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Résumé

Le sujet de cette thèse s'inscrit dans le cadre général de la Recherche d'Information et la gestion des données massivement distribuées. Notre problématique concerne l'évaluation et l'optimisation de requêtes agrégatives (Aggregated Search). La Recherche d'Information Agrégative est un nouveau paradigme permettant l'accès à l'information massivement distribuée. Elle a pour but de retourner à l'utilisateur d'un système de recherche d'information des objets résultats qui sont riches et porteurs de connaissances. Ces objets n'existent pas en tant que tels dans les sources. Ils sont construits par assemblage (ou agrégation) de fragments issus de différentes sources. Les sources peuvent être non spécifiées dans l'expression de la requête mais découvertes dynamiquement lors de la recherche. Nous nous intéressons particulièrement à l'exploitation des dépendances de données pour optimiser les accès aux sources distribuées.

Dans ce cadre, nous proposons une approche pour l'un des sous-processus de systèmes de RIA, principalement le processus d'indexation/organisation des documents. Nous considérons dans cette thèse, les systèmes de recherche d'information orientés graphes (plus spécifiquement les graphes RDF). Utilisant les relations dans les graphes, notre travail s'inscrit dans le cadre de la recherche d'information agrégative relationnelle (Relational Aggregated Search) où les relations sont exploitées pour agréger des fragments d'information. Nous proposons d'optimiser l'accès aux sources d'information dans un système de recherche d'information agrégative. Ces sources contiennent des fragments d'information répondant partiellement à la requête. L'objectif est de minimiser le nombre de sources interrogées pour chaque fragment de la requête, ainsi que de maximiser les opérations d'agrégations de fragments dans une même source. Nous proposons d'effectuer cela en réorganisant les bases de graphes dans plusieurs clusters d'information dédiés aux requêtes agrégatives. Ces clusters sont obtenus à partir d'une approche de clustering sémantique ou structurel des prédicats des graphes RDF. Pour le clustering structurel, nous utilisons les algorithmes d'extraction de sousgraphes fréquents et dans ce cadre nous élaborons une étude comparative des performances de ces algorithmes. Pour le clustering sémantique, nous utilisons les métadonnées descriptives des prédicats dont nous appliquons des outils de similarité textuelle sémantique. Nous définissons une approche de décomposition de requêtes basée essentiellement sur le clustering choisi. Nos expérimentations préliminaires montrent que l'approche de clustering sémantique utilisée réduit le nombre de sous-requêtes et le nombre de sources à interroger. with the Literature [Gago-Alonso 2008, Gago-Alonso 2010a, Gago-Alonso 2010b] (Right) -AID2DA99 . . 

Introduction Background and Context

Information Retrieval mechanisms are evolving with the changing of the Web information from an information space of linked documents to information objects of linked data and heterogeneous information [Haase 2010]. Aggregated Search (AS) [Lalmas 2011[START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF]] is an approach that aims to aggregate the information results from the different sources and return aggregated information richer than the basic list of homogeneous results returned by classic Information Retrieval systems. Sources of information are not necessarily specified in the query but they discovered dynamically in the execution.

AS is an approach with steps and processes relatively newly defined in the literature [Lalmas 2011[START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF]. One of its defined subcategories : Relational Aggregated Search [START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF]] aims to aggregate fragments of information of different sources and create objects of information that do not exist as-such in the Web. A result of an aggregated query is obtained after a chain of complex operations serving to aggregating the relevant fragments of information. Each of these fragments constitutes a partial result to the query.

Several recent studies have been proposed in Relational AS such as the study [START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF]] which aims to aggregate information about an entity (e.g., Albert Einstein) and return a structured table of data about it. The study [START_REF] Echbarthi | Ghizlane Echbarthi and Hamamache Kheddouchi. Lasas: an aggregated search based graph matching approach[END_REF]] tended to define a query processing strategy for graph aggregation and the study [START_REF] Elghazel | Aggregated search in graph databases: preliminary results[END_REF]] proposed an indexing strategy based on relational databases dedicated to optimizing graph aggregation. Most of the few studies in Relational AS exploited the semantic web to try to form aggregates of data.

Objectives/Motivation

The goal of the CAIR 5 project is to contribute in defining better the main processes (i.e., Query Formulation, Indexing, Query/Document Matching) of an Aggregated Search System. Our goal in this PhD is to define one of two sub-processes of Relational Aggregated Search (i.e., Query and Document Indexing) using the richness of the metadata and relationships in the semantic web (i.e., RDF graph databases) and graphs in general. Our approaches that are dedicated to these two subprocesses try to optimize the aggregation in a context of several sources. 6 The optimization consists on trying to reduce the number of requests to sources of information and the number of aggregations to perform between fragments.

Summary of Contributions

We study in this PhD at first the strategies that could be used for indexing graphs. We select one of the most used approaches : Frequent Subgraph Mining. We elaborate (a) a state-of-the art of all existing algorithms and their implementations in Centralized graph transaction databases. Due to a lack of information about the cases of performance of FSM algorithms, we elaborate (1) an experimental study of FSM available implementations and select some implementations that can be used according to an end-user context.

We are further interested in organizing the graph database by clustering RDF graphs in the way that related fragments (i.e., subgraphs) would be accessed together. We find it interesting to use for clustering, the semantic relatedness of units of graphs (e.g., predicates) and see its effect on aggregated queries compared to a structural aspect. The structural aspect is based on Frequent Subgraph Mining. For clustering the graphs, we studied (b) the state of the art of clustering and partitioning strategies in RDF graphs. These strategies were mainly discussed in Federated Search field. We also elaborate (c) a state of the art of studies in Relational Aggregated Search. We conclude that the existing studies lack the use of the metadata of semantic web for optimizing aggregation. We propose (2) our semantic clustering approach using meta-metadata of RDF graphs. We also define (3) query decomposing approach which is dependent of the clustering. ( 4) Finally, we propose to experiment our approaches using the DBPSB benchmark.

Thesis Outline

The rest of this dissertation is subdivided into five Chapters :

Chapter 1 presents Frequent Subgraph Mining (FSM) and its approaches and algorithms.

Chapter 2 describes the state-of-the art of FSM algorithms in Centralized graph transaction databases. Also, it proposes an experimental study of available FSM implementations.

Chapter 3 defines what is aggregated search and a comparison of its annex categories. Also, it defines RDF search. A state-of-the art of techniques dedicated to RDF graph aggregation from different sources of information is proposed. These techniques concern graph partitioning and query decomposing. We also state the contributions of studies of relational aggregated search in literature.

Chapter 4 proposes our semantic and structural clustering approaches for a relational aggregated graph search system. Also, it defines our query decomposing approach in the search system. The architecture of our system is also illustrated.

Chapter 5 describes the experimental setup and the impact of our clustering approaches on the quality of query decomposing.

Chapter 1 

Frequent Subgraph Mining

Introduction

This chapter introduces from a conceptual point of view, the frequent subgraph mining algorithms and their respective approaches. The frequent subgraph mining constitutes an important approach for capturing the frequent structure representing an identity for a set of data. The remainder of this chapter is organized as follows: Section 2 defines the frequent subgraph mining task (FSM). Section 3 describes the approaches used by different FSM algorithms. Section 4 defines available FSM algorithms in literature and compares their approaches. In Section 5, application fields of FSM are mentioned.

The theory of frequent subgraph mining

We define, in this section, the basic notions around frequent subgraph mining mainly data mining (or pattern mining), frequent pattern mining, subgraph pattern mining and finally frequent subgraph mining.

Data Mining

Data mining defines the process of producing an enumeration of patterns or models from the data, while considering an reasonable computational efficiency. Data mining comprises four main category of mining problems : clustering, classification, outlier analysis and frequent pattern mining [START_REF] Aggarwal | [END_REF]]. We are interested in this chapter by the last one.

Frequent Pattern Mining

Frequent pattern mining problem was basically defined on sets. It was further extended to various advanced data types such as spatial-temporal data, graphs, and uncertain data [START_REF] Aggarwal | [END_REF]]. Classical "data-mining" (i.e., frequent pattern mining task) is referring to frequent data values of items and their association rules (e.g., milk and butter in market basket analysis, see Figure 1 1.1) [START_REF] Agrawal | [END_REF]]. Further, in semi-structured and graph data mining, it focuses on frequent labels and common specific topologies [START_REF] Inokuchi | [END_REF], Gudes 2006]. We are interested in graph mining, and in subgraphs as a common specific topology.

Subgraph Pattern Mining

In subgraph pattern mining, the interestingness of a subgraph is defined by the task of usage. For exploratory graph mining, frequent subgraphs with high redundancy are selected. However, for a classification task, discriminatory subgraphs with a high quality are considered [Al Hasan 2009b].

We are interested in this chapter by exploratory graph mining.

Frequent Subgraph Mining (FSM)

Mining frequent subgraphs is defined as finding subgraphs that appear frequently in a database according to a given frequency threshold [Inokuchi 2000]. Given a graph database G (e.g., see Figure 1.2) and a minimum support s, the task of a frequent subgraph mining algorithm is to obtain the set of frequent subgraphs that have a support above the defined minimum support threshold [Inokuchi 2000, Kuramochi 2001]. freq : number of supergraphs 2 of g in the database |G| : the number of graphs in the database We define in the following the process of FSM with its different approaches.

FSM approaches

The steps of FSM consist of: (i) representing graphs, (ii) generating candidate subgraphs, (iii) determining the frequency of occurrence of the candidates by performing subgraph ismorphism and further (iv) checking and filtering the redundant subgraphs [Krishna 2011, Jiang 2013]. The computationally expensive tasks of FSM algorithms are the candidate generation and support computation tasks. The latter is considered as the most computationally expensive for FSM algorithms [Jiang 2013] due to subgraph isomorphism known to be NP-complete.

Graph Representation

We introduce in what follows, the nature of input and output graphs in frequent subgraph mining. Also, we define the database setting. We present graph representation schemes. In addition, we define the canonical labeling strategy which allows to uniquely represent a graph by a chosen scheme.

Graph Topology

In centralized graph transaction mining, the input graphs which are used in most of the FSM algorithms are assumed to be labeled (vertices and edges), simple3 , connected and undirected graphs and the output are connected subgraphs. However, there are some few algorithms developed for specific graphs (e.g., complex graphs [Acosta-Mendoza 2015], unconnected subgraphs [Skonieczny 2009], vertex labeled graphs [START_REF] Zeng | [END_REF]). We consider in our study only static graphs (vs. stream graphs [Ray 2014]).

Database Setting

There are two distinct problem formulations for frequent subgraph mining in graph datasets: (i) graph-transaction setting and (ii) single-graph setting.

• Graph-Transaction Setting: In this case, the input is a collection of moderate sized graphs (transactions). For example, Figure 1.2 illustrates the graph transaction setting with 10 graphs in the database.

A subgraph is considered frequent if it appears in a large number of graphs. A subgraph occurrence is counted only once per transaction, independently of the possible multiple occurrences in the same transaction [Inokuchi 2000]. Graph Transaction mining is applied in, e.g., biochemical structure analysis, program control flow analysis, XML structure analysis, image processing and analysis [START_REF] Aggarwal | [END_REF], Jiang 2013].

• Single-Graph Setting: This setting involves mining frequent subgraphs in different regions of one large sized graph. The frequency of a subgraph is based on the number of its occurrences (i.e., embeddings)

in the large graph. Special support metrics are used, by considering, for example, the overlapping of two subgraphs [START_REF] Kuramochi | [END_REF]]. Single Graph mining is dedicated to applications such as social networks, citation graphs, or protein-protein interactions in bioinformatics [START_REF] Elseidy | [END_REF]].

The mostly used schemes by frequent subgraph discovery algorithms are adjacency matrix, adjacency list, hash tables and trie data structures [Krishna 2011[START_REF] Gholami | [END_REF]]. In the following, we specify the cases of use of these structures.

Adjacency Matrix

The easiest mechanism whereby a graph structure can be represented is an adjacency matrix where the rows and columns represent vertices, and the intersection of row i and column j represents a potential edge connecting the vertices v i and v j [Kuramochi 2001, Jiang 2013].

Adjacency List

Sparse graphs would have several "zeros" in an adjacency matrix. To avoid this waste of memory, adjacency lists are used as they assign memory dynamically [Yan 2002b, Krishna 2011[START_REF] Dinari | [END_REF].

Hash Table

For very large graphs, hash tables could be used in order to avoid enumerating all possible subgraph isomorphisms for a new subgraph discovery. A hash table scheme uses a hash function which maps keys to their corresponding values [START_REF] Nguyen | [END_REF], Krishna 2011]. An example of using hash tables is illustrated in [Luo ] where subgraphs are ordered by their number of nodes and edges. A level for each size (number of nodes) is created. A key in the hash table corresponds to the labels of nodes of (n-1)-sized subgraphs and the value is a subgraph (containing these nodes) in the level n.

Trie

A Trie [Fredkin 1960] (also named prefix table) is an ordered tree, where all descendants of a node have the same common prefix. Basically, tries are used for strings. In order to avoid redundancy in storing, the trie stores the common prefixes once. Tries can be also managed for graphs where common prefixes represent common subgraphs between the graphs of the database. For example in [Ribeiro 2010], the authors define a concept of G-trie (i.e., a trie for representing graphs). Each node in the trie stores a single vertex from a subgraph and its corresponding edges (coded by boolean values) to ancestor nodes.

Canonical Labeling Strategy

A graph can be represented in different ways depending on how the vertices and edges are ordered (see Figure 1.3). It is important to adopt a labeling strategy ensuring that two identical (i.e., isomorphic) graphs are labeled in the same way [START_REF] Washio | [END_REF][START_REF] Nijssen | [END_REF], Jiang 2013]. The basic idea for generating a canonical labelling is to flatten the associated adjacency matrix by concatenating rows or columns to produce a code. Different codes are generated for different adjacency matrices. The canonical form of representation is the maximal or minimal code. The minimal (maximal) code is imposed by the lexicographical ordering [Yan 2002b]. Various canonical labeling schemes have been proposed. The three most significant ones are : Minimum DFS Code (M-DFSC) proposed in gSpan algorithm [Yan 2002a], Canonical Adjacency Matrix (CAM) proposed in AGM [Inokuchi 2000] and FSG [Kuramochi 2001] algorithms and Canonical Spanning Tree (CST) in SPIN algorithm [START_REF] Huan | [END_REF]]. 

Candidate Generation

Candidate generation in a graph dataset poses two main challenges : (i) a generation with no redundancy where each subgraph should be generated only once and (ii) a generation of candidates that only exist in the dataset [Keyvanpour 2012, Jiang 2013]. Two techniques are defined for candidate generation : level-wise join which is related to an Apriori approach and a right-most path extension technique which is related to Pattern-growth approach.

Apriori approach & Level-wise join technique

An apriori approach [START_REF] Agrawal | [END_REF]] consists of generating a new candidate by merging two candidate subgraphs that have been already found and have a common subgraph. This merging approach may generate subgraphs that do not exist in the database [START_REF] Meinl | [END_REF], Jiang 2013]. The level-wise join technique was introduced by [Kuramochi 2001]. Basically, a (k + 1) subgraph candidate is generated by combining two frequent k subgraphs which share the same (k -1) subgraph [Kuramochi 2001].

Pattern-growth approach & Right-most path extension technique

The pattern-growth approach [START_REF] Han | [END_REF]] consists of extending a subgraph candidate by an edge (and a node if no cycle is closed). This edge (and node) has to exist in the database. In data mining, the generation using an increasing order of candidate size is referred to as level-wise exploration [START_REF] Aggarwal | [END_REF]]. This method generates only candidates that exists in the database but may generate redundant subgraphs [START_REF] Meinl | [END_REF]]. The rightmost path extension technique [Yan 2002b[START_REF] Borgelt | [END_REF] eliminates the redundancy by adding an extra-edge only on the rightmost path.

Pattern-growth approach was developed to avoid the overhead of the candidate generation by the Apriori Approach. This is done by trying to grow the pattern from a single pattern, instead of joining two patterns [START_REF] Rehman | [END_REF]].

Subgraph Counting

Conceptually, candidates are searched and counted in the underlying graph database. The ones satisfying a minimum support constraint are retained. Practically, candidates need to be tested according to a search space structure and a traversal strategy. We define these two notions in the following and we also introduce how the subgraphs are counted using the subgraph isomorphism and the support measure. We conclude this subsection by defining the subgraph search and matching strategies.

Search Space & Traversal Strategy

A search space structure is used in order to optimize the exploration of frequent subgraphs [START_REF] Aggarwal | [END_REF]]. The structure should be explored in a level-wise way. If a k-pattern is not frequent then all of its supersets (k+n)-patterns should not be tested. This property is named the Downward Closure Property (DCP) or anti-monotonicity [START_REF] Agrawal | [END_REF]]. Some search space structures used in literature are enumeration trees (named also lexicographical trees) [Yan 2002b[START_REF] Aggarwal | [END_REF], lattices [START_REF] Meinl | [END_REF]] and G-tries [Ribeiro 2010]. Some other structures are cited in [START_REF] Mohammad H Nadimi-Shahraki | IDFP-TREE: An Efficient Tree for interactive mining of frequent subgraph patterns[END_REF].

For example, each layer L of a lattice structure contains all L-edge subgraphs (see Figure 1.4) and their frequencies. A connection between two items in the lattice is an extension of a subgraph by an edge and a node (if no cycle is closed). Further, frequent subgraph mining consists of traversing the lattice, reporting all frequent candidates and pruning infrequent ones [START_REF] Nijssen | [END_REF]]. A traversal strategy (called also enumeration strategy) for the lattice has to be chosen [START_REF] Nijssen | [END_REF][START_REF] Meinl | [END_REF].

There are two main traversal strategies : breadth-first (BFS, named also horizontal support counting strategy) or depth-first search (DFS, also named vertical support counting strategy). An hybrid strategy can also be performed [Jiang 2013[START_REF] Aggarwal | [END_REF].

Figure 1.4: A lattice of candidate subgraphs (molecules) for a chemical database [START_REF] Meinl | [END_REF] The BFS tends to be more efficient in the pruning of infrequent subgraphs at an early stage in the mining process and this causes higher I/O, memory usage and execution time. However, DFS requires less memory usage but it performs less efficient pruning [Krishna 2011, Jiang 2013].

The memory usage of BFS is due to the number of lists stored in memory [Krishna 2011]. In fact, in case of the DFS strategy, the number of lists is proportional to the depth of the graph (for graph transaction databases, it is equal to the depth of the biggest graph). However, for BFS, it is proportional to the width of the graph (i.e., the maximal number of subgraphs in one level) [START_REF] Wörlein | [END_REF]]. The majority of algorithms traverse the lattice by using a DFS approach since it requires less memory compared to BFS [START_REF] Meinl | [END_REF]].

Subgraph Isomorphism tests & Minimum Support Threshold

The subgraph isomorphism problem is NP-Complete [Cook 1971[START_REF] Ke | [END_REF]. For counting the support of a pattern, a trade-off is proposed between using explicit subgraph isomorphism (e.g., using a Transaction Identifier list (TID) [Yan 2002b] or keeping embeddings of a pattern (e.g., using an embedding list [START_REF] Borgelt | [END_REF]). In a transaction list, each frequent subgraph has a list of transaction identifiers containing the subgraph [Yan 2002b]. The support of a k subgraph is computed using the intersection of the TID lists of (k-1) subgraphs. An embedding list consists of a mapping of the vertices and edges of a candidate to the corresponding vertices and edges in the graph it occurs in. Embedding lists reduce the subgraph isomorphism tests. They are supposed to reduce the runtime. As a trade-off (time versus memory), they consume a lot of memory [Lakshmi 2012, Jiang 2013[START_REF] Douar | [END_REF].

Support Computation & Minimum Support Threshold The frequencies of generated candidates in database are counted. The approach of this step is different depending on the configuration of the graph database.

• Occurrence-based counting: If the database is a single large graph, the number of occurrences of subgraph is counted by taking in consideration the graph overlapping cases [Vanetik 2002]. For example, in Figure 1.5, the support of the subgraph (A,B,C) is 6, there is an overlapping between subgraphs (e.g., subgraphs (u11,u10,u12) and (u8,u9,u10)), the counting algorithm take into consideration these overlapping. A subgraph is considered to be frequent if its occurrence count is higher than a predefined threshold value. The absolute occurrence is referred to as its frequency and the relative occurrence is referred to as its support. The threshold is referred to as the minimum support threshold [Inokuchi 2000].

The key parameter of the graph mining results is the minimum support threshold used to discover the frequent subgraphs [START_REF] Douar | [END_REF]].

For transaction-based counting, the Downward Closure Property [START_REF] Agrawal | [END_REF]] is associated with the support metric. This property states that if a graph is frequent then all of its subgraphs must also be frequent [Jiang 2013].

For occurrence-based counting, several anti-monotone support metrics are proposed in the literature and they define the support in presence of the overlaps [Vanetik 2002[START_REF] Kuramochi | [END_REF], Patel 2013[START_REF] Elseidy | [END_REF].

Subgraph Search & Matching Strategy

FSM algorithms can be classified according to search strategy : complete and incomplete (or heuristic) search. Also, they can be classified according to the type of isomorphism test (matching) performed between the mined subgraphs : exact and inexact matching. We describe these categories in what follows.

Complete Search The complete search4 algorithms perform a complete mining i.e., it guarantees to find all frequent subgraphs from the input data, above a minimum frequency threshold [Kuramochi 2001[START_REF] Inokuchi | [END_REF]]. as they appear in the input data [Kuramochi 2001[START_REF] Inokuchi | [END_REF]]. The complete search must return a frequent subgraph (e.g., a subgraph (1) shown in Figure 1.6) and all of its possible subgraphs that are necessarily frequent as well (e.g., subgraphs (2), ( 4), ( 5), ( 6) and ( 7) shown in Figure 1.6).

(b) Approximate Matching: It consists in finding all frequent subgraphs, with an assumption that subgraphs having the same structure and different labels, will all be returned as the same subgraph [START_REF] Li | [END_REF]]. This is considered as a complete search because all possible frequent subgraphs could be verified in the output set with the abstraction of labels (edges or vertices). Figure 1.7 illustrates the approximate matching where graphs with different edge labels are considered the same. For example, the subgraphs (2) and (3) in Figure 1.6 could be represented with the approximate matching by one subgraph (2') in Figure 1.7.

Incomplete or Heuristic Search

The incomplete and heuristic search algorithms discover a set of frequent subgraphs whose cardinality is greater or lower than the one returned by the complete search. This category of FSM search is used to : (i) reduce the set of frequent subgraphs (use of exact [START_REF][END_REF]] or approximate matching [START_REF] Cook | Substructure Discovery Using Minimum Description Length and Background Knowledge[END_REF]]), or (ii) add more frequent subgraphs than the complete search in order to consider the inaccuracy or uncertainty of the input data (use of approximate matching) [START_REF] Zou | [END_REF]]. graphs [START_REF] Wang | [END_REF]] by setting a supplementary calculable parameter (e.g., maximum size of frequent subgraphs, closed subgraphs, maximal subgraphs, maximum support threshold) [START_REF][END_REF][START_REF] Huan | [END_REF], Al Hasan 2009a], besides the minimum support threshold. Figure 1.8 shows an example returning a subset of frequent subgraphs (see all frequent subgraphs, Figure 1.6) where the set parameter is the maximum size of frequent subgraphs (set to 2 edges).

(d) Approximate Matching: It consists in either (i) reducing the output by returning a set of representative frequent patterns or (ii) enriching the frequent subgraphs output by considering the inaccuracy or uncertainty of data [START_REF] Zou | [END_REF][START_REF] Jia | [END_REF]. For the first case, a representative frequent pattern is a frequent subgraph similar to a set of other frequent subgraphs. In other words, frequent subgraphs that have some differences regarding edges, vertices and labels are represented by one pattern in the output [START_REF] Hasan | [END_REF]. For the second case, it consists in adding infrequent subgraphs that are similar to frequent subgraphs with respect to the structure or labels [Acosta-Mendoza 2012]. 

FSM algorithms

FSM algorithms have been proposed from a period since 1994 to the present. Since 2007, the proposed algorithms represent a variation of existing algorithms. The FSM field is reaching its maturity [Jiang 2013], so a synthesized study about existing algorithms should be completed. Through our study of FSM algorithms, we collected the characteristics of many of them.5 

In this section, we briefly describe some algorithms. The selected algorithms are those which will be studied in chapter 2. The justification of the selection of these algorithms will also be provided in chapter 2.

An FSM algorithm can be considered as efficient according to the used strategies for the mining subtasks [Jiang 2013]: (i) the graph representation structure (e.g., adjacency list, adjacency matrix, hash table, tries, see Section 1.3.1), (ii) subgraph candidate generation (i.e., extending, joining or combinational, see Section 1.3.2) using a search approach (i.e, apriori or pattern-growth), (iii) canonical graph representation for filtering duplicates (i.e., the two main representations are CAM : Canonical Adjacency Matrix and M-DFSC : Minimum DFS Code, see Section 1.3.3), (iv) subgraph isomorphism detection strategy to compute the support (i.e., keeping embedding of patterns or explicit subgraph isomorphism, see Section 1.3.3).

We describe the six algorithms we selected. The description is done according to strategy used for each subtask.

FSG

FSG (Frequent Subgraph Discovery) [Kuramochi 2001] uses adjacency lists for storing graphs [Krishna 2011]. It uses an Apriori approach. It requires a large amount of memory because it employs BFS and generates a large volume of candidate patterns. Consequently, it scans many times the database and examines a large number of candidates [START_REF] Mohammad H Nadimi-Shahraki | IDFP-TREE: An Efficient Tree for interactive mining of frequent subgraph patterns[END_REF]. It uses the CAM canonical representation [START_REF] Wörlein | [END_REF]]. It generates candidates using the level-wise join technique. It uses transaction list for support counting. It has a bad performance on graphs with many vertices and edges of identical labels and could be inefficient for mining large-sized subgraph patterns.6 

gSpan

GSpan (Graph-based Substructure Pattern Mining) [Yan 2002b] uses adjancency matrix. It uses M-DFSC as a canonical representation. It uses a DFS lexicographic ordering to construct a tree-like lattice over all possible patterns, resulting in a hierarchical search space called a DFS code tree [START_REF] Douar | [END_REF]]. It performs a rightmost path expansion as subgraph extension [START_REF] Wörlein | [END_REF]] which means that the k subgraphs are generated by one edge expansion from the k-th level of the DFS tree. Unlike embedding list saving algorithms, gSpan saves transaction list for each discovered pattern which saves on memory usage. GSpan, with some minor changes, can be used for directed graphs [Jiang 2013].

MoFa/MoSS

MoFa (Molecular Frequent Miner) or MoSS (Molecular SubStructure miner) [START_REF] Borgelt | [END_REF]] is a specialized miner for molecular data. It enables to find frequent molecular substructures and discriminative fragments. However, it can also work on arbitrary graphs. The algorithm is inspired by the Eclat algorithm7 for frequent item set mining. MoFa stores graphs in adjacency matrices. It follows the pattern growth approach. It uses a rightmost path extension. New subgraphs are built by extending former subgraphs with an edge (and a node if necessary). It uses embedding lists to remove duplicates [START_REF] Meinl | [END_REF]. It is able to mine directed graphs [Jiang 2013].

FFSM

FFSM (Fast Frequent Subgraph Mining) [Huan 2003] is based on gSpan. It uses adjacency matrix for graphs. It follows pattern-growth approach. FFSM uses the CAM representation for canonical graph representation [START_REF] Wörlein | [END_REF]]. The CAM tree of the database is built dynamically using two matrix operations of join and extension [Gago-Alonso 2010a]. FFSM completely avoids subgraph isomorphism testing by maintaining an embedding set for each frequent subgraph [Huan 2003]. The embedding lists allow to avoid excessive subgraph isomorphism tests and therefore avoid exponential runtime (see Section 1.3.1). However, as a trade-off, FFSM faces exponential memory consumption instead [START_REF] Douar | [END_REF]]. FFSM cannot be used in the context of directed graphs due to its use of triangle matrices [START_REF] Wörlein | [END_REF], Jiang 2013].

Gaston

Gaston (GrAph/Sequence/Tree extractiON) [START_REF] Nijssen | [END_REF]] is based on gSpan. It uses a hash table representation which pleads for its performances over the other algorithms [Krishna 2011]. It follows the pattern-growth approach. Also, Gaston is the fastest among other algorithms [START_REF] Nijssen | [END_REF]] due to the fact that it performs subgraph extension using a quick-start principle where paths and trees are considered at first, and general graphs with cycles are enumerated at the end [Krishna 2011]. To detect the duplicate subgraphs, a well-known algorithm, namely Nauty [START_REF] Mckay | [END_REF]] is used to deal with the NP-complete subgraph isomorphism problem [START_REF] Han | [END_REF]]. Gaston scans the database only once because it uses embedding lists stored in main memory [Lee 2012]. Gaston cannot be used in the context of directed graphs unless considering major changes [START_REF] Wörlein | [END_REF], Jiang 2013].

DMTL

DMTL (Data Mining Template Library) [START_REF] Hasan | [END_REF] is a library for frequent pattern mining. It offers implementations to mine four types of patterns -itemsets, sequences, trees and graphs -in a unified platform. It performs the join of two patterns to generate one or more new candidates. It counts support by using a vertical representation of patterns named Vertical Attribute Table (VAT) (i.e., a list of transactions in which the pattern occurs). This vertical representation is typically faster than the horizontal representation of the database due to I/O cost reduction. The join of patterns is associated with a back end operation : the intersection of two VAT tables of patterns.

Comparison of FSM algorithms approaches

Several comparative tables of the FSM algorithms approaches exist in the literature [Al Hasan 2010, Krishna 2011, Keyvanpour 2012, Lakshmi 2012, Jiang 2013[START_REF] Dinari | [END_REF], Acosta-Mendoza 2015[START_REF] Ramraj | [END_REF]]. We summarize, here, the comparison of the available FSM algorithms (see chapter 2) according to their used strategies. The comparison concerns only algorithms performing complete search in Centralized graph transaction databases. The comparison of the six algorithms (i.e., FSG [Kuramochi 2001], gSpan [Yan 2002b, Yan 2002a], MoFa [START_REF] Borgelt | [END_REF]], FFSM [Huan 2003], Gaston [START_REF] Nijssen | [END_REF], Nijssen 2005b] and DMTL [START_REF] Hasan | [END_REF]) approaches is presented in Table 1.1. AGM [Inokuchi 2000] and its extensions (i.e., AcGM [START_REF] Inokuchi | [END_REF]], B-AGM [START_REF] Inokuchi | [END_REF], Inokuchi 2005]) are added in the comparison since AGM is one of the pioneers in the FSM field.

It is expected that algorithms which use a DFS strategy (e.g., gSpan, Gaston, DMTL, MoFa, see Table 1.1) will be more efficient in terms of time and memory than the ones that use BFS (e.g., FSG, see Table 1.1). 

Main Application Fields of FSM

Mining frequent subgraphs in graph databases is a relevant task for several application fields (e.g., Process models, financial processes, Biochemistry) and goals (e.g., indexing, sampling). However, the most tested datasets in the literature characterize data from the field of cheminformatics and bioinformatics. In cheminformatics, frequent molecular fragments help finding new drugs [START_REF] Wörlein | [END_REF]]. We tried to enumerate the number of tested real and centralized graph transaction datasets in the literature. We found around thirty-one datasets. 78% of the tested datasets (24 out of 31) are chemical and protein datasets. The rest are of different other fields (e.g., US stock market database [START_REF] Wang | [END_REF]], Money Laundering Case dataset [START_REF] Li | [END_REF]], COIL image database [Acosta-Mendoza 2015] and dataset from the UCI KDD archive [START_REF] Thomas | [END_REF]). This intensive use of chemical and protein datasets has been criticized by some authors [START_REF] Saha | [END_REF]] since these kind of datasets tend to be tree-like graphs and so performance results tend to be better for the presented algorithms.

Conclusion

In this chapter, we presented the main notions concerning the frequent subgraph mining, the used approaches and the most known relative algorithms.

It was important to define the different approaches in order to categorize FSM algorithms and be able to detect the ones that are useful for our context (i.e., Aggregated Information Retrieval System). Also, the presented techniques give expectations about the algorithm efficiency (Hash table for Gaston vs. adjacency matrix for AGM, see 

Introduction

In this chapter, we propose to elaborate a synthesis regarding the algorithms and their existing solutions for frequent subgraph extraction. In the framework of the CAIR 1 project, we are in a context of aggregated relational information retrieval system, where retrieved documents are graphs. For this, we are mainly interested by the algorithms that perform in a bunch of labeled graphs (instead of single large garph). Also, we consider static graphs (vs. Dynamic graphs). Our objective is to conduct an investigation on implementations of complete search FSM algorithms. The goal is to find the most efficient implementation that would be used to cluster graphs in order to optimize the performance of an aggregated search system. Frequent subgraph mining algorithms are widely used in various areas for complex analysis. As yet, a handful number of algorithms have been proposed in literature. Several experimental studies were reported; however, these experiments lack some critical details which are vital to select an implementation of an algorithm for a specific purpose.

For this, we elaborated an experimental study with implementations of complete search Frequent Subgraph Mining (FSM) algorithms in centralized graph databases. Thirteen working implementations are experimented. In what follows, we provide details of the experimental results in terms of performance metrics and input variation effect. We propose a preliminary selection of the most efficient FSM solutions (i.e., implementations) for end users based on the literature datasets. We attempted to compare our results with state of the art.

The remainder of this chapter is organized as follows: Section 2.2 describes our approach for selecting FSM algorithms and their respective implementations. Section 2.3 describes the evaluation of the selected FSM algorithms' implementations and discusses the results.

Review of State of the Art FSM studies

A large volume of literature was dedicated to FSM algorithms. These algorithms can be classified according to the search type (complete or incomplete) and matching strategy (exact or approximate).

Several studies (see, e.g., [START_REF] Saha | [END_REF][START_REF] Wörlein | [END_REF], Nijssen 2006[START_REF] Rehman | [END_REF], Gago-Alonso 2008, Krishna 2011]) were devoted to benchmarking these algorithms. These studies revealed different aspects mainly strength, and weaknesses -of these algorithms -that are critical to select potential candidates for a specific need. However, our investigation summarizes the following shortcomings of these studies : (i) the conclusions about algorithms do not explicitly consider the effects of variability of inputs on performance. The variability includes the characteristics of datasets (e.g., size, density) and the minimum support threshold interval (low or high values) ; (ii) two different implementations of a given algorithm -provided by original authors and the third party implementers -reported different performance results ; (iii) the most recent experimental comparisons (2014) [START_REF] Rehman | [END_REF][START_REF] Saha | [END_REF], Aridhi 2015[START_REF] Douar | [END_REF] are concerned with at most four algorithms. These algorithms are relatively old (proposed between 2001 and 2007). About thirteen new algorithms of the same category have been proposed since 2007 ; (iv) no comparison of currently available FSM algorithms is provided in literature ; (v) the implementations of some algorithms are refined without any experimental study regarding their per-formance (e.g., gSpan (2002) [Yan 2002b[Yan ] release v.6 2009)).

To the best of our knowledge, no exhaustive list of FSM algorithms has been provided so far. Also, there is no study that cites all the currently available FSM implementations. In this section, we provide a list of all algorithms for the Complete search category 1.3.3 in centralized graph transaction databases (see Section 1.3.1) and highlight their availability and usefulness. We justify this choice in the following. Then, we select a few of them. To establish our selection process, we defined a set of criteria which includes: performance reported in literature, availability of implementation, and specific cases of use. We also point out the ambiguities, found in state of the art regarding the most efficient algorithm to use. We provide details of the experiments settings reported in literature, in order to make our further experimental configurations understandable.

Targeted Categories of FSM algorithms

We target algorithms performing complete search in centralized graph transaction databases according to our context of use.

Centralized graph transaction databases

We are interested in this work by algorithms performing on centralized graph transaction databases (see Section 1.3.1). Since the scope of our use concerns the application of Information Retrieval Systems where the database consists, traditionally, in a set of documents (medium sized graphs). In a preliminary way, algorithms performing on distributed databases or consisting of parallel processes are not included in our work.

General graphs

Input graphs are supposed to be labeled, static and general graphs. Output subgraphs are supposed to be connected. Algorithms developed only for specific graphs (e.g., complex graphs [Acosta-Mendoza 2015], unconnected subgraphs [Skonieczny 2009], vertex labeled graphs [START_REF] Zeng | [END_REF]], see Table 2.1), are not considered in our work.

Complete search category

As mentionned in chapter 1, FSM algorithms output different types of results (i.e., complete/incomplete set, exact/approximate subgraphs) according to the search need. For the four subcategories of FSM search strategy and matching (i.e., a, b, c and d, see Section 1.3.3), there are 31, 1, 22 and 15 algorithms respectively.2 In our work, we are interested in algorithms that perform a complete search (subcategories a, b). Our main objective is to identify an efficient FSM algorithm for generating subgraphs which will be used to index large repositories. The incomplete search algorithms (subcategories c, d) that are available and usable for general purposes propose to return : (i) closed subgraphs ( [START_REF][END_REF][START_REF] Takigawa | [END_REF]), (ii) maximal subgraphs [START_REF] Huan | [END_REF], Al Hasan 2009a], (iii) significant subgraphs [START_REF][END_REF]], (iv) sample of fixed size subgraphs [START_REF] Saha | [END_REF]] or (v) approximate subgraphs [START_REF] Jia | [END_REF]]. The closed and maximal subgraphs could not be used for the purpose of indexing [START_REF][END_REF]]. The sampling and approximation of subgraphs can be used for indexing. However, we did not select probabilistic or approximation algorithms to avoid the impact of their output set (i.e., frequent subgraphs) on our indexing approach.

In this study, we include algorithms with all types of approaches (e.g., BFS/DFS, Apriori/Pattern-growth, see Section 1.3) with no restriction.

List of FSM Algorithms

We identified thirty-two algorithms (in the literature) designed to extract all possible frequent subgraphs above a minimum support threshold (see Table 2.2). Before studying the performance and availability of these algorithms, we investigated their usage. We define the usage of an algorithm in accor-dance with three facets: (i) the number of experiments3 performed with the algorithm for centralized graph transaction datasets, (ii) the number of real datasets used for testing, and (iii) the most recent experiment (i.e., paper 4 ) with the algorithm. In Table 2.3, E, D and R denote these facets, respectively. We found that eleven out of the thirty two algorithms are relatively more popular. Table 2.3 shows that the most tested algorithms in the literature are: gSpan [Yan 2002b], Gaston [START_REF] Nijssen | [END_REF]], FSG [Kuramochi 2001] and FFSM [Huan 2003].

Additionally, Table 2.3 illustrates that the recent FSM algorithms (e.g., LC-Mine [START_REF] Douar | [END_REF]]) are compared with the least recent algorithms (e.g., gSpan [Yan 2002b], FSG [Kuramochi 2001]), instead of the most recent ones. Questions are raised about the availability and performances of each algorithm among the 32 ones proposed.

In what follows, we discuss the outcome of our investigations in terms of performance, availability and specific cases of use. Skonieczny 2009] and MOLFEA [Kramer 2001], is commonly poor. Also, we found that FSMA algorithm [Gao 2012] was experimented moderately and was not compared with any FSM algorithm. Therefore, we removed these five algorithms from the list of potential candidates.

It is worth noting that we found performance ambiguities in several experiments of well-known FSM algorithms. This led to a confusion for choosing the best candidates.

Table 2. 4 shows some examples of ambiguities, which include: (i) no general conclusion determines which of the two algorithms FFSM and gSpan is the most efficient (see case b in Table 2.4); (ii) the performance comparison of Gaston and gSpan depends on the dataset (e.g., large NCI dataset [START_REF] Wörlein | [END_REF]) and the used implementation (Gaston or Gaston RE) (see case a in Table 2.4). The contexts of the experiments (e.g., FSM implementation, the support threshold interval, datasets characteristics) were not defined adequately in order to have a complete view of the FSM solutions performance. In Section 2.3, we conduct such a study, and highlight the best implementations with the specification of their performance cases. a) Is Gaston or gSpan a more efficient algorithm?

It is Gaston

It is gSpan * Gaston was the fastest graph mining algorithm compared to gSpan and FSG [START_REF] Nijssen | [END_REF]] * For the large dataset NCI and for low support threshold, Gaston was slower than gSpan [START_REF] Wörlein | [END_REF]] * Gaston RE was the best memory consumer over Gaston, FFSM and gSpan [Nijssen 2006] * GSpan was the best memory consumer comparing to Gaston and FFSM [START_REF] Wörlein | [END_REF]] b) Is FFSM more efficient than gSpan ? Yes No * FFSM outperformed gSpan [Huan 2003] * FFSM achieved a considerable performance gain over gSpan [Patel 2013] * GSpan was slightly faster than FFSM. GSpan was the best algorithm regarding its memory requirements compared to FFSM, MoFA, Gaston [START_REF] Wörlein | [END_REF]] * GSpan was almost as competitive as Gaston and FFSM, at least with not too big fragments [START_REF] Douar | [END_REF]] c) Is FSG an efficient algorithm to use? No Yes * GSpan outperformed FSG by an order of magnitude in terms of runtime [Yan 2002a]. * AcGM was faster than FSG [START_REF] Inokuchi | [END_REF] * GSpan and FSG are placed among the most efficient graph miners in their respective categories [START_REF] Douar | [END_REF] 

Specific Cases

In this work, we intend to study algorithms that propose generic usage. We removed four algorithms (FREQGEO [START_REF] Nowozin | [END_REF]], TSMiner [Jin 2005], SyGMA [START_REF] Desrosiers | [END_REF]] and ADI-MineBio [de Sousa Gomide 2011]) due to their usability for specific cases of input graphs (e.g., SyGMA [START_REF] Desrosiers | [END_REF]] requires that graphs have few labels, see Table 2.5). Twenty-three algorithms for general use are kept for comparison.

Table 2.5: FSM Algorithms with specific uses

Algorithm

Input Graphs Case FREQGEO [START_REF] Nowozin | [END_REF] Geometric Graphs (2D or 3D) TSMiner [Jin 2005] Graphs with unlabeled edges SyGMA [START_REF] Desrosiers | [END_REF] The number of labels has to be small ADI-MineBio [de Sousa [START_REF] De Sousa | [END_REF] The input data is relational tables Dedicated for specific biomedical data

Availability of Software

We tried to collect the implementations of the twenty-three algorithms. However, only one-third implementations (7 out of 23) are publicly available.

According to our study, the reasons of unavailability are (see Table 2.6): (i) legal constraint (intellectual property right), (ii) codes are lost, (iii) no response from the authors following our requests. 7 Table 2.6: Unavailable FSM algorithms

Algorithms

Unavailability AGM [Inokuchi 2000], Topology [START_REF] Hong | An Efficient Algorithm of Frequent Connected Subgraph Extraction[END_REF]], AGM-H [START_REF] Nguyen | [END_REF]], B-AGM [START_REF] Inokuchi | [END_REF]], ADI-Mine [START_REF] Wang | [END_REF]], FSP [START_REF] Han | [END_REF]], FSMA [Wu 2008], mSpan [START_REF] Li | [END_REF]], LC-Mine framework [START_REF] Douar | [END_REF]], IDFP-tree [START_REF] Mohammad H Nadimi-Shahraki | IDFP-TREE: An Efficient Tree for interactive mining of frequent subgraph patterns[END_REF] No answer from authors gRed [Gago-Alonso 2008], gdFil [Gago-Alonso 2010a], grCAM [Gago-Alonso 2010b] Under intellectual properties DPMine [Gudes 2006], DSPM [START_REF] Cohen | [END_REF]], Fp-GraphMiner [Vijayalakshmi 2011] The code is lost There are different implementations of the seven remaining algorithms (see Table 2.7). AcGM and four implementations of gSpan, FFSM and Gaston were removed from the list due to technical shortcomings (see Table 2.8 for the details). We could have tried to debug the implementations but our main objective is to use and compare existing implementations as such, without making any changes. The final list of candidates contains six algorithms with their thirteen implementations. We performed an experimental study with these implementations.

In the following, we will present the experimental setting used in the literature. Our setting choices consider the literature setting.

Experimental setting in literature

We found different experimental settings in literature used for testing FSM algorithms. In this section, we briefly describe those settings.

Datasets

For experimenting FSM implementations in centralized environment, the largest datasets found in the literature have a number of graphs (|D|) not exceeding 274 860 graphs. The average graph size (|T|) does not exceed 50 edges. The maximum number of labels (|L|) for these datasets is 90 vertices and 4 edges. For the most dense datasets, the average graph size does not exceed 3636 vertices and 206 747 edges. MoFa ParMol [START_REF] Wörlein | [END_REF][START_REF] Meinl | [END_REF]] 2013 [START_REF] Borgelt | [END_REF] MoSS ParMol [START_REF] Wörlein | [END_REF][START_REF] Meinl | [END_REF]] 2013 MoFa/Moss Original (Miner v6.13) [Borgelt 2016] 2015 AcGM [START_REF] Inokuchi | [END_REF] AcGM Original [Inokuchi 2014] -FFSM FFSM Original v3.0 [Fei 2010] 2010 [Huan 2003] FFSM ParMol [START_REF] Wörlein | [END_REF][START_REF] Meinl | [END_REF]] 2013 Gaston Gaston Original v1.1 [Nijssen 2005a] 2005 [START_REF] Nijssen | [END_REF]] Gaston Original RE v1.1 [Nijssen 2005a] 2005 Gaston ParMol [START_REF] Wörlein | [END_REF][START_REF] Meinl | [END_REF] 2013 Gaston ParSeMis [Philippsen 2011[START_REF] Henderson | [END_REF] 2011 DMTL [START_REF] Hasan | [END_REF] DMTL Original v1.0 (g++ 4.8 compiler) [Zaki 2008[Zaki ] 2006 The number of graphs (|D|) for these datasets is 11. The largest dense dataset contains a maximum of 1178 graphs (|D|) with an average graph size (|T|) not exceeding 360 vertices and 910 edges. Table 2.9 shows the largest, most dense and largest dense datasets characteristics. Synthetic datasets do not exceed 100 000 graphs (|D|). A dense synthetic dataset contains (generally) a maximum of 400 vertices and 1000 edges.

For evaluating FSM implementations in a distributed environment, we found real datasets that can contain 46 703 496 graphs [START_REF][END_REF]] and synthetic datasets that can contain 100 000 000 graphs [Aridhi 2015].

Memory Resources

The maximum size of main memory used in most of the experiments found in the literature does not exceed 4 GB except for (i) gSpan, Gaston, FFSM, FSG and AcGM in [Nijssen 2006] with 10 GB, (ii) gSpan and Takigawa algorithm [START_REF] Takigawa | [END_REF]] with 48 GB and (iii) gSpan and Gaston [START_REF] Saha | [END_REF]] with 128 GB.

Evaluation Metrics

Typically, three common metrics have been used to compare implementations: (i) execution time, (ii) memory consumption and (iii) number of extracted frequent subgraphs. More detailed metrics about subtasks efficiency and the quality of subgraphs (e.g., the execution time of the subtasks [Nijssen 2006], the sub-optimality [START_REF] Wörlein | [END_REF]], the number of duplicate candidates [Gago-Alonso 2010b]) were used as well.

Experimental Study

In this section, we present the results of our experiments. We provide the description of our experimental setting. We split our study into : (i) intraalgorithm study where various implementations of a given algorithm are compared, (ii) a comparison of results (for each algorithm) with those of the state of the art and (iii) inter-algorithms study where implementations of several algorithms are compared. We conclude this section by a final selection of the most efficient algorithms and some learned lessons regarding the performance of FSM algorithms.

Experimental Setup

Our experimental settings include: (i) the inputs of implementations (i.e., datasets and minimum support threshold), (ii) the used resources, (iii) the metrics used to evaluate the efficiency of the implementations, and (iv) information about implementations configuration.

Inputs of Implementations

There are two inputs for FSM implementations: the datasets and the minimum support threshold.

Datasets Selecting the datasets which were used the most in the experiments (reported in literature) is an important issue because it would enable us to compare the results with existing studies. To our knowledge, about thirty-one real datasets with four different formats (TXT, SDF, SMILES, XML) were tested with FSM implementations. 78% of them are chemical and biological datasets.

The FSM implementations we collected are useful only with the TXT format, except for ParMol and MoSS Original accepting other formats. For instance, ParMol is able to parse TXT and SDF. MoSS Original parses only chemical formats of data (e.g., SDF, SMILES). We conducted our experiments with twelve available datasets (out of thirty-one) of the two most used formats (TXT, SDF). For all implementations, the default choice was TXT format except for MoFa Original implementation where we used SDF format. SDF datasets were converted to TXT format using ParMol parsers [START_REF] Meinl | [END_REF]].

• Datasets description. We categorized datasets into : (i) their size (i.e., small, medium, large), (ii) their density (i.e., sparse, dense) and (iii) the size of their graphs (i.e., small-sized, medium-sized and largesized ). We define these characteristics as follow :

-Size characteristic : a dataset is considered medium if the number of graphs |D| >= 10 000 and large if |D| >= 100 000.

-Density characteristic : We consider a graph as sparse if the number of edges is close to the number of vertices. We attribute the dense characteristic to datasets where the average number of edges (|T e |) is considerably higher than the average number of vertices [Adamchik ].

(|T v |). Formally, the dataset is sparse if (|T e | < |T v | * log(|T v |))
-Size of graphs characteristic : The graphs in the dataset are medium-sized if the average number of vertices |T v | >= 100. They are considered as large-sized if the average number of vertices

|T v | >= 1000.
We use the term "large" in reference to the size of datasets and graphs in the FSM literature related to centralized graph transaction databases. However, typically the term "large" refers to a greater volume of data. The selected datasets include the three most used datasets (PTE, AID2DA99, HIV-CA) in literature, the largest dataset, namely DS3 and the largest dense dataset, namely DD (see Table 2.10). The PTE dataset was used in twenty-two FSM experiments. The HIV/AIDS dataset is used in twenty experiments with two available HIV releases AID2DA99 (October 1999) and AIDS (unknown release). The dataset HIV-CA (all releases) was used in eleven experiments. We found an available HIV-CA release (March 2002) that was used in six experiments. The remaining datasets (shown in Table 2.10) were selected due to their: (i) availability, (ii) format (i.e., TXT or SDF) compatible with the FSM implementations, and (iii) characteristics (e.g., dense, large, medium). • Dataset modification. In some cases, we made some changes to the datasets: (i) correction of the parsing errors (NCI250 dataset) with potential graph elimination (AID2DA99, CAN2DA99 datasets). In fact, we removed 7 graphs from AID2DA99 dataset and 4 graphs from CAN2DA99 dataset due to data format14 errors (e.g., no space between two values such as '15.856418298.5176', see Figure 2.1), (ii) conversion from SDF to TXT format (e.g., AID2DA99), (iii) grouping a set of files into one dataset file (AIDS, NCI145, NCI330 datasets), (iv) converting string vertex labels to integer ones (DS3 dataset). The FSM implementations (except FSG Original) work with integer labeled TXT datasets. For this, we modified the string vertices labels of DS3 dataset to integers. We named this modified dataset DS3M. We used the available codes of ParMol software15 with small modifications to perform these tasks.

Minimum Support Threshold (MST). Different implementations of FSM algorithms convert differently the minimum support threshold (relative value) to the internal minimum frequency (absolute value). In fact, the conversion is done by carrying out one of the following options: (i) Truncation of the support value (denoted by L), (ii) Truncation+1 (denoted by H), and (iii) Rounding (denoted by L/H). Table 2.11 shows the input type of minimum threshold used by each FSM solution. The input type is either a support value (denoted by S) or a frequency value (denoted by F). Some implementations allow both input types. For an implementation where the support value (float) is used, the corresponding conversion strategy (denoted by C) is mentioned. For example, gSpan Original v.6 allows a support value as input and its used conversion strategy is the truncation of the support to a frequency value.

Later on in this chapter, we compared the implementations of the same strategy (L or H). x Truncation (L) gSpan-64bit Original v.6

x gSpan (Zhou) x ParMol (Gaston, gSpan, FFSM, MoFa, MoSS)

x x Truncation+1 (H) MoFa Original v6.13 x x Gaston Original v1.1 x Gaston Original RE v1.1 x - DMTL Original v1.0 x FSG Original (PAFI v1.0.1) x Rounding (L/H)

Used Resources

All our experiments were performed using a machine with 4 GB of RAM memory and a Quad core processor except for the experiment with a largesized graph dense dataset PI (see Table 2.12). For experimenting with the PI dataset we used a different machine with 7 GB of memory and a Quad core processor. We used Linux OS for deploying all FSM solutions. The Windows OS was used only to estimate the effect of varying the OS on the performance results (see Section 2.3.6). 

Evaluation Metrics

We use the three common metrics as in the literature (see Section 2.2.6): (i) the execution time, (ii) the memory consumption, and (iii) the number of returned frequent subgraphs. The solutions will be compared with each other by considering one of the three metrics.

Implementation Settings

We describe the configurations of implementations in terms of their framework, appropriate input/output and the used arguments to run them.

Framework Setting The available FSM solutions are either implemented in java language, including ParMol and MoFa Original solutions, or in C/C++ including the others implementations (gSpan Original versions, gSpan (Zhou), FSG Original, DMTL Original and Gaston Original versions). The configurations set for these solutions are the following : for java solutions, the JVM used version is 1.8.0 65-b17 and java heap space is set to 3.8GB. For C++ solutions, the gcc version used is 5.3 (see Table 2.13).

We ran each solution three times for each support value. The results that are reported in this chapter are the mean of the three executions. Some of the solutions (gSpan Original, gSpan (Zhou), ParMol) propose optional multi-threading execution. We used single thread in our experiments. Output Configuration All the implementations provide information about the execution time, the number of frequent subgraphs, and some of them provide memory consumption. In the following, we describe the configurations of the implementations in terms of these outputs. It is worth noting that any modification we added to the FSM implementations has no effect 16 on performance results.

• Memory Consumption. Some FSM solutions are open source and some others are binary codes (see Table 2.14). We added memory consumption parameter for some open code FSM implementations (Gaston Original (v1.1 and RE v1.1), gSpan (Zhou) and DMTL Original).

The binary code solutions (see Table 2.14) do not return information about the memory consumption. For this, we tried to deduce the limit of memory consumption by testing the lowest support threshold values that could be reached by the solution. We verified that the failure at low support values is due to a lack of memory (by resorting to a machine with 128 GB of memory).

For ParMol implementations, we set the 'memoryStatistics' argument to true, which enables the calculation of memory consumption. It For ParMol, we set the argument 'debug' to 1, to display the subtasks runtime. We used the sum of the runtimes of the substasks in ParMol solutions.

• Number of Frequent Subgraphs. ParMol algorithms and MoFa Original are set by default to return only closed frequent subgraphs. We set off this option. MoFa Original v6.13 proceeds to a special modification of edge labels (conversion of found Kekule representations17 into aromatic bonds18 [START_REF] Borgelt | [END_REF]). We ran two versions of this software which return different numbers of frequent subgraphs : (a) with Kekule Representation conversion and (b) without conversion.

Theoretically, complete search FSM algorithms return all frequent subgraphs that are above a specified minimum support threshold. However, in practice, the available FSM solutions of complete search algorithms produce a lower number of graphs compared to the complete set. According to the authors we contacted of ParMol and gSpan Original, this happens because of other internal thresholds and rounding effects defined in the implementation.

Input Configurations By default, ParMol is not set to parse TXT format. However, there is a TXT parser (LineGraphParser) in the ParMol package 19 . We used it for our TXT datasets. MoFa Original v6.13 parses chemical datasets (e.g., SDF, SLN). Therefore, we tested it only with the three available SDF datasets (see Table 2.10).

Fixed Parameters For all implementations, we set three parameters : the input file, the minimum support threshold and the output file. Additional parameters were used for ParMol, namely 'memoryStatistics' (memory consumption) and 'debug' set to 1 (subtasks runtime).

Abbreviations of implementations (see Table 2.16) will be used further in experimentation results (Table 2.18 -Table 2.58). In Tables, Comp will denote the qualitative comparison between two implementations, Diff will denote a quantitative interval corresponding to the difference (e.g., runtime) between two implementations at the lowest and the highest support value. The symbol ≈ will indicate that the two implementations have approximately identical values. The symbol (F) will indicate that the versions have fluctuations in performance (i.e., one version can be better than another in a run and be worse in another run).

Intra-Algorithm Performance Study

In this section, we compare different implementations of one algorithm in order to use the best implementation(s) in a further comparison with the other algorithms. There are three algorithms with more than one implementation, namely gSpan, Gaston and MoFa/MoSS (see Table 2.7). Only gSpan and Gaston implementations are evaluated in this Section. MoFa/ MoSS implementations will be evaluated with all the other algorithms (see Section 2.3.4).

gSpan Implementations

We tested four implementations of gSpan: Two original implementations provided by authors of gSpan [Yan 2002b] (gSpan Original v.6, gSpan 64bit Original v.6) and third-party implementations (gSpan ParMol, gSpan (Zhou)).

Number of Frequent Subgraphs. GSpan (Zhou) was able to run with only small sparse & small-sized graph datasets (e.g., HIV-CA or PTE). It was not able to run with larger datasets (e.g., AID2DA99, CAN2DA99) or dense datasets (e.g., DD). In addition, gSpan (Zhou) generated significantly fewer frequent subgraphs than, the two other solutions (ParMol, Original) (see Table 2.17). The two versions of gSpan Original (v.6 and 64bit v.6) generated the same number of frequent subgraphs except for the NCI330 dataset (for 6% and 8% minimum support threshold, there was a difference respectively of 15 and 4 graphs, see Table 2.18). Typically, gSpan ParMol (L) and gSpan Original (v.6, 64-bit v.6) generated the same number of frequent subgraphs. Sometimes, it can produce one or two graphs in more or less than gSpan Original (v.6,) (e.g., HIV-CA dataset, see Table 2.17). Additionally, in some exceptional cases, such as for PTE dataset, with low support threshold 1.5% and 2%, gSpan Original generated 53 and 49 (respectively) more graphs than the gSpan ParMol version. Table 2.19 shows the difference (denoted by Diff ) between gSpan ParMol and gSpan Original v.6 in the number of frequent subgraphs.

The two values of Diff correspond to the difference of the number of frequent subgraphs between the two solutions, for the lowest and highest support, respectively (denoted by Support Interval ).

It is worth noting also that gSpan algorithm implemented by Original authors and in ParMol, can compute the frequent subgraphs differently. For example, for NCI330 dataset with 6% MST, the two implementations of gSpan generated 4 subgraphs with different frequency20 values. However, the frequency values are close. For example, the frequency values for a selected frequent subgraph out of the 4 are 4990 and 5107 for SO and SP, respectively.

Memory Consumption. Table 2.20 shows that gSpan (Zhou) required considerably more memory (denoted by Memory) than gSpan ParMol with lesser number of frequent subgraphs (denoted by Number of FS ). Also, it was not able to reach the same low support thresholds as gSpan Original v.6, due to high memory consumption (see Table 2.21). For low support threshold, gSpan-64bit Original v.6 required more memory than gSpan (Zhou), and significantly more than gSpan Original v.6 and gSpan ParMol. For example, gSpan Original-64bit could run with a threshold greater or equal to 8% for the HIV-CA dataset, while gSpan Original could run with 4% successfully (see Table 2 GSpan Original v.6 is the only implementation among gSpan versions that was able to reach the lowest minimum support threshold for all datasets (e.g., 4% for the HIV-CA dataset and 1.5% for the DD dataset, see Table 2.21).

5% -20% SO > SP 1 -1 SO = SP 2% -90% \{3%} SO = SP - 30% -90% SO = SP - AIDS 3% SO > SP 931 PTE 1.5% -2% SO < SP 2 -1 DS3M 1.5% -3% SO < SP 53 -1 3% -90% SO = SP - 5%, 20% SO < SP 1, 1 4% -90% SO = SP - NCI330 3% -90% \{5%, 20%} SO = SP - Dense Datasets 4%, 6% SO > SP 1142 , 15 Dense Datasets DD 5% -90% \{4%,6%} SO = SP - PS 4% -90% SO = SP - NCI145 80% -90% SO = SP - 2% -90% \{3%} SO = SP - 3% SO < SP 1 NCI250 
Runtime. Our experiments show that gSpan (Zhou) is the fastest algorithm for high support threshold values (see Figures 2.2 & 2.3). However, this version could not be used in the context of dense datasets (e.g., dataset DD) or datasets that are not small in size 21 (e.g., AID2DA99, CAN2DA99). 2.17). The difference between execution times (denoted by Diff ) is mentioned in seconds. The two values of Diff correspond to the runtime difference of the lowest and the highest support value (denoted by Support Interval ). For example, with the minimum support value 2%, gSpan Original v.6 consumes about 241 seconds more than gSpan Original v.6 64-bit for the AID2DA99 dataset and 5 seconds more for 90% (see Table 2.23).

Typically, our experiments also show that gSpan-64bit Original v.6 is faster than gSpan Original v.6 for all the tested datasets (see Table 2.23). However, for low support threshold values (e.g., 8% -15% for HIV-CA, see Table 2.23), gSpan-64bit Original v.6 can become slower than gSpan Original v.6 due to a higher memory consumption.

Furthermore, our experiments reveal that gSpan ParMol (L) is faster than gSpan Original v.6 for small and medium datasets. For example, gSpan ParMol (L) consumed about 850 seconds less than gSpan Original for AID2DA99 and MST 1.5% (see Table 2.22). However, for some cases of small and medium sparse and small-sized graph datasets, gSpan ParMol (L) can be slower if the support threshold is very low (e.g., 2% for NCI145, see For small dense and large sparse small-sized graph datasets, gSpan-64bit Original v.6 is faster than gSpan ParMol for low22 and medium support threshold values. For example, gSpan-64bit Original v.6 consumed about 1020 seconds lesser than gSpan ParMol for NCI250 dataset and MST 4% (see Table 2.24).

For medium sparse and small sparse datasets, gSpan-64bit Original is slower than gSpan ParMol for low support threshold values except for the NCI330 dataset (see Table 2.24). However, it has a competitive performance compared to gSpan ParMol for high support threshold values.

Summary of gSpan Implementations

• Of all gSpan solutions, gSpan Original v.6 is the most efficient one in terms of memory consumption for very low support threshold values. However, gSpan ParMol fails to achieve the search for some low threshold values (e.g., HIV-CA 4%, see Table 2.21) and gSpan-64bit Original fails earlier (e.g., HIV-CA 8%). The failures are mainly due to memory consumption. However, gSpan Original v.6 is able to complete the execution successfully (e.g., HIV-CA 4%, see Table 2.21).

• GSpan-64bit Original v.6 can be used in a context where execution time is critical and the support threshold values are not low.

• Instead of gSpan Original v.6, the open source implementation gSpan ParMol can be used for better runtime performance if the dataset is small or medium and sparse, also the support values should be not too low. 
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Gaston Implementations

There are three implementations of Gaston: two (Gaston Original v1.1, RE v1.1) are from original authors [START_REF] Nijssen | [END_REF]] and the other one (Gaston ParMol) is from a third-party implementer [START_REF] Wörlein | [END_REF]]. Number of Frequent Subgraphs. Typically, Gaston Original versions (v1.1, RE v1.1) generated the same number of frequent subgraphs. However, there could be some exceptions such as the ones we found for the DD (under 20%, see Table 2.25) and PS (under 80%, see Table 2.25) datasets. For example, for the 2% MST of DD dataset, Gaston Original v1.1 produced 1359 frequent subgraphs more than Gaston v1.1 RE (see Table 2.25). In Table 2.25, Diff denotes the difference, in terms of frequent subgraphs, produced by the two implementations for the lowest and the highest support values.

Gaston Original (v1.1, RE v1.1) (H) and Gaston ParMol (H) produced a different number of frequent subgraphs for all datasets. This is shown in Table 2.26 where Diff denotes the difference, in terms of frequent subgraphs, produced by the two implementations for the lowest and the highest support values.

For example, with PTE dataset, for 1.5% MST, Gaston Original versions (v1.1, RE v1.1) (H) generated 57946 frequent cyclic graphs, 282724 frequent trees and 2268 frequent paths. However, Gaston ParMol (H) generated 57951 frequent cyclic graphs, 284294 frequent trees and 2234 frequent paths. It is worth noting that Gaston Original versions (v1.1, RE v1.1) do not include frequent subgraphs with single vertex (0 edges). However, Gaston ParMol does include these subgraphs. This could justify only the difference in the number of frequent paths. 

2% -90% GP > GO 10 -3 4% -90% GP > GO 90 -1 8% -90% GP > GO 8 -3 AIDS Large Datasets PTE 2% GP < GO 5 NCI250 1.47% - 2.94% GP < GO 4324 - 10 3% -90% GP > GO 8 -2 60% -90% GP > GO 3 -1 3% GP = GO - NCI145 Dense Datasets 4% -90% GP > GO 16 -1 2% -90% GP > GO 1443 -1 DD 4% -5% GP < GO 49 -21 6% -90% GP > GO 4 -18 PS 80% -90% GP > GO 7399 -8
The difference in the number of frequent trees and graphs between Gaston ParMol and Gaston Original (v1.1, RE v1.1) needs to be explained further. Also, these two implementations of Gaston do not have a constantly positive (or negative) difference. For example, for AIDS dataset, Gaston ParMol generated 5 frequent subgraphs less than Gaston Original v1.1 for MST 2% and 8 more frequent subgraphs for MST 3% (see Table 2.26). This variability should also be explained by authors.

Memory Consumption. Typically, Gaston ParMol consumed more memory for all datasets (e.g., AID2DA99, see Figure 2.4) and produced different numbers of frequent subgraphs compared to Gaston Original versions. However, for small sparse small-sized graph datasets and relatively medium values of support threshold, Gaston ParMol required fewer memory than Gaston Original versions (e.g., above 6% MST for PTE, see Figure 2.5).

Figure 2.5: Memory Consumption of Gaston -PTE

Gaston Original RE v1.1 was proposed by [Nijssen 2005b] in order to reduce the memory consumption of Gaston Original v1.1. We found that Gaston Original RE, when it is able to run, had in fact a linear memory consumption lower than Gaston Original (e.g., AID2DA99, see Figure 2.4 and PTE, see Figure 2.5) for all the tested datasets except for the small dense DD and PS datasets.

However, for very low support threshold values (e.g., 3% for NCI330, 6% for HIV-CA) or for relatively large sparse small-sized graph datasets (e.g., DS3, NCI250), Gaston Original RE produced an exception and hence the operation was terminated. For the same cases, Gaston Original completed successfully. For example, for HIV-CA dataset, Gaston Original v1.1 RE failed to terminate for 6% MST (see Table 2.28). However, Gaston Original v1.1 reached MST 4% successfully (see Table 2.28).

Runtime. The results show that for all tested datasets, the runtime performance of Gaston Original v1.1 was the best among all Gaston versions. It is worth noting that Gaston Original RE v1.1 required less memory than Gaston Original v1.1 (e.g., AID2DA99, see Figure 2.4), as a trade-off, it was slower (e.g., AID2DA99, see Figure 2.6).

For the small dense datasets (DD and PS), Gaston Original RE required more time and memory than Gaston Original with a different number of frequent subgraphs. 

Summary of Gaston Implementations

• Gaston Original v1.1 should be used for applications where runtime is critical.

• Gaston Original RE v1.1 can be used to save memory (despite the required time) for the following cases: (a) support threshold values not too low (e.g., above 6% MST for HIV-CA) and (b) datasets that are not large (e.g., smaller than DS3, NCI250) and not dense (e.g., less dense than DD). If neither (a) nor (b) are verified, then (c) the provided RAM memory should be large enough to handle the mining task. If none of the cases (a) and (b), or (c) are true, then Gaston Original v1.1 has to be used.

• Gaston ParMol consumed the highest amount of memory amongst all Gaston versions (except for small sparse datasets and high support values), yet it is the slowest solution (e.g., for AID2DA99 dataset, see Figure 2.6) and it produced a number of frequent subgraphs different from what Gaston Original versions produced.

Comparison with the State of the Art

In this section, we compare our results regarding the implementations of the six algorithms with the results we found in state of the art. The comparison shows the similarities and differences between the results. This comparison could be seen as an update of the FSM literature with the consideration of implementations releases. According to our understanding, differences of our results with state of the art might occur due to different machine characteristics and different implementation releases (e.g., gSpan v.5, gSpan v.6).

It is worth noting that we eliminated some graphs from the datasets AID2DA99 and CAN2DA99 (see Section 2.3.1). Therefore, our versions of these datasets contain slightly fewer number of graphs (7 and 4 graphs, respectively) than the ones tested in state of the art; we believe this could have an impact on the outcome and so on results. We took these inconveniences into consideration for our comparison.

GSpan Comparison

We present our comparison with gSpan Original versions first then with gSpan ParMol.

GSpan Original. Our experiment with gSpan Original v.6 generated a number of frequent subgraphs that is different (superior) from the result found in [START_REF] Nijssen | [END_REF], Nijssen 2006, Krishna 2011] for the datasets PTE and HIV-CA (see Table 2.29). The values comparable in Table 2.29 are in bold and non-grey coloured cells (using the same support strategy L or H). For example, in Table 2.29 for MST 3%, gSpan Original in our experiments generated 22785 frequent subgraphs. However, gSpan Original generated 22758 frequent subgraphs in [START_REF] Nijssen | [END_REF], Nijssen 2006]. Additionnally, Table 2.29 shows the difference in the number of frequent subgraphs for all gSpan versions in our experiments in comparison with gSpan Original results found in [START_REF] Nijssen | [END_REF], Nijssen 2006]. For some cases, this illustrates that none of our tested gSpan versions has an equal number of frequent of subgraphs as found in [Nijssen 2006] (e.g., MST 3%, see Table 2.29). We found the same frequent subgraphs produced by gSpan Original as reported in [Aridhi 2015] for the DS3 dataset. The number of frequent subgraphs found in [START_REF][END_REF]] is approximately24 the same as our result for the dataset HIV-CA. Considering the runtime performance, gSpan Original v.6 was slightly slower than gSpan Original -reported in [START_REF] Nijssen | [END_REF], Nijssen 2006, Krishna 2011, Aridhi 2015] for PTE, HIV-CA and DS3 datasets. The result reported in [START_REF][END_REF]] for HIV-CA dataset was approximately similar to ours. According to our understanding, the difference regarding runtime could be due to different machine characteristics and to the number of generated frequent subgraphs. Regarding the impact of the differences between the gSpan versions (2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009), Xifeng Yan -the contacted author of gSpan Original explained the following: "They are the same, except the new one supports more labels and it is running on a 64 bit system"... "The new version supports multi-threads, and more labels. Therefore, it consumes more memory (50%-100%)..."

GSpan ParMol. Our experiment with gSpan ParMol (for PTE dataset) produced the same number of frequent subgraphs as in [Gago-Alonso 2010a]. For AID2DA99 dataset, our experiment is considerably faster (see Figure 2.7), consumed slightly more memory (see Figure 2.8) and produced approximately 25 the same number of duplicates (see Figure 2.9) compared to gSpan ParMol result found in [Gago-Alonso 2008, Gago-Alonso 2010b, Gago-Alonso 2010a]. The difference in runtime could not be completely understood. Although, initially we assumed that the runtime performance is different due to different machine specifications. However, we found that even using a machine with the same resource specification, did not alleviate this difference. 

Gaston Comparison

We present our comparison with Gaston Original versions first then with Gaston ParMol.

Gaston Original. In our experiment, Gaston Original versions (v1.1, RE v1.1) generated the same number of frequent subgraphs as in [START_REF] Nijssen | [END_REF], Krishna 2011] (for PTE and HIV-CA respectively). It generated a fewer (one less) number of frequent subgraphs than the result in [Aridhi 2015] (for 30% MST, DS3 dataset). Gaston Original (v1.1, RE v1.1) consumed more memory than the version found in [START_REF] Nijssen | [END_REF], Nijssen 2006] (PTE dataset, see Table 2.30).

The values comparable in Table 2.30 are in bold and non-grey coloured cells (using the same support strategy L or H). For example, for MST set to 2%, Gaston Original in our experiments consumed about 10.421 MB. However, Gaston Original consumed 9.1 MB in [START_REF] Nijssen | [END_REF], Nijssen 2006]. Also, for MST set to 3%, Gaston Original in our experiments consumed about 7.158 MB compared to 4.4 MB in [START_REF] Nijssen | [END_REF], Nijssen 2006].

Our runtime performance of Gaston Original was better than the result in [START_REF] Nijssen | [END_REF], Nijssen 2006] (PTE dataset, see Table 2.31) and in [Krishna 2011] (HIV-CA dataset). However, Gaston Original v1.1 has competitive runtime as in [Aridhi 2015] (for the DS3 dataset). The values comparable in Table 2.31 are in bold and non-grey coloured cells (using the same support strategy L or H). For example, for MST set to 2%, Gaston Original in our experiments required about 2.28 seconds and Gaston Original RE required about 9.95 seconds. However, in the literature [START_REF] Nijssen | [END_REF], Nijssen 2006] Gaston Original required about 7.9 seconds and Gaston Original RE required about 39.6 seconds.

However, our results attest that Gaston Original v1.1 is much faster (see Table 2.31) and requires much more main memory (see Table 2.30) than Gaston Original RE v1.1 as it was reported in [START_REF] Nijssen | [END_REF], Nijssen 2006].

It is worth noting that we used different resource specification including a more powerful processor26 than the one used in [START_REF] Nijssen | [END_REF], Nijssen 2006] and different from the ones used in [Krishna 2011, Aridhi 2015].

Gaston ParMol. In our experiment, Gaston ParMol generated a number of frequent subgraphs which is different from the number reported in [Gago-Alonso 2010a] (for AID2DA99). For example, Gaston ParMol generated 18121 frequent subgraphs in our experiment for AID2DA99 and MST 3%. However, it generated 18146 frequent subgraphs in [Gago-Alonso 2010a] (see Table 2.32). According to our results, Gaston ParMol is faster than the one tested in [Gago-Alonso 2010a, Gago-Alonso 2008, Gago-Alonso 2010b] (AID2DA99, PTE). 

FSG Comparison

In our experiment, FSG Original v1.37 generated different number of frequent subgraphs compared to the version tested by Kuramochi et al. [START_REF] Kuramochi | Discovering frequent geometric subgraphs[END_REF] for some threshold values (e.g. 2%, 7.5% for PTE, see Table 2.33). However, the experiments reported in [Nijssen 2003, Krishna 2011, Aridhi 2015] produced the same number of subgraphs as in our experiments (for PTE, HIV-CA and DS3 datasets, respectively). The runtime performance in our experiments with FSG Original was close to the performance27 reported in [Krishna 2011, Aridhi 2015] (for HIV-CA and DS3 datasets). However, it showed a better performance (i.e., two or three times) than the FSG evaluated28 in [Nijssen 2003] (for PTE dataset). For example, for PTE and MST set to 2%, FSG Original v1.37 required about 128.5 seconds. It required about 307 seconds for the same support and dataset in [Nijssen 2003] (see Table 2.34). FSG has considerably better runtime (up to 50 times less, see Figure 2.12) than the experiment reported in [Inokuchi 2005[START_REF][END_REF]] (for PTE and HIV-CA datasets, respectively). It is worth noting that we used a more powerful processor than the ones used in [Inokuchi 2005[START_REF][END_REF]]. However, the difference in FSG results cannot be only related to the processor. In fact, gSpan in our experiments did not have such a huge difference compared to the literature results (less than 2 times slower [Inokuchi 2005[START_REF][END_REF]). We relate the difference of the FSG results to FSG version evolution. Since our experiments rely on binary release of FSG, we could not compare memory consumption with state of the art. 

DMTL Comparison

We found only one available real dataset tested with DMTL in the literature (the dense dataset PI [Al Hasan 2009b]). In [Al Hasan 2009b], the basic version of DMTL crashes in few minutes with a 2 GB of RAM and MST set to 50%. For the same dataset and support value, we left DMTL running for days, it did not complete. We then aborted the execution.

FFSM Comparison

The comparison of our results with the ones found in the literature [Gago-Alonso 2010a] shows that the number of duplicates generated by FFSM ParMol is the same for the PTE dataset and a slightly more for the AID2DA99 dataset. We mentioned in Section 2.3.1 that we removed 7 graphs from AID2DA99 due to file errors. This raises a question -if we have less graphs and labels in our modified AID2DA99 dataset than the one in [Gago-Alonso 2010a], what makes the number of found duplicates in our result more than the one in [Gago-Alonso 2010a] ?

The number of frequent subgraphs is reported only in a graphical form in the literature [Skonieczny 2009]. Therefore, it was not possible to derive a precise conclusion.

Our experiment result shows that FFSM ParMol is considerably faster29 than the result reported in [Gago-Alonso 2010a] for the PTE dataset (see Figure 2.13) with the same number of subgraphs duplicates. For example, for PTE and MST set to 2%, FFSM ParMol required slightly less than 1 minute in our experiment. However, it required slightly less than 4.8 minutes. We found competitive runtime with the result reported in [Skonieczny 2009] with approximately the same number of frequent subgraphs (graphical estimation). However, since no information about the system specification was provided in [Skonieczny 2009], we could not derive a conclusion regarding the runtime closeness. No information was reported about FFSM ParMol memory consumption in the literature.

MoFa Comparison

We were unable to compare our experiment results of MoFa ParMol with the ones found in the literature. The reasons are: (i) unavailability of the dataset reported in [START_REF] Wörlein | [END_REF]], (ii) lack of sufficient details about the experiment (no information about machine characteristics was provided in [Skonieczny 2009]), and (iii) the ambiguity 30 about the used implementation (MoFa or MoSS) [Gago-Alonso 2010a]. Also, we were not able to compare our results regarding MoFa Original with state of the art mainly because of the unavailability of HIV-CM dataset and the lack of efficiency results 31 in state of the art [START_REF] Borgelt | [END_REF]].

An Inter-Algorithms Performance Study

In this section, we compare the performance between different implementations of algorithms. It is important to notice that some algorithms were tested with the (H) strategy and some others with the (L) strategy (see Table 2.11). We considered the used strategy in our comparative study.

In this chapter, we report results of some tested datasets through our experiments. Additionally, we present a summarized comparison between some competitive implementations for all datasets and support threshold values. It is worth noting that all conclusions in this chapter are based on all experimental results 32 and not only the results shown in this chapter.

Results are presented according to the number of frequent subgraphs, runtime and memory consumption.

Number of Frequent Subgraphs

Table 2.36 shows the number of frequent subgraphs for implementations with the (H) strategy for the PTE dataset.

Gaston ParMol. The Gaston ParMol generated a number of frequent subgraphs which is different from the other implementations, for the low support threshold values (e.g., PTE, see Table 2.36).

Table 2.35 shows the difference in the number of frequent subgraphs between Gaston ParMol and gSpan ParMol for all tested datasets. For example, for NCI145 and MST values ranging from 2% to 7%, Gaston ParMol generated between 1435 and 1 more frequent subgraphs than gSpan ParMol. 30 The contacted authors [Gago-Alonso 2010a] could not remember if they used MoFa or MoSS in their experiments

31 Experiments were mainly focusing on the quality of results [START_REF] Borgelt | [END_REF]].

32 For all results, see https://liris.cnrs.fr/rihab.ayed/DFSM.pdf GSpan (Zhou). It produced a number of frequent subgraphs considerably different from gSpan versions (see Section 2.3.2). It was also different from Gaston Original for low and medium support threshold values. For example, for HIV-CA and MST set to 5%, gSpan (Zhou) generated 181687 more frequent subgraphs than Gaston Original (see Table 2.37). GSpan ParMol, FFSM and MoFa ParMol.Three ParMol implementations (gSpan, FFSM, MoFa) produced the same number of frequent subgraphs for all tested datasets (e.g., PTE, see Table 2.36).
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Table 2.38 shows the number of frequent subgraphs between implementations with the (L) strategy for the PTE dataset.

GSpan Original. As mentioned in Section 2.3.2, the number of subgraphs produced by gSpan ParMol and gSpan Original v.6 were almost the same except for some low support thresholds. For those low support thresholds, the difference varied between 1142 and 1 frequent subgraphs (see Table 2.38). Typically, the number of frequent subgraphs produced by Gaston Original was different from gSpan Original for all datasets (see Table 2.39). This difference could be partially justified for some support threshold values due to the fact that Gaston Original does not include frequent subgraphs with one vertex, unlike gSpan Original (e.g., [3%, 50%] for PTE). However, other differences (e.g., 1.5% for PTE) cannot be rationalized by the same fact. Besides the difference in the number of frequent subgraphs between Gaston Original and gSpan Original, there is also a difference in the counting of subgraphs.

For example, for AIDS with MST set to 10%, they produced 16 frequent subgraphs -out of 510 -that are the same but have different frequency values (e.g., 21 759 and 21 761 are the frequency for one frequent subgraph by gSpan Original and Gaston Original, respectively). Gaston Original and FSG Original. Typically, the Gaston Original versions and FSG produced the same number of frequent subgraphs, with some exceptions. For example, for DD dataset with MST between 7% and 9%, FSG Original produced between 24 and 8 subgraphs less than Gaston Original (see Table 2.40). Also, for AIDS dataset and MST between 1.5% and 2%, FSG Original produced 1 more frequent subgraph than Gaston Original (see Table 2.40).

Besides this difference in the number of frequent subgraphs, there was also a difference in the counting of subgraphs. Noticeably, Gaston Original and FSG Original compute differently the frequency of subgraphs. For example, for AIDS with MST set to 2%, the two implementations generated 27 frequent subgraphs -out of 17 694 -that are the same but with different frequency values (e.g., a frequency by Gaston Original equal to 13558 and by FSG Original equal to 13553 for one frequent subgraph).

DMTL. It produced significantly a fewer number of frequent subgraphs than the others for the NCI330 and NCI145 datasets (see Table 2.41).

For example, for NCI145 dataset and MST between 2% and 80%, DMTL produced between 449691 and 4 frequent subgraphs less than Gaston Original. For the other datasets, DMTL produced the same number as Gaston Original versions (see Table 2.41).

MoSS ParMol. The MoSS ParMol produced a number of frequent subgraphs which is considerably different from all implementations for PTE (see Table 2.38), PS and HIV-CA datasets (see Table 2.42).

MoFa Original. MoFa Original with case b (MOb) produced the same number of frequent subgraphs as MoFa ParMol for the 3 SDF used datasets (e.g., AID2DA99, see Table 2.43). However, MoFa Original with case a (MOa) produced significantly a different number of frequent subgraphs. This is due to the edge relabeling strategy of chemical aromatic bonds [START_REF] Borgelt | [END_REF]]. 

Summary of the number of frequent subgraphs

According to our results, the 13 FSM implementations can be classified according to their similarity in the number of frequent subgraphs. Our classification is not rigid as it tolerates some exceptions (with slight differences). We argument further this classification (see Figure 2.14). support thresholds (see Table 2.37). This difference is not neglectful (e.g., 22279 frequent subgraphs, see Table 2.37). This is why we do not compare it with other implementations.

• Gaston Original generated a number of frequent subgraphs which is always different from gSpan Original for all datasets and support thresholds (see Table 2.39). The difference was slight (between 27 to 1 subgraphs, see Table 2.39) except for small dense datasets. Since the difference was reported for all datasets, we classified these two implementations separately.

• DMTL generated a number of frequent subgraphs equal to Gaston Original with some exceptions. The difference of DMTL with Gaston was a huge number (NCI330 and NCI145, see Table 2.41). The same applies for MoSS ParMol in comparison with MoFa ParMol (see Table 2.42). For this, we classified DMTL apart from Gaston and MoSS ParMol apart from MoFa ParMol.

• Also, FSG Original generated the same number of frequent subgraphs as Gaston Original with some exceptions. The difference was produced with low support threshold or small dense datasets (see Table 2.40). However, typically the difference was slight (e.g., 1 to 24 subgraphs, see Table 2.40) except for the small dense dataset PS. We tolerate these slight exceptions and classified FSG with Gaston Original.

• GSpan Original versions, gSpan ParMol, FFSM ParMol, MoFa Par-Mol and MoFa Original (b) can be classified together, if we tolerate the slight difference of produced frequent subgraphs at low support thresholds between gSpan Original and the three ParMol implementations (see Table 2.38).

• We found it intriguing that Gaston ParMol generated a different number of frequent subgraphs from the original version of Gaston for all tested cases (see Section 2.3.2). Also, it is interesting to notice that it had a number of frequent subgraphs different from the other implementations of the same framework (ParMol) for low support thresholds (see Table 2.35). For this, we classified it apart.

In our experiments, we found that implementations do not produce the same number of subgraphs. In state of the art, we found that a different34 number of frequent subgraphs was reported only in [Aridhi 2015], for Gaston, FSG and gSpan Original versions. However, for the rest of literature (e.g., [START_REF] Nijssen | [END_REF], Nijssen 2006, Krishna 2011]), gSpan, Gaston, FFSM and FSG Original implementations are supposed to produce the same number of frequent subgraphs. Also, ParMol implementations (gSpan, Gaston, FFSM, MoFa) produced the same number of frequent subgraphs (reported in [Gago-Alonso 2008, Gago-Alonso 2010b, Gago-Alonso 2010a]).

Further explanations should be provided about these observations. As an end-user study, we do not explain the difference of results between implementations. Gaston Original. Among all, for all the used datasets (e.g., PTE, see Figure 2.15), Gaston Original v1.1 performed the best regarding runtime, and Gaston Original RE the second. GSpan Original and Gaston Original. GSpan Original may require a significant runtime for parsing a dataset (e.g., for DS3 dataset, it consumed 28 seconds), while Gaston is faster in parsing (e.g., for DS3 dataset, less than 0.2 seconds). Furthermore, gSpan was slower than Gaston for extracting frequent subgraphs (e.g., PTE, see Figure 2.16).

Runtime

We observed a comparative performance between gSpan versions, FFSM ParMol and FSG Original in terms of runtime (see Figures 2.16, 2.17). Thus, these three FSM algorithms are investigated futher. Table 2.44 displays the results for all the datasets. The FSG Original was faster than gSpan versions for low support threshold and medium sparse or large sparse datasets. For small sparse datasets, it was slower than gSpan versions for low support threshold and slightly faster or close to gSpan versions for high support threshold. For small dense datasets, it was slower than gSpan versions.

It is worth noting that the number of subgraphs produced by FSG was slightly lesser than the result produced by gSpan versions for all tested datasets (between 36 and 1, see Table 2.45). Even though the comparison is biased due to different number of frequent subgraphs, it is interesting to compare the performance that was not highly dependent of this number. For example, for DD and MST set to 7%, FSG Original required 14 234 seconds more than gSpan Original (see Table 2.44) for a number of frequent subgraphs lesser (20) than gSpan Original (see Table 2.45).

FFSM ParMol and gSpan ParMol. Table 2.46 shows a runtime comparison between FFSM ParMol and gSpan ParMol. In Table 2.46, 'F' stands for fluctuation. FFSM ParMol is slower than gSpan ParMol for medium (e.g., 10%) and high support threshold values (e.g., 50%) for medium sized datasets. For low support threshold, it could be slower or faster depending on the dataset (e.g., AID2DA99, AIDS). FFSM ParMol is faster than gSpan ParMol for small dense datasets (see Table 2.46). However, for large sparse datasets, FFSM ParMol is slower. For small sparse datasets, it was slightly faster or almost equal to gSpan ParMol except for very low support threshold values where it could be slower (e.g., 5% for HIV-CA, Table 2.46).

MoFa ParMol. Our results show that MoFa ParMol was the slowest among gSpan, FFSM and Gaston ParMol, for all the tested datasets (e.g., AID2DA99, see Figure 2.17).

MoSS ParMol. It was the slowest among ParMol implementations (e.g., AID2DA99, see Figure 2.17) for the same number of frequent subgraphs or for cases of lesser frequent subgraphs (see Table 2.42). Also, we observed that it had close runtime to the one reported for Gaston Original v1.1 with low support threshold values (e.g., AID2DA99, see Figure 2.17). However, for the large sparse dataset NCI250, it was slower than ParMol implementations (gSpan, Gaston, MoFa) with the high reached support values (90%). 

F < SP 9 -2 1.5% -90% F < SP 8 -1 PTE CAN2DA99 1.5% -90% F < SP 36 -1 2% -80% F < SP 8 -3 Large Datasets AIDS NCI250 1.5% -90% F < SP 9 -2 2% -90% F < SO 8 -1 NCI330 Dense Datasets 4% -90% F < SP 6 -1 DD NCI145 7% -90% F < SO 20 -18 2% -90% F < SP 8 -1 PS 80% -90% F < SO 16 -13

Summary of the runtime performance

• Gaston Original versions (v1.1, RE v1.1) were the fastest implementations independently of the dataset or support threshold values.

Memory Consumption

Figure 2.18 shows the memory consumption of implementations with the (H) strategy for the PTE dataset and Figure 2.19 with the (L) strategy. GSpan (Zhou). For low support threshold values, gSpan (Zhou) consumed the highest amount of memory among all implementations (e.g., PTE, see Figure 2.19) with a much lesser number of frequent subgraphs (see Table 2.37).

DMTL. For any support threshold value, the largest memory was consumed by DMTL implementation (see Figures 2.18 and 2.19).

For further comparison, we considered the implementations that were found to be competitive. This is the case for gSpan ParMol, Gaston Original versions and FFSM ParMol (see Figure 2.18). We did not consider further analysis of Gaston ParMol because of its intriguing difference regarding frequent subgraphs (see Section 2.3.4).

GSpan ParMol and Gaston Original. It is worth noting that gSpan Par-Mol and Gaston Original produced a different number of frequent subgraphs. Table 2.47 shows the comparison between gSpan ParMol and Gaston Orig-inal versions with respect to their memory consumption.

For small sparse datasets, gSpan ParMol generated more frequent subgraphs (up to 36) than Gaston Original. For this case, gSpan ParMol consumed more memory for low support threshold and lesser memory for high support threshold than the two Gaston Original versions.

For medium sparse datasets, gSpan ParMol generated up to 9 more frequent subgraphs (except for NCI330) than Gaston Original versions. For this case, gSpan ParMol consumed more memory than Gaston Original RE. However, it required less memory than Gaston Original with low and medium support threshold. For some cases with low support threshold, it consumed more memory than Gaston Original (e.g., 3% for NCI145 dataset, see Table 2.47). Furthermore, for large sparse datasets, gSpan ParMol generated more frequent subgraphs (up to 9) than Gaston Original. For this case, gSpan ParMol consumed less memory than Gaston Original for low support threshold. However, it consumed more memory for high support threshold.

For small dense datasets, gSpan ParMol consumed more memory than Gaston Original independently if the number of frequent subgraphs is less (e.g., 49 for DD and MST 4%) or more (e.g., 18 for DD and MST 90%). However, it consumed more memory than Gaston Original RE for low support threshold and less memory for high support threshold. For small dense datasets, gSpan ParMol produced more frequent subgraphs than Gaston Original RE.

GSpan ParMol and FFSM ParMol. We compared memory consumption of FFSM ParMol and gSpan ParMol (see Table 2.48).
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In Table 2.48, 'F' stands for fluctuation35 of the performance. For small sparse datasets, FFSM ParMol consumed less memory than gSpan ParMol for low support threshold values. However, its consumption of memory was close to gSpan ParMol for high support threshold values.

For medium sparse and small dense datasets, FFSM ParMol consumed more memory than gSpan ParMol. Additionally, for large sparse datasets, it consumed significantly more memory than gSpan ParMol. Original versions of FSG, gSpan and Gaston. The FSG Original and gSpan Original are provided as binary codes with no information about memory consumption. Therefore, we tried to deduce their respective limits regarding memory consumption by testing the lowest support threshold values. FSG Original was not able to run with low support threshold for some datasets (e.g., DD dataset, see Table 2.49). We conclude that FSG used more memory than gSpan Original, for low support threshold values.

We could not conclude about the memory consumption limit of gSpan Original compared to Gaston Original. However, it is worth noting that for some datasets (e.g., NCI330) and with low support thresholds, gSpan Original took a huge time without completing the mining (e.g., 6 days for NCI330 with MST set to 2%).

Gaston Original completed it in a more reasonable time and with a lower support (e.g., 9 hours for NCI330 with MST set to 1%). MoFa/MoSS versions. According to our results for MoFa/MoSS solutions, we observed that MoFa ParMol and FFSM ParMol consumed the same amount of memory (see Figure 2.20). MoSS ParMol consumed more memory with a number of subgraphs potentially lesser than all the other implementations (see Figure 2.20). Additionally, MoFa Original (b) consumed about twice (or one half) the amount of memory 36 required by MoFa ParMol for the medium sparse (AID2DA99, CAN2DA99) and large sparse (NCI250) datasets (see Table 2.50). For example, for MST set to 2%, MoFa ParMol consumed about 817 MB. However, MoFa Original (b) consumed between 1400 and 1500 MB. 

Summary of memory performance

• According to our analysis, gSpan ParMol is more suitable than Gaston Original versions, for memory bound systems, in the following cases: (i) for large sparse datasets and low support threshold, (ii) for small sparse datasets and high support threshold values. It is worth noting that in the cases (i, ii) gSpan ParMol produced more frequent subgraphs than Gaston Original versions.

• DMTL is the worst memory consumer of tested FSM implementations (see Figures 2.18 and 2.19).

• Based on our study, we conclude that for memory bound systems, FFSM ParMol can be used instead of gSpan ParMol if the dataset is small sparse and the support threshold values are low. However, it is better to use Gaston Original versions for this case.

• According to our analysis, for memory bound systems, gSpan Original or Gaston Original is more suitable to use than FSG Original or gSpan ParMol for low support threshold values (e.g., DD, HIV-CA, see Table 2.49).

• MoFa ParMol was the slowest among Gaston, FFSM and gSpan Par-Mol implementations and it consumed an amount of memory close to FFSM ParMol. In the following, we present results of FSM implementations with the lowest support thresholds reached and with the small & large-sized graph dense dataset PI (see Table 2.10). These experiments show the limits of complete search FSM implementations.

Bottleneck experiments

According to our experiments, Gaston Original is the implementation that was able to reach the lowest support threshold values. Table 2.51 shows the limits of the Gaston Original implementation with eleven datasets (see Table 2.10) and very low support threshold values. We used the same machine (see Table 2.12) as in the previous experiments. We emphasized on Gaston Original because it is the most efficient solution. The notations we used in the Table 2.12 are, S : reached support threshold, N : number of frequent subgraphs, M : Max size (vertices) of frequent subgraphs, R: consumed RAM memory (MB) and O : output file size (MB). For all tested datasets, Gaston Original was able to run with MST set to 1%, except for HIV-CA and PS datasets. In fact, the implementation was not able to run under MST set to 4% for HIV-CA due to lack of disk space. For PS with MST set to 50%, it spent 8 days running without completing the experiment, yet an output file of 3 GB was created. Similarly, in another experiment, it spent 4 days running without completing for the same support and with a maximum size of frequent subgraphs (28 vertices).

Table 2.52 displays the scalability of FSM implementations with a small & large-sized graph dense dataset (PI). Only Gaston Original RE and DMTL were able to process 37 the PI dataset without generating an error. We did not experiment DMTL any further for mining frequent subgraphs since it performs only a complete search, rather we experimented Gaston RE which is able to reduce the mining set. Gaston RE was able to find frequent subgraphs of maximum size 5 with MST set to 100%. For this case, it consumed about 2.84 GB of RAM (memory) and generated 1578086 frequent subgraphs (see Table 2.53). However, it was not able to complete the mining with the same support for maximum size 10. The same applies for the cases of MST set to 70% and max size 3 or MST set to 50% and max size 2. These findings confirm the results of [START_REF] Saha | [END_REF], Al Hasan 2009b] about the limits of complete search algorithms with dense datasets.

Discussion

According to our observations, the sources of results ambiguities in state of the art (see Section 2.2.3) are as follows: different styles of implementating an FSM algorithm (e.g., ParMol or Original), the dataset characteristics (e.g., small, large, sparse, dense), and the support threshold values (e.g., [2%, 50%], [10%, 90%]). For example, the third-party implementation of Gaston (Gaston ParMol) was the highest memory consumer among gSpan ParMol and FFSM ParMol. However, the Original version of Gaston was the least memory consumer among gSpan ParMol and FFSM ParMol. These observations illustrate that an FSM algorithm (e.g., Gaston) when implemented differently, can affect considerably its efficiency.

The experimental study we conducted allowed to alleviate some of the ambiguities and specify some cases of FSM implementations performance. According to our results, eight implementations among thirteen (see Table 2.54) are not adequately efficient due to : (i) their high memory and/or time consumption, (ii) a number of frequent subgraphs different from the other implementations, (iii) their inability to handle relatively large datasets or run for low support thresholds. We selected five implementations out of thirteen as efficient, including Gaston Original, gSpan ParMol, gSpan Original, FSG Original and Gaston Original RE.

The first four implementations (see Table 2.55) were selected based on the following criteria : (i) they consumed the least amount of memory, among all the thirteen FSM implementations, (ii) they are relatively fast (Gaston Original is the fastest), (iii) they are able to complete the mining with relatively large datasets or for low support threshold values.

Gaston Original RE was chosen (see Table 2.55) due to its ability to process small large-sized graph dense datasets unlike the four others and also because of its good performance with medium sparse datasets. Then we reduce the set of four selected implementations (Gaston Origi-nal, gSpan ParMol, gSpan Original and FSG Original) to two usable implementations (Gaston Original and gSpan Original) for two general cases : (i) applications that need to save memory, and (ii) applications where runtime is critical. Both Gaston Original and gSpan Original are suitable for the former and Gaston Original is suitable for the latter.

During our experiments, we realized that the size of a dataset and the minimum support influenced the performance of the tested FSM solutions. Therefore, we changed some other parameters of the experimental environment in order to observe their impact on the performance. In the next section, we discuss our results.

Impacts of the Environment variations on the results

We discuss in the following the impact of changing the variables of experimental environment on the performance of FSM implementations. The environment variables include the dataset size, the operating system, a potential IDE, the used input arguments of implementations, the input data format and the labelling strategy of data.

Dataset variation

We studied the impact of tested datasets 38 on the runtime, memory and the number of frequent subgraphs. We considered two variables for datasets : size and density. These parameters are the same as defined in Section 2.3.1. We discuss our results of experiments with Gaston Original, gSpan ParMol and gSpan Original.

Runtime. According to our observation, experiments with small sparse datasets required typically the lowest runtime among all datasets (e.g., PTE, see Figure 2.21). However, the experiments with low support threshold over the small sparse datasets (e.g., HIV-CA) required more or the same time than the other datasets (e.g., DS3) to complete the execution.

• Medium datasets had similar runtime performance (e.g., NCI330 and CAN2DA99, see Figure 2.21). However, for experiments with low support threshold, two medium datasets (NCI330 and NCI145) were considerably slower than the other medium datasets (e.g., AID2DA99).

• Typically, large datasets (e.g., DS3) required more time than small and medium datasets (e.g., CAN2DA99), except with very low support threshold values.

• Small Dense datasets (e.g., DD) required similar amount of time compared to medium sparse datasets (e.g., CAN2DA99) with high support thresholds (e.g., 30%, see Figure 2.21). However, with low sup- Our experiments with gSpan ParMol and small dense datasets consumed less memory than medium sparse datasets with high support values. However, with low support values, they consumed more memory than medium sparse datasets.

The consumption of memory for all datasets was typically linear (see Figure 2.22). However, we observed some exceptions for small sparse datasets and low support threshold values where there was an important increase of memory (e.g., PTE with Gaston or gSpan ParMol, HIV-CA with gSpan ParMol). The amount of memory consumption for this case (e.g., 1% PTE, see Figure 2.22) was approximately the same or greater than the amount of memory consumed by medium and large datasets.

Number of Frequent Subgraphs. Different sizes of datasets produced typically close number of frequent subgraphs (e.g., DS3 and CAN2DA99, see Figure 2.23). However, our experiment with the small dense dataset DD produced a considerably larger number of subgraphs than the other datasets (e.g., DS3). Additionally, with low support values (lower than 6% MST), experiments with small sparse (HIV-CA, PTE) and some medium sparse datasets (NCI330, NCI145) produced significantly a larger number than the one produced by all the other datasets (see Figure 2.23). 

OS and IDE variation

We used the ParMol framework to test this effect. We conducted experiments using two IDEs : Eclipse with two versions (Mars 4.5.1, Neon 4.6) and Netbeans 8.2. We also experimented ParMol on a terminal. We used the JDK version 1.8 77. The same machine was used as in the previous experiments (see Table 2.12, Section 2.3.1).

In figures 2.24 and 2.25, Eclipse N, Eclipse M, Netbeans and Terminal + stand for the use of IDE Eclipse Neon, Eclipse Mars, Netbeans and the Terminal, respectively. However, changing the OS (Linux to Windows) did have an impact on the runtime performance. This is due to the use of the parameter 'mem-oryStatistics' in ParMol that calculates the memory consumption. With this parameter, Windows OS had worse runtime performance than Linux (see Figure 2.24) and the same memory consumption (see Figure 2.25). In case this argument (memoryStatistics) is set to false, we found no impact of OS variation on the performance (see Figure 2.26, the Windows and Linux Terminal -result). We specify in the following some additional options of Complete search FSM implementations. These options include the incomplete search of frequent subgraphs and multi-threading. 

Other Options of tested FSM Implementations

It is possible to perform incomplete search (see Section 1.3.3) using the complete search FSM available implementations (see Table 2.58). This optional setting is important because the search space of complete FSM mining is rich but it is exponential [START_REF] Ranu | [END_REF][START_REF] Aggarwal | [END_REF]. There is a need to reduce the set by eliminating the redundancy of subgraph isomorphism [Ullmann 1976].

The proposed settings include the following : (i) specifying the maximum and minimum size of frequent subgraphs to return (gSpan ParMol, Gaston Original), (ii) specifying the minimum and maximum support threshold (gSpan ParMol), (iii) returning only supergraphs (i.e., closed or maximal subgraphs) (gSpan ParMol, FSG Original) (see Table 2.58). 

Conclusion

We reviewed state of the art FSM algorithms in centralized graph transaction databases and we selected a subset of algorithms according to some predefined criteria (e.g., availability of implementations). We conducted an experimental study with the selected algorithms using the datasets found in the literature. In our study, we considered algorithms that have working implementation. In fact, our objective is to provide a synthesis of existing FSM solutions for end users. We tested all the implementations of an algorithm (in case more than one implementation was found for a given algorithm). We analyzed the behavior of the FSM solutions according to the following parameters: (i) execution time, (ii) memory consumption and (iii) the number of frequent subgraphs. Also, we analyzed them by varying two input parameters: datasets and minimum support threshold. We categorized the datasets according to their size (small, medium and large) and density (sparse, dense) and the size of graphs (small, medium, large-sized graphs) ; the minimum support threshold is categorized into : low or high.

For our experiments, only already tested datasets in the literature are used. This choice would allow the comparison of our results with state of the art findings. This is useful in order to have a summarized synthesis about FSM solutions in the whole literature. We used only real-world datasets because synthetic datasets are generated randomly and thus their features are not easy to compare [START_REF] Wörlein | [END_REF]]. We considered additional variations (including operating system, labeling strategy and the format of datasets) in our study to evaluate their impact on the results of experiments with FSM implementations. We compared our results with the results reported in literature.

This work presented a comprehensive and preliminary study of complete search FSM implementations in centralized graph transaction databases for end-users. We studied all the algorithms found in literature and outlined their merits and demerits. Additionally, we presented the results of an experimental study with the selected and available FSM implementations. We investigated the difference between the algorithms in a quantitative manner, instead of an abstract way (e.g., gSpan is slower than FFSM in general). Our study unearthed the differences and similarities between different implementations of one single algorithm and between different implementations of algorithms based on the literature datasets. Also, we experimented the FSM solutions regarding different datasets and different thresholds. Such a comparison could assist in a preliminary way the end-users in making decision regarding the selection of an implementation for their specific context of use. We tested only datasets and FSM implementations of the literature. This is to allow relating our results with the ones of state of the art.

The added value of this work to existing studies concerns mainly the enumeration of all complete search implementations and a justified selection of tested implementations. Also, we studied the cases of performance of implementations according to the input variation. Finally, this study is an update to the literature because it is performed on the last versions of the implementations. Several research directions are lined up including analysis and explanations that should be linked to this work regarding the difference between the results (number of frequent subgraphs, runtime and memory). Also, this study has been performed only on the literature datasets, we will conduct another study with the most efficient implementations over generic, larger and more diverse datasets. In the following chapter, we will describe the application context of FSM algorithms which is Relational Aggregated Search in graph databases. 

Introduction

We define in this chapter the notions related to aggregated search, mainly relational aggregated search. We relate, in this chapter, federated approaches to aggregation approaches and RDF graphs. Federated approaches are interesting for us since they investigated strategies for query decomposition and graph partitioning for query optimization. Graph and semantic data structures have a rich and ready-to-use relations usable for aggregation. Figure 3. This chapter is organized as follows : Section 2 defines information retrieval (IR) process in a classical way and the existing recent categories of IR including relational aggregated search. Section 3 defines the semantic graph search. Section 4 defines query decomposing and graph partitioning strategies used in Federated search and useful in relational aggregated search. Section 5 defines the matching strategies. Section 6 enumerates and describes the studies that contributed in defining relational aggregated IR systems.

Aggregated Search in Information Retrieval

In this section, we define the information retrieval field, its subcategories including the scope of our work (i.e., the relational aggregated search). We compare the different subcategories.

Classical Information Retrieval

The goal of Information Retrieval (IR) is to conceive systems that are able to find a set of documents constituting potential answers to a user information need. An Information Retrieval System (IRS) searches for relevant documents for a user query [Salton 1986, Moreau 2006, El Charif 2006].

Architecture of an IRS

An IRS consists of three main modules [Belkin 1992] (see Figure 3.2) : (i) Query Formulation (and reformulation), (ii) Indexing and (iii) Document/Query Matching. The querying module consists in the query formulation process. The indexing module corresponds to the representation of the document and query contents. The matching module refers mainly to a matching function between documents and a query. Also, it relates to the evaluation of the relevance of documents compared to the query. 

IRS Components

We define in this section the components of an IRS : Document. A document is a focus element of an IRS. A document can be a text, a part of text, a webpage, an image, a video, etc. A document is any stored data unit that could constitute a response to a user query [START_REF] Manning | [END_REF]].

Corpus. A corpus is typically a structured grouping of integral, documented texts that are potentially labelled. The texts in a corpus should be homogeneous (e.g., sharing the same field) [START_REF] Rastier | Enjeux épistémologiques de la linguistique de corpus[END_REF]].

Query. A query is a possible representation of a user's information need.3 A query is a set of descriptors and could be expressed by [START_REF] Van Rijsbergen | [END_REF] : natural language, a bag of words, a boolean expression, graphical form, a formal query language. Document Relevance. A document is considered relevant to a query by an IRS, if its system relevance is high. A system relevance is a score that measures the difference between (i) the similarity between the document and the query and (ii) the relevance probability of documents to the query [START_REF] Manning | [END_REF]]. The system relevance is different from the user relevance. The user relevance is mainly concerned with the consistency of the result compared to the query.

A key IRS Process

Indexing Process. Document and query representations (see Figure 3.2) are built using a set of rules and notations transforming the document (query) to a concise and structured representation. This transformation process is called Indexing. The result of indexation is typically a list of representative terms (i.e., descriptors) of a document (query) [Nassr 2002]. The list of representative terms of documents constitutes the indexing language [Nassr 2002].

IRS Evaluation

There are two notions of system evaluation : efficiency and effectiveness [START_REF] Brini | [END_REF][START_REF] Sauvagnat | Modele flexible pour la Recherche d'Information dans des corpus de documents semi-structur´es[END_REF]].

• Efficiency. It is concerned with the time and space. A system is considered better if its time performance between the query formulation and the system response is fast and the used space for search is small.

• Effectiveness. It is concerned with the user intellectual effort, the result representation, the quality of the corpus according to the query and the precision/recall. The precision/recall [Kent 1955] criteria concerns the ability of the system to retrieve interesting documents and eliminate the least interesting ones [START_REF] Zargayouna | Haïfa Zargayouna. Indexation sémantique de documents XML[END_REF]].

We define, in the following, the categories of recent IR approaches mainly Federated search, aggregated search and composite retrieval.

Federated Search

Federated search consists in searching multiple information sources (called resources) [Callan 2002, Lalmas 2011] and aggregating the results returned by the sources. The query is split into subqueries which are sent to sources. The join order of subqueries results should be optimized. The sources do not have access to the whole query [START_REF] Nassopoulos | FETA: Federated QuEry TrAcking for Linked Data[END_REF]].

SELECT ?pres ?party ?page WHERE { ?pres rdf:type dbpedia-owl:President.

(tp1) ?pres dbpedia-owl:nationality dbpedia:United_States. (tp2) ?pres dbpedia-owl:party ?party.

(tp3) ?x nytimes:topicPage ?page (tp4) ?x owl:sameAs ?pres } (tp5) 

DBPedia (InstancesTypes) DBPedia (InfoBox) NYTimes tp1 tp2 |X| tp3 tp4 |X| tp5 @DBPedia (InstancesTypes) tp1 @DBPedia (InfoBox) tp2 |X| tp3 @NYTimes tp4 |X| tp5

Cross-Vertical Aggregated Search

Aggregated search [START_REF] Murdock | [END_REF], Lalmas 2011] refers to the tasks of : (i) searching, (ii) assembling (or aggregating) of information from heterogeneous sources on the Web -called verticals 4 -and (iii) 

Matching Process

The matching process of classical Information Retrieval consists in extracting relevant documents from a corpus while considering a query. However, the matching process of aggregated search consists in extracting relevant information from relevant documents using relevant verticals [Lalmas 2011].

Ranking Results

Aggregated Search compares documents of different types (e.g., images with web pages). Due to the heterogeneity of the characteristics of documents, ranking algorithms -used for homogeneous documents ranking -in classical information retrieval systems could not be used.

The aggregated set of documents of Cross-vertical aggregated search system conveys diversity of results. However, the retrieved documents are returned as-is in a list, (i) no aggregation between relevant fragments of these documents is performed [Lalmas 2011[START_REF] Sushmita | Study of result presentation and interaction for aggregated search[END_REF][START_REF] Kopliku | [END_REF]] and (ii) no organization of results in a semantic way is provided. The search task from the returned results is still heavy for the user [START_REF] Kopliku | [END_REF]].

Relational aggregated search and composite retrieval try to provide effective solutions for these issues. We define them in the following.

Composite Retrieval

Cross-vertical aggregated search aggregates information from heterogeneous sources (verticals) and returns results in a single interface. Composite retrieval [START_REF] Bota | [END_REF]] aggregates heterogeneous results of verticals in objects (called bundles) that are semantically coherent [START_REF] Bota | [END_REF]]. Composite retrieval is dedicated to complex queries. The system should return several bundles answering the query where each bundle could cover a subtopic of the query.

Relational Aggregated Search

Relational aggregated search [START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF]] consists in aggregating homogeneous or heterogeneous fragments of information using their relationships and returning them in a single result. These fragments of information (also called nuggets [START_REF] Kopliku | [END_REF]) are constructed by decomposing the information set. Further, relationships are mined or defined between these fragments. The relationships are the key elements for having a relevant, synthesized and rich result. Relations can be extracted : (i) explicitly from the documents or (ii) implicitly found in external relational sources such as knowledge graphs, semantic resources (e.g., ontologies), relational databases or web semantic data [START_REF] Kopliku | [END_REF]]. Also, Information Extraction techniques can be used to extract new relations from the Web [START_REF] Kopliku | [END_REF]].

Object-level or Entity-oriented Search

The Google search engine proposed in 2012 an associative concept named Google knowledge graph. The project is oriented to one concept (or entity) queries. Queries containing more than one concept are not considered. The knowledge graph is used for mining associations of facts or data, that are related to the user query. An aggregated information sheet (see Figure 3.5) is presented to the user containing attributes about an entity and other associated entities. 5In the following, we summarize the difference between the previously defined IR approaches. 

A Comparison of Aggregation-Oriented Information Retrieval Approaches

Table 3.1 illustrates the difference between the IR approaches in terms of query decomposition and result aggregation. The compared approaches are : Federated search [Callan 2002], Meta-search [Callan 2002], Cross-vertical [START_REF] Murdock | [END_REF]], Relational aggregated search [START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF]] and Composite Retrieval [START_REF] Bota | [END_REF]]. Heterogeneous document types in Table 3.1 convey different type of data (e.g., image, video, text). Homogeneous documents have the same type of data (e.g., RDF data, HTML tables).

The heterogeneous documents can be represented by homogeneous data (e.g., an image and a text can be represented by text data) [START_REF] Achsas | [END_REF][START_REF] Achsas | [END_REF]] (see Section 3.6.4).

Relational Aggregated Search vs. Federated Search

Federated search shares the same characteristics with Relational aggregated search (see Table 3.1), the difference is that federated search performs basic aggregation based on multi-source results, while relational aggregated search performs aggregation based on discovered relationships between returned results. 

Relational AS and Semantic Graphs

One of the subprocesses of Relational AS is the retrieval of fragments. This subprocess is also called nugget retrieval [START_REF] Kopliku | [END_REF]] (also named focused retrieval in semi-structured IR). The nuggets of information and their relationships could be intuitively represented by a graph structure. Besides, the graph structure is massively used nowadays for representing data in information retrieval systems of several domains (e.g., Biology, Social networks, business processes [START_REF] Leymann | [END_REF]).

The relational aggregated graph search uses exact/approximate graph matching and aggregates the subgraphs to form an exact response to the query (see Figure 3.6).

We are interested in the following in defining semantic graph-based search. 

Semantic Graph-based Search

We briefly define the classical graph search, followed by the components of the semantic search : RDF graphs and SPARQL queries.

Graph search

Traditional information retrieval in graph databases has a significant difficulty in extracting the result. The candidates of this result are all subgraphs of a graph that could be relevant to the user query. The number of candidates to compare could be very large. Besides, the subgraph-isomorphism task is expensive (NP-complete problem [Cook 1971]). An efficient graph matching between the query and the data is performed by reducing : (i) the search space (i.e., number of candidates) and (ii) the number of relevance checking of candidate according to the query.

The graph matching could retrieve graphs that respond exactly to the query. In this case, graph isomorphism is performed. Also, the retrieved graphs can respond approximatively to the query (e.g., a fragment of the query). In this case, subgraph isomorphism is performed and a measure of similarity degree between graphs is used.

RDF graph : A Knowledge representation model

Based on Cognitive Science, an assertion postulates that humans construct models in the associative memory in order to organize knowledge [Quillan 1966]. Semantic networks [Quillan 1966] and their formalism [Fouqueré 1994] have been proposed as an external representation of a human set of knowledge about a specific domain [START_REF] Habrant | [END_REF]]. A semantic network is a graph oriented structure without cycles. It encodes objects with their properties. The nodes of the graph are labeled by concepts and the arcs are labeled by (typically binary) relations between concepts.

A derivation of semantic networks used for the representation of the data of the Web is : RDF graphs. The RDF (Resource Description Framework) formalism represents data by identifying their resources, properties and defining relationships between them. A relationship between two resources forms a triple (also called a statement). The first resource is named subject and the second is named object. The relation between an subject and an object is directed, and is named a predicate. Subjects and predicates are represented by URIs (Uniform Resource Identifier, see Table 3.2). IRI (Internationalized Resource Identifier)6 is a generalization of URI (Uniform Resource Identifier) where URI does not allow using non-ASCII characters. Subjects can also be represented by a blank node which means that the resource does not have an IRI and is local in the RDF dataset. The objects can be URIs, blank nodes or literals. A literal is a string value that can have a datatype. A triple is represented as: The set of triples forms a RDF graph which is a directed, labeled graph, and where the nodes represent resources and the edges represent the predicates.

<subject> <predicate> <object>
Figure 3.7 shows an example of a RDF graph specifying for entities (e.g., Peter), their relationships (e.g., knows) with other entities (e.g., Simon) and their attributes (e.g., age 42). 

SPARQL queries

SPARQL7 is a standard query language for RDF data. We define in the following the structure of a SPARQL query.

Four Forms of SPARQL Query

The SPARQL query language proposes four forms of results : (i) SELECT query returns all (or a subset of) the variables in the query pattern, (ii) CONSTRUCT returns a constructed RDF graph by replacing variables in triple patterns, (iii) ASK returns a boolean value indicating if there are matches for the query pattern or not, and (iv) DESCRIBE returns an RDF graph describing the retrieved resources.

We defined the first clause of a SPARQL query according to the aim of query (i.e., returning variables instances, describing variables, constructing a graph from variables, verifying the existence of graph patterns). We define in the following the components of the WHERE clause.

Graph Patterns of SPARQL Query

The second clause WHERE of SPARQL defines the graph pattern matching type [W3C 2013].

Graph Pattern. Let the query q [START_REF] Fletcher | [END_REF]] be SELECT ?a ?t WHERE { ?a authored ?d ?d type ?t . } A triple pattern (e.g., ?a authored ?d ) has the RDF triple form, however, the subject, predicate and object can be variables.8 A graph pattern of a SPARQL query represents a set of triple patterns that would be matched to subgraphs of the graph data [W3C 2013].

The WHERE clause specifies the basic graph pattern(BGP)[W3C 2013]. For example, in query q, the basic graph pattern contains two triple patterns ?a authored ?d and ?d type ?t.

Keywords (or operators) in the WHERE clause define the graph pattern matching type [Cunha 2015, Abbas 2017]. We briefly define these operators.

• AND : All graph patterns should match for the final result. The patterns are combined by conjunction and forms a group graph pattern.

• OPTIONAL : Additional patterns can be added to the result.

• UNION : Offers alternative graph patterns. One or more of the matched patterns are retrieved.

• MINUS : The matches of a graph pattern are removed from another graph pattern.

• FILTER : Limits the number of results to be returned. Regular expressions can be used to express conditions of filtering.

Query Modifiers

Some query modifiers are proposed like in SQL : After the WHERE clause, ORDER BY modifier used to order results, OFFSET modifier used to get a subset of solutions starting from one of them, LIMIT modifier to restrict the number of solutions. In SELECT clause, DISTINCT modifier used for returning unique solutions and REDUCED used to reduce the number of redundant solutions. We define, in the following, the main used techniques in Federated search for RDF graph databases that are useful for aggregating systems.

Used techniques in RDF Federated Search dedicated to Aggregation

Different strategies have been proposed in order to have an optimized and effective search in RDF graphs. [START_REF] Hammoud | [END_REF]] categorizes these studies in four quadrants (see Figure 3.8) where SPARQL query and RDF database are either decomposed/partitioned or not. We present, in the following, the main strategies for query and database representation : (i) query decomposition and (ii) graph partitioning. We refer to these strategies as conceptual indexing techniques. RDF technical indexing strategies (e.g., RDF indexing structures, RDF storing) are not addressed. 

SELECT ?X WHERE { ?X Type Person <-SQ1 [Persons] ?X First Name Roald <-SQ1 ?X Won Nobel Prize <-SQ2 [Nobel Prizes] ?X Visited Tunisia <-SQ3 [Travels] ?X Supervised ?Y <-SQ4 [Universities] ?Y SubType PhD Student } <-SQ4

Aggregated Query Decomposition Strategies

An aggregated query is a query that could be decomposed into parts. Those parts (e.g., sub-queries SQ1 to SQ4, see Table 3.3) are submitted to several sources of information. The results to these sub-queries are aggregated in order to return one result. The need for splitting queries is due to several issues such as : (i) A complex query sent as a whole to data sources, may return no result. Splitting the query according to the sources content can help responding to the expected information need, (ii) A need to reduce the number of sources to which the query is sent, (iii) A need to reduce the complexity of matching between query/graphs (iv) Parallelism to speed up the search (e.g., two subqueries are sent in parallel to the same source).

Studies about query decomposition in RDF search have been mainly elaborated by Federated Search Community.

In the following, we present our selected list of studies that represent a decomposing strategy (see Table 3.4). It is worth noting that this is not an exhaustive list of all studies, we only selected the most representative strategies. A comparison table of other query federation/processing systems is proposed in [START_REF] Rakhmawati | [END_REF][START_REF] Aini | Evaluating and benchmarking the performance of federated SPARQL endpoints and their partitioning using selected metrics and specific query types[END_REF]. Another comparison of RDF systems -including query decomposing subprocess-is proposed in [START_REF] Oguz | [END_REF][START_REF] Abdelaziz | [END_REF][START_REF] Horrocks | Query answering in distributed RDF databases[END_REF][START_REF] Yasin | [END_REF]]. We notice also that studies (e.g., Trinity.RDF [START_REF] Zeng | [END_REF]) proposing the decomposition of queries into triple patterns (i.e., one triple per subquery) and studies performing query optimization with query (execution) plan (e.g., join order [Schätzle 2016b]) are not in the scope of our following comparison. RDF query processing systems that decompose queries are presented.

DARQ (Distributed Jena ARQ) [START_REF] Quilitz | Querying distributed RDF data sources with SPARQL[END_REF]]. A service description contains a description of the data available from the source and limitations on access patterns. According to the list of predicates in a service description, a query is rewritten, and subqueries are created [START_REF] Rakhmawati | [END_REF]].

It is worth noting that no up-to-date solution of DARQ exists, since it is no longer developed. FedX (Federation layer extending Sesame) [START_REF] Schwarte | [END_REF]]. It uses techniques to optimize query processing. A user query is split into subqueries and sent to data sources. The result of the subqueries are returned in an aggregated way. In order to reduce the number of requests sent to the sources and to minimize intermediate results, authors propose applying join order optimization and grouping subqueries. The triple patterns in the query having the same relevant sources are grouped in a subquery. The relevant sources associated with triple patterns are guessed by sending -in an initial phase-SPARQL ASK queries to data sources. The result of these ASK queries is stored in a cache [START_REF] Rakhmawati | [END_REF].

Defender [Montoya 2012] is used in the query engine ANAPSID. The query decomposer creates unitary sub-queries. Then, it merges subqueries that (i) shares exactly one variable and (ii) can be sent to the same source (i.e., endpoint), in the same subquery using a greedy algorithm. The last optimize the size of intermediate results and reduce the number of requests to be sent to sources.

SHAPE [START_REF] Lee | [END_REF]]. The queries are decomposed according to the graph database partitioning. The database is partitioned into blocks of a vertex and its neighbors (named vertex block). A query is partitioned into subqueries that avoid inter-communication between sources. The approach checks gradually if the query can be decomposed in the minimum number of subqueries that could be processed in intra-partition way. First, all vertices in the query are set as candidates. For each vertex candidate, the largest subgraph (under a k-hop value) in the query and executable in an partition, is found. The aggregation of intermediate results of subqueries is done by Hadoop jobs.

SemStore [Wu 2014a]. It identifies all the rooted vertices in the query graph and construct a rooted subgraph pattern (representing a subquery) for each rooted vertex. If two subqueries share the same source, then they are merged together to form one subquery. This is in order to further reduce the intermediate results.

OLinda [Cunha 2015]. The query is decomposed into subqueries, one for each of the local datasets (e.g., DBLP, DBPedia and Kisti). The subqueries (QDBLP, QDBPedia, QKisti) represent a rewritten part of the query using a matching between the domain ontology and the local ontology of each dataset. Authors do not propose a solution for aggregating the intermediate results.

DREAM [START_REF] Hammoud | [END_REF][START_REF] Hasan | [END_REF]. DREAM proposes to decompose SPARQL queries and to not partition RDF graphs. The database is maintained as a whole in each machine. A SPARQL query is first represented by a directed graph. The query planner partitions the query into subgraphs by considering some conditions. The query planner selects the vertices with a degree 9 strictly superior to 1. These vertices are called join vertices. Then, it locates the candidates of subqueries which are : (i) the exclusive basic subgraphs : Subgraphs in the query with one join vertex and (ii) the shared basic subgraphs : Subgraphs with two join vertices. Some rules are applied to assign these subgraphs to a join vertex. These rules include : (i) priority is given to subgraphs that are directly connected to a join vertex. (ii) A shared subgraph can be assigned to one or two join vertices. (iii) A join vertex must have been assigned at least two basic subgraphs. Further, a subgraph is selected for each join vertex according to the lowest cost of the query graph plan. The lowest cost is estimated by collecting statistics for each query plan (using RDF-3X). The statistics use join estimation techniques or mining frequent join paths and return mainly the numbers of visited and generated triples. After the selection of the query plan, the subqueries are executed and the aggregation of intermediate results are performed by one machine (i.e., master machine).

STAR [START_REF][END_REF]]. It represents queries as graphs, and decomposes them in star subqueries. Heuristics are used to reduce the number of subqueries and so the number of joins.

Most of the query processing systems use (i) vertices and/or (ii) the sources information in order to decompose the query. Edges (i.e., predicates) in a SPARQL query were used for source selection only (e.g., Defender [Montoya 2012]). In addition, the partition-aware query decomposing studies (e.g., SemStore, see Table 3.4) do not use semantic relationships between triple patterns. Semantic associations between triple patterns in the query are expressed only by common vertices, common paths or neighbourhood. OLinda [Cunha 2015] (see Table 3.4) used metadata of datasets to rewrite the query. Metadata of RDF datasets should be further exploited in order to decompose the query more semantically. 

RDF Graph Partitioning

Large RDF datasets are typically partitioned into cluster tables (for centralized systems) and cluster machines (named also workers, slave machines or nodes in distributed systems). There are several ambitions leading to partitioning RDF graphs and graph databases in general, e.g.,: (i) Sending the subquery to a minimum number of sources, (ii) handling big datasets storage, (iii) optimizing runtime by sending subqueries in parallel to different partitions, (iv) minimizing the number of joins and the number of intermediate results by not partitioning a subgraph that would contain data that is frequently queried together. One of the main issues involving partitioning is the potential communication overhead between nodes of data. In what follows, we define the categories of partitioning. A table comparing partitioning systems of RDF data is provided in [Peng 2016[START_REF] Abdelaziz | [END_REF].

Random Partitioning

Horizontal Partitioning. This category partitions RDF dataset with a number of triples T by requiring a number of partitions N. Each partition contains a subset of triples and sized as T/N [START_REF] Akhter | [END_REF]].

Structure-based Partitioning

Hash-Partitioning. It consists of partitioning data by subject or predicate and it requires a number of partitions as input. This category assigns triples to partitions using a hash value computed based on subjects (or predicates) modulo the total number of required partitions. All the triples with the same subject are assigned to one partition. Due to modulo operation, partitioning imbalance is a potential drawback for this category. Virtuoso (v.6.1.5 Edi-tion20) is an example of predicate-oriented RDF systems [START_REF] Hammoud | [END_REF]]. This category uses fine-grained structural information and does not consider the whole RDF graph structure. For this, partitioning based on larger structures in graphs is proposed.

Graph-based Partitioning. It uses the structure of the graph to partition data. For example, the METIS system puts vertices that are close to each other in the same partition (except the vertices at the boundary of a partition) [START_REF] Hammoud | [END_REF]]. Another example is partitioning the dataset by rooted-subgraphs [Wu 2014a].

Semantic-based Partitioning

Hierarchical Partitioning This category uses IRI's path to determine the hierarchy of resources. This strategy is based on the assumption that resources with the same hierarchy prefix are often queried together. If the number of prefixes is equal or greater than the number of required partitions, then hash-based partitioning on prefixes is used [START_REF] Akhter | [END_REF]].

Workload-aware Partitioning

It exploits the query workload in order to partition datasets. It collocates together fragments of the data that are frequently accessed by frequent query patterns. Many queries are evaluated without communication using this category of partitioning. Examples of this category are mentioned in [START_REF] Abdelaziz | [END_REF]].

Partitioning Interactions

The partitioning of data affects the query performance. In the literature, the partitioning approach could be chosen according to the shape of queries (e.g., star-shaped, chained queries) [START_REF] Hammoud | [END_REF]]. The partitioning is also impacted by the connectivity of graphs. The more the graphs are connected, the harder is to partition them. Some strategies are included in order to reduce the connectivity of graphs (e.g., eliminating the secondary properties such as rdf:type) [START_REF] Hammoud | [END_REF]].

Query/Fragment Matching

We categorize studies into : (i) Studies (e.g., [START_REF] Echbarthi | Ghizlane Echbarthi and Hamamache Kheddouchi. Lasas: an aggregated search based graph matching approach[END_REF]]) which do not perform the query decomposition -in Federated or relational aggregated search-consider inexact matching (Case 1, see Figure 3.9) of query/RDF graph. They use similarity measures between the query and fragments of graphs, and (ii) Studies performing query decomposition and which may perform exact or inexact matching, and aggregate the results of subqueries (Case 2, see Figure 3.10). In our scope, we consider only the studies of the second category (i.e., Case 2). 

Query

Relational Aggregated IR Scenario : What is done ?

We describe in this section the approaches that considered aggregation using relations between data. All the studies and their main contributions are shown in Figure 3.11. In general, approaches perform exact aggregation which means that only join operations are performed between fragments. For aggregating in federated search, some join methods (i.e., bound join, nested loop join, hash join, symmetric join and multiple hash join) are detailed in [START_REF] Oguz | [END_REF]].
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.11: Approaches related to Relational Aggregated Search (July 2018)

Aggregation of fragments in Exact graph search

The studies (colored in Yellow, c, see Figure 3.11) [START_REF] Baeza-Yates | [END_REF][START_REF] Elghazel | Aggregated search in graph databases: preliminary results[END_REF] propose a methodology for answering aggregated queries in graph databases. [START_REF] Baeza-Yates | [END_REF]] represents graph database in a relational infrastructure. The technique is as follows: First, the common edges between a query and the graph database are extracted using SQL tables. The query is decomposed in two parts : (i) labeled nodes (i.e., constant) subquery, (ii) anonymous (i.e., variable) nodes subquery. The exact matching between data graphs and a query graph is performed as follows: The labeled nodes/arcs are searched in relational tables. Then, the unlabeled nodes related to labeled arcs and nodes are searched. The query is updated and search is complete if all unlabeled nodes have been instantiated.

Aggregation of fragments in Inexact graph search

The study (colored in Blue, a, see Figure 3.11) LaSas [START_REF] Echbarthi | Ghizlane Echbarthi and Hamamache Kheddouchi. Lasas: an aggregated search based graph matching approach[END_REF]] proposes a query processing algorithm in aggregated inexact search. The relevant fragments are selected from a dataset using a similarity function. The similarity function (considering nodes label and graph structure similarity) compares the query and the fragments in the graph database. The approach does not require query decomposition strategy. The part of the query that is answered by a fragment is discarded and the query is updated for a new fragment selection. Aggregation consists in a set of the union of obtained fragments. Further, a refinement step is performed that aims at connecting unconnected fragments and pruning irrelevant nodes.

The study [START_REF] Hsu | [END_REF]] (colored in Blue, b, see Figure 3.11) proposes a solution for aggregating fragments of personal process description graphs (i.e., how-to-do process) for the case when there is no single graph that can anwser the whole query. The graph dataset is decomposed into atomic fragments. The query is decomposed into two categories : (i) constant subqueries where each subquery contains two constant nodes and an edge, and (ii) anonymous subqueries where each subquery has either (a) an anonymous node or (b) two constant nodes and a path. The anonymous subqueries are searched based on constant subqueries results. The graph similarity between fragments and subqueries is based on nodes similarity and structure similarity. For reducing the cost of node similarity, the dataset has an inverted index, where words of the node labels of the graph are stored and clustered in word sets, the graphs corresponding to the word sets are stored also. The set of result fragments are then ranked in order to aggregate them. A ranking score of an aggregate is defined based on the product of similarity scores of its fragments and a factor considering the aggregation of fragments from the same process better than the one from different processes.

Entity-oriented search and Structured result of aggregation

Studies (colored in Green, d, see Figure 3.11) such as [START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF]] propose an approach using HTML tables in web pages. It detects and orders relevant attributes for an instance or class query. In the same sense, [START_REF] Krichen | [END_REF] proposes an approach which generates, for each class, a group of homogeneous entities and their attributes with associated values that are collected from a source (i.e., DBPedia) of the Web of data. Further, [START_REF] Abbes | [END_REF]] extracts attributes of an entity from many sources of the web of data (11 datasets) and evaluates the approach by user-judgments.

Assembling fragments from hetergeneous sources

The study (colored in Grey, e, see Figure 3.11) [START_REF] Achsas | [END_REF]] focuses on assembling hetergeneous results (i.e., texts, multimedia). The study concerns Web results. Authors use an homogeneous representation (i.e., text) for the hetergeneous results. For textual documents, they extract paragraphs from the relevant results. Regarding multimedia results, they are represented by their textual description. Then, two processes based on neural networks (i.e., word2vec and stacked autoencoders) are applied on these fragments and their learned semantic similarity is extracted. Further, a clustering algorithm (i.e., DBSCAN) is used to cluster the fragments. Finally, clusters of fragments (e.g., paragraphs, images) are returned. This work helps in returning a set of hetergeneous fragments together using their similarity.

A user judgment evaluation is performed on the homogeneity of each cluster. 64.5% of users are satisfied by aggregated results in each cluster. We think that this study is concerned with both Relational AS and Composite Retrieval.

Studies in [START_REF] Echbarthi | Ghizlane Echbarthi and Hamamache Kheddouchi. Lasas: an aggregated search based graph matching approach[END_REF][START_REF] Kopliku | Approaches to implement and evaluate aggregated search[END_REF][START_REF] Krichen | [END_REF]] considered a framework of aggregation where : (i) there is no need for query decomposition and (ii) there is no distributed sources. These studies focused on retrieval of relevant fragments and their aggregation in a basic framework (i.e., one dataset and one query to send). Studies [START_REF] Elghazel | Aggregated search in graph databases: preliminary results[END_REF][START_REF] Baeza-Yates | [END_REF]] uses the relational model as a structure for storing graphs to optimize graph aggregation. [START_REF] Abbes | [END_REF]] focused on entity queries. [START_REF] Achsas | [END_REF]] considered web results and textual representations. For our case, we would consider the web of data and graphs.

Conclusion

In this chapter, we listed the recent Information Retrieval approaches dedicated to aggregation of fragments from different sources. Also, we described the used techniques for aggregation either in Federated search or relational aggregated search. From the state of the art of these techniques we observed that the metadata of the web of data was weakly used to discover and then exploit relationships between fragments. In the following chapter, we propose an approach using semantic relationships discovered from the metadata of the web of data, in order to optimize aggregated query evaluation.

Introduction

Our approach aims at optimizing the access to information sources in the context of RDF aggregated search. This optimization can be done by : (i) Database reorganization (offline) by clustering fragments that could contribute to answer the same subquery (e.g., the subgraphs with predicates 'firstname' and 'lastname' should be put in the same cluster), and (ii) Query decomposition approach (online) used to send a part of the query only to sources that would provide answers (efficiently). We present in this chapter the two approaches (i.e., Data clustering and query decomposition) of our indexing process.

The remainder of this chapter is organized as follows : Section 1 presents our clustering approaches: semantic and structure oriented. Section 2 defines the query decomposition strategy which exploits the clustering approaches. Section 3 summarizes our approach and describes the whole process (i.e., Aggregated Search system).

Clustering Approach for Aggregated Search

We propose clustering RDF graphs in order to put together data sources that would be better targeted by a query. The objective of our approach is to be able to perform as less as possible of external joins. We use two clustering approaches : (i) a semantic one to capture the intuitive associations of data graph independently of the graph structure, and (ii) a structural one using co-occurrence of the data in the graph database.

The source selection for a query in federated search is generally based on a predicate list [START_REF] Oguz | [END_REF]]. This is due to the fact that predicates are often constants in a SPARQL query. Variables are typically subjects or objects. Besides, RDF predicates are fewer to enumerate than resources. We use a unitary data (i.e., predicate) of RDF graphs because we are interested about the impact of associations between these unitary data on the performance of aggregated search systems. Based on these ascertainments, we use the predicates as a key for clustering RDF data and decomposing SPARQL queries.

Semantic Clustering

The clustering of RDF graphs should take into consideration the intuitive relatedness (e.g., First name and Social security number, see Figure 4.1) of predicates (in the mind of the user). For this, we investigated the literature dealing with semantic relatedness/proximity of predicates in RDF graphs. 

Semantic Relatedness/Proximity of Predicates

Measures of semantic proximity/distance in RDF graphs have been discussed mainly in Ontology alignment [David 2008[START_REF] Harispe | [END_REF], web recommendation systems [START_REF] Leal | Using proximity to compute semantic relatedness in rdf graphs[END_REF]] or inexact RDF search [START_REF] Zheng | [END_REF]]. The proposed measures focus on comparing concepts or instances in an ontology. The predicates are used in order to compare instances/concepts. To our knowledge, no semantic measure has been proposed for comparing only predicates in RDF graphs. We provide a way to semantically compare predicates by resorting to the use of metadata. We use the description of predicates where the concepts in the descriptions are compared. Predicates (edges) are projected as a set of concepts (nodes) in a Knowledge Representation resource (e.g., ontology, thesaurus). An example is shown in Figure 4.1. To compare descriptions, we resort to semantic text similarity approaches [Resnik 1999[START_REF] Han | [END_REF].

Semantic Text Similarity (STS). STS approaches encompass three main categories [START_REF] Han | [END_REF]] :

• The use of vector space model 2 [START_REF] Meadow | [END_REF]. A text is modeled as a "bag of words" vector. The cosine similarity is computed between the two vectors corresponding to two texts.

• The words (or expressions) in the two sentences (or short texts) are collected. Each pair of words from the two texts are aligned. This category of techniques maximizes the summation of the similarities of the pairs [Mihalcea 2006].

• The third category uses measures of machine learning models. Lexical, semantic and syntactic features are computed for the texts using resources. Theses features are then classified [ Šarić 2012].

Our approach does not require a specific STS approach. We choose two STS approaches affording available implementations. These two tools we selected are ADW [START_REF] Pilehvar | [END_REF]] and UMBC [START_REF] Han | [END_REF]]. They use the second and third STS categories. Other STS approaches can be used further. In the following, we describe briefly the two solutions.

ADW(Align Disambiguate and Walk) [START_REF] Pilehvar | [END_REF]]. Given two texts T1 and T2, ADW tool maximizes the similarity between the senses (i.e., word meanings) [Miller 1995] of words in these two texts. For this, authors use a semantic alignment method where for each word in text T1 is represented by a sense that has a maximal similarity with any sense of the words in text T2. The similarity between senses is calculated based on the semantic signature. The semantic signature is a probability vector of a text representing the similarity of senses generated from random walks over the Knowledge Representation resource (i.e., WordNet). Three methods are used for comparing these signatures (vectors) : Cosine Similarity, and two other methods (i.e., Weighted Overlap and Top-k Jaccard) that use sense ranking instead of probability in order to avoid biased values due to the difference of text sizes and WordNet unbalanced structure.

UMBC [START_REF] Han | [END_REF]]. UMBC tool proposes an approach (out of three) that combines (i) lexical similarity features (i.e., LSA word, POS tagging) based on a Corpus and (ii) semantic similarity based on WordNet Knowledge.

Authors used a Web corpus (February 2007) from the Stanford WebBase project that contains 100 million web pages from 50 000 websites. A corpus of three billion english words has been obtained. POS (Part of Speech) tagging and lemmatizing was performed. Word co-occurrences in the corpus were counted in a moving window of a fixed size (e.g., size <=1 or size<=4). A co-occurrence matrix of 29 000 words is constructed where the words are POS tagged.

The UMBC hybrid similarity measure between two words uses : (i) the LSA similarity which applies a cosine similarity of two word vectors after performing an SVD (Singular Value Decomposition) transformation (i.e., it reduces the 29 000 word vectors to 300 dimensions which correspond to the 300 largest singular values from the matrix), (ii) it also increases the similarity if some specified relations between words exist in WordNet corpus.

For two texts T1 and T2, the UMBC tool applies the Stanford POS tagger and lemmatization. For each word in text T1, an alignment function is applied to find all words in T2 that maximize the similarity function. The final score between the two texts is computed using a similarity function that sums the word similarities for each text divided by their size.

We define the semantic relatedness as follow :

sim(p i , p j ) = ST S(desc(p i ), desc(p j )) (4.1)

Where p i and p j are the predicates to compare and desc(p x ) is the description of a predicate p x

Clustering Algorithm based on Semantic Proximity

After applying the selected STS solutions on predicate descriptions, a basic data clustering algorithm (e.g., k-means) is used to create partitions. There are different categories [Wong 2015[START_REF] Sajana | [END_REF]] of clustering algorithms (e.g., Partitional clustering, Hierarchical clustering, density-based, grid-based, correlation clustering, spectral clustering, gravitational clustering). We set one restriction about the clustering solution to use, is that it should propose an affinity matrix (i.e., precomputed distance/similarity between objects) as input. The affinity matrix represents the predicates relatedness values.

Knowledge Resources

We briefly describe the main types of knowledge resources including ontologies that are exploited in our semantic clustering.

Taxonomy. A taxonomy is a hierarchical organization of controlled vocabulary terms [START_REF] Zargayouna | Haïfa Zargayouna. Indexation sémantique de documents XML[END_REF]].

Thesaurus. A thesaurus affords more metadata than a taxonomy. A thesaurus contains controlled vocabulary of terms that are related by three types of relationships : Hierarchical, equivalence and associative [START_REF] Roussey | [END_REF][START_REF] Topquadrant | TopQuadrant. Controlled vocabularies, taxonomies, and thesauruses (and ontologies)[END_REF].

Ontology. Thesaurus (e.g., UMLS3 ) use generic relationships (e.g., broader, related and "use for"). However, an ontology contains relationships, attributes (or properties) and classes that are defined by the constructor of the ontology [Gruber 1995].

WordNet4 is a linguistic/terminological ontology [START_REF] Roussey | [END_REF]] since it focuses on defining terms and their linguistic relationships (e.g. synonym, homonym). DBPedia Ontology5 is a cross-domain ontology that provides the classes and properties (i.e., relationships and attributes) used in the DBpedia dataset.

We use in our approach two knowledge resources in two levels (see Figure 4.2): (1) Metadata level : an ontology related to a RDF database (e.g., DB-Pedia Ontology) and ( 2) Meta-Metadata level : a Linguistic/Terminological Ontology [START_REF] Roussey | [END_REF]] (e.g., WordNet) for the semantic relatedness of predicates metadata (i.e., description).

Semantic graphs (RDF data)

Description of semantic graphs (metadata)

External knowledge resource for metadata similarity (metadata)

Semantic levels 

Semantic Clustering: Assumptions

We define some hypothesis (H ) underlying our approach.

H.1 : Predicates are annotated by their descriptions (i.e., rdfs:comment). If no description is provided, we use the label (i.e., rdfs:label ).

H.2. Predicates with no descriptive metadata are also considered using their local name in URI (e.g., ArtistId => Artist Id).

H.3. Predicates that are semantically related should be put in the same cluster. Similar predicates can be clustered together (e.g., work in, has job) if inexact matching will be performed. Otherwise, they can be found in different clusters.

H.4. No semantic technique is used for resources relatedness or similarity. Only predicates are considered.

H.5. Clusters are constructed based only on frequent predicates. Infrequent predicates are added to pre-existing clusters (see Section 4.2.1). Some general assumptions (A) that should be coherent with our approach results. We list them as follows:

A.1 : Predicates which characterize the same entity should be put together in the same cluster.

A.2 : Predicates which characterize semantically related entities (e.g., Student and University) should be put together in the same cluster.

A.3 : Similar predicates related to (generally) different entities should not be put in the same cluster.

Clustering the predicates should take into consideration not only their relatedness but also their frequency in the dataset. In the following, we present our clustering strategy for the different cases of frequent/infrequent, weakly related, unrelated or non-described predicates.

Frequent and Infrequent Predicates

We discriminate the predicates (see Figure 4.3) in order to : (i) reduce the number of predicates to compare (offline during indexing), and (ii) reduce the number of clusters to target (online during query evaluation). For this, we categorize predicates into frequent and infrequent. Infrequent predicates will generate a low number of intermediate results. For this reason, we choose to cluster on the basis of frequent predicates. We set a minimum frequency threshold value (σ) for predicates frequency.

Frequent Predicates. Frequent predicates (F p ) constitute the core of clustering. They are compared together and according to their semantic relatedness, clusters are created. Frequent predicates that have no relatedness (sim(p i , p x ) = 0, ∀p x ∈ F p ) with any other frequent predicate are added to a 'special cases' cluster.

Infrequent Predicates. Infrequent predicates (I p ) are compared with frequent predicates and added to existing clusters (i.e., no additional clusters are generated). We choose to cluster them according to their maximum average relatedness with top-N frequent predicates per cluster. We define the average relatedness of an infrequent predicate (p i ) with a cluster (c j ) as follow :

Sim(p i , c j ) = avg(sim(p i , p x )), ∀p x ∈ T F p (N )) (4.2)

The top-N relatedness (T F p (N )) with frequent predicates is calculated based on the most influencing frequent predicates in a cluster (e.g., highly related frequent predicates with others). Each infrequent predicate is stored in one cluster. This is because duplicating the infrequent predicates in several clusters is useless since the number of joins of triples will not be important in this case. Two cases are considered according to the value of maximum relatedness of the predicate (P i ).

• Case 1 : max(Sim(p i , c j )) > θ) The infrequent predicate is stored in the cluster having maximum of relatedness. 

'Special Cases' Cluster

The 'special cases' cluster (see Figure 4.3) contains predicates that are:

• Frequent but not related to any other frequent predicate

• Infrequent and the maximum relatedness with frequent predicates is below a threshold

Example

We took an example of a predicate from DBPedia. We calculated the semantic proximity of the predicate "artist" using the ADW and UMBC tools. (URI : < http : //dbpedia.org/ontology/artist >, Description : "The performer or creator of the musical work")

For ADW tool, the 5 most related predicates to "artist" are "lyrics", "producer", "workInstitutions", "workInstitution" and "Developer", mentioned in Table 4.1. For UMBC tool, the 5 most related predicates to "artist" are "lyrics", "music", "creators", "creator" and "producer" (see Table 4.2). However, the most related predicates generated by ADW were also generated by UMBC as highly related (i.e., around 0.4).

From the unrelated predicates to "artist" using ADW, there are, e.g.,:

< http : //dbpedia.org/property/name > "name", < http : //dbpedia.org/property/released > "released", < http : //dbpedia.org/property/instruments > "instruments", < http : //dbpedia.org/property/fusiongenres > "fusiongenres", < http : //dbpedia.org/property/bgcolor > "bgcolor" < http : //dbpedia.org/property/subgenres > "subgenres". And from the unrelated predicates using UMBC tool, there are : 

Structural Clustering

Detecting graph patterns is a task used in many graph applications (e.g., graph indexing, search, similarity, classification, clustering). We propose to use frequent patterns (see Chapter 1) consisting of k-predicates from the dataset. The k-predicate frequent subgraph is a frequent subgraph in the database with k edges. FSM algorithms use general graph input. We convert RDF graphs to general graphs. Then, we apply Gaston original solution (see Chapter 2) to extract k-predicate frequent subgraphs with a medium or high minimum support threshold.

Partition-Aware Query Decomposition

In our work, we assume that we do not have access to the query logs. We use the source description to decompose a query. The key of the decomposition is the relatedness of predicates. A subquery contains strongly related predicates.

SPARQL query is decomposed also according to the graph patterns keywords (i.e., FILTER, LIMIT, UNION, OPTIONAL, MINUS, see Section 3.3.3) and the case where the predicate is a variable. We define these cases and illustrate them with examples of query Graph Patterns (GP).

FILTER Clause

We specify three cases (named F.1, F.2 and F.3) of "FILTER" as follows :

• F. It is worth noting that triple patterns that would be sent to the same source are aggregated in the same subquery having one subquery per source, expect for the cases of UNION, MINUS and OPTIONAL. For these last cases, several subqueries can be sent to the same source. The LIMIT keyword is applied by the master machine if the query is decomposed into several subqueries. In this section, we listed the cases of query decomposition according to the SPARQL keywords and to our clustering. We specified the tasks that would be performed by slave machines and the ones that would be performed by the master machine.

We now summarize our clustering approach by specifying the whole architecture of the underlying system.

Architecture

The general process is shown in Figure 4.4: predicates are extracted from a RDF dataset (step 1 ) as well as their respective metadata using an Ontology of the dataset (step 2a). Further, the semantic relatedness between predicate descriptions is computed using a STS solution (step 3a).

A basic data clustering algorithm is applied and RDF data is partitioned according to the clusters of predicates (step 4 ). A parallel partitioning is performed for structural clustering, where RDF graphs are converted into general graphs (step 2b) and frequent k-predicate subgraphs are stored (step 3b).

A SPARQL query is decomposed into fragments (step 5 ) according to clusters of predicates. Subqueries are sent to a specific partition (step 6 ) and exact (or inexact) matching is performed (step 7 ). Results are aggregated (step 8) by a master machine that performs joins of intermediate results. 

Conclusion

In this chapter, we described our two clustering approaches for RDF data in an aggregation-oriented search system. We presented our semantic clustering approach which exploits the semantics of RDF in order to assemble semantically related predicates. Semantic clustering focuses on relatedness of predicates rather than on graph structure. Also, we presented our structural clustering using FSM algorithms (presented in Chapter 1 and 2).

We finally specified the query decomposition strategy by considering SPARQL keywords and in accordance with the semantic/structural partitioning. In the next chapter, we conduct experiments to evaluate their impact (if any) on query optimization.

Introduction

We experiment in this chapter the impact of clustering RDF graphs on aggregated search system using semantics and structural relatedness of predicates. Also, we experiment our query decomposition approach and its effect on aggregated queries.

The remainder of this chapter is as follows : The Section 1 defines main notions related to experiments (i.e., Query features and shapes, RDF Benchmarks). The Section 2 describes the experimental setup composed of the chosen benchmark, metrics and clustering characteristics. Section 3 presents the preliminary results of our experiment.

Definition of Experimental Notions

We present in this section definitions and literature studies related to experimental configuration. Mainly, we justify our choice for RDF dataset and query set to experiment.

RDF Benchmarks

In order to test our approach, we choose to use an existing benchmark in order to make our results more easily comparable with future approaches. Two types of RDF Benchmarks have been proposed in Literature : Centralized and Distributed. We compare in this section some RDF Benchmarks of Literature and justify our choice of a Benchmark.

Centralized RDF Benchmarks

Centralized RDF benchmarks [W3C 2018] aim at evaluating query engines devoted to access data stored in a single repository. Those benchmarks are used in order to evaluate the triple stores performance. Benchmarks (e.g., SRBench [Zhang 2012]) dedicated to data streaming systems are not included in the following.

Synthetic Centralized Benchmarks They generate triples by using a specific and fixed ontology.1 Examples of this category of benchmark are LUBM [Guo 2005], BSBM [Bizer 2013], SP2Bench [Schmidt 2008].

Realworld-like Centralized Benchmarks. Some benchmarks propose to generate sized samples of real-world datasets and samples of queries from query logs. Examples of these benchmarks are POSB [Atemezing 2018], BioBenchmark [Wu 2014b], DBPSB [START_REF] Morsey | [END_REF]].

Domain-specific Benchmarks There are some benchmarks dedicated to specific domains. Examples of these benchmarks are SNB/SIB Social Network Intelligence Benchmark, LDBC Social Network Benchmark [START_REF] Boncz | [END_REF], Erling 2015] for social networks, BioBenchmark [Wu 2014b] for biological data, Last.fm Benchmark [START_REF] Przyjaciel-Zablocki | [END_REF] for Last.fm data, BSBM (Berlin SPARQL Benchmark) [Bizer 2013] for e-commerce (i.e., products, sellers, consumers and products reviews of consumers), SP2B/SP2Bench (SPARQL Performance Benchmark) [Schmidt 2008] for generating arbitrarly large DBLP-like data, LUBM (Lehigh University BenchMark) [Guo 2005] for generating OWL data from University ontology (i.e., Univ-Bench Ontology), POSB (Publications Office SPARQL Benchmark) [Atemezing 2018] using the EU publications Office (PO) data, Wat-Div/WSTB (Waterloo SPARQL Diversity Test Suite) [Aluç 2014] generating synthetic sized dataset and queries from User/Product dataset.

We are interested by the benchmarks that propose cross-domain and real-world datasets. We describe the most relevant ones in the following.

• IGUANA (Integrated Suite for Benchmarking SPARQL) [START_REF] Conrads | [END_REF]]. It is an unified benchmark execution platform for SPARQL queries. It allows the execution of state-of-the-art benchmarks (synthetic or real-world) and the comparison of triple stores based on performance of load times, parallel query execution by choosing the number and type of workers and optional different data changes (e.g., adding triples at runtime). As an example, authors integrated two SPARQL benchmarks generators : FEASIBLE [Saleem 2015] and DBPSB [START_REF] Morsey | [END_REF]]. They evaluated state-of-the-art triple stores using four dataset loads from DBpedia and Semantic Web Dog Food (SWDF) datasets. IGUANA is also able to execute federated (distributed) SPARQL benchmarks. IGUANA supports both query templates and query sets as query input.

• FEASIBLE (A Featured-Based SPARQL Benchmark Generation Framework) [Saleem 2015]. It is a query generator framework.

Queries sets are generated based on query logs of RDF datasets (e.g., DBPedia). FEASIBLE considers SPARQL query forms : SELECT, ASK, DESCRIBE and CONSTRUCT. Also, it considers the query result sizes, execution times, triple patterns and join selectivities, and number of join vertices.

• DBPSB (DBPedia SPARQL Benchmark) [START_REF] Morsey | [END_REF]].

DBPSB is now a deprecated project. IGUANA framework includes the DBPSB benchmark and some of its functionalities. The benchmark proposes a real-world like dataset that simulate the distribution of the DBPedia data [Kim 2015]. The query generator in DBPSB produces a set of query templates. Further, the query generator instantiates these templates with RDF terms from the dataset. Using query templates instead of query sets DBPSB considers SPARQL clauses : UNION, OPTIONAL, FILTER, LANG, REGEX, STR, and DISTINCT. And it produces samples of SELECT queries. Other query features are not considered for evaluation [Saleem 2015].

We summarize in Table 5.1 the characteristics of these three SPARQL/RDF benchmarks with their advantages and drawbacks. The DBPSB benchmark proposes a number of predicates larger than other benchmarks (e.g., LUBM and SP2Bench, see Table 5.2). This is due to the fact that DBPSB uses DBPedia that is cross-domain dataset [Kim 2015]. It is worth noting that the largest RDF dataset (2015) in literature [START_REF] Hammoud | [END_REF]] consists of 13.6 billions of triples (disk size 2.5 TB).

To summarize, we choose to use the datasets and queries of the DBPSB benchmark for the following reasons :

(i) DBPedia is a real cross-domain dataset that is widely known. Other benchmarks afford domain-specific datasets (e.g., e-commerce for BSBM, university for LUBM, social networks for SNB) (ii) The number of the predicates (i.e., 39 675 predicates) is much superior to other benchmarks (e.g., LUBM with 18 predicates) IGUANA benchmark is also used for DBPSB query templates instantiation and performance metrics. We will present in the following, how the DBPSB benchmark generates datasets and queries.

Characteristics of DBPSB Benchmark There are two methods (i.e., raw or seed ) of data generation proposed in DBPSB [START_REF] Morsey | [END_REF]]. The experimented seed method in [START_REF] Morsey | [END_REF] shows better degree of similarity between the whole dataset and the sample, rather than the rand method.

• Cross-domain data DBPedia is a cross-domain dataset, that extracts RDF structured data from the Wikipedia project [Cunha 2015, Abbas 2017]. DBpedia v3.6 contains 289,016 classes. 275 of these classes are in the DBPedia ontology. DBPedia v3.6 contains also 42,016 properties. 1335 of these properties are DBPedia-specific [START_REF] Morsey | [END_REF]].

• Data generation of DBPSB (Seed method) The dataset is a sample of DBPedia with a scale factor x% (i.e., 10%, 50% or 100%).

A seed method is used in DBPSB where x% of classes is selected.

For each class, the x% of instances is selected. For each instance, a statement-generation process named concise bound description (CBD) is used to retrieve statement with new resources. These new resources should not be subjects in the initial graph. This process is repeated until the x% of the DBPedia dataset is reached (in terms of the number of triples).

• Query set A three-month query log of DBpedia SPARQL is used. The query log contains 31.5 million queries. Queries that are frequently (above 10) submitted are selected. Query redundancy is solved by using sequential variable names (e.g., var0, var1). The set of queries contains 35,965 queries. The queries are clustered according to string similarities.2 A graph clustering approach of the BorderFlow algorithm is used to cluster queries. 12 272 query clusters are generated. Clusters of size above 5 are considered. Clusters are ranked according to the frequency of the queries they contain. For the highly ranked cluster, the queries with the highest frequency in a cluster and respecting some selected features are chosen. 25 queries are chosen.

Distributed RDF Benchmarks

Federated (distributed) RDF benchmarks such as FedBench [Schmidt 2011], LargeRDFBench [START_REF] Saleem | [END_REF]], QALD-4 [Unger 2014] can be used. Using datasets from different fields of these benchmarks is possible in our approach. However, these datasets should have common semantics (e.g., common predicates).

In this work, we are interested by centralized benchmarks in our experiments.

Triple Stores

RDF triples can be stored in either centralized or distributed systems. The triple stores can use relational-based or graph-based stores [START_REF] Hammoud | [END_REF]].

Centralized RDF systems

The main property of centralized RDF systems is that they do not use any communication between nodes, avoiding any overhead [START_REF] Hammoud | [END_REF]]. Apache Jena TDB [Wilkinson 2003], Sesame [Broekstra 2002] and Oracle [START_REF][END_REF]] are some of the centralized RDF triple stores.

Distributed RDF systems

With distributed systems, RDF triples are partitioned into clustered machines using partitioning algorithms (see Section 3.4.2, Chapter 4). The drawback of these systems is the intermediate data shuffling and communication between nodes [START_REF] Hammoud | [END_REF]].

Query Processing Engines and SPARQL servers

SPARQL Engines have been proposed to execute queries on RDF datasets. The engines contain implementation of data management techniques. Engines can either run queries using APIs provided with RDF frameworks or using a Web access interface named a SPARQL Endpoint [START_REF] Van Herwegen | [END_REF][START_REF] Taelman | [END_REF]. A SPARQL Endpoint3 allows receiving and processing SPARQL protocol requests (e.g., GET, POST of a query) using a HTTP network. The datasets inquired in the SPARQL endpoints are generally decentralized datasets. However, local datasets can be exposed as a SPARQL end-point accessible over HTTP by using SPARQL servers (e.g., Fuseki server, Sesame server) provided by RDF APIs (e.g., Apache Jena, Sesame). APIs provide also SPARQL engines (e.g., Jena ARQ) that are usable in a programming environment. Federated query engines (e.g., Jena DARQ [START_REF] Quilitz | Querying distributed RDF data sources with SPARQL[END_REF]], ANAPSID [START_REF] Acosta | [END_REF]) are also proposed to process federated queries (e.g., query decomposing) and to access distributed endpoints. 

Query Shapes

Star Queries

The queries are of diameter4 equal to one. The star query allows joins of subject to subject. The join variable in the query is the subject of all triple patterns.

Path Queries

Also named Linear, chained or chain queries. A path query contains triple patterns connected like a chain. It allows joins of a subject to object (or object to subject).

Tree Queries

The tree query allows joins of subject to subject (or subject to object).

Cycle Queries

The cycle query contains cycles and it allows three types of join : Subject to subject, subject to object and object to object.

Complex Queries

The complex query is a combination of different shapes. For example, snowflake-shaped query is a combination of star-shaped queries connected by short paths [Schätzle 2016a].

We present in the following our experimental configuration for testing our clustering approach in RDF Aggregated search system.

Experimental Setup

We present in this section the statistics of the used dataset, used RDF framework, machines configuration and characteristics of queries that are part of the benchmark DBPSB (see Section 5.2.1). We also define the clustering characteristics. Finally, we define the used metrics.

DBPSB Benchmark Dataset

We choose to use a sample of 10% of DBPedia provided by the benchmark. 5We loaded the dataset after correcting a parsing error. The error concerns a space in an URI ".../brake horsepower" that we fixed by ".../brakeHorsepower" using the sed6 command in the terminal. Most of the predicates are described by labels (see Table 5.3). Only 145 predicates are described by a definition (i.e., comment). Also, about 22% (i.e., 3 030) of predicates do not have a description, we added them one by using their URI's local name. 147 out of these 3030 predicates are frequent (σ=100). We modified 652 predicates by removing special characters (e.g., combatant id => combatant id).

RDF Framework

We used the Apache Jena framework (v3.0.0) which is deployed with the java language. For java programming, we used the Eclipse Framework (Oxygen v.2) and JDK1.8.0 151. For triple stores, we used Jena TDB (v3.8.0) and Fuseki server (v3.8.0). We was inspired by the code in RDF Jena examples7 for querying and storing RDF data. Practically for our case, three commands are possible for querying RDF data according to the input : (i) s-query of Fuseki server if the database is an endpoint (service), (ii) arq if the database is provided in a file or (iii) tdbquery requiring the triple store path as an input. We use the last one.

The java heap space was set to 2GB. We used fuseki server to load the dataset in the triple store TDB.

Machines Configuration

We set two type of machines : (i) A master machine which is supposed to perform the clustering, send partitions to each slave machine, decompose the query, get the intermediate results and aggregate them and (ii) Slave machines that stores partitions of the dataset, queries them and return subresults to master machine. We created script files (generated by java code) to execute the following steps : (i) machine configuration (e.g., JRE, Fuseki server), (ii) store data partitions and load them on triple stores of each machine and (iii) send subqueries and execute them.

Clustering Configuration

We present in this section the steps leading to clustering predicates and partitioning data. 

Extraction of predicates and their descriptions

We extracted all predicates having a comment or a label using DBPedia metadata. Table 5.4 illustrates the used ontologies affording descriptions (i.e., label or comment) and their characteristics. The predicates and their descriptions are stored in a relational database. Predicates (URIs) and their description are stored. We attributed Ids to predicates.

Relatedness Computation

We used two tools UMBC and ADW (see Section 4.2.1). We integrated both ADW and UMBC solutions in our java code. ADW provides a JAR file (ADW.feb2015.jar) that we used to calculate similarity. UMBC provides a web service that we used. WordNet v3.0 was used. Proximity values are from 0 to 1. We stored similarity values and their respective predicates (Ids) in a relational database.

Clustering Method

We create a matrix of relatedness for performing clustering of frequent predicates (See Section 4.2.1). Input variables of the clustering were defined previously (see Section 4.2.1, Chapter 4). For the top-N frequent predicates per cluster (T F p (N )) -used to cluster the infrequent ones -we define the top-N as the most influencing frequent predicates. An influencing frequent predicate is a frequent predicate highly (a minimum relatedness threshold is set, e.g., 0.8) related to many other frequent predicates in the database. The top-N influencing predicates per cluster are compared with infrequent ones. In this experiment, we set N to 1 and the minimum relatedness threshold (β) for influencing frequent predicates to 0.5. The minimum frequency of predicates (σ) is set to 1010. We choose this value since it represents the average of predicate frequency in the RDF database (i.e., 10% of DBPedia). We set three configurations for the number of clusters (|C|) to 10, 40 and 100. The minimum relatedness threshold (θ) for infrequent predicates to 0.1. We used the library scikit-learn (v0.20.2) which contains tools for data mining and machine learning to perform clustering. We added Python IDE to Eclipse (PyDev 7.0.3 for Eclipse). We used Spectral Clustering8 (see Section 4.2.1) from this library as a clustering model. We used this model since it uses an affinity matrix (i.e., input values are not vectors in a space but precomputed similarity values). Other basic models (e.g., k-means) in the library accept only a vector matrix. We set the random state of the algorithm to 0.

After clustering, infrequent predicates are attributed to the formed clusters according to their relatedness. Also, frequent predicates that are unrelated to any other frequent predicates (see Section 4.2.1) and infrequent predicates having low relatedness (see Section 4.2.1) are attributed to a 'special cases' cluster. Clusters (Ids) and their predicates are stored in the database.

DBPSB Queries Characteristics

DBPSB benchmark affords two sets of query templates (i.e., QuerySet2011, QuerySet2012). The proposed queries in 2011 are more complex queries than the ones proposed in 2012 (see Appendix Tables A.2, A.3).

For each query template in the benchmark, there is a successive query template that generally contain the same predicates with additional variations in the variables number and BGP clauses (adding a FILTER, LIMIT). Some queries contain variables that are predicate and resource in the same time (e.g., Q22 in DBSPB Query2012). Some queries have a FROM clause. Since, we work on our own database, we delete the "FROM" clause in these queries.

QuerySet2011

The query set contains 50 query templates.

Predicate Number. 36 queries out of 50 contain at least two constant and distinct predicates. 29 queries out of 50 contain at least 3 constant and distinct predicates. There are at most 12 distinct predicates in a query (i.e., Q13, Q14). We can notice that performing query decomposition for this query set is an interesting task.

Predicate Variability. 11 queries out of 50 contain variable predicates. 6 of these queries have filtering values in the query which helps targeting sources. The rest of the queries have unknown predicates that should target sources according to the resources in the query.

Predicate Redundancy. 19 queries out of 50 contain redundant predicates. Most of these queries (i.e., 17 out of 19) have low redundancy (i.e., 1 or 2). The redundancy of predicates does not exceed 4 in a query (e.g., Q9, Q10 with 4 redundant predicates and 5 distinct predicates).

Resource Number. There are at most 12 variable resources in a query (e.g., Q40, see Appendix Table A.2).

Query Shapes. We illustrate in Table 5.5 the query shapes (see Section 5.2.4) of the query set. 33 queries out of 50 are star or path queries. 

QuerySet2012

The query set contains 40 query templates. Predicate Number. 26 queries out of 40 contain at least two constant and distinct predicates. 14 queries out of 40 contain at least three constant and distinct predicates. There are at most 8 distinct predicates in a query (i.e., Q13, Q14, see Appendix Table A.3). We can notice that performing query decomposition for this query set is an interesting task.

Predicate Variability. 3 queries out of 40 contain variable predicates. All these queries have filtering values in the query which helps targeting sources.

Predicate Redundancy. 6 queries out of 40 contain redundant predicates (see Appendix Table A .4). All these queries have a redundancy equal to 1 (i.e., One predicate is redundant once in the query).

Resource Number. There are at most 5 variable resources in a query (e.g., Q24, see Appendix Table A.3).

Query Shapes. We illustrate in Table 5.6 the query shapes (see Section 5.2.4) of the query set. 33 queries out of 40 are star or path queries. We can notice that the 2012 query set in terms of query shapes, is less balanced than the one of 2011.

Query Keywords. The query set includes some keywords (i.e., UNION, FILTER, OPTIONAL, LIMIT) in queries. 7 queries out of 40 have UNION clauses and 8 queries out of 40 have OPTIONAL clauses (see Table 5.8). Most of the queries contain 1 or 2 UNIONs. There are two queries containing 8 UNIONs (i.e., Q13, Q14, see Appendix Table A .3). Queries contain at most 2 OPTIONAL clauses (e.g., Q24, see Appendix Table A.3). Different query shapes include these keywords. Query sets 2011 and 2012 have different characteristics. The Query-Set2011 contains more complex queries than the QuerySet2012. However, the QuerySet2012 have more UNION clauses per query than QuerySet2011.

Evaluation Metrics of our Aggregated Search System

The potential metrics to test the effect of our clustering on aggregated search are : (i) Runtime : the time spent by tasks devoted to query processing and aggregation of results, (ii) Quality of IR results (iii) Number of requests sent to sources, (iv) Size of intermediate results and number of joins, (v) Number of local vs. external joins, (vi) Partition quality : The representativity of clustered subgraphs compared to the structure of graphs in the dataset. Comparison between partition quality of semantic and structural approaches. (vii) Decomposing quality : Comparing results according to query characteristics (e.g., query shape). In this report, we will focus on the third metric.

Basic System for Comparison

We aim to compare these variations for comparison :

(i) Centralized dataset (no clustering approach) : NC (ii) No query decomposing approach : NQD (iii) Systems performing query decomposing and data partitioning (See chapter 4) : SDP (iv) Unitary subqueries (one predicate) : OPQ (v) Randomly n-predicates subqueries compared to our approach with also n-predicates subqueries : RNQ

In this report, we focus on the third and fourth comparisons.

Experimental Results

We present in the following the results about the impact of the semantic clustering mainly on the query decomposing.

Predicate Relatedness Results

We present first the results of the two tested tools (i.e., ADW and UMBC). We focus mainly on results of frequent predicates. In table 5.9, UMBC tool using both Wordnet and a corpus (see Section 4.2.1) showed a low relatedness between frequent predicates with a 70.79% of similarities are equal to 0 and a 24.03% of similarities are lower than 0.15. ADW tool using only Wordnet showed better results where the number of unrelated frequent predicates is equal to 27.66%. ADW tool showed a majority of relatedness (i.e., 71.13% ) that is inferior to 0.15.

Query Decomposing Results

In this section, we present the query decomposing results of the Queries 2012 and 2011 sets (see Section 5.3.5) using our semantic clustering approach. The queries that would lead to one predicate (unitary queries) or to redundant cases of decomposing (e.g., Q37 a subcase of Q31) are not presented. Clusters in blue represent the predicates that are unrelated to any other frequent predicate in the database (e.g., name, guest). Clusters in gray represent the predicates that are not found in the database (e.g., redirect).

Comparison of Our approach with Unitary decomposing

Tables 5.11 and 5.12 show the number of resulting subqueries according to our semantic approach, where TP is the total number of predicates per query and |C| corresponds to the number of clusters. If the query contains variable and constant predicates, it is noted as c & v var(f ) where c corresponds to the number of constants, v to the number of variables and f to the number of constant predicates in FILTER clauses corresponding to the variable predicates. We can compare our approach with unitary decomposing. 81% (i.e., 18 out of 22) of queries in the two query sets (i.e., 2011 and 2012) are decomposed with less number of subqueries than unitary decomposition, where the number of clusters is equal to 40 or 10 (see Tables 5.11 and 5.12). For some cases, OPTIONAL and UNION operators do not allow a more optimized subquery number. We can notice that the number of external joins is reduced compared to a unitary decomposing. Also, the number of requested data is reduced compared to a non-partitioned system.

Comparison of Our approach with Predicate source description partitioning

We compare our approach with an approach that partition data according to the predicate source (SDP). Comparison is based on the number of targeted sources. The total number of sources for the second approach (SDP) is equal to 9 corresponding to the predicate metadata sources (including 4 consider our semantic clustering approach for reducing the number of targeted sources to ask. 

Conclusion

We presented in this chapter, the main notions related to experiments, our setup configuration. Preliminary results were reported about our semantic clustering and its effect on query decomposing.

General Conclusion and Perspectives

Aggregated Search and Semantic Web can be considered as two key fields in Information Retrieval and for distributed sources. Literature relative to a subcategory of aggregated search (AS) : Relational AS does not exceed ten studies. However, contributions in federated search and graph search are strongly related to relational AS.

Our PhD was doing part of the CAIR13 project which proposed to define the main processes of an AS system. Lining with the same objective, we proposed to define an indexing approach for Relational AS.

We studied for this, frequent subgraph mining in order to store fragments of information that could optimize aggregation. We noticed that the FSM literature lack of some important information about algorithms performance such as that recent algorithms are tested with the least recent ones and no study is proposed about the effect of the variability of input on the performance of FSM solutions. We elaborated an experimental study of FSM solutions and we selected four most efficient ones that can be used according to the case of use.

In order to optimize aggregation operations and sources access, we proposed to cluster information and to decompose queries in order to send subqueries to targeted sources. Sources should contain related information essentially in terms of semantics. For this, we studied the semantic proximity approaches for RDF graphs and proposed to use a unit of graphs (i.e., predicates) that is mostly known in queries. We used the description of predicates in order to guess their semantic relatedness. Our theory is based on the idea that if two predicates are related (e.g., studied, Project), they should be also found related in the query of the user. And so they should be found together in sources for better aggregation.

We partitioned RDF graphs based on this semantic relatedness or on structure relatedness (using Frequent subgraph mining algorithms). We present the cases of SPARQL query decomposing according to the query clauses and the clustering approach (semantical or structural).

We presented an experimental study of the two approaches of clustering. Our experiments use an existing benchmark (i.e., DBPSB) that proposes a cross-domain dataset. We inspected by this study the effect of clustering RDF graphs (mainly semantically) on optimizing the access to sources and reducing the number of joins.

Our future works concern extracting frequent subgraphs of the dataset (DBSPB) for structural clustering and proposing a complete solution of the query decomposing process. Also, the scenario of aggregated search should be completed by using an aggregation algorithm (in the master machine). Finally, we should study the impact of clustering approaches on the constructed Aggregated Search System by comparing the semantic results with structural ones. 

Aggregated Search in Distributed Graph Databases

Abstract: In this research, we are interested in investigating issues related to query evaluation and optimization in the framework of aggregated search. Aggregated search is a new paradigm to access massively distributed information. It aims to produce answers to queries by combining fragments of information from several sources. The queries search for objects (documents) that do not exist as such in the targeted sources, but are built from fragments extracted from the sources. The sources might not be specified in the query expression, they are dynamically discovered at runtime. In our work, we will consider data dependencies to design a framework to optimize query evaluation over distributed data sources.
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  presenting these information to the user in one interface. The concept of Aggregated search has been introduced explicitly by Google in 2007 [GooglePress 2007, Lalmas 2011]. Figure 3.4 illustrates an example of retrieved results from the Google Search engine using verticals (e.g., News, Video) that are relevant to the user query.
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  Each subquery is sent to a source * It uses a greedy algorithm to optimize the size of intermediate results and the number of requests to be sent to sources Different sources (Datasets) (-) For one source, if the variables in the subquery are dependent, no decomposition intrasource could Data communication is minimized by using one master machine for aggregation (-) The query decomposition strategy requires on-line calculation (i.e., calculating the cost of query plan from the dataset) (Decomposition of SPARQL queries with operators FILTER and OPTIONAL (+) A subquery uses the same ontology as the targeted dataset (-) A subquery for each dataset, no further decomposition for complex local query STAR [Yang 2016] * Queries are decomposed in star-shaped subqueries * Finds top-k matches of the query A dataset (+) It performs inexact matching of query and graph

  Figure 3.9: Result Aggregation with no query decomposing (Case 1)

Figure 3 .

 3 Figure 3.10: Result Aggregation with query decomposing (Case 2)

Figure 4 . 1 :

 41 Figure 4.1: From Resources Relatedness to Predicates Relatedness 1

Figure 4 . 2 :

 42 Figure 4.2: Use of metadata in our semantic clustering approach 6

Figure 4 . 3 :

 43 Figure 4.3: Our Clustering Process of Predicates

Figure 4 . 4 :

 44 Figure 4.4: Our Aggregated Information Retrieval System 8

  Basic graph patterns (see Section 3.3.3) of SPARQL queries can have different shapes and these shapes impact the query performance[Aluç 2014, Schätzle 2016a]. The position of variables (as subject or object) in the triple patterns defines the query shapes[Schätzle 2016a].
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Table 1 .1: Comparison of FSM Algorithms approaches Algorithm Graph Typology Graph Representation Candidate Generation Subgraph Counting
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	Database scan &	BFS		Database scan &	Search tree & BFS		Transaction list &	BFS		Transaction list &	DFS		Embedding list &	DFS		Embedding list &	DFS			Embedding list &	DFS			Transaction list	(VAT table) &	DFS
	level-wise	join		level-wise	join		level-wise	join		Rightmost	path	extension	Rightmost	path	extension	Join &	Extension			path, tree	and graph	enumeration		Join of same	type of pat-	tern
	Adjacency matrix	& CAM		Adjacency matrix	& CAM		Adjacency list &	CAM		Adjacency list &	M-DFSC		Adjacency matrix			Adjacency matrix	& CAM			Hash table				Adjacency matrix	& CAM	
	-Directed or undirected	-Labeled	-Graphs with loops	-Directed or undirected	-Labeled	-No self-loop of vertices	-Undirected (extendable	to directed)	-Labeled	-Undirected (extendable	to directed)	-Labeled	-Undirected (extendable	to directed)	-Labeled	-Undirected (hardly	extendable to directed	[Jiang 2013])	-Labeled	-Undirected (hardly	extendable to directed	[Jiang 2013])	-Labeled	-Directed or undirected	-Labeled	-Acyclic graphs
	AGM &	B-AGM		AcGM			FSG			gSpan			MoFa			FFSM				Gaston				DMTL		
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Table 2 .

 2 1: FSM Algorithms with specific graphs(March 2016) 

	Input Cases	Algorithms	
	Complex graphs	MgVEAM [Acosta-Mendoza 2015]
	Directed graphs	mSpan [Li 2009]	
	Directed Acyclic graphs	DIGDAG [Termier 2007]	
	Unlabeled graphs	The	smoothing-clustering	framework
		[Chen 2008]	
	Vertex-labeled graphs	Cocain [Zeng 2006], TSMiner [Jin 2005]
	Relational graphs	CODENSE [Hu 2005], CLOSECUT &
		SPLAT	[Yan 2005],	Fp-GraphMiner
		[Vijayalakshmi 2011]	
	Geometric graphs	gFSG	[Kuramochi 2005],	MaxGeo
		[Arimura 2007], FREQGEO [Nowozin 2008]
	Uncertain graphs	Monkey [Zhang 2007], RAM [Zhang 2008],
		MUSE [Zou 2009]	
	Output Cases	Algorithms	
	Cliques and quasi-cliques	CLAN [Wang 2006], Cocain [Zeng 2006]
	from dense graphs			
	Unconnected subgraphs	UGM [Skonieczny 2009]	

Table 2
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	.2: An exhaustive list of FSM Centralized Algorithms (Complete
	Search) (March 2016)			
	Algorithm Author	Algorithm		Author
	WARMR	[Dehaspe 1998]	ADI-Mine	&	[Wang 2005,
			GraphMiner		Yan 2008]
	AGM	[Inokuchi 2000]	TSMiner		[Jin 2005]
	FARMER	[Nijssen 2001]	FSP		[Han 2007]
	MOLFEA	[Kramer 2001]	DMTL		[Al Hasan 2005]
	AcGM	[Inokuchi 2002]	gRed		[Gago-Alonso 2008]
	B-AGM	[Inokuchi 2003,	FSMA		[Wu 2008]
		Inokuchi 2005]			
	FSG	[Kuramochi 2001] mSpan		[Li 2009]
	FREQGEO [Nowozin 2008]	SyGMA		[Desrosiers 2007]
	MoFa/MoSS [Borgelt 2002]	CGM & UGM		[Skonieczny 2009]
	DPMine	[Gudes 2006]	gdFil		[Gago-Alonso 2010a]
	gSpan	[Yan 2002b,	grCAM		[Gago-Alonso 2010b]
		Yan 2002a]			
	Topology	[Hong 2003]	ADI-Minebio		[de Sousa Gomide 2011]
	FFSM	[Huan 2003]	Fp-GraphMiner [Vijayalakshmi 2011]
	DSPM	[Cohen 2004]	FSMA		[Gao 2012]
	AGM-H	[Nguyen 2004]	LC-Mine:		[Douar 2014]
			FGMAC &		
			AC-miner		
	GASTON	[Nijssen 2004,	IDFP-tree		[Nadimi-Shahraki 2015]
		Nijssen 2005b]			

Table 2
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	.3: The usage of Centralized FSM algorithms (Complete Search)
	(March 2016)			
	Algorithm	E	D	R
	gSpan [Yan 2002b]	25	25	[Nadimi-Shahraki 2015]
	Gaston [Nijssen 2004]	11	14	[Saha 2014]
	FSG [Kuramochi 2001]	9	11	[Douar 2014]
	FFSM [Huan 2003]	5	10	[Rehman 2014]
	AcGM [Inokuchi 2002]	4	3	[Saha 2014]
	MoFa [Borgelt 2002]	3	6	[Skonieczny 2009]
	FSP [Han 2007]	2	3	[Rehman 2014]
	ADI-Mine [Wang 2004]	2	3	[Wang 2006]
	FSMA [Wu 2008]	2	0	[Vijayalakshmi 2011]
	MOLFEA [Kramer 2001] 2	2	[Inokuchi 2005]
	WARMR [Dehaspe 1998] 2	1	[Nijssen 2004]
	LC-Mine [Douar 2014]	1	10	-
	The remaining 20	1	<5	-
	algorithms			
	2.2			

.3 Performance of FSM Algorithms

  

	Studies in the literature reported that the performance of four algorithms,
	namely WARMR [Dehaspe 1998], FARMER 5 [Nijssen 2001], UGM & CGM 6
	[

Table 2
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	.7: Available Implementations of FSM Algorithms (Complete Search)
	(March 2016)						
	Algorithm	Available versions			Last
							Release
	FSG	FSG	Original	v1.37	(PAFI	v1.0.1)	2003
	[Kuramochi 2001]	[Karypis 2003]				
	gSpan	gSpan Original v.6 [Yan 2009]		2009
	[Yan 2002b]	gSpan Original 64-bit v.6 [Yan 2009]		2009
		gSpan	ParSeMis	[Philippsen 2011,	2011
		Henderson 2014]				
		gSpan (Kudo) [Nowozin 2013]		2004
		gSpan ParMol 8				2013
		gSpan (Zhou) 9 [Zhou 2015]			2015
	MoFa/MoSS						

Table 2
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	.8: FSM Implementations with Technical Drawbacks (Complete
	Search) (March 2016)
	Implementation Technical Drawbacks
	gSpan ParSeMis	-Quality of Frequent Subgraphs (redundancy)
		-Error during the execution
	gSpan Kudo2004	-Requiring an additional software (MATLAB)
	FFSM Original	-Error with Input Files (No answer from authors about
		this error)
	AcGM Original	-No information about Memory Consumption or Runtime
		(binary code and no response from authors)
		-The output is only the DFS code of frequent subgraphs
	Gaston ParSeMis -Error during the execution

Table 2 .

 2 9: Characteristics of Tested Centralized Graph Transaction Datasets in the Literature[2016] 

	Dataset Type (Name)	|D|	|T|	|L|
	Largest dataset (DS3) [Aridhi 2015]	274860 40-50 (e)	-
	Most Dense dataset (US Stock Market)	11	3636 (v)	-
	[Wang 2006, Zeng 2006, Zeng 2009]		206747 (e)	
	Largest Dense dataset (DD) [Douar 2014] 1178	284 (v)	82 (v)
			716 (e)	1 (e)

  Table 2.10 displays the characteristics of the twelve datasets where |P | denotes the number of FSM experiments in literature (i.e., papers) performed on the dataset, F is the original format of the dataset, S is the dataset size on disk (in KB), |D| is the num-

ber of graphs in the dataset, |T | is the average size of a graph by vertex(v)/edge(e) count, |L| is the number of labels (for vertices and edges) in the dataset, |M | is the maximum size of a graph by vertex/edge count and LT is the last date the dataset was experimented.

Table 2
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.10: Available Datasets used in the Literature

(March 2016) 

Table 2 .

 2 11: Algorithms' strategy of Minimum Support/Frequency Input

	Algorithm	S F C
	Implementation	
	gSpan Original v.6	

Table 2 .

 2 

		12: Machine Characteristics
	Cases	Default	Large-sized
			graph dense dataset
	Processor	Intel Core i3 Quad Core
		2.40GHz	3.2GHz
	RAM	4 GB	7 GB
	Hard Disk	192.8 GB	226 GB
	OS	Default : Ubuntu (14.04) : All Software

Table 2 .

 2 13: Framework characteristics

	Java	Java Heap Space : 3.8GB
	solutions	JVM version : 1.8.0 65-b17
	C & C++	gcc version :5.3
	solutions	

Table 2 .

 2 14: Code Accessibility worth noting that activating this argument can change the performance of the implementation (see Section 2.3.6).• Execution Time. The execution time is composed of parsing time and the time to extract frequent subgraphs. It is worth noting that FSG Original is the only implementation which does not provide information about parsing time. Thus, in this case, we estimated the parsing time by using an external time calculation function (see Table2.15).

	Open Source	Binary Code
	-Gaston Original versions -gSpan Original versions
	-MoFa Original	-FSG Original
	-gSpan (Zhou)	
	-DMTL Original	
	-ParMol framework	
	Dataset	Parsing
		Time (sec)
	HIV-CA	0.5
	PTE	0.3
	AID2DA99	11
	CAN2DA99	8
	AIDS	15
	NCI145	5
	NCI330	5
	NCI250	52
	DS3	57
	DD	7
	PS	13

is Table 2.15: Our Estimated Parsing Time of the FSG Algorithm

Table 2 .

 2 16: Abbreviations of implementations in Tables

	Implementation	Abbreviation
	gSpan Original	SO
	gSpan-64bit Original	SO64
	gSpan ParMol	SP
	gSpan (Keren Zhou, 2015)	SK
	Gaston Original	GO
	Gaston Original RE	GR
	Gaston ParMol	GP
	DMTL Original	D
	FSG Original	F
	FFSM ParMol	FF
	MoFa ParMol	MFP
	MoSS ParMol	MSP
	MoFa Original (with Kekule	MOa
	Representation Conversion)	
	MoFa Original (without Kekule	MOb
	Representation Conversion)	
	all ParMol implementations	P

Table 2 .

 2 17: Number of Frequent Subgraphs by gSpan (L strategy) -HIV-CA

	Min Sup SP (L)	SO/SO64 SK
	4%	-	6825311	-
	5%	905299	905298	723603
	6%	293406	293404	250518
	7%	65260	65259	60183
	8%	28559	28558	26304
	9%	17512	17511	15945
	10%	15973	15972	14486
	15%	4476	4476	4152
	20%	937	936	915
	25%	248	248	239
	30%	124	124	120
	40%	60	60	56
	45%	39	39	35
	50%	32	32	29
	60%	19	19	16

Table 2 .

 2 18: gSpan Original vs. gSpan Original 64bit : Number of Frequent Subgraphs Comparison

	Support	Comp	Diff
	Interval		
		NCI330	
	5%	SO = SO64	-
	6%, 8%	SO > SO64	15, 4
	9% -90% SO = SO64	-
	The rest of datasets
		SO = SO64	

Table 2 .

 2 19: gSpan Original vs. gSpan ParMol : Number of Frequent Subgraphs Comparison

	Diff			
	Support Comp	Interval	Large Datasets	
	Support Comp Diff	Interval	Medium Datasets	AID2DA99, CAN2DA99
	Support Comp Diff	Interval	Small Datasets	HIV-CA

Table 2 .

 2 20: Examples of Memory Consumption of two gSpan versions (L strategy)

	Implementation	Memory	Number
		(GB)	of FS
	1.5% (PTE)	
	SP (L)	1.1	721 249
	SK	48	698 934
	5% (HIV-CA)	
	SP (L)	2.01	905 299
	SK	87	723 603

Table 2 .

 2 .21). The lowest minimum support threshold we tested in Table 2.21 is 1.5%. GSpan-64bit Original and gSpan (Zhou) could not run with very low support threshold values (see Table 2.21), unlike gSpan ParMol and gSpan v.6 Original. 21: Minimal Support threshold value reached by gSpan versions (L strategy)

		Small	Dense	Medium	Large
	Dataset	PTE	HIV-CA	DD	CAN2DA99	NCI330	NCI250
	Version		Min Support Threshold	
	SP	1.5% 5%	4%	2%	4%	2%
	SO	1.5% 4%	1.5%	1.5% 3.5% 2%
	SK	2.5% 7%	-	-	-	-
	SO64	3%	8%	20%	3%	5%	4%

Table 2 .

 2 22). For large sparse small-sized graph and small dense datasets, gSpan ParMol (L) is slower than gSpan Original v.6 for low and medium support values (e.g., DD dataset, see Table2.22).

Table 2 .

 2 22: gSpan Implementations Runtime Comparison (gSpan ParMol vs. gSpan Original)

	Support	Comp	Diff		Support	Comp	Diff
	Interval		(sec)		Interval		(sec)
	Small Datasets			Medium Datasets
		HIV-CA				AID2DA99
	5%	SO < SP 109		1.5% -90% SO > SP 850 -3.4
	6% -10%	SO > SP 91 -2.4			AIDS
	15%	SO ≈ SP -		1.5% -90% SO > SP 4636 -4
	20% -80%	SO < SP 0.4 -0.27		CAN2DA99
		PTE			2% -80%	SO > SP 837 -2.54
	1.5% -7%	SO > SP 321 -0.08		NCI145
	8% -90%	SO < SP 0.23	-	2%	SO < SP 169
			0.34			
	Large Datasets		3% -90%	SO > SP 1558 -1.8
		NCI250				NCI330
	2% -70%	SO < SP 2089 -1.5 4% -5%	SO < SP 292 -16
	80% -90%	SO > SP 3 -5		6% -90%	SO > SP 6.6 -1.5
	Dense Datasets			Dense Datasets
		DD				PS
	4% -90%	SO < SP 5882 -11	80%	SO > SP 13
					90%	SO < SP 0.7

Table 2 .

 2 23: gSpan Implementations Runtime Comparison (gSpan Original versions)

	Comp Diff	(sec)	Large Datasets	DS3	SO > SO64 123 -27	NCI250	SO > SO64 200 -24	Dense Datasets	DD	SO ≈ SO64 1	SO > SO64 2	PS	SO > SO64 3 -0.04
	Support	Interval			5% -90%		4% -90%			20% -30%	40% -90%		80% -90%
	Support Comp Diff (sec)	Interval	Medium Datasets	AID2DA99	2% -90% SO > SO64 241 -5	AIDS	2% -90% SO > SO64 1008 -6.7	CAN2DA99	3% -80% SO > SO64 187 -4.1	NCI145	5% -90% SO > SO64 251 -2.7	NCI330	5% -90% SO > SO64 45 -2.5
	Support Comp Diff (sec)	Interval	Small Datasets	HIV-CA	8% SO < SO64 4	9% -15% SO ≈ SO64 -	20% -90% SO > SO64 0.1 -0.083	PTE	2.94% SO < SO64 4	3% -90% SO > SO64 7 -0.004			

Table 2 .

 2 24: gSpan Implementations Runtime Comparison (gSpan ParMol vs. gSpan Original 64bit)

	Support Comp Diff	Interval (sec)	Medium Datasets	NCI145	5% -9% SO64 > SP 125 -13	10% -SO64 (F) 9 -0.4	50% SP	60% -SO64 < SP 0.03 -0.9	90%
	Comp Diff	(sec)	Medium Datasets	AID2DA99	SO64 > SP 90	SO64 (F) SP 16/38 -1		SO64 < SP 25 -4	
	Support	Interval			2%	3% -4%		5% -9%	
	Diff	(sec)			8 -2	-		0.5 -0.35	
	Support Comp	Interval	Small Datasets	HIV-CA	8% -10% SO64 > SP	15% SO64 ≈ SP		20% -90% SO64 < SP	

Table 2 .

 2 25: Gaston Original vs. Gaston Original RE : Number of Frequent Subgraphs Comparison

	Support	Comp	Diff
	Interval		
		Dense Datasets
		DD	
	2% -20%	GO > GR	1359 -4
	30% -90% GO = GR	-
		PS	
	60% -80% GO > GR	17013 -45
	90%	GO = GR	-
		Rest of Datasets
		GO = GR	

Table 2 .

 2 26: Gaston Implementations: Number of Frequent Subgraphs Comparison (Gaston ParMol vs. Gaston Original) -(L/H strategy)

	Support Comp Diff	Interval	Medium Datasets	NCI330
	Support Comp Diff	Interval	Medium Datasets	AID2DA99/CAN2DA99 23
	Comp Diff		Small Datasets	HIV-CA	GP < GO 32 -34
	Support	Interval			6% -7%

Table 2 .

 2 27: Examples of Memory Consumption and Number of Frequent Subgraphs of Gaston versions

	Implementation Memory (MB)	Number of FS
		3% (PTE)	
	GO (H)	7	18 121
	GR (H)	4	18 121
	GP	25	18 121
		2% (AID2DA99)	
	GO (H)	554.916	25 197
	GR (H)	56.300	25 197
	GP	1729.857	25 206
		5% (DD)	
	GO (H)	251812	795623
	GR (H)	50964	795717
	GP	876978	795696

Table 2 .

 2 28: Limits of Memory Consumption (KB) of Gaston versions for low support threshold

	Version/	GO (L) GR (L)		GP
	Dataset				
	Min Sup 4%	6%	7%	6%
	HIV-CA	15456	Segmentation	3956	183400
			Fault		
	Min Sup 1%	3%	3.5%	4%
	NCI330	238512	Segmentation	46072	676437
			Fault		
	Min Sup 2%	90%		60%
	NCI250	2759732	Segmentation Fault	2557084
	Min Sup 2%	90%		50%
	DS3M	3067400	Segmentation Fault	Out	Of
					Memory
	Min Sup 1%	1.5%	2%	3.5%
	DD	66944	Killed	2744180 2114479

Table 2 .

 2 29: Number of Frequent Subgraphs of gSpan : Comparison of our results (Left) with the Literature[START_REF] Nijssen | [END_REF], Nijssen 2006] (Right) -PTE

		Our experiments			Nijssen et al.
	Min Sup	SP (L) SP (H) SO	SK	SO (L/H)
	2% (6.7)	344513	136981 344464 338284 136949
	3% (10.2)	22786	18146	22785 22200 22758
	4% (13.59) 8776	5955	8776	8706	5935
	5% (17.0)	3627	3627	3627	3607	3608
	6% (20.4)	2343	2138	2343	2326	2326
	7% (23.8)	1861	1786	1861	1845	1770
	8% (27.19) 1339	1240	1339	1323	1323
	9% (30.6)	1065	993	1065	1049	977
	10% (34.0) 860	860	860	844	844
	20% (68.0) 199	199	199	190	190
	30%	75	75	75	68	68
	(102.00001)					

Table 2
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	.30: Memory Consumption (MB) of Gaston Original : Comparison
	of our results (Left) with the Literature [Nijssen 2004, Nijssen 2006] (Right)
	-PTE						
		Our experiments		Nijssen et al.
	Min	GO	GO	GR	GR	GO	GR
	Sup	(L)	(H)	(L)	(H)	(L/H)	(L/H)
	2%	38.786 10.421 5.669	5.096	9.1	1.5
	3%	7.158 7.062	4.688 4.618	4.4	1.3
	4%	6.588	6.354 4.518	4.518	3.4	1.3
	5%	5.946 5.946 4.518 4.518	3.0	1.3
	6%	5.688 5.598 4.558 4.520	2.7	1.3
	7%	5.237	5.088 4.516	4.576	2.1	1.3
	8%	5.042 4.945	4.552 4.510	1.9	1.3

Table 2 .

 2 31: Gaston Original Runtime : Comparison of our results (Left) with the Literature[START_REF] Nijssen | [END_REF], Nijssen 2006] (Right) -PTE

			Our experiments		Nijssen et al.
	Min	GO	GO	GR	GR	GO	GR
	Sup	(L)	(H)	(L)	(H)	(L/H)	(L/H)
	2% 6.6275 2.2836 24.0183 9.9545 7.9	39.6
	3% 0.4545 0.3635 2.0841 1.6018	1.7	8.5
	4% 0.1932 0.1509 0.8405 0.6583 0.6	2.7
	5% 0.0959 0.0959 0.3836 0.3836 0.4	1.6
	6% 0.0684 0.0599 0.2463 0.2258 0.3	1.0
	7% 0.0529 0.0501 0.1915 0.1797 0.3	0.8
	8% 0.0426 0.0415 0.1432 0.1213	0.2	0.6

Table 2 .

 2 32: Number of Frequent Subgraphs with Gaston ParMol : Comparison of our results (Left) with the Literature [Gago-Alonso 2010a] (Right) -AID2DA99

	Our experiments	Gago-Alonso et al.
	Min Sup GP	GP
	3%	18121	18146
	4%	5951	5955
	5%	3625	3627
	30%	75	75
	40%	62	62
	50%	37	37

Table 2 .

 2 33: Number of Frequent Subgraphs with FSG : Comparison of our results (Left) with the Literature [Kuramochi 2002] (Right) -PTE

	Min	Our	Kuramochi
	Sup	experiments	et al.
		F(L/H)	F(L/H)
	2%	136949	136927
	3%	22758	22758
	4%	5935	5935
	5%	3608	3608
	6%	2326	2326
	7%	1770	1770
	7.5%	1459	1590
	8%	1323	1323
	9%	977	977
	10%	844	844

Table 2 .

 2 34: FSG Runtime (sec) : Comparison of our results (Left) with the Literature [Nijssen 2003] (Right : Nijssen et al ) -PTE

	Min	Our	Nijssen et
	Sup	experiments	al.
		F(L/H)	F(L/H)
	2%	128.5333	307.4
	3%	18	43.9
	4%	4.4	11.0
	5%	2.5	6.3
	6%	1.6	4.0
	7%	1.2	2.9
	8%	0.9	2.4
	9%	0.7	1.8
	10%	0.6	1.6
	20%	0.2	0.6
	30%	0.1	0.3

Table 2 .

 2 35: Gaston ParMol vs. gSpan ParMol: Number of Frequent Subgraphs Comparison

	Support Comp Diff	Interval	Medium Datasets	NCI145	
	Support Comp Diff Support Comp Diff	Interval Interval	Medium Datasets Small Datasets	AID2DA99 HIV-CA	5% -7% GP < SP 151 -42 2%

Table 2 .

 2 36: Number of Frequent Subgraphs (H strategy) -PTE

	Min	SP	GP	GO	F	FF	D	MFP	MSP
	Sup	(H)	(H)	(H)		(H)	(H)	(H)	(H)
	2%	136981 136513 136949 136949 136981 136949 136981 -
	4%	5955	5951	5935	5935	5955	5935	5955	-
	5%	3627	3625	3608	3608	3627	3608	3627	-
	7%	1786	1786	1770	1770	1786	1770	1786	654
	9%	993	993	977	977	993	977	993	464
	10% 860	860	844	844	860	844	860	390
	20% 199	199	190	190	199	190	199	120
	25% 126	126	117	117	126	117	126	76
	40% 62	62	58	58	62	58	62	36
	50% 37	37	34	58	37	34	37	26

Table 2 .

 2 37: gSpan Z vs. Gaston Original : Number of Frequent Subgraphs Comparison

	Support	Comp	Diff
		Small Datasets
		HIV-CA	
	5% -20%	SK < GO 181687 -17
	30% -60% SK = GO -
		PTE	
	1.5% -5% SK < GO 22279 -1
	6% -50%	SK = GO -

Table 2 .

 2 38: Number of Frequent Subgraphs by FSM solutions -(L strategy) -PTE

	Min	SP	SO	SK	GO	F	D
	Sup	(L)			(L)		(L)
	1.5% 721249 721196 698934 721213 721213 -
	3%	22786 22785 22200 22758 22758 22758
	5%	3627	3627	3607	3608	3608	3608
	6%	2343	2343	2326	2326	2326	2326
	8%	1339	1339	1323	1323	1323	1323
	10% 860	860	844	844	844	844
	15% 437	437	424	424	424	424
	20% 199	199	190	190	190	190
	25% 126	126	117	117	117	117
	30% 75	75	68	68	68	68
	40% 62	62	58	58	58	58
	50% 37	37	34	34	58	34

Table 2 .

 2 39: Gaston Original vs. gSpan Original: Number of Frequent Subgraphs Comparison

	Support	Comp	Diff	Support	Comp	Diff
	Interval			Interval		
	Small Datasets	Dense Datasets
		HIV-CA			DD	
	4% -80% SO > GO 8 -3	2% -5%	SO < GO 1434 -21
		PTE		6% -90% SO > GO 4 -18
	1.5% -2% SO < GO 17 -15	2%	SO < GR 75
	3% -90% SO > GO 27 -1	3% -90% SO > GR 133 -18
	Medium Datasets		PS	
	AID2DA99/CAN2DA99	60%	SO < GO 25814977
	/AIDS/NCI145 33	70%	SO > GO 176572
	2% -90% SO > GO 9 -3	80%	SO < GO 7399
		NCI330		90%	SO > GO 8
	3% -90% SO > GO 8 -1	60%	SO < GR 25797964
		Large Datasets	70%	SO > GR 176572
	NCI250/DS3/DS3M	80%	SO < GR 7354
	2% -90% SO > GO 8 -1	90%	SO > GR 8

Table 2 .

 2 40: FSG Original vs. Gaston Original : Number of Frequent Subgraphs Comparison

Table 2 .

 2 43: Number of Frequent Subgraphs by MoFa Implementations -(H strategy) -AID2DA99

	Min Sup MFP MSP	MOa	MOb
	2%	25205	-	9741	25205
	3%	11531	-	4395	11531
	4%	6670	-	2566	6670
	5%	4442	-	1763	4442
	6%	3162	-	1224	3162
	8%	1869	-	695	1869
	9%	1484	-	590	1484
	10%	1185	-	484	1185
	20%	326	326	146	326
	30%	133	133	75	133
	40%	71	71	37	71
	50%	45	45	33	45
	70%	19	19	11	19
	90%	3	3	2	3

Table 2 .

 2 44: FSG Original vs. gSpan versions (L/H strategy): Runtime Comparison

	Support	Comp	Diff	Support	Comp	Diff (sec)
	Interval		(sec)	Interval		
	Small Datasets	Medium Datasets
		HIV-CA			AID2DA99	
	5% -15%	F > SP	256 -0.4	1.5% -5%	F < SP	510 -24
	20% -80% F ≈ SP	0.1	6% -90%	F > SP	14 -7
		PTE			CAN2DA99	
	1.5% -3%	F > SP	526 -3.3	2% -6%	F < SP	398 -16
	4% -60%	F < SP	1 -0.1	7% -80%	F > SP	15 -4.5
	Large Datasets		AIDS	
		NCI250		1.5% -4%	F < SP	3239 -12.5
	2% -20%	F < SO	4371 -1	5% -90%	F > SP	2.6 -10
	30% -90% F > SO	1.4 -18		NCI145	
	Dense Datasets	2% -6%	F < SP	5263 -8
		DD		7% -90%	F > SP	22 -4
	7% -90%	F > SO	14234 -6		NCI330	
		PS		4% -90%	F > SP	85 -3
	80% -90% F > SO	0.5 -12.9			
	Table 2.45: FSG Original vs. gSpan versions (L strategy): Number of
	Frequent Subgraphs				
	Support	Comp	Diff	Support	Comp	Diff
	Interval			Interval		
		Small Datasets	Medium Datasets
		HIV-CA			AID2DA99	
	5% -90%					

Table 2 .

 2 46: gSpan vs. FFSM ParMol (L strategy): Runtime Comparison

	Support	Comp	Diff (sec)	Support	Comp	Diff (sec)
		Small Datasets	Medium Datasets
		HIV-CA			AID2DA99	
	5%	FF > SP	756	2%	FF (F) SP -
	6% -50%	FF < SP	13.7 -0.06	3% -8%	FF < SP	23 -3
	60% -80% FF > SP	0.05 -0.02	9% -90%	FF > SP	33 -2
		PTE			CAN2DA99	
	2% -40%	FF < SP	10 -0.14	2% -80%	FF > SP	166 -3.5
	50%	F F ≈ SP	-		AIDS	
	60% -90% FF < SP	0.06 -0.1	2% -70%	FF > SP	1238 -5
		Large Datasets	80% -90% FF < SP	0.1 -0.05
		NCI250			NCI145	
	30% -90% FF > SP	1882 -87	2% -9%	FF < SP	2357 -11
		DS3M		10% -90% FF > SP	2 -0.5
	40% -90% FF > SP	2463 -214		NCI330	
		Dense Datasets	4% -6%	FF < SP	403 -5
		DD		7% -90%	FF > SP	3.9 -0.02
	4% -90%	FF < SP	4204 -12			
		PS				
	80% -90% FF < SP	3 -0.4			

Table 2 .

 2 47: gSpan ParMol vs.. Gaston Original versions (L strategy): Memory consumption comparison

	Support Comp Diff	Interval (MB)	Medium Datasets	NCI145	2% -90% SP > GR 1702 -53	2% -3% SP > GO 1324 -76	4% -50% SP < GO 84 -10	60% -90% SP > GO 15 -6	NCI330	4% -90% SP > GR 392 -24	4% -5% SP > GO 212 -15	6% -20% SP < GO 0.7 -7.7	30% -90% SP > GO 7.5 -6.7	Large Datasets	DS3M	2% -10% SP < GO 908 -14	20% -90% SP > GO 196 -419	NCI250	2% -10% SP < GO 885 -44	20% -90% SP > GO 178 -386	
	Support Comp Diff Support Comp Diff	Interval (MB) Interval (MB)	Small Datasets Medium Datasets	HIV-CA AID2DA99	5% -10% SP > GO 2031 -17 1.5% -90% SP > GR 468 -84	20% -80% SP < GO 3.2 -2.8 1.5% -15% SP < GO 66 -10	7% -20% SP > GR 105 -0.7 20% -90% SP > GO 19 -39	25% -80% SP < GR 1.8 -1.7 CAN2DA99	PTE 2% -80% SP > GR 369 -100	1.5% -5% SP > GO 1066 -1.2 2% -20% SP < GO 121 -1.9	6% -90% SP < GO 2.5 -1.7 40% -80% SP > GO 36 -40	1.5% -5% SP > GR 1114 -2.8 AIDS	6% -90% SP < GR 1 -3.1 1.5% -90% SP > GR 480 -116	Dense Datasets 1.5% -70% SP < GO 429 -68	DD 80% -90% SP > GO 51 -82	4% -10% SP > GR 1020 -78 Dense Datasets	20% -90% SP < GR 24 -55 PS	4% -90% SP > GO 1348 -38 80% SP > GO 26	90% SP < GO 1.8	80% SP > GR 25	90% SP < GR 2.9
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	.49: Minimal Support threshold value reached by FSM Algorithms-
	(L strategy)		
	Algorithm	HIV-CA	DD
	SP	5%	4%
	SO	4%	1%
	F	5%	7%
	GO	4%	1%

Figure 2.20: FSM Algorithms Memory Consumption (AID2DA99) -(H strategy)
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	.50: Memory Consumption (MB) of two MoFa implementations
	(AID2DA99) -(H strategy)		
	Min	MFP MOb
	Sup		
		AID2DA99
	2%	817	]1400 -1500]
	5%	576	]1100 -1200]
	10%	462	]1000 -1100]
	50%	437	]700 -800]
	90%	230	]500 -600]
		NCI250
	80%	1862	> 3500
	90%	1611	]2400 -2500]

Table 2

 2 

	.51: Bottleneck Experiment of Complete Search FSM Algorithms
	(Gaston)				
	Dataset		Success of Mining Limit
		S	N	M	R	O
	PTE	1% 48732156	42 637.5 21900
	HIV-CA	4% 6825303	48 15.4	3400
	AID2DA99 1% 107693	20 623.7 19
	CAN2DA99 1% 176292	21 586.2 33
	AIDS	1% 335483	27 1038.9 9
	NCI145	1% 235740772 44 470.05 103000
	NCI330	1% 268761360 42 238.5 192000
	DD	1% 159820929 15 66.9	20100
	PS	60% 63641199	28 5.9	13500
	NCI250	1% 70405	21 3033.4 0.00003
	DS3	1% 83310	21 3429.5 15.7

Table 2 .

 2 52: Execution of Implementations with Very Dense Datasets -PI

	Algorithms	P	SO SO64 GO GR F	D
	versions							
	Dataset	-	-	-	-	+	-	+
	Processing							

Table 2 .

 2 53 shows the limits of Gaston Original RE in mining PI dataset, where MSF denotes the maximum size (vertices) of frequent subgraphs, Min Sup : the minimum support threshold, R : runtime, RM : the used RAM memory, DM : the used disk memory, and NF : the number of frequent subgraphs.

	Table 2.53: Mining Performance of Gaston RE with Very Dense Datasets -
	PI (Incomplete Search)				
	MSF Min Sup	R	RM	DM	NF
			(sec)	(GB)	(MB)	
	2	70% -100% 1.017	2.21	0.0079	256
		50%	-	Segmentation	0.0041	-
				fault		
	3	100%	1.578	2.21	0.0852	1928
		70%	-	Aborted	0.0011	-
	5	100%	873.745 2.84	12	1578086
	10	100%	-	Killed	3300	-

Table 2 .

 2 54: FSM Algorithms with performance drawbacks

Table 2 .

 2 55: FSM Algorithms with performance advantages

	Solution Performance Characteristics
	Gaston	(+) Second/third in memory consumption and the fastest
	Original	(+) Able to run with relatively large sparse datasets or very low
		support values
	gSpan	(+) Third/fourth best memory consumption for medium sparse,
	ParMol	large sparse datasets or for low support
		(+) Third fastest for small sparse/medium sparse datasets and not
		low support threshold values
		(-) Unable to run for very low support values reached by gSpan
		Original
	gSpan	(+) First/second best memory consumption for low support
	Original	threshold
		(+) Third fastest for small dense datasets, or for high support val-
		ues and large sparse datasets
		(+) Able to run for some very low support threshold values or for
		relatively large sparse datasets compared to other implementations
		(e.g., gSpan ParMol, FSG)
		(-) Compared to Gaston Original, unable to finish in a reasonable
		time for some very low support threshold values
	FSG	(+) Able to run for low support threshold or relatively large
	Original	datasets
		(+) Third fastest for medium sparse, large sparse datasets and for
		low support values
		(-) Requiring more memory than gSpan Original and gSpan Par-
		Mol for low support values
	Gaston	(+) Second in Runtime
	Original	(+) First/second in memory consumption with medium sparse
	RE	datasets
		(+) Able to process small large-sized graph dense datasets (e.g.,
		PI)
		(-) Not to be used with large datasets or very low support threshold
		values

Table 2 .

 2 56: FSG Original -Number of Frequent Subgraphs -DS3 vs. DS3M

	Min	F	
	Sup	DS3	DS3M
	1%	80722 80722
	3%	6534	6534
	5%	2651	2651
	7%	1414	1414
	10%	725	725
	30%	93	93
	50%	35	35
	80%	4	4

Table 2
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	.57: FSG Original Runtime -DS3 vs. DS3M
	Min	F	
	Sup	DS3	DS3M
	1%	13657.7 13666.2
	3%	1463.1 1459.4
	5%	891.8	891.8
	7%	678	678.6
	10%	505.7	505.7
	30%	201.633 201.6
	50%	130.266 130.2
	80%	70.8	70.4

Table 2 .

 2 58: Optional settings for FSM Implementations Also, other options are available. Multi-threading is afforded by gSpan Original and ParMol to perform the mining faster (see Table2.58). Only FSG Original parses string labeled TXT datasets and gSpan ParMol can parse chemical formats of datasets (e.g., SDF). Implementations return frequent subgraphs in TXT format or as DFS codes.

	FSM solution	P SO,SO64 GO GR F D
	Incomplete Search Options			
	Min and max support threshold	x				
	Min of frequent subgraphs size	x	x			x
	Max of frequent subgraphs size	x		x	x	x
	Closed frequent subgraphs	x				
	Maximal frequent subgraphs					x
	Trees	x		x	x	
	Paths	x		x	x	
	Maximum number of subgraph iso-		x			
	morphisms					
	Input Options			
	String labeled TXT datasets					x
	SDF datasets and other chemical	x				
	formats					
	Output Options			
	Dataset statistics	x				x
	TXT format	x	x	x	x	x
	DFS code format		x		x	x
	TID List	x	x		x	x
	PC List					x
	Other Options			
	Multi-threading	x	x			
	Significant/Discriminative patterns		x			
	Weighted graphs		x			

  1 shows the interactions between the approaches. Please note that comparison of the state-of-the art (in Tables or Figures) in this chapter are marked by the end date of our literature research (e.g., November 2018). This helps future studies to update easier the state-of-the art (e.g., studies after November 2018).
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 3 1: A comparison of IR Approaches for aggregation(July 2018) 

	IR	Decomposes Documents		Aggregates
	Approach	Complex	Type	Sources Documents'
		Queries			Fragments
	Federated	Yes	Homogeneous Yes	Yes
	Search				(One result)
	[Callan 2002]				
	MetaSearch	No	Homogeneous Yes	No
	[Callan 2002]				(Documents
	Cross-Vertical	No	Heterogeneous Yes	are ordered
	Aggregated				as-is in One
	Search				interface)
	[Murdock 2008]				
	Relational	Yes	Homogeneous/	Yes	Yes
	Aggregated		Heterogeneous		(One result)
	Search				
	[Kopliku 2011]				
	Composite	Yes	Heterogeneous Yes	No
	Retrieval	(Theoretically)			(Documents
	[Bota 2014]				are assembled
					as-is in a
					result
					[Bota 2014])
					(Several
					results)

Table 3 .

 3 2 represents an example of RDF triple where DIP Presents the Upsetter is an album and its producer is Lee Perry.

		Table 3.2: An example of triple RDF
	Subject <http://dbpedia.org/resource/DIP Presents the Upsetter>
	Property <http://dbpedia.org/property/producer>
	Object	<http://dbpedia.org/resource/Lee Perry>

Table 3 .

 3 3: An example of SPARQL-like Query and its BGP decomposed

	Query : Find a nobel prize winner named Roald who visited Tunisia
	and is a researcher supervising PhD students

Table 3 .

 3 

	4: Query federation approaches in RDF search	(November 2018)	Decomposing Strategy Database Advantages and Drawbacks	Config.
			Approach	

•

  Case 2 : max(Sim(p i , c j )) < θ) The infrequent predicate is stored in a 'special cases' cluster. In fact, an infrequent predicate weakly related to predicates (e.g., θ = 0.15) should not be clustered with them.

			¡¢£¤¥¦ §¢
		¡¢£¤¥¦ §¢ ¨¤ §© £¢¥¡¤ §¤	¡¢£¤¥¦ §¢ ¨¤ §© § £¢¥¡¤ §¤
		¡¢¢ §	¡¢¢ §
	¢ ¦ §¢£	!¡¢ ¦ §¢£		¢ ¦ §¢£	B¡ ¢ ¦ §¢£
		#$ %%% %%% #			"¢¥¤¦ ¥¦¢
	&'()012) 34 4 2 15(160 72189@A01)	&'()012 34 ( 6 21'A018 72189@A01)

Table 4

 4 

	.1: ADW Results of 5 most related predicates to "artist"
	URI & Description	Score
	< http : //dbpedia.org/ontology/lyrics >	0.47
	"Creator of the text of a MusicalWork, eg Musical, Opera or	
	Song"	
	< http : //dbpedia.org/ontology/producer >	0.45
	"The producer of the creative work."	
	< http : //dbpedia.org/property/workInstitutions >	0.42
	"work institutions"	
	< http : //dbpedia.org/property/workInstitution >	0.42
	"work institution"	
	< http : //dbpedia.org/ontology/developer >	0.35
	"Developer of a Work (Artwork, Book, Software) or Building	
	(Hotel, Skyscraper)"	

Table 4

 4 < http : //dbpedia.org/property/cover > "Cover" < http : //dbpedia.org/property/type > "type" < http : //dbpedia.org/property/length > "Length" < http : //dbpedia.org/property/reference > "reference" < http : //dbpedia.org/property/fusiongenres > "fusiongenres" < http : //dbpedia.org/property/bgcolor > "bgcolor" < http : //dbpedia.org/property/subgenres > "subgenres"

	.2: UMBC Results of 5 most related predicates to "artist"
	URI & Description	Score
	< http : //dbpedia.org/ontology/lyrics >	0.74
	"Creator of the text of a MusicalWork, eg Musical, Opera or	
	Song"	
	< http : //dbpedia.org/property/music >	0.68
	"music"	
	< http : //dbpedia.org/property/creators >	0.68
	"creators"	
	< http : //dbpedia.org/property/creator >	..
	"creator"	
	< http : //dbpedia.org/ontology/producer >	0.61
	"The producer of the creative work."	

  1 :The FILTER clause is concerned with condition(s) about one variable resource (i.e., subject or object) : The FILTER clause is sent with triple patterns relative to the resource variables. GP Example : The FILTER clause contains one condition, and it is concerned with one predicate variable : The triple patterns containing the predicate variable are sent to the clusters containing the predicate specified by the FILTER clause. If there is a negation operator in the FILTER clause, then triple patterns containing the predicate variable are sent to all sources. GP Examples : The OPTIONAL clause contains one triple pattern or several triple patterns that has (have) predicates in the same source. The query contains triple patterns before the OPTIONAL clause having predicates all from the same source. The predicates in the OPTIONAL clause have the same source as those of triple patterns preceding it. The query is sent as is. The OPTIONAL clause contains one triple pattern or several triple patterns that has (have) predicates in the same source. We name the triple patterns preceding the OPTIONAL clause as X. The predicates in X are not in the same source (e.g., P1, P2) and the predicates in the OPTIONAL clause are in the same source as some triple patterns in X (e.g., P2 and P3 are in the same source), the OPTIONAL clause cannot be merged with these triple patterns in the same query. The OPTIONAL clause is sent alone and is executed after X. The OPTIONAL clause contains N triple patterns containing predicates of several sources. Subqueries of triple patterns of the same source are created. The master machine applies the join between triple patterns. The OPTIONAL operator is processed on the joined results.

	?x P1 ?y UNION {?y P1 ?x} Predicate variables with no FILTER Clause
	?x P1 ?y UNION {?x P2 ?y} Predicate variables in the query with no additional information about their
	potential values are sent to all sources.
	• U.2 : The UNION is performed between two sets of triple patterns Examples:
	S1 and S2 and contains other keywords (e.g., OPTIONAL, FILTER).
	Two sub-cases are considered : (i) All the predicates in S1 and S2 are in ?z P2 ?x. ?x ?p ?t. ?t P1 "u".
	Example : the same source : S1 UNION S2 is sent to that source. (ii) Predicates
	are from different sources : (a) if S1 and S2 do not contain OPTIONAL ?x ?p ?t. Uri1 P1 ?t.
	?x P1 ?y OPTIONAL { ?x P2 "u" } clause and if S1 and S2 have a common core (i.e., triple patterns that are the same in S1 and S2), and the uncommon triple patterns ?z P2 ?x. ?z ?p ?t. ?z P1 "u".
	?x P1 ?y. FILTER (?x STR("e") && ?y < "1988") • F.2 : ?x ?p ?t. FILTER (?p = P1) ?x ?p ?t. FILTER (?p != P1) • F.3 : The FILTER clause contains several conditions with different variables (i.e., predicates and resources) : (i) Filtering values of vari-ables are concerned with the same triple pattern for resources and the same source for predicates : The FILTER clause is sent together with its triple patterns, (ii) Otherwise, FILTER clauses are created where each FILTER is concerned with one source. The clauses are sent to-gether with their triple patterns to the sources. The master machine performs the union (or intersection) of all FILTER results. Finally, it processes the real FILTER clause on the results. An example of GP : ?x ?p ?t. FILTER ((?p = P1 && ?t < "1988") || ?p !=P2) master machine performs then the join of uncommon and common triple patterns. (b) Otherwise, S1 and S2 are two subqueries that will be further decomposed according to the cases. The UNION is performed by the master machine. Example: {?x P1 ?y. ?z P2 ?t.} UNION {?y P1 ?x. ?z P3 ?t. } ?t P4 ?v UNION { ?e P4 ?v. ?e P5 "G" } • U.4 : There are several related UNION clauses (e.g., S1 UNION S2 UNION S3) in the query. Two subcases are considered : (i) all predicates in UNION clauses are from the same source : The query S1 UNION S2 UNION S3 is sent to that source. (ii) Predicates are from different sources : S1, S2 and S3 are considered as subqueries that are • O.2 : The following four cases (named U.1, U.2, U.3, U.4) apply for the UNION are from the same source (e.g., P2 and P3), a UNION subquery is performed between the uncommon triple patterns of S1 and S2. The ?z ?p ?t. Uri1 P1 ?t.
	clause. The MINUS clause also uses the same four cases. For UNION clauses further decomposed according to the cases. The UNIONs between S1,
	OPTIONAL Clause containing predicate variables, please refer to the cases of the FILTER clause S2 and S3 is performed by the master machine on the partial results
	Clauses "OPTIONAL" are considered according to two cases (named O.1 or no FILTER clause. of the subqueries. Example:
	and O.2) as follows. Triple patterns preceding an OPTIONAL clause should be all executed before the OPTIONAL one. 7 For OPTIONAL clauses con-taining predicate variables, please refer to the cases of FILTER clause or no FILTER clause. • U.1 : The UNION is performed between two triple patterns T1 and {?x P1 ?y. ?z P2 ?t.} T2 (i.e., T1 UNION T2). Two subcases are considered : (i) The UNION {?y P1 ?x. ?z P3 ?t. } predicates in T1 and T2 are in the same source : The subquery T1 UNION T2 is sent to that source. (ii) The predicates in T1 and T2 are UNION { ?y P3 ?x. ?t P5 ?z }
	in different sources : T1 and T2 are sent separately to their sources.
	The UNION of results is performed by the master machine. Examples:

• O.1 : Example : ?x P1 ?y. ?z P2 ?x OPTIONAL { ?x P3 "u" } • O.3 : Example: ?x P1 ?y OPTIONAL { ?x P2 "u". ?y P1 ?t} UNION/MINUS Clauses {?x P1 ?y. ?z P2 ?t. OPTIONAL {?x P3 ?z}} UNION {?y P1 ?x. ?z P3 ?t. OPTIONAL {?y P4 ?z}} • U.3 : There are several unrelated UNION clauses in the query: The two first cases (i.e., U.1 and U.2) are considered for each UNION clause. Example: ?x P1 ?u. ?t ?x ?z
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 5 

		Pros and Cons	(+) A unified benchmark for the	execution of all the state of the	art benchmarks	(+) It provides metrics not pro-	vided by classical benchmarks	and a possibility of user update	of data (+) Usable with central-	ized or federated benchmarks (-)	Two benchmarks need to be used	: IGUANA and a benchmark	providing dataset and queries
	.1: Centralized RDF benchmarks (June 2018)	Queries Metrics & Variables	Queries from Triple stores performance : Load	state-of-the-art times, parallel query execution	benchmarks and data updates							
		Database	Centralized	or federated	(Datasets	are taken	from state-	of-the art	bench-	marks)		
		Benchmark	IGUANA	[Conrads 2017,	Conrads 2015]							

Table 5 .

 5 3 illustrates the characteristics of this dataset in terms of |T | : Number of triples, |P | : Number of properties, |DP | : Number of properties with description (comment or label), |LP | : Number of properties with label, |AP | : Number properties with added description, |F P 1010 | and |F P 100 | :

	Number of frequent predicates with minimum frequency threshold set to
	1010 and 100, respectively.
	the average of frequency approximatively equal to 1010

Table 5 .

 5 

	4: DBPedia10 Predicate Metadata Ontologies
	Ontology link	Number of	Number of	Useful
		Properties	Triples	Metadata
		DBPedia		
	dbpedia/property	13 057	6 298 536	rdfs:label
	dbpedia/ontology	1055	2 681 739	rdfs:label
				rdfs:comment
		W3C		
	www.w3.org	7	4 452 466	rdfs:label
				rdfs:comment
		FOAF		
	xmlns.com/foaf	9	780 367	rdfs:label
				rdfs:comment
		Others		
	georss.org	1	51 111	-
	purl.org/dc/elements/1.1/ 1	9896	rdfs:label
				rdfs:comment

Table 5

 5 Query Keywords. The query set includes some keywords (i.e., UNION, FILTER, OPTIONAL, LIMIT) in queries. 18 queries out of 50 have UNION clauses and 16 queries out of 50 have OPTIONAL clauses (see Table5.6). There are at most 2 UNIONs in a query. There are at most 8 OPTIONALs in a query (e.g., Q13, see Appendix TableA.2). Different query shapes include these keywords.

	.5: Query Shapes of QuerySet2011
	Query Shapes	Total
	Path Queries	13
	Star Queries	18
	Tree Queries	8
	Complex Queries	6
	Star/Tree Queries	3
	Star/Path Queries	2
	Table 5.6: Query Keywords of QuerySet2011
	Query Keywords	Total
	UNION	18
	OPTIONAL	16

Table 5

 5 

	.7: Query Shapes of QuerySet2012
	Query Shapes	Total
	Path Queries	17
	Star Queries	16
	Tree Queries	2
	Complex Queries	3
	Path/Complex Queries	2

Table 5

 5 

	.8: Query Keywords of QuerySet2012
	Query Keywords	Total
	UNION	7
	OPTIONAL	8

Table 5

 5 

	.9: Predicate relatedness statistics
	Number of similarities : frequent predicates
		UMBC ADW
	sim = 1	0.06%	0.04%
	sim >= 0.5	0.83%	0.11%
	0.25 =< sim < 0.5 1.65%	0.24%
	0.15 < sim < 0.25	2.70%	0.85%
	0 < sim <= 0.15	24.03%	71.13%
	0 < sim < 0.05	7.22%	14,63%
	sim = 0	70.79% 27.66%
	TS	741 153

Table 5 .

 5 10 shows the predicate relatedness in each query of the Queries2012 set (For Queries 2011 see Appendix A.6) where the number of clusters is set to 40 or to 10. For each query, the clusters of predicates are presented (e.g., Q9 has 3 clusters of predicates : {birthDate, deathDate}, {birthPlace} and {name}). Table 5.10: Semantic relatedness in Queries2012 set

	Queries	Related Predicates
		|C| = 40	|C| = 10
	Q5	type, label, homepage	type, label, page
		page	thumbnail, homepage
		thumbnail	
	Q9	birthDate, deathDate
		birthPlace
		name
	Q13	writer, creator, starring,	writer, creator, director,
		director, producer	producer
		executiveProducer	executiveProducer,
			starring, series
		series	guest
		guest	
	Q23	subject, comment
		name
	Q25	influenced	influenced
		page	page, label
		label	
	Q29	comment, depiction,	comment, depiction
		homepage	homepage
	Q31	type, label
	Q33	label, comment
		abstract, owner
		redirect

Table 5 .

 5 11: Queries 2012 and the number of subqueries

	Queries TP	|C| = 100 |C| = 40 |C| = 10
	Q5	5	5	4	3
	Q9	4	3	3	3
	Q13	8	7	3	3
	Q23	3	3	3	3
	Q25	3	3	3	2
	Q29	3	3	1	2
	Q31	2	2	1	1
	Q33	1 var (7)	5	4	4

Table 5 .

 5 14: Decomposing approaches of Queries2011 set : Targeted sources

	Queries	Our	SDP
		approach	approach
	Q9, Q15	3	4
	Q11, Q23 2	3
	Q13, Q39 4	6
	Q15, Q49 3	2
	Q17	4	5
	Q21, Q47 2	1
	Q29, Q33 1	2
	Q43	2	2

DBSPB Query 2012 Decomposing with se- mantic Clustering

  

	Q40 Tree/Star 10 (+2 R) Q13 Complex 12 (2 C) Q14 Complex 12 (2 C) Q23 Star 3 (+1 R) Q24 Star 3 (+1 R) Q9 Star 4 Q10 Star 4 Q5 Star 5 Q6 Star 5 Q13 Path 8 (+1 R) Q14 Path 8 (+1 R) Subqueries Q5S1 SELECT * WHERE { ?var5 dbpedia-owl:thumbnail ?var4 . } Q5S2 SELECT * WHERE { ?var5 rdf:type dbpedia-owl:Person . A.4 Table A.4: DBSPB Queries2012 Decomposed (Number of clusters : 10) Query Q5 SELECT ?var4 ?var8 ?var10 WHERE } } { ?var5 dbpedia-owl:thumbnail ?var4 . ?var5 rdf:type dbpedia-owl:Person . ?var5 rdfs:label ?v . ?var5 foaf:page ?var8 . OPTIONAL { ?var5 foaf:homepage ?var10 Q33 WHERE SELECT ?var3 ?var4 ?var5 { { ?v ?var3 ?var4.	?var5 rdfs:label ?v .	12 10 11 4 5 4 5 4 5 1 2 ?var5 foaf:page ?var8 . }	Q5S3 (OPTIONAL is run by the master machine)	SELECT *	WHERE { ?var5 foaf:homepage ?var10 . }	, OPTIONAL(4), FILTER(1C) UNION(1), FILTER(1C), LIMIT OPTIONAL(8) OPTIONAL(8), LIMIT OPTIONAL(2), FILTER(2) OPTIONAL(2), FILTER(2), LIMIT FILTER(1) FILTER(1), LIMIT OPTIONAL(1) OPTIONAL(1), LIMIT UNION(8) UNION(8), LIMIT

5 DBSPB Query 2011 Decomposing with se- mantic Clustering

  

	Q37S1 Q17S5 SELECT * SELECT * WHERE WHERE { ?var0 <http://www.w3.org/2000/01/rdf-{ ?var6 <http://dbpedia.org/property/iata> ?var5 schema#label> %%v%% ; } Q17S6 <http://www.w3.org/1999/02/22-rdf-syntax-point ns#type> ?var1 . } SELECT * WHERE { ?var6 <http://dbpedia.org/ontology/ Q39S1 iataLocationIdentifier> ?var5 } SELECT ?var4 Q17S7 { ?var2 rdf:type dbpedia-owl:Person . WHERE SELECT * Q19S3 SELECT * WHERE { ?var3 <http://dbpedia.org/property/clubs> ?var8. ?var31 ?var33 ?var34. Filter (?var33 = <http://dbpedia.org/property/ populationEstimate> || ?var33 = <http://dbpedia.org/property/ populationCensus>) Filter (xsd:integer(?var34) > ?v ) } ?var2 rdfs:label %%v%% . WHERE { ?var6 <http://dbpedia.org/property/ ?var2 foaf:page ?var4 . nativename> ?var6 name } Q19S4 SELECT * A.6 Semantic relatedness of predicates WHERE { ?var31 ?var33 ?var34. Table A.6: Semantic relatedness in Queries2011 set Queries Related Predicates |C| = 40 |C| = 10 Q9 series series, comment, type Q33 subject, label Q39 abstract, thumbnail abstract, homepage, label, depiction, homepage populationTotal, thumbnail lat, long lat, long populationTotal label, depiction redirect redirect Q43 homepage, type homepage Filter (?var33 = <http://dbpedia.org/property/ statPop>) } name name comment, type redirect redirect Q11 type, homepage type numEmployees homepage, numEmployees Q13 comment, subject, location, comment, page, subject, industry, manufacturer industry, location, page manufacturer locationCountry locationCountry, locationCity locationCity products products model type Q47 foundationPlace developer Q49 name, isbn name, isbn type type, pages pages author Filter (xsd:integer(?var34) > ?v ) type model, point, type author	}
	Q37 Q15 SELECT * Q17 Q19 Q21 Q23	WHERE { ?var0 <http://www.w3.org/2000/01/rdf-	schema#label> %%v%% ;	type population, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?var1 . } Q39 SELECT ?var4 populationUrban WHERE label, location, homepage iata, nativename iataLocationIdentifier city capacity, birthPlace, number { ?var2 rdf:type dbpedia-owl:Person . } populationEstimate, ?var2 rdfs:label %%v%% . populationCensus statPop page type position clubs divisions type population populationUrban city, location, homepage iata, nativename iataLocationIdentifier label page, type, position, capacity, birthPlace, number clubs, populationEstimate, populationCensus statPop subsid ?var2 foaf:page ?var4 . type, label
				nationality
	Q29			type, label

}

A.

CAIR home page: www.irit.fr/CAIR/fr/

Sources of information can be created during the indexing from the distribution of one source or extracted from existing distributed sources

Inspired from https://vnktrmnb.wordpress.com/tag/market-basket-analysis/

A simple graph is "an un-weighted and undirected graph with no loops and no multiple links between any two distinct nodes"[Gibbons 1985] 

Complete search is also called "exact search"[Jiang 2013[START_REF] Saha | [END_REF]], we will use, in this manuscript, only the designation "complete search".

Please refer to this open access document https://docs.google.com/document/d/ 1qy2OEDSMy5jUinTEJXBIpvwUYr7daNjO7_Lum-vWQ8I/edit?usp=sharing

http://web.ecs.baylor.edu/faculty/cho/4352/

Eclat webpage: http://www.borgelt.net/eclat.html

CAIR home page: www.irit.fr/CAIR

Please refer to http://liris.cnrs.fr/rihab.ayed/ACFSM.pdf to have the list of all FSM algorithms in centralized graph transaction databases.

We counted the number of distinct authors experiments. Authors that experimented the algorithm in many papers are counted once

Original paper of the algorithm is not considered

WARMR and FARMER were both used mainly for itemsets and complex relations

MoFa is competitive with UGM&CGM. MoFa has a poor performance compared to Gaston, gSpan, FFSM[Nijssen 2003[START_REF] Wörlein | [END_REF] 

Please refer to: http://c4.cabrillo.edu/404/ctfile.pdf for a basic SDF file format

ParMol[START_REF] Meinl | [END_REF]].2006.github.com/yangyi0318/MyParMol/tree/master/ ParMol[Accessed 2019-05-30] 

Alternating between labels 1 and 2 in a chemical ring.

relabeling edges by label 4.

ParMol[Meinl 

2007]. 2006.github.com/yangyi0318/MyParMol/tree/master/ ParMol[Accessed 2019-05-30] 

The frequency is the number of occurrences of the subgraph, it is the absolute value, while the support is the relative value.

The low support threshold values that are reacheable by the FSM solution. For some low values, the solution fails to terminate.

The results are given in a graphical form, we could not deduce a more precise conclusion.

[Nijssen 2006] used a single processor of a 2GHz Pentium, see Table2.12 for our processor characteristics

It is worth noting that the processor of[Krishna 2011] and[Aridhi 2015] are different from our

It is worth noting that our processor was more powerful than in[Nijssen 2003] 

The processing power of our resource is better than the one in [Gago-Alonso 2010a] (Intel Core 2 Duo 2.2 GHz processor)

Authors tried to explain this difference for their tests[START_REF] Aridhi | [END_REF]] (French paper).

None of solutions performed consistently for more than two successive support threshold values

Draw.io Tool : www.draw.io 

Draw.io Tool : www.draw.io 

An information need is a mental expression of a user. There are three types of cognitive need[START_REF] Ingwersen | Cognitive perspectives of information retrieval interaction: elements of a cognitive IR theory[END_REF]] : verification need, deepening need about a subject (directed need) and a fuzzy need about a subject.

Verticals could concern different fields (e.g., News, Travel, Shopping), type of documents(e.g., blog) or different type of media (e.g. Image, Video)

PremiumSEOsolutions 2012, Google Knowledge Graph : New search technique www.premiumseosolutions.com.au/blog/seo-news/google-knowledge-graph-new-searchtechnique/

Resource Description Framework (RDF) www.w3.org/RDF/

SPARQL Query Language for RDF www.w3.org/TR/rdf-sparql-query/

The variables in SPARQL queries are prefixed by the symbol "?" or "$"

UMLS Homepage : https://www.nlm.nih.gov/research/umls/

WordNet Homepage : https://wordnet.princeton.edu/

DBPedia Ontology http://dbpedia.org/ontology/

Draw.io Tool : www.draw.io 

Apache JENA : SPARQL Tutorial -Optional Information https://jena.apache. org/tutorials/sparql_optionals.html

Draw.io Tool : www.draw.io 

https://cedar.liris.cnrs.fr/papers/PRIM1-TripleGenerator.pdf

LIMES framework, the Levenshtein string similarity measure and a threshold of 0.9 are used

https://www.w3.org/TR/sparql11-protocol/

The diameter of a SPARQL BGP is the longest path of triple patterns ignoring edge direction[Schätzle 2016a].

https://github.com/dice-group/IGUANA/wiki/How-to-execute-DBPSB

Sed -Cut. https://doc.ubuntu-fr.org/sed

castagna jena-examples : https://github.com/castagna/jena-examples

Scikit Learn Spectral Clustering : https://scikit-learn.org/stable/modules/ clustering.html#spectral-clustering

CAIR home page: www.irit.fr/CAIR/fr/

A.2 FSM Keywords

Acknowledgments

Parameter variation

We performed experiments with ParMol to study the impact of changing its parameters on performance. Among ParMol parameters, 'memoryStatistics' is the one that had an impact on runtime performance (see Figure 2.26).

In Figure 2.26, Terminal + stands for experiments performed on a terminal with the parameter 'memoryStatistics' set to true and Terminalstands for experiments with the parameter 'memoryStatistics' set to false. We tested the impact of this parameter combined with two different OS (Linux and Windows). 

File Format variation

We performed experiments over datasets serialized in different formats including TXT and SDF. No noticeable change in runtime performance or memory consumption was observed.

Labeling strategy variation

In our experiments, we modified the DS3 dataset 39 that contains vertices labeled with integers and strings (e.g., '1', '1u', '2f', '36'). The modification resulted in a dataset labeled with integers only which we named DS3M. Only FSG Original is able to parse string labeled TXT datasets. Hence, this experiment was performed with FSG Original.

The labeling strategy did not affect the performance of FSG Original regarding the number of frequent subgraphs (see Table 2.56) and the runtime (see Table 2.57).

Chapter 4

Predicate-based Clustering

Approach in Relational Aggregated Search

Contents

Chapter 5

Experimental Study of Predicate-based Clustering

Approach in RA Search sub-sources of W3C : OWL 9 , RDFS 10 , RDF 11 and SKOS 12 , see Section 5.3.4). In our approach, we consider the number of sources set to 10. In 58% of queries, our approach targets less sources than the SDP approach for the two query sets 2011 and 2012 (see Tables 5.13 and 5.14). 

In a context of aggregation where different sources and different predicates could exist in the user query, an information retrieval system should 

A.3 DBSPB Query Characteristics

• Keyword(m) (e.g., FILTER(3)) : There keyword is repeated m times in the query.

• FILTER(nC) : There is n FILTER keywords in the query where the FILTER contains more than one condition.

• x (+1 R) : There are x+1 predicates including one that is redondant.

Redundancy is often due to UNION clauses.

• y (+1 P) : There are y+1 variables including a variable that is a predicate.

• y (+1 Pr) : There are y+1 variables including a variable that is a predicate and a resource in the same time.

• x (+b var : a) or (var : a) : There x constant predicates in the query with b variables predicates. The variable predicates are filtered in the query using a constant predicates.

• x (2 C) : There are x constant predicates in the query including two of them that are auto-cyclic (i.e., the subject is also the object).