
HAL Id: tel-02523770
https://theses.hal.science/tel-02523770

Submitted on 29 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Tolerance and Reliability for Partially Connected
3D Networks-on-Chip

Alexandre Augusto da Penha Coelho

To cite this version:
Alexandre Augusto da Penha Coelho. Fault Tolerance and Reliability for Partially Connected 3D
Networks-on-Chip. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, 2019.
English. �NNT : 2019GREAT054�. �tel-02523770�

https://theses.hal.science/tel-02523770
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Nano Électronique & Nano Technologies

Arrêté ministériel : 25 mai 2016

Présentée par

Alexandre Augusto da PENHA COELHO

Thèse dirigée par Raoul VELAZCO
et codirigée par Nacer-Eddine ZERGAINOH

préparée au sein du Laboratoire Techniques de l’Informatique et de la
Microélectronique pour l’Architecture des systèmes intégrés
dans l’École Doctorale Electronique, Electrotechnique, Automatique,
Traitement du Signal (EEATS)

Tolérance aux fautes et fiabilité pour les
réseaux sur puce 3D partiellement connectés

Fault Tolerance and Reliability for Partially
Connected 3D Networks-on-Chip

Thèse soutenue publiquement le 25 Octobre 2019,
devant le jury composé de :

Monsieur Raoul VELAZCO
Directeur de Recherche, CNRS Délégation Alpes , Directeur de thèse

Monsieur Nacer-Eddine ZERGAINOH
Maître de Conférences, Université Grenoble Alpes, Co-Directeur de thèse

Madame Lirida NAVINER
Professeur, Telecom ParisTech, Président du jury

Monsieur Gilles SASSATELLI
Directeur de Recherche, CNRS Délégation Occitanie Est, Rapporteur

Monsieur Amer BAGHDADI
Professeur, IMT Atlantique Bretagne-Pays de la Loire, Rapporteur

Dear Lord, thank you for giving me the strength and the conviction to complete the task you

entrusted to me. Thank you for guiding me straight and true through the many obstacles in my

path. And for keeping me resolute when all around seemed lost. Thank you for your protection

and your many signs along the way. Thank you for the friends I made during my PhD. And

thank you for finally allowing me to finish this thesis, I am so very tired. I fought the good fight,

I finished the race, I kept the faith.

- Adapted from "Book of Eli Movie"

To Cristina, Aline, Linus and Alexia

Acknowledgement

I would like to express my sincere gratitude to my advisors Dr. Raoul Velazco and Dr. Nacer-

Eddine Zergainoh, who gave me the chance to work with them and guided me through this

harsh road. Their guidance undoubtedly helped me to improve my research and mitigate all

the insecurities a Ph.D. student may have. I want to express my special thanks to Prof. Lirida

Naviner, Dr. Gilles Sassatelli, and Prof. Amer Baghdadi, who accepted being part of my

examining board. Their valuable and constructive feedback went a long way towards improving

the quality of this manuscript and the dissertation defense.

I want(would like to) to thank the Brazilian National Council for Scientific and Technologi-

cal Development (CNPq Brazil) for their financial support.

I would like to thank all the staff of TIMA Laboratory, EEATS, and CIME Nanotech,

who somehow always managed to help me with countless issues. I would like to name a few

friends whose collaboration impacted decisively in the result of this work: Amir Charif, Juan

Fraire, Miguel Solinas, Matheus Garay, Rodrigo Possamai, Thiago Leite, Renato Feitoza, David

Saraiva, and Jasmina Karajanov (italki). Their feedbacks and friendship were essential for the

final result of this work.

I would like to thank some people that were important in my decision to do a Ph.D.: Sobral,

Helano, Cortez, Jardel, and Jarbas. Thank you guys very much for supporting and encouraging

me during this arduous journey. (arduous journey)

I would like to extend great thanks to my dear Vozinha, to whom I dedicate this thesis.

I am grateful for her teaching, love, kindness, and affection. I also express my gratitude to

my mother-in-law Lais. Her passion, love, and dedication to taking care of my children are

incredible. Without her support, I could not finish this thesis.

I would like to thank my loved ones, from whom I had to stay apart since I decided to move

to France. My sisters Karine, Isabel, Rebeca, and my niece and nephews Ana Mel, Carlos,

Arthur, and João Gabriel. Furthermore, I would like to thank my Dad for introducing me to the

road of computers and electronics at an early age, and also for teaching me to think critically.

I would like to thank my beloved wife, Aline, for loving me as I am, for all these happy

years of marriage, and her support and inspiration during the development of this thesis. Thank

you again for your motivation, encouragement, and patience. I love you so much. Also, I want

to thank my children, Linus and Alexia, for being my inspiration, for their love, tenderness, and

Univ. Grenoble Alpes, CNRS, TIMA Laboratory v

for their smiles that have decorated my life.

Finally, I would especially like to thank my Mother for everything she did for me. She

was the best Mother I could ever have imagined having. This work could not have been done

without her love. Thanks for teaching me to dream and for always believing in me, even when I

do not believe in myself. Mother, you are eternally my inspiration. I miss you so much. I would

change everything to spend more time with you...

Table of Contents

Abstract xvii

Résumé xix

I INTRODUCTION 1

1 Introduction 3

1.1 Contribution I: Fault-Tolerant Solutions for 3D Networks-on-Chips 5

1.1.1 Strategies to deal with soft-errors in 3D-NoCs 7

1.1.2 The FL-RuNS Fault-Tolerant Routing Scheme 8

1.2 Contribution II: Automated Fault Injection Tools for HDL Based Design 8

1.2.1 NETFI-2 . 10

1.2.2 NoCFI . 10

II THREE-DIMENSIONAL NETWORKS-ON-CHIP 13

2 A Soft-error Resilient Route Computation Unit 15

2.1 Introduction . 15

2.2 State-of-the-art . 16

2.3 3D-NoC Architecture Background . 17

2.3.1 NoC switching Properties . 19

2.3.2 Partially connected 3D-NoC architecture 21

2.3.3 Routing Computation Unit . 23

2.4 Resilient Route Computation Unit . 25

2.4.1 Detection: Double Sampling and Custom VC Allocator 25

2.4.2 Detection: Custom VC Allocator . 26

2.4.3 Detection: Fault Detection Circuit . 27

2.4.4 Correction: Rerouting . 27

2.5 Fault-Injection Experimental Procedure . 28

Univ. Grenoble Alpes, CNRS, TIMA Laboratory vii

2.6 Evaluation And Analysis . 30

2.6.1 Latency Results . 30

2.6.2 Hardware Synthesis Results . 31

2.7 Conclusion . 32

3 FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme 35

3.1 Introduction . 35

3.2 State-of-the-art . 37

3.3 First-Last Baseline Architecture . 38

3.3.1 3D-NoC Topology . 39

3.3.2 Locating Healthy Elevators . 39

3.3.3 First-Last: The baseline algorithm . 40

3.4 FL-RuNS Routing Schemes . 42

3.4.1 Propagating Faulty Elevators . 42

3.4.2 1-Flit-Dedicated Virtual Channels . 43

3.4.3 Proposed Routing Algorithm . 45

3.4.4 Deadlock-freedom . 51

3.5 Simulation Results and Discussion . 51

3.5.1 Performance and reliability analysis under a 4x4x4 mesh 52

3.5.2 Performance and reliability analysis under a 8x8x4 mesh 55

3.5.3 Hardware synthesis analysis . 56

3.6 Conclusion . 57

III TOOLS FOR FAULT INJECTION IN HDL DESIGN 59

4 NETFI-2: A Framework to Fault Injection in HDL-Based Design 61

4.1 Introduction . 61

4.2 State-of-the-art . 62

4.2.1 Hardware-based Fault Emulation . 63

4.2.2 Software-based Fault Emulation . 63

4.3 NETFI-2 . 64

4.3.1 Methodology . 65

4.3.2 Architecture . 68

4.3.3 LUT Transformation . 70

4.3.4 Evaluation and Validation . 72

4.4 Baysian Machine Under Test . 73

4.4.1 BM-slice LUT Transformation . 73

4.4.2 Fault-Injection Campaign . 75

4.4.3 Result Analysis . 77

4.4.4 Discussion . 78

4.5 Support Vector Machine Under Test . 80

4.5.1 Support Vector Machine background 80

4.5.2 Set of input vectors . 82

4.5.3 Results of the Fault Emulation Campaign 83

4.6 Radiation Test Experiment and Results . 85

4.6.1 Radiation test set-up . 85

4.6.2 Radiation test method . 87

4.6.3 Assessment of radiation test results 87

4.7 Conclusion . 89

5 NoCFI: A Networks-On-Chip Fault Injection Methodology 91

5.1 Introduction . 91

5.2 State-of-the-art . 92

5.3 2D-NoC Architecture Background . 94

5.4 The Effects of Soft-Errors in 2D-Routers . 95

5.5 NoCFI . 97

5.5.1 Methodology . 97

5.5.2 NoCFI Architecture . 101

5.5.3 The Fault Injection Process . 102

5.6 Evaluation and Validation . 103

5.7 Conclusion . 104

IV CONCLUSIONS 105

6 Conclusions and Perspectives 107

6.1 Conclusions . 107

6.2 Future Directions . 109

Bibliography of Author’s Publication 111

References 127

List of Figures

1.1 Evolution of the System-On-Chip intra-chip communication architecture from

(a) the bus architecture to (b) the two-dimensional Networks-on-Chip, and fi-

nally to (c) the three-dimensional Networks-on-Chip. 5

1.2 Types of failures in a three-dimensional Networks-on-Chip architectures from [45]. 6

1.3 Radiation strike causing transistor disruption. 9

2.1 Three-dimensional Networks-on-Chip (a) fully connected and (b) partially con-

nected. 18

2.2 Packets and Flits definition . 19

2.3 3D-router architecture with double virtual channels for each direction. 20

2.4 Generic Router architecture with pipeline . 21

2.5 An example of the three stages of the routing computation unit 24

2.6 A Double-Sampling implementation. 26

2.7 Fault detection Circuit - FDC. 27

2.8 A Rerouting Scheme implementation. 28

2.9 Fault injection methodology . 29

2.10 Latency of ROUT3D-FDR and baseline ROUT3D under (a) uniform traffic, (b)

bit complement traffic and (c) shuffle traffic. 31

3.1 3D-NoC architecture vertically and partially connected 36

3.2 Elevator configurable bits for initially operation with all healthy elevators. . . . 39

3.3 Virtual Network decomposition for First-Last [15]. 40

3.4 An example where the packet cannot reach a healthy elevator using VN1. Here,

the packet must be dropped since there is not another elevator at negative direc-

tion from elevator E8. 41

3.5 TSV status propagation through rows and columns with the reconfiguration

scheme for 4-bit and 8-bit vectors (12-bit). 43

3.6 Architecture of FL-RuNS with 1-flit-dedicated virtual channel. The 1-flit-dedicated

virtual channel (1-flit Fifo Buffer) is used as alternative virtual channels after a

runtime failures in vertical connecxion. 44

Univ. Grenoble Alpes, CNRS, TIMA Laboratory xi

3.7 Elevator-First architecture with distributed buffers. All its buffers are used only

as a mechanism to avoid deadlock. 45

3.8 Decomposition of Virtual Network for FL-RuNS. The 1-Flit-Dedicated virtual

channels are represented in red: Z1+, Z1-, X1-, and Y1-. 46

3.9 Example of FL-RuNS in a scenario with and without TSV failure 48

3.10 Example of FL-RuNS using the 1-flit-dedicated virtual channel to rerouting

packets toward a healthy elevator. 49

3.11 Example of FL-RuNS in a fault scenario which cannot guarantee packet delivery. 50

3.12 Average packet latency for an 4x4x4 NoC without fault injection. 53

3.13 Average packet latency for an 4x4x4 NoC with single fault injection. 53

3.14 Average packet latency for an 4x4x4 NoC with double fault injection. 53

3.15 Reliability under single fault for 4 TSVs . 54

3.16 Reliability under double faults for 4 TSVs . 54

3.17 Average packet latency for an 8x8x4 NoC without fault injection. 55

3.18 Average packet latency for an 8x8x4 NoC with double fault injection. 55

4.1 Fault injection methods classification . 64

4.2 NETFI-2 methodology . 65

4.3 Modification of flip-flops with enable signal in a) and without enable signal in

b) [73] . 67

4.4 NETFI-2 architecture . 68

4.5 Interface with CUT . 69

4.6 Example circuit a) based on a LUT4 and b) based on LUT2s 70

4.7 Implementing a LUT4 with four LUT2s and three multiplexers or two LUT3s

and two multiplexers . 71

4.8 BM Slice - Hardware implementation . 74

4.9 LUTs of BM-slice (of sizes 4, 5 and 6) where the highest amount of errors were

observed . 79

4.10 An SVM algorithm equation (linear classifier) trained to classify the heartbeat

condition. The horizontal axis represents the human heartbeat rate, while the

vertical axis represents the human movement speed. 81

4.11 Overview of the hardware-implemented SVM architecture design. 82

4.12 Histogram of the critical failure rate of the injection nodes on the SVM archi-

tecture as given by Equation 4.2 . 84

4.13 Histogram representing the correlation among the most critical failure rate nodes

and their position relative to the the SVM’s circuitry implemented in a FPGA. . 85

4.14 FPGA board installed at the GENEPi2 accelerator neutron facility 86

4.15 Zynq-7000 set-up under radiation test . 86

4.16 Method used on the radiation test . 87

4.17 Percentage of failures that have been provoked by 11 neutron radiation-induced

errors . 88

4.18 Percentage of neutron radiation-induced errors that provoked 1650 tolerable and

critical failures . 89

5.1 A 4x4 two-dimensional Networks-on-Chip. 95

5.2 A 4-stage 2D-Router pipeline. 96

5.3 NoCFI work-flow methodology . 98

5.4 Block diagram of the NoCFI architecture . 101

5.5 The amount of errors observed in the Router after a fault injection campaign

with one fault (SEU/SET) and two faults (MBU/SEMT). 103

List of Tables

2.1 Area and Power results for ROUT3D, ROUT3D-TMR, and ROUT3D-FDR . . 32

2.2 Maximum Operating Frequency for ROUT3D, ROUT3D-TMR, and ROUT3D-

FDR . 32

3.1 Area synthesis results . 56

3.2 Power synthesis results . 57

4.1 Detail of resource utilization in the FPGA . 75

4.2 Extra signals presented in BM-slice . 76

4.3 Fault Injection Campaign Results . 78

4.4 Resource utilization of the PL (Artix-7) . 83

5.1 Emulation time comparing the fault injection campaign between FPGA-emulation

and Gate-level Simulation. 104

Univ. Grenoble Alpes, CNRS, TIMA Laboratory xv

Abstract

Networks-on-Chip (NoC) have emerged as a viable solution for the communication challenges

in highly complex systems-on-chip. The NoC architecture paradigm, based on a modular

packet-switched mechanism, can address many of the on-chip communication challenges such

as wiring complexity, communication latency, and bandwidth. Furthermore, the combined ben-

efits of 3D IC and NoC schemes provide the possibility of designing a high-performance sys-

tem in a limited chip area. The major advantages of Three-Dimensional Networks-on-Chip

(3D-NoCs) are a considerable reduction in the average wire length and wire delay, resulting in

lower power consumption and higher performance. However, 3D-NoCs suffer from some relia-

bility issues such as the process variability of 3D-IC manufacturing. In particular, the low yield

of vertical connection significantly impacts the design of three-dimensional die stacks with a

large number of Through Silicon Vias. Equally concerning, advances in integrated circuit man-

ufacturing technologies are resulting in a potential increase in their sensitivity to the effects of

radiation present in the environment in which they will operate. In the past, this issue was ex-

clusively related to space applications, while nowadays it must be taken into account for any

application operating in the Earth’s atmosphere whose errors can have critical consequences. In

fact, the increasing number of transient faults has become, in recent years, a major concern in

the design of critical System-on-Chip. As a result, the evaluation of the sensitivity of circuits

and applications to events caused by energetic particles present in the real environment is a ma-

jor concern that needs to be addressed. So, this thesis presents contributions in two important

areas of reliability research:

• In the design and implementation of deadlock-free fault-tolerant routing schemes for the

emerging three-dimensional Networks-on-Chips.

• In the design of fault injection frameworks able to emulate single and multiple transient

faults in the HDL-based circuits.

The first part of this thesis addresses the issues of transient and permanent faults in the ar-

chitecture of 3D-NoCs and introduces a new resilient routing computation unit as well as a new

runtime fault-tolerant routing scheme. A novel resilient mechanism is introduced in order to tol-

erate transient faults occurring in the route computation unit (RCU), which is the most important

logical element in NoC routers. Failures in the RCU can provoke misrouting, which may lead to

Univ. Grenoble Alpes, CNRS, TIMA Laboratory xvii

severe effects such as deadlocks or packet loss, corrupting the operation of the entire chip. By

combining a reliable fault detection circuit leveraging circuit-level double-sampling, with a cost-

effective rerouting mechanism, we develop a full fault-tolerance solution that can efficiently

detect and correct such fatal errors before the affected packets leave the router. To validate the

proposed solution, we also have introduced a novel method for simulation-based fault-injection

based on NoC’s gate-level netlist. Experimental results obtained from a vertically-partially-

connected 3D Network-on-Chip indicate that our solution can provide a high level of reliability

in the presence of errors, at the expense of low area and power overhead.

The first part of this thesis also describes a novel fault-tolerant routing scheme for vertically-

partially-connected 3D Networks-on-Chip called FL-RuNS, constructed using our previous

routing algorithm First-Last as baseline. Thanks to an asymmetric distribution of virtual chan-

nels, our fault-tolerant routing scheme can guarantee 100% packet delivery under an uncon-

strained set of runtime and permanent vertical link failures. This scheme requires a very low

number of asymmetric virtual channels to achieve booth deadlock-freedom and reliability. Also,

FL-RuNS uses a runtime mechanism to dynamically and progressively reconfigure the network

without any packet loss. Simulation results demonstrate the effectiveness of our approach in

terms of performance and reliability when compared with the state-of-the-art routing algorithm.

Furthermore, the hardware synthesis performed using a commercial 28nm technology library

shows a reasonable area and power overhead with respect to the non-fault-tolerant baseline.

With the aim to emulate the radiation effects on new systems-on-chip designs, the sec-

ond part of this thesis addresses the fault injection methodologies by introducing two frame-

works named NETFI-2 (Netlist Fault Injection) and NoCFI (Networks-on-Chip Fault Injection).

NETFI-2 is a fault injection methodology able to emulate transient faults such as Single Event

Upsets (SEU) and Single Event Transient (SET) in a HDL-based (Hardware Description Lan-

guage) design. NETFI-2 was constructed using as baseline an existing fault injection framework

developed in the TIMA Laboratory. NETFI-2 allows injecting SEUs and SETs from a single

FPGA without external controllers, while allowing to choose the combinational logic granu-

larity to better emulate SETs. Extensive experiments performed on two appealing case studies

are presented to demonstrate NETFI-2 features and advantages. Finally, in the last part of this

work, we present NoCFI as a novel methodology to inject multiple faults such as MBUs and

SEMT in a Networks-on-Chip architecture. NoCFI combines ASIC-design-flow, in order to

extract layout information, and FPGA-design-flow to emulate multiple transient faults. In order

to validate the NoCFI’s methodology, a two-dimensional NoC was used as a study case.

Keywords: Three-dimensional Networks-on-Chip, Soft-errors, Fault-tolerant routing algo-

rithm, transient and permanent faults

Résumé

Les réseaux sur puce (NoC) sont apparus comme une solution viable aux problèmes de commu-

nication dans les systèmes sur puce très complexes (SoC). Le paradigme de l’architecture NoC,

basé sur un mécanisme modulaire de commutation par paquets, peut répondre à de nombreux

défis de communication sur puce tels que la complexité du câblage, la latence des commu-

nications et la bande passante. De plus, les avantages combinés des schémas 3D IC et NoC

offrent la possibilité de concevoir un système haute performance dans une zone de puce limitée.

Les principaux avantages des réseaux tridimensionnels sur puce (3D-NoCs) sont une réduction

considérable de la longueur moyenne des fils et du temps de propagation des fils, ce qui se

traduit par une consommation d’énergie moindre et des performances supérieures. Cependant,

les NoCs 3D souffrent de certains problèmes de fiabilité tels que la variabilité des processus

de fabrication 3D-IC. En particulier, le faible rendement de la connexion verticale a un impact

significatif sur la conception des piles de matrices tridimensionnelles avec un grand nombre de

trous traversants en silicium. De même, les progrès des technologies de fabrication de circuits

intégrés entraînent une augmentation potentielle de leur sensibilité aux effets des rayonnements

présents dans l’environnement dans lequel ils vont fonctionner. Dans le passé, cette question

était exclusivement liée aux applications spatiales, alors qu’aujourd’hui elle doit être prise en

compte pour toute application opérant dans l’atmosphère terrestre dont les erreurs peuvent avoir

des conséquences critiques. En fait, le nombre croissant de défaillances transitoires est devenu,

ces dernières années, une préoccupation majeure dans la conception des systèmes sur puce

critiques. Par conséquent, l’évaluation de la sensibilité des circuits et des applications aux

événements causés par les particules énergétiques présentes dans l’environnement réel est une

préoccupation majeure à laquelle il faut répondre. Cette thèse présente donc des contributions

dans deux domaines importants de la recherche sur la fiabilité :

• Dans la conception et la mise en œuvre de schémas de routage à tolérance de pannes sans

blocage pour les réseaux sur puce tridimensionnels émergents.

• Dans la conception de cadres d’injection de fautes capables d’émuler des fautes transi-

toires simples et multiples dans les circuits à base de HDL.

La première partie de cette thèse aborde les problèmes des défauts transitoires et permanents

dans l’architecture des NoCs 3D et présente une nouvelle unité de calcul de routage résiliente

Univ. Grenoble Alpes, CNRS, TIMA Laboratory xix

ainsi qu’un nouveau schéma de routage tolérant aux défauts d’exécution. Un nouveau mécan-

isme résilient est introduit afin de tolérer les défauts transitoires se produisant dans l’unité de

calcul de route (RCU), qui est l’élément logique le plus important dans les routeurs NoC. Les

défaillances de la télécommande peuvent provoquer des erreurs d’acheminement, ce qui peut

entraîner des effets graves tels que des blocages ou la perte de paquets, corrompant le fonc-

tionnement de la puce entière. En combinant un circuit de détection de défauts fiable à double

échantillonnage au niveau du circuit et un mécanisme de réacheminement économique, nous

développons une solution complète de tolérance aux fautes qui peut détecter et corriger effi-

cacement ces erreurs fatales avant que les paquets affectés ne quittent le routeur. Pour valider

la solution proposée, nous avons également introduit une nouvelle méthode d’injection de dé-

faillances basée sur la simulation basée sur la liste de réseau au niveau de la porte de NoC. Les

résultats expérimentaux obtenus à partir d’un réseau sur puce 3D à connexion verticale partielle

indiquent que notre solution peut fournir un haut niveau de fiabilité en présence d’erreurs, au

détriment d’une faible surface et d’une surcharge électrique.

La première partie de cette thèse décrit également un nouveau schéma de routage tolérant

aux pannes pour les réseaux 3D connectés verticalement sur puce, appelé FL-RuNS, construit

en utilisant notre algorithme de routage précédent First-Last comme référence. Grâce à une

distribution asymétrique des canaux virtuels, notre système de routage tolérant aux pannes

peut garantir une livraison de paquets à 100% dans le cadre d’un ensemble illimité de temps

d’exécution et de pannes permanentes des liaisons verticales. Ce système nécessite un très

faible nombre de canaux virtuels asymétriques pour garantir la liberté et la fiabilité des cabines

dans l’impasse. De plus, FL-RuNS utilise un mécanisme d’exécution pour reconfigurer dy-

namiquement et progressivement le réseau sans perte de paquets. Les résultats de la simulation

démontrent l’efficacité de notre approche en termes de performance et de fiabilité par rapport

à l’algorithme de routage le plus moderne. De plus, la synthèse matérielle effectuée à l’aide

d’une bibliothèque technologique commerciale de 28nm montre une surface et une surcharge

électrique raisonnables par rapport à la référence non tolérante aux pannes.

Dans le but d’émuler les effets du rayonnement sur les nouvelles conceptions de systèmes

sur puce, la deuxième partie de cette thèse aborde les méthodologies d’injection de fautes en

introduisant deux frameworks nommés NETFI-2 (Netlist Fault Injection) et NoCFI (Networks-

on-Chip Fault Injection). NETFI-2 est une méthodologie d’injection de fautes capable d’émuler

les fautes transitoires telles que les perturbations d’événement unique (Single Event Upsets -

SEU) et les transitoires d’événement unique (Single Event Transient - SET) dans une concep-

tion basée sur HDL (Hardware Description Language). NETFI-2 a été construit en utilisant

comme référence un cadre d’injection de fautes existant développé dans le laboratoire TIMA.

NETFI-2 permet d’injecter des SEU et des SETs à partir d’un seul FPGA sans contrôleurs ex-

ternes, tout en permettant de choisir la granularité logique combinatoire pour mieux émuler les

SETs. Des expériences approfondies réalisées sur deux études de cas attrayantes sont présen-

tées pour démontrer les caractéristiques et les avantages de la NETFI-2. Enfin, dans la dernière

partie de ce travail, nous présentons NoCFI comme une nouvelle méthodologie pour injecter

des défauts multiples tels que les MBU et SEMT dans une architecture de réseaux sur puce.

NoCFI combine ASIC-design-flow, afin d’extraire les informations de layout, et FPGA-design-

flow pour émuler plusieurs défauts transitoires. Afin de valider la méthodologie du NoCFI, un

NoC bidimensionnel a été utilisé comme cas d’étude.

Keywords: Réseaux tridimensionnels sur puce, erreurs logicielles, algorithme de routage

tolérant aux pannes, pannes transitoires et permanentes

Part I

INTRODUCTION

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 1

Chapter 1

Introduction

The continuous advances in semiconductor technologies make possible to integrate billions of

gates into a single chip [11]. The availability of such abundant resources have enabled designers

to fabricate chips with tens or hundreds of Processing Elements (PE) blocks on a single chip,

resulting in the conception of Multiprocessor System-on-Chips (MPSoC). For a MPSoCs on

such massive scale, connectivity is a major concern, and inefficient/unreliable interconnects can

severely limit performance. For example, MPSoCs architectures with two or four cores typi-

cally use the traditional on-chip bus communication between cores. However, as the number of

cores on a chip increases, the communication between the cores plays a crucial role in its perfor-

mance. Due to the bus’s lack of scalability, Networks-on-Chip (NoCs) design has emerged as

a scalable on-chip interconnection network that can efficiently handle the strict communication

requirements between cores on a chip. It has happened thanks to the ability of NoCs supporting

simultaneous communication between multiple pairs of cores.

On the other hand, while the same technological evolution to nanometric scaling process has

its benefits in terms of delay, area, and power consumption, it is known to pose some serious

reliability concerns. It means that circuits in nanoscale era are more sensitive to failures caused

at the manufacturing process, due to process variations, or even simply being exposed to harsh

environments, such as space. Despite the sensitivity and some reliability concerns, a careful

fault-tolerant design still promises to achieve reliable systems from both MPSoCs and NoCs

architectures. And, of course, the development of a new fault-tolerant design calls for evaluation

and validation of these mechanisms at an early design stage. In other words, to cope with

permanent and transient faults, designers need to be able to evaluate their impact, implement

suitable error mitigation techniques, and validate the results.

However, the analysis of permanent and transient faults in the MPSoCs and NoCs architec-

tures is not as trivial as it may seem. It is due to the fact that these failures must be investigated

when the circuit is in operation (i.e., on-the-fly) which may lead the circuit to an unpredictable

behavior. Also, some failures caused by multiple-cell upset (MCU), multiple-bit upsets (MBU),

and single-event multiple transient (SEMT) that were not considered in the older technology,

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 3

1. Introduction

due to its inherent ability to mask these failures, are now a major concern that needs to be

addressed in the new MPSoCs and NoCs architectures.

One of the most popular techniques to evaluate the reliability of digital circuits is to submit

those circuits to a radiation test campaign under a large particle flow [31]. However, these cam-

paigns are very expensive and are usually performed on the final physical implementation of the

circuit. Consequently, the sensitive parts of the circuits which require mitigation can only be

detected after the radiation campaign. It may result in re-working project phases, in new man-

ufacturing processes, and in new radiation campaigns that increase the budget of the project as

well as its time-to-market. So, a solution for this problem is to verify if the circuits satisfy fault

tolerance requirements during its project phases instead of only in its final prototype. With this

in mind, Simulation-based and Emulated-based fault injection are two widely adopted methods

to analyze the effects of transient faults in (Hardware Description Language) HDL-based de-

sign [94] already in its initial project phases. Also, new tools to test and validate multiple bits

upset taking adjacent cell into account are necessary to better understand the behavior of the

circuit under permanent and transient faults.

Emerging technology such as Systems-on-Chip design based on machine learning is being

increasingly implemented in integrated circuits instead of only in a software application. Also,

MLSoCs (Machine Learning Systems-on-Chip) have been employed in critical applications due

to their capacity to predict errors and learn from their own decisions. Those two features, learn-

ing and predicting, have motivated the use of this type of algorithm in many other applications

such as medical diagnostics [7], robot intelligence [53], and geoscience/aerospace domain [62].

But, MLSoCs suffer from the same reliability issues as all standard digital circuits, which means

that they also must be evaluated in the context of reliability.

In summary, the study of new fault-tolerant solutions for both SoCs and NoCs is mandatory

in the nanoscale era. Also, new high-accuracy fault injection approaches able to evaluate and

validate the effects of permanent and transient faults in the future SoC/NoC design are essential.

The reliability issues presented above motivated us to propose in this thesis contributions in two

crucial areas of microelectronic research:

• In design and implementation of deadlock-free fault-tolerant routing scheme for the emerg-

ing three-dimensional Networks-on-Chips.

• In design of fault injection frameworks able to emulate single and multiple transient faults

in the HDL-based circuits.

All contributions of this thesis are summarized in the remainder of this Section.

4 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

1.1 Contribution I: Fault-Tolerant Solutions for 3D Networks-on-Chips

PE PE PE PE

PE PE PE PE

PE

PE

PE

PE

PE

R

PE

R

PE

R

PE

R

R

PE

R

PE

R

PE

R

R

PE

R

PE

R

PE

R

R

PE

R

PE

R

PE

R

PE

PE

R

(a)

(b)

(c)

Fig. 1.1: Evolution of the System-On-Chip intra-chip communication architecture from (a) the
bus architecture to (b) the two-dimensional Networks-on-Chip, and finally to (c) the three-
dimensional Networks-on-Chip.

1.1 Contribution I: Fault-Tolerant Solutions for 3D Networks-

on-Chips

Traditionally, System-on-Chip (SoC) designers employ buses or hierarchical bus structures to

interconnect Processing Elements (PE) blocks [42]. However, as chip integration grows, the

global bus-based interconnection has become a bottleneck for future high-performance SoC

designs [33]. To overcome this limitation, Networks-on-Chip has emerged as a promising in-

frastructure for on-chip communication due to its scalability, high bandwidth, better throughput,

and lower power consumption [98]. However, wire delay and power consumption increase sig-

nificantly by the usage of global interconnections in Two-Dimensional Integrated Circuit (2D-

IC) designs. In other words, the restricted floor-planning choices of 2D-IC designs limit the

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 5

1. Introduction

Faults in 3D-NoC

Logic-level fault modelsPhysical-level faults

TSV issues Thermal
concerns

SEE impacts

Chip warpage

TSV coupling

Thermal stress

Elecomigration

Thermomigration

Time-dependent

Thermal cycling

Stress migration

SEU
SET

Bit-flip
Bridge
Crosstalk
Stuck-at 0/1
Stuck-open
Dealy-fault
Short-circuit
Open-circuit

Fig. 1.2: Types of failures in a three-dimensional Networks-on-Chip architectures from [45].

potential performance of two-dimensional Networks-on-Chip (2D-NoC) architecture [50, 78].

In order to extend 2D-IC capabilities, multiple layers of active devices are integrated using

vertical high-speed interconnection in a three-dimensional integrated circuit (3D-IC) architec-

ture [35]. This approach permits the use of three-dimensional Networks-on-Chip (3D-NoC) as a

communication infrastructure that reduces the interconnection lengths and improves the overall

performance. Figure 1.1 shows the evolution of the on-chip interconnection from bus-based to

three-dimensional Networks-on-Chip.

The need for reliability assessment in order to figure out the underlying process variation of

NoC architecture has become more critical as CMOS technology continues to shrink. Figure 1.2

summarizes the potential faults, affecting the performance of 3D-NoC design and divides them

into subcategories [45]. In this thesis, our contributions for 3D-NoC architecture are mainly

focused on the fault-tolerant solutions to mitigate the SEE impacts and TSV issues. The first

part of this thesis focuses on:

• Investigating the effects of transient faults in the sequential and combinational logic of

3D-NoC’s routers. New fault-tolerant solutions that can mitigate these effects of transient

faults in the control logic of the 3D-NoC’s routers are introduced.

• Improving the reliability of the 3D-NoCs when transient and/or permanent failures occur

in the vertical links. To this end, we propose online-fault-tolerant schemes that permit the

continued operation of the network in the presence of failures in booth manufacture and

execution time.

• Proposing fault-tolerant techniques for 3D-NoCs architecture that can be feasible in terms

6 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

1.1 Contribution I: Fault-Tolerant Solutions for 3D Networks-on-Chips

of hardware employing the ASIC design flow. It means that all solutions and mechanisms

introduced throughout this thesis are implemented and synthesized. Also, in order to

make a fair comparison in terms of hardware overhead, all our contributions, as well

as the existent state-of-the-art architectures, were synthesized using the 28nm design kit

from ST-Microelectronics.

In this context, in Chapter 2, we introduce some strategies to tolerate soft-errors in the

Routing Computation Unit (RCU). Then in Chapter 3, we propose a runtime and reconfigurable

routing scheme able to tolerate transient and permanent faults in the vertical connections of the

3D-NoC. It is worth mentioning that the proposed solutions avoid dropping packets while the

3D-NoC is being recovered from failures.

1.1.1 Strategies to deal with soft-errors in 3D-NoCs

The increasing complexity of 3D-NoC routers, the continuous miniaturization of silicon tech-

nology, the lower operating voltages, and the higher operating frequencies have made the 3D-

NoC increasingly vulnerable to soft errors. In particular, transient faults occurring in the route

computation unit (RCU) can provoke misrouting, as packets may be directed to the wrong out-

put port. This may lead to severe effects such as deadlocks or packet loss that can corrupt the

operation of the entire chip. It is therefore mandatory to provide some level of protection against

routing errors. So, in Chapter 2, we have proposed some fault-tolerant solutions to mitigate the

effects of transient faults in the RCU. In other words, a full fault-tolerance solution that can

efficiently detect and then correct fatal errors in the RCU before the affected packets leave the

router is described and validated. The main contributions of Chapter 2 are summarized below:

• We have introduced a reliable fault detection circuit which works in parallel with pipeline

of the control path of the NoCs without incurring any path delay.

• We have proposed a fault detection strategy based on the concept of double-sampling.

• We have proposed a solution for recovering from faults based on a cost-effective rerouting

mechanism. In other words, when the failures provoke errors that cannot be masked by

the double-sampling techniques, the RCU must recompute the packet to avoid deadlock

as well as packet loss.

• we have validated our fault-tolerant solutions by means of a novel simulation-based fault-

injection methodology which is based on the NoC’s gate-level netlist.

To provide the reader with a better understanding of the on-chip interconnection networks, a

brief overview of three-dimensional networks-on-Chip architecture is described in Section 2.3

Some parts of this work was published in [25].

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 7

1. Introduction

1.1.2 The FL-RuNS Fault-Tolerant Routing Scheme

Since three-dimensional Networks-on-Chip (3D-NoC) have been accepted as an effective solu-

tion to the scalability and latency issues in modern complex System-On-Chips, Through-Silicon

Via (TSV) has been usually adopted as a viable technology enabling vertical connection among

NoC layers. However, TSV-based architectures typically exhibit high vulnerability to transient

and permanent faults, calling for robust routing solutions capable of sustaining operation under

unpredictable failure patterns. Those issues motivated us to propose a complete fault-tolerant

routing scheme named FL-RuNS that guarantees 100% packet delivery under an unconstrained

set of runtime and permanent vertical link failures. So, in Chapter 3, we explore, for the first

time, a fault-tolerant scheme for assigning TSVs to routers both offline and during runtime

phase. The contributions in this domain can be summarized as follows:

• We have introduced a fault-tolerant scheme that requires a very low number of virtual

channels to achieve booth deadlock-freedom and reliability. Our methodology is based

on an asymmetric use of virtual channels instead of the usual symmetry approach. The

idea is to provide a tradeoff among a fault-tolerant scheme, hardware overhead, and high

throughput.

• we have proposed a runtime mechanism to dynamically and progressively reconfigure the

network without any packet loss. It means that when faults are detected in the vertical

connection, the network can be reconfigured online without stopping the operation of the

network and/or dropping packets.

• we have validated the effectiveness of our approach in terms of performance and reliabil-

ity using simulation and comparing its results with the state-of-the-art routing algorithm.

Also, the hardware synthesis performed on our approach shows a reasonable area and

power overhead compared to the non-fault-tolerant baseline.

A preliminary version of the FL-RuNS routing scheme was published in [28] and [24]

1.2 Contribution II: Automated Fault Injection Tools for HDL

Based Design

Radiation on integrated circuits can cause a wide variety of effects. As shown in Figure 1.3,

a single energetic particle (neutron, proton, heavy ion or alpha particle) when interacting with

the semiconductor material can produce a destructive or non-destructive event. Among them,

nonpermanent single-event effects (SEEs), also known as soft-errors, have the potential for

inducing the highest failure rate of all other reliability mechanism combined [40, 56, 71]. The

most importants SEEs of this type are single-event upset (SEU) and the single-event transient

8 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

1.2 Contribution II: Automated Fault Injection Tools for HDL Based Design

Fig. 1.3: Radiation strike causing transistor disruption.

(SET). So, radiation environment and their effects must be taken into account early enough in

the design cycle for any application devoted to operating in the Earth’s atmosphere of which a

fault may have critical consequences. As a result, the demand for new tools able to test emerging

circuits already in their project phase has been growing in the last years. In particular, there has

been an increasing demand for tools that can emulate SEUs and SETs with high accuracy in the

circuits under test (CUT) with a minimum modification in the CUT’s structure.

Fault injection is a well-known technique to evaluate the sensitivity of integrated circuits to

the effects of radiation. For this reason, fault injection has been a research topic for decades [94,

95] and has been classified in two main categories: Simulation-based and Emulation-based

fault injection methodologies. Simulation-based approaches use a digital simulator to execute

HDL-based design and perform fault injections models. On the other hand, emulation-based

approaches are normally based on FPGAs, where both the emulation of the circuit under test

(CUT) as well as the fault injection campaign are performed.

In the second part of this thesis, we propose two fault injection frameworks to study the

effects of transient faults in the HDL-based circuits. In the first framework presented in Chap-

ter 4, an existing emulation-based methodology called NETFI [73] is extended, updated and

improved under the name of NETFI-2. NETFI-2 can emulate the effects of SEU and SET in

a CUT using only a single FPGA. Also, NETFI-2 permits an inject faults approach without

modifying the source code of the CUT to model the faulty behavior. In the second framework

presented in Chapter 5, we have proposed a fault injection methodology named NoCFI. NoCFI

is a hybrid fault-injection framework that allows emulating multiple faults such as MBUs and

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 9

1. Introduction

SEMTs taking adjacent cells into account. In other words, NoCFI makes use of the layout in-

formation of the circuit under test to emulate the effects of multiple failures in their neighboring

cells. Furthermore, NoCFI is a simulation-based and emulation-based fault injection methodol-

ogy which means that it can be used to inject faults in both HDL-simulators and FPGAs-based

architectures.

1.2.1 NETFI-2

In Chapter 4, we introduce the NETFI-2 fault injection methodology. NETFI-2 allows for

unique hardware resources a highly efficient fault injection campaign as well as a very accu-

rate error rate estimation. This is achieved by a dedicated embedded campaign controller in

charge of injecting SEUs and SETs in sequential and combinatorial blocks with configurable

granularity. Because of its configurable granularity, NETFI-2 can determine which specific

component is responsible for each error observed in the output of the CUT.

So, in Chapter 4 the following contributions were made:

• we have introduced a new version of our old fault injection method. This new version is

more friendly to use and also presents more accuracy in terms of radiation-effects emula-

tion.

• The whole fault injection campaign can be done using only one FPGA. It means that both

the controller of the fault injection campaign as well as the CUT are prototyped inside the

same FPGA.

• We have analyzed the effects of transient faults in the emerging stochastic computer tech-

nology such as Bayesian Machine (BM) and Support Vector Machine (SVM). Moreover,

a real radiation beam campaign was performed in the SVM architecture. This campaign

was conducted using a proton accelerator from GENEPI2 [118], and its results were com-

pared with the ones provided by our fault injection tool.

To the best of our knowledge, this is the first work that presents a comprehensive analysis

of the effects of radiation on the stochastic computer circuits. Some parts of this work were

published in [26, 27, 110].

1.2.2 NoCFI

Although we have introduced a generic fault injection methodology in Chapter 4, that method

does not take into consideration some issues relevant for the study of the effects of radiation

on integrated circuits. So, in Chapter 5, we are more specific and propose a method to emulate

soft-errors in NoCs named NoCFI (Network-on-Chip Fault Injection). This method supports

10 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

1.2 Contribution II: Automated Fault Injection Tools for HDL Based Design

the emulation of single faults as well as multiple faults by taking cell adjacency into account. It

is possible because NoCFI combines booth ASIC-based and FPGA-based flows to inject faults.

The idea is simple. First, NoCFI performs place&route for the NoC under test in order to

provide netlist and layout information. Then, NoCFI manipulates the gate netlist provided by

the ASIC design flow and inserts additional circuits (i.e., saboteur) in the gate netlist. Finally,

NoCFI uses the modified gate netlist as input for the FPGA design flow to emulate multiple

faults in the Networks-on-Chip.

In summary:

• We have proposed a methodology that can be used to identify vulnerable cells nodes in the

NoC’s design and allow the classification of placement strategies of fault tolerant ASIC

designs.

• We have developed a tool to manipulate the netlist provided by the place&router and

translate it to a netlist that can be used by the FPGA design flow.

• We have presented a hybrid methodology that can be used as simulation-based and/or

emulation-based taking into account the layout position of the NoC’s cells.

• We have used a generic 5-stage pipeline 2D-NoC (Two-Dimensional Networks-on-Chip)

in order to evaluate our methodology.

A preliminary version of the NoCFI was published in [29].

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 11

1. Introduction

12 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

Part II

THREE-DIMENSIONAL

NETWORKS-ON-CHIP

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 13

Chapter 2

A Soft-error Resilient Route Computation

Unit

2.1 Introduction

One of the biggest concerns raised by the VLSI community regarding recent and future Networks-

on-Chip (NoCs) designs is the continuous decrease in feature size and its impact on reliability.

In fact, as the feature sizes of integrated circuits decrease aggressively, combinational logic be-

comes more susceptible to transient faults [85]. Specifically, soft-errors provoked by defects,

radiation particles, or cross-talk noise, were generally masked and thus disregarded in older

technology. However, as operating voltages become lower and clocking frequency increases, the

design of integrated circuits with technology node below 0.25µm requires of particular attention

to soft-error effects [108]. Indeed, NoC routers are not the exception since they have several

combinational logic elements. In fact, the probability of the occurrence of a soft-error is higher

in 3D-NoC routers which are more complex than 2D-NoC routers because of the increasing

number of connecting ports. Therefore, the study of 3D-NoC routers reliability towards soft-

errors becomes mandatory for future large-scale integration of dependable System-on-Chips

(SoC).

Components inside a NoC router are typically structured into two interacting modules, the

control path and the data path [59]. Soft-errors occurring in the data path can affect the data

encoded in the packet. Fortunately, this type of fault is easy to detect and correct through

existing error detecting and error correcting codes [125]. By contrast, faults in the control path

are harder to detect and correct, and may leave the network in an inconsistent state, ultimately

causing the entire chip to fail.

One of the most critical component in the NoC’s control path is the Route Computation

Unit (RCU), as it is the one responsible for selecting the next output port (i.e. direction) that a

packet must take at every hop. Also, most recent proposal in the area of NoCs favor the use of

adaptive routing for fault-tolerance, load balancing, etc., requiring more sophisticated routing

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 15

2. A Soft-error Resilient Route Computation Unit

decisions [18,103]. This makes the Route Computation Unit significantly more complex, which

can be expected to increase its vulnerability to soft errors. If the RCU fails, packets may be

forwarded to wrong outbound ports (i.e., misrouting) eventually leading to deadlocks (cyclic

dependencies between packets) or packet loss. It is therefore mandatory to provide some level

of protection against routing errors.

In this chapter, we propose to enhance the reliability of 3D-NoCs by detecting and correct-

ing errors provoked by transient faults in the RCU. The primary characteristic of our method

is the ability to reliably and quickly detect misrouting based on a combination of fault toler-

ance techniques. Those techniques are called double-sampling and complementary illegal turn

detection method. And they are combined into a specific hardware unit called fault detection

circuit, which can make decisions in order to recover from faults. The second characteristic

of our method is the ability to correct misrouting either by the reuse of the route computation

samples provided by double-sampling or by directly rerouting the in-transit packet. In order to

validate the robustness of the proposed solution, we have used a method to simulate transient

faults using NoC’s gate-level netlist. This method of fault injection is presented in more details

in Chapter 5. Finally, a thorough evaluation on a partially vertically connected 3D-NoC is per-

formed to demonstrate the increased resiliency, and to estimate the area and power overhead of

the proposed fault-tolerant routing computation unit architecture.

2.2 State-of-the-art

Previous works have used spatial redundancy (i.e., execute parallel routing calculations) to

deal with faults provoked by soft errors in NoCs. For example, the authors in [30] proposed

the BulletProof router that employs N-modular redundancy (NMR) techniques to provide fault

tolerance. The work in [127] proposed a fault-resilient routing unit for NoCs based on of a single

and simplified redundant computation unit operating side-by-side with the RCU. While the RCU

supports a fully adaptive routing algorithm, the redundant unit only supports limited paths, but

it is only activated when errors are detected. In general, spatial redundancy approaches are

expensive, as they require more silicon area than the baseline router.

Another approach to fault tolerance in NoCs is based on temporal redundancy (i.e., repeat

routing calculations). Authors in [34] applied temporal redundancy in fully-connected 3D-

NoCs. The authors in [60, 128] propose a mechanism to detect faults based on illegal turns

in the chosen packet path. The fault detection is done at the neighboring routers which repeat

a simplified route computation using input parameters provided by the previous router. If the

selected direction is valid, the packet handling process continues, if not, either a new route is

calculated or the packet is dropped. In general, temporal redundancy solutions incur in increased

packet processing time.

Hybrid spatial and temporal approaches were also explored. For example, authors in [22]

16 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.3 3D-NoC Architecture Background

proposed to borrow RCUs from neighboring input ports in the NoC router. In this case, three

different route computations are performed for each new packet, to then compare the resulting

values in order to detect possible faults. Some of these calculations might happen in parallel

(spatial redundancy) or in serial (temporal redundancy) depending on the router load. Indeed,

since all arriving packets need to wait for two other RCUs to be available, this method can add

significant delay in networks with heavy traffic load.

Packet retransmission techniques were also proposed to trigger recalculations when neces-

sary. In [89], the authors proposed a mechanism to detect and recover from transient faults

through the analysis of the requested output port. When the RCU request an invalid output

port, the router triggers a new routing computation to correct the error (i.e., rerouting). If the

fault cannot be detected, the next router in the path will detect the fault and send a negative-

acknowledgement (NACK) message to the previous router unit asking for recalculation and

retransmission. In a similar approach, the FoReVer framework [88] presents a method to de-

tect and recover lost, duplicated, and misrouted packets from routing errors. Since FoReVer is

based on End-to-End detection and recovery, dealing with soft errors requires retransmission

of the whole packet. In general, retransmission-based recovery mechanisms require additional

retransmission buffers.

The work in [20] proposed to detect misrouting either in the faulty router or in the next-

hop based on turns forbidden by the routing algorithm and blocked output ports (non-connected

ports in the edge). The method is based on the fact that small components of the RCU are

unlikely to evidence soft-errors allowing to simplify the correction. Thus, faults occurring at

the address comparison stage are not detected. The primary correction mechanism is to reroute

the packet. If faults are not detected in the faulty router, a dedicated network interface allows

to re-inject the packet as a new packet in the NoC from the local router. Although re-injection

minimizes packet drop, memory overhead is required to store the whole packet.

Our idea with this chapter is present a fault tolerant mechanism to detect and correct all

routing errors before the packet leaves the router. And with this, preventing deadlock in the

next hops. To achieve this goal, we make use of an additional fault detection circuit based

on double-sampling and a rerouting technique to recover from soft-errors. Furthermore, and

in contrast with previous 3D-NoC reliability works [34], we focus on the compatibility with

partially and vertically connected 3D-NoCs [6, 19].

2.3 3D-NoC Architecture Background

In this section, a general overview of NoC designs is provided. NoCs are defined by many

characteristics such as the network dimension, topology, switch architecture, switching tech-

nique, and flow control. These characteristics have a direct impact on performance, latency, and

power consumption. Although there are a lot of different architectures and topologies concern-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 17

2. A Soft-error Resilient Route Computation Unit

Z+

Z-

X+

X-

Y+

Y-

TSV PE

2D Router

TSV pad

3D Router

Fig. 2.1: Three-dimensional Networks-on-Chip (a) fully connected and (b) partially connected.

ing NoCs, we focus only on the NoC’s characteristics that are most pertinent to this thesis. In

particular, we have described a three-dimensional Networks-On-Chip architecture.

As said before, the transmission delay between distant routers is significantly increased

when the size of a 2D-NoCs scales up. It results in lower performance and higher power con-

sumption. So, to avoid such characteristics, the idea is moving toward the concept of 3D inte-

grated circuits, where layers are vertically stacked, instead of growing in two dimensions. In

this case, a 3D-NoC can be viewed as many 2D-NoCs layers that are vertically stacked, such

as a sandwich, and connected through vertical connections. It means that in addition to planar

connection there are also the vertical connections which permit Up and Down communications

intra-circuit. Figure 2.4 (a) shows an example of a fully connected three-dimensional networks-

on-chip where it is possible to see that all the routers are vertically connected (in this thesis,

we have adopted TSVs such as the technology to vertical connections). It means that in a fully

connected 3D-NoC all routers can send and receive messages in the planar, Up and Down di-

rections. This type of 3D-NoC topology presents high performance since the packets can use

the minimal path to achieve its destination. Also, in case of failures in one router, it is possi-

ble to select any other router to send packets vertically to its layer of destiny. However, fully

connected 3D-NoCs presents some disadvantage such as it needs more virtual channels because

they have more connection than 2D-NoCs. Also, the cost of TSV’s manufacture is expensive

and the reliability of the circuit decrease as the number of TSV increases [45].

Due to the high manufacture cost of vertical connections, the partially and vertically con-

nected solution has gained attention as an alternative to the use of the 3D IC technology [39].

Figure 2.1 (b) shows a 3D-NoCs which is built using only a few vertical connections in its ar-

chitecture. This type of architecture is called partially connected three-dimensional Networks-

On-Chip. Although the use of partially connected 3D-NoCs decreases the manufacturing cost

of the 3D ICs, the reduced number of vertical connections brings new challenges for the 3D-

NoCs architecture. In particular, the routing algorithm and the flow control of the NoCs tend

18 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.3 3D-NoC Architecture Background

Message

Packet

Flit

(Flow control digit)

V
C

T
y
p

e

T
y
p

e

T
y
p

e

V
C

S
e
q

#

S
e
q

#

S
e
q

#

V
C

S
r
c
.

D
e
s
t.

Head Body Tail

Fig. 2.2: Packets and Flits definition

to grow in complexity since the number of valid paths is directly affected by the number of

vertical connection. Moreover, the task to achieve a path for a packet can be yet more com-

plicated when permanents and/or transient faults happen inside a router, which can, in some

cases, invalidate all the NoC operation. With this issue in mind, in this thesis are proposed

fault-tolerant techniques to improve the reliability of the partially connected 3D-NoCs architec-

ture. But, before detailing the architecture of partially connected 3D-NoC used in this thesis,

in next subsection 2.3.1 we firstly introduce some definition, properties, and control flow about

the NoC operation. So a brief background about the partially connected 3D-NoCs architecture

is presented in the section 2.3.2.

2.3.1 NoC switching Properties

The switching technique determines how the NoC’s resources (routers, buffers, links, etc.) are

allocated to a message route determined by the routing protocol between the source and the

destination nodes. In this thesis, a packet switching technique is adopted due to the fact that it

has better scalability for NoCs and is commonly used in most typical NoCs implementations.

In an NoC based on packet switching, the link between routers is iteratively allocated until the

destination node is reached. For efficient utilization of router resources, a message to be sent

over the network is broken into discrete sized packets as depicted in Figure 2.2. The packets are

further broken down into smaller units of fixed bits called flits (flow control information units).

The flits are the smallest unit of data sent between different nodes in the network and are of

three types:

1. Head flit: Each packet contains a single head flit which carries information about the

destination of the packet.

2. Body flit: Each packet can have several body flits which carry the actual data to be sent

between the different network nodes. The body flits are contained between the head and

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 19

2. A Soft-error Resilient Route Computation Unit

VC Allocator

SW Allocator

Routing Logic

LO
CAL

PORT

NETW
ORK I

NTERFA
CE

IN North

IN South

IN West

IN East

IN Down

IN UPOUT North

OUT East

OUT South

OUT West

OUT Down

OUT UP

INPUT BUFFER (VC1)

INPUT BUFFER (VC0)

MUX

CROSSBAR

Fig. 2.3: 3D-router architecture with double virtual channels for each direction.

tail flits.

3. Tail flit: Each packet contains a single tail flit which signifies the end of the packet.

In addition to the information enumerated above, each of the flits also carry information of

the type of flit, the virtual channel (VC) which the packet is being routed on, and its sequence

in the packet. Furthermore, the head flit is used to reserve an output port of the router and the

reservation is maintained till the tail flit is transmitted. This technique has the advantages of

increased throughput, lower latency and smaller buffer sizes.

Although the packet switching technique presents a good solution for hardware-implementation

in the VLSI design, some issues must be addressed in the NoCs project. In particular, three is-

sues/properties must be avoided for any usable NoC architecture:

• Deadlock is a situation in which the packets are involved in a circular dependency which

cannot be resolved. Deadlock results in the packets making no progress towards the

destination node. The deadlock freedom can be provided by the characteristic of the

routing protocol or by using costly deadlock detection and resolution logic.

20 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.3 3D-NoC Architecture Background

Processing Element

VC1

VCn

..
..
.

...

Switch Allocator

(SA)

Routing

Computation (RC)

Virtual Channel

Allocation (VA)

Crossbar

...

Input Port 1

Input Port n

..
..
.

...

Routing

Computation

VA1

Arbitration

VA2

Arbitration

SA1

Arbitration

SA2

Arbitration

Routing

Computation:

Next-hop

direction

Local Arbitration:

Choose one specific

output VC in

adjacent router

Global

Arbitration:

Resolve global

conflicts

Local Arbitration:

One winning VC

in each port

Global Arbitration:

Resolve global

conflicts

Fig. 2.4: Generic Router architecture with pipeline

• Livelock is a situation in which the packets wander about in the network without ever

reaching the destination. Minimal and deterministic routing protocols are livelock free,

while non-minimal routing protocols can route packets into paths that do not lead them

towards the destination.

• Starvation is a situation in which a packet is starved of resources and never gets serviced

in a router. Starvation is an important aspect in the design of router arbitration mecha-

nisms.

2.3.2 Partially connected 3D-NoC architecture

In this thesis, we consider a partially vertically connected 3D-NoC mesh architecture, wherein

the routers include, in addition to the usual five ports (East, West, South, North, Local), either

an Up port, a Down port, or both (i.e., 5, 6 and 7 port configuration), as shown in Figure 2.3. It

means that each layer consists of a mixture of classic 2D routers including only 5 ports and 3D

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 21

2. A Soft-error Resilient Route Computation Unit

routers having either 5, 6, or 7 ports as we can see in Figure 2.1. The Up and Down ports of the

router are connected vertically using Through-Silicon Via (TSV). Also, each router is identified

by its coordinates (X, Y, Z), where X identifies the column, Y the row, and Z the layer.

A typical input-buffered wormhole router such as the one shown in Figure 2.4 is adopted. In

this architecture, the router consist of a seven input port, seven output port, two virtual channels

per port, and a control logic distributed in four-stage pipeline. The control logic of the router

comprises of Routing Computation (RC) unit, Virtual Channel Allocation (VA) unit and the

Switch Allocation (SA) unit. A central crossbar (XB) connects the input and output ports of the

router. So, routing a packet is performed in four stages:

1. RC Stage: This is the first stage in the pipeline and is active upon the arrival of a head

flit into the router. Based on the destination information available in the head flit and the

used routing protocol, the RC unit determines the output port of the current router through

which the head flit will leave. This stage remains idle for body and tail flits.

2. VA Stage: This is the second stage in the pipeline and is active upon completion of RC

stage. This stage also operates only on head flits. Figure 2.4 shows the architectural block

diagram of a two-stage separable virtual channel allocator (i.e., VA1 and VA2). In the first

stage, based on the result of RC, every input VC with a head flit arbitrates for an empty

VC at the downstream router. In the second stage, head flits across different input VCs

that have been allocated the same VC at the downstream router compete with each other.

The input VC that wins the arbitration in the second stage is allocated to the VC at the

downstream router.

3. SA Stage: This is the third stage in the pipeline and is active for head, body and tail flits.

SA unit is responsible for determining which input VC from an input port gets to transmit

a flit through the crossbar in the next cycle. Figure 2.4 shows the architectural block

diagram of a two-stage separable switch allocator (i.e., SA1 and SA2). In the first stage,

the SA unit decides which VC of an input port gets to transmit its flit through crossbar.

In the second stage, competition between different input VCs trying to gain access to the

same output port of the crossbar is resolved. The input VC that wins the arbitration in

the second stage gets to transmit its flit through the crossbar in the next cycle. Unlike

routing computation and virtual channel allocation, switch allocation stage is active for

head, body and tail flits

4. Crossbar Stage: This is the final stage in the pipeline and is active for head, body and

tail flits. Crossbar connects the input and output ports thus facilitating flit traversal from

a VC of an input port to an output port. Figure 2.4 shows the architecture of a crossbar.

SA unit is responsible for generating control signals to the multiplexers in crossbar. Input

output port connections of the crossbar are configured every cycle based on the winners

in SA stage.

22 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.3 3D-NoC Architecture Background

In summary, the 3D-NoC routers used in this thesis consist of a four-stage pipeline: buffer

write / route computation, virtual channel allocation, switch allocation, and crossbar traversal.

When the header of a packet arrives at an input port, it is buffered in a FIFO virtual channel

and, in the same cycle, the RCU reads the header information and calculates to which output

port the packet should be forwarded. In the next cycle, the Virtual Channel Allocator (VA) unit

determines the virtual channel which the packet can occupy in the downstream router. After VA

grants a virtual channel, the packet waits for the switch allocator unit to grant its permission to

traverse the crossbar. Finally, the packet traverses the link to reach the next hop.

2.3.3 Routing Computation Unit

In order to prevent deadlocks and reduce congestion, existing routing computation solutions

for irregular 3D-NoCs employ virtual channels [39], [19]. As said before, virtual channels

are buffers inside the input port of the router that allow storage flits from different packages.

The idea is to multiplex a physical channel using multiple virtual channels (VCs) in the input

port. In this sense, we are interested in the use of VCs grouped by the concept of "Virtual

Network", which was proposed by [32]. A Virtual Network (VN) is a logical network projected

on the physical network that uses fixed virtual channels which can be selected by the routing

algorithm. To better clarify the concept of VN, lets us considered the example illustrated in

Figure 2.3. In this example, each router has two buffers (two virtual channels) on the physical

channels, and also it has two VNs (one for Up direction and another for Down direction). Each

VN is assigned one virtual channel, and each VN has its own routing algorithm. It means that

messages whose destination is in the UP direction of the source are injected into the VN0, and

messages whose destination is the down direction of the source are injected into the VN1. In

other words, we defined by two sets of VN that the packets which need to go to North and East

can only use the virtual channel 0, and the packages that need to go to South and West can only

use the virtual channels VC1. The use of several VNs thus increases the diversity of the actual

routes.

So, in addition to the output port, the RCU also selects a virtual network (VN) number. This

number is used by the VA to determine the set of VCs that can be allocated to the packet as de-

scribed in [19]. Each VN can have its own routing algorithm and rules that avoid creating cyclic

dependencies between packets. In this context, the route computation, is not only responsible

of selecting the next output-port but also the VN.

The route computation is performed in three stages [20]. The first stage is used to compare

the relative position of the packet and its destination, then the second stage adds turns constraints

which are based on the routing algorithm. Finally, the third stage select only an output port and

a virtual network to be attributed to the packet. Those stages are described in more details below:

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 23

2. A Soft-error Resilient Route Computation Unit

Stage 1: Compare

[Xd, Yd, Zd] [Xc, Yc, Zc]

Stage 2: Add turns

constraints

Stage 3: Output Port

and Virtual Network
Congestion

N', W', U'

Output Port: Virtual Network:

Destination is on
North-West-Up

Routing
Algorithm

(OP) North (VN) 1

1 0 1 0 1 0

1 0 0 0 1 0

Fig. 2.5: An example of the three stages of the routing computation unit

1. In the first stage, the relative position of the packet’s destination (Xd, Yd, Zd) is compared

with the address of the current router (Xc, Yc, Zc) to produce a candidate direction vector

[N’, S’, W’, E’, U’, D’]. In the direction vector, one or more signals may be active. For

example, if the destination is in the North-West-Up quadrant, then N’, W’, and U’ signals

will be enabled and the vector will be configured as [1, 0, 1, 0, 1, 0] as shown in result of

Stage 1 of Figure 2.5.

2. The second stage is used to add turn constraints according to the implemented adaptive

routing algorithm. In this case, a vector [N”, S”, W”, E”, U”, D”, L”] representing the

possible or legal directions is computed for each routing algorithm presented in each VN.

In this case, since the algorithm we adopted in this example takes the positive direction

(North, East, and Up) first, the stage 2 will disable the West direction from the bits vector.

So the results after the stage 2 will be a vector such as [1, 0, 0, 0, 1, 0] as we can see in

the Figure 2.5.

3. Finally, in the third stage, an output port and a VN are selected among the legal routes

by taking into account information such as congestion. So, continuing our example illus-

24 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.4 Resilient Route Computation Unit

trated in the Figure 2.5, the routing algorithm will select the North direction because based

on the congestion, and also the routing algorithm will select the VN0 (Virtual Network

number 0) because the destination is in the Up direction of the source.

2.4 Resilient Route Computation Unit

Since we consider that the route computation unit is responsible for selecting the output port

and the VN, a transient fault in the RCU can leave an in-transit packet with an incorrect route,

implying a wrong output port direction, an erroneous VN or both. In this case, to detect faults

is required a mechanism capable of analyzing the output port and the VN selected by the RCU.

Once detected, a correction mechanism need to be used to recover from the failure. It is worth

mentioning that our solution can detect a fault affecting any of the three stages described above.

In this Section we will describe the techniques and mechanisms adopted to detect errors

using double sampling, a custom VC allocator and novel correction procedures in the resilient

RCU.

2.4.1 Detection: Double Sampling and Custom VC Allocator

The Double-Sampling (DS) is a method that permits to observe, at two different instants, the

outputs of the combinational logic of each pipeline stage [82]. The main idea is to add a redun-

dant sampling element (latch or flip-flop) to each output of the pipeline stages that need to be

checked and clocking this redundant sampling element by a delayed clock signal.

Figure 2.6 illustrates the basic operation of the double-sampling mechanism used in this

work. We propose to use the rising edge of the clock as latching event of the regular flip-flop

and the falling edge of the clock as latching event of the redundant sampling element to get the

output port (OP) and virtual network (VN) computed by the RCU ([OP,VN]). Since the RCU

is performed in one clock cycle, and the double-sampling is running in parallel with RCU, this

technique does not result in any path delay.

The Sample_1 and Sample_2 are obtained in different instants, as shown in Figure 2.6.

Those two samples are compared by the additional Fault Detection Circuit (FDC) in the next

cycle, after route computation. If the result of comparison between these two samples is differ-

ent, then a fault has affected one of the samples. Therefore, both samples need to be analyzed

with the purpose of determining which one is faulty. In our implementation, Sample_1 is ini-

tially verified, followed by Sample_2. On the other hand, if the result of comparison between

these two samples is equal, maybe because they are fault-free or the same fault affecting both

samples, only Sample_1 is selected to check if there is error or not.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 25

2. A Soft-error Resilient Route Computation Unit

Fig. 2.6: A Double-Sampling implementation.

2.4.2 Detection: Custom VC Allocator

The detection of an incorrect route vector ([OP,VN]) can be performed directly by the VC

Allocator (VCA) or by an extra Fault Detection Circuit (FDC), which runs in parallel with the

VCA, as shown in Figure 2.7.

Because the VCA includes a table indicating the possible input-output connections accord-

ing to the routing algorithm, it can detect illegal output port and VN requests with minor mod-

ifications. For example, if a request demanding for a blocked output port (i.e., the requested

output port is unconnected because it is located at an edge of the 3D-NoC), the VCA can de-

clare a routing error. Another fault that the VCA can directly detect is when the requested turn

is forbidden by the VN parameter of the local router. These two types of faults can be easily

detected by simple modifications in the VCA circuit in the NoC router.

For faults that do not involve illegal turns, more sophisticated approaches are needed. This

is the case when the output port and VN are both valid, but the packet needs to make illegal turns

at later hops to reach its destination. To deal with these faults that cannot be detected by the

VCA, an extra Fault Detection Circuit (FDC) is included in the NoC router, as shown in Figure

2.7. To this end, the FDC checks three conditions. First, it compares the Zd and Zc to know

if the packets which need to go in the Up direction were wrongly selected to go Down, or vice

versa. Additionally, it checks if the packets are directed to a local port, in this case, the FDC

compares the position of the current router with the destination of the packets. Second, the FDC

checks if the direction adopted by the packet leaves to an illegal turn in the upcoming packet

path. For example, if a routing unit using negative-first algorithm selects a valid direction, e.g.

North which is a positive direction, but the destination is located West to the current router, this

turn is declared illegal, as the packet will be forced to take the West (negative) direction at later

hops after the North, leading to deadlocks. Third, it checks the two samples provided by the

double-sampling and selects which of them must be finally used by the VCA.

26 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.4 Resilient Route Computation Unit

Fig. 2.7: Fault detection Circuit - FDC.

2.4.3 Detection: Fault Detection Circuit

The VCA and the FDC work together to detect transient faults in the RCU. The faults reported

by the FDC and VCA are analyzed and judged as follows: If both samples (Samples_1 and

Sample_2 from double-sampling) are the same and the ERROR_VCA output signalizes an error

detected by the VCA, the solution will be asking for rerouting in the next clock cycle. On the

other hand, if ERROR_VCA does not signalize an error, (i.e., the VCA was successful), the

next steps will be to check both FDC_0 and FDC_1 signals (each signaling errors in each of the

double samples) to declare a final judgment for the routed packet. If FDC_0 is fault-free, the

result will be considered correct, and the packet will follow its path to the next router. Otherwise,

if an error is detected in FDC_0, the next step will be to check the FDC_1 signal. If FDC_1

signalizes an error, then the decision will be to reroute the packet. However, if FDC_1 does not

contain errors, the solution will be to try a new allocation in the VCA using the second sample

(Sample_2). Finally, if the result is correct for this second sample, the packet will continue its

path using this result. In all other cases, the packet will be rerouted.

2.4.4 Correction: Rerouting

Unfortunately, repeating the route computation process is not simple since one RCU is shared

among all VCs in the same input port. This means that each port is able to do one route compu-

tation per clock cycle. Evidently, a first alternative for this limitation is to add an extra RCU per

VCs per input port. However, this approach increases the area and power overhead of the NoC.

To avoid replicating the RCU for each VC, we propose a simple rerouting mechanism that uses

the existing RCU. As illustrated in the Figure 2.8, the idea is to ensure that a limited number

of new packets enter an input port in which one or more packets have requested rerouting. The

solution consists in preventing packets from entirely leaving the input port, ensuring the buffers

do not get available to receive new packets until all packets have been rerouted [20]. If a new

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 27

2. A Soft-error Resilient Route Computation Unit

packet header is received at the input port, it is routed by the RCU, otherwise one of the pack-

ets requesting rerouting is allowed to use the RCU to be rerouted. Because a finite number of

new packets will be received, our method effectively guarantees that all requesting packets are

eventually rerouted.

Fig. 2.8: A Rerouting Scheme implementation.

Two rules are created in order to block the input port with minimal impact in the overall

network flow. If there is one packet in the input port asking for rerouting, a flag is set to block

this port in order to stop receiving new packet headers. Indeed, this rule allows other parts of the

packet which are not the header to still be accepted in the local port. In this case, if we have no

header coming in the input port, rerouting is performed in one of the VC that requires rerouting.

If more than one VC is requesting rerouting at the same time an arbitration is done to choose

which one will finally perform the calculation first.

2.5 Fault-Injection Experimental Procedure

In order to analyze the reliability of the resilient RCU proposed in this work, we introduce a

fault injection methodology that can mimic, with high accuracy, the effects of transient faults

in the NoC’s gate-level netlist. The most relevant characteristic of the resulting tool-chain is its

ability to inject faults without modifying the original Hardware Description Language (HDL)

code of the NoC. Instead of editing the original HDL design, the original library provided by

the design kit used to make the synthesis of the design was modified. In particular, we have

modified the design kit FD-SOI 28nm technology from ST-Microelectronics to inject faults in

the NoC’s gate-level netlist. Figure 2.9 illustrates the proposed work-flow.

In summary the fault injection campaing was perfromed in four steps:

28 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.5 Fault-Injection Experimental Procedure

Programmed in

SystemVerilog and

TCL Scripts using

Modelsim/VCS

For a specific

technolog,

in our case

ST FD-SOI 28nm

Testbench and

Benchmark Traffic

NoC

HDL Source Code

NoC

Synthesis

NoC

Netlist

Campaign

controller

(Testbench)

Original design

is not modified

before

fault-injection

1

Injection's

campaign

4

Experiment

Setup
3

Modified

NoC Netlist

NoCNET2
Select Blocks

to Inject

Transient Faults

Fig. 2.9: Fault injection methodology

Initially, the HDL description of the NoC is used to obtain a first synthesis in Step 1 .

This synthesis was performed using Synopsys Design Compiler, as it allows to export a gate

netlist based on the technology adopted, in our case ST FD-SOI 28nm. In Step 2 , the netlist

is used as input for the NoC NETlist (NoCNET) tool. The output of NoCNET is a modified

(but functionally equivalent) netlist with a large number of extra input signals used to access all

logic blocks of the NoC to inject faults. The resulting synthesis of the modified netlist includes

some additional combinational circuitry to the design. In the case of transient faults, NoCNET

modifies all the logic gates of the netlist by simply adding an extra multiplexer at the output to

select the appropriate value (erroneous or correct). In Step 3 , a campaign controller is inte-

grated within the modified netlist. The campaign controller is a HDL testbench implemented

in SystemVerilog that is in charge of managing the fault injection campaign by being directly

wired to the NoC modified by NoCNET. To this end, the netlist obtained in Step 2 is attached

to the testbench by using the modified library (ST FD-SOI 28nm). Finally, the experiment in

Step 4 can be directly executed using simulator tools like Modelsim (Mentor Graphics) or

VCS (Synopsys). The whole fault-injection campaign (including the post-processing of the re-

sults), can be conveniently encoded in the testbench and automated by means of Tool Command

Language (TCL) scripts. By accessing the interfaces connecting the NoC, fault injection signal

and network interfaces, the testbench can efficiently execute several iterations of fault-injection

experiments randomly selecting the fault points and running different benchmarks traffic.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 29

2. A Soft-error Resilient Route Computation Unit

2.6 Evaluation And Analysis

In order to analyze the latency, hardware cost, and reliability of the proposed resilient RCU, we

have extended the cycle-accurate Netmaker library [77] to support 3D-NoC router architectures.

Netmaker is a library of parameterizable and synthesizable NoC routers written in SystemVer-

ilog. This library was used to implement the detection and correction mechanism described in

this Chapter, as well as the 3D-NoC router baseline described in [19].

The executed fault injection campaigns were performed in a partially and vertically con-

nected 3D-NoC composed by 64 routers distributed in a 4x4x4 mesh architecture. The 3D-NoC

planes are connected by 4 TSV pillars (25% vertical connections). This 3D-NoC routers are

based on 4-flit deep FIFOs, and a packet size fixed in 5 flits. The routing algorithm uses the

same configuration of VCs presented in [19]. When several candidates are available, the routing

algorithm selects the least congested output port, based on a local congestion metric. For each

simulation, the 5-flit synthetic packets are injected and wait until 100000 of them are received

under a pessimistic fault injection rate of 5%.

We have tested this 3D-NoC built with three different NoC routers. The first circuit is the

baseline router here termed ROUT3D. The second circuit identified as ROUT3D-TMR (Triple

Modular Redundancy), is a version of the ROUT3D with TMR-hardened RCU in each port

of the NoC routers. Finally, the third circuit implements the architecture described in Sec-

tion 2.4.1. We refer to this circuit as ROUT3D-FDR (Fault detection circuit, Double sampling,

and Rerouting).

The gates at which faults will be injected, the clock cycle and the duration of each fault

are randomly chosen by the testbench. The probability of erroneous routing occurring at each

route computation is fixed to a certain value. Faults are injected in the three stages of the RCU

performing single, double and triple faults. Transient faults might occur at the same clock cycle

in different routers, but in this experiment has not been considered that different faults can hit

two RCUs from the same router.

2.6.1 Latency Results

The performance of the proposed RCU architecture is estimated through the average packet la-

tency under three different traffic patterns (Uniform, Bit-complement, Shuffle). The resulting

performance comparison is shown in Figure 2.10 when there are faults in the ROUT3D-FDR

and no faults in the ROUT3D baseline. The degradation in performance is noticed because to

recover from misrouting the VC, the same input port needs to be blocked to avoid the recep-

tion of new headers while executing the rerouting routine. The tendency is that packet’s delay

increases with the injection rate. This can be explained by the fact that a higher injection rate

means a higher probability that new packets enter the router and use the routing unit instead of

the rerouting mechanism.

30 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.6 Evaluation And Analysis

0

50

100

150

200

250

0,02 0,025 0,03 0,035 0,04 0,045 0,05 0,055 0,06 0,062 0,064 0,066

A
V

G
.

N
E

T
W

O
R

K
 L

A
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

ROUT3D ROUT3D-FDR

(a)

0

50

100

150

200

250

0,02 0,025 0,027 0,03 0,032 0,035 0,037 0,039 0,04 0,041

A
V

G
.

N
E

T
W

O
R

K
 L

A
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

ROUT3D ROUT3D-FDR

(b)

0

50

100

150

200

250

0,02 0,03 0,04 0,05 0,06 0,065 0,07 0,072 0,073 0,075

A
V

G
.

N
E

T
W

O
R

K
 L

A
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

ROUT3D ROUT3D-FDR

(c)

Fig. 2.10: Latency of ROUT3D-FDR and baseline ROUT3D under (a) uniform traffic, (b) bit
complement traffic and (c) shuffle traffic.

2.6.2 Hardware Synthesis Results

In order to evaluate the hardware overhead of the proposed resilient Routing Computation Unit

(RCU) solution, we have performed two syntheses. In the first synthesis, we estimated the area

and power overhead when all designs are setup to work with an operating frequency of 1GHz,

a power supply of 1V, and a commercial ST FD-SOI 28nm library. In the second synthesis,

the tools are configured to achieve the maximum operating frequency. It is possible because

the tools explore some configuration for a maximum operating frequency taking into account

the critical path delay. The results for both syntheses are summarized in Tables 2.1 and 2.2.

The three types of routers previously described were considered: 5-port 2D routers, 6-port 3D

routers with one vertical connection, and 7-port 3D routers with both Up and Down vertical

connections.

The area and power overhead showed in the Table 2.1 put in evidence the low hardware

overhead of the proposed method. We can see that for the 5, 6 and 7-port routers from ROUT3D-

FDR, the area overhead increases around 4% while the ROUT3D-TMR increase by 12%. It

is important to note that while the ROUT3D-FDR needs only an additional sample (double-

sampling) to register the results of RCU and an additional circuit FDC for fault detection, the

ROUT3D-TMR needs to triplicate all logic from RCU per input port as well as an additional

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 31

2. A Soft-error Resilient Route Computation Unit

voter.

Table 2.1: Area and Power results for ROUT3D, ROUT3D-TMR, and ROUT3D-FDR

Size Area (µm2) Power (mW)

(# Ports) ROUT3D ROUT3D ROUT3D-FDR ROUT3D ROUT3D ROUT3D-FDR

5-Port 14945 16802 15564 5.8192 6.5628 6.2175
6-Port 19036 21309 19738 7.8411 8.5576 8.1612
7-Port 23888 26613 24681 9.6362 10.489 9.9963

In order to determine the maximum operating frequency that the 3D-NoC routers can achieve,

we perform a sequence of syntheses increasing the operating frequency without time violation.

The maximum operating frequency is shown om Table 2.2. As can be seen in this Table 2.2,

the ROUT3D-TMR maintains practically the same maximum operating frequency while the

ROUT3D-FDR decreases around 0.4% when both are compared to the baseline router. This

is because the ROUT3D-FDR needs to decide which sample will be selected and if the packet

needs to be rerouted after the FDC’s analysis.

Table 2.2: Maximum Operating Frequency for ROUT3D, ROUT3D-TMR, and ROUT3D-FDR

Size Max. Freq (MHz)

(# Ports) ROUT3D ROUT3D ROUT3D-FDR

5-Port 2380 2380 2372
6-Port 2300 2296 2290
7-Port 2200 2200 2190

2.7 Conclusion

In this Chapter, we have proposed a novel method to safely correct routing errors and deliver

all packets to their destination without resorting to retransmission. It is possible, because we

have included a mechanism to detect, mask, and then correct transient faults in the route com-

putation unit. Also, using a single rerouting mechanism, it possible to detect all fatal routing

errors before the affected packets leave the faulty router. It means that the proposed approaches

guarantee that no packets are dropped because of misrouting. Misrouting is detected combin-

ing double-sampling technique with a virtual channel allocator (VC) optimization and an extra

Fault Detection Circuit (FDC). The rerouting mechanism that we have proposed is simple and

safe as it ensures that the routing logic is correctly shared between several requesters and that

no starvation can occur. In other words, to minimize the implementation cost, the same routing

logic is used to service all the rerouting requests of the same input port. Results obtained from

32 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

2.7 Conclusion

a partially and vertically connected 3D-NoC showed that all faults can be corrected locally at

the expense of a minimal latency increment. Indeed, rerouting is triggered by an efficient detec-

tion approach. Moreover, the measured area and power overhead including double-sampling,

rerouting, and fault detection circuit was 4.1% and 6.8% respectively. These results suggest that

the proposed method is an appealing alternative to traditional TMR-based approaches.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 33

2. A Soft-error Resilient Route Computation Unit

34 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

Chapter 3

FL-RuNS: A High Performance and

Runtime Fault-Tolerant Routing Scheme

3.1 Introduction

Among the vertical interconnection technologies, Through-Silicon-Via (TSV) has been ac-

cepted as one of the most viable technologies since it enables faster and more power efficient

inter-layer communication across multiple stacked layers [12]. However, the TSV fabrication

process suffers from lower yield [69,91]. The low yield of the TSV fabrication process is related

to the chemical and mechanical properties of the material utilized. Specifically, 3D-ICs suffer

from the conversion of thermal stress into mechanical stress during fabrication due to the dif-

ference in thermal expansion coefficients of the implementation materials [126]. Furthermore,

the temperature variation between two layers can negatively affect the Time-Dependent Dielec-

tric Breakdown and Thermal Cycling [45]. Also, the Electromigration [52, 104] can increase

the resistance of the conductor which in turn increases the communication delay. In summary,

employing a large number of TSVs degrades reliability, increases the manufacturing cost and

causes area overhead.

To overcome some of these challenges, a minimum subset of the routers is connected to

the upper/lower layers using TSVs while the routers in the same layer are connected using

global links. This approach results in irregular 3D-NoC topologies, commonly referred to as

Partially-Vertically-Connected NoCs. In fact, we are interested in a partially connected 3D-

NoC mesh architecture such as the one shown in Figure 3.1. This type of architecture presents

a limited number of vertical connections (TSVs), commonly known as Elevators. Also, it is

composed of a combination of 2D- and 3D-routers distributed through the layers. Each router

is responsible for connecting process elements as well as for sending and receiving packets

through the network. Addressing a new routing algorithm for this type of architecture can be

complex since the reduced number of vertical connections pose new challenges in terms of

deadlock-free routing. A routing mistake can lead to a situation where packets are blocked

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 35

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

Z+

Z-

X+

X-

Y+

Y-

2D Router

PE

TSV

3D Router

TSV pad

Fig. 3.1: 3D-NoC architecture vertically and partially connected

waiting for free resources in the networks (i.e., a deadlock situation). So, a definitive solution

that presents high reliability, high performance, deadlock-free routing algorithm, and efficient

TSV assignment for a partially connected 3D-NoC is still missing in the literature.

Based on these facts, we have previously proposed a routing algorithm, named First-Last [15,

17], which is able to tolerate TSVs failures only in the manufacturing phase. However, TSVs

in 3D-ICs have become more fault sensitive, not only in the manufacturing phase; but, also

during the operation time. Failures on TSVs can change the network configuration, increase

the network latency, degrade the system performance, and ultimately reduce the overall 3D-

NoC lifetime. In this context, many works have addressed the TSV failure problem adopting

fault-tolerant techniques in the routing algorithm for 3D-NoC. However, as it is explained in

Section 3.2, most of the already existing routing algorithms present one or more of the follow-

ing problems: A large number of TSVs and Virtual Channels to recuperate from faults, specific

routing rules that pose restrictions on the location and the selection of TSVs, and/or an offline

mechanism to reconfigure the entire 3D-NoC after faults. All those techniques either signifi-

cantly increase the hardware resources or need to drop packets in the reconfiguration phase until

the network goes back to its stable condition again.

In this thesis, we propose a novel light-weight and efficient fault-tolerant routing scheme

called FL-RuNS (First-Last Runtime and Resilient 3D Networks-on-Chip Scheme). FL-RuNS

takes advantage of the high-performance of our routing algorithm First-Last [15], and combines

it with a fault-tolerant routing scheme to overpass failures in the vertical link. FL-RuNS presents

a reconfigurable 12-bit vector location for each router named Elevator Bits. The bits contained

36 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.2 State-of-the-art

in the Elevator Bits are used as a compass by the routing algorithm to search for a healthy

elevator. Also, FL-RuNS includes a mechanism to propagate the TSV status and to update the

Elevator Bits. Furthermore, FL-RuNS adopt an asymmetric virtual channel along the West,

North, Up, and Down directions which are used as escape path to delivery packets in presence

of runtime faults.

3.2 State-of-the-art

Fault-tolerant routing algorithms for 3D mesh architecture have been presented in HamFa [43],

4NP-First [90], AFRA [3], and HLAFT [2]. All these algorithms can tolerate a certain number

of faulty vertical links in a fully connected 3D-NoC. However, they assume that all TSVs must

be connected, which can greatly increase the manufacturing cost.

While some works have addressed fault tolerance in a fully connected 3D-NoC, only a

few proposals have been made in the context of partially vertically connected 3D-NoC. The

work in [112] proposes a fault tolerant routing algorithm able to tolerate faults occurring in the

horizontal and vertical links. This solution uses three virtual channels for each port, and each

router needs to save a table with all TSV’s status. Although this technique presents a runtime

fault-tolerant solution, the high hardware implementation cost limits its scalability.

The LBDR3D [81] is a framework that supports a variety of partially adaptive routing algo-

rithms, based on the turn model [54], and can be reconfigurable to tolerate faults in horizontal

and vertical links. LBDR3D uses a limited number of vertical bits to point to the nearest ele-

vator. The nearest elevator is selected off-line based on the Manhattan Distance. It was proven

deadlock- and livelock- free using the same method as the one used in Elevator-First and re-

quires the same minimum number of virtual channels to separate between Upward and Down-

ward flows. However, the method adopted in LBDR3D for assigning elevators to nodes is not

inherently deadlock-free. Deadlock happens because LBDR3D uses a fully randomized man-

ner to select an elevator when there are several elevators with equal Manhattan distance from a

given node. The inconsistencies between several nodes can lead to the violation of the routing

rules, potentially leading to deadlocks.

ETW [100] is an adaptive routing algorithm that requires one additional virtual channel

along the Y dimension. In ETW, the packets have to take the East direction before mov-

ing toward West. This condition increases congestion in X dimension and results in lower

performance. Most recently, the same authors proposed an adaptive routing algorithm called

LEAD [101] that requires one more virtual channel than ETW along X direction. Unlike ETW,

LEAD does not impose restriction rules on elevator selection and does not have the obligation

in moving towards East. However, like ETW, LEAD does not include any strategy in case of

runtime failures in the vertical link connection.

Elevator-First [39] is a deterministic routing algorithm for partially connected 3D-NoCs

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 37

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

which requires two virtual channels along X and Y dimensions. Elevator-First routes packets

toward an elevator (vertical links) through the insertion of a temporary header containing the

elevator’s address. Although Elevator-First does not impose limitations in choosing elevator to

transfer the packets to the destination layer, it cannot be reconfigured by any TSV failure which

has occurred after the manufacturing process.

CoBRA [102] proposes some solutions to tolerate runtime failures using the propagation of

TSVs status and a reconfiguration mechanism. Unfortunately, CoBRA poses some very limiting

constraints on both the location and the selection of the elevator. It requires the existence of at

least one elevator in both the east-most and the west-most columns. Using two virtual channels

along the Y dimension to avoid deadlock, CoBRA initially forwards the packets to the East until

finding a healthy TSV, and if no TSV is found at the east-most column, the routing algorithm is

reconfigured to deliver the packets toward the West direction. The problem with this technique

is that some packets are dropped in the reconfiguration phase until the network returns again to

its stable condition.

The First-Last routing algorithm proposed in [15] uses a limited number of vertical bits and

employs off-line reconfiguration to select, based on the Manhattan Distance, the nearest healthy

elevator. Unlike LBDR3D, First-Last adopts a distribution of those bits based on the set of

virtual channels and the relative position of elevators. It is necessary to grant reachability and

avoid deadlock. Also, First-Last presents a good solution for partially connected 3D-NoC using

a total of 8 Virtual Chanel. It means that First-Last needs fewer virtual channels than LBDR3D.

However, despite its high performance and low area overhead, First-Last does not present an

online solution to tolerate runtime faults. As results, First-Last has to drop some packets during

its reconfiguration phase.

To the best of our knowledge, in the literature is missing a light-weight and adaptive routing

algorithm which provides good performance and runtime fault-tolerant solution for partially

connected 3D-NoCs without imposing specific rules on elevator selection. Motivated by this

lack in literature and in contrast to existing works described above, we propose a high per-

formance and reconfiguration routing scheme called FL-RuNS that can tolerate manufacturing

and runtime faults in the vertical links while: not imposing specific rules on elevator selec-

tion, avoiding drop packets in the presence of TSV failures, and keeping high performance of

3D-NoCs in the absence or presence of faults.

3.3 First-Last Baseline Architecture

In this section we first start discussing the partially connected 3D-NoC topology adopted in this

work. Then we present a reconfigurable Elevator Bits which is used by the routing algorithm

as a compass for locating healthy elevators. Finally, the First-Last routing algorithm, which is

used as baseline for our runtime fault-tolerant scheme, is presented.

38 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.3 First-Last Baseline Architecture

1 1 1

10

1

0

0

01

1

10

1

0

0

0 1

9

2

6 74

8

E12 14 15

E10

E5

E3

11

13

2D Router Healthy

3D Router Healthy

Elevator Invalid0 0

Elevator Valid1 1

8-bit vector

4-bit vector

00

1

0 0

1 0

1

0

1

0

0

1

1

1

1

0

0

1

Fig. 3.2: Elevator configurable bits for initially operation with all healthy elevators.

3.3.1 3D-NoC Topology

We consider a typical on-chip router containing five major functional modules: Routing Com-

putation, Virtual Channel Allocation, Switch Allocation, Crossbar, and Input Buffers. Also, the

routers include, in addition to the usual five ports (East/X+, West/X-, North/Y+, South/Y-, Lo-

cal), either an UP/Z+ port, a Down/Z- port, or both (i.e. 5, 6 and 7 port configuration). The Up

and Down ports of the router are connected vertically through TSVs, as shown in Figure 3.1.

Each TSV pillar is connected in all layers, and we call them elevator. That is, each elevator

connects all layers and has the Up and Down port. For more details about partially connected

three-dimensional Networks-on-Chip, please check Chapter 2 Section 2.3 of this thesis.

3.3.2 Locating Healthy Elevators

In a partially connected 3D-NoC, the biggest challenge for the routing algorithm is to find a

healthy elevator for delivering a packet from its source layer to its destination layer. To address

this challenge, we proposed, based on our work presented in [16], a novel method for determin-

ing the possible elevators’ positions using Elevator Bits inside of the routers. In this method,

each router stores twelve bits that are distributed in two vectors of bits. The first vector (4-bit

vector) is composed of four cardinal directions [N, E, S, and W] indicating if there is a neigh-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 39

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

boring elevator one hop along the row and column. That is, if there is an elevator one hop at the

North direction, the respective bit N in the 4-bit vector is set up to 1. The second vector (8-bit

vector) represents eight cardinal directions distributed as [N, E, S, W, NE, NW, SE, and SW].

Those bits indicate the presence of at least one elevator in one direction. For example, the North

or South bits are set if there is at least one elevator in the same column in the North or the

South, respectively. The NE and NW, on the other hand, are used to indicate the existence of an

elevator in the northeast or northwest directions, respectively.

To illustrate how these two vectors of bits are set, let us consider the example shown in

Figure 3.2 where only the bits pointing to elevators are set to 1. In this example, the router 9

knows that there are elevators at North (E5), East (E10), NE (E3), and SW (E12) directions

since the corresponding elevator position bits from its 8-bit vector are set to 1: [11001001].

Also, the router 9 knows that there are two more elevators with one hop of distance at North

(E5) and East (E10) directions. In this case, the 4-bit vector is set up as follows: [1100].

Additionally, since the elevators also have the 8-bit vectors, the elevator E3 knows that others

elevators exist at SW (E5, E10, or E12) direction.

Virtual Network 1

Y-

X+

Y+

Z-

X-

Z+

Virtual Network 0

Y-

X+

Y+

Z-

X-

Z+

Virtual Network 2

Y-

X+

Y+

Z-

X-

Z+

Fig. 3.3: Virtual Network decomposition for First-Last [15].

3.3.3 First-Last: The baseline algorithm

The First-Last is an adaptive routing algorithm that needs a total of eight virtual channels dis-

tributed along X(X0+, X0−, X1+), Y(Y 0+, Y 0−, Y 1+), and Z(Z0−, Z0+). The numbers

0 and 1 refer to virtual channels 0 and 1, respectively, and the + and - symbols represent the

positive and negative channels, respectively. These channels are partitioned into three virtual

networks as shown in Figure 3.3, and each virtual network has an acyclic configuration to avoid

deadlock. The virtual networks VN0 and VN2 both use the same positive direction distributed

as follows: VN0 uses the X0+ and Y 0+; VN2 uses X1+ and Y 1+. The second virtual network

(VN1) includes the remaining directions, i.e. the negative direction (X0−, Y 0−) as well as the

40 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.3 First-Last Baseline Architecture

Up/Down direction (Z0+, Z0−). In addition to virtual network definitions, the packets must

traverse virtual networks only in increasing order (VN0→ VN1→ VN2).

As shown in Figure 3.3, the First-Last routing algorithm is based on the three virtual network

definition (VN0, VN1, and VN2) and its logic can be described as follows. When the destination

is on the same layer as the source router, the routing algorithm selects the channels of VN0

and/or the channels of VN1 to achieve the packet’s destination. On the other hand, when the

destination is not on the same layer as the source router, first the routing algorithm needs to

search for an elevator using either the channels of VN0 (in case the elevator is at the positive

direction of the source router) or VN1 (in case the elevator is at the negative direction of the

source router). Then, after reaching an elevator, the vertical channels of VN1 are used to go

Up/Down, and finally, if it is necessary, the channels of VN2 are selected to reach the final

packet’s destination. It is worth mentioning that the First-Last uses the Manhattan distance to

select the closest elevator, which means that packets are sent to its destination layer as soon as

possible.

1

1

1

E3

1

1

BA

0 1 2

4 5 7

9 10 11

12 13 14

1

E3

E6

E8

15

1

1

1

VN1

VN2

S

N

W E

VN0

TSV Faulty

Fig. 3.4: An example where the packet cannot reach a healthy elevator using VN1. Here, the
packet must be dropped since there is not another elevator at negative direction from elevator
E8.

The First-Last routing algorithm can support all permanent TSV failure patterns that are

known before system startup because it does not restrict the position and the number of TSV

links. Also, the Elevator Bits of First-Last is configured during the startup phase, which means

that only healthy elevators are selected. However, First-Last is not resilient to runtime failures.

In particular, for a packet that takes the negative direction (VN1 channels), for searching for a

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 41

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

healthy elevator. This scenario is shown in Figure 3.4, where a packet takes VN1 channels in

the direction to elevator E8. But, since E8 is a faulty elevator this packet must be dropped to

avoid a deadlock condition.

In order to solve this problem, we propose a novel fault-tolerant scheme which is described

in detail in Section 3.4.

3.4 FL-RuNS Routing Schemes

In this section, we will present a mechanism for propagating the elevator status and describe how

the Elevator Bits (12-bit vector location) is dynamically reconfigured. Then we will define the

asymmetric 1-flit-dedicated virtual channel and how it can be used as escape channels during

an event of TSV failures. Finally, we will explain in detail the FL-RuNS routing algorithm

procedure as well as the proof of deadlock-freedom.

3.4.1 Propagating Faulty Elevators

Providing global information about the location of faulty elevators may improve the perfor-

mance of the routing algorithm. The elevator failures are propagated as shown in Figure 3.5.

The TSV status notification signals are connected to all adjacent routers of the elevator’s row

and column allowing routers to share the status of the elevator. After detecting a TSV fault,

each elevator transmits a signal to its neighboring routers signalizing that it can not work as an

elevator anymore. For example, as shown in Figure 3.5, let us assume that elevator E5 is faulty.

In this case, the elevator E5 will send its signal status to routers 1 and 9, in the column, and to

routers 4 and 6, in the row, informing its faulty status.

After propagating the TSV status among the four neighboring routers closest to the elevator,

the next step is to disseminate this information to all others routes. Figure 3.5 illustrates a

mechanism to propagate the status of the elevator to all routers. Each router transmits three

cardinal signals to signalize the location of a healthy elevator to its neighbor’s router. As an

example, let us consider the status propagation from routers 6 and 9 to router 10. In this case,

the router 6 sends three signals [N, NE, NW] to the router 10 signalizing the presence of an

elevator at North, NorthEast and/or NorthWest directions. As shown in Figure 3.5, this signal

vector [N, NE, NW] of router 6 was initially [0, 1, 1] when the elevators E5 and E3 were all

healthy. However, since the elevator E5 is faulty, the signal vector [N, NE, NW] of router 6

must be changed to [0, 1, 0]. It means that the elevator at West direction from router 6 is not

working, but there is at least one elevator at East or NorthEast from router 6. It is worth noting

that this process is repeated by the router 6 for all remaining planar ports such as North (through

signals [S, SE, SW]), East (through signals [W, NW, SW]), and West (through signals [E, NE,

SE]).

42 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.4 FL-RuNS Routing Schemes

0

1

0

0

01

1

00

1

0

0

0 1

9

2

74

8

E12 14 15

E5

E3

11

13

0

E5

S

N

W E

10

0

1

0

01

1

01

0

0

0

6 0

[S, SE, SW]

[W, NW, SW] [E, NE, SE]

[N, NE, NW]

10

TSV status notification

8-b
it

vect
orWN E S

4-bit

vector

TSV faulty TSV status notification2D Router 3D RouterElevator Invalid0 0 Elevator Valid1 1

Signal [SE]

router 11

Signal [SE]

router 14

Signal [NE]

router 6

Signal [NE]

router 11

Signal [NW]

router 6

Signal [NW]

router 9

Signal [SW]

router 9

Signal [SW]

router 14

W

SW

N

E

S

SE

NW

NE

Signal [N]

router 6

Signal [E]

router 11

Signal [S]

router 14

Signal [W]

router 9

Fig. 3.5: TSV status propagation through rows and columns with the reconfiguration scheme
for 4-bit and 8-bit vectors (12-bit).

All these signals are connected to the router through a combinational logic, which is used to

update the 8-bit locations of the Elevator Bits. According to Figure 3.5, to set to one the bit [N]

(North) of router 10, we need only the North signal from router 6 directly connected to the bit

[N] of the 8-bit vector. However, to set the bit NW, we need the signal Northwest from router 6

and router 9. If one of them is equal to 1, then the bit NE will be set to 1 too. This process will

be repeated until all the 8-bit vector can be updated.

3.4.2 1-Flit-Dedicated Virtual Channels

A well-known technique to avoid deadlock is the use of virtual channels distributed in acyclic

virtual networks [18]. Furthermore, packets need to follow the virtual networks only in an

ascendant or descendent order [41]. Although those conditions are sufficient to avoid deadlock,

they can significantly increase the number of virtual channels when both deadlock-freedom

and fault-tolerant conditions are taken into account. With this issue in mind, we propose an

asymmetric 1-flit-dedicated virtual channel that can be used as escape channel. That is, the

1-flit-dedicated virtual channel is one 1-flit FIFO buffer which is employed exclusively as an

alternative channel to overpass runtime failures in the vertical links.

Figure 3.6 shows the architecture of the FL-RuNS with one 1-flit FIFO buffer along the

North, East, Up, and Down input ports. Those four asymmetric 1-flit-dedicated virtual channels

were added to the baseline First-Last architecture as shown in red in Figure 3.6. In order to

increase the reliability, we combine and partition those virtual channels into four virtual net-

works as shown in Figure 3.8. The virtual networks VN0 and VN1 are the same as that of the

First-Last. However, the virtual network VN2 includes two 1-flit-dedicated virtual channels

along Z(Z1+, Z1−). Furthermore, the virtual network VN3 contains only the 1-flit-dedicated

virtual channels along X(X1−) and Y(Y 1−). In summary, these four 1-flit-dedicated virtual

channels are used only as escape channels for the packet that does not find a healthy eleva-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 43

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

VC Allocator

SW Allocator

Routing Logic

LO
CAL

PORT

NETW
ORK I

NTERFA
CE

IN North

IN South

IN West

IN East

IN Down

IN UPOUT North

OUT East

OUT South

OUT West

OUT Down

OUT UP

DEDICATED BUFFER

INPUT BUFFER (VC1)

INPUT BUFFER (VC0)

MUX

CROSSBAR

Fig. 3.6: Architecture of FL-RuNS with 1-flit-dedicated virtual channel. The 1-flit-dedicated
virtual channel (1-flit Fifo Buffer) is used as alternative virtual channels after a runtime failures
in vertical connecxion.

tor in the VN1 but needs to take the VN2 then VN3 to search again for a healthy elevator. In

order to avoid deadlock, the packets must traverse virtual networks only in increasing order

(VN0→ VN1→ VN2→ VN3).

The idea here is to provide an asymmetric distribution of the virtual channels to achieve both

fault-tolerance and deadlock-freedom while keeping the hardware cost reasonable. Using 1-flit-

dedicated virtual channels, we can rearrange the router in a way that it is possible to provide full

flexibility for choosing the best place to plant the TSVs as well as low-weight alternative for

tolerating runtime failure in the vertical connection. Even though these 1-flit-dedicated virtual

channels increase hardware overhead of the router, we still present here a better solution than

the one of our previous work [24] where all the flits of a packet must be stored into an escape-

buffer to search for an elevator after a runtime fault. In other words, the escape-buffer must

be as large as the size of the packet, which means that the area overhead will increase with the

size of the packet. However, unlike our previous work, the 1-flit-dedicated virtual channels do

not increase as the size of the packet increases. It means that the area overhead will be fixed in

one 1-Flit FIFO buffer independently of the number of flits into the packet. Also, comparing

the Figure 3.6 and Figure 3.7, it is possible to see that the total number of buffers employed by

44 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.4 FL-RuNS Routing Schemes

INPUT BUFFER (VC0)

MUX

VC Allocator

SW Allocator

Routing Logic

LO
CAL

PORT

NETW
ORK I

NTERFA
CE

IN North

IN South

IN West

IN East

IN Down

IN UPOUT North

OUT East

OUT South

OUT West

OUT Down

OUT UP

INPUT BUFFER (VC1)

CROSSBAR

Fig. 3.7: Elevator-First architecture with distributed buffers. All its buffers are used only as a
mechanism to avoid deadlock.

the FL-RuNS is still lower than Elevator-First. While the Elevator-First needs two completely

symmetric buffers in all planar directions, the FL-RuNS uses only two complete buffers at West

and South, and two 1-flit-dedicated buffer at North and East. In other words, our solution still

uses less area and power than Elevator-First. A detailed hardware comparison will be presented

in Section 3.5.3.

3.4.3 Proposed Routing Algorithm

The FL-RuNS routing algorithm needs the same number of virtual channels as First-Last. Also,

it needs more four 1-Flit-Dedicated Virtual Channels, as shown in Figure 3.8. The pseudo

algorithm is presented in Algorithm 1. As an input, the algorithm takes a bit vector Dest

describing the router destination position, a bit vector Cur describing the current router position,

a 4-bit and 8-bit vector containing the elevators’ directions (elevators bits), and the current

virtual network number v_in. The routing algorithm results are an output port Direction as

well as a new virtual network number v_out if moving to the next virtual network is necessary.

According to Algorithm 1, the logic of the routing algorithm based on the four virtual network

definitions is described as follows::

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 45

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

Virtual Network 1Virtual Network 0 Virtual Network 2 Virtual Network 3

Y-

X0+

Y0+

Z-

X-

Z+

Y0-

X+

Y+

Z0-

X0-

Z0+

Y-

X1+

Y1+

Z1-

X-

Z1+

Y1-

X+

Y+

Z-

X1-

Z+

Fig. 3.8: Decomposition of Virtual Network for FL-RuNS. The 1-Flit-Dedicated virtual chan-
nels are represented in red: Z1+, Z1-, X1-, and Y1-.

3.4.3.0.1 Source and Destination are on the same layer If the destination is on the same

layer as the current router (Algorithm 1 - Lines 27 to 33), routing is performed adaptively

following the positive directions {North, East} then negative directions {South,West}. The

selection between two possible directions is made based on the congestion values (i.e., the free

buffer slot in the neighboring routers).

3.4.3.0.2 Source and Destination are not on the same layer The packet needs to be for-

warded to a healthy elevator in the source layer, transferred to the destination layer, and deliv-

ered from the elevator to the final destination. If the current router is an elevator (Algorithm 1

- Lines 2 to 5), then the packet is forwarded appropriately either to the up or down port. Mov-

ing up and down is possible in both VN1 and VN2, so the VN number must be updated. If the

current router is not an elevator (Algorithm 1 - Lines 6 to 25), the packet is adaptively routed to-

wards the selected elevator, based on the 4 and 8-bit vectors, following the positive and negative

directions.

Figure 3.9 illustrates two examples of FL-RuNS routing operation. In the first example, the

source node S1 delivers packets to the destination at node D1 using the fault-free elevator E1.

First, the routing algorithm checks the 4-bit elevator position to verify if there is a neighboring

elevator with one hop distance. Since there is not a one-hop elevator, the routing algorithm then

checks the 8-bit elevator position and sends the packet toward North (router H1) since there

is an elevator at Northeast E1 and another one at North (elevator E2). The channels of the

VN0 are used to forward the packet toward router H1. When the packet arrives at router H1,

a decision needs to be made between continuing to North (elevator E2) or changing to East

(elevator E1). This decision is made when the routing algorithm checks the 4-bit vectors and

verifies that an elevator is available at one hop East. Then, the packet is sent to elevator E1

using the same VN0. In the elevator E1, the channels of VN1 are applied to deliver the packet to

its destination layer (UP). Finally, the packet is delivered to its router destination by using the

channels of VN1, toward H2, and VN2, toward D1.

46 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.4 FL-RuNS Routing Schemes

Algorithme 1 FL-RuNS Routing Algorithm Procedure

Require:

Dest: Destination router position bits
Cur: Current router position bits
Elev: Elevator location bits (12-bit)
v_in: Current virtual network

Ensure:

Direction: Output port
v_out : Output virtual network

1: if Cur.Z 6= Dest.Z then

2: if Cur.isElevator then

3: Direction = (Cur.Z < Dest.Z ? Up : Down)
4: v_out← V ⊲ To go Up/Dn must be VN1 or VN2

5: else

6: v_out← v_in
7: if v_out == 0 or v_out == 2 then

8: ⊲ Need to search for elevator in VN0 or VN2

9: if Elev.NE || .NW || .SE || .N || .E then

10: Based on the 4bits and 8bits vectors.
11: Direction = {North, East}
12: end if

13: else

14: v_out← 1 ⊲ Search for elevator in VN1

15: if Elev.SW || .NW || .SE || .W || .S then

16: Based on the 4bits and 8bits vectors.
17: Direction = {South,West}
18: else

19: v_out← 2 ⊲ Search for elevators in VN2.
20: if Elev.NE || .N || .E then

21: Direction = {North, East}
22: end if

23: end if

24: end if

25: end if

26: else

27: if Dest.X < Cur.X || Dest.Y < Cur.Y) then

28: ⊲ Taking positive directions using VN0 or VN2

29: Direction = Adaptive_North_East(Dest)
30: else

31: ⊲ Taking negative directions using VN1 or VN3

32: Direction = Adaptive_South_West(Dest)
33: end if

34: end if

In the second example, the source node S2 targets destination at node D2 through elevator

E3. First, the routing algorithm checks the Elevator Bits (4-bit and 8-bit vectors location) and

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 47

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

W

S

N

E

U

D

Virtual Network 0 Virtual Network 1 Virtual Network 2

S1

D2D1

S2

H3

E3

E3

E4

E4E1

E1

E2

E2

H1

H2

H4

H5

Fig. 3.9: Example of FL-RuNS in a scenario with and without TSV failure

sends the packet to North toward H3. When the packet arrives at the router H3, the routing

algorithm checks the Elevator Bits and sends the packet at East toward E3. However, since the

packet arrives at elevator E3 before the router H3 can be notified about one fault in E3 through

the TSV status propagation, the solution here is rerouting this packet to another elevator. The

mechanism adopted in this Chapter to recalculate the routing computation is based on the one

proposed by [25]. So, after performing a new routing computation, the elevator E3 searches for

another one using the 8-bit vector and sends the packet toward the elevator E4 using negative

direction (VN1) until reaching the router H5. Finally, the packet is changed to the positive

direction (VN2) in the router H5 to arrive at its final destination D2.

Figure 3.10 illustrates the worst failure example that FL-RuNS can tolerate using the 1-flit-

dedicated virtual channels. In this example, the source router S1 wants to send a packet to

a router D1. The packet is routed to North and arrives to the router H1. Then the packet is

routed to West toward elevator E1 after its virtual channel is changed to VN1. However, if faults

occur in the elevator E1 when the packet arrives, the routing algorithm must search for another

elevator using the current VN1. Since in this example there are no more elevators at West or

South directions relative to the position of elevator E1, the routing algorithm then changes the

virtual network from VN1 to VN2 and searches for an elevator at the positive direction using

VN2. In this case, the packet is routed to North toward elevator E2. However, to go Up/Down,

the packet has to take the 1-flit-dedicated VC available in the VN2. After the packet arrives at

its destination layer, it then takes the East (positive direction) using VN2 toward the router H4.

48 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.4 FL-RuNS Routing Schemes

Finally, the packet is routed to South (negative direction) toward its destination router D1 using

again the 1-flit-dedicated VC available into VN3.

Virtual Network 0 Virtual Network 1 Virtual Network 2

S1

E3

E3

E1

W

S

N

E

E1

D1

Virtual Network 2(Up/Down) Virtual Network 3

E2

E2

U

D

H1

H2

H3 H4

H5

Fig. 3.10: Example of FL-RuNS using the 1-flit-dedicated virtual channel to rerouting packets
toward a healthy elevator.

Figure 3.10 illustrates the worst failure example that FL-RuNS can tolerate using the 1-flit-

dedicated virtual channels. In this example, the source router S1 wants to send a packet to

a router D1. The packet is routed to North and arrives to the router H1. Then the packet is

routed to West toward elevator E1 after its virtual channel is changed to VN1. However, if faults

occur in the elevator E1 when the packet arrives, the routing algorithm must search for another

elevator using the current VN1. Since in this example there are no more elevators at West or

South directions relative to the position of elevator E1, the routing algorithm then changes the

virtual network from VN1 to VN2 and searches for an elevator at the positive direction using

VN2. In this case, the packet is routed to North toward elevator E2. However, to go Up/Down,

the packet has to take the 1-flit-dedicated VC available in the VN2. After the packet arrives at

its destination layer, it then takes the East (positive direction) using VN2 toward the router H4.

Finally, the packet is routed to South (negative direction) toward its destination router D1 using

again the 1-flit-dedicated VC available into VN3.

FL-RuNS can guarantee 100% of packets delivery under the most known failures scenarios

in the 3D-NoC architecture, such as the examples illustrated above. However, there are scenar-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 49

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

Virtual Network 0 Virtual Network 1 Virtual Network 2

S1

E3

E3

W

S

N

E

D1

Virtual Network 2(Up/Down) Virtual Network 3

E2

E2

U

D
H1

H2

H3

H9

H5

H7 H8H6

H10

H4

E1

E1

Fig. 3.11: Example of FL-RuNS in a fault scenario which cannot guarantee packet delivery.

ios with multiple and simultaneous failures in both 2D-routers and 3D-routers (elevators) which

FL-RuNS cannot support. Let us imagine an example shown in Figure 3.11 where a packet ini-

tially searches for a healthy elevator E1 in a positive direction using VNO. This packet cannot

find a healthy elevator using VNO because there is a failure in the elevator E1 and in the output

port North of the 2D-router H3 toward the elevator E3. So, the packet must change its direc-

tion and search for elevatorE2 in the negative direction using the virtual channel VN1 and the

2D-routers H4 and H5. But again when this packet arrives at elevator E2 a failure happens and

it cannot go to its destination layer. In this case, this packet must change its direction to search

for another healthy elevator using the virtual channel VN2 (positive direction). Assuming that

this packet found the healthy elevator E3 and arrived at its destination layer through the 1-flit-

dedicated virtual channel Up/Down, it then must go toward the Southwest direction to reach its

final destination D1. So, the packet must change its virtual network to VN3 in order to go to

Southwest direction. However, if there is a failure in a 2D-router on the Southwest path, this

packet may not bypass this failure node and must be dropped. That was exactly what happened

in the example of Figure 3.11 due to a failure in the output port South of the 2D-router H10. So,

under this fault scenario, the packet must be dropped to avoid deadlock or livelock.

A fault scenario like that one shown in Figure 3.11 may not occur due to the high num-

ber of multiples and simultaneous failures (two elevators and two 2D-routes), but it should be

50 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.5 Simulation Results and Discussion

considered. Although FL-RuNS can tolerate some fault scenarios in 2D-routers, it was initially

designed to tolerate faults on vertical connections, since vertical connections are more sensitive

to permanent and transient faults than horizontal ones. As demonstrated in Section 3.5, FL-

RuNS shows better adaptability and reliability than the state-of-the-art 3D routing algorithms

since it can dynamically select positive as well as negative directions in the planar directions.

Algorithms such as Elevator-First [39] and CoBRA [102], for example, take the "X" direction

before the "Y" direction to avoid deadlock. This lack of adaptability in the "X" directions can

limit the algorithms’ reliability, which makes it difficult for them to support failures simultane-

ously in the vertical and horizontal connections.

3.4.4 Deadlock-freedom

A cyclic dependency occurs when positive and negative directions have to be taken along at least

two dimensions. Consequently, in order to avoid deadlock, a routing algorithm must divide its

channels into disjoint partitions and the transitions between partitions must be allowed only in a

consecutive order [41]. In this case, the proposed fault-tolerant routing scheme is deadlock-free

because the packets traverse virtual networks only in increasing order (VN0→ VN1→ VN2→ VN3).

Also, none of the defined virtual networks spans two full dimensions.

Furthermore, a deadlock is a situation in which packets are waiting for each other to release

the reserved channels and are unable to make progress. In particular, if a waiting activity never

finishes, it implies that the deadlock situation will persist forever. So, in order to prevent dead-

lock, the 1-Flit-dedicated virtual channels are used only in case of TSVs failures. It means that

packets in transit to a faulty elevator are not blocking reserved resources since those packets

can use the 1-flit-dedicated virtual channel as an escape path to search for a healthy elevator at

positive direction.

3.5 Simulation Results and Discussion

We implemented and evaluated our proposed routing algorithm using SystemVerilog based

cycle-accurate 3D mesh NoC simulator, which was created by extending the open source 2D-

NoC Netmaker library [77] by adding support for a 3D network. This library was used to imple-

ment the FL-RuNS described in this Chapter, the Elevator-First described in [39], the First-Last

presented in [15], the CoBRA presented in [102], and also our previous version named RuNS

described in [24]. Two configurations of 3D-mesh NoC were considered for the experiments.

In the first configuration, we start the experiments with a 4x4x4 mesh to analyze its behaviour

under a density of vertical link of 25% (i.e., four elevators). In the second configuration, we

adopted a configuration of mesh with 256 Nodes distributed in a 8x8x4 mesh and a vertical link

density of 12.5% (i.e. eight elevator). The idea here is the analysis of the performance of our

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 51

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

method using a large 3D-mesh network. All the routers have 4-flit FIFO, a packet size of 5 flits,

and perform virtual channel allocator followed by switch allocator.

Simulations were done to evaluate the reliability of FL-RuNS taking into account permanent

and transient faults in the elevators. We have adopted transient faults as faults that temporarily

disable the functionality of the 3D-router during its runtime operation. This means that transient

faults convert a 3D-router into a 2D-router for a random period of time during the runtime

phases. On the other hand, permanent faults are failures that disable the router at the begining of

startup phase. In other words, a 3D-NoC starts with fewer vertical links than the ones expected

during its manufacturing phase. So, a faulty TSV was characterized by simply disabling the

function of the Elevator and by propagating the TSVs statuses, as illustrated in Figure 3.5.

As described in the Section 3.4.1, the propagation of TSVs status is necessary to inform the

neighboring routers about failures in the elevators. In summary, FL-RuNS can fully configure

the NoC by just changing its routing algorithm decision, which can be done online for transient

faults, or even off-line for permanent faults.

3.5.1 Performance and reliability analysis under a 4x4x4 mesh

In order to evaluate the average latency and the reliability, we consider a 4x4x4 mesh 3D-

NoC with four Elevators (E3, E5, E10, and E12) as shown in Figure 3.2. Additionally, three

different synthetic traffic patterns were used: Uniform random, Bit-Complement, and Shuffle.

First, we begin evaluating the average latency for each traffic pattern running 100000 cycles

simulation without fault injection. Figure 3.12 shows the latency comparison for Elevator-First,

CoBRA, First-Last, RuNS, and FL-RuNS routing algorithms when all TSVs are healthy. In all

cases, Elevator-First and First-Last provide slightly better performance than FL-RuNS. This can

be attributed to both Elevator-First and First-Last selecting the closest TSVs during the man-

ufacturing process and off-line configuration respectively. Also, FL-RuNS starts searching for

a healthy elevator at positive direction before searching for a healthy one at negative direction.

Additionally, Elevator-First uses two more virtual channels than FL-RuNS which increases its

general performance. On the other hand, FL-RuNS shows better performance results than Co-

BRA because it can adaptively take the less congested path while CoBRA has to take the East

direction before moving toward the West, which increases congestion in X dimension. Also,

FL-RuNS shows better performance results than RuNS due to the additional virtual network,

the better mechanism for propagating TSV status, more adaptivity to the routing algorithm, and

the additional 4-bits in the Elevator Bits.

Second, we evaluate the average latency with single and double faults, as shown in Fig-

ure 3.13 and 3.14 respectively. As expected, the performance of FL-RuNS is slightly reduced in

the presence of faults. This degradation in performance is noticed, firstly because some pack-

ets must take the 1-flit-dedicated virtual channel to search for a healthy elevator, and secondly

because the status of the elevator fault, as well as the reconfiguration of the entire router, take a

52 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.5 Simulation Results and Discussion

few clock cycles to be propagated.

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

0

50

100

150

200

250

0.01 0.022 0.028 0.034 0.04 0.046

UNIFORM, 4 ELEVATORS

INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

Elevator-First First-LastCoBRA RuNS FL-RuNS

0

50

100

150

200

250

0.01 0.02 0.024 0.028 0.032

BIT-COMPLEMENT, 4 ELEVATORS

0

50

100

150

200

250

0.01 0.024 0.032 0.042 0.05 0.058

SHUFFLE, 4 ELEVATOR

Fig. 3.12: Average packet latency for an 4x4x4 NoC without fault injection.

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

UNIFORM, 4 ELEVATORS

INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)
A

V
G

.
LA

T
E

N
C

Y
 (

C
Y

C
LE

S
)

Elevator-First First-LastCoBRA RuNS FL-RuNS

BIT-COMPLEMENT, 4 ELEVATORS SHUFFLE, 4 ELEVATOR

0

50

100

150

200

250

0.01 0.02 0.024 0.028 0.032

0

50

100

150

200

250

0.01 0.012 0.014 0.015 0.016 0.02

0

50

100

150

200

250

0.01 0.02 0.024 0.028 0.032 0.038 0.042

Fig. 3.13: Average packet latency for an 4x4x4 NoC with single fault injection.

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

UNIFORM, 4 ELEVATORS

INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

Elevator-First First-LastCoBRA RuNS FL-RuNS

BIT-COMPLEMENT, 4 ELEVATORS SHUFFLE, 4 ELEVATOR

0

50

100

150

200

250

0.01 0.015 0.02 0.022 0.024

0

50

100

150

200

250

0.01 0.012 0.014 0.016

0

50

100

150

200

250

0.01 0.02 0.024 0.028 0.032

Fig. 3.14: Average packet latency for an 4x4x4 NoC with double fault injection.

Finally, for the reliability comparison, each simulation injects a fixed number of flits (10000/core)

to enable comparisons for successful arrival rates. In other words, the measure of the reliability

defined in this Chapter is the percentage of flits successfully delivered to the target destination.

Figures 3.15 and 3.16 show the normalized reliability comparison for the Elevator-First, Co-

BRA, First-Last, RuNS, and FL-RuNS under the effect of single and double faults respectively.

We can observe that for single faults the reliability of CoBRA is almost the same as FL-RuNS.

However, CoBRA lost packets when failures occurred in the eastmost elevator E3 (see Fig-

ure 3.2). This occurred because some packets were dropped in the reconfiguration phase until

the CoBRA returns to its stable condition. The analysis of double faults shows that FL-RuNS

performs better than CoBRA since FL-RuNS can send all its packets to a healthy elevator, while

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 53

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

CoBRA needs at least one elevator placed in the eastmost or westmost column in order to avoid

dropping packets. FL-RuNS and RuNS show the same reliability for single and double faults

since both share a similar escape buffer idea, which was inspired by the virtual source concept.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uniforme Bit-Complement Shuffle

R
e
li
a
b
il
it
y

Single fault for 4 Elevator

Elevator-First CoBRA First-Last FL-RuNS

Fig. 3.15: Reliability under single fault for 4 TSVs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uniforme Bit-Complement Shuffle

R
e
li
a
b
il
it
y

Double faults for 4 Elevator

Elevator-First CoBRA First-Last FL-RuNS

Fig. 3.16: Reliability under double faults for 4 TSVs

Comparing both First-Last and Elevator-First with FL-RuNS, Figures 3.15 and 3.16 demon-

strate that FL-RuNS shows better reliability than either of those algorithms. Although First-Last

shows slight better latency performance than FL-RuNS, mainly because First-Last uses a mech-

anism to select the closest elevator based on Manhattan distance, the reliability performance of

First-Last is lower than FL-RuNS. So First-Last shows reliability up to 20% less than FL-RuNS.

The Elevator-First shows the worst scenario for faults because it cannot adapt itself to faults at

runtime. Furthermore, Elevator-First does not have any off-line mechanism to reconfigure the

54 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.5 Simulation Results and Discussion

elevator selection after the manufacturing process. Here again, the two additional virtual chan-

nels into the Elevator-First boost its latency performance in comparison to FL-RuNS. However,

Elevator-First shows reliability up to 35% less than FL-RuNS.

3.5.2 Performance and reliability analysis under a 8x8x4 mesh

In order to analyze FL-RuNS under a large 3D-NoC, we have performed two simulations (with

and without vertical failures) using an 8x8x4 mesh architecture. Also, we have adopted a very

low density of vertical connection to investigate the performance of the FL-RuNS under a con-

gestion situation. To do it, only eight elevators are placed in the network, which means a density

of 12.5%. The performance metric we consider is the average packet latency, which is the aver-

age elapsed time between the queuing of a packet in the network interface and the reception of

its tail flit at the destination network interface. Here again, the synthetic traffic patterns used in

those two simulations include uniform, bit-complement, and shuffle. The average latencies are

plotted in Figures 3.17 and 3.18.

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE) INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

Elevator-First First-LastCoBRA RuNS FL-RuNS

0

50

100

150

200

250

0.006 0.01 0.014 0.018 0.022

UNIFORM, 8 ELEVATORS

0

50

100

150

200

250

0.001 0.003 0.005 0.008 0.012 0.016

0

50

100

150

200

250

0.006 0.01 0.014 0.018 0.022 0.028

SHUFFLE, 8 ELEVATORBIT-COMPLEMENT, 8 ELEVATORS

Fig. 3.17: Average packet latency for an 8x8x4 NoC without fault injection.

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE) INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

INJECTION RATE (FLIT/NODE/CYCLE)

A
V

G
.

LA
T

E
N

C
Y

 (
C

Y
C

LE
S

)

Elevator-First First-LastCoBRA RuNS FL-RuNS

UNIFORM, 8 ELEVATORS SHUFFLE, 8 ELEVATORBIT-COMPLEMENT, 8 ELEVATORS

0

50

100

150

200

250

0.006 0.008 0.01 0.012 0.014 0.016

0

50

100

150

200

250

0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0

50

100

150

200

250

0.002 0.004 0.005 0.006 0.008 0.01 0.012

Fig. 3.18: Average packet latency for an 8x8x4 NoC with double fault injection.

Figure 3.17 shows the performance results for a simulation without fault injection. It shows

that if the number of TSV increases, the performance of the FL-RuNS increases proportionally.

Like in the 4x4x4 simulations, FL-RuNS shows better performance than CoBRA and RuNS for

all three synthetic traffics as well as a slight slower performance when compared with Elevator-

First and First-Last. However, in shuffle traffic, where many nodes communicate within the

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 55

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

same layer, we see that the FL-RuNS maintains a performance close to First-Last and Elevator-

First.

Figure 3.18 shows the performance results for a simulation with double fault injection. We

can see that most of the results are similar to those shown in Figure 3.17. However, because of

the low density of vertical connections and the high simultaneous failures, the routing algorithm

needs to use more the 1-flit-dedicated virtual channel to guarantee that packets can reach their

destination instead of just dropping them. It can explain the degradation in the performance

of FL-RuNS with double faults when compared with the performance of no faults simulation

shown in Figure 3.17. Despite the performance degradation, both FL-RuNS and RuNS guaran-

tee that all packets were delivered during the simulation. On the other hand, CoBRA dropped

only a few packets during its reconfiguration phase. Because Elevator-First and First-Last do

not have a mechanism to reconfigure themselves after an elevator failure event, they dropped

packets during the entire runtime phase to avoid deadlock.

3.5.3 Hardware synthesis analysis

To evaluate the area and power consumption, we synthesized the Elevator-First, CoBRA, First-

Last, RuNS, and FL-RuNS using Synopsys Design Compiler. The designs were setup to work

with an operating frequency of 1GHz, a power supply of 1V, and a commercial STMicroelec-

tronics FD-SOI 28nm library. The resulting area and power estimates for each router are

summarized in Tables 3.1 and 3.2. The three types of routers previously described in sub-

section 3.3.1 were considered: 5-port 2D routers, 6-port 3D routers with one vertical connec-

tion, and 7-port 3D routers with both Up and Down vertical connections. It is important to note

that each router was synthesized with all router’s logics such as Input port, Virtual Channel

control, Switch Allocator, Crossbar, and the routing algorithm. Also, all routers are configured

with a flit size of 64 bits, a FIFO buffer with capacity for five flits, and a number of virtual chan-

nels inherent in each routing algorithm. The routing algorithms were implemented following

the original specification, which can be found in their respective references. And finally, the

Synopsys Design Compiler was configured to obtain the better results for area.

Tables 3.1 and 3.2 show that the area and power for CoBRA and First-Last are nearly the

Table 3.1: Area synthesis results

Type Area (µm2)

(# Ports) Elevator-First CoBRA First-Last RuNS FL-RuNS

5-Port 16302 14629 14654 17667 15308
6-Port 20374 18649 18584 21713 19561
7-Port 25107 23428 23366 26568 24315

56 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

3.6 Conclusion

Table 3.2: Power synthesis results

Type Power (mW)

(# Ports) Elevator-First CoBRA First-Last RuNS FL-RuNS

5-Port 13.85 12.04 12.18 15.11 13.26
6-Port 18.82 14.90 15.07 18.06 16.63
7-Port 20.15 18.29 18.51 21.61 20.04

same for 5, 6, and 7 ports configuration. However, concerning the worst case in terms of area

and power overhead, FL-RuNS shows approximately 5.2% more area and 10.3% more power

than both CoBRA and First-Last. On the other hand, FL-RuNS shows approximately up to

6.1% and 11.6% less area and power than Elevator-First, respectively. Also, FL-RuNS shows a

reduction of approximately 10% in area and 9% in power when compared with RuNS.

The increase in area and power can be mainly attributed to the fact that FL-RuNS needs four

1-flit-dedicated virtual channels distributed at Z1+ (Up), Z1- (Down), X1+ (West), and Y1-

(South) directions. Also, FL-RunS uses a fault propagation scheme and a rerouting mechanism

to recalculate and select new paths after faults. It is worth mentioning that First-Last, CoBRA,

RuNS, and FL-RuNS use the same total number of virtual channels, which means that the

differences of area and power are provided mainly by the routing algorithm and the fault-tolerant

techniques adopted by FL-RuNS. On the other hand, to avoid deadlock, Elevator-First needs two

more virtual channels than the others algorithms which can justify the lower area and power

overhead between FL-RuNS and Elevator-First.

3.6 Conclusion

In this Chapter, we have presented FL-RuNS, a fault-tolerant routing scheme for partially con-

nected 3D-NoC. The main contribution of FL-RuNS is to provide a scheme able to tolerate

faults in the TSV during the manufacturing and runtime phases. Also, we have demonstrated

that using an asymmetric topology configuration for virtual channels and virtual network, FL-

RuNS can increase its reliability while maintaining deadlock-freedom. Our simulations show

that FL-RuNS is slightly inferior to the Elevator-first and First-Last algorithm in terms of la-

tency. On the other hand, FL-RuNS is significantly more resilient to runtime failures in the

vertical connections than both Elevator-first and First-Last. The simulation results indicate that

FL-RuNS guarantees 100% packet delivery under extreme scenarios for runtime and permanent

vertical link failures. Additionally, FL-RuNS can be entirely reconfigured and does not impose

any restriction on the position of the TSVs. Those characteristics give designers the flexibility

to choose the best location for the elevator that can increase the performance of the target appli-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 57

3. FL-RuNS: A High Performance and Runtime Fault-Tolerant Routing Scheme

cation. Although we have implemented our fault-tolerant scheme over the baseline First-Last

routing algorithm, this same scheme can be applied without much effort to another routing algo-

rithm such as Elevator-First. However, the cost to adapt the Elevator-First routing algorithm and

implement both the asymmetric-dedicated escape virtual channels as well as the reconfiguration

mechanism can significantly increase the area and power overhead. The hardware complexity

has demonstrated that FL-RuNS shows a small overhead in terms of area cost (5.2%) and power

consumption (10.3%) when compared with the First-Last. However, this overhead is acceptable

because FL-RuNS is still functional at high fault rates while state-of-the-art partially-vertically-

connected 3D-NoC fail to deliver packets.

58 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

Part III

TOOLS FOR FAULT INJECTION IN

HDL DESIGN

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 59

Chapter 4

NETFI-2: A Framework to Fault Injection

in HDL-Based Design

4.1 Introduction

Over the last years, the semiconductor industry has been particularly interested in the effects

of radiation and the mitigation strategies on integrated circuits such as Application Specific

Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) and embedded systems

in general [9]. The rationale behind this motivation lies not only in the use of these systems

in harsh radiation environments [37] but also in the increasing degree of integration of devices

embedded in the same chip. Recent studies have shown that the smaller the feature sizes, the

greater the sensitivity to radiation-induced errors [61]. As a consequence, modern embedded

systems may be susceptible to low-energy particles including those observed within the Earth’s

atmosphere even at ground level.

The impact of energetic particles on integrated circuits can cause alterations in the behavior

of microelectronic components. These errors are known as Single Event Effects (SEEs) and

can be of different types. Among them, those that result in the change of a bit of information

in a register or memory cell are called Single Event Upsets (SEUs), while the transient pulses

that modify the combinatorial logic are known as Single Event Transients (SETs). The greater

the scale of integration, the higher probability of occurrences of transient faults, which can be

a challenge to traditional fault tolerant techniques. In this context there is an increasing need to

estimate the sensitivity to SEE of modern integrated circuits.

In order to study the effects of SEUs and SETs on digital circuits, tests are usually carried

out under radiation beams to analyze the behavior of the device under a large particle flow [31].

However, these campaigns are very costly, they are based on the physical implementation of the

Circuit Under Test (CUT) and require considerable technical and programmatic effort [117].

Consequently, simulation and emulation methodologies are increasingly popular alternatives to

evaluate and predict the behavior of these circuits before manufacturing. In particular, NETlist

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 61

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

Fault Injector (NETFI) was proposed in [73] and extended in [74] as a method to inject faults at

the Register-Transfer Level (RTL). From an user perspective, Hardware Description Language

(HDL) can be conveniently provided as input while left unchanged during the fault-injection

process. In general, NETFI results are particularly attractive since it combines a good controlla-

bility and observability of the experiment with the ability to inject faults in a single clock cycle.

Nonetheless, this methodology has been criticized for:

a) The complexity and rigidity associated with the controller responsible for the execution

of the fault injection in the FPGA [105].

b) The lack of accuracy on the SET estimation when considering implementations for ASICs

based on simpler gates than those use in the FPGA [73].

In this thesis, NETFI-2 is introduced as an evolution of the NETFI methodology that tackles

the aforementioned weaknesses. Unlike its previous version, NETFI-2 allows controlling the

fault-injection campaign from the same FPGA where the CUT is instantiated, thus minimizing

the amount of hardware required. NETFI-2 is based on a controller implemented on an embed-

ded MicroBlaze processor, which allows a straightforward design of extensive fault-injection

campaigns while facilitating the identification of sensible circuit elements. Furthermore, to bet-

ter appraise the final CUT behavior, the SET injection can be tailored by specifying the size of

the Look-Up Tables (LUTs) of the target FPGA that will be used for the implementation of the

combinational part of the CUT. This is of particular interest for evaluating designs that will be

implemented in ASICs with smaller gate sizes. In order to demonstrate these advantages and to

validate the methodology, we have used the circuits of a Bayesian Machine [47] and a Suport

Vector Machine [116] as case studies. Also, a radiation test in a Suport Vector Machine was

performed to validate the correlation between the fault injection campaign using FPGAs and the

real radiation test.

4.2 State-of-the-art

Emulation-based and simulation-based fault injection are two widely adopted methods to test

and analyze the effects of radiation in electronic circuits. In simulation-based fault injection,

the CUT is simulated by altering its logical values during the fault-injection campaign. High

observability and controllability of all the modeled components are among the most relevant

advantages of this technique [8]. However, simulation-based fault injection approaches require

significant computational effort since they just simulate the execution of the circuit at behavioral

and structural level [66, 92, 107, 115]. As a result, their capability for analyzing a large number

of faults on circuits with millions of gates is very limited. Thus, emulation-based fault injection

schemes have emerged as an alternative to accelerate the fault injection campaigns experiments.

62 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.2 State-of-the-art

By exploiting reconfigurable devices (i.e., FPGAs), emulation strategies also consider time con-

straints providing a better appraisal of the final circuit behavior. While there are a large number

of emulation-based fault injection methods in the literature, only those that mimic radiation ef-

fects through SRAM-based FPGAs are addressed in this thesis. So, they have been previously

classified in [94] as Hardware-based and software-based fault injection methodology.

4.2.1 Hardware-based Fault Emulation

This technique is based on the use of an external hardware like a Joint Test Action Group

(JTAG) controller, or through dynamic reconfiguration. Also known as reconfiguration-based

approaches, they consist in a complete or partial modification of the configuration memory of

the FPGA in order to inject faults in the CUT. Indeed, hardware-based emulations use reconfig-

uration process instead of adding extra logic in the CUT. Thus, they incur in no area overhead at

the expense of a run-time overhead issued from the said reconfiguration process. For example,

the tool in [5] proposes a SEU emulation platform that targets the configuration memory of an

FPGA under test via partial reconfiguration. The input stimuli and output vector from a golden

system are imported by the test-bench and then simulated in VHDL/Verilog to be finally com-

pared with the FPGA’s results. In [76], a fault-injection tool based on Tool Command Language

(TCL) scripts accesses different resources of Altera’s FPGA via a JTAG interface. In [36], a dif-

ferent types of faults such as stuck-at, bit-flip, pulse, indetermination, stuck-open, delay, short,

open-line, and bridging are addressed. All these faults are injected by partial reconfiguration

capabilities provided in Xilinx FPGAs. In [55], faults are injected using a technique known as

read-modify-write applied to the configuration bits via partial reconfiguration. Recently, the au-

thors in [114] proposed to use N-modular redundancy (NMR) for masking the effects of SEUs

on FPGAs. Additionally, a soft-core PicoBlaze processor and a Xilinx ICAP interface are used

to control the fault injection campaign, which is also performed through partial reconfiguration

techniques.

4.2.2 Software-based Fault Emulation

Instead of using complex reconfiguration features which are not always available, other methods

have proposed to insert faults through modification of the RTL model of the circuit. In general,

they add a small fault injector circuit known as saboteur in sensitive parts of the CUT. The

key idea behind saboteurs is to avoid time penalty [44, 48, 70, 73, 74]. Therefore, in software-

based techniques, faults are directly injected to the RTL design, which significantly simplifies

the injection process, allows the designer to specify which part of the CUT to test, and keeps

the HDL of the CUT unchanged. For example, the work in [109] addresses permanent and

transient fault injection in the flip-flops and the logic gates of the CUT. Fault injection is done

by applying extra logic gates and wires to the original design description. The authors of [80]

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 63

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

implement saboteurs to inject SEUs, MBUs and stuck-at faults at the RTL level. Two versions

of the CUT are implemented inside the FPGA to compare the results. In [23], a mask-chain and

a combinational circuitry are added in the netlist description to inject faults in the flip-flops (a

netlist is a list of interconnected blocks implementing the circuit logic which can be expressed

in Verilog or VHDL). Similar software-based methodologies can be found in [10, 63, 67, 70].

Figure 4.1 illustrates and summarizes the classification provided in this section.

Fig. 4.1: Fault injection methods classification

Although there are a large number of methodologies in the literature that study the injection

of SEUs or SETs at RTL level, only a few of them consider the effects of SEUs and SETs at

the same time. One of them is NETFI [73, 74]. In NETFI, a modified netlist is integrated into

a hardware-based platform such as THESIC+ or similar [48] to control the injection process

during the experiment execution. However, the original NETFI procedure has been criticized

for the large hardware overhead and the complexity of the required experiment controllers [105].

Also, the resulting accuracy is limited as SET injection depends on how logic gates are grouped

in arbitrarily large FPGA combinatorial blocks [73]. NETFI-2, designed to overcome these two

limitations, is described in the following section.

4.3 NETFI-2

NETFI-2 aims at taking the best of existing emulation solutions (including NETFI) to gather

them all in a single and efficient methodology for both SEUs and SETs. In general, it can be

cataloged as a software-based emulator that runs on a single FPGA [110]. As with the original

NETFI, the injections of SEUs and SETs in NETFI-2 can be accomplished by non-invasive

signals in the RTL design. This means that the functionality of the device (typically described in

HDL) is not modified; thus resulting transparent for the user. In particular, NETFI-2 simplifies

the campaign execution in terms of required hardware while facilitating the design of complex

64 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.3 NETFI-2

Fig. 4.2: NETFI-2 methodology

fault-injection campaigns. The latter is achieved by implementing the campaign controller in a

soft-core processor sitting next to the CUT in the target FPGA. Furthermore, NETFI-2 allows to

fine-tune the granularity of the combinatorial part of the design under test (which is provided in

HDL), in order to more accurately mimic the underlying logic of the circuit and therefore, yield

more accurate results when it comes to injecting SETs. More details about this are provided in

the subsections below.

Also, by using NETFI-2, it is possible to determine which specific component is respon-

sible for each particular error observed in the output. This unique feature allows to perform

improvements in the circuit design to increase its robustness.

4.3.1 Methodology

Figure 4.2 illustrates the work-flow proposed for NETFI-2. Although similar to the one pro-

posed for NETFI, several modifications discussed in this section make NETFI-2 a more flexible

and accurate methodology.

Initially, the HDL description of the CUT is used to obtain a first synthesis in Step 1 . It

should be noted that, unlike other fault-injection methods, this first step does not require any

modification in the original design. In this step, the synthesis of the CUT is targeted for a spe-

cific FPGA (an Xilinx Artix-7 in our proposed architecture, later detailed in subsection 4.3.2).

Although different tools can be used to accomplish this step, throughout this Chapter we con-

sider Synplify Premier from Synopsys as a software for FPGA synthesis because it allows to

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 65

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

export a netlist, which is necessary in further steps.

In step 2 , a decision must be made regarding the underlying combinational blocks utilized

to implement the CUT in the FPGA where the experiment will take place. Indeed, the size of

the FPGA LUTs used for implementing the combinational logic of the CUT has a direct impact

on the effect of the SETs on it (unlike SEUs, which are provoked in flip-flops components).

Although LUTs with different sizes can be used, this work studies two possible cases: 2 a)

implementations based on a mixture of default LUTs sizes chosen by the synthesis tool (for the

Artix-7, Synplify uses LUTs with 4, 5 and 6 inputs, also known as LUT4, LUT5 and LUT6

respectively); and 2 b) implementations based only on LUTs with 2 inputs (LUT2). This step

can either be performed by manual scripting over the obtained netlist or integrated with modifier

tool, further described below. As discussed in subsection 4.3.3, limiting the synthesis tool to

use only LUT2s result in a more granular approach for the SET fault-injection campaign.

In Step 3 , the netlist (either comprised by LUT2s or a combination of other types of

LUTs) is used as input for the MODify NETlist (MODNET) tool. The output of MODNET

is a modified (but functionally equivalent) netlist with a large number of extra input signals

used to access all memory cells and logic blocks of the design to inject faults in the CUT [73].

The resulting synthesis of the modified netlist includes some additional combinational circuitry

to the design, but the sequential circuitry is left unchanged. Details on both SEU and SET

emulation are detailed below.

• SEU Emulation: The emulation of SEUs in a digital circuit requires to add some instru-

mentation hardware around the flip-flops of the design in order to perturb their content

at any given moment (decided by the campaign controller). To this end, a functionally

equivalent structural design of the CUT is obtained (i.e., in terms of Xilinx primitives)

and the hardware inserted around the flip-flops of said CUT will depend on if the flip-flop

features enable signal or not (Figure 4.3). Thus, flip-flops with enable signal are always

left in sleep mode unless its enable signal is activated. In this case, an injection (inj)

signal combined with some additional logic (a XOR-gate and a multiplexer) are used to

inject faults. Flip-flops without enable signal are always in active mode. In this case, an

inj signal is used to select which input, with or without fault, should be registered by the

flip-flop in the next clock cycle.

• SET Emulation: In the case of SETs, MODNET modifies the LUTs and all the logic

gates of the netlist by simply adding an extra multiplexer at the output to select the ap-

propriate value (erroneous or correct). However, larger LUTs would be treated as a single

point of failure, even if in the final implementation of the device is based on simpler

modules. ASICs will probably be manufactured following an approach based on an Un-

committed Logic Array (ULA), where a set of prefabricated NAND-gates are later in-

terconnected in a customized manner by adding metal layers in the CMOS design [96].

66 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.3 NETFI-2

Fig. 4.3: Modification of flip-flops with enable signal in a) and without enable signal in b) [73]

Semi-custom or full-custom designs based on NAND-gates are also possible if the circuit

will be fabricated in extremely high volumes [79]. In any case, a 2-input NAND-gate is

functionally equivalent to a LUT2. To better mimic the final CUT behavior, Step 2 al-

lows to specify proper LUT sizes. Specific details and LUT transformation strategies are

given in Section 4.3.3. Whichever the case, the resulting modified netlist can be seen as

a different version of the original one, including signals to access the sensitive elements

(flip-flops and LUTs), either to obtain their value or to inject faults.

In Step 4 , a campaign controller is integrated within the modified netlist for the target

FPGA. In NETFI-2, the campaign controller is implemented in a soft-core processor that is in

charge of managing the SEU and SET fault injection campaign by being directly wired to the

CUT modified by MODNET. To this end, the netlist obtained in Step 3 can be synthesized

in the Electronic Design Interchange Format (EDIF) and then attached to the processor via

a direct interface. The resulting bitstream implementing the complete circuit (controller and

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 67

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

Fig. 4.4: NETFI-2 architecture

CUT) is thus generated and implemented in the target FPGA.

Finally, the experiment in Step 5 can be directly executed from the soft-core processor

without requiring additional or external hardware support. Indeed, the whole SEU and SET

fault-injection campaign (including the post-processing of the results), can be conveniently en-

coded in the processor software. By accessing high-speed interfaces connecting the CUT, the

software can efficiently execute several iterations of fault-injection experiments with different

data inputs and fault points. The latter process is flexible enough to also include multiple simul-

taneous injections to execute extensive MBUs fault-injection campaigns. Given that injections

and outputs in MBUs campaigns can be very large, executing the configuration, filtering and re-

sult post-processing within the embedded controller processor becomes an important advantage

of NETFI-2.

4.3.2 Architecture

As previously stated, NETFI-2 is integrated into a single FPGA where the CUT and the ex-

periment controller are instantiated and connected by a dedicated interface. To this end, the

Advance eXtensible Interface (AXI) has been used, since it has been adopted by Xilinx for

implementation of complex System-On-Chip (SoC) designs. In this particular case, the Mi-

croBlaze processor (campaign controller) is a master, whereas the CUT is a slave. Figure 4.4

shows the presented architecture implementing the NETFI-2 methodology.

The Xilinx MicroBlaze processor is based on a 32-bit RISC architecture allowing the cam-

68 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.3 NETFI-2

Fig. 4.5: Interface with CUT

paign controller to have an approximate rate of one instruction per clock cycle [64]. This is an

important feature for keeping the processor software and CUT synchronized (they can, ideally,

share the same clock). The architecture of the processor can be easily customized and extended

using the tools provided by Xilinx. For example, to access the system memory, the processor

uses dedicated buses for instructions and data which frees the other bus loads. This is of par-

ticular importance for NETFI-2, since it allows to have an interface based on the AXI protocol

fully devoted to interact with the execution of the fault-injection experiment.

The MicroBlaze processor can make use of an UART or Ethernet interface to communi-

cate with the outside to report the status of the experiment or its final results. Unlike previous

work with external controllers [105], the process of fault injection in NETFI-2 does not nec-

essarily depend on this communication protocol. In contrast, the fault injection campaign can

run autonomously within the target FPGA while reporting partial or total results only when the

controller has available processing capacity. Therefore, the execution speed of the experiment

is not compromised by the external communication protocol.

The AXI interface allows to communicate a slave CUT with a master unit (campaign con-

troller) that exchange information while using minimal area in the FPGA. The master unit uses

memory mapping to read or write values into 32-bit registers contained in the slave device as

illustrated in Figure 4.5. According to the specification offered by Xilinx, up to 256 transmis-

sions can be performed in bursts [123], improving the campaign execution speed. NETFI-2 uses

this communication channel to configure the SEU and SET fault injections in the components

already intervened by MODNET (inject signals), as well as to configure the input and read the

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 69

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

Fig. 4.6: Example circuit a) based on a LUT4 and b) based on LUT2s

output values of the CUT. Since the AXI slave device maps the memory addresses of the mi-

croprocessor to the CUT fault-injection signals, the campaign can be conveniently defined by

software. Furthermore, the clock of the CUT can also be managed via this interface (either if

the CUT’s clock is enabled or disabled). It is worth noticing that a clock divider might be also

included in this part of the architecture to accommodate different CUT operating frequencies.

4.3.3 LUT Transformation

To model SETs, an extra multiplexer at the output of each LUTs is added to select the appro-

priate output (error or not error). However, as previously mentioned, one should pay attention

to the fact that the synthesizer may group many logical gates in one LUT, implying that the

injection will only target the output of the output gate instead of each of them individually. It

should be noted that this is not necessarily a disadvantage if the final implementation of the

CUT is an FPGA with similar LUT sizes than the target FPGA. Although the original method

70 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.3 NETFI-2

Fig. 4.7: Implementing a LUT4 with four LUT2s and three multiplexers or two LUT3s and two
multiplexers

with the default LUT configuration is assumed to give a good feedback concerning any fault

tolerant design [73], its accuracy can be compromised when considering implementations in

ASICs (typically based on simpler gates [96]).

In order to enhance the granularity and accuracy of the SET fault-injection methodology,

NETFI-2 proposes an alternative step 2 b) as illustrated in Figure 4.2. In this step, the LUTs of

the functionally equivalent structural design interfaced for SEU emulation (see Subsection and

Figure 4.3) are also intervened in order to create a CUT that is only implemented using LUTs

of specific sizes. In our case, two-input LUTs (LUT2) are considered as they can unequivocally

mapped to 2-input gates, such as the ones typically used in ASIC implementations. Therefore,

when using this netlist in MODNET, SET fault-injection signals will be added for elemental

circuits components at the gate level. On the other hand, SEU injection signals will still be

attached to flip-flops, which are independent of combinational elements implemented in LUTs.

The final goal of transforming the LUTs is to increase the granularity of the SET fault

injection. The example in Figure 4.6 a) illustrates that a given circuit can be implemented with

a single LUT4, while Figure 4.6 b) shows that it can also be implemented using LUT2s. When

modified by MODNET, the former implementation will allow for a single SET injection signal

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 71

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

at the output of the LUT4 (inj signal), while the latter will let four different faults to be injected

in the CUT (inj0 up to inj4 signals). In general, if considering that every injection is set to

zero, the combinational logic provides the same output for both implementations. However,

if a fault-injection campaign is executed on each of these different circuits, different error rate

estimations would be obtained. For example, if faults are injected in the LUT4-based circuit,

only one fault can be injected, whereas in the LUT2-based circuit, 4 different sensible points can

be evaluated. An injection in the first sensible point of the LUT2-based solution (inj0) will have

no effect in the output when either C is set to one or D is set to zero. Indeed, the output O goes

high for any of the inputs of the final OR-gate being set to one. Similar effects are observed for

inj1 signal if A and B are set to 1 since the value at the output of the circuit (O) will always be

one. On the other hand, the injection in the final output (inj4) would have a direct impact in the

output as it always changes the correct result of the circuit. In this case, whichever the A, B, C,

D input values are, an error would be observed at the output when signal inj4 is set. In general,

a LUT2-based circuit with a single output like the example will, at least, evidence a 25% SET

error rate in a fault-injection campaign. However, the functionally equivalent implementation

of Figure 6.a) will always deliver an error in the output (i.e., 100% SET error rate). Therefore,

a suitable LUT transformation must be chosen to have an accurate SET error rate measurement

of the CUT.

In general, whichever the size of the LUTs chosen by the synthesis process, there is a sys-

tematic way of transforming them to functionally equivalent implementations based on LUT2s.

This can be achieved by combining LUT2s with multiplexers as shown in Figure 4.7, where a

generic LUT4 (with inputs I0, I1, I2, I3) can be transformed to a LUT2-based implementation.

Also, LUT3 construction blocks are illustrated for similar transformations to LUTs of three

inputs.

A non-minor concern from a user perspective is to determine the optimal LUT transforma-

tion solution. This is not always a straightforward answer. For example, if the final environment

for the CUT is the same FPGA where the experiment will be executed, then letting the synthe-

sizer to decide the LUT size would render more realistic results. However, in case the design

will later be ported to an ASIC implemented following the aforementioned ULA approach [96],

or even a full-custom design [79], then a LUT2-based approach will provide more accurate

error-rate estimations. Further analysis would still be required to properly understand how the

LUT2 solution maps to other modules used by the chip’s manufacturer.

4.3.4 Evaluation and Validation

In order to evaluate and validate NETFI-2, two CUTs are proposed as case study (i.e., a Stochas-

tic Bayesian Machine (SBM) and a Support Vector Machine (BM)). Both SBM and SVM were

modified by MODNET and then submitted to a SEU and SET fault injection campaigns using

the described NETFI-2 architecture. The time required by the fault-injection campaign as well

72 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.4 Baysian Machine Under Test

as the impact of LUT transformation in the SET results are analyzed. Also, the results from a

radiation test experiment performed in the SVM was included in this section. The idea here was

to compare the results between our emulation fault injection tools with the real radiation test

results.

4.4 Baysian Machine Under Test

In this work, a module of a Stochastic Bayesian Machine (SBM) implemented in VHDL is

proposed as CUT. A SBM is a type of stochastic compiler capable of calculating Bayesian in-

ferences based on a set of probability distributions presented at their input [47]. These machines

base their internal architecture on variables represented as stochastic bitstreams (notice that this

is not an FPGA bitstream) which can make them intrinsically resistant to failures [4]. In partic-

ular, the proposed SBM is composed of small parallel modules called BM-slices. The BM-slice

can be implemented in hardware (for instance, an FPGA [38]) using the circuit shown in Fig-

ure 4.8. A BM-slice computes the stochastic signal encoding P ′(M = i), for a given i, out

of its 13 input bitstreams. As a result, at any clock signal, the size of the input of a BM-slice

is 13 bits (hence, 8192 possible input values) while the size of the output is 1 bit. Besides,

the BM-slice also includes a clock and reset port. The BM-slice circuit is implemented using

AND-gates to perform stochastic multiplications and stochastic adders to calculate the addition

of probabilities encoded in the bitstream signals. The stochastic adders are in turn implemented

by comparators, multiplexers and counters making the BM-slice an interesting sequential and

combinatorial circuit to study under SEU and SET effects. Nonetheless, it is worth noticing that

full SBMs instance n BM-slices with this architecture working in parallel to operate over bit-

streams of n× 13 elements. The hypothesis held in [47] is that the complete system composed

of n BM-slices should be intrinsically robust against SETs and SEUs. The interested reader

can refer to [26] for a complete robustness evaluation of a full SBM. However, in this work the

robustness of an individual BM-slice (and not a full SBM) will be evaluated.

4.4.1 BM-slice LUT Transformation

The BM-slice netlist is processed by MODNET to obtain a netlist with components sensitive

to SETs and SEUs, and interfaced with injection signals. The MODNET tool identified 82

sensible points for SET injection when synthesizing this CUT in the default LUT configuration

chosen by Synplify (of size 4, 5 and 6 as result of synthesis for the Artix-7). However, these

82 sensible points become 812 sensible points when implementing the circuit using LUT2-only

transformation. Indeed, this represents a SET fault-injection granularity almost 10 times greater

for circuits implemented in smaller 2-input gates. The impact on the error rate resulting from

this transformation is later studied in Section 4.4.3. Nevertheless, the gain in accuracy comes

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 73

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

Fig. 4.8: BM Slice - Hardware implementation

at an extra cost in terms of FPGA resources. Table 4.1 summarizes the resource utilization in

the Artix-7 FPGA board in terms of slice LUTs utilization including the MicroBlaze proces-

sor. The presented data of resources utilization were taken out of Vivado’s reporting utility,

post implementation. The Artix-7 slice LUTs increment from 1961 to 2502 (+27.9%) when

implementing a SET fault-injection campaign based on the LUT2 transformation, compared

to the SET fault-injection campaign based on the default LUT sizes (sizes 4, 5 and 6). Uti-

lized registers also increase (+36.9%) as the controller to the CUT interface must accommodate

several extra injection signals. Since FPGA slices contain groups of several types of LUTs,

flip-flops and multiplexers, there is not always a linear correlation between the LUT increment

74 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.4 Baysian Machine Under Test

form LUT4-5-6 to LUT2 transformation and the one measured in real FPGA synthesis reports.

Indeed, the final resource utilization in a given FPGA platform will strictly depend on its inner

architecture combined with the optimization strategies taken by each manufacturer synthesis

tool.

Table 4.1: Detail of resource utilization in the FPGA

Used Available % Used

MicroBlaze

Slice LUTs 1746 63400 2.75%

Slice Registers 1475 126800 1.16%

MicroBlaze + BM (LUT4-5-6)

Slice LUTs 1953 63400 3.08%

Slice Registers 1866 126800 1.47%

MicroBlaze + BM (LUT4-5-6) + Injection SET

Slice LUTs 1961 63400 3.09%

Slice Registers 1868 126800 1.47%

MicroBlaze + BM (LUT4-5-6) + Injection SEU

Slice LUTs 2074 63400 3.27%

Slice Registers 1839 126800 1.45%

MicroBlaze + BM (LUT2)

Slice LUTs 2140 63400 3.38%

Slice Registers 2493 126800 1.97%

MicroBlaze + BM (LUT2) + Injection SET

Slice LUTs 2502 63400 3.95%

Slice Registers 2558 126800 2.02%

4.4.2 Fault-Injection Campaign

As previously stated, a fault injection campaign was carried out with NETFI-2, on a Nexys 4

board which is equipped with a Xilinx Artix-7 XC7A100T-CS324 FPGA. The synthesis of the

modified CUT was accomplished with Synopsys Synplify-Premier tool to obtain the EDIF file.

The processor synthesis and bitstream generation of the FPGA were made using the Vivado

tool. To run this campaign, the original MODNET tool was updated accordingly in order to

support state-of-the-art Xilinx FPGAs. Implementation results summarized in Table 4.1 show

that the MicroBlaze processor used as the controller of the experiment, only requires 2.75%

of the slice LUTs and 1.16% of slice registers of those available in the target FPGA. In other

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 75

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

words, the controller overhead in NETFI-2 is low enough to allow the majority of the FPGA

resources to be used for large CUT implementations.

Table 4.2: Extra signals presented in BM-slice

SEU signals SET signals

LUT4-5-6 27 82

LUT2 27 812

For the fault injection campaign, a specific application had to be developed to run under

the MicroBlaze soft processor. The designed algorithm for this case study is illustrated in

Algorithm 2. Xilinx provides a dedicated Software Development Kit (SDK) to conveniently

accomplish the implementation of the program. The tool also provides drivers and libraries to

elaborate the embedded code (in C language). As shown in Table 4.2, besides the 13 bits of

BM-slice inputs (8192 possible inputs values), the CUT also includes 27 signals for injecting

SEUs and 82 signals for injecting SETs when implemented in LUT4-5-6 (or 812 when using

LUT2-only injections - Algorithm 2 depicts this case -). In order to extensively study the de-

vice’s robustness, it is necessary to perform a fault injection in every possible location (i.e.,

every bit of the injection’s port), for every given input. Therefore, the injection’s campaign

program loops for every input, making an injection (setting a bit to 1 in the corresponding slave

register) in all the available locations of the 812 bits (SET injections for LUT2-implementation),

82 bits (SET injections for default LUT implementation) or 27 bits (SEU injections) of the in-

jection ports. Since the width of the slave registers provided by the AXI Interface is 32 bits,

it is necessary to use several of them to cover all the possible injection points (for instance, 26

registers are needed for the 812 SET injection points in the LUT2 implementation). The last

register in the LUT2 CUT implementation, only has 12 addressable bits to perform an injection;

thus, this register is left out of the initial loop (that goes through the entire 32 bits) and addressed

separately in Algorithm 2, in Lines 15-22. It should be noticed that setting several bits in the

registers would imply injecting MBUs, which is a new feature of NETFI-2 with respect to its

predecessor [72]. In order to determine when an error occurs, all the injections are initially set

to zero (i.e., no fault injections performed in the device) to then sample the golden output and

store it in a temporal variable (output1). Then, for each bit in all the slave registers, an injection

is performed by changing the bit (Lines 7 and 16), the output of the circuit is retrieved (Lines

8 and 17), the injection vector is restored (Lines 12 and 21), and finally, in case of mismatch

with the golden result, the error count is updated (Lines 9-11 and 18-20). Before switching to

the next input value (variable i), errori is summed to the total error count present on the device

(errort), and reseted to zero.

76 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.4 Baysian Machine Under Test

Algorithme 2 Pseudo-code for SET injection campaigns of LUT2-based implementations

1: for i = 0 to 8191 do ⊲ Total amount of inputs
2: injections = 0
3: input = i
4: output1 ← CUToutput
5: for slvreg = 0 to 26 do ⊲ slave registers
6: for j = 0 to 31 do ⊲ 32 bit size register
7: slvreg[j]← slvreg[j] XOR 1
8: output2 ← CUToutput
9: if output1 6= output2 then

10: errori ++
11: end if

12: slvreg[j]← slvreg[j] XOR 1
13: end for

14: end for

15: for k = 0 to 11 do ⊲ last inj register size
16: slvreg[k]← slvreg[k] XOR 1
17: output← CUToutput
18: if output1 6= output2 then

19: errori ++
20: end if

21: slvreg[k]← slvreg[k] XOR 1
22: end for

23: errort = errort + errori ⊲ Accumulate errors
24: errori = 0 ⊲ Reset errori value
25: end for

4.4.3 Result Analysis

The error rates for SEU and SET results obtained from the fault injection campaign, using

LUT2s and LUT4-5-6, are summarized in Table 4.3. It can be observed that the fault injection

campaign based on LUT2 transformation shows a decrement of the error rate as discussed in

Section 4.3.3. In particular, the increase of injection points will eventually derive in faults that

finally do not incur in any error thus lowering the error rate metric. In this table, time mea-

surements made for fault injection in the BM-slice circuit can be seen, which in both cases can

be practically disregarded. In preliminary evaluations of NETFI-2, simulation-based fault in-

jections campaigns were also conducted with comparison purposes [110]. These fault injection

campaigns took more than 300 seconds to run on the same BM-slice design, highlighting the

speed-up of emulation-based solutions such as NETFI-2.

When taking a closer look at the results of the SET fault-injection campaign, it is possible

to identify the LUTs responsible for the greatest amount of errors at the output. In order to

facilitate the observation, Figure 4.9 shows the LUTs of sizes 4, 5 and 6 with higher impact

in the SET final error rate. Analyzing the location of the outlier LUT (LUT 6 with ID 81), it

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 77

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

Table 4.3: Fault Injection Campaign Results

Error rate

SEU

Error rate

SET

Execution

time SEU/SET

NETFI-2 LUT4,5,6 11.30% 30.10% <1 s

NETFI-2 LUT2 11.30% 11.50% <1 s

was found that it was the building block in the final stage of the circuit implementing the CUT.

This means that every output of the other LUTs in the CUT data-path passes by this final LUT,

making it a particular weak point responsible for a significant number of errors. Also, it can

be observed that the rest of the LUTs shown in Figure 4.9 are in the range of ID 40 to ID 61,

which, in our particular CUT implementation, are those located within the final stages of the

circuit. With this in mind, and as general statement, it can be assumed that LUTs located at final

stages have a higher impact in the final error rate of the CUT. The added value of NETFI-2 in

this context is that the methodology allows to precisely measure and anticipate this phenomena.

On the other hand, if the CUT is implemented by applying the LUT2 transformation, the IDs

of the final 16 LUT2 (those that implement the same combinational part implemented by LUT6

ID 81) range from ID 796 to 811 (out of a total of 812 injection points). By using these results, it

was observed that out of these 16 LUT2, those with ID 796, 800, 804 and 809 are responsible for

the 33.3% of the total amount of errors produced by LUT6 ID 81 in the LUT4-5-6 implemen-

tation. This means that the LUT2 transformation approach can be used to accurately identify

weak combinational points in the design, allowing to perform detailed improvements, changes

or hardening implementations on the circuit layout. Indeed, the latter would incur in more ef-

ficient and granular hardware configurations when studied in LUT2-only implementations (it

might be more convenient to harden a few LUT2s than a larger LUT6). A Popular hardening

technique to achieve the latter is known as Triple Modular Redundancy (TMR), which can be

properly defined and addressed by using NETFI-2. Although not described in this section, sim-

ilar analysis can be performed based on SEU injections by identifying most critical flip-flops in

the CUT.

4.4.4 Discussion

We have analyzed the fault injection campaign performed in the Bayesian Machine in three

different points of view, which are listed below:

• Efficiency and Flexibility: One of the main advantages of NETFI-2 is that is capable of

being implemented in FPGAs that are not particularly expensive, like the Artix-7. This

is not a minor feature given that similar methods sometimes require high-end FPGAs

(sometimes many of them) to accomplish the same results. Indeed, NETFI-2 flexibil-

78 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.4 Baysian Machine Under Test

3000

3500

4000

4500

5000

5500

6000

43 42 48 60 40 49 50 51 52 56 55 61 53 54 57 58 46 59 41 47 81

LUT ID

E
r
r
o

r
s

Fig. 4.9: LUTs of BM-slice (of sizes 4, 5 and 6) where the highest amount of errors were
observed

ity and efficiency come from the fact that the complete fault-injection campaign can be

translated to a software code executed by a soft-core implemented side-by-side with the

CUT. Another consequence of the latter is that CUTs can be conveniently controlled and

configured under different LUTs and flip-flop technologies.

• Implementation Exploration: As previously discussed, a LUT4 will always deliver one

error per fault (100% error rate). On the other hand, a LUT2 equivalent transformation of

a LUT4 can render from 0 to 4 errors per each four faults injected (0%, 25%, 50%, 75% or

100% error rate). If the enumerate is between 0% and 75%, then one, two or three LUT2s

respectively can be hardened by using individual TMR. However, if it is 100%, then it is

better to implement a LUT4 and directly harden it. Indeed, if the design flow of the circuit

under test allows for it, the designer can use NETFI-2 to explore different implementation

possibilities combined with different hardening strategies. This is a unique feature of the

NETFI-2 methodology in the context of radiation-hardened designs. It is worth noticing

that, although it is accurate for some implementations, the LUT2 transformation demands

an extra effort that can not be left unaccounted when working with larger CUTs. This

effect was not seen in the BM-slice case study based on a simple test circuit. This effort

not only involves FGPA resources (noticeably multiplexers) but also computation time in

performing, analyzing and post-processing all the injections.

• Implementation Analysis: In general, the circuit designer has a predefined technology

on which the device will be implemented (either a specific FPGA or an ASIC with a

well-defined type of combinational modules or logic gates). In these cases, in order to

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 79

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

determine which LUT transformation is better suited to analyze and configure the fault-

injection, it is necessary to study how the final deployment of the CUT will be made. In

the case of an ASIC implementation based in two-input logic gates, the LUT2 transfor-

mation brings to the table an unprecedented level of accuracy. ASICs manufactured with

multiple-input logic gates should be further studied by the designer to determine the most

suitable LUT transformation technique in NETFI-2. Indeed, there is not a general answer,

nor a one-fit-all solution for ASIC-based designs. On the contrary, if the final deployment

is an FPGA similar to the one used in the fault-injection campaign, the default LUTs cho-

sen at synthesis time will deliver the most accurate results. In case there is not enough

information on the final implementation of the circuit, then NETFI-2 can only provide a

general yet informative analysis on the reliability towards radiation effects. Evidently, the

reliability of a circuit is strictly related to its final implementation characteristics.

4.5 Support Vector Machine Under Test

In this section, we have adopted the Support Vector Machine (SVM) as a case study for NETFI-2.

Also, we have assessed the capacity of the SVM architecture to tolerate transient faults. And

finally, we have provided a comparison between the emulation fault injection results with the

radiation test results.

4.5.1 Support Vector Machine background

SVM is a classification algorithm belonging to the group of supervised machine learning tech-

niques [116]. The algorithm addresses the problem of binary classification, i.e. a problem in

which an observation (herein an input vector) has to be classified in one of two possible classes.

Being a supervised machine learning technique, its workflow requires two phases, each one per-

formed with a different algorithm: one for training (Sequential Minimal Optimization (SMO)

algorithm) and another for classification (SVM algorithm).

Figure 4.10 presents an application of a SVM-based classification able to indicate whether

an astronaut reaches a risky condition to have a cardiac problem – for instance, according to

her/his heartbeat rate while moving or speeding on a treadmill in a space station.

At the training phase, the SMO algorithm uses the training vectors to calculate the weights

of the linear function that better separates input vectors from the two classes, for example in

Fig. 4.10: class “No heart problem" and class “Has heart problem", and the training vectors

respectively represented by blue dots and red stars. The calculated weights, therefore, model

a linear classifier dividing the elements of the two classes, i.e. they model the SVM algorithm

equation.

Formally, a tuple (~xi, yi) defines a training vector, in which the support vector ~xi ∈ IR2 in

80 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.5 Support Vector Machine Under Test

Human Heartbeat Rate

H
u
m

a
n

 M
o
v
e
m

e
n
t

S
p
e
e
d

No heart problem

Has heart problem

Linear Classifier
(Trained SVM Algorithm Equation)

Fig. 4.10: An SVM algorithm equation (linear classifier) trained to classify the heartbeat condi-
tion. The horizontal axis represents the human heartbeat rate, while the vertical axis represents
the human movement speed.

the example: heartbeat rate and speed features – both belonging to the set of real numbers –

that are measurements performed on a person i. Moreover, the class yi ∈ {−1, 1}, and in the

example: −1 and 1 represent respectively the class “No heart problem" and the class “Has heart

problem".

At the classification phase, the trained SVM algorithm is able to classify an input vector

whose class is unknown, e.g. if the heartbeat rate and speed of an astronaut running on a

treadmill indicate either “No heart problem" or “Has heart problem". The SVM algorithm

equation to classify an input vector ~x with an unknown class is thus defined as:

score(~x) =
n∑

i=1

αiyi(~xi · ~x) + b (4.1)

Each αi is a weight, found at the training phase and associated with its respective training

vector (~xi, yi). The weights αi shape the linear classifier (i.e. the SVM algorithm equation). At

the training phase, the SMO algorithm also calculates the bias factor b. The sign of the score(~x)

determines the class of the input vector ~x, in the example: positive for “Has heart problem" and

negative for “No heart problem".

Here, we focus on assessing only the classification phase of the SVM algorithm in hardware.

As our dataset is linearly separable, further described in Subsection 4.5.2, we opted for the

approach presented in [124] with a first order, i.e. linear, classifier to explore its benefits in

terms of performance. Figure 4.11 shows the CUT of the SVM architecture. In addition, we

have calculated the αiyi products beforehand, reducing one multiplication for each SV ~xi, and

further optimizing the SVM architecture. The final implementation is completely combinatorial.

The circuit is composed by three main parts: the Multipliers, the Adders and the Output, as

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 81

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

Multipliers Adders Output

Fig. 4.11: Overview of the hardware-implemented SVM architecture design.

illustrated in Figure 4.11.

The SVM architecture adopted a 16-bit fixed-point representation, 8 bits being dedicated to

representing the real part. Fixed-point representation was used in [99,120,124] as it is faster and

provides less area overhead in comparison to floating point operations. Through simulations, we

have confirmed that the representation is enough to avoid possible overflows and also to main-

tain sufficient precision. The primary inputs are composed of 32 bits (16 for each dimension

of the input vector). The primary outputs are composed of 49 bits to maintain the calculation

precision.

4.5.2 Set of input vectors

The target set of input vectors (dataset) was obtained from Monte-Carlo simulations represent-

ing current peaks and global delays obtained from golden integrated circuits (ICs) and faulty

ICs [1]. The input vector is 2-dimensional, and 150 input vectors have been obtained from

golden IC samples and 150 input vectors from faulty IC samples. The dimensions are thus:

• Dimension 1: global delay

• Dimension 2: current peak

This set of input vectors is sufficient to distinguish faulty asynchronous IC samples from

fault-free asynchronous IC samples [1]. The set of input vectors has been partitioned into 2

subsets of the same size, one for training and another for classification, each one with 75 golden

82 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.5 Support Vector Machine Under Test

Table 4.4: Resource utilization of the PL (Artix-7)

Resource Utilization Elements

Flip-Flops (FFs) 1.65 % 1751

Digital Signal Processing units (DSPs) 40% 88

Look-Up Tables (LUTs) 7.24% 3854

IC samples and 75 faulty IC samples. A SVM model has been generated by using MATLAB.

From this model, we have obtained the α’s and their respective support vectors ~xi. In total, 50

support vectors ~xi have been generated at the training phase.

The CUT is a fully combinational SVM architecture design using fixed-point representation

for its support vectors ~xi and wights αi (cf. subsection 4.5.1). The target platform is a Zynq-

7000 [122], which is composed of two main parts: the Processing System (PS), consisting of

an ARM Cortex-A9, and the Programmable Logic (PL), a Xilinx Artix-7 FPGA. The SVM

architecture was implemented in PL part by using VHDL. The resource utilization of the PL is

shown in Table 4.4.

The SVM algorithm depends fundamentally on multiplications. Most modern FPGAs, in-

cluding the Artix-7, have Digital Signal Processing units (DSPs), which implement multiplica-

tions in dedicated hardware. All the multiplications of the CUT have been mapped in the DSPs,

which is the reason why DSP resources are prominent in Table 4.4.

4.5.3 Results of the Fault Emulation Campaign

The fault emulation campaign has been configured to extensively analyze the behavior of the

SVM architecture in the presence of faults. The MODNET tool (step 2 in Figure 4.2) has

identified in the SVM architecture 1350 nodes to be assessed through a transient fault emulation

campaign. For each node, a fault has been injected successively for the set of 150 input vectors.

It is important to note that the node holds the fault over the entire clock cycle. For each fault

emulation, the primary outputs of the SVM architecture have been compared with the correct

result (golden), and each observed failure has been logged in the campaign controller.

So, in order to assess the rate of critical failures provoked by the emulation of a single

transient fault on a node n of the SVM architecture design, we define the following metric:

CriticalFailureRate (n) =
CriticalFailures (n)

InputV ectors
(4.2)

in which # CriticalFailures (n) is the total number of critical failures provoked by a

single transient fault injected at node n of the SVM architecture design, and # InputV ectors

is the total number of vectors tested at the primary inputs of the SVN architecture with the node

n under the same fault emulation.

It is worth mentioning that 58.8% of the faults have been injected on the outputs of the LUTs

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 83

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

connected at the DSP outputs (the Multipliers), while 29.3% of the faults have been injected on

the outputs of the LUTs that are in charge of computing the Adders part. The rest of the faults

(approximately 11.9%) have been injected on the outputs of the LUTs used by the configuration

signals of the SVM architecture. After an extensive fault emulation campaign covering several

nodes of the SVM architecture, encompassing a total of 202,500 faults injected in the SVM

architecture, results show that more than 29% of emulated single transient faults provoked a

critical failure in the SVM architecture. It means that 71% of the fault emulations led to either

tolerable failure or no failure. Figure 4.12 presents the histogram of the rates of critical failures

(equation (2)) provoked by the emulation of single transient faults on the nodes of the SVM

architecture design. The results indicate that most nodes are quite sensitive to transient faults

(critical failure rates between 20% and 60%), and only a small number of them has a critical

failure rate higher than 60%. Such a considerable critical failure rate on several nodes suggests

that the fault masking effects are low due to the parallel configuration of the operators and the

short path between the primary inputs and outputs of the SVM architecture. Selective mitigation

techniques can be applied to make more robust such nodes with high critical failure rate.

513

414 405

6 12
0

100

200

300

400

500

600

Under 20% 20% - 40% 40% - 60% 60% - 80% Above 80%

#
 o

f
fa

u
lt

-I
n
je

ct
io

n
 N

o
d

es

CriticalFailureRate(n)

Fig. 4.12: Histogram of the critical failure rate of the injection nodes on the SVM architecture
as given by Equation 4.2

Figure 4.13 shows the correlation among the most critical failure rate nodes and their relative

position in the SVM’s circuitry. It is worth mentioning that those nodes were extracted from

the FPGA’s LUTs, and their relative positions are logically represented into the Figure 4.11. It

means that the SVM architecture is distributed into the FPGAs in basically three logical steps:

the Multiplier, the Adder, and the Output. So, the results plotted in the Figure 4.13 indicate

that the multiplier is the most sensitive component of the SVM architecture. In this case, all

those eight critical components from the multiplier are positioned in the first logical level of

the multiplier, i.e., they are LUTs that receive the first computation of the DSPs with most

84 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.6 Radiation Test Experiment and Results

significant bits. Analyzing the region of the Adders, we can see that eight other faults/nodes

can be classified as critical. Unlike the multiplier results, where critical faults are significantly

positioned in the first logical level of the SVM architecture, failures in the Adders are diffused in

the circuit. It means that the critical failures can occur in different stages of the combinational

Adders’ circuitry. When the fault injections are performed in Output, only faults happening

close or on the actual sign bit cause critical failures. Even though the most susceptible LUTs

are spread out in the architecture, they can be mapped. The very small number of LUTs with a

high CriticalFailureRate, as shown by Figure 4.13, suggests that hardening should be done on

these LUTs to improve the SVM fault tolerance with low area overhead.

2

4

0

6

4

2

0

1

2

3

4

5

6

7

Multiplier Adder Output

#
 o

f
fa

u
lt

-I
n

je
ct

io
n

 N
o

d
es

60% < CriticalFailureRate(n) < 80%
CriticalFailureRate(n) > 80%

Fig. 4.13: Histogram representing the correlation among the most critical failure rate nodes and
their position relative to the the SVM’s circuitry implemented in a FPGA.

4.6 Radiation Test Experiment and Results

This section describes the radiation experiments conducted with a neutron source and an analy-

sis of the obtained and assessed results.

4.6.1 Radiation test set-up

A radiation campaign has been performed at the GENEPi2 neutron source, at the "Laboratoire

de Physique Subatomique & Cosmologie" (LPSC), in Grenoble (France) [118]. The board has

been irradiated for 6 hours and 45 minutes, yielding a total neutron fluence of 1.944 ∗ 1010 n ∗

cm−2 and average flux of 8 ∗ 105 n ∗ cm−2/s. with an environment temperature of 18°C.

Figure 4.14 shows a picture of the test set-up.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 85

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

Fig. 4.14: FPGA board installed at the GENEPi2 accelerator neutron facility

The architecture used for the radiation test has a minor difference from the one used in

the subsection 4.3.2 and is shown in Figure 4.15. While in the fault emulation campaign the

FPGA has been driven by MicroBlaze, in this radiation test experiment we adopted the ARM

as controller for the SVM. However, the SVM architecture design on the Programmable Logic

(PL) remained unchanged. In order to reduce the amount of input bits sent from the ARM to the

SVM architecture, we instantiated a small controller that had 32-bit wide to store the set of input

vectors tested on the FPGA. The controller fetches the data from the memory and forwards it to

the SVM. It then retrieves the output and expose it through an AXI interconnect.

Zynq-7000®

PS (ARM® Cortex A9) PL (Xilinx® Artix-7)

Input

Generator

Controller

(Memory)

SVM

Sample

Number

SVM

Result

Host

Computer

Output

Processor

ZedBoard

FPGA board

FPGAProcessor

SVM

Result

Bitstream

Fig. 4.15: Zynq-7000 set-up under radiation test

The ARM processor provides the controller on the FPGA with the index of the input vector

to be tested, as the input vectors are stored in a ROM in the PL, and reads the result. It then

forwards the result through serial port. The L2 cache of the ARM processor has been disabled

86 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.6 Radiation Test Experiment and Results

to reduce the probability of faults affecting the PS [113].

4.6.2 Radiation test method

Figure 4.16 presents the method we have used during the radiation test experiment. The set of

input vectors is continuously running in the FPGA. The radiation is able to alter the configu-

ration SRAM, which contains the FPGA bitstream, i.e. it is able to create an error. This error

may then lead to an alteration of the SVM calculation structure, mathematically changing the

classification function. The score of an input vector evaluated in this faulty SVM may deviate

from its expected result, i.e., we analyze the primary outputs of the SVM architecture, and then

we compare them with a golden reference. We use this property to identify when an error has

happened. Whenever an error has been identified, we rerun the entire set of input vectors on the

faulty SVM to classify each input vector according to its type of error, and finally, we log the

results. When it is done rerunning the input vectors, the FPGA is reset to erase the error, and

the process is restarted.

Execute next

input vector

 SVM

Primary outputs

≠
golden values

Run complete

dataset

Yes

Assess according

to metrics

Reset FPGA

board

No

Fig. 4.16: Method used on the radiation test

4.6.3 Assessment of radiation test results

During the neutron radiation test campaign, we have identified 13 errors, of which 2 crashed the

FPGA and 11 errors that allowed it to continue to produce results. Even though crashes have

been responsible for 15% of the total number of errors, they are not related to the case-study

SVM architecture design but due to a fault in the device performing the serial communication

with the control computer. The obtained static cross-section and the Failure In Time (FIT) are

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 87

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

respectively 5.65 ∗ 10−10 cm2 and 7.91, considering New York’s 14 n/(cm2 · h) neutron flux at

sea-level [83].

A total of 1650 input vectors have been evaluated on SVMs with an altered behavior due to

errors, as the 150 input vectors have been input to the SVM when a error have been identified.

Of those, 1168 continued to output the expected result (No Failure), 92 have been considered

as Critical Failure and the remaining 390 as Tolerable Failures. As shown in Figure 4.17, only

5% of the evaluated input vectors have resulted in Critical Failure, thus when there is an error,

there is a 95% chance that the error will not lead to a misclassification.

In terms of errors, Figure 4.18 presents a report of the radiation-induced errors that provoked

tolerable and critical failures in the SVM architecture during the radiation campaign. 3 of 11

errors caused at least one of the input vectors to be misclassified. This indicates that 27% of

the errors identified during the radiation test caused the SVM architecture to produce a critical

failure. This result suggests that the case-study SVM architecture indeed has a level of intrinsic

fault tolerance, however more information is needed to better identify the nodes that cause

critical failures.

On an FPGA-designed SVM architecture, errors may change a xi, a α or the calculation

logic shown in equation (4.1). These reshape and/or dislocate the linear classifier. If there is

an error on one of the less significant bits of a xi or α, the separator displacement may be so

small that most of the input vectors are still classified correctly, even though their score, i.e. the

output from the classification function, changes.

No Failure

71%

Critical Failure

5%

Tolerable Failure

24%

No Failure Critical Failure Tolerable Failure

Fig. 4.17: Percentage of failures that have been provoked by 11 neutron radiation-induced errors

The most harmful effects are modifications on the most significant bits of the support vectors

~xi, weights αi, or changes in the operators (as the technique is implemented in an FPGA). Only

one of the 11 non-crashing radiation-induced errors led the majority of the input vectors to be

88 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

4.7 Conclusion

Errors provoking

tolerable failures

73%

Errors provoking

critical failures

27%

Errors provoking tolerable failures

Errors provoking critical failures

Fig. 4.18: Percentage of neutron radiation-induced errors that provoked 1650 tolerable and
critical failures

misclassified (critical failure). This indicates that, for the case-study SVM architecture, this

type of error is less likely to happen.

Results from both radiation test and fault emulation campaigns suggest that a hardware-

implemented SVM technique has an intrinsic fault tolerance, as identified in other similar ex-

periments with different Machine Learning algorithms [27, 68]. It is worth pointing out that no

fault-tolerance mechanisms have been included in the case-study SVM architecture.

4.7 Conclusion

In this Chapter, we proposed NETFI-2 a fault-injection emulation method to study the effects

of both SEUs and SETs in digital circuits. Inspired on our existing framework called NETFI,

NETFI-2 reduced the hardware overhead of the fault-injection methodology while also allowing

for unprecedented flexibility to adapt the CUT model to different SRAM-based FPGA technolo-

gies. Furthermore, complex fault-injection campaigns can be easily designed as NETFI-2 relies

on a soft-core processor sitting side-by-side with the CUT in an FPGA. It means that NETFI-2

can friendly help the designers to validate a System-On-Chip project design in a very early de-

velopment stage. Thus, by exploring two appealing cases study based on a Stochastic Bayesian

Machine and a Support Vector Machine, we demonstrated that NETFI-2 can conveniently iden-

tify weak points in the circuit where SEUs and SETs could occur. Since SET sensible points

evidently depend on the final implementation of the combinational part of the circuit, differ-

ent experiments could be executed for different granularities at the RTL-level. Moreover, by

performing fast and configurable fault-injection campaigns, NETFI-2 allowed to detect the sub-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 89

4. NETFI-2: A Framework to Fault Injection in HDL-Based Design

module(s) of the circuit with higher impact in the final error rate, and therefore, which one(s)

should be hardened to achieve the expected FPGA or ASIC implementation reliability against

radiation effects.

90 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

Chapter 5

NoCFI: A Networks-On-Chip Fault

Injection Methodology

5.1 Introduction

The increasing complexity of Networks-on-Chip (NoCs) routers and the continuous miniatur-

ization of silicon technology are making this interconnection circuit increasingly vulnerable to

transient faults. As we have been discussing through this thesis, it is known that transient faults

caused by a single particle strike in sequential elements (i.e., memory cells, latches, and flip-

flops) and combinational gates are called Single Event Upset (SEU) and Single Event Transient

(SET), respectively. Furthermore, with the miniaturization of device geometries in nanoscale

technologies, it is very likely that a high energy particle strike may affect several adjacent cells

in a circuit resulting in Multiple Bit Upsets (MBUs) in sequential memory [21] or Single Event

Multiple Transients (SEMTs) in combinational gates [46]. As a result, the demand for fault

injection tools able to accurately emulate multiple failures taking into account the layout of the

Circuit Under Test (CUT’s) circuitry has been increasing in popularity in both academia and

industry. Also, a fault injection tool able to identify the most sensitive components on a NoC is

crucial to help the designer apply low-cost selective protection schemes.

As described in Chapter 4, Simulation-based and Emulation-based fault injection are two

widely adopted method to test and analyze the effects of transients faults in Hardware Descrip-

tion Language (HDL)-based design [94]. In this Chapter, we are interested in Emulation-based

fault injection approach that uses the instrumentation-based and FPGA-based techniques [94].

The instrumentation-based technique consists of inserting faults through modification of the

Register Transfer Level (RTL) model of the circuit instead of using sophisticated reconfigura-

tion features which are not always available in the FPGAs. Therefore, faults are directly injected

into the RTL design, which significantly simplifies the injection process, allows the designers

to specify which part of the CUT to test, and keeps the HDL of the CUT unchanged. The

FPGA-based technique is a methodology used for speeding-up fault injection campaigns. It

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 91

5. NoCFI: A Networks-On-Chip Fault Injection Methodology

can play a useful role in emulating multiple faults on CUTs since the volume of tests increases

proportionally with the number of multiples faults.

In this context, many works have proposed fault-injection methods emulated and acceler-

ated by SRAM-based FPGAs. However, to the best of the authors’ knowledge, a method that

considers the vulnerability to multiple transients faults into the NoCs architecture has not been

addressed yet. This gap in the literature motivated us to propose a hybrid method able to emu-

late single and/or multiples transients faults in the NoCs taking into account the layout position

of the circuit’s elements. This method is called NoCFI (Networks-on-Chip Fault Injection).

NoCFI manipulates the Verilog gate-level netlist provided by the ASIC design flow using the

instrumentation-based technique to emulate SET, SEU, SEMT, and MBU in the NoC’s logic cir-

cuit. Furthermore, NoCFI can perform exhaustive fault-injection campaign in order to identify

the most critical cells of NoC’s circuitry using either SRAM-based FPGAs or Simulation-based

techniques.

5.2 State-of-the-art

Until now, several FPGA-based Networks-on-Chip have been developed [58,65,87,93,97,119].

However, only a few take into consideration either the emulation of transient faults into NoCs

using FPGAs [111] or the layout-based techniques to estimate the vulnerability to multiple

transients faults caused by single events [13, 40]. For example, in [111] the authors present a

fault-injection approach based on a dual-processor system implemented on SRAM-based FPGA

which is able to test mesh-based Networks-on-Chip. This approach is based on the physi-

cal modification of the FPGA resources in order to insert transient faults through partial and

dynamic reconfiguration of the FPGA. Although this approach allows different fault injection

partners such as single event upset, stuck-at 0/1 faults, wire faults, bridge and delay faults, it is

not able to emulate single event multiple transients faults.

The framework proposed in [84] links fault injection to fault propagation in the floorplan

view of a standard cell ASIC. It performs the fault injection campaign by the instrumentation

of the gate netlist after place&route and emulation in an FPGA system. Additionally, all the

experiment can be controled via an interactive user interface. Although this methodology allows

the evaluation of the fault tolerance of a generic circuit taking adjacent cell faults into account,

there is no evidence that this framework can be applied in the context of Networks-on-Chips.

The analytical technique presented in [49] and [75] address the Single Event Multiple Tran-

sient (SEMT) faults model in a logic circuit. These techniques estimate the vulnerability to

transient faults due to SEMTs using only the logic-level netlist for identification of the possible

multiple transients faults in the circuit, neglecting the layout-level adjacency circuitry. How-

ever, analysis of ISCAS’89 and ITC’99 benchmark circuits reveal that only less than 10% of

the netlist adjacent cells are physically adjacent in the layout. Also, more than 60% of physi-

92 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

5.2 State-of-the-art

cally adjacent cells are not adjacent in the netlist. It means that the layout of the circuit under

test must be taken into consideration for an accurate identification of adjacent cells. In contrast

with those two works, the authors in [40] use the SPICE simulation combined with the layout

information in order to analyze the sensitive parts of the circuits. This method presents the bet-

ter accuracy than both the other analytical methods [49, 75]. However, Simulation-based fault

injection techniques suffer from a large time simulation.

In [86] the authors have presented a tool named AMUSE which can support the injection of

multiple SETs and SEUs. Transients of a selected pulse width can be injected at any time and

simultaneously into any combination of circuit nodes. For the affected combinational nodes,

the logic value is changed while the injected pulse is active. For sequential nodes, the pulse

produces a bit-flip that is kept beyond the end of the pulse until the end of the current clock

cycle. In summary, by establishing the concept of collected charge radius, the authors estimated

the impact of SEMTs on the sensitivity of an ASIC. However, as the technology scales down,

more cells are affected by a single particle strike. As a result, it is difficult to forecast the

collected charge radius.

In Chapter 4 we have detailed a methodology to fault injection named NETFI-2. This

methodology modifies the Xilinx’s libraries as well as the netlist provided by the FPGA-design-

flow for injecting faults in the CUT. However, as explained in Chapter 4, NETFI-2 does not

take into consideration the layout of the CUT during the fault injection campaign, which means

that multiples faults cannot be analyzed. In other words, NETFI-2 is a generic methodology

that uses only the FPGA-design flow to select and inject single faults in the CUTs. Although

NoCFI was inspired by the NETFI-2 methodology, there are some mainly differences that must

be pointed out to help the reader clearly position our contribution:

• First, unlike NETFI-2, which modifies the netlist provided by the FPGA-design-flow,

NoCFI modifies the gate netlist provided by the ASIC-design-flow process for injecting

faults.

• Second, since we must perform the place&router to get the netlist we also have the layout

position of the circuit’s elements. This characteristic permits NoCFI to emulate multiple

faults taking into account the relative position of the cells’ layout.

• Third, we do not need to modify the Xilinx’s libraries since our instrumentation is per-

formed only in the gate netlist provided by the place&router. This difference in the in-

strumentation technique makes the synthesis process more friendly/easily for the user/de-

signer.

• Fourth, unlike NETFI-2, which is a generic fault-injection methodology to emulate single

faults in SoCs architectures, NoCFI is a more specific methodology able to emulate single

and multiple faults in the NoC’s architecture.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 93

5. NoCFI: A Networks-On-Chip Fault Injection Methodology

In summary, some of the limitations presented in the works mentioned above have motivated

us to contribute with a solution to emulate single and/or multiple transient faults in NoCs, taking

into account the following prerequisites:

1. The layout of the circuit under test must be taken into account for emulating multiple fault

injections.

2. The fault injection campaign can be performed either in FPGAs or in HDL-Simulators.

3. The NoC’s routing algorithm must be considered during the analyzes of the errors pro-

voked by the fault-injection campaigns.

With those three prerequisites in mind, we proposed an hybrid fault injection method called

NoCFI, which is described in detail in the remainder of this Chapter.

5.3 2D-NoC Architecture Background

A brief background on the three-dimensional Networks-On-Chip can be found in Chapter 2.3.

However, we decided to present in this section a short overview covering the two-dimensional

Networks-on-Chip (i.e., 2D-NoC) to better understanding the fault injection methodology pro-

posed in this Chapter.

2D-NoC is a packet-based on-chip interconnection network that can scale its bandwidth

proportional to the network size. It overcomes the problems associated with global wire delays

and very limited bus bandwidth by replacing ad-hoc shared buses with a modular and flexible

interconnect structure comprised of shorter wires thereby increasing simultaneous communica-

tion and on-chip bandwidth. A 2D-NoC uses Routers to enable a large number of Processing

Element (PE) to communicate with each other.

Figure 5.1 shows a 4x4 mesh-based NoC where each PE is connected to a Router by a local

interface. The PE can communicate with each other by propagating packets through Routers in

the network, and each Router is connected to its neighbors through bidirectional links. Thus,

each Router selects a path for the packet to follow until it reaches its destination.

A generic four-stage pipeline 2D-Router architecture is illustrated in Figure 5.2. It consists

of a Routing Computation Unit (RCU), a Virtual Channel Allocator (VCA), a Switch Allocator

(SW), a Crossbar, and an Input/Output unit. The RCU determines the output port (i.e., the

North, South, West, or East) and the virtual channel (i.e. a buffer to storage the flits of a packet)

for an incoming packet. Packets can arrive simultaneously in many different input ports of

the Router, which may lead to a situation where multiple packets request the same output port

and/or virtual channel. However, an output port or a virtual channel should be granted to at most

one packet at a time. In this case, the SW grants a packet to access the output port among all

requestors while the VCA chooses a packet to get access to the requested Virtual Channel (VC).

94 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

5.4 The Effects of Soft-Errors in 2D-Routers

Finally, when a packet is granted, the Crossbar unit connects the input port to the corresponding

output port which allows the packet previously stored in the buffer (i.e, in the VC) advancing

either to next Router or to PE.

East

West

North

South

2D-Router

Process Element

Full NoC 4x4

PE

PE PE PE PE

PE PE

PE PE PEPE

PE PE

PE PEPE PE

Fig. 5.1: A 4x4 two-dimensional Networks-on-Chip.

5.4 The Effects of Soft-Errors in 2D-Routers

Before explain the NoCFI methodology it is important to describe, in this subsection, the effects

of soft errors in the architecture of a 2D-Router. So, a soft error in the routing computation stage

would result in the calculation of an inaccurate output port. Since, routing computation stage

is the first stage in the routing pipeline, virtual channel allocation and switch allocation stages,

which perform allocation based on the output of the routing computation stage, are also affected

due to the inaccurate output port. Due to this faulty output port, a packet will be forwarded to

an incorrect downstream router, which could potentially result in either packet loss or deadlock

or significant increase in the latency of the packet.

A soft error in the virtual channel allocation stage would result in the allocation of an incor-

rect virtual channel (at the downstream router) to a packet (at the current router). An incorrect

virtual channel could be either a non-existing virtual channel or a virtual channel at an output

port other than at the required output port or a non-empty virtual channel. The allocation of

a non-existing virtual channel or a virtual channel at an output port other than at the required

output port would result in a packet drop because; no virtual channel has been allocated to

the packet at the correct downstream router. The allocation of a non-empty virtual channel to

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 95

5. NoCFI: A Networks-On-Chip Fault Injection Methodology

VC Allocator Switch AllocatorRouting

Link-Level Flow control

CrossbarInput Unit

VC1

VCn

..
..
....

Input

Ports

Output

Ports

Upstream

Flow Control

Downstream

Flow Control

..
..
.

..
..
.

Fig. 5.2: A 4-stage 2D-Router pipeline.

a packet would result in data corruption because the new packet would overwrite the existing

packet that is currently occupying the virtual channel. Both packet drop and data corruption call

for retransmission of packet which increases packet latency significantly as well as the power

consumption.

A soft error in the switch allocation stage could result in flits of the same packet being

forwarded to different downstream routers. If the head flit of a packet and a body/tail flit of the

same packet are forwarded to different routers, then the body/tail flit will be dropped because

there is no virtual channel allocated for them in that specific router. Furthermore, even if the

router that has incorrectly received the body/tail flit has an empty virtual channel to store the flit,

since there is no routing information present in a body/tail flit, the router cannot route the flit

and hence is forced to dropping the flit. As a result, the entire packet needs to be retransmitted

that results in significant increase in packet latency.

The crossbar connects the input ports of a router to its output ports. The connections of the

crossbar are configured every cycle. A crossbar can be visualized as a group of multiplexers.

The number of multiplexers and the size of each multiplexer are determined by the size of the

crossbar. From the generic crossbar circuit it can be observed that, to reach a specific output

port of the router, flits from any input virtual channel need to traverse through the multiplexer

associated with that output port. Since, in the generic crossbar circuit, there is only one path to

reach an output port, if a multiplexer is affected by a fault, the path to the associated output port

is blocked and hence the port becomes unreachable.

NoC buffers (i.e, the VCs) may be affected by the strike of a charged particle inducing

96 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

5.5 NoCFI

information errors, compromising the data transmission. In other words, as the packets in a

mesh architecture is stored in flits following the head, body, and tail flits, a transient fault in the

NoC’s buffers can change the packet’s information (i.e, the head, body, or tail flits) stored into

the buffers. Thus, if a fault is on the head or tail flits, it can change the direction of the packet

as well as blocking a buffer causing deadlock. But if the fault is on the body flits, it can change

the data information forcing a retransmission of the entire packet.

5.5 NoCFI

In this section, we present our emulation infrastructure for evaluating the impact of multiples

faults in the NoC architecture. Also, we described the integration between the ASIC-design

flow and the FPGA/Simulation-based flow used in the NoCFI methodology. And finally, we

present the fault injection process taking into account the layout information of the 2D-Router

as well as its routing algorithm to classify the failures in the NoC.

5.5.1 Methodology

The NoCFI methodology is based on the NETFI-2 described in Chapter 4. However, as detailed

in Section 5.2, there are some differences in the approach of each one. So, the main differences

is in the use of ASIC-desing flow in order by NoCFI to extract informations about the layout

and gate netlist. In this sense, we have adopted a pre-customized cells that represent canonical

forms for typical IC functions [106]. Being more specific, we have used standard cell libraries

from ST-Microelectronics, which includes low-level logic function such as INVETER, AND,

OR, MUX, latches, and flip-flops. This set of cells has a regularized physical structure which

allows a more feasible and faster placing and routing and enables an extrapolation of dynamic

and static characterization parameters. So, a typical standard cell library contains basically the

following main elements [106]:

• Timing and power library definitions: Liberty, Synopsys, DB, IBIS

• Behavioral simulation databases (functional and annotated views): Verilog and VHDL

• Spice simulation databases: CIR, SP, SCS

• Cell circuit views: CDL, DFII

• Cell circuit layouts: GDSII, DFII

• Physical views for placement and routing: LEF

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 97

5. NoCFI: A Networks-On-Chip Fault Injection Methodology

Programmed

in C language

using Xilinx's SDK

bitstream

Generation

Campaign

controller

(MicroBlaze

processor)

Emulation Injection

campaign

6

7

FPGA

Synthesis
5

Programmed in

SystemVerilog and

TCL Scripts using

Modelsim/VCS

Testbench and

Benchmark Traffic

Campaign

controller

(Testbench)

Simulation Injection

campaign

4

Simulation

Setup
3

For a specific Technology

Library, in our case

ST FD-SOI 28nm

NoC

HDL Source Code

NoC Synthesis

Place & Route

NoC

Netlist and Layout

Original design

 is not modified

before fault-injection

1

NoCNET2
Select Blocks to Inject

Transient and Permanet Faults

Modified

Netlist

PC Controller and

Tolerance Analysis

Emulation Flow

FPGA

Simulation Flow

Modelsim/VCS

ASIC Design Flow

The gate level description

of a standard cell design

after place&route is stored

in Cadence DEF format

The original libraries of the

ST FD-SOI 28nm are replaced by

the new ones with fault injection

signals and cross-references

to the Xilinx's libraries.

Fig. 5.3: NoCFI work-flow methodology

The NoCFI uses the behavioral simulation databases as weel as the physical views for place-

ment and routing provided by the ASIC-design flow to inject multiples failures. To better un-

derstand the NoCFI methodology, we first outline the entire NoCFI methodology in Figure 5.3.

In this sense, NoCFI is presented in three main flows (i.e., ASIC-based, FPGA-based, and

Simulation-based flow). First, the ASIC-based flow generates the gate netlist and layout infor-

mation based on the technology adopted. Then, in the FPGA-based flow, all the sensitive parts

of the 2D-Router’s circuit are identified and classified throughout an exhaustive fault injection

campaign. Finally, in the Simulation-based flow, faults are injected in a full 2D-NoC using as a

target the most sensitive part of the 2D-Router’s circuit previously elected by the FPGA-based

flow. In summary, NoCFI methodology can be described in seven steps outlined below.

Initially, in Step 1 , the HDL description of the 2D-Router is used for synthesis and then

98 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

5.5 NoCFI

place&route. The EDA tools used for physical design are Synopsys Design Compiler for syn-

thesis and Cadence SoC Encounter for place&route. The technology adopted was the FD-SOI

28nm from ST-Microelectronics. The gate level description of a standard cell design after

place&route is the topmost unique description of the future ASIC in terms of abstraction levels.

The data to process is placement location of the standard cells stored in Cadence DEF format.

This corresponds to the floorplan view. Signal interconnections are stored in Verilog netlist

format. The gate netlist and the layout information, are necessary for further steps.

In Step 2 , in order to inject faults at each gate output, the Networks-on-Chip NETlist

(NoCNET) modify the original gate netlist by means of instrumentation techniques such as one

described in Chapter 4. It means that a large number of extra input signals used to access all

memory cells and logic blocks of the 2D-Router are inserted in the gate netlist file thus allowing

fault injection. The resulting synthesis of the modified gate netlist includes some additional

combinational circuitry to the design. Thus, in the case of transient faults, NoCNET modifies

all the logic gates of the gate netlist by simply adding an extra multiplexer at the output to

select the appropriate value (erroneous or correct). It is worth noting that the original gate

netlits is previously obtained in the Step 1 using Synopsys Design Compiler and Cadence

SoC Encounter.

In summary, to emulate/simulate SEU, SET, MBU, and SEMT in the 2D-Routers some in-

strumentation in the original gate netlist must be done. As a result, the obtained modified gate

netlist can be seen as a different version of the original one, including signals to access the

sensitive elements, either to obtain their value or to inject faults. It was adopted a similar instru-

mentation technique used in the NETFTI-2 and described in subsection 4.3.1. However, it is

important to noting that instead of change the Xilinx’s library such as NETFI-2, NoCFI modify

the built-in library of FD-SOI by adding extra hardware components (i.e., instrumentation tech-

nique) like D-flip-flops and related blocks classified into those with enable signal and the those

without it. So, the emulation/simulation of SEU, SET, SEMT, and MBU in the 2D-Routers can

be briefly described as below:

• SEU Emulation/Simulation: in this case, it is required to add some instrumentation

hardware around the flip-flops of the design in order to perturb their content at any given

moment. To this end, a functionally equivalent structural design of the 2D-Router is

obtained (i.e., in terms of gate level primitives) and the hardware inserted around the flip-

flops with an injection (inj) signal combined with some additional logic (a XOR-gate and

a multiplexer) are used to inject faults.

• SET Emulation/Simulation: in this case, it is modified all the logic gates of the gate

netlist by simply adding an extra multiplexer at the output to select the appropriate value

(erroneous or correct).

• SEMT and MBU Emulation/Simulation: because the layout information of the circuit

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 99

5. NoCFI: A Networks-On-Chip Fault Injection Methodology

is extracted by means of place&router process, we have the position of a gate and its

neighbour gates in the LEF file. Also, we have the correlation between the signal inj and

the gate from the modified gate netlist. Finally, the instrumentation technique made in the

ST-Microelectronics library to emulate/simulate SET and SEU makes it possible to inject

multiple faults in the CUT (i.e., 2D-Router) just selecting two or more inj signals at the

same time.

In Step 3 , a HDL-testbench implemented in SystemVerilog is in charge for managing

the fault injection campaign in the NoC’s gate netlist modified by NoCNET. In this case, the

behavioral simulation databases provided by the library are modified to accept the extra inj

signals as well as the extra instrumentation hardware that are used for fault injection. It means

that the modified netlist obtained in Step 2 is attached to the HDL-testbench by using the

modified ST FD-SOI 28nm library. Also, the traffic benchmark is selected based on the routing

algorithm adopted by the 2D-Router.

In Step 4 , the experiment can be directly executed using simulator tools like Modelsim,

from Mentor Graphics, or VCS, from Synopsys. The fault-injection campaign is encoded in

the HDL-testbench and automated by him. By accessing the local network interfaces as well

as the inj signal of all 2D-Routers, the HDL-testbench can efficiently execute several iterations

of fault-injection experiments randomly selecting the fault points and running different bench-

marks traffic.

In Step 5 , a campaign controller is integrated within the modified gate netlist for the

target FPGA. The campaign controller is implemented in a soft-core processor which is wired

throughout AXI interface to the 2D-Router modified by NoCNET. The AXI interface connects

all Input/Output ports of the 2D-Router (i.e., North, South, West, East, Local) as well as all

signals from Link-level Flow control. Also, all the inj signals, which are used to emulate SEU

and SET in the 2D-Router, are connected in the campaign controller using AXI interface. And

finally, the functional verilog libraries, previously modified to support fault injection, are then

attached to the 2D-Router’s gate netlist. The resulting bitstream implementing the complete

circuit (controller, Interface, 2D-Router gate netlist, and FD-SOI libraries) is thus generated

and implemented in the target FPGA using Vivado Design Suite from Xilinx.

In Step 6 , the FPGA-based experiment can be directly executed from the soft-core proces-

sor without requiring additional or external hardware support. Indeed, the whole SEU and SET

fault-injection campaign can be conveniently encoded in the processor software. By accessing

high-speed interfaces connecting the CUT, the software can efficiently execute several iterations

of fault-injection experiments with different traffic benchmark and fault points. In this step, it

is possible to execute an exhaustive fault injection campaign since the experiment is performed

in FPGAs.

Finally, in Step 7 , a Personal Computer (PC) is responsible for collect all the data and

analysis the fault injection propagation, the number of errors, and the type of errors. Thus,

100 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

5.5 NoCFI

each cell in the 2D-Router’s circuitry is classified according to the number and type of errors

generated. It is important noting that after step 2 (NoCNET) this method is partitioned in

two indistinctly paths: simulation-flow and emulation-flow. It means that the simulation-flow

and the emulation-flow can be used either individually or collaboratively. If it is used collabo-

ratively, the emulation-flow can provides to the simulation-flow some information such as the

most critical points or components of failures. Those type of information can accelerate the

fault-injection campaign simulation because it can select only the elements of the circuit which

are most likely to fail.

5.5.2 NoCFI Architecture

Figure 5.4 shows the presented architecture implementing the NoCFI methodology. NoCFI is

integrated into a single FPGA where the 2D-Router and the experiment controller are instan-

tiated and connected by a dedicated interface. To this end, the Advance eXtensible Interface

(AXI) has been used, since it has been adopted by Xilinx for implementation of complex

System-On-Chip (SoC) designs. In this particular case, the MicroBlaze processor (campaign

controller) is a master, whereas the 2D-Router is a slave. The MicroBlaze processor can make

use of an UART or Ethernet interface to communicate with the outside to report the status of

the experiment or its final results.

Fault-injection data

and Switch inputs

AXI Interface slave

Target FPGA (NoC + Campaign Controller)

Switch outputs

Fault Injection

Timer Controller

AXI Interface master

32-Bit RISC Core IP Core to control the duration

time of fault injection campaing
To report progress,

status and experiments results

UART or Ethernet Interface

East

West

North

South

2D Router

Modelsim/VCS

Simulation

Full NoC
Campaign

controller

program and

input data

VC Allocator Switch Allocator

Routing

Link-Level Flow control

Crossbar

Input Unit

VC1

VCn

..
..
....

Input

Ports

Output

Ports

Upstream

Flow Control
Downstream

Flow Control

..
..
.

..
..
.

Process Element

Full NoC 4x4 ROUTER

PE

PE PE PE PE

PE PEPEPE

PE PE PE PE

PEPEPEP

E

Single Router under

test into a FPGA

Fig. 5.4: Block diagram of the NoCFI architecture

The AXI interface allows communicating a slave 2D-Router with a master unit (campaign

controller) that exchange information while using minimal area in the FPGA. NoCFI uses this

communication channel to configure the SEU and SET fault injections in the components al-

ready intervened by NoCNET (inj signals), as well as to configure the input and read the output

values of the 2D-Router. Since the AXI slave device maps the memory addresses of the micro-

processor to the 2D-Router fault-injection signals, the fault injection campaign can be conve-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 101

5. NoCFI: A Networks-On-Chip Fault Injection Methodology

niently defined by software. Furthermore, the clock of the 2D-Router can also be managed via

this interface through an IP core named Fault Injection Timer Controller (FITiC). The FITiC

can control the clock cycle to accommodate different 2D-Router operating frequencies as well

as enabled or disabled the 2D-Router’s clock. Also, the FITiC can control the time of the fault

injection campaign by means of setting the duration of both SET and SEU as a fraction of the

clock cycle.

5.5.3 The Fault Injection Process

The fault injection campaign is performed by a synchronized cooperation between the fault-

injection in the cells and the input traffic patterns. This operation is explained in the following

four steps:

1. The cell where fault will be injected is selected from a correlation between the signal of

inj connected to the cell and the physical locations on the Router logic based on layout

resources provided by place&route.

2. The MicroBlaze generates all packets patterns to stimulate the Router under test. The

source/destination and content data of the packets are generated based on traces of syn-

thetic traffic of a Router in a full 4x4 NoC. Additionally, the MicroBlaze is responsible

for checking the flow control of the Router, for injecting faults in the selected cell, and

for selecting the type of fault (SEU, SET, MBU, or SEMT). Furthermore, the MicroBlaze

is responsible for analyzing the results identifying and classifying the errors.

3. After sending the packet through the Router’s input port, the MicroBlaze reads the register

of the output ports at each clock cycle. A soft-core, called Fault Injection Timer Controller

(FITiC), is responsible for synchronizing the fault injection, the packets patterns injected,

and the clock cycle during the fault injection campaign. In other words, the duration of

the fault injection can be accurately controlled through the FITiC allowing set the number

of valid faults per clock cycle.

4. At the end of the packets patterns stimulus, the correlation between the cell position and

the fault signature is saved and sent from MicroBlaze to a PC. The PC will compare,

analyze and run the simulation with those information sent by the Microblaze.

These steps are repeated for all the target cells inside the 2D-Router’s netlist. During the

execution of the fault injection campaign, the processor MicroBlaze communicates to the host-

PC by means of the serial/Ethernet connection providing information about the status of the test

as well as its final result.

102 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

5.6 Evaluation and Validation

5.6 Evaluation and Validation

We implemented the described approach on a Xilinx Development Board equipped with an

Artix-7 XC7A100T-CS324 FPGA. The 2D-Router under test used in this experiment is com-

posed by five input/output ports (North, South, East, West, and Local), two virtual channels (i.e.

two buffer per input port), and four pipeline stages as described in Section 5.3. The 2D-Router’s

HDL-source is an extension of the NoC Netmaker [77]. The processor synthesis and bitstream

generation of the FPGA were made using the Xilinx Vivado tool.

200

300

400

500

600

SEU SET MBU SEMT

N
u

m
b

e
r

o
f

e
rr

o
rs

Routing Unit VC Allocator Switch Allocator

Fig. 5.5: The amount of errors observed in the Router after a fault injection campaign with one
fault (SEU/SET) and two faults (MBU/SEMT).

In order to detect errors provoked during the fault injection campaign, the MicroBlaze

checks the Router’s computation for four differences cases. First, the MicroBlaze verifies the

packet’s turn taking into account the algorithm used in the routing unit [25]. For example, when

the routing unit uses the XY algorithm, the packets must be routed first in the X direction before

taking the Y direction. If this order is inverted, the MicroBlaze will report an error. Second,

an error is signalized when the VC allocator select a Virtual Channel (i.e., a buffer) which is

being used by another packet or belongs to a VN for which the package is forbidden to select.

Third, the MicroBlaze will report an error if the Switch Allocator cannot correctly select the

compound pair input/output port. Fourth, the MicroBlaze checks either if the packet routed can

provoke a deadlock or if the fault injects have blocked the Router. In summary, the Router’s

computation is considered valid only if it attends for all cases listed above

Figure 5.5 shows the results of the fault injection campaign performed in three elements

of the Router: Routing Computation Unit, VC Allocator, and Switch Allocator. The results

show that the Routing Computation Unit is the most sensitive elements to transient faults. It

has occurred because the Routing Unit is responsible for selecting an output-port as well as a

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 103

5. NoCFI: A Networks-On-Chip Fault Injection Methodology

virtual network which the packet needs to take. Since VC Allocator and Switch Allocator use

the output-port and the virtual network provided by the Routing Unit, a mistake in the Routing

Computation Unit may be propagated by all subsequent Router’s elements.

Table 5.1: Emulation time comparing the fault injection campaign between FPGA-emulation
and Gate-level Simulation.

Type Platform Test

Fault Injection FPGA-emulation (sec) Gate-level Simulation (sec)

SET 18 2778

SEMT 34 5280

SEU 12 1908

MBU 25 3960

In order to compare the time saved by the FPGA-based fault injection campaign, we per-

formed a second campaign using the Modelsim simulator, the FD-SOI 28nm library modified,

and the 2D-Router’s gate-level netlist. Table 5.1 shows that our approach can speed up the fault

injection campaign in more than 150X compared with the gate-level Netlist simulation.

5.7 Conclusion

In this Chapter, an hybrid fault injection method for Networks-on-Chip was presented. This

method, called NoCFI, combines the FPGA-based emulation with layout-based information al-

lowing an interactive approach to understanding single and multiple transient fault propagation

inside the NoC architecture. Compared to an equivalent gate-level fault injection campaign, this

method presents a speedup of more than 150 times, which makes possible an exhaustive analy-

sis of complex NoCs. Furthermore, NoCFI can be adapted to test different NoCs’ architectures

with a minimal modification of its methodology, which makes NoCFI a general method to em-

ulate transients faults in Networks-on-Chip. Besides, since the methodology of NoCFI takes in

consideration only the HDL of the Circuit Under Test, it means that this methodology can also

be adapted to test others types of HDL-based circuit.

104 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

Part IV

CONCLUSIONS

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 105

Chapter 6

Conclusions and Perspectives

6.1 Conclusions

Advances in semiconductor technologies and the growing demand for computing power allow

implementing more and more embedded processors into the same chip. As a result, Networks-

on-Chip are gradually replacing communication buses, which offer more throughput and allow

for simplified scaling. At the same time, the shrinking geometric dimensions and the grow-

ing circuit complexity lead to an increase in the sensitivity of the circuits to the manufacturing

process and their final operating environment. Manufacturing defects and failure rates during

the lifetime of the circuit increase when switching from one technology to a more advanced

one. Integrating fault tolerance techniques into a circuit becomes essential, especially for cir-

cuits which a fault may have critical consequences such as the ones operating in a sensitive

environment (i.e., aerospace, automotive, and healthcare). In this sense, this thesis described

different techniques for testing, detecting, and correcting transient and permanent failures in

the emerging System-on-Chip design. The proposed methods include fault-tolerant techniques

against soft-errors for 3D-NoC router architectures, a runtime and fault-tolerant routing scheme

for partially connected 3D-NoCs, and fault-injection frameworks for HDL-based designs.

One of the most sensitive parts of networks-on-chip is related to the routing computation

unit (RCU). Since the RCU is responsible for selecting an output port and a virtual channel for

the packets, a failure in its architecture can provoke critical errors such as deadlock, livelock

and/or crash all interconnection logic. In this thesis, soft-errors in the RCU architecture are

mitigated by providing efficient and minimalistic mechanisms to detect, mask, and then correct

route computation errors. The proposed approach is based on three main assumptions. First, a

well-known technique called double-sampling is used to get at different times two samples of

the routing computation unit. Then, those two samples are used by the fault-tolerant mechanism

in order to detect and/or mask some types of failures. Finally, in the case where failures cannot

be masked, a rerouting mechanism is used to repeat the route computation without provoking

deadlock. With those three assumptions, we have proved that our approach can detect and cor-

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 107

6. Conclusions and Perspectives

rect misrouting before the packets leave the faulty router. Of course, when a designer makes

use of fault-tolerant techniques to increase the circuit reliability, one of the first concerns that

comes to mind is the hardware overhead. So, in order to confirm that our approach is feasible

in terms of hardware, we have synthesized and compared it with the traditional Triple Modular

Redundancy (TMR) technique. Also, simulations were done in order to estimate the perfor-

mances of the proposed method in the presence of faults as well as in the fault-free operation.

The synthesis and simulation results put in evidence the low hardware overhead and the high

performance of this approach.

Another challenge in 3D-NoCs is that of transient and permanent faults in the vertical com-

munication of a partially connected 3D topologies. In fact, due to the emergence of TSV as a

promising vertical communication technology, it is necessary to provide efficient and reliable

routing algorithms for such topologies at a reasonable cost. In Chapter 3, we have demonstrated

that it was possible to guarantee 100% of package delivery through a smart attribution of the

virtual channels. The proposed routing scheme called FL-RuNS requires the addition of only

an asymmetric virtual channel along the West, North, Up, and Down directions that are used as

escape path to deliver packets in the presence of faults. It permits the routing algorithm search

for a healthy TSV during runtime and/or TSV’s failures. Also, since the FL-RuNS uses as a

baseline the First-Last routing algorithm, the vertical connection can be placed anywhere in the

network. It guarantees full connectivity in the presence of at least one vertical connection in the

upward and downward directions. To the best of our knowledge, this algorithm is the first one

to allow a complete runtime reconfiguration of the 3D-NoC without dropping packets during

transient or permanent faults in the vertical connections. The FL-RuNS algorithm is, therefore,

an appealing fault-tolerant solution in terms of cost, performance as well as resilience, making

it a great candidate to be adopted in future 3D-NoCs designs.

The second goal of this thesis was the development of a fault injection methodology to esti-

mate the sensitivity to soft-errors of circuits and systems issued from advanced manufacturing

technologies. NETFI-2 is an automated method that can be applied to circuits that have their

RTL code implemented on an FPGA. It is based on the manipulation of the netlist of the target

circuit through the modification of the built-in library of Xilinx in order to emulate SEU and

SET faults. One of the advantages of NETFI-2 frameworks is the ability to emulate transient

faults in a Circuit Under Test (CUT) using FPGAs. It clearly can accelerate the fault injec-

tion campaign hundreds of times when compared with simulation approaches. Also, we have

demonstrated that the higher the granularity of the SET emulation is, the more accurate the

results will be. In order to evaluate NETFI-2, fault injection campaigns were carried out on

two stochastic computer architectures: Bayesian Machine and Support Vector Machine. Using

NETFI-2, we have proved that booth architectures are intrinsically resilient to transient faults.

And also, we have identified the more sensitive elements for each architecture.

The final contribution of this thesis involved a fault injection methodology called NoCFI,

108 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

6.2 Future Directions

that can emulate multiple faults in the circuit under test taking into account the layout informa-

tion. The proposed methodology allows an interactive approach to understanding failure propa-

gation inside the NoCs at an early design stage. NoCFI is a hybrid technique that combines the

features of both ASIC-based and FPGA-based design flow in order to emulate transient faults in

an NoC. We have demonstrated that, using the Netlist and the files provided by the place&route

as well as by modification of the built-in library of the design kit technology, we can emu-

late multiple failures such as Multiple Bit Upset (MBUs) and Single Event Multiple Transient

(SEMTs). A case study using a 4-stage 2D-NoC was used in order to validate the proposed

approach. Compared to an equivalent gate-level simulation, this methodology is more than 150

times faster. Also, it is worth noting that this speed gain allows performing exhaustive analysis

in the Circuit Under Test (CUT). Finally, we have demonstrated that although this methodol-

ogy was implemented to study the effects of multiples failures in the NoC’s architecture, it can

be applied to other CUTs by making only a few adjustments. It makes NoCFI a generic fault

injection framework able to emulate multiple faults in any HDL-based design.

6.2 Future Directions

In the field of Networks-on-Chip (NoC), an attractive research direction is the emulation of a full

NoC system (cache hierarchy, processing cores, etc..) on FPGAs platforms. It can be interesting

since most of the NoC System designs are usually evaluated and validated by means of single-

thread cycle-accurate simulation. It means that the vast majority of NoC system simulators are

overly slow at performing long-running simulations of full large systems. On the other hand,

FPGA-based emulation can provide full parallelism in its execution which clearly provides

several orders of magnitude speed-up in comparison with single-thread simulators. However,

an important drawback in the FPGA-based emulation is the excessive required time for re-

emulation and re-synthesis, when any change is necessary into the NoC. Furthermore, resource

limitation is one of the other drawbacks of FPGAs for simulating full NoCs systems. In order

to eliminate this obstacle, the virtualization approach has recently been proposed to implement

larger NoCs systems on the same FPGA [65,119]. In those cases, synchronization issues should

be taken into account when virtualization is employed, which can be a challenge in multi-

thread/parallelism systems. So a comprehensive solution for those problems, in an FPGA-based

full NoC system emulation, is still an issue that must be addressed.

Yet in the NoC perspective, real time applications for the 3D-NoCs are good candidates

for future works due to the fact that it is important to guarantee a fault-tolerant scheme for

the router’ circuits but also it is important to make the packets able to arrive on-time at their

destinations. Furthermore, the works presented in literature have addressed either real-time [57]

or fault-tolerant [89,121] in Networks-on-Chip. So, guaranteeing booth fault-tolerance and real-

time in a partially connected three-dimensional NoC is still a issue that must be addressed. In

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 109

6. Conclusions and Perspectives

other words, integrating run-time adaptivity and system reconfiguration with fault tolerance and

energy-efficient techniques would make significant contributions in this area.

Among different hardware accelerators for neural networks, those methods that use NoC as

communication infrastructure give better performance and scalability, as they can better man-

age the heavy multicast-based inter-neuron and memory-to-neuron traffic [14, 51]. It means

that a reconfigurable cluster-based Networks-on-Chip architecture is an excellent candidate for

interconnecting future Neural Networks intra-chips. In the field of stochastic computers, the de-

velopment of complex Machine-Learning Systems-on-Chip (MLSoCs) able to make their own

decisions is an attractive subject at the moment. In addition, translating those MLSoCs’ algo-

rithms in ASICs designs with low power and area presents a real promise for future works to be

developed in the next years.

In the field of fault-injection methodologies, the development of tools able to performed

fault injection campaigns in more complex devices requires higher performance in order to carry

out a larger fault injection campaign in an acceptable time. Also, the complexity in evaluated

Systems-on-Chip with multiple cores is a challenge, since this type of SoCs cannot be tested in

a single FPGA due to its larger size and its very complex circuitry. For this reason, we strongly

believe that the development of efficient fault-injection methodologies for Many- and Multi-

cores SoCs is still an important issue that must be addressed. Thus, an analytical methodology

that can emulate/simulate the radiation effect on this type of SoCs can be a promising subject to

be investigated.

Our future work includes protecting other critical modules from the NoC router control path

such as the virtual channel allocator and switch allocator, offering a comprehensive solution to

deal with permanent and transient faults. Also, we have planned to include in ASIC a prototype

of a Networks-on-Chip and confront the NoCFI predictions with the results issued from radia-

tion ground testing. Finally, the final version of NoCFI will be provided as open source to allow

designers to add any user-specific function, processor, or application.

110 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

Bibliography of Author’s Publication

This thesis is written based on my research during the period from December 2015 to October

2019 at the University of Grenoble Alpes, France. The following publications are the main

references of this thesis:

• Journal Publications

1. A. Coelho, A. Charif, N-E. Zergainoh and R. Velazco, "FL-RuNS: A High Performance

and Runtime Reconfigurable Fault-Tolerant Routing Schemes for Partially-Connected 3D

Networks-on-Chip," in IEEE Transactions on Nanotechnology, vol. 18, pp. 806-818,

2019. DOI: 10.1109/TNANO.2019.2931271

2. A. Coelho, R. Laurent, M. Solinas M., J. Fraire, E. Mazer, N-E. Zergainoh, R. Velazco,

"On the Robustness of Stochastic Bayesian Machines," in IEEE Transactions on Nuclear

Science, vol. 64, no. 8, pp. 2276-2283, Aug. 2017. DOI: 10.1109/TNS.2017.2678204

3. M. Trindade, A. Coelho, C. Valadares, R. Vieira, S. Rey, B. Cheymol, M. Balylac, R.

Velazco, and R. Bastos. "Assessment of a Hardware-Implemented Machine Learning

Technique Under Neutron Irradiation," in IEEE Transactions on Nuclear Science, vol.

66, no. 7, pp. 1441-1448, July 2019. DOI: 10.1109/TNS.2019.2920747

4. A. Charif, A. Coelho, M. Ebrahimi, N. Bagherzadeh and N-E. Zergainoh, "First-Last: A

Cost-Effective Adaptive Routing Solution for TSV-Based Three-Dimensional Networks-

on-Chip," in IEEE Transactions on Computers, vol. 67, no. 10, pp. 1430-1444, 1 Oct.

2018. DOI: 10.1109/TC.2018.2822269

5. A. Charif, A. Coelho, N-E. Zergainoh and M. Nicolaidis, "A Dynamic Sufficient Con-

dition of Deadlock-Freedom for High-Performance Fault-Tolerant Routing in Networks-

on-Chips," in IEEE Transactions on Emerging Topics in Computing. vol. 1, 23 Nov.

2017. DOI: 10.1109/ TETC.2017.2776909

6. A. Charif, A. Coelho, N-E. Zergainoh, M. Nicolaidis, "A Framework for Scalable TSV

Assignment and Selection in Three-Dimensional Networks-on-Chips,” VLSI Design, vol.

2017, Article ID 9427678, 15 pages, 2017. DOI: https://doi.org/10.1155/2017/9427678.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 111

6. Bibliography of Author’s Publication

7. B. Chemli, A. Zitouni, A. Coelho, R. Velazco, “Design of Efficient Pipelined Router

Architecture for 3D Network on Chip” in International Journal of Advanced Computer

Science and Applications (IJACSA), vol. 8, no. 7, pp 188-194, 7 Jul. 2017.

DOI:http://dx.doi.org/10.14569/IJACSA.2017.080725

• Conference Publications

8. A. Coelho, N-E. Zergainoh and R. Velazco, “NoCFI: A Hybrid Fault Injection Method

for Networks-on-Chip” IEEE International Latin America Symposium (LATS’19), 4–9

March, 2019, Bolivia, IL, USA.

9. A. Coelho, A. Charif, N-E. Zergainoh and R. Velazco, “An Online Reconfigurable Rout-

ing Scheme for Partially Connected 3D Network-On-Chip” IEEE International Sympo-

sium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS’18),

8–10 october, 2018, Chicago, IL, USA.

10. A. Coelho, A. Charif, N.-E. Zergainoh, J. Fraire, R. Velazco, "A Soft-Error Resilient

Route Computation Unit for 3D Network-on-Chips", Design, Automation & Test in Eu-

rope Conference (DATE’18), 19-23 March, 2018, Dresden, Germany.

11. A. Coelho, M. Solinas, J. Fraire, N.-E. Zergainoh, P. Ferreyra, R. Velazco, "NETFI-2: An

Automatic Method for Fault Injection on HDL-Based Designs", Design, Automation &

Test in Europe Conference, Univ.Booth (DATE’17), Lausanne, SWITZERLAND, 23-31

march 2017

12. A. Coelho, M. Solinas, R. Laurent, J. Fraire, E. Mazer, N.-E. Zergainoh, S. Karaoui,

R. Velazco, "Evidences of Stochastic Bayesian Machines Robustness Against SEUs and

SETs", IEEE European Conference on Radiation and its Effects on Components and Sys-

tems (RADECS’16), Bremen, GERMANY, 19-23 september 2016

13. M. Solinas, A. Coelho, J. Fraire, N.-E. Zergainoh, R. Velazco, "TGV: Tester Generic and

Versatile for radiation effects on advanced VLSI circuits", Automation & Test in Europe

Conference, Univ.Booth (DATE’17), Lausanne, SWITZERLAND, 23-31 march 2017

14. A. Charif, N.-E. Zergainoh, A. Coelho, M. Nicolaidis, "Rout3D: A Lightweight Adaptive

Routing Algorithm for Tolerating Faulty Vertical Links in 3D-NoCs", 22th IEEE Euro-

pean Test Symposium (ETS’17), pp. 1-6, Limassol, CYPRUS, 22-26 may, 2017.

15. M. Trindade, A. Coelho, C. Valadares, R. Vieira, S. Rey, B. Cheymol, M. Balylac, R.

Velazco, and R. Bastos. "Assessment of hardware-implemented support vector machine

under radiation effects". In 2018 18th European Conference on Radiation and Its Effects

on Components and Systems (RADECS’18), pages 1–5, Gothenburg, Sweden, 16-21

september, 2018.

112 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

16. A. Charif, A. Coelho, N.-E. Zergainoh, M. Nicolaidis, "MINI-ESPADA: A Low-Cost

Fully Adaptive Routing Mechanism for Networks-on-Chips", IEEE Latin-American Test

Symposium (LATS’17), pp. 1-4, Bogota, COLOMBIA, 13-15 march, 2017.

17. T. Bonnoit, A. Coelho, N.-E. Zergainoh, R. Velazco, "SEU Impact in Processor’s Control-

Unit: Preliminary Results Obtained for LEON3 Soft-Core", 18th IEEE Latin American

Test Symposium (LATS’17), pp. 1-4, Bogota, COLOMBIA, 13-15 march, 2017.

18. M. Solinas, A. Coelho, J. Fraire, N.-E. Zergainoh, P. Ferreyra, R. Velazco, "Preliminary

Results of NETFI-2: An Automatic Method for Fault Injection on HDL-Based Designs",

18th IEEE Latin-American Test Symposium (LATS’17), Bogota, COLOMBIA, 13-15

march, 2017.

19. A. Charif, A. Coelho, N.-E. Zergainoh, M. Nicolaidis, "Detailed and highly parallelizable

cycle-accurate network-on-chip simulation on GPGPU", ACM/IEEE Design Automation

Conference (ASP-DAC’17), pp. 672-677, Chiba/Tokyo, JAPAN, 16-19 january, 2017.

20. H. Castro, J. Silveira, A. Coelho, F. Silva, P. Magalhães, O. Lima, "A correction code

for multiple cells upsets in memory devices for space applications," 2016 14th IEEE

International New Circuits and Systems Conference (NEWCAS’16), Vancouver, BC, 26-

29 june, 2016.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 113

6. Bibliography of Author’s Publication

114 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

References

[1] ACUNHA GUIMARÃES, L., FERREIRA DE PAIVA LEITE, T., POSSAMAI BASTOS, R.,

AND FESQUET, L. Non-Intrusive Testing Technique for Detection of Trojans in Asyn-

chronous Circuits. In DATE (2018).

[2] AHMED, A. B., AND ABDALLAH, A. B. Graceful deadlock-free fault-tolerant rout-

ing algorithm for 3d network-on-chip architectures. Journal of Parallel and Distributed

Computing 74, 4 (2014), 2229 – 2240.

[3] AKBARI, S., SHAFIEE, A., FATHY, M., AND BERANGI, R. AFRA: A low cost high

performance reliable routing for 3D mesh NoCs. In 2012 Design, Automation & Test in

Europe Conference & Exhibition (DATE) (mar 2012), IEEE, pp. 332–337.

[4] ALAGHI, A., AND HAYES, J. Survey of stochastic computing. ACM Trans. Embed.

Comput. Syst. 12, 2s (May 2013), 92:1–92:19.

[5] ALDERIGHI, M., CASINI, F., D’ANGELO, S., MANCINI, M., CODINACHS, D. M.,

PASTORE, S., POIVEY, C., SECHI, G. R., SORRENTI, G., AND WEIGAND, R. Exper-

imental validation of fault injection analyses by the flipper tool. IEEE Transactions on

Nuclear Science 57, 4 (Aug 2010), 2129–2134.

[6] BAHMANI, M., SHEIBANYRAD, A., PÉTROT, F., DUBOIS, F., AND DURANTE, P.

A 3D-NoC router implementation exploiting vertically-partially-connected topologies.

Proceedings - 2012 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2012

(2012), 9–14.

[7] BARAKAT, N., BRADLEY, A. P., AND H. BARAKAT, M. N. Intelligible support vector

machines for diagnosis of diabetes mellitus. IEEE Transactions on Information Technol-

ogy in Biomedicine 14, 4 (July 2010), 1114–1120.

[8] BARAZA, J. C., GRACIA, J., BLANC, S., GIL, D., AND GIL, P. J. Enhancement of

fault injection techniques based on the modification of vhdl code. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems 16, 6 (June 2008), 693–706.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 115

REFERENCES

[9] BAUMANN, R. C. Radiation-induced soft errors in advanced semiconductor technolo-

gies. IEEE Transactions on Device and Materials Reliability 5, 3 (Sep. 2005), 305–316.

[10] BONCALO, O., AMARICAI, A., SPAGNOL, C., AND POPOVICI, E. Cost effective fpga

probabilistic fault emulation. In 2014 NORCHIP (Oct 2014), pp. 1–4.

[11] BORKAR, S. Thousand core chipsa technology perspective. In 2007 44th ACM/IEEE

Design Automation Conference (June 2007), pp. 746–749.

[12] BURNS, J., MCILRATH, L., KEAST, C., LEWIS, C., LOOMIS, A., WARNER, K., AND

WYATT, P. Three-dimensional integrated circuits for low-power, high-bandwidth sys-

tems on a chip. In 2001 IEEE International Solid-State Circuits Conference (ISSCC)

(Feb 2001), pp. 268–269.

[13] CAO, X., XIAO, L., LI, J., ZHANG, R., LIU, S., AND WANG, J. A layout-based soft er-

ror vulnerability estimation approach for combinational circuits considering single event

multiple transients (semts). IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (2018), 1–1.

[14] CARRILLO, S., HARKIN, J., MCDAID, L. J., MORGAN, F., PANDE, S., CAWLEY, S.,

AND MCGINLEY, B. Scalable hierarchical network-on-chip architecture for spiking neu-

ral network hardware implementations. IEEE Transactions on Parallel and Distributed

Systems 24, 12 (Dec 2013), 2451–2461.

[15] CHARIF, A., COELHO, A., EBRAHIMI, M., BAGHERZADEH, N., AND ZERGAINOH,

N. E. First-last: A cost-effective adaptive routing solution for tsv-based three-

dimensional networks-on-chip. IEEE Transactions on Computers (2018), 1–1.

[16] CHARIF, A., COELHO, A., ZERGAINOH, N.-E., AND NICOLAIDIS, M. A Framework

for Scalable TSV Assignment and Selection in Three-Dimensional Networks-on-Chips.

VLSI Design 2017 (2017), 1–15.

[17] CHARIF, A., COELHO, A., ZERGAINOH, N. E., AND NICOLAIDIS, M. Detailed and

highly parallelizable cycle-accurate network-on-chip simulation on GPGPU. In Proceed-

ings of the Asia and South Pacific Design Automation Conference, ASP-DAC (jan 2017),

IEEE, pp. 672–677.

[18] CHARIF, A., COELHO, A., ZERGAINOH, N. E., AND NICOLAIDIS, M. A dynamic

sufficient condition of deadlock-freedom for high-performance fault-tolerant routing in

networks-on-chips. IEEE Transactions on Emerging Topics in Computing PP, 99 (2017),

1–1.

116 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

REFERENCES

[19] CHARIF, A., ZERGAINOH, N.-E., COELHO, A., AND NICOLAIDIS, M. Rout3d: A

lightweight adaptive routing algorithm for tolerating faulty vertical links in 3d-nocs. In

22th IEEE European Test Symposium (ETS’17) (2017), ACM IEEE, pp. 1–6.

[20] CHARIF, A., ZERGAINOH, N. E., AND NICOLAIDIS, M. Addressing transient routing

errors in fault-tolerant networks-on-chips. In 2016 21th IEEE European Test Symposium

(ETS) (May 2016), pp. 1–6.

[21] CHATTERJEE, I., NARASIMHAM, B., MAHATME, N. N., BHUVA, B. L., REED, R. A.,

SCHRIMPF, R. D., WANG, J. K., VEDULA, N., BARTZ, B., AND MONZEL, C. Impact

of technology scaling on sram soft error rates. IEEE Transactions on Nuclear Science

61, 6 (Dec 2014), 3512–3518.

[22] CHEN, C., AND COTOFANA, S. D. A low cost method to tolerate soft errors in the noc

router control plane. In 2013 IEEE International SOC Conference (Sept 2013), pp. 374–

379.

[23] CIVERA, P., MACCHIARULO, L., REBAUDENGO, M., REORDA, M. S., AND VI-

OLANTE, M. Exploiting fpga-based techniques for fault injection campaigns on vlsi

circuits. In Proceedings 2001 IEEE International Symposium on Defect and Fault Toler-

ance in VLSI Systems (2001), pp. 250–258.

[24] COELHO, A., CHARIF, A., ZERGAINOH, N., AND VELAZCO, R. A runtime fault-

tolerant routing scheme for partially connected 3d networks-on-chip. In 2018 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT) (Oct 2018), pp. 1–6.

[25] COELHO, A., CHARIF, A., ZERGAINOH, N. E., FRAIRE, J., AND VELAZCO, R. A

soft-error resilient route computation unit for 3d networks-on-chips. In 2018 Design,

Automation Test in Europe Conference Exhibition (DATE) (March 2018), pp. 1357–1362.

[26] COELHO, A., LAURENT, R., JR, M. S., FRAIRE, J., MAZER, E., ZERGAINOH, N. E.,

KARAOUI, S., AND VELAZCO, R. On the robustness of stochastic bayesian machines.

IEEE Transactions on Nuclear Science PP, 99 (2017), 1–1.

[27] COELHO, A., SOLINAS, M., LAURENT, R., FRAIRE, J., MAZER, E., ZERGAINOH,

N., KARAOUI, S., AND VELAZCO, R. Evidences of Stochastic Bayesian Machines

Robustness Against SEUs and SETs. In Proceedings of IEEE RADECS’16 (Sept 2016).

In Press.

[28] COELHO, A., ZERGAINOH, N., AND VELAZCO, R. Nocfi: A hybrid fault injection

method for networks-on-chip. In 2019 IEEE Latin American Test Symposium (LATS)

(March 2019), pp. 1–6.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 117

REFERENCES

[29] COELHO, A., ZERGAINOH, N., AND VELAZCO, R. Nocfi: A hybrid fault injection

method for networks-on-chip. In 2019 IEEE Latin American Test Symposium (LATS)

(March 2019), pp. 1–6.

[30] CONSTANTINIDES, K., PLAZA, S., BLOME, J., ZHANG, B., BERTACCO, V.,

MAHLKE, S., AUSTIN, T., AND ORSHANSKY, M. Bulletproof: a defect-tolerant cmp

switch architecture. In The Twelfth International Symposium on High-Performance Com-

puter Architecture, 2006. (Feb 2006), pp. 5–16.

[31] CRISWELL, T. L., MEASEL, P. R., AND WAHLIN, K. L. Single event upset testing

with relativistic heavy ions. IEEE Transactions on Nuclear Science 31, 6 (Dec 1984),

1559–1561.

[32] CUNNINGHAM, C. M., AND AVRESKY, D. R. Fault-tolerant adaptive routing for two-

dimensional meshes. In Proceedings of 1995 1st IEEE Symposium on High Performance

Computer Architecture (Jan 1995), pp. 122–131.

[33] DALLY, W., AND TOWLES, B. Route packets, not wires: on-chip interconnection net-

works. In Proceedings of the 38th Design Automation Conference (2001), pp. 684–689.

[34] DANG, K. N., MEYER, M., OKUYAMA, Y., ABDALLAH, A. B., AND TRAN, X.-T.

Soft-error resilient 3d network-on-chip router. In 2015 IEEE 7th International Confer-

ence on Awareness Science and Technology (iCAST) (Sept 2015), pp. 84–90.

[35] DAVIS, W. R., WILSON, J., MICK, S., XU, J., HUA, H., MINEO, C., SULE, A. M.,

STEER, M., AND FRANZON, P. D. Demystifying 3D ICs: The pros and cons of going

vertical, jun 2005.

[36] DE ANDRES, D., RUIZ, J. C., GIL, D., AND GIL, P. Fault emulation for dependability

evaluation of vlsi systems. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 16, 4 (April 2008), 422–431.

[37] DIXIT, A., AND WOOD, A. The impact of new technology on soft error rates. In Re-

liability Physics Symposium (IRPS), 2011 IEEE International (April 2011), pp. 5B.4.1–

5B.4.7.

[38] DUARTE, R. P., LOBO, J., FERREIRA, J. F., AND DIAS, J. Synthesis of Bayesian

Machines on FPGAs using Stochastic Arithmetic. In 2nd International Workshop on

Neuromorphic and Brain-Based Computing Systems (NeuComp 2015), Design Automa-

tion Test Europe (DATE2015) (2015).

[39] DUBOIS, F., SHEIBANYRAD, A., PETROT, F., AND BAHMANI, M. Elevator-First:

A Deadlock-Free Distributed Routing Algorithm for Vertically Partially Connected 3D-

NoCs. IEEE Transactions on Computers 62, 3 (mar 2013), 609–615.

118 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

REFERENCES

[40] EBRAHIMI, M., ASADI, H., BISHNOI, R., AND TAHOORI, M. B. Layout-based mod-

eling and mitigation of multiple event transients. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 35, 3 (March 2016), 367–379.

[41] EBRAHIMI, M., AND DANESHTALAB, M. EbDa: A new theory on design and ver-

ification of deadlock-free interconnection networks. In 2017 ACM/IEEE 44th Annual

International Symposium on Computer Architecture (ISCA) (June 2017), pp. 703–715.

[42] EBRAHIMI, M., DANESHTALAB, M., LILJEBERG, P., AND TENHUNEN, H. Fault-

tolerant method with distributed monitoring and management technique for 3D stacked

meshes. In The 17th CSI International Symposium on Computer Architecture & Digital

Systems (CADS 2013) (oct 2013), IEEE, pp. 93–98.

[43] EBRAHIMI, M., DANESHTALAB, M., AND PLOSILA, J. Fault-tolerant routing algorithm

for 3d noc using hamiltonian path strategy. In 2013 Design, Automation Test in Europe

Conference Exhibition (DATE) (March 2013), pp. 1601–1604.

[44] EBRAHIMI, M., MOHAMMADI, A., EJLALI, A., AND MIREMADI, S. G. A fast, flexi-

ble, and easy-to-develop fpga-based fault injection technique. Microelectronics Reliabil-

ity 54, 5 (2014), 1000 – 1008.

[45] EGHBAL, A., YAGHINI, P. M., BAGHERZADEH, N., AND KHAYAMBASHI, M. Analyt-

ical Fault Tolerance Assessment and Metrics for TSV-Based 3D Network-on-Chip. IEEE

Transactions on Computers 64, 12 (dec 2015), 3591–3604.

[46] EVANS, A., GLORIEUX, M., ALEXANDRESCU, D., POLO, C. B., AND FERLET-

CAVROIS, V. Single event multiple transient (semt) measurements in 65 nm bulk tech-

nology. In 2016 16th European Conference on Radiation and Its Effects on Components

and Systems (RADECS) (Sept 2016), pp. 1–6.

[47] FAIX, M., MAZER, E., LAURENT, R., ABDALLAH, M. O., HY, R. L., AND LOBO,

J. Cognitive computation: A bayesian machine case study. In Cognitive Informatics

Cognitive Computing (ICCI*CC), 2015 IEEE 14th International Conference on (July

2015), pp. 67–75.

[48] FAURE, F., PERONNARD, P., VELAZCO, R., AND ECOFFET, R. Thesic+: A flexible

system for SEE testing. In Proceedings of Radiation Effects Components and Systems

Conference (Sept. 2002), pp. 231–234.

[49] FAZELI, M., AHMADIAN, S. N., MIREMADI, S. G., ASADI, H., AND TAHOORI, M. B.

Soft error rate estimation of digital circuits in the presence of multiple event transients

(mets). In 2011 Design, Automation Test in Europe (March 2011), pp. 1–6.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 119

REFERENCES

[50] FEERO, B. S., AND PANDE, P. P. Networks-on-chip in a three-dimensional environment:

A performance evaluation. IEEE Transactions on Computers 58, 1 (jan 2009), 32–45.

[51] FIRUZAN, A., MODARRESSI, M., DANESHTALAB, M., AND RESHADI, M. Reconfig-

urable network-on-chip for 3d neural network accelerators. In 2018 Twelfth IEEE/ACM

International Symposium on Networks-on-Chip (NOCS) (Oct 2018), pp. 1–8.

[52] FRANK, T., CHAPPAZ, C., LEDUC, P., ARNAUD, L., LORUT, F., MOREAU, S.,

THUAIRE, A., FARHANE, R. E., AND ANGHEL, L. Resistance increase due to elec-

tromigration induced depletion under tsv. In 2011 International Reliability Physics Sym-

posium (April 2011), pp. 3F.4.1–3F.4.6.

[53] GIUSTI, A., GUZZI, J., CIREŞAN, D. C., HE, F., RODRÍGUEZ, J. P., FONTANA, F.,

FAESSLER, M., FORSTER, C., SCHMIDHUBER, J., CARO, G. D., SCARAMUZZA, D.,

AND GAMBARDELLA, L. M. A machine learning approach to visual perception of forest

trails for mobile robots. IEEE Robotics and Automation Letters 1, 2 (July 2016), 661–

667.

[54] GLASS, C., AND NI, L. The Turn Model for Adaptive Routing. In Proceedings the

19th Annual International Symposium on Computer Architecture (New York, NY, USA,

1992), IEEE, pp. 278–287.

[55] GUZMAN-MIRANDA, H., TOMBS, J. N., AND AGUIRRE, M. A. Ft-unshades-up: A

platform for the analysis and optimal hardening of embedded systems in radiation envi-

ronments. In 2008 IEEE International Symposium on Industrial Electronics (June 2008),

pp. 2276–2281.

[56] HARADA, R., MITSUYAMA, Y., HASHIMOTO, M., AND ONOYE, T. Neutron induced

single event multiple transients with voltage scaling and body biasing. In 2011 Interna-

tional Reliability Physics Symposium (April 2011), pp. 3C.4.1–3C.4.5.

[57] HESHAM, S., RETTKOWSKI, J., GOEHRINGER, D., AND ABD EL GHANY, M. A.

Survey on real-time networks-on-chip. IEEE Transactions on Parallel and Distributed

Systems 28, 5 (May 2017), 1500–1517.

[58] HILTON, C., AND NELSON, B. Pnoc: a flexible circuit-switched noc for fpga-based

systems. IEE Proceedings - Computers and Digital Techniques 153, 3 (May 2006), 181–

188.

[59] HOWARD, J., DIGHE, S., VANGAL, S. R., RUHL, G., BORKAR, N., JAIN, S., ERRA-

GUNTLA, V., KONOW, M., RIEPEN, M., GRIES, M., DROEGE, G., LUND-LARSEN,

T., STEIBL, S., BORKAR, S., DE, V. K., AND WIJNGAART, R. V. D. A 48-core ia-32

120 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

REFERENCES

processor in 45 nm cmos using on-die message-passing and dvfs for performance and

power scaling. IEEE Journal of Solid-State Circuits 46, 1 (Jan 2011), 173–183.

[60] HUANG, L., ZHANG, X., EBRAHIMI, M., AND LI, G. Tolerating transient illegal turn

faults in nocs. Microprocess. Microsyst. 43, C (June 2016), 104–115.

[61] IBE, E., TANIGUCHI, H., YAHAGI, Y., I. SHIMBO, K., AND TOBA, T. Impact of

scaling on neutron-induced soft error in srams from a 250 nm to a 22 nm design rule.

IEEE Transactions on Electron Devices 57, 7 (July 2010), 1527–1538.

[62] IBRAHIM, S. K., AHMED, A., ZEIDAN, M. A. E., AND ZIEDAN, I. E. Machine learn-

ing methods for spacecraft telemetry mining. IEEE Transactions on Aerospace and Elec-

tronic Systems 55, 4 (Aug 2019), 1816–1827.

[63] JEITLER, M., DELVAI, M., AND REICHOR, S. Fuse - a hardware accelerated hdl fault

injection tool. In Programmable Logic, 2009. SPL. 5th Southern Conference on (April

2009), pp. 89–94.

[64] KALE, V. Using the MicroBlaze Processor to Accelerate Cost-Sensitive Embedded Sys-

tem Development. Xilinx, Inc., June 2016.

[65] KAMALI, H. M., AZAR, K. Z., AND HESSABI, S. Ducnoc: A high-throughput fpga-

based noc simulator using dual-clock lightweight router micro-architecture. IEEE Trans-

actions on Computers 67, 2 (Feb 2018), 208–221.

[66] KAMMLER, D., GUAN, J., ASCHEID, G., LEUPERS, R., AND MEYR, H. A fast and

flexible platform for fault injection and evaluation in verilog-based simulations. In 2009

Third IEEE International Conference on Secure Software Integration and Reliability Im-

provement (July 2009), pp. 309–314.

[67] KUHN, J. M., SCHWEIZER, T., PETERSON, D., KUHN, T., AND ROSENSTIEL, W.

Testing reliability techniques for socs with fault tolerant cgra by using live fpga fault

injection. In 2013 International Conference on Field-Programmable Technology (FPT)

(Dec 2013), pp. 462–465.

[68] LIBANO, F., RECH, P., TAMBARA, L., TONFAT, J., AND KASTENSMIDT, F. On the

Reliability of Linear Regression and Pattern Recognition Feedforward Artificial Neural

Networks in FPGAs. IEEE Transactions on Nuclear Science 65, 1 (Jan. 2018), 288–295.

[69] LOI, I., MITRA, S., LEE, T. H., FUJITA, S., AND BENINI, L. A low-overhead fault tol-

erance scheme for tsv-based 3d network on chip links. In 2008 IEEE/ACM International

Conference on Computer-Aided Design (Nov 2008), pp. 598–602.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 121

REFERENCES

[70] LOPEZ-ONGIL, C., GARCIA-VALDERAS, M., PORTELA-GARCIA, M., AND EN-

TRENA, L. Autonomous fault emulation: A new fpga-based acceleration system for

hardness evaluation. IEEE Transactions on Nuclear Science 54, 1 (Feb 2007), 252–261.

[71] MAHATME, N. N., JAGANNATHAN, S., LOVELESS, T. D., MASSENGILL, L. W.,

BHUVA, B. L., WEN, S. ., AND WONG, R. Comparison of combinational and se-

quential error rates for a deep submicron process. IEEE Transactions on Nuclear Science

58, 6 (Dec 2011), 2719–2725.

[72] MANSOUR, W., AND VELAZCO, R. An Automated SEU Fault-Injection Method and

Tool for HDL-Based Designs. IEEE Transactions on Nuclear Science 60, 4 (Aug 2013),

2728–2733.

[73] MANSOUR, W., AND VELAZCO, R. An automated seu fault-injection method and tool

for hdl-based designs. IEEE Transactions on Nuclear Science 60, 4 (Aug 2013), 2728–

2733.

[74] MANSOUR, W., VELAZCO, R., AYOUBI, R., ZIADE, H., AND FALOU, W. E. A method

and an automated tool to perform set fault-injection on hdl-based designs. In 2013 25th

International Conference on Microelectronics (ICM) (Dec 2013), pp. 1–4.

[75] MISKOV-ZIVANOV, N., AND MARCULESCU, D. Multiple transient faults in combina-

tional and sequential circuits: A systematic approach. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 29, 10 (Oct 2010), 1614–1627.

[76] MOHAMMADI, A., EBRAHIMI, M., EJLALI, A., AND MIREMADI, S. G. Scfit: A fpga-

based fault injection technique for seu fault model. In 2012 Design, Automation Test in

Europe Conference Exhibition (DATE) (March 2012), pp. 586–589.

[77] MULLINS, R. Netmaker, 2009.

[78] MURALI, S., SEICULESCU, C., BENINI, L., AND MICHELI, G. D. Synthesis of net-

works on chips for 3d systems on chips. In 2009 Asia and South Pacific Design Automa-

tion Conference (Jan 2009), pp. 242–247.

[79] MUROGA, S. Full-Custom and Semi-Custom Design, The VLSI Handbook, Electrical

Engineering Handbook. CRC Press, 1999.

[80] NAVINER, L., NAVINER, J.-F., DOS SANTOS, G., MARQUES, E., AND PAIVA, N.

Fifa: A fault-injection–fault-analysis-based tool for reliability assessment at rtl level.

Microelectronics Reliability 51, 9 (2011), 1459 – 1463. Proceedings of the 22th European

Symposium on the Reliability of Electron Devices, Failure Physics and Analysis.

122 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

REFERENCES

[81] NIAZMAND, B., AZAD, S. P., FLICH, J., RAIK, J., JERVAN, G., AND HOLLSTEIN, T.

Logic-based implementation of fault-tolerant routing in 3D network-on-chips. In 2016

Tenth IEEE/ACM International Symposium on Networks-on-Chip (NOCS) (sep 2016),

IEEE, pp. 1–8.

[82] NICOLAIDIS, M. Double-sampling design paradigm - a compendium of architectures.

IEEE Transactions on Device and Materials Reliability 15, 1 (March 2015), 10–23.

[83] NORMAND, E. Single event upset at ground level. IEEE Transactions on Nuclear Sci-

ence 43, 6 (Dec. 1996), 2742–2750.

[84] NOWOSIELSKI, R., GERLACH, L., BIEBAND, S., PAYÁ-VAYÁ, G., AND BLUME, H.

Flint: Layout-oriented fpga-based methodology for fault tolerant asic design. In 2015 De-

sign, Automation Test in Europe Conference Exhibition (DATE) (March 2015), pp. 297–

300.

[85] OWENS, J. D., DALLY, W. J., HO, R., JAYASIMHA, D. N., KECKLER, S. W., AND

PEH, L. S. Research challenges for on-chip interconnection networks. IEEE Micro 27,

5 (Sept 2007), 96–108.

[86] PAGLIARINI, S., KASTENSMIDT, F., ENTRENA, L., LINDOSO, A., AND MILLAN,

E. S. Analyzing the impact of single-event-induced charge sharing in complex circuits.

IEEE Transactions on Nuclear Science 58, 6 (Dec 2011), 2768–2775.

[87] PARANE, K., M, P. P. B., AND A. B. TALAWAR. Fpga based noc simulation accelera-

tion framework supporting adaptive routing. In 2018 IEEE International Conference on

Electronics, Computing and Communication Technologies (CONECCT) (March 2018),

pp. 1–6.

[88] PARIKH, R., AND BERTACCO, V. Formally enhanced runtime verification to ensure noc

functional correctness. In 2011 44th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO) (Dec 2011), pp. 410–419.

[89] PARK, D., NICOPOULOS, C., KIM, J., VIJAYKRISHNAN, N., AND DAS, C. R. Ex-

ploring fault-tolerant network-on-chip architectures. In International Conference on De-

pendable Systems and Networks (DSN’06) (June 2006), pp. 93–104.

[90] PASRICHA, S., AND ZOU, Y. A low overhead fault tolerant routing scheme for 3D

networks-on-chip. Proceedings of the 12th International Symposium on Quality Elec-

tronic Design, ISQED 2011 (2011), 204–211.

[91] PATTI, R. S. Three-dimensional integrated circuits and the future of system-on-chip

designs. Proceedings of the IEEE 94, 6 (June 2006), 1214–1224.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 123

REFERENCES

[92] POURNAGHDALI, F., RAJABZADEH, A., AND AHMADI, M. Vhdlsfi: A simulation-

based multi-bit fault injection for dependability analysis. In ICCKE 2013 (Oct 2013),

pp. 354–360.

[93] PRABHU PRASAD, B. M., PARANE, K., AND TALAWAR, B. High-performance noc

simulation acceleration framework employing the xilinx dsp48e1 blocks. In 2019 In-

ternational Symposium on VLSI Design, Automation and Test (VLSI-DAT) (April 2019),

pp. 1–4.

[94] QUINN, H., AND WIRTHLIN, M. Validation techniques for fault emulation of sram-

based fpgas. IEEE Transactions on Nuclear Science 62, 4 (Aug 2015), 1487–1500.

[95] QUINN, H. M., BLACK, D. A., ROBINSON, W. H., AND BUCHNER, S. P. Fault simu-

lation and emulation tools to augment radiation-hardness assurance testing. IEEE Trans-

actions on Nuclear Science 60, 3 (June 2013), 2119–2142.

[96] RAMSAY, F. R. Automation of design for uncommitted logic array. In 17th Design

Automation Conference (June 1980), pp. 100–107.

[97] RETTKOWSKI, J., AND GÖHRINGER, D. Rar-noc: A reconfigurable and adaptive

routable network-on-chip for fpga-based multiprocessor systems. In 2014 International

Conference on ReConFigurable Computing and FPGAs (ReConFig14) (Dec 2014),

pp. 1–6.

[98] RIJPKEMA, E., GOOSSENS, K. G. W., RADULESCU, A., DIELISSEN, J., VAN MEER-

BERGEN, J., WIELAGE, P., AND WATERLANDER, E. Trade offs in the design of a router

with both guaranteed and best-effort services for networks on chip. In 2003 Design, Au-

tomation and Test in Europe Conference and Exhibition (March 2003), pp. 350–355.

[99] RUIZ-LLATA, M., GUARNIZO, G., AND YÉBENES-CALVINO, M. FPGA implementa-

tion of a support vector machine for classification and regression. In The 2010 Interna-

tional Joint Conference on Neural Networks (IJCNN) (July 2010), pp. 1–5.

[100] SALAMAT, R., EBRAHIMI, M., BAGHERZADEH, N., AND VERBEEK, F. CoBRA: Low

cost compensation of TSV failures in 3D-NoC. In 2016 IEEE International Symposium

on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (sep 2016),

IEEE, pp. 115–120.

[101] SALAMAT, R., KHAYAMBASHI, M., EBRAHIMI, M., AND BAGERZADEH, N. Lead:

An adaptive 3d-noc routing algorithm with queuing-theory based analytical verification.

IEEE Transactions on Computers PP, 99 (2018), 1–1.

124 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

REFERENCES

[102] SALAMAT, R., KHAYAMBASHI, M., EBRAHIMI, M., AND BAGHERZADEH, N. A Re-

silient Routing Algorithm with Formal Reliability Analysis for Partially Connected 3D-

NoCs. IEEE Transactions on Computers 13, 9 (2016), 1–1.

[103] SCHONWALD, T., ZIMMERMANN, J., BRINGMANN, O., AND ROSENSTIEL, W. Fully

adaptive fault-tolerant routing algorithm for network-on-chip architectures. In 10th Eu-

romicro Conference on Digital System Design Architectures, Methods and Tools (DSD

2007) (Aug 2007), pp. 527–534.

[104] SERAFY, C., AND SRIVASTAVA, A. Online tsv health monitoring and built-in self-

repair to overcome aging. In 2013 IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFTS) (Oct 2013), pp. 224–229.

[105] SERRANO, F., CLEMENTE, J. A., AND MECHA, H. A methodology to emulate single

event upsets in flip-flops using fpgas through partial reconfiguration and instrumentation.

IEEE Transactions on Nuclear Science 62, 4 (2015), 1617–1624.

[106] SHARMA, R. Characterization and Modeling of Digital Circuits. Paripath.com, 11 2015.

[107] SHENG, W., XIAO, L., AND MAO, Z. A novel soft error sensitivity characterization

technique based on simulated fault injection and constrained association analysis. In

2008 15th IEEE International Conference on Electronics, Circuits and Systems (Aug

2008), pp. 766–769.

[108] SHIVAKUMAR, P., KISTLER, M., KECKLER, S. W., BURGER, D., AND ALVISI, L.

Modeling the effect of technology trends on the soft error rate of combinational logic.

In Proceedings International Conference on Dependable Systems and Networks (2002),

pp. 389–398.

[109] SHOKROLAH-SHIRAZI, M., AND MIREMADI, S. G. Fpga-based fault injection into

synthesizable verilog hdl models. In Secure System Integration and Reliability Improve-

ment, 2008. SSIRI ’08. Second International Conference on (July 2008), pp. 143–149.

[110] SOLINAS, M., COELHO, A., FRAIRE, J. A., ZERGAINOH, N. E., FERREYRA, P. A.,

AND VELAZCO, R. Preliminary results of netfi-2: An automatic method for fault injec-

tion on hdl-based designs. In 2017 18th IEEE Latin American Test Symposium (LATS)

(March 2017), pp. 1–4.

[111] STERPONE, L., SABENA, D., AND REORDA, M. S. A new fault injection approach for

testing network-on-chips. In 2012 20th Euromicro International Conference on Parallel,

Distributed and Network-based Processing (Feb 2012), pp. 530–535.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 125

REFERENCES

[112] TAHERI, E., ISAKOV, M., PATOOGHY, A., AND KINSY, M. A. Advertiser elevator:

A fault tolerant routing algorithm for partially connected 3d network-on-chips. In 2017

IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) (Aug

2017), pp. 136–139.

[113] TAMBARA, L. A., RECH, P., CHIELLE, E., TONFAT, J., AND KASTENSMIDT, F. L. An-

alyzing the Impact of Radiation-Induced Failures in Programmable SoCs. IEEE Trans-

actions on Nuclear Science 63, 4 (Aug. 2016), 2217–2224.

[114] TARRILLO, J., KASTENSMIDT, F. L., RECH, P., FROST, C., AND VALDERRAMA, C.

Neutron cross-section of n-modular redundancy technique in sram-based fpgas. IEEE

Transactions on Nuclear Science 61, 4 (Aug 2014), 1558–1566.

[115] TUZOV, I., RUIZ, J. C., ANDRÉS, D. D., AND GIL, P. Speeding-up simulation-based

fault injection of complex hdl models. In 2016 Seventh Latin-American Symposium on

Dependable Computing (LADC) (Oct 2016), pp. 51–60.

[116] VAPNIK, V. The Nature of Statistical Learning Theory. Springer Science & Business

Media, June 2013. Google-Books-ID: EqgACAAAQBAJ.

[117] VELAZCO, R., FOUCARD, G., AND PERONNARD, P. Combining results of accelerated

radiation tests and fault injections to predict the error rate of an application implemented

in sram-based fpgas. IEEE Transactions on Nuclear Science 57, 6 (Dec 2010), 3500–

3505.

[118] VILLA, F., BAYLAC, M., REY, S., ROSSETTO, O., MANSOUR, W., RAMOS, P., VE-

LAZCO, R., AND HUBERT, G. Accelerator-Based Neutron Irradiation of Integrated Cir-

cuits at GENEPI2 (France). In 2014 IEEE Radiation Effects Data Workshop (REDW)

(July 2014), pp. 1–5.

[119] WANG, D., LO, C., VASILJEVIC, J., ENRIGHT JERGER, N., AND GREGORY STEFFAN,

J. Dart: A programmable architecture for noc simulation on fpgas. IEEE Transactions

on Computers 63, 3 (March 2014), 664–678.

[120] WANG, J. C., LIAN, L. X., LIN, Y. Y., AND ZHAO, J. H. VLSI Design for SVM-Based

Speaker Verification System. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 23, 7 (July 2015), 1355–1359.

[121] WERNER, S., NAVARIDAS, J., AND LUJÁN, M. A survey on design approaches to

circumvent permanent faults in networks-on-chip. ACM Comput. Surv. 48, 4 (Mar. 2016),

59:1–59:36.

[122] XILINX. Zynq-7000 All Programmable SoC.

126 Univ. Grenoble Alpes, CNRS, TIMA Laboratory

REFERENCES

[123] XILINX. Axi reference guide v13.4, 2012.

[124] YE, F., FIROUZI, F., YANG, Y., CHAKRABARTY, K., AND TAHOORI, M. B. On-

Chip Droop-Induced Circuit Delay Prediction Based on Support-Vector Machines. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 4 (Apr.

2016), 665–678.

[125] YU, Q., AND AMPADU, P. A dual-layer method for transient and permanent error co-

management in noc links. IEEE Transactions on Circuits and Systems II: Express Briefs

58, 1 (Jan 2011), 36–40.

[126] ZHANG, T., ZHAN, Y., AND SAPATNEKAR, S. S. Temperature-aware routing in 3d ics.

In Asia and South Pacific Conference on Design Automation, 2006. (Jan 2006), pp. 6–11.

[127] ZHANG, X., EBRAHIMI, M., HUANG, L., AND LI, G. Fault-resilient routing unit in

nocs. In 2015 28th IEEE International System-on-Chip Conference (SOCC) (Sept 2015),

pp. 164–169.

[128] ZHANG, X., EBRAHIMI, M., HUANG, L., LI, G., AND JANTSCH, A. A routing-level

solution for fault detection, masking, and tolerance in nocs. In 2015 23rd Euromicro In-

ternational Conference on Parallel, Distributed, and Network-Based Processing (March

2015), pp. 365–369.

Univ. Grenoble Alpes, CNRS, TIMA Laboratory 127

Titre : Tolérance aux fautes et fiabilité pour les réseaux sur puce 3D partiellement connectés

Résumé : Les avantages combinés des circuits intégrés 3D et des NoCs offrent la possibilité de concevoir un système haute
performance dans une zone limitée de la puce. Les NoCs 3D souffrent de certains problèmes de fiabilité tels que la variabilité des
processus de fabrication 3D-IC. En particulier, le faible rendement de la connexion verticale a un impact significatif sur la conception
des piles de matrices tridimensionnelles avec un grand nombre de TSV. De même, les progrès des technologies de fabrication de
circuits intégrés entraînent une augmentation potentielle de leur sensibilité aux effets des rayonnements présents dans
l'environnement dans lequel ils vont fonctionner. En fait, le nombre croissant de défaillances transitoires est devenu, au cours des
dernières années, une préoccupation majeure dans la conception des systèmes de contrôle critiques. Par conséquent, l'évaluation
de la sensibilité des circuits et des applications aux événements causés par les particules énergétiques présentes dans
l'environnement réel est une préoccupation majeure à laquelle il faut répondre. Cette thèse présente donc des contributions dans
deux domaines importants de la recherche sur la fiabilité : dans la conception et la mise en œuvre de schémas de routage à tolérance
de pannes sans blocage pour les réseaux sur puce tridimensionnels émergents ; et dans la conception de cadres d'injection de défauts
capables d'émuler des défauts transitoires simples et multiples dans les circuits basés sur HDL. La première partie de cette thèse
aborde les problèmes des défauts transitoires et permanents dans l'architecture des NoCs 3D et présente une nouvelle unité de calcul
de routage résiliente ainsi qu'un nouveau schéma de routage tolérant aux défauts d'exécution. Un nouveau mécanisme résilient est
introduit afin de tolérer les défauts transitoires se produisant dans l'unité de calcul de route (RCU), qui est l'élément logique le plus
important dans les routeurs NoC. En combinant un circuit de détection de défauts fiable à double échantillonnage au niveau du circuit
et un mécanisme de réacheminement économique, nous développons une solution complète de tolérance aux fautes qui peut détecter
et corriger efficacement ces erreurs fatales avant que les paquets affectés ne quittent le routeur. Pourtant, dans la première partie de
cette thèse, un nouveau schéma de routage à tolérance de pannes pour les réseaux 3D sur puce à connexion verticale partielle
appelé FL-RuNS est présenté. Grâce à une distribution asymétrique des canaux virtuels, FL-RuNS peut garantir une distribution de
paquets à 100% sous un ensemble non contraint de temps d'exécution et de pannes permanentes des liaisons verticales. Dans le but
d'émuler les effets du rayonnement sur les nouvelles conceptions de SoCs, la deuxième partie de cette thèse aborde les
méthodologies d'injection de fautes en introduisant deux outils appelés NETFI-2 et NoCFI. NETFI-2 est une méthodologie d'injection
de fautes capable d'émuler des défauts transitoires tels que SEU et SET dans un circuit HDL. Enfin, dans la dernière partie de ce
travail, nous présentons NoCFI comme une nouvelle méthodologie pour injecter des défauts multiples tels que les MBU et SEMT
dans une architecture de réseaux sur puce.

Mots-clés : Réseaux tridimensionnels sur puce, erreurs logicielles, algorithme de routage tolérant aux pannes, pannes
transitoires et permanentes

Title: Fault Tolerance and Reliability for Partially Connected 3D Networks-on-Chip

Abstract: The combined benefits of 3D IC and Networks-on-Chip (NoC) schemes provide the possibility of designing a high-
performance system in a limited chip area. The major advantages of Three-Dimensional Networks-on-Chip (3D-NoCs) are a
considerable reduction in the average wire length and wire delay, resulting in lower power consumption and higher performance.
However, 3D-NoCs suffer from some reliability issues such as the process variability of 3D-IC manufacturing. In particular, the low
yield of vertical connection significantly impacts the design of three-dimensional die stacks with a large number of Through Silicon Via
(TSV). Equally concerning, advances in integrated circuit manufacturing technologies are resulting in a potential increase in their
sensitivity to the effects of radiation present in the environment in which they will operate. In fact, the increasing number of transient
faults has become, in recent years, a major concern in the design of critical SoC. As a result, the evaluation of the sensitivity of circuits
and applications to events caused by energetic particles present in the real environment is a major concern that needs to be addressed.
So, this thesis presents contributions in two important areas of reliability research: in the design and implementation of deadlock-free
fault-tolerant routing schemes for the emerging three-dimensional Networks-on-Chips; and in the design of fault injection frameworks
able to emulate single and multiple transient faults in the HDL-based circuits. The first part of this thesis addresses the issues of
transient and permanent faults in the architecture of 3D-NoCs and introduces a new resilient routing computation unit as well as a new
runtime fault-tolerant routing scheme. A novel resilient mechanism is introduced in order to tolerate transient faults occurring in the
route computation unit (RCU), which is the most important logical element in NoC routers. Failures in the RCU can provoke misrouting,
which may lead to severe effects such as deadlocks or packet loss, corrupting the operation of the entire chip. By combining a reliable
fault detection circuit leveraging circuit-level double-sampling, with a cost-effective rerouting mechanism, we develop a full fault-
tolerance solution that can efficiently detect and correct such fatal errors before the affected packets leave the router. Yet in the first
part of this thesis, a novel fault-tolerant routing scheme for vertically-partially-connected 3D Networks-on-Chip called FL-RuNS is
presented. Thanks to an asymmetric distribution of virtual channels, FL-RuNS can guarantee 100% packet delivery under an
unconstrained set of runtime and permanent vertical link failures. With the aim to emulate the radiation effects on new SoCs designs,
the second part of this thesis addresses the fault injection methodologies by introducing two frameworks named NETFI-2 (Netlist Fault
Injection) and NoCFI (Networks-on-Chip Fault Injection). NETFI-2 is a fault injection methodology able to emulate transient faults such
as Single Event Upsets (SEU) and Single Event Transient (SET) in a HDL-based design. Finally, in the last part of this work, we
present NoCFI as a novel methodology to inject multiple faults such as MBUs and SEMT in a Networks-on-Chip architecture.

Keywords: Three-dimensional Networks-on-Chip, Soft-errors, Fault-tolerant routing algorithm, transient and permanent
faults

Thèse préparée au Laboratoire TIMA / Thesis prepared at TIMA Laboratory
Techniques de l’Informatique et de la Microélectronique pour l’Architecture des ordinateurs

Techniques of Informatics and Microelectronics for integrated systems Architecture

46 avenue Félix Viallet – 38031 GRENOBLE Cedex - France

ISBN: 978-2-11-129261-1

