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Abstract

Vesicles are a model system for understanding the dynamical behavior of a closed soft par-
ticle such as red blood cells (RBCs) in flows. The inextensible lipid bilayer membrane of a
vesicle admits resistance to the bending elasticity, and its large surface-area-to-volume ratio
allows the vesicle to exhibit remarkable shape changes in the dynamics even in a simple flow.
Significant progress has been made over the past decades in understanding vesicle dynam-
ics in unbounded Stokes flows. This manuscript deals with the numerical investigation of
shape transition and lateral migration of 3D vesicles in wall-bounded Stokes flows bymeans
of an isogeometric finite-element method (FEM) and boundary-element method (BEM).
Starting from a previously reported isogeometric FEM-BEM simulations of the dynamics
of soft particles (drops, capsule, and vesicle) in Stokes flows in free space, the original code
is developed to account for microchannel walls of arbitrary cross-section. The present work
focuses on the dynamics of a vesicle that is transported through a circular tube in a pressure-
driven flow. First, we investigate typical vesicle shapes, different lateral migration modes,
and flow structure onto vesicle membrane versus three independent dimensionless param-
eters, namely, the reduced volume, the confinement, and the (bending) capillary number.
Shape transitions and the phase diagram of stable shapes for several reduced volumes are
obtained in the (confinement, capillary number) space, showing an extension of the set of
vesicle morphologies and rich vesicle dynamics owing to the intricate interplay among the
tube wall, hydrodynamic stresses, and membrane bending. Secondly, we study, via an ax-
isymmetric BEM, the hydrodynamics under high confinements in which the shape of the
vesicle is expected tomaintain axisymmetry. A particular emphasis is given to the prediction
of the vesicle mobility and the extra pressure drop caused due to the presence of the vesicle,
the latter having implications in the rheology of a dilute suspension. In addition, based on
the numerical results of limiting behavior of quantities of interest near maximal confine-
ment, we give various scaling laws to infer, for example, the vesicle velocity, its length, and
the thickness of lubrication film. Finally, we present a coupled, hybrid continuum–coarse-
grained model for the study of RBCs in fluid flows. This model is based on a combination
of the vesicle model with a network of springs with fixed connectivity, representing the cy-
toskeleton. Numerical results show that this two-component vesicle–cytoskeletonmodel is
able to extract the mechanical properties of RBCs and predict its dynamics in fluid flows.

Keywords: Fluid-cell interaction, Fluid vesicles, RBCs, Boundary elementmethod, Shape
transition, Lubrication theory.
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Résumé

Unevésicule est un systèmemodèleutilisé pour comprendre le comportementdynamique
en écoulement d’une particule molle fermée telle qu’un globule rouge. La membrane bi-
couche lipidique inextensible d’une vésicule admetune résistanced’élasticité en flexion. Lorsque
dégonflée, c’est-à-dire pour un grand rapport surface sur volume, une vésicule présente des
changements de formes remarquables. Des progrès significatifs ont été réalisés au cours
des dernières décennies dans la compréhension de leur dynamique en milieu infini. Ce
manuscrit s’intéresse à la transition de formes et à la migration latérale d’une vésicule dans
des écoulements confinés. L’approche est numérique, basée sur une méthode aux éléments
finis de frontière (BEM) isogéométrique. Partant d’une version existante pour les écoule-
ments de Stokes non confiné, un code original est développé pour prendre en compte les
parois de microcanaux de section transversale arbitraire. L’essentiel des études porte sur la
dynamique d’une vésicule transportée par un écoulement de Poiseuille dans une conduite
de section circulaire. Tout d’abord, nous examinons les formes typiques des vésicules, les
différents modes de migration latérale et la structure de l’écoulement des lipides dans la
membrane, en fonction des trois paramètres sans dimension caractéristiques : le volume
réduit, le confinement et le nombre capillaire (de flexion). Les transitions de forme et le
diagramme de phase de formes stables pour plusieurs volumes réduits sont obtenus dans
l’espace (confinement, nombre capillaire). Ils montrent une extension de l’ensemble des
morphologies de la vésicule. L’interaction complexe entre la paroi du tube, les contraintes
hydrodynamiques et l’élasticité de flexion de la membrane conduit à une dynamique bien
plus riche. Nous étudions ensuite, via une version axisymétrique du modèle, le comporte-
ment de la vésicule lorsque des conditions de confinement deviennent sévères et imposent
des formes de vésicule axisymétriques. Un accent particulier est mis sur la prédiction de
la mobilité de la vésicule et de la perte de charge additionnelle induite par la présence de
la vésicule. Cette dernière est importante pour comprendre la rhéologie d’une suspension
diluée. De plus, sur la base des résultats numériques du comportement proche du confine-
ment maximal, nous établissons plusieurs lois d’échelle portant sur la vitesse de la vésicule
et sa longueur, ainsi que sur l’épaisseur du film de lubrification. Enfin, nous présentons
un modèle hybride BEM–coarse-graining permettant d’adjoindre un cytosquelette à une
vésicule pour étendre nos études au cas des globules rouges. Lamodélisation coarse-graining
du cytosquelette repose sur un réseau de ressorts identifié à l’ensemble des arêtes dumaillage
d’éléments finis de la membrane de la vésicule. Les résultats numériques montrent que ce
modèle à deux composants vésicule–cytosquelette est capable d’extraire les propriétés mé-
caniques des globules rouges et de prédire sa dynamique dans les écoulements de fluide.

Mots-clés: Interaction fluide-cellule, Vésicules, Globules rouges, Méthode des éléments
de frontière, Transition de formes, Théorie de lubrification.
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1 Introduction

1.1 Context

1.1.1 Complex fluids
Complex fluids are a class ofmaterials thosewith internal particles ormicrostructures whose
evolution affects the macroscopic dynamics of the fluids, especially the rheology. Unlike
classical fluids, the internal particles or microstructures are substances different from the
suspending fluid, which makes complex fluids cannot be described by the classical fluid me-
chanics. For example, blood in the human body is a complex fluid that contains many inter-
nal substances.
An important aspect of complex fluids is that the macroscopic flow properties (rheology

for example) depend on the local behaviors of their components. In general, complex fluids
are homogeneous at the macroscopic scale, but are disordered at the microscopic scale, and
possess structure at themesoscopic scale. Due to the existence of these mesoscale structures,
complex fluids lose scale invariance. This phenomenon, called the multi-scale organization,
is at the origin of the complexity of these fluids and brings difficulties in theoretical and
numerical analysis.
Complex fluids, also called softmatter[36], are intermediate between conventional liquids

and solids, can display both fluid-like and solid-like behaviors. For example, they can switch
from a solid- to a fluid-like behavior by increasing the strength of the applied stresses [124].
Nouniversal law has been constructed to linkmacroscopic properties to local behaviors (for
example, the mesoscopic interfacial morphology of red blood cells in the blood flow), so
it is essential to understand the dynamics of a single internal particle before dealing with
macroscopic properties of complex fluids.

1.1.2 Deformable particles
The term deformable particles refers to suspending particles capable of changing their shape
under external stresses, such as hydrodynamic stress due to the suspending fluid, thermal
fluctuations, and chemical reactions.
In thiswork, deformable particlesmay include drops, capsules, vesicles and red blood cells

(RBCs). Understanding of dynamic behaviors (such as deformation, orientation, and lateral
migration) of such deformable particles in a flow (for example, a shear flow or a Poiseuille
flow), presents both fundamental interests (a non-linear and non-stationary system) and
interests in biomedical engineering. Biomedical interest is motivated not only by in vivo
issues (such as rheology of blood and drug delivery), but also by the increasing demands for

1



1 Introduction

in vitro lab-on-chip technologies (such as particles separation, Figure 1.1) [40, 119],where the
separation is mainly based on the size and the deformability of the particles.

Figure 1.1: Schematic of a lab-on-chip integrating blood loading, plasma separation from whole-
blood, multiple biomarker detection, and suction chambers for fluid propulsion (repro-
duced from [40]).

RBCs, the most complex of these four deformable particles, have fascinated many re-
searchers because of its biological importance. RBC is encapsulated by a membrane com-
posed essentially of a lipid bilayer supported by an underlying polymer network (in detail
in Chapter 5). In this section, a brief presentation will be given for drops and capsules, that
for vesicles will be detailed in the next section.
Drop, or droplet is a small quantity of liquid immersed in another immiscible fluid of

different nature. The suspended liquid drop and the suspending fluid are separated by an
interface having a surface tension γ, which corresponds to the energy required to increase
the surface by a unit of area. Compared to the artificial one (capsule) and the biomimetic
one (vesicle) of RBC, the drop is the simplest in terms ofmembrane structure and dynamics
in external flow. But it has been the subject of many studies for a long time [144], as a fluid-
structure interaction problem which itself holds rich dynamics and may give intuitions for
the complex ones.
A capsule consists of an internal liquid medium (of viscosity ηi) enclosed by a thin de-

formable solid membrane and suspended in another liquid (of viscosity ηe). In contrast to
strongly deformable fluid vesicle (Sec. 1.2), capsulemembrane exhibits a finite shear elasticity
(thus bears shapememory) since capsules are drops encapsulatedby anetworkof crosslinked
polymers. RBC is one of the well-known biological examples of the capsule, while artificial
capsules are widely used in many industries such as pharmaceutical, cosmetic, food indus-
tries and bioengineering applications like drug targeting carriers [12].

2



1.2 Vesicles

1.2 Vesicles
Vesicles are drops encapsulated by a bilayer of lipid molecules, suspended in a fluid that can
be either the same solvent as the inner or different. As shown in Figure 1.2, in aqueous

hydrophobic
tail

hydrophilic head

∼ 10 µm

∼ 5 nm

Figure 1.2: The vesicle membrane is made by a lipid bilayer. In water solution, lipid molecules spon-
taneously aggregate to prevent undesirable interactions between water and hydrophobic
tails. Vesicles are typically about 5 µm in radius and the membrane thickness is about
5 nm [153].

solution, the lipid molecules organize themselves to form a sheet. The hydrophilic head
groups interact with the aqueous medium (which is polar), while keeping the hydrophobic
tails away from aqueous solution. Two sheets of such kind interact with each other forming
a bilayer membrane protecting the tails. In fact, this type of configuration minimizes the
membrane energy that arises from the interaction between polar and non-polar molecules.
The large scale difference between the radius and the membrane thickness1 together with

the fluidity of themembrane at roomtemperaturemake thedeflated vesicle highlydeformable.
The area of this membrane is both locally and globally conserved since any increase or de-
crease in thenumber of lipidswill requiremuchmore energy than that required for deforma-
tion. Moreover, the semipermeability keeps the enclosed volume unchanged on a time-scale
of several hours, which is much longer than the typical experimental time-scale of about 10
to 15 minutes. The vesicle volume can thus be considered as constant [3]. These singular
properties lead to rich behaviors when they are immersed in an external flow.

1.2.1 Deformation and energy
The motion of vesicles in an external flow is different from that of rigid particles or simple
droplets because of their high deformability. Understanding the motion and the deforma-
1The membrane is (approximately) a 2D surface embedded in 3D space.

3



1 Introduction

tion of vesicles is essential both for fundamental research and for industrial applications.
The key issue is to physically describe the membrane and to determine how energy changes
as a result of any membrane modification. That is, to describe or to model the dynamics of
a vesicle under hydrodynamic stresses, we must first understand how the membrane energy
depends on its shape, and know the response to any mechanical disturbance.
Figure 1.3 shows four classical modes of deformation for a lipid bilayer membrane. At

Figure 1.3: Schematic presentation of some classical modes of lipid bilayer deformations: dilation,
bending, shear, and monolayer slipping. The constants characterize the response of the
membrane to these deformations (reproduced from [41]).

ambient or physiological temperature, the lipid is in the liquid state, so we can neglect the
shear mode by defining the elastic modulus µ = 0. The viscosity between two monolayers
b ∼ 10−9 Pa swhich ismuch smaller than that of thewaterwith η ∼ 10−3 Pa s, therefore, the
monolayer slipping can also be neglected for giant vesicles with a size of 10 to 100 µm [19, 41,
153]. Thus, the deformation of the lipid membrane can be simplified with only two modes
of deformation: dilation and bending.
FromDimova et al. [40],wehave thedilationmodulusKa ∼ 240 dyn/cm ≈ 53κBT/nm2,

that is about 106κBT per lipid. The bendingmodulusκ ∼ 0.9×10−19 J ≈ 20κBT . Thus, it
is easier to bend a lipidmembrane than to stretch it. The lipid bilayermembrane is modeled
as a two-dimensional locally incompressible fluid with resistance to bending. This model
takes into account the fact that when subjected to external stresses, it responds first to bend-
ing since the energy associated with bending is much lower than that with dilation. The
modeling of the lipid bilayer membrane, therefore, focuses on the bending energy. Several

4



1.2 Vesicles

models on the bending energy have been reviewed by Seifert [138], here the commonly cited
spontaneous curvature model is briefly presented.
The spontaneous curvature model (SC) was proposed by Helfrich [69] for the bending

energy as

ESC =
κ

2

∫
S

(2H − C0)2dS + κG

∫
S

KdS, (1.1)

where H = 1
2

(
1
R1

+ 1
R2

)
is the mean curvature (with convention that H is positive for a

sphere), K = 1
R1R2

is the Gaussian curvature, R1 and R2 are the local principal radii of
curvature of the surface. κ ∼ 20 κBT is the bending modulus which reflects the energetic
expense associated with driving the mean curvature of the membrane, H , away from its
preferred value,C0. κG ∼ −0.8κ is theGaussian bendingmoduluswhich reflects the cost of
imposing Gaussian curvature,K, on the surface. C0 is the so-called spontaneous curvature,
which is supposed to reflect a possible asymmetry in the membrane (e.g., due to a different
chemical composition of the two monolayers). In this work, we suppose C0 = 0.
Nevertheless, for a closed surface without change of topology, irrespectively of the value

of theGaussian bendingmodulus, the equilibrium shape is not affected since
∫
s
KdS is con-

stant2. Topological changes (lysis, fusion or pore formation) are possible but rare because
they are related to processes that are energetically unfavorable. In this work, topological
changes are disregarded. With these two assumptions, Eq. (1.1) is simplified to

EsSC =
κ

2

∫
S

(2H)2dS + 4πκG =
κ

2

∫
S

(
c21 + c22

)
dS + 4π(κ+ κG), (1.2)

where c1 = R−1
1 and c2 = R−1

2 are the principal curvatures of the surface. This simplified
SC model differs from the minimal model [28] only by the constant term, 4πκG.

1.2.2 Equilibrium shapes
On the typical experimental time scale, both the surface areaA and the volume V of vesicles
are preserved, which define an important geometric parameter, the reduced volume

ν =
V

4π
3

(
A
4π

)3/2
= 6
√
πV A−3/2 (1.3)

as a ratio of the actual enclosed volumeV over the volumeof a sphere having the same surface
areaA. The reduced volume, which quantifies the geometric ability of the vesicle to deform,
can range from 0 (totally deflated vesicle) to 1 (sphere). A sphere is a form of maximum
volume for a given surface, or reciprocally, of minimal area for a fixed volume. A spherical
vesicle is geometrically undeformable with constraints of volume and surface conservation.
In order to deform this vesicle, it is necessary to deflate it, which can be measured by the
reduced volume.
2With Gauss-Bonnet theorem,

∫
sKdS = 4π(1 − g), where g is the number of pore of the surface (e.g.,

g = 0 for a classical sphere).
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Alternatively, one can also use the excess area∆ as the geometric parameter, which is given
by

A = (4π + ∆)R2
v, (1.4)

where Rv =
(
V/4π

3

)1/3 is the radius of a sphere with the same volume V . These two pa-
rameters are linked to each other by relations:

ν =

(
1 +

∆

4π

)−3/2

and ∆ = 4π
(

1

ν2/3
− 1
)
. (1.5)

For healthy human RBCs, which have an average surface area of 135 µm2 and a mean
cellular volume of 94 µm3 [2], thus the reduced volume can be calculated to be around 0.64.
The bending energy (1.2) was first used to determine the equilibrium shapes free of ex-

ternal stresses. As shown in Figure 1.4 (a), three different branches: prolates, oblates and
stomatocytes are obtained by minimizing the bending energy. Each branch is a minimal lo-

stomatocytes

stomatocytes

oblates prolates

B
e
n
d
in

g
e
n
e
r
g
y

ν

(a) (b)

Figure 1.4: (a) Bending energy (Eq. (1.2)) corresponds to the equilibrium shapes as a function of re-
ducedvolume. Threebranches are displayed: theprolate, the oblate, and the stomatocytes
branches. The upper part betweenCsto andM sto corresponds to locally unstable shapes,
whereas the lower part between Lsto andM sto corresponds to locally stable shapes. The
oblate branch beyond SIob corresponds to self-intersected states. (b) Equilibrium shapes
for several values of ν. D andDsto denote the discontinuous prolate-oblate and oblate-
stomatocyte transitions. (reproduced from [139])

cal of theHelfrich bending energy, while the global equilibrium shape (with global minimal
bending energy) is a function of the reduced volume ν. In other words, several solution
branches can coexist, but with only one solution branch is a global minimum, which corre-
sponds to a form of thermal equilibrium.
Comparing the Helfrich bending energy of these three branches, we observed that for

0 < ν < νstoD ' 0.59, the stomatocytes have the lowest energy, while for νstoD < ν < νD '
0.65, the oblates have the lowest energy, and finally, for νD < ν < 1, the prolates correspond
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1.2 Vesicles

to the ground state. Several shapes of the lowest bending energy are displayed in Figure 1.4
(b), which are separated by two discontinuous transitions [139].

1.2.3 Non-equilibrium shapes: dynamics in external flow
The behaviors of a single vesicle in a simple shear flow3

u ≡ s(xey + yex) + ω(xey − yex), (1.6)

have been studied experimentally[1, 37, 38, 76, 77], theoretically[20, 35, 45, 82, 92, 93, 112,
117, 137], and numerically with boundary integral method (BIM)[17, 22, 158] or immersed
boundary method[84], and with mesoscale techniques[115, 117], etc. All these three ap-
proaches have identified three basic dynamical behaviors, namely

• tank-treading (TT): the fluid membrane rotates as a tank treads about a rigid object
of fixed orientation (Φ) (Figure 1.5 (a)),

• tumbling (TU): vesicles flipping periodically in the shear plane with its shape remains
globally unchanged (Figure 1.5 (b)),

• trembling (TR): also called vacillating-breathing (VB) [112], an intermediate regime
between TT and TU, where vesicles tremble while its long axis oscillating around the
flow direction (Figure 1.5 (c)),

in a linear shear flow. Analytical models are based either on Keller-Shalak (KS) theory[82],

(c)

(b)

(a)

Figure 1.5: Dynamics of vesicle in general flow [37, 93]. (a) tank-treading (TT), (b) tumbling (TU)
and (c) trembling (TR).

which assumes vesicles have fixed ellipsoidal shape, or on perturbation theory [45]which are
limited for quasi-spherical vesicles (ν ≈ 1) under simple boundary conditions.
3It may be represented as a superposition of a purely elongational flow and a purely rotational flow, where s
is a measure of the strength of the elongational flow component and 2ω is the vorticity.
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Phase diagram of a vesicle in a linear flow as a function of the reduced parameters Λ and
S (see [93] for their expressions) are plotted in Figure 1.6, with experimental and numerical
data as well as analytical predictions.

Figure 1.6: Phase diagram of the three different dynamics in linear flow (reproduced from Biben et
al. [17]). The symbols with error bars are experimental data of Deschamps et al. [38].
The blue triangles, red squares, and green circles are results obtained by BIM [17] with
ν = 0.95. Theory[36] and Theory[21] are analytical predictions given by Farutin et
al. [45] and Lebedev et al. [93], respectively.

As in quadratic Poiseuille flow, there are twomajor concerns: the lateralmigration [33, 48,
49, 78] and the shape evolution [32, 47, 49, 80]. A single aspherical vesicle in Poiseuille flow
may deform and break its upstream-downstream symmetry due to (i) the shear flow close to
solid boundaries[33, 48, 79] and (ii) non-constant shear gradient[33, 48, 78, 80]. As a result
of the symmetry breaking (a slipper shape, for example), vesicles undergo cross-streamline
migration.
An initially symmetrical vesicle flowing in a two-dimensional unbounded Poiseuille flow,

with the centroid of the vesicle being different from the flow axis, can deform into a stable
asymmetric shape and can migrate either inward or outward to the flow center, as shown in
Figure 1.7. It is contrary to the natural expectation that it should form a symmetrical shape
in the center of the symmetrical flow.

8



1.3 Deformable particle in a fluid flow

(a) (b)

Figure 1.7: Deflated vesicle in unbounded Poiseuille flow obtained by 2D simulation, reproduced
fromKaoui et al. [80]. (a) Phase diagram of the stable shapes in the plane of reduced vol-
ume and maximum imposed velocity. (b) The equilibrium lateral position of the center
of mass YG (top), the slip velocity (middle) and the tank-treading velocity (bottom) as a
function of ν.

1.3 Deformable particle in a fluid flow
A vesicle4 flowing in an external flow is fundamentally a fluid-structure interaction (FSI)
problem with a moving interface. The forces induced by the fluids can deform the mem-
brane, which results in a change in membrane forces (e.g., the bending force), and which in
turn will alter the surrounding fluids. An FSI problem generally involves three aspects, for
a vesicle flowing in external flow, they are

• modeling the fluid flow,

• modeling the mechanics of the lipid membrane interface,

• coupling conditions at the interface,

and will be presented separately in the following subsections.

1.3.1 Hydrodynamics: Stokes regime
Since we are currently interested in the problem of diluted suspension (a single vesicle), the
inner and outer fluids of the vesicle are both described by the incompressible Navier-Stokes
equations.
4In this section, we assume that the terms vesicle and deformable particle are interchangeable unless otherwise
stated.
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For a vesicle (with typical size about 10 µm) immersed in aqueous solution (with dynamic
viscosity η ∼ 10−3 Pa s anddensity ρ ∼ 103 kgm−3), theReynolds number is estimated to be
Re∼ 10−4 in using a typical speed, in the capillaries, of about 10 µm s−1. Thus, the control
equations are simplified to the Stokes equations [127],

−∇p+ η∇2u = 0, ∇·u = 0. (1.7)

The Stokes equations are elliptic, which means the hydrodynamic solution (u, p) in a do-
main D depends only on the boundary conditions imposed on its boundary ∂D. In our
problems, the two boundaries are themembrane interface (refer 1.3.3) and the outer bound-
ary of the system. The outer boundary conditions can be

lim
x→∂D

u = u∞ (1.8)

for the open part of the outer boundary, and

u |∂D= 0 (1.9)

for a rigid wall.

1.3.2 Membrane forces

Asmentioned in subsection 1.2.1, the lipidbilayermembrane ismodeled as a two-dimensional
locally incompressible fluid with resistance to bending. The incompressibility of the mem-
brane is imposed through the free of surface divergence of velocities, i.e.,

∇s·u = 0, (1.10)

which is realized by adding a Lagrangemultiplier γ to theHelfrich bending energy Eq. (1.2),
as

Evesicle =

∫
S

(
wHs + γ

)
dS, (1.11)

where wHs = κ
2 (2H)2; the Gaussian curvature term is neglected as it does not contribute to

the membrane force.
The surface density of force exerted by the membrane of vesicle fmv onto surrounding

fluids is given by the first variation of its surface energy Eq. (1.11) [19],

fmv = − 1√
a

δEvesicle

δx
= κ
[
2∆sH + 4H(H2 −K)

]
n− 2γHn+ ∇sγ, (1.12)

where a is the determinant of the local metric. ∆s = ∇s·∇s and∇s = (I − nn)·∇ are
the surface Laplace operator (also called the Laplace-Beltrami operator) and surface gradient
operator, respectively. n is the outward pointing normal vector.
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1.3 Deformable particle in a fluid flow

For a dropwith surface tension γ, it can bemodeledwith a surface energy densityws = γ,
or Edrop =

∫
S
wsdS, the surface density of force fmd can be obtained in the same way [22],

which reads
fmd = ∇sγ − 2γHn. (1.13)

For the hyperelastic membrane of the capsule, there are two types of constitutive law, ei-
ther strain-softening (e.g.,Neo-Hookean law, noted asNH)or strain-hardening (e.g., Skalak
law, noted as Sk) [12, 154]. For these laws, the surface density of membrane energy is defined
upon a reference configuration S0 as,

wNHs0 =
Gs
2

[
I1 − 1 +

1

I2 + 1

]
wSks0 =

Gs
4

[
I2

1 + 2I1 − 2I2 + CI2
2

] , (1.14)

whereGs is the surface shearmodulus,C represents the relative importance of the resistance
to surface dilation, and I1, I2 are the two strain invariants related to the principal extension
ratios λ1, λ2, defined as

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1. (1.15)

1.3.3 Coupling conditions

For an FSI problem, coupling conditions must be imposed between the surrounding fluids
and the membrane. First, velocities (velocity of the internal fluid i, the external fluid e and
that on the membrane Γ) are continuous at the interface Γ

ue(x) = ui(x) = uΓ, ∀x ∈ Γ. (1.16)

Moreover, with the assumption of no flux through the membrane, we have

Dx

Dt
= uΓ, ∀x ∈ Γ, (1.17)

that is, the membrane has the same velocity as the fluid in the same position x, whereD/Dt

is the material derivative. Lastly, since the inertia of the membrane being negligible, the
surface density of the membrane force is balanced with the hydrodynamic stresses,

JσK·n+ fm = 0, (1.18)

where JσK = σe − σi, and fm is the interfacial force densities, defined in Section 1.3.2.
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1.3.4 Characteristic parameters: vesicle in capillary
The flow inside the capillary (of our interest)withoutdeformableparticle is called asPoiseuille
flow

u∞ = Um

(
1− y2 + z2

R2
t

)
ex, (1.19)

where Um, the maximum speed, is the speed at the axis of the capillary of radius Rt, and
r =

√
y2 + z2 is the radial position.

• The characteristic length: the two relevant lengths are the radius of capillary Rt and
the equivalent radius of the vesicle R =

(
V/4π

3

)1/3, which define a dimensionless
parameter, the confinement β = R/Rt. In this work, we useR as the reference length,
i.e., lref = R.

• The characteristic time: the two relevant characteristic times are the characteristic time
needed by the vesicle to relax to its equilibrium shape τr = ηeR3

κ (in the absence of
imposed flow) and the characteristic time defined by the flow τf = γ̇−1 = R2

t

2rUm
,

which define a dimensionless parameter, the capillary number Ca = τr/τf = ηeR3γ̇
κ .

In this work, the characteristic shear rate γ̇c is defined at r = R/2 for Poiseuille flow,
i.e., γ̇c = γ̇(r = R

2 ), as in [5].

• The characteristic force: fref = κ/R3, the typical bending force density.

1.4 A brief review of numerical methods
In this section, we briefly present some widely used numerical methods for deformable par-
ticles suspended in external flow, respectively for the membrane and for the hydrodynamic
flow, and for the algorithms to calculate the bending forces of a membrane.

1.4.1 Membrane modeling approaches
There are three basic approaches to modeling the moving interfaces by examining how the
membrane is presented, namely the continuous membrane approach, the discrete mem-
brane approach, and the implicit membrane approach [59, 61].

The continuous membrane approach

The continuous approach considers themembrane as a two-dimensional surfacewithknown
mechanical properties: such as (local) membrane incompressibility, elasticity, resistance to
bending, and membrane viscosity etc [61]. The two most commonly used models are those
of the constitutive laws used for capsule [11, 12, 22, 113, 129, 160] and vesicle [21, 22, 46, 113,
132, 138, 150, 158], as presented in Section 1.3.2.
In this approach, themembrane surface is explicitly discretized through triangulation [21,

22] or through spectral representation [132, 158], and the membrane stresses are directly
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1.4 A brief review of numerical methods

linked to themembranedeformationwith the constitutive laws, by finite elementmethod [21],
isogeometric method [22], spectral method [132], etc.

The discrete membrane approach

Discrete modeling, or particle-based modeling, constructed in molecular level, which can
explicitly include microstructural details in the model and is expected to have the ability to
describe the biochemical process, such as ATP release [26, 54, 59, 97]. For this method, the
membrane can generally be considered as a set of particles connectedby anetworkof springs.
Fully particle-based modeling, such as molecular dynamics (MD), is only affordable in

a small domain due to its unfavorable computational scaling [26, 53]. To work around
this limitation, two approaches are proposed, the multiscale modeling and the mesoscopic
method. The first solution is used with other scale methods, which together serve to simu-
late the entire flow, and not specialized for the membrane [53]. While the mesoscopic par-
ticle method, or coarse-grained method, each particle represents a molecular cluster rather
than an individual one [97]. For example, for a typical RBC, Li et al. [95] use such a meso-
scopic particle to represent each spectrin link, which is of the order of 105. This spectrin-level
model can take into account both the lipid bilayer, the spectrin cytoskeleton and the inter-
action between them, and can produce macroscopic elastic modulus in agreement with the
experimental observation. Such spectrin-level may probably be unnecessary, as shown by
Fedosov et al. [52] and recently by our group [105]; highly coarse-grained models also give
fairly acceptable results.
Among the well-known coarse-grainedmodels used in cell simulation are dissipative par-

ticle dynamics (DPD) [51, 67], smooth dissipative particle dynamics (SDPD) [91, 114],multi-
particle collision dynamics (MPCD) [63, 109], immersed boundarymethod (IBM) [110, 155]
and lattice boltzmann method (LBM) [142].

The implicit membrane approach

For this approach, the cell membrane is presented neither by a set of elements, nor by a set
of marked points, but by an auxiliary field, which assumes a certain value on the position of
this membrane interface [107]. The phase fieldmethod (PF) [16, 18] and the level set method
(LS) [43, 107] belong to this family.

1.4.2 Flow simulation methods
With regard to the methods used to discretize the flow equations, Freund [59]made a very
impressive review by classifying into four different kinds. Here, a similar classification, but
with a rather shortened version, is given.

Boundary integral methods

BIM, which is favorable for linear viscous flow (i.e., Stokes flow), benefits from the fact
that only surfaces are discretized. The theory and its formulation are well documented by
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Pozrikidis [127, 128], and it is nowwidely used in the simulation of capsule [12, 129] and vesi-
cle [21, 22, 46].Meanwhile, a disadvantage is that the matrix after the discretization is dense
due to the slow spatial decay ofGreen’s functions, and it becomes very difficult in calculation
in the case where many cells are involved. The two most widely used methods to overcome
this limitation are the particle-mesh methods and the fast multipole methods.
The particle-mesh methods decompose a potential (the Green’s functions) into a rapidly

decaying short-range interactions and smooth, mesh-resolvable long-range interactions [13,
58, 85]. The fast multipole methods employ multipole expansions of the Green’s functions,
and the long-range interactions are grouped. Unlike FFT-based methods (used in long-
range interactions for particle-mesh methods), the expansion coefficients can be developed
hierarchically, thus parallel implementation can be made efficient with judicious data man-
agement [59, 66, 131].

Mesh-based methods

Unlike boundary integral methods, mesh-based methods use a fixed mesh that fills the flow
region but does not generally match the cell shapes. Thus interpolations are necessary, but
capable for the flow with finite inertia. Both finite-difference and lattice-Boltzmann dis-
cretizationshavebeen successfully applied for cell simulationwithnon-conformingmeshes [59].
For example, finite difference methods are used for the simulation of deformable parti-

cles with the membrane interfaces tracked by immersed boundary method [7, 8], immersed
interface method [94, 98], and level set method [31, 108] etc. Similarly, the semi-Lagrangian
lattice Boltzmann methods are also used for the viscous flow simulation [4, 81] in coupling
with immersed boundary method [87, 147, 156], finite element method [106],coarse-grained
model [134] etc. Other mesh-basedmethods include the finite elementmethod [42] and the
finite volume method [91, 110, 140].

Hybrid integral-mesh methods

Kumar etGraham [88]havedeveloped ahybrid approach that shares features of bothbound-
ary integral andmesh-basedmethods. In short, instead of the commonly used boundary in-
tegral (BI) formulation, an alternative BI formulation inwhich the velocity field is expressed
in terms of single layer integral alone. The overall problem is decomposed into a local prob-
lem and a global problem, essentially by splitting the Green’s function into local (singular
but exponentially-decaying) and global (smooth but long-ranged) parts.
The short-range local part employs a free-space Green’s function and will be solved with

free-space boundary conditions (integral part). Whereas the global solution is approximated
by a series (Chebyshev polynomial for non-periodic direction and Fourier series in the peri-
odic direction), and that the Stokes equations become a set of ordinary differential equations
by the application of the Galerkin method (mesh-based part). This accelerated hybrid ap-
proach is developed for multiphase flow in arbitrary geometry, thanks to the wall geometry
flexibility and boundary condition convenience of mesh-based schemes [59].
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Stochastic particle methods

Theparticlemethods, as presented in Section 1.4.1 for themembranemodeling, are also used
for the fluid simulation. Suchmethods include the dissipative particle dynamics (DPD) [51,
123] and the multiparticle collision dynamics (MPCD) [63, 109].

For more details on numerical methods, one can refer to the reviews by Li et al. [97], Fre-
und [59],Abreu et al. [3], and Aydin et al. [6].

1.4.3 Algorithms for bending forces
Bending force is themainmembrane force for vesicles and canbecome the dominating factor
for capsules at low shear rates [12, 56]. The direct calculation of the bending force is much
more difficult than the in-plane elastic force, because of the fourth-order derivative. In this
section, various algorithms for calculating the bending forces, which are derived from the
seminal works of Canham [28] and Helfrich [69] (Eq. (1.11) without surface tension γ), are
briefly presented based on the work of Guckenberger et al [68].
In their article [68], six different algorithms (denoted by A-E and S, as shown in Ta-

ble 1.1) are sorted into three different categories, depending on the variational derivative
being performed before ("variational formulation") or after ("force formulation") the sur-
face discretization. The first two algorithms, methods A and B, first discretize the surface
and then perform the variational derivative bymeans of a direct differentiation with respect
to the nodes’ positions, yields the force. While the threemethods C-E perform the discretiza-
tion after the variational derivative and thus provide the force density. The last method S is
somewhat set apart from the others because on the one hand the discretization is first in-
troduced, but on the other hand, the force density is obtained by solving the weak-form
integral equations discretized bymeans of the finite elementmethod. As summarized in the
"Result" and "Derivative" row of the Table 1.1.

A B C D E S
Ingredient

basically from Kantor [75] Gompper [64] Meyer [111] Belkin [15] Farutin [46] Cirak [29]
Boedec [22]

Result Force Force Force density Force density Force density Force density
Derivative Nodal Nodal Variational Variational Variational FEM

Basic idea Normal vector
discretization

∆s via co-tangent
scheme

∆s via co-tangent
scheme

∆s via heat
equation

Parabolic
fitting Subdivision surface

Table 1.1: Overview of the six algorithms A-E and S [68] for computing membrane bending forces.

These algorithms also differ from the basic idea in evaluating the mean curvature or the
Laplace-Beltrami operator ∆s, if any. The results are summarized as follows:
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• MethodAcalculates thebending energy via thenormal vector and the relation
∫
S

(H2−
2K)dS =

∫
S

(∂αn)· (∂αn)dS. This method showed the largest errors and very sensi-
tive to irregularities. Furthermore, it often requires the smallest step size in order to
remain in a stable region, but on the other hand, it is the most easily implemented
method.

• Method B approximates ∆s by a variant of the so-called cotangent scheme [64]. This
method turns out to be similar to Method C for homogeneous mesh, but somewhat
worse for inhomogeneous triangulations regarding errors and required step size.

• Method C approximates ∆s in the same way as Method B, except for the method of
calculating the area attached to each node. Another major difference is related to the
order between the discretization and the variational derivative, which allows Method
C to evaluate∆sH also by a cotangent schemewhen calculating the force density. This
algorithm also has troubles with the inhomogeneous mesh. The hydrodynamical re-
sults are very similar toMethods B, D, E and S, and requires a step size comparable to
B and E.

• Method D differs from Method C by the discretization of ∆s, which is based on a
kernel of the diffusion or heat equation [15]. This method is shown the most ro-
bust among all the six algorithms andworking reasonablywell on the inhomogeneous
mesh. It also leads to the largest step size, but one evaluation scales as O(N2), where
N is the number of the nodes.

• Method E evaluates the curvatures and thus the force density by a parabolic fitting
scheme [46]. This method is similar to C, whereas it handled the irregular mesh better
than Methods A–C but still worse than D. The required step size is comparable to
Methods B and C.

• Method S is the algorithm currently used in our group, as presented in Section 2.2.
The remarkable difference, compared to other algorithms, is that the force density is
calculated explicitly by solving a linear systembut not by approximating. Thismethod
exhibits the same behavior as Method C. Working with the mesh preservation algo-
rithm (Section 2.5.2), this method shows its potential for various deformable parti-
cles with large deformation [22]. Moreover, it provided errors that are significantly
smaller, whereas the complexity isO(N2).

Our approach is based on boundary integral equations (BIE), which are analytic for given
boundary distributions, and which reduce a 3D problem into a 2D one since only bound-
aries/interfaces need to mesh. These two points of BIE show great advantages (in terms
of accuracy and computational effort) before mesh-based methods and particle methods.
To compute the mechanical source distributions raised from a single soft particle, as in
our case, continuous approaches are far more accurate than particle-based modeling. The
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troublesome out-of-plane bending force is alleviated from a fourth-order derivative to a
second-order one by formulating the membrane equilibrium equation in weak form and
with quadratic shape functions (Loop elements). That is, all elastic forces induced by the
deformation are evaluated directly with the finite element method, and no reconstruction
is necessary.

1.5 Dissertation overview

The rest of this dissertation is organized as follows.
In Chapter 2 we present the details of the numerical methods that are used in subsequent

chapters to investigate the dynamics of vesicles and red blood cells in tube flow. Specifically,
we first describe how a wall boundary is incorporated into a previous numerical model for
soft particles (drop, capsule, and vesicle) in unbounded Stoke flows. We then present several
simulation examples to validate and demonstrate the spatial and temporal convergence of
the newly implemented method (Sec. 2.5.5). While the present numerical model is able
to handle channel walls of arbitrary cross-section, as illustrated in the example of a capsule
flowing in a rectangularmicrochannel (Sec. 2.5.4), the presentwork focuses on the dynamics
of a vesicle that is transported through a circular tube in a pressure-driven flow.
Chapter 3 details the dynamics of a three-dimensional vesicle freely suspended in con-

fined Poiseuille flow with an emphasis given to the vesicle’s shape transition and different
lateral migration models. Vesicles with matched viscosity of the inner and outer fluids are
characterized by three dimensionless parameters, namely the reduced volume, the confine-
ment (called also the radius ratio), and the capillary number. We show that a deflated vesicle,
initially placed at an off-center position, can also migrate perpendicular to the flow direc-
tion due to both the presence of the wall boundary and the curvature of the imposed flow
profile. Three general migration modes are clearly determined in Sec. 3.3.1, depending on
these three control parameters. During the migration, the vesicle’s shape undergoes contin-
uous deformation due to the hydrodynamic stresses imposed by the Poiseuille flow onto the
membrane. Once the lateralmigration speed vanishes, a stable shape is obtained, as shown in
Sec 3.3.2 and the corresponding flow structures are presented in Sec. 3.3.3. The effects of the
capillary number (Sec. 3.3.4), the confinement (Sec. 3.3.5), the reduced volume (Sec. 3.3.6),
and the initial conditions (H0 and θ0, Sec. 3.3.7) are then explored in detail.
In Chapter 4 we study, via an axisymmetric boundary element method, vesicle hydrody-

namics under high confinements in which the shape of the vesicle is expected to maintain
axisymmetry. We present a phase diagramof shapes, compare the simulation results with ex-
perimental observations, and give a clearly identified parachute-bullet shape transition line.
Critical confinement is calculated based on the geometric constraints of vesicles – the vol-
ume and surface area are fixed on the time scale of typical experiments. We present simula-
tion results and compare with the previous theoretical investigation when the confinement
approaches its critical value. The results of this study have potential application to assess the
rheology of a dilute red blood cell suspension.
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Chapter 5 describes a hybrid continuum (vesicle model, see 1.3.2) and coarse-grained
(FENE-POW spring model) model to study red blood cells in fluid flows. The proposed
approach is compared with the classical optical tweezers experiment (Sec. 5.4.1). With the
present model, both tank-treading and tumbling motions are reproduced for a red blood
cell immersed in a linear shear flow (Sec. 5.4.2). The effect of the shear modulus of a red
blood cell in tube flow is also investigated in Sec. 5.4.3.
Chapter 6 presents conclusions of this dissertation and outlines some future potential

developments that are closely related to the present work.
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Notation Definition Expression/Units
η fluid viscosity Pa s

ηi(ηe) internal (external) fluid viscosity Pa s
γ surface tension Nm−1

µ, µS , Gs elastic shear modulus Nm−1

Ka dilation modulus Nm−1

κ bending modulus Nm
κG Gaussian bending modulus Nm
H mean curvature m−1

K Gaussian curvature m−2

C0 spontaneous curvature m−1

ν reduced volume Eq. (1.3)
∆ excess area Eq. (1.4)
u velocity m s−1
ρ fluid density kgm−3

ws surface energy density Nm−1

n normal vector
∇s surface gradient operator (I − nn)·∇
∆s Laplace-Beltrami operator ∆s = ∇s·∇s

R radius of the deformable particle m
Rt radius of the capillary m
β confinement of capillary flow β = R/Rt
γ̇ shear rate s−1
Ca (bending) capillary number ηeR3γ̇/κ

L1, L2, L3 lengths of three principal axes m
D Taylor parameter (L1 − L2)/(L1 + L2)

D2 geometric parameter (L2 − L3)/(L2 + L3)

θ angle of inclination Fig. 3.1 (b)
Yg, YG lateral position of the centroid of the particle m
Uy lateral migration velocity m s−1

Table 1.2: List of used notations.
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Abbre. Definition
BEM boundary element method
BIM boundary integral method
DPD dissipative particle dynamics
FEM Finite element method
FENE finitely extensible nonlinear elastic
FSI fluid-structure interaction
IBM immersed boundary method
KS Keller-Shalak theory
LBM lattice boltzmann method
LS level set
MD molecular dynamics

MPCD multi-particle collision dynamics
NH Neo-Hookean law
PF phase field

POW power function
RBC red blood cell
SDPD smooth dissipative particle dynamics
Sk Skalak law
T1 linear triangle element
TR trembling
TT tank-treading
TU tumbling
VB vacillating-breathing

Table 1.3: List of used abbreviations.
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2 NumericalMethods

In this chapter, a three-dimensional numericalmodel to study the dynamics of a deformable
particle suspending in a confined Poiseuille flow is presented, as shown in Figure 2.1. This
model is fully based on themethods followed in our previousworks for a particle suspended
in a fluid without external physical boundaries [22].

ex

ey

ez

Rt

Figure 2.1: A deformable particle in flow through a cylindrical tube of radius Rt. It should be
noted that the length of the tube and the mesh given here do not imply the actual
length and mesh used in the simulation. The unperturbed flow is given by u∞ =

Um

(
1− y2+z2

R2
t

)
ex, where Um is the speed of the flow on the centerline of the capillary,

and ex is the direction of the flow.

In the inertia-free limit (Stokes flow, Eq. (1.7)), if membrane viscosity is neglected, the
evolution of the membrane interface (Eq. (1.17)) can be divided into a series of one-way
coupled steps, x → f → u → ∂tx [59]. The numerical methods used in this work will be
presented in this way, followed by a section of validation.

2.1 Geometry description (x)

In this section, themembrane interfacediscretization and thephysical boundary (microchan-
nel) discretization are presented separately.
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2 Numerical Methods

2.1.1 Interface description

To describe or to discretize the particle surface, there are several frequently used methods in
the literature, such as finite element methods (FEM) [21, 22, 150], spectral methods [39, 83,
157] and particle-basedmethods [51, 97].Here, a Loop subdivision [104] based isogeometric
finite elements description is used [22].

For FEM, a general unstructured mesh has only C0 continuity, and it is impossible to
ensure C1 continuity in the conventional sense where the slope is continuous across the
mesh cells. While a direct computation of the membrane bending forces requires at least a
C4 representation of the membrane position since the bending forces contain fourth-order
derivatives of the position x. Mesh smoothness requirements can be eased from C4 toH2,
where H2 represents square-integrable functions whose first- and second-order derivatives
are themselves square-integrable1, by formulating the problem in weak form [29].

To circumvent theC1 continuity limit, traditional FEMuses either a local reconstruction
of elements’ interface [46, 110] or designs computations of Laplace-Beltrami operator [21,
150] onC0 mesh. While subdivision surfaces obtained by Loop scheme [104] are guaranteed
to beH2. What’s more, the subdivision surfaces are used both for membrane presentation,
membrane solver, and fluid solver (boundary element method) in a consistent way, which
is the idea behind the isogeometric analysis [74].

The Loop subdivision surface is an assembly of linear triangle elements refined by a sub-
division process. For deformable particles, homotopic to the sphere, the icosahedron can
be used as an initial control mesh, in which it contains 20 equilateral triangle faces with five
meeting at each of its 12 vertices. New elements are created and vertices are created or up-
dated according to the subdivision rules.

As shown in Figure 2.2, the coordinates of newly generated vertex (level k + 1) on the
edge of the previous mesh (level k) are given by:

pk+1
H =

pkA + 3pkB + 3pkC + pkD
8

, (2.1)

and the old vertex is updated by

pk+1
G = (1− nλ)pkG + λ

n∑
i=1

pkGi , (2.2)

1In some cases, the terms C1 continuity and H2 square-integrable are interchangeable, e.g., the bounded
bending force.
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2.1 Geometry description (x)

S0 S1 S2

Figure 2.2: An example shows the subdivision process by Loop’s rules from an initial control mesh
S0, an icosahedron, toS1 mesh (with one refinement) and toS2 (with two refinements).
The subdivision masks for creating a new vertexH on the edges of the previous mesh is
shown in S0 and for updating a vertex G from a mesh at level k to a new mesh at level
k + 1 is shown in S1.

where Gi, i ∈ [1, n] are the one-ring neighbours2 (at level k) of an existing vertex G. n,
termed as valence of the vertex, is the number of edges incident on it [29]. The value of λ,
proposed by Loop [104], is given as

λ =
1

n

[
5

8
−
(

3

8
+

1

4
cos

2π

n

)2
]
. (2.3)

All vertices having valence equals to six are called regular vertices, while vertices with va-
lence other than six are called irregular vertices since the function evaluation scheme must
be updated for the elements linked to it. Note that all newly generated vertices by Loop
subdivision are regular vertices, while the 12 vertices (valence equals to 5) updated from the
initial icosahedronmeshwill remain irregular. In the limit of infinite subdivisions, themesh
converges to a limit surface which isC2 continuous, except at the 12 irregular vertices where
they degenerate to C1 continuous.
Stam [143] shows that the limit position of any point on an element e can be obtained by

xe(s1, s2) =
∑

p∈one-ring
XpNp(s

1, s2), (2.4)

where (s1, s2) is a local parametrization of the element (on the basis (e1, e2) as shown in
Figure 2.3(a)), Np are shape functions which span over all one-ring elements (refer to [29]
or appendix B.1 for details) as shown in Figure 2.3(b). The nodal valueXp is the expansion
parameters of the shape functionNp for the limit positionx. Similarly, every scalar function

2The one-ring of a vertex: immediate neighbor vertices incident to this vertex. Correspondingly, the one-ring
of a element is a set of elements incident to this element, as shown in Figure 2.3 (a).
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2 Numerical Methods

e1

e2

(a) (b)

Figure 2.3: (a) Schema of an element (gray triangle) and its one-ring elements (bounded by solid
lines). A parameterization of any point on this element, (s1, s2), is built upon the ba-
sis (e1, e2). (b) Representation of a shape function on a subdivision sphere interface, the
wireframe shows a coarse mesh with only two subdivisions and the surface shows a mesh
with six subdivisions. Unlike conventional Lagrange triangular elements, the support of
the shape function of Loop scheme is spanned over the one-ring elements.

f defined on the membrane, e.g., a component of the membrane traction and velocity, can
be expanded or approximated with these shape functions as [22]

fe(x) = fe(s1, s2) =
∑

p∈one-ring
F pNp(s

1, s2), (2.5)

where F p is the p-th nodal value. Eq. (2.5) can serve to evaluate f at any point x of the
membrane element e if the nodal valuesF p are known. Inversely, we also need to convert the
knownmembrane function f into its nodal values F p, that is, given the approximation of f
under the form (2.5) such that the approximation error is minimized. Using the collocation
formulation, in which the known field f is collocated at vertices, that is, fp = f(x = xp) is
known at vertex xp

fp =
∑

q∈one-ring
F qNq(s

1(xp), s2(xp)) ∀p ∈ {1, · · · , Nv}, (2.6)

whereNq(xp) are the shape functions evaluated in local parameter space (s1, s2) correspond-
ing to the vertex xp, Nv is the total number of vertices. Assembling the linear system (2.6)
in matrix form according to the index of vertices, we have

{fp} = C{F p}, (2.7)

where {fp} = {f1, f2, · · · , fNv}t, {F p} = {F 1, F 2, · · · , FNv}t, andC is the collocation
matrix serves to transform between the limit values fp and the nodal values F p.
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2.1 Geometry description (x)

2.1.2 Microchannel description
In this thesis, the wall of the tube is considered to be rigid and satisfies no-slip and no-
penetration boundary conditions. Rigidity, or without deformation, means the conven-
tional C0 FEM mesh is adequate as for the description of the microchannel (no need for
derivative). Here, both the linear triangle elements (T1) and the subdivision elements (Loop)
are implemented.

Figure 2.4: Example of a T1 tube mesh formed with linear triangle elements. Top: side view with
inlet surface, bottom: full view of the wall mesh. The wall is composed of 3096 elements
and the inlet/outlet is composed of 60 elements. The ratio of the length to the diameter
L/D equals 7.

Figure 2.4 shows a T1 tube mesh refined at the center which is the region where we can
find the soft cell3. The complete mesh of the tube is composed of a mesh of inlet surface,
a wall mesh, and a mesh of the outlet surface. We distinguish the mesh of the wall and the
meshes of the free surfaces due to the discontinuity of the normal vectorwhen itmoves from
the wall to the free surface, or vice versa. That is, the normal vector is not properly defined
at the intersection of these surfaces.
For linear triangle elements, every scalar function f at any point on an element e can be

obtained by

fe(s1, s2) =

3∑
p=1

F pN t1
p (s1, s2), (2.8)

where N t1
p are linear shape functions (refer appendix B.2 for the shape functions and the

notation of control points), F p are the expansion parameters. Unlike Loop element, the
expansion parameters F p for T1 element are exactly the value of f at control point p, that is
F p = fe(xp) due to the definition of the shape functionsN t1

p .
3To limit the length of the tube, the soft cell is brought back to the center (in the flow direction) after every
time stepping.
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2 Numerical Methods

Figure 2.5: Example of a Loop tube mesh obtained by two successive subdivisions from the origin
control mesh (top). Both ends are rounded by a predefined small radius circle rc. This
mesh is composed of 3360 elements. The ratio of the length to the diameterL/D equals
6, and rc/D = 1/16.

Figure 2.5 shows a Loop tube mesh which is refined both at the center and its two ends.
To have a Lyapunov surface, both ends are rounded by a small circle rather than separated
on two. To achieve improved accuracy, the mesh must also be refined at both ends to allow
a smooth description of the rounded corner.
As theT1 tubemesh is adequate for the description of themicrochannel, it is used inmost

of the cases in this thesis, and only the perturbed flow due to the presence of the deformable
particle is computed. While the Loop tube mesh may be used for microchannel other than
the cylindrical tube forwhich the background flow is not analytically given. It is noteworthy
that, in this thesis, the microchannel form of interest is the cylindrical tube, for which the
analytic flow without cell is known, i.e., the Poiseuille flow.

2.2 Membrane solver (f)

Themembrane solver is designed to calculate the tractions fm applied by the membrane to
the fluids. These tractions, in turn, depend on the deformation of the membrane of soft
objects (described by x). In our work, the isogeometric finite element method is used to
evaluate the membrane tractions [22].
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2.2 Membrane solver (f )

In order to measure the deformation of a curved surface from a reference state x0(s1, s2)

to a deformed state x(s1, s2), it is useful to introduce a local basis (a1,a2,n)

a1 =
∂x

∂s1
, a2 =

∂x

∂s2
, n =

a1 × a2

|a1 × a2|
(2.9)

on the deformed configuration, where a1 and a2 are tangent vectors of the parametric sur-
face, n is the outward-pointing normal. Similarly, a local basis on the reference configura-
tion is defined as (a0

1,a
0
2,n

0), by replacing x with x0. In the rest of this section, variables’
definition for the reference configuration (denoted by superindex 0) will be neglected, for
brevity.

The metric tensor aαβ and curvature tensor bαβ are defined as

aαβ = aα·aβ, bαβ = aα,β·n =
∂aα
∂sβ
·n, α, β ∈ {1, 2}. (2.10)

The elementary area dS =
√
ads1ds2, where a = det(aαβ) is the determinant of the metric

tensor. The inverse metric tensor aαβ is defined by aαγaγβ = δαβ , where δαβ is the Kronecker
symbol.

The stable equilibrium configuration of a membrane stated with the principle of virtual
work for a virtual displacement of δx is [29]

−
∫
S

[
σαβδ(Eαβ) + µαβδ(Bαβ)

]
dS︸ ︷︷ ︸

internal virtual work

+

∫
S

f ext· δxdS︸ ︷︷ ︸
external virtual work

= 0, (2.11)

where σαβ andµαβ are the effectivemembrane and bending stress tensors, which depend on
the properties of the membrane and will be detailed later. Eαβ is the Green-Lagrange strain
tensor

Eαβ =
1

2

(
aαβ − a0

αβ

)
(2.12)

which is a measure of the membrane stretching deformation and Bαβ is the bending strain
tensor

Bαβ = bαβ − b0αβ (2.13)

which measures the out-of-plane deformation. Be aware that f ext = −fm (Eq. (1.12)),
Eq. (2.11) reads ∫

S

[
1

2
σαβδ(aαβ) + µαβδ(bαβ)

]
dS +

∫
S

fm· δxdS = 0, (2.14)

which gives a general relation between the deformationsx and forcesfm of amembrane. To
evaluate the forces numerically, Eq. (2.14) need to be discretized with the Loop subdivision
elements as in our model.
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2 Numerical Methods

As in Eq. (2.5), the Cartesian components of membrane forces, position, and virtual dis-
placement can be written as

fi(s
1, s2) =

∑
p∈one-ring

F pi Np(s
1, s2)

xi(s
1, s2) =

∑
p∈one-ring

Xp
i Np(s

1, s2)

δxi(s
1, s2) =

∑
p∈one-ring

δXp
i Np(s

1, s2)

, i ∈ {1, 2, 3}. (2.15)

Using Eq. (2.15), the principle of virtual work (2.14) is discretized as

0 =

Ne∑
e=1

∫
Se

[
Iσ + IM + If

]√
ads1ds2 ≈

Ne∑
e=1

Nq∑
q=1

wq
[
Iσ + IM + If

]√
a|(s1q,s2q) (2.16)

with4 

Iσ =
∑

p∈one-ring

1

2
σαβ
(
Np,αxi,β +Np,βxi,α

)
δXp

i

IM =
∑

p∈one-ring
µαβ
(
niNp,αβ − ΓγαβniNp,γ

)
δXp

i

If =
∑

p∈one-ring

∑
m∈one-ring

NpNmF
m
i δX

p
i

, (2.17)

whereNp,α = ∂Np
∂sα ,Ne andNq are the total number of elements and quadrature points, wq

and (s1
q , s

2
q) are, respectively, weight and local parameters associated to the q-th quadrature

point.
In Eq. (2.16), the unknowns are Fmi , they can be formulated in matrix form as

M{F pi } = {rhspi }, (2.18)

where {F pi } = {F 1
1 , F

1
2 , F

1
3 , · · · , FNv1 , FNv2 , FNv3 }t contains the nodal values of mem-

brane forces. {rhspi } contains the sumof contributionsof the local{rhse} = −
∑

e,q wq
√
a(Iσ + IM )

to the i-th component of vertex p. ThemassmatrixM is an assembly of the localmassmatrix∑
e,q wq

√
a
∑1-ring

p,m NpNm.
The nodal values of membrane forces F can be obtained by solving Eq. (2.18) if the con-

stitutive equations of membrane deformation σαβ and µαβ are specified.

4The following relations have been used [22]:

δ(aαβ) = δx,α·x,β + x,α· δx,β, δ(bαβ) = n· δ(aα,β)− Γγαβn· δ(aγ),

where Γγαβ = aγδaα,β·aδ are the Christoffel symbols.
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2.3 Fluid solver (u)

Drop

For clean drops, the surface energy,ws = γ, does not depend on curvature, thus the bending
stress µαβ = 0, and the membrane stress

σαβ = γaαβ. (2.19)

Capsule

For zero-thickness capsulemodel (for example,NHorSkmodel as presented in section 1.3.2),
we also have µαβ = 0, and the membrane stress takes the form [154]

σαβ =
2

Js

∂ws
∂I1

a0,αβ + 2Js
∂ws
∂I2

aαβ, (2.20)

with Js =
√
a√
a0
be the Jacobian of the transformation from the reference to the deformed

surface, and the surface energy density is given by Eq. (1.14).

Vesicle

For vesicle membrane obeying the Helfrich bending energy with the constraint of incom-
pressibility (Eq. (1.12)), the effective membrane σαβ and bending µαβ stresses read [22]

σαβ =
2√
a

∂
(√

awHs
)

∂aαβ
=
κ

2

[
4H2aαβ − 8Hbαβ

]
+ γaαβ

µαβ =
∂wHs
∂bαβ

=
κ

2

[
4Haαβ

] . (2.21)

For these three different particles, one may need to compute the inverse metrics aαβ and
curvature bαβ (for vesicle) tensors, and the local coefficients of γ,H, Js, ∂ws∂I1

, and ∂ws
∂I2

at the
quadrature points.

2.3 Fluid solver (u)
Once obtained the membrane force fm, we can solve the creeping flow equations

∇·u = 0, ∇·σ = −∇p+ η∇2u = 0, (2.22)

where σ = −pI + η
[
∇u+ (∇u)t

]
, η is the fluid viscosity.

As reviewed in [3, 59, 97], there are roughly two approaches5 to solve numerically this
viscous fluid-structure (deformable particles) interaction problems, the continuum-based
modeling and the particle-based modeling.

5See Sec. 1.4.2 for a more detailed classification.
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2 Numerical Methods

Continuum-based models directly solve Eq. (2.22) to study problems involving the hy-
drodynamics. The boundary integralmethod (BIM) [127]usesGreen’s tensor of Stokes flow
to calculate the velocity fields induced by the membrane forces. Once the Green’s functions
exist6, with which the formulated velocity fields obey the Stokes equations by definition.
With spectral methods [83, 89, 157], the accuracy of BIM simulations has been further in-
creased. While the immersed boundary method (IBM) [140], which can include inertial ef-
fects, models this fluid-cell interaction problem as an incompressible viscoelastic membrane
(represented on a Lagrangian coordinate) immersed in an incompressible fluid (represented
on a Eulerian coordinate).
Particle-based models define effective particles, which interact with each other, for both

fluid and membrane. Particle-based modeling explicitly includes details of the microstruc-
ture, can describe the biochemical process, but affordable only for simple cases [26]. The
multiscale modeling, coarse-graining of particle-based modeling, has shown the capability
in modeling RBC with accurate mechanics, rheology, and dynamics [50, 51].

Rt

ηi

ηe

u∞

Si So

De

D i

Sw

ey

ex

n
n

n

Γ

Figure 2.6: Twodimensional schematic presentation of a deformable particle in a boundedPoiseuille
flow u∞ (schematic model of Figure 2.1). Si, So and Sw denote the inlet , outlet and
wall surface of the tube. Rt denotes the radius of the tube, Γ is the membrane of the de-
formable particle, and ηi (ηe) is the viscosity of the internal (external) fluid of the particle.

In this thesis, an isogeometric BIM is used to study the dynamics of a vesicle flowing inside
a capillary, as schematically shown in Figure 2.6. The BIM simplifies greatly the coupling of
fluid and membrane solvers since it only requires the discretization of the boundary of the
particles and the physical boundaries in case of bounded flows.

2.3.1 The free-space Green’s function

The Green’s functions of Stokes flow (2.22) are solutions of the singularly forced Stokes
equation

∇·u = 0, −∇p+ η∇2u+ gδ(x− x0) = 0 (2.23)

6limited to viscous flow and difficult to include the inertial effects.
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2.3 Fluid solver (u)

for the singular force with strength g acting at an arbitrary point x0, δ(x − x0) is the delta
function. Using the Green’s functions, Pozrikidis [127] writes the solution of Eq. (2.23) in
the form 

ui(x) =
1

8πη
Gij(x,x0)gj

p(x) =
1

8π
pj(x,x0)gj

σik(x) =
1

8π
Tijk(x,x0)bj

, (2.24)

where x0 is called the source point, and x is the field point.
Taking divergence∇· of the second equation of (2.23) and using the expression

δ(x̂) = − 1

4π
∇2
(

1

r

)
, (2.25)

where r = |x̂|, x̂ = x− x0, we have

p = − 1

4π
g·∇

(
1

r

)
. (2.26)

Substituting (2.25) and (2.26) into (2.23), we obtain

4πη∇2u =
[
∇2
(

1

r

)
I −∇∇

(
1

r

)]
· g. (2.27)

Expressing ηu = g·
(
∇∇− I∇2

)
H and substituting into Eq. (2.27), we obtain

(
∇∇− I∇2

)[
4π∇2H +

1

r

]
= 0. (2.28)

ThusH is solution of the biharmonic equation∇4H = δ(x̂), that isH = − r
8π and

ui(x) =
1

8πη
Gij(x̂)gj , (2.29)

where7

Gij(x̂) =

(
δij

∂2

∂x2
k

− ∂

∂xi

∂

∂xj

)
r

=
δij
r

+
x̂ix̂j
r3

(2.30)

is the free-space Green’s function, also called the Stokeslet.

7The following relations are used:

∂r

∂xi
=
x̂i
r
, ∇2r = −8π∇2H =

2

r
.
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2 Numerical Methods

The free-space Green’s function for pressure

pi(x̂) = −2
∂

∂xi

(
1

r

)
= 2

x̂i
r3
, (2.31)

and for stress
Tijk(x̂) = −δikpj +

∂Gij
∂xk

+
∂Gkj
∂xi

= −6
x̂ix̂j x̂k
r5

. (2.32)

2.3.2 The boundary integral equation

Starting from the Lorentz reciprocal identity8, the velocity induced by the sources and/or
forces on the boundary Ω is [126, 127]

uDj (x) = − 1

8πηe

∫
Ω

fDi (x0)Gij(x,x0)dS(x0) +
1

8π

∫
Ω

uDi (x0)Tijk(x,x0)nk(x0)dS(x0),

(2.34)
where the superscriptD denotes a disturbance variable, x lies inside the control volumeDe

bounded by the boundary Ω = Γ ∪Si ∪Sw ∪So, and n directed towards De, as shown
in Figure 2.6.
Now assuming the rigid tube is long enough such that the disturbance velocity induced

by the cell virtually vanishes on the inlet surfaceSi and outlet surfaceSo. That is fD|Si
'

−pDi n and fD|So
' −pDo n.9 Setting pDi = 0, and applying no-slip and no-penetration

velocity boundary conditions on the wall, Eq. (2.34) reduces to

uDj (x) =− 1

8πηe

[∫
Sw,Γ+

fDi (x0)Gij(x,x0)dS − pDo
∫

So

ni(x0)Gij(x,x0)dS

]
+

1

8π

∫
Γ

uDi (x0)Tijk(x,x0)nk(x0)dS, x ∈ De,

(2.35)

where the superscript + denotes the exterior surface Γ of the deformable particle.
Applying the reciprocal theorem (2.33) firstly for the unperturbed flow u∞ without cell

and the Stokeslet (solution of singularly forced Stokes flow), we obtain∫
Γ

Gij(x,x0)f∞i (x0)dS = ηe
∫

Γ

u∞i (x0)Tijk(x,x0)nk(x0)dS, x ∈ D i. (2.36)

8For two flowsu andu′, which are solutions of the Stokes equations, the reciprocal identity reads∫
Ω

(
u′·f − f ′·u

)
dS = 0, (2.33)

where f = σ·n and f ′ = σ′·n are the corresponding surface forces exerted onΩ, the boundary of the
control volume. By identifyingu′ and f ′ as the solutions of the singularly forced Stokes equations (2.24),
one can obtainu(x) at a point x insideΩ.

9We suppose the pressure disturbance pDi (pDo ) is a constant over the inlet (outlet) surface.
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2.3 Fluid solver (u)

And then applying the reciprocal theorem for the flow inside the cell and the Stokeslet, we
have∫

Γ−
Gij(x,x0)fDi (x0)dS = ηi

∫
Γ

uDi (x0)Tijk(x,x0)nk(x0)dS, x ∈ D i, (2.37)

where the superscript− denotes the interior surface Γ of the deformable particle.

From Eq. (2.35) and (2.37), we have an integral representation for the exterior flow

uj(x) = u∞j (x)− 1

8πηe

∫
Γ

∆fi(x0)Gij(x,x0)dS

− 1

8πηe

∫
S w

fDi (x0)Gij(x,x0)dS

+
pDo

8πηe

∫
S o

ni(x0)Gij(x,x0)dS

+
1− λ

8π

∫
Γ

uDi (x0)Tijk(x,x0)nk(x0)dS

x ∈ De, (2.38)

where∆f = f+−f− =
(
σ+ − σ−

)
·n is themembrane traction discontinuity, λ = ηi/ηe

is the viscosity contrast.

From Eq. (2.38), we approach the field point x to the membrane interface Γ, we obtain10

1 + λ

2
uj(x) = u∞j (x)− 1

8πηe

∫
Γ

∆fi(x0)Gij(x,x0)dS

− 1

8πηe

∫
S w

fDi (x0)Gij(x,x0)dS

+
pDo

8πηe

∫
S o

ni(x0)Gij(x,x0)dS

+
1− λ

8π

∫ PV

Γ

uDi (x0)Tijk(x,x0)nk(x0)dS

x ∈ Γ, (2.39)

10The following relation has been used [127, p. 27]:

lim
x→Γ+

∫
Γ
ui(x0)Tijk(x,x0)nk(x0)dS = 4πuj(x) +

∫ PV

Γ
ui(x0)Tijk(x,x0)nk(x0)dS,

where the superscriptPV denotes an improper (principal value) double-layer integral when the pointx
is right on the boundary Γ.
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Similarly, approaching x to the tube boundariesS tube = S i ∪S w ∪S o and applying
the appropriate boundary conditions, we have

0 = − 1

8πηe

∫
Γ

∆fi(x0)Gij(x,x0)dS

− 1

8πηe

∫
S w

fDi (x0)Gij(x,x0)dS

+
pDo

8πηe

∫
S o

ni(x0)Gij(x,x0)dS

+
1− λ

8π

∫
Γ

uDi (x0)Tijk(x,x0)nk(x0)dS

x ∈ S tube, (2.40)

In summary, Eq. (2.37), (2.38) and (2.39), (2.40) are valid when point x is located inD i,
De and onΓ,S tube . In this thesis, we are only interested in thematching viscosity case, i.e.,
λ = 1, for a bounded flow. Thus both Eq. (2.38) and (2.39) are simplified as

uj(x) = u∞j (x)− 1

8πηe

∫
Γ

∆fi(x0)Gij(x,x0)dS

− 1

8πηe

∫
S w

fDi (x0)Gij(x,x0)dS

+
pDo

8πηe

∫
S o

ni(x0)Gij(x,x0)dS

x ∈ De ∪ Γ, (2.41)

and Eq. (2.40) is simplified as∫
S w

fDi (x0)Gij(x,x0)dS =−
∫

Γ

∆fi(x0)Gij(x,x0)dS

−∆pDa

∫
S o

ni(x0)Gij(x,x0)dS

x ∈ S w, (2.42)

where the disturbance pressure drop [126]

∆pDa = −pDo =
1

Q

∫
Γ

∆fiu
∞
i dS (2.43)

withQ is the flow rate which is assumed not disturbed by the presence of the cell, i.e.,Q =

Q∞.

Singularity treatment

When the field point x approaches the source point x0, numerical treatment should be ap-
plied to the integrals in Eq. (2.41) to regularize the singularity due to the singular behavior of
the Stokeslet kernelG. By subtraction of exact identities for the terms involving the normal
and the tangential components of the force on a closed surface (first equation of (2.45)),
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2.3 Fluid solver (u)

Farutin et al. [46] proposed the singularity subtraction (SS) technique, which can deal with
the singularities both in normal and tangential directions. The single-layer integral on the
cell membrane can be formulated with∫

Γ

G(x,x0)·f(x0)dS(x0) =

∫
Γ

G· f̃(x,x0)dS − n(x)× f(x)

4π
×
∫

Γ

R(x,x0)dS,

(2.44)
where

f̃(x,x0) = f(x0)− n(x0)(f(x)·n(x)) + n(x0)× (n(x)× f(x))

R(x,x0) =
[x̂·n(x0)]

r3
x̂

. (2.45)

Surface incompressibility constraint

For a vesicle, the surface incompressibility constraint (Eq. (1.10)) is satisfied by the surface
tension γ, a Lagrange multiplier, which is the solution of:

∇s·u(x) = ∇s·u∞(x) + ∇s·uκ(x) + ∇s·uγ(x) + ∇s·uw(x) = 0, (2.46)

where u∞, uκ are the imposed external velocity and bending induced velocity, uγ is the
velocity due to surface tension γ,uw is the velocity due to themicrochannel wall (such as the
third term of Eq. (2.41)). uκ anduw are determined entirely by the shape of the membrane,
thus Eq. (2.46) is actually linear with the unknown surface tension γ,

Dγ{Γ} = −{∇s·u∞(x) + ∇s·uκ(x) + ∇s·uw(x)}, (2.47)

where Dγ is a linear operator which transforms the nodal values of tension {Γ} to the
limit value of the surface divergence of the velocity field due to surface tension∇s·uγ(x).
Eq. (2.47) is iteratively solved by GMRES [14, 135] with a preconditioner to remedy the ill-
conditioned matrixDγ .

2.3.3 Discretization and linear system
Assuming that the nodal values of membrane force {F } is known (solved with Eq. (2.18)) ,
there are two basic steps to calculate the velocity field on the membrane.

1. Calculation of the nodal values of perturbed force
{
FD
w

}
on the wall of the tube

As in Figure 2.6, we use Γ, w, o denote the surface of cell, wall and outlet of the tube.
Using the same shape functions as in Eq. (2.5), Eq. (2.42) can be formulated as

Sww
{
FD
w

}
= −SwΓ{F } −∆pDa S

wo{No}, (2.48)

where Sαβ is the matrix formulated by the single-layer integral, the superscript αβ
means the field point x is evaluated on the surface S α from the source on surface
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S β , {No} is the nodal values of the normal on the outlet surface S o, and ∆pDa is
computed with Eq. (2.43).

2. Calculation of the velocity on the membrane surface {uΓ}
The limit values of velocity field on the membrane surface are derived from Eq. (2.41)

{uΓ} = {u∞Γ } −
1

8πηe

[
SΓΓ{F }+ SΓw

{
FD
w

}
+ ∆pDa S

Γo{No}
]
. (2.49)

2.4 Time stepping (∂tx)

Two time stepping schemes have been implemented in order to update the position ofmem-
brane interface given by the semi-discrete forme (2.50) (Eq. (1.17)) , an high-order explicit
scheme and an implicit scheme.

dx(t)

dt
= g(t,x). (2.50)

At discretized time tn, the membrane surface position is given by xn, thus the membrane
forces {F } can be obtained by Eq. (2.18), and then the membrane velocity un can be ob-
tained by solving Eq. (2.48) and (2.49), which is possiblely accompanied a projection stage
(Eq. (2.47)) to compute the Lagrange tension γ and to satisfy the local surface incompress-
ibility constraint of the membrane. The time stepping schemes are aiming to compute the
newmembrane position xn+1 at time tn+1 = tn + dt.

