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Abstract

In this research, we are interested in investigating issues related to query
evaluation and optimization in the framework of aggregated search. Aggre-
gated search is a new paradigm for accessing massively distributed infor-
mation. It aims to produce answers to queries by combining fragments of
information from different sources. The queries ask for objects (documents)
that do not exist as such in the targeted sources, but are built from frag-
ments extracted from different sources. The sources might not be specified
in the query expression, they are dynamically discovered at runtime.

In our work, we consider data dependencies to propose a frame-
work for optimizing query evaluation over distributed graph-oriented data
sources. For this purpose, we propose an approach for the document in-
dexing/organizing process of aggregated search systems. We consider in-
formation retrieval systems that are graph oriented (more specifically RDF
graphs). Using graph relationships, our work is within relational aggregated
search where relationships are used to aggregate fragments of information.
Our goal is to optimize the access to source of information in a aggregated
search system. These sources contain fragments of information that are rel-
evant partially for the query. We aim at minimizing the number of sources
to ask, also at maximizing the aggregation operations within a same source.
For this, we propose to reorganize the graph database(s) in clusters, dedi-
cated to aggregated queries. We use a semantic or strucutral clustering of
RDF predicates. For structural clustering, we propose to use frequent sub-
graph mining algorithms, we performed for this a comparative study of their
performances. For semantic clustering, we use the descriptive metadata of
RDF predicates and apply semantic textual similarity methods to calculate
their relatedness. Following the clustering, we define query decomposing
rules based on the semantic/structural aspects of RDF predicates. Prelim-
inary experiments show that our semantic clustering optimizes the query
decomposing and the number of sources to ask.

Keywords

Relational aggregated search, Semantic partitioning, Clustering, Graph min-
ing, Frequent subgraph mining, Query decomposition, Distributed search
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Résumé

Le sujet de cette these s’inscrit dans le cadre général de la Recherche
d’'Information et la gestion des données massivement distribuées.
Notre problématique concerne 1’évaluation et 'optimisation de requétes
agrégatives (Aggregated Search). La Recherche d’Information Agrégative
est un nouveau paradigme permettant ’acces a l'information massivement
distribuée. Elle a pour but de retourner a l'utilisateur d’'un systeme
de recherche d’information des objets résultats qui sont riches et por-
teurs de connaissances. Ces objets n’existent pas en tant que tels dans
les sources. Ils sont construits par assemblage (ou agrégation) de frag-
ments issus de différentes sources. Les sources peuvent étre non spécifiées
dans l’expression de la requéte mais découvertes dynamiquement lors de
la recherche. Nous nous intéressons particulierement a l’exploitation des
dépendances de données pour optimiser les acces aux sources distribuées.

Dans ce cadre, nous proposons une approche pour I'un des sous-processus
de systémes de RIA, principalement le processus d’indexation/organisation
des documents. Nous considérons dans cette these, les systemes de recherche
d’information orientés graphes (plus spécifiquement les graphes RDF). Util-
isant les relations dans les graphes, notre travail s’inscrit dans le cadre
de la recherche d’information agrégative relationnelle (Relational Aggre-
gated Search) ou les relations sont exploitées pour agréger des fragments
d’information. Nous proposons d’optimiser I’acces aux sources d’information
dans un systeme de recherche d’information agrégative. Ces sources conti-
ennent des fragments d’information répondant partiellement a la requeéte.
L’objectif est de minimiser le nombre de sources interrogées pour chaque
fragment de la requéte, ainsi que de maximiser les opérations d’agrégations
de fragments dans une méme source. Nous proposons d’effectuer cela en
réorganisant les bases de graphes dans plusieurs clusters d’information dédiés
aux requétes agrégatives. Ces clusters sont obtenus a partir d’une approche
de clustering sémantique ou structurel des prédicats des graphes RDF. Pour
le clustering structurel, nous utilisons les algorithmes d’extraction de sous-
graphes fréquents et dans ce cadre nous élaborons une étude comparative
des performances de ces algorithmes. Pour le clustering sémantique, nous
utilisons les métadonnées descriptives des prédicats dont nous appliquons
des outils de similarité textuelle sémantique. Nous définissons une approche
de décomposition de requétes basée essentiellement sur le clustering choisi.
Nos expérimentations préliminaires montrent que l’approche de clustering
sémantique utilisée réduit le nombre de sous-requétes et le nombre de sources
a interroger.



Mots clés

Recherche d’information agrégative, Partitionnement sémantique, Fouille de
graphes, Extraction de sous-graphes fréquents, Décomposition de requétes,
Recherche distribuée
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Introduction

Background and Context

Information Retrieval mechanisms are evolving with the changing of the Web
information from an information space of linked documents to information
objects of linked data and heterogeneous information [Haase 2010]. Aggre-
gated Search (AS) [Lalmas 2011, Kopliku 2011] is an approach that aims
to aggregate the information results from the different sources and return
aggregated information richer than the basic list of homogeneous results re-
turned by classic Information Retrieval systems. Sources of information are
not necessarily specified in the query but they discovered dynamically in the
execution.

AS is an approach with steps and processes relatively newly defined in the
literature [Lalmas 2011, Kopliku 2011]. One of its defined subcategories :
Relational Aggregated Search [Kopliku 2011] aims to aggregate fragments of
information of different sources and create objects of information that do not
exist as-such in the Web. A result of an aggregated query is obtained after
a chain of complex operations serving to aggregating the relevant fragments
of information. Each of these fragments constitutes a partial result to the
query.

Several recent studies have been proposed in Relational AS such as the
study [Kopliku 2011] which aims to aggregate information about an en-
tity (e.g., Albert Einstein) and return a structured table of data about it.
The study [Echbarthi 2017] tended to define a query processing strategy
for graph aggregation and the study [Elghazel 2011] proposed an indexing
strategy based on relational databases dedicated to optimizing graph aggre-
gation. Most of the few studies in Relational AS exploited the semantic web
to try to form aggregates of data.

Objectives/Motivation

The goal of the CAIR® project is to contribute in defining better the main
processes (i.e., Query Formulation, Indexing, Query/Document Matching)
of an Aggregated Search System. Our goal in this PhD is to define one of
two sub-processes of Relational Aggregated Search (i.e., Query and Docu-
ment Indexing) using the richness of the metadata and relationships in the
semantic web (i.e., RDF graph databases) and graphs in general. Our ap-
proaches that are dedicated to these two subprocesses try to optimize the

SCAIR home page: www.irit.fr/CAIR/fr/
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aggregation in a context of several sources.® The optimization consists on
trying to reduce the number of requests to sources of information and the
number of aggregations to perform between fragments.

Summary of Contributions

We study in this PhD at first the strategies that could be used for indexing
graphs. We select one of the most used approaches : Frequent Subgraph
Mining. We elaborate (a) a state-of-the art of all existing algorithms and
their implementations in Centralized graph transaction databases. Due to
a lack of information about the cases of performance of FSM algorithms,
we elaborate (1) an experimental study of FSM available implementations
and select some implementations that can be used according to an end-user
context.

We are further interested in organizing the graph database by cluster-
ing RDF graphs in the way that related fragments (i.e., subgraphs) would
be accessed together. We find it interesting to use for clustering, the se-
mantic relatedness of units of graphs (e.g., predicates) and see its effect on
aggregated queries compared to a structural aspect. The structural aspect
is based on Frequent Subgraph Mining. For clustering the graphs, we stud-
ied (b) the state of the art of clustering and partitioning strategies in RDF
graphs. These strategies were mainly discussed in Federated Search field.
We also elaborate (c) a state of the art of studies in Relational Aggregated
Search. We conclude that the existing studies lack the use of the metadata
of semantic web for optimizing aggregation. We propose (2) our semantic
clustering approach using meta-metadata of RDF graphs. We also define
(3) query decomposing approach which is dependent of the clustering. (4)
Finally, we propose to experiment our approaches using the DBPSB bench-
mark.

Thesis Outline

The rest of this dissertation is subdivided into five Chapters :

Chapter 1 presents Frequent Subgraph Mining (FSM) and its ap-
proaches and algorithms.

Chapter 2 describes the state-of-the art of FSM algorithms in Central-
ized graph transaction databases. Also, it proposes an experimental study
of available FSM implementations.

Chapter 3 defines what is aggregated search and a comparison of its an-
nex categories. Also, it defines RDF search. A state-of-the art of techniques
dedicated to RDF graph aggregation from different sources of information

5Sources of information can be created during the indexing from the distribution of
one source or extracted from existing distributed sources
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is proposed. These techniques concern graph partitioning and query decom-
posing. We also state the contributions of studies of relational aggregated
search in literature.

Chapter 4 proposes our semantic and structural clustering approaches
for a relational aggregated graph search system. Also, it defines our query
decomposing approach in the search system. The architecture of our system
is also illustrated.

Chapter 5 describes the experimental setup and the impact of our clus-
tering approaches on the quality of query decomposing.



CHAPTER 1

Frequent Subgraph Mining

Contents
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1.1 Introduction

This chapter introduces from a conceptual point of view, the frequent sub-
graph mining algorithms and their respective approaches. The frequent sub-
graph mining constitutes an important approach for capturing the frequent
structure representing an identity for a set of data.

The remainder of this chapter is organized as follows: Section 2 de-
fines the frequent subgraph mining task (FSM). Section 3 describes the
approaches used by different FSM algorithms. Section 4 defines available
FSM algorithms in literature and compares their approaches. In Section 5,
application fields of FSM are mentioned.

4
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1.2 The theory of frequent subgraph mining

We define, in this section, the basic notions around frequent subgraph mining
mainly data mining (or pattern mining), frequent pattern mining, subgraph
pattern mining and finally frequent subgraph mining.

1.2.1 Data Mining

Data mining defines the process of producing an enumeration of patterns
or models from the data, while considering an reasonable computational ef-
ficiency. Data mining comprises four main category of mining problems
clustering, classification, outlier analysis and frequent pattern mining
[Aggarwal 2014]. We are interested in this chapter by the last one.

1.2.2 Frequent Pattern Mining

Frequent pattern mining problem was basically defined on sets. It was fur-
ther extended to various advanced data types such as spatial-temporal data,
graphs, and uncertain data [Aggarwal 2014]. Classical ”data-mining” (i.e.,
frequent pattern mining task) is referring to frequent data values of items
and their association rules (e.g., milk and butter in market basket analy-
sis, see Figure! 1.1) [Agrawal 1993]. Further, in semi-structured and graph
data mining, it focuses on frequent labels and common specific topologies
[Inokuchi 2003, Gudes 2006].

?
Items frequently purchased
together by customers
eggs, milk, milk, bread, cereal, milk,
sugar, bread butter, eggs bread
Customer Customer Customer

Figure 1.1: Market Basket Analysis

We are interested in graph mining, and in subgraphs as a common spe-
cific topology.

1.2.3 Subgraph Pattern Mining

In subgraph pattern mining, the interestingness of a subgraph is defined by
the task of usage. For exploratory graph mining, frequent subgraphs with

nspired from https://vnktrmnb.wordpress.com/tag/market-basket-analysis/
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high redundancy are selected. However, for a classification task, discrimi-
natory subgraphs with a high quality are considered [Al Hasan 2009b].
We are interested in this chapter by exploratory graph mining.

1.2.4 Frequent Subgraph Mining (FSM)

Mining frequent subgraphs is defined as finding subgraphs that ap-
pear frequently in a database according to a given frequency threshold
[Inokuchi 2000]. Given a graph database G (e.g., see Figure 1.2) and a
minimum support s, the task of a frequent subgraph mining algorithm is to
obtain the set of frequent subgraphs that have a support above the defined
minimum support threshold [Inokuchi 2000, Kuramochi 2001].

(g1) (92) (93)
b a

i\i ﬁ
a a b a c

(94 (g5) (g6)

c

N O i j% ) :
c c ¢ a a
On®) :

(a7) (g8) (99) (g10)

Figure 1.2: An example of a graph database [Ke 2008|
A support of a subgraph ¢ is typically defined by the Equation (1.1).

(1.1)

freq : number of supergraphs® of g in the database
|G| : the number of graphs in the database

We define in the following the process of FSM with its different ap-
proaches.

1.3 FSM approaches

The steps of FSM consist of: (i) representing graphs, (ii) generating can-
didate subgraphs, (7ii) determining the frequency of occurrence of the can-
didates by performing subgraph ismorphism and further (iv) checking and

2graphs containing g
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filtering the redundant subgraphs [Krishna 2011, Jiang 2013]. The compu-
tationally expensive tasks of FSM algorithms are the candidate generation
and support computation tasks. The latter is considered as the most com-
putationally expensive for FSM algorithms [Jiang 2013] due to subgraph
isomorphism known to be NP-complete.

1.3.1 Graph Representation

We introduce in what follows, the nature of input and output graphs in
frequent subgraph mining. Also, we define the database setting. We present
graph representation schemes. In addition, we define the canonical labeling
strategy which allows to uniquely represent a graph by a chosen scheme.

Graph Topology

In centralized graph transaction mining, the input graphs which are used
in most of the FSM algorithms are assumed to be labeled (vertices and
edges), simple3, connected and undirected graphs and the output are con-
nected subgraphs. However, there are some few algorithms developed for
specific graphs (e.g., complex graphs [Acosta-Mendoza 2015], unconnected
subgraphs [Skonieczny 2009], vertex labeled graphs [Zeng 2006]). We con-
sider in our study only static graphs (vs. stream graphs [Ray 2014]).

Database Setting

There are two distinct problem formulations for frequent subgraph mining
in graph datasets: (i) graph-transaction setting and (ii) single-graph setting.

e Graph-Transaction Setting: In this case, the input is a collection of
moderate sized graphs (transactions). For example, Figure 1.2 illus-
trates the graph transaction setting with 10 graphs in the database.
A subgraph is considered frequent if it appears in a large num-
ber of graphs. A subgraph occurrence is counted only once per
transaction, independently of the possible multiple occurrences in
the same transaction [Inokuchi 2000]. Graph Transaction mining
is applied in, e.g., biochemical structure analysis, program control
flow analysis, XML structure analysis, image processing and analysis
[Aggarwal 2010, Jiang 2013].

o Single-Graph Setting: This setting involves mining frequent subgraphs
in different regions of one large sized graph. The frequency of a sub-
graph is based on the number of its occurrences (i.e., embeddings)

3 A simple graph is ”an un-weighted and undirected graph with no loops and no multiple
links between any two distinct nodes” [Gibbons 1985]
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in the large graph. Special support metrics are used, by consider-
ing, for example, the overlapping of two subgraphs [Kuramochi 2005].
Single Graph mining is dedicated to applications such as social net-
works, citation graphs, or protein-protein interactions in bioinformat-
ics [Elseidy 2014].

The mostly used schemes by frequent subgraph discovery algorithms
are adjacency matrix, adjacency list, hash tables and trie data structures
[Krishna 2011, Gholami 2012]. In the following, we specify the cases of use
of these structures.

Adjacency Matrix

The easiest mechanism whereby a graph structure can be represented is an
adjacency matrix where the rows and columns represent vertices, and the
intersection of row 4 and column j represents a potential edge connecting
the vertices v; and v; [Kuramochi 2001, Jiang 2013].

Adjacency List

Sparse graphs would have several ”zeros” in an adjacency matrix. To avoid
this waste of memory, adjacency lists are used as they assign memory dy-
namically [Yan 2002b, Krishna 2011, Dinari 2014].

Hash Table

For very large graphs, hash tables could be used in order to avoid enumer-
ating all possible subgraph isomorphisms for a new subgraph discovery. A
hash table scheme uses a hash function which maps keys to their correspond-
ing values [Nguyen 2004, Krishna 2011]. An example of using hash tables is
illustrated in [Luo | where subgraphs are ordered by their number of nodes
and edges. A level for each size (number of nodes) is created. A key in the
hash table corresponds to the labels of nodes of (n-1)-sized subgraphs and
the value is a subgraph (containing these nodes) in the level n.

Trie

A Trie [Fredkin 1960] (also named prefix table) is an ordered tree, where
all descendants of a node have the same common prefix. Basically, tries are
used for strings. In order to avoid redundancy in storing, the trie stores the
common prefixes once. Tries can be also managed for graphs where common
prefixes represent common subgraphs between the graphs of the database.
For example in [Ribeiro 2010], the authors define a concept of G-trie (i.e.,
a trie for representing graphs). Each node in the trie stores a single vertex
from a subgraph and its corresponding edges (coded by boolean values) to
ancestor nodes.
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Canonical Labeling Strategy

A graph can be represented in different ways depending on how the vertices
and edges are ordered (see Figure 1.3). It is important to adopt a labeling
strategy ensuring that two identical (i.e., isomorphic) graphs are labeled in
the same way [Washio 2003, Nijssen 2004, Jiang 2013]. The basic idea for
generating a canonical labelling is to flatten the associated adjacency ma-
trix by concatenating rows or columns to produce a code. Different codes
are generated for different adjacency matrices. The canonical form of rep-
resentation is the maximal or minimal code. The minimal (maximal) code
is imposed by the lexicographical ordering [Yan 2002b]. Various canonical
labeling schemes have been proposed. The three most significant ones are :
Minimum DFS Code (M-DFSC) proposed in gSpan algorithm [Yan 2002a],
Canonical Adjacency Matriz (CAM) proposed in AGM [Inokuchi 2000] and
FSG [Kuramochi 2001] algorithms and Canonical Spanning Tree (CST) in
SPIN algorithm [Huan 2004].

Figure 1.3: Isomorphic graphs [Isom 2015]

1.3.2 Candidate Generation

Candidate generation in a graph dataset poses two main challenges : (i) a
generation with no redundancy where each subgraph should be generated
only once and (ii) a generation of candidates that only exist in the dataset
[Keyvanpour 2012, Jiang 2013]. Two techniques are defined for candidate
generation : level-wise join which is related to an Apriori approach and
a right-most path extension technique which is related to Pattern-growth
approach.

Apriori approach & Level-wise join technique

An apriori approach [Agrawal 1994] consists of generating a new candidate
by merging two candidate subgraphs that have been already found and have
a common subgraph. This merging approach may generate subgraphs that
do not exist in the database [Meinl 2007, Jiang 2013]. The level-wise join
technique was introduced by [Kuramochi 2001]. Basically, a (k + 1) sub-
graph candidate is generated by combining two frequent k£ subgraphs which
share the same (k - 1) subgraph [Kuramochi 2001].
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Pattern-growth approach & Right-most path extension technique

The pattern-growth approach [Han 2000] consists of extending a subgraph
candidate by an edge (and a node if no cycle is closed). This edge (and
node) has to exist in the database. In data mining, the generation using
an increasing order of candidate size is referred to as level-wise exploration
[Aggarwal 2014]. This method generates only candidates that exists in the
database but may generate redundant subgraphs [Meinl 2007]. The right-
most path extension technique [Yan 2002b, Borgelt 2002] eliminates the re-
dundancy by adding an extra-edge only on the rightmost path.

Pattern-growth approach was developed to avoid the overhead of the
candidate generation by the Apriori Approach. This is done by trying
to grow the pattern from a single pattern, instead of joining two patterns
[Rehman 2014].

1.3.3 Subgraph Counting

Conceptually, candidates are searched and counted in the underlying graph
database. The ones satisfying a minimum support constraint are retained.
Practically, candidates need to be tested according to a search space struc-
ture and a traversal strategy. We define these two notions in the following
and we also introduce how the subgraphs are counted using the subgraph
isomorphism and the support measure. We conclude this subsection by
defining the subgraph search and matching strategies.

Search Space & Traversal Strategy

A search space structure is used in order to optimize the exploration of
frequent subgraphs [Aggarwal 2014]. The structure should be explored
in a level-wise way. If a k-pattern is not frequent then all of its super-
sets (k+n)-patterns should not be tested. This property is named the
Downward Closure Property (DCP) or anti-monotonicity [Agrawal 1993].
Some search space structures used in literature are enumeration trees
(named also lexicographical trees) [Yan 2002b, Aggarwal 2014], lattices
[Meinl 2007] and G-tries [Ribeiro 2010]. Some other structures are cited
in [Nadimi-Shahraki 2015].

For example, each layer L of a lattice structure contains all L-edge sub-
graphs (see Figure 1.4) and their frequencies. A connection between two
items in the lattice is an extension of a subgraph by an edge and a node (if
no cycle is closed). Further, frequent subgraph mining consists of traversing
the lattice, reporting all frequent candidates and pruning infrequent ones
[Nijssen 2004]. A traversal strategy (called also enumeration strategy) for
the lattice has to be chosen [Nijssen 2004, Meinl 2007].

There are two main traversal strategies : breadth-first (BFS, named also
horizontal support counting strategy) or depth-first search (DFS, also named
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vertical support counting strategy). An hybrid strategy can also be per-
formed [Jiang 2013, Aggarwal 2014].

Frequency 1 N~ G- Frequency? -0 - |
H—¢C c—c E—0 c=0
H—C—C €—€—¢ C¢—€-o0| E-c=0 b-c=0
i b -
ce—Cc—¢ c e Tinm Sl
] H—C—C—0 I €—c—c-ojc—c—c=0c—c
N fe—C =G : o
- c—c—c—0 Jc / | 76 —=¢
I ] 1/ le=c—cZ I
C—C—0¢ N C=C—C—0 0 C—C—C=0
| - T 'x\r —_
& 7T ommse T o0
c—C—C—0 c—c—c
| Graph1 Graph 2 o

Figure 1.4: A lattice of candidate subgraphs (molecules) for a chemical
database [Meinl 2007]

The BFS tends to be more efficient in the pruning of infrequent sub-
graphs at an early stage in the mining process and this causes higher 1/0,
memory usage and execution time. However, DFS requires less memory
usage but it performs less efficient pruning [Krishna 2011, Jiang 2013].

The memory usage of BFS is due to the number of lists stored in memory
[Krishna 2011]. In fact, in case of the DFS strategy, the number of lists is
proportional to the depth of the graph (for graph transaction databases, it
is equal to the depth of the biggest graph). However, for BFS, it is propor-
tional to the width of the graph (i.e., the maximal number of subgraphs in
one level) [Worlein 2005]. The majority of algorithms traverse the lattice
by using a DFS approach since it requires less memory compared to BFS
[Meinl 2007].

Subgraph Isomorphism tests & Minimum Support Threshold

The subgraph isomorphism problem is NP-Complete [Cook 1971, Ke 2008].
For counting the support of a pattern, a trade-off is proposed between us-
ing explicit subgraph isomorphism (e.g., using a Transaction Identifier list
(TID) [Yan 2002b] or keeping embeddings of a pattern (e.g., using an em-
bedding list [Borgelt 2002]). In a transaction list, each frequent subgraph has
a list of transaction identifiers containing the subgraph [Yan 2002b]. The
support of a k subgraph is computed using the intersection of the TID lists
of (k-1) subgraphs. An embedding list consists of a mapping of the vertices
and edges of a candidate to the corresponding vertices and edges in the graph
it occurs in. Embedding lists reduce the subgraph isomorphism tests. They
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are supposed to reduce the runtime. As a trade-off (time versus memory),
they consume a lot of memory [Lakshmi 2012, Jiang 2013, Douar 2014].

Support Computation & Minimum Support Threshold The frequencies of
generated candidates in database are counted. The approach of this step is
different depending on the configuration of the graph database.

o (Occurrence-based counting: If the database is a single large graph,
the number of occurrences of subgraph is counted by taking in con-
sideration the graph overlapping cases [Vanetik 2002]. For example,
in Figure 1.5, the support of the subgraph (A,B,C) is 6, there is an
overlapping between subgraphs (e.g., subgraphs (ull,ul0,ul2) and
(u8,u9,ul0)), the counting algorithm take into consideration these
overlapping.

Input Graph G

(a)

Figure 1.5: Subgraph occurrences in single graph setting [Abdelhamid 2016]

e Transaction-based counting: It is considered if the database consists
of multiple graphs, the number of graph occurrences is counted once
in each graph [Inokuchi 2000].

A subgraph is considered to be frequent if its occurrence count is higher
than a predefined threshold value. The absolute occurrence is referred to as
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its frequency and the relative occurrence is referred to as its support. The
threshold is referred to as the minimum support threshold [Inokuchi 2000].
The key parameter of the graph mining results is the minimum support
threshold used to discover the frequent subgraphs [Douar 2014].

For transaction-based counting, the Downward Closure Property
[Agrawal 1993] is associated with the support metric. This property states
that if a graph is frequent then all of its subgraphs must also be frequent
[Jiang 2013].

For occurrence-based counting, several anti-monotone support metrics
are proposed in the literature and they define the support in presence of the
overlaps [Vanetik 2002, Kuramochi 2005, Patel 2013, Elseidy 2014].

Subgraph Search & Matching Strategy

FSM algorithms can be classified according to search strategy : complete
and incomplete (or heuristic) search. Also, they can be classified according
to the type of isomorphism test (matching) performed between the mined
subgraphs : ezact and inexact matching. We describe these categories in
what follows.

Complete Search The complete search? algorithms perform a complete
mining i.e., it guarantees to find all frequent subgraphs from the input data,
above a minimum frequency threshold [Kuramochi 2001, Inokuchi 2003].

EREERS

Figure 1.6: Example of all Frequent Subgraphs (Exact Matching)

(a) Exact Matching: It consists in finding all possible frequent subgraphs
as they appear in the input data [Kuramochi 2001, Inokuchi 2003]. The
complete search must return a frequent subgraph (e.g., a subgraph (1)
shown in Figure 1.6) and all of its possible subgraphs that are necessarily
frequent as well (e.g., subgraphs (2), (4), (5), (6) and (7) shown in Figure
1.6).

(b) Approximate Matching: It consists in finding all frequent subgraphs,
with an assumption that subgraphs having the same structure and dif-
ferent labels, will all be returned as the same subgraph [Li 2009]. This

4Complete search is also called ”exact search” [Jiang 2013, Saha 2014], we will use, in
this manuscript, only the designation ”complete search”.
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is considered as a complete search because all possible frequent sub-
graphs could be verified in the output set with the abstraction of labels
(edges or vertices). Figure 1.7 illustrates the approximate matching
where graphs with different edge labels are considered the same. For
example, the subgraphs (2) and (3) in Figure 1.6 could be represented
with the approximate matching by one subgraph (2’) in Figure 1.7.

Incomplete or Heuristic Search The incomplete and heuristic search al-
gorithms discover a set of frequent subgraphs whose cardinality is greater
or lower than the one returned by the complete search. This category of
FSM search is used to : (i) reduce the set of frequent subgraphs (use of
exact [Yan 2003] or approximate matching [Cook 1994]), or (ii) add more
frequent subgraphs than the complete search in order to consider the in-
accuracy or uncertainty of the input data (use of approximate matching)
[Zou 2010].

ols ol %!
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Figure 1.7: Example of all Frequent Patterns (Approximate Matching)

(¢) Exact Matching: It consists in returning a subset of frequent sub-
graphs [Wang 2005] by setting a supplementary calculable parameter
(e.9., maximum size of frequent subgraphs, closed subgraphs, maxi-
mal subgraphs, maximum support threshold) [Yan 2003, Huan 2004,
Al Hasan 2009a], besides the minimum support threshold. Figure 1.8
shows an example returning a subset of frequent subgraphs (see all fre-
quent subgraphs, Figure 1.6) where the set parameter is the maximum
size of frequent subgraphs (set to 2 edges).

(d) Approximate Matching: It consists in either (i) reducing the output
by returning a set of representative frequent patterns or (ii) enriching
the frequent subgraphs output by considering the inaccuracy or uncer-
tainty of data [Zou 2010, Jia 2011]. For the first case, a representative
frequent pattern is a frequent subgraph similar to a set of other fre-
quent subgraphs. In other words, frequent subgraphs that have some
differences regarding edges, vertices and labels are represented by one
pattern in the output [Al Hasan 2007]. For the second case, it consists
in adding infrequent subgraphs that are similar to frequent subgraphs
with respect to the structure or labels [Acosta-Mendoza 2012].
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OO,

Figure 1.8: Example of a subset of Frequent Subgraphs (Exact Matching)

1.4 FSM algorithms

FSM algorithms have been proposed from a period since 1994 to the present.
Since 2007, the proposed algorithms represent a variation of existing algo-
rithms. The FSM field is reaching its maturity [Jiang 2013], so a synthesized
study about existing algorithms should be completed. Through our study
of FSM algorithms, we collected the characteristics of many of them.?

In this section, we briefly describe some algorithms. The selected algo-
rithms are those which will be studied in chapter 2. The justification of the
selection of these algorithms will also be provided in chapter 2.

An FSM algorithm can be considered as efficient according to the used
strategies for the mining subtasks [Jiang 2013]: (i) the graph representa-
tion structure (e.g., adjacency list, adjacency matrix, hash table, tries, see
Section 1.3.1), (ii) subgraph candidate generation (i.e., extending, joining
or combinational, see Section 1.3.2) using a search approach (i.e, apriori
or pattern-growth), (iii) canonical graph representation for filtering dupli-
cates (i.e., the two main representations are CAM : Canonical Adjacency
Matrix and M-DFSC : Minimum DFS Code, see Section 1.3.3), (iv) sub-
graph isomorphism detection strategy to compute the support (i.e., keeping
embedding of patterns or explicit subgraph isomorphism, see Section 1.3.3).

We describe the six algorithms we selected. The description is done
according to strategy used for each subtask.

1.4.1 FSG

FSG (Frequent Subgraph Discovery) [Kuramochi 2001] uses adjacency lists
for storing graphs [Krishna 2011]. It uses an Apriori approach. It requires a
large amount of memory because it employs BFS and generates a large vol-
ume of candidate patterns. Consequently, it scans many times the database
and examines a large number of candidates [Nadimi-Shahraki 2015]. It uses
the CAM canonical representation [Worlein 2005]. It generates candidates
using the level-wise join technique. It uses transaction list for support count-
ing. It has a bad performance on graphs with many vertices and edges of

5Please refer to this open access document https://docs.google.com/document/d/
1qy20EDSMy5jUinTEJXBIpvwUYr7daN;jO7_Lum-vWQ8I/edit?usp=sharing
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identical labels and could be inefficient for mining large-sized subgraph pat-
terns.”

1.4.2 gSpan

GSpan (Graph-based Substructure Pattern Mining) [Yan 2002b] uses ad-
jancency matrix. It uses M-DFSC as a canonical representation. It uses
a DF'S lexicographic ordering to construct a tree-like lattice over all possi-
ble patterns, resulting in a hierarchical search space called a DFS code tree
[Douar 2014]. It performs a rightmost path expansion as subgraph exten-
sion [Worlein 2005] which means that the k subgraphs are generated by one
edge expansion from the k-th level of the DFS tree. Unlike embedding list
saving algorithms, gSpan saves transaction list for each discovered pattern
which saves on memory usage. GSpan, with some minor changes, can be
used for directed graphs [Jiang 2013].

1.4.3 MoFa/MoSS

MoFa (Molecular Frequent Miner) or MoSS (Molecular SubStructure miner)
[Borgelt 2002] is a specialized miner for molecular data. It enables to find
frequent molecular substructures and discriminative fragments. However, it
can also work on arbitrary graphs. The algorithm is inspired by the Eclat
algorithm” for frequent item set mining. MoFa stores graphs in adjacency
matrices. It follows the pattern growth approach. It uses a rightmost path
extension. New subgraphs are built by extending former subgraphs with an
edge (and a node if necessary). It uses embedding lists to remove duplicates
[Meinl 2007]. It is able to mine directed graphs [Jiang 2013].

1.4.4 FFSM

FFSM (Fast Frequent Subgraph Mining) [Huan 2003] is based on gSpan.
It uses adjacency matrix for graphs. It follows pattern-growth approach.
FFSM uses the CAM representation for canonical graph representation
[Worlein 2005]. The CAM tree of the database is built dynamically using
two matrix operations of join and extension [Gago-Alonso 2010al. FFSM
completely avoids subgraph isomorphism testing by maintaining an embed-
ding set for each frequent subgraph [Huan 2003]. The embedding lists allow
to avoid excessive subgraph isomorphism tests and therefore avoid expo-
nential runtime (see Section 1.3.1). However, as a trade-off, FFSM faces
exponential memory consumption instead [Douar 2014]. FFSM cannot be
used in the context of directed graphs due to its use of triangle matrices
[Wérlein 2005, Jiang 2013].

