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Thèse de doctorat de l’Institut Polytechnique de Paris
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Spécialité de doctorat : Réseaux, Information et Communications
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Professeur, Université Paris-Est Marne la Vallée Co-directeur de thèse







Titre : Tests d’hypothèses distribués: coopération et détection concurrente

Mots clés : statistiques, théorie de l’information, test d’hypothèses

Résumé : L’inférence statistique prend une place
prépondérante dans le développement des nouvelles
technologies et inspire un grand nombre d’algo-
rithmes dédiés à des tâches de détection, d’iden-
tification et d’estimation. Cependant il n’existe pas
de garantie théorique pour les performances de ces
algorithmes. Dans cette thèse, nous considérons
un réseau simplifié de capteurs communicant sous
contraintes pour tenter de comprendre comment des
détecteurs peuvent se partager au mieux les infor-
mations à leur disposition pour détecter un même
événement ou des événements distincts. Nous in-
vestiguons différents aspects de la coopération entre
détecteurs et comment des besoins contradictoires
peuvent être satisfaits au mieux dans le cas de tâches
de détection. Plus spécifiquement nous étudions un
problème de test d’hypothèse ou chaque détecteur
doit maximiser l’exposant de décroissance de l’er-
reur de Type II sous une contrainte d’erreur de Type I
donnée. Comme il y a plusieurs détecteurs intéressés
par des informations distinctes, un compromis entre
les vitesses de décroissance atteignables va ap-
paraı̂tre. Notre but est de caractériser la région des

compromis possibles entre exposants d’erreurs de
Type II. Dans le cadre des réseaux de capteurs mas-
sifs, la quantité d’information est souvent soumise
à des limitations pour des raisons de consomma-
tion d’énergie et de risques de saturation du réseau.
Nous étudions donc, en particulier, le cas du régime
de communication à taux de compression nul (i.e. le
nombre de bits des messages croit de façon sous-
linéaire avec le nombre d’observations). Dans ce cas,
nous caractérisons complètement la région des expo-
sants d’erreurs de Type II dans les configurations où
les détecteurs peuvent avoir des buts différents. Nous
étudierons aussi le cas d’un réseau avec des taux
de compressions positifs (i.e. le nombre de bits des
messages augmente de façon linéaire avec le nombre
d’observations). Dans ce cas, nous présentons des
sous-parties de la région des exposants d’erreur de
Type II. Enfin, nous proposons dans le cas d’un
problème point à point avec un taux de compression
positif une caractérisation complète de l’exposant de
l’erreur de Type II optimal pour une famille de tests
gaussiens.

Title : On cooperative and concurrent detection for distributed hypothesis testing

Keywords : statistics, information theory, hypothesis testing

Abstract : Statistical inference plays a major role
in the development of new technologies and inspires
a large number of algorithms dedicated to detection,
identification and estimation tasks. However, there is
no theoretical guarantee for the performance of these
algorithms. In this thesis we try to understand how
sensors can best share their information in a network
with communication constraints to detect the same or
distinct events. We investigate different aspects of de-
tector cooperation and how conflicting needs can best
be met in the case of detection tasks. More speci-
fically we study a hypothesis testing problem where
each detector must maximize the decay exponent of
the Type II error under a given Type I error constraint.
As the detectors are interested in different informa-
tion, a compromise between the achievable decay
exponents of the Type II error appears. Our goal is
to characterize the region of possible trade-offs bet-

ween Type II error decay exponents. In massive sen-
sor networks, the amount of information is often limi-
ted due to energy consumption and network satura-
tion risks. We are therefore studying the case of the
zero rate compression communication regime (i.e. the
messages size increases sub-linearly with the num-
ber of observations). In this case we fully characterize
the region of Type II error decay exponent. In configu-
rations where the detectors have or do not have the
same purposes. We also study the case of a network
with positive compression rates (i.e. the messages
size increases linearly with the number of observa-
tions). In this case we present subparts of the region
of Type II error decay exponent. Finally, in the case of
a single sensor single detector scenario with a posi-
tive compression rate, we propose a complete charac-
terization of the optimal Type II error decay exponent
for a family of Gaussian hypothesis testing problems.
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CHAPTER 1

Introduction

1.1 Background and motivations

New technologies based on statistical inference allow to perform a number of estimation, identi�cation

and detection tasks and the optimal performances for such tasks are desirable. For instance the National

Institute of Standards and Technology (NIST) organizes empirical evaluations of the solutions developed

by laboratories and companies around the world for facial recognition [24]. But these evaluations strongly

depend on the types of photos taken. Facial illumination, quality of the photos, the angle of view, the

expression of the subjects and their degrees of cooperation in the shooting are all parameters that make

vary the behavior of an algorithm and the optimal performances for this task are not known. A �rst

step towards a theoretical estimation of the optimal performances for face recognition algorithms is to

understand the e�ect of compression constraints on statistical inference. �is is a critical parameter also

in the case of massive sensors networks found in the Internet of �ings (IoT). �ese sensors networks

are multi-purpose and can be used to detect a �re as well as the amount of light in a house. �ey thus

have a number of simultaneous statistical testing tasks. Our work tackles with these two problems from a

theoretic perspective.

1.2 Summary of the main contributions

In this thesis we consider �rst the single-sensor two-detectors system in Figure 1.1 where Detector 1,

a�er receiving a message from the Sensor, can send a message to Detector 2. �is additional message

allows the detectors to collaborate in their decision and one of the the goals of our work is to quantify

11



1.2. SUMMARY OF THE MAIN CONTRIBUTIONS

the increase in the type II error exponents enabled by this cooperation. We show that even a single bit of

communication between the detectors (the guess about the hypothesis at the transmi�ing detector) can

provide an unbounded gain in the type II error exponent of the detector receiving the bit.

Xn Sensor

Detector 1

Detector 2

M1 ∈ {1, . . . ,W1,n}
M2 ∈ {1, . . . ,W2,n}

Y n2

Y n1

Ĥ1 ∈ {0,1}

Ĥ2 ∈ {0,1}

Figure 1.1: A Heegard-Berger type source coding model with unidirectional conferencing for multiterminal

hypothesis testing.

Decentralized detection systems are of major importance for various applications such as autonomous

vehicles or other complex monitoring systems. �ese systems use multiple detection pipelines that base

their decisions on common or individual observations and o�en these decisions are fusioned at one or

several central detectors. Our scenario can model both multiple detection pipelines and, through the co-

operation link, fusion of various decisions. We consider the case with �xed-length communication. In

our two-detectors setup where each detector aims at maximizing the error exponent under one of the two

hypotheses, two cases can be distinguished: both detectors aim at maximizing their exponents under the

same hypothesis (we refer to this setup as coherent detection) or the two detectors aim at maximizing their

exponents under di�erent hypotheses (we refer to this setup as concurrent detection). In this thesis we

consider both scenarios. Under coherent detection or under concurrent detection when the sensor can

send more than a single bit or cannot distinguish the two hypotheses, the exponents region is a rectangle.

In these cases, each detector achieves the same exponent as if it were the only detector in the system. In

contrast, a tradeo� arises under concurrent detection if the sensor can distinguish the two hypotheses but

can only send a single bit to the detectors. A comparison with the optimal exponents regions without

cooperation [9], allows us to exactly quantify the bene�ts of detector cooperation in this setup with �xed

communication alphabets. All results explained in this paragraph remain valid when the alphabets size

are not �xed but grow sublinearly in the length of the observed sequences. �ey also generalize to an

arbitrary number of hypotheses. Whereas for two detectors a tradeo� between the exponents arises only

when the sensor sends a single bit to the detectors, in a multi-hypothesis testing scenario with the num-

ber of distinct hypotheses, H, is superior or equal to 3 such a tradeo� can arise whenever the number of

communicated bits does not exceed log2H. �e case of positive communication rates is also investigated.

On a more technical level, the presence of a cooperation link between the detectors seems to make the

12



1.3. ORGANIZATION OF THE THESIS

problem of identifying the optimal type II exponents signi�cantly more di�cult. For example, without

cooperation, the set of achievable exponents for testing against independence has been solved in [41],

and it is achievable with a simple scheme that does not rely on binning. With cooperation, we managed

to identify the optimal exponents only under the additional assumption that the observations at the two

detectors are independent under both hypotheses and the cooperation rate is zero. In the general case,

binning is necessary, which makes generally it hard to prove optimality of the achieved exponent. Notable

exceptions are the results included in [25, 30, 26, 33, 44]. For the sake of simplicity, in Chapter 5 we there-

fore only present and analyze a simple coding scheme without binning and also without Heegard-Berger

[16] coding. We prove that this simple scheme is optimal in a special case of testing against independence

where it achieves an exponent at Detector 2 equal to the sum of the exponents at both detectors in a

non-cooperative setup. Cooperation between detectors thus allows to accumulate the error exponents at

the detectors. �e testing against independence problem considered in this paper di�ers from the one in

[47], where the �rst detector cannot achieve a positive error exponent. �e exponents region can signif-

icantly di�er under the cooperative and the non-cooperative setup, in particular when based on its own

observation the sensor can guess the hypothesis, communicate this guess to the detectors, and adapt the

communication to this guess. With this strategy, the exponents region achieved by our simple scheme

is a rectangle under concurrent detection, which means that each detector’s exponent is the same as in

a setup where the other detector is not present. Under coherent detection or concurrent detection when

the sensor cannot distinguish the two hypotheses, the exponents region achieved by our scheme shows a

tradeo� between the two exponents.

�e major goal of the second part of this thesis is to characterize the rate-exponent function of a single-

sensor single-detector model. We extend the known single-le�er characterizations of the rate-exponent

function in the Gaussian vector case (testing against independence and testing against conditional inde-

pendence) to a more general class and provide explicit forms for them. We start by giving a single-le�er

characterization of the rate-exponent function generalizing the one of [25, �eorem 3] to a broader class

of problems. �en we show that the rate-exponent functions of two systems whose observations are in a

one to one relationship are equal. Finally, using previous results we provide a single-le�er characteriza-

tion of the rate-exponent function for a class of Gaussian hypothesis testing problem by showing that the

rate-exponent function of each problem of this class is equal to the rate-exponent function of a problem

previously characterized and we provide for it an explicit form based on the result of [39, 44].

1.3 Organization of the thesis

�e remainder of this thesis is organized as follows. In Chapter 2 we introduce the distributed hypothesis

tesing problem and the information theoretic tools used in this thesis. In Chapter 3 we review known

13



1.3. ORGANIZATION OF THE THESIS

results on hypothesis testing (i.e., collocated sensors). In Chapter 4 we present our result for the zero rate

cases for the single-sensor two-detectors model: we present the error-exponent region for both concurrent

and coherent detection for �xed length alphabet and sublinear growing number of bits. In Chapter 5 we

present our results on positive rates for the same model: we gives optimal results for special cases and

an achievability result for the general problem. In Chapter 6 we present our results for the single-sensor

single-detector model: we give optimal results for a family of Gaussian hypothesis tests.

14



CHAPTER 2

Prerequisites

In this section we present some basic information theory tools that will be used all along this report. First

we present the notations, and then the method of types. �en we present the notion of typicality (for more

details see [6] and [21]), and �nally we present a last tool called the Blowing-up lemma (for more details

see [7]).

2.1 Notations

�roughout, we use the following notation. Caligraphic le�ers X , Y and Z denote �nite sets. Random

variables are denoted by capital le�ers and their realizations by lower case, e.g., X and x. �e cardinality

of a set X is denoted by |X | and the set of probability distributions on X is denoted by P (X ). A random or

deterministic n-tuple X1, . . . ,Xn or x1, . . . ,xn is abbreviated as Xn or as xn. �e n-fold Cartesian product

of the set X is noted X n and the probability that n independent drawings with p.m.f. PX ∈ P (X ) results

in a sequence xn denoted by P ⊗nX (xn). For PX ∈ P (X ) the set of all x ∈ X such that P (x) , 0 is called the

support of PX and noted supp(PX) ⊆ X . When two random variables (X,Y ) are independent given a third

random variable Z (i.e. PXYZ = PZPX |ZPY |Z ), (X,Z,Y ) form a Markov chain and we note X −
−Z −
−Y .

For random variables X,Y and X̄, Ȳ over the same alphabet X × Y with p.m.f.s PXY and P̄XY satisfying

PX � P̄X (i.e., for every x0 ∈ X , if P̄X(x0) = 0 then also PX(x0) = 0), D(PX‖P̄X) denotes the Kullback-

Leiber divergence between PX and P̄X , and if for all y ∈ Y , PX |Y=y � P̄X |Y=y , D(PX‖P̄X |Y ) denotes the

Kullback-Leiber divergence between X and X̄ given Y , i.e.:

D(PX‖P̄X)=
∑

x∈supp(PX )

PX(x) log
PX(x)
P̄X(x)
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2.2. TYPES AND TYPICAL SETS

D(PX‖P̄X |Y )=
∑
y∈Y

PY (y)D(PX |Y=y‖P̄X |Y=y)

H(·) denotes entropy, i.e.:

H(PX) = −
∑

x∈supp(Px)

PX(x) logPX(x).

All along this report we will use the convention 0log(0) = 0log(00 ) = 0, and if PX � P̄X do not hold,

D(PX‖P̄X) =∞. For a sequence xn the limit superior is

lim
n→∞

xn = lim
n→∞

(
sup
m>n

xm
)
,

and the limit inferior is

lim
n→∞

xn = lim
n→∞

(
inf
m>n

xm
)
.

Boldface upper case le�ers denote random vectors or matrices, e.g., X, where context should make the

distinction clear. We denote the covariance of a zero mean, real-valued, vector X with p.d.f. PX by KX =

EPX[XX
†] and with p.d.f. P̄X by K̄X = EP̄X[XX

†], where (.)† indicates transpose. Similarly, we denote

the cross-correlation of two zero-mean vectors X and Y with p.d.f. PXY by KXY = EPXY[XY
†] with p.d.f.

PX by K̄XY = EP̄XY[XY
†]. We denote the conditional covariance matrix of X given Y with p.d.f. PX|Y

by KX|Y = EPXY[XX
†|Y] and the conditional covariance matrix of X given Y with p.d.f. P̄X|Y by K̄X|Y =

EP̄XY[XX
†|Y]. For a matrix M, M+

denote the Moore-Penrose pseudo-inverse of M and |M|+ denotes the

pseudo-determinant of M.

2.2 Types and typical sets

�e type of a sequence xn ∈ X n and the joint type of the sequences xn and yn ∈ Yn are the p.m.f.s Pxn ∈

P (X ) and Pxn,yn ∈ P (X ×Y ) de�ned by le�ing Pxn(x) and Pxn,yn(x,y) be the relative frequency of x among

x1, · · · ,xn and of (x,y) among (x1, y1), · · · , (xn, yn):

Pxn(x)=
|{i : xi = x}|

n
(2.1)

Pxn,yn(x,y)=
|{i : (xi , yi) = (x,y)}|

n
(2.2)

Also, let

Pxn|yn(x|y) =
Pxn,yn(x,y)

Pyn(y)
(2.3)

be the conditional law induced by Pxn,yn(x,y) and Pyn(y). �e set of all possible types of sequences xn ∈ X n

is denoted Pn(X ):

Pn(X ) = {PX ∈ P (X ) : ∃xn ∈ X n satisfying Pxn = PX} . (2.4)

For any PX ∈ Pn(X ), the set of all possible sequences xn with type PX is the type class of PX ,

T n(PX) = {xn ∈ X n : Pxn = PX} . (2.5)
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2.2. TYPES AND TYPICAL SETS

�e following lemma states that Pn(X ) grows at polynomial speed with n:

Lemma 2.1

|Pn(X )| ≤ (n+1)|X |. (2.6)

Proof: see [5].

Proposition 2.2 For all xn ∈ T n(PX):

Q⊗n(xn)=exp
[
−n (H(PX) +D(PX‖QX))

]
. (2.7)

Proof: see [5].

We have the following bounds on the cardinality and the probability of the type class:

Proposition 2.3 For any type PX ∈ Pn(X ):

(n+1)−|X | exp
[
nH(PX)

]
≤ |T n(PX)| ≤exp

[
nH(PX)

]
(2.8)

(n+1)−|X | exp
[
−nD(PX‖QX)

]
≤Q⊗nX

(
T n(PX)

)
≤exp

[
−nD(PX‖QX)

]
(2.9)

Proof: Plugging QX = PX into equation (2.7) yields P ⊗n(xn) = exp
[
−nH(PX)

]
, and thus

P ⊗nX (T n(PX)) =
∑

xn∈T n(PX )
P ⊗n(xn) = |T n(PX)|exp

[
−nH(PX)

]
. (2.10)

�e second inequality in Equation (2.8) now holds simply because

1 ≥ P ⊗n(T n(PX)). (2.11)

�e �rst inequality in Equation (2.9) holds by (2.11) and the following inequalities

P ⊗n(T n(PX))
(a)
= max
P̃X∈Pn(X )

P ⊗nX (T n(P̃X))

(b)
≥ 1
|Pn(X )|

∑
P̃X∈Pn(X )

P ⊗nX (T n(P̃X))

(c)
=

1
|Pn(X )|

(d)
≥ (n+1)−|X |. (2.12)

Here, (a) holds of (2.7); (b) because the maximum is superior to the average; (c) because the type classes

form a partition of X n; and (d) because of Equation (2.6). Finally Equation (2.9) follows directly from

equations (2.8) and (2.10). �is concludes the proof.

�e method of types has various application in information theory. In the following we present one of the,

Sanov’s theorem.
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2.3 Sanov’s theorem

�eorem 2.4 (Sanov) Let Xn = (X1, . . . ,Xn) be i.i.d. ∼ QX . For any subset of types L ⊆ P (X ). �e corre-

sponding subset of X n,

An =
⋃

PX∈
(
L∩Pn(X )

)T n(PX),
satis�es

Pr
(
Xn ∈ An

)
≤ (n+1)|X |e

−nmin
PX∈L

D(PX‖QX )
. (2.13)

If in addition, the set L is the closure of its interior,

lim
n→∞
−1
n
log

(
Pr(Xn ∈ An)

)
=min
PX∈L

D(PX‖QX). (2.14)

Proof: See [5, �eorem 11.4.1].

2.4 Typicality

We now introduce the notion of typical sequences and typical sets which is central in information theory.

Di�erent notions of typicality can be encountered in the literature. In particular the weak typicality [5,

Chapter 3] is opposed to the more restrictive strong typicality that we present below.

De�nition 2.1 Fix µ > 0. A µ-typical sequence with respect to (w.r.t.) a p.m.f. PX ∈ P (X ) is a sequence xn

that satis�es:

|Pxn(x)− PX(x)| < µPX(x) for all x ∈ X . (2.15)

�e subset

T nµ (PX) =
{
xn : |Pxn(x)− PX(x)| < µPX(x) for all x ∈ X

}
⊂ X n, (2.16)

is called the µ-typical set w.r.t. PX . We de�ne in a similar manner the set of the jointly µ-typical sequences,

T nµ (PXY ).

Proposition 2.5 Fix µ such that µX ≥ µ > 0 and xn ∈ T nµ (PX). If X is generated i.i.d. given PX , then:

e−n(1+µ)H(PX )≤P ⊗nX (xn) ≤ e−n(1−µ)H(PX ), (2.17)(
1− δµ(n)

)
en(1−µ)H(PX )≤|T nµ (PX)| ≤ en(1+µ)H(PX ), (2.18)

1− δµ(n)≤Pr
(
Xn ∈ T nµ (PX)

)
≤ 1, (2.19)

where δµ(n) = 2|X |exp[−nµ2 min
x∈supp(PX )

PX(x)].
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Proof: see [21, �eorem 1.1].

As mentioned before there are multiple de�nitions of typical sets that are adapted to di�erent contexts.

Strong typicality is well adapted to distributed hypothesis testing problem, but we can found some demon-

stration using other notions of typicality. A noticeable example is the demonstration of Cherno�-Stein

Lemma given in [5, Section 11.8] which uses a coarser version than strong-typicality (i.e. relative entropy

based typicality) yet su�cient for this purpose.

2.5 Blowing up lemma

We recall the “Blowing-Up” lemma [7, �eorem 5.4].

Lemma 2.6 (“Blowing-Up” lemma) Let Y n = (Y1, . . . ,Yn) be independent random variables in Yn, dis-

tributed according to W n(Y n|Xn = xn) for some �xed vector xn ∈ X n and a stochastic mapping W : X →

P (Y ). Let δn→ 0 be a given sequence. �en, there exist sequences kn and γn satisfying:

lim
n→∞

kn
n

= 0, lim
n→∞

γn
n

= 0

such that for every subset An ⊂ Yn for which

W n(An|Xn = xn) ≥ exp(−nδn) (2.20)

we have

W n(Γ knAn|Xn = xn) ≥ 1−γn (2.21)

where Γ knAn denotes the Γ kn-neighborhood of An, de�ned as

Γ knAn :=
{
ŷn ∈ Yn : ∃yn ∈ An satisfying dH (y

n, ŷn) ≤ kn
}

(2.22)

and dH (·, ·) denotes the Hamming distance.

�e Blowing-up lemma is the key element of the proof of the following theorem due to Shalaby and Pa-

pamarcou (see [31, �eorem 3]) which is at the origin of numerous strong converses in the zero-rate case.

�eorem 2.7 (Shalaby and Papamarcou 94’) Fix ρ > 0, ε ∈ (0,1), and let Mn be a sequence of integers

such that:

lim
n→∞

1
n
logMn = 0. (2.23)

�en there exists a sequence:

νn = νn(ρ,ε,Mn, |X |, |Y |)→ 0, (2.24)
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such that for every QXY ∈ P (X × Y ) that satis�es for all (x,y) ∈ X × Y , QXY (x,y) ≥ ρ, and every PXY ∈

P (X ×Y ), C ⊆ X n, F ⊆ Yn that satisfy

P ⊗nX (C) ≥ 1− ε
Mn

, P ⊗nY (F) ≥ 1− ε
Mn

, (2.25)

the following is true:

Q⊗nXY (C ×F) ≥ exp
[
−n

(
D(PXY ‖QXY ) + νn

)]
. (2.26)

Proof: See Appendix A.
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CHAPTER 3

Prior-art

3.1 Centralized hypothesis testing

3.1.1 Receiver operating characteristic (ROC)

Consider a Detector observing a sequenceXn ∈ X n with p.m.f. which depends on one of the two hypothe-

ses. Under hypothesis

H = 0: {Xt}nt=1 i.i.d. PX (3.1)

under hypothesis

H = 1: {Xt}nt=1 i.i.d. P̄X . (3.2)

�e Detector then chooses an acceptance region An ⊆ X n. It produces Ĥ = 0 if Xn ∈ An and Ĥ = 1

otherwise. We de�ne the following error probabilities:

αn := Pr

{
Ĥ = 1

∣∣∣H = 0
}
= P ⊗n(Acn), (3.3)

βn := Pr

{
Ĥ = 0

∣∣∣H = 1
}
= P̄ ⊗n(An) (3.4)

�e Neyman-Pearson lemma shows that an optimal acceptance regionAT ,n can be found via the likelihood

ratio test:

AT ,n =
{
xn ∈ X n :

P ⊗nX (xn)

P̄ ⊗nX (xn)
> T

}
, (3.5)

where T is a positive scalar to be determined based on the desired regime of operation. Denote the prob-

abilities of Type I and Type II error of this test by α∗n,T and β∗n,T .
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3.1. CENTRALIZED HYPOTHESIS TESTING

Lemma 3.1 (Neymann-Pearson Lemma) For any acceptance regionAn ⊆ X n with associated probabili-

ties of Type I and Type II error, αn and βn , for all values of T the following holds:

αn ≤ α∗n,T ⇒ βn ≥ β∗n,T . (3.6)

Proof: see [5, �eorem 11.7.1].

De�nition 3.1 For any α∗n ∈ (0;1):

β∗n(α
∗
n) = min

T :α∗n≥α∗n,T
β∗n,T (3.7)

is the optimal receiver operating characteristic (ROC).
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Figure 3.1: Approximation of ROCs in logarithm scales (also known as Detection Error Tradeo� (DET

characteristics) for various algorithms presented at FRVT [24]. �e approximation is done using a base of

labeled face images. �e False non-match rate corresponds to the ratio of matching faces pairs (two face

images of the same person) in the base that where classi�ed as being those of distinct persons. �e False

match rate corresponds to the ratio of non-matching faces pairs (two face images of distinct persons) in

the base that where classi�ed as being those of the same person.

Remark 3.1 Lemma 3.1 states that the likelihood ratio tests ensures the best Type II error probability for

a given Type I error probability. It does not give a closed form of the optimal ROC. Actually such a result
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3.1. CENTRALIZED HYPOTHESIS TESTING

is hard to obtain in general. Almost all detection algorithms enable to make vary the tradeo� between the

Type I error and the Type II error and so they are also characterized by a theoretical ROC. As for the optimal

ROC, it seems di�cult to obtain a closed form for them. Researchers compute an approximation of this ROCs.

Here we represent some face recognition algorithms ROCs extracted from the NIST report on the ongoing Face

Recognition Vendor Test [24] in Figure 3.1.

3.1.2 Error exponent

As stated in Remark 3.1, the closed form of the ROC curve is not known in general for a �nite n. Noticeable

work in that direction is [35] which provides approximation to this ROC. In a regime where the number

of observations increases in�nitely, the optimal probabilities of the Type I error and Type II error decay

to 0 and the compromise between these two quantities vanishes. However, there is always a compromise

between their decay rate. �is tradeo� has been studied in [17] and [4]. In what follows we limit ourselves

to the study of the case where only the Type II error is restricted to decay exponentially fast because the

problem, when it is transposed to the distributed case, is of formidable complexity and somehow contains

a major di�culty to be solved before solving the general case. In the asymptotic regime as n→∞ for any

�xed bound ε > 0 on the Type I error probability αn, it is possible to let the Type II error probability βn

decrease exponentially fast to 0 as n→∞. We have a closer look and analyze the exponential speed of

this convergence.

De�nition 3.2 (Achievability for the centralized setup) Fix ε ∈ (0, 12 ), an error-exponent θ is achiev-

able if for all blocklengths n there exists an acceptance region An ∈ X n so that the corresponding Type I and

Type II error probabilities αn and βn satisfy:

lim
n→∞

αn ≤ ε, (3.8)

and

θ ≤ lim
n→∞
−1
n
logβn. (3.9)

We introduce the Cherno�-Stein lemma, which characterizes it.

Lemma 3.2 (Cherno�-Stein lemma) Fix ε ∈ (0,1) and de�ne E(ε) the supremum of the set of all achiev-

able error-exponents. �en:

E(ε) =D(PX‖P̄X). (3.10)

Proof: see [5, �eorem 11.8.3]

Remark 3.2 Cherno�-Stein lemma is an asymptotic �rst-order approximation of the optimal ROC curve. It

provides an approximation of the decay rate of the Type II error with the number of observations. Note that
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the error exponent does not depend on the Type I error. It is a strong converse result in the sense that there is

an sharp threshold between the achievable exponents and the others.

3.2 Hypothesis testing with communication constraints

Xn Sensor Detector

Y n

M
Ĥ ∈ {0,1}

Figure 3.2: Binary hypothesis testing with one sided data compression.

Consider a two-terminal problem with a Sensor observing the sequence Xn and a detector observing Y n

(see �gure 3.2). Here (Xi ,Yi) take values in the alphabet X ×Y . �e p.m.f. of the tuple (Xn,Y n) depends

on one of two hypotheses. Under hypothesis

H = 0: {(Xt ,Yt)}nt=1 i.i.d. PXY (3.11)

and under hypothesis

H = 1: {(Xt ,Yt)}nt=1 i.i.d. P̄XY (3.12)

�e Sensor applies an encoding function

φn : X n→M , {0,1, . . . ,Wn − 1} (3.13)

to its observed source sequence Xn and sends the resulting index

M = φn(X
n) (3.14)

to the Detector. �e Detector then applies a decision function to the pair (M,Y n):

ψn : M×Yn→ {0,1}. (3.15)

to decide on the hypothesis

Ĥ , ψn(M,Y n). (3.16)

We de�ne the following error probabilities:

αn := Pr

{
Ĥ = 1

∣∣∣H = 0
}
, (3.17)

βn := Pr

{
Ĥ = 0

∣∣∣H = 1
}
. (3.18)
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De�nition 3.3 (Achievability under Rate-Constraints) Given rate R ≥ 0, an error-exponent θ is said

achievable if for all blocklengths n there exist functions φn and ψn as in Equation (3.13), and Equation (3.15)

so that the following limits hold:

lim
n→∞

αn = 0, (3.19)

θ ≤ lim
n→∞
−1
n
logβn, (3.20)

and

lim
n→∞

1
n
logWn ≤ R. (3.21)

De�nition 3.4 (Exponent-rate function) For any rate R ≥ 0, de�ne the exponent-rate function E(R) as

the supremum of all achievable error-exponents.

3.2.1 �e work of Ahlswede and Csiszár

�e �rst record on the subject of distributed hypothesis testing known by the author is [1]. In this work

Ahlswede and Csiszár considered the scenario depicted in Figure 3.2. When under hypothesis

H = 0 : {(Xt ,Yt)}nt=1 i.i.d. PXY (3.22)

and under hypothesis

H = 1 : {(Xt ,Yt)}nt=1 i.i.d. P̄XY = PX × PY , (3.23)

they derived a single-le�er expression for the rate-exponent function denoted in this case EI (R):

�eorem 3.3 (Exponent-rate function when testing against independence) For every R > 0, when

P̄XY = PX × PY :

EI (R) = max
U :I(U ;X)≤R
U−
−X−
−Y
|U |≤|X |+1

I(U ;Y ). (3.24)

�is case is know as testing against independence. �e authors also gave a general lower bound for any

binary hypothesis testing in Section 3.2:

�eorem 3.4 (Lower bound for the exponent-rate function in the general case) For every R > 0:

E(R) ≥D(PX‖P̄X) + max
U :I(U ;X)≤R
U−
−X−
−Y

D(PUY ‖P̄UY ). (3.25)

with P̄UXY = PU |X P̄XY .

Some basic properties of the exponent-rate function were also derived in [1].

Proposition 3.5 �e exponent-rate function E(R) is monotonically increasing and concave for R ≥ 0 and

continuous for positive R.
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3.2.2 No binning: Han’s Scheme

Han presented a similar scheme which is optimal in the case of testing against independence and improves

the result of Ahlswede and Csiszár in the general case (see [14]).

�eorem 3.6 (Lower bound for the exponent-rate function in the general case) For every R > 0:

E(R) ≥ EH (R) , max
U :I(U ;X)≤R
U−
−X−
−Y
|U |≤|X |+1

min
P̃UXY :P̃UX=PUX
P̃UY=PUY

D(PUXY ‖P̄UXY ). (3.26)

with P̄UXY = PU |X P̄XY .

Remark 3.3 It appears that the inner bound of �eorem 5.4 coincides with the exponent-rate function in the

case of testing against independence and improve the inner bound presented in�eorem 3.4 in the general case.

Remark 3.4 We consider the (trivial) extreme case where the link is of high rate so that under hypothesis

H = 0, the Detector can obtain the sequence Xn with high probability. In this case the Detector a�ains the

error-exponent of a centralized setup where it observes (Xn,Y n). And so as long as R ≥ H(X), Lemma 3.2

applied and the exponent-rate function veri�es

E(R) = EC ,D(PXY ‖P̄XY ). (3.27)

In addition Lemma 3.2 enables us to obtain the following (trivial) upper bound: for every R ≥ 0:

E(R) ≤ E
C
. (3.28)

3.2.3 Role of binning: Shimokawa, Han and Amari scheme

�e scheme used in [1, 14] is based on classic source coding arguments. In [32], these arguments are

completed using binning. In the former contributions the Sensor sends the index of the compression

codeword. In the later the Sensor sends the index of a choosen codeword’s bin and the decoder uses

its side-information to retrieve the chosen codeword in the bin. �is is similar to the Wyner-Ziv source

coding scheme [42]. Nonetheless in standard source coding a typicality test is used to retrieve the chosen

codeword. �is requires knowledge of the joint distribution between the codeword sent by the sensor

and the side information. But in case of distributed hypothesis testing this joint law is not known as it

can be either PXY or P̄XY depending on whether H = 0 or H = 1. In [32], a minimum entropy decoder

strategy is used to overcome this uncertainty. �e sensor searches for a unique codeword that minimizes

the empirical joint entropy with the side-information. �is scheme improves the exponent of [14].

�eorem 3.7 (Shimokawa Han and Amari 87’) For every R > 0:

E(R) ≥ E
SHA

(R) , max
U :I(U ;X |Y )≤R
|U |≤|X |+2
U−
−X−
−Y

min
{
E1(PU |X),E2(R,PU |X)

}
(3.29)
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where:

E1(PU |X), min
P̃UXY :P̃UX=PUX
P̃UY=PUY

D(P̃UXY ‖P̄UXY ), (3.30)

E2(R,PU |X),


∞ if I(U ;X) ≥ R

min
P̃UXY :P̃UX=PUX

P̃Y=PY , H(P̃UY )≤H(PUY )

D(PUXY ‖P̄UXY ) + [R− I(U ;X |Y )]+ otherwise.

Here P̄UXY = PU |X P̄XY

Proof: see [32].

3.2.4 Exponent-rate function when testing against conditional independence.

Xn Sensor Detector

(Y n,Zn)

M
Ĥ ∈ {0,1}

Figure 3.3: Binary hypothesis testing with one-sided data compression and two stream of side information

at the Detector.

In [25], a scheme using binning is shown to be optimal for testing against conditional independence de�ned

in the following. Consider the same two-terminal problem as in the last section. �e Sensor observes the

sequence Xn and the Detector the sequences Y n and Zn ( see Figure 3.2.4). Here (Xi ,Yi ,Zi) take values

in the alphabet X × Y ×Z. �e joint p.m.f. of the tuple (Xn,Y n,Zn) depends on the hypothesis. Under

hypothesis

H = 0 : {(Xt ,Yt ,Zt)}nt=1 i.i.d. PXYZ (3.31)

and under hypothesis

H = 1 : {(Xt ,Yt ,Zt)}nt=1 i.i.d. P̄XYZ = PZPX |ZPY |Z . (3.32)

�e sensor behaves as in the previous section (see 3.13 and (3.14). �e Detector applies the decision function

ψn : M×Yn ×Zn→ {0,1}. (3.33)

to decide on the hypothesis

Ĥ , ψn(M,Y n,Zn). (3.34)

�e exponent-rate function is de�ned similarly to before and denoted E
CI
(R). We have the following

theorem:
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�eorem 3.8 (Exponent-rate function when testing against conditional independence) For every

R > 0:

E
CI
(R) = max

U :I(U ;X |Z)≤R
U−
−X−
−Z
|U |≤|X |+1

I(U ;Y |Z). (3.35)

Proof: See [25, �eorem 3].

Remark 3.5 In [25] this result was obtained using a distinct scheme from the one of Shimokawa, Han and

Amari in [32]. As the joint p.m.f PXZ and P̄XZ are equal, it is possible for this problem to use a “classic” binning

strategy where the Detector uses its side information Zn to retrieve the codeword chosen by the Sensor in the

bin which is indexed by the message it receives. �en it tests if the codeword decoded is typical with its side

information given the p.m.f. of H = 0. �is scheme is shown to achieve the optimal exponent-rate function.

Nonetheless in the same contribution the sheme used in [32] is also shown to be optimal for this very same

scenario.

3.2.5 Some examples

Example 3.1 (Testing against independence) Consider a setup where X,Y are binary with pmfs PXY (0,0) = 0.4 PXY (0,1) = 0.1

PXY (1,0) = 0.1 PXY (1,1) = 0.4
,

and P̄XY = PXPY . In that case the optimal exponent-rate function is given in �eorem 3.3 and plo�ed in

Figure 3.4. On the same �gure we plo�ed the error-exponent obtained for the centralized setup.

0.0 0.5 1.0
R

0.0

0.1

0.2

E(R)

EI (R) (see �eorem 3.3.)

EC (see Remark 3.4.)

Figure 3.4: Optimal exponent-rate function given by �eorem 3.3 for Example 3.1 and the trivial upper

bound for the exponent-rate function of Remark 3.4 for Example 3.1.
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Example 3.2 (Case where binning is bene�cial) Consider a setup where X,Y are binary with pmfs PXY (0,0) = 0.45 PXY (0,1) = 0.05

PXY (1,0) = 0.05 PXY (1,1) = 0.45
,

 P̄XY (0,0) = 0.4 P̄XY (0,1) = 0.1

P̄XY (1,0) = 0.1 P̄XY (1,1) = 0.4
. (3.36)

On Figure 3.5 we represent achievable error-exponent given by �eorem 3.6 and �eorem 3.7. In that case

binning is bene�cial and for a given rate R ≥ 0, the error-exponent obtained with �eorem 3.7 is always larger

than the one obtained with �eorem 3.6. On the same �gure we plo�ed in red the exponent obtained for the

centralized setup given in Equation (3.10).

0.0 0.3 0.6 0.9
R

0.00

0.02

0.04

E
H
(R) (see �eorem 3.6)

E
SHA

(R) (see �eorem 3.7)

E
C

(see Remark 3.4)

Figure 3.5: Lower bounds for the exponent-rate function given by �eorems 3.6 and 3.7 and the trivial

upper bound for the exponent-rate function of Remark 3.4 for Example 3.2.

Example 3.3 (Testing against conditional independence) Consider a setup as in Figure 3.2.4 where X,

Y , Z are binary with p.m.f.s PXYZ(0,0,0) = 1.e − 4 PXYZ(0,0,1) = 5.e − 2 PXYZ(0,1,0) = 4.99e − 2 PXYZ(0,1,1) = 3.e − 1

PXYZ(1,0,0) = 3.e − 1 PXYZ(1,0,1) = 2.5e − 1 PXYZ(1,1,0) = 2.5e − 2 PXYZ(1,1,1) = 2.5e − 2

and P̄XYZ = PZPX |ZPY |Z . On Figure 3.6 we represent the achievable error-exponent given by �eorem 3.6 and

�eorem 3.7. As shown in �eorem 3.8 the error-exponent of �eorem 3.7 is optimal. On the same �gure we

plo�ed in red the error-exponent obtained for the centralized setup given in Equation (3.10).

3.2.6 Zero-rate hypothesis testing

Zero rate hypothesis testing was introduced in [14], which studied the general distributed binary hypoth-

esis testing problem and determined the maximal error-exponent when the Sensor can send only one bit,

i.e. the function φn de�ned in 3.13 is restricted to

Wn = 2. (3.37)
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0.0 0.5 1.0 1.5
R

0.0

0.1

0.2

0.3

0.4

0.5

E(R)

E
H
(R) (see �eorem 3.6)

E
CI
(R) (see �eorem 3.8)

E
C

(see Remark 3.4)

Figure 3.6: Lower bounds for the exponent-rate function given by �eorems 3.6 and 3.8 and the trivial

upper bound for the exponent-rate function of Remark 3.4 for Example 3.3.

In [31] this result is extended to any function φn satisfying

lim
n→∞

1
n
logWn = 0, (3.38)

which corresponds to the case where only a sublinear number of bits are sent.

De�nition 3.5 (Achievability for zero rate compression) For ε ∈ (0,1), an error-exponent θ is said

achievable under zero rate constraint, if for all blocklengths n there exist functions φn and ψn as in (3.13)

and (3.15) so that (3.38) holds and

lim
n→∞

αn≤ε (3.39a)

lim
n→∞
−1
n
logβn≥θ. (3.39b)

If Wn = 2, see (3.37), we say that θ is achievable under complete compression.

De�nition 3.6 �e supremum of all achievable error-exponent for sublinear number of bits is called the

maximum error-exponent for zero rate compression and denotedE∗(ε). ForWn = 2 it is called the maximum

error-exponent under complete compression and it is denoted E2(ε).

For this scenario we have this result:

�eorem 3.9 (Maximal error-exponent for zero rate compression) Let P̄XY (x,y) > 0, for all (x,y) ∈

X ×Y . �en for ε ∈ (0,1):

E∗(ε) = E2(ε) = min
P̃XY :P̃X=PX ,
P̃Y=PY

D(P̃XY ‖P̄XY ). (3.40)
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Proof: For the achievability see [14, �eorem 5] and for the converse see [31, �eorem 1].

3.2.7 Model with cooperation

In [47] a three-terminal hypothesis testing problem is considered with a Sensor 1 observing the sequence

Xn, a Sensor 2 observing Y n1 , and a Detector observing Y n2 (see Figure 3.7). �e joint probability mass

function (p.m.f.) of the tuple (Xn,Y n1 ,Y
n
2 ) depends on one of two hypotheses. Under hypothesis

H = 0: {(Xt ,Y1,t ,Y2,t)}nt=1 i.i.d. PXY1Y2 (3.41)

and under hypothesis

H = 1: {(Xt ,Y1,t ,Y2,t)}nt=1 i.i.d. P̄XY1Y2 . (3.42)

Sensor 1

Sensor 2

Detector

Y n2

Y n1

Xn
M1 ∈ {1, . . . ,W1,n}

M2 ∈ {1, . . . ,W2,n}
Ĥ ∈ {0,1}

Figure 3.7: Binary hypothesis testing in a cooperative MAC studied in [47].

Sensor 1 applies an encoding function

φ1,n : X n→M1 , {0,1, . . . ,W1,n − 1} (3.43)

to its observed source sequence Xn and sends the resulting index

M1 = φ1,n(X
n) (3.44)

to Sensor 2 and the Detector. Sensor 2 applies an encoding function

φ2,n : Yn1 ×M1→M2 , {0,1, . . . ,W2,n − 1} (3.45)

to its observed source sequence Y n1 and sends the resulting index

M2 = φ2,n(Y
n
1 ,M1) (3.46)

to the Detector. �e Detector then applies a decision function to the triple (M1,M2,Y
n):

ψn : M1 ×M2 ×Yn2 → {0,1}. (3.47)
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to decide on the hypothesis

Ĥ = ψn(M1,M2,Y
n
2 ). (3.48)

We de�ne the following error probabilities:

αn := Pr

{
Ĥ = 1

∣∣∣H = 0
}
, (3.49)

βn := Pr

{
Ĥ = 0

∣∣∣H = 1
}
. (3.50)

De�nition 3.7 (Achievability under rate-constraints for model in Figure 3.7) Given rates R1 ≥ 0,

R2 ≥ 0 and small positive number ε ∈ (0,1) an error-exponent θ is said achievable for this model if for

all blocklengths n there exist functions φ1,n, φ2,n and ψn as in Equation (3.43), Equation (3.45), and Equa-

tion (3.47) so that the following limits hold:

lim
n→∞

αn ≤ ε, (3.51)

θ ≤ lim
n→∞
−1
n
logβn, (3.52)

lim
n→∞

1
n
logW1,n ≤ R1, (3.53)

lim
n→∞

1
n
logW2,n ≤ R2. (3.54)

De�nition 3.8 (Exponent-rate function) For any rate R1 ≥ 0, R2 ≥ 0, let E
ZL
(R1,R2) be the supremum

all achievable error-exponents.

For given rates R1 ≥ 0 and R2 ≥ 0, de�ne the following set of auxiliary random variables:

S
ZL

=


(U1,U2);

U1 −
−X −
− (Y1,Y2)

U2 −
−Y1 −
− (X,Y2)

I(U1;X) ≤ R1

I(U2;Y1|U1) ≤ R2

|U1| ≤ |X |+1

|U2| ≤ |Y1||U1|+1


(3.55)

and for any pair of auxiliary random variable (U1,U2) ∈ SZL
, let

L =

P̃U1U2XY1Y2 :

P̃U1X = PU1X

P̃U1U2Y1 = PU1U2Y1

P̃U1U2Y2 = PU1U2Y2

 . (3.56)

A lower bound to the exponent-rate function is derived for this setup. It is optimal when in addition:

P̄XY1Y2 = PXY1PY2 . (3.57)
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�eorem 3.10 (Zhao and Lai) �en for R1 ≥ 0 and R2 ≥ 0 , the exponent-rate function for this problem,

E
ZL
(R1,R2), satis�es

E
ZL
(R1,R2) ≥ max

(U1,U2)∈SZL

min
P̃U1U2XY1Y2∈L

D(P̃U1U2XY1Y2‖PU1|XPU2|U1Y1QXY1Y2). (3.58)

If in addition (3.57) holds, then

E
ZL
(R1,R2) = max

(U1,U2)∈SZL

I(U2U1;Y2). (3.59)

Proof: see [47].

3.2.8 Model with multiple detectors

Xn Sensor

Detector 1

Detector 2

M1 ∈ {1, . . . ,W1,n}
M2 ∈ {1, . . . ,2nR2}

Y n2

(Y n1 ,Z
n
1 )

Ĥ1 ∈ {0,1}

Ĥ2 ∈ {0,1}

Figure 3.8: Binary hypothesis testing in a Heegard-Berger network studied in [28].

In [28] a three-terminal problem with a Sensor observing the sequenceXn, a Detector 1 observing (Y n1 ,Z
n
1 ),

and a Detector 2 observing (Y n2 ,Z
n
2 ) as in Figure 3.8 is considered. �e joint probability mass function

(p.m.f.) of the tuple (Xn,Y n1 ,Z
n
1 ,Y

n
2 ,Z

n
2 ) depends on one of two hypotheses. Under hypothesis

H = 0: {(Xt ,Y1,t ,Z1,t ,Y2,t ,Z2,t)}nt=1 i.i.d. PXY1Z1Y2 (3.60)

and under hypothesis

H = 1: {(Xt ,Y1,t ,Z1,t ,Y2,t)}nt=1 i.i.d. PXZ1Z2
PY1|Z1

PY2 . (3.61)

�e Sensor applies an encoding function as in (3.43) to its observed source sequence Xn and sends the

resulting index

M1 = φ1,n(X
n) (3.62)

to Detector 1 and Detector 2. Detector 1 applies a decision function to the triple (M1,Y
n
1 ,Z

n
1 ):

ψ1,n : M1 ×Yn1 ×Z
n
1 → {0,1}. (3.63)
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to decide on the hypothesis

Ĥ1 = ψ1,n(M1,Y
n
1 ,Z

n
1 ). (3.64)

and �e Detector 2 applies a decision function to the pair (M1,Y
n
2 ):

ψ2,n : M1 ×Yn2×→ {0,1}. (3.65)

to decide on the hypothesis

Ĥ2 = ψ2,n(M1,Y
n
2 ). (3.66)

We de�ne the following error probabilities:

α1,n := Pr

{
Ĥ1 = 1

∣∣∣H = 0
}
, α2,n := Pr

{
Ĥ2 = 1

∣∣∣H = 0
}
, (3.67)

β1,n := Pr

{
Ĥ1 = 0

∣∣∣H = 1
}
, β2,n := Pr

{
Ĥ2 = 0

∣∣∣H = 1
}
. (3.68)

De�nition 3.9 (Achievability under rate-constraints ) Given rate R1 ≥ 0, a pair of error-exponents

(θ1,θ2) is said achievable for this model if for all blocklengths n there exist functions φ1,n, ψ1,n and ψ2,n

as in (3.43), (3.63), and (3.65) so that the following limits hold:

lim
n→∞

α1,n = 0, lim
n→∞

α2,n = 0, (3.69)

θ1 ≤ lim
n→∞
−1
n
logβ1,n, θ2≤ lim

n→∞
−1
n
logβ2,n, (3.70)

and

lim
n→∞

1
n
logW1,n ≤ R1. (3.71)

De�nition 3.10 (Error-Exponents Region under Rate-Constraint ) For rate R1 ≥ 0 the closure of the

set of all achievable exponent pairs (θ1,θ2) is called the error-exponents region E
SWT

(R1).

De�nition 3.11 We say that Z1 is less noisy than Y2, if for all auxiliary random variables U satisfying the

Markov Chain U −
−X −
− (Y1,Z1,Y2) the following inequality holds:

I(U ;Z1) ≥ I(U ;Y2). (3.72)

Let

E in

SWT
,

⋃
R1≥I(U0;X)+I(U1;X |Z1),
(U0,U1)−
−X−
−(Y1,Z1,Y2)

(θ1,θ2) : θ1 ≤ I(U1,U0;Y1|Z1),

θ2 ≤ I(U2,U0;Y2|Z2),θ1 ≥ 0, θ2 ≥ 0

 (3.73)

�eorem 3.11 (Salehkalaibar, Wigger and Timo) Assume (3.61), then for R1 ≥ 0, then

E in

SWT
⊆ E

SWT
(R1). (3.74)

If in addition Z1 is less noisy than Y2, then

E in

SWT
= E

SWT
(R1). (3.75)

Proof: see [28].
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3.3 Other extensions to networks and other lines of works

As mentioned before the �rst records on the subject are [1] and [14]. A variant of the problem presented

in [15] where Type I errors are constrained to decrease exponentially fast with the number of observations

has been studied in [15, 36]. In these studies, the Type II error exponents are characterized in a scenario

where two sensors communicate with one detector, one at zero rate and the other with an arbitrary com-

munication rate. In the same articles achievability results are obtained also for positive communication

rates. A general review on statistical inference is also provided in [36]. In particular, it presents an ap-

proach to the problem based on the geometry of information. �is approach is introduced more speci�cally

in [2] and used in [40] to study the �nite length scenario.

�e distributed hypothesis testing problem has connections to the lossy source coding. In particular, the

tools used to characterize the reliability function in source coding can be used also to characterize achiev-

able type II exponent in distributed hypothesis testing (see e.g. [20]). In source coding many types of

networks have been studied: several sensors [3, 38], several decoders [16], interactive coding [18]. Simi-

larly, recent works explored these networks for hypothesis testing: with multiple sensors [14, 25, 45, 44, 39]

with multiple detectors [28], with interactive terminals [37, 43, 19] and with multi-hop networks [46, 48,

41, 29, 9, 44]. In any case, it appears that many strategies used in source coding make it possible to transmit

compress data e�ciently and that, when properly completed, these strategies make it possible to obtain

a certain number of general achievability results. �e optimal coding scheme for the distributed source

coding problem is also optimal for the distributed testing against independence problem (see [25, 44]).

Other problems such as distributed hypothesis over noisy channels [27, 33] and scenarios with privacy

constraints [23, 22, 34, 13] have been considered.

Our work mainly focus on a single sensor multiple detectors network where detectors may cooperate [9,

10, 11]:

• P. Escamilla, M. Wigger, and A. Zaidi. “Distributed hypothesis testing with concurrent detections”.

2018 IEEE International Symposium on Information �eory (ISIT’18). June 2018, pp. 166–170. doi:

10.1109/ISIT.2018.8437906

• P. Escamilla, A. Zaidi, and M. Wigger. “Distributed hypothesis testing with collaborative detection”.

2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Oct.

2018, pp. 512–518. doi: 10.1109/ALLERTON.2018.8635828

• P. Escamilla, M. Wigger, and A. Zaidi. “Distributed hypothesis testing: cooperation and concurrent

detection”. revision for publication in the IEEE Transactions of Information �eory (2019)

As we will see in more detail, the setups in [41, 28] and [47] are special cases of our model, and our new

results recover these previous results as special cases.
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CHAPTER 4

Zero-rate distributed hypothesis testing

Based on our work published in [9, 10, 11], we focus on the case of zero-rate communication in the mul-

titerminal binary hypothesis testing scenario shown in Figure 4.1. In this chapter communications are

restricted to a sublinear number of bits:

lim
n→∞

1
n
log2W1,n ≤W1, and lim

n→∞
1
n
log2W2,n ≤W2.

We investigate the setups where both detectors aim at maximizing the error exponent under the same

hypothesis (we refer to this setup as coherent detection) or the setup where the two detectors aim at maxi-

mizing their exponent under di�erent hypotheses (we refer to this setup as concurrent detection).

Xn Sensor

Detector 1

Detector 2

M1 ∈ {1, . . . ,W1,n}
M2 ∈ {1, . . . ,W2,n}

Y n2

Y n1

Ĥ1 ∈ {0,1}

Ĥ2 ∈ {0,1}

Figure 4.1: A Heegard-Berger type source coding model with unidirectional conferencing for multiterminal

hypothesis testing.

For simplicity, we assume that PXY1(x,y1) > 0 and P̄XY1Y2(x,y1, y2) > 0 for all (x,y1, y2) ∈ X1×Y2×Y2. �e
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4.1. FORMAL PROBLEM STATEMENT

main result in this chapter is the exact characterization of the error-exponents region for both setups of

coherent and concurrent detection. We �rst introduce the problem formally in section 4.1, then we consider

the case of coherent and concurrent detection when PX = P̄X in section 4.2. Under this assumption we show

that the two detectors behave as if they where alone in the network to perform the test. �e case of coherent

and concurrent detection when PX , P̄X is discussed in section 4.3. In contrast of the previous case, a trade-

o� between the two optimal exponents appears. We then illustrate the two last sections with numerical

examples in section 4.4. Finally we discuss the bene�t of cooperation with zero rate communication in

section 4.5.

4.1 Formal Problem Statement

Consider a three-terminal problem with a Sensor observing the sequence Xn, a Detector 1 observing Y n1 ,

and a Detector 2 observing Y n2 . Under hypothesis

H = 0: {(Xt ,Y1,t ,Y2,t)}nt=1 i.i.d. PXY1Y2 (4.1)

and under hypothesis

H = 1: {(Xt ,Y1,t ,Y2,t)}nt=1 i.i.d. P̄XY1Y2 (4.2)

�e Sensor applies an encoding function φ1 : X → M1 as in (3.43) to its observed source sequence Xn

and sends the resulting index

M1 = φ1,n(X
n) (4.3)

to both decoders. Detector 1 then applies two functions to the pair (M1,Y
n
1 ), an encoding function:

φ2,n : M1 ×Yn1 →M2 , {0,1, . . . ,W2,n − 1}, (4.4)

and a decision function

ψ1,n : M1 ×Yn1 → {0,1}. (4.5)

It sends the index

M2 = φ2,n(M1,Y
n
1 ) (4.6)

to Detector 2, and decides on the hypothesis

Ĥ1 , ψ1,n(M1,Y
n
1 ). (4.7)

Detector 2 applies a decision function

ψ2,n : M1 ×M2 ×Yn2 → {0,1} (4.8)
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4.2. COHERENT DETECTION AND CONCURRENT DETECTION WITH PX = P̄X

to the triple (M1,M2,Y
n
2 ) to produce the decision

Ĥ2 , ψ2,n(M1,M2,Y
n
2 ). (4.9)

Both detectors are required to have vanishing probabilities of error under both hypotheses. Moreover, for

Detector 2, we require that the probability of error underH = 1 decays exponentially fast with the largest

possible exponent. For Detector 1, we consider two scenarios: coherent detection and concurrent detection.

Under coherent detection, Detector 1 wishes to maximize the exponential decay of the probability of error

under H = 1. Under concurrent detection, Detector 1 wishes to maximize the exponential decay of the

probability of error underH = 0. In a unifying manner, we de�ne, for h1 ∈ {0,1} and h̄1 = (h1+1) mod 2,

the following error probabilities:

α1,n := Pr

{
Ĥ1 = h̄1

∣∣∣H = h1
}
, (4.10)

β1,n := Pr

{
Ĥ1 = h1

∣∣∣H = h̄1
}
, (4.11)

α2,n := Pr

{
Ĥ2 = 1

∣∣∣H = 0
}
, (4.12)

β2,n := Pr

{
Ĥ2 = 0

∣∣∣H = 1
}
. (4.13)

De�nition 4.1 (Achievability with �xed length communication alphabets.) Given h̄1 ∈ {0,1},

(ε1,ε2) ∈ (0,1)2 and communication alphabet sizes W1,W2 ≥ 0, an error-exponents pair (θ1,θ2) is said

achievable if for all blocklengths n there exist functions φ1,n, φ2,n, ψ1,n and ψ2,n as in (3.43), (3.45), (4.5), and

(4.8) so that the following limits hold:

lim
n→∞

α1,n ≤ ε1, lim
n→∞

α2,n ≤ ε2, (4.14)

θ1 ≤ lim
n→∞
−1
n
logβ1,n, θ2≤ lim

n→∞
−1
n
logβ2,n, (4.15)

and

lim
n→∞

W1,n ≤W1, lim
n→∞

W2,n≤W2. (4.16)

De�nition 4.2 (Error-exponents region for �xed communication alphabets) For �xed h̄1 ∈ {0,1}

and communication alphabet sizesW1,W2 ≥ 0, the closure of the set of all achievable exponent pairs (θ1,θ2)

is called the error-exponents region E0(W1,W2,ε1,ε2).

4.2 Coherent detection and concurrent detection with PX = P̄X

Proposition 4.1 (Coherent Detection) For coherent detection, h̄1 = 1, (ε1,ε2) ∈ (0,1)2, and for all values

W1 ≥ 2 and W2 ≥ 2, the error-exponents region E0(W1,W2,ε1,ε2) is the set of all non-negative rate pairs

39



4.3. CONCURRENT DETECTION WITH PX , P̄X

(θ1,θ2) satisfying

θ1 ≤ min
P̃XY1 : P̃X=PX
P̃Y1=PY1

D
(
P̃XY1‖P̄XY1

)
(4.17)

θ2 ≤ min
P̃XY1Y2 : P̃X=PX
P̃Y1=PY1 , P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (4.18)

Proof: For completeness the proof is given in Appendix B. �e achievability and converse parts are similar

to [14] and [31].

Proposition 4.2 (Concurrent Detection with PX = P̄X ) Under concurrent detection, i.e. when h̄1 = 0,

(ε1,ε2) ∈ (0,1)2 and when PX = P̄X , then for all values W1 ≥ 2 and W2 ≥ 2, the error-exponents region

E0(W1,W2,ε1,ε2) is the set of all non-negative rate pairs (θ1,θ2) satisfying

θ1 ≤ min
P̃XY1 : P̃X=PX
P̃Y1=P̄Y1

D
(
P̃XY1‖PXY1

)
(4.19)

θ2 ≤ min
P̃XY1Y2 : P̃X=PX
P̃Y1=PY1 , P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (4.20)

Proof: For completeness the proof is given in Appendix C. �e achievability and converse parts are similar

to [14] and [31].

4.3 Concurrent detection with PX , P̄X

We now consider concurrent detection, h̄1 = 0, and PX , P̄X . Here the optimal exponents region depends

on whether the alphabet size W1 equals 2 or is larger. �is is due to the fact that a type signaling strategy

similar to the coding used previously (see Appendices A and B) for this particular case requires at least a

ternary message for communicatio between Encoder and detectors, and so, in the case of communication

with total compression, another strategy must be considered.

4.3.1 Concurrent detection with PX , P̄X and W1 ≥ 3

We �rst assume

W1 ≥ 3 and W2 ≥ 2, (4.21)

and present a coding scheme for this scenario.

Pick a small positive number µ > 0 such that the typical sets T nµ (PX) and T nµ (P̄X) do not intersect:

T nµ (PX)∩T nµ (P̄X) = ∅. (4.22)
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Sensor: Given that it observes Xn = xn, it sends

M1 =


0 if xn ∈ T nµ (PX)

1 if xn ∈ T nµ (P̄X)

2 otherwise.

(4.23)

Detector 1: Given that it observes Y n1 = yn1 and M1 =m1, it decides

Ĥ1 =

1 if m1 = 1 and yn1 ∈ T nµ (P̄Y1)

0 otherwise.
(4.24)

It sends

M2 =

0 if m1 = 0 and yn1 ∈ T nµ (PY1)

1 otherwise

(4.25)

to Detector 2.

Detector 2: Given that it observes Y n2 = yn2 and messages M1 =m1 and M2 =m2, it decides

Ĥ2 =

0 if m1 =m2 = 0 and yn2 ∈ T nµ (PY2)

1 otherwise.
(4.26)

Proposition 4.3 (Concurrent Detection when PX , P̄X and W1 ≥ 3) Under concurrent detection (when

h̄1 = 1) , and for all (ε1,ε2) ∈ (0,1)2 and all values W1 ≥ 3 and W2 ≥ 2, the error-exponents region

E0(W1,W2,ε1,ε2) is the set of all non-negative rate pairs (θ1,θ2) satisfying

θ1 ≤ min
P̃XY1 : P̃X=P̄X
P̃Y1=P̄Y1

D
(
P̃XY1‖PXY1

)
(4.27)

θ2 ≤ min
P̃XY1Y2 : P̃X=PX
P̃Y1=PY1 , P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (4.28)

Proof: �e achievability follows by the above coding scheme; and the converse is similar to that of Propo-

sition 4.2.

�e exponents region E0(W1,W2,ε1,ε2) in these �rst three Propositions 4.1–4.3 is rectangular, and each

of the detectors can simultaneously achieve the optimal exponent as if it were the only detector in the

system. As we see in the following, this is not always the case.

4.3.2 Concurrent detection with PX , P̄X and W1 = 2

In the rest of this section, we assume

W1 = 2 and W2 ≥ 2, (4.29)

and present the optimal error-exponents region for this case. It is achieved by the following coding scheme.
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4.3. CONCURRENT DETECTION WITH PX , P̄X

Pick a real number r , a small positive number µ > 0 satisfying (4.22), and the function b : {0,1} → {0,1}

either as

b(0) = b(1) = 0 (4.30)

or as

b(0) = 0 and b(1) = 1. (4.31)

We then assign each type π ∈ Pn(X n) that satis�es

|π − PX | > µ and |π − P̄x| > µ (4.32)

to one of two sets Γ0 or Γ1. If b(0) = b(1) = 0, then we assign all these types to the set Γ1. Otherwise, we

assign them between the two sets according to the following rule:

π ∈ Γb(1) ⇐⇒ min
P̃XY1 :P̃X=π
P̃Y1=P̄Y1

D
(
P̃XY1‖PXY1

)
+ r ≥ min

P̃XY1Y2 :P̃X=π
P̃Y1=PY1 ,P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
, (4.33)

and π ∈ Γb(0) otherwise. Given that it observes Xn = xn, the Sensor sends

M1 =



b(0) if xn ∈ T nµ (PX)

b(1) if xn ∈ T nµ (P̄X)

0 if Pxn ∈ Γ0
1 if Pxn ∈ Γ1.

. (4.34)

Detector 1: Given that it observes Y n1 = yn1 and received message M1 =m1, Detector 1 decides

Ĥ1 =

1 if m1 = b(1) and yn1 ∈ T nµ (P̄Y1)

0 otherwise.
(4.35)

It sends

M2 =

0 if m1 = b(0) and yn1 ∈ T nµ (PY1)

1 otherwise

(4.36)

to Detector 2.

Detector 2: Given that it observes Y n2 = yn2 and received messages M1 =m1 and M2 =m2, it decides

Ĥ2 =

0 if m1 = b(0) and m2 = 0 and yn2 ∈ T nµ (PY2)

1 otherwise.
(4.37)

�e described scheme achieves the following optimal error-exponents region.

�eorem 4.4 (Concurrent Detection when PX , P̄X and W1 = 2) Under concurrent detection and for all

(ε1,ε2) ∈ (0,1)2, for all values W1 = 2 and W2 ≥ 2, the error-exponents region E0(W1,W2,ε1,ε2) is the set

of all nonnegative rate pairs (θ1,θ2) that satisfy

θ1 ≤ min
P̃XY1 : P̃X∈Γb(1)

P̃Y1=P̄Y1

D
(
P̃XY1‖PXY1

)
, (4.38)
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θ2 ≤ min
P̃XY1Y2 : P̃X∈Γb(0),
P̃Y1=PY1 , P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (4.39)

for some real r and one of the mappings in (4.30) and (4.31), and the corresponding sets Γ0 and Γ1.

Proof: See Appendix D.

Remark 4.1 (Sending a sublinear number of bits) A close inspection of the converse proofs for Proposi-

tions 4.1–4.3 and �eorem 4.4 shows that they remain valid when the alphabet sizes are not �xed but grow

sublinearly in the blocklength n, i.e., when

lim
n→∞

1
n
log2W1,n = 0, and lim

n→∞
1
n
log2W2,n = 0.

Propositions 4.1–4.3 and �eorem 4.4 remain thus valid when communication is limited to a sublinear number

of bits. More precisely this is due to the fact that the key argument of the proof to the converse part is generalized

to any alphabet whose size grows sub-exponentially fast with the number of observations. Indeed the key

argument of this converse is �eorem 2.7 still valid in this case.

Remark 4.2 (Extension to many hypotheses) Most of the results in this section can be extended to a

scenario with more than two hypotheses. For H = 2 the error-exponents region showed a tradeo� in the

exponents under concurrent detection only when W1 = W2 = 2. In contrast, for H ≥ 3, a tradeo� arises for

a variety of pairs W1,W2. �e minimum required values for W1 and W2 leading to a rectangular error-

exponents region is always less than the number of hypotheses which have distinct X-marginals and the

number of hypotheses which have distinct Y1-marginals.

4.4 Numerical Example

We now present an example for concurrent detection with PX , P̄X .

Example 4.1 Consider a setup where X,Y1,Y2 are binary with pmfs

PXY1Y2(0,0,0) = 0.1 PXY1Y2(0,0,1) = 0.15

PXY1Y2(0,1,0) = 0.1125 PXY1Y2(0,1,1) = 0.1375

PXY1Y2(1,0,0) = 0.0875 PXY1Y2(1,0,1) = 0.1625

PXY1Y2(1,1,0) = 0.0825 PXY1Y2(1,1,1) = 0.1675

P̄XY1Y2(0,0,0) = 0.1675 P̄XY1Y2(0,0,1) = 0.0825

P̄XY1Y2(0,1,0) = 0.1625 P̄XY1Y2(0,1,1) = 0.0875

P̄XY1Y2(1,0,0) = 0.1375 P̄XY1Y2(1,0,1) = 0.1125

P̄XY1Y2(1,1,0) = 0.15 P̄XY1Y2(1,1,1) = 0.1
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Figure 4.2: Exponents region of Example 4.1, see [12] for implementation details. On the le�: expo-

nent regions E0(2,2,ε1,ε2) and E0(2,0,ε1,ε2) for coherent detection. On the right: exponent regions

E0(2,2,ε1,ε2), and E0(2,0,ε1,ε2) for concurrent detection.

Figure 4.2 illustrates the exponent region for coherent and concurrent detection of Proposition 4.3 and of �e-

orem 4.4. Speci�cally, the �gure on the le� shows the exponent region with (when W1 = 2 and W2 = 2) or

without (whenW1 = 2 andW2 = 0) cooperation under coherent detection. In that cases the region is a square

and each Detector behaves as if it was the only one in the network to take a decision under zero-rate com-

pression. �is occurs because the type signaling schemes which are optimal in the zero-rate regime when only

one of the detectors has to take a decision, are su�ciently compact to be implemented at the same time when

each message is constrained to be one bit long. �e �gure on the right shows these exponent regions under

concurrent detection, it is non-convex. (Notice that time-sharing arguments cannot be applied to convexify the

region.).

4.5 Bene�ts of Cooperation

To discuss the bene�ts of cooperation, we quickly state the optimal exponents region without cooperation,

i.e., for

W2 = 0. (4.40)

�ey were determined in our work [9]. Under coherent detection or under concurrent detection with

PX = P̄X or W1 ≥ 3, the erro-exponents region E0(W1,W2 = 0) are similar to Propositions 4.1–4.3 but with

a modi�ed constraint on θ2. More precisely, Propositions 4.1–4.3 remain valid for W2 = 0 if the constraints

on θ2, (4.18), (4.20), (4.28) are replaced by

θ2 ≤ min
P̃XY2 :
P̃X=PX ,
P̃Y2=PY2

D
(
P̃XY2‖P̄XY2

)
.
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So, in these scenarios, the exponents region is a rectangle both in the case with and without cooperation,

and with cooperation the θ2-side of the rectangle is increased by the quantity

min
P̃XY1Y2 : P̃X=PX
P̃Y1=PY1 , P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− min
P̃XY1Y2 :
P̃X=PX ;
P̃Y2=PY2

D
(
P̃XY2‖P̄XY2

)
. (4.41)

Under concurrent detection when PX , P̄X and W1 = 2, the exponents region is not a rectangle, but there

is a tradeo� between the two exponents. In this case, it seems di�cult to quantify the cooperation bene�t

in general.
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CHAPTER 5

Positive-rate distributed hypothesis testing

In this chapter, based on our work published in [9, 10, 11], we focus on the case of positive rate communi-

cation in the multiterminal binary hypothesis testing scenario shown in Figure 5.1 where communication

is restricted to a maximum communication rate. Here R1 > 0, and the cooperation rate R2 ≥ 0. Again we

investigate the setup where both detectors aim at maximizing the error exponent under same hypothesis

(coherent detection) or the setup where the two detectors aim at maximizing their exponent under di�er-

ent hypotheses (concurrent detection). Using the same notations as the ones used in previous chapter, we

Xn Sensor

Detector 1

Detector 2

M1 ∈ {1, . . . ,2nR1}
M2 ∈ {1, . . . ,2nR2}

Y n2

Y n1

Ĥ1 ∈ {0,1}

Ĥ2 ∈ {0,1}

Figure 5.1: A Heegard-Berger type source coding model with unidirectional conferencing for multiterminal

hypothesis testing.

introduce a distinct de�nition of achievable error-exponent pairs adapted to positive rate communication:

De�nition 5.1 (Achievability under Rate-Constraints) Given ratesR1,R2 ≥ 0, an error-exponents pair
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(θ1,θ2) is said achievable if for all blocklengths n there exist functions φ1,n, φ2,n, ψ1,n and ψ2,n as in (3.43),

(3.45), (4.5), and (4.8) so that the following limits hold:

lim
n→∞

α1,n = 0, lim
n→∞

α2,n = 0, (5.1)

θ1 ≤ lim
n→∞
−1
n
logβ1,n, θ2≤ lim

n→∞
−1
n
logβ2,n, (5.2)

and

lim
n→∞

1
n
logW1,n ≤ R1, lim

n→∞
1
n
logW2,n≤ R2. (5.3)

We will use this new de�nition all along the chapter. We now de�ne the error-exponent region under

rate-constrains.

De�nition 5.2 (Error-Exponents Region under Rate-Constraints) For rates R1,R2 ≥ 0 the closure of

the set of all achievable exponent pairs (θ1,θ2) is called the error-exponents region E(R1,R2).

We will give some insights for special setup of coherent detection in section 5.1. In section 5.2, we describe

a general testing scheme adapted from the one of Ahlswede, Csiszár and Han [14, 1] to the two setups of

coherent and concurrent detection. We illustrate the special case of testing against independence with a

numerical example in section 5.3.

5.1 Special cases

In this section, we study the se�ing in which the two detectors aim at maximizing the error exponents

under the same hypothesis, i.e., h̄1 = 0. For convenience, we assume that P̄ (x,y1, y2) > 0 for all (x,y1, y2) ∈

X ×Y1 ×Y2.

5.1.1 High rate regime

We �rst consider the extreme case where both links are of high rates so that under hypothesis H = h1,

Detector 1 can obtain the sequence Xn with high probability and under H = 0, Detector 2 can obtain

both sequences Xn and Y n1 with high probability. We will see that in this case both Detector 1 a�ains

the exponent of a centralized setup where it observes (Xn,Y n1 ) and Detector 2 a�ains the exponent of a

centralized setup where it observes (Xn,Y n1 ,Y
n
2 ).

We �rst consider coherent detection where h̄1 = 1. Pick a small ε. �e Sensor describes the sequence

Xn to both detectors if Xn ∈ T nµ (PX), and otherwise it sends 0. Detector 1 describes the sequence Y n1 to

Detector 2 if (Xn,Y n1 ) ∈ T nµ (PXY1), and otherwise it sends 0. �e described coding scheme requires rates

R1 ≥H(X) + ε (5.4)
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R2 ≥H(Y1|X) + ε. (5.5)

Detector 1 decides on Ĥ1 = 1, if the Sensor sent 0 or itself it sent 0. Otherwise it decides on Ĥ1 = 1.

Detector 2 decides on Ĥ2 = 1, if the Sensor or Detector 1 sent 0. Otherwise it decides on Ĥ1 = 1 if and

only if its own observation Y n2 and the received sequences Xn and Y n1 are jointly typical, (Xn,Y n1 ,Y
n
2 ) ∈

T nµ (PXY1Y2).

�e described scheme achieves the set of all non-negative pairs (θ1,θ2) satisfying

θ1 ≤D(PXY1‖P̄XY1) (5.6a)

θ2 ≤D(PXY1Y2‖P̄XY1Y2). (5.6b)

�is set coincides with the optimal error-exponents region E(R1,R2), because it also coincides with the

error-exponent region of a centralized setup where Detector 1 observes both Xn and Y n1 and Detector 2

observes all Xn, Y n1 , and Y n2 .

Consider now concurrent detection where h̄1 = 0. In this case, the Sensor describes the sequence Xn

to both detectors if Xn ∈ T nµ (PX) or if Xn ∈ T nµ (P̄X). Otherwise it sends 0. Detector 1 describes the

sequence Y n1 to Detector 2 if (Xn,Y n1 ) ∈ T nµ (PXY1), and otherwise it sends 0. Detector 2 decides as above

and Detector 1 decides on Ĥ1 = 0 if and only if its own observation Y n1 and the described sequence Xn

are jointly typical, i.e., (XnY n1 ) ∈ T nµ (P̄XY1). �e coding scheme requires rates

R1 ≥max{H(X̄),H(X)}+ ε (5.7)

R2 ≥H(Y1|X) + ε. (5.8)

and achieves the set of all nonnegative pairs (θ1,θ2) satisfying

θ1 ≤D(P̄XY1‖PXY1) (5.9a)

θ2 ≤D(PXY1Y2‖P̄XY1Y2). (5.9b)

Again, this set coincides with the optimal error-exponents region E(R1,R2) because it also coincides with

the optimal exponents region when Detector 1 observes the pair Xn,Y n1 and Detector 2 observes Xn, Y n1 ,

and Y n2 .

Both results remain valid without cooperation if the term D(PXY1Y2‖P̄XY1Y2) limiting the second exponent

θ2 is replaced by D(PXY2‖P̄XY2). �e bene�t of cooperation is thus equal to

D(PXY1Y2‖P̄XY1Y2)−D(PXY2‖P̄XY2) = EPXY2
[D(PY1|XY2‖P̄Y1|XY2)]

in both cases.

In some special cases, the described setup degenerates and the error-exponents region is the same as in a

setup without cooperation or in a setup with a single centralized detector.
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5.1.2 Degraded side information at �rst detector

We �rst consider a setup where cooperation is not bene�cial.

Proposition 5.1 Assume the Markov chain X −
− Y2 −
− Y1 under both hypotheses with identical law

PY1|Y2 = P̄Y1|Y2 :

PXY1Y2=PXY2PY1|Y2 (5.10a)

P̄XY1Y2=P̄XY2PY1|Y2 . (5.10b)

In this case, irrespective of the cooperation rate R2 ≥ 0 and of the value of h̄1 ∈ {0,1}, the error-exponent

region E(R1,R2) coincides with the exponent region of the scenario without cooperation (see Figure 5.2).

Xn Sensor

Detector 1

Detector 2

M1 ∈ {1, . . . ,2nR1}

Y n2

Y n1

Ĥ1 ∈ {0,1}

Ĥ2 ∈ {0,1}

Figure 5.2: Equivalent system without cooperation when X −
−Y2 −
−Y1 under both hypotheses.

Proof: �e error-exponents region E(R1,R2) of the original setup cannot be larger than the error-exponent

regions of an enhanced setup (with cooperation) where Detector 2 not only observes Y n2 but also Y n1 . But

in this new setup, the cooperation link is useless because Detector 2 can generate the cooperation message

locally. Moreover, without cooperation, the observation Y n1 is not bene�cial because the conditional laws

PY1|XY2 and P̄Y1|XY2 coincide and only depend onY2, and so Detector 2 can generate a statistically equivalent

observation to Y n1 itself based only on Y n2 . By these arguments, the error-exponents region E(R1,R2) of

the original setup is not larger than the one of the setup without cooperation. But E(R1,R2) can also not

be smaller than the error-exponents regions of the same setup but without cooperation, because the la�er

setup can be mimicked in the former. �is concludes the proof.

5.1.3 Degraded side information at second detector

We now consider a setup that is equivalent to a setup with a single centralized detector.

Proposition 5.2 Assume the Markov chain X −
−Y1−
−Y2 holds under both hypotheses with identical law

PY2|Y1 = P̄Y2|Y1 . I.e.,

PXY1Y2 = PXY1PY2|Y1 (5.11a)
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Xn Sensor Detector

M1 ∈ {1, . . . ,2nR1}
Y n1

(Ĥ1,Ĥ2) ∈ {0,1} × {0,1}

Figure 5.3: Equivalent point to point system when X −
−Y1 −
−Y2 under both hypotheses.

P̄XY1Y2 = P̄XY1PY2|Y1 . (5.11b)

In this case, irrespective of the cooperation rate R2 ≥ 0 and of the value of h1 ∈ {0,1}, the error-exponent

regions E(R1,R2) coincides with the error-exponents regions of the scenario in Figure 5.2 without cooperation

and where both detectors observe Y n1 but not Y n2 . As a consequence, they also coincide with the error-exponents

regions of the scenario in Figure 5.3 with a single detector observing Y n1 that takes both decisions Ĥ1 and Ĥ2.

Proof: �e error-exponents region E(R1,R2) of the original setup cannot be larger than the error-exponents

regions of an enhanced setup (with cooperation) where Detector 2 not only observes Y n2 but also Y n1 . Since

Detector 2 can generate an observation that is statistically equivalent to Y n2 given Y n1 , the error-exponents

regions are no larger than in the setup where both detectors observe Y n1 but not Y n2 . Furthermore, since

allowing the two detectors to fully cooperate in their decision can only increase the error-exponents re-

gions, the region E(R1,R2) must be included in the exponents regions of the setup in Figure 5.3 where a

single detector takes both decisions.

On the other hand, E(R1,R2) can also not be smaller than the error-exponents regions of the setup in

Figure 5.3. In fact, in the original setup, detector 1 can mimick the single central detector and forward the

decision Ĥ2 to detector 2, which follows this decision. �is strategy requires only a single cooperation

bit and can thus be implemented irrespective to the available cooperation rate R2 ≥ 0. �is conclude the

proof.

5.1.4 Testing against independence under coherent detection

We introduce a special case of “testing-against-independence” scenario under coherent detection, h̄1 = 1,

where

PXY1Y2 = PX |Y1Y2PY1PY2 (5.12)

P̄XY1Y2 = PXPY1PY2 . (5.13)

We assume a cooperation rate R2 = 0, which means that Detector 1 can send a message M2 to Detector 2

that is described by a sublinear number of bits.

�e simple scheme in the next subsection 5.2.1 achieves the following exponents region, which can be

proved to be optimal.
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�eorem 5.3 (Testing Against Independence) Assume h̄1 = 1 and (5.12). �en, E(R1,0) is the set of all

nonnegative exponent pairs (θ1,θ2) for which

θ1 ≤ I (U ;Y1) (5.14a)

θ2 ≤ I (U ;Y1) + I (U ;Y2) , (5.14b)

for some U satisfying the Markov chain U −
−X −
− (Y1,Y2) and the rate constraint R1 ≥ I(U ;X).

Proof: �e achievability follows by specializing and evaluating �eorem 5.5 for this setup. �e converse is

proved in Appendix E.

Remark 5.1 As seen in �eorem 5.3, in some special case exponents accumulate.

Lemma 5.4 (Cardinality bound) the right hand sides of (5.14) in �eorem 5.3 remain valid if we impose

the cardinality bound |U | = |X |+2.

Notice that forR2 = 0 the scheme in the following subsection sends only a single bit and that without coop-

eration, the term I (U ;Y2) needs to be removed on the right-hand side of (5.14b). �is mutual information

term thus represents the bene�t of a single cooperation bit from Detector 1 to Detector 2.

5.2 General achievability results

5.2.1 A simple scheme with cooperation

In this subsection, we present coding schemes for both coherent and concurrent detection. Notice that

this di�culty seems inherent to all multi-user hypothesis testing scenarios, see e.g. [29]. We �rst present

a scheme for coherent detection,

h̄1 = 1, (5.15)

and then explain how to change the scheme for concurrent detection.

Coherent Detection

Preliminaries: Fix a small µ > 0 and a pair of auxiliary random variables (U,V ) ∈ U × V satisfying the

following Markov chains

U −
−X −
− (Y1,Y2) (5.16)

V −
− (Y1,U )−
− (Y2,X) (5.17)

and satisfying the rate constraints

R1 > I(U ;X) (5.18)
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R2 > I(V ;Y1|U ). (5.19)

Codebook Generation: we randomly generate the codebook

CU ,
{
un(m1) : m1 ∈ {1, . . . ,b2nR1c}

}
(5.20)

by drawing each entry of each codeword un(m1) i.i.d. according to PU .

Furthermore, we superpose a codebook CV on codebook CU . So, for each index m1 ∈ {1, . . . ,b2nR1c}, we

randomly construct the codebook

CV (m1) , {vn(m2|m1) : m2 ∈ {1, . . . ,b2nR2c}} (5.21)

by drawing the j-th entry of each codeword vn(m2|m1) according to PV |U (·|uj(m1)), the conditional pmf

where uj(m1) denotes the j-th component of codeword un(m1).

Reveal all codebooks to all terminals.

Sensor: Assume it observes the source sequence Xn = xn.

�en, it �rst looks for a message m1 ∈ {1, . . . ,b2nR1c} such that

(un(m1),x
n) ∈ T nµ/8(PUX). (5.22)

If one or multiple such indices m are found, the Sensor selectsm∗1 uniformly at random over these indices

and sends

M1 = (1,m∗1).

Otherwise, it sends

M1 = (0,0).

Detector 1: If M1 = (0,0), Detector 1 decides on the alternative hypothesis

Ĥ1 = 1.

If

M1 = (1,m1) for some m1 ∈ {1, . . . ,b2nR1c},

and given that Y n1 = yn1 , Detector 1 checks whether

(un(m1), y
n
1 ) ∈ T

n
µ/4(PUY ). (5.23)

If the test is successful, it decides on the null hypothesis

Ĥ1 = 0.

Otherwise it decides on the alternative hypothesis. We now describe the communication to Detector 2. If

Ĥ1 = 1
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Detector 1 sends

M2 = 0.

Otherwise, it looks for an index m2 ∈ {1, . . . ,b2nR2c} such that

(un(m1),v
n(m2|m1), y

n
1 ) ∈ T

n
µ/2(PUVY1). (5.24)

If one or more such indices can be found, Detector 1 selects an indexm∗2 among them uniformly at random

and sends

M2 =m
∗
2.

Otherwise it sends M2 = (0,0).

Detector 2: If

M1 = (0,0) or M2 = 0,

Detector 2 decides on the alternative hypothesis

Ĥ2 = 1.

If

M1 = (1,m1) for some m1 ∈ {1, . . . ,b2nR1c} and M2 =m2 for some m2 ∈ {1, . . . ,b2nR2c},

and given Y n2 = yn2 , Detector 2 checks whether

(un(m1),v
n(m2|m1), y

n
2 ) ∈ T

n
µ (PUVY2). (5.25)

If this check is successful, Decoder 2 decides on the null hypothesis

Ĥ2 = 0.

Otherwise, it decides on the alternative hypothesis

Ĥ2 = 1.

Changes for concurrent detection when PX = P̄X

We now consider the scenario of concurrent detection, so

h̄1 = 0.

We apply the same scheme as above, except for the decision at Detector 1, which is described next.

Detector 1: If

M1 = (0,0)
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Detector 1 now decides

Ĥ1 = 0.

If

M1 = (1,m1) for some m1 ∈ {1, . . . ,b2nR1c},

and given that Y n1 = yn1 , Detector 1 checks whether

(un(m1), y
n
1 ) ∈ T

n
µ/4(P̄UY1). (5.26)

If the test is successful, it decides

Ĥ1 = 1.

Otherwise it decides

Ĥ1 = 0.

Communication to Detector 2 is as described in the previous subsection.

Changes for concurrent detection when PX , P̄X

If h̄1 = 0 and PX , P̄X , the scheme should be changed as described in the previous paragraph. �e following

additional changes allow to obtain an improved scheme.

In this case, we choose µ > 0 so that the intersection

T nµ/8(PX)∩T
n
µ/8(P̄X) = ∅ (5.27)

is empty and we choose another auxiliary random variable Ū1 satisfying

Ū1 −
− X̄ −
− (Ȳ1, Ȳ2) (5.28)

R1 ≥ I(Ū1; X̄) + ξ(µ). (5.29)

A third codebook

CU,1 ,
{
un1 (m1) : m ∈ {1, . . . ,b2nR1c}

}
(5.30)

is drawn by picking the entries i.i.d. according to P̄U1
.

Encoding has to be changed as follows. If the test in (5.24) fails, then the Sensor looks for an index m1 ∈

{1, . . . ,b2nR1c} such that

(un1 (m1),x
n) ∈ T nµ/8(P̄U1X). (5.31)

If one or multiple such indicesm1 are found, the Sensor selectsm∗1 uniformly at random over these indices

and sends

M1 = (2,m∗1)
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Notice that by the condition (5.27), only one of the two tests (5.24) and (5.31) can be successful for any

observed sequence xn. It therefore does not ma�er which one is performed �rst.

�us, now the Sensor sends three di�erent types of messages:

M1 = (0,0) or M1 = (1,m1) or M1 = (2,m1).

�e message M1 = (1,m1) indicates that the Sensor is tempted to guess H = 0. A�er receiving such a

message, Detector 1 therefore produces Ĥ1 = 0. �e same holds if M1 = 0. In contrast, if M1 = (2,m1),

Detector 1 checks whether

(un1 (m1), y
n
1 ) ∈ T

n
µ/4(P̄U1Y1). (5.32)

If successful it declares Ĥ1 = 1, and otherwise Ĥ1 = 0.

Communication from, Detector 1 to Detector 2 is as described before.

Similarly, the message M1 = (2,m1) now indicates that the Sensor is tempted to guess H = 1. When

receiving this message, Detector 2 therefore decides immediately Ĥ2 = 1. Otherwise it acts as described

in the original scheme.

5.2.2 Achievable regions

We now present the regions achieved by the coding scheme described in the previous subsection. Notice

that the new achievable regions recover the extreme cases in the previous section 5.1.1, when the rates are

set accordingly.

We �rst consider coherent detections h̄1 = 1.

For given rates R1 ≥ 0 and R2 ≥ 0, de�ne the following set of auxiliary random variables:

S (R1,R2) ,


(U,V ) :

U −
−X −
− (Y1,Y2)

V −
− (Y1,U )−
− (Y2,X)

I (U ;X) ≤ R1

I (V ;Y1|U ) ≤ R2


. (5.33)

Further, de�ne for each (U,V ) ∈ S (R1,R2), the sets

L1 (U ),

(Ũ , X̃, Ỹ1) : PŨ X̃ = PUX

PŨ Ỹ1 = PUY1

 (5.34)

and

L2 (UV ) ,

(Ũ , Ṽ , X̃, Ỹ1, Ỹ2) :
PŨ X̃ = PUX

PŨ Ṽ Ỹ1 = PUVY1

PŨ Ṽ Ỹ2 = PUVY2

 , (5.35)
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and the random variables (Ū , V̄ ) so as to satisfy

PŪ |X̄ = PU |X and PV̄ |Ȳ1Ū = PV |Y1U (5.36)

and the Markov chains

Ū −
− X̄ −
− (Ȳ1, Ȳ2) (5.37)

V̄ −
− (Ȳ1, Ū )−
− (X̄, Ȳ2). (5.38)

�eorem 5.5 (Coherent Detection) If

h̄1 = 1, (5.39)

the exponents region E(R1,R2) contains all nonnegative pairs (θ1,θ2) that for some (U,V ) ∈ S(R1,R2)

satisfy the two following conditions:

θ1≤ min
Ũ X̃Ỹ1∈L1(U )

D
(
Ũ X̃Ỹ1||Ū X̄Ȳ1

)
(5.40a)

θ2≤ min
Ũ Ṽ X̃Ỹ1Ỹ2∈L2(UV )

D
(
Ṽ Ũ X̃Ỹ1Ỹ2||V̄ Ū X̄Ȳ1Ȳ2

)
. (5.40b)

for some (U,V ) ∈ S (R1,R2)

Proof: �e exponent region is achieved by the scheme described in Subsection 5.2.1. �e proof is given in

Appendix F.

For our second result, we also de�ne for each auxiliary random variable U the set

L1 (U ),

(Ũ , X̃, Ỹ1) : PŨ X̃ = P̄UX

PŨ Ỹ1 = P̄UY1

 . (5.41)

�eorem 5.6 (Concurrent Detection with PX = P̄X ) If

h̄1 = 0, and PX = P̄X , (5.42)

then the exponents region E(R1,R2) contains all nonnegative pairs (θ1,θ2) that for some (U,V ) ∈ S (R1,R2)

satisfy:

θ1≤ min
Ũ X̃Ỹ1∈L1(U )

D
(
Ũ X̃Ỹ1||UXY1

)
(5.43a)

θ2≤ min
Ũ Ṽ X̃Ỹ1Ỹ2∈L2(UV )

D
(
Ṽ Ũ X̃Ỹ1Ỹ2||V̄ Ū X̄Ȳ1Ȳ2

)
. (5.43b)

Proof: Similar to the proof of �eorem 5.5 and omi�ed.

Remark 5.2 When R = 0
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For a given rate R1 ≥ 0, de�ne the following set of auxiliary random variables:

S
nc
(R1) ,

Ū1 :
Ū1 −
− X̄ −
− Ȳ1
I
(
Ū1; X̄

)
≤ R1

 . (5.44)

and the random variable U1 so that PU1|X = P̄U1|X and the Markov chain U1 −
−X −
−Y1 holds.

�eorem 5.7 (Concurrent Detection and PX , P̄X ) If

h̄1 = 0 and PX , P̄X , (5.45)

then the exponents region E(R1,R2) contains all nonnegative pairs (θ1,θ2) that for some (U,V ) ∈ S (R1,R2)

and Ū1 ∈ Snc
(R1) satisfy:

θ1≤ min
Ũ1X̃Ỹ1∈L1(Ū1)

D
(
Ũ1X̃Ỹ1||U1XY1

)
(5.46)

θ2≤ min
Ũ Ṽ X̃Ỹ1Ỹ2∈L2(UV )

D
(
Ṽ Ũ X̃Ỹ1Ỹ2||V̄ Ū X̄Ȳ1Ȳ2

)
. (5.47)

Proof: �e proof is given in Appendix G. It is based on the scheme of the previous Subsection 5.2.1.

Remark 5.3 �e exponents region in �eorem 5.7 is rectangular because θ1 depends only on the auxiliary

Ū1 and θ2 only on the pair of auxiliaries (U,V ). �is implies that both exponents can be maximized at the

same time without any tradeo� between them.

�is is di�erent in the �rst two �eorem 5.5 and 5.6 where both exponents depend on the same auxiliary, and

therefore the regions exhibit a tension when maximizing the two exponents.

5.3 Examples for coherent detection

We illustrate the bene�t of cooperation with the following example.

Example 5.1 Consider a setup with coherent detection, h̄1 = 1, whereX,Y1,Y2 are ternary and underH = 0:

PXY1Y2(0,0,0) = 0.05 PXY1Y2(0,0,1) = 0.05 PXY1Y2(0,1,0) = 0.15 PXY1Y2(0,1,1) = 0.083325

PXY1Y2(1,0,0) = 0.05 PXY1Y2(1,0,1) = 0.15 PXY1Y2(1,1,0) = 0.05 PXY1Y2(1,1,1) = 0.08335

PXY1Y2(2,0,0) = 0.15 PXY1Y2(2,0,1) = 0.05 PXY1Y2(2,1,0) = 0.05 PXY1Y2(2,1,1) = 0.083325

(5.48)

whereas under H = 1 they are independent with same marginals as under H = 0. Figure 5.4 illustrates an

achievable error-exponent region obtained with Proposition 5.5 when the communication rate areR1 = 0.1 bits

and R2 = 1.0 bits. It also shows the error-exponent region E(0.1,0) presented in �eorem 5.3 and the error-

exponent region without cooperation when R1 = 0.1 bits derived in [41, �eorem 1]. It is di�cult to directly

infer the geometry of error-exponents regions from there single le�er expressions. �ey must therefore be

calculated numerically.
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0.0 0.002 0.004 0.006

θ1

0.0

0.006

0.012

0.018

θ2

[15, Theorem 1] with R1 = 0.1.

Theorem 5.3 with (R1,R2) = (0.1,0.).

Proposition 5.5 with (R1,R2) = (0.1,1.).

Figure 5.4: Error-exponent region of Example 5.1.
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CHAPTER 6

On vector Gaussian hypothesis testing

Similar to its discrete memoryless counterpart, the Gaussian single-sensor single-detector hypothesis test-

ing problem is yet to be solved for arbitrary covariance matrices. For instance, the solution of this problem

is known only in few special cases such as the scalar Gaussian hypothesis testing against independence

and the scalar Gaussian hypothesis testing against conditional independence. In this chapter, we study the

problem of discriminating two multivariate Gaussian distributions. We �nd su�cient conditions under

which the optimal exponent-rate function can be characterized explicitly. Perhaps interesting in its own

right, in the proof of the result we also establish the optimal rate-exponent region of a slight generalization

of the discrete memoryless hypothesis testing against conditional independence problem (a variation of it

that accounts for distinct marginals under null and alternate hypotheses).

6.1 Formal problem statement

Xn Sensor Detector

M ∈ {1, . . . ,b2nRc}

Yn

Ĥ ∈ {0,1}

Figure 6.1: Vector Gaussian hypothesis testing problem

Consider the problem shown in Figure 6.1 in which a sensor observes n independent copies of a real-valued

Gaussian vector X of dimensionm ≥ 1, and communicates with a detector over a noise-free bit-pipe of rate

R ≥ 0. �e detector observes n independent copies of a possibly correlated real-valued Gaussian vector
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Y of dimension q ≥ 1. �e joint distribution of the pair of vectors (X,Y) is multivariate Gaussian with

zero-vector mean and covariance matrix that depends on the binary hypothesisH ∈ {0,1}. For instance,

H=0: (X,Y) ∼ PXY=N (0,K) , (6.1)

H=1: (X,Y) ∼ P̄XY=N
(
0,K̄

)
, (6.2)

with

K =

 KX KXY

K†XY KY

 (6.3)

and

K̄ =

 K̄X K̄XY

K̄†XY K̄Y

 . (6.4)

�e Sensor, which observes the sequence Xn = (X1, . . . ,Xn), applies an encoding function

φn : R
m×n→M = {1, . . . ,Wn} (6.5)

to it. It then sends the index

M = φn(X
n) (6.6)

to the detector. In addition to M , the detector also observes the sequence Yn = (Y1, . . . ,Yn). It applies a

decision function

ψn : M×Rq×n→ {0,1}. (6.7)

to decides on the hypothesis

Ĥ = ψn(M,Y
n). (6.8)

�e Type-I and type-II error probabilities at the detector are de�ned as:

αn = Pr

{
Ĥ = 1

∣∣∣H = 0} (6.9)

βn = Pr

{
Ĥ = 0

∣∣∣H = 1}. (6.10)

De�nition 6.1 Given rate R ≥ 0, an error-exponent θ is said achievable if for all blocklengths n there exist

functions φn and ψn as in (6.5) and (6.7) so that the following limits hold:

lim
n→∞

αn = 0, (6.11a)

θ ≤ lim
n→∞
−1
n
logβn (6.11b)

and

lim
n→∞

1
n
log2Wn ≤ R. (6.11c)
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De�nition 6.2 (exponent-rate function) For any rate R ≥ 0, the exponent-rate function is the supre-

mum of the set of all achievable error-exponents and is denoted E(R).

In essence, the problem of vector Gaussian hypothesis testing that we study here amounts to discriminat-

ing two covariance matrices. As we already mentioned the solution of this problem is known only in few

special cases, namely the cases of testing against independence and testing against conditional indepen-

dence, both in the scalar sources se�ing, i.e., m = q = 1 [25, �eorem 3]. For vector sources, the Gaussian

hypothesis testing against conditional independence was solved recently in [39, 44].

6.2 Optimal exponent for a class of vector Gaussian hypothesis testing

problems

Let Ξ denote any real-valued block matrix of the form

Ξ =

KX G

G† K̄XYK̄−1Y KYK̄−1Y K̄†XY

 , (6.12)

where the o�-diagonal block G is arbitrary. Also let C denote the condition under which the matrices K

and K̄ satisfy:

C :

I 0

0 K̄XYK̄−1Y

K
I 0

0 K̄XYK̄−1Y


†

= argmin
Ξ

log


∣∣∣∣∣∣∣∣∣
I 0

0 K̄XYK̄−1Y

K̄
I 0

0 K̄XYK̄−1Y


†∣∣∣∣∣∣∣∣∣
+

− log {|Ξ|+}
+Tr



I 0

0 K̄XYK̄−1Y

K̄
I 0

0 K̄XYK̄−1Y


†

+

Ξ

 . (6.13)

�e following theorem provides an explicit analytic expression of the exponent-rate function of the vector

gaussian hypothesis testing problem of Figure 6.1 in the case in which the condition C as given by (6.13)

is ful�lled.

�eorem 6.1 If C is satis�ed the exponent-rate function E(R) of the model of Figure 6.1 is given by

E(R) =
m
2
+
q

2
+
1
2
log
|K̄Y|
|KY|

+
1
2

Tr

(
K̄−1Y KY

)
+
1
2
log

|K̄X|Y|
|KX −KXYK̄−1Y K̄†XY(K̄XYK̄−1Y KYK̄−1Y K̄†XY)

+K̄XYK̄−1Y K†XY|

+
1
2

Tr

(
K̄+

X|Y

(
KX −KXYK̄

−1
Y K̄†XY

(
K̄XYK̄

−1
Y KYK̄

−1
Y K̄†XY

)+
K̄XYK̄

−1
Y K†XY

))
+maxmin

R+
1
2
log

∣∣∣I−ΩKX|Y
∣∣∣, 1

2
log

∣∣∣∣I+ΩKXY

K−1Y −K−1Y K̄YK̄
+
XYK̄XYK̄

−1
Y

K†XY∣∣∣∣
 ,

where the maximization in the last term is over all matrices 0 � Ω � K+
X|Y and K̄+

XY designates the Moore-

Penrose pseudo inverse of K̄XY.
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Proof: see section 6.3

Remark 6.1 �e solution of the sepcial case of scalar Gaussian sources, i.e., m = q = 1, can be found by

specializing that of the Gaussian many-help one hypothesis testing against independence problem of [25,

�eorem 7] to the se�ing. More speci�cally, if Y is such that Y = X +N under the null hypothesis, where the

noiseN is independent of X; and Y is independent of X under the alternate hypothesis, the optimal exponent-

rate function is given by

E(R) =
1
2
log

(
σ2
X + σ2

N

σ2
N + e−2Rσ2

X

)
(6.14)

where σ2
X and σ2

N designate the variance of X and the variance of the noiseN , respectively. �rough straight-

forward algebra it can be easily shown that this result can be recovered from our �eorem 6.1 (Note that the

constraint C is always ful�lled in this case).

6.3 Proof of �eorem 6.1

For reasons that will become clearer, we �rst consider a slight generalization of the discrete memoryless

single-sensor single-detector hypothesis testing against conditional independence problem (the general-

ization accounts for that the marginals are not restricted to be identical) for which we provide a single-le�er

characterization of its exponent-rate function.

Xn Sensor Detector

M2

(Un,V n)

Ĥ2 ∈ {0,1}

Figure 6.2: Problem P2.

Consider the problem of Figure 6.2. Here, (X,U,V ) denotes a triplet of discrete memoryless sources whose

joint p.m.f. depends on the binary hypothesisH ∈ {0,1}. More precisely

H=0 : (X,U,V ) ∼ PXUV (6.15)

H=1 : (X,U,V ) ∼ P̄XUV = P̄U P̄X |U P̄V |U . (6.16)

�e de�nitions of acceptance and rejection regions, as well as the exponent-rate function, are similar to

those of previous chapters; and, thus, we omit them here for reasons of brevity.

Lemma 6.2 If the joint p.m.f PXU under the null hypothesis satis�es

PXU = argmin
P̃XU :P̃X=PX
P̃U=PU

D(P̃XU ‖P̄XU ), (6.17)
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the rate exponent function is given by

E(R) =D(PXU ‖P̄XU ) +D(PV ‖P̄V |U ) +max I(S;V |U ) (6.18)

where in (6.18) the maximization is over all conditionals PS |X for which I(S;X |U ) ≤ R.

Proof of Lemma 6.2:

We have

E(R) = lim
n→∞

En(R), (6.19)

where

En(R) =
1
n
D(Pφn(Xn)UnV n‖P̄φn(X̄n)ŪnV̄ n). (6.20)

It is easy to see that

lim
n→∞

En(R) = lim
n→∞

max
φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)UnV n‖P̄φn(X̄n)ŪnV̄ n)

= lim
n→∞

max
φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un) +D(PV ‖P̄V |U ) +

1
n
I(φn(X

n);V n|Un)

(a)
≤ D(PV ‖P̄V |U ) + lim

n→∞
max

φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un)

+ max
φn : log2 |φn|≤nR

1
n
I(φn(X

n);V n|Un)

(b)
≤ D(PV ‖P̄V |U ) +D(PXU ‖P̄XU ) + lim

n→∞
max

φn : log2 |φn|≤nR

1
n
I(φn(X

n);V n|Un)

(c)
= D(PXU ‖P̄XU ) +D(PV ‖P̄V |U ) + max

PS |X : I(S;X |U )≤R
I(S;V |U ) (6.21)

where (a) holds since

max
x∈X

f (x) + g(x) ≤max
x∈X

f (x) +max
x∈X

g(x)

(b) holds since the decentralized error-exponent function

lim
n→∞

max
φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un),

is always less than the centralized error-exponent D(PXU ‖P̄XU ); (c) holds by noting that the term

(I(φn(X
n);V n|Un))/n,

is the exponent of a hypothesis testing against conditional independence problem at rate R as given by

[25, �eorem 3],

max
φn : log2 |φn|≤nR

1
n
I(φn(X

n);V n|Un) = max
PS |X : I(S;X |U )≤R

I(S;V |U ). (6.22)

Combining (6.19) and (6.21) we get

E(R) ≤D(PXU ‖P̄XU ) +D(PV ‖P̄V |U ) + max
PS |X : I(S;X |U )≤R

I(S;V |U ). (6.23)
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�e proof ends by noticing that if

PXU = argmin
P̃XU :P̃X=PX
P̃U=PU

D(P̃XU ‖P̄XU ), (6.24)

then both inequalities (a) and (b) in (6.21) hold with equality. In order to see that (b) holds with equality

when (6.24) is satis�ed observe that on the one hand we have

max
φn : |φn|≤2

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un) ≤ max

φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un)

≤D(PXU ‖P̄XU ); (6.25)

and on the other hand we also have

lim
n→∞

max
φn : |φn|≤2

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un)

(d)
= min
P̃XU :P̃X=PX
P̃U=PU

D(P̃XU ‖P̄XU )

(e)
= D(PXU ‖P̄XU ) (6.26)

where (d) holds by using [14, �eorem 5] and (e) holds by using (6.24). It remains to show that (a) in (6.21)

holds with equality. To see this observe that on the one hand we have

max
φn : log |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un) + I(φn(X

n);V n|Un)

≤ max
φn : log |φn|≤nR

D(PXU ‖P̄XU ) + I(φn(Xn);V n|Un)

= D(PXU ‖P̄XU ) + max
φn : log |φn|≤nR

I(φn(X
n);V n|Un); (6.27)

and on the other hand, denoting by φ∗n the maximizer in the le� hand side of (6.25), we have

lim
n→∞

max
φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un) +

1
n
I(φn(X

n);V n|Un)

= lim
n→∞

max
φn : log2 |φn|≤nR+1

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un) +

1
n
I(φn(X

n);V n|Un)

≥ lim
n→∞

max
(φ̃n,φ∗n) : log2 |φ̃n|≤nR

1
n
D(Pφ∗n(Xn)Un‖P̄φ∗n(Xn)Un) +

1
n
I(φ̃n(X

n);V n|Un)

= lim
n→∞

1
n
D(Pφ∗n(Xn)Un‖P̄φ∗n(Xn)Un) + max

φn : log2 |φn|≤nR+1

1
n
I(φn(X

n);V n|Un)

= D(PXU ‖P̄XU ) + max
φn : log2 |φn|≤nR+1

1
n
I(φn(X

n);V n|Un).

Using the above we get

lim
n→∞

max
φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un) +

1
n
I(φn(X

n);V n|Un)

=D(PXU ‖P̄XU ) + lim
n→∞

max
φn : log2 |φn|≤nR+1

1
n
I(φn(X

n);V n|Un)

= lim
n→∞

max
φn : log2 |φn|≤nR

1
n
D(Pφn(Xn)Un‖P̄φn(Xn)Un) + max

φn : log2 |φn|≤nR

1
n
I(φn(X

n);V n|Un)

(6.28)
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where the last equality follows since (b) in (6.21) holds with equality as we have already shown.

We now turn to the proof of �eorem 6.1. �e result of Lemma 6.2 extends easily to the case of continuous

alphabets using standard discretization (quantization) techniques. Let

U = EP̄ [X|Y] (6.29)

V = Y. (6.30)

We can see that underH = 1,

I(X;U)=H(X)−H(X|U)

=H(X)− log |KX −KXUK
+
UK
†
XU| (6.31)

=H(X)− log |KX −KXYK
−1
Y K†XY

(
KXYK

−1
Y K†XY

)+
KXYK

−1
Y K†XY| (6.32)

=H(X)− log |KX −KXYK
+
YK
†
XY| (6.33)

=I(X;Y), (6.34)

and so:

X−
−U−
−V (6.35)

is a Markov chain.

Consider now the problem of testing against conditional independence in which the sensor observes X and

the detector observes the pair (U,V) and aims to guess whether X and V are independent conditionally

on U or not. �at is, the problem of Figure 6.2 in which EP̄ [X|Y] plays the role of U and Y plays the role

of V. In the remaining of this proof this problem will be referred to as Problem P2. For given R the rate

exponent function of the original vector Gaussian problem of Figure 6.1 is equal to that of the Problem P2,

i.e.,

E(R) = E2(R). (6.36)

(�e interested reader may refer to Appendix H for a proof of (6.36)).

Now, invoking Lemma 6.2 on Problem P2 we get that if

PXU = argmin
P̃XU:P̃X=PX
P̃U=PU

D(P̃XU‖P̄XU), (6.37)

then we have

E(R) =D(PXU‖P̄XU) +D(PV‖P̄V|U) + max
PS |X : I(S;X|U)≤R

I(S;V|U)

=D(PXU‖P̄XU) +D(PY‖P̄Y|U) + max
PS |X : I(S;X|U)≤R

I(S;Y|U)

=D(PX‖P̄X|U) +D(PY‖P̄Y) + max
PS |X : I(S;X|U)≤R

I(S;Y|U). (6.38)
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In what follows we �rst show that the minimizer in

argmin
P̃XU:P̃X=PX
P̃U=PU

D(P̃XU‖P̄XU) (6.39)

is a multivariate Gaussian distribution on the pair (X,U). To see this let P̃XU with P̃X = PX and P̃U = PU be

given. Also let P̃ GXU be a multivariate Gaussian with the same covariance matrix as that of P̃XU. �en we

have

D(P̃XU‖P̄XU) = −h(P̃XU)−EP̃
{
log P̄XU

}
≥ −h(P̃ GXU)−EP̃ G

{
log P̄XU

}
(6.40)

where the inequality holds since among all distributions with the same covariance matrix the Gaussian

maximizes entropy. �rough straightforward algebra it can be shown that the condition

PXU = argmin
P̃XU:P̃X=PX
P̃U=PU

D(P̃XU‖P̄XU) (6.41)

is equivalent to the constraint C as given by (6.13). (�e interested reader may refer to Appendix I)

It remains to evaluate the right hand side (RHS) of (6.38). �e relative entropy term in the RHS of (6.38)

can be computed as

D(PY||P̄Y) =
q

2
+
1
2
log
|K̄Y|
|KY|

+
1
2

Tr

(
K̄−1Y KY

)
. (6.42)

Similarly, the conditional entropy term of the RHS of (6.38) can be computed as

D(PX||P̄X|U) =
m
2
+
1
2
log

|K̄X|Y|+
|KX −KXYK̄−1Y K̄†XY(K̄XYK̄−1Y KYK̄−1Y K̄†XY)

+K̄XYK̄−1Y K†XY|+

+
1
2

Tr

(
K̄+

X|Y

(
KX −KXYK̄

−1
Y K̄†XY

(
K̄XYK̄

−1
Y KYK̄

−1
Y K̄†XY

)+
K̄XYK̄

−1
Y K†XY

))
. (6.43)

It remains to evaluate the maximum of the mutual information term I(S;Y|U) where the maximization is

over all test channels PS |X for which I(S;X|U) ≤ R. �is is done in [39, �eorem 5] where the maximizing

S is shown to be multivariate Gaussian with

max
PS |X : I(S;X|U)≤R

I(S;Y|U) = maxmin
{
R+

1
2
log

∣∣∣I−ΩKX|Y
∣∣∣ ,

1
2
log

∣∣∣∣I+ΩKXY

K−1Y −K−1Y K̄YK̄
+
XYK̄XYK̄

−1
Y

K†XY∣∣∣∣
 , (6.44)

Combining (6.42), (6.43) and (6.44) we get the RHS of (6.44); and this completes the proof of �eorem 6.1.

�
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6.4 Discussion

�e constraint C as given by (6.13) may seem too restrictive, but it is not. In what follows we show that

this constraint may be satis�ed of a large class of sources even in the case in whichm = 1 and q = 2. Let X

be a scalar source that is observed at the sensor and Y = (Y1,Y2) a 2-dimensional source that is observed

at the detector. For convenience, let

K =


σ2
X σXY1 σXY2

σXY1 σ2
Y1

σY1Y2

σXY2 σY1Y2 σ2
Y2

 and K̄ =


σ̄2
X σ̄XY1 σ̄XY2

σ̄XY1 σ̄2
Y1

σ̄Y1Y2

σ̄XY2 σ̄Y1Y2 σ̄2
Y2

 . (6.45)

Also, let

a =
(
σ̄XY2 σ̄Y1Y2 − σ̄XY1 σ̄

2
Y2

)
and b =

(
σ̄XY1 σ̄Y1Y2 − σ̄XY2 σ̄

2
Y1

)
. (6.46)

For this example the constraint C as given by (6.13) reduces to

i) σ2
X = σ̄2

X , (6.47a)

ii) a(σXY − σ̄XY ) + b(σXZ − σ̄XZ ) = 0 (6.47b)

iii) a2(σ2
Y − σ̄

2
Y ) + 2ab(σYZ − σ̄YZ ) + b2(σ2

Z − σ̄
2
Z ) = 0 (6.47c)

For example, if all components have unit variance under both P and P̄ , i.e., σ2
X = σ2

Y1
= σ2

Y2
= 1 and

σ̄2
X = σ̄2

Y1
= σ̄2

Y2
= 1 then all de�nite positive matrices K and K̄ of the form

K =


1 a12 h(ā12, ā13, ā23, a12)

a12 1 ā23

h(ā12, ā13, ā23, a12) ā23 1

 and K̄ =


1 a12 ā13

a12 1 ā23

ā13 ā23 1

 (6.48)

for some arbitrary parameters a12, ā12, ā13, ā23, satisfy the constraint (6.47). Here

h(x,y1, y2, t) = y1 − (t − y2)
y1y2 − x
xy2 − y1

. (6.49)

Example 6.1 Let

K =


1. 0.4 α

0.4 1. 0.1

α 0.1 1.

 and K̄ =


1. 0.1 −0.8

0.1 1. 0.1

−0.8 0.1 1.

 , (6.50)

with α ≈ −0.73333. We can see that (6.47) is ful�lled. Figure 6.3 shows the evolution of the optimal exponent

E as a function of the communication rate R as given by�eorem 6.1 for this example. It is interesting to observe

that Han’s scheme [14, �eorem 2] is strictly suboptimal for this example1, whereas Shimokawa-Han-Amari

scheme [32, �eorem 1] is optimal.

1
In the �gure, Han’s exponent as given by [14, �eorem 2] is computed using Gaussian test channels PU |X and Gaussian Ũ
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Optimal exponent-rate function (Theorem 6.1)

Lower bound (Han’s scheme, [14, Theorem 2])

Lower bound (SHA’s scheme, [32, Theorem 1])

Figure 6.3: Rate-exponent region for Example 6.1.
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CHAPTER 7

Summary

7.1 Coherent detection and non-coherent detection with cooperation

In Chapters 4 and Chapters 5 we have studied hypothesis testing Type II error exponents in the context

of coherent and concurrent detection with and without cooperation. In a �rst part, we studied the case of

�xed-length communication and characterized the exponent regions when the Type I error probabilities

are constrained to be less than a �xed threshold. �ese are rectangular in the case of a coherent detection

or in the case of concurrent detection when the sensor can send more than one bit or when it cannot

distinguish the two hypotheses. In this case each detector behaves as if it were the only one in the system.

When the detection is concurrent and the sensor can send only one bit and can distinguish between the

two hypotheses, there is a trade-o� between the two exponents.

It may be interesting to generalize this work to the scenario in which K detectors share information from

a single sensor in a network where communications are of �xed length. �is could lead to a complete

modeling of the sensor network as encountered into the IoT. We can also consider the problem where the

sensor must compress its observation without knowing what test will be performed at the end but only

that this test belongs to some family.

In a second part we studied for this same system the exponent-rate region for positive rate communication

when the Type I error probabilities are constrained to decrease to zero with the number of observation

going to in�nity. It appears that in the concurrent case and when the sensor can distinguish the two

hypotheses, the acceptance region is rectangular. A trade-o� between the two exponents appears when

the two hypotheses cannot be distinguished. In some particular cases, we have characterized this region

and in the general case we have studied a communication scheme without binning. However, it is clear
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7.2. DISTRIBUTED HYPOTHESIS TESTING IN THE GAUSSIAN CASE

that binning helps in the general case.

7.2 Distributed hypothesis testing in the Gaussian case

In chapter 6, we restricted a�ention to the vector Gaussian single-sensor single-detection hypothesis test-

ing problem. In this case, the problem amounts to distinguishing two multivariate Gaussian distributions

using only partial (compressed) information. Relying heavily on recent developments in this area [44,

39] we found su�cient conditions under which the optimal exponent-rate function can be characterized

analytically.
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APPENDIXA

Proof of Theorem 2.7

�is proof follows along the same steps as [31, �eorem 2] proof, we reproduce this steps here for ma�er

of completness. For every PXY ∈ P (X ×Y ) such that

P ⊗nX (C) ≥ 1− ε
Mn

, P ⊗nY (F ) ≥ 1− ε
Mn

, (A.1)

where

lim
n→∞

1
n
logMn = 0, (A.2)

lemma 2.6 applies and there exist sequences kn = o(n) and γn = o(1) such that

P ⊗nX (Γ knC) ≥ 1−γn, P ⊗nY (Γ knF) ≥ 1−γn (A.3)

�e sequences kn and γn depend only on |X |, |Y |, ε and Mn. Using the fact that Pr(A∩B) ≥ Pr(A)+Pr(B)−1

and (A.3), we get

P ⊗nXY (Γ
knC × Γ knF) ≥ 1− 2γn. (A.4)

�e same is true for the set T nη
(
PXY

)
, where η = ηn = n−1/4,

P ⊗nXY

(
T nη

(
PXY

))
≥ 1− |X ||Y |

4nη2n
= 1− |X ||Y |

4n1/2
. (A.5)

Using (A.4) and (A.5), it is clear that for large n,

P ⊗nXY
((
Γ knC × Γ knF

)
∩T nη (PXY )

)
≥ 1

2
(A.6)

Herea�er, for the sake of simplicity we abuse notation and dismiss the subscript n from kn and γn and

write simply kn := k and γn := γ .
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Now, using the fact that

T nη (PXY ) =
⋃

PX̂Ŷ ∈Pn (X ×Y )∣∣∣PX̂Ŷ − PXY ∣∣∣ ≤ ηPXY
T n(PX̂Ŷ ) (A.7)

and observing that all the elements of the type class T n(PX̂Ŷ ) are equiprobable under an i.i.d. measure,

(A.6) can be rewri�en as ∑
P ⊗nXY (T

n(PX̂Ŷ ))
|(Γ kC × Γ kF)∩T n(PX̂Ŷ )|

|T n(PX̂Ŷ )|
≥ 1

2
(A.8)

where, in the last inequality, the sum is over all types PX̂Ŷ ∈Pn (X ×Y ) such that, PX̂Ŷ � PXY and

|PX̂Ŷ − PXY | ≤ ηPXY . (A.9)

As P ⊗XY (T
n(PX̂Ŷ )) ≤ 1 and |Pn (X ×Y ) | ≤ (n+1)|X ||Y |, there must exist at least one type PX̂Ŷ for which

|(Γ kC × Γ kF)∩T n(PX̂Ŷ )|
|T n0 (PX̂Ŷ )|

≥ 1
2
exp(−nεn) (A.10)

with µn ,
|X ||Y |
n log(n+1)=O(n−1 log(n+1))→ 0 as n→∞. �e equiprobability property is also true for

the i.i.d measure Q⊗nXY . �us

Q⊗nXY

(
Γ kC × Γ kF

)
≥Q⊗nXY

(
(Γ kC × Γ kF)∩T n(PX̂Ŷ )

)
=Q⊗nXY

(
T n0 (PX̂Ŷ )

) |(Γ kC × Γ kF)∩T n(PX̂Ŷ )|
|T n0 (PX̂Ŷ )|

≥ 1
2
exp(−nµn)Q⊗nXY (T

n
0 (PX̂Ŷ )). (A.11)

where the last inequality follows using (A.10).

We thus have shown that the sets Γ kC × Γ kF and T n(PX̂Ŷ ) have the same exponential order under the

measure Q⊗nXY . In what follows, we show that the same is true for the sets Γ kC × Γ kF and C ×F .

Consider now an arbitrary triple of sequences (un,vn) ∈ Γ kC × Γ kF. By de�nition of the sets Γ kC, Γ kF

there exists at least one element (xn, yn) ∈ C×F such that the vectors (un,vn) and (xn, yn) di�er in at most

2k locations. �us,

Q⊗nXY (u
n,vn) =

n∏
i=1

Q⊗nXY (ui ,vi) ≤ ρ
−2k

n∏
i=1

QXY (xi , yi) = ρ
−2kQ⊗nXY (x

n, yn) (A.12)

where

ρ := min
x∈X , y∈Y

Q (x,y). (A.13)

As (un,vn) ranges over Γ kC×Γ kF each element of (xn, yn) ∈ C×F will be selected as the closest neighbor

at most |Γ k(xn)| · |Γ k(yn1 )| times. �us

Q⊗nXY (Γ
kC × Γ kF) ≤ ρ−2k |Γ k(xn)| · |Γ k(yn)|Q⊗nXY (C ×F). (A.14)
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From [7, Lemma 5.1], we have

|Γ k(xn)| ≤ exp
[
−n

(
h2(

k
n
) +

k
n
log |X |

)]
:= exp(nξn) (A.15)

with h2(·) denotes the binary entropy function and ξn→ 0 as n→∞.

Hence:

Q⊗nXY (Γ
kC × Γ kF) ≤ exp(nξn)Q

⊗n
XY (C ×F) (A.16)

Combining (A.11) and (A.16), we obtain

Q⊗nXY (C ×F)≥ exp(−nξn)Q⊗nXY (Γ
kC × Γ kF)

≥ 1
2
exp

[
−n(ξn +µn)

]
Q⊗nXY (T

n(QXY ))

≥ (n+1)
2

|X ||Y |
exp

[
−n

(
D(PX̂Ŷ ‖QXY ) + ξn +µn

)]
= exp

[
−n

(
D(PX̂Ŷ ‖QXY ) + νn

)]
. (A.17)

where νn := νn(ρ,ε,Mn, |X |, |Y |)→ 0 as n→∞. this completes the proof of the proof of �eorem 2.7.
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APPENDIXB

Proof of Proposition 4.1

We present �rst a coding scheme for coherent detection that we will analyze to prove the achievability

part. Fix a small µ > 0.

Sensor: Assume it observes the source sequence Xn = xn, then it checks whether

xn ∈ Tµ(PX)

it the test is successful it sends M1 = 1 else M1 = 0.

Detector 1: If M1 = 0, Detector 1 decides on the alternative hypothesis:

Ĥ1 = 1.

If M1 = 1 and given that Y n1 = yn1 , Detector 1 checks whether

yn1 ∈ Tµ(PY1).

If the test is successful it decides on the null hypothesis

Ĥ1 = 0.

Otherwise it decides on the alternative hypothesis. We now describe the communication to Detector 2. If

Ĥ1 = 0,

Detector 1 sends

M2 = 1.
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Else if

Ĥ1 = 1,

Detector 1 sends

M2 = 0.

Type I errors analysis : We have for n large enough:

α1,n=Pr

[
Ĥ1 = 1|H = 0

]
=Pr

[
Xn < Tµ(PX) or Y n1 < Tµ(PY1)|H = 0

]
(a)
≤Pr

[
(Xn,Y n1 ) < Tµ(PXY1)|H = 0

]
(b)
≤ε1. (B.1)

where (a) follows since Tµ(PXY1) ⊆ Tµ(PX)× Tµ(PY1); (b) follows by the week law of large number. In the

same way for n large enough:

α2,n=Pr

[
Ĥ2 = 1|H = 0

]
=Pr

[
Xn < Tµ(PX) or Y n1 < Tµ(PY1) or Y n2 < Tµ(PY2)|H = 0

]
(a)
≤Pr

[
(Xn,Y n1 ,Y

n
2 ) < Tµ(PXY1Y2)|H = 0

]
(b)
≤ε2. (B.2)

where (a) follows since Tµ(PXY1Y2) ⊆ Tµ(PX) × Tµ(PY1) × Tµ(PY2); (b) follows by the week law of large

number.

Type II errors analysis : de�ne the sets L1,µ and L2,µ so that:

L1,µ ,

P̃XY1 : |PX − P̃X | ≤ µPX ,|PY1 − P̃Y1 | ≤ µPY1

 , L2,µ ,
P̃XY1Y2 :

|PX − P̃X | ≤ µPX ,

|PY1 − P̃Y1 | ≤ µPY1 ,

|PY2 − P̃Y2 | ≤ µPY2

 .
�e acceptance region of the test performed at Detector 1 is:

A1,n = Tµ(PX)×Tµ(PY1) =
⋃

P̃XY1∈L1,µ∩Pn(X×Y1)

T (P̃XY1). (B.3)

We have:

β1,n=Pr

[
Ĥ1 = 0|H = 1

]
=Pr

[
(Xn,Y n1 )A1,n|H = 1

]
(a)
≤ (n+1)|X ||Y1| exp

[
−n min

P̃XY1∈L1,µ
D(P̃XY1‖P̄XY1)

]
, (B.4)
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where (a) follows by �eorem 2.4. In the same way, the acceptance region of the test performed at Detec-

tor 2 is:

A2,n = Tµ(PX)×Tµ(PY1)×Tµ(PY2) =
⋃

P̃XY1Y2∈L2,µ∩Pn(X×Y1×Y2)

T (P̃XY1Y2). (B.5)

and so:

β2,n=Pr

[
Ĥ2 = 0|H = 1

]
=Pr

[
(Xn,Y n1 ,Y

n
2 )A2,n|H = 1

]
(a)
≤ (n+1)|X ||Y1||Y2| exp

[
−n min

P̃XY1Y2∈L2,µ
D(P̃XY1Y2‖P̄XY1Y2)

]
, (B.6)

where (a) follows by �eorem 2.4. Finally as
|X ||Y1|
n log(n + 1) and

|X ||Y1||Y2|
n log(n + 1) are sequences de-

creasing to 0 when n→∞, the achievability part is conclude by le�ing n→∞.

We now continue with the converse part. Fix an achievable Type II error exponents pair (θ1,θ2), then

choose a small number µ > 0, a su�ciently large blocklength n , and encoding and decision functions

φ1,n, φ2,n, φ1,n, φ2,n satisfying

α1,n≤ε1,

α2,n≤ε2, (B.7)

and

−1
n
logβ1,n≥θ1 −µ, (B.8a)

−1
n
logβ2,n≥θ2 −µ, (B.8b)

For the chosen encoding and decision functions, de�ne for each pair (m1,m2) ∈ {0, . . . ,W1−1}×{0, . . . ,W2−

1} the subsets

Cm1
, {xn ∈ X n : φ1,n(x

n) =m1}, (B.9)

Gm1,m2
, {yn1 ∈ Y

n
1 : φ2,n(m1, y

n
1 ) =m2}, (B.10)

F1,m1
, {yn1 ∈ Y

n
1 : φ2,n(m1, y

n
1 ) = 0}, (B.11)

F2,m1,m2
, {yn2 ∈ Y

n
2 : ψ2,n(m1,m2, y

n
2 ) = 0}. (B.12)

Moreover, the acceptance regionsA1,n at Detector 1 andA2,n at Detector 2, de�ned through the relations

(Xn,Y n1 ) ∈ A1,n⇐⇒ Ĥ1 = 0, (B.13)

and

(Xn,Y n1 ,Y
n
2 ) ∈ A2,n⇐⇒ Ĥ2 = 0, (B.14)
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can be expressed as

A1,n ,

W1−1⋃
m1=0

Cm1
×F1,m1,m2

. (B.15)

A2,n ,

W2−1⋃
m2=0

W1−1⋃
m1=0

Cm1
×Gm1,m2

×F2,m1,m2
. (B.16)

By the constraint on the Type I error probability on Detector 1 and Detector 2, (C.8a),

P ⊗nXY1

(Xn,Y n1 )
∈

W1−1⋃
m1=0

Cm1
×F1,m1,m2

 ≥ 1− ε1

P ⊗nXY1Y2

(Xn,Y n1 ,Y n2 )
∈

W1−1⋃
m1=0

W2−1⋃
m2=0

Cm1
×Gm1,m2

×F2,m1,m2

 ≥ 1− ε2 (B.17)

Now, by the union bound there exists an index pair (m∗1,m
∗
2) ∈ {0, . . . ,W1 − 1} × {0, . . . ,W2 − 1} such that:

P ⊗nX
[
Xn ∈ Cm∗1

]
≥ 1− ε

W1
, (B.18a)

P ⊗nY1

[
Y n1 ∈ F1,m∗1

]
≥ 1− ε

W1
(B.18b)

P ⊗nY1

[
Y n1 ∈ Gm∗1,m∗2

]
≥ 1− ε

W1W2
, (B.18c)

P ⊗nY2

[
Y n2 ∈ F2,m∗1,m∗2

]
≥ 1− ε

W1W2
, (B.18d)

Combining (C.18) with �eorem 2.7 and an extension of it to three pmfs (recall that PXY1Y2(x,y1, y2) > 0

by assumption, and thus PXY1Y2 � P̄XY1Y2 ), for su�ciently large n, we obtain:

Pr[Ĥ1 = 0|H = 1]≥ max
P̃XY1 :

P̃X=PX ,P̃Y1=PY1

e
−n

(
D
(
P̃XY1‖P̄XY1

)
+µ

)
,

Pr[Ĥ2 = 0|H = 1]≥ max
P̃XY1Y2 :
P̃X=PX ,

P̃Y1=PY1 ,P̃Y2=PY2

e
−n

(
D
(
P̃XY1Y2‖P̄XY1Y2

)
+µ

)
. (B.19)

Taking n→∞ and µ→ 0, by the continuity of KL-divergence, we can conclude that for any achievable

exponent θ2:

θ1 ≤ min
P̃XY1 :
P̃X=PX ,
P̃Y1=PY1

D
(
P̃XY1‖P̄XY1

)
(B.20)

θ2 ≤ min
P̃XY1Y2 :
P̃X=PX ,

P̃Y1=PY1 ,P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (B.21)

�is conclude the proof.
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APPENDIXC

Proof of Proposition 4.2

We present �rst a coding scheme for coherent detection that we will analyze to prove the achievability

part. Fix a small µ > 0.

Sensor: Assume it observes the source sequence Xn = xn, then it checks whether

xn ∈ Tµ(PX) = Tµ(P̄X)

it the test is successful it sends M1 = 1 else M1 = 0.

Detector 1: If M1 = 0, Detector 1 decides on the alternative hypothesis:

Ĥ1 = 1.

If M1 = 1 and given that Y n1 = yn1 , Detector 1 checks whether

yn1 ∈ Tµ(P̄Y1).

If the test is successful it decides on hypothesis

Ĥ1 = 1.

Otherwise it decides on

Ĥ1 = 0.

We now describe the communication to Detector 2. If

Ĥ1 = 0,
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Detector 1 sends

M2 = 1.

Else if

Ĥ1 = 1,

Detector 1 sends

M2 = 0.

Type I errors analysis : We have for n large enough:

α1,n=Pr

[
Ĥ1 = 1|H = 0

]
=Pr

[
Xn < Tµ(P̄X) or Y n1 < Tµ(P̄Y1)|H = 0

]
(a)
≤Pr

[
(Xn,Y n1 ) < Tµ(P̄XY1)|H = 0

]
(b)
≤ε1. (C.1)

where (a) follows since Tµ(P̄XY1) ⊆ Tµ(P̄X)× Tµ(P̄Y1); (b) follows by the week law of large number. In the

same way for n large enough:

α2,n=Pr

[
Ĥ2 = 1|H = 0

]
=Pr

[
Xn < Tµ(PX) or Y n1 < Tµ(PY1) or Y n2 < Tµ(PY2)|H = 0

]
(a)
≤Pr

[
(Xn,Y n1 ,Y

n
2 ) < Tµ(PXY1Y2)|H = 0

]
(b)
≤ε2. (C.2)

where (a) follows since Tµ(PXY1Y2) ⊆ Tµ(PX) × Tµ(PY1) × Tµ(PY2); (b) follows by the week law of large

number.

Type II errors analysis : de�ne the sets L1,µ so that:

L̄1,µ ,

P̃XY1 : |P̄X − P̃X | ≤ µP̄X ,|P̄Y1 − P̃Y1 | ≤ µP̄Y1

 .
�e acceptance region of the test performed at Detector 1 is:

A1,n = Tµ(P̄X)×Tµ(P̄Y1) =
⋃

P̃XY1∈L̄1,µ∩Pn(X×Y1)

T (P̃XY1). (C.3)

We have:

β1,n=Pr

[
Ĥ1 = 0|H = 1

]
=Pr

[
(Xn,Y n1 )A1,n|H = 1

]
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(a)
≤ (n+1)|X ||Y1| exp

[
−n min

P̃XY1∈L̄1,µ
D(P̃XY1‖PXY1)

]
, (C.4)

where (a) follows by �eorem 2.4. In the same way, the acceptance region of the test performed at Detec-

tor 2 is:

A2,n = Tµ(PX)×Tµ(PY1)×Tµ(PY2) =
⋃

P̃XY1Y2∈L2,µ∩Pn(X×Y1×Y2)

T (P̃XY1Y2). (C.5)

and so:

β2,n=Pr

[
Ĥ2 = 0|H = 1

]
=Pr

[
(Xn,Y n1 ,Y

n
2 )A2,n|H = 1

]
(a)
≤ (n+1)|X ||Y1||Y2| exp

[
−n min

P̃XY1Y2∈L2,µ
D(P̃XY1Y2‖P̄XY1Y2)

]
, (C.6)

where (a) follows by �eorem 2.4. Finally as
|X ||Y1|
n log(n + 1) and

|X ||Y1||Y2|
n log(n + 1) are sequences de-

creasing to 0 when n→∞, the achievability part is conclude by le�ing n→∞.

We now continue with the converse part. Fix an achievable Type II error exponents pair (θ1,θ2), then

choose a small number µ > 0, a su�ciently large blocklength n , and encoding and decision functions

φ1,n, φ2,n, φ1,n, φ2,n satisfying

α1,n≤ε1,

α2,n≤ε2, (C.7)

and

−1
n
logβ1,n≥θ1,−µ (C.8a)

−1
n
logβ2,n≥θ2 −µ, (C.8b)

For the chosen encoding and decision functions, de�ne for each pair (m1,m2) ∈ {0, . . . ,W1−1}×{0, . . . ,W2−

1} the subsets

Cm1
, {xn ∈ X n : φ1,n(x

n) =m1}, (C.9)

Gm1,m2
, {yn1 ∈ Y

n
1 : φ2,n(m1, y

n
1 ) =m2}, (C.10)

F1,m1
, {yn1 ∈ Y

n
1 : φ2,n(m1, y

n
1 ) = 0}, (C.11)

F2,m1,m2
, {yn2 ∈ Y

n
2 : ψ2,n(m1,m2, y

n
2 ) = 0}. (C.12)

Moreover, the acceptance regionsA1,n at Detector 1 andA2,n at Detector 2, de�ned through the relations

(Xn,Y n1 ) ∈ A1,n⇐⇒ Ĥ1 = 0, (C.13)

and

(Xn,Y n1 ,Y
n
2 ) ∈ A2,n⇐⇒ Ĥ2 = 0, (C.14)
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can be expressed as

A1,n ,

W1−1⋃
m1=0

Cm1
×F1,m1,m2

. (C.15)

A2,n ,

W2−1⋃
m2=0

W1−1⋃
m1=0

Cm1
×Gm1,m2

×F2,m1,m2
. (C.16)

By the constraint on the Type I error probability on Detector 1 and Detector 2, (C.8a),

P̄ ⊗nXY1

(Xn,Y n1 )
∈

W1−1⋃
m1=0

Cm1
×F2,m1,m2

 ≥ 1− ε1

P ⊗nXY1Y2

(Xn,Y n1 ,Y n2 )
∈

W1−1⋃
m1=0

W2−1⋃
m2=0

Cm1
×Gm1,m2

×Fm1,m2

 ≥ 1− ε2 (C.17)

Now, by the union bound there exists an index pair (m∗1,m
∗
2) ∈ {0, . . . ,W1 − 1} × {0, . . . ,W2 − 1} such that:

P̄ ⊗nX
[
Xn ∈ Cm∗1

]
≥ 1− ε

W1
, P̄ ⊗nY1

[
Y n1 ∈ F1,m∗1

]
≥ 1− ε

W1
(C.18a)

P ⊗nX
[
Xn ∈ Cm∗1

]
≥ 1− ε

W1
, P ⊗nY1

[
Y n1 ∈ Gm∗1,m∗2

]
≥ 1− ε

W1W2
, P ⊗nY2

[
Y n2 ∈ F2,m∗1,m∗2

]
≥ 1− ε

W1W2
.(C.18b)

Combining (C.18) with �eorem 2.7 and an extension of it to three pmfs (recall that we assumed PXY1Y2(x,y1, y2) >

0 and thus PXY1Y2 � P̄XY1Y2 ), for su�ciently large n, we obtain:

Pr[Ĥ1 = 0|H = 1]≥ max
P̃XY1 :

P̃X=P̄X ,P̃Y1=P̄Y1

e
−n

(
D
(
P̃XY1‖PXY1

)
+µ

)
,

Pr[Ĥ2 = 0|H = 1]≥ max
P̃XY1Y2 :
P̃X=PX ,

P̃Y1=PY1 ,P̃Y2=PY2

e
−n

(
D
(
P̃XY1Y2‖P̄XY1Y2

)
+µ

)
. (C.19)

Taking n→∞ and µ→ 0, by the continuity of KL-divergence, we can conclude that for any achievable

exponent θ2:

θ1 ≤ min
P̃XY1 :
P̃X=P̄X ,
P̃Y1=P̄Y1

D
(
P̃XY1‖PXY1

)
(C.20)

θ2 ≤ min
P̃XY1Y2 :
P̃X=PX ,

P̃Y1=PY1 ,P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (C.21)

�is conclude the proof.
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APPENDIXD

Proof of Theorem 4.4

Error analysis of the scheme presented in subsection 4.3.2:

Notice �rst that for su�ciently small µ, when Xn ∈ T nµ (P̄X) and Y n1 ∈ T nµ (P̄Y1), then Detector 1 declares

Ĥ1 = 1. �us, by the weak law of large numbers, for su�ciently large n:

α1,n ≤ 1−Pr
[
(Xn,Y n1 ) ∈ T

n
µ (P̄X)×T nµ (P̄Y1)

]
≤ ε1.

In the same way, when Xn ∈ T nµ (PX), Y
n
1 ∈ T nµ (PY1) and Y n2 ∈ T nµ (PY2), then Detector 2 declares Ĥ2 = 0.

�us, by the weak law of large numbers, for su�ciently large n:

α2,n ≤ 1−Pr
[
(Xn,Y n1 ,Y

n
2 ) ∈ T

n
µ (PX)×T nµ (PY1)×T

n
µ (PY2)

]
≤ ε2.

De�ne now for r ∈R:

A1,µ(r) :=
{
(xn, yn1 ) : Pxn ∈ Γb(1)(r), and yn1 ∈ T

n
µ (P̄Y1)

}
. (D.1)

A2,µ(r) :=
{
(xn, yn1 , y

n
2 ) : Pxn ∈ Γb(0)(r), y

n
1 ∈ T

n
µ (PY1), and yn2 ∈ T

n
µ (PY2)

}
. (D.2)

�e type-II error probability at detector 1 satis�es:

β1,n ≤ Pr
[
(Xn,Y n1 ) ∈ A1,µ

∣∣∣∣H = 0
]

≤ min
P̃XY1 :

P̃X∈Γb(1)(r)∣∣∣P̃Y1−P̄Y1 ∣∣∣≤µ
e
−n

(
D
(
P̃XY1 ||PXY1

)
−ξ1(µ)

)
, (D.3)

where the last inequality holds for su�ciently large values of n and by Sanov’s theorem. Here ξ1(µ)→ 0

with µ. In the same way, the type-II error probability at detector 2 satis�es:

β2,n ≤ Pr
[
(Xn,Y n1 ,Y

n
2 ) ∈ A2,µ

∣∣∣∣H = 1
]
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≤ min
P̃XY1Y2 :
P̃X∈Γb(0)(r)∣∣∣P̃Y1−PY1 ∣∣∣≤µ, ∣∣∣P̃Y2−PY2 ∣∣∣≤µ

e
−n

(
D
(
P̃XY1Y2 ||P̄XY1Y2

)
−ξ2(µ)

)
, (D.4)

where the last inequality holds for su�ciently large values of n and by Sanov’s theorem. Here ξ2(µ)→ 0

with µ. Taking µ→ 0 and n→∞ establishes the desired achievability result.

Converse to �eorem 4.4:

Fix a real number r and an exponent pair (θ1,θ2) ∈ E0(2,2) satisfying

θ2 = θ1 + r. (D.5)

�en �x a small number ε > 0, a su�ciently large blocklength n, and encoding and decision functions

φ1,n,φ2,n,ψ1,n,ψ2,n satisfying

α1,n ≤ ε, (D.6)

α2,n ≤ ε, (D.7)

and

−1
n
logβ1,n ≥ θ1 − ε, (D.8)

−1
n
logβ2,n ≥ θ2 − ε. (D.9)

For the chosen encoding and decision functions, de�ne for each

m1 ∈ {0,1, . . . ,W1 − 1},

and

m2 ∈ {0,1, . . . ,W2 − 1},

the subsets

Cm1
, {xn ∈ X n : φ1,n(x

n) =m1}, (D.10)

F 1
m1
, {yn1 ∈ Y

n
1 : ψ1,n(m1, y

n
1 ) = 1}, (D.11)

Gm1,m2
, {yn1 ∈ Y

n
1 : φ2,n(m1, y

n
1 ) =m2}, (D.12)

F 2
m1,m2

, {yn2 ∈ Y
n
2 : ψ2,n(m1,m2, y

n
2 ) = 0} (D.13)

Notice that the sets C0, . . . ,CW1−1 partition X n and for each m1 ∈ {0, . . . ,W1 − 1} the sets

Gm1,0, . . . ,Gm1,W2−1,

partition Yn1 . Moreover, the acceptance regions A1
n and A2

n at detectors 1 and 2, de�ned through the

relations

(Xn,Y n1 ) ∈ A
1
n⇐⇒ Ĥ1 = 1, (D.14)
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(Xn,Y n1 ,Y
n
2 ) ∈ A

2
n⇐⇒ Ĥ2 = 0, (D.15)

can be expressed as

A1,n = C0 ×F 1
0 ∪C1 ×F

1
1 (D.16a)

and

A2,n =
W2−1⋃
m2=0

C0 ×G0,m2
×F 2

0,m2
∪

W2−1⋃
m2=0

C1 ×G1,m2
×F 2

1,m2
. (D.16b)

De�ne now for each m1 ∈ {0,1} the set

Γm1,n :=
{
P̃X ∈ P (X ) : P̃ ⊗nX

[
Xn ∈ Cm1

]
≥ 1− ε

2

}
, (D.17)

and for each pair (m1,m2) ∈ {0,1} × {0, . . . ,W2 − 1} the set

∆m1,m2,n :=
{
P̃Y1 ∈ P (Y1) : P̃

⊗n
Y1

[
Y n1 ∈ Gm1,m2

]
≥ 1− ε

2W2

}
. (D.18)

Since the sets C0,C1 cover X n and since for each P̃X ∈ P (X ), it holds that P̃ ⊗nX
[
Xn ∈ X n

]
= 1, the subsets

Γ0,n,Γ1,n cover the set P (X ). Similarly, since for each m1 ∈ {0,1} the sets Gm1,0, . . . ,Gm1,W2−1 cover Yn1 ,

the subsets ∆nm1,0
, . . . ,∆nm1,W2−1,n cover the set P (Y1). Moreover, by the constraint on the type-I error

probability at detectors 1 and 2, (D.6) and (D.7):

P̄ ⊗nXY1

(Xn,Y n1 )
∈

1⋃
m1=0

Cm1
×F 1

m1

 ≥ 1− ε (D.19)

P ⊗nXY1Y2

(Xn,Y n1 ,Y n2 )
∈

1⋃
m1=0

W2−1⋃
m2=0

Cm1
×Gm1,m2

×F 2
m1,m2

 ≥ 1− ε. (D.20)

By the union bound there exist thus an index m̃1 ∈ {0,1} and an index pair (m∗1,m
∗
2) ∈ {0,1}×{0, . . . ,W2−1}

such that:

P̄ ⊗nX
[
Xn ∈ Cm̃1

]
≥ 1− ε

2
, (D.21a)

P̄ ⊗nY1

[
Y n1 ∈ F

1
m̃1

]
≥ 1− ε

2
, (D.21b)

and

P ⊗nX
[
Xn ∈ Cm∗1

]
≥ 1− ε

2
, (D.22a)

P ⊗nY1

[
Y n1 ∈ Gm∗1,m∗2

]
≥ 1− ε

2W2
, (D.22b)

P ⊗nY2

[
Y n2 ∈ F

2
m∗1,m

∗
2

]
≥ 1− ε

2W2
, (D.22c)

Combining (D.21) with the de�nition of ∆m̃1,n in (D.17) and with [31, �eorem 3] (recall that by assumption

PXY1(x,y1) > 0, for all (x,y1) ∈ X ×Y1) yields that for any µ > 0 and su�ciently large n :

Pr[Ĥ1 = 1|H = 0] ≥ max
P̃XY1 :

P̃X∈Γm̃1 ,n,

P̃Y1=P̄Y1

e−n(D(P̃XY1‖PXY1 )+µ).

87



In the same way, combining (D.22) (D.17) with (D.18) and extending [31, �eorem 3] to three pmfs (recall

that by assumption PXY1Y2(x,y1, y2) > 0, for all (x,y1, y2) ∈ X ×Y1 ×Y2), for su�ciently large n:

Pr[Ĥ2 = 0|H = 1] ≥ max
P̃XY1Y2 :
P̃X∈Γm∗1 ,n,

P̃Y1∈∆m∗1 ,m∗2 ,n, P̃Y2=PY2

e−n(D(P̃XY1Y2‖P̄XY1Y2 )+µ).

Taking now n → ∞ and µ → 0, by the continuity of the Kullback-Leiber divergence we can conclude

that if the exponent pair (θ1,θ2) is achievable, then there exist subsets Γ0,Γ1 that cover P (X ), subsets

∆0,0, . . . ,∆0,W2−1 that cover P (Y1), and subsets ∆1,0, . . . ,∆1,W2−1 that cover P (Y1) so that:

θ1 ≤ min
P̃XY1 :
P̃X∈Γb ,
P̃Y1=P̄Y1

D
(
P̃XY1‖PXY1

)
, (D.23a)

θ2 ≤ min
P̃XY1Y2 :
P̃X∈Γc ,

P̃Y1∈∆c,c2 , P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
. (D.23b)

where the indices b,c ∈ {0,1} and c2 ∈ {0, . . . ,W2 − 1} are such that

P̄X ∈ Γb, (D.24)

PX ∈ Γc, (D.25)

PY1 ∈ ∆c,c2 . (D.26)

We continue to notice that the upper bounds in (D.23) become looser when elements are removed from

the sets Γb, Γc, and ∆c,c2 . �e converse statement thus remains valid by imposing

∆c,c2 = {PY1}. (D.27)

Moreover, if b = c, then we impose

Γb = Γc = {PX , P̄X}, (D.28)

and if b , c, then we impose that Γb and Γc form a partition.

If b = c, this concludes the proof. Otherwise, if b , c, we obtain the intermediate result that

θ1 ≤ min
P̃XY1 :
P̃X∈Γb ,
P̃Y1=PY1

D
(
P̃XY1‖P̄XY1

)
(D.29a)

θ2 ≤ min
P̃XY1Y2 :
P̃X∈Γc ,

P̃Y1=PY1 , P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
(D.29b)

for two sets Γb and Γc forming a partition of P (X ) and satisfying (D.24) and (D.25).
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We now characterize the choice of the sets {Γb,Γc} that yields the loosest bound in (D.29). To this end,

notice �rst that by assumption (D.5), constraints (D.29) are equivalent to:

θ1 ≤min

 min
P̃XY1 :
P̃X∈Γb ,
P̃Y1=P̄Y1

D
(
P̃XY1‖P̄XY1

)
, min

P̃XY1Y2 :
P̃X∈Γc ,

P̃Y1=PY1 ,P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− r

. (D.30)

We notice that the right-hand side of (D.30) is upper bounded as:

min

 min
P̃XY1 :
P̃X∈Γb ,
P̃Y1=P̄Y1

D
(
P̃XY1‖P̄XY1

)
, min

P̃XY1Y2 :
P̃X∈Γc ,

P̃Y1=PY1 ,P̃Y2=PY2

D
(
P̃XY1Y2‖P̄XY1Y2

)
− r

 (D.31)

≤ min
πX∈P (X )\{PX ,P̄X }

max

 min
P̃XY1 :
P̃X=πX ,
P̃Y1=P̄Y1

D
(
P̃XY1‖P̄XY1

)
; min

P̃XY1Y2 :
P̃X=πX ,

P̃Y1=PY1 ,P̃Y2=PY2

D
(
P̃XY1Y2‖PXY1Y2

)
− r

, (D.32)

and that the bound holds with equality when

(πX ∈ Γb)⇐⇒


min
P̃XY1 :
P̃X=πX ,
P̃Y1=P̄Y1

D
(
P̃XY1‖P̄XY1

)
≥ min

P̃XY1Y2 :
P̃X=πX ,

P̃Y1=PY1 ,P̃Y2=PY2

D
(
P̃XY1Y2‖PXY1Y2

)
− r


. (D.33)

�is concludes the proof also for the case b , c.
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APPENDIXE

Proof of converse to Theorem 5.3

Let R2 = 0. Fix a rate R1 ≥ 0 and a pair of exponents (θ1,θ2) ∈ E0(R1,0). �en, choose an ε ∈ (0,1/2), a

su�ciently large blocklength n, encoding and decision functions φ1,n, φ2,n, ψ1,n, and ψ2,n that satisfy

α1,n ≤ ε, (E.1)

α2,n ≤ ε, (E.2)

and

−1
n
logβ1,n ≥ θ1 − ε, (E.3)

−1
n
logβ2,n ≥ θ2 − ε. (E.4)

Notice �rst that for each i ∈ {1,2} :

D
(
PĤi |H ||PĤi |H=1

)
= −h2

(
αi,n

)
−
(
1−αi,n

)
log

(
βi,n

)
−αi,n log

(
1− βi,n

)
(E.5)

where h2 (p) denotes the entropy of a Bernouilli-(p) memoryless source. Since αi,n ≤ ε < 1/2, for each

i ∈ {1,2}, Inequality (E.5) yields:

− 1
n
log

(
βi,n

)
≤ 1
n(1− ε)

D
(
PĤi |H=0||PĤi |H=1

)
+µn

with µn ,
1

n(1−ε)h2 (ε). Notice that µn→ 0 as n→∞.

Consider now:

θ1 − ε ≤ −
1
n
log

(
β1,n

)
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≤ 1
n(1− ε)

D
(
PĤ1|H=0||PĤ|H=1

)
+µn

(a)
≤ 1
n(1− ε)

D
(
PY n1M1|H=0||PY n1M1|H=1

)
+µn

(b)
=

1
n(1− ε)

I (Y n1 ;M1) +µn

(c)
=

1
n(1− ε)

n∑
k=1

H
(
Y1k

)
−H

(
Y1k |M1Y1

k−1
)
+µn

(d)
≤ 1
n(1− ε)

n∑
k=1

H
(
Y1k

)
−H

(
Y1k |M1Y1

k−1Xk−1
)
+µn

(e)
=

1
n(1− ε)

n∑
k=1

H
(
Y1k

)
−H

(
Y1k |M1X

k−1
)
+µn

(f )
=

1
n(1− ε)

n∑
k=1

I (Y1k ;Uk) +µn

(g)
=

1
n(1− ε)

I
(
Y1Q;UQ

∣∣∣Q)
+µn

(h)
=

1
1− ε

I (Y1(n);U (n)) +µn

where: (a) follows by the data processing inequality for relative entropy; (b) holds since M1 and Y n1 are

independent under the alternative hypothesis H = 1. (c) is due to the chain rule for mutual information;

(d) follows since conditioning reduces entropy; (e) is due to the Markov chain Y1
k−1−
−(M1,X

k−1)−
−Y1k ;

(f ) holds by de�ningUk , (M1,X
k−1); (g) is obtained by introducing a random variableQ that is uniform

over the set {1, · · · ,n} and independent of all previously de�ned random variables; and (h) holds by de�ning

U (n) , (UQ,Q) and Y1(n) , Y1Q.

In a similar way, one obtains:

θ2 − ε ≤ −
1
n
log

(
β2,n

)
(i)
≤ 1
n(1− ε)

D
(
PY n2M1M2|H=0||PY n2M1M2|H=1

)
+µn

(j)
=

1
n(1− ε)

(
I (Y n2 ;M1,M2) +D(PM1M2|H=0||PM1M2|H=1)

)
+µn

(k)
≤ 1
n(1− ε)

(
I (Y n2 ;M1) + I (Y

n
2 ;M2|M1) +D(PY n1M1|H=0||PY n1M1|H=1)

)
+µn

(`)
≤ 1
n(1− ε)

(
I(Y n2 ;M1) + logW2,n +D(PY n1M1|H=0||PY n1M1|H=1)

)
+µn

(m)
=

1
n(1− ε)

(I (Y n2 ;M1) + I (Y
n
1;M1)) + µ̃n

(o)
≤ 1

1− ε
(I (Y2(n);U (n)) + I (Y1(n);U (n))) + µ̃n,

where (i) follows by the data processing inequality for relative entropy; (j) holds by the independence of

the pair (M,M2) with Y n2 under the alternative hypothesis H = 1; (k) by the data processing inequality
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for relative entropy; (`) holds since conditioning reduces entropy; (o) follows by proceeding along the

steps (b) to (h) above; and (m) holds by de�ning µ̃n ,W2,n/(n(1− ε)) +µn.

Notice that by the assumptionR2 = 0, the term 1/n log |W2,n| → 0 as n→∞. �us, also µ̃n→ 0 as n→∞.

We next lower bound the rate R1:

nR1 ≥H (M1)

=H (M1)−H (M1|Xn)

= I (M1;X
n)

=
n∑
k=1

I
(
M1;Xk |Xk−1

)
=

n∑
k=1

I (Xk ;Uk)

= nI
(
XQ;UQ|Q

)
= nI (U (n);X(n))

For any blocklength n, the newly de�ned random variables X(n),Y1(n),Y2(n) ∼ PXY1Y2 and U (n) −
−

X(n) −
− (Y1(n),Y2(n)). Le�ing now the blocklength n→∞, and then ε→ 0, by continuity of mutual

information establishes the desired converse result.
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APPENDIXF

Proof of Theorem 5.5

We analyze the scheme in Subsection 5.2.1. If M1 , (0,0) and M2 , (0,0), let I , J be the random indices

sent over the bit pipes and de�ne the following events:

ED1
=

{
(Un(I),Y n1 ) < Tµ/2(PUY1)

}
,

ED2
=

{
(Un(I),V n(J |I),Y n2 ) < Tµ/2(PUVY2)

}
. (F.1)

�e Type I error probability at Detector 1 over the random code construction can be bounded for n large

enough as follows:

EC[α1,n]≤Pr[M1 = (0,0) or ED1
|H = 0]

≤Pr[M1 = (0,0)|H = 0] + Pr[ED1
|H = 0,M1 , (0,0)]

(a)
≤ ε1

2
+ Pr[ED1

|H = 0,M1 , (0,0)]

(b)
≤ ε1

2
+
ε1
2

=ε1, (F.2)

where (a) holds by the covering lemma [8] and (b) holds by the Markov lemma [8].

In the same way the Type I error probability at Detector 2 over the random code construction can be

bounded for n large enough as follows:

EC[α2,n]≤Pr[M1 = (0,0) or M2 = (0,0) or ED1
or ED2

|H = 0]

≤Pr[M1 = (0,0)|H = 0] + Pr[M2 = (0,0) or ED1
|H = 0,M1 , (0,0)]

+Pr[ED2
|H = 0,M1 , (0,0),M2 , (0,0)]
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(a)
≤ ε2

4
+ Pr[M2 = (0,0) or ED1

|H = 0,M1 = (0,0)] +
ε2
4

(b)
≤ ε2

4
+ Pr[ED1

|H = 0,M1 = (0,0)] + Pr[M2 = (0,0)|H = 0,M1 = (0,0)] +
ε2
4

(c)
≤ ε2

4
+
ε2
4

+
ε2
4

+
ε2
4

=ε2, (F.3)

where (a) holds by the covering lemma , (b) holds by the Markov lemma, (c) holds by the Markov lemma

and the covering lemma.

We now analyze the probability of Type II error at Detector 1. We notice that Ĥ1 = 0 only if there exists

an index m1 ∈ {1, . . . ,2nR1} such that

(Un(m1),X
n) ∈ T nµ/8(PUX) and (Un(m1),Y

n
1 ) ∈ T

n
µ/4(PUY1) (F.4)

�erefore, using the union bound:

EC[β1,n] = Pr
[
Ĥ1 = 0|H = 1

]
≤

2nR1∑
m1=1

Pr
[
(Un(m1),X

n) ∈ T nµ/8(PUX), (Un(m),Y n1 ) ∈ T
n
µ/4(PUY1)

∣∣∣∣H = 1
]

(F.5)

(a)
≤ 2nR1 · max

P̃ :
|P̃UX−PUX |<µ/8
|P̃UY1−PUY1 |<µ/4

2−n(D(P̃UXY1‖PU P̄XY1 )−ξn) (F.6)

(b)
< max

P̃ :
|P̃UX−PUX |<µ/8
|P̃UY1−PUY1 |<µ/4

2n(I(U ;X)−D(P̃UXY1‖PU P̄XY1 )−ξn) (F.7)

= max
P̃ :

|P̃UX−PUX |<µ/8
|P̃UY1−PUY1 |<µ/4

2−n(D(P̃UXY1‖PU |X P̄XY1 )−ξn), (F.8)

where xn is a sequence that tends to 0 as n → ∞. Inequality (a) holds by Sanov’s theorem and by the

way the source sequences and the codewords are generated and Inequality (b) holds by the choice of R1

in (5.18).

To analyze the probability of Type II error at Detector 2, we notice that Ĥ2 = 0 only if there exists a pair

of indices (m1,m2) ∈ {1, . . . ,2nR1} × {1, . . . ,2nR2} so that

(Un(m1),X
n) ∈ T nµ/8(PUX) and (Un(m1),V

n(m2|m1),Y
n
1 ) ∈ T

n
µ/2(PUVY1)

and (Un(m1),V
n(m2|m1),Y

n
2 ) ∈ T

n
µ (PUVY2) (F.9)

�erefore, applying similar steps as before:

EC[β2,n]Pr
[
Ĥ2 = 0|H = 1

]
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≤
2nR1∑
m1=1

2nR2∑
m2=1

Pr
[
(Un(m1),X

n) ∈ T nµ/8(PUX), (U
n(m1),V

n(m2|m1),Y
n
1 ) ∈ T

n
µ/2(PUVY1),

(Un(m1),V
n(m2|m1),Y

n
2 ) ∈ T

n
µ/2(PUVY2)

∣∣∣∣H = 1
]

(F.10)

< 2n(I(U ;X)+I(V ;Y1|U )) · max
P̃ :

|P̃UX−PUX |<µ/8
|P̃UVY1−PUVY1 |<µ/2
|P̃UVY2−PUVY2 |<µ

2−n(D(P̃UVXY1Y2‖PUPV |U P̄XY2 )−ξ
′
n)

(F.11)

= max
P̃ :

|P̃UX−PUX |<µ/8
|P̃UVY1−PUVY1 |<µ/2
|P̃UVY2−PUVY2 |<µ/4

2−n(D(P̃UVXY1Y2‖PU |XPV |UY1 P̄XY1Y2 )−ξ
′
n)

(F.12)

where ξ ′n is a sequence that tends to 0 as n→∞. �e proof is then concluded by le�ing n→∞ and by

noting that there must exist at least one pair of codebooks achieving the same exponents as the random

ensemble.
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APPENDIXG

Proof of Theorem 5.7

We analyze the scheme in Subsection 5.2.1. �e type-II error probability at Detector 2 can be analyzed as

in the preceding Appendix F.

To analyze the probability of type-II error at Detector 1, we notice that Ĥ1 = 0 only if there exists an index

m1 ∈ {1, . . . ,2nR1} such that

(Un
1 (m1),X

n) ∈ T nµ/8(P̄U1X) and (Un
1 (m1),Y

n
1 ) ∈ T

n
µ/4(P̄U1Y1) (G.1)

By now standard arguments:

Pr
[
Ĥ1 = 0|H = 1

]
≤

2nR1∑
m1=1

Pr
[
(Un

1 (m1),X
n) ∈ T nµ/8(P̄U1X), (Un

1 (m),Y n1 ) ∈ T
n
µ/4(P̄U1Y1)

∣∣∣∣H = 1
]

(G.2)

< max
P̃ :

|P̃Ū1X−P̄U1X |<µ/8
|P̃U1Y1−P̄U1Y1 |<µ/4

2−n(D(P̃Ū1XY1‖PU1 |XPXY1 )−ξ
′′
n ), (G.3)

where the sequence ξ ′′n → 0 as n→∞.
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APPENDIXH

Proof of Equation (6.36)

GivenR ≥ 0, if θ is achievable in P2, for every block-length n ≥ 0 there exist a pair of functions (φ2,n,ψ2,n)

such that

φ2,n : X n→M2 , {1, . . . ,W2,n}, (H.1)

ψ2,n : M2 ×Un ×Vn→ {0,1}. (H.2)

and

lim
n→∞

Pr

{
ψ2,n(φ2,n(X

n),Un,Vn) = 1
∣∣∣H = 0

}
= 0,

θ ≤ lim
n→∞
−1
n
logPr

{
ψ2,n(φ2,n(X

n),Un,Vn) = 0
∣∣∣H = 1

}
, (H.3a)

and

lim
n→∞

1
n
log2W2,n ≤ R. (H.3b)

We can then de�ne (φ1,n,ψ1,n):

φ1,n = φ2,n, (H.4)

and for every (m,yn) ∈
{
1, . . . ,b2nRc

}
×Rnq:

ψ1,n(m,y
n) =

 0 if ψ2,n(m,EP̄ [xn|yn] ,yn) = 0

1 if ψ2,n(m,EP̄ [xn|yn] ,yn) = 1
, (H.5)

where EP̄ [yn|Yn] = {EP̄ [x1|y1] , . . . ,EP̄ [xn|yn]}. �e functions pair (φ1,n,ψ1,n) is a valid choice for P1,

and one can write that:

α1,n = Pr

(
ψ1,n

(
φ1,n(X

n),Yn
)
= 1|H2 = 0

)
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= Pr

(
ψ2,n

(
φ2,n(X

n),EP̄ [X
n|Yn] ,Yn

)
= 1|H2 = 0

)
= Pr

(
ψ2,n

(
φ2,n(X

n),Un,Vn
)
= 1|H1 = 0

)
= α2,n,

and along similar lines one can prove that

β1,n = β2,n. (H.6)

So conditions (6.11) are respected and exponent θ is achievable in P1 so

E1(R) ≥ E2(R). (H.7)

Furthermore along similar lines one can prove that if θ is achievable in P1 it is achievable in P2 and so

E1(R) = E2(R). (H.8)

�is conclude the proof of Equation (6.36) . �
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APPENDIX I

Proof of Equivalence between (6.41) and constraint C

�e Gaussian random vectors X and U always admit joint probability density functions, pXU and p̄XU

under H = 0 and H = 1 de�ned on a same vector subspace E ⊆ R
2m

, because their covariance matrices

have same kernel. As the minimizer in (6.41) is a Gaussian distribution with same marginal in X and U

than pXU, and that for any p̃XU if p̃XU � p̄XU do not hold then D(p̃XU‖p̄XU) = ∞, we can restrict the

minimizer in (6.41) to be a normal distribution de�ned on E :

p̃XU(z) = |2πΞ|
− 1

2
+ exp

{
−1
2
z†Ξ+z

}
. (I.1)

Here Ξ denote any semi-de�nite positive matrix of the form

Ξ =

KX G

G† K̄XYK̄−1Y KYK̄−1Y K̄†XY

 , (I.2)

where the o�-diagonal block G is arbitrary. We have

D(p̃XU‖p̄XU)=−h(p̃XU)−Ep̃XU {log p̄XU}

=−1
2
log |Ξ|+ +

1
2
log

∣∣∣∣∣∣∣∣∣
I 0

0 K̄XYK̄−1Y

K̄
I 0

0 K̄XYK̄−1Y


†∣∣∣∣∣∣∣∣∣
+

+
p

2

+
1
2

Tr



I 0

0 K̄XYK̄−1Y

K̄
I 0

0 K̄XYK̄−1Y


†

+

Ξ

 . (I.3)

and �nally, since
p
2 is a constant term, (6.41) is equivalent to constraint C.
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[33] S. Sreekumar and D. Gündüz. “Distributed hypothesis testing over noisy channels”. 2017 IEEE

International Symposium on Information �eory (ISIT’17). June 2017, pp. 983–987. doi:

10.1109/ISIT.2017.8006675.

107

https://doi.org/10.1109/TIFS.2017.2779108
https://doi.org/10.1109/TIT.2012.2206793
https://doi.org/10.1109/GLOCOM.2018.8647744
https://doi.org/10.1109/ITA.2018.8503129
https://doi.org/10.1109/TCOMM.2018.2798659
https://doi.org/10.1109/18.119685
https://doi.org/10.1109/ISIT.1994.394874
https://doi.org/10.1109/ISIT.2017.8006675


BIBLIOGRAPHY
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Titre : Tests d’hypothèses distribués: coopération et détection concurrente

Mots clés : statistiques, théorie de l’information, test d’hypothèses

Résumé : L’inférence statistique prend une place
prépondérante dans le développement des nouvelles
technologies et inspire un grand nombre d’algo-
rithmes dédiés à des tâches de détection, d’iden-
tification et d’estimation. Cependant il n’existe pas
de garantie théorique pour les performances de ces
algorithmes. Dans cette thèse, nous considérons
un réseau simplifié de capteurs communicant sous
contraintes pour tenter de comprendre comment des
détecteurs peuvent se partager au mieux les infor-
mations à leur disposition pour détecter un même
événement ou des événements distincts. Nous in-
vestiguons différents aspects de la coopération entre
détecteurs et comment des besoins contradictoires
peuvent être satisfaits au mieux dans le cas de tâches
de détection. Plus spécifiquement nous étudions un
problème de test d’hypothèse ou chaque détecteur
doit maximiser l’exposant de décroissance de l’er-
reur de Type II sous une contrainte d’erreur de Type I
donnée. Comme il y a plusieurs détecteurs intéressés
par des informations distinctes, un compromis entre
les vitesses de décroissance atteignables va ap-
paraı̂tre. Notre but est de caractériser la région des

compromis possibles entre exposants d’erreurs de
Type II. Dans le cadre des réseaux de capteurs mas-
sifs, la quantité d’information est souvent soumise
à des limitations pour des raisons de consomma-
tion d’énergie et de risques de saturation du réseau.
Nous étudions donc, en particulier, le cas du régime
de communication à taux de compression nul (i.e. le
nombre de bits des messages croit de façon sous-
linéaire avec le nombre d’observations). Dans ce cas,
nous caractérisons complètement la région des expo-
sants d’erreurs de Type II dans les configurations où
les détecteurs peuvent avoir des buts différents. Nous
étudierons aussi le cas d’un réseau avec des taux
de compressions positifs (i.e. le nombre de bits des
messages augmente de façon linéaire avec le nombre
d’observations). Dans ce cas, nous présentons des
sous-parties de la région des exposants d’erreur de
Type II. Enfin, nous proposons dans le cas d’un
problème point à point avec un taux de compression
positif une caractérisation complète de l’exposant de
l’erreur de Type II optimal pour une famille de tests
gaussiens.

Title : On cooperative and concurrent detection for distributed hypothesis testing

Keywords : statistics, information theory, hypothesis testing

Abstract : Statistical inference plays a major role
in the development of new technologies and inspires
a large number of algorithms dedicated to detection,
identification and estimation tasks. However, there is
no theoretical guarantee for the performance of these
algorithms. In this thesis we try to understand how
sensors can best share their information in a network
with communication constraints to detect the same or
distinct events. We investigate different aspects of de-
tector cooperation and how conflicting needs can best
be met in the case of detection tasks. More speci-
fically we study a hypothesis testing problem where
each detector must maximize the decay exponent of
the Type II error under a given Type I error constraint.
As the detectors are interested in different informa-
tion, a compromise between the achievable decay
exponents of the Type II error appears. Our goal is
to characterize the region of possible trade-offs bet-

ween Type II error decay exponents. In massive sen-
sor networks, the amount of information is often limi-
ted due to energy consumption and network satura-
tion risks. We are therefore studying the case of the
zero rate compression communication regime (i.e. the
messages size increases sub-linearly with the num-
ber of observations). In this case we fully characterize
the region of Type II error decay exponent. In configu-
rations where the detectors have or do not have the
same purposes. We also study the case of a network
with positive compression rates (i.e. the messages
size increases linearly with the number of observa-
tions). In this case we present subparts of the region
of Type II error decay exponent. Finally, in the case of
a single sensor single detector scenario with a posi-
tive compression rate, we propose a complete charac-
terization of the optimal Type II error decay exponent
for a family of Gaussian hypothesis testing problems.
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