The term deformable particles refers to suspending particles capable of changing their shape under external stresses, such as hydrodynamic stress due to the suspending uid, thermal uctuations, and chemical reactions. In this work, deformable particles may include drops, capsules, vesicles and red blood cells (RBCs). Understanding of dynamic behaviors (such as deformation, orientation, and lateral migration) of such deformable particles in a ow (for example, a shear ow or a Poiseuille ow), presents both fundamental interests (a non-linear and non-stationary system) and interests in biomedical engineering. Biomedical interest is motivated not only by in vivo issues (such as rheology of blood and drug delivery), but also by the increasing demands for . . D

The motion of vesicles in an external ow is di ferent from that of rigid particles or simple droplets because of their high deformability. Understanding the motion and the deforma-

The membrane is (approximately) a D surface embedded in D space.

. . H : S

Since we are currently interested in the problem of diluted suspension (a single vesicle), the inner and outer uids of the vesicle are both described by the incompressible Navier-Stokes equations.

In this section, we assume that the terms vesicle and deformable particle are interchangeable unless otherwise stated.

.
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With regard to the methods used to discretize the ow equations, Freund [ ] made a very impressive review by classifying into four di ferent kinds. Here, a similar classi cation, but with a rather shortened version, is given.

B BIM, which is favorable for linear viscous ow (i.e., Stokes ow), bene ts from the fact that only surfaces are discretized. The theory and its formulation are well documented by /C SM C (cit. on p. ).

A Vesicles are a model system for understanding the dynamical behavior of a closed soft particle such as red blood cells (RBCs) in ows. The inextensible lipid bilayer membrane of a vesicle admits resistance to the bending elasticity, and its large surface-area-to-volume ratio allows the vesicle to exhibit remarkable shape changes in the dynamics even in a simple ow. Signi cant progress has been made over the past decades in understanding vesicle dynamics in unbounded Stokes ows. This manuscript deals with the numerical investigation of shape transition and lateral migration of D vesicles in wall-bounded Stokes ows by means of an isogeometric nite-element method (FEM) and boundary-element method (BEM). Starting from a previously reported isogeometric FEM-BEM simulations of the dynamics of soft particles (drops, capsule, and vesicle) in Stokes ows in free space, the original code is developed to account for microchannel walls of arbitrary cross-section. The present work focuses on the dynamics of a vesicle that is transported through a circular tube in a pressuredriven ow. First, we investigate typical vesicle shapes, di ferent lateral migration modes, and ow structure onto vesicle membrane versus three independent dimensionless parameters, namely, the reduced volume, the con nement, and the (bending) capillary number. Shape transitions and the phase diagram of stable shapes for several reduced volumes are obtained in the (con nement, capillary number) space, showing an extension of the set of vesicle morphologies and rich vesicle dynamics owing to the intricate interplay among the tube wall, hydrodynamic stresses, and membrane bending. Secondly, we study, via an axisymmetric BEM, the hydrodynamics under high con nements in which the shape of the vesicle is expected to maintain axisymmetry. A particular emphasis is given to the prediction of the vesicle mobility and the extra pressure drop caused due to the presence of the vesicle, the latter having implications in the rheology of a dilute suspension. In addition, based on the numerical results of limiting behavior of quantities of interest near maximal con nement, we give various scaling laws to infer, for example, the vesicle velocity, its length, and the thickness of lubrication lm. Finally, we present a coupled, hybrid continuum-coarsegrained model for the study of RBCs in uid ows. This model is based on a combination of the vesicle model with a network of springs with xed connectivity, representing the cytoskeleton. Numerical results show that this two-component vesicle-cytoskeleton model is able to extract the mechanical properties of RBCs and predict its dynamics in uid ows.

K

: Fluid-cell interaction, Fluid vesicles, RBCs, Boundary element method, Shape transition, Lubrication theory.

iii R Une vésicule est un système modèle utilisé pour comprendre le comportement dynamique en écoulement d'une particule molle fermée telle qu'un globule rouge. La membrane bicouche lipidique inextensible d'une vésicule admet une résistance d'élasticité en exion. Lorsque dégon ée, c'est-à-dire pour un grand rapport surface sur volume, une vésicule présente des changements de formes remarquables. Des progrès signi catifs ont été réalisés au cours des dernières décennies dans la compréhension de leur dynamique en milieu in ni. Ce manuscrit s'intéresse à la transition de formes et à la migration latérale d'une vésicule dans des écoulements con nés. L'approche est numérique, basée sur une méthode aux éléments nis de frontière (BEM) isogéométrique. Partant d'une version existante pour les écoulements de Stokes non con né, un code original est développé pour prendre en compte les parois de microcanaux de section transversale arbitraire. L'essentiel des études porte sur la dynamique d'une vésicule transportée par un écoulement de Poiseuille dans une conduite de section circulaire. Tout d'abord, nous examinons les formes typiques des vésicules, les di férents modes de migration latérale et la structure de l'écoulement des lipides dans la membrane, en fonction des trois paramètres sans dimension caractéristiques : le volume réduit, le con nement et le nombre capillaire (de exion). Les transitions de forme et le diagramme de phase de formes stables pour plusieurs volumes réduits sont obtenus dans l'espace (con nement, nombre capillaire). Ils montrent une extension de l'ensemble des morphologies de la vésicule. L'interaction complexe entre la paroi du tube, les contraintes hydrodynamiques et l'élasticité de exion de la membrane conduit à une dynamique bien plus riche. Nous étudions ensuite, via une version axisymétrique du modèle, le comportement de la vésicule lorsque des conditions de con nement deviennent sévères et imposent des formes de vésicule axisymétriques. Un accent particulier est mis sur la prédiction de la mobilité de la vésicule et de la perte de charge additionnelle induite par la présence de la vésicule. Cette dernière est importante pour comprendre la rhéologie d'une suspension diluée. De plus, sur la base des résultats numériques du comportement proche du con nement maximal, nous établissons plusieurs lois d'échelle portant sur la vitesse de la vésicule et sa longueur, ainsi que sur l'épaisseur du lm de lubri cation. En n, nous présentons un modèle hybride BEM-coarse-graining permettant d'adjoindre un cytosquelette à une vésicule pour étendre nos études au cas des globules rouges. La modélisation coarse-graining du cytosquelette repose sur un réseau de ressorts identi é à l'ensemble des arêtes du maillage d'éléments nis de la membrane de la vésicule. Les résultats numériques montrent que ce modèle à deux composants vésicule-cytosquelette est capable d'extraire les propriétés mécaniques des globules rouges et de prédire sa dynamique dans les écoulements de uide.

M

-: Interaction uide-cellule, Vésicules, Globules rouges, Méthode des éléments de frontière, Transition de formes, Théorie de lubri cation. v A I would like to express my sincere gratitude to my supervisor Prof. Marc Jaeger, for enlightening and guiding me with his knowledge. His attitude towards research and angle to the problem will always be bene cial in my future work.

I wish to express my warm and sincere thanks to my co-supervisor Dr. Paul G. Chen, for his indispensable guidance, encouragement, and support in the past forty months. He was always accessible and willing to help me solve all kinds of problems, academic or daily life. I will always be indebted for the scale notion that he has impressed in my head and his thorough and meticulous examination of each manuscript.

I am particularly grateful to Dr. Marc Leonetti for his guidance and timely advice from the physics point of view. I enormously thank Dr. Gwenn Boëdec for his indispensable helps on numerics. He has always been very patient in answering all my questions about the code.

I would like to thank Dr. Chaouqi Misbah and Prof. Franck Nicoud for accepting to be my reporter and for helping to improve my work with their helpful comments. I would also thank Dr. Annie Viallat for accepting to be the president of my defense committee.

I would also like to thank Richard Kotarba, Michel Pognant and the mésocentre group (at Aix-Marseille Université) for their technical support. I also thank Sarah Mostefa (ECM), Pascal Campion (ED ) and Sophie Baudin (M P ) for their help in administration. Thanks to Drs. Congshan Zhou, Yongliang Feng and Lei Zhang for their helpful discussion and kind suggestions. Thanks a lot to Dr. Sudip K. Das for his detailed review and constructive advice for this dissertation.

Thanks to all members of M P , and especially to Juan Antonio, Carlos, Eddy, Marianna, Oleksandr, Kaili, William, Sylvain, Nicolas, Rouae, Jiupeng, Adithya, Benjamin, Muhammad, Ra faele, Song, Xi, Shaolong, Sylvia, etc.• • • , for their help, discussion and happy moments after work.

Finally, I would like to thank all my family, and especially my parents, for their love and support over the past years! I acknowledge the China Scholarship Council (CSC) and Centrale Complex uids are a class of materials those with internal particles or microstructures whose evolution a fects the macroscopic dynamics of the uids, especially the rheology. Unlike classical uids, the internal particles or microstructures are substances di ferent from the suspending uid, which makes complex uids cannot be described by the classical uid mechanics. For example, blood in the human body is a complex uid that contains many internal substances.

An important aspect of complex uids is that the macroscopic ow properties (rheology for example) depend on the local behaviors of their components. In general, complex uids are homogeneous at the macroscopic scale, but are disordered at the microscopic scale, and possess structure at the mesoscopic scale. Due to the existence of these mesoscale structures, complex uids lose scale invariance. This phenomenon, called the multi-scale organization, is at the origin of the complexity of these uids and brings di culties in theoretical and numerical analysis.

Complex uids, also called soft matter[ ], are intermediate between conventional liquids and solids, can display both uid-like and solid-like behaviors. For example, they can switch from a solid-to a uid-like behavior by increasing the strength of the applied stresses [ ].

No universal law has been constructed to link macroscopic properties to local behaviors (for example, the mesoscopic interfacial morphology of red blood cells in the blood ow), so it is essential to understand the dynamics of a single internal particle before dealing with macroscopic properties of complex uids.

in vitro lab-on-chip technologies (such as particles separation, Figure . ) [ , ], where the separation is mainly based on the size and the deformability of the particles. RBCs, the most complex of these four deformable particles, have fascinated many researchers because of its biological importance. RBC is encapsulated by a membrane composed essentially of a lipid bilayer supported by an underlying polymer network (in detail in Chapter ). In this section, a brief presentation will be given for drops and capsules, that for vesicles will be detailed in the next section.

Drop, or droplet is a small quantity of liquid immersed in another immiscible uid of di ferent nature. The suspended liquid drop and the suspending uid are separated by an interface having a surface tension γ, which corresponds to the energy required to increase the surface by a unit of area. Compared to the arti cial one (capsule) and the biomimetic one (vesicle) of RBC, the drop is the simplest in terms of membrane structure and dynamics in external ow. But it has been the subject of many studies for a long time [ ], as a uidstructure interaction problem which itself holds rich dynamics and may give intuitions for the complex ones.

A capsule consists of an internal liquid medium (of viscosity η i ) enclosed by a thin deformable solid membrane and suspended in another liquid (of viscosity η e ). In contrast to strongly deformable uid vesicle (Sec. . ), capsule membrane exhibits a nite shear elasticity (thus bears shape memory) since capsules are drops encapsulated by a network of crosslinked polymers. RBC is one of the well-known biological examples of the capsule, while arti cial capsules are widely used in many industries such as pharmaceutical, cosmetic, food industries and bioengineering applications like drug targeting carriers [ ].

. Vesicles . V Vesicles are drops encapsulated by a bilayer of lipid molecules, suspended in a uid that can be either the same solvent as the inner or di ferent. As shown in Figure . , in aqueous solution, the lipid molecules organize themselves to form a sheet. The hydrophilic head groups interact with the aqueous medium (which is polar), while keeping the hydrophobic tails away from aqueous solution. Two sheets of such kind interact with each other forming a bilayer membrane protecting the tails. In fact, this type of con guration minimizes the membrane energy that arises from the interaction between polar and non-polar molecules.

The large scale di ference between the radius and the membrane thickness together with the uidity of the membrane at room temperature make the de ated vesicle highly deformable. The area of this membrane is both locally and globally conserved since any increase or decrease in the number of lipids will require much more energy than that required for deformation. Moreover, the semipermeability keeps the enclosed volume unchanged on a time-scale of several hours, which is much longer than the typical experimental time-scale of about to minutes. The vesicle volume can thus be considered as constant [ ]. These singular properties lead to rich behaviors when they are immersed in an external ow. tion of vesicles is essential both for fundamental research and for industrial applications. The key issue is to physically describe the membrane and to determine how energy changes as a result of any membrane modi cation. That is, to describe or to model the dynamics of a vesicle under hydrodynamic stresses, we must rst understand how the membrane energy depends on its shape, and know the response to any mechanical disturbance.

Figure . shows four classical modes of deformation for a lipid bilayer membrane. At ambient or physiological temperature, the lipid is in the liquid state, so we can neglect the shear mode by de ning the elastic modulus µ = 0. The viscosity between two monolayers b ∼ 10 -9 Pa s which is much smaller than that of the water with η ∼ 10 -3 Pa s, therefore, the monolayer slipping can also be neglected for giant vesicles with a size of to µm [ , , ]. Thus, the deformation of the lipid membrane can be simpli ed with only two modes of deformation: dilation and bending.

From Dimova et al. [ ], we have the dilation modulus K a ∼ 240 dyn/cm ≈ 53κ B T /nm 2 , that is about 106 κ B T per lipid. The bending modulus κ ∼ 0.9×10 -19 J ≈ 20κ B T . Thus, it is easier to bend a lipid membrane than to stretch it. The lipid bilayer membrane is modeled as a two-dimensional locally incompressible uid with resistance to bending. This model takes into account the fact that when subjected to external stresses, it responds rst to bending since the energy associated with bending is much lower than that with dilation. The modeling of the lipid bilayer membrane, therefore, focuses on the bending energy. Several models on the bending energy have been reviewed by Seifert [ ], here the commonly cited spontaneous curvature model is brie y presented.

The spontaneous curvature model (SC) was proposed by Helfrich [ ] for the bending energy as

E SC = κ 2 S (2H -C 0 ) 2 dS + κ G S KdS, ( . ) 
where

H = 1 2 1 R1 + 1
R2 is the mean curvature (with convention that H is positive for a sphere), K = 1 R1R2 is the Gaussian curvature, R 1 and R 2 are the local principal radii of curvature of the surface. κ ∼ 20 κ B T is the bending modulus which re ects the energetic expense associated with driving the mean curvature of the membrane, H, away from its preferred value, C 0 . κ G ∼ -0.8 κ is the Gaussian bending modulus which re ects the cost of imposing Gaussian curvature, K, on the surface. C 0 is the so-called spontaneous curvature, which is supposed to re ect a possible asymmetry in the membrane (e.g., due to a di ferent chemical composition of the two monolayers). In this work, we suppose C 0 = 0.

Nevertheless, for a closed surface without change of topology, irrespectively of the value of the Gaussian bending modulus, the equilibrium shape is not a fected since s KdS is constant . Topological changes (lysis, fusion or pore formation) are possible but rare because they are related to processes that are energetically unfavorable. In this work, topological changes are disregarded. With these two assumptions, Eq. ( .) is simpli ed to

E s SC = κ 2 S (2H) 2 dS + 4πκ G = κ 2 S c 2 1 + c 2 2 dS + 4π(κ + κ G ), ( . ) 
where c 1 = R -1 1 and c 2 = R -1 2 are the principal curvatures of the surface. This simpli ed SC model di fers from the minimal model [ ] only by the constant term, 4πκ G .

. . E On the typical experimental time scale, both the surface area A and the volume V of vesicles are preserved, which de ne an important geometric parameter, the reduced volume

ν = V 4π 3 A 4π 3/2 = 6 √ πV A -3/2 ( . )
as a ratio of the actual enclosed volume V over the volume of a sphere having the same surface area A. The reduced volume, which quanti es the geometric ability of the vesicle to deform, can range from (totally de ated vesicle) to (sphere). A sphere is a form of maximum volume for a given surface, or reciprocally, of minimal area for a xed volume. A spherical vesicle is geometrically undeformable with constraints of volume and surface conservation.

In order to deform this vesicle, it is necessary to de ate it, which can be measured by the reduced volume.

With Gauss-Bonnet theorem, s KdS = 4π(1g), where g is the number of pore of the surface (e.g., g = 0 for a classical sphere).

Alternatively, one can also use the excess area ∆ as the geometric parameter, which is given by

A = (4π + ∆)R 2 v , ( . ) 
where R v = V / 4π 3 1/3 is the radius of a sphere with the same volume V . These two parameters are linked to each other by relations:

ν = 1 + ∆ 4π -3/2
and ∆ = 4π 1 ν 2/3 -1 .

( . ) For healthy human RBCs, which have an average surface area of µm and a mean cellular volume of µm [ ], thus the reduced volume can be calculated to be around 0.64.

The bending energy ( . ) was rst used to determine the equilibrium shapes free of external stresses. As shown in Figure . (a), three di ferent branches: prolates, oblates and stomatocytes are obtained by minimizing the bending energy. Each branch is a minimal lo- .

. N -:

The behaviors of a single vesicle in a simple shear ow As in quadratic Poiseuille ow, there are two major concerns: the lateral migration [ , , , ] and the shape evolution [ , , , ]. A single aspherical vesicle in Poiseuille ow may deform and break its upstream-downstream symmetry due to (i) the shear ow close to solid boundaries[ , , ] and (ii) non-constant shear gradient [ , , , ]. As a result of the symmetry breaking (a slipper shape, for example), vesicles undergo cross-streamline migration.

u ≡ s(xe y + ye x ) + ω(xe y -ye x ), ( 
An initially symmetrical vesicle owing in a two-dimensional unbounded Poiseuille ow, with the centroid of the vesicle being di ferent from the ow axis, can deform into a stable asymmetric shape and can migrate either inward or outward to the ow center, as shown in Figure . . It is contrary to the natural expectation that it should form a symmetrical shape in the center of the symmetrical ow. . D

A vesicle owing in an external ow is fundamentally a uid-structure interaction (FSI) problem with a moving interface. The forces induced by the uids can deform the membrane, which results in a change in membrane forces (e.g., the bending force), and which in turn will alter the surrounding uids. An FSI problem generally involves three aspects, for a vesicle owing in external ow, they are

• modeling the uid ow,

• modeling the mechanics of the lipid membrane interface,

• coupling conditions at the interface, and will be presented separately in the following subsections.

For a vesicle (with typical size about µm) immersed in aqueous solution (with dynamic viscosity η ∼ 10 -3 Pa s and density ρ ∼ 10 3 kg m -), the Reynolds number is estimated to be Re ∼ 10 -4 in using a typical speed, in the capillaries, of about µm s -. Thus, the control equations are simpli ed to the Stokes equations [ ],

-∇p + η∇ 2 u = 0, ∇• u = 0.

( . )

The Stokes equations are elliptic, which means the hydrodynamic solution (u, p) in a domain D depends only on the boundary conditions imposed on its boundary ∂D. In our problems, the two boundaries are the membrane interface (refer . . ) and the outer boundary of the system. The outer boundary conditions can be

lim x→∂D u = u ∞ ( . )
for the open part of the outer boundary, and

u | ∂D = 0 ( . )
for a rigid wall.

. . M

As mentioned in subsection . . , the lipid bilayer membrane is modeled as a two-dimensional locally incompressible uid with resistance to bending. The incompressibility of the membrane is imposed through the free of surface divergence of velocities, i.e.,

∇ s • u = 0, ( . )
which is realized by adding a Lagrange multiplier γ to the Helfrich bending energy Eq. ( . ), as

E vesicle = S w H s + γ dS, ( . ) 
where w H s = κ 2 (2H) 2 ; the Gaussian curvature term is neglected as it does not contribute to the membrane force.

The surface density of force exerted by the membrane of vesicle f m v onto surrounding uids is given by the rst variation of its surface energy Eq. ( .) [ ],

f m v = - 1 √ a δE vesicle δx = κ 2∆ s H + 4H(H 2 -K) n -2γHn + ∇ s γ, ( . 
)
where a is the determinant of the local metric. ∆ s = ∇ s • ∇ s and ∇ s = (Inn)• ∇ are the surface Laplace operator (also called the Laplace-Beltrami operator) and surface gradient operator, respectively. n is the outward pointing normal vector.

For a drop with surface tension γ, it can be modeled with a surface energy density w s = γ, or E drop = S w s dS, the surface density of force f m d can be obtained in the same way [ ], which reads

f m d = ∇ s γ -2γHn.
( . )

For the hyperelastic membrane of the capsule, there are two types of constitutive law, either strain-softening (e.g., Neo-Hookean law, noted as NH) or strain-hardening (e.g., Skalak law, noted as Sk) [ , ]. For these laws, the surface density of membrane energy is de ned upon a reference con guration S 0 as,

       w N H s 0 = G s 2 I 1 -1 + 1 I 2 + 1 w Sk s 0 = G s 4 I 2 1 + 2I 1 -2I 2 + CI 2 2 , ( . 
)
where G s is the surface shear modulus, C represents the relative importance of the resistance to surface dilation, and I 1 , I 2 are the two strain invariants related to the principal extension ratios λ 1 , λ 2 , de ned as

I 1 = λ 2 1 + λ 2 2 -2, I 2 = λ 2 1 λ 2 2 -1.
( . )

. . C

For an FSI problem, coupling conditions must be imposed between the surrounding uids and the membrane. First, velocities (velocity of the internal uid i , the external uid e and that on the membrane Γ ) are continuous at the interface Γ

u e (x) = u i (x) = u Γ , ∀x ∈ Γ.
( . )

Moreover, with the assumption of no ux through the membrane, we have

Dx Dt = u Γ , ∀x ∈ Γ, ( . )
that is, the membrane has the same velocity as the uid in the same position x, where D/Dt is the material derivative. Lastly, since the inertia of the membrane being negligible, the surface density of the membrane force is balanced with the hydrodynamic stresses,

σ • n + f m = 0, ( . ) 
where σ = σ eσ i , and f m is the interfacial force densities, de ned in Section . . .

. . C :

The ow inside the capillary (of our interest) without deformable particle is called as Poiseuille ow ) where U m , the maximum speed, is the speed at the axis of the capillary of radius R t , and r = y 2 + z 2 is the radial position.

u ∞ = U m 1 - y 2 + z 2 R 2 t e x , ( . 
• The characteristic length: the two relevant lengths are the radius of capillary R t and the equivalent radius of the vesicle R = V / 4π 3 1/3 , which de ne a dimensionless parameter, the con nement β = R/R t . In this work, we use R as the reference length, i.e., l ref = R.

• The characteristic time: the two relevant characteristic times are the characteristic time needed by the vesicle to relax to its equilibrium shape τ r = η e R 3 κ (in the absence of imposed ow) and the characteristic time de ned by the ow

τ f = γ-1 = R 2 t 2rUm
, which de ne a dimensionless parameter, the capillary number Ca = τ r /τ f = η e R 3 γ κ . In this work, the characteristic shear rate γc is de ned at r = R/2 for Poiseuille ow, i.e., γc = γ(r = R 2 ), as in [ ].

• The characteristic force: f ref = κ/R 3 , the typical bending force density.

. A

In this section, we brie y present some widely used numerical methods for deformable particles suspended in external ow, respectively for the membrane and for the hydrodynamic ow, and for the algorithms to calculate the bending forces of a membrane.

. . M

There are three basic approaches to modeling the moving interfaces by examining how the membrane is presented, namely the continuous membrane approach, the discrete membrane approach, and the implicit membrane approach [ , ].

T

The continuous approach considers the membrane as a two-dimensional surface with known mechanical properties: such as (local) membrane incompressibility, elasticity, resistance to bending, and membrane viscosity etc [ ]. The two most commonly used models are those of the constitutive laws used for capsule [ , , , , , ] and vesicle [ , , , , , , , ], as presented in Section . . . In this approach, the membrane surface is explicitly discretized through triangulation [ , ] or through spectral representation [ , ], and the membrane stresses are directly linked to the membrane deformation with the constitutive laws, by nite element method [ ], isogeometric method [ ], spectral method [ ], etc. T Discrete modeling, or particle-based modeling, constructed in molecular level, which can explicitly include microstructural details in the model and is expected to have the ability to describe the biochemical process, such as ATP release [ , , , ]. For this method, the membrane can generally be considered as a set of particles connected by a network of springs.

Fully particle-based modeling, such as molecular dynamics (MD), is only a fordable in a small domain due to its unfavorable computational scaling [ , ]. To work around this limitation, two approaches are proposed, the multiscale modeling and the mesoscopic method. The rst solution is used with other scale methods, which together serve to simulate the entire ow, and not specialized for the membrane [ ]. While the mesoscopic particle method, or coarse-grained method, each particle represents a molecular cluster rather than an individual one [ ]. For example, for a typical RBC, Li et al. [ ] use such a mesoscopic particle to represent each spectrin link, which is of the order of 10 5 . This spectrin-level model can take into account both the lipid bilayer, the spectrin cytoskeleton and the interaction between them, and can produce macroscopic elastic modulus in agreement with the experimental observation. Such spectrin-level may probably be unnecessary, as shown by Fedosov et al. [ ] and recently by our group [ ]; highly coarse-grained models also give fairly acceptable results.

Among the well-known coarse-grained models used in cell simulation are dissipative particle dynamics (DPD) [ , ], smooth dissipative particle dynamics (SDPD) [ , ], multiparticle collision dynamics (MPCD) [ , ], immersed boundary method (IBM) [ , ] and lattice boltzmann method (LBM) [ ].

T For this approach, the cell membrane is presented neither by a set of elements, nor by a set of marked points, but by an auxiliary eld, which assumes a certain value on the position of this membrane interface [ ]. The phase eld method (PF) [ , ] and the level set method (LS) [ , ] belong to this family.

Pozrikidis [ , ], and it is now widely used in the simulation of capsule [ , ] and vesicle [ , , ]. Meanwhile, a disadvantage is that the matrix after the discretization is dense due to the slow spatial decay of Green's functions, and it becomes very di cult in calculation in the case where many cells are involved. The two most widely used methods to overcome this limitation are the particle-mesh methods and the fast multipole methods.

The particle-mesh methods decompose a potential (the Green's functions) into a rapidly decaying short-range interactions and smooth, mesh-resolvable long-range interactions [ , , ]. The fast multipole methods employ multipole expansions of the Green's functions, and the long-range interactions are grouped. Unlike FFT-based methods (used in longrange interactions for particle-mesh methods), the expansion coe cients can be developed hierarchically, thus parallel implementation can be made e cient with judicious data management [ , , ].

M -

Unlike boundary integral methods, mesh-based methods use a xed mesh that lls the ow region but does not generally match the cell shapes. Thus interpolations are necessary, but capable for the ow with nite inertia. Both nite-di ference and lattice-Boltzmann discretizations have been successfully applied for cell simulation with non-conforming meshes [ ].

For example, nite di ference methods are used for the simulation of deformable particles with the membrane interfaces tracked by immersed boundary method [ , ], immersed interface method [ , ], and level set method [ , ] etc. Similarly, the semi-Lagrangian lattice Boltzmann methods are also used for the viscous ow simulation [ , ] in coupling with immersed boundary method The short-range local part employs a free-space Green's function and will be solved with free-space boundary conditions (integral part). Whereas the global solution is approximated by a series (Chebyshev polynomial for non-periodic direction and Fourier series in the periodic direction), and that the Stokes equations become a set of ordinary di ferential equations by the application of the Galerkin method (mesh-based part). This accelerated hybrid approach is developed for multiphase ow in arbitrary geometry, thanks to the wall geometry exibility and boundary condition convenience of mesh-based schemes [ ].

S

The particle methods, as presented in Section . . for the membrane modeling, are also used for the uid simulation. Such methods include the dissipative particle dynamics (DPD) [ , ] and the multiparticle collision dynamics (MPCD) [ , ].

For more details on numerical methods, one can refer to the reviews by Li et al 

. . A

Bending force is the main membrane force for vesicles and can become the dominating factor for capsules at low shear rates [ , ]. The direct calculation of the bending force is much more di cult than the in-plane elastic force, because of the fourth-order derivative. In this section, various algorithms for calculating the bending forces, which are derived from the seminal works of Canham [ ] and Helfrich [ ] (Eq. ( . ) without surface tension γ), are brie y presented based on the work of Guckenberger et al [ ].

In their article [ ], six di ferent algorithms (denoted by A-E and S, as shown in Table . ) are sorted into three di ferent categories, depending on the variational derivative being performed before ("variational formulation") or after ("force formulation") the surface discretization. The rst two algorithms, methods A and B, rst discretize the surface and then perform the variational derivative by means of a direct di ferentiation with respect to the nodes' positions, yields the force. While the three methods C-E perform the discretization after the variational derivative and thus provide the force density. The last method S is somewhat set apart from the others because on the one hand the discretization is rst introduced, but on the other hand, the force density is obtained by solving the weak-form integral equations discretized by means of the nite element method. As summarized in the "Result" and "Derivative" row of the Table . . These algorithms also di fer from the basic idea in evaluating the mean curvature or the Laplace-Beltrami operator ∆ s , if any. The results are summarized as follows:

• Method A calculates the bending energy via the normal vector and the relation

S (H 2 - 2K)dS = S (∂ α n)• (∂ α n)dS.
This method showed the largest errors and very sensitive to irregularities. Furthermore, it often requires the smallest step size in order to remain in a stable region, but on the other hand, it is the most easily implemented method.

• Method B approximates ∆ s by a variant of the so-called cotangent scheme [ ]. This method turns out to be similar to Method C for homogeneous mesh, but somewhat worse for inhomogeneous triangulations regarding errors and required step size.

• Method C approximates ∆ s in the same way as Method B, except for the method of calculating the area attached to each node. Another major di ference is related to the order between the discretization and the variational derivative, which allows Method C to evaluate ∆ s H also by a cotangent scheme when calculating the force density. This algorithm also has troubles with the inhomogeneous mesh. The hydrodynamical results are very similar to Methods B, D, E and S, and requires a step size comparable to B and E.

• Method D di fers from Method C by the discretization of ∆ s , which is based on a kernel of the di fusion or heat equation [ ]. This method is shown the most robust among all the six algorithms and working reasonably well on the inhomogeneous mesh. It also leads to the largest step size, but one evaluation scales as O(N 2 ), where N is the number of the nodes.

• Method E evaluates the curvatures and thus the force density by a parabolic tting scheme [ ]. This method is similar to C, whereas it handled the irregular mesh better than Methods A-C but still worse than D. The required step size is comparable to Methods B and C.

• Method S is the algorithm currently used in our group, as presented in Section . . The remarkable di ference, compared to other algorithms, is that the force density is calculated explicitly by solving a linear system but not by approximating. This method exhibits the same behavior as Method C. Working with the mesh preservation algorithm (Section . . ), this method shows its potential for various deformable particles with large deformation [ ]. Moreover, it provided errors that are signi cantly smaller, whereas the complexity is O(N 2 ).

Our approach is based on boundary integral equations (BIE), which are analytic for given boundary distributions, and which reduce a D problem into a D one since only boundaries/interfaces need to mesh. These two points of BIE show great advantages (in terms of accuracy and computational e fort) before mesh-based methods and particle methods.

To compute the mechanical source distributions raised from a single soft particle, as in our case, continuous approaches are far more accurate than particle-based modeling. The troublesome out-of-plane bending force is alleviated from a fourth-order derivative to a second-order one by formulating the membrane equilibrium equation in weak form and with quadratic shape functions (Loop elements). That is, all elastic forces induced by the deformation are evaluated directly with the nite element method, and no reconstruction is necessary.

