of the agent.

In most models high densities in crowds usually result in congestions and blocking
situations. Pelechano et al. [PAB07] proposed a model to handle low and high density
crowds. They modeled the psychology of the agents of the crowd enabling communi-
cation to solve dead-locks.
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Velocity-based models

Another well known algorithm used in crowd simulation is RVO [vdBLM08] [vd-
BGLM11]. It is an efficient collision avoidance approach that finds optimal collision
free velocities for agents in the crowd in the near future. It is based on the concept
of velocity obstacles V OA

B of an agent B to an agent A. This is the set of velocities
of A that cause a future collision. Figure 1.6 illustrates this concept. There are many
variations of the RVO formula and velocity-based models [PPD07].

Figure 1.6 – Velocity obstacles. V OA
B(vB) is the set of velocities of agent A that causes

a future collision with agent B. [vdBLM08]

Other approaches such as the one proposed by Patil et al. [PvC+11] used guidance
fields to facilitate crowd motion and prevent or reduce congestions while using tradi-
tional approaches. These fields are annotations in the world that guide agents through
a particular path depending on their destination. These fields can be manually edited
by the user or extracted from real crowd data.

Figure 1.7 – Extraction of human trajectories from camera recordings performing back-
ground and shadow removal. [AGS+11]
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Real crowds have been studied many times to discover new avoidance approaches
[POO+09] [KO12]. Other approaches [JCP+10] generate crowd behavior from existing
data. Lerner et al. [LCL07] proposed a data-driven model for agent interaction. Ahn
et al. [AGS+11] proposed a method to extract of crowds from camera recordings (see
Figure 1.7) and used these trajectories to generate paths for virtual humans. With
this set up, collision detection is easy as the trajectories of the agents are known in
advance. They handle collisions by shifting the trajectory of the agents. Then, they
proposed an improved model [AWTB12] and performed user studies to evaluate the
perceived realism of the crowd in VR with respect to other models.

Discussion

Many other crowd systems have been proposed [ANMS13]. These models however,
focus on achieving high performance with a large amount of agents. For this reason
they rely on simple representation of the environment and the agents themselves. In
order to improve the realism of the simulation we require to study what information
relying on vision real humans use to navigate an environment.

1.3 Synthetic Vision Character Control

Every algorithm that enables a virtual agent navigate a virtual environment requires
a mean of perceiving their environment. Real humans use their senses (mainly sight
but also sound) to detect obstacles and avoid them. In character animation this prob-
lem has usually been addressed by processing entities within a certain radius of the
agent. Therefore, agents are able to perceive more information than real humans could
possibly perceive at the same time. This results in a lack of realism as real human nav-
igation and interactions depend on what they can perceive and what they cannot. Real
humans perceive the color of the environment. They are then processed in order to
adapt the motion of the individual to reach a certain goal. In practice this is a very
computational expensive operation and it has not been completely solved yet. For this
reason virtual characters typically rely on various kinds of approximations. The steering
algorithms proposed in this thesis fall into the vision-based control category.

Renault et al. [RTT90] designed a synthetic vision model to enable navigation. In
this method a virtual camera draws the scene from the point of view of the agent.
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However, instead of capturing the color of every pixel, they captured the semantic in-
formation of the scene, every pixel holds a label that identifies the underlying object. In
addition, the depth map is also processed. Using this information agents can perform
local navigation in a given environment. Noser et al. [NRTT95] later combined this idea
with path planning.

In addition to humans, animal locomotion can also be simulated by using synthetic
vision. Tu et al. [TT94] searched to reproduce the entire locomotion system of fishes
from the motion of the body to the visual stimulus used to navigate. The synthetic vi-
sion in this work consists on queries to the simulation for every element in the field of
view of the fish. The fish could then access to the distances, shape, size and identities
of the perceived objects. Later Terzopoulos et al. [TR95] introduced the use of color
images perceived by the fishes. They reproduce the fish color perception by using mul-
tiple cameras with different resolutions to reproduce the distortion of fish eye lenses.
Then the color images are analyzed by detecting color histogram patterns. Every pat-
tern corresponds to a specific type of object in the environment allowing the fish to
identify the perceived entities. They also introduced the use of optical flow to stabilize
the motion of the fish.

Courty et al. [CMA03] used a synthetic vision approach to simulate gazing behav-
ior. Their approach use images to detect interesting features (salient) that may draw
the attention of the virtual character in order to reproduce how humans analyze their
environment.

Other works attempted to simulate large crowds in real time while still reproducing
human perception limitations. Silva et al. [SLC10] proposed a GPU method to roughly
simulate occlusion in crowds with a large amount of agents. Based on the flocking
behavior presented by Reynolds [Rey87], for every agent, they process the first N
agents within the field of view of the agent. Then the rest of agents are assumed to be
occluded by the crowd and ignored.

This thesis builds on top of some recent synthetic vision models for character steer-
ing. Ondrej et al. [OPOD10] presented a collision avoidance method using synthetic
vision. They render the scene from the point of view of the agent but instead of cap-
turing color information they capture the variation of the bearing angle of each pixel
and time-to-interaction. Figure 1.8 illustrates the relevance of the bearing angle re-
garding future collisions. They then update the velocity of the agent in order to obtain
a collision-free trajectory. Later Wu et al. [WJDL13] applied the model presented by
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Figure 1.8 – Image by Ondrej et al. [OPOD10]. This figure illustrates the importance of
the bearing angle α to prevent collisions. The cases where the bearing angle increases
or decreases over time (left and right situation) indicates no collision will occur. When
the bearing angle remains constant (center) this means that a collision will occur.

Ondrej to groups and studied to apply synthetic vision to collective motion.
Finally one of the most recent approaches in synthetic vision steering was pre-

sented by Dutra et al. [DMCN+17]. They presented a synthetic vision model that per-
ceives distance and time to collision for every pixel in the field of view of the agents.
With this information they build a set of cost functions C that evaluate the risk of colli-
sion. Then the speed and direction of motion of the agent is updated to minimize the
cost functions using a gradient descent approach. Figure 1.9 shows an overview of the
control loop used to steer agents.

Discussion

Several solutions have been proposed to steer virtual agents using various kinds
of synthetic vision methods. However, very few of them actually use visual information
resulting in a big distance from the information used by real humans to navigate. We
seek to close this gap by introducing the use of optical flow and depth maps for naviga-
tion. Optical flow is the perceived motion of the scene from an individual point of view
and it is known to play an important role in human navigation.
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Figure 1.9 – Image by Dutra et al. [DMCN+17]. This figure illustrates the control
loop presented by Dutra. First the synthetic images are generated in the percep-
tion stage containing time-to-closest-approach (ttca) and distance-of-closest-approach
(dca). Then this information is combined in the second stage to evaluate the risk of col-
lision. Finally, the cost functions are optimized by updating the speed sa and orientation
θa of the agent.

1.4 Experimental psychology: the human visuo-locomotor

loop

In the experimental psychology field, there have been numerous studies about the
internal relation between vision and human locomotion. In particular and related to this
thesis is what kind of visual information humans use to adjust their trajectory when
navigating an environment. What clues alert the human visual system about possible
collisions and how to decide a new trajectory.
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Figure 1.10 – Experiment with moving obstacles [RN13].

Studies suggest that humans perform a combination of motion planning and reac-
tive behavior [GLRLR+07] to navigate various environments. This was suspected for
some time as there are experiments suggesting prior motion planning [PTI04] while
other point towards reactive behavior. In particular, Gibson [Gib86] suggested that op-
tical flow was used by humans to estimate self motion and navigate environments.

Optical flow is defined as the apparent motion of objects projected in the retina.
Experiments by Warren et al. [WKZ+01] suggested that it plays a key role in human
navigation. They performed several experiments to record humans moving in an en-
vironment as depicted in Figure 1.10. The optical flow generated by an object in this
situation can be analytically estimated and analyzed. Experiments were made first with
static [WMBM91] and latter with dynamic obstacles [WJS95]. They found that the ex-
pansion center of objects, a particular point in the optical flow map, was a relevant
feature that hinted the human visual system about possible collisions.

This problem is still being studied and experiments are revised to explain contradic-
tory results. Raudies and Neumann [RN13] reviewed previous experiments [WJS95]
[RH96] [FK02] as shown in Figure 1.10. The resulting trajectories yield contradictory
conclusions in this examples. Raudies and Neumann discussed that the experimental
conditions of the different experiments allow the use of different cues for object detec-
tion by the human visual system which may result in different trajectories.

42



1.5. Robotics: implementing cyber visuo-locomotor loops

Discussion

There is still a debate regarding the role of optical flow in human navigation but
many experiments suggest that it is an important map perceived by the human visual
system. Our work simulates the human perception system to generate optical flow in
virtual environments and defines control laws to link the perceived information with
locomotion. The accuracy of the resulting trajectories compared with the motion of real
humans is out of the scope of this thesis. However, this provides a new tool to evaluate
how real humans behave with different visual information.

1.5 Robotics: implementing cyber visuo-locomotor loops

The robotics community has explored many methods to acquire visual information
and process them to influence the motion of a robot. In particular, there has been a
study of the use of optical flow which is a dense map that encodes a lot of information
about the motion of the environment, from self motion to the relative motion of objects.

The first step is to control geometrical points or other visual features obtained
through the robot sensors to obtain a specific configuration. Chaumette et al. [CH06]
present how to approach the control problem using visual features. To accomplish a
task it is required that a certain image feature s achieves a certain state s∗. Then the
error function is simply defined as e = s − s∗. To minimize e the dependency of s
with respect the control variables vc is represented by the interaction matrix L, so that
s = Lvc. To ensure an exponential minimization of the error function ė = −λe the
control variables have the expression vc = −λL+e.

Cretual et al. [CC01] designed two control schemes for camera positioning. They
measured the motion in the image (optical flow) due to the camera’s own movement
and use this information to perform certain tasks. The camera is able to align its position
with a plane or follow a 3D surface. These tasks can be accomplished without previous
knowledge of the scene as the perceived motion is sufficient to guide the camera.

Controlling visual features can be used to achieve corridor following. Faragasso et
al. [FOPV13] designed a control model based on visual information. The robot sensors
detect the edges of the corridor that converge in the vanishing point. Keeping these
edges at the same distance in the field of view allows the robot to navigate through the
middle of the corridor. Analysis of the perceived edges allows them to handle turns or
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T junctions as in this situations the edges of one or both sides of the image eventually
disappear indicating the corresponding situation.

Many authors proposed visual and control system for aerial robots. Grabe et al.
[GBR12] used optical flow to estimate the self motion of the robot. Their idea is to
take into account point in the dominant plane of the image (such as the ground) then
use this optical flow to determine the motion of the robot. Lee and Song [SJ04] used
optical flow to obtain a more robust estimation of self motion and even to compensate
the trajectory of the robot after an external perturbation in its trajectory. Hérissé et
al. [HHMR12] developed a controller to allow aerial robots to land safely on mobile
surfaces. A camera is aimed towards the ground and the optical flow is computed from
the images of this camera. Then the optical flow is used to stabilize the robot with
respect to the mobile landing platform.

Detecting obstacles is a key feature in robot navigation and optical flow has been
used to solve this problem. Braillon et al. [BPCL06] designed a robot that uses optical
flow to detect obstacles. As the speed of the robot could be estimated accurately, the
optical flow generated by the ground was known. Therefore, pixels with optical flow dif-
ferent from the one expected indicate the presence of an obstacle. A similar approach
was considered by Ferro et al. [FPCV16] where discrepancies between expected and
computed optical flow point towards the presence of obstacles.

The previous approaches method detects obstacles by detecting discrepancies in
the expected motion perceived by the robot. An alternative to this is to detect the dom-
inant motion in the scene. Odobez and Bouthemy [OB94] applied this idea to design
an obstacle detection algorithm. The dominant motion produced by the background is
detected and motions of objects that deviate from this are considered obstacles.

Fernandez et al. [FCCMCMT10] designed a surveillance robot to detect humans
and their motion using infrared cameras. While the robot is static a simple image sub-
traction operation is performed so that differences between consecutive frames are
detected. When the robot is moving, optical flow is computed using the Lucas and
Kanade algorithm [LUC81] to detect humans.

Griffiths et al. [GSC+06] designed a miniature aerial device (MAV). They use a laser
based system to detect obstacles in front of the vehicle. The MAV adjust its trajectory
until the obstacle is no longer detected ensuring a collision free trajectory. In addition,
the MAV has cameras looking at the sides of the vehicle. The images from these cam-
eras are then processed to compute the optical flow. This is used to prevent lateral
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collisions and stay close to the center of a corridor.
Hrabar et al. [HSC+05] proposed a set up for navigation in land and air. The robot

consists on two frontal stereo cameras that capture the scene in front of the robot and
two lateral cameras capturing the scene at the sides. The stereo cameras are used to
reconstruct the 3D shape of the world and detect any obstacles in the way of the robot.
The lateral cameras are used to compute the optical flow at the sides of the robot. Then
the robot turns to balance the flow from both cameras (e.g. moving through the center
of a corridor).

Zingg et al. [ZSWS10] used optical flow for collision avoidance. They proposed a
mobile aerial robot with fish eye cameras pointing towards the lateral sides of the robot
with respect to the direction of motion. In a static scene, optical flow is proportional to
the distance of the perceived objects and the speed of the robot. As the speed of the
robot is known, it is possible to obtain the depth of perceived points. Then the robot
tries to keep a certain distance with all objects perceived.

A relevant point in detecting obstacles is the expansion center of an object or Focus
of Expansion. Nelson et al. [NA89] studied how different patterns in optical flow corre-
spond to the 3D world, in particular, the divergence pattern that indicates the presence
of an obstacle in the field of view. Souhila and Karim [SK07] explored the use of expan-
sion centers in optical flow to detect obstacles and the time to collision to them. Then
they proposed a robot navigating using a optical flow balance strategy to maneuver it
through the scene. Sundareswaran et al. [SBC96] proposed a control solution to align
a camera mounted on a robot with its direction of motion. They use the optical flow to
compute the Focus of Expansion of the scene. Then, the robot moves so that the FOE
is aligned with the center of the image.

Discussion

The robotic community has proposed many approaches to solve the robot navi-
gation problem, using visual servoing, optical flow and other types of sensory infor-
mation. However, there has not been attempts to use optical flow for highly dynamic
environments. In our work we propose a navigation model using optical flow to navigate
dynamic environments with multiple obstacles and little knowledge of the scene.
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CHAPTER 2

PERCEPTION AND VISUAL FEATURES

Humans navigate their environment using their perception and knowledge of the
environment. Experiments [GLRLR+07] suggest that a certain combination of planning
and reactive behavior affect the way humans move in a given environment. Distances
and personal space [GLRM05] is taken into account to obtain a prior plan of their
trajectory. Then, humans rely on their visual perception system to adapt their trajectory
to the details or unknowns of the environment [TT94] [WKZ+01]. In particular, humans
are known to rely on optical flow, the apparent motion of objects in the field of view.
Optical flow contains information regarding the relative motion of every object in the
scene with respect to the observer. Using this, humans are capable to deduce their
own motion with respect to static objects (e.g. the ground) as a reference and the
relative motion of dynamic obstacles like other humans. The pattern of optical flow also
contains information about the remaining time until collisions. This allows humans to
adapt their trajectory to avoid obstacles or reach a goal. Therefore, optical flow contains
a large amount of information that can be used as the basis of a perception scheme.

The human visual perception system is not limited to optical flow but it can identify
objects or perceive distances. We seek to simulate the visual perception of a human
and find those features that may allow a virtual agent to navigate a virtual environment
based on this visual information. Therefore, we design a perception pipeline that is
able to record different types of visual information as seen in the first column of Figure
2.1, color images emulating the human eye, optical flow recording the apparent motion
of objects in the field of view, depth as the distance of every point in the field of view
and semantic information as the classification of every perceived object. We propose
an agent model equipped with a virtual camera at the height of the eyes. This camera
renders the scene from the point of view of the agent and records the various images
required for navigation. First, we have color images which consist of a normal render
of the scene from the agent’s point of view. Then, there is synthetic optical flow which
is a special render of the scene that encodes the velocity of every point in the image.
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This is done using a specialized shader. Depth information is also acquired together
with synthetic optical flow as the variation of the flow depends directly on the distance
between the agent and the corresponding point. Finally, the cameras are capable of
rendering semantic information, again using a special shader to assign a label to ev-
ery object in the scene. This is necessary in cases were the quality of optical flow is
reduced such as when a numeric solver is used to compute the optical flow from a
sequence of images.

Optical Flow

Optical flow is defined as the apparent motion of objects perceived by an observer.
In the case of humans it represents the variation over time of colors perceived by the
retina. It is a 2D vector field for each point in the field of view of a camera and encodes
how the camera and objects move. Different objects moving differently with respect
to the observer produce distinct image motion which allows object segmentation by
analyzing continuity in the flow map as done by [OB98]. In order to use optical flow
for navigation we first need to remove any contribution from rotational motion, in par-
ticular, due to the observer’s change of orientation. Real humans are able to naturally
compensate this effect through the vestibulo-ocular reflex [Ang04]. The resulting optical
flow map contains the linear motion and exhibits for each object a radial pattern around
a particular point, the focus of expansion (FOE). The location of the FOE with respect
to the object depends on the relative velocity of the object with respect to the observer.
This property can be used to detect risks of collision. The novelty of this work is the
direct manipulation of optical flow to solve navigation problems. Therefore, optical flow
is a rich feature map that needs to be processed to extract the relevant features for
navigation. In this thesis we explore two methods for exploiting optical flow, synthetic
and numeric. Table 2.1 summarizes the traits of each method.

The first method of computing optical flow is called synthetic flow. This approach
uses the simulation data, that is, the known relative velocity between agent and objects,
to generate an artificial version of optical flow that encodes the projected motion of
objects in the field of view of the agent. The main advantage of this method is its
accuracy, as optical flow can be computed with arbitrary quality and precision. This
allows to perform object segmentation using the optical flow alone. The downside of
this approach is that it is not the real flow that humans perceive but an approximation
and it is limited to a virtual simulation.
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The second method of computing optical flow is to use a numerical solver. Numer-
ical optical flow is computed by finding correspondent pixels in a pair of consecutive
color frames which is closer to the way humans perceive optical flow. Usually, this
solution generates flow with noise and lower accuracy but it is not limited to virtual sim-
ulation and is also usable in real environments. The main downside to this approach is
the higher computation time required with respect to synthetic optical flow.

Synthetic Optical Flow Numeric Optical Flow

Faster Computation Time Higher Computation Time

Highest Quality and Accuracy Higher Realism

Limited to virtual environments Usable in real environments

Easy to filter rotational flow Noisy and hard to filter rotational flow

Table 2.1 – Comparison of synthetic and numeric optical flow.

Perception Pipeline

This chapter details a new agent model detailed in Section 2.1 that uses a new
perception pipeline that allows our agents to perceive and process visual information.
Figure 2.1 shows an overview of the three steps involved, perception, image segmen-
tation and visual feature extraction. The perception stage gathers the visual information
for later processing. Our agents have access to 4 types of visual data: color images,
numeric or synthetic images, depth map and semantic information. The details on how
each of these images are obtained is detailed in Section 2.1.3. The second step is im-
age segmentation. In order to react to obstacles or other objects in the scene the agent
needs to detect them in its field of view. In the case of numeric optical flow this is done
thanks to the semantic map, that identifies objects in the scene. When using synthetic
optical flow we search for discontinuities in the flow to find the boundaries of the differ-
ent objects. The details of this stage are described in Section 2.2.1. Then, we move to
the last column in Figure 2.1 the visual features stage. After image segmentation the
agent has detected a number of objects Oi. For each of these objects a set of visual
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Color Images
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Figure 2.1 – Scheme of the agent’s visual perception system. Agents can record var-
ious kinds of visual information which are processed to extract individual objects and
compute their visual features.

features are computed using the optical flow map such as the Focus of Expansion and
time-to-collision. All visual features and their relation with the agent’s control variables
are developed in Section 2.2.2.

2.1 Human Model

This section describes the characteristics of the agents considered in this the-
sis. We present how they are controlled, how they capture visual information of the
scene and the visual features that can be extracted from their perception. Agents are
equipped with a virtual camera simulating eyes. This camera is used to capture color
images, optical flow, depth map and semantic information. The resulting images are
available to the agent at every iteration of the control loop. First, we describe the con-
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𝑌
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Figure 2.2 – Coordinate frames. (left) 3D coordinate frame, (right) 2D image coordinate
frame.

trol variables of the agent in Section 2.1.2 and then we list and explain the different
sensory information they have access through virtual perception in Section 2.1.3.

2.1.1 Coordinate Frames

All the variables and notation shown in this thesis are expressed in the local frame of
the agent. Figure 2.2 shows the 3D local frame (left image) of the agent. This frame is
located at the position of the agent’s eyes and is used to express any 3D variables such
as velocities and positions. The Z component is always pointing towards the direction
of motion of the agent and the Y vector points towards the ground. The right image
shows the image space local frame and is used to express any 2D variables such as
pixel position, optical flow and all visual features. It is a frame in normalized image
coordinates with the origin at the middle of the image with the vertical vector pointing
towards the ground.

2.1.2 Control Variables

The control variables of an agent are the inputs to change its motion. They are
updated at every iteration of the control loop to enable an agent to accomplish a cer-
tain task. We consider an agent with two degrees of freedom: forward acceleration
ac = (0, 0, ac) and turning rate ωcy around the vertical axis expressed in the 3D co-
ordinate frame of the agent. This control scheme corresponds to the unicycle model.
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𝑎𝑐

𝜔𝑐𝑦

Figure 2.3 – Agent’s control variables. The output of the navigation algorithm updates
the acceleration and the turning rate.

Acceleration allows the agent to move faster or slower and turning rate is the angular
velocity of the agent around its vertical axis, which allows the agent to change its di-
rection of motion. Lateral motion is not considered in this model. Figure 2.3 illustrates
the degrees of freedom of the agent. The control variables are clamped to a maximum
value to stabilize the simulation. The maximum value of ωcy = 3rad/s and the maximum
acceleration is ac = 1m/s2.

2.1.3 Visual Sensors

Agents are equipped with a virtual sensor capable of recording different types of
visual information as shown in Figure 2.1. This sensor is a camera situated roughly at
the same location as human eyes are and points in the direction of motion. Depending
on the specific control loop agents are executing they use different visual input. As
already said, there are 4 types of visual information our agents can perceive: synthetic
or numeric optical flow, depth map, semantic images and color images. This section
details how these images are obtained and describes their relevance for navigation
purposes.
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Color Image

Color images are full renders of the scene from the agent point of view. These
images are a monocular version of human eyes and they have two purposes. First, nu-
merical optical flow is computed using color images from consecutive frames. Second,
it allows the agent to detect dark regions. Measuring the intensity of pixels we can use
these images to detect regions in the images with poor visibility or lack of information.
The corresponding algorithm is described in Section 2.2.1.

Synthetic Optical Flow Image

Optical flow is defined as the apparent motion of objects in the visual field. In a
virtual simulation the information of the scene is available to an agent. Therefore, op-
tical flow can be computed by approximating it as the projected motion of every point
in the image plane. A dynamic observer with angular velocity ωcy perceives a point
j with coordinates Xj = (Xj, Yj, Zj) of an object i, with relative translational velocity
vi = (vix, viy, viz). We neglect optical flow components due to the object’s own rotation
under the assumption that these rotations are small compared to the other contribu-
tions. The observer perceives optical flow according to the following equation [SBC96],


uj = (vix − xjviz) /Zj − ωcy

(
x2
j + 1

)
,

vj = (viy − yjviz) /Zj − ωcyxjyj,
(2.1)

with (xj, yj) = (Xj/Zj, Yj/Zj) being the projection of point Xj in the image plane.

Equation (2.1) takes into account the angular velocity of the observer. We need
to remove this contribution from the perceived flow. The reason is twofold: first, hu-
mans are able to compensate rotational component through the Vestibulo-ocular reflex
[Ang04], and second, it allows us to define the FOE and other features derived from it.
Then, Equation (2.1) with contributions from the relative linear motion alone is reduced
to the following expression,

uj = (vix − xjviz) /Zj,

vj = (viy − yjviz) /Zj.
(2.2)

Synthetic optical flow images are then computed by encoding Equation (2.2) at
every pixel. This version of optical flow is of very high quality which allows easy object
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segmentation by detecting discontinuities (see Section 2.2.1).

Numeric Optical Flow Image

Synthetic optical flow allows the agent to obtain a high quality map that can be
used for navigation. However, it is not a realistic representation of the perception of
real humans. They can only perceive optical flow from the variation of color in the
retina. In order to replicate this, optical flow can be numerically computed from two
color images at two consecutive frames. A strategy for optical flow solvers is to search
for every pixel of the first image the corresponding pixel in the second image resulting
in a displacement map. The solver needs to face some challenges such as how to
handle occlusions, new objects appearing in the scene or fast moving objects.

Many approaches have been proposed to solve compute optical flow, from time-
consuming stochastic slow models [HB93] to polynomial approximations [Far03] to
solve the motion estimation problem. We have tested a number of optical flow solvers
easily available as open source projects and present their results in Figure 2.4.

The first method tested is Farneback’s [Far03] approach. They approximated the
displacement of the neighborhood of each pixel with a polynomial expansion. The re-
sulting flow presents a large amount of noise although is not computationally expen-
sive. Kroeger et al. [KTDVG16] proposed an inverse search method. They find corre-
spondences in small patches in the image and then refine every pixel to obtain the
dense map. This approach is the fastest we tested although its results are lower qual-
ity than other models. Zach et al. [ZPB07] proposed a variational method with a GPU
implementation to reduce computation time. Their approach produces good results
however edges tend to be noisy and smaller details are missed. Brox et al. [BBPW04]
proposed a warping technique to compute optical flow. Their approach is still com-
putationally expensive and the result is a bit noisy. Deepflow [WRHS13] introduced
a descriptor to search dense correspondence using convectional and pooling layers.
Their approach produces good results however the computation time of their approach
is high. Finally, we decided to use FlowNet2.0 in our experiments. This model is a deep
learning approach to compute optical flow and provided the best results. We found
this solution to be a good compromise between accuracy, preservation of details and
performance.

In order to effectively remove the rotational flow, the rotation of the agent is tem-
porarily stopped so optical flow is computed from two frames with only linear motion.
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(a) Consecutive color frames.

(b) Farneback [Far03]. (c) Kroeger [KTDVG16]. (d) Zach [ZPB07].

(e) DeepFlow [KTDVG16]. (f) Brox [BBPW04]. (g) FlowNet2.0 [IMS+17].

Figure 2.4 – Comparison of multiple optical flow methods.
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Even though, this method of computing optical flow does not correspond exactly to
solving Equation (2.2), the apparent motion is not always equal the projected motion.
However, it provides a good enough approximation for the optical flow from the numer-
ical solver.

Figure 2.5 shows a comparison between numerical and synthetic optical flow. Both
solutions provide a similar result despite the fact that numerical optical flow is prone to
noise and errors as opposed to perfect synthetic flow. Despite this, it can still be used
for character navigation while being closer to real human perception.

Figure 2.5 – Comparison between synthetic and numeric optical flow. (left) Color image,
(middle) synthetic optical flow, (right) numerical optical flow using FlowNet2.0 [IMS+17].

Figure 2.6 shows a second comparison of numeric and synthetic optical flow. In this
case, parts of the scene are dark and some areas are barely visible. This generates a
noticeable difference of flow in the dark regions of the image as the optical flow solver
has little color information. For this reason it is necessary to identify these regions
of lack of information as the solver cannot provide reliable information about possible
collisions. The synthetic optical flow does not work with light and therefore it provides
the same solution regardless of the shadows.

Depth Image

The depth image contains for each pixel in the field of view the depth Zj of the corre-
sponding 3D point. Many of the visual features described in the following sections have
a dependency with the distance between the objects and the agent. Therefore, having
the depth map available to the agent allow precise control of the visual features during
navigation. Figure 2.7 shows an example of the perceived depth images. However it
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Figure 2.6 – Comparison between synthetic and numeric optical flow. (left) Color image,
(middle) synthetic optical flow, (right) numerical optical flow using FlowNet2.0 [IMS+17].

Figure 2.7 – Illustration of depth perception. (left) Color image. (right) Depth map in a
grey scale representation.

is worth mentioning that it is not an essential point and certain approximations can be
made when this information is missing.

Semantic Image

The semantic image allows the agent to identify every pixel in the field of view and
its boundaries. It is a render of the scene generating an image that encodes an id
at every pixel that identifies the object underneath it. The purpose of this map is to
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Figure 2.8 – Illustration of semantic images.

allow easy image segmentation, to extract each object present in the field of view to
later compute its visual features. This map is necessary when optical flow quality is not
sufficient to perform segmentation. Figure 2.8 shows an example of semantic image.

2.2 Analysis of Perceived Images and Visual Features

This section details how the perceived visual information is processed to enable
navigation. First, we present two different segmentation methods that are used de-
pending on the type of computed optical flow (synthetic or numeric) as depicted in
the middle column of Figure 2.1. The segmentation process detects a set of objects
present in the field of view that need to be analyzed. Then, we describe a set of per-
object visual features that are encoded in the optical flow relevant for navigation and
we show how they are related to the agent’s own motion.
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2.2.1 Object Segmentation

The first step to process the captured images is to consider every object present
in the scene independently. Figure 2.1 illustrates the segmentation process that in the
end retrieves a collection of connected pixels. With every object as a separate entity it
is possible to compute the visual features described in the next section. We propose
two methods to perform object segmentation in the scene, detecting optical flow dis-
continuities in the synthetic flow and to use semantic images to identify objects in the
field of view.

Optical Flow Discontinuities

The first method consists in using the optical flow image to detect discontinuities.
This requires a very high quality optical flow images or a synthetic optical flow computa-
tion. This allows the agent to detect different objects in the scene which are processed
as rigid bodies. We use the Graph Segmentation algorithm [FH04] from the OpenCV
library to detect discontinuities in the flow map.

The ground generates optical flow as the rest of objects, however it should not be
considered an obstacle. We assume a flat ground and knowing the agent’s speed vc

and height h, the flow has the following expression,

uj = xjyjvc/h,

vj = y2
j vc/h.

(2.3)

Optical flow pixels that satisfy this expression are removed.

Semantic Information

The second method requires the semantic image in addition to optical flow. As
already said, the scene is rendered from the point of view of the agent, but instead
of color, every pixel encodes the id of the underlying object. This allows our agent to
distinguish different objects in the scene without the need of an expensive processing
of the optical flow. This method is necessary when optical flow quality is low such as in
the case of the solution from a numerical solver.
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Detecting Dark Objects

Dark objects are detected by scanning the color image. When a pixel is detected
as dark, that is, its intensity is less than a particular threshold, its id is replaced by a
special id common for every dark pixel. This allows our agents to extract two types of
objects, visible and dark.

Dark objects are connected groups of pixels that have been labelled as dark. These
objects often lack contrast making the optical flow solver unreliable for these pixels. As
a result we cannot compute visual features related to optical flow for these points in the
image (FOE, time-to-collision) and only know the location and size of these regions in
the image. In addition, we discard dark objects which are in the upper half of the image
as we assume there is no collision risk with dark areas above the ground.

Figure 2.9 illustrates a semantic image in a given situation. The objects at the left,
tree and buildings are marked as visible objects in green. Dark pixels are marked in
red such as the shadow region on the right of the scene. Pixels in black are contours
or discarded pixels belonging to visible ground or sky. We also discard any object with
a number of pixels less than 0.1% of the resolution of the image.

Figure 2.9 – Semantic information. (right) Color image of the scene. (left) Label im-
age, green regions indicate visible obstacles, black regions are visible regions without
obstacles or flow information, red regions are pixels labelled as uncertain.
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2.2. Analysis of Perceived Images and Visual Features

2.2.2 Visual Features

In this section, we expose the relevant features encoded in an optical flow image
and show their dependency with the control variables. All features presented in this
section are object specific. As explained in Section 2.2.1, objects are extracted from
the background. Figure 2.10 illustrates the various features contained in the optical flow
image. Note that, as the motion of our agents is restricted to the horizontal plane, we
focus on the x component of the features.

𝑓𝑥1 𝑓𝑥2 𝑓𝑥3

𝑡𝑥

𝑔𝑥1, 𝜏1

𝑔𝑥2, 𝜏2

𝑔𝑥3, 𝜏3

𝑥

𝑦

Figure 2.10 – Segmentation of the optical flow image. (top) Color image perceived by
the agent. (down) Visual features extracted from optical flow. The goal t of the agent
corresponds to the pink point. For every object the visual features extracted are the
FOE fi (blue points), time-to-collision τi, object center gi (orange points) and optical
flow vectors (blue arrows), which exhibit a radial configuration around the FOE allowing
its computation as the intersection of many lines. The pink object is a representation of
the goal and does not generate any optical flow.

Object Position

The first visual feature of an object i is its position gxi in the image. This is the central
point to every pixel belonging to that object. From Equation (2.1) Its equation of motion
is expressed by,

ġxi = (vix − gxiviz) /Zi −
(
g2
xi + 1

)
ωcy, (2.4)
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with Zi being the average depth of the object obtained through the depth map.

This allows our agents to achieve certain goals such as target reaching which con-
sists on having the target at the center of the image.

Focus of Expansion

The FOE is a per-object feature. It is defined as a point with null optical flow despite
having a non-zero 3D velocity. It is the center of growth in the image of an object and
corresponds to a point moving towards the observer in a collision trajectory. Therefore,
controlling the FOE allows us control the relative direction of motion of the obstacle
and the observer and prevent collisions. From (2.2) and enforcing uj = 0 and ‖vi‖ 6= 0
the FOE is expressed as,  fxi = vix/viz,

fyi = viy/viz,
(2.5)

which is the projection of the relative velocity of the object and the observer in the
image.

Optical flow vectors exhibit a radial configuration around this point, which allows
the FOE to be computed as the intersection of many lines. These lines are defined
as supporting point xj and direction vector uj. Figure 2.10 illustrates the flow vectors
configuration.

In order to use the FOE for navigation we need to know how the FOE behaves
when the agent control variables are changed. From Eq. (2.5) we obtain a temporal
derivative of the FOE,

ḟxi = v̇ixviz − vixv̇iz
v2
iz

. (2.6)

Using Equation (2.5) this equation can be rewritten,

ḟxi = v̇ix − fxiv̇iz
viz

. (2.7)

The velocity vi is the relative velocity between the object and the observer. As the
agent changes its direction of motion, the orientation of the camera changes as well
as it always points towards the direction of motion which has to be taken into account
to compute v̇i. Therefore, the composition of the change of direction of motion with
angular velocity ωcy coupled with change of orientation of the camera results in the
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following expression,  v̇ix = −vcωcy − vizωcy,

v̇iz = −ac + vixωcy,
(2.8)

where we assume the velocity of the object is constant and only the camera can accel-
erate with ac.

Finally, we combine Equations (2.5) and (2.8) to obtain the variation of the FOE with
respect to the control variables,

ḟxi = −
(
vc
viz

+ f 2
xi + 1

)
ωcy + fxi

viz
ac. (2.9)

Time-to-Collision

The time-to-collision is defined as the remaining time until an object will cross the
plane perpendicular to the direction of motion of the agent. It is expressed as,

τi = −Zi
viz

(2.10)

From the FOE and the optical flow it is possible to compute the time-to-collision
without any 3D geometrical information nor 3D velocity. For each pixel of the object we
define its distance to the FOE as ∆j ≡ ‖xj − fi‖ and we have [TGS91],

τi = 1
Ni

∑
j∈i

∆j

‖uj‖
, (2.11)

with Ni being the number of pixels of object i. It should be noted that although ∆j and
uj are pixel dependent values, τi is not. When noise is present, in order to obtain a
robust result, τi is computed as the average for all pixels of the object as expressed in
(2.11).

From Equation (2.10) the derivative of τi is,

τ̇i = − Żi
viz

+ Zi
v2
iz

v̇iz, (2.12)

using Żi = viz and Equation (2.10) we obtain,

τ̇i = −1− τi
v̇iz
viz
. (2.13)
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Finally, combining this equation with Equation (2.8) we have the following expression,

τ̇i = −1 + τi
viz
ac − τifxiωcy. (2.14)

Optical Flow Dynamics

Finally, optical flow is used as a visual feature as well. The temporal derivative of
(2.2) is,

u̇j = − τ̇i
τ 2
i

(xj − fxi) + 1
τi

(uj − ḟxi). (2.15)

As already said, we need to remove the contributions of rotational flow. In this case, it
means reducing the expression of the FOE to ḟxi = − vc

viz
ωcy + fxi

viz
ac. Then, we provide

the final expression of the dynamics of the optical flow,

u̇j = 2
τi
uj +

(
ujfxi + vc

Zi

)
ωcy +

(
τiuj − fxi

Zi

)
ac. (2.16)

2.3 Contribution

This chapter has presented a new virtual human model with a new perception sys-
tem to reproduce human perception. We provide two contributions here, the perception
capabilities of the virtual human and the processing of this information to enable navi-
gation.

We have described an agent model capable of perceiving visual information to em-
ulate human eyes. Our agents are able to perceive color, optical flow, depth and se-
mantic images. These images contain a lot of information about the environment that
is processed to detect objects and extract the relevant visual features for navigation.
In particular, we introduce optical flow for virtual agents which is known to play an im-
portant role in human navigation. This places our agents a step closer to real humans
which use this information to move in the world.

Finally, we have described the relevant visual features encoded in optical flow and
shown how they are related to the agent’s motion. We showed their dynamic equations
with respect to the agent actions and why they are relevant for navigation.
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CHAPTER 3

AGENT CONTROL USING VISUAL

FEATURES

The previous chapter exposed a perception pipeline capable of obtaining and pro-
cessing visual information as images. Objects in the field of view are segmented and
a set of visual features are extracted for each one of them: position in the field of
view, optical flow pixels, focus of expansion and time-to-collision. In this chapter, this
information is used to design a control scheme that allows agents to navigate dynamic
environments. We propose an optimization-based model to enable agents react to their
perception. Figure 3.1 shows the general scheme of how the agent is controlled.

• 𝒈𝒊 Position

• 𝒇𝒊 FOE

• 𝜏𝑖 Time-to-collision

• 𝒖𝒊 Optical Flow

𝑎𝑐 = −𝜆
𝜕ℒ

𝜕𝑣𝑐

𝜔𝑦 = −𝜆
𝜕ℒ

𝜕𝜃

Control Functions

• Goal Reaching

• Collision Avoidance

• Dark Obstacle avoidance

• Following

• Speed Control

ℒ

Per Object 
Visual Features

Navigation Functions Agent Update

Figure 3.1 – Scheme of the agent’s control system. Agents use the visual features to
define a navigation function L that encodes a set of behaviors. Then, the gradient of
the function is computed to update the control variables of the agent.

In this thesis we refer to Navigation Function for those functions that need to be min-
imized in order to update the agent’s control variables. These functions use the visual
features to combine different behaviors such as goal reaching with collision avoidance
or following. These behaviors are usually contradictory as to avoid an obstacle, we
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probably need to deviate our path from the fastest route to the goal. These behaviors
are weighted in the navigation function with a set of parameters, prioritizing certain
tasks such as avoidance. Therefore, the navigation function encodes the behavior of
the agent, it defines the priority for every kind of behavior defining a complete naviga-
tion task.

