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Résumé étendu en français

Sujet et motivations

Cette thèse porte sur la rencontre entre deux secteurs clés de la gestion de données sur
Internet : la confidentialité et protection de données sensibles, et le Linked Open Data (ou
« LOD », en français « web des données ouvertes » ou encore « données liées ouvertes
»). Le but est alors de concevoir, théoriser et développer des solutions d’anonymisation
de données dans ce contexte précis du LOD avec son contexte et ses standards tech-
niques.

Ces données liées sont structurées sous forme de graphes RDF (pour Resource De-
scription Framework) structurant l’information en triplets (sujet / propriété / objet), à
la différence de données relationnelles par exemple. S’il existe déjà de nombreuses
techniques d’assainissement de jeux de données contenant des informations sensibles,
elles ne s’appliquent pas ou difficilement aux graphes RDF du LOD et tiennent pas
compte de politiques de confidentialités associés à cette structure. Il convient ainsi
d’avancer l’état de l’art à cette rencontre de domaines, pour le moment assez maigre
[Grau16, Heitmann17]. Ceci doit être fait proposant de nouvelles méthodes pour as-
surer l’anonymité et la sécurité d’ensembles de données, en garantissant le maximum
d’utilité pour les données anonymisées, le tout dans un format structuré, standardisé et
beaucoup utilisé notamment au niveau institutionnel. Elle s’inscrit dans un contexte où
la confidentialité des données est devenu un aspect crucial dans le monde des donées
(publiques comme privées), comme démontré par les réglements internationaux mis
en place à ce sujet tel le Règlement Général sur la Protection des Données (RGPD) eu-
ropéen.

Cette thèse est soutenue par le financement ARC 6 (« T.I.C. et Usages Informatiques
Innovants ») de la région Auvergne-Rhône-Alpes.

Formalisation de concepts pour la confidentialité de graphes du LOD

En premier lieu, il convient de définir la confidentialité de données dans un tel contexte,
à la fois sur la formalisation de garanties de confidentialité et d’utilité, mais aussi
d’opérateurs applicables pour pouvoir les garantir. Traditionnellement, on considère
des champs de données appelés identifiants qui identifient directement une personne
ou une information, sans information externe et des quasi-identifiants, pouvant agir
comme identifiants quand ils sont recoupés avec des informations tierces. Ces deux
types d’attributs sont les éléments visés au sein de processus d’anonymisation comme
la k-anonimity et ses dérivés [Sweeney02b, Machanavajjhala07, Li07] dont le but est de
rendre indistinguable une entrée de k − 1 autres, possédant les mêmes valeurs pour
leurs quasi-identifiants. Avec une structuration en triplets RDF, cette décomposition ne
se fait pas naturellement et implique beaucoup de pertes : de nombreuses requêtes ne
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retourneront plus les résultats escomptés sur les graphes anonymisés. Ces méthodes
ne permettent donc pas de bénéficier pas d’une bonne utilité des données. Une autre
famille de méthodes concerne la confidentialité différentielle (differential privacy), dont
le but est de préserver l’intégrité statistique globale d’un ensemble de données, en intro-
duisant du bruit modifiant des entrées individuelles. Toutefois, pour des requêtes non-
statistiques, ces méthodes ne fournissent qu’une utilité moindre. En effet, si les résul-
tats de fonctions mathématques peuvent être facilement préservés (somme, moyennes,
espérance...), ce n’est pas le cas pour des requêtes ayant pour but de récupérer des in-
formations précises (ce qui est souvent le cas dans le Web Sémantique qui porte avant
tout un aspect institutionnel et culturel plutôt que statistique).

Partant de ce constat, notre choix s’est porté sur une formalisation basé entière-
ment sur des requêtes, permettant à la fois une déclaration statique de contraintes et
d’opérations et l’utilisation des technologies spécifiques à RDF (notamment le langage
SPARQL). Cette proposition simple dite query-based permet une accessibilité pour les
fournisseurs de données afin de s’assurer de garanties pertinentes de confidentialité et
d’utilité.

Le concept clé parmi ces outils est la notion de politique : il s’agit d’un ensemble de
requêtes SPARQL servant à modéliser les contraintes sur les données qui devront être
respectées post-anonymisation. C’est donc l’outil principal du fournisseur de données
(ou du Data Protection Officer (DPO), pour reprendre la terminologie du RGPD) pour ex-
primer ses besoins. Selon le framework, ces politiques peuvent avoir des sémantiques
très variées. Dans les deux contributions presentées dans ce rapport, il s’agit soit de
politiques servant à exprimer les données devant être cachées ou anonymisées, ou à
représenter celles qui doivent être conservées post-anonymisation.

L’exemple utilisé en fil rouge pendant la thèse présente le cas d’un réseau de trans-
port public voulant publier ses données (réseau et lignes, itinéraires empruntés, statis-
tiques...) sans divulguer d’informations sensibles sur ses utilisateurs : les politiques
données en exemple sont donc des requêtes SPARQL simples utilisant un schéma plau-
sible qui modélise un tel ensemble de données, schéma qui sera utilisé pour créer un
graphe associé via un générateur Python1. Le détail de ce schéma est donné en annexe
de cette thèse.

Anonymisation « locale » pour un équilibre confidentialité/utilité

Le premier outil d’anonymisation fonctione via une politique de confidentialité et une poli-
tique d’utilité : les contraintes du producteur de données sont donc fourniers des re-
quêtes de confidentialité qui ne doivent pas révéler de données sensibles et des re-
quêtes d’utilité dont les résultats doivent conserver leur pertinence. Cette contribution
a été le cadre d’une soumission acceptée à la conférence internationale ISWC 2018. Les
sémantiques données à ces politiques sont les suivantes :

1https://github.com/RdNetwork/DataLyon2RDF/
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• Chaque requête de confidentialité ne doit plus renvoyer de résultat une fois
lancée sur le graphe anonymisé, ou des tuples composés d’au moins un nœud
blanc.

• Chaque requête d’utilité doit renvoyer les mêmes résultats sur le graphe original
et sur le graphe anonymisé.

Ces sémantiques sont contraignantes mais simples, et permettent la conception di-
recte d’algorithmes générant des séquences d’anonymisation. En Figure 1 se trouve un
exemple de ces 2 types de politiques dans notre exemple fil rouge.

Figure 1: Exemple de politiques pour une base de données d’un réseau de transport
public

Avant de s’attaquer à la concept d’algorithmes d’anonymisation, nous étudions la
compatibilité de ces politiques : il existe en effet de nombreux cas où l’anonymisation
est impossible, car les politiques se chevauchent trop, causant des situations où l’on
veut « cacher ce que l’on veut garder » ou vice-versa. Cette compatibilité est en fait
notamment liée au corps de ces requêtes, et à quel point il est possible d’unifier des
morceaux du corps de requêtes d’utilité dans le corps d’une requête de confidentialité.
Vérifier cela étant trop coûteux, nous montrons une autre propriété : les deux politiques
sont compatibles si pour toute requête de confidentialité, il existe au moins un triple
pattern (motif de triplet RDF) dans le corps de cette requête qui n’est pas unifiable avec
quelconque triplet d’une requête d’utilité.

Il faut désormais modéliser les opérations d’anonymisation applicables sur les don-
nées, et comment trouver ces opérations de façon pertinente en fonction des contraintes.
Pour continuer dans cette démarche query-based, les opérations sont définies via des re-
quêtes de mise à jour de graphes RDF, des requêtes du type DELETE (suppression de
triplets) et DELETE/INSERT (mise à jour de triplets).
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Pour trouver quelles opérations appliquer, un algorithme a été défini en 2 étapes
: un premier cas pour une politique de confidentialité dite « unitaire » contenant une
seule requête, puis un algorithme pour le cas général.

Le principe de cet algorithme est de parcourir l’ensemble des triplets contenus dans
chaque requête de confidentialité (chaque requête content un sous-graphe propre, sous
forme de graph pattern), et de vérifier s’il est possible d’unifier chacun des triplets avec
ceux contenus dans les requêtes de la politique d’utilité. Si oui, alors il n’est pas possi-
ble de le supprimer car cela rentrerait en conflit avec cette politique d’utilité. Si après
parcours de toutes les requêtes d’utilité, aucun conflit n’est trouvé, alors ce triplet est
candidat à une suppression potentielle. On cherche de cette manière tous les triplets
supprimables satisfaisant les sémantiques des 2 politiques.

Figure 2: Exemple d’opérations possibles sur un graph pattern

Les opérateurs utilisés par cet algorithme sont la suppression de triplets ou le rem-
placement d’un sujet ou objet d’un triplet par un nœud blanc. Ces opérations ont
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l’avantage d’être implémentables en langage SPARQL natif (donc dans tous les triple
stores RDF), de s’intégrer facilement aux sémantiques de confidentialité et d’utilité
voulues, et d’être facilement extensibles (suppressions sous conditions, ajout de pro-
priétés dans les nœuds blancs insérés...). D’autres opérations sont également envis-
agées, telles que le remplacement de littéraux par d’autres valeurs littérales qu’on dira
neutralisées (moins sensibles ou plus générales, par exemple remplacer un âge par une
tranche d’âge). La Figure 2 présente de façon visuelle de telles opérations appliquées
sur un graph pattern, structures utilisées dans les requêtes.

Une étude expérimentale a montré que la composante statique de ce framework
rend l’exécution de l’algorithme très rapide dans des cas d’utilisation plausibles util-
isant des requêtes de politiques et schémas de données simulés. Le code du prototype
ainsi que le pipeline logiciel de l’étude expérimentale sont disponible sur un dépôt
GitHub en libre accès2.

L’analyse expérimentale des séquences d’opérations d’anonymisation produites par
cet outil évaluait à la fois quelle chance avaient des politiques synthétiques (composées
de requêtes générées de façon plausibles et complètes) d’être compatibles ou non, mais
analysait également la longueur de ces séquences. Il en résulte que l’élément crucial
est la composition des politiques de confidentialité, dont l’expressivité va permettre de
composer plus d’opérations d’anonymisation, comparativement à la politique d’utilité
dont le rôle est plus limité. Par ailleurs, lors de ces tests où environ 50% des poli-
tiques créées étaient compatibles entre elles, il est apparu que le nombre de séquences
d’opération d’anonymisation pouvait potentiellement être gigantesque, en particulier
si les politiques n’ont que peu de triplets communs.

Une ouverture importante dans ce contexte serait de trouver comment décider
de la meilleure séquence parmi toutes celles générées, et comment choisir ces critères
d’optimalité.

Anonymisation « globale » sûre face aux attaques par lien

Le second outil développé ne tient plus compte de contraintes d’utilité, mais unique-
ment de confidentialité. Il s’agit cette fois de se prémunir fac aux attaques par lien
(linkage attacks) qui sont possibles de façon native avec le fonctionnement par IRI/URI
inhérent au Linked Open Data et à RDF. La sémantique de confidentialité détaillée dans
la première contribution est renforcée et adaptée à ce nouveau contexte. Une anonymi-
sation va être considérée comme sûre si, en faisant l’union du graphe anonymisé avec
n’importe quel graphe externe, le résultat des requêtes de la politique de confidentialité
n’ajoute aucun tuple de constantes comparativement au résultat de ces mêmes requêtes
sur le graphe externe seul. En somme, il faut la garantie qu’aucun tuple constante
déclaré comme sensible ne pouvait pas déjà être trouvé sur le graphe externe considéré
tout seul. Ce framework génère donc des opérations plus destructrices que le précé-

2https://github.com/RdNetwork/Declarative-LOD-Anonymizer
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dent. Il a lui aussi été implémenté via un prototype en Python, également disponible
de façon ouverte sur un dépot GitHub3. Il est le cadre d’un article accepté à la con-
férence internationale WISE 2019.

L’algorithme générant des opérations permettant de satisfaire ces conditions fonc-
tionne en traitant chaque composante connexe de chaque corps des requêtes de con-
fidentialité. Il va y chercher des éléments que l’on nomme des termes critiques d’une
requête : ce sont les variables et constantes apparaissant plus d’une fois dans le corps
de la requête. Ce sont eux que l’algorithme cible, car une fois ces éléments général-
isés par des nœuds blancs, les entités remplacées perdent leur sensibilité. Pour chaque
composante connexe trouvée, l’algorithme analyse deux cas :

• On décèle les termes critiques de la composante connexe considérée, et on les
remplace par des nœuds blancs (chaque occurrence de la même variable étant
remplacée par le même nœud blanc);

• Si la composante connexe considérée ne contient aucune des variables résultat de
la requête, il s’agit alors d’une composante booléenne et on en supprime un triplet
au hasard pour que cette composante n’ait plus d’image dans le graphe.

Chacun de ces cas va générer des requêtes SPARQL UPDATE associées. La subtilité
étant qu’il faut répéter cette étape de généralisation pour tous les sous-graphes possibles
de la composante connexe analysée, car sans cette étape il est possible de manquer des
occurrences des triplets sensibles, et donc de ne pas tout remplacer.

Cet algorithme ayant une complexité exponentielle dans le pire cas (due au calcul
des sous-graphes), une alternative polynomiale l’approximant a été conçue également:
au lieu de considérer tous les sous-ensembles possibles du graphe de chaque requête,
on remplace chaque occurrence de chaque terme critique par un nœud blanc unique,
même si le terme est répété plusieurs fois dans le corps de la requête. Cet algorithme est
plus efficace, mais créé des anonymisations plus générales que le premier algorithme,
et donc cause plus de perte d’information (on perd les liens entre entités identiques).

Le second cas pris en compte est celui où des failles peuvent être exploitées via la
présence de liens sameAs dans les données, c’est-à-dire des triplés indiquant qu’une
ressource est identique à une autre. Ces liens peuvent être explicites (présence de
triplets sameAs) ou implicites (triplets sameAs que l’on peut peut déduire d’autre
triplets). Pour remédier aux problèmes inhérents à ces liens d’égalité, on définit une
sûreté modulo sameAs, qui fonctionnement avec la même propriété, mais où les
réponses aux requêtes de la politique de confidentialité sont évaluées également mod-
ulo sameAs, c’est-à-dire en générant tous les liens sameAs qu’il est possible d’inférer
dans le graphe considéré pour l’application de la requête SPARQL. Dans le cas de liens
sameAs explicites, la séquence d’opération fournie par les deux algorithmes évoqués
dans le cas standard garantit déjà la sûreté modulo sameAs du graphe anonymisé.

3https://github.com/RdNetwork/safe-lod-anonymizer
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Toutefois, des liens sameAs implicites sont déductibles lorsque certaines pro-
priétés sont établies comme étant fonctionnelles (ou inversement fonctionnelles dans le
sens inverse), c’est-à-dire que pour une entité s ne peut avoir qu’une unique valeur
v associée à une propriété p donnée. Si deux triplets (s, p, v1) et (s, p, v1) existent dans
le graphe et que p est explicitement décrite comme fonctionnelle, on peut en déduire
le triplet (v1,sameAs, v2). Même chose pour une p inversement fonctionnelle, où avec
deux triplets (s1, p, v) et (s2, p, v) on peut déduire (s1,sameAs, s2).

Les liens sameAs peuvent être également déduits lorsqu’on connaît la fermeture
d’une propriété, c’est-à-dire lorsqu’on possède dans un graphe externe la connaissance
de toutes les valeurs possibles pour cette propriété. Si ce cas arrive, il faut alors ajouter
une requête à la politique de confidentialité pour cacher toutes les valeurs possibles aux
deux extrémités de tous les triplets utilisant cette propriété, ce qui est très destructeur.

Evaluation expérimentale

Une évaluation expérimentale poussée a été réalisée pour cette seconde contribution,
en particulier sur son application dans un contexte réel, en appliquant véritablement les
opérations sur des ensembles de données réels ou synthétiques et en étudiant la perte
d’information que ces opérations causaient en pratique. Le processus d’évaluation et
les résultats liés sont le cadre d’une contribution acceptée à l’atelier APVP 2019.

En s’intéressant à divers datasets synthétiques (données de transport TCL, données
d’université du benchmark LUBM) ou réel (base de données de médicaments Drug-
bank, données de patrimoine suédois Europeana), nous avons pu constater que comme
pour le premier framework, la partie statique de l’exécution (la génération d’opération
d’anonymisation) était toujours très performante.

En ce qui concerne l’anonymisation elle même et l’étude des graphes anonymisés,
les mesures ayant été effectuées calculent le nombre de nœuds blancs insérés par le pro-
cessus d’anonymisation (dans l’absolu, ou relativement au nombre d’IRI existant dans
le graphe au départ), la distance entre les distributions des degrés du graphe avant et
après anonymisation, la similarité triplet par triplet entre le graphe original et sa ver-
sion anonymisée, ainsi que le nombre de composantes connexes entre graphe original
et anonymisé. La première est une mesure de précision simple de l’impact des opéra-
tions générées tandis que les suivantes mesurent de différentes façons la perte d’utilité
dite structurelle sur le graphe. Ces mesures sont effectuées en créant des mutations de
chaque politique considérée, c’est-à-dire des politiques où l’on applique des modifica-
tions incrémentales qui la rendent plus spécifique (on remplace une variable par une
constante prise dans les valeurs existantes dans le graphe pour ce triplet, la requête
ainsi modifiée sélectionnant ainsi moins de triplets dans le graphe originel). On peut
donc ainsi mesurer la perte d’utilité en fonction de la spécificité de la politique.

Sur chaque graphe réel considéré, on observe que la précision baisse de façon assez
linéaire quand la politique baisse en spécificité : quand elle est plus générale (avec peu
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de constantes), on va généraliser plus de triplets et donc ajouter plus de nœuds blancs.
Toutefois, comme nos algorithmes essaient de modifier que « ce qui est nécessaire »
(donc ce qui est indiqué dans les politiques de confidentialité) et pas plus, si les motifs
concernés ne sont qu’une petite portion de ce que contient l’entièreté du graphe, la
précision et donc l’utilisabilité des données reste bonne.

En ce qui concerne la distance entre distributions de degrés, les résultats sont plus
flous. Sur certains datasets, cette distance semble augmenter quand la policy est moins
spécifique. Si le graphe a une structure plutôt simple, la distance entre distribution de
degré peut varier grandement si les triplets modifiés sont centraux au sein du graphe.

Afin de trouver des mesures structurelles plus pertinentes, nous mesurons égale-
ment la similarité et l’évolution du nombre de composantes connexes entre le graphe
original et le graphe anonymisé. On peut observer que la similarité baisse quand la
spécificité de la politique monte, mais reste haute dans tous les cas (plus de 75% en
permanence sur les 4 graphes étudiés). Notre approche est donc peu destructrice à
l’échelle d’un graphe entier.

Le nombre de composantes connexes augmente lui de façon significative quand la
spécificité de la politique monte, indiquant des modifications structurelles potentielle-
ment conséquentes. Ceci peut indiquer une perte d’utilité certaine, mais il est à noter
que cette valeur dépend énormément de la structure originale du graphe et à quel point
certaines propriétés sont réutilisées par beaucoup d’entités au sein de ce graphe.

Conclusion et perspectives

De nombreux aspects de ce projet peuvent être des axes d’amélioration ou d’innovation
: au niveau des politiques, leur utilisation peut être étendue en prenant en compte
d’autres types de requêtes, plus complexes ou plus expressives que des simples re-
quêtes conjonctives (telles des path queries). De nouvelles opérations d’anonymisation
peuvent être considérées, en partant des bases permises par le standard SPARQL Up-
date (suppression et mise à jour de triplets). Il s’agit notamment de considérer des
motifs plus complexes que des suppressions/insertions uniques, et par exemple des
mises à jour des valeurs littérales utilisant la généralisation de valeurs.

Une autre perspective est l’amélioration des algorithmes et de la génération des
séquences, en termes de complexité et de performance mais également en ce qui con-
cerne d’éventuelles redondances dans les séquences d’opérations trouvées : certaines
opérations peuvent en effet essayer de supprimer ou mettre à jour des triplets sup-
primés, ce qui peut rallonger inutilement l’exécution.

Enfin, une prise en compte plus poussée des risques liés au raisonnement et à
l’inférence semble importante vu leur aspect central en RDF et dans le monde du Web
sémantique.



x

Du reste, ce projet montre qu’il est possible de concevoir des cadres clairs et sim-
ples d’utilisation pour l’anoymization de graphes RDF avant publication dans le Web
des données ouvertes et utilisation comme portion du Web sémantique. Les deux sé-
mantiques étudiées ont montré que trouver un compromis confidentialité/utilisé est
viable dans un cadre simple si les politiques définies sont plausibles, et qu’il est possi-
ble d’avoir une confidentialité satisfaisante dans un cadre réaliste de vulenérabilité aux
attaques par liens. La simplicité de ce framework en fait donc un travail précurseur
réutilisable et potentiellement important pour tout un champ de recherche.
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Abstract

INDIVIDUAL privacy is a major and largely unexplored concern when publishing new
datasets in the context of Linked Open Data (LOD). The LOD cloud forms a net-

work of interconnected and publicly accessible datasets in the form of graph databases
modeled using the RDF format and queried using the SPARQL language. This heavily
standardized context is nowadays extensively used by academics, public institutions
and some private organizations to make their data available. Yet, some industrial and
private actors may be discouraged by potential privacy issues.

To this end, we introduce and develop a declarative framework for privacy-
preserving Linked Data publishing in which privacy and utility constraints are spec-
ified as policies, that is sets of SPARQL queries. Our approach is data-independent
and only inspects the privacy and utility policies in order to determine the sequence
of anonymization operations applicable to any graph instance for satisfying the poli-
cies. We prove the soundness of our algorithms and gauge their performance through
experimental analysis.

Another aspect to take into account is that a new dataset published to the LOD cloud
is indeed exposed to privacy breaches due to the possible linkage to objects already
existing in the other LOD datasets. In the second part of this thesis, we thus focus
on the problem of building safe anonymizations of an RDF graph to guarantee that
linking the anonymized graph with any external RDF graph will not cause privacy
breaches. Given a set of privacy queries as input, we study the data-independent safety
problem and the sequence of anonymization operations necessary to enforce it. We
provide sufficient conditions under which an anonymization instance is safe given a
set of privacy queries. Additionally, we show that our algorithms are robust in the
presence of sameAs links that can be explicit or inferred by additional knowledge.

To conclude, we evaluate the impact of this safety-preserving solution on given in-
put graphs through experiments. We focus on the performance and the utility loss of
this anonymization framework on both real-world and artificial data. We first discuss
and select utility measures to compare the original graph to its anonymized counter-
part, then define a method to generate new privacy policies from a reference one by
inserting incremental modifications. We study the behavior of the framework on four
carefully selected RDF graphs. We show that our anonymization technique is effective
with reasonable runtime on quite large graphs (several million triples) and is gradual:
the more specific the privacy policy is, the lesser its impact is. Finally, using structural
graph-based metrics, we show that our algorithms are not very destructive even when
privacy policies cover a large part of the graph.

By designing a simple and efficient way to ensure privacy and utility in plausible
usages of RDF graphs, this new approach suggests many extensions and in the long
run more work on privacy-preserving data publishing in the context of Linked Open
Data.





Contents

Foreword i

Résumé étendu en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

Problem statement and objectives
1.1 A Web of open and structured sets of data . . . . . . . . . . . . . . . . . . 2
1.2 When confidentiality and openness clash . . . . . . . . . . . . . . . . . . 3
1.3 Motivation and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Declarative anonymization framework in a local context . . . . . 7
1.4.2 Declarative anonymization framework preventing external linkage 7

1.5 Running example: transportation data . . . . . . . . . . . . . . . . . . . . 8
1.6 Manuscript structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related work 11

Main anonymization principles and tries at anonymizing Linked Data
2.1 Survey of existing data anonymization principles . . . . . . . . . . . . . 12

2.1.1 Generic database anonymization . . . . . . . . . . . . . . . . . . . 13
2.1.2 Protecting individual records: preventing linkage attacks . . . . . 14
2.1.3 Protecting statistical integrity against probabilistic attacks . . . . 17
2.1.4 Graph database anonymization . . . . . . . . . . . . . . . . . . . . 20
2.1.5 RDF and Linked Data anonymization . . . . . . . . . . . . . . . . 23

2.2 Position of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Context and formal background 27

Theoretical modeling and technical context
3.1 Linked Open Data standards . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Ontologies using RDFS and OWL . . . . . . . . . . . . . . . . . . 33



xiv CONTENTS

3.2 Logical formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 RDF and SPARQL basics . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Types of queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Query-based privacy and utility-preserving anonymization 43

A simple privacy/utility model to anonymize RDF graphs locally
4.1 Motivation and approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 A query-based framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Modeling policies through queries . . . . . . . . . . . . . . . . . . 47
4.2.2 Modeling anonymization operations as update queries . . . . . . 48

4.3 Compatibility between privacy and utility policies . . . . . . . . . . . . . 50
4.4 Finding candidate sets of anonymization operations . . . . . . . . . . . . 53

4.4.1 For unitary privacy policies . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Supporting ontologies for the anonymization process . . . . . . . . . . . 62
4.5.1 Incompatibility modulo knowledge . . . . . . . . . . . . . . . . . 62
4.5.2 Fixing incompatibility between policies . . . . . . . . . . . . . . . 63

4.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.1 Setup and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.2 Measuring overlapping degree between privacy and utility policies 67
4.6.3 Measuring the number of anonymization alternatives . . . . . . . 68

5 Safety beyond privacy: Anonymization robust to data linkage 71

A more complex safety model based on the principles of Linked Data
5.1 Linkage creates privacy leaks . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Safety model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Safety in the context of the LOD cloud . . . . . . . . . . . . . . . . 73
5.2.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Safe anonymization of an RDF graph . . . . . . . . . . . . . . . . . . . . . 75
5.4 Safe anonymization robust to sameAs links . . . . . . . . . . . . . . . . . 87

5.4.1 Explicit sameAs links . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2 Inferred sameAs links . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Implementation and experimental evaluation 93

Designing measurements, code, and experiments
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Measuring privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.2 Measuring utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.3 Conclusion and selected metrics . . . . . . . . . . . . . . . . . . . 101

6.2 Experimental data: The quest for RDF graphs and workloads . . . . . . 102
6.2.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



CONTENTS xv

6.2.2 Selected sets of data . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Evaluating the safety framework . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Experimental prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusion and perspectives 117

Key points synthesis and prospects

Appendix A Policies used for experiments 121

A.1 TCL graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2 LUBM graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.3 Swedish Heritage graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.4 Drugbank graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Appendix B Schema and characteristics of the synthetic TCL graph 127

B.1 Public data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.1.1 Lines and stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.1.2 Places of worship . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.2 Artificial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2.1 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2.2 Subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2.3 Journey validations . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendix C Additional experimental results for the privacy/utility solutions 131

C.1 Chain queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.1.1 Compatibility metrics . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.1.2 Properties of the candidate anonymization sets . . . . . . . . . . . 132

C.2 Star queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2.1 Compatibility metrics . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2.2 Properties of the candidate anonymization sets . . . . . . . . . . . 134

C.3 Star and starchain queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.3.1 Compatibility metrics . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.3.2 Properties of the candidate anonymization sets . . . . . . . . . . . 136

Bibliography 155





List of Figures

1 Exemple de politiques pour une base de données d’un réseau de trans-
port public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

2 Exemple d’opérations possibles sur un graph pattern . . . . . . . . . . . . v

1.1 The state of Linked Open Data cloud as of March 2019. From lod-cloud.net 4

2.1 Using quasi-identifiers to de-anonymize medical records using a list of
registered voters. From L. Sweeney [Sweeney02b] . . . . . . . . . . . . . 14

3.1 Graph visualization of the RDF graph from Table 3.1. . . . . . . . . . . . 29

4.1 Compatiblity of privacy and utility policies in function of their size . . . 68
4.2 Candidate set length based on policy overlap . . . . . . . . . . . . . . . . 69
4.3 Candidate set length based on the size of both policies . . . . . . . . . . . 70

6.1 Specificity depending on mutation depth . . . . . . . . . . . . . . . . . . 107
6.2 Absolute and relative (RDFprec-based) number of blank nodes intro-

duced depending on the policy specificity for the TCL graph. . . . . . . 109
6.3 Absolute and relative number of blank nodes introduced depending on

the policy specificity for the Swedish Heritage graph. . . . . . . . . . . . 110
6.4 Absolute and relative number of blank nodes introduced depending on

the policy specificity for the Drugbank graph. . . . . . . . . . . . . . . . . 110
6.5 Absolute and relative number of blank nodes introduced depending on

the policy specificity for the LUBM graph. . . . . . . . . . . . . . . . . . . 111
6.6 Distance between degree distributions of the original graphs and the

graphs anonymized using a given policy mutation . . . . . . . . . . . . . 112
6.7 Comparison of the similarity and the number of connected components

between original and anonymized versions of the TCL graph. . . . . . . 113
6.8 Comparison of the similarity and the number of connected components

between original and anonymized versions of the Swedish Heritage graph.114
6.9 Comparison of the similarity and the number of connected components

between original and anonymized versions of the Drugbank. . . . . . . . 114
6.10 Comparison of the similarity and the number of connected components

between original and anonymized versions of the LUBM graph. . . . . . 115



C.1 Policy compatibility based on privacy and utility policy size [Chain
queries] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2 Candidate set length based on policy overlap [Chain queries] . . . . . . 133
C.3 Candidate set length based on the size of both policies [Chain queries] . 133
C.4 Policy compatibility based on privacy and utility policy size [Chain

queries] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.5 Candidate set length based on the size of both policies [Chain queries] . 135
C.6 Policy compatibility based on privacy and utility policy size [Star and

star-chain queries] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.7 Candidate set length based on policy overlap [Star and star-chain queries] 137
C.8 Candidate set length based on the size of both policies [Star and star-

chain queries] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

List of Tables

3.1 Example of a simple RDF graph. . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Results obtained when evaluating the query from Example 3.2 on the

graph from Figure 3.1 and Table 3.1. . . . . . . . . . . . . . . . . . . . . . 31
3.3 RDF graph from Example 3.1 edited by the update query from Example 3.4. 32

6.1 Comparative analysis of various data utility measurements . . . . . . . . 100
6.2 Summary of the various graphs used in our experiments. . . . . . . . . . 104
6.3 Running time of anonymization operations. . . . . . . . . . . . . . . . . . 108



I have a dream for the Web [in which computers] become capable of analyzing all the data
on the Web – the content, links, and transactions between people and computers. A "Seman-
tic Web", which makes this possible, has yet to emerge, but when it does, the day-to-day
mechanisms of trade, bureaucracy and our daily lives will be handled by machines talking to
machines. The "intelligent agents" people have touted for ages will finally materialize.

Tim Berners-Lee – Weaving the Web, ch. 12 (1999)
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table of contents of the chapter in the following page.

As a starting point, we introduce the general context of RDF, the Semantic Web and the Linked Open
Data cloud, as well as why confidentiality matters in this situation too. We continue by describing more
in detail what are the motivations and objectives of this Ph.D thesis, in which theoretical and technical
scopes it is relevant and finally, the main contributions it induced. We also design some running examples
to be used later. We end by detailing the global structure of this manuscript. �
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2 Chapter 1. Introduction

THE Web has become the biggest place where information is exchanged between
individuals, corporate companies, researchers, or public institutions since its con-

ception and its opening to the masses. It is maintained both by automated processes
and user-generated content. The core component of the context for this thesis is an ex-
tension of the common notion of World Wide Web named Semantic Web, and more
precisely the Linked Open Data cloud. While this initiative is very important for the
Web as a whole, dealing with massive amounts of data, it also raises some issues when
dealing with personal data at a smaller, individual scale.

1.1 A Web of open and structured sets of data

The semantic Web and Linked Open Data are concepts and implementations designed
by the World Wide Web Consortium, notably starting the 1990s at the instigation of Tim
Berners-Lee, inventor of the World Wide Web [Berners-Lee01, Berners-Lee06]. Their
goal is to extend the classical Web to make it machine-readable and ease data reuse
between institutions, companies, and individuals. Notably, instead of only using URLs
(Uniform Resource Locator) to identify websites, this notion is generalized to create
URIs (Uniform Resource Identifier) identifying any type of resource, whether it is a
website, a person, a real-life location, and so on. Acting both as a set of integration
standards and as a data network, the Semantic Web has been largely used by academics
and public institutions in the latest decades. In itself, Linked Data represents the whole
subset of data available on the Web, and interlinked using semantic Web standards; in
a way, Linked Data shapes the semantic Web, and the semantic Web is comprised of
Linked Data1.

The motivation is technical as well as ethical. While the goal is mostly to turn
the Internet into a giant "database of knowledge and information", in order to make
it queryable by any machine, there is an usual emphasis on Linked Open Data. The
general aim is to create freely accessible sets of data, making it possible to create appli-
cations fetching this data and rendering public knowledge.

From a technical standpoint, this is performed by using a standardized data mod-
eling framework: RDF data [Beckett04] (for Resource Description Framework), which
describes any information in a triple format (Subject - Property - Value) about enti-
ties referenced by means of URIs. The subject can be any entity, and the value can be
another entity or a literal(string, numerical or data constants, for example). Multiple
RDF triples form a labeled directed graph, creating a simpler model closer to usual
knowledge engineering models rather than typical relational databases. Each graph
can also be identified with its own URI, each triple being therefore identifiable as a
quadruple rather than a triple, and a collection of RDF graphs is called an RDF dataset,

1Berners-Lee himself repeatedly said that Linked Data was "semantic Web done right", for example
in [Berners-Lee08].
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as per the standard guidelines [Wood14]. There are many different syntactic dialects
that can be used to write RDF data, each with their share of simplified syntax, yet each
can represent the same RDF data: RDF is not a syntax, rather a format and a stan-
dard way to describe data. To query this RDF data, a specific query language is used:
SPARQL [Seaborne08], loosely inspired from its equivalent for relational databases,
SQL.