Shttp://web.ecs.baylor.edu/faculty/cho/4352/
"Eclat webpage: http://www.borgelt.net/eclat.html
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1.4.5 Gaston

Gaston (GrAph/Sequence/Tree extractiON) [Nijssen 2004] is based on
gSpan. It uses a hash table representation which pleads for its performances
over the other algorithms [Krishna 2011]. It follows the pattern-growth ap-
proach. Also, Gaston is the fastest among other algorithms [Nijssen 2004]
due to the fact that it performs subgraph extension using a quick-start prin-
ciple where paths and trees are considered at first, and general graphs with
cycles are enumerated at the end [Krishna 2011]. To detect the duplicate
subgraphs, a well-known algorithm, namely Nauty [McKay 1981] is used to
deal with the NP-complete subgraph isomorphism problem [Han 2007]. Gas-
ton scans the database only once because it uses embedding lists stored in
main memory [Lee 2012]. Gaston cannot be used in the context of directed
graphs unless considering major changes [Worlein 2005, Jiang 2013].

1.4.6 DMTL

DMTL (Data Mining Template Library) [Al Hasan 2005] is a library for
frequent pattern mining. It offers implementations to mine four types of
patterns - itemsets, sequences, trees and graphs - in a unified platform. It
performs the join of two patterns to generate one or more new candidates.
It counts support by using a vertical representation of patterns named Ver-
tical Attribute Table (VAT) (i.e., a list of transactions in which the pattern
occurs). This vertical representation is typically faster than the horizontal
representation of the database due to I/O cost reduction. The join of pat-
terns is associated with a back end operation : the intersection of two VAT
tables of patterns.

1.4.7 Comparison of FSM algorithms approaches

Several comparative tables of the FSM algorithms approaches exist in the
literature [Al Hasan 2010, Krishna 2011, Keyvanpour 2012, Lakshmi 2012,
Jiang 2013, Dinari 2014, Acosta-Mendoza 2015, Ramraj 2015]. We summa-
rize, here, the comparison of the available FSM algorithms (see chapter 2)
according to their used strategies. The comparison concerns only algorithms
performing complete search in Centralized graph transaction databases.
The comparison of the six algorithms (i.e., FSG [Kuramochi 2001], gSpan
[Yan 2002b, Yan 2002a], MoFa [Borgelt 2002], FFSM [Huan 2003], Gaston
[Nijssen 2004, Nijssen 2005b] and DMTL [Al Hasan 2005]) approaches is
presented in Table 1.1. AGM [Inokuchi 2000] and its extensions (i.e., AcGM
[Inokuchi 2002], B-AGM [Inokuchi 2003, Inokuchi 2005]) are added in the
comparison since AGM is one of the pioneers in the FSM field.

It is expected that algorithms which use a DFS strategy (e.g., gSpan,
Gaston, DMTL, MoFa, see Table 1.1) will be more efficient in terms of time
and memory than the ones that use BFS (e.g., FSG, see Table 1.1).
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1.5 Main Application Fields of FSM

Mining frequent subgraphs in graph databases is a relevant task for several
application fields (e.g., Process models, financial processes, Biochemistry)
and goals (e.g., indexing, sampling). However, the most tested datasets
in the literature characterize data from the field of cheminformatics and
bioinformatics. In cheminformatics, frequent molecular fragments help find-
ing new drugs [Worlein 2005]. We tried to enumerate the number of tested
real and centralized graph transaction datasets in the literature. We found
around thirty-one datasets. 78% of the tested datasets (24 out of 31) are
chemical and protein datasets. The rest are of different other fields (e.g.,
US stock market database [Wang 2006], Money Laundering Case dataset
[Li 2010], COIL image database [Acosta-Mendoza 2015] and dataset from
the UCI KDD archive [Thomas 2010]). This intensive use of chemical and
protein datasets has been criticized by some authors [Saha 2014] since these
kind of datasets tend to be tree-like graphs and so performance results tend
to be better for the presented algorithms.

1.6 Conclusion

In this chapter, we presented the main notions concerning the frequent sub-
graph mining, the used approaches and the most known relative algorithms.
It was important to define the different approaches in order to categorize
FSM algorithms and be able to detect the ones that are useful for our con-
text (i.e., Aggregated Information Retrieval System). Also, the presented
techniques give expectations about the algorithm efficiency (Hash table for
Gaston vs. adjacency matrix for AGM, see Table 1.1). In the following
chapter, we will present the most efficient FSM algorithm solutions (from
the literature experiments and our proper experiments).
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2.1 Introduction

In this chapter, we propose to elaborate a synthesis regarding the algorithms
and their existing solutions for frequent subgraph extraction. In the frame-
work of the CAIR! project, we are in a context of aggregated relational
information retrieval system, where retrieved documents are graphs. For
this, we are mainly interested by the algorithms that perform in a bunch
of labeled graphs (instead of single large garph). Also, we consider static
graphs (vs. Dynamic graphs). Our objective is to conduct an investigation
on implementations of complete search FSM algorithms. The goal is to find

LCAIR home page: www.irit.fr/CAIR
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the most efficient implementation that would be used to cluster graphs in
order to optimize the performance of an aggregated search system.

Frequent subgraph mining algorithms are widely used in various areas
for complex analysis. As yet, a handful number of algorithms have been
proposed in literature. Several experimental studies were reported; however,
these experiments lack some critical details which are vital to select an
implementation of an algorithm for a specific purpose.

For this, we elaborated an experimental study with implementations of
complete search Frequent Subgraph Mining (FSM) algorithms in centralized
graph databases. Thirteen working implementations are experimented. In
what follows, we provide details of the experimental results in terms of
performance metrics and input variation effect. We propose a preliminary
selection of the most efficient FSM solutions (i.e., implementations) for end
users based on the literature datasets. We attempted to compare our results
with state of the art.

The remainder of this chapter is organized as follows: Section 2.2 de-
scribes our approach for selecting FSM algorithms and their respective im-
plementations. Section 2.3 describes the evaluation of the selected FSM
algorithms’ implementations and discusses the results.

2.2 Review of State of the Art FSM studies

A large volume of literature was dedicated to FSM algorithms. These
algorithms can be classified according to the search type (complete or
incomplete) and matching strategy (exact or approximate).  Several
studies (see, e.g., [Saha 2014, Worlein 2005, Nijssen 2006, Rehman 2014,
Gago-Alonso 2008, Krishna 2011]) were devoted to benchmarking these al-
gorithms. These studies revealed different aspects mainly strength, and
weaknesses - of these algorithms - that are critical to select potential candi-
dates for a specific need. However, our investigation summarizes the follow-
ing shortcomings of these studies : (i) the conclusions about algorithms
do not explicitly consider the effects of variability of inputs on perfor-
mance. The variability includes the characteristics of datasets (e.g., size,
density) and the minimum support threshold interval (low or high val-
ues) ; (ii) two different implementations of a given algorithm - provided
by original authors and the third party implementers - reported different
performance results ; (iii) the most recent experimental comparisons (2014)
[Rehman 2014, Saha 2014, Aridhi 2015, Douar 2014] are concerned with at
most four algorithms. These algorithms are relatively old (proposed be-
tween 2001 and 2007). About thirteen new algorithms of the same category
have been proposed since 2007 ; (iv) no comparison of currently available
FSM algorithms is provided in literature ; (v) the implementations of some
algorithms are refined without any experimental study regarding their per-
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formance (e.g., gSpan (2002) [Yan 2002b] release v.6 2009).

To the best of our knowledge, no exhaustive list of FSM algorithms
has been provided so far. Also, there is no study that cites all the cur-
rently available FSM implementations. In this section, we provide a list of
all algorithms for the Complete search category 1.3.3 in centralized graph
transaction databases (see Section 1.3.1) and highlight their availability and
usefulness. We justify this choice in the following. Then, we select a few of
them. To establish our selection process, we defined a set of criteria which
includes: performance reported in literature, availability of implementation,
and specific cases of use. We also point out the ambiguities, found in state of
the art regarding the most efficient algorithm to use. We provide details of
the experiments settings reported in literature, in order to make our further
experimental configurations understandable.

2.2.1 Targeted Categories of FSM algorithms

We target algorithms performing complete search in centralized graph trans-
action databases according to our context of use.

Centralized graph transaction databases

We are interested in this work by algorithms performing on centralized graph
transaction databases (see Section 1.3.1). Since the scope of our use con-
cerns the application of Information Retrieval Systems where the database
consists, traditionally, in a set of documents (medium sized graphs). In a
preliminary way, algorithms performing on distributed databases or consist-
ing of parallel processes are not included in our work.

General graphs

Input graphs are supposed to be labeled, static and general graphs. Output
subgraphs are supposed to be connected. Algorithms developed only for
specific graphs (e.g., complex graphs [Acosta-Mendoza 2015], unconnected
subgraphs [Skonieczny 2009], vertex labeled graphs [Zeng 2006], see Table
2.1), are not considered in our work.

Complete search category

As mentionned in chapter 1, FSM algorithms output different types of results
(i.e., complete/incomplete set, exact/approximate subgraphs) according to
the search need. For the four subcategories of FSM search strategy and
matching (i.e., a, b, ¢ and d, see Section 1.3.3), there are 31, 1, 22 and 15
algorithms respectively.?

2Please refer to http://liris.cnrs.fr/rihab.ayed/ACFSM.pdf to have the list of all
FSM algorithms in centralized graph transaction databases.
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Table 2.1: FSM Algorithms with specific graphs (March 2016)

Input Cases Algorithms

Complex graphs MgVEAM [Acosta-Mendoza 2015]

Directed graphs mSpan [Li 2009

Directed Acyclic graphs DIGDAG [Termier 2007]

Unlabeled graphs The smoothing-clustering framework
[Chen 2008]

Vertex-labeled graphs Cocain [Zeng 2006], TSMiner [Jin 2005]

Relational graphs CODENSE [Hu 2005], CLOSECUT &
SPLAT [Yan 2005], Fp-GraphMiner
[Vijayalakshmi 2011]

Geometric graphs gFSG [Kuramochi 2005], MaxGeo
[Arimura 2007], FREQGEO [Nowozin 2008]

Uncertain graphs Monkey [Zhang 2007], RAM [Zhang 2008],
MUSE [Zou 2009]

Output Cases Algorithms

Cliques and quasi-cliques | CLAN [Wang 2006], Cocain [Zeng 2006]

from dense graphs

Unconnected subgraphs UGM [Skonieczny 2009]

In our work, we are interested in algorithms that perform a complete
search (subcategories a, b). Our main objective is to identify an effi-
cient FSM algorithm for generating subgraphs which will be used to in-
dex large repositories. The incomplete search algorithms (subcategories c,
d) that are available and usable for general purposes propose to return :
(i) closed subgraphs ([Yan 2003, Takigawa 2010]), (ii) maximal subgraphs
[Huan 2004, Al Hasan 2009a], (iii) significant subgraphs [Yan 2008], (iv)
sample of fixed size subgraphs [Saha 2014 or (v) approximate subgraphs
[Jia 2011]. The closed and maximal subgraphs could not be used for the
purpose of indexing [Yan 2004]. The sampling and approximation of sub-
graphs can be used for indexing. However, we did not select probabilistic
or approximation algorithms to avoid the impact of their output set (i.e.,
frequent subgraphs) on our indexing approach.

In this study, we include algorithms with all types of approaches (e.g.,
BFS/DFS, Apriori/Pattern-growth, see Section 1.3) with no restriction.

2.2.2 List of FSM Algorithms

We identified thirty-two algorithms (in the literature) designed to extract all
possible frequent subgraphs above a minimum support threshold (see Table
2.2). Before studying the performance and availability of these algorithms,
we investigated their usage. We define the usage of an algorithm in accor-
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dance with three facets: (i) the number of experiments® performed with the
algorithm for centralized graph transaction datasets, (ii) the number of real
datasets used for testing, and (iii) the most recent experiment (i.e., paper*)
with the algorithm. In Table 2.3, E, D and R denote these facets, respec-
tively. We found that eleven out of the thirty two algorithms are relatively
more popular. Table 2.3 shows that the most tested algorithms in the litera-
ture are: gSpan [Yan 2002b], Gaston [Nijssen 2004], FSG [Kuramochi 2001]
and FFSM [Huan 2003].

Additionally, Table 2.3 illustrates that the recent FSM algorithms (e.g.,
LC-Mine [Douar 2014]) are compared with the least recent algorithms (e.g.,
gSpan [Yan 2002b], FSG [Kuramochi 2001]), instead of the most recent ones.
Questions are raised about the availability and performances of each algo-
rithm among the 32 ones proposed.

In what follows, we discuss the outcome of our investigations in terms
of performance, availability and specific cases of use.

3We counted the number of distinct authors experiments. Authors that experimented
the algorithm in many papers are counted once
4Original paper of the algorithm is not considered

Table 2.2: An exhaustive list of FSM Centralized Algorithms (Complete
Search) (March 2016)

Algorithm | Author Algorithm Author
WARMR [Dehaspe 1998] ADI-Mine & | [Wang 2005,
GraphMiner Yan 2008]
AGM [Inokuchi 2000] TSMiner [Jin 2005]
FARMER Nijssen 2001] FSP Han 2007]
MOLFEA Kramer 2001] DMTL Al Hasan 2005
AcGM Inokuchi 2002] gRed Gago-Alonso 2008]
B-AGM Inokuchi 2003, FSMA Wu 2008]
Inokuchi 2005]
FSG [Kuramochi 2001]|| mSpan [Li 2009]
FREQGEO | [Nowozin 2008] SyGMA [Desrosiers 2007]
MoFa/MoSS| [Borgelt 2002] CGM & UGM [Skonieczny 2009]
DPMine Gudes 2006] gdFil Gago-Alonso 2010a]
gSpan Yan 2002b, grCAM Gago-Alonso 2010b]
Yan 2002a]
Topology [Hong 2003] ADI-Minebio [de Sousa Gomide 2011
FFSM [Huan 2003] Fp-GraphMiner | [Vijayalakshmi 2011]
DSPM [Cohen 2004] FSMA [Gao 2012]
AGM-H [Nguyen 2004] LC-Mine: [Douar 2014]
FGMAC &
AC-miner
GASTON [Nijssen 2004, IDFP-tree [Nadimi-Shahraki 2015]
Nijssen 2005b]
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Table 2.3: The usage of Centralized FSM algorithms (Complete Search)
(March 2016)

Algorithm E D R

gSpan [Yan 2002b) 25 25 [Nadimi-Shahraki 2015]
Gaston [Nijssen 2004] 11 14 [Saha 2014]

FSG [Kuramochi 2001] 9 11 [Douar 2014]

FFSM [Huan 2003] 5 10 [Rehman 2014]
AcGM [Inokuchi 2002] 4 3 [Saha 2014]

MoFa [Borgelt 2002] 3 6 [Skonieczny 2009]
FSP [Han 2007] 2 3 [Rehman 2014]
ADI-Mine [Wang 2004] 2 3 [Wang 2006]

FSMA [Wu 2008] 2 0 Vijayalakshmi 2011]
MOLFEA [Kramer 2001] | 2 2 Inokuchi 2005
WARMR [Dehaspe 1998] | 2 1 [Nijssen 2004]
LC-Mine [Douar 2014] 1 10 -

The remaining 20 1 <5 -

algorithms

2.2.3 Performance of FSM Algorithms

Studies in the literature reported that the performance of four algorithms,
namely WARMR [Dehaspe 1998], FARMER? [Nijssen 2001], UGM & CGM®
[Skonieczny 2009] and MOLFEA [Kramer 2001], is commonly poor. Also,
we found that FSMA algorithm [Gao 2012] was experimented moderately
and was not compared with any FSM algorithm. Therefore, we removed
these five algorithms from the list of potential candidates.

It is worth noting that we found performance ambiguities in several
experiments of well-known FSM algorithms. This led to a confusion for
choosing the best candidates.

Table 2.4 shows some examples of ambiguities, which include: (i) no gen-
eral conclusion determines which of the two algorithms FFSM and gSpan is
the most efficient (see case b in Table 2.4); (4i) the performance compari-
son of Gaston and gSpan depends on the dataset (e.g., large NCI dataset
[Worlein 2005]) and the used implementation (Gaston or Gaston RE) (see
case a in Table 2.4). The contexts of the experiments (e.g., FSM implemen-
tation, the support threshold interval, datasets characteristics) were not
defined adequately in order to have a complete view of the FSM solutions
performance. In Section 2.3, we conduct such a study, and highlight the
best implementations with the specification of their performance cases.

*WARMR and FARMER were both used mainly for itemsets and complex relations
5MoFa is competitive with UGM&CGM. MoFa has a poor performance compared to
Gaston, gSpan, FFSM [Nijssen 2003, Worlein 2005]
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Table 2.4: Contextual performance of FSM algorithms
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a) Is Gaston or gSpan a more efficient algorithm?

It is Gaston

It is gSpan

* Gaston was the fastest graph
mining algorithm compared to
gSpan and FSG [Nijssen 2004]

* Gaston RE was the best memory
consumer over Gaston, FFSM and
gSpan [Nijssen 2006]

* For the large dataset NCI and for low
support threshold, Gaston was slower
than gSpan [Worlein 2005]

* GSpan was the best memory con-
sumer comparing to Gaston and FFSM
[Worlein 2005]

b) Is FFSM more

efficient than gSpan ?

Yes

No

* FFSM outperformed gSpan
[Huan 2003]
* FFSM achieved a consider-
able performance gain over gSpan
[Patel 2013]

* GSpan was slightly faster than FFSM.
GSpan was the best algorithm regard-
ing its memory requirements compared
to FFSM, MoFA, Gaston [Worlein 2005]
* GSpan was almost as competitive as
Gaston and FFSM, at least with not too
big fragments [Douar 2014]

c) Is FSG an efficient algorithm to use?

No

Yes

* GSpan outperformed FSG by
an order of magnitude in terms of
runtime [Yan 2002a).

* AcGM was faster than FSG
[Inokuchi 2002]

* GSpan and FSG are placed among the
most efficient graph miners in their re-
spective categories [Douar 2014]

2.2.4 Specific Cases

In this work, we intend to study algorithms that propose generic usage. We
removed four algorithms (FREQGEO [Nowozin 2008], TSMiner [Jin 2005],
SyGMA [Desrosiers 2007] and ADI-MineBio [de Sousa Gomide 2011]) due
to their usability for specific cases of input graphs (e.g., SyGMA
[Desrosiers 2007] requires that graphs have few labels, see Table 2.5).
Twenty-three algorithms for general use are kept for comparison.

Table 2.5: FSM Algorithms with specific uses
Algorithm Input Graphs Case
FREQGEO [Nowozin 2008] Geometric Graphs (2D or 3D)
TSMiner [Jin 2005] Graphs with unlabeled edges
SyGMA [Desrosiers 2007] The number of labels has to be small
ADI-MineBio The input data is relational tables
[de Sousa Gomide 2011] Dedicated for specific biomedical data
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2.2.5 Availability of Software

We tried to collect the implementations of the twenty-three algorithms.
However, only one-third implementations (7 out of 23) are publicly available.

According to our study, the reasons of unavailability are (see Table 2.6):
(i) legal constraint (intellectual property right), (i) codes are lost, (iii) no
response from the authors following our requests.”

Table 2.6: Unavailable FSM algorithms
Algorithms Unavailability
AGM [Inokuchi 2000], Topology [Hong 2003], AGM- | No answer from
H [Nguyen 2004], B-AGM [Inokuchi 2003], ADI-Mine | authors
[Wang 2004], FSP [Han 2007], FSMA [Wu 2008],
mSpan [Li 2009], LC-Mine framework [Douar 2014],
IDFP-tree [Nadimi-Shahraki 2015]
gRed [Gago-Alonso 2008], gdFil [Gago-Alonso 2010a], | Under  intellec-
grCAM [Gago-Alonso 2010b] tual properties
DPMine [Gudes 2006], DSPM [Cohen 2004], Fp- | The code is lost
GraphMiner [Vijayalakshmi 2011]

There are different implementations of the seven remaining algorithms
(see Table 2.7). AcGM and four implementations of gSpan, FFSM and Gas-
ton were removed from the list due to technical shortcomings (see Table
2.8 for the details). We could have tried to debug the implementations but
our main objective is to use and compare existing implementations as such,
without making any changes. The final list of candidates contains six algo-
rithms with their thirteen implementations. We performed an experimental
study with these implementations.

In the following, we will present the experimental setting used in the
literature. Our setting choices consider the literature setting.

2.2.6 Experimental setting in literature

We found different experimental settings in literature used for testing FSM
algorithms. In this section, we briefly describe those settings.

Datasets

For experimenting FSM implementations in centralized environment, the
largest datasets found in the literature have a number of graphs (|D]|) not
exceeding 274 860 graphs. The average graph size (|T|) does not exceed 50
edges. The maximum number of labels (|L|) for these datasets is 90 vertices
and 4 edges. For the most dense datasets, the average graph size does not
exceed 3636 vertices and 206 747 edges.

"1 request and 2 reminders have been sent to authors
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Table 2.7: Available Implementations of FSM Algorithms (Complete Search)

(March 2016)

Algorithm Available versions Last
Release

FSG FSG  Original  v1.37 (PAFI  v1.0.1) | 2003

[Kuramochi 2001] | [Karypis 2003]

gSpan gSpan Original v.6 [Yan 2009] 2009

[Yan 2002D] gSpan Original 64-bit v.6 [Yan 2009] 2009
gSpan ParSeMis [Philippsen 2011, | 2011
Henderson 2014]
gSpan (Kudo) [Nowozin 2013] 2004
gSpan ParMol ® 2013
gSpan (Zhou)? [Zhou 2015] 2015

MoFa/MoSS MoFa ParMol [Worlein 2005, Meinl 2007] 2013

[Borgelt 2002] MoSS ParMol [Wérlein 2005, Meinl 2007] 2013
MoFa/Moss ~ Original ~ (Miner  v6.13) | 2015
[Borgelt 2016]

AcGM AcGM Original [Inokuchi 2014] -

[Inokuchi 2002]

FFSM FFSM Original v3.0 [Fei 2010) 2010

[Huan 2003] FFSM ParMol [Worlein 2005, Meinl 2007] 2013

Gaston Gaston Original v1.1 [Nijssen 2005a] 2005

[Nijssen 2004] Gaston Original RE v1.1 [Nijssen 2005a] 2005
Gaston ParMol [Wérlein 2005, Meinl 2007] 2013
Gaston ParSeMis [Philippsen 2011, | 2011
Henderson 2014]

DMTL DMTL Original v1.0 (g++ 4.8 compiler) | 2006

[Al Hasan 2005] [Zaki 2008]

Table 2.8: FSM Implementations with Technical Drawbacks (Complete
Search) (March 2016)

Implementation

Technical Drawbacks

gSpan ParSeMis

- Quality of Frequent Subgraphs (redundancy)
- Error during the execution

gSpan Kudo2004

- Requiring an additional software (MATLAB)

FFSM Original

- Error with Input Files (No answer from authors about

this error)

AcGM Original

- No information about Memory Consumption or Runtime

(binary code and no response from authors)

- The output is only the DFS code of frequent subgraphs

Gaston ParSeMis

- Error during the execution
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The number of graphs (|D]) for these datasets is 11. The largest dense
dataset contains a maximum of 1178 graphs (|D|) with an average graph size
(IT]) not exceeding 360 vertices and 910 edges. Table 2.9 shows the largest,
most dense and largest dense datasets characteristics.

Table 2.9: Characteristics of Tested Centralized Graph Transaction Datasets
in the Literature [2016]

Dataset Type (Name) D |T| |L|

Largest dataset (DS3) [Aridhi 2015] 274860 | 40-50 (e) -

Most Dense dataset (US Stock Market) | 11 3636 (v) -

[Wang 2006, Zeng 2006, Zeng 2009] 206747 (e)

Largest Dense dataset (DD) [Douar 2014] | 1178 284 (v) 82 (v)
716 (e) 1 (e)

Synthetic datasets do not exceed 100 000 graphs (|D]). A dense synthetic
dataset contains (generally) a maximum of 400 vertices and 1000 edges.

For evaluating FSM implementations in a distributed environment, we
found real datasets that can contain 46 703 496 graphs [Lin 2014] and syn-
thetic datasets that can contain 100 000 000 graphs [Aridhi 2015].

Memory Resources

The maximum size of main memory used in most of the experiments found
in the literature does not exceed 4 GB except for (i) gSpan, Gaston, FFSM,
FSG and AcGM in [Nijssen 2006] with 10 GB, (ii) gSpan and Takigawa algo-
rithm [Takigawa 2010] with 48 GB and (iii) gSpan and Gaston [Saha 2014]
with 128 GB.

Evaluation Metrics

Typically, three common metrics have been used to compare implemen-
tations: (i) execution time, (ii) memory consumption and (iii) number of
extracted frequent subgraphs. More detailed metrics about subtasks effi-
ciency and the quality of subgraphs (e.g., the execution time of the subtasks
[Nijssen 2006], the sub-optimality [Worlein 2005], the number of duplicate
candidates [Gago-Alonso 2010b]) were used as well.

2.3 Experimental Study

In this section, we present the results of our experiments. We provide the
description of our experimental setting. We split our study into : (i) intra-
algorithm study where various implementations of a given algorithm are
compared, (ii) a comparison of results (for each algorithm) with those of
the state of the art and (iii) inter-algorithms study where implementations
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of several algorithms are compared. We conclude this section by a final
selection of the most efficient algorithms and some learned lessons regarding
the performance of FSM algorithms.

2.3.1 Experimental Setup

Our experimental settings include: (i) the inputs of implementations (i.e.,
datasets and minimum support threshold), (ii) the used resources, (iii) the
metrics used to evaluate the efficiency of the implementations, and (iv) in-
formation about implementations configuration.

Inputs of Implementations

There are two inputs for FSM implementations: the datasets and the mini-
mum support threshold.

Datasets Selecting the datasets which were used the most in the experi-
ments (reported in literature) is an important issue because it would enable
us to compare the results with existing studies. To our knowledge, about
thirty-one real datasets with four different formats (TXT, SDF, SMILES,
XML) were tested with FSM implementations. 78% of them are chemical
and biological datasets.

The FSM implementations we collected are useful only with the TXT
format, except for ParMol and MoSS Original accepting other formats. For
instance, ParMol is able to parse TXT and SDF. MoSS Original parses only
chemical formats of data (e.g., SDF, SMILES). We conducted our exper-
iments with twelve available datasets (out of thirty-one) of the two most
used formats (TXT, SDF). For all implementations, the default choice was
TXT format except for MoFa Original implementation where we used SDF
format. SDF datasets were converted to TXT format using ParMol parsers
[Meinl 2007].

e Datasets description. We categorized datasets into : (i) their size
(i.e., small, medium, large), (ii) their density (i.e., sparse, dense) and
(iii) the size of their graphs (i.e., small-sized, medium-sized and large-
sized). We define these characteristics as follow :

— Size characteristic : a dataset is considered medium if the number
of graphs |D| >= 10 000 and large if |D| >= 100 000.

— Density characteristic : We consider a graph as sparse if the
number of edges is close to the number of vertices. We attribute
the dense characteristic to datasets where the average number of
edges (|Te|) is considerably higher than the average number of
vertices (|T,|). Formally, the dataset is sparse if (|T,| < |T,| *
log(|Ty|)) [Adamchik |.
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— Size of graphs characteristic : The graphs in the dataset are
medium-sized if the average number of vertices |T;,| >= 100. They
are considered as large-sized if the average number of vertices
|T,| >= 1000.

We use the term ”large” in reference to the size of datasets and
graphs in the FSM literature related to centralized graph transac-
tion databases. However, typically the term “large” refers to a greater
volume of data. Table 2.10 displays the characteristics of the twelve
datasets where | P| denotes the number of FSM experiments in litera-
ture (i.e., papers) performed on the dataset, F' is the original format
of the dataset, S is the dataset size on disk (in KB), |D] is the num-
ber of graphs in the dataset, |T'| is the average size of a graph by
vertex(v)/edge(e) count, |L| is the number of labels (for vertices and
edges) in the dataset, |M| is the maximum size of a graph by ver-
tex/edge count and LT is the last date the dataset was experimented.

The selected datasets include the three most used datasets (PTE,
AID2DA99, HIV-CA) in literature, the largest dataset, namely DS3
and the largest dense dataset, namely DD (see Table 2.10). The PTE
dataset was used in twenty-two FSM experiments. The HIV/AIDS
dataset is used in twenty experiments with two available HIV releases
AID2DA99 (October 1999) and AIDS (unknown release). The dataset
HIV-CA (all releases) was used in eleven experiments. We found an
available HIV-CA release (March 2002) that was used in six experi-
ments. The remaining datasets (shown in Table 2.10) were selected
due to their: (i) availability, (ii) format (i.e., TXT or SDF) compatible
with the FSM implementations, and (iii) characteristics (e.g., dense,
large, medium).
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Figure 2.1: Examples of SDF file errors - AID2DA99 dataset

e Dataset modification. In some cases, we made some changes to the
datasets: (i) correction of the parsing errors (NCI250 dataset) with
potential graph elimination (AID2DA99, CAN2DA99 datasets). In
fact, we removed 7 graphs from AID2DA99 dataset and 4 graphs from
CAN2DA99 dataset due to data format'? errors (e.g., no space be-
tween two values such as '15.856418298.5176’, see Figure 2.1), (ii)
conversion from SDF to TXT format (e.g., AID2DA99), (iii) grouping
a set of files into one dataset file (AIDS, NCI145, NCI330 datasets),
(iv) converting string vertex labels to integer ones (DS3 dataset). The
FSM implementations (except FSG Original) work with integer la-
beled TXT datasets. For this, we modified the string vertices labels of
DS3 dataset to integers. We named this modified dataset DS3M. We
used the available codes of ParMol software!'® with small modifications
to perform these tasks.

Minimum Support Threshold (MST). Different implementations of FSM al-
gorithms convert differently the minimum support threshold (relative value)
to the internal minimum frequency (absolute value). In fact, the conversion
is done by carrying out one of the following options: (i) Truncation of the
support value (denoted by L), (ii) Truncation+1 (denoted by H), and (iii)
Rounding (denoted by L/H).

Table 2.11 shows the input type of minimum threshold used by each
FSM solution. The input type is either a support value (denoted by S)
or a frequency value (denoted by F). Some implementations allow both in-
put types. For an implementation where the support value (float) is used,

!Please refer to: http://c4.cabrillo.edu/404/ctfile.pdf for a basic SDF file format
5ParMol [Meinl 2007].  2006.  github.com/yangyi0318/MyParMol/tree/master/
ParMol [Accessed 2019-05-30]
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the corresponding conversion strategy (denoted by C) is mentioned. For
example, gSpan Original v.6 allows a support value as input and its used
conversion strategy is the truncation of the support to a frequency value.

Later on in this chapter, we compared the implementations of the same
strategy (L or H).

Table 2.11: Algorithms’ strategy of Minimum Support/Frequency Input
Algorithm S |F |C
Implementation

gSpan Original v.6

gSpan-64bit Original v.6

gSpan (Zhou)

ParMol (Gaston, gSpan, FFSM, MoFa,
MoSS)

MoFa Original v6.13

Gaston Original v1.1

Gaston Original RE v1.1

DMTL Original v1.0

FSG Original (PAFT v1.0.1) X Rounding (L/H)

Truncation (L)

ol I

"

Truncation+1 (H)

"

cE IR ]

Used Resources

All our experiments were performed using a machine with 4 GB of RAM
memory and a Quad core processor except for the experiment with a large-
sized graph dense dataset PI (see Table 2.12). For experimenting with the
PI dataset we used a different machine with 7 GB of memory and a Quad
core Processor.

We used Linux OS for deploying all FSM solutions. The Windows OS
was used only to estimate the effect of varying the OS on the performance
results (see Section 2.3.6).

Table 2.12: Machine Characteristics

Cases Default Large-sized
graph dense dataset
Processor Intel Core i3 Quad Core
2.40GHz 3.2GHz
RAM 4 GB 7 GB
Hard Disk | 192.8 GB 226 GB
OS Default : Ubuntu (14.04) : All Software

Evaluation Metrics

We use the three common metrics as in the literature (see Section 2.2.6):
(i) the execution time, (ii) the memory consumption, and (iii) the number
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of returned frequent subgraphs. The solutions will be compared with each
other by considering one of the three metrics.

Implementation Settings

We describe the configurations of implementations in terms of their frame-
work, appropriate input/output and the used arguments to run them.
Framework Setting The available FSM solutions are either implemented
in java language, including ParMol and MoFa Original solutions, or in
C/C++ including the others implementations (gSpan Original versions,
gSpan (Zhou), FSG Original, DMTL Original and Gaston Original ver-
sions). The configurations set for these solutions are the following : for java
solutions, the JVM used version is 1.8.0_65-b17 and java heap space is set
to 3.8GB. For C++ solutions, the gcc version used is 5.3 (see Table 2.13).
We ran each solution three times for each support value. The results
that are reported in this chapter are the mean of the three executions. Some
of the solutions (gSpan Original, gSpan (Zhou), ParMol) propose optional
multi-threading execution. We used single thread in our experiments.

Table 2.13: Framework characteristics

Java Java Heap Space : 3.8GB
solutions JVM version : 1.8.0_65-b17
C & C++ gce version :5.3

solutions

Output Configuration All the implementations provide information
about the execution time, the number of frequent subgraphs, and some
of them provide memory consumption. In the following, we describe the
configurations of the implementations in terms of these outputs. It is worth
noting that any modification we added to the FSM implementations has no
effect'® on performance results.

e Memory Consumption. Some FSM solutions are open source and some
others are binary codes (see Table 2.14). We added memory consump-
tion parameter for some open code FSM implementations (Gaston
Original (v1.1 and RE v1.1), gSpan (Zhou) and DMTL Original).

The binary code solutions (see Table 2.14) do not return information
about the memory consumption. For this, we tried to deduce the
limit of memory consumption by testing the lowest support threshold
values that could be reached by the solution. We verified that the
failure at low support values is due to a lack of memory (by resorting
to a machine with 128 GB of memory).

For ParMol implementations, we set the 'memoryStatistics’ argument
to true, which enables the calculation of memory consumption. It

16We tested the effect of our modifications on performance
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Table 2.14: Code Accessibility

Open Source Binary Code
- Gaston Original versions | - gSpan Original versions
- MoFa Original - FSG Original

- gSpan (Zhou)
- DMTL Original
- ParMol framework

is worth noting that activating this argument can change the perfor-
mance of the implementation (see Section 2.3.6).

e Execution Time. The execution time is composed of parsing time and
the time to extract frequent subgraphs. It is worth noting that FSG
Original is the only implementation which does not provide informa-
tion about parsing time. Thus, in this case, we estimated the parsing
time by using an external time calculation function (see Table 2.15).

Table 2.15: Our Estimated Parsing Time of the FSG Algorithm

Dataset Parsing
Time (sec)

HIV-CA 0.5

PTE 0.3

AID2DA99 11

CAN2DA99 8

AIDS 15

NCI145 5

NCI330 5

NCI250 52

DS3 57

DD 7

PS 13

For ParMol, we set the argument ’debug’ to 1, to display the subtasks
runtime. We used the sum of the runtimes of the substasks in ParMol
solutions.

e Number of Frequent Subgraphs. ParMol algorithms and MoFa Orig-
inal are set by default to return only closed frequent subgraphs. We
set off this option. MoFa Original v6.13 proceeds to a special mod-
ification of edge labels (conversion of found Kekule representations!”
into aromatic bonds'® [Borgelt 2002]). We ran two versions of this
software which return different numbers of frequent subgraphs : (a)
with Kekule Representation conversion and (b) without conversion.

17 Alternating between labels 1 and 2 in a chemical ring.
Brelabeling edges by label 4.
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Theoretically, complete search FSM algorithms return all frequent sub-
graphs that are above a specified minimum support threshold. How-
ever, in practice, the available FSM solutions of complete search algo-
rithms produce a lower number of graphs compared to the complete
set. According to the authors we contacted of ParMol and gSpan Orig-
inal, this happens because of other internal thresholds and rounding
effects defined in the implementation.

Input Configurations By default, ParMol is not set to parse TXT for-
mat. However, there is a TXT parser (LineGraphParser) in the ParMol
package'. We used it for our TXT datasets. MoFa Original v6.13 parses
chemical datasets (e.g., SDF, SLN). Therefore, we tested it only with the
three available SDF datasets (see Table 2.10).

Fixzed Parameters For all implementations, we set three parameters : the
input file, the minimum support threshold and the output file. Additional
parameters were used for ParMol, namely "memoryStatistics’ (memory con-
sumption) and ’debug’ set to 1 (subtasks runtime).

Abbreviations of implementations (see Table 2.16) will be used further
in experimentation results (Table 2.18 - Table 2.58).

Table 2.16: Abbreviations of implementations in Tables

Implementation Abbreviation
gSpan Original SO
gSpan-64bit Original S064
gSpan ParMol SP
gSpan (Keren Zhou, 2015) SK
Gaston Original GO
Gaston Original RE GR
Gaston ParMol GP
DMTL Original D
FSG Original F
FFSM ParMol FF
MoFa ParMol MFP
MoSS ParMol MSP
MoFa Original (with Kekule MOa
Representation Conversion)

MoFa Original (without Kekule | MOb
Representation Conversion)

all ParMol implementations P

In Tables, Comp will denote the qualitative comparison between two
implementations, Diff will denote a quantitative interval corresponding to
the difference (e.g., runtime) between two implementations at the lowest

9ParMol [Meinl 2007].  2006.  github.com/yangyi0318/MyParMol/tree/master/
ParMol [Accessed 2019-05-30]
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and the highest support value. The symbol ~ will indicate that the two
implementations have approximately identical values. The symbol (F) will
indicate that the versions have fluctuations in performance (i.e., one version
can be better than another in a run and be worse in another run).

2.3.2 Intra-Algorithm Performance Study

In this section, we compare different implementations of one algorithm in
order to use the best implementation(s) in a further comparison with the
other algorithms. There are three algorithms with more than one imple-
mentation, namely gSpan, Gaston and MoFa/MoSS (see Table 2.7). Only
gSpan and Gaston implementations are evaluated in this Section. MoFa/
MoSS implementations will be evaluated with all the other algorithms (see
Section 2.3.4).

gSpan Implementations

We tested four implementations of gSpan: Two original implementations
provided by authors of gSpan [Yan 2002b] (gSpan Original v.6, gSpan 64-
bit Original v.6) and third-party implementations (gSpan ParMol, gSpan
(Zhou)).

Number of Frequent Subgraphs. GSpan (Zhou) was able to run with only
small sparse & small-sized graph datasets (e.g., HIV-CA or PTE). It was
not able to run with larger datasets (e.g., AID2DA99, CAN2DA99) or dense
datasets (e.g., DD). In addition, gSpan (Zhou) generated significantly fewer
frequent subgraphs than, the two other solutions (ParMol, Original) (see
Table 2.17).

Table 2.17: Number of Frequent Subgraphs by gSpan (L strategy) - HIV-CA

Min Sup | SP (L) | SO/S064 | SK
4% - 6825311 -

5% 905299 | 905298 723603
6% 293406 | 293404 250518
% 65260 65259 60183
8% 28559 28558 26304
9% 17512 17511 15945
10% 15973 15972 14486
15% 4476 4476 4152
20% 937 936 915
25% 248 2438 239
30% 124 124 120
40% 60 60 56
5% 39 39 35
50% 32 32 29
60% 19 19 16
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The two versions of gSpan Original (v.6 and 64bit v.6) generated the
same number of frequent subgraphs except for the NCI330 dataset (for 6%
and 8% minimum support threshold, there was a difference respectively of
15 and 4 graphs, see Table 2.18).

Table 2.18: gSpan Original vs. gSpan Original 64bit : Number of Frequent
Subgraphs Comparison

Support | Comp Diff
Interval

NCI330
5% SO = SO64 -
6%, 8% SO > SO64 15, 4
9%-90% | SO = SO64 -

The rest of datasets
SO = S064

Typically, gSpan ParMol (L) and gSpan Original (v.6, 64-bit v.6) gen-
erated the same number of frequent subgraphs. Sometimes, it can produce
one or two graphs in more or less than gSpan Original (v.6, 64-bit v.6) (e.g.,
HIV-CA dataset, see Table 2.17). Additionally, in some exceptional cases,
such as for PTE dataset, with low support threshold 1.5% and 2%, gSpan
Original generated 53 and 49 (respectively) more graphs than the gSpan
ParMol version. Table 2.19 shows the difference (denoted by Diff) between
gSpan ParMol and gSpan Original v.6 in the number of frequent subgraphs.

The two values of Diff correspond to the difference of the number of
frequent subgraphs between the two solutions, for the lowest and highest
support, respectively (denoted by Support Interval).

It is worth noting also that gSpan algorithm implemented by Original
authors and in ParMol, can compute the frequent subgraphs differently. For
example, for NCI330 dataset with 6% MST, the two implementations of
gSpan generated 4 subgraphs with different frequency?’ values. However,
the frequency values are close. For example, the frequency values for a
selected frequent subgraph out of the 4 are 4990 and 5107 for SO and SP,
respectively.

Memory Consumption. Table 2.20 shows that gSpan (Zhou) required
considerably more memory (denoted by Memory) than gSpan ParMol with
lesser number of frequent subgraphs (denoted by Number of FS). Also, it
was not able to reach the same low support thresholds as gSpan Original
v.6, due to high memory consumption (see Table 2.21).

20The frequency is the number of occurrences of the subgraph, it is the absolute value,
while the support is the relative value.
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Table 2.20: Examples of Memory Consumption of two gSpan versions (L
strategy)

Implementation Memory | Number
(GB) of FS
1.5% (PTE)
SP (L) 1.1 721 249
SK 48 698 934
5% (HIV-CA)
SP (L) 2.01 905 299
SK 87 723 603

For low support threshold, gSpan-64bit Original v.6 required more mem-
ory than gSpan (Zhou), and significantly more than gSpan Original v.6 and
gSpan ParMol. For example, gSpan Original-64bit could run with a thresh-
old greater or equal to 8% for the HIV-CA dataset, while gSpan Original
could run with 4% successfully (see Table 2.21). The lowest minimum sup-
port threshold we tested in Table 2.21 is 1.5%.

GSpan-64bit Original and gSpan (Zhou) could not run with very low
support threshold values (see Table 2.21), unlike gSpan ParMol and gSpan
v.6 Original.

Table 2.21: Minimal Support threshold value reached by gSpan versions (L
strategy)

Small Dense|| Medium Large
= S = =
~

Dataset 3 R % § % %
& Q N @ Ny

AN = S S
)

Version Min Support Threshold

SP 1.5% | 5% || 4% 2% 4% 2%

SO 1.5% | 4% || 1.5% 1.5% | 3.5% || 2%

SK 25% | % || - - - -

S0O64 3% 8% || 20% 3% 5% 4%

GSpan Original v.6 is the only implementation among gSpan versions
that was able to reach the lowest minimum support threshold for all datasets
(e.g., 4% for the HIV-CA dataset and 1.5% for the DD dataset, see Table
2.21).

Runtime. Our experiments show that gSpan (Zhou) is the fastest algo-
rithm for high support threshold values (see Figures 2.2 & 2.3). However,
this version could not be used in the context of dense datasets (e.g., dataset
DD) or datasets that are not small in size?! (e.g., AID2DA99, CAN2DA99).

2IThe size of datasets is in terms of the number of graphs
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Figure 2.2: gSpan Runtime (Low Support Threshold) - HIV-CA

In addition, this version generated significantly fewer frequent subgraphs
than the other versions (see Table 2.17).
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M gSpan-64bit Original v.6 (2009)

M gSpan (Keren Zhou 2015)

Figure 2.3: gSpan Runtime (Low Support Threshold) - PTE

Tables 2.23, 2.22 and 2.24 show the runtime comparison between the
other gSpan implementations (gSpan Original versions and gSpan ParMol).
The difference between execution times (denoted by Diff) is mentioned in
seconds. The two values of Diff correspond to the runtime difference of
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the lowest and the highest support value (denoted by Support Interval). For
example, with the minimum support value 2%, gSpan Original v.6 consumes
about 241 seconds more than gSpan Original v.6 64-bit for the AID2DA99
dataset and 5 seconds more for 90% (see Table 2.23).

Typically, our experiments also show that gSpan-64bit Original v.6 is
faster than gSpan Original v.6 for all the tested datasets (see Table 2.23).
However, for low support threshold values (e.g., 8% - 15% for HIV-CA,
see Table 2.23), gSpan-64bit Original v.6 can become slower than gSpan
Original v.6 due to a higher memory consumption.

Furthermore, our experiments reveal that gSpan ParMol (L) is faster
than gSpan Original v.6 for small and medium datasets. For example,
gSpan ParMol (L) consumed about 850 seconds less than gSpan Original
for AID2DA99 and MST 1.5% (see Table 2.22). However, for some cases of
small and medium sparse and small-sized graph datasets, gSpan ParMol (L)
can be slower if the support threshold is very low (e.g., 2% for NCI145, see
Table 2.22). For large sparse small-sized graph and small dense datasets,
gSpan ParMol (L) is slower than gSpan Original v.6 for low and medium
support values (e.g., DD dataset, see Table 2.22).

Table 2.22: gSpan Implementations Runtime Comparison (gSpan ParMol
vs. gSpan Original)

Support Comp Diff Support Comp Diff
Interval (sec) Interval (sec)

Small Datasets Medium Datasets

HIV-CA ATD2DA99
5% SO <SP | 109 1.5% - 90% [ SO > SP | 850 - 3.4
6% - 10% SO >SP | 91-24 AIDS
15% SO~ SP |- 1.5% - 90% [ SO > SP [ 4636 - 4
20% - 80% | SO <SP | 0.4-0.27 CAN2DA99
PTE 2% - 80% [ SO > SP | 837-2.54
1.5% - ™% SO > SP | 321 -0.08 NCI145
8% - 90% SO <SP | 0.23 -l 2% SO < SP | 169
0.34
Large Datasets 3% - 90% SO > SP | 1558 - 1.8
NCI250 NCI330

2% - 70% SO < SP | 2089 - 1.5 || 4% - 5% SO <SP | 292-16
80% - 90% | SO >SP | 3-5 6% - 90% SO >SP | 6.6-1.5

Dense Datasets Dense Datasets

DD PS
4% - 90% SO <SP | 5882 - 11 || 80% SO > SP | 13
90% SO <SP | 0.7
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For small dense and large sparse small-sized graph datasets, gSpan-64bit
Original v.6 is faster than gSpan ParMol for low?? and medium support
threshold values. For example, gSpan-64bit Original v.6 consumed about
1020 seconds lesser than gSpan ParMol for NCI250 dataset and MST 4%
(see Table 2.24).

For medium sparse and small sparse datasets, gSpan-64bit Original is
slower than gSpan ParMol for low support threshold values except for the
NCI330 dataset (see Table 2.24). However, it has a competitive performance
compared to gSpan ParMol for high support threshold values.

Summary of gSpan Implementations

e Of all gSpan solutions, gSpan Original v.6 is the most efficient one in
terms of memory consumption for very low support threshold values.
However, gSpan ParMol fails to achieve the search for some low thresh-
old values (e.g., HIV-CA 4%, see Table 2.21) and gSpan-64bit Original
fails earlier (e.g., HIV-CA 8%). The failures are mainly due to mem-
ory consumption. However, gSpan Original v.6 is able to complete the
execution successfully (e.g., HIV-CA 4%, see Table 2.21).

e GSpan-64bit Original v.6 can be used in a context where execution
time is critical and the support threshold values are not low.

e Instead of gSpan Original v.6, the open source implementation gSpan
ParMol can be used for better runtime performance if the dataset is
small or medium and sparse, also the support values should be not too
low.

22The low support threshold values that are reacheable by the FSM solution. For some
low values, the solution fails to terminate.
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Gaston Implementations

There are three implementations of Gaston: two (Gaston Original v1.1, RE
v1.1) are from original authors [Nijssen 2004] and the other one (Gaston
ParMol) is from a third-party implementer [Wérlein 2005].

Table 2.25: Gaston Original vs. Gaston Original RE : Number of Frequent
Subgraphs Comparison

Support | Comp Diff
Interval

Dense Datasets
DD
2% -20% | GO > GR | 1359 -4
30%-90% | GO = GR | -

PS
60% - 80% | GO > GR | 17013 - 45
90% GO =GR | -
Rest of Datasets
GO = GR

Number of Frequent Subgraphs. Typically, Gaston Original versions
(vl.1, RE v1.1) generated the same number of frequent subgraphs. However,
there could be some exceptions such as the ones we found for the DD (under
20%, see Table 2.25) and PS (under 80%, see Table 2.25) datasets. For ex-
ample, for the 2% MST of DD dataset, Gaston Original v1.1 produced 1359
frequent subgraphs more than Gaston v1.1 RE (see Table 2.25). In Table
2.25, Diff denotes the difference, in terms of frequent subgraphs, produced
by the two implementations for the lowest and the highest support values.

Gaston Original (v1.1, RE v1.1) (H) and Gaston ParMol (H) produced
a different number of frequent subgraphs for all datasets. This is shown in
Table 2.26 where Diff denotes the difference, in terms of frequent subgraphs,
produced by the two implementations for the lowest and the highest support
values.

For example, with PTE dataset, for 1.5% MST, Gaston Original versions
(vl.1, RE v1.1) (H) generated 57946 frequent cyclic graphs, 282724 frequent
trees and 2268 frequent paths. However, Gaston ParMol (H) generated
57951 frequent cyclic graphs, 284294 frequent trees and 2234 frequent paths.
It is worth noting that Gaston Original versions (v1.1, RE v1.1) do not
include frequent subgraphs with single vertex (0 edges). However, Gaston
ParMol does include these subgraphs. This could justify only the difference
in the number of frequent paths.
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The difference in the number of frequent trees and graphs between Gas-
ton ParMol and Gaston Original (v1.1, RE v1.1) needs to be explained fur-
ther. Also, these two implementations of Gaston do not have a constantly
positive (or negative) difference. For example, for AIDS dataset, Gaston
ParMol generated 5 frequent subgraphs less than Gaston Original v1.1 for
MST 2% and 8 more frequent subgraphs for MST 3% (see Table 2.26). This
variability should also be explained by authors.

Memory Consumption. Typically, Gaston ParMol consumed more mem-
ory for all datasets (e.g., AID2DA99, see Figure 2.4) and produced different
numbers of frequent subgraphs compared to Gaston Original versions.

Gaston (AID2DA99)
10000000

1000000

100000 .

10000
2% 3% 4% 5% 6% 7% 8% 9% 10% 15% 20% 30% 40% 50%

Memory Consumption (KB)

Min Support Threshold

em@u Gaston ParMol (Linux) (Finding Fragments) /TXT
e Gaston Original v1.1 (H)
em@um Gaston Original RE v1.1 (H)

Figure 2.4: Memory Consumption of Gaston Original versions - AID2DA99

Table 2.27 shows some examples of the memory consumption of the three
Gaston versions with their number of frequent subgraphs. For example, for
AID2DA99 and MST 2%, Gaston ParMol consumed about three times the
memory of Gaston Original v1.1 with 9 more frequent subgraphs.

Table 2.27: Examples of Memory Consumption and Number of Frequent
Subgraphs of Gaston versions

Implementation‘ Memory (MB) ‘ Number of F'S
3% (PTE)

GO (H) 7 18 121

GR (0) 1 18 121

GP 25 18 121

2% (AID2DA99)

GO (H) 554.916 25 197

GR (H) 56.300 25 197

GP 1729.857 25 206
5% (DD)

GO (H) 251812 795623

GR (H) 50064 795717

GP 876978 795696
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However, for small sparse small-sized graph datasets and relatively
medium values of support threshold, Gaston ParMol required fewer mem-
ory than Gaston Original versions (e.g., above 6% MST for PTE, see Figure
2.5).
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=—@=—= Gaston Original REv1.1 (H)

Figure 2.5: Memory Consumption of Gaston - PTE

Gaston Original RE v1.1 was proposed by [Nijssen 2005b] in order to
reduce the memory consumption of Gaston Original v1.1. We found that
Gaston Original RE, when it is able to run, had in fact a linear memory
consumption lower than Gaston Original (e.g., AID2DA99, see Figure 2.4
and PTE, see Figure 2.5) for all the tested datasets except for the small
dense DD and PS datasets.

However, for very low support threshold values (e.g., 3% for NCI330, 6%
for HIV-CA) or for relatively large sparse small-sized graph datasets (e.g.,
DS3, NCI250), Gaston Original RE produced an exception and hence the
operation was terminated. For the same cases, Gaston Original completed
successfully. For example, for HIV-CA dataset, Gaston Original v1.1 RE
failed to terminate for 6% MST (see Table 2.28). However, Gaston Original
v1.1 reached MST 4% successfully (see Table 2.28).

Runtime. The results show that for all tested datasets, the runtime
performance of Gaston Original v1.1 was the best among all Gaston versions.
It is worth noting that Gaston Original RE v1.1 required less memory than
Gaston Original v1.1 (e.g., AID2DA99, see Figure 2.4), as a trade-off, it was
slower (e.g., AID2DA99, see Figure 2.6).

For the small dense datasets (DD and PS), Gaston Original RE required
more time and memory than Gaston Original with a different number of
frequent subgraphs.
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Table 2.28: Limits of Memory Consumption (KB) of Gaston versions for
low support threshold

Version/ | GO (L) | GR (L) GP

Dataset

Min Sup | 4% 6% 7% 6%

HIV-CA 15456 Segmentation| 3956 183400
Fault

Min Sup | 1% 3% 3.5% 4%

NCI330 238512 Segmentation| 46072 676437
Fault

Min Sup | 2% 90% 60%

NCI250 2759732 Segmentation Fault 2557084

Min Sup | 2% 90% 50%

DS3M 3067400 Segmentation Fault Out  Of

Memory
Min Sup | 1% 1.5% 2% 3.5%
DD 66944 Killed 2744180 | 2114479

Summary of Gaston Implementations

e Gaston Original v1.1 should be used for applications where runtime is
critical.

e Gaston Original RE v1.1 can be used to save memory (despite the
required time) for the following cases: (a) support threshold values
not too low (e.g., above 6% MST for HIV-CA) and (b) datasets that
are not large (e.g., smaller than DS3, NCI250) and not dense (e.g.,
less dense than DD). If neither (a) nor (b) are verified, then (c) the
provided RAM memory should be large enough to handle the mining
task. If none of the cases (a) and (b), or (c) are true, then Gaston
Original v1.1 has to be used.

e Gaston ParMol consumed the highest amount of memory amongst all
Gaston versions (except for small sparse datasets and high support
values), yet it is the slowest solution (e.g., for AID2DA99 dataset, see
Figure 2.6) and it produced a number of frequent subgraphs different
from what Gaston Original versions produced.

2.3.3 Comparison with the State of the Art

In this section, we compare our results regarding the implementations of the
six algorithms with the results we found in state of the art. The comparison
shows the similarities and differences between the results. This comparison
could be seen as an update of the FSM literature with the consideration of
implementations releases.
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Figure 2.6: Gaston Runtime - AID2DA99

In fact, according to our knowledge, no study focuses on the impact of
the evolution of FSM implementation versions (e.g., gSpan Original 2002
vs. gSpan Original v.6 2009) on the performance.

According to our understanding, differences of our results with state of
the art might occur due to different machine characteristics and different
implementation releases (e.g., gSpan v.5, gSpan v.6).

It is worth noting that we eliminated some graphs from the datasets
AID2DA99 and CAN2DA99 (see Section 2.3.1). Therefore, our versions of
these datasets contain slightly fewer number of graphs (7 and 4 graphs, re-
spectively) than the ones tested in state of the art; we believe this could have
an impact on the outcome and so on results. We took these inconveniences
into consideration for our comparison.

GSpan Comparison

We present our comparison with gSpan Original versions first then with
gSpan ParMol.

GSpan Original. Our experiment with gSpan Original v.6 generated a
number of frequent subgraphs that is different (superior) from the result
found in [Nijssen 2004, Nijssen 2006, Krishna 2011} for the datasets PTE
and HIV-CA (see Table 2.29). The values comparable in Table 2.29 are in
bold and non-grey coloured cells (using the same support strategy L or H).
For example, in Table 2.29 for MST 3%, gSpan Original in our experiments
generated 22785 frequent subgraphs. However, gSpan Original generated
22758 frequent subgraphs in [Nijssen 2004, Nijssen 2006]. Additionnally,
Table 2.29 shows the difference in the number of frequent subgraphs for
all gSpan versions in our experiments in comparison with gSpan Original
results found in [Nijssen 2004, Nijssen 2006]. For some cases, this illustrates
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that none of our tested gSpan versions has an equal number of frequent of
subgraphs as found in [Nijssen 2006] (e.g., MST 3%, see Table 2.29).

Table 2.29: Number of Frequent Subgraphs of gSpan : Comparison of our
results (Left) with the Literature [Nijssen 2004, Nijssen 2006] (Right) - PTE

Our experiments Nijssen et al.
Min Sup | SP (L) | SP (H) | SO SK SO (L/H)
2% (6.7) 344513 | 136981 | 344464| 338284 || 136949
3% (10.2) 22786 18146 22785 | 22200 || 22758
4% (13.59) | 8776 5955 8776 8706 5935
5% (17.0) 3627 3627 3627 | 3607 3608
6% (20.4) 2343 2138 2343 | 2326 2326
7% (23.8) 1861 1786 1861 1845 1770
8% (27.19) | 1339 1240 1339 | 1323 1323
9% (30.6) 1065 993 1065 1049 977
10% (34.0) | 860 860 860 844 844
20% (68.0) | 199 199 199 190 190
30% 75 75 75 68 68
(102.00001)

We found the same frequent subgraphs produced by gSpan Origi-
nal as reported in [Aridhi 2015] for the DS3 dataset. The number of
frequent subgraphs found in [Yan 2003] is approximately?* the same as
our result for the dataset HIV-CA. Considering the runtime performance,
gSpan Original v.6 was slightly slower than gSpan Original - reported in
[Nijssen 2004, Nijssen 2006, Krishna 2011, Aridhi 2015] for PTE, HIV-CA
and DS3 datasets. The result reported in [Yan 2003] for HIV-CA dataset
was approximately similar to ours. According to our understanding, the dif-
ference regarding runtime could be due to different machine characteristics
and to the number of generated frequent subgraphs. Regarding the impact
of the differences between the gSpan versions (2002-2009), Xifeng Yan - the
contacted author of gSpan Original explained the following: ”They are the
same, except the new one supports more labels and it is running on a 64
bit system”... ”The new version supports multi-threads, and more labels.
Therefore, it consumes more memory (50%-100%)...”

GSpan ParMol. Our experiment with gSpan ParMol (for PTE dataset)
produced the same number of frequent subgraphs as in [Gago-Alonso 2010a].
For AID2DA99 dataset, our experiment is considerably faster (see Figure
2.7), consumed slightly more memory (see Figure 2.8) and produced ap-
proximately?® the same number of duplicates (see Figure 2.9) compared
to gSpan ParMol result found in [Gago-Alonso 2008, Gago-Alonso 2010b,
Gago-Alonso 2010a].

24The results are given in a graphical form, we could not deduce a more precise conclu-
sion.
25Results are represented in a graphical way
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Figure 2.7: GSpan ParMol Runtime : Comparison of our results (Left) with
the Literature [Gago-Alonso 2008, Gago-Alonso 2010a, Gago-Alonso 2010b]
(Right) - AID2DA99

The difference in runtime could not be completely understood. Al-
though, initially we assumed that the runtime performance is different due
to different machine specifications. However, we found that even using a ma-
chine with the same resource specification, did not alleviate this difference.
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Figure 2.8: gSpan ParMol Memory Consumption : Comparison of our re-
sults (Left) with the Literature [Gago-Alonso 2008] (Right) - AID2DA99

Regarding the different versions of ParMol, Thorsten Meinl, one of the
contacted authors of ParMol, stated what follows : ”We released several
versions ... the changes had only minor effects on runtime and memory
consumptions since those are mostly determined by the algorithm and not
by the implementation”.
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Figure 2.9: Number of Duplicates with gSpan ParMol : Comparison of our
results (Left) with the Literature [Gago-Alonso 2008, Gago-Alonso 2010b,
Gago-Alonso 2010a] (Right) - AID2DA99

Gaston Comparison

We present our comparison with Gaston Original versions first then with
Gaston ParMol.

Gaston Original. In our experiment, Gaston Original versions (v1.1, RE
v1.1) generated the same number of frequent subgraphs as in [Nijssen 2004,
Krishna 2011] (for PTE and HIV-CA respectively). It generated a fewer
(one less) number of frequent subgraphs than the result in [Aridhi 2015]
(for 30% MST, DS3 dataset).

Table 2.30: Memory Consumption (MB) of Gaston Original : Comparison
of our results (Left) with the Literature [Nijssen 2004, Nijssen 2006] (Right)
- PTE

Our experiments \ Nijssen et al.
Min | GO GO GR GR GO GR
Sup | (L) H) | (L) (H) (L/H) | (L/H)
2% 38.786 | 10.421| 5.669 5.096 9.1 1.5
3% 7.158 | 7.062 | 4.688 | 4.618 4.4 1.3

1% 6.588 6.354 | 4.518 4.518 || 3.4 1.3
5% 5.946 | 5.946 | 4.518 | 4.518 || 3.0 1.3
6% 5.688 | 5.598 | 4.558 | 4.520 || 2.7 1.3

7% 5.237 5.088 | 4.516 4.576 || 2.1 1.3
8% 5.042 | 4.945 4.552 | 4.510 1.9 1.3

Gaston Original (v1.1, RE v1.1) consumed more memory than the ver-
sion found in [Nijssen 2004, Nijssen 2006] (PTE dataset, see Table 2.30).

The values comparable in Table 2.30 are in bold and non-grey coloured
cells (using the same support strategy L or H). For example, for MST set
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to 2%, Gaston Original in our experiments consumed about 10.421 MB.
However, Gaston Original consumed 9.1 MB in [Nijssen 2004, Nijssen 2006].
Also, for MST set to 3%, Gaston Original in our experiments consumed
about 7.158 MB compared to 4.4 MB in [Nijssen 2004, Nijssen 2006].

Our runtime performance of Gaston Original was better than the re-
sult in [Nijssen 2004, Nijssen 2006] (PTE dataset, see Table 2.31) and in
[Krishna 2011] (HIV-CA dataset). However, Gaston Original v1.1 has com-
petitive runtime as in [Aridhi 2015] (for the DS3 dataset).

Table 2.31: Gaston Original Runtime : Comparison of our results (Left)
with the Literature [Nijssen 2004, Nijssen 2006] (Right) - PTE
Our experiments Nijssen et al.
Min| GO GO GR GR GO GR
sup| (L) | (W) | (L) | (H) || (L/H)| (L/H)
2% | 6.6275 | 2.2836| 24.0183| 9.9545| 7.9 39.6
3% | 0.4545| 0.3635 | 2.0841| 1.6018 || 1.7 8.5
4% | 0.1932 | 0.1509| 0.8405 | 0.6583|| 0.6 2.7

5% | 0.0959| 0.0959| 0.3836| 0.3836|| 0.4 1.6
6% | 0.0684| 0.0599| 0.2463| 0.2258| 0.3 1.0
7% | 0.0529 | 0.0501| 0.1915 | 0.1797|| 0.3 0.8
8% | 0.0426| 0.0415 | 0.1432| 0.1213 || 0.2 0.6

The values comparable in Table 2.31 are in bold and non-grey coloured
cells (using the same support strategy L or H). For example, for MST set
to 2%, Gaston Original in our experiments required about 2.28 seconds and
Gaston Original RE required about 9.95 seconds. However, in the literature
[Nijssen 2004, Nijssen 2006] Gaston Original required about 7.9 seconds and
Gaston Original RE required about 39.6 seconds.

However, our results attest that Gaston Original v1.1 is much faster (see
Table 2.31) and requires much more main memory (see Table 2.30) than
Gaston Original RE v1.1 as it was reported in [Nijssen 2004, Nijssen 2006].

It is worth noting that we used different resource specification including a
more powerful processor?® than the one used in [Nijssen 2004, Nijssen 2006]
and different from the ones used in [Krishna 2011, Aridhi 2015].

Gaston ParMol. In our experiment, Gaston ParMol generated a num-
ber of frequent subgraphs which is different from the number reported in
[Gago-Alonso 2010a] (for AID2DA99). For example, Gaston ParMol gener-
ated 18121 frequent subgraphs in our experiment for AID2DA99 and MST
3%. However, it generated 18146 frequent subgraphs in [Gago-Alonso 2010a]
(see Table 2.32). According to our results, Gaston ParMol is faster than the
one tested in [Gago-Alonso 2010a, Gago-Alonso 2008, Gago-Alonso 2010b]
(AID2DA99, PTE).

26[

Nijssen 2006] used a single processor of a 2GHz Pentium, see Table 2.12 for our
processor characteristics
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Table 2.32: Number of Frequent Subgraphs with Gaston ParMol : Compar-
ison of our results (Left) with the Literature [Gago-Alonso 2010a] (Right) -

AID2DA99

Our experiments Gago-Alonso et al.

Min Sup | GP GP

3% 18121 18146

4% 5951 5955

5% 3625 3627

30% 75 75

40% 62 62

50% 37 37

Figure 2.10 shows the runtime difference. For example, for PTE
dataset and MST set to 2%, Gaston ParMol consumed about 0.21 min-
utes. However, Gaston ParMol consumed about 0.4 minutes in litera-
ture [Gago-Alonso 2008, Gago-Alonso 2010a, Gago-Alonso 2010b]. Gas-
ton ParMol consumed less memory, compared to what was reported in
[Gago-Alonso 2008] (AID2DA99 dataset). In Figure 2.11, for AID2DA99
dataset and MST set to 5%, Gaston ParMol consumed about 1.2 GB in our
experiment. It consumed a bit more than 1.3 GB in [Gago-Alonso 2008].
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Figure 2.10: Gaston ParMol Runtime: Comparison of our results (Left) with
the Literature [Gago-Alonso 2008, Gago-Alonso 2010a] (Right) - PTE

FSG Comparison

In our experiment, FSG Original v1.37 generated different number of fre-
quent subgraphs compared to the version tested by Kuramochi et al.
[Kuramochi 2002] for some threshold values (e.g. 2%, 7.5% for PTE,
see Table 2.33). However, the experiments reported in [Nijssen 2003,
Krishna 2011, Aridhi 2015] produced the same number of subgraphs as in
our experiments (for PTE, HIV-CA and DS3 datasets, respectively).
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Figure 2.11: Gaston ParMol Memory Consumption (GB) : Comparison
of our results (Left) with the Literature [Gago-Alonso 2008] (Right) -
AID2DA99

The runtime performance in our experiments with FSG Original was
close to the performance®” reported in [Krishna 2011, Aridhi 2015] (for HIV-
CA and DS3 datasets). However, it showed a better performance (i.e., two or
three times) than the FSG evaluated®® in [Nijssen 2003] (for PTE dataset).
For example, for PTE and MST set to 2%, FSG Original v1.37 required
about 128.5 seconds. It required about 307 seconds for the same support
and dataset in [Nijssen 2003] (see Table 2.34).

#Tt is worth noting that the processor of [Krishna 2011] and [Aridhi 2015] are different
from our

281t is worth noting that our processor was more powerful than in [Nijssen 2003]

Table 2.33: Number of Frequent Subgraphs with FSG : Comparison of our
results (Left) with the Literature [Kuramochi 2002] (Right) - PTE

Min Our Kuramochi

Sup experiments || et al.
F(L/H) F(L/H)

2% 186949 136927

3% 22758 22758

4% 5935 5935

5% 3608 3608

6% 2326 2326

7% 1770 1770

7.5% | 1459 1590

8% 1323 1323

9% 977 977

10% 844 844
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Figure 2.12: FSG Original Runtime : Comparison of our results (Left) with
the Literature [Inokuchi 2005] (Right) - PTE

FSG has considerably better runtime (up to 50 times less, see Figure
2.12) than the experiment reported in [Inokuchi 2005, Yan 2003] (for PTE
and HIV-CA datasets, respectively). It is worth noting that we used a more
powerful processor than the ones used in [Inokuchi 2005, Yan 2003]. How-
ever, the difference in FSG results cannot be only related to the processor. In
fact, gSpan in our experiments did not have such a huge difference compared
to the literature results (less than 2 times slower [Inokuchi 2005, Yan 2003]).
We relate the difference of the FSG results to FSG version evolution. Since
our experiments rely on binary release of FSG, we could not compare mem-
ory consumption with state of the art.

Table 2.34: FSG Runtime (sec) : Comparison of our results (Left) with the
Literature [Nijssen 2003] (Right : Nijssen et al) - PTE

Min Our Nijssen et

Sup experiments|| al.
F(L/H) F(L/H)

2% 128.5333 307.4

3% 18 43.9

4% 4.4 11.0

5% 2.5 6.3

6% 1.6 4.0

7% 1.2 2.9

8% 0.9 2.4

9% 0.7 1.8

10% 0.6 1.6

20% 0.2 0.6

30% 0.1 0.3
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DMTL Comparison

We found only one available real dataset tested with DMTL in the literature
(the dense dataset PI [Al Hasan 2009b]). In [Al Hasan 2009b], the basic
version of DMTL crashes in few minutes with a 2 GB of RAM and MST set
to 50%. For the same dataset and support value, we left DMTL running for
days, it did not complete. We then aborted the execution.

FFSM Comparison

The comparison of our results with the ones found in the literature
[Gago-Alonso 2010a] shows that the number of duplicates generated by
FFSM ParMol is the same for the PTE dataset and a slightly more for
the AID2DA99 dataset. We mentioned in Section 2.3.1 that we removed
7 graphs from AID2DA99 due to file errors. This raises a question - if we
have less graphs and labels in our modified AID2DA99 dataset than the one
in [Gago-Alonso 2010a], what makes the number of found duplicates in our
result more than the one in [Gago-Alonso 2010a] ?

The number of frequent subgraphs is reported only in a graphical form
in the literature [Skonieczny 2009]. Therefore, it was not possible to derive
a precise conclusion.

Our experiment result shows that FFSM ParMol is considerably faster??
than the result reported in [Gago-Alonso 2010a] for the PTE dataset (see
Figure 2.13) with the same number of subgraphs duplicates. For example, for
PTE and MST set to 2%, FFSM ParMol required slightly less than 1 minute
in our experiment. However, it required slightly less than 4.8 minutes.
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Figure 2.13: FFSM ParMol Runtime : Comparison of our results (Left) with
the Literature [Gago-Alonso 2010a] (Right) - FFSM ParMol - PTE

We found competitive runtime with the result reported in
[Skonieczny 2009] with approximately the same number of frequent
subgraphs (graphical estimation). However, since no information about the

29The processing power of our resource is better than the one in [Gago-Alonso 2010a]
(Intel Core 2 Duo 2.2 GHz processor)
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system specification was provided in [Skonieczny 2009], we could not derive
a conclusion regarding the runtime closeness. No information was reported
about FFSM ParMol memory consumption in the literature.

MoFa Comparison

We were unable to compare our experiment results of MoFa ParMol with
the ones found in the literature. The reasons are: (i) unavailability of the
dataset reported in [Worlein 2005], (ii) lack of sufficient details about the
experiment (no information about machine characteristics was provided in
[Skonieczny 2009]), and (iii) the ambiguity®® about the used implementation
(MoFa or MoSS) [Gago-Alonso 2010a).

Also, we were not able to compare our results regarding MoFa Original
with state of the art mainly because of the unavailability of HIV-CM dataset
and the lack of efficiency results®! in state of the art [Borgelt 2002].

2.3.4 An Inter-Algorithms Performance Study

In this section, we compare the performance between different implemen-
tations of algorithms. It is important to notice that some algorithms were
tested with the (H) strategy and some others with the (L) strategy (see
Table 2.11). We considered the used strategy in our comparative study.

In this chapter, we report results of some tested datasets through our
experiments. Additionally, we present a summarized comparison between
some competitive implementations for all datasets and support threshold
values. It is worth noting that all conclusions in this chapter are based on
all experimental results3? and not only the results shown in this chapter.

Results are presented according to the number of frequent subgraphs,
runtime and memory consumption.

Number of Frequent Subgraphs

Table 2.36 shows the number of frequent subgraphs for implementations
with the (H) strategy for the PTE dataset.

Gaston ParMol. The Gaston ParMol generated a number of frequent
subgraphs which is different from the other implementations, for the low
support threshold values (e.g., PTE, see Table 2.36).

Table 2.35 shows the difference in the number of frequent subgraphs
between Gaston ParMol and gSpan ParMol for all tested datasets. For ex-
ample, for NCI145 and MST values ranging from 2% to 7%, Gaston ParMol
generated between 1435 and 1 more frequent subgraphs than gSpan ParMol.

30The contacted authors [Gago-Alonso 2010a] could not remember if they used MoFa
or MoSS in their experiments

31Experiments were mainly focusing on the quality of results [Borgelt 2002].

32For all results, see https://liris.cnrs.fr/rihab.ayed/DFSM.pdf
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Table 2.36: Number of Frequent Subgraphs (H strategy) - PTE
Min | SP GP GO F FF D MFP | MSP
Sup | (H) | (H) | (H) H) | (H) | H) | (H)
2% 136981| 136513| 136949| 136949| 136981| 136949| 136981| -

4% 5955 5951 5935 5935 5955 5935 5955 -

5% 3627 3625 3608 3608 3627 3608 3627 -
7% 1786 1786 1770 1770 1786 1770 1786 654
9% 993 993 977 977 993 977 993 464
10% | 860 860 844 844 860 844 860 390
20% | 199 199 190 190 199 190 199 120
25% | 126 126 117 117 126 117 126 76
40% | 62 62 58 58 62 58 62 36
50% | 37 37 34 58 37 34 37 26

GSpan (Zhou). Tt produced a number of frequent subgraphs considerably
different from gSpan versions (see Section 2.3.2). It was also different from
Gaston Original for low and medium support threshold values. For example,
for HIV-CA and MST set to 5%, gSpan (Zhou) generated 181687 more
frequent subgraphs than Gaston Original (see Table 2.37).

Table 2.37: gSpan? vs. Gaston Original : Number of Frequent Subgraphs
Comparison

Support \ Comp \ Diff
Small Datasets
HIV-CA
5% -20% | SK < GO | 181687-17

30% - 60% | SK =GO | -

PTE
1.5% - 5% | SK < GO | 22279 - 1
6% - 50% | SK =GO | -

GSpan ParMol, FFSM and MoFa ParMol. Three ParMol implementa-
tions (gSpan, FFSM, MoFa) produced the same number of frequent sub-
graphs for all tested datasets (e.g., PTE, see Table 2.36).

Table 2.38 shows the number of frequent subgraphs between implemen-
tations with the (L) strategy for the PTE dataset.

GSpan Original. As mentioned in Section 2.3.2, the number of subgraphs
produced by gSpan ParMol and gSpan Original v.6 were almost the same
except for some low support thresholds. For those low support thresholds,
the difference varied between 1142 and 1 frequent subgraphs (see Table 2.38).
Typically, the number of frequent subgraphs produced by Gaston Original
was different from gSpan Original for all datasets (see Table 2.39). This
difference could be partially justified for some support threshold values due
to the fact that Gaston Original does not include frequent subgraphs with
one vertex, unlike gSpan Original (e.g., [3%, 50%)] for PTE).
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Table 2.38: Number of Frequent Subgraphs by FSM solutions - (L strategy)

- PTE
Min | SP SO SK GO F D
Sup | (L) (L) (L)
1.5% | 721249| 721196 698934| 721213 721213] -
3% 22786 | 22785 | 22200 | 22758 | 22758 | 22758
5% 3627 3627 3607 3608 3608 3608
6% 2343 2343 2326 2326 2326 2326
8% 1339 1339 1323 1323 1323 1323
10% | 860 860 844 844 844 844
15% | 437 437 424 424 424 424
20% | 199 199 190 190 190 190
25% | 126 126 117 117 117 117
30% | 75 75 68 68 68 68
40% | 62 62 58 58 58 58
50% | 37 37 34 34 58 34

However, other differences (e.g., 1.5% for PTE) cannot be rationalized
by the same fact. Besides the difference in the number of frequent subgraphs
between Gaston Original and gSpan Original, there is also a difference in
the counting of subgraphs.

For example, for AIDS with MST set to 10%, they produced 16 frequent
subgraphs - out of 510 - that are the same but have different frequency
values (e.g., 21 759 and 21 761 are the frequency for one frequent subgraph
by gSpan Original and Gaston Original, respectively).

Table 2.39: Gaston Original vs. gSpan Original: Number of Frequent Sub-
graphs Comparison

Support | Comp Diff Support | Comp Diff
Interval Interval
Small Datasets Dense Datasets
HIV-CA DD
4% - 80% [ SO > GO [8-3 2% -5% | SO < GO [ 1434 - 21
PTE 6% - 90% | SO > GO | 4-18
1.5%-2% | SO < GO | 17-15 2% SO <GR | 75
3% -90% | SO > GO | 27-1 3% -90% | SO > GR | 133-18
Medium Datasets PS
AID2DA99/CAN2DA99 60% SO < GO | 25814977
/AIDS/NCI145% 70% SO > GO | 176572
2% - 90% \ SO > GO \ 9-3 80% SO < GO | 7399
NCI330 90% SO > GO | 8
3% -90% | SO> GO [8-1 60% SO < GR | 25797964
Large Datasets 70% SO > GR | 176572
NCI250/DS3/DS3M 80% SO < GR | 7354
2%-90%\SO>GO\8—1 90% SO > GR | 8
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Gaston Original and FSG Original. Typically, the Gaston Original ver-
sions and FSG produced the same number of frequent subgraphs, with some
exceptions. For example, for DD dataset with MST between 7% and 9%,
FSG Original produced between 24 and 8 subgraphs less than Gaston Orig-
inal (see Table 2.40). Also, for AIDS dataset and MST between 1.5% and
2%, FSG Original produced 1 more frequent subgraph than Gaston Original
(see Table 2.40).

Besides this difference in the number of frequent subgraphs, there was
also a difference in the counting of subgraphs. Noticeably, Gaston Original
and FSG Original compute differently the frequency of subgraphs. For ex-
ample, for AIDS with MST set to 2%, the two implementations generated
27 frequent subgraphs - out of 17 694 - that are the same but with different
frequency values (e.g., a frequency by Gaston Original equal to 13558 and
by FSG Original equal to 13553 for one frequent subgraph).

DMTL. It produced significantly a fewer number of frequent subgraphs
than the others for the NCI330 and NCI145 datasets (see Table 2.41).

For example, for NCI145 dataset and MST between 2% and 80%, DMTL
produced between 449691 and 4 frequent subgraphs less than Gaston Orig-
inal. For the other datasets, DMTL produced the same number as Gaston
Original versions (see Table 2.41).

MoSS ParMol. The MoSS ParMol produced a number of frequent sub-
graphs which is considerably different from all implementations for PTE (see
Table 2.38), PS and HIV-CA datasets (see Table 2.42).

MoFa Original. MoFa Original with case b (MOb) produced the same
number of frequent subgraphs as MoFa ParMol for the 3 SDF used datasets
(e.g., AID2DA99, see Table 2.43). However, MoFa Original with case a
(MOa) produced significantly a different number of frequent subgraphs.
This is due to the edge relabeling strategy of chemical aromatic bonds
[Borgelt 2002].
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Table 2.43: Number of Frequent Subgraphs by MoFa Implementations - (H
strategy) - AID2DA99

Min Sup | MFP | MSP | MOa | MOb
2% 25205 | - 9741 25205
3% 11531 | - 4395 11531
4% 6670 - 2566 6670
5% 4442 - 1763 4442
6% 3162 - 1224 3162
8% 1869 - 695 1869
9% 1484 - 590 1484
10% 1185 - 484 1185
20% 326 326 146 326
30% 133 133 () 133
40% 71 71 37 71
50% 45 45 33 45
70% 19 19 11 19
90% 3 3 2 3

Summary of the number of frequent subgraphs

According to our results, the 13 FSM implementations can be classified
according to their similarity in the number of frequent subgraphs. Our clas-
sification is not rigid as it tolerates some exceptions (with slight differences).
We argument further this classification (see Figure 2.14).

/ A
I gSpan ParMol |
l FFSM ParMol | E 4 oY
I MoFa ParMol 1 gSpan | MoSS ParMol 1
| gSpan Original 1 | (Keren Zhou, 2015) | L |
| gSpan-64bit Original | ¥y
I MoFa Original (b) I . N R
MoFa Original 1
- _7 Gaston ParMol 11 oFa Original (a) I
-~ - . J N -
I Gaston Original : ¢ S
: Gaston Original RE I | DMTL Original |
I FSG Original I . J
] -

Figure 2.14: Classification of FSM Implementation according to the Number
of Frequent Subgraphs

e GSpan (Zhou) produced a number of frequent subgraphs which was
generally different from other implementations for low and medium
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support thresholds (see Table 2.37). This difference is not neglectful
(e.g., 22279 frequent subgraphs, see Table 2.37). This is why we do
not compare it with other implementations.

e Gaston Original generated a number of frequent subgraphs which is al-
ways different from gSpan Original for all datasets and support thresh-
olds (see Table 2.39). The difference was slight (between 27 to 1 sub-
graphs, see Table 2.39) except for small dense datasets. Since the
difference was reported for all datasets, we classified these two imple-
mentations separately.

e DMTL generated a number of frequent subgraphs equal to Gaston
Original with some exceptions. The difference of DMTL with Gaston
was a huge number (NCI330 and NCI145, see Table 2.41). The same
applies for MoSS ParMol in comparison with MoFa ParMol (see Table
2.42). For this, we classified DMTL apart from Gaston and MoSS
ParMol apart from MoFa ParMol.

e Also, FSG Original generated the same number of frequent subgraphs
as Gaston Original with some exceptions. The difference was produced
with low support threshold or small dense datasets (see Table 2.40).
However, typically the difference was slight (e.g., 1 to 24 subgraphs,
see Table 2.40) except for the small dense dataset PS. We tolerate
these slight exceptions and classified FSG with Gaston Original.

e GSpan Original versions, gSpan ParMol, FFSM ParMol, MoFa Par-
Mol and MoFa Original (b) can be classified together, if we tolerate the
slight difference of produced frequent subgraphs at low support thresh-
olds between gSpan Original and the three ParMol implementations
(see Table 2.38).

e We found it intriguing that Gaston ParMol generated a different num-
ber of frequent subgraphs from the original version of Gaston for all
tested cases (see Section 2.3.2). Also, it is interesting to notice that
it had a number of frequent subgraphs different from the other imple-
mentations of the same framework (ParMol) for low support thresholds
(see Table 2.35). For this, we classified it apart.

In our experiments, we found that implementations do not produce the
same number of subgraphs. In state of the art, we found that a different3*
number of frequent subgraphs was reported only in [Aridhi 2015], for Gas-
ton, FSG and gSpan Original versions. However, for the rest of literature
(e.g., [Nijssen 2004, Nijssen 2006, Krishna 2011]), gSpan, Gaston, FFSM
and FSG Original implementations are supposed to produce the same num-
ber of frequent subgraphs. Also, ParMol implementations (gSpan, Gaston,

34 Authors tried to explain this difference for their tests [Aridhi 2014] (French paper).



CHAPTER 2. EXPERIMENTAL STUDY OF FSM ALGORITHMS 70

FFSM, MoFa) produced the same number of frequent subgraphs (reported
in [Gago-Alonso 2008, Gago-Alonso 2010b, Gago-Alonso 2010a]).

Further explanations should be provided about these observations. As
an end-user study, we do not explain the difference of results between im-
plementations.

Runtime

Figure 2.15 shows the runtime with the (H) strategy for PTE dataset and
Figure 2.16 with (L) strategy.

DMTL. Our experiment shows that DMTL Original was significantly
slower than all the other implementations (e.g., PTE, see Figures 2.15, 2.16)
for the same number of frequent subgraphs.

Gaston Original. Among all, for all the used datasets (e.g., PTE, see
Figure 2.15), Gaston Original v1.1 performed the best regarding runtime,
and Gaston Original RE the second.

FSM Algorithms (PTE)
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Runtime (sec)

0,1

0,01

0,001

2% 4% 5% 7% 9% 10% 20% 25% 40% 50%
Min Support Threshold
e==s=== oSpan ParMol (H)
=@ Gaston Original v1.1 (H)
@ Gaston Original RE v1.1 (H)
FSG Original v1.0.1
—8— FFSM ParMol (Linux) (H) (Complete Search) /TXT
DMTL Original (H)

Figure 2.15: FSM Algorithm Runtime (PTE) - (H strategy)

GSpan Original and Gaston Original. GSpan Original may require a
significant runtime for parsing a dataset (e.g., for DS3 dataset, it consumed
28 seconds), while Gaston is faster in parsing (e.g., for DS3 dataset, less than
0.2 seconds). Furthermore, gSpan was slower than Gaston for extracting
frequent subgraphs (e.g., PTE, see Figure 2.16).

We observed a comparative performance between gSpan versions, FFSM
ParMol and FSG Original in terms of runtime (see Figures 2.16, 2.17). Thus,
these three FSM algorithms are investigated futher.
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Figure 2.16: FSM Algorithm Runtime (PTE) - (L strategy)

We conducted the following comparison: (i) FSG Original with gSpan
versions and (ii) FFSM ParMol with gSpan versions.

FSG Original and gSpan versions. We compared FSG Original with the
fastest versions of gSpan (gSpan ParMol or gSpan Original).

Table 2.44 displays the results for all the datasets. The FSG Original
was faster than gSpan versions for low support threshold and medium sparse
or large sparse datasets. For small sparse datasets, it was slower than gSpan
versions for low support threshold and slightly faster or close to gSpan ver-
sions for high support threshold. For small dense datasets, it was slower
than gSpan versions.

It is worth noting that the number of subgraphs produced by FSG was
slightly lesser than the result produced by gSpan versions for all tested
datasets (between 36 and 1, see Table 2.45). Even though the comparison
is biased due to different number of frequent subgraphs, it is interesting to
compare the performance that was not highly dependent of this number.
For example, for DD and MST set to 7%, FSG Original required 14 234
seconds more than gSpan Original (see Table 2.44) for a number of frequent
subgraphs lesser (20) than gSpan Original (see Table 2.45).

FFESM ParMol and gSpan ParMol. Table 2.46 shows a runtime compar-
ison between FFSM ParMol and gSpan ParMol. In Table 2.46, F’ stands
for fluctuation. FFSM ParMol is slower than gSpan ParMol for medium
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(e.g., 10%) and high support threshold values (e.g., 50%) for medium sized
datasets. For low support threshold, it could be slower or faster depend-
ing on the dataset (e.g., AID2DA99, AIDS). FFSM ParMol is faster than
gSpan ParMol for small dense datasets (see Table 2.46). However, for large
sparse datasets, FFSM ParMol is slower. For small sparse datasets, it was
slightly faster or almost equal to gSpan ParMol except for very low support
threshold values where it could be slower (e.g., 5% for HIV-CA, Table 2.46).

MoFa ParMol. Our results show that MoFa ParMol was the slowest
among gSpan, FFSM and Gaston ParMol, for all the tested datasets (e.g.,
AID2DA99, see Figure 2.17).

MoSS ParMol. 1t was the slowest among ParMol implementations (e.g.,
AID2DA99, see Figure 2.17) for the same number of frequent subgraphs or
for cases of lesser frequent subgraphs (see Table 2.42).

FSM Algorithms (AID2DA99)
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e 0Span ParMol (Linux) (Complete Search)

e [VI0Fa/M 0SS Original (2006) (a)
MoFa/MoSS Original (2006) (b)

== Gaston Original v1.1 (H)

=@ Gaston Original REv1.1 (H)

Figure 2.17: FSM Algorithm Runtime (AID2DA99) - (H strategy)

MoFa Original (b). It was the fastest implementation amongst all Par-
Mol implementations for the two medium sparse datasets AID2DA99 and
CAN2DA99.

Also, we observed that it had close runtime to the one reported for
Gaston Original v1.1 with low support threshold values (e.g., AID2DA99,
see Figure 2.17). However, for the large sparse dataset NCI250, it was slower
than ParMol implementations (gSpan, Gaston, MoFa) with the high reached
support values (90%).
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Table 2.44: FSG Original vs. gSpan versions (L/H strategy): Runtime

Comparison
Support Comp Diff Support Comp Diff (sec)
Interval (sec) Interval
Small Datasets Medium Datasets
HIV-CA AID2DA99
5% - 15% F > SP 256 - 0.4 1.5% - 5% F <SP 510 - 24
20% - 80% | F~ SP 0.1 6% - 90% F > SPp 14 -7
PTE CAN2DA99
1.5%-3% | F > SP 526 - 3.3 2% - 6% F < SP 398 - 16
4% - 60% F < Sp 1-0.1 7% - 80% F > SP 15-4.5
Large Datasets AIDS
NCI250 1.5% - 4% F <SP 3239 - 12.5
2% - 20% F < SO 4371 - 1 5% - 90% F > SP 2.6 - 10
30% - 90% | F > SO 1.4-18 NCI145
Dense Datasets 2% - 6% F <SP 5263 - 8
DD 7% - 90% F > SPp 22 -4
7%-90% | F>SO | 14234-6 NCI330
PS 4% - 90% F > SP 85-3
80%-90% | F >S50 [0.5-129

Table 2.45: FSG Original vs. gSpan versions (L strategy): Number of
Frequent Subgraphs

Support Comp Diff Support Comp Diff
Interval Interval
Small Datasets Medium Datasets
HIV-CA AID2DA99
5%-90% [F<SP [9-2 15%-90% [F <SP [8-1
PTE CAN2DA99
1.5%-90% | F <SP [36-1 2%-80% |F<SP [8-3
Large Datasets AIDS
NCI250 1.5% - 90% \ F <SP \ 9-2
2%-90% |F<SO [8-1 NCI330
Dense Datasets 4% - 90% \ F <SP \ 6-1
DD NCI145
™% - 90% \F<SO \20—18 2% - 90% F <SP 8-1
PS
80%-90%\F<SO \16-13
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Table 2.46: gSpan vs. FFSM ParMol (L strategy): Runtime Comparison

Support \ Comp \ Diff (sec) || Support \ Comp \ Diff (sec)
Small Datasets Medium Datasets
HIV-CA AID2DA99
5% FF > SP | 756 2% FF (F) SP | -
6% - 50% FF < SP 13.7 - 0.06 3% - 8% FF < SP 23 -3
60% - 80% | FF > SP 0.05 - 0.02 9% - 90% FF > SP 33 -2
PTE CAN2DA99
2% -40% | FF <SP [10-0.14 2% -80% | FF >SP ]166-35
50% FF~SP - AIDS
60% - 90% | FF < SP 0.06 - 0.1 2% - 10% FF > SP 1238 - 5
Large Datasets 80% - 90% | FF < SP 0.1-0.05
NCI250 NCI145
30% - 90% | FF > SP [ 1882-87 | 2%-9% | FF <SP [ 2357- 11
DS3M 10% - 90% | FF > SP 2-0.5
40% - 90% | FF > SP [ 2463 - 214 NCI330
Dense Datasets 4% - 6% FF < SP 403 -5
DD 7% - 90% FF > SP 3.9-0.02
4% -90% | FF <SP [ 4204- 12
PS
80% - 90% | FF <SP | 3-04

Summary of the runtime performance

e Gaston Original versions (v1.1, RE v1.1) were the fastest implemen-
tations independently of the dataset or support threshold values.

Memory Consumption

Figure 2.18 shows the memory consumption of implementations with the
(H) strategy for the PTE dataset and Figure 2.19 with the (L) strategy.

GSpan (Zhou). For low support threshold values, gSpan (Zhou) con-
sumed the highest amount of memory among all implementations (e.g.,
PTE, see Figure 2.19) with a much lesser number of frequent subgraphs
(see Table 2.37).

DMTL. For any support threshold value, the largest memory was con-
sumed by DMTL implementation (see Figures 2.18 and 2.19).

For further comparison, we considered the implementations that were
found to be competitive. This is the case for gSpan ParMol, Gaston Orig-
inal versions and FFSM ParMol (see Figure 2.18). We did not consider
further analysis of Gaston ParMol because of its intriguing difference re-
garding frequent subgraphs (see Section 2.3.4).

GSpan ParMol and Gaston Original. 1t is worth noting that gSpan Par-
Mol and Gaston Original produced a different number of frequent subgraphs.
Table 2.47 shows the comparison between gSpan ParMol and Gaston Orig-
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inal versions with respect to their memory consumption.

For small sparse datasets, gSpan ParMol generated more frequent sub-
graphs (up to 36) than Gaston Original. For this case, gSpan ParMol con-
sumed more memory for low support threshold and lesser memory for high
support threshold than the two Gaston Original versions.

For medium sparse datasets, gSpan ParMol generated up to 9 more fre-
quent subgraphs (except for NCI330) than Gaston Original versions. For this
case, gSpan ParMol consumed more memory than Gaston Original RE. How-
ever, it required less memory than Gaston Original with low and medium
support threshold. For some cases with low support threshold, it consumed
more memory than Gaston Original (e.g., 3% for NCI145 dataset, see Ta-
ble 2.47). Furthermore, for large sparse datasets, gSpan ParMol generated
more frequent subgraphs (up to 9) than Gaston Original. For this case,
gSpan ParMol consumed less memory than Gaston Original for low support
threshold. However, it consumed more memory for high support threshold.

For small dense datasets, gSpan ParMol consumed more memory than
Gaston Original independently if the number of frequent subgraphs is less
(e.g., 49 for DD and MST 4%) or more (e.g., 18 for DD and MST 90%).
However, it consumed more memory than Gaston Original RE for low sup-
port threshold and less memory for high support threshold. For small dense
datasets, gSpan ParMol produced more frequent subgraphs than Gaston
Original RE.

GSpan ParMol and FFSM ParMol. We compared memory consumption
of FFSM ParMol and gSpan ParMol (see Table 2.48).
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Figure 2.18: FSM Algorithm Memory Consumption (PTE) - (H strategy)
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In Table 2.48, 'F’ stands for fluctuation® of the performance. For small
sparse datasets, FFSM ParMol consumed less memory than gSpan ParMol
for low support threshold values. However, its consumption of memory was
close to gSpan ParMol for high support threshold values.

For medium sparse and small dense datasets, FFSM ParMol consumed
more memory than gSpan ParMol. Additionally, for large sparse datasets,
it consumed significantly more memory than gSpan ParMol.

FSM Algorithms (PTE)
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2 1000000 @
=
5 100000 .
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== S pan (Keren Zhou 2015) (128GB)
gSpan (Keren Zhou 2015)
=== Gaston Original v1.1 (L}
e 5 aston Original RE v1.1 (L)
DMTL Original (L)

Figure 2.19: FSM Algorithms Memory Consumption (PTE) - (L strategy)

Original versions of FSG, gSpan and Gaston. The FSG Original and
gSpan Original are provided as binary codes with no information about
memory consumption. Therefore, we tried to deduce their respective lim-
its regarding memory consumption by testing the lowest support threshold
values. FSG Original was not able to run with low support threshold for
some datasets (e.g., DD dataset, see Table 2.49). We conclude that FSG
used more memory than gSpan Original, for low support threshold values.

We could not conclude about the memory consumption limit of gSpan
Original compared to Gaston Original. However, it is worth noting that
for some datasets (e.g., NCI330) and with low support thresholds, gSpan
Original took a huge time without completing the mining (e.g., 6 days for
NCI330 with MST set to 2%).

Gaston Original completed it in a more reasonable time and with a lower
support (e.g., 9 hours for NCI330 with MST set to 1%).

35None of solutions performed consistently for more than two successive support thresh-
old values
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Table 2.48: gSpan ParMol vs. FFSM ParMol (L/H strategy): Memory
consumption comparison

Support Comp Diff Support Comp Diff
Interval (MB) Interval (MB)
Small Datasets Medium Datasets
HIV-CA AID2DA99
5% - 10% FF < SP 502 -7 2% - 90% \ FF > SP \ 512 - 44
15% -80% | FF (F)SP | 1.9-04 CAN2DA99
PTE 2% - 80% [ FF > SP [ 589 -84
2% - 3% FF < SP 93 -5 AIDS
4% - 90% FF (F) SP | 1.8-0.1 2% - 90% \ FF > SP \ 1101 - 141
Dense Datasets NCI145
DD 2% - 90% | FF > SP [ 211 - 40
4% - 80% FF > SP 568 - 15 NCI330
90% FF <SP |6 4% -90% | FF >SP | 123-18
PS Large Datasets
80% FF < SP 12 NCI250
90% FF~SP |- 30% - 90% \ FF > SPp \ 1675 - 1377
DS3M
40% - 90% \ FF > SP \ 1592 - 1674

MoFa/MoSS versions. According to our results for MoFa/MoSS solu-
tions, we observed that MoFa ParMol and FFSM ParMol consumed the
same amount of memory (see Figure 2.20). MoSS ParMol consumed more
memory with a number of subgraphs potentially lesser than all the other
implementations (see Figure 2.20). Additionally, MoFa Original (b) con-
sumed about twice (or one half) the amount of memory?3® required by MoFa
ParMol for the medium sparse (AID2DA99, CAN2DA99) and large sparse
(NCI250) datasets (see Table 2.50). For example, for MST set to 2%, MoFa
ParMol consumed about 817 MB. However, MoFa Original (b) consumed
between 1400 and 1500 MB.

Table 2.49: Minimal Support threshold value reached by FSM Algorithms-
(L strategy)

Algorithm | HIV-CA DD
Sp 5% 4%
SO 4% 1%
F 5% %
GO 4% 1%

36We estimated the memory consumption of MoFa Original by the JVM it required
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Figure 2.20: FSM Algorithms Memory Consumption (AID2DA99) - (H

strategy)

Summary of memory performance

e According to our analysis, gSpan ParMol is more suitable than Gas-
ton Original versions, for memory bound systems, in the following
cases: (i) for large sparse datasets and low support threshold, (ii) for
small sparse datasets and high support threshold values. It is worth
noting that in the cases (i, ii) gSpan ParMol produced more frequent

subgraphs than Gaston Original versions.

e DMTL is the worst memory consumer of tested FSM implementations

(see Figures 2.18 and 2.19).

e Based on our study, we conclude that for memory bound systems,
FFSM ParMol can be used instead of gSpan ParMol if the dataset is
small sparse and the support threshold values are low. However, it is

better to use Gaston Original versions for this case.

e According to our analysis, for memory bound systems, gSpan Original
or Gaston Original is more suitable to use than FSG Original or gSpan
ParMol for low support threshold values (e.g., DD, HIV-CA, see Table

2.49).

e MoFa ParMol was the slowest among Gaston, FFSM and gSpan Par-
Mol implementations and it consumed an amount of memory close to

FFSM ParMol.
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Table 2.50: Memory Consumption (MB) of two MoFa implementations
(AID2DA99) - (H strategy)

Min MFP | MOb
Sup

AID2DA99
2% 817 11400 - 1500]
5% 576 ]1100 - 1200]
10% 462 ]1000 - 1100]
50% 437 700 - 800
90% 230 500 - 600

NCI250

80% 1862 > 3500
90% 1611 12400 - 2500]

In the following, we present results of FSM implementations with the
lowest support thresholds reached and with the small & large-sized graph
dense dataset PI (see Table 2.10). These experiments show the limits of
complete search FSM implementations.

Bottleneck experiments

According to our experiments, Gaston Original is the implementation that
was able to reach the lowest support threshold values. Table 2.51 shows the
limits of the Gaston Original implementation with eleven datasets (see Table
2.10) and very low support threshold values. We used the same machine (see
Table 2.12) as in the previous experiments.

Table 2.51: Bottleneck Experiment of Complete Search FSM Algorithms
(Gaston)

Dataset Success of Mining Limit
S N M | R O
PTE 1% | 48732156 | 42 | 637.5 | 21900

HIV-CA 4% | 6825303 48 | 154 3400
AID2DA99 | 1% | 107693 20 | 623.7 |19
CAN2DA99| 1% | 176292 21 | 586.2 | 33

AIDS 1% | 335483 27 11038919
NCI145 1% | 235740772 | 44 | 470.05 | 103000
NCI330 1% | 268761360 | 42 | 238.5 | 192000
DD 1% | 159820929 | 15 | 66.9 20100
PS 60%| 63641199 | 28 | 5.9 13500
NCI250 1% | 70405 21 | 3033.4 | 0.00003

DS3 1% | 83310 21 | 3429.5| 15.7
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We emphasized on Gaston Original because it is the most efficient so-
lution. The notations we used in the Table 2.12 are, S : reached support
threshold, N : number of frequent subgraphs, M : Max size (vertices) of fre-
quent subgraphs, R: consumed RAM memory (MB) and O : output file size
(MB). For all tested datasets, Gaston Original was able to run with MST
set to 1%, except for HIV-CA and PS datasets. In fact, the implementation
was not able to run under MST set to 4% for HIV-CA due to lack of disk
space. For PS with MST set to 50%, it spent 8 days running without com-
pleting the experiment, yet an output file of 3 GB was created. Similarly,
in another experiment, it spent 4 days running without completing for the
same support and with a maximum size of frequent subgraphs (28 vertices).

Table 2.52 displays the scalability of FSM implementations with a small
& large-sized graph dense dataset (PI). Only Gaston Original RE and DMTL
were able to process®” the PI dataset without generating an error. We did
not experiment DMTL any further for mining frequent subgraphs since it
performs only a complete search, rather we experimented Gaston RE which
is able to reduce the mining set.

Table 2.52: Execution of Implementations with Very Dense Datasets - PI

Algorithms | P SO | S0O64 | GO| GR| F D
versions
Dataset - - - - + - +
Processing

Table 2.53 shows the limits of Gaston Original RE in mining PI dataset,
where MSF denotes the maximum size (vertices) of frequent subgraphs, Min
Sup : the minimum support threshold, R : runtime, RM : the used RAM
memory, DM : the used disk memory, and NF : the number of frequent
subgraphs.

Table 2.53: Mining Performance of Gaston RE with Very Dense Datasets -
PI (Incomplete Search)

MSF| Min Sup R RM DM NF
(sec) (GB) (MB)
2 70% - 100% | 1.017 2.21 0.0079 256
50% - Segmentation| 0.0041 -
fault
3 100% 1.578 2.21 0.0852 1928
70% - Aborted 0.0011 -
5 100% 873.745 | 2.84 12 1578086
10 100% - Killed 3300 -

Gaston RE was able to find frequent subgraphs of maximum size 5 with

3TNo abortion in the beginning of the execution
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MST set to 100%. For this case, it consumed about 2.84 GB of RAM (mem-
ory) and generated 1578086 frequent subgraphs (see Table 2.53). However,
it was not able to complete the mining with the same support for maximum
size 10. The same applies for the cases of MST set to 70% and max size 3
or MST set to 50% and max size 2. These findings confirm the results of
[Saha 2014, Al Hasan 2009b] about the limits of complete search algorithms
with dense datasets.

2.3.5 Discussion

According to our observations, the sources of results ambiguities in state of
the art (see Section 2.2.3) are as follows: different styles of implementating
an FSM algorithm (e.g., ParMol or Original), the dataset characteristics
(e.g., small, large, sparse, dense), and the support threshold values (e.g.,
2%, 50%], [10%, 90%]). For example, the third-party implementation of
Gaston (Gaston ParMol) was the highest memory consumer among gSpan
ParMol and FFSM ParMol. However, the Original version of Gaston was the
least memory consumer among gSpan ParMol and FFSM ParMol. These
observations illustrate that an FSM algorithm (e.g., Gaston) when imple-
mented differently, can affect considerably its efficiency.

The experimental study we conducted allowed to alleviate some of the
ambiguities and specify some cases of FSM implementations performance.
According to our results, eight implementations among thirteen (see Table
2.54) are not adequately efficient due to : (i) their high memory and/or time
consumption, (ii) a number of frequent subgraphs different from the other
implementations, (iii) their inability to handle relatively large datasets or
run for low support thresholds.
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We selected five implementations out of thirteen as efficient, including
Gaston Original, gSpan ParMol, gSpan Original, FSG Original and Gaston
Original RE.

The first four implementations (see Table 2.55) were selected based on
the following criteria : (i) they consumed the least amount of memory,
among all the thirteen FSM implementations, (ii) they are relatively fast
(Gaston Original is the fastest), (iii) they are able to complete the mining
with relatively large datasets or for low support threshold values.

Gaston Original RE was chosen (see Table 2.55) due to its ability to
process small large-sized graph dense datasets unlike the four others and
also because of its good performance with medium sparse datasets.

Table 2.55: FSM Algorithms with performance advantages
Solution| Performance Characteristics
Gaston | (+) Second/third in memory consumption and the fastest
Original | (4) Able to run with relatively large sparse datasets or very low
support values
gSpan (+) Third/fourth best memory consumption for medium sparse,
ParMol | large sparse datasets or for low support
(4) Third fastest for small sparse/medium sparse datasets and not
low support threshold values
(-) Unable to run for very low support values reached by gSpan
Original
gSpan (+) First/second best memory consumption for low support
Original | threshold
(4) Third fastest for small dense datasets, or for high support val-
ues and large sparse datasets
(+) Able to run for some very low support threshold values or for
relatively large sparse datasets compared to other implementations
(e.g., gSpan ParMol, FSG)
(-) Compared to Gaston Original, unable to finish in a reasonable
time for some very low support threshold values
FSG (+) Able to run for low support threshold or relatively large
Original | datasets
(4) Third fastest for medium sparse, large sparse datasets and for
low support values
(-) Requiring more memory than gSpan Original and gSpan Par-
Mol for low support values

Gaston | (+) Second in Runtime

Original | (4) First/second in memory consumption with medium sparse
RE datasets

(4+) Able to process small large-sized graph dense datasets (e.g.,
PI)

(-) Not to be used with large datasets or very low support threshold
values

Then we reduce the set of four selected implementations (Gaston Origi-
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nal, gSpan ParMol, gSpan Original and FSG Original) to two usable imple-
mentations (Gaston Original and gSpan Original) for two general cases : (i)
applications that need to save memory, and (ii) applications where runtime
is critical. Both Gaston Original and gSpan Original are suitable for the
former and Gaston Original is suitable for the latter.

During our experiments, we realized that the size of a dataset and the
minimum support influenced the performance of the tested FSM solutions.
Therefore, we changed some other parameters of the experimental environ-
ment in order to observe their impact on the performance. In the next
section, we discuss our results.

2.3.6 Impacts of the Environment variations on the results

We discuss in the following the impact of changing the variables of exper-
imental environment on the performance of FSM implementations. The
environment variables include the dataset size, the operating system, a po-
tential IDE, the used input arguments of implementations, the input data
format and the labelling strategy of data.

Dataset variation

We studied the impact of tested datasets3® on the runtime, memory and the
number of frequent subgraphs. We considered two variables for datasets :
size and density. These parameters are the same as defined in Section 2.3.1.
We discuss our results of experiments with Gaston Original, gSpan ParMol
and gSpan Original.

Runtime. According to our observation, experiments with small sparse
datasets required typically the lowest runtime among all datasets (e.g., PTE,
see Figure 2.21). However, the experiments with low support threshold over
the small sparse datasets (e.g., HIV-CA) required more or the same time
than the other datasets (e.g., DS3) to complete the execution.

e Medium datasets had similar runtime performance (e.g., NCI330 and
CAN2DA99, see Figure 2.21). However, for experiments with low sup-
port threshold, two medium datasets (NCI330 and NCI145) were con-
siderably slower than the other medium datasets (e.g., AID2DA99).

e Typically, large datasets (e.g., DS3) required more time than small and
medium datasets (e.g., CAN2DA99), except with very low support
threshold values.

e Small Dense datasets (e.g., DD) required similar amount of time com-
pared to medium sparse datasets (e.g., CAN2DA99) with high sup-
port thresholds (e.g., 30%, see Figure 2.21). However, with low sup-

38The used datasets were defined in Section 2.3.1
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Datasets (Gaston Original (L))
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Figure 2.21: Dataset Variation Effect on the Runtime - Gaston Original (L)

port threshold (e.g., 3%), they required more time than large sparse
datasets (e.g. DS3).

Memory Consumption. Our experiments with Gaston Original and small
sparse datasets consumed the lowest amount of memory (e.g., PTE, see
Figure 2.22). Then, follows small dense (e.g., DD), medium sparse (e.g.
NCI330) and large sparse (e.g. DS3) datasets, respectively (see Figure 2.22).

Datasets (Gaston Original (L))

10000000
— ..—__.*\.
=, &
> R o Xt
S 100000
S 10000 ——— e ————— °
1000
1% 3% 4% 6% 8% 10% 30% 50% 70%
Min Support Threshold
@ H|V-CA DD =g NC|145
e NCI330 e A|DS e A|D2DA99
e CAN2DASS e PTE g NCI250251
e DS 3

Figure 2.22: Dataset Variation Effect on the Memory - Gaston Original (L)

Our experiments with gSpan ParMol and small dense datasets consumed
less memory than medium sparse datasets with high support values. How-

ever, with low support values, they consumed more memory than medium
sparse datasets.
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The consumption of memory for all datasets was typically linear (see Fig-
ure 2.22). However, we observed some exceptions for small sparse datasets
and low support threshold values where there was an important increase
of memory (e.g., PTE with Gaston or gSpan ParMol, HIV-CA with gSpan
ParMol). The amount of memory consumption for this case (e.g., 1% PTE,
see Figure 2.22) was approximately the same or greater than the amount of
memory consumed by medium and large datasets.

Number of Frequent Subgraphs. Different sizes of datasets produced typ-
ically close number of frequent subgraphs (e.g., DS3 and CAN2DA99, see
Figure 2.23). However, our experiment with the small dense dataset DD
produced a considerably larger number of subgraphs than the other datasets
(e.g., DS3). Additionally, with low support values (lower than 6% MST),
experiments with small sparse (HIV-CA, PTE) and some medium sparse
datasets (NCI330, NCI145) produced significantly a larger number than the
one produced by all the other datasets (see Figure 2.23).

Datasets (Gaston Original (L))
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Figure 2.23: Dataset Variation Effect on the Number of FS - Gaston Original
(L Strategy)

OS and IDE variation

We used the ParMol framework to test this effect. We conducted experi-
ments using two IDEs : Eclipse with two versions (Mars 4.5.1, Neon 4.6)
and Netbeans 8.2. We also experimented ParMol on a terminal. We used
the JDK version 1.8_77. The same machine was used as in the previous
experiments (see Table 2.12, Section 2.3.1).

In figures 2.24 and 2.25, Eclipse N, Eclipse M, Netbeans and Terminal
+ stand for the use of IDE Eclipse Neon, Eclipse Mars, Netbeans and the
Terminal, respectively.



CHAPTER 2. EXPERIMENTAL STUDY OF FSM ALGORITHMS 88

gSpan ParMol (AID2DA99) - Framework & OS variation
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Figure 2.24: gSpan ParMol Runtime performance by OS and IDE -
AID2DA99 dataset

The results show that using the same OS (Windows or Linux) and differ-
ent IDEs (e.g., Eclipse or Netbeans) did not affect the runtime (see Figure
2.24) or memory consumption performance (see Figure 2.25).

gSpan ParMol (AID2DA99) - Framework & OS Variation
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Figure 2.25: gSpan ParMol Memory Consumption performance by OS and
IDE - AID2DA99 dataset

However, changing the OS (Linux to Windows) did have an impact on
the runtime performance. This is due to the use of the parameter 'mem-
oryStatistics’ in ParMol that calculates the memory consumption. With
this parameter, Windows OS had worse runtime performance than Linux
(see Figure 2.24) and the same memory consumption (see Figure 2.25). In
case this argument (memoryStatistics) is set to false, we found no impact of
OS variation on the performance (see Figure 2.26, the Windows and Linux
Terminal - result).
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Parameter variation

We performed experiments with ParMol to study the impact of changing its
parameters on performance. Among ParMol parameters, ‘'memoryStatistics’
is the one that had an impact on runtime performance (see Figure 2.26).

In Figure 2.26, Terminal + stands for experiments performed on a ter-
minal with the parameter ’‘memoryStatistics’ set to true and Terminal -
stands for experiments with the parameter 'memoryStatistics’ set to false.
We tested the impact of this parameter combined with two different OS
(Linux and Windows).

gSpan ParMol (AID2DA99) - Argument variation
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Figure 2.26: gSpan ParMol Runtime performance by argument variation
and OS - AID2DA99 dataset

File Format variation

We performed experiments over datasets serialized in different formats in-
cluding TXT and SDF. No noticeable change in runtime performance or
memory consumption was observed.

Labeling strategy variation

In our experiments, we modified the DS3 dataset3” that contains vertices
labeled with integers and strings (e.g., '1’, "1u’, "2f’, ’36"). The modification
resulted in a dataset labeled with integers only which we named DS3M.
Only FSG Original is able to parse string labeled TXT datasets. Hence,
this experiment was performed with FSG Original.

The labeling strategy did not affect the performance of FSG Original
regarding the number of frequent subgraphs (see Table 2.56) and the runtime
(see Table 2.57).

39Please refer to Section 2.3.1 for DS3 characteristics.
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Table 2.56: FSG Original - Number of Frequent Subgraphs - DS3 vs. DS3M
Min F

Sup | DS3 | DS3M
1% 80722 | 80722
3% 6534 | 6534
5% 2651 | 2651
™% 1414 | 1414
10% | 725 725
30% | 93 93

50% | 35 35

80% | 4 4

We specify in the following some additional options of Complete search
FSM implementations. These options include the incomplete search of fre-
quent subgraphs and multi-threading.

Table 2.57: FSG Original Runtime - DS3 vs. DS3M
Min F

Sup | DS3 DS3M
1% 13657.7 | 13666.2
3% 1463.1 | 1459.4
5% 891.8 891.8
% 678 678.6
10% | 505.7 505.7
30% 201.633 | 201.6
50% | 130.266 | 130.2
80% | 70.8 70.4

2.3.7 Other Options of tested FSM Implementations

It is possible to perform incomplete search (see Section 1.3.3) using the
complete search FSM available implementations (see Table 2.58). This op-
tional setting is important because the search space of complete FSM mining
is rich but it is exponential [Ranu 2009, Aggarwal 2010]. There is a need
to reduce the set by eliminating the redundancy of subgraph isomorphism
[Ullmann 1976].

The proposed settings include the following : (i) specifying the maximum
and minimum size of frequent subgraphs to return (gSpan ParMol, Gas-
ton Original), (ii) specifying the minimum and maximum support threshold
(gSpan ParMol), (iii) returning only supergraphs (i.e., closed or maximal
subgraphs) (gSpan ParMol, FSG Original) (see Table 2.58).
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Table 2.58: Optional settings for FSM Implementations

FSM solution \ P \ S0,S064 \ GO\ GR\ F \ D
Incomplete Search Options
Min and max support threshold X
Min of frequent subgraphs size X | x b
Max of frequent subgraphs size X X X X
Closed frequent subgraphs X
Maximal frequent subgraphs X
Trees b X X
Paths b X X
Maximum number of subgraph iso- X
morphisms
Input Options
String labeled TXT datasets X
SDF datasets and other chemical | x
formats
Output Options
Dataset statistics X X
TXT format x | x X X X
DFS code format X X X
TID List X | x X X
PC List X
Other Options
Multi-threading X | x
Significant /Discriminative patterns X
Weighted graphs b

Also, other options are available. Multi-threading is afforded by gSpan
Original and ParMol to perform the mining faster (see Table 2.58). Only
FSG Original parses string labeled TXT datasets and gSpan ParMol can
parse chemical formats of datasets (e.g., SDF). Implementations return fre-
quent subgraphs in TXT format or as DFS codes.

2.4 Conclusion

We reviewed state of the art FSM algorithms in centralized graph transac-
tion databases and we selected a subset of algorithms according to some
predefined criteria (e.g., availability of implementations). We conducted an
experimental study with the selected algorithms using the datasets found
in the literature. In our study, we considered algorithms that have working
implementation. In fact, our objective is to provide a synthesis of exist-
ing FSM solutions for end users. We tested all the implementations of an
algorithm (in case more than one implementation was found for a given
algorithm). We analyzed the behavior of the FSM solutions according to
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the following parameters: (i) execution time, (ii) memory consumption and
(iii) the number of frequent subgraphs. Also, we analyzed them by varying
two input parameters: datasets and minimum support threshold. We cate-
gorized the datasets according to their size (small, medium and large) and
density (sparse, dense) and the size of graphs (small, medium, large-sized
graphs) ; the minimum support threshold is categorized into : low or high.

For our experiments, only already tested datasets in the literature are
used. This choice would allow the comparison of our results with state of the
art findings. This is useful in order to have a summarized synthesis about
FSM solutions in the whole literature. We used only real-world datasets
because synthetic datasets are generated randomly and thus their features
are not easy to compare [Worlein 2005]. We considered additional variations
(including operating system, labeling strategy and the format of datasets)
in our study to evaluate their impact on the results of experiments with
FSM implementations. We compared our results with the results reported
in literature.

This work presented a comprehensive and preliminary study of complete
search FSM implementations in centralized graph transaction databases for
end-users. We studied all the algorithms found in literature and outlined
their merits and demerits. Additionally, we presented the results of an ex-
perimental study with the selected and available FSM implementations. We
investigated the difference between the algorithms in a quantitative manner,
instead of an abstract way (e.g., gSpan is slower than FFSM in general).
Our study unearthed the differences and similarities between different imple-
mentations of one single algorithm and between different implementations
of algorithms based on the literature datasets. Also, we experimented the
FSM solutions regarding different datasets and different thresholds. Such a
comparison could assist in a preliminary way the end-users in making deci-
sion regarding the selection of an implementation for their specific context
of use. We tested only datasets and FSM implementations of the literature.
This is to allow relating our results with the ones of state of the art.

The added value of this work to existing studies concerns mainly the
enumeration of all complete search implementations and a justified selection
of tested implementations. Also, we studied the cases of performance of
implementations according to the input variation. Finally, this study is an
update to the literature because it is performed on the last versions of the
implementations. Several research directions are lined up including analysis
and explanations that should be linked to this work regarding the difference
between the results (number of frequent subgraphs, runtime and memory).
Also, this study has been performed only on the literature datasets, we will
conduct another study with the most efficient implementations over generic,
larger and more diverse datasets. In the following chapter, we will describe
the application context of FSM algorithms which is Relational Aggregated
Search in graph databases.
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3.1 Introduction

We define in this chapter the notions related to aggregated search, mainly re-
lational aggregated search. We relate, in this chapter, federated approaches
to aggregation approaches and RDF graphs. Federated approaches are in-
teresting for us since they investigated strategies for query decomposition
and graph partitioning for query optimization. Graph and semantic data
structures have a rich and ready-to-use relations usable for aggregation.
Figure 3.1 shows the interactions between the approaches. Please note that
comparison of the state-of-the art (in Tables or Figures) in this chapter are
marked by the end date of our literature research (e.g., November 2018).
This helps future studies to update easier the state-of-the art (e.g., studies
after November 2018).

Federated Aggregated Relational
Search search Aggregated
search

Information
Retrieval

Semantic
search RDF search

Relational
databases

Figure 3.1: An associative map about our concerned fields'

This chapter is organized as follows : Section 2 defines information re-
trieval (IR) process in a classical way and the existing recent categories of
IR including relational aggregated search. Section 3 defines the semantic
graph search. Section 4 defines query decomposing and graph partition-
ing strategies used in Federated search and useful in relational aggregated
search. Section 5 defines the matching strategies. Section 6 enumerates and
describes the studies that contributed in defining relational aggregated IR
Systems.

'Draw.io Tool : www.draw.io
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3.2 Aggregated Search in Information Retrieval

In this section, we define the information retrieval field, its subcategories
including the scope of our work (i.e., the relational aggregated search). We
compare the different subcategories.

3.2.1 Classical Information Retrieval

The goal of Information Retrieval (IR) is to conceive systems that are able
to find a set of documents constituting potential answers to a user infor-
mation need. An Information Retrieval System (IRS) searches for relevant
documents for a user query [Salton 1986, Moreau 2006, El Charif 2006].

Architecture of an IRS

An IRS consists of three main modules [Belkin 1992] (see Figure 3.2) :
(i) Query Formulation (and reformulation), (ii) Indexing and (iii) Docu-
ment/Query Matching. The querying module consists in the query formu-
lation process. The indexing module corresponds to the representation of
the document and query contents. The matching module refers mainly to a
matching function between documents and a query. Also, it relates to the
evaluation of the relevance of documents compared to the query.

-~

Indexing Indexing

Document

Query Matching Document
Representation Process Representation

Query
Reformulation

Retrieved

Documents

Figure 3.2: The Architecture of an TRS?[Belkin 1992

IRS Components

We define in this section the components of an IRS :

2Draw.io Tool : www.draw.io
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Document. A document is a focus element of an IRS. A document can
be a text, a part of text, a webpage, an image, a video, etc. A document
is any stored data unit that could constitute a response to a user query
[Manning 2008].

Corpus. A corpus is typically a structured grouping of integral, docu-
mented texts that are potentially labelled. The texts in a corpus should be
homogeneous (e.g., sharing the same field) [Rastier 2005].

Query. A query is a possible representation of a user’s informa-
tion need.®> A query is a set of descriptors and could be expressed by
[Van Rijsbergen 1979] : natural language, a bag of words, a boolean ex-
pression, graphical form, a formal query language.

Document Relevance. A document is considered relevant to a query by
an IRS, if its system relevance is high. A system relevance is a score that
measures the difference between (i) the similarity between the document
and the query and (ii) the relevance probability of documents to the query
[Manning 2008]. The system relevance is different from the user relevance.
The user relevance is mainly concerned with the consistency of the result
compared to the query.

A key IRS Process

Indexing Process. Document and query representations (see Figure 3.2) are
built using a set of rules and notations transforming the document (query)
to a concise and structured representation. This transformation process
is called Indexing. The result of indexation is typically a list of represen-
tative terms (i.e., descriptors) of a document (query) [Nassr 2002]. The
list of representative terms of documents constitutes the indexing language
[Nassr 2002].

IRS Evaluation

There are two notions of system evaluation : efficiency and effectiveness
[Brini 2007, Sauvagnat 2005].

e FEfficiency. It is concerned with the time and space. A system is con-
sidered better if its time performance between the query formulation
and the system response is fast and the used space for search is small.

o Fffectiveness. It is concerned with the user intellectual effort, the re-
sult representation, the quality of the corpus according to the query
and the precision/recall. The precision/recall [Kent 1955] criteria con-
cerns the ability of the system to retrieve interesting documents and
eliminate the least interesting ones [Zargayouna 2005].

3 An information need is a mental expression of a user. There are three types of cognitive
need [Ingwersen 1996] : verification need, deepening need about a subject (directed need)
and a fuzzy need about a subject.
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We define, in the following, the categories of recent IR approaches mainly
Federated search, aggregated search and composite retrieval.

3.2.2 Federated Search

Federated search consists in searching multiple information sources (called
resources) [Callan 2002, Lalmas 2011] and aggregating the results returned
by the sources. The query is split into subqueries which are sent to sources.
The join order of subqueries results should be optimized. The sources do
not have access to the whole query [Nassopoulos 2016].

SELECT ?pres ?party ?page

WHERE { ?pres rdf:type dbpedia-owl:President. (tp1)
?pres dbpedia-owl:nationality dbpedia:United_States. (ip2)
?pres dbpedia-owl:party ?party. (tp3)
?x nytimes:topicPage ?page (tp4)
?x owl:sameAs ?pres } (tp5)

P 1 \
\
1,7 12X tp3, s P4 X tp5
» v N
DBPedia DBPedia '
(InstancesTypes) (InfoBox) NYTimes

@DBPedia
. (InstancesTypes)
’

’ 1
,' @DBPedia
' tp2 |X]| tp3 (InfoBox)

. \

- ‘~‘ tp4 [X| tp5 | @NYTimes

Figure 3.3: Federated search scenario [simplified] [Nassopoulos 2016]

3.2.3 Cross-Vertical Aggregated Search

Aggregated search [Murdock 2008, Lalmas 2011] refers to the tasks of :
(i) searching, (ii) assembling (or aggregating) of information from het-
erogeneous sources on the Web - called verticals® - and (%) presenting
these information to the user in one interface. The concept of Aggregated
search has been introduced explicitly by Google in 2007 [GooglePress 2007,

“Verticals could concern different fields (e.g., News, Travel, Shopping), type of docu-
ments(e.g., blog) or different type of media (e.g. Image, Video)
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Lalmas 2011]. Figure 3.4 illustrates an example of retrieved results from the
Google Search engine using verticals (e.g., News, Video) that are relevant
to the user query.

A classical
example of
aggregated
search

Structured
Data

News
Homepage
Wikipedia

Real-time results

Video

Twitter

Figure 3.4: An example of cross-vertical Aggregated Search Results (Google)
[Lalmas 2011]

Two main processes in the Aggregated Information Retrieval System
are different from the classical IR systems (see Section 3.2.1) : (i) Matching
process and (7i) Ranking of Results.

Matching Process

The matching process of classical Information Retrieval consists in extract-
ing relevant documents from a corpus while considering a query. However,
the matching process of aggregated search consists in extracting relevant in-
formation from relevant documents using relevant verticals [Lalmas 2011].

Ranking Results

Aggregated Search compares documents of different types (e.g., images with
web pages). Due to the heterogeneity of the characteristics of documents,
ranking algorithms - used for homogeneous documents ranking - in classical
information retrieval systems could not be used.

The aggregated set of documents of Cross-vertical aggregated search
system conveys diversity of results. However, the retrieved documents are
returned as-is in a list, (i) no aggregation between relevant fragments of
these documents is performed [Lalmas 2011, Sushmita 2012, Kopliku 2014]
and (ii) no organization of results in a semantic way is provided. The search
task from the returned results is still heavy for the user [Kopliku 2014].



CHAPTER 3. AGGREGATED SEARCH IN RDF GRAPH DATABASES99

Relational aggregated search and composite retrieval try to provide effective
solutions for these issues. We define them in the following.

3.2.4 Composite Retrieval

Cross-vertical aggregated search aggregates information from heterogeneous
sources (verticals) and returns results in a single interface. Composite re-
trieval [Bota 2014] aggregates heterogeneous results of verticals in objects
(called bundles) that are semantically coherent [Bota 2015]. Composite re-
trieval is dedicated to complex queries. The system should return several
bundles answering the query where each bundle could cover a subtopic of
the query.

3.2.5 Relational Aggregated Search

Relational aggregated search [Kopliku 2011] consists in aggregating homo-
geneous or heterogeneous fragments of information using their relationships
and returning them in a single result. These fragments of information (also
called nuggets [Kopliku 2014]) are constructed by decomposing the infor-
mation set. Further, relationships are mined or defined between these frag-
ments. The relationships are the key elements for having a relevant, syn-
thesized and rich result. Relations can be extracted : (i) explicitly from
the documents or (ii) implicitly found in external relational sources such as
knowledge graphs, semantic resources (e.g., ontologies), relational databases
or web semantic data [Kopliku 2014]. Also, Information Extraction tech-
niques can be used to extract new relations from the Web [Kopliku 2014].

Object-level or Entity-oriented Search

The Google search engine proposed in 2012 an associative concept named
Google knowledge graph. The project is oriented to one concept (or entity)
queries. Queries containing more than one concept are not considered. The
knowledge graph is used for mining associations of facts or data, that are
related to the user query. An aggregated information sheet (see Figure 3.5)
is presented to the user containing attributes about an entity and other
associated entities.’

In the following, we summarize the difference between the previously
defined IR approaches.

5PremiumSEOsolutions 2012, Google Knowledge Graph : New search technique
Wwww.premiumseosolutions.com.au/blog/seo-news/google-knowledge-graph-new-searchtechnique/
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Albert Einstein

Albert Einstein est un physicien théoricien qui fut successivement
allemand, puis apatride. suisse, et enfin sous la double nationalité
helvatico-américaine. Wikipadia
Naissance : 14 mars 1879, Ui, Allemagne
Décas : 18 avril 1955, Princelon, New Jersey, Etals-Unis
Livre : Comment je vois le monde
Enfants : Enfants d'Albert Einsten. Hans Albert Einstein, Lieser! Einstein
Sceur : Maja Einstein
E’gp%%e! + Elsa Einstein (m. 1919-1835), Mileva Einstein im. 1903-

)

Recherches associées Voir dautres élements (plus de 15

n =
S ™

Isaac Slepne " Thomas Galilee Marie Curie.
Newdon Hawking Edison

Figure 3.5: Examples of Relational aggregated search from two engines (Left
: Google, Right : Wolfram Alpha) for ” Albert Einstein” query

3.2.6 A Comparison of Aggregation-Oriented Information
Retrieval Approaches

Table 3.1 illustrates the difference between the IR approaches in terms of
query decomposition and result aggregation. The compared approaches are
: Federated search [Callan 2002], Meta-search [Callan 2002], Cross-vertical
[Murdock 2008], Relational aggregated search [Kopliku 2011] and Compos-
ite Retrieval [Bota 2014]. Heterogeneous document types in Table 3.1 convey
different type of data (e.g., image, video, text). Homogeneous documents
have the same type of data (e.g., RDF data, HTML tables).

The heterogeneous documents can be represented by homogeneous data
(e.g., an image and a text can be represented by text data) [Achsas 2016,
Achsas 2018] (see Section 3.6.4).

Relational Aggregated Search vs. Federated Search

Federated search shares the same characteristics with Relational aggregated
search (see Table 3.1), the difference is that federated search performs basic
aggregation based on multi-source results, while relational aggregated search
performs aggregation based on discovered relationships between returned
results.
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Table 3.1: A comparison of IR Approaches for aggregation (July 2018)

IR Decomposes | Documents Aggregates
Approach Complex Type Sources | Documents’
Queries Fragments
Federated Yes Homogeneous | Yes Yes
Search (One result)
[Callan 2002]
MetaSearch No Homogeneous | Yes No
[Callan 2002] (Documents
Cross-Vertical | No Heterogeneous | Yes are ordered
Aggregated as-is in One
Search interface)
[Murdock 2008]
Relational Yes Homogeneous/ | Yes Yes
Aggregated Heterogeneous (One result)
Search
[Kopliku 2011]
Composite Yes Heterogeneous | Yes No
Retrieval (Theoretically) (Documents
[Bota 2014] are assembled
as-is in a
result
[Bota 2014])
(Several
results)

3.2.7 Relational AS and Semantic Graphs

One of the subprocesses of Relational AS is the retrieval of fragments. This
subprocess is also called nugget retrieval [Kopliku 2014] (also named focused
retrieval in semi-structured IR). The nuggets of information and their rela-
tionships could be intuitively represented by a graph structure. Besides, the
graph structure is massively used nowadays for representing data in infor-
mation retrieval systems of several domains (e.g., Biology, Social networks,
business processes [Leymann 2008]).

The relational aggregated graph search uses exact/approzimate graph
matching and aggregates the subgraphs to form an ezact response to the
query (see Figure 3.6).

We are interested in the following in defining semantic graph-based
search.
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- ® -

-
o
q & @2

Figure 3.6: Aggregation of subgraphs from two graphs g7 and g3 responding
to the query ¢ [Le 2012]

3.3 Semantic Graph-based Search

We briefly define the classical graph search, followed by the components of
the semantic search : RDF graphs and SPARQL queries.

3.3.1 Graph search

Traditional information retrieval in graph databases has a significant diffi-
culty in extracting the result. The candidates of this result are all subgraphs
of a graph that could be relevant to the user query. The number of candi-
dates to compare could be very large. Besides, the subgraph-isomorphism
task is expensive (NP-complete problem [Cook 1971]). An efficient graph
matching between the query and the data is performed by reducing : (i) the
search space (i.e., number of candidates) and (i) the number of relevance
checking of candidate according to the query.

The graph matching could retrieve graphs that respond ezxactly to the
query. In this case, graph isomorphism is performed. Also, the retrieved
graphs can respond approximatively to the query (e.g., a fragment of the
query). In this case, subgraph isomorphism is performed and a measure of
similarity degree between graphs is used.

3.3.2 RDF graph : A Knowledge representation model

Based on Cognitive Science, an assertion postulates that humans con-
struct models in the associative memory in order to organize knowl-
edge [Quillan 1966]. Semantic networks [Quillan 1966] and their formalism
[Fouqueré 1994] have been proposed as an external representation of a hu-
man set of knowledge about a specific domain [Habrant 1999]. A semantic
network is a graph oriented structure without cycles. It encodes objects
with their properties. The nodes of the graph are labeled by concepts and
the arcs are labeled by (typically binary) relations between concepts.

A derivation of semantic networks used for the representation of the
data of the Web is : RDF graphs. The RDF (Resource Description Frame-
work) formalism represents data by identifying their resources, properties
and defining relationships between them. A relationship between two re-
sources forms a triple (also called a statement). The first resource is named
subject and the second is named object. The relation between an subject
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and an object is directed, and is named a predicate. Subjects and predicates
are represented by URIs (Uniform Resource Identifier, see Table 3.2). IRI
(Internationalized Resource Identifier)% is a generalization of URI (Uniform
Resource Identifier) where URI does not allow using non-ASCII characters.
Subjects can also be represented by a blank node which means that the re-
source does not have an IRI and is local in the RDF dataset. The objects
can be URIs, blank nodes or literals. A literal is a string value that can have
a datatype. A triple is represented as:

<subject> <predicate> <object>

Table 3.2 represents an example of RDF triple where
DIP_Presents_the_Upsetter is an album and its producer is Lee_Perry.

Table 3.2: An example of triple RDF
Subject <http://dbpedia.org/resource/DIP _Presents_the_Upsetter>
Property <http://dbpedia.org/property/producer>
Object  <http://dbpedia.org/resource/Lee_Perry>

The set of triples forms a RDF graph which is a directed, labeled graph,
and where the nodes represent resources and the edges represent the predi-
cates.

Figure 3.7 shows an example of a RDF graph specifying for entities (e.g.,
Peter), their relationships (e.g., knows) with other entities (e.g., Simon) and
their attributes (e.g., age 42).

country

Figure 3.7: A RDF graph example [Przyjaciel-Zablocki 2011]

3.3.3 SPARQL queries

SPARQL7 is a standard query language for RDF data. We define in the
following the structure of a SPARQL query.

SResource Description Framework (RDF) www.w3.org/RDF/
"SPARQL Query Language for RDF www.w3.org/TR/rdf-sparql-query/
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Four Forms of SPARQL Query

The SPARQL query language proposes four forms of results : (i) SELECT
query returns all (or a subset of) the variables in the query pattern, (ii)
CONSTRUCT returns a constructed RDF graph by replacing variables in
triple patterns, (iii) ASK returns a boolean value indicating if there are
matches for the query pattern or not, and (iv) DESCRIBE returns an RDF
graph describing the retrieved resources.

We defined the first clause of a SPARQL query according to the aim of
query (i.e., returning variables instances, describing variables, constructing
a graph from variables, verifying the existence of graph patterns). We define
in the following the components of the WHERE clause.

Graph Patterns of SPARQL Query

The second clause WHERE of SPARQL defines the graph pattern matching
type [W3C 2013].
Graph Pattern. Let the query q [Fletcher 2008] be

SELECT ?a ?t WHERE { ?a authored ?d ?d type ?t . }

A triple pattern (e.g., ?a authored ?d) has the RDF triple form, however,
the subject, predicate and object can be variables.® A graph pattern of a
SPARQL query represents a set of triple patterns that would be matched to
subgraphs of the graph data [W3C 2013].

The WHERE clause specifies the basic graph pattern(BGP)[W3C 2013].
For example, in query q, the basic graph pattern contains two triple patterns
?a authored ?d and ?d type ?t.

Keywords (or operators) in the WHERE clause define the graph pattern
matching type [Cunha 2015, Abbas 2017]. We briefly define these operators.

e AND : All graph patterns should match for the final result. The pat-
terns are combined by conjunction and forms a group graph pattern.

e OPTIONAL : Additional patterns can be added to the result.

e UNION : Offers alternative graph patterns. Omne or more of the
matched patterns are retrieved.

e MINUS : The matches of a graph pattern are removed from another
graph pattern.

e FILTER : Limits the number of results to be returned. Regular ex-
pressions can be used to express conditions of filtering.

8The variables in SPARQL queries are prefixed by the symbol ”?” or 7$”
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Query Modifiers

Some query modifiers are proposed like in SQL : After the WHERE clause,
ORDER BY modifier used to order results, OFFSET modifier used to get
a subset of solutions starting from one of them, LIMIT modifier to restrict
the number of solutions. In SELECT clause, DISTINCT modifier used for
returning unique solutions and REDUCED used to reduce the number of
redundant solutions.

We define, in the following, the main used techniques in Federated search
for RDF graph databases that are useful for aggregating systems.

3.4 Used techniques in RDF Federated Search
dedicated to Aggregation

Different strategies have been proposed in order to have an optimized and
effective search in RDF graphs. [Hammoud 2015] categorizes these studies
in four quadrants (see Figure 3.8) where SPARQL query and RDF database
are either decomposed /partitioned or not.

We present, in the following, the main strategies for query and database
representation : (i) query decomposition and (ii) graph partitioning. We
refer to these strategies as conceptual indexing techniques. RDF technical
indexing strategies (e.g., RDF indexing structures, RDF storing) are not
addressed.

Quadrant-|

Quadrant-Il
Quadrant-Ill

Quadrant-1V

Figure 3.8: Four quadrants of RDF systems [Hammoud 2015]
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Table 3.3: An example of SPARQL-like Query and its BGP decomposed

Query : Find a nobel prize winner named Roald who visited Tunisia
and is a researcher supervising PhD students

SELECT 7X

WHERE

{ 7X Type Person <— SQ1 [Persons]

?7X First_Name Roald <—SQ1

?X Womn Nobel _Prize <— SQ2 [Nobel Prizes]
7X Visited Tunisia <— SQ3 [Travels]

?X Supervised 7Y <— SQ4 [Universities|
?Y SubType PhD _Student } <—SQ4

3.4.1 Aggregated Query Decomposition Strategies

An aggregated query is a query that could be decomposed into parts. Those
parts (e.g., sub-queries SQ1 to SQ4, see Table 3.3) are submitted to several
sources of information. The results to these sub-queries are aggregated in
order to return one result. The need for splitting queries is due to several
issues such as : (i) A complex query sent as a whole to data sources, may
return no result. Splitting the query according to the sources content can
help responding to the expected information need, (ii) A need to reduce the
number of sources to which the query is sent, (iii) A need to reduce the
complexity of matching between query/graphs (iv) Parallelism to speed up
the search (e.g., two subqueries are sent in parallel to the same source).

Studies about query decomposition in RDF search have been mainly
elaborated by Federated Search Community.

In the following, we present our selected list of studies that represent a
decomposing strategy (see Table 3.4). It is worth noting that this is not
an exhaustive list of all studies, we only selected the most representative
strategies. A comparison table of other query federation/processing systems
is proposed in [Rakhmawati 2013, Rakhmawati 2017]. Another comparison
of RDF systems -including query decomposing subprocess- is proposed in
[Oguz 2015, Abdelaziz 2017, Horrocks 2017, Yasin 2018]. We notice also
that studies (e.g., Trinity. RDF [Zeng 2013]) proposing the decomposition
of queries into triple patterns (i.e., one triple per subquery) and studies
performing query optimization with query (execution) plan (e.g., join order
[Schétzle 2016b]) are not in the scope of our following comparison. RDF
query processing systems that decompose queries are presented.

DARQ (Distributed Jena ARQ) [Quilitz 2008]. A service description
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contains a description of the data available from the source and limitations
on access patterns. According to the list of predicates in a service descrip-
tion, a query is rewritten, and subqueries are created [Rakhmawati 2013].
It is worth noting that no up-to-date solution of DARQ exists, since it is no
longer developed.

FedX (Federation layer extending Sesame) [Schwarte 2011]. It uses tech-
niques to optimize query processing. A user query is split into subqueries
and sent to data sources. The result of the subqueries are returned in an
aggregated way. In order to reduce the number of requests sent to the
sources and to minimize intermediate results, authors propose applying join
order optimization and grouping subqueries. The triple patterns in the query
having the same relevant sources are grouped in a subquery. The relevant
sources associated with triple patterns are guessed by sending -in an initial
phase- SPARQL ASK queries to data sources. The result of these ASK
queries is stored in a cache [Rakhmawati 2013].

Defender [Montoya 2012] is used in the query engine ANAPSID. The
query decomposer creates unitary sub-queries. Then, it merges subqueries
that (i) shares exactly one variable and (ii) can be sent to the same source
(i.e., endpoint), in the same subquery using a greedy algorithm. The last
optimize the size of intermediate results and reduce the number of requests
to be sent to sources.

SHAPE [Lee 2013]. The queries are decomposed according to the graph
database partitioning. The database is partitioned into blocks of a ver-
tex and its neighbors (named vertex block). A query is partitioned into
subqueries that avoid inter-communication between sources. The approach
checks gradually if the query can be decomposed in the minimum number of
subqueries that could be processed in intra-partition way. First, all vertices
in the query are set as candidates. For each vertex candidate, the largest
subgraph (under a k-hop value) in the query and executable in an partition,
is found. The aggregation of intermediate results of subqueries is done by
Hadoop jobs.

SemStore [Wu 2014a]. 1t identifies all the rooted vertices in the query
graph and construct a rooted subgraph pattern (representing a subquery)
for each rooted vertex. If two subqueries share the same source, then they
are merged together to form one subquery. This is in order to further reduce
the intermediate results.

OLinda [Cunha 2015]. The query is decomposed into subqueries, one for
each of the local datasets (e.g., DBLP, DBPedia and Kisti). The subqueries
(QDBLP, QDBPedia, QKisti) represent a rewritten part of the query using
a matching between the domain ontology and the local ontology of each
dataset. Authors do not propose a solution for aggregating the intermediate
results.

DREAM [Hammoud 2015, Hasan 2016/. DREAM proposes to decom-
pose SPARQL queries and to not partition RDF graphs. The database is
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maintained as a whole in each machine. A SPARQL query is first repre-
sented by a directed graph. The query planner partitions the query into
subgraphs by considering some conditions. The query planner selects the
vertices with a degree? strictly superior to 1. These vertices are called join
vertices. Then, it locates the candidates of subqueries which are : (i) the
exclusive basic subgraphs : Subgraphs in the query with one join vertex and
(ii) the shared basic subgraphs : Subgraphs with two join vertices. Some
rules are applied to assign these subgraphs to a join vertex. These rules
include : (i) priority is given to subgraphs that are directly connected to
a join vertex. (ii) A shared subgraph can be assigned to one or two join
vertices. (iii) A join vertex must have been assigned at least two basic sub-
graphs. Further, a subgraph is selected for each join vertex according to
the lowest cost of the query graph plan. The lowest cost is estimated by
collecting statistics for each query plan (using RDF-3X). The statistics use
join estimation techniques or mining frequent join paths and return mainly
the numbers of visited and generated triples. After the selection of the
query plan, the subqueries are executed and the aggregation of intermediate
results are performed by one machine (i.e., master machine).

STAR [Yang 2016]. Tt represents queries as graphs, and decomposes
them in star subqueries. Heuristics are used to reduce the number of sub-
queries and so the number of joins.

Most of the query processing systems use (i) vertices and/or (ii) the
sources information in order to decompose the query. Edges (i.e., predi-
cates) in a SPARQL query were used for source selection only (e.g., Defender
[Montoya 2012]). In addition, the partition-aware query decomposing stud-
ies (e.g., SemStore, see Table 3.4) do not use semantic relationships between
triple patterns. Semantic associations between triple patterns in the query
are expressed only by common vertices, common paths or neighbourhood.
OLinda [Cunha 2015] (see Table 3.4) used metadata of datasets to rewrite
the query. Metadata of RDF datasets should be further exploited in order
to decompose the query more semantically.

9The sum of the in and out edges



CHAPTER 3. AGGREGATED SEARCH IN RDF GRAPH DATABASES109

SI99SN
suorjryred woomiaq ejep jo uonedrdoy] (4) | ojur joseiep suorjrjred oseqeiep paseq-xXo1IoA [€10g 901
SOOINOS WOOMID( TOTIROTUNUITHOD-IONUT ON (+) | PpouoIjpIed | 01 Surproooe pasodurodsp st Arenb ot T, AdVHS
SOOINOS 0} JUSS 9 0} $3sonbol Jo IoqUUINU
OU) pUR SHNSOI 9)RIPOULIDIUL JO OZIS oY)
oziydo 0} WYILIoS[R APooId ® sosn 1]
90IN0S ® 0} Jues st Arenbqns yoeq
jurodpuo ouwres o} U0 PIINIIXD 9q Ued
9UOP JIOYINJ 9 PO 9IINOS (s1esee(]) | 10Ul pue S[qRLIRA QU0 JuLIRYS SuId)yed
-e1jul uorisodwooop ou ‘quopuadop ore A1onb seomos | odir) Iayje80) seSrewr 9] ‘sureljed o[diry | [gT(0g BAOIUOIN]
-(UiS 9} U SI[RLIRA 9} JT ‘9DINOS dUO 10/ (-) JueIRPI(] | Arejtun ojur Arenb peryrur oyy sids 9] Jopuojo(]
A1onb ISV 0} Surroser Aq umouy|
(syesere(]) | ore wreljed o[dLI) ® I0] S9DINOS JURAS[DY 4
sore S90INOS SODINOS 0} DIUBAS[AI SAISN[IXD IO} | [110F 2ITRMIPDG]
-1e0 uo1ydLIDSOp 90INO0S ® 9sN 03 Paoll ON (+) JUBISYL(] | 01 Surprodoe padnois aq ues seurenbqng XPai
SODINOS [RIDADS
padopeasp 1e8uof oN (-) (s1esere() | 10 ouo Aq paremsue oq ued Arenbqns y
Auo 9omos 1od Sursoduwoosa(] (-) $90IN0S suo1}dLIDSOP 9IIAJISS oY) Ul UOI)RULIOJ [800Z zaym)]
uo1}dLIDSOP 9DIATSS ® 9ARY 07 PIaN (-) JUOIRYPI(] | -Ul 9} 01 SuIpioooe seuenb-qus sprmg Ouva
‘Sgyuo)
syoeqMmeI(] PUR sodejueApyY | oseqeje(] A89yea1g Sursodwoda(g yoeoaddy

oaess JqY ur soyoroidde

(810 ToquIvs0N)
uorjeIope) AIend) ¢ O[qRL




CHAPTER 3. AGGREGATED SEARCH IN RDF GRAPH DATABASES110

A1onb oyy Jo soyopjewr y-doy spuryg

ydeis pue sorzonbqns [9T0g Suex]
A1onb jo Suryojewr joexour sunojrad 91 (+) joseIep y | padeys-ae)s Ul posodurooop oIe soLong) 4 MVIS
KL1onb ooy xerdwod 10§ uorsoduwosop
IoU)IN} ou ‘josejep Yoeo I10j Arenbqns y (-) SOI30[09U0
josejep pojosie) oy} | IPY)  pue
se A3o[ojuo owres o1 sosn Aronbqns y (+) (syesere() josejep yoes jo £80
TVNOLLJO Pue YHAITIA stoyerodo S90INOS | -[OJUO [BIO] B 01 FUIPUOdSILIOD UDIILIMOT [6T0g eyU))]
qm sotonb THYVJS Jo uorysoduwonoq (+) Juerelyi(] | A1onb jo qred e queserder sertenbqng ®pUITO
1osRIRP
owIes oY) SUIUIRIUOD QUIYORUW ® 0} JUSS SI
Aronbqns yoeq : yoroidde jesejep-auQ (-)
(1oseyep o) woxy ued A1onb jo 4500 o1y ue[d Lronb oyeprip
Suryenoes *971) UOIIR[NO[RD SUI[-UO soImb SI9IST[D | -Ued [Peo I10] (SO13sIJe)S aseqejep Sulsn
-1 AS8oger)s uoryisodwiooop Arenb oy, (-) | JUSIOPIp UI | PoIR[MO[RD) 1S0O [RWUIUIML POJRTUIISO UY
UO0T)RFOIFe 10 OUIORW I9)SRUW dUO FUL poajeoridoa X99d9A ([GT(g pnowure]
-STl AQ POZIITUIW ST UOTJedTUNOod vIR(] (4) | josejep Y | urol yoeo I0j sollonbgns Jo UOIJRIOUSL) INVAYA
s1ogsno | serrenbqns ojur pasodurodep oq 03 A1onb
OUI 10SkIRD | 9U) Ul SOIIIBA POJOO0L JO UOINDNID( 4 [eF 10T DA\
uoryisoduwooep Arenb areme-uonired (+) | pouonipreg | uonsoduioosp Arenb oreme-uonijred y 9I0}SUOG




CHAPTER 3. AGGREGATED SEARCH IN RDF GRAPH DATABASES111

3.4.2 RDF Graph Partitioning

Large RDF datasets are typically partitioned into cluster tables (for central-
ized systems) and cluster machines (named also workers, slave machines or
nodes in distributed systems). There are several ambitions leading to parti-
tioning RDF graphs and graph databases in general, e.g.,: (i) Sending the
subquery to a minimum number of sources, (i) handling big datasets stor-
age, (1) optimizing runtime by sending subqueries in parallel to different
partitions, (4v) minimizing the number of joins and the number of interme-
diate results by not partitioning a subgraph that would contain data that is
frequently queried together. One of the main issues involving partitioning
is the potential communication overhead between nodes of data. In what
follows, we define the categories of partitioning. A table comparing parti-
tioning systems of RDF data is provided in [Peng 2016, Abdelaziz 2017].

Random Partitioning

Horizontal Partitioning. This category partitions RDF dataset with a num-
ber of triples T by requiring a number of partitions N. Each partition con-
tains a subset of triples and sized as T/N [Akhter 2018].

Structure-based Partitioning

Hash-Partitioning. It consists of partitioning data by subject or predicate
and it requires a number of partitions as input. This category assigns triples
to partitions using a hash value computed based on subjects (or predicates)
modulo the total number of required partitions. All the triples with the same
subject are assigned to one partition. Due to modulo operation, partitioning
imbalance is a potential drawback for this category. Virtuoso (v.6.1.5 Edi-
tion20) is an example of predicate-oriented RDF systems [Hammoud 2015].
This category uses fine-grained structural information and does not con-
sider the whole RDF graph structure. For this, partitioning based on larger
structures in graphs is proposed.

Graph-based Partitioning. It uses the structure of the graph to partition
data. For example, the METIS system puts vertices that are close to each
other in the same partition (except the vertices at the boundary of a par-
tition) [Hammoud 2015]. Another example is partitioning the dataset by
rooted-subgraphs [Wu 2014a].

Semantic-based Partitioning

Hierarchical Partitioning This category uses IRI’s path to determine the hi-
erarchy of resources. This strategy is based on the assumption that resources
with the same hierarchy prefix are often queried together. If the number of
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prefixes is equal or greater than the number of required partitions, then
hash-based partitioning on prefixes is used [Akhter 2018].

Workload-aware Partitioning

It exploits the query workload in order to partition datasets. It collocates
together fragments of the data that are frequently accessed by frequent
query patterns. Many queries are evaluated without communication us-
ing this category of partitioning. Examples of this category are mentioned
in [Abdelaziz 2017].

Partitioning Interactions

The partitioning of data affects the query performance. In the literature, the
partitioning approach could be chosen according to the shape of queries (e.g.,
star-shaped, chained queries) [Hammoud 2015]. The partitioning is also
impacted by the connectivity of graphs. The more the graphs are connected,
the harder is to partition them. Some strategies are included in order to
reduce the connectivity of graphs (e.g., eliminating the secondary properties
such as rdf:type) [Hammoud 2015].

3.5 Query/Fragment Matching

We categorize studies into : (i) Studies (e.g., [Echbarthi 2017]) which do
not perform the query decomposition -in Federated or relational aggregated
search- consider inexact matching (Case 1, see Figure 3.9) of query/RDF
graph.

Result Fragment 1

Inexact Matching Result Fragment 2

Result Fragment n

graph database

Aggregation

Figure 3.9: Result Aggregation with no query decomposing (Case 1)
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They use similarity measures between the query and fragments of graphs,
and (ii) Studies performing query decomposition and which may perform
exact or inexact matching, and aggregate the results of subqueries (Case 2,
see Figure 3.10). In our scope, we consider only the studies of the second
category (i.e., Case 2).

Result Fragment 1

Exact/Inexact
Matching

Result Fragment 2

Result Fragment n

graph database

Aggregation

Figure 3.10: Result Aggregation with query decomposing (Case 2)

3.6 Relational Aggregated IR Scenario : What is
done ?

We describe in this section the approaches that considered aggregation using
relations between data. All the studies and their main contributions are
shown in Figure 3.11. In general, approaches perform exact aggregation
which means that only join operations are performed between fragments. For
aggregating in federated search, some join methods (i.e., bound join, nested
loop join, hash join, symmetric join and multiple hash join) are detailed in
[Oguz 2015].
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3.6.1 Aggregation of fragments in Exact graph search

The studies (colored in Yellow, ¢, see Figure 3.11) [Le 2012, Elghazel 2011]
propose a methodology for answering aggregated queries in graph databases.
[Le 2012] represents graph database in a relational infrastructure. The tech-
nique is as follows: First, the common edges between a query and the graph
database are extracted using SQL tables. The query is decomposed in two
parts : (i) labeled nodes (i.e., constant) subquery, (ii) anonymous (i.e., vari-
able) nodes subquery. The exact matching between data graphs and a query
graph is performed as follows: The labeled nodes/arcs are searched in rela-
tional tables. Then, the unlabeled nodes related to labeled arcs and nodes
are searched. The query is updated and search is complete if all unlabeled
nodes have been instantiated.

3.6.2 Aggregation of fragments in Inexact graph search

The study (colored in Blue, a, see Figure 3.11) LaSas [Echbarthi 2017] pro-
poses a query processing algorithm in aggregated inexact search. The rele-
vant fragments are selected from a dataset using a similarity function. The
similarity function (considering nodes label and graph structure similarity)
compares the query and the fragments in the graph database. The approach
does not require query decomposition strategy. The part of the query that
is answered by a fragment is discarded and the query is updated for a new
fragment selection. Aggregation consists in a set of the union of obtained
fragments. Further, a refinement step is performed that aims at connecting
unconnected fragments and pruning irrelevant nodes.

The study [Hsu 2016] (colored in Blue, b, see Figure 3.11) proposes a so-
lution for aggregating fragments of personal process description graphs (i.e.,
how-to-do process) for the case when there is no single graph that can anwser
the whole query. The graph dataset is decomposed into atomic fragments.
The query is decomposed into two categories : (i) constant subqueries where
each subquery contains two constant nodes and an edge, and (ii) anonymous
subqueries where each subquery has either (a) an anonymous node or (b)
two constant nodes and a path. The anonymous subqueries are searched
based on constant subqueries results. The graph similarity between frag-
ments and subqueries is based on nodes similarity and structure similarity.
For reducing the cost of node similarity, the dataset has an inverted index,
where words of the node labels of the graph are stored and clustered in word
sets, the graphs corresponding to the word sets are stored also. The set of
result fragments are then ranked in order to aggregate them. A ranking
score of an aggregate is defined based on the product of similarity scores of
its fragments and a factor considering the aggregation of fragments from the
same process better than the one from different processes.
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3.6.3 Entity-oriented search and Structured result of aggre-
gation

Studies (colored in Green, d, see Figure 3.11) such as [Kopliku 2011] propose
an approach using HTML tables in web pages. It detects and orders relevant
attributes for an instance or class query. In the same sense, [Krichen 2012]
proposes an approach which generates, for each class, a group of homoge-
neous entities and their attributes with associated values that are collected
from a source (i.e., DBPedia) of the Web of data. Further, [Abbes 2013]
extracts attributes of an entity from many sources of the web of data (11
datasets) and evaluates the approach by user-judgments.

3.6.4 Assembling fragments from hetergeneous sources

The study (colored in Grey, e, see Figure 3.11) [Achsas 2016] focuses on as-
sembling hetergeneous results (i.e., texts, multimedia). The study concerns
Web results. Authors use an homogeneous representation (i.e., text) for the
hetergeneous results. For textual documents, they extract paragraphs from
the relevant results. Regarding multimedia results, they are represented by
their textual description. Then, two processes based on neural networks
(i.e., word2vec and stacked autoencoders) are applied on these fragments
and their learned semantic similarity is extracted. Further, a clustering al-
gorithm (i.e., DBSCAN) is used to cluster the fragments. Finally, clusters
of fragments (e.g., paragraphs, images) are returned. This work helps in
returning a set of hetergeneous fragments together using their similarity.
A user judgment evaluation is performed on the homogeneity of each clus-
ter. 64.5% of users are satisfied by aggregated results in each cluster. We
think that this study is concerned with both Relational AS and Composite
Retrieval.

Studies in [Echbarthi 2017, Kopliku 2011, Krichen 2012] considered a
framework of aggregation where : (i) there is no need for query decom-
position and (ii) there is no distributed sources. These studies focused on
retrieval of relevant fragments and their aggregation in a basic framework
(i.e., one dataset and one query to send). Studies [Elghazel 2011, Le 2012]
uses the relational model as a structure for storing graphs to optimize graph
aggregation. [Abbes 2013] focused on entity queries. [Achsas 2016] con-
sidered web results and textual representations. For our case, we would
consider the web of data and graphs.

3.7 Conclusion

In this chapter, we listed the recent Information Retrieval approaches dedi-
cated to aggregation of fragments from different sources. Also, we described
the used techniques for aggregation either in Federated search or relational
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aggregated search. From the state of the art of these techniques we observed
that the metadata of the web of data was weakly used to discover and then
exploit relationships between fragments. In the following chapter, we pro-
pose an approach using semantic relationships discovered from the metadata
of the web of data, in order to optimize aggregated query evaluation.
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4.1 Introduction

Our approach aims at optimizing the access to information sources in the
context of RDF aggregated search. This optimization can be done by : (i)
Database reorganization (offline) by clustering fragments that could con-
tribute to answer the same subquery (e.g., the subgraphs with predicates
firstname’ and "lastname’ should be put in the same cluster), and (ii) Query
decomposition approach (online) used to send a part of the query only to
sources that would provide answers (efficiently). We present in this chapter
the two approaches (i.e., Data clustering and query decomposition) of our
indexing process.

The remainder of this chapter is organized as follows : Section 1 presents
our clustering approaches: semantic and structure oriented. Section 2 de-
fines the query decomposition strategy which exploits the clustering ap-
proaches. Section 3 summarizes our approach and describes the whole pro-
cess (i.e., Aggregated Search system).

4.2 Clustering Approach for Aggregated Search

We propose clustering RDF graphs in order to put together data sources that
would be better targeted by a query. The objective of our approach is to be

118
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able to perform as less as possible of external joins. We use two clustering
approaches : (i) a semantic one to capture the intuitive associations of data
graph independently of the graph structure, and (ii) a structural one using
co-occurrence of the data in the graph database.

The source selection for a query in federated search is generally based on
a predicate list [Oguz 2015]. This is due to the fact that predicates are often
constants in a SPARQL query. Variables are typically subjects or objects.
Besides, RDF predicates are fewer to enumerate than resources. We use a
unitary data (i.e., predicate) of RDF graphs because we are interested about
the impact of associations between these unitary data on the performance
of aggregated search systems. Based on these ascertainments, we use the
predicates as a key for clustering RDF data and decomposing SPARQL
queries.

4.2.1 Semantic Clustering

The clustering of RDF graphs should take into consideration the intuitive
relatedness (e.g., First_name and Social_security_number, see Figure 4.1) of
predicates (in the mind of the user). For this, we investigated the literature
dealing with semantic relatedness/proximity of predicates in RDF graphs.

Social
Security
Number

An act of
discovery
Predicates as

Predicates as S
relations in a concepts ina
semantic
user query

resource

Figure 4.1: From Resources Relatedness to Predicates Relatedness!

Semantic Relatedness/Proximity of Predicates

Measures of semantic proximity/distance in RDF graphs have been dis-
cussed mainly in Ontology alignment [David 2008, Harispe 2013], web rec-
ommendation systems [Leal 2013] or inexact RDF search [Zheng 2016]. The
proposed measures focus on comparing concepts or instances in an ontol-
ogy. The predicates are used in order to compare instances/concepts. To
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our knowledge, no semantic measure has been proposed for comparing only
predicates in RDF graphs.

We provide a way to semantically compare predicates by resorting to the
use of metadata. We use the description of predicates where the concepts
in the descriptions are compared. Predicates (edges) are projected as a set
of concepts (nodes) in a Knowledge Representation resource (e.g., ontology,
thesaurus). An example is shown in Figure 4.1. To compare descriptions,
we resort to semantic text similarity approaches [Resnik 1999, Han 2013].

Semantic Text Similarity (STS). STS approaches encompass three main
categories [Han 2013] :

e The use of vector space model? [Meadow 1992]. A text is modeled as
a "bag of words” wvector. The cosine similarity is computed between
the two vectors corresponding to two texts.

e The words (or expressions) in the two sentences (or short texts) are
collected. Each pair of words from the two texts are aligned. This
category of techniques maximizes the summation of the similarities of
the pairs [Mihalcea 2006].

e The third category uses measures of machine learning models. Lexi-
cal, semantic and syntactic features are computed for the texts using
resources. Theses features are then classified [Sari¢ 2012].

Our approach does not require a specific STS approach. We choose
two STS approaches affording available implementations. These two tools
we selected are ADW [Pilehvar 2013] and UMBC [Han 2013]. They use the
second and third STS categories. Other STS approaches can be used further.
In the following, we describe briefly the two solutions.

ADW (Align Disambiguate and Walk) [Pilehvar 2013]. Given two texts
T1 and T2, ADW tool maximizes the similarity between the senses (i.e.,
word meanings) [Miller 1995] of words in these two texts. For this, authors
use a semantic alignment method where for each word in text T1 is rep-
resented by a sense that has a maximal similarity with any sense of the
words in text T2. The similarity between senses is calculated based on the
semantic signature. The semantic signature is a probability vector of a text
representing the similarity of senses generated from random walks over the
Knowledge Representation resource (i.e., WordNet). Three methods are
used for comparing these signatures (vectors) : Cosine Similarity, and two
other methods (i.e., Weighted Overlap and Top-k Jaccard) that use sense
ranking instead of probability in order to avoid biased values due to the
difference of text sizes and WordNet unbalanced structure.

2From information retrieval area
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UMBC [Han 2013]. UMBC tool proposes an approach (out of three) that
combines (i) lexical similarity features (i.e., LSA word, POS tagging) based
on a Corpus and (ii) semantic similarity based on WordNet Knowledge.

Authors used a Web corpus (February 2007) from the Stanford WebBase
project that contains 100 million web pages from 50 000 websites. A corpus
of three billion english words has been obtained. POS (Part of Speech)
tagging and lemmatizing was performed. Word co-occurrences in the corpus
were counted in a moving window of a fixed size (e.g., size <=1 or size<=4).
A co-occurrence matrix of 29 000 words is constructed where the words are
POS tagged.

The UMBC hybrid similarity measure between two words uses : (i) the
LSA similarity which applies a cosine similarity of two word vectors after
performing an SVD (Singular Value Decomposition) transformation (i.e.,
it reduces the 29 000 word vectors to 300 dimensions which correspond
to the 300 largest singular values from the matrix), (ii) it also increases the
similarity if some specified relations between words exist in WordNet corpus.

For two texts T1 and T2, the UMBC tool applies the Stanford POS
tagger and lemmatization. For each word in text T1, an alignment function
is applied to find all words in T2 that maximize the similarity function. The
final score between the two texts is computed using a similarity function
that sums the word similarities for each text divided by their size.

We define the semantic relatedness as follow :

sim(p;, pj) = ST'S(desc(p;), desc(py)) (4.1)

Where p; and p; are the predicates to compare and desc(p;) is the description
of a predicate p,

Clustering Algorithm based on Semantic Proximity

After applying the selected STS solutions on predicate descriptions, a ba-
sic data clustering algorithm (e.g., k-means) is used to create partitions.
There are different categories [Wong 2015, Sajana 2016] of clustering algo-
rithms (e.g., Partitional clustering, Hierarchical clustering, density-based,
grid-based, correlation clustering, spectral clustering, gravitational cluster-
ing). We set one restriction about the clustering solution to use, is that
it should propose an affinity matrix (i.e., precomputed distance/similarity
between objects) as input. The affinity matrix represents the predicates
relatedness values.

Knowledge Resources

We briefly describe the main types of knowledge resources including ontolo-
gies that are exploited in our semantic clustering.
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Taxonomy. A taxonomy is a hierarchical organization of controlled vo-
cabulary terms [Zargayouna 2005].

Thesaurus. A thesaurus affords more metadata than a taxonomy.
A thesaurus contains controlled vocabulary of terms that are related by
three types of relationships : Hierarchical, equivalence and associative
[Roussey 2011, TopQuadrant 2013].

Ontology. Thesaurus (e.g., UMLS?) use generic relationships (e.g.,
broader, related and "use for”). However, an ontology contains relationships,
attributes (or properties) and classes that are defined by the constructor of
the ontology [Gruber 1995].

WordNet? is a linguistic/terminological ontology [Roussey 2011] since it
focuses on defining terms and their linguistic relationships (e.g. synonym,
homonym). DBPedia Ontology® is a cross-domain ontology that provides
the classes and properties (i.e., relationships and attributes) used in the
DBpedia dataset.

We use in our approach two knowledge resources in two levels (see Figure
4.2): (1) Metadata level : an ontology related to a RDF database (e.g., DB-
Pedia Ontology) and (2) Meta-Metadata level : a Linguistic/ Terminological
Ontology [Roussey 2011] (e.g., WordNet) for the semantic relatedness of
predicates metadata (i.e., description).

External knowledge resource

for metadata similarity
AN (metadata)

Description of semantic
graphs (metadata)

Semantic

levels

Semantic graphs
(RDF data)

Figure 4.2: Use of metadata in our semantic clustering approach®

Semantic Clustering: Assumptions

We define some hypothesis (H) underlying our approach.
H1 Predicates are annotated by their descriptions (i.e.,
rdfs:comment). If no description is provided, we use the label (i.e.,

SUMLS Homepage : https://www.nlm.nih.gov/research/umls/
4WordNet Homepage : https://wordnet.princeton.edu/
SDBPedia Ontology http://dbpedia.org/ontology/

SDraw.io Tool : www.draw.io
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rdfs:label).

H.2. Predicates with no descriptive metadata are also considered using
their local name in URI (e.g., Artistld => Artist Id).

H.3. Predicates that are semantically related should be put in the same
cluster. Similar predicates can be clustered together (e.g., work_in, has_job)
if inexact matching will be performed. Otherwise, they can be found in
different clusters.

H.4. No semantic technique is used for resources relatedness or similarity.
Only predicates are considered.

H.5. Clusters are constructed based only on frequent predicates. Infre-
quent predicates are added to pre-existing clusters (see Section 4.2.1).

Some general assumptions (A) that should be coherent with our approach
results. We list them as follows:

A.1 : Predicates which characterize the same entity should be put to-
gether in the same cluster.

A.2 : Predicates which characterize semantically related entities (e.g.,
Student and University) should be put together in the same cluster.

A.3 : Similar predicates related to (generally) different entities should
not be put in the same cluster.

Clustering the predicates should take into consideration not only their
relatedness but also their frequency in the dataset. In the following, we
present our clustering strategy for the different cases of frequent /infrequent,
weakly related, unrelated or non-described predicates.

Frequent and Infrequent Predicates

We discriminate the predicates (see Figure 4.3) in order to : (i) reduce the
number of predicates to compare (offline during indexing), and (ii) reduce
the number of clusters to target (online during query evaluation). For this,
we categorize predicates into frequent and infrequent. Infrequent predicates
will generate a low number of intermediate results. For this reason, we
choose to cluster on the basis of frequent predicates. We set a minimum
frequency threshold value (o) for predicates frequency.

Frequent Predicates. Frequent predicates (F},) constitute the core of clus-
tering. They are compared together and according to their semantic relat-
edness, clusters are created. Frequent predicates that have no relatedness
(sim(pi, pz) = 0,Vp, € F,) with any other frequent predicate are added to
a ’special cases’ cluster.

Infrequent Predicates. Infrequent predicates (I,) are compared with fre-
quent predicates and added to existing clusters (i.e., no additional clusters
are generated). We choose to cluster them according to their maximum
average relatedness with top-N frequent predicates per cluster. We define
the average relatedness of an infrequent predicate (p;) with a cluster (c;) as
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follow :
Sim(pi, c;) = avg(sim(pi, pz)), Vpz € TEFH(N)) (4.2)

The top-N relatedness (T'F,(N)) with frequent predicates is calculated based
on the most influencing frequent predicates in a cluster (e.g., highly related
frequent predicates with others).

Each infrequent predicate is stored in one cluster. This is because du-
plicating the infrequent predicates in several clusters is useless since the
number of joins of triples will not be important in this case. Two cases are
considered according to the value of maximum relatedness of the predicate

(Pi).

e Case 1 : max(Sim(p;,cj)) > 6) The infrequent predicate is stored in
the cluster having maximum of relatedness.

e Case 2 : max(Sim(p;,cj)) < ) The infrequent predicate is stored in a
‘special cases’ cluster. In fact, an infrequent predicate weakly related
to predicates (e.g., # = 0.15) should not be clustered with them.

Predicate

T,

Predicate with Predicate
description without
/\ description
Frequent Infrequent
Related Unrelated Related Low related

Clusters of frequent predicates Cluster of unrelated predicates

Figure 4.3: Our Clustering Process of Predicates



CHAPTER 4. PREDICATE-BASED CLUSTERING APPROACH 125

Table 4.1: ADW Results of 5 most related predicates to ”artist”
URI & Description Score
< http : //dbpedia.org/ontology/lyrics > 0.47
”Creator of the text of a MusicalWork, eg Musical, Opera or
Song”

< http : //dbpedia.org/ontology/producer > 0.45
”The producer of the creative work.”

< http : //dbpedia.org/property/worklInstitutions > 0.42
”work institutions”

< http : //dbpedia.org/property/workInstitution > 0.42
”work institution”

< http : //dbpedia.org/ontology/developer > 0.35

"Developer of a Work (Artwork, Book, Software) or Building
(Hotel, Skyscraper)”

’Special Cases’ Cluster

The ’special cases’ cluster (see Figure 4.3) contains predicates that are:

e Frequent but not related to any other frequent predicate

e Infrequent and the maximum relatedness with frequent predicates is
below a threshold

Example

We took an example of a predicate from DBPedia. We calculated the se-
mantic proximity of the predicate ”artist” using the ADW and UMBC tools.

(URI : < http : //dbpedia.org/ontology/artist >,

Description : ”The performer or creator of the musical work”)

For ADW tool, the 5 most related predicates to “artist” are “lyrics”,
“producer”, "workInstitutions”, “workInstitution” and ”Developer”, men-
tioned in Table 4.1. For UMBC tool, the 5 most related predicates to
Yartist” are “lyrics”, "music”, "creators”, "creator” and “producer” (see
Table 4.2). However, the most related predicates generated by ADW were
also generated by UMBC as highly related (i.e., around 0.4).

From the unrelated predicates to ”artist” using ADW, there are, e.g.,:

< http : //dbpedia.org/property/name > "name”,

< http : //dbpedia.org/property/released > "released”,

< http : //dbpedia.org/property/instruments > ”instruments”,

< http : //dbpedia.org/property/fusiongenres > ”fusiongenres”,

< http : //dbpedia.org/property/bgcolor > ”bgcolor”

< http : //dbpedia.org/property/subgenres > "subgenres”.

And from the unrelated predicates using UMBC tool, there are :
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Table 4.2: UMBC Results of 5 most related predicates to ”artist”
URI & Description Score
< http : //dbpedia.org/ontology/lyrics > 0.74
”Creator of the text of a MusicalWork, eg Musical, Opera or
Song”
< http : //dbpedia.org/property/music > 0.68
”music”
< http : //dbpedia.org/property/creators > 0.68
”creators”
< http : //dbpedia.org/property/creator >
”creator”
< http : //dbpedia.org/ontology /producer > 0.61
”The producer of the creative work.”

< http : //dbpedia.org/property/cover > " Cover”

< http : //dbpedia.org/property/type > "type”

< http : //dbpedia.org/property/length > " Length”

< http : //dbpedia.org/property/reference > ”reference”

< http : //dbpedia.org/property/fusiongenres > ”fusiongenres”
< http : //dbpedia.org/property/bgcolor > "bgcolor”

< http : //dbpedia.org/property/subgenres > ”subgenres”

4.2.2 Structural Clustering

Detecting graph patterns is a task used in many graph applications (e.g.,
graph indexing, search, similarity, classification, clustering). We propose to
use frequent patterns (see Chapter 1) consisting of k-predicates from the
dataset. The k-predicate frequent subgraph is a frequent subgraph in the
database with k edges. FSM algorithms use general graph input. We convert
RDF graphs to general graphs. Then, we apply Gaston original solution (see
Chapter 2) to extract k-predicate frequent subgraphs with a medium or high
minimum support threshold.

4.3 Partition-Aware Query Decomposition

In our work, we assume that we do not have access to the query logs. We
use the source description to decompose a query. The key of the decompo-
sition is the relatedness of predicates. A subquery contains strongly related
predicates.

SPARQL query is decomposed also according to the graph patterns key-
words (i.e., FILTER, LIMIT, UNION, OPTIONAL, MINUS, see Section
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3.3.3) and the case where the predicate is a variable. We define these cases
and illustrate them with examples of query Graph Patterns (GP).

FILTER Clause
We specify three cases (named F.1, F.2 and F.3) of "FILTER” as follows :

e F.1 : The FILTER clause is concerned with condition(s) about one
variable resource (i.e., subject or object) : The FILTER clause is sent
with triple patterns relative to the resource variables. GP Example :

2z P1 ?y. FILTER (%z STR("e”) &6 2y < 71988”)

e F.2 : The FILTER clause contains one condition, and it is concerned
with one predicate variable : The triple patterns containing the predi-
cate variable are sent to the clusters containing the predicate specified
by the FILTER clause. If there is a negation operator in the FILTER
clause, then triple patterns containing the predicate variable are sent
to all sources. GP Examples :

%z ?p ?t. FILTER (?p = P1)
%z ?p ¢t. FILTER (?p != P1)

e F.3 : The FILTER clause contains several conditions with different
variables (i.e., predicates and resources) : (i) Filtering values of vari-
ables are concerned with the same triple pattern for resources and the
same source for predicates : The FILTER clause is sent together with
its triple patterns, (ii) Otherwise, FILTER clauses are created where
each FILTER is concerned with one source. The clauses are sent to-
gether with their triple patterns to the sources. The master machine
performs the union (or intersection) of all FILTER results. Finally, it
processes the real FILTER clause on the results. An example of GP :

2z ?p ?t. FILTER ((?p = P1 66 2t < 71988”) || ?p |=P2)

OPTIONAL Clause

Clauses "OPTIONAL” are considered according to two cases (named O.1
and 0.2) as follows. Triple patterns preceding an OPTIONAL clause should
be all executed before the OPTIONAL one.” For OPTIONAL clauses con-
taining predicate variables, please refer to the cases of FILTER clause or no
FILTER clause.

"Apache JENA : SPARQL Tutorial - Optional Information https://jena.apache.
org/tutorials/sparql_optionals.html
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e 0.1 : The OPTIONAL clause contains one triple pattern or several
triple patterns that has (have) predicates in the same source. The
query contains triple patterns before the OPTIONAL clause having
predicates all from the same source. The predicates in the OPTIONAL
clause have the same source as those of triple patterns preceding it.
The query is sent as is.

Example :
¢ P1 2%y OPTIONAL { %z P2 "u” }

e 0.2 : The OPTIONAL clause contains one triple pattern or several
triple patterns that has (have) predicates in the same source. We
name the triple patterns preceding the OPTIONAL clause as X. The
predicates in X are not in the same source (e.g., P1, P2) and the
predicates in the OPTIONAL clause are in the same source as some
triple patterns in X (e.g., P2 and P3 are in the same source), the
OPTIONAL clause cannot be merged with these triple patterns in the
same query. The OPTIONAL clause is sent alone and is executed after
X.

Example :

%z P1 ?y. ?z P2 %z OPTIONAL { ?z P3 "u” }

e 0.3 : The OPTIONAL clause contains N triple patterns containing
predicates of several sources. Subqueries of triple patterns of the same
source are created. The master machine applies the join between triple
patterns. The OPTIONAL operator is processed on the joined results.
Example:

¢x P1 %y OPTIONAL { %z P2 "u”. %y P1 ?t}

UNION/MINUS Clauses

The following four cases (named U.1, U.2, U.3, U.4) apply for the UNION
clause. The MINUS clause also uses the same four cases. For UNION clauses
containing predicate variables, please refer to the cases of the FILTER clause
or no FILTER clause.

e U.1 : The UNION is performed between two triple patterns T1 and
T2 (i.e., T1 UNION T2). Two subcases are considered : (i) The
predicates in T1 and T2 are in the same source : The subquery T1
UNION T2 is sent to that source. (ii) The predicates in T1 and T2 are
in different sources : T1 and T2 are sent separately to their sources.
The UNION of results is performed by the master machine. Examples:
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%z P1 ?y UNION { %y P1 ?x}
%z P1 ?y UNION { %z P2 %y}

e U.2 : The UNION is performed between two sets of triple patterns
S1 and S2 and contains other keywords (e.g., OPTIONAL, FILTER).
Two sub-cases are considered : (i) All the predicates in S1 and S2 are in
the same source : S1 UNION S2 is sent to that source. (ii) Predicates
are from different sources : (a)if S1 and S2 do not contain OPTIONAL
clause and if S1 and S2 have a common core (i.e., triple patterns
that are the same in S1 and S2), and the uncommon triple patterns
are from the same source (e.g., P2 and P3), a UNION subquery is
performed between the uncommon triple patterns of S1 and S2. The
master machine performs then the join of uncommon and common
triple patterns. (b) Otherwise, S1 and S2 are two subqueries that
will be further decomposed according to the cases. The UNION is
performed by the master machine. Example:

{% P1 ?y. ?z P2 ?t. OPTIONAL {?z P3 ?z}}
UNION {?y P1 ?z. ?z P3 ?t. OPTIONAL {?y P4 ?2}}

e U.3 : There are several unrelated UNION clauses in the query: The
two first cases (i.e., U.1 and U.2) are considered for each UNION
clause. Example:

{% P1 ?y. ?2 P2 %t.}
UNION {?y P1 ?x. %z P3 ?t. }
%t P4 v
UNION { ?¢ P4 ?v. %e P5 7G” }

e U.4 : There are several related UNION clauses (e.g., S1 UNION
S2 UNION S3) in the query. Two subcases are considered : (i) all
predicates in UNION clauses are from the same source : The query S1
UNION S2 UNION 83 is sent to that source. (ii) Predicates are from
different sources : S1, S2 and S3 are considered as subqueries that are
further decomposed according to the cases. The UNIONs between S1,
S2 and S3 is performed by the master machine on the partial results
of the subqueries. Example:

{% P1 ?y. 7?2 P2 %t.}
UNION {?y P1 ?x. 7z P3 %t. }
UNION { %y P3 ?x. %t P5 7z }
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Predicate variables with no FILTER Clause

Predicate variables in the query with no additional information about their
potential values are sent to all sources.
Examples:

¢z P2 2x. Px ?p ?t. 2t P1 "u”.
fx ?p ?t. Uril P1 ?t.

2z P2 7x. %z ?p ?t. 2z P1 "u”.
%z ?p 2t. Uril P1 ?t.
2x P1 ?u. %t %x %2

It is worth noting that triple patterns that would be sent to the same
source are aggregated in the same subquery having one subquery per source,
expect for the cases of UNION, MINUS and OPTIONAL. For these last
cases, several subqueries can be sent to the same source. The LIMIT key-
word is applied by the master machine if the query is decomposed into sev-
eral subqueries. In this section, we listed the cases of query decomposition
according to the SPARQL keywords and to our clustering. We specified the
tasks that would be performed by slave machines and the ones that would
be performed by the master machine.

We now summarize our clustering approach by specifying the whole ar-
chitecture of the underlying system.

4.4 Architecture

The general process is shown in Figure 4.4: predicates are extracted from a
RDF dataset (step 1) as well as their respective metadata using an Ontology
of the dataset (step 2a). Further, the semantic relatedness between predicate
descriptions is computed using a STS solution (step 3a).

A basic data clustering algorithm is applied and RDF data is partitioned
according to the clusters of predicates (step 4). A parallel partitioning is
performed for structural clustering, where RDF graphs are converted into
general graphs (step 2b) and frequent k-predicate subgraphs are stored (step
3b).

A SPARQL query is decomposed into fragments (step 5) according to
clusters of predicates. Subqueries are sent to a specific partition (step 6) and
exact (or inexact) matching is performed (step 7). Results are aggregated
(step 8) by a master machine that performs joins of intermediate results.

8Draw.io Tool : www.draw.io
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4.5 Conclusion

In this chapter, we described our two clustering approaches for RDF data
in an aggregation-oriented search system. We presented our semantic clus-
tering approach which exploits the semantics of RDF in order to assemble
semantically related predicates. Semantic clustering focuses on relatedness
of predicates rather than on graph structure. Also, we presented our struc-
tural clustering using FSM algorithms (presented in Chapter 1 and 2).

We finally specified the query decomposition strategy by considering
SPARQL keywords and in accordance with the semantic/structural par-
titioning. In the next chapter, we conduct experiments to evaluate their
impact (if any) on query optimization.
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5.1 Introduction

We experiment in this chapter the impact of clustering RDF graphs on ag-
gregated search system using semantics and structural relatedness of predi-
cates. Also, we experiment our query decomposition approach and its effect
on aggregated queries.

The remainder of this chapter is as follows : The Section 1 defines main
notions related to experiments (i.e., Query features and shapes, RDF Bench-
marks). The Section 2 describes the experimental setup composed of the
chosen benchmark, metrics and clustering characteristics. Section 3 presents
the preliminary results of our experiment.

132
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5.2 Definition of Experimental Notions

We present in this section definitions and literature studies related to exper-
imental configuration. Mainly, we justify our choice for RDF dataset and
query set to experiment.

5.2.1 RDF Benchmarks

In order to test our approach, we choose to use an existing benchmark in
order to make our results more easily comparable with future approaches.
Two types of RDF Benchmarks have been proposed in Literature : Central-
ized and Distributed. We compare in this section some RDF Benchmarks
of Literature and justify our choice of a Benchmark.

Centralized RDF Benchmarks

Centralized RDF benchmarks [W3C 2018] aim at evaluating query engines
devoted to access data stored in a single repository. Those benchmarks
are used in order to evaluate the triple stores performance. Benchmarks
(e.g., SRBench [Zhang 2012]) dedicated to data streaming systems are not
included in the following.

Synthetic Centralized Benchmarks They generate triples by using a spe-
cific and fixed ontology.! Examples of this category of benchmark are LUBM
[Guo 2005], BSBM [Bizer 2013], SP2Bench [Schmidt 2008].

Realworld-like Centralized Benchmarks. Some benchmarks propose to
generate sized samples of real-world datasets and samples of queries from
query logs. Examples of these benchmarks are POSB [Atemezing 2018],
BioBenchmark [Wu 2014b], DBPSB [Morsey 2011].

Domain-specific Benchmarks There are some benchmarks dedicated
to specific domains. Examples of these benchmarks are SNB/SIB So-
cial Network Intelligence Benchmark, LDBC Social Network Benchmark
[Boncz 2013, Erling 2015] for social networks, BioBenchmark [Wu 2014b] for
biological data, Last.fm Benchmark [Przyjaciel-Zablocki 2013] for Last.fm
data, BSBM (Berlin SPARQL Benchmark) [Bizer 2013] for e-commerce
(i.e., products, sellers, consumers and products reviews of consumers),
SP2B/SP2Bench (SPARQL Performance Benchmark) [Schmidt 2008] for
generating arbitrarly large DBLP-like data, LUBM (Lehigh University
BenchMark) [Guo 2005] for generating OWL data from University ontology
(i.e., Univ-Bench Ontology), POSB (Publications Office SPARQL Bench-
mark) [Atemezing 2018] using the EU publications Office (PO) data, Wat-
Div/WSTB (Waterloo SPARQL Diversity Test Suite) [Alug 2014] generat-
ing synthetic sized dataset and queries from User/Product dataset.

"mttps://cedar.liris.cnrs.fr/papers/PRIM1-TripleGenerator.pdf
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We are interested by the benchmarks that propose cross-domain and
real-world datasets. We describe the most relevant ones in the following.

¢ IGUANA (Integrated Suite for Benchmarking SPARQL)
[Conrads 2017]. It is an unified benchmark execution platform for
SPARQL queries. It allows the execution of state-of-the-art bench-
marks (synthetic or real-world) and the comparison of triple stores
based on performance of load times, parallel query execution by choos-
ing the number and type of workers and optional different data changes
(e.g., adding triples at runtime). As an example, authors integrated
two SPARQL benchmarks generators : FEASIBLE [Saleem 2015] and
DBPSB [Morsey 2011]. They evaluated state-of-the-art triple stores
using four dataset loads from DBpedia and Semantic Web Dog Food
(SWDF) datasets. IGUANA is also able to execute federated (dis-
tributed) SPARQL benchmarks. IGUANA supports both query tem-
plates and query sets as query input.

e FEASIBLE (A Featured-Based SPARQL Benchmark Gener-
ation Framework) [Saleem 2015]. It is a query generator framework.
Queries sets are generated based on query logs of RDF datasets (e.g.,
DBPedia). FEASIBLE considers SPARQL query forms : SELECT,
ASK, DESCRIBE and CONSTRUCT. Also, it considers the query re-
sult sizes, execution times, triple patterns and join selectivities, and
number of join vertices.

e DBPSB (DBPedia SPARQL Benchmark) [Morsey 2011].
DBPSB is now a deprecated project. IGUANA framework includes the
DBPSB benchmark and some of its functionalities. The benchmark
proposes a real-world like dataset that simulate the distribution of the
DBPedia data [Kim 2015]. The query generator in DBPSB produces a
set of query templates. Further, the query generator instantiates these
templates with RDF terms from the dataset. Using query templates
instead of query sets DBPSB considers SPARQL clauses : UNION,
OPTIONAL, FILTER, LANG, REGEX, STR, and DISTINCT. And
it produces samples of SELECT queries. Other query features are not
considered for evaluation [Saleem 2015].

We summarize in Table 5.1 the characteristics of these three
SPARQL/RDF benchmarks with their advantages and drawbacks.
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Dataset Characteristics of Benchmarks

Table 5.2: RDF datasets characteristics in Benchmarks from [Kim 2015]

(modified)
Benchmark Predicates Triples
(millions)

LUBM [Guo 2005] 18 1335
SNB [Boncz 2013] 44 387
SP2Bench [Schmidt 2008] | 77 1399
WatDiv [Alug 2014] 85 <1
DBPSB [Morsey 2011] 39 675 183

The DBPSB benchmark proposes a number of predicates larger than
other benchmarks (e.g., LUBM and SP2Bench, see Table 5.2). This is
due to the fact that DBPSB uses DBPedia that is cross-domain dataset
[Kim 2015]. It is worth noting that the largest RDF dataset (2015) in liter-
ature [Hammoud 2015] consists of 13.6 billions of triples (disk size 2.5 TB).

To summarize, we choose to use the datasets and queries of the DBPSB
benchmark for the following reasons :

(i) DBPedia is a real cross-domain dataset that is widely known. Other
benchmarks afford domain-specific datasets (e.g., e-commerce for BSBM,
university for LUBM, social networks for SNB)

(ii) The number of the predicates (i.e., 39 675 predicates) is much supe-
rior to other benchmarks (e.g., LUBM with 18 predicates)

IGUANA benchmark is also used for DBPSB query templates instanti-
ation and performance metrics. We will present in the following, how the
DBPSB benchmark generates datasets and queries.

Characteristics of DBPSB Benchmark There are two methods (i.e., raw
or seed) of data generation proposed in DBPSB [Morsey 2011]. The ex-
perimented seed method in [Morsey 2011] shows better degree of similarity
between the whole dataset and the sample, rather than the rand method.

e Cross-domain data DBPedia is a cross-domain dataset, that ex-
tracts RDF structured data from the Wikipedia project [Cunha 2015,
Abbas 2017]. DBpedia v3.6 contains 289,016 classes. 275 of these
classes are in the DBPedia ontology. DBPedia v3.6 contains also
42,016 properties. 1335 of these properties are DBPedia-specific
[Morsey 2011].

e Data generation of DBPSB (Seed method) The dataset is a
sample of DBPedia with a scale factor x% (i.e., 10%, 50% or 100%).
A seed method is used in DBPSB where x% of classes is selected.
For each class, the x% of instances is selected. For each instance, a
statement-generation process named concise bound description (CBD)
is used to retrieve statement with new resources. These new resources
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should not be subjects in the initial graph. This process is repeated
until the x% of the DBPedia dataset is reached (in terms of the number
of triples).

e Query set A three-month query log of DBpedia SPARQL is used. The
query log contains 31.5 million queries. Queries that are frequently
(above 10) submitted are selected. Query redundancy is solved by
using sequential variable names (e.g., var0, varl). The set of queries
contains 35,965 queries. The queries are clustered according to string
similarities.? A graph clustering approach of the BorderFlow algo-
rithm is used to cluster queries. 12 272 query clusters are generated.
Clusters of size above 5 are considered. Clusters are ranked according
to the frequency of the queries they contain. For the highly ranked
cluster, the queries with the highest frequency in a cluster and respect-
ing some selected features are chosen. 25 queries are chosen.

Distributed RDF Benchmarks

Federated (distributed) RDF benchmarks such as FedBench [Schmidt 2011],
LargeRDFBench [Saleem 2018], QALD-4 [Unger 2014] can be used. Using
datasets from different fields of these benchmarks is possible in our approach.
However, these datasets should have common semantics (e.g., common pred-
icates).

In this work, we are interested by centralized benchmarks in our exper-
iments.

5.2.2 Triple Stores
RDF triples can be stored in either centralized or distributed systems. The
triple stores can use relational-based or graph-based stores [Hammoud 2015].

Centralized RDF systems

The main property of centralized RDF systems is that they do not use
any communication between nodes, avoiding any overhead [Hammoud 2015].
Apache Jena TDB [Wilkinson 2003], Sesame [Broekstra 2002] and Oracle
[Chong 2005] are some of the centralized RDF triple stores.

Distributed RDF systems

With distributed systems, RDF triples are partitioned into clustered ma-
chines using partitioning algorithms (see Section 3.4.2, Chapter 4). The

2LIMES framework, the Levenshtein string similarity measure and a threshold of 0.9
are used
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drawback of these systems is the intermediate data shuffling and communi-
cation between nodes [Hammoud 2015].

5.2.3 Query Processing Engines and SPARQL servers

SPARQL Engines have been proposed to execute queries on RDF datasets.
The engines contain implementation of data management techniques.
Engines can either run queries using APIs provided with RDF frame-
works or using a Web access interface named a SPARQL Endpoint
[Van Herwegen 2015, Taelman 2018]. A SPARQL Endpoint® allows receiv-
ing and processing SPARQL protocol requests (e.g., GET, POST of a query)
using a HTTP network. The datasets inquired in the SPARQL endpoints
are generally decentralized datasets. However, local datasets can be exposed
as a SPARQL end-point accessible over HTTP by using SPARQL servers
(e.g., Fuseki server, Sesame server) provided by RDF APIs (e.g., Apache
Jena, Sesame). APIs provide also SPARQL engines (e.g., Jena ARQ) that
are usable in a programming environment. Federated query engines (e.g.,
Jena DARQ [Quilitz 2008], ANAPSID [Acosta 2011]) are also proposed to
process federated queries (e.g., query decomposing) and to access distributed
endpoints.

5.2.4 Query Shapes

Basic graph patterns (see Section 3.3.3) of SPARQL queries can have dif-
ferent shapes and these shapes impact the query performance [Alug 2014,
Schétzle 2016a]. The position of variables (as subject or object) in the triple
patterns defines the query shapes [Schétzle 2016a).

:

Cycle

Star Chain Tree Complex

Figure 5.1: SPARQL BGP Query shapes [Wylot 2018]

Star Queries

The queries are of diameter* equal to one. The star query allows joins of
subject to subject. The join variable in the query is the subject of all triple
patterns.

Shttps://www.w3.org/TR/sparqlii-protocol/
4The diameter of a SPARQL BGP is the longest path of triple patterns ignoring edge
direction [Schétzle 2016a].
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Path Queries

Also named Linear, chained or chain queries. A path query contains triple
patterns connected like a chain. It allows joins of a subject to object (or
object to subject).

Tree Queries

The tree query allows joins of subject to subject (or subject to object).

Cycle Queries

The cycle query contains cycles and it allows three types of join : Subject
to subject, subject to object and object to object.

Complex Queries

The complex query is a combination of different shapes. For example,
snowflake-shaped query is a combination of star-shaped queries connected
by short paths [Schétzle 2016a].

We present in the following our experimental configuration for testing
our clustering approach in RDF Aggregated search system.

5.3 Experimental Setup

We present in this section the statistics of the used dataset, used RDF frame-
work, machines configuration and characteristics of queries that are part of
the benchmark DBPSB (see Section 5.2.1). We also define the clustering
characteristics. Finally, we define the used metrics.

5.3.1 DBPSB Benchmark Dataset

We choose to use a sample of 10% of DBPedia provided by the benchmark.’
We loaded the dataset after correcting a parsing error. The error concerns
a space in an URI ... /brake horsepower” that we fixed by ”... /brakeHorse-
power” using the sed® command in the terminal.

Table 5.3 illustrates the characteristics of this dataset in terms of |77 :
Number of triples, |P| : Number of properties, |DP| : Number of properties
with description (comment or label), |LP| : Number of properties with label,
|AP| : Number properties with added description, |F'Pig19| and |F Piool :
Number of frequent predicates with minimum frequency threshold set to
1010 and 100, respectively.

the average of frequency approximatively equal to 1010

®https://github.com/dice-group/IGUANA /wiki/How-to-execute-DBPSB
5Sed - Cut. https://doc.ubuntu-fr.org/sed
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Table 5.3: DBPedialO (10% of DBPedia) Characteristics
T 1P| [DP| | |AP| | |[LP| | [MLP[| |FPiowl| |FPiool
14 274 115 | 14 130 | 11 100 | 3 030 | 10 955 | 652 1218 3132

Most of the predicates are described by labels (see Table 5.3). Only 145
predicates are described by a definition (i.e., comment). Also, about 22%
(i.e., 3 030) of predicates do not have a description, we added them one by
using their URI’s local name. 147 out of these 3030 predicates are frequent
(0=100). We modified 652 predicates by removing special characters (e.g.,
combatant_id => combatant id).

5.3.2 RDF Framework

We used the Apache Jena framework (v3.0.0) which is deployed with the java
language. For java programming, we used the Eclipse Framework (Oxygen
v.2) and JDK1.8.0_151. For triple stores, we used Jena TDB (v3.8.0) and
Fuseki server (v3.8.0). We was inspired by the code in RDF Jena exam-
ples” for querying and storing RDF data. Practically for our case, three
commands are possible for querying RDF data according to the input : (i)
s-query of Fuseki server if the database is an endpoint (service), (ii) arg if
the database is provided in a file or (7i) tdbquery requiring the triple store
path as an input. We use the last one.

The java heap space was set to 2GB. We used fuseki server to load the
dataset in the triple store TDB.

5.3.3 Machines Configuration

We set two type of machines : (i) A master machine which is supposed to
perform the clustering, send partitions to each slave machine, decompose
the query, get the intermediate results and aggregate them and (ii) Slave
machines that stores partitions of the dataset, queries them and return sub-
results to master machine. We created script files (generated by java code)
to execute the following steps : (i) machine configuration (e.g., JRE, Fuseki
server), (ii) store data partitions and load them on triple stores of each
machine and (%ii) send subqueries and execute them.

5.3.4 Clustering Configuration

We present in this section the steps leading to clustering predicates and
partitioning data.

"castagna jena-examples : https://github.com/castagna/jena-examples
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Table 5.4: DBPedial0 Predicate Metadata Ontologies

Ontology link Number of | Number of | Useful
Properties Triples Metadata
DBPedia
dbpedia/property 13 057 6 298 536 rdfs:label
dbpedia/ontology 1055 2 681 739 rdfs:label
rdfs:comment
W3C
WWW.W3.0Tg 7 4 452 466 rdfs:label
rdfs:comment
FOAF
xmlns.com/foaf 9 780 367 rdfs:label
rdfs:comment
Others
georss.org 1 51 111 -
purl.org/dc/elements/1.1/| 1 9896 rdfs:label

rdfs:comment

Extraction of predicates and their descriptions

We extracted all predicates having a comment or a label using DBPedia
metadata. Table 5.4 illustrates the used ontologies affording descriptions
(i.e., label or comment) and their characteristics. The predicates and their
descriptions are stored in a relational database.

Predicates (URIs) and their description are stored. We attributed Ids to
predicates.

Relatedness Computation

We used two tools UMBC and ADW (see Section 4.2.1). We integrated
both ADW and UMBC solutions in our java code. ADW provides a JAR
file (ADW.feb2015.jar) that we used to calculate similarity. UMBC provides
a web service that we used. WordNet v3.0 was used. Proximity values are
from 0 to 1. We stored similarity values and their respective predicates (Ids)
in a relational database.

Clustering Method

We create a matrix of relatedness for performing clustering of frequent pred-
icates (See Section 4.2.1). Input variables of the clustering were defined
previously (see Section 4.2.1, Chapter 4). For the top-N frequent predicates
per cluster (T'F,(N)) - used to cluster the infrequent ones - we define the
top-N as the most influencing frequent predicates. An influencing frequent
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predicate is a frequent predicate highly (a minimum relatedness threshold is
set, e.g., 0.8) related to many other frequent predicates in the database. The
top-N influencing predicates per cluster are compared with infrequent ones.
In this experiment, we set N to 1 and the minimum relatedness threshold
(8) for influencing frequent predicates to 0.5. The minimum frequency of
predicates (o) is set to 1010. We choose this value since it represents the
average of predicate frequency in the RDF database (i.e., 10% of DBPe-
dia). We set three configurations for the number of clusters (|C|) to 10, 40
and 100. The minimum relatedness threshold (6) for infrequent predicates
to 0.1. We used the library scikit-learn (v0.20.2) which contains tools for
data mining and machine learning to perform clustering. We added Python
IDE to Eclipse (PyDev 7.0.3 for Eclipse). We used Spectral Clustering® (see
Section 4.2.1) from this library as a clustering model. We used this model
since it uses an affinity matrix (i.e., input values are not vectors in a space
but precomputed similarity values). Other basic models (e.g., k-means) in
the library accept only a vector matrix. We set the random state of the
algorithm to 0.

After clustering, infrequent predicates are attributed to the formed clus-
ters according to their relatedness. Also, frequent predicates that are un-
related to any other frequent predicates (see Section 4.2.1) and infrequent
predicates having low relatedness (see Section 4.2.1) are attributed to a
'special cases’ cluster. Clusters (Ids) and their predicates are stored in the
database.

5.3.5 DBPSB Queries Characteristics

DBPSB benchmark affords two sets of query templates (i.e., QuerySet2011,
QuerySet2012). The proposed queries in 2011 are more complex queries
than the ones proposed in 2012 (see Appendix Tables A.2, A.3).

For each query template in the benchmark, there is a successive query
template that generally contain the same predicates with additional varia-
tions in the variables number and BGP clauses (adding a FILTER, LIMIT).
Some queries contain variables that are predicate and resource in the same
time (e.g., Q22 in DBSPB Query2012). Some queries have a FROM clause.
Since, we work on our own database, we delete the ”FROM” clause in these
queries.

QuerySet2011

The query set contains 50 query templates.
Predicate Number. 36 queries out of 50 contain at least two constant
and distinct predicates. 29 queries out of 50 contain at least 3 constant and

8Scikit Learn Spectral Clustering : https://scikit-learn.org/stable/modules/
clustering.html#spectral-clustering
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distinct predicates. There are at most 12 distinct predicates in a query (i.e.,
Q13, Q14). We can notice that performing query decomposition for this
query set is an interesting task.

Predicate Variability. 11 queries out of 50 contain variable predicates.
6 of these queries have filtering values in the query which helps targeting
sources. The rest of the queries have unknown predicates that should target
sources according to the resources in the query.

Predicate Redundancy. 19 queries out of 50 contain redundant predi-
cates. Most of these queries (i.e., 17 out of 19) have low redundancy (i.e.,
1 or 2). The redundancy of predicates does not exceed 4 in a query (e.g.,
Q9, Q10 with 4 redundant predicates and 5 distinct predicates).

Resource Number. There are at most 12 variable resources in a query
(e.g., Q40, see Appendix Table A.2).

Query Shapes. We illustrate in Table 5.5 the query shapes (see Section
5.2.4) of the query set. 33 queries out of 50 are star or path queries.

Table 5.5: Query Shapes of QuerySet2011

Query Shapes Total
Path Queries 13
Star Queries 18
Tree Queries 8
Complex Queries 6
Star/Tree Queries 3
Star/Path Queries 2

Query Keywords. The query set includes some keywords (i.e., UNION,
FILTER, OPTIONAL, LIMIT) in queries. 18 queries out of 50 have UNION
clauses and 16 queries out of 50 have OPTIONAL clauses (see Table 5.6).
There are at most 2 UNIONs in a query. There are at most 8 OPTIONALS
in a query (e.g., Q13, see Appendix Table A.2). Different query shapes
include these keywords.

Table 5.6: Query Keywords of QuerySet2011

Query Keywords Total

UNION 18

OPTIONAL 16
QuerySet2012

The query set contains 40 query templates.
Predicate Number. 26 queries out of 40 contain at least two constant
and distinct predicates. 14 queries out of 40 contain at least three constant
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and distinct predicates. There are at most 8 distinct predicates in a query
(i.e., Q13, Q14, see Appendix Table A.3). We can notice that performing
query decomposition for this query set is an interesting task.

Predicate Variability. 3 queries out of 40 contain variable predicates. All
these queries have filtering values in the query which helps targeting sources.

Predicate Redundancy. 6 queries out of 40 contain redundant predicates
(see Appendix Table A.4). All these queries have a redundancy equal to 1
(i.e., One predicate is redundant once in the query).

Resource Number. There are at most 5 variable resources in a query
(e.g., Q24, see Appendix Table A.3).

Query Shapes. We illustrate in Table 5.6 the query shapes (see Section
5.2.4) of the query set. 33 queries out of 40 are star or path queries.

Table 5.7: Query Shapes of QuerySet2012

Query Shapes Total
Path Queries 17
Star Queries 16

Tree Queries
Complex Queries
Path/Complex Queries

N W N

We can notice that the 2012 query set in terms of query shapes, is less
balanced than the one of 2011.

Query Keywords. The query set includes some keywords (i.e., UNION,
FILTER, OPTIONAL, LIMIT) in queries. 7 queries out of 40 have UNION
clauses and 8 queries out of 40 have OPTIONAL clauses (see Table 5.8).
Most of the queries contain 1 or 2 UNIONs. There are two queries containing
8 UNIONSs (i.e., Q13, Q14, see Appendix Table A.3). Queries contain at
most 2 OPTIONAL clauses (e.g., Q24, see Appendix Table A.3). Different
query shapes include these keywords.

Table 5.8: Query Keywords of QuerySet2012

Query Keywords Total
UNION 7
OPTIONAL 8

Query sets 2011 and 2012 have different characteristics. The Query-
Set2011 contains more complex queries than the QuerySet2012. However,
the QuerySet2012 have more UNION clauses per query than QuerySet2011.

5.3.6 Evaluation Metrics of our Aggregated Search System

The potential metrics to test the effect of our clustering on aggregated search
are : (i) Runtime : the time spent by tasks devoted to query processing and
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aggregation of results, (ii) Quality of IR results (iii) Number of requests
sent to sources, (iv) Size of intermediate results and number of joins, (v)
Number of local vs. external joins, (vi) Partition quality : The represen-
tativity of clustered subgraphs compared to the structure of graphs in the
dataset. Comparison between partition quality of semantic and structural
approaches. (vii) Decomposing quality : Comparing results according to
query characteristics (e.g., query shape). In this report, we will focus on the
third metric.

Basic System for Comparison

We aim to compare these variations for comparison :

(i) Centralized dataset (no clustering approach) : NC

(ii) No query decomposing approach : NQD

(iii) Systems performing query decomposing and data partitioning (See
chapter 4) : SDP

(iv) Unitary subqueries (one predicate) : OPQ

(v) Randomly n-predicates subqueries compared to our approach with
also n-predicates subqueries : RINQ

In this report, we focus on the third and fourth comparisons.

5.4 Experimental Results

We present in the following the results about the impact of the semantic
clustering mainly on the query decomposing.

5.4.1 Predicate Relatedness Results

We present first the results of the two tested tools (i.e., ADW and UMBC).
We focus mainly on results of frequent predicates. In table 5.9, UMBC tool
using both Wordnet and a corpus (see Section 4.2.1) showed a low relatedness
between frequent predicates with a 70.79% of similarities are equal to 0 and
a 24.03% of similarities are lower than 0.15. ADW tool using only Wordnet
showed better results where the number of unrelated frequent predicates is
equal to 27.66%. ADW tool showed a majority of relatedness (i.e., 71.13%
) that is inferior to 0.15.

5.4.2 Query Decomposing Results

In this section, we present the query decomposing results of the Queries
2012 and 2011 sets (see Section 5.3.5) using our semantic clustering ap-
proach. The queries that would lead to one predicate (unitary queries) or
to redundant cases of decomposing (e.g., Q37 a subcase of Q31) are not
presented.
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Table 5.9: Predicate relatedness statistics

Number of similarities : frequent predicates
UMBC | ADW

sim =1 0.06% 0.04%

sim >= 0.5 0.83% 0.11%

0.25 =< sim < 0.5 | 1.65% 0.24%

0.15 < sim < 0.25 | 2.70% 0.85%

0 < sim <=0.15 24.03% 71.13%

0 < sim < 0.05 7.22% 14,63%

sim =0 70.79% | 27.66%

TS 741 153

Table 5.10 shows the predicate relatedness in each query of the
Queries2012 set (For Queries 2011 see Appendix A.6) where the number
of clusters is set to 40 or to 10. For each query, the clusters of predicates are
presented (e.g., Q9 has 3 clusters of predicates : {birthDate, deathDate},
{birthPlace} and {name}).

Table 5.10: Semantic relatedness in Queries2012 set

Queries Related Predicates
|C| =40 |Cl =10
Q5 type, label, homepage type, label, page
page thumbnail, homepage
thumbnail
Q9 birthDate, deathDate
birthPlace
Q13 writer, creator, starring, | writer, creator, director,
director, producer producer
executiveProducer executiveProducer,
starring, series
series
guest \
Q23 subject, comment
- mame
Q25 influenced influenced
page page, label
label
Q29 comment, depiction, comment, depiction
homepage homepage
Q31 type, label
Q33 label, comment

abstract, owner
redirect
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Clusters in blue represent the predicates that are unrelated to any other
frequent predicate in the database (e.g., name, guest). Clusters in gray
represent the predicates that are not found in the database (e.g., redirect).

Comparison of Our approach with Unitary decomposing

Tables 5.11 and 5.12 show the number of resulting subqueries according to
our semantic approach, where TP is the total number of predicates per
query and |C| corresponds to the number of clusters. If the query contains
variable and constant predicates, it is noted as ¢ & v var(f) where ¢ cor-
responds to the number of constants, v to the number of variables and f to
the number of constant predicates in FILTER clauses corresponding to the
variable predicates.

Table 5.11: Queries 2012 and the number of subqueries
Queries | TP |C| =100 | |C| =40 | |C|=10
Q5 3
Q9
Q13
Q23
Q25
Q29
Q31
Q33

DN W[ W[ W| 00| k| Ct
CUDN| W W W[ | Ww| ot
B = ol | W W
NN W W W

var (7)

We can compare our approach with unitary decomposing. 81% (i.e.,
18 out of 22) of queries in the two query sets (i.e., 2011 and 2012) are
decomposed with less number of subqueries than unitary decomposition,
where the number of clusters is equal to 40 or 10 (see Tables 5.11 and 5.12).
For some cases, OPTIONAL and UNION operators do not allow a more
optimized subquery number. We can notice that the number of external
joins is reduced compared to a unitary decomposing. Also, the number of
requested data is reduced compared to a non-partitioned system.

Comparison of Our approach with Predicate source description
partitioning

We compare our approach with an approach that partition data according to
the predicate source (SDP). Comparison is based on the number of targeted
sources. The total number of sources for the second approach (SDP) is
equal to 9 corresponding to the predicate metadata sources (including 4
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sub-sources of W3C : OWL?, RDFS'®, RDF! and SKOS!?, see Section
5.3.4). In our approach, we consider the number of sources set to 10.

Table 5.12: Queries 2011 and the number of subqueries

Queries | TP |C] =100 | |C] =40 | |C|=10
Q9 ) ) 4 3
Qi1 3 3 2 2
Q13 12 12 8
Q15 3 3 2 3
QL7 8 8 8 7
Q19 7& Lvar (3) | 10 8 4
Q21 2& 1var (0) |3 3 3
Q23 3 3 ) 2
Q29 2 2 1 1
Q31 1& 1var (0) |2 2 2
Q33 2 1 1 1
Q39 12 8 8 8
Q43 2 2 1 2
Q47 3 3 3 3
Q49 5 4 4 3

In 58% of queries, our approach targets less sources than the SDP ap-
proach for the two query sets 2011 and 2012 (see Tables 5.13 and 5.14).

Table 5.13: Decomposing approaches of Queries2012 set : Targeted sources

Queries Our SDP
approach approach
Q5 2 4
Q9 3 3
Q13 3 1
Q23 2 3
Q25, Q29 | 2 2
Q31, Q37 | 1 2
Q33 10 9
Q39 1 3

In a context of aggregation where different sources and different predi-
cates could exist in the user query, an information retrieval system should

YOWL http://www.w3.org/2002/07/owl#
RDFS http://www.w3.org/2000/01/rdf-schema#
HURDF http://www.w3.org/1999/02/22-rdf-syntax-ns#
128K OS http://www.w3.org/2004/02/skos/core#
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consider our semantic clustering approach for reducing the number of tar-
geted sources to ask.

Table 5.14: Decomposing approaches of Queries2011 set : Targeted sources

Queries Our SDP
approach approach
Q9, Q15 3 4
Q11, Q23 | 2 3
Q13, Q39 | 4 6
Q15, Q49 | 3 2
Q17 4 5
Q21, Q47 | 2 1
Q29,Q33 |1 2
Q43 2 2

5.5 Conclusion

We presented in this chapter, the main notions related to experiments, our
setup configuration. Preliminary results were reported about our semantic
clustering and its effect on query decomposing.



(General Conclusion and
Perspectives

Aggregated Search and Semantic Web can be considered as two key fields in
Information Retrieval and for distributed sources. Literature relative to a
subcategory of aggregated search (AS) : Relational AS does not exceed ten
studies. However, contributions in federated search and graph search are
strongly related to relational AS.

Our PhD was doing part of the CAIR'3 project which proposed to define
the main processes of an AS system. Lining with the same objective, we
proposed to define an indexing approach for Relational AS.

We studied for this, frequent subgraph mining in order to store fragments
of information that could optimize aggregation. We noticed that the FSM
literature lack of some important information about algorithms performance
such as that recent algorithms are tested with the least recent ones and
no study is proposed about the effect of the variability of input on the
performance of FSM solutions. We elaborated an experimental study of
FSM solutions and we selected four most efficient ones that can be used
according to the case of use.

In order to optimize aggregation operations and sources access, we pro-
posed to cluster information and to decompose queries in order to send
subqueries to targeted sources. Sources should contain related information
essentially in terms of semantics. For this, we studied the semantic proxim-
ity approaches for RDF graphs and proposed to use a unit of graphs (i.e.,
predicates) that is mostly known in queries. We used the description of
predicates in order to guess their semantic relatedness. Our theory is based
on the idea that if two predicates are related (e.g., studied, Project), they
should be also found related in the query of the user. And so they should
be found together in sources for better aggregation.

We partitioned RDF graphs based on this semantic relatedness or on
structure relatedness (using Frequent subgraph mining algorithms). We
present the cases of SPARQL query decomposing according to the query
clauses and the clustering approach (semantical or structural).

We presented an experimental study of the two approaches of clustering.
Our experiments use an existing benchmark (i.e., DBPSB) that proposes a
cross-domain dataset. We inspected by this study the effect of clustering
RDF graphs (mainly semantically) on optimizing the access to sources and
reducing the number of joins.

Our future works concern extracting frequent subgraphs of the dataset
(DBSPB) for structural clustering and proposing a complete solution of the

13CAIR home page: www.irit.fr/CAIR/fr/

151



CHAPTER 5. EXPERIMENTAL STUDY OF CLUSTERING APPROACH152

query decomposing process. Also, the scenario of aggregated search should
be completed by using an aggregation algorithm (in the master machine).
Finally, we should study the impact of clustering approaches on the con-
structed Aggregated Search System by comparing the semantic results with
structural ones.
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A.1 CAIR Project
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A.2 FSM Keywords
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DBSPB Query Characteristics

Keyword(m) (e.g., FILTER(3)) : There keyword is repeated m times
in the query.

FILTER(nC) : There is n FILTER keywords in the query where the
FILTER contains more than one condition.

z (+1 R) : There are z+1 predicates including one that is redondant.
Redundancy is often due to UNION clauses.

y (+1 P) : There are y+1 variables including a variable that is a
predicate.

y (+1 Pr) : There are y+1 variables including a variable that is a
predicate and a resource in the same time.

z (+bwvar : a) or (var : a): There z constant predicates in the query
with b variables predicates. The variable predicates are filtered in the
query using a constant predicates.

z (2 C) : There are x constant predicates in the query including two
of them that are auto-cyclic (i.e., the subject is also the object).

Table A.2: DBSPB Queries2011 Characteristics

1d Shape Predicates | Variables| BGP Keywords
Q3 | Path 0 (4var:2) |2 FILTER(1C)
Q4 | Path 0 (+var:2) |3 FILTER(1C), LIMIT
Q35 | Paths 0 (+var:5) | 2 (+1P) | FILTER(2C), UNION(1)
Q36 | Paths 0 (+var: 6) | 3 (+1P) | FILTER(2C), UNION(1),
LIMIT
Q1, | Path 1 1 -
Q41
Q2, | Path 1 2 LIMIT
Q42
Q37 | Path 1 (+1R) 1 UNION(1), FILTER(1C)
Q38 | Path 1 (+1R) 2 UNION(1), FILTER(1C),
LIMIT
Q7 | Path/Star| 1 (+1 R) |4 (+1P) | UNION(1)
(+var : 0)
Q8 | Path/Star| 1 (+1 R) |5 (+1P) | UNION(1), LIMIT
(4var : 0)
Q31 | Complex |1 (+1 R) |5 (+1 Pr) | FILTER(2C),
(4var : 0) OPTIONAL(2)
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Q32 | Complex |1 (+1 R) |4 (+1Pr) | FILTER(2),
(4+var : 0) OPTIONAL(2), LIMIT

Q29 | Star 2 2 FILTER(1)

Q43 ;

Q30 | Star 2 3 FILTER(1), LIMIT

Q34 FILTER(1), LIMIT

Q44 LIMIT

Q33 | Star 2(+2R) |2 UNION(2), FILTER(1)

Q22 | Complex | 2 (+var: 0) | 3 (+1 Pr) | OPTIONAL(6),
UNION(2), LIMIT

Q45 | Star 3 2 -

Q15 | Star 3 (+1R) 2 FILTER(2), UNION(1)

Q21 | Paths 3 3 OPTIONAL(6),
UNION(2)

QL1 | Star 3 3 FILTER(1)

Q12 FILTER(1), LIMIT

Q46 LIMIT

Q25 | Paths 3 3 FILTER(1), UNION(2)

Q16 | Star 3(+1R) |3 UNION(1), LIMIT

Q47 | Complex | 3 (+1 R) 3 -

Q23 | Tree 3(T1R) |3 FILTER(1)

Q26 | Path 3 1 FILTER(1), UNION(2),
LIMIT

Q27 | Star 3(+1R) | 4 OPTIONAL(2),
FILTER(2)

Q24 | Tree 3(+1R) |4 FILTER(1), LIMIT

Q48 | Tree 3(T1R) |4 LIMIT

Q28 | Star 3(T1R) |5 OPTIONAL(2),
FILTER(2), LIMIT

Q5 | Star 5 1 OPTIONAL(L)

Q6 | Star 5 5 OPTIONAL(L),

Q49 LIMIT

Q50 | Star 5 6 LIMIT

Q9 | Star/Tree | 5 (+4 R) 4 UNION(1)

Q10 | Star/Tree | 5 (14 R) | 6 UNION(1), LIMIT

Q20 | Tree 7 (+var: 3) | 8 (+1 P) | OPTIONAL(1),
FILTER(2), LIMIT

Q19 | Tree 8 (+var: 3) | 8 (+ 1 P) | OPTIONAL(1),
FILTER(4)

Q17 | Tree 9 5 UNION(2),

OPTIONAL(2)
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Q18 | Tree 9 6 UNION(2),
OPTIONAL(2)

Q39 | Tree 10 (412 R) | 10 UNION(1),
OPTIONAL(4),
FILTER(1C)

Q40 | Tree/Star | 10 (+2 R) | 12 UNION(1),
OPTIONAL(4),
FILTER(1C), LIMIT

Q13 | Complex | 12 (2 C) 10 OPTIONAL(S)

Q14 | Complex | 12 (2 C) 11 OPTIONAL(8), LIMIT
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Table A.3: DBSPB Queries2012 Characteristics

Id Shape Predicates| Variables | BGP Keywords

Q1 Path 1 1 -

Q3 -

Q15 FILTER(1)

Q27 FILTER(1)

Q35 -

Q2 Path 1 2 -

Q4 -

Q16 FILTER(1), LIMIT

Q28 FILTER(1), LIMIT

Q36 LIMIT

Q11 Path 0 (+var : | 1(+1P) |-
1)

Q33 | Complex |0 (+var : |3 FILTER(2C), UNION(1)
5)

Q34 Paths 0 (+var : |4 FILTER(2C), UNION(1),
5) LIMIT

Q12 Path 1 2 FILTER(1), LIMIT

Q31 Star 2 2 OPTIONAL(1), FILTER(1)

Q37 -

Q19 Star 2 2 FILTER(1)

Q7 Path/ 2 2 UNION(2)

Complex
Q21 Complex | 2 2 OPTIONAL(1), FILTER(2)
Q32 Star 2 3 OPTIONAL(1), FILTER(1),
LIMIT
Q38 LIMIT
Q22 Complex | 2 3 OPTIONAL(1), FILTER(2),
LIMIT
Q20 Star 2 3 FILTER(1), LIMIT
Q8 Path/ 2 3 UNION(2), LIMIT
Complex

Q17 Tree 2 (+1R) 3 FILTER(1)

Q18 Tree 2 (+1R) 4 FILTER(1), LIMIT

Q39 Star 3 2 -

Q25 Star 3 3 FILTER(1)

Q40 LIMIT

Q29 Paths 3 3 FILTER(1), UNION(2)

Q26 Star 3 4 FILTER(1), LIMIT

Q30 Path 3 4 FILTER(1), UNION(2),

LIMIT
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Q23 | Star 3(+1R) [4 OPTIONAL(2), FILTER(2)

Q24 | Star 3(F1R) |5 OPTIONAL(2), FILTER(2),
LIMIT

Q9 | Star 4 4 FILTER(1)

Q10 | Star 4 5 FILTER(1), LIMIT

Q5 | Star 5 4 OPTIONAL(1)

Q6 | Star 5 5 OPTIONAL(1), LIMIT

Q13 | Path 8(+1R) |1 UNION(8)

QI4 | Path 8(+1R) |2 UNION(R), LIMIT
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A.4 DBSPB Query 2012 Decomposing with se-
mantic Clustering
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A.5 DBSPB Query 2011 Decomposing with se-
mantic Clustering
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A.6 Semantic relatedness of predicates

Table A.6: Semantic relatedness in Queries2011 set

Queries Related Predicates
|C| = 40 |C| =10
Q9 series series, comment, type
jmame  [mame
comment, type redirect
redirect
Q11 type, homepage type
numEmployees homepage, numEmployees
Q13 comment, subject, location, | comment, page, subject,
type model, point, type
industry, manufacturer industry, location,
page manufacturer
locationCountry locationCountry,
locationCity locationCity
products products
model
point
Q15 type type
population, population
populationUrban populationUrban
Q17 label, location, homepage city, location, homepage
iataLocationldentifier iataLocationldentifier
city label
Q19 capacity, birthPlace, page, type, position,
number capacity, birthPlace,
number
populationEstimate, clubs, populationEstimate,
populationCensus populationCensus
page
type
position
clubs
Q21
divisions
Q23 type, label
nationality
Q29 type, label
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Q33 subject, label
Q39 abstract, thumbnail abstract, homepage,
label, depiction, homepage | populationTotal, thumbnail
lat, long lat, long
populationTotal label, depiction
redirect redirect
Q43 homepage, type homepage
type
Q47 foundationPlace
developer
Q49
type type, pages
pages author
author
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Aggregated Search in Distributed Graph Databases

Abstract: In this research, we are interested in investigating issues related to
query evaluation and optimization in the framework of aggregated search. Aggre-
gated search is a new paradigm to access massively distributed information. It aims
to produce answers to queries by combining fragments of information from several
sources. The queries search for objects (documents) that do not exist as such in
the targeted sources, but are built from fragments extracted from the sources. The
sources might not be specified in the query expression, they are dynamically dis-
covered at runtime. In our work, we will consider data dependencies to design a
framework to optimize query evaluation over distributed data sources.
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