
HAL Id: tel-02520229
https://theses.hal.science/tel-02520229

Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of the InKS programming model for the
separation of algorithm and optimizations in simulation

codes : application to the 6D Vlasov-Poisson system
solving

Ksander Ejjaaouani

To cite this version:
Ksander Ejjaaouani. Design of the InKS programming model for the separation of algorithm and
optimizations in simulation codes : application to the 6D Vlasov-Poisson system solving. Programming
Languages [cs.PL]. Université de Strasbourg, 2019. English. �NNT : 2019STRAD037�. �tel-02520229�

https://theses.hal.science/tel-02520229
https://hal.archives-ouvertes.fr

���������	
��
���������

�����������	
�����

������
��
��
����������

�����

�����������	��

�������
� �������
�����������
�!"
�#��$��
!%&'

�����������������	������
���#����
��
�(���)�����*
��
�����$���+

����������������	����
�������	�����

,��#�-����
��
���.��
��
-��+���������
����
-���
��
�*-�������
���
-�*�##�-������
��+����/��0���
��
�(�-����������
����
���

#����
��
����������
���*��0��
1
�--��#�����
2
��
�*��������
��
�3��.��

�����)45������
6�7

�����
����+*�
-��
8
�7
�����9
,*���# �����������������������������	������
�7
�����������
��#/�� ��������������� !	����������������

��55�������
8
�7
9���
��������� ��������� "#���#�����"$��"	�	�	�#�
�7
5	��:
,/������� ����������������#���#�������	�%�������&#'�� ����

������
������
��
 ��;
8
�7
����
 ����� ��������� "#���#�����"$���	�	(
�7
,9����
5/���--� �����������������������������	������
���7
,��99��
�*�.�� !)��������������������!*���	������
���7
�������
���/����� "#���#������!�+ �	��, ����������-���	��	�#(��,

�����
�����	
��
 ��;
8
�7
������
���)���
 "#���#���������	�.����	���/�����0����

Remerciements

En premier lieu, je veux saisir cette occasion pour remercier mes encad-

rants, Julien BIGOT et Olivier AUMAGE. Merci à vous deux de m’avoir

accueilli en stage de M2, il y a maintenant 3 ans et demi, et de m’avoir

soutenu, conseillé et guidé depuis. Vos conseils, méthodologiques, tech-

niques et scientifiques, ont été précieux pour moi, au moins autant que

votre gentillesse. Sans vous, rien n’aurait été possible. Je tiens également

à remercier mes directeurs de thèse, Michel MEHRENBERGER et Cédric

BASTOUL. Michel, je te remercie pour tes cours en mathématiques, ta

patience pour me laisser les mémoriser et ton accueil à Strasbourg (je me

rappelle encore de ce restaurant que tu m’as fait essayer, où j’ai goûté pour

la première fois des Spaetzles !). Cédric, merci pour ton implication dans

cette thèse et tes remarques et conseils concernant les aspects scientifiques,

notamment lors du comité de suivi de thèse.

Je tiens à remercier les rapporteurs, Guillaume LATU et Christian

PÉREZ, d’avoir pris le temps d’évaluer ce manuscrit. Les discussions à

la suite de la soumission ont réellement apporté une nouvelle perspective

à ces travaux. Plus généralement, je remercie l’ensemble des membres du

jury : Hélène COULLON, Philippe CLAUSS et Katharina KORMANN.

Again, thank you Katharina for your collaboration in this thesis, giving

me access to the 6D Vlasov-Poisson system implementation, offering me to

present my work at PASC’17 (my first conference) and giving me advice on

the language design and some optimizations.

Je remercie également tous les membres de la Maison de la Simula-

tion pour vos conseils, vos discussions et votre bonne humeur. Merci à

Édouard, Michel, Valérie, Pierre, Olivier, Vineet, Charles, Abel, Pierre,

Jérôme, Maxime, Martial, aux Julien et tous ceux qu’il serait trop long

de lister. Un grand merci à Hélène, pour tes nombreux conseils concer-

nant l’écriture mathématique, à Thomas, pour nos discussions sur le sport

et l’informatique, Mathieu, pour nos conversations relatives à la politique,

l’économie et l’écologie, Pascal pour ton support concernant la simulation

et la science en général, and Felix, for your help with the English grammar.

2

Je tiens bien évidemment à remercier Arnodu et Momo pour leur présence

et leur soutien lors de nos soirées studieuses sur Discord.

Merci aux équipes IRMA et Icube de Strasbourg et LaBRI de Bordeaux

pour leur accueil chaleureux. Merci aussi aux professeurs de l’université

de Reims et notamment Christophe JAILLET, Pierre DELISLE, Cyril RA-

BAT. Thanks to the Programming Environment Research Team of Kobe

for your hospitality. In particular, thank you Sato Sensei for welcoming me,

Nakao San and Murai San for your help with XMP, and Takahashi San and

Nakashima San for your assistance and good mood.

Merci à ma famille et tous mes proches et amis, dont Julie, Cédric,

Maxime, Dylan, Adeline, Axelle, Ari, Jérôme, Joséphine, Élodie, Megan et

tous les autres.

Enfin, je remercie tous ceux qui méritent d’être remerciés et qui

n’apparaissent pas dans ces quelques lignes.

3

Contents

List of Tables 8

List of Figures 10

List of Listings 11

1 Résumé en français 16

1.1 Travaux connexes . 21

1.1.1 Langages généralistes 21

1.1.2 Outils d’optimisations pour le calcul haute performance 22

1.1.3 Des DSL pour le calcul haute performance 24

1.1.4 Discussions . 25

1.1.5 Le modèle Polyédrique 28

1.2 Le modèle de programmation Independent Kernel Scheduling 29

1.2.1 Classification des préoccupations 30

1.2.2 Le modèle de programmation InKS 30

1.2.3 InKSPIA : exprimer l’algorithme dans le modèle InKS 31

1.2.4 Conclusion et discussions 32

1.3 Expression des optimisations dans le modèle de programma-

tion InKS . 33

1.3.1 Une approche automatique pour le placement

mémoire et l’ordre des calculs 34

1.3.2 InKSLoop : un DSL pour la description des nids de

boucles . 34

4

CONTENTS

1.3.3 InKSXMP : InKS et XMP pour la gestion de la

mémoire sur architecture distribuée 35

1.3.4 InKSPSO : un langage pour l’expression d’optimisations 36

1.4 Application et évaluation du modèle de programmation InKS 36

1.4.1 Le système Vlasov-Poisson 6D et son implémentation

InKS . 37

1.4.2 Évaluation . 37

1.5 Conclusion et perspectives 39

2 Introduction 42

2.1 Outline . 46

3 Background and related work 48

3.1 General-purpose languages for HPC 49

3.1.1 Fortran . 49

3.1.2 C and C++ . 50

3.2 Optimization tools for HPC 51

3.2.1 Directives based languages 53

3.2.2 Embedded Domain Specific Languages 54

3.2.3 Runtimes . 56

3.2.4 Optimization tools based on the Polyhedral model . . 57

3.2.5 Aspect-Oriented based languages 57

3.3 Domain Specific Languages for HPC 58

3.3.1 Data-flow Languages 59

3.3.2 Algorithmic Skeleton 60

3.3.3 Stencil-specific DSLs 61

3.4 Discussions . 63

3.5 The Polyhedral model . 67

3.5.1 Static Control Parts 68

3.5.2 Statement vector and iteration domain 69

3.5.3 Scattering functions 71

3.5.4 Access functions . 73

3.5.5 Implementation of the Polyhedral model 74

4 The Independent Kernel Scheduling programming model 76

5

CONTENTS

4.1 Classification of concerns . 77

4.2 The InKS programming model 83

4.3 InKSPIA: expressing the algorithmic concern in the InKS

programming model . 87

4.3.1 The InKSPIA concepts 89

4.3.2 Illustrative example 93

4.3.3 InKSPIA completeness analysis 95

4.3.4 Illustrative example analysis 99

4.4 Conclusion and discussions 101

5 Expressing optimization choices in the InKS program-

ming model 106

5.1 A fully compiler-based approach for memory layouts and op-

erations scheduling . 108

5.1.1 Evaluation of the compiler-based approach 112

5.2 InKSLoop: a DSL for nested loops description and optimization114

5.2.1 InKSLoop algorithm 117

5.2.2 Evaluation of the InKSLoop approach 121

5.3 InKSXMP: an XMP wrapper for memory management on

distributed architectures . 124

5.3.1 Evaluation of the InKSXMP approach 128

5.4 InKSPSO: a language to express general optimization choices 131

5.4.1 Illustrative example 134

5.5 The source-to-source InKSPSO compiler 137

5.6 Discussions . 151

6 Application and evaluation of the InKS programming

model 154

6.1 Evaluation on synthetic benchmarks 155

6.2 Motivating application: the 6D Vlasov-Poisson equation . . 157

6.2.1 InKSPIA version of the 6D Vlasov-Poisson algorithm 158

6.2.2 Optimization of the 6D Vlasov-Poisson solver 162

6.3 Evaluation on the 6D Vlasov-Poisson equation 169

6.4 Conclusion . 175

6

CONTENTS

7 Conclusion 178

7.1 Contribution . 178

7.2 Perspective and future works 181

A Complete InKSPIA implementation of the 6D Vlasov-

Poisson solver. 184

B Complete example of the C++ code generated by the

InKS compiler for an alloc and map InKSPSO statements. 204

C InKSPSO and the OpenMP Task paradigm 206

C.0.1 Algorithm and Implementation 208

C.0.2 Preliminary evaluation 210

Bibliography 214

Abstract 224

7

List of Tables

1.1 Comparaison des implémentations InKS et SeLaLib du système

Vlasov-Poisson 6D. 38

1.2 Comparaison des implémentations InKS et SeLaLib modifiée

du système Vlasov-Poisson 6D. 38

4.1 Classification of simulation program concerns as related to either

algorithmic or optimization. 83

4.2 Correspondence between algorithmic concerns and InKSPIA con-

struct. 93

5.1 Comparison of manual C++ implementation and InKS com-

piler generated code. 112

5.2 Comparison of C++ and InKSLoop implementations. 122

5.3 Comparison of C+XMP and InKSXMP implementations. 129

6.1 Comparison of InKSPSO and C++ implementations of synthetic

benchmarks. 156

6.2 6D Vlasov-Poisson physical parameters. 162

6.3 Absolute and relative norms of the difference between the InKS

and the SeLaLib versions of f6d after 10 and 200 time-steps. . . 162

6.4 Comparison of InKS (InKSPIA + InKSPSO) and SeLaLib (For-

tran) implementations of the 6D Vlasov-Poisson solver. 171

6.5 Comparison of InKS (InKSPIA + InKSPSO) and modified Se-

LaLib (Fortran) implementations of the 6D Vlasov-Poisson solver.171

8

List of Tables

6.6 Comparison of the number of lines of InKS (InKSPSO) and

SeLaLib (Fortran) implementations of the 6D Vlasov-Poisson

solver. 172

C.1 Strong scaling of the InKSPSO taskloop construct on a double

stencil application. 211

9

List of Figures

3.1 Classification of the state-of-the-art approaches on a ”General

& Manual”/”Automatic & Specialized” axis. 64

3.2 Graphical representation of the polyhedron described in Equa-

tion (3.1). 71

4.1 Graphical representation of the cache oblivious strategy applied

on a 2D array. 82

4.2 The InKS programming model 86

5.1 Dynamic halo exchange representation on a 2D domain. 128

5.2 Modifications of the memory mapping H → Heat depending on

the time-step. 145

6.1 The 6D Vlasov-Poisson solver time-loop. 160

6.2 6D Vlasov-Poisson electric energy in function of time of the

InKS and SeLaLib version and their absolute difference. 163

C.1 The double stencil application. 210

10

List of Listings

3.1 Example of a simulation code: C implementation of the heat

equation. 52

3.2 Demonstration of an OpenMP work-sharing construct. . . . 53

3.3 Demonstration of XMP data and loop sharing directives. . . 54

3.4 Demonstration of Kokkos parallel for construct parameteri-

zation. 55

3.5 Demonstration of the Pochoir stencil language. 62

3.6 Example of a valid Static Control Parts. 69

3.7 Example of an invalid Static Control Parts. 69

3.8 Affine Static Control Parts example - 1. 69

3.9 Affine Static Control Parts example - 2. 70

4.1 C implementation of the 3D finite difference heat equation

solver using a double-buffer strategy. 79

4.2 C implementation of the 3D finite difference heat equation

solver using a 2D cache blocking strategy. 80

4.3 C implementation of the 3D finite difference heat equation

solver using a cache oblivious strategy. 81

4.4 The InKSPIA logical array construct. 91

4.5 The InKSPIA polyhedra construct. 91

4.6 The InKSPIA operation procedure construct. 92

4.7 Example of InKSPIA operation procedure. 92

4.8 The InKSPIA simulation kernel construct. 93

4.9 Example of InKSPIA simulation kernel. 93

12

LIST OF LISTINGS

4.10 InKSPIA implementation of the 3D finite difference heat

equation solver. 94

5.1 InKSLoop implementation of the 3D finite difference heat

equation solver using three strategies a three loops nest, a

2D blocked three loops nest 2D and a 3D blocked three loops

nest. 115

5.2 C++ generated code for a three loops nest specified in

InKSLoop (Line 19 to 21 of Listing 5.1). 116

5.3 Two versions of a 1D stencil computation applied on the last

dimension of a 3D array. 117

5.4 One of the computation intensive parts of the EP kernel of

the NAS benchmark (code from [Griebler et al., 2018]). . . . 123

5.5 Plain XMP implementation of the 3D finite difference heat

equation solver. 125

5.6 InKSXMP implementation of the 3D finite difference heat

equation solver. 125

5.7 Example of InKSPSO alloc and map instructions. 132

5.8 Example of InKSPSO for instruction. 134

5.9 Example of InKSPSO interface and its C++ counterpart. . . 135

5.10 InKSPSO implementation of the 3D finite difference heat

equation solver using a double-buffer strategy (InKSPIA al-

gorithm is available in Listing 4.10). 135

5.11 InKSPIA implementation of the 1D heat equation solved with

finite difference. 139

5.12 InKSPSO implementation of the optimization choices

(double-buffer) of the 1D heat equation (Algorithm on List-

ing 5.11). 140

5.13 Example of the C++ code generated by the InKS compiler

for an alloc and map InKSPSO statements. 150

6.1 C++ implementation of the 1D heat equation solved using

the finite difference method. 156

6.2 InKSPIA implementation of Advection v1. 161

6.3 Double-buffer implementation of Advection v1 using InKSPSO.164

6.4 Usage of intermediate buffer in Advection v1 using Fortran. . 165

13

LIST OF LISTINGS

6.5 Intermediate buffers in Advection v1 using InKSPSO (Note

that the variables written in capital letters refer to physical

buffers). 166

6.6 Usage of blocking in Advection v1 using InKSPSO. 168

6.7 InKSPSO implementation of Advection v1. 169

6.8 First steps of the Poisson solver. 170

6.9 InKSPSO implementation of the Poisson solver. 171

14

Chapter 1

Résumé en français

Sommaire
1.1 Travaux connexes . 21

1.1.1 Langages généralistes 21

1.1.2 Outils d’optimisations pour le calcul haute per-
formance . 22

1.1.3 Des DSL pour le calcul haute performance . . . 24

1.1.4 Discussions . 25

1.1.5 Le modèle Polyédrique 28

1.2 Le modèle de programmation Independent Kernel

Scheduling . 29

1.2.1 Classification des préoccupations 30

1.2.2 Le modèle de programmation InKS 30

1.2.3 InKSPIA : exprimer l’algorithme dans le modèle
InKS . 31

1.2.4 Conclusion et discussions 32

1.3 Expression des optimisations dans le modèle de pro-
grammation InKS . 33

1.3.1 Une approche automatique pour le placement
mémoire et l’ordre des calculs 34

1.3.2 InKSLoop : un DSL pour la description des nids
de boucles . 34

1.3.3 InKSXMP : InKS et XMP pour la gestion de la
mémoire sur architecture distribuée 35

16

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

1.3.4 InKSPSO : un langage pour l’expression
d’optimisations 36

1.4 Application et évaluation du modèle de programma-
tion InKS . 36

1.4.1 Le système Vlasov-Poisson 6D et son
implémentation InKS 37

1.4.2 Évaluation . 37

1.5 Conclusion et perspectives 39

Les ordinateur font partie intégrante de nos sociétés modernes. Ils

contrôlent une grande variété d’appareils électroniques : des objets très

communs, comme les fours à micro-ondes ou les télécommandes, aux robots

industriels, en passant par les ordinateurs personnels ou les smartphones.

Les ordinateurs sont au cœur de nombreux domaines, aussi divers que la

médecine, la physique, l’économie, mais aussi la photographie ou le cinéma.

Des réactions de fusion nucléaire à l’interaction entre différentes molécules

et cellules, en passant par les dépendances entre le climat et la biosphère,

les simulations informatiques sont de plus en plus utilisées pour étudier des

phénomènes complexes, comprendre des systèmes chaotiques ou contredire

ou appuyer la validité d’hypothèses et théories scientifiques.

Dans de nombreux domaines scientifiques, il est de plus en plus com-

mun d’identifier la simulation numérique comme étant le troisième pilier

de la science, de pair avec la théorie et l’expérimentation. Les exem-

ples de formidables réalisations scientifiques et techniques attribuables

à l’informatique sont innombrables. Néanmoins, en 2005, le PITAC,

une agence gouvernementale étasunienne, propose un exemple intéressant

d’une percée scientifique majeure due notamment à l’informatique : le

décodage du génome humain. En 1990, il est communément admis que

la compréhension du génome humain permettra d’importantes avancées en

médecine. Ainsi, des agences scientifiques américaines lancent le projet

”Human Genome”. Originellement prévu pour durer plusieurs décennies,

le projet fut achevé en 2001 via la collaboration des milliers de chercheurs

et l’assistance cruciale de l’informatique.

Étant donné que l’informatique permet des calculs rapides sur des vol-

umes de données qu’aucun être humain ne peut traiter au cours d’une

17

vie, elle offre aux scientifiques la possibilité d’obtenir des résultats en

quelques heures, plutôt qu’en semaines ou années. Ce nouveau paradigme

change considérablement l’éventail des études scientifiques qui peuvent être

réalisées. Par exemple, les études sur le changement climatique, qui simu-

lent des milliers d’années terrestres, ne sont utiles que si la durée pour

simuler une année de climat est d’au plus quelques heures. En conclusion,

l’efficacité est une condition sine qua non de telles études. C’est partic-

ulièrement vrai si l’on prend en compte le besoin de comprendre la sensi-

bilité des prédictions aux hypothèses concernant divers impacts, comme les

émissions de dioxyde de carbone ou les caractéristiques du modèle utilisé.

Dans ces situations, les scientifiques doivent mener de nombreuses simula-

tions, ce qui demande une grande puissance de calcul. Ce paradigme de

recherche ne se limite pas aux études sur le climat. En effet, la plupart des

domaines scientifiques s’appuient largement sur la puissance de calcul offerte

par les processeurs modernes. Nous pouvons citer MODIS [Xu et al., 2014],

un code de simulation implémentant les interactions géosphères-biosphères,

ou LTM [Pijanowski et al., 2014], qui simule l’expansion urbaine sur les

environnements naturels, qui reposent largement sur l’informatique.

Cependant, les architectures informatiques modernes, équipées

de processeurs vectoriels multi-cœurs, de mémoires hiérarchiques et

d’accélérateurs basés sur les processeurs graphiques ou reprogrammables,

sont loin d’être simples à programmer. Bien qu’efficaces, ces outils de

calcul sont mis en place au détriment des développeurs d’applications,

qui doivent, lors de la conception de leurs applications, tenir compte de

ce degré de parallélisme et des possibles goulots d’étranglement dus aux

différentes mémoires afin d’obtenir de bonnes performances. Ainsi, avec

l’augmentation de la diversité des architectures informatiques, cette sit-

uation s’empire chaque année, faisant de la portabilité des performances

un problème particulièrement complexe. Atteindre un bon niveau de per-

formances requiert des ajustements du code de façon à ce qu’il soit en

adéquation avec les paramètres spécifiques d’une machine, tels que le nom-

bre de cœurs, la taille du cache ou encore la bande passante mémoire. Des

changements plus invasifs peuvent être nécessaires lors du portage d’un code

d’une architecture vers une autre. Ce fut le cas lors du remplacement des

18

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

machines vectorielles par des machines équipées d’accélérateurs. De façon

similaire, les architectures exaflopiques sont attendues pour 2020, mais les

développeurs auront besoin de mois, voire d’années, pour mettre au point

les meilleures stratégies d’optimisation pour ces nouvelles architectures.

En plus des problèmes de programmabilité des architectures actuelles,

les modèles de programmation existants tendent à nécessiter une réécriture

de larges parties de codes pour chaque expérimentation de nouvelles

stratégies d’optimisation, rendant l’identification des meilleures techniques

et paramètres d’autant plus chronophage. En outre, préserver la validité

du code pendant ce processus est un objectif compliqué. Cela impose le

fardeau d’une compréhension profonde de l’algorithme du programme aux

spécialistes de l’optimisation. De plus, les codes de simulations hautement

optimisés sont extrêmement complexes à lire et à modifier. À l’instar du

problème précédent, les scientifiques du domaine doivent également être

experts dans l’art de l’optimisation informatique, en plus de leur propre

domaine d’expertise. Une cause profonde de cette situation vient de la

ferme intrication de deux préoccupations distinctes, imposée par la plupart

des modèles de programmation. D’un côté, l’algorithme de la simulation

est le fruit de l’expertise de scientifiques du domaine et n’est pas lié à

l’architecture cible. De l’autre, les optimisations informatiques forment un

autre domaine d’expertise, largement liées à chaque architecture.

De nombreuses approches ont été proposées pour améliorer cette situ-

ation. En particulier, des outils d’optimisation et des bibliothèques sim-

plifient l’expression des optimisations classiques. Cependant, le choix et

la paramétrisation de l’optimisation restent enchevêtrés dans le code lié

au domaine, tandis que les optimisations pour les architectures à venir ne

sont pas toujours disponibles dans ces outils. D’autres approches proposent

d’automatiser la phase d’optimisation, notamment au travers de langages

et compilateurs dédiés. Bien qu’ils séparent clairement les aspects optimisa-

tions de l’algorithme, ils limitent généralement l’utilisabilité de l’approche

à un domaine précis.

Une approche applicable à l’optimisation de codes de production, ciblant

les architectures les plus récentes, est encore à concevoir. L’objectif de

cette thèse est, premièrement, d’étendre l’ensemble des modèles de pro-

19

grammation pour le calcul haute performance vers un paradigme séparant

l’algorithme de la simulation des optimisations spécifiques à une architec-

ture : le modèle de programmation Independent Kernel Scheduling (InKS).

Deuxièmement, cette thèse présente un cas d’application du modèle InKS

à la physique des plasmas.

Ainsi, cette thèse présente notre contribution vers la simplification

des codes de simulation haute performance. Ce chapitre résume, en

français, l’ensemble des travaux de thèse. Les chapitres suivants, en anglais,

présentent ces travaux avec plus de détails. Ce chapitre est organisé comme

suit :

Travaux connexes présente les modèles de programmation visant à

améliorer la productivité des développeurs de codes de simulation

numérique, tout en analysant les aspects qui limitent la séparation des

préoccupations. En outre, cette partie présente le modèle Polyédrique,

qui est l’un des piliers de nos travaux.

Le modèle de programmation Independent Kernel Schedul-

ing propose un modèle de programmation ayant pour objectif

l’amélioration de la productivité des développeurs et la séparation des

préoccupations dans les codes de calcul haute performance : InKS.

Nous présentons également le langage InKS pour l’expression des as-

pects algorithmiques, ou Algorithme Indépendant de la Plateforme ,

InKSPIA.

Expression des optimisations dans le modèle de programmation

InKS dans lequel nous présentons toutes les méthodes développées

pour prendre en compte les aspects optimisations du code. En

particulier, nous nous concentrons sur le langage InKS pour

l’expression d’optimisation générale, ou Optimisation Spécifique à

une Plateforme, InKSPSO. Ce second langage permet d’exprimer un

large éventail de choix d’optimisations basés sur la spécification de

l’algorithme en InKSPIA.

Application et évaluation du modèle de programmation InKS

évalue le modèle de programmation InKS. Dans cette évaluation,

nous présentons d’abord un cas d’application réel ciblant la physique

20

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

des plasmas, le système de Vlasov-Poisson 6D, l’implémentons en util-

isant le modèle InKS et évaluons notre approche sous quatre angles :

son gain en productivité, sa généralité, sa simplicité et ses perfor-

mances.

Les contributions présentées dans les différents chapitres de cette thèse

ont été publiées dans les articles scientifiques suivantes: [Ejjaaouani et al.,

2017], [Ejjaaouani et al., 2018], [Ejjaaouani et al., 2019b] and [Ejjaaouani

et al., 2019a]. Finalement, nous concluons ce manuscrit et discutons de

perspectives d’amélioration pour le modèle InKS.

1.1 Travaux connexes

Dans cette section, nous exposons l’état de l’art des approches utilisées

dans le domaine du calcul haute performance. Tout d’abord, nous

présentons quelques langages généralistes largement utilisés dans les codes

de simulations, puis nous décrivons un ensemble d’outils d’optimisation

utilisés en conjugaison de ces langages. Nous présentons ensuite plusieurs

Langages Spécifiques à un Domaine (DSL). Par la suite, nous analysons

toutes ces approches et mettons en évidence comment elles accomplissent

le double objectif que nous cherchons à atteindre ; à savoir la séparation

des préoccupations et l’absence de coût en matière de performance. Finale-

ment, nous décrivons le modèle Polyédrique, qui se trouve au fondement de

notre proposition.

1.1.1 Langages généralistes

Dès l’origine du traitement automatique de l’information, les scien-

tifiques se sont appropriés l’ordinateur comme outils pour accélérer la

recherche. Ainsi de nombreux langages généralistes ont été développés avec

pour objectif de répondre aux besoins des scientifiques. Ces langages four-

nissent une généralité et un contrôle fin de tous les aspects du programme.

Dans cette section, nous présentons les langages généralistes les plus utilisés

de nos jours dans la communauté du calcul haute performance.

21

1.1. TRAVAUX CONNEXES

Fortran (FORmula TRANSlator) est un langage impératif compilé

développé en 1954 [Backus, 1954], notamment pour le calcul scientifique.

Depuis lors, Fortran domine cette spécialité de l’informatique, étant large-

ment utilisée dans les codes de calcul intensif comme les programmes de

prévisions météorologiques.

Le C est un langage impératif et compilé développé dans les années

70 [Ritchie, 1993]. Il propose un contrôle précis des accès mémoire et des

constructions qui s’adaptent parfaitement aux instructions machines. Le C

étant à la fois efficace et multi-plateforme, il est largement utilisé dans la

programmation système et le calcul scientifique.

Le C++ a été originellement conçu pour étendre les fonctionnalités

du C, en 1983 [Stroustrup, 1997]. Désormais, c’est un langage à part

entière, multi-paradigme offrant la performance du C et des fonctionnalités

supplémentaires, notamment la programmation générique et orientée objet.

Ces langages doivent leur popularité dans le domaine du calcul

numérique au contrôle des codes et de leurs optimisations tout en étant

accompagnés de modèles de programmations parallèles efficaces (OpenMP,

MPI). Ils fournissent des constructions semblables, adaptées aux calculs

haute performance : des tableaux bas-niveau et des nids de boucles.

Tout d’abord, les mesures d’un phénomène distribuées dans l’espace sont

représentées par des tableaux multidimensionnels où chaque cellule stocke

une valeur représentant l’intensité de cette mesure. Ensuite, des nids de

boucles permettent de parcourir ces tableaux et de combiner des valeurs

afin de réaliser des calculs. Ainsi, un programme de simulation typique

est généralement composé de trois parties : une partie allocation, où les

tableaux sont alloués ; une partie initialisation, où l’état initial de la simu-

lation est stocké dans ces tableaux ; et enfin la partie boucle en temps, où

s’effectuent itérativement les diagnostics et les calculs.

1.1.2 Outils d’optimisations pour le calcul haute

performance

Bien que les langages généralistes pour le calcul haute performance

soient efficaces et flexibles, ils demeurent verbeux et complexes à utiliser.

22

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

Pour remédier à ces problèmes, de nombreux outils proposent d’encoder

un ensemble d’optimisations difficilement exprimables dans le langage

d’origine. Cette stratégie offre un gain de productivité en impactant peu,

voire pas, les performances. Ainsi, nous présentons quelques unes de ces

approches, largement utilisées dans les codes de calcul haute performance.

Un premier type d’approche propose des extensions au langage via des

directives de compilation. Cette stratégie ajoute des informations au sein

d’un code existant, limitant sa modification et ajoutant des nouvelles fonc-

tionnalités, typiquement liées au parallélisme. Par exemple, OpenMP est

une interface de programmation supportant le parallélisme en mémoire

partagée pour le Fortran, le C et le C++ [Chandra et al., 2001]. Il propose

un ensemble de directives qui contrôlent l’exécution parallèle du programme.

En particulier, l’outil offre la construction omp parallel for permettant

de distribuer les itérations d’une boucle sur les cœurs de calculs disponibles.

D’autres approches étendent les langages généralistes, typiquement le

C++, avec des fonctionnalités reliées à la gestion de données et au par-

allélisme. Par exemple, Kokkos [Edwards et al., 2014] est une bibliothèque

C++ basée sur la programmation générique qui offre des structures de

données et de contrôle assurant une portabilité des performances. Ainsi,

en modifiant des parties restreintes du code, il est possible de passer

d’une implémentation séquentielle à une implémentation parallèle pour

processeurs ou accélérateurs. Ensuite, à la compilation, Kokkos gère au-

tomatiquement la disposition mémoire et les constructions parallèles pour

s’adapter à l’architecture cible choisie.

D’autres approches, basées sur les environnements d’exécution, assistent

les développeurs en prenant automatiquement en compte les aspects opti-

misations (répartition de charge, localité des données, etc.), à l’exécution

du programme. StarPU [Augonnet et al., 2011] est un représentant de ces

approches. StarPU est une bibliothèque qui supporte la programmation

multi-tâches sur architectures hétérogènes. L’utilisateur exprime son pro-

gramme comme un ensemble de tâches et un ensemble de contraintes sous

forme de dépendances de données entre ces tâches. À l’exécution, StarPU

construit un graphe de tâches et s’occupe de la répartition de celles-ci sur

les unités de calcul disponibles, tenant compte de la localité des données ou

23

1.1. TRAVAUX CONNEXES

de la répartition de charge, par exemple.

Le modèle Polyédrique (c.f. Section 1.1.5) propose une représentation

symbolique adaptée à la transformation de code. Ainsi, de nombreux out-

ils ont été proposés pour transformer et optimiser automatiquement un

code en utilisant ce modèle. C’est par exemple le cas de XFor [Fassi and

Clauss, 2015]. Ce dernier propose une structure de boucle n’incluant que

les dépendances minimales entre chaque itération. Cette spécification peut

être automatiquement manipulée pour générer des boucles C incluant di-

verses optimisations. XFor utilise le modèle Polyédrique pour encoder de

complexes transformations de boucles.

1.1.3 Des DSL pour le calcul haute performance

Les langages généralistes et leurs outils pré-cités sont limités par le

paradigme de programmation sous-jacent, soit le paradigme impératif. Bien

qu’efficaces, d’autres approches s’appuient sur des paradigmes différents et

donc, proposent un langage adapté aux constructions de ces paradigmes :

un DSL (Domain Specific Language). À l’instar des outils d’optimisations,

certains DSLs proposent, a contrario des langages généralistes, une manière

plus adaptée d’exprimer un type d’optimisation. En revanche, d’autres

DSLs renoncent à la généralité d’expression pour se focaliser sur des

préoccupations très spécifiques, facilitant l’écriture du code comprenant ces

préoccupations.

La programmation par flot de données est une alternative à la pro-

grammation par échange de messages, largement utilisée pour gérer le

parallélisme. Ce paradigme propose de décrire un programme comme

un graphe de données échangées entre des opérations. De nombreux

DSL explorent ce paradigme pour simplifier l’exploitation des architectures

hétérogènes. C’est le cas de PaRSEC, un environnement d’exécution pour

architectures distribuées et hétérogènes, qui gère le placement des tâches,

des données ainsi que leurs communications. PaRSEC [Bosilca et al., 2013]

propose plusieurs DSL pour décrire le graphe de données. Une en partic-

ulier, PTG [Danalis et al., 2014] (pour Parameterized Task Graph), exprime

ce graphe comme un ensemble d’opérations, chacune accédant à des données

24

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

produites par d’autres, à la manière d’un Makefile.

La programmation orientée aspect (AOP) est un paradigme de pro-

grammation proposant de séparer les préoccupations dans un code. Il s’agit

d’ajouter des comportements à un code existant sans modifier directement

ce code. À la place, il est possible d’identifier des régions de codes via un

ensemble de règles, nommé Point de coupe, puis d’y associer une Action,

soit un ajout ou une transformation de code. Pour illustration, la règle

“toute boucle qui contient exactement une instruction” peut être un Point

de coupe, tandis que “enregistrer le nombre d’itérations exécutées dans ces

boucles” est une Action possible. Ce paradigme a récemment été exploré

par la communauté du calcul haute performance, notamment au travers de

LARA [Cardoso et al., 2012]. Ce DSL propose des Points de coupe et des

Actions adaptés à la simulation numérique. En outre, ces spécifications peu-

vent être paramétrées par les caractéristiques de l’architecture cible (taille

du cache, nombre de cœurs, etc.).

Une des opérations les plus fréquentes dans le calcul scientifique est le

stencil. Il s’agit de l’approximation numérique d’une valeur en fonction de

la valeur de ses voisins. Bien qu’ordinaire, l’expression optimisée d’un tel

calcul est complexe. C’est pourquoi de nombreux DSL ont été proposés

pour répondre à ce besoin. C’est notamment le cas de Pochoir [Tang et al.,

2011], qui permet l’expression d’un stencil en laissant son optimisation à

un compilateur, ou PATUS [Christen et al., 2011] qui offre, tout d’abord,

un DSL pour l’expression de ces calculs, puis un ensemble de stratégies

prédéfinies pour optimiser le calcul.

1.1.4 Discussions

Depuis les années 1950, le calcul haute performance a drastiquement

changé ; d’abord basé sur des langages impératifs généraux et compliqués

puis sur l’utilisation massive de bibliothèques et langages spécialisés. Cette

tendance s’est accélérée ces trois dernières décennies avec une évolution plus

notable encore des architectures informatiques ; de dizaines de nœuds de

calculs équipés de processeurs mono-cœur à des milliers de nœuds accom-

pagnés de plusieurs processeurs multi-cœurs, de mémoires hiérarchiques,

25

1.1. TRAVAUX CONNEXES

d’interconnexions réseaux et d’accélérateurs dédiés.

Ces bibliothèques et langages ont facilité l’écriture de codes HPC effi-

caces, en comparaison des langages généralistes, via deux méthodes : 1)

La proposition d’une abstraction encodant des optimisations réutilisables :

simplifiant l’écriture de code efficace dans de nombreux domaines

d’applications. 2) L’utilisation d’un langage dédié et d’un compilateur

réalisant automatiquement les optimisations : boostant la productivité dans

un nombre de domaines plus restreints. Ainsi, OpenMP ou Kokkos sont

des représentants de cette première méthode. Par exemple, OpenMP cache

la complexité du parallélisme en mémoire partagé via des constructions

facilement utilisables. Cependant, ces constructions doivent être adaptées

à d’autres optimisations, comme la disposition mémoire ou l’ordre des

boucles. D’autres approches, hybrides, comme StarPU, cachent la com-

plexité des optimisations tout en s’appuyant sur des compilateurs accom-

pagnés d’heuristiques efficaces. Toutes ces approches sont très générales et

combinables avec les langages généralistes. Au contraire, des outils plus

automatiques, comme Pochoir, se basent sur la seconde méthode. En re-

streignant le domaine d’application, les compilateurs peuvent mettre en

place des stratégies d’optimisation complexes et efficaces.

En résumé, ces travaux peuvent être placés sur un axe allant d’approches

très générales où l’optimisation est manuelle à des approches de plus en

plus spécifiques ou l’optimisation est gérée automatiquement. Cette analyse

permet de formuler les deux affirmations suivantes. Premièrement, aucune

approche à la fois générale et automatique n’a été proposée dans le domaine

du HPC, puisqu’une telle approche ne sera probablement pas performante.

Deuxièmement, il y a une forte relation entre la généralité d’une approche

et son besoin de s’appuyer sur l’utilisateur. Un objectif de cette thèse est de

fournir un modèle de programmation général, se diriger vers une approche

manuelle permettrait d’assurer performance et généralité.

Nous avons comparé les approches existantes suivant un seul axe :

”Manuel & Général” / ”Automatique & Spécialisé”. Cependant, d’autres

perspectives sont à considérer. Par exemple, nous n’avons pas discuté des

approches basées sur l’AOP. Bien que ces approches s’apparentent à des lan-

gages généralistes, de par leur généralité et leur aspect manuel, elles offrent

26

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

un support pour la séparation des préoccupations. Ainsi, il est intéressant

d’étudier à quel point les travaux existants supportent la séparation des as-

pects tout en offrant de bonnes performances. En commençant par l’AOP,

ceux-ci offrent, à première vue, une bonne séparation, via le système de

Point de coupe et d’Action. Cependant, cette stratégie limite les possibilités

d’optimisation. Par conséquent, ces optimisations se retrouvent alors dans

l’algorithme, impactant la séparation. Ainsi, malgré la satisfaction de leurs

objectives, nous pouvons noter que plus une de ces approches est spécifique

à un domaine, plus elle offre une bonne séparation dans le domaine re-

streint qu’elle couvre, et vice-versa. Par exemple, OpenMP est utilisable

dans de nombreux domaines et offre de bonnes performances, mais ne gère

que le parallélisme d’instruction. A contrario, Pochoir, en étant dédié aux

stencils, propose un langage dédié à ce type de calcul tandis que le compi-

lateur gère toutes les optimisations : la séparation est parfaite, mais limitée

aux stencils. Certaines approches se distinguent des précédentes dans leurs

manières d’exprimer les aspects d’optimisations, comme XFor et PATUS.

Tout d’abord, elle propose de décrire la partie invariante du code, c.-à-d.

l’algorithme, puis, de spécifier le type d’optimisation à mettre en place. Par

exemple, PATUS permet d’exprimer un stencil et s’accompagne d’un en-

semble de stratégies d’optimisations prédéfinies. Ces approches, bien que

séparant les préoccupations d’un code de simulation, ne s’appliquent qu’à

un ensemble restreint de domaines.

À nouveau, ce second axe d’analyse souligne deux points. Premièrement,

les langages spécifiques (comme Pochoir) offrent une bonne séparation de

l’algorithme et des optimisations grâce à un langage dédié pour le pre-

mier et un compilateur pour gérer le second. Deuxièmement, les approches

AOP fournissent également une bonne séparation en divisant physique-

ment les aspects et en proposant plusieurs langages, chacun dédié à une

préoccupation. Notre objectif étant de fournir un modèle de programma-

tion efficace et général, on ne peut s’appuyer uniquement sur la stratégie

des langages spécifiques. Cependant, mélanger cette approche à celle des

AOP semble être une bonne façon de procéder : proposer deux langages

spécifiques, chacun dédié à un aspect, peut assurer performance, généralité

et séparation.

27

1.1. TRAVAUX CONNEXES

1.1.5 Le modèle Polyédrique

Le modèle Polyédrique [Feautrier and Lengauer, 2011] est une abstrac-

tion mathématique pour l’analyse de programmes composés de nids de

boucles affines. Une boucle est dite affine si ses bornes ainsi que les accès

aux données faits dans son corps sont des fonctions affines des indices de

boucles englobantes et de paramètres constants à l’exécution. Le modèle

s’appuie sur des polyèdres pour représenter de telles boucles, les paramètres

déterminant la taille du problème. Les exécutions d’une instruction sont

représentées par un ensemble de points contenus dans ces polyèdres.

Dans [Feautrier, 1991], Feautrier propose le modèle Polyédrique pour

représenter les programmes composés de nids de boucles. Ce modèle est

calculable dans l’arithmétique de Presburger [Stansifer, 1984], un système

décidable ne contenant que l’égalité, l’inégalité et l’addition. Ainsi, il est

possible de concevoir des algorithmes traitant de nombreuses opérations

(analyse, transformation, etc.), même sur une représentation symbolique,

c.-à-d. avec paramètres.

Dans le modèle Polyédrique, un programme est représenté par un graphe

de calculs, où chaque nœud représente une itération d’une instruction et

chaque arête décrit une dépendance de données. Chaque tâche est associée

à un tuple d’entiers unique. Ces tuples sont regroupés sous la forme d’un

polyèdre, défini par une conjonction d’inégalités. Via la programmation

linéaire, il est possible de manipuler de tels polyèdres. Ainsi, ce modèle

est adapté à l’analyse de programmes affines ; soit des programmes où

les bornes des boucles et les accès mémoires sont des fonctions affines des

indices d’itérations et des paramètres constants. Un paramètre est un in-

variant symbolique de boucle ; généralement, un ensemble de paramètres

borne la taille du problème. Cette classe de programmes est dénommée

Static Control Parts (SCoP) dans la littérature scientifique.

Dans le modèle Polyédrique, une instruction est représentée par un

vecteur des valeurs de tous les indices d’itérations englobants cette instruc-

tion. Toutes les instances d’une instruction sont représentées de manière

compacte par un domaine d’itération, définit par un système d’inégalités

où chaque formule est une équation affine des index englobants.

28

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

Ensuite, les fonctions de diffusion, ajoute des contraintes sur l’ordre

d’exécution des itérations. Il s’agit de relations associant un vecteur

d’instruction à un vecteur temps. Ce dernier représentant un espace multi-

dimensionnel virtuel sur lequel les instructions sont exécutées dans l’ordre

lexicographique [Baader and Nipkow, 1998].

Finalement, les fonctions d’accès, des relations associant un vecteur

d’instructions et des cellules de tableaux accédées en lecture ou écriture par

cette instruction. Les fonctions d’accès permettent de définir une notion de

dépendance entre deux instructions : deux instructions sont en dépendance

s’il y a une intersection entre l’ensemble des cellules lues ou écrites par l’une

et écrites par l’autre.

Le modèle Polyédrique est présenté avec plus de détails, en anglais, dans

la Section 3.5.

1.2 Le modèle de programmation

Independent Kernel Scheduling

Comme mis en évidence dans la Section 1.1.4, les approches exis-

tantes n’offrent pas à la fois une vaste expressivité, de bonnes perfor-

mances et la séparation des aspects algorithmiques et optimisations. Par-

tant de ce constat, nous proposons le modèle de programmation Inde-

pendent Kernel Scheduling (InKS). InKS sépare les aspects algorith-

miques et d’optimisation dans les codes de simulation numérique dans le

but d’améliorer la productivité des développeurs et la lisibilité des codes

tout en facilitant le portage des applications. Il s’accompagne du langage

InKSPIA, pour exprimer la partie algorithmique, sans tenir compte des as-

pects optimisations, et du langage InKSPSO pour décrire ces optimisations,

en se basant sur l’algorithme. InKS, les compilateurs et des exemples sont

disponibles à https://github.com/Armassarion/InKS.

Cette section présente le modèle de programmation InKS. Nous com-

mençons par classifier les différents aspects des codes de simulation. En

partant de cette catégorisation, nous proposons le modèle InKS ainsi que

le langage d’algorithme InKSPIA. Finalement, nous concluons ce chapitre

29

1.2. LE MODÈLE DE PROGRAMMATION INDEPENDENT KERNEL
SCHEDULING

et discutons les choix que nous avons pris lors de l’élaboration du modèle

InKS.

1.2.1 Classification des préoccupations

Nous définissons l’algorithme de la simulation comme l’ensemble des par-

ties du code qui ne changent jamais, quel que soit l’architecture exécutant

le code ; en d’autres termes, le code indépendant de la plateforme. Cela cor-

respond au code relatif à un domaine, notamment composé de résolutions

mathématiques. Au contraire, nous définissons les choix d’optimisations

comme étant toute instruction qui n’est pas essentielle à la validité de

l’application (c.-à-d. le résultat obtenu à partir de données d’entrées), mais

plutôt responsable des bonnes performances de celle-ci : les optimisations

spécifiques à une plateforme. Ces optimisations respectent l’algorithme.

Ainsi, n’importe quel choix d’optimisations combiné à l’algorithme devrait

donner les mêmes résultats pour des données d’entrée fixées.

Nous avons classifié ces préoccupations en étudiant plusieurs versions de

la résolution par méthode des différences finies de l’équation de la chaleur en

3D. Nous avons identifié cinq aspects qui forment l’algorithme de la simula-

tion : les valeurs qui existent au cours de la simulation, les calculs effectués,

l’ensemble des coordonnées traversées par ces calculs, les contraintes sur leur

ordre et le sous-ensemble des valeurs passées en entrée de la simulation et

attendues en sortie. Nous avons aussi mis en évidence deux types de choix

d’optimisations : la disposition mémoire des valeurs et l’ordonnancement

des calculs.

1.2.2 Le modèle de programmation InKS

Dans la section précédente, nous avons vu comment les approches tra-

ditionnelles mixent les préoccupations algorithmiques et d’optimisation

au sein d’un même code. Un modèle de programmation séparant ces

préoccupations serait souhaitable pour faciliter le développement des codes

de simulations, par rapport aux langages généralistes comme le C. Con-

trairement aux outils pour le HPC, ce modèle limiterait le coût de

l’ajustement des optimisations d’un code, non pas en les encodant ou en

30

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

s’appuyant sur un compilateur, mais en se basant sur une partie invari-

ante du code : l’algorithme. Cette stratégie offre deux avantages ma-

jeurs. D’abord, elle permet de faciliter la collaboration entre les différents

chercheurs et ingénieurs. Et surtout, implémenter de nouvelles optimisa-

tions ne demande plus de réécrire l’application, mais seulement de nou-

veaux choix d’optimisation, augmentant la productivité des développeurs

et facilitant la maintenabilité de multiples versions du code. Cet aspect est

particulièrement intéressant concernant les architectures à venir, comme les

architectures exaflopiques, où les meilleures stratégies d’optimisation n’ont

potentiellement pas encore été mises au point. En outre, cette séparation

de préoccupations doit être applicable à de nombreux types d’application

sans impacter les performances.

Le modèle de programmation, illustré en Figure 4.2, propose deux lan-

gages pour séparer l’expression de l’algorithme et des optimisations. Chaque

langage s’accompagne de concepts et notions adaptés aux aspects qui con-

stituent la préoccupation à décrire. Le premier langage, InKSPIA, permet

l’expression complète des préoccupations algorithmiques, indépendamment

de toutes optimisations. En particulier, cela inclut les points identifiés dans

la section précédente. Le modèle fournit également le langage InKSPSO

pour décrire les choix d’optimisation, en accord avec l’algorithme. Ces choix

sont notamment formés par le placement mémoire et de l’ordonnancement

des calculs. Toutes autres informations proviennent du code d’algorithme.

Ainsi, pour une entrée en particulier, les valeurs de sortie d’un programme

basé sur l’algorithme InKSPIA seront identiques, à la précision numérique

près, quel que soit la version des choix d’optimisation InKSPSO. Un pro-

gramme InKS est ainsi une combinaison de l’algorithme et d’une version

des choix d’optimisation, le tout formant une fonction utilisable depuis un

code C++.

1.2.3 InKSPIA : exprimer l’algorithme dans le

modèle InKS

Nous décrivons maintenant le langage d’algorithme, InKSPIA. À

la manière de certains travaux connexes (c.f. Section 1.1.4), le langage

31

1.2. LE MODÈLE DE PROGRAMMATION INDEPENDENT KERNEL
SCHEDULING

d’algorithme s’appuie sur le modèle Polyédrique. Cette approche permet

au langage d’être applicable à une large gamme de programmes (c.f. Sec-

tion 1.1.5) tout en étant statiquement analysable. Par ailleurs, il est pos-

sible d’appliquer à un tel programme des transformations, typiquement

d’optimisation : c’est cette voie que nous suivrons dans l’implémentation

du langage d’optimisation, InKSPSO.

InKSPIA est un langage fonctionnel décrivant l’algorithme de la simu-

lation tout en laissant la porte ouverte à toute future optimisation. Un

code InKSPIA est composé de trois parties. Premièrement, un ensemble de

tableaux logiques dans lesquels une cellule ne peut être écrite qu’une seule

fois. Ainsi, la réutilisation et le placement mémoire ne sont pas spécifiés

en InKSPIA ; ceux-ci pouvant être spécifiés plus tard, en InKSPSO. La

deuxième partie est constituée d’opérations à grain très fin (de la taille de

quelques opérations mathématiques, sans boucles) qui accèdent, en lecture

ou en écriture, aux tableaux logiques. Ces accès forment les dépendances

de données ; desquels nous pouvons tirer des dépendances minimales en-

tre les opérations. La dernière partie déclare un ensemble de coordonnées

auxquelles appliquer chaque opération, en fonction de paramètres d’entrée,

typiquement liés à la taille du problème. Ainsi, l’ordre d’exécution total

(ou parallèle) de ces opérations n’est pas spécifié et est laissé aux futurs

choix d’optimisation. In fine, un code InKSPIA spécifie un graphe de tâches

(opérations) travaillant à grain très fin sur des tableaux logiques. Ces in-

formations (ensemble d’instances d’opérations et leurs dépendances respec-

tives) sont exprimables dans le modèle Polyédrique. Il est ainsi possible d’en

obtenir un ordre d’exécution partiel, que tout choix d’optimisation devra

respecter.

1.2.4 Conclusion et discussions

Après avoir classifié les différentes préoccupations comme liées à

l’algorithme ou aux optimisations, nous avons proposé le modèle de

programmation InKS. Celui-ci s’accompagne du langage d’algorithme

InKSPIA qui ne spécifie aucun choix d’optimisation. Ces derniers peuvent

alors être exprimés avec InKSPSO, le langage d’optimisation du modèle.

32

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

Il est notable que, bien que le modèle InKS soit différent des approches

existantes, le langage InKSPIA partage de nombreuses similitudes avec les

DSL de plusieurs approches. Citons PIPES [Kong et al., 2016] ou le

DSL PTG de PaRSEC [Danalis et al., 2014] qui propose globalement les

mêmes constructions que InKSPIA. Néanmoins, la mise en place des choix

d’optimisation est différente : PaRSEC et PIPES s’appuient sur un com-

pilateur décidant automatiquement de ces choix. Bien qu’efficace dans de

nombreuses situations, un tel compilateur ne prendra pas systématiquement

les bonnes décisions. Ainsi, ce n’est pas la voie que nous choisissons (c.f. Sec-

tion 1.1.4).

Plutôt que proposer un nouveau langage, InKSPIA, il est concevable

d’utiliser un sous-ensemble du C comme langage d’algorithme, des outils

permettant de passer d’un code C à des objets du modèle Polyédrique.

Cependant, un code C est intrinsèquement lié à des optimisations. Il serait

alors complexe pour les spécialistes de l’optimisation de retrouver l’ordre

partiel d’exécution ainsi que de déceler dans quelles conditions un emplace-

ment mémoire peut être réutilisé. InKSPIA n’est pas plus complexe que le C

et présente déjà ces caractéristiques, facilitant la future optimisation.

1.3 Expression des optimisations dans le

modèle de programmation InKS

Après avoir défini le langage d’algorithme, InKSPIA, cette section

s’applique à décrire les langages d’optimisation mis au point au cours de

cette thèse. En effet, avant de définir InKSPSO, un langage d’optimisation

général, nous avons expérimenté plusieurs langages, chacun spécialisé dans

un type d’optimisation. Cependant, toutes ces approches partagent la

caractéristique principale d’InKSPSO : ils s’appuient sur les informations

contenues dans l’algorithme pour restreindre la partie de code à écrire à

l’optimisation uniquement.

33

1.3. EXPRESSION DES OPTIMISATIONS DANS LE MODÈLE DE
PROGRAMMATION INKS

1.3.1 Une approche automatique pour le placement

mémoire et l’ordre des calculs

Dans la section précédente, nous avons mis en évidence la possibilité

pour un compilateur d’extraire, de l’algorithme InKSPIA, les informations

concernant les dépendances de données entre opérations et l’ensemble des

valeurs existantes au cours de l’exécution. Ainsi, il est possible de mettre

au point un compilateur utilisant ces informations pour générer des choix

d’optimisation valides, c.-à-d. un ordre d’exécution total en accord avec cet

ordre partiel et un placement des données permettant la réutilisation de la

mémoire.

Mettre au point une approche automatique générant des choix

d’optimisation efficaces dans toutes les situations semble compliqué, comme

nous l’avons mis en évidence dans la Section 1.1.4. Cependant, un tel

compilateur apporte une première version des choix d’optimisation afin de

s’assurer de la validité de l’algorithme InKSPIA. Puisque nous ne cher-

chons pas la performance, mais la vérification, nous avons mis au point un

compilateur produisant un placement mémoire et un ordre séquentiel des

opérations (c.-à-d. en accord avec l’algorithme). Pour cela, nous utilisons la

bibliothèque Integer Set Library [Verdoolaege, 2010] pour encoder les infor-

mations InKSPIA dans une représentation basée sur le modèle Polyédrique.

Ces informations (ordre partiel d’exécution et ensemble des valeurs exis-

tantes) sont suffisantes pour produire un code séquentiel et un placement

mémoire valides.

1.3.2 InKSLoop : un DSL pour la description des nids

de boucles

InKSLoop est un DSL pour la description de l’ordre d’exécution de

boucles entourant une opération InKSPIA. Les autres choix d’optimisation

sont exprimables en C++. InKSLoop se compose de quatre parties.

Premièrement, l’utilisateur définit l’opération InKSPIA à considérer. La

seconde partie définit le domaine d’itération des boucles. Ce domaine

provient de l’algorithme, mais peut être restreint facilement. La troisième

partie permet d’ordonner les différentes boucles. Enfin, la dernière par-

34

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

tie permet d’appliquer, à l’ordre d’itération, certaines transformations pour

l’optimisation. InKSLoop supporte notamment le cache blocking multidi-

mensionnel.

Nous avons évalué les performances de InKSLoop en implémentant cer-

tains noyaux du benchmark NAS [Bailey et al., 1991] ainsi qu’un solveur de

l’équation de la chaleur en 3D via la méthode des différences finies. Cette

évaluation a mis en évidence la facilité d’expression des optimisations sup-

portées par InKSLoop, bien qu’elles soient limitées. Par ailleurs, le DSL,

associé à notre compilateur, produit du code aussi efficace que du code

écrit manuellement.

1.3.3 InKSXMP : InKS et XMP pour la gestion de la

mémoire sur architecture distribuée

InKSXMP est un langage d’optimisation du modèle InKS à base de di-

rectives permettant la distribution de données en architecture à mémoire

distribuée. Le langage s’appuie sur XcalableMP (XMP), un langage PGAS

(Partitioned Global Address Space) développé au RIKEN Center for Com-

putational Science au Japon [Lee and Sato, 2010]. XMP simplifie la distri-

bution et la communication de données en présentant l’espace mémoire

d’une architecture distribuée comme un espace mémoire global. Ainsi,

InKSXMP reprend une partie des fonctionnalités de XMP — principalement

concernant la distribution de données — en y associant les informations

contenues dans l’algorithme. Cette combinaison permet de limiter l’usage

de XMP aux seuls choix d’optimisation. Un compilateur source-à-source

transforme ensuite le code InKSXMP en C+XMP.

Nous avons évalué les performances de InKSXMP et son compilateur

en implémentant certains noyaux du benchmark NAS [Bailey et al., 1991]

ainsi qu’un solveur de l’équation de la chaleur en 3D via la méthode des

différences finies. Cette évaluation a mis en évidence l’efficacité du code

produit par rapport à du code XMP écrit manuellement.

35

1.4. APPLICATION ET ÉVALUATION DU MODÈLE DE
PROGRAMMATION INKS

1.3.4 InKSPSO : un langage pour l’expression

d’optimisations

InKSPIA permet d’exprimer l’algorithme en laissant libres les choix

concernant le placement mémoire et l’ordre des calculs. Les approches

présentées précédemment permettent de décrire, dans un cadre limité,

certains de ces choix. Nous décrivons maintenant InKSPSO, le langage

d’optimisation du modèle InKS permettant la formulation d’optimisations

variées et complexes. InKSPSO est un langage impératif pour exprimer les

choix d’optimisation d’un algorithme décrits en InKSPIA.

Un code InKSPSO se compose de quatre parties. Premièrement,

l’utilisateur alloue des tableaux multidimensionnels. Dans un deuxième

temps, il définit des relations entre les cellules de ces tableaux et celles

des tableaux logiques décrites en InKS. Cette correspondance en-

tre mémoire physique et logique permet l’expression du placement des

valeurs en mémoire. Ensuite, l’utilisateur peut demander la mise à jour,

éventuellement parallèle, d’une région d’un tableau logique. Les tableaux

physiques liés à cette région, ainsi qu’à celles qui devront être lues pour

l’exécution de l’opération, seront accéder par l’opération. Finalement la

réutilisation mémoire intervient lorsque l’utilisateur redéfinit les relations

entre tableaux physiques et logiques. Ainsi, un programme InKSPSO est

une séquence de ces quatre parties dont l’exécution produit des tableaux

physiques contenant les valeurs de sortie de l’algorithme.

1.4 Application et évaluation du modèle de

programmation InKS

Dans cette section, nous présentons un cas d’application du modèle de

programmation InKS : la simulation du système Vlasov-Poisson 6D. Nous

nous baserons sur cette application pour évaluer notre modèle dans sa glob-

alité.

36

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

1.4.1 Le système Vlasov-Poisson 6D et son

implémentation InKS

Le système Vlasov-Poisson 6D décrit le mouvement de particules dans

un plasma, ainsi que le champ électrique en résultant. Nous étudions sa

résolution pour une espèce sur un maillage Cartésien périodique à 6 di-

mensions, représentant l’espace des phases. La principale inconnue est f ,

la fonction de distribution des particules dans l’espace des phases 6D. La

partie Vlasov s’appuie sur un splitting de Strang, tandis que nous résolvons

Poisson avec des transformations de Fourier. Cela conduit à six advec-

tions 1D – trois dans les dimensions d’espaces et trois dans les dimensions

de vitesses – basées sur des interpolations de Lagrange de degré 3 ou 4

selon les dimensions. La résolution du système est implémentée dans Se-

LaLib [Inria, IPP, IRMA, IRMAR, LJLL, 2018] en Fortran et passe par une

succession de ces trois étapes : advections en espace, résolution de Poisson

via transformation de Fourier, advections en vitesse.

La première étape pour implémenter le système Vlasov-Poisson 6D en

InKS consiste à en spécifier l’algorithme en InKSPIA. Nous l’avons fait en

nous basant sur la version de SeLaLib. Nous avons ensuite implémenté,

de manière incrémentale, les différentes optimisations mises en œuvre dans

SeLaLib pour résoudre le système de manière efficace. En particulier, nous

nous sommes concentrés sur les optimisations relatives à l’utilisation effi-

ciente du cache, à la mise en place de la vectorisation, et à la parallélisation

en mémoire partagée (OpenMP).

1.4.2 Évaluation

Dans cette évaluation, nous comparons l’implémentation InKS

(InKSPIA + InKSPSO) et la version de référence, venant de SeLaLib (For-

tran), de la résolution du système Vlasov-Poisson 6D. Quatre versions ont

été développées en InKS, chacune ajoutant une optimisation par rapport

à la précédente :

1. une version näıve, peu performante et non implémentée dans SeLaLib ;

37

1.4. APPLICATION ET ÉVALUATION DU MODÈLE DE
PROGRAMMATION INKS

2. une version avec buffer intermédiaire pour la mise en place de la vec-

torisation ;

3. une version avec blocking, améliorant l’utilisation du cache ;

4. une version parallèle, s’appuyant sur OpenMP.

Cette comparaison se concentre sur quatre points : la productivité, la

généralité, la simplicité et les performances d’InKS par rapport au For-

tran. Le Tableau 1.1 présente le résultat des expériences.

Version InKS SeLaLib Écart

Näıve 29.60 (±3.02%) N/A N/A

Buffer intermédiaire 34.07 (±2.80%) 44.26 (±0.32%) -23.03%

Blocking 16.64 (±2.61%) 24.99 (±0.64%) -33.43%

OpenMP (8 threads) 2.54 (±3.94%) 3.08 (±1.78%) -17.53%

Table 1.1 – Comparaison des implémentations InKS et SeLaLib du système
Vlasov-Poisson 6D. Temps (seconde) par itération des implémentations
InKS et SeLaLib sur la résolution du système Vlasov-Poisson 6D
(taille=326). Médiane et écart relatif maximal sur 10 pas de temps.

Version InKS SeLaLib modifiée Écart

Buffer intermédiaire 34.07 (±2.80%) 44.82 (±2.09%) -23.99%

Blocking 16.64 (±2.61%) 20.09 (±0.64%) -17.19%

OpenMP (8 threads) 2.54 (±3.94%) 2.51 (±2.53%) 1.52 %

Table 1.2 – Comparaison des implémentations InKS et SeLaLib mod-
ifiée du système Vlasov-Poisson 6D. Temps (seconde) par itération des
implémentations InKS et SeLaLib modifiée sur la résolution du système
Vlasov-Poisson 6D (taille=326). Médiane et écart relatif maximal sur 10
pas de temps.

Le modèle de programmation InKS sépare les préoccupations algorith-

miques et d’optimisation en fournissant deux langages distincts, améliorant

la lisibilité des codes. Fixer l’algorithme facilite la coopération entre

spécialistes du domaine de simulation et spécialistes en optimisation in-

formatiques et permet de limiter la partie de code à écrire lors de

l’expérimentation de nouvelles stratégies d’optimisation. Cependant, un

38

CHAPTER 1. RÉSUMÉ EN FRANÇAIS

avantage mis en avant par notre expérience est lié à l’efficacité du code :

le compilateur InKS, en ayant de nombreuses informations venant de

l’algorithme, est capable de générer un code plus efficace que la référence en

Fortran, notamment sous la forme de directives de vectorisation. Comme

le montre le Tableau 1.1, les versions InKSPSO, et notamment la version

Blocking, sont jusqu’à 1.5 fois plus efficaces que les versions Fortran. Cepen-

dant, en modifiant manuellement le code SeLaLib, et donc en s’appuyant

sur le programmeur (Tableau 1.2), l’écart se réduit et est négligeable pour

la version parallèle.

La généralité d’InKS vient largement du modèle Polyédrique sur lequel

il s’appuie. Ce dernier nous permet d’offrir un modèle de programmation

capable d’exprimer des codes de simulation complexes, comme le système

Vlasov-Poisson 6D, mais aussi des choix d’optimisation d’efficacité compa-

rable à du Fortran. En outre, cette généralité s’accompagne de gains en

productivité, de par le support qu’InKSPIA offre à InKSPSO. Ainsi, il est

possible d’expérimenter de nouvelles optimisations sans réécrire une grande

partie de code.

1.5 Conclusion et perspectives

À première vue, proposer un modèle alliant performance, productivité et

lisibilité semble irréalisable. Dans le domaine du calcul haute performance,

un développeur doit tirer parti de l’architecture sur laquelle l’application

s’exécutera ; cela revient à utiliser habilement, entre autres, le cache, les in-

structions de vectorisation ou le parallélisme disponible. Cependant, cette

efficacité se paye au prix d’un code difficilement lisible, notamment par des

non-initiés à l’optimisation informatique. Séparer le code en de multiples

fonctions, chacune dédiée à une tâche précise – calcul ou optimisation pour

une architecture spécifique – produit un code à la fois performant et lisi-

ble. Cependant, cette accumulation de fonctions réduit considérablement

la productivité des développeurs et la maintenabilité de l’application.

Dans cette thèse, nous proposons une nouvelle approche assurant ef-

ficacité, productivité et lisibilité dans les codes de calcul haute perfor-

mance : le modèle de programmation InKS. S’accompagnant de deux lan-

39

1.5. CONCLUSION ET PERSPECTIVES

gages distincts, dédiés à chacune des préoccupations, il sépare l’algorithme

des optimisations. Cette scission facilite la coopération entre chercheurs

et développeurs et améliore la lisibilité de l’application sans impacter

négativement les performances. Nous avons évalué notre implémentation

du modèle InKS sur un cas d’application de la physique des plasmas : la

résolution du système Vlasov-Poisson 6D. Nous avons ainsi mis en lumière

les avantages d’InKS en matière de performance. Par ailleurs, le modèle

améliore également la productivité et la lisibilité du code.

Par ailleurs, notre proposition offre de nombreuses perspectives

d’évolution. Premièrement, il serait intéressant d’explorer plus en pro-

fondeur les possibilités d’un compilateur intelligent ayant accès, à la fois,

à l’algorithme et aux instructions d’optimisation. En effet, actuelle-

ment, nous n’avons mis en place que quelques directives de vectorisation.

Néanmoins, l’algorithme contient d’autres informations intéressantes pour

l’optimisation, permettant ainsi de déduire de possibles optimisations, par

exemple concernant l’alignement mémoire. Ces informations pourraient

alors être transcrites dans le code généré.

Le modèle InKS et notamment le langage d’optimisation peut être en-

richi. Puisque le langage s’appuie sur le modèle Polyédrique, il serait judi-

cieux d’intégrer à notre compilateur les outils d’optimisation de ce modèle,

comme Pluto [Bondhugula et al., 2008] ou CHiLL [Basu et al., 2017]. Bien

que possible en dehors du modèle InKS, le support d’un modèle de pro-

grammation parallèle en mémoire distribué – par exemple en s’appuyant sur

un modèle PGAS – est aussi une étape importante pour la démocratisation

de notre approche.

Un dernier exemple d’amélioration du modèle InKS se trouve dans

les fondations mêmes du modèle : nous utilisons largement le modèle

Polyédrique, notamment dans l’analyse du code. Cependant, cela contraint

la classe de programmes exprimables en InKS. Il pourrait être intéressant

d’essayer d’autres approches, quitte à perdre l’analyse statique offerte par

le modèle Polyédrique.

40

Chapter 2

Introduction

In the modern human era, computers are ubiquitous. They are widely

used as control systems for a wide variety of devices. This includes simple

purpose devices like microwave ovens and remote controls, factory devices

such as industrial robots, and also general-purpose devices like personal

computers and mobile devices such as smartphones. They largely support

domains as diverse as medicine, physics, mathematics, economics, as well

as photography, cinema or music. From nuclear fusion reactions, to the

interaction between diverse molecules and cells, to dependencies between

the climate and the biosphere, computer simulations are increasingly used

to study complex phenomena precisely, to better understand intricate and

chaotic systems or to contradict or support the validity of hypotheses and

theories.

In various scientific domains, it is more and more common to identify

numerical simulation as the third pillar of science, a peer alongside theory

and experimentation. Examples of scientific and technical achievements at-

tributable to the computational science are uncountable, but in 2005, the

PITAC, a US government agency, gives an interesting example of a major

scientific breakthrough that relied on computational science in [President’s

Information Technology Advisory Committee, 2005]: the decoding of the

human genome. In 1990, the Department of Energy and the National Insti-

tutes of Health, American government agencies, launch the Human Genome

Project, as understanding better the genetic instructions for life was criti-

cal to the future of medical science. Even though it was expected to take

42

CHAPTER 2. INTRODUCTION

decades, by February 2001, the challenge was overcome by more than a

thousand scientists and the crucial assistance of the computational science.

As computational science enables fast computations on volumes of data

that no human could complete in a lifetime, it enables scientists to obtain

results in hours, rather than weeks or years, which dramatically changes

the range of studies scientists can conduct. For instance, climate change

studies, which simulate thousands of Earth years, are feasible only if the

time to simulate a year of climate is a few hours. In other words, efficiency

is a sine qua non condition for such studies. This is especially true when we

take into account the need to understand the sensitivity of climate predic-

tions to assumptions about various impacts, like carbon dioxide emissions,

or model characteristics. In these situations, scientists must conduct entire

suites of climate simulations, which require prodigious amounts of comput-

ing power. More interesting, this is not limited to climate studies. Most

scientific domains, from Formal science to the Humanities and Social sci-

ences, rely on computing power offered by processors to partially deal with

the curse of dimensionality, phenomena that arise when processing data

of hundreds or thousands of dimensions; a problem typically faced when

studying complex models. For instance, MODIS [Xu et al., 2014], which

is a simulation code proposing to understand geosphere-biosphere interac-

tions, or LTM [Pijanowski et al., 2014], which simulates urban expansion

over natural areas, heavily count on computing power.

However, nowadays architectures are far from simple to program. Un-

til 2001, computing architectures were composed of clusters of single-core

CPUs, relatively simple to program. Shrinking the transistors composing

a CPU enabled the increase of its frequency and the decrease of its en-

ergy consumption. All in all, the overall performance of CPUs was largely

increased every two years [Schaller, 1997]. At this time, one could run a

program on the newest CPU and observe drastic gains in efficiency. How-

ever, with cooling requirements and quantum effects reaching a plateau,

processor manufacturers used the additional transistors, not to increase the

plain performance of the CPU, but to multiply the number of CPUs on a

single die. Theoretically, this parallelism increase performance, however, in

practice, it comes at the expense of users who must design their applications

43

to fit this parallelism level.

In addition, while processors became more and more efficient and par-

allel, memory performance did not follow the same trend. This led to a

so-called processor-memory performance gap, where the throughput of the

former improved faster than the throughput and latency of the latter. No-

tably, the further is the memory from the processor, the longer it takes to

access its content. This motivated the use of hierarchical memory, where a

small and close to the processor memory caches a bigger and further mem-

ory and so on. Hence, pieces of data that would normally be read from

global memory could be cheaply and quickly read from local memory on

the condition that it is already there. All this strategy also came at a cost

for the users: programs need to be conceived all the way down with data

locality.

This situation worsens every year, as the diversity in terms of architec-

tures of the latest supercomputers keeps growing and makes performance

portability a particularly challenging problem. Achieving good performance

requires code adjustments to fit a specific set of machine parameters, such

as the number of cores, cache size, cache line size, number of registers,

memory bandwidth, etc. Even more invasive changes can be required to

move from one architecture to another as was illustrated by the switch from

vector machines to modern architectures or more recently with the emer-

gence of GPUs. Exascale platforms are expected around the 2020-2021 time

frame, but developers will need months, if not years, to identify the best

optimization strategies for these upcoming architectures.

In addition to programmability issues of current architectures, existing

programming models tend to require a rewrite of large parts of the code for

each new experiment with optimization strategies, making the identification

of the best techniques and parameters all the more time-consuming. Pre-

serving the code functional validity during this process is non-trivial. This

imposes the burden of a deep understanding of the underlying domain algo-

rithm on the optimization specialist. In addition, as the performance is one

of the main aspects of simulation codes, they are challenging to read and/or

modify. Indeed, highly optimized simulation codes largely come with sets

of instructions related to parallelism and efficiency. Typical parallel consid-

44

CHAPTER 2. INTRODUCTION

erations include the management of the interconnected nodes constituting

the architecture, through the use of approaches such as the MPI library, the

parallelism exposed by the multiplication of cores in a processor, mentioned

earlier, but also the parallelism offered by each core, designed as Single In-

struction, Multiple Data computing units. Besides parallelism, simulation

code developers have to take into account various architecture parameters

mentioned earlier that leads to non-trivial nested loops and complex mem-

ory layouts to improve data locality, directives and low-level instructions to

drive automatic optimizations done at compile-time. In addition, depend-

ing on the code, other concerns can appear such as load-balancing, i.e. how

to schedule computations that do not last the same time of the available

resources, or I/Os, i.e. how to efficiently write the results of a simulation.

Not only are all these considerations excessively complex to read and under-

stand but also they influence each other which make the simulation codes

complicated. Hence, domain scientists have to become experts in the art of

computer optimizations, in addition to their own domain of expertise.

As a matter of fact, simulation codes depend upon two highly knotty

domains, namely computer engineering and domain science, and their de-

velopment suffers from the incredible complexity that arises from the mix

of these two. For this reason, the goal and the scope of this thesis were to

improve readability, productivity, maintainability and portability of simu-

lation codes at no performance cost, as to ease the development of such

code. Hence, in this thesis, we have explored one of the possibilities to

fulfill these objectives: the separation of concerns. That is to say the

dissociation of domain science, focusing towards phenomena mathemati-

cal modeling, and optimization concerns, aiming efficient architecture us-

age. Therefore, this thesis exposes the following contribution. First, it

extends available programming model for high-performance computation

towards a paradigm that separates the simulation algorithm from archi-

tecture specific optimizations: the Independent Kernel Scheduling (InKS)

programming model. Then, it proposes an implementation of the InKS

algorithm language, dedicated to express domain science concerns. It also

proposes the description of several InKS optimization languages, aiming

to specify the optimization related preoccupations, with one in particular

45

2.1. OUTLINE

capable of taking into account a wide range of optimization choices. This

thesis presents an application of the InKS programming model to plasma

physics simulations.

2.1 Outline

The thesis presents our contribution towards a simplification of high

performance numerical simulation codes and is organized into the following

chapters:

Background and related work where we identify, present and analyze

the methods proposed by the state-of-the-art in terms of programming

models and approaches to effectively improve application developers

productivity as well as how they limit this separation of concerns. In

this analysis of related works, we also present the Polyhedral model,

as it is at the foundation of our proposition.

The Independent Kernel Scheduling programming model where

we propose a programming model to improve developers productiv-

ity while overcoming the separating issues faced by other approaches:

InKS. We also present the InKS Platform-Independent Algorithm

(InKSPIA) language; the InKS language to express algorithmic con-

cerns.

Expressing optimization choices in the InKS programming model

in which we expose all the developed methods to take into account the

optimization concerns. In particular, we focus on the InKS Platform-

Specific Optimization (InKSPSO) language. This second language

focuses on expressing all kinds of optimization choices based on an

algorithm specification described in InKSPIA.

Application and evaluation of the InKS programming model which

evaluates both the InKS programming model proposition and imple-

mentation. In this evaluation we present a real-world application

targeting a plasma physics simulation, the 6D Vlasov-Poisson sys-

tem, implement it using the InKS model and evaluate our approach

46

CHAPTER 2. INTRODUCTION

through four angles: its gain in productivity, its generality, its sim-

plicity of use and its performance.

The contributions presented in the different chapters of this thesis were

published in several scientific articles: [Ejjaaouani et al., 2017], [Ejjaaouani

et al., 2018], [Ejjaaouani et al., 2019b] and [Ejjaaouani et al., 2019a] Finally,

we conclude this manuscript and propose numerous future works for our

programming model.

47

Chapter 3

Background and related work

Contents
3.1 General-purpose languages for HPC 49

3.1.1 Fortran . 49

3.1.2 C and C++ . 50

3.2 Optimization tools for HPC 51

3.2.1 Directives based languages 53

3.2.2 Embedded Domain Specific Languages 54

3.2.3 Runtimes . 56

3.2.4 Optimization tools based on the Polyhedral model 57

3.2.5 Aspect-Oriented based languages 57

3.3 Domain Specific Languages for HPC 58

3.3.1 Data-flow Languages 59

3.3.2 Algorithmic Skeleton 60

3.3.3 Stencil-specific DSLs 61

3.4 Discussions . 63

3.5 The Polyhedral model 67

3.5.1 Static Control Parts 68

3.5.2 Statement vector and iteration domain 69

3.5.3 Scattering functions 71

3.5.4 Access functions 73

3.5.5 Implementation of the Polyhedral model 74

48

CHAPTER 3. BACKGROUND AND RELATED WORK

In this chapter, we expose the state-of-the-art in proposed languages

and frameworks which are used to develop numeric simulation codes in the

domain of the high-performance computing. In Section 3.1, we address

some general-purpose languages widely used in simulation codes while Sec-

tion 3.2 describes a set of tools used in conjugation of these languages. Sec-

tion 3.3 describes some Domain Specific Languages (DSL). It follows with

Section 3.4 which analyzes these different approaches and discusses how

they compare to our approach and achieve our double objectives: separat-

ing algorithmic and optimization concerns while offering the best possible

performance. Note that the approaches described in this Chapter are clas-

sified by what we consider to be their main user interface. For instance,

OpenMP is classified as a directive based language even though it comes

with an API and relies on a runtime. Finally, in Section 3.5, we present the

Polyhedral model and its fundamental notions, as it is at the core of our

works.

3.1 General-purpose languages for HPC

Computer science and scientific computing share a common past with

mutual benefits. As a result, since the dawn of information technology,

general-purpose languages were developed with the aim of potentially using

them in scientific computing. These languages provide users with general-

ity and fine control over the program. Fortran, C, C++ and Python are

the most common general-purpose languages used nowadays in the HPC

community. In this section we present some of these languages.

3.1.1 Fortran

Fortran (FORmula TRANSlator) is an imperative compiled program-

ming language developed especially for numeric computations and scientific

computing in 1954 [Backus, 1954]. Since its first release, Fortran has domi-

nated this area of programming and continue to be used in computationally

intensive program such as weather prediction, finite element simulation or

fluid dynamics. Indeed, Fortran provides flexibility and control over the

49

3.1. GENERAL-PURPOSE LANGUAGES FOR HPC

implementation of simulation codes and their optimization. Its popularity

in the scientific community has made Fortran the most widely used high-

performance computing language. Despite being one of the most ancient

high-level programming language, it is still largely used because it was en-

hanced, over the years, by a wide variety of libraries and efficient compilers.

Moreover, a lot of simulation codes were written in Fortran and the porting

to a more modern language is judged too expensive.

3.1.2 C and C++

C is an imperative compiled general-purpose programming language

developed in the early 1970s [Ritchie, 1993]. It was designed as a single

interface for all the existing assembly languages, at a time when each was

dedicated for a specific processor, complexifying program development. It

provides low-level access to memory and constructs that map efficiently to

typical machine instructions, such that it has been largely used in applica-

tions that used to be developed in assembly languages. It goes from the

development of operating systems to embedded systems through scientific

computing. In addition to its fine control over the code, C is cross-platform,

and therefore can be compiled on a wide variety of computers and operat-

ing systems. Being straightforward and popular in the Computer science

community, C has largely been used in the high performance computing

community for a long time now.

Similarly, C++ was originally designed as an extension of the C

language in 1983 [Stroustrup, 1997]. Nowadays, it is a multi-paradigm

language offering both performance, with low-level instruction, and

productivity through object-oriented and generic programming features.

For the same reasons as the C language, C++ is widely used by the

computer scientist community, and therefore, is as the root of a lot of

libraries and tools for high performance computing as well as simulation

codes themselves.

Although Fortran, C and C++ were developed with different objectives

by disparate communities, over time, they all converged to provide the sim-

50

CHAPTER 3. BACKGROUND AND RELATED WORK

ilar basic constructs greatly adapted to the high performance computing,

namely low-level arrays and efficient nested loops. First, scientific mea-

sures distributed over a spatial grid are represented using multidimensional

arrays, with each cell holding a numerical representation of the measure

intensity. Then, nested loop, i.e. the repeated pattern of a loop within

the body of another loop, are used to traverse the arrays and apply some

computations. A simulation programs are roughly composed of the same

three parts: the allocation part, in which all arrays are allocated; the ini-

tialization which sets all arrays initial values; and the time loop controls

the progress of the simulation and contains nested loops, each applying a

calculation to the arrays. In addition to computational nested loops, the

time loop also contains diagnostic phases, where values are written to hard

drives for their later analysis. Another major concern not adduced is the

parallelization of the code. This typically influences the allocation part,

where many arrays are distributed over the cluster of processors, and the

time-loop, where each processor communicates values with its neighbors.

To illustrate the usage of general-purpose language in the numerical

simulation, a sequential code simulating the distribution of heat over time

in a solid material is presented in Listing 3.1. It is written in C but, as

mentioned earlier, Fortran or C++ version would look similar. First, the

allocation part takes place on Line 8, where two arrays, temperature t and

temperature tp1, are allocated. While the former holds temperature value

at a given time-step t, the latter stores the one at the next time-step, t+1.

Then, Line 13, the initial values of temperature are set. Finally, the time-

loop starts on Line 22 and in particular, the heat distribution is computed in

the nested loop Line 25: each temperature t cell is read to update the one

of temperature tp1. Hence, by the end of the time-loop, temperature t

holds the values of the heat distribution after 100 time-steps.

3.2 Optimization tools for HPC

Although general-purpose languages for HPC are flexible and efficient,

they are still complex and verbose to use in a lot of situations in scientific

computing. A wide variety of tools offer to encode a set of reusable optimiza-

51

3.2. OPTIMIZATION TOOLS FOR HPC

1 #define SIZEX 1000
2 #define SIZEY 10000
3 #define NB_TIME 100
4 #define INDEX(x, y) ((x) + (y) * SIZEX)
5

6 int main(int argc, char **argv){
7

8 /*...Allocations...*/
9 size_t size = SIZEX * SIZEY;

10 double* temperature_t = malloc(sizeof(*temperature_t) * size);
11 double* temperature_tp1 = malloc(sizeof(*temperature_tp1) * size);
12

13 /*...Initialization...*/
14 for(int y=0; y<SIZEY; y++){
15 for(int x=0; x<SIZEX; x++){
16 temperature_t[INDEX(x, y)] = sin(y) + sin(x);
17 temperature_tp1[INDEX(x, y)] = sin(y) + sin(x);
18 }
19 }
20

21 /*...Time-loop...*/
22 for(int t=0; t<NB_TIME; t++){
23

24 /*...Computational nested loop...*/
25 for(int y=1; y<SIZEY-1; y++){
26 for(int x=1; x<SIZEX-1; x++){
27 temperature_tp1[INDEX(x, y)] =
28 0.1 * (
29 temperature_t[INDEX(x-1, y)] +
30 temperature_t[INDEX(x, y+1)] +
31 temperature_t[INDEX(x+1, y)] +
32 temperature_t[INDEX(x, y-1)]
33) + 0.6 * temperature_t[INDEX(x, y)];
34 }
35 }
36

37 swap(temperature_t, temperature_tp1);
38 }
39 }

Listing 3.1 – Example of a simulation code: C implementation of the heat
equation.

tions. Moreover, as these approaches target a specific set of optimizations,

they offer dedicated constructs that enable users to express concerns that

are not straight supported by general-purpose languages. These constructs

provide a large speedup thanks to knowledge that users could not effectively

otherwise use. In the end, the goal is to boost productivity with little to

no impact on performance. Since these approaches are largely used by that

the HPC community, we present some of them in this section.

52

CHAPTER 3. BACKGROUND AND RELATED WORK

3.2.1 Directives based languages

A first approach to propose tools for the HPC community comes in lan-

guage extensions through compiler directives. It proposes to add informa-

tion on top of an existing code, limiting its modification, to automatically

manage some features, typically parallelism.

OpenMP OpenMP is a directives based language and an application pro-

gramming interface (API) developed by a nonprofit technology consortium,

OpenMP Architecture Review Board [Chandra et al., 2001]. It supports

multi-platform shared memory multithreading programming in Fortran, C

and C++. It provides a set of directives, functions and environment vari-

ables multi-platform that organize threads behavior at runtime.

Listing 3.2 illustrates the usage of OpenMP in a C code. In particular,

it offers the omp parallel for construct which instructs the compiler to

distribute the iterations of the following loop between available threads. For

the sake of the explanation, let’s consider that two threads, T1 and T2, are

accessible, the loop iterations Line 6 would be split between these. Hence,

T1 would run all iterations between 0 and 5000 while T2 would execute

the remaining ones. In summary, OpenMP eases writing shared memory

parallel code with features such as the specification of independent loop

iterations that can be executed in parallel.

1 int main(int argc, char **argv){
2 int a[100000];
3

4 //loop iterations are divided among available threads
5 #pragma omp parallel for
6 for (int i = 0; i < 100000; i++)
7 a[i] = 2 * i;
8

9 return 0;
10 }

Listing 3.2 – Demonstration of an OpenMP work-sharing construct.

XMP XcalableMP (XMP for short) is a directives based partitioned

global address space (PGAS) language developed at the RIKEN Center

for Computational Science in Japan [Lee and Sato, 2010]. It simplifies

53

3.2. OPTIMIZATION TOOLS FOR HPC

the handling of distributed memory by presenting it to the developer as a

single global space. XMP provides a minimal set of directives to manage

distributed memory parallelism, among which directives to distribute an

array over a set of nodes or to manage inter-nodes communications.

Listing 3.3 presents a simple XMP code. The code specifies data map-

ping of an array A (10 elements) among 2 nodes (5 elements per node). First,

the nodes directive declares a node set p of size 2. Then, the template di-

rective declares a template t of size 10, distributed by block among the node

set p. The align directive maps array elements to template elements, and

therefore transmits the distribution. After completing the data distribution

phase, Line 6, XMP enables users to read, write and communicate the array

elements as well as share work between the node in a node set. For instance,

Line 8 shares the loop iteration according to the mapping of the template

t elements to the node set p. Therefore, Line 10, the A array is written in

parallel. In summary, XMP simplifies the writing of distributed parallelism

applications, handling both data and computations distribution.

1 int main(){
2 #pragma xmp nodes p[2]
3 #pragma xmp template t[10]
4 #pragma xmp distribute t[block] onto p
5 int A[10];
6 #pragma xmp align A[i] with t[i]
7

8 #pragma xmp loop on t[i]
9 for(int i=0;i<10;i++){

10 A[i] = i+1;
11 printf("%d\n", A[i]);
12 }
13

14 return 0;
15 }

Listing 3.3 – Demonstration of XMP data and loop sharing directives.

3.2.2 Embedded Domain Specific Languages

Other approaches extend the general-purpose languages, typically C++

using the meta-programming approach, with domain specific features

mostly related to data management and work-sharing parallelism.

54

CHAPTER 3. BACKGROUND AND RELATED WORK

Kokkos As supercomputer architectures become more and more varied,

performance portability arises as a major challenge faced by the HPC com-

munity. Kokkos is a C++ template meta-programming based library which

offers this performance portability [Edwards et al., 2014]. It provides an

abstraction in which one expresses fine grain of parallelizable operations,

gathered in parallel patterns and adaptable data structures. Kokkos can

then map this work onto memory and threads, either on CPUs, GPUs and,

most probably, in the future, FPGAs.

As demonstrated on Line 2 of the Listing 3.4, users can pass from CPU

to GPU implementation and vice versa by modifying a few template param-

eters. Then, at compile-time, Kokkos automatically manages the memory

layouts and the underlying parallel constructs to fit the target architecture.

1 //Could have chose OpenMP instead of Cuda
2 using ExecutionSpace = Cuda;
3

4 int main (int argc, char* argv[]) {
5 Kokkos::initialize (argc, argv);
6

7 /*
8 The following parallel_for would look like this
9 if we were using OpenMP instead of Kokkos:

10

11 #pragma omp parallel for
12 for (int i = 0; i < 10; ++i) {
13 printf ("Hello from i = %i\n", i);
14 }
15 */
16

17 Kokkos::parallel_for (
18 //We use the defined execution space
19 Kokkos::TeamPolicy<ExecutionSpace>(10,Kokkos::AUTO),
20 KOKKOS_LAMBDA (const int i) {
21 printf ("Hello from i = %i\n", i);
22 }
23);
24

25 Kokkos::finalize ();
26 }

Listing 3.4 – Demonstration of Kokkos parallel for construct
parameterization.

HPX HPX is a C++ Standard Library for concurrency and parallelism

developed by the Stellar Group at the Louisiana State University [Kaiser

et al., 2019]. HPX aims to extend the parallel notions introduced in

55

3.2. OPTIMIZATION TOOLS FOR HPC

C++ 11 [Thoman et al., 2015] with keywords answering questions such

as whether works can be done in parallel regarding thread-safety or wher-

ever this work should be executed. It enables to write fully asynchronous

code, ready for the exa-scale architecture, while providing a unified syntax

and semantics for both intra and inter-node operations.

Armadillo Armadillo [Sanderson and Curtin, 2016] is a C++ library

dedicated to linear algebra. It provides an efficient and easy-to-use interface

combined with machine-dependent optimizations and inter-node support

through LAPACK [Anderson et al., 1990]. In addition, it offers a high-level

syntax derived from the Matlab one.

3.2.3 Runtimes

Runtime based approaches assist developers by taking care automat-

ically of the optimization process. Users express its program using a

dedicated API while, at runtime, the tool is responsible for the manage-

ment of various optimization concerns, such as the data and tasks distri-

bution. These approaches are especially useful in simulation code facing

load-balancing issues.

StarPU StarPU [Augonnet et al., 2011] is a library which supports the

many-tasks paradigm on hybrid architectures. In StarPU, the user ex-

presses a set of tasks with data dependencies. At execution, the StarPU

runtime translates these tasks to a directed acyclic graph (DAG) that is au-

tomatically scheduled on the available resources. Hence, StarPU handles

parallel runtime concerns such as task dependencies, heterogeneous schedul-

ing, optimized data transfers among computing processing units and cluster

communications.

Legion Legion [Bauer et al., 2012] is a task-based programming model

for heterogeneous architecture that focuses on data structures. It proposes

an API to declare sets of data (regions), explicitly specify their properties

(readable, writable, atomic access, etc.) and what are the tasks that use

them. As the placement and movement of data have a crucial role in a sim-

56

CHAPTER 3. BACKGROUND AND RELATED WORK

ulation application performance, the Legion runtime automatically extracts

parallelism and manages data movement in accordance with Legion code,

simplifying code development, program performance tuning and porting of

applications to new architectures.

3.2.4 Optimization tools based on the Polyhedral

model

The Polyhedral model offers a precise symbolic representation particu-

larly suited to describe nested loops which enables advanced code analysis

and transformations at compile-time. It is described with more details in

Section 3.5. With the emergence of this model and its possible use, many

scientists proposed a set of tools with the same goal as general optimiza-

tion tools: improving productivity of application developers and easing the

writing of complex but efficient optimization strategies.

Pluto Pluto is an automatic parallelization tool based on the Polyhedral

model [Bondhugula et al., 2008]. It first converts a C sequential code to

its Polyhedral representation and then apply a set of transformation, typi-

cally to improve data locality, reduce cache misses and expose parallelism.

Eventually, it generates C code exploiting work-sharing parallelism using

OpenMP directives.

XFor XFor [Fassi and Clauss, 2015] proposes a loop structure based on

the Polyhedral model. It offers programmers to express statements in a

set nested loops with their relative execution order. It then provides a

source-to-source compiler which takes this specification and a set of poten-

tial predefined optimizations the user wants to apply, and generates a C

nested loops. In XFor, the Polyhedral model enables to encode reusable

complex loop transformations.

3.2.5 Aspect-Oriented based languages

Aspect-Oriented Programming (AOP) is a programming paradigm that

proposes to separate the different concerns constituting a code. It achieves

57

3.3. DOMAIN SPECIFIC LANGUAGES FOR HPC

this goal by adding behavior to existing code without modifying the code

itself. Instead, one identifies regions of code to modify using a set of rules,

named pointcut, such as ”any loop that contains exactly one instruction”.

Then the user provides an action to operate on the identified regions, such

as ”log the number of iterations that was executed”. Considering a region

of code, these actions either add code in or around the region or transform

it.

AOP have been a paradigm recently explored by the HPC community to

separate domain related code from architecture-specific optimization with

the final goal to improve productivity.

LARA LARA is an Aspect-Oriented Programming approach that con-

veys domain knowledge and non-functional requirements to optimizer and

mapping tools [Cardoso et al., 2012]. It proposes the LARA language to

identify pointcuts as well as actions. While the LARA language is extensi-

ble, it already contains pointcuts and actions typically used in simulation

code, such as mapping a task to a specific core or transforming a loop to

improve cache use. An action can also be influenced by the targeted ar-

chitecture, that is, it is possible to derive multiple versions of optimization

depending on the underlying machine.

LoopsAJ In [Harbulot and R. Gurd, 2006], Harbulot et al. extend As-

pectJ, a Java implementation of the AOP paradigm, with LoopsAJ. It aims

to add pointcut to loops as they are key places in computing intensive appli-

cations such as simulation codes. In respect to the AOP paradigm, LoopsAJ

proposes to add codes around identified loops or to transform these loops

into parallel or cache efficient ones.

3.3 Domain Specific Languages for HPC

General-purpose languages and tools, in the shape of libraries or lan-

guages extensions, are limited to the underlying programming paradigm,

that is, the imperative paradigm. Although this showed its effectiveness,

other approaches based their expressiveness on different paradigm; and

58

CHAPTER 3. BACKGROUND AND RELATED WORK

therefore proposed Domain Specific Languages (DSL) to handle this con-

cern. These follow one of two possible paths. The first path is close to the

one followed by HPC tools: their goal is to propose a more fitting way to ex-

press optimization concerns in general cases, compared to general-purpose

languages. The approaches following the second path renounce to the gen-

erality. Indeed, by limiting their possibility to a very specific matter in

simulation codes, such as stencil computations and inter-nodes communi-

cations, the approaches following this second path are capable of hiding the

complexity of HPC systems and boost programmers productivity. Most of

these tools propose a source-to-source compiler that translates the DSL to

traditional C/Fortran code. Additionally, HPC tools can be complex to

implement since they may rely on compiler extensions. A way to alleviate

this issue is to use template meta-programming, as done in embedded DSLs

such as Kokkos or Armadillo. A more language-independent answer is to

propose a DSL and a source-to-source compiler.

3.3.1 Data-flow Languages

Data-flow based programming is a general approach proposed as an

alternative to the standard message passing programming model used in

simulation codes. This paradigm proposes to describe the program as a

directed graph of the data flowing between operations. Several DSL based

approaches explore this programming paradigm with the aim of overcom-

ing the complexity in programmability of traditional approaches regarding

the exploitation of the most recent heterogeneous architectures. Data-flow

DSLs are accompanied by a runtime that makes the smart decisions in

terms of task and data management at execution.

PaRSEC/PTG PaRSEC [Bosilca et al., 2013] is a task-based runtime

for distributed heterogeneous architectures. It manages tasks and memory

placements as well as communications. PaRSEC comes with several DSLs ,

each providing a specific programming model used to describe efficiently,

to the runtime, tasks and their dependencies. PTG (Parameterized Task

Graph) is a paradigm proposed by Cosnard et al. [Cosnard and Jeannot,

1999] in which user describes all data flow, that is, expresses all the tasks

59

3.3. DOMAIN SPECIFIC LANGUAGES FOR HPC

that exist with the set of data they read and write. The PTG paradigm is

at the root of the PTG PaRSEC DSL [Danalis et al., 2014].

DFL DFL [Fernández et al., 2014] is a data-flow DSL based on

OmpSs [Duran et al., 2011]. It aims to, firstly, handle intra-node paral-

lelism efficiently and code execution on heterogeneous computer units; and,

secondly, exploit easily distributed systems. While its first goal is achieved

using OmpSs, DFL proposes high-level operations to hide the complexity

of inter-node communications.

3.3.2 Algorithmic Skeleton

Algorithmic skeletons are a high-level programming model focusing on

parallel aspects. It leverages common programming patterns to hide the

complexity of parallel and distributed applications. Algorithmic skeletons

approaches, such as SkePU [Ernstsson et al., 2018], propose a limited set of

patterns, called skeletons, such as map, reduce or divide. These high-level

operations can then be combined to create more complex patterns. Al-

gorithmic skeletons, by having the knowledge of each communication and

synchronization implied by each pattern, offer several advantages. The two

most important of them are that combination of patterns can be optimized

statically by a compiler and it reduces errors compared to lower-level par-

allel programming models.

Lift Although algorithmic skeleton is a promising approach to allevi-

ate distributed parallelism in HPC codes, compiling a high-level program

based on patterns into an efficient low-level parallel code is challenging.

Lift [Steuwer et al., 2017] is an algorithmic skeleton approach that stands

out by the use of an innovative compiler targeting GPUs. The Lift compiler

relies on an intermediate representation using functional patterns encoding

OpenCL constructs. This functional nature simplifies the exploration of

optimizations and enables Lift to generate efficient low-level code.

SkeTo SkeTo [Tanno and Iwasaki, 2009] proposes an algorithmic skeleton

approach based on C++ and MPI. This approach differs by the use of

60

CHAPTER 3. BACKGROUND AND RELATED WORK

variable-length lists of elements that enables the solving of a wide range

of problems. SkeTo provides patterns that dynamically and automatically

change lists’ length and manage load balancing. This strategy ensures good

performance on distributed architectures as well as low memory footprint.

3.3.3 Stencil-specific DSLs

One of the most common operations in scientific computing is the stencil

computation, that is, numerical approximations of a value localized in a

geometrical space depending on its neighbors values. Being ordinary and

potentially complex to express optimally in terms of performance, many

approaches, especially in the shape of DSLs , proposed to handle stencil

computations.

Pochoir Pochoir [Tang et al., 2011] is a stencil-specific DSL with which

users specify a stencil, that is, the computation kernel and neighbor access

patterns, as well as boundary conditions and a space-time domain on which

to apply the stencil. The Pochoir compiler, a source-to-source compiler,

then takes care of the code generation, performing numerous optimization

strategies. This includes cache oblivious algorithm, to improve cache use,

and intra-node parallelism based on Intel Cilk [Robison, 2013]. Using a

minimal description of the stencil, Pochoir can provide a highly efficient

code to handle stencil computation.

Listing 3.5 illustrates a stencil computation applied to a 2D domain and

expressed using Pochoir. In particular, lines 12 and 23 respectively specify

the stencil pattern and operation of the program.

Halide Halide is a language and compiler dedicated to image process-

ing, capable of generating efficient parallel [Ragan-Kelley et al., 2017]. It

provides heuristics for stencil applications that search for a compromise

between data locality, parallelism, and redundant computations. First,

one uses the Halide language to express its stencil operations as well as

a scheduling. In a second step, the Halide compiler can use this specifica-

tion to offer trade-offs between each critical optimization aspect.

61

3.3. DOMAIN SPECIFIC LANGUAGES FOR HPC

1 //Value to return if elements outside the domain are accessed
2 Pochoir_Boundary_2D(heat_bv, u, t, x, y)
3 return 100 + 0.2*t;
4 Pochoir_Boundary_End
5

6 int main(int argc char** argv){
7 const int X = atoi(argv[1]);
8 const int Y = atoi(argv[2]);
9 const int T = atoi(argv[3]);

10

11 //Stencil shape definition
12 Pochoir_Shape_2D 2D_five_pt[] = {{1,0,0}, {0,0,0},{0,1,0},
13 {0,-1,0}, {0,0,-1}, {0,0,1}};
14

15 Pochoir_2D heat(2D_five_pt);
16

17 //2D Pochoir array of size X*Y declaration
18 Pochoir_Array_2D(double) u(X, Y);
19 u.Register_Boundary(heat_bv);
20 heat.Register_Array(u);
21

22 //Specification of the computation
23 Pochoir_Kernel_2D(heat_fn , t, x, y)
24 u(t+1, x, y) = u(t, x+1, y) - 2*u(t, x, y) + u(t, x-1, y) +
25 u(t, x, y+1) - 2*u(t, x, y) + u(t, x, y-1) +
26 u(t, x, y);
27 Pochoir_Kernel_End
28

29 /*...Initialization of u...*/
30

31 //Run the stencil on T time-steps
32 heat.Run(T, heat_fn);
33

34 return 0;
35 }

Listing 3.5 – Demonstration of the Pochoir stencil language.

PATUS Similarly to Pochoir, PATUS [Christen et al., 2011], for Parallel

AutoTUned Stencils, proposes a DSL which aim to express a stencil compu-

tation. However, their optimization strategy greatly vary. While Pochoir

relies on a compiler to decide automatically of the optimization, PATUS

proposes its users to select predefined optimization strategies. These strate-

gies can be parameterized by the user or left to the care of the PATUS

compiler. This enables the tuning of code depending on the targeted archi-

tecture while minimizing the need of user intervention.

62

CHAPTER 3. BACKGROUND AND RELATED WORK

3.4 Discussions

Over the years, the domain of the high-performance computing drasti-

cally changed; from the development based on general and complex impera-

tive languages to the widespread use of more and more specialized libraries,

languages extensions and DSLs . This trend is accelerated by changes just as

drastic of the high-performance computer architectures; from tens of nodes

composed of single CPUs to thousands of nodes accompanied by multiple

CPUs, each of them constituted of tens of computing cores, along with

GPUs and FPGA accelerators. That is not to mention the profusion of

kinds of memories and interconnections, despite playing an essential role in

a program efficiency.

These languages and tools were successfully proposed with the aim of

easing the development of numeric simulation codes, being such perfor-

mance critical codes, compared to general-purpose languages for HPC, diffi-

cult to use in real-world simulation programs. This main goal is achieved by

two general ways: 1) Proposing a programming model to hide the complex-

ity of writing optimization strategies by encoding them in reusable manners;

hence easing the development and performance tuning of a wide variety of

applications. 2) Relying on a dedicated language and an adapted compiler

to make the most efficient choices in terms of optimization; and therefore,

boost even more the gain of productivity but in more restricted kinds of

applications. This last strategy often draws on a programming model that

either targets a specific type of application or enables users to give more

information to the underlying compiler. In the set of approaches we have

presented, directives-based languages, such as OpenMP and XMP and em-

bedded DSLs , including Kokkos and Armadillo, fit in this first category. As

illustrated in Listing 3.2, OpenMP hides the complexity of shared memory

parallelism by offering adapted constructs. However, these parallel pat-

terns heavily depend on parts of the code surrounding it, typically, memory

layouts and loops. Similarly, XMP and Kokkos, presented respectively in

Listings 3.3 and 3.4, uses the same strategy, but on different optimization

concerns. Several approaches, such as DFL, StarPU or HPX, follow the

same trend: these are general approaches that hide the complexity of par-

63

3.4. DISCUSSIONS

ticular optimization concerns through languages or libraries, even though

they rely on compilers or runtimes for smart optimization choices. All are

general approaches, usable in conjugation with a general-purpose language.

On the contrary, automated tools such as Pochoir, Pluto or Lift lie in the

second categories. For instance, as shown in Listing 3.5, Pochoir proposes

a language and a compiler well suited to stencil operation expression. As it

restricts its support to this domain, the compiler comes with complex and

efficient optimization techniques.

In summary, what is common to all of these existing works is that they lie

on a spectrum from very general approaches, where the optimization process

is manual to more and more domains specific ones where the optimization

process can be automated. On the one hand, the more general-purpose ap-

proaches support a large range of optimizations and application domains,

but incur high implementation costs and low separation of concerns and

portability. On the other hand, the more automated approaches reduce

implementation costs and offer good separation of concerns and portabil-

ity but restrain the range of supported domains and optimizations. This

continuum is illustrated by Figure 3.1.

General
but

Manual

Automatic
but

Specialized

General-
purpose

languages
(Fortran,
C/C++)

APIs &
language
extensions
(OpenMP,
Kokkos,

Armadillo)

Optimization
oriented DSLs
(DFL, Lift)

Algorithmic
oriented DSLs

(Pochoir,
PATUS)

Figure 3.1 – Classification of the state-of-the-art approaches on a ”General
& Manual”/”Automatic & Specialized” axis.

This analysis and presentation have highlighted two major remarks.

Firstly, no automatic, general and efficient approach have been proposed

by the HPC community to specify simulation codes: all of them are ei-

ther general but manual or automatized but specialized. An automatized

64

CHAPTER 3. BACKGROUND AND RELATED WORK

and general method would very likely be not efficient, and therefore, not

considered for simulation. Secondly, there is a strong connection between

the generality of an approach and the need for users to express various

concerns manually. As our objective is to provide a programming model

general enough to express a wide variety of numerical simulation programs,

heading towards manual approaches seems like an efficient method. This

ensures both performance and generality.

However, for now, we have compared existing works following a single

axis: “Manual & General” / “Automatic & Specialized”. However, as var-

ied these are, different perspectives can be considered. For instance, note

that we did not discuss Aspect-Oriented approaches, with Lara or LoopsAJ.

These approaches are very close to general-purpose languages: completely

manual but general approaches. However, they offer a separation between

domain science and optimization concerns. Typically, AOP approaches are

often liked because they improve productivity, readability and maintainabil-

ity of codes. Therefore, as these qualities are interesting, another appealing

aspect to analyze would be how well the concerns, between domain science

and computer optimizations, are separated by the tools interface while of-

fering good performance. Starting with existing AOP works in the HPC

domain, as mentioned earlier, they offer a good separation, at first sight,

but the pointcuts and actions they propose tend to limit the possibility of

optimization, typically the modification of the memory layout. As a result,

some of these non-supported optimizations may fall in the algorithm part,

limiting the separation of concerns. Nevertheless, in general, all approaches

offer a good level of efficiency, but the more specific an approach is, the

more it offers a separation of concerns for this specific domain, and vice

versa. For instance, OpenMP is applicable to many domains but only takes

care of instruction parallelism. Hence, other optimization concerns such as

data distribution or memory layouts are left to the users and mixed with

domain science. Still, used with care, OpenMP does not impede perfor-

mance in comparison to general-purpose approaches. At the other end of

the spectrum, Pochoir focuses on stencil computations and provides a lan-

guage dedicated to this concern while all optimization aspects are handled

by a compiler. Although it considers only a restricted domain, this strategy

65

3.4. DISCUSSIONS

offers a good separation of concerns at the same time as ensuring that the

generated code is efficient.

In terms of separation of concerns, three approaches we have previously

presented stand out in their way to take into account the optimization part:

XFor, PATUS or Halide. In each tool, firstly, one describes the invariant

parts of the code, that is to say, the algorithm. While XFor considers state-

ments partial ordering, PATUS and Halide focus on stencil expressions.

Secondly, the approach does not rely upon an efficient compiler. Instead, it

offers its users to describe the optimization part, that is, the architecture-

specific parts of the code. XFor proposes various automatic affine transfor-

mation of loops, whereas PATUS provides a language designed for stencil

optimization, based on predefined but configurable strategies. As for Halide,

one can specify scheduling strategies that will guide a compiler during the

optimization process. XFor limits its expression to loops, whereas PATUS

and Halide are designed to handle stencil programs. Although this kind of

approach effectively separates the simulation programs preoccupations, it

does so for a limited scope, making its applicability for complete real-world

application unlikely.

This second axis of analysis has stressed two meaningful facts. Firstly,

DSLs offer a good separation of algorithmic and optimization concerns

thanks to languages dedicated to the former and compilers managing the

latter. Secondly, despite AOP approaches depend upon general-purpose

languages, that offer no separation, they provide this separation by spiting

physically the concerns while providing users with constructs enabling in-

teractions between each part, in the form of pointcuts and actions. As our

objective is to provide a programming model both efficient and general, it

cannot rely on the DSLs strategy; however, mixing it with the AOP one

appears to be an adequate scheme. To put it another way, this consists

in proposing two languages, either adapted to algorithmic or optimization

concerns, as it is done in DSLs strategy for the algorithmic parts, and

providing the language towards optimization concerns with instructions to

interact with the other language, as it is done AOP approaches. This con-

struction ensures performance, generality and separation of concerns.

In summary, this presentation and discussion of the existing works pro-

66

CHAPTER 3. BACKGROUND AND RELATED WORK

posed by the HPC community to alleviate the difficulty to program sim-

ulation code have brought to light two decisive facets that will direct this

thesis. Firstly, it revealed the lack of a programming model providing both

generality and efficiency while offering a good separation of concerns. Sec-

ondly, it highlighted how to drive the construction of a programming model

fulfilling these objectives. Indeed, such approach shall satisfy these two

crucial prerequisites:

1. it shall rely on user intervention to ensure both performance and gen-

erality;

2. it shall provide two languages, each adapted to a specific concern, to

offer the separation of concerns while not impeding the performance

and generality.

In the next chapter, we will present the InKS programming model which

adheres to these requirements and achieves these objectives; that is, being

general enough to express a wide variety of program while offering an op-

timization language enabling users to obtain the best possible performance

in most situations.

3.5 The Polyhedral model

In this thesis work, we intensively use the Polyhedral model framework

to analyze and transform code. Thus, as it is at the core of our works, we

now present this model.

The Polyhedral model [Feautrier and Lengauer, 2011] (earlier known as

the polytope model [Lengauer, 1993, Feautrier, 1996]) is a mathematical

abstraction to analyze programs composed of nested loops. It is named

after its foundation: the model relies on polyhedra in arbitrary (but finite)

multidimensional spaces. This section provides a basic overview of the

Polyhedral model and its objects.

67

3.5. THE POLYHEDRAL MODEL

3.5.1 Static Control Parts

In [Feautrier, 1991], Feautrier proposes the Polyhedral model to repre-

sent a class of programs made up of nested and successive for loops and if

conditionals only. In these programs, memory is accessed through arrays

that never alias each other. With such assumptions, the model fits in the

Presburger arithmetic [Stansifer, 1984], the first-order theory of the integer

numbers. The Presburger arithmetic contains only equality, inequality and

addition while omitting the multiplication operation. It has the major ad-

vantage of being a decidable theory. Therefore, one can perform most of

the operations (e.g. analysis, transformations) using algorithms, even on a

symbolic (i.e. with parameters) representation.

In the Polyhedral model, a program is represented as a computation

graph. The nodes of the graph, each of which represents an iteration of a

statement, are associated with a set of integer points. These points belong

to polyhedra which are defined through a conjunction of inequalities. In

turn, these polyhedra can be analyzed and transformed with the help of lin-

ear programming tools. This model is designed to analyze affine programs;

programs where all loop bounds and array references are affine functions

of the enclosing loop iterators and loop-invariant parameters. A parame-

ter is a symbolic loop invariant; usually, the set of parameters bounds the

problem size.

To summarize, a program fits in the Polyhedral model in the following

situations.

• The controls are static: predicates, loop bounds, loop increments and

array subscripts shall only depend on literal constants or a finite num-

ber of variables that are either constant known at runtime or iterators

of enclosing loops.

• The controls are affines: predicates, loop bounds and array subscripts

shall be multi-dimensional affine functions of the variables while loop

increments must be literal constants.

Therefore, breaking the control flow with instructions such as break, goto

or return is illegal in such program. It is common in the literature to

68

CHAPTER 3. BACKGROUND AND RELATED WORK

name this class of program a Static Control Parts (SCoP). To illustrate

this concept, the C code presented in Listing 3.6 is a valid SCoP. On the

contrary, the code in Listing 3.7 is not a valid SCoP. Indeed, both the first

loop bounds and the second C array access are not affine functions.

double A[M][N], B[N][P], C[M][P];

for(int i=0; i<M; i++)

for(int j=0; j<P; j++){

C[i][j] = 0; //Statement S0

for(int k=0; k<N; k++)

C[i][j] = A[i][k] + B[k][j]; //Statement S1

}

Listing 3.6 – Example of a valid Static Control Parts.

double A[M], C[M*N];

for(int i=0; i<M*N; i++)

C[i] = 0; //Statement S0

for(int j=0; j<M-1; j++)

C[(i/M)*j] += A[j] * A[j+1]; //Statement S1

}

Listing 3.7 – Example of an invalid Static Control Parts.

3.5.2 Statement vector and iteration domain

In the Polyhedral model, a statement is represented by a vector of the

values of all its enclosing loop indexes. Thus, an occurrence of a statement,

or instance, at loop depth n is represented by a statement vector of size n.

In addition, the statement domain is a compact way to represent all the

instances of a given statement. It represents the set of all possible values

of the statement vector.

for(int i=1; i<M; i++)

69

3.5. THE POLYHEDRAL MODEL

for(int j=1; j<N; j++)

S(i, j);

Listing 3.8 – Affine Static Control Parts example - 1.

for(int i=1; i<M; i++)

#pragma omp parallel for

for(int j=1; j<N; j++)

S(i, j);

Listing 3.9 – Affine Static Control Parts example - 2.

For the sake of explanation, let’s consider the C code presented in List-

ing 3.8. It is composed of a two-dimensional loop nest containing a single

statement, S, which depends on the values of i and j. Enumerating all the

S instances is not possible because of the N and M parameters, but if we

tried, it would look like the following set:

(1,1) (1, 2) . . . (1, N)
(2,1) (2, 2) . . . (2, N)
.

(M,1) (M, 2) . . . (M, N)

With conciseness, the Polyhedral model proposes to represent instances

of S by a two-dimensional vector and its domain, DS, by the set of values

this vector can take. Mathematically, this is expressible as is:

DS(M,N) = {(i, j) ∈ Z2 | (1 ≤ i < M) ∧ (1 ≤ j < N)} (3.1)

i− 1 ≥ 0

j − 1 ≥ 0

−i+M ≥ 0

−j +N ≥ 0

⇒ DS(M,N) =

(

i

j

)

∈ Z2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 −1

0 1 0 0 −1

−1 0 1 0 0

0 −1 0 1 0

i

j

M

N

1

≥ 0

(3.2)

To express an iteration domain, the bounds are extracted to form a sys-

tem of inequalities. The constraint matrix encodes a canonical form of the

70

CHAPTER 3. BACKGROUND AND RELATED WORK

affine inequalities of a Static Control Parts, as illustrated on Equation (3.2).

Each row corresponds to a single inequality. Polyhedral tools have a more

suited means to express these polyhedra. Indeed, in the Polyhedral model,

parameters as well as all points in a polyhedron always belong to the set of

integers. For instance, the isl library notes Equation (3.1) as is:

[M,N]→ {S[i, j] : 1 ≤ i < M and 1 ≤ j < N}

In the literature, this is often illustrated using a graphical representation,

as done in Figure 3.2. Every dot in the figure represents an integer point;

hence a S instance.

0

1

1

M

N j

i

1 ≤ i

i < M1 ≤ j j < N

Figure 3.2 – Graphical representation of the polyhedron described in Equa-
tion (3.1). Each red dot represent a couple of integer (i, j).

3.5.3 Scattering functions

While the iteration domain contains the set of instances of the program

statements, the scattering functions add constraints on the ordering of these

instances. These are relations that maps a statement vector to a time vector.

This last vector represents a virtual multi-dimensional space over which

instructions are executed in the lexicographic order. The lexicographic

order [Baader and Nipkow, 1998, Robbiano, 1985] is a generalization, to

71

3.5. THE POLYHEDRAL MODEL

vectors, of the way words are ordered based on the alphabetical order of

their component letters. For instance, a vector of dimension d, vd1 , is said

lexicographically equal to a vector vd2 if their d elements are equal. On the

contrary, vd1 is said lexicographically greater if, considering n elements, such

that 0 ≤ n < d, vd1 and vd2 are lexicographically equal, while the n + 1th

element of vd1 is greater than the n+ 1th element of vd2 .

To illustrate scattering functions, let’s consider the Listing 3.8 again.

It presents a program calling a single statement, S. We defined the iter-

ation domain of S as Equation (3.1). Loops are arranged such that each

instance is called following the i then j values. In the Polyhedral model,

such ordering can be defined by the following scattering function:

θS = {(i, j)→ (i, j)} (3.3)

Hence, the S(4, 4) instance is performed at the (4, 4) logical time; and

therefore is executed before S(4, 5) which is performed at the (4, 5) logical

time. Scattering functions can also describe parallel executions. Consid-

ering the C code presented in Listing 3.9 which differs from the previous

listing by a parallel execution of the most inner loop. Since, for a fixed value

of i, all S instances can be executed in parallel, the scattering function does

not need to consider the j value. This can be expressed by the following

scattering function:

θS = {(i, j)→ (i, 0)} (3.4)

For a fixed value of i, all time vectors are lexicographically equal; and

therefore, can be executed in parallel. Such scattering function defines a

partial order, in comparison to a total order, in which all time vectors

are lexicographically different. The scattering functions presented in Equa-

tions (3.3) and (3.4) can be respectively noted in the Polyhedral model, in

isl form, as is:

[M,N]→ {S[i, j]→ [i, j]}

[M,N]→ {S[i, j]→ [i, 0]}
(3.5)

72

CHAPTER 3. BACKGROUND AND RELATED WORK

Mathematically, the Polyhedral model defines that an instance u is exe-

cuted before another instance v, that is, the time vector of u is lexicograph-

ically lesser than the time vector v, using the order comparator, ≺, noted:

u ≺ v.

3.5.4 Access functions

An Access function maps a statement vector to an array locations ac-

cessed, as read or write, by the statement. Note that a statement may access

multiple cells in several arrays, and therefore; maybe be accompanied by

multiple access functions. Considering the Listing 3.6, the statement named

Statement S1 reads in the A and B arrays while writes in the C array. We

can note its set of access functions as is:

AccessARS1
= {(i, j, k)→ (i, k)}

AccessAWS1
= {(i, j, k)→ ∅}

AccessBRS1
= {(i, j, k)→ (k, j)}

AccessBWS1
= {(i, j, k)→ ∅}

AccessCRS1
= {(i, j, k)→ ∅}

AccessCWS1
= {(i, j, k)→ (i, j)}

(3.6)

We can note RS1 and WS1, the set of array locations respectively read

from and written to by the statement S1. The set of access functions

presented in Equation (3.6) is expressed in the Polyhedral model, and more

specifically by the isl library, as is:

R := [M,N]→{S1[i, j, k]→ A[i, k];S1[i, j, k]→ B[k, j]}

W := [M,N]→{S1[i, j, k]→ C[i, j]}
(3.7)

Two instances u and v are in dependence, noted δ, if there is an inter-

section between the set of locations read and written by u and the same

sets of v. Excluding the read dependence, which does not modify the state

of the memory, this is noted:

u δ v ⇔ (Ru ∩Wv) ∪ (Wu ∩Rv) ∪ (Wu ∩Wv) 6= ∅ (3.8)

73

3.5. THE POLYHEDRAL MODEL

3.5.5 Implementation of the Polyhedral model

There are several libraries available that can be used to manipulate

a polyhedral model representation of a program, including the Omega li-

brary [Kelly et al., 1995], PolyLib [Loechner et al., 1999], PPL [Bagnara

et al., 2008] and isl [Verdoolaege, 2010]. Script languages also exist and

some, such as the iscc calculator based on isl , are available online [Ver-

doolaege, 2014].

This thesis work relies on the isl library. isl is a C library offering data

structures representing parameterized sets and relations of integer points

bounded by linear constraints. It also comes with a wide range of functions

to manipulate these structures, including intersection, union, set difference,

projection, transitive closure, Cartesian product or lexicographic optimiza-

tion. It also offers more complex functionalities such as dependence analy-

sis or statements scheduling in accordance with dependence. isl is still an

active project, developed by Inria researchers and used by well-known com-

piler environments, such as GCC or LLVM. It is part of the Polyhedral.info

organization and is available online at Integer Set Library website.

iscc is a script language offering to access easily the isl features. The

language is presented in [Verdoolaege, 2007] and is adapted to the expression

of sets and supports most isl features. Some parts of this thesis proposes

an iscc description of programs.

74

Chapter 4

The Independent Kernel

Scheduling programming model

Contents
4.1 Classification of concerns 77

4.2 The InKS programming model 83

4.3 InKSPIA: expressing the algorithmic concern in the
InKS programming model 87

4.3.1 The InKSPIA concepts 89

4.3.2 Illustrative example 93

4.3.3 InKSPIA completeness analysis 95

4.3.4 Illustrative example analysis 99

4.4 Conclusion and discussions 101

As explained in Section 3.4, most existing approaches tend to lie on a

spectrum from general but manual approaches to more and more domain

specific and automatic approaches. While the first approaches support a

large range of optimizations and application domains, they are implemen-

tation costly, do not support separation of concerns and make portability

difficult. On the contrary, automated approaches reduce implementation

costs and offer good separation of concerns and portability but restrain

the range of supported domains and optimizations. Our analysis has high-

lighted that there are no existing approach that provides generality, perfor-

76

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

mance and separation of concerns while proposing two guidelines to design

it: relying on user contributions, instead of a compiler, and proposing two

concern-specific languages.

Thereby, to reuse and combine the advantage of existing approaches, we

propose the Independent Kernel Scheduling (InKS) programming model.

It separates algorithmic and optimization concerns in numeric simulation

codes with the aim of improving both developers productivity and codes

readability, as well as easing application portability. It comes with the

InKSPIA language to express the simulation algorithm, with no concerns for

the performance, and the InKSPSO language to describe the optimization

part, based on the algorithm description.

This chapter presents the core of this thesis work: the InKS program-

ming model. In Section 4.1, we start by classifying algorithmic and opti-

mization concerns in a numeric simulation code using a basic stencil code

as an example. Using this preliminary analysis as a keystone, in Section 4.2

we propose the InKS programming model. In Section 4.3, we present the

InKSPIA language which intends to express all algorithmic aspects while

leaving optimization choices unspecified. Finally, in Section 4.4, we con-

clude the chapter and discuss the choices we made for the implementation

of the InKS programming model.

4.1 Classification of concerns

In this section, we categorize the various aspects interleaved in simula-

tion codes as either algorithmic or optimization concerns. This classification

is at the root of the motivation behind the InKS programming model. We

define the simulation algorithm as the parts of code that will never change

no matter the architecture executing the code; in other words, the plat-

form independent code. That corresponds to domain related code, namely

mathematical solving derived from a fixed numerical scheme. The algo-

rithm aims to describe the simulation and is developed mostly by domain

scientists. On the contrary, we define as optimization choices any instruc-

tion that is not essential to the application validity, i.e. the resulting values

for a given input, but responsible for its good performance; in other words,

77

4.1. CLASSIFICATION OF CONCERNS

the platform specific optimizations. Optimization choices, generally written

by optimization specialists, must respect the simulation algorithm. That is,

any valid optimization choices combined with its algorithm shall give the

exact same values as result for a given set of inputs.

We categorize these concerns by analyzing multiple C implementations

of a 7-points finite difference method 3D heat equation solver, based on the

implementation of S. Kamil [Kamil, 2012]. Listing 4.1 shows the simplest of

those implementations, based on a double-buffer strategy. Another imple-

mentation, presented in Listing 4.2, provides cache blocking over two of the

three space dimensions that can be specifically tuned for the machine cache

size. A third implementation, shown in Listing 4.3 uses recursive function

calls to implement a cache oblivious method with implicit blocking in four

dimensions (3 in space, plus time).

In these three examples, linearized arrays (Lines 7 and 8 of Listing 4.1)

store the temperature values. The i3D macro (Line 1) maps from the 3D

space coordinate of the mesh to the linear memory space. The time coor-

dinate accessible in the arrays evolves during the simulation but slightly

differently depending on the code version. In the version presented in

Listing 4.1, T1 contains the values for the current time-step while T2 con-

tains values remaining from the previous time-step mixed with values being

computed for the next time-step. This is also true for the cache blocking

version. However, in the cache oblivious version (Listing 4.3), the time-

blocking aspect requires a different memory storage. The T1 and T2 arrays

are stored inside an array of arrays that makes it possible to access one

array or another using a modulo operation. One array contains values from

odd time-steps only while the other contains values from even time-steps

only. Many distinct time-steps are, however, stored inside each array at

any given time depending on the space coordinate. Figure 4.1 illustrates

the cache oblivious strategy on a 2D example. Note that the set of values

computed along the simulation, in the 3D space + 1D time coordinate sys-

tem, is the same for all versions of the code; that is, every coordinate in

the convex 4D hyper-rectangle bounded by 0 and the nx, ny, nz and nt

parameters. Being independent to the implementation version, we classify

this set of values as part of the algorithmic concern in a simulation code.

78

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

1 int gnx, gny;
2 #define i3D(i, j, k, t) ((i)+(gnx)*((j)+(gny)*(k)))
3

4 void heat_equation(double** Res, int nx, int ny, int nz, int nt){
5 gnx = nx; gny=ny;
6 const size_t size = nx * ny * nz;
7 double* T1 = malloc(sizeof(double) * size);
8 double* T2 = malloc(sizeof(double) * size);
9

10 for (int k = 0; k < nz; k++)
11 for (int j = 0; j < ny; j++)
12 for (int i = 0; i < nx; i++){
13 T1[i3D(i, j, k)] =
14 i*(nx-i-1)/nx +
15 j*(ny-j-1)/ny +
16 k*(nz-k-1)/nz;
17 T2[i3D(i, j, k)] = T1[i3D(i, j, k)];
18 }
19

20 for (int t = 1; t < nt; t++){
21 for (int k = 1; k < nz - 1; k++){
22 for (int j = 1; j < ny - 1; j++)
23 for (int i = 1; i < nx - 1; i++)
24 T1[i3D(i, j, k)] =
25 T2[i3D(i, j, k + 1)] + T2[i3D(i, j, k - 1)] +
26 T2[i3D(i, j + 1, k)] + T2[i3D(i, j - 1, k)] +
27 T2[i3D(i + 1, j, k)] + T2[i3D(i - 1, j, k)] -
28 6 * T2[i3D(i, j, k)];
29 }
30 swap(T1, T2);
31 }
32

33 free(T1);
34 *Res = T2;
35 }

Listing 4.1 – C implementation of the 3D finite difference heat equation
solver using a double-buffer strategy.

On the contrary, the memory layout to store and read these values differs

from an implementation to another. Still, the chosen memory layout shall

respect the simulation algorithm; and therefore, being able to store the set

of considered values. Hence, we catalog the memory layout as part of the

optimization choices.

All studied implementations of the heat equation solver use loops. The

body of these loops is made of computations that operate on the arrays

content (Lines 24 to 28 of Listing 4.1) and is very similar from one version

of the code to the other apart from indexing issues previously discussed. On

the other hand, the control part of the loops that gives values to indexes

and schedules computations inside the loops differs from one implementa-

79

4.1. CLASSIFICATION OF CONCERNS

1 int gnx, gny;
2 #define i3D(i, j, k, t) ((i)+(gnx)*((j)+(gny)*(k)))
3

4 void heat_equation(double** Res,
5 int nx, int ny, int nz, int nt, int TI, int TJ){
6 gnx = nx; gny = ny;
7 /*... Initialization ...*/
8

9 for (int t = 1; t < nt; t++){
10 for (jj = 1; jj < ny-1; jj += TJ) {
11 for (ii = 1; ii < nx-1; ii += TI)
12 for (k = 1; k < nz-1; k++)
13 for (j = jj; j < MIN(jj+TJ, ny-1); j++)
14 for (i = ii; i < MIN(ii+TI, nx-1); i++)
15 //Computation
16 }
17 swap(T1, T2);
18 }
19

20 free(T1);
21 *Res = T2;
22 }

Listing 4.2 – C implementation of the 3D finite difference heat equation
solver using a 2D cache blocking strategy.

tion to the other. In the example from Listing 4.1 the loops iterate in a

pretty straightforward order whereas those from Listing 4.2 used for cache

blocking are more complex. In the cache oblivious examples, the loops are

different again and the iterations depend on parameters of the recursive

function calls. Although, these schedules differ both in terms of expression

and performance, they all respect ordering constraints, namely that any

value has to be written to memory before it is first read and that its stor-

age space in memory must not be reused for another value before it is last

read. Moreover, note that all schedules traverse the same set of coordinates;

that is, the bounded 4D polyhedra described earlier. Therefore, the content

of the loops, the set of traversed coordinates as well as these ordering con-

straints thus constitute parts of the simulation algorithm, while the choice

of a specific schedule that respects the constraints is an optimization choice.

All the examples end with the values from the target time-step in the T2

array. Among all the computed values, we can consider this subset as the

result of the program. In addition, note that the values at the initial time-

step, instead of being generated inside this part of the code, could come

from the caller function. Hence, similarly to the result of the program, a

80

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

1 int gnx, gny;
2 #define i3D(i, j, k) ((i)+(gnx)*((j)+(gny)*(k)))
3

4 void F(double* A[], int t0, int t1, int x0, int dx0, int x1, int dx1,
5 int y0, int dy0, int y1, int dy1, int z0, int dz0, int z1, int dz1) {
6

7 int dt = t1-t0;
8 if (dt == 1 || (x1-x0)*(y1-y0)*(z1-z0) < 4096) {
9 for (int t=t0;t<t1;t++)

10 for (int z=z0+(t-t0)*dz0;z<z1+(t-t0)*dz1;z++)
11 for (int y=y0+(t-t0)*dy0;y<y1+(t-t0)*dy1;y++)
12 for (int x=x0+(t-t0)*dx0;x<x1+(t-t0)*dx1;x++)
13 A[(t+1)%2][i3D(x,y,z)] = A[t%2][i3D(x+1,y,z)]
14 + A[t%2][i3D(x-1,y,z)] + A[t%2][i3D(x,y+1,z)]
15 + A[t%2][i3D(x,y-1,z)] + A[t%2][i3D(x,y,z+1)]
16 + A[t%2][i3D(x,y,z-1)] - 6*A[t%2][i3D(x,y,z)];
17 }else if (dt > 1) {
18 if (2* (z1-z0) + (dz1-dz0) * dt >= 4 * ds * dt){
19 int zm = (2* (z0+z1) + (2*ds+dz0+dz1) * dt) / 4;
20 //Recursive calls
21 F(A,t0,t1,x0,dx0,x1,dx1,y0,dy0,y1,dy1,z0,dz0,zm,-ds);
22 F(A,t0,t1,x0,dx0,x1,dx1,y0,dy0,y1,dy1,zm,-ds,z1,dz1);
23 }else if (2*(y1-y0) + (dy1-dy0)*dt >= 4*ds*dt){
24 int ym = (2* (y0+y1) + (2*ds+dy0+dy1) * dt) / 4;
25 //Recursive calls
26 F(A,t0,t1,x0,dx0,x1,dx1,y0,dy0,ym,-ds,z0,dz0,z1,dz1);
27 F(A,t0,t1,x0,dx0,x1,dx1,ym,-ds,y1,dy1,z0,dz0,z1,dz1);
28 } else {
29 int s = dt/2;
30 //Recursive calls
31 F(A,t0,t0+s,x0,dx0,x1,dx1,y0,dy0,y1,dy1,z0,dz0,z1,dz1);
32 F(A,t0+s,t1,x0+dx0*s,dx0,x1+dx1*s,dx1,y0+dy0*s,dy0,
33 y1+dy1*s,dy1,z0+dz0*s,dz0,z1+dz1*s,dz1);
34 }
35 }
36

37 }
38

39 void heat_equation(double** R, int nx, int ny, int nz, int nt){
40 gnx = nx; gny = ny;
41 double* T1 = malloc(sizeof(double) * nx * ny * nz);
42 double* T2 = malloc(sizeof(double) * nx * ny * nz);
43 /*... Initialization ...*/
44 double* A[2] = {T1, T2};
45 F(A, 1, nt, 1, 0, nx-1, 0, 1, 0, ny-1, 0, 1, 0, nz-1, 0);
46 *R = A[nt%2];
47 }

Listing 4.3 – C implementation of the 3D finite difference heat equation
solver using a cache oblivious strategy.

subset of the existing values can be used as the input of the program. This

subset is invariant no matter the implementation version; despite this set

being empty in our example. These two sets also constitute a part of the

application algorithm.

81

4.1. CLASSIFICATION OF CONCERNS

Space

T
im

e

(a) Element status at t1

Space
T
im

e

Stored and computed elements
Previously computed elements

Remaining elements

(b) Element status at t2

Figure 4.1 – Graphical representation of the cache oblivious strategy applied
on a 2D array. Two consecutive instants, t1 and t2, are represented. At
each instant of the simulation, values of several time-steps are stored inside
the array (blue area).

To summarize, we have identified five concerns that form the simulation

algorithm of the 3D heat equation solver, and more generally algorithm

of numerical simulation codes. That is, the values that exist during the

execution, the computations done inside the loops, the set of coordinates

to traverse, the constraints on computation order and the subsets of values

used as input or expected as result. We have also identified two types of

optimization choices: the mapping in memory of the existing values and

the specific scheduling of computations. All these concerns are cataloged

in Table 4.1. In other examples, more optimization choices could appear if

we consider parallel execution. For instance, distributed memory parallel

versions of the code, where choices related to the distribution of data on

nodes and communications would have to be made. Nevertheless, if the

simulation algorithm contains enough information to derive a sequential

version of the code, a parallel version will not require more information.

82

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

Algorithm Optimization

Data concerns
Values existence

Memory layout
Simulation input & output

Computation concerns

Computation expression

Computation orderingConstraint on order

Traversed coordinates

Table 4.1 – Classification of simulation program concerns as related to either
algorithmic or optimization.

4.2 The InKS programming model

In the previous section, we have identified a specific set of concerns

that relates either to the simulation algorithm or the optimization choices.

We now describe the core and motivations behind the Independent Kernel

Scheduling (InKS) programming model. As a reminder, we have defined

the simulation algorithm as a code related to the simulated domain, that is

mathematical solving based on a fixed numerical scheme. On the contrary,

optimization choices refer to all instructions responsible for the application

good performance.

All in all, the examples presented in the previous section and written

in C interleave algorithmic and optimization concerns. A complete new

code is written to assay each distinct optimization. On the contrary, one

would like a programming model that clearly separates these two aspects.

This separation comes with, on one side, the simulation algorithm as the

invariant part of the code, and on the other side, a set of optimization

choices derived from this algorithm. In the middle, a compiler takes care

of merging the algorithm with optimization choices.

Just as existing works, our main objective is to ease the development

of numeric simulation codes, in comparison to the complexity of general-

purpose languages such as C or Fortran. However, we differ from existing

works in the way followed to achieve this goal. We propose to limit the

cost of tuning an application not by encoding reusable sets of optimization

strategies or by counting on an effect compiler or runtime; but by relying

on an invariant part of the code: the simulation algorithm. Setting the

simulation algorithm exhibits several advantages compared to traditional

83

4.2. THE INKS PROGRAMMING MODEL

approaches.

Firstly, it eases the collaboration between specialists of the simulated

domain and specialists of computer optimizations. Each can focus on the

parts of code that depend upon its knowledge without being forced to ap-

prehend concepts outside of his domain of competence.

Secondly, similarly to DSL approaches such as algorithmic skeletons

or stencil-specific DSL, an algorithm dedicated language offers users an

abstraction to convey their actual objectives to the underlying compiler.

Hence, a compiler can use these pieces of information to automatically

optimize parts of the code, for example by getting facts related to data

alignment or vectorization capabilities that can be transferred into the gen-

erated code. Contrariwise, general-purpose approaches ordinarily fail in

understanding their users actual goals, forcing optimization specialists to

manually specify such optimizations.

Finally, and more importantly, it limits the parts of code that must be

rewritten to implement new optimization strategies. This is especially in-

teresting with upcoming architectures, on which optimization tools may not

be efficient. Indeed, the bleeding edge of supercomputers architectures may

be equipped with computing units and hierarchical memories for which the

best optimization strategies are currently unknown. Narrowing the part

of code to rewrite diminishes implementation costs; and therefore, makes

possible a more extensive exploration of the best optimization strategy for

each architecture, especially the upcoming ones. In addition, it eases the

maintaining of multiple versions of code, since they are all based on a single

algorithm. Indeed, while some algorithm modifications (e.g. constraints on

order) may require adaptations of the optimization choices, others, such as

the actual computations, are transparent. For instance, let’s consider an

algorithm and three versions of its optimization choices. Using a general-

approach, one may have three independent codes, each repeating the al-

gorithm part. Hence, fixing the forgetting of a minus sign in one of the

version, does not prevent the need to repeat the bug fix in the two other

versions. On the contrary, with InKS, as this operation fix is part of the

algorithm, it would be automatically affect all versions of the code.

Even if we believe this separation of concerns is an important goal of such

84

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

programming model, this shall, however, not come at the cost of benefits

offered by existing works. Therefore, such programming model shall not

increase the complexity of specifying the simulation algorithm. Similarly, it

shall also be possible to specify any optimization while the specification of

these choices shall not be much more complex than it currently is in existing

approaches. It shall be possible to express a wide range of different problems

in this language so as to cover as many simulation domains as possible

and to include this inside another program written in existing languages,

such as C or Fortran for example, to make the progressive adoption of the

programming model possible. Finally, since the whole simulation algorithm

is available, a compiler should enable users to test the algorithm without

having to specify complex optimization choices. In summary, our approach

shall accomplish all the following objectives:

1. Separates algorithmic and optimization concerns;

2. Provides generality;

3. Being as efficient as existing approaches;

4. Being not more complex than existing approaches;

5. Supports algorithm testing.

This section presents the InKS programming model which aims to fulfill

such objectives.

The InKS programming model, illustrated in Figure 4.2, proposes two

distinct languages to separate the expression of the algorithm and optimiza-

tion choices. Relying on two languages enables us to separate the concerns

both syntactically, in distinct set of files, and semantically, with distinct

notions and concepts adapted to the aspects the users need to express. The

first one is the InKS platform-independent algorithm (InKSPIA) language

to enable the full expression of the simulation algorithm independently of

any concern for optimization choices. That includes the aspects identified

in the previous section:

• the set of values computed along the program execution;

85

4.2. THE INKS PROGRAMMING MODEL

• the subset of values used as input and output of the program;

• the set of computations that composes the program;

• the set of coordinates at which each computation is applied, and

• the constraints on the ordering of the computation.

This description is primarily produced by domain scientists.

C++ C++

I KS compiler

Algorithm

Operations le

Generic binary

choices
Generic opt.

Domain Scientist

C++ compilerC+

Specialized opt.
choices

Optimization choices

Optimization Specialist

Optimized binaries

I KS compiler

C++ compilerC+C+

I KS

C++

I KS

Figure 4.2 – The InKS programming model

The InKS programming model also provides the InKS platform-specific

optimization (InKSPSO) language. InKSPSO depends upon an InKSPIA al-

gorithm to express the optimization choices part of that algorithm. This

concern relates in particular to memory layouts as well as computation

scheduling, as identified in Section 4.1. Thereby, this includes the comput-

ing unit selected for each computation, the total, or parallel, ordering of

these computations, the memory location for each value, etc. All other

86

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

pieces of information are gathered from the InKSPIA algorithmic code.

Optimization choices, generally written by optimization specialists, must

respect the simulation algorithm. In particular, the chosen computation

scheduling must respect the data dependence expressed in the InKSPIA

code while the memory layouts must enable computations to access the

data they specified. Thereby, any valid optimization choices combined with

its algorithm shall give the exact same values as results, for a given input.

Yet, these results may slightly vary because of rounding errors for floating

point operations; although this can be generally addressed with compila-

tion options. Note that domain scientists and optimization specialists need

not necessarily be different persons. Even in this case, the separation of

concerns minimizes the code rewriting for each new optimization.

A InKS program consists of the combination of a simulation algorithm,

written in InKSPIA, and one of its varied optimization versions, based on

InKSPSO. In between, the InKS programming model comes with a com-

piler that takes care of merging both aspects. Such program supports the C

calling convention, and therefore, can be called from a C, C++ or Fortran

program for instance.

4.3 InKSPIA: expressing the algorithmic

concern in the InKS programming

model

In this section, we present the InKSPIA language of the InKS program-

ming model. InKSPIA intends to describe algorithmic concerns with no

regards for their latter optimization. In Chapter 3, we have presented sev-

eral approaches among which three focused, at least partially, on achieving

such goal: XFor [Fassi and Clauss, 2015], PATUS [Christen et al., 2011]

and LARA [Cardoso et al., 2012]. While XFor considers loop statements

partial ordering, PATUS focuses on stencil expressions. In both approaches,

optimization choices are derived from this algorithm description in a sec-

ond step. Although these approaches share similarities with the objective

of the InKSPIA language, they focus on too specific concerns, namely loop

87

4.3. INKSPIA: EXPRESSING THE ALGORITHMIC CONCERN IN THE
INKS PROGRAMMING MODEL

ordering and stencil optimization. However, it is interesting to notice that

PATUS proposes a Domain Specific Language to express the stencil descrip-

tion. Similarly, XFor relies on a DSL to express the invariant part of the

program. On the contrary, LARA is a general-purpose proposition based

on the Aspect-Oriented Programming. Thereby, in a first step, C is used to

describe domain science while in a second step, optimization specialists can

express code transformation using the LARA language. AOP approaches

achieve the two main goals of the InKS programming model, namely gen-

erality and separation of concerns, however, it comes at performance cost.

Indeed, it offers only a limited set of transformations, preventing a wide

range of optimizations.

At first glance, all approaches follow the same strategy, proposing a lan-

guage to express the specific algorithmic concerns they handle. However,

XFor actually relies on a DSL that targets the Polyhedral model. The

Polyhedral model offers to describe a program as a collection of statements

gathered in polyhedra and a set of relations describing which statement

shall be executed before which other one. Affine transformations can then

be applied to this representation at compile-time to modify the program

while preserving its correctness, i.e. results do not differ for a given input.

For instance, such transformations can expose parallelism possibilities or

improve data locality. The Polyhedral model is presented with more details

in Section 3.5. As a matter of fact, XFor uses this model and adheres to

its concepts, proposing predefined transformations which, once combined

with the algorithm description originally provided, produces efficient loop

statement scheduling. With this strategy, XFor separates the loop descrip-

tion from its optimization. Although InKSPIA aims for generality, in order

to express complete simulation code, we propose to follow the same strat-

egy. That is, we provide InKSPIA as a DSL that targets the Polyhedral

model and which is adapted to express a complete simulation algorithm.

In a second step, we can propose transformation of the program while pre-

serving its correctness. This approach presents three major advantages.

First, it enables the InKSPIA language to express a wide variety of pro-

grams; that is, the one supported by the Polyhedral model: Static Control

Parts (c.f. Section 3.5.1). Secondly, InKSPIA code representation is com-

88

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

patible with transformations expressible in the Polyhedral model. This

includes various tools based on this model developed by the scientific com-

munity (e.g. Pluto [Bondhugula et al., 2008], PPCG [Verdoolaege et al.,

2013] or CHiLL [Basu et al., 2017]), but also potential implementations of

the InKS optimization language, InKSPSO. Finally, the Polyhedral model

enables static analysis and helps us to insure the code against potential

implementation errors.

Thereby, the InKS programming model reuses and combines advantages

of the existing works:

• the possibilities of fine and manual optimizations offered by both

general imperative languages and dedicated tools which is found in

InKSPSO;

• the ease of optimization offered by dedicated tools through an

InKSPSO interface and;

• the separation of concerns and performance portability offered by

DSLs thanks to the double InKS languages;

• all this while offering a substantial level of generality through the

Polyhedral model.

4.3.1 The InKSPIA concepts

InKSPIA is a purely declarative language which aims to describe a simu-

lation algorithm while not limiting the set of potential optimization choices.

The type of choices left unspecified in InKSPIA include for example the or-

der of execution of operations (provided data dependencies are met), the

memory layout or the memory reuse along execution. A InKSPIA code is

composed of three parts. The first one is a set of logical arrays in which

each cell can be written at most once. The second part consists of very

fine grain operations containing some mathematical operations, without

any loops. These operations read from and write to cells in logical arrays.

These reading and writing constitute data dependencies. The last part de-

clares for each operation a set of coordinates for which the operation can be

89

4.3. INKSPIA: EXPRESSING THE ALGORITHMIC CONCERN IN THE
INKS PROGRAMMING MODEL

executed. Ultimately, an InKSPIA code specifies a directed graph of opera-

tions working at very fine grain on logical arrays. Each operation depends

on or is necessary to the execution of other operations. This corresponds to

a parameterized task graph (PTG) [Cosnard and Loi, 1995, Cosnard and

Jeannot, 1999]: a directed acyclic graph of tasks (here operations) in a com-

pact representation, independent of problem size. To summarize, InKSPIA

expresses two aspects of the algorithm: the existence of values, using logical

arrays, and computations and their partial ordering, using operations and

their data dependencies and domain.

InKSPIA is used to express the aspects related to the simulation algo-

rithm, identified in Section 4.1:

• the set of values computed along the program execution;

• the subset of values used as input and output of the program;

• the set of computations that composes the program;

• the set of coordinates at which each computation is applied, and

• the constraints on the ordering of the computation.

The first objective of the language is to express the set of values com-

puted along the simulation without hard-coding a memory layout. To

achieve such goal, InKSPIA separates physical and logical memory spaces

by providing infinite multidimensional logical arrays based on dynamic sin-

gle assignment (DSA) [Vanbroekhoven, 2002] to store values. DSA form

qualifies a program that does not perform any destructive update of scalars

and array elements; that is, each element is written at most once. A logical

array can be seen as a pure function: a given input always gives the same

output. That is to say, a logical array coordinate corresponds to a unique

value. In the case of an algorithm with a time evolution for example, a di-

mension must be added to arrays to represent time as the same coordinate

cannot be reused for values of different time-steps. These logical arrays are

used to address the data manipulated by the algorithm but do not impose

memory storage. Therefore, memory placement of each coordinate is left

unspecified.

90

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

Logical arrays are defined in InKSPIA using the constructs presented

in Listing 4.4. In addition, the logical array construct specifies the subset

of values used as input and output of a computation. These subsets are

defined as polyhedra, i.e. a union of polyhedron, which InKSPIA construct

is presented in Listing 4.5. In InKSPIA, a n dimensional polyhedron is

defined by n successive constraints, the nth bounding the nth dimension

of the polyhedron. Hence, the number of constraints (cstr in Listing 4.5)

specify the number of dimensions of the polyhedron. A constraint is a range

which each boundary can either be set to an affine function of the existing

parameters or left unspecified. In the latter case, the boundary is set to its

default value, i.e. −∞ for the left boundary and +∞ for the right one.

<str:data_type> <str:array_name>(<int:dim_number>)

(

([in|out]: <polyhedra:in_out_data>)

|

(in: <polyhedra:in_data> | out: <polyhedra:out_data>)

)?

Listing 4.4 – The InKSPIA logical array construct.

val := [id | int]

expr := [val | expr+expr | expr-expr | -expr | int*expr]

min, max := expr

cstr := [: | expr | min: | :max | min:max | cstr%int]

polyhedron := (id=[val:val[)∗ (cstr∗)

polyhedra := (id=[val:val[)∗ { polyhedron+ }

Listing 4.5 – The InKSPIA polyhedra construct.

Similarly, to express computations without hard-coding a scheduling,

InKSPIA offers two main constructs: operation procedures and simulation

kernels. The operation procedure represents a fine grain computation. Each

operation procedure (illustrated in Listing 4.7) takes as parameters logical

coordinates (Line 1: x, t) and logical arrays (Line 2: my array). It specifies

91

4.3. INKSPIA: EXPRESSING THE ALGORITHMIC CONCERN IN THE
INKS PROGRAMMING MODEL

the coordinates readable and written in each array relative to the coordi-

nates taken as parameters (Line 2: (x,t-1) and (x,t)). It defines a C++

implementation which specifies a fine grain computation that can access the

logical arrays values using the parenthesis operator (Line 5). The operation

procedure construct is illustrated in Listing 4.6.

op <str:op_name>(<str:coord_name>∗)(

<logical_array:used_logical_array>+
)

#CODE (C++)

<C++ code>

#END

Listing 4.6 – The InKSPIA operation procedure construct.

1 op square(x, t) : (
2 double my_array {in: (x, t-1) | out: (x, t) }
3)
4 #CODE (C++)
5 my_array(x,t) = my_array(x, t-1) * my_array(x, t-1);
6 #END

Listing 4.7 – Example of InKSPIA operation procedure.

The simulation kernel is the entry point of the simulation (illustrated in

Listing 4.9). It takes as parameters integers unknown at compile-time, but

invariant during execution (Line 1: X, T) that typically define the dimensions

of the problem. It declares the logical arrays that exist in the simulation,

their type and number of dimensions (Line 2: double full array(2)).

Its input and outputs are specified as regions in the logical arrays that

must be provided for the algorithm to run (Line 2: (0:X,0)) and that are

made available after its execution (Line 2: (0:X,T-1)). Its implementation

in a dedicated language specifies the domains of application of operation

procedures (Line 5): coordinates where the operation can generate values in

the logical arrays. Hence, operations execution order is left unspecified. On

the contrary, constraints on the execution order are automatically deducted

by analyzing data dependencies between operations. More complex usage

of InKSPIA are presented in Section 6.2. The simulation kernel construct is

92

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

Algorithmic concerns InKSPIA construct

Values existence 7→ Simulation logical arrays

Simulation input & output 7→ Simulation subset of logical arrays

Computation expression 7→ Operation C++ code

Constraint on order 7→ Operation subset of logical arrays

Traversed coordinates 7→ Operation domain

Table 4.2 – Correspondence between algorithmic concerns and InKSPIA

construct.

presented in Listing 4.8. Table 4.2 presents the correspondence between the

algorithmic concerns identified in Section 4.1 and the InKSPIA constructs

used to express them.

simulation <str:sim_name>(<str:parameter_name>∗)(

<logical_array:existing_logical_array>+
)

#CODE (InKS)

(<str:op_name> <polyhedra:domain> :

(<str:array_name>+))∗

#END

Listing 4.8 – The InKSPIA simulation kernel construct.

1 simulation my_simulation(X, T) : (
2 double full_array(2) {in: (0:X, 0) | out: (0:X, T-1)}
3)
4 #CODE (INKS)
5 square(0:X, 1:T) : (full_array)
6 #END

Listing 4.9 – Example of InKSPIA simulation kernel.

4.3.2 Illustrative example

We now use the 3D heat equation solved using the finite difference

method to illustrate the InKSPIA syntax and concepts. Listing 4.1 presents

the C implementation whereas Listing 4.10 shows the InKSPIA implemen-

tation.

93

4.3. INKSPIA: EXPRESSING THE ALGORITHMIC CONCERN IN THE
INKS PROGRAMMING MODEL

1 operation Boundary(x, y, z, t) : (
2 double H {in: (x, y, z, t-1) | out : (x, y, z, t)})
3 #CODE (C)
4 H(x, y, z, t) = H(x, y, z, t-1);
5 #END
6

7 operation Inner(x, y, z, t) : (
8 double H {in: (x-1:x+2, y, z, t-1) ; (x, y-1:y+2, z, t-1);
9 (x, y, z-1:z+2, t-1) | out : (x, y, z, t)})

10 #CODE (C)
11 H(x, y, z, t) = H(x+1, y, z, t-1) + H(x-1, y, z, t-1)
12 + H(x, y+1, z, t-1) + H(x, y-1, z, t-1) + H(x, y, z+1, t-1)
13 + H(x, y, z-1, t-1) - 6.0 * H(x, y, z, t-1);
14 #END
15

16 operation Init(i, j, k, X, Y, Z, t) : (
17 double H {out: (i, j, k, t)}
18)
19 #CODE (C)
20 H(i, j, k, t) = i*(X-i-1)/X + j*(Y-j-1)/Y + k*(Z-k-1)/Z;
21 #END
22

23 simulation inks_heat(nx, ny, nz, nt) : (
24 double Heat(4) {out: (0:nx, 0:ny, 0:nz, nt-1) }
25)
26 #CODE (INKS)
27 Boundary it=[1:nt[{
28 iy=[0:ny[iz=[0:nz[{(0, iy, iz, it); (nx-1, iy, iz, it)};
29 ix=[0:nx[iz=[0:nz[{(ix, 0, iz, it); (ix, ny-1, iz, it)};
30 ix=[0:nx[iy=[0:ny[{(ix, iy, 0, it); (ix, iy, nz-1, it)}}
31 : (Heat),
32 Inner (1:nx-1, 1:ny-1, 1:nz-1, 1:) : (Heat),
33 Init (0:nx, 0:ny, 0:nz, nx, ny, nz, 0) : (Heat)
34 #END

Listing 4.10 – InKSPIA implementation of the 3D finite difference heat
equation solver.

Lines 1, 7 and 16 define three operations while Line 23 declares the

simulation. First, we focus on the operations, and more specifically on the

Inner one, Line 7, which expresses the 7-points stencil computation. It uses

a four dimensional logical array containing double precision floating-point

values, named H, and a tuple of four integers, x, y, z and t. Between curly

brackets, Line 8, the algorithm specifies that, for a given tuple (x, y, z, t)

as parameter, the operation uses values as input, marked in, and generates

some as output, marked out. More specifically, it reads seven values of the

H logical array: (x− 1 : x+2, y, z, t− 1); (x, y− 1 : y+2, z, t− 1); (x, y, z−

1 : z + 2, t − 1) and write a single value (x, y, z, t). Note that the colon

operator, ’:’, expresses a set of values, from its left term included to its

right term excluded. Finally, lines 10 to 14, the mathematical expression of

94

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

the computation is expressed in plain C++. In accordance with the input

and output specification, the cells of the logical array H are accessed using

parentheses and a tuple of integers.

Line 23 declares the simulation. It comes with a tuple of four integers

that parameterize the simulation: nx the number of cells in the first space

dimension, ny the number of cells in the second space dimension, nz the

number of cells in the third space dimension, and nt the number of time-

steps. It also declares the Heat 4D logical array in which a region is expected

as output of the program; that is, all values in spacial dimension at the last

time-step, nt-1. It is followed by the set of operations valid to execute to

obtain such result. For instance, Line 32 defines the valid set of parameters

of the Inner operation. The first set of parentheses defines the valid values

for each integer parameter. For instance, the first integer parameter of the

Inner operation, x, could be equal to any integer between 1 and nx-1.

This set of parenthesis specify an hyperrectangle, more specifically, a four

dimensional polyhedra. Note that it is a set of valid values; that is, they

are not necessarily executed to produce the result. Therefore, the four

dimension of the polyhedra is not bounded: the t can be equal to any value

from 1 to +∞. Despite the lack of upper bound, the Inner operation will

not be executed for every t value, only until the data expected as output

of the program are generated. Hence, in this example, this dimension could

have been reduced from "1:" to "1:nt". In the second set of parenthesis,

it expresses that it shall be executed on the Heat logical array.

4.3.3 InKSPIA completeness analysis

Let us now roughly demonstrate that this constitutes the whole algo-

rithm of a program; i.e. that the InKSPIA language carries enough infor-

mation to execute it. This constructive proof also forms the first part of

our compiler algorithm. If this proof fails, it means that the InKSPIA code

is invalid (e.g. an operation may read values that were never generated).

The pieces of information available in the InKSPIA language are:

• the set of integer parameters P ;

95

4.3. INKSPIA: EXPRESSING THE ALGORITHMIC CONCERN IN THE
INKS PROGRAMMING MODEL

• the set of logical arrays A = {a1, ..., an};

• the dimension dim(a) ∈ N of each logical array a ∈ A;

• the set of operations K = {k1, ..., kn};

• the validity domain dom(k) of each operation k ∈ K with its dimen-

sion n = dim(k), dom(k) = {x ∈ Zn | Px+ b ≤ 0, b ∈ Z};

• the dependencies (inputs Ik and outputs Ok) of each operation k;

• the set of subset of logical arrays available at the beginning of the

simulation Di = {ai1, ..., ain};

• the set of subset of logical arrays expected as result of the simulation

Do = {ao1, ..., aon}.

We call operation instance the association of an operation k with a

coordinate from its domain dom(k) ⊆ Zdim(k) and we denote K the set of

all operation instances.

k ∈ K : dom(k)→ K

K =
⋃

k∈K

⋃

i∈dom(k)

k(i)

Similarly, we call data instance the association of a logical array a with

a coordinate from its domain Ndim(a). We denote D the set of all data

instances and Dn the union of D and the coordinate that represents the

lack of data instance D∅.

a ∈ A : Ndim(a) → D

D =
⋃

a∈A

⋃

i∈Ndim(a)

a(i)

Dn = D ∪D∅

The inputs Ik and outputs Ok dependencies of an operation k map each

instance of this operation to the data it reads or writes. We denote I and O

96

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

the general input and output relations formed as the union of all operation

dependencies that map operation instances to data.

Ok : K → D

Ik : K → Dn

I =
⋃

k∈K

Ik, O =
⋃

k∈K

Ok

In order for the program to be well-formed, a given data instance should

only be produced by a single operation instance. That is, the intersection

of the output relation applied to two distinct operation instances should

always be empty. On the other hand, multiple operation instances can take

the same data instance as input.

∀k1, k2 ∈ K, k1 6= k2 ⇒ O(k1) ∩O(k2) = ∅

Each subset of logical array ao expected as result of the simulation is a

subset of the data that the computation must generate, we denote To the

union of all these data. Similarly, we denote Ti the union of all pieces of

data available at the beginning of the simulation.

ai ∈ Di : ai ⊆ D

Ti ⊆ D =
⋃

ai∈Di

ai

ao ∈ Do : ao ⊆ D

To ⊆ D =
⋃

ao∈Do

ao

The algorithm describes a program that computes To. Consequently, for

the program to be well-formed, To must be the output of some operation.

We denote KT this set of operation instances which generate the result

data.

97

4.3. INKSPIA: EXPRESSING THE ALGORITHMIC CONCERN IN THE
INKS PROGRAMMING MODEL

KT ⊆ K,

(

⋃

k∈KT

O(k) ⊆ To

)

In addition, a operation instance k1 must be computed before an in-

stance k2, denoted k1 ≺ k2 if k1 generates data as output that k2 accesses

as input.

∀k1, k2 ∈ K, O(k1) ∩ I(k2) 6= ∅ ⇐⇒ k1 ≺ k2

For the program to be well-defined, there must be no loop in its depen-

dencies, and we can define ≤ the transitive closure of ≺ that constitutes a

partial order relation on K. The set of operation instances Kx that must

be executed to produce To is the set of all instances that come before at

least one instance in KT , in addition to KT itself.

Kx = {k ∈ K|∃kt ∈ KT , k ≤ kt} ∪KT

The data Dx that will have to be allocated at some point for the ex-

ecution of all Kx is the data that is the input or output of at least one

such operation instance. For the program to be valid, all the data instances

accessed as input of an executed operation instance must be part of the

output of another operation instance, one can therefore define the allocated

data from the output only.

Dx =
⋃

k∈Kx

I(k) ∪
⋃

k∈Kx

O(k)

To be valid, the program shall access data instances that either come

from previous computations or from the data instances available at the

beginning of the simulation.

⋃

k∈Kx

I(k) ⊆ Di ∪
⋃

k∈Kx

O(k)

One can augment the executed operation instances with instances repre-

senting the allocation ka(d) and deallocation kd(d) of each data instance d.

98

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

The order relation can also be defined on these operation instances by tak-

ing into account that a data instance must be allocated before it is written

and deallocated after it is last accessed.

K+
x = Kx ∪

⋃

d∈Dx

{ka(d), kd(d)}

∀(k, d) ∈ Kx ×Dx, d ∈ I(k)⇐⇒ ka(d) ≺ k

∀(k, d) ∈ Kx ×Dx, d ∈ O(k)⇐⇒ k ≺ kd(d)

To summarize, the InKSPIA language provides enough information to

construct the K+
x set that specifies all memory allocations and dealloca-

tions and operation instances to execute with a partial order relation that

determines the constraints on the scheduling of these operations. Using

Polyhedral tools such as isl , this set is the only piece of information required

to generate a valid scheduling and memory layout. An implementation of

a compiler using this information and isl is presented in Section 5.1.

4.3.4 Illustrative example analysis

In Section 4.3.2, we have illustrated InKSPIA usage on the 3D heat equa-

tion solved using the finite difference method. We now use this example,

which InKSPIA code is shown in Listing 4.10, to picture the algorithm pre-

sented in the previous section. We implement this algorithm using the iscc

calculator [Verdoolaege, 2014] and can be implemented with the isl library.

The first step consists in parsing the InKSPIA code to obtain the isl

structures used as input of the algorithm. Note that in the simulation

kernel, the operations use the Heat logical array. Hence, we represent the

input and output relations of the operations as directly working on this

logical array, instead of the non-specific parameter "H". In addition, we use

several times the coalesce function, which simplifies the sets and relations,

in order to reduce compilation time. The parsing of Listing 4.10 gives us

the following iscc code:

#Simulation validity domains => Operation instances

K_init := [nx, ny, nz, nt] -> {Init[i, j, k, X, Y, Z, t]:

0<=i<nx and 0<=j<ny and 0<=k<nz and t=0 and X=nx and Y=ny and Z=nz};

99

4.3. INKSPIA: EXPRESSING THE ALGORITHMIC CONCERN IN THE
INKS PROGRAMMING MODEL

K_inner := [nx, ny, nz, nt] -> {Inner[x, y, z, t]:

1<=x<nx-1 and 1<=y<ny-1 and 1<=z<nz-1 and 1<=t};

K_boundary := [nx, ny, nz, nt] -> {Boundary[x, y, z, t]:

1<=t<nt and exists(ix, iy, iz: 0<=ix< nx and 0<=iy<ny and 0<=iz<nz and

((y = iy and z = iz and (x=0 or x=nx-1)) or

(x = ix and z = iz and (y=0 or y=ny-1)) or

(x = ix and y = iy and (z=0 or z=nz-1))))};

#Operation input/output relations

I_init := [nx, ny, nz, nt] -> {

Init[i, j, k, X, Y, Z, t] -> Heat[i, j, k, t] : false};

O_init := [nx, ny, nz, nt] -> {

Init[i, j, k, X, Y, Z, t] -> Heat[i, j, k, t]};

I_inner := [nx, ny, nz, nt] -> {

Inner[x, y, z, t] -> Heat[x, y, o2, -1 + t] : -1 + z <= o2 <= 1 + z;

Inner[x, y, z, t] -> Heat[x, o1, z, -1 + t] : -1 + y <= o1 <= 1 + y;

Inner[x, y, z, t] -> Heat[o0, y, z, -1 + t] : -1 + x <= o0 <= 1 + x};

O_inner := [nx, ny, nz, nt] -> {Inner[x, y, z, t] -> Heat[x, y, z, t]};

I_boundary := [nx, ny, nz, nt] -> {Boundary[x, y, z, t] -> Heat[x, y, z, t-1]};

O_boundary := [nx, ny, nz, nt] -> {Boundary[x, y, z, t] -> Heat[x, y, z, t]};

#Simulation input/output

In_i := [nx, ny, nz, nt] -> {};

In_o := [nx, ny, nz, nt] -> {

Heat[i, j, k, nt-1]: 0<=i<nx and 0<=j<ny and 0<=k<nz};

We can then construct K, I, O, Ti and To, respectively the set of all

operation instances, the set of all data instances,, the input and output

relations of all operations and the simulation’s input and output:

K := K_init + K_inner + K_boundary;

I := coalesce((I_init + I_inner + I_boundary) * K);

O := coalesce((O_init + O_inner + O_boundary) * K);

T_i := In_i;

T_o := In_o;

The following step consists in computing Di, the data instance that

may be read during the execution, Do, the data instance that may be writ-

ten, KT , the operation instances generating the simulation’s output, and

≺ (Order relation), the partial order relation between each operation in-

stance:

D_i := coalesce(I(K));

D_o := coalesce(O(K));

K_t := coalesce((O^-1)(T_o));

#Transitive closure of the composition of O and reverse I

Order_relation := coalesce(coalesce(O . (I^-1))^+);

#Intersection with the kernel that may be executed

100

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

Order_relation := coalesce(Order_relation * ((O^-1)(D_i * D_o)));

With the partial order relation, it is possible to compute the set of op-

erations to execute in order to generate the data required by the operations

that will generate the simulation output:

K_x := (K_t + (Order_relation^-1)(K_t));

Finally, with Kx and the partial order relation, we can generate a valid

scheduling:

codegen K_x using Order_relation;

As for the memory layout, we can naively allocate the entire logical

array or rely on Polyhedral techniques to reuse memory, such as the one

developed by Isoard et al. [Darte et al., 2016] and presented in Section 5.1.

4.4 Conclusion and discussions

In this chapter, we have classified the concerns of a simulation code as

related to algorithm or optimization choices. From this classification, we

have proposed the InKS programming model with the aim of separating

these two concerns by depending upon two concern dedicated languages.

The first one, InKSPIA, is in charge of the full expression of the simula-

tion algorithm; that is, parts of code that will never change no matter the

architecture you are running the code on; in other words, the platform

independent code. The second language, InKSPSO, takes care of the op-

timization part; namely the code that is not essential to the application

correctness but responsible for its good performance; in other words, the

platform dependent code. Although the algorithm expression is free, the

optimization choices are specified in accordance with its algorithm. Hence,

for a given program, the simulation algorithm remains identical while dis-

tinct versions of optimization choices, typically one per architecture, can

be written concisely, each reusing pieces of information gathered from the

simulation algorithm. Finally, the InKS model provides a InKS compiler,

InKSC, responsible for the translation from InKSPIA and InKSPSO code

to a valid C++ application. After the InKS model description, we have

101

4.4. CONCLUSION AND DISCUSSIONS

presented the InKSPIA language as well as the main pieces of information

contained in an InKSPIA program in the last part of this chapter.

As a first remark, we can note that, even though there are many dif-

ferences between the InKS programming model and other approaches, the

InKSPIA language shares similarities with others DSLs . For instance, the

PTG DSL of PaRSEC [Danalis et al., 2014] is also a declarative language

of operations that is scheduled using a minimal set of data dependencies.

However, while InKSPIA proposes to describe the algorithm with no con-

cern for performance, PTG counts on users to describe optimization in

these operations, which are not necessarily small, and relies on users to fix

memory layouts and on a compiler to derive an efficient parallel schedul-

ing. Another language is close to InKSPIA: PIPES [Kong et al., 2016]. It

proposes a language to describe the algorithm in terms of operations with

data dependencies and logical arrays, targeting the Polyhedral model; how-

ever, it chose a completely different path for the expression of optimization

choices. Firstly, in the algorithm languages, users can express hints and op-

timizations which break the separation of concerns, but more importantly,

all optimization choices are taken into account by a compiler which relies

on Polyhedral optimization techniques. As discussed in Section 3.4, such

automatic tools are often highly efficient in a lot of situations but will not

provide the best performance in cases that are clearly not rare in numerical

simulation. For instance, PIPES relies on Barvinok [Verdoolaege et al.,

2007] to compute an efficient memory layouts for each logical arrays. How-

ever, the complexity of the algorithm to compute the best possible layout is

huge. For this reason, they count on heuristics to determine a good approx-

imation; and as any approximation, it may work great in various situations

and not so great in others.

Proposing InKSPIA as a DSL that targets the Polyhedral model exhibits

several advantages. This strategy enables the InKSPIA language to express

all classes of programs handled by this model, namely the Static Control

Parts (SCoP) defined in Section 3.5, while making it compatible with var-

ious optimization transformations and static analysis. However, compared

to general-purpose approaches, such as C or Fortran, it limits the supported

class of programs. Indeed, SCoP are Parameterized Task Graph (PTG):

102

CHAPTER 4. THE INDEPENDENT KERNEL SCHEDULING
PROGRAMMING MODEL

directed graph of tasks dependent on invariant integer parameters set at

execution. Therefore, in these programs, dependencies known only at run-

time, such as indirections, are not expressible. Similarly, since domain sizes

are parameterized by constants known at runtime, mesh modifications dur-

ing the algorithm implementation execution are not valid. Still, while PTGs

cover many classes of programs, the InKS programming model is usable

in conjunction with traditional programming models, such as C or Fortran.

Although, the invariant integer parameters must be set at the algorithm im-

plementation execution, it is possible to call multiple times, from a general

C program, the algorithm with different parameters. Such strategy enables

users to handle method such as mesh refinement outside of the InKS pro-

gram while using the InKS model for a given mesh. In addition, it is

possible to express computations that would not fit the Polyhedral model

inside the InKSPIA operation. For instance, one can use conditionals de-

pending on logical arrays’ values with C++ in the operations, even though

it is not possible in InKSPIA. This creates a compromise between the sep-

aration of concerns and the language capability. This compromise offers

more complex operations but may use over-constraining the dependence,

limiting the possible range of optimizations.

Instead of proposing a new language, InKSPIA, it is conceivable to use

a subset of the C language as the algorithm language. Then, translating

tools, such as Clan [Bastoul et al., 2012] or pet [Verdoolaege and Grosser,

2012], can convert such C code to a Polyhedral representation. However,

InKSPIA offers three major advantages over such method. First, it enables a

simple and fast analysis of the code. InKSPIA and its compiler are designed

to support the algorithm expression. On the contrary, C and C++ support

much more instructions that translating tools may have issues to parse

correctly. Secondly, we would have to specify which C set of codes is valid

in the model. That may be complex for us to express such restrictions and

detect them. Moreover, users may struggle to know what is exactly possible

or not, compared to plain C. Finally, and maybe more importantly, C comes

with underlying optimization. As we presented in Section 4.1, C comes

with a total operation ordering and a specific memory layout. Although

we can hope that translating tools are efficient enough to retrieve both

103

4.4. CONCLUSION AND DISCUSSIONS

the partial ordering and the Dynamic Single Assignment form, it may be

more complex for optimization specialists. Indeed, to implement a version

of the optimization choices, they first need the minimal constraints on the

ordering and the DSA form; that is, the algorithm. Hence, they would

have to mentally undo optimizations carried by the C in order to get the

algorithm. All that with the aim of knowing if that loop can be broken to

expose vectorization or this array can be expanded to add data parallelism.

For all these reasons, InKSPIA is more suited as the algorithm language,

compared to C. Besides, we believe that InKSPIA is not more complex than

the C language.

Another preoccupation relates to the C++ used in operation expres-

sion. Since, in practice, any C++ code is valid in an InKS operation, un-

derstanding the semantics of the operation expression is beyond the scope

of the InKSPIA compiler or the Polyhedral model knowability. While it

enables users to use external libraries, such as FFTW for Fast Fourier

Transform, these black-boxes limit the compiler comprehension of the al-

gorithm, and therefore, its latter optimization. For instance, an operation

that manages a Dirichlet boundary condition (copy of the boundary from

a time-step to another) can be eliminated in some situation, depending on

the underlying memory layout. With this limitation, such optimizations are

not possible in the InKS programming model. However, a possibility to

address this issue is to support predefined basic operation in the InKSPIA

language. Each comes with an implicit C++ implementation as well as a set

of dependencies. These operations could include copies, but also additions,

multiplications, etc. Thus, copy could be eliminated while dependencies

would be implied by the basic operation: an addition or a multiplication

would require two inputs and generate one output, a copy one of each, etc.

104

Chapter 5

Expressing optimization choices

in the InKS programming model

Contents
5.1 A fully compiler-based approach for memory layouts

and operations scheduling 108

5.1.1 Evaluation of the compiler-based approach . . . 112

5.2 InKSLoop: a DSL for nested loops description and op-
timization . 114

5.2.1 InKSLoop algorithm 117

5.2.2 Evaluation of the InKSLoop approach 121

5.3 InKSXMP: an XMP wrapper for memory management
on distributed architectures 124

5.3.1 Evaluation of the InKSXMP approach 128

5.4 InKSPSO: a language to express general optimization
choices . 131

5.4.1 Illustrative example 134

5.5 The source-to-source InKSPSO compiler 137

5.6 Discussions . 151

The InKS programming model proposes to separate algorithmic and op-

timization concerns in numeric simulation codes in order to improve both

developers productivity and codes readability, as well as easing application

106

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

portability. In the previous chapter, we have presented the InKSPIA lan-

guage which aims to express the simulation algorithm. As a description of

the simulation, the algorithm left memory placement and operations execu-

tion order unspecified. The second step for the InKS programming model

is to provide a way to express optimization using the pieces of information

contained in the algorithmic part. A possibility would be to use plain C++,

calling InKSPIA operations and manually writing memory layouts and op-

erations ordering. Although, this would offer very good performance, it

would not rely on InKSPIA information. Therefore, users would have to

repeat all information, including iteration domains, already expressed in

InKSPIA validity domains, or making sure that constraints implied by the

algorithm are respected.

To address this issue, we propose, in the InKS programming model, an

optimization language for numerical simulation code: InKSPSO. It aims at

handling general optimization choices while relying on pieces of information

gathered from the InKSPIA code. Proposing a language that can compete

with C or Fortran in terms of performance while integrating optimization

tools largely developed for these languages is a challenging project. There-

fore, we first conceive a compiler which automatically generates valid mem-

ory layouts and operations scheduling, in accordance to a given InKSPIA

algorithm. In a second step, we propose two preliminary optimization lan-

guages that aim to wrap an existing optimization tool or strategy: InKSLoop

and InKSXMP. Compared to their original counterpart, these languages

minimize code writing to the optimization part only as every other pieces

of information are gathered from the InKSPIA code. Here, the main ob-

jective is mainly to separate the concerns which, in itself, provides many

advantages, discussed in Section 3.4, among which potential performance

improvements. In a third step, by using a set of guidelines identified dur-

ing the development of these two preliminary optimization languages, we

propose a first implementation of the InKSPSO language. This implemen-

tation is general enough to handle a wide variety of optimization choices

while using InKSPIA information for the missing parts.

In this chapter, we focus on optimization approaches offered by the

InKS programming model to set optimization choices, in accordance with

107

5.1. A FULLY COMPILER-BASED APPROACH FOR MEMORY LAYOUTS
AND OPERATIONS SCHEDULING

the algorithm. In Section 5.1, we start by presenting a fully automatic com-

piler based method to generate valid optimization choices. After this first

step, that enables us to prove that all minimal pieces of information are con-

tained in the InKSPIA algorithm, we focus on the optimization languages.

Hence, Section 5.2 exposes and evaluates InKSLoop, a first approach to ex-

press optimization choices: a DSL that focuses on optimization strategies

related to nested loops. Then, we show and evaluate a second approach in

Section 5.3, InKSXMP, a wrapper to XcalableMP, a PGAS directive based

programming model.

Developing and evaluating these first two optimization languages en-

able us to propose a more general approach to describe both memory lay-

outs and computation scheduling. This approach, namely InKSPSO, is

presented in Section 5.4. Its source-to-source compiler is then presented

in Section 5.5. Finally, in Section 5.6, we conclude the chapter and dis-

cuss the limitations of the InKSPSO language as well as the choices we

made at the implementation of optimization languages. The InKS pro-

gramming model compilers, as well as some examples, are available at

https://github.com/Armassarion/InKS.

5.1 A fully compiler-based approach for

memory layouts and operations

scheduling

In Section 4.3, we have presented the InKSPIA algorithmic language of

the InKS programming model. It is designed to express algorithmic con-

cerns only while leaving optimization choices unspecified. More specifically,

in Section 4.3.3, we demonstrated that InKSPIA code contained all informa-

tion necessary to express valid optimization choices. Hence, in this Section,

we present InKSc, a compiler for InKSPIA code which derives from the

algorithm a set of valid optimization choices; that is, memory layouts for

each logical arrays as well as operations ordering.

As we discuss in Section 3.4, it seems difficult to an automatized ap-

proach to handle both a wide variety of programs and offer the best possible

108

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

performance for each. Such approach offers a trade-off between generality

and performance. Although, this strategy delivered great performance in

various situations, we do not target this objective. Thus, we do not pro-

pose an automatized approach which relies on smart methods to achieve,

in certain situation, the best performance possible. Instead, our compiler

achieves another objective: it enables users to test the algorithm; that is,

one is able to verify that their algorithm generates correct output for small

test cases. In addition, the compiler also translates InKSPIA operations

to valid C++ functions, for their latter call in the scheduling set by the

optimization choices, as illustrated on the Operation files in the Figure 4.2

(Page 86).

We rely on the Integer Set Library [Verdoolaege, 2010], isl , to encode

the InKSPIA information in a polyhedral model representation. Roughly,

this model offers to describe a program as a collection of statements gath-

ered in polyhedra and a set of relations described which statement shall

be executed before which other one. It is presented with more details in

Section 3.5. Using this library, we are able to express, in the polyhedral

model form, the two main objects presented in the Section 4.3.3; that is,

Kx, the set of operation instances that must be executed to produce the

result of the simulation, and ≤, the partial order relation on Kx. Hence,

Kx is represented in the form of a union of polyhedra, each integer point

representing an operation instance. ≤ is represented by a union of polyhe-

dral relations, mapping instance of Kx that must be executed before other

instances.

First, isl offers to generate a valid scheduling which traverses all integer

points of the union of polyhedra representing Kx in accordance with ≤.

In addition, it is possible to drive more precisely the scheduling by pro-

viding additional relations. One of them is the proximity relation, which

encourages the isl schedule algorithm to map domain elements i to domain

elements that should be scheduled either before i or as early as possible

after i. Hence, we use as proximity relation an unbounded version of the

partial order relation ≤. This leads to a scheduling that minimizes each

data instance lifetime: whenever an operation produces a data instance, isl

will try to schedule all operations that read this data instance as soon as

109

5.1. A FULLY COMPILER-BASED APPROACH FOR MEMORY LAYOUTS
AND OPERATIONS SCHEDULING

possible. The isl scheduling, Sch, is in the form of a scattering function.

That is to say, a relation mapping an operation instance to a time vector,

representing a virtual multi-dimensional space executed in the lexicographic

order. In addition, isl also provides a function to generate an Abstract Syn-

tax Tree (AST) from a scheduling. This AST, composed of loops, branches

and operation calls, can be traverse to generate the C code.

Then, the second step is to handle the memory layouts. Although

InKSPIA logical arrays are infinite in each dimension, only a subset of these

cells are effectively accessed depending on Kx; that is, Dx, the set of data

instance accessed by Kx at some point of the execution. Still, this subset is

in the DSA form; that is, there is absolutely no memory reuse. Although,

the compiler aims to generate a valid set of optimization choices for test

purposes only, not reusing memory is not reasonable and drastically limits

the set of executable test-cases. Hence, the compiler needs to implement a

heuristic to generate memory layouts that reuse memory, and for that, it

is essential to rely on the computation scheduling. Indeed, memory layouts

and computation scheduling are tightly bound: a modification on one may

make the second invalid. Therefore, we base our memory layouts generation

on the scheduling computed by isl : Sch.

In [Darte et al., 2016], Isoard et al. propose a two-step method to

produce memory layout based on a technique called lattice-based memory

allocation [Darte et al., 2005]. This strategy is a generalization of different

strategies based on affine mappings with foldings by modulo operations

(called modular mappings), formalized with integer lattices. A modular

mapping (M,~b), defined by a p×n integer matrix M and a positive integral

vector ~b of dimension p, maps the coordinate ~i of a n-dimensional array to

σ(~i) = M~i mod~b (the modulo is applied component-wise) in a p-dimensional

array of shape~b. Such mappings reuse memory and are compatible with the

Polyhedral model. The first step uses Sch to compute the Conflict Set;

i.e. the set of pairs of data instances that should not be mapped to the same

location. Minimizing data instances lifetime, as we did in the scheduling

computation, limits the size of the Conflict Set. The second step uses the

Conflict Set to compute a modular mapping. Both steps are described

in details in Isoard thesis [Isoard, 2016]. The modular mapping enables the

110

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

compiler to generate a memory layout that reuses memory cells, mapping

multiple logical coordinates to the same memory location.

In addition to these two steps, we add a third one which greatly speeds

up index computations at execution. This optimization is possible when

p = n and M is a permutation matrix, i.e. an identity matrix in which

each row was permuted. In our situation, it appears that these conditions

are fulfilled most of the time. In addition, this optimization relies on Dx,

the subset of data instances, identified by a coordinate vector, that are

effectively accessed during the simulation execution.

Considering all the data instance Da of a particular logical array A of

dimension dim(A) ∈ N accessed during the simulation Da ⊆ Dx. We have

(Ma, ~ba) the modular mapping of A such that, from a logical coordinate ~la ∈

Da, the physical coordinate being accessed is ~pa = σ(~la) = Ma
~la mod ~ba | ~la.

Using the Polyhedral model, for each dimension i of A, it is possible to

obtain the maximum of the ith component of all logical coordinates, ~la, of

A being accessed, lmi:

∀i ∈ {1..dim(A)}, ∃lmi ∈ N, ∀~la ∈ Da | lai ≤ lmi

Since M is a permutation matrix, the ith component of the logical co-

ordinate ~la, lai, is simply permuted to a jth component of the physical

coordinate ~pa, paj, before applying the component-wise modulo operation,

here baj:

paj = lai mod baj

If lmi ≤ baj, the modulo operation is not necessary. Indeed, for a consid-

ered dimension, if the maximal logical coordinate value is inferior or equal

to the modulo we have to apply, the modulo is not necessary. This strategy

enables us to remove the usage of modulo operations in dimensions where

there is no memory reuse, typically all dimensions non-related to time.

111

5.1. A FULLY COMPILER-BASED APPROACH FOR MEMORY LAYOUTS
AND OPERATIONS SCHEDULING

5.1.1 Evaluation of the compiler-based approach

We now evaluate our compiler-based approach for optimization choices

in the InKS programming model. This evaluation relies on two bench-

marks. The first algorithm is the 3D finite difference heat equation solver,

presented in Listing 4.10. The second one is the one dimensional version

of this problem. For each benchmark, three versions of the optimization

choices were used. The first version of each benchmark is simple and man-

ually implemented. It uses a double-buffer method to store temperature

values and relies on the most trivial nested loop possible; that is, in a time

then space computation ordering. More specifically, it is similar to List-

ing 4.1 with the exception of executing InKSPIA operations instead of plain

computations. The second versions of optimization choices are generated

automatically by our compiler. Finally, the third version, only available for

the 3D heat equation benchmark, is a manually modified version of the gen-

erated code. All codes were compiled with Intel 18 compiler (icpc with -O3

-xHost -ip -ipo compilation options) and executed on a single core of the

Irene cluster ([TGCC, 2019], France), each computing node being equipped

with 192 GB RAM and two Xeon Platinium 8168 CPUs. Execution times

are presented in Table 5.1.

Time/iteration (second)

Benchmark Manual Compiler Diff. Compiler optimized Diff.

Heat 1D 1.89 (±19.36%) 1.72 (±17.44%) 9.59% N/A N/A

Heat 3D 3.24 (±12.52%) 55.63 (±0.42%) -94.18% 2.81 (±9.61%) 15.12%

Table 5.1 – Comparison of manual C++ implementation and InKS com-
piler generated code. Time/iteration (median) and maximal relative change
of the C++ and compiler-based code of the 3D and 1D heat equation solver,
size (10243) with 15 time-steps (after 5 time-steps of warm up). The max-
imal relative change r to the median m of a set of n values V is defined as
r = m

maxi=0..n(|m−Vi|)
.

As shown in Table 5.1, for the 1D heat equation benchmark, the com-

piler generates a code efficient enough to match the performance of a naive

manually written code. However, in the case of the 3D heat equation bench-

mark, the generated code is much slower than the version ”manual” version.

There are two major causes to this lack of performance. First, as mentioned

112

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

in Sections 4.3 and 4.4, operations are black-boxes for the compiler and in

this situation, this is an issue. Indeed, the compiler is forced to schedule the

Boundary operation even though it is a copy from the previous time-step.

In the ”manual” version, this operation is plainly eliminated. Secondly,

isl schedules the loops in a correct but not optimal order. In this situa-

tion, the index used for the smaller stride of our array is not managed by

the innermost loop, breaking possible vectorization. For the sake of expla-

nation, Table 5.1 also presents a manually altered version of the 3D heat

equation generated code (Compiler optimized column). In this version, we

have reordered the loops and removed the execution of the Boundary oper-

ation. Combined with the #pragma ivdep directives automatically added

by the compiler in the generated code, it effectively speeds-up the com-

putation to the point it improves the manual version. Also, note that all

three versions have the same memory footprint. Indeed, Isoard algorithm

and modular mapping lead to a double-buffer memory layout, equivalent to

the one implemented manually. In the end, although the automatic version

is not as efficient as a manually written one, it is generated quickly from

the InKSPIA algorithm. Indeed, the compilation takes seconds in this case

and up to a few minutes for very complex cases (e.g. tens of operations on

eight-dimensional logical arrays), mostly because of the transitive closure

computation (c.f. Section 4.3.3). Moreover, this automatically generated

code assures the correct results. In comparison, errors can be introduced in

the manual version from the InKSPIA code which complicates the debug-

ging: is the algorithm wrong or is it the manual implementation? Having a

completely automatized version guarantees that all errors necessarily come

from the algorithm. Moreover, the generated code is fast enough for test

purposes.

In summary, using isl , modular mappings and our heuristic, the com-

piler is able to generate a valid scheduling as well as reasonable memory

layouts, both in terms of memory reuse and indexes computation efficiency.

Although, it fulfills its objective, i.e. generating a valid code for test pur-

poses; such approach is not efficient enough for real application runs. The

heuristic for the scheduling is trivial while memory layouts heavily rely on

inefficient modulo operations. Instead, once the algorithm is validated by

113

5.2. INKSLOOP: A DSL FOR NESTED LOOPS DESCRIPTION AND
OPTIMIZATION

the compiler-based approach, numerical simulation codes require perfor-

mance. Therefore, optimization must rely on either a smarter compiler,

enhanced with more complex strategies, or a language dedicated to opti-

mization expression. As discussed in Section 3.4, we believe that although

the smart compiler approach gives tremendous results in very specific do-

mains, it is not adapted to the optimization of arbitrary complex applica-

tions.

For this reason, in the next sections, we focus on optimization languages

that offer specialists the ability to express themselves the set of optimization

choices for an application. Using these languages, experts only specify

optimizations while a compiler retrieve missing pieces of information from

InKSPIA code. This strategy offers a true separation of concerns by limiting

the aspects to repeat in the optimization part.

5.2 InKSLoop: a DSL for nested loops

description and optimization

Implementing a complete optimization language for the InKS program-

ming model is a long-term objective. For this reason, we focused on various

optimization languages, each offering to describe a specific set of optimiza-

tion choices. The global objective is to highlight guidelines for the latter

construction of the InKS optimization language. In this Section, we present

one of them: InKSLoop, an optimization DSL to describe the order of nested

loops surrounding an InKSPIA operation.

InKSLoop offers to manually specify tightly loop nests, i.e. loop nests

containing instructions only in the innermost loop, and more specifically, a

single InKSPIA operation. The InKSLoop compiler generates a C++ func-

tion containing the nested loops. In addition, for all other optimization

choices (e.g. memory layouts, non tightly nested loops), plain C++ is

usable in combination with InKSLoop. An InKSLoop program is roughly

composed of four parts. Firstly, one defines the InKSPIA operation at the

core of the nested loops. Secondly, one sets the iteration domain of the sur-

rounding loops. Thirdly, the user declares an order between each iteration

114

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

indexes. The final step consists of applying optimization transformations

to the nested loops.

Listing 5.1 illustrates the InKSLoop usage on the 3D heat equation solver,

which algorithm is presented in Listing 4.10 (Page 94) using InKSPIA. As

a reminder, the Inner operation defined in the InKSPIA code is shown

again in the InKSLoop code. Firstly, the loop keyword introduces a nest

optimization with a name, the list of parameters from the algorithm on

which the loop bounds depend and a reference to the operation at the center

of the nested loops. On Listing 5.1, we call the nested loops stencil loops,

parameterize it by the size of each dimension, i.e. nx, ny, nz and nt, and

specify that it calls the Inner InKSPIA operation.

1 /*** PIA CODE
2

3 operation Inner(x, y, z, t) : (
4 double H {...}
5)
6

7 PIA CODE ***/
8

9 loop stencil_loops(t, nx, ny, nz, nt) : Inner {
10 Order : z, y, x;
11 Block : 128, 128;
12 }
13

14 loop stencil_loops_3DBlock(t, nx, ny, nz, nt) : Inner {
15 Order : z, y, x;
16 Block : 128, 128, 128;
17 }
18

19 loop stencil_loops_no_block(t, nx, ny, nz, nt) : Inner {
20 Order : z, y, x;
21 }

Listing 5.1 – InKSLoop implementation of the 3D finite difference heat
equation solver using three strategies a three loops nest, a 2D blocked three
loops nest 2D and a 3D blocked three loops nest.

Secondly, loop bounds correspond to the validity domain of the InKSPIA

operation; and therefore, are automatically extracted from the InKSPIA

code. However, these bounds can be restricted in two ways. Either with the

Set keyword, which defines a new iteration domain using the syntax used

for validity domains, or by fixing some of the integer parameters of the

InKSPIA operation. Listing 5.1 presents the usage of the second strategy.

It fixes t by adding it to the stencil loops parameters. It means that the

115

5.2. INKSLOOP: A DSL FOR NESTED LOOPS DESCRIPTION AND
OPTIMIZATION

1 template <typename T0>
2 void stencil_loops_no_block(T0& H, int t, int nx, int ny, int nz, int nt){
3 if (t >= 1 && nt >= t + 1)
4 for (int c1 = 1; c1 < nz - 1; c1 += 1)
5 for (int c2 = 1; c2 < ny - 1; c2 += 1)
6 #pragma ivdep
7 for (int c3 = 1; c3 < nx - 1; c3 += 1)
8 Inner(H, fac, c3, c2, c1, t);
9 }

Listing 5.2 – C++ generated code for a three loops nest specified in
InKSLoop (Line 19 to 21 of Listing 5.1).

iteration domain corresponds to the validity domain in which the value of

t is fixed by the caller of stencil loops.

Thirdly, the Order keyword specifies the iteration order on the dimen-

sions named according to the InKSPIA code, minus the ones set by the

method previously described. In Listing 5.1, loops are ordered following

the z, y and finally the x indexes.

Finally, InKSLoop comes with two keywords to apply some common op-

timization techniques. First, the Block keyword enables the user to imple-

ment blocking. It takes as parameters the size of block for the loops starting

from the innermost one. If there are fewer block sizes than loops, the re-

maining loops are not blocked. This strategy is presented in Listing 5.1 on

Line 11: the two innermost loops are blocked by a size of 128. We also

test the same order with a 3D block, presented Line 16 of the same Listing.

According to the InKSPIA code, the loops iterate over an array contain-

ing double-precision floating-point values. Hence, the resulting block is of

size 128 kB and fits in the L2 cache of most modern processors. Then, the

Buffer keyword (not present in the Listing) proposes to copy array data in

a local buffer before the innermost loop, containing the computations. This

buffer is then used during the computations and copied back to the array

after, at the end of this innermost loop. In the case of computations per-

formed on a large array, in which each data access is far from contiguous,

this strategy ensures data locality and enables vectorization possibilities.

Listing 5.3 presents a manual implementation of this optimization strategy.

During both the order and optimization phases, the compiler uses data

dependencies from the InKSPIA code to check the validity of the loops order.

116

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

1 /*** Non optimized version ***/
2 double A[Z][Y][X];
3 double A_res[Z][Y][X];
4

5 for(int k=0; k<Z; k++)
6 for(int j=0; j<Y; j++)
7 for(int i=0; i<X; i++)
8 //Work on non contiguous elements
9 // => no vectorization + bad cache use

10 A_res[k][j][i] = A[k-1][j][i] + A[k][j][i] + A[k+1][j][i];
11

12 /*** Optimized version ***/
13 double A[Z][Y][X];
14 //Memory footprint reduced
15 double buffer_in[Z];
16 double buffer_out[Z];
17

18 for(int j=0; j<Y; j++)
19 for(int i=0; i<X; i++){
20 //Copy A -> Buffer
21 for(int k=0; k<Z; k++)
22 buffer_in[k] = A[k][j][i];
23 //Work on small, contiguous buffers
24 // => vectorization + better cache use
25 for(int k=0; k<Z; k++)
26 buffer_out[k] = buffer_in[k-1] + buffer_in[k] + buffer_in[k+1];
27 //Copy buffer => A
28 for(int k=0; k<Z; k++)
29 A[k][j][i] = buffer_out[k];
30 }

Listing 5.3 – Two versions of a 1D stencil computation applied on the last
dimension of a 3D array.

It also uses this information to generate C++ directives whenever possible,

typically related to vectorization, to help the future C++ compiler in its

automatic optimization stage. Listing 5.2 shows the C++ generated code

for the stencil loops no block InKSLoop code of the Listing 5.1.

5.2.1 InKSLoop algorithm

In Section 5.1, we have presented isl and its scheduling feature. As a

reminder, from a set of operations to perform and a partial order between

them, isl can generate a scattering function. That is, a relation mapping an

operation instance to a time vector, representing a virtual multi-dimensional

space executed in the lexicographic order. InKSLoop is actually a DSL

to propose such scattering function. Indeed, firstly, the iteration domain

and order define a first scattering function. Secondly, we apply polyhedral

117

5.2. INKSLOOP: A DSL FOR NESTED LOOPS DESCRIPTION AND
OPTIMIZATION

transformations to this function in order to obtain a new one which adds

the blocking and the call to the copies. For instance, the loop and Order

keywords of the InKSLoop code presented in Listing 5.1 imply the following

scattering function, written in isl form:

[X, Y, Z, T, t]→ {Inner[i, j, k]→ [k, j, i] :

0 < i < X − 1 and

0 < j < Y − 1 and

0 < k < Z − 1

}

(5.1)

Then, the Block keyword applies the following transformation to the

scattering function:

{[k, j, i]→ [k, jj, ii, j, i] :

ii ≤ i < ii+ 128 and

ii mod 128 = 0 and

jj ≤ j < jj + 128 and

jj mod 128 = 0

}

Therefore, the resulting scattering function is the composition of the

original scattering function and the blocking transformation, that is:

{[X, Y, Z, T, t]→ {Inner[i, j, k]→ [k, jj, ii, j, i] :

ii ≤ i < ii+ 128 and

ii mod 128 = 0 and

jj ≤ j < jj + 128 and

jj mod 128 = 0 and

0 < i < X − 1 and

0 < j < Y − 1 and

0 < k < Z − 1

}

118

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

The last keyword, Buffer, adds copies and works differently. A copy is

a statement, similarly to an operation. Therefore, the goal is to enhance the

scattering function Sct mapping operation instances O of dimension dim(o)

to time vectors T of dimension dim(t), with two more scattering functions.

One for the copy from the array to the local buffer, CopyIn, and the copy

back, CopyOut.

O : Zdim(o)

T, Tci, Tco : Z
dim(t)

Sct : O → T

CopyIn : Zdim(o)−1 → Tci

CopyOut : Zdim(o)−1 → Tco

CopyIn shall be scheduled just before the operation whereas CopyOut

just after. That means the time vectors of CopyIn shall be lexicographi-

cally lower than the ones of the operation. However, this difference shall

appear only for the last dimension of the time vectors. In other words, the

time vector of the operation and CopyIn must be equal except for the last

dimension, in which the CopyIn time vector must be inferior. The opposite

for CopyOut . Mathematically, all four conditions shall be respected:

∀~t ∈ T

∀ ~tci ∈ Tci

tcij = tj, ∀j ∈ {1..dim(t)− 1}

j = dim(t), tcij < tj

∀ ~tco ∈ Tco

tcoj = tj, ∀j ∈ {1..dim(t)− 1}

j = dim(t), tcoj > tj

In order to respect these conditions, we have to get the set of time vec-

tors of O, Tmin ⊂ T , such that there are no time vector ~t ∈ T such that ~t

is lexicographically equal to ~t1 ∈ Tmin for the first dim(t) − 1 component

while being lexicographically less for the last component. Similarly, the set

119

5.2. INKSLOOP: A DSL FOR NESTED LOOPS DESCRIPTION AND
OPTIMIZATION

of time vectors of O, Tmax, can be computed by modifying the last condi-

tion: the last component of ~t shall not be lexicographically greater than the

one of ~t1. Note that in our situation, all time vectors are necessarily differ-

ent because InKSLoop specifies a total order between operation instances.

Mathematically, we can write:

Tmin =

{

~ti ∈ T | ∄~tj ∈ T, i 6= j

{

tik = tjk ∀k ∈ {1..dim(t)− 1}

tik > tjk, k = dim(t)

}

Tmax =

{

~ti ∈ T | ∄~tj ∈ T, i 6= j

{

tik = tjk ∀k ∈ {1..dim(t)− 1}

tik < tjk, k = dim(t)

}

Finally, we can compute Tci and Tco by subtracting, respectively adding,

one at the last component of each time vectors.

For the sake of explanation, let’s consider the code presented in List-

ing 5.1 and the scattering function presented in Equation (5.1), mapping

each instance (i, j, k) of Inner to the logical time T = (k, j, i). We want

to perform a CopyIn right before the most-inner i loop. That is, we

want the relation mapping each instance (j, k) of CopyIn to a time vec-

tor (kc, jc, ic) | ∀(k, j, i) ∈ T, k = kc ∧ j = jc ∧ i > ic. To schedule CopyIn,

we first need the minimal time vectors of the operation, for any given j and

k values. To get these time vectors, we must first obtain all time vectors at

which the operation is scheduled: Dom. That is, the current domain of the

scattering function presented in Equation (5.1). Secondly, we compute only

the set of values of the i dimension of Dom. This can be done by using

such relation:

Only i := {Inner[i, j, k]→ [i]}

Then, isl proposes lexicographic functions to obtain the minimal value

of Only i(Dom) Using the inverse relation Only i−1 enables us to get the

operation instance with the minimal time vector value, for any given j and

k values. Applying the scattering function gives us the minimal time vectors

of these instances.

120

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

The second step is to define the Before relation that maps a time vector

t1 to another time vector t2 such that the first components of t1 and t2 are

equal and the last one of t2 is inferior to the last one of t1. Applying such

relations to the minimal time vectors of the Inner operations gives us the

time vector of the CopyIn operation. Such computations can be done with

the iscc calculator [Verdoolaege, 2014] with the following script:

#Inputs

Scattering := [X, Y, Z] -> {Inner[i, j, k] -> [k, j, i] :

0<i<X-1 and 0<j<Y-1 and 0<k<Z-1};

Dom := dom Scattering;

#Relations

Only_i := {Inner[i, j, k] -> [i]};

Before := {[k, j, i] -> [k, j, i-1]};

CopyIn := {CopyIn[j, k] -> [k, j, i]};

#Computations

min_i := lexmin(Only_i(Dom));

min_s := (Only_i^-1)(min_i);

min_time := Scattering(min_s);

CopyIn := CopyIn ->* (Before(min_time));

#Result

Scattering := Scattering + CopyIn;

codegen Scattering; # <- prints the code

5.2.2 Evaluation of the InKSLoop approach

In order to evaluate the InKSLoop approach in terms of performance and

usability, we have first implemented, using InKSPIA, the algorithm of the 3D

heat equation solved by finite difference method, presented in Listing 4.10,

and two kernels of the well-known NAS benchmark [Bailey et al., 1991], IS

and MG, using the C++ version as reference [Griebler et al., 2018]. We have

then implemented an InKSLoop version of the optimization choices. For

the heat equation, that corresponds to the implementation of the blocked

loop nest presented in Listing 5.1, using the plain C++ version as refer-

ence, presented in Listing 4.2. As for the IS and MG NAS kernels, we have

implemented parts of the optimization choices that involved nested loop,

as it is the choices handled by InKSLoop. All other optimization choices,

including memory layouts were implemented using plain C++. Finally, we

121

5.2. INKSLOOP: A DSL FOR NESTED LOOPS DESCRIPTION AND
OPTIMIZATION

Execution time (second)

Benchmark C++ InKSLoop Diff.

NAS/IS 1.91 (±0.00%) 1.91 (±0.01%) 0.00%

NAS/MG 4.61 (±0.02%) 4.32 (±0.02%) 6.84%

Heat 39.51 (±0.78%) 39.49 (±0.53%) 0.05%

Table 5.2 – Comparison of C++ and InKSLoop implementations. Execution
time of the C++ and InKSLoop implementations of 2 kernels of the sequen-
tial NAS benchmark (IS & MG), class B - Time/iteration of the 3D heat
equation (7-point stencil) using a 2D blocking method, size (10243) with 10
time-steps. Median and maximal relative change of 10 executions.

compared the execution times between InKSLoop versions and plain C++

versions of optimization choices. C.f. 5.1.1 for compiler and architecture

details. Results are presented in Table 5.2.

In terms of specification of optimization choices, InKSLoop enables the

developer to specify optimization choices only while algorithmic information

is extracted from InKSPIA code. This is illustrated by Listing 5.1 presenting

the InKSLoop implementation of the loop nest around the stencil compu-

tation. Loop bounds are automatically retrieved from the algorithm while

it enables the check of the specified order. Moreover, developers can eas-

ily test different optimization choices that would be tedious in plain C++.

This is what we did with the 3D Heat solver based on the double-buffer

technique. As shown in Listing 5.1, using InKSLoop, we have implemented

3 versions of the loops: one with a naive loop nest without blocking, one

based on a 2D cache blocking and a last one using a 3D cache blocking by

modifying almost nothing in the code. Since InKSLoop is usable with C++,

this optimization language does not restrict the expressible optimization

choices: one can still implement optimizations not handled by InKSLoop

in C++. The approach enables optimization specialists to focus on their

specialty which make the development easier while offering a static check

to verify that the optimization is valid with the algorithm. However, it

handles only loop nests that call a single InKSPIA operation. Because of

this limitation, it was not possible to implement non perfect nested loops

(i.e. loops with a single operation) such as the one in the EP kernel of the

NAS benchmark [Bailey et al., 1991]. Indeed, as shown on Listing 5.4, it

122

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

relies on a loop nest that performs multiple operations. Regarding perfor-

mance, the InKSLoop approach has no overhead in comparison to a plain

C++ approach. InKSLoop implementations of the optimizations choices of

the InKSPIA code achieve performance similar to the reference as shown in

Table 5.2.

1 for (i = 1; i <= NK; i++) {
2 x1 = 2.0 * x[2*i-1] - 1.0;
3 x2 = 2.0 * x[2*i] - 1.0;
4 t1 = pow2(x1) + pow2(x2);
5 if (t1 <= 1.0) {
6 t2 = sqrt(-2.0 * log(t1) / t1);
7 t3 = (x1 * t2); /* Xi */
8 t4 = (x2 * t2); /* Yi */
9 l = max(fabs(t3), fabs(t4));

10 qq[l] += 1.0; /* counts */
11 sx = sx + t3; /* sum of Xi */
12 sy = sy + t4; /* sum of Yi */
13 }
14 }

Listing 5.4 – One of the computation intensive parts of the EP kernel of the
NAS benchmark (code from [Griebler et al., 2018]).

InKSLoop is a preliminary test before a real optimization language im-

plementation. The goal was to demonstrate the feasibility of an approach

handling the specification of a simple set of optimizations while retriev-

ing the algorithmic information in InKSPIA code. This DSL enables us to

highlight a set of guidelines for the full definition of the InKSPSO language.

First, this definition must be based on the concepts that InKSPSO must

express, i.e. the optimizations related to memory (allocations and layouts)

and to computations scheduling. InKSLoop focus on computations schedul-

ing by adding strong constraints on the order of the computations. In the

InKSPSO full implementation, adding such constraints may be a good idea

to schedule precisely a set of operations.

Secondly, in order to express these optimization concepts only, it must

be bound to its algorithmic counterpart, express in InKSPIA. In InKSLoop,

the Order keyword refers to the structuring variables of a computational

operation defined in InKSPIA. Although it is quite simple, this strategy is

severely limited and prevents the call of multiple operations in the loop nest,

since they do not share structuring variables. Hence, InKSPSO should come

123

5.3. INKSXMP: AN XMP WRAPPER FOR MEMORY MANAGEMENT ON
DISTRIBUTED ARCHITECTURES

with its own loop indices which then may refer to the operations structuring

variables.

Finally, we must work on the means to express this operation ordering

with the most generality. For this part, a declarative language such as

InKSLoop may not be the best strategy: to handle the interaction between

memory and computation, an imperative language could be easier.

5.3 InKSXMP: an XMP wrapper for

memory management on distributed

architectures

Parallel concerns are essential facets of optimization in most numerical

simulation codes. Hence, after experimenting loop nest specification in the

previous section, we explore a second aspect of the optimization choices:

the parallel concerns. In this Section, we present InKSXMP, an optimization

language that wraps XcalableMP, a tool that handles parallel consideration

in distributed memory environment.

XcalableMP (XMP for short) is a directives based partitioned global

address space (PGAS) language developed at the RIKEN Center for Com-

putational Science in Japan [Lee and Sato, 2010]. It simplifies the handling

of distributed memory by presenting it to the developer as a single global

space. XMP provides a minimal set of directives to manage distributed

memory parallelism, among which directives to distribute an array over a

set of nodes or to manage inter-nodes communications. InKSXMP is a direc-

tive based language that offers an interface to two XMP concerns: domain

decomposition and a specific type of halo exchanges. Compared to plain C

and XMP, InKSXMP asks for optimization choices only while other informa-

tion is retrieved from the InKSPIA code. A source-to-source compiler then

replaces directives with C and XMP code. As illustrated on Lines 1 to 3 and

Line 11 to 12 of Listing 5.6, plain C and XMP are usable in combination

with InKSXMP for all other optimization choices. InKSXMP comes with two

directives: the inks decompose directive supports domain decomposition

while the exchange directive supports halo exchanges.

124

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

1 #pragma xmp nodes p3d[PROC_Z][PROC_Y][PROC_X]
2 #pragma xmp template t3d[:][:][:]
3 #pragma xmp distribute t3d[block][block][block] onto p3d
4

5 void inks_heat(double* InOut_Heat, int nx, int ny, int nz, int nt){
6

7 #pragma xmp template_fix[block][block][block] t3d[nz][ny][nx]
8 double Heat[2][nz][ny][nx]
9 #pragma xmp align Heat[*][z][y][x] with t3d[z][y][x]

10 #pragma xmp shadow Heat[0:0][1:1][1:1][1:1]
11 /*...*/
12 }

Listing 5.5 – Plain XMP implementation of the 3D finite difference heat
equation solver.

1 #pragma xmp nodes p3d[PROC_Z][PROC_Y][PROC_X]
2 #pragma xmp template t3d[:][:][:]
3 #pragma xmp distribute t3d[block][block][block] onto p3d
4

5 void inks_heat(double* InOut_Heat, int nx, int ny, int nz, int nt){
6

7 #pragma xmp template_fix[block][block][block] t3d[nz][ny][nx]
8 #pragma inks decompose % Heat(4*2, 3, 2, 1) with t3d
9 #pragma xmp shadow Heat[0:0][1:1][1:1][1:1]

10 /*Plain C is usable*/
11 for(int i=0; i<10; i++)
12 printf("%d\n", i);
13 }

Listing 5.6 – InKSXMP implementation of the 3D finite difference heat
equation solver.

XMP proposes to allocate multidimensional arrays through two types

of allocations: static and dynamic ones. Just as C, static allocations rely

on multiple pairs of square brackets while dynamic allocations use an allo-

cation function close to malloc. XMP static allocations are well-suited to

most arrays; however, dynamic allocations are required for certain types of

communications, such as the one used in the class of specific halo exchange

we will present later. Once all allocations are described, XMP provides

directives to allocate virtual arrays, named template and describe the de-

composition of these virtual arrays over a set of nodes, namely an XMP

topology. Finally, it provides a directive to map allocated arrays to these

virtual arrays. The combination of the virtual decomposition and the phys-

ical to virtual mapping exposes the physical arrays decomposition over the

XMP topology.

125

5.3. INKSXMP: AN XMP WRAPPER FOR MEMORY MANAGEMENT ON
DISTRIBUTED ARCHITECTURES

InKSXMP provides a directive that wraps XMP static and dynamic al-

location of logical arrays described in the InKSPIA algorithm. The domain

size is extracted from InKSPIA source and the user only has to specify

its mapping onto memory. In InKSPIA code, there are no concerns for

memory optimization such as dimension ordering or memory reuse. There-

fore, InKSXMP supports dimension reordering and folding which consists

in reusing the same memory address for subsequent indices in a given di-

mension. As in XMP, InKSXMP supports domain decomposition mapped

onto an XMP topology. Listing 5.6 illustrates InKSXMP domain decompo-

sition from the InKSPIA code presented in Listing 4.10 whereas Listing 5.5

presents the same domain decomposition expressed in plain XMP. As shown

on Line 8, using InKSXMP, the data type is retrieved automatically as well

as the size of the array. Users focus on dimension reordering, expressed

using integers. For instance, according to the algorithm, the first three di-

mensions of the Heat logical array are space dimensions, x, y and z, while

the last one, t, is reserved for the time. In InKSXMP, we reorder these

dimensions to take advantage of the smaller stride for the space dimension:

the fourth dimension of the algorithm, the time one, is placed on the left of

the physical buffer; that is, the dimension with the biggest stride. Similarly,

the x dimension is placed at the right, at the smallest stride dimension. In

addition, despite the decomposition of the space dimension, we do not want

to distribute the time dimension. Therefore, we replicate it by using the

star, ’*’, operator. Finally, we fold the time dimension: it is not neces-

sary to hold values of all time-steps; a double-buffer strategy is enough.

Therefore, we keep only two time-steps, expressed by the 2 following the

star operator. On the contrary, in plain XMP, illustrated in Listing 5.5,

users have to specify the dimension sizes manually as well as mapping the

physical buffer to the virtual distributed array.

XMP also supports halo allocations and exchanges. It automatically

allocates a larger array on each node, depending on the halo size provided

by the user, and manages the index computation itself such that halo areas

are completely transparent for the user. We call such halo areas connected

halo buffer, as they are directly parts of the array. As an XMP domain can

be specified as periodic, such halo areas can be handled accordingly.

126

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

On the contrary, another method to implement halo areas is to use dy-

namic halo buffer, i.e. to use independent buffers to store the halo values.

Despite being less common, this strategy heavily reduces memory footprint

for large multidimensional arrays when the halo region is read only in cer-

tain dimensions at a time. In particular, it gives great performance result

in combination with the Buffer optimization strategy of the InKSLoop ap-

proach. For the sake of an example, let’s consider a 2D domain X × Y

named A and two stencil operators f1 and f2. A is decomposed in 4 perfect

rectangles over 4 nodes, P11, P12, P21 and P22. f1 reads only values on the

first dimension, x, of A whereas f2 focuses on the second dimension, y. To

perform the f1 operation, each node needs a halo of size X/2. Then, for

f2, each needs a halo of size Y/2. With the connected halo buffer strategy,

each node needs to allocate a halo region of X/2 + Y/2. However, to apply

f1, a halo area is necessary only to hold values of the x dimension. In the

same way for f2, a halo area may contain only values of the y dimension.

Therefore, we can use the dynamic halo buffer and allocate a buffer of size

max(X/2, Y/2). This buffer shall be used as halo region for the x dimen-

sion during the f1 operation and then be reused as halo region for the y

dimension during the f2 operation. Figure 5.1 illustrates the dynamic halo

buffer strategy for one of the node on a 2D example. In some application, in

which arrays are of dimension 5 or greater, such strategy can reduce mem-

ory footprint and make possible to run bigger cases. Unfortunately, as it

is uncommon, this strategy is not directly supported by XMP and requires

users to describe explicitly the allocations and communications for halo ex-

changes. In addition, the exchanged array shall be dynamically allocated.

InKSXMP supports the dynamic halo buffer pattern. Once a logical

array has been dynamically allocated using the InKSXMP directive for that

purpose, the user can specify which dimension of that array should be

exchanged. In addition, one should add the halo size, the operation that

will be executed after the exchange, or both. If the operation is specified, the

InKSXMP compiler can automatically compute the halo size and if it was not

provided, use this size for the allocations, or verify that the specified halo

size is large enough. This calculation is made using the InKSPIA operation

data inputs and outputs. Finally, the InKSXMP compiler generates the C

127

5.3. INKSXMP: AN XMP WRAPPER FOR MEMORY MANAGEMENT ON
DISTRIBUTED ARCHITECTURES

A - 2D domain

1D buffer 1D buffer

y

x

(a) Halo buffers in 1st dimension

A - 2D domain

1D buffer 1D buffer

y

x

(b) Halo buffers in 2nd dimension

Figure 5.1 – Dynamic halo exchange representation on a 2D domain. The
blue and green buffers of (a) are reused in (b).

and XMP code that perform the actual distributed halo allocations and

exchanges.

5.3.1 Evaluation of the InKSXMP approach

To evaluate the InKSXMP approach in terms of performance and us-

ability, we have first implemented, using InKSPIA, the algorithm of the 3D

heat equation solved by finite difference method, presented in Listing 4.10,

and one kernel of the well-known NAS benchmark [Bailey et al., 1991],

EP, using the C++ version as reference [Griebler et al., 2018]. We have

then implemented an InKSXMP version of the optimization choices. For the

heat equation, that corresponds to the domain decomposition presented in

Listing 5.6. As for the EP NAS kernel, we have implemented a domain

decomposition of all the buffers. All other optimization choices, includ-

ing loop scheduling were implemented using plain C and XMP. Finally, we

have compared the execution times between InKSXMP versions and plain C

and XMP versions of optimization choices. All codes were compiled with

the XMP compiler, XMPCC, (-O3 -xHost -ip compilation options) and

executed on up to 4 nodes of the Irene cluster (c.f. 5.1.1 for architecture

details). XMPCC was compiled with the Intel 18 compiler and based on

IntelMPI 2018. Only one core per node was used, as to evaluate the remote

communications. Results are presented in Table 5.3.

128

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

Execution time (second)

Benchmark C+XMP InKSXMP Diff.

NAS/EP 14.01 (±0.16%) 14.00 (±0.13%) 0.07%

Heat 422.21 (±4.46%) 421.93 (±4.65%) 0.07%

Table 5.3 – Comparison of C+XMP and InKSXMP implementations. Exe-
cution time of the C+XMP and InKSXMP implementations of the EP NAS
kernel, class B - Time/iteration of the 3D heat equation (7-point stencil),
size (10243) with 10 time-steps. Median and maximal relative change of 10
executions on 4 nodes (1 core per node).

In terms of specification of optimization choices, InKSXMP enables the

developer to specify optimization choices only while algorithmic informa-

tion is extracted from InKSPIA code. This is illustrated by Listing 5.6

presenting the InKSXMP 3D domain decomposition, in comparison to its

plain XMP counterpart, presented in Listing 5.5. Both are equivalent, but

the InKSXMP version expects only optimization choices parameters; that

is, dimension reordering and folding as well as the distributed memory con-

cerns which here corresponds to the non distribution of the time dimension.

Hence, one can test another memory layout, such as a different dimensions

ordering, by changing only a few parameters, while multiple directives must

be modified in XMP. Note that since InKSXMP is a wrapper for XMP us-

ing InKSPIA to retrieve some information, it is usable in any codes that

can be expressed using InKSPIA and optimized with XMP. Since InKSXMP

is usable with C, it does not restrict the expressible optimization choices:

one can still implement optimizations not handled by our wrapper using

C and XMP. Moreover, operations such as halo size computation are au-

tomatized using the information gathered from InKSPIA code. Regarding

performance, the InKSXMP approach has no overhead in comparison to a

plain C and XMP approach. InKSXMP implementations of optimization

choices of the InKSPIA code achieve performance similar to the reference

as shown in Table 5.3. In the case of the heat equation solver, performance

are rather terrible in both situations because of our XMP misuse. Cur-

rent implementation of XMP supports only the C language while we rely

on C++ to handle most of the memory accesses. For technical reasons,

data access are managed in a way that is not intended by XMP, which

129

5.3. INKSXMP: AN XMP WRAPPER FOR MEMORY MANAGEMENT ON
DISTRIBUTED ARCHITECTURES

negatively impacts the performance. In addition, InKSXMP and InKSLoop

are not compatible, as the latter uses C++. Although InKSXMP and plain

XMP achieve similar performance, our language comes with limitations. It

offers distributed memory allocations but no control on the access to this

memory, letting optimization specialists in charge of the good use of this

memory.

Just as InKSLoop, InKSXMP is a preliminary test before a full optimiza-

tion language implementation. The goal was to propose a way to express

a simple set of optimizations and retrieving the algorithmic information in

InKSPIA code. Compared to InKSLoop, which focuses on computation or-

dering, InKSXMP targets memory and enables us to highlight a different set

of guidelines for the full definition of the InKSPSO language.

First, with InKSXMP we have tried some tests on the memory aspects,

providing a directive to allocate a logical array and to reorder and fold

its dimensions. As mentioned earlier, once this memory is allocated, the

mapping of values to the memory is left to the user. Proposing a way to

reorder and fold the logical dimensions while specifying how memory cells

correspond to logical values seems like an efficient strategy to handle the

memory layout concern in InKSPSO.

Then, the domain decomposition directives make explicit reference to

logical arrays described in InKSPIA, making possible the computation of

the size of each dimension and the halo size depending on the data being

accessed. It is clear that, in InKSPSO, memory layout shall refer to the

logical arrays described in the algorithm. Such strategy makes possible

the use of InKSPIA information to verify that a memory layout is in accor-

dance with the following computations or even to automatically guess these

computations.

Finally, we must work on the means to express these optimization con-

cepts with the most generality. For this part, we think that working with

existing tools is probably mandatory for most complex strategy, such as

XMP for the domain decomposition. Therefore, supporting at least the

most common optimization tools, such as OpenMP and MPI, is a require-

ment to propose an optimization language usable in most types of codes.

130

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

5.4 InKSPSO: a language to express general

optimization choices

With the InKSPIA language of the InKS programming model, it is pos-

sible to express all aspects of simulation algorithm. As a description of the

simulation, the algorithm leaves memory placement and operations execu-

tion order unspecified. In this chapter, we have proposed three approaches

to set such choices: the InKSC compiler and both InKSLoop and InKSXMP

optimization languages. However, one may notice that the first approach

is fully automatic and not designed to reach the best possible performance,

while the two later target a very specific kind of optimization choices. For

the InKS programming model to be considered an interesting approach,

it is essential to come up with means to express all optimization choices;

that is, both memory placement and operations ordering. Compared to

the previous optimization approaches of the InKS model, it shall be gen-

eral enough to express an entire program while being capable of reaching

the best possible performance. However, these previous approaches bore

guidelines for the specification of this general optimization language. In

particular, the language shall be imperative and focus on memory layouts

while offering instructions that constraint the operation ordering. Hence,

this section is dedicated to InKSPSO, an optimization language of the InKS

programming model with the aim of achieving such goals.

InKSPSO is an imperative optimization language of the InKS program-

ming model with the aim of expressing both memory layouts and operation

scheduling by reusing the pieces of information contained in the algorithm.

Just as InKSPIA, InKSPSO optimization choices expression is mostly based

on the Polyhedral model. An InKSPSO code is always derived from an

InKSPIA algorithm specification and respects its statements, especially in

terms of ordering constraints and execution results. If the InKSPSO code

does not respect its algorithm, the code is invalid and, thanks to the Poly-

hedral model, it can be detected.

In a typical InKSPSO code, one first allocates multidimensional buffers.

Then one defines links between the cells contained in these buffers and the

cells in logical arrays described in InKSPIA. This step’s objective is to

131

5.4. INKSPSO: A LANGUAGE TO EXPRESS GENERAL OPTIMIZATION
CHOICES

exhibit a correspondence between the logical and physical memory spaces.

Computations are handled by requesting the update of a buffer content with

the values of the logical array region mapped in it. Knowing the logical

regions mapped in each buffer, the compiler can automatically extract from

the InKSPIA algorithm the sequence of operations to execute for an update.

Finally, one can reuse memory by redefining the links such that buffers’

regions correspond to new logical arrays regions. An InKSPSO program

is a sequence of those statements whose execution in order must result in

up-to-date buffers containing the output of the algorithm. Indeed, as we

have highlighted in Section 5.2.2, proposing an imperative language is more

suited for our optimization approach.

To express these concepts, InKSPSO defines two sets of instructions. The

first set of instructions (illustrated in Listing 5.7) is related to the memory

layout management:

• var declares a buffer variable that may be allocated later.

• alloc allocates a contiguous multidimensional physical buffer. It

takes as parameters the type and size of the buffer.

• free releases the memory space occupied by a buffer.

• map registers a mapping between cells from a physical buffer and cells

from a logical array declared in InKSPIA. map takes as parameter a

coordinate mapping function.

• unmap unregisters a map from the set of defined ones.

1 var double buffer(2) //2D buffer declaration
2 alloc double buffer(2, X) //2D buffer allocation
3

4 //Link between "buffer" physical cells and "full_array" logical cells
5 map i=[0:X[buffer(0, i) = full_array(i, 0)
6

7 /*...Computations...*/
8

9 /*Remap the same physical region to a new logical one*/
10 map i=[0:X[buffer(0, i) = full_array(i, 1)

Listing 5.7 – Example of InKSPSO alloc and map instructions.

132

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

A logical coordinate can be mapped to multiple physical coordinates

in order to store a single value in multiple locations. On the opposite,

a physical coordinate can only be mapped to a single logical coordinate

at a given point of execution that represents the value currently stored in

this location. Hence, the map instruction implies an unmap of the physical

region being mapped. A buffer that contains values but is not mapped to

a logical array is considered empty. Remapping a buffer region makes the

values it contains inaccessible. InKSPSO accepts any affine function for the

map statement which makes it possible to use simple memory layouts like

column or row major, but also much more convoluted ones (e.g. blocked

mapping). Like in InKSXMP, it is possible to fold or reorder any dimension.

Then, operations ordering is specified by one of the four variations of

the update <region> using <strategy> construct. The <region> pa-

rameter defines the region where to update values and shall be a logical

region. The <strategy> can be one of the following:

• <operations[,...]> updates the values in the specified region at

the exclusion of any other using the specified operation procedures,

all required dependencies must already be up-to-date in other buffers;

• auto is similar but updates any intermediate value required as long

as it is already mapped in a buffer;

• copy expects a physical region and copies the values from one or more

buffer that must be up-to-date and mapped to the same logical area;

• for introduces a loop where the sequence of intermediate statements

to execute for the update is manually specified.

During an update statement, the values are written to the buffer most

recently mapped while they are read from the buffer most recently mapped

that is up-to-date. Hence, the operations execution order is driven by data

accesses. Associated with the memory statements, this strategy enables

users to identify easier how the vectorization will be implemented or how

the cache will be used.

The for loop (illustrated in Listing 5.8) iterates over one or multiple

indices. Each index accepts a fortran-like iteration domain specified using

133

5.4. INKSPSO: A LANGUAGE TO EXPRESS GENERAL OPTIMIZATION
CHOICES

the syntax {start:end[:step]}. In addition, each index can have options

specified. Currently, InKSPSO provides two options:

• OMP FOR keyword to request a parallel execution of the loop iterations,

equivalent to a #pragma omp parallel for;

• OMP TASK to put each iteration in an OpenMP task, executed by the

available computing units.

In addition, one can specify the OpenMP schedule or collapse strategies

to the OMP FOR option. The support of the OpenMP Task paradigm in

InKSPSO is a preliminary work, fruit of a collaborative effort involving

Jérôme Richard, an expert in the task paradigm. This exploratory study is

described with details in Appendix C.

1 update full_array(0:X, T-1) using for(t{1:T}){
2 //t is available in the region
3 map i=[0:X[buffer(t%2, i) = full_array(i, t)
4 update full_array(i, t) using square
5 }

Listing 5.8 – Example of InKSPSO for instruction.

Regions are defined by a range in each of their dimensions. The bound-

aries of the range can linearly depend on the value of previous dimensions.

The dom keyword is used to define named ranges that can then be reused

whenever needed.

An InKSPSO function defines the signature of the generated C++ func-

tion (illustrated in Listing 5.9). Its parameter list contains integers that

match the parameters of the implemented algorithm and buffers where to

store the inputs and outputs. Each buffer can be marked as either allocated

by the caller or in the function. The mapping of the input and output re-

gions specified in the algorithm into these buffers is also specified.

5.4.1 Illustrative example

We now use the 3D heat equation solved using the finite difference

method to illustrate the InKSPSO syntax and concepts. Listing 4.10 shows

the InKSPIA implementation of the simulation algorithm while Listing 5.10

134

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

1 /* InKSpso interface */
2 my_simulation(
3 /* Specify the allocation and map status of the
4 * physical buffer "buffer" expected
5 * at the end of the program
6 */
7 give double buffer(2, X)
8 {out: i=[0:X[H(T-1 % 2, i) = full_array(i, T-1)},
9 X, T

10){
11 /* InKSpso code */
12 }
13

14 /* Equivalent C++ interface */
15 double* my_simulation(){
16 double* buffer = new double[2*X];
17

18 //*** Updating buffer such that it contains the full_array
19 //*** values at the last time step
20

21 return buffer;
22 }

Listing 5.9 – Example of InKSPSO interface and its C++ counterpart.

illustrates the InKSPSO implementation of the optimization choices. This

InKSPSO code implements the same optimization choices as the C version

in Listing 4.1, namely the double-buffer strategy.

1 inks_heat(
2 give double H(2, nz, ny, nx) {out: iz=[0:ny[iz=[0:ny[ix=[0:nx[
3 H(nt-1 mod 2, iz, iy, ix) = Heat(ix, iy, iz, nt-1)},
4 nx, ny, nz, nt
5){
6 dom iz=[0:ny[iz=[0:ny[ix=[0:nx[
7

8 alloc double H(2, nz, ny, nx)
9 map H(0, iz, iy, ix) = Heat(ix, iy, iz, 0)

10

11 /*Initialization*/
12 update Heat(ix, iy, iz, 0) using Init
13

14 /*Timeloop*/
15 update Heat(ix, iy, iz, nt-1) using for(t{1:nt}){
16 map H(t mod 2, iz, iy, ix) = Heat(ix, iy, iz, t)
17 update Heat(ix, iy, iz, t) using Boundary, Inner
18 }
19 }

Listing 5.10 – InKSPSO implementation of the 3D finite difference heat
equation solver using a double-buffer strategy (InKSPIA algorithm is
available in Listing 4.10).

The entry point of the simulation is defined in the InKSPIA code in the

135

5.4. INKSPSO: A LANGUAGE TO EXPRESS GENERAL OPTIMIZATION
CHOICES

first part of the simulation kernel. Therefore, the InKSPSO code starts

to express the memory layout of the output logical array as well as the

property of the buffer (lines 2 and 3). Here, give means that the caller will

pass a H pointer and expects that, by the end of the InKSPSO code, it will be

allocated. On Line 8, the H pointer is allocated and points to a buffer of size

2× nx× ny × nz. This buffer is usable as a 2D array for the double-buffer

strategy. The next line maps this buffer to a subset of the Heat logical array.

More precisely, each cell identified by the coordinate (0, iz, iy, ix) in

the H buffer corresponds to the cell (ix, iy, iz, 0) in the logical Heat

array, for any ix, iy, iz between 0 and respectively nx, ny, nz. Then, it

updates every value of the space dimension at the first time-step of the Heat

logical array, using the init operation procedure. This area being mapped

to the H buffer, as mentioned earlier, it is written during the computation.

Finally, Line 15 illustrates the update <region> for construct with an

index t iterating from 1 to nt. It introduces the time-loop containing the

core of the computation: the 3-point stencil and boundaries computations.

The region Heat(ix, iy, iz, nt-1) corresponds the logical region that

will be up-to-date by the end of the loop. Inside the loop, the t index is

used to:

1. put in place the double-buffer strategy by remapping H to Heat at

each iteration (Line 15);

2. update all the values in the space dimension at the current time-step

of the Heat logical array using the Boundary and Inner operation

procedures (Line 16).

At the end of the program, the H buffer holds all values in the space

dimension at the two last time-steps of the Heat logical arrays, as expected

by the algorithm described in InKSPIA in Listing 4.10.

Following the specification of a compiler to handle automatically the op-

timization choices (Section 5.1), the InKSLoop language to express nested

loops (Section 5.2) and the InKSXMP language which takes care of domain

decomposition (Section 5.3), this Section has finally presented the InKSPSO

language. Unlike others, InKSPSO is capable of specifying general optimiza-

tion choices, including memory layouts and operations scheduling. However,

136

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

just as the other optimization languages, it uses the InKSPIA algorithm to

ease the specification of the optimizations. The following part will describe

the implementation of our InKSPIA + InKSPSO compiler.

5.5 The source-to-source InKSPSO compiler

We now present the InKSPSO source-to-source compiler. The InKSPSO

compiler combines an InKSPIA algorithm with InKSPSO optimizations to

generate C++ code. The compilation process consists of four steps. First,

it analyzes the InKSPIA code and encodes it using the Polyhedral model.

At this point, the compiler has access to the set of logical cells that will

be accessed during the simulation as well as the set of operation instances,

their inputs and outputs. This step is presented in Section 4.3.3. As a

reminder, here are the main pieces of information available:

• the set of integer parameters P ;

• the set of logical arrays A = {a1, ..., an};

• the dimension dim(a) ∈ N of each logical array a ∈ A;

• the set of operations K = {k1, ..., kn};

• the set of data instances allocated at some point of the execution Dx;

• the set of operation instances executed at some point of the execution

Kx;

• the relations mapping operation instances to their data dependencies

(inputs I and outputs O);

• the order relation, mapping an operation instance to another opera-

tion instance that must be executed later, ≺.

In addition, we denote Px the set of physical cells that can be allocated

at any time along program execution (i.e. the computer physical memory).

A second step analyzes the InKSPSO statements and checks that they

are consistent with the InKSPIA algorithm. For instance, it verifies that

137

5.5. THE SOURCE-TO-SOURCE INKSPSO COMPILER

the logical array specified in a map or update statement actually exists in

the InKSPIA code and that the number of dimensions specified effectively

matches.

The third compilation phase obtains the required information for the

code generation. We illustrate this phase with the InKSPSO code presented

on Listing 5.12, corresponding to the optimization choices of the InKSPIA

algorithm presented on Listing 5.11. During this stage, each statement

is subdivided into one or more “actions”. The actions associated to the

various InKSPSO statements are as follows:

• each alloc statement allocates the provided physical region (alloc

action),

• each take or give physical region property specified in the InKSPSO

interface is considered an alloc statement,

• each free statement both deallocates (free action) and unmaps (un-

map action) the provided physical region,

• each unmap statement removes the mapping associated to the provided

physical region (unmap action),

• each map statement first unmaps (unmap action) any pre-existing

mapping of the mapped physical region, as specified in the InKSPSO

definition, then it applies the provided mapping (map action) on the

provided region,

• each update <operation...> statement first the required reads log-

ical region (read action) to write the provided logical region (write

action). It reads logical regions depending on the operations being

called (i.e. their input relation specified in InKSPIA).

• each update auto statement first reads the required logical region

(read action) to write the provided logical region (write action). It

reads and writes logical region, as well as all intermediate logical

region that would be necessary, depending on the operations being

called (i.e. their input relation specified in InKSPIA).

138

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

• each update copy statement first considers the logical region that

is mapped to the provided physical region, then it reads physical

regions that are up-to-date and mapped to the same logical region

(read action), and finally, it writes this logical region to the provided

physical region (write action),

• each in mapping property specified in the InKSPSO interface is con-

sidered a map statement and a write action of the provided logical

region.

1 kernel inner(x, t) : (
2 double R {in: (x, t-1); (x-1, t-1); (x+1, t-1)| out: (x, t)}
3)
4 #CODE(C)
5 R(x, t) = 0.5 * R(x, t-1) + 0.25 * (R(x-1, t-1)+R(x+1, t-1));
6 #END
7

8 kernel bord(x, t):(
9 double B {in: (x, t-1) | out:(x, t)}

10)
11 #CODE (C)
12 B(x, t) = B(x, t-1);
13 #END
14

15 simulation inks_heat(X, T):(
16 double Heat(2) {in: (0:X, 0) | out: (0:X, T-1)}
17)
18 #CODE (inks)
19 inner (1:X-1, 1:T) : (Heat),
20 bord it=[1:T[{ (0, it); (X-1, it) } : (Heat)
21 #END

Listing 5.11 – InKSPIA implementation of the 1D heat equation solved with
finite difference.

Each action is associated to a time vector ~t ∈ T . A time vector is a

vector of integers which represents the logical time at which a statement is

executed. As explained in more details in Section 3.5.3, time vectors are

sorted according to the lexicographic order. We set the vector equals to [1]

as the smallest time vector associated to an action. This way, while they

may differ in length two vectors can always be compared. However, because

of implementation choices in isl , in order to compare two time vectors, they

must have the same length. For this reason, we fill the shorter time vectors

with zeros. We define the time vector ~tmax ∈ T such that ∄~t ∈ T | ~tmax < ~t.

Therefore, ∀~t ∈ T, [1] ≤ ~t ≤ ~tmax

139

5.5. THE SOURCE-TO-SOURCE INKSPSO COMPILER

1 //actions’ time vector are presented in commentary
2 inks_heat(
3 take double H(2, X) //A->[1,0,0]
4 {in : x=[0:X[H(0, x) = Heat(x, 0) //U->[2,0,0] + M->[3,0,0] + W->[4,0,0]
5 | out: x=[0:X[H(T-1, x) = Heat(x, T-1)},
6 X, T
7)
8 {
9 update Heat(0:X, T-1) using for(t{1:T})

10 {
11 map x=[0:X[H(t mod 2, x) = Heat(x, t) //U->[5,t,1] + M->[5,t,2]
12 update Heat(0:X, t) using inner, bord //R->[5,t,3] + W->[5,t,4]
13 }
14 //tmax -> [6,0,0]
15 }

Listing 5.12 – InKSPSO implementation of the optimization choices (double-
buffer) of the 1D heat equation (Algorithm on Listing 5.11).

The time vector ~ts ∈ T of the action s is defined as follow:

1. a constant integer that identifies the action rank in the top level func-

tion block;

2. then, for each surrounding for loop:

a) as many integers as the loop has indices, each integer taking the

value of the corresponding indice,

b) a constant integer that identifies the action rank in the loop

block.

Each action is represented by a relation that maps the action time vector

~t ∈ T to the action effect:

• A : T → P(Px) associates to an action time vector, the physical buffer

region this action allocates;

• F : T → P(Px) associates to an action time vector, the physical buffer

region this action deallocates;

• M : T → P(Px×Dx), maps an action time vector to a relation repre-

senting the mapping between physical and logical region this action

introduces;

140

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

• U : T → P(Px) associates to an action time vector, the physical buffer

region this action unmaps;

• R : T → P(Dx) associates to an action time vector, the logical array

region this action reads;

• W : T → P(Dx) associates to an action time vector, the logical array

region this action writes;

For example, Listing 5.12 shows how an action is associated to a time

vector. The take property on Line 3 corresponds to an alloc statement,

and therefore, an alloc action, associated to the time vector [1, 0, 0]. The

in property on Line 4 is composed of three consecutive actions, unmap,

map and write, respectively associated to the time vector [2, 0, 0], [3, 0, 0],

[4, 0, 0]. Then, an update for statement is found: each action inside the

loop will be associated to a time vector that contains the action numbering

(4), the indice (t) and the action rank in the loop. Finally, Line 12, the

update statement invokes the inner and bord operations which read values,

producing a read action at date [5, t, 3]. Then, they write values, producing

a write action at date [5, t, 4].

In addition to the time vector, each action has an effect on the program.

Hence, the alloc action on Line 3 considers allocated a physical buffer of

size X × 2 named H. Line 4, the unmap action unmaps the physical cells 0

to X on the 0th row of the H physical buffer. The following map action maps

these cells to the cells of the Heat logical array, such that, for all x between

0 and X, the xth physical cell of the 0th row corresponds to the 0th logical cell

of the xth row. As described in the InKSPIA code, the second dimension

of the Heat logical array is considered as the time dimension. In order

to obtain correct performance, it is mandatory to set the physical array’s

smaller stride dimension (the most right one) as the space dimension. That

is why we specify a dimensions reordering in this mapping. And finally, this

line introduces the write action, writing the logical region being mapped.

Line 11, the map action changes the memory layout, based on a double-

buffer strategy, using the modulo operator (% in C). Finally, according to

the algorithm (Listing 5.11), the read action specified Line 12 reads values

141

5.5. THE SOURCE-TO-SOURCE INKSPSO COMPILER

of the previous time-step while the write action writes values of the current

time-step t in the Heat logical array.

We can gather all these pieces of information to construct the A, U , M ,

R and W relation. Let T,X, t ∈ N | 0 ≤ t < T , we can express all action

relations as is in isl form:

A =
{

[1, 0, 0]→ H[j, i] | 0 ≤ i < X ∧ 0 ≤ j < 2
}

U =
{

[2, 0, 0]→ H[0, i] | 0 ≤ i < X;

[5, t, 1]→ H[tt, i] | 0 ≤ i < X ∧ (tt+ t)mod 2 = 0
}

M =
{

[3, 0, 0]→ {(H[0, i], Heat[i, 0]) | 0 ≤ i < X};

[5, t, 2]→ {(H[tt, i], Heat[i, t]) | 0 ≤ i < X ∧ (tt+ t)mod 2 = 0}
}

R =
{

[5, t, 3]→ Heat[i, t− 1] | 0 ≤ i < X
}

W =
{

[4, 0, 0]→ Heat[i, 0] | 0 ≤ i < X;

[5, t, 4]→ Heat[i, t] | 0 ≤ i < X
}

We defineMnever ⊂ T 2 × Px ×Dx, the set of tuples (~tm,~tmax, p, d) such

that the physical cell p is mapped to d between ~tm and ~tmax. That it to say,

all physical regions that were never unmapped after their mapping. Mnever

is computed by subtracting to M all physical regions mapped at a mapping

dates ~tm and unmapped at a unmapping date ~tu | ~tm < ~tu.

Mnever =
{

(~tm,~tmax, p, d) ∈ T 2 × Px ×Dx | (p, d) ∈M(~tm),

∄~tu ∈ T, p ∈ U(~tu), ~tm < ~tu

}

Going back to our example (Listing 5.12), we can computeMnever with

the M and U relations we have computed earlier. For the sake of the

example, we will consider that there is at least one time-step, i.e. T > 1. In

this example, the time vector ~tmax is equal to [6, 0, 0]. First,Mnever contains

the mappings such that they were never unmapped. We can compute it by

removing from M the elements that have an unmapping date that appears

after their mapping date. In this program, this corresponds to the element

142

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

H[0, i] mapped at [3, 0, 0] which has an unmapping date at [5, t = 2, 1].

Indeed, H[tt, i] | (tt+t)mod 2 = 0 evaluates toH[0, i] when t = 2. Similarly,

most elements have an unmapping date smaller than their mapping date,

except for the last two columns of the Heat logical array, that is to say, the

last two time-steps:

Mnever = {[5, tt, 2, 6, 0, 0]→ {(H[ttmod 2, i], Heat[i, tt]) : 0 ≤ i < X ∧ T − 2 ≤ tt < T}

We define Mbetween ⊂ T 2 × Px ×Dx, the set of tuples (~tm,~tu, p, d) such

that the physical cell p is mapped to d between ~tm and ~tu. It is computed by

taking all physical regions mapping dates from M . Then, we extract from

U the unmapping of this physical region that happens after its mapping

and we keep only the earliest one. Finally, we find which logical data is

mapped in M .

Mbetween =
{

(~tm,~tu, p, d) ∈ T 2 × Px ×Dx | (p, d) ∈M(~tm),

p ∈ U(~tu), ~tm < ~tu,

∄~tu2 ∈ T, p ∈ U(~tu2), ~tm < ~tu2 < ~tu,
}

Mbetween contains the mappings that are available at a given time of

the simulation. Considering the time loop of Listing 5.12, there are two

mappings available at each iteration. At the iteration t=1, two mappings

are available because their unmapping date appears later:

{

[3, 0, 0]→ {(H[0, i], Heat[i, 0]) : 0 ≤ i < X};

[5, 1, 2]→ {(H[1, i], Heat[i, 1]) : 0 ≤ i < X}
}

Then, because of the double-buffer strategy, as the loop moves forward,

the t%2th row of H is unmapped and mapped to the next column of Heat

(the tth). For instance, the mapping of H[t mod 2, x] → Heat[x, t]

is valid until the iteration t+2, when it is mapped to another time-step of

Heat. Figure 5.2 illustrates the displacement of the mapping depending on

the time-step.

We define M ⊂ T 2 × Px × Dx, the union of Mnever and Mbetween. It

143

5.5. THE SOURCE-TO-SOURCE INKSPSO COMPILER

contains all tuples (~tm,~tu, p, d) such that the physical cell p is mapped to d

between ~tm and ~tu. M of the program presented on Listing 5.12 contains

the following elements:

{

[3, 0, 0, 5, 2, 1]→ {H[0, i]→ Heat[i, 0] : 0 ≤ i < X};

[5, t, 2, 5, t+ 2, 1]→ {H[tmod 2, i]→ Heat[i, t] : 0 ≤ i < X ∧ t < T − 2}

[5, tt, 2, 6, 0, 0]→ {H[ttmod 2, i]→ Heat[i, tt] : 0 ≤ i < X ∧ T − 2 ≤ tt < T}
}

Note that the number of dimensions of the domain of each element is

twice the size of a time vector because the first part corresponds to the

mapping date while the second part gives the unmapping date.

We denote Wx ⊂ T 2 × Px ×Dx, the set of tuples (~tw,~tu, p, d) such that

the value of the logical cell d is written in the physical cell p at the date

~tw until the unmapping date ~tu. We obtain the mappings available at the

time of writing ~tw from M and keep only the one mapped the latest.

Wx =
{

(~tw,~tu, p, d) ∈ T 2 × Px ×Dx |

(~tm,~tu, p, d) ∈M,

d ∈ W (~tw), ~tm < ~tw < ~tu,

∄~tm2, ~tu2 ∈ T, ∀p2 ∈ Px, (p2, d) ∈M(~tm2,~tu2), ~tm < ~tm2 < ~tw < ~tu2

}

Finally, we define Rx ⊂ T ×Px×Dx, the relation that maps a statement

time vector to the physical region this action reads That is, the elements

(~tm,~tu,~tw, p, d) ∈ Wx such that ~tw < ~tr < ~tu and d = dr while there is no

other element with a lexicographically greater value of ~tw.

Rx =
{

(~tr, p, d) ∈ T × Px ×Dx |

(~tw,~tu, p, d) ∈ Wx,

d ∈ R(~tr), ~tw < ~tr < ~tu,

∄~tw2,~tu2 ∈ T, ∀p2 ∈ Px, (p2, d) ∈ Wx(~tw2,~tu2), ~tw < ~tw2 < ~tr < ~tu2

}

Considering again our example, on Listing 5.12, we can compute Wx

144

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

H

x X

0

1

mapping

Heat

t T

x

X

(a) t = t0

H

x X

0

1

mapping

Heat

t T

x

X

(b) t = t0 + 1

H

x X

0

1

mapping

Heat

t T

x

X

(c) t = t0 + 2

Figure 5.2 – Modifications of the memory mapping H → Heat depending
on the time-step. The mapping depends on a modulo operator applied to
t (Listing 5.12). The blue, respectively green, region of Heat is mapped
to the blue, respectively green, region of H. At each time-step, the least
recently mapped region is unmapped to be mapped to the next region.
Three time-steps are represented.

145

5.5. THE SOURCE-TO-SOURCE INKSPSO COMPILER

and Rx from M, W and R. As a reminder, we had W and R equal to:

R =
{

[5, t, 3]→ Heat[i, t− 1]} : 0 ≤ i < X
}

W =
{

[4, 0, 0]→ Heat[i, 0] : 0 ≤ i < X

[5, t, 4]→ Heat[i, t] : 0 ≤ i < X
}

In our situation, Wx contains three elements. First, for the initialization

it reads in the mapping specified by the in property. Then, during all time-

steps t, except the last two, the tuple (~tm,~tu, p, d) ∈ M considered for

writing is the one that is unmapped at t+2. For the last two time-steps,

the tuple used is the one which is never unmapped, that is with ~tu = ~tmax.

Rx does not contain the unmapping date. Therefore, it contains only one

element that depend on the time-step t: the physical region written at the

previous time-step, t-1.

Rx =
{

[5, t, 3]→ {H[(t− 1)mod 2, i]→ Heat[i, t− 1] : 0 ≤ i < X}
}

Wx =
{

[3, 0, 0, 4, 0, 0, 5, 2, 1]→ {H[0, i]→ Heat[i, 0] : 0 ≤ i < X}

[5, t, 2, 5, t, 4, 5, t+ 2, 1]→ {H[tmod 2, i]→ Heat[i, t] : 0 ≤ i < X ∧ t < T − 2

[5, tt, 2, 5, tt, 4, 6, 0, 0]→ {H[ttmod 2, i]→ Heat[i, tt] : 0 ≤ i < X ∧ T − 2 ≤ tt < T
}

Rx and Wx gives us the information where to read and write during

an update statement. In particular, it enables the compiler to find which

physical buffer should be read or written during each update statement,

as multiple buffers may be mapped to the same logical area required to

be updated. In this situation, the most recently mapped buffer should be

written while, in the case of a read, the most recently updated buffer should

be read. It is enough to statically verify that the InKSPSO specification is

in accordance with the InKSPIA algorithm and to generate the code.

We handle the allocation and deallocation in the same way that we have

computedM using the map and unmap actions. That is, we can check that

a physical region is valid to be mapped after it is allocated and before it

is freed. Note that the free statement involves both a deallocation and

146

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

unmap action. Therefore, it is already taken into account to check if the

buffer is accessible. That is to say, if a physical region Px is allocated at the

time vector ~ta, mapped at the time vector ~tm and freed at ~tf , the window

of time at which Px is accessible is ~ta < ~tm < ~tu < ~tf

The last step of the compilation stage consists in generating C++ code

from the InKSPSO statements and using the Rx and Wx relations. Each

alloc statement is translated into a C++ buffer allocation and a set of

integers used to pass from a multidimensional coordinate system to a 1D

coordinate system, as illustrated on Listing 5.13 (Page 150).

Each update for statement is translated into a C++ loop nest. The

number of nested for and their bounds correspond to the number of indices

and their bounds introduced by the update for statement. In addition,

each OMP FOR option specified on top of an indice adds an omp parallel

for directive. Similarly, each OMP TASK option runs the algorithm presented

in Appendix C to generate OpenMP task code.

Each update statement is composed of two phases. The first one relates

to the mappings it shall use to read and write. Firstly, it intersects its

reading and writing time vectors to Rx and Wx to obtain the mappings it

shall use. Then, it generates a C++ class for each logical array it reads or

writes. These classes are constituted of three parts. First, all the physical

buffers mapped to the logical region read or written. Secondly, the integers

related to these physical buffers, to pass from a multidimensional coordi-

nate system to a 1D coordinate system. Thirdly, it contains a parenthesis

operator which converts a logical coordinate to a physical coordinate, using

the provided mappings, and return the value of a physical cell. This func-

tion takes integers in the logical coordinate system (i.e. as much integers as

the logical array as dimension), uses them to pick the right physical buffer

(i.e. depending on their value, one buffer or another shall be read/written

through an if cascade), computes the physical coordinate in a 1D system

using the mapping relation and the physical buffer’s integers, and finally,

return a reference to the correct value. In addition, the compiler optimizes

the mapping by removing redundant condition. Typically, if only one phys-

ical buffer is read/written, it removes the if condition, while if multiple

buffers are present, it searches for the minimal number of conditions, to

147

5.5. THE SOURCE-TO-SOURCE INKSPSO COMPILER

avoid a cost at runtime. In addition, the classes use constant pointers and

references to constant integers, which make possible various optimizations

by the C++ compiler (e.g. inlining, vectorization). Listing 5.13 illustrates

how InKSPSO mappings to a logical array is turned into C++ code. Ap-

pendix B shows the complete InKSPSO and C++ code.

The second phase of the update statement generation relates to the op-

eration ordering. In the case of an update <operation...> or an update

auto statement, the automatic approach presented in Section 5.1 is in

charge to generate a valid scheduling. In Section 5.1, this approach has

access to all input and output relations and must generate an operation or-

dering that updates the InKSPIA output while relying only on the InKSPIA

input. Considering an update <operation...> statement, it has access

only to the <operation...> input and output relations while it must up-

date only the provided logical region. As for an update auto statement,

it can use all operation input and output relations, but limits the code

generation to the update of the provided logical region.

Finally, each update copy uses R and Rx to find the logical region

mapped to the provided physical region. It then uses W and Wx to find

the up-to-date physical region mapped to the same logical region. Finally,

it composes these two relations to obtain a relation C : Px → Px. This

domain of this relation is a polyhedron (c.f. Section 3.5) and is constituted

of a multitude of integer points. We can pass this polyhedron to isl to

generate a C++ code that traverses all points, typically in the form of a

loop nest. At each point (i.e. at the core of the loop nest), the compiler

adds an equality between the two physical elements.

Note that the operation ordering of any update statement is in accor-

dance with the InKSPIA algorithm and the InKSPSO specification, identical

for a given code associated to both the InKS compiler version and the isl

version, but shall not be inferred in another way than by looking into the

InKS compiler and the isl algorithms. For instance, it may generate loops

in any order, typically to update large logical regions.

In addition, when the compiler generates a loop (i.e. any update state-

ment, including update for), it can detect if loop iterations are indepen-

dent, using the InKSPIA operation’s input and output relation. In the event

148

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

that it meets this case, it adds a #pragma ivdep directive on top of the loop

which advises the C++ compiler to use vectorization. Similarly, on top of

any operation call, it adds a #pragma forceinline recursive directive.

It is mandatory for good performance, as each operation calls a multitude

of functions: the parenthesis operators used for the mapping. These calls

are costly and may inhibit vectorization. Inlining the operation code as well

as the parenthesis operators prevents these issues.

In this section, we have presented the InKSPSO compiler which translate

an InKSPIA algorithm and the optimization choices written in InKSPSO to

a valid C++ code. In terms of usability, the InKSPSO compiler is acces-

sible: it relies on isl which is based on the gmp library, both are simple

to install. As for the InKSPSO compiler, the installation uses a Makefile.

The compilation takes up to a few minutes, depending on the size of the

InKSPIA and InKSPSO code. In the end, most of the cost to try the InKS

programming model lies in the languages learning.

149

5.5. THE SOURCE-TO-SOURCE INKSPSO COMPILER

1 //*** InKSpso ***//
2 inks_function(..., Z, Y, X){
3 //Allocation of a 3D buffers
4 alloc double A(Z, Y, X)
5 alloc double B(Z, Y, X)
6

7 //Map to a 3D logical array
8 map i=[0:X[j=[0:Y[k=[0:Z[A(k, j, i) = logical(0, k, j, i)
9 map i=[0:X[j=[0:Y[k=[0:Z[B(k, j, i) = logical(1, k, j, i)

10

11 //Update statement using the logical array
12 update logical(0:2, 0:Z, 0:Y, 0:X) using op
13 }
14

15 //*** C++ code generated ***/
16

17 //Class definition for the mapping
18 class logical_1_t{
19 const int& Z, & Y, &X;
20 double* const& A;
21 double* const& B;
22 const size_t &A_mult_1;
23 const size_t &A_mult_2;
24 const size_t &B_mult_1;
25 const size_t &B_mult_2;
26

27 logical_1_t(/*params, buffers and multiplicators as parameters*/) :
28 /*params, buffers and multiplicators affectations*/
29 {}
30

31 //In commentary, the original non-optimized conditions
32 double& operator()(const int& t,const int& k,const int& j,const int&

i)const{
33 //if(t==0 && 0<=k<Z && 0<=j<Y && 0<=i<X)
34 if(t==0)
35 return A[k*A_mult_2 + j*A_mult_1 + i];
36 //if(t==1 && 0<=k<Z && 0<=j<Y && 0<=i<X)
37 if(t==1)
38 return B[k*B_mult_2 + j*B_mult_1 + i];
39 } };
40

41 void inks_function(..., Z, Y, X){
42 //Allocations
43 double* A = new double[Z*Y*X];
44 size_t A_mult_2 = Y*X;
45 size_t A_mult_1 = X;
46

47 double* B = new double[Z*Y*X];
48 size_t B_mult_2 = Y*X;
49 size_t B_mult_1 = X;
50

51 //Mapping initialization
52 logical_1_t logical_1(Z, Y, X, A, B, /*mults...*/);
53

54 //Operation in a loop nest, using the logical structure
55 op(logical_1, t, k, j, i)
56 }

Listing 5.13 – Example of the C++ code generated by the InKS compiler
for an alloc and map InKSPSO statements.

150

CHAPTER 5. EXPRESSING OPTIMIZATION CHOICES IN THE INKS

PROGRAMMING MODEL

5.6 Discussions

In the previous chapter, we have presented the InKS programming

model and its InKSPIA language which aims to express the simulation al-

gorithm, in this chapter we have presented four strategies to express the

optimization choices, i.e. memory placement and operations scheduling.

Firstly, we have presented a compiler-based approach demonstrating that

InKSPIA effectively express the whole algorithm. Then, we have presented

InKSLoop that handles nested loops as well as their optimizations through

blocking techniques and InKSXMP for distributed memory allocations. An

evaluation of these two languages leads us to conclude that, although they

are efficient for the aspects they handle, they are too specific and cannot

be combined. Still, as a first approach, they enabled us to specify a more

complete approach. Indeed, we have proposed a fourth approach, InKSPSO,

a language with the aim of expressing all optimization concerns manually.

What is common to these four approaches is that they ask for minimal pieces

of information from optimization specialists and retrieve missing knowledge

from the algorithm specification.

Just as InKSPIA, proposing InKSPSO as a language that expresses opti-

mization choices in the Polyhedral model exhibits several advantages. This

strategy enables the InKSPSO language to express a wide variety of memory

layouts (e.g. column/row major, blocked mapping) and operations schedul-

ing (e.g. nested blocked loops) while making it compatible with static anal-

ysis. Hence, we can statically check that a InKSPSO code is in accordance

with its algorithm. Moreover, various optimization transformations can be

proposed in the language to ease optimization writing. For instance, in Sec-

tion 5.2, we have proposed a loop transformation to introduce automatic

multi-level loop blocking. Such transformation could be added as options

of the InKSPSO for statement easily.

However, compared to general-purpose approaches, such as C++,

InKSPSO limits the supported optimizations to what is expressible as a

Static Control Part. Therefore, mapping relations shall only be linear func-

tions of parameters and previous dimensions while loop nests shall only

be bounded by linear constraints of parameters, surrounding loops indices

151

5.6. DISCUSSIONS

and integers. For instance, that prevents the use of optimization based on

conditional statements depending on buffers’ values or indices’ value modifi-

cation inside the loops. Static Control Part are presented with more details

in Section 3.5. Still, a wide variety of optimization choices are express-

ible in the Polyhedral model, including most loop optimizations such as

unrolling, skewing, fusion, fission, blocking or interchanging. Furthermore,

adding the support of existing optimization tools in InKSPSO is possible.

For approaches originally designed to be used in an existing code, such as

OpenMP, it consists in simply wrapping the approaches, as we did with

OpenMP for the loop splitting and tasks. For others, InKSPSO statements

must be adapted to the tool. For instance, supporting PGAS model, such

as XMP, is possible by providing both an alloc statement to use XMP

allocation, such as a XMP alloc statement, and by adapting the map state-

ment to fit the align directive of XMP. However, using such tools may

avoid the static analysis of code; and therefore, prevent to automatically

and statically detect errors. In addition, using the algorithm specification

can ease the use of optimization tools.

152

Chapter 6

Application and evaluation of the

InKS programming model

Contents
6.1 Evaluation on synthetic benchmarks 155

6.2 Motivating application: the 6D Vlasov-Poisson equation 157

6.2.1 InKSPIA version of the 6D Vlasov-Poisson algo-
rithm . 158

6.2.2 Optimization of the 6D Vlasov-Poisson solver . 162

6.3 Evaluation on the 6D Vlasov-Poisson equation 169

6.4 Conclusion . 175

In Chapter 4, we have presented the InKS programming model which

proposes to separate algorithmic and optimization concerns in numeric sim-

ulation codes. That separation aims to improve both developers produc-

tivity and codes readability, as well as easing application portability. We

have also presented the algorithm language of InKS, InKSPIA, to spec-

ify all algorithmic concerns while leaving optimization choices unspecified.

In Chapter 5, we have presented several approaches to express those opti-

mization choices, for a given InKSPIA algorithm. One in particular offers a

language general enough to express a wide variety of optimization choices:

InKSPSO.

In this chapter, we illustrate the usage of the InKS programming model,

154

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

composed of the InKSPIA and InKSPSO languages, while evaluating the

approach. This evaluation discusses the InKS programming model through

four angles: its gain in productivity, its generality, its simplicity of use and

its performance. First, in Section 6.1 we evaluate the InKS programming

model approach using synthetic benchmarks, i.e. the heat equation and

the NAS parallel benchmarks. Then, in Section 6.2, we present a plasma

physics application, the 6D Vlasov-Poisson problem, and implement it using

the InKS approach. In Section 6.3, we evaluate the implementation of the

6D Vlasov-Poisson problem using InKS and compare it to a plain Fortran

implementation. Finally, Section 6.4 concludes the chapter and presents

some identified limitations of the InKSPSO optimization language.

6.1 Evaluation on synthetic benchmarks

This section evaluates the InKS programming model as well as its

InKSPIA and InKSPSO languages on the finite difference 1D heat resolu-

tion (3-point stencil) and the NAS parallel benchmarks [Bailey et al., 1991].

This evaluation discusses the InKS programming model through its gain in

productivity, its generality and its efficiency. We have implemented the al-

gorithm and optimization choices of the following programs using InKSPIA

and InKSPSO:

• finite difference 1D heat resolution (3-point stencil), a handmade C++

version as reference;

• 3 sequential NAS kernels (IS, EP and MG), C++ version [Griebler et al.,

2018] as reference.

Listing 6.1 presents the finite difference 1D heat equation solver. It

is a simple 3-point stencil code which optimization choice is based on the

double-buffer strategy. NAS kernels come from a C++ version of the well-

established benchmark suites: the NAS Parallel Benchmarks (NPB). How-

ever, MG relies on arrays of arrays which are not expressible in InKSPSO.

Hence, we have slightly modified the reference to match the type of struc-

tures InKSPSO handles. All codes were compiled with Intel 18 compiler

155

6.1. EVALUATION ON SYNTHETIC BENCHMARKS

Execution time (second)

Algorithm InKSPSO Ref. Diff.

NAS

EP 54.04 (±0.15%) 54.02 (±0.54%) 0.04%

IS 1.9 (±0.53%) 1.92 (±1.04%) -1.04%

MG 4.50 (±0.33%) 4.37 (±0.92%) 2.86%

Heat eq. solver 7.05 (±0.57%) 7.06 (±0.50%) -0.07%

Table 6.1 – Comparison of InKSPSO and C++ implementations of syn-
thetic benchmarks. Execution time of the InKSPSO implementations of the
sequential NAS benchmark (class B) and the 1D heat equation, size (220

in space × 104 time-steps). Median in seconds of 10 executions. Maximal
relative change between reference and InKSPSO versions.

(icpc with -O3 -xHost -ip -ipo compilation options) and executed on

the Irene cluster (TGCC, France), equipped with 192 GB RAM and two

Xeon Platinium 8168 CPUs per node. Table 6.1 summarizes the results of

the experiments.

1 #define i2D(x, t) ((x) + ((t)%2) * X)
2

3 for (int t = 1; t < T; ++t) {
4 for (int x = 1; x < X-1; ++x) {
5 heat[i2D(t, x)] = 0.5 * heat[i2D(t-1, x)] +
6 0.25 * (heat[i2D(t-1, x-1)]+heat[i2D(t-1, x+1)]);
7 }
8 }

Listing 6.1 – C++ implementation of the 1D heat equation solved using the
finite difference method.

InKS separates the specification of algorithm and optimization in dis-

tinct files. Multiple optimization strategies can be implemented for a single

algorithm. For instance, for this experiments, we used the IS and MG NAS

kernels InKSPIA algorithms we have developed in previous experiments,

conducted in Sections 5.2 and 5.3.

The InKS programming model aims to be general enough to express a

wide variety of problems. In Sections 4.3 and 5.4, we have already presented

limitations of the model. However, these experiments show that regular

problems can be implemented using InKS. Still, InKSPIA is not as general

as general-purpose language such as C. For instance, the NAS/CG kernel

relies on runtime dependencies, i.e. dependencies depending on arrays’

156

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

values, which are not expressible in InKSPIA. It can be done by over-

constraining the InKSPIA code but it would limit the available choices for

optimizing. In addition, InKSPSO could not express the data structure

(arrays of arrays) used in the NAS/MG kernel.

In terms of efficiency, the use of the InKS programming model with

its optimization language does not imply any drawbacks. Table 6.1 shows

that we were able to implement the optimization choices used in the 1D

heat equation solver and the NAS benchmark, while preserving an identical

level of performance. The InKSPSO versions of the NAS/IS and NAS/EP

benchmarks are within 1% of the C++ reference performance while the

NAS/MG written is InKSPSO is only 2.78% slower than its C++ counter-

part. Similarly, the 1D heat equation solver written in InKSPSO and C++

does not show any performance mismatch.

6.2 Motivating application: the 6D

Vlasov-Poisson equation

This section presents the implementation of a 6D Vlasov-Poisson solver

to illustrate the usage of InKSPIA and InKSPSO on a real use-case. The

6D Vlasov-Poisson equation, presented in (6.1), describes the dynamics of

particles in a plasma and the resulting electric field. We study its resolu-

tion for a single species on a 6D Cartesian mesh with periodic boundary

conditions. The main unknown is f (f6d in the code), the distribution

function of particles in 6D phase space. The vector field E corresponds to

the electric field whereas the scalar fields ρ and φ respectively represent the

charge density and the electric potential.

∂f(t, x, v)

∂t
+ v.∇xf(t, x, v)− E(t, x).∇vf(t, x, v) = 0

−∆φ(t, x) = 1− ρ(t, x)

E(t, x) = −∇φ(t, x)

ρ(t, x) =

∫

f(t, x, v)dv

(6.1)

157

6.2. MOTIVATING APPLICATION: THE 6D VLASOV-POISSON EQUATION

For the resolution of the Vlasov part we rely on a Strang splitting (or-

der 2 in time) while we solve the Poisson part using a fast Fourier trans-

form (FFT). This leads to six 1D advections: three in space dimensions

(x1, x2, x3) and three in velocity dimensions (v1, v2, v3). For each advection

in space dimensions we rely on a Lagrange interpolation of degree 4, while

for the advections in velocity dimensions we use an interpolation of de-

gree 3. In the space dimensions, we use a semi-Lagrangian approach, where

the stencil is not applied around the destination point but at the foot of

characteristics, only known at runtime. The methods used for the equation

solving are described in more details in [Mehrenberger et al., 2013]. The al-

gorithm and test case come from the SeLaLib [Inria, IPP, IRMA, IRMAR,

LJLL, 2018] Fortran implementation.

Due to the Strang splitting, a first half time-step of advections is required

after f6D initialization, but before the main time-loop. These advections

need the electric field E as input. E is obtained through the FFT-based

Poisson solver that in turn needs the charge density ρ as input. ρ is com-

puted by integrals over the three velocity dimensions of f6D. The main

time-loop is composed of 4 steps: advections in space dimensions, compu-

tation of the charge density (reduction) and electric field (Poisson solver)

and advections in velocity dimensions. However, the two advection steps

account for more than 99% of the single-node computation time. The 6D

Vlasov-Poisson algorithm is presented in Algorithm 1. Algorithm 2 de-

tails the Poisson solver. Figure 6.1 shows a graphical representation of the

time-loop of the 6D Vlasov-Poisson SeLaLib implementation.

6.2.1 InKSPIA version of the 6D Vlasov-Poisson

algorithm

To obtain an implementation of the 6D Vlasov-Poisson, the first step is

to implement its algorithm using InKSPIA. Listing 6.2 presents the InKSPIA

implementation of Advection v1, as well as the relevant part of the simu-

lation kernel for this advection. The complete InKSPIA implementation of

the 6D Vlasov-Poisson solving is available on Appendix A.

The first part of the InKSPIA code describes each fine grain operation.

158

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

Algorithm 1 The 6D Vlasov-Poisson algorithm.

Input: f6d(0, x, v)
Input: T , the number of time-steps
Output: f6d(T, x, v)
ρ(0, x)← reduction(f6d(0, x, v))
φ(0, x)← Poisson(ρ(0, x))
E(0, x)← solve(φ(0, x))
f6d(0, x, v)← advectionv123(f6d(0, x, v))
for t = 1 to T do
f6d(t, x, v)← advectionx123(f6d(t− 1, x, v))
ρ(t, x)← reduction(f6d(t, x, v))
φ(t, x)← Poisson(ρ(t, x))
E(t, x)← solve(φ(t, x))
f6d(t, x, v)← advectionv123(f6d(t, x, v), E(t, x))

end for

Algorithm 2 The 6D Poisson solver algorithm.

Input: ρ(t, x)
Output: φ(t, x)
{Fourier transform in the dimension 1, 2 and 3}
ρ̂(t, ξx)← Fx(ρ(t, x))
ρ̂(t, ξxy)← Fy(ρ̂(t, ξx))
ρ̂(t, ξxyz)← Fz(ρ̂(t, ξxy))

{φ̂ computation}
φ̂(t, ξxyz) = ρ̂(t, ξxyz)/k

2

{Inverse Fourier transform in the dim. 3, 2 and 1}
φ̂(t, ξxy)← F−1

z (φ̂(t, ξxyz))

φ̂(t, ξx)← F−1
y (φ̂(t, ξxy))

φ(t, x)← F−1
z (φ̂(t, ξx))

In the 6D Vlasov-Poisson problem, that corresponds to the 6 advections,

the FFTs for the Poisson solver, the reduction to compute ρ, etc. On lines 1

to 12 of Listing 6.2 (Page 161), we define Advection v1 as an operation of

our algorithm. Line 1 defines the operation, named adv v1, and the integers

used to access cells in logical arrays as well as defined data dependencies.

Integers i to step are used to access space, velocity and time dimensions

while D4 and s4 are only used to define data dependencies. The D4 integer

corresponds to the size of the domain in the 4th dimension whereas s4

159

6.2. MOTIVATING APPLICATION: THE 6D VLASOV-POISSON EQUATION

1 - Advection
along space
dimensions

2 - Charge density
(6D → 3D
reduction)

3 - Poisson solver

4 - Advection
along velocity
dimensions

start timeloop
f

f

ρ

f

E

f

Figure 6.1 – The 6D Vlasov-Poisson solver time-loop.

represents the size of the stencil, used as the number of cells that can be

accessed at the boundaries of the 4th dimension of f6d, because of the

domain periodicity. Lines 2 to 4 define the f6d logical array in which the

operation read and write cells depending on the integer parameters. Line 5

adds the p v1 logical array, containing the advection coefficient. Notice

that the memory layout is left unspecified thanks to the dynamic single

assignment form. For instance, the time dimension is present in the logical

memory layout for both arrays, represented by the t variable. Similarly,

f6d has an 8th dimension, here step, that represents the evolution through

a time-step. Each step at a time-step t, from 0 to 5, holds the values

of f6d after the stepth advection at the tth time-step. Finally, lines 8 to

11 declare the computation using C++ code and parenthesis operators to

access logical cells.

The second part of the InKSPIA code implements the entry-point of the

simulation, i.e. the simulation kernel which defines the validity domain of

each operation, the set of logical arrays that exist and the subset of each

array that is available at the beginning and expected by the end of the

simulation. This corresponds to the lines 16 to 31 in Listing 6.2. Line 16

defines the inks vlasov poisson6d as the simulation kernel, parameterized

by a set of integers, among which the number of time-steps (n iter) or the

number of cells in each dimension (D1 to D6). These integers are set at

the execution of the InKSPIA simulation. Lines 19 to 21 define the set of

existing logical arrays, here f6d and p v1 for Advection v1 operation. Note

160

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

that all values (aside from the halo region) at the first time-step of the f6d

logical array are marked as available at the beginning of the simulation.

And finally, lines 25 to 29 set the parameters of each operation; that is

the validity domain and logical arrays. This domain represents the possible

values for each operation integer parameter. For instance, the parameter i

of Advection v1 can take any value between s1 included and D1+s1 excluded.

1 op adv_v1(i, j, k, l, m, n, t, step, D4, s4) : (
2 double f6d {in: v1=[0:D4+2*s4[
3 (i, j, k, v1, m, n, t, step-1) |
4 out: (i, j, k, l, m, n, t, step)},
5 double p_v1{in: (i,j,k,t,0:3)}
6)
7 #CODE (C)
8 f6d(i, j, k, l, m, n, t, step) =
9 p_v1(i,j,k,t,0) * f6d(i, j, k, l-1, m, n, t, step-1)

10 + p_v1(i,j,k,t,1) * f6d(i, j, k, l+0, m, n, t, step-1)
11 + p_v1(i,j,k,t,2) * f6d(i, j, k, l+1, m, n, t, step-1);
12 #END
13

14 /*...other operations definition...*/
15

16 simulation inks_vlasov_poisson6d(D1, D2, D3, D4, D5, D6,
17 nt, s1, s2, s3, s4, s5, s6) : (
18

19 double f6d(8) {in:
20 (s1:D1+s1, s2:D2+s2, s3:D3+s3, s4:D4+s4,
21 s5:D5+s5, s6:D6+s6, 0, 2)
22 },
23 double p_v1(5),
24 /*...other logical arrays...*/
25)
26 #CODE (inks)
27 advection_v1 x1=[s1:D1+s1[x2=[s2:D2+s2[x3=[s3:D3+s3[
28 v1=[s4:D4+s4[v2=[s5:D5+s5[v3=[s6:D6+s6[t=[0:nt[
29 (x1, x2, x3, v1, v2, v3, t, D4, 3, s4) : (f6d, p_v1)
30

31 /*...other operations...*/
32 #END

Listing 6.2 – InKSPIA implementation of Advection v1.

Once the InKSPIA algorithm is written, the InKSC compiler can auto-

matically generate a first instance of the 6D Vlasov-Poisson solver. We used

this to check that our algorithm is correct and generates the same results as

the SeLaLib implementation. In particular, we have run both implementa-

tion using the parameters presented in Table 6.2. The test case used is the

linear Landau damping shown in Equation (6.2). The 4 dimensional ver-

sion of this test case is presented in [Filbet et al., 2001]. The linear Landau

damping corresponds to a perturbation in space dimensions. According

161

6.2. MOTIVATING APPLICATION: THE 6D VLASOV-POISSON EQUATION

to the Landau’s theory, this f6d initial condition leads to an oscillating

electric energy over time which amplitude decays exponentially. Figure 6.2

presents the electric energy of both versions as well as their differences.

Additionally, it shows the oscillation and exponential decay of the electric

energy. Table 6.3 shows L1, L2 and Linf norms of the difference between the

InKS and the SeLaLib versions of f6d. The errors are within the machine

error, acknowledging the validity of the algorithm. After this verification,

the second step is to use InKSPSO to manually implement efficient sets of

optimization choices.

f(0, x1, x2, x3, v1, v2, v3) =
1

(2π)3/2
e−(

∑3
i=1 v

2
i)/2 (1 + α Π3

i=1cos(0.5xi))

(6.2)

Stencil orders

Size ∆t Iterations Lx = Ly = Lz vmin vmax Velocity Space α nmode vthermal B0

326 0.1 200 12.5663706144 −6 6 3 4 0.01 1 1 1

Table 6.2 – 6D Vlasov-Poisson physical parameters.

Absolute Relative Local relative

Iteration L1 L2 Linf L1 L2 Linf L1 L2 Linf

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

200 6.8 e-35 3.3 e-32 5.1 e-29 1.2 e-31 9.1 e-30 7.9 e-28 1.3 e-21 6.4 e-19 1.0 e-15

Table 6.3 – Absolute and relative norms of the difference between the InKS

and the SeLaLib versions of f6d after 10 and 200 time-steps. The physical
parameters used are presented on Table 6.2. The absolute norm corresponds
to ‖f6dselalib − f6dinks‖. The relative norm is ‖f6dselalib−f6dinks‖

‖f6dselalib‖
. The local

relative norm equals to
∥

∥

∥

f6dselalib−f6dinks

f6dselalib

∥

∥

∥
. Norms are computed from values

using a double-precision floating-point format. The zeros at the 10th time-
step indicate that values are bit-by-bit identical.

6.2.2 Optimization of the 6D Vlasov-Poisson solver

In addition to the complexity of the plasma physics and the mathematics

domain, the 6D Vlasov-Poisson solver is demanding both in terms of mem-

162

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

Figure 6.2 – 6D Vlasov-Poisson electric energy in function of time of the
InKS and SeLaLib version and their absolute difference. The electric en-

ergy E is defined as E(t) =
√

∫ Lz

0

∫ Ly

0

∫ Lx

0
E(x, y, x, t)2 dx dy dz. The phys-

ical parameters used are presented on Table 6.2.

ory and computing power. Indeed, this problem is highly memory bound.

While advections, which are the computation intensive parts of the appli-

cation, are very regular computations and do not need load-balancing, they

are applied to a 6D domain, which requires both a huge memory footprint

and a particular attention to cache use. Therefore, its implementation in

SeLaLib is based on a set of complex optimization choices [Kormann et al.,

2019], among which multiple MPI strategies, OpenMP implementations and

complex loops implementations with blocking and data layout modifications

to improve cache use and expose vectorization. In the rest of the section,

we present some optimizations implemented in SeLaLib and their expres-

sion using the InKSPSO language. We illustrate all these optimizations on

Advection v1. We also present the Poisson solver.

163

6.2. MOTIVATING APPLICATION: THE 6D VLASOV-POISSON EQUATION

Double-buffer implementation

One of the most naive strategy to apply a stencil of a domain is to

use the double-buffer strategy. It consists in having an input buffer from

which to read the values and a distinct output buffer in which to write the

values produced by the computations. Listing 6.3 presents this strategy

applied to the f6d array for Advection v1 computation. Line 5 allocates

two six dimensional array (F6D) that will be used for the double-buffer

memory layout. Hence, before each advection a, one of these six dimensional

array contains the output values of the previous advection while the other

is mapped to the logical output of the advection a. For instance, before

Advection v1, on Line 12, F6D(0, ...) contains the values of f6d(...,

2), that is, the output of Advection x1. On the same Line, F6D(1, ...)

is mapped to f6d(..., 3), that is, the output of Advection v1. Unlike

following strategies, this one is not currently implemented in SeLaLib.

1 dom x1=[0:D1[x2=[0:D2[x3=[0:D3[
2 v1=[0:D4[v2=[0:D5[v3=[0:D6[
3

4 //Allocate a double-buffer
5 alloc double F6D(2, D6, D5, D4, D3, D2, D1)
6

7 /*...*/
8

9 /* Surrounded by the time loop "t" */
10 {
11 //Define the double-buffer strategy
12 map F6D(1, v3, v2, v1, x3, x2, x1) =
13 f6d(x1, x2, x3, v1, v2, v3, t, 3)
14

15 //specify the region to update
16 update f6d(0:D1, 0:D2, 0:D3, 0:D4, 0:D5, 0:D6, t, 3)
17 //Introduce 6 indices
18 using for(n{0:D6}, m{0:D5}, l{0:D4},
19 k{0:D3}, j{0:D2}, i{0:D1}){
20 //Require the update of a logical cell
21 update f6d(i, j, k, l, m, n, t, 3) using adv_v1
22 }
23 }

Listing 6.3 – Double-buffer implementation of Advection v1 using InKSPSO.

Intermediate buffers

The double-buffer strategy is not practical for real test-cases of the 6D

Vlasov-Poisson problem, because of the huge amount of memory two six

164

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

dimensional arrays require. Because the considered advections are 1D sten-

cils, a possibility is to use a 1D intermediate buffer. The idea is to copy

a line of f6d into a buffer and to use it as input, while writing into f6d

during the advection computation. Going even further, we can use another

buffer to write the values and copy them back to f6d after the computation.

This strategy enables to have f6d and two small buffers whose size is equal

to the size of a line of f6d instead of two f6d; hence drastically reducing

memory footprint. It also improves cache use and makes possible vectoriza-

tion. Indeed, during the computation, only the two contiguous buffers are

used. On the contrary, F6D is accessed contiguously only when an advection

reads and writes values to its contiguous dimension; that is to say, during

Advection x1. A last advantage is to avoid the use of modulo operations to

handle domain periodicity. This concern can be handled by adding a halo

zone at each boundary of the buffer used as input. This would have re-

quired a lot of memory for a six dimensional array, but has little impact on

a small buffer. The intermediate buffers strategy implemented in SeLaLib

is presented in Listing 6.4.

! buffer allocations
allocate(buf_i(0:D4+2*s4))
allocate(buf_o(0:D4+2*s4))

do n, m, k, j, i
! copy f6d to input buffer
buf_i(s4:D4+s4) = f6d(i,j,k,s4:D4+s4,m,n)

! copy left and right boundaries
buf_i(0:s4) = buf_i(D4+s4:D4+2*s4)
buf_i(D4+s4:D4+2*s4) = buf_i(s4:2*s4)

do l=s4, D4+s4
! advection v_1

end do

!copy output buffer to f6d
f6d(i,j,k,s4:D4+s4,m,n) = buf_o(s4:D4+s4)

end do

Listing 6.4 – Usage of intermediate buffer in Advection v1 using Fortran.

In comparison, Listing 6.5 presents the same strategy using InKSPSO.

First, the input and output buffers, respectively named BUF I and BUF O,

are allocated on Lines 6 and 7. Then, on Line 13, the input buffer is mapped

to the f6d logical array. It is followed by an update copy that will copy

165

6.2. MOTIVATING APPLICATION: THE 6D VLASOV-POISSON EQUATION

the value from F6D, the buffer that holds the f6d logical array values, to

BUF I. Then, left and right boundaries are copied by the copy left right 4

operation. Line 19 remaps the processed block of the F6D buffer, already

copied to BUF I, to the same block in f6d at the next step. That is, the third

step which corresponds to the values after Advection v1. It is followed by

Line 22 that maps the output buffer BUF O to the f6d area being processed

by the calls of Advection v1. Finally, Line 25, an update copy is performed

from BUF O to F6D.

1 //Named bounded sets to ease code writing
2 dom x1d=[s1:D1+s1[x2d=[s2:D2+s2[x3d=[s3:D3+s3[
3 v1d=[s4:D4+s4[v2d=[s5:D5+s5[v3d=[s6:D6+s6[
4 v1=[0:D4[fullv1=[0:D4+2*s4[blockDom=[0:blockSize[
5

6 alloc double BUF_I(D4+2*s4)
7 alloc double BUF_O(D4+2*s4)
8

9 update f6d(x1d, x2d, x3d, v1d, v2d, v3d, t, 3)
10 using for(n {s6:D6+s6}, m {s5:D5+s5},
11 k {s3:D3+s3}, j {s2:D2+s2}, i {s1:D1+s1})
12 {
13 map BUF_I(fullv1) = f6d(i, j, k, fullv1, m, n, t, 2)
14 update BUF_I(v1d) using copy
15

16 update f6d(i, j, k, fullv1, m, n, t, 2)
17 using copy_left_right_4
18

19 map F6D(n-s6, m-s5, v1d-s4, k-s3, j-s2, i-s1) =
20 f6d(i, j, k, v1d, m, n, t, 3)
21

22 map BUF_O(v1d) = f6d(i, j, k, v1d, m, n, t, 3)
23 update f6d(i, j, k, v1d, m, n, t, 3) using adv_v1
24

25 update F6D(n-s6, m-s5, v1, k-s3, j-s2, i-s1) using copy
26 }
27 free BUF_I
28 free BUF_O

Listing 6.5 – Intermediate buffers in Advection v1 using InKSPSO (Note
that the variables written in capital letters refer to physical buffers).

Blocked copies

It is possible to improve the previous optimization. Instead of copying

a single line of f6d to the buffer, we can copy multiple contiguous elements

of f6d to a 2D buffer. Indeed, as we copy an element of f6d, an entire

cache line is moved from the memory to the cache. Since these values are

already in cache, we can copy them to our buffer at a little additional cost.

166

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

The output buffer, its copy to f6d and the advection computation are also

done in a blocked fashion. The buffer is now the size of a f6d line times

the size of block, i.e. a cache line. Although it is larger, it remains small

enough. On the contrary, copies and computations are now using the cache

more efficiently.

The InKSPSO implementation of that strategy is presented in List-

ing 6.6. Lines 6 and 7, the buffers are allocated as 2D array. The first

dimension is for the input and output, while the second deals with the

blocking. The mappings of the buffers are done accordingly lines 13 and

28. Finally, the loops are written in a blocked fashion. On Line 11, ii

iterates from s1 to D1+s1 in steps of the size of the block, blockSize, while

on Line 25, i iterates from ii to min(ii+blockSize, D1+s1).

OpenMP implementation

The last optimization consists in using OpenMP to share the copies and

advection computations between multiple threads. The parallelism requires

the allocation of the input and output buffers for each thread. The rest of

the parallelism is straightforward as both the computations and copies do

not need load-balancing strategy.

This third optimization is shown in Listing 6.7. It is done through the

use of an OpenMP parallel region, Line 6, and an OMP for option, Line 12.

Since the buffers are allocated inside the parallel region, on Lines 8 and 9,

each thread as access to his own buffers. Finally, Line 12, we use the OMP

option to add a #pragma omp for collapse in the generated code; that

is, loop spiting parallelism.

Poisson solver

The algorithm of the Poisson solver is presented in Algorithm 2. It is

extremely verbose even though it is quite simple and does not take much

execution time, in a single node execution, especially compared to the ad-

vections. Listing 6.8 presents the SeLaLib sequential implementation of the

Poisson solver.

As shown in Listing 6.8, the Poisson solver computes φ and relies on 7

167

6.2. MOTIVATING APPLICATION: THE 6D VLASOV-POISSON EQUATION

1 //Named bounded sets to ease code writing
2 dom x1d=[s1:D1+s1[x2d=[s2:D2+s2[x3d=[s3:D3+s3[
3 v1d=[s4:D4+s4[v2d=[s5:D5+s5[v3d=[s6:D6+s6[
4 v1=[0:D4[fullv1=[0:D4+2*s4[blockDom=[0:blockSize[
5

6 alloc double BUF_I(blockSize, D4+2*s4)
7 alloc double BUF_O(blockSize, D4+2*s4)
8

9 update f6d(x1d, x2d, x3d, v1d, v2d, v3d, t, 3)
10 using for({OMP collapse(2)} n {s6:D6+s6}, m {s5:D5+s5},
11 k {s3:D3+s3}, j {s2:D2+s2}, ii {s1:D1+s1:blockSize})
12 {
13 map BUF_I(blockDom, fullv1) =
14 f6d(ii+blockDom, j, k, fullv1, m, n, t, 2)
15 update BUF_I(blockDom, v1d) using copy
16

17 dom iii=[ii:ii+blockSize and :D1+s1[
18 update f6d(iii, j, k, fullv1, m, n, t, 2)
19 using copy_left_right_4
20

21 map F6D(n-s6, m-s5, v1d-s4, k-s3, j-s2, iii-s1) =
22 f6d(iii, j, k, v1d, m, n, t, 3)
23

24 update f6d(iii, j, k, v1d, m, n, t, 3) using
25 for(i {ii:ii+blockSize and :D1+s1})
26 //ii<=i<ii+bSize && i<D1+s1 => ii<=i<min(ii+bSize, D1+s1)
27 {
28 map BUF_O(i-ii, v1d) =
29 f6d(i, j, k, v1d, m, n, t, 3)
30 update f6d(i, j, k, v1d, m, n, t, 3) using adv_v1
31 }
32

33 update F6D(n-s6, m-s5, v1, k-s3, j-s2, iii-s1)
34 using copy
35 }
36 free BUF_I
37 free BUF_O

Listing 6.6 – Usage of blocking in Advection v1 using InKSPSO.

operations: three FFTs, the φ̂ solving and the three inverse FFTs. Since

all these operations are defined in the InKSPIA code, it is possible to ask

InKSPSO to schedule all of them automatically. This strategy may not be

the most efficient one; however, it improves readability while not hurting

the application performance. Indeed, the Poisson solver counts for less

than 1% of the computation time (in a single node version). This strategy

is implemented using the update auto of InKSPSO in Listing 6.9.

168

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

1 //Named bounded sets to ease code writing
2 dom x1d=[s1:D1+s1[x2d=[s2:D2+s2[x3d=[s3:D3+s3[
3 v1d=[s4:D4+s4[v2d=[s5:D5+s5[v3d=[s6:D6+s6[
4 v1=[0:D4[fullv1=[0:D4+2*s4[blockDom=[0:blockSize[
5

6 OMP parallel
7 {
8 alloc double BUF_I(blockSize, D4+2*s4)
9 alloc double BUF_O(blockSize, D4+2*s4)

10

11 update f6d(x1d, x2d, x3d, v1d, v2d, v3d, t, 3)
12 using for({OMP collapse(2)} n {s6:D6+s6}, m {s5:D5+s5},
13 k {s3:D3+s3}, j {s2:D2+s2}, ii {s1:D1+s1:blockSize})
14 {
15 map BUF_I(blockDom, fullv1) =
16 f6d(ii+blockDom, j, k, fullv1, m, n, t, 2)
17 update BUF_I(blockDom, v1d) using copy
18

19 dom iii=[ii:ii+blockSize and :D1+s1[
20 update f6d(iii, j, k, fullv1, m, n, t, 2)
21 using copy_left_right_4
22

23 map F6D(n-s6, m-s5, v1d-s4, k-s3, j-s2, iii-s1) =
24 f6d(iii, j, k, v1d, m, n, t, 3)
25

26 update f6d(iii, j, k, v1d, m, n, t, 3) using
27 for(i {ii:ii+blockSize and :D1+s1})
28 {
29 map BUF_O(i-ii, v1d) =
30 f6d(i, j, k, v1d, m, n, t, 3)
31 update f6d(i, j, k, v1d, m, n, t, 3) using adv_v1
32 }
33

34 update F6D(n-s6, m-s5, v1, k-s3, j-s2, iii-s1)
35 using copy
36 }
37 free BUF_I
38 free BUF_O
39 }

Listing 6.7 – InKSPSO implementation of Advection v1.

6.3 Evaluation on the 6D Vlasov-Poisson

equation

This section evaluates the InKS programming model as well as its

InKSPIA and InKSPSO languages on the 6D Vlasov-Poisson solver. This

evaluation discusses the InKS programming model through four angles: its

gain in productivity, its generality, its simplicity of use and its performance.

First, we have implemented the algorithm of the complete 6D Vlasov-

Poisson equation in InKSPIA, using Fortran/OpenMP SeLaLib as reference.

169

6.3. EVALUATION ON THE 6D VLASOV-POISSON EQUATION

! 1) FFTs in x, y, z directions
do k=1,D3-1
do j=1,D2-1
fftw_in(:) = rho(:, j, k)
fftw_execute(plan_x)
hat_rho(:, j, k) = fftw_out(:)

enddo
enddo

! i, k do loops
fftw_in(:) = hat_rho(i, :, k)
fftw_execute(plan_y)
hat_rho(i, :, k) = fftw_out(:)

! end do loops

! i, j do loops
fftw_in(:) = hat_rho(i, j, :)
fftw_execute(plan_z)
hat_rho(i, j, :) = fftw_out(:)

! end do loops

! 2) hat_phi computation
! i, j, k do loops
hat_phi(i, j, k) = hat_rho(i, j, k) / (0.75 * PI**2)

! 3) Inverse FFTs in z, y, x directions
! i, j do loops

fftw_in(:) = hat_phi(i, j, :)
fftw_execute(plan_inv_z)
hat_phi(i, j, :) = fftw_out(:)

! end do loops

! i, k do loops
fftw_in(:) = hat_phi(i, :, k)
fftw_execute(plan_inv_y)
hat_phi(i, :, k) = fftw_out(:)

! end do loops

! j, k do loops
fftw_in(:) = hat_phi(:, j, k)
fftw_execute(plan_inv_x)
phi(:, j, k) = fftw_out(:)

! end do loops

Listing 6.8 – First steps of the Poisson solver.

The equation and general algorithm are presented in Section 6.2.1. Then,

we have implemented and compared four InKSPSO optimizations of the full

6D Vasov-Poisson solver described in Section 6.2.2 with SeLaLib as refer-

ence. C.f. 6.1 for compiler and architecture details. Table 6.4 presents the

results for the experiments.

The InKS programming model separates algorithmic and optimization

concerns with two distinct languages. Fixing the simulation algorithm ex-

170

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

1 /*...rho is available while phi is mapped...*/
2 update phi(x1dom, x2dom, x3dom, t) using auto

Listing 6.9 – InKSPSO implementation of the Poisson solver.

Optimization version InKS SeLaLib Diff.

Double buffering 29.60 (±3.02%) N/A N/A

Intermediate buffer 34.07 (±2.80%) 44.26 (±0.32%) -23.03%

Blocked copies 16.64 (±2.61%) 24.99 (±0.64%) -33.43%

OpenMP (8 threads) 2.54 (±3.94%) 3.08 (±1.78%) -17.53%

Table 6.4 – Comparison of InKS (InKSPIA + InKSPSO) and SeLaLib (For-
tran) implementations of the 6D Vlasov-Poisson solver. Time/iteration in
seconds of the InKS and the SeLaLib implementations of the 6D Vlasov-
Poisson, size (326). Median in seconds of 10 time-steps. Maximal relative
change between references and InKS versions. The maximal relative change
r to the median m of a set of n values V is defined as r = m

maxi=0..n(|m−Vi|)
.

Optimization version InKS Modified SeLaLib Diff.

Double buffering 29.60 (±3.02%) N/A N/A

Intermediate buffer 34.07 (±2.80%) 44.82 (±2.09%) -23.99%

Blocked copies 16.64 (±2.61%) 20.09 (±0.64%) -17.19%

OpenMP (8 threads) 2.54 (±3.94%) 2.51 (±2.53%) 1.52 %

Table 6.5 – Comparison of InKS (InKSPIA + InKSPSO) and modified Se-
LaLib (Fortran) implementations of the 6D Vlasov-Poisson solver. Time/it-
eration in seconds of the InKS and the modified SeLaLib implementations
of the 6D Vlasov-Poisson, size (326). Median in seconds of 10 time-steps.
Maximal relative change between references and InKS versions.

hibits several advantages compared to traditional approaches. Firstly, it

eases the collaboration between specialists of the simulated domain and

specialists of computer optimizations. Secondly, and more importantly, it

limits the parts of code that must be rewritten to implement new opti-

mization strategies. As shown in Table 6.4, using a single InKSPIA code

describing the 6D Vlasov-Poisson solver, we have derived 4 different versions

of optimization choices. To target the bleeding edge of supercomputers ar-

chitectures, scientists in the field of numeric simulation have to tune their

code while having limited information about which optimization strategy

is the best for a given architecture. Narrowing the part of code to rewrite

171

6.3. EVALUATION ON THE 6D VLASOV-POISSON EQUATION

Number of lines

Code InKSPSO SeLaLib

Poisson operator 1 70

Vlasov operator 6× 18 6× 22

Table 6.6 – Comparison of the number of lines of InKS (InKSPSO) and
SeLaLib (Fortran) implementations of the 6D Vlasov-Poisson solver. Com-
parison of the InKSPSO OpenMP version and the SeLaLib Fortran version.
Only the optimization choices were considered: in both versions, the al-
gorithm (i.e. advection computations or the Fast Fourier Transform calls)
was not counted.

diminishes implementation costs; and therefore, makes possible a more ex-

tensive exploration of the best optimization strategy for each architecture,

especially the new ones.

An advantage of the Polyhedral model used in the InKS approach re-

lates to the code efficiency. The algorithm gives a perfect knowledge of the

users objective to the InKS compiler, which can then use it to automati-

cally optimize parts of the code, whereas general-purpose approaches fail in

understanding its users actual goals. For instance, our compiler can check

whether there are dependencies between iterations of a loop. It can then

either suggest to the user to add a parallel construct around this loop or

inform the C++ compiler that this loop contains no dependence through

the use of directives. At the moment, we chose to implement the second

possibility in our compiler. The information coming from the algorithm

and its use by the compiler helped us obtain performance improvements

over the SeLaLib reference versions, automatically. As shown in Table 6.4,

the InKSPSO intermediate buffer version surpasses the SeLaLib reference

by a factor 1.30. Similarly, our blocked copies version is 1.5 faster than

the reference whereas our OpenMP parallel version improves the reference,

achieving a speedup up of 1.21. We were able to reduce the performance

gap by adding vectorization directives manually to the SeLaLib code. That

corresponds to the modified SeLaLib version whose results are presented in

Table 6.5. Hence, comparing the InKSPSO and the modified SeLaLib ver-

sions, the speedup of the blocked copies version is reduced from 1.5 to 1.21.

As for the OpenMP version, there is no performance gap; with a difference

172

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

inside the confidence interval.

Although our implementation of the InKS programming model is not as

general as general-purpose language such as C, Listing 6.7 shows it is pos-

sible to implement the optimization strategies done in SeLaLib, including

the addition of intermediate copies, highlights of vectorization possibilities

to the compiler and uses of OpenMP. InKSPIA and InKSPSO are thus gen-

eral enough to express a wide variety of programs and optimization strate-

gies. More specifically, InKSPIA can express algorithm of programs analo-

gous to Parameterized Task Graph ([Cosnard and Jeannot, 1999]): directed

graph of tasks dependent on invariant integer parameters set at execution.

InKSPSO is capable of specifying optimizations that are compatible with

the Polyhedral model. That includes row and column-major memory lay-

outs, as well as more convoluted ones (e.g. blocked memory layouts), and

operation ordering based on loop nests, optimized with traditional tech-

niques (e.g. unrolling, skewing, fusion, fission, blocking, interchanging and

more). Moreover, while PTGs cover many classes of programs, the InKS

programming model is usable in conjunction with traditional programming

models, such as C or Fortran.

In terms of productivity, as illustrated in Listings 6.2, expressing algo-

rithms in InKSPIA is similar to writing a naive C implementation, free of

any platform-specific optimization, and where loops are replaced by InKS

validity domains. However, contrary to C, InKSPIA is dedicated to ex-

press the algorithmic concerns and is more suited to be used as a base for

optimization.

InKSPSO heavily relies on the algorithm description written using

InKSPIA, as illustrated in Listings 6.7. Basically, it expresses optimization

choices using three steps. The first one consists in allocating a buffer using

the alloc instruction. This is close to a Fortran allocation. Then, using

the map instruction, users describe the memory layouts. That is, a function

that maps a logical coordinate to a physical one. We believe that this is no

more complex than an index computation in C, especially since the InKS

compiler can check whether the mapping function is consistent with the

rest of the program. Finally, the for and update instructions enable users

to schedule finely the computation, potentially in parallel. Although InKS

173

6.3. EVALUATION ON THE 6D VLASOV-POISSON EQUATION

for loops are similar to the C/Fortran ones, the update keyword is a bit

different. In C/Fortran, a computation has two members on both sides of

an assignment operator. The values read are on the right while the value

written is on the left. Using InKSPSO update, one expresses a set of values

to write, and everything is inferred from the map instruction used earlier.

Therefore, as it is done in C/Fortran, to achieve good performance using

InKSPSO, one must mind memory layouts, map in InKSPSO, and schedul-

ing, for in InKSPSO, to enable vectorization and a good cache use. For the

Vlasov part, when performance is required, Table 6.6 shows that the num-

ber of lines needed to specify an InKSPSO version of optimization choices

is not greater than its Fortran counterpart.

Furthermore, InKSPSO proposes the update auto to automatically

schedule larger sets of computations, especially for “non-critical” parts of

the code. This eases the writing of optimization choices, as shown on the

Table 6.6, while making it possible to tune the computation scheduling when

necessary. As shown in Listing 6.9, in our 6D Vlasov-Poisson experiments,

we have let the compiler schedule the Poisson part, which accounts for less

than 1% of the execution time. In comparison to the reference, presented

in Listing 6.8, our approach greatly improves the readability of the opti-

mization choices, without introducing performance penalties. At the same

time, we have described precisely the schedule of the Vlasov part to match

the efficiency of the reference version, as shown in Table 6.4. Moreover, the

use of the Polyhedral model and this permanent link between algorithm

optimization choices make bug detection possible. Indeed, our compiler

can detect errors at compile-time, such as the use of uninitialized values,

and generates code to detect others at runtime, such as an out-of-bounds

access. Note that these could be detect at compile-time, thanks to the Poly-

hedral model. In terms of software engineering, the InKS model, through

the separation of concerns, also encourages users to adopt the best practice

approach of optimizing the code incrementally. We applied this approach

to develop Listing 6.7: each version extends the set of optimization choices

developed in the previous versions with a new one. Moreover, the use of

the automatic approach of the InKSC compiler ensures we find more easily

any bug we could introduce with a new set of optimizations.

174

CHAPTER 6. APPLICATION AND EVALUATION OF THE INKS

PROGRAMMING MODEL

In terms of efficiency, the use of the InKS programming model with

its optimization language does not imply any drawbacks. Tables 6.4 and

6.5 show that all InKSPSO versions match or surpass the reference versions.

This includes simple case such as the 1D heat equation, in which there is no

notable difference between InKSPSO and plain C++ versions, but also real

world application like the 6D Vlasov-Poisson solver. This application ex-

hibits a clear advantage for the InKSPSO version. Thanks to the knowledge

of the algorithm by the compiler, the generated C++ code is enhanced

with various directives that latter help the C++ compiler automatically

generates a more efficient executable. This proves, to some extent, that it

is possible to use the InKS programming model and achieve great perfor-

mance and even go beyond efficiency offered by traditional approaches.

6.4 Conclusion

In the previous chapter, we have presented four approaches to take into

account optimization choices in the InKS programming model: the au-

tomatic compiler, InKSLoop, InKSXMP and InKSPSO. One in particular

enables its users to express many kinds of optimization choices: InKSPSO.

In this chapter, we have evaluated this approach in terms of efficiency, gen-

erality, productivity gain and usability on three codes: the 1D heat equation

solved by the finite difference method, the NAS parallel benchmarks and

the 6D Vlasov-Poisson system, in comparison to Fortran. This evaluation

showed that the InKSPSO approach:

1. matches or improves performance in comparison to traditional ap-

proaches;

2. is general enough to express complex optimization choices on real

applications;

3. improves productivity on non-critical parts of the code by relying on

an automatic compiler;

4. comes with well-defined concepts that are not more complex than the

ones existing in C or Fortran.

175

6.4. CONCLUSION

Still, InKSPSO suffers from several limitations. At this time, it does

not implement a dedicated interface for MPI. Although it could be possible

to extend InKSPSO, by relying on PGAS concepts, as mentioned in Sec-

tion 5.6. However, MPI is still usable in two ways with InKSPSO. Firstly,

the InKS model can be applied on a subset of an application, relying on

other, unmodified parts of that application to handle the distributed com-

puting algorithmics. Secondly, at the moment, we consider the algorithm

written in InKSPIA as applying at the node level. Thus, one can write

InKSPIA operations that call MPI routines and update parts of logical ar-

rays. Indeed, as mentioned in Section 4.4, even though it is not advised to

use complex InKSPIA operations – since it may limit the range of possible

optimizations – it is supported to manage specific patterns (e.g. converging

loop, runtime dependence) or to use libraries, such as MPI. The same anal-

ysis holds for any libraries and tools as well, including IOs. For instance, in

the Poisson part of the 6D Vlasov-Poisson solver, we used the fftw library

inside the InKSPIA operations to handle the Fourier transforms.

Also, note that more complex InKSPIA operations may be irregular.

Processing irregular operations in parallel is challenging: the common loop-

splitting parallelism strategies may not offer great performance as each iter-

ation do not need the same amount of computations. In this situation, the

OpenMP task paradigm would be useful in order to balance these operations

among the available resources or to overlap computations with communi-

cations. In Appendix C, we presented a preliminary work to support this

paradigm in InKSPSO.

Another limitation lies in data structures. Currently, we transparently

support array of plain old data, i.e. scalar types or structures with, in

particular, no user-defined constructor. For instance, it is not possible to

express arrays of arrays, such as done in the MG NAS kernel.

176

Chapter 7

Conclusion

7.1 Contribution

In numerical simulation codes, performance, productivity and readabil-

ity appear to be antagonistic goals. Although, focusing on plain perfor-

mance impedes readability, efficiency is at the core of most simulation codes

as it enables fast computations on volumes of data that no person could

complete in a lifetime. As a result, scientists and engineers can solve sci-

entific problems and better understand the laws of physics and their inter-

actions. Still, readability is essential to stimulate the cooperation between

domain scientists and optimization specialists and to favor the maintain-

ability of large codes. Hence, application developers must carefully separate

the code in a multitude of functions, each dedicated to a specific role, related

either to complex optimization implementations or to plain mathematical

solving. Currently, both readability and efficiency may be reached, but pro-

ductivity will suffer. Indeed, architectures widely differ from one another,

it is necessary to implement as many versions as there are architectures.

This leads to the repetition of pieces of information that remain the same

between each version, such as domains and halos sizes or loop bounds. In

the end, it negatively impacts productivity and increases the risk of errors.

This situation is even more concerning as newest architectures become more

and more complex and varied.

Scientists around the world have proposed various approaches to allevi-

ate this problem and ease efficient code writing while minimizing readability

178

CHAPTER 7. CONCLUSION

issues. These solutions propose to hide the complexity of all or part of op-

timization choices by relying on APIs, language extensions, runtimes or

dedicated languages and compilers. Although these approaches are funda-

mental, as they ease complex optimization expression and improve read-

ability, they may not be enough to separate rigorously domain science and

optimizations while avoiding information repetition. This is especially true

when porting a code to bleeding edge architectures for which the best opti-

mization patterns are in the process of being identified and not yet encoded

in such approaches.

In this thesis, we proposed a novel approach to provide efficiency, pro-

ductivity and readability in numerical simulation codes: the InKS pro-

gramming model. The model can express all or parts of simulations which

are static control parts; that is to say, programs which the structure (e.g.

loop bounds, array sizes) is parameterized by integer values known at ex-

ecution. It proposes two distinct languages to separate the expression of

the algorithm and optimization choices. Relying on two languages enables

to separate the concerns both physically, in distinct set of files, and seman-

tically, with notions and concepts adapted to the aspects the users need

to express, in the end improving readability and maintainability. The first

one is the InKSPIA language which enables domain scientists to express the

simulation algorithm independently of any concern for optimization choices.

The second language is InKSPSO to derive, from a specific InKSPIA code,

optimization choices only. As the algorithm stays the same, information

does not need to be repeated between each optimization versions, improv-

ing productivity.

We have defined and implemented the InKSPIA language. The simula-

tion algorithm expression must be complete while not limiting the possi-

bilities of future optimizations. Taking into account these prerequisites, we

proposed the InKSPIA language as a declarative language which consists

of logical arrays and fine grain operations with logical data dependencies.

This strategy leads to a separation of logical and physical memory spaces

while limiting over-constraining scheduling possibilities, enabling domain

scientists to express algorithm with no concerns of performance. In a sec-

ond step, optimization specialists can choose the best mapping between

179

7.1. CONTRIBUTION

these two memory spaces and the choice of a scheduling, in accordance

with the targeted architecture. As InKSPIA is at the foundation of the

InKS approach, it is essential for it to be self-sufficient. Therefore, we also

demonstrated that it contains all information required for code generation.

An algorithm language, alone, has only a limited use if there are no

ways to set the optimization choices, i.e. memory placement and opera-

tions scheduling. Therefore, we have also proposed four approaches to take

into account such choices. A first one, completely automated, relies on a

compiler. Although it does not deliver the best possible performance, it

can be used to test the validity of the algorithm description. The existence

of this compiler supports the fact that InKSPIA contains all necessary in-

formation. We have then proposed two experimental languages to express

a specific set of optimization choices: nested loops expression and logical

domain decomposition. Finally, we have proposed the InKSPSO language.

InKSPSO enables application developers to accurately express all aspects of

optimization choices while relying on information contained in the InKSPIA

code it refers. As expected by the InKS programming model, this strategy

enables us to provide a language which limits information repetition while

offering good performance and capable of expressing parallel concerns, us-

ing OpenMP parallel constructs. In addition, we have implemented and

described our InKSPIA/InKSPSO compiler.

Finally, we have evaluated the InKS approach on a real-world applica-

tion: the 6D Vlasov-Poisson system. This system simulates the dynamics

and the interactions of particles in a plasma. Therefore, it relies on com-

plex mathematics and physics, but also on elaborate optimization choices.

This part especially includes parallel non-trivial loop ordering and mem-

ory layouts to expose vectorization and improve cache uses. To evaluate

our approach, we have implemented the 6D Vlasov-Poisson algorithm using

InKSPIA and its complex optimization choices using InKSPSO and com-

pared both to a reference version, written in Fortran in the SeLaLib li-

brary. This evaluation demonstrates that the InKS programming model

fulfills all three objectives. Firstly, the use of a InKSPIA code as a shared

foundation for all InKSPSO optimization choices versions avoids informa-

tion repetition. Secondly, it matches or even improves efficiency compared

180

CHAPTER 7. CONCLUSION

to traditional approaches, thanks to the knowledge the algorithm provides

to our compiler. And finally, distinct dedicated languages improves read-

ability, enabling domain scientists and optimization specialists to focus on

their specialty.

7.2 Perspective and future works

In this thesis, we have proposed, implemented and evaluated the InKS

programming model. Even though we have demonstrated the ability of

the model to fully separate algorithmic and optimization concerns while

maintaining the performance requirements, a novel programming model

needs several years, if not decades, to reach the desired maturity level for

widespread use. InKS and our implementation of the model do not escape

the rule and therefore, we propose several possible enhancements.

Firstly, improvements to the algorithm language can be made. A first

improvement is mentioned in Section 4.4: InKSPIA may propose predefined

basic operations, such as the addition of two logical array cells or the copy

from one to another. This would benefit the language in two ways. First, it

eases the algorithm expression and its readability, as the data dependencies

are implied by the operation. Then, it gives more meaning to the compiler

which can later optimize better the code. For instance, depending on the

memory layout, copy operations of boundaries from a time-step to another

may not be necessary and could be eliminated, if only the compiler could

know these operations were copies.

Another improvement may come in enabling nested InKSPIA code. Real-

world applications often rely on multiple interdependent parts and it could

be more convenient to have an InKSPIA code for each of them and a main

InKSPIA code that invokes them all. Moreover, it would ease code re-

usability.

Secondly, we have only explored the surface of the InKSPSO capabili-

ties. While in traditional approach users actual objectives are mixed with

optimization choices, we separate them and are able to understand their

nature. With InKSPIA, giving all dependencies and data information, as

well as the actual operation information, with the improvements we men-

181

7.2. PERSPECTIVE AND FUTURE WORKS

tioned in the previous paragraph, the InKSPSO compiler is capable of doing

much more than what it is doing today. For instance, our InKS implemen-

tation currently supports the automatic addition of vectorization directives

as well as the scheduling of non-critical applications parts. We would like to

go further in this approach to also add alignment information to the C++

compiler or generate automatic memory layouts for non-critical arrays. In

addition, auto-tuning could be achieved with the InKS approach. For the

user, it consists in submitting numerous memory layouts and scheduling.

Then the compiler, thanks to the Polyhedral model, could detect the pairs

that are consistent from the one that are not, run them all and detect which

strategy fit the best to a given architecture.

Then, InKSPSO can be upgraded to support more optimization choices.

One of the most trivial would be to add the call to external Polyhedral

tool, such as Pluto, which automatically reorders nested loops to expose

both data locality and parallelism. Other approaches, similar to the one we

have tried with OpenMP task, could be to handle distributed memory envi-

ronment, through the use of PGAS model for example, or kernel offloading

to GPU, using tools such as Kokkos. Moreover, the InKS languages lack of

conditional statements. This could be supported in the form of conditions

on the values of the invariant program parameters, already supported by

the Polyhedral model. For instance, this could be useful to choose between

an optimization or another depending on the size of the grid in a given di-

mension. Finally, adding more InKSPSO for options is worth considering.

The goal would be to provide options for classical loops optimization, such

as blocking, as done in XFor.

We hope for a further development and use of the InKS programming

model. However, proposing not one, but two novel languages will presum-

ably limit its popularity, in comparison to C or Fortran. The burden placed

on developers’ shoulder can be alleviated by proposing a source-to-source

compiler capable of generating an InKSPIA algorithm from a C or Fortran

code; in the event that code is compatible with the Polyhedral model. Sim-

ilarly, it could generate the core of an InKSPSO code from the InKSPIA

specification.

In addition, we could greatly improve the InKS compiler by logging

182

CHAPTER 7. CONCLUSION

choices that were made, giving more information about the issues it faces

during the compilation phases or by simply reducing the complexity of its

algorithms, especially by minimizing the size of the time vector. Indeed,

the compilation time increases rapidly way with the size of this vector.

A last line of improvements we have identified lies in the foundation

of the programming model. We intensively used the Polyhedral model, as

it enables us various and simple analysis. However, it comes with some

limitations, as mentioned in Section 3.5. It could be interesting to test

another approach or limit its usage. For instance, currently, memory layouts

in InKSPSO must be described as affine relations, directly translated into

the Polyhedral model. We could imagine using more expressive C function

to map logical to physical memory cells. However, its validity would be at

the users’ expense.

183

Appendix A

Complete InKSPIA

implementation of the 6D

Vlasov-Poisson solver.

1 #HEADER (C)

2

3 #ifdef __cplusplus

4 #include <cmath>

5 #include <cstring>

6 #include <cstdlib>

7 #else

8 #include <math.h>

9 #include <string.h>

10 #include <stdlib.h>

11 #endif

12 #include <fftw3.h>

13 typedef fftw_complex* fftw_complex_ptr;

14

15 const double inv_6 = 1.0/6.0;

16 #define MY_MAX(a, b) ((a) > (b) ? (a) : (b))

17

18 #END

19

20 op compute_Energy(t, MAX_DIM1, MAX_DIM2, MAX_DIM3) : (

21 double ex {in: i=[0:MAX_DIM1[j=[0:MAX_DIM2[k=[0:MAX_DIM3[(i, j, k, t)},

22 double ey {in: i=[0:MAX_DIM1[j=[0:MAX_DIM2[k=[0:MAX_DIM3[(i, j, k, t)},

23 double ez {in: i=[0:MAX_DIM1[j=[0:MAX_DIM2[k=[0:MAX_DIM3[(i, j, k, t)},

24 double delta_eta {in: (0); (1); (2)},

25 double Es {out: (t)}

26)

27 #CODE (C)

184

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

28 double sum = 0;

29 for(int k=0; k<MAX_DIM3; k++)

30 for(int j=0; j<MAX_DIM2; j++)

31 for(int i=0; i<MAX_DIM1; i++)

32 sum += ex(i, j, k, t)*ex(i, j, k, t) + ey(i, j, k, t)*ey(i, j, k, t) +

ez(i, j, k, t)*ez(i, j, k, t);

33 Es(t) = sqrt(sum*delta_eta(0)*delta_eta(1)*delta_eta(2));

34 #END

35

36 op compute_mass(t, MAX_DIM1, MAX_DIM2, MAX_DIM3) : (

37 double rho {in: i=[0: MAX_DIM1[j=[0: MAX_DIM2[k=[0: MAX_DIM3[(i, j, k,

t)},

38 double mass {out: (t)},

39 double volume_eta123 {in}

40)

41 #CODE (C)

42 double sum = 0;

43 for(int i=0; i<MAX_DIM1; i++)

44 for(int j=0; j<MAX_DIM2; j++)

45 for(int k=0; k<MAX_DIM3; k++)

46 sum += rho(i, j, k, t);

47 mass(t) = sum * volume_eta123;

48 #END

49

50 op compute_charge_density(t, MAX_DIM1, MAX_DIM2, MAX_DIM3, MAX_DIM4,

MAX_DIM5, MAX_DIM6, step, shift1, shift2, shift3, shift4, shift5,

shift6) : (

51 double rho {out: (0:MAX_DIM1, 0:MAX_DIM2, 0:MAX_DIM3, t)},

52 double f6d {in: (shift1:MAX_DIM1+shift1, shift2:MAX_DIM2+shift2,

shift3:MAX_DIM3+shift3,

53 shift4:MAX_DIM4+shift4, shift5:MAX_DIM5+shift5,

shift6:MAX_DIM6+shift6, t, step)},

54 double volume_eta456 {in}

55)

56 #CODE (C)

57 #ifndef USE_OMP

58 double* sum = (double*)malloc(MAX_DIM1*sizeof(double));

59 for(int k = 0; k<MAX_DIM3; ++k){

60 for(int j = 0; j<MAX_DIM2; ++j){

61 memset(sum, 0, sizeof(double) * MAX_DIM1);

62 for(int n = 0; n<MAX_DIM6; n++){

63 for(int m = 0; m<MAX_DIM5; m++){

64 for(int l = 0; l<MAX_DIM4; l++){

65 for(int i = 0; i<MAX_DIM1; ++i){

66 sum[i] += f6d(i+shift1, j+shift2, k+shift3, l+shift4, m+shift5,

n+shift6, t, step);

67 }

68 }

69 }

185

70 }

71 #pragma ivdep

72 for(int i = 0; i<MAX_DIM1; ++i){

73 rho(i, j, k, t) = (sum[i] * volume_eta456) - 1.0;

74 }

75 }

76 }

77 free(sum);

78 #else

79 double* sum;

80 #pragma omp parallel private(sum)

81 {

82 sum = (double*)malloc(MAX_DIM1*sizeof(double));

83 #pragma omp for collapse(2) schedule(static)

84 for(int k = 0; k<MAX_DIM3; ++k){

85 for(int j = 0; j<MAX_DIM2; ++j){

86 memset(sum, 0, sizeof(double) * MAX_DIM1);

87 for(int n = 0; n<MAX_DIM6; n++){

88 for(int m = 0; m<MAX_DIM5; m++){

89 for(int l = 0; l<MAX_DIM4; l++){

90 for(int i = 0; i<MAX_DIM1; ++i){

91 sum[i] += f6d(i+shift1, j+shift2, k+shift3, l+shift4,

m+shift5, n+shift6, t, step);

92 }

93 }

94 }

95 }

96 #pragma ivdep

97 for(int i = 0; i<MAX_DIM1; ++i){

98 rho(i, j, k, t) = (sum[i] * volume_eta456) - 1.0;

99 }

100 }

101 }

102 free(sum);

103 }

104 #endif

105 #END

106

107 /*_____________POISSON*/

108 op init_fftw_buffer(MAX_DIM1, MAX_DIM2, MAX_DIM3) : (

109 fftw_complex_ptr fftw_in {out},

110 fftw_complex_ptr fftw_out {out}

111)

112 #CODE (C)

113 size_t N = MY_MAX(MY_MAX(MAX_DIM1, MAX_DIM2), MAX_DIM3);

114 fftw_in = fftw_alloc_complex(N);

115 fftw_out = fftw_alloc_complex(N);

116 #END

117

186

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

118 op init_fftw_plan(MAX_DIMn) : (

119 fftw_complex_ptr fftw_in {in},

120 fftw_complex_ptr fftw_out {in},

121 fftw_plan p {out},

122 fftw_plan p_inv {out}

123)

124 #CODE (C)

125 p = fftw_plan_dft_1d(MAX_DIMn, fftw_in, fftw_out, FFTW_FORWARD,

FFTW_ESTIMATE);

126 p_inv = fftw_plan_dft_1d(MAX_DIMn, fftw_in, fftw_out, FFTW_BACKWARD,

FFTW_ESTIMATE);

127 #END

128

129 op fftw_x(j, k, t, MAX_DIM1) : (

130 fftw_complex_ptr fftw_in {in},

131 fftw_complex_ptr fftw_out {in},

132 fftw_plan px {in},

133 double rho {in: i=[0:MAX_DIM1[(i, j, k, t)},

134 fftw_complex hat_rho {out: i=[0:MAX_DIM1[(i, j, k, t, 0)}

135)

136 #CODE (C)

137 for(int i=0; i<MAX_DIM1; i++){

138 fftw_in[i][0] = rho(i, j, k, t);

139 fftw_in[i][1] = 0.0;

140 }

141 fftw_execute(px);

142 for(int i=0; i<MAX_DIM1; i++){

143 (hat_rho(i, j, k, t, 0))[0] = fftw_out[i][0];

144 (hat_rho(i, j, k, t, 0))[1] = fftw_out[i][1];

145 }

146 #END

147

148 op fftw_y(i, k, t, MAX_DIM2) : (

149 fftw_complex_ptr fftw_in {in},

150 fftw_complex_ptr fftw_out {in},

151 fftw_plan py {in},

152 fftw_complex hat_rho {in: j=[0:MAX_DIM2[(i, j, k, t, 0) | out:

j=[0:MAX_DIM2[(i, j, k, t, 1)}

153)

154 #CODE (C)

155 for(int j=0; j<MAX_DIM2; j++){

156 fftw_in[j][0] = (hat_rho(i, j, k, t, 0))[0];

157 fftw_in[j][1] = (hat_rho(i, j, k, t, 0))[1];

158 }

159 fftw_execute(py);

160 for(int j=0; j<MAX_DIM2; j++){

161 (hat_rho(i, j, k, t, 1))[0] = fftw_out[j][0];

162 (hat_rho(i, j, k, t, 1))[1] = fftw_out[j][1];

163 }

187

164 #END

165

166 op fftw_z(i, j, t, MAX_DIM1, MAX_DIM2, MAX_DIM3) : (

167 fftw_complex_ptr fftw_in {in},

168 fftw_complex_ptr fftw_out {in},

169 fftw_plan pz {in},

170 fftw_complex hat_rho {in: k=[0:MAX_DIM3[(i, j, k, t, 1) | out:

k=[0:MAX_DIM3[(i, j, k, t, 2)}

171)

172 #CODE (C)

173 double normalisation = 1.0 / ((double)(MAX_DIM1 * MAX_DIM2 * MAX_DIM3));

174 for(int k=0; k<MAX_DIM3; k++){

175 fftw_in[k][0] = (hat_rho(i, j, k, t, 1))[0];

176 fftw_in[k][1] = (hat_rho(i, j, k, t, 1))[1];

177 }

178 fftw_execute(pz);

179 for(int k=0; k<MAX_DIM3; k++){

180 (hat_rho(i, j, k, t, 2))[0] = fftw_out[k][0] * normalisation;

181 (hat_rho(i, j, k, t, 2))[1] = fftw_out[k][1] * normalisation;

182 }

183 #END

184

185 op compute_hat_phi(i, j, k, t, MAX_DIM1, MAX_DIM2, MAX_DIM3) : (

186 double length {in: (0:3)},

187 fftw_complex hat_rho {in: (i, j, k, t, 2)},

188 fftw_complex hat_phi {out: (i, j, k, t, 0)}

189)

190 #CODE (C)

191 int ind_x, ind_y, ind_z;

192 double kx, ky, kz;

193 const double kx0 = 2*M_PI/length(0);

194 const double ky0 = 2*M_PI/length(1);

195 const double kz0 = 2*M_PI/length(2);

196 if(i==0 && j==0 && k==0){

197 (hat_phi(0, 0, 0, t, 0))[0] = 0.0;

198 (hat_phi(0, 0, 0, t, 0))[1] = 0.0;

199 }else{

200 ind_x = i < MAX_DIM1/2.0 ? i : MAX_DIM1 - i;

201 ind_y = j < MAX_DIM2/2.0 ? j : MAX_DIM2 - j;

202 ind_z = k < MAX_DIM3/2.0 ? k : MAX_DIM3 - k;

203

204 kx = kx0 * (double)ind_x;

205 ky = ky0 * (double)ind_y;

206 kz = kz0 * (double)ind_z;

207

208 (hat_phi(i, j, k, t, 0))[0] = (hat_rho(i, j, k, t, 2))[0] / (kx*kx +

ky*ky + kz*kz);

209 (hat_phi(i, j, k, t, 0))[1] = (hat_rho(i, j, k, t, 2))[1] / (kx*kx +

ky*ky + kz*kz);

188

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

210 }

211 #END

212

213 op fftw_inv_z(i, j, t, MAX_DIM3) : (

214 fftw_complex_ptr fftw_in {in},

215 fftw_complex_ptr fftw_out {in},

216 fftw_plan pz_inv {in},

217 fftw_complex hat_phi {in: k=[0:MAX_DIM3[(i, j, k, t, 0) | out:

k=[0:MAX_DIM3[(i, j, k, t, 1)}

218)

219 #CODE (C)

220 for(int k=0; k<MAX_DIM3; k++){

221 fftw_in[k][0] = (hat_phi(i, j, k, t, 0))[0];

222 fftw_in[k][1] = (hat_phi(i, j, k, t, 0))[1];

223 }

224 fftw_execute(pz_inv);

225 for(int k=0; k<MAX_DIM3; k++){

226 (hat_phi(i, j, k, t, 1))[0] = fftw_out[k][0];

227 (hat_phi(i, j, k, t, 1))[1] = fftw_out[k][1];

228 }

229 #END

230

231 op fftw_inv_y(i, k, t, MAX_DIM2) : (

232 fftw_complex_ptr fftw_in {in},

233 fftw_complex_ptr fftw_out {in},

234 fftw_plan py_inv {in},

235 fftw_complex hat_phi {in: j=[0:MAX_DIM2[(i, j, k, t, 1) | out:

j=[0:MAX_DIM2[(i, j, k, t, 2)}

236)

237 #CODE (C)

238 for(int j=0; j<MAX_DIM2; j++){

239 fftw_in[j][0] = (hat_phi(i, j, k, t, 1))[0];

240 fftw_in[j][1] = (hat_phi(i, j, k, t, 1))[1];

241 }

242 fftw_execute(py_inv);

243 for(int j=0; j<MAX_DIM2; j++){

244 (hat_phi(i, j, k, t, 2))[0] = fftw_out[j][0];

245 (hat_phi(i, j, k, t, 2))[1] = fftw_out[j][1];

246 }

247 #END

248

249 op fftw_inv_x(j, k, t, MAX_DIM1) : (

250 fftw_complex_ptr fftw_in {in},

251 fftw_complex_ptr fftw_out {in},

252 fftw_plan px_inv {in},

253 fftw_complex hat_phi {in: i=[0:MAX_DIM1[(i, j, k, t, 2)},

254 fftw_complex phi {out: i=[0:MAX_DIM1[(i, j, k, t)}

255)

256 #CODE (C)

189

257 for(int i=0; i<MAX_DIM1; i++){

258 fftw_in[i][0] = (hat_phi(i, j, k, t, 2))[0];

259 fftw_in[i][1] = (hat_phi(i, j, k, t, 2))[1];

260 }

261 fftw_execute(px_inv);

262 for(int i=0; i<MAX_DIM1; i++){

263 (phi(i, j, k, t))[0] = fftw_out[i][0];

264 (phi(i, j, k, t))[1] = 0.0;

265 }

266 #END

267

268 op compute_ex_from_phi(j, k, t, MAX_DIM1) : (

269 double length {in: (0)},

270 fftw_complex_ptr fftw_in {in},

271 fftw_complex_ptr fftw_out {in},

272 fftw_plan px {in},

273 fftw_plan px_inv {in},

274 fftw_complex phi {in: i=[0:MAX_DIM1[(i, j, k, t)},

275 double ex {out: i=[0:MAX_DIM1[(i, j, k, t)}

276)

277 #CODE (C)

278 double norm_fac = 1.0/MAX_DIM1;

279 double kx0 = 2*M_PI/length(0);

280

281 for(int i=0; i<MAX_DIM1; i++){

282 fftw_in[i][0] = (phi(i, j, k, t))[0];

283 fftw_in[i][1] = (phi(i, j, k, t))[1];

284 }

285 fftw_execute(px);

286 for(int i=0; i<MAX_DIM1/2; i++){

287 fftw_in[i][0] = - fftw_out[i][1] * -kx0*i * norm_fac;

288 fftw_in[i][1] = fftw_out[i][0] * -kx0*i * norm_fac;

289 }

290 for(int i=MAX_DIM1/2; i<MAX_DIM1; i++){

291 fftw_in[i][0] = - fftw_out[i][1] * kx0*(MAX_DIM1-i) * norm_fac;

292 fftw_in[i][1] = fftw_out[i][0] * kx0*(MAX_DIM1-i) * norm_fac;

293 }

294 fftw_execute(px_inv);

295 for(int i=0; i<MAX_DIM1; i++)

296 ex(i, j, k, t) = fftw_out[i][0];

297 #END

298

299 op compute_ey_from_phi(i, k, t, MAX_DIM2) : (

300 double length {in: (1)},

301 fftw_complex_ptr fftw_in {in},

302 fftw_complex_ptr fftw_out {in},

303 fftw_plan py {in},

304 fftw_plan py_inv {in},

305 fftw_complex phi {in: j=[0:MAX_DIM2[(i, j, k, t)},

190

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

306 double ey {out: j=[0:MAX_DIM2[(i, j, k, t)}

307)

308 #CODE (C)

309 double norm_fac = 1.0/MAX_DIM2;

310 double ky0 = 2*M_PI/length(1);

311

312 for(int j=0; j<MAX_DIM2; j++){

313 fftw_in[j][0] = (phi(i, j, k, t))[0];

314 fftw_in[j][1] = (phi(i, j, k, t))[1];

315 }

316 fftw_execute(py);

317 for(int j=0; j<MAX_DIM2/2; j++){

318 fftw_in[j][0] = - fftw_out[j][1] * -ky0*j * norm_fac;

319 fftw_in[j][1] = fftw_out[j][0] * -ky0*j * norm_fac;

320 }

321 for(int j=MAX_DIM2/2; j<MAX_DIM2; j++){

322 fftw_in[j][0] = - fftw_out[j][1] * ky0*(MAX_DIM2-j) * norm_fac;

323 fftw_in[j][1] = fftw_out[j][0] * ky0*(MAX_DIM2-j) * norm_fac;

324 }

325 fftw_execute(py_inv);

326 for(int j=0; j<MAX_DIM2; j++)

327 ey(i, j, k, t) = fftw_out[j][0];

328 #END

329

330 op compute_ez_from_phi(i, j, t, MAX_DIM3) : (

331 double length {in: (2)},

332 fftw_complex_ptr fftw_in {in},

333 fftw_complex_ptr fftw_out {in},

334 fftw_plan pz {in},

335 fftw_plan pz_inv {in},

336 fftw_complex phi {in: k=[0:MAX_DIM3[(i, j, k, t)},

337 double ez {out: k=[0:MAX_DIM3[(i, j, k, t)}

338)

339 #CODE (C)

340 double norm_fac = 1.0/MAX_DIM3;

341 double kz0 = 2*M_PI/length(2);

342

343 for(int k=0; k<MAX_DIM3; k++){

344 fftw_in[k][0] = (phi(i, j, k, t))[0];

345 fftw_in[k][1] = (phi(i, j, k, t))[1];

346 }

347 fftw_execute(pz);

348 for(int k=0; k<MAX_DIM3/2; k++){

349 fftw_in[k][0] = - fftw_out[k][1] * -kz0*k * norm_fac;

350 fftw_in[k][1] = fftw_out[k][0] * -kz0*k * norm_fac;

351 }

352 for(int k=MAX_DIM3/2; k<MAX_DIM3; k++){

353 fftw_in[k][0] = - fftw_out[k][1] * kz0*(MAX_DIM3-k) * norm_fac;

354 fftw_in[k][1] = fftw_out[k][0] * kz0*(MAX_DIM3-k) * norm_fac;

191

355 }

356 fftw_execute(pz_inv);

357 for(int k=0; k<MAX_DIM3; k++)

358 ez(i, j, k, t) = fftw_out[k][0];

359 #END

360

361 /*_____________END POISSON*/

362

363 op compute_pV(i, j, k, t, dim, shift1, shift2, shift3) : (

364 double e {in: (i, j, k, t)},

365 double p_v {out: coef=[0:3[(i+shift1, j+shift2, k+shift3, t, coef)},

366 double delta_eta {in: (dim)},

367 double delta_t {in}

368)

369 #CODE (C)

370 double coef = -e(i, j, k, t)*delta_t/delta_eta(dim);

371 p_v(i+shift1, j+shift2, k+shift3, t, 0) = coef*(coef-1.0)*0.5;

372 p_v(i+shift1, j+shift2, k+shift3, t, 1) = (1.0 - coef*coef);

373 p_v(i+shift1, j+shift2, k+shift3, t, 2) = coef*(coef+1.0)*0.5;

374 #END

375

376

377 op compute_pi_pq(i, shiftV) : (

378 double disp_eta {in: (i)},

379 int pi {out: (i+shiftV)},

380 double pq {out: k=[0:4[(i+shiftV, k)}

381)

382 #CODE (C)

383 double p = disp_eta(i);

384 pi(i+shiftV) = (int)floor(p);

385 double coef = p - (double)pi(i+shiftV);

386 pq(i+shiftV, 0) = (-coef*(coef-1.0)*(coef-2.0)*inv_6);

387 pq(i+shiftV, 1) = ((coef*coef-1.0)*(coef-2.0)*0.5);

388 pq(i+shiftV, 2) = (-coef*(coef+1.0)*(coef-2.0)*0.5);

389 pq(i+shiftV, 3) = (coef*(coef*coef-1.0)*inv_6);

390 #END

391

392 /*Centered lagrange*/

393 op advection_eta1(i, j, k, l, m, n, t, MAX_DIM1, step, shift1) : (

394 double f6d {in: x=[0:MAX_DIM1+2*shift1[(x, j, k, l, m, n, t-1, 5) |

395 out: (i, j, k, l, m, n, t, step)},

396 int pi_v1 {in: (l)},

397 double pq_v1 {in: x=[0:4[(l, x)}

398)

399 #CODE (C)

400 f6d(i, j, k, l, m, n, t, step) =

401 pq_v1(l, 0) * f6d(i-1+pi_v1(l), j, k, l, m, n, t-1, 5)

402 + pq_v1(l, 1) * f6d(i+0+pi_v1(l), j, k, l, m, n, t-1, 5)

403 + pq_v1(l, 2) * f6d(i+1+pi_v1(l), j, k, l, m, n, t-1, 5)

192

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

404 + pq_v1(l, 3) * f6d(i+2+pi_v1(l), j, k, l, m, n, t-1, 5);

405 #END

406

407 op advection_eta2(i, j, k, l, m, n, t, MAX_DIM2, step, shift2) : (

408 double f6d {in: y=[0:MAX_DIM2+2*shift2[(i, y, k, l, m, n, t, step-1) |

409 out: (i, j, k, l, m, n, t, step)},

410 int pi_v2 {in: (m)},

411 double pq_v2 {in: x=[0:4[(m, x)}

412)

413 #CODE (C)

414 f6d(i, j, k, l, m, n, t, step) =

415 pq_v2(m, 0) * f6d(i, j-1+pi_v2(m), k, l, m, n, t, step-1)

416 + pq_v2(m, 1) * f6d(i, j+0+pi_v2(m), k, l, m, n, t, step-1)

417 + pq_v2(m, 2) * f6d(i, j+1+pi_v2(m), k, l, m, n, t, step-1)

418 + pq_v2(m, 3) * f6d(i, j+2+pi_v2(m), k, l, m, n, t, step-1);

419 #END

420

421 op advection_eta3(i, j, k, l, m, n, t, MAX_DIM3, step, shift3) : (

422 double f6d {in: z=[0:MAX_DIM3+2*shift3[(i, j, z, l, m, n, t, step-1) |

423 out: (i, j, k, l, m, n, t, step)},

424 int pi_v3 {in: (n)},

425 double pq_v3 {in: x=[0:4[(n, x)}

426)

427 #CODE (C)

428 f6d(i, j, k, l, m, n, t, step) =

429 pq_v3(n, 0) * f6d(i, j, k-1+pi_v3(n), l, m, n, t, step-1)

430 + pq_v3(n, 1) * f6d(i, j, k+0+pi_v3(n), l, m, n, t, step-1)

431 + pq_v3(n, 2) * f6d(i, j, k+1+pi_v3(n), l, m, n, t, step-1)

432 + pq_v3(n, 3) * f6d(i, j, k+2+pi_v3(n), l, m, n, t, step-1);

433 #END

434

435 op advection_eta4(i, j, k, l, m, n, t, MAX_DIM4, step, shift1, shift2,

shift3, shift4, shift5, shift6) : (

436 double f6d {in: v1=[0:MAX_DIM4+2*shift4[(i, j, k, v1, m, n, t, step-1) |

437 out: (i, j, k, l, m, n, t, step)},

438 double p_v1{in: coef=[0:3[(i, j, k, t, coef)}

439)

440 #CODE (C)

441 f6d(i, j, k, l, m, n, t, step) =

442 p_v1(i, j, k, t, 0) * f6d(i, j, k, l-1, m, n, t, step-1)

443 + p_v1(i, j, k, t, 1) * f6d(i, j, k, l+0, m, n, t, step-1)

444 + p_v1(i, j, k, t, 2) * f6d(i, j, k, l+1, m, n, t, step-1);

445 #END

446 op advection_eta5(i, j, k, l, m, n, t, MAX_DIM5, step, shift1, shift2,

shift3, shift4, shift5, shift6) : (

447 double f6d {in: v2=[0:MAX_DIM5+2*shift5[(i, j, k, l, v2, n, t, step-1) |

448 out: (i, j, k, l, m, n, t, step)},

449 double p_v2 {in: coef=[0:3[(i, j, k, t, coef)}

450)

193

451 #CODE (C)

452 f6d(i, j, k, l, m, n, t, step) =

453 p_v2(i, j, k, t, 0) * f6d(i, j, k, l, m-1, n, t, step-1)

454 + p_v2(i, j, k, t, 1) * f6d(i, j, k, l, m+0, n, t, step-1)

455 + p_v2(i, j, k, t, 2) * f6d(i, j, k, l, m+1, n, t, step-1);

456 #END

457

458 op advection_eta6(i, j, k, l, m, n, t, MAX_DIM6, step, shift1, shift2,

shift3, shift4, shift5, shift6) : (

459 double f6d {in: v3=[0:MAX_DIM6+2*shift6[(i, j, k, l, m, v3, t, step-1) |

460 out: (i, j, k, l, m, n, t, step)},

461 double p_v3 {in: coef=[0:3[(i, j, k, t, coef)}

462)

463 #CODE (C)

464 f6d(i, j, k, l, m, n, t, step) =

465 p_v3(i, j, k, t, 0) * f6d(i, j, k, l, m, n-1, t, step-1)

466 + p_v3(i, j, k, t, 1) * f6d(i, j, k, l, m, n+0, t, step-1)

467 + p_v3(i, j, k, t, 2) * f6d(i, j, k, l, m, n+1, t, step-1);

468 #END

469

470 /*

471 Copy1 -> ADV1 -> Copy2 -> ADV2 -> Copy3 -> ADV3 -> Copy4 -> ADV4 -> Copy5

-> ADV6 -> Copy6 -> ADV6

472 */

473

474 op copy_left_right_1(j, k, l, m, n, t, MAX_DIM1, step, shift1) : (

475 double f6d {in: (shift1:MAX_DIM1+shift1, j, k, l, m, n, t, step) |

476 out: (0:MAX_DIM1+2*shift1, j, k, l, m, n, t, step)}

477)

478 #CODE (C)

479 #pragma ivdep

480 for(int i=0; i<shift1; i++)

481 f6d(i, j, k, l, m, n, t, step) = f6d(shift1+MAX_DIM1-shift1+i, j, k, l,

m, n, t, step);

482 #pragma ivdep

483 for(int i=0; i<shift1; i++)

484 f6d(MAX_DIM1+shift1+i, j, k, l, m, n, t, step) = f6d(shift1+i, j, k, l,

m, n, t, step);

485 #END

486

487 op copy_left_right_2(i, k, l, m, n, t, MAX_DIM2, step, shift2) : (

488 double f6d {in: (i, shift2:MAX_DIM2+shift2, k, l, m, n, t, step) |

489 out: (i, 0:MAX_DIM2+2*shift2, k, l, m, n, t, step)}

490)

491 #CODE (C)

492 #pragma ivdep

493 for(int j=0; j<shift2; j++)

494 f6d(i, j, k, l, m, n, t, step) = f6d(i, shift2+MAX_DIM2-shift2+j, k, l,

m, n, t, step);

194

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

495 #pragma ivdep

496 for(int j=0; j<shift2; j++)

497 f6d(i, MAX_DIM2+shift2+j, k, l, m, n, t, step) = f6d(i, shift2+j, k, l,

m, n, t, step);

498 #END

499

500 op copy_left_right_3(i, j, l, m, n, t, MAX_DIM3, step, shift3) : (

501 double f6d {in: (i, j, shift3:MAX_DIM3+shift3, l, m, n, t, step) |

502 out: (i, j, 0:MAX_DIM3+2*shift3, l, m, n, t, step)}

503)

504 #CODE (C)

505 #pragma ivdep

506 for(int k=0; k<shift3; k++)

507 f6d(i, j, k, l, m, n, t, step) = f6d(i, j, shift3+MAX_DIM3-shift3+k, l,

m, n, t, step);

508 #pragma ivdep

509 for(int k=0; k<shift3; k++)

510 f6d(i, j, MAX_DIM3+shift3+k, l, m, n, t, step) = f6d(i, j, shift3+k, l,

m, n, t, step);

511 #END

512

513 op copy_left_right_4(i, j, k, m, n, t, MAX_DIM4, step, shift4) : (

514 double f6d {in: (i, j, k, shift4:MAX_DIM4+shift4, m, n, t, step) |

515 out: (i, j, k, 0:MAX_DIM4+2*shift4, m, n, t, step)}

516)

517 #CODE (C)

518 #pragma ivdep

519 for(int l=0; l<shift4; l++)

520 f6d(i, j, k, l, m, n, t, step) = f6d(i, j, k, shift4+MAX_DIM4-shift4+l,

m, n, t, step);

521 #pragma ivdep

522 for(int l=0; l<shift4; l++)

523 f6d(i, j, k, MAX_DIM4+shift4+l, m, n, t, step) = f6d(i, j, k, shift4+l,

m, n, t, step);

524 #END

525

526 op copy_left_right_5(i, j, k, l, n, t, MAX_DIM5, step, shift5) : (

527 double f6d {in: (i, j, k, l, shift5:MAX_DIM5+shift5, n, t, step) |

528 out: (i, j, k, l, 0:MAX_DIM5+2*shift5, n, t, step)}

529)

530 #CODE (C)

531 #pragma ivdep

532 for(int m=0; m<shift5; m++)

533 f6d(i, j, k, l, m, n, t, step) = f6d(i, j, k, l,

shift5+MAX_DIM5-shift5+m, n, t, step);

534 #pragma ivdep

535 for(int m=0; m<shift5; m++)

536 f6d(i, j, k, l, MAX_DIM5+shift5+m, n, t, step) = f6d(i, j, k, l,

shift5+m, n, t, step);

195

537 #END

538

539 op copy_left_right_6(i, j, k, l, m, t, MAX_DIM6, step, shift6) : (

540 double f6d {in: (i, j, k, l, m, shift6:MAX_DIM6+shift6, t, step) |

541 out: (i, j, k, l, m, 0:MAX_DIM6+2*shift6, t, step)}

542)

543 #CODE (C)

544 #pragma ivdep

545 for(int n=0; n<shift6; n++)

546 f6d(i, j, k, l, m, n, t, step) = f6d(i, j, k, l, m,

shift6+MAX_DIM6-shift6+n, t, step);

547 #pragma ivdep

548 for(int n=0; n<shift6; n++)

549 f6d(i, j, k, l, m, MAX_DIM6+shift6+n, t, step) = f6d(i, j, k, l, m,

shift6+n, t, step);

550 #END

551

552

553 op init_f6d(i, j, k, l, m, n, MX_D1, MX_D2, MX_D3, MX_D4, MX_D5, MX_D6,

shift1, shift2, shift3, shift4, shift5, shift6) : (

554 double f6d {out: (i, j, k, l, m, n, 0, 2) },

555 double factor {in},

556 double alpha {in},

557 double kx {in : size=[0:3[(size)},

558 double tensor_1 {in : size=[0:MX_D1[(size)},

559 double tensor_2 {in : size=[0:MX_D2[(size)},

560 double tensor_3 {in : size=[0:MX_D3[(size)},

561 double tensor_4 {in : size=[0:MX_D4[(size)},

562 double tensor_5 {in : size=[0:MX_D5[(size)},

563 double tensor_6 {in : size=[0:MX_D6[(size)}

564)

565 #CODE (C)

566 /* Initialization sll_s_initialize_landau_prod_6d */

567 f6d(i, j, k, l, m, n, 0, 2) = factor*(1.0 + alpha *

568 cos(kx(0)*tensor_1(i-shift1))*

569 cos(kx(1)*tensor_2(j-shift1))*

570 cos(kx(2)*tensor_3(k-shift1))

571) *

572 exp(-0.5*((tensor_4(l-shift4) * tensor_4(l-shift4)) +

573 (tensor_5(m-shift4) * tensor_5(m-shift4)) +

574 (tensor_6(n-shift4) * tensor_6(n-shift4)))

575);

576 #END

577

578 op fill_tensor(MX_D, n) : (

579 double eta_min {in: (n)},

580 double delta_eta {in: (n)},

581 double tensor_n {out: size=[0:MX_D[(size)}

582)

196

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

583 #CODE (C)

584 for(int i=0; i<MX_D; i++)

585 tensor_n(i) = eta_min(n) + delta_eta(n) * i;

586 #END

587

588 op compute_init_factor() : (

589 double factor {out}

590)

591 #CODE (C)

592 factor = 1.0/(pow(sqrt(2.0*M_PI), 3)); //*v_thermal = 1.0

593 #END

594

595 op compute_half_delta_t() : (

596 double half_delta_t {out},

597 double delta_t {in}

598)

599 #CODE (C)

600 half_delta_t = 0.5*delta_t;

601 #END

602

603 simulation inks_vlasov_poisson6d(MAX_DIM1, MAX_DIM2, MAX_DIM3, MAX_DIM4,

MAX_DIM5, MAX_DIM6, n_iterations,

604 shift1, shift2, shift3, shift4, shift5, shift6) : (

605 double rho(4),

606 double f6d(8),

607 double ex(4),

608 double ey(4),

609 double ez(4),

610 double delta_eta(1) {in: step=[0:6[(step)},

611 double disp_eta1(1) {in: size=[0:MAX_DIM4[(size)},

612 double disp_eta2(1) {in: size=[0:MAX_DIM5[(size)},

613 double disp_eta3(1) {in: size=[0:MAX_DIM6[(size)},

614 double length(1) {in: size=[0:6[(size)},

615 double kx(1) {in: size=[0:3[(size)},

616 double Es(1) {out: t=[0:n_iterations[(t)},

617 double eta_min(1) {in: size=[0:6[(size)},

618 double mass(1){out: t=[0:n_iterations[(t)},

619 double volume_eta123 {in},

620 double volume_eta456 {in},

621 double delta_t {in},

622 double alpha {in},

623 int pi_v1(1),

624 int pi_v2(1),

625 int pi_v3(1),

626 double pq_v1(2),

627 double pq_v2(2),

628 double pq_v3(2),

629 double p_v1(5),

630 double p_v2(5),

197

631 double p_v3(5),

632 double init_factor,

633 double tensor_1(1),

634 double tensor_2(1),

635 double tensor_3(1),

636 double tensor_4(1),

637 double tensor_5(1),

638 double tensor_6(1),

639 double half_delta_t,

640

641 /*For Poisson*/

642 fftw_complex_ptr fftw_in,

643 fftw_complex_ptr fftw_out,

644 fftw_plan px,

645 fftw_plan py,

646 fftw_plan pz,

647 fftw_plan px_inv,

648 fftw_plan py_inv,

649 fftw_plan pz_inv,

650 fftw_complex phi(4),

651 fftw_complex hat_phi(5),

652 fftw_complex hat_rho(5)

653)

654

655 #RESTRICT

656 shift1 > 0 and shift2 > 0 and shift3 > 0 and shift4 > 0 and shift5 > 0

and shift6 > 0;

657

658 #CODE (inks)

659 compute_init_factor () : (init_factor),

660 compute_half_delta_t() : (half_delta_t, delta_t),

661

662 fill_tensor(MAX_DIM1, 0) : (eta_min, delta_eta, tensor_1),

663 fill_tensor(MAX_DIM2, 1) : (eta_min, delta_eta, tensor_2),

664 fill_tensor(MAX_DIM3, 2) : (eta_min, delta_eta, tensor_3),

665 fill_tensor(MAX_DIM4, 3) : (eta_min, delta_eta, tensor_4),

666 fill_tensor(MAX_DIM5, 4) : (eta_min, delta_eta, tensor_5),

667 fill_tensor(MAX_DIM6, 5) : (eta_min, delta_eta, tensor_6),

668

669 init_f6d x1=[shift1:MAX_DIM1+shift1[x2=[shift2:MAX_DIM2+shift2[

x3=[shift3:MAX_DIM3+shift3[

670 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

671 (x1, x2, x3, v1, v2, v3, MAX_DIM1, MAX_DIM2, MAX_DIM3, MAX_DIM4,

MAX_DIM5, MAX_DIM6, shift1, shift2, shift3, shift4, shift5,

shift6)

672 : (f6d, init_factor, alpha, kx, tensor_1, tensor_2, tensor_3,

tensor_4, tensor_5, tensor_6),

673

198

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

674 advection_eta4 x1=[shift1:MAX_DIM1+shift1[x2=[shift2:MAX_DIM2+shift2[

x3=[shift3:MAX_DIM3+shift3[

675 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

676 t=[0: n_iterations[

677 (x1, x2, x3, v1, v2, v3, t, MAX_DIM4, 3, shift1, shift2, shift3,

shift4, shift5, shift6) :

678 (f6d, p_v1),

679 advection_eta5 x1=[shift1:MAX_DIM1+shift1[x2=[shift2:MAX_DIM2+shift2[

x3=[shift3:MAX_DIM3+shift3[

680 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

681 t=[0: n_iterations[

682 (x1, x2, x3, v1, v2, v3, t, MAX_DIM5, 4, shift1, shift2, shift3,

shift4, shift5, shift6) :

683 (f6d, p_v2),

684 advection_eta6 x1=[shift1:MAX_DIM1+shift1[x2=[shift2:MAX_DIM2+shift2[

x3=[shift3:MAX_DIM3+shift3[

685 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

686 t=[0: n_iterations[

687 (x1, x2, x3, v1, v2, v3, t, MAX_DIM6, 5, shift1, shift2, shift3,

shift4, shift5, shift6) :

688 (f6d, p_v3),

689 advection_eta1 x1=[shift1:MAX_DIM1+shift1[x2=[shift2:MAX_DIM2+shift2[

x3=[shift3:MAX_DIM3+shift3[

690 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

691 t=[1: n_iterations[

692 (x1, x2, x3, v1, v2, v3, t, MAX_DIM1, 0, shift1) :

693 (f6d, pi_v1, pq_v1),

694 advection_eta2 x1=[shift1:MAX_DIM1+shift1[x2=[shift2:MAX_DIM2+shift2[

x3=[shift3:MAX_DIM3+shift3[

695 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

696 t=[1: n_iterations[

697 (x1, x2, x3, v1, v2, v3, t, MAX_DIM2, 1, shift2) :

698 (f6d, pi_v2, pq_v2),

699 advection_eta3 x1=[shift1:MAX_DIM1+shift1[x2=[shift2:MAX_DIM2+shift2[

x3=[shift3:MAX_DIM3+shift3[

700 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

701 t=[1: n_iterations[

702 (x1, x2, x3, v1, v2, v3, t, MAX_DIM3, 2, shift3) :

703 (f6d, pi_v3, pq_v3),

704

705 copy_left_right_1 x1=[shift1:MAX_DIM1+shift1[

x2=[shift2:MAX_DIM2+shift2[x3=[shift3:MAX_DIM3+shift3[

706 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

199

v3=[shift6:MAX_DIM6+shift6[

707 t=[0:n_iterations[

708 (x2, x3, v1, v2, v3, t, MAX_DIM1, 5, shift1) :

709 (f6d),

710 copy_left_right_2 x1=[shift1:MAX_DIM1+shift1[

x2=[shift2:MAX_DIM2+shift2[x3=[shift3:MAX_DIM3+shift3[

711 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

712 t=[0:n_iterations[

713 (x1, x3, v1, v2, v3, t, MAX_DIM2, 0, shift2) :

714 (f6d),

715 copy_left_right_3 x1=[shift1:MAX_DIM1+shift1[

x2=[shift2:MAX_DIM2+shift2[x3=[shift3:MAX_DIM3+shift3[

716 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

717 t=[0:n_iterations[

718 (x1, x2, v1, v2, v3, t, MAX_DIM3, 1, shift3) :

719 (f6d),

720 copy_left_right_4 x1=[shift1:MAX_DIM1+shift1[

x2=[shift2:MAX_DIM2+shift2[x3=[shift3:MAX_DIM3+shift3[

721 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

722 t=[0:n_iterations[

723 (x1, x2, x3, v2, v3, t, MAX_DIM4, 2, shift4) :

724 (f6d),

725 copy_left_right_5 x1=[shift1:MAX_DIM1+shift1[

x2=[shift2:MAX_DIM2+shift2[x3=[shift3:MAX_DIM3+shift3[

726 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

727 t=[0:n_iterations[

728 (x1, x2, x3, v1, v3, t, MAX_DIM5, 3, shift5) :

729 (f6d),

730 copy_left_right_6 x1=[shift1:MAX_DIM1+shift1[

x2=[shift2:MAX_DIM2+shift2[x3=[shift3:MAX_DIM3+shift3[

731 v1=[shift4:MAX_DIM4+shift4[v2=[shift5:MAX_DIM5+shift5[

v3=[shift6:MAX_DIM6+shift6[

732 t=[0:n_iterations[

733 (x1, x2, x3, v1, v2, t, MAX_DIM6, 4, shift6) :

734 (f6d),

735

736 compute_pi_pq l=[0:MAX_DIM4[(l, shift4) :

737 (disp_eta1, pi_v1, pq_v1),

738 compute_pi_pq m=[0:MAX_DIM5[(m, shift4) :

739 (disp_eta2, pi_v2, pq_v2),

740 compute_pi_pq n=[0:MAX_DIM6[(n, shift4) :

741 (disp_eta3, pi_v3, pq_v3),

742 /*Delta t*/

743 compute_pV i=[0: MAX_DIM1[j=[0: MAX_DIM2[k=[0: MAX_DIM3[

744 t=[1: n_iterations[(i, j, k, t, 3, shift1, shift2, shift3) :

200

APPENDIX A. COMPLETE INKSPIA IMPLEMENTATION OF THE 6D
VLASOV-POISSON SOLVER.

745 (ex, p_v1, delta_eta, delta_t),

746 compute_pV i=[0: MAX_DIM1[j=[0: MAX_DIM2[k=[0: MAX_DIM3[

747 t=[1: n_iterations[(i, j, k, t, 4, shift1, shift2, shift3) :

748 (ey, p_v2, delta_eta, delta_t),

749 compute_pV i=[0: MAX_DIM1[j=[0: MAX_DIM2[k=[0: MAX_DIM3[

750 t=[1: n_iterations[(i, j, k, t, 5, shift1, shift2, shift3) :

751 (ez, p_v3, delta_eta, delta_t),

752

753 /*Half Delta t*/

754 compute_pV i=[0: MAX_DIM1[j=[0: MAX_DIM2[k=[0: MAX_DIM3[

755 (i, j, k, 0, 3, shift1, shift2, shift3) :

756 (ex, p_v1, delta_eta, half_delta_t),

757 compute_pV i=[0: MAX_DIM1[j=[0: MAX_DIM2[k=[0: MAX_DIM3[

758 (i, j, k, 0, 4, shift1, shift2, shift3) :

759 (ey, p_v2, delta_eta, half_delta_t),

760 compute_pV i=[0: MAX_DIM1[j=[0: MAX_DIM2[k=[0: MAX_DIM3[

761 (i, j, k, 0, 5, shift1, shift2, shift3) :

762 (ez, p_v3, delta_eta, half_delta_t),

763

764 compute_charge_density t=[0: n_iterations[

765 (t, MAX_DIM1, MAX_DIM2, MAX_DIM3, MAX_DIM4, MAX_DIM5, MAX_DIM6, 2,

shift1, shift2, shift3, shift4, shift5, shift6) :

766 (rho, f6d, volume_eta456),

767 /*Poisson*/

768 init_fftw_buffer(MAX_DIM1, MAX_DIM2, MAX_DIM3) :

769 (fftw_in, fftw_out),

770 init_fftw_plan(MAX_DIM1) :

771 (fftw_in, fftw_out, px, px_inv),

772 init_fftw_plan(MAX_DIM2) :

773 (fftw_in, fftw_out, py, py_inv),

774 init_fftw_plan(MAX_DIM3) :

775 (fftw_in, fftw_out, pz, pz_inv),

776

777 fftw_x j=[0:MAX_DIM2[k=[0:MAX_DIM3[t=[0: n_iterations[

778 (j, k, t, MAX_DIM1) :

779 (fftw_in, fftw_out, px, rho, hat_rho),

780 fftw_y i=[0: MAX_DIM1[k=[0:MAX_DIM3[t=[0: n_iterations[

781 (i, k, t, MAX_DIM2) :

782 (fftw_in, fftw_out, py, hat_rho),

783 fftw_z i=[0: MAX_DIM1[j=[0:MAX_DIM2[t=[0: n_iterations[

784 (i, j, t, MAX_DIM1, MAX_DIM2, MAX_DIM3) :

785 (fftw_in, fftw_out, pz, hat_rho),

786 compute_hat_phi i=[0: MAX_DIM1[j=[0:MAX_DIM2[k=[0: MAX_DIM3[t=[0:

n_iterations[

787 (i, j, k, t, MAX_DIM1, MAX_DIM2, MAX_DIM3) :

788 (length, hat_rho, hat_phi),

789 fftw_inv_z i=[0: MAX_DIM1[j=[0: MAX_DIM2[t=[0: n_iterations[

790 (i, j, t, MAX_DIM3) :

791 (fftw_in, fftw_out, pz_inv, hat_phi),

201

792 fftw_inv_y i=[0: MAX_DIM1[k=[0: MAX_DIM3[t=[0: n_iterations[

793 (i, k, t, MAX_DIM2) :

794 (fftw_in, fftw_out, py_inv, hat_phi),

795 fftw_inv_x j=[0: MAX_DIM2[k=[0: MAX_DIM3[t=[0: n_iterations[

796 (j, k, t, MAX_DIM1) :

797 (fftw_in, fftw_out, px_inv, hat_phi, phi),

798 compute_ex_from_phi j=[0: MAX_DIM2[k=[0: MAX_DIM3[t=[0: n_iterations[

799 (j, k, t, MAX_DIM1) :

800 (length, fftw_in, fftw_out, px, px_inv, phi, ex),

801 compute_ey_from_phi i=[0: MAX_DIM1[k=[0: MAX_DIM3[t=[0: n_iterations[

802 (i, k, t, MAX_DIM2) :

803 (length, fftw_in, fftw_out, py, py_inv, phi, ey),

804 compute_ez_from_phi j=[0: MAX_DIM2[i=[0: MAX_DIM1[t=[0: n_iterations[

805 (i, j, t, MAX_DIM3) :

806 (length, fftw_in, fftw_out, pz, pz_inv, phi, ez),

807

808 compute_mass t=[0: n_iterations[(t, MAX_DIM1, MAX_DIM2, MAX_DIM3) :

809 (rho, mass, volume_eta123),

810 compute_Energy t=[0: n_iterations[

811 (t, MAX_DIM1, MAX_DIM2, MAX_DIM3) :

812 (ex, ey, ez, delta_eta, Es)

813 #END

202

Appendix B

Complete example of the C++

code generated by the InKS

compiler for an alloc and map

InKSPSO statements.

1 //*** InKSpso ***//

2 inks_function(..., Z, Y, X){

3 //Allocation of a 3D buffers

4 alloc double A(Z, Y, X)

5 alloc double B(Z, Y, X)

6

7 //Map to a 3D logical array

8 map i=[0:X[j=[0:Y[k=[0:Z[A(k, j, i) = logical(0, k, j, i)

9 map i=[0:X[j=[0:Y[k=[0:Z[B(k, j, i) = logical(1, k, j, i)

10

11 //Update statement using the logical array

12 update logical(0:2, 0:Z, 0:Y, 0:X) using op

13 }

14

15 //*** C++ code generated ***/

16

17 //Class definition for the mapping

18 class logical_1_t{

19 const int& Z, & Y, &X;

20 double* const& A;

21 double* const& B;

22 const size_t &A_mult_1;

23 const size_t &A_mult_2;

204

APPENDIX B. COMPLETE EXAMPLE OF THE C++ CODE GENERATED
BY THE INKS COMPILER FOR AN ALLOC AND MAP INKSPSO

STATEMENTS.

24 const size_t &B_mult_1;

25 const size_t &B_mult_2;

26

27 logical_1_t(const int& Z_param, const int& Y_param, const int& X_param,

double* const& A_param, double* const& B_param, const size_t& A_mult_1,

const size_t& A_mult_2, const size_t& B_mult_1, const size_t& B_mult_2)

:

28 Z(Z_param),

29 Y(Y_param),

30 X(X_param),

31 A(A_param),

32 B(B_param),

33 A_mult_1(A_mult_1_param),

34 A_mult_2(A_mult_2_param),

35 B_mult_1(B_mult_1_param),

36 B_mult_2(B_mult_2_param),

37 {}

38

39 //In commentary, the original non-optimized conditions

40 double& operator()(const int& t,const int& k,const int& j,const int&

i)const{

41 //if(t==0 && 0<=k<Z && 0<=j<Y && 0<=i<X)

42 if(t==0)

43 return A[k*A_mult_2 + j*A_mult_1 + i];

44 //if(t==1 && 0<=k<Z && 0<=j<Y && 0<=i<X)

45 if(t==1)

46 return B[k*B_mult_2 + j*B_mult_1 + i];

47 } };

48

49 void inks_function(..., Z, Y, X){

50 //Allocations

51 double* A = new double[Z*Y*X];

52 size_t A_mult_2 = Y*X;

53 size_t A_mult_1 = X;

54

55 double* B = new double[Z*Y*X];

56 size_t B_mult_2 = Y*X;

57 size_t B_mult_1 = X;

58

59 //Mapping initialization

60 logical_1_t logical_1(Z, Y, X, A, B, A_mult_1, A_mult_2, B_mult_1,

B_mult_2);

61

62 //Operation in a loop nest, using the logical structure

63 for(int k=0; k<Z; k++)

64 for(int j=0; j<Z; j++)

65 for(int i=0; i<X; i++)

66 op(logical_1, t, k, j, i)

67 }

205

Appendix C

InKSPSO and the OpenMP Task

paradigm

As mentioned in the Section 5.4, the current implementation of InKSPSO

supports loop parallelism through a keyword located on the nested loops

that should be executed in parallel. This results in the generation of

parallel for OpenMP directives before the targeted loops. However,

this approach introduces many synchronizations at runtime that can hin-

der application performance, especially problematic at large scale. This is

especially true with the recent shift of HPC platforms from multi-core to

many-core architectures. Task-based approaches are promising to address

this problem [Song et al., 2009, Broquedis et al., 2012]. The overall idea is

to split computation parts into small dependent units of work scheduled on

available resources such as computing cores.

Since OpenMP 3 [OpenMP Architecture Review Board, 2008], the API

offers to express tasks, blocks of codes, that can be executed in parallel.

It consists in encapsulating a block of code in an omp task. This con-

struct was enhanced with the 4th version of the OpenMP standard and now

enables users to specify that a task reads data from previously scheduled

tasks and writes data that may be read by future tasks. Such specification

is complex, verbose and error-prone. Moreover, there are costs for han-

dling the tasks dependencies [Richard et al., 2019a]. Indeed, the OpenMP

runtime, that executes the tasks in accordance with the dependencies, con-

206

APPENDIX C. INKSPSO AND THE OPENMP TASK PARADIGM

sumes more and more memory and computing power as the number of data

dependencies submitted by the program increases. Therefore, to take ad-

vantage of the task paradigm of OpenMP, we have to minimize the number

of data dependencies used during the program execution. With OpenMP

4.5 [OpenMP Architecture Review Board, 2015], a new way to target the

task paradigm by involving a for loop, marked as an omp taskloop. This

directive expresses that each iteration can be divided into tasks. There are

no dependency relation between such tasks.

This section presents the fruit of a collaborative effort involving Jérôme

Richard, an expert in the task paradigm of the OpenMP API [Aumage

et al., 2017, Bigot et al., 2018, Richard et al., 2019b, Richard, 2017], with

the aim of supporting this paradigm in the InKSPSO approach. The scope

of the work is reduced to the following points:

1. No support of task-recursion: the code within tasks does not submit

other tasks;

2. Tasks are applied to loops only and more especially only one loop of

nested ones, but multiple independent loops can run in parallel;

3. Each task must have a statically bounded number of dependencies

(limitation inherited from OpenMP);

4. Setting the task granularity is left to the user (it may be done using

additional enclosing loops).

In comparison to the OpenMP 4.5 taskloop, we propose a modified

taskloop construct that comes with data dependencies. This would en-

able users to specify that each iteration of a loop can be divided into tasks

while specifying dependencies between these tasks. Our approach consists

in adding two keywords: one to define where tasks must be used and one

to put synchronization points. The task-based keyword called OMP TASKS

is added to nested loops in a similar way to the existing keyword based on

parallel for. Hence, it is up to the developer of the InKSPSO code to

set which loops should contain tasks. The annotation will submit a task

for each iteration of the loop through the directive omp task. Using the

207

InKS approach, and more specifically the InKSPIA algorithm, the main

goal is to automatically retrieve the minimal number of data dependencies

according to the inputs and outputs of operations inside the tasks. If the

number of dependencies is not statically bounded, the compilation fails and

the problem is reported to the user. The synchronization keyword called

OMP TASKWAIT acts as a barrier: it specifies a point where all tasks previ-

ously submitted at runtime should be awaited. This is useful to drastically

reduce the amount of dependency per tasks and for the interoperability

between task-based parts of the code and those based on parallel loops.

C.0.1 Algorithm and Implementation

The algorithm is divided into four sequential dependent stages. Each one

consists in iterating over the whole Abstract Syntax Tree (AST, generated

by the Bison-based parser) of the InKSPSO code, using a top-down recursion

(root to the leaves) followed by a bottom-up one (leaves to the root). When

two AST elements (e.g. loops) lies in the same AST element (e.g. parent

loop), stages are applied in-order (in the same order elements are written

in the code). Those stages work on isl data structures and rely mainly

on fields created during previous compilation phases with the assistance of

the InKSPIA code: the relations associating a loop iteration to the data

instance it reads or writes, respectively named RI and RO. The stages are

the following:

1. Projection: transforms local in-loop relations into global ones;

2. Computation of dependencies: generate dependency relations so that

previously executed iterations that write into data read by another

iteration are dependent;

3. Section: perform the inverse operation of the Projection step on de-

pendency sets so that global sets are transformed into local ones

needed to generate OpenMP directives;

4. Code generation: generate OpenMP task-based directives for each

loop.

208

APPENDIX C. INKSPSO AND THE OPENMP TASK PARADIGM

InKSPSO offers a for loop construct capable of specifying nested loops,

using multiple indexes. Hence, the RI and RO relations associate an iter-

ation, i.e. a specific value for all loops’ index in the nested loop, to data

instance. Since only one of those loops is marked as task loop, Stage 1

projects the inner indexes to obtain relations that associate a task, i.e. an

iteration of the task loop, to the data it reads and writes. Moreover, the re-

lation are parameterized by the surrounding loops. In order to compare the

data accessed by all iterations, i.e. future tasks, we move these parameters

to the relations’ domain.

Stage 2 tracks data that will be read and written at runtime to statically

define task dependencies. However, due to loops, the control flow is not

linear, making this analysis complex. Indeed, one should handle the case

where a synchronization point is put in the middle of a loop or when task

dependencies cross loop iterations. In this case, a task of one iteration (e.g.

time-step) can be dependent of tasks of the previous iteration (e.g. previous

time-step), even though no synchronization point is executed in-between.

To solve this problem, Stage 2 constructs PrevRO, the union of all

previous output relation RO (including the current loop). Then, it computes

the dependencies through an application of the relation between each RI

and the reverse relation PrevRO. This gives a new relation called Deps,

associating a task that reads a piece of data to the task that produces

it. It is important to note that Deps cannot be used directly to generate

the OpenMP task-based directives since this operation needs to be able to

reason about a given task (to compute and check some properties on each)

and loop iterators are not yet parameters but variables of the isl relation.

This is the goal of Stage 3.

Stage 3 first applies the reverse operation of Stage 1 on Deps: it sections

(can be seen as an ”un-projection”) the Deps relation so that iterators are

re-injected as parameters. This new parameterized relation, LocalDeps,

is used to check if the number of dependencies is statically bounded per

task and extract each of them. To check the number of dependencies, the

LocalDeps is split into contiguous sub-relations. Then we compute the

bounding box of the relation. If, and only if, the side of each dimension of

the bounding box is a constant, we can be sure that there is a statically

209

Stencil S1 Stencil S2
start timeloop

1D domain

Figure C.1 – The double stencil application.

bounded number of dependencies. If the number of dependencies is not

statically bounded the compilation stops and an error is reported. Other-

wise, the lexicographically minimum value of LocalDeps is extracted from

the relation iteratively until it becomes empty. The algorithm is proven to

terminate because of the constant boundary.

Stage 4 generates the final OpenMP code. First of all, it computes the

size of the dependency space of each loop to reserve a memory area for

dependencies. Indeed, it is important to note that dependencies are mem-

ory storage location in OpenMP and memory area referenced by pointers

should not need to be allocated according to the OpenMP documentation.

Then, Stage 4 generates pointers for each dependency of each task before

generating finally the omp task directive of each task.

C.0.2 Preliminary evaluation

To evaluate our current implementation of the Taskloop construct in

InKSPSO, we have developed a double stencil application. This application

applies to a one-dimensional domain two stencils, one after the other, mul-

tiple times. Figure C.1 presents a graphical representation of this applica-

tion’s algorithm. After implementing an InKSPIA version of this algorithm,

we have developed two InKSPSO optimization versions of this application.

Both rely on a time loop containing two independent taskloops, each per-

forming a stencil operation. The first version uses tasks that operate on a

single coordinate while the second use coarser tasks, using a blocking strat-

egy. All codes were compiled with Intel 18 compiler (icpc with -O3 -xHost

-ip -ipo compilation options), the OpenMP Intel implementation and ex-

ecuted on a single node of the Irene cluster (TGCC, France), equipped with

192 GB RAM and two Xeon Platinium 8168 CPUs per node. Table C.1

presents the result of this experiment.

210

APPENDIX C. INKSPSO AND THE OPENMP TASK PARADIGM

Version # cores Execution time (second)

Sequential 1 1.53e−4 (±8.20%)

Fine task

1 1.23e−2 (±2.07%)

2 6.58e−1 (±0.96%)

4 6.63e−1 (±1.62%)

8 7.09e−1 (±1.15%)

Coarse task

1 3.80e−3 (±8.44%)

2 1.24e−1 (±1.06%)

4 1.26e−1 (±2.04%)

8 1.36e−1 (±4.22%)

Table C.1 – Strong scaling of the InKSPSO taskloop construct on a double
stencil application. Execution time of the InKSPSO taskloop implementa-
tions of a double stencil application. Fine grain tasks compute a single
element, coarser ones manage eight elements. Size=10000 with 10 time-
steps. Median and maximal relative change of 10 executions.

Although the current implementation is experimental, the algorithm

has been tested successfully on these two versions. However, the task-

based parallelism strategy is clearly inefficient in our case, as shown on

Table C.1. The task approach is interesting in the case of irregular or

recursive problems. These often need load-balancing solution to run effi-

ciently in parallel. In our case, the problem is regular, limiting the interest

of the task approach. On the contrary, the task approach needs to compute

the dependencies at runtime, inducing an overhead. This is illustrated on

Table C.1. Indeed, the fine-grain tasks version is less efficient than the se-

quential version, even though it runs in parallel. Similarly, the coarse-grain

tasks version is slower than the sequential version, probably because of the

more complex dependence that must be computed at runtime. Still, this ex-

periment demonstrates that the InKSPSO compiler, assisted by the InKSPIA

algorithm, can generate automatically OpenMP task dependencies. Also,

note that this paradigm may be interesting to execute in parallel InKSPIA

operations that need some balancing.

Currently, we have identified two limitations to our algorithm. Firstly,

each task reads one or multiple storage locations (artificial data dependen-

cies) and writes into a one unique storage location associated with a given

211

task. Since a lot of tasks can be generated at runtime, the same num-

ber of storage locations is generated too. However, some runtimes like the

Clang/Intel implementation of OpenMP or KOMP accumulate those stor-

age locations within their own internal data structures. As a result, the

memory overhead can be significant compared to hand-written OpenMP

code. Moreover, these data structures can grow so much that they can-

not fit in the caches anymore, introducing additional runtime overheads.

This is the reason behind such a small experiment: 10000 points is quite

small, but increasing the number of points to 100000 causes the OpenMP

versions to take minutes or even hours to run. This effect can be negated

by reusing storage locations as much as possible. Hence, a task t can reuse

a storage location d safely if, and only if, all tasks that read or write on d

are executed before. Introducing synchronization points after having sub-

mitting a user-defined number of tasks is a possibility. This would let the

runtime complete these tasks and make possible memory reuse, increasing

dramatically the performance, especially in the case of larger runs.

Secondly, while tasks dependencies are automatically generated for each

task, the number of dependencies is not currently minimized. Using too

many dependencies can introduce additional runtime overheads. Hence, re-

ducing the number of dependencies by analyzing the overall graph could

improve performance at runtime (at the expense of a longer C++ compila-

tion time).

212

Bibliography

[Anderson et al., 1990] Anderson, E., Bai, Z., Dongarra, J., Greenbaum,

A., McKenney, A., Du Croz, J., Hammarling, S., Demmel, J., Bischof, C.,

and Sorensen, D. (1990). LAPACK: A portable linear algebra library for

high-performance computers. In Proceedings of the 1990 ACM/IEEE con-

ference on Supercomputing, pages 2–11. IEEE Computer Society Press.

[Augonnet et al., 2011] Augonnet, C., Thibault, S., Namyst, R., and

Wacrenier, P.-A. (2011). StarPU: A Unified Platform for Task Scheduling

on Heterogeneous Multicore Architectures. Concurr. Comput. : Pract.

Exper., 23(2):187–198.

[Aumage et al., 2017] Aumage, O., Bigot, J., Coullon, H., Pérez, C., and

Richard, J. (2017). Combining Both a Component Model and a Task-

Based Model for HPC Applications: A Feasibility Study on GYSELA. In

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), pages 635–644.

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998). Term

Rewriting and All That. Cambridge University Press, New York, NY,

USA.

[Backus, 1954] Backus, J. (1954). Preliminary report: specifications for the

IBM Mathematical FORmula TRANslating System, FORTRAN. Tech-

nical report.

214

BIBLIOGRAPHY

[Bagnara et al., 2008] Bagnara, R., Hill, P. M., and Zaffanella, E. (2008).

The Parma Polyhedra Library: Toward a complete set of numerical ab-

stractions for the analysis and verification of hardware and software sys-

tems. Science of Computer Programming, 72(1):3 – 21. Special Issue on

Second issue of experimental software and toolkits (EST).

[Bailey et al., 1991] Bailey, D. H., Barszcz, E., Barton, J. T., Browning,

D. S., Carter, R. L., Dagum, L., Fatoohi, R. A., Frederickson, P. O.,

Lasinski, T. A., Schreiber, R. S., et al. (1991). The NAS parallel

benchmarks. The International Journal of Supercomputing Applications,

5(3):63–73.

[Bastoul et al., 2012] Bastoul, C., Cohen, A., Girbal, S., Sharma, S., and

Temam, O. (2012). Clan a polyhedral representation extractor for high

level programs edition 1.0, for clan 0.7.0.

[Basu et al., 2017] Basu, P., Williams, S., Van Straalen, B., Oliker, L.,

Colella, P., and Hall, M. (2017). Compiler-based code generation and

autotuning for geometric multigrid on GPU-accelerated supercomputers.

Parallel Computing, 64:50–64.

[Bauer et al., 2012] Bauer, M., Treichler, S., Slaughter, E., and Aiken, A.

(2012). Legion: Expressing locality and independence with logical re-

gions. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’12, pages 66:1–

66:11, Los Alamitos, CA, USA. IEEE Computer Society Press.

[Bigot et al., 2018] Bigot, J., Grandgirard, V., Latu, G., Méhaut, J.-F.,

Felipe Millani, L., Passeron, C., Quinito Masnada, S., Richard, J., and

Videau, B. (2018). Building and Auto-Tuning Computing Kernels: Ex-

perimenting with Boast and Starpu in the Gysela Code. ESAIM: Pro-

ceedings and Surveys, 63:152–178.

[Bondhugula et al., 2008] Bondhugula, U., Baskaran, M., Krishnamoorthy,

S., Ramanujam, J., Rountev, A., and Sadayappan, P. (2008). Automatic

transformations for communication-minimized parallelization and local-

ity optimization in the Polyhedral Model. In International Conference

on Compiler Construction (ETAPS CC).

215

BIBLIOGRAPHY

[Bosilca et al., 2013] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M.,

Herault, T., and Dongarra, J. J. (2013). PaRSEC: Exploiting Heterogene-

ity to Enhance Scalability. Computing in Science Engineering, 15(6):36–

45.

[Broquedis et al., 2012] Broquedis, F., Gautier, T., and Danjean, V.

(2012). LIBKOMP, an Efficient openMP Runtime System for Both Fork-

join and Data Flow Paradigms. In Proceedings of the 8th International

Conference on OpenMP in a Heterogeneous World, IWOMP’12, pages

102–115, Berlin, Heidelberg. Springer-Verlag.

[Cardoso et al., 2012] Cardoso, J. a., Carvalho, T., Coutinho, J., Luk, W.,

Nobre, R., Diniz, P., and Petrov, Z. (2012). LARA: an aspect-oriented

programming language for embedded systems. In Proceedings of the

11th annual international conference on Aspect-oriented Software Devel-

opment, pages 179–190.

[Chandra et al., 2001] Chandra, R., Dagum, L., Kohr, D., Maydan, D.,

McDonald, J., and Menon, R. (2001). Parallel Programming in OpenMP.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Christen et al., 2011] Christen, M., Schenk, O., and Burkhart, H. (2011).

PATUS: A Code Generation and Autotuning Framework for Parallel It-

erative Stencil Computations on Modern Microarchitectures. In Parallel

& Distributed Processing Symposium (IPDPS) 2011. IEEE.

[Cosnard and Jeannot, 1999] Cosnard, M. and Jeannot, E. (1999). Com-

pact DAG Representation and Its Dynamic Scheduling. Journal of Par-

allel and Distributed Computing, 58(3):487 – 514.

[Cosnard and Loi, 1995] Cosnard, M. and Loi, M. (1995). Automatic task

graph generation techniques. In Proceedings of the twenty-eighth annual

Hawaii international conference on system sciences, volume 2, pages 113–

122. IEEE.

[Danalis et al., 2014] Danalis, A., Bosilca, G., Bouteiller, A., Herault, T.,

and Dongarra, J. (2014). PTG: An Abstraction for Unhindered Paral-

lelism. In 2014 Fourth International Workshop on Domain-Specific Lan-

216

BIBLIOGRAPHY

guages and High-Level Frameworks for High Performance Computing,

pages 21–30.

[Darte et al., 2016] Darte, A., Isoard, A., and Yuki, T. (2016). Extended

lattice-based memory allocation. In Proceedings of the 25th International

Conference on Compiler Construction, CC 2016, pages 218–228, New

York, NY, USA. ACM.

[Darte et al., 2005] Darte, A., Schreiber, R., and Villard, G. (2005).

Lattice-based memory allocation. IEEE Transactions on Computers,

54(10):1242–1257.

[Duran et al., 2011] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J.,

Martinell, L., Martorell, X., and Planas, J. (2011). Ompss: a proposal for

programming heterogeneous multi-core architectures. Parallel Processing

Letters, 21(02):173–193.

[Edwards et al., 2014] Edwards, H. C., Trott, C. R., and Sunderland, D.

(2014). Kokkos: Enabling manycore performance portability through

polymorphic memory access patterns. Journal of Parallel and Distributed

Computing, 74(12):3202 – 3216. Domain-Specific Languages and High-

Level Frameworks for High-Performance Computing.

[Ejjaaouani et al., 2017] Ejjaaouani, K., Aumage, O., Bigot, J., and

Mehrenberger, M. (2017). InKS, a programming model to decouple per-

formance from semantics in simulation codes. hal.

[Ejjaaouani et al., 2019a] Ejjaaouani, K., Aumage, O., Bigot, J., and

Mehrenberger, M. (2019a). InKSpso, a language to express optimiza-

tions independently from the algorithm in InKS. Written, submitted to

P3HPC (Supercomputing workshop).

[Ejjaaouani et al., 2018] Ejjaaouani, K., Aumage, O., Bigot, J., Mehren-

berger, M., Murai, H., Nakao, M., and Sato, M. (2018). InKS, a pro-

gramming model to decouple performance from algorithm in HPC codes.

In Repara 2018-4th International Workshop on Reengineering for Paral-

lelism in Heterogeneous Parallel Platforms, pages 1–12.

217

BIBLIOGRAPHY

[Ejjaaouani et al., 2019b] Ejjaaouani, K., Aumage, O., Bigot, J., Mehren-

berger, M., Murai, H., Nakao, M., and Sato, M. (2019b). InKS, a pro-

gramming model to decouple performance from algorithm in HPC codes.

The Journal of Supercomputing.

[Ernstsson et al., 2018] Ernstsson, A., Li, L., and Kessler, C. (2018).

SkePU 2: Flexible and Type-Safe Skeleton Programming for Heteroge-

neous Parallel Systems. International Journal of Parallel Programming,

46(1):62–80.

[Fassi and Clauss, 2015] Fassi, I. and Clauss, P. (2015). XFOR: Filling the

Gap between Automatic Loop Optimization and Peak Performance. In

2015 14th International Symposium on Parallel and Distributed Comput-

ing, pages 100–109.

[Feautrier, 1991] Feautrier, P. (1991). Dataflow analysis of array and scalar

references. International Journal of Parallel Programming, 20(1):23–53.

[Feautrier, 1996] Feautrier, P. (1996). Automatic Parallelization in the

Polytope Model. In The Data Parallel Programming Model.

[Feautrier and Lengauer, 2011] Feautrier, P. and Lengauer, C. (2011).

Polyhedron Model, pages 1581–1592. Springer US, Boston, MA.

[Fernández et al., 2014] Fernández, A., Beltran, V., Mateo, S., Patejko, T.,

and Ayguadé, E. (2014). A Data Flow Language to Develop High Per-

formance Computing DSLs. In 2014 Fourth International Workshop on

Domain-Specific Languages and High-Level Frameworks for High Perfor-

mance Computing, pages 11–20.

[Filbet et al., 2001] Filbet, F., Sonnendrücker, E., and Bertrand, P. (2001).

Conservative Numerical Schemes for the Vlasov Equation. Journal of

Computational Physics, 172(1):166 – 187.

[Griebler et al., 2018] Griebler, D., Loff, J., Mencagli, G., Danelutto, M.,

and Fernandes, L. G. (2018). Efficient NAS benchmark kernels with C++

parallel programming. In 2018 26th Euromicro International Conference

on Parallel, Distributed and Network-based Processing (PDP).

218

BIBLIOGRAPHY

[Harbulot and R. Gurd, 2006] Harbulot, B. and R. Gurd, J. (2006). A join

point for loops in AspectJ. volume 2006, pages 63–74.

[Inria, IPP, IRMA, IRMAR, LJLL, 2018] Inria, IPP, IRMA, IRMAR,

LJLL (2018). Semi Lagrangian Library: Modular library for the kinetic

and gyrokinetic simulation of tokamak plasmas by the semi-lagrangian

or particle-in-cell methods. http://selalib.gforge.inria.fr/. Ac-

cessed: 2018-04-10.

[Isoard, 2016] Isoard, A. (2016). Extending Polyhedral Techniques towards

Parallel Specifications and Approximations. PhD thesis, École normale

supérieure de Lyon. Thèse de doctorat dirigée par Darte, Alain Informa-

tique Lyon 2016.

[Kaiser et al., 2019] Kaiser, H., aka wash, B. A. L., Heller, T., Bergé, A.,

Simberg, M., Biddiscombe, J., Bikineev, A., Mercer, G., Schäfer, A.,

Serio, A., Kwon, T., Huck, K., Habraken, J., Anderson, M., Copik, M.,

Brandt, S. R., Stumpf, M., Bourgeois, D., Blank, D., Jakobovits, S., Am-

atya, V., Viklund, L., Khatami, Z., Bacharwar, D., Yang, S., Schnetter,

E., Diehl, P., Gupta, N., Wagle, B., and Christopher (2019). STEllAR-

GROUP/hpx: HPX V1.2.1: The C++ Standards Library for Parallelism

and Concurrency.

[Kamil, 2012] Kamil, S. (2012). StencilProbe: A microbenchmark for sten-

cil applications. http://people.csail.mit.edu/skamil/projects/

stencilprobe/. Accessed: 25-04-2019.

[Kelly et al., 1995] Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeis-

man, T., and Wonnacott, D. (1995). The Omega library interface guide.

Technical report, College Park, MD, USA.

[Kong et al., 2016] Kong, M., Pouchet, L.-N., Sadayappan, P., and Sarkar,

V. (2016). PIPES: A Language and Compiler for Task-based Program-

ming on Distributed-memory Clusters. In Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Stor-

age and Analysis, SC ’16, pages 39:1–39:12, Piscataway, NJ, USA. IEEE

Press.

219

BIBLIOGRAPHY

[Kormann et al., 2019] Kormann, K., Reuter, K., and Rampp, M. (2019).

A massively parallel semi-lagrangian solver for the six-dimensional

Vlasov-Poisson equation. The International Journal of High Performance

Computing Applications.

[Lee and Sato, 2010] Lee, J. and Sato, M. (2010). Implementation and Per-

formance Evaluation of XcalableMP: A Parallel Programming Language

for Distributed Memory Systems. In 2010 39th International Conference

on Parallel Processing Workshops, pages 413–420.

[Lengauer, 1993] Lengauer, C. (1993). Loop Parallelization in the Polytope

Model. In CONCUR.

[Loechner et al., 1999] Loechner, V., S. Brant, B., and Illkirch, F. (1999).

PolyLib: A library for manipulating parameterized polyhedra.

[Mehrenberger et al., 2013] Mehrenberger, M., Steiner, C., Marradi, L.,

Crouseilles, N., Sonnendrucker, E., and Afeyan, B. (2013). Vlasov on

GPU (VOG project). ESAIM: Proc., 43:37–58.

[OpenMP Architecture Review Board, 2008] OpenMP Architecture Re-

view Board (2008). OpenMP application program interface - version

3.0. https://www.openmp.org/wp-content/uploads/spec30.pdf.

[OpenMP Architecture Review Board, 2015] OpenMP Architecture Re-

view Board (2015). OpenMP application programming interface - ver-

sion 4.5. https://www.openmp.org/wp-content/uploads/openmp-4.

5.pdf.

[Pijanowski et al., 2014] Pijanowski, B. C., Tayyebi, A., Doucette, J.,

Pekin, B. K., Braun, D., and Plourde, J. (2014). A big data urban

growth simulation at a national scale: Configuring the GIS and neural

network based Land Transformation Model to run in a High Performance

Computing (HPC) environment. Environmental Modelling & Software,

51:250 – 268.

[President’s Information Technology Advisory Committee, 2005]

President’s Information Technology Advisory Committee (2005).

220

BIBLIOGRAPHY

Computational science: Ensuring america’s competitiveness. Report to

the President. https://www.nitrd.gov/pitac/reports/20050609_

computational/computational.pdf.

[Ragan-Kelley et al., 2017] Ragan-Kelley, J., Adams, A., Sharlet, D.,

Barnes, C., Paris, S., Levoy, M., Amarasinghe, S., and Durand, F. (2017).

Halide: Decoupling algorithms from schedules for high-performance im-

age processing. Commun. ACM, 61(1):106–115.

[Richard, 2017] Richard, J. (2017). Conception d’un modèle de composants

logiciels avec ordonnancement de tâches pour les architectures parallèles

multi-coeurs, application au code Gysela. PhD thesis, École normale

supérieure de Lyon.

[Richard et al., 2019a] Richard, J., Latu, G., and Bigot, J. (2019a). Using

OpenMP tasks for a 2D Vlasov-Poisson Application. Research report,

CEA Cadarache.

[Richard et al., 2019b] Richard, J., Latu, G., and Bigot, J. (2019b). Using

OpenMP tasks for a 2D Vlasov-Poisson Application. Research report,

CEA Cadarache.

[Ritchie, 1993] Ritchie, D. M. (1993). The Development of the C Language.

SIGPLAN Not., 28(3):201–208.

[Robbiano, 1985] Robbiano, L. (1985). Term orderings on the polynominal

ring. volume 204, pages 513–517.

[Robison, 2013] Robison, A. D. (2013). Composable parallel patterns with

intel cilk plus. Computing in Science & Engineering, 15(2):66.

[Sanderson and Curtin, 2016] Sanderson, C. and Curtin, R. (2016). Ar-

madillo: a template-based C++ library for linear algebra. Journal of

Open Source Software, 1(2):26–32.

[Schaller, 1997] Schaller, R. R. (1997). Moore’s law: Past, present, and

future. IEEE Spectr., 34(6):52–59.

221

BIBLIOGRAPHY

[Song et al., 2009] Song, F., YarKhan, A., and Dongarra, J. (2009). Dy-

namic Task Scheduling for Linear Algebra Algorithms on Distributed-

memory Multicore Systems. In Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, SC ’09, pages

19:1–19:11, New York, NY, USA. ACM.

[Stansifer, 1984] Stansifer, R. (1984). Presburger’s article on integer arith-

metic: Remarks and translation. Technical report, Ithaca, NY, USA.

[Steuwer et al., 2017] Steuwer, M., Remmelg, T., and Dubach, C. (2017).

LIFT: A functional data-parallel IR for high-performance GPU code gen-

eration. In 2017 IEEE/ACM International Symposium on Code Gener-

ation and Optimization (CGO), pages 74–85.

[Stroustrup, 1997] Stroustrup, B. (1997). The C++ Programming Lan-

guage, Third Edition. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 3rd edition.

[Tang et al., 2011] Tang, Y., Chowdhury, R. A., Kuszmaul, B. C., Luk,

C.-K., and Leiserson, C. E. (2011). The Pochoir stencil compiler. In

Proceedings of the Twenty-third Annual ACM Symposium on Parallelism

in Algorithms and Architectures, SPAA ’11, pages 117–128, New York,

NY, USA. ACM.

[Tanno and Iwasaki, 2009] Tanno, H. and Iwasaki, H. (2009). Parallel

Skeletons for Variable-Length Lists in SkeTo Skeleton Library. In Pro-

ceedings of the 15th International Euro-Par Conference on Parallel Pro-

cessing, Euro-Par ’09. Springer.

[TGCC, 2019] TGCC (2019). The Irene cluster. http://www-hpc.cea.

fr/fr/complexe/tgcc-Irene.htm.

[Thoman et al., 2015] Thoman, P., Gschwandtner, P., and Fahringer, T.

(2015). On the quality of implementation of the C++ 11 thread support

library. In 2015 23rd euromicro international conference on parallel,

distributed, and network-based processing, pages 94–98. IEEE.

222

BIBLIOGRAPHY

[Vanbroekhoven, 2002] Vanbroekhoven, P. (2002). Dynamic Sin-

gle Assignment. http://www.elis.ugent.be/aces/edegem2002/

vanbroekhoven.pdf.

[Verdoolaege, 2007] Verdoolaege, S. (2007). barvinok: User guide. Version

0.23), Electronically available at http://www. kotnet. org/skimo/barvi-

nok.

[Verdoolaege, 2010] Verdoolaege, S. (2010). isl: An integer set library for

the Polyhedral Model. In International Congress on Mathematical Soft-

ware, pages 299–302. Springer.

[Verdoolaege, 2014] Verdoolaege, S. (2014). ISCC calculator. http://

compsys-tools.ens-lyon.fr/iscc/index.php.

[Verdoolaege and Grosser, 2012] Verdoolaege, S. and Grosser, T. (2012).

Polyhedral extraction tool. In Second International Workshop on Poly-

hedral Compilation Techniques (IMPACT’12), Paris, France, pages 1–16.

[Verdoolaege et al., 2013] Verdoolaege, S., Juega, J. C., Cohen, A., Gómez,

J. I., Tenllado, C., and Catthoor, F. (2013). Polyhedral parallel code

generation for CUDA. ACM Transactions on Architecture and Code Op-

timization, 9(4):54:1–54:23.

[Verdoolaege et al., 2007] Verdoolaege, S., Seghir, R., Beyls, K., Loechner,

V., and Bruynooghe, M. (2007). Counting integer points in parametric

polytopes using barvinok’s rational functions. Algorithmica, 48(1):37–66.

[Xu et al., 2014] Xu, M., Liang, X.-Z., Samel, A., and Gao, W. (2014).

MODIS consistent vegetation parameter specifications and their impacts

on regional climate simulations. Journal of Climate, 27(22):8578–8596.

223

��������	

������
�������������������������������

������

������	
����
���	��������	�������������������	����������������������	�������������������������������
��
�	
���
����������	���	����������	�����������	
���������
���
����	�����
����������������	�����	��
������
�������	����������������		���
�� ������������!�����
�
���������������
���"�������	�����
��������������#��������
"� ��������������������	���!��$����
"����	
��
����������	�����������$��
�	��������������������!	� �
"	��������	��
���%��������"�����
��
������������	�
���	���
�������������	��&
�	�����	���!����������	�
����������������'���������� �������������
���"	��������	��
������������
�������	�����	����	��������
�����"���	���!���	���� ������������������������
���!	� �
"	��������	��
�� � �	
��� � ����� �
"������ �
� � �	�������� � �����	�� �
�� � 	��������	��� � �(�$������ � ��� � ��
���!������������������
"������$������	���!����)�������������
����������������	���
"����	����������
����������������������"���	���!��������	
������������������������������
���	
����		����������	
��������

���
����	�����

������������		����	��
���	
������������
���	�������������	����	�����	��������������	
������
������� �
� � �*�����������	� �
� � ��������	�� �
� � �����& � �� � �(����� � +���	�,�	���	� � -.� � /����
��������	����������
���������������
����������������	������	�������
���	
������	����������
��������
���������	��
�������������������������	������������������������������	����������	�����
������ ��	�����	����	����� �*���������� �
��
�� � �����������	���
���(������+���	�,�	���	��-.�
����������������	��0	��������	�������	��������	�������������	�������������	�����
���������
�������

�� � ��� � ��� � ���������� � /���
���� � �� � ������� �
� � �*���	���!�� � ����� �
*	�
	�������
���	����$��
���������������� ����	�������������������
�� ��������� �#����� �
���� ������������	�������$����
���	
�� � ������'� ��� � ����������������� �
�
�	�������
�����������	�����������������
������	������������������������
����������������������
������������������������������������
���	
���� ��������	��������	���������������
�����������������
���������� �
*	��������	�� � ���� �
*�
�������� � �� � ��� � �
���� � � � ��� � ���!�������� �
	����� �)�
�	������	���
���������������	���������������	������
���	����������$����������������������
*�������
����
� � ����� �
� � �	
�� � �������� � �� � ���� � �	������ � � � �� � ���!���!� �
�� � ���������� � ����������

*	��������	��

1	��,�����&�1	
����
���	��������	����������	��
�����	������	����/������!��������	������

�����������������

� �2!� � ���� � �	�������� ��	
�� � ���� � �	 � ���	�� � ���
������(� 	��������(� ��
 ���������������(� 	�
��������	� � �	
�� � �� � 3��� � �� � �		����� �
����	�� � �	
�������(� � 2	 � ������� � �!��� � 	���������� � ����
�		�����3	���������������!�
�
�����
��	������������	�������0������������#��	��
����	�������	
� �������������	�����	���!���3��!��	��	��������	��	����4���	���'�����!����	��
���	����������������'

��������	����4���	��������������	��������!�����	���!�����	�
����	������(��!��	����4���	�������2!�
�	
���	�������	�3����������	��������	���	���!��	����4���	�����(�����(�	���������!������������	���
����������	���!���2!����������(���������!����3�������	���	
���	�����!���3�	����4���	������������	��
�		������
����	����	
�������(�
5��!������������
��!��������	����������	
����(�����������	�����������!��-.�+���	�,�	���	�
�	�������
��	����
�	��������	��3��!���0	������	����2!�����������	��!��!���!��
��!��������

���	���	
�!���������	��	� ��	������� � �!�� �������	��!� �� ��	� ��	�� ��	��� � �!�� � ���
���	��� �	����3!���
	���������!����������	��������1	��	������������!�����	���!���������������	��������������
��	
���	�
�	�,�������� ����� �	� ��	
�� � ������� �	����4���	� ����������� ��	�� � ����� �	 � �	��� �	� �	����4��� � �!�
�	������	�����������������

��(3	�
�&���	����������	
�����������	��	���	��������6��!����	��������	������

