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Résumé Français 
Titre : 

Segmentation multivoies de l’EHG pour identification automatique des contractions et des artéfacts 

de mouvement : Développement et implémentation hardware. 

Contenu : 

Jour après jour, on reconnait l’importance du suivi du fœtus et de la femme enceinte à la fois. Ce 

suivi peut être réalisée par plusieurs méthodes et techniques et ne concerne pas seulement les instants 

qui précèdent l’accouchement ; un bon suivi est celui qui démarre dès les premiers mois de la 

grossesse. 

L’humanité connaît une augmentation constante du nombre de naissances avant terme (avant 37 

semaines de gestation [1]) d’après l’organisation mondiale de la santé (World Health Organization 

(WHO en anglais)), on estime que 15 millions de bébés naissent trop tôt chaque année. C'est plus de 

1 bébé sur 10. Environ 1.055 million d'enfants meurent chaque année suites à une naissance 

prématurée [2]. De nombreux survivants sont handicapés au cours de leur vie, notamment en raison 

de troubles d’apprentissage, de troubles visuels et auditifs. 

Au niveau mondial, la prématurité est la principale cause de décès chez les enfants de moins de 5 ans. 

Et dans presque tous les pays disposant de données fiables, les taux de prématurité augmentent. Les 

inégalités de taux de survie à travers le monde sont frappantes. Dans les pays à faible revenu, la 

moitié des bébés nés à moins de 32 semaines (2 mois plus tôt) décèdent des suites d'un manque de 

soins réalisables et rentables, tels que chaleur, soutien à l'allaitement et soins de base en cas 

d'infections et de difficultés respiratoires. Dans les pays à revenu élevé, presque tous ces bébés 

survivent. L'accouchement prématuré est un sujet d'actualité, 5.6% parmi 738619 naissances sont 

prématurées en France [3], et 8.8 % parmi 80000 naissances au Liban [4]. L'utilisation sous-optimale 

de la technologie dans les pays à revenu intermédiaire est à l'origine d'une charge d'incapacité accrue 

chez les bébés prématurés ayant survécu à la période néonatale. 

Bien que plusieurs méthodes aient été adoptées pour surveiller la grossesse, elles sont subjectives et 

ne permettent pas de diagnostiquer ou de prédire avec précision le moment où le travail aura lieu. 
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L’état actuel des connaissances en surveillance de la grossesse peut être résumé comme suit : (1) Les 

méthodes actuelles sont subjectives; (2) les cathéters de pression intra-utérine fournissent les 

meilleures informations, mais leur utilisation est limitée par leur caractère invasif et la détériorations 

des membranes; (3) les moniteurs utérins actuels (tocodynamomètres) sont inconfortables ; de plus, 

ce système n'est pas une système fiable car les mesures obtenues ne sont pas totalement précises et 

dépendent dans une large mesure des critères subjectifs de l'opérateur [5], (4) aucune méthode n'a 

permis de prédire le travail prématuré. Cependant, l’analyse de la fibronectine fœtale cervicale ou 

vaginale (fetal Fibronectin (fFN) en anglais) a récemment été suggéré comme méthode de dépistage 

pour les patientes présentant un risque d'accouchement prématuré. Les résultats de plusieurs études 

[6–10] montrent que la fFN peut être utile pour prédire le travail prématuré réel. D'autres études 

indiquent que la valeur de la fFN est limitée [9]. La valeur du dosage de la fFN réside dans sa valeur 

prédictive négative élevée (Negative Predictive Value (NPV) en anglais) ; elle a la capacité 

d'identifier les patients qui ne risquent pas d'accoucher prématurément. De même, il a été démontré 

que l’œstradiol salivaire avait une certaine utilité en raison de la valeur élevée de NPV [11].  

Alors que certaines méthodes peuvent identifier des signes de travail en cours, aucune d’entre elles 

n’offre de données objectives permettant de prédire avec précision le travail sur un large éventail de 

patientes. Les méthodes varient en complexité, de la simple prise de conscience de la patiente aux 

capteurs de pression électroniques complexes. 

Malgré toutes les limitations résumées ci-dessus, la présence de contractions utérines associée à un 

ramollissement du col utérin à 28 semaines de gestation étaient les meilleurs prédicteurs de la 

prématurité spontanée dans un groupe de femmes nullipares à risque d'accouchement prématuré [12]. 

De nombreuses études ont porté sur l’étude de l’activité électrique de l’utérus (l’électromyogramme 

utérin) qui contrôle la contraction et la relaxation du myomètre. L'électrohystérogramme (EHG) est 

basé sur l'enregistrement de l'activité électrique de l'utérus, sur l’abdomen de la femme enceinte. Il a 

été largement étudié depuis longtemps. Il est principalement composé de deux composantes de 

fréquence traditionnellement appelées FWL (Fast Wave Low en anglais) et FWH (Fast Wave High 

en anglais) [13].  

L'objectif global à long terme de notre étude est la prédiction précoce de l'accouchement prématuré. 

Pour ce but, plusieurs recherches dans notre laboratoire ont été concentrées sur l’étude du signal 

EMG utérin par l’étude en une seule voie au début [14], puis par l’étude multivoies en plaçant une 

matrice d’électrodes sur la surface de l’abdomen et en analysant les signaux acquis 
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(monopolaires/bipolaires) [15,16]. Ensuite plusieurs méthodes soient linéaires ou non linéaires ont été 

appliquées afin de caractériser la dynamique des signaux EHG et d’analyser l’excitabilité des cellules 

et la propagation de l’activité électrique au niveau de l’utérus [17]. De plus, des résultats 

encourageants dans le domaine de la détection de l’accouchement prématuré ont été obtenus en 

extrayant des paramètres des signaux EHG. Un nouveau modèle électro-physiologique multi-échelle 

de l’EHG a été utilisé pour valider les techniques de traitement du signal EMG utérin [15,16]. Afin de 

prédire l'accouchement prématuré, une étude explicite du fonctionnement normal de l'utérus, la façon 

dont il se maintient au repos pendant toute la grossesse, et pour ensuite contracter et expulser le bébé 

pendant le travail doit être bien prise en charge. 

L’objectif de notre recherche est de pouvoir détecter et identifier les contractions automatiquement à 

partir des signaux EMG utérin (Electrohystérogramme, EHG) acquis sur une population des femmes 

enceintes en se basant sur la méthode Dynamic Cumulative Sum (DCS) déjà implémenté en [14]. On 

pourra ainsi suivre l’activité de l’utérus d’une femme enceinte sur une grande période afin de détecter 

automatiquement tous les évènements dans les signaux EMG utérin, sans utilisation du 

tocodynamomètre pour les transmettre ensuite au médecin responsable pour interprétation. Ensuite, la 

phase d’extraction des paramètres de ces évènements pourrait avoir lieu afin d’identifier les 

contractions d’une part et de comparer les contractions qui aboutissent à un accouchement prématuré 

ou à terme d’autre part. Ces paramètres, déjà introduits et vérifiés en [15], pourraient être inclus dans 

un système de diagnostic automatique qui serait utilisé pour le suivi de la grossesse et la prédiction de 

l'accouchement prématuré. 

Parmi tous les systèmes complexes du corps humain, l'utérus est l'un des systèmes les moins bien 

compris [17]. Une contraction fait spécifiquement référence à l’activité de l’utérus dans le cadre du 

processus d'accouchement [18]. Les contractions de travail en général sont fonction entre autres de 

l’ocytocine, une hormone très importante pour la parturition. Les contractions durent environ 1 

minute et deviennent plus fréquentes à mesure que le travail s'intensifie, générées toutes les 2 à 3 

minutes. Pendant la grossesse, leur durée peut atteindre 2 minutes en raison d'une propagation 

d'activité plus lente pendant la grossesse que pendant l'accouchement [19]. Avant le travail effectif, 

les femmes peuvent avoir des contractions dites de Braxton Hicks, parfois appelées « faux travail ». 

En fait, des contractions utérines régulières accompagnées par l'effacement et la dilatation du col de 

l'utérus reflète le travail. Dans l'accouchement normal, les changements biochimiques dans le tissu 

conjonctif du col utérin associés à l’occurrence de contractions utérines permettent la dilatation du 
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col. Un travail normal aboutit à la naissance d'un fœtus à terme [20]. C’est la période de gestation qui 

précède le travail qui définit l’accouchement prématuré selon l’organisation mondiale de la santé 

(WHO) qui définit l'accouchement prématuré comme un accouchement qui a lieu avant 37 semaines 

de gestation. 

Dans la plupart des études précédentes, la segmentation de l’EMG utérin est réalisée manuellement 

en se référant au signal du tocodynamomètre. Les instants de début et de fin d’une contraction sont 

détectés en les estimant à partir de l’analyse simultanée du tocographe et de l’EHG. 

La détection / segmentation est un problème majeur pour le traitement de signal présentant une non-

stationnarité rapide ou des ruptures. Il constitue une première étape possible de traitement pour la 

reconnaissance ou le diagnostic. Une non-stationnarité rapide, une rupture ou une transition 

constituent une période de courte durée par rapport à la période d'observation. Lorsque les paramètres 

d'hypothèse sont connus, un détecteur optimal (au sens de Neyman Pearson) basé sur le rapport de 

vraisemblance peut être défini [21].  

En pratique, les paramètres de distribution ne sont généralement pas connus et de nombreux 

algorithmes ont été développés pour résoudre ce type de problème [22], comme le rapport de 

vraisemblance généralisé qui consiste à utiliser une estimation de vraisemblance maximale. Cette 

méthode est développée dans le cas où les échantillons sont indépendants. La double maximisation 

apparaissant dans la fonction de décision est compliquée et coûteuse en temps de calcul. Cela est 

incompatible avec le désir de développer des méthodes capables de détecter séquentiellement les 

changements possibles. Plusieurs méthodes [23] ont été proposées pour simplifier la méthode 

précédente. L'algorithme de Brandt est un moyen simplifié pour la mise en œuvre de l'algorithme de 

maximum de vraisemblance. L'algorithme de Brandt est développé pour les signaux modélisés par les 

modèles AR et permet donc la détection de changements spectraux. Certaines autres méthodes ont été 

développées pour le cas du changement spectral, telles que celles basées sur l'erreur de prédiction du 

modèle (Innovation Whiteness en anglais) [24], le test de divergence de Hinkley [25], la somme 

cumulative dynamique (DCS) [14], etc. La méthode de la somme cumulée CUSUM est basée sur le 

calcul récursif du logarithme du rapport de vraisemblance. Elle permet de détecter les instants de 

rupture. La procédure CUSUM peut être considérée comme une séquence d'essais répétés autour d'un 

point de changement k. L'information à prendre en compte est alors la différence entre la valeur du 

rapport de vraisemblance et sa valeur minimale actuelle. La règle de décision est de comparer cette 

différence à un certain seuil, à chaque instant t [22]. 
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Dans cette étude, nous voulons mettre l’accent sur la segmentation automatique des évènements dans 

le signal EMG utérin et l’identification ensuite des contractions parmi ces évènements en se référant 

aux données de l’expert. Notre base de données comprend des signaux EMG utérins de différentes 

semaines de gestation acquis grâce à une matrice de 4x4 électrodes pour avoir une image plus 

complète de l'utérus et des mécanismes contractiles sous-jacents. Donc à partir de cette matrice 

multivoie on peut accéder à plus d’informations, venant de différentes électrodes, qui peuvent être 

réunies ensemble avec des techniques de fusions des données pour augmenter les chances de bonne 

détection et de segmentation des bouffées associées aux contraction utérine, par rapport aux 

informations venant d’une seule électrode. 

 Par conséquent, notre travail comprend, pour l’application de la méthode de somme cumulé, tout 

d’abord une étude monodimensionnelle sur les signaux monopolaires afin d’obtenir une grande 

résolution spatiale des données ; ces signaux sont filtrés par une méthode efficace de débruitage 

CCA-EMD développé par [26] afin d’obtenir un rapport signal/bruit suffisant pour envisager le 

traitement de ces signaux. Ils sont ensuite décomposés en ondelette dans le but de détecter plus des 

ruptures sur les détails obtenus selon le contenu fréquentiel.  

En se basant sur les résultats obtenus, notre étude a porté ensuite sur les signaux bipolaires afin 

d'augmenter le rapport signal/bruit des EMG utérin. La première contribution porte sur la fusion des 

résultats de la méthode de somme cumulée par différentes techniques : soit basée sur Fisher, soit sur 

le SNR (signal to noise ratio) afin de réduire le nombre de ruptures détectés qui ne sont pas associées 

à une contraction validée par l’expert. Ainsi cette méthodologie proposée est appliquée tout d’abord 

en étude monodimensionnelle sur les signaux EMG utérin bipolaires, ensuite sur les détails de ces 

signaux bipolaires après décomposition en ondelettes, ce qui constitue la deuxième contribution. De 

plus la troisième contribution, est par l’implémentation de deux techniques de fusion des instants 

détectés, l’une automatique tandis que l’autre est basé sur le système de vote à la majorité pondérée 

(Weighted Majority Vote system (WMV) en anglais) où chaque canal est pondéré par un facteur lors 

de la fusion des instants de ruptures détectés. Ce qui est important, c’est que nous nous sommes 

intéressés à sélectionner dynamiquement les canaux lors de la fusion des instants de ruptures détectés, 

soit lors de projections temporelles, ou lors de la fusion automatique et pondérée, ainsi qu’à la 

sélection dynamique des détails lors de la décomposition en ondelette. 
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De plus, la quatrième contribution est l’application de la méthode de somme cumulé dans une étude 

multidimensionnelle, tout d’abord sur ces signaux bipolaires, ensuite sur les détails de ces signaux 

bipolaires après décomposition en ondelettes. 

Dans le but d’identifier les contractions et de réduire le nombre des autres évènements détectés 

(associés souvent à des artéfacts de mouvement de la mère et/ou du fœtus), un essai d’extraction des 

caractéristiques (paramètres) de ces évènements obtenus (proposés en [15]) sera présenté et validé.  

Ce manuscrit est organisé comme suit : 

• Chapitre 1 : consacré à l'état de l'art de l'anatomie et de la physiologie de l'activité utérine, aux 

différentes méthodes et tests de détection du travail prématuré. De plus, la configuration 

d'électrodes multicanaux, les différentes méthodes de détection de rupture, l’importance de la 

configuration multidimensionnelle et la méthode de validation des évènements implémentés 

seront présentées afin d'obtenir une base solide pour la présente étude. 

• Chapitre 2 : destiné à l’application de la méthode de somme cumulé dynamique (DCS) pour 

l’étude monodimensionnelle, en commençant par les signaux EHG monopolaires, puis en 

passant aux signaux bipolaires. En utilisant ces signaux bipolaires, notre étude basée sur la 

méthode DCS a continué en y associant une série des techniques d’éliminations des fausses 

ruptures détectées et en développant des méthodes de fusion de ces ruptures. La méthode DCS 

est ensuite appliquée aux détails obtenus par décomposition d’ondelettes. De plus, une étude de 

justification du choix des paramètres est présentée dans ce chapitre et les résultats sont ainsi 

comparés. 

• Chapitre 3 : consacré à l’étude de la méthode de la somme cumulé dynamique en approche 

multidimensionnelle. La théorie de la méthode sera présentée tout d’abord, puis son application 

aux signaux bipolaires et aux détails sélectionnés après la décomposition en ondelettes des 

signaux EHG bipolaires. Une étude de justification du choix des paramètres est aussi présentée 

dans ce chapitre et les ruptures détectées seront bien validées. 

• Chapitre 4 : on discutera dans ce chapitre l’importance de l’extraction des paramètres des 

évènements détectés (paramètres linéaires et non linéaires), tout en justifiant le choix des seuils 

lors de la sélection des évènements à garder. Les résultats obtenus seront discutés et comparés. 

• Une conclusion générale et une discussion de cette thèse sont présentées à la fin avec des 

propositions pour les travaux futurs possibles.  
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General Introduction   
The importance of pregnancy monitoring for the fetus and pregnant woman is widely and 

continuously recognized. In fact, pregnancy monitoring can be achieved by several methods and 

techniques and not only concerns the instants that precede delivery; a good pregnancy monitoring 

should start with the first months of pregnancy. 

Humanity is experiencing a steady increase in the number of premature births (before 37 weeks of 

gestation) [1]. According to the World Health Organization (WHO), an estimated 15 billion babies 

are born too early each year. That represents more than 1 in 10 babies; 5.6 % among 738618 births  

are premature in France [2] while 8.8% among 80000 births are premature in Lebanon [3]. About 

1.055 million  children die each year from premature delivery [4]. Many survivors are disabled in 

their lifetime, including learning disabilities, visual and auditory disorders. 

At the global level, prematurity is the leading cause of death among children under 5 years of age. 

And in almost all countries with reliable data, rates of prematurity are rising. Inequalities in survival 

rates around the world are striking. In low-income countries, half of babies born less than 32 weeks 

old (2 months earlier) die from a lack of feasible and cost-effective care, such as heat, breastfeeding 

support and basic health care because of infections and breathing difficulties. In high-income 

countries, almost all of these babies survive [1]. Premature labor is a hot topic. Suboptimal use of 

technology in middle-income countries is causing an increased burden of disability in preterm infants 

who have survived the neonatal period. 

Although several methods have been adopted to monitor pregnancy, they are subjective and do not 

accurately diagnose or predict when the labor will take place. 

The current state of labor surveillance knowledge can be summarized as follows: (1) Current methods 

are subjective; (2) intrauterine pressure catheters provide the best information, but their use is limited 

by their invasiveness and the need for ruptured membranes; (3) current uterine monitors like 

tocodynamometers are uncomfortable; however, this system is not a reliable one because the 

measurements obtained are not completely accurate and depend to a large extent on subjective 

operator’s criteria  [5] and (4) no method has been used to predict efficiently the premature labor. 

However, testing cervical or vaginal fetal fibronectin (fFN) has recently been suggested as a 

screening method for patients at risk of preterm delivery. The results of several studies [6-10] show 
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that fFN can be useful for predicting actual premature labor. Other studies indicate that the value of 

the fFN assay lies in its high negative predictive value (NPV) [9]; fFN has the ability to identify 

patients who are not at risk of preterm birth. Similarly, salivary estradiol has been shown to have 

some utility due to the high value of NPV [11]. 

While some methods can identify signs of labor in progress, none of them offers objective data to 

accurately predict labor across a wide range of patients. The methods vary in complexity, from 

simple patient awareness to complex electronic pressure sensors. 

Despite all the limitations summarized above, the presence of uterine contractions and cervical 

softening at 28 weeks of gestation were the best predictors of spontaneous prematurity in a group of 

nulliparous women at risk of preterm birth [12]. Cervical Length measurement by transvaginal 

ultrasound in the second trimester is considered one of the most effective screening methods for the 

prediction of preterm birth [13]. Indeed, the risk of preterm birth increases with shorter cervical 

length (< 25 mm) [13]. 

In contrast, numerous studies have been directed to the study of the electrical activity of uterus, the 

uterine EMG, that drives the contraction and relaxation sequence of the myometrium resulting from 

the cyclic depolarization and repolarization of muscle cell membranes. In fact, the 

electrohysterogram (EHG) is based on the recording of the electrical activity of the uterus on the 

mother’s abdomen and has been widely investigated since long time. It is mainly composed of two 

frequency components traditionally called FWL (Fast Wave Low) and FWH (Fast Wave High) [14]. 

The overall goal of our study is the early prediction of preterm birth. For this purpose, in our 

laboratory, several investigations have been concentrated on the study of the uterine EMG signal: 

starting by the application of an automatic detection method of ruptures on single-channel study [15], 

moving to the multi-channel study by placing a matrix of electrodes on the surface of uterus for sake 

of analyzing the acquired signals (either monopolar and bipolar) [16,17], then applying several linear 

or nonlinear methods in order to characterize the cell excitability (action potential) as well as  the 

spread of electrical activity in the uterus in order to characterize the dynamics and the origin of the 

EHG signals [18], verifying parameters that have shown encouraging results in the field of detecting 

premature labor, and developing a new EHG multiscale electrophysiological model to validate 

uterine EMG signal processing techniques [16,17]. Indeed, in order to predict premature delivery, an 
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explicit study of the normal functioning of the uterus, how it is resting throughout the pregnancy, and 

then contracting and expelling the baby during labor, must be well carried out. 

The objective of our research is to be able to automatically detect and identify the contractions of 

uterine EMG signals (Electrohysterogram, EHG) acquired from a different population of pregnant 

women, by referring to a method already implemented in [15] and called the “Dynamic Cumulative 

Sum” (DCS). This will enable the uterus of the pregnant woman to be monitored in a long enough 

period so that all events in the uterine EMG signals are automatically detected without the use of the 

tocodynamometer. Then, a step of features extraction from those detected events could take place in 

order to identify the contractions on the one hand, and to compare the contractions that lead to a 

premature or normal delivery on the other hand. These parameters, already introduced and verified in 

[16], could be included in an automatic diagnostic system that could be used for monitoring 

pregnancy and predicting preterm birth. 

Among the complex systems of the human body, the uterus is one of the least well understood [18]. 

A contraction refers specifically to the action of the uterus in the delivery process [19]. Contractions 

and labor in general are conditioned by the timely release of oxytocin, a hormone, among others, of 

great importance for uterine activity. The contractions become more frequent as the labor intensifies, 

generated every 2 to 3 minutes. During pregnancy, a contraction can last 2 minutes due to a slower 

propagation of activity during pregnancy than during delivery [20]. Before actual labor, women have 

Braxton Hicks contractions, sometimes called "false labor". In fact, regular uterine contractions 

accompanied by effacement and dilation of the cervix are associated with labor. In normal childbirth, 

biochemical changes in the connective tissue of the cervix (cervical ripening) associated with the 

occurrence of uterine contractions leads to cervical dilation. Normal labor results in the birth of a 

term fetus [21]. This is the pre-labor period duration that defines premature birth. The World Health 

Organization (WHO) defined a premature birth a delivery that takes place before 37 weeks of 

gestation. 

Until recently, uterine EMG segmentation has been done manually by referring to the 

tocodynamometer signal, where the start and the end times are detected by simultaneously 

examination of the tocograph and the EHG signals. 

Detection / segmentation is a major problem for the processing of signals with rapid non-stationarity 

or ruptures. It is a needed first stage of processing for recognition or diagnosis. Rapid non-
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stationarity, ruptures or transitions are usually short compared to the observation period. When the 

hypothesis parameters are known, an optimal detector (in the Neyman Pearson sense) based on the 

likelihood ratio can be defined [22]. In practice, the parameter distributions are generally not known 

and many algorithms have been developed to solve this type of problem [23], such as the generalized 

likelihood ratio which consists in using a maximum likelihood estimation. This method is developed 

in the case where the samples are independent. The double maximization appearing in the decision 

function is complicated and expensive in computing time. This is incompatible with the desire to 

develop methods that can sequentially detect possible changes. Several methods [24] have been 

proposed to simplify the previous method. The Brandt algorithm is a simplified means for 

implementing the maximum likelihood algorithm. Brandt's algorithm is developed for signals 

modeled by autoregressive (AR) models and thus allows the detection of spectral changes. Some 

other methods have been developed for the case of spectral change, such as those based on the 

Innovation Whiteness model [25], the Hinkley divergence test [26], the cumulative dynamic sum 

(DCS) [15], etc. The cumulative sum method CUSUM is based on the recursive calculation of the 

logarithm of the likelihood ratio. The CUSUM procedure can be considered as a sequence of repeated 

tests around a change point “k”. The information to be considered is then the difference between the 

value of the likelihood ratio and its current minimum value. The decision rule is to compare this 

difference to a given threshold, at each instant “t” [23] 

In our study, we want to focus on the automatic segmentation of events in the uterine EMG signal 

and then identify contractions among these events by referring to the expert's data. Our database 

includes uterine EMG signals from different weeks of gestation acquired by a matrix of 4x4 

electrodes in order to obtain a more complete picture of the uterus activity and underlying contractile 

mechanisms. So, from this multi-channel matrix, we will get more information coming from different 

electrodes that can be combined together with data fusion techniques, in order to increase the 

likelihood of a proper detection and segmentation of uterine contractions, when compared to 

information obtained from a single electrode. 

Therefore, our work started by the application of the DCS method in a monodimensional approach, 

first on monopolar signals, in order to obtain a high spatial resolution of the data; these signals are 

then subjected to an effective method of denoising CCA-EMD developed by [27] in order to obtain a 

good enough signal to noise ratio which could facilitate the processing of these signals [Refer to 
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Appendix]. These monopolar signals are finally subjected to a wavelet decomposition in order to 

detect more ruptures or events in the obtained details in different frequency contents. 

Based on these first obtained results, our study is then focused on bipolar signals, another simple way 

to increase the signal-to-noise ratio of uterine EMG. In addition, our first contribution is manifested 

by combining the DCS method with a series of techniques (either Fisher test or SNR technique, 

signal to noise ratio) in order to reduce the number of detected ruptures that does not reflect a 

contraction validated by the expert. Thus, the DCS method with the associated techniques is applied 

first in a monodimensional study on bipolar uterine EMG signals, then on the details of these bipolar 

signals after wavelet decomposition. This latter is considered as a second contribution. Furthermore, 

as a third contribution we have implemented two techniques for sake of fusion of detected ruptures. 

The first one is automatic, while the other is based on the weighted majority vote system (WMV) 

where each channel is weighted by a factor when fusing the instants of detected ruptures. An 

important point is that we have been focused in dynamically selecting the channels when applying the 

fusion of the detected ruptures instants, either during instant projections, or during automatic and 

weighted fusion, as well as for the dynamic selection of the details during the wavelet decomposition. 

The fourth contribution is introduced by the first application of the cumulative sum method 

implemented in a multidimensional approach on bipolar EHG signals, then on the details of these 

bipolar signals after wavelet decomposition. 

In our study, in order to identify the contractions and reduce the number of other detected events (like 

mother’s or infant’s movement artefacts), an attempt was made to study the values of some 

parameters proposed in [16]. 

This manuscript is organized as follows (Figure 1): 

• Chapter 1 will be devoted to the state of art of the anatomy and physiology of the uterine activity, 

the different methods used for preterm labor detection. In addition, multichannel electrodes 

configuration, different ruptures detection methods, importance of multidimensional level and 

validation method of detected events will be presented in order to obtain a solid background of the 

state of the study.  

• Chapter 2 will be used for the application of the DCS method in a monodimensional approach, 

starting with monopolar EHG signals, then switching to bipolar signals. Using these bipolar signals, 

we continue our study based on the DCS method but by combining it with a series of elimination 

techniques of erroneous detected ruptures and developing methods of fusion of these ruptures. The 
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DCS method is then applied to the details obtained by wavelet decomposition. In addition, the choice 

of the method parameters is well justified and the results are compared. 

• Chapter 3 will be devoted to the application of the DCS method in a multidimensional approach. 

The theory of the method will be presented first, then we will see the application of this method to 

bipolar EHG signals and to selected details after wavelet decomposition of the bipolar EHG signals. 

The choice of the method parameters is justified and detected ruptures are validated. 

• Chapter 4: This chapter discusses the importance of extracting parameters from the detected events. 

Then we tend to extract linear and nonlinear parameters from those events. In addition, the choice of 

threshold during events selection is justified. The obtained results are discussed and compared. 

• A general conclusion and discussion of this thesis is presented at the end with proposals for possible 
future work.  

 
Figure 1:  General Thesis Roadmap 
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Chapter 1: Uterus, Preterm labor & 
Automatic event detection: Approaches & 
Problematics  
 

 

 

1.1. Introduction 
This first chapter is an overview of the problems that define the context of this work. The 

automatic detection of events from EHG signals constitutes the first step the development of a home 

monitoring device, without the needed use of the tocodynamometer, in order to detect and to prevent 

premature labor. In this chapter, we begin by describing the overall purpose of the study and then by 

giving a brief overview of the physiology associated with uterine contraction. Then we will present 

the content and the origin of the uterine EMG signals and some definitions related to the uterine 

physiology useful for the continuation of the work. At the end of the chapter, we will detail the 

different methods previously implemented for the detection of events from signals in general and 

from the EHG in particular. We will also highlight the importance of the multidimensional approach. 

1.2. Anatomy and Physiology of the Uterus 
1.2.1. Uterus Anatomy 

The uterus is the part of the female reproductive tract in which the baby grows. The female 

reproductive tract is made of internal organs, including the vagina, uterus, ovaries and fallopian 

tubes, as well as external genitalia, the parts that form the vulva (Figure 1.1) [1]. All the internal 

organs are in the pelvis, which is the lower part of the abdomen between the bones of the hips [2]. 

The uterus is a hollow muscular organ shaped like an inverted pear. It has 3 parts: 

- the fundus (upper part) 

- the body (main elements of the uterus including the uterine cavity) 

- the cervix (narrow lower part) 

The uterus is located above the vagina, above and behind the bladder and in front of the rectum. It is 

about 7 cm long and 5 cm wide (in its widest dimension) when non-pregnant. 
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The wall of the uterus, which is thick, is formed of 3 layers: 

- Endometrium which is the inner layer that lines the uterus. It consists of glandular cells that 

produce secretions. 

- Myometrium which is the middle layer that is made up mostly of smooth muscle. It has an 

autonomous contraction capacity. 

- Perimetrium which is the outer serous layer that envelops the body of the uterus and part of the 

cervix. 

 

Figure 1.1:Uterus anatomy [1] 

The uterus receives a fertilized egg (ovum) and protects the fetus (baby) as it grows and develops. 

The uterus contracts to expel the baby out of the body during delivery. Every month, except during 

pregnancy and menopause, the lining of the uterus is removed from the body by the cervix and then 

the vagina. This is called menstruation [3]. 

The uterus is explored by vaginal touch with an abdominal hand bringing the abdominal contents 

back to the vaginal fingers. The reference examination is endovaginal ultrasound, the exploration can 

be completed by MRI. 

The uterine microanatomy is consistent with action potential propagation [4]: (i) myocytes are 

densely packed within a bundle, (ii) bundles are contiguous within a fasciculus, and (iii) fasciculi are 

contiguous via communicating bridges formed with myocytes (Figure 1.2). In addition, the uterine 

changes during gestation are accompanied by the formation of gap junctions, which are one of the 

mechanisms for transmitting contractile activity from cell to cell in a coordinated manner [4, 5]. The 

https://bmcmedphys.biomedcentral.com/articles/10.1186/1756-6649-12-4#CR4
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structure of the fasciculus within the uterus has not yet been well defined, but generally it makes the 

propagation of the action potential anisotropic [6, 7]. 

The exploration of this complex organ during the period of pregnancy and that of labor has been 

focusing in our university (UTC) for thirty years now, on the processing of the electrical signals 

generated by the uterus, recorded on the woman’s abdomen, the electrohysterogram (EHG) or uterine 

electromyogram (uterine EMG). 

 

Figure 1.2: Diagram of microanatomy of pregnant human myometrium. Red lines represent current flows. [4] 

1.2.2. Uterus Physiology 
1.2.2.1. Uterine contractions 

Uterine contractions are the motor of labor and delivery. They allow both cervical dilation and 

progression of the fetus into the genital tract. They are therefore essential to the smooth running of 

the labor. It seems essential to understand their physiology to be able to recognize and treat their 

pathological behavior. 

It is the myometrium that generates uterine contraction. It consists of smooth muscle fibers associated 

with connective tissue and vessels. The point of origin and the pathways of uterine contraction are 

variable. There is no fixed inductive center that has been identified until now. 

As the myometrium is a smooth muscle, the uterine contractions are involuntary. The contractions of 

labor are intermittent and rhythmic (one every 2 to 3 minutes). They are progressive in duration and 

intensity. They are global (interesting all the uterus) and painful. 

At the opposite, pregnancy contractions are infrequent (from one every day at the beginning to one 

every hour as the term progresses). They are partially or not propagated.  An important part of 

pregnant women does not feel them. 
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1.2.2.2. Excitation and propagation of action potential (AP) 

Uterine contraction, like any other muscle contraction, occurs as a result of changes in electrical 

activity in myometrium cells. At rest, the membrane potential of the myometrium cell results from a 

balance of electrical charges on both sides of the membrane, the inside of the cell being negative with 

respect to the outside. Four ions contribute to the maintenance of this resting membrane potential: 

sodium (Na +), potassium (K +), chlorine (Cl-) and calcium (Ca2 +) [8-11]. The concentration of Na 

+, Ca2 + and Cl- ions is higher in the extracellular medium, whereas the K + ion concentration is 

higher in the intracellular medium (Table 1.1) [8].  

Table 1.1. Intracellular and extracellular concentrations of the four main ions participating to the resting membrane 
potential in the myometrium cells [8].   

 

 

 

 

 

 

 

 

For each ion, there is a flow driven by the gradient of concentration and a flow driven by the 

electrical gradient. The ionic movements are either through specific ion channels activated by 

different mediators (ions, membrane potential changes or ligands such as hormones and second 

messengers), or by passive diffusion. The equilibrium potential of each ion is determined by the 

Nernst equation which represents the equilibrium between the concentration gradient and the 

electrical gradient. The membrane potential at rest depends on this equilibrium potential for each ion 

and on the permeability of the membrane. The resting membrane potential in myometrium cells 

during pregnancy in women ranges from -40 to -80mV [12, 9]. In the myometrium, the resting 

membrane potential is unstable due to permanent rhythmic changes in membrane permeability for 

Na+ and Ca2 + ions. The modification of the K + ion permeability and the start of active mechanisms 

(Na / K ATPase pump) restores the resting potential (Figure 1.3). When the membrane potential 

varies significantly and approaches the critical threshold of depolarization (-12 to -25mV in women 

during pregnancy), the active mechanisms that tend to restore the resting membrane potential are 

overwhelmed [13]. A massive entry of sodium will cause a depolarization of the cell, and cause a 

Concentrations (mmol/l) Intracellular Extracellular 

(Na+) 25 140 

(K+) 150 5 

(Cl−) 60 135 

(Ca2+) 0.00015 1.5 
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membrane action potential. Any myometrium cell can be the source of action potentials; there is no 

specific electrical center as in the cardiac muscle. This cell, called the "pacemaker" cell, can then 

transmit the action potential to other cells that are said pace-follower cells. The transmission of the 

action potential is via channels consisting of proteins connecting neighboring cells to each other, 

called gap-junctions [12, 14, 15]. 

The occurrence of an action potential causes the opening of voltage-gated calcium channels which 

allows an increase in intracellular calcium concentration, allowing the actin-myosin interaction 

responsible for the contraction. The frequency of occurrence of the action potentials varies according 

to the state of excitability of the cell. The resting membrane potential is restored by increasing the 

permeability of the membrane for potassium and by activating the Na / K ATPase pump secondary to 

increasing the intracellular sodium concentration [8, 9]. 

The electrical properties of myometrium cells change during pregnancy and labor to successively 

limit and then promote the generation and propagation of action potentials (Figure 1.3). These 

electrical properties are directly related to the permeability of the membrane to the different ions, 

which is itself influenced by the density and activity of the ion channels [8, 9]. During pregnancy, the 

resting membrane potential decreases, contributing to less muscle excitability. This hyperpolarization 

is in part secondary to a decrease in calcium channel density and an increase in progesterone-

mediated potassium channel conductance [10, 11, 16, 17]. From the middle of pregnancy, the number 

of calcium channels and sodium channels increases, allowing the emergence of irregular action 

potentials of low amplitude. When approaching the term, an increase in membrane permeability to 

sodium and calcium associated with a reduction in the conductance of potassium channels contributes 

to elevate the resting membrane potential at around -45mV (depolarization), increasing cellular 

excitability and facilitating muscle contractility. The modification of the membrane potential at rest 

contributes to modify the activity of the ion channels and thus the excitability of the cell [8, 9, 10, 17, 

19, 20]. 

During labor, the density of calcium channels and therefore the membrane permeability to calcium 

increases under the effect of the fall, effective or functional, of progesterone [16, 21]. 

The modifications and displacements of ions, on the other hand, create a release of energy by 

hydrolysis of ATP to ADP by the ATPase enzyme, a sufficient calcium concentration (greater than 

moles per liter) is required for the ATPase to be active. Following is a shortening of the 

contractile chains by creation of actomyosin.  
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Figure 1.3: Diagram representing ions flow modifications according to gestational period. beginning of pregnancy (A), end of 
pregnancy (B), term labor during depolarization (C) and repolarization (D). Bold police represents the higher concentration of each ion. 

Arrow thickness is proportional to the flux intensity and grey arrows indicate the predominant movement [18]. 

The key enzyme is the myosin light chain kinase (MLCK) which, activated by the complex  - 

calmodulin, phosphorylates the chains light LC20 of myosin (Figure 1.4) [22]. 

 

Figure 1.4:Biochemical Mechanism of Contraction ( ____ ) and relaxation (- - - - -)  of uterine muscle [22]. 
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The fall in the concentration of intracellular calcium  leads to relaxation: the 

dephosphorylated myosin under the action of a specific phosphating is then detached from the actin. 

Moreover, the phosphorylation of MLCK leads to a decrease in its ability to activate myosin and thus 

to produce contraction. 

In parallel, an increase in the expression of the proteins making up the gap-junctions (mainly 

connexins 43) has also been shown to be also induced by the decrease in progesterone [15, 23]. The 

same changes were reported during term work and premature labor. 

In summary, changes in transmembrane ionic motions lead to changes in cell excitability and 

decrease the depolarization threshold favoring the generation of action potentials. The increase in the 

gap-junction density improves the coupling between neighboring cells leading to an increase in the 

speed of propagation of the action potentials and the number of cells that contract [9, 15, 21, 24]. 

1.2.2.3. Uterine activity Characteristics  

The spread of uterine activity is the most important change when the labor starts. In fact, partially 

propagated in late pregnancy, contractions become strong, rhythmic and are spread to the entire 

uterus during labor. 

In fact, when labor begins, uterine contractions cause changes in the cervix. The cervix will center, 

that is to say, aligned in the axis of the vagina, while it is directed backwards during the pregnancy, 

then shorten, from 4 cm long during pregnancy to full effacement. Then it will dilate opening in a 

circular way from 0 to 10 cm diameter. When the cervix is dilated to 10 cm, the dilation is said 

complete: the vagina and the uterus form only one duct. The baby's head will be able to go down and 

turn in this duct.  

The period of dilation of the cervix comprises two phases: 

The latency phase, which corresponds to the effacement and the beginning of cervical dilation up to 

3 cm. It lasts about 7 hours in the primiparas (first delivery) and 5 hours in the multiparas (who has 

already given birth). 

The active phase, which corresponds to cervical dilation from 4 to 10 cm. 

The average duration of cervical dilation is variable, ranging from 13h for primiparas to 7h for 

multiparas [25-28]. 

When the amniotic membranes are ruptured, the placement of an intrauterine catheter (= internal 

tocography) makes it possible to record the Intra Uterine Pressure (IUP) and to define the various 

parameters of the uterine contraction (CU) (Figure 1.5). These parameters are [29]: 
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- basic tone 

- amplitude of UC 

- frequency of UC 

- duration of UC. 

We talk about basic tone to describe the physiological rest IUP value between 2 contractions. 

Depending on the frequency of the contractions, the basic tone can be represented on the tocometric 

trace by a continuous line or simply by a point between two contractions. The average physiological 

basal tone pressure varies between 5 to 13 mmHg. In practice, most of the time, when it does not 

exceed normal value, the basal tone is not taken into consideration. But it permits to calculate the 

active amplitude which is taken into account for clinical purpose [30].  

The frequency of the contractions varies with the progress of the work. It increases to generally reach 

5 uterine contractions by 10 minutes at the end of labor [31]. 

The intensity corresponds to the IUP value at the peak of the contraction. 

The average intensity of contractions at the beginning of labor is 30 to 40 mm Hg. It increases 

gradually with cervical dilation to reach 60 to 70 mm Hg at complete dilation. It exceeds these values 

during expulsive efforts.  

 
Figure 1.5: Diagram illustrating the different parameters of uterine contraction (UC) [32] 

The amplitude represents the pressure difference between the peak of the contraction and the basal 

tone. It therefore reflects the true intensity of the contraction, its effectiveness. 

The duration of the contractions varies from 15 to 20 seconds at the very beginning of the cervical 

dilation to 60 to 120 seconds at the end of labor. 

1.2.2.4. Effects of uterine contractions 

The contraction has different effects on the uterus, on the lower pole of the egg, on the mobile fetal. 
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On the uterus: 

In late pregnancy, contractions allow formation and amplification of the lower segment. The layers of 

the lower segment are thus isthmic mucous membrane, isthmic portion of internal cervical muscle, a 

thin intermediate layer, external longitudinal layer and peritoneum. The lower limit of the lower 

segment is the obstetrical bone. Its relation to cervical mucosa depends upon the variations in 

effacement and dilation of the cervix [33]. 

During labor, contractions allow the effacement and dilation of the cervix. This effacement and 

cervical dilation are due to the shortening of the uterine fibers, causing a rise of the lower fibers of 

the uterus to the uterine body, and thus a thinning of the lower part of the uterus. 

On the lower pole of the egg: 

The labor contractions cause the rupture of the water bag by increasing the intra-ovular pressure. 

On the fetal mobile: 

The contraction will push the fetus down and permit him to engage and cross the different straits of 

the pelvis. The contractions allow the accommodation of the fetal mobile to the pelvic sector of the 

parturient. 

1.3. ElectroHysteroGraph (EHG) 
1.3.1. Different EMG activity recording 

Simultaneous recording of the internal (directly on the uterus) and external (on the abdominal 

skin) electrical activity of the uterus has shown a very good correlation between the two types of 

signals when recorded on monkeys [34], on rats [35, 36] as well as on women [37, 38].  

On pregnant rats, many studies have recorded simultaneously, the uterine EMG activity directly 

from the uterine surface (Ut), from the abdominal surface (AS) together with the intrauterine pressure 

(IUP) [35,36]. As shown in Figure 1.6, early in pregnancy and until about day 18 of gestation, 

electromyographic bursts were irregular and of low amplitude. There was also little or no 

correspondence between activity recorded from the uterus and from the abdominal surface. 

Intrauterine pressure activity was frequent but still irregular and generally with low amplitude (Figure 

1.6).  
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Figure 1.6: EMG activity recorded from the uterus directly (top on each figure, uterine surface (Ut) and the abdominal surface (AS) 

simultaneously with intrauterine pressure (IUP) from pregnant rats. Records were obtained at days 18 (A) and 21 (B) of gestation and 
during term (C) and preterm (induced with onapristone) delivery (D). Note the large and frequent bursts of EMG events from both sites 

and their correspondence to IUP [35]. 

Later in gestation (day 21 to delivery), the electromyographic activity became more regular, and the 

signals directly recorded from the uterus (Figure 1.7) coincided well with those recorded from the 

abdominal surface (Figures 1.6 and 1.7). There was also a tendency for low-amplitude intrauterine 

pressure to correspond in time with the electromyographic activity recorded from the uterus as well 

as from the abdominal surface. During term and preterm labor in rats, electromyographic activity 

recorded from both the uterus and abdominal surface occurred concurrently with changes in 

intrauterine pressure (Figures 1.6 and 1.7). The electromyographic signals and the intrauterine 

pressure were frequent (about one contraction per minute) and of high amplitude. 

 
Figure 1.7: Expanded views of EMG bursts from rats recorded simultaneously from uterine surface (Ut) and abdominal surface (AS), 

along with IUP, during term delivery [35]. 
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The surface uterine EMG, the EHG, is thus representative of the electrical activity of the uterine 

muscle. Its frequency-band ranges between 0.2 and 3 Hz and Its amplitude between 100 μV and 1.8 

mV [39].  

In addition to the usual clinical investigations performed in obstetrics, the uterine electromyographic 

signal, collected externally, has been shown to carry additional information on the effectiveness of 

the contraction. Indeed, while the mechanical characteristics of the contraction provide information 

on the global constraints on the uterus [40], the electrohysterogram (EHG), in turn, reflects the 

control aspect of the contractile activity and thus allows the study of the phenomenon at its starting 

point [38]. It is rich in information such as the level of excitability of the cells, the capacity of the 

uterus to propagate this excitation and, consequently, the efficiency of contractions on the cervical 

dilation [41]. It must therefore be possible to obtain, by analyzing this signal, parameters 

representative of the effectiveness of this control of the contraction. Non-invasive abdominal 

electrode recording and real-time treatment of EHG may therefore be of great interest for routine 

obstetrical monitoring. 

The electrohysterogram is composed of two elements, a slow wave, which is synchronous to the 

intrauterine pressure (IUP) and thus related to mechanical artefacts (abdomen deformation), and a 

fast wave, which is also divided into two components, fast waves low (FWL) and fast waves high 

(FWH). FWL and FWH are thought to be related to the propagation and excitability of EHG 

respectively [42]. 

1.3.2. Detailed characteristics of the events contained in the signal recorded on the abdomen 

The signal recorded on the abdomen can be represented by a random process x (t) of the form: 

x(t) =  EMG(t)+ n(t)  (1) 

EMG(t) is a variable model depending on the state of the muscle (rest, contraction) and depending on 

the term of the analysis (physiological evolution). This EMG(t) uterine activity corresponds to the 

filtered integration of many cellular activities. Each of these elementary activities can be considered 

as a random process of unknown law, but supposed identical whatever the cell. EMG(t) representing 

the burst of activity resulting from the summation of all these elementary activities, can be considered 

as a piecewise stationary Gaussian process [43,44]. 

Each signal Si(t) is an additive signal that corresponds to activities different from the uterine EMG 

(for example the maternal ECG) or to artifacts that appear at a given moment. These events are 

usually short compared to the EMG (t) signal. They represent active fetal movements, Alvarez waves, 
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LDBF waves (long duration low frequency) and other types of events not yet validated (Figure 1.8). 

Their time of appearance are unpredictable. 

On the other hand, n(t) represents the noise related to the environment (mainly electrodes and 

instrumentation noise). 

 
Figure 1.8: The 4 types of events known in the uterine EMG [45] 

Obviously, the bursts corresponding to the active fetal movements (AFM) are not, strictly speaking, 

intrinsic components of the surface EMG signal. They are, however, associated with artifacts 

resulting from the mechanical deformation of the woman's abdomen under the action of the 

movements of the fetus. They occur during phases of natural activity of the fetus but also as a fetal 

reaction after the occurrence of contractions under the effect of the mechanical stress generated. It 

should be noted that AFM can cause contractions if the woman's uterus is irritable [46]. AFMs have 

very low frequency spectral content. In addition, their temporal characteristics are very different from 

that of the contractile activities present in the EMG. AFMs are in the form of one or more peaks of 

very short duration and sometimes of high amplitude.  

As for Alvarez waves (or Low Amplitude High Frequency contractions), they are short duration 

bursts, from less than 30 seconds. They are characterized by a high frequency, greater than 0.5 Hz, 

and a low amplitude. This type of wave has a high frequency of appearance (one every one minute). 

It is a local electrical activity, occurring randomly in various parts of the uterus. It is either normal 

physiological activity or hyperactivity that can lead to premature birth [47]. 

Indeed, there are other types of activities which called LDBF waves and Leman waves. As for LDBF, 

these are waves that have a long duration and a very low frequency content compared to the 
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frequency characteristics of bursts related to contractions. Until now, the physiological nature of this 

type of events is not documented. As for Leman waves, these are waves that have frequency 

characteristics close to those of contractions but of low amplitude. They will generally be ignored in 

the detection process (very bad signal-to-noise ratio).  

Furthermore, we must consider that the characteristics of bursts related to contractions vary from one 

woman to another and according to the term of pregnancy. Similarly, active fetal movements and 

bursts related to contractions can be confused if the pregnancy term is not taken into account. Finally, 

we must consider the fact that the duration of a contraction is shorter than that of an LDBF wave and 

greater than that of an Alvarez wave. 

1.4. Preterm labor problematic 

Preterm birth can be defined as any birth occurring after 22 week of Gestation (WG), a child over 

500 g, and before the 37th WG [48]. This definition is based on the advances in neonatal resuscitation 

and on the fact that epidemiological studies on prematurity account for newborns over 500 g [48]. 

Out of 184 countries, the rate of preterm births varies between 5% and 18% of all the babies born 

[49]. Approximately 1 million children die each year due to complications of preterm birth while 

many survivors face a lifetime of disability, including learning disabilities and visual and hearing 

problems [49]. 

The socio-economic consequences of these prematurity are important. Pre-term children have 

prolonged stays in neonatology intensive care units, for a night stay cost average 800 US Dollars in 

Lebanon and 1500 US Dollars in USA [21]. Some of those pre-term children have severe 

neurological and physical disabilities, which require long-term care and specialized education 

systems. Even a few days more in utero could improve the maturation of the fetus and thus its 

viability at birth. The early detection of the threats of premature labor (PL) seems to be a determining 

factor for the prolongation of the stay in utero. One of the keys to treating preterm labor is the early 

detection of the risk of preterm labor. If preterm labor is diagnosed early, medical specialists can 

attempt to stop the labor process or can use a number of interventions to improve the outcome for 

premature infants, when prevention of preterm delivery fails. Indeed, French legislation makes the 

woman attend 7 antenatal consultations, which permits the doctor to have a regular follow-up of her 

pregnancy and to act as much as possible in a suitable way. 

In view of the detection systems currently available, they are too invasive, too subjective, or do not 

improve the prevention or the monitoring of high-risk pregnancies [47]. 
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Among the several methods presently used for the detection of preterm delivery we can cite: 

- vaginal examination: During a normal pregnancy, for almost 9 months, the cervix remains 

closed to maintain the fetus in the uterus. The contractions of labor allow its opening and the 

exit of the baby. The measurement of cervical dilation during childbirth makes it possible to 

verify the smooth progress of it. 

A classic problem with vaginal examination is that the evaluation of the dilation of the internal 

orifice (a significant predictor of the risk of premature delivery) necessitates raising the finger 

close to the membranes, which may increase the risk of infection. Indeed, repeated vaginal 

examination is associated with a greater risk of premature rupture of the membranes. In 

addition, various studies show that vaginal examination is very subjective [50]. 

- Cervical endovaginal ultrasonography: In their study, IAMS et al. showed that cervical 

endovaginal ultrasound was significantly superior to vaginal examination (dilation and 

effacement) as a predictor of delivery before 36 weeks before labor (WBL) [51]. A cervical 

length of 30 mm seemed to be the best threshold for optimizing sensitivity and specificity. In 

their study, the 24 patients who gave birth prematurely had a cervical length of less than 30 mm 

and none of the 15 women with a length greater than or equal to 30 mm delivered prematurely. 

Endovaginal ultrasonography therefore has a good negative predictive value. Cervical 

endovaginal ultrasonography appears to be more effective than vaginal examination in 

assessing the risk of preterm delivery in patients with intact membrane prone to premature 

labor (PL) [52]. 

- Biochemical markers measurement 

• Placental peptides: Corticotrophin releasing hormone (CRH) plays a role in the 

physiological triggering of parturition in late pregnancy. However, the current data does not 

permit to consider the maternal CRH as a predictive marker of work and of premature 

delivery only, but suggests that it may be a marker of high-risk pregnancies [53]. 

• Cytokines: Currently, bacterial infections are reported to affect more than 40% of women 

with signs of premature labor [54]. 

Phospholipases A2 (PLA2), which may also be of bacterial origin [55]. become 

overexpressed under the influence of cytokines such as interleukins 1 and 6 (IL-1 and IL-6) 

and Tumor necrosis factor α (TNFα). 

Several teams examined the role of IL-6 in premature labor [56-57]. Recent studies suggest 

that amniotic IL 6 is a good marker of high inflammation and infection inducing premature 



 
47 

 

labor with or without premature rupture of membranes, especially if elevated levels of IL-6 

are observed in the amniotic fluid even when the infection is restricted to chorioamnion and 

has not yet reached the amniotic cavity. IL-6 appears to be a good marker in early pregnancy, 

with minor infectious events occurring in the spontaneous onset of labor at the end of 

pregnancy [58-59]. 

• α-fetoprotein (AFP): AFP binds with high affinity arachidonic acid and docosahexaenoic 

acid which are essential elements to the visual and cognitive functions of the fetus. When 

found at high concentration in the peripheral maternal circulation, it may be a predictive 

marker of preterm delivery and intrauterine growth retardation [60]. 

• Fetal fibronectin: In fact, fibronectin belongs to a family of ubiquitous glycoproteins present 

in soluble form in different fluids (cerebrospinal, synovial, amniotic fluids and plasma) or 

tissue, as a component of the extracellular matrix. 

Sometimes fetal tissues undergo a separation from the maternal uterus for various causes, 

even known (infection, smoking, rupture of membranes, bad placentation ...) or unknown, 

which leads, under the influence of proteases, to a release of fetal fibronectin structures where 

it is strongly represented [61]. It is thus found at high concentrations in the amniotic fluid, 

cervix and vagina. Its increase in vaginal mucus could therefore be a predictive test for PL 

between the 21st and the 37th weeks of gestation. Indeed, during normal pregnancies, fetal 

structures remain contiguous or merge with maternal structures and fibronectin is not found in 

vaginal secretions during this period. For fetal fibronectin to be a good marker, it must be 

present in the cervix and vaginal secretions before contractions and opening of the cervix. 

Several studies suggest that fetal fibronectin is a significant risk marker for preterm labor in 

symptomatic patients for the period of 24 to 34-37 weeks [62-64], in asymptomatic and low-

risk women up to about 3 weeks before [65] and asymptomatic women at high risk of PL 

[66]. 

On the other hand, other authors considered that in low-risk asymptomatic patients, the 

cervical test of fetal fibronectin had a very limited value for the prediction of premature labor 

or delivery where the high number of false positives may be related to contamination of 

cervical-vaginal samples by fetal fibronectin present in maternal blood, in increasing amounts 

depending on gestational age [67-70]. Although multi-center clinical trials involving a large 

number of patients or specific groups such as multiple pregnancies are still ongoing, fetal 
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fibronectin does not appear to be an adequately predictive PL test for routine use in the 

general population of pregnant women. 

- Light induced fluorescence (LIF): By using the Collascope (Figure 1.9), collagen 

fluorescence intensity variation, as indirect collagen concentration measure, could be detected 

when applied noninvasively on the cervix. LIF of cervical collagen could be a useful tool for 

evaluating cervical status and monitoring treatments strategies [21]. 

 
Figure 1.9: Diagram of the components of the Collascope. (Reprinted with permission from Walter de Gruyter GmbH & Co. KG 

[Journal of Prenatal Medicine] for [71]. 

- Uterine electromyographic signal (electrohysterogram, EHG): A new method of prevention 

of premature delivery has been started for about thirty years, based on the study of uterine 

contractility. In fact, the uterine electromyographic signal has been the subject of many studies 

since years 1931 [72]. Obtained non-invasively by using simple surface electrodes placed on 

the pregnant woman’s abdomen, this signal reflects the summation of the electrical activities 

generated by the uterine muscle cells, corrupted by surrounding electrical and mechanical 

activities. Studies of normal end-of-pregnancy contractions and contractions of childbirth show 

that EHG is representative of the efficacy of contractions [73,74]. Referring to temporal and 

spectral parameters, it allows to classify contractions in terms of efficacy, in view of their effect 

on the cervical dilation [75]. On the other hand, the analysis of EHG during pregnancy has 

shown that it is possible to detect signals related to uterine contractions, from the 18th week, on 

therapeutic abortions [76]. EHG signal processing therefore provides non-invasive information 

throughout pregnancy about uterine contractility, which is therefore a key factor in the 

diagnosis of PL. 
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In this work, we will focus on the processing of this EHG signal, as one of the only possible way to 

monitor on a reliable way the uterine contractile activity during pregnancy. 

1.5. Why Automatic Events detection? 
Monitoring of uterine contractile activity will permit to analyze preterm labor risk [77]. External 

tocography (Figure 1.10), by its objective nature, is based on the recording of deformation of the 

woman’s abdomen by means of a sensor, deformations supposed to be caused by the contraction of 

the uterus. Tocodynamometer is a noninvasive and not expensive technique but the major problem of 

this technique is that it suffers from a sensitivity problem in very low terms. In addition, it is very 

sensitive to the artifacts caused by maternal and fetal movements. Thus, it does not allow the 

recording of low power contractions.  

 
Figure 1.10: Tocodynamometer with 2 transducers, uterine contractions and fetal heart rate transducers. 

This type of contractions, encountered in the early terms, leads to a distortion of the woman's 

abdomen below the sensitivity threshold of the device. In addition, this system is not a reliable 

technique since the obtained measurements are not fully precise and depend to a large extent on the 

subjective expertise of the operator [78]. 

Nevertheless, external tocodynamometer is the only non-invasive reference of uterine contractions in 

research applications [45, 46, 79, 80, 81].  

Concerning EHG processing, until recently, uterine EMG segmentation has been achieved manually 

by referring on the tocodynamometer signal. The beginning and the end time of contractions are 

detected by estimating them on the tocography and the EHG signal simultaneously.  

The idea of automatic segmentation of contractions in the uterine EMG started in 1999 with Khalil et 

al. [45]. The developed method has proven its effectiveness in many applications. Automatic 

segmentation of contractile events in the uterine EMG could have many advantages:  
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- Cost effective: by combining the function of the 2 systems, tocodynamometer and EHG 

acquisition system, in one system. 

- Reducing the time taken by the expert to manually segment EHG bursts related to contractions 

by a synchronized analysis of the tocography and of the uterine EMG signal. 

- Increasing precision and sensitivity of needed detected events. 

- Automatic segmentation of contractile events could be implemented in EHG system for online 

monitoring of the uterus EMG at home, at work, and everywhere, where the tocograph system 

is not available.     

The problem of detection of variations and non-stationarity (ruptures) is a problem very often 

addressed in signal processing.  

The detection algorithms are essentially based on the statistical theory of hypothesis tests. Among 

these algorithms, we are interested in sequential algorithms because these algorithms allow us to 

locate the instant of change. For example, the cumulative sum algorithm (CUSUM) is one of the most 

effective sequential detection algorithms in the case where the parameters are known [82]. In 

practice, the parameters of the hypotheses are not known and many algorithms have been developed 

to solve this type of problem [82]. 

The detection problem consists of detecting a rupture in a signal x(t) and estimating the instant k of 

its appearance. Indeed, if we have a sequence of observations , …,  which, up to instant k, 

follows a law of probability  and then after instant k, is governed by a density of probability , to 

detect a rupture in the parameter θ, the following test must be performed: 

    :  for: 1≤ i ≤ n    (2) 

Against     (3) 

Most detection methods are based on the sum of log likelihood ratios shown below: 

S ( , …, ) =   (4) 

1.5.1. Ruptures Detection Methods with Known Parameters 

1.5.1.1. Neyman – Pearson Algorithm 
In this algorithm [82], we consider a sample of size N (Figure 1.11), and we take the sum of the logarithms 

of the likelihood ratio as: 

(j) =   (5) 
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With  =    (6) 
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Figure 1.11:  Random signal with rupture at N = 200. 

The decision rule is:                                ; where h is a predefined threshold (7) 

Instant of change (  is:                         (8) 

These detection algorithms are generally characterized by two parameters (Figure 1.12): 

- The probability of false alarm 

- The probability of detection 

 
Figure 1.12:  Separation between two hypotheses H0 and H1 according to the Neyman-Pearson method [83]. 

The algorithm will be optimal if it maximizes the probability of detection for a given false alarm 

probability [84]. The disadvantage of this method is that the instant of change is related to N by 

referring to equation (8). 

1.5.1.2. Chi2 test (χ²) of the Pearson 

It is a statistical test to test the adequacy of a series of data to a family of probability laws or to test 

the independence between two random variables. 

This law is characterized by a parameter called degrees of freedom ‘k’ with value is in the set of the 

natural integers (not nulls) (Figure 1.13). 
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Figure 1.13:  Distribution of Chi2 according to the degree of freedom. For each degree of freedom asymmetrical curves are obtained 

[85]. 

Let   are independent, standard normal random variables according to normal laws of 

respective mean and standard deviation, then the sum of their squares: 

   (9) 

 The probability density function of chi-square distribution noted  will be:  

    (10) 

with  Γ : z→        (11) 

 Where  is the gamma function (the gamma function is a complex function, also considered as a 

special function, which extends the factorial function to the set of complex numbers). 

The mathematical expectation of X is k and its variance is 2k. 

At first stage, a comparison between χ² to the critical value from the chi-squared distribution with 

degrees of freedom and the selected confidence level is applied. Therefore, the null hypothesis is 

sustained or rejected. If the test statistic exceeds the critical value of χ², the null hypothesis (  = 

there is no difference between the distributions) can be rejected, and the alternative hypothesis (  = 

there is a difference between the distributions) can be accepted, both with the selected level of 

confidence. If the test statistic falls below the threshold χ² value, then no clear conclusion can be 

reached, and the null hypothesis is sustained (we failed to reject the null hypothesis), but not 

necessarily accepted. 

By sliding a single window, the probability density function of X is represented in Figure 1.14.b. 

When this density exceeds a predefined threshold χ² value, the detection function varies from 0 to 1 at 

instant 1500 as shown in Figure 1.14.c. 

https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Standard_normal
https://en.wikipedia.org/wiki/Chi-squared_distribution
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Figure 1.14: Rupture detection using Chi2 test. (a) Random signal X (b) Evolution of the sum of the squares of the  (c) Decision rule. 

1.5.1.3. Fisher Test  

The F distribution of Fisher-Snedecor is often used to compare two variances [86]. We can show 

that the ratio of two variances, of two independent distributions X and Y which follow the law of chi 

2 (X ~  and Y ~ ) follows a Fisher law characterized by two degrees of freedom (d1 and d2) 

respectively corresponding to the number of degrees of freedom of the numerator and the number of 

degrees of freedom of the denominator (Figure 1.15): 

 ~ F (d1, d2) =   (12) 

 
Figure 1.15:  Distribution of Fisher- Snedecor for different values of d1 and d2 [86]. 

 where  and  are the sample standard deviations. The test statistic is a ratio of the two sample 

variances. The further this ratio deviates from 1, the more likely you are to reject the null hypothesis. 

The variable F can only take positive values and its distribution is strongly asymmetrical. In Figure 

1.16, the Fisher test is applied on random signal by sliding 2 windows along the signal length. 

Indeed, Figure 1.16.b illustrates the evolution of detection function ‘g’ which returns a decision test 

for the null hypothesis that the data in vectors x (first window) and y (second window) comes from 

normal distributions with the same variance, using Fisher test. The alternative hypothesis is that they 

come from normal distributions with different variances. The result ‘g’ is 1 if the test rejects the null 

(a) 

(b) 

(c) 
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hypothesis at the 5% significance level, and 0 otherwise. As shown in figure 1.16.b, there is a change 

at point 1500, which implies a growth and decay in the detection function based on the sample 

variances of the two windows around this point. By applying a threshold based on the significance 

level, the instant of change could be detected as shown in Figure 1.16.c. The importance of Fisher test 

comes from its detection function which returns to its zeroing position after detection of the change, 

which is not the case of chi 2 test. 
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Figure 1.16: (a) Random signal. (b) Evolution of the detection function applied to the original signal. (c) Evolution of the instant of 

change decision rule. 

1.5.1.4. CUSUM Algorithm 

The cumulative sum is based on the recursive calculation of the logarithm of the likelihood ratio. 

The CUSUM procedure can be considered as a sequence of repeated tests around a change point k. 

The information to be considered is then in the difference between the value of the likelihood ratio 

and its current minimum value. The decision rule is to compare this difference at a certain threshold, 

at each instant t. This algorithm is as follows [82,87]: 

At a moment j, we look for the sum of the logarithms of the likelihood ratios: 

=  =   (13) 

The sum provides a logarithm test of the likelihood ratio. The interest of this sum is that it changes 

sign on average after the moment of the change , that is mean: 

( ) ˂ 0 for t <  (14) 

( ) > 0 for t >  (15) 

So a variation of the parameter  from  to   (and vice versa) is reflected by a sign change in the 

average of the logarithm of the likelihood ratio. 

The following detection function is then calculated: 

(a) 

(b) 

(c) 
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 =  (16) 

The stop time is: 

= min {j:  h} (17) 

The instant of change is then defined by:  

k = max {j: =0} (18) 

h is the detection threshold, i.e. that a rupture is detected when the detection function reaches a fixed 

threshold h (Figure 1.17). 

The CUSUM algorithm can also be formulated in another more practical form [82]: 

                                                                  = max (0, + )      (19) 

It should be noted that this formulation of CUSUM is more efficient in computing time than the first 

one. In addition, it should be noted that this formulation of CUSUM is more efficient than the 

Neyman-Pearson algorithm since it requires a smaller memory space (indeed, one only needs to 

memorize  and values instead of all the values of ). 

It has been shown that the CUSUM algorithm is optimal in the sense that it minimizes the average 

time of detection, when the average time between two false alarms tends towards infinity [82, 88]. 

 
Figure 1.17: (a) Random signal X, (b) Evolution of the sum of the logarithms of the likelihood ratio “S”, (c) Evolution of the detection 

function “g “[45]. 

A- CUSUM in case of variance change 

It is assumed that the successive samples are independent and follow a Gaussian law of zero mean, 

and show variations in variance only. In this case =  and =   

Probability densities can be written as: 

  (20) 
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 (21) 

The expression of the likelihood logarithm is then:  

[ln  + (  - )]  (22) 

B- CUSUM when changing in an ARMA or AR model 

In the practical case (in particular in the case of biomedical signals) the samples are dependent, the 

expression of the sum of the log likelihood is then: 

S ( ,…,   )=   (23) 

Where   and  are the conditional probability densities. 

In most cases, signals can be modeled by parametric models such as ARMA or AR models. 

In the case of a signal modeled by an ARMA model (p, q), we can write that: 

  (24) 

If a variation in the signal is manifested by a variation in at least one parameter of the ARMA model, 

then we have: 

=( ,…, , ,.. , )  (25) 

=( ,…, , ,.. , )  (26) 

The conditional probability is then written [82]: 

 (27) 

The logarithm of the likelihood ratio is then: 

[Ln  +  +  ] (28) 

with    (29) 

In the case where q = 0, the model is called an autoregressive model AR of order p, and then: 

=( ,…, ) (30) 

=( ,…, ) (31) 

 (32) 

1.5.2. Ruptures Detection Methods with Unknown Parameters 

Several algorithms have been developed in many fields of application to solve the problem of the 

detection of ruptures where the parameters of change are unknown. 
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In the following sections we present some algorithms discussing their advantages and disadvantages, 

then we present the dynamic cumulative sum algorithm and its modified version to improve the 

detection performance and solve the problem of over-segmentation. 

1.5.2.1. Generalized likelihood ratio method 

This method uses the principle of maximum likelihood. The sum of the logarithms of the 

likelihood ratios between two instants n and j is given by: 

=  =  (33) 

The instant of change is estimated by k in the sense of maximum likelihood: 

 =  (34) 

If the parameters  and   are unknown, they are replaced by their estimation in the sense of 

maximum likelihood: 

 (35) and  (36) 

which ultimately leads to the following decision function: 

  h (37) 

Here, the ’sup’ notation refers to the supremum function. 

When  exceeds a threshold h fixed a priori, then  must be decided,  otherwise. Maximizations 

in the previous decision function are complicated and expensive in computation time. They are 

contradictory with the will to develop methods capable of sequentially detecting possible changes. 

Brandt [89] then proposed a simplification of the previous method. 

1.5.2.2.  Brandt method 

Brandt's algorithm is based on a statistical criterion in order to decide whether or not there is a 

rupture in stationarity in the speech signal [89, 90]. He considers that the signal is a sequence of 

stationary units then modeled each unit by an autoregressive model (AR) in order to allow the 

detection of the spectral changes. 

Brandt's algorithm is a simplified way to implement the maximum likelihood algorithm. 

The method is based on the use of a distance between the conditional probability laws before and 

after the rupture, directly resulting from the writing of the generalized likelihood ratio between the 

hypotheses  and .The compared models are then identified on three windows: test window, 

increasing window and global window (Figure 1.18). 

https://en.wikipedia.org/wiki/Supremum
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Figure 1.18: Interpretation of the Brandt method for detection. This figure shows the increased, global and test windows [91]. 

Assuming that , l ={0,1}, are scalars that represent the variances of the prediction errors, this test 

leads to the following decision function: 

 h (38) 

N is the length of the test window.  is the estimate of the variance under  (global 

window), is the estimate of the variance  under , is the estimate of the variance  

under  (test window). 

If this method avoids the maximization in n, it does not give however a very satisfactory solution of 

the real instant of change. The optimization of the estimate of k must be carried out inside the test 

window. Indeed, if the detection takes place at a time j (end of the test window), it is legitimate to 

hypothesize that the real instant of change is within the test window [j-N + 1 …. j]. So this Brandt 

test consists in detecting the presence or absence of a rupture in the analysis window, and then needs 

to refine the estimate of the change time when a rupture is detected. 

1.5.2.3. Other methods developed in case of spectral change 

We will present in this section some other spectral change detection algorithms and especially the 

algorithms developed in the case of signals modeled by an AR model [82,92]. 

A- Methods based on the prediction error in model (Whiteness of innovation) 

In this method, an AR model is identified at the beginning of the signal (in a first estimation 

window), and the successive samples are then filtered by calculating the prediction error (innovation). 

Then we calculate a cumulative sum on the square of the prediction errors to detect the change. 

We assume that the signal follows the conditional probability density  before 

change and  after this change. The following statistic is considered: 
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=  (39) 

) Ln [ ) dx - ln )] (40) 

In our case of an AR model of order p, we can prove [92] that: 

 (41) 

and then : =  (42) 

The decision rule is: 

= -   (43) 

It has been seen in [82, 92] that this type of algorithm has some limitations for the following reasons: 

- The identification of the first AR model is only at the beginning of the signal. Not all available 

samples are taken into account to identify the model. 

- This algorithm no longer has the property of detectability. Indeed, it has been demonstrated in [93] 

that the mean of  is zero under the hypothesis and that it is positive under the hypothesis  only 

if . The algorithm is therefore not able to detect changes where there is a decrease in the 

innovation variance of the two AR models. 

Algorithms that consist in identifying a single AR model have limitations. It is better to use 

algorithms that consist of identifying two AR models at each moment, such as the algorithms that 

will be presented later. 

B- Hinkley divergence test 

The distance between the probability laws before and after the rupture used in the divergence 

method consists in correcting at each instant the increment of the likelihood ratio of the algorithm 

CUSUM by its mathematical expectation under the conditional probability law before the rupture. 

The statistic is: 

 (44) 

Assuming that the analyzed signal is described by a p-order AR model, and using the models 

identified on the windows of Figure 1.19, this statistic is written analytically (case of Gaussian laws): 

 – (1+ )  – (  -1)] (45) 

Where •  is the current prediction error under  (reference window) 

           •  is the current estimate of  obtained under  (reference window) 
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           •  is the current prediction error under  (test window) 

           •  is the current estimate of  obtained under  (test window) 

 
Figure 1.19:  Definition of estimation windows in the Hinkley algorithm. Window [1..j]: reference window. Window [j-N + 1..j]: test 

window [91]. 

It has been shown in [94] that this statistic has a zero mean under the  hypothesis and positive one 

under the  hypothesis. 

According to [94, 95], to estimate the instant of change, we add at each instant, to the previous 

statistic a negative drift ν which can be interpreted as the minimum amplitude of the jump that we 

want to detect, which gives a new statistic: 

=  (46) 

For samples up to instant j, the statistic is: 

=  (47) 

The detection function is then: 

  (48) 

The constant ν must be chosen so that: 

( )  0 (49) 

( )  0 (50) 

It has been shown in [82, 94] that these algorithms using the estimation of two AR models are much 

more efficient than the other algorithms. We note in particular for this algorithm that it is used in the 

speech processing [90,96,97] and that there are two parameters to be set which are the threshold h 

and the amplitude minimal. 
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1.5.2.4. Dynamic cumulative sum (DCS) method 

A change in a signal can affect the variance, the frequency distribution or both at the same time. 

The dynamic cumulative sum method is a method built for detecting changes in signals in the case 

where the segmentation parameters are unknown, and when one wants to follow local changes in the 

signals. 

This detection approach, called the Dynamic Cumulative Sum (DCS), can be considered as a 

repeated sequence around the point of change k. It is based on the local cumulative sum of the 

likelihood ratios between two local hypotheses estimated around the current instant j. These two 

dynamic hypotheses  and  (a: "after j" and b: "before j" respectively) are estimated by using two 

windows of length N before (  and after (  instant j, as follows (Figure 1.21): 

: ={j -N,..., j -1}  follows a density probability law  

: = {j+1,..., j +N} follows a density probability law  

The parameters of the hypothesis  and  are estimated from N points before the instant j and the 

parameters of the hypothesis  and   are estimated from N points after the instant j. 

At instant j, we define DCS as the sum of the logarithm of the likelihood ratios from the beginning of 

the signal to the instant j: 

DCS(  =  (51) 

With   (52) 

 is the logarithm of the likelihood ratio to a local character in the sense that the parameters of the 

two hypotheses are re-estimated at each step in the two windows of N points around the current point 

j.  

It has been demonstrated in [98] that the DCS function reaches its maximum at the time of change k. 

An example of the evolution of DCS is shown in Figure 1.20. 
 
The detection function used to estimate the instant of change is expressed by: 

- DCS (  (53) 

The stop time is: 

= inf {j : h} (54) 

h being a fixed threshold. 
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The true instant of change is estimated by: 

k = sup {j>1 : = 0} (55) 

The previous formulation is a general formulation of DCS. In the following we will express  in the 

case of signals modeled by an AR model. 

 

 
Figure 1.20:(a) Example of signal containing 2 points of change k1 and k2. (b) Evolution of the dynamic cumulative sum around the 

points of change. (c) Evolution of the detection function. Axes of the abscissae: number of points. Y axes: arbitrary units. 

A- DCS when changing an AR model 

In the case of signals modeled by an AR model of order p, the expression of the conditional 

probability densities is: 

 estimated by: 

=   (before current time j) (56) 

 is estimated by: 

=   (after current time j) (57) 

With = + (58) 

= + (59) 

 the estimate of the variance  of the first AR model and the estimate of the variance  

of the second AR model. 

The sum of the logarithms of the likelihood ratios is therefore: 
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DCS( =  - ] (60) 

When applying DCS in the case of an AR model, it is useful to define a third window that is used to 

calculate innovations (prediction errors) [99]. 

So the windows around the current instant i are:   

Figure 1.21 shows these three windows, around the instant j. 

 
Figure 1.21:  Definition of windows for DCS in the case of signals modeled by an AR model. X axis: number of points. Y axis: 

arbitrary unit [99]. 

The use of this third window is important, because if we apply the algorithm without this window, as 

in the case of change of variance, there is a risk of increasing the rate of non-detection. Indeed, the 

same data are used to estimate the AR parameters of the "before" window and to calculate the 

innovation. The hypothesis will then be privileged with respect to . The introduction of this 

third window corrects this defect. The DCS method has been shown to be effective when applied to 

uterine EMG signals [100], and also to postural muscle signals [101,102]. 

1.5.3. Ruptures Detection using nonlinear correlation coefficient method 

Nonlinear correlation coefficient ( , introduced by [103,104], is a nonparametric nonlinear 

regression coefficient, which describes the dependency of  2 random signals  X and Y in a most 

general way without any assumption concerning the type of relationship between them.  is defined 

by the following equation: 

( ) ( ) ( )( )
( )
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where  is the linear piecewise approximation of the nonlinear regression curve. 

The estimator  ranges from 0 (Y is completely independent of X) to 1 (Y is fully determined by 

X). If the relationship between these signals is linear,  =  . 

Indeed, many studies have been based on  and have proven promising results [105, 106, 107, 108]. 
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In addition,  have been applied in [109] for the sake of events detection in uterine EMG where they 

observed that EHG signals were correlated with high  values during uterine contractions, while low 

  values were observed for baseline signals where there is not contraction. 

1.6. Importance of event parameters extraction 
Once automatic segmentation method is implemented and applied on uterine EMG, the extraction 

of parameters from the detected events (an event is detected between 2 consecutive ruptures) seems 

to be very important in order to: i) identify the contractions among all the detected events; ii) classify 

contractions at different level of week of gestation for the monitoring of pregnancy [110]. 

Many studies have been achieved in EHG signal processing extracting parameters in different 

domains in order to characterize, with different types of approaches (either monovariate, bivariate or 

multivariate): temporal parameters [41,111,112], frequency parameters [75,81,113,114,115,116], 

time-frequency parameters[99,117,118,119,120,121,122], nonlinear parameters (such as  sample 

entropy [114,123], time reversibility[124], maximal Lyapunov exponent and correlation dimension 

[114,125], detrended fluctuation analysis (DFA)[126]), linear and nonlinear correlation[73,127,128], 

or propagation parameters such as EMG propagation velocity (PV)[116]. 

1.7. Current research context 
1.7.1. Multichannel analysis 

Over decades, EHG recordings have proved their efficiency and safety in monitoring uterine 

contractions during pregnancy. Recently, the number of electrodes used to record EHG has increased 

from 2 electrodes up to 64 electrodes on the abdominal wall, as shown in Figure 1.22 [129]. In 

general, multidimensional signal processing is not only an intriguing topic in signal processing 

research, but also a subject of high practical impact, with its applications found in many scientific and 

engineering disciplines as well as in our daily lives. These signals include images, video, in addition 

to other signals such as multivariate data, sonar, and radar signals [130,131]. Indeed, 

multidimensional signal processing concerned signals of more than one variable with systems for 

processing them.  

Multichannel EHG analysis has proved to be a very promising technique that can offer a better 

insight into the progression of pregnancy and can provide a fundamental contribution to predict 

delivery [80]. Multichannel analysis is based on the simultaneous recording of electrical activity at 

different sites, and is usually used to study the propagation of electrical activity. Data acquired from 
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more than one electrode at different location can be combined together in order to improve the 

processing outcome. 

By applying multidimensional level in our study, we are looking forward to reduce the number of 

useless detected ruptures (not corresponding to a uterine contraction). Therefore, we will reduce the 

use of unneeded ruptures elimination techniques and use only fusion techniques for the useful 

detected instants from all channels. 

 
Figure 1.22: Schematic description of a grid of 64 high-density (HD) electrodes placement [128]. 

1.7.2. Signal Data Base 

Our study is based on database of 36 uterine EMG signals acquired from a grid of 16 high-density 

electrodes (8 mm in diameter) and 2 cm inter-electrode distance. These electrodes are placed on 

woman’s abdomen thanks to a specific protocol defined during the European EraSysBio+ BioMod 

UE_PTL project (https://www.erasysbio.net/index.php?index=268) in order to reduce the time needed 

for positioning the electrodes and to standardize their position [128]. In addition, 2 reference 

electrodes are placed on each of the woman’s hips while the tocodynamometer probe is placed above 

the 4x4 matrix electrode to get a reference for the contractile activity of the uterus (Figure 1.23).  

Regarding the electrode position, it has been reported that the best position of the electrodes for 

the recording of EHG is the median vertical axis of the abdomen, as it provides the highest signal-to-

noise ratio (SNR) to record electrical activity when compared to other possible positions (for 

example, lateral areas of the uterus) [79]. In the used protocol, the third row of the matrix (electrodes 

9 to 12, Figure 1.24) has to be positioned aligned with the median vertical axis of the woman’s 

abdomen. 

https://www.erasysbio.net/index.php?index=268
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The monopolar signals are recorded by using the system (Porti 32, TMSi®), then fed into an 

amplifier and sent to an A/D converter (sampling frequency 200 Hz). Then, by using an optical fiber 

and a USB cable, the signals are collected by a PC where they can be saved on disk or uploaded to an 

online database (Figure 1.23). The measurements made in Iceland, were approved by the relevant 

ethical committee (VSN 02-0006-V2). The ones made in France were approved by the regional 

ethical committee (ID-RCB 2011-A00500-41) of Amiens Hospital. 

 

 
Figure 1.23: Block Diagram of combined multichannel acquisition system with a grid of 16 electrodes, 2 references electrodes and 

tocodynamometer probe placement [128]. 

From the digitized monopolar EHG signals, vertical bipolar EHG (Vbi) signals could be then 

computed (Figure 1.24). In fact, the signals recorded by two close electrodes are subtracted from each 

other in order to generate a single bipolar signal.   

 
Figure 1.24: Electrode configuration: Monopolar in black, Bipolar in Red [80]. 
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Indeed, we can process the uterine EMG signal either from monopolar or from bipolar signals, each 

one having its own pros and cons (Figure 1.25).  

Many studies used bipolar signals, in order to remove the common mode noise (such as maternal 

electrocardiogram, maternal movements, electrode movements and power line interference) and thus 

increase easily the signal/noise ratio (SNR). But this bipolarization reduces consequently the spatial 

resolution. And when working with bivariate analysis (connectivity/correlation/similarity analysis), 

we cannot process two contiguous bipolar signals because they possess one common electrode, that 

introduces a bias in the bivariate analysis result.  

On the other hand, monopolar EHG could be more interesting to get rid of this bias and increase the 

spatial resolution when processing signals. For this reason, a specific filtering method, based on the 

combination of canonical component analysis (CCA) and of EMD (Empirical Mode Decomposition) 

has been developed in [132] [Refer to Appendix].  It efficiently filters monopolar EHGs, and thus 

permits to obtain a correct SNR for monopolar EHG suitable for a proper bivariate analysis of the 

electrical uterine activity. The SNR obtained by this method CCA-EMD is greater than with 

bipolarization and with monopolar EHG filtered by other methods [132]. 

Furthermore, for this study, a manual segmentation of contractions has been achieved by 

synchronizing the digitized monopolar and bipolar EHGs with the digitized tocographic signal 

(Figure 1.25). This latter (TOCO) is used as a reference of the mechanical activity, in order to assist 

the expert to manually identify and label the contractions [80].   
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Figure 1.25: Digitized tocodynamometer paper (Top), monopolar signals (middle), corresponding bipolar signals (bottom). The blue 

lines define the beginning and the end of the contraction according to TOCO [80]. 

1.7.3. Test and validation of the segmentation methods 

The manual segmentation presented above, will give a reference of the starting and end points of 

each labelled contraction, that will be used for the tests and validation of the automatic segmentation 

methods to be developed in this work. We used, for this purpose, the Margin validation test that has 

been previously implemented in our team [109]. The Margin validation test is based on the creation 

of two symmetric margins at the beginning and the end of each contraction identified by the expert 

(Figure 1.26). This margin is computed as the maximum between the third of the length of each 

identified contraction and 10 seconds. Then we test if the beginning and end times of each event 

detected automatically fit within these defined margins. We thus obtain 3 classes of events: totally 

validated, partially validated, and not validated contractions. 
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Figure 1.26: Validation events using Margin validation test. 

For each record, the sensitivity of the tested method will reflect the ratio of the sum of the “partially” 

and “totally” detected contractions over all the detected events, while the other events rate will reflect 

the ratio of “other detected events”, events which are not considered as contractions, over all the 

detected events. 

1.7.4. Preprocessing step 

The 16 monopolar EHG signals, acquired from the 4x4 electrode matrix, undergo a fourth-order 

[0.3-5 Hz] Butterworth filter that removes frequencies below 0.3 Hz which can be seriously affected 

by movement artifacts related, for example, to respiration or fetal and maternal movements. Then, the 

obtained monopolar signals are denoised by CCA-EMD method [132] in order to compare the results 

between filtered and not filtered signals, when applying the DCS method on uterine EMG database 

with and without wavelet decomposition. 

Since frequency distribution is considered as an essential feature for distinguishing and identifying 

events in the EHG. Indeed, as presented previously, the frequency content of contractions differs 

from the one of baseline and artifacts. The wavelet decomposition permits thus to extract the useful 

information related to the only contractions from the frequency content by looking to the appropriate 

one or more levels of details.  

The continuous wavelet transform of a signal x (t) takes the form: 

 (62) 

Each signal can be decomposed into details and approximations, and the shape of the scale function is 

defined by: 

 (63) 
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where m indicates the scales, n indicates the translation in time. 

1.8. Discussion and conclusion 

This chapter has been devoted to a review of the anatomical and physiological data needed for a 

good understanding of the uterus, this complex organ and how it progresses during pregnancy till 

delivery. We expressed the general objectives of the study to prevent premature deliveries that we 

expand its problematic. In addition, we presented the different events in the EMG signal, which may 

permit a better monitoring of pregnancy than that provided by current used techniques 

(tocodynamometer). The importance of multichannel configuration in uterine EMG signals 

acquisition to gain more spatial data was also justified.  

We also introduced and compared the different methods of detecting and identifying relevant 

events that could be applied to the EHGs and presented as well the method used to validate the 

detected events and test the segmentation methods as shown in Table 1.2. 

Based on the work started in [45], since dynamic cumulative sum has proved its efficiency in rupture 

detection, we will address in this thesis, first the application of the dynamic cumulative sum in a 

monodimensional approach, with fusion of the results obtained by processing all the multichannel 

EHGs, (monopolar then on bipolar EHGs), then when using the details after wavelet decomposition. 

Different fusion techniques of detected rupture instants will be presented. We will then develop a real 

multidimensional approach of the DCS and compare the results with the ones obtained with each 

monodimensional approach. 

Whatever the segmentation method used, we will also study a way to extract from all the detected 

events the ones that correspond to contractions, based on the characteristics of the signal. 
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Table 1.2. Comparison of the methods for the detection of changes. 

Method Name Linearity Parametric type Advantages Limitation
Neyman – Pearson 

Algorithm
Linear known parameter Instant change detection Not accurate, Instant of change near the size of sample N

If the test statistic falls below the threshold χ ² value, then 
no clear conclusion can be reached, and the null 

hypothesis is sustained (we failed to reject the null 
hypothesis), but not necessarily accepted.

chi-squared distribution breaks down if expected 
frequencies are too low

used with small sample size
conservative, i.e. that its actual rejection rate is below the 

nominal significance level [133-135]

CUSUM Algorithm Linear known parameter

smaller memory space (indeed, one 
only needs to memorize g(j-1) and 
g(j) values instead of all the values 

of  S(j).

minimizes the average time of detection

Generalized 
likelihood ratio 

method
Linear

unknown 
parameter

decision function are complicated and expensive in 
computation time

Brandth method Linear
unknown 

parameter
simplified way to implement the 
maximum likelihood algorithm

Not accurate change detection

not able to detect changes where there is a decrease in 
the innovation variance of the two AR models.

Not all available samples are taken into account to 
identify the model

Hinkley divergence 
test

Linear
unknown 

parameter
identifying two AR models at each 

moment often suffers from parameter changes

follow local changes in the signals

high sensitivity
could be implemented in online 

monitoring systems

oversegmentation in non stationary signals

could not be implemented in online monitoring systems

Dynamic 
Cumulative Sum

Linear
unknown 

parameter
oversegmentation in non stationary signals

Nonlinear 
correlation 
Coefficient

Non linear
unknown 

parameter
high sensitivity

Fisher Test Linear known parameter exact instant of change detection

Chi2 test (χ²) of the 
Pearson

Linear known parameter
Approximate instant of change 

detection

Method based on 
the prediction error 

in model (Whiteness 
of innovation)

Linear
unknown 

parameter
successive samples are then filtered 
by calculating the prediction error 
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Chapter 2: Dynamic Cumulative Sum in 
Monodimensional Study & Data Fusion 
Techniques 
 

 

 

 

 

 

 

 

 

 

2.1. Introduction 

Dynamic cumulative sum method (DCS) is considered a method that allows the detection and the 

classification of various events present in a non-stationary signal. In this study, we will apply this 

method on EHG signals acquired from multichannel electrodes configuration based on a 

monodimensional approach, associated with different fusion methods to consider the multichannel 

results.  

The subject of this chapter is thus the application of the DCS method with a monodimensional 

approach (Figure 2.0), first on monopolar EHGs with and without CCA-EMD filtering method, then 

on details obtained after wavelet decomposition, and finally on bipolar EHGs. In this context, we 

have made additional effort on different levels: DCS parameters selection, combining the DCS 

method with techniques that remove not needed rupture, and dynamic selection of details after 

wavelet decomposition. In addition, we have implemented 2 data fusion techniques of the detected 

ruptures then compared the results with the initial technique based on temporal projection of the 

detected ruptures.  
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Figure 2.0: Thesis Roadmap – Monodimensional Study 

2.2. Dynamic Cumulative Sum Theory – monodimensional study 

DCS method has the advantage of being able to detect any frequency and / or energy loss of a 

signal and to classify these different events sequentially, without going back under the null 

hypothesis  (no event) for any new detection [1]. 

The theory of dynamic cumulative sum method by using mono-channel electrodes configuration has 

been presented in section chapter 1 section 5.2.4. Thus, we present in this chapter the DCS method 

theory by using multichannel electrodes configurations. Thus, by applying the DCS method 

independently on different channels, we could detect different ruptures on each channel as shown in 

Figure 2.1 with 3 random signals. The problem is thus to detect one unique rupture point when the 

ruptures are present on more than one channel. The fusion approach will help us in solving this 

problem. 

  
Figure 2.1: Evolution of Dynamic Cumulative Sum (DCS)(middle) and its detection function (bottom) over 3-channel of random signal 

(top). 2 consecutive rectangles represent the 2 dynamic windows sliding throughout the different channels of signal. 
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2.3. Dynamic cumulative sum on monopolar uterine EMG signals 

  2.3.1. Application on monopolar EHG signals 

Dynamic cumulative sum (DCS) method is first applied on recorded monopolar EHG signals as 

previously described. Therefore, our first tests have been made on 16 monopolar EHG signals as 

shown in Figure 2.2. a, the DCS of each monopolar signal is illustrated in Figure 2.2. b while DCS 

detection function is presented in Figure 2.2.c.  

                 
Figure 2.2: Dynamic Cumulative Sum on monopolar EHG signals. (a) 16 monopolar EHGs. (b) Dynamic Cumulative Sum (DCS) of 

each monopolar signal. (c) Detection Function of each DCS. 

Figure 2.3 and 2.4 present the ruptures automatically detected in black lines and the contractions 

identified by expert in red color. The detection function threshold (h) increases from h=50 in Figure 

2.3 to h= 400 in Figure 2.4, giving a decrease in the detected ruptures. Hence, h is further selected by 

choosing the value that maximizes the true positive rate and the true negative rate of each channel. 

We can notice in these figures that monopolar EHG signals present a low SNR, preventing an easy 

visualization of the bursts of activity.  

 

(a) 

 

 

 

(b) 

 

 

 
(c) 
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Figure 2.3: Detected ruptures (black lines) by application of dynamic cumulative sum on monopolar EHG signals. Red color represents 

contractions identified by expert. DCS parameters: window (M=4000 samples) and detection function threshold (h=50). 

 
Figure 2.4: Detected ruptures (black lines) by application of dynamic cumulative sum on the same monopolar EHG signals. Red color 
represents contractions identified by expert. DCS parameters: window (M=4000 samples) and detection function threshold (h=400). 

2.3.2. Application on monopolar EHG signals after CCA-EMD filtering method 

The CCA-EMD denoising method consists of the use of a combination of Blind Source Separation 

method using Canonical Correlation Analysis (BSS_CCA) and Empirical Mode Decomposition 

(EMD) methods to denoise multi-channel monopolar EHG recordings (Figure 2.5). It has been 

proved that CCA-EMD method successfully removed noise even in presence of a low SNR (2 dB) 
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[2]. As shown in Figure 2.5 the bursts of activities in monopolar EHG signals could be easily 

visualized when applying CCA-EMD denoising method. 

 
Figure 2.5: Raw monopolar EHG signals (top), filtered signal using CCA-EMD (bottom). 

Figure 2.6 and 2.7 present the ruptures automatically detected in black lines and the contractions 

identified by expert in red color. The detection function threshold (h) increases from h=50 in Figure 

2.6 to h= 400 in Figure 2.7. Hence, h is selected by choosing the value that maximizes the true 

positive rate and the true negative rate of each channel. One can notice the difference of (h) selection 

between monopolar EHG signals and those with CCA-EMD denoising method. For h=400, we could 

identify some ruptures in the monopolar EHGs while all ruptures are detected with the same h value 

when applied on monopolar EHGs filtered using CCA-EMD. That is why selecting DCS parameters 

is an important phase before applying DCS on different type of signals.  
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Figure 2.6: Detected ruptures (black lines) by application of DCS on monopolar EHG signals filtered using CCA-EMD. Red color 
represents contractions identified by expert. DCS parameters: window (M=4000 samples) and detection function threshold (h=50). 

 
Figure 2.7: Detected ruptures (black lines) by application of DCS on monopolar EHG signals filtered using CCA-EMD. Red color 

represents contractions identified by expert. DCS parameters: window (M=4000 samples) and detection function threshold (h=400). 

Despite the advantage of CCA-EMD filtering method, one important criterion to be considered for 

real time processing is the execution time. Table 2.1 presents the duration of the signal and the 

execution time of CCA_EMD filtering for each record. For example, the duration of the record 33 is 
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71 minutes and its filtering by the CCA-EMD method lasts 27 minutes. This is not suitable for real 

time signals processing. 

Table 2.1: Duration of each record and related CCA-EMD filtering execution time. 

Record Record Duration 
(minutes)

Execution time with CCA-EMD  
denoising (minutes)

Record 1 24 9
Record  2 53 13
Record  3 63 31
Record  4 60 33
Record  5 66 32
Record  6 61 16
Record  7 64 18
Record  8 61 16
Record  9 31 9
Record  10 70 22
Record  11 37 16
Record  12 21 8
Record  13 15 7
Record  14 23 10
Record  15 67 16
Record  16 74 16
Record  17 66 26
Record  18 65 24
Record  19 85 28
Record  20 62 23
Record  21 66 18
Record  22 61 16
Record  23 61 22
Record  24 61 22
Record  25 59 18
Record  26 44 11
Record  27 8 2
Record 28 52 32
Record  29 47 13
Record  30 67 12
Record  31 66 17
Record 32 67 23
Record  33 71 27
Record  34 62 21
Record  35 65 8
Record  36 61 11
Average 55 18  

2.3.3. Application on wavelet Details of Monopolar EHGs 

The wavelet transform permits to efficiently analyze signals in which phenomena of very different 

frequencies are combined. The choice of wavelet and scaling is very important. In this study, we 
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chose symlet 5 and 5 levels of details based on the work presented in [3]. DCS is then applied on 

each detail of the 16 monopolar EHG signals as shown in Figure 2.8. The obtained ruptures (5x16= 

80 for one signal) are combined by temporal projection on the time axis of the channel with the 

highest SNR. As shown in Figure 2.9, DCS is applied on 5 details of monopolar channel 1. 

Contractions labelled by expert are red bursts while the instants of changes are represented by black 

lines. Those black lines from this channel were then combined with other black lines from remaining 

15 monopolar channels in order to combine them for later validation. 

 

Figure 2.8: Block diagram for DCS application on each detail of each monopolar EHG signal. ’Chx’ refers to monopolar channel ‘x’ 
and ‘dx’ refers to detail ’x’ after wavelet decomposition. 

 
Figure 2.9: DCS application on 5 details after wavelet decomposition of monopolar channel 1.red bursts reflects contractions labelled 

by expert. Black lines represent detected ruptures by DCS. 
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2.4. Dynamic cumulative sum on bipolar uterine EMG signals 

We then decided to apply the DCS on bipolar instead of unipolar EHGs in order to increase easily 

the signal to noise ratio (SNR) by reducing the common mode noise such as maternal 

electrocardiogram, maternal movements, electrode movements and power line interference. As 

shown in Figure 2.10, the bursts are clearer in bipolar EHG than in monopolar ones. This will ease 

the rupture detection. 

 
Figure 2.10: (Top) 16 Monopolar EHG signals derived from 4x4 matrix electrodes. (Bottom) 12 bipolar EHG derived from monopolar 

EHGs. 

2.4.1. Selection of the events 

As we can notice on the previous figures (2.6 and 2.7) many ruptures are detected outside the 

bursts of activity corresponding to the labelled contractions, or even within one burst. We have tried 

different methods to reduce these over segmentations. Furthermore, once reduced this over 

segmentation, the following step is to identify the segments between 2 consecutive ruptures that 

correspond to events (bursts of activity) or not (baseline). We thus developed a method to reduce the 

over segmentation and then to track the events. 

2.4.1.1. Reducing the over segmentation: Fisher test 

To remove the faulty ruptures from the 12 bipolar EHG signals, we applied a Fisher test algorithm 

between each 2 consecutives segments of a given bipolar channel (Figure 2.11). This Fisher test is 
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described in section 1.5.1.3. Indeed, a test decision (H) is then computed. The test decision is the null 

hypothesis if the data in segment 1 and segment 2 come from normal distributions with the same 

variance. ‘H’ becomes 0 when the test could not reject the null hypothesis with a 5% significance 

level (Figure 2.11.a). Therefore, the detected instant separating 2 consecutive segments could be 

eliminated (Figure 2.11.b). The alternative hypothesis is that they come from normal distributions 

with different variances. ‘H’ becomes then 1 as shown in Figure 2.11.a, when the test rejects the null 

hypothesis with a 5% significance level. Hence, the detected instants separating the 2 consecutive 

segments could not be eliminated (Figure.2.11. b).   

 

Figure 2.11: Computation of decision test H using fisher test between two consecutive segments separated by detected ruptures: (a) 
detected ruptures before Fisher test (b) remaining ruptures after Fisher test. 

2.4.1.2. Identifying the events: SNR technique 

After reducing the over segmentation by using the Fisher test, we obtain new ruptures for each 

bipolar signal (Figure 2.12.a), defining segments (intervals between two consecutive ruptures). Our 

event tracking technique consists of three steps: i) compute the signal to noise ratio (SNR) of each 

new segment. One constraint of this method is that the baseline should be selected at the beginning of 

the signal (Figure 2.12.a); ii), plot the obtained SNR of each channel and select the SNR peaks for 

each channel (Figure 2.12.b). Figure 2.13 illustrates the evolution of SNR of all 12 bipolar channels. 

Therefore, segments with high SNR are obtained for each channel; iii) compare the SNR values of 

the selected segment (peak of SNR) to its neighbors SNRs (after and before segments). If the SNR 

value of one neighboring segment exceeds half of the SNR value of the SNR peak, a concatenation of 

the neighboring segment with the selected segment of SNR peak is then applied (Fig.2.12.c).  

This process is repeated for each detected peak of the SNR plot. 

 

(a) (b) 
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Figure 2.12: (a) Obtained segments after applying fisher test algorithm (b) SNR computation of the obtained segments (c) Obtained 

segments after applying the SNR concatenation algorithm. 

We can notice, the improvement obtained using both elimination techniques based on Fisher and 

SNR concatenation. The number of segments is reduced from 6 to 4 using the Fisher technique 

(Figure 2.11) and from 11 to 5 using the SNR technique (Figure 2.12). This reduced number of 

obtained segments in each channel reduces the number of wrong ruptures (Figure 2.14). The detected 

ruptures are then input to one of the three fusion methods that will be discussed in the next section. 
 

(a) 
Noise 
baseline 

(b) 

(c) 
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Figure 2.13: Segments’ SNR evolution of 12 bipolar uterine EMG. 

 

Figure 2.14: DCS on bipolar EHG – monodimensional study. Contractions identified by expert are in red colors while black line 
represents the detected ruptures after reduction of the over segmentation. 
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2.4.1.3. Dynamic selection of channel used for detected ruptures fusion on other bipolar channel 

Once we obtained new segments on each bipolar channel, our target is to fuse segments of all 

bipolar channels. In this context, we should select one of these channels to be the axe line of the 

obtained new segments from all bipolar channels for fusion purpose.  

Since we have computed the SNR peak of the obtained new segments in the previous section, the 

dynamic selection of one bipolar channel is then based first on the computation, for each channel, of 

the SNR peak average, then on selecting the channel with the highest SNR peak average. For 

example, let guess that bipolar channel 1 with new obtained segments is represented in Figure 2.12.c. 

Therefore, by computing the average of SNR segment S2 and S4, we obtained the SNR peak average 

of this channel. Thus, we repeat this process for all channels for sake of selecting the highest SNR 

peak average channel. 

Table 2.2 represents the selected channel among the 12 bipolar EHG channels of each record. 

After that, the SNR method will be applied again on the ruptures obtained after fusion on this 

selected channel, before the identification of the beginning and end of events. 
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Table 2.2. Selected Bipolar channel beyond SNRmax for all database. 

Record Signal Label Selected Bipolar Channel 

Record 1 SI0018_G1 1
Record  2 F2_G1 1
Record  3 F4_G1 4
Record  4 F4_G2 4
Record  5 F4_G3 2
Record  6 F6_G1 2
Record  7 F6_G2 2
Record  8 F6_G3 3
Record  9 F6_Lab 3

Record  10 F21_Lab 8
Record  11 FR0003_P 7
Record  12 FR0007_L 10
Record  13 FR0008_L 12
Record  14 FR0010_L 5
Record  15 KvK6_G1 7
Record  16 KvK6_G2 7
Record  17 KvK7_G3 4
Record  18 KvK7_G4 7
Record  19 kvk8_G1 1
Record  20 KVK9_G2 7
Record  21 KvK10_G1 5
Record  22 KvK11_G1 9
Record  23 KvK11_G2 5
Record  24 KvK11_G3 8
Record  25 KvK11_G4 4
Record  26 w6_g5 12
Record  27 KvK23_Lab 7
Record 28 MAP_013 3
Record  29 W12_G2 4
Record  30 W15_G1 5
Record  31 W15_G2 1
Record 32 W15 G3 2
Record  33 W15_G4 1
Record  34 w11 g1 5
Record  35 kvk22g1 1
Record  36 w13_g2 12  

 2.4.2. Data Fusion method 
2.4.2.1. Fusion Using Projection-SNR 

After reduction of the over segmentation (Fisher and SNR) on each bipolar channel, we project, on 

the channel selected as described above, the instants detected from all bipolar channels as shown in 

Figure 2.15.a. Next, we apply again the SNR concatenation technique on the projected instants in 

order to reduce the over-segmentation of events on the channel with SNRmax (Figure 2.15.b and c).  
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Figure 2.15: (a) Detected ruptures indicated by black lines after fusion using temporal projection followed by SNR on time axis of 
bipolar channel with SNRmax (b) evolution of new segments SNR. (c) segments obtained after application of the SNR concatenation 

method. 

2.4.2.2. Fusion Using the Weighted Method  

For fusion of the instants of ruptures obtained from the different channels, we implemented also a 

weighted fusion method, based on the concept of weighted majority vote system [4]. This fusion 

method is based on the observation that the channel with a high weight function should have more 

influence on the decision making than the channel with a lower weight function [5]. 

Where  ; (64) 

with:     =   ; (65) 

 

 =  ; (66) 

 

A- the first phase is the computation of the channel weight  

      For each Bipolar EHG and for each Channel 

 Compute DCS 

 Compute the detection function of DCS 

 Compute the detection instants of ruptures 

 Apply the reduction of over segmentation methods using Fisher and SNR 

 Compute the   

(a) 

(b) 

(c) 
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Computing the weight function of each channel ‘i’ is made by by averaging the weight 

function  of all bipolar EHG records. 

Weight(i,j) = x  (67) 

where   =1 if  ~=0 

             =0 if   =0 

B-  the second phase represents the weighted fusion method of detected ruptures by DCS method 

after reduction of over segmentation using Fisher and SNR. 

The method consists of the following steps (Figure 2.16): 

 Compute the weight (i, j) of each sample throughout the whole channel length 

 Compute the sum of the obtained sample weights for all channels throughout the whole channel 

length. 

 Slide a window which computes the sum of the obtained weight sum. 

 Apply a threshold to keep weighted detected instants. 

 Smoothen the obtained curve by a Gaussian filter. 

 Find the peaks. 

 Reduce the over segmentation by using Fisher and SNR methods. 

 Validate the detected events by comparison to the contractions identified by expert. 

 
Figure 2.16: Fusion using the weighted method. 

2.4.2.3. Fusion Using the Automated Method  

This method represents an automatic fusion method of ruptures detected by DCS method 

reduction of the over segmentation by using Fisher and SNR (Fig.2.17). It follows the same steps as 
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described in the weighted fusion method but in spite of computing weights for each bipolar channel, 

we consider that all channels present the same influence on the decision making. 

 

Figure 2.17: Fusion using automated method. 

The method consists in the following steps: 

 Substitution of each sample by  (i reflect the channel number and j reflects the sample 

number) throughout the whole channel length by referring to detected rupture at this sample 

instant.                    

where   =1 if there is rupture at sample (i, j) 

                     =0 if no rupture at sample (i, j) 

 Computation of the sum of obtained sample   for all bipolar channels throughout the 

whole channel length. 

 Sliding of a window which computes the sum of the obtained weight sum. 

 Applying threshold to remove detected instants from small number of channels. Thus, this 

threshold is the number of channels that have more influence of detecting ruptures. 

 Smoothing of the obtained curve by a Gaussian filter. 

 Detection of peaks. 

 Reduction of the over segmentation by using Fisher and SNR methods. 

 Validation of the detected events by comparison to the contractions identified by expert. 

 



 
100 

 

2.4.3. DCS parameters selection 
2.4.3.1. Parameters selection of DCS with Projection-SNR Fusion method 

A. Detection function window and threshold selection 

A better selection of the parameters of the methods could lead to an increase in the segmentation 

performance. Two parameters affect the DCS method: the window duration and the detection 

function threshold. 

For window duration, we chose 20 seconds which represents the quarter the mean length of all the 

contractions identified by expert from our EHG database.  

For the threshold for detection, we have varied the threshold from h=100 to h=700 by increment of 

100. Our selection criterion was based on maximization of the average true positive number (TP) and 

average true negative number (TN) of all channels. 

Figure 2.18 presents an example of this process. In this Figure, other events are detected in the EHG 

signals, not associated with any labelled contraction. This is a normal situation in real time EHG 

processing.    

 
Figure 2.18: Application of DCS method after reduction of the over segmentation using Fisher test and SNR technique. Detected 

ruptures are in black, identified contractions by expert are in red. 

For each bipolar channel (ch1…ch12), the average true negative number (T.N.) and the average true 

positive number (T.P.) of obtained segments are computed while varying the detection function 

threshold ‘h’ as shown in Table 2.3 and 2.4. By comparing the average results of 12 bipolar EHGs, 
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we notice that as ‘h’ increases, the average true positive number and the true negative decrease. In 

addition, ’h’=100 presents 17 average true positive number which is the highest obtained value 

among all h values. The higher average true negative number is 22 which is also the highest obtained 

value among all h values. Therefore, h=100 is selected. 

Table 2.3: Evolution of True Positive (T.P.) segments of 12 bipolar channel beyond different detection function threshold. 
channel "ch"\Threshold "h" 100 200 300 400 500 600 700

ch1 18 16 16 16 16 17 16
ch2 17 17 18 17 17 17 17
ch3 18 15 15 12 12 12 11
ch4 18 18 18 18 18 18 18
ch5 17 17 17 16 17 18 17
ch6 17 17 16 18 15 16 16
ch7 18 18 18 18 18 18 17
ch8 18 17 18 12 18 18 17
ch9 15 14 13 12 12 12 10

ch10 17 17 18 17 17 17 17
ch11 17 18 17 16 17 17 17
ch12 15 13 12 9 8 4 4

Average 17 16 16 15 15 15 15  
Table 2.4: Evolution of True Negative (T.N.) segments of 12 bipolar channel beyond different detection function 

threshold. 

channel "ch"\Threshold "h" 100 200 300 400 500 600 700
ch1 23 21 21 18 18 18 17
ch2 23 21 21 20 21 20 17
ch3 30 23 17 15 16 12 10
ch4 29 34 29 28 26 26 26
ch5 21 19 19 19 15 18 18
ch6 21 23 23 20 16 18 16
ch7 27 26 25 25 23 21 20
ch8 27 26 27 25 24 22 22
ch9 12 11 11 9 9 9 6

ch10 19 18 18 18 18 18 18
ch11 23 23 20 18 18 18 18
ch12 14 12 9 6 5 2 1

Average 22 21 20 18 17 17 16  

B. SNR peak segment factor ’Spf’ selection 

 Another parameter needs to be optimize. This is the ratio between neighboring segment SNR value 

to the segment SNR peak value. Indeed, after obtaining segments with SNR peak we compare the 

SNDR peak segment to the SNR of its neighbor segment. If this ratio reaches a threshold, a 

concatenation of this neighbor segment with the SNR peak segment should be applied. We computed 

the True positive (T.P.) and Negative (T.N.) number average over the 12 bipolar EHGs, while 

varying this ratio (Table 2.5). The average T.P.  does not change, keeping at ‘17’ while varying the 
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ratio. Ratio of 0.1, 0.2 and 0.3 gave the highest average true negative number of 22. We thus selected 

the highest ratio value which is equal to 0.3 to avoid merging segment with baseline neighboring 

segments.  

Table 2.5: Average True positive (T.P.) and Negative (T.N.) number of 12 bipolar EHGs beyond SNR peak neighbor 
factor. 

 

channel "ch"\ SNR peak factor "Spf" 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
ch1 18 18 18 18 18 23 23 23 22 23
ch2 17 17 17 17 17 21 21 23 19 18
ch3 16 16 18 18 18 23 26 30 26 25
ch4 18 18 18 18 18 32 34 29 34 33
ch5 17 17 17 17 17 21 21 21 19 18
ch6 17 17 17 17 17 22 21 21 20 19
ch7 18 18 18 18 18 27 27 27 26 27
ch8 18 18 18 18 18 28 27 27 26 26
ch9 15 16 15 15 15 12 12 12 10 8

ch10 17 17 17 17 17 19 19 19 17 17
ch11 17 17 17 17 17 23 23 23 21 19
ch12 15 15 15 15 15 16 13 14 13 12

Average 17 17 17 17 17 22 22 22 21 20

True Positive number True Negative

 

2.4.3.2. Parameters selection of DCS method with weighted fusion method 

The first step of this fusion method consists on weights computing of each channel among all 36 

records (the whole database). Each bipolar channel weight is computed by averaging channel 

function weight of all records as shown in Table 2.6. The obtained bipolar channel weights seem to 

be logical since VB9 presents higher weight value followed consecutively by VB8, VB10, VB5 and 

VB7 which are positions near to median vertical axis.   

Three parameters affect the fusion based on weighted method: weight sum window, weight channel 

threshold and smoothing Gaussian filter window size. Our target is to choose the optimum value for 

these 3 parameters by maximization of true positive and true negative and minimization of false 

positive. To begin with, we fixed the weight channel threshold to 2 and smoothing Gaussian filter 

size to 3000 while weight sum window size is varied from 1000 to 4000 by increment of 1000 as 

shown in Table 2.7.  We can notice that window size= 2000 and window size=3000 present the same 

highest true positive and negative numbers. In order to choose, we considered the number of totally 

detected contractions (T.D.), for window size= 2000 we obtain a higher T.D.=10 contractions totally 

detected. Thus, we select 2000 as the best weight sum window size. Second, we fixed the weight sum 

window size to 2000 and smoothing Gaussian filter size to 3000 while weight channel threshold is 
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varied from 1 to 4 by increment of 1 (Table 2.8). We can see that weight channel threshold =1 and =2 

present the highest true positive and true negative numbers. In order to choose, we considered the 

False positive number (other events). Following the obtained results, the weight channel threshold is 

set to 2 since it presents the highest true positive number ’18’, the highest true negative number ‘22’ 

and the lowest False positive number ‘4’.  

Table 2.6: Weighted majority vote detection function of each bipolar uterine EMG channel for all records. 

Record
Signal 
Label

Labeled 
Contractions Vb1 Vb2 Vb3 Vb4 Vb5 Vb6 Vb7 Vb8 Vb9 Vb10 Vb11 Vb12

Record 1 SI0018_G1 7 0.875 1 0.571 1 1 0.857 1 1 0.875 1 0.875 0.857
Record  2 F2_G1 5 0.263 0.357 0.246 0.385 0.356 0.5 0.417 0.625 0.5 0.556 0.32 0.385
Record  3 F4_G1 15 0.938 0.882 0.789 0.75 0.938 0.789 0.882 0.882 0.938 0.933 1 0.54
Record  4 F4_G2 8 0.286 0.421 0.8 0.296 0.381 0.348 0.381 0.348 0.381 0.471 0.348 0.333
Record  5 F4_G3 16 0.533 0.444 0.439 0.64 0.762 0.727 0.533 0.667 0.727 0.593 0.528 0.621
Record  6 F6_G1 8 0.258 0.296 0.381 0.4 0.364 0.286 0.5 0.571 0.32 0.348 0.32 0.383
Record  7 F6_G2 6 0.207 0.222 0.231 0.429 0.375 0.429 0.24 0.24 0.273 0.316 0.273 0.286
Record  8 F6_G3 7 0.318 0.292 0.25 0.269 0.318 0.35 0.636 0.333 0.538 0.304 0.368 0.161
Record  9 F6_Lab 5 0.556 0.556 0.385 0.333 0.556 0.455 0.5 0.625 0.5 0.556 0.455 0.5
Record  10 F21_Lab 13 1 1 1 1 1 0.929 0.867 0.929 1 1 1 1
Record  11 FR0003_P 5 0.556 0.556 0.2 0.5 0.5 0.133 0.455 0.291 0.5 0.5 0.257 0.32
Record  12 FR0007_L 5 1 1 0.8 1 0.833 0.833 0.833 0.833 0.833 1 1 0.833
Record  13 FR0008_L 4 0.563 0.75 0.75 0.75 0.75 0.75 0.563 0.5 0.75 0.563 0.5 1
Record  14 FR0010_L 8 0.667 1 0.667 0.889 0.8 0.8 0.8 1 1 0.727 0.8 0.8
Record  15 KvK6_G1 18 0.75 0.749 0.552 0.75 0.783 0.79 0.783 0.818 0.73 0.803 0.79 0.677
Record  16 KvK6_G2 47 0.898 0.677 0.753 0.922 0.887 0.787 0.887 0.887 0.837 0.841 0.799 0.898
Record  17 KvK7_G3 12 0.545 0.462 0.5 0.387 0.48 0.522 0.545 0.571 0.571 0.545 0.706 0.593
Record  18 KvK7_G4 13 0.591 0.419 0.464 0.464 0.5 0.591 0.406 0.481 0.665 0.396 0.52 0.366
Record  19 kvk8_G1 8 1 1 0.8 1 0.889 0.889 0.8 0.889 0.8 0.727 0.889 0.889
Record  20 KVK9_G2 9 0.374 0.692 0.563 0.692 0.563 0.45 0.5 0.474 0.563 0.474 0.474 0.395
Record  21 KvK10_G1 4 0.444 1 0.5 0.364 0.571 0.667 0.571 0.8 1 0.571 0.8 0.8
Record  22 KvK11_G1 11 0.478 0.688 0.688 0.5 0.733 0.647 0.733 0.688 0.524 0.478 0.688 0.478
Record  23 KvK11_G2 13 0.5 0.406 0.448 0.406 0.406 0.406 0.5 0.565 0.542 0.443 0.5 0.443
Record  24 KvK11_G3 22 0.566 0.771 0.88 0.815 0.591 0.591 0.88 0.786 0.872 0.917 0.684 0.846
Record  25 KvK11_G4 24 0.747 0.735 0.816 0.668 0.799 0.918 0.614 0.882 0.875 0.794 0.681 0.675
Record  26 w6_g5 2 0.167 0.286 0.222 0.25 0.25 0.167 0.222 0.25 0.286 0.2 0.222 0.222
Record  27 KvK23_Lab 4 1 1 1 1 0.8 1 1 0.8 1 1 1 0.8
Record 28 MAP_013 5 0.457 0.225 0.385 0.455 0.32 0.32 0.455 0.133 0.556 0.257 0.225 0.291
Record  29 W12_G2 8 1 0.75 0.889 0.8 0.727 0.727 0.889 0.727 0.8 0.727 0.727 0.375
Record  30 W15_G1 18 0.783 0.692 0.75 0.643 0.72 0.783 0.818 0.818 0.749 0.783 0.765 0.625
Record  31 W15_G2 12 0.403 0.5 0.463 0.5 0.5 0.545 0.56 0.63 0.667 0.6 0.614 0.72
Record 32 W15 G3 14 0.519 0.452 0.609 0.483 0.604 0.604 0.49 0.643 0.514 0.49 0.514 0.576
Record  33 W15_G4 15 0.938 0.714 0.714 0.833 0.75 0.726 0.75 0.688 0.817 0.882 0.626 0.688
Record  34 w11 g1 3 0.5 0.5 0.375 0.429 0.5 0.75 0.375 0.6 0.6 1 0.75 0.5
Record  35 kvk22g1 8 0.444 0.533 0.571 0.533 0.533 0.571 0.5 0.667 0.667 0.615 0.615 0.5
Record  36 w13_g2 7 0.343 0.368 0.5 0.467 0.583 0.636 0.467 0.468 0.7 0.438 0.538 0.389

0.596 0.622 0.582 0.611 0.623 0.619 0.621 0.642 0.680 0.635 0.616 0.577Average  
Table 2.7: Weight sum window size selection. T.D.: contractions totally detected, P.D.: contractions partially detected, 

T.P.: True Positive rate, T.N.: True Negative Rate. 

Weight Sum Window
Contractions 

by expert
detected events 

by DCS T.D. P.D. TD.+P.D.
other 
events

not 
detected T.P. T.N.

1000 18 20 12 5 17 3 1 17 21

2000 18 21 10 8 18 4 0 18 22

3000 18 21 5 13 18 5 0 18 22

4000 18 19 4 14 18 3 0 18 20  
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Finally, we fix the weight sum window to 2000 and the weight channel threshold to 2 and we vary 

the Gaussian window size from 1500 to 3500 by increment of 500 (Table 2.9). We obtained, for the 

smoothing Gaussian window size =1500, the lowest true negative and true positive number while 

other smoothing Gaussian window size present same T.P. and T.N. The window size=2500 is thus 

selected for the Gaussian filter since it presents the highest number of totally detected contractions 

’10’. Therefore, weight sum window size= 2000, weight channel threshold =2 and Gaussian filter 

window size=2500 are fixed for the remaining study. 

 Table 2.8: Weight channel threshold selection. T.D.: contractions totally detected, P.D.: contractions partially detected, 
T.P.: True Positive rate, T.N.: True Negative Rate. 

Weight channel 
threshold

Contractions 
by expert

detected events 
by DCS

T.D. P.D. TD.+P.D. other 
events

not 
detected

T.P. T.N.

1 18 23 10 8 18 6 0 18 22
2 18 21 10 8 18 4 0 18 22
3 18 21 11 7 18 4 0 18 21
4 18 16 8 10 18 1 0 17 17  

Table 2.9: Smoothing Gaussian filter size selection. T.D.: contractions totally detected, P.D.: contractions partially 
detected, T.P.: True Positive rate, T.N.: True Negative Rate. 

Smoothing Gaussian 
window size

Contractions 
by expert

detected events 
by DCS T.D. P.D. TD.+P.D.

other 
events

not 
detected T.P. T.N.

1500 18 22 12 5 17 4 1 17 21
2000 18 21 9 9 18 4 0 18 22
2500 18 21 10 8 18 4 0 18 22
3000 18 21 10 8 18 4 0 18 22
3500 18 21 9 9 18 4 0 18 22  

2.4.3.3. Parameters selection of DCS method with Automatic fusion method 
This fusion technique based on automated method depends on 3 parameters: detected ruptures sum 

window size, bipolar channel threshold and smoothing Gaussian filter size. We have fixed 2 

parameters based on the previous obtained results using fusion based on weighted method: detected 

ruptures sum window size= 2000 and Gaussian filter size= 2500 and varied the bipolar channel 

threshold from 1 to 12 (Table 2.10). Our target is to get the optimum of this parameter value by 

maximization of the true positive and minimization of the false positive. Threshold values of 3 and 4 

seems to have the highest true positive number ‘18’, lowest other event number (false positive number) 

=4 while keeping true negative number higher than the detected events’21’. Therefore, we have 

selected a value of 4 for this threshold in order to increase the bipolar channel detection performance.  
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Table 2.10: Bipolar channel threshold selection with Fusion based on automated method. T.D.: contractions totally 
detected, P.D.: contractions partially detected, T.P.: True Positive rate, T.N.: True Negative Rate. 

Bipolar channel 
threshold

Contractions by 
expert

Detected events 
by DCS T.D. P.D. TD.+P.D. other 

events
not 

detected T.P. T.N.

1 18 26 8 10 18 9 0 18 27
2 18 23 9 9 18 6 0 18 24
3 18 21 10 8 18 4 0 18 22
4 18 21 10 8 18 4 0 18 22
5 18 21 9 8 17 4 1 17 22
6 18 18 7 10 17 2 1 17 19
7 18 16 5 11 16 1 2 16 17
8 18 12 4 12 16 1 2 16 13
9 18 10 4 10 14 0 4 14 11

10 18 5 2 8 10 0 8 10 6
11 18 2 0 16 16 0 2 16 3
12 18 0 0 0 0 0 18 0 0  

2.4.4. Application on Details Bipolar EHGs 

The power spectral density (PSD) of the bipolar EHG ranges between 0.2 and 3 Hz as shown in 

Figure 2.19.a. The wavelet transform permits to decompose each EHG in approximations “A” and 

details “D” (Figure 2.19.b).   

                    

                     (a)                                                                                               (b) 

Figure 2.19: (a) Power Spectral Density of bipolar uterine EMG (b) Wavelet decomposition in Approximation “A” and Details “D” 
beyond frequency components. 

2.4.4.1. Wavelet Details Selection using Kullback Leibler Distance  

The choice of the analyzing wavelet and number of decomposition levels is a critical problem in 

wavelet use. To address this issue of interest, we have referred to [3], and selected symlet 5, while we 

defined a dynamic selection of details for our analysis.  

  Kullback Leibler Distance 

For this dynamic selection of details signals we used the Kullback Leibler distance (KLD) which 

is based on the likelihood principle [6]. KLD is considered as a measure of goodness of fit of a 
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statistical model. The estimation of KLD,  between two probability density functions of sequence i 

and j could be simplified by:  

                                               (68)  

                                                                            (69) 

where , the estimate of the scale parameter α of generalized Gaussian density of the sequence x with 

length L is given by:                                     (70)  

The theoretical distribution estimated by histogram of  follows an exponential distribution, which is 

a special case of the gamma distribution, depending only on one parameter λ. Its probability density 

function is defined as: 

                                           (71) 

Experimental and theoretical distribution of  are represented in Figure 2.20.a and Figure 2.21.a. We 

compare both distributions using the Kolmogorov-Smirnov (K-S) test [7]. The K-S statistic,  is 

the maximum difference between the theoretical and the experimental cumulative distributions 

(Figure 2.20.b and Figure 2.21.b). Therefore, we define two hypotheses as:  

HK=0 if  follows an exponential distribution as shown in Figure 2.20.  

HK=1 if  does not follow the exponential distribution as shown in Figure 2.21. 
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Figure 2.20: (a) Histogram of normalized Kullback Leibler distance (b) cumulative sum of normalized Kullback Leibler distance of 
detail with HK=0. 

(a) (b) 
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Figure 2.21: (a) histogram of normalized Kullback Leibler distance (b) cumulative sum of normalized Kullback Leibler distance of 
detail with HK=1. 

By computing the symlet 5 decomposition of each bipolar EHG channel with 9 levels, we can 

compute 12 hypothesis (HK) using Kolmogorov-Smirnov (K-S) test between experimental and 

theoretical distribution of Kullback Leibler distance (  ) for each detail.  

Once we obtain the decision test HK for each bipolar channel detail, the sum of all HK of the same 

detail level for all the bipolar channels and each recording has been computed. Thus, we compute the 

average of those hypothesis sum value (Table 2.11). If the sum average of all records is not equal to 

12, hence this detail was rejected and kept otherwise (Table 2.11). Indeed, the value ‘12’ is selected 

on the basis of event presence into each similar detail of almost all 12 bipolar channels of our 

database records. 

Based on obtained average hypothesis results, details 6, 7, 8, 9 are selected since they present the 

highest average hypothesis sum ‘12’, which means that there is event or rupture in all 12 selected 

details from all bipolar channels as average.    

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Table 2.11: Sum of hypothesis results (HK) with Kolmogorov-Smirnov (K-S) test between Experimental and theoretical 
distribution of Kullback Leibler distance (  ) of each detail after symlet 5 decomposition of uterine EMG records.  

Record Signal Label d1 d2 d3 d4 d5 d6 d7 d8 d9
Record 1 SI0018_G1 1 2 3 3 12 12 12 12 12
Record  2 F2_G1 1 2 9 9 11 11 11 12 12
Record  3 F4_G1 2 5 7 7 10 12 12 12 12
Record  4 F4_G2 0 2 8 8 11 11 12 12 11
Record  5 F4_G3 0 1 9 9 8 12 12 12 12
Record  6 F6_G1 0 4 6 10 10 11 12 12 12
Record  7 F6_G2 6 4 9 9 12 12 12 12 12
Record  8 F6_G3 0 2 10 10 10 11 11 12 11
Record  9 F6_Lab 2 4 9 12 12 12 12 12 11
Record  10 F21_Lab 10 3 7 7 11 11 12 12 12
Record  11 FR0003_P 1 1 10 11 11 11 11 12 12
Record  12 FR0007_L 0 1 10 11 9 12 12 12 11
Record  13 FR0008_L 0 1 8 8 9 11 12 12 11
Record  14 FR0010_L 0 0 9 11 11 12 12 12 12
Record  15 KvK6_G1 1 4 8 10 11 12 12 12 12
Record  16 KvK6_G2 1 3 4 4 11 12 12 12 12
Record  17 KvK7_G3 1 3 8 8 11 11 12 12 12
Record  18 KvK7_G4 10 5 9 11 8 11 12 12 12
Record  19 kvk8_G1 4 5 8 10 11 12 12 12 12
Record  20 KVK9_G2 6 0 6 6 10 11 11 12 12
Record  21 KvK10_G1 0 3 6 6 10 12 11 12 12
Record  22 KvK11_G1 1 2 9 9 12 11 12 12 12
Record  23 KvK11_G2 0 0 9 9 11 12 11 12 12
Record  24 KvK11_G3 0 6 3 3 9 12 12 12 12
Record  25 KvK11_G4 0 1 8 8 11 12 12 12 12
Record  26 w6_g5 2 1 7 7 10 12 12 12 12
Record  27 KvK23_Lab 0 2 8 8 11 11 12 12 12
Record 28 MAP_013 0 3 10 10 12 12 12 12 12
Record  29 W12_G2 3 1 6 6 11 12 12 12 12
Record  30 W15_G1 8 4 12 12 9 12 12 12 12
Record  31 W15_G2 0 6 9 9 9 12 12 12 12
Record 32 W15 G3 11 5 7 7 10 11 12 12 12
Record  33 W15_G4 0 1 10 10 10 12 12 12 12
Record  34 w11 g1 0 0 10 10 12 11 12 12 12
Record  35 kvk22g1 0 9 10 10 10 11 12 12 12
Record  36 w13_g2 2 5 11 11 12 12 12 12 12

2 3 8 9 11 12 12 12 12Average  
 

2.4.4.2. DCS Detection function threshold selection applied on details after wavelet decomposition 

In order to test the DCS with reduction of over segmentation by using Fisher and SNR, on the 

selected details (D6, D7, D8 and D9) we obtain 48 signals to be tested for each record. Since a DCS 

window size of 4000 samples has been selected in our study, we have to select the function detection 

threshold ‘h’ by maximization of true positive and true negative for each EHG details. When the 

detection threshold ’h’ increases, the number of detected ruptures decreases as shown for h=300 

(Figure 2.22) and h=800 (Figure 2.23). We have tested threshold values from 100 to 500 by 

increment of 100. Following the obtained results presented in Table 2.12, h=300 is selected for the 

remaining database testing.  
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Figure 2.22: Detected ruptures after DCS application on details 6,7,8 and 9 of bipolar channel 7 with DCS function threshold=300. 

 
Figure 2.23: Detected ruptures after DCS application on details 6,7,8 and 9 of bipolar channel 7 with DCS function threshold=800. 

Table 2.12: True positive and negative average of detected ruptures using DCS on details d6, d7, d8 and d9 of VB7 
beyond detection function threshold ‘h’. 

h True positive 
Average

True Negative 
Average

100 17 19
200 17 20
300 18 21
400 17 16
500 15 14  
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2.5. Results 
2.5.1. Results after applying DCS method on monopolar EHGs 

We first applied the DCS on monopolar EHG (with or without CCA-EMD denoising) then on 

bipolar EHGs and finally on details obtained by wavelet decomposition of the monopolar and bipolar 

signals. Sensitivity and other events rate are computed after applying the margin validation test 

explained in chapter 1 section 1.7.3. The obtained results, presented in Table 2.13, show a high 

sensitivity, 94.01%, using DCS on monopolar EHG records with CCA_EMD denoising method, 

whilst the lowest one (83.3 %) is obtained on details of bipolar signals which present also the highest 

presence of other detected events (730) with 62.8 % other events rate. The lowest other events rate is 

associated to monopolar EHGs without CCA-EMD denoising method with (50.31%), that is 534 

other events that are not related to any contraction labeled by the expert. 

Table 2.13: DCS method assessment on monopolar EHG records with and without CCA-EMD and on details after 
symlet5 decomposition by computing sensitivity, other events number and rate.   

Monopolar EHG

Record Sensitivity 
%

Other 
Events %

other events' 
number

Sensitivity 
%

Other 
Events %

other events' 
number

Sensitivity 
%

Other 
events %

other events' 
number

Record 1 100.0 42.1 8 87.5 33.3 3 87.5 58.8 10
Record  2 100.0 75.8 25 100.0 57.1 8 60.0 70.0 7
Record  3 100.0 60.0 21 93.3 61.5 24 93.3 62.2 23
Record  4 100.0 50.0 9 100.0 68.3 28 87.5 74.1 20
Record  5 100.0 38.5 15 100.0 52.3 23 68.8 35.3 6
Record  6 87.5 46.7 7 100.0 66.7 20 87.5 12.5 1
Record  7 100.0 68.4 26 100.0 58.8 10 83.3 79.2 19
Record  8 100.0 59.4 19 100.0 64.0 16 71.4 16.7 1
Record  9 100.0 50.0 8 100.0 57.1 8 100.0 54.5 6
Record  10 100.0 71.9 46 100.0 68.2 45 100.0 83.5 66
Record  11 100.0 74.3 26 100.0 69.2 18 100.0 87.2 41
Record  12 100.0 52.6 10 100.0 53.8 7 100.0 80.8 21
Record  13 100.0 50.0 2 100.0 20.0 1 100.0 76.5 13
Record  14 100.0 40.9 9 87.5 38.5 5 100.0 65.2 15
Record  15 100.0 40.6 13 94.4 48.6 18 66.7 50.0 12
Record  16 95.7 8.7 4 91.5 12.0 6 70.2 29.8 14
Record  17 100.0 64.3 36 100.0 70.8 34 100.0 78.9 45
Record  18 100.0 45.2 19 100.0 51.4 19 100.0 75.0 39
Record  19 100.0 75.0 42 100.0 74.4 32 100.0 86.4 51
Record  20 100.0 70.6 36 100.0 62.1 18 77.8 74.1 20
Record  21 100.0 65.0 13 100.0 78.3 18 100.0 96.0 48
Record  22 72.7 53.8 7 72.7 75.0 24 63.6 75.9 22
Record  23 92.3 67.4 29 76.9 69.7 23 76.9 76.2 32
Record  24 95.7 36.1 13 95.7 47.6 20 87.0 41.2 14
Record  25 76.0 16.7 3 92.0 32.4 11 68.0 34.6 9
Record  26 100.0 72.7 8 100.0 87.0 20 50.0 91.7 11
Record  27 100.0 42.9 3 100.0 20.0 1 75.0 57.1 4
Record 28 75.0 87.2 41 75.0 86.0 37 100.0 52.9 9
Record  29 50.0 65.0 13 80.0 50.0 5 60.0 66.7 12
Record  30 83.3 0.0 0 94.4 34.4 11 77.8 0.0 0
Record  31 91.7 20.0 2 100.0 43.3 13 100.0 76.0 38
Record 32 68.8 0.0 0 93.8 36.7 11 62.5 33.3 5
Record  33 88.9 0.0 0 94.4 11.5 3 88.9 65.2 30
Record  34 100.0 85.0 17 100.0 82.4 28 100.0 94.3 50
Record  35 25.0 66.7 2 75.0 71.4 5 75.0 72.7 8
Record  36 80.0 50.0 2 80.0 75.0 12 60.0 72.7 8
Average 91.18 50.31 94.01 55.25 83.3 62.8

Sum 534 585 730

with symlet 5 transformwith CCA_EMDwithout CCA_EMD
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2.5.2. Results of DCS on bipolar EHG with fusion using Temporal Projection-SNR method  

Table 2.14, presents the results of the method describe previously when applied to the 36 records. 

For each record, the third column indicates the number of contractions verified by expert, the fourth 

column contains the number of detected events by our methods, the fifth and sixth, seventh and 

eighth column classify detected events either totally, partially, totally & partially contractions 

(P.D.&T.D.) or other events in the eighth column. The 2 last columns contain sensitivity and other 

event rate for each record. 

Sensitivity and other event rate are hence computed. The average of sensitivity is 100% and the other 

events rate average is 49.33% with 469 other events that are not related to any contractions labeled by 

the expert.  

Table 2.14: Sensitivity and other events’ rate obtained using Margin validation test of detected events using temporal 
projection with SNR method after DCS with Fisher and SNR eliminating techniques on bipolar EHGs records. 

Record Signal Label Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Not detected 
contractions

Sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 8 5 2 7 0 0 100.00 0.00
Record  2 F2_G1 5 32 2 3 5 21 0 100.00 80.77
Record  3 F4_G1 15 30 2 13 15 8 0 100.00 34.78
Record  4 F4_G2 8 42 4 4 8 29 0 100.00 78.38
Record  5 F4_G3 16 40 7 9 16 22 0 100.00 57.89
Record  6 F6_G1 8 38 5 3 8 27 0 100.00 77.14
Record  7 F6_G2 6 42 3 3 6 31 0 100.00 83.78
Record  8 F6_G3 7 41 4 3 7 30 0 100.00 81.08
Record  9 F6_Lab 5 18 3 2 5 11 0 100.00 68.75
Record  10 F21_Lab 13 16 11 2 13 2 0 100.00 13.33
Record  11 FR0003_P 5 17 3 2 5 11 0 100.00 68.75
Record  12 FR0007_L 5 7 2 3 5 0 0 100.00 0.00
Record  13 FR0008_L 4 4 1 3 4 0 0 100.00 0.00
Record  14 FR0010_L 8 12 1 7 8 2 0 100.00 20.00
Record  15 KvK6_G1 18 29 5 13 18 11 0 100.00 37.93
Record  16 KvK6_G2 47 53 21 26 47 6 0 100.00 11.32
Record  17 KvK7_G3 12 36 5 7 12 15 0 100.00 55.56
Record  18 KvK7_G4 13 45 5 8 13 28 0 100.00 68.29
Record  19 kvk8_G1 8 11 7 1 8 3 0 100.00 27.27
Record  20 KVK9_G2 9 29 4 5 9 17 0 100.00 65.38
Record  21 KvK10_G1 4 19 1 3 4 10 0 100.00 71.43
Record  22 KvK11_G1 11 27 4 7 11 16 0 100.00 59.26
Record  23 KvK11_G2 13 36 6 7 13 22 0 100.00 62.86
Record  24 KvK11_G3 22 32 8 14 22 8 0 100.00 26.67
Record  25 KvK11_G4 24 51 11 13 24 19 0 100.00 44.19
Record  26 w6_g5 2 15 0 2 2 10 0 100.00 83.33
Record  27 KvK23_Lab 4 4 2 2 4 0 0 100.00 0.00
Record 28 MAP_013 5 17 3 2 5 9 0 100.00 64.29
Record  29 W12_G2 8 16 6 2 8 7 0 100.00 46.67
Record  30 W15_G1 18 30 9 9 18 11 0 100.00 37.93
Record  31 W15_G2 12 31 2 10 12 12 0 100.00 50.00
Record 32 W15 G3 14 39 8 6 14 24 0 100.00 63.16
Record  33 W15_G4 15 23 13 2 15 8 0 100.00 34.78
Record  34 w11 g1 3 12 0 3 3 5 0 100.00 62.50
Record  35 kvk22g1 8 30 3 5 8 15 0 100.00 65.22
Record  36 w13_g2 7 30 2 5 7 19 0 100.00 73.08

389 962 178 211 389 469 0

100.00 49.33

Sum

Average  
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2.5.3. Results of DCS method on bipolar EHG with fusion using weighted method 

An example of the application of this method is presented Figure 2.24. We first compute the sum of 

weights of all EHG records samples (Figure 2.24.a), then by sliding a window along this record 

length we compute the sum of above computed weights inside this window (size=2000) (Figure 

2.24.b) after multiplication by the channel weight to unify the ruptures detected by all bipolar 

channels with different time laps. The obtained values are compared to a threshold=2 (Figure 2.24.c) 

to remove ruptures which are not acquired from at least 3 to 4 channels. The maximum of channel 

weight is 0.68 (Table 2). After that, we smooth the remaining ruptures using a Gaussian filter with 

window size=2500 (Figure 2.24.d), which is a very important phase to identify the peaks of obtained 

curves (Figure 2.24.e). Those peaks are projected on the higher SNR axis channel. Thus, they are 

subject to SNR technique to identify events (Figure 2.25). 

 
Figure 2.24: Detected ruptures Fusion using weighted method. (a) weight sum of each channel sample (b) sum of obtained weight 
using window (c) Application of threshold to remove ruptures obtained from lower number of channels (d) smoothing the obtained sum 
weight (e) projection of computed peaks on axis time of bipolar channel with SNRmax. 

(a) 

(b) 

(c) 

(d) 

(e) 
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In Figure 2.25, where the red bursts are the contractions labeled by expert and the gray boxes 

represent the detected events, all contractions are well detected with the detection of 4 other events. 

 
Figure 2.25: Events’ Tracking using SNR after applying fusion based on weighted method. Red bursts are contractions identified by 

expert, gray box indicates detected events by applying DCS with elimination techniques. 

     From all the bipolar records, the results obtained (Table 2.15), are encouraging since we obtain 

97.74% as sensitivity average and 22.82 % as other event rate average, with 118 other events were 

not related to a contraction labeled by the expert. 
Table 2.15: sensitivity and other events’ rate obtained using margin validation test of detected events using weighted 

fusion method after DCS with Fisher and SNR eliminating techniques application on bipolar EHGs records. 

Record Signal Label
Labeled 

Contractions
Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other 
events %

Record 1 SI0018_G1 7 6 4 3 7 0 0 100.00 0.00
Record  2 F2_G1 5 8 2 3 5 1 0 100.00 16.67
Record  3 F4_G1 15 19 4 11 15 1 0 100.00 6.25
Record  4 F4_G2 8 15 2 6 8 6 0 100.00 42.86
Record  5 F4_G3 16 21 8 7 15 6 1 93.75 28.57
Record  6 F6_G1 8 18 2 5 7 11 1 87.50 61.11
Record  7 F6_G2 6 17 3 3 6 9 0 100.00 60.00
Record  8 F6_G3 7 20 3 4 7 9 0 100.00 56.25
Record  9 F6_Lab 5 9 3 2 5 3 0 100.00 37.50

Record  10 F21_Lab 13 13 8 5 13 0 0 100.00 0.00
Record  11 FR0003_P 5 8 2 3 5 2 0 100.00 28.57
Record  12 FR0007_L 5 6 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 3 0 3 3 0 1 75.00 0.00
Record  14 FR0010_L 8 7 0 7 7 0 1 87.50 0.00
Record  15 KvK6_G1 18 21 10 8 18 4 0 100.00 18.18
Record  16 KvK6_G2 47 48 25 21 46 3 1 97.87 6.12
Record  17 KvK7_G3 12 23 6 6 12 9 0 100.00 42.86
Record  18 KvK7_G4 13 18 6 6 12 6 1 92.31 33.33
Record  19 kvk8_G1 8 9 7 1 8 1 0 100.00 11.11
Record  20 KVK9_G2 9 16 7 2 9 6 0 100.00 40.00
Record  21 KvK10_G1 4 8 1 3 4 1 0 100.00 20.00
Record  22 KvK11_G1 11 16 4 7 11 4 0 100.00 26.67
Record  23 KvK11_G2 13 23 4 9 13 11 0 100.00 45.83
Record  24 KvK11_G3 22 19 5 16 21 1 1 95.45 4.55
Record  25 KvK11_G4 24 27 9 14 23 2 1 95.83 8.00
Record  26 w6_g5 2 10 1 1 2 5 0 100.00 71.43
Record  27 KvK23_Lab 4 4 3 1 4 0 0 100.00 0.00
Record 28 MAP_013 5 7 0 5 5 2 0 100.00 28.57
Record  29 W12_G2 8 8 6 2 8 0 0 100.00 0.00
Record  30 W15_G1 18 23 8 10 18 4 0 100.00 18.18
Record  31 W15_G2 12 18 3 9 12 3 0 100.00 20.00
Record 32 W15 G3 14 18 9 5 14 1 0 100.00 6.67
Record  33 W15_G4 15 15 12 2 14 0 1 93.33 0.00
Record  34 w11 g1 3 8 1 2 3 1 0 100.00 25.00
Record  35 kvk22g1 8 13 4 4 8 3 0 100.00 27.27
Record  36 w13_g2 7 13 3 4 7 3 0 100.00 30.00

389 535 176 204 380 118 9
97.74 22.82Average

Sum
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2.5.4. Results after applying DCS method on bipolar EHG with fusion using automatic method 

 This automatic Fusion method is not based on prior computing of channel weight. The same method 

as the one presented just above, except for the multiplication by the weights, is directly applied on 

detected ruptures (Figure 2.26 a-e). 

 
Figure 2.26: Detected ruptures Fusion using automated method. (a)  sum of  each channel sample (b) sum of obtained  using 

window (c) Application of bipolar channel threshold to remove detected  obtained from lower number of channels (d) smoothing the 
obtained  sum (e) projection of found peaks on the axis time of bipolar channel with SNRmax. 

In Figure 2.27, where the red bursts are the contractions labeled by expert and the gray boxes 

represent the detected events, all contractions are well detected with the detection of 4 other event. 

One could notice the similarity with Figure 2.25.  

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 2.27: Events’ tracking by SNR, after application of detected ruptures fusion using automated method. Red bursts are 

contractions identified by expert, gray box indicates detected events by applying DCS with elimination techniques. 

The obtained results (Table 2.16), are encouraging also since we obtain same sensitivity average 

97.74% as previously with a slightly lower other event rate average 22.62%, with 116 other events 

not related to contraction labeled by the expert. 

Table 2.16: Sensitivity and other events’ rate obtained using Margin validation test of detected events using automated 
fusion method after DCS with Fisher and SNR eliminating techniques application on bipolar EHGs records. 

Record Signal 
Label

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 6 4 3 7 0 0 100.00 0.00
Record  2 F2_G1 5 8 2 3 5 1 0 100.00 16.67
Record  3 F4_G1 15 19 4 11 15 1 0 100.00 6.25
Record  4 F4_G2 8 15 2 6 8 6 0 100.00 42.86
Record  5 F4_G3 16 21 8 7 15 6 1 93.75 28.57
Record  6 F6_G1 8 18 2 5 7 11 1 87.50 61.11
Record  7 F6_G2 6 17 3 3 6 9 0 100.00 60.00
Record  8 F6_G3 7 20 3 4 7 8 0 100.00 53.33
Record  9 F6_Lab 5 9 3 2 5 3 0 100.00 37.50
Record  10 F21_Lab 13 13 8 5 13 0 0 100.00 0.00
Record  11 FR0003_P 5 8 2 3 5 2 0 100.00 28.57
Record  12 FR0007_L 5 6 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 3 0 3 3 0 1 75.00 0.00
Record  14 FR0010_L 8 7 0 7 7 0 1 87.50 0.00
Record  15 KvK6_G1 18 21 10 8 18 4 0 100.00 18.18
Record  16 KvK6_G2 47 47 25 21 46 3 1 97.87 6.12
Record  17 KvK7_G3 12 23 6 6 12 9 0 100.00 42.86
Record  18 KvK7_G4 13 18 6 6 12 6 1 92.31 33.33
Record  19 kvk8_G1 8 9 7 1 8 1 0 100.00 11.11
Record  20 KVK9_G2 9 15 6 3 9 5 0 100.00 35.71
Record  21 KvK10_G1 4 8 1 3 4 1 0 100.00 20.00
Record  22 KvK11_G1 11 16 4 7 11 4 0 100.00 26.67
Record  23 KvK11_G2 13 23 4 9 13 11 0 100.00 45.83
Record  24 KvK11_G3 22 19 5 16 21 1 1 95.45 4.55
Record  25 KvK11_G4 24 27 9 14 23 2 1 95.83 8.00
Record  26 w6_g5 2 10 1 1 2 5 0 100.00 71.43
Record  27 KvK23_Lab 4 4 3 1 4 0 0 100.00 0.00
Record 28 MAP_013 5 7 0 5 5 2 0 100.00 28.57
Record  29 W12_G2 8 8 6 2 8 0 0 100.00 0.00
Record  30 W15_G1 18 23 8 10 18 4 0 100.00 18.18
Record  31 W15_G2 12 18 3 9 12 3 0 100.00 20.00
Record 32 W15 G3 14 18 9 5 14 1 0 100.00 6.67
Record  33 W15_G4 15 16 12 2 14 0 1 93.33 0.00
Record  34 w11 g1 3 8 2 1 3 1 0 100.00 25.00
Record  35 kvk22g1 8 13 4 4 8 3 0 100.00 27.27
Record  36 w13_g2 7 13 3 4 7 3 0 100.00 30.00

389 534 176 204 380 116 9
97.74 22.62

Sum
Average  
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2.5.5. Results after Wavelet Decomposition of Bipolar EHGs 

A dynamic selection of details after symlet 5 decomposition on bipolar EHG records has been 

applied using Kullback Leibler, d6…d9 are selected. They undergo DCS method with concatenation 

method using Fisher and SNR for each of the 48 details (4 details are extracted from each of the 12 

bipolar channel). Detected ruptures from all details are fused using temporal projection then 

computing SNR for events tracking. Margin validation test is next applied on obtained detected 

events and obtained results are illustrated in Table 2.17. Therefore, detected events are classified as 

totally detected, partially detected, not detected contraction or other events which are not identified as 

contractions beyond expert. We got 86.79 % for sensitivity average, 56.68% for other event rate 

average, sum of 612 other events and sum of 68 totally detected contractions from 389 identified 

contractions beyond expert. 

Table 2.17: Sensitivity and other events’ rate using Margin validation test of detected events using temporal fusion 
method after DCS with Fisher and SNR eliminating techniques application on details after wavelet transform of bipolar 

EHGs records. 

Record Signal Label Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other 
events %

Record 1 SI0018_G1 7 13 0 5 5 8 2 71.43 61.54
Record  2 F2_G1 5 33 1 4 5 23 0 100.00 69.70
Record  3 F4_G1 15 19 1 10 11 9 4 73.33 47.37
Record  4 F4_G2 8 28 3 5 8 18 0 100.00 64.29
Record  5 F4_G3 16 44 4 8 12 32 4 75.00 72.73
Record  6 F6_G1 8 44 0 8 8 34 0 100.00 77.27
Record  7 F6_G2 6 35 1 5 6 26 0 100.00 74.29
Record  8 F6_G3 7 42 0 7 7 31 0 100.00 73.81
Record  9 F6_Lab 5 15 2 3 5 9 0 100.00 60.00

Record  10 F21_Lab 13 15 2 6 8 7 5 61.54 46.67
Record  11 FR0003_P 5 12 0 5 5 7 0 100.00 58.33
Record  12 FR0007_L 5 6 1 3 4 2 1 80.00 33.33
Record  13 FR0008_L 4 5 0 3 3 2 1 75.00 40.00
Record  14 FR0010_L 8 13 1 6 7 4 1 87.50 30.77
Record  15 KvK6_G1 18 34 2 12 14 20 4 77.78 58.82
Record  16 KvK6_G2 47 49 9 27 36 17 11 76.60 34.69
Record  17 KvK7_G3 12 29 4 8 12 15 0 100.00 51.72
Record  18 KvK7_G4 13 43 2 9 11 31 2 84.62 72.09
Record  19 kvk8_G1 8 9 2 5 7 1 1 87.50 11.11
Record  20 KVK9_G2 9 21 3 6 9 9 0 100.00 42.86
Record  21 KvK10_G1 4 20 0 4 4 11 0 100.00 55.00
Record  22 KvK11_G1 11 31 2 6 8 23 3 72.73 74.19
Record  23 KvK11_G2 13 28 0 10 10 16 3 76.92 57.14
Record  24 KvK11_G3 22 35 3 15 18 19 4 81.82 54.29
Record  25 KvK11_G4 24 44 5 15 20 16 4 83.33 36.36
Record  26 w6_g5 2 22 0 2 2 19 0 100.00 86.36
Record  27 KvK23_Lab 4 3 1 2 3 0 1 75.00 0.00
Record 28 MAP_013 5 20 0 4 4 15 1 80.00 75.00
Record  29 W12_G2 8 25 1 6 7 15 1 87.50 60.00
Record  30 W15_G1 18 53 2 11 13 36 5 72.22 67.92
Record  31 W15_G2 12 45 1 11 12 25 0 100.00 55.56
Record 32 W15 G3 14 44 7 5 12 30 2 85.71 68.18
Record  33 W15_G4 15 51 3 8 11 40 4 73.33 78.43
Record  34 w11 g1 3 6 2 1 3 3 0 100.00 50.00
Record  35 kvk22g1 8 33 2 6 8 22 0 100.00 66.67
Record  36 w13_g2 7 23 1 5 6 17 1 85.71 73.91

389 992 68 256 324 612 65
86.79 56.68Average

Sum
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2.6. Discussion and Conclusions 
In this chapter, we have presented a complete study of DCS application in the monodimensional 

cases. We begin by introducing its theory, then we apply it on monopolar EHG signals. We also 

tested the effect of denoising removal method by applying a filtering method developed before by our 

colleagues and called CCA-EMD. Denoised monopolar EHG signals become cleaner and ruptures 

could be visualized. In order to obtain more information in the frequency domain, wavelet 

decomposition is applied on monopolar EHG signals hence DCS method is applied on 5 levels of 

details based on the work presented in [3]. The obtained results show that monopolar EHG signals 

with CCA-EMD present highest sensitivity with 94.01%, while application of DCS on details 

presents the lowest sensitivity with 83.3% and the highest other events rate for 62.8 %. In addition, 

obtained results shows that monopolar EHG signals without CCA-EMD present the lowest other 

events rate of 50.31% with 534 other events. Indeed, the high number of other detected events is still 

a big problem and prevented us to continue our study on monopolar EHG signals. 

We thus decided to continue our study with bipolar EHG signals. An additional technique based on 

Fisher test and SNR has been implemented and applied between consecutives segments in order to 

reduce the over segmentation problem. Next, different fusion methods of detected ruptures from all 

channels have been implemented and compared. The first one is based on temporal projection of the 

detected ruptures on the time axis of the highest SNR channel. The second one is based on weighted 

method whilst the third one is a fully automatic method. The selection of the best value for all the 

parameters has been implemented for all methods. Obtained results based on Margin validation test 

are computed for all methods and presented in term of contractions which are considered as totally 

detected, partially detected, not detected and of other event. In addition, DCS is applied on selected 

details using Kullback Leibler after symlet 5 decomposition of bipolar EHG signals. Why Kullback 

Leibler with Kolmogorov-Smirnov statistics? Because we seek to select details with higher presence 

of events in. Thus, d6 to d9 were selected. Obtained results using wavelet decomposition are 

encouraging. Indeed, the detection of additional events that are not classified as contractions have 

decreased, by applying DCS on details of monopolar EHGs then on bipolar ones, from 730 to 612 

other events. A decrease in other event number has been noticed from 534 to 469 when applying the 

above method on monopolar EHG then on bipolar EHG with temporal projection fusion method. 

The most promising results are the ones obtained by application of weighted and automated fusion 

methods where the other events are reduced to 118 for weighted fusion method and to 116 for 
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automated fusion method while keeping a high sensitivity rate of 97.74 % for both weighted and 

automated fusion methods. 

Furthermore, we have obtained 22.82% and 22.62% for other event rate using weighted and 

automated fusion methods respectively that can be compared to the nonlinear correlation coefficient 

methods used in [8] where they obtained a high sensitivity, 100%, but a high other event rate of 96%. 

We should mention here that they computed the other events rate by dividing the obtained other 

events number by the number of contractions labeled by the expert. In our study, we compute the 

other event rate as the number of other events divided by the number of other events plus the number 

of labeled contractions. 

As noticed, the results using weighted and automated fusion present little difference, and this could 

be related to almost the same weight averages for the electrodes when we have applied the weighted 

method.    

In the next chapter, we will introduce the application of DCS in multidimensional way and its 

application on bipolar EHG signals and details after wavelet decomposition. 

 

 

 

 

 

 

 

 

 

 

 

 



 
119 

 

References 

[1] Khalil M., Duchêne J., Marque C., ”Une approche de la détection et de la classification dans les 

signaux non stationnaires. Application à l’EMG uterin”,Phd Thesis ,1999. 

[2] Hassan M., Boudaoud S., Terrien J., Karlsson B., Marque C. “Combination of Canonical 

Correlation Analysis and Empirical Mode Decomposition applied to denoising the labor 

Electrohysterogram”. IEEE Trans Biom Eng, vol. 58, no. 9, pp. 2441-47, 2011. 

[3] Diab M.O., Marque C., Khalil M., “Une approche de classification des contractions utérines basée 

sur la théorie des ondelettes et la statistique”, Lebanese Science Journal, Vol. 7, no. 1, 2006.  

[4] Littlestone N., Warmuth M., “The Weighted Majority Algorithm". Information and 

Computation.1994. 108: 212–261. 

[5] Moslem B., Diab M.O., Marque C., Khalil M., “Classification of Multichannel Uterine EMG 

Signals”, 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, 

2011. 

 [6] Chendeb M., Khalil M., Duchêne J.,” The use of wavelet packets for event detection”, 

proceedings of EUSIPCO, Antalya, Turkey, 2005. 

[7] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., Numerical Recipes in C. New York, 

USA: Cambridge University Press, 1988.  

[8] Muszynski C., Happillon T., Azudin K., Tylcz J.-B., Istrate D., Marque C., “Automated 

electrohysterographic detection of uterine contractions for monitoring of pregnancy: feasibility and 

prospects”, BMC pregnancy and Childbirth, 18:136, 2018. 

 
 

 

 

 
 

 

 



 
120 

 

Chapter 3: Dynamic Cumulative Sum in 
Multidimensional Study 
 

 

 

 

 

 

 

 

3.1. Introduction 
In this chapter, we introduce the DCS method theory in multidimensional study (Figure 3.0). After 

choosing DCS parameters, DCS is applied on bipolar EHGs and their details, after wavelet 

decomposition, and selection, of the details by the Kullback Leibler distance method detailed in the 

previous chapter. Finally, we compare the obtained results sensitivity and other events rate of all 

uterine EMG records. 

           

Figure 3.0: Thesis Roadmap – Multidimensional Study 
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3.2. Dynamic Cumulative Sum Theory -  Multidimensional Study   
Dynamic cumulative sum method in multidimensional study follows the same steps as in 

monodimensional study. But it differs in the computation of the sum of the likelihood ratio of 

samples located in both adjacent windows of all bipolar channels at same time, while in 

monodimensional study we did the sum of likelihood ratio of samples located in both windows of 

each bipolar channel alone.  

: =  {j-M+1,...,j}, k= {1,...,12} f   

: =  {j+1,..., j+M} , k= {1,...,12} f  

DCS(  =  (72) 

With    =    (before the current instant j) (73) 

=  (after the current instant j) (74) 

The sum of the likelihood ratio [1]: 

DCS( , )= = + ] (75) 

 The DCS detection function: ]- DCS (  (76) 

The Stop Time is: = inf {j : h} (77); h fixed threshold  

where: 

    mean vector of samples in window before the sample j ;        (78);  

    mean vector of samples in window after the sample j ;    (79); 

             

    covariance matrix of samples in window before the sample j ;   (80);   

 

And   covariance matrix of samples in window after  the sample j ;  (81); 
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3.3. Application on bipolar EHGs 
The DCS method is first applied on 12 bipolar EHG signals in multidimensional study as shown in 

Figure 3.1. This approach, applied in one step on all channel at same time, will permit to avoid the 

need of high number detected ruptures fusion from all channels. 

 
Figure 3.1: Dynamic cumulative sum in multidimensional study. Sliding 2 adjacent windows around the sample j of bipolar EHG 

signal. 

The obtained detected events undergo the reduction of over segmentation by using Fisher and SNR 

methods (Figure 3.2) and then a validation by using the Margin validation test. As shown in Figure 3.2, 

all the contractions identified by the expert are detected in addition to the detection of other events.  

 
Figure 3.2: Detected events using DCS in multidimensional study on bipolar EHG signal. Red bursts are contractions identified by the 

expert, gray box indicates detected events by applying DCS with elimination techniques. 
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3.3.1. Selection of the threshold of DCS Detection function on bipolar EHGs 

The selection of DCS function detection threshold is achieved in the multidimensional approach 

based on the maximization of true positive and minimizing the false positive, which are considered as 

other events or false alarms. The results, presented in Table 3.1, permit to select h equal 1000 as 

corresponding to these criteria. 
Table 3.1: Different DCS function detection threshold ‘h’ applied on bipolar EHG signals in multidimensional study. 

h
Labeled 

Contraction
s

Detected 
Events

Totally 
detected

Partially 
detected  P.D.&T.D. Other ruptures 

detection
Non detected 
contractions

True 
Negative

100 18 38 14 4 18 20 0 39
200 18 37 15 3 18 20 0 38
300 18 37 15 3 18 19 0 38
400 18 34 14 4 18 17 0 35
500 18 32 12 6 18 14 0 33
800 18 31 11 7 18 12 0 32

1000 18 29 11 7 18 10 0 30
1500 18 26 8 9 17 8 1 27
2000 18 24 8 9 17 7 1 25
2500 18 17 6 11 17 2 1 18
3000 18 14 4 12 16 1 2 15
3500 18 11 4 9 13 1 5 12  

3.4. Application on details after wavelet decomposition of bipolar EHGs  
 In this section, we applied wavelet decomposition in multidimensional study on the same selected 

details (d6, d7, d8 and d9) than the ones selected previously, in order to compare the obtained results 

with the one obtained with the monodimensional approach. By applying DCS in multidimensional 

study, we obtained the detected ruptures in a one-dimension vector as shown in Figure 3.3. Therefore, 

detected ruptures undergo the reduction of over segmentation by using Fisher and SNR methods and 

then a validation by using the Margin validation test. 
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Figure 3.3: Block diagram of DCS method application on selected details after wavelet decomposition in multidimensional study. 

3.4.1. DCS Detection function threshold selection on wavelet details of bipolar EHGs 

In order to get best performance while DCS method application, its detection function threshold 

should be selected carefully as before since it changes depending on the type of signal and the type of 

study. In Table 3.2, the detected events are classified using the Margin validation test. H=100 seems 

to be the best threshold to be selected when considering the maximization of true positive and the 

minimization of false alarms (other events). 

Table 3.2: Different DCS function detection threshold ‘h’ applied on details after wavelet decomposition of bipolar EHG 
signals in multidimensional study. 

h
Labeled 

Contractions
Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

True 
Negative

100 18 29 11 7 18 11 0 30
200 18 26 10 8 18 10 0 27
300 18 22 8 9 17 8 1 23
600 18 13 2 14 16 3 2 14  

3.5. Results 
3.5.1. Results on Bipolar EHG   

The results shown in table 3.3, presents for the 36 records their label, the number of contractions 

verified by expert, the number of detected events by our methods, their classification in either totally, 

partially, totally & partially contractions (P.D.&T.D.). The 2 last columns present the sensitivity and 

other event rate. 

 



 
125 

 

Table 3.3: DCS with faulty ruptures elimination techniques assessment on bipolar EHG signals in multidimensional study 
using Margin validation test. 

 

Record Signal Label Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected  P.D.&T.D. Other ruptures 

detection

Non 
detected 

contraction

Sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 7 3 4 7 0 0 100.00 0.00
Record  2 F2_G1 5 14 1 4 5 4 0 100.00 44.44
Record  3 F4_G1 15 18 4 11 15 1 0 100.00 6.25
Record  4 F4_G2 8 29 6 2 8 18 0 100.00 69.23
Record  5 F4_G3 16 33 9 7 16 14 0 100.00 46.67
Record  6 F6_G1 8 25 3 5 8 16 0 100.00 66.67
Record  7 F6_G2 6 25 3 3 6 16 0 100.00 72.73
Record  8 F6_G3 7 27 5 2 7 17 0 100.00 70.83
Record  9 F6_Lab 5 12 3 2 5 6 0 100.00 54.55

Record  10 F21_Lab 13 14 13 0 13 1 0 100.00 7.14
Record  11 FR0003_P 5 11 3 2 5 6 0 100.00 54.55
Record  12 FR0007_L 5 6 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 5 1 3 4 1 0 100.00 20.00
Record  14 FR0010_L 8 11 1 7 8 1 0 100.00 11.11
Record  15 KvK6_G1 18 25 12 6 18 8 0 100.00 30.77
Record  16 KvK6_G2 47 48 18 29 47 3 0 100.00 6.00
Record  17 KvK7_G3 12 30 8 4 12 14 0 100.00 53.85
Record  18 KvK7_G4 13 33 7 6 13 19 0 100.00 59.38
Record  19 kvk8_G1 8 9 6 2 8 0 0 100.00 0.00
Record  20 KVK9_G2 9 18 5 4 9 6 0 100.00 40.00
Record  21 KvK10_G1 4 11 1 3 4 3 0 100.00 42.86
Record  22 KvK11_G1 11 16 3 8 11 5 0 100.00 31.25
Record  23 KvK11_G2 13 26 5 8 13 12 0 100.00 48.00
Record  24 KvK11_G3 22 23 10 12 22 3 0 100.00 12.00
Record  25 KvK11_G4 24 30 11 13 24 2 0 100.00 7.69
Record  26 w6_g5 2 11 0 2 2 6 0 100.00 75.00
Record  27 KvK23_Lab 4 4 1 3 4 0 0 100.00 0.00
Record 28 MAP_013 5 13 3 2 5 8 0 100.00 61.54
Record  29 W12_G2 8 10 7 1 8 1 0 100.00 11.11
Record  30 W15_G1 18 23 11 7 18 2 0 100.00 10.00
Record  31 W15_G2 12 26 6 6 12 11 0 100.00 47.83
Record 32 W15 G3 14 31 9 5 14 15 0 100.00 51.72
Record  33 W15_G4 15 17 12 3 15 0 0 100.00 0.00
Record  34 w11 g1 3 9 0 3 3 3 0 100.00 50.00
Record  35 Kvk22g1 8 16 4 4 8 6 0 100.00 42.86
Record  36 w13_g2 7 19 1 6 7 9 0 100.00 56.25

389 685 196 193 389 237 0
100.00 35.06

Sum
Average  

We notice that sensitivity keeps its high value (equal 100 % for all records) while other events rate 

varied from 0 % to 75% with an average equal to 35.06 %, corresponding to a total number of other 

events equal 237. Some records like record 16, are very encouraging, all 47 contractions were 

detected where 18 contractions are totally identified, 29 are partially identified and we obtained only 

3 other events.  

3.5.2. Results after Wavelet Decomposition of Bipolar EHG  

An example of the application of the multidimensional DCS is presented in Figure 3.4. In this 

figure, red bursts reflect contractions identified by expert while gray boxes reflect the events detected 



 
126 

 

by our methods. Therefore, all contractions (17) are well identified whilst we detected 11 other 

events.  

 
Figure 3.4: Detected Events using DCS method with elimination techniques on details of bipolar EHG signals in multidimensional 

signals after wavelet decomposition. 

The results obtained for all records are presented in Table 3.4. We have also maintained high 

sensitivity average 100% using above methods. Some records present encouraging results concerning 

other events rate like records 1, 3, 10 and 13 which detected only 0, 1, 1, 0 other event respectively 

whilst others like records 4, 5, 6, 7 and 8 tracked 26, 23, 24, 21 and 35 other events. As summary, we 

got 49.59 % as other event rate average with 471 other events While 199 contractions were classified 

as totally detected and 189 classified as partially detected from all 36 records. 
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Table 3.4: DCS with faulty ruptures elimination techniques assessment on bipolar EHG signals in multidimensional study 
using Margin validation test. 

Record
Signal 
Label

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

Sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 8 5 2 7 0 0 100.00 0.00
Record  2 F2_G1 5 27 0 5 5 16 0 100.00 76.19
Record  3 F4_G1 15 21 6 9 15 1 0 100.00 6.25
Record  4 F4_G2 8 40 4 4 8 26 0 100.00 76.47
Record  5 F4_G3 16 43 11 5 16 23 0 100.00 58.97
Record  6 F6_G1 8 35 4 4 8 24 0 100.00 75.00
Record  7 F6_G2 6 32 3 3 6 21 0 100.00 77.78
Record  8 F6_G3 7 46 4 3 7 35 0 100.00 83.33
Record  9 F6_Lab 5 18 5 0 5 13 0 100.00 72.22
Record  10 F21_Lab 13 15 11 2 13 1 0 100.00 7.14
Record  11 FR0003_P 5 13 4 1 5 7 0 100.00 58.33
Record  12 FR0007_L 5 12 2 3 5 3 0 100.00 37.50
Record  13 FR0008_L 4 5 0 4 4 0 0 100.00 0.00
Record  14 FR0010_L 8 31 0 8 8 16 0 100.00 66.67
Record  15 KvK6_G1 18 22 11 7 18 11 0 100.00 37.93
Record  16 KvK6_G2 47 65 27 20 47 11 0 100.00 18.97
Record  17 KvK7_G3 12 36 7 5 12 16 0 100.00 57.14
Record  18 KvK7_G4 13 50 11 2 13 32 0 100.00 71.11
Record  19 kvk8_G1 8 11 6 2 8 1 0 100.00 11.11
Record  20 KVK9_G2 9 27 5 4 9 15 0 100.00 62.50
Record  21 KvK10_G1 4 17 1 3 4 7 0 100.00 63.64
Record  22 KvK11_G1 11 28 2 9 11 17 0 100.00 60.71
Record  23 KvK11_G2 13 40 2 11 13 23 0 100.00 63.89
Record  24 KvK11_G3 22 31 12 10 22 7 0 100.00 24.14
Record  25 KvK11_G4 24 42 9 15 24 6 0 100.00 20.00
Record  26 w6_g5 2 20 0 2 2 14 0 100.00 87.50
Record  27 KvK23_Lab 4 4 2 2 4 0 0 100.00 0.00
Record 28 MAP_013 5 15 2 3 5 8 0 100.00 61.54
Record  29 W12_G2 8 16 4 4 8 5 0 100.00 38.46
Record  30 W15_G1 18 40 8 10 18 15 0 100.00 45.45
Record  31 W15_G2 12 44 5 7 12 26 0 100.00 68.42
Record 32 W15 G3 14 38 9 4 14 22 0 100.00 61.11
Record  33 W15_G4 15 28 10 5 15 9 0 100.00 37.50
Record  34 w11 g1 3 11 0 3 3 4 0 100.00 57.14
Record  35 kvk22g1 8 33 2 6 8 19 0 100.00 70.37
Record  36 w13_g2 7 28 5 2 7 17 0 100.00 70.83

389 992 199 189 389 471 0
100.00 49.59

SUM
AVERAGE  

3.6. Discussion and Conclusion 
Deciding whether multidimensional study presents an improvement on monodimensional study 

depends at first stage on comparing its sensitivity and then other events rate. To be more specific, we 

should compare it with the three implemented data fusion method in monodimensional study.   
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The results obtained with the multidimensional approach are promising. But we obtained 237 

other events number which is higher than when applying DCS on bipolar EHGs in monodimensional 

approach plus the best fusion method (116).  

The results obtained while applying DCS on details are better with the multidimensional approach. 

They are promising also since we obtained 471 other events number than when applying DCS on 

details with the monodimensional approach using fusion when we obtained 612 other events, 

associated with an increase in sensitivity from 86.72% to 100 %. 

The most surprising result is a decrease in the number of other event in most records. For example, 

for records 4, 5, 6, 7 and 8, we have obtained respectively 18,14,16,16 and 17 other events with the 

multidimensional study, while we have obtained 29,22,27, 31 and 30 other events respectively with 

the monodimensional study plus the temporal projection fusion method, and 6, 6, 11, 8, 9 other 

events respectively with the automated fusion method.  

As a conclusion, the overall results are similar to those described previously which reflect the 

improvement obtained using multidimensional approach over monodimensional one with temporal 

projection method. However, using multidimensional study is less productive and effective than 

monodimensional study with weighted and automated fusion method. 

In addition, multidimensional study seems to be a promising method when comparing results with 

monodimensional study on wavelet details of bipolar EHG records. Other event number has 

decreased almost by half while keeping a 100% sensitivity.  

In the next chapter, we will try to extract features from the segmented events in order to remove 

events that are not corresponding to contractions as indicated by the expert and thus reducing the 

number of other events. 
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Chapter 4: Contractions identification 
using features extraction 
 

 

 

 

 

 

 

4.1. Introduction 
In this chapter, we plan to reduce the number of other detected events present in most of uterine 

EMG records obtained, first by applying DCS on bipolar EHG signals with the multidimensional 

approach, then by applying DCS on bipolar EHG signals with the monodimensional approach plus 

the automated fusion method (Figure 4.0). Indeed, these 2 methods have proved to be the more 

efficient with the highest sensitivity and the lowest other event rate in each kind of approach. We 

begin the chapter by presenting the problem then trying to obtain information from all detected events 

by extracting features based on time series linear and nonlinear techniques analysis. Indeed, nonlinear 

analysis may give information about the underlying physiological processes, many of which have 

complex behavior. Then, sensitivity and other event rate are computed and compared after features 

extraction techniques. 
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Figure 4.0: Thesis Roadmap – Features Extraction. 

4.2. Problems 
Despite the use of bipolar EHG signals instead of monopolar EHGs in order to reduce the noise, 

many records present a large number of other events that were not considered as contractions by 

expert as shown in Figure 4.1. These events are generally related to maternal or fetus movement, 

external noise, electrodes not fixed properly or even contractions not detected by the 

tocodynamometer and thus by the expert. 
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Figure 4.1: Detected events using DCS with faulty ruptures elimination methods in multidimensional study on bipolar EHG records (a) 
VB7 of Record 18 (b) VB 12 of Record 26. Red color reflects contractions identified by expert and gray boxes indicate detected events 

using above methods. 

4.3. Feature extraction from bipolar EHG in multidimensional study 

Feature extraction plays an important role for identifying non-contractile events associated with 

artifacts. In our study, we have extracted linear and nonlinear features. 

(a) (b) 
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4.3.1. Sample entropy 

Sample Entropy (SampEn) is considered as a useful tool for investigating time series such as 

dynamics of heart rate [1,2] and uterine EMG activity assessment [3-6]. The sample entropy is a 

measure of the regularity of finite length time series. Thus, a lower value of SampEn indicates more 

regularity in the time series [5]. 

Given an EHG signal with a time series x of N points, , , . . . , , we define subsequences 

patterns   with length m taken from the time series x(t),   = x(i + j) (82)   

where i = 0,…, m-1 and  j = 0,…,N-m. However the part of the time series x(t) at time t =  , 

x( ,…, ) is considered as a match for a given pattern  if the following condition is obeyed : 

 for each  (83) 

Thus, we can compute the sample entropy which is defined by: 

 

 (84) 

where N is the length of the time series, m is the length of sequences to be compared, r is the 

tolerance for accepting matches and   the number of matching pattern (within a margin for r) that 

is constructed for each m. In our study, sample entropy parameters are computed according to [5,6], 

m=2 and r=0.25*standard deviation of each detected event (85) 

4.3.2. Detrended fluctuation analysis (DFA) 

Peng et al. introduced DFA in 1994. DFA represents an extension of the ordinary  fluctuation 

analysis (FA) which is affected by non-stationarities [7]. Detrended fluctuation analysis (DFA) is a 

method for determining the statistical self-affinity of a signal and has been proved to be useful in 

EHG signal processing [6,8]. 

Given a bounded time series  of length N,  integration or summation first converts into an 

unbounded process  (Figure 4.2): 

(86)  

Where   denotes the mean value of the time series.  is called cumulative sum or profile. 

https://en.wikipedia.org/wiki/Chung-Kang_Peng
https://en.wikipedia.org/w/index.php?title=Fluctuation_analysis&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Fluctuation_analysis&action=edit&redlink=1
https://en.wikipedia.org/wiki/Self-affinity
https://en.wikipedia.org/wiki/Time_series
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Figure 4.2: Detrended fluctuation Analysis method.(a) The interbeat interval time series  (seconds) of 1000 beats. (b) The integrated 
time series:  , where  is the interbeat interval shown in (a). The vertical dotted lines indicate box of size n = 100, 

the solid straight line segments represent the "trend" estimated in each box by a least-squares fit [7]. 

Next,   is divided into time windows of length n samples each, and a local least squares straight-

line fit (the local trend) is calculated by minimizing the squared errors within each time window. 

Let (k)  indicate the resulting piecewise sequence of straight-line fits. Then, the root-mean-square 

deviation from the trend, the fluctuation, is calculated: 

  (87) 

Finally, this process of detrending followed by fluctuation measurement is repeated over a range of 

different window sizes n, and a log-log graph of F(n) against n is constructed. 
 
A straight line on this log-log graph indicates statistical self-affinity expressed as F(n)   . The 

scaling exponent  is calculated as the slope of a straight line fit to the log-log graph 

of n against F(n) using least-squares. This exponent is a generalization of the Hurst exponent. an 

exponent  of  would correspond to uncorrelated white noise, anti-correlated if   <1/2, 

https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Log-log_graph
https://en.wikipedia.org/wiki/Self-affinity
https://en.wikipedia.org/wiki/Hurst_exponent
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correlated if >1/2, pink noise if , non-stationary unbounded if >1 and Brownian noise if 

 [7,9]. 

4.3.3 Variance 

Variance has a central role in statistics, including descriptive statistics, statistical 

inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important 

tool in sciences, where statistical analysis of data is common. The variance  of a random variable 

is the average squared distance between the mean and each data value  according to König-

Huygens' theorem.: 

  (88) 

Where n is the number of samples in the time series. 

4.3.4. Threshold selection 

In our study, we compute the sample entropy (SampEn), the detrended fluctuation analysis (DFA) 

and variance as features to characterize each detected event. These features with then be compared to 

a threshold selected specifically for each bipolar EHG. We can thus call this a dynamic selection of 

threshold. If the feature of the detected event is higher than this dynamic threshold, then the event is 

kept as a contraction, and removed otherwise. 

To simplify the threshold selection, we rely it to the mean of all detected event feature as follows: 

- SampEn threshold= th1*mean of (SampEn of all detected events in the same record) (89) 

- DFA threshold= th2*mean of (DFA of all detected events in same record) (90) 

- Variance threshold= th3*mean of (variance of all detected events in same record) (91) 

Where th1, th2 and th3 are feature factor ranging from 0 to 1. 

Indeed, features are extracted from detected events obtained by applying DCS on bipolar EHGs in 

multidimensional study since it presents twice the number of other events than in monodimensional 

approach with automated fusion method. In order to fix th1, th2 and th3, we vary their values from 

0.1 to 1 by increment of 0.1. These values were tested on VB7 that is the channel with the highest 

SNR value (Figure 4.3).  
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Figure 4.3: Detected events using DCS with reduction of over segmentation and multidimensional approach. Red color indicates 

contractions identified by expert while gray boxes represent detected events. 

After application of the Margin validation test which allows us to compute the totally and partially 

detected contractions, sensitivity and other event rate, the results for sample entropy are presented in 

Table 4.1, for DFA in Table 4.2 and for variance in Table 4.3. Our selection criterion is based on 

maximization of true positive rate (sensitivity) and minimization of false positive rate (other events 

which are not identified as contractions by expert). Therefore, th1=0.9, th2=0.9 and th3=0.6 are fixed 

respectively for sample entropy, DFA and variance to compute their respective rejection thresholds. 

By applying those threshold factors, variance and DFA of other events seems to be pertinent features 

since almost all other events are in the region below the computed threshold axis as shown in Figures 

4.5 and 4.6. (other events are indicated in red colors). So these two features are able to differentiate 

between contractions and other events. At the opposite, the SampEn parameter did not perform well 

for the rejection of other events.  
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Table 4.1: Detected events with respect to extracted sample entropy threshold. 

Factor of  detected 
events' sample entropy 

mean

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 
P.D.&T.D.

Other ruptures 
detection

Not detected 
contractions sensitivity % Other 

events %

0.1 9 18 5 4 9 6 0 100.00 40.00

0.2 9 18 5 4 9 6 0 100.00 40.00

0.3 9 18 5 4 9 6 0 100.00 40.00

0.4 9 18 5 4 9 6 0 100.00 40.00

0.5 9 18 5 4 9 6 0 100.00 40.00

0.6 9 18 5 4 9 6 0 100.00 40.00

0.7 9 18 5 4 9 6 0 100.00 40.00

0.8 9 18 5 4 9 6 0 100.00 40.00

0.9 9 17 5 3 8 5 1 88.89 38.46

1 9 9 4 0 4 4 5 44.44 50.00  

Table 4.2: Detected events with respect to extracted Detrended Fluctuation Analysis threshold. 

Factor of  detected 
events'  DFA  mean

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 
P.D.&T.

D.

Other ruptures 
detection

Not detected 
contractions

sensitivity 
%

Other events 
%

0.1 9 18 5 4 9 6 0 100.00 40.00

0.2 9 18 5 4 9 6 0 100.00 40.00

0.3 9 18 5 4 9 6 0 100.00 40.00

0.4 9 18 5 4 9 6 0 100.00 40.00

0.5 9 18 5 4 9 6 0 100.00 40.00

0.6 9 17 5 4 9 6 0 100.00 40.00

0.7 9 15 5 4 9 4 0 100.00 30.77

0.8 9 10 5 3 8 1 1 88.89 11.11

0.9 9 10 5 3 8 1 1 88.89 11.11

1 9 9 5 3 8 1 1 88.89 11.11  

Table 4.3: Detected events with respect to extracted Variance threshold. 

Factor of  detected 
events'  Variance  mean

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 
P.D.&T.D.

Other ruptures 
detection

Not detected 
contractions

sensitivity 
%

Other events 
%

0.1 9 18 5 4 9 6 0 100.00 40.00

0.2 9 18 5 4 9 6 0 100.00 40.00

0.3 9 15 5 4 9 4 0 100.00 30.77

0.4 9 15 5 4 9 4 0 100.00 30.77

0.5 9 11 5 4 9 1 0 100.00 10.00

0.6 9 10 5 4 9 0 0 100.00 0.00

0.7 9 9 5 3 8 0 1 88.89 0.00

0.8 9 9 5 3 8 0 1 88.89 0.00

0.9 9 8 4 3 7 0 2 77.78 0.00

1 9 7 4 3 7 0 2 77.78 0.00  
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Figure 4.4: Repartition of contractions and other events based on sample entropy where sample entropy threshold=0.9*mean (sample 

entropy of all detected events). Blue color represents the contractions, red color the other events. 
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Figure 4.5: Repartition of contractions and other events based on DFA where DFA threshold=0.9*mean (DFA of all detected events). 

Blue color represents the contractions, red color the other events. 
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Figure 4.6:  Repartition of contraction and other events based on Variance where Variance threshold=0.6*mean (Variance of all 

detected events) Blue color represent the contractions, red color the other events. 
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Figure 4.7 presents the impact of feature extraction for the rejection of the other events (DCS with 

Fisher and SNR technique with multidimensional approach) after applying DFA and variance 

thresholds. Red color indicates contractions identified by expert. After application of the threshold on 

DFA, most of the other events that not reflect contractions are removed, and only one contraction is 

missed. After application of the threshold on variance, all the other events are removed while keeping 

all contractions identified by expert.  

 
Figure 4.7: Detected events by features extraction. 

4.4. Results  
4.4.1. Results in multidimensional study 

4.4.1.1. Results after sample entropy extraction 

Table 4.4 presents the results obtained after application of the sample entropy threshold followed 

by the margin validation test. The obtained results are not encouraging since sensitivity average has 

decreased and only 49 other events have been removed from 237, giving another event rate decrease 

from 35.06 % to 32.79% only. 
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Table 4.4: Detected Event validation using sample entropy extraction of all 36 EHG records. 

Record
Signal 
Label

Labeled 
Contractions Detected Events

Totally 
detected

Partially 
detected  P.D.&T.D.

Other ruptures 
detection

Not detected 
contractions

sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 7 3 4 7 0 0 100.00 0.00
Record  2 F2_G1 5 13 1 4 5 4 0 100.00 44.44
Record  3 F4_G1 15 17 4 11 15 1 0 100.00 6.25
Record  4 F4_G2 8 18 5 2 7 10 1 87.50 58.82
Record  5 F4_G3 16 28 7 6 13 13 3 81.25 50.00
Record  6 F6_G1 8 22 3 4 7 14 1 87.50 66.67
Record  7 F6_G2 6 20 2 3 5 12 1 83.33 70.59
Record  8 F6_G3 7 19 4 2 6 11 1 85.71 64.71
Record  9 F6_Lab 5 9 3 1 4 5 1 80.00 55.56

Record  10 F21_Lab 13 13 13 0 13 0 0 100.00 0.00
Record  11 FR0003_P 5 10 3 2 5 5 0 100.00 50.00
Record  12 FR0007_L 5 6 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 4 1 2 3 1 1 75.00 25.00
Record  14 FR0010_L 8 10 1 7 8 0 0 100.00 0.00
Record  15 KvK6_G1 18 19 10 5 15 5 3 83.33 25.00

Record  16 KvK6_G2 47 43 16 26 42 3 5 89.36 6.67

Record  17 KvK7_G3 12 22 8 4 12 7 0 100.00 36.84

Record  18 KvK7_G4 13 27 7 6 13 14 0 100.00 51.85

Record  19 kvk8_G1 8 9 6 2 8 0 0 100.00 0.00

Record  20 KVK9_G2 9 17 5 3 8 5 1 88.89 38.46

Record  21 KvK10_G1 4 9 1 2 3 3 1 75.00 50.00

Record  22 KvK11_G1 11 13 3 8 11 2 0 100.00 15.38

Record  23 KvK11_G2 13 26 5 8 13 12 0 100.00 48.00

Record  24 KvK11_G3 22 19 9 7 16 3 6 72.73 15.79

Record  25 KvK11_G4 24 27 11 11 22 2 2 91.67 8.33

Record  26 w6_g5 2 11 0 2 2 6 0 100.00 75.00

Record  27 KvK23_Lab 4 3 1 2 3 0 1 75.00 0.00

Record 28 MAP_013 5 12 2 2 4 8 1 80.00 66.67

Record  29 W12_G2 8 10 7 1 8 1 0 100.00 11.11

Record  30 W15_G1 18 19 8 7 15 2 3 83.33 11.76

Record  31 W15_G2 12 22 5 6 11 9 1 91.67 45.00

Record 32 W15 G3 14 28 7 4 11 15 3 78.57 57.69

Record  33 W15_G4 15 15 11 2 13 0 2 86.67 0.00

Record  34 w11 g1 3 6 0 3 3 1 0 100.00 25.00

Record  35 Kvk22g1 8 16 4 4 8 6 0 100.00 42.86

Record  36 w13_g2 7 17 1 5 6 8 1 85.71 57.14

389 586 178 172 350 188 39

90.62 32.79

Sum

Average  

4.4.1.2. Results after DFA extraction 

Table 4.5 presents the results obtained after application of the DFA threshold followed by the 

Margin validation test. Results are encouraging since 179 other events were removed from 237. But 

the sensitivity has reduced from 100% to 73.95%. This significant decrease is related to the 

application of the threshold on records that present few other events. Therefore, when applying 

threshold which is related to the DFA mean, some contractions will be removed which could lead to 
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this sensitivity decrease. As an example, on record 16, we initially detected 47 contractions, over 47 

and only 20 contractions over 47 after applying the DFA thresholding method. 

 
Table 4.5: Detected Event validation using DFA extraction from 36 EHG records.  

Record Signal Label
Labeled 

Contractions
Detected 

Events
Totally 

detected
Partially 
detected  P.D.&T.D.

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 4 3 1 4 0 3 57.14 0.00
Record  2 F2_G1 5 7 1 3 4 3 0 80.00 42.86
Record  3 F4_G1 15 8 3 4 7 1 8 46.67 12.50
Record  4 F4_G2 8 15 6 2 8 4 0 100.00 33.33
Record  5 F4_G3 16 15 9 5 14 1 2 87.50 6.67
Record  6 F6_G1 8 13 3 5 8 4 0 100.00 33.33
Record  7 F6_G2 6 12 2 3 5 5 1 83.33 50.00
Record  8 F6_G3 7 12 5 2 7 4 0 100.00 36.36
Record  9 F6_Lab 5 6 2 2 4 1 1 80.00 20.00

Record  10 F21_Lab 13 7 6 0 6 1 7 46.15 14.29
Record  11 FR0003_P 5 6 3 1 4 2 1 80.00 33.33
Record  12 FR0007_L 5 4 1 3 4 0 1 80.00 0.00
Record  13 FR0008_L 4 2 0 2 2 0 2 50.00 0.00
Record  14 FR0010_L 8 7 1 4 5 1 3 62.50 16.67
Record  15 KvK6_G1 18 14 11 3 14 0 4 77.78 0.00

Record  16 KvK6_G2 47 23 12 8 20 1 27 42.55 4.76

Record  17 KvK7_G3 12 15 6 2 8 7 4 66.67 46.67

Record  18 KvK7_G4 13 15 7 4 11 3 2 84.62 21.43

Record  19 kvk8_G1 8 4 2 2 4 0 4 50.00 0.00

Record  20 KVK9_G2 9 10 5 3 8 1 1 88.89 11.11

Record  21 KvK10_G1 4 4 1 2 3 0 1 75.00 0.00

Record  22 KvK11_G1 11 12 3 7 10 2 1 90.91 16.67

Record  23 KvK11_G2 13 15 5 5 10 5 3 76.92 33.33

Record  24 KvK11_G3 22 11 6 9 15 0 7 68.18 0.00

Record  25 KvK11_G4 24 18 8 8 16 0 8 66.67 0.00

Record  26 w6_g5 2 7 0 2 2 3 0 100.00 60.00

Record  27 KvK23_Lab 4 3 1 2 3 0 1 75.00 0.00

Record 28 MAP_013 5 6 3 1 4 2 1 80.00 33.33

Record  29 W12_G2 8 4 3 1 4 0 4 50.00 0.00

Record  30 W15_G1 18 10 6 4 10 0 8 55.56 0.00

Record  31 W15_G2 12 9 6 2 8 0 4 66.67 0.00

Record 32 W15 G3 14 12 9 2 11 0 3 78.57 0.00

Record  33 W15_G4 15 10 9 1 10 0 5 66.67 0.00

Record  34 w11 g1 3 5 0 3 3 1 0 100.00 25.00

Record  35 Kvk22g1 8 9 3 2 5 3 3 62.50 37.50

Record  36 w13_g2 7 9 1 5 6 3 1 85.71 33.33

389 343 152 115 267 58 121

73.95 17.29

Sum

Average  
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4.4.1.3. Results after Variance extraction 

Table 4.6. presents the results obtained after application of the Variance threshold followed by the 

margin validation test. Results are encouraging since 178 other events were removed from 237 and 

the other events rate decreased from 35.06 % to 15.91 %. But the sensitivity has reduced also from 

100% to 82.93 %. 

Table 4.6: Detected Event validation using variance extraction from 36 EHG records. 

Record
Signal 
Label

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 
P.D.&T.D

.

Other ruptures 
detection

Not detected 
contractions

sensitivity 
% Other events %

Record 1 SI0018_G1 7 5 3 2 5 0 2 71.43 0.00
Record  2 F2_G1 5 12 1 4 5 3 0 100.00 37.50
Record  3 F4_G1 15 13 4 8 12 0 3 80.00 0.00
Record  4 F4_G2 8 14 6 2 8 4 0 100.00 33.33
Record  5 F4_G3 16 15 9 5 14 0 2 87.50 0.00
Record  6 F6_G1 8 11 3 5 8 3 0 100.00 27.27
Record  7 F6_G2 6 13 3 3 6 5 0 100.00 45.45
Record  8 F6_G3 7 10 5 2 7 2 0 100.00 22.22
Record  9 F6_Lab 5 7 3 2 5 1 0 100.00 16.67

Record  10 F21_Lab 13 8 7 0 7 1 6 53.85 12.50
Record  11 FR0003_P 5 6 3 1 4 2 1 80.00 33.33
Record  12 FR0007_L 5 5 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 2 0 2 2 0 2 50.00 0.00
Record  14 FR0010_L 8 9 1 6 7 1 1 87.50 12.50
Record  15 KvK6_G1 18 15 12 3 15 0 3 83.33 0.00

Record  16 KvK6_G2 47 24 13 9 22 1 25 46.81 4.35

Record  17 KvK7_G3 12 15 7 2 9 6 3 75.00 40.00

Record  18 KvK7_G4 13 18 7 5 12 5 1 92.31 29.41

Record  19 kvk8_G1 8 7 5 2 7 0 1 87.50 0.00

Record  20 KVK9_G2 9 10 5 4 9 0 0 100.00 0.00

Record  21 KvK10_G1 4 6 1 3 4 0 0 100.00 0.00

Record  22 KvK11_G1 11 10 3 6 9 1 2 81.82 10.00

Record  23 KvK11_G2 13 18 5 8 13 5 0 100.00 27.78

Record  24 KvK11_G3 22 12 7 9 16 0 6 72.73 0.00

Record  25 KvK11_G4 24 25 10 10 20 1 4 83.33 4.76

Record  26 w6_g5 2 8 0 2 2 3 0 100.00 60.00

Record  27 KvK23_Lab 4 3 1 2 3 0 1 75.00 0.00

Record 28 MAP_013 5 6 3 1 4 2 1 80.00 33.33

Record  29 W12_G2 8 4 3 1 4 0 4 50.00 0.00

Record  30 W15_G1 18 10 6 4 10 0 8 55.56 0.00

Record  31 W15_G2 12 9 6 2 8 0 4 66.67 0.00

Record 32 W15 G3 14 12 9 2 11 0 3 78.57 0.00

Record  33 W15_G4 15 12 11 1 12 0 3 80.00 0.00

Record  34 w11 g1 3 4 0 2 2 1 1 66.67 33.33

Record  35 Kvk22g1 8 16 4 4 8 6 0 100.00 42.86

Record  36 w13_g2 7 15 1 6 7 6 0 100.00 46.15

389 389 168 134 302 59 87

82.93 15.91

Sum

Average  
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4.4.1.4 Removing noisy records in multidimensional study without feature extraction 

After deep visual inspection of our database, we select 14 uterine EMG records which present less 

noise and other events. We compute again the sensitivity and the other events rate. The results are 

good (Table 4.7).  We obtain 100% for sensitivity average, 6.1% for other event rate average with 

only 12 other events among the 202 detected.  

 

Table 4.7: Detected Events Validation using Margin Validation test when noisy EHG records were removed in 
multidimensional study. 

Record Signal Label Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected  P.D.&T.D.

Other 
ruptures 
detection

Not 
detected 

contractio

Sensitivity 
%

Other 
events %

Record 1 SI0018_G1 7 7 3 4 7 0 0 100.00 0.00

Record  3 F4_G1 15 18 4 11 15 1 0 100.00 6.25

Record  10 F21_Lab 13 14 13 0 13 1 0 100.00 7.14

Record  12 FR0007_L 5 6 1 4 5 0 0 100.00 0.00

Record  13 FR0008_L 4 5 1 3 4 1 0 100.00 20.00

Record  14 FR0010_L 8 11 1 7 8 1 0 100.00 11.11

Record  16 KvK6_G2 47 48 18 29 47 3 0 100.00 6.00

Record  19 kvk8_G1 8 9 6 2 8 0 0 100.00 0.00

Record  25 KvK11_G4 24 30 11 13 24 2 0 100.00 7.69

Record  29 W12_G2 8 10 7 1 8 1 0 100.00 11.11

Record  27 KvK23_Lab 4 4 1 3 4 0 0 100.00 0.00

Record  30 W15_G1 18 23 11 7 18 2 0 100.00 10.00

Record  33 W15_G4 15 17 12 3 15 0 0 100.00 0.00

Sum 176 202 89 87 176 12 0

Average 100.00 6.10  

4.4.1.5. Results comparison 

Features extraction has proved its effectiveness in multidimensional study, especially by using 

DFA and variance as feature extraction. In Figure 4.8 and 4.9. we have presented initial obtained 

results in multidimensional study without features extraction where we got 100% for sensitivity 

average, 35.06% for other events rate and 231 other events. In addition, obtained results by applying 

feature extraction on detected events in multidimensional study are illustrated; we got 90.77 % for 

sensitivity average, 32.79 % for other events rate and 188 other events when applying Sample 

entropy thresholding, 73.95 % for sensitivity average, 17.29 % for other events rate and 58 other 

events when applying DFA thresholding, 82.93 % for sensitivity average, 15.91 % for other events 
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rate and 59 other events when applying variance thresholding and 100 % for sensitivity average, 6.1 

% for other events rate and 12 other events when removing noisy EHG records from list. 

One can notice clearly the decreasing number of other events that are not identified as contractions 

by expert when applying feature extraction. But what should be mentioned here is the not expected 

decrease in sensitivity from 100% to 82,79 % using SampEn thresholding, to 73.95% using DFA 

extraction and to 82.93 % using variance extraction. DFA and variance presents the lowest number of 

other events with 58 and 59 respectively when applying feature extraction thresholding. Removing 

noisy signals from course and obtaining highest value for sensitivity and lowest value other events 

rate average indicate efficiency of our implemented methods for contraction detection.  

 
Figure 4.8: Evolution of sensitivity and other events rate of DCS method with fisher and SNR elimination techniques in 

multidimensional with and without features extraction for 36 records and for 13 non noisy EHGs records without features extraction. 

 
Figure 4.9: Evolution of other events number of DCS method with fisher and SNR elimination techniques in multidimensional for 36 

records with and without features extraction and for 13 non noisy EHGs records without features extraction. 
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4.4.2. Results in monodimensional study using automated fusion method 
4.4.2.1. Results after sample entropy extraction 

In this section, the remaining sample entropy of detected events undergoes sample entropy 

thresholding are then validated using margin validation test. The obtained results, illustrated in Table 

4.8., are not encouraging since sensitivity has decreased from 97.74 % to 85.09% and only 23 other 

events were removed over 116, giving a decrease in the other event rate from 22.62 % to 21.18%. 

Table 4.8: Detected Event validation using sample entropy extraction for 36 EHGs records using automated fusion 
method. 

Record Signal 
Label

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 6 4 3 7 0 0 100.00 0.00
Record  2 F2_G1 5 7 2 2 4 1 1 80.00 20.00
Record  3 F4_G1 15 16 4 10 14 1 1 93.33 6.67
Record  4 F4_G2 8 13 2 6 8 5 0 100.00 38.46
Record  5 F4_G3 16 17 6 6 12 6 4 75.00 33.33
Record  6 F6_G1 8 15 2 4 6 9 2 75.00 60.00
Record  7 F6_G2 6 13 3 3 6 5 0 100.00 45.45
Record  8 F6_G3 7 16 3 3 6 6 1 85.71 50.00
Record  9 F6_Lab 5 8 3 2 5 2 0 100.00 28.57
Record  10 F21_Lab 13 10 8 2 10 0 3 76.92 0.00
Record  11 FR0003_P 5 8 2 3 5 2 0 100.00 28.57
Record  12 FR0007_L 5 6 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 1 0 2 2 0 2 50.00 0.00
Record  14 FR0010_L 8 6 0 6 6 0 2 75.00 0.00
Record  15 KvK6_G1 18 16 9 4 13 3 5 72.22 18.75
Record  16 KvK6_G2 47 41 23 17 40 3 7 85.11 6.98
Record  17 KvK7_G3 12 15 6 5 11 3 1 91.67 21.43
Record  18 KvK7_G4 13 16 6 5 11 5 2 84.62 31.25
Record  19 kvk8_G1 8 7 5 2 7 1 1 87.50 12.50
Record  20 KVK9_G2 9 14 6 2 8 5 1 88.89 38.46
Record  21 KvK10_G1 4 6 1 2 3 1 1 75.00 25.00
Record  22 KvK11_G1 11 13 4 6 10 2 1 90.91 16.67
Record  23 KvK11_G2 13 22 4 8 12 11 1 92.31 47.83
Record  24 KvK11_G3 22 15 4 12 16 1 6 72.73 5.88
Record  25 KvK11_G4 24 25 9 14 23 1 1 95.83 4.17
Record  26 w6_g5 2 10 1 1 2 5 0 100.00 71.43
Record  27 KvK23_Lab 4 3 3 0 3 0 1 75.00 0.00
Record 28 MAP_013 5 5 0 3 3 2 2 60.00 40.00
Record  29 W12_G2 8 7 5 2 7 0 1 87.50 0.00
Record  30 W15_G1 18 19 8 7 15 4 3 83.33 21.05
Record  31 W15_G2 12 14 2 5 7 3 5 58.33 30.00
Record 32 W15 G3 14 16 9 3 12 1 2 85.71 7.69
Record  33 W15_G4 15 14 10 2 12 0 3 80.00 0.00
Record  34 w11 g1 3 6 2 1 3 0 0 100.00 0.00
Record  35 kvk22g1 8 13 4 4 8 3 0 100.00 27.27
Record  36 w13_g2 7 10 2 4 6 2 1 85.71 25.00

389 449 163 165 328 93 61
85.09 21.18

Sum
Average  
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4.4.2.2. Results after DFA extraction 

The obtained results, illustrated in Table 4.9, are encouraging since 33 other events remains over 

116 with 10.99% for other event rat. But sensitivity has decreased from 97.74% to 70.64%. This 

significant decrease is related to the application of the threshold on records that present few other 

events. Therefore, when applying threshold which is related to the DFA mean, some contractions will 

be removed which could lead to this sensitivity decrease. As example, on record 1, we could initially 

detect 7 contractions over 7, but only 4 contractions over 7 after applying DFA threshold. 

Table 4.9: Detected Event validation using DFA extraction for 36 EHG records using automated fusion method. 

Record Signal 
Label

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 4 4 0 4 0 3 57.14 0.00
Record  2 F2_G1 5 4 1 3 4 0 1 80.00 0.00
Record  3 F4_G1 15 13 4 9 13 1 2 86.67 7.14
Record  4 F4_G2 8 10 2 5 7 2 1 87.50 22.22
Record  5 F4_G3 16 11 8 2 10 1 6 62.50 9.09
Record  6 F6_G1 8 8 2 4 6 2 2 75.00 25.00
Record  7 F6_G2 6 8 1 2 3 5 3 50.00 62.50
Record  8 F6_G3 7 11 3 4 7 3 0 100.00 30.00
Record  9 F6_Lab 5 5 3 2 5 0 0 100.00 0.00

Record  10 F21_Lab 13 9 6 4 10 0 3 76.92 0.00
Record  11 FR0003_P 5 5 2 2 4 1 1 80.00 20.00
Record  12 FR0007_L 5 4 1 3 4 0 1 80.00 0.00
Record  13 FR0008_L 4 1 0 1 1 0 3 25.00 0.00
Record  14 FR0010_L 8 4 0 4 4 0 4 50.00 0.00
Record  15 KvK6_G1 18 11 8 3 11 0 7 61.11 0.00
Record  16 KvK6_G2 47 25 17 6 23 1 24 48.94 4.17
Record  17 KvK7_G3 12 13 4 4 8 4 4 66.67 33.33
Record  18 KvK7_G4 13 11 6 2 8 3 5 61.54 27.27
Record  19 kvk8_G1 8 7 7 0 7 0 1 87.50 0.00
Record  20 KVK9_G2 9 8 5 2 7 0 2 77.78 0.00
Record  21 KvK10_G1 4 4 1 2 3 0 1 75.00 0.00
Record  22 KvK11_G1 11 9 4 3 7 2 4 63.64 22.22
Record  23 KvK11_G2 13 13 4 8 12 2 1 92.31 14.29
Record  24 KvK11_G3 22 11 2 12 14 0 8 63.64 0.00
Record  25 KvK11_G4 24 17 7 9 16 1 8 66.67 5.88
Record  26 w6_g5 2 5 0 2 2 2 0 100.00 50.00
Record  27 KvK23_Lab 4 3 2 1 3 0 1 75.00 0.00
Record 28 MAP_013 5 3 0 2 2 1 3 40.00 33.33
Record  29 W12_G2 8 4 4 0 4 0 4 50.00 0.00
Record  30 W15_G1 18 13 6 7 13 0 5 72.22 0.00
Record  31 W15_G2 12 9 3 5 8 0 4 66.67 0.00
Record 32 W15 G3 14 10 7 3 10 0 4 71.43 0.00
Record  33 W15_G4 15 10 9 1 10 0 5 66.67 0.00
Record  34 w11 g1 3 3 2 0 2 0 1 66.67 0.00
Record  35 kvk22g1 8 8 4 3 7 1 1 87.50 12.50
Record  36 w13_g2 7 8 2 3 5 1 2 71.43 16.67

389 302 141 123 264 33 125
70.64 10.99

Sum
Average  
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4.4.2.3. Results after Variance extraction 

The obtained results, illustrated in Table 4.10, are encouraging since only 38 other events remain 

over 116. Thus, other events rate decreased from 22.62 % to 12.09 %. But the sensitivity has reduced 

also from 97.74% to 76.4 % where almost 100 contractions were lost. 

Table 4.10: Detected Events’ validation using variance extraction for 36 EHGs records using automated fusion method. 

Record Signal Label Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 5 4 2 6 0 1 85.71 0.00
Record  2 F2_G1 5 6 2 3 5 0 0 100.00 0.00
Record  3 F4_G1 15 15 4 9 13 1 2 86.67 7.14
Record  4 F4_G2 8 8 2 4 6 2 2 75.00 25.00
Record  5 F4_G3 16 10 8 2 10 0 6 62.50 0.00
Record  6 F6_G1 8 9 2 5 7 2 1 87.50 22.22
Record  7 F6_G2 6 9 2 2 4 5 2 66.67 55.56
Record  8 F6_G3 7 11 3 4 7 2 0 100.00 22.22
Record  9 F6_Lab 5 5 3 2 5 0 0 100.00 0.00

Record  10 F21_Lab 13 11 8 3 11 0 2 84.62 0.00
Record  11 FR0003_P 5 6 2 2 4 1 1 80.00 20.00
Record  12 FR0007_L 5 5 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 1 0 1 1 0 3 25.00 0.00
Record  14 FR0010_L 8 5 0 5 5 0 3 62.50 0.00
Record  15 KvK6_G1 18 14 10 4 14 0 4 77.78 0.00
Record  16 KvK6_G2 47 27 18 8 26 1 21 55.32 3.70
Record  17 KvK7_G3 12 13 4 4 8 4 4 66.67 33.33
Record  18 KvK7_G4 13 10 6 2 8 2 5 61.54 20.00
Record  19 kvk8_G1 8 7 7 0 7 0 1 87.50 0.00
Record  20 KVK9_G2 9 9 6 3 9 0 0 100.00 0.00
Record  21 KvK10_G1 4 4 1 2 3 0 1 75.00 0.00
Record  22 KvK11_G1 11 9 4 3 7 2 4 63.64 22.22
Record  23 KvK11_G2 13 16 4 9 13 4 0 100.00 23.53
Record  24 KvK11_G3 22 10 3 8 11 0 11 50.00 0.00
Record  25 KvK11_G4 24 22 8 11 19 2 5 79.17 9.52
Record  26 w6_g5 2 8 1 1 2 3 0 100.00 60.00
Record  27 KvK23_Lab 4 3 3 0 3 0 1 75.00 0.00
Record 28 MAP_013 5 4 0 3 3 1 2 60.00 25.00
Record  29 W12_G2 8 4 4 0 4 0 4 50.00 0.00
Record  30 W15_G1 18 10 6 4 10 0 8 55.56 0.00
Record  31 W15_G2 12 9 3 5 8 0 4 66.67 0.00
Record 32 W15 G3 14 10 7 3 10 0 4 71.43 0.00
Record  33 W15_G4 15 13 12 1 13 0 2 86.67 0.00
Record  34 w11 g1 3 4 2 0 2 1 1 66.67 33.33
Record  35 kvk22g1 8 13 4 4 8 3 0 100.00 27.27
Record  36 w13_g2 7 9 3 3 6 2 1 85.71 25.00

389 334 157 126 283 38 106
76.40 12.09

Sum
Average  

4.4.2.4. Removing noisy records using automated fusion method without feature extraction 

From the previously selected 14 uterine EMG records which present less noise and other events, 

we computed again the sensitivity and the other event rate. Once again, the results are good as shown 

in Table 4.11.  We obtain 96.12% for sensitivity average where we could detect 171 among 176 

labeled contractions, and only 3.8% for other event rate average with 5 other events remaining from 

the 188 initially detected.  
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Table 4.11: Detected Event validation when noisy EHG records were removed using DCS with automated fusion method. 

Record Signal 
Label

Labeled 
Contractions

Detected 
Events

Totally 
detected

Partially 
detected

 (Partially & Totally) 
detected contractions

Other ruptures 
detection

Non detected 
contractions

sensitivity 
%

Other events 
%

Record 1 SI0018_G1 7 6 4 3 7 0 0 100.00 0.00
Record  3 F4_G1 15 19 4 11 15 1 0 100.00 6.25
Record  10 F21_Lab 13 13 8 5 13 0 0 100.00 0.00
Record  12 FR0007_L 5 6 1 4 5 0 0 100.00 0.00
Record  13 FR0008_L 4 3 0 3 3 0 1 75.00 0.00
Record  14 FR0010_L 8 7 0 7 7 0 1 87.50 0.00
Record  16 KvK6_G2 47 47 25 21 46 3 1 97.87 6.12
Record  19 kvk8_G1 8 9 7 1 8 1 0 100.00 11.11
Record  25 KvK11_G4 24 27 9 14 23 2 1 95.83 8.00
Record  27 KvK23_Lab 4 4 3 1 4 0 0 100.00 0.00
Record  29 W12_G2 8 8 6 2 8 0 0 100.00 0.00
Record  30 W15_G1 18 23 8 10 18 4 0 100.00 18.18
Record  33 W15_G4 15 16 12 2 14 0 1 93.33 0.00

176 188 87 84 171 11 5
96.12 3.82

Sum
Average  

 

4.4.2.5. Results comparison 

Features extraction has proven its effectiveness in monodimensional study using automated fusion 

method, especially by using DFA and variance as feature extraction. In Figure 4.10 and 4.11. we have 

presented initial obtained results in monodimensional study without features extraction where we got 

97.74% for sensitivity average, 22.62 % for other events rate and 116 other events. In addition, by 

applying feature extraction we got 85.09 % for sensitivity average, 21.18 % for other events rate and 

93 other events when applying Sample entropy thresholding, 70.64 % for sensitivity average, 10.99 

% for other events rate and 33 other events when applying DFA thresholding, 76.4 % for sensitivity 

average, 12.09 % for other events rate and 38 other events when applying variance thresholding and 

96.12 % for sensitivity average, 6.1 % for other events rate and 5 other events when removing noisy 

EHG records from list. 

One can notice clearly the decreasing number of other events that are not identified as contractions 

by expert when applying feature extraction. But what should be mentioned here is the not expected 

decreasing in sensitivity from 97.74% to 85.09 % when using SampEn thresholding, to 70.64% when 

using DFA thresholding and to 76.4 % when using variance thresholding. DFA and variance presents 

the lowest number of other events for 33 and 38 respectively when applying feature thresholding. 

Removing noisy signals permits to obtain the highest value for sensitivity and the lowest value for 

other events rate and to prove indicate the efficiency of the implemented methods for contraction 

detection. 
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Figure 4.10: Evolution of sensitivity and other events rate of DCS method with fisher and SNR elimination techniques in 

monodimensional study using automated fusion method for 36 records and for 14 non noisy EHGs records without features extraction. 

 
Figure 4.11: Evolution of other events number of DCS method with fisher and SNR elimination techniques in monodimensional study 

using automated fusion method for 36 records and for 14 non noisy EHGs records without features extraction. 

4.5. Discussion & Conclusion 
In this chapter, features to be extracted are introduced first theoretically, then applied on noisy 

bipolar EHG records after using dynamic selection of threshold and finally assessed by comparing 

sensitivity and other event rate. Detrended fluctuation analysis has proven its efficiency, as nonlinear 

technique, while variance, as linear technique, confirms its effectiveness among all feature extraction 

techniques. The very good results obtained when removing the noisy signal, even if not ethical from 

the scientific point of view, permits to enhance also the fact that we must fight to get the best SNR 

while recording the signals. 
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General Conclusions  
 

The dynamic cumulative sum (DCS) of the localized and generalized likelihood ratios, estimated 

in two windows of analysis before and after the current moment, is a dynamic approach first 

implemented for the EHG segmentation by Mohamad Khalil et al. in 1999 [1]. It was applied without 

a priori knowledge or hypotheses for the detection of events on EHG recordings on women with 

different terms of pregnancy and during delivery, on signals acquired by two bipolar derivations 

placed on the median vertical axis of the abdominal wall. These signals are well filtered and the 

events were well classified. 

Our study was an extension of this work done previously in our lab. In the present work, the DCS 

method has been applied to raw uterine EMG signals acquired from a 4x4 matrix of electrodes with 

long sessions, the contractions being previously labeled by expert. 

Chapter 1 was devoted first to a review of the physiological data needed for good understanding of 

the uterus contractility, of the events involved, and to a clearly define the problem. This is how we 

recalled that the general objectives of this study, in long term in our laboratory, are to prevent 

premature births. In addition, different change detection methods, events validation method for the 

implemented detection, electrodes configuration, multidimensional level and feature extraction 

importance have been presented and discussed.  

Chapter 2 was dedicated to the application of DCS in monodimensional study. Our first trial was on 

monopolar EHG signals. Here we find the need to denoise those signals, hence CCA-EMD denoising 

technique was applied on monopolar EHGs. The results obtained with CCA-EMD filtering method, 

are better than the one obtained with raw monopolar EHG. But this denoising method could lead to 

difficulties in real time processing since our aim is creating an algorithm that could be implemented 

in systems with online uterine EMG monitoring and for long duration. Moreover, DCS method has 

been then applied on details after wavelet decomposition of these monopolar signals based on 

wavelet transform already developed in previous study [2]. Event tracking was based on a basic 

strategy of detection by considering the first detected change or rupture in the signals as the 

beginning of an event while the consecutive rupture is the end of this event. The obtained results, 

validated by the Margins validation test were bad, due to the high number of segmented events that 

were not related to contractions labeled by expert. Therefore, we decide to apply the DCS method to 

bipolar EHG signals. Bipolarization is indeed a simple and efficient way to increase the EHG SNR. 



 
150 

 

We implemented then methods to reduce the obtained over segmentation based on Fisher test and 

SNR technique which constitutes the first contribution. All the parameters values of all the methods 

have been chosen in order to maximize the average number of true positive and true negative of all 

bipolar channels, and to increase detection performance. 

In addition, the second contribution of this work is based on the fusion techniques of detected 

ruptures that have been implemented from all 12 bipolar channels. We have compared in this context 

three implemented methods, the first one based on temporal projection of detected ruptures on the 

bipolar channel that presents the highest SNR, the second one based on weighted majority vote 

system, the third one based on an automated fusion method. In addition, we have applied DCS 

method on details after wavelet decomposition, after selection of the details using Kullback Leibler 

Distance with Kolmogorov-Smirnov statistics. This latter is considered as a third contribution. In 

fact, we select different details than the ones used in monopolar approach, when using this dynamic 

selection of details. The events obtained with all these applications were validated using the Margin 

validation test. The improvement of methods induced most of the time a decrease in the number of 

other events and the increase in sensitivity was very encouraging.  

In chapter 3, the fourth contribution is manifested by the application of DCS in a multidimensional 

approach. In fact, the multidimensional approach was suggested in this chapter to test if we could get 

rid of the fusion methods needed with the monodimensional approach. DCS in multidimensional 

study was applied first on bipolar EHG records, then on the details previously selected. After the 

same Margin validation test, the obtained results were encouraging with a reduction of the detected 

other events number to half, when compared to the ones obtained when applying DCS method in 

monodimensional approach with temporal projection as fusion methods. But the best results for other 

detected events were obtained by using the weighted and automated fusion method in the 

monodimensional study.    

Chapter 4 was dedicated to feature extraction from the detected events in order to improve the 

identification of contractions and reduce the number of other events. For this context, we have 

selected the best methods from the monodimensional approach and from the multidimensional 

approach. Indeed, the monodimensional approach associated with weighted or automated fusion, are 

very similar. We select the automated fusion method since it does not rely on pre-defined weight, that 

will ease future application, and since the obtained other event rate is slightly lower than the one 

obtained with the weighted fusion method. On the other hand, we have selected the application of 

DCS in multidimensional study on bipolar EHG records due to its high sensitivity and low other 
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events number values, when compared to the ones obtained on details after wavelet decomposition. 

We selected, among all the possible features, only 2 nonlinear parameters, sample entropy and 

detrended fluctuation analysis, and one linear parameter, the variance. The sixth contribution is 

introduced by the obtained results while applying DFA and variance since they are very encouraging 

in terms of decrease in the number of other events. 

The detection of premature births from EHG processing is based on the characterization of the 

events contained in this signal. The extraction of these events must be done in an adaptive and 

unsupervised way, since the signal characteristics change from one woman to another and also 

depend on the term of pregnancy. 
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Perspectives 
As futures work perspectives, this study can be enhanced by: 

- Implementing additional tests and techniques during the first minutes of uterine EMG signal 

acquisition in order to test the electrodes status and signal quality. 

- Increase the actual database of EHG signals by recordings made on pregnant women during different 

physiological and pathological situations (normal and risk pregnancies, term and preterm labor) in 

order to validate our results on a larger database.  

- Testing different ruptures changes detection methods. 

-  Use combination of the linear and nonlinear extracted features as input of a classifier in order to 

increase the percentage of classification between contraction and other events. As shown in Figure 

5.1 and 5.2, other events (in red) are grouped almost in one region.  
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Figure 5.1: Feature extraction using DFA and Variance of Record 20. 
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Figure 5.2: Feature extraction using Variance and Sample entropy of Record 7. 
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Our global target will be focused on implementing the above algorithm in digital signals processors 

like FPGA processors to improve the uterus online monitoring and by combining several preterm 

birth detection methods developed by our colleagues in our laboratory to provide the clinicians with 

an early prediction of preterm labor. 
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Appendix 
 

Extracted from: M. Hassan, S. Boudaoud, J. Terrien, B. Karlsson, C. Marque, "Combination of 

canonical correlation analysis and empirical mode decomposition applied to denoising the labor 

electrohysterogram", IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2441-2447, Sep. 2011. 

 

Combination of Canonical Correlation Analysis and Empirical Mode Decomposition applied to 

denoising the labor Electrohysterogram 

 

 

A. Canonical Correlation Analysis (CCA)  

In BSS approach, the observed multichannel signals are assumed to reflect a linear combination of 

several sources which are associated with underlying physiological processes, artifacts and noise. The 

BSS approach aims to recover a set of unobserved source signals by using only a set of observed 

mixtures of sources. The observed time series X(t) =  is the result of an 

unknown mixture of a set of unknown source signals S(t) = with t = 1;…..;N, 

where N the number of samples, K the number of sensors and T is the transpose operator. The mixing 

is assumed to be linear, thus reducing the mixing to a matrix multiplication: 

X(t)=AS(t) 

 where A is the unknown mixing matrix. The aim is to estimate the mixing matrix and recover the 

original source signals S(t). This could be done by introducing the de-mixing matrix W such that it 

approximates the unknown source signals in S(t), by a scaling factor:  

Z(t)=WX(t)  

Ideally W is the inverse of the unknown mixing matrix A, up to scaling and permutation. There are 

many ways to solve the BSS problem depending on the definition of contrast functions. The ICA 

method tries to make the estimated sources as non-Gaussian as possible. However, in CCA and most of 

the ICA algorithms, the temporal correlations are not taken into consideration for solving contrast 

functions. CCA solves this BSS problem by forcing the sources to be maximally autocorrelated and 

mutually uncorrelated, while the mixing matrix is assumed to be square [1]. Consider the observed 

data matrix X(t) and its temporally delayed version Y(t)=X(t-1). The CCA method obtains two sets of 
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basis vectors, one for x and the other for y, such that the correlations between the projections of the 

variables onto these basis vectors are mutually maximized. The total covariance matrix is given by  

C= = E  

Where  and  are the auto-covariance matrices of X and Y respectively,  is the cross-

covariance matrix , and E is the expectation operation. The canonical correlation between X 

and Y can be calculated by solving these equations:  

 

 
with the canonical correlation coefficient  as the square root of the eigen-value, and  and  as 

eigen vectors. Since the solutions are related, only one of the eigen-value equations needs to be solved 

to get the demixing matrix w. The CCA gives the source signals that are uncorrelated with each other, 

maximally autocorrelated and ordered by decreasing autocorrelation. When BSS-CCA is applied to the 

EHG, the sources contributing to the EHG and noise are obtained. The artifacts can be removed by 

setting equal to zero, the columns representing the activations of the related sources, before the 

reconstruction of .  

 

with Z(t) the sources obtained by BSS-CCA, and  the mixing matrix, with its columns related 

to artifact sources, set to zero.  

B. Empirical Mode Decomposition (EMD) 

 The empirical mode decomposition (EMD) was proposed by Huang et al. as a new signal 

decomposition method for nonlinear and nonstationary signals [2]. The EMD decomposes a signal into 

a collection of oscillatory modes, called intrinsic mode functions (IMF), which represent fast to slow 

oscillations in the signal. Each IMF can be viewed as a subband of a signal. Therefore, the EMD can 

be viewed as subband signal decomposition. Given a signal x(t), the effective algorithm of EMD can 

be summarized as follows [2]: 

 1. Identify all extrema of x(t)  

2. Interpolate along the point of x(t) identified in the first step, in order to form an upper (t) and 

lower envelope . 

 3. Compute the mean m(t)=( + )/2  

4. Extract the detail d(t)=x(t)-m(t) 

 5. Iterate on the residual m(t) 
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 In practice, the above procedure has to be refined by a sifting process [2] which amounts to first 

iterating steps 1 to 4 upon the detail signal d(t), until this latter can be considered as zero-mean 

according to some stopping criterion. Once this is achieved, the detail is referred to as an Intrinsic 

Mode Function (IMF), the corresponding residual is computed and step 5 applies. By construction, the 

number of extrema is decreased when going from one residual to the next, and the whole 

decomposition is guaranteed to be completed with a finite number of modes. Denoising by EMD is in 

general carried out by partial signal reconstruction, which is based on the fact that noise components 

lie in the first several IMFs. 

C. CCA/EMD combination  

We assume that the BSS is the best way to extract the uterine bursts and based on the hypothesis that 

the sources of uterine bursts have higher autocorrelation than the sources corresponding to the artifacts, 

we choose the CCA method as a way to extract the uterine bursts and in the same time eliminate all the 

low autocorrelated noise.  The sources of device noise (electronic artifacts) are high autocorrelated and 

then it is not possible to remove it by using only the CCA method. It has been demonstrated that EMD 

shows good performance in removing this kind of noise [3]. For this and other reasons, we chose to use 

EMD as the complementary tool to remove the residual electronic noise. We call this combination the 

CCA_EMD algorithm. 

 A very important step to consider here is the choice of the CCs corresponding to the artifacts, in order 

to remove them before signal reconstruction. We should detect the threshold corresponding to the 

transition from ‘uterine activity’ components to ‘noise activity’ components. The methodology we 

propose to choose the optimal threshold value can be described as following: 

- Calculate the CCA components and the associated autocorrelation coefficients. 

- We choose a threshold ranging between 0 and 1 (with 0.1steps), then remove the CCs below 

this value and reconstruct the signals.  

-  We compute the original bipolar signals (BipOrg) from two raw channels X and Y, and the 

bipolar signal obtained from the same channels after the two preceding processing steps 

(BipDen). We then get two versions of the bipolar signals, one created from the raw signals 

directly (BipORG) and the other by eliminating all the CCs below the given threshold of 

autocorrellation. (BipDen). We then compute the correlation between BipOrg and BipDen.  

- We repeat these steps for the 20 contractions from six women and then we calculate the 

average and standard deviation at each autocorrelation value, for each given threshold.  
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We thus obtained a value of 0.5 as the optimal threshold value for eliminating noisy CCs as we got the 

highest correlation between BipOrg and BipDen for this value.  

By using a threshold value equal to 0.5 and removing before reconstruction of the EHG the 

components below this value, we obtain the intermediate denoised EHGs in which all the fetal 

movements, maternal/fetal ECG and part of electronic noises have been removed from the original 

signal. After BSS_CCA denoising, some noise remains that presents high autocorrelation coefficient 

(specially the electronic noise coming from the devices). These artifacts are not completely removed 

by BSS_CCA. To remove this noise, we apply EMD to the signals previously denoised by BSS_CCA.  

Based on visual inspection, partial reconstruction is then applied by removing the first three IMFs that 

we consider to be high frequency noise.  
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