The building blocks of the navigation functions are called control functions. These
are functions that express a simple task such as define a preferred speed for the agent
or align the direction of motion of the agent with a certain object. The control functions
are mostly an expression of the visual features captured by the perception pipeline.
They define the ideal conditions to complete a certain task, for instance, when the
agent needs to reach a goal, the corresponding control function is minimum when the
goal is aligned in the center of the field of view as this means the agent moves straight
towards it. Control functions are not limited to control visual information but also the
agent’s own variables such as its speed. Therefore, we define five different control
functions which perform the following tasks:

• Goal reaching. Aligns the direction of motion of the agent to move towards the
goal.

• Collision Avoidance. Avoids obstacles in the field of view.
• Dark Obstacle Avoidance. Avoids dark regions in the field of view.
• Velocity Alignment. Aligns the velocity of the agent with the velocity of another

object.
• Speed Control. Directly controls the speed of the agent by defining a preferred

default speed or matching the one of a specific object.

This set of control functions is sufficient to build a variety of navigation functions with
different behaviors.

The main visual information map that our agents need for navigation is optical flow
as it encodes the relative motion of objects in the scene. As we explained in the previ-
ous chapter, our perception model allows two ways of obtaining optical flow, synthetic
and numeric. Due to the differences of the two maps, different pipelines and navigation
functions can be used for different visual inputs. Therefore, we define two different con-
trol loops. The first one uses synthetic optical flow which allows to obtain more accurate
information about the objects and obtain smother trajectories. The second control loop,
uses numerical flow and introduces a novel method to navigate an environment taking
into account lighting conditions.
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This chapter is structured as follows. The control functions are defined using the
visual features which are described in Section 3.1. The control functions are then com-
bined into the navigation functions, further described in Section 3.2. Finally, the control
variables of the agent are updated using a gradient descent minimization on the nav-
igation function. In Section 3.3 we describe the two control loops proposed for virtual
character navigation.

3.1 Control Functions

Control functions Lk are the building blocks of the navigation scheme presented
in this thesis. They define a small specific task and are expressed using the visual
features from the perception pipeline. Control functions use a small subset of the visual
features, relevant to the particular task. Their value becomes minimum when the task is
achieved therefore, they express the ideal configuration of the visual features present
in the field of view. Control function do not only rely on the visual features but also on
the agent’s own parameters such as its speed.

In this section we present multiple control functions for various tasks that are then
used to construct the navigation functions to enable agents to traverse virtual environ-
ments and complete different navigation tasks.

Our control variables are the agent’s acceleration ac and angular velocity ωcy around
the vertical axis. At every update step, the gradient of the navigation function is evalu-
ated and the control variables are updated by,

ac = −λ∂Lk
∂vc

, ωcy = −λ∂Lk
∂θ

, (3.1)

with λ being the gradient descent step size parameter. We have empirically found that
a value λ = 1

dt
, with dt being the time step in the simulation, performs well.

3.1.1 Target Reaching

Target reaching is the basic task for any navigation algorithm. In our agent model,
the optic axis, the direction that the agent’s sensor face is coupled with its direction of
motion. Therefore, target reaching is expressed as the deviation of the target tx from
the center of the field of view. In other words, we want the goal tx to be placed at the
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𝑔𝑥1𝑔𝑥2
𝑔𝑥3

𝑡𝑥
ℒ𝑡

Figure 3.2 – Effect of target reaching control function. (up) Color image from the agent’s
point of view. (down) Visual features perceived: position of objects gxi and goal closest
point tx. Lt shows the effect of the target reaching control function.

center of the image. This is a control of geometrical points problem which is well-known
in robotics [CH06]. We use the following control function,

Lt = 1
2t

2
x, (3.2)

The minimum value of this function is for tx = 0 and prevents the agent from deviating
too much from the goal. The goal is a known point in space and in the image. The
goal corresponds to a fixed 3D point in space therefore, it follows (2.4) which can be
rewritten taking into account vix = 0 and Equation (2.10),

ṫx = tx/τt − (t2x + 1)ωcy. (3.3)

In the cases where the goal is a region and not a point, tx is considered as the
closest point of the region to the agent. Figure 3.2 illustrates the effect of Lt, it shows an
agent moving in an environment with a certain goal tx which is not completely aligned
to the center of the image. The control function updates the agent’s direction of motion
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𝑓𝑥1
𝑓𝑥2 𝑓𝑥3

𝑔𝑥1, 𝜏1

𝑔𝑥2, 𝜏2
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𝑥

𝑦
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𝑤3
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Figure 3.3 – Collision avoidance example. (up) Color image from the agent’s point of
view. (down) Visual features perceived, obstacle position gxi, obstacle width wi, ob-
stacle FOE fxi and obstacle time-to-collision τi. Lav shows the effect of the collision
avoidance control function.

to move tx towards the center. The control variables have the following expression,

ac = 0,

ωcy = λtx(t2x + 1).
(3.4)

3.1.2 Collision Avoidance

In order to allow an agent to safely move in any environment it requires a means
to avoid obstacles in the field of view. As explained in Section 2.2.2 the FOE fxi is the
key element in preventing collisions. It is the expansion center of the object and when
it overlaps with the obstacles it means a future collision will occur. Therefore, in order
to avoid obstacles, an agent needs to adapt its trajectory to separate the FOE from the
corresponding object. In addition, the own agent’s size needs to be taken into account
to separate these two points. Figure 3.3 shows a bounding box around every obstacle
that includes the size of the observer agent with width wi. To this end, we propose a
control function that penalizes the FOE fxi and the object’s center gxi being closer than
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wi/2,

Lav =
n∑
i

I(τi) exp
(
−|∆xi|

σi

)
. (3.5)

where ∆xi = gxi − fxi, σi = wi/2
ln(10) . The function I(τi) = aτi + b is a linear function

introduced to give a higher priority to objects with lower time-to-collision τi. In our im-
plementation we set a = −2 and b = 10 and the contribution of objects with τi > 5s is
clamped to 0. Figure 3.3 illustrates the effect of Lav separating all objects labeled as
visible that need to be avoided.

From Equations (2.1) and (2.9), ∆xi has the following dependency with the control
variables,

∆̇xi = (gxi − fxi)/τi +
(
f 2
xi − g2

xi −
τi
Zi
vc

)
ωcy + τi

Zi
fxiac, (3.6)

and the control variables have the following expression,

ac = λ
∑
i

I(τi) exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

fxiτi
Zi

,

ωcy = −λ
∑
i

I(τi) exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

(
τi
Zi
vc + g2

xi − f 2
xi

)
.

(3.7)

3.1.3 Dark Object Avoidance

As mentioned in Section 2.1.3, optical flow solver produces inaccurate results in
dark regions due to the lack of color and contrast. This renders optical flow computed
for dark regions unreliable and need to be differentiated from the rest of visible ob-
stacles considered in normal collision avoidance. We consider that dark regions may
contain obstacles and should be avoided. Figure 3.4 shows an example of a scene
with dark regions. In the lower image objects are segmented and classified as visible
or dark. Visible objects in green are considered in normal collision avoidance control
function. Dark regions in red need to be taken into account in a different manner as we
only know the position and size of these objects. We follow a similar approach to nor-
mal collision avoidance however, in this case we only separate these objects from the
center of the field of view as depicted in Figure 3.4. We propose the following control
function to avoid these obstacles,

Ldark =
dark∑
i

exp
(
−|gxi|

σi

)
, (3.8)
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𝑦

𝑥

ℒ𝑑𝑎𝑟𝑘 𝑔𝑥

Figure 3.4 – Dark Obstacle Avoidance example. (up) Color image from the agent’s
point of view. (down) Segmentation of visible objects (green) and dark objects (red)
with dark obstacle position gxi. Ldark shows the effect of the dark collision avoidance
control function.

with σi being computed in the same way as in Equation (3.5). The control variables
have the following expression,

ac = 0,

ωcy = −λδ
dark∑
i

exp
(
−|gxi|

σi

)
sign(gxi)

σi

(
g2
xi + 1

)
.

(3.9)

3.1.4 Velocity Alignment

Velocity alignment is essential in following scenarios. An agent following a leader
needs to adjust its velocity to match the one of the leader. This is the situation illus-
trated in Figure 3.5. When the agent matches its velocity with the leader, the relative
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𝑔𝑥1 𝑔𝑥2
𝑔𝑥3 𝑔𝑥4

Figure 3.5 – Velocity alignment example. (up) Color image from the agent’s point of
view. (down) Visual features perceived, the agent tries to align its velocity with the
velocity of the red object.

velocity between them is zero as they move in the same direction at the same speed.
This results in no optical flow generated by the leader as it becomes a static object in
the field of view. For this reason we model the velocity alignment problem as the mini-
mization of perceived optical flow. The corresponding control function has the following
expression,

Lmin = 1
N2

∑
j∈i

uj

2

, (3.10)

being N the number of pixels of object i. As the goal of velocity alignment and following
is to make the relative velocity viz between the object and the agent tend to zero we
cannot rely on the FOE fxi = vix/viz. Therefore, set fxi = 0 to remove its contributions
and Equation 2.16 is rewritten to,

u̇j = 2
τi
uj + vc

Zi
ωcy + τiuj

Zi
ac, (3.11)
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resulting in the following expression for the control variables,

ac = λ
2τred
N2Zred

 ∑
j∈red

uj

2

,

ωcy = λ
2vc

NZred

∑
j∈red

uj.

(3.12)

3.1.5 Speed Control

Some control functions may change the speed of the agent without any limit on their
own. To control this behavior a preferred speed v∗c is defined, that plays the role of the
default speed when no other behavior is active and limits the range of possible values
it may take. This is modeled by,

Lv = 1
2(vc − v∗c )2, (3.13)

and from the definition of vc, v̇c = ac. The control variables have the following expres-
sion,

ac = −λ(vc − v∗c ),

ωcy = 0,
(3.14)

Alternatively, we may want to match the relative speed viz = Zi

τi
between the camera

and an object. This is for example useful to follow an object. To this end, we use,

Lτ = 1
2v

2
iz. (3.15)

As this equation makes viz tend to zero, the FOE becomes unreliable, therefore, v̇iz =
−ac. And the control variables have the following explression,

ac = Zred
τred

,

ωcy = 0.
(3.16)
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3.2 Navigation Functions

Navigation functions express a higher-level navigation task which allows the agent
to satisfy multiple control functions at the same time. The key idea is to blend these
functions to generate a navigation function L, which captures a complex behaviour,
such as reaching a target while avoiding collisions with multiple objects, or following
a mobile target while avoiding collision with obstacles. The main objective of the nav-
igation function is to assign priorities to the control functions. It assigns a weight to
each task that the agent needs to complete which defines how the agent behaves. The
general expression of a navigation function is,

L =
∑
k

αkLk, (3.17)

where Lk is a control function presented in Section 3.1 and αk is a parameter that
controls the weight of each control function.

3.3 Control Loops

In this section we propose two strategies using the framework presented in this
chapter and the perception scheme presented in the previous chapter. The general
idea is the following, agents acquire visual information (images) from their sensors,
then these data are processed to perform segmentation, extract the visual features and
build the control functions. Then, the navigation function combines the control functions
and the agent’s motion is updated by minimizing the navigation function as in Equation
(3.1). The main difference between the two control loops is the usage of either synthetic
or numeric optical flow. Due to the nature of each flow computation method our agent
exhibits different behaviors and therefore use different navigation functions.

3.3.1 Synthetic Optical Flow

In this section we describe the control loop associated to using synthetic optical
flow. Figure 3.6 shows a scheme of this control loop. We detail the perception and
navigation functions, describing what are the input information of these agents and
their behaviors.
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Perception Visual Features
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Figure 3.6 – Agent control loop using synthetic optical flow.

Perception

In this situation, the agent is equipped with sensors to record synthetic optical flow
and the depth map. The depth map is retrieved from the render engine and optical flow
encodes Equation (2.2), typically generated using the render engine. This optical flow
is of very high quality, which means that we can use simple segmentation algorithms
to segment objects from the optical flow map. In particular we use the OpenCV library
to detect discontinuities in the flow map through the Graph Segmentation algorithm
[FH04]. Additionally, we can remove non-obstacle objects in the scene such as the
ground or sky as the flow generated by these objects is known. Then, visual features
are computed for every object.
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Agent Behavior

We present two similar navigation functions that function well from the perception
scheme presented in the previous section.

The first navigation function performs goal reaching and collision avoidance and is
expressed in the next equation,

L = αLt + βLv + γLav, (3.18)

with α, β, γ being parameters. Lt brings the goal to the center of the field of view, Lv
defines an ideal velocity for the agent to maintain and Lav processes every visible
obstacle to separate its FOE from its center to avoid collisions.

The second navigation function involves following an object or an agent and uses
the next equation,

L = αLmin + βLτ + γLav, (3.19)

again, with α, β, γ being parameters. Lmin and Lτ process a specific object in the field
of view, which is the object the agent needs to follow. Lmin has a big effect on the
direction of motion of the agent and Lτ focuses on its speed. Finally, Lav processes
every other obstacle to perform collision avoidance.

3.3.2 Numeric Optical Flow

The next control loop involves numerical optical flow. Figure 3.7 illustrates the con-
trol loop associated to using numerical flow. Again, we detail the perception of agents
using this control loop and how they behave. The goal here is to move a step forward
to human perception and to consider lighting conditions.