. D

The rest of this dissertation is organized as follows.

In Chapter we present the details of the numerical methods that are used in subsequent chapters to investigate the dynamics of vesicles and red blood cells in tube ow. Speci cally, we rst describe how a wall boundary is incorporated into a previous numerical model for soft particles (drop, capsule, and vesicle) in unbounded Stoke ows. We then present several simulation examples to validate and demonstrate the spatial and temporal convergence of the newly implemented method (Sec. . . ). While the present numerical model is able to handle channel walls of arbitrary cross-section, as illustrated in the example of a capsule owing in a rectangular microchannel (Sec. . . ), the present work focuses on the dynamics of a vesicle that is transported through a circular tube in a pressure-driven ow.

Chapter details the dynamics of a three-dimensional vesicle freely suspended in conned Poiseuille ow with an emphasis given to the vesicle's shape transition and di ferent lateral migration models. Vesicles with matched viscosity of the inner and outer uids are characterized by three dimensionless parameters, namely the reduced volume, the con nement (called also the radius ratio), and the capillary number. We show that a de ated vesicle, initially placed at an o f-center position, can also migrate perpendicular to the ow direction due to both the presence of the wall boundary and the curvature of the imposed ow pro le. Three general migration modes are clearly determined in Sec. . . , depending on these three control parameters. During the migration, the vesicle's shape undergoes continuous deformation due to the hydrodynamic stresses imposed by the Poiseuille ow onto the membrane. Once the lateral migration speed vanishes, a stable shape is obtained, as shown in Sec . . and the corresponding ow structures are presented in Sec. . . . The e fects of the capillary number (Sec. . . ), the con nement (Sec. . . ), the reduced volume (Sec. . . ), and the initial conditions (H 0 and θ 0 , Sec. . . ) are then explored in detail.

In Chapter we study, via an axisymmetric boundary element method, vesicle hydrodynamics under high con nements in which the shape of the vesicle is expected to maintain axisymmetry. We present a phase diagram of shapes, compare the simulation results with experimental observations, and give a clearly identi ed parachute-bullet shape transition line. Critical con nement is calculated based on the geometric constraints of vesicles -the volume and surface area are xed on the time scale of typical experiments. We present simulation results and compare with the previous theoretical investigation when the con nement approaches its critical value. The results of this study have potential application to assess the rheology of a dilute red blood cell suspension.

Chapter describes a hybrid continuum (vesicle model, see . . ) and coarse-grained (FENE-POW spring model) model to study red blood cells in uid ows. The proposed approach is compared with the classical optical tweezers experiment (Sec. . . ). With the present model, both tank-treading and tumbling motions are reproduced for a red blood cell immersed in a linear shear ow (Sec. . . ). The e fect of the shear modulus of a red blood cell in tube ow is also investigated in Sec. . . .

Chapter presents conclusions of this dissertation and outlines some future potential developments that are closely related to the present work.

Notation

De nition Expression/Units 

(L 1 -L 2 )/(L 1 + L 2 ) D 2 geometric parameter (L 2 -L 3 )/(L 2 + L 3 ) θ angle of inclination Fig. . (b) Y g , Y G
lateral position of the centroid of the particle m 

N M

In this chapter, a three-dimensional numerical model to study the dynamics of a deformable particle suspending in a con ned Poiseuille ow is presented, as shown in Figure . . This model is fully based on the methods followed in our previous works for a particle suspended in a uid without external physical boundaries [ ].

e x e y e z

R t

Figure . : A deformable particle in ow through a cylindrical tube of radius R t . It should be noted that the length of the tube and the mesh given here do not imply the actual length and mesh used in the simulation. The unperturbed ow is given by u

∞ = U m 1 -y 2 +z 2 R 2 t e x
, where U m is the speed of the ow on the centerline of the capillary, and e x is the direction of the ow.

In the inertia-free limit (Stokes ow, Eq. ( . )), if membrane viscosity is neglected, the evolution of the membrane interface (Eq. ( . )) can be divided into a series of one-way coupled steps,

x → f → u → ∂ t x [ ].
The numerical methods used in this work will be presented in this way, followed by a section of validation.

.

G (x)

In this section, the membrane interface discretization and the physical boundary (microchannel) discretization are presented separately.

. . I For FEM, a general unstructured mesh has only C 0 continuity, and it is impossible to ensure C 1 continuity in the conventional sense where the slope is continuous across the mesh cells. While a direct computation of the membrane bending forces requires at least a C 4 representation of the membrane position since the bending forces contain fourth-order derivatives of the position x. Mesh smoothness requirements can be eased from C 4 to H 2 , where H 2 represents square-integrable functions whose rst-and second-order derivatives are themselves square-integrable , by formulating the problem in weak form [ ].

To circumvent the C 1 continuity limit, traditional FEM uses either a local reconstruction of elements' interface [ , ] or designs computations of Laplace-Beltrami operator [ , ] on C 0 mesh. While subdivision surfaces obtained by Loop scheme [ ] are guaranteed to be H 2 . What's more, the subdivision surfaces are used both for membrane presentation, membrane solver, and uid solver (boundary element method) in a consistent way, which is the idea behind the isogeometric analysis [ ].

The Loop subdivision surface is an assembly of linear triangle elements re ned by a subdivision process. For deformable particles, homotopic to the sphere, the icosahedron can be used as an initial control mesh, in which it contains equilateral triangle faces with ve meeting at each of its vertices. New elements are created and vertices are created or updated according to the subdivision rules.

As shown in Figure . , the coordinates of newly generated vertex (level k + 1) on the edge of the previous mesh (level k) are given by:

p k+1 H = p k A + 3p k B + 3p k C + p k D 8 , ( . )
and the old vertex is updated by

p k+1 G = (1 -nλ)p k G + λ n i=1 p k Gi , ( . ) 
In some cases, the terms C 1 continuity and H 2 square-integrable are interchangeable, e.g., the bounded bending force. where ( . )

G i , i ∈ [1, n]
All vertices having valence equals to six are called regular vertices, while vertices with valence other than six are called irregular vertices since the function evaluation scheme must be updated for the elements linked to it. Note that all newly generated vertices by Loop subdivision are regular vertices, while the vertices (valence equals to ) updated from the initial icosahedron mesh will remain irregular. In the limit of in nite subdivisions, the mesh converges to a limit surface which is C 2 continuous, except at the irregular vertices where they degenerate to C 1 continuous.

Stam [ ] shows that the limit position of any point on an element e can be obtained by ) where (s 1 , s 2 ) is a local parametrization of the element (on the basis (e 1 , e 2 ) as shown in Figure . (a)), N p are shape functions which span over all one-ring elements (refer to [ ] or appendix B. for details) as shown in Figure . (b). The nodal value X p is the expansion parameters of the shape function N p for the limit position x. Similarly, every scalar function

x e (s 1 , s 2 ) = p∈one-ring X p N p (s 1 , s 2 ), ( . 
The one-ring of a vertex: immediate neighbor vertices incident to this vertex. Correspondingly, the one-ring of a element is a set of elements incident to this element, as shown in Figure . (a). A parameterization of any point on this element, (s 1 , s 2 ), is built upon the basis (e 1 , e 2 ). (b) Representation of a shape function on a subdivision sphere interface, the wireframe shows a coarse mesh with only two subdivisions and the surface shows a mesh with six subdivisions. Unlike conventional Lagrange triangular elements, the support of the shape function of Loop scheme is spanned over the one-ring elements.

f de ned on the membrane, e.g., a component of the membrane traction and velocity, can be expanded or approximated with these shape functions as [ ] ) where F p is the p-th nodal value. Eq. ( . ) can serve to evaluate f at any point x of the membrane element e if the nodal values F p are known. Inversely, we also need to convert the known membrane function f into its nodal values F p , that is, given the approximation of f under the form ( . ) such that the approximation error is minimized. Using the collocation formulation, in which the known eld f is collocated at vertices, that is,

f e (x) = f e (s 1 , s 2 ) = p∈one-ring F p N p (s 1 , s 2 ), ( . 
f p = f (x = x p ) is known at vertex x p f p = q∈one-ring F q N q (s 1 (x p ), s 2 (x p )) ∀p ∈ {1, • • • , N v }, ( . ) 
where N q (x p ) are the shape functions evaluated in local parameter space (s 1 , s 2 ) corresponding to the vertex x p , N v is the total number of vertices. Assembling the linear system ( . ) in matrix form according to the index of vertices, we have ) where

{f p } = C{F p }, ( . 
{f p } = {f 1 , f 2 , • • • , f Nv } t , {F p } = {F 1 , F 2 , • • • , F Nv } t ,
and C is the collocation matrix serves to transform between the limit values f p and the nodal values F p .

. . M

In this thesis, the wall of the tube is considered to be rigid and satis es no-slip and nopenetration boundary conditions. Rigidity, or without deformation, means the conventional C 0 FEM mesh is adequate as for the description of the microchannel (no need for derivative). Here, both the linear triangle elements (T ) and the subdivision elements (Loop) are implemented. Figure . shows a T tube mesh re ned at the center which is the region where we can nd the soft cell . The complete mesh of the tube is composed of a mesh of inlet surface, a wall mesh, and a mesh of the outlet surface. We distinguish the mesh of the wall and the meshes of the free surfaces due to the discontinuity of the normal vector when it moves from the wall to the free surface, or vice versa. That is, the normal vector is not properly de ned at the intersection of these surfaces.

For linear triangle elements, every scalar function f at any point on an element e can be obtained by ) where N t1 p are linear shape functions (refer appendix B. for the shape functions and the notation of control points), F p are the expansion parameters. Unlike Loop element, the expansion parameters F p for T element are exactly the value of f at control point p, that is F p = f e (x p ) due to the de nition of the shape functions N t1 p .

f e (s 1 , s 2 ) = 3 p=1 F p N t1 p (s 1 , s 2 ), ( . 
To limit the length of the tube, the soft cell is brought back to the center (in the ow direction) after every time stepping. To have a Lyapunov surface, both ends are rounded by a small circle rather than separated on two. To achieve improved accuracy, the mesh must also be re ned at both ends to allow a smooth description of the rounded corner.

As the T tube mesh is adequate for the description of the microchannel, it is used in most of the cases in this thesis, and only the perturbed ow due to the presence of the deformable particle is computed. While the Loop tube mesh may be used for microchannel other than the cylindrical tube for which the background ow is not analytically given. It is noteworthy that, in this thesis, the microchannel form of interest is the cylindrical tube, for which the analytic ow without cell is known, i.e., the Poiseuille ow.

.

M (f)

The membrane solver is designed to calculate the tractions f m applied by the membrane to the uids. These tractions, in turn, depend on the deformation of the membrane of soft objects (described by x). In our work, the isogeometric nite element method is used to evaluate the membrane tractions [ ].

In order to measure the deformation of a curved surface from a reference state x 0 (s 1 , s 2 ) to a deformed state x(s 1 , s 2 ), it is useful to introduce a local basis (a 1 , a 2 , n)

a 1 = ∂x ∂s 1 , a 2 = ∂x ∂s 2 , n = a 1 × a 2 |a 1 × a 2 | ( . )
on the deformed con guration, where a 1 and a 2 are tangent vectors of the parametric surface, n is the outward-pointing normal. Similarly, a local basis on the reference con guration is de ned as (a 0 1 , a 0 2 , n 0 ), by replacing x with x 0 . In the rest of this section, variables' de nition for the reference con guration (denoted by superindex 0) will be neglected, for brevity.

The metric tensor a αβ and curvature tensor b αβ are de ned as

a αβ = a α • a β , b αβ = a α,β • n = ∂a α ∂s β • n, α, β ∈ {1, 2}.
( . )

The elementary area dS = √ ads 1 ds 2 , where a = det(a αβ ) is the determinant of the metric tensor. The inverse metric tensor a αβ is de ned by a αγ a γβ = δ α β , where δ α β is the Kronecker symbol.

The stable equilibrium con guration of a membrane stated with the principle of virtual work for a virtual displacement of δx is [ ]

- S σ αβ δ(E αβ ) + µ αβ δ(B αβ ) dS internal virtual work + S f ext • δxdS external virtual work = 0, ( . )
where σ αβ and µ αβ are the e fective membrane and bending stress tensors, which depend on the properties of the membrane and will be detailed later. E αβ is the Green-Lagrange strain tensor

E αβ = 1 2 a αβ -a 0 αβ ( . )
which is a measure of the membrane stretching deformation and B αβ is the bending strain tensor

B αβ = b αβ -b 0 αβ ( . )
which measures the out-of-plane deformation. Be aware that f ext = -f m (Eq. ( . )), Eq. ( . ) reads

S 1 2 σ αβ δ(a αβ ) + µ αβ δ(b αβ ) dS + S f m • δxdS = 0, ( . )
which gives a general relation between the deformations x and forces f m of a membrane. To evaluate the forces numerically, Eq. ( . ) need to be discretized with the Loop subdivision elements as in our model.

As in Eq. ( . ), the Cartesian components of membrane forces, position, and virtual displacement can be written as

                 f i (s 1 , s 2 ) = p∈one-ring F p i N p (s 1 , s 2 ) x i (s 1 , s 2 ) = p∈one-ring X p i N p (s 1 , s 2 ) δx i (s 1 , s 2 ) = p∈one-ring δX p i N p (s 1 , s 2 ) , i ∈ {1, 2, 3}.
( . )

Using Eq. ( . ), the principle of virtual work ( . ) is discretized as

0 = Ne e=1 S e I σ + I M + I f √ ads 1 ds 2 ≈ Ne e=1 Nq q=1 w q I σ + I M + I f √ a| (s 1 q ,s 2 q ) ( . ) with                    I σ = p∈one-ring 1 2 σ αβ N p,α x i,β + N p,β x i,α δX p i I M = p∈one-ring µ αβ n i N p,αβ -Γ γ αβ n i N p,γ δX p i I f = p∈one-ring m∈one-ring N p N m F m i δX p i , ( . ) 
where N p,α = ∂Np ∂s α , N e and N q are the total number of elements and quadrature points, w q and (s 1 q , s 2 q ) are, respectively, weight and local parameters associated to the q-th quadrature point.

In Eq. ( . ), the unknowns are F m i , they can be formulated in matrix form as

M{F p i } = {rhs p i }, ( . ) 
where

{F p i } = {F 1 1 , F 1 2 , F 1 3 , • • • , F Nv 1 , F Nv 2 , F Nv 3 } t contains
the nodal values of membrane forces. {rhs p i } contains the sum of contributions of the local {rhs e } =e,q w q √ a(I σ + I M )

to the i-th component of vertex p. The mass matrix M is an assembly of the local mass matrix e,q w q √ a 1-ring p,m N p N m . The nodal values of membrane forces F can be obtained by solving Eq. ( . ) if the constitutive equations of membrane deformation σ αβ and µ αβ are speci ed.

The following relations have been used [ ]:

δ(a αβ ) = δx ,α • x ,β + x ,α • δx ,β , δ(b αβ ) = n• δ(a α,β ) -Γ γ αβ n• δ(a γ ),
where Γ γ αβ = a γδ a α,β • a δ are the Christo fel symbols.

D

For clean drops, the surface energy, w s = γ, does not depend on curvature, thus the bending stress µ αβ = 0, and the membrane stress

σ αβ = γa αβ .
( . )

C

For zero-thickness capsule model (for example, NH or Sk model as presented in section . . ), we also have µ αβ = 0, and the membrane stress takes the form [ ]

σ αβ = 2 J s ∂w s ∂I 1 a 0,αβ + 2J s ∂w s ∂I 2 a αβ , ( . ) 
with J s = √ a √ a 0 be the Jacobian of the transformation from the reference to the deformed surface, and the surface energy density is given by Eq. ( . ).

V

For vesicle membrane obeying the Helfrich bending energy with the constraint of incompressibility (Eq. ( . )), the e fective membrane σ αβ and bending

µ αβ stresses read [ ]        σ αβ = 2 √ a ∂ √ aw H s ∂a αβ = κ 2 4H 2 a αβ -8Hb αβ + γa αβ µ αβ = ∂w H s ∂b αβ = κ 2 4Ha αβ .
( . )

For these three di ferent particles, one may need to compute the inverse metrics a αβ and curvature b αβ (for vesicle) tensors, and the local coe cients of γ, H, J s , ∂ws ∂I1 , and ∂ws ∂I2 at the quadrature points.

. F (u)

Once obtained the membrane force f m , we can solve the creeping ow equations ) where σ = -pI + η ∇u + (∇u) t , η is the uid viscosity.

∇• u = 0, ∇• σ = -∇p + η∇ 2 u = 0, ( . 
As reviewed in [ , , ], there are roughly two approaches to solve numerically this viscous uid-structure (deformable particles) interaction problems, the continuum-based modeling and the particle-based modeling. See Sec. . . for a more detailed classi cation.

Continuum-based models directly solve Eq. ( . ) to study problems involving the hydrodynamics. The boundary integral method (BIM) [ ] uses Green's tensor of Stokes ow to calculate the velocity elds induced by the membrane forces. Once the Green's functions exist , with which the formulated velocity elds obey the Stokes equations by de nition. With spectral methods [ , , ], the accuracy of BIM simulations has been further increased. While the immersed boundary method (IBM) [ ], which can include inertial effects, models this uid-cell interaction problem as an incompressible viscoelastic membrane (represented on a Lagrangian coordinate) immersed in an incompressible uid (represented on a Eulerian coordinate).

Particle-based models de ne e fective particles, which interact with each other, for both uid and membrane. Particle-based modeling explicitly includes details of the microstructure, can describe the biochemical process, but a fordable only for simple cases [ ]. The multiscale modeling, coarse-graining of particle-based modeling, has shown the capability in modeling RBC with accurate mechanics, rheology, and dynamics [ , ]. ). S i , S o and S w denote the inlet , outlet and wall surface of the tube. R t denotes the radius of the tube, Γ is the membrane of the deformable particle, and η i (η e ) is the viscosity of the internal (external) uid of the particle.

R t η i η e u ∞ S i S o D e D i
In this thesis, an isogeometric BIM is used to study the dynamics of a vesicle owing inside a capillary, as schematically shown in Figure . . The BIM simpli es greatly the coupling of uid and membrane solvers since it only requires the discretization of the boundary of the particles and the physical boundaries in case of bounded ows.

. . T -G '

The Green's functions of Stokes ow ( . ) are solutions of the singularly forced Stokes equation

∇• u = 0, -∇p + η∇ 2 u + gδ(x -x 0 ) = 0 ( . )
limited to viscous ow and di cult to include the inertial e fects.

for the singular force with strength g acting at an arbitrary point x 0 , δ(xx 0 ) is the delta function. Using the Green's functions, Pozrikidis [ ] writes the solution of Eq. ( . ) in the form

           u i (x) = 1 8πη G ij (x, x 0 )g j p(x) = 1 8π p j (x, x 0 )g j σ ik (x) = 1 8π T ijk (x, x 0 )b j , ( . )
where x 0 is called the source point, and x is the field point.

Taking divergence ∇• of the second equation of ( . ) and using the expression

δ( x) = - 1 4π ∇ 2 1 r , ( . ) 
where r = | x|, x = xx 0 , we have

p = - 1 4π g• ∇ 1 r .
( . ) Substituting ( . ) and ( . ) into ( . ), we obtain

4πη∇ 2 u = ∇ 2 1 r I -∇∇ 1 r • g.
( . )

Expressing ηu = g• ∇∇ -I∇ 2 H and substituting into Eq. ( . ), we obtain

∇∇ -I∇ 2 4π∇ 2 H + 1 r = 0. ( . )
Thus H is solution of the biharmonic equation ∇ 4 H = δ( x), that is H = -r 8π and

u i (x) = 1 8πη G ij ( x)g j , ( . ) 
where

G ij ( x) = δ ij ∂ 2 ∂x 2 k - ∂ ∂x i ∂ ∂x j r = δ ij r + x i x j r 3 ( . )
is the free-space Green's function, also called the Stokeslet.

The following relations are used:

∂r ∂x i = x i r , ∇ 2 r = -8π∇ 2 H = 2 r .
The free-space Green's function for pressure

p i ( x) = -2 ∂ ∂x i 1 r = 2 x i r 3 , ( . )
and for stress

T ijk ( x) = -δ ik p j + ∂G ij ∂x k + ∂G kj ∂x i = -6 x i x j x k r 5 .
( . )

. . T

Starting from the Lorentz reciprocal identity , the velocity induced by the sources and/or forces on the boundary Ω is [ , ]

u D j (x) = - 1 8πη e Ω f D i (x 0 )G ij (x, x 0 )dS(x 0 ) + 1 8π Ω u D i (x 0 )T ijk (x, x 0 )n k (x 0 )dS(x 0 ),
( . ) where the superscript D denotes a disturbance variable, x lies inside the control volume D e bounded by the boundary Ω = Γ ∪ S i ∪ S w ∪ S o , and n directed towards D e , as shown in Figure . . Now assuming the rigid tube is long enough such that the disturbance velocity induced by the cell virtually vanishes on the inlet surface S i and outlet surface

S o . That is f D | Si -p D i n and f D | So -p D o n. Setting p D i = 0
, and applying no-slip and no-penetration velocity boundary conditions on the wall, Eq. ( . ) reduces to

u D j (x) = - 1 8πη e Sw,Γ + f D i (x 0 )G ij (x, x 0 )dS -p D o So n i (x 0 )G ij (x, x 0 )dS + 1 8π Γ u D i (x 0 )T ijk (x, x 0 )n k (x 0 )dS, x ∈ D e , ( . 
)
where the superscript + denotes the exterior surface Γ of the deformable particle.

Applying the reciprocal theorem ( . ) rstly for the unperturbed ow u ∞ without cell and the Stokeslet (solution of singularly forced Stokes ow), we obtain

Γ G ij (x, x 0 )f ∞ i (x 0 )dS = η e Γ u ∞ i (x 0 )T ijk (x, x 0 )n k (x 0 )dS, x ∈ D i .
( . )

For two ows u and u , which are solutions of the Stokes equations, the reciprocal identity reads ) where f = σ• n and f = σ • n are the corresponding surface forces exerted on Ω, the boundary of the control volume. By identifying u and f as the solutions of the singularly forced Stokes equations ( . ), one can obtain u(x) at a point x inside Ω.

Ω u • f -f • u dS = 0, ( . 
We suppose the pressure disturbance p D i (p D o ) is a constant over the inlet (outlet) surface.

And then applying the reciprocal theorem for the ow inside the cell and the Stokeslet, we have

Γ - G ij (x, x 0 )f D i (x 0 )dS = η i Γ u D i (x 0 )T ijk (x, x 0 )n k (x 0 )dS, x ∈ D i , ( . )
where the superscriptdenotes the interior surface Γ of the deformable particle.

From Eq. ( . ) and ( . ), we have an integral representation for the exterior ow

u j (x) = u ∞ j (x) - 1 8πη e Γ ∆f i (x 0 )G ij (x, x 0 )dS - 1 8πη e S w f D i (x 0 )G ij (x, x 0 )dS + p D o 8πη e S o n i (x 0 )G ij (x, x 0 )dS + 1 -λ 8π Γ u D i (x 0 )T ijk (x, x 0 )n k (x 0 )dS x ∈ D e , ( . 
)

where ∆f = f + -f -= σ + -σ -• n is the membrane traction discontinuity, λ = η i /η e
is the viscosity contrast.

From Eq. ( . ), we approach the eld point x to the membrane interface Γ, we obtain

1 + λ 2 u j (x) = u ∞ j (x) - 1 8πη e Γ ∆f i (x 0 )G ij (x, x 0 )dS - 1 8πη e S w f D i (x 0 )G ij (x, x 0 )dS + p D o 8πη e S o n i (x 0 )G ij (x, x 0 )dS + 1 -λ 8π PV Γ u D i (x 0 )T ijk (x, x 0 )n k (x 0 )dS x ∈ Γ, ( . ) 
The following relation has been used [ , p. ]:

lim x→Γ + Γ u i (x 0 )T ijk (x, x 0 )n k (x 0 )dS = 4πu j (x) + PV Γ u i (x 0 )T ijk (x, x 0 )n k (x 0 )dS,
where the superscript PV denotes an improper (principal value) double-layer integral when the point x is right on the boundary Γ.

Similarly, approaching x to the tube boundaries S tube = S i ∪ S w ∪ S o and applying the appropriate boundary conditions, we have

0 = - 1 8πη e Γ ∆f i (x 0 )G ij (x, x 0 )dS - 1 8πη e S w f D i (x 0 )G ij (x, x 0 )dS + p D o 8πη e S o n i (x 0 )G ij (x, x 0 )dS + 1 -λ 8π Γ u D i (x 0 )T ijk (x, x 0 )n k (x 0 )dS x ∈ S tube , ( . ) 
In summary, Eq. ( .), ( . ) and ( . ), ( . ) are valid when point x is located in D i , D e and on Γ, S tube . In this thesis, we are only interested in the matching viscosity case, i.e., λ = 1, for a bounded ow. Thus both Eq. ( . ) and ( . ) are simpli ed as

u j (x) = u ∞ j (x) - 1 8πη e Γ ∆f i (x 0 )G ij (x, x 0 )dS - 1 8πη e S w f D i (x 0 )G ij (x, x 0 )dS + p D o 8πη e S o n i (x 0 )G ij (x, x 0 )dS x ∈ D e ∪ Γ, ( . ) 
and Eq. ( .) is simpli ed as

S w f D i (x 0 )G ij (x, x 0 )dS = - Γ ∆f i (x 0 )G ij (x, x 0 )dS -∆p D a S o n i (x 0 )G ij (x, x 0 )dS x ∈ S w , ( . 
)
where the disturbance pressure drop [ ]

∆p D a = -p D o = 1 Q Γ ∆f i u ∞ i dS ( . )
with Q is the ow rate which is assumed not disturbed by the presence of the cell, i.e., Q = Q ∞ .

S

When the eld point x approaches the source point x 0 , numerical treatment should be applied to the integrals in Eq. ( . ) to regularize the singularity due to the singular behavior of the Stokeslet kernel G. By subtraction of exact identities for the terms involving the normal and the tangential components of the force on a closed surface ( rst equation of ( . )),

Farutin et al.

[ ] proposed the singularity subtraction (SS) technique, which can deal with the singularities both in normal and tangential directions. The single-layer integral on the cell membrane can be formulated with

Γ G(x, x 0 )• f (x 0 )dS(x 0 ) = Γ G• f (x, x 0 )dS - n(x) × f (x) 4π × Γ R(x, x 0 )dS,
( . ) where

f (x, x 0 ) = f (x 0 ) -n(x 0 )(f (x)• n(x)) + n(x 0 ) × (n(x) × f (x)) R(x, x 0 ) = [ x• n(x 0 )] r 3 x .
( . )

S

For a vesicle, the surface incompressibility constraint (Eq. ( .)) is satis ed by the surface tension γ, a Lagrange multiplier, which is the solution of:

∇ s • u(x) = ∇ s • u ∞ (x) + ∇ s • u κ (x) + ∇ s • u γ (x) + ∇ s • u w (x) = 0, ( . )
where u ∞ , u κ are the imposed external velocity and bending induced velocity, u γ is the velocity due to surface tension γ, u w is the velocity due to the microchannel wall (such as the third term of Eq. ( .)). u κ and u w are determined entirely by the shape of the membrane, thus Eq. ( .) is actually linear with the unknown surface tension γ,

D γ {Γ} = -{∇ s • u ∞ (x) + ∇ s • u κ (x) + ∇ s • u w (x)}, ( . )
where D γ is a linear operator which transforms the nodal values of tension {Γ} to the limit value of the surface divergence of the velocity eld due to surface tension ∇ s • u γ (x).

Eq. ( .) is iteratively solved by GMRES [ , ] with a preconditioner to remedy the illconditioned matrix D γ .

. . D

Assuming that the nodal values of membrane force {F } is known (solved with Eq. ( .)) , there are two basic steps to calculate the velocity eld on the membrane.

. Calculation of the nodal values of perturbed force F D w on the wall of the tube As in Figure . , we use Γ, w, o denote the surface of cell, wall and outlet of the tube. Using the same shape functions as in Eq. ( . ), Eq. ( . ) can be formulated as

S ww F D w = -S wΓ {F } -∆p D a S wo {N o }, ( . )
where S αβ is the matrix formulated by the single-layer integral, the superscript αβ means the eld point x is evaluated on the surface S α from the source on surface

S β , {N o }
is the nodal values of the normal on the outlet surface S o , and ∆p D a is computed with Eq. ( . ).

. Calculation of the velocity on the membrane surface {u Γ }

The limit values of velocity eld on the membrane surface are derived from Eq. ( .)

{u Γ } = {u ∞ Γ } - 1 8πη e S ΓΓ {F } + S Γw F D w + ∆p D a S Γo {N o } . ( . )
.

T (∂ t x)

Two time stepping schemes have been implemented in order to update the position of membrane interface given by the semi-discrete forme ( . ) (Eq. ( .)) , an high-order explicit scheme and an implicit scheme.

dx(t) dt = g(t, x).
( . )

At discretized time t n , the membrane surface position is given by x n , thus the membrane forces {F } can be obtained by Eq. ( .), and then the membrane velocity u n can be obtained by solving Eq. ( .) and ( . ), which is possiblely accompanied a projection stage (Eq. ( .)) to compute the Lagrange tension γ and to satisfy the local surface incompressibility constraint of the membrane. The time stepping schemes are aiming to compute the new membrane position x n+1 at time t n+1 = t n + dt.

. . R -K -F

The explicit time stepping implemented is a Runge-Kutta Fehlberg fourth-fth (RKF ) stage scheme [ ]. This high-order scheme allows dynamically adapting the time step dt = h n by measuring the di ference between fourth and fth results and allows very good conservation of invariants such as the enclosed uid volume.

The fourth and fth stage formulations are given as

x (4) n+1 = x n + 25 216 k 1 + 1408 2565 k 3 + 2197 4101 k 4 - 1 5 k 5 ( . ) x (5) n+1 = x n + 16 135 k 1 + 6656 12858 k 3 + 28651 56430 k 4 - 9 50 k 5 + 2 55 k 6 , ( . ) 
. Time stepping (∂ t x)

and the parameters at the intermediate stage are

k 1 = h n • g(t n , x n ) k 2 = h n • g(t n + 1 4 h n , x n + 1 4 k 1 ) k 3 = h n • g(t n + 3 8 h n , x n + 3 32 k 1 + 9 32 k 2 ) k 4 = h n • g(t n + 12 13 h n , x n + 1932 2197 k 1 - 7200 2197 k 2 + 7296 2197 k 3 ) k 5 = h n • g(t n + h n , x n + 439 216 k 1 -8k 2 + 3680 513 k 3 - 845 4104 k 4 ) k 6 = h n • g(t n + 1 2 h n , x n - 8 27 k 1 + 2k 2 - 3544 2565 k 3 + 1859 4104 k 4 - 11 40 k 5 ) . ( . )
The dynamic time step is realized by comparing the di ference of fourth and fth stage ) . . T

results n = max |x (4) n+1 -x (5) n+1 | with two presetting tolerances ε max and ε min                h n = ε max 2 n 1/4 h n if n > ε max h n+1 = ε min 2 n 1/4 h n if n < ε min h n+1 = h n else . ( . 
For capsules without bending, the stability condition ∆t ≤ O(∆x/G s ) allows a reasonable time step to be selected for an explicit time scheme, while for vesicles, the stability condition ∆t ≤ O(∆x 3 /κ), where the time step should be inferior to the characteristic time of bending deformation, limits the use of an explicit time scheme in practical.

The implicit time scheme implemented in our code is the trapezoidal time scheme. For a given position and tension (x n , γ n ) at time t n , the new state

(x n+1 , γ n+1 ) at t n+1 is com- puted by    x n+1 = x n + ∆t 2 [u(x n , γ n ) + u(x n+1 , γ n+1 )] ∇ s • u(x n+1 , γ n+1 ) = 0 . ( . )
These equations are solved iteratively. Assume the state at r-th iteration (x (r)

n+1 , γ (r) n+1
) is given, the residuals of this state read

     res x = x (r) n+1 -x n + ∆t 2 u(x n , γ n ) + u(x (r) n+1 , γ (r) n+1 ) res γ = ∇ s • u(x (r) n+1 , γ (r) n+1 ) 
.

( . )

If both residuals res x and res γ are less than a prescribed tolerance, the iteration nishes. Otherwise, a correction (δx, δγ) is seeked by GMRES iterations such that (x (r)

n+1 +δx, γ (r) n+1 +δγ)
satis es the linearization of Eq. ( . ) :

     I - ∆t 2 J x δx - ∆t 2 u γ (x (r) n+1 , δγ) = -res x ∇ s • (J x δx) + ∇ s • u γ (x (r) n+1 , δγ) = -res γ , ( . 
)
where u γ is the velocity solely due to surface tension, J x is Jacobian with respect to position x. Eq. ( .) is solved with the Jacobian-free Newton-Krylov methods [ ], and in GM-RES iterations, rather than calculating directly the Jacobian, only its action on a vector δx is computed

J x δx ≈ u(x (r) n+1 + εδx, γ (r) n+1 ) -u(x (r) n+1 , γ (r) n+1 ) ε , ( . 
)
where ε is a small parameter. In summary, the implicit trapezoidal scheme ( . ) is solved iteratively through Eq. ( . ) with possible corrections (δx, δγ) (Eq. ( .)) if the residuals (res x , res γ ) are too large. This scheme is detailed in Algorithm .

. V Our code is validated for deformable particles, such as drop, capsule, and vesicle, ow in linear ow without con nement [ , ]. In this section, validations will focus primarily on the implementation of microchannels. More precisely, the in uence of tube mesh, includes its length and re nement, will be rst discussed. And then, benchmark tests are carried out to verify the code and to show the overall resolution.

. . T : &

Two di ferent microchannel meshes have been implemented as shown in the aforementioned section . . . The Loop tube mesh, which requires more cell elements to properly describe the corner, is designed to study more complicated channel where analytical background ow is not available. For a uid vesicle ow in a cylinder tube, which is the most important subject of this thesis, the T tube mesh is used.

Since the tension-induced velocity u γ is linear with γ, i.e., u(x

(r) n+1 , γ (r) n+1 + δγ) = u(x (r) n+1 , γ (r) n+1 ) + u(x (r)
n+1 , δγ), we thus have

J γ δγ = ∂u ∂γ (x (r) n+1 ,γ (r) n+1 ) = u(x (r) n+1 , γ (r) n+1 + δγ) -u(x (r) n+1 , γ (r) n+1 ) δγ δγ = u(x (r) n+1 , δγ) = u γ .
Algorithm : compute one step with trapezoidal scheme Data: mesh m with position x n and surface tension γ n at n-th time step, t n Result: all data on mesh m at time step n+1, t n+1 compute the precondition matrix D γ in Eq. ( . ); preconditioner for system ( . ); back up the position x n and the tension γ n of t n ;

/* guess values for new time step are computed as:

(x n , γ n ) → f n → u n → correct γ n to satisfy incompressibility, γ 0 n+1 → corrected velocity u 0 n+1 */
compute the membrane velocity u 0 n+1 and membrane tension γ 0 n+1 (with ∇• u s = 0) as the predictions for time step n+1, t 0 n+1 ; rst guess on the new position x 0

n+1 = x n + u 0 n+1 • dt;
/* solve the system ( . ) by GMRES iteration, r

*/ r = 0; do if r=0 then compute the membrane velocity u r n+1 ; // (x r n+1 , γ r n+1 ) → f r n+1 → u r n+1 compute the surface divergence of velocity [divS] r n+1 = ∇ s • u r n+1 ;
/* formulate the error vector for GMRES iteration (the right hand side of ( . )) */ calculate the estimation error for position res x = x n + dt 2 u n + u r n+1x r n+1 ; error for surface tension res γ = -[divS] r n+1 ; solve Eq. ( . ) for (δx, δγ) by GMRES; update x r+1 n+1 = x r n+1 + δx and γ r+1 n+1 = γ r n+1 + δγ;

compute the new membrane velocity

(x r+1 n+1 , γ r+1 n+1 ) → u r+1 n+1 ; compute [divS] r+1 n+1 = ∇ s • u r+1 n+1 ; update error res x = x n + dt 2 u n + u r+1 n+1 -x r+1 n+1 and res γ = -[divS] r+1 n+1 ; res = max √ res x • res x , √ res γ • res γ ; r++;
while res > ε;

Numerical Methods

In this section, the ow without cell is rst calculated via BEM with Loop tube mesh, and then a study on the in uence of T tube mesh is carried out with a drop ow in a moderate con ned capillary (β = 0.8).

L

The rst validation is carried out for the Loop tube mesh by calculating the Poiseuille ow via BEM. In this test, a Poiseuille ow boundary condition [ ] on the inlet and outlet of the tube is prescribed as:

u = U m 1 - r 2 R 2 t e x , ( . ) 
where R t is the radius of the tube. The friction force density (wall shear stress) on the tube wall, the pressure drop, and the velocity inside the tube can be obtained by BEM and are compared to the analytical expressions , by varying the length of the tube.

L/D f w x /η ∆p/(ηL) . . . . . . . . . . . . analytical . .
Table . : Friction force density and pressure drop obtained by BEM for the di ferent ratio of the tube length L and the diameter D. In this test, we have set R t = 4 and U m = R 2 t = 16. The wall friction force density f w

x is taken from the middle of the tube and surface pressure is taken as the average pressure on the inlet/outlet surface.

Table . shows the friction force density (at the middle of the tube) and the pressure drop for di ferent lengths of the tube. On increasing the length of the tube, the values of friction force density and pressure drop converge to the analytical values. Similarly, from Figure .

The friction force density on the tube wall for the given Poiseuille ow ( . ) is

f w x = η ∂u x ∂r | r=Rt = - 2ηU m R t ,
and the pressure drop is

∆p = 4ηU m L R 2 t .
we found that the wall shear stress (away from the end) become indistinguishable when the ratio L/D is larger than three. Due to the rounding e fect, this force on the outlet surface, which is the pressure on this surface in absolute value, is not a constant, but the average value converges to a constant value (Table . ). Although the ends have been rounded, uctuations (or overshoots) remain due to the limited number of cells applied in this region where the normal vector varies rapidly (Figure . ). 

T

The cylinder capillary meshed with T elements, as used in this case, su ces to calculate the disturbed ow due to the presence of the drop, and the background ow is given as Poiseuille ow.

First, let's summarize some parameters used to describe the mesh of the tube, as shown in Figure . . The ratio of the equivalent radius of the deformable particle R to the radius of the cylinder tube R t de nes a dimensionless parameter, the con nement β = R/R t . The half length of the tube L t is set as

L t = ζR t = ζ β R.
During the simulation, we keep the cell in the middle of the tube to avoid the use of a very long tube or periodic boundary conditions. Thus, for the wall, only the central part requires a relatively ne mesh. The grid in the axial direction is generated from the middle (the minimum size l min ) to the two ends In implementing the ow in capillary with T tube mesh, we have assumed that the tube is su ciently long such that the velocity perturbations on the inlet and outlet surfaces are negligible [ ]. As aforementioned in section . . , we rst compute the perturbed force on the capillary due to the presence of the drop with Eq. ( . ), and then update the position of the membrane of the drop via Eq. ( . ). In the calculation of the disturbed force on the capillary, the following force continuity conditions are applied at intersections, namely

0.8 1 1.2 1.4 1.6 1.8 2 -2 -1 0 1 2 L/D=1 L/D=2 L/D=3 L/D=4 L/D=5 L/D=6 x/D u x /U m (a) (b)
     f w • e x = ±f i,o • e r f w • e r = ±f i,o • e x f w • e θ = f i,o • e θ , ( . )
where w , i and o represent the wall, inlet and outlet surface of the capillary, (e x , e r , e θ ) are the basis vectors for cylindrical coordinates. + andapply on the inlet and outlet intersections, respectively.

Figure . shows the perturbed shear stress f w x in the ow direction on the line intersected by a plane (with the normal vector (0, 1, 0)) passes through the axis of the capillary, for L t varies from to . The inset shows the stable shapes cut by the same plane. In this case, with L t as the only variable, we observed that both the perturbed stress due to the presence of the drop, f w

x and the stable shapes are indistinguishable. In fact, the boundary of the wall can be replaced by a certain distribution of forces, which act to "neutralize" the velocity distribution on the wall induced by the presence of the drop. From Figure . , we observed that these forces are concentrated at the region (-2.5, 2.5), where we can nd the drop. 

L t =5.0 L t =7.5 L t =10.0 L t =12.5 L t =15.0 L t =17.5 L t =20.0 x/R f w x ηU/R 2.127 0.958
Figure .

: The perturbed shear stress of the wall f w x on the line intersected by a plane passes through the axis of the capillary and with the normal vector n = (0, 1, 0) for Ca = 0.1, β = 0.8, l min = 0.25, with di ferent tube lengths L t . The inset shows the curves of the intersection with the drop by the same plane for these di ferent cases.

For a vesicle owing in a capillary, as shown in Figure . , no distinguishable di ferences are observed as we vary the tube length from L t = 12 to L t = 28 .

We then work on the in uences of the re nement of the tube mesh, with Ca = 0.5 and β = 0.8. Since both the ow and the drop are axisymmetric in this case, we xed the grid's distribution in the circumferential direction, and only vary the grids in the ow direction, which is controlled by the minimal length l min and the size increase ratio ι. Here, we set ι = 1.05, and the results are shown in Table . and Figure . for di ferent l min .

Table . shows the additional pressure drop ∆p a due to the presence of the drop and the displacement velocity U x for l min varying from .

to . , and also the results of Lac [ ] given by spectral method. Similar to Figure . , the shear stresses f w

x and stable shapes are displayed in Figure . for ve distinct sizes with ζ = 7.5. We observed the di ference of the shape is imperceptible for l min ≤ 0.5, and the shear stresses are concentrated at the region (-3.0, 3.0), where we can nd the drop. For the case with the coarsest mesh l min = 0.7, even though the peak of shear stresses is not captured due to the limited grid distribution, but the stresses obtained on its grid points are very close to those obtained by ner meshes.

For all simulations in Chapter , we have used ζ ≥ 5, namely L t ≥ 5/β. Figure . : In uence of the length of the tube L t for vesicle (ν = 0.9) owing in a capillary (β = 0.25, Ca = 1 and l min = 0.7). (a) The perturbed shear stress of the wall f w x on the line intersected by a plane passes through the axis of the capillary and with the normal vector n = (0, 0, 1), for di ferent tube lengths L t = ζ/β = 4ζ. The inset shows the curves of the intersection with the vesicle by the same plane for these di ferent cases, G is the centroid. (b) Evolution of the centroid (Y g , dimensionless by R) and inclination angle (θ, in degree).

l min ∆p a ηU/R Ux U . . . . . . . . . . . . . . . . . . . . . . . . Lac( )[ ] .
.

Table . : E fect of the mesh re nement l min of the capillary on the additional pressure drop ∆p a and the drop translational velocity U x for a drop owing along the centerline (Ca = 0.5, β = 0.8, ζ = 7.5).

- x on the line intersected by a plane passes through the axis of the capillary and with the normal vector n = (0, 1, 0) for Ca = 0.5, β = 0.8. Five of the eight cases in Table . are displayed. The inset shows the curves of the intersection with the drop by the same plane for these di ferent cases.

. . R

A mesh quality preserving algorithm, termed as remeshing in this thesis, has been designed and implemented in our code [ ]. Here, the basic idea is rstly presented, and then a guide on the use of this algorithm is given by numerical experiments.

Vesicles and droplets cannot withstand shear, i.e, an in nitesimal shear stresses will deform them, thus there is no tangential reference con guration. The lack of tangential reference con guration means that it is possible to move the grid along the membrane surface in order to improve the quality of the mesh, without a fecting the physics. The idea of our algorithm is to treat the mesh as a network of springs since the position of the grid nodes may be updated by tangential displacements controlled by various local characteristics of the grid, such as the local length of the edge, the local area, and the local curvature. The displacement of the i-th node is controlled by

µu r (x i ) = (I -nn)• f r (x i ), ( . )
where u r is the tangential velocity adopted by the nodes for their redistribution, µ is a ctitious viscosity and f r (x i ) is the sum of forces due to the network of springs (namely, the nodes connected by one edge to the current node i), acting on the node with position x i . The nodes redistribution force is computed as

f r i = f r (x i ) = j∈one-ring (k i + k j )(l ij -l 0 ij ) t ij l ij , ( . 
)
where

t ij = x j -x i , l ij = ||t ij ||
and l 0 ij is the equilibrium length which is de ned as

l 0 ij = c L L ij ,
with L ij the distance between node i and j at the beginning of the time step.

The constant k j are de ned as

k j = c A A e∈Ej A e 3 + c H (2H) 2 e∈Ej (2H) 2 e 3 , ( . 
)
where A e is the area of e-th element connected to the node j, (2H) 2 e is the curvature energy of this element, and

A = 1 N S dS, (2H) 2 = 1 N S (2H) 2 dS
are the average value of membrane area and curvature energy by node, with N is the total number of nodes in the mesh. The node position is then updated with

dx dt * = u r , ( . ) 
which is integrated in ctitious time t * until the residual of redistribution forces i ||f r i || is below a prescribed parameter ε r .

Including ε r , the algorithm has four user-de ned parameters,

• c L ≤ 1 used to de ne the equilibrium length l 0 ij of the edges. c L < 1 allows nodes displacement even if the shape remains unchanged, vesicle in tank-treading motion, for example; • c A tends to make the mesh to have uniform distribution of area of elements ( rst term at the right hand side of Eq. ( .)); • c H tends to make the mesh to have more elements in highly curved regions (second term at the right hand side of Eq. ( .)).

According to our previous studies, using (c L = 0.9, c A = 1.0, c H = 1.0, ε r = 0.05) gives good results in most situations. The e fects of remeshing are compared and shown in Figure . for an initially oblate vesicle (with reduced number ν= . ) ows in a bounded (with con nement β = R/R t = 0.25) Poiseuille ow, Ca = 1, with elements. The case launched without remeshing becomes very di cult to converge (at t ≈ 3.2) with the same parameters as those used for the case with remeshing, because of poor quality of the mesh as shown at t = 3. Using the aforementioned parameters, it is observed, Figure . (a), that both the length of edges 

0 i = A i (t = 0).
and the area of elements are well controlled, and the membrane surface remains smooth.

Remeshing is an overdamped process, Figure . (c) shows that the L error of the local area of elements are much greater in comparison with that without remeshing, but the overall relative error of the membrane area is much smaller, Figure . (b). This is because the mesh quality preserving algorithm will distribute more nodes in regions with higher curvature. How the remeshing frequency will in uence an initially prolate vesicle (ν = 0.95) owing in a bounded (β = 0.1) Poiseuille ow (Ca = 1) are compared and shown in Figure . , by the relative error of the membrane area ( . (a)) and the relative cross-streamline migration velocity ( . (b)). When the mesh quality preserving algorithm is called every time Rmsh( 10) Rmsh( 15) Rmsh( 25) Rmsh( 50) Rmsh(100) no remeshing steps or even more, the relative errors become remarkable ( . (a)) and the dynamics of lateral migration is in uenced ( . (b)). Numerical iterations on Eq. ( . ) require about % of the whole time needed in a time step of this case. What's more, remeshing introduces dissipation, thus we can activate the remeshing every time steps, for example.

0 2 4 6 8 10 12 14 16 ε a ×10 -5 2 1 0 -1 -2 -3 -4 -5 Uy/Um t t (a) (b)
The above two examples involve either signi cant deformation . or membrane sliding . , but for a vesicle reaching a steady state without tank-treading, the call of the mesh quality preserving algorithm should be relaxed.

. . D Lac and Sherwood [ ] numerically studied the motion of an axisymmetric drop along the centerline of a cylindrical capillary. This problem is very similar to the main problem of this thesis, a vesicle ows in a microchannel (refer to Chapter ), although asymmetry is a major feature for the latter case.

It is known that the presence of a drop in the capillary changes the pressure di ference by ∆p a , termed additional pressure drop, in order to maintain a given ow rate Q. They analyzed the displacement velocity U x and the additional pressure drop ∆p a by varying the capillary number Ca = η e U γ , the con nement β = R/R t , and the viscosity contrast λ = η i /η e , where U = U m /2 is the average velocity of a Poiseuille ow, γ is the surface tension. The drop size is characterized by the radius R of the sphere with the same volume of the drop V .

By lubrication analysis, they found that at a high capillary number Ca, a drop moves with velocity

2 -U * ∼ Ca -2/3 , ( . )
for λ = 1, where U * = U x /U , and induces an additional pressure drop

R t η e U ∆p a ∼ Ca -5/3 .
( . ) 

Figure . (a)

shows two curves with di ferent con nements, which represent the translational velocity 2 -U * , decrease and converge when the capillary number is increased. Figure . (b) shows the additional pressure drop ∆p a between the extremities of the capillary as a function of Ca for these same con nements β. In both gures, the curves adopt same behaviors with the increasing of the capillary number, and match well with analytical predictions, Eq. ( . ) and ( . ). As for the con nement, we observed that the curve with stronger con nement (β = 1.1) matches better with the analytical predictions than the weaker one (β = 0.8), which is consistent with the lubrication hypothesis.

For a vanishingly small droplet moving along the centerline of a capillary, the nondimensional displacement velocity is given as [ ]

U * = 2 - 4λ 2 + 3λ β 2 + O(β 3 ), ( . )
and the additional pressure drop is given as

∆p a η e U /R t = 16 27 (2 + 9λ) 2 -40 (1 + λ)(2 + 3λ) β 5 + O(β 10 ).
( . ) .), ( . ) and its high-order tting.

The drop translational velocity U x is shown in Figure . (a) as a function of con nement β for di ferent capillary numbers Ca. The additional pressure due to the presence of a drop for di ferent Ca is shown in Figure . (b). Our results, obtained by fully threedimensional simulation, are compared with Lac's results which are based on axisymmetric hypothesis, and a good agreement is observed. With the decreasing of the capillary number, we observed the results obtained from simulation converge with the asymptotic prediction for Ca = 0 at a low con nement β. For a vanishingly small droplet moving along the centerline of a capillary, both the displacement velocity and pressure drop follow the asymptotical predictions given at Ca = 0, which is identical to an undeformable particle. While for stronger con nements, β ≥ 1 for example, the results show a plateau and no longer depend on β.

.

. E

The validation of our procedure of a deformable particle owing in a microchannel (presented in Section . ) is continued here by an elastic capsule owing in a square channel, as shown in Figure . . Far from the capsule, the ow approachs the undisturbed ow in a channel

u ∞ = (u ∞ x , 0, 0) which is given as [ ], u ∞ x Υ = l 2 z -z 2 + ∞ m=1 B m cosh b m y l z cos b m z l z , ( . ) 
where

Υ = - 1 2η dp dx , b m = (2m -1)π 2 , B m = (-1) m 4 l 2 z b 3 m cosh bmly lz , ( . ) 
and l y and l z are the widths of the rectangular channel in the directions y and z, respectively. By integrating over the channel's cross-section, the volumetric ow rate Q is given by

Q Υ = 8l y l 3 z 3 + ∞ m=1 B m 2l z b m 2 sinh b m l y l z sin(b m ).
( . )

In our simulations, we truncated the in nite but convergent series in Eq. ( . ) when m= , like the one used by Kurikose et Dimitrakopoulos [ ]. According to Eq. ( . ), we know that the channel is not limited to the square section, but it may be a more general rectangular channel.

-1 In this test, the strain-hardening Sk law (Eq. ( .)) with C = 1 (as in [ ]) has been applied for the con nement β = 0.85 and for three di ferent capillary number Ca = ηU/G s = 0.02, 0.05, and 0.1, where U = Q/S and S is the area of the cross section. As shown in Figure . , two di ferent meshes have been adopted for the capsule, with and elements, and the benchmark results of Hu et al. [ , ] are obtained with the freely available tool WebPlotDigitizer .
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The steady-state shapes obtained for Ca = 0.02, 0.05, and 0.1 are plotted in Figure . https://automeris.io/WebPlotDigitizer/ These results, rst, show that the di ference is negligible for our numerical results obtained with elements and elements, and second, all these results match well with those of Hu et al [ , ].

. . C

A convergence study on the model developed in this thesis is carried out for space discretization of the membrane surface and for time discretization. The number of elements of a membrane mesh, created by Loop subdivision, quadruples once a subdivision is applied. Therefore, our code becomes very slow (and impossible in practical case) for a vesicle with four subdivisions (resulting elements) from an icosahedron. Thus, in this section, in order to show the convergence, the droplet will be chosen as the deformable particle owing in the microchannel. At the same time, the in uence of the number of elements for a vesicle will also be shown.

The e fects of space discretization of the membrane are studied with a drop owing along the centerline of a capillary (Ca = 0.05, β = 0.8), as shown in L+l is plotted, in Figure . (a), as a function of dimensionless time for various number of elements, which is varied from to . For the rst four cases, the spherical drop is used as the initial form, while the case with is launched from an existing state of the case with elements. Inset shows a zoom-in of the Taylor where L and l are semi-axis of the ellipsoid having the same tensor of inertia.

parameter except for the coarsest case (with elements). It is showing the di ference on D becomes rather small except for the coarsest case.

The in uence of mesh discretization is further studied for the four cases which give consistent results, by inspecting the relative error of the enclosed volume ε v = V (t)-V0 V0 , as shown in Figure . (b), where V 0 is the initial volume for each case. This gure shows that multiplying the number of elements by four (one subdivision) allows more than one order of magnitude gaining in volume conservation. For example, the relative error is about . % after a dimensionless time of t = 30 for the case with elements, a quite acceptable result. The convergence order of space discretization is then estimated with the relative error of the Taylor parameter the evolution of the Taylor parameter is plotted against the dimensionless time for di ferent time steps ∆t = 0.1, 0.075, 0.05, 0.025, 0.01, 5E-3, and 5E-4, with the implicit xed time step trapezoidal scheme. The di ference is very small and can only be seen in zoom-in plots.

Similar to the estimation of the convergence order of space discretization, using the result obtained with ∆t = 1E-4 as the reference Taylor parameter, the convergence order of temporal discretization is also plotted as a function of time steps, as in Figure . (b). As expected, the relative error of the Taylor parameter converges as O(∆t 2 ) when using the For spatial convergence (a), the RKF scheme is used, and the reference value is computed with elements. For temporal convergence (b), the trapezoidal scheme is used, the drop is discretized by elements, and the reference value is computed with a time step ∆t = 5e -4. trapezoidal scheme.

A second-order convergence is shown for both the discretization of the membrane and the discretization of time by a droplet owing along the centerline of a capillary. The previous study shows that this convergence will not degrade by adding a bending rigidity to the Capsule membrane [ ]. As aforementioned at the beginning of this subsection, simulation of a vesicle with four subdivisions is not practical, but the in uences of the number of elements are compared and shown in Figure . for a little de ated vesicle (ν = 0.9) owing in a microchannel with Ca = 1 and β = 0.2.

The evolution of the inclination angle θ with axis of the ow is displayed in Figure .  (a) as a function of the dimensionless time t for three di ferent numbers of element: , , and . We have observed that the di ference between the case with elements and elements becomes imperceptible, but the result obtained with elements shows a remarkable di ference compared to the two ner cases. It is clear that the result with elements can be questionable as the relative volume error reaches to ∼ 7% at the dimensionless time t = 25, while those for the two ner cases are less than . %.

This test may also suggest that for a vesicle with ν ≥ 0.9, the results obtained with elements should, in general, be reliable. . S

In this chapter, rst, the subdivision scheme is introduced, which is used to discretize and present the membrane (i.e., its position x). This scheme can also be used for the channel mesh, although we do not need to evaluate derivative on this mesh, sec. . . Then the membrane force density is obtained, using the subdivision formulation, by solving the linear system derived from the nite element method, sec. . . The force density f obtained is highly reliable except for the initial irregular vertices of the icosahedron, which increase the global error [ ].

The procedure for calculating the membrane velocity u of a deformable particle owing in a channel is presented in Section . . This procedure is also based on the subdivision method. Whereas the time stepping schemes, for ∂ t x, are presented in Section . . Finally, veri cation and validation for the procedure are presented. We, rst, verify our numerical procedure by checking its consistency in varying the mesh of the channel (cases without external boundaries have already done in [ ]). We, then, validate this procedure by two benchmarks, one for the drop and the other for the capsule. The convergence is also shown, with the drop and vesicle, in the last example of Section . .

M S T D V C F . I
Vesicles are large membrane 'bubbles' formed by bending and closing up a bilayer of lipid molecules, suspended in a uid that can be either the same solvent as the inner or di ferent [ ]. This bilayer is often in a liquid phase at room temperature and has a xed number of lipids which makes the vesicle highly deformable, while its membrane surface is conserved, both locally and globally. The semipermeability of the membrane helps to maintain the enclosed volume unchanged on a time-scale of several hours, which is much longer than the typical experimental time-scale of about to minutes. The vesicle volume can thus be considered as constant [ ]. Since its volume V and surface area A are both constant, the non-sphericity is measured by a non-dimensional number, the reduced volume

ν = 6 √ πV A -3/2 ≤ 1.
Vesicles have been, and remain, the subject of extensive studies not only due to their resemblance to anucleate cells such as red blood cells (RBCs) but also because of their importance in di ferent industries such as pharmaceutical carriers [ ]. Aspherical vesicles can exhibit, in an external ow, an amazing variety of shapes (parachute, bullet, peanut, croissant, and slipper) [ , , ] and di ferent types of dynamical behavior (tank-treading, tumbling, trembling, and cross-streamline migration) [ , , , , , ]. The study on these behaviors is important to understand the suspensions of deformable particles, such as blood. Thus how a single vesicle behaves in an external ow is signi cant, but the analysis is rather challenging. This is due to the coupling between the vesicle deformation and the ow that leads to a free-boundary hydrodynamic problem, where the vesicle shape is not given a priori but is determined dynamically from a balance between interfacial forces and uid stresses [ ].

The behaviors of a single vesicle in simple shear ow have been studied experimentally[ , , ], theoretically[ , , , , , , ], and numerically with boundary integral method[ , , , ] or immersed boundary method[ ], and with mesoscale techniques [ , ]. All the three approaches have identi ed the three basic dynamical behaviors, namely tank-treading (the uid membrane rotates as a tank tread about a xed orientation angle), tumbling (vesicles ipping periodically in the shear plane) and trembling (also called vacillatingbreathing, an intermediate regime between tank-treading and tumbling, where vesicles tremble while its long axis oscillating around the ow direction) in shear ow. Analytical models are either based on the Keller-Shalak (KS) theory[ ], which assumes vesicles have xed ellipsoidal shape, or the perturbation theory [ ], which are limited to quasi-spherical vesicles (ν ≈ 1) under simple boundary conditions. Here, we are interested in a single uid vesicle, from quasi-spherical to quite de ated, owing in microchannels of di ferent sizes.

Two major concerns for vesicles in Poiseuille ow are the lateral migration[ , , , ] and the shape evolution [ , , , ]. A single aspherical vesicle in Poiseuille ow may deform and break its upstream-downstream symmetry due to (i) the shear ow close to solid boundaries[ , , ] and (ii) non-constant shear gradient [ , , , ]. As a result of the symmetry breaking (for example a slipper), vesicles undergo cross-streamline migration. Numerical studies in these directions are mostly in two-dimensional or unbounded threedimensional cases. Three-dimensional simulations are very resource consuming[ , ], especially for vesicles with small reduced volume. The direct inclusion of the wall is a necessary step to mimic the realistic RBC dynamics in capillary since the e fects of the walls and the ow curvature are coupled in a nonlinear manner [ , ].

In this chapter, shape transition and migration of three-dimensional vesicles in a con ned Poiseuille ow are numerically studied with the method coupling BEM and FEM (refer to Chapter for details).

. P A vesicle owing in a bounded Poiseuille ows (Eq. ( .))

u ∞ = U m 1 - y 2 + z 2 R 2 t e x
with matched viscosity (λ = 1) of inner and outer uids (refer Figure . and. ) is a uid structure interaction (FSI) problem with deformable interface (refer Section . ). Vesicles immersed in an external ow su fer stresses, which can lead to deformations. These deformations of the two-dimensional incompressible membrane interface which can resist bending are modeled by the Helfrich energy with a Lagrange multiplier (γ), Eq. ( . ). The surface density of force exerted by the membrane of vesicle f m onto surrounding uids is given by Eq. ( .)

f m = κ 2∆ s H + 4H(H 2 -K) n -2γHn + ∇ s γ.
Due to the length and time scales involved, the inertia can be neglected, and therefore the hydrodynamic ows fall into the Stokes ow regime (Eq. ( .))

-∇p + η∆u = 0, ∇• u = 0.
Since the viscous e fects are much faster than a moving boundary can change its position (Re 1), the uid rapidly, or instantaneously in the ideal limit, establish a velocity distribution for a given geometry of the boundaries [ ]. Thus, the coupling conditions of velocities and stresses between the hydrodynamic ow and the membrane can be applied, as presented in Section . . . This ow problem is characterized by three dimensionless parameters (refer Section . . ),

• the reduced volume ν = 6 √ πV A -3/2 , which quanti es the geometric ability of the vesicle to deform,

• the con nement β = R/R t , which is the ratio of the vesicle size R = (3V /4π) 1/3 and the radius of the microchannel R t ,

• the Capillary number Ca = ηαR 4 κ , which is the ratio of the ow stress and the bending force density, where α = Um R 2 t is the ow curvature.

To complete the presentation of this boundary value problem with the evolution of the membrane, initial conditions must also be provided. In this chapter, vesicles are initially given in the form of prolate and with an inclination angle θ 0 with the direction of ow, as shown in Figure . .

. R

In this section, the analysis is done for the vesicles discretized with Loop elements unless otherwise stated. The initial position of the centroid of the vesicle is given with (0, H 0 , 0), and the ow is in x direction (Figure . ). The implicit trapezoidal time stepping scheme is used to update the shape of the vesicles.

. . K :

Unlike a neutrally buoyant rigid spherical particle, which can not migrate in the direction transverse to the ow lines when immersed in a creeping ow, an initially centrosymmetric and de ated vesicle has the ability to migrate cross-streamline at vanishing Reynolds number provided that the symmetry of the Stokes ow is broken [ , ]. Highly deformable vesicles owing in a con ned Poiseuille ow may deform due to the complex interplay between its membrane, the wall, and the Poiseuille ow, which in turn leads to upstream-downstream asymmetry of the vesicle.

Cross-streamline migration under ow plays a key role in suspensions of soft matter, and therefore in several industrial and medical applications. Such as the Fåhraeus-Lindqvist e fect in the blood ow, which is the result of lateral migration. A vesicle placed away from the centerline of the Poiseuille ow can migrate either towards the center, or outwards until it reaches a wall, or stop at an intermediate position [ ]. In this subsection, the kinematics of cross-stream migration of an initially o f-center prolate vesicle (H 0 = 0 and θ 0 = 0) in a con ned Poiseuille ow (Ca = 1) are presented. I Figure . shows an example of inward migration. As shown in Figure . (a), an initially prolate vesicle ( ) released at height H 0 = 0.05 migrates to the center of the ow with a bullet shape ( ) at the end, and its centroid performs a damped oscillation around the center of the microchannel.

More speci cally, starting from an initial prolate state, the vesicle quickly deforms to a slipper shape with its major axis aligned with the ow pro le. This asymmetrical shape will only be slightly deformed during its migration to the ow center ( ). When the vesicle arrives at the ow center, it keeps on moving due to the asymmetricity of its shape. When the vesicle is located below the ow center, it starts to re-deform in order to adapt the inverse ow pro le. An almost symmetrical shape is obtained at the lowest position ( ), this state is not stable because the ow at this position (observed from the centroid of the vesicle) is not symmetrical. Thus it continues to deform and adpts a new asymmetrical shape with its major axis, once again aligns the ow pro le ( ). This deformation to align the ow pro le is accompanied by an inward migration (but with an inverse direction in comparison with the former one). As before, it will continue moving when it reaches the ow center for the second time ( ). The vesicle will continue this inward and outward migration but with gradually reduced strength ( , and ) until it attains the stable state, a symmetrical bullet with Y G = 0 ( ). For the case with elements, the gradual increase in error may interpret the discrepancy appeared in Figure . (a), namely, the gradually increasing phase di ference between these two curves. Here, we observed an inward migration with oscillation, but it can also, without surprise, be a migration without oscillation, such as the example presented in Figure . .

C

As for the dynamics of a vesicle in a con ned ow, the term snaking may be introduced by Kaoui et al. [ ], for the rst time. This dynamic of motion corresponds to the motion where the centroid position oscillates periodically over time, as shown in Figure . (a). In their works, both the centered (where the mean value of Y G is zero) and the o f-centered (where the mean value of Y G = 0) snaking are observed for a highly de ated vesicle (ν = 0.6), in the two-dimensional simulation.

Figure . shows a centered snaking for (i) ν = 0.85, R t = 2.8 and (ii) ν = 0.8, R t = 2.5. For the case (i), the simulation is rst launched with elements, and the mesh is re ned to elements at t ≈ 500. Neither like the inward migration, for which vesicles nally adopt an axisymmetric form and remain on the axis of the channel (such as the bullet shape), nor the migration to an o f-center position, for which the stable vesicles take a slipper shape and its centroid is radially displaced from the ow axis, the centroid of vesicles varies periodically during the snaking motion, as shown in Figure . (a), like the locomotion of snake. The insets show some typical instantaneous vesicle shapes, which are very similar to those obtained by Kaoui et al. [ , Fig. ]. In coherence with Figure . , the vesicle is much deformed when it passes through the axis of the microchannel than when it reaches its extreme position.

Figure . (b) shows the evolution of the migration velocity U y as a function of Y G , which is also termed as Poincaré map [ ]. We found that once the oscillation becomes stable, these maps are very similar, like that reported by Boujja et al. [ , Fig. (d)] for ν = 0.6 and β = 0.55. Figure . (c) shows the variance of the angle of inclination θ, like that of the centroid position Y G , which varies periodically.

M -

As reported by Kaoui et al. [ ], the initially axisymmetric vesicles owing in a symmetric two-dimensional unbounded Poiseuille ow may have asymmetric stable shapes, called slipper, with their center of gravity deviated from the ow axis. We con rm this by a fully three-dimensional simulation, as shown in Figure . , an example of migration to the nal stable position located away from the ow center, Y * g ≈ 0.047. In this thesis, the centroid position of a stable slipper Y * g is meaningful in the following sense, when a vesicle is initially placed at a height H 0 , it migrates inwards and stops at some position, and this position has height Y * g . This inward migration does not conclude that H 0 must larger than Y * g , actually, In Figure . (a), the prolate vesicles are initially released at four di ferent heights H 0 . For the case with H 0 close to Y * g (0.04 and 0.06), the vesicle rst migrate inwards and then outwards. The one with H 0 = 0.107 which is greater than Y * g , merely experiences the inward/outward oscillation before fast reaching to the stable state. If the initial height is even larger (H 0 = 0.12), a vesicle migrates inwards without experiencing oscillation, but the migration is rather slow when it is closed in the stable position Y * g . Whereas all these three cases share the same nal state, an o f-center slipper. This asymmetric stable state is thought to be the common result of the complex interplay of ow curvature, the wall, and membrane forces [ , ]. What's more, given a positive or negative positional perturbation on a stable state with strength δh = 0.005, the o f-stable state vesicle will move back to the original stable state. All the shapes shown in the insets, unlike those of Figure . (a), experience the same direction of inclination, since Y G is always greater than zero.

Figure . (b) shows the lateral migration velocity U y as a function of Y g -Y * g , with the initial states are indicated by the blue dots. The slope represents the acceleration, as they approach the nal stable position; the case with H 0 = 0.107 has bigger acceleration (in absolute value) than the three others. We are audacious to say that a vesicle with H 0 ∈ [0.04, 0.12], while with other parameters remain unchanged, the nal stable state is a slipper with Y * G = 0.047, and there should be an initial height H c 0 from which the vesicle can reach the stable position most quickly.

Figure . (c) shows the relative variance of the membrane area, in the dynamics for different initial heights H 0 . For all the cases, the relative variances of the area are less than 0.1%, suggests that the constraint of surface incompressibility is well preserved.

. . M :

Because of the interplay between the vesicle shape and the external ow, vesicles owing in the microchannel bear a rather rich set of morphologies, which vary from the full axisymmetric shape (such as the bullet) to the o f-centered nonsymmetric one (such as the slipper).

Here, all observed stable shapes are classi ed by the number of planes of symmetry, that is, ∞-, two-and one-plane of symmetry. In this analysis, the initial inclination angle θ 0 is set to zero unless otherwise stated.

I

Stable shapes that have in nite planes of symmetry are axisymmetric, which includes bullet shape, parachute shape, and peanut shape. Figure . shows a case that attains a stable bullet shape, an axisymmetric form with a convex rear end, under given parameters, Ca = 3, ν = 0.9, R t = 2.0 and H 0 = 0.03. The prolate vesicle is initially placed at H 0 = 0.03 R t , which is very close to the center of the ow; at rst, it migrates inwards to the center and crosses the centerline with a slipper shape. This slipper shape continues the lateral migration until a position with a maximum negative height Y G is reached, here the vesicle resumes an axisymmetric shape. This axisymmetric shape re-enters the migration in the direction opposite to the previous one and with a smaller amplitude. The evolution of the centroid Y G behaves thus like a damped oscillation.

Figure . shows a case that has a stable parachute shape, an axisymmetric form with a concave rear end, under given parameters, Ca = 50, ν = 0.9, R t = 6.0 and H 0 = 0.05. Starting from a prolate shape, the case presented here does not enjoy the oscillation process, and it becomes a parachute shape whose axis coincides with that of the ow.

The last observed axisymmetric shape, the peanut, is shown in Figure . under given parameters, Ca = 1, ν = 0.7, R t = 1.5 and H 0 = 0.0. Peanut is an axisymmetric shape with its two ends larger than the middle part. It can be a generalization of the dumbbell shape since the two ends usually have di ferent size. Starting from a prolate form, initially placed at H 0 = 0.0, the volume of the stout middle part is rst transferred symmetrically to the rear and the front. And then a neck part occurred which separates two convex ends with di ferent sizes.

T

The shape with two planes of symmetry is the one with the two perpendicular planes of symmetry, and the line of intersection of these two planes coincides with the axis of the microchannel.

The rst one reported here is called the croissant [ ], as shown in Figure . , for which the rear end is convex in one direction but concave in the perpendicular one. Figure .  shows the evolution of the centroid Y G and the geometric parameter D 2 ≡ L2-L3 L2+L3 (the relative di ference of the two major axes in the plane perpendicular to the ow direction) as a function of dimensionless time, under given parameters, Ca = 5, ν = 0.9, R t = 2.5 and H 0 = 0.03. The geometric parameter D 2 ≡ L2-L3 L2+L3 , like the Taylor parameter D ≡ L1-L2 L1+L2 , is used to characterize the deformation in the plane perpendicular to the ow direction, where L 2 and L 3 are the length of the two major axes in the plane perpendicular to the ow.

Similar to Figure . and . , the initial prolate vesicle, placed at an o f-center position with H 0 = 0.03, deforms rst to a slipper form during its lateral migration to the center of the ow. While the transition from the slipper shape to the croissant shape is achieved mainly during the inverse lateral migration from the maximum negative position to the ow center. All snapshots are colored with the mean curvature, while the last one is mapped with a di ferent color scheme, called blue to red rainbow, to emphasize extreme values of the mean curvature (also in the previous Figure . ).

Another example of two planes of symmetry is shown in Figure . , which is characterized by two concave regions in its two atter surfaces. It is a combination of the biconcave disk shape and the croissant shape, we may term it here as biconcave-croissant shape. This kind of form is only observed for highly de ated vesicles (for example, ν = 0.65 and ν = 0.6 in our ever launched simulations) having an initial oblate shape. planes of symmetry are perpendicular and that the intersection of these two planes coincides with the axis of the ow, like those for the croissant shape.

O

The slipper shape in the cylinder channel has one plane of symmetry. For a vesicle initially placed at a position H 0 (assumed in the y direction), and in a ow in the x direction, this plane of symmetry is Oxy, as shown in Figure . . As pointed out by Kaoui, Biros, and Misbah [ ], a slipper shape is accompanied by a tank-treading membrane, and thus by ow circulation inside the vesicle, which means a slipper is not favored from the point of view of dissipation. They also show that the establishment of a slipper will help reduce the di ference between the vesicle velocity and that of the bare imposed ow. As a consequence, the slipper becomes a favorable shape.

Figure . shows a stable slipper shape with two di ferent initial con gurations: a prolate (H 0 = 0.555 and θ 0 = 0) and an oblate (H 0 = 0.6 and θ 0 ≈ -11.5), under given conditions, Ca = 1, ν = 0.7 and R t = 6.0. The snapshots in Figure . (a) show some instantaneous shapes for an initial prolate and oblate form. Although the evolution process is very di ferent, their stable shapes are perfectly matched, as shown in the last snapshot, which is a combination of these two cases, separated by a red line, where the upper half comes from the prolate form and the lower half comes from the oblate one. Figure . (b) and its enlarged subplot show the evolution of the migration velocity. It is shown that at the end of the simulation, where a stable form is obtained, there is no more lateral migration. Figure . (c) shows the evolution of the inclination angle θ, in this case, the slippers have a common stable inclination angle about -degrees.

. . M

In this section, the uid ow on the membrane of the vesicles and for the surrounding uid are presented for a stable form with ve examples, among which two are a slipper, one is a peanut shape, and the other two are shapes with two planes of symmetry. Be aware that the velocities presented in this section are all velocities relative to the centroid of the vesicle, i.e., in the reference frame moving with the steady vesicle. To calculate the ow of the surrounding uid, a uid box mesh is generated with freely available python scripts and Gmsh (refer to the Appendix C).

For an axisymmetric stable form, for example, a peanut, as indicated in Figure . , the membrane has no slipping, i.e., there is no membrane velocity. Putting the camera on the vesicle, the uid moving globally in the direction -x , as shown in Figure . , the uid located away from the axis moves from the front of the vesicle to the rear, and the streamlines remain parallel, which is nearly una fected even in the region of vesicle. While as the uid approaches the axis, it is hindered, and the streamlines are diverted, the uid ows in the totally opposite direction at the axis of the ow. Thus, there are two vortex regions in the form of a ring, at the front and the rear of the vesicle.

Two di ferent tank-treading modes are presented in Figure . , the left one with β = 0.1 (R t = 10, less con ned) has a single axis of rotation, and the right one with β = 0.3745 (R t = 2.67, more con ned) has two distinctive axes of rotation. It should be noted that for the less con ned case, the stable radial position Y * G ≈ 0.608 (all vertices have coordinates y ∈ [-0.407, 1.655]), and that of the more con ned case is about 0.0122 (all vertices have coordinates y ∈ [-0.963, 1.075]). Thus, the vesicle with β = 0.1 has its major part of the body above the axis (as indicated by the dashed blue line), and the membrane slides globally with a single axis, which is driven by the imposed ow. While, the vesicle with β = 0.3745 is almost equally separated by the axis of the ow, and the membrane slides in opposite directions with two di ferent axes , one above the ow axis and the other under the ow axis. These two circulations meet at the shared region (in the middle of the vesicle) owing in the same direction. The strength of maximal sliding velocity for the latter case is much smaller than the former. ence is that the uid inside the vesicle is no longer stationary. Actually, the uid ows synchronously with the adjacent ow outside the vesicle, but with a strength slightly lower.

The uid outside of the vesicle moves globally from the positive direction to the negative direction of the ow axis , if one observes from the vesicle. For the less con ned case (β = 0.1), there exists a stagnation point just below the vesicle, but this point disappears at a higher con nement, and there are only two rings (one before the vesicle and the other after the vesicle) where the velocities equal to zero. The uid inside the vesicle behaves in the same way as the membrane ow, which is reasonable because the sliding of the membrane is the driving force of the internal ow.

Figure . and . show the ow structure of the stable croissant shape and biconcavecroissant shape, respectively. Both the cases exhibit membrane sliding, the tank-treading speed is greater in the case of biconcave-croissant shape (Ca = 1) than that of the croissant shape (Ca = 20 for this example and for the other croissant shapes in Figure . and. ). While, a posteriori check on the membrane sliding velocity for Ca = 1, ν = 0.65 and R t = 3.2 (Figure . ) shows an almost equal strength for the biconcave-croissant shape and the slipper shape.

The relative velocity lag δ u are . % and . %, respectively for β = 0.1 and 0.3745. It is also seen that, for both cases (Figure . and . ) in the plane y = 0, there are two vortices (interior of the vesicle) rotating in the opposite directions. Whereas, the streamlines around the vesicles are globally comparable to those of the peanut shape .

. . E

Ca

In this section, the e fect of the capillary number Ca, or the bending rigidity κ = 1/Ca is qualitatively presented. The evolution of the vesicle shape as a function of the capillary number, for xed reduced volume ν = 0.9 and con nement β = 0.25 is shown in Figure . . The simulations are performed with elements, while the vesicles presented here are re ned to elements to better represent the stable shape. A dramatic change in morphology is found as increasing Ca: from slipper (Ca = 0.1, 1.0 and 3.0) to croissant (Ca = 10.0 and 20.0), and eventually parachute (Ca = 50.0) shapes. This tendency can be more pronounced for more de ated vesicle, for example when ν < 0.7, as reported by Kaoui, Biros and Misbah [ ]. This property may be used as a potential diagnostic for detecting RBC pathologies, such as malaria, which are characterized by an increase in membrane rigidity.

All the shapes in Figure . are sliced by the plane z = 0 and plotted in the same gure, as shown in Figure . (a). Starting from Ca = 0.1, an o f-centered, inclined and almost prolate shape deforms to a slipper form, in accompanying with a decrease of the centroid

The relative velocity lag δ u is . % for the croissant shape and . % for the biconcave-croissant shape. G as a function of Ca for β = 0.25, where S, B, C, and P stand for slipper, bullet, croissant, and parachute, respectively. In this gure, results are presented for two reduced volumes, ν = 0.95 ( lled symbols) and ν = 0.9 (empty symbols).

position when Ca is increased to . Further increasing the capillary number, for example to Ca = 10, leads to the vesicle transits to a croissant shape with its centroid located at the axis of the ow. This croissant shape is not stable, which then transforms into a fully axisymmetric parachute shape, for example, when Ca = 50, we obtain a stable parachute shape.

Figure . (b) shows the evolution of the stable centroid position Y * G as a function of the capillary number Ca for β = 0.25 and two di ferent reduced volume ν = 0.95 ( lled symbols) and 0.9 (empty symbols). Once again, we found that the vesicle rst has its centroid located away from the center of the ow, and it has an asymmetric slipper shape. The position of the centroid decreases as we increase the capillary number. When the capillary number is bigger than some critical values, Ca c , the stable centroid position Y * G → 0, and the vesicle attains an axisymmetric or a croissant shape. The selection of the nal shape is dependent on the values of ν and Ca. It should be noted that the bullet shape appears only for ν = 0.95 for con nement is not strong (β = 0.25). Furthermore, according to this gure, it seems that the decrease in reduced volume ν will delay this transition.

.
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The explicit inclusion of a wall boundary for a fully three-dimensional vesicle owing in a Poiseuille ow is marked as a signi cant di ference from previous numerical studies on vesicle dynamics in (quadratic) Poiseuille ow, as brie y discussed at the beginning of this chapter. In this section, the e fects of the con nement β are discussed in the following sequence: (i) the in uences on the asymmetric slipper are presented rst, then (ii) the transition to the axisymmetric shape, and (iii) the e fects on the snaking motion are lastly revealed.

A vesicle, with reduced volume ν = 0.9, owing in a capillary ow with Ca = 1, will have slipper as the nal stable shape for a capillary with appropriate size, for example a capillary with radius R t ≥ 3.2, as shown in Figure . . In this gure, the nal stable slippers are presented for an unbounded Poiseuille ow (β = 0) and capillary ow with ve di ferent sizes, ranging from R t = 10 to R t = 3.2. In fact, the value of the stable lateral position of the centroid decreases from . to . as we increase the con nement β from to .

. That is, the vesicle migrates to the center of the capillary as the e fect of con nement increases. On further increase in con nement, an axisymmetric form is obtained (Y * g = 0), which will soon be involved.

With regard to the geometric shape of these vesicles, it seems that a region (the upper central part of the membrane) with inverted curvature is appeared and becomes more pronounced in increasing the con nement β. Also, the membrane sliding transits correspondingly from a whole (with a single axis of rotation) to a form with two separate parts, each having their own axis of rotation. As shown in the last gure, these two vortices rotate in opposite directions, like the counter-rotating propellers .

Figure . shows the transition from a slipper to a axisymmetric bullet in detail for ν = 0.97, 0.95 and 0.9 via (i) the evolution of the stable centroid position Y * g of the membrane,

Refer the schematic animation in wikipedia page for counter-rotating propellers, https://en.wikipedia.

org/wiki/Counter-rotating_propellers. (ii) the maximum value, in magnitude, of the tank-treading velocity for a stable form U tt = max all vertices { u i -U mig }, (iii) the velocity lag, and (iv) the stable inclination angle θ, measured from the axis of the ow to the major axis of the vesicle. Here, the velocity lag is de ned as the di ference between the unperturbed velocity at the centroid position of the vesicle U ∞ l = u ∞ (Y * g ) and the translation velocity of the vesicle U x when it reaches at the stable state.

The evolutions of the stable centroid position Y * g as a function of the radius of the capillary R t are shown in the rst row of Figure . for three di ferent reduced volume ν. Starting from a common large capillary, R t = 10 for those three di ferent ν, the value of Y * g decreases simultaneously with the decrease in the size of the capillary, and it eventually decreases to zero when R t is less than a critical value R c , the slipper shape transit correspondingly to an axisymmetric one, a bullet. There are two obvious di ferences in these very similar transitions, the rst is that the value of Y * g is di ferent for a capillary of the same size, the more the vesicle is de ated, the higher the value of Y * g is; the second di ference is the value R c , the critical value where the transition takes place, which seems that a more de ated vesicle can support the slipper shape in more con ned Poiseuille ow.

Conversely, if we observe these curves from left (smaller R t ) to right (larger R t ), the vesicle transit from an axisymmetric bullet shape to an o f-center slipper shape. That is, when R t is rather small, the strong con nement makes the bullet shape stable against various perturbations, but when R t is larger than the critical value R c , instability develops and the bullet shape evolves into another stable state-the slipper shape, which is characterized by the loss of up-down symmetry. Thus a t is shown in these gures (dashed black curves) in order 

Y * g U tt U ∞ l -U x θ R t =1/β R t R t
ν=0.97 0.95 0.9

Figure . : E fects of the con nement β on a vesicle owing in microchannel with Ca = 1 and three di ferent reduced volumes: (i) ν = 0.97 (left panels), (ii) ν = 0.95 (middle panels) and (iii) ν = 0.9 (right panels), for the stable centroid position Y * g , the maximum sliding speed U tt , the velocity lag U ∞ l -U x and the stable inclination angle θ.

to have a reduced dynamical description near the bifurcation point R c , actually, we assume that the points close to R c can be tted with the common formula

Y f g = a(R t -R c ) b .
( . )

The tting results show the sets (R c , b) are (4.8499, 0.32), (3.8136, 0.42) and (3.0271, 0.65) for ν = 0.97, 0.95 and 0.9, respectively. These tted exponential number b together with the transition curves suggest an analogy between this transition and the classical supercritical pitchfork bifurcation [ , ]

∂ t Y * g = (R t -R c )Y * g -Y * g 3 , ( . )
which has a pair of nontrivial stable solutions

Y * g = ± R t -Rc, for R t > R c .
( . )

We then plot the maximum tank-treading speed U tt as a function of R t . At rst glance, we notice that membrane sliding takes place only for the asymmetrical slipper shape and that there is no movement of the membrane for the axisymmetric bullet shape. Therefore, it is rational to see that the critical value of the capillary radius R c , from which a vesicle without tank-treading passes to a vesicle with tank-treading in increasing the control parameter R t , equals to that for the transition of stable lateral position Y * g . A major di ference is that the behavior near the transition point R c for U tt is much faster than that for Y * g . This means that the di ference of membrane tank-treading velocity for a slipper at di ferent states is much smaller than that of the slipper shape and the bullet shape.

The tting curves with the data near the transition point are also plotted in these gures (the second row of Figure . ), as indicated by the dashed black lines. For these curves, the same formula ( . ) was used, and by which the sets (R c , b) are (4.8603, 0.1), (3.792, 0.11) and (2.7187, 0.27) for ν = 0.97, 0.95 and 0.9, respectively.

Results show the evolution of the velocity lag (U ∞ l -U x ) in the direction of the ow and the inclination angle θ between the axis of the ow and the major axis of the vesicle are then continued (in the last two rows of Figure . ). They overall have similar behaviors in comparison with those of U tt (We may replace θ with | θ | for the θ-R t curves.). Whereas, in comparison with the other two cases, a major di ference is that they are much less sensitive when the radius of the capillary R t is rather larger than the critical value R c .

Figure . shows a consistent transition for a vesicle from the axisymmetric bullet shape to the asymmetric slipper shape when varying the control parameter, the con nement β, via the inspection of Y * g , U tt , U ∞ l -U x and θ. It is also worth mentioning the in uences of de ation: the scope of the existence of the slipper shape is, in general, extended for a vesicle with smaller reduced volume ν, which has much stronger deformability. We may, therefore, estimate the plentiful picture for a vesicle with an equal reduced volume of the normal RBC of human (∼ 0.64).

Evolution of the stable lateral position Y *

g of the slipper shape as a function of the connement β is presented in Figure . for de ated vesicles (ν = 0.95, 0.9) owing in the microchannels with the capillary number Ca = 0.1, 1 and 10 (only for ν = 0.9), where β = 0 corresponds to the unbounded case. From our simulations for ν ≥ 0.9, we found the stable lateral position Y * g is approximately inversely proportional to the capillary number Ca when the con nement β is very weak (similar to Farutin & Misbah [ , FIG. ]). Therefore, for better representation, we draw, in Figure . (b), the curves for Y * g multiplied by the capillary number, i.e., Ca × Y * g , to show the similarities and the di ferences. First, for each individual curve, we again found the intuitive result that the stable lateral position decreases as the con nement β increases, but this behavior was di ferent for Ca = 1 in comparison to Ca = 0.1 and Ca = 10. Secondly, the transition from the slipper shape to the axisymmetric shape is delayed for Ca = 0.1 when compared with Ca = 1, and the latter is more delayed in comparison to Ca = 10. As shown in Figure . , there is no stable slipper shape in the case of ν = 0.95 and Ca = 10, thus the results of Ca = 10 are only presented for ν = 0.9. Thirdly, the inversely proportional relation between Y * g and Ca seems to work roughly well in case of very weak con nement, but as con nement β increases, the higher the capillary number Ca (the stronger of the ow) is, the faster the variance of the stable lateral position Y * g . Lastly, in comparison with the results of Farutin & Misbah [ ], our results for unbounded cases (β = 0) match very well for Ca = 1. As for the discrepancy for Ca = 0.1, our results seem reasonable regarding to the evolutionary trend of the con nement.

Figure . , . and . mainly concern the slipper shape, while a richer morphological dynamic for a vesicle (ν = 0.9) in a capillary ow (Ca = 10) is presented in Figure . . In such ow conditions, we vary the capillary size R t from . to . , . and nally to . , the initial slipper shape transforms rst into the croissant shape, then to the parachute shape and nally to the bullet shape, which is a evolution of increasing of the number of plane of symmetry. Conversely, as the con nement decreases, the restriction from the circumferential wall weakens, which allows the bullet shape with convex rear transit to the parachute shape with concave rear. By further reducing the con nement, the parachute shape transforms into the croissant shape that has only two planes of symmetry. Instability continuously develops and the croissant shape transforms into the asymmetric slipper shape as the con nement further decreases.

Before closing this subsection, we present the last example that shows the e fect of connement on the snaking motion, as shown in Figure . . Basically, as con nement β in- creases, the snaking motion oscillates more rapidly and becomes a damped oscillation when the con nement exceeds a critical value. As for Ca = 1 and ν = 0.85, it becomes a damped oscillation when β ≥ 0.5263, and a bullet shape is obtained once this solution becomes stable. The noncircular limit cycles, shown in the bottom panel of Figure . , means that the oscillation of the vesicle motion is not harmonic. In fact, this inharmonic oscillation is also accompanied by periodic deformation of the vesicle shape as demonstrated in the insets of Figure . (a).

From the Poincaré maps, it is seen that for a non-damped snaking motion (β = 0.3571, 0.4 and 0.4545), the size of the periodic orbit increases with the con nement β. That is, for a given lateral position Y g , the corresponding lateral migration speed is greater if the e fect of the con nement is more important. Since the local shear rate is given by γ(Y g ) = -2Y g , con nement (or the wall) is the only global factor responsible for this e fect.

. . D ν

A systematic analysis of the phase diagram for relatively low de ation is made by varying the capillary number Ca and the con nement β, as displayed in Figure . for ν = 0.95 and Figure . for ν = 0.9. In the unbounded limit (β → 0), our results behave consistently with those of Farutin & Misbah [ , FIG. ] except in some cases such as Ca = 20 and 50, for ν = 0.9. The term global factor means that if we approximate the whole vesicle as a single point at its centroid, connement is the only factor causing this di ference -U y of the snaking motions are varied for a vesicle at the same o f-center position Y g in microchannels of di ferent size R t . But due to the deformability, it becomes much more complicated. (see Figure D. ) It is seen that, for both cases, the general tendency is that high β favors bullet shape, while at small β, slipper shape prevails at low Ca and parachute shape prevails at high Ca. Whereas, the croissant shape appears at the intersection region of the three previous steady shapes. From these phase diagrams (Figure . and . ), the e fects of Ca (horizontal view with R t xed) and β (vertical view with Ca xed) on shape transitions can be directly identi ed without e fort. That is, the number of planes of symmetry of the steady shape increases when Ca or β is increased.

. . E In this last section, the e fects of the initial con guration, including shape (prolate and oblate), height H 0 and inclination angle θ 0 , are discussed for very de ated vesicles, ν = 0.65 and 0.6, which are close to that of RBC (∼ 0.64) and have the oblate shapes as the unstressed equilibrium shapes (Figure . ).

The e fect of the initial inclination angle θ 0 (Figure . (b)) between the major axis of an oblate shape and the axis of the ow is rst brie y addressed, as shown in Figure .  and . . Figure . shows the evolution of the inclination angle θ, the radial position of the centroid Y g , and the lateral migration velocity U y of the vesicle initially placed at height H 0 = 0.2 with di ferent inclination angles θ 0 . The case with θ 0 = 0.0 rad converges to a stable state, both in the inclination angle θ ( . (a)) and the radial position of its centroid Y g ( . (b)). The black solid curves represent the calculations with manual adjustment of the radial position Y g of the vesicle for the case with θ = 0.0. These nite perturbations Figure . shows the evolution of the shape for two cases with di ferent θ 0 , mainly in the preliminary phase. The oblate, with θ 0 equals to , deforms and becomes more and more elongated, until reaching the nal stable slipper shape, while the other one with θ 0 equals to -. rad is rst stretched in the ow direction, the stretch then relaxes and the deformation in the ow direction weakens, and nally, obtains a biconcave-croissant shape. Figure . and . do show the dependence of the initial inclination angle θ 0 on the dynamics of vesicle owing in a capillary ow, hereinafter, we focus on the e fects of the initial radial height H 0 , and the initial inclination angle θ 0 is set to some values between -0.2 rad and -0.12 rad to make the initial shape synergistic with the local ow pro le. The value of θ 0 is, in fact, also inspired by the nal stable inclination angle obtained with prolate as the initial shape.

In Figure . , examples with respectively prolate and oblate as the initial shapes show a common nal stable shape, a slipper . That example has ν = 0.7, to better show the e fect of the initial shape on the dynamics of vesicle owing in capillary ow, vesicle should be chosen with ν ∈ (0.592, 0.651) (see Figure . ). As summarized in Table . , some detail simulations with prolate and oblate as the initial shapes, but converge both to a stable slipper shape are presented. It is shown that the di ference in the nal centroid radial position Y * g due to di ferent initial conditions is very limited. While, hereinafter, we show that the value of H 0 prolate oblate has a signi cant in uence on the dynamics of an initially oblate vesicle owing in capillary ow.

R t H 0 Y * g H 0 (θ 0 ,
The dependence of the initial position H 0 on the dynamics of an oblate vesicle owing in a capillary is typically illustrated in Figure . . That is, when H 0 is greater than a critical value H c 0 , the vesicle deforms and evolves into a slipper shape as the nal stable shape, whereas if H 0 is less than this critical value, it deformes into a biconcave-croissant shape in accompanying with slowly damped oscillation. For a de ated vesicle (ν = 0.65) owing in capillary (Ca = 1 and R t = 3.2), as shown in Figure . , a slipper shape is obtained for H 0 = 0.4 and 0.35. For these large values of H 0 , the evolution (shape and lateral position) becomes progressively slower as they approach the nal steady state, as illustrated by Although H 0 is di ferent, from Figure . and many other simulations, we can anticipate that the prolate shape with H 0 equals to . or . should converge to the same nal state. Thus we can say in this example that the initial shape, prolate or oblate, is the only variable (small θ 0 for prolate will only slightly a fect the total time to the nal state). . This kind of modi cation has shown no e fect on the nal stable state of slipper. Whereas for H 0 = 0.05, the biconcave-croissant shape is selected as the nal stable shape.

By inspecting the evolution of the vesicle shape, the biconcave-croissant shape (for H 0 < H c 0 ) seems to be due to the limited migration path (limited distance where the sign of the shear rate remains unchanged). But by examining the shape evolution of a vesicle owing in an unbounded Poiseuille ow (see Figure D. ), for which it deforms rst into a biconcavecroissant shape, which suggests that the presence of the capillary wall should be the major factor.

A systematic study of the e fect of H 0 for Ca = 1 and ν = 0.65 is carried out, and the resulting phase diagram is presented in Figure . . It is shown that for relatively large capillaries (R t ≥ 3.6), the critical value H c 0 is almost constant, which corresponds to a value in between . and . . For intermediate capillaries (3.6 ≥ R t ≥ 2.5), this critical value H c 0 decreases with a decrease in size R t of the capillary. While for relatively small capillaries (2.5 > R t ≥ 2.0), the results with a ner mesh ( elements) show only a slipper shape.

The discrepancy shown for the small capillaries between the ne mesh and the coarse mesh may be questioned as to the sensitivity to the error on the preservation of the membrane surface. Take the case with R t = 2.25 and H 0 = 0.2 as an example, the relative errors of the membrane surface and the reduced volume are . % and . % for mesh with elements, and those for mesh with elements are . % and . %, respectively (at the same instant t ≈ 10). . S

In this chapter, the dynamics (shape transition and lateral migration) of a three-dimensional uid vesicle in a microchannel of di ferent sizes is studied numerically via the BEM in a rather wide range of dimensionless parameters space of (ν, β, Ca), i.e., the reduced volume, the con nement, and the capillary number.

Because of the complex nonlinear interplay between the membrane, the external ow, and the solid boundaries, a rich variety of stable shapes have been explored, as presented in Sec. . . , which includes the widely reported axisymmetric bullet ( Break up of the upstream-downstream symmetry due to the shape deformation will lead to the cross-streamline migration, as presented in Sec. . . , which can be the migration to the centerline of the ow (Fig. . ), the periodically centered snaking motion (Fig. . ) or the migration to the o f-center position (Fig. . ). The exact sort of migration is closely related to the three dimensionless parameters. Normally, the inward migration can lead both to an axisymmetric stable shape or to the (biconcave-)croissant shape, whereas the migration to an o f-center position corresponds to the slipper shape.

The ow structures of the surrounding ow and the uid lipid bilayer are then presented in Sec. . . , with a special distinction in the case of the slipper shape (Fig. . and. ), the classical tank-treading motion or the counter-rotating propellers like motion .

The e fect of the capillary number Ca and the transition from the slipper shape to an axisymmetric one are presented in Sec. . . . The general result is that: the increase in the capillary number lowers the centroid Y * g (Fig. . ) and increases the degree of symmetry (Fig. . ).

The next section (Sec. . . ) deals with the e fect of con nement β, in which the membrane ow of the slipper shape and its transition are rst presented (Fig. . ). Then the shape transition from a slipper to an axisymmetric bullet shape is presented for three di ferent reduced number ν = 0.97, 0.95, and 0.9. By tting the results of stable lateral centroid position Y * g and the maximum speed of tank-treading U tt , a supercritical pitchfork like bifurcation is revealed (Fig. . ). This e fect of β on the slipper shape is then compared for di ferent capillary number (Fig. . ). Furthermore, the e fect of β on the snaking motion is shown in Fig. . . The penultimate section . . shows us the phase diagram of steady states of vesicles for ν = 0.95 and . in the (R t , Ca) plane. Lastly, the e fect of the initial conditions is shown in Sec. . . , including the initial shape (prolate or oblate), the initial height H 0 , and the initial inclination angle θ 0 . The biconcave-croissant shape is found when an initial oblate vesicle (ν = 0.65, 0.6) is placed at a height below a certain critical value H c 0 (Fig. . , . , . ).

V

This chapter is devoted to the steady motion and deformation of a lipid-bilayer vesicle moving along the axis of a circular tube in low Reynolds number pressure-driven ow. Though the subject is described in the preceding chapters, particular emphasis is given here to vesicle hydrodynamics in highly con ned ows. Under such circumstances, three-dimensional simulations of vesicle motion become computationally expensive due to the necessity to resolve the stronger hydrodynamic interaction between the vesicle surface and the wall boundary. On the other hand, as shown in the previous chapter, it is expected that the vesicle shape retains axisymmetry when it is highly con ned. It's therefore legitimate for us to pursue this study numerically by means of a previously reported axisymmetric boundary element method. Since the present chapter is composed of a manuscript in preparation, the presentation is self-contained, allowing for some duplications with the previous chapters and di ferent notations being used. For the sake of brevity, we shall not elaborate the subject any further in a conventional introduction section; let us move on to the mathematical formulation -a uid-structure interaction problem.

. P . . H

We consider a neutrally buoyant vesicle that is transported in a pressure-driven ow through a straight, circular tube of radius R. Fluid ows at an imposed, constant volumetric ow rate Q (≡ πR 2 U , giving a mean bulk velocity U ) driven by a pressure di ference between inlet and outlet cross-sections. A schematic description of the problem is shown in Figure .  with axisymmetric cylindrical basis (e x , e r , e φ ). The suspending uid and the uid inside the vesicle membrane are incompressible and Newtonian with dynamic viscosity η and η, respectively. We assume that the Reynolds numbers for both interior and exterior uids are su ciently small compared with unity, so that the inertial terms in the equations of motion may be neglected, the governing equations thereby reduce to the Stokes equations for creeping motion. Under these circumstances, experimental evidence [ ] shows (and we will assume) that the ow and vesicle shapes are axisymmetric and that a vesicle initially positioned at the tube axis will translate with a steady velocity V e x (which is unknown a priori) along the axis of the tube. In the absence of any vesicle, we obtain an unperturbed Poiseuille ow with a parabolic velocity pro le:

u ∞ (x) = 2U 1 - r 2 R 2 e x , x ∈ D, ( . a) 
with

U = G 0 R 2 8η , ∆p 0 = 8ηU L w R 2 , R 0 H = 8ηL w πR 4 , ( . b) 
where G 0 is the negative (uniform) pressure gradient applied along a tube of length L w , namely, G 0 = ∆p 0 /L w , ∆p 0 is the pressure di ference or pressure drop required for the Poiseuille ow, and R 0 H is the hydraulic resistance (≡ ∆p 0 /Q). The presence of a vesicle causes a change in the hydraulic resistance of the system (i.e., tube + vesicle): it increases, meaning that to maintain the same volumetric ow rate πR 2 U , it is necessary to increase the pressure di ference by a quantity ∆p + called extra pressure drop. Finding that extra pressure drop, together with the vesicle shape deformation and its mobility, is the essential part of the investigations in the present work.

In the creeping-ow regime, the motion of the uid inside and outside the vesicle is governed by the Stokes equations,

∇ • u = 0, ∇ • σ = -∇p + η∇ 2 u = 0, x ∈ D \ Ω, ( . 
)
where u, σ and p denote the exterior uid velocity, stress tensor and pressure, respectively. Similar equations hold for the interior uid velocity ū, stress tensor σ and p for x ∈ Ω. The uid motion is coupled with the interface motion via the kinematic boundary condition,

u(x) = ū(x) = dx dt = u Γ , x ∈ Γ, ( . 
)
where x is the membrane position. The dynamic boundary condition at the interface establishes a nonlinear interaction between the ambient ow and membrane mechanics,

∆f + f m = 0, x ∈ Γ, ( . )
wherein we assume the membrane is in quasi-static mechanical equilibrium; the membrane force density f m balances the net traction ∆f (≡ (σσ) • n) exerted on the membrane by the bulk uids. Here and throughout this chapter, the unit normal vector of a surface n is pointing inward into the suspending uid.

Additional boundary conditions for the velocity eld include the no-slip condition at the tube wall, . ) and vanishing far-eld ow perturbation,

u(x) = 0, x ∈ W, ( 
u(x) = u ∞ (x), x ∈ I ∪ O.
( . )

The velocity of the vesicle center of mass is given by

V = 1 Ω Ω ūx d 3 x = 1 Ω Γ x(u Γ • n)dS(x).
( . )

The enclosed volume

Ω = Ω d 3 x = 1 3 Γ (x • n)dS(x) ( . )
is xed, as the vesicle membrane is considered to be impermeable, at least on typical experimental time scales. The axial coordinate of the vesicle center of mass is de ned by

x G = 1 Ω Ω xd 3 x = 1 2Ω Γ x 2 (n • e x )dS(x).
( . )

. . M

A biomembrane is invariably a phospholipid bilayer, which is classically described as a twodimensional, incompressible uid elastic. This means that there exist a surface tension and bending energy associated with the "out-of-the-plane" motions of the membrane. Its elastic energy due to the Helfrich energy functional [ ] is given by . ) where κ (∼ 10 -19 J) is the bending modulus, H is the local mean curvature (with the convention that curvature is equal to for a unit sphere), and γ is the membrane tension, which is, in fact, identical with the Lagrange multiplier used to enforce the surface incompressibility condition, . ) where ∇ S = (Inn) • ∇ is the surface gradient.

E = Γ 2κH 2 (x) + γ(x) dS(x), ( 
∇ S • u Γ = 0, x ∈ Γ, ( 
The membrane force density f m , by the principle of virtual work, is the variational derivative of Eq. ( .) with respect to small deformations of the surface [ ],

f m = - δE δx = f b + f γ , x ∈ Γ, ( . a) 
with

f b = 2κ ∆ S H + 2H(H 2 -K) n, f γ = -2γHn + ∇ S γ, ( . b) 
where f b denotes the bending surface force density, which is purely normal, f γ is the tension surface force density, K is the Gaussian curvature, and ∆ S H = ∇ S • ∇ S H is the Laplace-Beltrami operator of the mean curvature, which contains the fourth derivative of the surface position, posing serious algorithmic and numerical challenges to compute the bending forces [ ].

. . D

The volume Ω and surface area A of a vesicle remain constant and de ne a volume-based radius R 0 ≡ (3Ω/(4π)) 1/3 and an area-based radius R A ≡ (A/(4π)) 1/2 , respectively. Together with the tube radius R, the system geometry is completely parametrized by two dimensionless parameters which are independent of the ow conditions: the reduced volume ν (alternatively, the excess area ∆) and the con nement λ,

ν ≡ 4 3 πR 3 0 4 3 πR 3 A = R 0 R A 3 = 6 √ πΩA -3/2 , ( . a) ∆ ≡ 4π 4πR 2 A 4πR 2 0 -1 = 4π 1 ν 2/3 -1 , ( . b) λ ≡ R 0 R .

( . c)

Here, we use the volumetric radius R 0 as the reference length. The reduced volume (0 < ν ≤ 1) or the excess area (∆ ≥ 0), characterizing the ability for the vesicle to deform and change shape, is commonly used in the literature, and they are related to each other by ( . b). The con nement measures the size of the vesicle relative to the radius of the tube. Natural scales for velocities and time are the mean velocity U of the ambient ow and R 0 /U , respectively. Pressure and hydrodynamic stress are scaled by the typical viscous stress ηU/R 0 , and membrane tension is scaled by ηU . The relative importance of membrane bending force density and viscous traction in the balance of normal stress on the membrane (Eqs. ( . ) and ( . b)) de nes the bending-based capillary number Ca B ≡ ηU R 2 0 /κ. Finally, there is no viscosity contrast between the uid inside and outside the vesicle as we are interested in the stationary axisymmetric shapes which do not depend upon the inner viscosity [ , ]. Hence, the vesicle motion is determined by three independent dimensionless parameters: the reduced volume ν, the con nement λ, and the (bending) capillary number Ca B . We note that while ν is a xed quantity for a given vesicle, namely independent of which reference length is used, the other two parameters depend on that length. However, solutions under di ferent scalings are easily converted from one to another in terms of ν and λ. For example, the surface area-based con nement λ A ≡ R A /R = λ/ν 1/3 , and the tube's radius-based capillary number Ca R ≡ ηU R 2 /κ = Ca B /λ 2 . Occasionally, we nondimensionalize physical quantities using the scalings of cited references in order to facilitate the comparison with those results.

. B

The uid-cell membrane interaction problem described in Section . is solved using an axisymmetric boundary element method (BEM) [ ], which is based on the numerical method for D model [ ], therefore, only the complementary information is provided below.

First, in view of the linearity of the Stokes equations, we decompose the total velocity eld around the vesicle into an undisturbed component u ∞ and a disturbance component u + due to the presence of the vesicle, namely, u = u ∞ + u + . The disturbance velocity at a point x 0 that lies inside the control volume D or on its boundaries ∂D can be represented as a boundary integral equation [ , ],

u + (x 0 ) = - 1 8πη ∂D G(x 0 , x) • f + (x)dS(x), ( . 
)
where G is the free-space Green's function, f + ≡ σ + • n is the disturbance surface traction.

Since the perturbation ow generated by a point-force distribution decays exponentially with distance from the vesicle [ , ], if the inlet and outlet are su ciently far from the vesicle, then the ow perturbation near the inlet and outlet sections virtually vanishes. Furthermore, if we consider axisymmetric ow con guration only, the surface integrals can be explicitly integrated in the azimuthal direction with dS = rdφdl, where dl is the di ferential arc length of the trace of the boundary ∂D in the x-r azimuthal plane [ , ]. Finally, we obtain a more speci c form to Eq. ( .), yielding the total velocity eld as follows: . ) where the Greek subscripts α and β are either x or r, representing the axial and radial components respectively, x = xe x + re r , M is the free-surface axisymmetric Green's function [ , ], f w (≡ f w x e x + f w r e r ) stands for the disturbance stress distribution at the tube wall with the shear stress f w x and the normal stress f w r (= -p + , x ∈ W ), and p + in the disturbance pressure over the inlet while setting, without loss of generality, p + out = 0 for the disturbance pressure over the outlet.

u α (x 0 ) = u ∞ α (x 0 ) + 1 8πη Γ M αβ (x 0 , x)f m β (x)dl(x) - W M αβ (x 0 , x)f w β (x)dl(x) + p + in I M αx (x 0 , x)dl(x) , ( 
Application of Eqs. ( . ) and ( . ) leads to an additional integral boundary equation that allows the calculation of the disturbance wall stress f w ,

W M αβ (x 0 , x)f w β (x)dl(x) = Γ M αβ (x 0 , x)f m β (x)dl(x) + p + in I M αx (x 0 , x)dl(x), x 0 ∈ W. ( . )
The extra pressure drop can be obtained using the reciprocal theorem [ ] of the Stokes ow; it is expressed in terms of the membrane load and the ambient velocity eld,

∆p + ≡ p + in -p + out = - 1 Q Γ f m (x) • u ∞ (x)dS(x) = - 4 R 2 Γ r 1 - r 2 R 2 f m x (x)dl(x).
( .

)
The membrane is discretized by N m piecewise linear D elements, consisting of a collection of points of {x n (t), n ∈ 0 . . . N m }. The points are distributed according to the magnitude of the membrane's mean curvature H, thereby allowing the local mesh re nement in high-curvature regions. This is important given large deformations of vesicles involved in ows. The mesh points at the tube wall, composed of N w linear elements, are uniformly distributed. The di ferential surface operators, which are involved in the calculation of surface incompressibility ( . ) and bending forces ( . b), are computed on each element of the membrane with a parametrization (Γ, φ) of the surface.

Starting from some initial con guration of the vesicle shape, the preceding three integral equations, together with the membrane incompressibility condition ( . ), allow the computation of ∆p + , f w , the interfacial velocity u Γ and the membrane tension γ at each time step via the boundary element method, as described in [ , ]. The vesicle translational velocity V is computed from ( . ).

The vesicle interface is advected according to

dx(t) dt = u n (x)n(x), ( . 
)
where x is an interface node and u n = u Γ • n is given by ( . ). This means the movements of the bilayers in the normal and tangential directions are treated di ferently, namely in Lagrangian fashion for the former and with a Eulerian description for the latter. Indeed, the tangential movement of nodes, which does not change the membrane shape, o fers the possibility of a redistribution of nodes-remeshing along the membrane. At each time we employ a keeping-the center-of-mass strategy that the vesicle is re-centered at the origin by subtracting the vesicle center of mass (x G , 0) from the membrane position. Since this process, which is equivalent to replacing u n by u n = u n -V • n in ( . ), does not modify the stress eld, the vesicle shape remains unchanged. Equation ( .) is solved numerically by a semi-implicit time stepping scheme [ ] in which the bending forces are computed at the advected, new position of the membrane and, therefore improving long term stability of the algorithm. A steady state is obtained when the maximum absolute normal velocity |u n |/U is less than a chosen tolerance (∼ 10 -5 ), with N m ranging from to , and N w from to , depending upon the reduced volume ν and the con nement λ. The tube has a total length of L w = O(10R 0 ), so the outlet and inlet sections are located at a distance x = ±L w /2 from the vesicle center of mass. The dimensionless time step U ∆t/R 0 (∼ 5 × 10 -3 -5 × 10 -5 ) decreases as ν decreases and as either N m or λ increases. Since both the volume and surface area of the vesicle are conserved, the change in the enclosed volume and surface area during simulations provides an indication of the accuracy of the computations. The relative volume and surface area variations were found to be ∼ 0.01% -0.1% over a typical full simulation (∼ 10 4 -10 5 time steps).

While several studies have already been conducted in [ ] in order to validate the axisymmetric BEM code, the validation of a prediction for the hydrodynamical quantities V and ∆p + has not been reported so far. Therefore, we rst considered the well-known example of the motion of a liquid drop in a circular tube and compared our numerical results with those reported in Ref. [ ]. The drop is free of bending sti fness (κ = 0) and has a constant surface tension γ. The motion of the drop for a given con nement λ is determined by the surface tension-based capillary number Ca = ηU/γ. The comparison in Table I Additionally, we have checked in two ways whether a numerical discretization, in terms of the number of elements (of both N m and N w ), was ne enough to su ciently resolve the drainage uid of thin liquid lm between the membrane and the tube wall: (i) can a stationary solution be achieved ? and most importantly (ii) is the steady velocity ratio V /U larger than unity? An insu cient discretization was found to result in signi cantly large viscous and con nement-dependent friction on the membrane and therefore a smaller velocity ratio V /U , which sometimes is much less than unity. Under high con nement, especially for highly de ated vesicles (i.e., ν ≤ 0.7) when λ approaches its critical value, a substantially large number of elements, say N m = O(300) and N w = O(1000) for ν = 0.6, is needed to accurately resolve the vesicle shape and membrane traction. Our numerical experiments suggest an empirical relationship between the mesh size and the lm thickness h:

δx m ≈ h, δx w ≈ 1 2 h, ( . 
)
where δx m and δx w denote a typical mesh size (i.e., element length) on the membrane and at the tube wall, respectively, in the region of the liquid lm.

. R

. . P

In aqueous solution, lipid vesicles exhibit a large variety of shapes and shape transformations [ , ], in particular, they can exhibit a biconcave shape typical of red blood cells.

The equilibrium shape of a vesicle is determined by minimization of the Helfrich energy ( . ) of the membrane, resulting in di ferent families of solutions with respect to the reduced volume ν. When con ned in capillary tubes subject to a pressure-driven ow, however, vesicles assume complex shapes and behave in di ferent ways due to the nonlinear interplay between bending elasticity, hydrodynamic stresses, and con nement. For the axisymmetric case being considered in this study, there are two commonly steady-state shapes which are classi ed as bullet-like and parachute-like shapes, the latter being characterized by a concave (negative curvature) rear part.

Figure . shows steady-state shapes for a vesicle of ν = 0.84 con ned in a tube ow with unity radius ratio (i.e., λ = 1) for increasing ow rates characterized by the bending capillary number Ca B . Two limiting cases are clearly illustrated in Figure . . One is no ow (Ca B = 0), in which the equilibrium shape -symmetric between the front and the rear -is determined solely by the minimization of the bending energy. The other is Ca B → ∞, which corresponds to an in nitely small bending resistance. For this particular combination of parameter groups, the rear part of the vesicle becomes almost at (i.e., zero curvature). This result is interesting because, for a given vesicle in a tube, its steady-state shape lies between these two limiting pro les. Another noticeable feature is that when Ca B ≥ 50, the shape is virtually independent of Ca B . This property allows us to

x Ca B = 50 while studying the motion and deformation of a con ned vesicle at high ow rates (i.e., U/(2R) > 50 s -1 ) [ , ]. A zero-bending elasticity or equivalently an in nity Ca B is, however, not permitted because of small radii of curvature occurring at the trailing edge, especially for highly de ated vesicles. Steady-state vesicle shapes for the reduced volume ranging from . to . are shown in Figure . at di ferent degrees of con nement. A near-spherical vesicle (i.e., ν = 0.98) always exhibits a bullet-like shape, whereas shapes undergo a transition from parachute to bullet as the con nement increases (i.e., large λ). The shapes with ν = 0.6, which are particularly relevant to red blood cells, mark a transition starting from a bell shape and ending in a sphero-cylinder. Clearly, increasing λ increases the length of the vesicle but reduces the size of the gap between the vesicles and the tube. At high con nement, the vesicles tend to attain a sphero-cylinder consisting of a long cylindrical main body and two hemispherical endcaps.

A phase diagram of steady-state shapes is presented in Figure . , together with experimental results of Ref. [ ] obtained in a square cross-section channel. Increasing λ makes the transition shifted towards lower values of reduced volume, which means a bullet-like shape is favored at high con nement. The present numerical results are in good agreement with the experimental observations, suggesting the geometry of the channel might not a fect too much the parachute-bullet transition. Interestingly, there is a clear separation between the bullet region and parachute region in the (ν, λ) space, as revealed in Figure . (a). Bulletlike and parachute-like shapes are identi ed according to the curvature of the rear part of vesicles; a at rear marks as a transition point in the (ν, λ) space. Remarkably, the transition point decreases almost linearly with increasing con nement when λ ≥ 0.6. A linear tting to the transition points gives a correlation ) which are obtained at Ca B = 50. A careful examination of numerical results suggests this relationship is valid even for a small bending capillary number since steady shapes are virtually independent of Ca B under high con nement. The transition from a parachute shape [ ] (× for bullet-like shape, * for parachute-like shape). Capillary number varies over four orders of magnitude (10 1 < Ca B < 10 4 ).

ν T = 1.126 -0.29λ , for ν ≤ 0.93, ( . 
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to a bullet one for a vesicle having the same reduced volume of red blood cells takes place at very high con nement, i.e., λ T (ν = 0.6) 1.8. The shape at the transition point, as shown in Figure . (b), consists of a long cylindrical body and a front endcap, leaving a narrow vesicle-wall gap of ∼ 7% of the tube's radius.

. . C

Both the volume and surface area of a vesicle are conserved at least on the time scale of typical experiments. These geometric constraints impose a critical con nement λ c (≡ 2R 0 /d c ) corresponding to a lower limit d c to the diameter of the tubes through which the vesicle may pass intact. The critical con nement is calculated by assuming that the two hemispherical endcaps are tightly tting the tube cross-section; its relation with the reduced volume ν is given by a cubic equation

2λ 3 c -3ν -2/3 λ 2 c + 1 = 0, ( . 
)
whose solution is This critical con nement de nes an upper limit c to the reduced vesicle length (≡ L/R)

λ c = 1 2ν 2/3 1 + 1 -2ν 2 + 2ν ν 2 -1 1/3 + 1 -2ν 2 + 2ν ν 2 -1 -1/3 . ( . )
c ≡ 2L c d c = 2ν -2/3 λ 2 c .
( . )

The variation of λ c with ν ranging from . to is plotted in Figure . , together with the parachute-bullet transition line given by λ T = 3.88 -3.45ν (c.f., Eq. ( .)). When λ > λ c , the vesicle cannot pass through the tube without rupturing the membrane. Assuming red blood cells have a typical volume Ω = 90 µm 3 , which gives a volumetric radius R 0 2.8 µm, one then obtains a critical cylindrical diameter of normal human erythrocyte d c = 2R 0 /λ c 2.8 µm (λ c 1.98 for ν = 0.6) and the maximum length of cells L c 15.4 µm ( c 11). This means that a normal human erythrocyte can squeeze through capillaries that are smaller than half the diameter of a red blood cell ( 8 µm). .

. L

As shown in Figure . , under high con nement, a liquid lm of nearly uniform thickness is formed between the front and rear endcaps. Let h denote a typical lm thickness of the gap separating the vesicle membrane and tube wall, the narrow-gap theory in Appendix A yields an asymptotic behavior of the clearance parameter δ(≡ h/R) in terms of a small perturbation parameter (1λ/λ c ) << 1,

δ = 1 -λ/λ c + O (1 -λ/λ c ) 2 .
( . )

Numerical results of δ for ν ranging from . to . are plotted in Figure . and compared with its asymptotic behavior given by ( . ). Despite a wide range of the reduced volumes being considered, Figure . makes it clear that when 1λ/λ c < 0.1 -namely in the small-gap regime, the numerical results approach the prediction ( . ); minimal thickness are about -5% of the tube's radius when λ/λ c 0.98. As derived in the appendix, the lm thickness is controlled by the membrane tension γ in the lubrication layer. The clearance size is found to be proportional to the / power of the capillary number Ca v δ c 0 Ca v 2/3 , ( . )

where the vesicle tension-mobility-based capillary number Ca v = ηV /γ F , γ F is the membrane's frontal tension, also the highest tension in the membrane. We note that the numerical prefactor c 0 di fers slightly in the literature; shown in Figure . . In addition, Figure . reveals a characteristic change in power scaling from the / power regime for small Ca v to the / power regime for large Ca v . The separation of the two regimes occurs at Ca v 6 × 10 -3 . Therefore, our numerical results support one of the ndings of Ref. [ ] that the thickness of the lubrication layer, at high ow rates, is independent of the bending energy and is determined solely by the membrane tension. It should be emphasized that the / power law regime found in the case of a long bubble in tubes [ ] stems from the di ferent underlying mechanisms compared to vesicles; a stress-free surface for the former while a "no-slip" hydrodynamic boundary condition for vesicles.

The mechanical tension of a membrane is identical with the Lagrange multiplier tension γ that enforces a certain, xed membrane area [ ]. For the lipid bilayers, the rupture tension, which represents the largest mechanical tension that can be applied to the membrane, is of the order of a few mN/m. It is, therefore, interesting to examine whether our BEM simulations are indeed able to predict a mechanical tension approaching that limit. For ν = 0.6 typical of red blood cells and under the maximum possible con nement that we have reached, i.e., λ = 1.94 (λ c 1.98), the maximum dimensionless tension is found to be γ max 1.2 × 10 3 , which gives rise to a dimensional mechanical tension about . mN/m. Here the tension is scaled by γ ref = ηU = κCa B /R 2 0 = 1.28 µN/m, with Ca B = 50, κ = 2 × 10 -19 J and R 0 = 2.8 µm. The predicted mechanical tension at the proximity of the maximum con nement is actually of the order of the rapture tension. The reduced vesicle length is an important geometric parameter that characterizes the vesicle deformation when owing in a tube. It is also an easily accessible parameter in tubeow experiments. In addition, it was found that there is an upper limit to the reduced vesicle length, given by Eq. ( . ). Figure . shows the normalized vesicle length / c as a function of the reduced radius ratio λ/λ c for a wide range of reduced volumes ν. It is quite clear that the simulated vesicle lengths tend towards its limiting behavior as λ → λ c . The correlation

= c λ λ c = 2ν -2/3 λ 2 c λ λ c , ( . ) 
suggests an estimated vesicle length for given ν and λ. It is also noticed that this relation gives a more precise estimate of the length for less de ated vesicles. This is because the shape transition point decreases with increasing con nement, as shown in Figure . (a). For comparison, the asymptotic theory of Ref

. [ ] showed that = c + O(1 -λ/λ c ) as λ → λ c ,
which is e fectively equivalent to Eq. ( .) when λ = λ c . But the proposed correlation in the present study allows not only precisely predicting the vesicle length under high con nement but also giving an estimate of the length at di ferent degrees of con nement.

. . V Vesicle mobility, measured in the relative velocity V /U , and dimensionless extra pressure drop ∆p + R 0 /(ηU ) are the most important hydrodynamical quantities of interest. Espe-cially, the dimensionless extra pressure drop is involved in the determination of the relative apparent viscosity of a vesicle suspension in tube ow (see Sec. . . ). Unlike in an unperturbed Poiseuille ow in which the mean ow velocity U is a linear function of the pressure drop ∆p 0 , V and ∆p + are strongly nonlinear coupled due to the vesicle's deformation. Prediction of V /U and ∆p + R 0 /(ηU ) has been recently reported in Ref.

[ ] but limited to the reduced volume up to . , presumably due to the di culty of dealing with the reduced volume of . in a D computation. The present BEM simulations provide a whole range of these quantities in terms of the reduced volume ν and the con nement λ, thus extending previous studies of vesicle hydrodynamics in tube ows. The results are shown in Figure .  for the relative velocity and in Figure . for the dimensionless extra pressure drop. It is clear that vesicles with ν = 0.6 (mimicking red blood cells) exhibit distinct features. The relative velocity lies between and . The former represents an in nitely small vesicle traveling along the tube axis with the centerline maximum ow velocity, and the latter, for a tightly tting vesicle moving at the mean ow velocity as a "piston" through the tube. The dimensionless extra pressure drop, however, exhibits astonishing variations -six orders of magnitude. Under weak con nement (i.e., small λ), the simulation results are in excellent agreement with the theoretical predictions for a small spherical droplet owing along the centreline of a tube [ , ], given by

V U = 2 - 4 3 λ 2 + O(λ 3 ),
( . a)

∆p + R 0 ηU = 16λ 6 + O(λ 11 ).
( . b)

For instance, when λ < 0.5, the relative errors as compared to the theoretical predictions are less than 1%, particularly for nearly spherical vesicles. The case of ν = 0.6 is an exception; a decreased mobility and an enhanced pressure drop are clearly visible. These are attributed to the large deformations inherent to the bell-shaped morphology (c.f., Figure . (d)). The experimental measurements of V /U reported in Ref. [ ] are not shown herein for the comparison because the measured V /U for vesicles in circular tubes with ν = 0.924-0.999 are scattered around the curve ( . a).

As the con nement increases, the dimensionless groups V /U and ∆p + R 0 /(ηU ) undergo a considerable variation with the reduced volume. Such a high sensitivity to the vesicle's de ation stems from signi cant changes in vesicle deformations at increasing con nement. Indeed, for a given vesicle, namely a given ν, increasing λ results in two combined e fects: the vesicle tends to become more elongated, forming a nearly uniform viscous lm between the vesicle and the tube wall, as shown in Figure . and in Figure . , and the gap size becomes smaller, as illustrated in Figure . . These two e fects enhance the con nement-induced viscous friction on the vesicle surface, thus increasing extra pressure drop across the vesicle, and hindering vesicle mobility. Note that, as derived in Appendix A, the shear stress exerted on the membrane is balanced by the tension gradient in the membrane. This is in contrast with a clean drop (i.e., stress-free surface) transported in a pressure-driven ow wherein there appears a plateau value of V /U and ∆p + R 0 /(ηU ) as the con nement increases. Comparisons of the present results with a lubrication model of Ref. [ ] for red blood cells are also shown in these two gures; very good agreements are found when λ > 1.4. For smaller cells (i.e., small λ), the parallel-ow approximation of the lubrication model produces relatively smaller values of V /U and higher values of ∆p + R 0 /(ηU ), which is clearly visible in Figure . but indistinguishable in Figure . due to logarithmic scales used. When λ → λ c , the asymptotic theory of Ref. [ ] produced, in our notation, the following predictions

V U = 1 + 4 3 3λ 2 c ν -2/3 -2 4λ 2 c ν -2/3 -3 1 - λ λ c + O 1 - λ λ c 2 , ( . a) ∆p + R 0 ηU = 4λ λ 2 c ν -2/3 -1 1 - λ λ c -1 + λ 4 √ 2π 4λ 2 c ν -2/3 -3 1 - λ λ c -1/2 + O(1), ( . b) 
Vesicles in Highly Confined Flows

The limiting behaviors are well captured in the simulations. We note that the numerical results of V /U are slightly less than those predicted by the theory as λ → λ c , it is due to the fore-aft symmetry of a sphero-cylindrical vesicle that is assumed when calculating the critical con nement λ c . In fact, the frontal endcap is relatively smaller than the rear endcap, as shown in Figure A. , resulting in a slightly larger theoretical λ c . Another noticeable feature is a sudden change of slope in V /U ; it becomes visible for ν = 0.8 and 0.7, and that feature is quite noticeable for ν = 0.6. It is found that the points where the curves of V /U vs. λ display a remarkable change in slope correspond exactly to the parachute-bullet transition points in the (ν, λ) space, as discussed above. This result is not surprising given that vesicle mobility is dictated by the vesicle shape and its interplay with the surrounding uid. Indeed, the competition between geometric constraints and con nement-induced viscous friction determines the speed at which a vesicle is transported in a pressure-driven ow. When λ → λ c , the asymptotic theory of Ref.

[ ] shows a scaling of the dimensionless extra pressure drop ∆p + R 0 /(ηU ) ∼ O(λ /δ); the dimensionless extra pressure drop is proportional to the reduced vesicle length but inversely proportional the clearance size. The compilation of the present simulation results allows a precise correlation ∆p + R 0 /(ηU ) 3/2(λ /δ), as illustrated in Figure . . This is a signi cant improvement, given that a wide range of reduced volumes is involved. More importantly, this correlation holds implications that may help devise and interpret tube-ow experiments. Speci cally, based on the vesicle length and its translational velocity which are the most easily accessible quantities in experiments, the simulated results presented in Figs. . and . , together with scaling laws 0.6 0.7 0.8 0.9 1 ν=0.98 0.9 0.8 0.7 0.6 small droplet a scaling

∆p + R 0 /(ηU ) (V /U ) -1
Figure . : Dimensionless pressure drop ∆p + R 0 /(ηU ) versus the reciprocal of the relative velocity V /U . The dotted curve shows the analytical prediction for a small spherical droplet ( . ). The dashed line is the best tting ( . ) to ν = 0.6 in the range of 0.6 < (V /U ) -1 < 0.995.

obtained from this study allow an estimate of the reduced volume ν (hence λ c ) and the lm thickness, from which the dimensionless extra pressure drop ∆p + R 0 /(ηU ) can be inferred. Directly measuring these parameters is no simple task. It often requires advanced imaging methods and instrumentation, with an added di culty arising from the fact that the extra pressure drop is highly sensitive to the reduced volume. The estimated extra pressure drop should be contrasted with Figure . for consistency. An iterative process may be required to obtain a consistent result. Finally, an estimate of the maximum tension in the membrane can also be obtained using the scaling laws shown in Figure . . Before closing this subsection, we highlight the strong coupling behavior in the dimensionless groups ∆p + R 0 /(ηU ) and V /U . Even for a vanishing small spherical droplet, Eqs. ( . a) and ( . b) give a highly nonlinear relationship

∆p + R 0 ηU = 27 4 2 - V U (λ) 3 + O(λ 3 ).
( . )

The theoretical prediction is shown in Figure . , where the dimensionless pressure drop ∆p + R 0 /(ηU ) is plotted against the reciprocal of the relative velocity V /U . The reason for using (V /U ) -1 , instead of V /U , is quite simple and it is to illustrate how the coupling behaves as the vesicle size -equivalently the con nement for a given tube diameter -increases. While both the relative velocity and dimensionless extra pressure drop are notably sensitive to the reduced volume as the con nement increases, Figure . makes it clear that the sensitivity becomes relatively weaker as compared to Figure . . Nevertheless, nding a correlation between the dimensionless groups ∆p + R 0 /(ηU ) and V /U , under high con nement, is by no means trivial because ∆p + R 0 /(ηU ) diverges like (1λ/λ c ) -1 . So here we put forward only a tting to ν = 0.6, given by

∆p + R 0 ηU 3 × 10 -6 exp 20 V U -1 . ( . )
We conclude that the dimensionless groups ∆p + R 0 /(ηU ) and V /U are strongly nonlinear coupled in tube ows.

.

. I

The hematocrit measures the volume of red blood cells (RBCs) compared to the total blood volume (red blood cells and plasma). Its normal value in humans is approximately % but can be largely less in small vessels. Consider now the hematocrit, denoted by H T , in a capillary of length L, and assuming RBCs ow in single le through the capillary with a characteristic length l v between two neighbors (i.e., the distance between their centers of mass), then the ratio L/l v is the number of RBCs inside the capillary, the total volume of the RBCs is (L/l v )Ω (Ω the volume of a single RBC) and the hematocrit H T equals to (ΩL/l v )/(πR 2 L), which gives a mean distance between RBCs

l v = Ω πR 2 H T .
( . )

Poiseuille's law de nes an apparent viscosity in terms of the overall pressure drop across the capillary tube

η app = ∆p 0 + ∆p + πR 4 8LQ = η + R 2 8U L ∆p + .
( . )

We then obtain, by setting L = l v ,

η app = η 1 + 3 32 R R 0 4 R 0 ηU ∆p + H T = η(1 + K T H T ), ( . ) 
where the dimensionless parameter K T is called apparent intrinsic viscosity. This singlele ow model allows recovering an apparent viscosity which depends linearly on the local hematocrit H T , as in a lubrication model for red blood cells [ ]. In capillaries with diameters up to about µm, the single-le ow model is appropriate as RBCs frequently ow in single le and interactions between cells may be negligible.

Finally, the apparent intrinsic viscosity is given by

K T = 9.53 × 10 -5 d 4 R 0 ηU ∆p + , for d > d c , ( . ) 
where d denotes the diameter of tubes, d c the critical diameter ( 2.8 µm) (c.f., § . . ). The dimensionless extra pressure drop ∆p + R 0 /(ηU ) for ν = 0.6 is plotted in Figure . as a function of the con nement λ = R 0 /(d/2) with R 0 2.8 µm. Relative apparent viscosity which is the ratio of apparent viscosity to suspending medium viscosity can be written in terms of tube diameter d in µm, dimensionless extra pressure drop, and hematocrit H T as

η rel = η app η 1 + 9.53 × 10 -5 d 4 R 0 ηU ∆p + H T , d in µm.
( . ) The vertical line (black) indicates a lower limit (d c 2.8 µm) to the diameter of tubes beyond which normal red blood cells cannot pass through without rapture.

As an example, simulated relative apparent viscosity with a hematocrit of . as a function of tube diameter is shown in Figure . . There is a small decrease in η rel as the tube diameter increases when d ≥ 5 µm (i.e., λ ≤ 1.11). The value of η rel for d = 5.6 µm (λ = 1) is slightly less than 2% of the value for d = 5 µm. At smaller diameters, say d < 4 µm, relative apparent viscosity rises rapidly and becomes substantially higher as the tube diameter approaches the critical diameter d c . The dramatical rise is attributed to a signi cantly large resistance to ow as re ected from the behavior of extra pressure drop at nearly maximum con nement. This feature is remarkably captured in the asymptotic theory of Ref. [ ] for the tube diameters less than 3.5 µm. The numerical results are compared with those obtained from a lubrication model of red blood cells at high shear rates (U/d > 50 s -1 ) [ ].

It is shown that apparent viscosity is almost independent of ow rate in this regime but increases with decreasing ow rate at lower shear rates [ , ]. At a bending capillary number Ca B = 50, our BEM simulations always lie in a high-ow-rate regime as an estimate of U/d = κCa B λ/(2ηR 3 0 ) > 50 s -1 even at a very weak con nement λ = 0.3. While the model of Ref. [ ] includes a shear elasticity of the RBC membrane but neglects the bending elasticity, our numerical predictions of η rel are in excellent agreement with the lubrication theory when d ≤ 4 µm. Indeed, under high con nement, bending resistance has a negligible contribution to the hydrodynamic force balance; the isotropic tension in the membrane (see Appendix A) resists the ow in the lubrication layer. When d > 5 µm, the parallel-ow approximation of Ref. [ ] yields relatively higher values of η rel as compared to our BEM simulation results.

Based on a compilation of in-vitro experimental data, an empirical equation describing the dependence of relative apparent viscosity on tube diameter has been put forward in Ref. [ ] and is also plotted in Figure . . Given the paucity of experimental measurements in the range of smaller tube diameters, we may say that the predicted relative apparent viscosities are in reasonable agreement with experimental data for tube diameters ranging between . and µm. Nevertheless, it should be mentioned that while the present single-le vesicle model provides some insight into how apparent blood viscosity behaves for tube diameters in the range of ∼ 2.8-µm, the model due to its axial symmetry nature is not able to make reliable predictions for tube diameters beyond that range as the con nement (λ < 0.4) becomes too weak for vesicles to preserve axisymmetry. Also, the limitation of a single-le ow model (i.e., d < 8 µm) makes the model unreliable for the prediction of relative apparent viscosity for larger tube diameters; the simulated results presented in Figure . for tube diameters larger than µm are for illustrative purposes only.

. S We have presented a numerical investigation of the motion and deformation of a vesicle freely suspended inside a circular tube in a pressure-driven ow. The numerical simulations of this uid-structure interaction problem have been carried out by using a previously reported axisymmetric boundary element method. The results were presented for the reduced volumes ν ranging from . (i.e., nearly spherical vesicles) to . (i.e., red blood cell-mimicking vesicles) at di ferent degrees of con nement up to near its critical value λ c . The critical con nement of a vesicle in cylindrical tube ow, as well as its critical length, was calculated on the basis of the geometric constraints of xed volume and surface area while assuming the fore-aft symmetry of a sphero-cylindrical vesicle. It turned out that this maximum con nement was overestimated by about one percent due to the symmetry that was usually assumed in the calculation.

The results of the present study allowed us to build a phase diagram of vesicle shapes in good agreement with the most comprehensive experimental data [ ]. Carefully controlled simulations let us propose a linear shape transition line separating the two commonly observed shapes, namely parachute-like and bullet-like shape regions in the (λ, ν) space. We found that this transition is accompanied by a change in the behavior of the mobility of vesicles, especially for low-reduced-volume vesicles (i.e., ν ≤ 0.7). The present work focused on highly con ned vesicles, which required high-resolution simulations to account for the hydrodynamic interaction between the tube wall and vesicle surface. These simulations enabled us to examine the limiting behavior of several quantities of interest, particularly the vesicle mobility and the extra pressure drop due to the presence of the vesicle in the tube. The results obtained lend support to a recently reported asymptotic theory [ ].

Aiming to help interpret the numerical results when the con nement approaches its critical value, we have also presented a lubrication theory combining two approaches reported in the literature. While the balance between viscous, bending, and tension forces controls the vesicle motion and deformation, we showed that bending elasticity plays a minor role in the hydrodynamic force balance in the lubrication layer. It is the isotropic tension in the membrane that resists the con nement-induced viscous friction, thus controlling the size of the gap between the tube wall and the vesicle surface. We also showed that the predicted mechanical tension at the proximity of the critical con nement for red blood cell-mimicking vesicles is of the order of the rupture tension. In addition, based on a single-le ow model, an attempt has been made to predict the rheology of dilute red blood cell suspensions. Simulated relative apparent viscosity of a vesicle suspension in small capillary tubes yielded a consistent and complementary result as compared with experimental data and highlighted the role of con nement in the rapid rise in the relative viscosity of red blood cells when passing through small vessels. However, there is a severe limitation to such a model since it is relevant only for capillary diameters up to about µm.

H --RBC . I

The human red blood cells (RBCs) are normally biconcave discocytes with a diameter of approximately µm and a thickness of about µm. The mean volume is about µm 3 and the average surface area around µm 2 , a value larger than the surface area of a sphere with the same volume. The RBC membrane (∼ nm in thickness) is composed of a lipid bilayer supported from inside by a two-dimensional ( D) triangular spectrin network of cytoskeletal proteins, as shown in Figure . . A highly elastic membrane, together with a high surface-tovolume ratio (reduced volume ν ∼ 0.64), provides RBCs with the ability of large reversible deformation when passing through capillaries. This composite bilayer-spectrin membrane (Figure . (b)) may be treated as an elastic thin shell. Based on this simpli ed elastic description and the assumption of at membrane, two fundamentally di ferent approaches have been proposed to study RBCs in uid ows: one, more traditional, founded on continuum mechanics, and the other, founded on molecular details, see for recent reviews [ , , , ].

The classical continuum approach, which was largely inspired by numerical methods developed in mechanical engineering, considers the suspending uids as well as the RBC membrane itself as a continuous medium. A number of well-established continuum methods have been developed, including boundary integral/element method (BIM/BEM) and several interface tracking methods widely employed in multi-phase ows. These methods have been used to simulate the dynamics of a single RBC in external ows as well as the collective behavior of an ensemble of them [ ]. From this point of view, the RBC is most often modeled as a hyperelastic capsule (made of the polymerized membrane, Figure . (d)) [ ,]. However, the uid nature of the cell membrane was systematically lacking; the near incompressibility of the membrane was generally taken into account through a high dilatational modulus. Numerical simulations with vesicles (made of a lipid bilayer, Figure . (c)) with bending rigidity can provide insight into the shapes taken by RBCs, either at equilibrium -the typical biconcave shape of RBCs or in external ows -bullet, parachute, and slipper shapes [ ], but shear elasticity and shape memory that are the fundamental mechanical properties of RBCs are missing. Discrete modeling exploits the microstructural properties of RBCs. Any medium is seen as a huge number of molecules, submitted to thermal agitation and to intermolecular forces. However, to be able to resolve much larger space and time scales involved in the transport of RBCs in uid ows, coarse-graining of spectrin-level models has to be used, and the level of coarse-graining characterizes the crudeness with which the molecular level of the medium is represented [ ]. Mesoscale (whole cell) particle-based methods [ ] consider both the lipid bilayer and the spectrin cytoskeleton and the interaction between them. Some cell scale particle-based models keep the trace of the two contributions in the form of a twocomponent whole cell model [ , ]. In this way, the detachment of the cytoskeleton from the lipid bilayer, which, for example, can occur in the micropipette aspiration experience or the ow through a constriction, has been successfully simulated [ ].

One could regard the continuum approach as the ultimate state of coarse-graining; however, in that ultimate state, the molecular structure is fully integrated and forgotten. There is a need for developing new numerical methods combining the two approaches, thus being able to bene t from the advantages of both of them. Indeed, the idea of representing the cytoskeleton as a discrete D structure made of a large number of connected springs is very attractive. This is the starting point of the present contribution. Actually, particle-based and continuum-based models work all on the same principle: one mesh (or two coupled meshes if we distinguish between the bilayer and the cytoskeleton) made of triangular elements to represent the RBC membrane. In the particle-based model, the mesh is seen as a discrete network of springs, which tends to be a good representation of the spectrin cytoskeleton when the number of vertices reaches the real cytoskeleton structure. In the continuumbased model, the mesh is understood as a nite element discretization of the membrane, in which a two-dimensional mesh, embedded in a D domain, is de ned by a set of vertices connected by edges. Therefore, the same ingredients are present, providing very similar modeling possibilities in these two approaches.

In this chapter, we propose to explore the idea of whether the combination of a spring network with a vesicle model could give rise to an accurate and reliable hybrid discretecontinuum RBC model. It is a rst attempt to couple a D vesicle model with a discrete description of the cytoskeleton. From purely mechanical considerations, such a model could extract the essential mechanical properties of the RBC membrane: uidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surfacearea and volume conservation constraint. This is also computationally feasible, thanks to an existing continuum vesicle model [ , , ]. The argument is that, in the vesicle model, the movements of the bilayer in the normal and tangential directions are treated di ferently, namely in Lagrangian fashion for the former and with a Eulerian description for the latter. Therefore the tangential movement of mesh vertices (or nodes in a nite element context), which does not change the membrane shape, is fully independent of the tangential movement of the lipids. Actually, the possibility of prescribing the tangential velocities of mesh vertices to any convenient set is used to preserve the mesh quality in a vesicle simulation context. Our idea for an extension towards RBCs is then to prescribe this velocity set to that of the vertices of a spring network. In doing so, the movement of the mesh vertices is constrained to slide along the bilayer. However, this constraint is automatically ensured by the fact that the same mesh is used both for the bilayer and the cytoskeleton, and that the nodes of the bilayer nite-element mesh are also the vertices connected by the edges of spring network. As far as numerical aspects are concerned, one of the major developments involves assigning a spring behavior law to the edges and a drag friction law (based on the lipid/node relative velocity) to the vertices, as well as a way how to incorporate these additional forces into the vesicle model.

In the following sections, we rst describe the RBC membrane model and outline the numerical methods. We then present three numerical examples to evaluate the proposed hybrid model, followed by a summary of this chapter.

. C

The membrane model consists of a collection of points {x n , n ∈ 1 . . . N }, which are the vertices of the RBC surface triangulation, representing the cytoskeleton. The length of the link connecting vertices n and p is de ned as l np = |x nx p |. The spring network induces on each node (or vertex) n of the surface mesh a resulting force given by

f n = p f np = p K np (x p -x n ) ( . )
where the summation is over all the vertices p connected to the node n by an edge np, i.e. spring np.

In Eq. ( . ), f np denotes the force exerted by the node p on the node n, and K np represents the sti fness coe cient of the spring np, connecting the node n at the position x n to the node p at the position x p . In the case of a linear spring with the spring sti fness k np , the force f np , as a function of the spring length l np and its value at rest l 0 np , is given by

f np = k np l np -l 0 np l np (x p -x n ) = k np (1 -l 0 np /l np )(x p -x n ) = K np (x p -x n ) ( . )
Since the aim of this work is not to compare di ferent spring laws but rather to test the idea described in the introduction, we only consider one of the constitutive laws proposed in [ ], namely the nitely extensible nonlinear elastic (FENE) spring in combination with a repulsive force de ned as a power function (POW). It is worth mentioning that compared to the linear spring model, i.e. Eq. ( .), the FENE-POW spring model has been widely used for modeling the shear resistance of the cytoskeleton, especially for large deformations of RBCs. The elastic energy of the spring np is then the sum of an attractive part and a repulsive one

U np = - k a 2 (l max np ) 2 log(1 -x 2 np ) + k r (α -1)l α-1 np ( . )
where k a and k r are, respectively, the FENE (attractive) and the repulsive spring constants, α is the repulsive exponent assumed as a constant value. This expression uses the normalized spring length (or separation distance) x np = l np /l max np ∈ (0, 1]. So, the spring's behavior law can be adjusted by xing three physical parameters: the maximum spring length l max np , and the attractive and repulsive spring constants k a and k r . The total sti fness coe cient K np is given by

K np = k a 1 -x 2 np - k r (l max np x np ) α+1
( . )

Eq. ( . ) de nes a spring with non-zero equilibrium length l 0 np given by f np = -δU np /δx n = 0 for x 0 np = l 0 np /l max np . The equilibrium length l 0 np corresponds to the length of the spring in the reference shape, i.e. stress-free mesh. For simpli cation, we use hereinafter x 0 and l 0 to denote, respectively x 0 np and l 0 np . The two spring constants k a and k r can be related by

k r = k a l α+1 0 1 -x 2 0 ( . )
Thanks to the Virial theorem [ ], the elastic shear modulus of the spring network µ s can be expressed in terms of k a and k r as follows:

µ s = √ 3 4 2k a x 2 0 1 -x 2 0 2 + k r (α + 1) l α+1 0 ( . )
Combining Eq. ( . ) with Eq. ( . ) and Eq. ( . ) yields nally the spring force at node n by an edge np

f np = K np (x p -x n ) = 4µ s √ 3 2x 2 0 1-x 2 0 + α + 1 1 -x 2 0 1 -x 2 np - x α+1 0 x α+1 np (x p -x n ).
( . )

As in [ ], we set α = 2 and the ratio x 0 = 1/2.05. For a given shear modulus µ s , which is in the range of -µN/m for a normal RBC [ ], and on the basis of the triangulation of cell membrane (x np = l np x 0 /l 0 = l np x 0 /l 0 np ) and its stress-free mesh (l 0 = l 0 np ), the elastic force f e np at node n by the edge np exerted by the spring network on the lipid bilayer can be obtained from Eq. ( . ) since f e np is simply equal to f np , and subsequently incorporated into the bilayer-cytoskeletal interaction as described below.

.

C -

In this chapter, interest is focused on the membrane model, thus a free space case without physical boundaries will be used to complete the description of the model. In [ , ], the boundary element method is used to resolve the lipid's ow on the vesicle membrane, which can be formulated as

u lip = u ∞ + Gf , f = f b + f γ ( . )
where the exponent "lip" stands for the lipid's velocity eld and "∞" indicates the imposed background bulk uid ow. G is the Green operator due to the Stokeslet, f b (y) is the bending force eld induced by the lipid bilayer in response to deformations and f γ (y) is the surface-tension-like force resulting from the Lagrange multiplier γ of the surface divergencefree constraint on the lipid's ow

∇ S • u lip = 0. ( . )
For an RBC we have to add the elastic force f e (y) (Eq. . ) exerted by the spring network on the lipid bilayer. This spring elastic action is transmitted to the lipid bilayer in the normal direction directly and in the tangential plan indirectly via the drag forces f d (x) that the lipids exert on the cytoskeleton

f d = C f Π tg (u lip -u cyt ) = Π tg f e ( . )
where the exponent "cyt" stands for cytoskeleton and C f is the friction coe cient. The operator Π tg = Id -Π n is the projector onto the tangent plane of the membrane surface, with Π n = n ⊗ n the projector in the normal direction given by the normal vector n pointing toward the outside bulk uid.

From the kinematic point of view, the sliding of the cytoskeleton is taken into account, thanks to the mixed Lagrangian-Eulerian updating of the mesh node's position,

x(t + dt) = x(t) + dtu = x(t) + dt Π n u lip + dt Π tg u cyt .
( . ) Thus, the mesh nodes move with the lipid's velocity in the normal direction only, whereas it moves tangentially with the cytoskeleton's ones. Using Eq. ( . ), Eq. ( . ) writes also

x(t + dt) = x(t) + dtu lip -dt 1 C f Π tg f e .
( . )

Using the Stokes-Einstein relation and measured values of the translational di fusivity of band and glycophorin C in the lipid bilayer, drag force and thus the values of the friction coe cient can be deduced [ ]. While these values are relevant only in the context of a spectrin scale modeling or in the case involving a dynamic process. In the present study, the value of C f a fects only numerical e ciency; C f → 0 is equivalent to minimizing the elastic energy at each time step, whereas a nite value leads to a relaxation of the cytoskeleton stresses. We set C f = 0.194 pN µm -s in most of our computations, as in [ ], but the nal stationary RBC shape remains the same for all the examples we have considered, whatever its value [ ].

Before presenting our numerical examples, the properties of RBC and the blood ow in the human body are listed in Table . . ( -) [ , , , , ] Shear modulus, µ s (µN m -) -( -) [ , , ] Bilayer-cyto friction coe f., C f (pN µm -s) .

[ , ]

Plasma viscosity, η e (×10 . N

Here, we present three simulation examples to evaluate the proposed approach. In all these three examples, the initial shape of RBC is a biconcave discoid, and the geometry can be obtained using the following expression [ ]

y = ±D 1 - 4(x 2 + z 2 ) D 2 a 1 + a 2 x 2 + z 2 D 2 + a 3 x 2 + z 2 2 D 4 , ( . 
)
where D = 7.82 µm is the cell diameter, a 1 = 0.0518, a 2 = 2.0026 and a 3 = -4.491. The volume and surface area of the corresponding RBC are respectively µm 3 and µm 2 , giving a reduced volume ν = 0.64. sion, which has elements, created by the Loop subdivision. In this chapter, all results are obtained with elements unless otherwise stated. For the coarse-grained model used for cytoskeletal proteins, the reference shape is another indispensable ingredient to compute the elastic force, as in Eq. ( . ). However, it must be stressed that there is no universal consensus on the reference shape that should be adopted to describe the real deformation of an RBC under external solicitations, even though it is an essential characteristic to consider in order to correctly estimate the actual stress in the membrane during large deformations [ ]. In most of the previous studies, the initial shape, i.e., a biconcave discocyte is used as the stress-free reference shape. But recently, an oblate, which is close to a sphere (ν=0.95 ∼ 0.997), with equal surface area to the RBC is chosen as the stress-free con guration [ , , ]. The nearly spherical oblate shape is used in the hope of recovering some experimental observations under strong external stresses, to make up the de ciency in using the biconcave shape. In this chapter, both the biconcave and the oblate shape are used as the stress-free con guration. But we do not have many arguments on why we use such a shape as reference shape, it may be interesting to make a quantitative comparison of their e fects.

Before presenting the numerical results, it is useful to recall the characteristic parameters appeared in our current system. We use the cell radius as the reference length, i.e., L ref = R = D eff /2. For RBC, there are two di ferent characteristic times used to measure the time needed to restore a deformation due to bending and shearing, respectively. That is

t b char = η e R 3 κ and t s char = η e R µ s .
( . )

Taking the typical values of RBC, R = . µm, η e = 1.2c Pa = 1.2 × 10 -3 Pa s, κ = 2.4 × 10 -19 J and µ s = 5 × 10 -6 N m -, we have t b char ≈ 112.13 ms and t s char ≈ 0.68 ms. The two typical in vivo shear rates, and s -, which are considered as the avergae shear rate and the peak shear rate in human body. This de nes the characteristic ow time (using the shear rate γc = γmax / √ 2) t f char = γ-1 c ≈ 0.86 ms [ , ]. Similarly, the two characteristic force densities are

f b char = κ R 3 and f s char = µ s R .
( . )

In this chapter, we use the characteristic values based on shear modulus as the reference values, that is t ref = t s char and f ref = f s char , for all simulations of RBC. Whereas when these results are compared to those of the vesicle (µ s = 0), the time is re-scaled by the characteristic time de ned by the bending modulus t b char in post-processing.

. . RBC

We rst perform RBC stretching simulations and compare our numerical results with the experimental data of RBC deformations by optical tweezers [ ]. In this example, an oblate with a reduced volume ν = 0.98 is used as the stress-free shape in most of the cases, and κ = 2.4 × 10 -19 J.

Figure . shows a sketch of RBC after deformation. The RBC membrane network is composed of N (= 642) vertices, which de ne the level of the membrane representation from the spectrin-level to the coarse-grained network of N vertices. The total stretching force F s is applied to an area with diameter d c ≈ 2 µm, along the negative and positive axial directions of x (drawn as black dots in Figure . shows the change in RBC's axial and transverse diameters in response to the applied stretching forces with three di ferent shear modulus, µ s = 2.0, 4.0 and 6.0 pN µm -. These numerical predictions are compared to the experimental results given by Suresh et al. [ ]. As the cell becomes more and more elongated by increasing the stretching force F s , it is seen that the axial diameter D A increases. This elongation induces a contraction of the in the orthogonal direction, which results in a decrease of the transverse diameter D T .

As for the evolution of the axial and transverse diameters as a function of the stretching force, we should rst be aware that the elastic shear modulus µ s , measured experimentally, lies in the range of -µN/m, and the bending modulus in the range of -×10 -19 J [ , ], indicating a large-amount scatter in the measured values, as shown in Figure . . As for our numerical results, it is seen that, as the stretching force increases, the RBC's axial diameter increases, while transverse one decreases from the initial value D = 7.82 µm. Given a relatively higher value of the shear modulus µ s , a relatively smaller deformation is produced since the membrane is "harder". Our numerical results behave well in this way and vary around the experimental measurements. But interestingly, our hybrid approach gives a good prediction with a smaller µ s (= pN µm -) for the stretching force is not too strong, whereas, for a stronger stretching force, a good prediction is given with a higher shear modulus µ s (= pN µm -).

. . RBC As a second numerical example, we perform a preliminary study of RBC ows in a simple shear ow, u ∞ = γye x . The aim is to show that this hybrid approach can indeed reproduce the basic dynamics of the RBC in shear ow. In this example, the biconcave shape is the only used stress-free shape.

A general picture of the dynamics of a single RBC in a shear ow was proposed by Abkarian and Viallat [ ], as shown in Figure . . It is seen that the biconcave shape is preserved at low values of Ca, and conversely, the cell is deformed by hydrodynamic forces at high values of Ca. Compared to RBCs in vivo, one particularity of RBCs in diluted suspension is that the steady tank-treading (TT) motion occurs only for low viscosity ratios [ , , ]. In this example, we are only interested in the tumbling and the tank-treading motions.

Before presenting the numerical results, it is useful to recall the relevant dimensionless parameters that we are using in this example, they are ( ) the viscosity ratio λ = η i /η e ; ( ) the capillary number Ca = t s char /t f char = η e R γ/µ s , which is the ratio of the characteristic time to restore the membrane deformation and the characteristic time of the ow;

( ) the reduced bending number C b = κ/(µ s R 2 ), which is the ratio of the bending modulus and shearing modulus. the tumbling motion only occurs for λ = 5.0, no matter the cell is discretized with elements or elements. All simulations for λ = 0.2 and λ = 1.0 start with a tank-treading motion and may end up with a very deformed shape (a shape with a xed inclination angle to the ow direction and without membrane tank-treading) if the capillary number Ca exceeds certain critical values.

Figure . shows the evolution of the inclination angle φ y (the angle between the minor axis of the RBC and the Y axis, as shown in Figure . ) and the x component of the coordinates of the numerical probe (For Figure . (b), this probe is indicated by the black dot shown in Figure . ) as a function of the dimensionless time γt for an RBC with λ = 5.0 ows in a simple shear ow with Ca = 0.1. From these gures, it can be seen that these Figure . shows snapshots of the motion/deformation of RBC as well as the cell pro les in the z = 0 plane over one half oscillation cycle of the inclination angle φ y for C b = 0.003 (Figure . (b)). These gures show, in addition to the periodically ipping such as that for the vesicle (Figure . ), that their shapes also deform periodically. Moreover, the crosssection (cell pro les in the XY plane) alternates between the biconcave form and a reversed Sshape pattern, as reported by Pozrikidis [ ] and Peng et al a half-period of tumbling motion, T /2, they are . , . and . for our simulation, for predictions given by MSM and SLM, respectively. It can be seen, both for our simulation and the predictions of Peng, that the angular velocity has a minimum value when the at side of RBC is parallel to the direction of ow (φ y = °) and reaches a maximum when the at side is normal to the direction of ow (φ y = °), which are in agreement with the observation of Goldsmith and Marlow for RBCs in dilute suspensions of Poiseuille and Couette ow (< 2% haematocrit) [ ]. Quantitatively, this variation of the angular velocity is stronger in our simulation than those of Peng.

