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Résumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Aim and structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Neurons and action potentials . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Action potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Measurement of electrical activity of the brain . . . . . . . . . . . . 6

1.3 Basal ganglia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Beta oscillations in basal ganglia . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Parkinsonian beta oscillations . . . . . . . . . . . . . . . . . . . . . 11

1.5.2 Origin of the pathological beta oscillations . . . . . . . . . . . . . . 12

1.6 Deep brain stimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Clinical use of DBS in Parkinson’s disease . . . . . . . . . . . . . . 14

1.6.2 Closed-loop stimulation . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Neural activity modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7.1 Firing rate models . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7.2 Firing rate model of the STN-GPe loop . . . . . . . . . . . . . . . . 20

1.8 Analysis and control of nonlinear time-delay systems . . . . . . . . . . . . 21

1.8.1 Notation and comparison functions . . . . . . . . . . . . . . . . . . 21

1.8.2 Stability and Lyapunov direct method . . . . . . . . . . . . . . . . 22

1.8.3 Systems with output . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8.4 Systems with input. Input-to-output and input-to-state stability . . 26



Contents

2. Stability of the firing rate model of STN–GPe loop with proportional feedback . 29

2.1 Global exponential stability of globally Lipschitz systems . . . . . . . . . . 30

2.1.1 Global exponential stability . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Lyapunov-Krasovskii approach for global exponential stability . . . 31

2.1.3 GES LKF characterization . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Stability of the firing rate model of STN–GPe under proportional stimulation 33

2.2.1 Model description and extension . . . . . . . . . . . . . . . . . . . . 34

2.2.2 High-gain proportional stabilization . . . . . . . . . . . . . . . . . . 34

2.2.3 Issues with the simple proportional controller . . . . . . . . . . . . 38

2.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . 46

3. Counterexample to a sufficient condition for uniform asymptotic partial stability 51

3.1 Adaptive proportional controller for the firing rate model of STN–GPe loop 52

3.1.1 Simple adaptive controller . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Adaptive controller with σ-modification . . . . . . . . . . . . . . . . 55

3.2 Partial stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Link between uniform asymptotic y-stability and IOS . . . . . . . . . . . . 58

3.4 Importance of uniformity in IOS analysis . . . . . . . . . . . . . . . . . . . 59

3.5 Counterexample to a sufficient condition for uniform asymptotic y-stability 60

3.5.1 Disproved sufficient condition . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Proof of Lemma 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.2 Proof of Proposition 18 . . . . . . . . . . . . . . . . . . . . . . . . . 68

4. Adaptive stabilization with σ-modification of time delay nonlinear systems applied

to the firing rate model of STN-GPe . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Sigma modification for globally Lipschitz time-delay systems . . . . . . . . 73

4.1.1 Sigma modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 Stability in the mean . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.3 Stability in the mean of time-delay globally Lipschitz systems . . . 75

4.1.4 Construction of a strict Lyapunov-Krasovskii functional with linear

bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

iv



Contents

4.2 Application to the firing rate model of STN–GPe . . . . . . . . . . . . . . 78

4.2.1 Stability in the mean of the firing rate model . . . . . . . . . . . . . 79

4.2.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.2.1 Effect of τθ and σ on controller performance . . . . . . . . 80

4.2.2.2 Equilibrium estimation with a low-pass filter . . . . . . . . 81

4.2.2.3 Adaptation to changing parameters . . . . . . . . . . . . . 85

4.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Proof of Theorem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Proof of Lemma 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.3 Proof of Lemma 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.4 Proof of Proposition 30 . . . . . . . . . . . . . . . . . . . . . . . . . 94

5. Frequency-selective quenching of endogenous and exogenous oscillations . . . . . 95

5.1 Delayed neural fields model of the STN–GPe loop . . . . . . . . . . . . . . 96

5.2 Frequency response of the firing rate model of STN–GPe loop . . . . . . . 102

5.3 Frequency-selective adaptive controller . . . . . . . . . . . . . . . . . . . . 107

6. Conclusions, issues and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Contributions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

v



Contents

vi



LIST OF FIGURES

1.1 Schematical illustration of a neuron . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Neuron response to stimulation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Location of the basal ganglia within the brain . . . . . . . . . . . . . . . . 8

1.4 Main structures of the basal ganglia and connections between them. . . . . 9

1.5 STN spectrogram in Parkinson’s disease ON and OFF medication . . . . . 12

1.6 Correlation between STN beta and parkinsonian motor symptoms . . . . . 13

1.7 Electrode placement in deep brain stimulation for PD . . . . . . . . . . . . 15

1.8 Effect of deep brain stimulation on local field potential . . . . . . . . . . . 16

1.9 Healthy and parkinsonian behavior of (1.3) . . . . . . . . . . . . . . . . . . 21

1.10 Comparison functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Stability of the firing rate model of STN–GPe model under proportional

feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Stability of the firing rate model of STN–GPe model under proportional

feedback with theta estimated from Proposition 10 . . . . . . . . . . . . . 36

2.3 Persistence of pathological oscillations in the firing rate model of STN–GPe

inder proportional control with small theta . . . . . . . . . . . . . . . . . . 37

2.4 Endogenous oscillations in GPe . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Adaptive proportional control with no dissipation and no disturbance . . . 53

3.2 Adaptive proportional control with no dissipation and no disturbance,

small τθ causes overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Parameter drift instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Effect of σ-modification on parameter drift instability . . . . . . . . . . . . 56

3.5 Numerically simulated solutions of (3.25) showing stickiness of the equilib-

rium effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Solution of (3.15) where vanishing input produces non-vanishing output . . 69

4.1 Simulation of system (4.14) with τθ = 10 and σ = 0. . . . . . . . . . . . . . 81



List of Figures

4.2 Simulation of system (4.14) with τθ = 90 and σ = 0 . . . . . . . . . . . . . 82

4.3 Simulation of system (4.14) with τθ = 30 and σ = 0.15 . . . . . . . . . . . 82

4.4 Simulation of system (4.14) with τθ = 30 and σ = 0.5 . . . . . . . . . . . . 83

4.5 Simulation of system (4.14) with τθ = 30 and σ = 0.9 . . . . . . . . . . . . 83

4.6 Illustration of the effect of τθ and σ on the adaptive controller performance 84

4.7 Adaptation to decrease of synaptic weights . . . . . . . . . . . . . . . . . . 86

4.8 Adaptation to increase of synaptic weights . . . . . . . . . . . . . . . . . . 86

5.1 Connection strengths in the spatiotemporal model . . . . . . . . . . . . . . 99

5.2 Activity of STN in delayed neural fields model in healthy condition . . . . 100

5.3 Activity of GPe in delayed neural fields model in healthy condition . . . . 101

5.4 Activity of STN in delayed neural fields model in parkinsonian condition . 101

5.5 Activity of GPe in delayed neural fields model in parkinsonian condition . 102

5.6 STN and GPe entrained by periodic cortical input . . . . . . . . . . . . . . 104

5.7 Frequency of oscillation of the delayed neural fields model is identical with

the input frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 The amplitude response of the delayed neural fields model . . . . . . . . . 106

5.9 Effect of the adaptive controller with σ-modification on exogenous β oscil-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.10 Adaptive controller with filtering reacts more weakly to oscillations in γ

range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.11 Delayed neural network model, oscillating alternately in β and γ frequency

bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.12 Delayed neural network model, oscillating alternately in β and γ frequency

bands with frequency-selective adaptive controller . . . . . . . . . . . . . . 112

viii



Acronyms

y-AS asymptotically y-stable.

y-UAS uniformly asymptotically y-stable.

0-y-UAS uniform asymptotically y-stable when no dis-

turbances are present.

DBS deep brain stimulation.

ECoG electrocorticography.

EEG electroencephalography.

GAS globally asymptotically stable.

GES globally exponentially stable.

GPe external part of globus pallidus.

GPi internal part of globus pallidus.

GUAS globally uniformly asymptotically stable.

IOS input-to-output stable.

ISS input-to-state stable.

LFP local field potential.

LKF Lyapunov-Krasovskii functional.

PD Parkinson’s disease.

SNc substantia nigra pars compacta.

SNr substantia nigra pars reticulata.

STN subthalamic nucleus.



Acronyms

VIM ventral intermediate nucleus of the thalamus.

x



RÉSUMÉ EN FRANÇAIS

La maladie Parkinson est la deuxième maladie neurodégénérative la plus fréquente du

monde. Un traitement pharmacologique est utilisé pour la plupart des patients mais dans

certains cas il est supplémenté ou remplacé par la stimulation profonde du cerveau (deep

brain stimulation, DBS). La DBS est une méthode de traitement invasive qui consiste

à stimuler électriquement certaines zones cérébrales du patient au moyen d’électrodes

implantées dans les structures profondes du cerveau.

Bien qu’efficace pour traiter de nombreux symptômes de la maladie, cette technique

possède certains désavantages dont certains peuvent être liés à la nature boucle-ouverte

du signal de stimulation délivré. Cette constatation a suscité l’intérêt pour la DBS en

boucle fermée, dans laquelle le signal de stimulation est adapté en temps réel sur la base de

mesures de l’activité cérébrale du patient. A cette fin, l’un des bio-marqueurs pertinents

de la maladie Parkinson est l’augmentation de la puissance de l’activité cérébrale dans la

bande fréquentielle beta (10-30 Hz) dans les ganglions de la base, notamment le noyau

sous-thalamique (subthalamic nucleus, STN) et le globus pallidus externe (GPe).

Dans cette thèse nous utilisons le modèle de la boucle STN-GPe proposé dans [Nevado

Holgado et al., 2010] pour proposer de nouvelles stratégies de DBS en boucle fermée. Ce

modèle est fondé sur l’hypothèse selon laquelle les oscillations pathologiques naissent d’un

couplage synaptique disproportionné entre le STN et le GPe [Plenz and Kital, 1999]. Ce

modèle a déjà été utilisé auparavant pour montrer qu’un signal de stimulation propor-

tionnel appliqué au STN est suffisant pour assurer la stabilité asymptotique du système

(et par conséquent la disparition des oscillations pathologiques) à condition que les con-

nections internes au GPe sont faibles [Chaillet et al., 2017a; Haidar et al., 2016]. Cette

démarche comporte de nombreux avantages sur la DBS traditionnelle, dans laquelle les

paramètres de la stimulation sont fixés. Cependant, il reste nécessaire de choisir le gain

proportionnel le plus adapté, ce qui nécessite un procédé manuel d’optimisation avec un

médecin spécialiste et empêche son efficacité au cours du temps en fonction de l’évolution

des symptômes de la maladie.

Dans cette thèse, nous proposons donc un correcteur adaptatif dont le gain de stimu-
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lation s’adapte automatiquement à la condition du patient à partir de mesures en temps

réel de son activité cérébrale. Afin d’évaluer l’efficacité de cette stratégie, nous étudions

analytiquement les performances de ce correcteur adaptatif pour prouver la disparition des

oscillations cérébrales pathologiques dans le modèle [Nevado Holgado et al., 2010], puis

employons des méthodes numériques pour valider son comportement dans des modèles

plus réalistes biologiquement. De part la nature non-linéaire des dynamiques neuronales

et la présence de retards (dus à la vitesse limitée des potentiels d’action le long des axones),

ces objectifs requièrent le développement d’outils adaptés en théorie du contrôle.

Le manuscrit est composé de cinq chapitres.

Le Chapitre 1 présente un aperçu de la maladie Parkinson, des oscillations beta dans

les ganglions de la base et de la DBS. Nous introduisons également le modèle de population

à partir duquel nous développons les résultats théoriques de cette thèse, ainsi que les outils

mathématiques nécessaires.

Le Chapitre 2 est consacré à l’étude de la stabilité exponentielle globale (global ex-

ponential stability, GES) des systèmes à retards globalement Lipschitz. Les résultats

classiques pour établir la GES nécessitent la construction d’une fonctionnelle stricte de

Lyapunov-Krasovskii (Lyapunov-Krasovskii functional, LKF), dont le taux de dissipation

le long les solutions du système est exprimé en fonction de la LKF elle-même. Obtenir

un tel taux de dissipation s’avère souvent difficile dans les applications pratiques. Il est

souvent plus aisé de trouver une LKF ‘ponctuelle’, dont le taux de la dissipation est pro-

portionnel à la valeur instantanée de la solution. Nous prouvons que, pour les systèmes

globalement Lipschitz, il est toujours possible de construire une LKF stricte si une LKF

ponctuelle existe (Théorème 8). Ce résultat permet ainsi d’établir la GES à partir de

la connaissance d’une simple LKF ponctuelle. Nous appliquons ensuite ces résultats au

modèle de l’activité cérébrale introduit dans Chapitre 1. La Proposition 10 établit que

le modèle est GES sous DBS proportionnelle sur le STN, à condition que les connec-

tions internes dans GPe sont faibles et que le gain du contrôle θ dépasse une certaine

valeur critique θ∗. Nous confirmons ces prédictions théoriques au travers de simulations

numériques.

Dans le Chapitre 3, nous introduisons le correcteur adaptatif qui constitue la contribu-

tion principale de cette thèse. Nous proposons une loi de commande basée sur l’adaptation

en temps réel du gain proportionnel de stimulation, sur la base de mesures effectuées sur

le STN. Cette approche permet de contourner les principales limitations de la DBS pro-

portionnelle à gain fixé. Nous utilisons pour cela un correcteur avec ‘modification σ’

[Ioannou and Kokotovic, 1984], jusqu’ici réservée aux systèmes sans retards, pour éviter

xii
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toute dérive des paramètres en présence de bruits et limiter toute sur-stimulation.

L’état du système ainsi bouclé contenant un paramètre supplémentaire (le gain adap-

tatif), nous utilisons les outils de la théorie de la stabilité partielle pour démontrer

l’efficacité de la correction proposée. Un des résultats importants de ce chapitre mon-

tre que la stabilité partielle asymptotique uniforme (y-UAS) est équivalente à la stabilité

entré-sortie (input-to-output stability, IOS) si le système évolue sur un ensemble limité

(Lemme 17). Cet outil permet de garantir la robustesse vis-à-vis de signaux exogènes, à

partir d’informations sur la stabilité interne du système. L’uniformité dans l’état initial

est essentielle pour démontrer ce résultat, comme nous le montrons dans la Proposition 18

avec un système y-AS (non-uniformément) évoluant sur un compact mais ne bénéficiant

pas de la propriété d’IOS. Dans la Proposition 21, nous donnons par ailleurs un contre-

exemple à un théorème sur y-UAS paru dans l’ouvrage [Vorotnikov, 1998] et montrons

ainsi que ce théorème n’est pas suffisant pour garantir l’uniformité dans l’état initial.

Le Chapitre 4 est consacré à la stabilisation de systèmes à retards globalement Lip-

schitz avec le correcteur adaptatif introduit dans le Chapitre 3 (modification σ). Nous

introduisons pour cela une notion de la stabilité en moyenne (stability in the mean) pour

quantifier le comportement de ces systèmes et prouvons (Théorème 27) que tout système

globalement Lipschitz, stabilisable par commande proportionnelle, est stable en moyenne

sous le correcteur adaptatif proposé. L’élément clé de cette preuve (Lemmes 28 et 29)

est la construction explicite d’une LKF stricte sur la base d’une LKF ponctuelle. Nous

montrons également l’efficacité de ce correcteur au travers de simulations numériques.

Dans le Chapitre 5, nous testons numériquement l’efficacité du correcteur adaptatif

sur des modèles plus complexes et plus proches de la réalité biologique. Nous util-

isons pour cela un modèle de champs neuronaux à retards [Detorakis et al., 2015], dans

lequel l’activité des populations neuronales est représentée par une fonction de la posi-

tion. Nous présentons des simulations numériques suggérant que le correcteur proposé

est capable d’interrompre les oscillations pathologiques indépendamment de leur prove-

nance (génération endogène dans la boucle STN-GPe ou entrainement par les oscillations

externes). Nous ajoutons également un filtre passe-bande au correcteur pour permettre

une atténuation sélective des oscillations pathologiques tout en limitant l’impact sur les

oscillations non-pathologiques.
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Chapter 1 Introduction

1.1 Aim and structure of this thesis

Closed-loop deep brain stimulation (DBS) for treatment of symptoms of Parkinson’s dis-

ease (PD) is an active field of research that promises better life conditions for people

suffering from PD. While experimental validation of any new stimulation approach is the

ultimate goal of all scientific endeavor in this domain, the testing process is slow and

expensive, due to necessary safety precautions, as well as the need for qualified personnel

and material components.

On the other hand, mathematical and computational models of brain activity provide

an ideal testbed for exploring new ideas, as analytical reasoning and simulations are

comparatively cheap and risk-free. Moreover, analytical insights gained from work on

models can translate (in conjunction with experimental data) to a deeper understanding

of the mechanisms and phenomena under study.

In this thesis we use a firing rate model of subthalamic nucleus (STN) – external

globus pallidus (GPe) loop, which plays a crucial role in the generation of pathological

brain activity related to Parkinson’s disease, to propose and test an adaptive DBS scheme

that improves upon clinically employed solutions.

In Chapter 1 we provide introductory information and context for the considered

issues. We recall basic information about the nervous system and the basal ganglia, as

well as Parkinson’s disease. We then describe parkinsonian beta (10-30 Hz) oscillations,

which are an important biomarker used in research into closed-loop deep brain stimulation

(DBS), and the DBS itself, highlighting recent interest and developments in closed-loop

stimulation.

Then we describe mathematical models of neural activity to introduce the firing rate

model of the basal ganglia, exhibiting beta oscillations, proposed originally in [Nevado

Holgado et al., 2010], that will be used throughout this thesis. Finally, we provide an

overview of the mathematical tools and methods that will be used in the following chapters

to analyze stability of the modeled system.

In Chapter 2 we study stability of the model proposed in [Nevado Holgado et al.,

2010]. We add a proportional control input, acting on only one of the involved neuronal

populations, and prove that the system is globally exponentially stable (does not exhibit

beta oscillations), if the internal connections within the uncontrolled population are weak

and the proportional gain is high.

To that aim, we first show that for globally Lipschitz systems a Lyapunov-Krasovskii

functional, whose dissipation rate along the solutions contains only the current value of the
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state (and not the whole functional), is enough to guarantee global exponential stability,

thus relaxing existing criteria for global exponential stability of time-delay systems. We

do it by explicitly constructing a Lyapunov-Krasovskii functional that satisfies existing

stability criteria.

In Chapter 3 we introduce the adaptive controller with σ-modification, which is the

main focus of this thesis. Since the extended system contains an additional adaptive

variable, we reach for the tools from the field of partial stability and output stability.

We show that, for time-delay systems evolving on bounded sets, global output uniform

asymptotic stability of the unforced system is equivalent to input-to-output stability,

reflecting certain robustness of the system under consideration to exogenous disturbances.

We also disprove with a simple finite-dimensional counterexample a sufficient condition

for global output uniform asymptotic stability, involving a Lyapunov-like functional with

dissipation only in the sub-state of interest, originally presented in [Vorotnikov, 1998].

In Chapter 4 we analyze stability of globally Lipschitz time-delay systems that are sta-

bilizable with high-gain proportional feedback under adaptive control with σ-modification.

We show that the adaptive controller proposed in Chapter 3 induces existence of an

attractive invariant set. Moreover, it forces the system to converge to a neighborhood

of the equilibrium, whose size is “proportional” to the tuning variable σ, present in the

controller. This convergence, however, is only assured in the mean, i.e. the system

might experience bursting phenomena that may temporarily take it outside of the σ-

neighborhood of the equilibrium but they cannot happen arbitrarily often, nor for too

long.

In Chapter 5, we use the spatiotemporal extension of the firing rate model of basal

ganglia to show in simulations that the proposed approach is capable of quenching the

pathological oscillations, regardless of whether the oscillations are generated as a result

of instability in the internal STN–GPe loop (endogenous oscillations) or generated in the

cortex and projected down to the basal ganglia (exogenous oscillations). We also introduce

a frequency-selective version of the adaptive controller to illustrate that the proposed

adaptive controller is capable of disrupting the pathological activity while limiting impact

on activity in other frequency bands.

1.2 Neurons and action potentials

Neurons are the building blocks of the nervous system. They are specialized cells whose

role is to receive information and propagate it to other cells. Activity of the neurons is
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Axon
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Axon terminals
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Cell body
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Fig. 1.1: Schematical illustration of a neuron. Adapted from “Biological neuron schema” by
Wikimedia Commons user Nicholas.Rougier, CC BY-SA 3.0.

mainly based around the concept of action potentials, also known as spikes. There exist

many types of neurons, differing in shape and function. However, most of the neurons

have a cell body (also called soma), dendrites, receiving signals from other neurons, and

an axon, which transmits the action potentials to the axon (presynaptic) terminals, which

come into contact with target (postsynaptic) neurons (Figure 1.1). A neuron can have

many dendrites but at most one axon.

In the resting state, due to a balance of chemical and electric pressures, neurons
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Fig. 1.2: Illustration of a neuron response to stimulation. A: Isolated subthreshold hyperpolar-
ization and depolarization events do not induce action potentials and the neuron reverts
to the resting potential. B: Superthreshold stimuli cause the neuron to generate an
action potential.
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maintain a negative electric potential with reference to the extracellular fluid. The main

ions responsible for this balance are potassium K+ ions, sodium Na+ ions, calcium Ca2+

and chloride Cl− ions. The flow of ions and their relative concentrations on both sides of

the membrane is controlled by ion channels that open and close in response to electric and

chemical signals and ion pumps which work to restore the neuron to the resting potential.

While the actual value of the resting potential varies, depending on type and location of

the neuron, a typically considered value is about -70 mV [Dayan and Abbott, 2000].

1.2.1 Action potential

Disruption of the aforementioned balance, which can happen due to chemical, electro-

magnetic, or mechanical events, either decreases (hyperpolarization) or increases (depo-

larization) the value of the transmembrane potential. Isolated hyperpolarization or depo-

larization events will change very little, as the neuron in due time returns to its resting

potential in an uneventful manner (Figure 1.2A). However, if the depolarization events

are strong or frequent enough to bring the transmembrane potential above a threshold

value (about -55 mV in most cases), the neuron changes drastically its mode of operation

and generates an action potential (Figure 1.2B) that then propagates along its axon to

the terminals.

An action potential is a wave of depolarization that propagates along the cell mem-

brane, incited by the depolarization in a neighboring patch of the membrane. It starts

with a rapid depolarization, mediated by voltage-activated ion channels in the membrane,

generates a depolarization event of an amplitude of about 100 mV, to then hyperpolarize

and finally return to the resting potential.

At the dendrites, the electrical signal leads to release of a neurotransmitter into a gap

between two neurons, called a synaptic cleft. This transition from electric to chemical

signaling, while slowing down the signal transmission, allows for increased versatility.

Neurons are capable of producing different neurotransmitters that will not only activate

postsynaptic cells selectively but also produce different effects. For example, glutamate

will depolarize the postsynaptic cell, making it more likely to fire, while γ-aminobutyric

acid (GABA) will hyperpolarize it, exerting an inhibitory influence.

Many neurons, during the hyperpolarization phase, enter a refractory period, where

they are insensitive to further stimulation (or their sensitivity is severely decreased).

The importance of action potentials is highlighted by the fact that subthreshold ac-

tivity is strongly attenuated, while action potentials are transmitted quickly and reliably
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over long distances.

Action potentials form the basis of neural information processing as we know it. Neu-

rons and neuronal ensembles respond to stimulation with complex sequences of spikes

that encode both their internal mechanics, as well as the characteristics of the stimuli.

1.2.2 Measurement of electrical activity of the brain

Electroencephalography (EEG) is a method of measuring brain activity using electrodes

placed on the scalp. The electrodes measure changes in the electric potential on the

surface of the head, caused by electrical activity of the brain.

Measured activity is highly oscillatory and since its inception in the beginning of

20th century, researchers working on EEG have introduced a terminology to distinguish

between different frequency bands of oscillations. From lowest to highest frequency (al-

though the precise delineation of various oscillation types is a subject of an ongoing

debate) they are δ (delta), θ (theta), α (alpha), β (beta), and γ (gamma). These oscilla-

tions are known to behave in a predictable way in certain parts of the brain. For example,

β oscillations in the motor cortex are suppressed during movement, while prominent α

oscillations appear in the visual cortex when the eyes are closed.

EEG is noninvasive, cheap, and has a high temporal resolution. On the other hand,

its spatial resolution is quite low (each electrode receives signals from a large area), the

activity of deep brain structures is almost impossible to measure, and signal to noise

ratio of EEG is quite low due to isolating properties of the skull, as well as high artifacts

coming from electrical activity of the muscles, eyes, and the heart. An invasive version

of EEG, called electrocorticography (ECoG), where the electrodes are placed inside the

skull, directly on the surface of the brain, has a higher signal to noise ratio but still suffers

from the same limitations as EEG.

Measurement of local activity can be realized with microelectrodes or microelectrode

arrays, implanted directly into the brain. The acquired signal contains highly localized

activity (about 250 µm from the electrode in case of high-impedance electrodes [Katzner

et al., 2009]) that is then divided into high-frequency component, containing recordings

of the action potentials, and the low-frequency component, called local field potential

(LFP).
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1.3 Basal ganglia

Basal ganglia are a set of nuclei, located in the forebrain, connected to the cerebral cortex,

thalamus, brainstem, and interconnected between themselves. They play a crucial role

in motor functions, as well as motor learning, emotions, and behavior. Their importance

is underlined by the fact that some of the neurodegenerative disorders, most notably

Parkinson’s disease and Huntington’s disease, are connected to pathological changes in

the basal ganglia.

The main structures of the basal ganglia are the striatum (divided in humans into

caudate nucleus and putamen), globus pallidus, subthalamic nucleus, and substantia nigra

(pars compacta and pars reticulata) [Lanciego et al., 2012]. Their location within the

brain is illustrated in Figure 1.3. The whole network can be broadly subdivided into

input nuclei, output nuclei, the remaining nuclei playing relay functions. The primary

input structure is the striatum which receives signals coming from various cortical and

subcortical structures. The output nuclei, mostly the internal segment of globus pallidus

(GPi) and substantia nigra pars reticulata (SNr) project mostly to the thalamus. Finally,

the remaining nuclei, including the external segment of globus pallidus (GPe), subthalamic

nucleus (STN), and the substantia nigra pars compacta (SNc) are located between the

input and the output nuclei. A schematic illustration of the connections between the basal

ganglia nuclei is shown in Figure 1.4. There are three main pathways in the basal ganglia

along which information is transmitted: the direct pathway, the indirect pathway, and

the hyperdirect pathway. All of them begin in the cortex and terminate in the thalamus,

which projects back to the cortex.

The direct pathway is routed through striatum and GPi/SNr. Neurons projecting

from the striatum are inhibitory, so are the neurons in the output nuclei, and as the

result the overall effect of the direct pathway is excitation.

The indirect pathway, on the other hand, is routed through striatum, GPe, STN, and

finally GPi/SNr. Thanks to the inclusion of STN, the only nucleus of the basal ganglia

with excitatory neurons, it results in inhibition of the thalamus.

Finally, the hyperdirect pathway bypasses the striatum and goes directly from cortex

to the STN, and then to GPi/SNr. Just like the indirect pathway, its overall effect is

inhibition of the thalamus.

The SNc nucleus, while not present in any of the pathways, plays a regulatory role

by altering relative sensitivities of the striatal cells making up the direct and indirect

pathways.
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Fig. 1.3: Location of the basal ganglia within the brain. Left: Side view of the human brain.
Location of caudate nucleus (part of the striatum) is highlighted in blue. Right:
Coronal section of the brain with the basal ganglia highlighted and labeled. Reproduced
from [Graybiel, 2000].

In the following chapters most of the attention is devoted to STN and GPe, as they

are strongly involved in Parkinson’s disease, as a target for deep brain stimulation (DBS),

recording site for an important biomarker - synchronized beta oscillations (see Section

1.5), and a potential place of origin of this pathological activity.

1.4 Parkinson’s disease

Neurodegeneration is an umbrella term for a range of processes that cause death or damage

of neurons. Unlike many other types of cells, neurons do not reproduce. Moreover, while

there is some evidence for creation of new neurons in adult human brains, this process

appears to be fairly localized to striatum [Ernst et al., 2014] and the dentate gyrus of the

hippocampus [Boldrini et al., 2018; Spalding et al., 2013] and replace only certain types

of cells. What is more, these findings are still a matter of debate, e.g. [Sorrells et al.,

2018]. As a result, it is safe to say that neurodegeneration leads to permanent, irreversible

damage in the nervous system.

Various diseases, the most common being Alzheimer’s disease, Parkinson’s disease,

Huntington’s disease, and amyotrophic lateral sclerosis, are characterized by chronic neu-

rodegeneration, affecting mostly the elderly [Pringsheim et al., 2014]. The prevalence of

these diseases in the elderly might stem from their progressive nature, as the damage

needs years to accumulate before any symptoms are detected. Moreover, since currently

there is no way to prevent or revert neuronal loss, the condition of the patients is dete-

riorating over the years. The most common symptoms of neurodegenerative diseases are
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hyperdirect pathway

direct pathway indirect pathway

Fig. 1.4: Main structures of the basal ganglia and connections between them. Blue arrows
signify GABAergic inhibitory connections, red arrows dopaminergic and glutamatergic
excitatory connections. The hyperdirect, direct, and indirect pathways are marked
with dashed lines. GPe = external part of the globus pallidus, GPi = internal part
of the globus pallidus, SNr = substantia nigra pars reticulata, SNc = substantia nigra
pars compacta, STN = subthalamic nucleus.
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ataxias (problems with movement) and dementias (cognitive impairment).

In the light of improvements in the medical field and associated longer life expectancy,

understanding these disorders (with hopes of finding effective therapies) is an important

goal for the medical and scientific community.

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders,

affecting approximately 1% of the population older than 65 [Bossy-Wetzel et al., 2004]. It

takes its name from a 19th-century British physician, James Parkinson, who first described

it in [Parkinson, 1817].

The most prominent features of PD are the motor symptoms, including tremor at

rest, rigidity, bradykinesia (slowness of movement), postural deformities, and postural

instability [Jankovic, 2008]. A significant portion of patients, especially in the late stages

of PD, develops also a form of akinesia (loss of movement) known commonly as freezing

of gait (FOG) [Lamberti et al., 1997]. This list is not exhaustive, as PD patients exhibit

a wide range of secondary motor abnormalities in addition to the ones mentioned above.

Additionally, PD is characterized by a host of less well-known non-motor features.

These include sensory and sleep disorders, autonomic dysfunction, and cognitive/behavioral

abnormalities. Autonomic dysfunctions are related to the autonomic nervous system and

include postural hypotension (sudden drop of blood pressure when sitting or standing up),

as well as erectile, sweating, and sphincter dysfunctions. The cognitive abnormalities most

commonly include dementia, depression, apathy, anxiety and hallucinations.

Patients with PD suffer from pathological changes to the nervous tissue in the central

nervous system. The main pathology underlying PD is depigmentation (degeneration of

pigmented neurons) in substantia nigra pars compacta (SNc) that leads to depletion of

dopamine in the striatum, as discovered in the 1960s [Ehringer and Hornykiewicz, 1960].

Another important feature of PD is accumulation of Lewy bodies - pathological aggregates

of protein inside the neurons. These changes can be only confirmed by autopsy [Jin et al.,

2019; Postuma et al., 2015], which makes full diagnostic certainty during life impossible.

Diagnostic accuracy of the experts is estimated to be above 70% [Postuma et al., 2015;

Tolosa et al., 2006] and its improvement is an area of extensive research.

Death of SNc neurons and subsequent loss of striatal dopamine makes the indirect

pathway more active while suppressing the activity of the direct pathway. These two

effects together result in inhibition of thalamocortical projection neurons [Albin et al.,

1989].

The treatment of PD consists most commonly of dopamine replacement therapy, which

restores normal function of the basal ganglia. Since dopamine is not capable of crossing
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the blood-brain barrier when administered orally, the patients are prescribed dopamine

precursors (substances that get converted into dopamine inside the brain), such as lev-

odopa, or dopamine agonists (substances that activate dopamine receptors in the brain),

such as apomorphine.

Historically, thalamotomy (lesion of the ventral intermediate nucleus (VIM) of the

thalamus) has been used to suppress tremor in parkinsonian patients but the popular-

ity of this procedure has greatly diminished since introduction of dopamine replacement

therapies in the 1970s and deep brain stimulation (see Section 1.6) in the 1990s as less

invasive yet efficient treatment methods.

A new approach, using gene therapy, where the healthy neurons in the parkinsonian

brain are injected with genetic material that lets them produce dopamine, is being clin-

ically tested with positive results (e.g. in [Christine et al., 2019; Palfi et al., 2018]). For

the time being however, pharmacological treatment remains the standard procedure.

While effective, dopamine replacement therapies suffer from side effects. The most

common include dyskinesias, sudden sleep onset, hallucinations, and psychosis. Motor

complications occur in over half of all the patients taking levodopa after 5 to 10 years of

treatment [Obeso et al., 2000]. Additionally, many patients with PD exhibit impulsive

and obsessive-compulsive behaviors, such as cravings, binge eating, compulsive foraging,

hypersexuality, pathological gambling, compulsive shopping, and punding (compulsive

repetition of motor behavior). This group of behaviors has been shown to correlate

with prolonged levodopa treatment [Atmaca, 2014; Moore et al., 2014] which provides

additional motivation for research into alternative treatment methods.

1.5 Beta oscillations in basal ganglia

1.5.1 Parkinsonian beta oscillations

Parkinsonian symptoms are correlated with various patterns of neural activity recorded in

the brain, both in humans and in animal models of PD. For example, rest tremor at 4-5 Hz

is correlated with low-frequency oscillatory activity in cortical loops involving cerebellum

and basal ganglia [Tass et al., 2010]. On the other hand, bradykinesia is commonly asso-

ciated with abnormal synchrony in the beta (10-30 Hz) band in the local field potentials

(LFP) measured in the basal ganglia, most notably the subthalamic nucleus (STN) and

the external part of globus pallidus (GPe) [Cole et al., 2017; Little and Brown, 2014]. The

name “beta oscillations” comes from electroencephalographic analysis. While the 10-30
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Fig. 1.5: Average STN spectrograms collected from a group of patients with Parkinson’s disease
ON and OFF medication. Pathological oscillations in the beta range are clearly visible
in the OFF state and are suppressed in the ON state. Reproduced from [Brittain and
Brown, 2014, Figure 2A].

Hz range does not correspond precisely to any of the definitions of β band present in the

EEG literature, the name has been adopted for convenience and is commonly used.

What makes beta oscillatory activity in the basal ganglia a good biomarker is that

it is suppressed by commonly used pharmacological treatments of PD (levodopa and

apomorphine) [Brittain and Brown, 2014; Priori et al., 2004], as shown in Figure 1.5, and

that the degree of supression is correlated with the degree of improvement in rigidity and

akinesia [Kühn et al., 2006; Silberstein et al., 2005], as shown in Figure 1.6.

Beta activity is thought to be an idling rhythm of the brain, as it has been observed

to desynchronize before and during movement [Kühn et al., 2004]. This way, an abnor-

mal synchrony in the beta band, as well as impeded beta suppression, observed in PD,

contribute to bradykinesia. However, the evidence for its precise role in the brain is still

not definite.

1.5.2 Origin of the pathological beta oscillations

The origin of Parkinsonian beta oscillations present in the basal ganglia is still unknown

and subject to much debate. The two leading, not necessarily mutually exclusive, theories

are endogenous generation with STN-GPe pacemaker and entrainment by external input.

In [Plenz and Kital, 1999], the authors have shown, based on in vitro experiments,

that the excitatory neurons of STN, in a closed loop with the inhibitory neurons of

GPe form a feedback system that is capable of producing synchronized oscillations. On

this basis they have put forward a hypothesis that STN and GPe make up a central

pacemaker, responsible for both normal and pathological oscillatory acitivity in the basal
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Fig. 1.6: Positive correlation between reduction in beta activity in the STN and improvement
in akinesia and rigidity induced by dopamine replacement therapy. Reproduced from
[Hammond et al., 2007, Figure 3(d)]

ganglia. In [Nevado Holgado et al., 2010], the authors have demonstrated that a firing-rate

model of STN–GPe loop is capable of producing pathological beta oscillations, undergoing

a transition from healthy to pathological state as the connection strength between the

populations increases.

An alternative hypothesis says that the beta oscillations present in the basal ganglia

are driven by cortical or striatal input. The cortical entrainment hypothesis is supported

by experimental evidence showing that STN neurons exhibit low-frequency oscillatory

activity, correlated with slow-wave cortical activity in rat models of PD [Magill et al.,

2001], as well as by the fact that cortex is capable of producing beta oscillations [Yamawaki

et al., 2008]. Additionally, experimental and computational data shows that striatum,

the main input structure of the basal ganglia, is itself also capable of generating beta

oscillations [McCarthy et al., 2011].

1.6 Deep brain stimulation

Deep brain stimulation (DBS) is a procedure that consists in electrically stimulating

deep brain structures via chronically implanted electrodes. Originally it was used in

thalamotomy to preoperatively determine best spots for lesions. However, in the 1980s,

researchers have noticed that high frequency stimulation of various thalamic and subtha-

lamic structures alleviates a variety of motor symptoms, including tremor, parkinsonism,
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and torticollis (wry neck) [Andy, 1983; Benabid et al., 1987]. Nowadays it is used clinically

to treat symptoms of a variety of neurological and neurosomatic disorders and symptoms,

including essential tremor, Parkinson’s disease, dystonia, Tourette syndrome, depression,

obsessive-compulsive disorder, and neuropathic pain [Perlmutter and Mink, 2006].

1.6.1 Clinical use of DBS in Parkinson’s disease

The use of DBS in PD most notably consists of high-frequency stimulation of ventral

intermediate nucleus (VIM) of the thalamus for tremor reduction [Benabid et al., 1991;

Picillo and Fasano, 2016]; subthalamic nucleus (STN) for improvements in gait, tremor,

and bradykinesia [Benabid et al., 2009]; and the internal part of globus pallidus (GPi)

for all major motor symptoms of PD [Perlmutter and Mink, 2006] (see Figure 1.7 for

illustration).

The electrodes are implanted under local or general anesthesia. Local anesthesia (with

patient conscious) allows intraoperative assessment of DBS efficacy and thus increases

the chances of a successful surgery. The signal generator is inserted subcutaneously a few

days later. In the following weeks the programming of the generator is conducted by a

neurologist and usually lasts at least another few days. The frequency is usually set at 130

Hz, the pulse duration at 60 µs and the voltage is progressively increased, while checking

for improvement in the symptoms as well as for stimulation-induced side effects, such

as dyskinesias (involuntary muscle movements), paresthesias (abnormal sensation of the

skin), and muscle contraction. The operating voltage is chosen to maximize the clinical

improvement in the symptoms while avoiding the side effects [Benabid et al., 2009].

The drawback of this method is that once the stimulation parameters are set, the

stimulation pattern remains constant. Since the severity of symptoms varies with time on

timescales ranging from diurnal rhythms to disease progression over multiple years, this

leads to several issues. Insensitivity to changes in severity may lead to overstimulation,

not to mention that electrical stimulation of the brain is not contained to targeted area

because, due to volume conductance in the brain, electrical stimulation can influence

healthy areas as well. This influences the patients’ quality of life, as it induces DBS-related

side effects, as well as drains the battery faster, forcing the patient to undergo battery

replacement operations more frequently. On the other hand, as the disease progresses,

and as the electrode lead is surrounded by scar tissue [Vedam-Mai et al., 2018], the

sensitivity to DBS of the stimulated structures decreases, and a stronger stimulation may

be necessary.
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Fig. 1.7: Electrode placement in deep brain stimulation for PD. Reproduced from [Okun, 2012].
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Fig. 1.8: Effect of deep brain stimulation on local field potential measured in the STN of a
human subject. It clearly shows that strong beta oscillations are present in the STN of
parkinsonian patients (figure A). Deep brain stimulation successfully lowers beta power
in the measured signal (figure B), as soon as the stimulation voltage is high enough
(figure C, red stripes in figure B). Reproduced from [Eusebio et al., 2011].

1.6.2 Closed-loop stimulation

In order to address the aforementioned issues, a growing interest in closed-loop stimulation

has been present in the field over the last few years [Beuter et al., 2014; Carron et al., 2013;

Eitan et al., 2019; Rosin et al., 2011; Santaniello et al., 2010; Santos et al., 2011; Shah et al.,

2018]. In a closed-loop paradigm, the stimulation is modified based on measurements of

brain activity. The candidate biomarkers include accelerometer measurements, EEG,

ECoG, LFP signals, as well as action potentials and biochemical signals, LFP being

the most commonly used [Parastarfeizabadi and Kouzani, 2017]. Given that STN beta

oscillations in LFP are suppressed by deep brain stimulation [Eusebio et al., 2011] (see

Figure 1.8), beta-based closed-loop DBS is a popular avenue of inquiry.

Terminology surrounding closed-loop DBS is far from uniform. The various approaches

have been called “adaptive DBS”, “closed-loop DBS”, “on-demand DBS”, while the clin-

ically used stimulation has been called “continuous DBS”, “classic DBS” and “open-loop

DBS”. In order to avoid confusion, in this thesis we will assume

• open-loop DBS to mean the open-loop stimulation, currently used clinically,
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• closed-loop DBS to mean any closed-loop approach to DBS, meaning any DBS

signal that takes into account some real-time information on the state of the patient,

• on-off DBS to mean a type of stimulation where the amplitude is switched from

0 to a pre-set value (possibly with a ramp-up and ramp-down periods) based on

the detected biomarker. It is therefore a basic approach to closed-loop DBS in

which stimulation onset is triggered based on some biomarker but the pattern of

the stimulation itself remains invariant.

An experimental validation of closed-loop stimulation has been conducted in multiple

studies using various closed loop approaches, including on-off DBS [Little et al., 2016,

2013, 2014; Piña-Fuentes et al., 2017; Rosin et al., 2011], proportional stimulation, where

the DBS voltage is proportional to the measured biomarker [Arlotti et al., 2018; Rosa

et al., 2015], or a dual-threshold approach, which changes the stimulation voltage to keep

the beta level between two reference values [Velisar et al., 2019]. The improvement in

the patients’ quality of life has been comparable to that with open-loop DBS while the

stimulation time has been significantly reduced. Most often, however, the control has

been delivered in an “on-off” fashion, where the stimulation was turned on to the pre-set

level (possibly with a short ramp-up period to avoid stimulation-induced paresthesias) as

soon as the pathological activity was detected.

One of the possible improvements over an “on-off” control scheme is proportional

stimulation. In this paradigm we measure an error signal e(t), expressed as difference

between the current value of the biomarker and a desired setpoint, and stimulate the

system proportionally to that difference. The stimulation signal µ(t) can be expressed as

µ(t) = −θe(t), (1.1)

where θ is the proportional gain and e(t) is the measured deviation. The main idea

behind this approach is that if our system deviates from target only a little, there is no

need to stimulate it with full intensity. Several studies focused on the beta oscillations

in computational models of PD have shown that proportional control can be a viable

method for disrupting pathological oscillations [Chaillet et al., 2017a; Dunn and Lowery,

2013; Haidar et al., 2016]. Experimental validation, coming from [Arlotti et al., 2018;

Rosa et al., 2015], illustrates that proportional stimulation is not only effective, and

well tolerated by patients, but might also help avoid stimulation-induced dyskinesias,

especially when the patient is on medication.
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Even though the “on-off” stimulation outperforms open-loop DBS in terms of stimu-

lation time and battery use, and proportional stimulation has potential to amplify these

advantages even further, there are still potential issues with these methods. In both

“on-off” and proportional schemes, the magnitude of stimulation is controlled by a fixed

parameter. In “on-off” stimulation it is the stimulation amplitude and in the proportional

stimulation it is the gain θ. These parameters in a practical implementation would be

set exactly the same way the stimulation amplitude is set in open-loop DBS - via a com-

plicated and time consuming post-operative process involving a clinician. However, with

progress of the PD, and formation of a glial scar tissue around the electrode tip, initially

effective stimulation parameters might require retuning. While the maximum stimulation

power would be constrained by safety requirements, the stimulation gain can be automat-

ically adapted in real time, based on the observed pathological activity, alleviating the

need for time-intensive and complicated retuning.

1.7 Neural activity modelling

The development of such adaptive stimulation strategies requires a tractable mathematical

model of neuronal populations involved. There exist various mathematical descriptions

of the activity of single neurons and neuronal ensembles. The main approaches that have

been employed in study of the pathological β oscillations and the effect of DBS include

spiking models, where the activity of the neurons is simulated based on their electrical

properties [Kang and Lowery, 2013; Kumar et al., 2011; Liu et al., 2018; McCarthy et al.,

2011; Rubin and Terman, 2004; Santaniello et al., 2010, 2015] and firing rate models,

also called population models or sometimes mean-field models, which model the global

activity of neuronal populations [Holt and Netoff, 2014; Nevado Holgado et al., 2010;

Pavlides et al., 2012; van Albada et al., 2009]. Throughout this thesis we will be using a

firing rate model, which we describe in the following sections.

1.7.1 Firing rate models

Firing rate models encode the activity of a population of neurons with a single variable,

its instantaneous firing rate, meaning the number of spikes generated by the population

neurons per unit of time. Spikes are the basic unit of computation in the nervous tissue,

so this simplification makes a lot of sense. Additionally, it is widely accepted that while

the activity of single neurons has a strong random component, neuronal ensembles are
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capable of producing reliable long-range interactions. Since these models reduce complex

brain activity to a small set of variables, whose time evolution is governed by a set of

differential equations, they are amenable to mathematical analysis and methods coming

from the field of control theory.

These models employ an activation function S that encodes steady-state firing rate

of the neuronal population in response to synaptic input. Based on experimental data

from actual neurons, the activation function is chosen to be nonlinear, bounded, and

monotonically increasing. Common choices are arctan and sigmoids. Predominantly, the

firing rate models take form

τ ẋ(t) = −x(t) + S

(∑
i

ciui(t)

)
, (1.2)

where τ is the time constant of the model, ci are the synaptic connection weights and

ui represent the activity of the presynaptic populations (the index i iterates over all the

neuronal populations in the system projecting onto the modeled population). In the

absence of external stimulation, the activity x converges to the steady state value S(0)

at the rate τ . A net-positive and net-negative activity coming from the inputs excites or

inhibits the modeled system, respectively.

Firing rate models of neuronal activity including separate excitatory and inhibitory

populations of neurons were proposed in [Wilson and Cowan, 1972] and extended to

include spatiotemporal dynamics in [Wilson and Cowan, 1973]. The original motivation

of Wilson and Cowan was modelling activity in the cerebral cortex, organized into non-

overlapping functional units (columns), where each column covered an inhibitory and

excitatory population. Their model, however, having spatiotemporal dynamics and delays

built in from the very beginning, is extremely versatile. Since its introduction it was

used to model various brain structures, as well as serving as a starting point for various

extensions (for an overview, see [Destexhe and Sejnowski, 2009]).

An interesting modern approach to constructing such models is to start with a spiking

or compartmental model and construct a population model based on mean-field methods

(see e.g. [di Volo et al., 2019]). The estimated activation function of the neurons is not

necessarily a sigmoid and is thus capable of encoding richer behavior. This semi-analytical

approach can also make use of the dynamic-clamp technique and estimate the activation

function from real neurons [Sadoc et al., 2009], shortening the reality gap between the

biology and the computational model.
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1.7.2 Firing rate model of the STN-GPe loop

In the paper [Nevado Holgado et al., 2010], the authors employed the approach of Wilson

and Cowan to propose a firing-rate model of STN-GPe loop in order to examine conditions

that lead to generation of pathological oscillations. Both the structure of the model and

the values of the parameters were chosen based on experimental data from various sources.

Their main conclusion was that the system will spontaneously produce oscillations when

the connections between the populations are strengthened. Their reasoning was based on

wealth of experimental data and gave credibility to the theory of endogenous generation of

the pathological beta oscillations, supported by in vitro evidence [Plenz and Kital, 1999].

The model is as follows:

τ1ẋ1(t) = −x1(t) + S1(c11x1(t− δ11)− c12x2(t− δ12) + cCtxu1(t)) (1.3a)

τ2ẋ2(t) = −x2(t) + S2(c21x1(t− δ21)− c22x2(t− δ22)− cStru2(t)). (1.3b)

Activity of STN (in spikes per second) is represented by x1, activity of GPe by x2.

The coupling constant cij represents connection strength from population j to population

i and δij represents time delay that occurs due to finite velocity of signal propagation.

The inputs u1 and u2 (with coupling constants cCtx and cStr) represent cortical and stri-

atal inputs to the system, respectively. All the coupling constants are positive, and the

sign represents whether neurons in the presynaptic population have excitatory (STN and

cortex) or inhibitory (GPe and striatum) effect on the postsynaptic population.

The activation function Si encodes the response of the neuronal population i to stim-

ulation. In the original paper they were taken as sigmoids:

Si(x) =
mibi

bi + (mi − bi) exp(−4x/mi)
, (1.4)

where mi represents the maximum firing rate of population i, bi the firing rate with no

input and the minimum firing rate is set at 0. The slope of the sigmoids is 1, which allows a

simple interpretation of the coupling constants. As the authors point out, the constants cij

are expressed in units that encode the change in firing rate of the postsynaptic population

in response to a unit change in firing rate of the presynaptic population.

With appropriate parameter values (studied in details in [Nevado Holgado et al., 2010;

Pasillas-Lépine, 2013; Pavlides et al., 2012]), this system exhibits sustained oscillations in

pathological frequency bands as a result of instability caused by strong synaptic connec-
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Fig. 1.9: Healthy and parkinsonian behavior of (1.3). In parkinsonian state the system exhibits
sustained beta oscillations.

tions between the two populations and the transmission delays present in the dynamics.

The behavior of the model in healthy and parkinsonian condition is illustrated in Figure

1.9.

Since STN neurons are primarily projection neurons, the value of c11, representing the

internal connectivity of the nucleus, is essentially nonexistent (in all the simulations in

this thesis c11 will be set to zero). From [Pasillas-Lépine, 2013, Theorem 1] it follows that

for any fixed cortical u∗1 and striatal u∗2 input, this model has a unique fixed equilibrium

x∗.

1.8 Analysis and control of nonlinear time-delay systems

The second key ingredient needed to develop adaptive DBS schemes is a mathematical

formalism that allows the use and development of control theory instruments.

1.8.1 Notation and comparison functions

We start by presenting the mathematical notation that will be used throughout the thesis.

Given x ∈ Rn, |x| denotes its Euclidean norm, |x| :=
√∑n

i=1 x
2
i . Given a set I ⊂ R and a

measurable signal u : I → Rm, ‖u‖ := ess supt∈I |u(t)|, ‖u‖2 =
√∫

I
u(s)2ds. Given b > a,

u[a,b] : [a, b] → Rm denotes the function defined as u[a,b](t) = u(t) for all t ∈ [a, b]. Given
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Fig. 1.10: Comparison function classes.

X ⊂ Rn, C(I,X) denotes the set of all continuous functions φ : I → X and, given δ̄ > 0,

C := C([−δ̄, 0],R). Given a signal x : [−δ̄,+∞)→ Rn and a time t ≥ 0, xt ∈ Cn denotes

the history function: xt(s) := x(t + s) for all s ∈ [−δ̄, 0]. A function α : R≥0 → R≥0 is

said to be of class PD if it is continuous and positive definite; α ∈ K if α ∈ PD and it

is increasing; α ∈ K∞ if α ∈ K and it is unbounded. A function β : R≥0 × R≥0 → R≥0

is of class KL if β(·, t) ∈ K for each t ∈ R≥0 and, for each s ∈ R≥0, β(s, ·) is continuous,

non-increasing and tends to zero as its argument tends to infinity. These function classes

are illustrated in Figure 1.10.

1.8.2 Stability and Lyapunov direct method

In this thesis we will often be considering nonlinear autonomous dynamical systems with

delays, of the form

ẋ(t) = f(xt), (1.5)

with xt ∈ Cn. The main difference from the systems without delay is that the state is

not an element of Rn, but rather a function segment - the history of the solution over a

bounded time interval. Let us assume that f(0) = 0, making the origin an equilibrium of

the system. This can be assumed with no loss of generality, by performing a translation

of the equilibrium to 0.

The function f is also assumed to be Lipschitz on bounded sets, which guarantees ex-
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istence, continuity and uniqueness of solutions [Hale and Verduyn Lunel, 1993, Theorems

2.1–2.3].

When studying behavior of dynamical systems, we are often interested in asserting

whether they have certain stability properties.

Definition 1 (Definition 1.1. in [Hale and Verduyn Lunel, 1993]). The origin of (1.5) is

said to be

• stable if for any ε > 0, there exists ∆ = ∆(ε) such that ‖x0‖ < ∆ implies ‖xt‖ < ε

for all t ≥ 0;

• asymptotically stable if it is stable and there exists a R > 0 such that ‖x0‖ < R

implies x(t)→ 0 as t→∞;

• uniformly asymptotically stable if it is stable and there exists R > 0 such that for

every ε > 0 there exists T (ε) such that ‖x0‖ < R implies ‖xt‖ < ε for all t > T (ε);

• exponentially stable if there exist ∆ > 0, and constants η, γ > 0 such that ‖x0‖ < ∆

implies that |x(t)| ≤ η‖x0‖e−γt for all t ≥ 0.

Additionally, if any of these properties hold for every x0 ∈ Cn, we say that the origin

of (1.5) is globally asymptotically stable (GAS), globally uniformly asymptotically stable

(GUAS), globally exponentially stable (GES), respectively.

These properties can be alternatively expressed using comparison functions. For in-

stance, the origin of (1.5) is

• stable if there exist α ∈ K and R > 0 such that

|x(t)| ≤ α(‖x0‖), ∀t ≥ 0, ∀‖x0‖ < R; (1.6)

• uniformly asymptotically stable if there exist β ∈ KL and R > 0 such that

|x(t)| ≤ β(‖x0‖, t), ∀t ≥ 0, ∀‖x0‖ < R. (1.7)

If the origin of a system is stable, it means that if the initial state is small, the

entire solution will remain in a small (quantified by ε and ∆) neighborhood of the origin.

Asymptotic stability ensures that the solution will not only remain close to the origin but

also that it will enter smaller and smaller neighborhoods of stability, eventually reaching
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0 in the limit. Uniform asymptotic stability dictates also that the rate of convergence

depends monotonically on the norm of the initial state. In Chapter 3 we will show that

uniformity in x0 is crucial in ensuring some robustness properties of the system with

respect to exogenous disturbances. Finally, exponential stability is a very strong property

that assures the solutions converge exponentially fast to the origin.

These properties can be established using Lyapunov second method [Hahn, 1967;

Khalil, 2002; Lyapunov, 1907], also known as Lyapunov direct method, extended to time-

delay systems by Krasovskii [Hale and Verduyn Lunel, 1993; Karafyllis and Jiang, 2011;

Krasovskii, 1963; Niculescu, 2001]. It involves proposing a functional V that dissipates

along the solutions of the system and lets us draw conclusions about stability of the ori-

gin without explicitly finding the solutions. The key difference between the Lyapunov

approach for systems with and without delay is that the object of study in the delayed

case is not a function, but rather a functional (as it takes as argument the whole state

history over a bounded time interval).

In order to introduce the Lyapunov-Krasovskii theorems on stability, we need to first

define a derivative along the solutions for a time-delay system. If V : Cn → R≥0 is

continuous then its upper right hand derivative at xt is defined as

V̇ (xt) = lim sup
τ→0+

1

τ
(V (xt+τ )− V (xt)) , (1.8)

also defined for functionals with explicit time dependence

V̇ (t, xt) = lim sup
τ→0+

1

τ
(V (t+ τ, xt+τ )− V (t, xt)) . (1.9)

We will be often using another definition of a derivative, given by Driver [Driver, 1962]:

D+
(1.5)V (φ) := lim sup

τ→0+

V (φ?τ )− V (φ)

τ
, (1.10)

where, for all τ ∈ (0, δ̄), φ?τ ∈ Cn is defined as

φ?τ (s) :=

 φ(s+ τ) if s ∈ [−δ̄,−τ)

φ(0) + f(φ)(s+ τ) if s ∈ [−τ, 0].
(1.11)

In [Pepe, 2007a], Pepe demonstrated that if V is Lipschitz on bounded sets, then

Driver’s derivative of V computed at φ = xt coincides with (1.8) at almost every t where
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xt is defined.

Now, we can proceed to recall the Lyapunov-Krasovskii condition fo asymptotic sta-

bility.

Theorem 2 (Theorem 2.1. in [Hale and Verduyn Lunel, 1993]). Suppose f : Cn → Rn

takes bounded sets of Cn into bounded sets of Rn α, α, α are class K functions, and X is a

subset of Cn, containing the origin. If there is a continuous functional V : Cn → R such

that

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖), (1.12a)

D+
(1.5)V (φ) ≤ −α(|φ(0)|), (1.12b)

for all φ ∈ X , then the origin of (1.5) is asymptotically stable on X . If α, α, α are class

K∞ functions and X = Cn, the origin is globally asymptotically stable.

A functional V that satisfies the conditions of Theorem 2 is called a Lyapunov-

Krasovskii functional (LKF). In practice, to prove asymptotic stability of the origin, we

propose an LKF candidate and then show that it satisfies (1.12). It should be noted that

failure of any given candidate functional to satisfy (1.12) does not prove instability of the

origin of (1.5). It only establishes that this particular candidate is not appropriate.

1.8.3 Systems with output

Sometimes, we want to consider a system with an output, where we are interested in the

behavior of some function of the state, not the state itself. Consider the system

ẋ(t) = f(xt), y(t) = h(xt), (1.13)

where xt and f are as in (1.5), y(t) ∈ Rp is the output of the system and h : Cn → Rp

satisfies h(0) = 0.

By analogy to the stability properties presented in Definition 1, we can ask that the

output of the system behaves qualitatively in a prescribed way. Here we present one such

notion, uniform asymptotic output stability. Just like in the case of uniform asymptotic

stability, we require stability and convergence to 0, uniform in the initial state x0. We

impose these requirements using a comparison function.

Definition 3 (Uniform asymptotic output stability). The origin of (1.13) is said to be

uniformly asymptotically output stable on X , where X is a subset of Cn, containing the
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origin, if there exists β ∈ KL such that, for any x0 ∈ X , the solution of (1.15) satisfies

|y(t)| ≤ β(‖x0‖, t) ∀t ≥ 0. (1.14)

When X = Cn, we say that the origin of (1.15) is globally uniformly asymptotically

output stable.

1.8.4 Systems with input. Input-to-output and input-to-state stability

Let U be an open subset of R containing the origin, U(U) be the set of all measurable

and locally essentially bounded signals with values in U , and X be an open subset of Cn,

containing the origin. Then we can define an extended version of (1.5) by adding inputs

and outputs.

ẋ(t) = f(xt, u(t)) (1.15a)

y(t) = h(xt), (1.15b)

where xt ∈ Cn is the state, u ∈ U(U)m the system input with values in Um, and y(t) ∈ Rp

the considered output. We assume that the function h : Cn → Rp satisfies h(0) = 0 and

that f(0, 0) = 0.

Since the vector field f is defined on Cn ×Um, we need to redefine Driver’s derivative

(see equations (1.10)–(1.11)) as

D+
(1.15)V (φ, v) := lim sup

τ→0+

V (φ?τ,v)− V (φ)

τ
, (1.16)

where, for all τ ∈ (0, δ̄), φ?τ,v ∈ Cn is defined as

φ?τ,v(s) :=

 φ(s+ τ) if s ∈ [−δ̄,−τ)

φ(0) + f(φ, v)(s+ τ) if s ∈ [−τ, 0].
(1.17)

A natural tool to study the stability of systems in this form is that of input-to-

output stability (IOS), originally introduced in [Sontag and Wang, 1999, 2001] in a finite-

dimensional context and extended in [Kankanamalage et al., 2017; Karafyllis et al., 2008b]

to time-delay systems.

Definition 4 (IOS). System (1.15) is said to be input-to-output stable (IOS) on X and

U(U)m if there exist β ∈ KL and γ ∈ K∞ such that, for any x0 ∈ X and any u ∈ U(U)m,
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the solution of (1.15) satisfies

|y(t)| ≤ β(‖x0‖, t) + γ(‖u[0,t]‖), ∀t ≥ 0. (1.18)

When X = Cn and U = R, we say that (1.15) is IOS.

The distinction between IOS on X ×U(U)m and IOS is motivated by the results from

Chapter 3, where we study the stability properties of systems evolving on bounded sets.

Classically, IOS is defined as a global property of the system, see e.g. [Kankanamalage

et al., 2017, Definition 2.1].

The IOS property contains several ingredients. First, when u ≡ 0, IOS guarantees

that the origin of (1.15) is uniformly asymptotically output stable. Moreover, when an

IOS system is disturbed with a bounded input, the output eventually converges to a

neighborhood of the origin of radius γ(‖u‖), with a transient overshoot that may depend

on the magnitude of the whole initial state x0. This, in turn, ensures a bounded output in

response to any bounded input. Finally, IOS also induces the following converging input

– converging output property: for all u ∈ U(U)m such that limt→∞ |u(t)| = 0 and for

all x0, it holds that limt→∞ |y(t)| = 0. This can be shown by considering a time T such

that γ(|u(t)|) remains below some arbitrary ε > 0 for all t ≥ T , and considering x(T ) as

an initial state in (1.18), yielding: |y(t)| ≤ β(|x(T )|, t − T ) + ε for all t ≥ T ; for t large

enough, this ensures |y(t)| ≤ 2ε, hence limt→∞ |y(t)| = 0.

These are precious features in robustness analysis, as detailed in [Sontag, 2008].

In the specific case when y(t) ≡ x(t), IOS is equivalent to another important prop-

erty, known as input-to-state stability (ISS). ISS was originally introduced for delay-free

systems in [Sontag, 1989] and then extended to time-delay systems in [Karafyllis et al.,

2008a; Pepe and Jiang, 2006; Teel, 1998].

Definition 5 (ISS; Definition 2.3 in [Pepe and Jiang, 2006]). System (1.15) is input-to-

state stable (ISS) if there exist β ∈ KL and γ ∈ K∞ such that, for any x0 ∈ Cn and any

u ∈ Rm, its solution satisfies

|x(t)| ≤ β(‖x0‖, t) + γ
(
‖u[0,t]‖

)
, ∀t ≥ 0.

Analogously to IOS, when an ISS system is disturbed with a bounded input, its whole

state eventually converges to a neighborhood of the origin whose size is related to the

magnitude of the disturbance. It is easy to observe that in absence of disturbances (when

u ≡ 0), ISS is equivalent to the origin being GUAS.
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As described in [Kankanamalage et al., 2017; Pepe and Jiang, 2006], both IOS and

ISS properties can be also established with Lyapunov-Krasovskii-like reasoning. Here we

recall the result for IOS.

Theorem 6 (Theorem 1 in [Kankanamalage et al., 2017]). Assume (1.15) is forward

complete and there exists ς ∈ K such that |x(t)| ≤ max{ς(‖x0‖), ς(‖u‖)} for all t ≥ 0.

System (1.15) is IOS if and only if there exist V : Cn → R≥0 and α, α ∈ K∞ such that

α(|h(φ)|) ≤ V (φ) ≤ α(‖φ‖), ∀φ ∈ Cn (1.19)

and there exist χ ∈ K and α ∈ KL such that

V (φ) ≥ χ(|v|) =⇒ D+
(1.15)V (φ, v) ≤ −α(V (φ), ‖φ‖), ∀φ ∈ Cn, ∀v ∈ Rm. (1.20)

This means that the dissipation rate is only equal to 0 when V (φ) = 0. This require-

ment, which we later call “strict dissipation” is in practice hard to satisfy.
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The firing rate model of the STN–GPe loop, recalled in Section 1.7.2 was created in

attempt to explain the origin of the pathological beta oscillations present in Parkinson’s

disease. As explained in the previous chapter, these oscillations are correlated with parkin-

sonian symptoms of bradykinesia and rigidity and their disruption is known to produce

positive therapeutic effects.

In this chapter we study stability of this model under closed-loop proportional feed-

back acting only on STN, similarly to the approach employed in [Chaillet et al., 2017a;

Detorakis et al., 2015; Haidar et al., 2016], and prove that it is globally exponentially sta-

ble (GES), as long as the feedback gain is larger than a critical value θ∗, and the internal

connections within GPe are weak.
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In order to show global exponential stability, we first provide a new characterization

of GES for systems with globally Lipschitz dynamics. While most classical stability

results for GES of time-delay nonlinear systems require that the rate of dissipation of the

Lyapunov-Krasovskii functional (LKF) along the solutions of the system is proportional

to the value of the functional (a property we call strict dissipation), we prove that, for

globally Lipschitz systems, a functional with point-wise dissipation (involving only the

current value of the state) is equivalent to a functional with strict dissipation.

Using this relaxed condition we then show that the firing rate model of the STN–GPe

loop with proportional feedback is globally exponentially stable under the aforementioned

conditions, as well as obtain an upper bound on θ∗.

2.1 Global exponential stability of globally Lipschitz systems

2.1.1 Global exponential stability

Consider the nonlinear time-delay system of the form

ẋ(t) = f(xt), (2.1)

where the state xt is in Cn. The vector field f : Cn → Rn is assumed to be Lipschitz on

bounded sets to guarantee existence and continuity of solutions, and to satisfy f(0) = 0.

As recalled in Theorem 2 in Section 1.8.2, we can establish global asymptotic stability

of the origin of (2.1) using Lyapunov-Krasovskii methods. If there exist functions α, α, α ∈
K∞ and a functional V : Cn → R≥0 such that, for all φ ∈ Cn,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖)

D+
(2.1)V (φ) ≤ −α(|φ(0)|),

then the origin of (2.1) is globally asymptotically stable. Several aspects are worth notic-

ing. First, the upper and lower bounds on the functional V differ: the upper bound

involves the whole norm ‖φ‖ of the state history whereas the lower bound involves solely

the current value of the solution’s norm |φ(0)|. In particular, using the terminology of e.g.

[Mironchenko and Wirth, 2016], V does not need to be coercive (which would require a

lower bound involving the whole ‖φ‖). This turns out to be useful in some applications.

More crucially, the derivative of V along the solutions of (2.1) is required to dissipate only

in terms of the current value of the solution’s norm, rather than the Lyapunov functional
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itself. This key property, which we will refer to as a point-wise dissipation, often simplifies

the use of Lyapunov-Krasovskii functionals.

Global exponential stability (GES), a particular form of global asymptotic stability, is

a powerful property, as it ensures both an exponential decay to the origin and a transient

overshoot proportional to the initial state norm ‖x0‖ (see Definition 1).

Moreover, under regularity conditions on the vector field, this property is known to

ensure robustness to exogenous disturbances in the ISS sense [Yeganefar et al., 2008].

However, when it comes to exponential stability, the only existing results for nonlinear

time-delay systems require a dissipation rate that involves the whole functional itself (of

the form V̇ ≤ −εV , see [Krasovskii, 1963; Pepe and Karafyllis, 2013; Yeganefar et al.,

2008]): we call this a strict dissipation. A result in [Haidar et al., 2015, Theorem 2] shows

that a Lyapunov-Krasovskii functional with lower bound 0 and point-wise dissipation is

enough to conclude GES but only for linear time-delay systems in a switching context.

2.1.2 Lyapunov-Krasovskii approach for global exponential stability

In order to make this discussion more precise, we introduce the following terminology.

Definition 7 (GES LKF). Let V : Cn → R≥0 be a functional, Lipschitz on bounded sets

of Cn, for which there exist k, k > 0 such that, for all φ ∈ Cn,

k|φ(0)|2 ≤ V (φ) ≤ k‖φ‖2.

Then V is said to be:

• a GES Lyapunov-Krasovskii functional (LKF) with history-wise dissipation for

(2.1) if there exists k > 0 such that

D+
(2.1)V (φ) ≤ −k‖φ‖2, ∀φ ∈ Cn,

• a strict GES LKF for (2.1) if there exists k > 0 such that

D+
(2.1)V (φ) ≤ −kV (φ), ∀φ ∈ Cn,

• a GES LKF with point-wise dissipation for (2.1) if there exists k > 0 such that

D+
(2.1)V (φ) ≤ −k|φ(0)|2, ∀φ ∈ Cn.
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These three types of GES LKF thus differ only in the way they dissipate along the

solutions of (2.1). Clearly, any GES LKF with history-wise dissipation is a strict GES

LKF and any strict GES LKF is a GES LKF with point-wise dissipation.

The fact that GES can be established with a strict LKF (hence, with an LKF with

history-wise dissipation) is well known [Krasovskii, 1963; Pepe and Karafyllis, 2013;

Yeganefar et al., 2008]. However, obtaining a strict LKF on practical examples usu-

ally requires some tricks. For instance, for an LKF that involves only the sum of terms of

the form |φi(0)|2 and
∫ 0

−δ |φi(s)|
2ds (as is often the case), we can add a term in the kernel

of the integral (e.g. exponential) to get a dissipation involving the whole LKF [Ito et al.,

2010; Mazenc et al., 2013; Pepe and Jiang, 2006].

Still, these tricks are not guaranteed to work with any LKF. Moreover, the use of GES

LKF with point-wise dissipation would be much handier in practice and would homogenize

GES theory with that for global asymptotic stability.

The question of what stability properties can be guaranteed with a point-wise dissi-

pation was already the subject of [Chaillet et al., 2017b] and [Chaillet and Pepe, 2018]

for input-to-state stability properties and some questions remain open in that respect.

In this chapter we address systems without input and show that a point-wise dissipation

is indeed enough to show global exponential stability, at least for systems with globally

Lipschitz dynamics. Our proof is constructive: based on a functional with point-wise dis-

sipation, we explicitly construct a functional that dissipates in terms of the whole state

history norm.

2.1.3 GES LKF characterization

The result that will let us easily conclude GES of the firing rate model is as follows:

Theorem 8 (GES characterizations). Let f : Cn → Rn be globally Lipschitz and satisfy

f(0) = 0. Then the following statements are equivalent:

i) (2.1) admits a GES LKF with history-wise dissipation

ii) (2.1) admits a strict GES LKF

iii) (2.1) admits a GES LKF with point-wise dissipation

iv) the origin of (2.1) is GES.
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For globally Lipschitz systems, point-wise dissipation is thus sufficient to establish

GES and the existence of a strict GES LKF, and even a GES LKF with history-wise

dissipation, then come for free. The proof is provided in Section 2.3.1.

The existence of a GES LKF with history-wise dissipation can prove useful when

studying robustness to exogenous disturbances of systems with input:

ẋ(t) = f(xt, u(t)). (2.2)

It was shown in [Yeganefar et al., 2008] that GES guarantees ISS under some regularity

assumptions on f . Thus, the following is a direct consequence of Theorem 8.

Corollary 9 (GES & ISS). Assume the input-free system ẋ(t) = f(xt, 0) admits a GES

LKF with point-wise dissipation. Assume further that f( · , 0) is globally Lispchitz and

that there exists c > 0 and q ∈ [0, 1) such that, for all φ ∈ Cn and all v ∈ Rm,

|f(φ, v)− f(φ, 0)| ≤ c max{‖φ‖q; 1}|v|. (2.3)

Then system (2.2) is ISS.

Proof. By Theorem 8, the origin of the input-free system ẋ(t) = f(xt, 0) is GES. ISS of

(2.2) then follows from [Yeganefar et al., 2008, Theorem 3.2].

Note that the regularity assumption (2.3) is fulfilled in particular if f is globally

Lipschitz in both its arguments (in which case q = 0). This corollary slightly complements

the results in [Chaillet et al., 2017b], which investigates under which conditions a point-

wise dissipation is enough to guarantee ISS (note that this question is still open).

2.2 Stability of the firing rate model of STN–GPe under proportional

stimulation

The results of Section 2.1 allow us to examine stability of the analyzed model of parkin-

sonian basal ganglia under proportional feedback control. These results will form a cor-

nerstone of the analysis of the stability of this model under adaptive control, proposed in

the next chapters. Let us first recall the firing rate model from Section 1.7.2 and extend

it to include control input.
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2.2.1 Model description and extension

As recalled in Section 1.7.2, the model described by equation (1.3) has a unique fixed

equilibrium x∗ for any fixed input u∗. A change of variables ui ←[ ui−u∗i lets us eliminate

external inputs and puts (1.3) in the form (2.1). Another change of variables x← [ x− x∗

and modification of the activation functions

Si(x)←[ Si(x+ S−1
i (x∗i ))− x∗i (2.4)

makes the system conform to the requirement f(0) = 0, putting the equilibrium of the

system at the origin.

Finally, we extend the model with a stimulation signal µ(t) ∈ R that we will use to

stabilize the system. The system takes the form

τ1ẋ1(t) = −x1(t) + S1

(
c11x1(t− δ11)− c12x2(t− δ12) + µ(t)

)
(2.5a)

τ2ẋ2(t) = −x2(t) + S2

(
c21x1(t− δ21)− c22x2(t− δ22)

)
, (2.5b)

where the additional term µ(t) ∈ R represents an external stimulation signal that can be

introduced through implanted electrodes in order to disrupt pathological oscillations.

2.2.2 High-gain proportional stabilization

System (2.5) has been studied in [Haidar et al., 2016], using linearization around equilib-

rium, to show that a proportional feedback strategy

µ(t) = −θx1(t) (2.6)

is able to stabilize the system, provided that the gain θ is high enough, even when pro-

cessing delays are present in the feedback loop. This feedback strategy acts only on STN

and utilizes only the measurements of the activity of the same population. In real life

context that translates to having only one electrode implanted in the brain, responsible

for both stimulation and recording.

The system with proportional stimulation is as follows:

τ1ẋ1(t) = −x1(t) + S1

(
c11x1(t− δ11)− c12x2(t− δ12)− θx1(t)

)
(2.7a)

τ2ẋ2(t) = −x2(t) + S2

(
c21x1(t− δ21)− c22x2(t− δ22)

)
. (2.7b)
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It is easy to see that (2.7) conforms to the (2.1) form. This system is stabilizable with

high-gain proportional feedback, if the synaptic weight c22 is small enough, which we will

now state formally.

Proposition 10 (Stabilization with high-gain proportional feedback). For each i, j ∈
{1, 2}, let cij, δij ≥ 0 and τi > 0. Assume that c22 < 1 and that functions Si are globally

Lipschitz with Lipschitz constant 1, non-decreasing, bounded, and such that Si(0) = 0.

Then there exists θ∗ ≥ 0 such that, for all θ ≥ θ∗, the origin of (2.7) is globally exponen-

tially stable and there exist λij > 0, ρj > 0 such that

V (φ) =
n∑
j=2

ρj
2

(
τjφ(0)2 +

2∑
i=1

∫ 0

−δij
λijφ(s)2ds

)
(2.8)

is a point-wise GES LKF common to all θ ≥ θ∗. Moreover, θ∗ is upper bounded by θ̄∗

(θ∗ ≤ θ̄∗), where

θ̄∗ := 8

(
c2

11 +
4c2

21c
2
12

(1− c22)2

)
. (2.9)

We would like to stress that θ∗ signifies the minimal effective gain that stabilizes the

system. Proposition 10 proves the existence of θ∗ by providing its upper estimate θ̄∗.

Figure 2.1 illustrates the behavior of (2.7) with θ > θ∗. The system initially exhibits

oscillatory behavior (left side of the black line in the figure). The proportional control

µ(t) = −θx1(t), applied starting from t = 500 ms, successfully disrupts the oscillations

and makes the system converge to equilibrium. The proof of this fact, presented in

Section 2.3.2, makes use of the GES characterizations from Section 2.1.3. We consider a

Lyapunov-Krasovskii functional of the form (2.8) and show that there exist appropriate

values of ρj and λij, such that V is a point-wise LKF for (2.7), identical for all θ ≥ θ̄∗.

Global exponential stability of (2.7) then follows from Theorem 8. It should be pointed

out that the estimate of θ̄∗ from Equation (2.9) is a very rough approximation. Figure

2.2 shows the behavior of (2.7) with proportional control, where θ = θ̄∗. Since this value

is above the real θ∗, the system is GES. The rate of convergence, however, is extremely

fast, and suggests that this value is way higher than necessary. Conversely, when the

proportional gain θ is too low, the amplitude of the oscillations is reduced but the system

does not converge to the equilibrium, as illustrated in Figure 2.3.

This result parallels those from [Chaillet et al., 2017a; Detorakis et al., 2015], where

a similar condition for global asymptotic stability was obtained for a spatiotemporal

extension of this model with proportional feedback, and [Haidar et al., 2016], where a lin-
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Fig. 2.1: Stability of the firing rate model (2.7) under proportional feedback. Proportional
stimulation with θ = 5 is applied from t = 500 ms. Under proportional stimulation the
feedback system is exponentially stable, so it converges to the origin.

Fig. 2.2: Stability of the firing rate model (2.7) under proportional feedback with θ estimated
from Proposition 10. Proportional stimulation with θ = θ̄∗ is applied from t = 500 ms.
Since θ̄∗ is a rough estimate, way higher than necessary, proportional feedback disrupts
the oscillations almost instantaneously.
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Fig. 2.3: Persistence of oscillations in the firing rate model (2.7) under insufficient proportional
feedback. Proportional stimulation with θ = 0.5 is applied from t = 500 ms. When the
proportional gain θ is less than the critical value θ∗, the amplitude of the oscillations
is reduced but the system does not converge to the equilibrium.

earization of this model was used to show local asymptotic stability, even with processing

delays in the feedback loop. While the results obtained in [Haidar et al., 2016] assert very

similar stability properties as the ones presented in Proposition 10, our application of the

Lyapunov stability theorems instead of linearization around the equilibrium lets us fully

incorporate the effects of the nonlinearity present in the model, showing that these results

indeed hold globally. All these results also require weak internal connections within GPe

(c22 < `2, where `2 is the maximum slope of S2).

Some attention should be paid to the c22 < 1 condition. In Figure 2.4 we see results of

simulating the internal behavior of GPe as a function of the internal connectivity c22 and

the inputs to the structure u, which combine the excitatory connections from STN, the

inhibitory connections from striatum, and the inhibitory connections from GPe to itself

with their respective connection strengths:

u = c21x1(t− δ22)− c22x2(t− δ22)− cStru2(t). (2.10)

The c22 < 1 region (left of the red line in Figure 2.4) corresponds to the state in which

GPe does not produce endogenous oscillations, regardless of the excitation level. This

suggests that proportional feedback, acting only on STN, can stabilize the whole system

if the oscillations originate in the STN or in the loop between the populations but might
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Fig. 2.4: Endogenous oscillations in GPe. Intensity of blue color represents the steady state
amplitude of numerically evaluated solution of x2 in (1.3). When c22, representing the
internal connections within GPe is less than 1, the system does not exhibit oscillations,
regardless of the input (region on the left side of the red line). The condition c22 < 1
is necessary, but not sufficient for the appearance of endogenous oscillations in GPe
(region on the right side of the red line).

not be effective if the oscillations originate in GPe.

We stress that the condition is only sufficient and conservative - it is possible that it

is not satisfied, and yet the proportional feedback successfully disrupts the oscillations.

Note that, if additive disturbances act on the dynamics in the dynamics (2.7), whether

inside or outside the functions Si, ISS can easily be derived based on Corollary 9.

2.2.3 Issues with the simple proportional controller

The results of this chapter indicate that proportional feedback, acting only on one of the

populations (STN) is able to disrupt the pathological oscillations in the STN-GPe loop.

The results show that this is always possible, as long as c22 < 1 (representing the internal

connections in GPe), and the proportional stimulation gain θ is above the threshold value
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θ∗. Weak internal connectivity of GPe is well in line with physiological observations (early

computational models of the basal ganglia did not even assume any internal connectivity

within GPe) and thus is easily satisfied in our model.

On the other hand, finding the effective gain θ∗ is not a straightforward task. The

value obtained in (2.9) is a rough approximation and the actual value of minimal effective

gain is way lower. Additionally, the estimated value of θ∗ depends on the connectivity

parameters present in the model. Due to high level of abstraction from the modeled

structures, the values of these parameters are nearly impossible to know exactly, thus

rendering any attempt at finding the true θ∗ futile.

This mirrors the clinical situation present in DBS, where the stimulation amplitude is

set high enough to disrupt the pathological oscillations via a time-consuming postoperative

process. Moreover, this does not take into the account the natural variability in strength

of the oscillations, and does not respond to the progression of the disease.

As indicated in Section 1.6, an adaptive controller, that requires no prior knowledge of

the system parameters, capable of adjusting the proportional gain θ, can be an effective

improvement over the proportional stimulation, solving the aforementioned issues. We

will propose and examine such a controller in the next chapters.

2.3 Proofs

2.3.1 Proof of Theorem 8

The implications i) ⇒ ii) and ii) ⇒ iii) are trivial. In [Yeganefar et al., 2008, Theo-

rem 2.4], it is stated that iv) guarantees the existence of a globally Lipschitz functional

V0 : Cn → R≥0 and κ, κ, κ > 0 such that, for all φ ∈ Cn, κ‖φ‖ ≤ V0(φ) ≤ κ‖φ‖ and

D+
(2.1)V0(φ) ≤ −κ‖φ‖. Hence, the functional V := V 2

0 satisfies κ2‖φ‖2 ≤ V (φ) ≤ κ2‖φ‖2

and

D+
(2.1)V (φ) = 2V0(φ)D+

(2.1)V0(φ) ≤ −κκ‖φ‖2.

Thus, iv) implies i) (actually, with a coercive LKF). So it is sufficient to prove that iii) ⇒
iv), namely that the existence of a GES LKF with point-wise dissipation guarantees global

exponential stability. To that aim, recall that iii) means that there exists a functional
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V : Cn → R≥0, Lipschitz on bounded sets, and k, k, k > 0 such that, for all φ ∈ Cn,

k|φ(0)|2 ≤ V (φ) ≤ k‖φ‖2 (2.11)

D+
(2.1)V (φ) ≤ −k|φ(0)|2. (2.12)

Let

W (φ) :=

∫ 0

−δ̄
max
s∈[τ,0]

|φ(s)|2dτ, ∀φ ∈ Cn. (2.13)

The proof consists in showing that there exists ε > 0 such that the functional

V(φ) := V (φ) + εW (φ)

has a history-wise dissipation rate along the solutions of (2.1). We start by showing the

following.

Claim 11. Given any ε > 0, V is Lipschitz on bounded sets.

Proof. Since V is Lipschitz on bounded sets, it is sufficient to show that W enjoys the

same property. First observe that, for all τ ∈ [−δ̄, 0] and for all φ, ψ ∈ Cn,∣∣∣∣max
s∈[τ,0]

|φ(s)|2 − max
s∈[τ,0]

|ψ(s)|2
∣∣∣∣ ≤ max

s∈[τ,0]

∣∣∣|φ(s)|2 − |ψ(s)|2
∣∣∣. (2.14)

To see this, consider first the case when maxs∈[τ,0] |φ(s)|2 ≥ maxs∈[τ,0] |ψ(s)|2 and let

s∗ ∈ [τ, 0] be such that maxs∈[τ,0] |φ(s)|2 = |φ(s∗)|2. Then it holds that∣∣∣∣max
s∈[τ,0]

|φ(s)|2 − max
s∈[τ,0]

|ψ(s)|2
∣∣∣∣ = |φ(s∗)|2 − max

s∈[τ,0]
|ψ(s)|2

≤ |φ(s∗)|2 − |ψ(s∗)|2

≤ max
s∈[τ,0]

(
|φ(s)|2 − |ψ(s)|2

)
≤ max

s∈[τ,0]

∣∣∣|φ(s)|2 − |ψ(s)|2
∣∣∣.

The case when maxs∈[τ,0] |φ(s)|2 ≤ maxs∈[τ,0] |ψ(s)|2 can be addressed in the same way,

which establishes (2.14). Let X be any bounded set of Cn and assume that φ, ψ ∈ X .

Since the function s 7→ s2 is locally Lipschitz, it follows that there exists ` > 0 such that∣∣|φ(s)|2 − |ψ(s)|2
∣∣ ≤ `

∣∣|φ(s)| − |ψ(s)|
∣∣ ≤ `|φ(s)− ψ(s)|. It follows from (2.14) that, for all
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τ ∈ [−δ̄, 0] and all φ, ψ ∈ X ,∣∣∣∣max
s∈[τ,0]

|φ(s)|2 − max
s∈[τ,0]

|ψ(s)|2
∣∣∣∣ ≤ ` max

s∈[τ,0]
|φ(s)− ψ(s)| ≤ `‖φ− ψ‖.

Thus, in view of (2.13), it holds for all φ, ψ ∈ X that

|W (φ)−W (ψ)| =
∣∣∣∣∫ 0

−δ̄
max
s∈[τ,0]

|φ(s)|2ds−
∫ 0

−δ̄
max
s∈[τ,0]

|ψ(s)|2ds

∣∣∣∣
≤
∫ 0

−δ̄

∣∣∣∣max
s∈[τ,0]

|φ(s)|2 − max
s∈[τ,0]

|ψ(s)|2
∣∣∣∣ ds

≤ `δ̄‖φ− ψ‖,

meaning that W is Lipschitz on bounded sets.

Furthermore, we have the following.

Claim 12. Given any ε > 0 it holds that

k|φ(0)|2 ≤ V(φ) ≤ (k̄ + εδ̄)‖φ‖2, ∀φ ∈ Cn.

Proof. This is straightforward from (2.11) and (2.13).

We now proceed to computing the Dini derivative of V along the solutions of (2.1). To

that aim, consider the solution t 7→ xt of (2.1) starting from any x0 ∈ Cn at t = 0. Note

that, since f is globally Lipschitz, this solution exists at all times t ≥ 0 and is unique

[Hale and Verduyn Lunel, 1993]. Hence, for all t ≥ 0, it holds that

W (xt) =

∫ 0

−δ̄
max
s∈[τ,0]

|x(t+ s)|2dτ.

Operating successively the changes of variables s← t+ s and τ ← τ + t, it follows that

W (xt) =

∫ t

t−δ̄
max
s∈[τ,t]

|x(s)|2dτ. (2.15)

The following statement constitutes the key idea of this theorem: adding W to the

GES LKF V with point-wise dissipation allows to obtain a negative term in ‖xt‖2 (hence,

a history-wise dissipation).
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Claim 13. For all t ≥ 0, it holds that

D+
(2.1)W (xt) ≤ |x(t)|2 − ‖xt‖2 + 2δ̄|x(t)| |f(xt)|.

Proof. If τ 7→ maxs∈[τ,t] |x(s)|2 were differentiable, then the derivative of W could be easily

computed using Leibniz integral rule. Unfortunately, this may not be the case. This is

why the proof of this claim is a bit technical. In order to lighten the notation, define:

m(τ, t) := max
s∈[τ,t]

|x(s)|2, ∀t ≥ τ ≥ 0. (2.16)

Then the function m satisfies the following:

P1 m(τ, t) ≥ 0 for all t ≥ τ ≥ 0

P2 τ 7→ m(τ, t) is non-increasing on [0, t]

P3 t 7→ m(τ, t) is non-decreasing on [τ,+∞).

P4 m(τ, t) = max{m(τ, s);m(s, t)} for all t ≥ s ≥ τ ≥ 0.

With this notation, W (xt) =
∫ t
t−δ̄m(τ, t)dτ , hence:

D+
(2.1)W (xt) = lim sup

h→0+

1

h

(∫ t+h

t+h−δ̄
m(τ, t+ h)dτ −

∫ t

t−δ̄
m(τ, t)dτ

)
.

Let

I(t) := lim sup
h→0+

1

h

∫ t+h

t+h−δ̄

(
m(τ, t+ h)dτ −m(min{τ, t}, t)

)
dτ. (2.17)

Then it holds that

D+
(2.1)W (xt) ≤ I(t) + lim sup

h→0+

1

h

(∫ t+h

t+h−δ̄
m(min{τ ; t}, t)dτ −

∫ t

t−δ̄
m(τ, t)dτ

)
.
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Notice that this latter term reads

lim sup
h→0+

1

h

(∫ t+h

t+h−δ̄
m(min{τ ; t}, t)dτ −

∫ t

t−δ̄
m(τ, t)dτ

)
= lim sup

h→0+

1

h

(∫ t+h

t

m(t, t)dτ +

∫ t

t+h−δ̄
m(τ, t)dτ −

∫ t

t−δ̄
m(τ, t)dτ

)
= lim sup

h→0+

1

h

(∫ t+h

t

m(t, t)dτ −
∫ t+h−δ̄

t−δ̄
m(τ, t)dτ

)
= m(t, t)−m(t− δ̄, t)

= |x(t)|2 − ‖xt‖2,

where the last equality comes from (2.16). It follows that

D+
(2.1)W (xt) ≤ I(t) + |x(t)|2 − ‖xt‖2. (2.18)

So all we need to show is that I(t) ≤ 2δ̄|x(t)| |f(xt)|. In view of (2.17), I(t) can be written

as

I(t) = lim sup
h→0+

J(h, t)

h
, (2.19)

where

J(h, t) :=

∫ t+h

t+h−δ̄

(
m(τ, t+ h)dτ −m(min{τ ; t}, t)

)
dτ

=

∫ t

t+h−δ̄

(
m(τ, t+ h)−m(min{τ ; t}, t)

)
dτ +

∫ t+h

t

(
m(τ, t+ h)−m(min{τ ; t}, t)

)
dτ

=

∫ t

t+h−δ̄

(
m(τ, t+ h)−m(τ, t)

)
dτ +

∫ t+h

t

(
m(τ, t+ h)−m(t, t)

)
dτ.

Since m(t, t) = |x(t)|2, we get that

J(h, t) =

∫ t

t+h−δ̄

(
m(τ, t+ h)−m(τ, t)

)
dτ +

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ

=

∫ t

t−δ̄

(
m(τ, t+ h)−m(τ, t)

)
dτ −

∫ t+h−δ̄

t−δ̄

(
m(τ, t+ h)−m(τ, t)

)
dτ

+

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ.
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Observing that the second integral of this expression is non-negative (due to P3), we get

that

J(h, t) ≤
∫ t

t−δ̄

(
m(τ, t+ h)−m(τ, t)

)
dτ +

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ.

It follows from (2.19) that I(t) ≤ I1(t) + I2(t), where

I1(t) := lim sup
h→0+

1

h

∫ t

t−δ̄

(
m(τ, t+ h)−m(τ, t)

)
dτ

I2(t) := lim sup
h→0+

1

h

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ.

We start by computing I2(t): using P2, it holds that

I2(t) ≤ lim sup
h→0+

1

h

∫ t+h

t

(
m(t, t+ h)− |x(t)|2

)
dτ

≤ lim sup
h→0+

m(t, t+ h)− |x(t)|2 = 0,

by (2.16) and using the fact that s 7→ |x(s)| is continuous. Thus, I(t) ≤ I1(t). Moreover,

using P4, it holds for all t ≥ τ that

m(τ, t+ h) = max{m(τ, t);m(t, t+ h)}.

It follows that

I1(t) = lim sup
h→0+

1

h

∫ t

t−δ̄

(
m(τ, t+ h)−m(τ, t)

)
dτ

= lim sup
h→0+

1

h

∫ t

t−δ̄
max{0;m(t, t+ h)−m(τ, t)}dτ

≤ lim sup
h→0+

δ̄

h
max{0;m(t, t+ h)− |x(t)|2},

where we used the fact that m(τ, t) = maxs∈[τ,t] |x(s)|2 ≥ |x(t)|2. Furthermore, for all
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s ≥ t, x(s) = x(t) +
∫ s
t
f(xθ)dθ. It follows that

m(t, t+ h) = max
s∈[t,t+h]

x(s)Tx(s)

= max
s∈[t,t+h]

|x(t)|2 + 2x(t)T
∫ s

t

f(xθ)dθ +

∣∣∣∣∫ s

t

f(xθ)dθ

∣∣∣∣2
≤ |x(t)|2 + 2|x(t)|

∫ t+h

t

|f(xθ)|dθ +

(∫ t+h

t

|f(xθ)|dθ
)2

.

Recalling that m(t, t) = |x(t)|2, we obtain that

I1(t) ≤ lim sup
h→0+

δ̄

h

(
2|x(t)|

∫ t+h

t

|f(xθ)|dθ +

(∫ t+h

t

|f(xθ)|dθ
)2
)
.

Now, observe that (2.12) ensures in particular that D+
(2.1)V (xt) ≤ 0. This, combined with

(2.11), guarantees that |x(t)| ≤
√

k
k
‖x0‖, which implies that ‖xt‖ ≤

√
k
k
‖x0‖. Since f is

continuous, there exists a continuous function R≥0 → R≥0 such that |f(xt)| ≤ c(‖x0‖) (c

can actually be picked linear since f is globally Lipschitz and 0 at 0). Consequently

I(t) ≤ I1(t) ≤ 2δ̄|x(t)| lim sup
h→0+

1

h

∫ t+h

t

|f(xθ)|dθ + lim sup
h→0+

h2c(‖x0‖)2

h

≤ 2δ̄|x(t)| |f(xt)|.

The claim then follows from (2.18).

We can now conclude the proof of Theorem 8. Since f is globally Lipschitz, there

exists `f > 0 such that |f(xt)| ≤ `f‖xt‖. It follows from Claim 13 that, for all t ≥ 0,

D+
(2.1)W (xt) ≤ |x(t)|2 − ‖xt‖2 + 2δ̄`f |x(t)|‖xt‖. (2.20)

Now, recall that V(φ) := V (φ) + εW (φ), with ε > 0 to be chosen. Equations (2.12) and

(2.20) ensure that, for any λ > 0,

D+
(2.1)V(xt) ≤ −k|x(t)|2 + ε|x(t)|2 − ε‖xt‖2 + 2εδ̄`f |x(t)|‖xt‖

≤ −(k − ε)|x(t)|2 − ε‖xt‖2 + εδ̄`f

(
λ|x(t)|2 +

‖xt‖2

λ

)
≤ −(k − ε− εδ̄`fλ)|x(t)|2 − ε

(
1− δ̄`f

λ

)
‖xt‖2.
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Pick λ = 2δ̄`f , then

D+
(2.1)V(xt) ≤ −

(
k − ε− 2εδ̄2`2

f

)
|x(t)|2 − ε

2
‖xt‖2.

Thus, by picking ε := k/(1 + 2δ̄2`2
f ), we finally obtain that

D+
(2.1)V(xt) ≤ −

ε

2
‖xt‖2, ∀t ≥ 0. (2.21)

From this, a possible strategy is to use the bounds on V stated in Claim 12 to show the

exponential decay of V(xt) with the help of a comparison lemma by taking into account

that V is locally Lipschitz (thus the problem of the absolute continuity is overcome, see

[Pepe, 2007b]), and that the function t 7→ W (xt) is locally absolutely continuous. An

alternative is to directly integrate (2.21) to get from Claim 12 that∫ ∞
0

‖xt‖2dt ≤ 2

ε
V (x0) ≤ 2k̄

ε
‖x0‖2, ∀x0 ∈ Cn,

and GES follows from the integral criterion proposed in [Ichikawa, 1984].

2.3.2 Proof of Proposition 10

Consider a Lyapunov–Krasovskii functional V : C2 → R≥0, defined for all φ = (φ1, φ2) ∈
C2 as V (φ) = V1(φ1) + ρV2(φ2), where

Vj(φ) =
1

2

(
τjφ(0)2 +

2∑
i=1

∫ 0

−δij
λijφ(s)2ds

)
, (2.22)

with ρ > 0 and λij > 0, i, j ∈ {1, 2}, to be chosen. V is Lipschitz on bounded sets.

Moreover, the condition

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖)

is fulfilled by setting

ā = τ1 + ρτ2 + λ11δ11 + λ21δ21 + ρλ12δ12 + ρλ22δ22,

a = min{τ1, τ2}min{1, ρ}/2.

Calculating the derivative of V along the solutions of (2.7) we get, for all φ ∈ C2,
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D+
(2.7)V (φ) =− φ1(0)2 − ρφ2(0)2

+ φ1(0)S1

(
c11φ1(−δ11)− c12φ2(−δ12)− θφ1(0)

)
+ ρφ2(0)S2

(
c21φ1(−δ21)− c22φ2(−δ22)

)
+

1

2

2∑
i=1

λi1
(
φ1(0)2 − φ1(−δi1)2

)
+ ρ

1

2

2∑
i=1

λi2
(
φ2(0)2 − φ2(−δi2)2

)
.

Since each Si is globally Lipschitz with Lipschitz constant 1, nondecreasing, and satisfies

Si(0) = 0, it holds that |Si(s)| ≤ |s| and Si(s)s ≥ 0 for all s ∈ R. Based on the

examination of two cases, whether the argument of S1 is dominated by the control signal

−θφ1(0) or not, we get that

φ1(0)S1

(
c11φ1(−δ11)− c12φ2(−δ12)− θφ1(0)

)
≤ 4

θ

(
c2

11x1(t− δ11)2 + c2
12x2(t− δ12)2

)
.

Similarly, using the fact that ab ≤ (ξa2 + b2/ξ)/2 for any ξ > 0 and any a, b ∈ R, it holds

that, for any ξ1, ξ2 > 0

φ2(0)S2 (c21φ1(−δ21 − c22φ2(−δ22))

≤ c21

2

(
ξ1φ2(0)2 +

1

ξ1

φ1(−δ21)

)
+
c22

2

(
ξ2φ2(0)2 +

1

ξ2

φ2(−δ22

)
,

where ξ1 and ξ2 are constants to be defined later. Putting it all together, it follows that

D+
(2.7)V (φ) ≤− φ1(0)2 − ρφ2(0)2

+
4

θ

(
c2

11φ1(−δ11)2 + c2
12φ2(−δ12)2

)
+
ρc21

2

(
ξ1φ2(0)2 +

1

ξ1

φ1(−δ21)2

)
+
ρc22

2

(
ξ2φ2(0)2 +

1

ξ2

φ2(−δ22)2

)
+

1

2

2∑
i=1

λi1
(
φ1(0)2 − φ1(−δi1)2

)
+ ρ

1

2

2∑
i=1

λi2
(
φ2(0)2 − φ2(−δi2)2

)
. (2.23)
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Combining terms in (2.23) leads to a set of inequalities

λ11 + λ21 < 2, (2.24a)

c21ξ1 + c22ξ2 + λ12 + λ22 < 2, (2.24b)

8

θ
c2

11 ≤ λ11, (2.24c)

ρc21

ξ1

≤ λ21, (2.24d)

8

θρ
c2

12 ≤ λ12, (2.24e)

c22

ξ2

≤ λ22 (2.24f)

that have to be satisfied to make the derivative D+
(2.7)V (φ) negative.

By setting λ22 = c22

ξ2
, we fulfill (2.24f), and (2.24b) reads

c22

(
ξ2 +

1

ξ2

)
+ λ12 + c21ξ1 < 2.

For positive arguments, the function x 7→ x + 1/x has a minimum for x = 1, so we set

ξ2 = 1. By setting

λ12 =
1− c22

2
, ξ1 =

λ12

c21

=
1− c22

2c21

we assure that (2.24b) is satisfied, as long as c22 < 1, which we have by assumption. The

choice

ρ =
16c2

12

θ(1− c22)

satisfies (2.24e). Setting

λ11 =
8

θ
c2

11, λ21 =
2ρc2

21

1− c22

we satisfy (2.24c) and (2.24d). Substituting all that into (2.24a) we obtain

8

θ
c2

11 +
2ρc2

21

1− c22

< 2.

Replacing ρ by its value we obtain the condition

θ > 4

(
c2

11 +
4c2

21c
2
12

(1− c22)2

)
. (2.25)
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Note that all the λij and ξi are positive because c22 < 1 by assumption. We get that,

for all θ ≥ θ̄∗,

D+
(2.7)V (φ) ≤ −1

2
(1− c22)|φ(0)|2, (2.26)

where

θ̄∗ := 8

(
c2

11 +
4c2

21c
2
12

(1− c22)2

)
. (2.27)

Hence, V is a pointwise GES LKF, common to all θ ≥ θ∗. From Theorem 8 it follows

that (2.7) is GES.
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In Chapter 2 we have studied stability of the firing rate model of STN–GPe loop with

control input

τ1ẋ1(t) = −x1(t) + S1

(
c11x1(t− δ11)− c12x2(t− δ12) + µ(t)

)
(3.1a)

τ2ẋ2(t) = −x2(t) + S2

(
c21x1(t− δ21)− c22x2(t− δ22)

)
(3.1b)

which, in the absence of control, exhibits beta oscillations, similar to those observed in

certain brain regions of patients affected by Parkinson’s disease. We have shown that
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(3.1) with proportional feedback

µ(t) = −θx1(t) (3.2)

is globally exponentially stable, as long as c22 < 1, provided that the proportional gain θ

is greater than a threshold value θ∗ (Proposition 10).

The remaining problem is that in real life applications we do not know a priori the

value of θ∗, as it depends on the connectivity parameters of the system (see the estimate θ̄∗

provided in (2.9)), that are impossible to estimate with acceptable certainty. Moreover,

it may evolve with time, corresponding to the natural variation in the severity of the

symptoms of Parkinson’s disease, and the controller (3.2) is insensitive to those changes

and thus prone to over- or understimulation.

In this chapter we propose an adaptive proportional controller with σ-modification

that addresses these issues by automatically adapting the gain parameter θ based on the

measured activity in STN. Since we introduce an adaptive variable as a part of the state,

we can treat the state variables corresponding to the activity of the neuronal populations

as the output and analyze the stability of the controlled system using tools from the fields

of input-to-output stability and partial stability.

In Section 3.3 we show that uniform asymptotic partial stability (y-UAS, defined in

Section 3.2) of the system with no input is enough to conclude input-to-output stability

(IOS) of the same system, if it evolves on a bounded set. In [Or lowski et al., 2018] we

have used this argument, as well as a theorem from [Vorotnikov, 1998] to conclude IOS of

(3.1) in closed loop with the proposed adaptive proportional controller. However, as we

show with a counterexample in Section 3.5.2, this theorem guarantees only asymptotic

partial stability (y-AS), without uniformity in initial conditions. This compromises its

utility in terms of robustness analysis, since uniformity in initial conditions is crucial for

IOS, as we show in Section 3.4.

3.1 Adaptive proportional controller for the firing rate model of

STN–GPe loop

3.1.1 Simple adaptive controller

A simple solution of the problem of unknown θ∗ would be to dynamically increase the

value of θ as long as the pathological activity in the system persists. For example, we
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Chapter 3 Counterexample to uniform asymptotic y-stability

Fig. 3.1: Adaptive proportional control, illustrated with system (3.1) in closed loop with the
controller (3.3) with τθ = 50. At time t = 500 ms, when the controller is turned on,
the proportional gain starts increasing until it overpasses the critical value θ∗, making
x converge exponentially to the equilibrium (see Chapter 2).

could use an adaptive controller of the form

µ(t) = −θ(t)x1(t) (3.3a)

τθθ̇(t) = κ(|x1(t)|), (3.3b)

where κ : R≥0 → R≥0 is a locally Lipschitz function satisfying κ(r) = 0 if and only if

r = 0 and τθ > 0 is an additional tuning parameter, that regulates the increase rate of

the gain parameter θ. With this controller, the proportional gain θ is increased as long

as x1 (representing activity of the STN) is not at the equilibrium. Since the proportional

controller (3.2) is effective for any θ ≥ θ∗, this strategy successfully finds a θ that stabilizes

the system, as illustrated in Figure 3.1.

This approach is not without problems, however. With a small time constant τθ, the

value of θ quickly overpasses θ∗ and continues to grow well beyond this value while the

system converges to the equilibrium. And since κ is nonnegative, t 7→ θ(t) is nondecreas-

ing, so there is no way to correct the overestimation of θ∗ (see Figure 3.2). Additionally,

as pointed out in [Ioannou and Kokotovic, 1984], adaptive controllers of this kind suffer

from parameter drift instability, when the system is subject to exogenous disturbances.

This type of instability can induce the adaptive variable θ to grow indefinitely in the

presence of bounded disturbances (see Figure 3.3).
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Fig. 3.2: Adaptive proportional control of system (3.1) in closed loop with (3.3) with small time
constant τθ (τθ = 1). Smaller τθ causes greater overestimation of θ∗. The simulation
parameters, except the time constant of the adaptive gain τθ are identical as in Figure
3.1.

Fig. 3.3: Parameter drift instability. Bounded disturbance (sinusoidal input to STN with ampli-
tude 1 and frequency 80 Hz) acting on the system may cause the adaptive parameter
θ to grow indefinitely.
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3.1.2 Adaptive controller with σ-modification

These issues can be addressed by a number of methods. Example methods to prevent

the parameter drift are the “dead zone” modification [Peterson and Narendra, 1982] and

the related method of λ-tracking [Ilchmann and Ryan, 1994]. These approaches add

an insensitivity zone in a small neighborhood of the equilibrium, where the adaptation is

turned off. In this thesis we concentrate instead on σ-modification, introduced in [Ioannou

and Kokotovic, 1984], which also provides adaptation to varying parameters or inputs,

while yielding a mechanism to account for overestimation of θ∗. This control strategy

consists in adding a relaxation (also called dissipation or leakage) term to (3.3b), creating

a controller of the form

µ(t) = −θ(t)x1(t) (3.4a)

τθ θ̇(t) = κ(|x1(t)|)− σθ(t), (3.4b)

where τθ > 0 and σ ≥ 0 denote tuning parameters. The additional dissipation term

−σθ(t) decreases the adaptive gain when |x1(t)| is small. An illustration of the effect

of the adaptive controller with sigma modification for the STN–GPe loop is provided in

Figure 3.4. After the initial overshoot, the dissipation term makes the gain θ converge

to a more appropriate value. Notice that θ converges to a value lower than in Figure

3.1, thus preventing overstimulation. In the absence of disturbances, after x converges to

equilibrium, the proportional gain θ converges to 0 at the rate σ/τθ (not shown).

3.2 Partial stability

The state of the extended system (the firing rate model in closed loop with the adaptive

controller) now reads (x1(t), x2(t), θ(t))T . However, we are only interested in proving

stability of the x component (x1(t), x2(t))T , which we can also regard as the output of

the system, while the θ subsystem needs only to possess a weaker set of properties (e.g.

boundedness).

A natural approach in this situation is to use the framework of partial stability [Vorot-

nikov, 1998, 2005], stability with respect to two measures [Lakshmikantham and Liu,

1993], or input-to-output stability (IOS, [Sontag and Wang, 1999]). These properties can

be established using powerful Lyapunov characterizations [Sontag and Wang, 2001; Teel

and Praly, 2000], even in a time-delay context [Karafyllis et al., 2008b], [Kankanamalage

et al., 2017].
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Fig. 3.4: Effect of σ-modification in the presence of sinusoidal 80 Hz disturbance. After the initial
overshoot in θ, the adaptive gain decreases to a more appropriate value. Additionally,
this strategy prevents parameter drift when the external disturbances are present.

We start by recalling basic notions of partial stability of nonlinear time-delay systems.

Consider a time-delay system of the form

ẋ(t) = f(xt), (3.5)

with state xt ∈ Cn. xt is decomposed as xt = (yTt , z
T
t )T , where yt ∈ Cp, p ≤ n, represents

the state variables of interest and zt ∈ Cn−p represents the auxiliary variables. The vector

field f : Cn → Rn is assumed continuous and satisfying the conditions for existence and

uniqueness of solutions in the domain

{xt ∈ Cn | ‖yt‖ < H, ‖zt‖ <∞} , (3.6)

where H is a positive constant, with z-continuable solutions, that is, all solutions are

defined for all t ≥ 0 such that |y(t)| < H. Here x0 = (yT0 , z
T
0 )T ∈ Cn is the initial state of

the system, x(t) is the solution of (3.5) at time t, and y(t) is the y part of x(t). We will

also sometimes make use of the following representation of (3.5):

ẏ(t) = fy(yt, zt) (3.7a)

ż(t) = fz(yt, zt), (3.7b)

56



Chapter 3 Counterexample to uniform asymptotic y-stability

where

f(xt) =

fy(yt, zt)
fz(yt, zt)

 .

The following two definitions of partial stability are adapted from [Vorotnikov, 1998,

Definition 6.1.1].

Definition 14 (y-AS). The origin of (3.5) is said to be asymptotically y-stable (y-AS)

on some X ⊆ Cn containing the origin if

• it is y-stable, that is, for any ε > 0 there exists a δ(ε) > 0 such that

x0 ∈ X , ‖x0‖ < δ =⇒ |y(t)| < ε, ∀t ≥ 0,

• there exists a ∆ > 0 such that solutions x(·) = (y(·), z(·)) of (3.5) with x0 ∈ X ,

such that ‖x0‖ < ∆, satisfy

lim
t→∞
|y(t)| = 0. (3.8)

When X = Cn, we say that the origin is globally asymptotically y-stable (y-GAS).

Definition 15 (y-UAS). The origin of (3.5) is said to be uniformly asymptotically y-

stable (y-UAS) on some X ⊆ Cn containing the origin if

• it is y-stable, that is, for any ε > 0, there exists δ(ε) > 0 such that for any solution

starting from x0 ∈ X with ‖x0‖ < δ it holds that |y(t)| < ε for all t ≥ 0,

• there exists a number ∆ > 0 such that all solutions with x0 ∈ X , such that ‖x0‖ < ∆,

satisfy the condition

lim
t→∞
|y(t)| = 0, (3.9)

• relationship (3.9) holds uniformly with respect to x0 from the domain ‖x0‖ < ∆,

that is for every ε > 0 there exists T (ε) > 0 such that

x0 ∈ X , ‖x0‖ ≤ ∆ =⇒ |y(t)| ≤ ε, ∀t > T. (3.10)

When X = Cn, we call the origin globally uniformly asymptotically y-stable (y-GUAS).

y-AS and y-UAS can be also defined for non-autonomous systems and they were

presented that way in [Vorotnikov, 1998].
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These properties are a natural extension of the asymptotic stability and uniform

asymptotic stability, recalled in Definition 1, to applications where we only require these

properties to hold for a subset of the state variables. Both y-AS and y-UAS require that

the substate of interest y remains in a small neighborhood of the equilibrium if the initial

state is small (y-stability), as well as asymptotic convergence to the origin as t→∞. The

y-UAS property requires additionally that the rate of convergence depends monotonically

on the norm of the initial state x0.

Partial stability can be also thought of as a specific case of output stability (see Section

1.8.3). Indeed, in the output stability context we require that the output of the system

y(t) = h(xt) admits certain stability properties. As in Section 1.8.3, h : Cn → Rp is some

function satisfying h(0) = 0. By choosing h such that it selects the current value of the

substate of interest from xt:

y(t) = h(xt) =


x1(t)

...

xp(t)

 , (3.11)

we recover partial stability. In particular, uniform asymptotic output stability (Definition

3) with h as in (3.11) is equivalent to y-UAS.

An even broader framework of stability with respect to two measures [Lakshmikantham

and Liu, 1993] generalizes all the above stability definitions, which can be recovered for

an appropriate choice of measures.

3.3 Link between uniform asymptotic y-stability and IOS

Using classical considerations on converse Lyapunov functions, it is possible to show that

uniform asymptotic y-stability of an input-free system guarantees some robustness in the

input-to-output stability sense, if we consider the substate of interest to be the output of

the system. In order to make this precise, consider the system

ẋ(t) = f(xt, u(t)), y(t) = h(xt) (3.12)

with state xt = (yTt , z
T
t )T ∈ Cn, output y(t) ∈ Rp, and input u ∈ U(U)m, where the vector

field f : Cn × Um → Rn is assumed Lipschitz on bounded sets and satisfying f(0, 0) = 0.

Let us define the partial stability of the unforced system (with u ≡ 0) by analogy to

58



Chapter 3 Counterexample to uniform asymptotic y-stability

the y-UAS property.

Definition 16 (0-y-UAS). Let X be a subset of Cn, containing the origin. System (3.12)

is 0-y-UAS on X if the origin of the unforced system

ẋ(t) = f(xt, 0), y(t) = h(xt) (3.13)

with h defined as in (3.11) is uniformly asymptotically y-stable (y-UAS) on X .

The following result states that, for systems evolving on a bounded set, uniform asymp-

totic y-stability on X of the unforced system ensures IOS on X × U(U)m (see Definition

4).

Lemma 17. Consider a bounded set X ⊂ Cn and an open set U such that X is forward

invariant for system (3.12), given any input u ∈ U(U)m. System (3.12) with h as in

(3.11) is IOS on X × U(U)m if and only if it is 0-y-UAS on X .

The proof of Lemma 17 is provided in Section 3.6.1. This result lets us draw conclusions

on the robustness of the system with respect to exogenous inputs, based only on its internal

stability properties. The assumption that the system evolves on a bounded set is crucial.

Otherwise, IOS is strictly more conservative than 0-y-UAS.

A similar result, allowing to conclude input-to-state stability (ISS), was obtained in

[Yeganefar et al., 2008] for systems that are globally exponentially stable in the absence

of disturbances. That result does not require that solutions evolve on a bounded set, but

rather that f is globally Lipschitz and that there exist c ≥ 0 and q ∈ [0, 1) such that

|f(φ, v)− f(φ, 0)| ≤ cmax{‖φ‖q, 1}|v| (3.14)

for all φ ∈ Cn and all v ∈ Rm (see Corollary 9).

Additionally, uniformity in the initial state x0 (equation (3.10)) is also crucial to

conclude IOS, as we illustrate in the next section.

3.4 Importance of uniformity in IOS analysis

An obvious practical consequence of non-uniformity with respect to initial states is that

transient effects, including overshoot, may happen arbitrarily late, which may be undesir-

able in many control applications. But this non-uniformity may also have a strong impact

in terms of robustness to exogenous disturbances.
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Lemma 17 shows that, for systems evolving on a bounded set X , y-UAS in the absence

of inputs ensures IOS. The following example shows that this relationship is not valid

anymore if the uniformity requirement is not fulfilled. The proposed example has the

inelegant feature that the state converges to the boundary of X . However, it has the

advantage of being concise and easy to grasp.

Proposition 18. Consider the two-dimensional delay-free system

ẏ = −zy + uϕ(y) (3.15a)

ż = −z2, (3.15b)

where ϕ : R→ R is any smooth function satisfying

ϕ(y) =

 1 if |y| ≤ 1,

0 if |y| ≥ 2.

Let X := (−2, 2)× (0, 1). Then the following holds:

i) The origin of (3.15) with no input is y-AS. More precisely, for all x0 = (y0, z0) ∈ X ,

its solution for u ≡ 0 satisfies |x(t)| ≤ |x0| for all t ≥ 0 and limt→+∞ |y(t)| = 0.

ii) Given any u ∈ U(R), the bounded set X is forward invariant for (3.15).

iii) For any (y0, z0) ∈ (−1, 1) × (0, 1), the input u ∈ U(R) defined as u(t) := z0y0

1+z0t

converges to zero but generates a non-vanishing solution (namely, y(t) = y0 for all

t ≥ 0).

System (3.15) is thus an example of a system whose origin is y-AS in the absence

of inputs (although not uniformly), whose solutions evolve on a bounded open set, but

for which IOS does not hold. This example illustrates why the uniformity requirement

with respect to initial states is instrumental in the analysis of robustness with respect to

exogenous disturbances. The proof of Proposition 18 is provided in Section 3.6.2.

3.5 Counterexample to a sufficient condition for uniform asymptotic

y-stability

Since the firing rate model (3.1) with no disturbances and under proportional control

(3.2) evolves on a bounded set, it is tempting to try to use Lemma 17 to show that (3.1)
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in closed loop with (3.3) is IOS. This was the approach we adopted in [Or lowski et al.,

2018], treating both σ and the external disturbances as inputs, which turned out to be

incorrect for the reasons we present in this chapter.

One of the theorems present in the seminal book by V. I. Vorotnikov on partial stability

[Vorotnikov, 1998, Theorem 6.2.1-(5)] introduces a seemingly powerful Lyapunov tool to

establish partial stability of nonlinear time-delay systems. This statement claims that y-

UAS can be guaranteed using a Lyapunov-like functional with a dissipation rate depending

on the output norm only. The appealing part of this theorem is that the upper bound on

the Lyapunov function can be expressed in terms of the whole state, while the bound on

its derivative can be in terms of the output (part of the state) only.

In [Or lowski et al., 2018], we have used this theorem to prove that an adaptive control

law with σ-modification leads to oscillation quenching in (3.1), and that steady-state

oscillations amplitude is proportional (up to a comparison function) to the value of the

tuning parameter σ.

Upon closer inspection, however, we have noticed that the claims made by [Vorot-

nikov, 1998, Theorem 6.2.1-(5)] are stronger than what actually follows from the premises.

Namely, the result does guarantee partial asymptotic stability (y-AS) but the convergence

rate is not necessarily uniform in the initial state.

Here we recall the result from V. I. Vorotnikov’s book (originally formulated for nonau-

tonomous, nonlinear, time-delay systems) and provide an autonomous, two-dimensional

system without delays that constitutes a counterexample to [Vorotnikov, 1998, Theorem

6.2.1-(5)].

3.5.1 Disproved sufficient condition

In his book [Vorotnikov, 1998], V. I. Vorotnikov states the following.

Assertion 19 (Theorem 6.2.1-(5) in [Vorotnikov, 1998], disproved). Suppose that for the

system

ẋ(t) = f(xt) (3.16)

with state xt = (yTt , z
T
t )T ∈ Cn it is possible to specify a function V = V (φ), locally

Lipschitz on the domain (3.6), such that, given φ ∈ Cn, with φy ∈ Cp and φz ∈ Cn−p such
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that φ = (φy, φz),

a(|h(φ)|) ≤ V (φ) ≤ b(‖φ‖), (3.17)

V̇ (xt) ≤ −c(|y(t)|), (3.18)

|fy(φy, φz)| ≤M = const > 0, (3.19)

where a, b, and c are class K functions and V̇ is defined as in (1.8). Then the origin of

(3.5) is uniformly asymptotically y-stable.

The original result was stated in a stronger form, allowing both f and V to depend

explicitly on t, which we omit here for the sake of cohesion, as in this thesis we only

consider time-invariant systems. This result is similar to the classical Lyapunov-Krasovskii

characterization of asymptotic stability for time-delay systems (Theorem 2) when x = y.

As shown in [Oziraner and Rumiantsev, 1972, Theorem 15] and [Lakshmikantham and

Liu, 1993, Theorem 3.1.3], the above assumptions do assure y-AS. Assertion 19 seemingly

generalizes these results by guaranteeing uniformity in the initial state. What makes this

result particularly appealing is that both the lower bound on V and its dissipation rate

are allowed to involve merely the state variables of interest y, as opposed to classical

results on output stability that require dissipation in terms of the whole functional V

[Kankanamalage et al., 2017; Karafyllis et al., 2008b; Sontag and Wang, 2001; Teel and

Praly, 2000].

The proof of Theorem 6.2.1(5) in [Vorotnikov, 1998] shows y-stability and asymptotic

convergence of y and then it proceeds to conclude that y-UAS follows from these premises.

However, in Section 3.5.2, we show that convergence may not be uniform in x0.

In order to lighten the notation, let us write down an immediate corollary to Asser-

tion 19, for the particular case of non-delayed dynamics, namely:

ẏ(t) = fy(y(t), z(t)), (3.20a)

ż(t) = fz(y(t), z(t)), (3.20b)

where x(t) = (y(t), z(t)) ∈ Rn, fy : Rn → Rp, fz : Rn → Rn−p are continuous and satisfy

the conditions for existence and uniqueness of solutions in the domain

{x = (y, z) | |y| < H, |z| <∞} (3.21)

for some H > 0.
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Assertion 20 (Disproved). Suppose there exists a locally Lipschitz function V : Rn → R≥0

such that, in the domain (3.21),

a(|y|) ≤ V (x) ≤ b(|x|), (3.22)

V̇ (x(t)) ≤ −c(|y(t)|), (3.23)

|fy(y, z)| ≤M, (3.24)

where a, b, and c are class K functions, M > 0, and V̇ is defined as in (1.8). Then the

origin of (3.20) is y-UAS.

3.5.2 Counterexample

In this section we disprove [Vorotnikov, 1998, Theorem 6.2.1-(5)] by constructing a system

that fulfills the hypotheses of Assertion 20 (and thus Assertion 19) but is not y-UAS.

As we detail below, the uniformity in our counterexample is compromised by a stick-

iness effect of the equilibrium, which means that solutions starting from an initial state

with y0 close to the equilibrium take arbitrarily long to go through their transient be-

havior. It should be noted that it is not possible to find a system of this form with such

property when y = x. Indeed, for time-invariant finite-dimensional systems, asymptotic

stability implies uniform asymptotic stability [Massera, 1956, Theorem 7 (e)].

Consider the system

ẏ(t) = −sat(z(t)y(t)), (3.25a)

ż(t) = sat(y(t)2), (3.25b)

where x(t) = (y(t), z(t)) ∈ R2, and sat denotes the classical saturation function:

sat(s) := min{|s|, 1}sign(s), ∀s ∈ R.

This system has the form (3.20) with fy(y, z) = −sat(zy) and fz(y, z) = sat(y2). Condi-

tion (3.24) holds with M = 1 for all x ∈ R2. Moreover, the vector field f = (fy, fz)
T is

globally Lipschitz, so we get existence and uniqueness of solutions for all times t ≥ 0 and

all initial states x0 ∈ R2.

Proposition 21. System (3.25) with the Lyapunov function V (x) := 2|x| − z fulfills all

the conditions of Assertion 20 (hence, Assertion 19) but its origin is not y-UAS.
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Proof. The Lyapunov function V can be written explicitly as V (x) = 2
√
y2 + z2 − z. It

is locally Lipschitz on R2 and 0 at 0. Since |z| ≤ |x|, it holds that V (x) ≤ 3|x| for all

x ∈ R2. Moreover, √
2

2
(|y|+ |z|) ≤

√
y2 + z2 ≤ |y|+ |z|,

which implies that

V (x) ≥
√

2(|y|+ |z|)− z ≥ (
√

2− 1)(|y|+ |z|) ≥ (
√

2− 1)
√
y2 + z2.

It follows that

a(|y|) ≤ a(|x|) ≤ V (x) ≤ b(|x|), ∀x ∈ R2, (3.26)

where a(s) := (
√

2− 1)s and b(s) := 3s, for all s ≥ 0. We conclude that (3.22) holds for

all x ∈ R2.

Now, assume that |x0| < 1. Then, as long as |x(t)| ≤ 1, the solution of (3.25) coincides

with that of

ẏ(t) = −z(t)y(t), (3.27a)

ż(t) = y(t)2. (3.27b)

Consider the function W (x) := |x|2. It can be easily seen that Ẇ (x(t)) = 0 at all

times, along the solutions of (3.27), so t 7→ W (t) is a first integral for (3.27). It follows

in particular that |x0| < 1 implies |x(t)| < 1 for all t ≥ 0. This, in turn, ensures that, for

all |x0| < 1, solutions of (3.25) coincide at all times with those of (3.27), and we have

y(t)2 + z(t)2 = y2
0 + z2

0 , ∀t ≥ 0. (3.28)

The derivative of V along solutions of (3.25) reads

V̇ (x(t)) =
2(y(t)ẏ(t) + z(t)ż(t))√

y(t)2 + z(t)2
− ż(t)

=
2(−z(t)y(t)2 + z(t)y(t)2)√

y(t)2 + z(t)2
− y(t)2 = −y(t)2.

In other words, V̇ (x(t)) ≤ −c(|y(t)|) on the domain (3.21) with H = 1 and c(s) := s2 for

all s ≥ 0. Thus, all the conditions of Assertion 20 (and hence, Assertion 19) are fulfilled.

To prove that uniform convergence to 0 does not hold, consider |x0| ≤ 1 with z0 < 0
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Fig. 3.5: Numerically simulated solutions of (3.25) with initial values x0 = (5.10−3,−2.10−2)
(solid lines) and x̂0 = (3.10−4,−2.10−2) (dashed lines). At time t∗(x0), we have z(t∗) =
0 and y(t∗) = |x0|, its maximum value. Note that this value is always above |z0| (green
line). Time t1(x0), used in the proof, is such that z(t1) = z0/2. These simulations
illustrate that a smaller value of y0 makes the y subsystem reach its maximum value
at a later time (stickiness of the equilibrium).

and y0 > 0. Then y(t) ≥ 0 at all times. Moreover, since z(t) is non-decreasing, y(t)

increases over [0, t∗) and decreases over (t∗,+∞), where t∗ = t∗(x0) is the time at which

z(t∗) = 0. Furthermore, in view of (3.28), it holds that

y(t∗) =
√
y2

0 + z2
0 = |x0|. (3.29)

See Figure 3.5 for illustration. Let t1 be the time at which z(t1) = z0
2

. Then t∗ > t1, since

z0 < 0 and z(t) is non-decreasing. Estimating t1 provide therefore a lower bound on t∗.

To that aim, observe that since z(t) ∈ [z0,
z0
2

] for all t ∈ [0, t1], we get from (3.27a) that

ẏ(t) ≤ |z0|y(t), which implies that

y(t) ≤ y0e
|z0|t, ∀t ∈ [0, t1].

Hence, for all t ∈ [0, t1],

ż(t) = y(t)2 ≤ y2
0e

2|z0|t.
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It follows that

z(t) ≤ z0 + y2
0

∫ t

0

e2|z0|τdτ = z0 + y2
0

(
e2|z0|t − 1

2|z0|

)
for all t ∈ [0, t1]. Since t1 is such that z(t1) = z0/2, it is thus necessarily greater than the

time t2 for which

z0

2
= z0 + y2

0

(
e2|z0|t2 − 1

2|z0|

)
,

meaning that

t1 ≥ t2 =
1

2|z0|
ln

(
1 +

z2
0

y2
0

)
. (3.30)

Now, given any ∆ > 0 and any T > 0 let ∆∗ := min{∆, 1}. By setting z0 = −∆∗√
2

and

y0 = min


√√√√ ∆∗2

2
(
e

2∆∗T√
2 − 1

) ;
∆∗√

2

 ,

it holds that |x0| ≤ 1 and we get from (3.30) that t1 ≥ T . Recalling that t∗ ≥ t1 and

y(t∗) = |x0| ≥ ∆∗/
√

2 (see (3.29)), we conclude that there exist |x0| ≤ ∆∗ ≤ ∆ and a

time t∗ ≥ T such that y(t∗) ≥ ∆∗/
√

2. Hence, for any ε < ∆∗/
√

2, it is impossible to find

T (ε) that satisfies condition (3.10). This disproves uniformity in x0.

Remark 22. In this counterexample, the proposed Lyapunov function is both upper and

lower bounded by a function of the whole state norm (see (3.26)). This shows that

Assertion 19 would still be untrue if (3.17) was replaced by the stronger requirement

a(‖φ‖) ≤ V (t, φ) ≤ b(‖φ‖).

Remark 23. The assumptions of Assertion 20 can also be met with the following contin-

uously differentiable Lyapunov function:

V (x) =
1

2

(
2
√
y2 + z2 − z

)2

.

For this choice of V , a, b, c can be picked as a(s) = (
√

2 − 1)2s2/2, b(s) = 9s2/2, and

c(s) = (
√

2− 1)s3 for all s ≥ 0.
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3.6 Proofs

3.6.1 Proof of Lemma 17

We only prove that 0-y-UAS on X implies IOS on X ×U(U)m, as the converse is straight-

forward. Assume that h defined as in (3.11) and that (3.12) is 0-y-UAS on a bounded

open set X . Then, from [Karafyllis et al., 2008b, Theorem 3.3], there exists a Lipchitz

functional V : X → R≥0 and α, α ∈ K∞ such that, for all φ ∈ X ,

α(|h(φ)|) ≤V (φ) ≤ α(‖φ‖) (3.31a)

D+
(3.13)V (φ) ≤ −V (φ). (3.31b)

Notice that the derivative in (3.31b) is taken along the solutions of the unforced system

(3.13).

Let us compute Driver’s derivative (see equations (1.16)–(1.17)) of V along the solu-

tions of (3.12). Observe that φ?τ,v and φ?τ,0 converge uniformly to φ as τ → 0, hence they

belong to X for all τ small enough.

Hence, proceeding as in [Yeganefar et al., 2008], it holds that, for all φ ∈ X and all

v ∈ Rm,

D+
(3.12)V (φ, v) = lim sup

τ→0+

1

τ

(
V (φ?τ,v)− V (φ)

)
= lim sup

τ→0+

1

τ

(
V (φ?τ,0)− V (φ) + V (φ?τ,v)− V (φ?τ,0)

)
≤ D+

(3.13)V (φ) + lim sup
τ→0+

1

τ

(
V (φ?τ,v)− V (φ?τ,0)

)
≤ −V (φ) + lim sup

τ→0+

1

τ

∣∣V (φ?τ,v)− V (φ?τ,0)
∣∣ . (3.32)

Since V is Lipschitz continuous on X , there exists `V > 0 such that |V (φ)− V (ψ)| ≤
`V ‖φ− ψ‖ for all φ, ψ ∈ X . Consequently, using the definition of φ?τ,v recalled in (1.17),

∣∣V (φ?τ,v)− V (φ?τ,0)
∣∣ ≤ `V

∥∥φ?τ,v − φ?τ,0∥∥
≤ `V sup

s∈[−δ̄,0]

∣∣φ?τ,v(s)− φ?τ,0(s)
∣∣

≤ `V sup
s∈[−τ,0]

|f(φ, v)− f(φ, 0)| (s+ τ).

Since f is Lipschitz on any bounded set of X × Um and since X is itself bounded,
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given any r > 0, there exists `(r) > 0 such that |f(φ, v)− f(φ, 0)| ≤ `(r)|v| for all φ ∈ X
and all v ∈ Um ∩Bmr , where Bmr denotes the ball of Rm centered at 0 and of radius r. Let

`f : R≥0 → R≥0 be any continuous non-decreasing function such that `(r) ≤ `f (r) for all

r ∈ R≥0. It then follows that |f(φ, v)− f(φ, 0)| ≤ `f (|v|)|v| for all φ ∈ X and all v ∈ Um.

Thus, we get that

∣∣V (φ?τ,v)− V (φ?τ,0)
∣∣ ≤ `V sup

s∈[−τ,0]

`f (|v|)|v|(s+ τ) ≤ `V `f (|v|)|v|τ.

Plugging this into (3.32), we obtain that

D+
(3.12)V (φ, v) ≤ −V (φ) + γ̄(|v|), ∀φ ∈ X , v ∈ Um,

where γ̄ is the K∞ function defined as γ̄(s) := `V `f (s)s for s ∈ R≥0.

Now, consider the function w(t) := V (xt) and the solution W (t) of the following

equation

Ẇ (t) = −W (t) + γ̄(|u(t)|), (3.33)

with the initial condition W (0) = V (x0), where u ∈ U(U)m is the input to the system.

Let us compute the solution of (3.33)

W (t) = W (0)e−t +

∫ t

0

e−(t−τ)γ̄(|u(τ)|)dτ ≤ V (x0)e−t + γ̄(‖u[0,t]‖). (3.34)

By comparison lemma we have that w(t) ≤ W (t) for any t ≥ 0. Using (3.31a) we get that

α(|h(xt)|) ≤ V (xt) = w(t) ≤ V (x0)e−t + γ̄(‖u[0,t]‖) ≤ α(‖x0‖)e−t + γ̄(‖u[0,t]‖).

And finally

|h(xt)| ≤ α−1(2α(‖x0‖)e−t) + α−1(2γ̄(‖u[0,t]‖)),

which, by Definition 4 and properties of K and KL functions means that (3.12) is IOS on

X × U(U)m.

3.6.2 Proof of Proposition 18

Let us prove the three items separately.

Item i): Given any x0 = (y0, z0) ∈ X , the solution of (3.15) for u ≡ 0 reads y(t) = y0

1+z0t

and z(t) = z0
1+z0t

. Item i) then readily follows.
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Fig. 3.6: Solution of (3.15) showing that a vanishing input u produces a non-vanishing output
y. This lack of robustness with respect to external disturbance is caused by the lack
of uniform asymptotic stability of the unforced system.

Item ii): Consider any (y0, z0) ∈ X and any u ∈ U(R). Since z(t) = z0
1+z0t

is the

solution of (3.15b), z(t) > 0, and z(t) ≤ z0 for any t ≥ 0. Thus, for any z0 ∈ (0, 1), we

conclude that z(t) ∈ (0, 1) for all t ≥ 0. Moreover, assume by contradiction that there

exists t > 0 such that y(t) = 2. Pick t? > 0 as the smallest t with such a property.

Since ϕ(y(t?)) = 0 and z(t?) > 0, it follows that ẏ(t?) = −2z(t?) < 0, contradicting the

minimality of t? among the times at which y(t) = 2. Proceeding similarly for y(t) = −2,

we conclude that y(t) ∈ (−2, 2) for all t ≥ 0.

Item iii): We claim that y(t) = y0 and z(t) = z0
1+z0t

is the solution for that particular

input. We have already noticed that z(t) solves (3.15b). Equation (3.15a) is also satisfied,

since

−z(t)y(t) + u(t)ϕ(y(t)) = −z(t)y0 + u(t)ϕ(y0) = − z0

1 + z0t
y0 +

z0y0

1 + z0t
= 0,

where we used that ϕ(y0) = 1 (recall that |y0| < 1).

The vanishing input u(t) thus generates the constant output y(t) = y0. This behavior

is illustrated in Figure 3.6.
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Chapter 4 Adaptive stabilization of the firing rate model

In Chapter 3 we introduced an adaptive proportional controller, where the proportional

gain θ is updated based on the state of the system. The goal of this controller is to disrupt

pathological oscillations present in the firing rate model of the basal ganglia presented in

Section 1.7.2.

The decision to use an adaptive controller is based on the fact that the system in

question is stabilizable with high gain proportional feedback (Proposition 10) but the

minimal effective gain θ∗ is unknown a priori. While we managed to obtain an analytical

estimate of θ∗ (which we call θ̄∗, see equation (2.9)), this value is a rough approximation

and it depends on the exact knowledge of the parameters of the model (in this particular

case, the connection strengths between and within the populations of neurons), which

would be very hard to estimate in real life applications (which can be said about almost

any model of complex biological systems). Moreover, as pointed out in Section 1.6.2,

the severity of symptoms of Parkinson’s disease undergoes periodic variations, as well as

systematic increase as the disease progresses, which makes the parameters time-varying.

As pointed out in textbooks on adaptive control [Ioannou and Fidan, 2006; Mareels

and Polderman, 1996; Narendra and Annaswamy, 2005], there is no single, agreed-upon

definition of adaptive control. What unifies the various definitions, however, is the fact

that adaptive control deals with systems whose parameters are unknown or change with

time. This makes the tools coming from adaptive control a perfect fit for the firing rate

model of the basal ganglia under consideration in this thesis.

The field of adaptive control is extremely broad and utilizes a variety of approaches.

In this thesis, however, we take advantage of the high-gain stabilizability of the system in

questions and opt for a simple adaptive controller, described in Section 3.1.

In the previous chapter we have seen that the naive strategy consisting in relying on

the high-gain stabilizability of the system and treating the σ parameter as a perturbation

is not satisfactory due to possible lack of uniformity in the initial conditions. In this

chapter, we deepen the analysis to show what performance can be achieved under sigma

modification for time-delay systems. We start by showing that this controller, applied

to globally Lipschitz systems stabilizable with high-gain feedback, guarantees that the

system has an attractive set. Moreover it induces a stability property, which we call

stability in the mean. The proof of this fact requires a Lyapunov-Krasovskii functional

with strict dissipation (see Definition 7 in Chapter 2) and linear bounds. We propose an

explicit construction of such an LKF based on an LKF with point-wise dissipation and

quadratic bounds.

Systems stable in the mean converge to a neighborhood of the equilibrium whose size
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is proportional to the control parameter σ and the L1-norm of the solution, averaged over

any time interval, remains within this bound. This means that, while the system might

sometimes leave the σ-neighborhood of the equilibrium, it cannot do it arbitrarily often

nor for arbitrarily long time.

We then apply this result to the firing rate model of parkinsonian basal ganglia and

study the performance of this controller depending on the choice of tuning parameters.

4.1 Sigma modification for globally Lipschitz time-delay systems

4.1.1 Sigma modification

Consider a time-delay system

ẋ(t) = f(xt, µ(t)), (4.1)

where xt ∈ Cn and the control input µ(t) ∈ U , where U is an open subset of R containing

the origin, and the following adaptive control law with dissipation:

µ(t) = −θ(t)x1(t) (4.2a)

τθθ̇(t) = κ(x1t)− σθ(t), (4.2b)

where κ : Cn → R≥0 is such that κ(φ) ≥ κ|φ(0)| for all φ ∈ Cn, where κ is a positive

constant, and κ(0) = 0.

The κ(x1t) term is responsible for increasing the gain as long as the control objective

(convergence of the x1 subsystem to zero) is not realized. The role of the dissipation (or

leakage) term −σθ(t) is to correct for overestimation of θ∗ and decrease the gain if the

operating point of the system changes (precipitated by a change in the system parameters)

such that a weaker stimulation is necessary to stabilize the system.

Introduction of dissipation in the adaptive law is a fairly straightforward concept and

has been used in the field at least since the 70s. An early survey of adaptive control for

linear systems [Lindorff and Carroll, 1973] attributes it to [Narendra et al., 1971]. The

motivation for its introduction was to prevent parameter drift present in purely integral

adaptive law (without the dissipation term), which makes the adaptive variable grow

indefinitely in presence of bounded disturbances (see Section 3.1.1). What is more, in

[Ioannou and Kokotovic, 1984] the authors have shown that even disturbances converg-

ing to zero (although not exponentially) may cause parameter drift, and presented the

introduction of the leakage term (which they called “σ-modification”) as a solution.
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Sigma modification has been shown to guarantee boundedness of all the closed-loop

signals [Ioannou and Fidan, 2006], even for certain non-linear systems [Fradkov et al.,

1999], as well as convergence of the mean value of the error to a residual set, whose size

can be made arbitrarily small with an appropriate choice of the tuning parameter σ.

On the other hand, it is known to produce non-zero residual state errors in the ideal

case when disturbances are absent (see [Ortega and Tang, 1989] and references therein).

Moreover, as pointed out in [Hsu and Costa, 1987] and although not mentioned in [Ioannou

and Kokotovic, 1984], a phenomenon known as bursting can occur, where the state error

assumes large values over short periods of time. Since the mean value of the state error is

guaranteed to converge to the residual set, these bursts cannot happen arbitrarily often

and their amplitude is limited, but this behavior is undesirable nonetheless.

Several approaches have been proposed to deal with the problem of bursting, including

setting σ = 0 when θ is below some known upper bound on θ∗ [Ioannou and Tsakalis,

1986], updating the parameter σ itself based on the state of the system [Chai and Zhang,

1994], or replacing the σ parameter by a term proportional to the output error [Narendra

and Annaswamy, 1987] (so called e-modification).

In this chapter we show that the adaptive controller with σ-modification (4.2) is enough

to guarantee boundedness of all the closed-loop signals for nonlinear time-delay systems

governed by globally Lipschitz vector fields, as well as stability in the mean of the system

state and further illustrate this result with numerical simulations of the firing rate model

of parkinsonian STN–GPe loop.

4.1.2 Stability in the mean

In order to make the discussion more precise, let us define stability in the mean.

Definition 24 (Stability in the mean). Let τθ > 0 and X be a subset of Cn containing the

origin. System (4.1)–(4.2) is stable in the mean if, for any x0 ∈ X and any θ0 > 0, there

exist c0, c1 ≥ 0 (with c0 independent of x0 and θ0) such that, for all σ > 0 small enough,

its solutions satisfy
1

T

∫ t+T

t

|x(τ)|dτ ≤ c0σ +
c1

T
∀ t, T ≥ 0. (4.3)

If X = Cn, (4.1)–(4.2) is globally stable in the mean.

Stability in the mean is a property of the system, guaranteeing that the L1-norm of

the solution converges to a neighborhood proportional to σ, regardless of the initial state,

when we consider it over longer time windows T . It is a practical stability property, as
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we can make this neighborhood arbitrarily small with an appropriate choice of the tuning

parameter σ.

The short-term behavior (e.g. bursting) of the system is encoded by the c1/T term.

While this term can depend on the initial conditions of the system, it is independent of

σ and thus its influence is diminished as we look at long-term behavior of the system.

The name is chosen by analogy to the σ-small in the mean-square sense property,

described in [Ioannou and Fidan, 2006, Definition A.5.7]. By comparison, σ-small in the

mean square sense is a property of a signal defined for a fixed σ, assuring similar behavior

of the squared L2-norm, averaged over a time window T .

4.1.3 Stability in the mean of time-delay globally Lipschitz systems

The following two assumptions are crucial for what follows.

Assumption 25 (Globally Lipchitz). The vector field f is globally Lipschitz and satisfies

f(0, 0) = 0.

Assumption 26 (High-gain proportional stabilizability). There exists θ∗ ∈ R≥0, a func-

tional V : Cn → R≥0, and α, α, α > 0 such that, for all φ ∈ Cn and θ ≥ θ∗, V satisfies

α|φ(0)| ≤ V (φ) ≤ α‖φ‖, (4.4a)

D+
(4.5)V (φ, θ) ≤ −αV (φ) (4.4b)

for the closed loop system (4.1) under proportional control

ẋ(t) = f(xt,−θx1(t)). (4.5)

Since f is globally Lipschitz, Assumption 26 could be replaced by the requirement that

(4.5) is GES for all θ ≥ θ∗, since in this case existence of globally Lipchitz V satisfying

(4.4) is guaranteed by [Pepe and Karafyllis, 2013, Theorem 2.5]. However, here we chose

explicitness of formulation in order to provide an explicit construction of the globally

Lipschitz strict LKF, required in the proof.

Then we have the following:

Theorem 27 (σ-modification ensures stability in the mean). Consider system (4.1),

fulfilling Assumptions 25 and 26, in closed loop with (4.2). Then there exists q > 0 such

that, for all x0 ∈ Cn, all θ0 ∈ R and all σ ∈ [0, ατθ
2

), the following hold true:
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(i) |x(t)| ≤ q
(
‖x0‖+ min{θ̃0; 0}θ̃0)

)
e−σt/τθ + q ∀t ≥ 0;

(ii) system (4.1) in closed loop with (4.2) is stable in the mean. More precisely, for every

T > 0 and every t > 0, 1
T

∫ t+T
t
|x(τ)|dτ ≤ q

T

(
‖x0‖+ min{θ̃0; 0}θ̃0 + 1

)
+ qσ,

where θ̃0 = θ0 − θ∗.

Theorem 27 proves two properties of (4.1) in closed loop with (4.2). Property (i)

shows ultimate boundedness of |x(t)|, that converges exponentially with rate σ/τθ to a

q-neighborhood of the equilibrium. Moreover, it shows that the transient overshoot is also

bounded by a term that depends linearly on the initial conditions x0 and θ̃0. Property (ii)

is stability in the mean, where the magnitude of potential bursts is bounded by a term

proportional to the magnitude of the initial state x0 and θ̃0.

The proof of Theorem 27 is provided in Section 4.3.1.

4.1.4 Construction of a strict Lyapunov-Krasovskii functional with linear bounds

In order to apply Theorem 27, we need to fulfill Assumptions 25 and 26. Assumption 26

requires that there exists a strict LKF with linear bounds. Since in practice it is usually

easier to construct an LKF with quadratic bounds and point-wise dissipation, we want

to provide an explicit construction that lets us obtain the former, assuming we have the

latter. To that aim, we will make use of two lemmas given in this section.

First let us consider a generic family of parametrized time-delay system

ẋ(t) = f(xt, ϑ), (4.6)

where ϑ ∈ Θ ⊂ R, xt ∈ Cn and f : Cn×Θ→ Rn satisfies the conditions for existence and

uniqueness of solutions.

A commonly used class of LKF for time-delay systems is that of quadratic functionals

of the form

V(φ) = φ(0)TPφ(0) +
∑

(i,j)∈J

λij

∫ 0

−δj
φi(s)

2ds, (4.7)

meaning a quadratic functional involving non-delayed terms plus integrals of terms with

delay, which appear in system dynamics. Functionals of this form are often easy to prove

to be LKF with point-wise dissipation:

D+
(4.6)V(φ, ϑ) ≤ −α|φ(0)|2
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for some α > 0 (see also Definition 7).

Nevertheless, it is often useful, particularly for robustness analysis, to have a more

powerful dissipation rate, involving the whole functional:

D+
(4.6)V(φ, ϑ) ≤ −αV(φ)

for some α > 0. Like in Definition 7, we call this a strict LKF. A specific form of a strict

LKF (with linear bounds) is required in Assumption 26.

Several tricks exist to obtain such a dissipation rate. One of the tricks consists in

adding an exponential function in the kernel of the integral terms of (4.7). See for instance

[Ito et al., 2010; Mazenc et al., 2013; Pepe and Jiang, 2006].

The next lemma shows that this ad hoc trick actually works for any quadratic LKF

of the form (4.7). In other words, for that class of LKF candidates, this result provides

a systematic constructive way to obtain a strict LKF based on an LKF with a merely

point-wise dissipation rate.

Lemma 28 (From point-wise to strict). Assume that there exists a functional V : Cn →
R≥0 of the form (4.7), where δ1, . . . , δd ∈ (0, δ̄], P = P T > 0, J ⊆ {1, . . . , n}×{1, . . . , d},
and λij ≥ 0, such that, for some k > 0,

D+
(4.6)V(φ, ϑ) ≤ −k|φ(0)|2, ∀ϑ ∈ Θ, ∀φ ∈ Cn. (4.8)

Then there exist c, α0 > 0 and p > 1 such that the functional

W(φ) = φ(0)TPφ(0) + p
∑

(i,j)∈J

λij

∫ 0

−δj
ecsφi(s)

2ds (4.9)

satisfies

D+
(4.6)W(φ, ϑ) ≤ −α0W(φ), ∀ϑ ∈ Θ,∀φ ∈ Cn. (4.10)

The proof of this lemma is presented in Section 4.3.2. Now, in order to satisfy As-

sumption 26, we want to show that we can construct a globally Lipschitz strict LKF with

linear bounds from a strict LKF with quadratic bounds. This is done with the following

result.

Lemma 29 (From quadratic bounds to linear bounds). Assume there exists a functional
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W : Cn → R≥0 of the form

W(φ) := φ(0)TPφ(0) + p
∑

(i,j)∈J

λij

∫ 0

−δj
ecsφi(s)

2ds, (4.11)

where δ1, . . . , δd ∈ (0, δ̄], P = P T > 0, J ⊆ {1, . . . , n}×{1, . . . , d}, with some p, c, λij > 0,

satisfying, for all φ ∈ Cn and all ϑ ∈ Θ,

α0|φ(0)|2 ≤ W(φ) ≤ α0‖φ‖2, (4.12a)

D+
(4.6)W(φ, ϑ) ≤ −α0W(φ) (4.12b)

for some α0, α0, α0 > 0. Then the functional V :=
√
W is globally Lipschitz and satisfies,

for all φ ∈ Cn and all ϑ ∈ Θ,

α|φ(0)| ≤ V (φ) ≤ α‖φ‖, (4.13a)

D+
(4.6)V (φ, ϑ) ≤ −αV (φ). (4.13b)

with α =
√
α0, α =

√
α0, α = α0/2.

The proof of this lemma is provided in Section 4.3.3.

Now we proceed to apply the results of this section to the firing rate model of STN–GPe

loop.

4.2 Application to the firing rate model of STN–GPe

The firing rate model of parkinsonian basal ganglia, presented in Section 1.7.2, with the

adaptive σ-modification controller (4.2) reads

τ1ẋ1(t) = −x1(t) + S1

(
c11x1(t− δ11)− c12x2(t− δ12) + µ(t)

)
(4.14a)

τ2ẋ2(t) = −x2(t) + S2

(
c21x1(t− δ21)− c22x2(t− δ22)

)
(4.14b)

µ(t) = −θ(t)x1(t) (4.14c)

τθθ̇(t) = |x1(t)| − σθ. (4.14d)

The function κ present in (4.2) was taken as κ(φ) = |φ(0)|.
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4.2.1 Stability in the mean of the firing rate model

We have the following.

Proposition 30 (σ-modification for the firing rate model). For each i, j ∈ {1, 2}, let

cij, δij ≥ 0 and τi > 0. Assume that c22 < 1 and that the functions Si are globally

Lipschitz with Lipschitz constant 1, non-decreasing, and such that Si(0) = 0. Then there

exists σ̄ > 0 such that, for any σ ∈ [0, σ̄), system (4.14) has the following properties:

(i) there exists q > 0 such that, for all x0 ∈ Cn and θ̃0 ∈ R,

|x(t)| ≤ q
(
‖x0‖+ min{θ̃0; 0}θ̃0)

)
e−σt/τθ + q ∀t ≥ 0;

(ii) x is stable in the mean and there exists q > 0 such that, for all x0 ∈ Cn and θ̃0 ∈ R,

1

T

∫ t+T

t

|x(τ)|dτ ≤ q

T

(
‖x0‖+ min{θ̃0; 0}θ̃0 + 1

)
+ qσ ∀t, T ≥ 0.

Proposition 30 shows that the firing rate model (4.14) has an attractive set and is

stable in the mean. In order to show that, we show that it satisfies Assumptions 25 and

26 and apply Theorem 27. The proof of this proposition is provided in Section 4.3.4.

4.2.2 Numerical simulations

We illustrate the obtained stability properties with numerical simulations. All the simu-

lations were performed using custom code written in Python, using forward Euler method

to evaluate solutions. Unless otherwise specified, we have used the same parameters of the

system as the sick condition in [Nevado Holgado et al., 2010], except for the connectivity

within GPe, c22, which was set to 0.9 in order to meet the stabilizability criterion from

Proposition 10.

Compared to the theoretical results present in this thesis, in simulations we do not

assume that the equilibrium is at 0 but rather simulate the nominal firing rate of the

populations to preserve the meaning of the obtained values. In order to exert proportional

control, we find the equilibrium x∗ of the system numerically and then apply control based

on the error between the current and steady-state values of x1:

µ(t) = −θ(t)(x1(t)− x∗1)

τθθ̇(t) = |x1(t)− x∗1| − σθ(t).
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Obviously, in real life applications, finding an equilibrium of the system numerically would

not be possible and an alternative error signal should be considered. Examples of such

error signals include the amplitude of the oscillations, and filtered versions of the signal

(see Section 4.2.2.2 and Chapter 5).

4.2.2.1 Effect of τθ and σ on controller performance

The controller described in (4.14c)–(4.14d) contains two tuning parameters. The time

constant τθ and the leakage parameter σ. They both affect the performance of the con-

troller in different ways and we have run numerical simulations to assess that effect.

First we would like to underline that the behavior of the controller is qualitatively

different when σ = 0 (we do not consider the case when τθ = 0, as that makes the value

of the derivative infinite). When σ = 0, stabilization is achieved by increasing the gain θ

until it crosses the critical value θ∗. The state of the system x is then exponentially stable

and converges to the equilibrium, which makes the gain θ converge to a steady-state value.

We have already shown that in Chapter 3, see Figures 3.1 and 3.2.

The effect of τθ on the behavior of x and the steady-state behavior of θ is illustrated

in Figures 4.1 and 4.2. A small value of τθ (Figure 4.1) makes the increase of θ much

faster, resulting in fast convergence but relatively high steady-state value. On the other

hand, with high value of τθ, and therefore slower dynamics in the adaptive controller, we

get a lower steady-state value of θ but the price we pay is the reactivity of the controller

(Figure 4.2).

For a fixed τθ, different values of σ affect both the rate of convergence, as well as the

steady-state amplitude, since neither the state of the system x nor the adaptive gain θ

converge to a point but rather to a neighborhood of the equilibrium. For comparison,

three simulations with different values of σ are shown in Figures 4.3–4.5. The lower the

value of σ, the slower the convergence but the lower the amplitude of the steady-state

oscillations.

A summary of these results is presented in Figure 4.6, where we illustrate that the

amplitudes of STN and GPe oscillations in steady state increase with increasing σ, while

being unaffected by τθ (top two subplots of Figure 4.6). For θ, its mean value at steady

state (calculated over last 500 ms of a 20-second simulation run) is an unaffected constant,

when σ is not zero, which suggests that the adaptive controller proposed here correctly

converges to a neighborhood of θ∗ (bottom left subplot of Figure 4.6). The size of this

neighborhood (bottom right subplot of Figure 4.6) depends both on τθ and σ. It gets
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Fig. 4.1: Simulation of system (4.14) with τθ = 10 and σ = 0.

larger with larger σ and smaller with larger τθ, showing a tradeoff between the speed of

adaptation (facilitated by large σ and small τθ) and the size of the steady-state neighbor-

hood of the equilibrium of the θ subsystem.

In order to stress the advantages of the adaptive controller, let us simulate a situation

where the parameters of the system change, changing also the minimal effective gain θ∗:

this is done in the next section.

4.2.2.2 Equilibrium estimation with a low-pass filter

Changing the parameters changes the equilibrium of the system as well. In order to apply

proportional control we need knowledge of the equilibrium as it changes. A naive solution

for purposes of the simulation is to recalculate the value of the equilibrium each time

the simulation parameters change. This solution would not be useful, however, in any

real-world application, where the exact values of the parameters of the system are not

known.

Therefore, following the argument presented in [Pyragas et al., 2004], we modify the

controller to automatically track the equilibrium of the system. The idea is to introduce

a low-pass filtered version of the signal w, which contains the information about the offset

of the signal from 0 and apply control signal proportional to the difference between the

81



Chapter 4 Adaptive stabilization of the firing rate model

Fig. 4.2: Simulation of system (4.14) with τθ = 90 and σ = 0.

Fig. 4.3: Simulation of system (4.14) with τθ = 0.30 and σ = 0.15.
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Fig. 4.4: Simulation of system (4.14) with τθ = 0.30 and σ = 0.5.

Fig. 4.5: Simulation of system (4.14) with τθ = 30 and σ = 0.9.
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Fig. 4.6: Illustration of the effect of τθ and σ on the adaptive controller performance. Top left:
Steady state amplitude of STN grows with increasing σ, while τθ has no influence on it.
Top right: GPe steady state amplitude shows the same behavior as STN. Bottom
left: the steady-state mean value of θ is unaffected by both σ and τθ, except for the
case when σ = 0, when the steady-state value of θ depends on the time constant of the
adaptive controller. Bottom right: the steady-state amplitude of θ shows a strong
dependence on both σ and τθ.
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state and the low-pass filtered version of the state, effectively representing zero-centered

signal.

The updated controller now reads

µ(t) = −θ(t)(x1(t)− w(t)) (4.15a)

ẇ(t) = ω(x1(t)− w(t)) (4.15b)

τθθ̇(t) = |x1(t)− w(t)| − σθ(t), (4.15c)

where ω > 0 is the cutoff frequency of the filter. In the same publication, the authors

demonstrate that the steady-state value of w coincides with steady-state value of x1, so

this controller effectively finds the appropriate equilibrium.

4.2.2.3 Adaptation to changing parameters

In order to show how the adaptive controller reacts to changes of the system parameters,

we simulated two scenarios.

In the first scenario, represented in Figure 4.7, the connection strengths between STN

and GPe are decreased by 20% at time t = 2500 ms. This brings the system closer to

stability, the amplitude of the oscillations is lower, and a weaker proportional gain is

sufficient to disrupt the oscillations. The θ parameter decreases accordingly.

In the second scenario, represented in Figure 4.8, the connection strengths between

STN and GPe are increased by 20% at time t = 2500 ms. According to [Nevado Holgado

et al., 2010], increase in the connection strengths serves as a model of PD progression and

is expected in the brain of PD patients, so any useful adaptive controller needs to be able

to account for it. As we see in the simulation, the gain parameter θ increases accordingly,

to account for a stronger instability.

This increase, however, is not enough to keep the amplitude of the oscillations at its

previous level. This observation points to some weaknesses of the adaptive modification

with fixed σ, which we will discuss further in Chapter 6.
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Fig. 4.7: Adaptation to decrease of synaptic weights

Fig. 4.8: Adaptation to increase of synaptic weights
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4.3 Proofs

4.3.1 Proof of Theorem 27

Consider the Lyapunov-Krasovskii functional

W (φ, θ̃) = V (φ) + ρ
τθ
2

min{θ̃; 0}θ̃, (4.16)

where θ̃ = θ − θ∗, θ∗ and V are as in Assumption 26, and ρ > 0 is a parameter to be

chosen later. Then W satisfies the following bounds

α|φ(0)| ≤ W (φ, θ̃) ≤ α‖φ‖+
ρτθ
2

min{θ̃; 0}θ̃. (4.17)

When θ̃ ≥ 0, W = V and its derivative satisfies (4.4b). Consider now θ̃ < 0. Then

W (φ, θ̃) = V (φ) + ρτθ
2
θ̃2 and its derivative along the solutions of

ẋ(t) = f(xt,−θ(t)x1(t)) (4.18a)

τθθ̇(t) = κ(x1t)− σθ(t) (4.18b)

satisfies

D+
(4.18)W (φ, θ̃) ≤ D+

(4.18)V (φ, θ̃) + ρτθθ̃
˙̃θ

≤ D+
(4.18)V (φ, θ̃) + ρ(θ̃κ(φ1)− σθ̃2 − σθ̃θ∗)

≤ D+
(4.18)V (φ, θ̃) + ρ(θ̃κ(φ1)− 1

2
σθ̃2 +

1

2
σθ∗2)

≤ D+
(4.18)V (φ, θ̃) + ρ

(
−
∣∣∣θ̃∣∣∣κ|φ1(0)| − 1

2
σθ̃2 +

1

2
σθ∗2

)
. (4.19)

Recalling the definition of Driver’s derivative and the definition of φ?
τ,θ̃

from (1.17),

φ?
τ,θ̃

(s) :=

 φ(s+ τ) if s ∈ [−δ̄,−τ)

φ(0) + f(φ,−(θ̃ + θ∗)φ1(0))(s+ τ) if s ∈ [−τ, 0],
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we get

D+
(4.18)V (φ, θ̃) = lim sup

τ→0+

1

τ

(
V (φ?

τ,θ̃
)− V (φ)

)
= lim sup

τ→0+

1

τ

(
V (φ?τ,0)− V (φ) + V (φ?

τ,θ̃
)− V (φ?τ,0)

)
≤ lim sup

τ→0+

1

τ

(
V (φ?τ,0)− V (φ)

)
+ lim sup

τ→0+

1

τ

(
V (φ?

τ,θ̃
)− V (φ?τ,0)

)
≤ D+

(4.18)V (φ, 0) + lim sup
τ→0+

1

τ

∣∣∣V (φ?
τ,θ̃

)− V (φ?τ,0)
∣∣∣

≤ −αV (φ) + lim sup
τ→0+

`V
τ
‖φ?

τ,θ̃
− φ?τ,0‖, (4.20)

where `V is the Lipschitz constant of V . The last inequality comes from (4.4b) and the

fact that V is globally Lipschitz. Since φ?
τ,θ̃

and φ?τ,0 coincide over [−δ̄,−τ), we get that

‖φ?
τ,θ̃
− φ?τ,0‖ = sup

s∈[−τ,0]

|φ?
τ,θ̃
− φ?τ,0| = sup

s∈[−τ,0]

|f(φ,−(θ̃+ θ∗)φ1(0))− f(φ,−θ∗φ1(0))|(s+ τ).

Since f is globally Lipschitz in both arguments (Assumption 25), there exists a constant

`f such that

‖φ?
τ,θ̃
− φ?τ,0‖ = sup

s∈[−τ,0]

`f

∣∣∣θ̃φ1(0)
∣∣∣ (s+ τ) = `f

∣∣∣θ̃φ1(0)
∣∣∣ τ.

Plugging that back into (4.20), we get

D+
(4.18)V (φ, θ̃) ≤ −αV (φ) + `V `f

∣∣∣θ̃∣∣∣ |φ1(0)|

and plugging that back into (4.19), we get,

D+
(4.18)W (φ, θ̃) ≤ −αV (φ) + `V `f

∣∣∣θ̃∣∣∣ |φ1(0)|+ ρ

(
−
∣∣∣θ̃∣∣∣κ|φ1(0)| − 1

2
σθ̃2 +

1

2
σθ∗2

)
.

Setting ρ = `V `f/κ, we cancel out the terms containing |φ1(0)| and obtain

D+
(4.18)W (φ, θ̃) ≤ −αV (φ)− `V `f

2κ
σθ̃2 +

`V `f
2κ

σθ∗2

≤ −
(
α

2
V (φ) +

`V `f
2κ

σθ̃2

)
− α

2
V (φ) +

`V `f
2κ

σθ∗2. (4.21)

Given that W (φ, θ̃) = V (φ) + ρ
2
τθθ̃

2 = V (φ) +
`V `f
2κ
τθθ̃

2, and that σ < ατθ
2

, as assumed in
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the statement of Theorem 27, (4.21) simplifies to

D+
(4.18)W (φ, θ̃) ≤ − σ

τθ
W (φ, θ̃)− α

2
V (φ) +

`V `f
2κ

σθ∗2

≤ − σ
τθ
W (φ, θ̃)− αα1

2
|φ(0)|+ `V `f

2κ
σθ∗2, (4.22)

where we used the fact that α|φ(0)| ≤ V (φ), as ensured by Assumption 26.

Now we proceed to show (i). Since αα|φ(0)| ≥ 0,

D+
(4.18)W (φ, θ̃) ≤ − σ

τθ
W (φ, θ̃) +

`V `f
2κ

σθ∗2,

which implies that

W (xt, θ̃(t)) ≤ W (x0, θ̃0)e
− σ
τθ
t
+

∫ t

0

`V `fσ

2κ
θ∗2e

− σ
τθ

(t−τ)
dτ,

≤ W (x0, θ̃0)e
− σ
τθ
t
+
`V `fθ

∗2

2κ
τθ. (4.23)

From (4.17) we get

|x(t)| ≤ 1

α

(
α‖x0‖+

`V `fτθ
2κ

min{θ̃0; 0}θ̃0

)
e
− σ
τθ
t
+
`V `fθ

∗2

2ακ
τθ,

which proves (i) with

q1 =
1

2ακ
max{2ακ; `V `fθ

∗2τθ}.

Next we show (ii). From (4.22), since W (φ, θ̃) ≥ 0, we have

D+
(4.18)W (φ, θ̃) ≤ −αα1

2
|φ(0)|+ `V `f

2κ
σθ∗2. (4.24)

Defining a function w : t 7→ W (xt, θ̃(t)) and integrating both sides of (4.24) from t to

t+ T , we get

w(t+ T )− w(t) ≤ −αα
2

∫ t+T

t

|x(τ)|dτ +
`V `f
κ

σθ∗2
∫ t+T

t

dτ
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yielding

αα

2

∫ t+T

t

|x(τ)|dτ ≤ w(t) +
`V `f
κ

σθ∗2T = W (xt, θ̃(t)) +
`V `f
κ

σθ∗2T.

From (4.23) we get

αα

2

∫ t+T

t

|x(τ)|dτ ≤ W (x0, θ̃0)e
− σ
τθ
t
+
`V `fθ

∗2

2κ
τθ +

`V `f
κ

σθ∗2T.

From (4.17) we obtain

αα

2

∫ t+T

t

|x(τ)|dτ ≤ α‖x0‖+
`V `fτθ

2κ
min{θ̃0; 0}θ̃0 +

`V `fθ
∗2

2κ
τθ +

`V `f
κ

σθ∗2T.

Rearranging terms we get

1

T

∫ t+T

t

|x(τ)|dτ ≤ 1

T

2

αα
max

{
α;
`V `fθ

∗2

2κ
τθ

}(
‖x0‖+ min{θ̃0; 0}θ̃0 + 1

)
+

2`V `fθ
∗2

αακ
σ,

which proves (ii) with

q2 =
1

αακ
max

{
2ακ; `V `fθ

∗2τθ; 2`V `fθ
∗2} .

Finally, the proof of this theorem is concluded by taking q = max{q1; q2}.

4.3.2 Proof of Lemma 28

Note that W reads

W(φ) = V(φ) +
∑

(i,j)∈J

λij

∫ 0

−δj
(pecs − 1)φi(s)

2ds.

By definition of Driver’s derivative and by the sub-additivity of the lim sup, we have that

D+
(4.6)W(φ, ϑ) ≤ D+

(4.6)V(φ, ϑ) +
∑

(i,j)∈J

λijD
+
(4.6)Wi,j(φ, ϑ), (4.25)

where

Wi,j(φ, ϑ) =

∫ 0

−δj
(pecs − 1)φi(s)

2ds.
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Given φ ∈ X and ϑ ∈ Θ, define φ̂ : [−δ,+∞) → Rn by φ̂(s) = φ(s) for s ≤ 0 and

φ̂(s) = φ(0) + sf(φ, ϑ) for s > 0. Define ϕ(s) = pecs − 1 and notice that

D+
(4.6)Wi,j(φ, ϑ) = lim sup

τ→0+

∫ τ
τ−δj ϕ(s− τ)φ̂i(s)

2ds−
∫ 0

−δj ϕ(s)φ̂i(s)
2ds

τ
. (4.26)

Since φ̂ is continuous, the lim sup on the right-hand side of (4.26) coincides with the

right-derivative of τ 7→
∫ τ
τ−δj ϕ(s− τ)φ̂i(s)

2ds at τ = 0, that is,

D+
(4.6)Wi,j(φ, ϑ) = ϕ(0)φi(0)2 − ϕ(−δj)φi(−δj)2 −

∫ 0

−δj

dϕ(s)

ds
φi(s)

2ds

= (p− 1)φi(0)2 − (pe−cδj − 1)φi(−δj)2 − cp
∫ 0

−δj
ecsφi(s)

2ds. (4.27)

Combining (4.8), (4.25) and (4.27), we get that

D+
(4.6)W(φ, ϑ) ≤− k|φ(0)|2 + (p− 1)

∑
(i,j)∈J

λijφi(0)2

−
∑

(i,j)∈J

λij(pe
−cδj − 1)φi(−δj)2

− cp
∑

(i,j)∈J

λij

∫ 0

−δj
ecsφi(s)

2ds.

(4.28)

Notice that, since p > 1 by assumption,

−k|φ(0)|2 + (p− 1)
∑

(i,j)∈J

λijφi(0)2 ≤ (−k + (p− 1)λ̄)|φ(0)|2,

where λ̄ := max(i,j)∈J λij. Pick p > 1 in such a way that k − λ̄(p− 1) ≥ k/2. (A possible

choice is p = 1 + k(2λ̄ + 1)−1.) Then, letting pM > 0 denote the maximal eigenvalue of

P , we get from (4.9) that

− k|φ(0)|2 + (p− 1)
∑

(i,j)∈J

λijφi(0)2 ≤ − k

2pM
φ(0)TPφ(0). (4.29)

Pick c > 0 in such a way that λij(pe
−cδj − 1) ≥ 0 for every (i, j) ∈ J (for instance, we can
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choose c = δ̄−1ln(p), where δ̄ := maxj=1...d δj > 0). Then, recalling (4.28)–(4.29), we get

D+
(4.6)W(φ, ϑ) ≤ − k

2pM
φ(0)TPφ(0)− cp

∑
(i,j)∈J

∫ 0

−δj
ecsφi(s)

2ds

≤ −min

{
k

2pM
, c

}
W(φ),

and the conclusion follows with

α0 := min

{
k

2pM
, c

}
= min

 k

2pM
,
ln
(

1 + k
2λ̄+1

)
δ̄

 .

4.3.3 Proof of Lemma 29

Taking square root of both sides of the inequalities in (4.12a) we recover (4.13a) with

α =
√
α0 and α =

√
α0. It is also easy to observe that

D+
(4.6)V (φ) = D+

(4.6)

√
W(φ) =

1

2
√
W(φ)

D+
(4.6)W(φ)

≤ − α

2
√
W(φ)

W(φ) = −α
2

√
W(φ) = −α

2
V (φ),

yielding that V satisfies (4.13b) with α = α0/2.

Now let us show that V is globally Lipschitz. First, we write

V (φ1)− V (φ0) =

∫ 1

0

a′(ξ)dξ, (4.30)

where a(ξ) :=
√
W(φ0 + ξ(φ1 − φ0)). Define φξ = φ0 + ξ(φ1 − φ0). The functional V is

globally Lipschitz if there exists `V > 0 independent of φ0 and φ1 such that∣∣∣∣ d

dξ
a(ξ)

∣∣∣∣ ≤ `V ‖φ1 − φ0‖, for all ξ such that φξ 6= 0. (4.31)
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The derivative of a(ξ) reads

d

dξ
a(ξ) =

d
dξ
W(φξ)

2a(ξ)

=
1

a(ξ)

φTξ (0)P (φ1(0)− φ0(0)) + p
∑

(i,j)∈J

λij

∫ 0

−δj
ecs(φ1i − φ0i)(s)φξi(s)ds

 .

Observe that

φTξ (0)P (φ1(0)− φ0(0))

a(ξ)
≤
φTξ (0)P (φ1(0)− φ0(0))√

φTξ (0)Pφξ(0)
≤ pM |φξ(0)||φ1(0)− φ0(0)|

√
pm|φξ(0)|

≤ c0|φ1(0)− φ0(0)| ≤ c0‖φ1 − φ0‖,

where c0 = pM√
pm

and pm (respectively, pM) is the minimum (respectively, maximum)

eigenvalue of P . For the integral terms we have

Ii,j =

∫ 0

−δj e
cs(φ1i − φ0i)(s)φξi(s)ds

a(ξ)
≤ 1√

pλij

∫ 0

−δj e
cs(φ1i − φ0i)(s)φξi(s)ds√∫ 0

−δj e
csφξi(s)2ds

.

The expression in the numerator can be upper-bounded (by Cauchy-Schwarz inequality)

by

∫ 0

−δj
ecs(φ1i − φ0i)(s)φξi(s)ds ≤

√∫ 0

−δj
ecsφξi(s)2ds

√∫ 0

−δj
ecs(φ1i − φ0i)(s)2ds.

So we obtain

Ii,j ≤
1√
pλij

√∫ 0

−δj
ecs(φ1i − φ0i)(s)2ds ≤ δj√

pλij
‖φ1i − φ0i‖ ≤

δj√
pλij
‖φ1 − φ0‖.

The conclusion follows with

`V :=
pM√
pm

+
∑

(i,j)∈J

δj√
pλij

.
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4.3.4 Proof of Proposition 30

From Proposition 10 we know that, for any θ ≥ θ̄∗, where

θ̄∗ := 8

(
c2

11 +
4c2

21c
2
12

(1− c22)2

)
,

the functional V , defined as in (2.8) is a GES LKF (see Section 2.1.2) for (4.5), meaning

for a proportional feedback with constant gain θ. In order to prove that Assumption 26

is satisfied, we need to find a globally Lipschitz functional V , satisfying (4.4). We can

construct such a functional V based on the GES LKF V , using Lemmas 28 and 29.

Recalling the Lyapunov-Krasovskii functional from (2.8)

V(φ) =
n∑
j=2

ρj
2

(
τjφ(0)2 +

2∑
i=1

∫ 0

−δij
λijφ(s)2ds

)
(4.32)

and following the steps of the proof from Section 2.3.2 we get that its derivative along the

solutions of (4.5) satisfies (see equation (2.26))

D+
(4.5)V(φ, θ) ≤ −1

2
(1− c22)|φ(0)|2.

We can now apply Lemma 28 to obtain a functional W of the form (4.9) with strict

dissipation, as in (4.10).

Based on Lemma 29 we get that the functional V :=
√
W is globally Lipschitz LKF,

satisfying (4.4) and thus Assumption 26 is fulfilled.

Since S1 and S2 are assumed globally Lipschitz, f is globally Lipschitz too, so As-

sumption 25 is fulfilled. We can now invoke Theorem 27 to complete the proof.
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The practical applicability of the adaptive controller proposed in Section 3.1.2 depends

on the validity of its assumptions. One of the foundational assumptions, coming from the

original publication [Nevado Holgado et al., 2010], is that the pathological β oscillations

originate in the central STN–GPe pacemaker, which was in line with previous research,

both experimental [Plenz and Kital, 1999] and in modelling [Terman et al., 2002].

As mentioned in Section 1.5.2, this is not the only hypothesis of the origin of parkin-

sonian β oscillations. Another strong contender is cortical patterning [Magill et al., 2001],

where the beta oscillations originate in the cortex and then project down to the basal

ganglia, driving their activity.

The other limiting factor is that the controller, in the form proposed in the previous

chapters, is sensitive to all oscillations present in the system, regardless of their frequency.

An improved controller would be able to react selectively only to the pathological β

oscillations, ideally turning itself off when no pathological activity is present (although

oscillatory activity takes place in a non-pathological frequency range).

In this chapter we extend the adaptive controller from the previous chapters to be

frequency-sensitive. Moreover, based on a spatiotemporal extension of the model recalled

in Section 1.7.2, we illustrate that this control strategy can be effective even when the

pathological oscillations originate in the cortex, entraining the STN–GPe loop via the

hyperdirect and/or indirect pathway.



Chapter 5 Frequency-selective quenching of oscillations

5.1 Delayed neural fields model of the STN–GPe loop

To deepen our understanding of the effectiveness of the proposed controller, we turn to a

spatiotemporal extension of the firing rate model, originally proposed in [Detorakis et al.,

2015].

This model was proposed based on the delayed neural fields framework described in

[Faye and Faugeras, 2010; Veltz and Faugeras, 2011], itself being a natural extension of

the Wilson-Cowan model (see Section 1.7.1) and the works of Amari [Amari, 1977].

In the delayed neural fields, instead of having discrete populations of neurons that

interact with one another, we describe the neuronal population as a continuous medium.

The delays in the communication originate from the finite signal transmission velocity

between the neurons and the physical distance separating the two populations.

The delayed neural fields model of the STN–GPe loop reads

τ1
∂x1(r, t)

∂t
= −x1(r, t) + S1

(
2∑
j=1

∫
Ω

c1j(r, r
′)xj(r

′, t− δj(r, r′))dr′ + u1(r, t) + µ(r, t)

)
(5.1a)

τ2
∂x2(r, t)

∂t
= −x2(r, t) + S2

(
2∑
j=1

∫
Ω

c2j(r, r
′)xj(r

′, t− δj(r, r′))dr′ + u2(r, t))

)
, (5.1b)

where x1(r, t) and x2(r, t) represent the activity at location r and time t of STN and GPe,

respectively. Ω is a compact subset of Rl, where l ∈ {1, 2, 3}, representing the physical

support of the neuronal populations. Ω1 ⊂ Ω is the compact subset of Ω containing STN

and Ω2 ⊂ Ω is the subset containing GPe. δj(r, r
′) represents the axonal transmission

time between the neurons of population j at location r′ and the neurons at location r.

τ1, τ2 ∈ R are the time constants of STN and GPe. The coupling functions cij(r, r
′)

represent the strength and type (positive = excitatory and negative = inhibitory) of the

connections between the neurons of population j at location r′ and neurons of population

i at location r. S1 is the activation function of STN and S2 is the activation function of

GPe. u1(r, t) is the input from other brain structures to STN and u2(r, t) is the input to

GPe. Finally, µ(r, t) is the control input signal, delivered to STN.

The similarities between (5.1) and the firing rate model described in Section 1.7.2 and

studied in Chapters 2 – 4 are obvious. Let us however point out the differences.

Let δ̄ denote the maximum delay present in the system: δ̄ := maxj=1,2 max(r,r′)∈Ω×Ω δj(r, r
′).

The state of the system x belongs to F2 := C(Ω× [−δ̄, 0),R)2 instead of C2. This means
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that the activity of the system can vary not only with time but also with physical loca-

tion. Similarly, the transmission delays δj : Ω × Ωj → R≥0 are no longer constants but

rather functions of the location of the active (presynaptic) neurons and the influenced

(postsynaptic) neurons. Finally, the connection strength cij : Ω × Ω → R is no longer a

constant but a function of positions.

The advantage of neural fields over the simple firing-rate models is that their spa-

tiotemporal nature allows for much richer behavior (see [Bressloff, 2011; Coombes et al.,

2014] for an overview) which, combined with the high-resolution recording and imaging

of brain activity, could shorten the gap between theory and experiment. On the other

hand, they still lend themselves to analytical treatment and this can lead to important

insights about the modelled structures of the brain.

Following [Detorakis et al., 2015], we have set Ω to be a one-dimensional space and

taken each of the populations to span 2.5 mm. Based on the data available from [Allen

Institute for Brain Science, 2010], we have set the distance between the populations to

be 8.5 mm, thus making the whole Ω = [0, 13.5]. The activity of STN is located in the

subregion Ω1 = [0, 2.5] mm and activity of GPe in Ω2 = [11, 13.5] mm. Although activity

xi, connectivity cij and delays δj are functions defined on the whole set Ω, for the purposes

of simulation we have introduced a discretization with a step 0.3 mm. Thus, each of the

nuclei is represented by 9 nodes, encoding subpopulations of neurons.

The delays are set as

δj(r, r
′) =

|r − r′|
vj

, (5.2)

where vj is the velocity of signal propagation along the axon calculated for the neurons

of population j, and |r − r′| is the distance between the two subpopulations in question.

The connectivity between the two populations is shown in Figure 5.1. The inhibitory

connections from GPe to STN (top right subplot) and GPe to itself (bottom right subplot)

are colored blue. The excitatory connections from STN to GPe (bottom left subplot) are

represented in red.

The connectivity parameters were computed using two-dimensional Gaussian distri-

bution

g(x1, x2, σ1, σ2) = exp

(
−
(
x2

1

2σ1

+
x2

2

2σ2

))
(5.3)
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with

c12(r, r′) = −k12g(r − Ω̂1, r
′ − Ω̂2, σ12, σ12) ∀r ∈ Ω1, r

′ ∈ Ω2 (5.4a)

c21(r, r′) = k21g(r − Ω̂1, r
′ − Ω̂2, σ21, σ21) ∀r ∈ Ω1, r

′ ∈ Ω2 (5.4b)

c22(r, r′) = −k22g(r − Ω̂2, r
′ − Ω̂2, σ22, σ22) ∀r, r′ ∈ Ω2, (5.4c)

where Ω̂i for i = 1, 2 represents the midpoint of the population i (1.25 mm for STN

and 12.25 mm for GPe) and kij are the amplitudes of the synaptic weight distribution.

The functions cij are taken to be 0 outside their domain and c11 = 0 everywhere, as

there is no evidence for internal connectivity within STN [Marani et al., 2008]. The sign

represents the valence of the connection (negative for inhibitory, positive for excitatory).

The motivation for the Gaussian, as explained by the authors in [Detorakis et al., 2015] is

the idea that a neuron of STN, projecting onto a neuron of GPe, is going to also have an

effect on the neighboring neurons in GPe (this holds also for neurons of GPe projecting

onto STN).

In contrast to the kernel employed for GPe-GPe connections in [Detorakis et al., 2015],

we have decided not to multiply the expression in (5.4c) by the distance between the

neurons |r − r′|, since the activity of the neighboring neurons in GPe has been shown

to be as uncorrelated as the activity of the distant neurons located in this nucleus [Bar-

Gad et al., 2003]. The value of the amplitude k22 is lower compared to the k21 and

k12 to represent the fairly sparse connectivity [Bugaysen et al., 2013], and the width

of the distribution σ22 is also lower, as the connectivity in GPe appears to be fairly

localized (although [Sadek et al., 2007] suggests that this connectivity follows a bimodal

distribution, which should be incorporated into the future research conducted on this

model).

The parameters used in the simulations are presented in Table 5.1.

Parameter τ1 τ2 v1 v2 σ12 σ21 σ22 k12 k21 k22

Value 7 6 2.5 1.4 1.45 1.45 1 2 2.5 0.5

Tab. 5.1: Base simulation parameters. Unless specified otherwise, the simulations in this chapter
use these values. kij and σij are the amplitude and variance of the distribution of
synaptic weights (see Figure 5.1). τ1 and τ2 are the time constants (in ms) of STN
and GPe respectively. v1 and v2 are the axonal propagation velocities for the neurons
originating of STN and GPe respectively (in mm/ms).
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Fig. 5.1: Connection strengths in the spatiotemporal model, used in the simulations. STN is
located in the [0, 2.5] mm region, while GPe is placed in the [11, 13.5] mm region. Exci-
tatory connections from STN to GPe are represented with red color, blue representing
the inhibitory connections originating from GPe.
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Fig. 5.2: Activity of STN in delayed neural fields model in healthy (nonoscillating) condition
with u1(r, t) = 150, u2(r, t) = −50 and kij multiplied by 0.3 with respect to their
reference values. Top plot shows the activity of the nucleus as a function of time and
position. The bottom plot shows the spatial average of the activity of STN. When
the connections between the populations are weak, the system is stable and does not
produce endogenous oscillations.

Just like in the case of the firing rate model described in the previous chapters, if

the connections are too weak, the system does not produce oscillations, see Figures 5.2–

5.3. When the connections are strengthened, the oscillations in β frequency appear (see

Figures 5.4–5.5).

In [Detorakis et al., 2015], the authors have demonstrated that a high-gain proportional

feedback

µ(r, t) = −θ (x1(r, t)− x∗1(r)) , (5.5)

acting on STN, where x∗1 is the target reference, successfully disrupts the pathological

oscillations, as long as the internal connectivity within GPe satisfies the condition√∫
Ω

∫
Ω

c22(r, r′)2dr′dr < 1. (5.6)

This condition is in line with the stabilizability condition c22 < 1 for the firing-rate

model, which was a crucial requirement of Proposition 10. Since the two models can be

thought of as equivalent (the firing-rate model is a delayed neural field in the limit case

where Ω is a point), this is not a surprise. Like previously, this condition implies that

stabilization with high-gain proportional feedback is guaranteed, as long as GPe does not
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Fig. 5.3: Activity of GPe in delayed neural fields model in healthy (nonoscillating) condition
with u1(r, t) = 150, u2(r, t) = −50 and kij multiplied by 0.3 with respect to their
reference values. Top plot shows the activity of the nucleus as a function of time and
position. The bottom plot shows the spatial average of the activity of GPe. When
the connections between the populations are weak, the system is stable and does not
produce endogenous oscillations.

Fig. 5.4: Activity of STN in delayed neural fields model in parkinsonian condition with u1(r, t) =
150, u2(r, t) = −50. When the connections between the GPe and STN get too strong,
the system produces endogenous β oscillations. Top plot shows the activity of the
nucleus as a function of time and position. The bottom plot shows the spatial average
of the activity of STN.
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Fig. 5.5: Activity of GPe in delayed neural fields model in parkinsonian condition with u1(r, t) =
150, u2(r, t) = −50. When the connections between the GPe and STN get too strong,
the system produces endogenous β oscillations. Top plot shows the activity of the
nucleus as a function of time and position. The bottom plot shows the spatial average
of the activity of GPe.

have an internal instability.

This result parallels the one from Chapter 2 (albeit with global asymptotic stabil-

ity, not global exponential stability). Since Proposition 10 was instrumental in proving

practical stability of the firing rate model (see Chapter 4), these results suggest that the

adaptive controller proposed here will guarantee similar performance when applied to

(5.1).

The results presented in this chapter, while purely computational, extend those ob-

tained in [Detorakis et al., 2015], [Chaillet et al., 2017a], where the proportional feedback

was successfully applied with a fixed, high θ to system (5.1) with constant inputs. In this

chapter, we show that the adaptive controller introduced in Chapters 3 and 4 is appli-

cable to the spatiotemporal model (5.1) and successfully quenches both the endogenous

and cortical (exogenous) oscillations. Moreover, in Section 5.3 we present a proof of con-

cept for a frequency-selective controller, which specifically targets the oscillations in the

pathological frequency band.

5.2 Frequency response of the firing rate model of STN–GPe loop

Before we begin to examine the effect of the controller on the model, we have to see

how the model responds to oscillatory input. The system in question is nonlinear due
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to sigmoidal response functions present in the dynamics. Linear systems do not change

the frequency of the signals, so when entrained with a T-periodic input will produce a

T-periodic output (possibly with different phase and amplitude). Nonlinear systems do

not necessarily have this property, as evidenced by the fact that the model studied in this

thesis is capable of producing sustained oscillations when entrained with a constant input

(see Figures 5.4 and 5.5).

However, certain classes of nonlinear systems, including incrementally stable systems

[Angeli, 2002], also possess this feature. Incremental stability is a property of the system

that says that any two solutions, starting from two different initial conditions, will even-

tually converge to the same solution and the potential overshoot is “proportional” to the

difference between the initial states. Incrementally stable systems are strongly related

to contractive [Forni and Sepulchre, 2013; Lohmiller and Slotine, 1998] and convergent

[Pavlov et al., 2006] systems. For an in-depth analysis of the similarities between them,

see [Rüffer et al., 2013].

In [Detorakis and Chaillet, 2017] the authors have demonstrated that (5.1) is incre-

mentally stable under the condition

2∑
i,j=1

∫
Ω

∫
Ω

cij(r, r
′)2dr′dr < 1. (5.7)

This condition is reminiscent of (5.6). What differentiates the two conditions, however,

is that for the system to be entrained by periodic input, we require that all the connections

of the system are weak, in the sense that their squared L2 norm is less than 1.

We can see the consequences of incremental stability of (5.1) in simulation. In order to

satisfy condition (5.7), we multiplied the connectivity functions cij by 0.3, thus simulating

“healthy” condition (no endogenous oscillations). When the model in “healthy” condition

is stimulated with an oscillating cortical input to STN, the model exhibits oscillatory

behavior at the same frequency, as illustrated in Figure 5.6. Indeed, since (5.7) is a

sufficient condition for incremental stability, if the connectivity between the populations

is strong enough to generate endogenous oscillations, condition (5.7) is violated.

The magnitude spectrum of the signal (right subplot) calculated on the final 800

ms of the simulated solution shows the frequency content of the signals. The signals

have been detrended to remove the constant offset of the signal and downsampled to

increase the frequency resolution in the band of interest. The strongest component has

the same frequency as the oscillating input (in this case, 6 Hz), the remaining visible
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Fig. 5.6: STN and GPe entrained by periodic cortical input u1(r, t) = 150 + 10 sin(2π ∗ 6t)
(sinusoidal signal with amplitude 10 and frequency 6 Hz) with u2(r, t) = −50. The
connectivity amplitudes kij were multiplied by 0.3 with respect to their reference values
(Table 5.1). The spatially averaged activity of both populations is oscillatory (left
subplot) and the frequency of the oscillations matches the frequency of the input (right
subplot).

peaks representing the harmonics.

Repeating the same procedure for all input frequencies between 1 and 90 Hz, we obtain

the result as in Figure 5.7, which clearly shows that the principal component of the output

of the system has the same frequency as the cortical input provided into the system.

As proposed in [Pavlov et al., 2007], this entrainment feature allows to extend the

concept of Bode plots, valid for linear systems, to incrementally stable nonlinear systems.

As the authors propose in the same publication, by applying sinusoidal inputs of varying

amplitude and frequency we can examine the frequency profile of the STN–GPe loop in

this model.

Figure 5.8 shows the frequency response of the system (in terms of the amplitude

of the oscillations), driven with sinusoidal input of varying frequency (x axis) and with

different mean value. Since the system is nonlinear, the magnitude of the input changes

the absolute value of the response.

What remains unchanged, however, is the global behavior of the system, which shows

that the signals in the β frequency band are amplified much more strongly than in other

bands, in a resonance-like behavior. This result corroborates the findings presented in
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Fig. 5.7: Under condition (5.7), the frequency of oscillations of (5.1) is identical to frequency of
the sinusoidal input applied to STN. This is a consequence of (5.1) being incrementally
stable.

[Detorakis and Chaillet, 2017], where this resonance-like behavior was also observed. We

felt, however, that the model studied here merits a repeated analysis as a sanity check (as

this frequency profile does not necessarily follow from the theoretical results presented in

[Detorakis and Chaillet, 2017]), in the view of the fact that the connectivity functions are

slightly modified with respect to the analysis conducted in the aforementioned paper.

Going back to the hypothesis that the pathological β oscillations originate outside of

the STN–GPe loop, we can see that it is also possible that the cortical input to the system

is more broadband and the β oscillations observed in the parkinsonian condition are a

result of selective amplification in this particular frequency band.

We know already (see Proposition 30) that the adaptive proportional controller with

σ-modification, proposed in Section 3.1.2, is capable of attenuating pathological β oscil-

lations when they originate from the internal pacemaker formed by the STN–GPe loop

(endogenous oscillations).

Before we move on to assess its effectiveness in disrupting exogenous oscillations, orig-

inating in the cortex, let us propose an extension of the controller, to make it frequency-

sensitive.
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Fig. 5.8: The amplitude response profile of (5.1). Stimulating the system with cortical input of
the same amplitude but different frequencies produces oscillations of different ampli-
tudes. Clearly visible selective preference of the system to amplify the β oscillations
(the peak at 20 Hz). For this simulation the connectivity amplitudes kij were multiplied
by 0.3 with respect to their reference values (Table 5.1) to satisfy (5.7). The striatal
input was set at u2(r, t) = −50 and the cortical input was u1(r, t) = u + a sin(2πft),
where the values of mean value of the input u ∈ {55, 60, 65}, the oscillation amplitude
a = 10, and the input frequency f are represented in the plot.
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5.3 Frequency-selective adaptive controller

As stressed out throughout this thesis, the pathological oscillations correlated with parkin-

sonian symptoms of bradykinesia and rigidity are characterized by their frequency falling

within the β (10-30 Hz) band. In contrast, the γ (30-100 Hz) frequency band is believed to

promote movement [Blenkinsop et al., 2017; Brown et al., 2001; Hutchison et al., 2004] and

thus should not trigger stimulation by itself to avoid disrupting healthy brain activity.1

A major drawback of the adaptive controller presented in Chapters 3 and 4 is that the

proportional gain is increased as long as any deviation from the equilibrium is detected.

This is all well in the abstract model, where the only type of the oscillations present falls

within the β range, as the frequency of the endogenous oscillations is dictated by the

delays present in the system. However, this method could not be applied to any more

realistic system, in which certain patterns of behavior are deemed healthy and thus should

not trigger stimulation.

A natural extension of this controller would use a band-pass filtered signal in the

adaptation law for the proportional gain

µ(r, t) = −θ(t)e(r, t) (5.8a)

τθθ̇(t) = κ(β(x1t))− σθ(t), (5.8b)

where β(x1t) is a band-pass filtered version of x1t in the β frequency range, and e(r, t) is

the high-pass filtered version of x1(r, t)

e(r, t) = x1(t)− w(t) (5.9a)

∂w(r, t)

∂t
= ω(x1(r, t)− w(r, t)), (5.9b)

where ω is the cutoff frequency of the filter, in a fashion similar to the approach used

in Section 4.2.2.2. In the simulations that follow, we have used a 5th-order band-pass

Butterworth filter with cutoff frequencies 10 and 25 Hz, calculated over the last 150 ms

of the simulation to represent β(x1t).

The behavior of the controller (5.8) is illustrated in Figures 5.9–5.10. The parameters

kij were multiplied by 0.3 with respect to their reference values (Table 5.1) to prevent

endogenous oscillations. The striatal input was fixed at u2(r, t) = −50 and the cortical

1 Low γ (31–45 Hz) has been also linked to tremor severity [Beudel et al., 2015] but since it lies in a
frequency band immediately adjacent to β band, this does not affect the method presented in this section,
as the cutoff frequencies of the filter can be freely adjusted to include the low γ oscillations as well.
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Fig. 5.9: Effect of the adaptive controller with σ-modification on exogenous β oscillations. The
connectivity amplitudes kij were multiplied by 0.3 with respect to their reference values
(Table 5.1), the inputs were set to u2(r, t) = −50, u1(r, t) = 150 + 10 sin(2π · 21t)
(sinusoidal input with amplitude 10 and frequency 21 Hz). The parameters of controller
are set to σ = 0.4, τθ = 80. After the controller is turned on at t = 400 ms, the adaptive
gain finds an appropriate value to reduce the amplitude of the oscillations.
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Fig. 5.10: Adaptive controller with filtering (5.8) reacts more weakly to oscillations in γ range.
The connectivity amplitudes kij were multiplied by 0.3 with respect to their reference
values (Table 5.1), the inputs were set to u2(r, t) = −50, u1(r, t) = 150 + 50 sin(2π ·
70t) (sinusoidal input with amplitude 50 and frequency 70 Hz). The parameters of
controller are set to σ = 0.4, τθ = 80. Higher amplitude of oscillations, compared to
the simulation presented in Figure 5.9 was chosen because of high attenuation of the
high frequencies by the system (Figure 5.8). In comparison with Figure 5.9, where the
oscillations were in the β band, the quenching of the oscillations is noticeably weaker
and the proportional gain θ converges to a lower value.
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input u1 was a sinusoidal signal with mean value 150, oscillating in β frequency (21

Hz) with amplitude 10 (Figure 5.9) or γ frequency (70 Hz) with amplitude 50 (Figure

5.10) frequency. Higher amplitude in γ input was motivated by stronger attenuation of γ

oscillations (see Figure 5.8). For the controller parameters we have chosen σ = 0.4, τθ = 80

and κ(β(x1t)) = maxr∈Ω1 ‖β(x1t(r))‖, where β represents the band-pass filter described

previously. In Figure 5.9 we see that proportional adaptive control successfully quenches

the exogenous β oscillations. They are not reduced to 0, since the tuning variable σ,

responsible for dissipation of the adaptive gain, is not 0. This is in line with the results

obtained for the firing rate model, presented in Chapter 4, where we have shown that

σ-modification makes the system stable in the mean, and thus average value of the state

of the system converges to a neighborhood of the equilibrium “proportional” to σ (see

Theorem 27 for the general result and Proposition 30 for its application to the firing

rate model of STN–GPe loop). Nevertheless, the amplitude of the oscillations is visibly

reduced when the controller is on (after t = 400 ms), compared to the initial oscillations.

On the other hand, in Figure 5.10 we see the behavior of the controller when the

system is entrained with γ input. No filter is perfect and some frequencies, outside of the

β range, will still produce a nonzero signal after filtering, hence the increase in θ, visible

in Figure 5.10 after the stimulation is turned on at t = 400 ms. However, since their

amplitude in the filtered signal is much attenuated, compared to frequencies in the pass-

band, the impact of the stimulation is not as pronounced as in Figure 5.9, as evidenced by

lower value of θ and smaller (to the point of almost unnoticeable) reduction in amplitude

of the oscillations.

For the final demonstration of the efficacy of this controller, let us create a model

entrained periodically by oscillations in both β and γ bands. Such situation is illustrated

in Figure 5.11. The connection weights kij, as in previous simulations, were multiplied

by 0.3 with respect to their reference values. The striatal input was set at u(r, t) = −50

and the cortical input was u1(r, t) = 150 + 50 sin(2π · 45) (sinusoidal input with frequency

45 Hz and amplitude 50) to represent constant gamma activity. Additionally, every 1200

ms, a β component (realized as a sinusoidal signal lasting 600 ms with frequency 21 Hz

and amplitude 20) was added to u1 to represent periodically appearing pathological β

oscillations of cortical origin. We can clearly see in the spectrogram (Figure 5.11) that

constant γ level is maintained in the system while β oscillations periodically appear (red

rectrangles) and disappear.

As we can see in Figure 5.12, the adaptive controller successfully disrupts the β os-

cillations. In the periods when β is present (red rectangles in the plot), the adaptive
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Fig. 5.11: Model (5.1) with oscillatory cortical input, oscillating alternately in β and γ frequency
bands. The periods marked in red represent the beta oscillations.

gain is increased until we achieve suppression of the pathological activity, as evidenced by

weaker power in β band compared to Figure 5.11. When entrainment by β input stops,

the proportional gain starts decreasing until it finds a new steady state. Obviously, we see

here that this steady state is not 0, as we would have wanted, due to imperfect filtering.

This issue can be remediated e.g. by adding an insensitivity zone in the dynamics of the

controller.

Finally, it is worth noticing that in the periods when β oscillations are present, and

thus stimulation is on, the power in the γ band is also reduced. While this stimulation is

capable of differentiating between temporally separated pathological and non-pathological

signals, it is not capable of selectively targeting only the pathological ones, when both are

present.

This important limitation echoes the clinical limitations of DBS due to our lack of a

definitive theory of β generation and the mechanism of DBS. We believe that with ongoing

research we will be able to take into account more accurate models of stimulation that

specifically target the pathological oscillations, even further improving the effectiveness

of the proposed methods.
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Fig. 5.12: Model (5.1), oscillating alternately in β and γ frequency bands. The adaptive con-
troller (5.8) detects β oscillations, increases the adaptive gain θ (bottom plot, green
line), suppressing the oscillations. When θ reverts to a lower level, it does not react
to γ oscillations, only increasing when it detects the onset of the next β phase (red
rectangles).

112



6. CONCLUSIONS, ISSUES AND PERSPECTIVES

In this thesis we set out to propose and evaluate an adaptive controller for closed-loop

regulation of pathological activity present in parkinsonian basal ganglia. This closed-

loop stimulation strategy was derived on a firing-rate model of the basal ganglia that

reproduces this pathological behavior.

Let us recapitulate the main contributions that we have made while working towards

that goal, recalling them on a chapter by chapter basis, and provide an overview of

potential future work to extend the obtained results.

6.1 Contributions and discussion

6.1.1 Chapter 2

In Chapter 2 we have studied the stability of the model of STN–GPe loop, originally

proposed in [Nevado Holgado et al., 2010], under proportional feedback. We have demon-

strated that, under some regularity conditions (weak internal connections within GPe),

proportional feedback applied to STN guarantees global exponential stability (GES) of

the origin of the system, provided that the proportional feedback gain is high enough.

This result is in line with the results obtained in [Haidar et al., 2016], where global

asymptotic stability (GAS) of the origin of this model was assured under the same condi-

tions, based on a linearized version of this model, and [Detorakis et al., 2015] where this

finding was confirmed for a spatiotemporal extension of this model (see Chapter 5).

In order to prove this result, we have used a relaxed Lyapunov-like condition for

global exponential stability, that we originally presented in [Chaillet et al., 2019]. This

result states that, for globally Lipschitz systems, existence of a Lyapunov-Krasovskii

functional (LKF) V with dissipation rate that depends only on the present value of the

state V̇ (xt) ≤ −α|x(0)|2 (point-wise dissipation) is enough to guarantee existence of an

LKF with dissipation rate that depends on the whole functional V̇ (xt) ≤ −αV (xt) (strict

dissipation). Since strict dissipation is required in the existing results for GES, we have

effectively demonstrated that, for globally Lipschitz systems, existence of a point-wise
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GES LKF is sufficient to conclude GES. We believe that this relaxation provides a more

handy way to guarantee GES of time-delay systems, and uniformizes GES theory with

global asymptotic stability results [Hale and Verduyn Lunel, 1993].

The restriction to globally Lipschitz dynamics is of course the main limitation of the

approach: further work is needed to investigate whether the proposed LKF construction

can be extended to merely locally Lipschitz systems. Also, the LKF considered here have

quadratic bounds: deeper investigations are required to check whether bounds in any

power p ≥ 1 can also be employed. The proof presented in Section 2.3.1 suggests that this

extension is feasible for p > 1, but linear bounds (p = 1) seem less straightforward. This

is a pity as converse results for GES do make use of linear bounds [Pepe and Karafyllis,

2013] and such an extension would probably allow to construct a globally Lipschitz LKF

with history-wise dissipation (which would be expected in view of the strong regularity

requirements imposed on the vector field). The results of Section 4.1.4 demonstrate that

such extension is possible for at least some particular functionals V but it is yet unclear

to us how to generalize this result. We also hope that the proposed LKF construction

will be of some help to solve the conjecture posed in [Chaillet et al., 2017b] about the

establishment of the ISS property based on point-wise dissipation.

6.1.2 Chapter 3

In Chapter 3 we have proposed a simple adaptive controller (3.3), where gain automat-

ically increases until it reaches a sufficient value for stabilization. Noting that this con-

troller is prone to over-estimation of the gain and parameter drift (unbounded growth of

the adaptive parameters in presence of bounded disturbances), we have then proposed

an adaptive controller with σ-modification (3.4), which introduces a dissipation term into

the gain update dynamics. This in turn allows the gain to automatically decrease when

a lower gain is sufficient for stabilization.

We have shown that for systems possessing a bounded invariant set, internal stability

(more specifically, uniform asymptotic y-stability, y-UAS) implies robustness with respect

to exogenous disturbances in the input-to-output stability (IOS) sense (see Lemma 17).

In [Or lowski et al., 2018] we have used this reasoning to prove that the considered firing

rate model of STN–GPe in closed loop with the adaptive controller with σ modification is

IOS, and the size of the neighborhood to which the state converges is proportional (via a

comparison function) to the tuning parameter σ as well as the amplitude of the external

disturbances. In Section 3.4 we have shown that the requirement of uniformity in the
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initial state is a crucial requirement to obtain this conclusion, underlining its importance

for robustness analysis.

Finally, in Section 3.5.2 we have provided a counterexample to [Vorotnikov, 1998,

Theorem 6.2.1(5)] (presented here as Assertion 19) that guarantees y-UAS based on a

Lyapunov-Krasovskii functional that dissipates along the solutions merely in terms of

the current value of the output, not the whole state. More specifically, we have shown

with a simple two-dimensional non-delayed system that the premises of Assertion 19

only guarantee asymptotic y-stability (y-AS) but the uniformity in the initial state can

be violated due to the “stickines of the equilibrium” effect, where the system can take

arbitrarily long to go through its transient behavior, when the initial state is close to the

origin. Since uniformity is crucial to derive IOS based on internal stability, we believe

this counterexample may be of interest for robustness analysis (both in a delayed and

nondelayd contexts). In particular, as we have stressed in [Or lowski et al., 2019], the

incorectness of that published result by Vorotnikov invalidates the results from [Or lowski

et al., 2018].

6.1.3 Chapter 4

In Chapter 4 we have revisited the adaptive controller with σ-modification to study its

effect on globally Lipschitz time-delay systems. We have shown (see Theorem 27) that

for globally Lipschitz systems that are stabilizable with high-gain proportional feedback,

the proposed controller assures existence of an attractive set as well a practical stability

property that we call stability in the mean.

This property assures that the average value of the solution of the system converges,

when taken over longer time windows, to a neighborhood of the origin, whose size is

proportional to σ. Crucially, this property means that by appropriate choice of σ we

can reduce the size of this neighborhood. This does not, unfortunately, mean that the

solution of the system will stay at all times close to the equilibrium, but puts a limit on

how frequent and how big the deviations are allowed to be.

In order to show that, we require a very specific Lyapunov-Krasovskii functional.

Namely, a strictly dissipating, globally Lipschitz functional with linear bounds. In Section

4.1.4 we provided an explicit construction of such a functional, based on the knowledge of

a more standard quadratic functional (4.7) dissipating in a point-wise manner along the

solutions of the system. This result does not require that the vector field governing the

evolution of the system is globally Lipschitz.

115



Chapter 6 Conclusions, issues and perspectives

We illustrated the efficacy of this controller with numerical simulations in Section

4.2.2 and showed that the proposed control law quenches the oscillations present in the

system, and that the amplitude of the oscillations is a monotonically increasing function

of σ, corroborating the theoretical results. Finally, we illustrated that the adaptive con-

troller is capable of automatically adjusting the proportional gain in response to changing

parameters.

These results partially rectify the results which we previously published in [Or lowski

et al., 2018] by showing that adaptive control with σ-modification of time-delay systems

induces practical stability properties and allows the controller to respond to changing

conditions. A paper is currently in preparation.

There are, however, still some unresolved issues. First, the results of Section 4.2.2,

where we examine the response of the closed-loop system to changes in parameters, indi-

cate that the final amplitude of the oscillations depend not only on σ but on the degree

of instability present in the system. This behavior has not yet been explicitly demon-

strated in our analytical considerations but more importantly, this suggests that a fixed-σ

adaptive controller might be too limited for practical use. Luckily, alternative solutions,

such as adaptive-σ and e-modification controllers exist, and their feasibility should be also

assessed.

Second of all, the theoretical results about stability in the mean that we have obtained

contain no notion of external disturbances. Since our previous approach, using input-to-

output stability (IOS), looked also at the response of the system to exogenous inputs, we

intend to include this in the future work on this controller.

Finally, deeper investigation would be necessary to relax the global Lipschitz require-

ment on the vector field.

6.1.4 Chapter 5

In Chapter 5 we have extended the model to include spatiotemporal dynamics and ex-

tended the controller to be frequency-selective.

Work on the delayed neural fields model was motivated by preexisting research that

shows that a spatiotemporal extension of the firing rate model discussed in Chapters 2–4

is stabilizable with high-gain proportional feedback [Detorakis et al., 2015], which was

one of the assumptions on which we based our results in Chapter 4.

The development of the adaptive controller presented Chapters 3 and 4 was based on

the assumption that the oscillations originate within the STN–GPe loop due to strong
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coupling between the populations. Since this assumption is only one of the hypotheses of

the origin of pathological β oscillations in the Parkinson’s disease (see Section 1.5.2), we

have also ran simulations in which the origin of the oscillations is cortical and the activity

observed in the basal ganglia comes from the entrainment of the STN and GPe neuronal

populations.

Since the other frequency bands may not be pathological, we have included a band-

pass filter in the controller that makes the adaptive law insensitive to the non-pathological

activity.

We have thus demonstrated that the adaptive controller, that has been the main focus

of this thesis, is capable of disrupting pathological oscillations, regardless of their origin

(endogenous or exogenous), as well as turning the stimulation off in the periods when the

system exhibits non-pathological activity.

The obvious next step for this line of work is to extend the analytical results on

stability in the mean from Chapter 4 to the delayed neural fields, building on previous

results [Detorakis and Chaillet, 2017; Detorakis et al., 2015].

Another avenue that we intend to pursue is to check whether the adaptive control

acting on STN can disrupt pathological oscillations originating in the striatum [McCarthy

et al., 2011], which entrain GPe first. This is not obvious, since the stabilizability condition

for both the firing rate model (see Proposition 10 in Chapter 2) and the delayed neural

fields model (equation (5.6) in Chapter 5) require that there is no internal instability in

GPe.

6.2 Future work

Apart from further theoretical developments, mentioned in Section 6.1, an important

future work for this project is related to experimental verification of the effectiveness of

the proposed controller.

As noted in Section 1.6.2, closed-loop stimulation for Parkinson’s disease is an active

area of research, attracting more interest year after year. The controller that we propose

in this thesis has a potential to outperform at least some of the currently tested methods,

in stimulation effectiveness over long periods of time, limitation of side effects, longevity

of the battery, or (hopefully) all of them.

An important issue to consider while crossing the gap between theory and experiment

is the stimulation signal itself. At its core, proportional control acts to restore the sys-

tem to the prescribed equilibrium by exerting stimulation with the opposite sign of the
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measured deviation. Most common closed-loop DBS approaches consist in varying the

amplitude of the stimulation, which is by definition a positive value and it is unclear what

a negative stimulation signal could correspond to. More generally, we are well aware that

the impact of DBS signal on a neuronal population activity is far more complex than the

simplistic model employed in this thesis [McIntyre et al., 2004a,b].

We are currently investigating this issue in collaboration with University College

Dublin by implementing an adaptive proportional controller in a spiking model of the

basal ganglia based on the model presented in [Dunn and Lowery, 2015], which represents

a more realistic testbed on which we can verify the methods proposed here, as it has been

implemented with DBS in mind, including possible antidromic effects of DBS on cortical

neurons (an effect where stimulation of the axon terminals propagates towards the cell

body, influencing activity of the neuron [MacKinnon et al., 2005]). In this model, each

individual neuron is represented by a detailed conductance-based model. One of the ideas

is to apply stimulation proportional to the absolute value of measured β oscillations, while

using the difference between the current value of the biomarker and a pre-set target to

update the proportional gain. Another idea consists in varying the stimulation frequency

which in the clinically used DBS and most closed-loop tests is kept fixed.

An alternative idea, that would require an entirely different model, is to use optogenetic

stimulation of the cortical neurons projecting to the STN, as optogenetic stimulation

can selectively excite or inhibit the neurons, with an appropriate choice of opsins (light-

sensitive compounds) and stimulation [Han and Boyden, 2007].

Next, a verification of the closed-loop strategies could be performed on brain slices.

[Beurrier et al., 2006] have reported a slice in mouse brain that preserves most of the direct

and indirect pathways in the basal ganglia and while stimulation of the living animal is

a preferred experimental method, using such in vitro preparations would propose a proof

of concept of the proposed approach.

Of course, in vivo verification remains the ultimate test of effectiveness of closed-loop

stimulation and we intend to pursue this goal in the future. Since DBS is known to work in

humans, that would be the ideal test case for our adaptive controller. While implantation

of DBS signals is a very invasive procedure, it is performed routinely for PD patients

and a lot of experimental verification of closed-loop strategies has been performed in the

postoperative period.

Alternatives to human testing include animal models of Parkinson’s Disease [Bezard

and Przedborski, 2011], including rodents and non-human primates, which have been

shown to respond positively in terms of allevaition of parkinsonian symptoms to not only
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deep brain stimulation [Rauch et al., 2010], but also optogenetic [Sanders and Jaeger,

2016], and less invasive motor-cortex stimulation [Drouot et al., 2004].
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Titre : Commande adaptative de systèmes à retards pour l’atténuation d’oscillations cérébrales pathologiques

Mots clés : Automatique, neuroscience, systèmes à retards, oscillations cérébrales

Résumé : Les oscillations beta (10-30 Hz) ob-
servées dans les ganglions de la base sont un
bio-marqueur connu de la maladie de Parkinson.
Leur intensité est corrélée à une augmentation des
symptômes d’akinésie et de bradykinésie. La sti-
mulation cérébrale profonde (SCP) conduit à une
réduction de ces oscillations cérébrales ainsi qu’à une
amélioration de la qualité vie du patient. La SCP ac-
tuellement utilisée en clinique est toutefois de na-
ture boucle ouverte: les paramètres du signal de sti-
mulation délivré sont constants, indépendamment de
l’activité cérébrale ou de l’état du patient. Ceci peut
conduire à une sur-stimulation, pouvant induire des
effets secondaires et un raccourcissement de l’auto-
nomie du stimulateur, ou au contraire à une sous-
stimulation en cas de dégradation des symptômes.
Des stratégies de SCP en boucle fermée, qui ex-
ploitent des mesures de l’activité cérébrale du pa-
tient pour adapter la stimulation en temps réel, consti-
tuent une approche prometteuse pour contrer ces
limitations. Dans cette thèse, nous exploitons un
modèle existant du taux de décharges neuronales
de la boucle noyau sous-thalamique (STN) - globus
pallidus externe (GPe) pour proposer une SCP pro-
portionnelle adaptative. Nous analysons tout d’abord
le modèle bouclé par une commande proportion-
nelle sur le STN et montrons qu’un gain propor-
tionnel suffisamment élevé assure sa stabilité glo-
bale exponentielle (GES). A cette fin, nous propo-
sons un nouveau critère, plus simple à appliquer que

les conditions existantes, pour garantir la GES de
systèmes globalement Lipschitz au moyen d’une fonc-
tionnelle de Lyapunov-Krasovskii. Nous étendons en-
suite l’approche par sigma modification, proposée ini-
tialement par Ioannou et Kokotovic, aux systèmes à
retards et proposons des conditions explicites sous
lesquelles cette commande adaptative stabilise le
système. Nous montrons que cette loi de commande
garantit alors une stabilité pratique, dans laquelle la
norme L1 de l’état sur une fenêtre temporelle suf-
fisamment longue converge vers un voisinage de
l’équilibre à une erreur près, dont l’amplitude peut être
arbitrairement réduite par le réglage d’un paramètre
de commande. Appliquée au modèle STN-GPe, cette
stratégie conduit à une commande proportionnelle
dont le gain s’ajuste automatiquement sur la base de
mesures de l’activité du STN pour contrer les oscil-
lations cérébrales pathologiques. L’analyse de la ro-
bustesse de cette stratégie vis-à-vis de perturbations
ou de dynamiques non-modélisées nous a en outre
conduit à réfuter, au travers d’un contre-exemple, un
résultat existant sur la stabilité partielle des systèmes
non-linéaires. Enfin nous illustrons, par des simula-
tions sur une extension spatio-temporelle du modèle,
que la stratégie de commande proposée est capable
d’atténuer sélectivement les oscillations cérébrales,
suivant leur gamme fréquentielle, qu’elles proviennent
de la boucle STN-GPe elle-même ou d’entrées corti-
cales du STN.



Title : Adaptive control of time-delay systems to counteract pathological brain oscillations

Keywords : Control theory, neuroscience, time-delay systems, brain oscillations

Abstract : Beta oscillations (10-30 Hz) observed in
the basal ganglia are a well-known biomarker of Par-
kinson’s disease, correlated with increased symptoms
of akinesia and bradykinesia. Deep brain stimulation
(DBS) leads to a reduction of these oscillations, as
well as improvement in the patients’ quality of life. Cli-
nically used DBS, however, is since its inception de-
livered in an open-loop fashion, where the parame-
ters of the stimulation are constant regardless of the
underlying brain activity and the state of the patient.
This can lead to overstimulation, inducing side-effects
and shortening battery life of the impulse generator,
as well as understimulation when the symptoms of the
disease worsen. Closed-loop DBS, exploiting measu-
rements on the patient’s brain activity to adapt the sti-
mulation in real-time, is a promising way to overcome
these limitations. In this thesis, we rely on an exis-
ting firing-rate model of the activity of the subthalamic
nucleus (STN) - external globus pallidus (GPe) loop
to propose an adaptive proportional DBS. We first
analyze the model under proportional feedback and
show that high-gain proportional stimulation makes
the system globally exponentially stable (GES). To
that aim, we propose a relaxed Lyapunov-Krasovskii
condition for GES, valid for globally Lipschitz systems.

We then extend the sigma modification approach, ori-
ginally proposed by Ioannou and Kokotovic, to time-
delay systems by providing explicit conditions under
which this adaptive control stabilizes the system. We
show that this controller then induces a practical sta-
bility property, in which the L1 norm of the state over
a sufficiently long time window converges to a neigh-
borhood of the equilibrium up to a steady-state error
that can be made arbitrarily small by tuning a control
parameter. When applied to the STN-GPe firing-rate
model, this leads to a proportional control law, whose
gain is automatically adjusted based on the measu-
red activity of the STN, to successfully disrupt patho-
logical brain oscillations. In an attempt to assess the
robustness of this adaptive control strategy to exoge-
nous inputs or unmodeled dynamics, we also disprove
an existing result on partial stability of nonlinear sys-
tems. Finally, we illustrate with numerical simulations
on a spatiotemporal extension of this model that the
proposed control law is capable of selectively quen-
ching the pathological oscillations, based on their fre-
quency band, regardles of whether the oscillations ori-
ginate within the STN-GPe loop, or in the cortical neu-
rons projecting to the STN.
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