Perception

In this control loop, our agents do not have access to synthetic optical flow. In ad-
dition, this control loop does not use depth images to reduce the amount of data pro-
cessed and to enable future monocular robotic applications. Instead, they are equipped
with sensors capable of recording color images and the semantics of every pixel. The
color images are then used to compute optical flow. From two consecutive frames a
flow image is computed using the FlowNet 2.0 solver [IMS+17]. The solution of numer-
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Semantic Image

Numeric Flow
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Figure 3.7 – Agent control loop using numeric optical flow.

ical solvers are usually noisy and may contain errors, therefore, the semantic image is
used to perform object segmentation. In addition, the color images are used to detect
dark regions or objects.

Agent Behavior

We present a navigation function capable of navigating an environment while avoid-
ing obstacles and dark regions on its way,

L = αLt + βLv + γLav + δLdark, (3.20)

with α, β, γ, δ being parameters of the model. Lt and Lv play the same role as in Equa-
tion (3.18), Lav processes those objects labelled as visible to perform avoidance and
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Ldark performs avoidance with the dark objects. We ensure γ ≥ δ so that visible objects
have higher priority over dark objects.

3.4 Contribution

This chapter closes the loop to enable character navigation in virtual environments
using visual information. The contribution of this chapter can be split in two parts, defi-
nition of navigation functions and definition of control loops.

In the previous chapter we described the visual features that can be extracted from
optical flow and how they relate to the agent’s own motion. In this chapter, these rela-
tions have been exploited to design control functions. These functions encode the ideal
conditions to satisfy a certain task and then they are combined into navigation func-
tions. Optimizing these functions allows the agent to traverse the environment avoiding
collisions, following an object, etc. The novelty lies in the new control framework that
allows navigation using visual features in virtual environments. We used this framework
to propose algorithms for goal reaching, following and collision avoidance.

The second part of the contribution is the definition of two strategies using different
navigation functions. The first control loop focuses on the use of synthetic optical flow.
Agents using this model are capable of navigating an environment reaching a goal or
following another obstacle. The second control loop, uses numerical optical flow com-
puted from a sequence of images. In this second model, our agents have a perception
system closer to that of humans which depends on the light of the scene. This allows
for a novel agent model capable of reacting to lighting conditions without any prior
knowledge of the luminosity of the scene, relying only in its visual sensors.
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CHAPTER 4

RESULTS AND ANALYSIS

Chapter 2 exposed a new visual perception model for virtual humans and how to
process this information to obtain the relevant features for navigation. Chapter 3 closed
the loop to use the visual features to define navigation functions that encode the be-
havior of the virtual human. In this chapter we demonstrate our approach on various
scenarios, from the simplest to illustrate our technique to more complex ones to show
their efficiency.

In the previous chapter we exposed two different control loops using different visual
inputs, respectively based on synthetic and numeric optical flow. First, in Section 4.1,
we demonstrate the use of synthetic optical flow corresponding to the control loop
presented in Section 3.3 in static and dynamic environments. We show how agents
can navigate various environments using only the visual information provided by the
simulation (synthetic optical flow and depth maps). First, agents use the navigation
function in Equation (3.18) in this control loop, reaching a goal while avoiding obstacles
in their way. Then, the second navigation function is used to demonstrate how agents
can follow a leader while avoiding obstacles.

The second control loop presented in Section 3.3.2 uses numeric optical flow and
is demonstrated in Section 4.2. In this situation agents are capable of perceiving color
images that are then processed to obtain optical flow and semantic images. The use
of color information allows to take into account the lighting conditions of the scene. We
demonstrate how agents react to the different lighting conditions while reaching a goal.

Then, we compare our approach with other approaches for character steering in
Section 4.3. We show our model versus RVO [vdBGLM11] and Dutra’s model [DMCN+17].
We chose RVO as it is one of the most known algorithms for crowd simulation and Du-
tra as it is also a synthetic vision approach to character steering. These models are
built for crowd simulation and even though our model is not aimed to simulate crowds
we can still compare the results of each model. We also compare the two control loops
proposed in this thesis to show the effects of using synthetic or numeric optical flow.
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We study the contribution of each control function in the agent behavior in Section
4.4. Navigation functions weight every control function with a parameter α, β, γ and δ.
The value of these parameters affect how the different control function interact and
therefore how the agent behaves.

Finally, we analyze the performance of the control loops used in this chapter. Our
model is computationally expensive as it needs to perform intense image processing
operations.

4.1 Synthetic Optical Flow

This section shows the results of using the control loop described in Section 3.3 that
uses synthetic optical flow. We demonstrate this navigation technique by testing our
agents in various scene with static, dynamic objects and other agents moved with the
same algorithm. This control loop proposed two navigation functions, target reaching
with collision avoidance and following with collision avoidance. We demonstrate the
results of each function in the following sections.

4.1.1 Collision-free target reaching navigation

We first demonstrate our technique in the classic situation of a character reaching
a goal while avoiding the obstacles as depicted in Figure 4.1. To model this behavior
we use the control loop defined in Section 3.3.1 using the navigation function shown in
Equation (3.18). There are various parameters that need to be defined for the following
example, first the comfort velocity defined by the speed control function is set to v∗c =
1.5m.s−1. We have empirically found that the values α = 1, β = 0.1, γ = 1 for the
parameters in the navigation function perform well in most situations, the examples in
this section use these values. We analyze the particular effect of these parameters in
Section 4.4.

The control variables of the agent are updated every frame applying a gradient
descent optimization method to the navigation function in Equation (3.18), this results
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4.1. Synthetic Optical Flow

Figure 4.1 – Target reaching example. Agent traversing an scene with cylindrical ob-
stacles. The goal is any location in the red region displayed on top of the figure.

in the following expression,
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(4.1)

Static Environments

In a static environment, the apparent motion of objects is only due to the agent’s own
motion. As the visual sensor of the agent (virtual cameras) point towards the direction of
motion of the agent at all times, the FOE remains at the center of the image regardless
of the direction of motion of the agent. To avoid collisions, agents need to change their
direction of motion to separate the shape of the objects from the FOE.

Figure 4.2 shows agents moving in a room with objects of various sizes and shapes.
We show the visual features perceived by one of the agents, the closer objects have a
larger contribution in the collision avoidance control function. Therefore, our agents are
capable of finding their way through this scene without any planning. Each agent takes
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𝑡𝑥 𝑓𝑥

𝑔𝑥1

𝑔𝑥2

𝑔𝑥3
𝑔𝑥4 𝑔𝑥5

Figure 4.2 – Agent trajectory with static obstacles. (up) Top view. Three agents need
to cross the room avoiding obstacles. Various objects of different shapes and sizes are
present in this scene. Agents are placed in different starting position and orientation
and they choose different paths to walk out the room. (bottom left) Visual features
perceived by one of the agents. (bottom right) Color image perceived corresponding to
the visual features.

a different route depending on its initial position, one agent finds an easier path around
the walls and others manage to move close to the other objects through the scene.
Figure 4.3 shows how the control functions for target reaching and collision avoidance
and the position of the goal in the field of view of the same agent varies over time. The
cost of avoidance increases and decreases very fast as objects enter and leave the
field of view. Once all obstacles are cleared, goal reaching becomes dominant and the
goal position converges quickly to the center (tx = 0).

Figure 4.4 shows an example of an agent in a city-like environment. The agent is
capable of detecting the thin fence as an obstacle allowing him to avoid it. This proves
that any geometrical shape can be processed and considered as an obstacle and
perform collision avoidance.
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Figure 4.3 – Variation of the cost function (left axis) and goal tx (right axis) over time. It
corresponds to the front agent of the scenario shown in Figure 4.2.

Figure 4.4 – Agent trajectory in a city-like environment with urban obstacles.

Dynamic Environments

We now test our algorithm in dynamic environments which includes scenes with
multiple agents blocking each other’s path such as in Figure 4.5 and/or other objects
following a predefined path that need to be avoided. This means that the FOE is no
longer limited to the center of the image but can appear in any place of the screen.
Regardless, the basic principle of collision avoidance remains the same as in static
obstacles, to separate the FOE from the object’s shape.

Figure 4.6 shows a circle scenario. Six agents are arranged in a circular formation
and are tasked to reach the opposite side of the circle. This is a very symmetrical
situation and because of that a particular pattern appears in the trajectory of the agents
as they choose to avoid the other agents in the same manner. This effect is due to
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Figure 4.5 – Target reaching example with two agents moving in opposite directions.

the high accuracy of the synthetic optical flow where a perfectly symmetrical situation
causes all agent to react in the same way. Figure 4.7 shows a similar situation with
4 agents. In this situation we added a small randomized displacement to the initial
position of the agents. This breaks the symmetry and the pattern disappears.

Even though the computation time of our algorithm is too high to be usable for
crowds we tested our approach in high density situations such as in the example given
in Figure 4.8. Despite the high density of the situation agents are able to find a way
through the scene.

Our method is not only able to coordinate its motion with other agents to perform
avoidance but can also avoid objects moving arbitrarily through the scene. Figure 4.9
shows an example of an agent moving in a scene with soccer balls bouncing around.
The agent does not want to touch any soccer ball and wants to find a way through
them. Our control model is able to detect every ball and find a way between them.

Figure 4.10 shows a scene of multiple agents in a street with cars. Cars move at a
constant speed and do not react to pedestrians in the road. Some agents are tasked to
cross the road and have to find a secure path that prevents an accident. The navigation
function is able to slow down our agents until there is a path they can follow safe from
the cars. This shows that our approach can handle many types of dynamic obstacles
(other agents and constant moving objects) at the same time.

The examples above show agents moving in open spaces or plenty of room to move
in the scene. The following two examples test our approach in a more restricted sce-
nario where agents need to also avoid the boundaries of the scene. Figure 4.11 shows
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𝑡𝑥

𝑓𝑥1

𝑔𝑥1

𝑔𝑥2 𝑔𝑥3

𝑔𝑥4

𝑓𝑥2 𝑓𝑥3 𝑓𝑥4

Figure 4.6 – Circle scenario. (up) Six agents are initially arranged in circular formation
and need to reach opposite side of the circle. (bottom left) Visual features perceived by
one agent. (bottom right) Color image corresponding to the same agent.

a first example with 4 agents that need to go to opposites sides of the parking scene.
Agents detect each other and adjust their trajectory to perform mutual avoidance. They
also need to take into account the cars and also try to keep a certain distance from
them. Figure 4.12 shows a second example of this were two agent can barely pass
at the same time. Our control loop is capable of finding a way without collision and
maximizing the distance to all the objects at the same time.

4.1.2 Following with Collision Avoidance

In this section we use our synthetic flow-based control loop to produce a follow-
ing behavior for our agents. The set up in this experiments goes as follow, there is a
leader (illustrated in red color) with a predefined path and other agents that uses our
control loop (illustrated in blue color) like in the example of Figure 4.13. We understand
following as matching the velocity of the leader both in direction and magnitude. The
following behavior is the result of applying the navigation function in Equation (3.19).
The values of the parameters in the following experiments are α = 1, β = 1, γ = 1.
In this situation there is no preferred velocity as the agent matches the velocity of the
leader.
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Figure 4.7 – Example of target reaching with 4 crossing agents with added random
variation to the initial position.

Figure 4.8 – Example with many agents. Agents need to cross the scene in the same
direction through the cylindrical obstacles.

Figure 4.9 – Agent avoiding soccer balls which bounce through the scene.
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Figure 4.10 – Agent trajectory with complex obstacles in a city-like environment. Some
agents are tasked to cross the road while others just walk along the sidewalk.

Similarly as we did for in the previous section, we derive the expression of the
control variables from the navigation function in Equation (3.19),
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(4.2)

to update the simulation.

87



Chapter 4 – Results and Analysis

Figure 4.11 – Agents in a parking scenario. Agents need to avoid each other while not
hitting any car in the way.

Figure 4.12 – Agents in a street with table and chairs. Agents need to avoid each other
while not hitting any obstacle in their way.
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Figure 4.13 – Following example. The red agent is a leader and follows a predefined
path. The blue agent needs to adjust its velocity to match the one of the leader.

Figure 4.14 – Following a leader with cylindrical obstacles. The red agent follows a pre-
defined path around the obstacles. The blue agent finds a path to avoid the obstacles
while trying to match the velocity of the leader.

As seen in Figure 4.13 agents using our model are capable of easily adapting to the
motion of other agents. There is a certain delay to the adaptation of the velocity of the
agent when the leader changes its direction quickly. This depends on the parameter α
and we study its effect in Section 4.4.

Furthermore, our control loop supports obstacle avoidance at the same time as
following another agent. Figure 4.14 shows a following example with obstacles in the
way. The red agent follows a curved path without collisions. The blue agent has to
match the velocity of the red agent, however, it detects that there is a risk of collision
with the cylindrical obstacles. Therefore, the agent turns to move between the cylinders
to prevent a collision. Once the obstacles are cleared, the agent matches the direction
of motion of the leader.
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𝑓𝑥1,2,3,4

𝑔𝑥1 𝑔𝑥2
𝑔𝑥3 𝑔𝑥4

Figure 4.15 – Following scenario. (up) Four agents (blue) follow a leader (red) while
avoiding obstacles. (bottom left) Visual features perceived by the agents. (bottom right)
Color image corresponding to the middle image.