By tting the experimental data at the low shear rate ( γ < s -, or Ca < 0.05), Goldsmith and Marlow proposed that the period of rotation can be well described by the Je fery equation for prolate spheroids ) where the dimensionless number r p ∈ (0.25, 0.51) [ , ]. Substituting in Eq. ( .) with the mean value . , we nd the period T ≈ 18.9, which is close to our prediction of 20.4.

T = γ∆T = 2π r p + 1 r p , ( . 

T -

We then show two cases with tank-treading motion under the following common conditions: λ = 1, γ = s -, and for two di ferent shear moduli µ s = . pN µm -(Ca ≈ 0.06) and µ s = . pN µm -(Ca ≈ 0.12), in Figure . .

In Figure . (a) and (c), the red horizontal lines show the inclination angle between the major axis of RBC and the ow direction, it has a value about 18°for µ s = . pN µm - and 16°for µ s = . pN µm -once the tank-treading movement becomes stable (t * > 60). Whereas the black curve shows the time history of the angle between a numerical probe (a vertex of the mesh) and the ow direction, it varies periodically as the membrane takes the tank-treading motion. Due to the e fect of remeshing, the frequency indicated by the inclination angle of the probe should be di ferent from the actual tank-treading frequency. However, this e fect must be subtracted in order to calculate the tank-treading frequency.

Figure . (b) and (d) show a snapshot (at t * ≈ 131) of the tank-treading motion of the RBC, respectively for Figure . (a) and (c). The RBCs are colored by the mean curvature and the membrane presented here was re ned to have elements to better represent the shape. The arrows indicate the direction of the velocity on the membrane, they are in the range of [-0.015, 0.015] for µ s = . pN µm -and of [-0.033, 0.033] for µ s = . pN µm - (at the instant t * ≈ 131) for the x component of the velocity, i.e., u x . This means that periodic variation of the inclination angle of the probe has e fect from the membrane tanktreading (and, not only because of remeshing). From the elongation of the shape, the e fect of the shear modulus is also shown. 

. . RBC

The third and the last simulation example concerns a single RBC in capillary ows with equal viscosities (λ = 1). Identical to the case of a vesicle owing in capillary, the Poiseuille ow is given by Eq. ( .), where U m = .

cm s -for all cases in this section , which lies in the range of . cm s -to cm s -as exploited by Pozrikidis [ ]. In this section, two di ferent con gurations are studied by varying the shear modulus µ s , they are A. β = 0.5, H 0 = 0.0 and θ 0 = -°(see Figure . ); B. β = 0.4, H 0 = 0.3 and θ 0 ≈ -°.

Whereas the bending modulus is set to 2.4 × 10 -19 J and the biconcave shape is used as the unstressed shape for both of these con gurations. In this example, RBC with di ferent shear moduli µ s owing in the capillary are studied numerically and the results are compared with those of the vesicle (RBC with µ s = 0). To show the evolution of the RBC's shapes under the e fect of the shear modulus, and to compare it to that of vesicle, all results are re-scaled by the characteristic time based on the bending modulus t b char (Eq. ( .)), namely, t * = t/t b char .

C A First, we consider that RBCs are initially placed on the axis of the capillary (H 0 = 0.0) and that their at surfaces are orthogonal to the ow (θ 0 = -°) for the proposed hybrid method with various elastic moduli µ s = 0.0, 0.5, 5.0 and . µN m -. The evolution of the shape is rst presented in Figure . for a vesicle (µ s = 0.0) and an RBC (µ s = 5.0). It can be seen that from a biconcave shape, they quickly deform into a parachute-like shape, with a rounded front and a concave rear face. During the evolution, they remain at the centerline with the axisymmetric shape, while the vesicle is more deformed due to the lack of elastic force generated by the cytoskeleton in the case of RBCs.

The evolution of the position of the rounded front and the upper bound are shown in Figure . (a), respectively by the maximum coordinate of the x component and y component of all vertices, X max and Y max (see Figure . (b)). It is seen that the shapes deform signi cantly from t * = 0 to t * = 0.5, and a visually quasi-steady shape is obtained at t * = 1.0, as depicted in Figure . . The nal stable shapes of these di ferent shear moduli µ s are plotted in Figure . (b) for the cell pro les in XY plane (top) and in XZ plane (bottom). This shows that these shapes remain axisymmetric, at least visually, when they reach stable form. As for the e fect of the elastic modulus µ s , it is seen that the deformation is attenuated for an RBC with high resistance to elastic force. This is quite reasonable since an RBC with a higher shear modulus will have a greater ability to withstand hydrodynamic stresses.

The evolution of the additional pressure drop ∆p a (extra pressure needed to maintain the ux due to the presence of RBCs) adimensionned by η e U /R t for these di ferent shear illustrates the estimation by Eq. ( . ) with λ → ∞, which corresponds to the asymptotic prediction of the additional pressure induced by a small solid sphere moving at the centerline. For these four cases, the additional pressure initially increases to a large value at a small time interval during which signi cant deformation occurs (see Figure . (a)), and then it settles to a nearly stable value. In general, by increasing the sti fness of the membrane, the numerical predictions given by the hybrid model converge to the asymptotic value . , the asymptotical prediction for solid spheres. The evolution of the axial velocity of the cell centroid is correspondingly illustrated in Figure . (b), and the horizontal blue segment shows the estimation by Eq. ( . ) with same approximation as for the additional pressure drop. This evolution of the translational velocity is similar and consistent with that for the additional pressure drop.

C B

In this case, the at plane of RBCs is not placed orthogonally to the ow direction, but only with a small inclined angle θ 0 ≈ -°, and at a height of H 0 = 0.3 in a capillary with R t = 2.5. By varying the shear modulus of the membrane µ s from (vesicle) to a relatively high value . , it is found that a totally di ferent shape evolution process depends upon the shear modulus, as demonstrated in Figure . . nal stable shape remains unchanged to the slight increase of the shear modulus from . to . , while the evolution process becomes slower due to the elasticity of the membrane, that is, more work is needed to deform an RBC than to deform a vesicle.

A di ferent evolution occurs by increasing the shear modulus to . , as indicated in the third row of Figure . , a biconcave shape nally evolves into a biconcave-croissant shape, for which the two dimples are preserved during the deformation. This evolution remains globally the same by further increasing the shear modulus to . and then to . . Morphologically, the biconcave shape is rst stretched due to hydrodynamic stresses, but this stretched deformation is then relaxed due to a relatively high value of the shear modulus (µ s ≥ 0.5). One of the minor di ferences lie in this common evolution process is that the deformation becomes more di cult for a higher value of the shear modulus.

Figure . shows the evolution of the lateral position of the centroid Y g and the inclination angle θ of RBCs as function of the time t * (Eq. ( . )) dimensionless by characteristic time de ned by the bending modulus t b char . It is seen that for the shear modulus those with g increases with the shear modulus µ s and the inclination angle θ has almost a zero value. That is, the stable biconcave-croissant shape has its at plane parallel to the ow direction and its radial position increases with the shear modulus. While for the two cases with a slipper as nal stable shape, the centroid Y g is still evolving. For reference, the prediction of the stable lateral position, given by vesicles (ν = 0.65, prolate or oblate), is about . .

. S

In this chapter, RBCs and in particular its membrane are rst reviewed in Section . . RBCs can generally be modeled as a hybrid of the vesicle and the capsule because of its composite bilayer-spectrin membrane. Two widely used approaches, the classical continuum approach and the discrete modeling (also the coarse-graining one) are then brie y reviewed.

The proposed hybrid continuum-coarse-grained approach, based on our previous vesicle model (as that used in Chapter ), is then presented. This approach includes the essential mechanical properties of the RBC membrane, namely shearing resistance and bending rigidity, as well as the constraints of xed surface area and xed enclosed volume. Speci cally, the RBC membrane is modeled as a composite network, which consists of a dynamically triangulated surface as in a uid vesicle model. The membrane is then coupled with an additional network of springs with xed connectivity, representing the cytoskeleton. In this work, the coarse-grained FENE-POW spring model, as presented in Sec. . , is used to describe the elastic cytoskeleton through Eq. ( . ). This force, which is embodied on each spring edge, is transmitted to the lipid bilayer in the normal direction directly and in the tangential plane indirectly via the drag forces f d (Eq. ( .)), as presented in Sec. . . Compared to other twocomponent approaches, the mechanical interaction between the bilayer and the cytoskeleton is explicitly computed. Another advantage is that only one mesh is used both for the bilayer and the cytoskeleton, thus signi cantly reducing the computational complexity.

Following on from our previous work [ ], we presented three simulation examples (with stationary and time-dependent shapes) to illustrate the e fectiveness of our model in the isogeometric FEM-BEM framework. Our hybrid approach is rst applied to the optical tweezers experiment (Sec. . . ), and then the tumbling and the tank-treading motion are investigated in a linear shear ow (Sec. . . ), and lastly, its dynamics in capillary ow is studied by varying the shear modulus µ s (Sec. . . ). Thanks to the subdivision representation, no local anomalous surface features (kinks) appear even in the case of large deformations such as the tumbling case, contrary to the previous work [ ] with simple linear triangular elements.

C P . C

The main objectives of this dissertation were to numerically investigate the dynamics of soft particles -lipid bilayer vesicles and red blood cells -in microchannel ows. To this end, the original code has been developed to account for microchannel walls of arbitrary crosssection and incorporated into a previous isogeometric boundary element method model for unbounded Stokes ows. The newly-developed code has been validated by two wellknown examples -a clean liquid drop owing in circular capillaries and a capsule moving in a rectangular microchannel. Moreover, it is shown that the numerical method preserves second-order convergence in both time and space. Subsequently, the code has been used to study the dynamics of a vesicle or a red blood cell that is transported through a circular tube in a pressure-driven ow.

The motion and deformation of a vesicle in tube ow with matched viscosity of inner and outer uids are determined by three independent dimensionless parameters, namely, the vesicle's reduced volume, the ow con nement, and the capillary number. A de ated vesicle initially placed at an o f-center position, is shown to migrate also perpendicular to the ow direction due to both the presence of the wall boundary and the curvature of the imposed ow pro le. Three general migration modes have been clearly identi ed -migration to the ow centerline (i.e., inward migration), centered snaking, and migration to an o fcenter position -depending on these three control parameters. Simulation results revealed that during the lateral migration, the vesicle's shape undergoes continuous deformation due to the hydrodynamic stresses imposed by the ow onto the membrane. Once the lateral migration speed vanishes, a stable shape is obtained. In comparison with previous studies, various stable shapes have been reproduced, including bullet shape, parachute shape, peanut shape, croissant shape, slipper shape, and also a not well-documented one, namely the biconcave-croissant shape that has two biconcave at surfaces (like the unstressed shape of RBCs) and has two planes of symmetry (like a croissant shape). A noticeable feature found is the membrane sliding (tank-treading motion) that occurs during the lateral migration or for the non-axisymmetric shapes. Furthermore, it is shown that the ow structure on the vesicle membrane of the slipper shape depends on the degree of con nement. Simulation results made it clear that upon increasing either the con nement or the capillary number, the stable shape tends to have more planes of symmetry -a stable form transition from nonaxisymmetric one to axisymmetric one, or the centroid of the stable form tends to decrease to zero if the corresponding free space stable shape is a slipper (characterized with non-zero lateral position). Taken together, several phase diagrams of stable shapes for di ferent re-

Conclusions and Perspectives

duced volumes have been built in the (con nement, capillary number) space, showing an extension of the set of vesicle morphologies and rich vesicle dynamics.

Under high con nement, it is expected that the vesicle shape preserves axisymmetry, which has allowed us to study vesicle hydrodynamics by means of the axisymmetric boundary element method. The geometric properties of a vesicle -xed volume and surface area -yield critical ow con nement or a low limit to the radius of tubes through which a vesicle may pass intact. Simulation results have been obtained in a wide range of the reduced volume (i.e., 0.6 ≤ ν ≤ 0.98) for di ferent degrees of con nement up to near critical value. Our high-delity BEM simulations have produced the prediction of the most important hydrodynamical quantities of interest -vesicle mobility and extra pressure drop, the latter having implication for the rheology of a vesicle suspension in tube ow. Being able to deal with a wider range of the reduced volume, this study has extended the previous numerical investigation of vesicle hydrodynamics in high con ned ows. The numerical results, together with previous asymptotic theory and various scaling laws obtained herein, o fer possibilities for tube-ow experiments to correlate easily accessible quantities such as vesicle velocity and its length to the extra pressure drop. Several other quantities of interest can also be accurately predicted, like the reduced volume, even the thickness of lubrication lm from which maximal tension in the membrane can be inferred, too. It is our hope that the results presented this paper could serve as a benchmark for future studies and help devise and interpret tube-ow experiments.

By combining a continuum description of a lipid membrane with a discrete representation of cytoskeleton, we have presented an approach for modeling the membrane of red blood cells in the context of the prediction of red blood cells dynamics in a ow. Compared to other two-component approaches, we explicitly computed the mechanical interaction between the bilayer and the cytoskeleton by considering normal elastic spring and tangential friction force. Another advantage is only one mesh that is used both for the bilayer and the cytoskeleton, thus signi cantly reducing the computational complexity. The newly-developed model has o fered the possibility of studying tank-treading and tumbling motions of an RBC immersed in a linear shear ow, and RBCs dynamics in tube ow. This work lls the gap between continuum mechanical modeling and coarse-grained modeling of RBC membranes by fusing these two approaches.

. P

We outline below some improvements and future potential developments that are closely related to this work:

• How to improve the efficiency of simulations? BEM simulations of D vesicle dynamics are computationally challenging and time-consuming, particularly for highly de ated vesicles and under high ow con nement -it took several months (with CPUs) to simulate a snaking dynamics with elements (Fig. . ). One of the major diculties stems from the constraint of the vesicle's surface incompressibility that has to be satis ed at each time step. One possible way to overcome this hurdle would be to implement a penalization method (or quasi-incompressibility method) that is widely employed in the numerical solution of the incompressible Navier-Stokes equations.

• We have almost the whole phase diagram of vesicle shapes in tube ow for the reduced volumes equal to . , . , and . , it would be interesting to extend simulations to include smaller reduced volumes.

• The newly-developed code allows for the di ferent cross-sections of conduit ow, it's natural to extend the study to square or rectangular section, or even convergent-divergent conduits. Such an extension would nd direct applications to micro uidic experimentations.

• The proposed hybrid RBC model is a combination of the vesicle model with a network of springs with xed connectivity, representing the cytoskeleton. Since the thin elastic membrane can also be modeled with a capsule model, a combination of vesicle and capsule models would constitute a new, more consistent approach to modeling the mechanical properties of the RBC membrane.

• Our code is currently written in Java (partially multithreading), it could be bene cial if it were re-coded into fully parallelized code, with C++ for example. A combination of OpenACC with CUDA-enabled GPUs computing (only partially available, up to now) would lead to a substantial improvement over the present version. ; the tube wall is placed at more than 20% away from its actual place in order to amplify the width of the gap between the vesicle and the tube wall.

We combine previously reported results in the literature [ , , , , ] to present an axisymmetric form of lubrication theory for a vesicle in tube ow. Our aim is not to numerically resolve the complete system of governing equations of the lubrication theory, as it was generally conducted by those authors. Instead, we make use of some asymptotic scaling laws established via lubrication theory analysis to help interpret the present simulation results when con nement is close to its maximum value (i.e., λ → λ c ). The following paragraphs are an attempt to combine two approaches, one is based on parallel-ow approximation [ , , ], the other is the small-gap theory in the singular limit λ → λ c [ ]. Starting from well-established theories developed in [ , ], we show that the two approaches yield the same asymptotic behavior of the lm thickness and vesicle velocity in the limit λ → λ c , and the lm thickness is further controlled dynamically by the membrane tension.

A schematic description of lubrication theory analysis is shown in Figure A. . The shape of the membrane is described by r = h(x), and the gap separating the vesicle membrane and tube wall has a typical lm thickness h, which is de ned at the vesicle's midplane, namely h ≡ R -h(0). At this stage, we assume that the thickness is small compared to the vesicle length L (but not necessarily small relative to the tube radius), as it is usually the case with high con nements (e.g., as illustrated in Figure . ). In the reference frame moving with a steady vesicle centered along the axis of the tube, the axial symmetry of the problem and the incompressibility of the vesicle membrane lead to # w r i t e v e r t i c e s p r i n t ( ' $Nodes \ n%d '%l e n ( mesh . p o i n t s ) , f i l e = m s h f i l e ) f o r n o d e _ i d i n r a n g e ( , l e n ( mesh . p o i n t s ) ) : p r i n t f i l e = m s h f i l e ) p r i n t ( ' $EndNodes ' , f i l e = m s h f i l e ) # w r i t e c e l l s # o n l y work f o r t r i a n g l e s u r f a c e mesh # p h y s i c a l t a g i s s e t t o e l e _ t y p e = n b _ t a g s = p r i n t ( ' $ E l e m e n t s \ n%d '%l e n ( mesh . c e l l s [ ' t r i a n g l e ' ] ) , f i l e = m s h f i l e ) f o r e l e _ i d i n r a n g e ( , l e n ( mesh . c e l l s [ ' t r i a n g l e ' ] ) ) :

p r i n t ( e l e _ i d + , ' ' , e l e _ t y p e , ' ' , n b _ t a g s , ' ' , , ' ' , , ' ' , # w r i t e box s t r u c t u r e g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x + , -XM, -YM , ZM, l c ) ) g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x + , XM, -YM, ZM, l c ) ) g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x + , XM, -YM, -ZM, l c ) ) g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x + , -XM, -YM , -ZM, l c ) ) g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x + , -XM, YM, ZM, l c ) ) g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x + , XM, YM, ZM, l c ) ) g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x + , XM, YM, -ZM, l c ) ) g e o f i l e . w r i t e ( ' P o i n t (%d ) = {% f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x -XM, YM, -ZM, l c ) )

g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e Loop (%d ) = {%d ,% d ,% d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) )

g e o f i l e . w r i t e ( " L i n e Loop (%d ) = {%d ,% d ,% d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " L i n e Loop (%d ) = {%d ,% d ,% d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ,s t a r t I d x -,s t a r t I d x -) ) g e o f i l e . w r i t e ( " L i n e Loop (%d ) = {%d ,% d ,% d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ,s t a r t I d x -,s t a r t I d x -) ) g e o f i l e . w r i t e ( " L i n e Loop (%d ) = {%d ,% d ,% d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ,s t a r t I d x -,s t a r t I d x -) ) g e o f i l e . w r i t e ( " L i n e Loop (%d ) = {%d ,% d ,% d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ,s t a r t I d x -,s t a r t I d x -) )

g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " P h y s i c a l S u r f a c e ( \ " Box \ " , %d ) = {%d ,% d ,% d ,% d ,% d ,% d } ; \ n " % ( , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " S u r f a c e Loop (%d ) = {%d ,% d ,% d ,% d ,% d ,% d } ; \ n " %( s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " Volume (%d ) = {%d ,% d } ; \ n " %( s t a r t I d x + , , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " Volume (%d ) = {%d } ; \ n " %( s t a r t I d x + , ) ) g e o f i l e . w r i t e ( " P h y s i c a l Volume ( \ " o F l u i d \ " , %d ) = {%d } ; \ n " %( s t a r t I d x + , s t a r t I d x + ) ) g e o f i l e . w r i t e ( " P h y s i c a l Volume ( \ " i F l u i d \ " , %d ) = {%d } ; \ n " %( s t a r t I d x + , s t a r t I d x + ) ) show three di ferent cases in which the results with adjustment of the centroid position are compared to those without adjustment. From these plots, it is seen that the convergence becomes very time consuming for simulations with elements when Y g is close to Y c g . And the converged values Y g (with U t ≈ 0) with adjustment are consistent with those without adjustment (errors of coarse mesh are responsible for the small discrepancy of results between elements and elements). This manual alter of the radial position of the centroid of the vesicles should be bene cial in searching the stable radial position of a slipper. ), in which an initial oblate veiscle (following in a bounded Poiseuille ow) can transform either into an elongated slipper shape or a biconcave-croissant shape, depending on the initial conditions (H 0 , θ 0 ). While the three cases illustrated in Figure D. rst transform into the biconcavecroissant shape, but this form seems unstable in the unbounded Poiseuille ow, and it continues to evolve into a slipper shape, as illustrated by the insets. More precisely, in the case where H 0 = 0.35, the initial oblate shape rst evolves into the biconcave-croissant shape (in a damped oscillation way), whereas this latter becomes unstable (at the time about

) and rapidly transforms into a slipper shape. The unstable originates from one of the convex rear ends (in the Oxz plane), which is accompanied by a signi cant increase in lateral position Z g of the centroid. 

R

Une vésicule est un système modèle utilisé pour comprendre le comportement dynamique en écoulement d'une particule molle fermée telle qu'un globule rouge. La membrane bicouche lipidique inextensible d'une vésicule admet une résistance d'élasticité en exion. Lorsque dégon ée, c'est-à-dire pour un grand rapport surface sur volume, une vésicule présente des changements de formes remarquables. Des progrès signi catifs ont été réalisés au cours des dernières décennies dans la compréhension de leur dynamique en milieu in ni. Ce manuscrit s'intéresse à la transition de formes et à la migration latérale d'une vésicule dans des écoulements con nés. L'approche est numérique, basée sur une méthode aux éléments nis de frontière (BEM) isogéométrique. Partant d'une version existante pour les écoulements de Stokes non con né, un code original est développé pour prendre en compte les parois de microcanaux de section transversale arbitraire. L'essentiel des études porte sur la dynamique d'une vésicule transportée par un écoulement de Poiseuille dans une conduite de section circulaire. Tout d'abord, nous examinons les formes typiques des vésicules, les di férents modes de migration latérale et la structure de l'écoulement des lipides dans la membrane, en fonction des trois paramètres sans dimension caractéristiques : le volume réduit, le con nement et le nombre capillaire (de exion). Les transitions de forme et le diagramme de phase de formes stables pour plusieurs volumes réduits sont obtenus dans l'espace (con nement, nombre capillaire). Ils montrent une extension de l'ensemble des morphologies de la vésicule. L'interaction complexe entre la paroi du tube, les contraintes hydrodynamiques et l'élasticité de exion de la membrane conduit à une dynamique bien plus riche. Nous étudions ensuite, via une version axisymétrique du modèle, le comportement de la vésicule lorsque des conditions de con nement deviennent sévères et imposent des formes de vésicule axisymétriques. Un accent particulier est mis sur la prédiction de la mobilité de la vésicule et de la perte de charge additionnelle induite par la présence de la vésicule. Cette dernière est importante pour comprendre la rhéologie d'une suspension diluée. De plus, sur la base des résultats numériques du comportement proche du con nement maximal, nous établissons plusieurs lois d'échelle portant sur la vitesse de la vésicule et sa longueur, ainsi que sur l'épaisseur du lm de lubri cation. En n, nous présentons un modèle hybride BEM-coarse-graining permettant d'adjoindre un cytosquelette à une vésicule pour étendre nos études au cas des globules rouges. La modélisation coarse-graining du cytosquelette repose sur un réseau de ressorts identi é à l'ensemble des arêtes du maillage d'éléments nis de la membrane de la vésicule. Les résultats numériques montrent que ce modèle à deux composants vésicule-cytosquelette est capable d'extraire les propriétés mécaniques des globules rouges et de prédire sa dynamique dans les écoulements de uide.
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-: Interaction uide-cellule, Vésicules, Globules rouges, Méthode des éléments de frontière, Transition de formes, Théorie de lubri cation.

Figure . :

 . Figure . : Schematic of a lab-on-chip integrating blood loading, plasma separation from wholeblood, multiple biomarker detection, and suction chambers for uid propulsion (reproduced from [ ]).

Figure . :

 . Figure . : The vesicle membrane is made by a lipid bilayer. In water solution, lipid molecules spontaneously aggregate to prevent undesirable interactions between water and hydrophobic tails. Vesicles are typically about µm in radius and the membrane thickness is about nm [ ].

Figure . :

 . Figure . : Schematic presentation of some classical modes of lipid bilayer deformations: dilation, bending, shear, and monolayer slipping. The constants characterize the response of the membrane to these deformations (reproduced from [ ]).

  Figure . : (a) Bending energy (Eq. ( . )) corresponds to the equilibrium shapes as a function of reduced volume. Three branches are displayed: the prolate, the oblate, and the stomatocytes branches. The upper part between C sto and M sto corresponds to locally unstable shapes, whereas the lower part between L sto and M sto corresponds to locally stable shapes. The oblate branch beyond SI ob corresponds to self-intersected states. (b) Equilibrium shapes for several values of ν. D and D sto denote the discontinuous prolate-oblate and oblatestomatocyte transitions. (reproduced from [ ])

Figure . :

 . Figure . : Dynamics of vesicle in general ow [ , ]. (a) tank-treading (TT), (b) tumbling (TU) and (c) trembling (TR).

Figure . :

 . Figure . : Phase diagram of the three di ferent dynamics in linear ow (reproduced from Biben et al. [ ]). The symbols with error bars are experimental data of Deschamps et al. [ ]. The blue triangles, red squares, and green circles are results obtained by BIM [ ] with ν = 0.95. Theory[ ] and Theory[ ] are analytical predictions given by Farutin et al. [ ] and Lebedev et al. [ ], respectively.

  Figure . : De ated vesicle in unbounded Poiseuille ow obtained by D simulation, reproduced from Kaoui et al. [ ]. (a) Phase diagram of the stable shapes in the plane of reduced volume and maximum imposed velocity. (b) The equilibrium lateral position of the center of mass Y G (top), the slip velocity (middle) and the tank-treading velocity (bottom) as a function of ν.

Figure . :

 . Figure . : An example shows the subdivision process by Loop's rules from an initial control mesh S 0 , an icosahedron, to S 1 mesh (with one re nement) and to S 2 (with two re nements). The subdivision masks for creating a new vertex H on the edges of the previous mesh is shown in S 0 and for updating a vertex G from a mesh at level k to a new mesh at level k + 1 is shown in S 1 .

  Figure . : (a) Schema of an element (gray triangle) and its one-ring elements (bounded by solid lines). A parameterization of any point on this element, (s 1 , s 2 ), is built upon the basis (e 1 , e 2 ). (b) Representation of a shape function on a subdivision sphere interface, the wireframe shows a coarse mesh with only two subdivisions and the surface shows a mesh with six subdivisions. Unlike conventional Lagrange triangular elements, the support of the shape function of Loop scheme is spanned over the one-ring elements.

Figure . :

 . Figure . : Example of a T tube mesh formed with linear triangle elements. Top: side view with inlet surface, bottom: full view of the wall mesh. The wall is composed of elements and the inlet/outlet is composed of elements. The ratio of the length to the diameter L/D equals .

Figure . :

 . Figure . : Example of a Loop tube mesh obtained by two successive subdivisions from the origin control mesh (top). Both ends are rounded by a prede ned small radius circle r c . This mesh is composed of elements. The ratio of the length to the diameter L/D equals , and r c /D = 1/16.

Figure

  Figure.shows a Loop tube mesh which is re ned both at the center and its two ends.To have a Lyapunov surface, both ends are rounded by a small circle rather than separated on two. To achieve improved accuracy, the mesh must also be re ned at both ends to allow a smooth description of the rounded corner.

  Figure . : Two dimensional schematic presentation of a deformable particle in a bounded Poiseuille ow u ∞ (schematic model of Figure .). S i , S o and S w denote the inlet , outlet and wall surface of the tube. R t denotes the radius of the tube, Γ is the membrane of the deformable particle, and η i (η e ) is the viscosity of the internal (external) uid of the particle.

  Figure . : The axial force density of the tube (on the line intersected by a plane passing through the axis of the capillary and with the normal vector n = (0, 0, 1)) with di ferent lengths. Only the right half of the curves are displayed due to symmetry.

Figure

  Figure . (a) shows the axial velocity at the center of the tube for di ferent values of L/D.The normalized axial velocity converges to a constant . as increasing L/D. This minor deviation from . is due to uctuation at both ends. Figure.(b) shows that the axial velocity on the surface cut the tube at x = 0.

Figure

  Figure . : (a) The axial velocity at the center of the tube u x , normalized by U m , for various tube lengths L/D. (b) The axial velocity plotted on the surface x = 0 for L/D = 6.

Figure

  Figure . : The shear stress of the wall f wx on the line intersected by a plane passes through the axis of the capillary and with the normal vector n = (0, 1, 0) for Ca = 0.5, β = 0.8. Five of the eight cases in Table.are displayed. The inset shows the curves of the intersection with the drop by the same plane for these di ferent cases.

Figure

  Figure . : E fects of mesh quality preserving algorithm on a vesicle ows in a bounded Poiseuille ow Ca = 1, ν = 0.65, β = 0.25, with elements. (a) Snapshots of the shape and the mesh at di ferent dimensionless times, results without (left or top) and with (right or bottom) remeshing are separated by red lines. At t = 3, the front, rear and side views are all displayed. (b) Relative error of the membrane area ε a = A/A 0 -1 as a function of time for results without remeshing and with remeshing, where A 0 = A(t = 0) and Rmsh( ) means the mesh quality preserving algorithm is called every time steps. (c) The local cell error L2 ≡ 1 Ne i |A i /A 0 i -1| 2 as a function of time, where A i is the area of the i-th element and A 0 i = A i (t = 0).

Figure . :

 . Figure . : E fects of the remeshing frequency on a vesicle ows in a bounded Poiseuille ow Ca = 1, ν = 0.95, β = 0.1, with elements. The results of (a) relative error of the membrane area ε a and (b) relative cross-streamline migration velocity U y /U m are compared for applying remeshing every , , , and ∞ time steps.

Figure

  Figure . : Variations of (a) translational velocity 2 -U * and (b) additional pressure drop ∆p a as a function of the capillary number Ca for β = 0.8 and β = 1.1.

Figure

  Figure . : E fect of the drop size on (a) the translational velocity and (b) the additional pressure drop for di ferent capillary number. The dashed lines for Ca = 0 are given by Eq. (.), ( . ) and its high-order tting.

  Figure . : An example showing a capsule owing in a rectangular microchannel. Capsule's membrane is coded by the membrane force of the x-component, i.e., f m x . The channel mesh is generated by the Loop subdivision process and rounded with an arc of the circle.

Figure . :

 . Figure . : Comparison of the steady-state deformed shape of a capsule owing in a square crosssection channel with those obtained by Hu et al. [ , ] in the Stokes regime for a con nement β = 0.85 and (a) Ca = 0.02, XY-plane, (b) Ca = 0.05, XY-plane, (c) Ca = 0.1, XY-plane, (d) Ca = 0.1, YZ-plane. The blue lines indicate the limits of the microchannel.

  (a)-(c) in the plane z = 0 and in Figure . (d) in the plane x = 0 (for Ca = 0.1 only).

Figure

  Figure . : Evolution of (a) the Taylor parameter D and (b) the relative error of the enclosed volumeε v = V /V 0 -1 ofa drop in a capillary ow (Ca = 0.05, β = 0.8) as a function of time, for di ferent number of elements. A case with elements is re ned from the case with elements. Inset shows a zoom-in of the Taylor number. RKF is used in all these cases for time stepping.

Figure . :

 . Figure . : Evolution of the Taylor parameter of a drop (with elements) owing in a capillary ow (Ca = 0.05, β = 0.8) as a function of time, for di ferent time steps. Inset shows a zoom-in of the Taylor number. The implicit xed time step trapezoidal scheme is chosen.

Figure

  Figure . : Convergence study of the numerical algorithm: relative error on the steady state value of the Taylor parameter of a drop in a capillary ow (Ca = 0.05, β = 0.8) with respect to (a) the number of elements and (b) the time step size.For spatial convergence (a), the RKF scheme is used, and the reference value is computed with elements. For temporal convergence (b), the trapezoidal scheme is used, the drop is discretized by elements, and the reference value is computed with a time step ∆t = 5e -4.

  Figure . : Evolution of (a) the inclined angle θ (in degree) and (b) the relative error of the enclosed volume ε v of a vesicle owing in a microchannel (Ca = 1, ν = 0.9, β = 0.2) as a function of the dimensionless time, for three di ferent numbers of element: , and . The inset displays a stable shape, colored by the mean curvature, obtained with elements, where the axis of the microchannel is indicated by the solid black line.

  Figure . : Vesicle with ν = 0.65 in the form of (a) prolate and (b) oblate. Black and red solid linesindicate the ow axis and the line y = 0 that passes through the centroid of the vesicles, respectively. H 0 is the initial position of the vesicle measured from its centroid to the axis of ow. θ 0 is the initial inclined angle compared with the ow direction.

  Figure .shows an example of inward migration. As shown in Figure.(a), an initially prolate vesicle ( ) released at height H 0 = 0.05 migrates to the center of the ow with a bullet shape ( ) at the end, and its centroid performs a damped oscillation around the center of the microchannel.More speci cally, starting from an initial prolate state, the vesicle quickly deforms to a slipper shape with its major axis aligned with the ow pro le. This asymmetrical shape will only be slightly deformed during its migration to the ow center ( ). When the vesicle arrives at the ow center, it keeps on moving due to the asymmetricity of its shape. When the vesicle is located below the ow center, it starts to re-deform in order to adapt the inverse ow pro le. An almost symmetrical shape is obtained at the lowest position ( ), this state is not stable because the ow at this position (observed from the centroid of the vesicle) is not symmetrical. Thus it continues to deform and adpts a new asymmetrical shape with its major axis, once again aligns the ow pro le ( ). This deformation to align the ow pro le is accompanied by an inward migration (but with an inverse direction in comparison with the former one). As before, it will continue moving when it reaches the ow center for the second time ( ). The vesicle will continue this inward and outward migration but with gradually reduced strength( , and ) until it attains the stable state, a symmetrical bullet with Y G = 0 ( ). Figure . (b) shows the lateral migration velocity U y as a function of Y G , with the initial state indicated by a blue dot. It is shown that both U y and Y G decrease with time, and converge to the point (0, 0), which has vanished shear rate. The red triangles, which correspond to the states with relative extreme values of the radial position Y G (as , , and in Figure . (a)), represent the states having zero instantaneous velocity and almost symmetrical shapes, but these states are not stable and can be broken by the surrounding ow.

  Figure . : The dynamics of de ated vesicles (ν = 0.9) in a microchannel (R t = 1/β = 3), for the meshes with and elements. (a) The instantaneous radial height Y G of the centroid of the vesicle as a function of dimensionless time, the insets (Oxy plane) are instantaneous vesicle shapes during the migration, colored by the mean curvature of the membrane. (b) Evolution of the migration velocity U y as a function of Y G , the blue dot indicates the initial state. (c) Evolution of the relative variance of the reduced volume ν.

Figure

  Figure .(c) shows the relative variance of the reduced volume as a function of time. It is shown that the case with ner mesh accumulates much smaller error than the coarse one. For the case with elements, the gradual increase in error may interpret the discrepancy appeared in Figure.(a), namely, the gradually increasing phase di ference between these two curves. Here, we observed an inward migration with oscillation, but it can also, without surprise, be a migration without oscillation, such as the example presented in Figure..

  Figure . : The dynamics of de ated vesicles in a microchannel for three di ferent cases: ( ) ν = 0.85, R t = 2.8, elements; ( ) ν = 0.85, R t = 2.8, elements; ( ) ν = 0.8, R t = 2.5, elements. (a) The instantaneous radial height Y G as a function of dimensionless time, the insets (Oxy plane) are instantaneous vesicle shapes during the migration for ν = 0.8. (b) Evolution of the migration velocity U y as a function of Y G , the blue dots indicate the initial states. (c) Evolution of the inclination angle θ (in degree) of the major axis of the vesicle relative to the axis of ow.

  Figure . : Evolution of the centroid Y G for Ca = 3, ν = 0.9, R t = 2.0 and H 0 = 0.03. The insets (Oxy plane), colored by mean curvature, present the instantaneous shapes, starting from a prolate form and it becomes a stable bullet form at the end of the simulation.

  Figure . : Evolution of the centroid Y G for Ca = 50, ν = 0.9, R t = 6.0 and H 0 = 0.05.The insets (side view in the Oxy plane and rear view in the Oyz plane), colored by mean curvature, present ve instantaneous shapes, starting from a prolate form and it becomes a stable parachute form at the end of the simulation.

  Figure . (a) shows the centroid Y G and the geometric parameter D 2 as a function of dimensionless time, under given parameters, Ca = 1, ν = 0.6, R t = 3.0, H 0 = 0.35 and θ 0 = -°. The oscillation of Y G is quickly damped out, and its centroid locates on the ow axis for t > 100.

  Figure . : Evolution of (a) the centroid Y G , geometric parameter D 2 and (b) the inclination angle θ for Ca = 1, ν = 0.6, R t = 3.0, H 0 = 0.35 and θ 0 ≈ -°(or -. rad). The insets (top view in the Oxz plane and rear view in the Oyz plane), colored by mean curvature, present the instantaneous shapes, starting from a oblate form and it becomes a stable biconcave-croissant form at the end of simulation.

  Figure . (a) shows the evolution of the centroids Y G , which converge to a common value Y * G ≈ 0.508, as indicated by the dashed black line. When a vesicle approaches the stable position, the migration velocity decreases rapidly, as shown in Figure . (b). In order to decrease the time required to reach the steady state, we dynamically update the lateral position according to the current migration velocity U y . For example, in this case, when U y > 0, we update the new centroid value of the vesicle by adding a small positive number, as shown in Figure . (a) and Figure . (b). It is shown that this operation did not in uence the nal equilibrium state, for example, given a small perturbation on the lateral position of the centroid Y G (Figure . (a)), the equilibrium state is una fected. And also see Appendix D. for more examples of manual alert of the radial position to accelerate the convergence.

  Figure . : Evolution of (a) the centroid Y G , (b) the migration velocity U y and (c) the inclinationangle θ for Ca = 1, ν = 0.7, R t = 6.0, with H 0 = 0.555, θ 0 = °for an initially prolate form and with H 0 = 0.6, θ 0 ≈ -. °(or -. rad) for an initially oblate form.The insets (side view in the Oxy plane and top view in the Oxz plane), colored by mean curvature, present the instantaneous shapes, starting from prolate and oblate form respectively, and they become a stable slipper form at the end of the simulation. The last snapshot is a combination of these two cases, separated by the red inclined line, the upper comes from the prolate form and the lower is from the oblate one. The horizontal purple line shows the axis of the microchannel.

Figure . :

 . Figure . : Streamlines in the y = 0 and z = 0 planes around a peanut-shaped vesicle for Ca = 1, ν = 0.8 and β = 0.5. The vesicle membrane is colored by the mean curvature and the streamlines are colored with the axial velocity u x .For the ow direction to be clearer, the color legend is set with the same upper and lower limits, the lower limit of the ow is actually much bigger than the upper one.

Figure . :

 . Figure . : Streamlines in the z = 0 plane for the two cases shown in Figure . . The black line indicates the position of the membrane in this plane.

Figure

  Figure . : Streamlines (colored by translational velocities in x direction, u x ) in planes y = 0 and z = 0 for Ca = 20, ν = 0.9 and R t = 5. The black arrows show the tank-treading of the membrane. The inset in the upper left corner shows a stable croissant shape colored by the mean curvature, and the arrows are colored by the membrane tank-treading velocities in the x-direction.

Figure . :

 . Figure . : Streamlines in planes y = 0 and z = 0 for Ca = 1, ν = 0.65 and R t = 3.2. The black arrows show the tank-treading of the membrane. The inset in the upper left corner shows a stable biconcave-croissant shape colored by the mean curvature.

Figure . :

 . Figure . : Evolution of the morphology as a function of the capillary number for ν = 0.9 and β = 0.25. The membranes are colored by the mean curvature and the axis of the microchannel is indicated by the black line.

Figure . :

 . Figure . : Evolution of vesicle slipper state (shape and radial position) and its membrane velocity as a function of the con nement β for Ca = 1 and ν = 0.9. The membrane is coded by the mean curvature and the arrow is coded by the membrane velocity in the y-direction, namely u m y . The axis of the capillary is indicated by the black line.

Figure

  Figure . : E fects of the con nement β on a vesicle owing in microchannel for Ca = 0.1, 1, 10 and for reduced volumes ν = 0.95, 0.9. Numerical results of a vesicle in an unbounded (β = 0) Poiseuille ow are also plotted [ ] (obtained with WebPlotDigitizer).

Figure . :

 . Figure . : Evolution of the morphology as a function of the con nement β for Ca = 10 and ν = 0.9. The membrane (discretized with elements) is coded by the mean curvature with the same legend.

Figure . :

 . Figure . : E fects of the con nement β on a owing in microchannel with Ca = 1, ν = 0.85 and with elements. (top panel) Evolution of the lateral position of the centroid, (bottom panel) Poincaré maps.

Figure . :

 . Figure . : Phase diagram of steady states of vesicles for ν = 0.95 in the variables R t = 1/β and Ca. S, slipper; P, parachute; C, croissant; B, bullet.

Figure . :

 . Figure . : Phase diagram of steady states of vesicles for ν = 0.9 in the variables R t = 1/β and Ca. S, slipper; P, parachute; C, croissant; B, bullet.

Figure . :

 . Figure . : Time histories of (a) the inclination angle θ (in degree), (b) the lateral position of the centroid Y g and (c) the lateral migration velocity U y for Ca = 1, ν = 0.65, 1/β = 3.0 and the initially oblate shapes are placed at H 0 = 0.2 with three di ferent inclination angles: θ 0 = 0.0, -0.1 and -. rad (≈ -. °). The black curves correspond to the simulations with manual adjustment of the lateral position of the centroid.

Figure . :

 . Figure . : Snapshots of two of the three cases presented in Figure . , membranes are colored by mean curvature.

  Figure . : Time histories of (a) the centroid radial position Y g and (b) the lateral migration velocity U y for Ca = 1, ν = 0.65, 1/β = 3.2 and the initially oblate shapes are placed at three di ferent heights H 0 = 0.4, 0.35 and 0.05 with the inclination angle θ 0 = -. rad. The insets (in (a), coded by mean curvature) show the nal stable shapes, slipper, and biconcave-croissant, respectively.

FigureFigure . :

 . Figure . : Phase diagram for Ca = 1, ν = 0.65 in the variables H 0 and R t . S and BC stand forslipper and biconcave-croissant shape, respectively. The full symbols represent results obtained with elements, while empty symbols with elements. The dashed blue line is a guide for the eyes.

  Fig. . ), parachute (Fig. . ) and peanut (Fig. . ) shapes, the unconventional slipper shape (Fig. . ), and also the intermediate ones: the croissant (Fig. . ) and the biconcave-croissant (Fig. . ) shapes.

  Figure . : Schematic illustration of a vesicle owing along the centreline of a circular tube of radius R in a pressure-driven ow. The system is rotationally symmetric about the x-axis. The boundaries of the control volume (D) are the inlet and outlet sections I and O, the solid surface of the tube wall W , and the membrane/medium interface Γ, i.e., ∂D ≡ I ∪ O ∪ W ∪ Γ. The vesicle shape and the gap size between the membrane and the tube wall are denoted by h h(≡ R -h), respectively. The vesicle enclosed volume is denoted by Ω.

  Figure . : Steady-state vesicle pro le as a function of the bending capillary number Ca B for ν = 0.84 and λ = 1.

Figure . :

 . Figure . : Steady-state vesicle shapes as function of the con nement λ for a wide range of reduced volumes ν (Ca B = 50): (a) ν = 0.98, (b) ν = 0.9, (c) ν = 0.8 and (d) ν = 0.6.

Figure

  Figure . : (a) Shape transition line from parachute (low limit in error bars) to bullet (up limit in error bars) in the (ν, λ) space (Ca B = 50). Vesicles are owing from left to right. The two typical vesicles are characterized, respectively, by ν = 0.95, λ = 0.8 and Ca B = 5 for the bullet-like shape, and ν = 0.83, λ = 0.67 and Ca B = 15 for the parachute-like shape. Insets show the comparison of the computed shapes (red line) with the reported ones in an experimental study [ ]. (b) The shape at the parachute-bullet transition of a vesicle with the same typical de ation of red blood cells (ν = 0.6) owing through a narrow capillary tube (λ 1.8).

  Figure . : Critical con nement λ c as a function of the reduced volume ν. Membrane lysis occurs when λ > λ c . The red line denotes the shape transition from parachute to bullet.

  Figure . : The dimensionless thickness of the lubrication layer δ plotted as a function of the reduced radius ratio λ/λ c for a wide range of reduced volumes ν (Ca B = 50), together with the asymptotic prediction ( . ).

  Figure . : The dimensionless thickness of the lubrication layer δ plotted as a function of the capillary number Ca v = ηV /γ F for a wide range of reduced volumes ν, together with two scalings.

  Figure . : Normalized vesicle length / c versus the reduced radius ratio λ/λ c for a wide range of reduced volumes ν (Ca B = 50), together with the linear scaling / c = λ/λ c (Eq. ( . )).

  Figure . : Variation of the relative velocity V /U as a function of the con nement λ for a wide range of reduced volumes ν (Ca B = 50), together with asymptotic predictions. The dotted curve shows the asymptotic prediction for a small spherical droplet moving along the centreline of a tube ( . a). The dashed curves are the asymptotic predictions for highly con ned vesicles ( . a). Also shown is the prediction of a lubrication model for red blood cells [ ].

  Figure . : Variation of the dimensionless pressure drop ∆p + R 0 /(ηU ) as a function of the connement λ for a wide range of reduced volumes ν (Ca B = 50), together with asymptotic predictions. The dotted curve shows the analytical prediction for a small spherical droplet ( . b). The dashed curves are the asymptotic predictions for highly conned vesicles ( . b). Also shown is the prediction of a lubrication model for red blood cells [ ].

  Figure . : Dimensionless pressure drop ∆p + R 0 /(ηU ) plotted as a function of α (= λ /δ) for highly con ned vesicles (i.e., λ → λ c ). The dashed line shows the scaling 3α/2.

Figure . :

 . Figure . : Variation of relative apparent blood viscosity η rel with tube diameter d in µm for a hematocrit H T of . . Curve --represents simulation results based on single-le uid model, and curve --represents lubrication model of RBCs [ ]. Dashed line in blue shows asymptotic theory for dimensionless extra pressure drop [ ] (Eq. ( . b)). Solid curve in cyan represents a tting empirical equation to in-vitro experimental data [ ].The vertical line (black) indicates a lower limit (d c 2.8 µm) to the diameter of tubes beyond which normal red blood cells cannot pass through without rapture.

  Figure . : A single RBC and schematic view of its membrane. (a) an RBC with a typical biconcave discoid shape; (b) a schematic view of the membrane and the general disposition of its lipid and protein constituents; (c) a drawing of a small spherical vesicle seen in cross-section; (d) a spectrin network (the cytoskeleton) shown by high-resolution negative staining electron microscopy [ ].

  , D eff = 3 6V /π (µm) .Bending rigidity, κ (×10 -19 J)

  (a) Stretching of an RBC in the optical tweezers experiment [ ], which is the most classic validation of RBC models. (b) Motion of a single RBC in a simple shear ow.(c) Motion of a single RBC in a capillary.

  Figure . : RBC with a biconcave discoid shape generated with Eq. ( . ). The triangular mesh is composed of 642 nodes and 1280 elements. {X, Y, Z} is the xed Cartesian coordinate system and the ow is in the X direction. {x, y, z} is the Cartesian coordinate system rotates with the RBC. The pitch angle θ represents the rotation of the cell around the z axis, φ y measures the angle between the minor axis of RBC and Y .

Figure . :

 . Figure . : Schematic RBC deformation under the stretching force. The membrane is colored by the distance from the membrane to its symmetrical plane parallel to the plane Oxz, and black dots denote the vertices where the force is applied.

Figure . :

 . Figure . : Phase diagram of the dynamics of a single RBC in shear ow in the plane of the capillary number Ca and the viscosity ratio λ (reproduced from [ ]).

  C b = 0.003, θ 0 = °Figure . : Time histories of the inclination angle φ y and the x-position of a numerical probe during the tumbling motion of an RBC ow in a simple shear ow with = 5.0 and Ca = 0.1. two examples with a di ferent reduced bending modulus C b show a very similar behavior, the RBC periodically rotates in the shear plane, that is, a tumbling motion (some typical cell shapes are shown in Figure . for C b = 0.003). The average period of this tumbling motion is . for C b = 0.0075 and . for C b = 0.003.

  . [ ]. A posteriori check shows that the volume and the global surface variations are about . % and . %, respectively, during such an oscillation circle. The case with C b = 0.0075 (Figure . (b)) is compared in detail with the predictions of Peng et al. [ ], as shown in Figure . , with same physical parameters µ s = . pN µm -, κ = 1.8 × 10 -19 J and initial condition φ y = -°. The variation of the inclination angle φ y during its rst half circle is compared with those of Peng et al., which were obtained with the single-layer model (SLM) and the multiscale model (MSM). The two horizontal dashed lines mark the orientation levels φ y = -°and φ y =°. The time interval between the intersection points of these lines and the curves provides us the approximation of

Figure . :

 . Figure . : RBC shapes (top) and pro les in the XY plane (bottom) over one oscillation cycle of the inclination angle φ y for λ = 5, Ca = 0.1 and C b = 0.003. Snapshots are taken at the time marked by the black dots as shown in Figure . (b). The black dot indicated by a red arrow is the numerical probe.

  Figure . : (a) Time histories of the global inclination angle of the RBC (ψ, red line) and the inclination angle of a probe (θ, black curve) during tank-treading motion for µ s = . pN µm -, with elements. (b) Snapshot shows the membrane tank-treading motion of (a) at t * ≈ 131, membrane is coded by the mean curvature. (c) Time histories of the two inclination angles for µ s = . pN µm -, with elements. (d) Snapshot shows the membrane tank-treading motion of (c) at t * ≈ 131.

  Figure . : Cell pro les in the xy plane at times t * = 0.0, 0.1, 0.5 and 1.0. All lengths are scaled by the cell radius D/2 = . µm.

ForFigure

  Figure . : Evolution of the RBCs shape in a capillary ow (β = 0.4) for ve di ferent shear modulus µ s = 0.0, 0.1, 0.5, 2.0, and 4.0 with H 0 = 0.3 and θ 0 ≈ -°. Membranes are colored by the mean curvature.

  Figure . : Evolution of (a) the radial position of the centroid Y g and (b) the inclination angle θ of a vesicle owing in a capillary (β = 0.4) for various shear modulus µ s , varying from . (a vesicle) to . .

Figure

  Figure A. : Schematic of lubrication theory analysis for a steady, sphero-cylindrical vesicle moving along the axis of a circular tube of radius R. In a coordinate frame moving with the vesicle, there can be no ow and pressure gradient inside the vesicle. The vesicle has a cylindrical main body with a length L * , assumed large compared to R. Plotted vesicle pro le corresponds to a vesicle shape for ν = 0.6, λ = 1.92 and Ca B = 50 (shown in Figure . (d)); the tube wall is placed at more than 20% away from its actual place in order to amplify the width of the gap between the vesicle and the tube wall.
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  Figure C. : An example of uid mesh generated by the aforementioned procedure.

  Figure D. : Evolution of (a) the radial centroid position Y g and (b) the lateral migration speed U y for Ca = 1, ν = 0.9, R t = 5.0. Where and represent the number of elements used in the discretization of the vesicles.

  Figure D. : Evolution of (a) the radial centroid position Y g and (b) the lateral migration speed U yfor Ca = 1, ν = 0.9, R t = 3.7.

  Figure D. : Evolution of (a) the lateral position Y g of the centroid and (b) the lateral migration speed U y in an unbounded Poiseuille ow with Ca = 1, ν = 0.85, and two initial lateral positions H 0 . The red curves represent simulations with manual adjustment of the lateral position of the vesicle (case H 0 = 0.05).

Figure

  Figure D. shows an initial oblate vesicle (ν = 0.65) owing in an unbounded Poiseuille ow (Ca = 1) under three di ferent initial conditions (H 0 , θ 0 ) = (0.05, 0.0), (0.05, -0.15) and (0.35, -0.15). Unlike the examples presented in sec. . . (such as Figure .), in which an initial oblate veiscle (following in a bounded Poiseuille ow) can transform either into an elongated slipper shape or a biconcave-croissant shape, depending on the initial conditions (H 0 , θ 0 ). While the three cases illustrated in FigureD. rst transform into the biconcavecroissant shape, but this form seems unstable in the unbounded Poiseuille ow, and it continues to evolve into a slipper shape, as illustrated by the insets. More precisely, in the case where H 0 = 0.35, the initial oblate shape rst evolves into the biconcave-croissant shape (in a damped oscillation way), whereas this latter becomes unstable (at the time about) and rapidly transforms into a slipper shape. The unstable originates from one of the convex rear ends (in the Oxz plane), which is accompanied by a signi cant increase in lateral position Z g of the centroid.

  Figure D. : Evolution of (a) R g = Y 2 g + Z 2 g of the centroid, (b) Y g of the centroid, and (c) the membrane area S of an initial oblate vesicle in an unbounded Poiseuille ow with Ca = 1 and ν = 0.65. The insets are instantaneous vesicle shapes of the case H 0 = 0.35, colored by the mean curvature of the membrane.
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  [ , , ], nite element method [ ],coarse-grained model [ ] etc. Other mesh-based methods include the nite element method [ ] and the nite volume method [ , , ].

H -

Kumar et Graham [ ] have developed a hybrid approach that shares features of both boundary integral and mesh-based methods. In short, instead of the commonly used boundary integral (BI) formulation, an alternative BI formulation in which the velocity eld is expressed in terms of single layer integral alone. The overall problem is decomposed into a local problem and a global problem, essentially by splitting the Green's function into local (singular but exponentially-decaying) and global (smooth but long-ranged) parts.

  . [ ], Freund [ ], Abreu et al. [ ], and Aydin et al. [ ].

Table . :

 . Overview of the six algorithms A-E and S [ ] for computing membrane bending forces.
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 . List of used notations.

	Abbre.	De nition
	BEM	boundary element method
	BIM	boundary integral method
	DPD	dissipative particle dynamics
	FEM	Finite element method
	FENE	nitely extensible nonlinear elastic
	FSI	uid-structure interaction
	IBM	immersed boundary method
	KS	Keller-Shalak theory
	LBM	lattice boltzmann method
	LS	level set
	MD	molecular dynamics
	MPCD	multi-particle collision dynamics
	NH	Neo-Hookean law
	PF	phase eld
	POW	power function
	RBC	red blood cell
	SDPD smooth dissipative particle dynamics
	Sk	Skalak law
	T	linear triangle element
	TR	trembling
	TT	tank-treading
	TU	tumbling
	VB	vacillating-breathing

Table . :

 . List of used abbreviations.

  are the one-ring neighbours (at level k) of an existing vertex G. n, termed as valence of the vertex, is the number of edges incident on it [ ]. The value of λ, proposed by Loop [ ], is given as

	λ =	1 n	5 8	-	3 8	+	1 4	cos	2π n

2

.

  = D-D ref D ref , where D ref is the reference Taylor parameter given by the case with elements. This error is represented as a function of the number of elements in Figure . (a), which is second order in number of elements O(N -2 ). It's shown, by Boedec et al [ ],that this second-order convergence is not a fected by the inclusion of bending rigidity for a Capsule owing in a linear shear ow. This also gives us the vision of having a second-order convergence for a vesicle owing in a capillary, even if we do not conduct such numerical study. Now, the e fects of temporal discretization are also considered for a drop as above, with elements and with the conditions Ca = 0.05 and β = 0.8. As shown in Figure.,
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: Simulations have slipper as the nal stable shape with respectively prolate and oblate as the initial shape for Ca = 1, ν = 0.65 and di ferent capillary sizes R t . The upper index † means that the simulation is started from an existing state, not from a prolate shape.

Table . :

 . shows excellent agreement. Comparison of droplet relative velocity V /U and dimensionless extra pressure drop ∆p + /(ηU/R) as a function of the capillary number Ca = ηU/γ for λ = 0.8 to those reported in Ref. [ ].

		V /U		∆p + /(ηU/R)
	Ca	Present work	Ref. [ ]	Present work	Ref. [ ]
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 . Summary of the properties of RBC and plasma in human body.

	-3 Pa s)	. [ ]			
	Shear rate, γ (s -)	-	(mean	, peak	) [ ]

Table . :

 . Summary of the dimensionless numbers used in the tumbling motion example.

  To compare with the existing results [ ], the simulation time t, initially dimensionalized by t s char , is multiplied by the capillary number Ca = t s

char /t flow char = t s char / γ-1 . Thus the new dimensionless time is t * = γt.

  ( n o d e _ i d + , ' ' , mesh . p o i n t s [ n o d e _ i d ] [ ] , ' ' , mesh . p o i n t s [ n o d e _ i d ] [ ] , ' ' , mesh . p o i n t s [ n o d e _ i d ] [ ] ,

The vesicle translates at a speed U vx ≈ 3.647, while the maximum velocity of the unperturbed ow is . We de ne the relative velocity lag as δ u = (U m -U vx )/U m , here we have δ u ≈ 8.83%.

• the uid inside the vesicle is stationary with no pressure gradient (for simplicity we set p = 0) and behaves like a rigid-body (ū = 0);

• the viscous normal stress on the membrane vanishes so that the net normal traction on the membrane is the hydrostatic pressure di ference between the internal and external ows pp, which is equivalent to be -p;

• the net shear traction is the viscous shear stress τ due to the external uid.

Then, in the lubrication approximation, the pressure p in the lubrication layer depends only on the axial position x, and the axial velocity eld u is governed by the axial momentum equation and an equation of continuity where q (= 1 2 R(V -U )) represents a rate per unit circumference of leakback of uid past the vesicle.

Equations (A. ) with boundary conditions (A. ) yield the Reynolds lubrication equation [ ] for the pressure gradient in terms of the azimuthal radius of curvature r(x) = h(x):

.

(A. ) The shear stress exerted on the membrane due to the ambient ow is then given by τ (r) ≡ η ∂u ∂r = -1 4 dp dx 2r + R 2r 2 r log(r/R) + ηV r log(r/R) .

(A. )

The normal and shear stress boundary conditions ( . ), together with ( . ), respectively, can now be approximated by . ) where g s = r 1 + (dr/dx) 2 is the surface metric. The mean and Gaussian curvatures can be written in terms of r(x) and its derivatives:

(A. a)

with

(A. b)

Equations (A. )-(A. ), together with the usual symmetry conditions at the front nose of the vesicle x = L/2 and at the rear tail of the vesicle x = -L/2, are solved numerically in [ , ]. It is shown that the above axisymmetric lubrication equations yield e fectively good approximations to the Stokes ow of a vesicle inside a circular tube if the membrane slope |dr/dx| is su ciently small.

To gain insight into the situation of narrow gaps, we now make an additional assumption that the thickness of the lubricating lm between the membrane and inner tube wall is small relative to the tube radius. In this case, the leakback is also small compared with the total ow. Introducing a small parameter . ) and a rescaled lm thickness h * such that r = R(1h * ), (A. ) we obtain approximate solutions for the pressure gradient and shear stress [ , ] and their simpli ed forms in a lubrication layer of uniform thickness (h) with a pure shear ow: (A. )

A Lubrication theory

The range of validity of such a narrow approximation can be estimated from the balance of the axial forces on the vesicle, requiring in some average sense, dp/dx < 0 and τ < 0. This means that the lm thickness must lie in the following range:

or equivalently

for the clearance parameter δ. We will see that such conditions are always satis ed when λ → λ c .

Since we are mostly interested in the asymptotic behavior of quantities of interest established via a narrow-gap analysis, we consider the con guration close to maximal con nement (i.e., λ → λ c ) in which a cylindrical vesicle with hemispherical ends is formed, nearly tting the tube cross-section, as shown in Figure A. . In this limit, a pure geometric consideration -constraints of vesicle surface area and enclosed volume -which are xed, yields an expansion for the clearance parameter δ [ ]:

Using Eq. (A. ) in Eq. (A. ) gives an asymptotic behavior of the vesicle mobility, measured in the relative velocity

This is the same prediction of the small-gap theory in the singular limit λ → λ c ) [ ] While these two asymptotic expansions are helpful to interpret the present numerical results regarding the lm thickness and vesicle mobility, it remains unclear how the clearance parameter is precisely controlled dynamically by a quantity, like hydrodynamic pressure p in the lubrication layer or the membrane tension γ. To this end, by using (A. ), we further simplify the normal and shear stress boundary conditions, equations (A. ) and (A. ), which can be approximated by

We then obtain a simple expression for the membrane tension gradient in the lubrication layer region . ) thereby indicating that the thickness of the lubrication layer is inversely propositional to the tension gradient in the membrane. That equation gives

) with γ R denoting the membrane tension of the rear endcap. Therefore, the tension of the vesicle increases linearly with distance and has a higher tension γ F at the frontal endcap. The pressure in the lubrication layer, however, decreases with distance according to Eq. (A. a). The pressure and membrane tension both are of the order of -1 and, therefore bending resistance has a negligible contribution to the hydrodynamic force balance in the lubrication layer. The rear tension γ R of the vesicle is negligibly small compared to its frontal counterpart γ F [ , ] -the rear portion of the vesicle is nearly tensionless, we may estimate the frontal tension for the cylindrical portion having a length of

(A. )

A further overall asymptotic solution of Eqs. (A. ) near the front end of the vesicle has shown [ , ] as

where c 0 is a constant. Finally, the clearance parameter is found to be controlled through a dynamical parameter -the vesicle tension-mobility-based capillary number

The numerical prefactor c 0 di fers slightly in the literature; 

B S

We have summarized here the shape functions used in this thesis.

B. R L E

For 

where the barycentric coordinates (u, v, w) obey the relation:

(B. )

B Shape functions

While the local curvilinear coordinates (s 1 , s 2 ) for the element can be identi ed with the barycentric coordinates (v, w).

For irregular Loop elements, the irregular patch must be subdivided until the parameter value (s 1 , s 2 ) of interest is within a regular patch, and then the regular shape functions apply again. Refer to [ ] for details. 

The uid ow, in vesicle's reference frame, around the vesicle is computed by BIM in order to show its structure and to show its interplay with the shape of vesicles. To avoid interpolation and near-singularity, the uid surface which corresponds to the vesicle membrane has the same mesh with that of the membrane. Namely, we create a uid mesh which use exactly the vesicle mesh. The basic steps are,

. From the mesh contained vtk le, generate the msh le by using the python package meshio . msh is the standard mesh le of Gmsh . An example script is shown in Listing C. .

. Convert the msh le to geo le in using another python package pygmsh . geo is the standard geometry le of Gmsh. An example script is shown in Listing C. .

. Generate D uid mesh with Gmsh based on the geo le with: