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Titre : Tests d’hypothéses distribués: coopération et détection concurrente

Mots clés : statistiques, théorie de I'information, test d’hypothéses

Résumé : Linférence statistique prend une place
prépondérante dans le développement des nouvelles
technologies et inspire un grand nombre d’algo-
rithmes dédiés a des taches de détection, d’iden-
tification et d’estimation. Cependant il n’existe pas
de garantie théorique pour les performances de ces
algorithmes. Dans cette thése, nous considérons
un réseau simplifié de capteurs communicant sous
contraintes pour tenter de comprendre comment des
détecteurs peuvent se partager au mieux les infor-
mations a leur disposition pour détecter un méme
événement ou des événements distincts. Nous in-
vestiguons différents aspects de la coopération entre
détecteurs et comment des besoins contradictoires
peuvent étre satisfaits au mieux dans le cas de taches
de détection. Plus spécifiguement nous étudions un
probléme de test d’hypothese ou chaque détecteur
doit maximiser I'exposant de décroissance de ler-
reur de Type Il sous une contrainte d’erreur de Type |
donnée. Comme il y a plusieurs détecteurs intéressés
par des informations distinctes, un compromis entre
les vitesses de décroissance atteignables va ap-
paraitre. Notre but est de caractériser la région des

compromis possibles entre exposants d’erreurs de
Type Il. Dans le cadre des réseaux de capteurs mas-
sifs, la quantité d’information est souvent soumise
a des limitations pour des raisons de consomma-
tion d’énergie et de risques de saturation du réseau.
Nous étudions donc, en particulier, le cas du régime
de communication a taux de compression nul (i.e. le
nombre de bits des messages croit de fagon sous-
linéaire avec le nombre d’observations). Dans ce cas,
nous caractérisons complétement la région des expo-
sants d’erreurs de Type Il dans les configurations ou
les détecteurs peuvent avoir des buts différents. Nous
étudierons aussi le cas d'un réseau avec des taux
de compressions positifs (i.e. le nhombre de bits des
messages augmente de fagon linéaire avec le nombre
d’'observations). Dans ce cas, nous présentons des
sous-parties de la région des exposants d’erreur de
Type Il. Enfin, nous proposons dans le cas d'un
probleme point a point avec un taux de compression
positif une caractérisation compléte de I'exposant de
I'erreur de Type Il optimal pour une famille de tests
gaussiens.

Title : On cooperative and concurrent detection for distributed hypothesis testing

Keywords : statistics, information theory, hypothesis testing

Abstract : Statistical inference plays a major role
in the development of new technologies and inspires
a large number of algorithms dedicated to detection,
identification and estimation tasks. However, there is
no theoretical guarantee for the performance of these
algorithms. In this thesis we try to understand how
sensors can best share their information in a network
with communication constraints to detect the same or
distinct events. We investigate different aspects of de-
tector cooperation and how conflicting needs can best
be met in the case of detection tasks. More speci-
fically we study a hypothesis testing problem where
each detector must maximize the decay exponent of
the Type Il error under a given Type | error constraint.
As the detectors are interested in different informa-
tion, a compromise between the achievable decay
exponents of the Type Il error appears. Our goal is
to characterize the region of possible trade-offs bet-

ween Type Il error decay exponents. In massive sen-
sor networks, the amount of information is often limi-
ted due to energy consumption and network satura-
tion risks. We are therefore studying the case of the
zero rate compression communication regime (i.e. the
messages size increases sub-linearly with the num-
ber of observations). In this case we fully characterize
the region of Type Il error decay exponent. In configu-
rations where the detectors have or do not have the
same purposes. We also study the case of a network
with positive compression rates (i.e. the messages
size increases linearly with the number of observa-
tions). In this case we present subparts of the region
of Type Il error decay exponent. Finally, in the case of
a single sensor single detector scenario with a posi-
tive compression rate, we propose a complete charac-
terization of the optimal Type Il error decay exponent
for a family of Gaussian hypothesis testing problems.
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CHAPTER 1

Introduction

1.1 Background and motivations

New technologies based on statistical inference allow to perform a number of estimation, identification
and detection tasks and the optimal performances for such tasks are desirable. For instance the National
Institute of Standards and Technology (NIST) organizes empirical evaluations of the solutions developed
by laboratories and companies around the world for facial recognition [24]. But these evaluations strongly
depend on the types of photos taken. Facial illumination, quality of the photos, the angle of view, the
expression of the subjects and their degrees of cooperation in the shooting are all parameters that make
vary the behavior of an algorithm and the optimal performances for this task are not known. A first
step towards a theoretical estimation of the optimal performances for face recognition algorithms is to
understand the effect of compression constraints on statistical inference. This is a critical parameter also
in the case of massive sensors networks found in the Internet of Things (IoT). These sensors networks
are multi-purpose and can be used to detect a fire as well as the amount of light in a house. They thus
have a number of simultaneous statistical testing tasks. Our work tackles with these two problems from a

theoretic perspective.

1.2 Summary of the main contributions

In this thesis we consider first the single-sensor two-detectors system in Figure 1.1 where Detector 1,
after receiving a message from the Sensor, can send a message to Detector 2. This additional message

allows the detectors to collaborate in their decision and one of the the goals of our work is to quantify
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1.2. SUMMARY OF THE MAIN CONTRIBUTIONS

the increase in the type II error exponents enabled by this cooperation. We show that even a single bit of
communication between the detectors (the guess about the hypothesis at the transmitting detector) can

provide an unbounded gain in the type II error exponent of the detector receiving the bit.
A

Detector 1~ H; €{0,1}
M, e {1;'--rW1 n} r

,

X" —1 Sensor L M, e{l,...,W;,,}

Detector 2 — H, € {0,1}

E

Figure 1.1: A Heegard-Berger type source coding model with unidirectional conferencing for multiterminal

hypothesis testing.

Decentralized detection systems are of major importance for various applications such as autonomous
vehicles or other complex monitoring systems. These systems use multiple detection pipelines that base
their decisions on common or individual observations and often these decisions are fusioned at one or
several central detectors. Our scenario can model both multiple detection pipelines and, through the co-
operation link, fusion of various decisions. We consider the case with fixed-length communication. In
our two-detectors setup where each detector aims at maximizing the error exponent under one of the two
hypotheses, two cases can be distinguished: both detectors aim at maximizing their exponents under the
same hypothesis (we refer to this setup as coherent detection) or the two detectors aim at maximizing their
exponents under different hypotheses (we refer to this setup as concurrent detection). In this thesis we
consider both scenarios. Under coherent detection or under concurrent detection when the sensor can
send more than a single bit or cannot distinguish the two hypotheses, the exponents region is a rectangle.
In these cases, each detector achieves the same exponent as if it were the only detector in the system. In
contrast, a tradeoff arises under concurrent detection if the sensor can distinguish the two hypotheses but
can only send a single bit to the detectors. A comparison with the optimal exponents regions without
cooperation [9], allows us to exactly quantify the benefits of detector cooperation in this setup with fixed
communication alphabets. All results explained in this paragraph remain valid when the alphabets size
are not fixed but grow sublinearly in the length of the observed sequences. They also generalize to an
arbitrary number of hypotheses. Whereas for two detectors a tradeoff between the exponents arises only
when the sensor sends a single bit to the detectors, in a multi-hypothesis testing scenario with the num-
ber of distinct hypotheses, H, is superior or equal to 3 such a tradeoff can arise whenever the number of
communicated bits does not exceed log, H. The case of positive communication rates is also investigated.

On a more technical level, the presence of a cooperation link between the detectors seems to make the

12



1.3. ORGANIZATION OF THE THESIS

problem of identifying the optimal type II exponents significantly more difficult. For example, without
cooperation, the set of achievable exponents for testing against independence has been solved in [41],
and it is achievable with a simple scheme that does not rely on binning. With cooperation, we managed
to identify the optimal exponents only under the additional assumption that the observations at the two
detectors are independent under both hypotheses and the cooperation rate is zero. In the general case,
binning is necessary, which makes generally it hard to prove optimality of the achieved exponent. Notable
exceptions are the results included in [25, 30, 26, 33, 44]. For the sake of simplicity, in Chapter 5 we there-
fore only present and analyze a simple coding scheme without binning and also without Heegard-Berger
[16] coding. We prove that this simple scheme is optimal in a special case of testing against independence
where it achieves an exponent at Detector 2 equal to the sum of the exponents at both detectors in a
non-cooperative setup. Cooperation between detectors thus allows to accumulate the error exponents at
the detectors. The testing against independence problem considered in this paper differs from the one in
[47], where the first detector cannot achieve a positive error exponent. The exponents region can signif-
icantly differ under the cooperative and the non-cooperative setup, in particular when based on its own
observation the sensor can guess the hypothesis, communicate this guess to the detectors, and adapt the
communication to this guess. With this strategy, the exponents region achieved by our simple scheme
is a rectangle under concurrent detection, which means that each detector’s exponent is the same as in
a setup where the other detector is not present. Under coherent detection or concurrent detection when
the sensor cannot distinguish the two hypotheses, the exponents region achieved by our scheme shows a
tradeoff between the two exponents.

The major goal of the second part of this thesis is to characterize the rate-exponent function of a single-
sensor single-detector model. We extend the known single-letter characterizations of the rate-exponent
function in the Gaussian vector case (testing against independence and testing against conditional inde-
pendence) to a more general class and provide explicit forms for them. We start by giving a single-letter
characterization of the rate-exponent function generalizing the one of [25, Theorem 3] to a broader class
of problems. Then we show that the rate-exponent functions of two systems whose observations are in a
one to one relationship are equal. Finally, using previous results we provide a single-letter characteriza-
tion of the rate-exponent function for a class of Gaussian hypothesis testing problem by showing that the
rate-exponent function of each problem of this class is equal to the rate-exponent function of a problem

previously characterized and we provide for it an explicit form based on the result of [39, 44].

1.3 Organization of the thesis

The remainder of this thesis is organized as follows. In Chapter 2 we introduce the distributed hypothesis

tesing problem and the information theoretic tools used in this thesis. In Chapter 3 we review known

13



1.3. ORGANIZATION OF THE THESIS

results on hypothesis testing (i.e., collocated sensors). In Chapter 4 we present our result for the zero rate
cases for the single-sensor two-detectors model: we present the error-exponent region for both concurrent
and coherent detection for fixed length alphabet and sublinear growing number of bits. In Chapter 5 we
present our results on positive rates for the same model: we gives optimal results for special cases and
an achievability result for the general problem. In Chapter 6 we present our results for the single-sensor

single-detector model: we give optimal results for a family of Gaussian hypothesis tests.

14



CHAPTER 2

Prerequisites

In this section we present some basic information theory tools that will be used all along this report. First
we present the notations, and then the method of types. Then we present the notion of typicality (for more
details see [6] and [21]), and finally we present a last tool called the Blowing-up lemma (for more details

see [7]).

2.1 Notations

Throughout, we use the following notation. Caligraphic letters X', J and Z denote finite sets. Random
variables are denoted by capital letters and their realizations by lower case, e.g., X and x. The cardinality
of a set X is denoted by |X| and the set of probability distributions on X is denoted by P(X). A random or
deterministic n-tuple X,...,X,, or x1,...,x, is abbreviated as X" or as x". The n-fold Cartesian product
of the set X" is noted X" and the probability that # independent drawings with p.m.f. Py € P(X) results
in a sequence x" denoted by P)(?"(x”). For Py € P(X) the set of all x € X’ such that P(x) = 0 is called the
support of Py and noted supp(Px) € X. When two random variables (X, Y) are independent given a third
random variable Z (i.e. Pxyyz = Pz Px|zPy|z), (X, Z,Y) form a Markov chain and we note X —e—Z —e—Y.
For random variables X, Y and X, Y over the same alphabet X x ) with p.m.f.s Pyy and Pxy satisfying
Py < Py (ie., for every xy € X, if Px(xy) = 0 then also Px(xg) = 0), D(Px||Px) denotes the Kullback-
Leiber divergence between Px and Py, and if for all y € ), Pxjy—y < PX|y:y, D(Px||Px|Y) denotes the

Kullback-Leiber divergence between X and X given Y, i.e.:

DIBIB)= Y Py(x)log X

xesupp(Px) PX (X)

15



2.2. TYPES AND TYPICAL SETS

D(PxIIPxIY)=) _Py(3)D(Pxjy=ylIPxiy=)
yey

H(-) denotes entropy, i.e.:

H(Py)==- )  Px(x)logPy(x).
xé€supp(Py)

All along this report we will use the convention 0log(0) = Olog(%) = 0, and if Py < Px do not hold,

D(Px||Px) = co. For a sequence x,, the limit superior is

lim x, = lim (sup X ),
n—-oo n—-oo m>n

and the limit inferior is

lim x,, = lim ( inf xm).
n—00 n—oo \ m>n

Boldface upper case letters denote random vectors or matrices, e.g., X, where context should make the
distinction clear. We denote the covariance of a zero mean, real-valued, vector X with p.d.f. Px by Kx =
Ep, [XX*] and with p.df. Px by Ky = Ejp, [XX*], where (.)! indicates transpose. Similarly, we denote
the cross-correlation of two zero-mean vectors X and Y with p.df. Pxy by Kxy = Ep,, [XY'] with p.d.f.
Px by Kxy = ]EpXY[XY+]. We denote the conditional covariance matrix of X given Y with p.d.f. Py
by Kxjy = Ep,, [XX*t|Y] and the conditional covariance matrix of X given Y with p.d.f. Pxjy by Kxy =
Ep, [XX*|Y]. For a matrix M, M* denote the Moore-Penrose pseudo-inverse of M and [M|, denotes the

pseudo-determinant of M.

2.2 Types and typical sets

The type of a sequence x” € X" and the joint type of the sequences x" and y" € }" are the p.m.f.s Piu €
P(X) and Pyn yn € P(X x V) defined by letting Pen(x) and Pen yn(x, y) be the relative frequency of x among
X1, , %, and of (x,v) among (x1,v1), -+, (X, Vy):

I{i : x; = x}l

=" 2.1)
Py L) = Lo o

Also, let
Pyl = ) s

P,u(p)
Y
be the conditional law induced by Py ,n(x,y) and Py« (y). The set of all possible types of sequences x™ € X™

is denoted P, (X):
P.(X)={Px € P(X):dx" € X" satisfying P = Px}. (2.4)

For any Px € P,(X), the set of all possible sequences x" with type P is the type class of Py,
T"(Px)={x"€X": Pm = Px}. (2.5)

16



2.2. TYPES AND TYPICAL SETS

The following lemma states that P,(&Xx’) grows at polynomial speed with n:

Lemma 2.1

Pu(X)] < (n+ 1), (2.6)

Proof: see [5]. [ |
Proposition 2.2 For all x" € T"(Pyx):

Q®"(x")=exp| —n (H(Px)+ D(Px[|Qx)) | (2.7)

Proof: see [5]. n

We have the following bounds on the cardinality and the probability of the type class:
Proposition 2.3 For any type Py € P,(X):

(n+1)_|X|exp[nH(PX)]£ IT"(Py)| Sexp[nH(PX)] (2.8)

(n+1)MWexp[ - nD(Pxl|Qx)|<QF"(T"(Px))<exp [ - nD(Pxl|Qx)| (2.9)
Proof: Plugging Qx = Py into equation (2.7) yields P®"(x") = exp [ -nH (PX)], and thus

PEUT(Px)= ) P(x")=[T"(Py)lexp[ - nH(Py)]. (2.10)
x"eT"(Py)

The second inequality in Equation (2.8) now holds simply because
1> P®"(T"(Py)). (2.11)
The first inequality in Equation (2.9) holds by (2.11) and the following inequalities

P®”(TH(PX))@ max PP (T"(Py))

PXeP( )
P®n Tn
(é)
P (X))
(d)
>(n+1)7, (2.12)

Here, (a) holds of (2.7); (b) because the maximum is superior to the average; (c) because the type classes
form a partition of X'”; and (d) because of Equation (2.6). Finally Equation (2.9) follows directly from
equations (2.8) and (2.10). This concludes the proof. [ |
The method of types has various application in information theory. In the following we present one of the,

Sanov’s theorem.
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2.3. SANOV’S THEOREM

2.3 Sanov’s theorem

Theorem 2.4 (Sanov) Let X" = (Xy,...,X,,) be i.id. ~ Qx. For any subset of types L C P(X). The corre-

sponding subset of X",
A=) TRy,
Pee(Lom, )
satisfies
—nmin D(Px||Qx)
Pr(X"eA,) < (n+1)Me Ao (2.13)
If in addition, the set L is the closure of its interior,
1

lim ——log( Pr(X" € A,)) = min D(P . 2.14

lim - log (Pr(X" € A,)) = min D(Pxl|Qx) (214)
Proof: See [5, Theorem 11.4.1]. [ |

2.4 Typicality

We now introduce the notion of typical sequences and typical sets which is central in information theory.
Different notions of typicality can be encountered in the literature. In particular the weak typicality [5,

Chapter 3] is opposed to the more restrictive strong typicality that we present below.

Definition 2.1 Fix y > 0. A p-typical sequence with respect to (w.r.t.) a p.m.f. Px € P(X) is a sequence x"

that satisfies:

|Pen(x) — Px(x)| < uPx(x) forall x € X. (2.15)

The subset

7,'(Px) = {x" : |Pun(x) — Px(x)| < pPx(x) forallx e X} c A", (2.16)

is called the p-typical set wr.t. Px. We define in a similar manner the set of the jointly p-typical sequences,
7, (Py).

Proposition 2.5 Fix p such that py > p> 0 and x" € T,(Px). If X is generated i.i.d. given Px, then:

e—”(l"'V)H(PX)SP)?”(X”) < e—"(l—,“)H(PX), (2.17)
(1 _ 6,4(n))e"(l_")H(PX)SI%”(PX)I < "1 +mH(Px) (2.18)
1-6,(m<Pr(X" €T (Px)) <1, (2.19)

where 9,,(n) = 2|X|exp[-np? min_ Py(x)].
xesupp(Px)
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Proof: see [21, Theorem 1.1]. [ |
As mentioned before there are multiple definitions of typical sets that are adapted to different contexts.
Strong typicality is well adapted to distributed hypothesis testing problem, but we can found some demon-
stration using other notions of typicality. A noticeable example is the demonstration of Chernoff-Stein
Lemma given in [5, Section 11.8] which uses a coarser version than strong-typicality (i.e. relative entropy

based typicality) yet sufficient for this purpose.

2.5 Blowing up lemma
We recall the “Blowing-Up” lemma [7, Theorem 5.4].

Lemma 2.6 (“Blowing-Up” lemma) Let Y" = (Y,...,Y,) be independent random variables in )", dis-
tributed according to W (Y"|X" = x") for some fixed vector x" € X" and a stochastic mapping W : X —

P(Y). Let 6,, — 0 be a given sequence. Then, there exist sequences k,, and y,, satisfying:

lim -2 =0, lim 22 =0
n—oo 1 n—oo n
such that for every subset A, C V" for which
WHALX" = x") > exp(-nd,) (2.20)
we have
Wk A X" = x") > 1 -, (2.21)

where T*1 A, denotes the T*r-neighborhood of A,,, defined as
Ik A, = {3}” e Y":dy" € A, satisfying dy (v",9") < kn} (2.22)
and dg(-,-) denotes the Hamming distance.

The Blowing-up lemma is the key element of the proof of the following theorem due to Shalaby and Pa-

pamarcou (see [31, Theorem 3]) which is at the origin of numerous strong converses in the zero-rate case.

Theorem 2.7 (Shalaby and Papamarcou 94°) Fixp > 0, € € (0,1), and let M,; be a sequence of integers

such that:
— 1
nh—>r¥>lo " logM,, = 0. (2.23)
Then there exists a sequence:
Vy = Vn(p; €M, |X|)|y|) -0, (2.24)
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such that for every Qxy € P(X x ) that satisfies for all (x,y) € X x Y, Qxy(x,v) > p, and every Pxy €
P(X %)), CC X", FC)Y" that satisfy

1-¢

Pg"(C) > M PE"(F) > T (2.25)

the following is true:
QEY(Cx F) 2 exp| - n(D(PxyllQxy) + v, )| (2.26)
Proof: See Appendix A. ]
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CHAPTER 3

Prior-art

3.1 Centralized hypothesis testing

3.1.1 Receiver operating characteristic (ROC)

Consider a Detector observing a sequence X" € X" with p.m.f. which depends on one of the two hypothe-

ses. Under hypothesis

H=0: {X;;,iid Px (3.1)
under hypothesis

H=1: {X,iid Px. (3.2)

The Detector then chooses an acceptance region A, C X". It produces H = 0 if X" € A, and H = 1

otherwise. We define the following error probabilities:

a, :=Pr{H = 1|H = 0} = P*"(AY), (3.3)

N

Bu:=Pr{H =0[H =1} = P*"(A,) (3.4)

The Neyman-Pearson lemma shows that an optimal acceptance region A7 ,, can be found via the likelihood

ratio test:

P®H n
Ar = {x” ex": _)én(x ) > T}, (3.5)
Py (x™)

where T is a positive scalar to be determined based on the desired regime of operation. Denote the prob-

abilities of Type I and Type II error of this test by a;,  and g, .
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3.1. CENTRALIZED HYPOTHESIS TESTING

Lemma 3.1 (Neymann-Pearson Lemma) For any acceptance region A, C X" with associated probabili-

ties of Type I and Type II error, a,, and f3,, , for all values of T the following holds:
ay<ay =By pr-

Proof: see [5, Theorem 11.7.1].

Definition 3.1 Forany a;, € (0;1):
Bulay)=_min B

. * *
T:ap2a, ¢

is the optimal receiver operating characteristic (ROC).

0.030 -

0.010 -

0.003 - Dataset: VISA

ier.
FNMR @ FMR=1e-05
and Algorithm
0.0089 cognitec_001
— 0.0088 psl_002
0.0088 tech5_001
— 0.0085 iit_001
0.0083 starhybrid_001
0.001 - 0.0083 cognitec_000
— 0.0083 everai_002
— 0.0082 mt_000
0.0082 3divi_004
0.0080 shu_001

False non-match rate (FNMR)

1e-07 1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00
False match rate (FMR)

(3.6)

(3.7)

Figure 3.1: Approximation of ROCs in logarithm scales (also known as Detection Error Tradeoftf (DET

characteristics) for various algorithms presented at FRVT [24]. The approximation is done using a base of

labeled face images. The False non-match rate corresponds to the ratio of matching faces pairs (two face

images of the same person) in the base that where classified as being those of distinct persons. The False

match rate corresponds to the ratio of non-matching faces pairs (two face images of distinct persons) in

the base that where classified as being those of the same person.

Remark 3.1 Lemma 3.1 states that the likelihood ratio tests ensures the best Type II error probability for

a given Type I error probability. It does not give a closed form of the optimal ROC. Actually such a result
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3.1. CENTRALIZED HYPOTHESIS TESTING

is hard to obtain in general. Almost all detection algorithms enable to make vary the tradeoff between the
Type I error and the Type II error and so they are also characterized by a theoretical ROC. As for the optimal
ROC, it seems difficult to obtain a closed form for them. Researchers compute an approximation of this ROCs.
Here we represent some face recognition algorithms ROCs extracted from the NIST report on the ongoing Face

Recognition Vendor Test [24] in Figure 3.1.

3.1.2 Error exponent

As stated in Remark 3.1, the closed form of the ROC curve is not known in general for a finite #n. Noticeable
work in that direction is [35] which provides approximation to this ROC. In a regime where the number
of observations increases infinitely, the optimal probabilities of the Type I error and Type II error decay
to 0 and the compromise between these two quantities vanishes. However, there is always a compromise
between their decay rate. This tradeoff has been studied in [17] and [4]. In what follows we limit ourselves
to the study of the case where only the Type II error is restricted to decay exponentially fast because the
problem, when it is transposed to the distributed case, is of formidable complexity and somehow contains
a major difficulty to be solved before solving the general case. In the asymptotic regime as #n — oo for any
fixed bound € > 0 on the Type I error probability «,,, it is possible to let the Type II error probability 3,
decrease exponentially fast to 0 as 1 — co. We have a closer look and analyze the exponential speed of

this convergence.

Definition 3.2 (Achievability for the centralized setup) Fix € € (0, %) an error-exponent 0 is achiev-
able if for all blocklengths n there exists an acceptance region A, € X" so that the corresponding Type I and

Type II error probabilities a,, and B,, satisfy:

lim a, <e, (3.8)
n—00
and
. 1
0 < lim ——logp,,. (3.9)
n—co N

We introduce the Chernoff-Stein lemma, which characterizes it.

Lemma 3.2 (Chernoff-Stein lemma) Fixe € (0, 1) and define E(€) the supremum of the set of all achiev-

able error-exponents. Then:

E(e) = D(Px||Py). (3.10)
Proof: see [5, Theorem 11.8.3] [ |

Remark 3.2 Chernoff-Stein lemma is an asymptotic first-order approximation of the optimal ROC curve. It

provides an approximation of the decay rate of the Type II error with the number of observations. Note that
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3.2. HYPOTHESIS TESTING WITH COMMUNICATION CONSTRAINTS

the error exponent does not depend on the Type I error. It is a strong converse result in the sense that there is

an sharp threshold between the achievable exponents and the others.

3.2 Hypothesis testing with communication constraints

Yl’l

|

X™ —i Sensor Detector [~ H € {0,1}

Figure 3.2: Binary hypothesis testing with one sided data compression.

Consider a two-terminal problem with a Sensor observing the sequence X" and a detector observing Y"
(see figure 3.2). Here (X;, Y;) take values in the alphabet X x ). The p.m.f. of the tuple (X", Y") depends

on one of two hypotheses. Under hypothesis

and under hypothesis
H=1: {(Xp, Yy))i, iid. Pyy (3.12)

The Sensor applies an encoding function
G X" > M=2{0,1,..., W, -1} (3.13)
to its observed source sequence X" and sends the resulting index
M = ¢, (X") (3.14)
to the Detector. The Detector then applies a decision function to the pair (M, Y"):
P, MxY"—{0,1}. (3.15)

to decide on the hypothesis
H 2, (M, Y"). (3.16)
We define the following error probabilities:
a, = Pr{?%: 1|H = 0}, (3.17)
By i= Pr{ﬁ:0|H: 1}. (3.18)
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3.2. HYPOTHESIS TESTING WITH COMMUNICATION CONSTRAINTS

Definition 3.3 (Achievability under Rate-Constraints) Given rate R > 0, an error-exponent 0 is said
achievable if for all blocklengths n there exist functions ¢,, and \,, as in Equation (3.13), and Equation (3.15)

so that the following limits hold:

lim a,, =0, (3.19)
n—o0
) 1

0 < lim ——log B,, (3.20)

n—oco N
and

— 1

lim —logW, <R. (3.21)

n—oo 1

Definition 3.4 (Exponent-rate function) For any rate R > 0, define the exponent-rate function E(R) as

the supremum of all achievable error-exponents.

3.2.1 The work of Ahlswede and Csiszar

The first record on the subject of distributed hypothesis testing known by the author is [1]. In this work

Ahlswede and Csiszar considered the scenario depicted in Figure 3.2. When under hypothesis

and under hypothesis
H=1: {(X;, Yy}, iid. Pxy =PxxPy, (3.23)

they derived a single-letter expression for the rate-exponent function denoted in this case Ej(R):

Theorem 3.3 (Exponent-rate function when testing against independence) For every R > 0, when
pXY = PX X Py:

E;(R)= max I(U;Y). (3.24)
U:I(U;X)<R
U-e-X-eY
[U<|1X)+1

This case is know as testing against independence. The authors also gave a general lower bound for any

binary hypothesis testing in Section 3.2:

Theorem 3.4 (Lower bound for the exponent-rate function in the general case) For every R > 0:

E(R) > D(Px||Px)+ max D(PyyllPyy). (3.25)
U:I(U;X)<R
U-e-X-eY

Wiﬂ’l pUXY = Pu|pry.

Some basic properties of the exponent-rate function were also derived in [1].

Proposition 3.5 The exponent-rate function E(R) is monotonically increasing and concave for R > 0 and

continuous for positive R.
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3.2. HYPOTHESIS TESTING WITH COMMUNICATION CONSTRAINTS

3.2.2 No binning: Han’s Scheme

Han presented a similar scheme which is optimal in the case of testing against independence and improves

the result of Ahlswede and Csiszar in the general case (see [14]).

Theorem 3.6 (Lower bound for the exponent-rate function in the general case) For every R > 0:

E(R) > EH(R) = max - mln D(PUXYHPUXY)' (326)
U:I(U;X)<R Pyxy:Pyx=Pyx
U-e-X-eY S
IZEIXﬁl Pyy=Pyy

with pUXY = PU|pry.

Remark 3.3 It appears that the inner bound of Theorem 5.4 coincides with the exponent-rate function in the

case of testing against independence and improve the inner bound presented in Theorem 3.4 in the general case.

Remark 3.4 We consider the (trivial) extreme case where the link is of high rate so that under hypothesis
H = 0, the Detector can obtain the sequence X" with high probability. In this case the Detector attains the
error-exponent of a centralized setup where it observes (X",Y"). And so as long as R > H(X), Lemma 3.2

applied and the exponent-rate function verifies
E(R) = Ec = D(Pxy||Pxy). (3.27)
In addition Lemma 3.2 enables us to obtain the following (trivial) upper bound: for every R > 0:

E(R) < Ec. (3.28)

3.2.3 Role of binning: Shimokawa, Han and Amari scheme

The scheme used in [1, 14] is based on classic source coding arguments. In [32], these arguments are
completed using binning. In the former contributions the Sensor sends the index of the compression
codeword. In the later the Sensor sends the index of a choosen codeword’s bin and the decoder uses
its side-information to retrieve the chosen codeword in the bin. This is similar to the Wyner-Ziv source
coding scheme [42]. Nonetheless in standard source coding a typicality test is used to retrieve the chosen
codeword. This requires knowledge of the joint distribution between the codeword sent by the sensor
and the side information. But in case of distributed hypothesis testing this joint law is not known as it
can be either Pyy or Pxy depending on whether H = 0 or H = 1. In [32], a minimum entropy decoder
strategy is used to overcome this uncertainty. The sensor searches for a unique codeword that minimizes

the empirical joint entropy with the side-information. This scheme improves the exponent of [14].

Theorem 3.7 (Shimokawa Han and Amari 87°) For every R > 0:

E(R)>E R) £ ma min{E;(Px), E>(R, P, 3.29
(R) > Espa(R) U:I(U;Xﬁ)sR { 1(Puix ), Eof U|X)} (3.29)
|U)<|1X)+2
U-eX-eY
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3.2. HYPOTHESIS TESTING WITH COMMUNICATION CONSTRAINTS

where:

Ei(Pyx)%=  min  D(PyxyllPyxy), (3.30)
Pyxy:Pyx=Pyx
Pyy=Pyy
oo ifI(U;X) = R
E>(R, Pyix)= min D(PyxyllPyxy) +[R-I(U;X|Y)],  otherwise.

_ Pyxy:Pyx=Pyx
Py=Py, H(Pyy)<H(Pyy)
Here PUXY = PU|XPXY

Proof: see [32]. [ |

3.2.4 Exponent-rate function when testing against conditional independence.

(Y",2%)

X™ —f Sensor Detector — H € {0,1)

Figure 3.3: Binary hypothesis testing with one-sided data compression and two stream of side information

at the Detector.

In [25], a scheme using binning is shown to be optimal for testing against conditional independence defined
in the following. Consider the same two-terminal problem as in the last section. The Sensor observes the
sequence X" and the Detector the sequences Y" and Z" ( see Figure 3.2.4). Here (X;, Y}, Z;) take values
in the alphabet X’ x ) x Z. The joint p.m.f. of the tuple (X", Y",Z") depends on the hypothesis. Under
hypothesis

H=0: {(X;, Y, 2}, iid Pxyy (3.31)

and under hypothesis
H =1: {(th Yt) Zt)}?:l lld pXYZ = psz|zpy|z. (332)

The sensor behaves as in the previous section (see 3.13 and (3.14). The Detector applies the decision function
Yy MxY"xZ" —{0,1}. (3.33)

to decide on the hypothesis
HE P, (M, Y",Z"). (3.34)

The exponent-rate function is defined similarly to before and denoted Ecj(R). We have the following

theorem:
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Theorem 3.8 (Exponent-rate function when testing against conditional independence) For every

R>0:
Ecqi(R)= max I(U;Y|2). 3.35
cr(R) U:I(U;X|Z)SR( 1Z) (3.35)
U-eX-eZ
<)X |+1
Proof: See [25, Theorem 3]. [ |

Remark 3.5 In [25] this result was obtained using a distinct scheme from the one of Shimokawa, Han and
Amari in [32]. As the joint p.m.f P, and Px; are equal, it is possible for this problem to use a “classic” binning
strategy where the Detector uses its side information Z" to retrieve the codeword chosen by the Sensor in the
bin which is indexed by the message it receives. Then it tests if the codeword decoded is typical with its side
information given the p.m.f. of H = 0. This scheme is shown to achieve the optimal exponent-rate function.
Nonetheless in the same contribution the sheme used in [32] is also shown to be optimal for this very same

scenario.

3.2.5 Some examples
Example 3.1 (Testing against independence) Consider a setup where X, Y are binary with pmfs

ny(0,0) = 04: ny(o, 1) = O].

Pxy(1,0)=0.1 Pyxy(1,1)=0.4

and Pxy = PxPy. In that case the optimal exponent-rate function is given in Theorem 3.3 and plotted in

Figure 3.4. On the same figure we plotted the error-exponent obtained for the centralized setup.

0.2
E(R)
0.1+
—— E;(R) (see Theorem 3.3.)
—-— E( (see Remark 3.4.)
0.0 ;
0.0 0.5 1.0

R

Figure 3.4: Optimal exponent-rate function given by Theorem 3.3 for Example 3.1 and the trivial upper

bound for the exponent-rate function of Remark 3.4 for Example 3.1.
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Example 3.2 (Case where binning is beneficial) Consider a setup where X,Y are binary with pmfs

ny(o, O) = 045 ny(o, 1) = 005 pxy(o, 0) = 04 pxy(o, ].) = 01 (3 36)
Pxy(1,0)=0.05 Pxy(1,1)=0.45 Pyy(1,00=0.1 Pyy(1,1)=0.4 '

On Figure 3.5 we represent achievable error-exponent given by Theorem 3.6 and Theorem 3.7. In that case
binning is beneficial and for a given rate R > 0, the error-exponent obtained with Theorem 3.7 is always larger
than the one obtained with Theorem 3.6. On the same figure we plotted in red the exponent obtained for the

centralized setup given in Equation (3.10).

0.04 -
0.021 ., ’
P = = Eg(R) (see Theorem 3.6)
e ’ —— Esya(R) (see Theorem 3.7)
/ ’ —-— Ec (see Remark 3.4)
0.00 : - -
0.0 0.3 0.6 0.9
R

Figure 3.5: Lower bounds for the exponent-rate function given by Theorems 3.6 and 3.7 and the trivial

upper bound for the exponent-rate function of Remark 3.4 for Example 3.2.

Example 3.3 (Testing against conditional independence) Consider a setup as in Figure 3.2.4 where X,

Y, Z are binary with p.m.fs

nyz(0,0,0)21.€—4 nyz(0,0,l):S.e—z nyz(0,1,0)24.99€—2 nyz(0,1,1)23.€—1
nyz(l,0,0):?).e—l nyz(1,0,1)22.5€—1 nyz(].,].,O):z.Se—z PXYZ(1,1,1)22.56—2

and Pxy, = P7 Px|7 Py|z. On Figure 3.6 we represent the achievable error-exponent given by Theorem 3.6 and
Theorem 3.7. As shown in Theorem 3.8 the error-exponent of Theorem 3.7 is optimal. On the same figure we

plotted in red the error-exponent obtained for the centralized setup given in Equation (3.10).

3.2.6 Zero-rate hypothesis testing

Zero rate hypothesis testing was introduced in [14], which studied the general distributed binary hypoth-
esis testing problem and determined the maximal error-exponent when the Sensor can send only one bit,

i.e. the function ¢, defined in 3.13 is restricted to

W, = 2. (3.37)
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0.5
7
0.41 L
7
’
7
7
0.3 R4
E(R) 7
/s
0.2- '
7
Ve
7
0.1 ) ’ - = Ey(R) (see Theorem 3.6)
74 ’ —— E¢i(R) (see Theorem 3.8)
i —-— E¢ (see Remark 3.4)
0.0 , |
0.0 0.5 10 T's
R

Figure 3.6: Lower bounds for the exponent-rate function given by Theorems 3.6 and 3.8 and the trivial

upper bound for the exponent-rate function of Remark 3.4 for Example 3.3.

In [31] this result is extended to any function ¢, satisfying

lim 1 logW,, =0, (3.38)

n—oo 1

which corresponds to the case where only a sublinear number of bits are sent.

Definition 3.5 (Achievability for zero rate compression) For € € (0,1), an error-exponent 0 is said
achievable under zero rate constraint, if for all blocklengths n there exist functions ¢, and ¢,, as in (3.13)

and (3.15) so that (3.38) holds and

lim a,<e (3.39a)
n—oo
1

lim —;log Bn=0. (3.39b)

n—-oo

IfW,, = 2, see (3.37), we say that O is achievable under complete compression.

Definition 3.6 The supremum of all achievable error-exponent for sublinear number of bits is called the
maximum error-exponent for zero rate compression and denoted E*(€). ForW,, = 2 it is called the maximum

error-exponent under complete compression and it is denoted E,(€).

For this scenario we have this result:

Theorem 3.9 (Maximal error-exponent for zero rate compression) Let Pyy(x,v) > 0, for all (x,y) €
X x Y. Then fore € (0,1):
E*(e) = Ey(e) = _min  D(PxyllPxy). (3.40)

Pyy:Py=P,
Py :PY
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Proof: For the achievability see [14, Theorem 5] and for the converse see [31, Theorem 1]. [ |

3.2.7 Model with cooperation

In [47] a three-terminal hypothesis testing problem is considered with a Sensor 1 observing the sequence
X", a Sensor 2 observing Y{", and a Detector observing Y}’ (see Figure 3.7). The joint probability mass

function (p.m.f) of the tuple (X", Y/, Y,') depends on one of two hypotheses. Under hypothesis
H=0: {(th Yl,tl YZ,t)}?:l iid. PXYl Y, (341)

and under hypothesis
H=1: {(Xp, Y10 Yo )by 1id. Pyy,y,. (3.42)

Ml S {11""W1,n}

X" ——i{ Sensor 1

Detector — M e (0,1}

M2 € {11""W2,n}

Y]" —]| Sensor 2

Yy

Figure 3.7: Binary hypothesis testing in a cooperative MAC studied in [47].

Sensor 1 applies an encoding function
Gr: X > My 2{0,1,...,W , — 1} (3.43)
to its observed source sequence X" and sends the resulting index
M = ¢y,(X") (3.44)
to Sensor 2 and the Detector. Sensor 2 applies an encoding function
Gon: VI x My — M,y 2(0,1,...,W, , — 1} (3.45)
to its observed source sequence Y|" and sends the resulting index
My = ¢y (Y], My) (3.46)
to the Detector. The Detector then applies a decision function to the triple (M, M,, Y"):
Py My x My x Vi —{0,1}. (3.47)

31



3.2. HYPOTHESIS TESTING WITH COMMUNICATION CONSTRAINTS

to decide on the hypothesis
7:[ - ltbn(MllMZI an) (348)
We define the following error probabilities:
a, = Pr{?% =1|H = 0}, (3.49)
B i= Pr{?% = 0|H = 1}. (3.50)
Definition 3.7 (Achievability under rate-constraints for model in Figure 3.7) Given rates Ry > 0,
R, > 0 and small positive number € € (0,1) an error-exponent 0 is said achievable for this model if for

all blocklengths n there exist functions ¢, ,,, ¢, and 1, as in Equation (3.43), Equation (3.45), and Equa-
tion (3.47) so that the following limits hold:

lim a, <€, (3.51)
n—-00
. 1
0 < lim ——log B, (3.52)
n—00 n
— 1
lim —logW; ,, <Ry, (3.53)
n—oco n
— 1
lim —logW, , <R,. (3.54)
n—oo n

Definition 3.8 (Exponent-rate function) For any rate Ry >0, R, > 0, let Ez; (R1,R;) be the supremum

all achievable error-exponents.

For given rates Ry > 0 and R, > 0, define the following set of auxiliary random variables:

Ul —O—X—e—(YI,Yz)
U, oY - (X,Y;)
I(U;;X) <Ry
Sz =14 (U, Ua); (3.55)
I(Uy; Y1|U;p) £ R,
4| <|X[+1

L] < IV lltdy |+ 1

and for any pair of auxiliary random variable (U;, U,) € Sz, let

Py x =Py x
L=1Pyuxvv,* Pyuy, =Puuyy, (- (3.56)
Py, vy, = Puu,y,

A lower bound to the exponent-rate function is derived for this setup. It is optimal when in addition:

ISXY1 Y, = PXYI PYz' (357)
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Theorem 3.10 (Zhao and Lai) Then for Ry > 0 and R, > 0, the exponent-rate function for this problem,

Ez1(Ry,Ry), satisfies

Ez(Ri,R;)> max  min  D(Py,uy,xv,v,I1Pu,ixPuyu, v, Qxy, v,)- (3.58)
(Un,U2)€871 Py, xv, v, €

If in addition (3.57) holds, then
Ez1L(R1,Ry) = max [(UyUp; Ys). (3.59)
(U, Uz)€Sz

Proof: see [47]. ]

3.2.8 Model with multiple detectors

(Y{,Z1)
Detector 1~ H; €{0,1}
MIE{L...,WL”} T R
X" —i{ Sensor L M, e{l,...,2"2}

Detector 2 — H, € {0,1}

|

Yy

Figure 3.8: Binary hypothesis testing in a Heegard-Berger network studied in [28].

In [28] a three-terminal problem with a Sensor observing the sequence X", a Detector 1 observing (Y, Z{),
and a Detector 2 observing (Y,,Z}) as in Figure 3.8 is considered. The joint probability mass function

(p.m.f.) of the tuple (X", Y{", Z{, Y)', Z') depends on one of two hypotheses. Under hypothesis
H=0: (X, Y1, 21,0 Yo 1, Zo )}y idd. Pxy, 7.y, (3.60)
and under hypothesis
H=1: {(Xe, Y1,0, 21,1, Yo i )}i—y idd. Pxz, 7, Py, |z, Py, (3.61)

The Sensor applies an encoding function as in (3.43) to its observed source sequence X" and sends the
resulting index

M = ¢1,,(X") (3.62)
to Detector 1 and Detector 2. Detector 1 applies a decision function to the triple (M;, Y/, Z"):
lpl,n: Ml Xyln XZ{l - {0,1} (3.63)
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3.2. HYPOTHESIS TESTING WITH COMMUNICATION CONSTRAINTS

to decide on the hypothesis
Hy = 1,0(My, Y], Z7). (3.64)
and The Detector 2 applies a decision function to the pair (M;, Y,'):
Yo, My xY)x —{0,1}. (3.65)
to decide on the hypothesis
Ha = ou(My, Y3). (3.66)
We define the following error probabilities:
ayy, = Pr{ﬂl = 1|H = 0}, ap, = Pr{ﬂz = 1|H = 0}, (3.67)
Bini=Pr{Hy =0[H =1}, By, =Pr{H,=0[H =1}, (3.68)
Definition 3.9 (Achievability under rate-constraints ) Given rate Ry > 0, a pair of error-exponents

(01,0,) is said achievable for this model if for all blocklengths n there exist functions ¢4 ,,, Py, and p; ,
as in (3.43), (3.63), and (3.65) so that the following limits hold:

lim a7, =0, lima,,=0, (3.69)
n—00 n—00
. 1 . 1
0; < lim ——logf;,, 0,< lim ——logp,,, (3.70)
n—oo M n—oo N
and
— 1
lim ElogWLn <R;. (3.71)
n—00

Definition 3.10 (Error-Exponents Region under Rate-Constraint ) For rate Ry > 0 the closure of the

set of all achievable exponent pairs (01, 0,) is called the error-exponents region Egwr(R7).

Definition 3.11 We say that Z; is less noisy than Y5, if for all auxiliary random variables U satisfying the

Markov Chain U —e— X —e— (Y1, Z4, Y;) the following inequality holds:

I(U;Zy) > 1(U; Yy). (3.72)
Let
Ewr U (61,6>): 611U, U l2n), (3.73)

Ry 21(Ug;X)+1(U3X|Z,), 0, <I1(Up, Up; Y2|Z5),01 20, 6,20
(U, Uy)-e-X-e-(Y1,Z,,Y,)

Theorem 3.11 (Salehkalaibar, Wigger and Timo) Assume (3.61), then for Ry > 0, then

Edwr € Eswr(Ry). (3.74)
If in addition Z is less noisy than Y,, then

Edwr = Eswr(Ry). (3.75)
Proof: see [28]. [ |
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3.3 Other extensions to networks and other lines of works

As mentioned before the first records on the subject are [1] and [14]. A variant of the problem presented
in [15] where Type I errors are constrained to decrease exponentially fast with the number of observations
has been studied in [15, 36]. In these studies, the Type II error exponents are characterized in a scenario
where two sensors communicate with one detector, one at zero rate and the other with an arbitrary com-
munication rate. In the same articles achievability results are obtained also for positive communication
rates. A general review on statistical inference is also provided in [36]. In particular, it presents an ap-
proach to the problem based on the geometry of information. This approach is introduced more specifically
in [2] and used in [40] to study the finite length scenario.

The distributed hypothesis testing problem has connections to the lossy source coding. In particular, the
tools used to characterize the reliability function in source coding can be used also to characterize achiev-
able type II exponent in distributed hypothesis testing (see e.g. [20]). In source coding many types of
networks have been studied: several sensors [3, 38], several decoders [16], interactive coding [18]. Simi-
larly, recent works explored these networks for hypothesis testing: with multiple sensors [14, 25, 45, 44, 39]
with multiple detectors [28], with interactive terminals [37, 43, 19] and with multi-hop networks [46, 48,
41, 29, 9, 44]. In any case, it appears that many strategies used in source coding make it possible to transmit
compress data efficiently and that, when properly completed, these strategies make it possible to obtain
a certain number of general achievability results. The optimal coding scheme for the distributed source
coding problem is also optimal for the distributed testing against independence problem (see [25, 44]).
Other problems such as distributed hypothesis over noisy channels [27, 33] and scenarios with privacy
constraints [23, 22, 34, 13] have been considered.

Our work mainly focus on a single sensor multiple detectors network where detectors may cooperate [9,

10, 11]:

« P. Escamilla, M. Wigger, and A. Zaidi. “Distributed hypothesis testing with concurrent detections”.
2018 IEEE International Symposium on Information Theory (ISIT’18). June 2018, pp. 166—170. DOTI:
10.1109/ISIT.2018.8437906

« P.Escamilla, A. Zaidi, and M. Wigger. “Distributed hypothesis testing with collaborative detection”.
2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Oct.
2018, pp. 512-518. por: 10.1109/ALLERTON.2018.8635828

« P. Escamilla, M. Wigger, and A. Zaidi. “Distributed hypothesis testing: cooperation and concurrent

detection”. revision for publication in the IEEE Transactions of Information Theory (2019)

As we will see in more detail, the setups in [41, 28] and [47] are special cases of our model, and our new

results recover these previous results as special cases.
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CHAPTER 4

Zero-rate distributed hypothesis testing

Based on our work published in [9, 10, 11], we focus on the case of zero-rate communication in the mul-
titerminal binary hypothesis testing scenario shown in Figure 4.1. In this chapter communications are

restricted to a sublinear number of bits:

— 1 — 1
lim —log,W; , <W;, and lim —log,W,, <W,.

n—oo 11 n—oo 11

We investigate the setups where both detectors aim at maximizing the error exponent under the same
hypothesis (we refer to this setup as coherent detection) or the setup where the two detectors aim at maxi-

mizing their exponent under different hypotheses (we refer to this setup as concurrent detection).

Y/

Detector 1~ H; €{0,1}
Ml E{l,...,Wl’n} T

X" — Sensor L HMQ e{l,...,Wy,}

Detector 2 — H, € {0,1}

|

Yy

Figure 4.1: A Heegard-Berger type source coding model with unidirectional conferencing for multiterminal

hypothesis testing.

For simplicity, we assume that Pxy, (x,;) > 0 and PXYI Y, (X, 91,92) > 0 forall (x,31,,) € X1 x), x),. The
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4.1. FORMAL PROBLEM STATEMENT

main result in this chapter is the exact characterization of the error-exponents region for both setups of
coherent and concurrent detection. We first introduce the problem formally in section 4.1, then we consider
the case of coherent and concurrent detection when Py = Py in section 4.2. Under this assumption we show
that the two detectors behave as if they where alone in the network to perform the test. The case of coherent
and concurrent detection when Py # Py is discussed in section 4.3. In contrast of the previous case, a trade-
off between the two optimal exponents appears. We then illustrate the two last sections with numerical
examples in section 4.4. Finally we discuss the benefit of cooperation with zero rate communication in

section 4.5.

4.1 Formal Problem Statement

Consider a three-terminal problem with a Sensor observing the sequence X", a Detector 1 observing Y/",

and a Detector 2 observing Y,'. Under hypothesis
H =0: {(Xt, Yl,tl YZ,t)}?:l iid. PXYI Y, (41)

and under hypothesis
H = 1 . {(Xt, Yl,t" YZ,t)}?:l lld pXYI YZ (42)

The Sensor applies an encoding function ¢; : X — M, as in (3.43) to its observed source sequence X"
and sends the resulting index

My = ¢y,,(X") (4.3)

to both decoders. Detector 1 then applies two functions to the pair (M;, Y{"), an encoding function:

(i)z}niMlXyFﬁMZé{O,].,...,WQ’n—].}, (44)
and a decision function
Y1 My Xyln — {0, 1}. (4.5)
It sends the index
M, = ¢y, (My, Y7') (4.6)

to Detector 2, and decides on the hypothesis
Hi 2 ¢y, (My, YY) (4.7)
Detector 2 applies a decision function

Yo My x My x V) — (0,1} (4.8)
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4.2. COHERENT DETECTION AND CONCURRENT DETECTION WITH Py = Py

to the triple (M;, M, Y,') to produce the decision
Hy 2 Py, (My, My, Y}). (4.9)

Both detectors are required to have vanishing probabilities of error under both hypotheses. Moreover, for
Detector 2, we require that the probability of error under H = 1 decays exponentially fast with the largest
possible exponent. For Detector 1, we consider two scenarios: coherent detection and concurrent detection.
Under coherent detection, Detector 1 wishes to maximize the exponential decay of the probability of error
under H = 1. Under concurrent detection, Detector 1 wishes to maximize the exponential decay of the
probability of error under H = 0. In a unifying manner, we define, for h; € {0,1} and i, = (h; + 1) mod 2,

the following error probabilities:

aj, = Pr{ﬂl =hy[H = hl}, (4.10)
Bini= Pr{ﬂl =hy|[H = le}, (4.11)
a, =Pr{H, = 1|H = 0}, (4.12)

2= Pr{H, = 0[H =1 (4.13)

Definition 4.1 (Achievability with fixed length communication alphabets.) Given h; € {0,1},
(€1,€2) € (0,1)? and communication alphabet sizes W1, W, > 0, an error-exponents pair (0,,0,) is said
achievable if for all blocklengths n there exist functions ¢1 ,, ¢2,, Y1, and 1, ,, asin (3.43), (3.45), (4.5), and
(4.8) so that the following limits hold:

lim ay, <€y, lim a, , < e, (4.14)
n—o00 n—oo
. 1 ) 1
01 < lim ——logfy1,,, 0,< lim ——logp,,, (4.15)
n—0o0 n—00 n
and
lim Wy, <W;, lim W, ,<W,. (4.16)
n—00 n—o00

Definition 4.2 (Error-exponents region for fixed communication alphabets) For fixed h; € {0,1}
and communication alphabet sizes W1, W, > 0, the closure of the set of all achievable exponent pairs (01, 6,)

is called the error-exponents region Ey(Wy, Wy, €1, €5).

4.2 Coherent detection and concurrent detection with Py = Py

Proposition 4.1 (Coherent Detection) For coherent detection, hy = 1, (€1, €,) € (0,1)?, and for all values

W, > 2 and W, > 2, the error-exponents region Ey(W1, W, €1, €,) is the set of all non-negative rate pairs
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4.3. CONCURRENT DETECTION WITH Py # Py

(61,65) satisfying

0, < min D(pXYlupXYl) (4.17)
Pyyy = Px=Px
PY1:PY1
0,< _ min D(pxylyzﬂpxylyz)- (4.18)
Pxvyvy o Px=Px

PY1:PY17PY2:PY2

Proof: For completeness the proof is given in Appendix B. The achievability and converse parts are similar

to [14] and [31]. ]

Proposition 4.2 (Concurrent Detection with Py = Py) Under concurrent detection, i.e. when hy = 0,
(€1,€2) € (0,1)% and when Px = Px, then for all values W; > 2 and W, > 2, the error-exponents region

Eo(W1, Wy, €1, €;) is the set of all non-negative rate pairs (01, 0,) satisfying

01 < _ min D(nylllnyl) (4.19)
PXY}: P)_(:PX
Py, =Py,
0, < _ min D(pXYlYZHPXYlYZ)' (4.20)
~PXY1Y2: Px=Px

Py, :PYI,PYZ:PYZ

Proof: For completeness the proof is given in Appendix C. The achievability and converse parts are similar

to [14] and [31]. [ |

4.3 Concurrent detection with Py # Py

We now consider concurrent detection, #; = 0, and Py # Px. Here the optimal exponents region depends
on whether the alphabet size W; equals 2 or is larger. This is due to the fact that a type signaling strategy
similar to the coding used previously (see Appendices A and B) for this particular case requires at least a
ternary message for communicatio between Encoder and detectors, and so, in the case of communication

with total compression, another strategy must be considered.

4.3.1 Concurrent detection with Py # Py and W, > 3

We first assume

Wl >3 and W2 >2, (421)

and present a coding scheme for this scenario.

Pick a small positive number y > 0 such that the typical sets 7,/'(Px) and 7;4”(15)() do not intersect:

7, (Px)NT,'(Px) = 0. (4.22)
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4.3. CONCURRENT DETECTION WITH Py = Py

Sensor: Given that it observes X" = x", it sends

0 ifx"eT(P)
My =41 ifx" e (Px) (4.23)

2 otherwise.

Detector 1: Given that it observes Y{" = p{' and M; = m,, it decides

1 ifmy =1 and p}eT(Py,)

Hy = (4.24)
0 otherwise.
It sends
0 ifm;=0 and vy!e7Z(P
M, = 1 41 ;4( Yl) (4.25)
1 otherwise
to Detector 2.
Detector 2: Given that it observes Y, = v7 and messages M; = m; and M, = m,, it decides
. 0 ifm;y=my=0 and vy)eT (P
7—(2 _ 1 2 1) )z ( Yz) (426)

1 otherwise.

Proposition 4.3 (Concurrent Detection when Py # Py and W, > 3) Under concurrent detection (when
hy = 1), and for all (€1,€;) € (0,1)? and all values W, > 3 and W, > 2, the error-exponents region

Eo(W1, Wy, €1, €5) is the set of all non-negative rate pairs (01, 0,) satisfying

91 < B ml}'l ~ D(pXYllleYl) (427)
PXY}: P}_(:PX
Py, =Py,
0, < _ min D(pxylyzﬂpxylyz)' (4.28)
PXYIYZ: Px=Px

Py =Py, Py, =Py,
Proof: The achievability follows by the above coding scheme; and the converse is similar to that of Propo-
sition 4.2. ]
The exponents region y(W1,W,, €1, €;) in these first three Propositions 4.1-4.3 is rectangular, and each
of the detectors can simultaneously achieve the optimal exponent as if it were the only detector in the
system. As we see in the following, this is not always the case.

4.3.2 Concurrent detection with Py # Py and W; =2

In the rest of this section, we assume
W;=2 and W,>2, (4.29)

and present the optimal error-exponents region for this case. It is achieved by the following coding scheme.
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4.3. CONCURRENT DETECTION WITH Py # Py

Pick a real number r, a small positive number y > 0 satisfying (4.22), and the function b: {0,1} — {0, 1}
either as

b(0)=b(1)=0 (4.30)
or as

b(0)=0 and b(1)=1. (4.31)

We then assign each type 7t € P, (X") that satisfies
|7t — Px| > p and |t — P > p (4.32)

to one of two sets Iy or I. If b(0) = b(1) = 0, then we assign all these types to the set I';. Otherwise, we

assign them between the two sets according to the following rule:

T E Fb(l) — ~ mip D(PXYI “PXY1 ) +r= 1’1’111:1 D(PXYI Y2||PXY1 Y, ), (4.33)
Py, :Px=m Pxy, v, Px=m
Py =Py, Py, =Py, ,Py, =Py,

and 7t € [}, otherwise. Given that it observes X" = x", the Sensor sends

b(0) ifx" € T,"(Px)
(

b(1) ifx" €T (P
M, = ) il X). (4.34)
0 if P € Ty
1 if Pxn € Fl.
Detector 1: Given that it observes Y|' = ;' and received message M; = my, Detector 1 decides
. 1 ifm;=b(1) and €T/ (P
¥y = 1 (1) Y1 y( Yl) (4.35)
0 otherwise.
It sends
0 ifm;=0b(0) and vy €7 (P
= 1=b(0) and yf €T,(Ry) w56
1 otherwise
to Detector 2.
Detector 2: Given that it observes V! =y and received messages M; = m; and M, = m;, it decides
. 0 ifm;=0b0) and mp,=0 and vy, eT(P
H, - 1="b(0) 2 vy €7,'(Py,) (437)

1 otherwise.

The described scheme achieves the following optimal error-exponents region.

Theorem 4.4 (Concurrent Detection when Py # Py and W, = 2) Under concurrent detection and for all
(€1,€2) € (0,1)?, for all values W = 2 and W, > 2, the error-exponents region £y(Wy, W, €}, €5) is the set

of all nonnegative rate pairs (61, 0,) that satisfy

61 < B n’1~11’1 D(pXY1||pXY1 ), (438)
PXYL: PX_erb(l)
Py, =By,
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4.4. NUMERICAL EXAMPLE

92 < ~ miwn ID(PXY1 Y2||PXY1 Y, ) (439)
Pxvivy  Px€lio),
PY] :lefPYZZPYZ

for some real r and one of the mappings in (4.30) and (4.31), and the corresponding sets Iy and I7.

Proof: See Appendix D. [

Remark 4.1 (Sending a sublinear number of bits) A close inspection of the converse proofs for Proposi-
tions 4.1-4.3 and Theorem 4.4 shows that they remain valid when the alphabet sizes are not fixed but grow

sublinearly in the blocklength n, i.e., when

— 1 — 1
lim —log,W;, =0, and lim —log, W, , =0.

n—oo 11 n—oo 11
Propositions 4.1-4.3 and Theorem 4.4 remain thus valid when communication is limited to a sublinear number
of bits. More precisely this is due to the fact that the key argument of the proof to the converse part is generalized
to any alphabet whose size grows sub-exponentially fast with the number of observations. Indeed the key

argument of this converse is Theorem 2.7 still valid in this case.

Remark 4.2 (Extension to many hypotheses) Most of the results in this section can be extended to a
scenario with more than two hypotheses. For H = 2 the error-exponents region showed a tradeoff in the
exponents under concurrent detection only when Wy = W, = 2. In contrast, for H > 3, a tradeoff arises for
a variety of pairs W1,W,. The minimum required values for W; and W, leading to a rectangular error-
exponents region is always less than the number of hypotheses which have distinct X-marginals and the

number of hypotheses which have distinct Y, -marginals.

4.4 Numerical Example

We now present an example for concurrent detection with Py # Py.
Example 4.1 Consider a setup where X, Y1, Y, are binary with pmfs

nylyz(o, 0,0) =0.1 PXYIYZ(Of 0, 1) =0.15
Pxy,y,(0,1,0)=0.1125 Pxy,y,(0,1,1) = 0.1375

Pyy,v,(1,0,0) = 0.0875
Pyy,v,(1,1,0) = 0.0825

Py v,(0,0,0) = 0.1675

Pxy,y,(0,1,0) = 0.1625

Pyy,v,(1,0,0) = 0.1375
Pyxy,y,(1,1,0)=0.15

Pxy,v,(1,0,1) = 0.1625
Pxy,v,(1,1,1) = 0.1675

Pxy y,(0,0,1) = 0.0825

Pyxy,y,(0,1,1) = 0.0875

Pxy y,(1,0,1)=0.1125
Pyy,y,(1,1,1) = 0.1
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4.5. BENEFITS OF COOPERATION

0.15
0 &)(2,2,€1,€7). &£0(2,2,€1,€7).
0.157 £0(2,0,€1,65). [ £(2,0,€1,€5).
92 0.10
0.05
0'00.0 0.05 0.10 0.15

6, ' Y

Figure 4.2: Exponents region of Example 4.1, see [12] for implementation details. On the left: expo-
nent regions £y(2,2,€1,€;) and £y(2,0,€1,€,) for coherent detection. On the right: exponent regions

E0(2,2,€1,€7), and £y(2,0, €1, €;) for concurrent detection.

Figure 4.2 illustrates the exponent region for coherent and concurrent detection of Proposition 4.3 and of The-
orem 4.4. Specifically, the figure on the left shows the exponent region with (when Wy = 2 and W, = 2) or
without (when W, = 2 and W, = 0) cooperation under coherent detection. In that cases the region is a square
and each Detector behaves as if it was the only one in the network to take a decision under zero-rate com-
pression. This occurs because the type signaling schemes which are optimal in the zero-rate regime when only
one of the detectors has to take a decision, are sufficiently compact to be implemented at the same time when
each message is constrained to be one bit long. The figure on the right shows these exponent regions under
concurrent detection, it is non-convex. (Notice that time-sharing arguments cannot be applied to convexify the

region. ).

4.5 Benefits of Cooperation

To discuss the benefits of cooperation, we quickly state the optimal exponents region without cooperation,
ie., for

W, = 0. (4.40)

They were determined in our work [9]. Under coherent detection or under concurrent detection with
Py = Py or W; > 3, the erro-exponents region £,(W1, W, = 0) are similar to Propositions 4.1-4.3 but with
amodified constraint on 8,. More precisely, Propositions 4.1-4.3 remain valid for W, = 0 if the constraints
on 0,, (4.18), (4.20), (4.28) are replaced by
0, < min D(PXYZHPXYZ )
Pyy, :

PX :Px,
Py2 :Py2
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So, in these scenarios, the exponents region is a rectangle both in the case with and without cooperation,

and with cooperation the 0,-side of the rectangle is increased by the quantity

_ min D(PXYlYZHPXYlYZ)_ _min D(PXYZHPXYZ ) (4.41)
Pxy v+ Px=Px Py v,:
Py, =Py,, Py,=Py, {)XZPX}
PYZZPYZ

Under concurrent detection when Py # Py and W, = 2, the exponents region is not a rectangle, but there

is a tradeoff between the two exponents. In this case, it seems difficult to quantify the cooperation benefit

in general.
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CHAPTER D

Positive-rate distributed hypothesis testing

In this chapter, based on our work published in [9, 10, 11], we focus on the case of positive rate communi-
cation in the multiterminal binary hypothesis testing scenario shown in Figure 5.1 where communication
is restricted to a maximum communication rate. Here R; > 0, and the cooperation rate R, > 0. Again we
investigate the setup where both detectors aim at maximizing the error exponent under same hypothesis
(coherent detection) or the setup where the two detectors aim at maximizing their exponent under differ-

ent hypotheses (concurrent detection). Using the same notations as the ones used in previous chapter, we

Y/

|

Detector 1~ H; € {0,1}
M, e(1,...,2"R) T

X" — Sensor L M, e{l,...,2"R)

Detector 2 (— H, € {0,1}

Yy

Figure 5.1: A Heegard-Berger type source coding model with unidirectional conferencing for multiterminal

hypothesis testing.

introduce a distinct definition of achievable error-exponent pairs adapted to positive rate communication:

Definition 5.1 (Achievability under Rate-Constraints) Given rates R;, R, > 0, an error-exponents pair
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5.1. SPECIAL CASES

(01,0,) is said achievable if for all blocklengths n there exist functions ¢ ,,, P2, P1,, and P, ,, as in (3.43),
(3.45), (4.5), and (4.8) so that the following limits hold:

lim a1, = 0, lim ary = 0, (51)
n—00 n—00
. 1 ) 1
01 < lim ——logfy,, 6,< lim ——logp;,, (5.2)
n—00 n n—00 n
and
Tim logW, <Ry, Tim ~logW,, <R (5.3)
Yim,108Wan <Ry, lim Clog W< Ry ~

We will use this new definition all along the chapter. We now define the error-exponent region under

rate-constrains.

Definition 5.2 (Error-Exponents Region under Rate-Constraints) For rates Ry, R, > 0 the closure of

the set of all achievable exponent pairs (01, 0,) is called the error-exponents region £(Ry,R;).

We will give some insights for special setup of coherent detection in section 5.1. In section 5.2, we describe
a general testing scheme adapted from the one of Ahlswede, Csiszar and Han [14, 1] to the two setups of
coherent and concurrent detection. We illustrate the special case of testing against independence with a

numerical example in section 5.3.

5.1 Special cases

In this section, we study the setting in which the two detectors aim at maximizing the error exponents
under the same hypothesis, i.e., 1; = 0. For convenience, we assume that P(x,y;,v,) > 0 for all (x,y;,v,) €

Xxylxyz.

5.1.1 High rate regime

We first consider the extreme case where both links are of high rates so that under hypothesis H = hy,
Detector 1 can obtain the sequence X" with high probability and under H = 0, Detector 2 can obtain
both sequences X" and Y|" with high probability. We will see that in this case both Detector 1 attains
the exponent of a centralized setup where it observes (X", Y]") and Detector 2 attains the exponent of a
centralized setup where it observes (X", Y/, YJ').

We first consider coherent detection where /1; = 1. Pick a small €. The Sensor describes the sequence
X" to both detectors if X" € %”(PX), and otherwise it sends 0. Detector 1 describes the sequence Y{" to

Detector 2 if (X", Y]") € 7' (Pxy,), and otherwise it sends 0. The described coding scheme requires rates
Ry >H(X)+e (5.4)
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5.1. SPECIAL CASES

Ry > H(Y,|X)+e. (5.5)

Detector 1 decides on ﬂl = 1, if the Sensor sent 0 or itself it sent 0. Otherwise it decides on 7:[1 =1.
Detector 2 decides on H, = 1, if the Sensor or Detector 1 sent 0. Otherwise it decides on H; = 1 if and
only if its own observation Y,' and the received sequences X" and Y{" are jointly typical, (X",Y/",Y)') €
7' (Pxy,y,)-

The described scheme achieves the set of all non-negative pairs (61, 0,) satisfying

01 < D(Pxy,l|Pxy,) (5.6a)

0, < D(Pxy, v,lIPxv,v,)- (5.6b)

This set coincides with the optimal error-exponents region £(R;, R;), because it also coincides with the
error-exponent region of a centralized setup where Detector 1 observes both X" and Y;" and Detector 2
observes all X", Y{", and Y7".

Consider now concurrent detection where ]:ll = 0. In this case, the Sensor describes the sequence X"
to both detectors if X" € TMH(PX) or if X" € TM”(PX). Otherwise it sends 0. Detector 1 describes the
sequence Y| to Detector 2 if (X", Y[") € 7'(Pxy, ), and otherwise it sends 0. Detector 2 decides as above
and Detector 1 decides on H; = 0 if and only if its own observation Y]" and the described sequence X"

are jointly typical, ie., (X"Y") € %’l(pXYl ). The coding scheme requires rates

R, > max{H(X), H(X)} + ¢ (5.7)

R, > H(Y1|X) +e. (5.8)
and achieves the set of all nonnegative pairs (01, 0,) satisfying

01 < D(Pxy,||Pxy,) (5.9a)

0, < D(Pxy, v,lIPxv, v,)- (5.9b)

Again, this set coincides with the optimal error-exponents region £(Ry, R,) because it also coincides with
the optimal exponents region when Detector 1 observes the pair X", Y" and Detector 2 observes X", Y/",
and Y,'.

Both results remain valid without cooperation if the term D(Pxy, v, ||Pxy, v,) limiting the second exponent

0, is replaced by D(PXY2||15XY2)~ The benefit of cooperation is thus equal to

D(Pxy, v, IPxv,v,) = D(Pxy,|IPxy,) = Ep, [D(Py,x,lIPy,xv,)]

in both cases.
In some special cases, the described setup degenerates and the error-exponents region is the same as in a

setup without cooperation or in a setup with a single centralized detector.
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5.1.2 Degraded side information at first detector

We first consider a setup where cooperation is not beneficial.

Proposition 5.1 Assume the Markov chain X —e— Y, —e— Y| under both hypotheses with identical law
Prjy, = Py,
Pxy,v,=Pxy, Py,|v, (5.10a)

pXYlYZZPXYZPY1|Y2' (510b)

In this case, irrespective of the cooperation rate R, > 0 and of the value of hy € (0,1}, the error-exponent

region £(Ry, R;) coincides with the exponent region of the scenario without cooperation (see Figure 5.2).

i
Detector 1~ H; €{0,1}
M e{l,...,2"R) T

X™ —{ Sensor L
Detector 2 - H, € {0,1}

Yy

Figure 5.2: Equivalent system without cooperation when X —e— Y, —e— Y7 under both hypotheses.

Proof: The error-exponents region £(Ry, R;) of the original setup cannot be larger than the error-exponent
regions of an enhanced setup (with cooperation) where Detector 2 not only observes Y, but also Y{". But
in this new setup, the cooperation link is useless because Detector 2 can generate the cooperation message
locally. Moreover, without cooperation, the observation Yln is not beneficial because the conditional laws
Py, |xy, and Pyl Ixv, coincide and only depend on Y5, and so Detector 2 can generate a statistically equivalent
observation to Y/" itself based only on Y,'. By these arguments, the error-exponents region £(R;,R;) of
the original setup is not larger than the one of the setup without cooperation. But £(R;, R;) can also not
be smaller than the error-exponents regions of the same setup but without cooperation, because the latter

setup can be mimicked in the former. This concludes the proof. [

5.1.3 Degraded side information at second detector

We now consider a setup that is equivalent to a setup with a single centralized detector.

Proposition 5.2 Assume the Markov chain X —e— Y| —e—Y, holds under both hypotheses with identical law
Pry, = Pyyjy,- Le.
Pxy,y, =Pxy,Pry, (5.11a)
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Yy

M e{l,...,2"R) N
X" —| Sensor Detector — (H;,H,) €{0,1} x{0,1}

Figure 5.3: Equivalent point to point system when X —e— Y; —e— Y, under both hypotheses.

Pxy,y, =Pxy,Py,y,- (5.11Db)

In this case, irrespective of the cooperation rate Ry, > 0 and of the value of hy € {0,1}, the error-exponent
regions £(Ry, R;) coincides with the error-exponents regions of the scenario in Figure 5.2 without cooperation
and where both detectors observe Y{' but not Y,'. As a consequence, they also coincide with the error-exponents

regions of the scenario in Figure 5.3 with a single detector observing Y{" that takes both decisions H, and H,.

Proof: The error-exponents region £(Ry, R,) of the original setup cannot be larger than the error-exponents
regions of an enhanced setup (with cooperation) where Detector 2 not only observes Y, but also Y. Since
Detector 2 can generate an observation that is statistically equivalent to Y,' given Y, the error-exponents
regions are no larger than in the setup where both detectors observe Y{* but not Y;'. Furthermore, since
allowing the two detectors to fully cooperate in their decision can only increase the error-exponents re-
gions, the region £(Ry, R,) must be included in the exponents regions of the setup in Figure 5.3 where a
single detector takes both decisions.

On the other hand, £(R;, R;) can also not be smaller than the error-exponents regions of the setup in
Figure 5.3. In fact, in the original setup, detector 1 can mimick the single central detector and forward the
decision M, to detector 2, which follows this decision. This strategy requires only a single cooperation
bit and can thus be implemented irrespective to the available cooperation rate R, > 0. This conclude the

proof. |

5.1.4 Testing against independence under coherent detection

We introduce a special case of “testing-against-independence” scenario under coherent detection, hy = 1,

where

Pxy,v, = Pxjv,v, Pr, Py, (5.12)

pXYIYZ :PXPYIPYZ. (5.13)

We assume a cooperation rate R, = 0, which means that Detector 1 can send a message M, to Detector 2
that is described by a sublinear number of bits.
The simple scheme in the next subsection 5.2.1 achieves the following exponents region, which can be

proved to be optimal.
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Theorem 5.3 (Testing Against Independence) Assumehy =1 and (5.12). Then, £(R;,0) is the set of all

nonnegative exponent pairs (61, 0,) for which
0, <I(U;Yy) (5.14a)
0, <I(U;Y1)+1(U;Y,), (5.14b)
for some U satisfying the Markov chain U —e— X —e— (Y7, Y;) and the rate constraint Ry > 1(U; X).

Proof: The achievability follows by specializing and evaluating Theorem 5.5 for this setup. The converse is

proved in Appendix E. [ |
Remark 5.1 As seen in Theorem 5.3, in some special case exponents accumulate.

Lemma 5.4 (Cardinality bound) the right hand sides of (5.14) in Theorem 5.3 remain valid if we impose
the cardinality bound |U| = |X| + 2.

Notice that for R, = 0 the scheme in the following subsection sends only a single bit and that without coop-
eration, the term I (U; Y,) needs to be removed on the right-hand side of (5.14b). This mutual information

term thus represents the benefit of a single cooperation bit from Detector 1 to Detector 2.

5.2 General achievability results

5.2.1 A simple scheme with cooperation

In this subsection, we present coding schemes for both coherent and concurrent detection. Notice that
this difficulty seems inherent to all multi-user hypothesis testing scenarios, see e.g. [29]. We first present
a scheme for coherent detection,

h =1, (5.15)

and then explain how to change the scheme for concurrent detection.

Coherent Detection

Preliminaries: Fix a small y > 0 and a pair of auxiliary random variables (U, V) € U x V satisfying the

following Markov chains

U-eo-X-o(Y,Y,) (5.16)
V——(Y1,U) —— (Y, X) (5.17)

and satisfying the rate constraints
Ry >I(U;X) (5.18)
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R, > I(V;Y,|U). (5.19)

Codebook Generation: we randomly generate the codebook

Cy 2 {u”(ml): my € {1,...,[2”R1J}} (5.20)

by drawing each entry of each codeword u"(m) i.i.d. according to Py.
Furthermore, we superpose a codebook Cy on codebook Cy;. So, for each index n1; € {1,...,[ 21 |}, we

randomly construct the codebook
Cy(my) 2 " (maylmy): my € {1,...,[ 2" ]}) (5.21)

by drawing the j-th entry of each codeword v"(m;|m;) according to Py (-[uj(my)), the conditional pmf
where u;(m;) denotes the j-th component of codeword u" (m,).

Reveal all codebooks to all terminals.

Sensor: Assume it observes the source sequence X" = x".

Then, it first looks for a message m; € {1,...,|2"R1 |} such that
(u"(my),x") € T)jg(Pyx)- (5.22)

If one or multiple such indices m are found, the Sensor selects 7] uniformly at random over these indices
and sends

Ml = (1,71’1;)

Otherwise, it sends

Ml = (0, 0)
Detector 1: If M = (0, 0), Detector 1 decides on the alternative hypothesis
7:(1 =1.

If

M; =(1,m;) forsomem; €({1,...,|2"]),
and given that Y{" = y{, Detector 1 checks whether
(u"(m1),97) € Tj4(Pyy). (5.23)
If the test is successful, it decides on the null hypothesis
H, =0.
Otherwise it decides on the alternative hypothesis. We now describe the communication to Detector 2. If
Hy =1
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5.2. GENERAL ACHIEVABILITY RESULTS

Detector 1 sends

MQZO.

Otherwise, it looks for an index m, € {1,...,[2"%2 ]} such that

(u"(my),v"(ma|my),97) € T (Pyvy,)-

(5.24)

If one or more such indices can be found, Detector 1 selects an index 15, among them uniformly at random

and sends

*
M2 - mz.

Otherwise it sends M, = (0, 0).

Detector 2: If

Ml = (0,0) or M2 = 0,
Detector 2 decides on the alternative hypothesis
7:[2 =1.

If

M, =(1,m) for some m; €{1,...,|2"™%1 ]} and M, = m, for some m;, € {1,

and given Y} = yJ, Detector 2 checks whether
(u"(my),v"(malmy),v7) € T, (Pyvy,).
If this check is successful, Decoder 2 decides on the null hypothesis
H, =0.
Otherwise, it decides on the alternative hypothesis
Hy=1.

Changes for concurrent detection when Py = Px

We now consider the scenario of concurrent detection, so

=1
—

Il

o

2R,

(5.25)

We apply the same scheme as above, except for the decision at Detector 1, which is described next.

Detector 1: If

M; =(0,0)
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Detector 1 now decides

H, =0.

If

M; =(1,my) for some m; € {1,...,L2”R1J},

and given that Y{’ = y{’, Detector 1 checks whether

(u"(m1),97) € T4 (Pyy,)- (5.26)
If the test is successful, it decides
7:(1 =1.
Otherwise it decides
H, = 0.

Communication to Detector 2 is as described in the previous subsection.

Changes for concurrent detection when Py # Py

Ifhy = 0and Py # Py, the scheme should be changed as described in the previous paragraph. The following
additional changes allow to obtain an improved scheme.

In this case, we choose p > 0 so that the intersection
T,js(Px) N Tg(Pr) =0 (.27

is empty and we choose another auxiliary random variable U, satisfying

U ——X—-—(Y,Y,) (5.28)
Ry > I(Uy; X) + &(p). (5.29)

A third codebook
Cua 2 {uf'(my): me(1,..., 12" |}} (5.30)

is drawn by picking the entries i.i.d. according to Py, .
Encoding has to be changed as follows. If the test in (5.24) fails, then the Sensor looks for an index m; €
{1,...,]2"R1]} such that

(uy(m1),x") € Ty (Py, x)- (5.31)

If one or multiple such indices m; are found, the Sensor selects ] uniformly at random over these indices
and sends

My = (2,m})
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Notice that by the condition (5.27), only one of the two tests (5.24) and (5.31) can be successful for any
observed sequence x". It therefore does not matter which one is performed first.

Thus, now the Sensor sends three different types of messages:
Ml :(0,0) or M1 :(1,1’”1) or Ml :(2,m1).

The message M; = (1,m ) indicates that the Sensor is tempted to guess H = 0. After receiving such a
message, Detector 1 therefore produces H, = 0. The same holds if M; = 0. In contrast, if M; = (2, m),

Detector 1 checks whether

(' (m1),97) € Ty4(Py,y,). (5.32)

If successful it declares H; = 1, and otherwise H; = 0.

Communication from, Detector 1 to Detector 2 is as described before.

Similarly, the message M; = (2,m;) now indicates that the Sensor is tempted to guess H = 1. When
receiving this message, Detector 2 therefore decides immediately , = 1. Otherwise it acts as described

in the original scheme.

5.2.2 Achievable regions

We now present the regions achieved by the coding scheme described in the previous subsection. Notice
that the new achievable regions recover the extreme cases in the previous section 5.1.1, when the rates are
set accordingly.

We first consider coherent detections /1, = 1.

For given rates Ry > 0 and R, > 0, define the following set of auxiliary random variables:

U—G—X—e—(yl,YZ)
SRuR) 2w, vy U (X | (533)
I(U;X) < Ry

Further, define for each (U, V) € S(Ry, R;), the sets

o) oo v, Pox=Pux
L1 (U)=(U, X, Y1): (5.34)
Pgy, = Puy,
and
Pgx = Pux
[:Z(UV) < (Ur V,X, Nlr ~2): PU” '1 :PUVYl ’ (5.35)
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and the random variables (U, V') so as to satisfy

Pgix=Pyx and Pypyg=Pyyu (5.36)

and the Markov chains
U—-X—-(Y,Y,) (5.37)
V —— (Y, U)—— (X, Y>). (5.38)

Theorem 5.5 (Coherent Detection) If

hy =1, (5.39)

the exponents region £(Ry,R,) contains all nonnegative pairs (61,0;) that for some (U, V) € S(Ry,R)

satisfy the two following conditions:

61<__min D(UXY||UXY;) (5.40a)
UXY1€£1(U)

0,<  min D(VOXY, V,|VUXY, Y). (5.40b)
UVXYl Yzel:z(UV)

for some (U, V) e S(Ry,Ry)

Proof: The exponent region is achieved by the scheme described in Subsection 5.2.1. The proof is given in
Appendix F. [ |

For our second result, we also define for each auxiliary random variable U the set

L£,(U)2{(U,X,Y): . (5.41)

Theorem 5.6 (Concurrent Detection with Py = Py) If
I:ll =0, and Px = px, (5.42)

then the exponents region £(Ry, R,) contains all nonnegative pairs (01, 0,) that for some (U, V) € S(Ry,R)

satisfy:
0:< min D(UXY|UXY) (5.43a)
UXY,eL,(U)
0,<  min D(VOUXY,,[VUXY,T,). (5.43b)
UVXY, Trel(UV)
Proof: Similar to the proof of Theorem 5.5 and omitted. [

Remark 5.2 When R =0
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For a given rate R; > 0, define the following set of auxiliary random variables:
- U - X—-Y,
Snc (Rl) = Ul . L . (5.44)
I(U;X) <R,
and the random variable U; so that Py, |x = PUI |x and the Markov chain U; —e— X —e—Y; holds.
Theorem 5.7 (Concurrent Detection and Py = Px) If

]:ll =0 and PX * px, (545)

then the exponents region £(Rq, R,) contains all nonnegative pairs (01,0, ) that for some (U, V) € S (Ry,R5)
and U} € S,c(Ry) satisfy:

GIS 1'1'1111 D(UIX ~1||U1XY1) (546)
leYlel:l(Ul)
62§~ ~~~1’I~liI'1 D(VUXYlYQHVUXYle) (547)
UVXY,Y,eL,(UV)
Proof: The proof is given in Appendix G. It is based on the scheme of the previous Subsection 5.2.1. [ |

Remark 5.3 The exponents region in Theorem 5.7 is rectangular because 61 depends only on the auxiliary
U, and 0, only on the pair of auxiliaries (U, V). This implies that both exponents can be maximized at the
same time without any tradeoff between them.

This is different in the first two Theorem 5.5 and 5.6 where both exponents depend on the same auxiliary, and

therefore the regions exhibit a tension when maximizing the two exponents.

5.3 Examples for coherent detection

We illustrate the benefit of cooperation with the following example.

Example 5.1 Consider a setup with coherent detection, h; = 1, where X,Y,,Y, are ternary and under H = 0:

Pxy,v,(0,0,0)=0.05 Pxy,y,(0,0,1)=0.05 Pxy,v,(0,1,0)=0.15 Pxy,y,(0,1,1) = 0.083325

Pxy,v,(1,0,0)=0.05 Pxy,y,(1,0,1)=0.15 Pxy,y,(1,1,0)=0.05 Pxy,y,(1,1,1) = 0.08335

Pxy,v,(2,0,0)=0.15 Pxy,y,(2,0,1)=0.05 Pxy,v,(2,1,0)=0.05 Pxy,y,(2,1,1)=0.083325
(5.48)
whereas under H = 1 they are independent with same marginals as under H = 0. Figure 5.4 illustrates an
achievable error-exponent region obtained with Proposition 5.5 when the communication rate are Ry = 0.1 bits
and R, = 1.0 bits. It also shows the error-exponent region £(0.1,0) presented in Theorem 5.3 and the error-
exponent region without cooperation when Ry = 0.1 bits derived in [41, Theorem 1]. It is difficult to directly
infer the geometry of error-exponents regions from there single letter expressions. They must therefore be

calculated numerically.
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[ [15, Theorem 1] with Ry = 0.1.

0.0187 | Theorem 5.3 with (R{,R;) =(0.1,0.).
Proposition 5.5 with (R, R,) = (0.1,1.).
6 0.0121
2
T
0.0 0.0 0.002 0.004 0.006

0,

Figure 5.4: Error-exponent region of Example 5.1.

59






CHAPTER 6

On vector Gaussian hypothesis testing

Similar to its discrete memoryless counterpart, the Gaussian single-sensor single-detector hypothesis test-
ing problem is yet to be solved for arbitrary covariance matrices. For instance, the solution of this problem
is known only in few special cases such as the scalar Gaussian hypothesis testing against independence
and the scalar Gaussian hypothesis testing against conditional independence. In this chapter, we study the
problem of discriminating two multivariate Gaussian distributions. We find sufficient conditions under
which the optimal exponent-rate function can be characterized explicitly. Perhaps interesting in its own
right, in the proof of the result we also establish the optimal rate-exponent region of a slight generalization
of the discrete memoryless hypothesis testing against conditional independence problem (a variation of it

that accounts for distinct marginals under null and alternate hypotheses).

6.1 Formal problem statement

Mell,..., [2"R]) .
X" —| Sensor Detector — H € {0, 1}

-

Figure 6.1: Vector Gaussian hypothesis testing problem

Consider the problem shown in Figure 6.1 in which a sensor observes n independent copies of a real-valued
Gaussian vector X of dimension m > 1, and communicates with a detector over a noise-free bit-pipe of rate

R > 0. The detector observes # independent copies of a possibly correlated real-valued Gaussian vector
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Y of dimension g > 1. The joint distribution of the pair of vectors (X,Y) is multivariate Gaussian with

zero-vector mean and covariance matrix that depends on the binary hypothesis H € {0, 1}. For instance,

H=0: (X,Y)~ Pxy=N(0,K), (6.1)
H=1: (X,Y)~Pxy=N(0,K), (6.2)
with
Kx K
K= +X XY (6.3)
Kiy Ky
and
K= _:‘ X (6.4)
Kly Ky

The Sensor, which observes the sequence X" = (X,...,X,,), applies an encoding function
¢n: R > M={1,...,W,} (6.5)
to it. It then sends the index
M = ¢, (X") (6.6)

to the detector. In addition to M, the detector also observes the sequence Y" = (Yy,...,Y,,). It applies a
decision function

Py MxRT" — (0, 1). (6.7)

to decides on the hypothesis
H=1,(M,Y"). (6.8)

The Type-I and type-II error probabilities at the detector are defined as:

a, =Pr{H =1|H =0) (6.9)
B =Pr{H = 0[H =1}, (6.10)

Definition 6.1 Given rate R > 0, an error-exponent 0 is said achievable if for all blocklengths n there exist

functions ¢, and 1, as in (6.5) and (6.7) so that the following limits hold:

lim a,, =0, (6.11a)
n—-00
. 1

0 < lim ——log B, (6.11b)

n—ooco N
and
— 1
r}grg;logz W, <R (6.11¢)
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Definition 6.2 (exponent-rate function) For any rate R > 0, the exponent-rate function is the supre-

mum of the set of all achievable error-exponents and is denoted E(R).

In essence, the problem of vector Gaussian hypothesis testing that we study here amounts to discriminat-
ing two covariance matrices. As we already mentioned the solution of this problem is known only in few
special cases, namely the cases of testing against independence and testing against conditional indepen-
dence, both in the scalar sources setting, i.e., m = g = 1 [25, Theorem 3]. For vector sources, the Gaussian

hypothesis testing against conditional independence was solved recently in [39, 44].

6.2 Optimal exponent for a class of vector Gaussian hypothesis testing

problems

Let = denote any real-valued block matrix of the form

Kx G
= o R (6.12)
G' KxyKy'KyKy'Kiy

[x

where the off-diagonal block G is arbitrary. Also let C denote the condition under which the matrices K

and K satisfy:

t +
I 0 I 0 - I 0 T 0
C: ~_IK o = argminlog - IK o —log{|E|,}
0 KxyKy'| |0 KyyKy! E 0 KxyKy'| [0 KxyKy'
+1L .
I 0 |1 0
+Tr K =4 (6.13)

0 KxyKy'| [0 KxyKy'
The following theorem provides an explicit analytic expression of the exponent-rate function of the vector

gaussian hypothesis testing problem of Figure 6.1 in the case in which the condition C as given by (6.13)
is fulfilled.

Theorem 6.1 IfC is satisfied the exponent-rate function E(R) of the model of Figure 6.1 is given by

E(R) =3

1 Kyl 1

Zlo + i (ReKy

3108 iy 5 T (K K )
IKxjyl

& Ky - KxyKy! Ky (RxyKy KyKy' Ky )+ Ry K3 KLy |

1 _
+2Tr( XIY(KX KxyKy' Kky (KxyKy'KyKy KXY) KxyKy K;“(Y))

9
+-+
2

1
+—log
2

1 1 o
+maxmin {R +5 > log }1 + QKXY(K;{l - Ky' KyK5yKxyKy' ]K;‘(Y

|

where the maximization in the last term is over all matrices 0 < € < K+|Y and K}y designates the Moore-

Penrose pseudo inverse of Kxy.
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Proof: see section 6.3 [ |

Remark 6.1 The solution of the sepcial case of scalar Gaussian sources, i.e., m = q = 1, can be found by
specializing that of the Gaussian many-help one hypothesis testing against independence problem of [25,
Theorem 7] to the setting. More specifically, if Y is such that Y = X + N under the null hypothesis, where the
noise N is independent of X; and Y is independent of X under the alternate hypothesis, the optimal exponent-

rate function is given by

2 2
1 oy +0
GN+€ GX

where 0)2( and o]%, designate the variance of X and the variance of the noise N, respectively. Through straight-
forward algebra it can be easily shown that this result can be recovered from our Theorem 6.1 (Note that the

constraint C is always fulfilled in this case).

6.3 Proof of Theorem 6.1

For reasons that will become clearer, we first consider a slight generalization of the discrete memoryless
single-sensor single-detector hypothesis testing against conditional independence problem (the general-
ization accounts for that the marginals are not restricted to be identical) for which we provide a single-letter

characterization of its exponent-rate function.

M, .
X™ —f Sensor Detector — H, € {0, 1}

(", v

Figure 6.2: Problem P,.

Consider the problem of Figure 6.2. Here, (X, U, V') denotes a triplet of discrete memoryless sources whose

joint p.m.f. depends on the binary hypothesis H € {0, 1}. More precisely

H=0: (X, U, V)NPXUV (615)

Hzl . (X, U, V) ~ pXUV = PUPX|UPV|U' (616)

The definitions of acceptance and rejection regions, as well as the exponent-rate function, are similar to

those of previous chapters; and, thus, we omit them here for reasons of brevity.

Lemma 6.2 If the joint p.m.f Pxy;y under the null hypothesis satisfies

Pxy = argmin D(PyylIPxy), (6.17)
Byy:Py=Py
PU:PU
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the rate exponent function is given by
E(R) = D(PxylIPxy) + D(Py||Py|U) + maxI(S; V|U) (6.18)
where in (6.18) the maximization is over all conditionals Ps|x for which I(S; X|U) <R.

Proof of Lemma 6.2:

We have
E(R) = lim E,(R), (6.19)
n—o00
where
1 _
En(R) = ED(P(P”(Xrl)UnVn||P¢n(Xn)UnVn). (620)
It is easy to see that
lim E,(R) = li 1D(P IP )
1m = 11m max — n\[yny/n Y\ gn\n
e i b logylpalsnk  n - Pn XTIV G XUV
1 _ _ 1
= 111’1’1 ma —DP n nP n\[Jn +DP P U+—I Xn;VnUn
;H_oo¢nzlog2|4)>(,,|<nR ” (Py, (xmyunllPy, (xmyum) + D(Py||Py|U) ” (P (X™); VIIU™)
(a) 1 _
< D P P U + 1 _D P n n P n n
(PylIPy|U) n1_>rf>lo¢,,.l<>rgllcf)>(,,l<n12 ” (Py, xmyu 1Py, (xmyum)
+ —I XM, vHu”n
(j),,:l(glzellq)ﬁ(nISnR (P (X VIUT)
1
D(Py||Py|U)+ D(PxyllPxy) + lim max =I(¢p,(X"); V"|U")
7’1—>00¢n 10g2|¢”|<HR n
(c) - -
= D(PxyllPxy)+ D(Py||Py|U) + max 1(S;V|U) (6.21)

PS\X : I(S,XlU)SR
where (a) holds since

max f (x) + g(x) < max f (x) + maxg(x)

(b) holds since the decentralized error-exponent function

1 _
lim max —D(P, myynl||P, n\yn),
K 18X k7 (P, xmyun Py, (xmyum)

is always less than the centralized error-exponent D(Px;||Px;); (c) holds by noting that the term
(H(pn(X™); VIIU")/1,

is the exponent of a hypothesis testing against conditional independence problem at rate R as given by

[25, Theorem 3],

1
max —I(¢p,(X");, V"U") = max I(S; V|U). (6.22)
(;bn : 1032 |¢,,|S71R n PSlX : I(S;X|U)SR

Combining (6.19) and (6.21) we get

E(R) < D(P P + D(Py||Py|U) + I(S; V|U). 6.23
(R) < D(PxyllPxy)+ D(Py||Py| )P5|X gnsaigwgz | (6.23)

65



6.3. PROOF OF THEOREM 6.1

The proof ends by noticing that if

Pxy = argmin D(PyylIPxy), (6.24)
PX[!:PX:PX
Py=Py
then both inequalities (a) and (b) in (6.21) hold with equality. In order to see that (b) holds with equality

when (6.24) is satisfied observe that on the one hand we have

1 _ 1 _
ma —D P n\yn P ) < ma —D P n\7n P n\7n
pmax o DEponollBy pener) < - max S DB, e liF, o)
< D(PxullPxu); (6.25)

and on the other hand we also have

. 1 - (d) ) ~ _
lim max —D(Py (xnyinl||Py (xnyin) = min D(Pxis|| P
lim max =5 (Py, xmyun 1Py, (xmyum) e (PxullPxy)
PU:PU

(e) —
= D(PxyllPxy) (6.26)

where (d) holds by using [14, Theorem 5] and (e) holds by using (6.24). It remains to show that (a) in (6.21)

holds with equality. To see this observe that on the one hand we have

1 _
—-D(P myn|| P, mypn) + 1 X" }Vn U
g a2 DB, el o) + 1(u(X); VL")

< jax D(PxyllPxy)+ (¢, (X™); VU™
¢, :log|p,|<nR
= D(PXUHPXU)+ max I((Pn(xn); anUn),(627)
(i)” : 10g|¢n|SnR

and on the other hand, denoting by ¢;, the maximizer in the left hand side of (6.25), we have
llm max ll)(l) n n”p n n)+ll(¢ (Xl’l)vl’llUVl)
oo log, lbul<nR 11 Gu(XMU P, (XMU n n ’

. 1 _ 1
= lim max ED(P¢n(Xn)Un”thn(X")U")+ ;I((j)n(X”),V'ﬂU”)

n—oo ¢y 1 10g, [, |<nR+1

1 _ 1. -
> llm max —D(P s (Yn n”P (YN n)+—I( (Xn),Vn|Un)
P oy e 1o o) £

1 - 1
= 1im —D(Py« xn\iyn||Pp (xnyi7n + max -1 Xn ,Vn Un
lim (P xxmyu 1P (xxmyurm) P S (P (X™); VI U")

_ 1
= D(P; P + ma -1 XM, vHu™.
(PxullPxy) (j)nzlog2|¢,)j§nR+ln (P (X™); VHU™)

Using the above we get
lim max l1)(134) (X”)U””Rp (Xn)Un)-i-lI((Pn(Xn); anUn)
n—oco Pn : 108, [py|<nR 1 ! ! n

_ 1
= D(Pxs||Px;y) + lim max ~I XM, vt un
(PxullPxy) P P (P (X™); VU™

1 _ 1
= lim ma —D(P, my7n|| P, nyn ) + ma —I Xn ,'Vn Un
n—>oo¢n:10gzld)>(n|snR ” (P, xmun Py, (xmyum) ¢n:10g2|<;>(n|SHRn (Ppn(X™); VHU™)
(6.28)
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6.3. PROOF OF THEOREM 6.1

where the last equality follows since () in (6.21) holds with equality as we have already shown.

We now turn to the proof of Theorem 6.1. The result of Lemma 6.2 extends easily to the case of continuous

alphabets using standard discretization (quantization) techniques. Let

U = E[X]Y]

v=Y.
We can see that under H =1,

I(X;U)=H(X) - H(X|U)
=H(X) - log|Kx - KxyK{;Kkyl
=H(X) - log |Kx ~ KxyKy' Ky (KxyKy Ky ) KxyKy' Kyl
=H(X) - log |[Kx — KxyK{ Ky
=I(X;Y),

and so:

X—-oe—U—-e-V

is a Markov chain.

(6.29)

(6.30)

(6.31)
(6.32)
(6.33)

(6.34)

(6.35)

Consider now the problem of testing against conditional independence in which the sensor observes X and

the detector observes the pair (U, V) and aims to guess whether X and V are independent conditionally

on U or not. That is, the problem of Figure 6.2 in which [E[X]|Y] plays the role of U and Y plays the role

of V. In the remaining of this proof this problem will be referred to as Problem P,. For given R the rate

exponent function of the original vector Gaussian problem of Figure 6.1 is equal to that of the Problem P,

ie.,

E(R) = E5(R).

(The interested reader may refer to Appendix H for a proof of (6.36)).

Now, invoking Lemma 6.2 on Problem P, we get that if

Pxy = argmin D (Pyy||Pxv),
PXQ:PX:PX
PU:PU

then we have

E(R) = D(PxullPxu) + D(Pv||Pv|U)Ierlx : I(mS%U)SRI(S;VIU)

= D(PxuyllPxy) + D(Py|I|U)+ max  I(S;Y[U)

= D(Px[|P|U) + D(By[|Py) + max I(S;Y|U).

(6.36)

(6.37)

(6.38)
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6.3. PROOF OF THEOREM 6.1

In what follows we first show that the minimizer in

argmin D(PxullPxu) (6.39)
By =Py
Py=Py

is a multivariate Gaussian distribution on the pair (X, U). To see this let Pxy with Px = Py and Py = Py be
given. Also let PXGU be a multivariate Gaussian with the same covariance matrix as that of Pxy. Then we

have

D(PyullPev) = ~h(Pxy) — Ej {log Pxy)

~h(Pg,) ~ Epc {log qu} (6.40)

\%

where the inequality holds since among all distributions with the same covariance matrix the Gaussian

maximizes entropy. Through straightforward algebra it can be shown that the condition

Pyy = argmin D(PxyllPxv) (6.41)
BeyiPx=Px
PU:PU

is equivalent to the constraint C as given by (6.13). (The interested reader may refer to Appendix I)

It remains to evaluate the right hand side (RHS) of (6.38). The relative entropy term in the RHS of (6.38)

can be computed as

q 1 | | 51
Similarly, the conditional entropy term of the RHS of (6.38) can be computed as

|KX|Y|+
® [Kx — KxyKy! Ky (Ky Ky KyKy ! Kiyy) Ky Ky Ky,

D(K|I’|U) = —+ —1
1 - - -1 1t
+ 2Tr(K;qu (Kx - KXYKY KXY (KXYKY KyKy KXY) KxyKy KXY)). (6.43)
It remains to evaluate the maximum of the mutual information term I(S; Y|U) where the maximization is

over all test channels Pgx for which I(S;X|U) < R. This is done in [39, Theorem 5] where the maximizing

S is shown to be multivariate Gaussian with

1
max I(S;Y|U) = maxmin {R+
Pox : 1(S;X[U)<R 2

1 o =
5 log |I + QKXY(K;{l - Ky Ky Ky KxyKy! ]K;(Y’} (6.44)
Combining (6.42), (6.43) and (6.44) we get the RHS of (6.44); and this completes the proof of Theorem 6.1.
|
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6.4. DISCUSSION

6.4 Discussion

The constraint C as given by (6.13) may seem too restrictive, but it is not. In what follows we show that
this constraint may be satisfied of a large class of sources even in the case in which m = 1 and g = 2. Let X
be a scalar source that is observed at the sensor and Y = (Y7, Y5) a 2-dimensional source that is observed

at the detector. For convenience, let

2 -2 — _
Oy Oxy, Oxy, Ox Oxy, OXxy,
= 2 K — | = -2 —
K= oxy, Oy, Ovy, and K= Xy, Oy, Oynv| (6.45)

2 - - )
oxy, Ovy, Oy, oxy, Ovy, Oy,

2
Also, let
= = = =2 = = = =2
a:(O'XYZGylyz—GXYlGYZ) and b:(GXYIGylyz—GXYZGYI). (646)

For this example the constraint C as given by (6.13) reduces to

i) of=d3, (6.47a)
Zl) a(GXY_G_XY)+b(OXZ_G_XZ):O (6.47b)
iii) a*(of —6¢)+2ab(oyy —Gyz)+b* (07 —G62) =0 (6.47¢)

For example, if all components have unit variance under both P and P, ie., 0')2( = U%l = 052 =1 and

(f)% = 0"12,1 =6y, =1 then all definite positive matrices K and K of the form

1 ayp h(ay,ai3,az3,a12) I app a3
K= ai) 1 i3 and K=la, 1 (6.48)
h(ai,a13,d23,412) a3 1 diz dxz 1

for some arbitrary parameters ay,, d1,, 13, 473, satisfy the constraint (6.47). Here

ViV —X

h(x, 91,02, t) = vy — (£ — . (6.49)
(%, 91,92,1) =91 = ( yZ)xyz—yl
Example 6.1 Let
1. 04 «a 1. 01 -0.8
K=104 1. 01| and K={01 1. 01 [ (6.50)
a 01 1. -0.8 0.1 1.

with a = —0.73333. We can see that (6.47) is fulfilled. Figure 6.3 shows the evolution of the optimal exponent
E as a function of the communication rate R as given by Theorem 6.1 for this example. It is interesting to observe
that Han’s scheme [14, Theorem 2] is strictly suboptimal for this example', whereas Shimokawa-Han-Amari

scheme [32, Theorem 1] is optimal.

!n the figure, Han’s exponent as given by [14, Theorem 2] is computed using Gaussian test channels Py|x and Gaussian U
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0.15 1
0.10 A
0.05 —— Outer bound ([5, Theorem 11.8.1])
—&— Optimal exponent-rate function (Theorem 6.1)
—&— Lower bound (Han’s scheme, [14, Theorem 2])
—¥— Lower bound (SHA’s scheme, [32, Theorem 1])
0.00 T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

R

Figure 6.3: Rate-exponent region for Example 6.1.
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CHAPTER 7

Summary

7.1 Coherent detection and non-coherent detection with cooperation

In Chapters 4 and Chapters 5 we have studied hypothesis testing Type II error exponents in the context
of coherent and concurrent detection with and without cooperation. In a first part, we studied the case of
fixed-length communication and characterized the exponent regions when the Type I error probabilities
are constrained to be less than a fixed threshold. These are rectangular in the case of a coherent detection
or in the case of concurrent detection when the sensor can send more than one bit or when it cannot
distinguish the two hypotheses. In this case each detector behaves as if it were the only one in the system.
When the detection is concurrent and the sensor can send only one bit and can distinguish between the
two hypotheses, there is a trade-off between the two exponents.

It may be interesting to generalize this work to the scenario in which K detectors share information from
a single sensor in a network where communications are of fixed length. This could lead to a complete
modeling of the sensor network as encountered into the IoT. We can also consider the problem where the
sensor must compress its observation without knowing what test will be performed at the end but only
that this test belongs to some family.

In a second part we studied for this same system the exponent-rate region for positive rate communication
when the Type I error probabilities are constrained to decrease to zero with the number of observation
going to infinity. It appears that in the concurrent case and when the sensor can distinguish the two
hypotheses, the acceptance region is rectangular. A trade-off between the two exponents appears when
the two hypotheses cannot be distinguished. In some particular cases, we have characterized this region

and in the general case we have studied a communication scheme without binning. However, it is clear
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7.2. DISTRIBUTED HYPOTHESIS TESTING IN THE GAUSSIAN CASE

that binning helps in the general case.

7.2 Distributed hypothesis testing in the Gaussian case

In chapter 6, we restricted attention to the vector Gaussian single-sensor single-detection hypothesis test-
ing problem. In this case, the problem amounts to distinguishing two multivariate Gaussian distributions
using only partial (compressed) information. Relying heavily on recent developments in this area [44,
39] we found sufficient conditions under which the optimal exponent-rate function can be characterized

analytically.
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APPENDIX A

Proof of Theorem 2.7

This proof follows along the same steps as [31, Theorem 2] proof, we reproduce this steps here for matter

of completness. For every Pxy € P(X x }) such that

1-¢€ 1-¢€

Pe(C) > , P¥"(F)> , Al
2 B2 (A1)
where
— 1
;}Lnoloﬁlog M, =0, (A.2)

lemma 2.6 applies and there exist sequences k,, = o(n) and y,, = o(1) such that
P"(rkC)>1-y,, PEYTHE)>1-y, (A.3)

The sequences k,, and y,, depend only on | X, |)|, € and M,,. Using the fact that Pr(ANB) > Pr(A)+Pr(B)-1
and (A.3), we get

PO C xThEF) > 1 -2y, (A.4)
The same is true for the set %n(PXY)> where 1 =1, = n-1/4,
X[V XY
P®”(T”P )21—| =1- . A5
XY\ ( XY) dn? anl/2 (A.5)
Using (A.4) and (A.5), it is clear that for large n,
1
n k, k, n -
PR} (T CxThF) N T (Pxy)) 2 > (A.6)

Hereafter, for the sake of simplicity we abuse notation and dismiss the subscript # from k,, and y, and

write simply k,, := k and y,, := y.
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Now, using the fact that
T,"(Pyy) = g T"(Pgy) (A7)
Py € BB (X xY)
|PXY - PXY| <nPxy
and observing that all the elements of the type class 7"(Pyy) are equiprobable under an i.i.d. measure,

(A.6) can be rewritten as

S (TXC xTKF)NT™(Pgy) 1
) BT P 2 (A8

where, in the last inequality, the sum is over all types Pgy € 98, (X x )) such that, Pyy < Pxy and

|Pgy — Pxyl| < nPxy. (A.9)

As P)‘?Y(T”(ny)) <1and |2, (X xY)| < (n+1)¥IV there must exist at least one type Py for which

|(TkC xTKEYNT"(Pgy) _ 1
T (Pey) >§ xp(—ne,) (A.10)

with p, = |Xl|ly| log(n+1)~O(n"!log(n+ 1)) — 0 as n — co. The equiprobability property is also true for

the i.i.d measure Q%Y. Thus

Q?;”Y(I‘kc x FkF) > Q;@;”Y((ch xT¥F) ﬂT”(ny))

(TKC xTF) N T (Pyy)|
= 7 B ) vy
>~ expl-npa) Q4 (75" (P ). (A1)

where the last inequality follows using (A.10).

We thus have shown that the sets TXC x TXF and T"(Pgy) have the same exponential order under the
measure Q?}’; In what follows, we show that the same is true for the sets T¥*C x TXF and C x F.
Consider now an arbitrary triple of sequences (u",v") € TXC x TXF. By definition of the sets TXC, T*F
there exists at least one element (x",y") € C x F such that the vectors (u”,v") and (x", ") differ in at most

2k locations. Thus,
Xy u v ]_[QXY Ui, v;) kI_IQXY Xz,}’z —Zngr}l/(xn,yn) (A.12)

where

P :=x€r§1yn€yQ(x, v). (A.13)

As (u",v") ranges over I'*C xTXF each element of (x",v") € Cx F will be selected as the closest neighbor

at most [T¥(x")| - |I“k(yf)| times. Thus
Q¥L(TFC xTFF) < p2K|Tk (x™)| - IT* (™)1 Q%% (C X F). (A.14)
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From [7, Lemma 5.1], we have

k
|Fk(x”)| < exp[— n(hz( )+ Slog |X|)] :=exp(né&,) (A.15)

n
with h,(-) denotes the binary entropy function and &,, — 0 as n — oo.

Hence:
QFY(IC xT*F) < exp(n&,) QY (C x F) (A.16)
Combining (A.11) and (A.16), we obtain

QY (C x F)> exp(—n&, ) Q%Y (T*C xT*F)

exp [ = (& + 1un) | QF (T (Qxv)

n; 1 |X”y'exp [ - n(D(nylley) +Ent V”)]

:exp[—n(D(ny||QXy)+vn)]. (A.17)

o

>

— N~

v

where v, := v, (p,€,M,,,|X|,|Y|) = 0 as n — co. this completes the proof of the proof of Theorem 2.7.
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APPENDIX B

Proof of Proposition 4.1

We present first a coding scheme for coherent detection that we will analyze to prove the achievability
part. Fix a small y > 0.

Sensor: Assume it observes the source sequence X" = x", then it checks whether
x" € T,(Px)

it the test is successful it sends My = 1 else M; = 0.

Detector 1:If My = 0, Detector 1 decides on the alternative hypothesis:
7:{1 = 1
If M, =1 and given that Y]" = /', Detector 1 checks whether

vy € 7,(Py,).

If the test is successful it decides on the null hypothesis

Otherwise it decides on the alternative hypothesis. We now describe the communication to Detector 2. If
My =0,

Detector 1 sends
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Else if

Detector 1 sends

Type I errors analysis : We have for n large enough:

a1, =Pr{H; = 1{H =0
:Pr[X” e T,(Py) or Y{' € T,,(Py, )|H = o]

(a)
<Pr(X", Y}") € T, (Pxy,)IH = 0]

(b)
<e€;. (B.1)

where (a) follows since 7,(Pxy,) € 7,(Px) x 7,,(Py, ); () follows by the week law of large number. In the

same way for n large enough:

=P Hy = 1]H = 0]

=Pr|X" € T,(Px) or Y| € T,(Py,) or V' € T,(Py,)|[H = 0|

(a)

<Pr{(X", ¥!",Y}) € T,(Pxy, v, IH = 0]

(b)

<e. (B.Z)
where (a) follows since 7,,(Pxy,y,) € 7,,(Px) x 7,(Py,) x 7,(Py,); (b) follows by the week law of large
number.

Type Il errors analysis : define the sets £y , and £, , so that:

. |Px — Px| < uPx,
|Px — Px| < pPx,

4 : s )5 ] -
Ly, =4 Pxy, v Low =Py, [Py, =Py | < pPy,,

. |Py, - Py,| < pPy _
1 1 1 |Py, — Py,| < pPy,

The acceptance region of the test performed at Detector 1 is:
A =T(P)xT(Py)= | ) T(y,). (B.3)
Pyy, €L NP (XxV))

We have:

Bru=Pr[Hy = 0K =1]

:Pr[(X”, Yln)-Al,an = 1]
(a) . _
;(n + 1)'2‘//”321| exp [ —n_min D(Pxy,||Pxy, )], (B.4)

xv; €L 1,
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where (a) follows by Theorem 2.4. In the same way, the acceptance region of the test performed at Detec-

tor 2 is:

Az = Tu(Px) X T, (Py,) x T (Py,) = g T (Pyy,y,). (B.5)
pXYl Yo €L2 ) NP (X X V1 XY,)

and so:

Bon :Pr[ﬂ2 =01 = 1]

:PI’[(X”, Yln, an)Az’an = 1]

(a) _ _

<(n+ 1)|X||y1||y2|exp[_ n_ min  D(Pxy,y,|[Pxy, Yz)]: (B.6)
Py, v, €L

where (a) follows by Theorem 2.4. Finally as mny" log(n+ 1) and w log(n + 1) are sequences de-
creasing to 0 when n — oo, the achievability part is conclude by letting n — oo.
We now continue with the converse part. Fix an achievable Type II error exponents pair (6;,6,), then

choose a small number p > 0, a sufficiently large blocklength # , and encoding and decision functions

(i)l,n’ ¢2,na (Pl,n; ql)z’n Satlsfy1ng

ayp<€y,
ar <€y, (B.7)
and
1
- log 1,,>601 — 1, (B.8a)
—% log 2,20, — 1, (B.8b)

For the chosen encoding and decision functions, define for each pair (1, m,) € {0,...,W; -1}x{0,...,W,—

1} the subsets

Co, = {x" € X2 Py u(x") = my}, (B.9)
Gy, = (91 €Vt Po,u(my,97) = my), (B.10)
Fim, = {91 € Vs pon(my,p7) =0}, (B.11)
Famymy = (93 € V3t Py u(my, my,p3) = 0}. (B.12)

Moreover, the acceptance regions A; ,, at Detector 1 and A, ,, at Detector 2, defined through the relations
(X", Y e A, H =0, (B.13)

and

(X" Y], Y e Ay, = H,=0, (B.14)
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can be expressed as

W;-1
Al,n = U le X]:l,ml,mz- (B'15)
my=0
W,o-1W;-1
A2,n = U U le X gml,mz X B,ml,mz' (B~16)

m,=0m;=0

By the constraint on the Type I error probability on Detector 1 and Detector 2, (C.8a),

W,-1
P)‘?;l (Xn, Y{‘) € U Con, x.ﬂ}ml'mz] >1-¢
my=0
W, —1W,-1
P (X vy, Y2 € U U Cony X Gomym, xfz,ml,mz] >1-¢ (B.17)
m1:0 m2:O

Now, by the union bound there exists an index pair (m7},m5) € {0,...,W; — 1} x{0,..., W, — 1} such that:

P)‘?’”[X” € Cm;] > 1\/\716, (B.18a)
PRYl € Fim] 2 1\/;16 (B.18b)
Pﬁ”[yln € Gt ] > ﬁ (B.18c)
P [YI € o] 2 ﬁ (B.18d)

Combining (C.18) with Theorem 2.7 and an extension of it to three pmfs (recall that Pxy, v, (x,y1,%2) > 0

by assumption, and thus Pxy,y, < Py Y, 1,), for sufficiently large 1, we obtain:

B~ 0=t max ¢ (P(Ponlon)on)

PXYI:
Py=Px, Dy, =Py,
Pr[H, =0/H=1]> max e_n(D(PXmZ“PX“YZ)+F). (B.19)
Py,
PX:PX’
Py, =Py, ,Py, =Py,

Taking n — oo and p — 0, by the continuity of KL-divergence, we can conclude that for any achievable
exponent 0,:
61 < rpm D(pXYlanYl) (BZO)
~PXY1 :

PX :Px,
Py, =Py,

0,<  min D(PXY1 v, IIPxy, Yz)- (B.21)
PXYI Yp!
PX :Px,
Py, =Py,,Py,=Py,

This conclude the proof.
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APPENDIX C

Proof of Proposition 4.2

We present first a coding scheme for coherent detection that we will analyze to prove the achievability
part. Fix a small y > 0.

Sensor: Assume it observes the source sequence X" = x", then it checks whether
x" € T,(Px) =T,(Px)

it the test is successful it sends M; =1 else M; = 0.

Detector 1:If M; = 0, Detector 1 decides on the alternative hypothesis:
Hy = 1.
If M} =1 and given that Y|" = p{', Detector 1 checks whether
1 € T,(Py,).

If the test is successful it decides on hypothesis

L
—_
Il
—_

Otherwise it decides on

X
—

I
o

We now describe the communication to Detector 2. If

H, =0,
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Detector 1 sends

M2 = 1
Else if

7:[1 = 1,
Detector 1 sends

M2 = 0

Type I errors analysis : We have for n large enough:

al,n:Pr[ﬂl = 1|H = 0]
=Pr|X" € T,,(Px) or Y{" € T,,(Py,)/H = 0|
(a) _
<Pt[(X", Y") & T,(Pxy,)IH = 0]

(b)
<e€;.

(C.1)

where (a) follows since %(pXYl) - 7;,(13;() X 7;4(151/1 ); (b) follows by the week law of large number. In the

same way for n large enough:

a2, =Pr{Hy = 1]H = 0]

=Pr|X" € T,(P) or Y| € T,(Py,) or V' & T,(Py,)|[H = 0|

(a)
<Pr{(X", ¥!",Y) € T,(Pxy, v, IH = 0]

(b)
<es.

where (a) follows since 7,(Pxy,y,) € 7,
number.

Type Il errors analysis : define the sets £ , so that:

_ R ~ |PX_pX|SI/lPX'
131,,4 =yXy, ¢ ~ _
|Py, — Py,| < pPy,

The acceptance region of the test performed at Detector 1 is:

A =TP)xT(Py)= | ) T(y,).

Pyy, €Ly,,NP,(XxV))

We have:

Brn=Pr[H; =0/H =1]

:pr[(x”, Y1) AyulH = 1]

(C.2)

(Px) x T,,(Py,) x T,,(Py,); (b) follows by the week law of large

(C.3)
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(a) .
<(n+ 1)l exp [ —-n_min D(Pxy,||Pxy, )], (C.4)
ﬁxyl EEL#

where (a) follows by Theorem 2.4. In the same way, the acceptance region of the test performed at Detec-

tor 2 is:

Ao =T,(Px) x T,(Py,) X T,(Py,) = U T (Pxy,y,)- (C.5)
pxyl Yo €L2, NP (XXV1 X))

and so:

Bon=Pr[Hy = 0/H =1]

=Pr[(X", Y, V) Ap ulH = 1]
(a) . _
<(n+ 1)l exp [ —n_min  D(Pxy,y,l|lPxy, YZ)]: (C.6)

Py, v, €L

where (a) follows by Theorem 2.4. Finally as mny" log(n+ 1) and w log(n + 1) are sequences de-
creasing to 0 when n — oo, the achievability part is conclude by letting n — oo.
We now continue with the converse part. Fix an achievable Type II error exponents pair (61,6;), then

choose a small number p > 0, a sufficiently large blocklength 7 , and encoding and decision functions

¢1,715 (Pz,na (Pl,n, (Pz’n SatISfYIHg

aq,,<€1,
<€y, (C.7)
and
1
- log B1,,=61,—p (C.82)
—% log f2,,>6, — p, (C.8b)

For the chosen encoding and decision functions, define for each pair (1, m;) € {0,..., W; -1}x{0,...,W,—

1} the subsets

Cn, = {x" € X™: Py u(x") = my}, (C.9)
Gy, = (91 €Vt Po,u(my,y]) = my), (C.10)
Fim, ={v1 € V1's Ppou(my, p7) =0}, (C.11)
Famymy, = {95 € V3 1 o u(my, mp, p3) = 0} (C.12)

Moreover, the acceptance regions A; ,, at Detector 1 and A, ,, at Detector 2, defined through the relations
(X", Y e A, H =0, (C.13)

and

(X" Y], Y e Ay, = H,=0, (C.14)
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can be expressed as

W;-1
w2 L Cony X Py (C.15)
my=0
Wo-1W;-1
U U le X gml my X B my,my: (C’16)
my=0m;=0

By the constraint on the Type I error probability on Detector 1 and Detector 2, (C.8a),

w, -1
n n
(X , Y] )e U Cony, X Fo,my my
my=0
Wy —1W,—1

(xm vy, vy) e U Ucmlxgmhm2 ml’mzl_l_ez (C.17)

0m2

p®N
PXYI > 1- €1

Qn
PXYI

Now, by the union bound there exists an index pair (17}, m5) € {0,...,W; — 1} x{0,..., W, — 1} such that:

P [x"eCy| 2 1\/;16, PY! € A | 2 16 (C.182)
PE[X" €] = lv;f’ PE Y € G ] > WV\Z PP (VY € Fopis] 2 o Wz .(C.18b)

Combining (C.18) with Theorem 2.7 and an extension of it to three pmfs (recall that we assumed Pxy, v, (x, 1, ¥2) >

0 and thus Pyy,y, < prl v,), for sufficiently large 7, we obtain:

~ —n(D(P P )+)
Pr[H; =0/H=1]> max e xn 1Py o),
Pt
PX:PX'PYI :Pyl

Pr[H,=0/H=1]> max e n(D(PXYIYZ”PXYlYZ)W). (C.19)
PXYIYZ:
pX:Px;
Py, =Py, ,Py,=Py,

Taking n — oo and p — 0, by the continuity of KL-divergence, we can conclude that for any achievable
exponent 0,:
0 < min D(Pxy, IInyl) (C.20)
XYy +
?X :IS_X’
Pyl :Pyl
6,<  min D(ISXY1 v, 1Pxv, v, ) (C21)
nyl Yyt

pX:P)(,
Pyl :PYl lPYZ :PYZ

This conclude the proof.
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APPENDIX D

Proof of Theorem 4.4

Error analysis of the scheme presented in subsection 4.3.2:

Notice first that for sufficiently small y, when X" € 7;”(13;() and Y{" € 7;4”(151/1), then Detector 1 declares

H; = 1. Thus, by the weak law of large numbers, for sufficiently large #:
< 1=Pr | (X ¥]) € TP X Py )| < e,

In the same way, when X" € 7,/'(Px), Y/'e 7,'(Py,) and Y} e 7,'(Py,), then Detector 2 declares H, = 0.

Thus, by the weak law of large numbers, for sufficiently large n:

a, <1-Pr [(X”, YY) e TMH(PX) X %”(Pyl) X %”(PYZ)] <e,.
Define now for r € R:

Ay (r) = {(x",yf): Py € Tyy)(x), and p!' € T/ (Py, )}. (D.1)
Ao lr) = {691, 9): Pes € Ty o), 37 € T (Py, ), and 3 € TPy, . ®2)
The type-II error probability at detector 1 satisfies:
Brn <Pr [(X”, Yl e Ay = 0]

< min e_”(D(pXYIHPXYl )‘51(}4))’

} PXYl :
Pxelyy)(r)

|2y, 2y |<n
where the last inequality holds for sufficiently large values of  and by Sanov’s theorem. Here &; (1) — 0

with p. In the same way, the type-II error probability at detector 2 satisfies:
Ban < Pr [(X”, YY) e Az,y‘H = 1]
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min e—”(D(pxyl v 1Py, v, )‘52(}4))’ (D.4)

pxyl Yy '+
Px €Ty 0)(r)

|PY1 —Py, |§f" |15Y27PY2 |S”

IA

where the last inequality holds for sufficiently large values of 1 and by Sanov’s theorem. Here &,(y) — 0
with p. Taking y — 0 and 7 — oo establishes the desired achievability result.

Converse to Theorem 4.4:

Fix a real number r and an exponent pair (81, 0,) € £y(2, 2) satisfying
62 = 91 +7. (DS)

Then fix a small number € > 0, a sufficiently large blocklength 7, and encoding and decision functions

(Pl,nr (PZ,nr ¢1,n, lPZ,n SatiSfying

al,n <e, (D6)
a2,n <e, (D7)
and
1
—; IOg /3)1’” > 61 —€, (D8)
1
- log By, >0, — €. (D.9)

For the chosen encoding and decision functions, define for each
my € {0, 1,...,W1 - 1},

and

my € {0,1,...,W2—1},

the subsets

Co, = X" € X" Py y(x") =y}, (D.10)
Fony 201 €1 1 u(my,97) = 1), (D.11)
Gy = V1 €'t Pou(my, p7) = ma), (D.12)
Fomos 205 € V5 o u(my, my, 95) = 0} (D.13)

Notice that the sets Cy,...,Cy,_1 partition A" and for each m; € {0,...,W; — 1} the sets

gml,Ol ceey gml,Wz—lf

partition )j'. Moreover, the acceptance regions A}, and A2 at detectors 1 and 2, defined through the

relations
(X", Y e Al =M, =1, (D.14)
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(X" YY) e A2 = H, =0, (D.15)

can be expressed as

Ay, =Cox Fruc, x A/ (D.16a)
and
W,—1 W,—1
Ay, = U Co X Go,my X Fily, U U Cr X Gy X Filp,- (D.16b)
m2:0 m2:O

Define now for each m € {0, 1} the set

_ _ 1-
Ty = {px eP(X): PE[X"€Cp |2 . € } (D.17)
and for each pair (m,m,) € {0,1} x{0,..., W, — 1} the set
1-€
Ay myn = {Py1 e P(O): p®n[yn €Gm,, mz] W, } (D.18)

Since the sets Cy,C; cover X" and since for each Py € P(X), it holds that Pffn [X” € X”] =1, the subsets
Lo,1, I, cover the set P(X). Similarly, since for each m; € {0, 1} the sets G,,, o,...,Gm, w,~1 cover YV},

the subsets A"

07" A;hwz—l,n cover the set P();). Moreover, by the constraint on the type-I error

probability at detectors 1 and 2, (D.6) and (D.7):

B |(x",Y7) U Con, xf,,ill >1-¢ (D.19)
pen | (x,v1, YY) e U U Cony, X Gty x}'nfl,mzl >1-e (D.20)
=0m,=0

By the union bound there exist thus an index 77; € {0, 1} and an index pair (m},m}) € {0,1}x{0,..., W, ~1}

such that:
PP'[X"eCp,| 2 1-¢ (D.21a)
P;ﬁ’"[YI” € Fl (D.21b)
and
P)?”[X "ECy |2 (D.22a)
P Y € Gy | 2 12% (D.22b)
PR Yy e A ]2 12% (D.22c)

Combining (D.21) with the definition of A; ,, in (D.17) and with [31, Theorem 3] (recall that by assumption

Pxy, (x,1) > 0, for all (x,;) € X x ));) yields that for any x> 0 and sufficiently large 7 :
Pr[ﬂl =1|H=0]> max o~ (D (Pyy, [IPxy) )+p1).
pxy1:

PX ern"ll,nr
Py, =Py,
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In the same way, combining (D.22) (D.17) with (D.18) and extending [31, Theorem 3] to three pmfs (recall
that by assumption Pxy,y, (%,91,v2) > 0, for all (x,y1,v,) € X x Yy x )»), for sufficiently large n:
Pr[ﬂz =0H=1]> max e—”(D(ﬁxyly2||15xylyz)+l4).
nyl Yp:
pxermyi,n!
le EAm’i,mE,w pYz :PYZ
Taking now n — co and y — 0, by the continuity of the Kullback-Leiber divergence we can conclude

that if the exponent pair (64,6,) is achievable, then there exist subsets Iy, [; that cover P(X), subsets

Ao0,---» Ao w,—1 that cover P());), and subsets Ay o, ..., Aq w,—; that cover P();) so that:

61 < I:nln D(PXY1||pXY1 ), (D23a)
PXYI:
prrb,
pyl :Pyl
92 < min D(nyl Y2||PXY1 Y, ) (D23b)
Pxy v,
PXEFC,

Pyl EAC,Cz’ PYZ :PYZ

where the indices b,c € {0,1} and ¢, € {0,..., W, — 1} are such that

Py €Ty, (D.24)
PX € FC’ (DZS)
PYl [S AC’CZ. (D26)

We continue to notice that the upper bounds in (D.23) become looser when elements are removed from

the sets I}, I, and A, ,. The converse statement thus remains valid by imposing
Ac,cz = {PYl }. (D.27)

Moreover, if b = ¢, then we impose

Fb = FC = {Px, px}, (D28)

and if b # ¢, then we impose that I}, and I;. form a partition.

If b = c, this concludes the proof. Otherwise, if b # ¢, we obtain the intermediate result that

91 < rpm D(PXY1||PXY1) (D29a)
XY :
PXEI‘,,,
Pyl :PYI
0, <  min D(PXY1 v, I[1Pxy, Yz) (D.29b)
Pxy vy
Pyel,,
Pyl :PYI y Py2 :PY2

for two sets I}, and I, forming a partition of P(X) and satisfying (D.24) and (D.25).
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We now characterize the choice of the sets {I}, [} that yields the loosest bound in (D.29). To this end,

notice first that by assumption (D.5), constraints (D.29) are equivalent to:

61 < min mln ID(PXY1 ”PXYl ), mln Ij(pxy1 YZHPXY] Yz)_ re. (D30)
Pxy,: Pxy v,
_IBXGI}; pXel‘cr
Py 1= Pyl PY1 :PYl B PYZ = PY2

We notice that the right-hand side of (D.30) is upper bounded as:

min{ min D(PXY1||PXY1 ); min D(PXYIYZHPXYlYZ)_r (D.31)
Pxy,: Pxy v,
Pxe, el
Py, =Py, Py, =Py, Py, =Py,

< min max{ min D(pxylllpxyl ); min D(ﬁXYly2||PXYly2)—r}, (D.32)

rtx €P(X)\{Px, Px} Pxy: XY1 Y5
l?x:ﬂ_x, ~ px:7}x;
Py, =Py, Py, =Py, ,Py,=Py,

and that the bound holds with equality when

(nx €I}) & | min D(nylﬂp;xyl ) > min D(PXY1 v, I1Pxy, Yz)_ rl (D.33)
nyli XYY"
l?x:T(_x; ~ px:7}x;
Py =Py, Py, =Py, , Py, =Py,

This concludes the proof also for the case b # c.
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APPENDIX E

Proof of converse to Theorem 5.3

Let R, = 0. Fix a rate R; > 0 and a pair of exponents (6,6,) € £y(Ry,0). Then, choose an € € (0,1/2), a

sufficiently large blocklength 1, encoding and decision functions ¢ ,,, ¢, ., 11 ,,, and 1, ,, that satisfy

a1n <€, (E.1)
ar, <e (E.2)
and
1
- log By, =61 —¢, (E3)
—% log By, >6,—¢. (E.4)

Notice first that for each i € {1,2} :
D(PH,-|H||P7:K,-|H=1) = _h2 (ai,n) - (1 - ai,n)log (ﬁi,n)
— i log(1-pin) (E.5)

where h, (p) denotes the entropy of a Bernouilli-(p) memoryless source. Since «;, < € < 1/2, for each

i € {1, 2}, Inequality (E.5) yields:
1 1
_E log(Bi,n) < mD(PﬂAH:O”PﬂAHzl ) + Hn

with p,, = n(+_€)h2 (€). Notice that pr,, — 0 as n — oo.

Consider now:

1
0)-€e< _;log(ﬁl,n)
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(1 - e)D(PH1 |H:0||PH|H:1)+ Hn

1
S e)D(PYl”Ml |H:o||PY1”M1|H:1)+yn

n(1
o 1 n,
C
= Y1k|M1Y1 )+P‘n
YlklMIYIk Xk 1)+ﬂn
5 H(Y M X1 + o,
(f) .
@ 1 )
s _e)z(le, Uo|Q)+ i
Y T U) ¢

where: (a) follows by the data processing inequality for relative entropy; (b) holds since M; and Y| are
independent under the alternative hypothesis H = 1. (c) is due to the chain rule for mutual information;
(d) follows since conditioning reduces entropy; (e) is due to the Markov chain Y; =1 o (M, XF1)-o-Y, o
(f) holds by defining Uy 2 (M;, X*~1); (g) is obtained by introducing a random variable Q that is uniform
over the set{1,---,n} and independent of all previously defined random variables; and (/) holds by defining
U(n) = (Ug, Q) and Yy (n) = Y.

In a similar way, one obtains:

1
0,-€< —;log(ﬁz,n)

(i) 1
= mD(PYZHMlMz|7‘l:O||PY2”M1MZ|H:1 ) + py

ni—c (1 (Y;'; My, M;) + D(pM,MZIH:O”pM]MZIH:l)) + M

(1(Y35 M) + T (Y} MyIMy) + D(Pypag pe=ollPrpagyfr=1)) + o

(I(aniMl) +logWy ,, + D(PYf’MllH:O”PY{’M1|H:1)) + Hn

(I(Yy ;M) + (Y"1 My)) + fiy

where (7) follows by the data processing inequality for relative entropy; (j) holds by the independence of

the pair (M, M,) with Y", under the alternative hypothesis H = 1; (k) by the data processing inequality
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for relative entropy; (£¢) holds since conditioning reduces entropy; (0) follows by proceeding along the
steps () to (h) above; and (m) holds by defining i, = W, ,,/(n(1 —€)) + py,.
Notice that by the assumption R, = 0, the term 1/nlog|W, ,| — 0 as n — oo. Thus, also ji,, — 0 as n — oo.

We next lower bound the rate Ry:

an > H(Ml)
= H(M;)-H (M|X")
:I(Ml;X”)

I(M;; X |x*1)

k=1

n
=) 1(XUp)
k=1

= nl(Xg; UglQ)

nl (U(n); X(n))

For any blocklength 1, the newly defined random variables X(n), Y;(n), Y,(n) ~ Pxy,y, and U(n) —e—
X(n) —e—(Yq(n), Yo(n)). Letting now the blocklength # — oo, and then € — 0, by continuity of mutual

information establishes the desired converse result.
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APPENDIX F

Proof of Theorem 5.5

We analyze the scheme in Subsection 5.2.1. If My = (0,0) and M, = (0, 0), let I, | be the random indices

sent over the bit pipes and define the following events:

Ep, = {(UM1), Y] € Tya(Puy, )},
Ep, = {(UMD), V"(ID), Y3) € Ta(Puyy, )} (F.1)
The Type I error probability at Detector 1 over the random code construction can be bounded for n large
enough as follows:
Eclay,,]<Pr[M; =(0,0) or &p,|H = 0]
<Pr[M; =(0,0)|H = 0] +Pr[€p,|H = 0,M; = (0,0)]
a

+Pr[Ep,[H = 0,M,; = (0,0)]

=€1, (FZ)

where (a) holds by the covering lemma [8] and (b) holds by the Markov lemma [8].

In the same way the Type I error probability at Detector 2 over the random code construction can be
bounded for n large enough as follows:
Eclas,,] <Pr[M; = (0,0) or M, = (0,0) or Ep, or Ep,|H = 0]
<Pr[M; =(0,0)|H = 0]+ Pr[M; = (0,0) or Ep, |H = 0, M; = (0,0)]
+Pr[Ep,|H = 0, M; = (0,0), M, = (0,0)]
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(@)
< % +Pr[M, = (0,0) or Ep,[H = 0,M; = (0,0)] + %

(b)ez €7
< Z +Pr[5D1|H = O,Ml = (0,0)] + PI'[M2 = (0,0)lH = O,Ml = (0,0)] + Z

(5)62 €y € €

DI

=e,, (E3)
where (a) holds by the covering lemma , (b) holds by the Markov lemma, (c) holds by the Markov lemma
and the covering lemma.
We now analyze the probability of Type II error at Detector 1. We notice that #; = 0 only if there exists

an index m; € {1,...,2"R1} such that
(U"(my),X") € T, )g(Pyx) and (U"(m),Y7") € T ,(Pyy,) (F4)
Therefore, using the union bound:

Ec[p1,] = Pr[H; = 01 =1]

nRy
< ) Pl m), X" € T (Rox), (U, ) e TPuy) [1=1] @)
my=1
(2 nRy ma Z*H(D(pUX)q”PUPXyl )—&x) (F.6)
p:
|~PUX_PUX|<F/8
|Pyy, —Puy, I<u/4
(? ma 2”(I(U;X)_D(pUXY1 1Py Pxy, )=&x) (E.7)
P:
|}5UX—PUX|<14/8
|Pyy, —Puy, I<u/4
— max 2_”(D(pUXY1”PU|XPXY1 )—én)’ (F.8)

p:
|FUX—PUX|<W8
[Py, —Puy, I<u/4

where x,, is a sequence that tends to 0 as n — co. Inequality (a) holds by Sanov’s theorem and by the
way the source sequences and the codewords are generated and Inequality (b) holds by the choice of Ry
in (5.18).
To analyze the probability of Type II error at Detector 2, we notice that {, = 0 only if there exists a pair
of indices (my,my) € {1,...,2"R1} x {1,...,2"R2} 50 that

(U"(m1), X") € T)g(Pyx) and (U"(my), V" (malmy), Y{') € T (Pyvy,)

and (U"(my), V"(mylmy),Yy) € T (Pyvy,) (F9)
Therefore, applying similar steps as before:
IEC[ﬁZ,n]Pr[ﬂ2 =0/H = 1]
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2”Rl 2HR2

<)) Pr|U ), X" € Tg(Pux), (U ), V" (ol ), YY) € Tn(Puvy, )

my=1m,=1
(U™ (1), V" ol ), Y3) € T, (P | 7= 1]
(F.10)
< pMI(UX)+1(V;|U)) ma 2*”(13(15vay1 v, IIPu Pyiu Pxy,)—&5) (F.11)
p:
~|15UX—PUX|<}4/8

|quy1 —Pyvy, I<p/2

[Puvy, —Puvy,|<p
— ma 2‘”(D(PUVXY1 P Priuy, Py, vy)—€5) (F.12)

P:
~|PUX—PUX|<I4/8
[Pyvy, —Puvy, I<u/2
[Pyvy, —Pyvy,|<p/4

where &, is a sequence that tends to 0 as # — oco. The proof is then concluded by letting n — oo and by
noting that there must exist at least one pair of codebooks achieving the same exponents as the random

ensemble.
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APPENDIX G

Proof of Theorem 5.7

We analyze the scheme in Subsection 5.2.1. The type-II error probability at Detector 2 can be analyzed as
in the preceding Appendix F.
To analyze the probability of type-II error at Detector 1, we notice that H; = 0 only if there exists an index

my €{1,...,2"R1} such that

(Up'(m1),X") € T,5(Py,x) and (U{(m),Y]") € T )4(Py,y,) (G.1)

By now standard arguments:

2nR1

Pr[A; = 0K =1]< zPr[(Uﬁml),X")eT,;}8<PU1X>, (U} (m), Y{") € T,4(Py,v,) Hzl] (G2)
m1:1

< ma 2—”(D(15171xy1 1Py 1x Py, )—5;{); (G.3)

P:
[Py, x—Pu, xI<p/8
[Py, v, —Puy v, [<p/4

where the sequence &,/ — 0 as n — oo.
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APPENDIX H

Proof of Equation (6.36)

Given R > 0, if O is achievable in P, for every block-length 2 > 0 there exist a pair of functions (¢5,,,, 5 ,)

such that
(1)2’,1: Xn—)Mzé{l,...,Wz’n}, (Hl)
Py My xU" x V" —{0,1}. (H.2)
and
E Pr{v,bzln((j)zln(xn),U”,V”) = 1|H = 0} = 0,
n—-oo
0 < lim — o Pr{f,,(2,,(X"), U", V") = 0] = 1}, (H.30)
n—>00
and
lim %mgzwz,n <R. (H.3b)
n—00

We can then define (¢ ,,, 1 ,):
(Pl,n = ¢2,n’ (H.4)

and for every (m,y") € {1,..., |_2”RJJ x R™:

o gy =] O FY2alm BRIy ] y") =0 (1)
1, » = , ]
! 1 ify,,(mEp[x"ly"],y") =1

where Ep [y"|Y"] = {Ep [x1ly1],...,[Ep [x,ly,]}. The functions pair (¢py ,, 9y ,,) is a valid choice for Py,

and one can write that:

Al = Pr(lgbl,n((i)l,n(xn);Yn) = 1|H2 = 0)
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= Pr{ {620 (X, B [XIY"], X") = 117, = 0)
= Pr{ 2 (p20(X"), U", V") = 11y = 0)

=as

and along similar lines one can prove that

B1,n = Bo,n- (H.6)

So conditions (6.11) are respected and exponent 6 is achievable in P so
E1(R) = E5(R). (H.7)
Furthermore along similar lines one can prove that if 6 is achievable in Py it is achievable in P, and so
E(R) = Ex(R). (H.8)

This conclude the proof of Equation (6.36) . u
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APPENDIX |

Proof of Equivalence between (6.41) and constraint C

The Gaussian random vectors X and U always admit joint probability density functions, pxy and pxuy

under H = 0 and H = 1 defined on a same vector subspace E C IR?", because their covariance matrices

have same kernel. As the minimizer in (6.41) is a Gaussian distribution with same marginal in X and U

than pxy, and that for any pxy if pxy < pxu do not hold then D(pxyl|pxy) = oo, we can restrict the

minimizer in (6.41) to be a normal distribution defined on E :

_1 1

- trm
pxu(z) = 2rE|,’ exp{—zz .:.+z}.
Here & denote any semi-definite positive matrix of the form

Kx G
G' KyxyKy'KyKy'K},

[x1

where the off-diagonal block G is arbitrary. We have

D(pxullpxu)=—h(pxu) — Es,, {10g pxu}

+
I 0 |1 0
:—%log|3|++%log o K o +§
0 RxyKy'| [0 RuyKy'| |
+\t
1 I 0 |1 0
+-=Tr K O

0 KxyKy'| |0 KyxyKy'

and finally, since % is a constant term, (6.41) is equivalent to constraint C.
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Résumé : Linférence statistique prend une place
prépondérante dans le développement des nouvelles
technologies et inspire un grand nombre d’algo-
rithmes dédiés a des taches de détection, d’iden-
tification et d’estimation. Cependant il n’existe pas
de garantie théorique pour les performances de ces
algorithmes. Dans cette thése, nous considérons
un réseau simplifié de capteurs communicant sous
contraintes pour tenter de comprendre comment des
détecteurs peuvent se partager au mieux les infor-
mations a leur disposition pour détecter un méme
événement ou des événements distincts. Nous in-
vestiguons différents aspects de la coopération entre
détecteurs et comment des besoins contradictoires
peuvent étre satisfaits au mieux dans le cas de taches
de détection. Plus spécifiguement nous étudions un
probléme de test d’hypothese ou chaque détecteur
doit maximiser I'exposant de décroissance de ler-
reur de Type Il sous une contrainte d’erreur de Type |
donnée. Comme il y a plusieurs détecteurs intéressés
par des informations distinctes, un compromis entre
les vitesses de décroissance atteignables va ap-
paraitre. Notre but est de caractériser la région des

compromis possibles entre exposants d’erreurs de
Type Il. Dans le cadre des réseaux de capteurs mas-
sifs, la quantité d’information est souvent soumise
a des limitations pour des raisons de consomma-
tion d’énergie et de risques de saturation du réseau.
Nous étudions donc, en particulier, le cas du régime
de communication a taux de compression nul (i.e. le
nombre de bits des messages croit de fagon sous-
linéaire avec le nombre d’observations). Dans ce cas,
nous caractérisons complétement la région des expo-
sants d’erreurs de Type Il dans les configurations ou
les détecteurs peuvent avoir des buts différents. Nous
étudierons aussi le cas d'un réseau avec des taux
de compressions positifs (i.e. le nhombre de bits des
messages augmente de fagon linéaire avec le nombre
d’'observations). Dans ce cas, nous présentons des
sous-parties de la région des exposants d’erreur de
Type Il. Enfin, nous proposons dans le cas d'un
probleme point a point avec un taux de compression
positif une caractérisation compléte de I'exposant de
I'erreur de Type Il optimal pour une famille de tests
gaussiens.

Title : On cooperative and concurrent detection for distributed hypothesis testing

Keywords : statistics, information theory, hypothesis testing

Abstract : Statistical inference plays a major role
in the development of new technologies and inspires
a large number of algorithms dedicated to detection,
identification and estimation tasks. However, there is
no theoretical guarantee for the performance of these
algorithms. In this thesis we try to understand how
sensors can best share their information in a network
with communication constraints to detect the same or
distinct events. We investigate different aspects of de-
tector cooperation and how conflicting needs can best
be met in the case of detection tasks. More speci-
fically we study a hypothesis testing problem where
each detector must maximize the decay exponent of
the Type Il error under a given Type | error constraint.
As the detectors are interested in different informa-
tion, a compromise between the achievable decay
exponents of the Type Il error appears. Our goal is
to characterize the region of possible trade-offs bet-

ween Type Il error decay exponents. In massive sen-
sor networks, the amount of information is often limi-
ted due to energy consumption and network satura-
tion risks. We are therefore studying the case of the
zero rate compression communication regime (i.e. the
messages size increases sub-linearly with the num-
ber of observations). In this case we fully characterize
the region of Type Il error decay exponent. In configu-
rations where the detectors have or do not have the
same purposes. We also study the case of a network
with positive compression rates (i.e. the messages
size increases linearly with the number of observa-
tions). In this case we present subparts of the region
of Type Il error decay exponent. Finally, in the case of
a single sensor single detector scenario with a posi-
tive compression rate, we propose a complete charac-
terization of the optimal Type Il error decay exponent
for a family of Gaussian hypothesis testing problems.
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