Figure 4.15 shows another example of following with obstacles in the same scene
as in the previous example. This time, there are multiple agents present following the
same leader. Some agents perform the same maneuver as in the previous example,
one agent takes a different path as its initial position facilitates avoidance in this way.
Collision avoidance usually takes precedence to any other behavior as it is one of the
critical tasks that any navigation system needs to satisfy.

4.2 Numeric Optical Flow

In this section we show the results of the control loop presented in Section 3.3.2
using numerical optical flow. As opposed to synthetic optical flow, numeric optical flow
requires the use of color images to perform the computation. The effect of this is that
the optical flow quality depends on the brightness of the scene. This reduces the re-
liability of numerical optical flow and introduces the necessity of taking into account
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light conditions. This control loop uses the navigation function in Equation (3.20) which
performs target reaching with collision avoidance similar to the previous control loops.
In addition, this model takes into account the light of the scene perceived in the color
images to avoid dark regions. We present results of agents in scenes with high contrast
scenes where they need to find a way avoiding dark areas. In addition, we prove our
method in changing lighting conditions.

In this situation the control variables of the agent take the following expression,

ac = λ

[
− β(vc − v∗c )+

γ
visible∑
i

I(τi) exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

fxiτi
Zi

]
,

ωcy = λ

[
αtx(t2x + 1)−

γ
visible∑
i

I(τi) exp
(
−|∆xi|

σi

)
sign(∆xi)

σi

(
τi
Zi
vc + g2

xi − f 2
xi

)

−δ
dark∑
i

exp
(
−|gxi|

σi

)
sign(gxi)

σi

(
g2
xi + 1

)]
,

(4.3)

with α = β = γ = δ = 1 and v∗c = 1m/s for all experiments in this section.

In this control loop we do not have any knowledge about the depth Zi of the objects
as we lack the depth map. In order to compensate this missing information we make
the following approximation τi

Zi
vc = 1

2 for every object. This approximation is the result
of assuming that the objects are moving in the opposite velocity as the agent and at the
same speed. We demonstrate that this assumption allows agents to avoid obstacles
with velocities within the same order of magnitude, including static obstacles.

4.2.1 Static Lighting

In this section we demonstrate our algorithm in action with static lighting conditions.
We use dark environments with hard shadows and bright moonlight as in Figure 4.16
to show the effect of limited visibility. Then, we compare the result of not taking into
account light for navigation using a synthetic optical flow approach to visualize how
agents take different routes.

Figure 4.16 shows an agent moving in a street with a very hard shadow at his
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Figure 4.16 – Agent trajectory in dark street. The shadow creates a very dark region in
the field of view of the agent which it tries to avoid. The blue trajectory is an agent using
the numerical flow navigation model, the red trajectory is an agent using the synthetic
optical flow model.

right. These shadows are perceived in the field of view as soft obstacles that need to
be avoided whenever possible but visible obstacles always have a higher avoidance
priority. The blue trajectory shows an agent using the numerical flow control loop and
we can see that it steps a bit into the shadow as the dark region avoidance is balanced
with avoidance of the tree. The red trajectory shows an agent using synthetic optical
flow unaware of the lighting conditions. It traverses the shadow as he only increases
the distance between the trees and itself.

The next example in Figure 4.17 shows an agent in a street with two possible ways,
one is lit and the other is dark. The agent using numerical optical flow (blue trajectory)
decides to completely avoid the dark region by turning to to the bright street. An agent
using synthetic optical flow (red trajectory) decides to move towards the dark street
as it is the shortest path. This example illustrates how taking into account lighting can
change the trajectory of the agent as the initial position of both agent models is the
same yet they make different choices.

Figure 4.18 shows another example of a poorly lit street. In this scene, the only light
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Figure 4.17 – Lit and dark street. The path of the agent forks in two streets, one is lit
and the other one is in darkness. The agent takes the lit path to avoid dark regions. The
blue trajectory is an agent using numerical flow navigation model, the red trajectory is
an agent using the synthetic optical flow model.

sources are a few lamps that illuminate a reduced area. The agent needs to traverse
this scene using our numerical optical flow model. The result is the agent moving to-
wards the lamps as it avoids the dark regions. Again, as shadows are a low priority
obstacle, the agent may step a bit into them.

4.2.2 Dynamic Lighting

This section presents the results of using numerical optical flow in scenes where
the light condition change over time. We show that our agent can adapt to different
lighting conditions and still reach the goal and avoid any obstacles in the way.

The first example is shown in Figure 4.19 where an agent walks through the street.
In this scene the intensity of the ambient light changes over time, it starts with sufficient
brightness to perceive the whole scene as visible. After a short while the light is reduced
until the areas in the shadows are completely dark. The result is the agent moving
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Figure 4.18 – Street with lamps. An agent is tasked to walk along the street. In order
to avoid shadows, the agents changes its trajectory to move closer to the lamps that
illuminate portions of the scene.

through the shadow at first and changing direction in the middle of the run as the street
becomes too dark and searches for the bright areas.

The second example is shown in Figure 4.20. An agent walks in the same street
but there is no moonlight and everything is in dark. The agent has a small torch that
illuminates a limited area around him. We see the resulting trajectory of the agent
passing close to the obstacles as they are only detected when they are inside the
range of the torch.

Figure 4.21 shows a second torch example but with two agents moving in opposite
directions. In this scene there are two competing factor in the navigation functions.
First, agents perform avoidance with each other to prevent a collision. At the same
time, the dark region avoidance causes them to move closer as they both have a light
source. As a result the trajectories are closer to each other than it would in normal
lighting conditions.
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Figure 4.19 – Agent trajectory in a street with varying light. The light in the scene
diminishes over time. The shadows eventually become completely dark.

Figure 4.20 – Agent trajectory in a street with varying light. The agent carries a light
source which is the only light source in the scene. The agent navigates in the dark and
reacts to obstacles as soon as they become visible.
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Figure 4.21 – Multiple agents with torches. The street is dark and they move in opposite
directions.
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4.3 Comparisons with Other Models

Our algorithm is not aimed to compete with other crowd simulation methods as it
has a high computation time per frame and per agent. However we still can compare
our synthetic optical flow model with other steering algorithms for collision avoidance.
We focus on two algorithms, RVO [vdBGLM11] and Dutra’s model [DMCN+17]. We
chose RVO as it is a well-known technique for character navigation in real-time and
it has been used for many applications. The comparison with Dutra’s model is more
relevant as it is a synthetic vision algorithm but this model perceives geometrical infor-
mation instead of visual information in our approach.

We provide comparisons of our two control loops presented in this chapter. Syn-
thetic and numeric optical flow are similar yet it is worth comparing how the noise and
reduced quality of numerical optical flow impacts the resulting trajectories of the agents.

4.3.1 RVO and Dutra’s Model

We now provide a qualitative comparison of synthetic optical flow control loop, and
more specifically the collision avoidance function (Eq. 3.18), with RVO [vdBGLM11]
and the model proposed by Dutra et al [DMCN+17]. We chose those two approaches
because they are good representative of two categories of approaches: velocity-based
and vision-based approach. These algorithms share many similarities with ours. All
of them evaluate the future risk of collision between the character and surrounding
obstacles and adjust the characters motion accordingly. RVO selects at every frame a
velocity for every agent that ensures no collision in the near future. Dutra on the other
hand, uses a synthetic vision model to optimize time to closest approach and distance
to closest approach. The main difference with our method is that our approach relies
on the evaluation of visual features whilst previous approaches exploit geometrical
relations.

The first example presented in Figure 4.22 illustrates a circle scenario compared
with RVO and Dutra’s model. The first difference between the models is how much
agents deviate from the straight path to avoid other agents. RVO shows the minimum
deviation possible as it searches the path that reaches the goal with the minimum
effort. As a result it does not take into account personal space. Dutra’s model and our
control loop maintain more distance between the agents. The reaction of our model
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starts early and increases progressively while Dutra reacts a bit later and leaving more
personal space between the agents.

Figure 4.23 shows groups of agents crossing each other with a 90 degree angle. We
can observe that Dutra’s model tends to exhibit a sudden reaction in some situations
rapidly increasing the speed of an agent. RVO shows a strong reaction in the sides that
have the first interaction and then this propagates to the rest of the group, breaking the
formation. Our model preserves better the formation with small adaptations as it finds
enough room for the agents to move.

Figures 4.24 and 4.25 shows the same scenario with different agent density in the
initial position. Two groups of agents need to traverse the scene in opposite direc-
tions.RVO2 works well in low-density scenarios however, the distance between agents
of different groups is just the minimum to prevent collisions. In Dutra’s model and our
model, the minimum distance between agents is not fixed but rather it adapts to the
density of the crowd. Dutra’s model also favors many variations of speed for avoidance
while in our algorithm avoidance favors a change in orientation rather than a change
in the speed of an agent as the influence of the rotation is usually greater in the FOE’s
motion that acceleration. Our model favors following groups of agents with the same
direction while in other approaches agents may follow very different paths from one
another. RVO2 presents congestion issues when the initial agent-to-agent spacing is
much smaller than the size of the agents. Dutra’s model and ours allows a continuous
rearrangement of the formation over time to minimize the congestion issue.

Figure 4.26 shows the comparison of the adaptations performed by the three mod-
els. The histograms shows how intense are the variation of direction of the agents in
the example shown above them. We can see that Dutra’s model favors sudden strong
changes in direction while RVO balances between strong reactions and small ones.
Our model shows small reactions and almost no strong reaction yet in this particu-
lar example exhibits the larger personal distance between agents. Our model reacts
earlier than other models with a smoother adaptation.

4.3.2 Numerical VS Synthetic Optical Flow

The main distinction between synthetic and numerical optical flow is the lower ac-
curacy in the numeric method. As optical flow solvers are far from perfect the resulting
images contain noise and errors. We proved that numerical optical flow is sufficient to
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allow our agents to complete navigation tasks. In this section we compare the results
of using synthetic and numerical optical flow in the same scenarios.

Figure 4.27 shows an agent navigating in a street scenario with static obstacles. The
results are very similar in both situations as for static obstacles the numerical optical
flow is capable of giving a good estimation of the flow. As expected the trajectory of
agents using synthetic optical flow is a smoother curve compared to the trajectory of
the agent using numeric optical flow.

Figure 4.28 shows four agents in a circle scenario that need to reach the opposite
side of the scene. When using synthetic optical flow, agents behave in a very organized
way and reach the goal a bit faster. When using numerical flow, agents decelerate
and accelerate much more resulting in stronger reactions. Some agents slow down
to almost full stop to prevent the collision. This is due to the fact optical flow is better
estimated when the displacement from frame to frame is superior to the pixel sizes.
Synthetic optical flow does not show this problem as it has infinite sub-pixel precision.
Still they manage to reach the goal without collisions.

Figure 4.29 shows two groups of agents walking in opposite directions. Once again
we observe the same effect, synthetic flow produces more organized groups and smoother
trajectories while numerical optical flow produces stronger adaptations. In the end, both
reach the goal without any collisions.
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(a) Initial Position

(b) Our model (c) RVO (d) Dutra

Figure 4.22 – Comparison of different character steering models in a circle scenario.
Agents need to reach the opposite side of the scene.
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(a) Initial Position

(b) Our model (c) RVO (d) Dutra

Figure 4.23 – Comparison of different character steering models in a lane crossing
scenario. Two groups traverse the scene while crossing each other with an angle of 90
degrees.
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(a) Initial Position

(b) Our model (c) RVO (d) Dutra

Figure 4.24 – Comparison of different character steering models in a lanes scenario
with low density. Two groups traverse the scene in opposite directions.
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(a) Initial Position

(b) Our model (c) RVO (d) Dutra

Figure 4.25 – Comparison of different character steering models in a lanes scenario
with hight density. Two groups traverse the scene in opposite directions.

(a) Our model (b) RVO (c) Dutra

Figure 4.26 – Comparison of histograms of the angular velocity of an agent for different
models. Only non-zero adaptations are being displayed.

103



Chapter 4 – Results and Analysis

Figure 4.27 – Comparison of trajectories with different optical flow computation meth-
ods in a street with obstacles. (left) Synthetic optical flow and (right) numerical optical
flow.

Figure 4.28 – Comparison of trajectories with different optical flow computation meth-
ods in a circle scenario. Agents are tasked to reach the opposite side of the circle. (left)
Start position, (middle) synthetic optical flow and (right) numerical optical flow.
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Figure 4.29 – Comparison of trajectories with different optical flow computation meth-
ods of lanes of agents. (left) Start position, (middle) synthetic optical flow and (right)
numerical optical flow. Agents are tasked to reach the opposite side of the scene.
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4.4 Control Function Weights

Control functions are weighted by a set of parameters α, β, γ, δ in the navigation
function. Different models use these parameters to achieve different tasks and their
value impact how the agent behaves and interacts with other agents. In this section
we analyze the contribution of the control function by changing the value of their corre-
sponding parameter on its own or relative to another control function.

Target Reaching versus Collision Avoidance

Here we see the relative weight of Target reaching Lt versus the effect of collision
avoidance Lav. These two effects are contradictory, target reaching tries to align the
agent with the direction of the goal while collision avoidance attempts to deviate the
agent from this path in order to prevent collisions with objects in the scene. To compare
the effect of these functions we use the navigation function in Equation (3.18) and fix
the values α = 1, β = 1 and change the value of γ.

Figure 4.30 shows two groups of agents tasked to reach the opposite side of the
room. This scenario shows the effect of different values for γ. When it is too low (b) the
agents barely adapt to other agents and some collisions occur. As γ becomes greater
agents with the same goal form groups and increases the distance between them.

From this result we can interpret the relative contribution of Lt and Lav as a measure
of personal space between opposing groups. A high value of γ causes agents to have
a greater reaction to any detected obstacle and avoids it earlier.

Velocity Alignment

The control function velocity alignment Lmin causes the velocity of an agent to
match the velocity of a leader or another object. This control function is used in the
navigation function of Equation (3.19) with the aim of allowing an agent to follow an
object in the field of view. The corresponding parameter of this control function is α and
in this situation its value affects the behavior of the agent by itself.

Figure 4.31 shows an agent following another one. The red agent goes through
a set of way-points. Every time the red agent changes its direction to reach the next
way-point the blue agent adapts its velocity to align with the one of the red agent. For
higher values of α the adaptation is faster and the trajectory of the blue agent becomes
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similar to the trajectory of the red agent. For lower values of α the adaptation is much
slower producing a different trajectory.

From this result we interpret the value of α as the reaction time of the agent to adapt
to changes in velocity of the leader. The velocity alignment parameter still interacts with
collision avoidance γ in the same way as with target reaching in the previous example.
Therefore, designing the reactions of an agent following a leader requires fine tuning
of both parameters.

Speed Control and Collision Avoidance

The control function speed control Lv in Equation (3.13) defines a comfort speed
for the agent and is controlled by the parameter β. The purpose of this is two-fold, first
it allows the agent to keep a constant speed when no other behavior are active and
second it limits how much other control functions are allowed to change the velocity of
the agent.

Figure 4.32 shows a group of agents in a circle scenario with different values of β for
all agents. The trajectories of the agents result very similar for all values of β however
the completion time for all agents is reduced for higher values.

This result shows that β is a measure of how much an agent slows down to allow
other agents to pass. It can be interpreted as how much priority has the navigation task
for a certain agent as it is more or less permissive in changing its speed. For higher
values even collisions between agent can occur as they would not slow down to prevent
it.

Dark Object Avoidance and Collision Avoidance

The control function for Dark Object Avoidance Ldark is responsible of moving the
agent away from dark regions where numerical optical flow is unreliable. It is relevant
to evaluate the effect of the relative value of its parameter δ and collision avoidance of
visible obstacles γ. The value of δ is usually lower than the value of γ as avoiding visible
obstacles has a higher priority than avoiding shadows that may or may not contain an
obstacle. We fix the value of γ = 1 and change the value of δ.

Figure 4.33 shows examples of different values of δ. For lower values agents almost
ignore the shadow and step through it with minimal reaction as the presence of the tree
is prioritized. For higher values the agent even moves farther away from the shadow
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changing completely the trajectory. It still goes through the small shadow as the effect
of collision avoidance with the walls still competes with the dark avoidance.

With this result we interpret the value of δ as a measure of danger in shadows.
This allows to define different models of agents with different sensitivity or phobia to
darkness. Values of δ larger than γ generate strong repulsive reactions to the presence
of shadows.
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(a) Initial position.

(b) γ = 0.1 (c) γ = 0.5

(d) γ = 1.0 (e) γ = 1.5

Figure 4.30 – Two rows of agents navigate towards the opposite side of the room
avoiding each other. As γ increases, the distance between agent with different goals
increases.
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(a) α = 1

(b) α = 2

(c) α = 5

Figure 4.31 – Following a leader. The blue agent must follow the red one, which goes
through a predefined set of way-points. We show the resulting trajectory for different
values of α.
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(a) β = 0.1 (b) β = 1 (c) β = 2

Figure 4.32 – Trajectory comparison of an agent for different values of β. Agents are in
a circular formation and need to reach the opposite side of the scene. The completion
time for all the agents is reduced for larger values of β.

(a) δ = 0.1 (b) δ = 1 (c) δ = 1.5

Figure 4.33 – Trajectory comparison of an agent for different values of δ. The agent is in
a dark street and needs to traverse it while avoiding the shadows and other obstacles.
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4.5 Performance

In this section we provide details regarding the performance of our algorithm. We
describe the hardware used for each control loop and give details about the computa-
tion time and the resolution perceived by the agents. As the computation of numeric
optical flow is an expensive GPU operation, we decided to use an improved GPU to
test this control loop.

4.5.1 Synthetic Optical Flow Performance

In this section, we give indicative numbers about the performance of the synthetic
optical flow control loop. Simulations ran on a 2.17GHz Intel Core i7 processor, 16 GB
of RAM, Nvidia Quadro M2000M using Unreal Engine 4 as the graphics engine.

Figure 4.34 – Variation of trajectories depending on optical flow resolution. The first
row shows the resulting trajectories of a 300x300 flow map resolution and the second
row shows the same scenario with a 1024x1024 resolution.

The performance of our algorithm depends on the chosen resolution of the images.
The GPU renders the flow image perceived by the agent and then they are downloaded
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to the CPU. The data transfer takes a lot of time and thus we believe performance could
be greatly improved with a full GPU implementation. We ran most of the simulations
using a high-resolution camera 1024x1024. Under these conditions, every agent takes
on average 0.48s to update. We can lower the resolution to 300x300 increasing perfor-
mance to 0.03s per agent. Figure 4.34 shows the same scenarios shown through the
paper with high and low flow resolution. High-resolution flow results in a quite straight
trajectory while low resolution flows produces trajectories with higher curvature and
noise due to the reduced precision in object position. In the first comparison, an agent
even takes a very different path.

(a) (64x64) 0.003s (b) (128x128) 0.006s (c) (256x256) 0.027s

(d) (512x512) 0.111s (e) (1024x1024) 0.48s

Figure 4.35 – Trajectories of the scenario shown in Figure 4.30 for various resolutions.
Computation time is shown for every resolution.

Figure 4.35 shows a comparison of trajectories of the scenario shown in Figure 4.30
for different resolutions and the computation time per-agent and per frame. For lower
resolutions, collisions occur more often due to the reduced spatial precision, causing
object segmentation to be less accurate.

Our model can be extended to simulate large crowds at the expense of higher
computational time per frame. Our agents are updated concurrently, therefore, only
one optical flow image is necessary at the same time. The memory requirements of
this model is a 3-channel image encoding optical flow vectors (2 components) and the
depth map. We use 16 bit per channel in order to obtain a high quality optical flow map.
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The final memory requirement for our approach at any time is a 6 bytes per pixel times
the resolution of the image which scales well for a high number of agents.

4.5.2 Numeric Optical Flow Performance

Computing optical flow using a sequence of images is an expensive operation. We
decided to use FlowNet2.0 [IMS+17] to compute it as we believe it to be a good enough
compromise between accuracy and performance. This is a deep learning approach and
works best in powerful GPUs.

For the numeric optical flow control loop, simulations run on a 3.19GHz Intel Xeon
processor, 32GB of RAM, a GTX 1080 Ti and the Unity engine to render the scene. The
implementation of FlowNet2.0 used for this control loops is limited to a fixed resolution
448x320. Color images are scaled to match this resolution, then the resulting optical
flow image is scaled back to the original resolution. Still, the resolution of the perceived
images by the perception scheme affects the computation as object segmentation and
dark region detection are CPU operation that depend on the size of the images. In most
of the simulations our agents perceive images of 512x512 pixels. At this resolution,
every iteration of the control loop takes on average 200ms. At a resolution of 256x256
the control loop takes 100ms. At higher resolutions, 1024x1024 it takes 750ms.

The memory requirements in this control loop are higher than for the synthetic op-
tical flow control loop. First, as optical flow is computed using a pair of consecutive
images, every agent needs to keep the previous color frame in local memory which in-
creases the amount of memory used for large crowds. Then, the usage of FlowNet2.0
to capture optical flow requires a large amount of GPU memory as most deep learning
approaches. However this does not increase with the number of agents as all agents
are updated sequentially. Finally, the semantic image is a simple 1-channel 8 bit image
as the number of objects present in the scene does not exceed 256 in our examples.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

This thesis has presented a new control algorithm for virtual human simulation. In
the previous chapters we described a new perception model based on visual informa-
tion and how it can be used to design multiple navigation models. The last chapter pre-
sented the trajectories generated by these models and evaluated them against other
approaches. This chapter discusses the results of this navigation scheme its applica-
tions and new directions of research from this thesis.

5.1 Low Level Control

Virtual human simulation usually involves multiple layers that encodes how an agent
moves through an environment. Figure 5.1 shows the multiple levels involved in agent
control. The higher levels involve the motivations of the agent, what is his goal and
what paths are available to reach this point of the scene. This involves path planning
techniques to process the configuration of the scene with the general information about
it. Then, it needs to communicate with the low level control to assign the agent model
with a goal or set of way-points for the low level control scheme to follow. This thesis
contributes to the low level control, providing a new agent model based on a novel
perception scheme.

Our model consists in several layers, all of them contributing towards the final be-
havior of the agent. First, the expressions of the control functions defines the task
is accomplished and how the agent interacts with the environment. Then, navigation
functions combine the different tasks into a higher level behavior, that weight the differ-
ent actions the agent need to perform. Finally, the optimization model dictates how the
control variables of the agent are updated to reach the goal.
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Perception

Optimization Scheme

ActionNavigation Function

Control Functions

Low Level 
Control

High Level 
Control

Pathfinding Goal SelectionScene Layout

Agent Model

Figure 5.1 – Multi-layer control of virtual humans.

Future Work

There are multiple future directions from this work. First, this thesis provides a
framework and the building blocks to define agent behavior based on visual informa-
tion. To extend this work, additional control variables and control functions may be
defined to enable more complex behavior. New tasks such as keeping a certain for-
mation, a constant distance between agents, selective collision avoidance functions as
not all obstacles are considered in the same manner.

Most animals rely on visual information to perform navigation and optical flow is
known to play an important role for them as well. Our control scheme can be adjusted
to reproduce the motion of animal life such as birds or fishes. Their locomotion is com-
pletely different from the human model as they navigate in a 3D space rather than
the ground plane. New control functions should be defined to take into account this
behavior and properly model these kinds of animals.

Most models, ours included, do not mix the different control layers to improve navi-
gation. An interesting line of research would be to allow the visual perception scheme
to interact with the higher level control scheme to update the layout of the scene when
detecting blocked doors or corridors.

Finally, we may deal with the problem of selecting the adequate navigation function
for each situation. In our model the parameters that weight each control function are
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fixed through the simulation. However, real humans exhibit different behaviors depend-
ing on the specific situation, the amount of individuals or obstacles may change the
minimum distance allowed between them. Higher level control could adapt these val-
ues or use a different navigation function entirely to adapt agents to different situations.

5.2 Benefits of Optical Flow

Our model is based on the use of optical flow and other visual information to sim-
ulate virtual humans. We have designed a control system that is capable of recording
this information, processing it and generate an action to move in virtual environments.
This is one of the contributions of this thesis as we try to reproduce the interactions
of the human perception and locomotion systems. Our virtual agents are capable of
perceiving optical flow as humans do [WKZ+01] but also depth, color images, seman-
tic information and perceive the lighting conditions of the scene. Humans are naturally
capable of perceiving the depth of the environment using both eyes (stereo vision) or
through the learned size of objects. They also perform a semantic segmentation as
they are capable of identifying different types of objects. Therefore, the control loops
presented in this thesis are a step forward in reproducing human perception and be-
havior.

From the simulation point of view, the use of visual information allows the simulation
to naturally reproduce visibility, occlusions, detecting risk of collisions through optical
flow and sensitivity to the luminosity of the scene to react to lighting conditions. Our
model is capable of handling all these phenomenons without any prior knowledge of
the scene.

Future Work

One of the benefits of using optical flow and visual information is to model and
simulate the perception system of human for virtual agents. This opens a new ways of
research for experimental science as the next step is to compare our control loops with
real human data. This would allow further validation of our model and can improve the
study of real human behavior. In particular, it would allow to further explore what kind
of visual features are most relevant in human navigation.

In this thesis we only explored visual information however humans poses additional
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sense that are equally important for navigation. To further reproduce the human per-
ception system sound and tactile information could be added to the inputs of the control
loop. This involves developing new control functions able to handle and use this infor-
mation. Another characteristic of humans that is worth of study, is the use of spatial
memory. Our model only takes into account the visible information in a particular frame
and then it is discarded. Adding memory of visual information would improve the per-
formance of agents and better reproduce human behavior.

5.3 Dark Regions and Uncertainty

In this thesis we have demonstrate a novel approach to consider lighting condi-
tions. Our agents are capable of navigate a virtual environment and can process the
light perceived by their virtual sensor to produce a basic reaction to the differences in
luminosity of the scene. The main motivation for for this behavior is the reliability of the
visual sensors in regions with little visual information. Dark areas may contain obsta-
cles which are not visible in the numerical optical flow map and therefore our agents
would be unable to avoid them. The main benefit of our method is that the agent does
not need any prior information about the luminosity of the scene.

Future Work

Our model provides a basic reaction to lighting conditions as agents perform avoid-
ance on those regions where optical flow is unreliable due to the lack of light. To further
improve this behavior more complex analysis of the perceived light and optical flow
of the scene could be made. Optical flow could be given a reliability score to further
evaluate how good the estimation is in different regions depending on the contrast of
the image. This would improve general optical flow estimation and navigation but also
allow to consider different lighting conditions.

When considering lighting conditions additional behaviors could be implemented.
In situations of extreme darkness, humans tend to reduce their speed and use other
sensors such as sound or tactile. This could be emulated by creating a new control
function to slow down agents when darkness covers most of the visual sensors.

Our model avoids dark areas, however, humans can also do the opposite. In regions
of very high temperatures humans tend to search darker zones and avoid the sunlight
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to prevent sunburns. This behavior could be easily modeled by performing avoidance
with lit regions attraction to dark regions.

Finally, our model does not distinguish dynamic from static lighting conditions as it
does not have any concept of memory. In dynamic lighting conditions an agent holding
a flashlight could memorize the environment and have a lit reconstruction of the scene
as humans do.

5.4 Impact of Local Optimization

The agent models presented in this thesis rely on the use of a local minimization.
The control functions are designed to update the agent’s control variable using a gra-
dient descent approach. The benefit of this approach is that the resulting trajectories
tend to be smooth as the visible information usually does not change dramatically from
frame to frame. Still, objects can enter or exit the field of view or being temporarily
occluded by other objects which changes the control function values significantly. The
main danger of local optimization models are local minimum that may render our agent
stuck between obstacles. Our model does not check if the minimum value of the nav-
igation function is a local minimum that would result in a collision. This is specially
true in a high density situation such as the example shown in Figure 5.2 where agents
collide with each other and get stuck.

Future Work

Even though we have demonstrated in several situations that the local optimization
approach is sufficient to perform navigation in virtual environments the risk of facing
local minimum remains. To solve this problem we could use a different solver to opti-
mize the navigation function to find a global minimum. This would result in a different
behavior of agents as the model depends on the optimization scheme.

Gradient descent is a simple method for optimization that allows agents to converge
towards minimums in the control functions. To improve the behavior of the agent a
second order minimization solver could be used to enable faster convergence. This
would not change dramatically the behavior of the agent but it would allow a more
stable control.
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Figure 5.2 – Failure in high density situations.

5.5 Performance

As shown in Section 4.5 our models are computationally expensive and would not
be suited for large crowd simulation in the current implementation. However, we believe
there is a lot of room for optimization. In both synthetic and numeric optical flow one of
the main bottlenecks is the transfer of information from GPU to CPU. Most of the visual
information is generated using the render engines in GPU but they are processed in
the CPU. The larger the size of these images, the higher the overhead of this transfer
is. Then, every pixel of this images is analyzed in the CPU to perform image segmen-
tation, extraction of objects and visual features. This adds more work to be done in the
CPU. An implementation using the resources of the GPU for images processing could
improve the performance of our algorithm as well as the compression of the images
that still need to be downloaded could result in an increased performance.

5.6 Machine Learning

In the recent years machine learning has been applied to an increasingly array of
different problems. In this thesis we work with visual information as images. In fact, in
our model numerical optical flow is computed using a deep learning approach. There-
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fore, a neural network could process the visual information and produce an output to
the control variables of the agent to steer them and enable navigation.

In order to train a neural network to allow navigation a very large data-set of trajec-
tories and images is required in order to generate an agent model capable of reliably
traverse an environment. Our models do not require any prior training as we explicitly
define the visual features required for navigation. This allows us to better understand
the nature of navigation using visual information and in particular optical flow. Our
method also maintains full control over the reaction of the agents to the perceived visual
features while the machine learning approach hides this information. The main benefit
of a machine learning approach is that there is no necessity of studying the complex
interactions of the visual features as the model would learn them. Regardless, there
is no proof to this date that it is actually possible to obtain a reliable perception-action
control loop using visual data with machine learning.

5.7 Realism

The goal of this thesis is to simulate human behavior by reproducing their per-
ceptual system. Limiting our agents to use only visual information greatly limits their
perception of the environment but it also allows new information to be processed such
as light conditions. We have presented a framework to use visual information to define
navigation tasks and presented two control loops, one using synthetic optical flow and
a second one using numerical optical flow.

The first control loop uses synthetic optical flow and depth information. This pro-
vides a precise optical flow map that can be segmented simply by finding discontinu-
ities. This proves again that optical flow contains sufficient information and that it is
a feasible source of information for autonomous agents. Humans can easily capture
depth information using stereoscopic vision for short distances and even at large dis-
tances they can give a good estimation. This makes our model to be closer to real
human than other models using geometrical information.

Then, with the aim of obtaining greater realism proposed a second model using nu-
merical optical flow instead of synthetic. This means that, our agents have only access
to color images and semantic information. As numerical optical flow is noisy and prone
to have errors, the semantic image is necessary to separate objects from one another.
As our agent can only access color images, we need to deal with missing information
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or darkness. Light conditions change the way humans navigate an environment as they
need to account for lack of information in their field of view. Our model can take into
account these conditions and changes the behavior of the agent accordingly. This re-
sults in the first navigation algorithm capable of taking into account lighting conditions
without any previous knowledge of the scene.

Future Work

Despite our model being a closer representation of human perception that most
other models, we have not validated it with trajectories of real humans. This requires
experiments with real humans that navigate in real environment while recording their
trajectories and compare this with the results of our model. Furthermore, the use of
virtual reality environments allows full control on the scene and what humans perceive.
This could be exploited to further explore what visual features are most relevant for
navigation and adjust our model accordingly.

5.8 Robotics

The robotics community has studied the problem of robot navigation in real environ-
ments. This thesis and the robot navigation problem have several common points. We
try to reproduce the human perception system to allow agents navigate virtual environ-
ments. This means using visual information or images and process them to achieve
an autonomous virtual human. In robotics they try to design a robot that can safely
navigate with real humans using limited on board optic sensors. This makes our model
suitable to be implemented in a robot. Our numerical optical flow control loop uses color
images to perceive the environment similar to how a robot would capture an image of
the environment. A future direction of research would be to adapt our model to enable
safe robot navigation with humans.

The main problem to achieve this goal is semantic images. Our numerical optical
flow model generates semantic images to perform image segmentation using the sim-
ulation data. A robot does not have access to this kind of information and therefore,
need to obtain this information in a different way. Semantic segmentation is an open
problem for the computer vision community and many solutions have been proposed.
A deep learning solution to this problem [ZQS+17] may be able to provide a robot the
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semantic images with sufficient accuracy to apply our algorithm in the real world. An
alternative to this would be a reliable method to detect and segment obstacles using
the optical flow image.
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CHAPTER 6

CONCLUSION

The goal of this thesis is to reproduce the human visual perception system to virtual
agent simulation. The problem is two-fold, what visual information humans use to navi-
gate and how it is exploited to build a perception action loop for virtual environments. To
address these questions this thesis describes a new perception and control framework
for virtual humans that allows the acquisition of visual information to perform navigation
tasks.

This work introduces the use of optical flow as the main source of information of
the scene. Optical flow encodes the apparent motion of objects perceived in the field
of view and it is known to play an important role in human navigation [WKZ+01]. It is a
dense map and therefore it needs to be processed to extract the relevant information
to complete tasks such as collision avoidance or following. Knowing the importance
of this map, we built a new perception system that enables agents to perceive visual
information as opposed to geometrical information in previous models. Two ways of
computing optical flow have been proposed, synthetic and numeric optical flow. Syn-
thetic optical flow encodes the projected motion of objects in the field of view an is
obtained by querying the velocity of objects to the simulation. This results in an optical
flow map with high accuracy that can be used to detect objects in the field of view. Nu-
merical optical flow on the other hand is computed using a numerical solver on a pair of
consecutive frames. The resulting optical flow is noisy and less accurate. Regardless,
it can be used to perform navigation in a similar manner as for synthetic optical flow.

Then, we designed a new control model to exploit the information encoded in optical
flow and other visual information. Our agents are capable of reaching a goal while
avoiding obstacles, following a leader and even react to different lighting conditions.
We designed two control loops that exploit the information in each of the optical flow
maps.

We tested the control loops proposed in a variety of situation to demonstrate their
effectiveness. The control loop using synthetic optical flow showed goal reaching with
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collision avoidance and following with collision avoidance. We demonstrated that our
agents can navigate static and dynamic environments with multiple agents and obsta-
cles. As our model uses synthetic vision it can handle objects of arbitrary shapes and
sizes without geometrical information of them.

The second control loop uses numeric optical flow which results in less smooth tra-
jectories overall with respect to synthetic optical flow. Still, this model has demonstrated
that it can navigate various environments and it can even react to light conditions. We
designed agents with a repulsive behavior to dark areas making them avoid shadows
and follow the lit path.

The results shown in this thesis demonstrate the benefits of using optical flow-based
control loops and provides means to better reproduce human behavior.

Contributions

This thesis brings three contributions to the virtual human simulation problem.
The first contribution is detailed in the first part of Chapter 2. It describes a new

perception system for virtual humans that is capable of recording visual information.
Agents are capable of perceiving Optical flow, color, depth and semantic information
as images. To use these images in a navigation problem, they need to be analyzed and
processed. Obstacles in the field of view need to be segmented from the background
to compute a set of visual features, their position in the field of view, the Focus of
Expansion, time-to-collision and the optical flow vectors generated by the object.

The second contribution is the study of the visual features and their relation with
the agent motion. The Focus of Expansion contains the information of the relative ve-
locity between the observer agent and the obstacle. Therefore, it is the most important
feature for collision avoidance. This point needs to be separated from the object to en-
sure a safe path. Time-to-collision of an object evaluates the remaining time until the
object crosses the image plane of the agent. Therefore, this feature is used to identify
the relevant obstacles that need to be avoided and discard those that are far away or
moving in the same direction as the agent. Optical flow encodes the relative motion of
the observer and the object and it is null when the two move in the same direction and
with the same speed. Therefore, it can be used to perform following.

The last contribution is separated in two parts and is the definition of agent be-
havior using the visual features extracted from the perception system. Simple task are
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expressed as mathematical expressions of the visual features in the control functions.
The control functions described in this thesis involve target reaching, collision avoid-
ance, dark obstacle avoidance, velocity alignment and speed control. This set of control
functions are combined in navigation functions that describes how an agent navigates
its environment. An important novelty in the behavior of agents is the analysis and
reaction to lighting conditions without any previous knowledge of the scene.
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[OPOD10] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and Stéphane
Donikian. A synthetic-vision based steering approach for crowd simu-
lation. ACM Trans. Graph., 29(4):123:1–123:9, July 2010.

[PAB07] N. Pelechano, J. M. Allbeck, and N. I. Badler. Controlling individual
agents in high-density crowd simulation. In Proceedings of the 2007
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’07, pages 99–108, Aire-la-Ville, Switzerland, Switzerland, 2007.
Eurographics Association.
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Titre : Algorithmes de navigation basés sur des flux optiques pour les personnages virtuels

Mot clés : Animation, pilotage de personnage, flux optique

Résumé : La simulation de vrais humains
dans un environnement virtuel est un pro-
blème ouvert avec de nombreuses applica-
tions, dès l’industrie du divertissement à la sé-
curité dans la planification architecturale. Les
humains constituent un système visuel com-
plexe capable de naviguer dans des environ-
nements très dynamiques.

Cette thèse tente de reproduire le com-
portement humain en imitant le système vi-
suel humain. Nous avons conçu un modèle
d’agent capable de percevoir des informations
visuelles et d’en définir un modèle de contrôle.
En particulier, nous nous concentrons sur l’uti-
lisation du flux optique c’est-à-dire le mouve-
ment apparent des objets.

Deux boucles de contrôle sont proposées,

la première fonctionne avec un flux optique
synthétique. C’est une approximation dispo-
nible dans les simulations virtuelles qui per-
met à nos agents de percevoir cette flux avec
une grande précision. Le deuxième boucle
de contrôle calcule le flux optique à partir
d’une séquence d’images couleur. Cela repro-
duit mieux le système de perception humaine
mais le flux résultant perd en précision. Une
nouvelle caractéristique du dernièr boucle de
régulation est la possibilité de réagir à diffé-
rentes conditions d’éclairage.

Enfin, nous évaluons notre modèle en tes-
tant nos agents dans de nombreux scénarios
avec des environnements statiques et dyna-
miques.

Title: Optical flow-based navigation algorithms for virtual characters

Keywords: Animation, Character steering, optical flow

Abstract: Simulation of real humans in vir-
tual environment is an open problem with
many applications, from the entertaining in-
dustry to safety in architectural planning. Hu-
mans poses a complex visual system capable
of navigation in highly dynamic environments.

This thesis attempts to reproduce human
behavior by imitating the human visual system.
We designed an agent model capable of per-
ceiving visual information and define a control
model from it. In particular, we focus on the
usage of optical flow, in other words, the ap-
parent motion of objects.

Two control loops are proposed, the first

one operates with synthetic optical flow. It is
an approximation available in virtual simula-
tions that allows our agents to perceive this
map with high precision. The second control
loop computes optical flow from a sequence of
color images using a numerical solver. This re-
produces better the human perception system
but the resulting flow loses accuracy. A novel
characteristic of the latest control loop is the
possibility of reacting to different lighting con-
ditions.

Finally, we evaluate our model by testing
our agents in many scenarios with static and
dynamic environments.
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