2.4.1 Runge-Kutta-Fehlberg scheme

The explicit time stepping implemented is a Runge-Kutta Fehlberg fourth-fifth (RKF45)
stage scheme [55]. This high-order scheme allows dynamically adapting the time step dt =

hn by measuring the difference between fourth and fifth results and allows very good con-
servation of invariants such as the enclosed fluid volume.
The fourth and fifth stage formulations are given as

x
(4)
n+1 = xn +

25

216
k1 +

1408

2565
k3 +

2197

4101
k4 −

1

5
k5 (2.51)

x
(5)
n+1 = xn +

16

135
k1 +

6656

12858
k3 +

28651

56430
k4 −

9

50
k5 +

2

55
k6, (2.52)
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2.4 Time stepping (∂tx)

and the parameters at the intermediate stage are

k1 = hn· g(tn,xn)

k2 = hn· g(tn +
1

4
hn,xn +

1

4
k1)

k3 = hn· g(tn +
3

8
hn,xn +

3

32
k1 +

9

32
k2)

k4 = hn· g(tn +
12

13
hn,xn +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3)

k5 = hn· g(tn + hn,xn +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4)

k6 = hn· g(tn +
1

2
hn,xn −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5)

. (2.53)

The dynamic time step is realized by comparing the difference of fourth and fifth stage
results εn = max |x(4)

n+1 − x
(5)
n+1|with two presetting tolerances εmax and εmin
hn =

(
εmax

2εn

)1/4

hn if εn > εmax

hn+1 =

(
εmin

2εn

)1/4

hn if εn < εmin

hn+1 = hn else

. (2.54)

2.4.2 Trapezoidal scheme

For capsules without bending, the stability condition ∆t ≤ O(∆x/Gs) allows a reasonable
time step to be selected for an explicit time scheme, while for vesicles, the stability condition
∆t ≤ O(∆x3/κ), where the time step shouldbe inferior to the characteristic timeof bending
deformation, limits the use of an explicit time scheme in practical.
The implicit time scheme implemented in our code is the trapezoidal time scheme. For

a given position and tension (xn, γn) at time tn, the new state (xn+1, γn+1) at tn+1 is com-
puted by xn+1 = xn +

∆t

2
[u(xn, γn) + u(xn+1, γn+1)]

∇s·u(xn+1, γn+1) = 0
. (2.55)

These equations are solved iteratively. Assume the state at r-th iteration (x
(r)
n+1, γ

(r)
n+1) is

given, the residuals of this state readresx = x
(r)
n+1 −

[
xn +

∆t

2

(
u(xn, γn) + u(x

(r)
n+1, γ

(r)
n+1)

)]
resγ = ∇s·u(x

(r)
n+1, γ

(r)
n+1)

. (2.56)
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If both residuals resx and resγ are less than a prescribed tolerance, the iteration finishes. Oth-
erwise, a correction (δx, δγ) is seekedbyGMRES iterations such that (x

(r)
n+1+δx, γ

(r)
n+1+δγ)

satisfies the linearization of Eq. (2.55) 11:
[
I − ∆t

2
Jx

]
δx− ∆t

2
uγ(x

(r)
n+1, δγ) = −resx

∇s· (Jxδx) + ∇s·uγ(x
(r)
n+1, δγ) = −resγ

, (2.57)

whereuγ is the velocity solely due to surface tension, Jx is Jacobian with respect to position
x. Eq. (2.57) is solved with the Jacobian-free Newton–Krylov methods [86], and in GM-
RES iterations, rather than calculating directly the Jacobian, only its action on a vector δx is
computed

Jxδx ≈
u(x

(r)
n+1 + εδx, γ

(r)
n+1)− u(x

(r)
n+1, γ

(r)
n+1)

ε
, (2.58)

where ε is a small parameter.
In summary, the implicit trapezoidal scheme (2.55) is solved iteratively throughEq. (2.56)

with possible corrections (δx, δγ) (Eq. (2.57)) if the residuals (resx, resγ) are too large. This
scheme is detailed in Algorithm 1.

2.5 Validation
Our code is validated for deformable particles, such as drop, capsule, and vesicle, flow in
linear flowwithout confinement [22, 65]. In this section, validations will focus primarily on
the implementation of microchannels. More precisely, the influence of tube mesh, includes
its length and refinement, will be first discussed. And then, benchmark tests are carried out
to verify the code and to show the overall resolution.

2.5.1 Tube mesh: length& refinement

Two different microchannel meshes have been implemented as shown in the aforemen-
tioned section 2.1.2. The Loop tube mesh, which requires more cell elements to properly
describe the corner, is designed to study more complicated channel where analytical back-
ground flow is not available. For a fluid vesicle flow in a cylinder tube, which is the most
important subject of this thesis, the T1 tube mesh is used.

11 Since the tension-induced velocity uγ is linear with γ, i.e., u(x
(r)
n+1, γ

(r)
n+1 + δγ) = u(x

(r)
n+1, γ

(r)
n+1) +

u(x
(r)
n+1, δγ), we thus have

Jγδγ =
∂u

∂γ

∣∣∣∣
(x

(r)
n+1,γ

(r)
n+1)

=
u(x

(r)
n+1, γ

(r)
n+1 + δγ)− u(x

(r)
n+1, γ

(r)
n+1)

δγ
δγ = u(x

(r)
n+1, δγ) = uγ .
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Algorithm 1: compute one step with trapezoidal scheme
Data: meshmwith position xn and surface tension γn at n-th time step, tn
Result: all data on meshm at time step n+1, tn+1

1 compute the precondition matrixDγ in Eq. (2.47);
2 preconditioner for system (2.57);
3 back up the position xn and the tension γn of tn;

/* guess values for new time step are computed as: (xn, γn)→ fn → un → correct γn to

satisfy incompressibility, γ0
n+1 → corrected velocity u0

n+1 */

4 compute the membrane velocity u0
n+1 and membrane tension γ0

n+1 (with
∇·us = 0) as the predictions for time step n+1, t0n+1;

5 first guess on the new position x0
n+1 = xn + u0

n+1· dt;
/* solve the system (2.57) by GMRES iteration, r */

6 r = 0;
7 do
8 if r=0 then
9 compute the membrane velocity urn+1 ; // (xrn+1, γ

r
n+1)→ f rn+1 → urn+1

10 compute the surface divergence of velocity [divS]rn+1 = ∇s·urn+1;
/* formulate the error vector for GMRES iteration (the right hand side of (2.57)) */

11 calculate the estimation error for position resx = xn + dt
2

(
un + urn+1

)
− xrn+1;

12 error for surface tension resγ = −[divS]rn+1;
13 solve Eq. (2.57) for (δx, δγ) by GMRES;
14 update xr+1

n+1 = xrn+1 + δx and γr+1
n+1 = γrn+1 + δγ;

15 compute the newmembrane velocity (xr+1
n+1, γ

r+1
n+1)→ ur+1

n+1;
16 compute [divS]r+1

n+1 = ∇s·ur+1
n+1;

17 update error resx = xn + dt
2

(
un + ur+1

n+1

)
− xr+1

n+1 and resγ = −[divS]r+1
n+1;

18 res = max
(√

resx· resx,
√

resγ · resγ
)
;

19 r++;
20 while res > ε;
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In this section, the flowwithout cell is first calculated via BEMwith Loop tubemesh, and
then a study on the influence of T1 tube mesh is carried out with a drop flow in a moderate
confined capillary (β = 0.8).

Loop tube mesh

The first validation is carried out for the Loop tube mesh by calculating the Poiseuille flow
via BEM. In this test, a Poiseuille flow boundary condition [133] on the inlet and outlet of
the tube is prescribed as:

u = Um

(
1− r2

R2
t

)
ex, (2.59)

where Rt is the radius of the tube. The friction force density (wall shear stress) on the tube
wall, the pressure drop, and the velocity inside the tube can be obtained by BEM and are
compared to the analytical expressions12, by varying the length of the tube.

L/D fwx /η ∆p/(ηL)

1 8.7958 4.9885
2 8.3303 4.4362
3 8.1922 4.2083
4 8.1281 4.1064
5 8.0920 4.0436
6 8.0689 4.0009

analytical 8.0 4.0

Table 2.1: Friction force density and pressure drop obtained by BEM for the different ratio of the
tube length L and the diameterD. In this test, we have setRt = 4 and Um = R2

t = 16.
Thewall friction force density fwx is taken from themiddle of the tube and surface pressure
is taken as the average pressure on the inlet/outlet surface.

Table 2.1 shows the friction force density (at themiddle of the tube) and the pressure drop
for different lengths of the tube. On increasing the length of the tube, the values of friction
force density and pressure drop converge to the analytical values. Similarly, from Figure 2.7
12The friction force density on the tube wall for the given Poiseuille flow (2.59) is

fwx = η
∂ux
∂r
|r=Rt

= −2ηUm
Rt

,

and the pressure drop is

∆p =
4ηUmL

R2
t

.
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2.5 Validation

we found that the wall shear stress (away from the end) become indistinguishable when the
ratio L/D is larger than three. Due to the rounding effect, this force on the outlet surface,
which is the pressure on this surface in absolute value, is not a constant, but the average value
converges to a constant value (Table 2.1). Although the ends have been rounded, fluctua-
tions (or overshoots) remain due to the limited number of cells applied in this region where
the normal vector varies rapidly (Figure 2.5).

x

fw
x

Figure 2.7: The axial force density of the tube (on the line intersected by a plane passing through the
axis of the capillary and with the normal vector n = (0, 0, 1)) with different lengths.
Only the right half of the curves are displayed due to symmetry.

Figure 2.8 (a) shows the axial velocity at the center of the tube for different values ofL/D.
The normalized axial velocity converges to a constant 1.02 as increasing L/D. This minor
deviation from 1.0 is due to fluctuation at both ends. Figure 2.8 (b) shows that the axial
velocity on the surface cut the tube at x = 0.

T1 tube mesh

The cylinder capillary meshed with T1 elements, as used in this case, suffices to calculate the
disturbed flowdue to thepresence of the drop, and thebackground flow is given as Poiseuille
flow.
First, let’s summarize some parameters used to describe the mesh of the tube, as shown

in Figure 2.4. The ratio of the equivalent radius of the deformable particle R to the radius
of the cylinder tubeRt defines a dimensionless parameter, the confinement β = R/Rt. The
half length of the tube Lt is set as Lt = ζRt = ζ

βR. During the simulation, we keep the
cell in the middle of the tube to avoid the use of a very long tube or periodic boundary
conditions. Thus, for the wall, only the central part requires a relatively fine mesh. The grid
in the axial direction is generated from the middle (the minimum size lmin) to the two ends
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Figure 2.8: (a) The axial velocity at the center of the tube ux, normalized by Um, for various tube
lengthsL/D. (b) The axial velocity plotted on the surface x = 0 forL/D = 6.

by a progressively coarse process (control by a scale ratio ι = 1.05 for example). The grid in
the circumferential direction is equally divided to m × 2n arcs, where m is the number of
arcs on the innermost circle, n is the number of divisions of the tube radius. For example,
m = n = 4 as shown in Figure 2.8 (b).
In implementing the flow in capillary with T1 tube mesh, we have assumed that the tube

is sufficiently long such that the velocity perturbations on the inlet and outlet surfaces are
negligible [126]. As aforementioned in section 2.3.3, we first compute the perturbed force
on the capillary due to the presence of the dropwithEq. (2.48), and thenupdate the position
of the membrane of the drop via Eq. (2.49). In the calculation of the disturbed force on the
capillary, the following force continuity conditions are applied at intersections, namely

fw· ex = ±f i,o· er
fw· er = ±f i,o· ex
fw· eθ = f i,o· eθ

, (2.60)

wherew, i and o represent thewall, inlet andoutlet surface of the capillary, (ex, er, eθ) are the
basis vectors for cylindrical coordinates. + and− apply on the inlet and outlet intersections,
respectively.
Figure 2.9 shows the perturbed shear stress fw

x in the flowdirection on the line intersected
by a plane (with the normal vector (0, 1, 0)) passes through the axis of the capillary, for Lt
varies from 5 to 20. The inset shows the stable shapes cut by the same plane. In this case,
with Lt as the only variable, we observed that both the perturbed stress due to the presence
of the drop, fw

x and the stable shapes are indistinguishable.
In fact, the boundary of the wall can be replaced by a certain distribution of forces, which

act to "neutralize" the velocity distribution on the wall induced by the presence of the drop.
From Figure 2.9, we observed that these forces are concentrated at the region (−2.5, 2.5),
where we can find the drop.
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Figure 2.9: The perturbed shear stress of thewall fw
x on the line intersected by a plane passes through

the axis of the capillary and with the normal vector n = (0, 1, 0) for Ca = 0.1, β =
0.8, lmin = 0.25, with different tube lengthsLt. The inset shows the curves of the inter-
section with the drop by the same plane for these different cases.

For a vesicle flowing in a capillary, as shown in Figure 2.10, no distinguishable differences
are observed as we vary the tube length from Lt = 12 to Lt = 2813.

We then work on the influences of the refinement of the tube mesh, with Ca = 0.5 and
β = 0.8. Since both the flow and the drop are axisymmetric in this case, we fixed the grid’s
distribution in the circumferential direction, and only vary the grids in the flow direction,
which is controlled by the minimal length lmin and the size increase ratio ι. Here, we set
ι = 1.05, and the results are shown in Table 2.2 and Figure 2.11 for different lmin.

Table 2.2 shows the additional pressure drop∆pa due to the presence of the drop and the
displacement velocity Ux for lmin varying from 0.025 to 0.7, and also the results of Lac [90]
given by spectral method.

Similar to Figure 2.9, the shear stresses fwx and stable shapes are displayed in Figure 2.11
for five distinct sizes with ζ = 7.5. We observed the difference of the shape is imperceptible
for lmin ≤ 0.5, and the shear stresses are concentrated at the region (−3.0, 3.0), where we
can find the drop. For the case with the coarsest mesh lmin = 0.7, even though the peak of
shear stresses is not captured due to the limited grid distribution, but the stresses obtained
on its grid points are very close to those obtained by finer meshes.

13For all simulations in Chapter 3, we have used ζ ≥ 5, namelyLt ≥ 5/β.
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Figure 2.10: Influence of the length of the tube Lt for vesicle (ν = 0.9) flowing in a capillary (β =
0.25, Ca = 1 and lmin = 0.7). (a) The perturbed shear stress of the wall fwx on the
line intersected by a plane passes through the axis of the capillary and with the normal
vector n = (0, 0, 1), for different tube lengths Lt = ζ/β = 4ζ . The inset shows the
curves of the intersection with the vesicle by the same plane for these different cases, G
is the centroid. (b) Evolution of the centroid (Yg, dimensionless by R) and inclination
angle (θ, in degree).

lmin
∆pa

ηU/R
Ux
U

0.7 0.5008 1.6970
0.6 0.5011 1.6984
0.5 0.4951 1.6997
0.4 0.4921 1.7007
0.3 0.4907 1.7011
0.2 0.4913 1.7010
0.05 0.4991 1.6989
0.025 0.4981 1.6989

Lac(2009)[90] 0.4867 1.7022

Table 2.2: Effect of themesh refinement lmin of the capillary on the additional pressure drop∆pa and
the drop translational velocityUx for a drop flowing along the centerline (Ca = 0.5, β =
0.8, ζ = 7.5).
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Figure 2.11: The shear stress of the wall fwx on the line intersected by a plane passes through the axis
of the capillary and with the normal vectorn = (0, 1, 0) forCa = 0.5, β = 0.8. Five
of the eight cases inTable 2.2 are displayed. The inset shows the curves of the intersection
with the drop by the same plane for these different cases.

2.5.2 Remeshing

Amesh quality preserving algorithm, termed as remeshing in this thesis, has been designed
and implemented in our code [22].Here, the basic idea is firstly presented, and then a guide
on the use of this algorithm is given by numerical experiments.

Vesicles and droplets cannot withstand shear, i.e, an infinitesimal shear stresses will de-
form them, thus there is no tangential reference configuration. The lack of tangential ref-
erence configuration means that it is possible to move the grid along the membrane surface
in order to improve the quality of the mesh, without affecting the physics. The idea of our
algorithm is to treat the mesh as a network of springs since the position of the grid nodes
may be updated by tangential displacements controlled by various local characteristics of
the grid, such as the local length of the edge, the local area, and the local curvature. The
displacement of the i-th node is controlled by

µur(xi) = (I − nn)·f r(xi), (2.61)

where ur is the tangential velocity adopted by the nodes for their redistribution, µ is a fic-
titious viscosity and f r(xi) is the sum of forces due to the network of springs (namely, the

45



2 Numerical Methods

nodes connected by one edge to the current node i), acting on the node with position xi.
The nodes redistribution force is computed as

f r
i = f r(xi) =

∑
j∈one-ring

[
(ki + kj)(lij − l0ij)

tij
lij

]
, (2.62)

where tij = xj − xi, lij = ||tij || and l0ij is the equilibrium length which is defined as
l0ij = cLLij , with Lij the distance between node i and j at the beginning of the time step.
The constant kj are defined as

kj =
cA

Â

∑
e∈Ej

Ae
3

+
cH

(̂2H)2

∑
e∈Ej

(2H)2
e

3
, (2.63)

whereAe is the area of e-th element connected to the node j, (2H)2
e is the curvature energy

of this element, and

Â =
1

N

∫
S

dS, (̂2H)2 =
1

N

∫
S

(2H)2dS

are the average value of membrane area and curvature energy by node, with N is the total
number of nodes in the mesh. The node position is then updated with

dx

dt∗
= ur, (2.64)

which is integrated in fictitious time t∗ until the residual of redistribution forces
∑

i ||f r
i || is

below a prescribed parameter εr.
Including εr, the algorithm has four user-defined parameters,

• cL ≤ 1 used to define the equilibrium length l0ij of the edges. cL < 1 allows nodes
displacement even if the shape remains unchanged, vesicle in tank-treading motion,
for example;

• cA tends tomake themesh to have uniformdistribution of area of elements (first term
at the right hand side of Eq. (2.63));

• cH tends to make the mesh to have more elements in highly curved regions (second
term at the right hand side of Eq. (2.63)).

According to our previous studies, using (cL = 0.9, cA = 1.0, cH = 1.0, εr = 0.05) gives
good results in most situations.
The effects of remeshing are compared and shown in Figure 2.12 for an initially oblate

vesicle (with reduced number ν=0.65) flows in a bounded (with confinement β = R/Rt =

0.25) Poiseuille flow, Ca = 1, with 320 elements. The case launched without remeshing
becomes very difficult to converge (at t ≈ 3.2) with the same parameters as those used for
the case with remeshing, because of poor quality of the mesh as shown at t = 3. Using
the aforementioned parameters, it is observed, Figure 2.12 (a), that both the length of edges
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Figure 2.12: Effects of mesh quality preserving algorithm on a vesicle flows in a bounded Poiseuille
flowCa = 1, ν = 0.65, β = 0.25, with 320 elements. (a) Snapshots of the shape and
the mesh at different dimensionless times, results without (left or top) and with (right
or bottom) remeshing are separated by red lines. At t = 3, the front, rear and side views
are all displayed. (b) Relative error of the membrane area εa = A/A0 − 1 as a function
of time for results without remeshing and with remeshing, whereA0 = A(t = 0) and
Rmsh(15) means the mesh quality preserving algorithm is called every 15 time steps. (c)
The local cell errorL2 ≡ 1

Ne

√∑
i |Ai/A0

i − 1|2 as a function of time, whereAi is the
area of the i-th element andA0

i = Ai(t = 0).
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and the area of elements are well controlled, and the membrane surface remains smooth.
Remeshing is an overdampedprocess, Figure 2.12 (c) shows that theL2 error of the local area
of elements are much greater in comparison with that without remeshing, but the overall
relative error of themembrane area ismuch smaller, Figure 2.12 (b). This is because themesh
quality preserving algorithm will distribute more nodes in regions with higher curvature.
How the remeshing frequencywill influence an initially prolate vesicle (ν = 0.95) flowing

in a bounded (β = 0.1) Poiseuille flow (Ca = 1) are compared and shown in Figure 2.13,
by the relative error of the membrane area (2.13 (a)) and the relative cross-streamline migra-
tion velocity (2.13 (b)). When the mesh quality preserving algorithm is called every 50 time
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Figure 2.13: Effects of the remeshing frequency on a vesicle flows in a bounded Poiseuille flowCa =
1, ν = 0.95, β = 0.1, with 320 elements. The results of (a) relative error of the mem-
brane area εa and (b) relative cross-streamline migration velocity Uy/Um are compared
for applying remeshing every 10, 15, 25 50, 100 and∞ time steps.

steps or even more, the relative errors become remarkable (2.13 (a)) and the dynamics of
lateral migration is influenced (2.13 (b)). Numerical iterations on Eq. (2.64) require about
5% of the whole time needed in a time step of this case. What’s more, remeshing introduces
dissipation, thus we can activate the remeshing every 20 time steps, for example.
The above two examples involve either significant deformation 2.12 or membrane slid-

ing 2.13, but for a vesicle reaching a steady state without tank-treading, the call of the mesh
quality preserving algorithm should be relaxed.

2.5.3 Drop in a capillary flow
Lac and Sherwood [90] numerically studied the motion of an axisymmetric drop along the
centerline of a cylindrical capillary. This problem is very similar to the main problem of this
thesis, a vesicle flows in a microchannel (refer to Chapter 3), although asymmetry is a major
feature for the latter case.
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It is known that the presence of a drop in the capillary changes the pressure difference
by ∆pa, termed additional pressure drop, in order to maintain a given flow rate Q. They
analyzed the displacement velocity Ux and the additional pressure drop ∆pa by varying the
capillary number Ca = ηeU

γ , the confinement β = R/Rt, and the viscosity contrast λ =

ηi/ηe, where U = Um/2 is the average velocity of a Poiseuille flow, γ is the surface tension.
The drop size is characterized by the radius R of the sphere with the same volume of the
drop V .
By lubrication analysis, they found that at a high capillary numberCa, a dropmoves with

velocity
2− U∗ ∼ Ca−2/3, (2.65)

for λ = 1, where U∗ = Ux/U , and induces an additional pressure drop

Rt

ηeU
∆pa ∼ Ca−5/3. (2.66)
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Figure 2.14: Variations of (a) translational velocity 2 − U∗ and (b) additional pressure drop ∆pa as
a function of the capillary numberCa for β = 0.8 and β = 1.1.

Figure 2.14(a) shows two curves with different confinements, which represent the trans-
lational velocity 2−U∗, decrease and converge when the capillary number is increased. Fig-
ure 2.14(b) shows the additional pressure drop∆pa between the extremities of the capillary
as a function of Ca for these same confinements β. In both figures, the curves adopt same
behaviors with the increasing of the capillary number, and match well with analytical pre-
dictions, Eq. (2.65) and (2.66). As for the confinement, we observed that the curve with
stronger confinement (β = 1.1) matches better with the analytical predictions than the
weaker one (β = 0.8), which is consistent with the lubrication hypothesis.
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For a vanishingly small droplet moving along the centerline of a capillary, the nondimen-
sional displacement velocity is given as [90]

U∗ = 2− 4λ

2 + 3λ
β2 +O(β3), (2.67)

and the additional pressure drop is given as

∆pa

ηeU/Rt
=

16

27

(2 + 9λ)2 − 40

(1 + λ)(2 + 3λ)
β5 +O(β10). (2.68)
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Figure 2.15: Effect of the drop size on (a) the translational velocity and (b) the additional pres-
sure drop for different capillary number. The dashed lines for Ca = 0 are given by
Eq. (2.67), (2.68) and its high-order fitting.

The drop translational velocity Ux is shown in Figure 2.15(a) as a function of confine-
ment β for different capillary numbers Ca. The additional pressure due to the presence of
a drop for different Ca is shown in Figure 2.15(b). Our results, obtained by fully three-
dimensional simulation, are compared with Lac’s results which are based on axisymmetric
hypothesis, and a good agreement is observed. With the decreasing of the capillary number,
we observed the results obtained from simulation converge with the asymptotic prediction
forCa = 0 at a low confinement β. For a vanishingly small dropletmoving along the center-
line of a capillary, both the displacement velocity and pressure drop follow the asymptotical
predictions given at Ca = 0, which is identical to an undeformable particle. While for
stronger confinements, β ≥ 1 for example, the results show a plateau and no longer depend
on β.
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2.5.4 Elastic capsule in a square channel

The validation of our procedure of a deformable particle flowing in a microchannel (pre-
sented in Section 2.3) is continued here by an elastic capsule flowing in a square channel, as
shown in Figure 2.16.

x
y

z

Figure 2.16: An example showing a capsule flowing in a rectangular microchannel. Capsule’s mem-
brane is coded by the membrane force of the x-component, i.e., fmx . The channel mesh
is generated by the Loop subdivision process and rounded with an arc of the circle.

Far fromthe capsule, the flowapproachs theundisturbed flow in a channelu∞ = (u∞x , 0, 0)

which is given as [89],

u∞x
Υ

=
(
l2z − z2

)
+

∞∑
m=1

Bm cosh

(
bmy

lz

)
cos

(
bmz

lz

)
, (2.69)

where
Υ = − 1

2η

dp

dx
, bm =

(2m− 1)π

2
, Bm =

(−1)m4 l2z

b3m cosh
(
bmly
lz

) , (2.70)

and ly and lz are the widths of the rectangular channel in the directions y and z, respectively.
By integrating over the channel’s cross-section, the volumetric flow rateQ is given by

Q

Υ
=

8lyl
3
z

3
+

∞∑
m=1

Bm

(
2lz
bm

)2

sinh

(
bmly
lz

)
sin(bm). (2.71)

In our simulations, we truncated the infinite but convergent series in Eq. (2.69)whenm=40,
like the one used by Kurikose et Dimitrakopoulos [89]. According to Eq. (2.69), we know
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that the channel is not limited to the square section, but itmay be amore general rectangular
channel.
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Figure 2.17: Comparison of the steady-state deformed shape of a capsule flowing in a square cross-
section channel with those obtained by Hu et al. [72, 73] in the Stokes regime for a
confinement β = 0.85 and (a) Ca = 0.02, XY-plane, (b) Ca = 0.05, XY-plane, (c)
Ca = 0.1, XY-plane, (d)Ca = 0.1, YZ-plane. The blue lines indicate the limits of the
microchannel.

In this test, the strain-hardening Sk law (Eq. (1.14)) with C = 1 (as in [73]) has been ap-
plied for the confinement β = 0.85 and for three different capillary numberCa = ηU/Gs =

0.02, 0.05, and 0.1, where U = Q/S and S is the area of the cross section. As shown in Fig-
ure 2.17, two different meshes have been adopted for the capsule, with 1280 and 5120 ele-
ments, and the benchmark results of Hu et al. [72, 73] are obtained with the freely available
tool WebPlotDigitizer14.
The steady-state shapes obtained for Ca = 0.02, 0.05, and 0.1 are plotted in Figure 2.17

(a)-(c) in the plane z = 0 and in Figure 2.17 (d) in the plane x = 0 (for Ca = 0.1 only).
14https://automeris.io/WebPlotDigitizer/
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These results, first, show that the difference is negligible for our numerical results obtained
with 1280 elements and 5120 elements, and second, all these results match well with those
of Hu et al [72, 73].

2.5.5 Convergence
A convergence study on themodel developed in this thesis is carried out for space discretiza-
tion of the membrane surface and for time discretization. The number of elements of a
membrane mesh, created by Loop subdivision, quadruples once a subdivision is applied.
Therefore, our code becomes very slow (and impossible in practical case) for a vesicle with
four subdivisions (resulting 5120 elements) from an icosahedron. Thus, in this section, in
order to show the convergence, the droplet will be chosen as the deformable particle flowing
in themicrochannel. At the same time, the influence of the number of elements for a vesicle
will also be shown.
The effects of space discretization of themembrane are studiedwith a drop flowing along

the centerline of a capillary (Ca = 0.05, β = 0.8), as shown in Figure 2.18. First, evolution of
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Figure 2.18: Evolution of (a) theTaylor parameterD and (b) the relative error of the enclosed volume
εv = V/V0 − 1 of a drop in a capillary flow (Ca = 0.05, β = 0.8) as a function of
time, for different number of elements. A case with 20480 elements is refined from the
case with 5120 elements. Inset shows a zoom-in of the Taylor number. RKF45 is used
in all these cases for time stepping.

the Taylor parameter15D = L−l
L+l is plotted, in Figure 2.18 (a), as a function of dimensionless

time for various number of elements, which is varied from 80 to 20480. For the first four
cases, the spherical drop is used as the initial form, while the case with 20480 is launched
from an existing state of the case with 5120 elements. Inset shows a zoom-in of the Taylor

15whereL and l are semi-axis of the ellipsoid having the same tensor of inertia.
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parameter except for the coarsest case (with 80 elements). It is showing the difference onD
becomes rather small except for the coarsest case.
The influence of mesh discretization is further studied for the four cases which give con-

sistent results, by inspecting the relative error of the enclosed volume εv =
V (t)−V0

V0
, as shown

in Figure 2.18 (b), where V0 is the initial volume for each case. This figure shows that mul-
tiplying the number of elements by four (one subdivision) allows more than one order of
magnitude gaining in volume conservation. For example, the relative error is about 0.4% af-
ter a dimensionless time of t = 30 for the case with 320 elements, a quite acceptable result.
The convergence order of space discretization is then estimated with the relative error of

the Taylor parameter ε = D−Dref

Dref
, where Dref is the reference Taylor parameter given by

the case with 20480 elements. This error is represented as a function of the number of ele-
ments in Figure 2.20 (a), which is second order in number of elementsO(N−2). It’s shown,
by Boedec et al [22], that this second-order convergence is not affected by the inclusion of
bending rigidity for a Capsule flowing in a linear shear flow. This also gives us the vision
of having a second-order convergence for a vesicle flowing in a capillary, even if we do not
conduct such numerical study.
Now, the effects of temporal discretization are also considered for a drop as above, with

1280 elements and with the conditions Ca = 0.05 and β = 0.8. As shown in Figure 2.19,
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Figure 2.19: Evolution of the Taylor parameter of a drop (with 1280 elements) flowing in a capillary
flow (Ca = 0.05, β = 0.8) as a function of time, for different time steps. Inset shows
a zoom-in of the Taylor number. The implicit fixed time step trapezoidal scheme is cho-
sen.

the evolution of the Taylor parameter is plotted against the dimensionless time for different
time steps∆t = 0.1, 0.075, 0.05, 0.025, 0.01, 5E-3, and 5E-4, with the implicit fixed time
step trapezoidal scheme. The difference is very small and can only be seen in zoom-in plots.
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Similar to the estimation of the convergence order of space discretization, using the re-
sult obtained with ∆t = 1E-4 as the reference Taylor parameter, the convergence order
of temporal discretization is also plotted as a function of time steps, as in Figure 2.20 (b).
As expected, the relative error of the Taylor parameter converges asO(∆t2) when using the
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Figure 2.20: Convergence study of the numerical algorithm: relative error on the steady state value
of theTaylor parameter of a drop in a capillary flow (Ca = 0.05, β = 0.8) with respect
to (a) the number of elements and (b) the time step size. For spatial convergence (a), the
RKF45 scheme is used, and the reference value is computed with 20480 elements. For
temporal convergence (b), the trapezoidal scheme is used, the drop is discretized by 1280
elements, and the reference value is computed with a time step∆t = 5e− 4.

trapezoidal scheme.
A second-order convergence is shown for both the discretization of the membrane and

the discretization of time by a droplet flowing along the centerline of a capillary. The previ-
ous study shows that this convergence will not degrade by adding a bending rigidity to the
Capsulemembrane [22]. As aforementioned at the beginning of this subsection, simulation
of a vesicle with four subdivisions is not practical, but the influences of the number of ele-
ments are compared and shown in Figure 2.21 for a little deflated vesicle (ν = 0.9) flowing
in a microchannel with Ca = 1 and β = 0.2.
The evolution of the inclination angle θ with axis of the flow is displayed in Figure 2.21

(a) as a function of the dimensionless time t for three different numbers of element: 80, 320,
and 1280. Wehave observed that the difference between the casewith 320 elements and 1280
elements becomes imperceptible, but the result obtained with 80 elements shows a remark-
able difference compared to the two finer cases. It is clear that the result with 80 elements
can be questionable as the relative volume error reaches to∼ 7% at the dimensionless time
t = 25, while those for the two finer cases are less than 0.2%.
This test may also suggest that for a vesicle with ν ≥ 0.9, the results obtained with 320

elements should, in general, be reliable.
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Figure 2.21: Evolution of (a) the inclined angle θ (in degree) and (b) the relative error of the enclosed
volume εv of a vesicle flowing in a microchannel (Ca = 1, ν = 0.9, β = 0.2) as a
function of the dimensionless time, for three different numbers of element: 80, 320 and
1280. The inset displays a stable shape, colored by the mean curvature, obtained with
1280 elements, where the axis of the microchannel is indicated by the solid black line.

2.6 Summary
In this chapter, first, the subdivision scheme is introduced, which is used to discretize and
present the membrane (i.e., its position x). This scheme can also be used for the channel
mesh, although we do not need to evaluate derivative on this mesh, sec. 2.1.
Then themembrane force density is obtained, using the subdivision formulation, by solv-

ing the linear system derived from the finite element method, sec. 2.2. The force density f
obtained is highly reliable except for the initial 12 irregular vertices of the icosahedron, which
increase the global error [68].
The procedure for calculating the membrane velocity u of a deformable particle flowing

in a channel is presented in Section 2.3. This procedure is also based on the subdivision
method. Whereas the time stepping schemes, for ∂tx, are presented in Section 2.4.
Finally, verification and validation for the procedure are presented. We, first, verify our

numerical procedure by checking its consistency in varying the mesh of the channel (cases
without external boundaries have already done in [22]). We, then, validate this procedure
by two benchmarks, one for the drop and the other for the capsule. The convergence is also
shown, with the drop and vesicle, in the last example of Section 2.5.
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3 Motion and Shape Transition
of 3D Vesicles in Confined
Flows

3.1 Introduction
Vesicles are large membrane ‘bubbles’ formed by bending and closing up a bilayer of lipid
molecules, suspended in a fluid that can be either the same solvent as the inner or differ-
ent [138]. This bilayer is often in a liquid phase at room temperature and has a fixed num-
ber of lipids which makes the vesicle highly deformable, while its membrane surface is con-
served, both locally and globally. The semipermeability of the membrane helps to main-
tain the enclosed volume unchanged on a time-scale of several hours, which is much longer
than the typical experimental time-scale of about 10 to 15 minutes. The vesicle volume can
thus be considered as constant [3]. Since its volume V and surface area A are both con-
stant, the non-sphericity is measured by a non-dimensional number, the reduced volume
ν = 6

√
πV A−3/2 ≤ 1.

Vesicles have been, and remain, the subject of extensive studies not only due to their re-
semblance to anucleate cells such as red blood cells (RBCs) but also because of their impor-
tance in different industries such as pharmaceutical carriers [149]. Aspherical vesicles can ex-
hibit, in an external flow, an amazing variety of shapes (parachute, bullet, peanut, croissant,
and slipper) [3, 32, 80] and different types of dynamical behavior (tank-treading, tumbling,
trembling, and cross-streamlinemigration) [3, 49, 77, 79, 112, 118]. The study on these behav-
iors is important tounderstand the suspensions of deformable particles, such as blood. Thus
how a single vesicle behaves in an external flow is significant, but the analysis is rather chal-
lenging. This is due to the coupling between the vesicle deformation and the flow that leads
to a free-boundary hydrodynamic problem, where the vesicle shape is not given a priori but
is determined dynamically from a balance between interfacial forces and fluid stresses [76].
The behaviors of a single vesicle in simple shear flow have been studied experimentally[1,

76, 77], theoretically[35, 82, 92, 93, 112, 117, 137], and numerically with boundary integral
method[17, 21, 22, 158]or immersedboundarymethod[84], andwithmesoscale techniques[115,
117]. All the three approaches have identified the three basic dynamical behaviors, namely
tank-treading (the fluid membrane rotates as a tank tread about a fixed orientation angle),
tumbling (vesicles flippingperiodically in the shearplane) and trembling (also called vacillating-
breathing, an intermediate regimebetween tank-treading and tumbling,where vesicles trem-
ble while its long axis oscillating around the flow direction) in shear flow. Analytical models
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are either based on the Keller-Shalak (KS) theory[82], which assumes vesicles have fixed el-
lipsoidal shape, or the perturbation theory [45],which are limited to quasi-spherical vesicles
(ν ≈ 1) under simple boundary conditions. Here, we are interested in a single fluid vesicle,
from quasi-spherical to quite deflated, flowing in microchannels of different sizes.
Two major concerns for vesicles in Poiseuille flow are the lateral migration[33, 48, 49, 78]

and the shape evolution[32, 47, 49, 80]. A single aspherical vesicle in Poiseuille flow may de-
form and break its upstream-downstream symmetry due to (i) the shear flow close to solid
boundaries[33, 48, 79] and (ii) non-constant shear gradient[33, 48, 78, 80]. As a result of
the symmetry breaking (for example a slipper), vesicles undergo cross-streamline migration.
Numerical studies in these directions are mostly in two-dimensional or unbounded three-
dimensional cases. Three-dimensional simulations are very resource consuming[49, 79], es-
pecially for vesicles with small reduced volume. The direct inclusion of thewall is a necessary
step to mimic the realistic RBC dynamics in capillary since the effects of the walls and the
flow curvature are coupled in a nonlinear manner[33, 79].
In this chapter, shape transition andmigration of three-dimensional vesicles in a confined

Poiseuille flow are numerically studied with the method coupling BEM and FEM (refer to
Chapter 2 for details).

3.2 Problem formulation
A vesicle flowing in a bounded Poiseuille flows (Eq. (1.19))

u∞ = Um

(
1− y2 + z2

R2
t

)
ex

with matched viscosity (λ = 1) of inner and outer fluids (refer Figure 2.1 and 2.6) is a fluid
structure interaction (FSI) problem with deformable interface (refer Section 1.3).
Vesicles immersed in an external flow suffer stresses, which can lead to deformations.

These deformations of the two-dimensional incompressible membrane interface which can
resist bending are modeled by theHelfrich energy with a Lagrangemultiplier (γ), Eq. (1.11).
The surface density of force exerted by themembrane of vesicle fm onto surrounding fluids
is given by Eq. (1.12)

fm = κ
[
2∆sH + 4H(H2 −K)

]
n− 2γHn+ ∇sγ.

Due to the length and time scales involved, the inertia can be neglected, and therefore the
hydrodynamic flows fall into the Stokes flow regime (Eq. (1.7))

−∇p+ η∆u = 0, ∇·u = 0.

Since the viscous effects are much faster than a moving boundary can change its position
(Re � 1), the fluid rapidly, or instantaneously in the ideal limit, establish a velocity dis-
tribution for a given geometry of the boundaries [145]. Thus, the coupling conditions of
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velocities and stresses between the hydrodynamic flow and themembrane can be applied, as
presented in Section 1.3.3.
This flowproblem is characterizedby threedimensionless parameters (refer Section 1.3.4),

• the reduced volume ν = 6
√
πV A−3/2, which quantifies the geometric ability of the

vesicle to deform,

• the confinement β = R/Rt, which is the ratio of the vesicle sizeR = (3V/4π)1/3 and
the radius of the microchannelRt,

• the Capillary numberCa = ηαR4

κ , which is the ratio of the flow stress and the bending
force density, where α = Um

R2
t
is the flow curvature.

To complete the presentation of this boundary value problem with the evolution of the
membrane, initial conditions must also be provided. In this chapter, vesicles are initially
given in the form of prolate (Figure. 3.1 (a)) or oblate (Figure 3.1 (b)) characterized by the
reduced volume ν. These vesicles are initially released at a heightH0 away from the flow axis

(a) (b)

H0

θ0

flow direction

x

y

Figure 3.1: Vesicle with ν = 0.65 in the form of (a) prolate and (b) oblate. Black and red solid lines
indicate the flow axis and the line y = 0 that passes through the centroid of the vesicles,
respectively.H0 is the initial position of the vesicle measured from its centroid to the axis
of flow. θ0 is the initial inclined angle compared with the flow direction.

and with an inclination angle θ0 with the direction of flow, as shown in Figure 3.1.

3.3 Results and discussions
In this section, the analysis is done for the vesicles discretizedwith 1280Loop elements unless
otherwise stated. The initial position of the centroid of the vesicle is given with (0, H0, 0),
and the flow is in x direction (Figure 3.1). The implicit trapezoidal time stepping scheme is
used to update the shape of the vesicles.
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3.3.1 Kinematics: lateral migration

Unlike a neutrally buoyant rigid spherical particle, which can not migrate in the direction
transverse to the flow lines when immersed in a creeping flow, an initially centrosymmetric
anddeflated vesicle has the ability tomigrate cross-streamline at vanishingReynolds number
provided that the symmetry of the Stokes flow is broken [48, 60].Highly deformable vesicles
flowing in a confined Poiseuille flow may deform due to the complex interplay between its
membrane, the wall, and the Poiseuille flow, which in turn leads to upstream-downstream
asymmetry of the vesicle.
Cross-streamline migration under flow plays a key role in suspensions of soft matter, and

therefore in several industrial andmedical applications. Such as the Fåhræus-Lindqvist effect
in the blood flow, which is the result of lateral migration. A vesicle placed away from the
centerline of the Poiseuille flow can migrate either towards the center, or outwards until it
reaches a wall, or stop at an intermediate position [48]. In this subsection, the kinematics
of cross-stream migration of an initially off-center prolate vesicle (H0 6= 0 and θ0 = 0) in a
confined Poiseuille flow (Ca = 1) are presented.

Inward migration

Figure 3.2 shows an example of inward migration. As shown in Figure 3.2(a), an initially
prolate vesicle ( 1©) released at height H0 = 0.05 migrates to the center of the flow with
a bullet shape ( 8©) at the end, and its centroid performs a damped oscillation around the
center of the microchannel.
More specifically, starting from an initial prolate state, the vesicle quickly deforms to a

slipper shape with its major axis aligned with the flow profile. This asymmetrical shape will
only be slightly deformed during its migration to the flow center ( 2©). When the vesicle
arrives at the flow center, it keeps on moving due to the asymmetricity of its shape. When
the vesicle is located below the flow center, it starts to re-deform in order to adapt the inverse
flow profile. An almost symmetrical shape is obtained at the lowest position ( 3©), this state
is not stable because the flow at this position (observed from the centroid of the vesicle) is
not symmetrical. Thus it continues to deform and adpts a new asymmetrical shape with its
major axis, once again aligns the flow profile ( 4©). This deformation to align the flow profile
is accompanied by an inward migration (but with an inverse direction in comparison with
the former one). As before, it will continue moving when it reaches the flow center for the
second time ( 4©). The vesicle will continue this inward and outward migration but with
gradually reduced strength ( 5©, 6© and 7©) until it attains the stable state, a symmetrical
bullet with YG = 0 ( 8©).
Figure 3.2(b) shows the lateral migration velocity Uy as a function of YG, with the initial

state indicated by a blue dot. It is shown that both Uy and YG decrease with time, and con-
verge to the point (0, 0), which has vanished shear rate. The red triangles, which correspond
to the states with relative extreme values of the radial position YG (as 3©, 5©, 6© and 7© in Fig-
ure 3.2(a)), represent the states having zero instantaneous velocity and almost symmetrical
shapes, but these states are not stable and can be broken by the surrounding flow.
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Figure 3.2: The dynamics of deflated vesicles (ν = 0.9) in a microchannel (Rt = 1/β = 3), for
the meshes with 320 and 1280 elements. (a) The instantaneous radial height YG of the
centroid of the vesicle as a function of dimensionless time, the insets (Oxy plane) are in-
stantaneous vesicle shapes during the migration, colored by the mean curvature of the
membrane. (b) Evolution of the migration velocity Uy as a function of YG, the blue dot
indicates the initial state. (c) Evolution of the relative variance of the reduced volume ν.
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Figure 3.2(c) shows the relative variance of the reduced volume as a function of time. It
is shown that the case with finer mesh accumulates much smaller error than the coarse one.
For the case with 320 elements, the gradual increase in error may interpret the discrepancy
appeared in Figure 3.2(a), namely, the gradually increasing phase difference between these
two curves. Here, we observed an inwardmigrationwith oscillation, but it can also, without
surprise, be a migration without oscillation, such as the example presented in Figure 3.6.

Centered snaking

As for the dynamics of a vesicle in a confined flow, the term snaking may be introduced by
Kaoui et al. [79], for the first time. This dynamic ofmotion corresponds to themotionwhere
the centroid position oscillates periodically over time, as shown in Figure 3.3(a). In their
works, both the centered (where the mean value of YG is zero) and the off-centered (where
the mean value of YG 6= 0) snaking are observed for a highly deflated vesicle (ν = 0.6), in
the two-dimensional simulation.
Figure 3.3 shows a centered snaking for (i) ν = 0.85, Rt = 2.8 and (ii) ν = 0.8, Rt =

2.5. For the case (i), the simulation is first launched with 320 elements, and the mesh is
refined to 1280 elements at t ≈ 500. Neither like the inward migration, for which vesicles
finally adopt an axisymmetric form and remain on the axis of the channel (such as the bullet
shape), nor themigration to an off-center position, forwhich the stable vesicles take a slipper
shape and its centroid is radially displaced from the flow axis, the centroid of vesicles varies
periodically during the snaking motion, as shown in Figure 3.3(a), like the locomotion of
snake. The insets show some typical instantaneous vesicle shapes, which are very similar
to those obtained by Kaoui et al. [79, Fig.3]. In coherence with Figure 3.2, the vesicle is
much deformed when it passes through the axis of the microchannel than when it reaches
its extreme position.
Figure 3.3(b) shows the evolution of themigration velocityUy as a function of YG, which

is also termed as Poincaré map [23]. We found that once the oscillation becomes stable,
these maps are very similar, like that reported by Boujja et al. [23, Fig. 2(d)] for ν = 0.6 and
β = 0.55. Figure 3.3(c) shows the variance of the angle of inclination θ, like that of the
centroid position YG, which varies periodically.

Migration to an off-center position

As reported by Kaoui et al. [80], the initially axisymmetric vesicles flowing in a symmet-
ric two-dimensional unbounded Poiseuille flow may have asymmetric stable shapes, called
slipper, with their center of gravity deviated from the flow axis. We confirm this by a fully
three-dimensional simulation, as shown in Figure 3.4, an example of migration to the final
stable position located away from the flow center, Y∗g ≈ 0.047. In this thesis, the centroid
position of a stable slipper Y ∗g is meaningful in the following sense, when a vesicle is initially
placed at a heightH0, it migrates inwards and stops at some position, and this position has
height Y ∗g . This inward migration does not conclude thatH0 must larger than Y ∗g , actually,
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Figure 3.3: The dynamics of deflated vesicles in a microchannel for three different cases: (1) ν =
0.85, Rt = 2.8, 320 elements; (2) ν = 0.85, Rt = 2.8, 1280 elements; (3) ν =
0.8, Rt = 2.5, 1280 elements. (a) The instantaneous radial height YG as a function of
dimensionless time, the insets (Oxy plane) are instantaneous vesicle shapes during the
migration for ν = 0.8. (b) Evolution of the migration velocity Uy as a function of YG,
the blue dots indicate the initial states. (c) Evolution of the inclination angle θ (in degree)
of the major axis of the vesicle relative to the axis of flow.
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Figure 3.4: The dynamics of deflated vesicles (ν = 0.85) in a microchannel (Rt = 3) with different
initial heightsH0 = 0.12, 0.107, 0.06 and 0.04. (a) The instantaneous radial height YG
as a function of dimensionless time, the final stable position Y ∗G is indicated by the hori-
zontal red dotted line. The insets (Oxy plane) are instantaneous vesicle shapes during the
migration. (b) Evolution of the migration velocity Uy as a function of the distance mea-
sured from the centroid to the final stable position. (c) Evolution of the relative variance
of the membrane area.
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a vesicle initially placed at a position H0 < Y ∗g can migrate first inwards then outwards,
eventually reaches the same stable position, as shown in Figure 3.4(a).
In Figure 3.4(a), the prolate vesicles are initially released at four different heights H0.

For the case with H0 close to Y∗g (0.04 and 0.06), the vesicle first migrate inwards and then
outwards. The one with H0 = 0.107 which is greater than Y∗g, merely experiences the in-
ward/outward oscillation before fast reaching to the stable state. If the initial height is even
larger (H0 = 0.12), a vesicle migrates inwards without experiencing oscillation, but the mi-
gration is rather slowwhen it is closed in the stable position Y ∗g . Whereas all these three cases
share the same final state, an off-center slipper. This asymmetric stable state is thought to
be the common result of the complex interplay of flow curvature, the wall, and membrane
forces [48, 60]. What’s more, given a positive or negative positional perturbation on a sta-
ble state with strength δh = 0.005, the off-stable state vesicle will move back to the original
stable state. All the shapes shown in the insets, unlike those of Figure 3.2(a), experience the
same direction of inclination, since YG is always greater than zero.
Figure 3.4(b) shows the lateral migration velocity Uy as a function of Yg − Y ∗g , with the

initial states are indicated by the blue dots. The slope represents the acceleration, as they ap-
proach the final stable position; the casewithH0 = 0.107has bigger acceleration (in absolute
value) than the three others. We are audacious to say that a vesicle with H0 ∈ [0.04, 0.12],
while with other parameters remain unchanged, the final stable state is a slipper with Y ∗G =

0.047, and there should be an initial height Hc
0 from which the vesicle can reach the stable

position most quickly.
Figure 3.4(c) shows the relative variance of the membrane area, in the dynamics for dif-

ferent initial heightsH0. For all the cases, the relative variances of the area are less than 0.1%,
suggests that the constraint of surface incompressibility is well preserved.

3.3.2 Morphology: possible stable shapes
Because of the interplay between the vesicle shape and the external flow, vesicles flowing in
the microchannel bear a rather rich set of morphologies, which vary from the full axisym-
metric shape (such as the bullet) to the off-centered nonsymmetric one (such as the slipper).
Here, all observed stable shapes are classified by the number of planes of symmetry, that is,
∞-, two- and one-plane of symmetry. In this analysis, the initial inclination angle θ0 is set to
zero unless otherwise stated.

Infinity planes of symmetry

Stable shapes that have infinite planes of symmetry are axisymmetric, which includes bullet
shape, parachute shape, and peanut shape. Figure 3.5 shows a case that attains a stable bullet
shape, an axisymmetric form with a convex rear end, under given parameters, Ca = 3, ν =

0.9, Rt = 2.0 and H0 = 0.03. The prolate vesicle is initially placed at H0 = 0.03 � Rt,
which is very close to the center of the flow; at first, it migrates inwards to the center and
crosses the centerlinewith a slipper shape. This slipper shape continues the lateralmigration
until a position with a maximum negative height YG is reached, here the vesicle resumes
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Figure 3.5: Evolution of the centroid YG for Ca = 3, ν = 0.9, Rt = 2.0 and H0 = 0.03. The
insets (Oxy plane), colored bymean curvature, present the instantaneous shapes, starting
from a prolate form and it becomes a stable bullet form at the end of the simulation.

an axisymmetric shape. This axisymmetric shape re-enters the migration in the direction
opposite to the previous one and with a smaller amplitude. The evolution of the centroid
YG behaves thus like a damped oscillation.
Figure 3.6 shows a case that has a stable parachute shape, an axisymmetric form with a

concave rear end, under given parameters, Ca = 50, ν = 0.9, Rt = 6.0 and H0 = 0.05.
Starting from a prolate shape, the case presented here does not enjoy the oscillation process,
and it becomes a parachute shape whose axis coincides with that of the flow.
The last observed axisymmetric shape, the peanut, is shown in Figure 3.7 under given

parameters,Ca = 1, ν = 0.7, Rt = 1.5 andH0 = 0.0. Peanut is an axisymmetric shape with
its two ends larger than the middle part. It can be a generalization of the dumbbell shape
since the two ends usually have different size. Starting from a prolate form, initially placed
at H0 = 0.0, the volume of the stout middle part is first transferred symmetrically to the
rear and the front. And then a neck part occurred which separates two convex ends with
different sizes.

Two planes of symmetry

The shape with two planes of symmetry is the one with the two perpendicular planes of
symmetry, and the line of intersection of these two planes coincides with the axis of the
microchannel.
The first one reported here is called the croissant [49], as shown in Figure 3.8, for which

the rear end is convex in one direction but concave in the perpendicular one. Figure 3.8
shows the evolution of the centroid YG and the geometric parameterD2 ≡ L2−L3

L2+L3
(the rel-

ative difference of the two major axes in the plane perpendicular to the flow direction) as a
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Figure 3.6: Evolution of the centroid YG for Ca = 50, ν = 0.9, Rt = 6.0 and H0 = 0.05.
The insets (side view in the Oxy plane and rear view in the Oyz plane), colored by mean
curvature, present five instantaneous shapes, starting from a prolate form and it becomes
a stable parachute form at the end of the simulation.
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Figure 3.7: Evolution of the Taylor parameterD for Ca = 1, ν = 0.7, Rt = 1.5 andH0 = 0.0.
The insets (Oxy plane), colored by mean curvature, present five instantaneous shapes,
starting from a prolate form and it becomes a stable peanut form at the end of the simu-
lation.
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Figure 3.8: Evolution of the centroid YG and geometric parameterD2 for Ca = 5, ν = 0.9, Rt =
2.5 and H0 = 0.03. The insets (side view in the Oxy plane and rear view in the Oyz
plane), colored bymean curvature, present the instantaneous shapes, starting from a pro-
late form and it becomes a stable croissant form at the end of the simulation.

function of dimensionless time, under given parameters, Ca = 5, ν = 0.9, Rt = 2.5 and
H0 = 0.03. The geometric parameterD2 ≡ L2−L3

L2+L3
, like the Taylor parameterD ≡ L1−L2

L1+L2
, is

used to characterize the deformation in the plane perpendicular to the flow direction, where
L2 and L3 are the length of the two major axes in the plane perpendicular to the flow.
Similar to Figure 3.5 and 3.6, the initial prolate vesicle, placed at an off-center position

with H0 = 0.03, deforms first to a slipper form during its lateral migration to the center
of the flow. While the transition from the slipper shape to the croissant shape is achieved
mainly during the inverse lateralmigration from themaximumnegative position to the flow
center. All snapshots are coloredwith themean curvature, while the last one ismappedwith
a different color scheme, called blue to red rainbow, to emphasize extreme values of themean
curvature (also in the previous Figure 3.6).
Another example of twoplanes of symmetry is shown inFigure 3.9, which is characterized

by two concave regions in its two flatter surfaces. It is a combination of the biconcave disk
shape and the croissant shape, wemay term it here as biconcave-croissant shape. This kind of
form is only observed for highly deflated vesicles (for example, ν = 0.65 and ν = 0.6 in our
ever launched simulations) having an initial oblate shape.
Figure 3.9(a) shows the centroid YG and the geometric parameter D2 as a function of

dimensionless time, under given parameters, Ca = 1, ν = 0.6, Rt = 3.0, H0 = 0.35 and
θ0 = −7°. The oscillation of YG is quickly damped out, and its centroid locates on the flow
axis for t > 100. Figure 3.9(b) shows the evolution of the inclination angle between the
major axis and the axis of themicrochannel. From the last snapshot, we observe that the two

68



3.3 Results and discussions

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  20  40  60  80  100  120  140

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65(a)

YG

YG

D2

D2

time

-12

-10

-8

-6

-4

-2

 0

 2

 0  20  40  60  80  100  120  140

(b)

θ

time

Figure 3.9: Evolution of (a) the centroid YG, geometric parameterD2 and (b) the inclination angle
θ for Ca = 1, ν = 0.6, Rt = 3.0, H0 = 0.35 and θ0 ≈ −7° (or −0.12 rad). The insets
(top view in the Oxz plane and rear view in the Oyz plane), colored by mean curvature,
present the instantaneous shapes, starting from a oblate form and it becomes a stable
biconcave-croissant form at the end of simulation.

planes of symmetry are perpendicular and that the intersection of these twoplanes coincides
with the axis of the flow, like those for the croissant shape.

One plane of symmetry

The slipper shape in the cylinder channel has one plane of symmetry. For a vesicle initially
placed at a position H0 (assumed in the y direction), and in a flow in the x direction, this
plane of symmetry is Oxy, as shown in Figure 3.1.
As pointed out by Kaoui, Biros, and Misbah [80], a slipper shape is accompanied by a

tank-treading membrane, and thus by flow circulation inside the vesicle, which means a
slipper is not favored from the point of view of dissipation. They also show that the es-
tablishment of a slipper will help reduce the difference between the vesicle velocity and that
of the bare imposed flow. As a consequence, the slipper becomes a favorable shape.
Figure 3.10 shows a stable slipper shape with two different initial configurations: a pro-

late (H0 = 0.555 and θ0 = 0) and an oblate (H0 = 0.6 and θ0 ≈ −11.5), under given
conditions, Ca = 1, ν = 0.7 and Rt = 6.0. Figure 3.10(a) shows the evolution of the cen-
troids YG, which converge to a common value Y ∗G ≈ 0.508, as indicated by the dashed black
line. When a vesicle approaches the stable position, the migration velocity decreases rapidly,
as shown in Figure 3.4(b). In order to decrease the time required to reach the steady state,
we dynamically update the lateral position according to the current migration velocity Uy.
For example, in this case, when Uy > 0, we update the new centroid value of the vesicle by
adding a small positive number, as shown in Figure 3.10(a) and Figure 3.10(b). It is shown
that this operation did not influence the final equilibrium state, for example, given a small
perturbation on the lateral position of the centroid YG (Figure 3.4(a)), the equilibrium state
is unaffected. And also see Appendix D.1 for more examples of manual alert of the radial
position to accelerate the convergence.
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Figure 3.10: Evolution of (a) the centroid YG, (b) the migration velocity Uy and (c) the inclination
angle θ for Ca = 1, ν = 0.7, Rt = 6.0, with H0 = 0.555, θ0 = 0° for an initially
prolate form and withH0 = 0.6, θ0 ≈ −11.5° (or −0.2 rad) for an initially oblate form.
The insets (side view in the Oxy plane and top view in the Oxz plane), colored by mean
curvature, present the instantaneous shapes, starting from prolate and oblate form re-
spectively, and they become a stable slipper form at the end of the simulation. The last
snapshot is a combination of these two cases, separated by the red inclined line, the up-
per comes from the prolate form and the lower is from the oblate one. The horizontal
purple line shows the axis of the microchannel.
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The snapshots in Figure 3.10 (a) show some instantaneous shapes for an initial prolate
and oblate form. Although the evolution process is very different, their stable shapes are
perfectly matched, as shown in the last snapshot, which is a combination of these two cases,
separated by a red line, where the upper half comes from the prolate form and the lower
half comes from the oblate one. Figure 3.10(b) and its enlarged subplot show the evolution
of the migration velocity. It is shown that at the end of the simulation, where a stable form
is obtained, there is no more lateral migration. Figure 3.10(c) shows the evolution of the
inclination angle θ, in this case, the slippers have a common stable inclination angle about
-16 degrees.

3.3.3 Membrane flow and surrounding fluid flow

In this section, the fluid flow on the membrane of the vesicles and for the surrounding fluid
are presented for a stable form with five examples, among which two are a slipper, one is a
peanut shape, and the other two are shapes with two planes of symmetry. Be aware that the
velocities presented in this section are all velocities relative to the centroid of the vesicle, i.e.,
in the reference framemoving with the steady vesicle. To calculate the flow of the surround-
ing fluid, a fluid box mesh is generated with freely available python scripts and Gmsh (refer
to the Appendix C).
For an axisymmetric stable form, for example, a peanut, as indicated in Figure 3.11, the

membrane has no slipping, i.e., there is no membrane velocity. Putting the camera on the
vesicle, the fluid moving globally in the direction −x1, as shown in Figure 3.11, the fluid
located away from the axismoves from the front of the vesicle to the rear, and the streamlines
remain parallel, which is nearly unaffected even in the region of vesicle. While as the fluid
approaches the axis, it is hindered, and the streamlines are diverted, the fluid flows in the
totally opposite direction at the axis of the flow. Thus, there are two vortex regions in the
form of a ring, at the front and the rear of the vesicle.
Two different tank-treadingmodes are presented in Figure 3.12, the left one with β = 0.1

(Rt = 10, less confined) has a single axis of rotation, and the right one with β = 0.3745

(Rt = 2.67, more confined) has two distinctive axes of rotation. It should be noted that for
the less confined case, the stable radial position Y ∗G ≈ 0.608 (all vertices have coordinates
y ∈ [−0.407, 1.655]), and that of the more confined case is about 0.0122 (all vertices have
coordinates y ∈ [−0.963, 1.075]). Thus, the vesicle with β = 0.1 has its major part of the
body above the axis (as indicated by the dashed blue line), and the membrane slides globally
with a single axis, which is driven by the imposed flow. While, the vesicle with β = 0.3745

is almost equally separated by the axis of the flow, and the membrane slides in opposite
directions with two different axes4, one above the flow axis and the other under the flow
axis. These two circulations meet at the shared region (in the middle of the vesicle) flowing
in the same direction. The strength of maximal sliding velocity for the latter case is much
smaller than the former.

1The vesicle translates at a speed Uv
x ≈ 3.647, while the maximum velocity of the unperturbed flow is 4.

We define the relative velocity lag as δu = (Um − Uv
x )/Um, here we have δu ≈ 8.83%.
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3 3D Vesicles in Confined Flows

Figure 3.11: Streamlines in the y = 0 and z = 0 planes around a peanut-shaped vesicle for Ca =
1, ν = 0.8 and β = 0.5. The vesicle membrane is colored by the mean curvature and
the streamlines are colored with the axial velocity ux. For the flow direction to be clearer,
the color legend is set with the same upper and lower limits, the lower limit of the flow
is actually much bigger than the upper one.

β = 0.1 β = 0.3745

flow direction

Figure 3.12: Stable slipper shape with fluid velocities at the membrane for Ca = 1, ν = 0.8 and
for two different confinement β = 0.1 and 0.3745. The membranes are colored by
mean curvature of the surface and the arrows are colored by the strength of circulation
velocities in the x-direction, ux. The two dashed blue lines indicate the axis of the flow.
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The streamlines of the surrounding fluid for these two cases are presented in Figure 3.13.
Comparing with those of the axisymmetric case, as shown in Figure 3.11, a major differ-

ux

β=0.1

β=0.3745

Figure 3.13: Streamlines in the z = 0 plane for the two cases shown in Figure 3.12. The black line
indicates the position of the membrane in this plane.

ence is that the fluid inside the vesicle is no longer stationary. Actually, the fluid flows syn-
chronously with the adjacent flow outside the vesicle, but with a strength slightly lower.
The fluid outside of the vesicle moves globally from the positive direction to the negative

direction of the flow axis2, if one observes from the vesicle. For the less confined case (β =

0.1), there exists a stagnationpoint just below the vesicle, but this point disappears at a higher
confinement, and there are only two rings (one before the vesicle and the other after the
vesicle) where the velocities equal to zero. The fluid inside the vesicle behaves in the same
way as the membrane flow, which is reasonable because the sliding of the membrane is the
driving force of the internal flow.
Figure 3.14 and 3.15 show the flow structure of the stable croissant shape and biconcave-

croissant shape, respectively. Both the cases exhibit membrane sliding, the tank-treading
speed is greater in the case of biconcave-croissant shape (Ca = 1) than that of the croissant
shape (Ca = 20 for this example and for the other croissant shapes in Figure 3.23 and 3.24).
While, a posteriori check on the membrane sliding velocity for Ca = 1, ν = 0.65 and Rt =

3.2 (Figure 3.28) shows an almost equal strength for the biconcave-croissant shape and the
slipper shape.
2The relative velocity lag δu are 0.9% and 6.67%, respectively for β = 0.1 and 0.3745.
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Figure 3.14: Streamlines (colored by translational velocities in x direction, ux) in planes y = 0 and
z = 0 for Ca = 20, ν = 0.9 and Rt = 5. The black arrows show the tank-treading
of the membrane. The inset in the upper left corner shows a stable croissant shape col-
ored by the mean curvature, and the arrows are colored by the membrane tank-treading
velocities in the x-direction.
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3.3 Results and discussions

Figure 3.15: Streamlines in planes y = 0 and z = 0 for Ca = 1, ν = 0.65 and Rt = 3.2. The
black arrows show the tank-treading of themembrane. The inset in the upper left corner
shows a stable biconcave-croissant shape colored by the mean curvature.

It is also seen that, for both cases (Figure 3.14 and 3.15) in the plane y = 0, there are two
vortices (interior of the vesicle) rotating in the opposite directions. Whereas, the streamlines
around the vesicles are globally comparable to those of the peanut shape 3.

3.3.4 Effect of Ca
In this section, the effect of the capillary number Ca, or the bending rigidity κ = 1/Ca

is qualitatively presented. The evolution of the vesicle shape as a function of the capillary
number, for fixed reduced volume ν = 0.9 and confinement β = 0.25 is shown in Fig-
ure 3.16. The simulations are performed with 1280 elements, while the vesicles presented
here are refined to 20480 elements to better represent the stable shape. A dramatic change
in morphology is found as increasing Ca: from slipper (Ca = 0.1, 1.0 and 3.0) to croissant
(Ca = 10.0 and 20.0), and eventually parachute (Ca = 50.0) shapes. This tendency can
be more pronounced for more deflated vesicle, for example when ν < 0.7, as reported by
Kaoui, Biros andMisbah [80]. This propertymaybeused as apotential diagnostic for detect-
ing RBC pathologies, such as malaria, which are characterized by an increase in membrane
rigidity.
All the shapes in Figure 3.16 are sliced by the plane z = 0 and plotted in the same figure,

as shown in Figure 3.17(a). Starting from Ca = 0.1, an off-centered, inclined and almost
prolate shape deforms to a slipper form, in accompanying with a decrease of the centroid

3The relative velocity lag δu is 2.77% for the croissant shape and 4.95% for the biconcave-croissant shape.
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Ca=0.1 1.0 3.0

10.0 20.0 50.0

Figure 3.16: Evolution of the morphology as a function of the capillary number for ν = 0.9 and
β = 0.25. The membranes are colored by the mean curvature and the axis of the mi-
crochannel is indicated by the black line.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

0.1

1

2

3

10

20

50

100

X

Y

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1  1  10  100

S

B

C

P

Y ∗
G

Ca

(b)

ν
=
0.9

ν
=
0.95

Figure 3.17: (a) Evolution of the projected morphology in the plane of XY as a function of the capil-
lary number for ν = 0.9 and β = 0.25. The two dashed blue arrows indicate the direc-
tion in whichCa increases, for the slipper shape and for the symmetric shape (croissant
and parachute), respectively. (b) Evolution of the stable centroid position Y ∗G as a func-
tion of Ca for β = 0.25, where S, B, C, and P stand for slipper, bullet, croissant, and
parachute, respectively. In this figure, results are presented for two reduced volumes,
ν = 0.95 (filled symbols) and ν = 0.9 (empty symbols).
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position when Ca is increased to 3. Further increasing the capillary number, for example
to Ca = 10, leads to the vesicle transits to a croissant shape with its centroid located at
the axis of the flow. This croissant shape is not stable, which then transforms into a fully
axisymmetric parachute shape, for example, when Ca = 50, we obtain a stable parachute
shape.
Figure 3.17(b) shows the evolution of the stable centroid position Y ∗G as a function of

the capillary number Ca for β = 0.25 and two different reduced volume ν = 0.95 (filled
symbols) and 0.9 (empty symbols). Once again, we found that the vesicle first has its cen-
troid located away from the center of the flow, and it has an asymmetric slipper shape. The
position of the centroid decreases as we increase the capillary number. When the capillary
number is bigger than some critical values, Cac, the stable centroid position Y ∗G → 0, and
the vesicle attains an axisymmetric or a croissant shape. The selection of the final shape is de-
pendent on the values of ν andCa . It should be noted that the bullet shape appears only for
ν = 0.95 for confinement is not strong (β = 0.25). Furthermore, according to this figure, it
seems that the decrease in reduced volume ν will delay this transition.

3.3.5 Effect of β
The explicit inclusion of a wall boundary for a fully three-dimensional vesicle flowing in a
Poiseuille flow is marked as a significant difference from previous numerical studies on vesi-
cle dynamics in (quadratic) Poiseuille flow, as briefly discussed at the beginning of this chap-
ter. In this section, the effects of the confinement β are discussed in the following sequence:
(i) the influences on the asymmetric slipper are presented first, then (ii) the transition to the
axisymmetric shape, and (iii) the effects on the snaking motion are lastly revealed.
A vesicle, with reduced volume ν = 0.9, flowing in a capillary flowwithCa = 1, will have

slipper as the final stable shape for a capillary with appropriate size, for example a capillary
with radius Rt ≥ 3.2, as shown in Figure 3.18. In this figure, the final stable slippers are
presented for an unbounded Poiseuille flow (β = 0) and capillary flow with five different
sizes, ranging fromRt = 10 toRt = 3.2. In fact, the value of the stable lateral position of the
centroid decreases from0.33 to 0.03 aswe increase the confinementβ from0 to0.3125. That
is, the vesicle migrates to the center of the capillary as the effect of confinement increases.
On further increase in confinement, an axisymmetric form is obtained (Y ∗g = 0), which will
soon be involved.
With regard to the geometric shape of these vesicles, it seems that a region (the upper

central part of the membrane) with inverted curvature is appeared and becomes more pro-
nounced in increasing the confinement β. Also, the membrane sliding transits correspond-
ingly from a whole (with a single axis of rotation) to a form with two separate parts, each
having their own axis of rotation. As shown in the last figure, these two vortices rotate in
opposite directions, like the counter-rotating propellers4.
Figure 3.19 shows the transition from a slipper to a axisymmetric bullet in detail for ν =

0.97, 0.95 and 0.9 via (i) the evolution of the stable centroid position Y ∗g of the membrane,
4Refer the schematic animation in wikipedia page for counter-rotating propellers, https://en.wikipedia.

org/wiki/Counter-rotating_propellers.
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β=0 0.1 0.2

0.25 0.2857 0.3125

Figure 3.18: Evolution of vesicle slipper state (shape and radial position) and its membrane velocity
as a function of the confinementβ forCa = 1 and ν = 0.9. Themembrane is coded by
the mean curvature and the arrow is coded by the membrane velocity in the y-direction,
namely umy . The axis of the capillary is indicated by the black line.

(ii) the maximum value, in magnitude, of the tank-treading velocity for a stable form Utt =

max
all vertices

{‖ui −Umig‖}, (iii) the velocity lag, and (iv) the stable inclination angle θ, mea-
sured from the axis of the flow to the major axis of the vesicle. Here, the velocity lag is
defined as the difference between the unperturbed velocity at the centroid position of the
vesicle U∞l = u∞(Y ∗g ) and the translation velocity of the vesicle Ux when it reaches at the
stable state.

The evolutions of the stable centroid position Y ∗g as a function of the radius of the capil-
laryRt are shown in the first rowofFigure 3.19 for three different reduced volume ν. Starting
from a common large capillary,Rt = 10 for those three different ν, the value of Y ∗g decreases
simultaneously with the decrease in the size of the capillary, and it eventually decreases to
zero when Rt is less than a critical value Rc, the slipper shape transit correspondingly to an
axisymmetric one, a bullet. There are two obvious differences in these very similar transi-
tions, the first is that the value of Y ∗g is different for a capillary of the same size, the more
the vesicle is deflated, the higher the value of Y ∗g is; the second difference is the valueRc, the
critical value where the transition takes place, which seems that a more deflated vesicle can
support the slipper shape in more confined Poiseuille flow.

Conversely, if we observe these curves from left (smallerRt) to right (largerRt), the vesicle
transit from an axisymmetric bullet shape to an off-center slipper shape. That is, when Rt
is rather small, the strong confinement makes the bullet shape stable against various pertur-
bations, but when Rt is larger than the critical value Rc, instability develops and the bullet
shape evolves into another stable state–the slipper shape, which is characterized by the loss
of up-down symmetry. Thus a fit is shown in these figures (dashed black curves) in order
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Figure 3.19: Effects of the confinementβ on a vesicle flowing inmicrochannelwithCa = 1 and three
different reduced volumes: (i) ν = 0.97 (left panels), (ii) ν = 0.95 (middle panels) and
(iii) ν = 0.9 (right panels), for the stable centroid position Y ∗g , the maximum sliding
speedUtt, the velocity lagU∞l − Ux and the stable inclination angle θ.
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to have a reduced dynamical description near the bifurcation pointRc, actually, we assume
that the points close toRc can be fitted with the common formula

Y fg = a(Rt −Rc)b. (3.1)

The fitting results show the sets (Rc, b) are (4.8499, 0.32), (3.8136, 0.42) and (3.0271, 0.65)

for ν = 0.97, 0.95 and 0.9, respectively. These fitted exponential number b together with the
transition curves suggest an analogy between this transition and the classical supercritical
pitchfork bifurcation [34, 80]

∂tY
∗
g = (Rt −Rc)Y ∗g − Y ∗g 3, (3.2)

which has a pair of nontrivial stable solutions

Y ∗g = ±
√
Rt −Rc, forRt > Rc. (3.3)

We then plot themaximum tank-treading speedUtt as a function ofRt. At first glance, we
notice that membrane sliding takes place only for the asymmetrical slipper shape and that
there is no movement of the membrane for the axisymmetric bullet shape. Therefore, it is
rational to see that the critical value of the capillary radiusRc, from which a vesicle without
tank-treading passes to a vesicle with tank-treading in increasing the control parameter Rt,
equals to that for the transition of stable lateral position Y ∗g . A major difference is that the
behavior near the transition point Rc for Utt is much faster than that for Y ∗g . This means
that thedifferenceofmembrane tank-treading velocity for a slipper at different states ismuch
smaller than that of the slipper shape and the bullet shape.

The fitting curves with the data near the transition point are also plotted in these figures
(the second row of Figure 3.19), as indicated by the dashed black lines. For these curves, the
same formula (3.1) was used, and by which the sets (Rc, b) are (4.8603, 0.1), (3.792, 0.11)

and (2.7187, 0.27) for ν = 0.97, 0.95 and 0.9, respectively.

Results show the evolution of the velocity lag (U∞l − Ux) in the direction of the flow
and the inclination angle θ between the axis of the flow and the major axis of the vesicle are
then continued (in the last two rows of Figure 3.19). They overall have similar behaviors in
comparisonwith those ofUtt (Wemay replace θwith | θ | for the θ–Rt curves.). Whereas, in
comparison with the other two cases, a major difference is that they are much less sensitive
when the radius of the capillaryRt is rather larger than the critical valueRc.

Figure 3.19 shows a consistent transition for a vesicle from the axisymmetric bullet shape
to the asymmetric slipper shape when varying the control parameter, the confinement β,
via the inspection of Y ∗g , Utt, U∞l − Ux and θ. It is also worth mentioning the influences of
deflation: the scope of the existence of the slipper shape is, in general, extended for a vesicle
with smaller reduced volume ν, which has much stronger deformability. Wemay, therefore,
estimate the plentiful picture for a vesicle with an equal reduced volume of the normal RBC
of human (∼ 0.64).
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3.3 Results and discussions

Evolution of the stable lateral position Y ∗g of the slipper shape as a function of the con-
finement β is presented in Figure 3.20 for deflated vesicles (ν = 0.95, 0.9) flowing in the
microchannels with the capillary number Ca = 0.1, 1 and 10 (only for ν = 0.9), where
β = 0 corresponds to the unbounded case. From our simulations for ν ≥ 0.9, we found the
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Figure 3.20: Effects of the confinement β on a vesicle flowing in microchannel for Ca = 0.1, 1, 10
and for reduced volumes ν = 0.95, 0.9. Numerical results of a vesicle in an unbounded
(β = 0) Poiseuille flow are also plotted [49] (obtained withWebPlotDigitizer).

stable lateral position Y ∗g is approximately inversely proportional to the capillary number
Ca when the confinement β is very weak (similar to Farutin &Misbah [49, FIG. 7]). There-
fore, for better representation, we draw, in Figure 3.20 (b), the curves for Y ∗g multiplied by
the capillary number, i.e., Ca × Y ∗g , to show the similarities and the differences.
First, for each individual curve, we again found the intuitive result that the stable lateral

position decreases as the confinement β increases, but this behaviorwas different forCa = 1

in comparison toCa = 0.1 andCa = 10. Secondly, the transition from the slipper shape to
the axisymmetric shape is delayed forCa = 0.1when compared withCa = 1, and the latter
ismore delayed in comparison toCa = 10. As shown inFigure 3.23, there is no stable slipper
shape in the case of ν = 0.95 and Ca = 10, thus the results of Ca = 10 are only presented
for ν = 0.9. Thirdly, the inversely proportional relation between Y ∗g and Ca seems to work
roughlywell in case of veryweak confinement, but as confinementβ increases, the higher the
capillary number Ca (the stronger of the flow) is, the faster the variance of the stable lateral
position Y ∗g . Lastly, in comparisonwith the results of Farutin&Misbah [49], our results for
unbounded cases (β = 0) match very well for Ca = 1. As for the discrepancy for Ca = 0.1,
our results seem reasonable regarding to the evolutionary trend of the confinement.
Figure 3.18, 3.19 and 3.20mainly concern the slipper shape, while a richer morphological

dynamic for a vesicle (ν = 0.9) in a capillary flow (Ca = 10) is presented in Figure 3.21. In
such flow conditions, we vary the capillary sizeRt from 5.0 to 3.0, 1.5 and finally to 1.2, the
initial slipper shape transforms first into the croissant shape, then to the parachute shape
and finally to the bullet shape, which is a evolution of increasing of the number of plane of
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β=0.1667 0.25

0.6667 0.8333

Figure 3.21: Evolution of the morphology as a function of the confinement β forCa = 10 and ν =
0.9. The membrane (discretized with 1280 elements) is coded by the mean curvature
with the same legend.

symmetry. Conversely, as the confinement decreases, the restriction from the circumferen-
tial wall weakens, which allows the bullet shape with convex rear transit to the parachute
shape with concave rear. By further reducing the confinement, the parachute shape trans-
forms into the croissant shape that has only two planes of symmetry. Instability continu-
ously develops and the croissant shape transforms into the asymmetric slipper shape as the
confinement further decreases.
Before closing this subsection, we present the last example that shows the effect of con-

finement on the snaking motion, as shown in Figure 3.22. Basically, as confinement β in-

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  100 200 300 400 500 600 700 800 900

  

  

  

  

  

  

  

 0  50  100 150 200 250 300 350 400 450 500

  

  

  

  

  

  

  

 0  100  200  300  400  500  600  700

 

 

 

 

 

 

 

 0  100  200  300  400  500  600

Yg

time

∆T∼94 ∼67
∼51 ∼41

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

  

  

  

  

  

  

  

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

  

  

  

  

  

  

  

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

 

 

 

 

 

 

 

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

Uy

Yg

β=0.3571 0.4 0.4545 0.5263

Figure 3.22: Effects of the confinement β on a vesicle flowing in microchannel with Ca = 1, ν =
0.85 andwith 320 elements. (toppanel) Evolutionof the lateral positionof the centroid,
(bottom panel) Poincaré maps.
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creases, the snaking motion oscillates more rapidly and becomes a damped oscillation when
the confinement exceeds a critical value. As for Ca = 1 and ν = 0.85, it becomes a damped
oscillation when β ≥ 0.5263, and a bullet shape is obtained once this solution becomes sta-
ble. The noncircular limit cycles, shown in the bottom panel of Figure 3.22, means that the
oscillation of the vesicle motion is not harmonic. In fact, this inharmonic oscillation is also
accompanied by periodic deformation of the vesicle shape as demonstrated in the insets of
Figure 3.3 (a).
FromthePoincarémaps, it is seen that for anon-damped snakingmotion (β = 0.3571, 0.4

and 0.4545), the size of the periodic orbit increases with the confinement β. That is, for a
given lateral position Yg, the corresponding lateral migration speed is greater if the effect of
the confinement is more important. Since the local shear rate is given by γ̇(Yg) = −2Yg,
confinement (or the wall) is the only global factor5 responsible for this effect.

3.3.6 Diagram for different ν
A systematic analysis of the phase diagram for relatively low deflation is made by varying the
capillary number Ca and the confinement β, as displayed in Figure 3.23 for ν = 0.95 and
Figure 3.24 for ν = 0.9. In the unbounded limit (β → 0), our results behave consistently
with those of Farutin & Misbah [49, FIG. 8] except in some cases such as Ca = 20 and 50,
for ν = 0.9.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.1  1  10

1
/β

Ca

S

P

C

B

Figure 3.23: Phase diagram of steady states of vesicles for ν = 0.95 in the variables Rt = 1/β and
Ca . S, slipper; P, parachute; C, croissant; B, bullet.

5The term global factor means that if we approximate the whole vesicle as a single point at its centroid, con-
finement is the only factor causing this difference –Uy of the snakingmotions are varied for a vesicle at the
same off-center positionYg inmicrochannels of different sizeRt. But due to the deformability, it becomes
much more complicated. (see Figure D.4)
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It is seen that, for both cases, the general tendency is that high β favors bullet shape, while
at smallβ, slipper shapeprevails at lowCa andparachute shapeprevails at highCa . Whereas,
the croissant shape appears at the intersection region of the three previous steady shapes.
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Figure 3.24: Phase diagram of steady states of vesicles for ν = 0.9 in the variables Rt = 1/β and
Ca . S, slipper; P, parachute; C, croissant; B, bullet.

From these phase diagrams (Figure 3.23 and 3.24), the effects ofCa (horizontal viewwith
Rt fixed) and β (vertical view with Ca fixed) on shape transitions can be directly identified
without effort. That is, the number of planes of symmetry of the steady shape increases
when Ca or β is increased.

3.3.7 Effect of the initial configuration
In this last section, the effects of the initial configuration, including shape (prolate andoblate),
heightH0 and inclination angle θ0, are discussed for very deflated vesicles, ν = 0.65 and 0.6,
which are close to that of RBC (∼ 0.64) and have the oblate shapes as the unstressed equi-
librium shapes (Figure 1.4).
The effect of the initial inclination angle θ0 (Figure 3.1 (b)) between the major axis of

an oblate shape and the axis of the flow is first briefly addressed, as shown in Figure 3.25
and 3.26. Figure 3.25 shows the evolution of the inclination angle θ, the radial position of
the centroid Yg, and the lateral migration velocity Uy of the vesicle initially placed at height
H0 = 0.2 with different inclination angles θ0. The case with θ0 = 0.0 rad converges to a
stable state, both in the inclination angle θ (3.25 (a)) and the radial position of its centroid
Yg (3.25 (b)). The black solid curves represent the calculations with manual adjustment of
the radial position Yg of the vesicle for the case with θ = 0.0. These finite perturbations
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Figure 3.25: Time histories of (a) the inclination angle θ (in degree), (b) the lateral position of the
centroid Yg and (c) the lateral migration velocityUy forCa = 1, ν = 0.65, 1/β = 3.0
and the initially oblate shapes are placed atH0 = 0.2 with three different inclination
angles: θ0 = 0.0, −0.1 and −0.2 rad (≈ −11.46°). The black curves correspond to the
simulations with manual adjustment of the lateral position of the centroid.

(on Yg) are performed according to the lateral migration velocity. As shown in Figure 3.25
(c), the adjustment is made to accelerate the decrease of the lateral migration velocity. This
technique is very useful in seeking the stable lateral positionY ∗g whenYg is close toY ∗g due to
the slowing down effect [146]. In addition, numerical examples have shown that this finite
perturbation on the lateral positionwill not influence the final stable radial positionY ∗g (also
refer to Figure 3.4, 3.10 and Appendix D.1). While the cases with θ0 = −0.1 and −0.2 rad
experience totally different dynamics, namely, a damped oscillation both for the inclination
angle θ and for the centroid position Yg.
Figure 3.26 shows the evolution of the shape for two cases with different θ0, mainly in the

preliminary phase. The oblate, with θ0 equals to 0, deforms and becomes more and more
elongated, until reaching the final stable slipper shape, while the other one with θ0 equals to
−0.2 rad is first stretched in the flow direction, the stretch then relaxes and the deformation
in the flow direction weakens, and finally, obtains a biconcave-croissant shape.

t=44.1

t=98.5

t=0.0 1.0 3.0 5.0 9.0

θ0=0.0

−0.2 rad

Figure 3.26: Snapshots of two of the three cases presented in Figure 3.25, membranes are colored by
mean curvature.
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Figure 3.25 and 3.26 do show the dependence of the initial inclination angle θ0 on the
dynamics of vesicle flowing in a capillary flow, hereinafter, we focus on the effects of the
initial radial height H0, and the initial inclination angle θ0 is set to some values between
−0.2 rad and−0.12 rad to make the initial shape synergistic with the local flow profile. The
value of θ0 is, in fact, also inspired by the final stable inclination angle obtained with prolate
as the initial shape.
In Figure 3.10, examples with respectively prolate and oblate as the initial shapes show a

common final stable shape, a slipper6. That example has ν = 0.7, to better show the effect of
the initial shape on the dynamics of vesicle flowing in capillary flow, vesicle should be chosen
with ν ∈ (0.592, 0.651) (see Figure 1.4). As summarized inTable 3.1, somedetail simulations
with prolate and oblate as the initial shapes, but converge both to a stable slipper shape are
presented. It is shown that the difference in the final centroid radial position Y ∗g due to
different initial conditions is very limited. While, hereinafter, we show that the value ofH0

prolate oblate
Rt H0 Y ∗g H0 (θ0, rad) Y ∗g
6.0 0.75; 1.1† 0.5121; 0.5151 0.7 (−0.2) 0.5164
5.0 0.7 0.4003 0.6 (−0.18) 0.4008
4.0 0.4; 0.6 0.2605; 0.2620 0.5 (−0.17) 0.2568
3.0 0.13† 0.0792 0.35 (−0.16) 0.0811
2.0 0.045† 0.0444 0.1 (−0.15) 0.0479

Table 3.1: Simulations have slipper as the final stable shape with respectively prolate and oblate as
the initial shape forCa = 1, ν = 0.65 and different capillary sizesRt. The upper index †
means that the simulation is started from an existing state, not from a prolate shape.

has a significant influence on the dynamics of an initially oblate vesicle flowing in capillary
flow.
The dependence of the initial position H0 on the dynamics of an oblate vesicle flowing

in a capillary is typically illustrated in Figure 3.27. That is, when H0 is greater than a crit-
ical value Hc

0, the vesicle deforms and evolves into a slipper shape as the final stable shape,
whereas if H0 is less than this critical value, it deformes into a biconcave-croissant shape in
accompanying with slowly damped oscillation. For a deflated vesicle (ν = 0.65) flowing
in capillary (Ca = 1 and Rt = 3.2), as shown in Figure 3.27, a slipper shape is obtained
for H0 = 0.4 and 0.35. For these large values of H0, the evolution (shape and lateral posi-
tion) becomes progressively slower as they approach the final steady state, as illustrated by
6AlthoughH0 is different, from Figure 3.4 and many other simulations, we can anticipate that the prolate
shape with H0 equals to 0.6 or 0.555 should converge to the same final state. Thus we can say in this
example that the initial shape, prolate or oblate, is the only variable (small θ0 for prolate will only slightly
affect the total time to the final state).
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Figure 3.27: Time histories of (a) the centroid radial positionYg and (b) the lateralmigration velocity
Uy forCa = 1, ν = 0.65, 1/β = 3.2 and the initially oblate shapes are placed at three
different heightsH0 = 0.4, 0.35 and 0.05 with the inclination angle θ0 = −0.15 rad.
The insets (in (a), coded by mean curvature) show the final stable shapes, slipper, and
biconcave-croissant, respectively.

the lateral migration velocity (Figure 3.27 (b)). By inspecting the migration velocity, we ac-
celerate this slow evolution by manually changing the lateral position of the centroid of a
finite value, as shown in Figure 3.27 (a) for H0 = 0.4 and in Figure 3.25 (b). This kind of
modification has shown no effect on the final stable state of slipper. Whereas forH0 = 0.05,
the biconcave-croissant shape is selected as the final stable shape.

By inspecting the evolution of the vesicle shape, the biconcave-croissant shape (forH0 <

Hc
0) seems to be due to the limited migration path (limited distance where the sign of the

shear rate remains unchanged). But by examining the shape evolution of a vesicle flowing in
an unbounded Poiseuille flow (see Figure D.5), for which it deforms first into a biconcave-
croissant shape, which suggests that the presence of the capillary wall should be the major
factor.

A systematic study of the effect of H0 for Ca = 1 and ν = 0.65 is carried out, and the
resulting phase diagram is presented in Figure 3.28. It is shown that for relatively large cap-
illaries (Rt ≥ 3.6), the critical value Hc

0 is almost constant, which corresponds to a value
in between 0.35 and 0.4. For intermediate capillaries (3.6 ≥ Rt ≥ 2.5), this critical value
Hc

0 decreases with a decrease in size Rt of the capillary. While for relatively small capillaries
(2.5 > Rt ≥ 2.0), the results with a finer mesh (1280 elements) show only a slipper shape.

The discrepancy shown for the small capillaries between the fine mesh and the coarse
mesh may be questioned as to the sensitivity to the error on the preservation of the mem-
brane surface. Take the case withRt = 2.25 andH0 = 0.2 as an example, the relative errors
of the membrane surface and the reduced volume are 0.3% and 0.51% for mesh with 320
elements, and those formesh with 1280 elements are 0.008% and 0.02%, respectively (at the
same instant t ≈ 10).
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Figure 3.28: Phase diagram for Ca = 1, ν = 0.65 in the variablesH0 and Rt. S and BC stand for
slipper and biconcave-croissant shape, respectively. The full symbols represent results
obtainedwith 1280 elements, while empty symbols with 320 elements. The dashed blue
line is a guide for the eyes.

A similar phase diagram for Ca = 1 and ν = 0.6 is presented in Figure 3.29. The results
presented in this figure are mainly obtained with 320 elements, further simulations with
1280 elements should be performed to have a more reliable phase diagram.
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Figure 3.29: Phase diagram for Ca = 1, ν = 0.6 in the variables H0 and Rt. Preliminary results
using the same notation as in Figure 3.28.
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3.4 Summary
In this chapter, the dynamics (shape transition and lateralmigration) of a three-dimensional
fluid vesicle in amicrochannel of different sizes is studiednumerically via theBEM in a rather
wide range of dimensionless parameters space of (ν, β,Ca), i.e., the reduced volume, the
confinement, and the capillary number.
Because of the complex nonlinear interplay between the membrane, the external flow,

and the solid boundaries, a rich variety of stable shapes have been explored, as presented
in Sec. 3.3.2, which includes the widely reported axisymmetric bullet (Fig. 3.5), parachute
(Fig. 3.6) and peanut (Fig. 3.7) shapes, the unconventional slipper shape (Fig. 3.10), and also
the intermediate ones: the croissant (Fig. 3.8) and the biconcave-croissant (Fig. 3.9) shapes.
Break up of the upstream-downstream symmetry due to the shape deformation will lead to
the cross-streamline migration, as presented in Sec. 3.3.1, which can be the migration to the
centerline of the flow (Fig. 3.2), the periodically centered snaking motion (Fig. 3.3) or the
migration to the off-center position (Fig. 3.4). The exact sort of migration is closely related
to the three dimensionless parameters. Normally, the inward migration can lead both to an
axisymmetric stable shape or to the (biconcave-)croissant shape, whereas the migration to
an off-center position corresponds to the slipper shape.
The flow structures of the surrounding flow and the fluid lipid bilayer are then presented

in Sec. 3.3.3, with a special distinction in the case of the slipper shape (Fig. 3.12 and 3.13),
the classical tank-treading motion or the counter-rotating propellers like motion4.
The effect of the capillary number Ca and the transition from the slipper shape to an

axisymmetric one are presented in Sec. 3.3.4. The general result is that: the increase in the
capillary number lowers the centroid Y ∗g (Fig. 3.17) and increases the degree of symmetry
(Fig. 3.16).
The next section (Sec. 3.3.5) deals with the effect of confinement β, in which the mem-

brane flow of the slipper shape and its transition are first presented (Fig. 3.18). Then the
shape transition from a slipper to an axisymmetric bullet shape is presented for three differ-
ent reduced number ν = 0.97, 0.95, and 0.9. By fitting the results of stable lateral centroid
position Y ∗g and the maximum speed of tank-treading Utt, a supercritical pitchfork like bi-
furcation is revealed (Fig. 3.19). This effect of β on the slipper shape is then compared for
different capillary number (Fig. 3.20). Furthermore, the effect of β on the snaking motion
is shown in Fig. 3.22.
The penultimate section 3.3.6 shows us the phase diagram of steady states of vesicles for

ν = 0.95 and 0.9 in the (Rt,Ca) plane. Lastly, the effect of the initial conditions is shown in
Sec. 3.3.7, including the initial shape (prolate or oblate), the initial heightH0, and the initial
inclination angle θ0. The biconcave-croissant shape is found when an initial oblate vesicle
(ν = 0.65, 0.6) is placed at a height below a certain critical valueHc

0 (Fig. 3.27, 3.28, 3.29).
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4 Vesicle hydrodynamics in
highly confined flows

This chapter is devoted to the steadymotion anddeformationof a lipid-bilayer vesiclemov-
ing along the axis of a circular tube in lowReynolds number pressure-driven flow. Though
the subject is described in the preceding chapters, particular emphasis is given here to vesi-
cle hydrodynamics in highly confined flows. Under such circumstances, three-dimensional
simulations of vesicle motion become computationally expensive due to the necessity to
resolve the stronger hydrodynamic interaction between the vesicle surface and the wall
boundary. On the other hand, as shown in the previous chapter, it is expected that the
vesicle shape retains axisymmetry when it is highly confined. It’s therefore legitimate for us
to pursue this studynumerically bymeans of a previously reported axisymmetric boundary
elementmethod. Since the present chapter is composedof amanuscript in preparation, the
presentation is self-contained, allowing for some duplications with the previous chapters
and different notations being used. For the sake of brevity, we shall not elaborate the sub-
ject any further in a conventional introduction section; let usmove on to themathematical
formulation – a fluid-structure interaction problem.

4.1 Problem formulation

4.1.1 Hydrodynamics

We consider a neutrally buoyant vesicle that is transported in a pressure-driven flow through
a straight, circular tube of radiusR. Fluid flows at an imposed, constant volumetric flow rate
Q (≡ πR2U , giving a mean bulk velocity U ) driven by a pressure difference between inlet
and outlet cross-sections. A schematic description of the problem is shown in Figure 4.1
with axisymmetric cylindrical basis (ex, er, eφ). The suspending fluid and the fluid inside
the vesicle membrane are incompressible and Newtonian with dynamic viscosity η and η̄,
respectively. We assume that the Reynolds numbers for both interior and exterior fluids are
sufficiently small compared with unity, so that the inertial terms in the equations of mo-
tion may be neglected, the governing equations thereby reduce to the Stokes equations for
creeping motion. Under these circumstances, experimental evidence [151] shows (and we
will assume) that the flow and vesicle shapes are axisymmetric and that a vesicle initially po-
sitioned at the tube axiswill translatewith a steady velocityV ex (which is unknown a priori)
along the axis of the tube.
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Figure 4.1: Schematic illustration of a vesicle flowing along the centreline of a circular tube of radius
R in a pressure-driven flow. The system is rotationally symmetric about the x-axis. The
boundaries of the control volume (D) are the inlet and outlet sections I andO, the solid
surface of the tube wallW , and the membrane/medium interface Γ, i.e., ∂D ≡ I ∪O ∪
W ∪ Γ. The vesicle shape and the gap size between the membrane and the tube wall are
denoted by h̄ and h(≡ R − h̄), respectively. The vesicle enclosed volume is denoted by
Ω.

In the absence of any vesicle, we obtain an unperturbed Poiseuille flow with a parabolic
velocity profile:

u∞(x) = 2U

(
1− r2

R2

)
ex, x ∈ D, (4.1a)

with U =
G0R2

8η
, ∆p0 =

8ηULw
R2

, R0
H =

8ηLw
πR4

, (4.1b)

where G0 is the negative (uniform) pressure gradient applied along a tube of length Lw,
namely, G0 = ∆p0/Lw, ∆p0 is the pressure difference or pressure drop required for the
Poiseuille flow, andR0

H is the hydraulic resistance (≡ ∆p0/Q).

The presence of a vesicle causes a change in the hydraulic resistance of the system (i.e.,
tube + vesicle): it increases, meaning that to maintain the same volumetric flow rate πR2U ,
it is necessary to increase the pressure difference by a quantity ∆p+ called extra pressure
drop. Finding that extra pressure drop, together with the vesicle shape deformation and its
mobility, is the essential part of the investigations in the present work.

In the creeping-flow regime, the motion of the fluid inside and outside the vesicle is gov-
erned by the Stokes equations,

∇ · u = 0, ∇ · σ = −∇p+ η∇2u = 0, x ∈ D \ Ω, (4.2)

where u, σ and p denote the exterior fluid velocity, stress tensor and pressure, respectively.
Similar equations hold for the interior fluid velocity ū, stress tensor σ̄ and p̄ for x ∈ Ω. The
fluid motion is coupled with the interface motion via the kinematic boundary condition,

u(x) = ū(x) =
dx

dt
= uΓ, x ∈ Γ, (4.3)
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4.1 Problem formulation

where x is themembrane position. The dynamic boundary condition at the interface estab-
lishes a nonlinear interaction between the ambient flow and membrane mechanics,

∆f + fm = 0, x ∈ Γ, (4.4)

wherein we assume the membrane is in quasi-static mechanical equilibrium; the membrane
force density fm balances the net traction ∆f (≡ (σ − σ̄) · n) exerted on the membrane by
the bulk fluids. Here and throughout this chapter, the unit normal vector of a surface n is
pointing inward into the suspending fluid.
Additional boundary conditions for the velocity field include the no-slip condition at the

tube wall,
u(x) = 0, x ∈ W, (4.5)

and vanishing far-field flow perturbation,

u(x) = u∞(x), x ∈ I ∪O. (4.6)

The velocity of the vesicle center of mass is given by

V =
1

Ω

∫
Ω

ūxd3x =
1

Ω

∫
Γ

x(uΓ · n)dS(x). (4.7)

The enclosed volume
Ω =

∫
Ω

d3x =
1

3

∫
Γ

(x · n)dS(x) (4.8)

is fixed, as the vesicle membrane is considered to be impermeable, at least on typical experi-
mental time scales. The axial coordinate of the vesicle center of mass is defined by

xG =
1

Ω

∫
Ω

xd3x =
1

2Ω

∫
Γ

x2(n · ex)dS(x). (4.9)

4.1.2 Membrane mechanics

A biomembrane is invariably a phospholipid bilayer, which is classically described as a two-
dimensional, incompressible fluid elastic. This means that there exist a surface tension and
bending energy associated with the "out-of-the-plane" motions of the membrane. Its elastic
energy due to the Helfrich energy functional [69] is given by

E =

∫
Γ

[
2κH2(x) + γ(x)

]
dS(x), (4.10)

whereκ (∼ 10−19 J) is the bendingmodulus,H is the localmean curvature (with the conven-
tion that curvature is equal to 1 for a unit sphere), and γ is the membrane tension, which is,
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in fact, identical with the Lagrange multiplier used to enforce the surface incompressibility
condition,

∇S · uΓ = 0, x ∈ Γ, (4.11)

where∇S = (I− nn) · ∇ is the surface gradient.
Themembrane force density fm, by the principle of virtual work, is the variational deriva-

tive of Eq. (4.10) with respect to small deformations of the surface [159],

fm = −δE
δx

= f b + fγ , x ∈ Γ, (4.12a)

with f b = 2κ
[
∆SH + 2H(H2 −K)

]
n, fγ = −2γHn +∇Sγ, (4.12b)

where f b denotes the bending surface force density, which is purely normal, fγ is the tension
surface force density, K is the Gaussian curvature, and ∆SH = ∇S · ∇SH is the Laplace-
Beltrami operator of the mean curvature, which contains the fourth derivative of the sur-
face position, posing serious algorithmic and numerical challenges to compute the bending
forces [68].

4.1.3 Dimensionless parameters
The volume Ω and surface area A of a vesicle remain constant and define a volume-based
radius R0 ≡ (3Ω/(4π))1/3 and an area-based radius RA ≡ (A/(4π))1/2, respectively. To-
gether with the tube radius R, the system geometry is completely parametrized by two di-
mensionless parameters which are independent of the flow conditions: the reduced volume
ν (alternatively, the excess area ∆) and the confinement λ,

ν ≡
4
3πR

3
0

4
3πR

3
A

=

(
R0

RA

)3

= 6
√
πΩA−3/2, (4.13a)

∆ ≡ 4π

(
4πR2

A

4πR2
0

− 1

)
= 4π

(
1

ν2/3
− 1
)
, (4.13b)

λ ≡ R0

R
. (4.13c)

Here, weuse the volumetric radiusR0 as the reference length. The reduced volume (0 < ν ≤
1) or the excess area (∆ ≥ 0), characterizing the ability for the vesicle to deform and change
shape, is commonly used in the literature, and they are related to each other by (4.13b). The
confinement measures the size of the vesicle relative to the radius of the tube. Natural scales
for velocities and time are the mean velocity U of the ambient flow andR0/U , respectively.
Pressure and hydrodynamic stress are scaled by the typical viscous stress ηU/R0, and mem-
brane tension is scaled by ηU . The relative importance of membrane bending force density
and viscous traction in the balance of normal stress on themembrane (Eqs. (4.4) and (4.12b))
defines the bending-based capillary number CaB ≡ ηUR2

0/κ. Finally, there is no viscosity
contrast between the fluid inside and outside the vesicle as we are interested in the station-
ary axisymmetric shapes which do not depend upon the inner viscosity [27, 136].Hence, the
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vesicle motion is determined by three independent dimensionless parameters: the reduced
volume ν, the confinement λ, and the (bending) capillary numberCaB. We note that while
ν is a fixed quantity for a given vesicle, namely independent of which reference length is
used, the other two parameters depend on that length. However, solutions under different
scalings are easily converted from one to another in terms of ν and λ. For example, the sur-
face area-based confinement λA ≡ RA/R = λ/ν1/3, and the tube’s radius-based capillary
number CaR ≡ ηUR2/κ = CaB/λ

2. Occasionally, we nondimensionalize physical quan-
tities using the scalings of cited references in order to facilitate the comparison with those
results.

4.2 Boundary element method simulation
The fluid-cell membrane interaction problem described in Section 4.1 is solved using an
axisymmetric boundary element method (BEM) [150], which is based on the numerical
method for 3Dmodel [21], therefore, only the complementary information is provided be-
low.
First, in view of the linearity of the Stokes equations, we decompose the total velocity

field around the vesicle into an undisturbed component u∞ and a disturbance component
u+ due to the presence of the vesicle, namely, u = u∞ + u+. The disturbance velocity at a
point x0 that lies inside the control volume D or on its boundaries ∂D can be represented
as a boundary integral equation [126, 127],

u+(x0) = − 1

8πη

∫
∂D

G(x0,x) · f+(x)dS(x), (4.14)

whereG is the free-space Green’s function, f+ ≡ σ+ · n is the disturbance surface traction.
Since the perturbation flow generated by a point-force distribution decays exponentially
with distance from the vesicle [102, 150], if the inlet and outlet are sufficiently far from the
vesicle, then the flow perturbation near the inlet and outlet sections virtually vanishes. Fur-
thermore, if we consider axisymmetric flow configuration only, the surface integrals can be
explicitly integrated in the azimuthal direction with dS = rdφdl, where dl is the differential
arc length of the trace of the boundary ∂D in the x-r azimuthal plane [127, 150]. Finally, we
obtain a more specific form to Eq. (4.14), yielding the total velocity field as follows:

uα(x0) = u∞α (x0) +
1

8πη

[∫
Γ

Mαβ(x0,x)fmβ (x)dl(x)−
∫
W

Mαβ(x0,x)fwβ (x)dl(x)

+ p+
in

∫
I

Mαx(x0,x)dl(x)

]
, (4.15)

where theGreek subscriptsα andβ are eitherx or r, representing the axial and radial compo-
nents respectively, x = xex + rer,M is the free-surface axisymmetric Green’s function [127,
150], fw(≡ fwx ex+fwr er) stands for the disturbance stress distribution at the tube wall with
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the shear stress fwx and the normal stress fwr (= −p+,x ∈ W ), and p+
in the disturbance pres-

sure over the inlet while setting, without loss of generality, p+
out = 0 for the disturbance

pressure over the outlet.
Application of Eqs. (4.5) and (4.15) leads to an additional integral boundary equation

that allows the calculation of the disturbance wall stress fw,

∫
W

Mαβ(x0,x)fwβ (x)dl(x) =

∫
Γ

Mαβ(x0,x)fmβ (x)dl(x)

+ p+
in

∫
I

Mαx(x0,x)dl(x), x0 ∈ W. (4.16)

The extra pressure drop can be obtained using the reciprocal theorem [126] of the Stokes
flow; it is expressed in terms of the membrane load and the ambient velocity field,

∆p+ ≡ p+
in − p+

out = − 1

Q

∫
Γ

fm(x) · u∞(x)dS(x)

= − 4

R2

∫
Γ

r

(
1− r2

R2

)
fmx (x)dl(x). (4.17)

The membrane is discretized byNm piecewise linear 2D elements, consisting of a collec-
tion of points of {xn(t), n ∈ 0 . . . Nm}. The points are distributed according to the mag-
nitude of the membrane’s mean curvature H , thereby allowing the local mesh refinement
in high-curvature regions. This is important given large deformations of vesicles involved
in flows. The mesh points at the tube wall, composed ofNw linear elements, are uniformly
distributed. The differential surface operators, which are involved in the calculation of sur-
face incompressibility (4.11) and bending forces (4.12b), are computed on each element of
the membrane with a parametrization (Γ, φ) of the surface.
Starting from some initial configuration of the vesicle shape, the preceding three integral

equations, together with the membrane incompressibility condition (4.11), allow the com-
putation of ∆p+, fw, the interfacial velocity uΓ and the membrane tension γ at each time
step via the boundary element method, as described in [21, 150]. The vesicle translational
velocity V is computed from (4.7).
The vesicle interface is advected according to

dx(t)

dt
= un(x)n(x), (4.18)

where x is an interface node and un = uΓ · n is given by (4.15). This means the move-
ments of the bilayers in the normal and tangential directions are treated differently, namely
in Lagrangian fashion for the former and with a Eulerian description for the latter. Indeed,
the tangential movement of nodes, which does not change the membrane shape, offers the
possibility of a redistribution of nodes–remeshing along the membrane. At each time we
employ a keeping-the center-of-mass strategy that the vesicle is re-centered at the origin by
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4.2 Boundary element method simulation

subtracting the vesicle center of mass (xG, 0) from the membrane position. Since this pro-
cess, which is equivalent to replacing un by u′n = un − V · n in (4.18), does not modify
the stress field, the vesicle shape remains unchanged. Equation (4.18) is solved numerically
by a semi-implicit time stepping scheme [21] in which the bending forces are computed at
the advected, new position of the membrane and, therefore improving long term stability
of the algorithm. A steady state is obtained when the maximum absolute normal velocity
|u′n|/U is less than a chosen tolerance (∼ 10−5), with Nm ranging from 130 to 300, and
Nw from 300 to 1000, depending upon the reduced volume ν and the confinement λ. The
tube has a total length of Lw = O(10R0), so the outlet and inlet sections are located at a
distance x = ±Lw/2 from the vesicle center of mass. The dimensionless time step U∆t/R0

(∼ 5× 10−3− 5× 10−5) decreases as ν decreases and as eitherNm or λ increases. Since both
the volume and surface area of the vesicle are conserved, the change in the enclosed volume
and surface area during simulations provides an indication of the accuracy of the computa-
tions. The relative volume and surface area variations were found to be ∼ 0.01% − 0.1%

over a typical full simulation (∼ 104 − 105 time steps).
While several studies have already been conducted in [150] in order to validate the axisym-

metric BEM code, the validation of a prediction for the hydrodynamical quantities V and
∆p+ has not been reported so far. Therefore, we first considered the well-known example
of the motion of a liquid drop in a circular tube and compared our numerical results with
those reported in Ref. [90]. The drop is free of bending stiffness (κ = 0) and has a con-
stant surface tension γ. The motion of the drop for a given confinement λ is determined by
the surface tension-based capillary number Ca = ηU/γ. The comparison in Table I shows
excellent agreement.

V/U ∆p+/(ηU/R)
Ca Present work Ref. [90] Present work Ref. [90]
0.05 1.4218 1.42 2.6591 2.65
0.1 1.4543 1.45 2.2532 2.25
0.2 1.5311 1.53 1.4981 1.50
0.3 1.5999 1.60 1.0063 1.01
0.5 1.7021 1.70 0.4889 0.49

Table 4.1: Comparison of droplet relative velocity V/U and dimensionless extra pressure drop
∆p+/(ηU/R) as a function of the capillary number Ca = ηU/γ for λ = 0.8 to those
reported in Ref. [90].

Additionally, we have checked in two ways whether a numerical discretization, in terms
of the number of elements (of bothNm andNw), was fine enough to sufficiently resolve the
drainage fluid of thin liquid film between themembrane and the tube wall: (i) can a station-
ary solution be achieved ? and most importantly (ii) is the steady velocity ratio V/U larger
than unity? An insufficient discretization was found to result in significantly large viscous
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4 Vesicles in Highly Confined Flows

and confinement-dependent friction on the membrane and therefore a smaller velocity ra-
tio V/U , which sometimes is much less than unity. Under high confinement, especially for
highly deflated vesicles (i.e., ν ≤ 0.7) when λ approaches its critical value, a substantially
large number of elements, say Nm = O(300) and Nw = O(1000) for ν = 0.6, is needed
to accurately resolve the vesicle shape and membrane traction. Our numerical experiments
suggest an empirical relationship between the mesh size and the film thickness h:

δxm ≈ h, δxw ≈ 1

2
h, (4.19)

where δxm and δxw denote a typical mesh size (i.e., element length) on the membrane and
at the tube wall, respectively, in the region of the liquid film.

4.3 Results and discussion

4.3.1 Phase diagram of shapes and shape transition

In aqueous solution, lipid vesicles exhibit a large variety of shapes and shape transforma-
tions [100, 139], in particular, they can exhibit a biconcave shape typical of red blood cells.
The equilibrium shape of a vesicle is determined by minimization of the Helfrich energy
(4.10) of the membrane, resulting in different families of solutions with respect to the re-
duced volume ν. The global minimum is for a prolate if ν ∈ [0.652 : 1], an oblate if
ν ∈ [0.592 : 0.651], and a stomatocyte if ν ∈ [0.05 : 0.591]. When confined in capillary
tubes subject to a pressure-driven flow, however, vesicles assume complex shapes and behave
in different ways due to the nonlinear interplay between bending elasticity, hydrodynamic
stresses, and confinement. For the axisymmetric case being considered in this study, there
are two commonly steady-state shapes which are classified as bullet-like and parachute-like
shapes, the latter being characterized by a concave (negative curvature) rear part.
Figure 4.2 shows steady-state shapes for a vesicle of ν = 0.84 confined in a tube flow

with unity radius ratio (i.e., λ = 1) for increasing flow rates characterized by the bend-
ing capillary number CaB. Two limiting cases are clearly illustrated in Figure 4.2. One
is no flow (CaB = 0), in which the equilibrium shape – symmetric between the front
and the rear – is determined solely by the minimization of the bending energy. The other
is CaB → ∞, which corresponds to an infinitely small bending resistance. For this par-
ticular combination of parameter groups, the rear part of the vesicle becomes almost flat
(i.e., zero curvature). This result is interesting because, for a given vesicle in a tube, its
steady-state shape lies between these two limiting profiles. Another noticeable feature is
that when CaB ≥ 50, the shape is virtually independent of CaB. This property allows us to
fix CaB = 50 while studying the motion and deformation of a confined vesicle at high flow
rates (i.e., U/(2R) > 50 s−1) [130, 136]. A zero-bending elasticity or equivalently an infinity
CaB is, however, not permitted because of small radii of curvature occurring at the trailing
edge, especially for highly deflated vesicles.
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Figure 4.2: Steady-state vesicle profile as a function of the bending capillary number CaB for ν =
0.84 and λ = 1.

Steady-state vesicle shapes for the reduced volume ranging from 0.98 to 0.6 are shown
in Figure 4.3 at different degrees of confinement. A near-spherical vesicle (i.e., ν = 0.98)
always exhibits a bullet-like shape, whereas shapes undergo a transition from parachute to
bullet as the confinement increases (i.e., large λ). The shapes with ν = 0.6, which are par-
ticularly relevant to red blood cells, mark a transition starting from a bell shape and ending
in a sphero-cylinder. Clearly, increasing λ increases the length of the vesicle but reduces the
size of the gap between the vesicles and the tube. At high confinement, the vesicles tend to
attain a sphero-cylinder consisting of a long cylindrical main body and two hemispherical
endcaps.
A phase diagram of steady-state shapes is presented in Figure 4.4, together with experi-

mental results ofRef. [32]obtained in a square cross-section channel. Increasingλmakes the
transition shifted towards lower values of reduced volume, which means a bullet-like shape
is favored at high confinement. The present numerical results are in good agreement with
the experimental observations, suggesting the geometry of the channel might not affect too
much the parachute-bullet transition. Interestingly, there is a clear separation between the
bullet region and parachute region in the (ν, λ) space, as revealed in Figure 4.5(a). Bullet-
like and parachute-like shapes are identified according to the curvature of the rear part of
vesicles; a flat rear marks as a transition point in the (ν, λ) space. Remarkably, the transition
point decreases almost linearly with increasing confinement when λ ≥ 0.6. A linear fitting
to the transition points gives a correlation

νT = 1.126− 0.29λ, for ν ≤ 0.93, (4.20)

which are obtained at CaB = 50. A careful examination of numerical results suggests this
relationship is valid even for a small bending capillary number since steady shapes are virtu-
ally independent of CaB under high confinement. The transition from a parachute shape
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Figure 4.3: Steady-state vesicle shapes as a function of the confinement λ for a wide range of reduced
volumes ν (CaB = 50): (a) ν = 0.98, (b) ν = 0.9, (c) ν = 0.8 and (d) ν = 0.6.
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numerical results (• for bullet-like shape,� for parachute-like shape), crosses represent
experimental data ofRef. [32] (× for bullet-like shape,∗ for parachute-like shape). Cap-
illary number varies over four orders of magnitude (101 < CaB < 104).

to a bullet one for a vesicle having the same reduced volume of red blood cells takes place at
very high confinement, i.e., λT(ν = 0.6) ' 1.8. The shape at the transition point, as shown
in Figure 4.5(b), consists of a long cylindrical body and a front endcap, leaving a narrow
vesicle-wall gap of∼ 7% of the tube’s radius.

4.3.2 Critical confinement

Both the volume and surface area of a vesicle are conserved at least on the time scale of typ-
ical experiments. These geometric constraints impose a critical confinement λc (≡ 2R0/dc)
corresponding to a lower limit dc to the diameter of the tubes throughwhich the vesiclemay
pass intact. The critical confinement is calculated by assuming that the two hemispherical
endcaps are tightly fitting the tube cross-section; its relation with the reduced volume ν is
given by a cubic equation

2λ3
c − 3ν−2/3λ2

c + 1 = 0, (4.21)

whose solution is

λc =
1

2ν2/3

[
1 +
(

1− 2ν2 + 2ν
√
ν2 − 1

)1/3

+
(

1− 2ν2 + 2ν
√
ν2 − 1

)−1/3
]
. (4.22)
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Figure 4.5: (a) Shape transition line from parachute (low limit in error bars) to bullet (up limit in
error bars) in the (ν, λ) space (CaB = 50). Vesicles are flowing from left to right. The
two typical vesicles are characterized, respectively, by ν = 0.95, λ = 0.8 and CaB = 5
for the bullet-like shape, and ν = 0.83, λ = 0.67 and CaB = 15 for the parachute-like
shape. Insets show the comparison of the computed shapes (red line) with the reported
ones in an experimental study [151]. (b) The shape at the parachute-bullet transition of
a vesicle with the same typical deflation of red blood cells (ν = 0.6) flowing through a
narrow capillary tube (λ ' 1.8).
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This critical confinement defines an upper limit `c to the reduced vesicle length ` (≡ L/R)

`c ≡
2Lc
dc

= 2ν−2/3λ2
c . (4.23)

The variation of λcwith ν ranging from 0.6 to 1 is plotted in Figure 4.6, together with the
parachute-bullet transition line given by λT = 3.88− 3.45ν (c.f., Eq. (4.20)). When λ > λc,
the vesicle cannot pass through the tube without rupturing the membrane. Assuming red
blood cells have a typical volumeΩ = 90µm3, which gives a volumetric radiusR0 ' 2.8µm,
one thenobtains a critical cylindrical diameter of normal human erythrocytedc = 2R0/λc '
2.8 µm (λc ' 1.98 for ν = 0.6) and the maximum length of cells Lc ' 15.4 µm (`c ' 11).
Thismeans that a normal human erythrocyte can squeeze through capillaries that are smaller
than half the diameter of a red blood cell (' 8 µm).
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Figure 4.6: Critical confinement λc as a function of the reduced volume ν. Membrane lysis occurs
when λ > λc. The red line denotes the shape transition from parachute to bullet.

4.3.3 Lubrication film thickness
As shown in Figure 4.3, under high confinement, a liquid film of nearly uniform thickness
is formed between the front and rear endcaps. Let h denote a typical film thickness of the
gap separating the vesicle membrane and tube wall, the narrow-gap theory in Appendix A
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4 Vesicles in Highly Confined Flows

yields an asymptotic behavior of the clearance parameter δ(≡ h/R) in terms of a small per-
turbation parameter (1− λ/λc) << 1,

δ = 1− λ/λc +O
[
(1− λ/λc)2

]
. (4.24)

Numerical results of δ for ν ranging from 0.98 to 0.6 are plotted in Figure 4.7 and com-
pared with its asymptotic behavior given by (4.24). Despite a wide range of the reduced
volumes being considered, Figure 4.7 makes it clear that when 1− λ/λc < 0.1 – namely in
the small-gap regime, the numerical results approach the prediction (4.24); minimal thick-
ness are about 2–5% of the tube’s radius when λ/λc ' 0.98.
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Figure 4.7: The dimensionless thickness of the lubrication layer δ plotted as a function of the reduced
radius ratio λ/λc for a wide range of reduced volumes ν (CaB = 50), together with the
asymptotic prediction (4.24).

As derived in the appendix, the film thickness is controlled by the membrane tension γ
in the lubrication layer. The clearance size is found to be proportional to the 2/3 power of
the capillary number Cav

δ ' c0Cav
2/3, (4.25)

where the vesicle tension-mobility-based capillary number Cav = ηV/γF , γF is the mem-
brane’s frontal tension, also the highest tension in the membrane. We note that the numer-
ical prefactor c0 differs slightly in the literature; c0 ' 2.123 in Ref. [136] while c0 ' 2.05

in Ref. [27]. A fitting to the present numerical results yields c0 ' 2 for Cav < 10−2, as
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Figure 4.8: The dimensionless thickness of the lubrication layer δ plotted as a function of the capil-
lary number Cav = ηV/γF for a wide range of reduced volumes ν, together with two
scalings.

shown in Figure 4.8. In addition, Figure 4.8 reveals a characteristic change in power scal-
ing from the 2/3 power regime for small Cav to the 1/2 power regime for large Cav. The
separation of the two regimes occurs at Cav ' 6 × 10−3. Therefore, our numerical results
support one of the findings of Ref. [27] that the thickness of the lubrication layer, at high
flow rates, is independent of the bending energy and is determined solely by the membrane
tension. It should be emphasized that the 2/3 power law regime found in the case of a long
bubble in tubes [25] stems from the different underlying mechanisms compared to vesicles;
a stress-free surface for the former while a "no-slip" hydrodynamic boundary condition for
vesicles.

The mechanical tension of a membrane is identical with the Lagrange multiplier tension
γ that enforces a certain, fixed membrane area [101]. For the lipid bilayers, the rupture ten-
sion, which represents the largest mechanical tension that can be applied to the membrane,
is of the order of a few mN/m. It is, therefore, interesting to examine whether our BEM
simulations are indeed able to predict a mechanical tension approaching that limit. For
ν = 0.6 typical of red blood cells and under the maximum possible confinement that we
have reached, i.e., λ = 1.94 (λc ' 1.98), the maximum dimensionless tension is found to be
γmax ' 1.2 × 103, which gives rise to a dimensional mechanical tension about 1.5 mN/m.
Here the tension is scaled by γref = ηU = κCaB/R

2
0 = 1.28µN/m, with CaB = 50,

κ = 2 × 10−19 J and R0 = 2.8µm. The predicted mechanical tension at the proximity of
the maximum confinement is actually of the order of the rapture tension.
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Figure 4.9: Normalized vesicle length `/`c versus the reduced radius ratio λ/λc for a wide range of
reduced volumes ν (CaB = 50), together with the linear scaling `/`c = λ/λc (Eq.
(4.26)).

The reduced vesicle length ` is an important geometric parameter that characterizes the
vesicle deformation when flowing in a tube. It is also an easily accessible parameter in tube-
flow experiments. In addition, it was found that there is an upper limit to the reduced vesicle
length, given by Eq. (4.23). Figure 4.9 shows the normalized vesicle length `/`c as a function
of the reduced radius ratio λ/λc for a wide range of reduced volumes ν. It is quite clear that
the simulated vesicle lengths tend towards its limiting behavior as λ→ λc. The correlation

` = `c
λ

λc
= 2ν−2/3λ2

c
λ

λc
, (4.26)

suggests an estimated vesicle length for given ν and λ. It is also noticed that this relation
gives a more precise estimate of the length for less deflated vesicles. This is because the shape
transition point decreases with increasing confinement, as shown in Figure 4.5(a). For com-
parison, the asymptotic theory of Ref. [10] showed that ` = `c + O(1 − λ/λc) as λ → λc,
which is effectively equivalent to Eq. (4.26) when λ = λc. But the proposed correlation in
the present study allows not only precisely predicting the vesicle length under high confine-
ment but also giving an estimate of the length at different degrees of confinement.

4.3.4 Vesicle mobility and extra pressure drop
Vesicle mobility, measured in the relative velocity V/U , and dimensionless extra pressure
drop ∆p+R0/(ηU) are the most important hydrodynamical quantities of interest. Espe-
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cially, the dimensionless extra pressure drop is involved in the determination of the relative
apparent viscosity of a vesicle suspension in tube flow (see Sec. 4.3.5). Unlike in an unper-
turbed Poiseuille flow in which the mean flow velocity U is a linear function of the pressure
drop∆p0, V and∆p+ are strongly nonlinear coupled due to the vesicle’s deformation. Pre-
diction of V/U and ∆p+R0/(ηU) has been recently reported in Ref. [9] but limited to the
reduced volume up to 0.7, presumably due to the difficulty of dealing with the reduced vol-
ume of 0.6 in a 3D computation. The present BEM simulations provide a whole range of
these quantities in terms of the reduced volume ν and the confinement λ, thus extending
previous studies of vesicle hydrodynamics in tube flows. The results are shown inFigure 4.10
for the relative velocity and in Figure 4.11 for the dimensionless extra pressure drop. It is clear
that vesicles with ν = 0.6 (mimicking red blood cells) exhibit distinct features.
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Figure 4.10: Variationof the relative velocityV/U as a functionof the confinementλ for awide range
of reduced volumes ν (CaB = 50), together with asymptotic predictions. The dotted
curve shows the asymptotic prediction for a small spherical droplet moving along the
centreline of a tube (4.27a). The dashed curves are the asymptotic predictions for highly
confined vesicles (4.28a). Also shown is the prediction of a lubrication model for red
blood cells [136].

The relative velocity lies between 2 and 1. The former represents an infinitely small vesicle
traveling along the tube axis with the centerline maximum flow velocity, and the latter, for
a tightly fitting vesicle moving at the mean flow velocity as a "piston" through the tube. The
dimensionless extra pressure drop, however, exhibits astonishing variations – six orders of
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Figure 4.11: Variation of the dimensionless pressure drop ∆p+R0/(ηU) as a function of the con-
finement λ for a wide range of reduced volumes ν (CaB = 50), together with asymp-
totic predictions. The dotted curve shows the analytical prediction for a small spheri-
cal droplet (4.27b). The dashed curves are the asymptotic predictions for highly con-
fined vesicles (4.28b). Also shown is the prediction of a lubrication model for red blood
cells [136].

108



4.3 Results and discussion

magnitude. Under weak confinement (i.e., small λ), the simulation results are in excellent
agreement with the theoretical predictions for a small spherical droplet flowing along the
centreline of a tube [24, 70], given by

V

U
= 2− 4

3
λ2 +O(λ3), (4.27a)

∆p+R0

ηU
= 16λ6 +O(λ11). (4.27b)

For instance, when λ < 0.5, the relative errors as compared to the theoretical predictions are
less than 1%, particularly for nearly spherical vesicles. The case of ν = 0.6 is an exception;
a decreased mobility and an enhanced pressure drop are clearly visible. These are attributed
to the large deformations inherent to the bell-shaped morphology (c.f., Figure 4.3(d)). The
experimentalmeasurements ofV/U reported inRef. [151] are not shownherein for the com-
parison because the measured V/U for vesicles in circular tubes with ν = 0.924–0.999 are
scattered around the curve (4.27a).
As the confinement increases, the dimensionless groups V/U and∆p+R0/(ηU) undergo

a considerable variation with the reduced volume. Such a high sensitivity to the vesicle’s
deflation stems from significant changes in vesicle deformations at increasing confinement.
Indeed, for a given vesicle, namely a given ν, increasingλ results in two combined effects: the
vesicle tends to becomemore elongated, forming a nearly uniform viscous film between the
vesicle and the tube wall, as shown in Figure 4.3 and in Figure 4.9, and the gap size becomes
smaller, as illustrated in Figure 4.7. These two effects enhance the confinement-induced vis-
cous friction on the vesicle surface, thus increasing extra pressure drop across the vesicle, and
hindering vesicle mobility. Note that, as derived in Appendix A, the shear stress exerted on
themembrane is balanced by the tension gradient in themembrane. This is in contrast with
a clean drop (i.e., stress-free surface) transported in a pressure-driven flow wherein there
appears a plateau value of V/U and ∆p+R0/(ηU) as the confinement increases. Compar-
isons of the present results with a lubrication model of Ref. [136] for red blood cells are also
shown in these two figures; very good agreements are found when λ > 1.4. For smaller cells
(i.e., small λ), the parallel-flow approximation of the lubrication model produces relatively
smaller values of V/U and higher values of ∆p+R0/(ηU), which is clearly visible in Fig-
ure 4.10 but indistinguishable in Figure 4.11 due to logarithmic scales used. When λ → λc,
the asymptotic theory of Ref. [10] produced, in our notation, the following predictions

V

U
= 1 +

4

3

(
3λ2

cν
−2/3 − 2

4λ2
cν
−2/3 − 3

)(
1− λ

λc

)
+O

[(
1− λ

λc

)2
]
, (4.28a)

∆p+R0

ηU
= 4λ

(
λ2
cν
−2/3 − 1

)(
1− λ

λc

)−1

+ λ

(
4
√

2π

4λ2
cν
−2/3 − 3

)(
1− λ

λc

)−1/2

+O(1),

(4.28b)
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The limiting behaviors are well captured in the simulations. We note that the numerical
results of V/U are slightly less than those predicted by the theory as λ→ λc, it is due to the
fore-aft symmetry of a sphero-cylindrical vesicle that is assumedwhen calculating the critical
confinement λc. In fact, the frontal endcap is relatively smaller than the rear endcap, as
shown in Figure A.1, resulting in a slightly larger theoretical λc. Another noticeable feature
is a sudden change of slope in V/U ; it becomes visible for ν = 0.8 and 0.7, and that feature
is quite noticeable for ν = 0.6. It is found that the points where the curves of V/U vs. λ
display a remarkable change in slope correspond exactly to the parachute-bullet transition
points in the (ν, λ) space, as discussed above. This result is not surprising given that vesicle
mobility is dictated by the vesicle shape and its interplaywith the surrounding fluid. Indeed,
the competition between geometric constraints and confinement-induced viscous friction
determines the speed at which a vesicle is transported in a pressure-driven flow.
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Figure 4.12: Dimensionless pressure drop ∆p+R0/(ηU) plotted as a function of α (= λ`/δ) for
highly confined vesicles (i.e., λ→ λc). The dashed line shows the scaling 3α/2.

When λ → λc, the asymptotic theory of Ref. [10] shows a scaling of the dimensionless
extra pressure drop∆p+R0/(ηU) ∼ O(λ`/δ); the dimensionless extra pressure drop is pro-
portional to the reduced vesicle length but inversely proportional the clearance size. The
compilation of the present simulation results allows a precise correlation ∆p+R0/(ηU) '
3/2(λ`/δ), as illustrated in Figure 4.12. This is a significant improvement, given that a wide
range of reduced volumes is involved. More importantly, this correlation holds implica-
tions that may help devise and interpret tube-flow experiments. Specifically, based on the
vesicle length and its translational velocity which are the most easily accessible quantities in
experiments, the simulated results presented in Figs. 4.9 and 4.10, together with scaling laws
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Figure 4.13: Dimensionless pressure drop∆p+R0/(ηU) versus the reciprocal of the relative velocity
V/U . The dotted curve shows the analytical prediction for a small spherical droplet
(4.29). The dashed line is the best fitting (4.30) to ν = 0.6 in the range of 0.6 <
(V/U)−1 < 0.995.

obtained from this study allow an estimate of the reduced volume ν (hence λc) and the film
thickness, from which the dimensionless extra pressure drop ∆p+R0/(ηU) can be inferred.
Directly measuring these parameters is no simple task. It often requires advanced imaging
methods and instrumentation, with an added difficulty arising from the fact that the extra
pressure drop is highly sensitive to the reduced volume. The estimated extra pressure drop
should be contrasted with Figure 4.11 for consistency. An iterative process may be required
to obtain a consistent result. Finally, an estimate of the maximum tension in the membrane
can also be obtained using the scaling laws shown in Figure 4.8.
Before closing this subsection, we highlight the strong coupling behavior in the dimen-

sionless groups∆p+R0/(ηU) andV/U . Even for a vanishing small spherical droplet, Eqs. (4.27a)
and (4.27b) give a highly nonlinear relationship

∆p+R0

ηU
=

27

4

(
2− V

U
(λ)

)3

+O(λ3). (4.29)

The theoretical prediction is shown in Figure 4.13, where the dimensionless pressure drop
∆p+R0/(ηU) is plotted against the reciprocal of the relative velocityV/U . The reason for us-
ing (V/U)−1, instead of V/U , is quite simple and it is to illustrate how the coupling behaves
as the vesicle size – equivalently the confinement for a given tube diameter – increases. While
both the relative velocity and dimensionless extra pressure drop are notably sensitive to the
reduced volume as the confinement increases, Figure 4.13 makes it clear that the sensitivity
becomes relatively weaker as compared to Figure 4.11. Nevertheless, finding a correlation
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4 Vesicles in Highly Confined Flows

between the dimensionless groups ∆p+R0/(ηU) and V/U , under high confinement, is by
no means trivial because ∆p+R0/(ηU) diverges like (1 − λ/λc)−1. So here we put forward
only a fitting to ν = 0.6, given by

∆p+R0

ηU
' 3× 10−6 exp

[
20

(
V

U

)−1
]
. (4.30)

We conclude that the dimensionless groups ∆p+R0/(ηU) and V/U are strongly nonlinear
coupled in tube flows.

4.3.5 Implications for the rheology of dilute red blood cell
suspensions

The hematocrit measures the volume of red blood cells (RBCs) compared to the total blood
volume (red blood cells and plasma). Its normal value in humans is approximately 45% but
can be largely less in small vessels. Consider now the hematocrit, denoted byHT , in a capil-
lary of lengthL, and assumingRBCs flow in single file through the capillarywith a character-
istic length lv between two neighbors (i.e., the distance between their centers of mass), then
the ratio L/lv is the number of RBCs inside the capillary, the total volume of the RBCs is
(L/lv)Ω (Ω the volume of a single RBC) and the hematocritHT equals to (ΩL/lv)/(πR

2L),
which gives a mean distance between RBCs

lv =
Ω

πR2HT
. (4.31)

Poiseuille’s law defines an apparent viscosity in terms of the overall pressure drop across
the capillary tube

ηapp =
(
∆p0 + ∆p+

) πR4

8LQ
= η +

R2

8UL
∆p+. (4.32)

We then obtain, by setting L = lv,

ηapp = η

[
1 +

3

32

(
R

R0

)4(
R0

ηU
∆p+

)
HT

]
= η(1 +KTHT ), (4.33)

where the dimensionless parameter KT is called apparent intrinsic viscosity. This single-
file flow model allows recovering an apparent viscosity which depends linearly on the local
hematocritHT , as in a lubrication model for red blood cells [136]. In capillaries with diam-
eters up to about 8 µm, the single-file flowmodel is appropriate as RBCs frequently flow in
single file and interactions between cells may be negligible.
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Finally, the apparent intrinsic viscosity is given by

KT = 9.53× 10−5d4

(
R0

ηU
∆p+

)
, for d > dc, (4.34)

where d denotes the diameter of tubes, dc the critical diameter (' 2.8 µm) (c.f., § 4.3.2). The
dimensionless extra pressure drop ∆p+R0/(ηU) for ν = 0.6 is plotted in Figure 4.11 as a
function of the confinement λ = R0/(d/2) withR0 ' 2.8 µm. Relative apparent viscosity
which is the ratio of apparent viscosity to suspending medium viscosity can be written in
terms of tube diameter d in µm, dimensionless extra pressure drop, and hematocritHT as

ηrel =
ηapp

η
' 1 + 9.53× 10−5d4

(
R0

ηU
∆p+

)
HT , d in µm. (4.35)
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Figure 4.14: Variation of relative apparent blood viscosityηrel with tube diameterd inµmfor a hema-
tocrit HT of 0.45. Curve –H– represents simulation results based on single-file fluid
model, and curve –N– represents lubricationmodel of RBCs [136]. Dashed line in blue
shows asymptotic theory for dimensionless extra pressure drop [10] (Eq. (4.28b)). Solid
curve in cyan represents a fitting empirical equation to in-vitro experimental data [130].
The vertical line (black) indicates a lower limit (dc ' 2.8 µm) to the diameter of tubes
beyond which normal red blood cells cannot pass through without rapture.
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As an example, simulated relative apparent viscosity with a hematocrit of 0.45 as a func-
tion of tube diameter is shown in Figure 4.14. There is a small decrease in ηrel as the tube
diameter increases when d ≥ 5 µm (i.e., λ ≤ 1.11). The value of ηrel for d = 5.6 µm (λ = 1)
is slightly less than 2% of the value for d = 5 µm. At smaller diameters, say d < 4 µm, rel-
ative apparent viscosity rises rapidly and becomes substantially higher as the tube diameter
approaches the critical diameter dc. The dramatical rise is attributed to a significantly large
resistance to flow as reflected from the behavior of extra pressure drop at nearly maximum
confinement. This feature is remarkably captured in the asymptotic theory of Ref. [10] for
the tube diameters less than 3.5 µm. The numerical results are compared with those ob-
tained from a lubrication model of red blood cells at high shear rates (U/d > 50 s−1) [136].
It is shown that apparent viscosity is almost independent of flow rate in this regime but
increases with decreasing flow rate at lower shear rates [130, 136]. At a bending capillary
number CaB = 50, our BEM simulations always lie in a high-flow-rate regime as an esti-
mate of U/d = κCaBλ/(2ηR

3
0) > 50 s−1 even at a very weak confinement λ = 0.3. While

the model of Ref. [136] includes a shear elasticity of the RBC membrane but neglects the
bending elasticity, our numerical predictions of ηrel are in excellent agreement with the lu-
brication theory when d ≤ 4 µm. Indeed, under high confinement, bending resistance has
a negligible contribution to the hydrodynamic force balance; the isotropic tension in the
membrane (see Appendix A) resists the flow in the lubrication layer. When d > 5 µm, the
parallel-flow approximation of Ref. [136] yields relatively higher values of ηrel as compared
to our BEM simulation results.
Based on a compilation of in-vitro experimental data, an empirical equation describing

the dependence of relative apparent viscosity on tube diameter has been put forward in
Ref. [130] and is also plotted in Figure 4.14. Given the paucity of experimental measure-
ments in the range of smaller tube diameters, we may say that the predicted relative appar-
ent viscosities are in reasonable agreement with experimental data for tube diameters rang-
ing between 2.9 and 14 µm. Nevertheless, it should be mentioned that while the present
single-file vesicle model provides some insight into how apparent blood viscosity behaves
for tube diameters in the range of∼ 2.8–14 µm, the model due to its axial symmetry nature
is not able to make reliable predictions for tube diameters beyond that range as the confine-
ment (λ < 0.4) becomes too weak for vesicles to preserve axisymmetry. Also, the limitation
of a single-file flow model (i.e., d < 8 µm) makes the model unreliable for the prediction
of relative apparent viscosity for larger tube diameters; the simulated results presented in
Figure 4.14 for tube diameters larger than 8 µm are for illustrative purposes only.

4.4 Summary
We have presented a numerical investigation of the motion and deformation of a vesicle
freely suspended inside a circular tube in a pressure-driven flow. The numerical simula-
tions of this fluid-structure interaction problem have been carried out by using a previously
reported axisymmetric boundary element method. The results were presented for the re-
duced volumes ν ranging from 0.98 (i.e., nearly spherical vesicles) to 0.6 (i.e., red blood cell-
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mimicking vesicles) at different degrees of confinement up to near its critical value λc. The
critical confinement of a vesicle in cylindrical tube flow, as well as its critical length, was
calculated on the basis of the geometric constraints of fixed volume and surface area while
assuming the fore-aft symmetry of a sphero-cylindrical vesicle. It turned out that this max-
imum confinement was overestimated by about one percent due to the symmetry that was
usually assumed in the calculation.
The results of the present study allowed us to build a phase diagram of vesicle shapes in

good agreement with the most comprehensive experimental data [32]. Carefully controlled
simulations let us propose a linear shape transition line separating the two commonly ob-
served shapes, namely parachute-like and bullet-like shape regions in the (λ, ν) space. We
found that this transition is accompanied by a change in the behavior of the mobility of
vesicles, especially for low-reduced-volume vesicles (i.e., ν ≤ 0.7). The present work focused
on highly confined vesicles, which required high-resolution simulations to account for the
hydrodynamic interaction between the tube wall and vesicle surface. These simulations en-
abled us to examine the limiting behavior of several quantities of interest, particularly the
vesicle mobility and the extra pressure drop due to the presence of the vesicle in the tube.
The results obtained lend support to a recently reported asymptotic theory [10].
Aiming to help interpret the numerical results when the confinement approaches its crit-

ical value, we have also presented a lubrication theory combining two approaches reported
in the literature. While the balance between viscous, bending, and tension forces controls
the vesicle motion and deformation, we showed that bending elasticity plays a minor role
in the hydrodynamic force balance in the lubrication layer. It is the isotropic tension in the
membrane that resists the confinement-induced viscous friction, thus controlling the size
of the gap between the tube wall and the vesicle surface. We also showed that the predicted
mechanical tension at the proximity of the critical confinement for red blood cell-mimicking
vesicles is of the order of the rupture tension. In addition, based on a single-file flowmodel,
an attempt has beenmade to predict the rheology of dilute red blood cell suspensions. Sim-
ulated relative apparent viscosity of a vesicle suspension in small capillary tubes yielded a
consistent and complementary result as compared with experimental data and highlighted
the role of confinement in the rapid rise in the relative viscosity of red blood cells when pass-
ing through small vessels. However, there is a severe limitation to such a model since it is
relevant only for capillary diameters up to about 8 µm.
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5 Hybrid
continuum–coarse-grained
modeling of RBCs

5.1 Introduction

The human red blood cells (RBCs) are normally biconcave discocytes with a diameter of ap-
proximately 8 µm and a thickness of about 2 µm. Themean volume is about 94 µm3 and the
average surface area around 135 µm2, a value larger than the surface area of a sphere with the
samevolume. TheRBCmembrane (∼ 10nm in thickness) is composedof a lipidbilayer sup-
ported from inside by a two-dimensional (2D) triangular spectrin network of cytoskeletal
proteins, as shown in Figure 5.1. A highly elasticmembrane, together with a high surface-to-
volume ratio (reduced volume ν ∼ 0.64), provides RBCs with the ability of large reversible
deformation when passing through capillaries. This composite bilayer-spectrin membrane
(Figure 5.1(b)) may be treated as an elastic thin shell. Based on this simplified elastic descrip-
tion and the assumption of flat membrane, two fundamentally different approaches have
been proposed to study RBCs in fluid flows: one, more traditional, founded on continuum
mechanics, and the other, founded on molecular details, see for recent reviews [59, 97, 152,
153].
The classical continuum approach, which was largely inspired by numerical methods de-

veloped inmechanical engineering, considers the suspending fluids aswell as theRBCmem-
brane itself as a continuous medium. A number of well-established continuum methods
have been developed, including boundary integral/element method (BIM/BEM) and sev-
eral interface tracking methods widely employed in multi-phase flows. These methods have
been used to simulate the dynamics of a single RBC in external flows as well as the collective
behavior of an ensemble of them [59]. From this point of view, the RBC is most oftenmod-
eled as a hyperelastic capsule (made of the polymerized membrane, Figure 5.1(d)) [59, 153].
However, the fluid nature of the cell membrane was systematically lacking; the near incom-
pressibility of the membrane was generally taken into account through a high dilatational
modulus. Numerical simulations with vesicles (made of a lipid bilayer, Figure 5.1(c)) with
bending rigidity can provide insight into the shapes taken by RBCs, either at equilibrium
– the typical biconcave shape of RBCs or in external flows – bullet, parachute, and slipper
shapes [153], but shear elasticity and shape memory that are the fundamental mechanical
properties of RBCs are missing.
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Figure 5.1: A single RBC and schematic view of its membrane. (a) an RBC with a typical biconcave
discoid shape; (b) a schematic viewof themembrane and the general dispositionof its lipid
andprotein constituents; (c) a drawing of a small spherical vesicle seen in cross-section; (d)
a spectrin network (the cytoskeleton) shownby high-resolution negative staining electron
microscopy [103].

Discrete modeling exploits the microstructural properties of RBCs. Any medium is seen
as a huge number ofmolecules, submitted to thermal agitation and to intermolecular forces.
However, to be able to resolvemuch larger space and time scales involved in the transport of
RBCs in fluid flows, coarse-graining of spectrin-level models has to be used, and the level of
coarse-graining characterizes the crudeness with which the molecular level of the medium
is represented [52]. Mesoscale (whole cell) particle-based methods [95] consider both the
lipid bilayer and the spectrin cytoskeleton and the interaction between them. Some cell
scale particle-based models keep the trace of the two contributions in the form of a two-
component whole cell model [96, 116]. In this way, the detachment of the cytoskeleton from
the lipid bilayer, which, for example, can occur in the micropipette aspiration experience or
the flow through a constriction, has been successfully simulated [96].
One could regard the continuum approach as the ultimate state of coarse-graining; how-

ever, in that ultimate state, the molecular structure is fully integrated and forgotten. There
is a need for developing new numerical methods combining the two approaches, thus being
able to benefit from the advantages of both of them. Indeed, the idea of representing the
cytoskeleton as a discrete 2D structure made of a large number of connected springs is very
attractive. This is the starting point of the present contribution. Actually, particle-based and
continuum-basedmodels work all on the same principle: onemesh (or two coupledmeshes
if we distinguish between the bilayer and the cytoskeleton) made of triangular elements to
represent the RBC membrane. In the particle-based model, the mesh is seen as a discrete
network of springs, which tends to be a good representation of the spectrin cytoskeleton
when the number of vertices reaches the real cytoskeleton structure. In the continuum-
based model, the mesh is understood as a finite element discretization of the membrane,
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in which a two-dimensional mesh, embedded in a 3D domain, is defined by a set of ver-
tices connected by edges. Therefore, the same ingredients are present, providing very similar
modeling possibilities in these two approaches.
In this chapter, we propose to explore the idea of whether the combination of a spring

network with a vesicle model could give rise to an accurate and reliable hybrid discrete-
continuum RBC model. It is a first attempt to couple a 3D vesicle model with a discrete
description of the cytoskeleton. Frompurelymechanical considerations, such amodel could
extract the essential mechanical properties of the RBC membrane: fluidity and bending
rigidity of the lipidbilayer, and shear elasticity of the cytoskeletonwhilemaintaining surface-
area and volume conservation constraint. This is also computationally feasible, thanks to an
existing continuum vesicle model [19, 22, 150]. The argument is that, in the vesicle model,
the movements of the bilayer in the normal and tangential directions are treated differently,
namely in Lagrangian fashion for the former and with a Eulerian description for the latter.
Therefore the tangential movement of mesh vertices (or nodes in a finite element context),
which does not change the membrane shape, is fully independent of the tangential move-
ment of the lipids. Actually, the possibility of prescribing the tangential velocities of mesh
vertices to any convenient set is used to preserve the mesh quality in a vesicle simulation
context. Our idea for an extension towards RBCs is then to prescribe this velocity set to that
of the vertices of a spring network. In doing so, the movement of the mesh vertices is con-
strained to slide along the bilayer. However, this constraint is automatically ensured by the
fact that the samemesh is used both for the bilayer and the cytoskeleton, and that the nodes
of the bilayer finite-element mesh are also the vertices connected by the edges of spring net-
work. As far as numerical aspects are concerned, one of the major developments involves
assigning a spring behavior law to the edges and a drag friction law (based on the lipid/node
relative velocity) to the vertices, as well as a way how to incorporate these additional forces
into the vesicle model.
In the following sections, we first describe the RBC membrane model and outline the

numerical methods. We then present three numerical examples to evaluate the proposed
hybrid model, followed by a summary of this chapter.

5.2 Cytoskeleton elasticity

The membrane model consists of a collection of points {xn, n ∈ 1 . . . N}, which are the
vertices of the RBC surface triangulation, representing the cytoskeleton. The length of the
link connecting vertices n and p is defined as lnp = |xn − xp|. The spring network induces
on each node (or vertex) n of the surface mesh a resulting force given by

fn =
∑
p

fnp =
∑
p

Knp(xp − xn) (5.1)

where the summation is over all the vertices p connected to the node n by an edge np, i.e.
spring np.
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In Eq. (5.1), fnp denotes the force exerted by the node p on the noden, andKnp represents
the stiffness coefficient of the springnp, connecting the noden at the positionxn to the node
p at the position xp. In the case of a linear spring with the spring stiffness knp, the force fnp,
as a function of the spring length lnp and its value at rest l0np, is given by

fnp = knp
lnp − l0np
lnp

(xp − xn) = knp(1− l0np/lnp)(xp − xn) = Knp(xp − xn) (5.2)

Since the aim of this work is not to compare different spring laws but rather to test the
idea described in the introduction, we only consider one of the constitutive laws proposed
in [52], namely the finitely extensible nonlinear elastic (FENE) spring in combination with
a repulsive force defined as a power function (POW). It is worthmentioning that compared
to the linear spring model, i.e. Eq. (5.2), the FENE-POW spring model has been widely
used for modeling the shear resistance of the cytoskeleton, especially for large deformations
of RBCs. The elastic energy of the spring np is then the sum of an attractive part and a
repulsive one

Unp = −ka
2

(lmaxnp )2 log(1− x2
np) +

kr

(α− 1)lα−1
np

(5.3)

where ka and kr are, respectively, the FENE (attractive) and the repulsive spring constants,
α is the repulsive exponent assumed as a constant value.

This expressionuses thenormalized spring length (or separationdistance)xnp = lnp/l
max
np ∈

(0, 1]. So, the spring’s behavior law can be adjusted by fixing three physical parameters: the
maximum spring length lmaxnp , and the attractive and repulsive spring constants ka and kr.
The total stiffness coefficientKnp is given by

Knp =
ka

1− x2
np
− kr

(lmaxnp xnp)α+1
(5.4)

Eq. (5.4) defines a springwithnon-zero equilibrium length l0np givenby fnp = −δUnp/δxn =

0 for x0
np = l0np/l

max
np . The equilibrium length l0np corresponds to the length of the spring in

the reference shape, i.e. stress-free mesh. For simplification, we use hereinafter x0 and l0 to
denote, respectively x0

np and l0np. The two spring constants ka and kr can be related by

kr = ka
lα+1
0

1− x2
0

(5.5)

Thanks to the Virial theorem [52], the elastic shearmodulus of the spring network µs can
be expressed in terms of ka and kr as follows:

µs =

√
3

4

(
2kax

2
0(

1− x2
0

)2
+
kr(α + 1)

lα+1
0

)
(5.6)
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Combining Eq. (5.4) with Eq. (5.5) and Eq. (5.6) yields finally the spring force at node n
by an edge np

fnp = Knp(xp − xn) =
4µs

√
3
(

2x20
1−x20

+ α + 1
)( 1− x2

0

1− x2
np
− xα+1

0

xα+1
np

)
(xp − xn). (5.7)

As in [52], we set α = 2 and the ratio x0 = 1/2.05. For a given shear modulus µs, which is
in the range of 2–6 µN/m for a normal RBC [155], and on the basis of the triangulation of
cell membrane (xnp = lnpx0/l0 = lnpx0/l

0
np) and its stress-free mesh (l0 = l0np), the elastic

force fe
np at node n by the edge np exerted by the spring network on the lipid bilayer can be

obtained from Eq. (5.7) since fe
np is simply equal to fnp, and subsequently incorporated into

the bilayer-cytoskeletal interaction as described below.

5.3 Cytoskeleton-bilayer interaction

In this chapter, interest is focused on the membrane model, thus a free space case without
physical boundaries will be used to complete the description of the model.
In [21, 22], the boundary element method is used to resolve the lipid’s flow on the vesicle

membrane, which can be formulated as

ulip = u∞ + Gf , f = f b + fγ (5.8)

where the exponent "lip" stands for the lipid’s velocity field and "∞" indicates the imposed
background bulk fluid flow.G is theGreen operator due to the Stokeslet, f b(y) is the bend-
ing force field induced by the lipid bilayer in response to deformations and fγ(y) is the
surface-tension-like force resulting from theLagrangemultiplier γ of the surface divergence-
free constraint on the lipid’s flow

∇S ·ulip = 0. (5.9)

For anRBCwe have to add the elastic force f e(y) (Eq. 5.7) exerted by the spring network
on the lipid bilayer. This spring elastic action is transmitted to the lipid bilayer in the normal
directiondirectly and in the tangential plan indirectly via thedrag forcesfd(x) that the lipids
exert on the cytoskeleton

fd = CfΠtg(ulip − ucyt) = Πtgf
e (5.10)

where the exponent "cyt" stands for cytoskeleton and Cf is the friction coefficient. The op-
eratorΠtg = Id−Πn is the projector onto the tangent plane of themembrane surface, with
Πn = n ⊗ n the projector in the normal direction given by the normal vector n pointing
toward the outside bulk fluid.

121



5 Hybrid modeling of RBCs

From the kinematic point of view, the sliding of the cytoskeleton is taken into account,
thanks to the mixed Lagrangian-Eulerian updating of the mesh node’s position,

x(t+ dt) = x(t) + dtu = x(t) + dtΠnu
lip + dtΠtgu

cyt. (5.11)

Thus, themesh nodesmovewith the lipid’s velocity in the normal direction only, whereas
it moves tangentially with the cytoskeleton’s ones. Using Eq. (5.10), Eq. (5.11) writes also

x(t+ dt) = x(t) + dtulip − dt
1

Cf
Πtgf

e. (5.12)

Using the Stokes-Einstein relation and measured values of the translational diffusivity
of band 3 and glycophorin C in the lipid bilayer, the drag force and thus the values of the
friction coefficient can be deduced [120].While these values are relevant only in the context
of a spectrin scale modeling or in the case involving a dynamic process. In the present study,
the value of Cf affects only numerical efficiency; Cf → 0 is equivalent to minimizing the
elastic energy at each time step, whereas a finite value leads to a relaxation of the cytoskeleton
stresses. We setCf = 0.194 pNµm−1 s inmost of our computations, as in [120], but the final
stationary RBC shape remains the same for all the examples we have considered, whatever
its value [105].
Before presenting our numerical examples, the properties of RBC and the blood flow in

the human body are listed in Table 5.1 for reference.

Property (units) used values (variability)
Surface area, A (µm2) 135 [2]
Volume, V (µm3) 94 [2]
Effective diameter,Deff = 3

√
6V /π (µm) 5.64

Bending rigidity, κ (×10−19 J) 2.4 (1–7) [52, 91, 116, 120, 155]
Shear modulus, µs (µNm−1) 2–10 (2–12) [2, 52, 155]
Bilayer-cyto friction coeff., Cf (pN µm−1 s) 0.194 [120, 121]
Plasma viscosity, ηe (×10−3 Pa s) 1.2 [120]
Shear rate, γ̇ (s−1) 100–300 (mean 270, peak 1640) [120]

Table 5.1: Summary of the properties of RBC and plasma in human body.

5.4 Numerical examples
Here, we present three simulation examples to evaluate the proposed approach.
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(a) Stretching of an RBC in the optical tweezers experiment [148],which is the most classic
validation of RBCmodels.

(b) Motion of a single RBC in a simple shear flow.

(c) Motion of a single RBC in a capillary.

In all these three examples, the initial shape of RBC is a biconcave discoid, and the geom-
etry can be obtained using the following expression [44]

y = ±D
√

1− 4(x2 + z2)

D2

[
a1 + a2

x2 + z2

D2
+ a3

(
x2 + z2

)2

D4

]
, (5.13)

whereD = 7.82 µm is the cell diameter, a1 = 0.0518, a2 = 2.0026 and a3 = −4.491. The
volume and surface area of the corresponding RBC are respectively 94 µm3 and 135 µm2,
giving a reduced volume ν = 0.64. Figure 5.2 shows the shape generated with this expres-

y φy

z
θ

x

Figure 5.2: RBC with a biconcave discoid shape generated with Eq. (5.13). The triangular mesh is
composed of 642 nodes and 1280 elements. {X, Y, Z} is the fixed Cartesian coordinate
system and the flow is in the X direction. {x, y, z} is the Cartesian coordinate system
rotates with the RBC. The pitch angle θ represents the rotation of the cell around the z
axis, φy measures the angle between the minor axis of RBC and Y .

sion, which has 1280 elements, created by the Loop subdivision. In this chapter, all results
are obtained with 1280 elements unless otherwise stated.
For the coarse-grainedmodel used for cytoskeletal proteins, the reference shape is another

indispensable ingredient to compute the elastic force, as in Eq. (5.7). However, it must be
stressed that there is no universal consensus on the reference shape that should be adopted
to describe the real deformation of an RBC under external solicitations, even though it is
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an essential characteristic to consider in order to correctly estimate the actual stress in the
membrane during large deformations [2]. In most of the previous studies, the initial shape,
i.e., a biconcave discocyte is used as the stress-free reference shape. But recently, an oblate,
which is close to a sphere (ν=0.95 ∼ 0.997), with equal surface area to the RBC is chosen
as the stress-free configuration [2, 30, 122]. The nearly spherical oblate shape is used in the
hope of recovering some experimental observations under strong external stresses, to make
up the deficiency in using the biconcave shape. In this chapter, both the biconcave and the
oblate shape are used as the stress-free configuration. But we do not have many arguments
on why we use such a shape as reference shape, it may be interesting to make a quantitative
comparison of their effects.
Before presenting the numerical results, it is useful to recall the characteristic parameters

appeared in our current system. We use the cell radius as the reference length, i.e., Lref =

R = Deff /2. For RBC, there are two different characteristic times used to measure the time
needed to restore a deformation due to bending and shearing, respectively. That is

tbchar =
ηeR3

κ
and tschar =

ηeR

µs
. (5.14)

Taking the typical values of RBC, R = 2.82 µm, ηe = 1.2c Pa = 1.2 × 10−3 Pa s, κ =

2.4 × 10−19 J and µs = 5 × 10−6Nm−1, we have tbchar ≈ 112.13 ms and tschar ≈ 0.68 ms.
The two typical in vivo shear rates, 270 and 1640 s−1, which are considered as the avergae
shear rate and the peak shear rate in human body. This defines the characteristic flow time
(using the shear rate γ̇c = γ̇max/

√
2) tfchar = γ̇−1

c ≈ 0.86 ms [120, 155]. Similarly, the two
characteristic force densities are

fb
char =

κ

R3
and f s

char =
µs
R
. (5.15)

In this chapter, we use the characteristic values based on shear modulus as the reference
values, that is tref = tschar and fref = f s

char, for all simulations of RBC. Whereas when these
results are compared to those of the vesicle (µs = 0), the time is re-scaled by the characteristic
time defined by the bending modulus tbchar in post-processing.

5.4.1 RBC stretching

We first perform RBC stretching simulations and compare our numerical results with the
experimental data ofRBCdeformations by optical tweezers [148]. In this example, an oblate
with a reduced volume ν = 0.98 is used as the stress-free shape in most of the cases, and
κ = 2.4× 10−19 J.
Figure 5.3 shows a sketch of RBC after deformation. The RBC membrane network is

composed of N (= 642) vertices, which define the level of the membrane representation
from the spectrin-level to the coarse-grained network of N vertices. The total stretching
force Fs is applied to an area with diameter dc ≈ 2 µm, along the negative and positive axial
directions of x (drawn as black dots in Figure 5.3). Inspired by Sigüenza et al. [141], where
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DA

DT

Figure 5.3: Schematic RBCdeformation under the stretching force. Themembrane is colored by the
distance from themembrane to its symmetrical plane parallel to the planeOxz, and black
dots denote the vertices where the force is applied.

the stretching force is applied only to the nodes located on the edges delimiting the contact
areas. The force applied here is proportional to (|x − xc|)α, where xc is the center of the
contact area and α ∈ [1, 2], is used to control the variation of the stretching force. The
axial diameter DA is computed as |xmax − xmin|, where xmax and xmin are the maximum
and the minimum x position of all vertices. The transverse diameter DT is calculated as
2×maxi=1...N

√
(yi − cy)2 + (zi − cz)2, where cy and cz are the coordinates of the y and z

centers of mass.
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Figure 5.4: Comparison of the axial (DA) and transverse (DT ) diameters of the RBC stretched by
optical tweezers for different shear modulus and for the experimental results of Suresh et
al. [148].
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Figure 5.4 shows the change in RBC’s axial and transverse diameters in response to the
applied stretching forces with three different shearmodulus, µs = 2.0, 4.0 and 6.0 pNµm−1.
These numerical predictions are compared to the experimental results given by Suresh et
al. [148]. As the cell becomesmore andmore elongated by increasing the stretching forceFs,
it is seen that the axial diameterDA increases. This elongation induces a contraction of the
cell in the orthogonal direction, which results in a decrease of the transverse diameterDT .
As for the evolution of the axial and transverse diameters as a function of the stretching

force, we should first be aware that the elastic shear modulus µs, measured experimentally,
lies in the range of 4–12 µN/m, and the bending modulus in the range of 1–7×10−19 J [52,
116], indicating a large-amount scatter in the measured values, as shown in Figure 5.4. As
for our numerical results, it is seen that, as the stretching force increases, the RBC’s axial
diameter increases, while transverse one decreases from the initial valueD = 7.82µm. Given
a relatively higher value of the shearmodulusµs, a relatively smaller deformation is produced
since the membrane is "harder". Our numerical results behave well in this way and vary
around the experimentalmeasurements. But interestingly, our hybrid approach gives a good
predictionwith a smallerµs (=2 pNµm−1) for the stretching force is not too strong, whereas,
for a stronger stretching force, a good prediction is given with a higher shear modulus µs
(=4 pNµm−1).

5.4.2 RBC in shear flow

As a second numerical example, we perform a preliminary study of RBC flows in a simple
shear flow,u∞ = γ̇yex. The aim is to show that this hybrid approach can indeed reproduce
the basic dynamics of theRBC in shear flow. In this example, the biconcave shape is the only
used stress-free shape.
A general picture of the dynamics of a single RBC in a shear flowwas proposed byAbkar-

ian and Viallat [2], as shown in Figure 5.5. It is seen that the biconcave shape is preserved at
low values ofCa, and conversely, the cell is deformed by hydrodynamic forces at high values
of Ca. Compared to RBCs in vivo, one particularity of RBCs in diluted suspension is that
the steady tank-treading (TT) motion occurs only for low viscosity ratios [2, 57, 91]. In this
example, we are only interested in the tumbling and the tank-treading motions.
Before presenting the numerical results, it is useful to recall the relevant dimensionless

parameters that we are using in this example, they are

(1) the viscosity ratio λ = ηi/ηe;

(2) the capillary numberCa = tschar/t
f
char = ηeRγ̇/µs, which is the ratio of the characteris-

tic time to restore the membrane deformation and the characteristic time of the flow;

(3) the reduced bending number Cb = κ/(µsR
2), which is the ratio of the bending modu-

lus and shearing modulus.
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Figure 5.5: Phase diagram of the dynamics of a single RBC in shear flow in the plane of the capillary
numberCa and the viscosity ratio λ (reproduced from [2]).

Tumbling

In order to reproduce the tumbling motion, a set of the three dimensionless parameters
{λ,Ca,Cb} was selected and tested. The overall ranges of these dimensionless parameters
are λ ∈ {0.2, 1.0, 5.0}, Ca ∈ (0.034, 0.508) and Cb ∈ (0.003, 0.019). More specifically, the
values of Ca and Cb for each λ are summarized in Table 5.2. For these selected parameters,

λ Ca Cb

0.2 0.034–0.169 0.003–0.0151.0 0.034–0.508
5.0 0.034–0.169 0.003–0.019

Table 5.2: Summary of the dimensionless numbers used in the tumbling motion example.

the tumbling motion only occurs for λ = 5.0, no matter the cell is discretized with 320 ele-
ments or 1280 elements. All simulations for λ = 0.2 and λ = 1.0 start with a tank-treading
motion and may end up with a very deformed shape (a shape with a fixed inclination an-
gle to the flow direction and without membrane tank-treading) if the capillary number Ca
exceeds certain critical values.
Figure 5.6 shows the evolution of the inclination angle φy (the angle between the minor

axis of the RBC and the Y axis, as shown in Figure 5.2) and the x component of the coor-
dinates of the numerical probe (For Figure 5.6 (b), this probe is indicated by the black dot
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shown in Figure 5.7) as a function of the dimensionless time γ̇t 1 for an RBC with λ = 5.0

flows in a simple shear flow with Ca = 0.1. From these figures, it can be seen that these
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Figure 5.6: Time histories of the inclination angleφy and thex-position of a numerical probe during
the tumblingmotion of anRBC flow in a simple shear flowwithλ = 5.0 andCa = 0.1.

two examples with a different reduced bending modulus Cb show a very similar behavior,
the RBC periodically rotates in the shear plane, that is, a tumblingmotion (some typical cell
shapes are shown in Figure 5.7 forCb = 0.003). The average period of this tumblingmotion
is 19.6 for Cb = 0.0075 and 22.5 for Cb = 0.003.
Figure 5.7 shows snapshots of themotion/deformation of RBC as well as the cell profiles

in the z = 0 plane over one half oscillation cycle of the inclination angle φy for Cb = 0.003

(Figure 5.6 (b)). These figures show, in addition to the periodically flipping such as that
for the vesicle (Figure 1.5), that their shapes also deform periodically. Moreover, the cross-
section (cell profiles in theXYplane) alternates between the biconcave formand a reversed S-
shape pattern, as reported by Pozrikidis [125] and Peng et al. [120]. Aposteriori check shows
that the volume and the global surface variations are about 0.013% and 0.1%, respectively,
during such an oscillation circle.
The case with Cb = 0.0075 (Figure 5.6 (b)) is compared in detail with the predictions of

Peng et al. [120], as shown in Figure 5.8, with same physical parameters µs = 3.0 pNµm−1,
κ = 1.8 × 10−19 J and initial condition φy = −45°. The variation of the inclination an-
gle φy during its first half circle is compared with those of Peng et al., which were obtained
with the single-layer model (SLM) and the multiscale model (MSM). The two horizontal
dashed lines mark the orientation levels φy = −45° and φy = 135°. The time interval be-
tween the intersection points of these lines and the curves provides us the approximation of
1To compare with the existing results [120], the simulation time t, initially dimensionalized by tschar, is
multiplied by the capillary numberCa = tschar/t

flow
char = tschar/γ̇

−1. Thus the new dimensionless time is
t∗ = γ̇t.
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γ̇t=12.07 14.50 15.52 16.53 20.01 23.41

X

Y

Figure 5.7: RBC shapes (top) and profiles in the XY plane (bottom) over one oscillation cycle of the
inclination angle φy for λ = 5, Ca = 0.1 and Cb = 0.003. Snapshots are taken at the
time marked by the black dots as shown in Figure 5.6 (b). The black dot indicated by a
red arrow is the numerical probe.
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Figure 5.8: Evolution of the inclination angle φy for the case of Cb = 0.075 in Figure 5.6 (a). The
result is compared with the predictions by Peng et al. [120].
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a half-period of tumbling motion, T/2, they are 10.2, 10.5 and 11.0 for our simulation, for
predictions given byMSM and SLM, respectively.
It can be seen, both for our simulation and the predictions of Peng, that the angular ve-

locity has a minimum value when the flat side of RBC is parallel to the direction of flow
(φy = 0°) and reaches a maximum when the flat side is normal to the direction of flow
(φy = 90°), which are in agreement with the observation of Goldsmith and Marlow for
RBCs in dilute suspensions of Poiseuille and Couette flow (< 2% haematocrit) [62].Quan-
titatively, this variation of the angular velocity is stronger in our simulation than those of
Peng.
By fitting the experimental data at the low shear rate (γ̇ < 20 s−1, or Ca < 0.05), Gold-

smith andMarlow proposed that the period of rotation can be well described by the Jeffery
equation for prolate spheroids

T = γ̇∆T = 2π

(
rp +

1

rp

)
, (5.16)

where the dimensionless number rp ∈ (0.25, 0.51) [62, 125]. Substituting in Eq. (5.16) with
the mean value 0.38, we find the period T ≈ 18.9, which is close to our prediction of 20.4.

Tank-treading

We then show two cases with tank-treading motion under the following common condi-
tions: λ = 1, γ̇ = 100 s−1, and for two different shearmoduli µs = 8.0 pNµm−1 (Ca ≈ 0.06)
and µs = 4.0 pNµm−1 (Ca ≈ 0.12), in Figure 5.9.
In Figure 5.9 (a) and (c), the red horizontal lines show the inclination angle between the

major axis of RBC and the flow direction, it has a value about 18° for µs = 8.0 pNµm−1

and 16° for µs = 4.0 pNµm−1 once the tank-treading movement becomes stable (t∗ > 60).
Whereas the black curve shows the time history of the angle between a numerical probe
(a vertex of the mesh) and the flow direction, it varies periodically as the membrane takes
the tank-treading motion. Due to the effect of remeshing, the frequency indicated by the
inclination angle of the probe should be different from the actual tank-treading frequency.
However, this effect must be subtracted in order to calculate the tank-treading frequency.
Figure 5.9 (b) and (d) show a snapshot (at t∗ ≈ 131) of the tank-treading motion of the

RBC, respectively for Figure 5.9 (a) and (c). The RBCs are colored by the mean curvature
and the membrane presented here was refined to have 1280 elements to better represent the
shape. The arrows indicate the direction of the velocity on the membrane, they are in the
rangeof [−0.015, 0.015] 2 forµs =8.0 pNµm−1 andof [−0.033, 0.033] forµs =4.0 pNµm−1

(at the instant t∗ ≈ 131) for the x component of the velocity, i.e., ux. This means that
periodic variation of the inclination angle of the probe has effect from the membrane tank-
treading (and, not only because of remeshing). From the elongation of the shape, the effect
of the shear modulus is also shown.

2 Uref = 391 µm s−1, thus the two speed ranges are about [−6, 6] µm s−1 and [−13, 13] µm s−1.
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Figure 5.9: (a) Time histories of the global inclination angle of the RBC (ψ, red line) and the inclina-
tion angle of a probe (θ, black curve) during tank-treadingmotion forµs = 8.0 pNµm−1,
with 320 elements. (b) Snapshot shows the membrane tank-treading motion of (a) at
t∗ ≈ 131, membrane is coded by the mean curvature. (c) Time histories of the two
inclination angles for µs = 4.0 pNµm−1, with 320 elements. (d) Snapshot shows the
membrane tank-treading motion of (c) at t∗ ≈ 131.
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5.4.3 RBC in capillary flow
The third and the last simulation example concerns a single RBC in capillary flows with
equal viscosities (λ = 1). Identical to the case of a vesicle flowing in capillary, the Poiseuille
flow is given by Eq. (1.19), where Um = 0.032 cm s−1 for all cases in this section3, which lies
in the range of 0.002 cm s−1 to 2 cm s−1 as exploited by Pozrikidis [126].
In this section, two different configurations are studied by varying the shear modulus µs,

they are

A. β = 0.5,H0 = 0.0 and θ0 = −90° (see Figure 3.1);

B. β = 0.4,H0 = 0.3 and θ0 ≈ −6°.

Whereas the bending modulus is set to 2.4× 10−19 J and the biconcave shape is used as the
unstressed shape for both of these configurations. In this example, RBCwith different shear
moduliµs flowing in the capillary are studied numerically and the results are comparedwith
those of the vesicle (RBC with µs = 0). To show the evolution of the RBC’s shapes under
the effect of the shearmodulus, and to compare it to that of vesicle, all results are re-scaled by
the characteristic time based on the bendingmodulus tbchar (Eq. (5.14)), namely, t∗ = t/tbchar.

Case A

First, we consider that RBCs are initially placed on the axis of the capillary (H0 = 0.0)
and that their flat surfaces are orthogonal to the flow (θ0 = −90°) for the proposed hybrid
method with various elastic moduli µs = 0.0, 0.5, 5.0 and 10.0 µNm−1.
The evolution of the shape is first presented in Figure 5.10 for a vesicle (µs = 0.0) and

an RBC (µs = 5.0). It can be seen that from a biconcave shape, they quickly deform into a
parachute-like shape, with a rounded front and a concave rear face. During the evolution,
they remain at the centerlinewith the axisymmetric shape,while the vesicle ismoredeformed
due to the lack of elastic force generated by the cytoskeleton in the case of RBCs.
The evolution of the position of the rounded front and the upper bound are shown in

Figure 5.11 (a), respectively by the maximum coordinate of the x component and y compo-
nent of all vertices,Xmax and Ymax (see Figure 5.11 (b)). It is seen that the shapes deform sig-
nificantly from t∗ = 0 to t∗ = 0.5, and a visually quasi-steady shape is obtained at t∗ = 1.0,
as depicted in Figure 5.10. The final stable shapes of these different shearmoduli µs are plot-
ted in Figure 5.11 (b) for the cell profiles in XY plane (top) and in XZ plane (bottom). This
shows that these shapes remain axisymmetric, at least visually, when they reach stable form.
As for the effect of the elastic modulus µs, it is seen that the deformation is attenuated for
an RBC with high resistance to elastic force. This is quite reasonable since an RBC with a
higher shear modulus will have a greater ability to withstand hydrodynamic stresses.
The evolution of the additional pressure drop ∆pa (extra pressure needed to maintain

the flux due to the presence of RBCs) adimensionned by ηeU/Rt for these different shear
3In this example, the reference length is taken as Lref=R=D/2 = 3.91 µm. And, take the local shear rate
γ̇(r)=γ̇(D2 ) (see 1.3.4), the capillary number Ca=η

eRγ̇
µs

=η
eUmβ2

µs
is 0.96 for µs = 0.1 µNm−1 and 0.0192

for µs = 5.0 µNm−1.
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Figure 5.10: Cell profiles in the xy plane at times t∗ = 0.0, 0.1, 0.5 and 1.0. All lengths are scaled by
the cell radiusD/2 = 3.91 µm.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.5  1  1.5  2  2.5  3  3.5  4

µ
s
=0.0

0.5

5.0

10.0

t∗

Xmax

Ymax

(a)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

x
y

x
z

Xmax

Y
m
ax

(b)

Figure 5.11: (a) Evolution of the maximum coordinate of the x component of all the vertices and (b)
the final stable cell profiles in the plane z = 0 (top) and in the plane y = 0 (bottom) for
various shear modulus µs = 0.0, 0.5, 5.0 and 10.0 µNm−1. All lengths are scaled by the
cell radiusD/2 = 3.91 µm.
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moduli is illustrated in Figure 5.12 (a), whereU = Um/2 is themean velocity of unperturbed
Poiseuille flow, Rt is the radius of the capillary. The horizontal blue segment on the right
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Figure 5.12: Evolution of (a) the additional pressure drop ∆pa adimensionned by ηeU/Rt, and (b)
the translational velocity Ux/U , corresponding the RBCs with various shear moduli
in Figure 5.11. The horizontal blue segments on the right of each graph represent the
asymptotic predictions for small (β → 0), neutrally-buoyant, freely-suspended solid
spheres (λ→∞) [126].

illustrates the estimation by Eq. (2.68) with λ → ∞, which corresponds to the asymptotic
prediction of the additional pressure induced by a small solid sphere moving at the center-
line. For these four cases, the additional pressure initially increases to a large value at a small
time interval during which significant deformation occurs (see Figure 5.11 (a)), and then it
settles to a nearly stable value. In general, by increasing the stiffness of the membrane, the
numerical predictions given by the hybrid model converge to the asymptotic value 0.5, the
asymptotical prediction for solid spheres.
The evolution of the axial velocity of the cell centroid is correspondingly illustrated in

Figure 5.12 (b), and the horizontal blue segment shows the estimation by Eq. (2.67) with
same approximation as for the additional pressure drop. This evolution of the translational
velocity is similar and consistent with that for the additional pressure drop.

Case B

In this case, the flat plane of RBCs is not placed orthogonally to the flow direction, but
only with a small inclined angle θ0 ≈ −6°, and at a height of H0 = 0.3 in a capillary with
Rt = 2.5. By varying the shear modulus of the membrane µs from 0 (vesicle) to a relatively
high value 8.0, it is found that a totally different shape evolution process depends upon the
shear modulus, as demonstrated in Figure 5.13.
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For µs = 0, namely a vesicle, the capillary number Ca obtained with the local shear rate
γ̇(r) computed at r = Lref/2 is 1.0. The snapshots in the first row of Figure 5.13 show
that an initially biconcave vesicle (ν ≈ 0.64) placed atH0 = 0.3 deforms and evolves into a
slipper shape. This process is similar to our previous results for an oblate vesicle, as shown
in Figure 3.26 (the shape evolution ) and 3.28 (the final stable shape), with ν = 0.65. The
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Figure 5.13: Evolution of the RBCs shape in a capillary flow (β = 0.4) for five different shear mod-
ulus µs = 0.0, 0.1, 0.5, 2.0, and 4.0 with H0 = 0.3 and θ0 ≈ −6°. Membranes are
colored by the mean curvature.

final stable shape remains unchanged to the slight increase of the shear modulus from 0.0 to
0.1, while the evolution process becomes slower due to the elasticity of the membrane, that
is, more work is needed to deform an RBC than to deform a vesicle.
A different evolution occurs by increasing the shear modulus to 0.5, as indicated in the

third row of Figure 5.13, a biconcave shape finally evolves into a biconcave-croissant shape,
for which the two dimples are preserved during the deformation. This evolution remains
globally the same by further increasing the shear modulus to 2.0 and then to 4.0. Mor-
phologically, the biconcave shape is first stretched due to hydrodynamic stresses, but this
stretched deformation is then relaxed due to a relatively high value of the shear modulus
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(µs ≥ 0.5). One of the minor differences lie in this common evolution process is that the
deformation becomes more difficult for a higher value of the shear modulus.
Figure 5.14 shows the evolution of the lateral position of the centroid Yg and the inclina-

tion angle θ of RBCs as function of the time t∗ (Eq. (5.14)) dimensionless by characteristic
time defined by the bending modulus tbchar. It is seen that for the shear modulus those with
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Figure 5.14: Evolution of (a) the radial position of the centroid Yg and (b) the inclination angle θ of
a vesicle flowing in a capillary (β = 0.4) for various shear modulus µs, varying from 0.0
(a vesicle) to 8.0.

the biconcave-croissant shape as the final stable form (solid line), the stable lateral position
Y ∗g increases with the shear modulus µs and the inclination angle θ has almost a zero value.
That is, the stable biconcave-croissant shape has its flat plane parallel to the flow direction
and its radial position increases with the shear modulus. While for the two cases with a slip-
per as final stable shape, the centroid Yg is still evolving. For reference, the prediction of the
stable lateral position, given by vesicles (ν = 0.65, prolate or oblate), is about 0.04.

5.5 Summary
In this chapter, RBCs and in particular its membrane are first reviewed in Section 5.1. RBCs
can generally be modeled as a hybrid of the vesicle and the capsule because of its composite
bilayer-spectrinmembrane. Twowidely used approaches, the classical continuum approach
and the discrete modeling (also the coarse-graining one) are then briefly reviewed.
The proposed hybrid continuum–coarse-grained approach, based on our previous vesi-

clemodel (as that used in Chapter 3), is then presented. This approach includes the essential
mechanical properties of theRBCmembrane, namely shearing resistance andbending rigid-
ity, as well as the constraints of fixed surface area and fixed enclosed volume. Specifically, the
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RBCmembrane is modeled as a composite network, which consists of a dynamically trian-
gulated surface as in a fluid vesiclemodel. Themembrane is then coupledwith an additional
network of springs with fixed connectivity, representing the cytoskeleton. In this work, the
coarse-grained FENE-POW spring model, as presented in Sec. 5.2, is used to describe the
elastic cytoskeleton through Eq. (5.7). This force, which is embodied on each spring edge, is
transmitted to the lipid bilayer in the normal direction directly and in the tangential plane
indirectly via the drag forcesfd (Eq. (5.10)), as presented in Sec. 5.3. Compared to other two-
component approaches, the mechanical interaction between the bilayer and the cytoskele-
ton is explicitly computed. Another advantage is that only one mesh is used both for the
bilayer and the cytoskeleton, thus significantly reducing the computational complexity.
Following on from our previous work [105], we presented three simulation examples

(with stationary and time-dependent shapes) to illustrate the effectiveness of our model in
the isogeometric FEM-BEM framework. Our hybrid approach is first applied to the optical
tweezers experiment (Sec. 5.4.1), and then the tumbling and the tank-treading motion are
investigated in a linear shear flow (Sec. 5.4.2), and lastly, its dynamics in capillary flow is stud-
ied by varying the shear modulus µs (Sec. 5.4.3). Thanks to the subdivision representation,
no local anomalous surface features (kinks) appear even in the case of large deformations
such as the tumbling case, contrary to the previous work [105]with simple linear triangular
elements.
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6 Conclusions and Perspectives

6.1 Conclusions

Themain objectives of this dissertationwere to numerically investigate the dynamics of soft
particles – lipid bilayer vesicles and red blood cells – in microchannel flows. To this end,
the original code has been developed to account for microchannel walls of arbitrary cross-
section and incorporated into a previous isogeometric boundary element method model
for unbounded Stokes flows. The newly-developed code has been validated by two well-
known examples – a clean liquid drop flowing in circular capillaries and a capsule moving
in a rectangular microchannel. Moreover, it is shown that the numerical method preserves
second-order convergence in both time and space. Subsequently, the code has been used to
study the dynamics of a vesicle or a red blood cell that is transported through a circular tube
in a pressure-driven flow.
The motion and deformation of a vesicle in tube flow with matched viscosity of inner

and outer fluids are determined by three independent dimensionless parameters, namely,
the vesicle’s reduced volume, the flow confinement, and the capillary number. A deflated
vesicle initially placed at an off-center position, is shown tomigrate also perpendicular to the
flow direction due to both the presence of the wall boundary and the curvature of the im-
posed flow profile. Three general migration modes have been clearly identified – migration
to the flow centerline (i.e., inward migration), centered snaking, and migration to an off-
center position – depending on these three control parameters. Simulation results revealed
that during the lateral migration, the vesicle’s shape undergoes continuous deformation due
to the hydrodynamic stresses imposed by the flow onto the membrane. Once the lateral
migration speed vanishes, a stable shape is obtained. In comparison with previous stud-
ies, various stable shapes have been reproduced, including bullet shape, parachute shape,
peanut shape, croissant shape, slipper shape, and also a not well-documented one, namely
the biconcave-croissant shape that has twobiconcave flat surfaces (like the unstressed shape of
RBCs) and has two planes of symmetry (like a croissant shape). A noticeable feature found
is the membrane sliding (tank-treading motion) that occurs during the lateral migration or
for the non-axisymmetric shapes. Furthermore, it is shown that the flow structure on the
vesicle membrane of the slipper shape depends on the degree of confinement. Simulation
results made it clear that upon increasing either the confinement or the capillary number,
the stable shape tends to havemore planes of symmetry – a stable form transition fromnon-
axisymmetric one to axisymmetric one, or the centroid of the stable form tends to decrease
to zero if the corresponding free space stable shape is a slipper (characterized with non-zero
lateral position). Taken together, several phase diagrams of stable shapes for different re-
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duced volumes have been built in the (confinement, capillary number) space, showing an
extension of the set of vesicle morphologies and rich vesicle dynamics.
Underhigh confinement, it is expected that the vesicle shapepreserves axisymmetry,which

has allowed us to study vesicle hydrodynamics by means of the axisymmetric boundary ele-
ment method. The geometric properties of a vesicle – fixed volume and surface area – yield
critical flow confinement or a low limit to the radius of tubes through which a vesicle may
pass intact. Simulation results have been obtained in a wide range of the reduced volume
(i.e., 0.6 ≤ ν ≤ 0.98) for different degrees of confinement up to near critical value. Our
high-fidelity BEM simulations have produced the prediction of the most important hydro-
dynamical quantities of interest – vesicle mobility and extra pressure drop, the latter having
implication for the rheology of a vesicle suspension in tube flow. Being able to deal with a
wider range of the reduced volume, this study has extended the previous numerical inves-
tigation of vesicle hydrodynamics in high confined flows. The numerical results, together
with previous asymptotic theory and various scaling laws obtained herein, offer possibilities
for tube-flow experiments to correlate easily accessible quantities such as vesicle velocity and
its length to the extra pressure drop. Several other quantities of interest can also be accu-
rately predicted, like the reduced volume, even the thickness of lubrication film fromwhich
maximal tension in the membrane can be inferred, too. It is our hope that the results pre-
sented this paper could serve as a benchmark for future studies and help devise and interpret
tube-flow experiments.
By combining a continuum description of a lipid membrane with a discrete representa-

tion of cytoskeleton, we have presented an approach for modeling the membrane of red
blood cells in the context of the prediction of red blood cells dynamics in a flow. Com-
pared to other two-component approaches, we explicitly computed the mechanical inter-
action between the bilayer and the cytoskeleton by considering normal elastic spring and
tangential friction force. Another advantage is only one mesh that is used both for the bi-
layer and the cytoskeleton, thus significantly reducing the computational complexity. The
newly-developed model has offered the possibility of studying tank-treading and tumbling
motions of an RBC immersed in a linear shear flow, and RBCs dynamics in tube flow. This
work fills the gap between continuum mechanical modeling and coarse-grained modeling
of RBCmembranes by fusing these two approaches.

6.2 Perspectives
We outline below some improvements and future potential developments that are closely
related to this work:

• How to improve the efficiency of simulations? BEM simulations of 3D vesicle dynamics
are computationally challenging and time-consuming, particularly for highly deflated
vesicles and under high flow confinement – it took several months (with 6 CPUs) to
simulate a snaking dynamics with 1280 elements (Fig. 3.3). One of the major diffi-
culties stems from the constraint of the vesicle’s surface incompressibility that has to
be satisfied at each time step. One possible way to overcome this hurdle would be to
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implement a penalization method (or quasi-incompressibility method) that is widely
employed in the numerical solution of the incompressible Navier-Stokes equations.

• We have almost thewhole phase diagram of vesicle shapes in tube flow for the reduced
volumes equal to 0.95, 0.9, and 0.85, it would be interesting to extend simulations to
include smaller reduced volumes.

• The newly-developed code allows for the different cross-sections of conduit flow, it’s
natural to extend the study to square or rectangular section, or even convergent-divergent
conduits. Such an extensionwould finddirect applications tomicrofluidic experimen-
tations.

• The proposed hybrid RBC model is a combination of the vesicle model with a net-
work of springs with fixed connectivity, representing the cytoskeleton. Since the thin
elastic membrane can also be modeled with a capsule model, a combination of vesicle
and capsule models would constitute a new, more consistent approach to modeling
the mechanical properties of the RBCmembrane.

• Our code is currently written in Java (partially multithreading), it could be beneficial
if it were re-coded into fully parallelized code, with C++ for example. A combination
of OpenACC with CUDA-enabled GPUs computing (only partially available, up to
now) would lead to a substantial improvement over the present version.
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A Lubrication theory
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Figure A.1: Schematic of lubrication theory analysis for a steady, sphero-cylindrical vesicle moving
along the axis of a circular tube of radius R. In a coordinate frame moving with the
vesicle, there can be no flow and pressure gradient inside the vesicle. The vesicle has a
cylindrical main body with a length L∗, assumed large compared to R. Plotted vesicle
profile corresponds to a vesicle shape for ν = 0.6, λ = 1.92 and CaB = 50 (shown
in Figure 4.3(d)); the tube wall is placed at more than 20% away from its actual place in
order to amplify the width of the gap between the vesicle and the tube wall.

We combine previously reported results in the literature [9, 10, 27, 99, 136] to present an
axisymmetric form of lubrication theory for a vesicle in tube flow. Our aim is not to numer-
ically resolve the complete system of governing equations of the lubrication theory, as it was
generally conducted by those authors. Instead, wemake use of some asymptotic scaling laws
established via lubrication theory analysis to help interpret the present simulation results
when confinement is close to its maximum value (i.e., λ → λc). The following paragraphs
are an attempt to combine two approaches, one is based on parallel-flow approximation [9,
27, 136], the other is the small-gap theory in the singular limit λ → λc [10]. Starting from
well-established theories developed in [71, 99], we show that the two approaches yield the
same asymptotic behavior of the film thickness and vesicle velocity in the limit λ→ λc, and
the film thickness is further controlled dynamically by the membrane tension.
A schematic description of lubrication theory analysis is shown in Figure A.1. The shape

of themembrane is described by r = h̄(x), and the gap separating the vesiclemembrane and
tube wall has a typical film thickness h, which is defined at the vesicle’s midplane, namely
h ≡ R − h̄(0). At this stage, we assume that the thickness is small compared to the vesicle
length L (but not necessarily small relative to the tube radius), as it is usually the case with
high confinements (e.g., as illustrated in Figure 4.3). In the reference frame moving with a
steady vesicle centered along the axis of the tube, the axial symmetry of the problem and the
incompressibility of the vesicle membrane lead to
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A Lubrication theory

• the fluid inside the vesicle is stationary with no pressure gradient (for simplicity we set
p̄ = 0) and behaves like a rigid-body (ū = 0);

• the viscous normal stress on themembrane vanishes so that the net normal traction on
themembrane is the hydrostatic pressure difference between the internal and external
flows p̄− p, which is equivalent to be−p;

• the net shear traction is the viscous shear stress τ due to the external fluid.

Then, in the lubrication approximation, the pressure p in the lubrication layer depends only
on the axial position x, and the axial velocity field u is governed by the axial momentum
equation and an equation of continuity

η

r

∂

∂r

(
r
∂u

∂r

)
=

dp

dx
, (A.1a)∫ R

h̄(x)

2πurdr = πR2(U − V ) ≡ −2πRq, (A.1b)

subject to boundary conditions

u = −V at r = R, (A.2a)
u = 0 at r = h̄(x), (A.2b)

where q (= 1
2R(V − U)) represents a rate per unit circumference of leakback of fluid past

the vesicle.
Equations (A.1) with boundary conditions (A.2) yield the Reynolds lubrication equa-

tion [71] for the pressure gradient in terms of the azimuthal radius of curvature r(x) = h̄(x):

dp

dx
= − 8ηU

R2(1− (r/R)2)

[(
1− (r/R)2

2 log(r/R)

)
V

U
− 2q

RU

][
1 + (r/R)2 +

1− (r/R)2

log(r/R)

]−1

.

(A.3)
The shear stress exerted on the membrane due to the ambient flow is then given by

τ(r) ≡ η
∂u

∂r
= −1

4

dp

dx

[
2r +

R2 − r2

r log(r/R)

]
+

ηV

r log(r/R)
. (A.4)

The normal and shear stress boundary conditions (4.4), togetherwith (4.12), respectively,
can now be approximated by

−p = −2κ

[
1

gs

d

dx

(
r2

gs

dH

dx

)
+ 2H(H2 −K)

]
+ 2γH, (A.5)
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τ = − r

gs

dγ

dx
, (A.6)

where gs = r
√

1 + (dr/dx)2 is the surface metric. The mean and Gaussian curvatures can
be written in terms of r(x) and its derivatives:

H =
1

2
(c1 + c2), K = c1c2, (A.7a)

with c1 =
1

gs
, c2 = −r

3

g3
s

d2r

dx2
. (A.7b)

Equations (A.3)–(A.6), together with the usual symmetry conditions at the front nose of
the vesicle x = L/2 and at the rear tail of the vesicle x = −L/2, are solved numerically in [9,
136]. It is shown that the above axisymmetric lubrication equations yield effectively good
approximations to the Stokes flow of a vesicle inside a circular tube if the membrane slope
|dr/dx| is sufficiently small.

To gain insight into the situation of narrow gaps, we nowmake an additional assumption
that the thickness of the lubricating film between themembrane and inner tubewall is small
relative to the tube radius. In this case, the leakback is also small compared with the total
flow. Introducing a small parameter

ε ≡ 2q

UR
=
V

U
− 1� 1, (A.8)

and a rescaled film thickness h∗ such that

r = R(1− εh∗), (A.9)

we obtain approximate solutions for the pressure gradient and shear stress [71, 99] and their
simplified forms in a lubrication layer of uniform thickness (h) with a pure shear flow:

dp

dx
= − 6ηU

(Rεh∗)2

[
V

U
− 1

h∗
+O(εh∗)

]
= −6η

h2

[
V − 2q

h
+O(ε)

]
, (A.10a)

τ =
ηU

Rεh∗

[
2
V

U
− 3

h∗
+O(εh∗)

]
=

2η

h

[
V − 3q

h
+O(ε)

]
. (A.10b)

Hence, in this approximation, equations (A.10a) and (A.10b) show that

h∗ = 1 +O(ε), h/R = ε+O(ε)2. (A.11)
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A Lubrication theory

The range of validity of such a narrow approximation can be estimated from the balance of
the axial forces on the vesicle, requiring in some average sense, dp/dx < 0 and τ < 0. This
means that the film thickness must lie in the following range:

2q/V < h < 3q/V, (A.12a)

or equivalently 1− U

V
< δ ≡ h/R <

3

2

(
1− U

V

)
, (A.12b)

for the clearance parameter δ. We will see that such conditions are always satisfied when
λ→ λc.

Since we are mostly interested in the asymptotic behavior of quantities of interest estab-
lished via a narrow-gap analysis, we consider the configuration close to maximal confine-
ment (i.e., λ → λc) in which a cylindrical vesicle with hemispherical ends is formed, nearly
fitting the tube cross-section, as shown in Figure A.1. In this limit, a pure geometric consid-
eration – constraints of vesicle surface area and enclosed volume –which are fixed, yields an
expansion for the clearance parameter δ [10]:

δ = 1− λ/λc +O
[
(1− λ/λc)2

]
. (A.13)

Using Eq. (A.8) in Eq. (A.11) gives an asymptotic behavior of the vesicle mobility, measured
in the relative velocity

V/U = 1 + (1− λ/λc) +O
[
(1− λ/λc)2

]
. (A.14)

This is the same prediction of the small-gap theory in the singular limit λ→ λc) [10]

While these two asymptotic expansions are helpful to interpret the present numerical
results regarding the film thickness and vesiclemobility, it remains unclear how the clearance
parameter is precisely controlled dynamically by a quantity, like hydrodynamic pressure p in
the lubrication layer or the membrane tension γ. To this end, by using (A.10), we further
simplify the normal and shear stress boundary conditions, equations (A.5) and (A.6), which
can be approximated by

p =
κ

2R3
− γ

R
, (A.15a)

dγ

dx
= −τ = −2ηV

h
+

6ηq

h2
, (A.15b)

with q =

(
6ηV

h2
+

dp

dx

)
h3

12η
. (A.15c)

We then obtain a simple expression for the membrane tension gradient in the lubrication
layer region

dγ

dx
=
ηV

h
+O(1), (A.16)
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thereby indicating that the thickness of the lubrication layer is inversely propositional to the
tension gradient in the membrane. That equation gives

γ(x) = γR +
ηV

h
x (A.17)

with γR denoting the membrane tension of the rear endcap. Therefore, the tension of the
vesicle increases linearlywith distance and has a higher tension γF at the frontal endcap. The
pressure in the lubrication layer, however, decreases with distance according to Eq. (A.15a).
The pressure andmembrane tension both are of the order of ε−1 and, therefore bending re-
sistance has a negligible contribution to the hydrodynamic force balance in the lubrication
layer. The rear tension γR of the vesicle is negligibly small compared to its frontal counter-
part γF [27, 136] – the rear portion of the vesicle is nearly tensionless, we may estimate the
frontal tension for the cylindrical portion having a length of L∗

γF '
ηV

δ
(L∗/R). (A.18)

A further overall asymptotic solution of Eqs. (A.15) near the front end of the vesicle has
shown [27, 136] as

γF ' ηV (δ/c0)−3/2, (A.19)

where c0 is a constant. Finally, the clearance parameter is found to be controlled through a
dynamical parameter – the vesicle tension-mobility-based capillary number Cav = ηV/γF

δ ' c0Cav
2/3. (A.20)

The numerical prefactor c0 differs slightly in the literature; c0 ' 2.123 in Ref. [136] while
c0 ' 2.05 in Ref. [27].
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B Shape functions
We have summarized here the shape functions used in this thesis.

B.1 Regular Loop Elements
For the regular Loop elements, 12 box-spline shape functions with the local numbering as
shown in Figure B.1(a) are used [29].

N1 =
1

12

(
u4 + 2u3v

)
N2 =

1

12

(
u4 + 2u3w

)
N3 =

1

12

(
u4 + 2u3w + 6u3v + 6u2vw + 12u2v2 + 6uv2w + 6uv3 + 2v3w + v4

)
N4 =

1

12

(
6u4 + 24u3w + 24u2w2 + 8uw3 + w4 + 24u3v + 60u2vw

+ 36uvw2 + 6vw3 + 24u2v2 + 36uv2w + 12v2w2 + 8uv3 + 6v3w + v4
)

N5 =
1

12

(
u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 2u3v + 6u2vw + 6uvw2 + 2vw3

)
N6 =

1

12

(
2uv3 + v4

)
N7 =

1

12

(
u4 + 6u3w + 12u2w2 + 6uw3 + w4 + 8u3v + 36u2vw + 36uvw2

+ 8vw3 + 24u2v2 + 60uv2w + 24v2w2 + 24uv3 + 24v3w + 6v4
)

N8 =
1

12

(
u4 + 8u3w + 24u2w2 + 24uw3 + 6w4 + 6u3v + 36u2vw

+ 60uvw2 + 24vw3 + 12u2v2 + 36uv2w + 24v2w2 + 6uv3 + 8v3w + v4
)

N9 =
1

12

(
2uw3 + w4

)
N10 =

1

12

(
2v3w + v4

)
N11 =

1

12

(
2uw3 + w4 + 6uvw2 + 6vw3 + 6uv2w + 12v2w2 + 2uv3 + 6v3w + v4

)
N12 =

1

12

(
w4 + 2vw3

)

(B.1)

where the barycentric coordinates (u, v, w) obey the relation:

u+ v + w = 1. (B.2)
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While the local curvilinear coordinates (s1, s2) for the element can be identified with the
barycentric coordinates (v, w).
For irregular Loop elements, the irregular patch must be subdivided until the parameter

value (s1, s2) of interest is within a regular patch, and then the regular shape functions apply
again. Refer to [29] for details.

1 2

3

(a) (b)

Figure B.1: Control points for (a) regular Loop elements and (b) T1 elements.

B.2 T1 elements
The classical linear shape functions for T1 elements, triangles with 3 nodes, with the local
numbering illustrated in Figure B.1(b), are

N1 = 1− u− v
N2 = u

N3 = v

. (B.3)
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C Computation of flow around
vesicle

The fluid flow, in vesicle’s reference frame, around the vesicle is computedbyBIM inorder to
show its structure and to show its interplaywith the shape of vesicles. To avoid interpolation
and near-singularity, the fluid surface which corresponds to the vesicle membrane has the
same mesh with that of the membrane. Namely, we create a fluid mesh which use exactly
the vesicle mesh. The basic steps are,

1. From the mesh contained vtk file, generate the msh file by using the python package
meshio1.msh is the standardmesh file ofGmsh2. An example script is shown inListing
C.1.

2. Convert the msh file to geo file in using another python package pygmsh3. geo is the
standard geometry file of Gmsh. An example script is shown in Listing C.2.

3. Generate 3D fluid mesh with Gmsh based on the geo file with:
gmsh fluidmesh.geo -3 -o fluidMesh.msh

1 " " " u s e p a c k a g e me so io t o r e a d v t k f i l e , and
2 s t o r e t h e mesh i n gmsh f o rma t .
3

4 NOTE: s u r f a c e mesh p h y s i c a l t a g i s s e t t o 0 ! ! !
5 " " "
6

7 impo r t me sh io
8 impo r t s y s
9

10 i f l e n ( s y s . a r g v ) != 3 :
11 p r i n t ( "Two p a r am e t e r s s h ou l d be f o l l ow e d ! ! " )
12 e x i t ( )
13 # r e a d v t k f i l e
14 mesh = mesh io . r e a d ( s y s . a r g v [ 1 ] )
15

16 m s h f i l e = open ( s y s . a r g v [ 2 ] , 'w ' )
17 p r i n t ( ' $MeshFormat \ n2 . 0 0 8\ n$EndMeshFormat ' , f i l e =m s h f i l e )
18

1https://pypi.org/project/meshio/
2http://gmsh.info/
3https://pygmsh.readthedocs.io/en/latest/
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19 # w r i t e v e r t i c e s
20 p r i n t ( ' $Nodes \n%d '%l e n ( mesh . p o i n t s ) , f i l e =m s h f i l e )
21 f o r node_ id i n r a n g e ( 0 , l e n ( mesh . p o i n t s ) ) :
22 p r i n t ( node_ id +1 , ' ' , mesh . p o i n t s [ node_ id ] [ 0 ] , ' ' , mesh .

p o i n t s [ node_ id ] [ 1 ] , ' ' , mesh . p o i n t s [ node_ id ] [ 2 ] , f i l e =m s h f i l e )
23 p r i n t ( ' $EndNodes ' , f i l e =m s h f i l e )
24

25 # w r i t e c e l l s
26 # on l y work f o r t r i a n g l e s u r f a c e mesh
27 # p h y s i c a l t a g i s s e t t o 0
28 e l e _ t y p e = 2
29 nb_ t a g s = 2
30 p r i n t ( ' $ E l emen t s \ n%d '%l e n ( mesh . c e l l s [ ' t r i a n g l e ' ] ) , f i l e =m s h f i l e )
31 f o r e l e _ i d i n r a n g e ( 0 , l e n ( mesh . c e l l s [ ' t r i a n g l e ' ] ) ) :
32 p r i n t ( e l e _ i d +1 , ' ' , e l e _ t y p e , ' ' , nb_ t a g s , ' ' , 1 , ' ' , 0 ,

' ' ,
33 mesh . c e l l s [ ' t r i a n g l e ' ] [ e l e _ i d ] [ 0 ] + 1 , ' ' , mesh . c e l l s [ '

t r i a n g l e ' ] [ e l e _ i d ] [ 1 ] + 1 , ' ' , mesh . c e l l s [ ' t r i a n g l e ' ] [ e l e _ i d
] [ 2 ] + 1 , f i l e =m s h f i l e )

34 p r i n t ( ' $EndE l emen t s ' , f i l e =m s h f i l e )

Listing C.1: vtk2msh: convert the vtk file to msh file

1 from pygmsh impo r t *
2 impo r t s y s
3 impo r t o s
4

5 i f l e n ( s y s . a r g v ) != 3 :
6 p r i n t ( "Two p a r am e t e r s s h ou l d be f o l l ow e d ! ! " )
7 e x i t ( )
8

9 # r e a d v t k f i l e
10 m = GmshMesh ( s y s . a r g v [ 1 ] )
11 m. w r i t e _ g e o ( s y s . a r g v [ 2 ] )
12

13 # add s u r f a c e l oop f o r i n n e r s u r f a c e boundary
14 #bashCommand = " s e d − i ' / P o i n t / s / } } / \ , 3 . 0 } } / ' { 0 } " . f o rma t ( s y s . a r g v

[ 2 ] )
15 l c 0 = 3 . 0
16 bashCommand = " s e d − i ' / P o i n t / s / } } / \ , { 1 } } } / ' { 0 } " . f o rma t ( s y s . a r g v

[ 2 ] , l c 0 )
17 o s . s y s t em ( bashCommand )
18 bashCommand = " s e d − i ' / P h y s i c a l S u r f a c e / p ; s / / S u r f a c e Loop / ' { 0 } " .

f o rma t ( s y s . a r g v [ 2 ] )
19 o s . s y s t em ( bashCommand )
20 bashCommand = " s e d − i ' / P h y s i c a l S u r f a c e / s / P h y s i c a l S u r f a c e ( /

P h y s i c a l S u r f a c e ( \ " S o f t \ " \ , / ' { 0 } " . f o rma t ( s y s . a r g v [ 2 ] )
21 o s . s y s t em ( bashCommand )
22

23

24 XM = 5 . 0
25 YM = 2 . 0
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26 ZM = 2 . 0
27 l c 1 = 0 . 3
28 s t a r t I d x = 10000
29 g e o f i l e = open ( s y s . a r g v [ 2 ] , ' a ' )
30

31 # w r i t e box s t r u c t u r e
32 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +1 , −XM, −YM

, ZM, l c 1 ) )
33 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +2 , XM, −YM,

ZM, l c 1 ) )
34 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +3 , XM, −YM,

−ZM, l c 1 ) )
35 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +4 , −XM, −YM

, −ZM, l c 1 ) )
36 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +5 , −XM, YM,

ZM, l c 1 ) )
37 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +6 , XM, YM,

ZM, l c 1 ) )
38 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +7 , XM, YM,

−ZM, l c 1 ) )
39 g e o f i l e . w r i t e ( ' P o i n t (%d ) = {%f ,% f ,% f ,% f } ; \ n ' %( s t a r t I d x +8 , −XM, YM,

−ZM, l c 1 ) )
40

41 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +1 , s t a r t I d x +1 ,
s t a r t I d x +2) )

42 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +2 , s t a r t I d x +2 ,
s t a r t I d x +3) )

43 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +3 , s t a r t I d x +3 ,
s t a r t I d x +4) )

44 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +4 , s t a r t I d x +4 ,
s t a r t I d x + 1 ) )

45 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +5 , s t a r t I d x +5 ,
s t a r t I d x +6) )

46 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +6 , s t a r t I d x +6 ,
s t a r t I d x +7) )

47 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +7 , s t a r t I d x +7 ,
s t a r t I d x +8) )

48 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +8 , s t a r t I d x +8 ,
s t a r t I d x +5) )

49 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +9 , s t a r t I d x +1 ,
s t a r t I d x +5) )

50 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +10 , s t a r t I d x +2 ,
s t a r t I d x +6) )

51 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x + 1 1 , s t a r t I d x +3 ,
s t a r t I d x +7) )

52 g e o f i l e . w r i t e ( " L in e (%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +12 , s t a r t I d x +4 ,
s t a r t I d x +8) )

53

54 g e o f i l e . w r i t e ( " L in e Loop(%d ) = {%d ,%d ,%d ,%d } ; \ n " %( s t a r t I d x +1 ,
s t a r t I d x +1 , s t a r t I d x +2 , s t a r t I d x +3 , s t a r t I d x +4) )
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55 g e o f i l e . w r i t e ( " L in e Loop(%d ) = {%d ,%d ,%d ,%d } ; \ n " %( s t a r t I d x +2 ,
s t a r t I d x +5 , s t a r t I d x +6 , s t a r t I d x +7 , s t a r t I d x +8) )

56 g e o f i l e . w r i t e ( " L in e Loop(%d ) = {%d ,%d ,%d ,%d } ; \ n " %( s t a r t I d x +3 ,
s t a r t I d x +1 , s t a r t I d x +10 , − s t a r t I d x −5 , − s t a r t I d x −9) )

57 g e o f i l e . w r i t e ( " L in e Loop(%d ) = {%d ,%d ,%d ,%d } ; \ n " %( s t a r t I d x +4 ,
s t a r t I d x +2 , s t a r t I d x + 1 1 , − s t a r t I d x −6 , − s t a r t I d x −10) )

58 g e o f i l e . w r i t e ( " L in e Loop(%d ) = {%d ,%d ,%d ,%d } ; \ n " %( s t a r t I d x +5 ,
s t a r t I d x +3 , s t a r t I d x +12 , − s t a r t I d x −7 , − s t a r t I d x − 1 1 ) )

59 g e o f i l e . w r i t e ( " L in e Loop(%d ) = {%d ,%d ,%d ,%d } ; \ n " %( s t a r t I d x +6 ,
s t a r t I d x +4 , s t a r t I d x +9 , − s t a r t I d x −8 , − s t a r t I d x −12) )

60

61 g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x +1 , s t a r t I d x
+ 1 ) )

62 g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x +2 , s t a r t I d x
+2) )

63 g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x +3 , s t a r t I d x
+3) )

64 g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x +4 , s t a r t I d x
+4) )

65 g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x +5 , s t a r t I d x
+5) )

66 g e o f i l e . w r i t e ( " P l a n e S u r f a c e (%d ) = {%d } ; \ n " %( s t a r t I d x +6 , s t a r t I d x
+6) )

67

68 g e o f i l e . w r i t e ( " P h y s i c a l S u r f a c e ( \ " Box \ " , %d ) = {%d ,%d ,%d ,%d ,%d ,%d
} ; \ n " %( 10 , s t a r t I d x +1 , s t a r t I d x +2 , s t a r t I d x +3 , s t a r t I d x +4 ,
s t a r t I d x +5 , s t a r t I d x +6) )

69

70 g e o f i l e . w r i t e ( " S u r f a c e Loop(%d ) = {%d ,%d ,%d ,%d ,%d ,%d } ; \ n " %(
s t a r t I d x +1 , s t a r t I d x +1 , s t a r t I d x +2 , s t a r t I d x +3 , s t a r t I d x +4 ,
s t a r t I d x +5 , s t a r t I d x +6) )

71 g e o f i l e . w r i t e ( " Volume(%d ) = {%d ,%d } ; \ n " %( s t a r t I d x +1 , 1 , s t a r t I d x
+ 1 ) )

72 g e o f i l e . w r i t e ( " Volume(%d ) = {%d } ; \ n " %( s t a r t I d x +2 , 1 ) )
73 g e o f i l e . w r i t e ( " P h y s i c a l Volume ( \ " o F l u i d \ " , %d ) = {%d } ; \ n " %(

s t a r t I d x +1 , s t a r t I d x + 1 ) )
74 g e o f i l e . w r i t e ( " P h y s i c a l Volume ( \ " i F l u i d \ " , %d ) = {%d } ; \ n " %(

s t a r t I d x +2 , s t a r t I d x +2) )
75

76 g e o f i l e . c l o s e ( )

Listing C.2: msh2geo: convert the msh file to geo file
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Figure C.1: An example of fluid mesh generated by the aforementioned procedure.
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D.1 Accelerate convergence by manually alerting
radial position

Here, some numerical examples are presented to show that the acceleration strategy ofman-
ual alert (a small value in comparedwith Y cg ) of the radial position of the centroid of vesicles
does not alert the final stable state. The radial position adjustment (δY ) is done by inspect-
ing the lateral migration speedUy, that is, whenUy > 0 (such as Figure 3.10 (b) andD.1 (b)),
a positive adjustment δY > 0 is applied, and otherwise, a negative adjustment is applied.
FigureD.1–D.3 show three different cases inwhich the resultswith adjustment of the cen-

troidposition are compared to thosewithout adjustment. Fromthese plots, it is seen that the
convergence becomes very time consuming for simulations with 1280 elements when Yg is
close to Y cg . And the converged values Yg (withUt ≈ 0) with adjustment are consistent with
those without adjustment (errors of coarsemesh are responsible for the small discrepancy of
results between 320 elements and 1280 elements). This manual alter of the radial position
of the centroid of the vesicles should be beneficial in searching the stable radial position of
a slipper.
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Figure D.1: Evolution of (a) the radial centroid positionYg and (b) the lateral migration speedUy for
Ca = 1, ν = 0.9, Rt = 5.0. Where 320 and 1280 represent the number of elements
used in the discretization of the vesicles.
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Figure D.2: Evolution of (a) the radial centroid position Yg and (b) the lateral migration speed Uy
forCa = 1, ν = 0.9, Rt = 3.7.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  20  40  60  80  100  120

1280
320

1280, no
0.174

Yg

t∗

(a) Yg

-0.016

-0.012

-0.008

-0.004

 0

 0.004

 0  20  40  60  80  100  120

Uy

t∗

(b)Uy

Figure D.3: Evolution of (a) the radial centroid position Yg and (b) the lateral migration speed Uy
forCa = 1, ν = 0.85, Rt = 4.0. Where nomeans that no adjustment is applied.

D.2 Unbounded cases
Figure D.4 shows a vesicle (ν = 0.85) flowing in an unbounded Poiseuille flow (Ca = 1)
with two different initial lateral positionsH0 = 0.5582 and 0.05. It is seen that without the
capillary wall, the vesicle migrates to a stable position Y ∗g about 0.54 even for H0 = 0.05,
unlike those in the Figure 3.22.
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Figure D.4: Evolution of (a) the lateral positionYg of the centroid and (b) the lateralmigration speed
Uy in an unbounded Poiseuille flow withCa = 1, ν = 0.85, and two initial lateral po-
sitionsH0. The red curves represent simulations with manual adjustment of the lateral
position of the vesicle (caseH0 = 0.05).

Figure D.5 shows an initial oblate vesicle (ν = 0.65) flowing in an unbounded Poiseuille
flow (Ca = 1) under three different initial conditions (H0, θ0) = (0.05, 0.0), (0.05,−0.15)

and (0.35,−0.15). Unlike the examples presented in sec. 3.3.7 (such as Figure 3.27), inwhich
an initial oblate veiscle (following in a bounded Poiseuille flow) can transform either into an
elongated slipper shape or a biconcave-croissant shape, depending on the initial conditions
(H0, θ0). While the three cases illustrated in Figure D.5 first transform into the biconcave-
croissant shape, but this form seems unstable in the unbounded Poiseuille flow, and it con-
tinues to evolve into a slipper shape, as illustrated by the insets. More precisely, in the case
whereH0 = 0.35, the initial oblate shape first evolves into the biconcave-croissant shape (in
a damped oscillation way), whereas this latter becomes unstable (at the time about 100) and
rapidly transforms into a slipper shape. The unstable originates from one of the convex rear
ends (in theOxz plane), which is accompanied by a significant increase in lateral positionZg
of the centroid.
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Figure D.5: Evolution of (a) Rg =
√
Y 2
g + Z2

g of the centroid, (b) Yg of the centroid, and (c) the
membrane areaS of an initial oblate vesicle in an unbounded Poiseuille flowwithCa =
1 and ν = 0.65. The insets are instantaneous vesicle shapes of the case H0 = 0.35,
colored by the mean curvature of the membrane.
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Résumé

Unevésicule est un systèmemodèleutilisé pour comprendre le comportementdynamique
en écoulement d’une particule molle fermée telle qu’un globule rouge. La membrane bi-
couche lipidique inextensible d’une vésicule admetune résistanced’élasticité en flexion. Lorsque
dégonflée, c’est-à-dire pour un grand rapport surface sur volume, une vésicule présente des
changements de formes remarquables. Des progrès significatifs ont été réalisés au cours
des dernières décennies dans la compréhension de leur dynamique en milieu infini. Ce
manuscrit s’intéresse à la transition de formes et à la migration latérale d’une vésicule dans
des écoulements confinés. L’approche est numérique, basée sur une méthode aux éléments
finis de frontière (BEM) isogéométrique. Partant d’une version existante pour les écoule-
ments de Stokes non confiné, un code original est développé pour prendre en compte les
parois de microcanaux de section transversale arbitraire. L’essentiel des études porte sur la
dynamique d’une vésicule transportée par un écoulement de Poiseuille dans une conduite
de section circulaire. Tout d’abord, nous examinons les formes typiques des vésicules, les
différents modes de migration latérale et la structure de l’écoulement des lipides dans la
membrane, en fonction des trois paramètres sans dimension caractéristiques : le volume
réduit, le confinement et le nombre capillaire (de flexion). Les transitions de forme et le
diagramme de phase de formes stables pour plusieurs volumes réduits sont obtenus dans
l’espace (confinement, nombre capillaire). Ils montrent une extension de l’ensemble des
morphologies de la vésicule. L’interaction complexe entre la paroi du tube, les contraintes
hydrodynamiques et l’élasticité de flexion de la membrane conduit à une dynamique bien
plus riche. Nous étudions ensuite, via une version axisymétrique du modèle, le comporte-
ment de la vésicule lorsque des conditions de confinement deviennent sévères et imposent
des formes de vésicule axisymétriques. Un accent particulier est mis sur la prédiction de
la mobilité de la vésicule et de la perte de charge additionnelle induite par la présence de
la vésicule. Cette dernière est importante pour comprendre la rhéologie d’une suspension
diluée. De plus, sur la base des résultats numériques du comportement proche du confine-
ment maximal, nous établissons plusieurs lois d’échelle portant sur la vitesse de la vésicule
et sa longueur, ainsi que sur l’épaisseur du film de lubrification. Enfin, nous présentons
un modèle hybride BEM–coarse-graining permettant d’adjoindre un cytosquelette à une
vésicule pour étendre nos études au cas des globules rouges. Lamodélisation coarse-graining
du cytosquelette repose sur un réseau de ressorts identifié à l’ensemble des arêtes dumaillage
d’éléments finis de la membrane de la vésicule. Les résultats numériques montrent que ce
modèle à deux composants vésicule–cytosquelette est capable d’extraire les propriétés mé-
caniques des globules rouges et de prédire sa dynamique dans les écoulements de fluide.

Mots-clés: Interaction fluide-cellule, Vésicules, Globules rouges, Méthode des éléments
de frontière, Transition de formes, Théorie de lubrification.
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