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Abstract

This thesis focuses on the statistical learning of digital models of neurodegenerative dis-
ease progression, especially Alzheimer’s disease. It aims at reconstructing the complex
and heterogeneous dynamic of evolution of the structure, the functions and the cognitive
abilities of the brain, at both an average and individual level. To do so, we consider a
mixed-effects model that, based on longitudinal data, namely repeated observations per
subjects that present multiple modalities, in parallel recombines the individual spatiotem-
poral trajectories into a group-average scenario of change, and, estimates the variability of
this characteristic progression which characterizes the individual trajectories. This vari-
ability results from a temporal un-alignment (in term of pace of progression and age at
disease onset) along with a spatial variability that takes the form of a modification in the
sequence of events that appear during the course of the disease. The 5 parts of this thesis
corresponds to different aspect and features that extensively enrich the initial statistical
model in order to convert it into a natural framework for the study of disease progression.

The first part of the manuscript aims at presenting the generative mixed-effects model
that enables the estimation of the long-term progression of the disease and to reconstruct
the individual trajectory, in the case of multivariate data. It offers a generic way to handle
individual spatiotemporal trajectories that present a natural variability between patients.
This variability results from a temporal un-alignment (different pace of progression and a
temporal offset) along with a spatial variability that takes the form of a modification in
the sequence of events that appear during the course of the disease.

The second part expands the scope of the model in order to handle data that have a
spatial structure, such as images, meshes and networks. It introduces a technique to take
advantage of the spatial coherence of evolution for close regions. It is validated on the
estimation of the cortical thickness and glucose consumption evolution during the course
of Alzheimer’s disease.

The third part is an extensive study of the complex progression of the function (FDG-
PET), the structure (cortical thickness and hippocampus meshes) and cognitive abilities
(ADAS-Cog and MMSE) during the course of Alzheimer’s disease. It validates the group-
average multi-modal progression, evaluated by the reconstructing of individual trajectories
to the noise level. The analysis of the factors modulating the evolution enables to describe
the interactions between heterogeneous modalities. Furthermore, it allows to predict indi-
vidual measurements up to 4 years in advance.

The fourth chapter takes advantage of the generative and mixed-effects nature of the
model. It offers the possibility to first reconstruct a continuous disease timeline at the
individual level and also to simulate virtual patients entirely. The former allows to impute
missing values or predicting future time-points. The latter enables to simulate virtual
patients that either un-bias and balance the real cohort or to augment the initial dataset
in order to improve the predictive power of algorithms that requires large amount od data.
It is used to reach state-of-the-art results on future stages 3 and 4 years in advance.

The fifth chapter describes the software tools that were developed along the way. They
were designed to benefit to mathematical researchers that aims to develop similar models
or estimation algorithms, while being sufficiently user-friendly to be used by the medical
community for other diseases or even in real-life disease diagnosis and prognosis.

To conclude, this thesis introduces a general framework to grasp the complexity of the
disease progression in inter-dependant heterogeneous modalities. Overall, this advanced
understanding enables to characterize individual evolutions, simulate virtual cohorts and
predict future disease stages for various modalities. While it focuses on the study of
Alzheimer’s disease solely, current works on Parkinson’s disease, Huntington’s disease and
normal ageing highlights its capacity to generalize to other neurodegenerative diseases.
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Résumé en Français

Motivation

La progression des maladies neurodégénératives dépend de phénomènes biologiques com-
plexes qui restent mal compris, d’autant qu’ils se mettent en place sur des périodes de
temps longues. De ce fait, décrire un scénario typique de l’évolution de la maladie est un
enjeu majeur puisqu’il permettrait de mettre en lumière les dynamiques temporelles de
différents biomarqueurs comme les tests neuropsychologiques, l’imagerie médicale ou les
mesures physiologiques. Cependant, la description d’un scénario moyen de progression est
confrontée à l’expression variable de la maladie à travers les patients, variabilité qui se
traduit, par exemple, par des âges de diagnostics, des vitesses d’évolutions, des séquences
et intensités d’événements divers.

Au vu de ces éléments, cette thèse s’emploie à d’écrire l’évolution typique de la mal-
adie à l’échelle de la population, ce qui nécessite une caractérisation fine de la dynamique
temporelle de différentes modalités. Au dela de cette description moyenne, le travail en-
trepris tend à décrire la progression de la maladie à l’échelle individuelle, afin de (i) la
comparer à l’évolution typique, (ii) prédire l’évolution future et (iii) analyser les cofacteurs
à l’origine de cette variabilité, comme le sexe, les mutations génétiques ou des facteurs
environnementaux. Ces analyses ne sont rendues possibles que grâce à une définition claire
de la variabilité spatiotemporelle de l’évolution de la maladie.

Néanmoins, la progression des maladies neurodégénératives comprennent des spéci-
ficités qui en rendent la description plus complexe que d’autres processus temporels. D’abord,
bien que décrivrant un processus similaire chez tous les patients, son expression présente
des caractéristiques individuelles propres, notamment l’absence d’alignement temporel en-
tre les patients. Par exemple, la vitesse de progression de la maladie et l’âge au diagnos-
tic sont suceptibles de différer d’un individu à l’autre. Typiquement, deux personnes du
même âge peuvent présenter des stades d’avancement différents. A l’inverse, le même stade
d’avancement peut apparaître à des âges différents selon les patients. Pour ces raisons, l’âge
réel n’est pas un indicateur précis d’un âge physiologique qui correspondrait au stade de
la maladie. Et déterminer ce dernier n’est pas aisé puisqu’il présuppose de désenchevêtrer
l’impact de la maladie des caractéristiques naturelles des patients : les capacités cognitives,
qui varient naturellement d’un individu à l’autre, en sont une illustration concrète. Ainsi, il
est nécessaire de comparer correctement les évolutions individuelles les unes aux autres, et,
potentiellement, à un scenario de référence. Malheureusement, définir ce scenario normatif
est un défi puisqu’il demande de reconstruire une trajectoire sur des périodes de temps
longues - plus longues que n’importe quelles mesures individuelles.

Toutes ces caractéristiques sont partagées par une majorité des maladies neurodégénéra-
tives. La maladie d’Alzheimer nous livre l’exemple d’une telle dynamique temporelle, où les
interactions entre la structure et les fonctions sont loin d’être parfaitement comprises, tout
autant que leurs impacts sur les fonctions cognitives. Les phases précoces de la maladie
sont caractérisées par des dépôts de plaques de protéines dans le cerveau, suivies par une
modification de sa structure, conséquence d’une importante mort neuronale qui présente
elle-même une dynamique propre. Les symptômes cliniques n’apparaissent que quelques
années après, causant un dépistage de la maladie à des phases tardives où les fonctions et
la structure du cerveau ont été modifiées de manière irréversible. De fait, il est devenu
critique de déterminer les marqueurs précoces de la maladie.

Dans ce contexte, de nombreux modèles statistiques ont été développés pour ren-
dre compte de l’évolution de différents biomarqueurs au cours de la progression de la
maladie, à l’échelle de la population d’abord, puis des individus. L’un d’eux, introduit
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dans [Schiratti et al., 2015], a permis de caractériser l’évolution moyenne de biomarqueurs
scalaires au sein d’une cohorte, tout en interprétant chaque trajectoire individuelle comme
la modification de l’évolution moyenne grâce à un nombre réduit de paramètres. La
présente thèse étend le domaine d’application de ce modèle en introduisant des modèles
de progression plus complexes, notamment pour des données d’imagerie médicale. D’autre
part, la thèse présente des procédures mathématiques nécessaires à l’estimation des trajec-
toires individuelles, rendant possible l’imputation de données manquantes et la prédiction
de variables dans le futur. Enfin, le modèle est utilisé pour générer des données longitu-
dinales virtuelles pour lesquelles on montre qu’elles peuvent se substituer à des données
réelles, et, être utilisées par des prédicteurs qui requièrent d’importants volumes de don-
nées.

Ces différentes contributions sont évaluées sur la capacité du modèle à décrire l’évolution
de la maladie d’Alzheimer pour des scores cognitifs, l’épaisseur corticale, l’hypométabolisme
et le maillage des hippocampes gauche et droit. A cette évolution typique s’ajoute l’analyse
des cofacteurs (sexe, facteurs environnementaux, mutations génétiques) qui modifient cette
évolution. Aussi, ce travail s’attache sur la capacité du modèle à prédire l’évolution future
de patients atteints de troubles cognitifs précoces qui, dans certains cas, aboutissent à la
maladie d’Alzheimer.

L’ensemble des modèles et algorithmes introduits dans cette thèse ont été regroupées
dans le package Python Leaspy, permettant de conduire des analyses similaires sur d’autres
cohortes, modalités et maladies neurodégénératives.

Présentation des parties

La Partie I est une introduction au modèle spatiotemporel de progression des maladies neu-
rodégénératives. Ce modèle présente la volonté, d’abord, de décrire l’évolution moyenne
d’une population, puis, d’estimer la variabilité spatiotemporelle de cette évolution dans la
cohorte, et, enfin, de retracer l’histoire individuelle de la maladie à n’importe quel âge, de
manière à imputer des données manquantes et prédire des valeurs futures. Le début de cette
Partie s’attarde sur les notions fondamentales de géométrie riemannienne et d’estimations
statistiques pour les modèles bayésiens à effets-mixtes, nécessaires à la compréhension
générale du modèle. Ces notions permettent de construire un modèle spatio-temporel
générique de progression des maladies neurodégénératives. S’ensuivent les instantiations
de ce modèle pour la description de la progression de biomarqueurs qui présentent des pro-
fils temporels linéaires, logistiques ou exponentiels. A la suite de la description géométrique
du modèle, la seconde partie pourvoie le lecteur des outils indispensables aux procédures
mathématiques suivantes : la calibration du modèle, la personnalisation aux données d’un
nouveau patient, et, la simulation de données virtuelles - ou synthétiques. La calibra-
tion permet d’estimer entièrement l’évolution typique de la maladie sur des périodes de
temps longues. Elle repose sur l’algorithme Monte Carlo Markov Chain Stochastic Approx-
imation Expectation Maximization, une version stochastique de l’algorithme Expectation-
Maximization, où l’échantillonage des variables latentes est réalisé à l’aide d’une méthode
de Monte Carlo par chaînes de Markov. La personnalisation, quant à elle, correspond à
l’estimation des paramètres individuels qui décrivent l’évolution des variables d’un sujet.
Cette étape rend possible l’imputation de données manquantes et la prédiction des vari-
ables dans le futur. Enfin, la simulation est un moyen de synthétiser des patients virtuels
qui reproduisent les caractéristiques des patients de la cohorte réelle. Ces patients virtuels
peuvent être échantillonés sur une période de temps et avec un interval entre visites arbi-
traires.

Tandis que la Partie I s’attarde à décrire la progression de variables scalaires, la Partie II
s’intéresse à l’extension du précédent modèle pour des données qui présentent une structure
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spatiale, au sens où certaines variables correspondent à l’évolution d’un même biomarqueur
en des régions proches du cerveau. Cette structure se retrouve dans les images où les pixels
voisins présentent a priori des caractéritiques similaires, mais également dans les atlas,
les maillages, ... et toute donnée qui peut être représentée par un graphe dont chaque
noeud intègre la progression au cours du temps de la valeur étudiée. Ce modèle est utilisé
pour estimer l’évolution de l’épaisseur corticale au cours du temps, pour des patients qui
développent la maladie d’Alzheimer. Dans un second temps, ce modèle est appliqué à
l’estimation de la progression de traceurs radioactifs issus de PET scans, projetés sur la
surface corticale.

La Partie III est une étude approfondie du développement de la maladie d’Alzheimer,
depuis les stades précoces jusqu’aux phases avancées. Elle reprend les modèles et algo-
rithmes introduits dans les parties précédentes afin de les appliquer à différents types de
données. De l’imagerie par résonnance magnétique (IRM), on extrait le maillage des hip-
pocampes gauche et droit, et, l’épaisseur corticale en près de 3500 régions uniformément
distribués sur la surface du cerveau. Aux IRM s’ajoutent les PET scans dont le rôle est de
décrire l’évolution de la consommation de glucose dans le cerveau, projeté sur 120 régions
du cerveau. Enfin sont ajoutés cinq scores cognitifs dont l’évolution est une manifestation
de la maladie : perte de mémoire, des capacités de concentration, puis de la praxis et du
language. Dans cette étude, il est montré l’évolution conjointe de ces modalités, illustrée
sur le site www.digital-brain.org, ainsi que des cofacteurs (sexe, facteurs génétiques et
environnementaux) qui modulent cette évolution. Enfin, une estimation des trajectoires
individuelles permet de montrer l’intérêt de ce modèle pour, d’une part, reconstruire les
données au niveau du bruit de mesure, et d’autre, part, de prédire leurs valeurs (scores
cognitifs, volume de l’hippocampe et épaisseur corticale) jusqu’à quatre ans en avance.

La Partie IV tire profit de la capacité du modèle à décrire les évolutions individuelles
des sujets en évaluant la variabilité spatiotemporelle de la progression. Il est alors possi-
ble d’imputer des données manquantes et de prédire l’avancement de la maladie. D’autre
part, le caractère génératif du modèle permet de simuler des patients virtuels à des stades
différents de la maladie, avec un nombre de visite quelconque, et un échantillonnage tem-
porel arbitraire. La qualité de ces patients virtuels est confirmée par l’impossibilité, pour
un réseau de neurones adversarial, de distinguer des données réelles de données simulées.
Enfin, ces dernières sont utilisées pour renforcer le pouvoir prédictif de réseaux de neurones
récurrents, amélioraant la prédiction de certains scores cognitifs 3 et 4 ans à l’avance.

La Partie V reflète l’ensemble des développement logiciels produits au cours de la
thèse. Ceux-ci incluent le package Python Leaspy qui permet d’utiliser les modèles et al-
gorithmes précédents dans le cadre d’autres cohortes, modalités et maladies neurodégénéra-
tives. Ce package a pour vocation de simplifier l’analyse de données longitudinales dans la
recherche médicale, mais également d’être suffisament souple et structuré pour permettre
l’implémentation de nouveaux modèles de progression et d’algorithmes d’estimation. En
plus de cette librairie, ce sont des outils de visualisation et d’aide à la décision qui sont
développés. On citera, parmi eux, des développements sur navigateur qui permettent, à
partir de données individuelles, d’établir l’évolution future du patient pour un radiologue
ou un neurologue.
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Introduction

Motivation

Numerous phenomenon, such as people settlements, virus spreading or climatic evolu-
tions, are governed by temporal interplays that make their description and comprehension
challenging for the scientific community. Among them, the progression of neurodegener-
ative diseases remains poorly understood due to complex interactions between multiple
biomarkers that evolve through long periods of time. The description of a generic scenario
of change is further hampered by the diversity and variability of individual evolutions in
term of onset, pace, intensity and sequence of events. This consequently prevents from an
accurate characterization of the individual disease progression. For these reasons, to over-
come the lack of knowledge during the progression of neurodegenerative diseases, there has
been a large interest over the past decades to model the disease progression, and its conse-
quences on different modalities (e.g. cognitive assessments, medical imaging, physiological
measurements), at both a population and individual level.

Arising in this historical context, the thesis aims at properly describing the typical his-
tory of long-term disease progression which inevitably implies to characterize the complex
temporal dynamics of inter-dependant modalities. On top of this average description, the
work aspires to personalize this representative scenario of change to individual progressions
in order to compare them to the mean, to study the influence of cofactors (e.g. gender,
genetic mutations, environmental factors) and to enable a proper prediction of current and
future time-points. Such a personalization pushes towards the definition and estimation
of the spatiotemporal variability of disease progression within a population. All these el-
ements pave the way to a sharper and more exhaustive analysis of the consequences of
disease progression on diverse modalities.

Nevertheless, describing the progression of neurodegenerative diseases faces some par-
ticular specificities compared to other temporal processes. First, even though it is, by def-
inition, the evolution of an analogous phenomenon across patients, its expression present
subject-specific patterns and characteristics. This is particularly highlighted by the tem-
poral unalignment between individuals. For instance, the pace of progression or the age
at disease onset might vary across patients. Typically, two persons sharing the same age
might present a different disease stage. Said differently, the same disease stage is likely
to appear at a wide range of ages. For that reason, the disease stage, as the expression
of a physiological age along the disease development, better characterizes the disease and
its progression than the observed age. However, the determination of this disease stage
is restricted by the entanglement of the disease consequences with the natural character-
istics of the patient. A typical example is the cognitive abilities that, despite declining
during normal ageing or during the course of some diseases, are different within a popula-
tion. This advocates for an unbiased comparison between individuals in order to determine
properly the impact of the disease. However, the patients are observed during periods of
time shorter than the long-lasting overall phenomenon - the latter never being observed
fully and directly. This makes the comparison unlikely as there is no overall reference of
a typical scenario of disease progression to compare to. Moreover, the very definition of a
patient-wise disease stage is unclear as many evidence show that the temporal dynamics
of the different biomarkers are not entirely related. This is revealed by the fact that the
ordering of the (biological and clinical) events during the course of a disease, as well as
their intensities, differ from one patient to another. Due to this variability, considering the
existence of an overall disease stage involves that the later is characterized by potentially
very different biomarker stages. Such a representation might be misleading and counter-
productive as it associates into the same disease stage patients that have diverse biological
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and clinical symptoms, preventing from an appropriate description of the disease. There-
fore, it might be more accurate to refer to a disease status per biomarker, with complex
interplays between the modalities, that finally result in a clinical stage.

All the aforementioned challenges characterize the progression of most of the neurode-
generative diseases. An example of such heterogeneous dynamics is the Alzheimer’s disease
where the specific role of the structure and of the functions of brain, as well as their in-
teractions, on the cognitive decline remain unclear. First biological symptoms appear
during the early, or prodromal, phase of the disease, such as the deposition of proteins
plaques in the brain. They are essentially followed by a modification of the brain structure
which is most of the time associated to a neuronal loss and consequently a diminution the
brain metabolism. After a substantial amount of time (e.g. some years), they translate
to clinical symptoms such as cognitive complaints and memory loss to finally end by an
important dependence on relatives and medical staff. One of the obstacles to properly
cure this decline is the fact that the clinical symptoms, i.e. the one that cause the medical
examination and diagnosis, appear at late disease stages, when the neuronal loss is unduly
important with no possible reversibility. Therefore, the importance to uncover, describe
and analyze biomarkers during the course of a disease, especially those associated to early
disease stage is crucial. This essentially means to properly understand both the temporal
dynamic of each biomarker and their interactions. Such investigation might be undertaken
at a population level by characterizing the long-term disease progression, but also at an
individual level by identifying patients that will develop the disease at future stages. Some
argue that such prediction is worthless as there is no potential treatment. We highlight
here that this is actually a chicken-egg dilemma, the lack of treatment being the conse-
quence of unsatisfactory disease modelings and predictions: describing the patients at risk
enables to determine the critical biomarkers, common to these subjects, that result in a
disease development. Moreover, one of the reason of lacking treatments is partly due to
the fact that these treatment should be administered prior to the neuronal loss, at early
stages of the disease i.e. in patients whose future prediction indicate a risk of disease
development. Furthermore, the treatments may not be adequate for everyone but need to
target subgroups of patients with similar patterns of progression. It again supports the
idea that the disease should be adequately described and predicted at the different levels
(e.g. structural, functional and cognitive) and to study how different cofactors modulate
the biomarker progressions.

Therefore, investigating and exhibiting the biomarkers that are related to the disease
progression pushes towards the development of appropriate tools that characterize the nat-
ural long-term history of the disease. Such a description is made possible only if there is a
adequate correspondence between a patient observation and its physiological age along the
disease timeline. Recent developments in the medical field have raised promising results
in predicting current status based on various measurements. Among many examples, we
can cite the detection of breast cancer metastases [Bejnordi et al., 2017], the detection of
a particular form of diabetes from retinal photographs [Gulshan et al., 2016], the predic-
tion of cardiovascular risk from the same retinal photographs [Poplin et al., 2018] or the
detection of cancer cells in lungs [Zhou et al., 2002]. All these impressive performances
allowed to better identify the processes at stake during the related diseases. Though, they
are predominantly - if not only - achieved for tasks that present multiple common charac-
teristics: a clear definition of the problem, well-defined labels, significant knowledge about
the underlying disease, ... In a word, tasks that are well-identified and rigorously described
by the medical community and whose context is clearly set.

Unfortunately, these common denominators are not present in the case of neurodegen-
erative diseases. In other terms, improving straightforwardly the accuracy of the disease
stage prediction is an illusion when the disease is poorly understood. A typical example
of such deficiency, in Alzheimer’s disease, is the limited number of labels associated to a
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disease evolution that is continuous: the patients are either cognitively normal (CN), pre-
senting mild cognitive impairments (MCI) or having Alzheimer’s disease (AD). The MCI
stage corresponds to the premises of a dementia that can - or cannot - convert to AD: while
the converters to AD are called progressive MCI, it is difficult to know whether the non con-
verters, also called stable MCI, are intrinsically not developing AD (potentially in favor of
another dementia) or because they pass away before an hypothetical conversion. Besides
the lack of label granularity, the very own definition of Alzheimer’s disease has evolved
during the last decades to describe realities that depend on the community. For some, it
corresponds to clinical symptoms. For others, this past definition was based on symptoms
that might be the result of different diseases or at least different patterns of progression that
cannot be tackled simultaneously. They accordingly added biological characterizations to
the disease. Nowadays, there is a tendency to distinguish Alzheimer’s pathology, i.e. a
set of defined biological biomarkers, from Alzheimer’s disease, namely clinical symptoms.
This reveals the ineffectiveness to predict a label, namely a disease stage, whose definition
has not been properly set nor represents a homogeneous set of characteristics. Eventually,
this is worsen by the trade-off between performance and interpretability, the former being
predominantly chosen by the Machine Learning community. This is helpful in cases where
the problems are well-defined but their determinants are too complex to be fully controlled
and established by hand (by a doctor for instance). However, problems that are poorly
defined and ill-posed are not susceptible to be improved in a substantial manner. This
might be a reason of the somehow constant accuracy in disease progression over the past
years. This is an additional reason to believe that explanability of the methods is key for
disease that lack knowledge about their causes, effects and consequences.

For all these reasons, there is an intensive need to model and better understand the
disease progression through its repercussions on different biomarkers and modalities. This
necessarily involves to properly define and estimate the variability of individual progressions
within a population. To this end, these complex dynamics should be accordingly inspected,
described and analysed at both population and individual levels while considering the
interplay of the different biomarkers.
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Disease Modeling

To overcome the lack of knowledge about the progression of neurodegenerative diseases,
there has been a large interest in disease modeling over the past decades. The first models
have mainly been introduced by the medical community that has synthesized years of
practical knowledge into so called hypothetical models as they are not directly supported by
data evidence but rather field work and experience. In the case of Alzheimer’s disease, one
of the most famous model was described in [Jack Jr et al., 2010b], shown on Fig. 1a. It was
intended to present a hypothesis for the sequence of events that leads to Alzheimer’s disease.
They hypothesized that there exists a cascade of consequential events that starts many
years before the clinical symptoms, during the prodromal phase, that is characterized by
protein plaques in the brain followed by a neuronal loss. They simultaneously highlighted
the multi-modal aspects of the disease progression.

While they remain good starting points, these models remain hypothetical. And even
though the first mathematical frameworks to order sequence of events have been intro-
duced almost three decades ago [Beckett, 1993], they have not received much attention by
the medical community because of the lack of large cohorts that were supposed to confirm
or infirm the assumptions of the hypothetical models. These databases, essentially cross-
sectional at the beginning, i.e. one observation per patient, contributed to the development
of data-driven models that produced models of disease progression based on data evidence.
Among them, [Fonteijn et al., 2012b] introduced the event-based model to characterize the
sequence of events during the progression of Alzheimer’s disease and Huntington’s disease.
Latter improved in [Young et al., 2014, Venkatraghavan et al., 2019], it essentially orders
the observations to produce a sequence of events that occur during the disease progres-
sion, as shown on Fig. 1b. This cascade does not measure the temporal evolution of each
biomarker, nor the time delay between the apparition of two symptoms. Also, the vari-
ability between individuals was only defined as an uncertainty in the cascade of events,
represented by blocks of biomarkers that might occurs either simultaneously or with inter-
vertions for different patients. Studies as [Huang and Alexander, 2012] defined an explicit
variability of the model within a given population. This absence of temporal characteri-
zation of the disease evolution was mainly due to the fact that age is a poor proxy of the
disease stage. Among the attempts to circumvent this issue, [Iturria-Medina et al., 2016]
considered the stage of the Alzheimer’s disease (CN, early MCI, late MCI and AD) as a
proxy of the evolution to show the role of vascular disregulation during the course of the
disease.

To overcome the issue of the temporal variability in the dynamic of disease pro-
gression, longitudinal databases, namely multiple visits of patients, have been gathered.
Hundreds of patients were followed during many years to measure various biomarkers
(e.g. cognitive assessments or medical imaging) along with abundant cofactors (e.g. gen-
der, genetics, socio-demographic attributes, comorbidities). While undoubtedly infor-
mative, these databases bring together patients at different disease stages, with poten-
tially different disease onset and pace of progression. To address this temporal vari-
ability, [Jedynak et al., 2012] introduced an affine time-reparametrization of the real age
t 7→ αit+ βi onto the physiological age, considering that each subject presents a temporal
onset, or shift, βi as well as an acceleration factor αi. The model was later extended to spa-
tial data (e.g. PET amyloid imaging) that were converted into a disease score that allowed
to realigned the observation while showing spatial correlation in the pattern of progression
[Bilgel et al., 2015, Bilgel et al., 2016]. At the same time, [Donohue et al., 2014] consid-
ered that each individual short-term measurements represent snapshots of the overall dis-
ease progression. Once reparametrized, the patients observations can retrace the long-term
evolution of the different biomarkers, as shown on Fig. 1d. Similarly, [Guerrero et al., 2016]
described the individual trajectories as deviation of the group-average scenario of change.
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(a) Hypothetical model of the cascade of events during the
disease progression. Courtesy of [Jack Jr et al., 2010b]. (b) Event-based model that rank the

sequence of events. Courtesy of
[Fonteijn et al., 2012b].

(c) Temporal realignment using the diagnosis as
proxy of the disease progression. Courtesy of
[Iturria-Medina et al., 2016].

(d) Temporal realignment of the individual ob-
servations to reconstruct the group-average tra-
jectory. Courtesy of [Donohue et al., 2014].

(e) Temporal realignment of the subject measure-
ments based on their spatial coherence. Courtesy of
[Marinescu et al., 2017].

(f) Derivation of the group-average
trajectory to predict individual fu-
ture measurements. Courtesy of
[Iddi et al., 2019].

Figure 1: Evolution of the disease modeling in the last decades, from hypothetical broad
models to individual specific prediction.
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Such description corresponds to mixed-effects model, where the individual derivations take
the form of random effects around the fixed effects that are shared by the population.

Recently, a probabilistic setting of evolution was introduced in [Lorenzi et al., 2017].
It also allows to realign the individual measurements along the disease axis. The follow-up
measurements show to be very informative in the evolution modeling. However, it lacks
a natural way to represent the variability in term of spatiotemporal progression. Another
recent technique was introduced in [Oxtoby et al., 2018]. The authors relate the biomarker
rate of change to the biomarker value itself, exploiting differential equations to model the
disease progression.

The previous model essentially examined cognitive assessments or features derived from
medical imaging, such as values of the cortical thickness or of the hypometabolism in spe-
cific regions of interest, the volume of sub-cortical structures, the concentration of proteins
in blood tests, ... Such studies, that go beyond univariate measures to analyse different
modalities, essentially extract biomarkers prior to analyse their evolution. This is particu-
larly true for imaged-based features. On the contrary, few studies explore the complexity of
entire images. Among them, [Marinescu et al., 2017] recombine biomarkers from medical
imaging measurements, taking advantage of the spatial structure of the disease progression.
This allows to re-position the observations along the disease axis while aiming at clustering
regions that are most likely to have a strong evolution during the disease history.

While most of the aforementioned models are able to define a group-average trajectory
based on individual measurements, there are not suited to characterize individual progres-
sions. Apart from the mixed-effects models, they do not provide a simple way to derive
the long-term trajectory to individual observations. On the other hand, [Iddi et al., 2019]
proposed a mixed-effects model used to predict future time-points, as shown on Fig. 1f,
but whose overall explanability is made more complex due to the use of advanced Machine
Learning algorithms. The authors of [Schiratti et al., 2015] introduced a generative mixed-
effects model that similarly reconstructs the long-term disease progression from individual
short-term measurements. Additionally, as the model considers the individual trajectories
as spatiotemporal variations of the group-average one, it enables to derive estimation of
the disease progression at an individual level. This is a first step to define continuous
trajectories that define the evolution of the biomarkers at any time, potentially at fu-
ture time-points. This description is made possible by the characterization of the overall
spatiotemporal variability of evolution across subjects. The variability takes the form of
random effects that, once estimated, define a probability distribution over the individual
variables that modulate the typical scenario of progression. This distribution makes the
model generative in the sense that it is possible to draw new samples. As each of them de-
fines exactly the variations to the group-average scenario of progression, it entirely defines
a new patient that reproduce the characteristics of the real patients, while being simulated
and thus anonymous.

To sum up, over the last decades, models that first described the general trend of
the disease progression, slowly considered a time-realignment of the individuals to get the
average sequence of events. Along the way, some proposed to convert this sequence to
a temporal dynamic and ordering, including more complex modalities. Finally, recent
advances helped to go from a group-average trajectory to a individual description of the
disease progression. These improvements were associated to the increasing complexity of
the biomarkers analyzed. Unfortunately, they did not necessarily investigate the multi-
modal aspects of the disease, especially their separate but dependant temporal dynamics.
This advocates for a general framework to study the changes of different biomarkers under
the influence of the disease evolution.
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The work detailed in this thesis follows this historical development, especially from the
work initiated in [Schiratti, 2016]. It tackles the challenges raised by the complex temporal
dynamics of each biomarkers, which also present specificities at the individual level, to :

• describe the typical scenario of disease progression, from prodromal to clinical stages,

• personalize this average trajectory to individual progressions, enabling an in-depth
study of the cofactors that modulate this progression,

• characterize the individual trajectories to impute missing values and predict future
stages,

• properly estimate the variability of disease progression to simulate virtual cohorts of
anonymized individuals.

While [Schiratti, 2016] introduced the spatiotemporal model to essentially address the
first point, especially for scalar biomarkers, this manuscript aims at further investigating
the three remaining challenges for a larger family of spatiotemporal models of progression
and to include multiple modalities such as the thickening of the cortical structure, the
brain glucose consumption as a marker of the hypometabolism, and the decline of the
cognitive abilities. It inevitably involves to analyze data that have different characteristics
such as their acquisition, their dimension and resolution, their measurement noise and or
inter- and intra-individual variability. Therefore, this work, while analysing and comparing
heterogeneous data, is built with the intention to be adaptable to different modalities and
biomarkers.
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Conceptual overview

To ease the reading and understanding of the proposed model, we first start by exem-
plifying the problem at hand: the characterization of a temporal trajectory given some
measurements. Let us describe the growth of a child given his pictures at different ages.
We consider a fixed camera that shots a plain-size picture of a child at 6 and 12 months
(on a white background), as shown on Fig.2. Each picture, represented by a blue dot, has
N pixels, each being valued between 0 and 255, such that the feature space is ]0, 255[N .
The picture of the same person at 9 months old also belongs to this space but it is easily
understandable that this picture is not the mean (in the Euclidean space) of the two pre-
vious pictures: the mean, i.e. the mean of the pixels, results in the blurry version of the
superposition of the first pictures, as shown on Fig. 2. On the other hand, the collection
of all the pictures between 6 and 12 months defines a curve (in a sense to be precised)
in the feature space, represented by the black curve, that corresponds to the individual
trajectory. As we can theoretically define this trajectory for any individual, the set of all
the resulting curves results in a subspace of the initial embedding space that we model
by the blue-to-red surface on Fig. 2. This subspace, called a Riemannian manifold (see
Chapter 1), allows to perform calculus between images, for instance to exhibit the picture
at 18 months old by following the black curve on this manifold.

ℝ𝑵

Picture	at	
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at	9	months
Hypothetical	

picture	at	18	months
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Figure 2: The pictures (blue dots in the space of measurements RN ) belongs to a subspace,
illustrated by the blue-to-red surface that corresponds to the space of possible pictures
during the growing. This subspace circumvents the inability of the Euclidean mean to
compute the mean picture between 6 and 12 months. It also enables to predict future
pictures, for instance at 18 months, based on the trajectory (black curve) that is estimated
from the first pictures.

While the mathematical formalism of this modeling is described in Chapter 1, same
logic applies to the modeling of the individual spatiotemporal trajectories of disease pro-
gression. In the case of longitudinal databases, the repeated observations of the subjects
are represented by the colored dots on Fig. 3. The collection of all possible observations is
represented by the blue-to-red surface. As in the previous example, the individual trajecto-
ries are represented by curves on this surface. In the particular case of disease progression,
while individuals are mostly observed during short-term periods, we make the hypothe-
sis that there exists a long-term group-average spatiotemporal trajectory represented by
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the black curve. The latter should be considered as the recombination of the individual
snapshots, each providing consistent information about a particular disease stage. By con-
struction, it consequently spans a longer time-window of disease progression. To account
for the spatial variability, i.e. the fact that there is a distance between the group-average
and individual curves, we consider that there exists a spatial shift from one to the other.
On top of that, the temporal variability is modeled through a temporal reparametrization
of the progression along the curves. It enables a time shift of the disease onset as well
as an acceleration factor that modulates the individual speed of progression. To these
spatiotemporal variability, we highlight that the subjects are observed at different stages,
with different baseline ages and a different number of times. These characteristics, while
being potentially difficult to handle, are actually key to provide necessary information to
reconstruct the overall disease progression over a long period of time.

ℝ𝑵
Group	average	
trajectory	

Individual	trajectory	with	
4	observed	measurements

Figure 3: Given the space of possible observations represented by the blue-to-red surface,
the dots are the measurements such that the colors indicate the patient they belong to.
The corresponding curve is the individual trajectory that can be recombine into a long-
term group-average trajectory in black. The trajectory present an important variability in
term of number of measurements, distance to the mean curve, potentially the stage at the
first visit.

Fig. 3 finally shows that this modeling allows to both characterize the group-average
long-term trajectory while personalizing this progression to individual measurements. Be-
yond the possibility to achieve the two aforementioned goals, this figure illustrates that
this embedding provides a framework (detailed in the next chapters) that also enables to:

• accurately compare the individual spatiotemporal progressions thanks to their rela-
tive positioning to the mean, in particular by studying the cofactors that significantly
modulate the disease progression,

• reconstruct particular values along the individual trajectory to either impute missing
values or predict future time-points by extrapolating the timeline,

• properly determine the space of possible measurements and trajectories to generate
virtual individuals with longitudinal measurements that enables first to un-bias or
balance initial cohorts and to enhance the predictive power of algorithms that require
large amounts of data.
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To demonstrate that this model provides an adequate framework to study the disease
progression, at both an average and individual level, we concentrate our attention on the
study of Alzheimer’s disease, especially the synchronized evolution of the cognitive func-
tions, the hypometabolism and the structure of the brain. This first requires to consider
a generic model suited for data that present different characteristics in term of structure
or dimensions, e.g. vectors of cognitive assessments, positron emission tomography (PET)
and magnetic resonnance imaging (MRI). Once formulated, the model is evaluated on its
capacity to characterize the long-term disease progression and to reconstruct the individual
trajectories. The quality of the latter is assessed by their comparison to the intrinsic noise
in the data which is to be determined and measured (e.g. test-retest data, medical imaging
resolution, feature extraction). As these reconstructions are made possible thanks to the
estimation of a continuous individual trajectory, it further enables to impute missing values
and predict the biomarkers at future time-points, up to 4 years in advance. Finally, the
ability of the model to properly estimate the variability in term of disease progression en-
ables the simulation of virtual patients with longitudinal measurements, that once gathered
into a virtual cohort, can be shared without violating sharing policies as anonymization.

This framework can provide promising tools to the medical community to better un-
derstand diseases and their underlying mechanisms. To this end, special attention has
been given to the development of numerical tools that can be used efficiently by both the
medical and research community. We dedicated the website www.digital-brain.org to
an interactive digital model of the Alzheimer’s disease progression that can be modified
to exhibit individual scenarios of evolution. Furthermore, the Leaspy Python package
has been released to enable researchers to estimate similar disease progression on other
biomarkers, modalities, cohorts and diseases.
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Manuscript overview

The first part is a general introduction to the generative mixed-effects model presented
in this thesis. It first exposes the mathematical definitions and tools needed to define
the generic model of progression. It then presents particular instantiations of the model
that suit different profiles of disease progression. Finally, it describes the mathematical
operations that allow to reconstruct the group-average scenario of change, to personalize
it to individual measurements, to impute missing values, to predict biomarkers at future
time-points and, finally, to simulate virtual patients.

The second part introduces a model that is better suited to describe the disease progres-
sion for data that present a spatial structure. It includes medical imaging and network-
values measures. The model ensures a spatial coherence of the disease progression for
neighbor regions. This is validated by characterizing the cortical atrophy and the brain
metabolism decrease during the course of Alzheimer’s disease.

The third part extensively describes and validates the possibilities offered by this dis-
ease progression framework. We consider a large scale longitudinal database of Alzheimer’s
disease from which we use cognitive assessments and medical imaging derived data (cortical
thickness over the entire brain, deformation of the hippocampus meshes and FDG-PET
data) to reconstruct the long-term disease progression. This demonstrates the reconstruc-
tion of the individual data up to the noise level and the prediction of future time-points. It
comes with a finer description of the disease mechanisms during the course of the disease

The fourth part takes the most out of the generative and mixed-effects characteristics
of the model: it allows to simulate patient’s missing or future observations and also virtual
patients. The simulated observations can either be used to impute missing values or to
predict future timepoints. On the other hand, the simulation of virtual patient enables
to un-bias or unbalance real cohorts for under-represented subgroups. In both cases, the
resulting virtual cohort helps improving algorithm predictive power in order to reach state
of the art results in the long-term prediction of cognitive impairments.

The fifth part describes the digital tools developed during the thesis. First, the Python
package Leaspy allows to run similar analysis on new cohorts for potentially other (neu-
rodegenerative) diseases. Then, we develop a digital model that relates for the long term
progression of the disease for different modalities. Finally, we propose a clinical dashboard
to monitor patients in a clinical study or in real life.
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Part I

Spatiotemporal Model of Progression
from Longitudinal Data
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Chapter 1

Scalar Models and Extensions

This chapter first briefly introduces the key mathematical concepts of the manuscript the
model is build on, i.e. the Riemannian geometry and the mixed-effects models. It cannot be
considered as a detailed or exhaustive description of these mathematical notions, but rather
a glimpse of the tools that are essential to the understanding of the following chapters.
However readers that are eager to understand the formal mathematical background of the
corresponding topics are referred to the mentioned references. In a second part, the chapter
introduces the generative mixed-effects model of disease progression. It starts with the
mathematical description of the model, in its generic form, thanks to the Riemannian
geometry setting. It then gives multiple instantiations of the model before discussing some
of its properties.
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1.1 Riemannian geometry

In the introduction, we made the hypothesis that the data of interest belong to a particular
subspace of the feature space, that individual trajectories are described by curves on this
subspace and that the repeated observations are points on these curves. This subspace is
thus central to the disease modeling as it entirely defines the space of possible measurements
and consequently the individual spatiotemporal trajectories. To this end, we introduce
the Riemannian geometry that is well suited to define such spaces but also to derive
mathematical notions such as curves and distances on this space. Historically, it has been
introduced to study differentiable topological spaces embedded in Rn. These spaces, called
manifolds, are characterized by the associated metrics that allows to generalize the notion
of distances in Euclidean spaces to such manifolds. We then introduce the concept of
geodesics that characterizes curves in these non Euclidean spaces. Finally, we define the
concept of parallel transport which is an important tool to shift (in a sense to be precise) the
previous curve to other regions of the manifold. This theoretical framework is extensively
presented in [Do Carmo Valero, 1992].

1.1.1 Manifold

A manifold is a topological space for which each point presents a neighborhood that is
homeomorphic to the Euclidean space. Simply said, there exist a collection of mappings
(called atlas) from regions of this space (as defined in [Do Carmo Valero, 1992]) to linear
spaces. It is possible to make calculus on each of this linear space and to derive it to the
corresponding region ; that leads to a locally differentiable structure. However, if these
local differentiable structures are continuous (in some sense [Do Carmo Valero, 1992]) from
one local mapping to the other, then the differentiable structure is said to be globally
differentiable. This defines a differentiable manifold or smooth manifold.

Given a smooth manifold M of Rn, each point p ∈ M is associated to its tangent
space TpM that is a linear approximation of the manifold in the neighborhood of p. This
tangent space contains all the possible derivations of M at p, intuitively corresponding to
the vectors at p in the direction of the derivations. These derivations are made possible
at each point of the smooth manifold by the differentiable structure.

1.1.2 Metrics and Riemannian manifolds

We consider a smooth manifold M such that each point p ∈M is associated to an inner
product gp on the vector field of the tangent space TpM, which varies smoothly from point
to point. The collection gM = (gp)p∈M is called a metric on the manifold. This generalizes
the Euclidean scalar product to manifolds. Equipped with this metric, (M, gM) is called
a Riemannian manifold. This key concept allows to introduce, among others, the notion
of distances on this differentiable structure.

1.1.3 Geodesics

The geodesics are to Riemannian geometry what straight lines are to Euclidean spaces:
they correspond to curves that to some extend represent the shortest path between two
points of the underlying manifold. Formally, given a smooth curve γ : I ⊂ R → M, we
say that γ is a geodesic of M if ∇γ̇ γ̇ = 0, i.e. a smooth curve with zero acceleration
(∇ corresponds to the Levi-Civita connection, see [Do Carmo Valero, 1992] for technical
details).
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to describe the individual variability.

Figure 1.1: Examples of mixed effects models in the case of (a) independent data and (b)
longitudinal data with repeated observations per subjects. They are better suited than
standard tools (e.g. standard linear regressions) to combine population and individual
effects.

1.1.4 Exponential mapping

We consider a point p ∈ M, a velocity v ∈ TpM and a geodesic γ such that γ(t) = p
and γ̇(t) = v. It can be shown that such geodesic is unique so that we rewrite it γ :=
Expp,t(v) : t 7→ Expp,t(v)(t). The exponential mapping associates the vector v to the point
reached by this geodesic at time t + 1. It writes v ∈ Tp 7→ Expp(v) = Expp,t(v)(t + 1).
It is essentially a step on the manifold from p in the direction of v.

1.1.5 Parallel-transport

Given a manifold M and a smooth curve γ : I ⊂ R → M, a vector field X is said to be
parallel along γ if DX

dt = 0. Given w0 ∈ Tγ(t0)M, one can show there exists a unique
vector field w(t) parallel along γ such that w(t0) = w0. This corresponds to the transport
of w0 along γ such that the vector field w(t) remains parallel to w0. This notion is crucial
to compare calculus across tangent spaces along a geodesic.

1.2 Mixed effects models

While Riemannian geometry is fundamental to characterize the space of possible measure-
ments, it does not provide a formulation of the individual nor the population trajectory of
disease progression on these Riemannian manifolds. To this end, we introduce the mixed
effects models [Fisher, 1919, Fisher, 1992]. They are statistical models which combine, in
the description of a phenomenon, the contribution of global effects affecting all the obser-
vations, and, the contribution of individual effects that are specific to each observation. On
the one hand, the global effects are called the fixed effects: they are non-random quantities
that best describe the whole population; one can think of the slope and the intercept as
the fixed effects of a linear regression because they affect equivalently all the observations.
On the other hand, the individual variability is described by random perturbations of the
fixed-effects, called the random effects, that allow to derive the individual observations
from the population-wide description. They essentially characterize the overall variability
in the population. An example of such mixed-effects model is shown on Fig. 1.1a.
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This modeling helps distinguishing the common dynamic from individual specific pat-
terns. It is particularly well suited to describe observations where there is no indepen-
dence between some data e.g. repeated observations of the same individual, as they en-
able to define effects at the individual level, shared by all the observations of the same
subject [Laird and Ware, 1982, Lindstrom and Bates, 1988, Lindstrom and Bates, 1990].
Such models, that combine population and individual effects, are called hierarchical models
where the higher levels of the model are more discriminant (in term of explained variance
for instance) than the lower levels. Fig. 1.1 gives examples that highlights the importance
and benefits of such models.

1.2.1 Linear mixed effects models

The first mixed-effects models to be introduced are the linear mixed-effects models (LME)
[Laird and Ware, 1982, Verbeke and Lesaffre, 1996, Bates and Pinheiro, 1998]. They can
be interpreted as an extension of (classic) linear regression models with an additional degree
of freedom being the subject-specific derivation from the linear trend.

Given a set of n observations, such that the i-th observations presents the outcome
variables yi ∈ RN associated to the input variables (xi, zi) ∈ RN×p × RN×q, the model
writes:

yi = xiα+ ziβi + εi ,

where α ∈ Rp corresponds to the fixed effects of the model and βi to the random effects
associated to observation i. Further assumptions are possible on the distribution of the
(βi)1≤i≤N such as a multivariate normal distribution.

1.2.2 Non linear mixed effects models

There are multiple reasons why linear model are not sufficient to model the interaction be-
tween the input variables (xi, zi) and the output variable yi. [Lindstrom and Bates, 1990,
Pinheiro and Bates, 1995, Bates and Pinheiro, 1998], among others, have introduced non
linear mixed effects models (NLMEM). Their descriptions are ad-hoc to the studied phe-
nomenon but they can be summed up under the general writing:

yi = g(xi, zi) + εi ,

where g is a non-linear function of the input variables (xi, zi) and xi (resp. zi) corre-
sponds to the variables associated to the fixed effects (resp. random effects).

1.2.3 Longitudinal data in the case of biological phenomenon

In principle, it is easy to interpret the dynamic of disease progression, or any biological
phenomenon described with longitudinal data, as the combination of fixed effects that char-
acterize the average temporal dynamic and of random effects that represent the individual
variations to the mean [Verbeke and Molenberghs, 2009]. An example of such phenomenon
is the decrease of the overall brain size, as shown on Fig. 1.1b. The natural decrease over
time (the fixed effects) is modulated by the individual brain size that might vary across
subjects (the random effects). We here consider a longitudinal dataset where the i-th indi-
vidual is observed at times (tij)j where the j-th observation at time tij is denoted yij . To
study such longitudinal data, the random-slope, random-intercept has been introduced to
describe each individual evolution as a variation of the slope and intercept of an average
trajectory, as shown on the estimation of the individual brain volume over time on Fig.
1.1b.
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Figure 1.2: Geometric description of the model where the longitudinal observation yij ∈ RN
belongs to a Riemannian manifold M. The group-average trajectory is characterized by the
geodesic γ0(t). The individual trajectory ηwi(t) corresponds to the exponential mapping
of the vectors Pγ0,t0,t(wi), that are the parallel transport of the vector wi ∈ Tp0M along
γ0(t).

This random-slope random intercept model writes :

yij = (α1 + β1
i )tij + (α2 + β2

i ) + εij .

The fixed-effects are α = (α1, α2) where α1 is the model slope and α2 is the model
intercept. It defines the average trajectory y : t 7→ α1t + α2. The random effects βi =
(β1
i , β

2
i ), that are independent and identically distributed samples of a normal distribution,

represent variations to the model intercept and slope. The interest of such model is shown
on Fig. 1.1b where the observations of the same patients are represented by the same
color. A standard linear regression that consider the observations as independent results
in the dashed line that does not correspond to the dynamic of the phenomenon. On the
other hand, a random-slope random-intercept model outputs an average trajectory as well
as individual trajectories characterized by the variations to the mean trajectory.

This model is well suited for dynamics that are temporally aligned i.e. where any time
t corresponds to the same event across patients. This is for instance accurate for dynamics
with a reference time-point such as pharmacokinetics that evaluate the effect of a drug from
a reference time-point which corresponds to the administration of the drug. Same logic
applies for any dynamic whose starting point is known. Conversely, some phenomenon
present unaligned temporal dynamics such as disease progression where the age at onset
is different and unknown for each patient. In these case, it is possible to account for a
reparametrization of the time, e.g. t 7→ t − τi where τi is a temporal shift to realign the
individual observations. However, this reparametrization, in the random-slope random-
intercept model leads to an non indentifiable model as there are multiple sets (β1

i , β
2
i , τi)

that characterize the same individual trajectory.
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1.3 Disease progression model

In this section, we define the mixed-effects model introduced in [Schiratti et al., 2015] that
is used to characterize the long-term disease progression and the individual trajectories.
To this end, we consider the repeated observations of p individuals, such that the i-th
individual has been observed ki ∈ N∗ times at times ti,1 < . . . < ti,ki . The observation at
time tij is denoted yij ∈ RN , where N ∈ N∗. Finally, let us denote y = (tij ,yij) 1≤i≤p

1≤j≤ki
the

set of longitudinal observations.

1.3.1 Geometric description

Thanks to the Riemannian settings introduced in 1.1, we first consider that each observa-
tion yij belongs to a Riemannian manifold M ⊂ RN as shown on Fig. 1.2. We also consider
that there exists a geodesic γ0 : I ⊂ R→ RN , reaching p0 at t0 (γ0(t0) = p0) with velocity
v0 (γ̇0(t0) = v0), that represents the group-average spatiotemporal trajectory, i.e. that
corresponds to the global temporal dynamic of disease progression. We consider that the
individual trajectories are spatiotemporal variations of this mean trajectory in the sense
that they derive from it thanks to :

• a spatial variation defined by wi ∈ Tp0M, called the space-shift. It characterizes
the direction in which the group-average trajectory is shifted to approximate the
data (yij)1≤j≤ki of the i-th individual. As described in Chapter 1.1, it is possible
to parallel transport the vector wi, defined at t0, along the curve γ0, for any time
t. The resulting vector writes Pγ0,t0,t(wi) as shown on Fig. 1.2. Accordingly, the
exponential mapping of this collection of vectors, that writes Expγ0(t)(Pγ0,t0,t(wi)),
define the individual trajectory ηwi(t) := Expγ0(t)(Pγ0,t0,t(wi)). This corresponds to
the exponentialization of the group-average geodesic γ0 in the direction wi.

• a temporal variability that is defined by the acceleration factor αi ∈ R and the
time shift τi ∈ R. As there is no reason for the individual trajectory ηwi(t) to
progress at the same speed as γ0(t), we introduce a temporal reparametrization
ψi : t 7→ αi(t − τi − t0) + t0. Therefore, the individual observation at time tij
corresponds, on the disease timeline, to the age ψi(tij). The acceleration factor αi
acts on the speed of the dynamic : αi > 1 (resp. αi < 1) corresponds to faster
progressors (resp. slower progressors). On the other hand, the time shift τi enables
to shift the temporal progression of a given number of years. τi > 0 (resp. τi < 0)
corresponds profile that present a late (resp. early) progression.

As the feature space is potentially of high dimension, we consider that wi can be
decomposed in an Independent Component Analysis (ICA) manner, such that wi = Asi
where A ∈ RN×Ns is called the mixing matrix and si = (sij)1≤j≤Ns are the sources. The
idea is that instead of living in a high dimensional space, wi can be represented is a
subspace spanned by the vectors given by the columns of the mixing matrix A.

Finally, the individual measurements of the i-th individual at time tij writes

yij = ηwi(ψi(tij)) + εij , (1.1)

where εij is the residual noise not captured by the model.
As ηwi(ψi(tij)) is parametrized by p0, t0 and v0, i.e. exactly the geodesic γ0, the good

fit between ηwi(ψi(tij)) and the real observations yij necessarily means a geodesic whose
derivation is well suited to reconstruct the individual data. In other terms, this corresponds
to sticking together individual data in such a way that the resulting long-term progression
may be derived to describe individual spatiotemporal trajectories.
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1.3.2 Statistical description

The Riemannian settings enables to describe the average and individual spatiotemporal
trajectories that corresponds to the evolution of a given feature. On the one hand, the
long-term disease progression corresponds to the geodesic γ0, parametrized by p0, t0 and
v0. On the other hand, the function t 7→ ηwi(ψi(tij)) corresponds to the geometrical
description of the individual trajectory on the Riemannian manifold. It derives from γ0

thanks to αi, τi and wi.
The disentanglement between the population and individual trajectories, the latter

deriving from the former, can be seen as a mixed-effects model: the main geodesic, i.e.
p0, t0,v0 corresponds to the fixed-effects while the individual parameters αi, τi,wi are the
random-effects in the sense that they are random variations of the mean trajectory.

1.3.3 Identifiability conditions

To ensure the identifiability of the model in the presence of spatio-temporal variability,
the space-shift wi has to be orthogonal to the velocity v0. The reason of this condition is
detailed in [Schiratti, 2016]. An intuitive reason to this condition is that if both vectors
were not orthogonal, then the projection of wi on γ0(t), non null, might interfere with the
temporal progression which is controlled by αi and τi. For instance, a larger projection
on γ0(t) could compensate for a particular time-shift τi. To this end, given gM the metric
associated to the Riemannian manifold M, we must ensure that gM(wi,v0) = 0.

As wi = Asi and Ak is the k-th column of A, the orthogonality condition is ensured
if gM(Ak,v0) = 0 ∀k ∈ {1, . . . , N}. In practice, we use the Householder method to
build an orthonormal basis (v0, B2, . . . , BN ) from which the column Ak is built as a linear
combination of (B2, · · · , BN ). This ensures the orthogonality condition between wi and v0.
The coefficients of the linear combinations for all the columns are denotes (βk)1≤k≤Ns(N−1)

1.3.4 Product of 1D models

As for now, the model has been set in a very generic way as the manifold has not been
described. In fact, this general writing allows to keep the same framework for multiple
manifolds, and therefore multiple data types. In the following, we consider that the man-
ifold is a product manifold of 1D manifolds such that γ0(t) = (γ1(t), . . . , γn(t)). In this
case, the associated metric is a product of 1D metrics.

Given that wik the k-th coordinate of wi, the authors of [Schiratti et al., 2017] show
that in the case of a product manifold, the k-th coordinate of ηwi(ψi(tij)) writes

ηwi
k (t) = γk(

wik

γ̇k(t0)
+ ψi(tij))

1.4 Different instantiations

In this manuscript, we essentially focus on six instantiations (see Fig. 1.3) of the generic
model. [Schiratti, 2016] introduced the parallel straight lines and the parallel logistic
shapes. On top of them, this manuscript enriches the family of possible temporal pro-
files with a parallel exponential decay, and with the relaxation of the parallel constraint
of the three previous models. For each of the six instantiations, we provide the metric gkp
at point p ∈ R, the equation of the corresponding one-dimensional geodesics γk, and the
writing of the k-th coordinate of the individual trajectory ηwi

k (ψi(tij)). The proof that the
given curves are geodesics is given in Appendix 1.
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Figure 1.3: Instanciations of the generic model for different type of temporal evolutions.
Exemple for the progression of three variables.
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1.4.1 Parallel straight lines

We consider parallel straight lines as shown on Fig. 1.3a. The k-th geodesic reaches the
value p0 with velocity v0 at time t0 + δk. For identifiability purposes, we set δ1 = 0. The
k-th coordinate corresponds to an horizontal translation of the first coordinate by δk.

In that case, the metric, the geodesic and the individual trajectory write :

gkp(u, v) =uv (1.2)

γk(t) =p0 + (t− t0 − δk)v0 (1.3)
ηwi
k (ψi(tij)) =wik + p0 + (αi(tij − t0 − τi) + δk)v0 (1.4)

Note that the first coordinate of γ0(t0) = p0 is p0. Similarly, the first coordinate of
γ̇0(t) = v0 is v0.

1.4.2 Straight lines

As shown on Fig. 1.3b, in the case of straight lines whose k-th coordinate, i.e. geodesic,
reaches the value pk with velocity vk at time t0, we have :

gkp(u, v) =uv (1.5)

γk(t) =pk + (t− t0)vk (1.6)
ηwi
k (ψi(tij)) =wik + pk + αi(tij − τi − t0)vk (1.7)

1.4.3 Parallel logistic shapes

We here consider logistic curves whose asymptotic values are 0 at −∞ and 1 at +∞. The
first dimension reaches the value p0 at time t0 with velocity v0. The k-th dimension is
delayed by a time δk from the first coordinate (by definition, δ1 = 0), as shown on Fig.
1.3c. For the sake of clarity, we write E(t) = exp

(
−v0

p0(1−p0)(t+ δk − t0)
)
. This leads to the

following :

gkp(u, v) =
uv

p2(1− p)2
(1.8)

γk(t) =

(
1 +

(
1

p0
− 1

)
E(t)

)−1

(1.9)

ηwi
k (ψi(tij)) =

(
1 +

(
1

p0
− 1

)
exp

(−v0(αi(t− τi − t0) + δk)

p0(1− p0)
− wik(1 + gE(t0))2

gE(t0)

))−1

(1.10)

As for the parallel straight lines model, the first coordinate of γ0(t0) = p0 is p0.
Similarly, the first coordinate of γ̇0(t) = v0 is v0.

1.4.4 Logistic shapes

Contrary to the parallel logistic shapes (see Fig. 1.3d), we here consider that each coor-
dinate is independant. Therefore, the k-th geodesic reaches the value pk at time t0 with
velocity vk. This writes :
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gkp(u, v) =
uv

p2(1− p)2
(1.11)

γk(t) =

(
1 +

(
1

pk
− 1

)
exp

(
− vk
pk(1− pk)

(t− t0)

))−1

(1.12)

ηwi
k (ψi(tij)) =

(
1 +

(
1

pk
− 1

)
exp

(
−wik + vkαi(tij − t0 − τi)

pk(1− pk)

))−1

(1.13)

1.4.5 Parallel exponential decays

We here consider geodesics that take the form of exponential decay such that the asymptotic
values are +∞ at −∞ and 0 at +∞. The first geodesic reaches p0 with velocity v0 at time
t0. The other geodesic are translation of the geodesic with t 7→ t+δk (δ1 = 0 by definition)
as shown on Fig. 1.3e. It leads to consider the following :

gkp(u, v) =
uv

p2
(1.14)

γk(t) =p0 exp

(
−v0

p0
(t− t0 + δk)

)
(1.15)

ηwi
k (ψi(tij)) =p0 exp

(
−wik
p0
− v0

p0
(αi(tij − t0 − τi) + δk)

)
(1.16)

(1.17)

Note that the mentioned asymptotic values are correct only if vk > 0. In the case that
vk < 0, this corresponds to a classic exponential function.

1.4.6 Exponential decays

Here, the geodesics take the form of exponential decay such that the asymptotic values are
+∞ at −∞ and 0 at +∞. They reach the value pk at time t0 with velocity vk as shown
on Fig. 1.3f. This writes :

gkp(u, v) =
uv

p2
(1.18)

γk(t) =pk exp

(
−vk
pk

(t− t0)

)
(1.19)

ηwi
k (ψi(tij)) =pk exp

(
−wik
pk
− vkαi

pk
(tij − t0 − τi)

)
(1.20)

Again, the mentioned asymptotic values are correct only if vk > 0. Otherwise, it is an
increasing exponential function.

1.4.7 Model variations

The list of possible instantiations of the generic model is not limited to the six mentioned
models. This section intends to present some variations of the previous models. We stress
that some of them are available in the Leaspy software, presented in Chapter 7.
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Parametrization

For each instantiation, there are multiple ways to parametrize the model. For instance, the
parallel straight lines are parametrized by a value p0 reached with velocity v0 at different
times : t0, t0 +δ2, . . . , t0 +δn. It somehow corresponds to an horizontal translation of mag-
nitude δk of the first coordinate. The same straight lines could have been parametrized
by values p1, . . . , pn reached at time t0 with the velocity v0. This second writing corre-
sponds to a horizontal translation of magnitude pk − p0 of the first coordinate. Similar
reparametrization are possible for the logistic shapes and the exponential decays. However,
as discussed in the next Chapter, some parametrization are easier to estimate in practice.
Therefore, the aforementioned models correspond to the one that have shown to be stable
and robust during their estimation.

Univariate models

In the case of one-dimensional data, it is possible to use the previous models by setting
wi = (wi1) = 0. For instance, the logistic parallel writes

γ(t) =

(
1 +

(
1

p0
− 1

)
exp

(
− v0

p0(1− p0)
(t− t0)

))−1

.
All the previous and further equations holds true for univariate data.

Number of sources

The number of sources Ns defines the subspace of possible directions for the space-shift wi.
Its selection is led by the fact that a too small value does not span RN sufficiently while
a too large value saturates the span of possible directions, not mentioning the associated
computational cost. This is reflected in the estimation of the noise which decreases with
a high number of sources until its saturation. The best value is thus the minimal value of
Ns that saturates the noise.

Another option is to consider that wi = 0 for all the patients. This might be of interest
for very noisy data where the spatial variability is a useless degree of freedom.

1.4.8 Model selection

As the model that best fit some data might not be straightforward, we here give some hints
concerning its selection. The main factors to take into considerations are the following :

• Biological process at hand. The model should definitely depicts what happens in
the data or what might be expected. For instance, in the case of cognitive assessments
for which there exists minimum and maximum values, the logistic progression is a
natural choice. On the other hand, the decrease of a volumetric feature might be
modeled by an exponential decay or a linear decrease.

• Number of individuals. To reconstruct a long-term progression, the individuals
should represent different part of the disease stage, along with its variability in the
population.

• Number of time points. Similarly to the number of individuals, there should be
enough observations per patient to span a sufficient disease stage. In practice, this
feature is more important than the number of individuals as it tends to stabilize the
disease progression.
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Chapter 2

Estimation

The third chapter presents the algorithms used to estimate mixed-effect models, as well as
their scope of applications and their limitations. In a second time, we exhibit how these
mathematical procedures are turned into applications in the case of disease progression. It
turns the spatiotemporal model of disease progression into a natural framework to handle
longitudinal data.

Contents
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2.1 Statistical learning

In this session, we introduce the algorithms used to estimate the parameters of statistical
models. We stress the fact that the notations do not correspond to the sections above.
Here, we consider that the model at hand can be written for the i-th subject as :

yi = f(θ, zi) + εi ,

where

• yi is the output variable (i.e. explained variable),

• zi are the random variables associated to the i-th subject, also called latent variables,

• f corresponds to the model, i.e. the mapping from the model parameters and the
random variables to the output variable,

• θ corresponds to the model parameters that might be (i) the parameters of the
function f and (ii) the parameters of the latent variable distributions.

In the case of longitudinal data, yi is a set of observations at different timepoints
yi = (yij)j .

In general, the objective is to find the parameters that "best describe" the observations,
e.g. the parameters that maximize the likelihood

p(y; θ) =

∫
p(y, z; θ) dz =

∫
p(y | z; θ)p(z; θ) dz
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2.1.1 E-M algorithm

It is sometimes difficult to maximize this likelihood directly, especially when it relies
on latent variables z that are by definition unknown. In these cases, the Expectation-
Maximization algorithm, introduced in [Dempster et al., 1977], provides an iterative algo-
rithm to estimate either the maximum likelihood or the maximum a posteriori.

Algorithm 1: Expectation-Maximization
θ ← θ0

k ← 0
while Convergence of θ do

k ← k + 1

Expectation step : Compute Q(θ, θ(k)) = Ep(z|y;θ(k))

[
log p(y, z; θ)

]
Maximization step : Update θ(k+1) = argmaxθQ(θ, θ(k))

end
Result: return θ(k)

The algorithm alternates between an Expectation step which defines a function that
computes the expectation over the latent variables given a current value of the parameter
θk at the k-th step of the algorithm, and, a Maximization step that finds parameters θ(k)

that maximize the previous function. The pseudo code of the algorithm is presented in
Algorithm 1.

2.1.2 Stochastic Approximization Expectation Maximization

Algorithm 2: Stochastic Approximation Expectation-Maximization
θ ← θ0

Q0 ← 0
(εk)k≥0 such that

∑
k≥0 εk = +∞ and

∑
k≥0 ε

2
k < +∞

k ← 0
while Convergence of θ do

k ← k + 1

Stochastic step z(k) ∼ p(z | y; θ(k))
Approximation step : Compute
Qk(θ) = Qk−1(θ) + εk(log p(y, z(k); θ)−Q(k−1))

Maximization step : Update θ(k+1) = argmaxθQk(θ)

end
Result: return θ(k)

In the case of complex non-linear models, the integral over the latent variables during
the Expectation step is intractable. On the other hand, it is possible to draw realizations
z(k) ∼ p(z | y; θ(k)) in order to approximate the quantity Q(θ | θ(k)). This approximation
leads to replace the Expectation step by a Stochastic and Approximization step. This
algorithm, called Stochastic Approximation Expectation Maximization algorithm and in-
troduced in [Delyon et al., 1999] is shown in Algorithm 2.

The key point of the algorithm is to require only one sample z(k) per iteration rather
than a Monte Carlo approximation of Ep(z|y;θ(k))

[
log p(y, z; θ)

]
. Besides computational

cost savings, it also relies on the fact that z(k) is correctly sampled. This is particularly
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important in the context of complex non-convex energy landscapes. Early phases of the
Approximation step (εk ≈ 1) boils down to Qk(θ) = log p(y, z(k); θ). This memoryless
period of the algorithm (as it does not record previous values of the quantity Qk(θ)) is
called the burn-in phase. In practice, this exploratory phase is critical for its convergence.
After this phase, the parameters θ(k+1) is updated given the new value of the parameters
θ(k) and the previous value θ(k−1).

We refer the reader to [Delyon et al., 1999] for technical details, especially the hy-
pothesis to prove the convergence of this algorithm. Among others, it is shown that the
Stochastic and Approximation steps asymptotically converge to the same set of solutions
as the Expectation step of the EM algorithm.

2.1.3 Monte Carlo Markov Chain SAEM

Algorithm 3: Hasting Metropolis algorithm
Given z(k)

begin
Choose a proposition law qk(· | z(k))

Draw zc ∼ qk(· | z(k))

Update z(k+1) = zc with probability τ = min
(
p(zc|y;θ(k))qk(z(k)|zc)

p(z(k)|y;θ(k))qk(zc|z(k)) , 1
)

(z(k+1) = z(k) otherwise)
end
Result: return z(k+1)

Algorithm 4: Monte Carlo Markov Chain Stochastic Approximation
Expectation-Maximization
θ ← θ0

S̃0 ← 0
(εk)k≥0 such that

∑
k≥0 εk = +∞ and

∑
k≥0 ε

2
k < +∞

k ← 0
while Convergence of θ do

k ← k + 1

Simulation step Given (y, θ(k), sample z(k) from z(k−1) with an Hasting
Metropolis procedure

Stochastic Approximation step : S̃k ← S̃k + εk

(
S(y, z(k))− S̃k−1

)
Maximization step : θk = argmaxθ

(
− logC(θ) + 〈S̃k,Φ(θ)〉

)
end
Result: return θ(k)

One additional difficulty lies in the fact that p(z | y; θ(k)) might be unknown. We
derive from the Bayes rule that

p(z | y; θ(k)) =
p(y | z; θ(k))p(z; θ(k))

p(y; θ(k))
=

p(y | z; θ(k))p(z; θ(k))∫
p(y | z; θ(k))p(z; θ(k)) dz

where p(y | z; θ(k)) is the model itself, p(z; θ(k)) is the known prior of the hidden
variables and the denominator is a constant.
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Therefore, p(z | y; θ(k)) is known only up to the normalizing constant. In such cases,
the Hasting Metropolis algorithm presented in Algorithm 3 allows to approximate sample
z(k+1) ∼ p(z(k) | y; θ(k)). It relies on a Markov Chain method to draw hidden variables
from the probability distribution p(z(k) | y; θ(k)).

Once we know how to sample the latent variable z(k), this leads to Monte Carlo Markov
Chain SAEM algorithm whose sampling procedure is replaced by the MCMC procedure.
This algorithm is proven to converge to a critical point of the observed likelihood p(y|θ)
(see [Kuhn and Lavielle, 2004, Allassonnière et al., 2010, Allassonniere and Kuhn, 2015])
that is likely to be a local maximum due to the randomness of the algorithm which makes
it diverge from saddle points. One of the convergence hypothesis is that the model belongs
to the exponential family, which means that the log-likelihood writes :

log p(y, z; θ) = 〈Φ(θ), S(y, z)〉 − logC(θ)

where S(y, z) are called sufficient statistics of the model. In such cases, the Approx-
imation step rewrites as Qk+1 = 〈Φ(θ), S̃k+1〉 − logC(θ) where S̃k+1 = (1 − εk+1)S̃k +
εk+1S(y, z). Besides the convergence properties, this writing allows a significant com-
putation cost reduction at each iteration of the algorithm as one only need to compute
and propagate the vector S(y, z(k)) instead of the entire quantity Q(θ, θ(k)). Finally, the
Maximization step computes θ(k+1) = argmaxθ〈Φ(θ), S̃k+1〉) − logC(θ). This algorithm
is fully described in Algorithm 4. The reader is referred to [Kuhn and Lavielle, 2004] and
[Allassonnière et al., 2010] for the proof of convergence in the case of a model belonging
to the exponential family.

2.1.4 Hasting Metropolis within Gibbs sampler

Algorithm 5: Gibbs sampler

Given a set of hidden variables z(k) = (z
(k)
l 1 ≤ l ≤ L) and the parameters θ(k)

begin
Sample z

(k+1)
1 from q(z1 | y, z(k)

1 , . . . , z
(k)
L , θ(k+1))

. . .

Sample z
(k+1)
l from q(zl | y, z(k+1)

1 , . . . , z
(k+1)
l−1 , z

(k)
l+1 . . . , z

(k)
L , θ(k+1))

. . .

Sample z
(k+1)
L from q(zL | y, z(k+1)

1 , . . . , z
(k+1)
L−1 , z

(k)
L , θ(k+1))

end
Result: return θ(k)

In the previous section, we considered the hidden variable z(k) is sampled thanks to a
Markov Chain method which might be difficult in case of complex multivariate variables.
Let us now consider that z = (zl)1≤l≤L and that for all l ∈ {1, . . . , L}, the law p(zl | zl,y; θ)
is known only up to a constant (zl = z\{zl}), then the coordinates of z can be sampled one
after the other. This procedure is called the Gibbs sampler and is described in Algorihm
5. If each sampling of the Gibbs sampler is done using a Hasting Metropolis procedure, we
call this algorithm the Hasting Metropolis within Gibbs sampler. It leads to rewrite the
MCMC step of Algorithm 4 with a coordinate by coordinate Hasting-Metropolis sampling.
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2.2 Estimation of the disease progression model

In Chapter 1, thanks to the Riemannian setting, we presented a geometrical model of
spatiotemporal progression as shown in Eq. 1.3.1. The model is parametrized, first,by
geometrical parameters θgeom, that depend on its instantiation, and, secondly, by variations
of the group-average progression that take the form of individual hidden variables zi =
(αi, τi, (sij)1≤j≤Ns). For instance, θgeom = ((pk)1≤k≤N , (vk)1≤k≤N , t0, (βk)1≤k≤(N−1)Ns

for
the logistic curves. Given a set of longitudinal data y = (yij , tij)1≤i≤p,1≤j≤ki , Eq. 1.3.1
can be written as

yij = f(θgeom, zi, tij) + εij (2.1)

Note first that we consider εij ∼ N (0, σ2). Given that θgeom corresponds the group-
average trajectory and zi the individual variations to the mean, Eq. 2.2 indeed char-
acterizes a mixed-effects model as describes in Section 1.2. In that case, the hidden
variables are considered as realizations of random variables which distribution also de-
pends on parameters θz such that it leads to consider the overall statistical set of pa-
rameters θ = (θgeom, θz) which describes the disease progression along with its variability
within the population (note that σ ∈ θz). The likelihood of this statistical model writes
p(y; θ) =

∫
p(y|z; θ)p(z; θ) dz where p(y|z; θ) is an attachment term derived from by Eq.

2.2 while p(z; θ) is a regularity term that corresponds to the prior on the hidden variables.
This naturally leads to characterize the following statistical procedures :

• calibration : given y, estimation of the parameters θ̂ that best describe the group-
average spatiotemporal trajectory and its variability.

• personalisation : given θ̂, estimation of the individual hidden variables z∗i that best
derive the group-average trajectory to reconstruct the individual measurements.

• reconstruction, imputation of missing values and future prediction : given
θ̂ and z∗i , estimation of ỹij = f(θ̂geom, z

∗
i , tij) where the time tij has been observed

tij ∈ {ti1, tiki} (reconstruction), or where it is between the first and last seen visit
ti1 < tij < tiki (missing value imputation) or where it is after the last seen visit
tij > tiki (prediction).

• simulation : given θ̂ and a set of individual variables (zi), drawing of a new hidden
variable zi′ that entirely determine a new individual.

2.3 Calibration

The calibration procedure aims to find the value θ̂ in the set of possible parameters Θ
that best describes the model i.e. that maximizes the likelihood p(y; θ). The model of
disease progression and its variability within the population y are fully characterized by
this optimal value θ̂ ∈ argmaxΘ p(y; θ). As the hidden variables (zi)1≤i≤p are unknown,
the observed loglikelihood is intractable. Same for the distribution p(z|y; θ) which is only
known up to a normalizing constant (see section 2.1.3). In such cases, the MCMC-SAEM
algorithm has been proven to be a helpful algorithm to find θ̂ as it is proven to converge
to towards a local maximum of the posterior distribution p(θ|y) [Kuhn and Lavielle, 2004,
Allassonnière et al., 2010, Allassonnière et al., 2015]. This has to be put in regards with
the existence of a maximum a posteriori of the presented model, proven in [Schiratti, 2016].

The convergence of the algorithm is proven under the assumption that the model be-
longs to the exponential family such that the complete log-likelihood writes
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log p(y, z; θ) = 〈Φ(θ), S(y, z)〉+ logC(θ) ,

where S(y, z) are called sufficient statistics of the model as describes in 2.1.3. In our
case, this writing is possible only if the fixed effects are "exponentialized" in the sense that
they are considered as samples of a random variable. For instance, for a fixed-effect p, this
translates into p ∼ N (p, σ2

p) such that p ∈ θ and σp is fixed and chosen small enough to
assimilate the hidden variables p ∈ z to the model parameter p ∈ θ.

On top of this theoretical convergence consideration, we here also stress the identifiabil-
ity properties of the model. As discussed in [Lavielle and Aarons, 2016] and [Lavielle, 2014],
the model should be considered throughout its structural and practical identifiability. The
former implies that there does not exist two sets of parameters θ1 and θ2 6= θ1 such that
p(y; θ1) = p(y; θ2) (the definition of the structural identifiability is in fact more complex in
the case of individual and population parameters, see [Lavielle and Aarons, 2016]). On the
other hand, the practical identifiability is related to the quantity and quality of the mea-
surements that ensure a stable and robust estimation of θ. In the context of the presented
model, the structural identifiability has not been fully proven but some criterion have been
raised such as the orthogonality condition between wi and v0, discussed in section 1.3.3,
or such as the choice of θgeom describing the temporal shape of progression. On the other
hand, the practical identifiability has been benchmarked to lead to a reparametrization
θ ← ζ1(θ) and z ← ζ2(z) where ζ1 and ζ2 are invertible functions. Appendix I presents
the reparametrization adopted for each model instantiation along with the corresponding
sufficient statistics and the maximization step of the MCMC-SAEM algorithm.

2.4 Personalization : estimate individual random effects

In this section, we consider a set of longitudinal data y and the optimal value θ̂ that max-
imizes p(y; θ). Let’s yi = (yij , tij)1≤j≤ki be a set of ki observations of the same patient,
indexed by i. The personalization consists in finding the optimal value of the random effects
z∗i that maximizes the likelihood p(yi, zi; θ̂) = p(yi|zi; θ̂)p(zi; θ̂). This optimization proce-
dure is essentially realized by a quasi Newton’s method called L-BFGS [Byrd et al., 1995]
or Powell’s method [Powell, 1964]. Both methods are numerical schemes that find the
optimal value z∗i with no analytical need of the gradient of the likelihood p(yi, zi; θ̂) with
respect to zi. An alternative method is to consider the estimated parameters θ̂ and to run
K iterations of the MCMC-SAEM for the individual parameters only. It results, for each
patient, in an empirical distribution of K samples of the individual parameters (zki )1≤k≤K
from which one can use the mode as the estimated individual parameters.

Remark : It is either possible to consider that the personalized individual belongs to
the set used for calibration (yi ∈ y) or not (yi /∈ y). In practice, both cases lead to
similar results (see Chapter 5). In the first case, cautious reader might mention that the
MCMC-SAEM procedure draw zi samples. However, this value is not optimal as it first is
a draw for a value θ(k) that might differ from θ̂, and, secondly, it is a sample of a random
variable, not its mode.

Remark : Maximizing p(yi, zi; θ̂) = p(yi|zi; θ̂)p(zi; θ̂) corresponds to the maximization
of a regularity term (p(zi; θ̂)) and an attachment term (p(yi|zi; θ̂)) that is a sum over
the number of observed time-points. This means that the more observations a patient
present, the less important the regularity becomes, or equivalently, the more confidence we
are in the fact that the individual measurements might different from the group-average
trajectory.
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2.5 Reconstruction, missing value imputation and future pre-
diction

Let us consider θ̂ and the observations of a subject yi = (yij , tij)1≤j≤ki at times (ti1, . . . , tiki)
such that ti1 < . . . < tiki . The personalization procedure returns z∗i that maximizes
z 7→ p(yi, z; θ̂), which fully specifies the individual spatiotemporal trajectory, for any t.

In the case where t is chosen among {ti1, . . . , tiki}, the resulting ỹij = f(θ, z∗i , tij) is
called the reconstruction of the data yij . The difference ||yij − ỹij || is referred to as the
reconstruction error.

In the case where t such that ti1 < t < tiki and t /∈ {ti1, . . . , tiki}, ỹij = f(θ, z∗i , tij)
corresponds to an interpolated value that might be missing as it has not been observed in
the initial dataset. This corresponds to the imputation of missing values.

Finally, if t is chosen such that t > tiki , it corresponds to the prediction of the measure-
ments at future time points. The accuracy of such procedure depends on the belief that the
group-average scenario describes a long-term scenario of change which can is transposed to
the individual trajectory. For the same reason, predicting stages that have not been seen
in the original training database is unrealistic since it relies on unknown dynamics.

2.6 Simulation

Given a longitudinal dataset y = (yij , tij)1≤i≤p,1≤j≤ki , the previous procedures allows us
to get θ̂ and (zi)1≤i≤p that defines a empirical distribution of the individual parameters
from which one can eventually draw a new sample z. Along with θ̂, this sample entirely
defines an individual spatiotemporal trajectory. This simulation procedure aims to sample
virtual subjects resulting in a simulated cohort that reproduce the characteristics of the
original cohort. It enables to have

• more patients,

• more follow-up visits per patient,

• a finer temporal granularity, i.e. less time between visits.

Intuitively, one can think of the virtual patient as a "linear combination" of the real
patients, e.g. if a patient has a cognitive decline of 2 points per year (given a specific
neuro-psychological assessment) and another of 2.4 points per year, then a patient with a
decline of 2.1 points per year is likely to exist even though he is not present in the original
database. Here, the procedure allows to extend such analogy with longitudinal trajectories
and potentially complex multi-dimensional observations.

The simulation procedure highly depends on the empirical distribution of the hidden
variables (zi)1≤i≤p. Among others, it is possible to use a Kernel Density Estimation (KDE)
or to estimate the parameters of common multivariate distributions, or a combination of
both. The quality of the simulation can be assessed by comparing the original empirical
distribution and the simulated hidden variables (Kullback-Leibler divergence, statistical
tests as Kolgomorov Smirnov for one dimensional distributions, ...) or by comparing the
distribution of the final outputs yvirtual to the original cohort (yij). We show in Chapter
6, which extensively focuses on simulating data, that it is possible to fool a discriminator
in predicting whether a longitudinal observation is real or simulated.

Remark 1 : In general, for a subject in the original dataset, there is a correlation between
the initial observation at ti1, the number of observations ki and the individual parameters
zi. For instance, early progressors are included in the dataset at early ages and might be
observed during longer periods of time. Therefore, if the goal is to reproduce the original
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cohort identically, one need to draw the hidden variables along with these cofactors. On
the other hand, it is possible to unbias the original cohort for such inclusion biases.

Remark 2 : The corollary of the previous remark is that the cohort might be biased
towards subjects with more visits or that are included in protocols at early stages. Another
bias might happens if a certain cofactor is prevalent in the original cohort (e.g. more
patients with a given genetic mutation, more educated patients, more married persons,
...). Drawing virtual cohorts might help in unbiasing the original ones by balancing the
different groups.
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Part II

Progression of Spatiotemporal
Patterns for Spatially Structured

Data
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Chapter 3

Population and Individual
Spatiotemporal Patterns of

Progression from Longitudinal
Manifold-Valued Networks

This chapter instantiates the generic mixed-effects model to data that present a spatial
structure, such as images, or variation of a signal over the nodes of a mesh. The spa-
tial structure imposes a regularity assumption on the temporal profile of "close" areas.
It chapter corresponds to the article Spatiotemporal propagation of the cortical atrophy:
Population and individual patterns, Koval I., Schiratti J.-B., Routier A., Bacci M., Col-
liot O., Allassonniére S, and Durrleman S., in Frontiers in Neurology, 2018. This article
is itself a detailed version of the conference paper Statistical Learning of Spatiotemporal
Patterns from Longitudinal Manifold-Valued Networks, Koval I., Schiratti J.-B., Routier
A., Bacci M., Colliot O., Allassonniére S, and Durrleman S., in International Conference
on Medical Image Compyting and Computer Assisted Intervention, 2017.

The results presented in this chapter are based on experiments that rely on Leasp ,
a C++ code that is available at gitlab. com/ icm-institute/ aramislab/ leasp . This
code, presented in Chapter 7 is left for reproducibility purposes but is not maintained any-
more as it is currently under migration to Leaspy , presented in the same Chapter.
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Abstract
Repeated failures in clinical trials for Alzheimer’s Disease (AD) have raised a strong
interest for the prodromal phase of the disease. A better understanding of the brain
alterations during this early phase is crucial to diagnose patients sooner, to estimate
an accurate disease stage and to give a reliable prognosis.
According to recent evidence, structural alterations in the brain are likely to be sensitive
markers of the disease progression. Neuronal loss translates in specific spatiotemporal
patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other
cortical regions according to specific propagation pathways.
We developed a digital model of the cortical atrophy in the left hemisphere from pro-
dromal to diseased phases, which is built on the temporal alignment and combination of
several short-term observation data to reconstruct the long-term history of the disease.
The model not only provides a description of the spatiotemporal patterns of cortical
atrophy at the group level, but also shows the variability of these patterns at the indi-
vidual level in terms of difference in propagation pathways, speed of propagation and
age at propagation onset.
Longitudinal MRI datasets of patients with mild cognitive impairments who converted
to AD are used to reconstruct the cortical atrophy propagation across all disease stages.
Each observation is considered as a signal spatially distributed on a network, such as
the cortical mesh, each cortex location being associated to a node. We consider how
the temporal profile of the signal varies across the network nodes.
We introduce a statistical mixed-effect model to describe the evolution of the cortex
alterations. To ensure a spatiotemporal smooth propagation of the alterations, we
introduce a constraint on the propagation signal in the model such that neighboring
nodes have similar profiles of the signal changes. Our generative model enables the
reconstruction of personalized patterns of the neurodegenerative spread, providing a
way to estimate disease progression stages and predict the age at which the disease will
be diagnosed. The model shows that, for instance, APOE carriers have a significantly
higher pace of cortical atrophy but not earlier atrophy onset.

3.1 Introduction

Neuroimaging studies have shown an alteration of the brain structure during the course
of Alzheimer’s Disease (AD) ([Du et al., 2001, Benzinger et al., 2013]). These lesions ap-
pears during the prodromal phase of the disease ([Amieva et al., 2008, Wilson et al., 2011,
Mura et al., 2014]) whose observation have been limited due to the absence of clinical
symptoms and diagnosis. The importance of the structural changes before the clinical
symptoms led to hypothetical models ([Jack et al., 2010]), which have been later refined
thanks to the gathering of multiple scientific evidences. These modifications took the form
of a structural change of the brain in particular an important neuronal loss and an atrophy
of the brain cortex ([Fan et al., 2008, Singh et al., 2006]).The study of the temporal evo-
lution of the cerebral cortex reveals an atrophy of the grey matter ([Baron et al., 2001]).
This cortical atrophy presumably relates the traces of the progression of the lesions over
the brain surface. A fine-scale modeling of the atrophy propagation is likely to give a
wider understanding of the disease evolution, as the structural markers seems reliable to
assess the conversion to the AD stage, potentially carrying subtle indicators of the disease
progression in early phases.

The spatiotemporal propagation of these alterations encloses two entangled compo-
nents. On the one hand, the spatial characterization of the lesions over the brain surface
at each time, and, on the other hand, a temporal dynamic of these alterations that may
differ from one region to another. Characterizing the proper dynamics of these lesions relies
on the possibility to reconstruct the whole time-line of AD, at both a spatial and temporal
level, out of short-term observations that are not temporally aligned. Another challenging
aspect consists in the variability inherent to the individual patterns of atrophy, that re-
quires to consistently compare the subject-specific spreads of alterations. Accounting for
the inter-individual variability in term of lesion propagation should allow to reconstruct in-
dividual patterns of propagation, paving the way to possible personalized model of atrophy,
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that potentially informs on subject-specific age of conversion or disease stage.
Recently, large datasets have opened the opportunity to investigate data-driven models

that have refined and validated these hypotheses to some extend, in particular Event-Based
Models ([Fonteijn et al., 2012b, Young et al., 2014, Young et al., 2015]) that considers the
propagation as a series of events, allowing to define a sequence of disease stages. They char-
acterize the overall variability of the events ordering at a population level. However these
models are not well-suited to relate for the temporal delays of the alterations at a popula-
tion level, neither to determine individual cortical atrophy. Multimodal observations, in-
cluding Positron Emission Tomography (PET) scans, Magnetic Resonance Imaging (MRI)
and biomarkers, have been gathered within longitudinal databases, i.e. repeated observa-
tions of patients during significant periods of time. The underlying intention is to provide
multiple individual snapshots of the disease - patients examined during short-term periods
- in order to reconstruct the long-term history of the pathology ([Jedynak et al., 2012],
[Donohue et al., 2014]) at a group and individual level. Moreover, it offers the possibility
to describe and interpret the observed data contrary to quantiles or percentiles that require
arbitrary reference distributions. A challenging aspect of AD patient comparison is the fact
that, even though AD is related to age, the latter is not a good proxy of the disease stage
([Gao et al., 1998, Devanand et al., 2007, Bilgel et al., 2016]) leaving us without any easy
way to align all the individual on the same time-line. In [Schiratti et al., 2015], the authors
introduced mixed-effect model that consider each individual trajectory as a variation of a
mean scenario of evolution, with a time-warp function that is able to realign the subjects
on the same time-line ([Durrleman et al., 2013]). It allows to characterize a spatial and
temporal variability of propagation in the sense that it defines a group-average trajectory
of propagation with the possibility to reconstruct individual observations thanks to per-
sonalized parameters. Nevertheless, [Schiratti et al., 2015] constrain the model to parallel
profiles of progression which does not hold when looking at signals that have various dy-
namics. Moreover, the model does not take into account the spatial correlations between
the data whereas [Bilgel et al., 2016], which focus on spatiotemporal patterns of progres-
sion for images, exhibited that this led, in the case of a non-linear mixed effects model, to
poor estimations of the subject-specific parameters and individual trajectories.

To account for the spatial structure of the signal, networks have been introduced
([Leuchter et al., 1992, Maguire et al., 1998]), representing the brain areas as the graph
nodes. In this paper, the networks correspond to a graph representation of a signal spa-
tially distributed, namely the cortical thickness mapped on a mesh representation of the
cortex. The node values are the cortical thickness values over time on the related brain
area. Extracting and projecting patients cortical thickness on the common mesh allows to
compare their atrophy on the same atlas to exhibit similar patterns. As we expect the signal
propagation to be spatially smooth with a similar temporal profile of change for neighbour
nodes, we consider that a subset of the graph nodes act as control nodes. They define a
evaluation function such that the signal at each node is an interpolation of the signal at
the control nodes, enabling to smooth the high frequencies ([Broomhead and Lowe, 1988]).
The proximity between nodes is defined by the distance matrix which informs on the dis-
tance between any pair. Moreover, the number of nodes of this vertex-based graph can be
tuned based on the desired application, potentially the same as the resolution of the input
data, e.g. a voxel for MRI or PET data.

The aim of this paper is to introduce a model of the cortical atrophy propagation
during the long-term course of AD thanks to a graph representation of the neuroimaging
data. This model is able to personalize the reconstruction of the propagation to individual
longitudinal measurements, allowing to describe the stages of the disease, potentially in the
future. The model is described as a general framework for any longitudinal data spatially
distributed on a common graph and it is instantiated to exhibit the propagation of the
cortical atrophy on the left hemisphere of the brain, across nearly 2.000 regions, thanks to
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Figure 3.1: Data preprocessing that projects the cortical thickness of the raw MRI ob-
servation (left) on a mesh, namely the FSAverage atlas constituted of 163.842 nodes per
hemisphere (middle) before sub-sampling it and averaging the signal onto a 1827-node
graph (right).

Figure 3.2: Mesh of the cortical surface where each node embeds a time-series of observa-
tions (red points). At node k, the function γk(t), which can be parametrized by a velocity
and two different sets (p1, t1) or (p2, t2), estimates the cortical thickness over time.

longitudinal observations of 154 Mild Cognitive Impaired (MCI) patients that were later
diagnosed with AD. While exhibiting an average pattern of propagation, this mixed-effects
model allows to reconstruct individual observations through time.

(a) Three dimensional space
embedding individual observa-
tions (blue points) of two in-
dividuals and the mean spa-
tiotemporal trajectory γ0 (red
curve).

(b) The spatial variations from
the group-average trajectory γ0
to the individual observations
are captured in individual vec-
tors wi and wj , called space-
shifts.

(c) The vector wi is parallel-
transported along γ0 (orange
vectors) to define a parallel
curve ηi that characterizes the
individual spatiotemporal tra-
jectory.

Figure 3.3: Geometric description of the construction of the mean and individual spa-
tiotemporal trajectories in the space of measurement, which is the Riemannian Manifold
M that embeds both the real observations and the trajectories
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3.2 Materials and Methods

3.2.1 Sketch of the method

Prior to detail our method, we would like to sketch the key ideas and notations of our work
to ease and guide the reading. Firstly, we consider I patients ; each patient i is observed
Ji times, his jth visit being at age tij , and each observation led to an MRI scan as shown
on the left hand side of Figure 3.1. Segmentation of the cortical thickness, out of the
neuroimaging observations, are mapped onto a mesh, as presented on the middle part of
Figure 3.1. The last step corresponds to a subsampling process that leds to a graph G of
K nodes, characterized by a distance matrix D. At each node, the individual observations
define a time-series describing the evolution of the signal through time.

In a second time, we assume that, at each node k of the graph G, there exists a function
t 7→ γk(t) that describes a characteristic evolution of the signal at this node, as shown on
Figure 3.2. The time-series of individual i at node k derives from a continuous function
ηik(t), which is assumed to be a spatial and temporal variations of the representative
trajectory γk(t), illustrated on Figure 3.3. The temporal variation corresponds to the time
realignment of individual i on the common time-line. It adjusts the individual dynamics
to a mean pace of evolution, thanks to personalized parameters τi and αi. τi stands for
the individual time-shift to the mean disease onset, allowing an early (τi < 0) or delayed
(τi > 0) age at diagnosis. The parameter αi integrates the patient-specific possibility to
have a faster (αi > 1) or slower (αi < 1) pace of atrophy compared to the mean scenario
of changes. On the other side, the spatial variation corresponds to the adjustment from
the mean cortical thickness to individual data. It accounts, for instance, for the difference
in size or in spatial thickness distribution at the same disease stage.

We consider that the characteristic signal γk(t) at node k belongs to a family of curve,
here the straight line curves, parametrized by the cortical thickness pk and the rate of
atrophy vk. To account for the spatial structure of the signal and the large number of
nodes, a subset of nodes, referred to as control nodes, is selected to control the interpolation
of the cortical and atrophy values over all the nodes. The distribution of the control nodes
depends on the size of the kernel bandwidth such that the kernels densities map almost
uniformly the feature space.

The model introduces population parameters, that allow to define a characteristic spa-
tiotemporal trajectory of the atrophy, and individual parameters, that not only enable
to reconstruct individual trajectories but also permit the statistical study of the dis-
tribution of spatiotemporal atrophy patterns. These parameters are estimated thanks
to the Monte-Carlo Markov-Chain Stochastic Approximation Expectation Maximization
(MCMC-SAEM) algorithm which handle non-linear mixed-effects models, with theoretical
guarantees and consistent results in practice.

3.2.2 Subjects and Data Preprocessing

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset contains longitudi-
nal MRI data for patients that are, at each visit, either Cognitively Normal (CN), Mild
Cognitive Impaired (MCI) patients, or, AD subjects. We selected all the subjects that
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presented a monotonous decline from MCI to AD, called the MCI converters, removing
those that may convert from AD back to MCI or CN. Although AD patients get through
an MCI phase, we could not keep CN to MCI patients as they might just as well convert
to another dementia. Also, the patients that underwent from CN to MCI and then to AD
are not numerous enough to give robust estimation of early stages (CN to MCI). Thus,
we kept only the MCI to AD visits of such patients. All-together, the paper focuses on
154 MCI patients that represents 787 visits, each individual being examined 5 times on
average, from 2 to 7 times.

Each visit led to a T1-weighted MRI acquisition, as shown on the left side of Figure
3.1. The longitudinal pipeline of FreeSurfer ([Reuter et al., 2012]) was used to extract
the cortical thickness of the left hemisphere of the brain which was then projected on a
common atlas, namely FSAverage ([Fischl et al., 1999]), which is a three dimensional mesh
composed of 163,842 nodes for each hemisphere represented on the central part of Figure
3.1. This common fixed graph allows to compare the cortical thickness between visits or
patients, node to node.

The data acquisition and inter-individual alignment led to a considerable noise, espe-
cially in terms of variability in the measures for close nodes. To smooth this noise and to
reduce the computational time, we sub-sampled the initial graph into a new graph of 1827
nodes. To do so, we selected 1827 nodes uniformely distributed over the whole FSAver-
age graph ; the other nodes were then associated to one of the 1827 nodes thanks to a
geodesic distance d on the graph (i.e the length of the shortest path on the surface mesh
between the nodes) using the Fast Marching Algorithm on the mesh ([Peyré et al., 2010]).
Therefore it constitutes collection of nodes referred to as patches. The value of each node
of the sub-sampled graph is the average value over the corresponding patch, each being
constituted of approximately 89 initial nodes of the FSAverage graph. The resolution of
this vertex-based approach is lower than the initial one, shown on the right hand side of
Figure 3.1, but still holds the brain topology while smoothing part of the acquisition noise.
In our case, each observation can be considered as a vector of size 1827 where the kth
coordinate is related to the kth node of the common fixed-graph G. The latter is also
described by a the distance matrix D between the 1827 nodes. It was obtained using the
geodesic distance d between the 1827 nodes on the initial graph FSAverage, whose edges
are weighted by a physical length. Finally, for all i, j ∈ {1, ..., 1827} , we set Dij = d(xi,xj)
where xi and xj are two nodes of the graph.

In the following, we will present a data-driven model which allow to track the propa-
gation of any signal spatially distributed, supposedly the cortical thickness. We consider a
longitudinal dataset y = (yi,j)1≤i≤I,1≤j≤Ji of I individuals, each patient i being observed
Ji times during the study at ages (tij)1≤j≤Ji . We suppose that there exits a common
fixed-graph G defined by a set V = (x1, ...,xK) of K nodes and a distance matrix D which
accounts for the distance between the nodes. Any node xk ∈ R3 corresponds to a coor-
dinate of a point in space. Each observation yij == (yij1, ...,yijK) ∈ RK corresponds to
the measured signal spatially distributed over the K nodes of G, represented by a point in
the multivariate space RK , schematically represented on Figure 3.3a for K = 3, as if there
were only 3 vertices in the mesh. Therefore, it defines a network whose nodes are valued
with the signal of interest. It follows that the collection (yij)1≤j≤Ji of the observations of a
particular subject defines a network that embeds a time-series on each node of G, indexed
by the patient age at each observation (tij)1≤j≤Ji .

3.2.3 Model

From short-term data to long-term history

We assume there that the repeated observations of a subject are sampled from a continuous
function t 7→ ηi(t) = (ηi1(t), . . . , ηiN (t)), where ηik(t) describes the decrease of cortical
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thickness of this ith individual at vertex k, such that

∀i ∈ {1, . . . , I} ∀j ∈ {1, . . . , Ji} ∀k ∈ {1, . . . ,K} yijk = ηik(tij) + εijk, (3.1)

where εijk ∼ N(0, σ2) corresponds to the model noise, whose variance is σ2.
The function t 7→ ηik(t) describes the evolution of the time-series at node k for the indi-

vidual i. Thus the vector function t 7→ ηi(t) = (ηi1(t), . . . , ηiN (t)) describes the continuous
evolution on the graph for a particular individual i.e. the spatiotemporal propagation of
the signal over the whole brain. It corresponds to a spatiotemporal trajectory in the space
of measurements. The trajectory t 7→ ηi(t) is therefore able to reconstruct the existing
observations (yij)1≤j≤Ji , defined at the related time-points (tij)1≤j≤Ji , as shown on Figure
3.3b, but also generate an observation at any time t, potentially in the future.

The repeated data of each individual is a particular window in the long-term course
of the disease that potentially overlaps with other patients. We aim to re-align along a
common time-line these short-term sequences by carefully analyzing the spatiotemporal
patterns within each short-term snapshot. Nevertheless, to do so, we also need to account
for the inter-individual variability in cortical thickness measurements and trajectories of
propagation across the network. The inter-individual variability prevents us from consid-
ering any individual propagation as a good representation of the disease evolution.

Consequently, we assume that there exists a mean scenario of propagation, defined by a
group-average spatiotemporal trajectory t 7→ γ0(t), represented on Figure 3.3c, such that
each individual trajectory t 7→ ηi(t) is a temporal and spatial variation of this mean scenario
of changes, detailed in section 3.2.3. This typical scenario of change describes the mean
pattern of spatiotemporal propagation of the signal and writes γ0(t) = (γ1(t), . . . ,γK(t))
where for all k ∈ {1, . . . ,K}, t 7→ γk(t) characterize the typical temporal evolution of the
cortical thickness on the brain region related to the node k. As represented on Figure 3.2.
Each node has a different temporal profile of atrophy, accounting for the variation of the
cortical thickness over time.

Individual estimation

Translating the generic framework introduced by [Schiratti et al., 2015] into this case re-
quires to exhibit individual parameters that characterize the individual spatial and tem-
poral variations to the mean, namely the space-shifting and the time reparametrization.

Time reparametrization We introduce a time-warp function ψi(t) that corresponds
to a time reparametrization that adjust the individual dynamics on a common time-line,
which here is the average spatiotemporal trajectory γ0. For any patient i with observations
(yij)1≤j≤Ji at time-points (tij)1≤j≤Ji , ψi(tij) = αi(tij − t0 − τi) + t0 where t0 is a common
reference time of the reparametrization, αi encodes for the individual pace of propagation
and t0 + τi describes subject-specific time-shift to the mean disease onset. As such, if
the acceleration factor αi is greater than 1, it corresponds to a faster pace of cortical
atrophy whereas αi < 1 indicates a slower pace of atrophy. In the same way, the larger
the value of the time-shift τi is, the later the disease occurs. Therefore, it leads to write
ηi(t) = γ0(ψi(t)) + εij . It adjusts the pace at which the trajectory is followed for the ith
individual.

Space-shifting In the space of measurements RK , we consider individual observations
and the mean trajectory γ0(t) as shown on Figure 3.3a. In order to account for the spatial
variability of the individual trajectories, we assume that there exists, for any individual
i, a vector wi ∈ RK called the space-shift, that characterizes the spatial variations from
γ0(t) to the observations as shown on Figure 3.3b. For any point on γ0(t), γ0(t) + wi
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is assumed to be on the individual trajectory. Therefore, it is possible to translate all
the points (γ0(t))t∈R to (γ0 + wi)t∈R as shown on figure 3.3c. This collection defines the
individual trajectory ηi(t). This space-shift must be orthogonal to the trajectory as it
ensures the identifiability of the model. In fact, if the direction wi was not orthogonal
to the trajectory, then the projection of wi on the geodesic γ0 would interfere with the
individual time realignment induced by the dynamic parameters (αi, τi).

Using mathematical tools from the Riemannian geometry beyond the scope of this
study, [Schiratti et al., 2017] shows that the kth coordinate of the individual spatiotem-
poral trajectory writes ηik(t) = γk(

wik
γ̇k(t0) + ψi(t)). As the space-shift must be estimated

in RK , wi is supposed to be a linear combination of few independent components, in the
spirit of Independent Component Analysis (ICA)([Allassonniere et al., 2012]). It leads to
consider A a K × Ns matrix of Ns independent directions, and (sij)1≤i≤I,1≤j≤Ns param-
eters to estimate. si = (si1, . . . , siNs) ∈ RNs correspond to parameters of individual i
that characterize his spatial variations from the mean spatiotemporal trajectory. The or-
thogonality condition, mentionned in the previous paragraph, leads to consider a basis
(B1, . . . , B(K−1)Ns

) of matrices, whose columns are orthogonal to the direction of γ0(t),
and parameters (βl)1≤l≤(K−1)Ns

such that A =
∑(K−1)Ns

j=1 βjBj . This procedure allows to
reduce the dimension of the parameters to estimate for each wi, from K to the chosen
number of sources.

It leads to write :

yijk = γk

(
wik
γ̇k(t0)

+ αi(tij − τi − t0) + t0

)
+ εijk . (3.2)

Curve parametrization

In this paper, we consider a straight line model such that γk(t) = vk(t − tk) + pk, vk
accounting for the ratio of atrophy and pk for the thickness value at time tk. A linear
decay in cortical atrophy is then represented by a straight line trajectory, parametrized by
time, in the K-dimensional space as shown on Figure 3.3. Note that as shown on figure
3.2, it is possible to parametrize the same curve with two distinct sets (p1, t1) and (p2, t2)
preventing from having an identifiable model. We decided to fix the parameter tk among
all the nodes such that for all k ∈ {1, . . . ,K} tk = t0, the time reference used in section
3.2.3, without any loss of generality as t 7→ γk(t) is defined on R. Despite the linear form
of each coordinate t 7→ γk(t), the resulting model is non-linear as it includes among others,
multiplication of individual and population parameters.

Finally, equation (3.2) becomes

yijk = pk + wik + vkαi(tij − τi − t0) + εijk. (3.3)

This model therefore defines a distribution of multivariate straight line trajectories that
accounts for the distribution of the individual trajectories.

Spatial smoothness

The model proposed in this paper deals with data that are spatially distributed on a graph
G defined by a set of nodes V = (x1, ...,xK), where each node embeds a spatial coordinate
in R3. We expect a smoothly varying profile of atrophy across nodes. The proximity
between edges is given by the distance matrix D.

In order to ensure small variations of the signal, we introduce a subset Vc = (xd1 , ....,xdNc
) ⊂

V whose vertices are called control nodes. Instead of estimating (pk)1≤k≤K (resp. (vk)1≤k≤K)
at all the nodes, we consider only the parameters at the control nodes (pdk)1≤k≤Nc (resp.
(vdk)1≤k≤Nc). We introduce a estimation function x 7→ p(x) (resp. x 7→ v(x)) for all x ∈ V
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such that, at the control nodes, the function is equal to the parameters : ∀k ∈ {1, . . . , Nc},
p(xdk) = pdk (resp. v(xdk) = vdk). At the other nodes, the function is an interpolation
of the parameter value at the control nodes weighted by the distance to each of them.
Therefore the control vertices controls the evaluation of the parameters among all the
nodes.

We choose a Gaussian kernel Kb as interpolation splines : ∀x, y ∈ V, Kb(x, y) =

exp

(
− d(x,y)2

b2

)
where d is the geodesic distance on the mesh and b is the kernel bandwidth.

This interpolation allows to remove the possible high frequencies, smoothing the signal
spatially. Therefore, it leads to write :

∀x ∈ V, p(x) =

Nc∑
i=1

βipKb(x,xdi) and ∀x ∈ V, v(x) =

Nc∑
i=1

βivKb(x,xdi) . (3.4)

The parameters (βip)1≤i≤Nc (resp.(βiv)1≤i≤Nc) are the solution of the linear system pdk =∑Nc
i=1 β

i
pKb(xdk ,xdi) (resp. vdk =

∑Nc
i=1 β

i
vKb(xdk ,xdi)).

Given these interpolations, Equation 3.3 writes

yijk = p(xk) + (Asi)k + v(xk)αi(tij − τi − t0) + εijk . (3.5)

Even though the distance computed for the cortical thickness corresponds to a distance
on the brain cortex, it is possible to compute a connectivity distance based on the con-
nectome, or even an appropriate combination of some of these distances. The challenging
part is to put into correspondence areas defined by the connectivity matrices and other
networks such as the FSAverage Atlas.

The choice of the set Vc of control nodes among the whole set of nodes V is mostly
determined by the choice of the bandwidth b : their uniform distribution is such that there
is an approximate distance b between them. In the case of the cortical thickness, we have
chosen a bandwidth equal to 16 mm which is representative of the spatial variability of
the signal.
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3.2.4 Algorithm

Algorithm 6: Estimation of the general and individual cortical thickness decrease
with the MCMC-SAEM algorithm.
input : Longitudinal dataset y = (yi,j)i,j of measurement maps, with the corresponding

ages (ti,j)i,j .
Initial parameters θ0 and latent variables z0.
Geometrically decreasing sequence of step-sizes ρk.
Sufficient statistics Sk

Initialization: set k = 0 and S0 = S(z0).
repeat

Simulation: foreach block of latent variables zb do
Draw a candidate zcb ∼ pb(.|zkb ).
Set zc = (zk+1

1 , ..., zk+1
b−1 , z

c
b , z

k
b+1, ..., z

k
nb

).

Compute the acceptance ratio ω = min
[
1, q(z

c|y,θk)
q(zk|y,θk)

]
.

end
Stochastic approx.: Sk+1 ← Sk + ρk

[
S(zk+1)− Sk

]
.

Maximization: θk+1 ← θ?(Sk+1).
Increment : set k ← k + 1.

until convergence
output: Estimation of θ∗.

Samples (zs)s approximately distributed following q(z | y, θ∗).
Equation 3.5 describes a mixed-effects model, introducing population and individual pa-

rameter in this high-dimensional non-linear model. We consider that ((αi)1≤i≤I , (τ)1≤i≤i, (sij)1≤i≤pI,1≤j≤Ns)
are random-effects of the model, leading to write ∀i ∈ {1, . . . , I} ∀j ∈ {1, . . . , Ns} :

αi = exp(ξi) , ξi ∼ N (0, σ2
ξ ) , τi ∼ N (0, σ2

τ ) , and , sij ∼ Laplace
(

0,
1

2

)
.

αi corresponds to the realization of a log-normal distribution so that it is always posi-
tive, preventing the individuals to present an increasing cortical thickness over time. More-
over, the Laplacian distribution of sij arises from theoretical considerations as we need the
model to be identifiable, i.e. the solution of the problem to be unique. Finally, these
random effects account for the statistical distribution of the individual trajectories. In the
following, we consider z = ((αi)1≤i≤I , (τ)1≤i≤I , (sij)1≤i≤I,1≤j≤Ns) as hidden variables.

Given Equation (3.5) and the observations y, we would like to estimate the param-
eters θ = (t0, (p

dk)1≤k≤Nc , (v
dk)1≤k≤Nc , (βk)1≤k≤Ns(K−1), στ , σξ, σ) as a Maximum Likeli-

hood Estimate (MLE) θ∗ = argmax p(y|θ). The natural way to perform such estimation in
mixed-effects models is the Expectation-Maximization algorithm ([Dempster et al., 1977]).
Unfortunately, the E-step is intractable and it is not possible to sample according to
the conditional distribution p(z|y,θ). Therefore we use a stochastic version of the EM
algorithm coupled with a Monte-Carlo Markov-Chain method, namely the Monte-Carlo
Markov-Chain Stochastic Approximation Expectation Maximization (MCMC-SAEM) al-
gorithm that is able to deal with non-linear equations in a high-dimensional setting. The
algorithm is proven to convergence ([Allassonnière et al., 2010]) if the model belongs to
the exponential family. In our case, it corresponds to consider that pdk ∼ N (p, σ2

p),
vdk ∼ N (v, σ2

v) and βk ∼ N (βk, σ
2
β)

This leads to consider z = ((ξi)1≤i≤I , (τi)1≤i≤I , (si)1≤i≤I , (p
dk)1≤k≤Nc , (v

dk)1≤k≤Nc , (βk)1≤k≤Ns(K−1))
as the extended hidden variables and θ = (t0, p, v, (βk)1≤k≤Ns(K−1), σξ, στ , σp, σv, σ) as the
parameters of the model. The latter introduces sufficient statistics S of the model that
are functions of the observations y and latent variables z. The aim of such functions is to
disentangle the maximization of the parameters θ and the simulation of the latent variables
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Figure 3.4: Simulation study performed to show the effectiveness of the parameter estima-
tion procedure. The upper part describes the simulated graph (left) and the true velocities
across the nodes (right). On the bottom part, a convergence example is given (left) as well
as the estimated velocities estimated across the graph (right).

z.
The pseudo-code of the algorithm, reproduced in 6, shows the different steps of the op-

timization until convergence. For further information about the steps of the algorithm, the
reader is referred to [Delyon et al., 1999, Kuhn and Lavielle, 2005, Allassonnière et al., 2010]
and references therein.

3.2.5 Simulation study

Since we introduce a new approach to deal with longitudinal data spatially distributed, we
performed a simulation procedure to show both the legitimacy of the model used, and the
effectiveness of the estimation procedure. To this end, we define a graph represented on
the top left of figure 3.4, representing a square mesh of 7 nodes per edge, thus 49 nodes in
total. Among them, 9 equally distributed nodes represent the control nodes, in red on the
figure. As we simulate data according to equation (3.3), we choose position and velocities
across the node of the graph, as shown on the top right part of figure 3.4. Then we
simulated realizations (ξi, τi, (sij)1≤j≤Ns)1≤i≤N for 350 patients, from 4 to 12 visits each
(2980 visits in total) such that it represents 350 longitudinal trajectories of biomarkers
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Figure 3.5: Annual rate of atrophy mapped over the brain surface used as initialization of
our algorithm. Given one area, the corresponding rate of atrophy is obtained as the average
regression coefficient of the linear regressions applied to each patient independently.

spatially distributed. These data were used to find the parameters used to simulate them.
Thus, we have performed 10 runs of the estimation procedure. In order to account for the
stochasticity of the algorithm and the motion of the Markov Chains, the results in table 3.1
are given with their standard deviation over 10 runs. As we need an initial value for the
parameters, we initialized the algorithm without specific knowledge about the positions
and velocities, contrary to the experience on the cortical atrophy, so it might reflect a
worst-case scenario. Table 3.1 shows how well the algorithm performs on either control
nodes or random nodes, as well as for the individual parameters.

The bottom part of Figure 3.4 shows some results of the estimation procedure. On the
left hand side, we provide an example of the stochastic estimations of a parameter over the
iterations of the algorithm - the figure shows 10 independent runs. The right hand side
presents the final estimation of the velocities across the node of the graph, showing that
the model is likely to reproduce the real signal. Overall, these results confirm that such
procedure seems reasonable to assess the validity of the model and of the estimation pro-
cedure in order to estimate the temporal profile of longitudinal data spatially distributed,
such as the cortical atrophy.

Parameter Initial value Final value Real value Error rate
pd1 2.0 2.994 (±0.025) 3.0 0.2%

pd20 2.0 3.663 (±0.146) 3.714 1.4%

pd46 2.0 3.860 (±0.177) 3.9 1.0%

vd4 1.0× 10−2 2.84 (±0.24)× 10−2 3× 10−2 5.3%

vd21 1.0× 10−2 5.86 (±0.49)× 10−2 6.25× 10−2 6.2%

vd41 1.0× 10−2 7.83 (±0.65)× 10−2 7.8× 10−2 0.4%

t0 75 70.9 (±2.7) 70 1.3%

σ2
τ 1.0× 10−3 27.5 (±1.6) 25 10%

σ2
ξ 10−7 0.154 (±0.008) 0.15 2.7%

σ2 Not initialized 1.34 (±0.03)× 10−5 10−5 34%

Table 3.1: The table shows the ability of the algorithm to estimate the real value of the
model parameters.

3.3 Results

3.3.1 Initialization

We evaluated the propagation of the cortical atrophy thanks to cortical thickness values
of 154 MCI converters (787 observations) distributed on a graph with 1827 nodes.
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Figure 3.6: Estimated modes of evolution of the cortical thickness from 66 to 78 years old.
This typical spatiotemporal pattern of atrophy propagation shows an important cortical
loss in the superior frontal lobe, the temporal lobe and the hippocampus region.

Figure 3.7: Final estimation of the annual rate of cortical loss observed during the typical
pattern of atrophy propagation.
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The initialization of the MCMC-SAEM algorithm requires initial values of the pa-
rameters θ and realizations z. We would like to draw attention on the realizations
((αi)1≤i≤I , (τi)1≤i≤I , (si)1≤i≤I) and ((pdk)1≤k≤Nc , (v

dk)1≤k≤Nc , t0). The former are chosen
equal to 0, leading to initial individual trajectories that are equal to the mean spatiotem-
poral trajectories. The pattern of atrophy is the same for everyone at the beginning. The
latter variables, ((pdk)1≤k≤Nc , (v

dk)1≤k≤Nc , t0), are initialized based on the raw data. Be-
sides t0 that is chosen as the mean age of the input observations, for each control node k,
we computed linear regressions on the longitudinal thickness values of each patient. Then
we average the regression coefficients, each corresponding to a given subject, such that
we end up with one rate of atrophy vk per patch. Also, pk was chosen as the average
thickness on a given patch. The figure 3.5 shows the map of the initial vk distributed over
the cortical surface which looks reasonable.

The initializations of Figure 3.5 present areas with important cortical decrease over
time, such as the temporal lobe and the hippocampus area. On the other hand, the primary
visual cortex is less subject to a cortical atrophy. This initialization looks reasonable,
however, these linear regressions are not able to reconstruct the individual observations,
preventing from a characterization of personalized patterns of atrophy. It avoids describing
the temporal and spatial variability of the individual propagations. Moreover, the linear
regressions do not take into account the spatial coherence of the propagation as shown by
the colorbar on Figure 3.5 where some areas present an important increase of the cortical
thickness. It may be associated to the important noise within the data which is produced
by the data acquisition, the extraction of the cortical thickness, and, the alignment on the
same atlas.

Thanks to the model we introduced, we were able to reconstruct a mean (resp. individ-
ual) spatiotemporal trajectory, detailed in section 3.3.2 (resp. 3.3.3), that takes the form of
the input measurements, preventing from working with percentiles or clusters that cannot
be compared directly to the real observations. Due to the numerous number of hyperpa-
rameters and the stochastic behavior of the MCMC-SAEM, the algorithm was computed
several times, each run of 100,000 iterations taking approximately 15 hours. The runs led
to similar results. In the following, the results are presented for the run that provided the
best individual reconstruction i.e. the smaller standard deviation σ of the noise. Its last
estimation is of 0.29 mm, where 90% of the input data are between 1.5 and 4 mm.

(a) Histogram of the relative error of reconstruc-
tion of all individuals across all nodes.

(b) Average relative error of reconstruction
over each patch, distributed on the graph.

Figure 3.8: The model is able to reconstruct the data at the individual level, while smooth-
ing the signal over the brain surface, with a relative error randomly distributed.
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Figure 3.9: Real data and data reconstruction for subjects with a small space shift (right)
and large space shift (left). The model is able to reconstruct the observed data, with a
smoothing component, for subjects that present different characteristics.

3.3.2 Population level

The model exhibits a long term characteristic pattern of atrophy propagation from early
MCI stage to post AD diagnosis. It corresponds to the group-average trajectory described
in section 3.2.3 whose spatial (wi) and temporal (αi and τi) variations corresponds to
individual spatiotemporal trajectories. It is important to mention that this trajectory
is a mean trajectory in a statistical sense, as its parameters are the mean values of the
individual parameters.

Figure 3.6 shows the temporal and spatial evolution of the cortical atrophy, from 66 to
78 years old. The brain medial and lateral views shows an important atrophy on the tempo-
ral lobe and the medial temporal lobe, especially the fusiform and the parahippocampical
gyrus. An important cortical decrease is also discernible on the superior frontal gyrus and
at the wider region defined by the inferior parietal lobe and the angular gyrus. On the
other side, the prefrontal cortex, the primary visual cortex, the calcaris sulcus and the post
central gyrus are less subject to atrophy.

These results are supported by Figure 3.7 that shows the map of the annual atrophy
vk for the mean spatiotemporal trajectory, distributed over the corresponding brain areas.
The areas affected by the cortical atrophy correspond to previous knowledge ([Whitwell et al., 2007,
Jack et al., 1997, Scahill et al., 2002]) even tough the different measurements and method-
ologies lack in consensus. The patterns are still debated in order to find the best char-
acterization of AD compared to normal aging or other neurodegenerative diseases. The
proposed model may provide results for different populations on the same atlas, facilitating
the comparison between diseases or with normal aging.

3.3.3 Individual reconstruction

The model is able to characterize personalized patterns of atrophy propagation thanks to
a reconstruction of the individual observations. The validation is assessed thanks to the
relative error of reconstruction. As mentioned previously, the input data are noisy, at both
a temporal and spatial level. As for the temporal part, the 154 patients represent 281.358
temporal profiles (time-series) over the 1827 patches, from which only 6.4 % present a
monotonous profile of decrease. Given all the linear regression computed for the algorithm
initialization, the mean (resp. the variance) of the corresponding R-square values is equal
to 0.348 (resp. 0.307). On the other side, the spatial noise corresponds to high variation of
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Figure 3.10: In red, the histogram of the observed age at diagnosis tdiag,i for the 154 MCI
converters. In blue, the histogram of the repatametrized age at diagnosis ψi(tdiag,i) once
aligned on the common time-line. This shows that the age at diagnosis is mapped to a
smaller range of time-points, in the model of cortical atrophy, suggesting that conversion
to AD occurs at a specific stage of cortical atrophy.

Figure 3.11: Distribution of the individual time-shifts (left) and the individual acceleration
factors (right) for three types of APOE-ε4 population. A larger number of alleles of the
APOE-ε4 genes is correlated to a faster pace of propagation of the Alzheimer’s Disease
(p-value ' 0.001) but not with an earlier atrophy onset (p-value ' 0.5).
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the signal for neighbour nodes. Given this important noise, the goal of the reconstruction
is not to reconstruct perfectly the data but rather to smooth the propagation over the brain
and to capture individual tendencies of atrophy propagation. Thus, the 787 observations
involve 1,437,849 reconstruction yijk, whose relative error of reconstruction is represented
on Figure 3.8a which confirms the hypothesis that the noise is a Gaussian distribution with
a zero mean (p-value = 4.24.10−109 for a t-test comparison with a theoretical distribution
of mean equal to zero). As highlighted by Figure 3.8b, that represents the relative error
of reconstruction over the 1827 patches, the error is mostly randomly distributed over the
brain surface. It confirms that the reconstruction error does not have a spatial component
as it is uniformly distributed over the brain surface. The color-bar was chosen according
to the extreme values : it is important to mention that the larger error of reconstruction
corresponds to areas that are close to the corpus callosum where the interpolation relies
on a fewer number of control points.

Figure 3.9 presents the reconstruction of two different individuals who present various
individual spatiotemporal trajectory, especially space shift norms that are either in the
10% bigger on the left hand side, or in the 10% smaller on the right hand side. The left
part of each individual part corresponds to the input data whereas the right part is the
corresponding reconstruction done by the model. It shows that the reconstruction is likely
to represent the real data. The same color-bar was used as for Figure 3.6 to compare the
individual data with the characteristic pattern of atrophy. Moreover, the spatiotemporal
trajectory ηi of individual i is not estimated only at the observed time-points but it is
a continuous function of the time, as shown on Figure 3.3c. Therefore, it is possible to
reconstruct the observation at any point, potentially in the future.

One of the property of the model is to exhibit individual temporal parameters, namely
the acceleration factor αi and the time-shit τi, which allow to reparametrize the individ-
ual dynamics on a common time-line. As the data used here correspond to the cortical
thickness, the realignment is estimated thanks to structural biomarker dynamics. On the
other side, the MCI converters have an age at disease onset, tdiag, which corresponds to
a clinical status. The latter is not straightforwardly related to the structural dynamics
of the individual. In that sense, we decided to realign the age at onset tdiag, a clinical
biomarker, on the same time-line, assessed with the structural biomarkers. The observed
age at diagnosis tdiag,i are represented by the red histogram on Figure 3.10, which is not
unimodal and present an important variance. The realignment of the clinical status is rep-
resented thanks to the distribution of (ψi(tdiag,i))1≤i≤I , which is centered with a reduced
variance. It suggests that the clinical conversion to AD, determined with tdiag corresponds
to a specific stage of the cortical atrophy.

As the model estimates individual spatiotemporal trajectories, it allows to describe the
variability within the population. The distributions of (αi)1≤i≤I , (τi)1≤i≤I and (wi)1≤i≤I
account for the distribution of the individual patterns of atrophy. Furthermore, the
ADNI dataset provides, for each patient, multiple features, such as the number of alle-
les of the APOE-ε4 gene, the gender, the marital status, and the educational level. In
the case of the APOE-ε4 gene, which is known as a genetic risk factor regarding AD
([Strittmatter et al., 1993, Poirier et al., 1993]), we exhibited the distribution of (αi)1≤i≤I
and (τi)1≤i≤I for the sub-populations defined by the number of alleles of the gene as
shown on Figure 3.11. The more alleles, the more likely to have AD ([Corder et al., 1993,
Strittmatter et al., 1993]).

As shown on the left hand side of Figure 3.11, the patients with two alleles (resp. one
allele) present a mean time-shift of -2.98 years (resp. -0.20 years) after the mean scenario,
contrary to patient without APOE-ε4 alleles that present an average time-shift of 1.89
years, meaning that the more alleles, the earlier the atrophy onset occurs. However, we
applied Mann-Whitney two-sided statistical tests, that lead to insignificantly differences
between the subpopulation. On the other side, same tests were conducted for the same
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subpopulation with the mean acceleration factor whose distributions are presented on the
right hand side of Figure 3.11. In this case, the group of individual with no alleles presented
an average acceleration factor of 0.780, statistically different from the group of individual
with one alleles (resp. two alleles) that presented an average acceleration factor of 1.415
(resp. 1.236) with a p-value equal to 0.00104 (resp.0.00511). However, this acceleration
factor is not statistically different between the population with one or two alleles (p-value
= 0.51518), meaning that these sub-population have similar rate of atrophy. Additional
investigation on the gender, the marital status and the education level did not led to
significant differences. It is important to mention that the Mann-Whitney test is sensitive
to the number of samples whereas this study focuses on only 154 MCI patients that might
lead to insignificant results in some cases, particularly in the case of the educational level
(20 categories) or the marital status (unbalanced classes). Finally, it should mentioned
that the tests conducted on the individual space shifts wi and the related sources si did
not lead to significant results, mainly because these parameters account for the difference
in brain size, and thus thickness, between people.

3.4 Discussion

The paper presents a mixed-effects model of the atrophy propagation that is able to char-
acterize a typical pattern of propagation, and, that reconstructs individual observations
and scenarios of atrophy. The model exhibits brain areas that are the most affected by the
cortical atrophy, such as the parahippocampical gyrus, the temporal lobe and the superior
frontal gyrus. The lesions are less important in the primary visual cortex, the prefrontal
cortex and the primary sensomotory cortex. The model allows to account for the different
temporal dynamics of the alterations that can be then compared and ordered.

The proposed model offers a wide versatility of instantiation in terms of profile of
temporal variations (exponential decay, sigmoid decay) and spatial variations (resolution,
number of control nodes, kernel bandwidth) as it defines a generic framework for the esti-
mation of longitudinal signals spatially distributed. It should be compared to other types
of graph-related approaches, such as super-voxels ([Segovia et al., 2012]) or a vertex-cluster
method ([Marinescu et al., 2017]). The latter has exhibited clusters of regression that show
profiles of atrophy similar to our results. However, such models do not deal with individ-
ual characteristics neither directly with imaging data but rather with normalized values
or percentiles, which restrict the interpretation. Further efforts should be concentrated on
the validation and improvement of our model, possibly with more complex data and signal
propagation.

The individual reconstructions also inform about subject-specific patterns of atrophy
propagation, with potential personalized estimation of the cortical atrophy at future time-
points. Further investigations have to be conducted to ensure the quality of the new
observations the model is able to generate, so that one can exploit the outcome that the
model can predict for an individual some years after his of her last visit. This should be
done with a proper validation set to determine the population parameters, and a test-set
to predict the individual parameters and thus the future observations. Consistent results
might provide information about the structural biomarkers related to the progression of
AD, such as in [Eskildsen et al., 2015].

Another improvement of the model relies in the distance matrix computation. In this
paper, the distance between the nodes is related to the distance on the brain surface, hid-
ing potential effects of the neuronal connections. New distances might be computed based
on functional connectivity or combination of different distances, in order to associate the
functional and structural components of the brain that are supposed to be complemen-
tary in the disease process ([Bullmore and Sporns, 2009, Damoiseaux and Greicius, 2009,
Wee et al., 2012]).
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The model has the potential to exhibit the spatiotemporal propagation of any signal
spatially distributed over a graph. It can be used in order to compare the patterns of prop-
agation in distinct population e.g. normal aging or any other neurodegenerative diseases.
It is also a first step to define personalized patterns that would help for a future prognosis
of the patient stages.
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Chapter 4

Deciphering the Progression of PET
Alterations using Surface-Based

Spatiotemporal Modeling

This chapter is a natural application of the model proposed in the previous chapter to the
brain hypometabolism extracted from the PET-FDG scan. It has been published as the ab-
stract Deciphering the Progression of PET Alterations using Surface-Based Spatiotemporal
Modeling, Koval I., Marcoux A., Burgos N., Allassonnière S., Colliot O. and Durrleman
S., in Organization for Human Brain Mapping, 2019.
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4.1 Introduction

Positron emission tomography (PET) is a central tool to study neurodegenerative diseases,
allowing the measurement of hypometabolism and abnormal protein deposits (amyloid,
tau). Modeling the spatiotemporal pattern of PET alterations in the cortex along the
course of the illness is essential to understand disease progression and develop prognostic
tools. In this study, we propose a generic method to model the spatiotemporal progression
of PET alterations on the cortical surface from longitudinal images by combining two
recently proposed approaches: i) a non-linear mixed-effects model for spatially distributed
measurements based on Riemannian geometry [Koval et al., 2017, Schiratti et al., 2017];
ii a method for projection of PET data onto the subject’s cortical surface (Marcoux et
al, 2018). The model can reconstruct spatiotemporal patterns of progression at both
population and individual level. We applied this approach to study the progression of
hypometabolism along the course of Alzheimer’s disease (AD) from the prodromal stage.

4.2 Methods

Brain metabolic activity, mainly located within the cortex, is known to be altered during
the course of Alzheimer’s disease (AD). Surface-based approaches, such as the one devel-
oped by [Marcoux et al., 2018], are thus well suited to analyze cortical hypometabolism
derived from FDG PET images. This method, part of the open-source Clinica software
[Routier et al., 2018] shown on Fig. 4.1b, includes i) co-registration of PET and T1-w
MR images, ii) intensity normalization, iii) partial volume correction, iv) robust projec-
tion of the PET signal onto the subject’s cortical surface shown on Fig. 4.1a, v) spatial
normalization to a template.

The resulting projections once applied to repeated observations of multiples patients
might inform about the spatiotemporal progression of the PET alterations. However, sub-
jects are likely to be at different disease stages and to present different spatial patterns.
[Koval et al., 2017] proposed to recombine the short-term individual observations to retrace
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(a) Estimation of the FDG PET signal
at 7 different surfaces representing the
cortical thickness.

(b) Pipeline that includes the co-registration of PET
and T1-wMR images, standard normalization and cor-
rections and projection onto the cortical surface.

Figure 4.1: Method to project the cortical hypometabolism derived from FDG-PET images
onto the cortical surface.

Annual SUVR decrease (%/year)

0.5 0 -2.3-0.75 -1.5

Figure 4.2: Map of the annual rate of standard uptake value ratio (SUVR) decrease.

the long-term history of the disease for spatially distributed data, while accounting for the
inter-subject spatiotemporal variability. This model generates an average progression pro-
file defined at each point of the cortical surface. Furthermore, subject’s trajectories are
characterized by individual variations of the mean evolution, specifically an age at disease
onset, a pace of progression and a spatial pattern of alteration. They enable the recon-
struction of individual trajectories and the estimation of the spatiotemporal variability in
the population.

We applied our approach to study progression of cortical hypometabolism along the
course of AD, starting from the prodromal stage. Specifically, mild cognitively impaired
patients, that progressed to AD during follow-up visits and that had at least two visits
with both MRI and PET data, were selected from the ADNI database. This corresponds
to 156 patients (74.0± 7.0 years, 89 males) with 4.4 visits on average (679 visits in total).

4.3 Results

Fig. 4.2 shows the metabolism decrease rate on the cortical surface for the mean profile of
PET alterations. Greatest alterations are located in the precuneus, the parahippocampal
gyrus, inferior and middle temporal gyri, and the inferior parietal lobule, followed by
prefrontal regions. The sensory and visual cortices are spared.

The individual trajectories, considered as spatiotemporal variations of the average tra-
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(a) Mean relative error between the in-
dividual observations and their recon-
struction.

SUVR 
value

3

2
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(b) PExample of an input data, i.e. the PET values
projected onto the cortical surface on the top row, and,
its reconstruction with the model on the bottom row.

Figure 4.3: The model is able to reconstruct the individual trajectories as spatiotemporal
variation of the average trajectory.

jectories, allow the reconstruction of the observations. The mean relative error of recon-
struction, uniformly distributed over the brain surface, is lower than 25%, except in areas
close to the corpus callosum that are prone to poor preprocessing (4.3a. An example of a
reconstruction is given on Fig. 4.3b.

4.4 Conclusion

We proposed a new approach to model the progression of PET alterations. Application
to AD demonstrated that the method unveils relevant patterns and can adequately recon-
struct the trajectory of alterations at the individual patient level. It could become a useful
tool for understanding progression of neurodegenerative diseases and build new prognostic
systems.
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Chapter 5

Personalized Simulations of
Alzheimer’s Disease Progression with

Digital Brain Models

This chapter corresponds to an article that has been submitted for revision.
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Abstract
Simulating the effects of Alzheimer’s disease on the brain is essential to better un-
derstand, predict and control how the disease progresses in patients. Our limited
understanding of how disease mechanisms lead to the changes that are visible in brain
images and clinical examination hampers the development of biophysical simulations.
We develop here a statistical learning approach, where the repeated observations of
several patients over time are used to synthesize personalized digital brain models. The
method is built on generic geometric and statistical principles so that it can be applied
to a large variety of data types such as unstructured sets of features or structured data
like images or shapes.
We used it to construct a multimodal model of Alzheimer’s disease progression. The
model synthesizes over a period of 30 years the progression of metabolic alterations
across brain regions, the deformation of the hippocampus due to atrophy, the pro-
gressive loss of grey-matter across cortical regions, together with the decline of several
cognitive functions.
The model may be personalized to new subject’s data by automatically adjusting age
at onset, pace of progression and appearance of the model. The personalized model
accurately reconstructs past and current observations and predicts future observations
up to four years ahead of time for subjects at risk of developing Alzheimer’s disease.
We show that both reconstruction and prediction errors are of the same order as the
uncertainty of the measurements. The model, therefore, acts as a digital avatar of the
subject brain, which accurately simulates how brain image data and neuropsychological
assessments change in time for each patient.
The personalisation of the model depends on a few and interpretable parameters, which
allow a clinician to understand the specificity of the subject’s progression compared
to the average. We analyzed these parameters across all subjects to give a better
description of the heterogeneity of the disease manifestation, highlight its main genetic
and biological determinants, and give more insights into the complex interplay between
the multiple effects of the disease on the brain and cognition.

5.1 Introduction

Numerical simulation has long been a central approach to understand complex systems,
identify their determinants, and predict their behaviour. Recently, simulation has also
proved to be key in artificial intelligence. For instance it is the ability to simulate a
large number of go games that has made it possible to build a computer program that
can learn to play better than a human[Silver et al., 2017]. Simulating a go game is easy
because the rules are perfectly known and easy to implement. Simulating a brain develop-
ing Alzheimer’s disease is more challenging because the biological mechanisms leading to
the effects that are visible in brain images and clinical examinations are too imperfectly
known[Khanal et al., 2016], like the reasons why these mechanisms lead to so heteroge-
neous effects across individuals. However, as with any complex system, simulating the
disease is certainly a very promising way to better understand how it develops, identify
the factors that modulate its manifestation in different individuals, and predict its pro-
gression in each patient.

We address here this simulation problem with a statistical learning approach. We
design a computer program that automatically learns how Alzheimer’s disease affects brain
structure and function from the repeated observations of several patients in time, e.g. a
longitudinal data set. It estimates a typical long-term scenario of change by normalising,
re-aligning in time and combining several individual short-term data sequences. During
training, the model learns how this typical scenario should be varied to reproduce the
heterogeneity of progression profiles seen in the data. It does so by allowing adjustments
in terms of age at onset, pace of disease progression and appearance of the model (see
Fig. 5.1 and Fig. 5.2). Once trained, the model can be personalized to any new subject’s
data to simulate how the disease will progress at any time-point in the future, like a digital
avatar of the subject’s brain.

This approach may be seen as the synthesis between disease modeling and machine
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learning approaches. On the one hand, numerous machine learning techniques have been
proposed to predict if one patient will develop Alzheimer’s disease within a given time win-
dow using clinical or imaging data[Zhou et al., 2012, Gaser et al., 2013, Moradi et al., 2015,
Moore et al., 2018]. By essence, these methods predict a label, e.g. a diagnostic category,
not a detailed description of the future state of the subject’s brain or cognition. These
black-box systems function as oracles and their lack of interpretability and explanability
most probably hampers their adoption by clinicians in the daily routine. On the other hand,
disease modeling approaches show how measurements continuously vary during disease
progression[Fonteijn et al., 2012a, Jedynak et al., 2012, Villemagne et al., 2013, Donohue et al., 2014,
Zhang et al., 2016, Guerrero et al., 2016, Khanna et al., 2018]. These modeling works have
remained mostly descriptive so far, aiming to better characterize the heterogeneity of dis-
ease progression in populations. Only few of these works have been used and evaluated to
predict the progression of the measurements in the future, and report error measures be-
tween predicted and true data at the individual level[Huang et al., 2016, Iddi et al., 2019].
They predict clinical assessments or some simple features extracted from the images. To
the best of our knowledge, no method is general enough to allow the prediction of a full
image or the shape of an anatomical structure, and to do it at any arbitrary time-point in
the future.

The validation of such a simulation method is more difficult than for classification
methods. In this work, we propose for the first time to compare the differences between
the predicted image data and the true ones with the differences between the test and re-test
image data acquired on the same day on the same patients. The differences between the
test and re-test image data measure the uncertainty of the measurements due to variations
in acquisition and processing. It gives an optimal value for prediction errors, since lower
errors are likely to be due to an over-fit of the data. We also propose to compare our
predictions with the simplest prediction method that assumes that data will not change in
the future, namely the constant prediction. A recent review has shown that a third of the
methods predicting diagnosis until 2 years ahead in time performs worse that assuming the
diagnosis has not changed. This fact raises the need to evaluate simulations over longer
time frames. We propose therefore to evaluate our simulations from 3 to 4 years in the
future depending on available data.

5.2 A geometric approach of statistical learning

The proposed approach is rooted into a geometric framework, which allows an effective
definition of statistical distributions of curves in high-dimensional structured spaces. It
has the advantage to account for a large variety of data types including structured data
such as images and shapes.

We assume that each data (from a single patient at a single visit) may be repre-
sented as a point on a multi-dimensional Riemannian manifold, a mathematical space
that generalizes usual geometric operations such as addition, translation or computation
of distances. Repeated observations of the same subject are then seen as noisy samples
along a curve on the manifold. Furthermore, we assume that such individual curves re-
sult from random spatiotemporal transformations of a geodesic curve that is common
to the population. This hierarchical structure forms therefore a mixed-effects statistical
model[Schiratti et al., 2015, Schiratti et al., 2017].

Various types of data may be represented as points on a specific Riemannian mani-
fold. In this work, we consider sets of bounded measurements such as normalized neuro-
psychological assessments, measurements distributed at the nodes of a fixed graph such as
volumetric images or maps of cortical thickness, and shapes such as surface meshes of the
hippocampus.

By an appropriate choice of the Riemannian metric, we prescribe a certain form of the
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common population curve that shows how data change in time. For neuro-psychological
assessments, each score is assumed to follow a logistic curve. Cortical thickness decreases at
a linear rate at each vertex of the cortical surface, while ensuring that slopes and intercepts
vary smoothly over the surface[Koval et al., 2017]. Image intensity at each voxel (or over
a small region of interest) also decreases at a linear rate with smoothly varying parameters
across neighbor voxels or regions. The shape of the hippocampus meshes is changed by the
action of a smooth and invertible 3D deformation called diffeomorphism[Durrleman et al., 2014,
Durrleman, 2018, Bône et al., 2018]. In all cases, this population curve is parameterized
by a reference point p0 on the manifold (e.g. a set of scores, an image or a mesh), a
velocity (of the same dimension as p0) and reference time t0, which will be all estimated
(see Methods).

Subject-specific curves derive from the population average by random spatiotemporal
transformations, which is composed of a time-reparameterisation of the trajectory com-
bined with a parallel shift of the geodesic curve on the manifold. The time-reparameterisation
changes the dynamics at which the curve is followed by an individual. It is defined by a
time-shift and an acceleration factor which account for individuals developing the disease
earlier or later than the average and at a slower or faster pace than the average respectively.
It maps the real age the subject to a physiological age on the normative time-line of the
population average curve. The parallel shift changes the position of the individual curve on
the manifold with respect to the population trajectory. It is defined by a direction on the
tangent-space of the manifold at the reference point p0, called “space-shift”. It accounts for
differences in the pattern of changes seen in the data. For neuro-psychological assessments,
it accounts for different ordering and timing of alterations among the scores. For image
data, it accounts for different spatiotemporal patterns of alterations across regions, ver-
tices or voxels. For shape data, it accounts for differences in the shape of the hippocampus
across subjects (see Fig. 5.1 and Fig. 5.2).

The velocity v0, perturbed by the time-reparameterization function at the individual
level, encodes the changes in data due to disease progression. The space-shifts encodes the
inter-individual differences at the same disease stage. An orthogonality condition between
the velocity v0 and the space-shifts ensures a unique decomposition between changes due
to disease progression and those due to intrinsic differences in the characteristics of the
individuals[Schiratti et al., 2015, Durrleman, 2018]. It makes the model identifiable.

All in one, this procedure defines a mixed-effects statistical model. We denote γ0(t)
the population curve where t is the physiological age on a normative time-line, ηwi [γ0](t)
the parallel shift of the population curve in the subject-specific direction wi, and ψi(t) =
αi(t − t0 − τi) + t0 the time-reparameterisation function defined by the subject-specific
time-shift τi and acceleration factor αi. The j-th observation of the i-th subject, denoted
yij acquired at age tij is then assumed to be derived from the population curve by yij =
ηwi [γ0](ψi(tij)) + εij for the εij being a random noise (see Methods for details).

The model may be written in short as yij = f(θ, zi, tij)+εij , for f a non-linear function
that is specific to each data type, θ the vector containing the fixed-effects p0, v0, t0, the
variance of the random-effects and the variance of the noise, and zi the vector of random
effects: acceleration factors, time-shifts and space-shifts. We add priors on the coordinates
of the vector θ in a Bayesian setting. When t is varied, the curve f(θ, zi, t) represents the
subject-specific trajectory at any time t.

We now consider three successive statistical tasks:

• calibration: given the longitudinal data set {yij , tij}i=1,...,N,j=1,...,Ni for a certain
type of data, we find the value of parameters θ that maximises the joint likelihood
p({yij}ij , θ) = p({yij}ij |θ)p(θ). The optimal value θ̂ fully specifies the model of
disease progression;

• personalisation: for the optimal value of the parameter θ̂, we personalise the model
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Figure 5.1: Scheme of model construction for image data. 1. A long-term scenario of
change is built by normalizing and re-aligning in time several short term data sequence
from different individuals (here 3 individuals are shown). 2. In turn, the model positions
the progression of each individual with respect to the normative model. Time-shifts and
acceleration factors encode differences in the age at onset and pace of changes, thus trans-
lating and scaling the temporal axis (x-axis). The y-axis is a schematic representation of a
multi-dimensional coordinate system, where coordinates are called space-shifts. They en-
code here variations in model appearance. 3. The normative scenario may be personalized
by translating it in the direction of the space-shift and changing its dynamics to reconstruct
a personalized continuous scenario of changes and simulate the future progression of the
individuals. The same concepts apply for mesh data and biomarkers. (see Fig. 5.2).

to the repeated data of a given subject (either a training subject, or a test subject
in a cross-validation setting) {ytest,j , ttest,j}j=1,...,Ntest by finding the optimal value
of the random-effect ẑ that maximises the conditional likelihood p({ytest,j}j , z|θ̂).
The resulting f(θ̂, ẑ, ttest,j) is called the reconstruction of the data ytest,j and its
difference with the true data ytest,j is called the reconstruction error;

• prediction: given a test subject with Ntest observations, we personalize the model
using only the first Npast (< Ntest) observations to estimate ẑ, and then predict the
future data after Npast by extrapolating the trajectory f(θ̂, ẑ, ttest,j), and measure
the prediction error between the predicted and true (hidden) data.

We use a stochastic approximation of the Expectation-Minimisation algorithm[Allassonnière et al., 2015,
Kuhn and Lavielle, 2004] for calibration, gradient-descent based method or Powell’s method
for personalisation (see Methods).
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Fig.1 Scheme of model construction for biomarkers. 1. A long-term scenario of change is built
by normalizing and re-aligning in time several short term data sequence from different
individuals (here 3 individuals are shown). 2. In turn, the model positions the progression of
each individual with respect to the normative model. Time-shifts and acceleration factors
encode differences in the age at onset and pace of changes, thus translating and scaling the
temporal axis (x-axis). The y-axis is a schematic representation of a multi-dimensional
coordinate system, where coordinates are called space-shifts. They encode here variations in
the spacing of the different markers. 3. The normative scenario may be personalized by
translating it in the direction of the space-shift and changing its dynamics to reconstruct a
personalized continuous scenario of changes and simulate the future progression of the
individuals. The same concepts apply for image and mesh data where the space-shift encode
variations in appearance or shape (see Extended Data Figure X).
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Figure 5.2: Model construction. The same method as in Fig. 5.1 may be applied for
biomarkers and shape data. The only difference is that space-shifts now capture differences
in the spacing between markers or the shape of the model. The use of a Riemannian
framework allows to deal with all these cases with same method and very similar algorithms.
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5.3 A multimodal disease progression model

We use data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In order to
reproduce the natural history of the disease from the pre-clinical to the clinical stage, we
selected the 322 subjects in this database who were included as cognitively normal or with
mild cognitive impairments as defined in the ADNI protocol, and who had a confirmed
clinical diagnosis of Alzheimer’s disease at a later time-point in the study.

Whenever available, we use at each visit:

• regional measurements of standard uptake value ratio (SUVR) of fluorodeoxyglucose
(FDG)-positron emission tomography (PET) to build models of hypometabolism
across brain regions,

• maps of cortical thickness defined on a mesh of the cortex and extracted from T1-
weighted Magnetic Resonance Images (MRI) to build models of cortical thinning,

• surface meshes of the hippocampus of both hemispheres segmented also from T1-
weighted MRI to build models of hippocampal atrophy, and

• scores of the Mini-Mental State Examination[Folstein et al., 1975] (MMSE) and Alzheimer’s
Disease Assessment Scale - Cognitive Subscale with 13 items[Rosen et al., 1984, Mohs et al., 1997]
(ADAS-Cog), the latter being divided into four sub-scores assessing memory, lan-
guage, concentration and praxis, to build models of cognitive decline,

which amounts to 687 visits with PET images, 1,993 visits with MRI data and 1,235 visits
with neuro-psychological assessments (See Methods and Table 5.4 for summary statistics).

For each data type, we calibrate the model parameters using all available visits of the
selected subjects. The resulting models of progression are then synchronised by estimating
affine time-reparameterisation maps among the normalized time-line of the different mod-
els. Finally, we use the age at diagnosis of each subject (an information that has not been
used in the construction of the models) to estimate the physiological age on the normative
time-line that corresponds stage at which one is diagnosed with the disease (see Methods).

Fig. 5.3 shows the synchronised models of hypometabolism, cortical thinning, hip-
pocampal atrophy and cognitive decline at four representative time-points encompassing
16 years before diagnosis and 8 years after. It has been possible to reconstruct the dis-
ease progression over such a long period of time because we trained the model on patients
data followed for much shorter periods of time but covering very different disease stages.
These models may be visualised at a fine temporal resolution in the form of an interactive
visualisation at the website: www.digital-brain.org.
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Alterations shown by this digital model are in line with previous findings. For instance,
the greatest alterations of glucose hypometabolism are found in the precuneus[Mosconi, 2005,
Chen et al., 2010, Pagani et al., 2017], prefrontal areas[Drzezga et al., 2003] and the parahip-
pocampal region[Mosconi et al., 2008]. Cortical atrophy also occurs in typical regions such
as enthorinal cortex, hippocampal gyrus, temporal pole and fusiform gyrus[Hyman et al., 1984,
Gómez-Isla et al., 1996], cortical association areas[Greene et al., 2010, Chan et al., 2001]
and precuneus[Jacobs et al., 2012]. As expected, very little atrophy is shown to occur in
the occipital lobe and the cingulate gyrus. More suprisingly, the model shows atrophy in
the precentral gyrus and the paracentral lobule. Whether these regions are affected by
cortical thinning due to Alzheimer’s disease is still a debated question[Suva et al., 1999],
which may be explained by the fact that the level of noise in this region is one of the
largest. The model is not only confirmatory, as it integrates these heterogeneous findings
into a consistent spatiotemporal view of disease progression at unprecedented temporal
and spatial scales.

The model of cognitive decline shows a typical sequence of cognitive impairments start-
ing with memory, followed by concentration 9.6 (± 1.54) years after , praxis 9.8 (± 1.73)
years after, and finally language 3.3 (± 2.65) years after (see Methods for the estima-
tion of the standard deviation by cross-validation). It has been shown that Alzheimer’s
disease diagnosis occurs when the ADAS-Cog is comprised between 18.6 and 28.9 (i.e.
between 0.21 and 0.34 on the normalised scale)[Skinner et al., 2012], which is reached be-
tween 74 and 80 years old in our normative time-line. Similarly, the diagnosis usually
occurs for a MMSE score comprised between 27 and 23 (i.e. 0.1 and 0.23 on the nor-
malised scale)[Raghavan et al., 2013], which occurs between 74 and 81 years old on our
normative time-line. The age at diagnosis in the normative time-line has been estimated
at 78 (±5.6) years old. The consistency of these estimates shows that the algorithm was
able to correctly align the individual short term data sequences around the diagnosis time,
by using solely the analysis of the spatiotemporal patterns of data changes and not the age
at which the subjects were diagnosed.

5.4 Reconstruction errors and generalisation to unseen data
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We reconstruct now individual scenarios of disease progression by personalizing the
model to each subject’s data. The personalization finds the optimal values of the individual
parameters, namely acceleration factor, time-shift and space-shift, which best fit a sequence
of data of a given subject.

We assess the goodness-of-fit by measuring the reconstruction errors between the ob-
served data at a given age with the data that is reconstructed by the model at the same
age. We do not expect a perfect match between reconstructed data and observations as
we imposed smoothness constraints in the spatial and temporal variations of the data and
estimated a level of noise during model training with the aim to avoid over-fitting and allow
better generalisation. Assessing the accuracy of goodness-of-fit is a difficult task, as one
does not know the true level of noise of the measurements. We estimate this measurement
uncertainty by measuring differences between data from test and re-test MRI sessions,
PET data at baseline and follow-up for amyloid negative cognitively normals subjects and
by performing a literature review of reproducibility of neuro-psychological assessments (see
Methods).

Fig. 5.4 shows the superimposition of the empirical distribution of reconstruction errors
with the empirical distribution of the noise for all data types. Overall, the two distributions
largely overlap, and the standard error is of the same order than the measurement noise
(see Table 5.1). This result shows that the model cannot be improved in the sense that
smaller reconstruction errors would mean over-fitting.

We notice that the reconstruction errors in brain regions are not evenly distributed. For
PET data, the largest errors are found mostly in smaller regions. For cortical thickness,
larger errors are found at the boundary of the mesh with the corpus callosum, mostly
due to interpolation errors. These errors are much smaller than the best possible image
resolution of 1mm isotropic, thus making these reconstructions at sub-voxel precision.

We measure distances between hippocampus meshes using the currents distance, which
is the norm of a multivariate vector of high dimension that has the unit of an area. It allows
one to compare shapes with different samplings while being robust to small protrusion
or topology changes[Vaillant and Glaunès, 2005]. In this case also, the distribution of
reconstruction errors largely overlap with the one of the differences between test and re-
test shape data. The personalisation of the model is driven by the currents distance and
therefore tends to ignore the many spikes pointing outward that are often seen in the
segmentations. Reconstructed meshes are smoother than observations, resulting in an
under-estimation of the volume of the observations (see Fig. 5.5). It is more desirable to
accurately reconstruct the shape rather than the volume, which is very sensitive to small
segmentation errors. For instance, 83% of the subjects shows sequences of segmentation
volume that are not monotonously decreasing, compared to only one subject for the volume
of reconstructed meshes. Nevertheless, one should keep in mind that our reconstructions
present a systematic bias in volume compared to the volume of the original segmentations.
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(a) FDG-PET images
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(b) Cortical Thickness maps
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(c) Left hippocampus mesh (d) Right hippocampus mesh (e) Neuro-psychological assessments

Figure 5.4: Distributions of reconstruction errors. The empirical distribution of errors
(red) is superimposed with the estimated distribution of test / re-test differences (in blue).
For FDG-PET images and cortical thickness maps the absolute relative error is shown in
every brain region. Mean and standard errors are given in Table 5.1.

88



−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
volume difference (cm3)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

ri
bu

ti
on

fu
nc

ti
on

0.0

0.5

1.0

1.5

2.0

2.5

3.0
pr

ob
ab

ili
ty

di
st

ri
bu

ti
on

fu
nc

ti
on

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
volume difference (cm3)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

ri
bu

ti
on

fu
nc

ti
on

0.0

0.5

1.0

1.5

2.0

2.5

3.0

pr
ob

ab
ili

ty
di

st
ri

bu
ti

on
fu

nc
ti

on

Figure 5.5: Reconstruction errors in hippocampus volume. Superimposition of the distri-
bution of the reconstruction errors (in red) and test / re-test differences (in blue) measured
as volumes for the left and right hippocampus (left and right panel respectively). Whereas
the distribution of the test / re-test differences is centered (empirical mean of 0.5 mm3 for
the left hippocampus and −1.2 mm3 for the right hippocampus), the distribution of the
reconstruction errors has an empirical mean of −84.5 mm3 for the left hippocampus and
−67.3 mm3 for the right hippocampus. The standard deviations of the distributions are:
208.6 mm3 and 210.2 mm3 for the test / re-test differences for left and right hippocampus
respectively, to be compared to 243.2 mm3 and 267.2 mm3 for the reconstruction errors.

89



−0.2 −0.1 0.0 0.1 0.2
mean SUVR value error (unitless)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

di
st

ri
bu

ti
on

fu
nc

ti
on

0.0

2.5

5.0

7.5

10.0

12.5

15.0

pr
ob

ab
ili

ty
di

st
ri

bu
ti

on
fu

nc
ti

on

(a) FDG-PET SUVR values. The mean error
is of 1.0×10−4 ± 0.044 (red), and −1.3×10−4 ±
0.044 (green).
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(b) Mean cortical thickness. The mean error
is of 5.8 × 10−4 ± 0.040mm (red) and 6.1 ×
10−4 ± 0.040mm (green).
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(c) Left hippocampus. The mean error is
66.0 ± 13.6mm2 (red), and 70.7 ± 14.9mm2

(green).
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(d) Right hippocampus. The mean error is
66.6 ± 12.8mm2 (red), and 71.7 ± 14.0mm2

(green).
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(e) Neuro-psychological assessments. The
mean error is −0.19± 7.5 % (red), and −0.14±
7.5 % (green).

Figure 5.6: Generalisation error to unseen data. The distribution of reconstruction errors
when calibration and personalisation are done on the whole data set (in red, as in Fig. 5.4)
is superimposed with the one estimated in the cross-validation procedure (in green).

We replicate the previous experiments in a five-fold cross validation procedure. Models
are calibrated on 80% of the training data set, and personalised to the remaining 20%
who were therefore not seen during model calibration. Distributions of these reconstruc-
tion errors are essentially identical with the previous ones obtained by calibrating and
personalising the model on the whole data set (see Fig. 5.6). Only hippocampus shows
a slightly higher generalisation errors but still below the noise level estimated with test /
re-test data. The reconstruction of unseen data is therefore as good as the reconstruction
of the training data, thus showing that the personalisation of the model generalises well to
new individual data sequences. We also show that the discrepancy between the individual
effects estimated as training or test sample is small with r2 comprised between 0.93 and
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Modality Parameters
All data Cross-

validation

FDG-PET images

σ (no units) 0.101 0.101 (± 0.001)

t0 (years) 75.5 74.9 (± 0.9)

στ (years) 11.9 11.5 (± 0.3)

σξ (no units) 1.30 1.28 (± 0.03)

Cortical thickness

σ (mm) 0.442 0.442 (± 0.001)

t0 (years) 82.0 82.7 (± 0.7)

στ (years) 16.9 18.2 (± 0.7)

σξ (no units) 0.99 1.03 (± 0.02)

Right hippocampus

σ (mm2) 2.49 2.60 (± 0.03)

t0 (years) 76.2 75.7 (± 0.3)

στ (years) 9.15 10.04 (± 0.66)

σξ (no units) 0.71 0.78 (± 0.03)

Left hippocampus

σ (mm2) 2.67 2.74 (± 0.04)

t0 (years) 76.3 76.3 (± 0.3)

στ (years) 8.53 9.09 (± 0.50)

σξ (no units) 0.66 0.68 (± 0.03)

Cognitive scores

σ (no units) 0.081 0.081 (± 0.001)

t0 (years) 71.5 72.4 (± 0.8)

στ (years) 7.29 7.36 (± 0.25)

σξ (no units) 1.07 1.11 (± 0.11)

Table 5.2: Fixed-effects estimates using calibration on the whole data set (first column) and
in a five fold cross-validation setting (second column) where mean and standard deviations
of the five estimates are shown. Similarly, the delay between impairment of memory and
the other cognitive functions is of 9.4 ± 1.6 yrs for concentration (9.6 yrs using all data),
19.9±2.0 yrs for praxis (19.4 yrs using all data), 23.3±2.6 yrs for language (22.7 yrs using
all data)
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0.99 (see Fig. 5.7). Furthermore, the fixed-effects parameters estimated in the five different
calibration runs are consistent with the ones estimated using the whole data set as train-
ing set, thus showing the robustness of the estimation algorithm against resampling in the
training set (see Table 5.2).

5.5 Personalized simulations of disease progression

Now, we evaluate the ability of the model to accurately predict the progression of the
disease in the distant future. For this purpose, we select subjects and visits in the ADNI
database based on criteria that can be assessed from present and past visits only, without
the need to know the whole disease history of the patients as previously.

We select all the visits of all the subjects in ADNI for which the following conditions
are met:

• the subject is labeled as Mild Cognitive Impairment at this visit,

• the MMSE of the subject is smaller or equal to 27 at this visit,

• the subject is amyloid positive at this visit,

• the sequence of diagnosis labels in the past visits is monotonic, meaning we exclude
subjects showing reversion to control, or having AD label in the past.

These criteria aim to select subjects at risk of developing Alzheimer’s disease.
From all these visits, we use the ones for which there is another visit of the same subject

3 or 4 years later in time. We personalize the previous model using the past and present
visits of the subjects, extrapolate the model at 3 or 4 years, and evaluate the accuracy of
the prediction by measuring the difference between the predicted and the true data (see
Methods).

Note that if the test subject belongs also to the previous cohort, we used the model
calibrated on the cross-validation fold that does not contain this subject. For new subjects,
we use the model trained on the whole previous cohort.

Predictions of neuro-psychological assessment, for which we report the MMSE and
the ADAS-Cog (as a linear combination of the 4 cognitive sub-domains predicted), are
performed for 136 subjects for the prediction at 3 years, and 80 subjects for the prediction
at 4 years. Prediction of the MRI data (cortical thickness maps and hippocampus shape)
are performed for 72 subjects for the prediction at 3 years, and 63 subjects for the prediction
at 4 years. We deem that there are not enough subjects to predict the FDG-PET data. It
is worth mentioning that from the selected subjects with cognitive assessments (resp. MRI
data), 36.5% and 39.1% (resp. 33.3% and 58.9%) present only one seen visit to personalize
the model with at 3 and 4 years.

We assess the prediction errors in comparison with the distribution of the noise in the
measurements, using the previous empirical distributions. We also compare the prediction
of our model with the “constant” prediction, where one predicts that in 3 or 4 years, the
data will be the same as of today.

As shown on the box-plots on Figure 5.8, we report the absolute error for the neuro-
psychological assessments, the root mean squared error for the map of cortical thickness
and the current distances for the shape of the hippocampus of both hemispheres. In all
cases, the errors of the prediction of image data and neuro-phychological assessements are
not statistically different than the uncertainty of the measurements.

An interesting observation is that the error of the constant prediction also, though
increasing with the time-to-prediction, is not statistically significant from the noise up to
4 years in time. This fact means that the effect of aging or disease progression cannot be
detected with the current precision of imaging devices and reliability of neuropsychological
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Figure 5.7: Robustness of model calibration and personalisation. Estimated time-shifts
and acceleration factors when the individual belongs to the training set (x-axis) or to the
test-set (y-axis). The five colors correspond to the folds the individuals belong to.
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Figure 5.8: Prediction errors of the simulated data. Box-plots show medians in orange,
quartiles, and 95% confidence intervals for three image data and two cognitive assessments.
Distributions of prediction errors are compared with that of the noise and the errors of the
constant prediction.
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assessments. It calls for longer term predictions, although the total follow-up duration in
ADNI does not allow it. It also raises the question of the relevance of machine learning
techniques that make predictions over periods of time that appears to be too short for the
features to evolve sufficiently as compared to noise.

For MRI derived data, the noise distribution presents a very heavy tail that is due to
the large heterogeneity of the image quality and its consequence in data processing. The
constant prediction does not show such a heavy tail, as images of best quality 3 or 4 years
apart show less variability than the test and re-test image acquired the same day. Our
model shows steady performance at 3 and 4 years, above though not statistically different
from noise level, whereas the constant prediction worsens as time-to-prediction increases.
The prediction of cognitive performance shows a similar behavior. For the ADAS-Cog in
particular, our prediction errors are closer to the noise level and shows a better contrast
with the constant prediction.

Two other methods have been proposed to simulate neuro-psychological assessements,
but not images or hippocampus shapes. Huang et al.[Huang et al., 2016] reports a Mean
Absolute Error (MAE) for the MMSE of 1.81 points at 3 years and 1.66 points at 4 years.
Iddi et al.[Iddi et al., 2019] reports an MAE of approximately 2 points at both 3 years and
4 years (see Fig.10 in this paper). We report an MAE of 3.2 points at 3 years and 4 points
at 4 years. The accuracy of the test is of about 10%, so 3 points on a scale of 30.

For the ADAS-Cog, the MAE is of 3.7 pts at 3 years and 3.6 pts at 4 years in Huang et
al., and between 5 and 6 points at 3 years and 4 years in Iddi et al. (Fig. 10). We report
7.6 points at 3 years and 10.1 points at 4 years. The accuracy is also of the order of 10%,
so 8.5 points on a scale of 85.

The MAE of the predicted scores greatly depends on the test cohort. It has been
computed in both alternative methods on the whole ADNI data set where approximately
(depending on the time to prediction) 30% are stable controls, 40% are stable MCI, and less
than 15% are MCI converters. This data set would yield an accuracy of 85% if predicting
a constant label. By contrast, we made predictions for subjects at risk of developing AD,
defined as having a MMSE smaller than 27 and being amyloid positive, which contains
only 42% of stable subjects. Our validation is therefore more stringent since it is done
on a population showing greater longitudinal changes. This population better represents
the characteristics of the subjects who might benefit from such simulations in the routine
clinical practice.

Eventually, Iddi et al. used the simulated data to predict the diagnostic labels in the
future. They obtained an accuracy of 80% at 2.5 years. Using a random forest classifier
with our simulated data yields an accuracy of 78% at 4 years in our case.
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Figure 5.9: Thresholded matrix of conditional correlations from which the graph in
Fig. 5.10 is built.

5.6 A holistic and dynamic view of disease progression

The interest of the model is not only to provide accurate simulations at the individual level.
It allows also a systematic investigation of all aspects of disease progression and the effects
that may influence it. The same types of individual parameters, all interpretable, are used
for all modalities, and their relationship can therefore be studied in a quantitative manner.
There are three types of parameters that quantify how much in advance or delayed the
subject is, how fast or slow he is, and how different is his data at a given disease stage, as
compared to a normative progression model.

It should be noted that most clinical studies does not perform temporal alignment of
subject data, and that the differences that are measured between groups of subjects are
likely to be partly confounded by the fact that one compares subjects at different stages of
disease progression. The proposed method makes it possible to determine which observed
differences are due to different progression dynamics or intrinsic differences in the subjects’
evolution profile.

First, we construct a graph of a conditional correlations between all variables of all
modalities (see Fig. 5.9). The statistically significant conditional correlations are rep-
resented in Figure 5.10 where three variables per modality are shown: pace of disease
progression (e.g. acceleration factors), delay with respect to onset (e.g. time-shift), and
pattern (e.g. space-shifts represented here as a single variable for the sake of simplicity).
See Methods for details.

Interestingly, the vast majority of significant conditional correlations are found among
variables of the same type across modalities, and not among different variables within the
same modality. It means that the three aspects of disease progression: pace of progression,
age at onset and types of progression profile are mostly independently of each other. This
fact is surprising as studies reported that some early form of the disease are associated
with more rapid progression, such fact being found here for the cortical thinning only.

The paces of progression of cognitive decline, hypometabolism, and hippocampus at-
rophy are conditionnaly independent of each other, and are all correlated with the pace of
cortical thinning. The cortical thinning seems to be the main driver node, which influences
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if there is a significant correlations between them given all other parameters. The width of
the edge is proportional to the value of the conditional correlation, which is also reported
on the edge. The color of the parameter denotes its type and its position the modality.

the pace of progression of the other aspect of the disease.
The age at onset of cognitive decline is only associated with the age at onset of hip-

pocampus atrophy. The start of metabolic alterations and cortical atrophy appears to be
independent.

The correlations among the pattern variables form a loop in the graph, suggesting that
the profile of cognitive decline, namely the ordering and timing of alterations of difference
cognitive functions, is rooted into a complex associations with the spatiotemporal patterns
of hypometabolism and structural atrophy across brain regions.

This graph does not support the vision of Jack and colleagues of a cascade of events
where hypometabolism induces hippocampal and cortical atrophy, which in turn induces
cognitive decline. This graph shows more complex disease mechanisms with different mod-
ules inter-acting with each other. The age at onset of cognitive decline is associated with
the hippocampal atrophy, and the pace of decline is associated with the cortical atrophy.
The ordering and relative timing of decline of several cognitive functions depends on a
more complex interplay of pattern of atrophy and hypo-metabolism.

Second, we analyze the co-factors that may influence the progression of the disease,
either because they induce a delay or advance of the disease, induce a slowdown or accel-
eration of the disease, or determine a different profile of alterations regardless of the pace
of progression. Our approach allows us to analyze in a coherent and systematic way the
associations between all variables of all modalities and a given set of co-factors.

For each modality, we perform a multivariate linear regression between each individual
parameters and a series of genetic, biological and environmental factors: sex, APOE-ε4
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genotype, presence of amyloidosis, marital status and education level. We identify statis-
tically significant associations using a two tailed t-test at 5% significance level corrected
for multiple comparisons with the false discovery rate method (see Methods). Note that
in this section, we discard subjects without assessments of amyloidosis (see Table 5.4 for
corresponding number of samples).
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Significant associations are shown in Table 5.3. The absence of associations between
cofactors and profiles of hypometabolism may be explained also by the fact that focal effects
on specific brain areas may be diluted in non-specific regions of interest[Knopman et al., 2014].
Previous findings showing associations are also likely to be due to the comparison of sub-
jects at different ages or disease stages[Knopman et al., 2014, Jack et al., 2015]. In this
regard, it is interesting to notice that, except in four occasions, we found associations with
parameters that modulate the dynamics of disease progression, not its trajectory. This fact
suggests that previous findings showing association of these usual factors with the sever-
ity of atrophy, hypometabolism or cognitive decline are likely to be due to a non-proper
temporal alignment of individual data.

Our results also show the predominant role of genetic factors to explain the hetero-
geneity of the manifestation of the disease. In particular, disease progression presents a
strong sexual dimorphism for hippocampus atrophy and cognitive decline. The accelerated
and earlier atrophy in women translates into an accelerated and even earlier cognitive de-
cline. This dimorphism does not seem to be alleviated by compensatory mechanisms. By
contrast, APOE-ε4 carriers also exhibit earlier and more pronounced alterations of their
hippocampus, but this effect is, to some extend, alleviated in the onset of cognitive decline,
which does not occur earlier than non-carriers, but still at a greater pace. It is as if brain
plasticity is able to compensate for the advance of almost 3 years in hippocampal atrophy,
but that once the compensation is made, cognitive decline still manifests itself at a faster
rate than in subjects without the mutation.

The systematic investigation of association with co-factors allowed us therefore to ev-
idence the prominent role of genetic factors to explain the heterogeneity of disease mani-
festation, and the presence of compensatory mechanisms in APEO-ε4 carriers.

5.7 Conclusion

We proposed a generic method to learn long-term scenarios of changes from longitudinal
data sets, which temporally align and combine several short-term data sequences covering
different and unknown stages of progression. The method may be applied to any data that
can be represented as points in a Riemannian manifold. It includes unstructured feature
vectors, images and geometric shapes. Individual parameters capture the variability in
terms of age at onset, pace of progression, and shape or appearance of the model. They
decompose therefore the variability due differences in the dynamics of disease progression
from the inter-individual differences at the same disease stage. We used it to estimate
a model of progression of Alzheimer’s disease combining neuro-psychological assessments,
structural magnetic resonance imaging and positron-emission tomography. It results in a
holistic view of disease progression in multiple domains at an unprecedented temporal and
spatial scales (see www.digital-brain.org).

From a biological perspective, this digital model of disease progression provides, for the
first time, a comprehensive view of how structural and metabolic alterations propagate in
the brain, both in space and time, and how they relate to specific sequences of decline in
cognitive functions. The individual parameters allow the description and quantification of
the heterogeneity of the manifestation of the disease. They allow also the systematic inves-
tigation of the co-variations among the parameters controlling the dynamics and pattern
of progression for all modalities.

From a clinical perspective, the model may be personalized to new subject’s data by
automatically adjusting the parameters controlling for the dynamics and appearance of
the model. These parameters can be interpreted by a clinician to understand the specific
characteristics of each patient. We show that past data are reconstructed with an error of
the same order than the uncertainty of the measurement. Likewise, the prediction of the
subject’s data up to four years in the future is at the same precision as the uncertainty
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Table 5.4: Summary statistics of the subject subsets for each data type

ADAS & MMSE PET MRI
Number of subjects 223 157 322
Number of visits 1235 690 1993

Average number of visits per subject (± std) 5.5 (±1.1) 4.4 (± 2.1) 5.8 (± 2.4)
Average age (± std) 76.2 (± 6.9) 74.0 (± 7.2) 74.0 (± 6.7)
Sex ratio (F/M in %) 39.0 / 61.0 41.8 / 58.2 41.2 / 58.8

Amyloid status (+/-/unknown in %) 65.5 / 7.2 / 27.3 77.4 / 7.3 / 15.3 73.2 / 7.1 / 19.7
APOE carriership (%) 62.8 64.2 65.2

Education (mean ± std, in years) 15.8 (± 2.8) 15.8 (± 2.7) 15.9 (± 2.8)
Marital status (married/not married in %) 81.2 / 18.8 82.3 / 17.7 80.9 / 19.1

of the measurements. The model can be used therefore as a digital avatar of the brain
of each subject at risk of developing Alzheimer’s disease. It accurately simulates images
and cognitive performance of the subject in the future, which is key to detect subjects
at risk at earlier disease stages than today, and to implement and evaluate personalized
therapeutic strategies. Clinical studies need to be conducted now to assess the accuracy of
the prediction in a prospective manner and to evaluate the adoption of such techniques for
the recruitment of patients in trials and the implementation of early prevention strategies.
As it stands, the approach might pave the way to the future advent of precision medicine
in neurology.

5.8 Methods

5.8.1 Data Set

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database1. The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD).

We used all available visits from ADNI, ADNI-GO and ADNI-2 data sets for all subjects
who:

• have been diagnosed with Alzheimer’s Disease (AD) at least at one visit;

• have been diagnosed as Mild Cognitive Impaired (MCI) subjects at least at one visit;

• did not revert to Cognitively Normal (CN) stage after being diagnosed as MCI or
AD, nor revert to MCI or CN stage after being diagnosed with AD.

350 subjects satisfied the first two criteria. The third criterion excludes subjects with
doubtful diagnoses: 28 subjects were then excluded, leading to a subset of 322 subjects
representing a total of 2136 visits. We define 3 overlapping sub-sets by selecting different
data types: ADAS-Cog & MMSE, FDG-PET images and MRI images. Table 5.4 provides
summary statistics of these data sets.

For each subject, we used the following additional data: age at each visit, sex, mar-
ital status, educational level, Apolipoprotein E (ApoE) polymorphism, and presence of
amyloidosis. More precisely, we define:

1http://adni.loni.usc.edu/
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• marital status as: married versus non-married meaning widowed, divorced, or never
married;

• educational level as the number of years of education;

• ApoE-ε4 carriership as the presence of at least one allele ε4 of the ApoE gene;

• Amyloid status as positive if one of these conditions was met at one visit at least:

– a Standard Updake Value ratio (SUVR), normalised by the entire cerebellum,
greater than 1.1 in a PET image acquired with Florbetapir (AV-45) compound
[Clark et al., 2012, Landau et al., 2013];

– an average SUVR, normalised by the cerebellum, greater than 1.47 in a PET
image with a Pittsburgh compound B (PiB) [Landau et al., 2013];

– a level of beta amyloid 1-42 (Aβ42) (measured with the Roche Elecsys assays2)
in the cerebrospinal fluid (CSF) lower than 1098 pg/mL[Schindler et al., 2018];

unknown if no values of CSF biomarkers and no AV45 or PiB PET images were
available at any visit in the ADNI-merge file; and negative otherwise.

Not counting 7% of the population with an unknown amyloid status, 83% of the remain-
ing held a stable positive status status across all their visits, while 9% have their visits
consistently negative – the last 8% present an evolution of its status through time. The
stable positive and negative individuals allows to distinguish the subjects who have devel-
oped Alzheimer’s Disease in presence of amyloidosis, from those who developed the clinical
signs of the disease without the significant development of amyloid plaques.

5.8.2 Pre-processing and feature extraction

We used the global MMSE score and aggregated scores from the 13 items of the ADAS-Cog.
Furthermore, we pooled the 13 items into four sub-categories: memory by adding items 1,
4, 7, 8 and 9, language by adding items 2, 5, 10, 11 and 12,praxis by adding items 3 and 6,
and concentration with item 13. Each value is normalised by the maximum possible value
for the global score or for each category.

Regional FDG-PET SUVR were extracted using the second version of the Automated
Anatomical Atlas3 (AAL2)[Tzourio-Mazoyer et al., 2002, Rolls et al., 2015] with 120 re-
gions covering the cortex and the main subcortical structures, using the open-source com-
munity software Clinica4 [Routier et al., 2018]. The software performs intra-subject reg-
istration of the FDG-PET image into the space of the subject’s T1-weighted MRI image
using Statistical Parametric Mapping5 (SPM) software (version 12)[Penny et al., 2011].
The PET image is then spatially normalised into MNI space using DARTEL deformation
model of SPM, and its intensities normalised using the average uptake value in the pons
as reference region. The SUVR map is obtained by averaging resulting intensities in each
region of the atlas [Samper-González et al., 2018].

The MRI images were first processed independently with the cross-sectional pipeline
of the FreeSurfer6 software (version 5.3.0) [Fischl and Dale, 2000, Fischl et al., 2002]. The
longitudinal FressSurfer pipeline is then used to create subject-specific templates from the
successive data of each subject and refine image segmentations[Reuter et al., 2012]. These

2http://adni.loni.usc.edu/new-csf-a%CE%B21-42-t-tau-and-p-tau181-biomarkers-results-from-adni-
biomarker-core-using-elecsys/

3http://www.gin.cnrs.fr/fr/outils/aal-aal2/
4http://clinica.run/doc/Pipelines/PET_Volume
5www.fil.ion.ucl.ac.uk/spm/
6https://surfer.nmr.mgh.harvard.edu
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segmented images are used then to extract a cortical thickness map, and a mesh of the left
and right hippocampus.

We used the cortical surface mesh projected onto the average space called FSaverage
with 163,842 vertices. For dimensionality reduction purposes, we then

• inflate the FSAverage mesh to a sphere using FreeSurfer, on which 3,658 vertices
(called patch-nodes) are selected to map the whole sphere uniformly,

• associate each vertex to its closest patch-node, resulting in a parcellation of the
cortical mesh into 3,658 patches that are uniformly distributed over the surface,
where a patch contains on average 44 vertices,

• compute the average value of the cortical thickness in each patch.

We also align the skull-stripped images with an affine 12-degrees-of-freedom transforma-
tion onto the Colin27 template brain7, using the FSL 5.0 software8[Woolrich et al., 2009].
Mesh representations of the geometry of the left and right hippocampus result from the
following steps:

• the volumetric segmentations of the hippocampi obtained by FreeSurfer are trans-
formed into meshes using the aseg2srf software9,

• the resulting meshes are decimated by a 88% factor using Paraview, 5.4.110[Ahrens et al., 2005],

• then aligned using the previously-computed global affine transformation estimated
with the FSL software,

• residual pose differences among subjects are then removed by rigidly aligning the
meshes from the baseline image of each subject to the corresponding hippocampus
mesh in the Colin27 atlas image, this transformation with 6 degrees of freedom being
computed with the GMMReg software11[Jian and Vemuri, 2011],

• the same transformation is eventually used to align the meshes from the follow-up
images of the same subject.

5.8.3 Data representation and choice of Riemannian metrics

The statistical model may be written as:

yij = ηwi (γ0) (ψi(tij)) + εij (5.1)

where

• γ0 : t → Expp0 ((t− t0)v0) is the population average trajectory in the form of a the
geodesic passing at point p0 with velocity v0 at time t0 (Exp denotes the Riemannian
exponential as a concise way to write geodesics),

• ηwi (γ0) : t → Expγ0(t)

(
P t0,tγ0 (wi)

)
is the exp-parallelisation of the geodesic γ0 in

the subject-specific direction wi, called space-shift, as depicted in Fig. 5.1 (P t0,tγ0 (wi)
denotes the parallel transport of the vector wi along the curve γ0 from γ0(t0) to
γ0(t)),

7http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
8https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
9https://brainder.org (version of July 2009)

10www.paraview.org
11https://github.com/bing-jian/gmmreg (version of July 2008)
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• ψi : t → αi(t − t0 − τi) + t0 is a time-reparameterising function, where αi is a
subject-specific acceleration factor and τi a subject-specific time-shift.

For identifiability purposes, we impose the vectors wi to be orthogonal to the velocity
v0 in the tangent-space at point p0. Parallel transport being isometric, this property then
holds at any time point. The random effects of the model are:

• an acceleration factor αi, which accounts for the variations in pace of disease pro-
gression, and therefore distinguishes the fast from the slow progressing individuals,

• a time-shift τi, which accounts for the variations in age at onset, and therefore dis-
tinguishes the early from the late onset individuals,

• a space-shift wi (a vector pointing a direction on the manifold), which accounts for
the variations in the position of the individual trajectory, and therefore captures
differences in patterns of disease progression (magnitude of the effects, re-ordering of
events, change in the spatial pattern of alterations for instance, as detailled below).

Their prior distributions are a log-normal distribution for the acceleration factors, zero-
mean Gaussian distribution for the time-shift. Space-shifts are decomposed into a series of
independent components: wi = Asi where the columns of A contains a pre-defined number
of vectors in the orthogonal space of v0, called components, and si are random weights,
called sources and distributed according to a normal distribution for non-Euclidean metrics
and a Laplace distribution if the manifold is Euclidean, for identifiability purposes.

We concatenated the aggregated MMSE score and the four sub-categories of the ADAS-
Cog to build a 5-dimensional feature vector, which is seen as a point in a 5-dimensional
hyper-cube [0, 1]5. We provide this manifold with a diagonal metric tensor which ensures
that a geodesic in this hyper-cube is formed by 5 logistic curves, that are further assumed to

be parallel to each others: γ0,k(t) = γlogit(t+δk) with γlogit(t) =
(

1 + 1−p0
p0

exp
(
−v0(t−t0)
p0(1−p0)

))−1
.

A parallel shift of the population geodesics in this hyper-cube translates into a change in
the temporal delay between the logistics curves of each coordinate[Schiratti et al., 2015,
Schiratti et al., 2017]: ηwi

k (γ0)(t) = γlogit

(
t+ δk +

wi,k

γ̇logit(t0+δk)

)
.

Maps of cortical thickness take the form of a vector of 3,658 coordinates corresponding
to the measurements values at every patch node, seen as a point in the Euclidean space
R3,658. Geodesics are straight-lines in this space, where each coordinate k ∈ {1, . . . , 3, 658}
is a one-dimensional straight-line of the form: γk = pk +vk(t− t0). The exp-parallelisation
in the Euclidean space corresponds simply to a translation, so that each coordinate is
transformed into[Koval et al., 2017]: ηwi

k (γ0) = pk + wi,k + vk(t − t0). The fixed-effects
p0 and v0 are vectors of size 3,658 whose k-th coordinate pk and vk are the reference
intercept and slope at the k-th patch respectively. We select a sub-set of 911 control nodes
(ci)1≤i≤911 among the patch nodes, and create a mapping which generates 3,658 values
from the 911 values using a manifold-kernel smoothing interpolation. Let the k-th path
node be xk ∈ R3, corresponding to the Euclidean coordinate of the center of the path. The
value pk = p(xk) =

∑911
i=1 exp

(
−d(xk,ci)

2

σ2

)
βi corresponds to the value of the parameter at

the k-th node. The βi are the 911 values at the control nodes ci, the distance d(xk, ci) is the
geodesic distance on the cortical surface mesh between patch node xk and control nodes
ci, and σ is a scalar parameter taken equal to 20mm, which is approximately 2.5 times
the average distance between neighbors control nodes (namely the three closest control
nodes to a given control node). The same kernel mapping is used to generate the values
(vk)1≤k≤3,658. By construction, the maps generated by this operation are varying smoothly
over the surface mesh and are controlled by a smaller number of parameters.

Each PET measurement is characterised by a vector in R120 whose k-th coordinate
correponds to the the average SUVR value on the k-th region of interest (ROI) of the
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AAL2 atlas. We take the same approach as for the cortical thickness maps. The centroids
of the regions in the AAL2 anatomical atlas is considered as a fully connected graph (so
that the geodesic distance on the graph is the Euclidean distance between centroids), and
all centroids are taken as control nodes. Spatial smoothing parameter is taken here of
σ = 15 voxels = 22.5mm.

For hippocampus meshes, we consider a finite-dimensional manifold of diffeomorphisms
of the ambient 3D space that contains the hippocampus[Durrleman, 2018, Durrleman et al., 2014].
This manifold is parameterised by a set of momentum vectors (mk)k attached to a set of
control points (ck)k. This set of control points is seen as a dynamic system of particles which
follows geodesics derived from the Hamiltonian: H(c,m) =

∑
k,l exp

(
− ||ck−cl||2

σ2

)
mT
kml,

where T denotes the transpose of a vector. The exponential function is a positive definite
kernel defining the co-metric on this manifold as the matrix K(c) =

[
exp

(
− ||ci−cj ||

2

σ2

)]
i,j
.

The deformation scale σ is an hyperparameter of this metric, and is set to 10mm in this
application. For each configuration of control point c(t) and momentum vector m(t) at
time-point t, we derive a continuous vector field vt(x) =

∑
k exp

(
− ||ck(t)−x||2

σ2

)
mk(t) for

any point x. The trajectory of a set of control points and attached momenta therefore
translate into a time-dependent family of vector fields. These vector fields are integrated
in time from the identity map into a flow of diffeomorphisms. Diffeomorphisms along these
geodesics are applied to a template shape O to give a smooth trajectory of shape deforma-
tion: t→ φc,m(t) (O), where we denote by φc,m(t) the diffeomorphism arising from control
points c, momentum vectors m at time-point t. The set of control points and the template
shape play the role of the point p0, and momentum vectors the role of the cotangent-space
vector K(c)−1v0.

This construction allows the exp-parallelisation of the trajectory of control points in
the manifold, which translates into another trajectory of shape ηwi(φc,m)(t)(O). This
parallel trajectory transports the deformation patterns of the baseline geodesics into a new
geometry[Bône et al., 2018].

In this construction, the template shape O becomes a new fixed-effect of the statistical
model. We use the metric on currents[Vaillant and Glaunès, 2005] to measure a distance
between the deformed template and the observations, which are meshes with different
topology and number of vertices. This distance appears when maximising the likelihood
of the residual noise εij [Durrleman, 2018, Gori et al., 2017]. It is homogeneous to an area,
and its units is therefore in mm2. One of its main advantage is that it smooths out small
protrusions and is insensitive to small holes or topology changes in the meshes, making
it robust to segmentation errors and avoiding intensive mesh pre-processing. The scale at
which the metric is insensitive to these artifacts is an hyperparameter of this attachment
metric[Durrleman et al., 2008, Gori et al., 2017], and is set to 5mm in this work.

5.8.4 Calibration

We use the Monte-Carlo Markov Chain Stochastic Approximation Expectation Maximisa-
tion (MCMC-SAEM) algorithm [Kuhn and Lavielle, 2004, Allassonnière et al., 2010, Allassonnière et al., 2015]
to calibrate the model. It is an iterative algorithm that solves the following approximate
optimisation problem at each iteration:

θk+1 = argmaxθ
N∑
i=1

∫
log
[
p({yij}j , zi; θ)

]
p(zi|{yij}j ; θk)dzi (5.2)

At each iteration, it loops over the three following steps.

• simulation of candidate value of the random-effects zk by running several steps of
a Metropolis-Hasting method within a block Gibbs sampler with p(z|{yij}j , θk) as
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ergodic distribution. This step essentially draws a candidate from a random walk
sampler and accept or reject this candidate depending notably on the value of the
complete likelihood p({yij}j , zk, θk), which measures how well the data generated
with the candidate zk, i.e. f(θk, zk, {tij}j), resembles the actual observations {yij}j .

• stochastic approximation using a Robbins-Monro method which keeps adding the
terms within the integral with decreasing gains. For distributions belonging to the
curved-exponential family (which is ensured in all cases but hippocampus by assum-
ing parameters to be drawn from a prior distribution), it amounts to keep track of a
set of sufficient statistics.

• maximisation over the parameters, which is done by updating the parameters with
a fixed number of gradient descent steps for hippocampus meshes, or in closed form
in other cases.

The following procedures are preceded for the initialisation of the algorithm. For
the hippocampus meshes, an average model was first computed by estimating an at-
las [Gori et al., 2017] to initialise the template shape and the matrix A, individual geodesic
regressions [Fishbaugh et al., 2014] were then estimated to initialise the velocity vector v0.
For the cortical thickness and SUVR maps, the coordinates pk of the initial position p0

corresponds to the mean value over all the data on the corresponding region. As for the
initial velocity v0, each coordinate vk corresponds to the average slope of linear regressions
performed on each subject independently. In the case of the cognitive scores, a random
initialisation was used.

The implementation of this algorithm is available in the software Deformetrica12 for
the longitudinal shape model, and in the Leasp software13 for the other cases.

Model synchronisation. The time-warp functions ψ[m]
i (tij) maps the age of the i-th

subject at the j-th visit, tij to a disease stage on the normative time-line for the data
type m. Taking the model of cognitive decline as a reference (m = cog), we look for
a temporal mapping Φ[m](t) = λ[m] · t + µ[m] between the normative time-line for data
type m and the one of the cognitive decline so that Φ[m] ◦ ψ[m]

i (tij) is as close as possible

to ψ
[cog]
i (tij) by minimising

N∑
i=1

Ni∑
j=1

∣∣∣λ[m] · ψ[m]
i (tij) + µ[m] − ψ[cog]

i (tij)
∣∣∣2, which admits a

closed form solution. This steps allows the synchronisation of different models of disease
progression.

Estimation of age of diagnosis. The time-point ψ[cog]
i (tdiag

i ) maps the age at which the i-
th subject was diagnosed with the disease, i.e. tdiag

i , to a disease stage that ideally would be
the same for all subject. In practice, we used the average stage tdiag = 1

N

∑N
i=1 ψ

[cog]
i (tdiag

i )
as an estimate of the diagnosis time on the normative time-line of the model of cognitive
decline. Note that this estimate is the best predictor of the age at diagnosis, as it minimises∑N

i=1

∣∣∣{ψ[m]
i }−1(tdiag)− tdiag

i

∣∣∣2.
5.8.5 Personalisation

Once the model is calibrated on a longitudinal data set, we personalise it to the temporal
sequence {yij , tij}j of any target subject i by finding the values of the random-effects zi
that maximises the posterior log-likelihood:

log p(zi|{yij}j , θ̂) = log p({yij}j |zi, θ̂) + log p(zi|θ̂) + Constant. (5.3)

12www.deformetrica.org
13https://gitlab.icm-institute.org/aramislab/longitudina
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The first term log p({yij}j |zi, θ̂) ∝ −
∑Ni

j=1

∥∥yij − f(zi, θ̂, tij)
∥∥2 measures the distance

between the observations and the current fit of the model to this data. The norm con-
sidered is the one appearing in the noise likelihood: sum of squared differences for neuro-
psychological assessments, PET images and cortical thickness maps, and the currents dis-
tance between meshes for hippocampus meshes[Vaillant and Glaunès, 2005]. The second
term is a prior on the likelihood of the random-effects. This minimisation problem is
solved using Powell’s method for the hippocampus meshes, and the L-BFGS algorithm
[Byrd et al., 1995] for all other modalities. Both algorithms were taken from the SciPy
1.1.0 library14.

We performed model personalisation using the whole data set as a training set, or in
a five fold cross-validation setting. On the one hand, we personalise the model to the
training subjects using the whole data set, yielding a set of individual parameters for each
subject. On the other hand, we estimate the model using 80% of the subjects and then
personalise it to the remaining 20% subjects, yielding a set of individual parameters for
test subjects only. After five splits, we recover a full set of individual parameters estimated
in a cross-validation setting, which is compared to the first set of individual parameters.
The cross-validation procedure produces five sets of fixed effects that are compared to the
set of fixed effects using the whole data set as training set.

In any case, at convergence, the residual εi,j = yij−f(ẑi, θ̂, tij) for the optimal value of
the random-effect ẑi is called the reconstruction error of the j-th observation of the i-th
subject. Note that in the case of the hippocampus meshes, only the absolute reconstruction
error |εij | can be computed, because the currents representation is a multivariate vector,
of which we take the norm[Vaillant and Glaunès, 2005].

We compare the distribution of the reconstruction errors with the uncertainty in the
measurements, which is estimated as follows. In the ADNI protocol[Jack Jr et al., 2008,
Jack Jr et al., 2010a], most MRI sessions consist of a pair of test and re-test MRI, namely
two scans performed on the same day one immediately after the other one. For 1841
out of 1993 MRI sessions, we measure therefore the differences between the MRI derived
data (hippocampus meshes and cortical thickness maps) when using the test or the re-test
image. These differences give an empirical distribution of the noise due to variations in
image acquisition and processing.

For PET derived data, we use the baseline and follow-up scans of stable cognitively
normal and amyloid negative subjects in ADNI, as a proxy to test / re-test data (125
subjects, 244 visits with a follow-up time of 18 months). For those subjects, the changes
in glucose metabolism over a 18 months period is supposed to be negligible compared to
all the other factors affecting the measurements such as variations in reaction to radio-
tracers, and methods for PET reconstruction, image correction and extraction of regional
measurements.

Test / re-test studies have shown a that the MMSE, which scales from 0 to 30, is subject
to a difference between two sessions, whose standard deviation ranges from 1.3 for a one-
month interval[Clark et al., 1999] up to 1.82 for a 1.5 year long interval[Hensel et al., 2007],
thus representing a standard deviation of 4.3% to 6%. Another study[Standish et al., 1996]
measured the former ADAS-Cog that scales between 0 and 70 three times at a 2-week
interval, with an agreement between raters. The inter-ratter standard deviation is of 9.64
between the first and second test, and of 6.79 between the second and third test. The
intra-rater standard deviation is of 8.16 between the first and third visit. This corresponds
to a standard deviation ranging from 9.7% to 13.8%. On average, we consider such neuro-
psychological assessments to have a zero-mean Gaussian distribution of noise with standard
deviation of order 7%.

14https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

107



5.8.6 Prediction

Let’s consider an individual such as it is possible to splits his observations (yij , tij)1≤j≤ni

into (yij , tij)1≤j≤jpresent and (yijfutur , tijfutur) such that tijfutur = tijpresent + T where T is the
time to prediction, e.g. 3 or 4 years. We consider the parameters θ previously estimated.
In the case where this individual belongs to the initial cohort used to calibrate the entire
model, then we consider the parameters θ estimated in the cross-validation run for which
this particular patients belonged to the test set.

Given θ, we compute zi by personalizing the model with the visits (yij , tij)1≤j≤jpresent ,
while fixing the pace parameter to 1 for patients that present only one past visit for the
hippocampus. Then at time tijfuture , it is possible to compute the prediction ỹijfuture =
f(θ, zi, tijfuture) + εij where εij is a realization of the estimated noise distribution, and, to
compare it to the real value (yijfuture).

Due to the smoothness constraints in the reconstruction of cortical thickness maps, the
prediction are systematically biased. We estimate the bias as dsmooth = 1

jseen
∑jseen

j=1 (yij −
f(θ, zi, tij)) and made the final prediction as ỹijfuture + dsmooth.

5.8.7 Conditional correlation

We compute the conditional correlations among all the pairs of individual parameters (pace,
delay and pattern for each modality). It is represented as a matrix whose entries are the
correlations between a given pair of parameters conditionally to all the other ones. The
conditional correlation matrix is seen as graph whose vertices are the individual parameters,
and whose edges are weighted by the pairwise conditional correlations.

We use the GGMselect algorithm [Giraud et al., 2012] to obtain a first, very sparse,
graph containing only the most basic conditional correlations. We proceeded to construct
a more complex one by sequentially adding the next most potent edges: at each step of the
procedure, we added a single edge to the current graph. This edge is chosen using parallel
LARS [Efron et al., 2004] procedures on each node. Each LARS proposes a list of candidate
graphs, among which we select the one minimizing the Kullback-Leibler divergence with
regards to an estimation of the real distribution.

We stop adding edges once the Kullback-Leibler divergence between a set of unseen
data and the proposed graph is at its lowest.

5.8.8 Cofactor analysis

We take the series of random-effect estimates after model calibration and personalisation
on a given training data set. For each data type, we look for correlations between the values
of these random-effects and a series of co-factors: sex, APOE status, marital status, level of
education and amyloid status. On the one hand, the series of co-factor is regressed against
the uni-dimensional temporal random effects (time-shift τi and acceleration factor αi); the
statistical significance of the slope coefficients is assessed by a two-sided t-test. On the
other hand, for the multivariate vector of sources (si), we perform a 2-blocks partial least
square [Abdi, 2003] method to identify correlations between a linear combination of sources
and co-factors. The resulting series of p-values are corrected for multiple comparisons using
the False Discovery Rate (FDR) method.

When a significant association between a linear combination of sources (i.e. a vector d
in the multivariate space of sources) and a categorical co-factor has been found, we project
the individual source estimates on this direction (i.e. bi = dT si) and compute the distance
between the empirical means of each class (δ12 = b2 − b1). We select two points in the
source space at u = ±aδ12/2 to represent the typical configuration of each class, where
a = 1 (for the cortical thinning) or 3 (for the hippocampus shape) is a factor to amplify
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differences for better visualisation. We then reconstruct the corresponding typical data by
computing the exp-parallel curve in the direction u at a given time-point t: ηAu(γ0)(t).

5.8.9 Code availability

Software used for the pre-processing of the data have been listed above in footnotes. The
code used for calibration, personalisation and simulation is freely available, in the Defor-
metrica softwarewww.deformetrica.org for shape data, and in the Leasp softwarehttps:
//gitlab.icm-institute.org/aramislab/longitudina for the other cases.
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Part IV

Simulation of Virtual Trajectories of
Progression and Longitudinal Data

Sets
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Chapter 6

Simulation of Virtual Patients

This chapter extensively takes advantage of the generative and mixed-effects characteristics
of the model to either simulate measurements that have been missing or that correspond
to future disease stages, or, to create virtual cohorts of simulated patients that allow to
significantly enhance the predictive power of algorithms, especially the prediction of the
MMSE for MCI subjects up to 4 years in advance.
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Abstract
Longitudinal databases, namely repeated observations per individual, provide data
that are not straightforward to deal with e.g. unequal number of observations per
individual, temporally unaligned measurements and varying time-steps between obser-
vations. In a medical context, this is further worsen by datasets of relatively small size
that prevent from properly benefiting from the information contained in the sequences
of individual observations. In this paper, we show that these challenges are related and
can be tackled by a data augmentation framework that we introduce. The latter takes
advantage of the information provided by each individual sequence of measurements
to characterize the long-term disease progression and its spatiotemporal variability,
thanks to a mixed-effects model. Based on that, we are able to derive the mean trajec-
tory in order to reconstruct continuous individual trajectories to impute missing values
but also to predict future time-points. Moreover, this generative model estimates the
distribution of the random effects from which it is possible to simulate virtual patients.
They can be of interest to balance or un-bias real cohorts and to simulate virtual
cohorts in order to improve the predictive power of algorithms.

6.1 Introduction

To better treat diseases or prevent their apparition, there is an overwhelming need for
techniques that characterize their progression. This is particularly significant for neurode-
generative diseases that are diagnosed belatedly due to the lack of knowledge about the
prodromal stages and the early biomarkers. A key factor to circumvent this obstacle dwell
in the fact that each patient carries information about a part of the overall disease pro-
gression. This is particularly accentuated in longitudinal databases where the patients,
observed at multiple time-points, describe a short-term evolution of the disease progres-
sion. In the case of temporal dynamics that evolve during period of times that are longer
than each individual snapshot, such as in neurodegenerative diseases, the patients are likely
to be screened at different disease stages. Furthermore, they might present unaligned tem-
poral dynamics (e.g. fast versus slow progressors, early versus late converters) that are
not straightforward to realign and compare. On top of this temporal variability, each pa-
tient might present slight variations in term of patterns of evolution compared to a typical
long-term scenario of change. An over-and-above issue is the diversity of modalities and
biomarkers that favor omitted measurements in the dataset. All these concerns are in
fact different aspects of the missing value problem : the absence of an observation at a
time-point of interest. This can be a given age, a particular disease stage, but we can
show that this is also tightly related to the prediction of future time-points if we consider
that the missing value is in the future. Some have developed algorithms to handle missing
values during the training, but fewer techniques have been developed to impute them. One
of them, called the multiple imputation [Rubin, 2004] has been extended to longitudinal
data [Biering et al., 2015, Young and Johnson, 2015, De Silva et al., 2017]. However it ul-
timately rely on data missingness assumptions that are essentially subjective or require
prior knowledge.

Besides missing values for a given patient, medical longitudinal databases, compara-
tively to other Machine Learning (ML) fields, are often cursed by a relatively small number
of individuals. This second type of unobserved data has been addressed in other fields with
data augmentation techniques whose aim is to simulate virtual data that reproduce the
characteristics of the initial database. They are essentially intended to feed algorithms with
additional data in order to prevent them from being skewed by insufficient training data.
Most of the literature focuses on techniques for independent and identically distributed
observations which is an unrealistic hypothesis for sequence data. Some proposed meth-
ods for uni-dimensional time-series that rely on a continuous transformation of the time
domain by warping, slicing or sliding the time-window [Le Guennec et al., 2016]. Such
techniques do not apply to disease progression where time-invariance cannot hold true.

114



Other attempts have discussed data augmentation techniques in particular model designed
with linear mixed effects or known laws, which is unable to properly capture complex dy-
namics [Ryu et al., 2011, Tang, 2015, Tang, 2019]. Alternatively, [Dalca et al., 2015] relied
on general linear models to describe the effects of the neurodegenerative diseases at the
voxel level, predicting their change in the next years as a regression of genetic and clinical
markers . Recently, generative adversarial networks (GAN) [Goodfellow et al., 2014] have
received some interest to generate virtual data but the generative process is poorly under-
stood and more importantly, they require large datasets to be trained, which is specifically
the problem we face. However, to take fully advantage of the latent spaces of GANs, some
studies have introduced regularizers from the longitudinal structure of the data. They are
based on the ability to encode the input images into a latent space that has a longitudi-
nal structure which ultimately enables to decode it into MRI slices at later time-points.
Recently, [Ravi et al., 2019] simulated, from a slice of the MRI at baseline, the effect of
the disease and therefore the resulting MRI slice in the next few years. Additionally
[Xia et al., 2019] conducted similar simulations to reproduce the effect of normal ageing
on the brain alteration, particularly 2D slices of MRI scans.

A direct consequence of the limited number of samples in medical datasets is that they
may be unbalanced and present some bias such as the inclusion criteria that might favor
one type of progression over another. This prevents from drawing conclusions that gen-
eralize well. Due to the small size of the dataset which prevents from subsampling the
most abundant sub-population, the only reliable option is to simulate new patients that
mimics the characteristics of the sub-population to increase. This essentially stresses the
fact that the longitudinal data augmentation technique to consider should also properly
describe the interactions between the characteristics to balance (gender, genetic muta-
tions, socio-demographic factors, ...) and the factors that modulate the disease progres-
sion. While this is an important area of interest in the representation learning community
[Bengio et al., 2013], these interactions are not taken into account yet in GANs or other
data augmentation techniques which restrict their use when balancing datasets. In the
end, being able to simulate virtual patients that imitates initial cohort also allows to gen-
erate virtual cohorts whose sharing policies are less restrictive than usual anonymization
requirements.

In this paper, we characterize precisely the issue of insufficient data in longitudinal
setting, which can alternatively take the form of missing values for given patients, or,
the simulation of an entire patient, with multiple observations. We also show that these
challenges are tightly related to the prediction of future time-points but also to un-biasing
and balancing initial cohorts with simulated patients. To tackle these challenges, we adapt
a Bayesian mixed effects model [Schiratti et al., 2017] that captures the group-average
spatiotemporal long-term trajectory of disease progression out of individual sequence of
measurements. This mean trajectory is learnt in a mixed-effects setting such that the
individual trajectories are variations of this long term progression. As they are continuous
trajectory, in the sense that they are defined for any time t, it is possible to generate
individual values at missed ages (imputation of missing values) or at later time-points
(prediction of future stages). The aforementioned variability in term of disease trajectory
is defined with random variables whose distribution is learnt during the estimation of the
long-term progression. Therefore, this generative characteristic of the model allows to draw
new reasonable variations of the mean trajectory that correspond to virtual individuals.
As for real subjects, their measurements can be computed for any arbitrary age t. As
the model allows to relate these variations to individual cofactors (e.g. gender, genetic
mutations, marital status), it is possible to draw virtual patients with given cofactors to
unbias or balance the original cohort. The resulting augmented dataset can be used to
enhance standard ML algorithms. To sum up, the purpose of this framework is three-fold
:
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• the simulation of virtual cohorts of longitudinal patients, to unbias initial cohort or
to spare sharing policies,

• the imputation of missing values and the prediction of future time-points in longitu-
dinal studies,

• the enhancement of longitudinal data based algorithms thanks to virtual cohorts of
simulated data.

We evaluated this framework with a mixed-effects model specially designed to handle
cognitive assessments that are represented by logistic shapes varying from a normal to an
abnormal disease stage. We performed experiments on patients with mild cognitive impair-
ments (MCI) but also other diagnosed with Alzheimer’s disease (AD). To demonstrate the
the simulated data mimic the real one, we first fool a discriminator between both. Then,
we show that imputing missing values and predicting future time points further ensure the
ability of the framework to handle longitudinal data. Finally, we simulated virtual patients
to improve state-of-the-art results on the prediction of the mini-mental state examination
(MMSE) for MCI subjects up to the noise level and 4 years in advance.

6.2 Related Work

6.2.1 Missing Values Imputation

Widely used in medical communities, the multiple imputation (MI) method [Rubin, 2004]
to impute missing values simulate few data guesses that have to be random variations of
a given model. Its aim is to perform further analysis on all the guesses and combining the
results, by averaging the parameters estimates for instance. Few methods have extended
the technique to longitudinal data [Biering et al., 2015], for instance in the presence of
time varying covariates [De Silva et al., 2017]. These models rely on assumptions on the
missingness of the data, whether its is random (i.e. occurring independently of the data na-
ture) or not, which can be hard to demonstrate [Young and Johnson, 2015]. Furthermore,
besides the need of a proper imputation model, dealing properly with all the imputations
is not straightforward and rely on diverse assumptions [Spratt et al., 2010].

6.2.2 Data Augmentation Techniques

GAN, recently introduced [Goodfellow et al., 2014], are based on a discriminative model
that is able to discriminate between real and fake data, and, a generative model that
samples fake data. The latter is often used to generate new realistic samples. In longi-
tudinal settings, the generator takes the form of a recurrent neural network that outputs
sequences of data. For this reason, it is non-trivial to propagate the gradient updates from
the discriminator to the generator [Yu et al., 2017] as the part of the generated sequence
to be updated is unclear. Said differently, it is not trivial to assess which part of the
fake input data was inadequately simulated. Some attempted to overcome this challenge
by embedding it in a reinforcement learning setting where the discriminator output is
seen as a reward to the generator [Li et al., 2017]. However, these models ultimately rely
on large databases which are typically inaccessible in the targeted medical applications.
On top of that, GAN cannot properly exhibit interpretable representations in the latent
space. While not in longitudinal settings, some research have discuss its disentanglement
[Chen et al., 2016] but it relies on knowing which input label modulate the outcome. In
our case, this corresponds to prior knowledge over the factors that modulate the disease
progression. Unfortunately, this information is hidden to the observer.
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6.3 Longitudinal Data Augmentation Framework

In the following, we consider a longitudinal dataset y = (yij , tij) (yij ∈ Rn) where the
measurements (yij)1≤j≤ki of the i-th individual are observed at times ti1 < . . . < tiki

Recently, several generative mixed-effects model have been released to deal with longi-
tudinal data. In [Schiratti et al., 2017], the authors introduced a technique to recombine
the individual short-term data into a long-term disease progression. This work has been
extended to data that present a spatial structure [Koval et al., 2018b], to deformations
[Bône et al., 2018], but also to handle missing values during training [Couronne et al., 2019].
Finally, the authors of [Louis et al., 2019] designed a non-parametric version of the disease
progression model. They all consider that there exists an average trajectory parametrized
by θ, continuous with respect to the time t. The individual trajectory of patient i derive
from this group-average scenario thanks to the random effects zi. For the sake of clarity,
we write his observation at time tij as :

yij = fθ(tij , zi) + εij , (6.1)

where the noise is considered Gaussian εij
iid∼ N (0, σ2).

The mixed-effects model proposed in Eq. 6.1 relies on model parameters θ shared
by the population, i.e. the fixed effects , and on individual parameters zi, the random
effects. In this paragraph, we define the three procedures we further consider to leverage
the potential of this generic model :

• Calibration: Given a dataset y, estimate the parameters θ̂ that best describe the
long-term disease progression.

• Personalization: Given θ̂ and an individual yi, estimate its individual parameters zi.
This corresponds to the variations of the mean trajectory that best fit the individual
measurements at the seen ages ti1, . . . , tiki .

• Simulation: Given θ and a set (zi)i, sample a new z′j . The latter characterize a new
variation of the mean trajectory and thus entirely describes a new subject that can
be observed at any age t.

In Section 6.4, we present a particular instantiation of the function fθ that is well-
suited to describe the progression of cognitive scores. It corresponds to logistic shapes that
sketch the conversion from a normal to an abnormal state. Along with this instantiation,
we present the procedure that enables the three aforementioned procedures.

Given the generic model described in Eq. 6.1, we show that once arranged properly,
the procedures allows to, first, generate virtual cohorts that either (i) replicate the char-
acteristics of the initial cohort or (ii) unbias and balance real datasets, secondly, impute
missing values and predict future stages, and finally, augment training sets used to train
algorithms design to predict future time-points.

6.3.1 Virtual Cohort Simulation

The first application consists in simulating patients with multiple measurements. To do
so, we first consider an initial longitudinal dataset y. From it, the calibration procedure
estimates the parameters θ̂ that describe the long-term disease progression along with its
variability in term of spatiotemporal dynamics. The personalization procedures then gives,
for the patient in the longitudinal dataset, their corresponding individual parameters zi
whose collection (zi)i defines a empirical distribution. From the latter, the simulation
procedure allows to draw new samples (z′j)j , each fully characterizing a virtual patient
whose measurements can be computed at any age t as implied by Eq. 6.1 and shown on
Fig. 6.1. Choosing these time-points depends on the usage that follows.
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Figure 6.1: Training set of real patients used to calibrate (C) the model, then personalize
(P) the individual parameters and finally simulate (S) a virtual cohort. The simulated
data are compared to a test set of real data.

On the one hand, it is possible to simulate virtual cohorts with patients that mimic the
individual in the initial one. To do so, the age at baseline, the number of follow-up time
points and the corresponding time intervals should be similar to the real patients. A direct
application of such cohorts is the fact that they are constituted of simulated patients that
are by definition anonymized. This can be use to share databases while overcoming some
cumbersome sharing policies and anonymization processes - only if assured that the simu-
lated data does not contain subject-specific information, which should be carefully checked
based on the empirical distribution of the individual parameters. A slightly different ap-
plication is to balance the initial cohort, by drawing samples (z′j)j from a subsample of
the empirical distribution (zi)i which corresponds to the individual parameters of a given
subpopulation (e.g. male or female, married or divorced or single, carrier of a genetic
mutation or not). This allows to augment the initial dataset with virtual patients whose
trajectory are similar to their subgroup.

On the other hand, the experimental settings of the database such as the inclusion
criteria in medical dataset, might present some biases. It is likely to have an effect on
the correlation between zi and age at the first visit but also the number of follow-up
measurements. To illustrate this, one might consider that for disease progression database,
the recruitment process is likely to enroll earlier patients with early disease onset. Similarly,
fast progressors are likely to pass away earlier so to present less visits. These biases might
also affect the algorithms e.g. slow progressors may present more time-points which are
ultimately more used to drive the disease progression model. Therefore, depending on the
settings, the biases have to be treated thoroughly.

In a word, simulating virtual cohorts, either to replicate real one, to unbias them or to
balance them for underrepresented classes, necessarily depends on the problem at hand.
Careful precautions should be used in the analysis of the relation between the random
effects, the cofactors and the observed time-points.

6.3.2 Missing Values Imputation and Future Time-Points Prediction

A burdensome issue to run algorithms on longitudinal data is the fact that they often
present different number of time-points or that the observations are not separated equally
in time. The proposed framework allows to interpolate observations at any age t.

Given a model calibrated by θ̂, let us consider a new subject whose observation (yj)1≤j≤T
have been seen at times t1 < . . . < tT . The personalization procedure outputs the corre-
sponding individual parameters z. As Eq. 6.1 holds true for any t, it allows to impute a
missing value for any age of interest t ∈ [t1, tT ]. The procedure is shown on Fig. 6.2.

As there is no condition on the selection of t, it is legitimate to consider fθ̂(t, z) for
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imputation accuracy is assessed by comparing to a hold out data.
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Figure 6.3: Comparison of longitudinal prediction settings in standard case (top row) or
with simulated data (bottom row). The latter allows to increase the training set to avoid
learning on insufficient samples.

t > tT . This corresponds to the prediction of future time-points. It is made possible
by the fact that fθ̂ describes the long-term evolution of the disease. Therefore, while
the personalization is computed thanks to few measurements, the resulting individual
trajectory is a continuous function defined on a temporal domain that spans the whole
long-term reconstruction.

6.3.3 Improved Algorithms

We here present a last application which is a natural extension of the first one : as it is
possible to simulate an arbitrary number of patients with an arbitrary number of mea-
surements, the resulting virtual cohort can be used to train algorithms that usually lacks
data - which is often the case in medical datasets. To illustrate this point, we will refer
to the top row of Fig. 6.3 that presents the standard setting of future prediction : past
visits are used to predict values in ∆T years. We stress the fact that predicting the last
observed visit might be biased, by attrition for instance. Note that the longer ∆T is, the
more subjects are discarded due to insufficient temporal depth. This experimental setting
is used in studies that compare the predictive power of different sets of features, and, to
compare the prediction at different temporal horizons, ∆T1 and ∆T2 for instance. This
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second comparison might be extremely inaccurate or skewed as changing ∆T inevitably
change the algorithm training set. For instance, longer ∆T discard more patients and more
visits for the remaining patients.

Furthermore, the small number of data in medical applications makes it difficult to
know whether a given feature has saturated the algorithm with its predictive power or
if new examples would have increase it. Said differently, the accuracy of an algorithm
increases to a maximum value with respect to the number of training data. However, it is
unsure that this value has been reached in the case of small datasets. For these reasons,
to compare features and predictive power at different temporal horizons, the algorithm
should relies on equivalent training and test set in order to comply to the "all other things
being equal" rule.

To this end, we propose an alternative prediction setting presented on the bottom row
of Fig. 6.3. Given an initial dataset, we split it into an estimation and test set. The
former is used to draw virtual patients that form a simulated dataset (after a calibration
and personalization procedure). This simulated dataset is used to train an algorithm
whose results are reported based on the initial test set, preventing from a data leakage and
constraining the metrics to be computed on unseen real subjects. Note that in this new
prediction setting, the patients that were previously discarded because they presented too
short time spans are now used to estimate the variability of disease progression. Therefore,
the simulated dataset mimics more spatiotemporal trajectories, ultimately producing more
accurate algorithms.

6.4 Longitudinal Model instantiation

The longitudinal data augmentation framework has been previously introduced in a generic
manner. In this section, we give an example of such model, that can be rewritten as in Eq.
6.1. As we will study cognitive scores, we consider a model introduced in [Schiratti et al., 2017]
that is particularly well suited to handle cognitive assessments as it describes long-term
trajectories in the form of a logistic shape, i.e. from a normal to an abnormal state.
Given this model, we also detail the three aforementionned mathematical procedures: the
calibration, the personalization and the simulation.

6.4.1 Statistical Model

The longitudinal model, which considers manifold-valued data, focuses on individual ob-
servations that derive from an "average" progression in the sense that it assumes a hy-
pothetical group-average trajectory γ0 : t 7→ γ0(t) in the space of measurements Rn that
describes the long term progression of the disease. We write ηi : t 7→ ηi(t) the trajectory
in Rn of the i-th subject. This individual trajectory derives from γ0(t) in two ways :

• spatially : the individual trajectory ηi(t) is separated from γ0(t) by a distance di(t)
at time t. This distance is parametrized by time independant sources (sij)1≤j≤Ns

where Ns is the number of sources of an independant component analysis that helps
projecting the distance di(t) in Rn to a smaller subspace of possible directions.

• temporally : the speed of progression of ηi(t) may be different from the one along
γ0(t). For this reason, we consider that it progresses through time via a temporal
reparametrization t 7→ ψi(t) = αi(t − τi). The acceleration factor αi accelerates
(αi > 1) or decelerates (αi < 1) the progression, while the time-shift τi delays
(τi > 0) or move forward (τi < 0) the progression compared to the group-average.

Finally, the individual trajectory ηi(t) is a function of individual parameters zi =
(αi, τi, (sij)1≤j≤Ns) and θ i.e. ηi(t) = fθ(t, zi). The individual parameters are hidden vari-
ables such that τi ∼ N (τ , σ2

τ ), αi = exp(ξi) with ξi ∼ N (ξ, σξ) and sij ∼ Laplace(0, 1/2).
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The log-normal distribution corresponds to a positivity condition on the speed of propa-
gation αi.

6.4.2 Estimation Procedures

The model proposed in Eq. 6.1 relies on model parameters θ (shared by the popula-
tion) and on individual parameters zi. The former are the fixed effects and the lat-
ter are the random effects of this mixed-effects model. The resulting likelihood writes
p(y; θ) =

∫
p(y, z; θ)dz =

∫
p(y|z; θ)p(z; θ)dz where p(y|z; θ) corresponds to the model

as yij ∼ N (fθ(tij , zi), σ
2) and p(z; θ) are the priors over the hidden variables. In this

paragraph, we define the three actions we further consider to leverage the potential of the
model.

Calibration: As the individual hidden variables z are unknown, the likelihood p(y; θ) =∫
p(y|z; θ)p(z; θ)dz is intractable, nor the posterior distribution p(z|y; θ). To this end,

we used the Monte-Carlo Markov Chain - Stochastic Approximation Expectation Maxi-
mization (MCMC-SAEM) algorithm, a stochastic version of the Expectation-Maximization
algorithm with MCMC dynamics to sample the hidden variables z, that converge to a max-
imum of the likelihood under certain conditions [Allassonniere and Kuhn, 2015]. Finally,
the calibration procedure leads to θ̂ ∈ argmaxθp(y; θ).

Personalization: We here consider that we have estimated θ̂ thanks to the calibration
procedure. Given a new subject with observations ynew = (ynewj )1≤j≤T at times t1 < · · · <
tT , we propose two options to estimate its hidden variables znew = (αnew, τnew, (snewj )1≤j≤Ns).

The first consists in drawing n samples zi ∼ p(·|ynew; θ̂) and taking the mode of the
empirical distribution. It basically corresponds to MCMC-SAEM iterations with a fixed
value θ̂. The hidden variables zi learnt during the estimation procedure should not be used
because first it is sampled with a value θ(k) relative to the k-th iteration, but, mostly, is
does not not corresponds to the mode of the distribution p(·|y; θ).

The other method is based on an optimization procedure that seeks znew ∈ argmaxz p(y
new, z; θ) =

p(ynew|z; θ)p(z; θ), either with a quasi Newton method such as L-BFGS [Byrd et al., 1995]
or Powell’s conjugate direction method [Powell, 1964]. In the following experiments, we
will use the Powell’s method. In practice, it leads to similar results to MCMC-SAEM sam-
ples or L-BFGS optimization. This means that the individual likelihood does not present
a too flat maxima.

Another practical remark is the possibility to use the same subjects to first calibrate
θ̂ and then estimate zi. We would expect the individual parameters to be worse if the
subject is not part in the calibration procedure. In practice, these values are essentially
the same if the training set is sufficiently large.

Simulation: We consider θ̂ and a set of individual parameters (zi)i = (αi, τi, (sij)1≤j≤Ns)i.
The latter defines a joint empirical distribution from which we propose to draw new sam-
ples z′ = (α′, τ ′, (s′j)j). To do so, we first simulate (ξ′, τ ′) with a kernel density estimation
(KDE) of the distribution (ξi, τi)i (we recall that αi = exp(ξi)). Then, considering the
multivariate Gaussian distribution N (µ,Σ) estimated on all the random effects (zi)1≤i≤n,
it is possible to draw (s′j)1≤j≤Ns |α′, τ ′ ∼ N (µ̃, Σ̃) where µ̃ and Σ̃ are functions of µ and
Σ [Petersen et al., 2008].
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6.5 Experiments and Results

6.5.1 Data Description

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), especially cognitive assess-
ments of subjects that are MCI at one visit at least. It therefore excludes stable cogni-
tively normal (CN) patients and patients with stable AD diagnosis whose do not present
any significant disease progression. We rather focus on stable MCI and MCI who con-
vert to Alzheimer’s Disease that present a high progression variability. It also includes
non-monotoneous profiles.

The experiments are based on the MMSE, the Alzheimer’s disease assessment scale -
cognitive subscale (ADAS-Cog) with 11 and 13 items, the clinical dementia rating sum of
boxes (CDRSB), the Montreal cognitive assessment (MOCA) and the functional assessment
questionnaire (FAQ). To be comparable, the values have been rescaled between 0 and 1
with 0 corresponding to the healthy stages and 1 to abnormal stages. Depending on the
features used, the experiments rely on 721 patients (resp. 3176 visits) if all the features
are considered, up to 980 patients (resp. 5659 visits) if MMSE, ADAS-11 and ADAS-13
only are considered. The code of the following experiments will be made available upon
acceptance of this manuscript.

6.5.2 Virtual Cohort Validation
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Figure 6.4: Correlation between the age of inclusion in the dataset and the estimated
time-shift τi, colored by the type of diagnosis.

To assess the quality of the simulated data, we use a discriminative algorithm as shown
in Fig. 6.1, trained to distinguish simulated from real data in the spirit of GANs. We
consider a long short-term memory (LSTM) for its ability to handle longitudinal data
(with 5 hidden dimension, a dropout rate of 0.5) stacked with a fully connected layer that
outputs the probability of the input data to be real of simulated. The cross-entropy loss was
optimized thanks to the Adam optimizer (learning rate of 10−3) [Kingma and Ba, 2014].

As our goal is to fool the LSTM and get a poor accuracy, we first show that its archi-
tecture and hyperparameters are well designed for the features at hand to discriminate dif-
ferent tasks. The first experiment is to consider individual sequence of data and determine
the diagnosis at the last seen visit (CN, MCI or AD). Based on a 10 fold cross-validation
(CV), it led to an accuracy of 89.0(±4.7), for which the benchmark accuracy (MCI predic-
tion) is of 65%, corresponding to a balanced accuracy of 83.7(±8.5). Considering sequence
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of visits where the last one is MCI, the second experiments aims to predict the diagnosis
in 3 years. The accuracy (resp. balanced accuracy) is of 85.0(±3.0) (resp. 70.4± 9.8) on a
10 fold CV, which is comparable to state-of-the-art results [Tong et al., 2016]. These two
experiments show that the LSTM is able to handle these data given its architecture.

Back to the simulation procedure, we split the initial dataset into a hidden test set of
a hundred real patients, and an estimation set that is used to simulate a virtual cohorts
of patients with MMSE, ADAS-Cog 11 and ADAS-Cog 13. The simulated patients are
concatenated to the hidden test set and we use the aforementioned LSTM to predict
whether the patients are simulated or real, in a 10 fold CV procedure. The real observations
are mainly separated by one year (except for the second visit which is observed after six
month), to this end, we use the same time interval to simulate the measurements of the
virtual patients.

We discuss the results depending on the chosen hyper-parameters (number of simulated
patients, number of visits per patient, age at baseline, time-interval, ...). Besides the
fact that data simulated without noise are instantaneously spotted by the discriminator,
the distribution of ages to simulate the observations with is a key feature to fool the
discriminator. With a random baseline age and number of observations, the discriminator
is able to distinguish the data. While surprising at first, this essentially reveals that a type
of progression is associated to a scenario of seen ages, as discussed for inclusion criteria that
bias the population. This is highlighted on Fig. 6.4 that shows a correlation between the
age at inclusion in the dataset and the estimated time-shift τi: the subjects are included
once they are diagnosed, which is thus related to the age at which the disease progresses.
We can definitely use our framework to unbias from this correlation by sampling at any
age. Similar reasoning might be applied to balance dataset for cofactors that are correlated
to the individual parameters (gender, genetic mutation, ...). For instance, the distribution
of the log-acceleration ξi is significantly different for the subjects carrier of two mutations
on a gene APOE (known to be related to AD) versus the 460 non carriers (p-value =
2.110−9 for the Kolgomorov-Smirnov two-sided test).

Finally, if the baseline age and the number of visits are choosen in adequation to
the initial cohort, the discriminator cannot separate real data from simulated one : after
spliting the initial dataset in 10 folds, the resulting training set is used to simulate virtual
data that are concatenated with the test set of real patient. From this concatenation, we
again proceed in a 10 fold CV procedure to evaluate the LSTM on differents splits. The
reported accuracy over the 100 estimations is of (51.1 ± 8.1). The consistency of these
results is further demonstrated in the next experiments.

6.5.3 Missing Values Imputation

Given a dataset, we first split the data between a train and a test set. The training allows
to obtain θ̂. We consider a patient in the test set with observations (yk)1≤k≤K at times
t1 < . . . < tK from which we hide the k-th observation yk at time tk. The remaining obser-
vations are used to personalize the model in order to obtain the corresponding individual
parameters z = (α, τ, (sj)1≤j≤Ns). The latter are used to simulate the value ỹk = fθ̂(tk, z)
and compare it to the real value yk as shown on Fig. 6.2. We report the mean absolute er-
ror (MAE), i.e. |ỹk−yk|. We train the model on three features (MMSE, ADAS-Cog 11 and
ADAS-Cog 13) in a 10 fold cross validation setting. We report the MAE of reconstruction
over the three features and over the 10 runs.

As it is possible to impute different time-points, Fig. 6.5 reports the MAE for 4
different settings : imputation of the central, random, first or last visit. The orange line is
the median and the upper and bottom part of the rectangles are the first and last quartile.
The whisks corresponds to the 5 and 95 percentiles. For readability purposes, we removed
3 predictions (out of 2655) for the imputation of the last visit whose MAE were around
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Figure 6.5: Missing value imputation for 4 different scenarios : imputation of the central,
a random, the first or the last value.

0.5. It corresponds to patients whose temporal profile present a high increase in the last
seen value(s) and a sudden decrease. This scenario of progression is the reason why the
prediction of the last value presents more outliers, with a mean MAE of 0.0542. On the
other side, the imputation of the central visit presents the best MAE (0.0357), followed
by a random visit (0.0385) and the first visit (0.394). The central is unsurprisingly the
easiest to interpolate as it relies on previous and future datapoints. On the other hand,
to extrapolate the progression, the first visit is easier to impute than the last one as early
stages shows a slow and small progression compare to advanced stages that present a higher
variability of measurements - which is exactly what the scores have been designed for.

The MAE is to be compared to the natural noise in the data. [Clark et al., 1999]
reports two noise values for the MMSE : a standard deviation of 1.3 and 2.8 (out of 30)
for respectively CN and MCI patients. Once normalized and converted to absolute values,
it corresponds to MAE errors of 0.035 and 0.074. Similarly, [Standish et al., 1996] reports
value that corresponds to MAE between 0.077 and 0.11. The variability between this
noise estimation comes from the experimental settings (time between two measurements,
different ratters, disease stage of the subject). In any case, the error of reconstruction we
present is relatively close to the noise in the data.

The reported MAE obviously depends on the number of seen visits the reconstruction
has been made on. To this end, Fig. 6.6 shows the MAE when imputing last visit (right
column of Fig. 6.5) for different number of seen visits. The main observation is that even
one or two visits lead to a good imputation. The main effect of supplementary visits is to
prevent outliers.

In fact, the imputation of the last visit can be considered as a prediction of the future.
To separate predictions at different temporal horizon, we run the same experiments by
ensuring a time interval of 1, 2, 3 and 4 years between the last seen visit and the imputed
value. As shown on Fig. 6.7, this results in predictions that are close to the noise in the
data. The prediction worsen for long temporal horizons. One reason is that the continuous
logistic shape is a good approximation of short-term data but might be not well-suited
for complex long-term dynamics. Another reason is that increasing the time ∆T leads
to fewer examples to train/test the algorithm on and to smaller sets of calibration, of
individual parameters and of testing. A final reason is that long-term extrapolation lead
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Figure 6.6: Missing value imputation of the last value depending on the number of seen
visit to impute.

to consider stages that have potentially not been seen in the original database thus illusive
to be predicted correctly.

6.5.4 Improved Prediction of Cognitive Scores

To improve the performance of predictive algorithms thanks to simulated data, we here
focus on the prediction of the MMSE at 1, 2, 3 and 4 years, based on the MMSE, MOCA,
ADAS-13, ADAS-11, CDRSB and FAQ. To predict future MMSE values, we choose a long
short-term memory (LSTM) neural network, with 10 hidden dimensions, stacked with a
linear layer. The mean squared error (L2-norm) loss is optimized thanks to the ADAM
optimizer (learning rate of 10−3 and weighted decay of 10−5). To prevent the model from
overfitting, a subset of the train set, namely the validation set, is used to apply the early
stopping criterion procedure : it stops the training if no loss improvement is detected
from a given number of epoch on the validation set. To estimate the variance of the
estimation procedure, the results are presented with error-bars corresponding to the mean
and standard deviation of the MAE based on 10 independent runs with different test splits.

The first scenario, shown on Fig. 6.8a, corresponds to prediction of the MMSE based
on three different sets of data (listed above each column) for 4 different temporal horizon
(1, 2, 3 and 4 years) in a standard prediction settings presented on the top row of Fig. 6.3.
The sub-scripted numbers correspond to the size of the train and test set. The results are
compared first to the benchmark constant prediction, i.e. the hypothesis that there is no
change of MMSE within the time interval, in dashed lines, and, on the other hand, to the
noise in the data discussed previously and represented by a hatched pale orange intervals,
the larger (resp. smaller) corresponding to noise of MCI (resp. CN) patients.

We conducted the same predictive experiments but instead of training the algorithms
on real train data, we used the latter to calibrate the model previously introduced. We then
simulated 500 virtual patients, trained the algorithm and fitted on the real test data, as
described by the procedure on the bottom row of Fig. 6.3. The results are reported on Fig.
6.8. A glimpse of the hyperparameter influence is given in the Supplementarial Materials
(number of patients used to calibrate the model and number of simulated patients).

Both experiments shows that it is possible to reach noise level prediction up to 2 years
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Figure 6.7: Missing value imputation of future values (prediction) at 4 temporal horizons.
Outliers have been removed.

in advance. However, the nature of the conclusion made for prediction in 3 and 4 years is
different depending on the prediction setting. The standard setting shows a better MAE
while adding new features. However, it relies on different size of training and testing data,
enabling from accurately comparing the features. This is demonstrated on Fig. 6.8b where
we simulated exactly 500 virtual patients with an larger test size as less real patients are
necessary to calibrate our model. While decreasing the total variance over the 10 runs,
probably due to the increased test set, we improved the MAE by 20% (resp. 37%) to
0.0594 (resp. 0.0649) for prediction 3 years (resp. 4 years) in advance. This outperforms
state-of-the-art results reported on Fig. 10 of [Iddi et al., 2019] that reports a MAE of
0.083 for a 4 years prediction, and, 0.0602 (resp. 0.0552) at 3 years (resp. 4 years)
reported in [Huang et al., 2016]. The latter results can be challenged by the fact that the
data description mentions half of the predicted visits to belong to healthy patients with
a MMSE of 29.2 ± 1.1 at 4 years whereas the vast majority of our predictions concern
MCI and AD stages with a high variability. Finally, the noise estimation for MCI patients
can be questioned as it seems to have been over-estimated due to the fact that we almost
systematically report a better MAE.

More interestingly, the predictive power of the ADAS-11, ADAS-13 and MMSE is not
better than with the MMSE alone, a result that could not have been stated from the
standard prediction. It essentially means that the MMSE alone is a predictor as good as
the three variables but needs more patients to train the model on. In the same spirit,
FAQ, MOCA and/or CDRSB provide substantial information that allow to reach noise
level prediction up to 4 years in advance.

6.6 Conclusion

Longitudinal databases are promising in term of disease modeling as they convey individ-
ual measurements that derive from a long-term progression. Its counterpart lies in the
heterogeneity of data it includes. To this end, we proposed a longitudinal data frame-
work whose potential has been demonstrated by simulating virtual cohorts (that can be
intentionally unbiased or unbalanced), imputing missing values potentially at future time
points, and, finally improving predictive algorithms while allowing to compare them. The
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Figure 6.8: Mean and standard deviation of the prediction of the MMSE in 1 (blue),
2 (orange), 3 (green) and 4 (red) years with different sets of variables (upper part of
each column) over 10 runs. The colored dashed lines corresponds to the error for the
corresponding constant prediction. The hatched pale orange area corresponds to two noise
estimation, resp. for MCI (top) and CN (bottom) patients. The number at the bottom
presents the training and test set sizes.

latter increased state-of-the-art results of cognitive assessment prediction in the case of
Alzheimer’s Disease.

Further efforts will be deployed to evaluate the simulation procedure by measuring, for
instance, the impact of the visits simulated, the time-interval between them or the selection
of the first visit. This could benefit other studies by providing a more accurate comparison
of the predictive quality of models or new biomarkers. We also wish to replicate this study
on other disease progression in future work.
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6.7 Supplemental materials

6.7.1 Influence of hyperparameters on the simulation
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Figure 6.9: MMSE prediction based on MMSE, ADAS-11, ADAS-13, MOCA, FAQ and
CRDSB. The red value on the left corresponds to the MAE without simulated data. Then,
each column corresponds to a different size of the estimation set. Within each column, we
simulate, from left to right, 50, 100, 250, 500 and 1000 virtual patients.

As the part of the patients used in the estimation set may vary, we tested different
scenarios that lead to better results when more patients were used. On the contrary, the
number of simulated patients does not seem to have a great impact on the quality of the
prediction. A possible but preliminary explanation lies in the fact that even though there
are not a lot of simulated patients, they already incorporate more (simulated) visits than
real patients.
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Software development
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Chapter 7

Estimation of the Disease
Progression Model

This chapter describes the software tools that have been developed to obtain the results
presented in the previous chapters. The first software is a C++ package that enables the
analysis of spatially structured data, used to estimate the disease progression on medical
imaging data as presented in Part II. The second software is a Python package, called
Leaspy . It is intended to wrap up all the contribution of this manuscript to benefit the
research community in providing a general framework for longitudinal data analysis, from
the estimation of the long-term disease progression to the imputation of missing values and
the simulation of virtual cohorts.

Contents
7.1 Leasp : A C++ Software Package for the Analysis of Spatially

Structured Longitudinal Data . . . . . . . . . . . . . . . . . . . . 131
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7.1.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.3 How to use Leasp . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.4 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Leaspy : A Python Toolbox to Learn Spatiotemporal Patterns
of Disease Progression . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2.2 Supported Classes of Problems & Related API functions . . . . . 134
7.2.3 Architecture & Software Design Principles . . . . . . . . . . . . . 136
7.2.4 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

This section is an adaptation of the READ ME available at https://gitlab.com/
icm-institute/aramislab/leasp. The repository is not maintained anymore as it is
under migration to Leasp (see Section 7.2). It is left available for reproducibility purposes.

7.1 Leasp : A C++ Software Package for the Analysis of
Spatially Structured Longitudinal Data

7.1.1 Description

Leasp is a C++ 14 software package for the statistical analysis of longitudinal data, par-
ticularly medical data that come in a form of repeated observations of patients at different
time-points. Considering these series of short-term data, the software aims at :

• recombining them to reconstruct the long-term spatio-temporal trajectory of evolu-
tion of the multiple signals observed

• positioning each patient observations relatively to the group-average timeline, in
term of both temporal differences (time shift and acceleration factor) and spatial
differences (different sequences of events, spatial pattern of progression, ...)

• quantify impact of cofactors (gender, genetic mutation, environmental factors, ...)
on the evolution of the signal

The software package can be used with two different types of data :
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Scalar data

The simplest type of data handled by the software are scalar data: they correspond to
one (univariate) or multiple (multivariate) measurement(s) per patient observation. This
includes, for instance, clinical scores, cognitive assessments, physiological measurements
(e.g. blood markers, radioactive markers).

Network Inputs

As some data have a spatial coherence (e.g. cortical thickness maps, PET SUVR), it
is important to integrate the spatial proximity in the long-term evolution of the signal.
The important prerequisite to run this particular type of model is to provide a matrix of
distance between the coordinates of the signal to the software.

7.1.2 Design

The core of the package is designed around the dialogue between the algorithm and the
model. Both are virtual abstract classes that are instantiated depending on the algorithm
and model used. The model encompasses the scalar and network inputs. On the other
hand, the algorithms make use of different sampling algorithms.

The library provides a launch folder to directly apply the mathematical procedures
such as the calibration, the personalization and the simulation. Another folder includes
different utils as preprocessing functions but also a visualisation toolbox.

The google test library was used to run unit and functional tests.

7.1.3 How to use Leasp

Requirements

The C++ package depends on the following libraries :

• tinyxml : library for the reading and preprocessing of xml input files,

• googletest : unit and functional testing library,

• Armadillo : linear algebra libray, used to work with vectors and matrices.

The two first libraries can be installed by typing git submodule init and then
git submodule update. Armadillo can be installed with the brew package manager on

Mac OS.

Installation

To install the C++ software package, open a terminal and type the following commands :

1. git clone https://gitlab.com/icm-institute/aramislab/leasp

2. git submodule init

3. git submodule update

4. . mkdir build \&\& cd build

5. . cmake --options

6. . make --options}
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Run the software

Leasp is a command line software. So, once added to the \protect\T1\textdollarPATH,
it can be run with the following command (stgs standing for settings)

leasp fit model_stgs.xml algorithm_stgs.xml data_stgs.xml sampler_stgs.xml
where

• fit : name of the command used ; fit estimated the group-average trajectory for
the individual measurements

• model_settings.xml : xml file that indicates which type of model should be run
with additional information about hyperparameters of the model chosen (dimensions,
number of sources, path to the distances matrices, ...)

• algorithm_settings.xml : xml file that defines the number of total iterations,
the number of burn-in iterations, the saving settings and the display settings

• data_settings.xml : xml file that gathers the path to the data files

• sampler_settings.xml : xml file that lists the samplers used in the estimation
procedure, along with their parameters

Outputs

The estimation procedure outputs 3 files that are:

• convergence_parameters.csv that allows to investigate the convergence of the model
parameters

• population_parameters.csv that defines the population parameters needed to char-
acterize the group-average long-term history of the signal

• individual_parameters.csv that corresponds to the temporal (time shift and ac-
celeration factor) and spatial (space shift) individual parameters. They enables to
consider the subject-specific trajectory of the signal.

7.1.4 Support

The software is hosted at https://gitlab.com/icm-institute/aramislab/leasp.

Examples

Several examples are to be found on the development branch (root of the document). They
can be run in the terminal thanks to "sh launch_simulation.sh".

Licence

Leasp is distributed under the terms of the MIT license.
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7.2 Leaspy : A Python Toolbox to Learn Spatiotemporal
Patterns of Disease Progression

Abstract
This paper introduces Leaspy, a Python package that provides a natural framework
to study short-term longitudinal data which derive from a long-term temporal phe-
nomenon. It relies on a generative mixed-effects model that is able to reconstruct the
evolution of the phenomenon at both an average and individual level. Such framework
is particularly helpful to study disease progression. The package, distributed under the
GNU GPLv3 licence, is hosted at https://gitlab.com/icm-institute/aramislab/
leaspy. Documentation and examples are available at www.leaspy.run and in multiple
Jupyter notebooks. Quality is ensured with unit and functional testing, git version
control and continuous integration.

7.2.1 Introduction

When it comes to the analysis of longitudinal data, i.e. repeated observations per subject,
many challenge rise from the data structure : inconsistent number of observations per pa-
tient, variable time intervals but also a potential absence of temporal alignment between
the temporal trajectory. In the case where they derive from a similar long-lasting phe-
nomenon, such as disease progression, they are likely to be observed during periods shorter
that the underlying long-term process.

To this end, we introduce Leaspy, standing for Learning Spatiotemporal Patterns in
Python, an open-source Python package conceived for the analysis of longitudinal data
where the observation at each time-point takes the form of a n-dimensional vector or a
n × m matrix. The mixed-effects model it relies on is able to recombine the short-term
individual trajectories into a long-term progression, while dealing with two forms of vari-
ability. The temporal one, corresponding to the unalignment of the individual snapshots,
is characterized by a temporal shift between subjects and an acceleration factor governing
the pace of progression. On the other hand, the spatial variability relates about the geo-
metrical shift between the individual trajectories in the space of measurements. It can take
the form of a subject-wise reordering of the chronology of events or change the patterns of
progression.

The methodology, that takes advantage of Riemannian geometry, has been developed
in [Schiratti et al., 2017], latter extended to spatially structured data such as images or
networks ([Koval et al., 2018b]) and to missing values ([Couronne et al., 2019]). Finally,
an exhaustive study of Alzheimer’s Disease has been conducted in [Koval et al., 2018a] to
validate the approach. Additional applications, such as the imputation of missing values,
the prediction of future time-points or the simulation of virtual cohorts, are introduced in
Chapter 6. All these works have contributed to the development of Leaspy.

7.2.2 Supported Classes of Problems & Related API functions

In the following, we consider a longitudinal dataset y = (yij , tij)1≤i≤n,1≤j≤ki of n patients.
The i-th patient has been observed ki times at ti1 < · · · < tiki where yij ∈ Rn (or
yij ∈ Rn×m). The model can be simplified as :

yij = f(θgeom, zi, tij) + εij (7.1)

where θ corresponds to the model parameters, zi are the individual parameters are
the individual variations to the group-average trajectory and εij is a Gaussian noise. This
statistical problem, that takes the form of a mixed-effect model, considers zi as hidden
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random effects parametrized by θz. Given θ = (θgeom, θz) the set of parameters, the goal
is to maximize the model likelihood that writes p(y; θ) =

∫
p(y|z; θ)p(z; θ) dz. Given this

statistical writing, Leaspy essentially offers the four following statistical procedures :

• Calibration : given y, estimation of the parameter θ̂ ∈ argmaxθ p(y; θ) which
entirely describes the long-term group-average spatiotemporal trajectory.

• Personalisation : given θ̂, estimation of the individual hidden variables z∗i that best
derive the group-average trajectory to reconstruct the individual measurements. It
allows to analyse how individual cofactors modulate the subject-wise disease progres-
sion which is precisely determined by the individual hidden variables.

• Reconstruction, Imputation of missing values and Future prediction : given
θ̂ and z∗i , estimation of ỹij = f(θ̂, z∗i , tij) where tij is either an observed time (recon-
struction), or a time between the first and last seen visit (missing value imputation)
or after the last seen visit (prediction).

• Simulation : given θ̂ and a set of individual variables (zi)i, drawing of a new hidden
variable zi′ that entirely determine a new individual whose time-points are chosen
arbitrarely. If repeated, the procedure returns a virtual cohort with potentially a
larger number of patients, more follow-up time-points and finer time intervals. Apart
from the data augmentation possibility, it enables to share database information while
anonymizing it.

Even though the solver list is continuously increasing, we mention that the calibration
is based on the MCMC-SAEM algorithm ([Delyon et al., 1999, Kuhn and Lavielle, 2004,
Allassonnière et al., 2010]) which offers the Gibbs ([Geman and Geman, 1984]) and Hamil-
tonian Monte-Carlo ([Neal et al., 2011]) samplers within the Hasting-Metropolis algorithm
([Chib and Greenberg, 1995]). Several heuristics improve the convergence stability or speed
: adaptive variance ([Atchade, 2006]) and gradient descent. The personalization includes
Powell and L-BFGS methods ([Powell, 1964, Byrd et al., 1995]). The simulation rely on
conditional multivariate Gaussian and kernel density estimations.

from leaspy import Leaspy , Data , Algor i thmSett ings

data = Data . from_csv ( ’ path/ to /data . csv ’ )

l ea spy = Leaspy ( ’ l o g i s t i c ’ )

c a l i b r a t i o n_s e t t i n g s = Algor i thmSett ings ( ’mcmc_saem ’ , n_iter=2000)
l ea spy . f i t ( data , a l go r i thm_set t ings=ca l i b r a t i o n_s e t t i n g s )

p e r s ona l i z a t i o n_s e t t i n g s = Algor i thmSett ings ( ’ scipy_minimize ’ )
r e s u l t s = leaspy . p e r s on a l i z e ( data , p e r s ona l i z a t i o n_s e t t i n g s )

r e c on s t ru c t i on = leaspy . r e c on s t ru c t ( r e s u l t s , t imes )

s imu la t i on_se t t i ng s = Algor i thmSett ings ( ’ de fau l t_s imulat i on ’ )
simulated_data = leaspy . s imulate ( r e s u l t s , s imu la t i on_se t t i ng s )

Above is an example of the related API calls that were developed with a user-friendly
intention. Each of the four statistical tasks (except the reconstrution) is being preceded
by an AlgorithmSettings object that defines the parameters of the algorithm used. It
is loaded with default parameters if called only by a name, to which kwargs are easily
addable. An advanced version enables to load a parametrisable json file with thanks

135

Leaspy
AlgorithmSettings
kwargs
json


Leaspy API
Load / Save 

utils
Visualisation

toolboxStatistical functions

Algorithms
Calibrate Personalisation

Imputation Simulation

Models
Logistic curve Straight line

Exponential decay …

User

Figure 7.1: Leaspy architecture. Green (resp. red) arrows correspond to data structure
for external (resp. internal) usage. Blue rectangles are the conceptual principles. Grey
Dotted rectangles corresponds to the utils provided in the package.

to the load(path=’path/to/settings.json’) method. To check the convergence of the
related stochastic algorithms, the optional set_logs(path=’path/to/logs’) method of
AlgorithmSettings allows to save log files online in a folder created in the path. Be-
sides the logs, few methods enable to efficiently save and load the model parameters, the
individual hidden variables or simulated data, into standard json or csv files. The API
also provides a visualization toolbox to display the results of the estimations such as the
long-term progression profile or the individual trajectory reconstructions with future pre-
dictions.

7.2.3 Architecture & Software Design Principles

Leaspy is born in an interdisciplinary research laboratory that brings together various
profiles: mathematicians, computer scientists and medical practitioners and researchers.
This essentially involves to provide a environment that is suited for python beginners who
run medical analysis (e.g. temporal progression of new diseases, new modalities, prediction
of future stages), researchers and engineers that use advanced features for research studies
(e.g. imputation of missing values, simulation of virtual cohorts) and, finally, researchers
that implement new start-of-the-art algorithms to improve the four statistical tasks. This
is the reason of the versatility of AlgorithmSettings parameters calls that suit the three
profiles.

Leaspy therefore implements as a high-level structure, as shown on Fig. 7.1, that
connects different part of the project, that, given the data exchanges, are independent
entities that developers can work on independently. Besides the internal data structures
that enhance the computation speed (essentially Pytorch tensors) and the utils (visual-
ization toolbox, and loading/saving functions), the internal project is based on models
and algorithms. The models corresponds to the f function of Eq. 7.2.2 while the set of
algorithms are tools to estimate θ (fit folder), estimate zi (personnalization folder), impute
ỹij (imputation folder) or generate (yij , tij) (simulation folder).

7.2.4 Development

The Leaspy package has been released under the GNU GPLv3 Licence. A full presentation
and documentation can be found at www.leaspy.run while complete tutorials are available
within the example folder of the repository, hosted on a Gitlab server 1 which enables a
git version control. The example/start tutorial is fully explained in a Medium blog post
2. The installation has been made easy with the conda package manager.

1https://gitlab.com/icm-institute/aramislab/leaspy
2https://medium.com/@igoroa/analysis-of-longitudinal-data-made-easy-with-leaspy-f8d529fcb5f8
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The software relies on other standard Python packages which makes it usable on Mac,
Linux and Windows. The software quality is insured by continuous integration running
functional and unit tests on virtual machines, one dedicated to each operating system.
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Chapter 8

Enhancement of Clinical Studies
with Digital Tools

This chapter presents the digital tools that have been developed to take advantage of the
previous theoretical models and their related implementation in the Leaspy Python package.

Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2.1 General Requirements . . . . . . . . . . . . . . . . . . . . . . . . 140
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8.2.3 ADNI 1 Million . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2.4 Patient care with future prediction . . . . . . . . . . . . . . . . . 142
8.2.5 Dashboard for clinical studies . . . . . . . . . . . . . . . . . . . . 143

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.1 Introduction

Thousands of Machine Learning applications have been developed for the medical com-
munity in the recent years, both for the the patient care (e.g. diabetic retinopathy de-
tection [Gulshan et al., 2016], breast cancer detection [Wang et al., 2016], skins lesions
[Kawahara et al., 2016], microbleed detections in the brain [Dou et al., 2016], survival pre-
diction from imaging data in the case of brain tumors [Nie et al., 2016]) and for clinics, lab-
oratories and clinical studies (e.g. segmentation of blood vessels in the eye [Maninis et al., 2016],
cell segmentation [Ronneberger et al., 2015], landmark localization [Yang et al., 2015]).
These models have shown exciting results. They occurred simultaneously to the recent
open science wave : open data, free-access articles and open source code. The latter in-
tends to enhance the medical community which in return validates and gives credit to the
model and related methodology. These existing technologies require limited initial invest-
ments (compared to magnetic resonance imaging (MRI), magneto-encephalogram (MEG)
or position emission tomography (PET) machines for instance) and are of limited cost to
use. However, their emergence in various medical environments is still limited. One pos-
sible reason for this situation is that the theoretical methods do not always meet real-life
needs, and, there access, deployment and ease of use is missing for end-users that have
specific environments, frameworks and their own technical terminology. Therefore, there
is an urgent need to understand the possible applications of the model and to make it
usable and of value for the potential users. This will help bridging the gap between the
mathematical-oriented disease modeling community with its medical counterpart.

In the previous chapters, we presented a generative mixed-effects model which is a
natural framework to recombine individual longitudinal measurements in order to recon-
struct the long-term disease progression. It collaterally allows to compare the patients
progression and predict their future values. This model has shown promising results on
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the progression of cognitive assessments and features derived from T1-weighted MRI and
FDG-PET signal, during the course of Alzheimer’s disease (AD). Such analysis have been
made possible thanks to the Python package Leaspy. The code has been released in open
source to enable similar studies among which the estimation of the progression for new
AD biomarkers or modalities, for different AD cohorts that have particular inclusion crite-
ria, but also for other (neurodegenerative) diseases as done in [Couronne et al., 2019] for
Parkinson’s disease.

To avoid the common pitfalls of not addressing real-life needs or not enabling an easy
usage by end-users, we exhibit four usages that our model can meet in term of applications.
The first one is the direct estimation of the long-term progression of the disease in order to
exhibit the pre-symptomatic biomarkers, to understand the sequence of events and, finally,
to analyze the cofactors that modulate the disease progression. The second enables the
anonymized sharing of the ADNI cohort by simulating one million virtual patient with
longitudinal measurements of different modalities. The third is the prediction of future
time-points for patient care, e.g. in neurology offices. The fourth appears in the context
of cohort monitoring in clinical studies: as the model is able to accurately predict the
future natural evolution of a patient, its comparison to the same patient under medication
helps measuring the drug effect. It can also exhibit subgroups of patients that present
particular response to the treatment. From these use-cases, we present four proof-of-
concept prototypes developed to address these goals. These digital tools are designed to
support or enhance medical knowledge. They directly derive from discussion with the
medical staff. They rely on outputs from Leaspy and are easily installable as they are used
in web browsers.

8.2 Applications

8.2.1 General Requirements

The impact of a model relies on its performance but also on its adoption by the community,
enabled by an easy usage by the end-users. It should be easy to install (potentially on
different operating systems) and also simple to use and to interact with. From a technical
point of view, the digital tool should be interfacable with Leaspy outputs but above all
been run locally to prevent data exchanges with a server that might violate data sharing
policies.

To this end, we developed web-oriented tools that can be launch on web browsers.
This makes them independent from the operating system while allowing to be run locally
or remotely. Furthermore, it allows to benefit from the front-end community that always
enhances the visualization.

8.2.2 Long-term Disease Progression: www.digital-brain.org

For long-lasting diseases that are, first, only observed during short-term periods and sec-
ondly with an important inter-individual variability, getting a sense of the long-term pro-
gression is not easy. The Python package Leaspy, by recombining the individual obser-
vations, is a tool that enables to characterize the sequence of events during the course
of a disease. This is the data-driven counterpart of the hypothetical model developed by
[Jack Jr et al., 2010b], that enable to properly consider the spatiotemporal evolution and
interplays between the biomarkers during the disease progression. It further informs about
the progression variability as of its pace, its age at onset, and the specific patterns of event
ordering.

To visualize the natural history of the disease on the 4 modalities studied in Chapter
5, we developed a 3D animated view available at www.digital-brain.org, screen-shooted
on Fig. 8.1. The top row displays the decrease of both the cortical thickness over the brain

140

Leaspy
Leaspy
Leaspy
Leaspy
www.digital-brain.org


Figure 8.1: Reconstruction of the natural course of Alzheimer’s disease from 60 to 90 years
on 4 modalities : the cortical atrophy of the brain thickness (top left), the decrease of the
brain hypometabolism derived from PET-FDG signal, the hippocampus mesh shrinkage,
and, the cognitive assessments. The four triggers at the bottom right characterizes the
spatiotemporal variability of disease progression. The two ages (bottom left) show the
distinction between the physiological age that is related to a given stage of the disease and
the observed age.

surface (left) and of the glucose consumption in the brain (right) from 60 to 90 years old.
The bottom row displays the shrinkage of the hippocampi meshes (left) and the evolution
of the cognitive abilities measured by 6 cognitive scores (right).

On top of these evolution, the model captures the progression variability within the
cohort. It is represented by the "Pace", "Delay", "Pattern 1" and "Pattern 2" triggers at
the bottom right of Fig. 8.1. The first and second one describe the speed of progression and
the temporal offset (in years) to the mean progression. The patterns are the non-temporal
parameters that are expressed by a reordering of the clinical assessments, as shown on Fig.
8.2, or the change of the spatial patterns of change for the cortical atrophy and the glucose
consumption. These triggers are scaled to range between -3 and +3 standard deviation of
the underlying gaussian distribution.

Given the mean trajectory, a patient is fully characterized by the set of individual
parameters parameters that correspond to the four triggers. However, in real-cases, each
patient presents different temporal and pattern parameters for each modality, e.g. one pace
of progression for the cognitive decline and one for the cortical thinning. For the sake of
clarity, we have mapped the temporal parameters to the same distribution support. On the
other hand, the geometrical parameters are the first components of a principal component
analysis applied to the whole space of patterns across modalities. The temporal variability
is also responsible of the unalignment between the observed aged and the corresponding
disease stage. To this end, we represent the real age and its physiological counterpart on
the bottom left timeline.

This tool properly describes the natural history of the AD along with its variability.
We believe this model to be easily personalizable to other diseases, in order to help the
medical community to have a clearer view of the disease, such as the concomittent and
consecutive offets, especially across modalities.
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Figure 8.2: Disease progression variability illustrated on the cognitive scores. First row
presents the variation of the pace of conversion, the second row displays the temporal shift
in years and the third row shows examples of different sequences of cognitive alterations.

8.2.3 ADNI 1 Million

The model that estimates the long-term disease progression of the 4 aforementioned modal-
ities and presented in www.digital-brain.org is generative in the sense that it estimates
the distribution of the individual parameters, i.e. the values of the "Pace", "Delay", "Pat-
tern 1" and "Pattern 2" triggers. In Chapter 6, we have shown that we are able to simulate
a new set of individual parameters according to the estimated distribution. Each of this
set entirely describe a virtual patient that can be observed at any arbitrary age t. We
have also shown in Chapter 6 that once simulated, it is not trivial for a discriminator to
distinguish real from virtual data. Furthermore, they can be used to train algorithms that
require large amount of data.

The resulting virtual cohorts have interesting properties as they replicate the char-
acteristics of the initial one, they can include an arbitrary large number of patients of
time-points per patient, and, finally, as they are constituted of virtual patient, they can
be shared easily without violating anonymization policies.

To illustrate the capacity of our model to simulate virtual cohorts at large scale, we
made available 5 virtual cohort that includes :

• the cognitive assessments of 1 million subjects,

• the cortical thickness (decimated to 3658 ROI) of 100.000 subjects,

• the shape of the right and left hippocampus of 1 million subjects,

• the glucose metabolism (SUVr) projected on the AAL2 atlas of 1 million subjects.

We also provide a python 3.7 script to map the 3658 cortical thickness ROI to the
FSAverage representation (+360k nodes) directly as a MGH file (to be read with Freeview).
All these materials are available at www.digital-brain.org.

8.2.4 Patient care with future prediction

Nowadays, the patients with cognitive complaints such as memory impairments are guided
towards neurologists. Unfortunately, the consultation essentially consists in a diagnosis
but no possible cure, medication or at least information regarding future stages. This is
due to the high variability in the evolution of the memory loss that might be the result of
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Figure 8.3: Browser view of the disease progression model on 4 sub-scores of the ADAS-Cog
assessments. The dashed lines correspond to the mean scenario of progression. The model
is personalized to individual measurements (dots) in order to show the patient disease
progression.

different dementia or just being related to normal ageing. This leads to insufficient medical
care of the patient and its environment (e.g. relatives, habits, place of living) that cannot
be adapted to face future stages.

On the other hand, we have shown in Chapter 5 that the presented mixed-effects model
can accurately predict the progression of the cognitive assessments for patient that present
mild cognitive impairments 3 and 4 years in advance. This prediction, in real case scenario
can inform the neurologist about the potential future disease stage of the patient, about
his or her pace of progression, about the relative positioning to other individuals, and,
about the particular sequence of cognitive impairments. This paves the way to a better
patient care, e.g. by allowing the patient to adapt and anticipate future stages. To allow
such prediction, we developed a toolbox that takes the form of a website as it is displayed
in browsers, even though it runs locally to respect restrictions in data sharing policies.
Fig. 8.3 shows the disease progression model fitted on 4 subscores of the ADAS-Cog scale.
The individual measurements are then used to personalize the progression to the patient
progression. This visualisation is both helpful to compare the individual sequence of events
to the average scenario of change and to predict future stages.

Chapter 6 has shown the quality of the prediction on the whole cohort. While accurate
for most of the patients, there still are outliers for which the prediction is inaccurate.
Further works, besides improving the quality of the prediction, should focus on providing
a metric on the confidence of the prediction. This results is as important as the prediction
itself to properly inform the medical staff and the patient.

8.2.5 Dashboard for clinical studies

The characterization of the individual trajectories can be extended to multiple patients.
This is particularly interesting to monitor cohorts in clinical studies. We developed a
dashboard (here in the case of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database used in previous chapters) that runs on browsers as shown on Fig. 8.4. For each
patient, it displays the demographic information and the temporal parameters (acceleration
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Figure 8.4: Example of a dashboard to monitor individual patients in clinical studies. It
shows the individual demographic information and individual parameters (left) as well as
the reconstructed data and their prediction at different stages.

factor and time-shift) on the left column. The right column groups the reconstruction of
the different modalities : the cognitive impairments over time, a 3D interactive view of
the cortical thickness and the three slices of the PET-FDG. This dashboard is a proof-of-
concept but has the potential to be personalizable to any ad-hoc study.

Another characteristic of the clinical studies that test drug responses is that they split
the cohort in subgroups (e.g. test and placebo) to measure the drug effect. This relies on
the hypothesis that the disease progression is comparable between groups. Furthermore,
this group-wise analysis prevents from properly measuring the relation between a drug
effect and a particular cofactor, unless it has sufficient subgroups in the test and placebo
groups with a given cofactor.

Contrary to classic methodologies in clinical studies, our model is able to characterize
the individual spatiotemporal trajectory with an accurate prediction up to 4 years. The
latter, that characterize the natural evolution, can be compared to the evolution in presence
of medication, resulting in a drug effect measurement at the individual level. This indeed
allows to measure the drug effect between placebo and test subgroups but it enables to
exhibit the characteristics and cofactors of the individuals that are responsive to the drug,
in case the overall drug effect is not sufficient. It opens the way to clustering the patients
targeted by each drug, allowing a finer classification of the disease in term of targeted
cofactors. Furthermore, these cofactors and characteristics might be potentially detected
years before the disease appear, so that the drug might be tested at earlier disease stages,
prior to the incurable neuronal loss.

144



8.3 Conclusion

The generative mixed effects model is a framework that can be adapted to different use
cases. This toolbox allows a better understanding of the long-term disease progression,
as well as a prediction of future stages at an individual level. The latter can be used to
monitor cohorts in clinical studies and to report the drug effect at the subject level, in
order to exhibit the cofactors that are most likely to respond to the drug.

The related digital tools, directly interfacable with the outputs of Leaspy can be used
easily as they rely on web browsers. The latter can be run locally to be conform to the
data sharing policies.
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Conclusion and perspectives

Conclusion

This thesis naturally emerges in the context of disease modeling. It presents a generative
mixed-effects model that takes the best out of individual longitudinal observations in order
to estimate the natural course of a disease, at both an average and individual level. As the
consequences of the disease might be very heterogeneous across modalities, such description
has been made available for different type of data. While exhibiting and validating the
possibilities offered by the model, we described the Alzheimer’s disease progression to a
whole new level. This has been made possible thanks to numerical tools that have been
released to benefit the entire medical community.

Natural framework to study multimodal longitudinal data

The thesis presents a generative mixed-effects model that is particularly well suited to deal
with longitudinal data. It especially recombines individual short-term measurements into
a long-term scenario of change. The estimation of this average trajectory relies on the
model ability to accurately reconstruct the individual progressions. Its corollary enables
to impute missing values but also to predict future values up to 4 years in advance.

The model, initially designed to handle vector data such as cognitive assessments, was
extended to deal with high dimensional data that present a spatial structure such as images
or meshes. In such context, the model is constrained to enforce similar temporal profile of
progression for close regions. This model allowed to analyse the cortical atrophy extracted
from T1-weighted MRI, and, the brain hypometabolism extracted from PET-FDG.

Furthermore, the generative property of the model is particularly appealing as it per-
mits to simulate an arbitrary number of virtual patients with more time-points and less
time between measurements. Similarly to standard data augmentation techniques, if sim-
ulated correctly, these patients can be used to unbias and balance initial cohorts, but also
to enhance other algorithms by providing additional longitudinal data.

Better understanding of the Alzheimer’s disease progression

To validate the various applications provided by the model along with its ability to deal
with different data type, we characterized the long-term disease progression of Alzheimer’s
disease. Out of the patients from the Alzheimer’s Disease Neuroimaging Initiative dataset
that converted from mild cognitive impairments (MCI) to Alzheimer’s disease (AD), we
extracted the cognitive scores, PET-FDG images and T1-weighted MRI features (cortical
thickness and hippocampi meshes). We reconstructed the evolution of these feature during
the course of the disease, from early stages to post-conversion ages.

Simultaneously, the model was able to reconstruct the individual profiles of evolution up
to the noise level. By studying the individual parameters that enable this reconstruction,
we were able to clearly reveal the cofactors that modulate the disease progression. Finally,
their study provides an in-depth comprehension of the interactions between the modalities.

In the meantime, we selected the larger group of MCI patients (potentially with no
conversion to AD) to characterize their evolution, to impute missing values and to predict
future time-points. These patients were used to simulate virtual longitudinal cohorts,
thereafter used to train recurrent neural networks. It led to state-of-the-art results to
predict cognitive assessments up to 4 years in advance.
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Succession of tools to improve medical research

In parallel to the model development and its validation on the Alzheimer’s disease pro-
gression, we rationalized the code development and integrated it into the Leaspy Python
package. It provides an easy API to reproduce the previous applications to new biomarkers
or cohorts that track other diseases. The code was designed to fit the needs of both Python
beginners that focus on new medical findings, but also for researchers that aim to develop
and integrate new models and algorithms.

This release was followed by the development of digital tools directly intended to en-
hance the medical community. First, www.digital-brain.org is a summary of the evo-
lution of the four aforementioned modalities during the course of Alzheimer’s disease. It
exhibits this progression over 30 years along with its variability. Then, we developed a tool
that allows to predict future time-points based on patient visits and that can be of high in-
terest in neurology offices. It describes the predicted temporal progression while comparing
it to an average profile. Finally, we conceived a dashboard that might be used in clinical
study to monitor a large cohort but also to measure the drug effect at the individual level.

Limitation & Perspectives

Overcome the monotonic and parametric progression constraints

One of the main limitation of the model lies in the parametric temporal profile of pro-
gression, that is also related to the monotonic assumptions. While the current model
instantiations have shown promising results for the data at hand, they are not likely to
describe complicated spatiotemporal profiles. This has to be put in perspective to the
quality and quantity of data : in the future, the longitudinal measurements will provide
more follow-up time-points with probably less noise. This will improve the signal to noise
ratio for these longitudinal data such that more complex dynamics might be estimated.
Capturing them accurately would require to potentially learn more complex Riemannian
metrics - or to change the Riemannian setting.

From estimation heuristics to proven convergence

In previous chapters, we introduced few heuristics to improve the estimation stability
and robustness. Among them, we can cite a tempered profile (simulated annealing) for
the variances of the laws that control the MCMC-SAEM algorithm, and also a gradient
descent or variational inference of the model parameters. These heuristics were used as
initialization of the MCMC-SAEM, which, without the heuristics, is proven to converge
to a local maximum. Further studies are worth to investigate the convergence properties
of the MCMC-SAEM under these additional techniques that accelerate the convergence in
practice.

Distance in the model designed for spatially structured data

The model introduced in Part II, that estimates the temporal progression of spatially-
structured data, relies on a predefined estimation of the distance between the regions.
This distance has been pre-computed thanks to a geodesic distance on the cortical surface.
However, studies have shown that the interaction between brain areas is not only propor-
tional to a geometrical distance but that there exists areas strongly connected despite their
apparent distance. Some have hypothesized that the cortical atrophy propagates through
different regions via the fiber bundles that connect regions of the brain. Therefore, the
pre-computed distance might take into account the number of fiber bundles connecting
different areas. Another interesting approach that can be investigated is to iteratively
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estimate the disease progression (as previously) along with the estimation of the distances
between regions. The outcoming distance matrix might relate about how close, in term of
disease progression, different regions are.

Measuring the quality of a prediction & the drug effect

In chapter 8, we presented two digital tools that rely on an accurate prediction of future
time-points. While we have shown that the prediction is of the noise level for a large
majority of predictions, there still exists outliers for whom the prediction is inaccurate. As
this is a critical information, especially when it is delivered to a patient and its relatives or
when it is used for further medical actions, assessing the quality of the predictions is critical
to see them integrated to support-decision systems. Further attention should be paid to the
detection of this outliers, for instance with Machine Learning techniques that can identify
the patient that are likely to have an inaccurate prediction. Said differently, the underlying
paradigm consists in giving accurate predictions to a smaller group of patients rather than
to a larger group where some prediction are unreliable.
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Valorization

Scientific publications

Articles in journal

• [Koval et al., 2018b] I. Koval, J.-B. Schiratti, A. Routier, M. Bacci, O. Colliot, S.
Allassonnière and S. Durrleman. Spatiotemporal propagation of the cortical atrophy:
Population and individual patterns. In : Frontiers in Neurology, 2019. Volume 9.
pp. 235.

Peer-reviewed conference papers

• [Louis et al., 2019] M. Louis, R. Couronné, I. Koval, B. Charlier and S. Durrleman.
Riemannian Geometry Learning for Disease Progression Modelling. In : Interna-
tional Conference on Information Processing in Medical Imaging - IPMI 2019. pp.
543-553.

• [Koval et al., 2017] I. Koval, J.-B. Schiratti, A. Routier, M. Bacci, O. Colliot, S. Al-
lassonnière and S. Durrleman. Statistical Learning of Spatiotemporal Patterns from
Longitudinal Manifold-Valued Networks. In : International Conference on Medical
Image Computing and Computer-Assisted Intervention - MICCAI 2017. pp. 451-459.

Abstract

• [Koval et al., 2019] I. Koval, A. Marcoux, N. Burgos, S. Allassonniére, O. Colliot and
S. Durrleman. Deciphering the Progression of PET Alterations using Surface-Based
Spatiotemporal Modeling. In : Organization of Humain Brain Mapping - OHBM
2019. This paper corresponds to Chapter 4.

• [Ansart et al., 2018] M. Ansart, I. Koval, A. Bertrand, D. Dormont and S. Durrleman.
Design of a Decision Support System for Predicting the Progression of Alzheimer’s
Disease. In : Alzheimer’s & Dementia : The Journal of Alzheimer’s Association.
Volume 7. page 433.

Preprints

• I. Koval, S. Allassonnière and S. Durrleman. Longitudinal Data Augmentation
Framework for the Study of Disease Progression. This preprint corresponds to Chap-
ter 6.

• I Koval, R. Couronné, S. Allassonnière and S. Durrleman. Leaspy : a Python Package
Toolbox to Learn Spatiotemporal Patterns of Disease Progression. This preprint is
included in Chapter 7.

• I. Koval, A. Bône, M. Louis, S. Bottani, A. Marcoux, J. Samper-Gonzalez, N. Burgos,
B. Charlier, A. Bertrand, S. Epelbaum, O. Colliot, S. Allassonnière and S. Durrleman.
Simulating Alzheimer’s Disease Progression with Personalised Digital Brain Models.
This preprint corresponds to the Chapter 5.
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Talks

• Numerical Model of Neurodegenerative Disease peogression : Description, Person-
alization, Prediction. In : «Numerical tools to improve the biological diagnosis
»woskhop, French Radiology Society. October 2019. Paris, France.

• Numerical Model of Neurodegenerative Disease Progression, especially Alzheimer’s
Disease. In : Inserm - Quebec workshop on ageing. October 2019. Paris, France.

• Numerical Model of Neurodegenerative Disease Progression : Description, Personal-
ization, Prediction, Simulation. In : Les mathématiques de l’imagerie. Agence pour
les Mathématiques en Interaction avec l’Entreprise et la Société.. March 2019. Henri
Poincaré Institute. Paris, France.

• Construct a Digital Model of Alzheimer’s Disease with Leaspy and Deformetrica. In
: «Unified Modelling Framework »workshop, European Progression Of Neurodegen-
erative Diseases initiative - EuroPOND. February 2019. Milan, Italy.

• Learning Digital Models of Alzheimer’s Disease Progression. In «Mathematical
Methods for Spatiotemporal Imaging »workshop, SIAM Conference on Medical Imag-
ing. June 2018. Bologna, Italy.

• Statistical Learning of Spatiotemporal Patterns from Longitudinal Manifold-Valued
Networks. In : Bayes Comp. March 2018. Barcelona, Spain.

• Numerical Models of Brain Disease Progression. In : Microsoft & ICM days. March
2018. Station F. Paris, France.

• Digital models of Brain Aging. Spatiotemporal Evolution of Biomarkers. In : Epi-
demiology team meeting, Erasmus Medical Center. January 2018. Rotterdam, The
Netherlands.

• Network Propagation Model. In : European Progression Of Neurodegenerative Dis-
eases initiative workshop - EuroPOND. February 2017. London, United-Kingdom.

Software & Website

• Leasp C++ 14 software 1.

• Leaspy Python package 2.

• www.digital-brain.org website.

Miscelleanous

• Blog post on Medium «Analysis of longitudinal data made easy with Leaspy »3 .
August 2019.

• Participation to the brain-related atlas «Le Grand Atlas du Cerveau ». Edited by
Glénat, Le Monde, ICM. December 2018.

1https://gitlab.com/icm-institute/aramislab/leasp
2https://gitlab.com/icm-institute/aramislab/leaspy/
3https://medium.com/@igoroa/analysis-of-longitudinal-data-made-easy-with-leaspy-f8d529fcb5f8
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Appendix 1

In the following, we consider a longitudinal dataset y = (tij , yij) 1≤i≤p
1≤j≤ki

, a N -dimensional

Riemannian manifold M equiped with the metric g, a smooth curve γ : I ⊂ R→ M (that
is shown to be a geodesic), statistical parameters θ and random effects z.

8.4 Preambule

In Chapter 1, we have introduced a generic mixed-effects model along with 4 different
instantiations, namely the parallel logistic shapes, the logistic shapes, the exponential decays
and the straight lines. In this appendix, we will exhibit for each of this instantiation :

• a short proof that the curve presented in 1 is a geodesic on the manifold induced by
the corresponding metric,

• the reparametrization θ ← ζ1(θ) and z← ζ2(z) (see Chapter 2) of the parameters θ
and the random variables z,

• the likelihood associated to the instantiation,

• the sufficient statistics of the MCMC-SAEM algorithm (see Chapter 2),

• the parameter updates that derive from the Maximization step of the MCMC-SAEM
algorithm.

8.4.1 Geodesic hypothesis

One of the central hypothesis of the generic model is to describe the group-average spa-
tiotemporal trajectory as a geodesic on M. We will first show that the smooth curve γ
introduced in 1 is a geodesic. Given a system x = (x1, ..., xn) a system of coordinates
around γ(t), it is possible to decompose the curve γ = (γ1, . . . , γn). We can show that γ is
a geodesic if and only if it satisfies the following system of differential equations

∀k ∈ {1, . . . , n}d
2γk
dt2

+
∑

1≤i,j≤n
Γki,j(γ(t))

dγi
dt

dγj
dt

= 0

where the Christoffel symboles Γki,j are defined by

Γki,j =
1

2

n∑
l=1

gk,l
(∂gj,l
∂xi

+
∂gi,l
∂xj

− ∂gi,j
∂xl

)
Given two Riemannian manifolds (M1, g

M1) and (M2, g
M2), we first recall that the

manifold M = M1 × M2 equipped with the product metric is a Riemannian manifold.
Given γ1 (resp. γ2) a geodesic on M1 (resp. M2), the geodesics of M are of the form
t→ (γ1(t), γ2(t)).

In the following, we consider that the N -dimensional Riemannian manifold M is a
product of N one-dimensional manifolds M1 × . . .×MN , the manifold Mi being equipped
with the metric gi. We remind that for p ∈ Mi and (u, v) ∈ TpM the tangent space of M
at p, gip(u, v) = ufi(p)v where fi : M→]0; +∞[. To prove that the curve γ = (γ1, . . . , γN )
is a geodesic of M, one can show that ∀i ∈ {1, . . . , N}, γi is a geodesic of Mi.
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Finally, given a metric gi, γi is a geodesic of Mi if and only if

γ̈i(t) +
1

2

f ′(γi(t))

f(γi(t))
(γ̇i(t))

2 = 0

as the metric is characterized only by the Christoffel symbol Γ1
1,1(p) = 1

2
f ′(p)
f(p)

8.4.2 Reparametrization and Likelihood

To ensure a better practical identifiability e.g. a better stability and robustness of the
parameters θ estimated, the model instantiated in Chapter 1 that depends θ and z are
reperametrized such that in fact we estimate θ ← ζ1(θ) and we sample random variables
z← ζ2(z).

Then, the general writing of the model leads to write the likelihood as :

p(y; θ) =

∫
p(y, z; θ) dz =

∫
p(y|z; θ)p(z; θ) dz (8.1)

As we have shown that the random variables contain individual effects zi but also
population effects zpop that arises from the exponentialization of the model (see Chapter
1), the regularization term p(z; θ) writes

p(z; θ) =
∑
pop

p(zpop; θ) +

p∑
i=1

p(zi; θ) (8.2)

where p(zpop; θ) and p(zi; θ) are the priors of the random variables. On the other hand,
the attachment term p(y|z; θ) writes as a sum over the patients and the visits :

p(y|z; θ) =

p∑
i=1

ki∑
j=1

p(yij |z; θ) (8.3)

where p(yij |zi; θ) ∼ N (y|f(θgeom, zi, tij), σ
2) (from Eq. 2.2 and εij ∼ N (0, σ2)).

8.4.3 Sufficient Statistics and Parameter Updates

As an hypothesis to prove the convergence of the MCMC-SAEM algorithm, we remind
that the log-likelihood writes log p(y, z; θ) = 〈Φ(θ), S(y, z)〉−logC(θ) where S(y, z) are the
sufficient statistics. After the Approximation step that writes S̃k+1 = S̃k+εk(S(y, z)−S̃k)
at iteration k, the maximization step is computing θk+1 = argmaxθ〈Φ(θ), S̃〉+ logC(θ).

To this end, we write for each model the log-likelihood with the associated sufficient
statistics. From it, we derive the update of the parameters in the Maximization step.

170



8.5 Parallel logistic shapes

8.5.1 Geodesic hypothesis

The proof of the parallel logistic curve being a geodesic is provided in [Schiratti et al., 2017]

8.5.2 Reparametrization and Log-likelihood

First, as we want p0 ∈]0, 1[, we write p0 = 1
1+exp(g̃) (i.e. g̃ = ln( 1

p0
− 1)) with g̃ ∈ R. For

the sake of clarity, we write g = exp(g̃). Also, we consider that for each k ∈ {2, . . . , N},
δ̃k = v0δk

p0(1−p0) . Finally, for all i ∈ {1, . . . , p} α̃i = αiv0
p0(1−p0) and τ̃i = t0 + τi.

This leads to the rewrite the individual spatiotemporal trajectory in Eq. 1.10 as :

ηwi
k (ψi(tij)) =

1 + g exp

−wik
(
g exp(−δ̃k) + 1

)2

g exp(−δ̃k)
− δ̃k − α̃i(tij − τ̃i)



−1

+εijk (8.4)

We consider the following laws :

• εijk ∼ N (0, σ2)

• g̃ ∼ N (g, σ2
g)

• δ̃k ∼ N (δk, σ
2
δ ) ∀k ∈ {2, . . . , N}

• βk ∼ N (βk, σ
2
β) ∀k ∈ {1, . . . , (N − 1)Ns}

• τi ∼ N (τ , σ2
τ ) ∀i ∈ {1, . . . , p}

• α̃i = exp(ξi) where ξi ∼ N (ξ, σ2
ξ ) ∀i ∈ {1, . . . , p}

• sij ∼ N (0, 1) ∀i ∈ {1, . . . , p} ∀j ∈ {1, . . . , Ns}

which leads to θ = (σ, g, (δk)1≤k≤n, (βk)1≤k≤(n−1)Ns
, τ , στ , ξ, σξ) and

z = (g̃, (δ̃k)2≤k≤n, (βk)1≤k≤(n−1)Ns
), (τi)1≤i≤p, (ξi)1≤i≤p, (sij)1≤i≤p,1≤j≤ki). (σg, σδ, σβ)

are fixed.

The log-likelihood then writes
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log p(y, z; θ) =−NK ln(σ
√

2π)− 1

2σ2

p∑
i=1

ki∑
j=1

‖yij − ηwi
γ0,p0,t0

(ψi(tij))‖2

− ln(σg
√

2π)− 1

2σ2
g

(g̃ − g)2

− (N − 1) ln(σδ
√

2π)− 1

2σ2
δ

N∑
k=2

(δ̃k − δk)2

− (N − 1)Ns ln(σβ
√

2π)− 1

2σ2
g

(N−1)Ns∑
k=1

(βk − βk)2

− p log(σξ
√

2π)− 1

2σ2
ξ

p∑
i=1

(ξi − ξ)2

− p log(στ
√

2π)− 1

2σ2
τ

p∑
i=1

(τi − τ)2

− pNs log(2
√

2π)− 1

2σ2
s

p∑
i=0

Ns∑
j=0

s2
ij

8.5.3 Sufficient Statistics and Parameter Updates

The decomposition of the log-likelihood into the sufficient statistics is as follow :

log p(y, z; θ) =− 〈[‖yij‖2]ij︸ ︷︷ ︸
S1(y,z)

−2[yTijη
wi
γ ]ij︸ ︷︷ ︸

S2(y,z)

+ [‖ηwi
γ ‖2]ij︸ ︷︷ ︸
S3(y,z)

,
1

2σ2
1∑

ki〉 −NK ln(σ
√

2π)

+ 〈 g̃2︸︷︷︸
S4(y,z)

,− 1

2σ2
g

〉+ 〈 g̃︸︷︷︸
S5(y,z)

,
1

σ2
g

g〉 − 1

2σ2
g

g2 − ln(σg
√

2π)

+ 〈 [δ̃2
k]k︸︷︷︸

S6(y,z)

,− 1

2σ2
δ

1N−1〉+ 〈 [δ̃k]k︸︷︷︸
S7(y,z)

,
1

σ2
δ

[δk]k〉 −
N∑
k=2

1

2σ2
δ

δ
2
k − (N − 1) ln(σδ

√
2π)

+ 〈 [β2
k]k︸ ︷︷ ︸

S8(y,z)

,− 1

2σ2
β

1(N−1)Ns
〉+ 〈 [βk]k︸︷︷︸

S9(y,z)

,
1

σ2
β

[βk]k〉 −
(N−1)Ns∑
k=1

1

2σ2
β

β
2
k − (N − 1)Ns ln(σβ

√
2π)

+ 〈 [ξ2
i ]i︸︷︷︸

S10(y,z)

,− 1

2σ2
ξ

1p〉+ 〈 [ξi]i︸︷︷︸
S11(y,z)

,
1

σ2
ξ

ξ1p〉 −
1

2σ2
ξ

pξ
2 − p log(σξ

√
2π)

+ 〈 [τ2
i ]i︸︷︷︸

S12(y,z)

,− 1

2σ2
τ

1p〉+ 〈 [τi]i︸︷︷︸
S13(y,z)

,
1

σ2
τ

τ1p〉 −
1

2σ2
τ

pτ2 − p log(στ
√

2π)

+ 〈 [s̃il2]il︸ ︷︷ ︸
S14(y,z)

,− 1

2σ2
s

1pNs〉+

Ns∑
k=1

〈 [s̃ik]i︸︷︷︸
S15(y,z)

,
1

σ2
s

[sk]k〉 − p
Ns∑
k=1

1

2σ2
s

sk − pNs log(
√

2π)

At iteration k, the optimization procedure at the maximization step gives us the fol-
lowing updates:
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(σ2)k+1 ← 1

NK
[S̃

(k+1)
1 − 2S̃

(k+1)
2 + S̃

(k+1)
3 ]T1K

(g)k+1 ← S̃
(k+1)
5

(δj)
k+1 ← S̃

(k+1)
7

(βj)
k+1 ← S̃

(k+1)
9

(ξ)k+1 ← 1

p
S̃

(k+1)
11

(σ2
ξ )
k+1 ← 1

p
[S̃

(k+1)
10 − 2ξS̃

(k+1)
11 ]T1p + ξ

2

(τ)k+1 ← 1

p
S̃

(k+1)
13

(σ2
τ )k+1 ← 1

p
[S̃

(k+1)
12 − 2τ S̃

(k+1)
13 ]T1p + τ2
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8.6 Logistic shapes

8.6.1 Geodesic hypothesis

The proof given in [Schiratti et al., 2017] for the parallel logistic holds true for the non-
parallel instantiation of the logistic curves.

8.6.2 Reparametrization and Log-likelihood

In order to keep pk ∈]0, 1[ (∀k ∈ {1, . . . , N}), we consider pk = 1
1+gk

where gk = exp(g̃k)
with g̃k ∈ R. Furthermore, let’s have τ̃i = t0 + τi for all i ∈ {1, . . . , p}.

The equation 1.13 rewrites

ηwi
k (ψi(tij)) =

(
1 + gk exp

(
−(1 + gk)

2

g2
k

(wik + vkαi(tij − τ̃i))
))2

(8.5)

To ensure identifiability conditions, we stress the fact that we cannot have normal laws
on αi and vk where both mean and scales are learnt.

We have the following laws

• εijk ∼ N (0, σ2)

• vk ∼ N (vk, σ
2
v) ∀k{1, . . . , N}

• g̃k ∼ N (gk, σ
2
g) ∀k{1, . . . , N}

• βk ∼ N (βk, σ
2
β) ∀k ∈ {1, . . . , (N − 1)Ns}

• τi ∼ N (τ , σ2
τ ) ∀i ∈ {1, . . . , p}

• αi = exp(ξi) where ξi ∼ N (0, σ2
ξ ) ∀i ∈ {1, . . . , p}

• sij ∼ N (0, 1) ∀i ∈ {1, . . . , p} ∀j ∈ {1, . . . , Ns}

We thus have θ = (σ, (gk)1≤k≤N , (vk)1≤k≤N , (βk)1≤k≤(N−1)Ns
, τ , στ , σξ)

and z = ((gk)1≤k≤N , (ṽk)1≤k≤N , (βk)1≤k≤(N−1)Ns
, (τi)1≤i≤p, (ξi)1≤i≤p, (sij)1≤i≤p,1≤j≤Ns , ).

(σg, σv, σβ) are fixed

The log likelihood writes
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log p(y, z; θ) =−NK ln(σ
√

2π)− 1

2σ2

p∑
i=1

ki∑
j=1

‖yij − ηwi
γ0,p0,t0

(ψi(tij))‖2

−N ln(σg
√

2π)− 1

2σ2
g

N∑
k=1

(g̃k − gk)2

−N ln(σv
√

2π)− 1

2σ2
v

N∑
k=1

(ṽk − vk)2

− (N − 1)Ns ln(σβ
√

2π)− 1

2σ2
g

(N−1)Ns∑
k=1

(βk − βk)2

− p log(σξ
√

2π)− 1

2σ2
ξ

p∑
i=1

ξ2
i

− p log(στ
√

2π)− 1

2σ2
τ

p∑
i=1

(τi − τ)2

− pNs log(2
√

2π)− 1

2σ2
s

p∑
i=0

Ns∑
j=0

s2
ij

8.6.3 Sufficient Statistics and Parameters Update

The sufficient statistics are

log p(y,y; θ) =− 〈[‖yij‖2]ij︸ ︷︷ ︸
S1(y,z)

−2[yTijη
wi
γ ]ij︸ ︷︷ ︸

S2(y,z)

+ [‖ηwi
γ ‖2]ij︸ ︷︷ ︸
S3(y,z)

,
1

2σ2
1∑

ki〉 −NK ln(σ
√

2π)

+ 〈 [ṽ2
k]k︸︷︷︸

S4(y,z)

,− 1

2σ2
v

1N 〉+ 〈 [ṽk]k︸︷︷︸
S5(y,z)

,
1
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√
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Which leads to the following updates
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8.7 Exponential decays

8.7.1 Geodesic hypothesis

We consider the one dimensional metric gp(u, v) = uv
p2

(i.e. f(p) = 1
p2

and f ′(p) = − 2
p3
)

and γ(t) = p exp(vp(t− t0)) (γ(t0) = p and γ̇(t0) = v). This leads to

γ̇(t) = v exp(
v

p
(t− t0)) =

v

p
γ(t)

and

γ̈(t) =
v2

p
exp(

v

p
(t− t0)) =

v2

p2
γ(t)

The differential equation is satisfied as

E = γ̈(t) +
1

2

f ′(γ(t))

f(γ(t))
(γ̇(t))2

=
v2

p2
γ(t) +

1

2

(
− 2

(γ(t))3

)(
γ(t)

)2

(
v2

p2
(γ(t))2)

= 0

8.7.2 Reparametrization and Log-likelihood

We here consider ṽk = vk
pk

and τ̃i = t0 + τi. The equation 1.20 rewrites

ηwi
k (ψi(tij)) = pk exp

(
wik
pk

+ αiṽk(tij − τ̃i)
)

+ εijk (8.6)

To ensure identifiability conditions, we stress the fact that we cannot have normal laws
on αi and vk where both mean and scales are learnt.

We have the following laws

• εijk ∼ N (0, σ2)

• pk ∼ N (pk, σ
2
p) ∀k{1, . . . , N}

• ṽk ∼ N (vk, σ
2
p) ∀k{1, . . . , N}

• βk ∼ N (βk, σ
2
β) ∀k ∈ {1, . . . , (N − 1)Ns}

• τi ∼ N (τ , σ2
τ ) ∀i ∈ {1, . . . , p}

• αi = exp(ξi) where ξi ∼ N (0, σ2
ξ ) ∀i ∈ {1, . . . , p}

• sij ∼ N (0, 1) ∀i ∈ {1, . . . , p} ∀j ∈ {1, . . . , Ns}

We note that it is possible to parametrize p = exp(p) and or v = exp(v) to have positive
of negative values depending on the biological process at hand.

We thus have θ = (σ, (pk)1≤k≤N , (vk)1≤k≤N , (βk)1≤k≤(N−1)Ns
, τ , στ , σξ)

and z = ((pk)1≤k≤N , (ṽk)1≤k≤N , (βk)1≤k≤(n−1)Ns
), (τi)1≤i≤p, (ξi)1≤i≤p, (sij)1≤i≤p,1≤j≤ki).

(σp, σv, σβ) are fixed.
The log likelihood writes
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log p(y, z; θ) =−NK ln(σ
√

2π)− 1

2σ2

p∑
i=1

ki∑
j=1

‖yij − ηwi
γ0,p0,t0

(ψi(tij))‖2

−N ln(σv
√

2π)− 1

2σ2
v

N∑
k=1
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Ns∑
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8.7.3 Sufficient Statistics and Parameters Update
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Which leads to the following updates
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Résumé: La thése s’intéresse à
l’apprentissage statistique de modèles
digitaux de progression des maladies
neurodégénératives, en particulier la
maladie d’Alzheimer. Ces modéles ont
pour but de reconstruire la dynamique
complexe et hétérogène de l’évolution
de la structure, des fonctions et des fac-
ultés cognitives du cerveau, à un niveau
moyenne mais également à l’échelle in-
dividuelle. Pour répondre à cet objectif,
la thèse considére un modéle génératif à
effets mixtes qui, à partir de données
longitudinales, c’est à dire des obser-
vations répétées pour chaque patient,
et éventuellement multimodales, recom-
bine les trajectoires spatiotemporelles
individuelles en un scénario moyen de
progression de la maladie, estimant con-

jointement la variabilité de cette progres-
sion caractéristique. Cette variabilité
est le resultat du non alignement tem-
porel (en terme de vitesse de progres-
sion et âge de début de la maladie) et
d’une variabilité spatiale qui prend la
forme d’une modification de la séquence
d’événements qui interviennent durant
l’apparition et la progression de la mal-
adie. Les différentes parties de la thèse
forme une suite logique, depuis la prob-
lématique médicale, en passant par la
description du modèle statistique asso-
cié, l’application de celui-ci pour la de-
scription de l’évolution de la maladie
d’Alzheimer, et, enfin, le développe-
ment d’outils numériques à destination
du corps médical pour tirer pleinement
parti des méthodes présentées.
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Abstract: This thesis focuses on the
statistical learning of digital models of
neurodegenerative disease progression,
especially Alzheimer’s disease. It aims
at reconstructing the complex and het-
erogeneous dynamic of evolution of the
structure, the functions and the cognitive
abilities of the brain, at both an average
and individual level. To do so, we con-
sider a mixed-effects model that, based
on longitudinal data, namely repeated
observations per subjects that present
multiple modalities, in parallel recom-
bines the individual spatiotemporal tra-
jectories into a group-average scenario
of change, and, estimates the variability
of this characteristic progression which

characterizes the individual trajectories.
This variability results from a temporal
un-alignment (in term of pace of progres-
sion and age at disease onset) along with
a spatial variability that takes the form of
a modification in the sequence of events
that appear during the course of the dis-
ease. The different parts of the thesis are
ordered in a coherent sequence: from
the medical problematic, followed by the
statistical model introduced to tackle the
aforementioned challenge and its appli-
cation to the description of the course of
Alzheimer’s disease, and, finally, numeri-
cal tools developed to make the previous
model available to the medical commu-
nity.
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