To evaluate what is "good" Linked Open Data, Berners-Lee defined five incremental
criteria using stars [Srivastava13], where each level includes the previous ones:

• � The data is freely available on the Web, whatever the format, with an open li-
cense.

• �� It is available in a machine-readable format, as opposed to a binary one (i.e
not a scanned image or an executable file).

• ��� It is available in a non-proprietary structured format, (i.e CSV and not
Microsoft Excel’s XLS or DOC).

• ���� It is published using open semantic web standards from the W3C (RDF
for data modeling and storage, and SPARQL for querying).

• ����� It links to other Linked Open Data resources.

The Linked Open Data cloud is therefore a finite set of RDF graphs describing iden-
tified entities. It is still rapidly growing as nowadays, and contains 1,239 RDF datasets
connected by 16,147 links as of March 20192 (as represented on Figure 1.1, where each
colored circle represents an RDF dataset. Since 2007, the number of RDF graphs pub-
lished to the LOD cloud has grown by two orders of magnitude. The latest statistics
(as of 2019) tell us that it is currently dominated by four main fields: institutional data
(government or cities’ public data), life science data (biological databases), linguistics
data (dictionaries, corpora, or typography lists), and of course cross-domain datasets
(general knowledge data such as encyclopedia), notably Wikidata and DBpedia. Some
smaller, usually thematic graphs also exist (such as MusicBrainz or the BBC programs).

1.2 When confidentiality and openness clash

Whereas many organizations, institutions and governments participate to the LOD
movement by making their data accessible and reusable to citizens, the risks of identity
disclosure in this process are not completely understood. As an example, it is easy
to picture a context in smart city applications where information about users’ jour-
neys in public transportation could help re-identify the individuals if they are joined

2All statistics from https://lod-cloud.net/.
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Figure 1.1: The state of Linked Open Data cloud as of March 2019. From lod-cloud.net

with other public data sources by leveraging "quasi-identifiers", that is elements that
are not unique per individual, but could form personally identifying information once
combined with other accessible quasi-identifiers [Dalenius86, Sweeney02b]. By defi-
nition, using any set of data containing information regarding individuals whether it
is directly (through identifiers such as names or social security numbers) or indirectly
(through quasi-identifiers such as date of birth, gender, etc.) can be sensitive to some
extent. Besides, past research showed that many traditional databases are likely to be
subject to re-identification of individuals [Sweeney02b, Narayanan08]. To avoid this,
the publishing organizations simply refrain from publishing, or publish only aggre-
gated datasets such as statistical databases, which in itself prevents privacy leakages
but loses all individual information. They also still tend to delete whole chunks of data
to prevent such privacy breaches or leakages, or sometimes even refuse to publish their
data to the LOD cloud, thus holding up the growth of the Semantic Web.

For data providers willing to publish useful data from collected datasets that
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contain personal data about individuals, the main problem is to determine which
anonymization operations must be applied to the original dataset in order to preserve
both individuals’ privacy and data utility. For all these reasons, data providers should
have at their disposal the means to readily anonymize their data prior to publication
into the LOD cloud.

Handling personal information has become crucial in Europe given the context of
the official EU General Data Protection Regulation (GDPR)3, to which every organiza-
tion must comply: safeguards must be put in place, and anonymization (or pseudo-
anonymization) must be guaranteed for every user of any given computerized system.
For each company or entity whose core occupation imply the collection of personal
data, a Data Protection Officer (DPO) must be employed to ensure compliance with the
GDPR regulations4; such anonymization tools will there be used by so called DPOs in
conjunction with the data provider themselves.

But data utility usually pays the price of this necessary privacy, particularly if it hap-
pens in a technical context where less anonymization solutions have been designed, or
if they are not accessible or understandable by data providers. The whole point of data
anonymization, from the standpoint of the provider, is to reach the best data utility/-
data privacy compromise, i.e. keeping as much as possible of useful and relevant data.
This may sound counter-intuitive, as we tend to figure out data utility and data privacy
as two extremities of the same axis. Those goals are indeed contradictory, and impos-
sible to reach if an attacker has sufficient prior knowledge on the data [Rastogi07]. But
the point is to keep data utility maximal while data privacy is guaranteed given some
specific constraints set beforehand and which are (at least at the time when they are
written) specifically stating which parts of the data are sensitive and should not be
displayed in an anonymized rendition of the dataset. Therefore, this is more of an op-
timization problem rather than a contradiction: we can think of it as maximizing the
value of one variable (utility) while strictly keeping another variable (privacy) below a
precise threshold. This is, of course, only possible if the stated and desired privacy and
utility constraints are not contradictory themselves, in which case any anonymization
is impossible from the beginning.

1.3 Motivation and goals

In general, the whole notion of data privacy and finding the best or a good compro-
mise between privacy and utility has been extensively studies in the case of relational
databases, a field itself active for several decades now. It is a major field of study in
data management and databases, notably because it has both a theoretical interest (in
terms of anonymization algorithms, mathematical and logical privacy guarantees) and

3Full text available here: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/
?uri=CELEX:32016R0679 - Summarized and arranged here: https://gdpr-info.eu/

4See Articles 37, 38 and 39 of the GDPR regulations.
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a practical interest for any application dealing with sensitive data. Despite being an
intensively studied field, some entities may still struggle in finding ways to model pri-
vacy or utility constraints to be guaranteed on an anonymized version of their database.

In addition to this and as mentioned before, it is crucial for data privacy and data
management research in general to progress with regard to the Semantic Web and the
Linked Open Data cloud. While numerous standards have been developed since the
early 2000s, it is clear that many institutions, both private and public, are still reluctant
to publish data to the LOD cloud, for various reasons such as:

• Lack of awareness about the field in general: Semantic Web remains unknown or
misunderstood for a significant number of people in I.T., which may result in a
lack of interest or motivation to join the movement;

• Lack of confidence regarding privacy: no real, accessible and comprehensive
Linked Data-based software solution have been proposed, standardized or uni-
versally used to ensure privacy on RDF graphs.

The global goal of this Ph.D. is therefore to think an anonymization framework, and
design, implement and evaluate algorithms and techniques to ensure the anonymiza-
tion of Linked Open Data in the shape of RDF graphs, while providing guarantees on
the usability of such anonymized data and how these guarantees could be expressed
and proved. This entails a detailed analysis of multiple aspects. First, how data privacy
and data utility can be precisely defined in the context of RDF graph databases. Second,
what type of anonymization operations can be conceived and applied on RDF graphs,
and how they should be written or encoded. Also, how to design anonymization algo-
rithms so that these operations are applied in a correct way, and prove that this process
actually anonymizes data as intended, and keeps data utility as desired as well. Then,
we must think on how such a system works with the specificities and caveats inherent
to Linked Data and RDF; notably, how our approaches handle privacy leakages caused
by linking attacks.

In short, the end goal is to provide with a sound, usable (in terms of quality of the
results), efficient (in terms of performance) software solution to anonymize any given
RDF graph before it is published to the LOD cloud, by building and proving all the
logical components of such a framework and by designing every technical component
so that it can be implemented efficiently.

1.4 Contributions

The main contributions of this thesis are separated in two parts, both aiming at develop-
ing generic RDF anonymization solutions in two different situations modeling different
privacy semantics. From a practical standpoint, both are designed by leveraging at the
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same time the expressive power of SPARQL queries and the maturity and effectiveness
of SPARQL query engines.

1.4.1 Declarative anonymization framework in a local context

The first main contribution [Delanaux18], which sets up most of the tools that will be
used through the following chapters, is a novel declarative framework that:

• allows the data providers to specify both the privacy and utility requirements
they want to enforce as standard SPARQL queries, named policies;

• checks whether the specified policies are compatible with each other;

• automatically builds candidate sets of anonymization operations that are guaran-
teed to transform any input dataset into a dataset satisfying the required privacy
and utility policies, based on a set of basic update queries. These operation are
native, standard SPARQL queries as well.

This is completed by an algorithm implementing this data-independent method start-
ing from privacy and utility policies only, and we prove its soundness. The anonymiza-
tion processes resulting from the application of the algorithm are then compared in
terms of information loss and provided to the data producers who may eventually
choose which anonymization procedure they prefer to apply. The data providers can
thus decide which part of their dataset should be kept secret, and explicitly state which
part should rather be published in the LOD cloud, all of this simply by queries on the
original dataset to be anonymized.

The result is a static software solution to anonymize any RDF graph on a local scale,
given some explicit privacy and utility constraints on the data.

1.4.2 Declarative anonymization framework preventing external linkage

The second main contribution [Delanaux20] extends this static anonymization frame-
work for RDF data, but switches its approach to one focusing on a core aspect of RDF
and Linked Data: actual linking between datasets, and the potential problems of shar-
ing known URIs across several sources in the LOD cloud. We name this problem safety,
as opposed to simply privacy. This goal is therefore to focus on the problem of building
safe anonymizations of an RDF graph, that is anonymizing with guarantees that linking
the anonymized graph with any external RDF graph will not cause privacy breaches.
While the technical basis remains the same, the goal drastically changes.

This new solution is thus built on the former declarative and query-based approach,
still using SPARQL queries to specify both privacy policies and anonymization opera-
tions. We exhibit a sufficient condition for the result of an anonymization to be safe and
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we provide an algorithm building a set of safe anonymization operations to be applied
on any local RDF graph prior to publication to the LOD cloud.

This second contribution focuses on the problem of building safe anonymizations
of RDF graphs to guarantee that linking the anonymized RDF graph with any external
RDF graph will not lead to sensitive information disclosure. This is split in two separate
cases: first, the problem of preventing such privacy leakages caused by the union of the
anonymized data with any external RDF graph; then, this study is extended to deal
with sameAs links that can be explicit or inferred by some additional knowledge.

Similarly to the first solution, the anonymization algorithms provided here produce
anonymization operations (in the form of SPARQL update queries) with the guarantee
that their application to any RDF graph will satisfy the privacy policy.

1.5 Running example: transportation data

For the sake of simplicity, we design a simple running example that will be used
throughout the following chapters as a concrete application of our contributions.

The general context of this example is that we have in our possession sets of data re-
lated to public transportation in a given city, here the city of Lyon and its TCL network.
This data includes transportation lines and stops (bus, tramway, subway). To account
for possible sensitive data, we also include public data of all places of worship existing
in the limits of Lyon. Similarly, since personal user data is obviously not available pub-
licly, we would like to add fictitious personal data of users of the TCL network. That
way, we have all the ingredients to create a sensitive context: in theory and without
any anonymization process, it would be possible to link users’ travels with a place of
worship, and possibly gain information regarding their religious habits.

To create a concrete RDF graph based on this data, a custom RDF generator was de-
signed and implemented in Python, based on the actual data publicly available on the
Grand Lyon Open Data platform5 and using synthetic personal data (using fake names,
fake addresses from the area, and fake TCL subscriptions). This generator program is
publicly available on GitHub.6

This dataset describes:

• For users: their name, surname, postal address, date of birth, and potential sub-
scription;

• For subscriptions: the type of subscription, when it began, and optionally when
it ended;

5https://data.grandlyon.com/
6https://github.com/RdNetwork/DataLyon2RDF/
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• For each transportation line: the type of transportation and its name, number, and
identifier, as well as a list of stops with their coordinates;

• For each place of worship: its name, latitude, and longitude, an identifier and its
establishment data;

• For each travel of an user: the ticket validation machine used, the spatial and
temporal coordinates of the ticket validation, and the (possibly registered) user
who traveled.

A technical documentation of the complete schema of the graph is available on Ap-
pendix B, and a few select extracts from the graph are shown on Example 1.1. Prefixes
indicated on this example will not be repeated in the following chapters for the sake of
conciseness, but they hold the same meaning as in this example.

1.6 Manuscript structure

After this introductory chapter, this thesis is organized as follows.

First, a study of the state of the art is presented on Chapter 2 regarding the multiple
aspects combined and inter-connected by this subject. A detailed explanation of the
technical and formal backgrounds is provided in the following Chapter 3, stating the
logical components used to model RDF objects and SPARQL queries (and answers to
those queries), as well as their usage in our framework. Each main contribution is then
described and detailed in their own respective chapter, from their theoretical design
to their technical implementation: the general framework and its local privacy/util-
ity implementation in Chapter 4, and the global anti-sensitive linkage contribution in
Chapter 5. Finally, each solution is then evaluated in an experimental chapter (Chap-
ter 6) where each experiment, its relevance and its goal are described. The manuscript
ends with a synthesis of the thesis and some concluding remarks on Chapter 7.

Appendices can be found after the final chapter.
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Example 1.1

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix datex: <http://vocab.datex.org/terms#> .
@prefix tcl: <http://example.org/> .
@prefix gld: <http://data.grandlyon.com/> .
@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .
@prefix gtfs: <http://vocab.gtfs.org/terms#> .

gld:w15 a lgdo:placeOfWorship;
rdfs:label "Eglise Jean XXIII";
geo:latitude 45.7771074615;
geo:longitude 4.99118788908;
gld:id "S2848";
gld:creationDate "2001-02-07"^^xsd:date.

[...]
tcl:b77 a gtfs:Bus;

tcl:lineNumber "296";
tcl:indexNumber "";
rdfs:label "Mions Croix-Rouge - Gare Part-Dieu Villette";
tcl:orientation "Retour";
tcl:stops (

[...]
[a gtfs:Stop;
geo:latitude "45.6513252454";
geo:longitude "4.96193016954"]

[..]
tcl:v26830 a tcl:Validation;

tcl:validator "2932";
tcl:validationDatetime "2017-04-27T19:46:51"^^xsd:dateTime;
tcl:user tcl:u9590;
geo:latitude "45.7599724233";
geo:longitude "4.82594480511".

[...]
tcl:u4 a tcl:User;

datex:subscription [
a datex:Subscription;
datex:subscriptionStartTime "2008-12-05"^^xsd:date;
datex:subscriptionStopTime "2013-03-02"^^xsd:date;
datex:subscriptionReference "Pro";

];
foaf:givenName "Mills";
foaf:familyName "Cecil";
vcard:hasAddress "204 Boulevard A 69XXX Fleurieu-sur-Saone";
tcl:birthday "1926-08-20"^^xsd:date.
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Nikola Tesla – Modern Mechanics and Inventions, "Radio Power Will
Revolutionize the World" (1934)

2
Related work

� In this chapter, we delve into the existing literature and find out about classical techniques for
anonymizing data, achieving a balance between data privacy and utility, preventing data leakages via
linkage attacks, or any safety-related Linked Data literature. �

Chapter summary

2.1 Survey of existing data anonymization principles . . . . . . . . . . . . 12

2.1.1 Generic database anonymization . . . . . . . . . . . . . . . . . 13
2.1.2 Protecting individual records: preventing linkage attacks . . . 14
2.1.3 Protecting statistical integrity against probabilistic attacks . . 17
2.1.4 Graph database anonymization . . . . . . . . . . . . . . . . . . 20
2.1.5 RDF and Linked Data anonymization . . . . . . . . . . . . . . 23

2.2 Position of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



12 Chapter 2. Related work

DATA privacy in general has been a well-explored field for at least 50 years, as ex-
emplified by the decade-spanning work of researchers like Rein Turn [Turn72,

Turn82, Turn90]. With databases came the concern for the data inside them, whether
it is for security concerns or for personal safety. It gained traction again in the latest
years with the advent and the growing popularity of Big Data systems, whose empha-
sis on large volumes of data sped up the development of sub-fields such as privacy-
preserving data mining (PPDM), where the goal is to prevent the access or the display
to specific, individual data while preserving aggregated or structural properties on the
dataset [Agrawal00, Dinur03]. It also became pressing for some to devise simple and
clear privacy models to comply with coming regulations such as the European GDPR.

As we will see in this chapter, the majority of the solutions proposed so far tend
to be mainly devoted to relational legacy systems and are thus not applicable to the
context of RDF data, or they are too abstract and therefore vulnerable to attackers using
the particularities of LOD. Such solutions tend to rely on variants or adaptations of
differential privacy [Dwork06a] or k-anonymity [Sweeney02b].

While it would be a tedious process to scan the whole, extensive literature regard-
ing database anonymization, we select relevant sub-fields and anonymization princi-
ples and techniques, and we thoroughly discuss these methods and preliminary work
on Linked Data publishing or privacy-preserving data publishing (PPDP) in general in
Section 2.1. We then detail our position in this spectrum in Section 2.2.

2.1 Survey of existing data anonymization principles

Whatever the anonymization method used, and whatever the guarantees provided by
the anonymization process, some abstract principles are common and agnostic to the
data format or the techniques used. The main focus is to achieve a good (or the best) pri-
vacy/utility trade-off when publishing data. This was studied in various contexts, and
with various types of concrete data (such as smart grid measurements [Rajagopalan11]
or genomics [Humbert14]) and remains the main objective of data anonymization, pro-
vided that the data shall be used by anybody after it has been anonymized. PPDP has
been a long-standing goal for several research communities, as witnessed by a flurry of
work on the topic [Fung10]. A rich variety of privacy models have been proposed, as
will be demonstrated in the following sections. For each of these methods, one or more
attack models (such as record linkage, attribute linkage, table linkage and probabilistic
attacks) are considered, amounting to make two fundamental assumptions: (i) what an
attacker is assumed to know about the victim; (ii) under which conditions a privacy
threat occurs.

Before reaching to specific methods (notably the ones surveyed in [Fung10] in
addition to more recent developments), we focus on the agnostic principles of data
anonymization and PPDP, i.e. notions and rules that are valid whatever the type of
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database and the techniques or languages used for data modeling, data management,
and anonymization. We then split a group of methods following [Fung10], group-
ing methods in two broad categories: techniques preventing record or table linkage,
versus methods preventing probabilistic attacks. The first part will see the study of
k-anonymity and its main derivatives, showing what additional improvements and
guarantees they provided; in the second, we will tackle more advanced models and
differential privacy along with its derivatives and other recent probability-based sta-
tistical anonymization methods. Finally, we study more specific methods dealing with
graph anonymization and RDF anonymization.

2.1.1 Generic database anonymization

First, we shall explore some general and language- or framework-agnostic principles of
data anonymization, with its main objective in mind: looking for a good privacy/utility
balance. Major studies from the 2000s deal with the case of data-mining utility and data
publishing, that is how well you can still find relevant information in a published datase.
They then try to design ad-hoc logical boundaries between data privacy and data utility
in this context. In [Rastogi07], Rastogi et al. define a boundary between membership
disclosure of a tuple in a set and approximations of counting queries, showing that
if the external knowledge is too high, then no anonymization is possible. Brickell and
Shmatikov study in [Brickell08] how k-anonymity-like systems fare (as opposed to triv-
ial removal of quasi-identifiers) using data mining algorithms as utility measurements.
In another theoretical direction, Kifer and Machanavajjhala argued that it is not pos-
sible to guarantee both privacy and utility without any guarantee regarding how the
database’s contents are generated [Kifer11].

Rather than principles and guarantees, there have been many tries to define generic
privacy frameworks as well, such as the Pufferfish framework [Kifer14] which is a cus-
tomizable, generic Bayesian probability-based privacy framework relying on the input
of a domain expert defining "secrets". Using this framework, it is therefore possible
to encompass and describe many existing statistical privacy frameworks such as vari-
ations of differential privacy (see Section 2.1.3). This was further extended to other
frameworks, notably blowfish privacy [He14]. The latter is based on the differential pri-
vacy principles and the Pufferfish framework, allowing PPDP through the use of a
"policy" specifying both secrets to hide from the database, and specific constraints known
about the data, used to prevent attacks based on knowledge of correlations in the data.

Another class of techniques embraces the point of view of, rather than anonymiz-
ing the data itself, blocking the access to specific portions of data when it is queried,
depending on various factors such as permissions and user control. These techniques
are called access control methods and have been extensively studied for many decades,
and in many various subfields as well [Squicciarini15]. As opposed to other methods
studied in this section, these privacy mechanisms are interactive, as privacy is "decided"
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when specific tuples from the database are requested. Other classes of anonymization
mechanisms that we will not explore place anonymization mechanisms at other steps
of data publishing; for example, input perturbation methods make each publishing en-
tity anonymize independently sanitize its data, as pioneered in [Mishra06]. Finally,
some other mechanisms do not rely on data anonymization, but rather on secure query
answering [Roth10] which may cause its own types of vulnerabilities.

2.1.2 Protecting individual records: preventing linkage attacks

The first modern approach to database anonymization came from preventing the re-
identification of personal records or sensitive information. Indeed, traditional practices
for "anonymizing" datasets usually consisted in roughly deleting what were though
to be sensitive information or identifers, i.e. fields that are deemed unique (or non-
anonymous) for an individual or an entity: full name, social security number, ID card
number, and so on. This is therefore a problem targeting published data on an individ-
ual scale (among big, aggregate sets of data) usually named microdata1.

In the late 1990s and early 2000s, P. Samarati and L. Sweeney showed how the use of
so-called quasi-identifiers could be used to de-anonymize datasets that were previously
stripped of their identifying columns only by joining them using their common data
fields, as shown on Figure 2.1.

Figure 2.1: Using quasi-identifiers to de-anonymize medical records using a list of reg-
istered voters. From L. Sweeney [Sweeney02b]

They therefore designed a privacy framework to prevent this type of attack:
k-anonymity [Samarati01, Sweeney02b, Sweeney02a]. In itself, these original k-
anonymity propositions encompass two things: a definition of privacy, and how to
achieve it. A dataset release is k-anonymous if each record (or individual, in the case
of personal data) in a dataset is indistinguishable from at least k other records. This is

1OECD definition: https://stats.oecd.org/glossary/detail.asp?ID=1656
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done by editing values in the database, using two distinct operations: generalizations
(where a value is replaced by a more general value, e.g. an age is replaced by an age
group, or a disease by a type a disease) or suppressions, where a value is simply deleted.
Operations can be applied to all the values of a column, or only a portion of them.

While k-anonymity is one of the most primitive data privacy model in data manage-
ment or data publishing, it is also one of the simplest, and one of the easiest to under-
stand. This means that despite more modern techniques being developed for decades,
and despite many improvements or modifications to this "indistinguishability" class of
privacy frameworks, it is still widely used by a general audience and taken as example
of reference when dealing with data anonymity. In 2018 for example, the k-anonymity
model was used by many password-related websites and password managers to check
if a given password had been leaked on the Internet2. Recent research is still sometimes
based on k-anonymity as well [Wang19].

Given the pioneering and fresh aspect of k-anonymity, it spawned numerous deriva-
tive models in the following years and still continues to do so. Some are contextual
adaptations or complements of the basic model (sometimes for specific contexts), such
as a partial k-anonymity model for social network data [Liu17], or an extension to better
handle hierarchical data [Ozalp16]. But many also designed improvements in order to
address flaws in this very simple framework. We explore the most notable ones of the
latter category in the following.

An interesting aspect to survey is the one regarding extension or augmentation of
k-anonymity, rather than directly seeking for derivative methods. While there have
been many simple (i.e. based on the basic generalization and suppression principles)
implementations of algorithms or methods designed to reach k-anonymity in a data re-
lease [Sweeney02a, Iyengar02, Jr.05, Wang04, Fung05], some tried to define more com-
plex or efficient solutions. For example, Lefevre et al. [LeFevre06a] designed the Mon-
drian algorithm, a greedy algorithm based on a multidimensional partitioning of data
in order to reach k-anonymity that is both more efficient in terms of performance, and
in terms of utility loss (with regard to the evaluation of aggregate queries). Recent de-
velopments from Y. Tong and J. Wang also focus on identity as a level of granularity
rather than record: this covers the case when an individual may have several records
in the same database by defining identity-reserved anonymity models and associated
algorithms [Wang19].

These simple PPDP algorithms proved vulnerable to so-called minimality attacks,
where knowledge of the generalization algorithm used can create loopholes and leak-
ages, as detailed by Wong et al. [Wong07] and Zhang et al. [Zhang07]. Several paths
were taken afterwards: some designed mechanisms to thwart attacks based on prior
knowledge of the anonymization algorithms used [Jin10, Cormode10, Xiao10], some
found out other vulnerabilities in this basic model, such as using learning algorithms

2See recent news regarding 1Password, Okta, Have I Been Pwned?, or even Google’s Password
Checkup add-on.
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over sanitized data [Kifer09], and some defined some new, stronger models, that we
will study in the rest of this section.

One of the main follow-ups of k-anonymity is l-diversity [Machanavajjhala07],
which aims at protecting against weaknesses of k-anonymity. Notably, how two things
affect anonymization: data homogeneity in generalization (what if all the values gener-
alized are the same, or close, to begin with?), and prior knowledge of quasi-identifiers
or sensitive values (what if an attacker knows that a given individual has a high prob-
ability of having a certain value for a given predicate?). To prevent these attacks, l-
diversity is achieved when an equivalence class has at least l "well-represented" values
(e.g. at least l different values appear; but other constraints can be used). This, in short,
means that any entity can be linked with an equal probability 1

l to any of the l sensitive
values.

An example of alternative technique allowing k-anonymity and l-diversity, and
therefore a complement to these generalization and suppression techniques is the
anatomy privacy model by Xiao and Tao [Xiao06]. This is a technique where the data is
grouped into multiple buckets, and then split in two: on one side the quasi-identifiers,
and on the other the rest of the data, those two parts being linked by a new column,
indicating which record belongs to which bucket. This approach is easier than the orig-
inal operations of the Sweeney model, but its efficiency with regard to data utility is
unclear compared to the original framework.

The next major development following in line the l-diversity model is the t-
closeness model [Li07], which focuses on the data distribution: in short, the goal is
to make sure that even when values have been deleted or generalized, the new value
distribution for a given predicate is similar (to an extent provided by the threshold t) to
the original distribution, since some attackers might infer sensitive values if they have
prior knowledge on their distribution and if the anonymization is too deterministic.
Again, this induces a loss of utility (in terms of query answering or data management)
in order to give more privacy guarantees in particular cases of attack. A running theme
of all these incremental improvements is that they all focus on attacks induced by the
prior knowledge of an attacker, as opposed to the early, simplest models where this
knowledge is supposed to be very limited. In that regard, t-closeness starts a line of
models designed to prevent probabilistic attacks, based on what is known as the un-
informative principle [Machanavajjhala07]: an attacker should gain as few knowledge
as possible from the anonymized release of a dataset. While k-anonymity-based tech-
niques are not the most efficient to respect this principle, it will be the guiding light
for the next family of techniques that we will explore (aimed at guaranteeing statistical
integrity against probabilistic attacks, see Section 2.1.3) and for a few more advanced
techniques.

Another similar idea, following t-closeness, was the δ-disclosure model [Brickell08].
In this case, we not only consider knowledge about the data distribution as a weakness,
but the goal is to quantify the information possibly usable by an attacker knowing about
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it, based on the equivalence classes of sensitive values. Suppose that each sensitive
value in the database has a frequency f0 in the dataset, and a frequency feq in a given
equivalence class. Here, this equivalence class is δ-disclosure-private if and only if for
each sensitive value, log( feq/ f0) < δ. This restriction also enshrines an information
theory result about the restriction of knowledge gained by an attacker when this δ-
disclosure is respected. But this method has numerous drawbacks, notably the fact that
sensitive values may not always be in each equivalence class, and the fact the utility
has to be greatly reduced in some cases for this property the hold.

This list can easily go on and on, as methods have been continuously developed
(especially in the mid to late 2000s) to address each other’s drawbacks, such as β-
likeness related to erratic privacy behavior even with a fixed closeness value [Cao12]
or enhanced models for databases where quasi-identifiers and sensitive attributes
overlap multiple times [Sei19], both tackling limitations of t-closeness. In other
cases, some methods are designed to address other, more specific contexts of back-
ground attacker knowledge: among numerous others, we mention skyline privacy
where external knowledge is modeled in a multidimensional fashion, and an ad-
equate privacy criterion [Chen07]; privacy models where the background knowl-
edge is assumed to be the worst possible and unknown [Martin07]; or ε-privacy, a
probability-based model against "realistic" (i.e. not particularly weak or strong) adver-
saries [Machanavajjhala09].

Finally, we explore one last type of k-anonymity variation that will help transition-
ing to differential privacy: δ-presence [Nergiz07a], whose goal is to protect against
guessing the presence of an individual in the database. In that regard, its goals are
the same as differential privacy, but with a classical, non-statistically-based outlook. It
suggests to bound the probability of deducing the presence of any individual record
within a specified range δ, using generalization operations on the data. This can pre-
vent linkage attacks as well, because if the attacker has at most δ% of confidence that
a target’s record exists in the data release, this means that the probability they can re-
trieve the target’s sensitive attributes is at most δ% as well. The main drawback of this
method, in addition to the usual utility loss induced by these restrictions, is the require-
ment that the data provider has in theory access to the same external knowledge than
any potential attacker.

2.1.3 Protecting statistical integrity against probabilistic attacks

With time, considerations shifted to statistical and aggregate databases, as they were
considered to be more realistic approach in terms of current data usage in the time of
Big Data. Even when dealing with microdata, more statistical attacks and approaches
were considered, such the de-anonymization attacks on the Netflix Prize dataset by
Narayanan and Shmatikov [Narayanan08]. These frameworks focus on the knowledge
of an attacker, and model it as a probability of discovering a targeted sensitive value.
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Formally, they are based on how the attacker would change their probabilistic belief on
the sensitive values related to a target when looking at a data release. Note that these
methods tend to be very specific to numerical or statistical databases, for example by
using distance metrics. So in addition to their goals being different, their applicability
is also changing compared to the previously studied techniques.

Privacy with guarantees against probabilistic attacks is often associated with differ-
ential privacy, but this type of framework was considered even before that. Indeed, in
parallel with the development of differential privacy, many methods were based on
the fact that an attacker should not gain too much knowledge in accordance to the
uninformative principle mentioned on the previous section. One of the first was (c, t)-
isolation [Chawla05], aiming at defining a privacy model for statistical databases, one
of the foundations of differential privacy and probabilistic methods. Preventing (c, t)-
isolation in a statistical database means that for a target value of an attacker P and the
data inferred by an attacker Q for a given point in the dataset, distant of a value d, a
ball of radius c × d centered on Q contains less than t points in the dataset.

Another work of note regarding probabilistic privacy is the (d, λ)-privacy and its
associated algorithm designed to achieve it, the αβ algorithm [Rastogi07]. In this mode,
the knowledge gain of an attacker (its probability of finding a sensitive attribute) when
looking at an anonymized release of the data is bounded. When the prior probability is
small, an optimal privacy/utility balance can be found, but this can be rarely achieved
in practice. Besides, it only protects again attackers who either know that a specific
record exists in the dataset (prior probability is 100%, so no protection needed), or that
they don’t know much about its existence (prior probability lower than d, which can be
a low threshold), which is also not always plausible [Machanavajjhala08].

One of the most influential work on privacy from the recent years if the design of
the ε-differential privacy criterion by C. Dwork [Dwork06a]. The intuition is simple, and
takes another path from usual methods: there should not be an increased risk of privacy
leakage whether or not an individual (or entity) is included in a statistical database.
This models therefore studies the knowledge not before and after anonymization, but
with or without a record in the dataset. A differentially private data release therefore
guarantees that removing or adding a single record would not change the statistical in-
tegrity or analysis of the data. While this is the notable advantage of protecting against
dataset linkage and against attackers whatever their prior knowledge, it also amounts
to the possibility of having fake data going unnoticed in a data release; one could ar-
gue that this is not an important requirement for aggregate studies, rather than micro-
data concerns. Dwork also provided a mechanism based in the introduction of Laplace
noise in the dataset in order to achieve privacy [Dwork06c]. Other mechanisms subse-
quently developed include randomized responses, an approach inspired by an old sur-
vey anonymization technique [Warner65, Wang16], a "staircase" mechanism based on
geometrically stacked uniform random variables [Geng15], and an exponential mecha-
nism, where noise is distributed exponentially [Dwork06c, McSherry07].
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Dwork’s efforts quickly spawned numerous applications and derivatives, as exem-
plified by Dwork herself in a survey only two years later [Dwork08]. But rather than
inducing incremental changes like k-anonymity did, differential privacy was quickly
adopted as a de facto standard to uphold, and was instead analyzed and discussed on
many different sub-fields which in turned tried their luck at designing algorithms to
achieve a differentially private data release in their scope of study. This also means
that surveys on differential privacy as a whole are rare (the main survey being now
10 years old [Dwork08] and the other main survey from the recent years being only
available in Chinese [Xiong14]) or tend to be informal, or focused on application on a
given sub-field (such as machine learning [Ji14]). Still, some tried to tighten or relax the
differential privacy criterion to build other privacy models; we now explore some of
these works.

Dwork herself et al. suggested a relaxation of ε-differential privacy, providing a
probability "error margin" bounded by a value δ: this is the (ε, δ)-differential privacy
generalization [Dwork06b]. This provides a relief for "unlikely" events that could eas-
ily break the initial, very strict definition of differential privacy. Another recent gen-
eralization and relaxation of the original ε-differential privacy based on the Rényi di-
vergence (a generalization of the Kullback-Leibler divergence, measuring a distance
between probability distributions) is the (α, ε)-Rényi differential privacy [Mironov17]
where α is the dimension used to compute the distance. (∞, ε)-Rényi differential pri-
vacy is equivalent to ε-differential privacy, while (1, ε)-Rényi differential privacy would
be validated using the the Kullback-Leibler divergence. This approach allows for "bad
outcomes" to happen without a margin as big as the original δ factor, while having the
same composition power as other differential privacy methods. Another modern relax-
ation concurrently developed is concentrated differential privacy, designed by C. Dwork
and G. Rothblum in [Dwork16] and studied in [Bun16], where privacy is achieved if the
random variable modeling privacy loss has a small mean and follows a sub-Gaussian
distribution.

While there is still some effort to develop new approaches or privacy models en-
hancing the original differential privacy or its derivatives, the current trend tends to
focus on data management or data release of already differentially private datasets,
as surveyed in [Zhu17]. Another trend is the design of ad hoc frameworks, based on
differential privacy, but adapted to specific contexts, e.g. governmental data [Piao19],
location data for connected devices [Zhou19], or Internet of Things data [Ghayyur18].

We highlight a few algorithms ensuring ε-differential privacy in specific contexts.
One of the most relevant is the general PPDP algorithm from [Mohammed11], pro-
viding an algorithm based on generalization operations and uncertainty in a non-
interactive context, guaranteeing enough data utility to use classifying data mining
algorithms on the sanitized data. Other famous applications include the context of
recommendation systems [McSherry09] building on the infamous Netflix data leakage
stated in [Narayanan08] and mentioned earlier, as well as potential solutions to bring
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privacy in this database; Rastogi and Nath provided a differentially private aggrega-
tion algorithm for time-series data, using a perturbation mechanism based on Fourier
noise [Rastogi10]; Chen et al. proposed a differentially private anonymization algo-
rithm for sequential transit data [Chen12]; finally, Xu et al. suggested a framework
for publishing data histograms satisfying differential privacy, with two possible noise
mechanisms depending on the desired focus [Xu13].

Another recent line of work is trying to reconcile k-anonymity-based approaches
along with differential privacy. For example, Soria-Comas et al. have shown that us-
ing a k-anonymity approach on a dataset, based on micro-aggregation, could then re-
duce the amount of noise necessary to reach ε-differential privacy [Soria-Comas14].
This noise is indeed added to each aggregated equivalence class. This approach then
evolved into strict t-closeness guarantees compatible with the differential privacy cri-
terion [Soria-Comas15].

2.1.4 Graph database anonymization

Most of the methods mentioned so far are based either on abstract designs of databases,
or on traditional relational databases, where a dataset is a set of records, those records
being tuples where each values corresponds to a predicate taken as a column. To
cater to the particularities of LOD, it might be more relevant to study privacy mech-
anisms based on graph databases, since RDF is heavily shaped on this model. Graph
anonymization is closely related to social networks anonymization, their influence get-
ting bigger and bigger since the beginning of the decade, and their modeling as graphs
being intuitive (each node is a person or an organization, and they are interlinked by
various relationships: friendship, family links, retweets, media sharing, etc.). Privacy
in social graph networks has been heavily studied by now, and surveyed multiple times
([Zhou08b, Zheleva11, Wu10, Ding10], and more recently in [Kayes17]). Recently, some
more general surveys on graph privacy also emerged [Ji17, Casas-Roma17]. We there-
fore, once again, only select the most influential and relevant portion of these works.

There are two visions of graph database anonymization. The first is to adapt existing
techniques, such as the ones from the previous sections, and study the behavior of such
algorithms or principles induced by this structural changes. The second is to develop
new techniques, sometimes inspired by previous work, to natively handle nodes and
edges instead of records in a table. In a slightly different fashion, we will focus on
two aspects: we begin by structural anonymization techniques (such as adaptations
of k-anonymity and derivatives, working directly on nodes and edges) and conclude
with various adaptations of differential privacy for graph databases. For other existing
approaches, to ease readability we adopt the six-folded classification from [Ji17], since it
already includes some categories we studied in previous sections. This decomposition
is as follows:
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• Naive removal of identifiers: this is roughly equivalent to the pseudonymization
techniques used in relational databases where only columns containing sensitive
values are deleted. Intuitively, even on graph databases, these are vulnerable
to many attacks such as equivalents of the linkage attacks or learning-based ap-
proaches mentioned earlier [Backstrom11, Narayanan09]. These structural-based
attacks are among the most common in social network study.

• Edge editing techniques: Ying and Wu suggested models based on edge editing, no-
tably one where a fixed number of existing edges are deleted and the same num-
ber of edges are created between random nodes [Ying08]. While this approach has
the advantage of preserving the spectrum of the graph, it introduces wrong infor-
mation and can represented a heavy loss of utility in terms of microdata release
or data mining. A specific type of edge editing name are the random walk-based
approaches first developed by Mittal et al. [Mittal13], where an edge between two
entities e1 and e2 is replaced by an edge between entities e1 and eR, where eR is the
destination of a random walk on the considered graph, starting from e1.

• Clustering- or aggregation-based techniques: in a bit of a similar fashion to k-
anonymity (since it induces indistinguishability between entities), many tech-
niques are based on clustering users or entity in groups or classes. For example,
it is possible using partitions to create a "generalized" graph consisting of edges
of various density between groups of nodes [Hay08] or to create classes of en-
tities based on the label of the edges between them, while preventing inference
leakages [Cormode09].

• k-anonymity-based techniques: see Section 2.1.4.1.

• Differential privacy-based techniques: see Section 2.1.4.2.

It should be noted that many other research tracks regarding privacy in graphs ex-
ist, some of them not being focused on anonymizing graphs themselves, but for ex-
ample on the reverse process (de-anonymization attacks), or on the criteria required to
be anonymous or vulnerable (de-anonymizability analysis). Attacks tend to be focused
on structure-based attacks given the specificity of graph databases and following the
initial work from Narayanan et al. [Narayanan09], and try to find unique characteris-
tics of each entity found in the graph to de-anonymize it. These attacks can be based
on a set of pre-identified entities called seeds (such as in [Narayanan09, Korula14]),
or not (like in [Pedarsani13, Ji16a]). Regarding de-anonymizability, which in itself
is also slightly out of the scope of this thesis, some work was also performed using
seeds [Ji15, Korula14], but since attacks have been possible without seed data, de-
anonymizability should also be considered without seeds. Some conditions based on
the structure of the anonymized graph and the external graph considered were estab-
lished [Pedarsani11] while Ji et al. studied how to quantify this de-anonmyzability,
based on each entity’s structural importance in the graph [Ji16b].



22 Chapter 2. Related work

2.1.4.1 k-anonymity-based graph anonymization approaches

Various basic implementations or adaptations of k-anonymity to graph databases were
suggested, starting at the end of the 2000s. The first works were designed to iden-
tify the most intuitive attacks, and to prevent them through mechanisms similar to
k-anonymity techniques on relational data. The basic attacks found were neighborhood
attacks [Zhou08a] where a node would be recognized based on its neighbor nodes, and
degree attacks [Liu08] where a node could be identified using its outgoing and incoming
edges; these issues can be respectively solved simply by grouping nodes with similar
neighbors and by creating an anonymized graph where at least k nodes have the same
degree. Some more advanced attacks were then considered, such as attacks using sub-
graph enumeration and patterns of "hubs" (nodes that are central to the graph due to
their links with other nodes) [Hay08], or linkage attacks [Nobari14] where some tighter
techniques were necessary, notably using strong structural similarity between parts of
the graph, such as the k-automorphism [Zou09] and k-isomorphism [Cheng10]. Both
criteria protect against all these structural attacks by ensuring respectively that each
entity in the graph has k − 1 symmetric entities with respect to k − 1 automorphic
functions, or that a graph is basically disjointed into k equivalent automorphisms or
isomorphisms.

It quickly appeared that k-anonymity on its own was not suitable for graph
databases, and was easily vulnerable to many structure-based attacks [Pedarsani13,
Narayanan08] because, even if entities in the graph were protected from specific struc-
tural attacks, it is still possible to compute other graph analytics to identify nodes (e.g.,
centrality, path length statistics, combined metrics, betweenness, etc.). Therefore, the
only way to preserve a lot of privacy with this type of approach is to separate sensitive
data from the rest, in terms of connectivity; which destroys data utility.

2.1.4.2 Differential privacy-based graph anonymization approaches

Similarly to k-anonymity methods, adaptations of differential privacy for graph
databases were quickly set up at the end of the 2000s. These approaches are mostly
focused on PPDM, most notably on releasing specific statistics while being "pri-
vate" (without leaking data in the process): usually a value or a vector in recent
works [Raskhodnikova16], or things like the degree distribution of a graph [Hay09].
This is as opposed to releasing the whole graph, and works mostly for social network
analysis, since as we have seen earlier this is a big part of current studies on graph
databases. Most of these techniques work by computing sensitivity studies, notably
smooth sensitivity [Nissim07], that is computing the variability of the output of a
function providing a release of the data of some sort.

Differential privacy variants for graph databases are usually classified in two: edge
differential privacy, where the neighboring graphs considered should differ with only
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one edge, and node differential privacy where one of the considered graph can be obtain
using the other by deleting a node and its edges. The first works, at the start of the decade,
were based on reaching edge differential privacy when providing various statistics such
as the degree distribution of the graph [Hay10, Lin13], the number of copies of a small
subgraph in the original graph [Karwa11], or the cut of a graph [Gupta12]. Some ana-
log works at the time also decided on slightly changing the original privacy model,
sometimes creating models that were weaker (such as considering only Bayesian adver-
saries [Rastogi09]) or stronger (such as a "zero knowledge gained" model still able to
provide degree computation and neighborhood for some graphs [Gehrke11]) than the
original differential privacy.

Newer techniques are now focused on achieving node differential privacy for
any input graph, and can provide better algorithms for the edge counterpart as
well while still providing usual utility metrics regarding subgraphs or degree dis-
tribution. These recent methods are based on using finer notions of sensitiv-
ity [Blocki13, Kasiviswanathan13] or new mechanisms such as a recursive algorithm to
answer linear queries [Chen13].

In an other direction, some tried to define differentially private graph models, such
as the Pygmalion graph model [Sala11] where a graph is modeled by the degree dis-
tributions grouped by connected components of the same size in a target graph; this
statistical output is then perturbed to achieve classical ε-differential privacy. Another
model proposed by Proserpio et al. focuses on graph topology metrics [Proserpio12].

2.1.5 RDF and Linked Data anonymization

The sub-field of data anonymization and PPDP related to this thesis is the one regard-
ing Linked Data and RDF anonymization; this means that we will be able to compare more
directly the work presented in this manuscript with existing works. But the literature
touching the subject is rare, and sometimes lacking. In short, logical frameworks for
privacy-preserving Linked Data publishing were briefly studied, but were not investi-
gated further than logical foundations and theoretical problems. We analyze how the
main aspects of our contributions were previously explored, if possible in the context
of Linked Data, but otherwise in other relevant contexts.

2.1.5.1 Data privacy and utility concerns for the LOD

Most of the models we explored in the previous sections, first conceived for relational
databases, have been recently extended to the setting of the Semantic Web [Kirrane18].
Among them, the privacy model that is definitely the closest to our work is k-anonymity
and its derivatives, for which there has been recently some partial work to adapt it for
RDF graphs [Radulovic15, Heitmann17]. These works focus on defining operations of
generalization, suppression or perturbation to apply to values in the range of properties
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known to be quasi-identifiers for personal identification, along with metrics to measure
the resulting loss of information.

An alternative approach to anonymization for protecting against privacy breaches
consists in applying access control methods to Linked Data [Oulmakhzoune12,
Villata11, Kirrane17, Endris18]. In the Semantic Web setting, when data is described
by description logics ontologies, preliminary results on role-based access control have
been obtained in [Baader17] for the problem of checking whether a sequence of role
changes and queries can infer that an anonymous individual is equal to a known in-
dividual. Compared to access control techniques that perform verification at runtime,
we focus on a static analysis approach executed only once and guaranteeing that the
published datasets do not contain sensitive information.

2.1.5.2 Linkage concerns

In line with existing works on the subject [Deutsch05, Miklau07, Grau08] on safety
models defined in terms of secret or privacy queries for relational data, or logic-based
information systems, a query-based safety model for RDF data has been introduced in
[Grau16, Grau19] where linking RDF graphs is reduced to their union. Several results
are provided on the computational complexity of the decision problem consisting in
checking whether an anonymization of an RDF graph is safe with regard to a given
privacy policy, i.e. a given query whose results must not leak information.

Privacy-preserving record linkage has been recently considered in [Vatsalan17] as
the problem of identifying and linking records that correspond to the same real-world
entity without revealing any sensitive information about these entities. For preserv-
ing privacy while allowing the linkage, masking functions are proposed to transform
original data in such a way that there exists a specific functional relationship between
the original data and the masked data. The problem of privacy-preserving record link-
age is a difficult problem that is significantly different from the privacy-preserving data
publishing problem considered in this thesis, in which sameAs links are input of the
anonymization process.

2.2 Position of this thesis

As Chapter 1 and Section 2.1 show, it turns out that concrete and usable frameworks
for fine-tuned anonymization of RDF data and for the LOD are rare. Previous efforts
are focus rather on theoretical guarantees and logical modeling, or on rough adapta-
tions of existing anonymization techniques for relational or graph databases, which do
not fully address the semantic particularities of Linked Data. To remedy this, we de-
cide on building on the logical framework introduced by [Grau19] where privacy is
expressed in a declarative manner as conjunctive queries composing policies. We then



Section 2.2. Position of this thesis 25

extend this declarative framework by modeling utility through queries too, as well as
the anonymization operations as update queries.

We now develop the main distinguishing points that our approach requires and that
will be developed in our contributions.

Generic and data-independent approach of anonymization

A typical caveat or sacrifice that anonymization frameworks have to suffer is their
heavy data-dependence. Indeed, an intuitive way to anonymize a given database
would be to analyze the entirety of its records and sequentially decide how to process
and sanitize it based on the observed values. But this implies a complete knowledge
and availability of the data, and is computing-heavy. The same goes for frameworks
where a specific anonymization process is applied to specific unsafe values, or where
anonymization operations are conditioned by the number of records possessing a spe-
cific value for a given predicate.

Besides, RDF graphs in general can get really big, even when a shortened syntax
like Turtle is used. For example, considering only the interlinked graphs from the LOD
cloud in 2017 amounted to a dataset whose size was over 500GB, and with more than
28 million triples [Fernández17]. For such huge sets of data, a data-dependent solution
would therefore amount to a very long running time, and would also lead to more com-
plex configuration and pre-processing to be done by the end user. Indeed, there would
be additional customization and optimization for each graph to be anonymized, which
would imply additional time spent on researching optimal settings and analyzing the
contents of the graph to look for specific adjustments.

Therefore, we decide on designing a static, data-independent solution: the frame-
work we intend on creating must allow for the anonymization of any valid RDF graph,
whatever its contents or its schema.

Query-based modeling of privacy/utility policies and anonymization operations

In order to be precise and fine-tuned, anonymization requires rules: these principles
can be materialized in many ways and formats. They can be the result of a spoken
discussion between business-related and IT-related services, they can be automated
or automatically generated (in particular when the anonymization is done in a data-
dependent fashion), based on the data or on its structure. These rules must be simple,
to be both human- and machine-readable in the best possible way, but still need a sub-
sequent amount of expressiveness to designate subtle or specific parts of the data that
must be anonymized. Besides, the DPO (in the case of an RGPD-compliant publisher)
is supposedly the one person knowing the most about privacy requirements regarding
the data the provider wants to publish; simple declarative constraints would therefore
give them the possibility to express these requirements.

To achieve this, we focus on providing a simple way to express constraints on the
final data (to be published to the LOD cloud), preferably in a way requiring as few con-
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versions and processing as possible to be implemented simply in an RDF anonymiza-
tion framework. This means using something as clear as possible in terms of technol-

ogy and language for the data provider.

The same thought process is valid for the anonymization operators computed by
the framework as well: while they do not need as much readability as the data disclo-
sure constraints, they have to be understandable as well (e.g. for debugging or quality
control).

Native operators and tools

While using declarative constraints might be useful for the data provider, it might not
be more easily machine-readable for the anonymization software used; that is why it
should also be required to as many native technologies as possible, and as many official
standards (here, W3C recommendations) as possible. This is again valid as well for
anonymization operators. Indeed, to ease the design of the software pipeline and to
ensure functionality and efficiency, they also need to be as native as possible in terms of
format and processing. This is the other side of the spectrum mentioned in the previous
paragraph, meaning that we need to use formats and software which are the closest

we can to native RDF and SPARQL.

To succeed in implementing each of these requirements, we intend on leveraging
the logical tools designed in [Grau19] and on building on this basis to design concrete
privacy guarantees as well as concrete algorithms and implementations.

Compared to general LOD anonymization methods presented in Section 2.1.5.1,
our approach is more generic and also fully declarative since it allows the definition
of fine-grained privacy policies specified by queries, and to obtain candidate sets of
anonymization operations allowing to practically enforce the requested privacy with-
out loosing the desired utility.

In contrast with existing approaches based on k-anonymity, we will focus on gen-
eralizations that replace constants by blank nodes. We also focus on guaranteeing safe
anonymizations, a subject not explored in these simple adaptations. Techniques fo-
cused on linkage issues, such as the ones mentioned in Section 2.1.5.2, are therefore the
closest to our approach, with the notable exception that in our contributions, we slightly
extend the considered safety model and we address the data-independent construction
problem underpinning safety, i.e. how to produce a sequence of update operations that
are safe for any RDF graph, given a privacy policy expressed as queries. We also include
the notion of utility policies and sameAs linkage in more pragmatic terms. To the best
of our knowledge, ours is the first approach providing generation of anonymization
operations for ensuring safety under a set of privacy queries.
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BASED on the goal of this thesis and the previously developed state of the art, we
now lay the detailed technical context, as well as the logical and theoretical foun-

dations of all tools used in future contributions. This includes definitions of classical
RDF, SPARQL, and query-related concepts, as well as their equivalencies with current
W3C standards. Section 3.1 provides a concrete overview of usual standards and tools,
before detailing their logical representation in Section 3.2.

3.1 Linked Open Data standards

The W3C writes and maintains various standards and documents for Linked Open
Data and Semantic Web notions1, whether they are languages, usage recommendations,
lists of best practices, glossaries, vocabularies, or primers. In this context, this includes
both formal definitions and grammars of RDF data and SPARQL queries, as well as
various RDF syntaxes.

3.1.1 RDF

RDF (Resource Description Framework) [Wood14] is a framework intended to model
information or knowledge regarding resources, which can be anything: moral concepts,
persons, institutions, abstract ideas, websites, physical documents, and so on. Its goal
is therefore to model as much as possible of one’s knowledge regarding anything, in
a way that is processable by software applications, servers, or any automated system.
RDF uses a graph-based data model, where data is modeled as triples consisting of a subject,
a predicate (or property) and an object. Sets of triples are therefore akin to graph databases.
Each node from the triples of an RDF graph is either:

• an IRI (Internationalized Resource Identifier)2, a string identifying a resource
globally, formatted following [Duerst05];

• a literal, i.e. a raw string, a numeric value or a date value (possibly explicitly
typed using specific datatype IRIs taken from XSD, the XML schema specification
language [Pan06]);

• a blank node, i.e. a local and anonymous resource identifier.

For instance, and following our running example presented in Section 1.5, we de-
fine a simple graph consisting in the triples contained in Table 3.1, schematically repre-
sented on Figure 3.1.

1See https://www.w3.org/TR/?tag=data for an exhaustive list.
2Not to be confused with URIs (Uniform Resource Identifiers) or URLs (Uniform Resource Locators):

IRIs are an extension of URIs, since URIs only use ASCII characters as opposed to the whole Unicode set
of characters for IRIs. On the other hand, URLs are a subset of IRIs/URIs, denoting the address of a web
resource on a given network.



Section 3.1. Linked Open Data standards 29

Table 3.1: Example of a simple RDF graph.

Subject Predicate Object

http://example.org/v26830
http://www.w3.org/1999/

02/22-rdf-syntax-ns
http://example.org/Validation

http://example.org/v26830
http://example.org/
validationDatetime

"2017-04-27T19:46:51"

http://example.org/v26830
http://www.w3.org/2003/
01/geo/wgs84_pos#latitude

"45.7599724233"

http://example.org/v26830
http://www.w3.org/2003/

01/geo/wgs84_pos#longitude
"4.82594480511"

http://example.org/v26830 http://example.org/user http://example.org/u9590

http://example.org/u9590
http://www.w3.org/1999/

02/22-rdf-syntax-ns
http://example.org/User

http://example.org/u9590
http://xmlns.com/foaf/

0.1/givenName
"Germon"

http://example.org/u9590
http://xmlns.com/foaf/

0.1/familyName
"Anthony"

http://example.org/u9590
http://www.w3.org/2006/

vcard/ns#hasAddress
"180 Rue A 69XXX

Curis-au-Mont-d’Or"
http://example.org/u9590 http://example.org/birthday "1946-03-26"

Figure 3.1: Graph visualization of the RDF graph from Table 3.1.

The set of all IRIs used as predicates in a graph is called the schema of an
RDF graph. Generally speaking, collections of predefined IRIs named vocabular-
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ies are used to write RDF graphs, and their usage and readability can be sim-
plified using prefixes indicating namespaces. On the example RDF graph repre-
sented on Figure 3.1, IRIs from Table 3.1 are shortened, e.g. rdf: is a short-
hand for http://www.w3.org/1999/02/22-rdf-syntax-ns# and foaf: re-
places http://xmlns.com/foaf/0.1/. This also helps identifying the original
vocabulary of a given IRI in a more readable way. Prefixes can be customized are
not set in stone, for example one could use customprefix: as a shorthand for
http://www.w3.org/1999/02/22-rdf-syntax-ns# instead of rdf: if they de-
sire it, but it is not optimal. Some namespaces are nonetheless quasi-standardized by
usage, and online directories are available to find the most common ones3.

RDF triple stores can describe multiple graphs, and standards provide the notion of
RDF datasets, which are sets of optional named graphs (the name being an IRI as well),
with a mandatory unnamed default graph. In this case, RDF triples can effectively be
considered as RDF quads, where a graph identifier IRI is added to the original subject,
predicate and object.

RDF can be written in many different syntaxes, and serialized in various formats as
well. The W3C defines for example RDF/XML, which is a way to represent RDF data
in XML format [Schreiber14]. The W3C, for example, also defines concise plain text
syntaxes such as Turtle [Carothers14] or N-Triples [Seaborne14], and other serialization
formats such as a JSON syntax for RDF [Kellogg14]. Non-standard syntaxes include
for example RDF encoding for standard HTML forms4, a plain text syntax for encod-
ing microblogging data5, or dataset/quad-oriented syntaxes such as TriX [Carroll04].
Throughout this manuscript, we will use the Turtle syntax, where prefixes can be used,
and repeated subjects or properties can be omitted when writing triples.

One of the main aspects of RDF graphs and an advantage of its simple structure
is the fact that RDF triple stores can infer new information from existing triples, using
automated deductive reasoning. These reasoners can work in RDF using the two main
types of inference: forward chaining (deduct new triples by applying inference rules on
existing facts and iterate this process until no new triples can be created) and backward
chaining (proving a fact or answering a query using existing facts).

3.1.2 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) [Harris13] is the query lan-
guage defined by the W3C mainly used for the interrogation and edition of RDF graphs.
It is inspired by relational query languages such as SQL and is used to query RDF data
sources, on one or multiple graphs, whether they are local or external. The main lan-
guage is the query language, but the W3C extended SPARQL to include an update

3For example, the Prefix.CC search engine.
4http://www.lsrn.org/semweb/rdfpost.html
5http://buzzword.org.uk/2009/microturtle/spec
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language as well [Polleres13] commonly named SPARQL Update6, therefore making
SPARQL usable to complete all CRUD operations (creating, reading, updating and
deleting data from RDF graphs, or entire graphs themselves). The current version is
SPARQL 1.1, which is the version used as a reference here. Note that RDF prefixes can
also be used in SPARQL queries as a shorthand to write IRIs.

SPARQL generally works by finding graph patterns or triple patterns in RDF graphs,
which are triples where variables can occur in addition to standard RDF constants
(which may be filtered), using the WHERE clause of a query, and then performing opera-
tions on such patterns. In the case of the SPARQL query language, these operations can
be to SELECT variables (extract specific values from triples), CONSTRUCT graphs based
on found patterns, ASK if a given pattern exists (boolean queries), and DESCRIBE a
given graph. Example 3.2 is a SELECT query which could be run on the graph from
Figure 3.1 and Table 3.1, yielding the results presented in Table 3.2. Query results are
either RDF graphs (in the case of CONSTRUCT and DESCRIBE queries) or a set of bind-
ings found in the graph for each variable (for typical SELECT queries).

Example 3.2 SPARQL query selecting the travel dates of user #9590.

1 SELECT ?trv ?date
2 WHERE {
3 ?trv rdf:type tcl:Validation.
4 ?trv tcl:user tcl:u9590.
5 ?trv tcl:validationDatetime ?date.
6 }

Table 3.2: Results obtained when evaluating the query from Example 3.2 on the graph
from Figure 3.1 and Table 3.1.

trv date
tcl:v26830 "2017-04-27T19:46:51"

The SPARQL Update language also works using graph and triple patterns. SPARQL
Update queries performing actions on the graph are usually called operations. These
operations serve two main purposes, quite similar to those from usual query languages
such as SQL:

• Data management (CRUD operations over triples from one or more graphs):
DELETE triples and optionally INSERT new ones, LOAD a graph into another one,
or CLEAR all triples;

6The SPARQL Update language is also sometimes nicknamed "SPARUL" to follow the name on its
original W3C Submission.
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• Graph management (CRUD operations over graphs themselves): CREATE, DROP
(delete), MOVE (rename) and COPY a graph, as well as ADD the content of a graph
into another.

Example 3.4 is a DELETE/INSERT query which could once again be used on the graph
from Figure 3.1 and Table 3.1. The results of this evaluation is the updated graph pre-
sented in Table 3.3 (prefixes are used for clarity and ease of reading).

Example 3.4 SPARQL Update query editing user #9590’s birth date.

1 DELETE { tcl:u9590 tcl:birthDate ?date . }
2 INSERT { tcl:u9590 tcl:birthDate "1994-05-13"^^xsd:date . }
3 WHERE { tcl:u9590 tcl:birthDate ?date . }

Table 3.3: RDF graph from Example 3.1 edited by the update query from Example 3.4.

Subject Predicate Object

tcl:v26830 rdf:type tcl:Validation
tcl:v26830 tcl:validationDatetime "2017-04-27T19:46:51"
tcl:v26830 geo:latitude "45.7599724233"
tcl:v26830 geo:longitude "4.82594480511"
tcl:v26830 tcl:user tcl:u9590
tcl:u9590 rdf:type tcl:User
tcl:u9590 foaf:givenName "Germon"
tcl:u9590 foaf:familyName "Anthony"
tcl:u9590 vcard:hasAddress "180 Rue A 69XXX Curis-au-Mont-d’Or"
tcl:u9590 tcl:birthday "1994-05-13"

Note that SPARQL Update queries do not return results, according to the standards;
they only perform the structural modifications described in their header and body, pos-
sibly returning failure or success flags depending on the operation. Nevertheless, some
triple stores and query engines implement specific return values for SPARQL Update
queries, such as the number of triples altered by the query.

Both types of SPARQL queries can be used in triple stores and query engines locally,
but also by the general public through the use of SPARQL endpoints, which are public
or private interfaces allowing anyone to query RDF triple stores using legal SPARQL
queries (or other syntaxes if they are supported by the query engine). These endpoints
can be used by software usually as a REST API, or manually by an user through web
interfaces.
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3.1.3 Ontologies using RDFS and OWL

The classical and generic definition of ontologies was written by Tom Gruber in 1993,
defining them as "explicit specifications of a conceptualization" [Gruber93]. More con-
cretely, in the case of the Semantic Web, ontologies are complex vocabularies encom-
passing specific terms and relationships on a given theme or subject, to be then reused
on any RDF graph in need of such terminology. They help the design of an RDF graph
by offering a variety of pre-existing concepts and values, helping the uniformity of
RDF graphs in general by making it easier to reuse an unique vocabulary to describe
the same notions. Ontologies are therefore one of the building blocks of Linked Data
itself. The W3C designed standards to help conceiving ontologies, rather than directly
providing ontologies themselves. The two main ones are RDF Schema (RDFS) and the
Web Ontology Language (OWL). In a way, both are vocabularies to help building vocabu-
laries.

RDFS [Brickley14] is an extension of the original, native RDF vocabulary allowing
the description of simple meta-data over an RDF graph, such as classes and proper-
ties along with various concepts related to them (sub-classes, sub-properties). Based
on this, it is also possible to define the range and the domain of a property, using the
previously defined classes. All these terms are IRIs prefixed with the string rdfs:, as
a replacement for http://www.w3.org/2000/01/rdf-schema#.

OWL2 [McGuinness12] is the most recent version of OWL and is once again a lan-
guage designed to write ontologies. OWL can be seen a more complex and more ad-
vanced alternative to RDFS: its vocabulary is much bigger, and includes most of RDFS
in itself. Also, while RDFS only acts as additional metadata, OWL encompasses more
logical formalism as it also prohibits some relationships (e.g. a class instance cannot
be a class itself). OWL2 includes three sub-languages (or "profiles"), since reasoning on
the entirety of the OWL logic might be too expensive in terms of computation complex-
ity: EL (allowing a lot of expressivity and decent reasoning time with many classes and
properties), RL (focusing on reasoning time for complex systems and forward chain-
ing, at the expense of expressivity), and QL (allowing decent query answering time, for
databases using a lot of class instances) [Wu12]. OWL can also express restrictions on
data, such as a minimal/maximal cardinality for a given property, or a list of items in
which a class instance must have its value.

Many ontologies exist online, published by experts and usually specialized in a
given subfield, and they are mostly based on RDFS and OWL. It is also possible to find
online repositories to help one finding a satisfying ontology or vocabulary namespace,
such as the specialized BioPortal website from the National Center for Biomedical On-
tology [Jonquet11]. Note that the same vocabulary can be imported in different ways
when modeling an RDF graph, since this is all a matter of syntax and there is no com-
pilation or validation of the IRIs written in a graph, which may cause interoperability
issues in itself [Atemezing13].
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The usual theoretical formalization for RDF graphs and SPARQL queries will be
detailed in the following section, inspired by the one detailed in [Gutiérrez04].

3.2 Logical formalization

3.2.1 RDF and SPARQL basics

Let I, L and B be countably infinite, pairwise disjoint sets representing respectively IRIs,
literals and blank nodes.

We denote by T = I ∪ L ∪ B the set of terms, in which we distinguish constants
(IRIs and literals) from blank nodes, which are used to model unknown IRIs or literals
like in [Goasdoué13, Buron19] and correspond to labeled nulls in traditional database
formalizations [Abiteboul95].

We also assume an infinite set V of variables disjoint from the previously defined
sets. Throughout the following chapters, we adhere to the SPARQL conventions: vari-
ables in V are prefixed with a question mark (?), IRIs in I are prefixed with a colon (:),
and blank nodes in B are prefixed with an underscore and a colon (_:).

Definition 1 (RDF graph). An RDF graph is a finite set of RDF triples (s, p, o), where
(s, p, o) ∈ (I ∪ B)× I × T.

IRIs appearing in second position in triples (as p) denote predicates, and provides
the schema, i.e. the graph structure of the data.

SPARQL queries are structured in two main parts: a head and a body. The body of
a query describes the patterns to be found in the target graph with possible filtering
conditions or advanced processing (union of patterns, optional patterns, grouping...),
while the head designates the variables whose value must be fetched, with or with-
out additional computations. For example, the query can return the requested values
themselves, or compute aggregate functions such as a sum or a counting function.

The body of a query is an RDF graph pattern, which is a set of triples that may contain
variables and that is defined as follows:

Definition 2 (Graph pattern). A triple pattern is a triple (s, p, o) ∈ (I ∪ B ∪ V) × (I ∪
V)× (T ∪ V). A graph pattern is a finite set of triple patterns.

We now define logical entailment between graphs or between graph patterns. First,
we define homomorphisms between these objects.

Definition 3 (Graph and graph pattern homomorphisms). Let H and H′ two RDF graphs
or two graph patterns. An homomorphism from H′ to H is an application h : (T ∪ V) →
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(T ∪ V) such that h(H′) ⊆ H and where:{
h((s, p, o)) = (h(s), h(p), h(o))
h(c) = c, for c ∈ L ∪ I

We define mappings as a particular case of homomorphisms where H is an RDF graph.

We define φ(H) as the logical modeling of a graph (resp. graph pattern) H, that
is the conjunction of its triples where each is interpreted as an atomic formula and
where each blank node (resp. each variable) is interpreted as an existentially quantified
variable whose scope is H.

Example 3.5 Graph and graph pattern entailment

Let the following graphs:

G1 = { ex:a ex:p ex:b. ex:b ex:q ex:c. }
G2 = { ex:a ex:p _:b. _:b ex:q ex:c. }
G3 = { _:b ex:p ex:o. ex:o ex:p _:b. }

We have the following modelizations, where T is the logical evaluation of an RDF triple:

φ(G1) = T(ex :a, ex :p, ex :b) ∧ T(ex :b, ex :q, ex :c)

φ(G2) = ∃?b | T(ex :a, ex :p, ?b) ∧ T(?b, ex :q, ex :c)

φ(G3) = ∃?b | T(?b, ex :p, ex :o) ∧ T(ex :o, ex :p, ?b)

Let the following graph pattern:

GP = { ?x ex:p ?y. ?y ex:q ?z. }

We have:
φ(GP) = ∃?x, ?y | T(?x, ex :p, ?y) ∧ T(?y, ex :q, ?z)

Definition 4 (RDF graph entailment (from [de Bruijn10])). For any two graphs or graph
patterns H and H′, H entails H′ if and only if every model of φ(H) is also a model of φ(H′).
We write H |= H′.

We now link graph (and graph pattern) entailment to homomorphisms in Theo-
rem 1.

Theorem 1. Let H and H′ two RDF graphs or two graph patterns. H |= H′ if and only if
there exists an homomorphism from H′ to H.

Proof sketch. Using Definition 4, we can write that H |= H′ ⇔ Ans(bool(H), G) ⊆
Ans(bool(H′), G) for any graph G, where bool(Q) is the boolean query built from a
conjunctive query Q: we have Q = {∅, body(Q)}.
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The equivalence we are looking for amounts in fact to the homomorphism theorem
from [Chandra77] and [Abiteboul95] (Theorem 6.2.3), both long-established statements.

It is a variant of the interpolation lemma from [Hayes14, Gutiérrez11] for the first-
order logic semantics of Definition 4.

We also define the notion of unification between two graph patterns. This definition
works when the considered graph patterns do not possess variables with the same
name. Without loss of generality, variables can be renamed to make this definition
applicable.

Definition 5 (Unifiable graph patterns). Let GP1 and GP2 two graph patterns. GP1 and
GP2 are unifiable if there exists a function s replacing variables from GP1 and GP2 by constants
or by variables of GP1, such that s(GP1) = s(GP2). A most general unifier replaces variables
by constants appearing in GP1 or GP2 only if no unifier exists that replaces the corresponding
variables with variables.

Example 3.6

Let the following graph patterns GP1 and GP2. Note than in this case, neither of those
graph patterns entails the other.

1 GP1 = { ?x1 p ?x1 . ?x1 q ?y1 . }
2 GP2 = { ?x2 p ?y2 . ?z2 q ?z2 . }

GP1 and GP2 are unifiable, using this unifier s:

s(?x1) = ?x1 s(?y1) = ?x1

s(?x2) = ?x1 s(?y2) = ?x1

s(?z2) = ?x1

We also define the canonical RDF graph of a graph pattern which is in fact the most
general RDF graph satisfying this graph pattern as stated in Proposition 1.

Definition 6 (Canonical RDF graph). The canonical (RDF) graph of a graph pattern GP is
the RDF graph GC obtained by replacing each variable from GP by a distinct fresh constant,
without using blank nodes.

Proposition 1. Let GP a graph pattern, and GC its canonical RDF graph. The following
statements hold:

• GC |= GP ;

• For any graph or graph pattern H, if GC |= H then GP |= H.

Proof sketch. We prove both affirmations separately.
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• GC |= GP

By definition of GC, we have a bijection between the variables from GP and the new
constants from GC. This implies there is a μ such that μ(GP) = GC. By Theorem 1 1,
this implies that GC |= GP.

• For any graph or graph pattern H, if GC |= H then GP |= H

We know that GC |= GP, therefore there is a μ such that μ(GP) ⊆ GC. Besides, since
GC |= H, there is a μ′ such that μ′(H) ⊆ GC.

Let v ∈ V a variable in H. We have μ′(v) = c with c a constant, but by definition of
GC, there is a variable v′ ∈ V in GP such that μ(v′) = c.

We can progressively build the mapping μ′′ such that μ′′(v) = v′. μ′′ is a function,
since for each v

By construction, we have μ′′(H) ⊆ Gp, and by Theorem 1, GP |= H.

3.2.2 Types of queries

We can now define the three types of queries that we consider in our approach, along
with the answers to these queries.

The first type of queries introduced in Definition 7 is a formalization of conjunc-
tive queries. It is in fact a slight restriction of the standard definition of graph pattern
queries, and it will be the basis for formalizing the sensitive information that must not
be disclosed. The second type, defined in Definition 11, corresponds to counting queries.
This type of queries will be used in our approach to model a form of utility that may be
useful to preserve for analytical tasks. Both of these types of queries are based on the
semantics of SPARQL SELECT queries.

Finally, Definition 12 defines the third type of queries: update queries, which model
the anonymization operations handled in our framework, based on the SPARQL Up-
date semantics. They are logical modelings of SPARQL Update queries to be used as
anonymization operators.

Definition 7 ((Restricted) Conjunctive query). A conjunctive query Q is defined by an ex-
pression SELECT x̄ WHERE GP(x̄, ȳ) where GP(x̄, ȳ) (also denoted body(Q)) is a graph pattern
without blank nodes, and x̄ ∪ ȳ is the set of its variables among which x̄ are the result vari-
ables (also called the distinguished variables), and where the subset of variables in predicate
position is disjoint from the subset of variables in subject or object position. A conjunctive query
Q can be alternatively written as a pair Q = 〈x̄, GP〉.

A boolean query is a conjunctive query of the form Q = 〈∅, GP〉.
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Note that considering graph patterns without blank nodes to define conjunctive
queries is not a restriction, since the normative SPARQL query evaluation of a query
treats its blank nodes as variables.

It should also be noted that conjunctive queries with variables in predicate position
are allowed, if such variables do not appear in a subject or object position, as it is the case
in Example 3.7. Example 3.8 shows an example of a query that does not conform to
Definition 7. This restriction is necessary in order to ensure that within a conjunctive
query, all occurrences of a given variable are in the same connected component (see
Definition 8).

Example 3.7

The following statement is a conjunctive query, in conformity with Definition 7.

1 SELECT ?s ?v
2 WHERE {
3 ?s ?p ?o.
4 ?o ?p ?v.
5 ?o rdf:type tcl:User.
6 }

Example 3.8

Consider the following query:

1 SELECT ?s ?v
2 WHERE {
3 ?s ?p ?v.
4 ?p rdf:type owl:ObjectProperty.
5 }

This does not conform to Definition 7, because the variable ?p appears in a predicate
position in the first triple pattern, and in a subject position in the second triple pattern.
According to Definition 8, this query has two connected components, each of them
containing one occurrence of ?p.

Definition 8 (Connected components of a query). Given a conjunctive query Q = 〈x̄, GP〉,
let GQ = 〈NQ, EQ〉 be the undirected graph defined as follows: its nodes NQ are the distinct
variables and constants appearing in subject or object position in GP, and its edges EQ are the
pairs of nodes (ni, nj) such that there exists a triple (ni, p, nj) or (nj, p, ni) in GP.

Each subgraph SGQ of GQ corresponds to the subgraph of body(Q) made of the set of triples
(s, p, o) such that either (s, o) or (o, s) is an edge of SGQ. These subgraphs are the connected
components of GQ. By slight abuse of notation, we will call the connected components of the
query Q the (disjoint) subsets of GP = body(Q) corresponding to the connected components
of GQ.
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A connected component GPC of the query Q is called boolean when it contains no result
variable.

Example 3.10 Connected components in a query.

Let Q be the following SPARQL query (remind that in SPARQL syntax, a is a shorthand
for rdf:type):

1 SELECT ?u ?n
2 WHERE {
3 ?u a tcl:User .
4 ?u foaf:givenName ?n.
5 ?v a tcl:Validation.
6 ?v tcl:validationDatetime ?d.
7 }

Q has two connected components, namely GP1 and GP2:

GP1 = {
?u a tcl:User .
?u foaf:givenName ?n.

}

GP2 = {
?v a tcl:Validation.
?v tcl:validationDatetime ?d.

}

GP2 is a boolean connected component as it contains neither the variable ?u nor the
variable ?n that are the only result variables of the query Q. It expresses a boolean
condition for satisfying the query: there must exist (in the graph) a validation for which
there is a validation date and time provided. If the boolean condition holds, GP1 ex-
presses the constraints on the pairs (user, name) of constants respectively instantiating
the result variables ?u and ?n to be returned as answers to the query: user must be
an user with name as their given name.

We now define the notion of critical terms in a query, in Definition 9. They will play
an important role in the algorithms of both contributions presented in Chapters 4 and 5.
Example 3.12 uses the query from Example 3.10 to illustrate this notion.

Definition 9 (Critical terms). A variable (resp. constant) in subject or object position having
several occurrences within the body of a query is called a join variable (resp. join constant).
We name the union of the join variables, join constants and result variables of a query as its
critical terms.

We now define how a query is evaluated, and the answers this evaluation might
return. The evaluation of a query Q = 〈x̄, GP〉 over an RDF graph G consists in finding
mappings μ assigning the variables in GP to terms such that the set of triples, denoted
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Example 3.12 Critical terms in a query.

We use the same query as in Example 3.10.

1 SELECT ?u ?n
2 WHERE {
3 ?u a tcl:User .
4 ?u foaf:givenName ?n.
5 ?v a tcl:Validation.
6 ?v tcl:validationDatetime ?d.
7 }

This query has three critical terms, namely u, v (since both have multiple occurrences
in the body of the query) and n (since it is a result variable of the query).

μ(GP) and obtained by replacing with μ(z) each variable z appearing in GP, is included
in G. The corresponding answer is defined as the tuple of terms μ(x̄) assigned by μ to
the result variables. We write G[b0 ← b′0, . . . , bk ← b′k] for the graph in which each
occurrence of bi is replaced by b′i for every i ∈ [1..k].

Definition 10 (Evaluation of a conjunctive query ([Pérez09])). Let Q = 〈x̄, GP〉 be a
conjunctive query and let G be an RDF graph. The answer set of Q over G is defined by :
Ans(Q, G) = {μ(x̄) | μ(GP) ⊆ G}.

According to Definition 10, a boolean query Q has only two possible answers, in-
deed for all G, Ans(Q, G) is either ∅ or {∅}. Definition 10 is then extended to counting
queries as well, in Definition 11.

Definition 11 (Counting query). Let Q be a conjunctive query. The query Count(Q)
is a counting query, whose answer over a graph G is defined by: Ans(Count(Q), G) =
|Ans(Q, G)|

We now define an additional ingredient: update queries, based on the eponymous
SPARQL mechanism. As opposed to the previous conjunctive queries, update queries
are not designed to return the contents of a graph, but rather modify its contents, by
deleting or replacing parts of the graph matching a given pattern. Intuitively, an update
query DELETE D(x̄) INSERT I(ȳ) WHERE W(z̄) isNotBlank(b̄) executed on a graph G
searches for the instances of the graph pattern W(z̄) in G, then deletes the instances of
D(x̄) and finally inserts the I(ȳ) part.

The isNotBlank(b̄) operator, which translates to FILTER(!isBlank(b1) && ...
&& !isBlank(bn)) in SPARQL (where b1, ..., bn ∈ b̄), rules out instances where a vari-
able in b̄ is already mapped to a blank node. It will be used in Algorithm 3 to avoid
replacing the images of critical terms that are already blank nodes, because treating
these cases would be unnecessary.

Note that it is indeed allowed to insert blank nodes in I(ȳ). For example, _:b1
is a blank node designating the same resource in each mention of _:b1 in the same
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graph pattern, but reusing _:b1 in another query or graph pattern would indicate a
new blank node. These semantics of blank nodes model the SPARQL specification.7

Definition 12 (Update query). An update query (or update operation) Qu is defined by
DELETE D(x̄) INSERT I(ȳ) WHERE W(z̄) isNotBlank(b̄) where D (resp. W) is a graph
pattern whose set of variables is x̄ (resp. z̄) such that x̄ ⊆ z̄; and I is a graph pattern where
blank nodes are allowed, whose set of variables is ȳ such that ȳ ⊆ z̄. isNotBlank(b̄) is a
parameter where b̄ is a set of variables such that b̄ ⊆ z̄. The evaluation of Qu over an RDF
graph G is defined by:

Result(Qu, G) = G \ {μ(D(x̄))|μ(W(z̄)) ⊆ G ∧ ∀x ∈ b̄, μ(x) /∈ B}
∪ {μ′(I(ȳ))|μ(W(z̄)) ⊆ G ∧ ∀x ∈ b̄, μ(x) /∈ B}

where μ′ is an extension of μ renaming blank nodes from I(ȳ) to fresh blank nodes, i.e. a
mapping such that μ′(x) = μ(x) when x ∈ z̄ and μ′(x) = bnew ∈ B otherwise.

When b̄ is empty, we avoid writing isNotBlank(∅). Similarly, when INSERT I(ȳ) is
empty, the query is written DELETE D(x̄) WHERE W(z̄) and is called a deletion query.

The application of an update query Qu on a graph G is alternatively written Qu(G) =
Result(Qu, G). This notation is naturally extended to a sequence of operations O =
〈Q1

u, . . . Qn
u〉 by O(G) = Qn

u(. . . (Q1
u(G)) . . .).

For the sake of conciseness, we write Update(H, I, W) for the function to the update
query DELETE H INSERT I WHERE W and Delete(H, W) for the function of the deletion
query DELETE H WHERE W, that is:

Update(H, I, W) = λG.Result(DELETE H INSERT I WHERE W, G)

Delete(H, W) = λG.Result(DELETE H WHERE W, G)

Example 3.13

The following query taken from Example 3.4 conforms to Definition 12 and is a valid
update query.

1 DELETE { tcl:u9590 tcl:birthDate ?date . }
2 INSERT { tcl:u9590 tcl:birthDate "1994-05-13"^^xsd:date . }
3 WHERE { tcl:u9590 tcl:birthDate ?date . }

As we will need to compare query and query results, we will also use the notion of
query containment. The classical definition of query containment is recalled and adapted
to our notations in Definition 13.

7See [Harris13], Section "SPARQL Grammar, Blank Nodes and Blank Node Labels": https://www.
w3.org/TR/sparql11-query/#grammarBNodes
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Example 3.14

The following query conforms to Definition 12 as well, as blank nodes are allowed in
the insertion graph pattern of the query.

1 DELETE { tcl:u9590 tcl:birthDate ?date . }
2 INSERT { tcl:u9590 tcl:birthDate _:blank . }
3 WHERE { tcl:u9590 tcl:birthDate ?date . }

Definition 13 (Query containment (from [Chirkova09])). Let Q1 and Q2 two conjunctive
queries. Q1 is contained in Q2 if and only if Ans(Q1, G) ⊆ Ans(Q2, G) for any graph G.

Query containment as a sub-field has been extensively studied in database the-
ory [Doan12], and many algorithms have been designed to check it along with asso-
ciated complexity results. Checking query containment is NP-complete for conjunctive
queries [Millstein03]. The classic algorithm to check if a query Q1 is contained in a
query Q2 works by evaluating Q2 on the canonical graph of Q1’s body. If there is an
answer, Q1 is contained in Q2; otherwise it is not.
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obtain, something of equal value must be lost.

Hiromu Arakawa – Fullmetal Alchemist, vol. 1 (2001)

4
Query-based privacy and utility-preserving

anonymization

� Previous chapters detailed the context of this work. We now present the first main contribution,
from its motivation and the statement of the considered problem to a concrete implementation and its
characteristics. This chapter introduces our static, data-independent framework and deals with the local
anonymization of RDF graphs, provided some privacy and utility policies expressed as queries. We design
an anonymization algorithm for this framework and prove its soundness. �
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AFTER presenting the main motivations of this project, the technical and formal con-
text it is part of, and the state of the art regarding related and previous work, all

the ingredients are available to develop a full-fledged solution to the problems men-
tioned in Chapters 1 and 2. Notably, the lack of simple data-independent, native and
declarative RDF anonymization solution handling the duality between privacy and utility
restrictions. The main aspects of this contribution are also developed in [Delanaux18].

Note that in this framework, we assume that the RDF graphs (their schema and

their data parts) are not evolving during the anonymization process. This is a rea-
sonable assumption, since anonymization is usually performed at a fixed point in time
before publishing the graph rather than in a real-time fashion which would be closer to
access control approaches.

4.1 Motivation and approach

While providing a generic RDF anonymization framework is itself a good enough mo-
tivation, we need to explain the main principles that have guided our approach and to
position them with respect to Section 2.2.

• Privacy should be balanced with utility.

Anonymization is all about finding the right, or the best balance between data pri-
vacy and data utility. An extreme, simple solution would be to delete the whole data:
while this preserves privacy, this removes the entire utility and relevance of the data.
We therefore want to be able to build anonymized RDF graphs satisfying both privacy
and utility guarantees. This required an appropriate formalization of privacy and util-
ity policies to be able to customize the desired balance between them.

• Privacy/utility policies should be:

– Expressed by data providers, or at least be written in an accessible and un-
derstandable way to be handled by them;

– Adequately formally defined to enable their processing to check some prop-
erties (such as their compatibility).

This leverages two challenges. First, find a way to encore policies in a simple
(preferably native) format while keeping them easily machine-readable and useful.
And secondly, define a way to check the compatibility of these privacy and utility con-
straints, since they may be contradictory or erroneous: humans make mistakes, and
they can program software which can in turn make mistakes. This means that we have
to validate or provide theoretical criteria for a set of privacy and utility policies to be
not incompatible.
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• Anonymization operations should also be readable and understandable by

data providers to allow a selection among multiple candidate anonymizations.

This represents the core of our framework: define an automated anonymization
algorithm, agnostic to the graphs contents, using declarative operators to satisfy both
privacy and utility demands, and doing so every time it is possible to do it. Since there
may be multiple ways to satisfy both policies, these operators must not be opaque and
should be both human-readable and machine-readable to allow for a relevant decision.

Following this, we can express the goal of this thesis as such: we want to design full-

fledged, static algorithms anonymizing RDF graphs prior to their publication to the
LOD cloud, using declarative constraints on data and anonymization operators and
theoretical privacy guarantees following a fixed privacy/utility trade-off applicable in
the context of the Semantic Web.

Sketch of our approach

Based on these requirements, we detail the following contributions in the following
sections:

• We formalize the problem of finding sequences of anonymization operations
that satisfy policy and utility constraints provided as sets of conjunctive queries
named policies (Section 4.2), with operators generated as SPARQL update queries;

• We study the requirements for a privacy policy and a utility policy to be compatible
between one another (Section 4.3);

• We provide a static analysis method that does not need to inspect the dataset to
be anonymized in order to solve the aforementioned problem by building can-
didate sequences of basic anonymization operations reduced to atomic delete or
update queries. As such, our method is independent of the size of the datasets
and depends solely on the size of the queries. We also prove the soundness of our
method (Section 4.4);

• Finally, we discuss how our framework places itself in other techniques and con-
texts, such as reasoning with ontologies (Section 4.5);

To the best of our knowledge and accordingly to the survey from Chapter 2, such a
framework is the first to provide practical algorithms for building candidate sequences
of atomic operations, which has still been described as an open research challenge in the
latest years [Grau19]. We study the characteristics of the candidate sequences outputted
by our algorithm in an experimental analysis in Section 4.6.

In the end, such a framework is tailored for data publishing in the LOD since, as
expressed before, it is important to strike a balance between non-disclosure of infor-
mation (in particular, values likely to serve as quasi-identifiers when interconnected
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with external LOD datasets) and utility preservation for end-users querying the graph
or the LOD cloud in general. Our framework is carefully designed to meet all these
requirements by leveraging at the same time the expressive power of SPARQL queries
and the maturity and effectiveness of SPARQL query engines. It builds on the common
wisdom that queries from data providers are more and more available through online
SPARQL endpoints [Bonifati17]. Such queries are a valuable resource to understand
the real utility needs of users on publicly available data and to guide the data providers
in safe RDF data publishing.

For all these reasons, this approach paves the way to a democratization of privacy-
preserving mechanisms for LOD data and in the Semantic Web community in general.

4.2 A query-based framework

We develop the two main logical objects used in our framework: (i) the declarative
modling of privacy and utility by unions of conjunctive queries called policies, and (ii)
modeling anonymzation operations as update queries to be performed on the graph
to anonymize it.

4.2.1 Modeling policies through queries

The notion of policy encapsulates data privacy or utility demands regarding the
anonymized graph. In itself, a policy is simply a set of queries, as expressed in Defi-
nition 14.

Definition 14 (Policy). A policy is a set of conjunctive queries. A policy consisting of a set of
only one query is named an unitary policy.

The role of a policy in the framework, i.e. if it is a privacy policy (to indicate data that
should be hidden in the anonymized graph) or a utility policy (data that should be pre-
served and disclosed), is the determining factor of its semantics and formal meaning,
as we will see now. Following [Grau19], a privacy policy satisfies the anonymization
process if none of the sensitive answers holds in the resulting dataset. This is achieved
by letting the privacy queries return no answer or, alternatively, answers with blank
nodes, as shown in the remainder. We also model utility policies by sets of queries, that
can be either conjunctive queries or counting queries useful for data analytics. On the
other hand, to satisfy a utility policy the anonymization process must preserve the an-
swers of all the specified utility queries. We now formally define both types of policies.

Definition 15 (Privacy and utility policies: query-based semantics). Let P (resp. U ) be a
privacy (resp. utility) policy expressed as a set of conjunctive queries (resp. conjunctive or
counting queries).
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Let Anonym(G) be the result of an anonymization process of an RDF graph G by a sequence
of anonymization operators.

The privacy policy P is satisfied on Anonym(G) if for every P ∈ P and for any tuple of
constants c̄, it holds that: c̄ �∈ Ans(P,Anonym(G)).

The utility policy U is satisfied on Anonym(G) if for every U ∈ U it holds that for any
tuple c̄ of constants, c̄ ∈ Ans(U, G) ⇔ c̄ ∈ Ans(U,Anonym(G)).

We use the conventional notation |P| (resp. |U |) to denote the cardinality i.e. the
number of queries in each type of policy.

For a policy P (resp. U ) consisting of n queries Pi = 〈x̄P
i , GP

i 〉 (resp. m queries
Ui = 〈x̄U

i , GU
i 〉), we call the sum of the cardinalities of their bodies (i.e. the number of

triples in each query body) the size of the policy, defined by ∑n
i=1 |GP

i | (resp. ∑m
i=1 |GU

i |).
Example 4.1, designed following our running example, shows that privacy and util-

ity policies might impose constraints on overlapping portions of a dataset. Note that in
this example, the size of the privacy policy is 6 (2+4 triples) and the size of the utility
policy is 5 (2+3 triples).

4.2.2 Modeling anonymization operations as update queries

Regarding anonymization operations, we extend the notion of "suppressor functions"
considered in [Grau19] that replace IRIs with blank nodes by allowing also triple dele-
tions. The anonymization operations that we consider correspond to the previously
defined update queries (Definition 12).

In the following section, we will focus on two kinds of atomic anonymization oper-
ations that correspond respectively to triple deletions (i.e. the particular case of Defini-
tion 12 where D(x̄) is reduced to a triple pattern and I(ȳ) is empty) and replacement of

IRIs by blank nodes (i.e. the particular case of Definition 12 where D(x̄) and I(ȳ) are
triple patterns that differ only by the fact that one bound variable of D(x̄) is replaced
with an existential variable in I(ȳ)).

These two atomic anonymization operations are illustrated in Examples 4.2 and 4.3
respectively. From now on, by slight abuse of notation with regard to Definition 12 we
will use the SPARQL standard notation for blank nodes [ ] to denote single existential
variables.
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Example 4.1

Consider a privacy policy P = {P1, P2} written over our running data example, defined
by the two following conjunctive queries written in concrete SPARQL syntax. The first
privacy query expresses that travelers’ postal addresses are sensitive and shall be
protected, and the second privacy query specifies that the disclosure of users identi-
fiers associated with geolocation information (like latitude and longitude as given by
the user ticket validation) may also pose a risk (for re-identification by data linkage with
other LOD datasets).

1 # Privacy query P1
2 SELECT ?ad
3 WHERE {
4 ?u a tcl:User.
5 ?u vcard:hasAddress ?ad.
6 }

1 # Privacy query P2
2 SELECT ?u ?lat ?long
3 WHERE {
4 ?c a tcl:Validation.
5 ?c tcl:user ?u.
6 ?c geo:latitude ?lat.
7 ?c geo:longitude ?long.
8 }

As a consequence, any query displaying either users’ addresses or users’ identifiers
together with their geolocation information would infringe this privacy policy, violating
the anonymization of the underlying dataset to be published as open data. The coun-
terpart utility policy is the set of queries U = {U1, U2}. This set states that users’ ages
and location related to journeys are to be preserved.

1 # Utility query U1
2 SELECT ?u ?age
3 WHERE {
4 ?u a tcl:User.
5 ?u foaf:age ?age.
6 }

1 # Utility query U2
2 SELECT ?c ?lat ?long
3 WHERE {
4 ?c a tcl:Validation.
5 ?c geo:latitude ?lat.
6 ?c geo:longitude ?long.
7 }

Example 4.2

In the same setting as Example 4.1, the following query specifies an operation deleting
users’ addresses.

1 DELETE {
2 ?u vcard:hasAddress ?ad.
3 }
4 WHERE {
5 ?u a tcl:User.
6 ?u vcard:hasAddress ?ad.
7 }
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Example 4.3

In the same context, this query replaces users’ identifiers related to a ticket validation
by a blank node.

1 DELETE {
2 ?c tcl:user ?u.
3 }
4 INSERT {
5 ?c tcl:user [].
6 }
7 WHERE {
8 ?c a tcl:Validation.
9 ?c tcl:user ?u.

10 ?c geo:latitude ?lat.
11 ?c geo:longitude ?long.
12 }

4.3 Compatibility between privacy and utility policies

Given a privacy policy and a utility policy, the first concern we want to address is to
make sure that these policies are compatible before attempting to generate anonymiza-
tion operations. We address this as the COMPATIBILITY problem, which is a decision
problem.

Problem 1. The COMPATIBILITY problem.

Input : P = {Pi} a privacy policy and U = {Uj} a utility policy

Output: True if for any graph G, there exists a sequence of operations O such that O(G)
satisfies both P and U and False otherwise.

We first provide a decision procedure which solves the compatibility problem when
the anonymization operations are reduced to triple deletions or replacement by blank
nodes. Theorem 2 shows that for overlapping privacy and utility policies, i.e., such
that their bodies have unifiable subgraphs (see Definition 5), checking their compatibility
can be reduced to the evaluation of their satisfiability over (the finite number of) all the
anonymization operations of the corresponding canonical RDF graphs (see Definition 1).

Theorem 2. Let a privacy policy P and a utility policy U . P and U are compatible if and
only if, for every P ∈ P and for every U ∈ U such that body(U) has an subgraph GPU that
is unifiable with body(P), there exists a transformation O(Gc) of the canonical graph GC of
s(body(P) ∪ body(U)) which satisfies P and U, where s is the most general unifier extended
to variables in body(U) that are not in GPU, and O is a transformation that deletes triples or
replaces constants by blank nodes.
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Proof. Two separate cases are possible: either there is no subgraph from body(U) unifi-
able with body(P), or there is such a subgraph.

Case 1: for every P ∈ P and for every U ∈ U , there is no subgraph from body(U)
unifiable with body(P).

In this case, there is a triple t ∈ body(P) that is not unifiable with any triple from
body(U).

Let μ each mapping from body(P) to G matching the answers of Ans(P, G): For
each μ, let O(G) the operation deleting μ(t): by construction, the answer matching the
considered μ is not an answer of P over O(G) anymore and P would be satisfied.

For each U, for each μ′ from body(U) to G, and for each triple t′ ∈ body(U), we
have μ′(t′) �= μ(t) since μ′ ◦ μ would be an unifier between t and t′, which is wrong by
hypothesis (t cannot be unified with a triple from body(U)).

Thus, the image of body(U) by μ′ is the same in O(G) and in G. Therefore,
Ans(U, O(G)) = Ans(U, G) for every U, and U is satisfied.

Both policies are satisfied, and therefore compatible.

Case 2: there is P ∈ P and U ∈ U such that there is a subgraph (pattern) GPU ⊆
body(U) unifiable with body(P).

We rename the variables from P and U so that there are no common variables.

Let GC the canonical graph of s(body(P) ∪ body(U)), where s is the most general
unifier extended to the variables from body(U) that are not in GPU by the identity (i.e.
variables x such that s(x) = x). We have Ans(P, GC) �= ∅ and Ans(U, GC) �= ∅.

Let O the set of possible operations over GC (triple deletions or replacement by
blank nodes): there are a finite number of operations, but it is potentially big. The
number of operations replacing constants by blank nodes is computed based on the
size of the queries. Let {c1, c2, ..., ck} the set of constants from GC: k < 2 × |GC| and
|GC| < max(size(p), size(u)).

Then c1 can be left untouched or replaced by a blank node b1, c2 can similarly be
left intact or replaced either b1 or another blank node b2, and so on (ck stays identical
or is replaced by b1 or b2 ... or bk).Therefore the number of possible transformations is
N = 1 × 2 × 3 times... × k × (k + 1) = (k + 1)!.

Two subcases occur in this situation.

Subcase 2a: For each operation O ∈ O preventing P from having answers containing

blank nodes over O(GC), we have Ans(U, GC) �= Ans(U, O(GC)).

If we cannot find an operation O such that Ans(U, GC) = Ans(U, O(GC)), then there is
no way to satisfy U . P and U are therefore incompatibles.
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Subcase 2b: Otherwise (i.e. there is an operation O ∈ O such that Ans(P, O(GC))
is empty or contains only tuples containing blank nodes, and Ans(U, O(GC)) =
Ans(U, GC)).

Let G a graph such that there is an answer c̄P ∈ Ans(P, G) only containing constants,
and there is an answer ¯cU ∈ Ans(U, G). Let μ and μ′ the respective mapping from
body(P) and body(U) to G.

If GP = μ(body(P)) ⊆ μ′(body(U)), then let GPU ⊆ body(U) such that μ′(GPU) =
μ(body(P)). We know that GPU and body(P) are unifiable: m ◦μ′ is an unifier, more spe-
cific than their most general unifier s. Let GC the canonical graph of s(GPU ∪ body(P)).

Then there exists ν an homomorphism from GC to GP such that μ ◦ μ′ = ν ◦ frozen ◦
s, where some of the distinct constants from GC can be mapped using ν to identical
constants in GP.

Let ν′ is an extension of ν to blank nodes so that ν′(c) = ν(c) for c ∈ L and ν′(b) = b
for b ∈ B. Consider the operation O′ over GP built using the operation O over GC, such
that O′ = ν′ ◦ O.

By construction, the only possible mapping μ′′ from body(P) to O′(GP) can only
be obtained through a composition of ν′ with a mapping from body(P) to O(GC). By
construction again, this last mapping either does not exist, or it returns blank nodes
among its answers, something that μ′′ would do as well. Thus, Ans(P, O′(G)) does not
contain the answer corresponding to μ anymore: P would be satisfied.

However, the mapping μ′′ from GPU to O′(GP) can be obtained as a composition of
ν′ with the mapping from GPU to O(GC) that preserves answers from U over GC, thus
from U over GP by applying ν′: U would be satisfied.

Thus, P and U are compatible.

Theorem 2 is a decidability result that is difficult to turn into complete algorithms
that would be feasible in practice due to the underlying enumeration process. However,
it entails several sufficient conditions for compatibility or incompatibility.

In particular, Theorem 3 provides a sufficient condition for incompatibility based
on the notion query containment reminded in Definition 13, while Theorem 4 states a
sufficient condition for compatibility that will be the basis of the algorithms presented
in Section 4.4.

Theorem 3. A privacy policy P and a utility policy U are incompatible if there exists a utility
query U ∈ U contained in a privacy query P ∈ P .

Proof. Let a query U ∈ U contained in a privacy query P ∈ P . By definition, we have
Ans(U, G) ⊆ Ans(P, G) for any graph G.
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Let Gbis the graph obtained from the body of U by replacing each variable by distinct
IRIs, and let t̄ the tuple of the IRIs corresponding to the distinguished variables of U.
Then by construction, t̄ ∈ Ans(U, Gbis). And since U is contained in P, we necessarily
have t̄ ∈ Ans(P, Gbis). Therefore, by definition of the privacy policy, Gbis violates P (and
therefore P as well).

Now, let O a sequence of operations such that O(Gbis) satisfies both P and U .
Ans(U, O(Gbis)) = Ans(U, Gbis) holds, by definition of the utility policy. We therefore
have t̄ ∈ Ans(U, O(Gbis)), and, by query containment, t̄ ∈ Ans(P, O(Gbis)). This means
that P is not satisfied, by definition of a privacy policy: there is a contradiction.

Example 4.4

Let P a utility policy consisting of this single query P:

1 SELECT ?ad
2 WHERE {
3 ?u a tcl:User .
4 ?u vcard:hasAddress ?ad .
5 }

Let U a utility policy consisting of this single query U:

1 SELECT ?ad
2 WHERE {
3 ?u a tcl:User .
4 ?u vcard:hasAddress ?ad.
5 ?ad tcl:professionalAddress true .
6 }

Here, U is contained in P (all the results from U are included in the ones from P).
Therefore P and U are incompatible.

Theorem 4. A privacy policy P and a utility policy U are compatible if for every privacy query
p in P there exists a triple pattern in body(p) that is not unifiable with any triple pattern in
the body of any utility query u in U .

Proof. This corresponds to Case 1 in the proof of Theorem 2.

We now focus on computing anonymization operations in order to satisfy both poli-
cies.

4.4 Finding candidate sets of anonymization operations

Given two compatible privacy and utility policies, the second problem of interest that we
address in this chapter is the ENUMOPERATIONS problem of generating anonymization
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operations which, when applied to any RDF graph violating the privacy policy, will
produce an anonymized RDF graph satisfying the privacy policy while preserving the
utility policy.

Problem 2. The ENUMOPERATIONS problem.

Input : P = {Pi} a privacy policy and U = {Uj} a utility policy

Output: A set O of sequences of operations O such that O(G) satisfies both P and U for
any graph G.

Note that an algorithm that solves the ENUMOPERATIONS problem could also solve
the COMPATIBILITY problem as well, by checking whether or not its output is ∅.

This section is devoted to the design of Algorithm 2, which solves the ENUMOPER-
ATIONS problem (Problem 2) using update operations (Definition 12) when the policies
P and U are defined by conjunctive queries (Definition 7). We also define an interme-
diate step dealing with unitary privacy policies, using Algorithm 1, which is then used
by Algorithm 2 in the global anonymization process.

Note that Algorithm 2 produces a set of sets of anonymization operations, and not
a set of sequences. Since we guarantee that the sets of operations hereby computed
solve Problem 2, any sequence obtained by reordering these sets would solve it as well.
Hence, the difference between sets and sequences of operations is fairly immaterial in
this context, although different sequences may cause different graphs as outputs; every
one of them will satisfy both policies nonetheless.

If the answer set of a query Q is preserved by an anonymization process, then so
does its cardinality. This implies that any solution for a non-counting query Q is also
a solution for its counting counterpart Count(Q). Similarly, if a utility query Q is sat-
isfied, then its counting counterpart Count(Q) is also satisfied. Therefore, we focus
on non-counting queries in Algorithm 1. However, the opposite implication does not
hold, hence we may miss some operations that may guarantee a utility counting query
Count(Q) without guaranteeing a non-counting utility query Q.

4.4.1 For unitary privacy policies

We start with the case where the privacy policy is unitary, i.e. when it is reduced to a
singleton P = {P}.

The intuition of Algorithm 1 is that it tries to find edges that are in the graph pattern
GP of P ∈ P but in none of the utility policy graph patterns GU

j from queries Ui ∈ U ;
more precisely, it tries to unify each triple from the utility queries with the considered
triple from the privacy query. As detailed in Section 4.3, we know that a privacy pol-
icy and a utility policy are compatible if such an unification is impossible on a graph
pattern level, but we also know that checking this is too costly. We therefore opt for a
tighter version of this, hence making this verification triple by triple.
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For each edge that exists in GP but not in any GU
j , a delete operation is constructed,

and possible update operations are considered. Update operations can be introduced
in two manners: either the subject of the triple is replaced with a blank node, or its
object is replaced with a blank node if it is an IRI. In both cases, the algorithm looks for
three alternatives:

• The triple is part of a path of length ≥ 2 in the privacy graph pattern GP, and
therefore the update operation breaks the path, thus satisfying the privacy policy
P ;

• The replaced subject (resp. object) is also the subject (resp. object) of another triple
in the privacy query graph GP and the update operation breaks the link between
these triples, hence satisfying the privacy policy P ;

• The replaced subject (resp. object) of the triple is also part of the distinguished
variables x̄ of the privacy policy query, leading to a blank value in the query
results, and therefore satisfying the privacy policy P .

The soundness of this algorithm is encapsulated in Theorem 5.

To ease the readability of the algorithm, we define the following helper functions
checking if update operations are possible according to the three cases mentioned ear-
lier. These conditions in fact model our notion of critical terms (Definition 9). The in-
tuition is to look for triples (s, p, o) that have a certain centrality in the graph, i.e. if s or
o are used in other triples. This means checking that another triple in the considered
graph pattern has s as object or as subject (in a triple different from (s, p, o)), and that
another triple has o as a subject or as object (in a triple different from (s, p, o)).

check-subject((s, p, o), G) = ∃(s′, p′, s) ∈ G ∨
(∃(s, p′, o′) ∈ G ∧ �σ (σ(s, p′, o′) = σ(s, p, o)))

check-object((s, p, o), G) = ∃(o, p′, o′) ∈ G ∨
(∃(s′, p′, o) ∈ G ∧ �σ (σ(s′, p′, o) = σ(s, p, o)))
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Input : a unitary privacy policy P = {P} with P = 〈x̄P, GPP〉
Input : a utility policy U made of m queries Uj = 〈x̄U

j , GPU
j 〉

Output: a set of operations O satisfying both P and U
1 function find-ops-unit(P,U):

2 Let H be the graph GPP with all its variables replaced by fresh onesa;
3 Let O := ∅;
4 forall (s, p, o) ∈ H do

5 Let c := true;
6 forall GU

j do

7 forall (s′, p′, o′) ∈ GPU
j do

8 if ∃σ (σ(s′, p′, o′) = σ(s, p, o)) then

9 c := false;

10 if c then

11 O := O ∪ {DELETE {(s, p, o)} WHERE H};
12 if check-subject((s, p, o), H) ∨ s ∈ x̄P then

13 O := O ∪ {DELETE {(s, p, o)} INSERT {([ ], p, o)} WHERE H};

14 if o ∈ I ∧ (check-object((s, p, o), H) ∨ o ∈ x̄P) then

15 O := O ∪ {DELETE {(s, p, o)} INSERT {(s, p,[ ])} WHERE H};

16 return O;

Algorithm 1: Find update operations to satisfy a unitary privacy policy

ai.e., with variables that do not appear in any GPU
j

To ease readability and structure the proof of the soundness of this algorithm, we
need to define intermediary lemmas. Lemma 1 asserts the monotonicity of the queries
used in our works. Lemma 2 shows why boolean queries are used in the privacy proof.

Lemma 1 (Graph pattern monotonicity). Let GP and GP′ be graph patterns with GP ⊆
GP′. Moreover, let G and G′ be RDF graphs with G ⊆ G′. The following inclusions hold for
all sets x̄ of variables of GP.

Ans(〈x̄, GP′〉, G) ⊆ Ans(〈x̄, GP〉, G) ⊆ Ans(〈x̄, GP〉, G′)

Proof. Let c̄ ∈ Ans(〈x̄, GP′〉, G). By definition, there exists some μ such that μ(x̄) = c̄
and μ(GP′) ⊆ G and in particular μ(GP) ⊆ μ(GP′). By the transitivity of inclusion,
both inclusions hold.

Lemma 2 (Boolean satisfiability). Let a query Q = 〈x̄, GP〉, let G an RDF graph and
let GP′ be a subset of GP together with a function η such that η(GP) ⊆ η(GP′). Then
Ans(〈x̄, GP〉, G) = ∅ if and only if Ans(〈〈〉, GP′〉, G) = ∅
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Proof. Let us denote the inclusion GP′ ⊆ GP by a function ι such that ι(GP′) ⊆ ι(GP).
We prove the only if direction by contraposition. Assume that there is an answer in
Ans(〈〈〉, GP′〉, G). By the definition of Ans, there is at least one μ such that μ(GP′) ⊆
μ(G). By composing μ and η we obtain μ ◦ η(GP) ⊆ μ ◦ η(G), thus Ans(〈x̄, GP〉, G) is
not empty. We prove the if direction by contraposition similarly. Assume that there is
an answer in Ans(〈x̄, GP〉, G) and call it ν such that ν(GP) ⊆ ν(G). By composing ν and
ι we obtain ν ◦ ι(GP′) ⊆ ν ◦ ι(G), thus Ans(〈〈〉, GP′〉, G) is not empty.

Finally, Lemma 3 encompasses the soundness of our privacy model.

Lemma 3 (Soundness for privacy). Let q = 〈x̄, GP〉 be a query, let H be GP renamed with
fresh variables, and let a triple (s, p, o) ∈ H. For every RDF graph G, the following update
queries satisfy privacy policy P = {q}:

DELETE {(s, p, o)} WHERE H, G)

DELETE {(s, p, o)} INSERT {(xu, p, o)} WHERE H, G)

DELETE {(s, p, o)} INSERT {(s, p, xu)} WHERE H, G)

where xu ∈ B a fresh blank node (equivalent to the [ ] convention used so far).

Proof. Let’s consider the three possible cases.

First query: Let Ganon = Delete({(s, p, o)}, H)(G) the graph obtained after deletion.
By Lemma 2 and by definition of query answers and privacy policy satisfiability, it is
equivalent to prove that Ans(〈〈〉, H〉,′ ) = ∅ that is, to prove that there is no ν such that
ν(H) ⊆ ν(Ganon). For the sake of contradiction, assume that such a ν exists.

Let’s consider the triple ν(s, p, o) ∈ Ganon. On the other hand, Ganon = G \
{μ(s, p, o) | μ(H) ⊆ μ(G)} by the definition of Delete, but picking μ = ν shows that
ν(s, p, o) /∈ Ganon, which is a contradiction.

Second query: Let Ganon = Update({(s, p, o)}, {xu, p, o)}, H)(G) the graph obtained
after subject update. Three possibles cases can trigger this operation.

• Case 1: ∃(s′, p′, s) ∈ GP

Let a ∈ Ans(〈〈〉, H〉, Ganon) an answer on Ganon, so that ∃μ | μ(H) ⊆ Ganon. In par-
ticular, this applies to the subgraph H̄ = {(s, p, o), (s′, p′, s)}, and we have μ(H̄) ⊆ G,
which is equivalent to {(μs, μp, μo), (μs′, μp′, μs)} ⊆ Ganon.

But by the definition of Update, we have Ganon = G \ {ν(s, p, o)|ν(H) ⊆ ν(G)} ∪
{ν(xu, p, o)|ν(H) ⊆ ν(G)}, as we replace every subject of matching triples (s, p, o) by a
fresh blank node. Therefore with μ = ν, we have μs = b ∈ B, a fresh blank node.
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We would then have μ(H̄) = {(b, μp, μo), (μs′, μp′, b)}, which is not possible since
b is by construction created as a fresh variable in each insertion and cannot be found
in two different triples: there is a contradiction and a cannot exist. With this operation
and this condition Ans(〈〈〉, H〉, Ganon) = ∅ and the privacy is fulfilled.

• Case 2: ∃(s, p′, o′) ∈ GP and �σ (σ(s, p′, o′) = σ(s, p, o))

We apply the same methodology as in Case 1: Let a ∈ Ans(〈〈〉, GP〉, Ganon) an
answer, and let a subgraph ḠP = {(s, p, o), (s, p′, o′)}, and we then have μ(ḠP) =
{(μs, μp, μo), (μs, μp′, μo′)} ⊆ Ganon. By construction of Update, we have μs = b ∈ B,
a fresh blank node. We would then have μ(ḠP) = {(b, μp, μo), (b, μp′, μo′). Plus, by
hypothesis, (s, p, o) and (s, p′, o′) are not unifiable. Therefore, such a case is not possible
and Ans(〈〈〉, GP〉, Ganon) must be empty. The privacy condition is satisfied.

• Case 3: s ∈ x̄P

Let’s consider an answer Ans(〈x̄, GP〉, Ganon). By definition of Update, Ganon = G \
{μ(s, p, o)|μ(GP) ⊆ μ(G)} ∪ {μ(xu, p, o)|μ(GP) ⊆ μ(G)}, as we replace every subject
of matching triples (s, p, o) by a fresh blank node xu. By hypothesis, s ∈ x̄P, therefore
∀a ∈ Ans(〈x̄, GP〉, Ganon), mus ∈ a, that is ∃xu ∈ B | xu ⊆ a. Which entails that for
any tuple full of constants c̄, c̄ /∈ Ans(〈x̄, GP〉, Ganon), which means that the privacy is
ensured.

Third query: Let Ganon = Update({(s, p, o)}, {s, p, xu)}, GP)(G) the graph obtained af-
ter value update. Let’s consider the triple ν(s, p, o) ∈ Ganon.

We consider the same 3 cases as the second query and show using the same rules
that:

• In the first case (∃(o, p′, o′) ∈ GP), an answer to the query would mean that
μ(ḠP) = {(s, μp, b), (b, μp, o)} with b ∈ B a fresh blank node, which is not possi-
ble.

• In the second case ((∃(s′, p′, o) ∈ GP and �σ (σ(s′, p′, o) = σ(s, p, o)), an answer
would imply μ(ḠP) = {(μs, μp, b), (μs′, μp′, b) with b ∈ B a fresh blank node,
which is not possible.

• In the third case (o ∈ x̄P), we have ∀a ∈ Ans(〈x̄, GP〉, Ganon), μo ∈ a, that is ∃b ∈ B

such that b ∈ a.
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Theorem 5 (Soundness of Algorithm 1). Let P be a privacy policy consisting of a single
query and let U be a utility policy. Let O = find-ops-unit(P ,U) computed by Algo-
rithm 1. For all o ∈ O, for any RDF graph G, P and U are satisfied by o(G) obtained by
applying the update operation o to G.

Proof. The privacy query P from P is satisfied because each operation created at
Lines 11, 13 and 15 of Algorithm 1 is of a form covered by Lemma 3 for all choice
of (s, p, o) ∈ H made in the main loop at Line 4.

Next, we check that all queries Uj = 〈x̄U
j , GPU

j 〉 from U are satisfied, i.e. that
Ans(GPU

j , ok(G)) = Ans(GPU
j , G) for all Uj ∈ U.

Let j ∈ [1..m] and a ∈ Ans(GPU
j , G) an answer of GPU

j on G. By definition of Ans,
a = μ(x̄U

j ) for some μ such that μ(GPU
j ) ⊆ μ(G). We show that μ(GPU

j ) ⊆ μ(ok(G)) as
well, so a ∈ Ans(GPU

j , ok(G)) and the proof is complete.

We now have to show that Ans(GPU
j , ok(G)) ⊆ Ans(GPU

j , G) We explore the three
possibilities given by Lines 11, 13 and 15 of the algorithm to be applied as ok.

Line 11: Let consider t′ = (s′, p′, o′) ∈ GPU
j , for the sake of contradiction, assume

that μ(t′) /∈ ok(G), that is μ(t′) ∈ DB \ ok(G). By construction in Algorithm 1 and by the
definition of the Delete operation G \ ok(G) = G \ Delete({(s, p, o)}, H)(G) = G \ G \
(
⋃{ν(s, p, o) | ν(H) ⊆ ν(G)}) = (

⋃{ν(s, p, o) | ν(H) ⊆ ν(G)}). Thus μ(t′) ∈ G \ ok(G)
implies that μ(t′) = ν(t) for some t = (s, p, o) ∈ H and ν(H) ⊆ ν(G). As μ and ν have
distinct domains thanks to the renaming of GP, they can be combined into a function
σ such that σ(t′) = σ(t) defined by σ(v) = μ(v) when v ∈ dom(μ), σ(v) = ν(v) when
v ∈ dom(ν) and σ(v) = v otherwise. But this is precisely the condition at Line 8 so
ok /∈ O. We obtained the desired contradiction so a ∈ Ans(UU

j , ok(G)) and the proof is
complete.

Line 13:

Let j ∈ [1..m] and a ∈ Ans(GPU
j , ok(G)) an answer of GPU

j on ok(G). By definition
of Ans, a = μ(x̄U

j ) for some μ(GPU
j ) ⊆ μ(G) and by definition of Update, we have

μ(GPU
j ) ⊆ G \ Update({(s, p, o)}, {(xu, p, o)}, H)(G). We can write this as μ(GPU

j ) ⊆
G \ d(G) ∪ i(G) where d is the d(G) and i(G) are two graphs, respectively consisting
in triples deleted from G and added to G by the Update operation. a ∈ Ans(GPU

j , G)

would imply that μ(GPU
j ) ∩ i(G) = ∅.

Let t a triple (s, p, o) such that t ∈ μ(GPU
j ) and t ∈ i(G). The first criteria gives:

∃tU ∈ GPU | t = μ(tU). Additionally, t ∈ i(G) implies ∃tP ∈ H, ∃μP, ∃s | μP(tP) =
t = (s, p, o). We write tU as (sU , pU , oU) and tP as (sP, pP, oP). Therefore, the following
equalities must hold:

μ(sU) = xu, μ(pU) = p, μ(oU) = o

μP(sP) = s, μP(pP) = p, μP(oP) = o



60 Chapter 4. Query-based privacy and utility-preserving anonymization

We have a contradiction, since μ(tU) �= μP(tP) while by hypothesis, μ(tU) =
μP(tP) = t. Therefore this indeed proves that μ(GPU

j ) ∩ i(G) = ∅, and by deduction
that Ans(GU

j , ok(G)) ⊆ Ans(GPU
j , G).

Line 15:

We apply the same reasoning as the Line 13 proof, showing that in this case we
would obtain μ(tU) = (s, p, xu) by definition of the Update operation used at this line,
while μP(tP) = (s, p, o).

This proves again that μ(GPU
j ) ∩ i(G) = ∅, and therefore that Ans(GPU

j , ok(G)) ⊆
Ans(GPU

j , G).

The behavior of Algorithm 1 is illustrated in the following Example 4.5.

Example 4.5 Application of Algorithm 1

Consider the policies P = {P1, P2} and U = {U1, U2} given in Example 4.1 with
bodies GP

1 , GP
2 , GU

1 and GU
2 , respectively. Let us consider two different runs of Algo-

rithm 1. The call to find-ops-unit(P1,U) produces the following set O1 of opera-
tions whereas the call to find-ops-unit(P2,U) produces O2:

O1 = {DELETE {(?u, vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {([ ], vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {(?u, vcard :hasAddress,[ ])} WHERE GP
1 }

O2 = {DELETE {(?c, tcl :user, ?u)} WHERE GP
2 ,

DELETE {(?c, tcl :user, ?u)} INSERT {([ ], tcl :user, ?u)} WHERE GP
2 ,

DELETE {(?c, tcl :user, ?u)} INSERT {(?c, tcl :user,[ ])} WHERE GP
2 }

Indeed, there is only one way to satisfy P1, U1 and U2: delete or update the address
?ad of each user ?u as shown in O1. This goes by either deleting it, replacing the
address value by a blank node in the hasAddress triple (possible since ?ad is also a
distinguished variable), or replacing the user with a blank node (possible since there
is another triple originating from the user variable ?u in the policy query body). Notice
that the update or deletion of the triple (?u,a,tcl:User) is not authorized, because
U1 would not be satisfied.
The only acceptable operations for P2, U1 and U2 as shown in O2, are either to delete
the link between users and their journeys, or replace each argument of this relation
with a blank node. Replacing the subject of the considered triple (the journey variable
?c) is possible since it is also featured as the subject of other triples in the query body,
while replacing the object (the user variable ?u) is possible since it is a distinguished
variable of the privacy query.
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4.4.2 General case

We now extend the previous algorithm to the general case where P is a set of n queries.
The idea is to compute operations that satisfy each Pi using Algorithm 1 and then to
distribute the results. The soundness of this algorithm is encapsulated in Theorem 6
and its associated Corollary 1.

Input : a privacy policy P made of n queries Pi = 〈x̄P
i , GP

i 〉
Input : a utility policy U made of m queries Uj = 〈x̄U

j , GU
j 〉

Output: a set of sets of operations Ops such that each sequence obtained from
ordering any O ∈ Ops satisfies both P and U

1 function find-ops(P ,U):

2 Let Ops = {∅};
3 for Pi ∈ P do

4 Let opsi := find-ops-unit(Pi,U);
5 if opsi �= ∅ then Ops := {O ∪ {o′} | O ∈ Ops ∧ o′ ∈ opsi};

6 return Ops;

Algorithm 2: Find update operations to satisfy policies

Theorem 6 (Soundness of Algorithm 2). Let P be a privacy policy and let U be a utility
policy. Let O = find-ops(P ,U ) and let G be an RDF graph. For any set of operations
O ∈ O, and for any ordering S of O, P and U are satisfied by S(G) obtained by applying to G
the sequence of operations in S.

Proof. First, note that Ok is either ∅ when some opsi is empty or it is of the form Ok =
{o1, . . . , on} with n = |P|. Indeed, the loop at Line 3 is executed once for each Pi, so at
line 5, either one opsi is empty and thus Ops = ∅ because {O ∪ {o′} | O ∈ Ops ∧ o′ ∈
∅} = ∅, or all opsi �= ∅ an each Ok ∈ Ops contains exactly one operation for each Pi.

By construction of Algorithm 2 and by Theorem 5, each o ∈ Ok satisfies at least one
of the Pi and all Uj and each Pi is satisfied by at least one o ∈ Ok. Thus any choice of an
ordering Sk of Ok is such that all Pi are satisfied.

Theorem 6 guarantees the soundness of all sequences of operations built from the
output of Algorithm 2. Corollary 1 uses this result for the COMPATIBILITY problem.

Corollary 1. Let P be a privacy policy and let U be a utility policy made of counting and non-
counting queries. If find-ops(P ,U ) �= ∅ then the COMPATIBILITY problem has True as a
solution.

The sets of operations produced by Algorithm 2 are not equivalent in the sense that
they may delete different sets of triples in the dataset. Moreover, even for a given set of
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operations, the choice of a possible reordering of its operations may have different ef-
fects on the dataset. Indeed, deletions and modifications of triples are not commutative
operations but due to the soundness of the algorithm, every obtained solution satisfies
the privacy and utility policies.

Regarding the complexity of Algorithm 1, its result O = find-ops-unit(P,U )
grows linearly with the size of P. Indeed, each triple in the body GP of P pro-
duces at most one delete operation and two update operations. However, regard-
ing the overall complexity of Algorithm 2, if each set O of operations O ∈ O =
find-ops(P ,U ) has cardinality |P| by construction, the distribution of the results ob-
tained by find-ops-unit on line 4 induces an exponential blowup on the size of O
due to the cartesian product on Line 5. In our experimental assessment (Section 4.6), we
will show that in practice the utility and privacy queries in P and U oftentimes over-
lap, thus decreasing drastically the actual number of sequences output by Algorithm 2,
possibly to none.

4.5 Supporting ontologies for the anonymization process

As stated in Section 3.1.3, one of the main characteristics and interesting aspects of
RDF is its ability to shape Linked Data, by linking resources from various sources and
by introducing reasoning based on (external or local) additional meta knowledge as
ontologies. While the dangers and circumvention of IRI re-utilization and linking will
be studied in the following Chapter 5 and its contribution, we now consider how the
use of ontologies could affect the usage of our framework and our privacy guarantees.

In fact, our query-based approach can be combined with ontology-based query
rewriting and thus can support reasoning for first-order rewritable ontological lan-
guages such as RDFS [Brickley14], DL-Lite [Calvanese07] or EL fragments [Hansen15].
More precisely, given a pair of privacy and utility policies made of conjunctive queries
defined over an ontology, each set of anonymization operations returned by Algo-
rithm 2 applied to the two sets of their corresponding conjunctive rewritings (ob-
tained using existing query rewriting algorithms, such as the ones from [Bursztyn15,
Calvanese07, Hansen15]) will produce datasets that are guaranteed to satisfy the poli-
cies.

We provide some examples of such rewritings in the following sections, modeling
situations where additional knowledge causes privacy breachs.

4.5.1 Incompatibility modulo knowledge

An additional factor to take into account is the fact that one may have additional knowl-
edge regarding existing data. We must therefore extend the basic definition of query
containment to account for this, which is done in Definition 16: a query Q1 is contained
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in a query Q2 modulo some knowledge K if for each answer of Q1 over G, we can find
it in the answers of Q2 or infer an answer of Q2 by using K.

Definition 16 (Query containment modulo knowledge). Let Q1 and Q2 two conjunctive
queries, and let K a graph representing external knowledge. Q1 is contained in Q2 modulo K
if and only if for any graph G, Ans(Q1, G) ∪ K |= Ans(Q2, G).

Thus, the algorithms checking if a query Q1 is contained in another query Q2 (in
our context, if a utility query U is contained in a privacy query P) must be adapted as
well to incorporate K in their process. There are two alternatives to do so, which can
be seen as contextual adaptations of the backward- and forward-chaining reasoning
techniques:

• Solution 1: Rewrite Q2/P using K and add the rewritten query to the privacy
policy;

• Solution 2: Complete Q1/U using K and check the containment of the completed
query with the privacy queries.

We illustrate both strategies in the following Example 4.6.

In short, the use of ontologies is perfectly compatible with this privacy framework
provided that reasoning has been applied to the policy queries beforehand.

4.5.2 Fixing incompatibility between policies

In this more prospective section, we explore possible solutions to solve incompatibil-
ity. Once an incompatibility factor has been found between two policies, clashing el-
ements must be resolved by modifying the privacy and utility policies. This would
usually be done by discussions between the data provider and the people in charge of
the anonymization process. We describe on of the main strategies that could be use to
do so.

This solution, depicted on Example 4.7, is to specialize privacy queries, by being more
specific in the triples requiring to be hidden.

In this example, the new privacy policy {P′} and the original utility policy {U}
would now be compatible, even modulo the knowledge K from Example 4.6.

This type of approach is not the core of this work, as we focus more concretely on
data anonymization algorithms, but future research regarding incompatible policies is
an important complimentary line of work. Notably, the definition or formalization of
optimal way to rewrite policies is very relevant.
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Example 4.6 Illustration of query containment modulo some knowledge

Let P a utility policy consisting of this single query P:

1 SELECT ?ad
2 WHERE {
3 ?u a tcl:User .
4 ?u vcard:hasAddress ?ad .
5 }

Let U a utility policy consisting of this single query U:

1 SELECT ?ad
2 WHERE {
3 ?u a tcl:User .
4 ?u vcard:hasProfessionalAddress ?ad.
5 }

Finally, let K the following knowledge:

vcard:hasProfessionalAddress rdfs:subPropertyOf vcard:hasAddress

As is, U is not contained in P, but using K we can infer that U is contained modulo K
in P.
If we address this using solution 1, we would have P = {P, P′} with P′ =
Rewriting(P, K), giving the following query P′ which would contain U.

1 SELECT ?ad
2 WHERE {
3 ?u a tcl:User .
4 ?u vcard:hasProfessionalAddress ?ad.
5 }

Using solution 2, we would have a new u = Complete(U, K) giving that U would be
contained in P.

1 SELECT ?ad
2 WHERE {
3 ?u a tcl:User .
4 ?u vcard:hasProfessionalAddress ?ad.
5 ?u vcard:hasAddress ?ad.
6 }

In both cases, we successfully find that these policies would be incompatible.

4.6 Experimental evaluation

We design an empirical study devoted to gauge the efficiency of the main algorithm of
the privacy/utility framework (Algorithm 2 from Chapter 4) and measure the impact
of the overlap and the size of the policy queries on its output.

For this study, we need to focus on various characteristics of this solution that will
form the three parts of our experiments:
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Example 4.7 Specializing a privacy query

Using the original privacy query P from Example 4.6, an example of a more specific
privacy query based on P would be the following query P′:

1 SELECT ?ad
2 WHERE {
3 ?u a tcl:User .
4 ?u vcard:hasPersonalAddress ?ad.
5 }

1. An experimental analysis of the risk of incompatibility between privacy and util-
ity policies;

2. The experimental evaluation of the impact of the privacy and utility policies on
the number of anonymizations alternatives produced by Algorithm 2;

3. Evaluating Algorithm 2’s runtime performance.

4.6.1 Setup and goals

As mentioned in Section 6.1.3, given that this solution already provides formal guaran-
tees on the data privacy and utility of the input graph through the input policies, this
experimental study will rather be focused on other factors impacting the anonymiza-
tion process.

While some experiments can be performed with real, concrete RDF graphs assum-
ing the position of a Data Protection Officer, i.e. building manual and plausible policies,
another possibility is to automate the creation of policies by using a generator or a query
workload using a predefined graph schema and study how the structure of queries im-
pacts various factors in the anonymization process. This is also in line with the need for
an explicit usage workload expressed in many works studied previously. To do so, we
use gMark [Bagan17], a schema-based synthetic graph and query workload generator,
as a benchmark for our experimental study when an extensive and non-deterministic
query batch is required. Due to the static nature of our approaches, we only need to
use such a schema to generate query workloads without the need of generating actual
graph instances. These workloads will then be used to compose privacy or utility poli-
cies.

We setup gMark by using the graph schema of our running transportation exam-
ple, by including types and properties described in Section 1.5. Precisely, we de-
fined a schema with 13 data types and 12 properties capturing information regard-
ing users (including personal data and subscription data for cardholders), ticket val-
idations and user rides (such as geographic coordinates of ticket validations and op-
tional subscription-related data), and information on the transportation network (such
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as maps). Using gMark, we then built a sample of 500 randomly generated conjunctive
queries upon the aforementioned schema, each one containing between 1 and 6 distin-
guished variables with a size ranging between 1 and 6 triples. As shown in a recent
study [Bonifati17], queries of such size are the most frequent ones in a large corpus of
real-world query logs extracted from SPARQL endpoints. This further corroborates our
assumption that our query sample is representative of real-world queries formulated
by end-users. To account for the structural variability of real-world queries, experi-
ments were performed on workloads using different shapes of queries: chain queries,
star queries, star-chain queries and a random mix of star-chain and star queries. To
ease readability, we present the results for star-chain queries only. The full list of ex-
periments is available in a notebook at the project’s GitHub repository, and results for
other types of query are mentioned in Appendix C.

To generate privacy and utility policies, we fix a number of conjunctive queries to
be part of the privacy and utility policies. Then, we randomly pick as many queries
as necessary in the query sample to build the policies based on this cardinality, while
avoiding duplicates in the same policy and in between both kinds of policies.

In all our experiments, we have opted for a balanced cardinality between privacy
and utility policies: we have set the policy cardinality equal to 3 for the experiments in
Sections 4.6.2 and 4.6.3. Depending on the experiment, policy size (i.e. the sum of the
sizes of the conjunctive queries defining it) may vary since the picked queries have a
varying size from 1 to 6.

To study differently how parts of the privacy and utility queries may overlap each
other, we define a metric computing a numerical value modeling this fact. We define the
overlap degree as the ratio between the number of triples appearing in privacy queries
that can be mapped to a triple appearing in a utility query and the total size of the
privacy policy. More formally, let P = {Pi} and U = {Uj} be privacy and utility
policies. The overlap degree between P and U is a real number in [0 . . . 1] defined as:

overlap(P ,U ) = ∑n
i=1 |{t ∈ body(Pi) | ∃j ∃t′ ∈ body(Uj) ∃μ μ(t) = μ(t′)}|

∑n
i=1 | body(Pi)|

When privacy queries fully overlap with utility policies, i.e., when their overlap de-
gree is equal to 1, the risk of incompatibility is high and it corresponds to the case where
Algorithm 2 returns ∅ as output.

In Section 4.6.2, we will measure the risk of incompatiblity between randomly gen-
erated privacy and utility policies by counting the number of cases where this full over-
lap occurs.

The algorithms have been implemented and evaluated using Python 2.7. The code
makes use of various libraries, notably the rdflib package1 to manipulate RDF data,

1https://github.com/RDFLib/rdflib
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the fyzz package2 to parse SPARQL queries, and the unification package3 to check
the compatibility between privacy and utility policies using the unification of variables
in triple patterns. At the time, all these tests were performed under Windows 10 on
a Intel R© CoreTM i5-6300HQ CPU machine running at 2.30GHz and 8GB of RAM. One
of the benefits of dealing with a query-driven static method for anonymization is to
avoid dealing with the size of an input graph, which could impact performance by in-
creasing runtime. Our static approach only deals with policy size when looking for
candidate anonymization sets, which is likely to make the algorithm simple and effi-
cient in general. To confirm this, we ran the Algorithm 2 for a batch of 100 executions
corresponding to input privacy and utility policies of 10 queries each, and we measured
the average running time. We obtained an average runtime of 0.843 seconds over all
executions, which turns to be satisfactory in practice. We can thus conclude that this
static approach provides a fast way to enumerate all the candidate sets of anonymiza-
tion operations.

4.6.2 Measuring overlapping degree between privacy and utility policies

Our goal is to estimate the risk of incompatibility of privacy and utility policies ran-
domly generated with a fixed cardinality of 3 and a varying size.

We have performed two experiments where we vary the size of the privacy (resp.
utility) policy from 6 to 12, which corresponds to privacy (resp. utility) queries having
between 2 and 4 triples, while keeping the size of the utility (resp. privacy) policy fixed
to 9, which corresponds to utility (resp. privacy) queries with 3 triples. In the first (resp.
second) experiment, for each of the 7 privacy (resp. utility) policy sizes, we launch 200
executions of Algorithm 2 and we count the number of executions returning ∅, which
allows to compute the proportion of fully overlapping policies. For space reasons, we
omit the corresponding histograms (available in our online notebook) and we describe
the obtained results in the following.

Results are displayed on Figure 4.1. In both experiments, we observed that only 49%

of the 1400 (corresponding to 200 runs multiplied by 7 data points) executions exhibit
compatible policies. This result clearly shows the necessity of designing an algorithm
which automatically verifies policy incompatibility prior to the the anonymization pro-
cess. It also reveals that even small policy cardinalities (equal to 3 for privacy and utility
queries) can already substantially prevent possible anonymizations.

We also noted in the first experiment (Figure 4.1a) that the overlapping rate between
privacy and utility policies tends to grow with the privacy policy size. This behavior is
in clear contrast with the intuition that the more privacy policy is constrained, the less
flexibility we have in satisfying them. The explanation however is that increasing the
size of the privacy policy decreases the risk that all its triples are mapped with triples

2https://pypi.org/project/fyzz/
3https://pypi.org/project/unification/0.2.2/
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(a) For privacy policies (b) For utility policies

Figure 4.1: Compatiblity of privacy and utility policies in function of their size

in the (fixed size) utility policy, and thus augments the possibilities of satisfying the
privacy and utility policies by triple deletions.

We observe the opposite trend in the second experiment (Figure 4.1b): the overlap-
ping rate between privacy and utility policies decreases with the utility policy size. The
reason is that requiring more utility for end-users restrains the possibilities of deleting
data for anonymization purposes.

4.6.3 Measuring the number of anonymization alternatives

When applied to compatible privacy and utility policies, Algorithm 2 computes the set
of all the candidate sets of update operations that satisfy the input policies. In the worst
case, the number of candidate sets corresponds the product of the sizes of the privacy
queries. In this experiment, we want to evaluate how this number evolves in practice
depending on (1) the overlap between privacy and utility policies, and (2) the total size
of the privacy and utility policies.

Algorithm 2 has been run on 7000 randomly generated combinations of privacy and
utility policies, thus covering a wide spectrum of combinations exhibiting various over-
lap degrees with various types of queries. For each execution, we compute the overlap
degree between the input privacy and utility policies and group results in clusters of
10% before plotting as a boxplot the number of candidate sets in executions featuring
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the given overlap degree (Figure 4.2). This provides a representation of how many al-
ternatives our algorithm provides for anonymizing a graph, depending on the policies
overlap. The boxplot allows to visualize both extreme values and average trends, given
that the randomization can easily create extreme cases and outlier values.

Figure 4.2: Candidate set length based on policy overlap

We can observe that the number of candidate sets quickly decreases when over-
lapping grows even slightly. This is easy to understand, given that increasing overlap
degree induces that less deletion operations are permitted by the algorithm. As soon as
the overlap degree reaches an high value, our algorithm provides very few anonymiza-
tion alternatives since no possible operation exists to satisfy the given policies.

We use the same experimental settings as in Section 4.6.2 to evaluate how the num-
ber of candidate sets evolves as a function of policy size; results are displayed on Fig-
ure 4.3.

Figure 4.3a displays the results of this experiment when varying privacy size with a
fixed utility size of 9 triples. We can observe a steady increase of the number of candi-
date sets with the privacy size. The explanation for this behavior is that increasing pri-
vacy size (with fixed utility size) provide more possible operations for the anonymiza-
tion.
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(a) Depending on privacy size (b) Depending on utility size

Figure 4.3: Candidate set length based on the size of both policies

On the other hand, when varying utility size (with fixed privacy size), the num-
ber of candidate sets almost stagnates when increasing the utility size (Figure 4.3b).
This means that increasing the size of utility queries without increasing the number
of queries itself in the utility policies does not significantly reduce the anonymization
opportunities as there are still as many candidates for anonymization.

In short, this experiment emphasizes the faint influence of utility policies on pos-
sible anonymizations sets, along with the crucial role of privacy policies in shaping
possible anonymization operations.



5
Safety beyond privacy: Anonymization

robust to data linkage

� While the previous contribution focused on guaranteeing privacy by anonymizing a local graph using
privacy and utility constraints, we now focus on guaranteeing safety, i.e. privacy in a global context
featuring graph linking in addition to basic data disclosure constraints. We motivate this approach
and emphasize the difference between the privacy and safety approaches, and design two variations of
an anonymization algorithm for this new context, using our framework. Finally, we study how RDF
linking mechanisms, implicit or explicit, can affect query answering, safety guarantees, and therefore our
algorithms as well. �
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In Chapter 4, we studied and focused on the notion of privacy, where privacy and
utility policies were used in order to finely control the disclosure of data through an
anonymization algorithm. We now show that, in the context of LOD, this privacy guar-
antee is not sufficient because data linkage with external RDF graph may cause privacy
leakages. This contribution has been published in [Delanaux20].

5.1 Linkage creates privacy leaks

As expressed in Chapter 1 and Section 3.1, one of the core aspects of RDF graphs is
that they can share entities, and form the so-called LOD cloud. Indeed, interoperability
of knowledge bases remains one of the main objectives of the Semantic Web, and this
principle resides mostly in the use of Linked Data-related best practices, such as com-
mon standards, common technologies, and common terms to describe and model data
in RDF graphs [Atemezing14].

More concretely, linking attacks work by using common vocabularies to unify data
modeling, usually sharing IRIs used as subjects, properties or objects. They can also
work using ontologies, allowing the use of meta-triples expressing knowledge such as
"entities tcl :user365 and ratp :user812 are the same", or "predicates ratp :subscription
and tcl :membershipType are equivalent", among many other possibilities.

By nature, linking datasets of various origins is a well-known way of exposing
privacy leakages in the database world, usually by leveraging (unknown beforehand)
quasi-identifiers: those are data fields that are not by themselves identifiers of some enti-
ties, but can become identifiers when associated with other quasi-identifiers. The most
famous example was demonstrated by Latanya Sweeney [Sweeney02b], by using two
public datasets of "anonymized" medical data (hospital visits, where name, addresses,
and social security numbers were removed, but still containing sex, zip codes and birth
dates) and a list of registered voters (containing voters’ names and dates of birth). Us-
ing common data fields which acted as quasi-identifiers, she successfully linked Mas-
sachusetts’ at-the-time governor to its medical record (cf. Section 2.1)

Linkage attacks are therefore one of the most important sources of leakage against
which any anonymization framework must shield itself. This phenomenon, while com-
mon to every subfield of data management and every type of database, is amplified in
the case of RDF graphs from the LOD cloud because of this possibility to share IRIs
between graphs.

We must update and supplement our list of requirements from Section 4.1 to ac-
count for these new risks and the challenges they occasion. Yet, as mentioned in posi-
tioning our thesis on Section 2.2, we obviously still want to provide a simple, declara-

tive way to model constraints and anonymizaiton operations and a full-fledged data-

independent anonymization framework; but the last requirement from Section 4.1 has
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to be adapted for this new context using more constrained privacy semantics: safety

against linkage attacks.

5.2 Safety model

We generalize the definition of a safe anonymization introduced in [Grau19] as follows:
an RDF graph is safely anonymized if it does not disclose any new query result to a set
of privacy queries when it is joined with any external RDF graph even if the latter does
not satisfy the privacy policy. Additionally, we define a notion of data-independent safety
for a sequence of anonymization operations independently of any RDF graph, which is
also novel with respect to [Grau19].

5.2.1 Safety in the context of the LOD cloud

Let G be an RDF graph, let O be a sequence of update queries called anonymization
operations and let P be a privacy policy, following definitions from Section 4.2.1, that
is a set of queries (called privacy queries) that will be used to model data that should
be hidden post-anonymization. We call (G, O,P) an anonymization instance.

An anonymization instance (G, O,P) is safe when the evaluation of privacy queries
from P over the anonymized graph O(G) cannot answer results other than blank nodes.
Provided an additional graph G′, any result without blank nodes of a query P ∈ P
executed on O(G) ∪ G′ can be obtained from G′ only. Safety is formally defined in the
following Definition 17.

Definition 17 (Safe anonymization instance). An anonymization instance (G, O,P) is safe
if and only if for every RDF graph G′, for every P ∈ P and for every tuple of constants c̄, if
c̄ ∈ Ans(P, O(G) ∪ G′) then c̄ ∈ Ans(P, G′).

This notion of safety property is stronger than the privacy property used in Chap-

ter 4, which requires that for every privacy query P, Ans(P, O(G)) does not contain
any tuple made only of constants. Privacy can thus be seen as a specific case of safety
where the external RDF graph G′ is empty. This also means that we can no longer easily
satisfy privacy and utility policies at the same time, as these new requirements would
requirement too much destruction in the graph to be fulfilled. We therefore decide on
not using utility policies for this new solution.

Just like in the previous contribution and in contrast with [Grau19], the safety prob-
lem that we consider is data-independent and is a construction problem. Given a set
of privacy queries, the goal is to build a sequence of anonymization operations guar-
anteed to produce a safe anonymization when applied to any RDF graph, as defined
below.
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Definition 18 (Safe sequence of anonymization operations). Let O be a sequence of
anonymization operations, let P be a set of privacy queries, O is safe for P if and only if
(G, O,P) is safe for every RDF graph G.

Problem 3. The data-independent SAFETY problem.

Input : P a set of privacy queries

Output: A sequence O of update operations such that O is safe for P .

Our approach to solve Problem 3 is to favor whenever possible update operations
that replace IRIs and literals by blank nodes over update operations that delete triples.
We exploit the standard semantics of blank nodes that interprets them as existential
variables in the scope of local graphs. As a consequence, two blank nodes appearing in
two distinct RDF graphs cannot be equated.

Before describing this new solution in detail in Section 5.3, we point out the issues
and requirements to solve Problem 3 by means of examples in Section 5.2.2.

5.2.2 Illustrative examples

In this section, we consider the privacy query P stating that IRIs of journeys performed
by users holding a subscription reserved for disabled people should not be disclosed.

1 SELECT ?x
2 WHERE {
3 ?x tcl:user ?y .
4 ?y datex:subscription ?z .
5 ?z datex:subscriptionReference "Disabled" .
6 }

Let the RDF graph to anonymize be G that is made of the following triples describing
the journey of an user:

tcl:u1 datex:subscription tcl:s1 .
tcl:v1 tcl:user tcl:u1 .
tcl:v2 tcl:user tcl:u1 .
tcl:s1 datex:subscriptionReference "Disabled" .

We first show that deleting triples may guarantee privacy but not safety. Exam-
ple 5.1 shows that the problem for safety comes from a possible join between an internal
and an external constant (tcl :s1 in our example).

This can be avoided by replacing some critical constants by blank nodes. We survey
now different strategies to replace some constants by blank nodes in order to enforce
safety. Examples 5.2 and 5.3 illustrate the strategy consisting of replacing only one con-
stant per triple by a blank node so as to break chains in the RDF graph likely to enable
mappings from join terms in the privacy query. As shown by the example, this strat-
egy does not guarantee safety for all the anonymization instances. Then, Examples 5.4
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Example 5.1

Let O1 be the update query that deletes all the triples instances of the tcl :user prop-
erty:

1 DELETE { ?x tcl:user ?y }
2 WHERE { ?x tcl:user ?y }

The resulting anonymized RDF graph O1(G) is made of the following triples:

tcl:u1 datex:subscription tcl:s1 .
tcl:s1 datex:subscriptionReference "Disabled" .

O1 preserves privacy (since the evaluation of the privacy query P against O1(G) re-
turns no answer). However, O1 is not safe since the union of O1(G) with an external
RDF graph G′ containing the triple (tcl :v1, tcl :user, tcl :u1) will provide tcl :v1 as
an answer (which is not an answer of P against G’ alone).

and 5.5 show that in some cases, it is mandatory to replace all the constants in some
critical triples by blank nodes in order to guarantee safety. While the latter might seem
like a very destructive operation, it still preserves some utility, such as the possibility of
evaluating joins and counting queries.

All these examples show the necessity of studying the different strategies to produce
safe anonymization operations according to some desired utility, which we address in
the remainder of the chapter.

5.3 Safe anonymization of an RDF graph

In this section, we provide an algorithm that computes a solution to the SAFETY prob-
lem. To this end, we first prove a sufficient condition (Theorem 7) guaranteeing that an
anonymization instance is safe, then we define an algorithm based on this condition.
We have to extend the definition of a mapping, which is now allowed to map constants
to blank nodes.

Definition 19 (Extended mapping). An extended mapping μ is a function V∪ I∪L → T.
For a triple τ = (s, p, o) we write μ(τ) for (μ(s), μ(p), μ(o)).

Theorem 7 is progressively built on two conditions that must be satisfied by all the
connected components of the privacy queries. The intuition of condition (i) is that if
all critical terms are mapped to blank nodes in the anonymized graph, it is impossible
to graft external pieces of information to the anonymized graph as they cannot have
common blank nodes. Condition (ii) deals with boolean connected components with
no result variable.

Theorem 7 (Safe anonymization). An anonymization instance (G, O,P) is safe if the fol-
lowing conditions hold for every connected component GPc of all privacy queries P ∈ P :
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Example 5.2

Let O2 be the following update query:

1 DELETE {
2 ?x tcl:user ?y .
3 ?y datex:subscription ?z .
4 ?z datex:subscriptionReference "Disabled" .
5 }
6 INSERT {
7 _:b1 tcl:user ?y .
8 _:b2 datex:subscription ?z .
9 _:b3 datex:subscriptionReference "Disabled" .

10 }
11 WHERE {
12 ?x tcl:user ?y .
13 ?y datex:subscription ?z .
14 ?z datex:subscriptionReference "Disabled" .
15 }

Applying the anonymization operation O2 to G results in the anonymized RDF graph
O2(G) made of the following triples:

_:b1 tcl:user tcl:u1 .
_:b2 datex:subscription tcl:s1 .
_:b3 datex:subscriptionReference "Disabled" .

O2(G) is a safe anonymization. The reason is that it is impossible
to force the mapping from the query path {?y datex:subscription ?z.
?z datex:subscriptionReference "Disabled"} to O2(G) because of the dis-
tinct blank nodes. Then the only way to find a mapping is to have a corresponding
path in G′. But, the union with O2(G) will just produce _:b1 as answer to the privacy
query, which is not a constant.

(i) for every critical term x of GPc, for every triple τ ∈ GPc where x appears, for each extended
mapping μ s.t. μ(τ) ∈ O(G), μ(x) ∈ B holds;

(ii) if GPc does not contain any result variable, then there exists a triple pattern of GPc without
any image in O(G) by an extended mapping.

The proof of Theorem 7 is based on two separate lemmas.

The following lemma on connected components will be used later. We show by
induction on the length of chains that subgraphs forming a partition of a connected
component must be connected together through a join term.

Lemma 4. Let GP1 and GP2 be a partition of a same connected component GP, then there exists
a triple t1 ∈ GP1 and a triple t2 ∈ GP2 with a (join) term in common.



Section 5.3. Safe anonymization of an RDF graph 77

Example 5.3

Now, let O3 be the following update query:

1 DELETE {
2 ?x tcl:user ?y .
3 ?y datex:subscription ?z .
4 ?z datex:subscriptionReference "Disabled" .
5 }
6 INSERT {
7 _:b1 tcl:user ?y .
8 ?y datex:subscription _:b2 .
9 _:b2 datex:subscriptionReference "Disabled" .

10 }
11 WHERE {
12 ?x tcl:user ?y .
13 ?y datex:subscription ?z .
14 ?z datex:subscriptionReference "Disabled" .
15 }

Like O2, O3 replaces only one constant per triple by a blank node, as shown in the
result O3(G):

_:b1 tcl:user tcl:u1 .
tcl:u1 datex:subscription _:b2 .
_:b2 datex:subscriptionReference "Disabled" .

In contrast with O2(G), O3(G) is not safe (while still preserving privacy), as its union
with an external RDF graph G′ containing the triple (tcl :v1, tcl :user, tcl :u1) would
return the constant tcl :v1 as an answer to the query P.

Proof. Since GP1 and GP2 are not empty, there exists a triple t1 ∈ GP1 and a triple
t2 ∈ GP2. Assume that t1 an t2 do not have a constant or variable in common in subject
or object position. We proceed by contradiction.

Let c1 be a constant or a variable in t1 and let c2 be a constant or variable of t2.
Since c1 and c2 appear in the same connected component GP, there exists a path of
length n from c1 to c2, i.e., there exist chains p1, . . . , pn and c1, . . . , cn+1 such that c1 = c1,
c2 = cn+1 and for every i ∈ [1, n] either (ci, pi, ci+1) ∈ GP or (ci+1, pi, ci) ∈ GP.

Let k the greatest index such that all triples (ci, pi, ci+1) or (ci+1, pi, ci) with i ≤ k are
in GP1. If k = n, then ck+1 = c2 and c2 is common to two triples in GP1 and GP2, a
contradiction. Otherwise, if k < n, then (ck+1, pk+1, ck+2) or (ck+2, pk+1, ck+1) is in GP2
and ck+1 is common to two triples in GP1 and GP2, a contradiction again.

First we deal with the case where the privacy query is not boolean with only one
connected component. We show that operators O replacing images of critical terms in
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Example 5.4

Since Examples 5.2 and 5.3 show that replacing only one constant per triple may not
guarantee safety, we have to consider update queries that replace all the constants in
some triples by blank nodes, like the following update query O4:

1 DELETE {
2 ?x tcl:user ?y .
3 ?y datex:subscription ?z .
4 ?z datex:subscriptionReference "Disabled" .
5 }
6 INSERT {
7 _:b1 tcl:user _:b2 .
8 _:b2 datex:subscription _:b3 .
9 _:b3 datex:subscriptionReference "Disabled" .

10 }
11 WHERE {
12 ?x tcl:user ?y .
13 ?y datex:subscription ?z .
14 ?z datex:subscriptionReference "Disabled" .
15 }

The result RDF graph O4(G) is made of the following triples:

_:b1 tcl:user _:b2.
_:b2 datex:subscription _:b3.
_:b3 datex:subscriptionReference "Disabled".

Similarly to O2(G) in Example 5.2, it can be shown that O4(G) is safe. In addition to
this, since all the occurrences of the join variables are replaced by same blank nodes,
the result of the counting query Count(P) is preserved, i.e., it returns the same value
as when it is evaluated on the original RDF graph G.

G (i.e., result variables, join variables and join constants in subject or object position)
with blank nodes guarantees that (G, O, {P}) is safe for any graph G.

Lemma 5. Let (G, O, {P}) be an anonymization instance where P = 〈x̄, GP〉 is a query made
of a unique connected component and at least one distinguished variable. If for all critical term
x of GP, for all triple τ ∈ GP where x appears, for each extended mapping μ s.t. μ(τ) ∈ O(G),
we have μ(x) ∈ B, then (G, O, {P}) is safe.

Proof. The main idea is to prevent linking O(G) and G′ together by using blank nodes.
The key argument used here is that blank nodes from different graphs are distinct, in confor-
mity with the logical interpretation of blank nodes as existential variables in the scope
of a single RDF graph.

We proceed by contradiction. Suppose that (G, O, {P}) is not safe, thus there exists a
graph G′, a tuple of constants c̄ ∈ Ans(P, O(G) ∪ G′) with c̄ �∈ Ans(P, G′). Therefore by
the definition of Ans, there exists a mapping μ such that μ(x̄) = c̄ and μ(GP) ⊆ O(G)∪
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Example 5.5

Following Example 5.4, we can show that safety does occur if we apply the following
update query O5 which breaks all join terms:

DELETE {
?x tcl:user ?y .
?y2 datex:subscription ?z .
?z2 datex:subscriptionReference "Disabled" .

}
INSERT {

_:b1 tcl:user _:b2 .
_:b3 datex:subscription _:b4 .
_:b5 datex:subscriptionReference "Disabled" .

}
WHERE {

?x tcl:user ?y .
?y2 datex:subscription ?z .
?z2 datex:subscriptionReference "Disabled" .

}

The result RDF graph O5(G) is made of the following triples:

_:b1 tcl:user _:b2.
_:b3 datex:subscription _:b4.
_:b5 datex:subscriptionReference "Disabled".

In fact, O5(G) is more general than O4(G), i.e. O4(G) |= O5(G).

G′ but μ(GP) �⊆ G′. Let GP1 be the largest subgraph of GP such that μ(GP1) ⊆ O(G).
Let GP2 be its complement, GP2 = GP \ GP1.

If GP1 = ∅, we are done, because this contradicts the assumption μ(GP) �⊆ G′.
Thus, there is some τ ∈ GP1. Now, if GP2 = ∅, then all variables x ∈ x̄ appear in GP1,
by hypothesis on O(G), μ(x) ∈ B, but μ(x) ∈ c̄ forbids μ(x) to be a blank for all x, as x̄
is not empty by hypothesis, we obtain a contradiction. Thus there is some τ′ ∈ GP2. So
both GP1 and GP2 are non empty and thus form a partition of GP.

By Lemma 4, there exist τ1 ∈ GP1 and τ2 ∈ GP2 with a join variable or a join constant
in common, let x be this join variable or constant. If x is a constant, there exists a critical
term x in a triple τ1, and an extended mapping μext such that μext(x) /∈ B, which is a
contradiction. If x is a variable, then μ(x) is a blank node. Blank nodes are local, so the
blank nodes of O(G) are disjoint from those of G′. This contradicts that μ(τ2) ∈ G′ with
μ(x) being a blank node of G′.

Now we deal with the corner case where the privacy query has no result variable.
Indeed, in that particular case, replacing all the images of critical variables and con-
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stants by blank nodes does not even guarantee privacy because such a transformation
preserves the existence of images of boolean queries, as shown in Exmaple 5.6.

Example 5.6

Let a privacy query Q, with body(Q) = {(?x, p, o), (o, q,?y)} and no distinguished
variable.
Assume the following graph G and its two following anonymized graphs O(G) and
O′(G).

G = { ex:x ex:p ex:o. ex:o ex:q ex:y. }
O(G) = { ex:x ex:p _:b. _:b ex:q ex:y. }
O’(G) = { ex:x ex:p _:b. }

We have Ans(Q, O(G)) = {∅}, therefore privacy is not satisfied. But O′(G) is safe
with regard to Q.
Some triples must therefore be deleted, in addition to the replacement the images of
join terms by blank nodes (i.e. the conditions of the lemmas must hold).

Lemma 6. Let (G, O, {P}) be an anonymization instance where P = 〈∅, GP〉 is a boolean
query with only one connected component. Assume that (G, O, {P}) already satisfies the con-
ditions of Lemma 5. If there exists some triple pattern τ ∈ GP with no image in O(G) by any
anonymization mapping, then (G, O, {P}) is safe.

Proof. When the query is boolean, the safety condition amounts to check that if there
exists an image of GP in O(G) ∪ G′ by a mapping μ, then μ(GP) must be included in
G′ alone. Basically, we have to extend the proof of Lemma 5 to cover the case where
x̄ = ∅.

We again proceed by contradiction. Suppose that (G, O, {P}) is not safe, thus there
exists a graph G′, a tuple of constants c̄ ∈ Ans(P, O(G) ∪ G′) with c̄ �∈ Ans(P, G′).
Therefore by the definition of Ans, there exists a mapping μ such that μ(x̄) = c̄ and
μ(GP) ⊆ O(G) ∪ G′ but μ(GP) �⊆ G′. Let GP1 be the largest subgraph of GP such that
μ(GP1) ⊆ O(G). Let GP2 be its complement, GP2 = GP \ GP1.

If GP1 = ∅, we are done, because this contradicts the assumption μ(GP) �⊆ G′.
Thus, there is some τ ∈ GP1.

With the new condition added in the current, there exists some triple pattern τ′′ ∈
GP1 with no image in O(G), thus μ(GP1) �⊆ O(G) and GP2 cannot be empty. The rest
of the proof is similar.

The following lemma states that the safety a query can be ensured by the safety of
its connected components.
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Lemma 7. Let A1 = (G, O, {Q1}) and A2 = (G′, O, {Q2}) be two safe anonymization
instances where Q1 = 〈x̄1, GP1〉 and Q2 = 〈x̄2, GP2〉 are two queries made of exactly
one connected component without common terms or variables. The anonymization instance
(G, O, {Q}) with Q = 〈x̄1 ∪ x̄2, GP1 ∪ GP2〉 is safe as well.

Proof. Assume that there is some c̄ ∈ Ans(Q, O(G) ∪ G′) for an arbitrary G′ where c̄ =
c̄1 ∪ c̄2 where c̄1 (resp. c̄2) is the restriction of c̄ to the image of x̄1 (resp. x̄2).

As A1 (resp. A2) is safe, any tuple of constants c̄1 (resp. c̄2) found when evaluating
Q1 (resp. Q2) on O(G) ∪ G′ already exists in G′. Therefore there exists a mapping μ1
such that μ1(x̄1) = c̄1 and μ1(GP1) ⊆ G′ (resp. μ2 s.t. μ2(x̄2) = c̄2 and μ2(GP2) ⊆ G′).
Since GP1 and GP2 are disjoint, they constitute two different connected components of
GP1 ∪ GP2. We can create a mapping μ′ such that μ′(GP1 ∪ GP2) ⊆ G′ using μ1 for the
variables of Q1 and μ2 for the variables of Q2. Finally, c̄ = c̄1 ∪ c̄2 = μ1(x̄1) ∪ μ2(x̄2) =
μ′(x̄1) ∪ μ′(x̄2), therefore, c̄ is an answer of Q over G which concludes the proof.

We can now assemble all the pieces from previously defined lemmas to obtain the
proof of Theorem 7.

Proof. To show that (G, O,P) with P = {P1, . . . , Pn} is safe, we have to show that each
(G, O, {Pi}) is safe. The conditions of Theorem 7 are exactly those of Lemma 5 and
Lemma 6 for each connected component Pj

i of Pi, thus each (G, O, {Pj
i }) is safe by itself.

Consider c̄ ∈ Ans(Pi, O(G) ∪ G′). Let GPi = body(Pi) and let GPj
i = body(Pj

i ). By
the definition of Ans, there exists a mapping μ such that μ(x̄) = c̄ and μ(GPi) ⊆ O(G)∪
G′. By definition GPj

i ⊆ GPi holds, thus by the monotonicity of queries (Lemma 1),
μ(GPj

i ) ⊆ O(G) ∪ G′ holds as well for each connected component GPj
i . Since each Pj

i

is safe, there exists μj such that μj(GPj
i ) ⊆ G′ for each GPj

i . As the subgraphs GPj
i

are connected components, they cannot share terms. By induction on the number of
connected components, using repeatedly Lemma 7, we can construct an anonymization
mapping μ′ such that μ′(GPj

i ) ⊆ G′ for all GPj
i , but GPi =

⋃
GPj

i , so μ′(GPi) ⊆ G′.

We are now left to prove that μ′(x̄) = c̄. For each variable x ∈ x̄, there is a unique
connected component GPjx

i where x appears and c̄ is nothing else but
⋃

x∈x̄ μjx(x).

We are now able to design an anonymization algorithm that solves the SAFETY prob-
lem. Algorithm 3 computes a sequence1 of operations O for a privacy policy P such
that O is safe for P . Operations are computed for each connected component of each
privacy query from P . The crux is to turn conditions (i) and (ii) into update queries
(Definition 12).

1The + operator denotes the concatenation of sequences.
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The starting point of Algorithm 3 is to compute join variables and constants (Lines 5
to 8) then to compute critical terms by adding the result variables (Lines 9 to 10). Note
that critical terms do not include variables in predicate position, except when these vari-
ables are also result variables of the considered query. The update queries that replace
the images of critical terms by blank nodes are built from Line 14 to Line 17. The subtle
point is that, in order to guarantee that condition (i) of Theorem 7 is satisfied on any up-
dated RDF graph, as many update queries as subsets of the connected component GPc
need to be constructed. Considering these subsets in decreasing order of cardinality
(Line 11) and using the isNotBlank(x̄′) construct introduced in Definition 12 (Line 17)
guarantees that all the images of a critical term in a given RDF graph will be replaced
only once and by the same blank node. Finally, if the connected component under
scrutiny is boolean, one of its triple is deleted (Line 20), according to condition (ii). This
triple is chosen in a non-deterministic way, i.e. any triple can work and any decision
process could be used.

Continuing Examples 5.4 and 5.5 from Section 5.2.2, operation O4 is the first one
generated at Line 17. When applied to Example 3.10, Algorithm 3 will sequentially
generate anonymization operations starting from those replacing the images of all the
variables by blank nodes (since all its variables are critical), followed by those deleting
all the triples (possibly modified by the preceding operations) corresponding to one of
the triple patterns (?v a tcl:Validation or ?v tcl:validationDatetime ?d) in
the boolean connected component.

Note that some anonymizations may create an RDF graph where some properties
have been replaced by blank nodes (in the case where a result variable was appearing
in as a predicate in the body of a policy query). In this case, the output is not a standard
RDF graph anymore, but a generalized RDF graph2.

Theorem 8 states the soundness and computational complexity of Algorithm 3.

Theorem 8. Let O = find-safe-ops(P) be the sequence of anonymization operations
returned by Algorithm 3 applied to the set P of privacy queries: O is safe for P and G |= O(G)
for any graph G. The worst-case computational complexity of Algorithm 3 is exponential in the
size of P .

Proof. The main idea is to show that the conditions of Theorem 7 are satisfied when
O is executed on G. Let P be a privacy policy with queries Pi = 〈x̄i, GPi〉, let O =
find-safe-ops (P) and let G be an arbitrary RDF graph. For each connected compo-
nent GPc ⊆ GPi of each privacy query Pi, Algorithm 3 generates

• a sequence of operations at Line 17, mimicking condition (i) of Theorem 7;

• a non-deterministic delete operation at Line 20, mimicking condition (ii).

2As specified in Section 7 of the RDF 1.1 Specification: https://www.w3.org/TR/
rdf11-concepts/#section-generalized-rdf.
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Input : a privacy policy P of queries Pi = 〈x̄i, GPi〉
Output: a sequence of operations O which is safe for P

1 function find-safe-ops(P):

2 Let O = 〈 〉;
3 for Pi ∈ P do

4 forall connected components GPc ⊆ GPi do

5 Let I := [ ];
6 forall (s, p, o) ∈ GPc do

7 if s ∈ V ∨ s ∈ I then I[s] = I[s] + 1;
8 if o ∈ V ∨ o ∈ I ∨ o ∈ L then I[o] = I[o] + 1;

9 Let x̄c := {v | v ∈ x̄i ∧ ∃τ ∈ GPc s.t. v ∈ τ};
10 Let Tcrit := {t | I[t] > 1} ∪ x̄c;
11 Let SGPc = {X | X ⊆ GPc ∧ X �= ∅ ∧ X is connected} ordered by

decreasing size;
12 forall X ∈ SGPc do

13 Let X′ := X and x̄′ = {t | t ∈ Tcrit ∧ ∃τ ∈ X s.t. t ∈ τ};
14 forall x ∈ x̄′ do

15 Let b ∈ B be a fresh blank node;
16 X′ := X′[x ← b];

17 O := O + 〈DELETE X INSERT X′ WHERE X isNotBlank(x̄′)〉
18 if x̄c = ∅ then

19 Let τ ∈ GPc // non-deterministic choice

20 O := O + 〈DELETE τ WHERE GPc〉

21 return O;

Algorithm 3: Find update operations to ensure safety

Conditions (i) and (ii) encapsulated in Theorem 7 correspond respectively to Lemmas 5
and 6. If we show that for each connected component GPc Algorithm 3 generates a
sequence of operation satisfying conditions (i) and (ii), the safety of O for P will follow.

First of all, in Algorithm 3, remark that by construction Tcrit is the set of critical
terms. Also, note that the order of operations is significant. Indeed, Lemmas 5 and 6
are cumulative: the second one relies on the first one. For GPc a connected component
of the privacy query Pi = 〈x̄i, GPi〉, let x̄c be the subset of variables from x̄i that appear
in GPc. We consider both conditions separately.

Condition (i)

We have x̄c �= ∅. The generated operations O = 〈O1, . . . , Op〉 are only those from
Line 17, the operations at Line 20 are not triggered. Let x be a join term (variable or
constant) and let GPx ⊆ GPc the (unique) subset of GPc where x appears. Let GP′

x be
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the largest subset of GPx with an image in O(G) and μ the mapping s.t. μ(GP′
x) ⊆ O(G).

We have to show that μ(x) ∈ B. Let m = |GP′
x| be the cardinality of GP′

x. There exists
one operation Ok ∈ O of the form Ok = DELETE Xk INSERT X′

k WHERE Xk isNotBlank(x)
which is obtained when k = m, that is when Xk = GP′

x in the loop at Line 12. If there
is no such Ok, the condition is vacuously satisfied as GP′

x = ∅. The operation Ok is
exactly the replacement of every μ(x) by the fresh blank b of Line 15 thus μ(x) ∈ B and
the condition (i) is satisfied, hence the safety of O for Pi by Lemma 5.

Condition (ii)

GPc is now a boolean query with no result variable. The operation DELETE τ WHERE GPc
at Line 20 deletes all occurrences of a triple τ (chosen non-deterministiclly) such that
μ(τ) ∈ G thus, the condition (ii) required by Lemma 6 is satisfied and GPc is safe.

We now show that the update operations (which are not mere deletions) guarantee
G |= O(G) as well. The sufficient condition to ensure safety is to replace critical IRIs
and variables by blank nodes: no DELETE operation is performed. The key point to
prove Theorem 9 is thus that INSERT operations produced by Algorithm 3 are in fact a
one-to-many renaming of IRIs to blank nodes. Indeed in the update query produced ate
Line 17, each critical term is replaced by a fresh blank node, but no two different IRIs are
mapped to the same one since there is no reuse of previously generated blank nodes.
Therefore, Algorithm 3 constructs a one-to-many μ renaming of join IRIs to blank nodes
with inverse μ−1

1 with μ−1
1 (O(G)) = G which implies that G |= O(G) by Theorem 1.

For the worst-case complexity, the size considered is defined here as size(P) =
ΣPi∈P |GPi|. The loop at Line 12 is executed exactly 2n − 1 times where n is the size
of the largest connected component of Gi. Thus considering for instance P = {P}
where P’s body is made of a single component of cardinality n, the loop generates an
exponential number of operations at Line 17.

Note that the isNotBlank(x) condition ensures that Ok is applied only once in O
if it exists, indeed if μ(x) ∈ B for some k, no other operation Ol with l ≥ k is applied.
Hence, this condition is not needed to guarantee safety but ensures that the occurrences
of the considered join term are replaced only once. Thus, we ensure that they use the
same blank node and that some are not replaced further in the algorithm.

Theorem 9 establishes that the anonymization operations computed by Algorithm 3
preserve some information on Count(P) for any privacy query P with no boolean con-
nected component.

Theorem 9. Let O = find-safe-ops({P}) be the output of Algorithm 3 applied to a
privacy query P with no boolean connected component. For every RDF graph G, O(G) satisfies
Ans(Count(P), O(G)) ≥ Ans(Count(P), G).
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Proof. The conditions here are the same as those of Lemma 5. We use the argument than
the one used to show that G |= O(G) in the proof of Theorem 8. The sufficient condition
to ensure safety is thus to replace critical IRIs and variables by blank nodes: no DELETE

operation is performed. The key point to prove Theorem 9 is that INSERT operations
produced by Algorithm 3 are in fact a one-to-many renaming of IRIs to blank nodes.
Indeed in the update query produced ate Line 17, each critical term is replaced by a
fresh blank node, but no two different IRIs are mapped to the same one since there is no
reuse of previously generated blank nodes.

Since Algorithm 3 is data-independent and therefore run once and for all without
any performance penalty at runtime, its exponential worst-case complexity (due to the
powerset SGPc computed on Line 11) is not necessarily an important limitation in prac-
tice, as will be demonstrated in our experimental study in the next chapter.

Algorithm 4 is a polynomial approximation of Algorithm 3 obtained as follows:
instead of considering all possible subsets of triple patterns of SGc (Line 12), we simply
construct update queries that replace, in each triple pattern τ ∈ GPc, every critical
term with a fresh blank node. As a result, there does not exist anymore any equality
between images of join variables, literals or IRIs (while in Algorithm 3 all occurrences
of each critical term were replaced by the same blank node). For instance, Algorithm 4
generates a sequence of three update queries, one for each triple, equivalent to O5 in
Example 5.5 from Section 5.2.2.

Theorem 10 states that Algorithm 4 is sound and leads to anonymizations that are
more general than those produced by Algorithm 3.

Theorem 10. The worst-case computational complexity of Algorithm 4 is polynomial in the
size of P . Let O and O′ be the result of applying respectively Algorithm 3 and Algorithm 4
(with the same non-deterministic choices) to a set P of privacy queries: for any RDF graph G,
(G, O,P) is safe and O(G) |= O′(G).

Proof. The proof of the safety of Algorithm 4 is similar to Theorem 8, the only differ-
ence lies at Condition (i), the operations for Condition (ii) being the same. The actual dif-
ference between Algorithm 3 and Algorithm 4 is that the latter generates a fresh blank
node triple by triple breaking multiple occurrences of join variables instead of preserving
them. Indeed, for each join variable x of the connected component GPc under scrutiny,
the operation generated at Line 17, call it Oc, replaces it with a fresh blank node. There
is exactly one such Oc for each GPc, thus the output of Algorithm 4 is polynomial: the
source of the exponential complexity of Algorithm 3 has been eliminated. Indeed, the
loop at Line 12 do not browse the subsets SGPc ⊆ GPc anymore but only its elements
τ ∈ GPc.
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Input : a privacy policy P of queries Pi = 〈x̄i, GPi〉
Output: a sequence of operations O safe modulo sameAs for P

1 function find-safe-ops-sameas(P):

2 Let O = 〈 〉;
3 for Pi ∈ P do

4 forall connected components GPc ⊆ GPi do
/* [...Lines 3 to 10 identical to find-safe-ops...] */

10 Let x̄′ := {v | v ∈ x̄i ∧ ∃τ ∈ GPc s.t. v ∈ τ};
11 Let Tcrit := {t | I[t] > 1} ∪ x̄′;
12 forall τ ∈ GPc do

13 forall x ∈ Tcrit do
/* Every occurrence of a critical x is replaced by a

different blank node */

14 G′ := {τ[x ← [ ]]};
15 Let v ∈ V a fresh variable;
16 G′′ := {τ[x ← v]};

17 O := O + 〈DELETE G′′ INSERT G′ WHERE G′′ isNotBlank(x̄′)〉;
/* [...End of algorithm identical to find-safe-ops...] */

18 return O;

Algorithm 4: Find update operations to ensure safety modulo sameAs

Recall that, by Theorem 1, for two graphs with blank nodes A |= B amounts to show
that there exists a mapping μ of blank nodes to terms such that μ(B) ⊆ A. The point is
thus to exhibit such a mapping.

First of all, if G′ ⊆ G then clearly G |= G′ (pick μ as the identity), so the property
holds for all delete operations in O which are common to both Algorithm 3 and Algo-
rithm 4. These operations being the very same ones when the same non-deterministic
choices are made by the two algorithms: for each component, we suppose that the triple
τ picked at Line 19 is the same.

We are left to prove that O(G) |= O′(G). For Algorithm 4, we observe that the re-
naming is not a function anymore because the same literal that occurs multiple times
is mapped to different blank nodes. However, by construction as each occurrence of a
critical τ is replaced by a fresh blank node, there exists some μ−1

2 from blank nodes to
IRIs such that μ−1

2 (O′(G)) = G. So now, construct μ−1
3 such that dom(μ−1

3 ) = dom(μ−1
2 )

defined by μ−1
3 = μ1 ◦ μ−1

2 which maps each blank node generated by O′ to the one ob-
tained by O. The mapping μ−1

3 is such that μ−1
3 (O′(G)) = μ1(μ

−1
2 (O′(G))) = μ1(G) =

O(G) thus O(G) |= O′(G).
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Note that contrarily to Algorithm 3, we do not provide utility guarantees such as an
extension of Theorem 9 for Algorithm 4.

5.4 Safe anonymization robust to sameAs links

One of the fundamental assets of LOD is the possibility to assert that two resources are
the same by stating owl:sameAs triples (shortened to :sameAs later), also known as
entity linking. We only consider sameAs links causing entity alignment, meaning that we
do not consider :sameAs properties between properties themselves, and we interpret
:sameAs triples (called :sameAs links) as equality between constants (including blank
nodes) that are in subject or object position. With this interpretation, :sameAs links
can also be inferred by a logical reasoning on additional knowledge known on some
properties (e.g. that a property is functional). In this section, we study the impact of
both explicit and inferred :sameAs links on safety.

We extend Definition 10 to the semantics of query answering in presence of a set
sameAs of :sameAs links. We define closure(sameAs) as the transitive, reflexive and sym-
metric closure of the sameAs predicate, i.e, the set of all sameAs links that can be derived
by transitivity and symmetry. This set can be computed in polynomial time.

Definition 20 (Answer of a query modulo sameAs). Let Q be a conjunctive query, G
an RDF graph and sameAs a set of :sameAs links. A tuple ā is an answer to Q over
G modulo sameAs if and only if there exists (b0,:sameAs, b′0), . . ., (bk,:sameAs, b′k) in
closure(sameAs) s.t. ā ∈ Ans(Q, G[b0 ← b′0, . . . , bk ← b′k]).

We note AnssameAs(Q, G) the answer set of Q over G modulo sameAs.

Hence, we extend Definition 17 to handle a set sameAs of :sameAs links.

Definition 21 (Safety modulo sameAs). An anonymization instance (G, O,P) is safe mod-
ulo sameAs if and only if for every RDF graph G′, for every P ∈ P and for any tuple of
constants c̄, if c̄ ∈ AnssameAs(P, O(G) ∪ G′) then c̄ ∈ AnssameAs(P, G′).

O is safe modulo sameAs for P if (G, O,P) is safe modulo sameAs for every RDF graph G
and for every set sameAs of :sameAs links.

We first study how to build anonymization operations that are robust to explicit
:sameAs links. Then, we focus on handling the case of inferred :sameAs links through
knowledge.

5.4.1 Explicit sameAs links

Explicit sameAs links exist when a graph contains triples using directly the owl :sameAs
property between two entities, provided that these triples fulfilled our previous re-
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quirements (the subject and object of the considered triple are not properties them-
selves).

Theorem 11 establishes that Algorithm 3 (and thus Algorithm 4 as well) computes
safe anonymizations even in presence of a set sameAs of explicit :sameAs links.

Theorem 11. Let O be the result of applying Algorithm 3 to a set P of privacy queries: for any
set sameAs of explicit :sameAs links, O is safe modulo sameAs for P .

Proof. The proof is similar to the proof of Theorem 8, the only case of interest being
that of condition (i), the rest is similar. Let G be the RDF graph to anonymize, G′ be an
external graph, and P = 〈x̄, GP〉 be a privacy query. Let c̄ be a tuple of constants such
that c̄ ∈ AnssameAs(P, O(G) ∪ G′).

By Definition 11 ∃(b0, : sameAs, b′0), ..., (bn, : sameAs, b′n) ⊆ closure(sameAs) state-
ments, such that c̄ ∈ Ans(P, (O(G) ∪ G′)[bi ← b′i ]).

Consider the largest subset GP1 ⊆ GP such that μ(GP1) ⊆ O(G)[bi ← b′i ] and its
complement GP2 = GP \ GP1 ⊆ G′[bi ← b′i ]. With an argument similar to the proof of
Lemma 5, GP1 and GP2 constitute a partition of GP so there must exist τ1 ∈ GP1 and
τ2 ∈ GP2 with a join term variable or IRI call it x. Thus, there exist terms bk and b′k such
that μ(x) = b′k for some k with (bk : sameAs, b′k) ∈ closure(sameAs). On the one hand, bk
is a term of O(G)[bi ← b′i ] because τ1 ∈ G1, on the other hand bk is a term of G′[bi ← b′i ]
because τ1 ∈ G2.

We have to show that (bk : sameAs, b′k) cannot be found in closure(sameAs). Recall
that closure(sameAs) is the reflexive, symmetric and transitive closure of sameAs. The
proof is by structural induction on the derivation of (bk : sameAs, b′k) ∈ closure(sameAs),
consider the last deduction rule used to conclude that (bk : sameAs, b′k) ∈ closure(sameAs):

Case (bk : sameAs, b′k) ∈ sameAs. The operation at Line 17 of Algorithm 3 ensures that
bk is a fresh blank of O(G) which cannot appear in G′ or in sameAs since blank
nodes are only local to the graph they appear in, a contradiction.

Case (bk : sameAs, bk) ∈ closure(sameAs) by reflexivity. This is the nominal case of
Lemma 5 with an argument similar to the previous one.

Case (bk : sameAs, b′k) ∈ closure(sameAs) by symmetry. A contradiction again by the in-
ductive hypothesis (b′k, : sameAs, bk) ∈ closure(sameAs).

Case (bk : sameAs, b′k) ∈ closure(sameAs) by transitivity. By hypothesis there exists
b′′k such that (bk : sameAs, b′′k ) ∈ closure(sameAs) and (b′′k : sameAs, b′k) ∈
closure(sameAs). Here the contradiction is on (bk : sameAs, b′′k ) ∈ closure(sameAs).



Section 5.4. Safe anonymization robust to sameAs links 89

5.4.2 Inferred sameAs links

Now, we address two cases in which knowledge on properties may infer equalities: we
call these cases implicit or inferred sameAs links, because they virtually amount to situ-
ations where equality between some entities is deductible rather than explicitly stated
using a:sameAs triple.

The first case occurs in the ontology axiomatization of the OWL language3 when
some of the properties are functional or inverse functional, as in Definition 22, where
we model equalities by :sameAs links.

Definition 22 (Functional and inverse functional RDF properties). A property p is func-
tional if and only if for every ?x, ?y1, ?y2:

(?x, p, ?y1) ∧ (?x, p, ?y2) ⇒ (?y1,:sameAs, ?y2).

A property p is inverse functional if and only if for every ?x, ?y1, ?y2:

(?y1, p, ?x) ∧ (?y2, p, ?x) ⇒ (?y1,:sameAs, ?y2).

For example, declaring that property tcl :referrerOf as inverse functional ex-
presses the constraint that every user can be referred by at most one user. As shown
in Example 5.7, exploiting this knowledge may lead to re-identifying blank nodes that
have been produced by the previous anonymization algorithms.

One solution to prevent this type of attack is to add a query to the privacy policy for
each functional property p and for each inverse functional property q, respectively the
queries SELECT ?x WHERE {?x p ?y.} and SELECT ?x WHERE {?y q ?x.}.

By doing so, the update queries returned by our Algorithms 3 and 4 will replace
each constant in subject position of a functional property by a fresh blank node, and
each constant in an object position of an inverse functional property by a fresh blank
node. In the previous Example 5.7, the constant tcl :u3 in (_:b1, tcl :referrerOf, tcl :u3)
would be replaced by a fresh blank node.

The second case that we consider may lead to inferred sameAs equalities when a
property is completely known, i.e. when its closure is available in an external RDF
graph. For instance, suppose that the closure of the property tcl :registeredBy is
stored in an extension of the external RDF graph G′ containing the following triples,
describing users registered by staff members:

tcl:u1 tcl:registeredBy tcl:s1 .
tcl:u6 tcl:registeredBy tcl:s2 .
tcl:u7 tcl:registeredBy tcl:s2 .
tcl:u9 tcl:registeredBy tcl:s2 .

3See OWL 2 RDF-Based Semantics, notably section 5.13. https://www.w3.org/TR/2012/
REC-owl2-rdf-based-semantics-20121211/#Semantic_Conditions
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Example 5.7

Let P a privacy policy containing exactly one query P, defined as follows:

1 SELECT ?x
2 WHERE {
3 ?x tcl:registeredBy ?y .
4 ?x tcl:referrerOf ?z .
5 }

It describes the fact that we want to hide the IRI of users registered by a TCL staff
member and referred by another user.
Let G, O(G) and G′ be the following RDF graphs where O is an update operation
returned by Algorithm 3:

G = {
tcl:u1 tcl:registeredBy tcl:s1 .
tcl:u1 tcl:referrerOf _:b1 .
_:b1 tcl:referrerOf tcl:u3 .

}

O(G) = {
_:b0 tcl:registeredBy tcl:s1 .
_:b0 tcl:referrerOf _:b1 .
_:b1 tcl:referrerOf tcl:u3 .

}

G’ = {
tcl:u1 tcl:referrerOf tcl:u2 .
tcl:u2 tcl:referrerOf tcl:u3 .

}

From O(G) ∪ G′ and the inverse functionality of :referrerOf, it can be inferred first
(tcl :u2,:sameAs,_:b1) and second (tcl :u1,:sameAs,_:b0). Consequently, _:b0
is re-identified as tcl :u1, which is returned as answer of P over O(G) ∪ G′ modulo
sameAs, and the anonymization operation O is not safe.

Knowing that G′ is the complete extension of the tcl :registeredBy predicate al-
lows to infer (_:b0,:sameAs, tcl :u1) and thus to re-identify the blank node _:b0, as
only one user was registered by staff member tcl :s1.

A possible solution to this would be to add a privacy query SELECT ?x ?y WHERE
{ ?x p ?y } for each property p for which we suspect that a closure could occur
in the LOD cloud. Then, the update queries returned by our algorithms will replace
each constant in the subject or object position of such a property by a fresh blank node.
For instance, in Example 5.7, the constant tcl :s1 in (_:b0, tcl :registeredBy, tcl :s1)
would be replaced by a fresh blank node.
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Note that this process can in the end become very destructive in the graph, par-
ticularly if the considered properties are vital to the utility of the graph. Indeed, the
more external knowledge there is on the data (whether it is possessed by an attacker
or inferred through mechanisms such as the ones studied above), the harder it will be
to guarantee utility without deleting or replacing large chunks of the graph, which in
turn may often be among the "useful" part of the data.





6
Implementation and experimental evaluation

� We now delve into a more concrete aspect of the framework, by detailing how the safety solution from
Chapter 5 is implemented in practice, and how its efficiency and usability are tested with a carefully de-
signed experimental study. We analyze both the performance of our algorithms and of the anonymization,
and we discuss how to quantify the loss of information when altering a graph, and how to define what are
the best anonymization sequences in our process. �
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THE main motivation of this chapter is to test the efficiency and usability of the so-
lution designed in Chapter 5 in plausible real-life use-cases. To do so, we explore

the various types of metrics that could be used, as well as the ones we select and why
(Section 6.1). We then explore the design of both experimental studies, first through
the selection of data used in our experiments (Section 6.2) then with the detailed ex-
periments ran on our safety solution (Section 6.3). Finally, we conclude with additional
tests that could be designed as there are many possible directions to evaluate both pri-
vacy, utility, performance, or other aspects (Section 6.4).

The goal of our evaluation is to find ways to quantify the balance between privacy
and utility. We must therefore take into account the characteristics and formal seman-
tics of both solutions and how they change possible metrics. For example, the experi-
ments designed on our first contribution focus more on compatibility issues, while the
evaluation of the safety framework focuses more on actual usage and anonymization
of real-world graphs.

The implementation developed for this evaluation is freely available online in a
GitHub repository1 and these experiments are easily reproducible on one’s own system.

6.1 Motivation

In addition to theoretical guarantees, we need actual measurements of the usability and
the efficiency of our solution, with regard to both privacy and utility. Our algorithms
are guaranteed to satisfy the privacy requirements given as input, so we have to use
other attributes to measure and check which factors impact those attributes.

The usual way to quantify its efficiency, besides privacy leakages and data disclo-
sure, it to quantity the data utility left in the sanitized dataset. Since there is no univer-
sal way to do so, and since this heavily relies on the database’s structure, many utility
metrics exist in the literature. We analyze some of them that are relevant in our scope
of study.

6.1.1 Measuring privacy

If one of the (proved) anonymization processes is applied, then absolutely no leakage
of sensitive information is possible. Therefore, there is no specific privacy attribute that
can be measured: if the framework is used for a given graph, privacy is automatically
achieved to the extent of what the considered algorithm and privacy policy allow.

1https://github.com/RdNetwork/safe-lod-anonymizer
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6.1.2 Measuring utility

We would now like to evaluate utility (i.e. the loss of useful information) in an
anonymized graph: we know that the utility queries given a policy input will be sat-
isfied, but we do not know how destructive our operations have been (since there are
several possible sequences of operations in general), how usable is the remaining infor-
mation in the graph and what affects this usability in the operations. To do so, there
are several possibilities, depending on the focus and the chosen utility semantic. We
browse a large panorama of existing utility measurements, summarized in Table 6.1
and described depending on their characteristics:

• Static metrics: are they static/data-independent metrics? (e.g. measurements
based on the input to the anonymization framework)

• Graph-based metrics: are they based on and applicable to graph databases? (e.g.
nodes/edges-related metrics, path computation)

• RDF-based metrics: are they based on and applicable to RDF triple stores and
Linked Data, using specific elements from these contexts? (e.g. metrics based on
blank nodes, IRIs)

• Learning-based metrics: are they based on data mining or learning techniques?
(e.g. classification, regression, random forests, etc.)

• Probability-based metrics: are they based on probabilistic computations? (e.g.
estimate that a certain value is preserved)

• Query-based metrics: are they dependent on a given workload of queries? (e.g.
query estimation, data mining statistics)

• Entropy-based metrics: are they based on information theory metrics and en-
tropy computations?

• Distance-based metrics: are they based on computing a form of distance between
the original and anonymized graph (or a portion/generalization of them)?

• Tuple-based: are they based on computations computed on the tuples from the
anonymized graph (number of modified values, equivalence classes, etc.)?

We first highlight some simple, intuitive static metrics applicable in our LOD con-
text. Provided that the anonymization processes consists in (or can be abstracted to)
native SPARQL update operations, various statistics could be used to create a hierar-
chy of the sequences outputted by our algorithms:

• The number of DELETE and UPDATE queries by sequence could be a simple but rough
way of classifying anonymization sequences, as it basically emphasizes how
many triple patterns will be replaced and and how many will just be deleted.
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• The number of operations performed on meta-triples, such as rdf :type triples: this fo-
cuses on how much general information is lost on the graph, rather that focusing
on its contents; in a way, this is a rough computation of how the abstract structure
of the graph is affected by the anonymization sequence.

• The number of triples per body of DELETE/UPDATE queries is the simplest way to
assume the data loss in a data-independent way. Rather than just counting
DELETE/UPDATE operations, this focuses on the actual number of triples that could
be deleted or replaced to guess how destructive an anonymization sequence
would be.

These measurements are very intuitive and simple to understand, and also close to
the best one can do in a data-independent fashion (i.e. on judging the anonymization
process beforehand rather than the anonymized graph).

We now browse the literature for data utility measurements, as well as some state-
of-the-art data management software such as ARX [Prasser15], to look for additional
metrics that could be used.

One of the main inspirations of our work, the logical PPDP framework from Grau
and Kostylev [Grau19], defines a theoretical optimality criterion, that is a preorder be-
tween "suppressor functions" (equivalent to our anonymization operators). For a given
graph G, an operation o1 would then be "more informative" than an operation o2 if the
anonymized graph o1(G) preserves more constants and labeled blank nodes from the
original graph than o2(G). The optimal anonymization process is therefore one using
the most informative operators with regard to this preorder.

We now focus on the metrics used in k-anonymity methods and its derivatives.
Prior to Sweeney’s work, P. Samarati already defined four basic utility metrics for its
k-anonymity principle, to compare various k-anonymizations [Samarati01]. They were
the absolute and relative distance between the original and anonymized database us-
ing various anonymization processes, a distribution metric (maximum distribution is
achieved for the anonymized dataset containing the most distinct records) and a sup-
pression metrics (count the number of deleted records). In the original k-anonymity
framework [Sweeney02b, Sweeney02a], Sweeney based its utility measurement on the
minimal distortion of the data table to be anonymized; this metric is heavily data-
dependent, as it is then used to choose the "best" k-anonymous solution on a given table.
A classic metric coming from k-anonymity and related methods is to use minimal average
group size, i.e. the average size of the equivalence classes in a k-anonymous (or l-diverse,
etc.) graph, as shown in multiple works [Samarati01, LeFevre05, Machanavajjhala07].
Again, this type of measurement is relevant to measure structural destruction in a
relational database, as these equivalence classes are in fact the number of "bulks of
records" in which each record is indistinguishable from the other. In addition to this, in
l-diversity [Machanavajjhala07] and t-closeness [Li07], Machanavajjhala et al. and Li et
al. use two measurements: the generalization height, that is the maximum height of a gen-
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eralization tree or lattice used when anonymizing the dataset (in short, the maximum
amount of generalization steps used when anonymizing) and a discernability metric
(from [Jr.05]), i.e. the size of the equivalence classes/bulks of indistinguishable records.
In their multidimensional implementation of k-anonymity, Lefevre et al. [LeFevre06a]
use these metrics as well, adding a new one to the list: they compute the mean and
standard deviation of the absolute error resulting from the evaluation of a query workload.
This captures another form of information loss based on usage and value estimation,
in addition to structural information loss. In the same fashion, V. Iyengar [Iyengar02]
designed two usage-based metrics for k-anonymity methods. The first is a loss metric,
based on the amount of different values between original and anonymized databases,
and normalized for each column where a generalization or a suppression took place.
The second is a classification metric, measuring the loss of "purity" of specific target vari-
ables that could be used for predictive modeling or machine learning.

These metrics were broadly criticized by Kifer and Gehrke [Kifer06]. Generaliza-
tion height is considered to have too much variability, as there can be many differ-
ent attributes with various possible generalization trees or lattices. Using equivalence
classes, loss computation and discernability depends too much on the original data dis-
tribution, and are therefore seen as too ad hoc metrics. Iyengar’s classification metric is
very specific, and doesn’t really work if classifiers must be built for multiple columns.
In general, they criticize what they call "local heuristics", such as information/loss ra-
tios (as in [Wang05]), since they make difficult comparisons between the utility of two
different anonymized databases. They in the end suggest a new type of measure-
ment, more formal, using the Kullback-Leibler divergence (previously mentioned in
Section 2.1.3) to measure the preservation of marginal values in the data.

Others focused on query-based and workload-based metrics, or other forms of
usage-based measurements. Brickell and Shmatikov emphasized this in [Brickell08],
judging that any utility analysis of a dataset must be, at least in part, based on a work-
load context.

Without a workload context, it is meaningless to say whether a graph is "useful"
or "not useful", let alone to quantify its utility. [...] It has been recognized that
utility of sanitized databases must be measured empirically, in terms of specific
workloads such as classification algorithms. This does not necessarily contradict
the "unknown workload" premise of sanitization. It simply acknowledges that even
when sanitization satisfies a syntactic damage minimization requirement, it may
still destroy the utility of a graph for certain tasks; it is thus essential to measure
the latter when evaluating effectiveness of various sanitization methods.

(J. Brickell, V. Shmatikov. In [Brickell08])

Some examples of such an utility analysis were actually designed prior to this
statement, but are good example of workload-based utility evaluation. LeFevre et
al. [LeFevre06b] designed a set of "workload-aware" anonymization metrics, based on
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classification and regression techniques. What is evaluated as utility is there the accuracy
over a test set, using decision trees, naive Bayes classification, random forests, SVM,
linear regression and regression trees. Using a query workload, Rastogi et al. uses the
estimation of counting queries as a boolean utility metric [Rastogi07]. The point is to
define a guaranteed upper bound on the absolute error of the estimator, satisfied by all
queries from the workload.

By nature, differential privacy offers more formal guarantees in terms of utility, as
it is part of its definition to keep statistical integrity. Nevertheless, some more precise
metrics have also been defined for specific differential privacy algorithms. For exam-
ple, Hardt et al. defined estimation-based metrics to test their "Multiplicative Weights -
Exponential Mechanism" differentially private algorithm [Hardt12]. This includes com-
puting the total squared error for given range queries, the relative entropy in the case of
binary contingency table release, and the average absolute error for three-dimensional
contingency tables.

Graph anonymization frameworks usually have their own sets of utility definitions
and metrics, usually focused on the structural integrity of the graph. Intuitive mea-
surements can for example be focused on vertices and edges, connected components,
links or joins between graphs, or blank nodes in the specific case of RDF. Many statistics
can then be computed, related to equivalence classes, cardinality, clustering, and many
more. We now provide multiple examples of previous works illustrating this.

A simple idea is to adapt classic methods from the relational world to the struc-
ture of graph databases. For example, for their adaptation of k-anonymity for RDF
graphs (k-RDFanonymous graphs), Radulovic et al. adapt the minimum distortion
metric from Sweeney, but on triples from RDF graphs instead of tuples from relational
databases [Radulovic15]. Zheleva and Getoor [Zheleva07] also previously introduced
the notion of "observations" removed by the anonymization process, in a way similar to
various loss metrics mentioned earlier. Although, they note themselves that more so-
phisticated measurements should be defined to account for the potential loss of struc-
tural properties. Cormode et al. [Cormode08] worked on adapting workload-based
metrics, their utility analysis being defined the accuracy of sample aggregate queries.

For more specialized metrics, we can find metrics used in network analysis to help
us in the context of graph databases. Hay et al. [Hay08] notably reported five major
metrics to test the effects of graph anonymization:

• Degree: the distribution of the degrees of all vertices in the graph;

• Path length: the distribution of the lengths of the shortest paths between 500 ran-
domly sampled pairs of vertices in the network;

• Transitivity (a.k.a. clustering coefficient): the distribution of values where, for each
vertex, we find the proportion of all possible neighbor pairs that are connected;
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• Network resilience: plotting the number of vertices in the largest connected compo-
nent of the graph as nodes are removed in decreasing order of degree (originally
from [Albert00]);

• Infectiousness: plotting the proportion of vertices infected by a hypothetical dis-
ease, which is simulated by first infecting a randomly chosen node and then trans-
mitting the disease to each neighbor with the specified infection rate (originally
from [Watts98]).

All or some of these metrics are very often reused in fields such as social network
analysis, as shown in [Yuan13] where the average path length is used, in addition to
the average change of length of a sensitive path using designated labels, and the remaining
ratio of the most influential entities in the graph after anonymizing the graph. Nobari et
al. [Nobari14] also focus on clustering and path length, computing the earth mover’s
distance between the shortest path distribution in both original and anonymized graph.
This distance is also computed between the degree distributions of both graph.

The ARX Anonymization Tool includes many measurements taken from existing
literature. We list each metric with its potential source, most of them being stud-
ied previously in this section. Previously detailed metrics include average equiva-
lence class size (from [LeFevre05]), discernability (from [Jr.05]), generalization height
(from [Machanavajjhala07]), loss (from [Iyengar02]), precision (from [Sweeney02a]),
KL-Divergence (from [Kifer06]), and classification accuracy (from [Iyengar02]). Two
other metrics are implemented:

• Non-uniform entropy (from [Prasser16]), used to measure distance between distri-
butions of given attributes; it can be also be normalized.

• Ambiguity (from [Goldberger10, Nergiz07b]), which is the average size of the
Cartesian products of the generalized values in each record of the database. This
in fact measures the theoretical total number of possible combinations of the orig-
inal records that a generalized record could imply.

All the metrics we mentioned in this section are summarized in Table 6.1 below,
to summarize the study. It is easy to observe that there are many different ways to
measure utility, towards completely different aspects of the considered dataset.
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6.1.3 Conclusion and selected metrics

Using this existing literature and the characteristics of our context of work and our
frameworks, we now decide on which metrics will be evaluated in our measurements.
While we can easily conclude that measuring privacy is not the priority, we must spend
more time regarding utility metrics.

In the context of our safety-related contribution, utility guarantees do not exist in the
anonymization process (as opposed to the first contribution) and utility must therefore
be checked and measured post-anonymization. For this more complex case, we decide
on multiple utility metrics, capturing various aspects of the anonymized graphs, focus-
ing on information loss on a structural level and using metrics relevant to the context
of LOD.

Precision loss for LOD: relative and absolute number of added blank nodes

Following the RDFprec metric from [Radulovic15], itself inspired by Sweeney’s original
Prec metric [Sweeney02a], we devise a measurement of the loss of precision caused by
the anonymization process in an RDF graph. It uses a concept inherent to the Semantic
Web: blank nodes. By counting the number of blank nodes added by the anonymiza-
tion, we can easily analyzes how much information could be lost by breaking links be-
tween triples using common IRIs where one occurrence was replaced by a blank node.
Our precision loss measurement is a [0, 1] value computed by the following formula:

Prec =
number of blank nodes added by the anonymization

total number of IRIs in the original graph

It provides a precision value relative to the contents of the original graph, and how de-
structive was our anonymization in replacing some of the graph’s IRIs by blank nodes.

Structural destruction of graph structure: distance between degree distribution

Looking at the degree distribution of a graph is one of the many typical metrics used
in graph analysis [Hay09, Lin13] and comparing two of these distributions to compare
two graphs as well. We use one of these comparisons using the distance between the
degree distributions of a graph before and after anonymization, from [Nobari14]. The
Wasserstein distance (or Earth mover’s distance) between two degree distributions of
the same size and sum is the "minimum work" necessary to transform one distribution
into the other. Here, this distance represents the amount of nodes moved times the
distance by which it is moved. This measurement is useful in the sense that it allows us
to see structural differences in the graph, for example if a lot of "core" nodes (with a lot
of incoming and outgoing edges) have been modified. This type of changes may not
perceptible when computing simple precision values, while computing such a distance
captures more abstract changes like this one.
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Structural information loss: number of connected components

To go further in this structural study, we use another classical graph analysis metric: the
number of connected components in an anonymized graph. Connected components are an
important tool in social network analysis, for example to look for central patterns or
regions in a graph (applications exist for example in biological networks [Albert00]
or computer vision [Dillencourt92]). Assessing the number of connected components
can therefore help summarize the structure of a graph: transitioning from few big
components to many small components could indicate a big information loss in our
anonymization process.

Triple information loss: similarity

Finally, another classic way to analyze the structural modifications to a graph is to mea-
sure more directly the information loss on the graph. Rather than computing statistics
such as the degree distribution, we compute a similarity metric based on the number
of identical triples found in the graph between the original and anonymized versions.

6.2 Experimental data: The quest for RDF graphs and workloads

We now focus on the RDF graphs where our experiments will be carried out: how they
are selected, why, and what are their characteristics.

6.2.1 Criteria

Testing our frameworks requires RDF graphs, whether their contents are artificial or
real-world data. And since we will need to define privacy and utility policies on those
datasets, they should be adequately selected based on semantics and contents which fit
these requirements.

In order to design a proper experimental evaluation, multiple RDF graphs of vari-
ous purposes, sizes and structures have been selected: smaller and bigger sets of data,
real-world data as well as synthetic data, and so on. The criteria to select them were:

1. their availability as usable data dumps;

2. the fact that they presented explicit, named entities such as users or products, to
mimic sensitive data;

3. the simplicity and readability of their schema and vocabulary, to put ourselves in the
role of a real-world Data Protection Officer designing policies.

Availability is a crucial concern. Previous works showed that many RDF graphs
and SPARQL endpoints lacked stability, interoperability, discoverability and availabil-
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ity [Aranda13, Neto16, Debattista18] with downtime periods, dead links, overload-
ing issues, and even sometimes complete disappearance from the Web. Data pub-
lishing also lacks uniformity, sometimes not respecting the 5-star principles detailed
in Section 1.1 or simply by containing erroneous data, and are therefore not easily
downloadable or processable [Beek16]. Some graphs are also sometimes available
as SPARQL endpoints, but not as complete data dumps (or not in a direct way),
hence this requirement. To circumvent these issues, we use the LOD Laundromat
project [Beek14, Beek16] which processes, unifies and store every graph detected in
the LOD cloud, making it available in both its "dirty" (original) form or its "clean" (pro-
cessed and unified) form.

6.2.2 Selected sets of data

For these experiments, we select four graphs of various sizes and semantics and fol-
lowing the criteria defined in the previous section.

The TCL2 graph models synthetic transportation data based on real data from the
Grand Lyon Open Data portal. As mentioned in Section 1.5, we use an adequately
designed RDF data generator to simulate what a sensitive transportation would look
like by adding personal user data to this already public information. We also model
external knowledge by adding another public accessible information: location data re-
garding all places of worship in the Lyon area. Typical entities include transportation
lines and stops, users, subscriptions, places of worship.

LUBM3 is a famous benchmark to evaluate the performance of triple stores and
query engines using big synthetic graphs modeling university data. We use a data
generator to model the data for numerous universities, providing with a considerably-
sized graph to be used as a performance test for the anonymization operations. To still
make computation and experimentats possible, we settled on a value of 100 univer-
sities, which still created an extensive yet processable graph. Typical entities include
universities, students, teachers, courses.

The Drugbank4 graph contains real-world data regarding approved drugs in the
United States of America, and details regarding their contents, their usage, their brand-
ing, as well as possible chemical composition and studies. Drugs are the prominent
entity in this graph.

The Europeana Swedish Heritage5 graph contains heritage data regarding the
whole country of Sweden, collected from the Europeana heritage portal. Typical en-
tities are heritage locations.

2Original data portal: https://data.grandlyon.com/
3Main project: http://swat.cse.lehigh.edu/projects/lubm/ - Generator software: https:

//github.com/rvesse/lubm-uba
4http://wifo5-03.informatik.uni-mannheim.de/drugbank/
5General Europeana portal: https://pro.europeana.eu/page/linked-open-data
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The details regarding each graph and their associated reference policies are reported
in Table 6.2. The indicators are the following:

• The number of triples in the graph;

• The number of unique IRIs (the number of different labels that appear in subject,
predicate or object position);

• The number of unique (anonymous) blank nodes already in the graph;

• The number of queries in each reference policy;

• The size (total number of triples) of each reference policy.

Table 6.2: Summary of the various graphs used in our experiments.

Graph
Number

of triples

No. of

unique IRIs

No. of

unique blanks

No. of queries

in privacy policy

Privacy

policy size

TCL 6,443,256 1,020,580 705,030 7 19

LUBM 13,405,383 13,363,445 0 3 7

Drugbank 517,023 109,494 0 3 14

Swedish

Heritage
4,970,464 1,687,452 0 4 13

6.3 Evaluating the safety framework

We now evaluate various aspects of the framework from the second contribution pre-
sented in Chapter 5. This solution puts aside utility policies, but provides a tighter
privacy guarantee protecting against linkage attacks using shared IRIs. In comparison
to the previous one, this solution adds therefore more blank nodes to the graph, and
does not have a direct way to judge the utility of the dataset.

Thus, we decide to focus this time on using real-world graphs that we actually
anonymize, using fixed custom policies where we introduce variability to study how
fine-tuned modifications to the privacy policy queries (and therefore how much of the
initial graph they cover) impact the algorithm and its generated anonymization.

And in addition to the classical measurement of the running time, we only focus
on utility measurements by selecting multiple metrics aimed at measuring information
loss in various ways (similarity, structural alterations, lost IRIs).
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6.3.1 Experimental setup

Input

In order to later study the output of the framework (the operation sequence and the
subsequently anonymized graphs), we need to fix the input and decide which parame-
ters are relevant to our evaluation. Indeed, given the input provided to the algorithms,
many parameters could be fixed and studied, notably:

• The number of queries and the size (total number of triples) of each privacy pol-
icy;

• The semantics of each policy query (what is supposed to be hidden in the end);

• The result variables of each policy query.

We define the notion of policy specificity: a policy is more specific (or less general)
than another if the total number of results of its queries is smaller.

In the same fashion, since it would be impossible to model every possible privacy
policy (whether it is manually or automatically), we also provide a fixed input for the
framework by manually writing policies for each selected graph. Thus we define a ref-
erence policy for each RDF graph, manually written with plausible queries based on the
semantics and vocabulary of each graph. These "plausible semantics" are defined by
looking at the graph’s schema and its general goal as a dataset published to the LOD
cloud. Reference policies are sets of conjunctive queries providing a simple representa-
tion of what a data provider could seemingly want to hide from their data. In a real-life
scenario, these policies should be defined by the DPO in charge of defining the public
part of the database to be published. For example, the chosen queries for the TCL graph
aim at hiding the given name, family name, postal address, birth date and subscription
details of any user existing in the graph. Full policies (as lists of SPARQL queries) are
reported in Appendix A.

Policy mutation

To assess the resulting utility after anonymization, we create mutations of the reference

policies, i.e. incremental modifications to the graph patterns of the privacy policy’s
queries. The type of mutation considered here is the replacement of a variable in a
policy query’s body by a constant; the resulting mutated policy will therefore be more
specific than the original. The idea is to measure the utility loss on the anonymized
graph as a function of the specificity of the policy: a mutated policy should be less
destructive, indeed as the mutated applies only to more specific cases, lesser blank nodes
should be introduced. When the policy is extremely specific, for instance when it hides
only a completely instantiated subgraph without variables, no blank nodes should be
introduced.
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For each graph, we generate a finite set of mutations of the original reference policy
by creating a t × m matrix of mutations with two parameters: a number t of parallel
copies of the reference policy and a number m of mutations to apply in each copy.
This way, we create t different threads of incremental mutations in order to explore
the impact of specificity. We report an example of such a "thread" of mutations over a
reference policy based on our running transportation example in Example 6.1. In this
example, we have P3 |= P2 |= P1 |= P .

Example 6.1

Let P a policy consisting in this unique query:

1 SELECT ?name ?dest
2 WHERE {
3 ?user a ex:User .
4 ?user ex:familyName ?name
5 ?user ex:destination ?dest .
6 ?user ex:nationality ?nat .
7 }

Let m = 3. A possible thread of mutations for this policy would be as follows. Each
new mutations is highlighted in bold. For the first mutation P1:

1 SELECT ?name ?dest
2 WHERE {
3 ?user a ex:User .
4 ?user ex:familyName ?name
5 ?user ex:destination "Madrid" .
6 ?user ex:nationality ?nat .
7 }

For the second mutation P2:

1 SELECT ?name ?dest
2 WHERE {
3 ex:user28 a ex:User .
4 ex:user28 ex:familyName ?name
5 ex:user28 ex:destination "Madrid" .
6 ex:user28 ex:nationality ?nat .
7 }

And for the third mutation P3:

1 SELECT ?name ?dest
2 WHERE {
3 ex:user28 a ex:User .
4 ex:user28 ex:familyName ?name
5 ex:user28 ex:destination "Madrid" .
6 ex:user28 ex:nationality "French" .
7 }

The first policy of each thread therefore matches the original policy. Formally, the
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specificity of a mutated policy P′ of a base reference policy P on a graph G is defined
as specificity(P′) = |Ans(P′,G)|/|Ans(P,G)|. The boxplots on Figure 6.1 describes how
policy specificity evolves with mutation depth; i.e., how many successive mutations
we need to perform on a policy before its queries start having no results on the graph
anymore.

(a) TCL (t = 7, m = 11) (b) Drugbank (t = 7, m = 4)

(c) Heritage (t = 7, m = 8) (d) LUBM (t = 5, m = 8)

Figure 6.1: Specificity depending on mutation depth
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In the case of the TCL graph, 11 mutations is a fitting threshold, as shown on Fig-
ure 6.1. The figure shows that the mutation process covers the whole spectrum of se-
lectivity, from 0 (a policy with very few or no variables that return almost no results on
G) to 1 (the original reference policy). Choosing relevant values for t and m is indeed
heavily dependent of the considered graph and its related policy; notably, the size of its
policy.

Each mutated policy has its own specificity, and we compute a normalized value
between 0 and 1 by dividing by the specificity of the original, non-muted policy. This
will form the x-axis of our experiments.

The experiments were generated and performed using Python 2.7, using the same
base code structure than the previous solution, and using the SPARQLWrapper pack-
age6 to manage SPARQL endpoints and real SPARQL data through RDF graphs stored
on a Virtuoso 7 triple store. The server machine used is a Linux Ubuntu 18.04 virtual
machine with 128GB of RAM and 12 virtual CPUs, running using OpenStack.

In terms of performance, just like the previous contribution, the staticity of the ap-
proach ensures a good running time for the generation of anonymization sequences;
but now, we have to consider the actual anonymization duration. The running time
then depends on the size of graph and of the policy. Indeed, the bigger the policy and
its queries are, the longer the operation sequence will be. Table 6.3 indicates for each
graph the length of anonymization sequence, that is the number of updates to apply,
and the maximum running time of the anonymization operations across all mutations.

Table 6.3: Running time of anonymization operations.

Graph
No. of

operations

Algorithm

duration (s)

Anonymization

duration (s)
Size (MB)

Throughput

(MB/s)

TCL 16 0.151 3.5 210 60
Drugbank 28 0.146 2.8 150 54

Swedish Heritage 22 0.149 18.7 910 48
LUBM 13 0.14 107.9 2,290 21

While the number of operations generated can become high, only a few will cost
time: the ones dealing with the subgraphs patterns with many occurrences in the graph.
In any case, we show that the running time is quite decent. Indeed, our approach
uses only standard SPARQL update queries which are efficiently processed by heavily
optimized RDF databases such as Virtuoso. We also report the performance results of
the operation generation algorithm, with the same conclusions as in Section 4.6.1.

6https://rdflib.github.io/sparqlwrapper/
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6.3.2 Results

We present the results for each of the four graphs selected in Section 6.2.

Precision loss analysis

To analyze the precision loss and the gradualness of our approach, we measure the num-
ber of blank nodes added by the anonymization process. Results displayed on Figures 6.2
to 6.5 show that this number grows linearly with policy specificity: the less precise the
policy is in its selection of data, the more blank nodes will be inserted to the graph.

(a) TCL (Absolute precision) (b) TCL (Relative precision)

Figure 6.2: Absolute and relative (RDFprec-based) number of blank nodes introduced
depending on the policy specificity for the TCL graph.

As a relative precision measurement, we use a variant of the RDFprec metric to
measure how this addition of blank nodes impacts the graph as a whole. Here, RDFprec
counts the ratio of non-blank nodes in the graph. To keep the same visual trend, the
metric used to plot each figure is the loss of precision, i.e. the complement percentage.

We can observe on Figures 6.2b to 6.5b that precision is very dependent on the input:
if the policy covers only a specific part of the whole data (e.g. only the subscription data
in a graph containing data regarding subway lines, bus stops, etc.) its impact is quite
small. This explains why in the case of the TCL graph (Figure 6.2a), this precision value
only drops by a very low margin (99.9% to 99.4%). The trend is identical on other
graphs: precision drops when the policy gets more general. It drops to around 75% in
the case of the Swedish Heritage graph, 87% for the Drugbank graph, and 93% for the
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(a) Swedish Heritage (Absolute precision) (b) Swedish Heritage (Relative precision)

Figure 6.3: Absolute and relative number of blank nodes introduced depending on the
policy specificity for the Swedish Heritage graph.

(a) Drugbank (Absolute precision) (b) Drugbank (Relatve precision)

Figure 6.4: Absolute and relative number of blank nodes introduced depending on the
policy specificity for the Drugbank graph.

LUBM graph. This confirms that, using plausible policy semantics, the number of IRIs
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(a) LUBM (Absolute precision) (b) LUBM (Relative precision)

Figure 6.5: Absolute and relative number of blank nodes introduced depending on the
policy specificity for the LUBM graph.

lost in the anonymization process is not huge.

However, we notice that for multiple graphs, most notably on Figures 6.4a and 6.4b
for the Swedish Heritage graph, there is quite a large spread on the x = 0 line. Indeed,
in some cases the mutation process can cause some very general pieces of information
(e.g. typing triples, that are identical for many entities in the graph) to be impacted,
which can cause a very early drop in precision, since in those situations the anonymiza-
tion process thus leads to many replacements by blank nodes.

Structural destruction analysis

We then compute our Wasserstein distance measurement between degree distributions
to assess the effect of the anonymization on the graphs’ structures.

First, the results displayed on Figure 6.6 show that the distance value is low in
general: less than 1 for the TCL graph, and between 10 and 30 for the other graphs.
This number describes the "cost" of turning one degree distribution into the other, i.e.
the number of degrees that would have to be moved. Considering graphs with several
hundred thousand nodes, these values are quite low. We also note that for the TCL,
Drugbank and Swedish Heritage graphs, the distance exhibits a clear raising tendency:
the more stringent the policy is, the farther the anonymized graph is. But this increase
can be very scattered: on the TCL graph, we note that the distance increased a lot on
situation with a specificity between 0.2 and 0.4. This is again due to the very discrete
nature of policies, than can create huge modifications in the graph and its structure,
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(a) TCL graph (b) Drugbank graph

(c) Swedish Heritage graph (d) LUBM graph

Figure 6.6: Distance between degree distributions of the original graphs and the graphs
anonymized using a given policy mutation

yet have only a few different specificity values, usually grouped in "chunks" that are
clearly visible when the size of the privacy queries is low.

Even taking the into account, the fact that the Drugbank graph has a very straight-
forward structure and fairly simplistic policies creates very few different specificity
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values (here, two "chunks" around 0 and 1), but where the distance can vary greatly
depending on how prevalent are the edited nodes in the graph.

This problem and the fact that values tend to be too scattered for a definitive con-
clusion indicate that the distance between degree distributions may not be the most
suitable metric to analyze the structural destruction of a graph.

We therefore select two other graph-based measurements for our study. We report
the results for these metrics on Figures 6.7 to 6.10: the similarity metric and the number
of connected components in the graph. In both figures, the blue dashed line represents
the same values but for the graph anonymized using the original, non-mutated policy.
Similarly, the red dotted line represents the number of connected components for the
original graph, as a point of reference (this dotted red line is not displayed for the
similarity graphs, as it would obviously be the line y = 1).

(a) TCL (Similarity) (b) TCL (Connected comp.)

Figure 6.7: Comparison of the similarity and the number of connected components
between original and anonymized versions of the TCL graph.

We observe that the similarity between original and anonymized graph is gener-
ally high (over 75% for three graphs, even reaching very high percentages for the TCL
graph): once again, while this heavily depends on how policies cover the entire schema
of each graph, this shows that our approach is not destructive on a triple-per-triple
point of view. This explains why, in the case of the LUBM graph, much of this triple-to-
triple similarity is lost when policies have high specificity, as they cover many different
parts of the data.

The study of connected components produces results in line with our previous
study. For the TCL, LUBM and Swedish Heritage graphs, the number of connected
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(a) Swedish Heritage (Similarity) (b) Swedish Heritage (Connected comp.)

Figure 6.8: Comparison of the similarity and the number of connected components
between original and anonymized versions of the Swedish Heritage graph.

(a) Drugbank (Similarity) (b) Drugbank (Connected comp.)

Figure 6.9: Comparison of the similarity and the number of connected components
between original and anonymized versions of the Drugbank.

components grows with query specificity: this implies that policy queries covering the
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(a) LUBM (Similarity) (b) LUBM (Connected comp.)

Figure 6.10: Comparison of the similarity and the number of connected components
between original and anonymized versions of the LUBM graph.

biggest portion of the graph cause the anonymization to "break" a lot of existing con-
nected components, creating numerous, smaller components using blank nodes. We
can note that in some cases as the Drugbank graph, the number of connected compo-
nents may have only a very small variation. Indeed, the number of connected com-
ponents heavily depends on the structure of the graph, notably if some triples such as
typing exists in each entity: these entities will all link to the same IRI, creating huge
components in the graph. When reaching heavily "influencing" nodes such as those,
the number of connected components may suffer a big decrease. In our graphs, this no-
tably happens in the TCL graphs: to solve this, we filter out triples using the rdf :type
predicate. This could in fact be a potentially better way to study connected compo-
nents: rather than looking at the whole graph (or specific portions by filtering some
predicates), it would be interesting to study connected components per predicate and
study the evolution of such clusters of nodes when anonymized.

In short, we can see that in practice, very strict privacy policies still preserve some
structural integrity and does not incur too big of a precision loss. And besides, it is
possible to create finer policies, less destructive, but providing better control of the
precision and structure of the anonymized graph.
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6.4 Experimental prospects

During our experiments, we were able to analyze in various ways how the contents of
the input policies impact the anonymization process and the output graph. This further
emphasizes their importance in the anonymization of any given database that has to be
published to the LOD cloud (or any other public space, for that matter) and the central-
ity of the Data Protection Officer’s role or any other person or organization in charge of
precisely defining the boundaries of which data has to be kept intact or removed from
a public iteration of a given dataset. This role is already gaining importance due to the
scope of application of the GDPR regulations in Europe - and similar cases in the rest of
the World - and our study is a simple example of how this position is crucial, not only
in organizational matters, but also in concrete and technical contexts.

But still, many other factors could be studied as future research works, focusing
notably on the potential public usage of databases anonymized using such solutions.
Usage-based studies, such as the study of actual query usage logs of LOD graphs
could indeed help shaping policies by identifying important data. In addition to this,
our extensive study of possible metrics also indicates that many other numerical fac-
tors could be computed to assess the considered anonymization process, focusing on
other structural aspects of graph databases, or even focusing quantifying privacy in the
anonymized data. This could also lead to a more comprehensive and up-to-date survey
on this matter in coming years.



When you do things right, people won’t be sure you’ve done anything at all.

Ken Keeler – Futurama, "Godfellas" (2002)

7
Conclusion and perspectives

� To end this manuscript, we recall the key points from each of our contributions and their experimental
evaluation. We also report on possible caveats and extensions, as well as prospects in this subfield. �

LOOKING at data privacy from the standpoint of Linked Open Data and the Semantic
Web remains a widely open problem, and this exploratory thesis only marks the

beginning of deep studies regarding privacy guarantees, frameworks and anonymiza-
tion algorithms in this context. Our contributions and analysis open the door to many
complementary approaches or extensions to our frameworks. We recall the main as-
pects of our contributions and discuss possible usages and caveats, concluding with
potential prospects and obstacles towards reaching them.

We designed two full-fledged, data-independent solutions for anonymizing RDF
graphs to be used before publishing them to the Linked Open Data cloud. Each one
satisfies certain specific definitions and semantics of data privacy and utility, consider-
ing different contexts of usage and privacy concerns. This could be the beginning of
a major research direction and change of usage in the grander scheme of the Semantic
Web. Indeed, this kind of tool is currently almost non-existent, while privacy issues are
still rampant and while the LOD movement has been lacking mainstream momentum
in recent years.

Our first solution deals with RDF graphs taken individually, where a compromise
must be found between specific privacy and utility requirements. This is the most intu-
itive type of anonymization framework, but it does not address specific privacy issues
resulting from how Linked Data operates. To address specific privacy concerns related
to linkage attacks, we also designed a more privacy-focused framework guaranteeing
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a new notion of safety, considering these issues that are more inline with actual usage
of RDF LOD datasets.

Both solutions are easy-to-use, as they only require marginal knowledge of Linked
Data and SPARQL to formalize privacy or utility requirements, and the rest is knowl-
edge regarding the contents and the semantics of the graphs to be anonymized. Any
data provider should thus be able to handle these frameworks, especially the manda-
tory Data Protection Officers in a GDPR context. These two contributions were theoreti-
cally validated, as each provides proven privacy and utility guarantees and anonymiza-
tion algorithms satisfying those guarantees. Yet they were validated in practice as well,
though implementations in Python and experimental evaluations on both the execution
of these algorithms and the anonymization of concrete RDF graphs.

Data privacy gets increasingly complex with each incremental constraint put on
data release or on privacy semantics, such as the utility constraints studied in this
thesis. Besides, new standards or software used in the field may pose new privacy
challenges as well. Fortunately, given how our contributions are structured, possible
extensions are basically infinite. Any other anonymization approach can be used in
conjunction with our own anonymization framework. Moreover, our privacy seman-
tics can be easily extended and the algorithms adapted in order to generate new correct
anonymization operations in different contexts.

However, this is not without caveats. Notably, just like there was an escalation of
tighter privacy guarantees for relational databases starting with k-anonymity and up
to more modern derivatives, one can possibly design other types of attacks on RDF
graphs. Those would use other Semantic Web technologies or specific loopholes in rea-
soning/query engines that would require new additions to our framework. Other po-
tential problems could occur if some standards (such as versions of RDF and SPARQL)
are deprecated and not handled well anymore by query engines. This would render
some anonymization operations impossible to apply, or change their behavior in un-
predictable or erratic ways.

As a whole, it is hard to predict the future of the Semantic Web and Linked Open
Data. The whole field is mostly pushed by academics and public institutions in selected
areas, and it lacks momentum to become a de facto standard or a huge technological
leap. The notion of Semantic Web tends to be supplanted by usages of artificial intelli-
gence and its derivatives technologies (such as deep learning) rather than declarative or
static sets of data, and many think that Semantic Web and Linked Data have not picked
up the pace and are almost obsolete1. It should be noted that even its W3C founders,
while still actively maintaining committees and working groups on every existing stan-
dard, seems to focus more on Web applications especially regarding privacy, as shown
by Tim Berners-Lee’s new Solid project2. All of these contributions have therefore to

1https://twobithistory.org/2018/05/27/semantic-web.html
2https://solid.mit.edu/
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be considered while taking account of the democratization of these usages, or on the
contrary the potential loss of interest.

Nonetheless, and even if analyzing privacy issues within the scope of the Semantic
Web and privacy-preserving data publishing of RDF graphs are both very new fields,
this type of work is important. For example, some still think that LOD and Semantic
Web are reaching a "slope of enlightment", meaning that after a period of disillusionment,
improvements should be arriving anytime soon3. Indeed, this line of research should
provide with a different kind of research momentum for LOD and the Semantic, which
could hopefully in turn encourage more research by various actors. The W3C could
provide with new technical standards and tools handling anonymization or privacy
modeling. Institutional and private actors could develop solutions dealing with con-
crete technical constraints for anonymizing data. And researchers could extend work
such as this PhD project, or design new solutions or frameworks. Besides, the popular
demand for more data transparency and data privacy is not likely to end soon, ensur-
ing a future in any shape or form for the LOD cloud. The framework we designed ,
while linked to current Semantic Web standards, remains generic and declarative and
can be thus adapted to any of these evolutions.

Short-term goals include defining more concrete degrees of privacy to provide with
a whole range of LOD anonymization frameworks, and extending these frameworks to
other Semantic Web mechanisms such as complex reasoning. Longer-term goals could
be focused on studying the characteristics and caveats of a privacy/utility trade-off on
the specific context of Linked Open Data, with both formal studies and usage studies
performed by potential LOD providers, to evaluate more precisely the need for LOD
anonymization solutions.

Immediate future work should thus also focus on how all these privacy-preserving
LOD solutions could be integrated into existing data management pipelines and LOD
usages, and how they could be automated or made more clearly available to actual
data providers or Data Protection Officers. Given the current state of the Semantic
Web, the main focus of future research (whether it is applied or theoretical) should be
based on usage and usability, to solve concrete privacy problems in LOD contexts. Our
approach using declarative constraints to ensure the GDPR-recommended privacy by
design provides a solid basis to initiate usage-based discussions on how to formalize
privacy.

3https://medium.com/@schivmeister/the-semantic-web-where-is-it-now-f4773f3097e3
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WE report each policy used when experimenting on both frameworks in Chapter 6.
To ease readability, we use the SPARQL standard notation to write prefixed IRIs1

instead of full IRIs.

A.1 TCL graph

Query 1: Hide users’ given name(s)

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?user ?name
3 WHERE {
4 ?user foaf:givenName ?name .
5 }

Query 2: Hide users’ family name

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?user ?surname
3 WHERE {
4 ?user foaf:familyName ?surname .
5 }

Query 3: Hide users’ address(es)

1 PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>
2 SELECT ?user ?address
3 WHERE {
4 ?user vcard:hasAddress ?address .
5 }

Query 4: Hide users’ birth date

1 PREFIX tcl: <http://localhost/>
2 SELECT ?user ?birth
3 WHERE {
4 ?user tcl:birthday ?birth .
5 }

Query 5: Hide the starting date of each user’s potential subscription

1 PREFIX datex: <http://vocab.datex.org/terms#>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3 PREFIX tcl: <http://localhost/>
4 SELECT ?name ?surname ?startSubDate
5 WHERE {
6 ?user a tcl:User .
7 ?user foaf:givenName ?name .
8 ?user foaf:familyName ?surname .
9 ?user datex:subscription ?subDate .

1See the W3C SPARQL 1.1 Recommendation [Harris13], notably Section 4.1.1, "Syntax for IRIs".
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10 ?tabDate datex:subscriptionStartTime ?startSubDate .
11 }

Query 6: Hide the stopping date of each user’s potential subscription

1 PREFIX datex: <http://vocab.datex.org/terms#>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3 PREFIX tcl: <http://localhost/>
4 SELECT ?name ?surname ?endSubDate
5 WHERE {
6 ?user a tcl:User .
7 ?user foaf:givenName ?name .
8 ?user foaf:familyName ?surname .
9 ?user datex:subscription ?subDate .

10 ?tabDate datex:subscriptionStopTime ?endSubDate .
11 }

Query 7: Hide the membership type of each user’s potential subscription

1 PREFIX datex: <http://vocab.datex.org/terms#>
2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
3 PREFIX tcl: <http://localhost/>
4 SELECT ?name ?surname ?subType
5 WHERE {
6 ?user a tcl:User .
7 ?user foaf:givenName ?name .
8 ?user foaf:familyName ?surname .
9 ?user datex:subscription ?subDate .

10 ?tabDate datex:subscriptionReference ?subType .
11 }

A.2 LUBM graph

Query 1: Hide students’ name

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
3 SELECT ?name
4 WHERE {
5 ?x rdf:type ub:GraduateStudent .
6 ?x ub:name ?name .
7 }

Query 2: Hide students’ telephone number(s)

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
3 SELECT ?name ?tel
4 WHERE {
5 ?x rdf:type ub:UndergraduateStudent .
6 ?x ub:name ?name .
7 ?x ub:telephone ?tel .
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8 }

Query 3: Hide courses taken by each student

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
3 SELECT ?name ?cours
4 WHERE {
5 ?student ub:takesCourse ?cours .
6 ?student ub:name ?name .
7 }

A.3 Swedish Heritage graph

Queries 1 to 3: Hide who contributed for a precisely localized proxy at a given time

A proxy can be identified by its description, its spatial coordinates, or its title.

1 PREFIX dc: <http://purl.org/dc/elements/1.1/>
2 PREFIX dcterm: <http://purl.org/dc/terms/>
3 SELECT ?c ?t ?m
4 WHERE {
5 ?s dc:creator ?c .
6 ?s dcterm:spatial ?t .
7 ?s dcterm:temporal ?m .
8 }

1 PREFIX dc: <http://purl.org/dc/elements/1.1/>
2 PREFIX dcterm: <http://purl.org/dc/terms/>
3 SELECT ?c ?d ?m
4 WHERE {
5 ?s dc:creator ?c .
6 ?s dc:description ?d .
7 ?s dcterm:temporal ?m .
8 }

1 PREFIX dc: <http://purl.org/dc/elements/1.1/>
2 PREFIX dcterm: <http://purl.org/dc/terms/>
3 SELECT ?c ?d ?m
4 WHERE {
5 ?s dc:creator ?c .
6 ?s dc:title ?d .
7 ?s dcterm:temporal ?m .
8 }

Query 4: Hide the aggregations to which each user contributed

1 PREFIX dc: <http://purl.org/dc/elements/1.1/>
2 PREFIX edm: <http://www.europeana.eu/schemas/edm/>
3 PREFIX ore: <http://www.openarchives.org/ore/terms/>
4 SELECT ?c ?u
5 WHERE {
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6 ?s edm:aggregatedCHO ?i .
7 ?s edm:unstored ?u .
8 ?p ore:proxyFor ?i.
9 ?p dc:creator ?c .

10 }

A.4 Drugbank graph

Query 1: Hide the toxicity of branded drugs

1 PREFIX dbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/> .
2 SELECT ?b
3 WHERE {
4 ?d a dbank:drugs.
5 ?d dbank:affectedOrganism ?o .
6 ?d dbank:brandName ?b.
7 }

Query 2: Hide the brand name of drugs aimed at specific organismes

1 PREFIX dbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/> .
2 SELECT ?b
3 WHERE {
4 ?d a dbank:drugs.
5 ?d dbank:affectedOrganism ?o .
6 ?d dbank:brandName ?b.
7 }

Query 3: Hide the details of interactions between branded drugs

1 PREFIX dbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/> .
2 SELECT ?x ?y ?t
3 WHERE {
4 ?a a dbank:drugs .
5 ?a ?d dbank:brandName ?x.
6 ?b a dbank:drugs .
7 ?b ?d dbank:brandName ?y.
8 ?i a dbank:drug_interactions .
9 ?i dbank:interactionDrug1 ?a .

10 ?i dbank:interactionDrug2 ?b .
11 ?i dbank:text ?t.
12 }
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Schema and characteristics of the synthetic

TCL graph

� We detail the schema and the modeling of the TCL rDF graph, which was specifically designed for this
thesis, using public data available on the Grand Lyon Open Data platform and artificial data to model
sensitive information. �
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WE detail each predicate used in the graph, its semantic meaning, and the type of
values it can take. We first analyze how previously available data was adapted

to RDF, then which type of data is generated to model sensitive personal information.

Every entity local to the transportation network is prefixed with gld:, for Grand
Lyon Data.

B.1 Public data

B.1.1 Lines and stops

Using the SYTRAL (institution managing the Lyon transportation network) data and
the information they provide on the complete network, we can create entity for each
stop and each line in the network. Each line is a numbered entity, prefixed by b for bus
lines, t for tramway lines, and s for subway lines, and has the following data:

• rdf:type: Typing varies on the transportation vehicle. Subway lines are typed
gtfs :Subway, tramway are gtfs :LightRail, and buses are gtfs :Bus;

• tcl :lineNumber: the name and number of the line on the network (a character
string);

• tcl :indexNumber: an internal identifier (a character string);

• rdfs :label: the full name of the line, with its origin and destination (a character
string);

• tcl :orientation: the direction of line, either "Aller" (original orientation) or "Re-
tour" (reverse orientation);

• tcl :stops: a collection of gtfs :Stop objects. Each stop is itself described by two
coordinates (geo :latitude and geo :longitude);

• tcl :titanCode: another internal software identifier (a character string);

• tcl :garageCode: a code for the type of vehicle used, e.g. the train type for a
subway line (a character string).

B.1.2 Places of worship

Places of worship are numbered entities starting with the letter w, of the type
lgdo :placeOfWorship. Using the actual list of the 197 places of worship in the Grand
Lyon area and the available pieces of information for each place, we provide the fol-
lowing data on each place of worship:
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• rdfs :label: the name of this place of worship (a character string);

• geo :latitude: the latitude coordinate of this place of worship (a float, suppos-
edly between 45 and 46);

• geo :longitude: the longitude coordinate of this place of worship (a float, sup-
posedly between 4 and 5);

• gld :id: an internal identifier for this place of worship (a character string);

• gld :creationDate: the establishment date of this place of worship (an xsd:date
formatted string);

B.2 Artificial data

B.2.1 Users

10,000 fictional users are modeled in this graph. They are all given fake names (using a
software generator) and fake addresses (included in our generator code, using fictional
street names, and cities and ZIP codes from the area).

Each user is a tcl :User described by:

• foaf :givenName: their first name (a character string);

• foaf :familyName: their last name (a character string);

• vcard :hasAddress: their postal address (a character string);

• foaf :givenName: their birth date (an xsd:date formatted string);

• datex :subscription: their (optional) subscription to the TCL network (see fol-
lowing section).

B.2.2 Subscriptions

Users may hold a subscription to the network. To account for this, we model them as
datex :Subscription objects, described by:

• datex :subscriptionReference: the name of subscription (a character string);

• datex :subscriptionStartTime: the starting date of the subscription (an xsd:date
formatted string);

• datex :subscriptionStopTime: the ending data of the subscription (an xsd:date
formatted string).
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B.2.3 Journey validations

Journey validations model the fact that users are traveling on the TCL network. This
graph include 1 million validations, which are tcl :Validation objects described by:

• tcl :validator: an identifier of the terminal used to the validate the journey (a
character string);

• tcl :validationDateTime: the exact date and time of the validation (an xsd:date
formatted string);

• tcl :user: the (optional) user who validated this journey (a tcl :User);

• geo :latitude: the latitude coordinate of this validation (a float, supposedly be-
tween 45 and 46);

• geo :longitude: the longitude coordinate of this validation (a float, supposedly
between 4 and 5).



C
Additional experimental results for the

privacy/utility solutions

� We provide additional experimental results for the solution designed in Chapter 4, using various types
of queries in the generted policies. The conclusions and observations remain the same. �
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C.1 Chain queries

C.1.1 Compatibility metrics

Compatibility rates for each type of policy are reported on Figure C.1.

(a) For privacy policies (b) For utility policies

Figure C.1: Policy compatibility based on privacy and utility policy size [Chain queries]

C.1.2 Properties of the candidate anonymization sets

We report properties of the outputted candidate sets: first on the overlap ratio on Fig-
ure C.2, then on the length of those candidate sets on Figure C.3.
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Figure C.2: Candidate set length based on policy overlap [Chain queries]

(a) Depending on privacy size (b) Depending on utility size

Figure C.3: Candidate set length based on the size of both policies [Chain queries]
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C.2 Star queries

C.2.1 Compatibility metrics

Compatibility rates for each type of policy are reported on Figure C.4.

(a) For privacy policies (b) For utility policies

Figure C.4: Policy compatibility based on privacy and utility policy size [Chain queries]

C.2.2 Properties of the candidate anonymization sets

We report properties of the outputted candidate sets. In the case of a workload consist-
ing exclusively in star queries, the first overlap graph is not relevant since every execu-
tion of the algorithm featuring policies with an overlapping measure over 0% results in
an incompatible case. Compatible cases are then exclusively without any overlapping,
which makes such a graph (candidate sets length over overlapping measure) irrelevant.
We also note that the trend of incompatibility measurements is quite different than in
the previous cases.

This happens because of the particular structure of star queries. We think that our
notion of overlapping tends to be quite strict for this class of queries, since we work
with edge-based overlapping. Such a kind of overlapping is problematic when it hap-
pens with star queries, since the center of star is always involved and blocks possible
deletions. This suggests another alternative for defining overlapping, a node-centered
definition.
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We therefore only show results the length of those candidate sets on Figure C.5.

(a) Depending on privacy size (b) Depending on utility size

Figure C.5: Candidate set length based on the size of both policies [Chain queries]
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C.3 Star and starchain queries

C.3.1 Compatibility metrics

Compatibility rates for each type of policy are reported on Figure C.6.

(a) For privacy policies (b) For utility policies

Figure C.6: Policy compatibility based on privacy and utility policy size [Star and star-
chain queries]

C.3.2 Properties of the candidate anonymization sets

We report properties of the outputted candidate sets: first on the overlap ratio on Fig-
ure C.7, then on the length of those candidate sets on Figure C.8.
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Figure C.7: Candidate set length based on policy overlap [Star and star-chain queries]

(a) Depending on privacy size (b) Depending on utility size

Figure C.8: Candidate set length based on the size of both policies [Star and star-chain
queries]
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