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Abstract

Synthetic biology is the field of engineerable life science to
design-build-test novel biological systems through reprogramming the
code of DNA. Synthetic biocircuits are sophisticated tools to reconstruct
biological networks for a variety of applications. This doctoral thesis
focuses on the development of synthetic metabolic pathways designed
by computer-aided tools integrated with the transcriptional regulatory
layer for bioproduction, biosensing, and biocomputation in whole-cell and
cell-free systems. The bioproduction-biosensing section of the thesis is to
build a novel sensor for a rare sugar used to improve the catalytic activity
of its producing enzyme in the whole-cell system (in vivo) and its
optimization of biosensing-bioproduction in a TX-TL cell-free system (in
vitro). The development of cell-free prokaryotic biosensors which are
mostly relying on repressors enables faster and more efficient
design-build-test cycle for metabolic pathways prototyping in cell-free
systems. The biosensing application of the metabolic circuits for
diagnosis is the implementation and optimization of cell-free metabolic
transducers that expand the number of biologically detectable small
molecules in cell-free systems. Finally, as a radical approach to perform
biocomputation, metabolic pathways were applied to build metabolic
adders and metabolic perceptrons in whole-cell and cell-free systems. An
integrated model trained on the experimental data enabled the designing
of a metabolic perceptron for building four-input binary classifiers.
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Résumé

La biologie de synthése est le domaine de la bioingénierie permettant de
concevoir, de construire et de tester de nouveaux systemes biologiques
en réécrivant le code génétique. Les circuits biologiques synthétiques
sont des outils sophistiqués permettant diverses applications. Cette
thése de doctorat porte sur le développement de voies métaboliques
synthétiques concues a l'aide d'outils informatiques. Ces voies
métaboliques sont connectés a des réseaux de régulation
transcriptionnelle pour développer des biocircuits pour la bioproduction,
la biodétection et la biocalcul. La partie “bioproduction-biodétection” de
la thése vise a développer un nouveau biocapteur pour un sucre rare. Ce
biocapteur a été utilisé pour améliorer I'activité catalytique d’enzyme
dans la cellule. Il a ensuite été optimisé dans un systeme acellulaire pour
le suivie de la Dbioproduction de ce sucre. La partie
“biodétection-diagnostic” montre la mise en ceuvre et |'optimisation des
transducteurs métaboliques dans le systeme acellulaire, permettant une
augmentation du nombre de petites molécules biologiquement
détectables. La partie “biocalculs” décrit une nouvelle approche utilisant
des circuits métaboliques qui ont été redesigné pour construire des
additionneurs et des perceptrons métaboliques dans des systemes
cellulaires et acellulaires.
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Synthese de la these, en francais

La biologie synthétique est le domaine de la bioingénierie
permettant de concevoir, de construire et de tester de nouveaux
systemes biologiques en réécrivant de I’ADN. Les circuits
biologiques synthétiques sont des outils sophistiqués permettant
de construire des réseaux biologiques pour des applications
meédicales, industrielles et environnementales. Cette thése de
doctorat porte sur le développement de voies métaboliques
synthétiques concues a l'aide d'outils informatiques. Ces voies
meétaboliques sont connectés a la couche de régulation
transcriptionnelle pour développer des biocircuits pour la
bioproduction, la biodétection et la biocalcul dans des systéemes
cellulaires et acellulaires. Les résultats obtenus durant cette these
de doctorat révelent le nouveau potentiel des voies métaboliques

dans I'établissement de biocircuits synthétiques.

Le chapitre bioproduction-biodétection de la thése vise a
développer un nouveau biocapteur pour un sucre rare utilisé pour
améliorer I'activité catalytique d’enzyme dans la cellule (in vivo). Ce
biocapteur a ensuite été implémenté dans un systéme acellulaire (in
vitro) pour découvrir et optimiser le comportement de biocapteurs a

base de répresseurs. Une fois optimisé en systeme acellulaire, notre
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biocapteur a été utilisé pour surveiller la production enzymatique de
sucre rare. Le développement de biocapteurs procaryotes
acellulaires, qui repose principalement sur [utilisation de
répresseurs, permet d'accélérer et de rendre plus efficace le cycle
“design-build-test” dans le prototypage des voies métaboliques
dans les systemes acellulaires. L'application de la biodétection des
circuits métaboliques pour le diagnostic est la mise en ceuvre et
I'optimisation des transducteurs métaboliques dans le systeme
acellulaire. Les transducteurs sont des voies métaboliques
composées d'au moins une enzyme catalysant un métabolite
indétectable en un inducteur transcriptionnel, augmentant ainsi le

nombre de petites molécules biologiquement détectables.

En tant que nouvelle approche pour effectuer des biocalculs,
des circuits métaboliques ont été appliqués pour construire des
additionneurs métaboliques et des perceptrons métaboliques. Dans
la cellule, trois transducteurs métaboliques et un additionneur
métabolique ont été construits et caractérisés. Les systemes
acellulaires permettent d’accélérer la caractérisation de circuits
biologiques, de finement régler le niveau d’expression d’un ou
plusieurs geénes et facilite I’expression de plusieurs plasmides
simultanément. Ceci a permis de construire de multiples
transducteurs pondérés et des additionneurs métaboliques. Le
modele basé sur des données expérimentales a permis de
concevoir un perceptron métabolique pour construire des
classificateurs binaires a quatre entrées. Les additionneurs,
perceptrons et classificateurs peuvent étre utilisés dans des

applications avancées telles que la détection de précision et dans le
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développement de souches pour le génie métabolique ou la

thérapeutique intelligente.

La biologie synthétique est le domaine de la fabrication des
sciences de la vie et de la technologie en tant que domaine de
I'ingénierie par la normalisation et la modularisation d'outils, de
méthodes et d'éléments biologiques pour concevoir, construire et
tester de nouveaux systémes biologiques. L'ADN est au coeur de la
biologie synthétique et les progrés dans ce domaine dépendent
fortement du colt de [|'écriture (synthese chimique/enzymatique
sans modele) et de la lecture (séquencage) de I'ADN qui devient
rapidement moins cher. Les systemes biologiques synthétisés, qu'il
s'agisse de simples capteurs, circuits et voies d'accés a des
réseaux plus sophistiqués ou de cellules synthétiques, sont utilisés
pour des applications médicales, industrielles et
environnementales. Le développement de tels systémes nécessite
la reprogrammation des génes et des parties régulatrices en
réécrivant I'ADN. L'ingénierie métabolique et la bioproduction visent
a produire des molécules fines, de la petite chimie aux
macromolécules de grande taille comme les protéines en utilisant
l'usine cellulaire. La biodétection ou la mise au point de capteurs
utilisant des composants biologiques permet de fabriquer des
dispositifs de surveillance, de dépistage ou de détection pour
I'ingénierie métabolique ou les applications de diagnostic. Des
dispositifs plus sophistiqués, plus proches des circuits complexes
de régulation cellulaire, appelés biocircuits synthétiques, sont des
réseaux reconstruits qui imitent les circuits électriques dans la

réception et le traitement de signaux d'entrée multiples tels que les
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produits chimiques et les stimuli, et qui activent les sorties
appropriées. Les outils informatiques inspirés de I'électronique et
de l'informatique permettent de "concevoir" de tels systemes de la
méme maniéere qu'ils sont utilisés pour construire des algorithmes
de calcul et des circuits électriques. Grace a la diminution des
colts de synthese et de séquencage de I'ADN, ainsi qu'aux outils
et méthodes modulaires développés par la communauté, les
phases de " construction " et de " test " a haut débit générent une
énorme collection de dispositifs et de données. La technologie
existante de l'automatisation utilisant un champ déja avancé de
vitesses robotiques des phases "build" et "test" ainsi que I'efficacité
et les colts s'améliorent. L'apprentissage machine, qui transforme
la technologie d'aujourd'hui dans tous les aspects de la science, de
la technologie, et méme de la science humaine et de la vie
quotidienne des gens, profite des énormes données générées dans
le domaine de la biologie et des expériences a haut débit dans les
études individuelles pour ajouter une phase "apprendre" et faire un
cycle "conception-construction-essai-apprentissage" pour une

biologie hautement efficace et automatique.

Cette these se compose de neuf chapitres commencant par
deux chapitres d'introduction, quatre chapitres sur la
Bioproduction-Biosensibilisation (Section 1), un chapitre sur la
Biosensibilisation-Diagnostic (Section 1l) et un chapitre sur la
Biocomputation (Section Ill). Le chapitre 1 porte sur l'introduction
des circuits biologiques synthétiques, leurs types (circuits
numériques/analogiques génes/métaboliques), leurs applications

(diagnostic, thérapeutique, génie métabolique) et leurs outils (ADN,
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niveau transcriptionnel, traductionnel et post-traductionnel). Le
chapitre 2 présente les systemes sans cellules, leurs types (lysat
cellulaire, systemes purs, sans cellules lyophilisées) et leurs
applications (génie métabolique, biocapteurs et diagnostic, étude
des mécanismes biologiques, construction de cellules
synthétiques, auto-assemblage de phages, médecine et
thérapeutique, protéomique et évolution des protéines, kit
pédagogique) car une partie importante de la thése utilise des
systémes sans cellules qui sont des plateformes émergentes en
biologie synthétique. Le chapitre 3 passe en revue les biocapteurs
transcriptionnels faits sur mesure pour les applications de génie
métabolique (génie des facteurs de transcription allostérique,
extension de I'espace chimique pour les biocapteurs, mise au point
assistée par ordinateur des propriétés des biocapteurs). Le chapitre
4 est un ensemble de systémes et de méthodologies de biologie
synthétique pour la bioproduction (choix du chassis,
dénombrement des voies, optimisation du réseau métabolique par
FBA/FVA et modélisation mathématique, biocapteurs pour la
régulation dynamique). Le chapitre 5 met au point un biocapteur
transcriptionnel a cellules entiéres pour un sucre rare précieux, le
D-psicose, afin d'améliorer |'activité catalytique de I'enzyme qui
produit le D-psicose a partir du fructose. Le chapitre 6 traite de
I'optimisation des biocapteurs a base de répresseurs (avec un
exemple de capteur pour le D-psicose) dans les systemes sans
cellules qui souffrent d'une répression a faible pli. Trois stratégies
(dopage, préincubation et réinitiation de la réaction ou réaction sans
cellules en deux étapes) ont été appliquées pour optimiser le

biocapteur D-psicose et des conditions optimales ont été utilisées
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pour surveiller la production enzymatique du psicose a partir du
fructose dans le systeme sans cellules. Le chapitre 7 est une liste
manuelle et automatisée de petites molécules, présentée comme le
plus grand ensemble de données sur les petites molécules qui
déclenchent des réponses transcriptionnelles et translationnelles.
Le chapitre 8 a pour but de construire et d'optimiser des réseaux
métaboliques sans cellules afin d'augmenter le nombre de
molécules biologiquement détectables dans le systéeme sans
cellules. Ce chapitre présente un flux de travail pour la fabrication
de transducteurs métaboliques qui sont des dispositifs
convertissant une molécule a l'aide d'enzymes métaboliques en
une autre molécule qui est un inducteur des biocapteurs
transcriptionnels. Enfin, le chapitre 9, le principal travail de cette
thése, consiste a appliquer des voies meétaboliques pour le
développement de biocircuits afin de construire des transducteurs
et des additionneurs métaboliques a cellules entieres et sans
cellules. Les avantages des systemes sans cellules, tels qu'une
grande adaptabilité et une caractérisation rapide, ont permis de
construire des transducteurs et des additionneurs métaboliques
pondérés dans lesquels le poids des dispositifs métaboliques est
contrdlé en ajustant la concentration de I'ADN enzymatique dans le
mélange réactionnel. Un modele formé sur les données
expérimentales a prédit les poids pour concevoir des perceptrons
meétaboliques pour construire des classificateurs a quatre entrées. A
la fin du rapport, une "conclusion et perspective" globale pour

I'ensemble de la thése est fournie.
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Dans ce rapport de these, j'ai présenté ma contribution a des
projets au cours de mes 3 années de doctorat sous la forme d'une
histoire de "Circuits Métaboliques Synthétiques pour Ila
Bioproduction, la Biodétection et la Biocomputation". Ma
proposition de doctorat a débuté avec une idée proche de celle
présentée dans le dernier chapitre. Cependant, ma contribution a
deux projets iGEM ainsi que mes collaborations m'ont amené a
faire un doctorat plus large, toute I'histoire qui est présentée en neuf
chapitres. Grace a I'étonnant voyage que j'ai fait pendant ces trois
années avec mes collegues, amis et collaborateurs, j'ai fini par
apprendre des concepts et des techniques pour la recherche dans

le domaine de la biologie synthétique.

Le métabolisme a été l'outil principal de cette thése de
doctorat comme l'est celui des principaux outils des systemes
vivants. Dans ce rapport de these, j'ai d'abord mis en ceuvre deux
chapitres présentant i) les "circuits biologiques synthétiques", leurs
types, applications et outils (chapitre 1), et ii) la "biologie
synthétique sans cellules", différents types de systéemes sans
cellules et leurs applications (chapitre 2). Ces deux chapitres
donnent un apercu de I'ensemble de I'histoire, des approches, des
outils et de la terminologie utilisés dans le rapport de thése. Ces
deux chapitres constituent également une revue d'ensemble pour
ceux qui souhaitent se familiariser avec les progrés de |'art des

circuits biologiques et des systemes sans cellules.

La section |, Bioproduction-Biosensibilisation, se compose de

quatre chapitres, cette section commence par un examen des
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approches les plus récentes pour développer des biocapteurs pour
des applications en génie métabolique (chapitre 3). Ce qui rend ce
chapitre spécial, c'est de discuter des outils d'ingénierie des
biocapteurs qui n'existent pas naturellement, d'utiliser des approches
de modélisation pour affiner le comportement des biocapteurs et de
présenter des approches sans cellules. Le chapitre suivant (chapitre
4) de cette section est utile pour ceux qui visent a produire un produit
chimique a I'aide d'une usine cellulaire et présente des outils et des
techniques allant du choix d'un chéssis hbéte et de I'énumération
d'une voie méme pour des molécules qui n'existent pas dans la
nature a I'optimisation des voies en utilisant des systemes et des
méthodes de biologie synthétique. Le chapitre 5 est une preuve de
concept de ce qui a été discuté dans les deux chapitres précédents.
Ce chapitre visait a mettre au point un nouveau biocapteur pour le
D-psicose afin d'améliorer I'activité catalytique de son enzyme
productrice. Ce qui rend ce chapitre prometteur, c'est la maniére
standardisée d'ingénierie des biocapteurs qui a permis de concevoir,
de construire et de tester plusieurs constructions et d'utiliser la
construction optimale pour trouver le mutant d'une enzyme a plumes
améliorées. En introduisant le capteur de D-psicose dans le systeme
sans cellules d'E. coli TX-TL (chapitre 6), on a observé que cela ne
fonctionne pas in vitro a moins que la concentration des plasmides
d'ADN pour le facteur de transcription et le géne rapporteur soit
ajustée pour qu'un signal tres faible soit observé (figure 6.2b). Trois
stratégies, le dopage, la préincubation et la réinitialisation de la
réaction ont été utilisées pour optimiser ce signal faible comme
preuve de concept de systemes répresseurs dans les systemes sans

cellules. Les capteurs optimisés ont pu signaler la production
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enzymatique du D-psicose. Ce chapitre montre comment
fonctionnaliser les systemes basés sur des répresseurs qui ne
fonctionnent pas dans un systeme sans cellules ou comment
améliorer ceux dont le comportement est faible. De plus, il s'agit de
la premiere étude couplant la bioproduction et la biodétection dans le
systeme sans cellules. Le dernier chapitre de cette section (chapitre
7) est une collection de petites molécules pour lesquelles il existe une
composante de cellule régulatrice transcriptionnelle  ou
traductionnelle pour la détection. Cette collection permet d'accéder
facilement au plus grand ensemble de données de molécules
détectables permettant de commencer a découvrir de nouveaux
biocapteurs. Cette liste peut étre utilisée par I'algorithme de
rétrosynthese comme molécules cibles vers lesquelles n'importe
quelle petite molécule peut étre convertie et les voies permettant cela
sont énumérées en utilisant |'algorithme de rétrosynthése. C'est la
stratégie qui a été utilisée dans les sections Il et lll pour la
biodétection-diagnostic et la biocalculatrice. Le chapitre 8 a
démontré que les transducteurs meétaboliques qui avaient été
construits dans des cellules entieres par un précédent doctorant de
notre laboratoire peuvent étre mis en ceuvre et fonctionnent
également sans cellules. L'optimisation du biocapteur de benzoate et
des transducteurs de cocaine et d'hippurate a été effectuée sans
cellules, puis ces dispositifs ont été appliqués par nos collegues pour
détecter le benzoate dans les boissons et la cocaine et I'hippurate
dans les échantillons cliniques. Le chapitre 9 a exploré le potentiel
des voies métaboliques pour la biocalculatrice, les multiples
dispositifs analogiques, y compris les transducteurs, |'adresse et les

perceptrons ont prouvé ce potentiel et leur fonctionnalité dans les
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systémes a cellules entieres et sans cellules. Ce travail avait des
aspects nouveaux tels que les premiers dispositifs métaboliques
analogiques, le premier paradigme de calcul neuronal dans les
systémes biologiques a travers les perceptrons et les classificateurs a
meédiation perceptronique. Les résultats préliminaires de la détection
des biomarqueurs des maladies présentés a la figure S9.13, dans la
figure S9.13, entre les applications futures des transducteurs
métaboliques, des additionneurs et des perceptrons pour le
diagnostic et le génie métabolique, ont été présentés a titre
d'exemples simples au chapitre 8 et au chapitre 4 respectivement. .
Pour surmonter les signaux faibles de la figure supplémentaire S9.13,
on peut appliquer d'autres inducteurs (chapitre 7) ou optimiser les
actionneurs a l'aide des approches présentées au chapitre 6.
L'ingénierie enzymatique similaire a celle présentée au chapitre 5
peut également étre utilisée pour augmenter le nombre de
transducteurs en améliorant les enzymes ou en créant de nouvelles
enzymes. Ensemble, ces outils et la puissance de calcul extensible
des circuits métaboliques (Figure S9.15) permettent a la communauté
de la biologie synthétique et de la bio-ingénierie de découvrir les

résultats de cette these pour une variété d'applications.
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Overview on the thesis report

Synthetic biology is the field of making life science and technology as an engineering
field by standardization and modularization of tools, methods and biological parts to
“design-build-test” novel biological systems. DNA is the core of synthetic biology and
the progress of the field is highly dependent on the cost of writing (non-template
chemical/enzymatic synthesis) and reading (sequencing) of DNA which is rapidly
becoming cheaper. The synthesized biological systems, from simple sensors, circuits
and pathways to more sophisticated networks toward synthetic cells are utilized for
medical, industrial and environmental applications. Developing such systems requires
reprogramming the genes and regulatory parts by rewriting the DNA. Metabolic
engineering and bioproduction aim for producing fine molecules, from small chemicals
to large macromolecules such as proteins using the cell factory. The biosensing or
developing sensors using biological components provides fabricating the monitoring,
screening or detection devices for metabolic engineering or diagnosis application.
More sophisticated devices closer to complex cell regulatory circuitry, called synthetic
biocircuits are reconstructed networks mimicking electrical circuits in receiving and
processing multiple input signals such as chemicals and stimuli and actuating proper
outputs. Computational tools inspired by electronics and computer science, provide
“designing” ability of such systems in the same way that they are used to build
computational algorithms and electrical circuits. Thanks to the decreasing cost of DNA
synthesis and sequencing, and modular tools and methods developed by the
community, high-throughput “build” and “test” phases generate a huge collection of
devices and data. The existing technology of the automation using an already
advanced field of robotics speeds of “build” and “test” phases and the efficiency and
costs are improving. Machine learning which is transforming the today’s technology in
every aspect of science, technology, and even human science and daily life of people,
takes the advantages of enormous data generated in the field of biology and
high-throughput experiments in individual studies to add a “learn” phase and make
“design-build-test-learn” cycle for a highly efficient and automated engineerable
biology.

This thesis consists of nine chapters starting with two chapters for introduction, four
chapters on Bioproduction-Biosensing (Section 1), one chapter on
Biosensing-Diagnosis (Section IlI) and one chapter on Biocomputation (Section Ill).
Chapter 1 focuses on introducing synthetic biological circuits, their types
(gene/metabolic  digital/analog circuits), applications (diagnosis, therapeutics,
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metabolic engineering) and tools (DNA, transcriptional, translational and
post-translational level). Chapter 2 introduces cell-free systems, their types (Cell
lysate, pure systems, freeze-dry cell-free) and applications (metabolic engineering,
biosensors and diagnosis, studying biological mechanisms, building Synthetic cells,
self-assembly of phages, medicine and therapeutics, proteomics and protein evolution,
education kit) because a considerable part of the thesis uses cell-free systems which
are emerging platforms in synthetic biology. Chapter 3 is a review on custom-made
transcriptional biosensors for metabolic engineering applications (engineering allosteric
transcription factors, extending the chemical space for biosensors, computer-assisted
fine-tuning of biosensor properties). Chapter 4 is a collection of systems and synthetic
biology methodologies for bioproduction(choosing the chassis, pathway enumeration,
metabolic network optimization using FBA/FVA and mathematical modeling,
biosensors for dynamic regulation). Chapter 5 is engineering a whole-cell
transcriptional biosensor for a valuable rare sugar, D-psicose, to improve the catalytic
activity of the enzyme that produces D-psicose from fructose. Chapter 6 is about
optimization of repressor-based biosensors (with an example of a sensor for
D-psicose) in cell-free system that suffer from low fold repression. Three strategies
(doping, preincubation and reinitiation of the reaction or two-step cell-free reaction)
were applied to optimize D-psicose biosensor and optimal conditions were used to
monitor enzymatic production of psicose from fructose in the cell-free system. Chapter
7 is a manually and automated collected list of small molecules presented as the
largest dataset of small molecules that trigger transcriptional and translational
responses. Chapter 8 is to build and optimize cell-free metabolic networks to expand
the number of biologically detectable molecules in the cell-free system. This chapter
presents a workflow for fabricating metabolic transducers that are devices converting a
molecule using metabolic enzymes to another molecule which is an inducer of
transcriptional biosensors. Finally, Chapter 9, the main work of this thesis, is applying
metabolic pathways for biocircuit development to build whole-cell and cell-free
metabolic transducers and adders. Advantages of cell-free systems such as high
adjustability and rapid characterization enabled building of weighted metabolic
transducers and adders in which the weight of the metabolic devices is controlled by
tuning the concentration of enzyme DNA in the reaction mix. A model trained on the
experimental data predicted the weights to design metabolic perceptrons for building
four-input classifiers. At the end of the report, an overall “conclusion and perspective”
for the whole thesis is provided.
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Chapter 1:
Current Progress in Synthetic Biological Circuits

This chapter has been originally submitted by Amir Pandi and Heykel Trabelsi as a
book chapter titled “Current Progress in Synthetic Genetic Networks” to “Springer
Nature Singapore Pte Ltd” for the book titled “Advances in Synthetic Biology” and is
under revision at time of preparation the thesis report.

Contribution:

Amir Pandi and Heykel Trabelsi structured the chapter. Amir Pandi wrote the
manuscript. Heykel Trabelsi corrected the chapter. Amir Pandi and Heykel Trabelsi are
corresponding authors of the original work.

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 20



Abstract

Synthetic biological circuits are of the main and most-studied area of synthetic biology.
Biological networks or circuits provide modular and scalable tools to design-build-test
synthetic biological systems for medical, environmental and industrial applications.
This chapter focuses on introducing and discussing the recent progress in the design
and application of such devices. The chapter starts with the classification of synthetic
biological networks and the role of each and their pros and cons. Then, recent
applications of digital/analog genetic/metabolic circuits are presented in three groups
of smart therapeutics, diagnosis, and metabolic engineering. Finally, tools and
methods of implementing different classes of synthetic gene circuits are presented with
covering the majority of the developed methodologies so far. This chapter brings a
complete introduction to synthetic genetic circuits and their recent advances to the
audience who aim to get familiar with this fast-growing technology.

Keywords

Synthetic biological circuits, Genetic circuits, Digital and analog computation, gene and
metabolic circuits, Genetic circuits applications, Genetic circuits implementation
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Introductions to synthetic biological circuits

Synthetic biological circuits or gene circuits are advanced tools to implement synthetic
biological systems for a variety of medical, industrial and environmental applications
[1,2]. The aim of these devices is to engineer biological systems receiving multiple
inputs such as nutrition and signals, compute them through its artificial networks and
actuate the integrated outputs responding to the environment [3]. The term
“computation” which is used in this context means computing biological signals
through a synthetic network composed of biological components. As one of the main
tools in the field of synthetic biology, biological circuits have been synthesized for the
development of i) biosensors for detection of biomarkers or pollutants, ii) screening or
engineering the dynamic regulation of metabolic pathways, or iiij) smart therapeutics [1].

Inspired by electrical engineering, several synthetic biological devices have been
synthesized since the emergence of the field of synthetic biology [4]. These devices
mimic the digital or analog computation paradigm by applying different classes of
cellular components [3]. To name some of the approaches, the synthetic biological
circuits implemented so far consist of single or multi-layer logic gates[5,6], oscillators
[7], amplifiers [8-10], switches [11] and memory devices [12,13], toehold circuits [14],
CRISPR circuits [15,16], metabolic logic gates [17], as well as metabolic perceptrons
and classifiers [18].

Thanks to the substantial efforts by the synthetic biology community, standard and
modular methodologies have been established to engineer different above-mentioned
devices [19,20]. Computer-assisted and bioinformatic tools are the accessory tools
through which these methodologies can be generated [21,22]. These approaches
employ cellular components, from gene expression regulators to post-translational
level and metabolic enzymes.

The standardized and modular strategies have led the field to very advanced
achievements to build sophisticated biological circuits. However, the next-generation of
synthetic cellular networks needs to focus on the integration of different approaches
enabling hybrid analog-digital computation by the use of several types of cellular
machineries [1,23]. The integration strategies and cross-species approaches [24,25]
empower the potential of artificial biological networks to be applied for several
applications in diverse living species and cell-free systems.
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Figure 1.1 An overview of the whole chapter on synthetic biological circuits. This chapter is
presented in three parts to cover the current progress in synthetic biological circuits . Top panel:
Classification of the synthetic biological circuits in four classes depending on the computation approach
that they rely on, digital/analog in gene expression/metabolic layer. Middle panel: Applications of
synthetic biological circuits in diagnosis, smart therapeutics and metabolic engineering. Bottom panel:
Designing strategies and tools to implement synthetic biological circuits using different biological
components of the cell in DNA level, transcriptional and translational, post-translational and metabolic
components. The designed biological networks then will be implemented in eukaryotic/prokaryotic cells
or in cell-free systems.
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Classification of synthetic biological circuits

Designer biological networks can be categorized based on the computational
approach that they lay on, digital and analog [3], or based on the biological
functionality of genes they employ, regulatory and metabolic [23] (top panel in Figure
1.1).

Digital and analog gene circuits

As in the electrical circuits engineering, biological gene circuits can perform digital or
analog computation depending on their design [3]. So far, the majority of the
implementation of biological circuits have focused on digital computation as it is more
standardizable using well-established tools such as Verilog [5]. The digital gene
implementation follows the logic functions. For instance, if A and B both are needed to
generate an output (either a reporter in medical or environmental diagnosis or
expression of a functional gene), this is an AND logic. The OR gate is the logic gate
output of which is active (ON) when two or even of the conditions/inputs of A or B are
“ON”.

So far, several digital gene circuits have been implemented using different cell
components at the level of DNA [6,26-28], transcription [5,29-32] and RNA [14,33-36],
as well as the protein level [37-40]. In cases where there are more than two inputs with
complex relationships, their behavior cannot be captured as easy as for simple AND or
OR gates. This is where computational tools can be used to introduce a complex logic
circuit in which the relationship between inputs and output(s) can be computed through
multi-layer digital gene networks [5].

Since most of the synthetic biocircuits have been built in the gene expression level, the
digital-like behavior (ON/OFF) in the gene expression system has compatibilized the
digital computation approach. Therefore, a number of successful digital computation
approaches have been introduced during the past few years. However, digital-like
behavior is not the only using which cells perform computation. A considerable
contribution of biological computation in living cells takes place in an analog manner
where the continuous concentrations of the cellular components define the phenotype,
not their presence or absence (ON/OFF) [3,41].

The substantial contribution of the analog computation in living systems brings the
mindset of implementing analog gene circuits. In electronics, analog circuits consume
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lower energy and require fewer parts to function. In the same way, analog gene
networks save cellular energy and avoid the burden [42,43]. This valuable advantage
promotes the system orthogonality by using fewer synthetic parts.

There have been only a few studies investigating the analog computation in living
systems [42,44]. Daniel et al. [44] developed synthetic analog computation in living
cells using a feedback loop inspired by the feedback loop of operational amplifiers in
analog electronics. In this study, a simple transcriptional circuit has been designed in a
construct such that: i) in a low-copy plasmid, the transcription factor (TF) is expressed
under its cognate promoter controlled by the externally added inducer, and ii) in a
high-copy plasmid, the cognate promoter expresses a fluorescent protein reporting the
concentration of the ligand. This design alleviates the saturation of the TF (through the
feedback loop in the low-copy plasmid that produces more TF and delays its
saturation) as well as the saturation of the cognate promoter (through pulling the flux of
transcription to the responsive promoter in the high-copy plasmid). This construction
linearizes the dose-response of the circuit from a digital-like to an analog behavior [44].

Digital and analog metabolic circuits

Although the analog behavior is one of the characteristics of living cells, it is difficult to
implement analog gene circuits which naturally show a digital-like behavior (ON/OFF).
However, using other biological mechanisms such as metabolism is more compatible
to implement analog computation [18]. In this direction, an analog metabolic
computation approach has been recently established that is using metabolic enzymes
to perform analog biocomputation [18]. In this study, metabolic pathways were
designed using computer-aided tools [45,46] and were implemented in whole-cell and
cell-free systems. Multiple metabolic transducers were implemented that are metabolic
pathways composed of one or more enzymes transforming a metabolite into another, a
product that can be sensed using transcriptional or translational regulators [47]. By
combining metabolic transducers, analog adders were built in both whole-cell and
cell-free systems. Cell-free systems enabled performing more complex computations
by tightly controlling the amount of DNA of the circuit added to the reaction. This
advantage of the cell-free system, high adjustability, along with rapid characterization
and possibility of mixing multiple genes at different concentrations, enabled the
development of four-input classifiers. In the classifiers, a metabolic perceptron receives
four input metabolites and convert them into a common metabolite by
model-computed concentrations of their associated enzyme DNA and finally reported
through a gene circuit actuator. The metabolic perceptron was inspired by a perceptron
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algorithm invented in the 1960s to mimic human neural systems in information
processing and decision making [48]. Since then, perceptrons have become the
building blocks of several neural computing and deep learning algorithms [49].

Digital metabolic circuits are other types of biological computation using artificial
networks that apply metabolic enzymes to build metabolic logic gates. A number of
metabolic logic gates including AND, OR, XOR, NAND, and their combination in order
to build complex circuits have been developed [17,50]. In most of cases, dealing with
cellular cofactors and coenzymes for the signal processing makes the application of
digital metabolic circuits limited in whole-cell systems and biological samples.
Nevertheless, depending on the case they have a valuable potential to build synthetic
biological circuits.

Applications of synthetic biological circuits

Application of synthetic gene networks in a variety of aspects (middle panel in Figure
1.1) are presented as follows:

Diagnosis

One of the main applications of synthetic genetic networks is to develop diagnostic
devices [51]. In this context, gene and metabolic circuits have been used to build
various biological circuits. For instance, a simple genetic network comprising the
quorum sensing regulatory system of Pseudomonas aeruginosa has been engineered
in the cell-free system to detect this pathogen in clinical samples [52]. In a different
approach, paper-based cell-free toehold circuits built using RNA switches were utilized
to sense RNAs for Zika virus [53], Ebola virus [54] or gut microbiome bacteria in fecal
samples [55]. The CRISPR machinery also has been adapted to detect DNA and RNA
of viruses and bacterial pathogens in vitro using strategies called SHERLOCK [56,57],
DETECTR [58] and HOLMES [59]. In another approach applying gene switches built by
recombinases in vivo enabled detection of glucose in diabetic clinical samples [60].
Using a radically different approach, metabolic enzymes have enabled increasing the
number of detectable small molecules. In this work, by plugging metabolic enzyme a
molecule is converted to another which is sensible through transcriptional regulator
[61]. The authors have introduced a modular tool to implement and optimize cell-free
biosensors and used this strategy to sense benzoic acid in beverages, as well as
hippuric acid and cocaine in clinical samples [61].
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Biological circuits have also been used for the detection of environmental samples. In a
recent study, the authors developed a strategy to build cell-based biosensors to detect
toxic pollutants in environmental samples [62]. They engineered multilayer amplifiers
enabling a high signal to noise ratio detection through the transcriptional regulatory
system. This promising approach provided facilities to build biosensors for arsenic and
mercury with a very high fold-change response to the inducers. Thus, they were able to
introduce a strategy to engineer sophisticated gene networks for in vivo diagnosis [62].
In another work related to environmental diagnosis, a recent attempt used RNA output
sensors activated by ligand induction (ROSALIND) in the cell-free system to detect
pollutants in water [63]. ROSALIND consists of three components: highly-processive
RNA polymerases, allosteric transcription factors, and synthetic DNA transcription
templates. These elements together have provided the modular detection of a variety
of water pollutants such as antibiotics, toxic small molecules, and metals [63].

Therapeutics
Synthetic biological networks provide a new generation of therapeutics called smart

therapeutics. One of the earliest attempts was designing a synthetic mammalian circuit
to maintain uric acid homeostasis [64]. This synthetic gene network consists of a uric
acid sensor triggering the secretion of a urate oxidase enzyme which eliminates uric
acid. In a mice harboring this device, the synthetic circuit decreased the amount of
blood urate and reduced uric acid crystals in the kidney [64]. In a recent study, Isabella
et al. [65] provided a smart alternative for the protein-restricted diet for
phenylketonuria, a genetic-metabolic disorder in metabolizing phenylalanine. For this
purpose, the authors have engineered Escherichia coli Nissle to actuate phenylalanine
metabolizing enzymes responding to anoxic conditions in the mammalian gut [65].
Designer circuits can be applied in the development of antimicrobials [66,67],
anticancers [68-71], microbiome editing [72,73] or medical imaging [73-76].

Metabolic engineering

Utilizing synthetic gene networks for bioproduction application has rapidly grown
during the last years. Genetic sensors have been applied in the field of
metabolic/enzymatic engineering for i) screening the enzymes and pathways, ii)
monitoring the evolution of the products, and for iii) dynamically regulating the enzymes
or metabolites level [77-82]. This strategy substantially increases the speed of the
design-build-test cycle in improving metabolic pathways and enzymes or exploring
novel synthetic enzymes and pathways.
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Synthetic gene circuits have shown an increasing potential to engineer dynamic
regulation, regulatory cascades to dynamically control and improve the evolution of a
product. The dynamic regulation improves the product yield either through directing
metabolic fluxes into the direction of the desired product or by adjusting the expression
of the enzymes and amount of intermediates as well as preventing the accumulation of
a toxic intermediate [82]. One of the interests regarding metabolic engineering
application is coupling cellular growth and product evolution which can improve the
production as it keeps a balance or controllable switch between growth and target
production [83-88]. This coupling can be implemented using natural (native of the host
cell) or synthetic quorum sensing network regulating the expression of the enzymes in
the metabolic pathway.

Design and tools

Different cellular components providing the implementation of synthetic gene networks
(bottom panel in Figure 1.1) are presented as follows:

Transcriptional level

Undoubtedly, transcriptional regulators are the most studied tools to implement
synthetic biological circuits for prokaryotic and eukaryotic applications [5,89]. Since
transcriptional regulators are directly in contact with gene expression and DNA, and a
number of these regulators are widely studied and characterized, utilizing them has
become more scalable and programmable. In this direction, an enormous number of
biological parts consisting of promoters, RBSs, terminators and regulatory transcription
factors have been characterized. These parts are characterized natural sequences or
they are synthetic sequences providing the orthogonality which is of very crucial
aspects in developing synthetic biological networks [90-93]. Moreover, the community
has introduced methodologies for building, automizing, optimizing, and integrating
various devices from simple gene networks to complex multilayer circuits [5,92-95].
Nielsen et al. have developed a tool called Cello using which complex relationships
between a number of inputs could be computed through proposed circuits and the
DNA sequence associated with those circuits is also generated [5].

Apart from transcriptional factors (including activators or repressors), CRISPR/dCas9
also have shown promising characteristics for synthesizing modular transcriptional
regulators [15,96,97]. The mutant version of Cas9 or other Cas nucleases which lack
the nuclease activity but still maintain the specific binding through their designed gRNA
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can be used to target anywhere in the genome through highly specific binding of the
gRNA-dCas9 complex to the target DNA [98]. By targeting desired sequences of the
genome gRNAs can simultaneously block several points in the genome acting as
transcriptional repressors [99]. The CRISPR/dCas9 also can be fused to other proteins
such as activators to regulate the activation [100,101]. There are computational and
experimental tools to design such devices by tuning the level of binding through the
complementarity of the gRNA and the target sequence [99].

Translational level

Translational regulators are components that control the translation of mRNA through
the ribosome. RNA genetic switches or riboswitches are tools that regulate gene
expression in response to their input [102,103]. Although some riboswitches function in
the transcriptional processes such as in termination of the transportation [104,105].
Riboswitches consist of an aptamer (sensing) domain and an actuator (regulating)
domain for binding to an input molecule and control the gene expression, respectively
[102,106]. The binding of an input to its aptamer makes the actuator to alter the
structure of the RNA, hence changing the translation process. A riboswitch can be
actuated by a small molecule or another RNA sequence which in this case is called
toehold circuit [102,107].

Toehold circuits are RNA switches in which a short sequence of its input RNA regulates
the expression of a mRNA [14]. The mRNA gene is designed to have a UTR sequence
right upstream of the start codon that forms a secondary structure inhibiting the access
of ribosomes to this mMRNA [108]. At the presence of the input RNA, it opens up the
secondary structure of mMRNA by binding to the upstream sequence with higher affinity
and exposes the RBS to ribosomes to be translated. By designing short sequences in
the upstream of a reporter gene different toehold circuits can be designed for input
RNAs (a short RNA or a short sequence of a long RNA) [54]. Logic gates can be made
by designing riboswitches structure of which in their upstream is controlled by several
inputs [1,109]. Similar to toehold circuits, siRNAs also could be used to silence or
inhibit mMRNAs from translation [110-112].

Others: DNA and post-translational level

Gene networks can be programmably designed at the DNA level by applying natural
regulatory processes that occur on DNA. One of the main such tools are DNA switches
enabled by recombinases [12,113]. Depending on their type, reversible or irreversible
recombinases can be engineered with their specific recognition sites on DNA [12]. A
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specific recombinase binds to its target site and flips a unidirectional terminator in front
of a promoter to turn off/on a gene. Irreversible recombinases are tools to implement
biological memory because they do not rely on the presence of the input after
recombining their target sequence and turning on/off a gene [12,114]. These switches
have also been applied to digitize or amplify the behavior of gene circuits [8]. From
simple devices to complex and multilayer gene circuits have been built using the
recombinases strategy [6,26]. There are multiple recombinases present in all kingdoms
of life making them applicable in distinct cell hosts.

Although both prokaryotic and eukaryotic cells have signaling pathways [115,116],
signal transduction is more a characteristic to the eukaryotic cell. The signal
transduction is faster than gene circuits that function at DNA, transcriptional or
translational level. This high speed is because it usually has only the outputs at gene
expression level and all the rest act in a transduction path of multiple components
already expressed [117]. A recent study introduces a modular synthetic GPCR (G
protein-coupled receptor) signal transduction system that can be used to engineer
GPCRs to respond to different ligands as inputs [118]. A famous example of bacterial
signal transduction is the quorum sensing of the bacteria which is the sensory system
to cellular populations [85].

Cell-free systems as a new platform

Cell-free systems are reliable platforms to test or implement synthetic biological
networks [119]. These membrane-less and nucleic acid-free platforms are made up of
cell extract plus additional elements to support the functionality of the system [120].
Eukaryotic cell-free systems have shown only the ability of translation from mRNA
added to the extract [121,122]. However, prokaryotic cell-free systems can perform
both transcription and translation thus work by adding only the coding DNA of the
genes involved in the circuitry [123]. The cell-free system can be chemically defined
and constructed in a bottom-up approach from required components called “purified
recombinant elements” (PURE) system [124]. However, the PURE system is costly
since everything should be provided to make the functional system. The alternative for
this is TX-TL cell-free system made up by bacterial cell-lysate mixed with energy mix,
amino acids, tRNAs, nucleotides, etc [120]. TX-TL systems have been applied as a
chassis to build biosensors and genetic circuits, also for metabolic engineering
application [61,81,125,126].
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Cell-free systems provide advantages over in vivo systems: 1) non-GMO platform to
produce biological products and to build portable biosensors, 2) lower noise and
higher precision as there is no growth and cellular maintenance [127], 3) rapid
characterization of biological networks through quick mixing of the elements and fast
expression of the circuits [126], 4) possibility of adding linear DNA of PCR product
[128-130], 5) rapid cloning since there is no limitation of number of plasmids, origin of
replications and antibiotic resistance genes [61], 6) higher number of genes can be
used since there is less limitation of burden and resource competition [18,131], and 7)
high tunability of the biological parts and system components as they can be altered
by pipetting at any concentration [18]. Apart from above-mentioned applications,
cell-free systems can also provide tools to study biological phenomena [132,133].
Successful protocols have been developed to make cell-free lysate of different
organism [120,121,134-141]. Also, optimization protocols have been shown ways in
improving the functionality of cell-free systems in different condition [142,143].

Perspectives

Synthetic gene networks are sophisticated tools to provide facilities in engineering
biology. Since the dawn of synthetic biology, modular biological parts and methods
have been increasingly equipped scientists toward a future in which cells and biological
systems can be engineered for medical, environmental and industrial applications[1].
The advances made so far have applied from genetic central dogma level to
post-translational, signal transduction and metabolic enzymes in different prokaryotic
cells, eukaryotic cells, and cell-free systems. Moreover, the experimental and
computational approaches provide a potential perspective for the construction of
next-generation synthetic biological networks. The next generation of such circuits is
the integration of different tools and approaches for mix-hybrid gene circuits
implementation [1,3,18,23,114].

Decreasing the cost of chemical DNA synthesis and DNA sequencing provides a more
affordable reading and writing of DNA (sequencing and gene synthesis respectively).
Hence, the field of synthetic biology will be rapidly advancing through high throughput
experiments exploring the potential of the synthetic version of the code of life, DNA.
The enormous available data of biological datasets and the future data that will be
generated could be the training datasets for machine learning and deep learning
exploration on these data to learn more and more about biology as well as to predict
the future biological circuits [144].
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Chapter 2:
Synthetic Biology at the hand of Cell-Free Systems

This chapter has been originally submitted by Amir Pandi, Olivier Borkowski, and
Jean-Loup Faulon as a chapter titled “Synthetic Biology at the hand of Cell-Free
Systems” to “Springer Nature Singapore Pte Ltd” for the book titled “Advances in
Synthetic Biology”. The chapter has been under revision at time of preparing the thesis
report.

Contribution:

Amir Pandi and Olivier Borkowski structured and wrote the chapter. All the authors
corrected the final draft. Amir Pandi and Jean-Loup Faulon are corresponding authors
of the original work.
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Abstract

Cell-free systems are emerging as membraneless transcriptional and translational tools
to study biology and for prototyping, characterization and engineering novel biological
systems. Cell-free systems allow in vitro transcription and translation using the cellular
machinery prepared from a variety of prokaryotic and eukaryotic cells. These non-GMO
tools enable rapid and high throughput characterization by their rapid gene expression,
simple building of large combinatorial libraries, easier cloning, lower noise, less
susceptibility to toxicity and high tunability. In this chapter, different types of cell-free
systems, different techniques to obtain them, and their applications in synthetic biology
and bioengineering are presented.

Keywords

Cell-free systems, Cell-free protein translation (CFPT), cell-free transcription-translation
(TX-TL), Cell-free synthetic biology, in vitro synthetic biology
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Introduction

Cell-free protein synthesis is an alternative tool to applying cellular protein production
machinery beyond the living cells’ growth and maintenance [119,123]. This tool has
been used since the dawn of molecular biology for the discovery of genetic codes,
mechanisms of the “genetic central dogma” [145]. Moreover, cell-free protein synthesis
has provided an alternative for recombinant protein and toxic protein production
[146,147].

Cell free systems may perform only the protein translation from mRNA called
“uncoupled” translation with regard to “coupled” in which both transcription and
translation are processed in vitro from DNA [147]. Cell-free systems could be prepared
either from cell lysate or using defined purified components depending on the
applications.

In the last few years, cell-free systems have opened doors in the field of synthetic
biology as a potential host/expression platform. Although cell-free systems are not
sustainable as living systems, they provide advantages over whole-cell systems such
as:

e Abiotic and non-GMO tools for bioproduction and diagnostic kits

e Fast and high-throughput prototyping and characterization of biological circuits
and pathways because of the quicker gene expression and the ease of building
combinatorial libraries without transforming cells [126]

e High tunability provided by the membraneless system in which the components
can be easily tuned by pipetting [61]

e Easier cloning as there is no need to assemble multiple genes in a one or two
vectors. In cell-free multiple plasmids with the same origin of replication and
antibiotic resistance can be expressed at the same time. Linear DNA generated
by PCR can also be used [128-130]

e Lower noise in gene expression and susceptibility to toxicity [127]

e Less limitation on the number of genes used in the pathways and circuits since
there is no growth hence, no burden due to resource competition with the host
[18].

All the above-mentioned advantages of cell-free systems have attracted the

community’s attention to describing a variety of protocols for different organisms
(Table 2.1). Apart from the facilities to study biological mechanisms and rapid
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prototyping, cell-free systems provide a promising platform for metabolic engineering
and diagnosis as well as to construct synthetic cell in a bottom-up approach. In this
chapter, we focus on the current protocols used to provide the extract as well as a
variety of applications of the cell-free systems in the field on synthetic biology and
bioengineering (Figure 2.1).

Cell-Free Systems Rapid &
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Prototyping
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Figure 2.1. Overview of the research field of cell-free synthetic biology. Top panel: Schematic
representation of the preparation of TX-TL cell-free reaction. Extract is obtained from living cells and is
used along with DNA (see middle panel) and reaction buffer (energy mix, amino acids and nucleotides) to
perform the cell-free reaction which can be characterized in a rapid and high throughput manner. Middle
panel: DNA molecules used in transcription-translation cell-free reaction. DNA is expressed using
transcription and translation machineries present in the cell-free reaction. The chemically synthesized
gene (or amplified from an already existing DNA molecule) can be used as linear DNA (to save time and
cost of cloning), individual plasmids (to have higher expression of genes with regard to linear DNA) or
assembled plasmid (in cases such as incorporating a set of genes for synthetic cell application). Bottom
panel: Schematic representation of the main applications of cell-free systems in the field of synthetic
biology and bioengineering.
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Different techniques to obtain/use cell-free

The E. coli extract can be obtained through mechanical disruption of the membrane
using sonication [148,149], beads beating [150,151] or French press [152].
Nevertheless, these methods required specific equipment: sonicator, shaker or French
press that are not available in every laboratory. Moreover, samples obtained using such
method can be damaged by the high temperature/pressure reached during the process
leading to protein denaturation. A Chemical approach using lysozyme can also be used
to obtain a lysate [153] avoiding steps in the protocols with high temperature/pressure.
In a recent approach, autolysis strain has been developed with a protocol based on a
constitutively expressed phage lambda endolysin coupled with a -80°C step to weaken
the membrane [154].

An In vitro transcription and translation system can also be constructed in a bottom-up
approach from defined required components called “purified recombinant elements”
(PURE) system [124,155]. However, the PURE system is costly since 32 components of
the transcription (RNA polymerase) and translation (translation initiation factors,
elongation factors, release factor, aminoacyl-tRNA synthetases,methionyl-tRNA
transformylase, ribosomes) machineries must be purified independently to make the
functional system.

Cell-free components are mostly stocked in a liquid form at -20/-80°C and the reaction
is started at 30°C or 37°C when DNA is added to the mix. Liquid Cell-free mixes cannot
be conserved at room temperature but can be freeze-dried on paper and remain
functional even after a year at room temperature [54]. Such, Paper-based cell-free
system has been developed using PURE system or lysate-based cell-free system
[54,154]. Cell-free reaction is then activated by adding DNA and water on paper making
it easy to use, stock and transport.
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Table 2.1. Different types of cell-free systems

Organisms Reference
Escherichia coli [150,156]
Streptomyces venezuelae [136]

Vibrio natriegens

[138,139,157,158]

Bacillus subtilis [134]
Bacillus megaterium [134,159]
Prokaryotic | Pseudomonas putida [135,160]
Escherichia fergusonii [160]
Pantoea agglomerans [160]
Corynebacterium glutamicum [160]
Salmonella enterica [160]
Klebsiella oxytoca [160]
Lactococcus lactis [160]
Wheat germ [161]
Rabbit reticulocyte [162]
Eukaryotic Insect cells [163]
Leishmania tarentolae [164]
Human cells [165]
Saccharomyces cerevisiae [166]
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Applications of cell-free systems

Cell-free systems, which emerged as tools to discover multiple biological mechanisms
in the 20th century, are becoming platforms for rapid and high-throughput
characterization and prototyping of biological systems. Moreover, cell-free systems are
applied for diagnostic devices and for the bottom-up synthetic cell construction. Here
we present different categories of applications (Bottom panel, Figure 2.1) with a few
examples for each.

Metabolic engineering

One of the applications of cell-free protein synthesis is the prototyping of metabolic
pathways [126,167]. Easier cloning and the possibility of using PCR products make
prototyping faster and more efficient. Since in vivo synthetic pathways can be toxic,
cell-free systems have privileges over whole-cell systems through enabling expression
of higher number of genes (as there is no resource competition with the host) and
decreasing the harmful effects of intermediates (as there is no impact on cell
physiology). In such an open system, multiple parameters such as the level of gene
expression, the combination of different genes and the concentration of different
elements (reaction buffer composition) can be adjusted in an efficient
design-build-test-learn cycle [125]. This ease of use makes cell-free a powerful tool for
synthetic biologists and metabolic engineers to find new synthetic pathways as well as
to optimize metabolic pathways [125].

The prototyped metabolic pathway candidates with a higher performance can be
transformed into whole-cell systems. In vivo, the genes should be cloned in a limited
number of plasmids or integrated into the genome of the host. Since the properties of
the host cell and the cell-free system are different, developing computational models
will enable more predictable transfer from cell-free into in vivo chassis [168]. For highly
valuable/toxic products, the cell-free system itself might be used as the production
chassis [169].

To perform a metabolic production in cell-free system, genes encoding enzymes can
be added to a TX-TL cell-free extract supplied by the reaction buffer [125]. The
enzymes can also be provided with a doped extract, a cell lysate prepared with the
cells harboring a plasmid encoding a specific enzyme [170]. However, doping of the
extract with a multi-enzyme pathway reduces the growth and causes the burden in the
cells used to prepare the extract. To avoid such issues, each enzyme can be expressed
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in a separate cell line and a mix of different extracts can be used to provide the
multi-enzyme pathway in cell-free [170]. In a similar approach, purified enzymes can
also be directly added to the reaction. Cell-free systems with DNA, doped extract or
supplied by purified enzymes have been used for bioproduction of psicose, violacein,
1,4-butanediol, polyhydroxyalkanoates, mevalonate, n-butanol, raspberry ketone, and
limonene [170-177]. In a recent study, a biosensor screening method was developed to
monitor the cell-free bioproduction [49]. Biosensors provide monitoring tools in
metabolic engineering for pathway/enzyme optimization and screening through sensign
the final products or intermediates [81]. The biosensor development further speeds up
the design-build-test-learn cycle of metabolic engineering using cell-free systems [81].

Biosensors and diagnosis

Biosensor development for medical and environmental diagnosis is where the potential
of cell-free systems in building portable abiotic kits plays a principal role
[127,178-180]. Cell-free systems allow building of abiotic and portable diagnosis kits
that are safer and simpler to maintain and distribute. These kits keeps their
functionality after months when freeze-dried [54]. The low susceptibility of cell-free
systems to the toxicity of chemicals and lower noise in gene expression with regard to
living cells are other advantages of cell-free diagnostic devices. In addition, biosensors
optimization can be facilitated by rapid prototyping and high throughput
characterization that these systems offer [181].

During the last decade, cell-free protein synthesis has been used to develop medical
diagnostic devices. In an early study, the Collins’ lab introduced a cell-free
transcription-translation approach to build paper-based gene circuits [54]. Pardee et al.
described a modular strategy to design and build toehold switches (gene circuits that
respond to a short sequence of RNA when the small sequence of RNA opens the
designed loop around the RBS and start codon) in cell-free systems [54]. As proof of
concept, they built multiple gene circuits for Ebola virus detection which were able to
distinguish between viruses from two distinct populations. The same research group
later extended their methodology and build cell-free devices for Zika virus as well [53].
A few years later they developed an in vitro method called SHERLOCK by employing
high potential of Cas proteins (CRISPR machinery) to detect RNA and DNA sequences
[56,57]. In a recent study, toehold circuits were also applied to detect human gut
microbiome composition in fecal samples [55].
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The other approach to build cell-free biosensors is through transcriptional regulators.
Wen et al. constructed a biosensor responding to quorum molecule of Pseudomonas
aeruginosa along with its cognate transcription factor to detect this pathogen in clinical
samples [52]. In a recent study, Voyvodic et al. proposed a modular way to extend the
number of detectable molecules using metabolic enzymes in the cell-free system [61].
The enumerated pathway using computer-aided tools [46] enables the conversion of an
undetectable molecule to another which is a transcriptional or translational regulator.
They optimized cell-free biosensors by adjusting the concentrations of DNA plasmids
encoding the transcription factor, the GFP reporter gene, and the metabolic enzymes.
Eventually, they used these sensors to detect cocaine and hippuric acid in clinical
samples and benzoic acid in beverages [61]. Taking two or more biomarkers into
consideration will increase the precision of the medical diagnosis. A sophisticated
device called “metabolic perceptron” allows the integration of multiple signals for
multiplex detection [18]. The metabolic perceptron also brings an alternative approach
to perform biological computation using biological circuits [18].

Cell-free biosensors can also be used for industrial and environmental applications
[179]. The non-GMO diagnostic kit can be distributed to a wide geographical area as a
cheap and easy way of detecting hazardous and pollutant molecules in the
environment and industry. In a recent work, Alam et al. used RNA output sensors
activated by ligand induction (ROSALIND) to detect pollutants in environmental water
samples [63]. They developed a modular strategy for the detection of different water
pollutants such as antibiotics, toxic molecules, and metals [63]. As an industrial/food
example, Pandi et al. [49] demonstrated that a repressor-based transcriptional sensor
that suffers from low fold repression in the cell-free system can be optimized in several
ways. Without optimizations a repressor based system may exhibits weak fold change
in the cell-free system. They introduced three strategies to do so: doping the extract
with a transcription factor, preincubation of the extract with the components which is
needed to be in excess (the repressor), and reinitiation of the cell-free reaction when
the system's ability in gene expression diminishes. They then used the optimized
biosensor of psicose to monitor its bioproduction from fructose using a metabolic
enzyme.

Studying biological mechanisms

The ability of cell-free systems to perform minimal biological functions without the need
to express a full genome makes them a promising tool to study specific mechanisms
independently. In a recent attempt, E. coli TX-TL system was used to predict the cost
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of protein expression in living cells [132]. The authors proposed a standard cell-free
assay to relatively measuring the resource consumption of the expression of a protein
sequence. In this approach, the in vivo burden of growing cells expressing a variety of
proteins and multigene operons can be predicted [132]. In another study, the cell-free
system was used to study the CRISPR mechanisms such as characterization of gRNAs
and anti-CRISPR proteins [133].

Building a synthetic cell

Building synthetic cells is one of the main goals of synthetic biology to understand the
minimal elements necessary for life. The synthetic cell can be applied as a universal
minimal chassis in systems and synthetic biology and for medical applications such as
drug delivery [182]. There are two approaches to build a minimal cell: top-down and
bottom-up [183]. In the top-down path, the genome of an existing organism, preferably
an organism which is well-known and/or with a small genome such as E. coli or
Mycoplasma mycoides is reduced [184]. In the bottom-up construction, the minimal
components are assembled from scratch to build a system which is sustainable, can
divide and interact with its environment [185]. The encapsulation of the minimal system
harboring the genetic material for necessary functions is similar to how life emerged on
earth more than three billion years ago [186]. The same process can be used in
synthetic biology to encapsulate a cell-free system and build a synthetic minimal living
system. Attempts toward creating synthetic cells using a minimal cell-free system or a
lysate were able to demonstrate living cells-like behavior [187,188]. Vogele et al.
succeeded in encapsulating the TX-TL cell-free system with amphipathic peptides as
the membrane [189]. They then used the gene that expresses the amphipathic peptide
coding its membrane to extend the size of encapsulated system [189].

Self-assembly of phages

Transcription-translation cell-free systems have been employed to assemble and
amplify a number of phagemids [190]. The phagemid assembly has been done in
one-pot reaction from the genome of MS2, ®X174, and T7 [131,191]. In a recent work,
the complete T4 phage has been synthesized from its 169-kbp genome in single TX-TL
reaction [192]. This achievement shows that genomes can be functionally expressed to
build grand organized systems in vitro.

Medicine and therapeutics
One of the earliest applications of the cell-free protein synthesis was the production of
biologically active proteins [147,193]. Key challenges are a correct protein folding and
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post-translational modifications as observed in native cells [194]. Since cell-free
systems are open platforms, their components can be easily adjusted. For example,
redox buffers can be used to control the disulfide bond formation [195].
Post-translational modifications such as phosphorylation and glycosylation can also be
performed to produce functional proteins in vitro [196-198]. The majority of
commercially available technologies for these types of applications use mammalian
cell-free systems. Mammalian cell-free systems are able to implement
post-translational modifications which are necessary for many therapeutic proteins.
However, a recent study described a method to implement glycosylation (a common
post-translational = modification  of  eukaryotic proteins) using  bacterial
transcription-translation system [198]. This achievement brings a cheap and more
efficient bacterial cell-free system for medical applications.

Proteomics and protein evolution

By decreasing the cost of cell-free systems, using automation and optimization, these
systems allow high-throughput protein synthesis and characterizations [199,200]. This
trend brings the advantage of applying cell-free protein synthesis for proteomics
analysis [147]. Moreover, cell-free systems enable directed evolution to generate
proteins with desired phenotypes especially through applications such as ribosome
display, in vitro compartmentalization, and in vitro virus (also known as RNA-peptide
fusion or mRNA display) [147].

Education kit

The development of education kits in the field of biology is limited compared to other
branches of science and engineering due to the obstacles of dealing with living
organisms and the lack of portable and affordable devices. BioBits™ [201] is a
collection of freeze-dried educational kit established recently by leveraging cell-free
transcription-translation systems. This collection provides portable non-GMO kits for
young students to learn and practice synthetic biology. BioBits™ kit consists of simple
transcription and translation set of fluorescent proteins and more complex devices for
enzymatic reactions and RNA responding circuits. The components of the kit are easily
usable after adding water to freeze-dried cell-free systems. All the experiments are
practiced by employing only the senses of sight, smell, and touch through outputs that
produce fluorescence, fragrances, and hydrogels, respectively. The DIY collection
provided by the kit makes it affordable and valuable for young students to get trained
and learn molecular biology and synthetic biology.
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Perspectives

Cell-free systems have an old history since the dawn of molecular biology and will have
a future through their peculiar properties. Since high-throughput and engineering
approaches are getting integrated into life science applications, cell-free systems play
an important role in studying, prototyping and engineering biological systems. In the
coming years, the preparation of various cell-free systems should get more affordable
and standardized. The limitations as the lack of post-translational modifications in
prokaryotic systems or the lack of transcription machinery in eukaryotic systems can
be compensated by adding specific components like kinase or T7 polymerase to the
cell extracts [202]. Moreover, new achievement such as glycosylation using bacterial
extract is a cutting edge advancement in cell-free biology. Cell-free systems have
extended their shadows in the whole field of biology from basic science to building
sophisticated synthetic devices and synthetic cells. With the achievement gained in the
21st century, the cell-free synthetic biology has a bright future for medical,
environmental and industrial applications.
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Section I:
Bioproduction-Biosensing

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 44



Chapter 3:
Custom-Made Transcriptional Biosensors for
Metabolic Engineering

This work was originally published as a review article by Mathilde Koch, Amir Pandi,
Olivier Borkowski, Angelo Cardoso Batista, and Jean-Loup Faulon on Current Opinion
in Biotechnology. The full citation of the article:

Koch M, Pandi A, Borkowski O, Cardoso Batista A, Faulon J-L: Custom-made
transcriptional biosensors for metabolic engineering. Curr Opin Biotechnol 2019,

59:78-84

Minor revisions have been introduced to the chapter presented below.

Contribution:
Mathilde Koch and Amir Pandi equally participated in preparation of the original review
article.
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Abstract

Transcriptional biosensors allow screening, selection or dynamic regulation of
metabolic pathways, and are therefore an enabling technology for faster prototyping of
metabolic engineering and sustainable chemistry. Recent advances have been made,
allowing for routine use of heterologous transcription factors, and new strategies such
as chimeric protein design allow engineers to tap into the reservoir of
metabolite-binding proteins. However, extending the sensing scope of biosensors is
only the first step, and computational models can help in fine-tuning properties of
biosensors for custom-made behavior. Moreover, metabolic engineering is bound to
benefit from advances in cell-free expression systems, either for faster prototyping of
biosensors or for whole-pathway optimization, making it both a means and an end in
biosensor design.

Highlights
e Successful examples of transcriptional biosensor implementations are presented
e Various engineering strategies extend the space of detectable chemicals
e Novel strategies exist to transform metabolite-responding proteins into
biosensors
e Mathematical models of varying complexity can help tune biosensor properties
e Biosensors using or designed for cell-free systems are presented
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Figure 3.1. The graphical abstract of the chapter on designing modeling and implementing
small molecules’ biosensors.
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Introduction

Metabolic engineering allows the production of value-added compounds from
renewable sources, therefore making it a key discipline for a greener and more
sustainable chemistry. As the domain of synthetic biology has matured, numerous
techniques have been developed and applied in metabolic engineering, allowing for
cheaper and faster DNA synthesis, sequencing and assembly. It is nowadays faster to
design and build constructs than to characterize them as testing often involves
expensive mass spectrometry analyses. This has led to an increased interest in
biosensors, which can allow fast and real-time screening, selection or dynamic
regulation engineering of metabolic pathways. Cells harboring fluorescent proteins as
the reporter of the biosensor allow screening of a huge number of variants, both for
experimental growth conditions or genetic constructs (enzymes, RBS, promoters).
Moreover, dynamic regulation can be used to monitor intermediates, final products or
quorum molecules, allowing for optimal pathway balancing and resource consumption.

The advantages of using biosensors in metabolic engineering have been extensively
reviewed before [77-79] and will not be detailed further. Moreover, a wide array of
techniques now exists to develop biosensors, from FRET [203] to riboswitches
[204,205]: the interested reader is referred to those two excellent reviews that cover the
strengths and limitations of the above-mentioned technologies [80,206]. In this review,
we will focus on transcriptional biosensors in three different aspects. First, we will
review techniques for discovery and engineering of transcriptional biosensors for new
compounds, second, we will present how computer-assisted modeling can facilitate
the tuning of biosensors for custom-made behavior, and third we will review the
advances and advantages of using cell-free systems for biosensor characterization and
metabolic engineering.
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Figure 3.2. Different strategies to develop a TF based biosensor for a given metabolite. There is
either an existing TF for a metabolite (a) or it could be engineered using evolved TF (b), chimeric protein
(c), or a metabolic pathway (SEMP) (d). A designed biosensor could be implemented in whole-cell or
cell-free system (e). Abbreviations: TF: Transcription Factor, LDB: Ligand Binding Domain, DBD: DNA
Binding Domain, SEMP: Sensing-Enabling Metabolic Pathways.

Designing a transcriptional biosensor to detect a compound of interest

Engineering allosteric transcription factors

The first step to engineer a biosensor, whether homologous or heterologous, is to
identify the transcription factor (TF) and promoters that respond to it. Strategies
involving transcriptional micro-arrays and identification of the up- or down-regulated
genes in response to the ligand of interest provide first leads. These approaches can
suffer from important limitations for metabolic engineering use: the identified genes can
be either indirectly regulated by the ligand of interest, or very unspecific. This strategy
has been successfully applied for 1-butanol detection [207]. Another strategy for
identification of potential TF-promoter pair comes from Zhang et al.[208] who identified
pairs that could detect lactam derivatives: they used a chemo-informatics approach to
reveal operons listed in BRENDA (Braunschweig Enzyme Database) [209] that detected
similar chemicals, and identified the gene likely coding the transcription factor. We
recently published [47] a dataset of detectable metabolites (Figure 3.1a). This dataset,
includes a manually curated list of experimentally validated detectable metabolites and
information from databases of regulation, which contain known or putative detectable
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metabolites. Other strategies for mining parts have been discussed in a previous review

[210].

Table 3.1. Successful homologous and heterologous biosensor design based
identified on transcription factor/promoter pairs.

Compound Original Implementation | Design strategy Biosensor Ref.
organism organism application
Itaconic acid Yersinia Escherichia coli Identified TF and | Used for | [211]
pseudotubercu promoter from | enzyme
losis catabolism improvement
pathways in pathway
prototyping
Vanillin Escherichia Escherichia coli Natural E. coli| Used for
coli regulator tuned | library [212]
with mathematical | screening
modeling
Syringaldehyde | Escherichia Escherichia coli Natural E. coli| Used for
coli regulator tuned | library [212]
with mathematical | screening
modeling
Muconic acid Acinetobacter Saccharomyces Identified from a | Used for | [213]
sp. ADP1 cerevisiae previous selection of
publication high producing
strains
Pinocembrin Herbaspirillum Escherichia coli Tuned with the help | Can be used | [214]
seropedicae of a mathematical | for metabolic
model engineering
Pamamycin Streptomyces Streptomyces Improved from | Can be used | [215]
alboniger alboniger native genetic | for metabolic
elements engineering
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p-coumaric Bacillus subtilis | Escherichia coli Identified from | Used for | [216]
acid literature and library | screening a
design of RBS to | producer strain
tune the repressor | in microfluidic
properties droplets
Formaldehyde Escherichia Escherichia coli Optimized from | Used to | [217]
coli native  regulatory | identify
elements. promising
enzymes  for
methanol
assimilation.
N-acetylneura Escherichia Escherichia coli Modularization of | Used for | [218]
minic acid coli the native | screening
biosensing system high-producin
g strains
Putrescine Escherichia Escherichia coli Modularization of | Used for
coli the native | screening [219]
biosensing system high-producin
g strains
L-phenylalanin Escherichia Escherichia coli Modularization of | Used for | [220]
e coli the native | screening
biosensing system high-producin
g strains
Shikimic acid Corynebacteriu | Corynebacterium | Using the promoter | Used for | [221]
m glutamicum glutamicum from native genetic | screening
elements, high-producin
considering the | g strains
transcription factor
to be naturally
expressed
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Cellobiose Thermobifida Escherichia coli Identified from | Used to | [222]
fusca literature and | identify
expressed in E. coli | promising
cellulases
Naringenin Herbaspirillum Escherichia coli Identified from | Can be used | [223]
seropedicae literature, for metabolic
modularized and | engineering
expressed in E. coli
Naringenin Acinetobacter Saccharomyces Identified from | Used for | [224]
sp. ADP1 cerevisiae literature, pathway
modularized and | prototyping -
expressed in E. coli | screening
Various Sphingobium Escherichia coli Identified from | Used to screen
aromatic sp. SYK-6 literature, for lignin | [225]
blocks modularized and | degrading
expressed in E. coli | enzymes
Various MphR, isolated | Escherichia coli Directed evolution | Can be used | [226]
macrolides from and random | for metabolic
wastewater mutagenesis to | engineering

treatment plant

improve selectivity

Once a potential TF/promoter pair is identified, the bioengineering workflow involves
modifying the promoter, RBS and binding sites to improve selectivity, dynamic,
operational range, fold change and leakiness. A number of successful biosensors have
been developed in recent years, including heterologous TF despite the challenges
faced to adapt the transcriptional machinery. This technology is becoming increasingly
mature, as shown by the numerous examples in Table 1. In addition, engineering of
specific biosensors for Malonyl-CoA is reviewed by Johnson et al. [227], while Ambri
[228] describes in detail an implementation of bacterial TF in yeast. Voigt’s group
recently published an E. coli strain containing twelve genomically integrated small
molecule sensors, using a directed evolution strategy. It has been developed as a
synthetic biology tool but the presented methods are applicable to metabolic
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engineering [229].

However, the above-mentioned strategies are only applicable if a natural transcription
factor-biosensor pair exists for a given compound. We will now review strategies to
extend the chemical scope of transcriptional biosensors.

Extending the chemical space for biosensors

A strategy to extend the chemical scope is to start from a known transcription factor
and apply rounds of protein engineering to change its specificity (Figure 3.2b). For
example, to design a biosensor for lactulose, Lacl was altered using saturation
mutagenesis, with rounds of selection to ensure specificity to lactulose [230]. Taylor et
al. [231] used computer-assisted protein design, followed by saturation or random
mutagenesis to modify Lacl to sense either fucose, gentiobiose, lactitol or sucralose.
The promiscuous MphR transcription factor has been modified with a similar strategy
to change its selectivity towards various macrolides [226]. Despite their successes,
these examples still rely on well-known transcription factors and labor-intensive
mutagenesis or computationally assisted protein design to change the specificity of a
transcription factor to, still, a chemically similar molecule.

Several groups have tried radical approaches, fusing DNA binding domain (DBD) to
determine ligand binding domains in different ways (Figure 3.2c¢). This strategy has
been successfully applied to maltose [232] and benzoate [233] by testing various
linkers and DBD systematically. Another strategy, also applied to maltose, was to
randomly insert the DBD into the metabolite binding protein, using transposon insertion
reaction, to select constructs presenting biosensor-like behavior [234]. In a recent
study [235], the authors use a ligand dependent stabilization strategy, fusing Lacl
(respectively MphR) to the Zif268 DBD and RNA polymerase w-subunit
transcription-activating domain. Those constructs are quickly degraded unless the
ligand is present. The authors managed to engineer biosensors responding to IPTG
and D-glucose with satisfying dose-response (respectively erythromycin with a modest
response). However, to underline the difficulty of this approach, they report that in two
structurally similar periplasmic binding proteins, a similar mutation did not confer ligand
dependent stabilization. Another similar approach was developed recently, it uses both
ligand dependent stabilization and protein dimerization: two ligand binding domains
(that can homodimerize, but bind different ligands) are fused respectively to the
activation domain and the DBD. Upon ligand binding, the two proteins are stable and
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can homodimerize, resulting in biosensing. This system allows for better range tuning
and possible orthogonal biosensing of different ligands [236].

Other known metabolite responsive proteins are two-component systems, which have
also been used as biosensors. By fusing the transmembrane sensing domain of
another species detecting methanol with the cytoplasmic phosphorylation domain of E.
coli, binding of methanol activates a phosphorylation cascade enabling biosensing
[237]. In an elegant study, transmembrane and cytosolic receptors for caffeine were
built by fusing single-domain antibodies to monomeric DBDs [238]. Different DBDs
were used, proving the scalability of the method. These two platforms should allow
bioengineers to tap into the vast reservoir of two-component systems and antibodies
to design new sensors.

A radically different approach to engineer the sensing scope of bacteria was coined
Sensing-Enabling Metabolic Pathways (SEMP) (Figure 3.2d). The principle of this
method is to metabolically convert an undetectable ligand into an already detectable
one. This method makes the most of existing biosensors as well as of the impressive
accumulated knowledge on metabolic reactions. It has been successfully applied in a
metabolic engineering project to produce 3-hydroxypropionate [239], and its modularity
was shown by Libis et al. [240]. A web-server is now available to design SEMP for
compounds of interest [46].

Computer-assisted fine-tuning of biosensor properties

While the scientific community agrees that biosensors need to be fine-tuned for
selectivity, sensitivity and dynamic range, tuning strategies are usually based on
labor-intensive and costly rounds of selection and mutagenesis. Controlling those
properties is especially interesting for metabolic engineering as the specifications of a
biosensor needed during various stages of the process will change, from detecting
micromolar amounts before pathway optimization to g/L titers in later development
stages. Therefore, after engineering a biosensor with new specificity, its properties also
need to be fine-tuned to match the metabolic engineer’s needs.

A detailed mechanistic model of the ArsR arsenic biosensor was developed by Berset
et al. [241], which recapitulates the sensor behavior under various circuit
configurations, different ArsR alleles, promoter strengths, and presence or absence of
arsenic efflux in the bioreporters. This model was then used to predict a circuit variant
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with steeper response at low arsenite concentrations. A thermodynamical model was
developed in a recent study [91], which was used to tune the dynamic range of
ligand-inducible promoters (mainly AraC and LasR), using binding energies calculated
for different promoter sequences. Both studies proved that with sufficiently detailed
models, tailoring biosensor properties for custom-made behavior can be achieved.
Another interesting study based on the Lac system and involving extensive
phenomenological modeling sought to find theoretical constraints for biosensor design,
notably a maximum achievable dynamic range and exposing tunable parameters for
orthogonal control of dynamic range and response threshold [242]. As impressive as
these studies are, they are based on well-characterized and known systems and such
modeling cannot be applied easily to a new biosensor.

However, a simpler formalism (Michaelis—Menten) for mathematical modeling was used
to tune a biosensor used for selection of lignin transforming enzymes, giving insights
on parameters influencing sensitivity, such as TF concentrations or copy humber [212].
The role of plasmid copy number on sensitivity and fold-change of a pinocembrin and
naringenin biosensor was investigated through a mathematical modeling [214], using
the common Hill framework, allowing for a better understanding of the biosensor
behavior and suggestions for further tuning of properties according to desired outputs.
Landry et al. [243] used mathematical modeling with Hill formalism to tune the
detection range of a two-component system. They successfully applied it to improve
their detection threshold up to two orders of magnitude. These later studies showed
that simple mathematical models can help to understand and tune specific properties
of a biosensor, even in less known systems.

Computer-assisted design does not always yield the expected results, as current
models are often more explicative a posteriori than predictive a priori. Therefore, we
believe investing the time needed to develop reliable models for a library of constructs
can only be worthwhile in the long run for designing biosensors, as formalized
knowledge is more easily translatable to other situations.

Custom-made biosensors’ new application domain: cell-free metabolic
engineering

Despite the advances presented in this review, biosensor design still necessitates
rounds of trial and error. This limitation can be significantly sped up by using cell-free
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systems (Figure 3.2e). Moreover, cell-free systems, are poised to become a key
characterization tool in the metabolic engineering workflow before in vivo
implementation. Cell-free systems lead to quicker responses, simpler cloning and
larger combinatorial libraries screening, without requiring transformation steps. This
systems can also be an appropriate platform for production because of lower noise
and toxicity and absence of resource competition between pathway and cell growth. To
date, cell-free systems have been applied to implement pathways for violacein [244],
4-BDO [245], polyhydroxyalkanoates bioplastics [246], mevalonate [174], n-butanol
[170] and raspberry ketone [247], using either transcription-translation (TX-TL) systems,
overexpressed enzymes in the crude extract or purified enzymes. Advantages and
possibilities of cell-free systems for metabolic engineering has been reviewed
elsewhere [126], and a methods chapter for pathway prototyping in cell-free systems
has recently been published [167].

Cell-free biosensors for various applications have been reviewed elsewhere [178] and
we will focus on strategies applicable to metabolic engineering. In a recent study, a
vanillin biosensor was developed in cell-free systems [181]. The authors first used
computational protein design and then rapid cell-free prototyping to develop a
biosensor for this toxic effector, which was subsequently used in dynamic control
loops in vivo to alleviate toxicity.

For this review, we implemented our in vivo-characterized pinocembrin biosensor [214]
in a cell-free system (Figure 3.3a). The cell-free biosensor exhibited a linear correlation
between input concentration and fluorescence intensity as well as a wider dynamic and
operational range (Figure 3.3b) compared to its in vivo counterpart [214]. These tools
could be used for real-time screening and speed up the design-build-test-learn
workflow for metabolic engineering.
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Figure 3.3. Pinocembrin cell-free biosensor. Cell-free reaction consists of TX-TL cell lysate, reaction
buffer and DNA plus inducer for the biosensor (a). (b) The graph shows a dose response RFP
fluorescence after 9 hours incubation in a plate reader at 30°C. 40 nM of biosensor plasmid is added
with 0, 1, 2, 10, 20, 100, 200 or 1000 pM of pinocembrin in 10.5 pl of cell-free reaction. RFP fluorescence
points and error bars are the mean and standard deviation of three measurements.

Cell-free systems provide fascinating new opportunities for metabolic engineering,
both for faster biosensor development, notably for toxic products, but also for
prototyping whole pathways. Cell-free based metabolic engineering can benefit from all
advantages of biosensor-based screening or dynamic regulation engineering, as does
traditional metabolic engineering.

Conclusion

Thanks to extensive efforts by the research community, it has never been easier to
develop transcriptional biosensors for new compounds, either from existing TF or
engineering strategies. We believe the next frontier in custom-made biosensor design
resides in efficient fine-tuning of properties, which is greatly advanced by modeling
efforts. Moreover, metabolic engineering might be entering a new phase, with cell-free
systems enabling faster prototyping of biosensors and even whole pathways. The
current advances in biosensors for high-throughput screening will truly allow the field
to move from the Design-Build-Test cycle to the Design-Build-Test-Learn cycle.
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Chapter 4:
Integrated SynBio Tools Applied for Optimized
Bioproduction of Poly-Lactic Acid

This work was originally published by A. Pandi, R. Ramirez-Garcia, J. Debédat, D.
Dessaux, V. Gureghian, J. Hartunians, T. Mhoumadi, C. Nayrac1, T. Ratovomanana, M.
Saaidy, J. Tellechea, C. Jacry, A. Iglesias, M. Bargués-Ribera on PLOS iGEM collection
available online at: blogs.plos.org/collections/igem-report-17-03/. Minor modifications
have been introduced to the chapter presented below.

Contribution:

Conceptualization, A.P., M.B.R.; Methodology, A.P., M.B.R.; Investigation, A.P., R.R.G.,
J.D.,, D.D,, V.G., J.H., TM,, C.N,, T.R.,, M.S,, J.T., M.B.R.; Writing — Original Draft, A.P.,
M.B.R., R.R.G.; Writing — Review & Editing, A.P., R.R.G., J.D., D.D., J.H., T.R., M.B.R;;
Supervision, C.J, A.l.

The report was written after iGEM when | was in the first year of my PhD. During the
iGEM project (overlapped with the very beginning of the PhD) | was in charge of the
modeling team. | integrated the synthetic pathway into the genome-scale metabolic
network of Pseudomonas putida KT2440 then perform multiple flux balance analysis
(FBA) as presented in this chapter. | then designed the dynamic regulation biosensor
and modeled the circuit using ODE. Then, with the help of an engineering student
(Clément Gureghian) the python code was created to simulate the genetic-metabolic
circuit.
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Abstract

In recent years, the advent of synthetic biology has enabled metabolic engineers to
develop microorganisms as cell factories for bioproduction. Advanced engineering
techniques have improved control of metabolic and genetic circuits, but new tools are
still needed for optimal design of microorganisms. The aim of this report is to provide a
systematic plan for facilitating the integration of rational engineering tools in
biosynthesis processes. We define a methodology based on A) pathway enumeration;
B) chassis choice; C) production optimization; and D) pathway implementation. A case
study on the bioproduction of PLA, as performed on the Evry iGEM 2016 project, is
presented as an example of design approach.
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Introduction

Initially described in the pages of Léduc and Loeb’s essays one century ago [248,249],
synthetic biology has recently emerged as a promising subject on the boundary of
diverse fields such as molecular biology, biotechnology and engineering. Its definition
relies on the application of engineering principles to understand and modify life, and
identifies the cell as a controllable entity with parts that are standardizable and modular
[250,251].

Techniques of synthetic biology have become crucial for metabolic engineering of
microorganisms by conceiving of them as machines or cell factories. In the last
decade, omics technologies have contributed to an accurate description of gene
regulatory systems of these microbial factories, as well as its metabolic pathways.
Concerning this, synthetic biology tools have facilitated the study of their optimization
and tuning, providing a new paradigm that analyzes all the elements and increases
production efficiency [2,252-255].

Synthetic biology has brought forward engineering techniques that have improved
robustness and control on metabolic and genetic circuits. These circuits, when
described by mathematical models, have a calculable behavior and it is possible to
predict the effect of particular components and mechanisms on the production flux
distribution as well as dynamics [250,256]. Further, stoichiometric modelling of
metabolic networks and dynamic simulation using a synthetic feedback regulation are
promising approaches[257,258]. However, further efforts are needed to combine omics
and synthetic biology tools for cellular design[259].

The goal of this report is to present the design methodology employed by the Team
Evry during the iGEM competition in 2016, which can serve as a practical model to
design optimized synthetic bioproduction of a compound of interest. In this
methodology, a step by step procedure is presented, from choosing a host cell factory
to searching, optimizing and finally implementing the pathway.

In the case study project, the initial objective was the bioproduction of Poly-Lactic Acid
(PLA), a polymer used as bioplastic, and its further manufacturing and preparation for
real-life applications. A design was described based on the literature that would enable
further optimization compared to previous attempts of PLA bacterial production [260].
Due to several problems during the wet-lab experimental part and a lack of time to
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troubleshoot them, PLA was not obtained in the limit time of iGEM competition.
However, positive feedback was received on the chosen chassis and modeling and
optimizations was performed.

For this reason, this report organizes the steps followed for bioproduction optimization
into an integrative methodology, using the PLA project as example case study;
becoming a potential guide for future IGEM participants or synthetic metabolic
engineers.

Methodology

Metabolic engineering is being informed by the synthetic biology framework of
biological parts. Thus, our methodology provides a standard procedure that can be
applied to manufacture a given product using the sustainable cell factory. Herein, we
present a step by step methodology to follow, once the compound that one attempts
to produce is known, from choosing the host chassis to optimizing and implementing
the designed system, as resumed in Figure 4.1.
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Figure 4.1. Step by step protocol for a synthetic metabolic engineering program. (A, B) Choosing
the chassis and seeking for the efficient pathway are the first and the most critical stage. (C) Optimizing
the pathway, cellular process and fermentation, additionally integrating them allow the synthetic pathway
for evolving into an economical production yield. (D) The last step is to implement the pathway and its
companion parts into the host. Abbreviations : Kyoto Encyclopedia of Genes and Genomes (KEGG),
From Metabolite to Metabolite (FMM), eXTended Metabolic Space (XTMS), Genome-scale Metabolic
network Models (GMM), Flux Balance Analysis (FBA), Flux Variance Analysis (FVA), Ribosome Binding

Site (RBS).
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A. Pathway enumeration

First of all, depending on the purpose, the heterologous pathway producing the
specific compound must be sought (Figure 4.1A). To do this, one might utilize personal
knowledge of the metabolism along with literature and databases, in order to find the
enzymes manufacturing the product of interest. However, there are some tools and
databases which are dedicated to this task. In this direction, FMM (From Metabolite to
Metabolite) [261] finds the possible pathway from KEGG database enzymes in order to
produce a target metabolite from a given precursor. Moreover, XTMS (eXTended
Metabolic Space) [262] enumerates pathways connecting the desired metabolite to the
chassis metabolism suing a rethrosynthesis approach, expands the scope of the
possible pathway, scores them, and even discovers new reactions based on enzyme
promiscuity for designing the pathways for unnatural compounds.

There are imperative points that have to be deliberated when designing the pathway: i)
ensuring that the chassis is compatible with heterologous enzymes in cases such as
enzyme post-translational modification (e.g. the glycosylation of the eukaryotic world
which does not occur in prokaryotic cells) and codon usage, ii) verifying that well
annotated mutant (when synthetic) and natural enzymes exist, iii) seeking the closest
enzyme for a wanted substrate due to the large variability of substrate range for a given
EC number in different organisms. For these purposes, there are informative databases
easy to use. For instance, BRENDA [263] gives the different substrates associated with
a given enzyme or EC number in different organisms, as well as inhibitors, kinetic
values, mutant and recombinant version of the enzymes. KEGG [264] is useful to obtain
different reactions and pathways associated with an enzyme. UniProt [265] contains
the annotation of the genes from several organisms of a given enzyme and
characteristic of the enzymes.

As a developing approach in synthetic biology, amending the enzyme and pathway
efficiency or making the completely new enzyme activity using directed evolution or
rational design, will increase the need for standard techniques to synthesize and screen
the phenotypes. Furthermore, screening and selecting the best enzymes for an efficient
pathway is being sophisticated by biosensor-based screening along with transcription
factor and more recently RNA biosensors [239,266-268].

B. Choosing the chassis
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Choosing the appropriate host for manufacturing a product, depends on i) the nature of
the product and its required precursors, as well as their potential toxicity, ii)
compatibility of the chassis cellular process to form the functional enzymes and
pathway requirements, iii) whether the enzyme is prokaryotic or eukaryotic, iv)
localization of the product, and v) scaling up the process in the future goals (Figure
4.1B).

Moreover, the host must have available genetic tools. For instance, Escherichia coli is
the most known microorganism with well characterized cellular processes which could
be used in order to develop new tools in synthetic biology, standardizing the methods
as well as improving the production process. Other bacterial species, such as Bacillus
subtilis and Pseudomonas putida, have attracted the interest of many scientists and
engineers being more adaptable to industrial purposes and more suitable for several
types of products. On the other hand, Saccharomyces cerevisiae has been welcomed
as a promising cell factory carrying more developed cell processes, and more
importantly, to perform simple eukaryotic post-translational modifications on enzymes
and products. From another aspect, S. cerevisiae could be easily assented for scaling
up procedures. More recently, scientists have developed new chassis which have
shown more adaptability especially for industrial conditions, including microorganisms
able to utilize cheap substrates as a carbon source. Choosing the most compatible cell
factory is a crucial step which has to be carefully investigated from the very beginning
compeer with choosing the production pathway and its enzymes [269,270].

C. Optimization of bioproduction

Synthetic metabolic engineering does not only deal with implementing the
heterologous enzymes in a chassis and obtaining the product. Optimizing cellular and
environmental conditions is necessary to achieve an interesting production yield
(Figure 4.1C). In this direction, three ways of optimization are described:

C.l) Metabolic network optimization

Genome-scale Metabolic Network Models (GMMs) representing stoichiometric whole
cell metabolism are used to study, optimize and manipulate the cell metabolism [271].
To date, the GMMs of several organisms have been reconstructed and are freely
available to download in SBML format [272]. To employ GMMSs, one of the most used
approaches is Flux Balance Analysis (FBA) [273]. Thereby, in metabolic engineering,
GMMs can be applied for analyzing and manipulating the flux distribution in order to
optimize the vyield of the desired product. Obviously, for synthetic metabolic
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engineering, which goal is to produce a novel compound or overproduce a native
compound through a synthetic pathway, first of all, metabolites and reactions
associated with the pathway have to be added to the SBML file of the host’s metabolic
network.

Once the GMM modified, the next step is to run multiple simulations in order to gain a
profound insight on the pathway and its bottlenecks, and optimal growth condition
while the product is manufactured [274,275]. To do this, as mentioned, FBA is the main
tool which finds the balanced flux distribution in the metabolic network from the
feeding sources downward to the objective function of the simulation. The objective
function is a reaction of the metabolism set to be maximized. Biomass is a hypothetical
reaction representing the growth rate of the cell in which all the precursors of the
cellular dry weight are substrates of this reaction. Also, there are FBA derivatives such
as FVA (Flux Variability Analysis) giving the conscious range of flux for all GMM
reactions while the objective function is maximized. OptKnock and evolutionary
algorithms are the other derivatives of the FBA finding the mutant by which the growth
rate and product flux are optimized simultaneously [271].

Eventually, comparing several types of simulations on GMM provides a perspective on
i) the best carbon source, ii) optimum growth condition e.g. oxygen level and iii)
pathway bottlenecks to evaluate gene deletion and/or overexpression (see the case
study and the wiki for the practical procedures). In order to perform these operations,
there are popular, promising and easy to use available toolboxes such as COBRA
toolbox [271], RAVEN toolbox [276] and OptFlux [277], with user manual to accomplish
from very beginner levels to professional tasks.

C.IlI) Dynamic regulation systems

Natural biological feedback processes provide dynamic regulation and metabolic
optimization, through controlling activation or inactivation of gene expression. In the
past few years, synthetic circuits have been constituted to integrate metabolic and
gene expression levels connecting and regulating the synthetic metabolic pathway
tightly into the cell metabolism and more importantly to the cell gene expression and
regulation network [82,278].

Metabolic network optimization solely remarks the systems as an enormous
stoichiometric matrix. However, the enumerated synthetic pathway and intrinsic
genetic modifications have to be solved into the host cellular processes. This negates
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the stress on cell equilibrium, and also maximizes the in vivo product yield. Moreover,
this brings most of the theories achieved in the metabolic network optimization to
practice.

For constructing such a system, first, the most effective precursor of the pathway has
to be chosen. This precursor essentially must be the precursor of the pathway which is
located at the bottleneck of the pathway to perform very effective dynamic regulation.
Generally, these metabolites associated with specific transcription factors, used to
trigger sensor responses. Then, the genes coding for enzymes catalyzing the reactions
at the upstream of the precursor have to be constructed under promoters responsive to
these transcription factors. Optionally, orthogonal repressors can be implemented to
control the genes encoding the enzymes downstream of the precursor [90]. Such
repressors would be expressed under the control of the same biosensors, thus
reversing the activating effect of the promoter for downstream enzymes (see Case
Study). Therefore, this dynamic regulator increases the carbon flux to the final product
not being toxic for the cell by expressing the enzyme at the certain required amount.
Furthermore, such a system amends the product yield with Le Chatelier’s effect of
chemical equilibrium[278].

As mentioned, the biosensor is built from the main precursor of the pathway [279,280].
Commonly, the main precursor is located at the branch of central metabolism toward
the synthetic pathway. For these points at the cell metabolism, oftentimes, specific
transcription factor could be found in some organisms. To seek this, a recent tool,
SensiPath [46,240] has been made to wisely search for the transcription factor
responding to a given metabolite. Moreover, assessing the strength of the promoters
expressing enzymes and engineering them is a key point to reach the acceptable
dynamic regulated system, thus higher yield.

When the parts and their positioning are defined, simulating the system can predict its
behavior over time. Then, in the design-model-test cycle, the promoter strengths,
RBSs and other variables can be tuned to get the optimal yield of the product,
considering the usage of the cellular resources for enzyme production and growth. In
order to model the genetic-metabolic circuits (dynamic regulation system), several
kinds of methods could be applied. These methods should be linked to dynamical
modeling, being stochastic/deterministic or continuous/discrete depending on the
particular case and goal priorities. Similarly, the model could use paradigms such as
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ordinary or partial differential equations, network dynamics or agent
interactions[281,282].

C.lll) Fermentation process optimization

Optimization of the fermentation process is also a key step to achieve the maximum
product yield. There are different operational modes to be used in bioreactors, such as
batch, fed-batch or continuous, which determine the evolution of cell culture over time
[283]. Depending on the goal, the bioprocess should be design with one bioreactor
type or the other.

For instance, fed-batch cultures are very common, but using continuous-stirred tanks
could be favorable for metabolic engineering purposes [284]. Since conditions reach a
steady state and side-parameters do not vary over time, continuous systems are
attainable to be characterised. They often use chemostats, which maintain constant
volume on the tank and facilitate the assessment of metabolites [285]. Besides,
bioprocesses of all types can be designed in a stepwise fashion, allowing control of
precursors and intermediates concentration along the production pathway and the way
of feeding the medium.

Accuracy in these combinations can provide ease of tuning towards the total
optimization of the cell; whether maximising cell growth and precursor accumulation,
or by the separation of the bioprocesses in different steps.

D. Implementing the pathway and its associated parts

Once the pathway has been enumerated, theoretically optimized and dynamically
regulated, its genetic parts have to be built and cloned into the chosen chassis (Figure
4.1D). This procedure strongly depends on the chassis compatibility with the synthetic
biology tools. Before that, the parts have to be adapted with host cellular machinery
system and the genes codon optimized to be fully functional in the chassis. Then, the
gene parts have to be designed, and synthesized or purchased. Toward assembling the
defined genetic parts, two most used general approaches, Gibson assembly [286] and
Golden Gate [287] and their similar and derived methods [288] could be used (or
BioBrick Assembly especially in the iGEM competition) in well-known cell cloning
factories such as E. coli. Rather than assembling the parts, the recently welcomed
alternative way is to synthesize the whole constructs and transforming them into the
cell directly [289]. Daily plunging in the price of gene synthesis is dramatically widening
the usage of this admirable tool as an exceedingly faster-cheaper-better road.
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Case study: PLA bioproduction

Poly-Lactic Acid (PLA) is a polymer of lactic acid with a wide range of applications due
to its properties as biodegradable plastic. Frequently, its synthesis combines biological
and chemical processes, the latter being expensive and detrimental for environment
[290,291].

In 2010, Y.K. Jung, S. Y. Lee and their colleagues produced PLA by engineering E. coli
[260]. They reported the heterologous biosynthesis of the PLA homopolymer and its
copolymer, poly(3-hydroxybutyrate- co-lactate) or P(3HB-co-LA). However, when
reviewing recent approaches at industrial scale, at the moment of the study only the
enterprise Carbios [292] reported PLA manufactured solely biologically.

The assumption presented here is that metabolic optimization of PLA biosynthesis
would foster its implementation on the bioplastic industry. Thus, during iIGEM 2016
competition, the team Evry applied the methodology previously described for studying
bioproduction of PLA. The following sections refer to the four presented steps, each
including details and specifications concerning the PLA case.

A. Basic pathway: Pct and PhaC engineered enzymes

Following the article from Jung et al. [260], two genes were described as essential for
PLA biosynthesis: an engineered Propionate CoA transferase (Pct) encoding for an
enzyme which uses lactate as subtract and converts it into Lactyl-CoA, and an
engineered PHA synthase (PhaC) which enzyme can polymerize monomers of
Lactyl-CoA into PLA.

- Engineered Pct (Pct’): The wild type form of Pct, present in Clostridium
propionicum, catalyzes the formation of propanoyl-CoA from propanoate. The
introduction of the amino acid mutation A243T was found to efficiently convert
lactate into lactyl-CoA.

- Engineered PhaC (PhaC*): Pseudomonas sp. MBEL 6-19 PHA synthase 1 is the
original enzyme from which they performed four amino acid substitutions:
E130D, S325T, S477F, and Q481K. The engineered version had enhanced
activity towards (D)-lactyl-CoA and allowed its polymerization.
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By having lactate as precursor, any bacterial chassis with these two functional
enzymes would be expected to produce PLA. The following procedure was the analysis
of candidate chassis that could provide a proper synthesis efficiency.

B. Pseudomonas putida, the best candidate chassis
As mentioned, synthetic bioproduction of PLA was already developed in E. coli [260].
However, we determined that several criteria could set other organisms as better
chassis for such heterologous production.
First, considering the natural presence of precursor, species with high lactate yield
were listed and highlighted:
- Wild type Lactobacillus casei RL20: Its production yield is 72 g/L at 48h,
reaching 144.2 g/L at 48h when expressing the genes Pfk and Glk [293].
- Bacillus subtilis MUR1: It can produce 99.3 g/L and 183.2 g/L of L-lactic acid in
12h and 52h respectively, with a maximum L-lactic acid production rate of 16.1
g/L/h [294].
- Pseudomonas putida: Good yield results of lactic acid have been observed from
the activities of its iLDH (22.1 nmol/min*mg for L-isomer and 66.6 nmol/min*mg
for D-isomer) [295].

Afterwards, several characteristics of the necessary enzymes were analyzed. On one
hand, their original forms were both coming from prokaryotic bacteria [260]: this would
assume bacterial chassis to be more suitable than others, i.e. yeast, which may use
different machinery for post-translational modifications. On the other hand, the
polymerization reaction could be a pathway bottleneck to overcome. Therefore,
organisms that naturally produce polyesters similar to PLA, would provide better
reaction  efficiency. @ Pseudomonas spp., bacteria able to synthesize
Polyhydroxyalkanoates (PHA) [296], could be an example fitting the two criteria.

However, as aiming to genetically modify the chassis, two additional criteria had to be
considered: ease of manipulation and safety. For that, it should be a GRAS (Generally
Recognized As Safe) bacterium with well described metabolism and commonly used
for synthetic biology purposes. Finally, it was concluded that P. putida KT2440 would
be the most suitable chassis for obtaining our PLA because of being a lactate producer
efficient at polymerization [295,296] [55,56], and being a GRAS strain widely used as
work-horse for bioproduction [86].

C. Optimization of PLA bioproduction
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Once conceived a basic design for PLA bioproduction in P. putida KT2440, three
optimization approaches were used for improving the theoretical design: metabolic
network optimization, dynamic regulation systems and fermentation process
optimization.

C.l) Metabolic network optimization
A FBA was reported on P. putida KT2440, analyzing the flux distribution and thus
improving the PLA yield [297]. A synthetic pathway with the reactions of exogenous
Pct* and PhaC* and their corresponding metabolites was implemented in the GMM.
The final PLA-producing P. putida KT2440 metabolic network contained 962 genes,
980 reactions and 899 metabolites.

During the optimization process, glucose and fructose were tested as substrates with
two objective functions: PLA producing reaction and Biomass, the latter being a
hypothetical reaction in which the flux is identical to cell growth rate. The
implementation of PLA as a precursor of biomass was also studied to obtain a more
realistic view on cell growth and PLA production simultaneously. All FBA experiments
were performed using OptFlux toolbox [277].

- First experiment: Glucose was set as the substrate. Figure 4.2 shows two
independent FBA on biomass (blue fluxes) and PLA producing reaction (red
fluxes) as objective functions, using glucose as sole carbon source. Due to a
biased optimization of FBA, the yield of PLA production equals to zero when the
biomass is maximized, and vice versa. Besides, a comparison of flux distribution
in the central metabolism of these two independent FBA demonstrates that the
main bottleneck of PLA production locates in pyruvate fermentation to lactate.
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Figure 4.2. Schematic representation of the central metabolism with PLA pathway, using glucose
as substrate. In this flux distribution, glucose was defined as the carbon source. The blue flux values

are associated with Biomass optimized FBA and the red flux values are associated with PLA production
FBA. These two FBAs were done in independent experiments.

Second experiment: |t differed from the first experiment as fructose was the sole
carbon source. As illustrated in Figure 4.3, flux distributions and flux values are
different than pictured in Figure 2. More importantly, both biomass and PLA
fluxes increased, compared to the previous experiment. Thus, FBA suggested
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that fructose is a more suited substrate to promote both growth and PLA
production.
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FBAs were done in independent experiments.

- Third experiment: Finally, both Biomass and PLA were integrated at the same
time into one objective function to have PLA as part of the cellular biomass. The
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stoichiometric ratio of PLA with regards to the whole biomass was put the same
as other polymers of P. putida KT2440 GMM. The integration shown in Figure4.
4 enabled further investigation of the pathway and provided more realistic
perspectives on the whole cell metabolism, emphasizing on PLA production
while keeping an economic growth rate.
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In growth conditions, the flux of the fermentation pathway was approximately zero. As
a result, lactate supply was detected as being a main challenge in PLA production. In
this direction, a useful mutant of lactate dehydrogenase (LDH) enzyme, d-LDH*, was
found in the literature [298] enabling the use of both NADH and NADPH efficiently and
giving access to a higher substrate consumption. The implementation of this mutant
would be particularly necessary for PLA production optimization.

On the other hand, the oxygen uptake flux for PLA production, when used as the
objective function, was 6-fold less consumed than when optimizing biomass in FBA.
That indicated that low levels of oxygen would be sufficient for PLA production.
Indeed, lower oxygen levels reduce biomass production and leads to carbon
transformation into lactate via fermentation process and finally leads to PLA formation.
However, due to the necessity of cellular biomass as the cell factory, the best solution
would be to design a two step fermentation: first, the oxygen level would be set up with
high aeration to increase the biomass; then, microaerobic conditions would be used to
redirect the most of the carbon and energy into production of PLA.

Finally, in terms of carbon source, the in silico experiments indicated the use of
fructose as carbon source should be prioritized over glucose for PLA production.
Further experimental tests of growth rates should be performed in order to reassure the
fructose employment significance shown by FBA.

A more detailed description of the experiments and analysis on the results can be
found in the wiki FBA modeling page: http://2016.igem.org/Team:Evry/Model/FBA.

C.II) Dynamic regulation using biosensors

For optimizing PLA production, a feedback system depending on a lactate biosensor
and repressible promoters was conceived, that would regulate the expression of our
d-LDH*, Pct* and PhaC* genes. The designed system has synthetic regulation and
improves the ratio PLA produced / enzyme needed. More precisely, the system
increases the PLA yield by controlling the carbon flux of the pathway and the precursor
toxicities in accordance with Le Chatelier's principle, avoiding gene overexpression. As
shown in Figure 4.5, it relies on two main mechanisms of regulation: an LIdR system
and a McbR system.
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Figure 4.5. Dynamics of responsive elements. (A) Initially, LDH and LIdR are expressed. (B) LIdR
inhibits LIdR responsive promoters. (C) Presence of lactate provokes unbinding of LIdR from LIdR
responsive promoters, activating transcription of PhaC-Pct operon and McbR. (D) There is gene
expression of PhaC-Pct operon and McbR and protein synthesis. (E) McbR inhibits LDH expression by
repressing the promoter, by feedback regulation.

- LIdR system: The LIdR responsive promoter has been well described in E. coli
for regulation of IdPRD operon [299]. It works as a biosensor of lactate. In the
PLA system, the LIdR responsive promoter controls the expression of the
operon with genes responsible for PLA production: PhaC* and Pct*. As a
consequence, they are only transcribed when there is lactate in the cell. The
gene encoding the LIdR transcription factor is expressed under a constitutive
promoter, provoking repression of the LIdR responsive promoter in basal
conditions.

- McbR system: The McbR promoter is part of the TetR-family repressors, widely
used in synthetic biology [90]. The repressible promoter is basally active, but it is
inhibited when McbR TF is transcribed. In the PLA system, an McbR repressor is
implemented as the promoter of the LDH gene. Besides, a LIdR responsive
promoter regulates McbR gene expression: in the presence of lactate, it starts
expressing the McbR protein, creating a feedback system.
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This system was modelled to observe and predict the dynamics generated by different
elements. Two strategies were used: agent-based modeling and differential equations
modeling in the system represented as genetic circuit.

Kappa model: Agent-based modeling represents stochastic systems where
agents and their interactions are defined [300]. In the model, the dynamics that
the responsive elements would present if implemented on experimental lab were
studied. The objective was to get to know the optimal combination of element
variable features (ex. RBS strength) on the feedback loops to optimize PLA
production. Because of having several elements to represent, interactions
between the elements, and parameters that could be approximated using rate
probabilities, Kappa language [301] - which uses agent-based modeling - was
considered adequate for its implementation.

Dynamic modeling using differential equations: The interaction of the
subsystems from a designed biosensor-based regulon can be translated into
differential equations of the evolution of each component of the system. In the
PLA system, these equations were designed based on mass action law,
representing the different components of the genetic-metabolic circuit. Solving
these equations demonstrated the evolution of each component
time-proportionally.

Using a Kappa agent-based model, several simulations were run testing variations in
agent reaction rates and LIdR system was found to be the key factor. When tuning the
promoter and RBS strength on LIdR, so on its mRNA transcription and translation
rates, different ratios PLA/Lactate were observed. In the optimal case, as shown in
Figure 4.6 part B, was figured out setting a weak RBS strength.

& - B
c o
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Figure 4.6. Dynamics of LIdR, LDH, Lac and PLA number of agents over time. (A) Rate parameters:
IdR mRNA synthesis 0.15, degradation 0.1; lldR protein synthesis 0.15, degradation 0.05. (B)
Parameters: IIdR mRNA synthesis 0.5, degradation 0.1; lIdR protein synthesis 0.15, degradation 0.05. (C)
Parameters: IldR mRNA synthesis 0.5, degradation 0.1; lldR protein synthesis 0.5, degradation 0.05. (D)
Parameters: IIdR mRNA synthesis 0.15, degradation 0.1; lldR protein synthesis 0.5, degradation 0.05.

In the second model, differential equations of the dynamics of each component were
extracted using a mathematical method from Brian Ingalls lab, University of Waterloo
[302]. All the constants were set to 1, as the aim was to show how to extract equations
related to the synthetic dynamic regulation system and observe its approximated
behavior. They were solved using Python (equations and its code are described on the
corresponding wiki section). Figure 4.7 shows that PLA production (red curve)
increases while all the other components reach a balance after a period of time (in
seconds), demonstrating that the evolution system works maximizing PLA production
even using the constant parameter approximation.
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Figure 4.7. Dynamics of each system element over time. (A) The red curve associated with evolution
of PLA indicates that the network maximizes PLA production. (B) Increasing the time range of the
solution confirms the stability of the all components of the system after a period of time, while PLA is still
increasing.

The detailed construction description of both models can be found in the wiki of the
project, at the Dynamic Regulation section:
http://2016.igem.org/Team:Evry/Model/Dynamic. Similarly, details on parameters
definition are described on the wiki.

C.1II) DIY Continuous Bioprocess
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In order to optimize the fermentation process, a Do-lt-Yourself (DIY) bioprocess that
would allow PLA production in a continuous fashion was conceived and constructed,
as shown in Figure 4.8.

PROCESS  CELL GROWTH

PRECURSOR
~ BIOPOLYMERIZATION (PhaC)

LMW PLA

Carbon CHEMICAL | ENZYMATIC POLYMERIZATION
HMW PLA

PLA
MELTING AND EXTRUSION

FINAL PREPARATION
OF PLA

LMW PLA
Poly-(Lactic Acid)
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CONTINUOUS FED-BATCH

Figure 4.8. Diagram of the bioprocess. The two first chemostats (green and blue) host different
bioprocesses, conversion of carbon source into Lactic Acid and conversion of Lactic Acid in Poly-Lactic
Acid, and are contiguously represented in the metabolic pathway to optimize. After the chemostats, an
homogeniser followed by an auxiliary reactor helps the extension of the polymeric PLA chain (orange).
Finally, an extrusion system consists of a heated piston followed by a cooled roller to store the final
product. Each bioprocess is covered by a particular set of genes (upper and bottom sections of the
figure, respectively).

The whole bioprocess consisted on a DIY continuous pump, two bioreactors, one
additional auxiliary reactor, a DIY-PLA-Extruder and a DIY-roller for final storage of the
PLA product. Its main characteristic was the implementation of the continuous
bioprocess in a stepwise manner which, by splitting the bioproduction in two
chemostats, could induce progressively the crucial steps of the metabolic pathway.

Using chemostats
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In this type of bioreactor the mass balance is described as indicated in eq.1. Once the
steady state has been reached, the specific growth rate (u) of microorganisms can be
controlled. The steady flow (F) allows a system of a fixed volume (V), where
accumulation or leakage of biomass in the system over time is null (dM/dt=0).

dM
Fx; + pxV =Fx +—— (eq.1)

dt
This characteristic allows cells to grow at a fixed specific growth rate (u) for the
achievement of a fixed value of biomass concentration (x) over time (t). This value can
be controlled according to the Dilution time (D), which is equivalent to the Flow (F) per
Volume (V) unit, that is D = F/V.

w=D (eq.2)

As a consequence, the amount of product can be maximized by increasing the cell
concentration (x) and correlated to the flow optimization (F). According to this, the
pumping system for the chemostats is optimized to provide a dilution time (D) never
greater than the value of the maximum growth rate for P. putida under specific
conditions (umax in glucose: 0.212 h-1 = 0.0035min-1; ymax in glycerol: 0.206 h-1 =
0.0034min-1. Calculated from experiments.)

Optimal dilution times (Dopt < Dmax) can only be obtained by plotting the substrate
consumption rate of the microorganism, which has not been assessed in this study.

Plotting growth rates and enabled dilution times under specific genetic modifications is
a systematic approach for the step-wised maximisation of the production of specific
products or metabolites (i.e. PLA or preceding precursors in preceding chemostats).

By using this approach, the effects of particular modifications can be assessed in
specific steps in the metabolic pathway, since an increase in the productivity of a
specific metabolite can be modeled and estimated in vivo in a single chemostat. The
more chemostats, the more precursors to be studied throughout the bioprocess;
providing a better optimisation of the metabolic pathway.

The bioprocess was manufactured in a DIY manner, to show its implementation would
be affordable. Moreover, there were possible improvements in the mechanical system
of extrusion and storage: a PLA extruder, with the help of a heater, would allow ejection
of raw PLA filaments which, at their turn, would roll over a roller, solidify and be stored.
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Further details on the manufacturing of the system, mathematical modeling of the
bioprocess and steady flow testing are described on the wiki section of bioprocess:
http://2016.igem.org/Team:Evry/Improvements/Bioreactor

D. Implementation

To achieve a correct implementation and expression of our genes, works of well-known
laboratories using Pseudomonas spp. as engineering chassis were studied. Advised by
Victor de Lorenzo (CNB-CSIC, Madrid, Spain), the best option was set to be using
Standard European Vector Architecture plasmids (SEVA). The plasmid construction was
set as follows:

For the implementation of the basic operon, the choice would be an inducible promoter
by IPTG, as it is well known and regulable. In terms of antibiotic, P. putida is naturally
resistant to Chloramphenicol, so an alternative resistance gene such as Kanamycin
would be used. Next step would be the insertion of LDH encoding gene, to foster
lactate production as described on optimization. The best strategy would consist in
using another inducer to regulate the lactate production and induction of PLA genes.
Cyclohexanone (CH) would be a good example of inducer, combined with
Spectinomycin resistance.

Besides, the selection of an optimal RBS for P. putida should be taken into account. If
implementing the dynamic regulation system, the two plasmid systems described
would be modified by adding extra elements of control, as shown in Figure 4.5.

Finally, it would be necessary to include in our gene design the overhangs or necessary
bases needed for the assembly method chosen. For the PLA production case, the
choice was the Standard BioBrick Assembly, so its characteristic Prefix and Suffix
would be required, as well as checking absence of the restriction sites (EcoRl, Pstl,
Spel, Xbal) in the gene sequence.

Conclusion
In this report, we presented a well-organized plan for synthetic metabolic engineering.
Following this protocol enables one to design an elaborate experiment through a

standardized protocol for future research and industrial purposes. Our approach brings
together two distinct disciplines related to cell engineering: synthetic biology and
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systems biology. This integration has been neglected despite massive progress in
synthetic biology and systems biology separately [303,304]. This protocol was followed
by our iGEM team with a case study on PLA production to build a platform for future
studies in this era of bioproduction.

Since some parts of the methodology had to go more in detail, continuing each step
with a PLA example guides to the procedure has to be done for any arbitrary project.
Even though this project did not succeed in the wet lab experiment, the main goal was
achieved in the integration of several tools to present a cohesive protocol validated by
judging comments on that. Participation of several students from different backgrounds
facilitated the iGEM team to get to this destination.

The perspective of this report is to accomplish more combination in the daily-used
tools of biotechnology, systems and synthetic biology. This will negate obstacles in
bioproduction such as i) expensive inducers for biochemical production, ii) lack of the
enzymes and pathways for manufacturing the unnatural products iii) improving the yield
through several optimization processes [270,305].
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Chapter 5:
Biosensor-Based Enzyme Engineering Approach
Applied to Psicose Biosynthesis

This work has been originally submitted by Jeremy Armetta, Rose Berthome, Antonin
Cros, Celine Pophillat, Bruno Maria Colombo, Amir Pandi and loana Grigoras. This is
currently under revision. The iIGEM 2017 project of Evry_Paris-Saclay that | advised
was continued in the lab to be published in a peer reviewed journal. Minor revisions
have been introduced to the chapter presented below.

Contribution:

This work was conceived and performed in the framework of the international
Genetically Engineered Machines (iGEM) competition by the Evry Paris-Saclay 2017
team. JA, AP, IG designed the project. JA, RB, AP performed the experiments on
biosensors and screening process. AC and CP performed the psicose biosynthesis
experiments. IG performed the experiments on biochemical characterization of the
DPEase mutant. JA, RB, AC, AP, IG analysed the data and interpreted the results. All
authors participated in the preparation of the manuscript.
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Abstract

Bioproduction of chemical compounds is of great interest for modern industries, as it
reduces their production costs and ecological impact. With the use of synthetic
biology, metabolic engineering and enzyme engineering tools, the yield of production
can be improved to reach mass production and cost-effectiveness expectations. In this
study, we explore the bioproduction of D-psicose, also known as D-allulose, a rare
non-toxic sugar and a sweetener present in nature in low amounts. D-psicose has
interesting properties and seemingly the ability to fight against obesity and type 2
diabetes. We developed a biosensor-based enzyme screening approach as a tool for
enzyme selection that we benchmarked with the Clostridium cellulolyticum D-psicose
3-epimerase for the production of D-psicose from D-fructose. For this purpose, we
constructed and characterized seven psicose responsive biosensors based on
previously uncharacterized transcription factors and either their predicted promoters or
an engineered promoter. In order to standardize our system, we created the Universal
Biosensor Chassis, a construct with a highly modular architecture that allows rapid
engineering of any transcription factor based biosensor. Among the seven biosensors,
we chose the one displaying the most linear behaviour and the highest increase in
fluorescence fold change. Next, we generated a library of D-psicose 3-epimerase
mutants by error-prone PCR and screened it using the biosensor to select gain of
function enzyme mutants, thus demonstrating the framework’s efficiency.

Keywords

Transcription factor based biosensor; Rare sugars; Psicose; Enzyme engineering;
Universal Biosensing Chassis
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1. Introduction

For the last few decades, finding new solutions for sustainable production of valuable
compounds and chemicals has been increasingly important. One of the most
promising and efficient methods lies in harnessing the synthesis capabilities of
engineered microbes. However, precise and robust engineering of these organisms
remains challenging. Indeed, numerous steps of optimization are required for an
implemented heterologous pathway to reach industrial synthesis capabilities and
economical viability. Advances in the design have allowed generating millions of cell
variants with different synthesis capabilities, but a major bottleneck resides in the
screening and selection process. To help circumvent this hurdle, synthetic biology
provides many valuable tools. Amongst these tools, biosensors have been extensively
used for metabolic engineering with success in various organisms [77-79,306,307], but
mainly bacteria and yeast. Overall, two types of biosensors are extensively used for
metabolic engineering: transcription factor based biosensors, relying on transcriptional
regulators to sense metabolites [210] and RNA based biosensors, using riboswitches
to trigger pathways in presence of the desired compound [308,309]. However,
transcription factor based biosensors remain the most convenient and frequent to
engineer [210] and have been successfully employed to detect amino acids [310-312],
fatty acids [278,313], or sugars [231,314,315], but also a large variety of other types of
metabolites [212,214,216,219,316] directly or indirectly [240].

Indeed, metabolic engineering heavily contributes to sugar technologies. Sugar
consumption and production remain a major environmental and societal problem.
Recently, rare sugars, i.e. sugar occurring in small quantities in nature, emerged as a
potential solution [317]. Indeed, rare sugars like D-allose, D-psicose, D-tagatose or
L-xylose display numerous biological properties and could help to fight obesity and
type 2 diabetes, two diseases with dramatically increasing incidence in the population
and for which the main factor linked with these pathologies is the over consumption of
sugar as well as high-fat diet. For example, D-psicose, also known as D-allulose, a C3
epimer of D-fructose is an ideal substitute for sucrose with around 70% of its
sweetness. Thanks to a low absorption by the human gastrointestinal tract [318],
D-psicose shows beneficial hypoglycemic and hypolipidemic properties for weight
reduction and demonstrate important antioxidant activities [319,320]. In addition,
D-psicose is also Generally Recognized As Safe (GRAS) by the U.S. Food and Drug
Administration in June 2014 (GRAS Notice No. GRN 498) which allows its use for
industrial food and beverage manufacturing as a sweetener. Therefore, achieving an
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efficient production of D-psicose could be very valuable. The rare sugar’s synthesis
can be achieved chemically using organic synthesis, which proves to be a time
consuming, and polluting process, inducing high manufacturing costs [321,322].
However, it is also possible to produce D-psicose through biocatalysis but it remains
highly challenging. This biocatalysis generally harnesses the ability of D-psicose
3-epimerases (DPEase) and D-tagatose 3-epimerases (DTEase) for the bioconversion,
by epimerization on the C3 position, of D-fructose into D-psicose. Numerous DPEase
and DTEase have been reported, mainly from plant pathogens like Pseudomonas
cichorii [323], Agrobacterium tumefaciens) [324] or Clostridium cellulolyticum [325,326].
These enzymes could be good candidates for industrial biocatalysis, particularly the
DPEase from the C. cellulolyticum for its thermal stability, but they demonstrate low
enzymatic activity rendering costly all current industrial applications.

Here, we develop a framework to efficiently evolve and select for DPEase in order to
improve its enzymatic activity, therefore enabling potentially significant production cost
reduction. First, we designed seven different transcription factor based biosensors to
detect the D-psicose. We combined the use of PsiR, a predicted Lacl family
transcription factor with high affinity for D-psicose with both natural and synthetic
inducible promoters. In order to efficiently build, test and optimize the different
biosensor variants, we developed a Universal Biosensing Chassis. This synthetic
construct optimized for Golden Gate assembly allowed a standardized, fast and
reliable assembly of any transcription factor with its suitable inducible promoter. We
then characterized each biosensor, regarding basal expression of fluorescence and
responsive (operational) range, to assess which one would be the more suitable to
screen for DPEase. The psicose biosensor based on the pPsiA promoter and PsiR
transcription factor from Agrobacterium tumefaciens demonstrated the best
characteristics. Next, we engineered this biosensor to allow the insertion by Golden
Gate assembly of a DPEase expression cassette into the biosensor vector. Using
random mutagenesis and fluorescence-activated cell sorting (FACS), we generated and
screened DPEase mutants displaying higher level of reporter production. Finally, we
identified and characterized a C. cellulolyticum DPEase mutant, demonstrating the
framework’s efficiency.

2. Materials and methods

2.1 Plasmid construction
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Escherichia coli strain DH5a was used for cloning. pSB1C3 plasmid was used as the
backbone for all constructs. Transformed bacteria were selected on LB medium
containing 35 pg/ml chloramphenicol.

All plasmids were assembled by the Golden Gate cloning method [327,328]. The T4
DNA ligase was purchased from New England Biolabs as well as the type Il restriction
endonucleases Bsal and Bbsl. BsmBI was purchased from Thermo Fisher Scientific.
DNA fragments were synthesized as gBlocks by Integrated DNA Technologies, Inc.
(IDT) or amplified by PCR with oligonucleotide primers bearing Golden Gate adapters
at their 5’ ends (synthesized by IDT). PCR reactions were carried out using the Q5°
High-Fidelity DNA Polymerase (New England Biolabs) according to the manufacturer’s
protocol. Error prone PCR was performed according to the protocol described by
Wilson & Keefe [329] using the OneTag DNA Polymerase (New England Biolabs).
Successful cloning was verified by sequencing (GATC Biotech, now Eurofins
Genomics).

This work was initiated in the framework of the international Genetically Engineered
Machines (iGEM) competition by the Evry Paris-Saclay 2017 team. Consequently, all
nucleotide sequences were submitted to the publicly available iGEM’s Registry of
Standard Biological Parts (http://parts.igem.org/). The Sequence information about all
individual functional parts (genes, promoters, terminators) are indicated in
Supplementary Table S5.1 and their sequences are available in GenBank format in the
supplementary material . All plasmids accession numbers are listed in Table 5.1. All
plasmids follow the BioBrick RFC[10] standard and are in the pSB1C3 backbone. The
details of the construction of each plasmid including the sequences of all primers used
for PCR and all gBlocks can be found in the Supplementary Materials and Methods
section.

Table 5.1. Plasmids build and used in this study.

Accession Description
number

BBa_K24480 | Universal Biosensing Chassis (UBC)
23
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BBa_K24480
25

Psicose biosensor based on pPsiA promoter from Agrobacterium
tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mCherry as the reporter gene

BBa_K24480
26

Psicose biosensor based on pPsiR promoter from Agrobacterium
tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mCherry as the reporter gene

BBa_K24480
27

Psicose biosensor based on pPsiTacl synthetic promoter and the
PsiR transcription factor from Agrobacterium tumefaciens with
mCherry as the reporter gene

BBa_K24480
28

Psicose biosensor based on pPsiA promoter from Sinorhizobium
fredii and the PsiR transcription factor from Sinorhizobium fredii with
mCherry as reporter gene

BBa_K24480
29

Psicose biosensor based on pPsiR promoter from Sinorhizobium
fredii and the PsiR transcription factor from Sinorhizobium fredii with
mCherry as the reporter gene

BBa_K24480
30

Psicose biosensor based on pPsiA promoter from Sinorhizobium
meliloti and the PsiR transcription factor from Sinorhizobium meliloti
with mCherry as the reporter gene

BBa_K24480
31

Psicose biosensor based on pPsiR promoter from Sinorhizobium
meliloti and the PsiR transcription factor from Sinorhizobium meliloti
with mCherry as the reporter gene

BBa_K24480
57

Psicose biosensor based on pPsiA promoter from Agrobacterium
tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mEmerald as the gene and a downstream the
Mutant Drop Zone

BBa_K24480
58

Psicose biosensor based on pPsiA promoter from Agrobacterium
tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mEmerald as the reporter gene and a downstream
D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum
under the control of pTacl promoter
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BBa_K24480 | D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum
33 under the control of pTacl promoter

BBa_K24480 | D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with
54 a C-terminal Histidine tag under the control of pTacl promoter

2.2 Biosensor in vivo characterization

The pSB1C3 plasmids harbouring the psicose biosensors were introduced into E. coli
DH5a. Transformed cells were grown overnight at 37°C in LB medium containing 35
pMg/ml chloramphenicol. The suspension was diluted by 100 in the same medium and
incubated at 37°C and 200 rpm for one hour. Afterwards, a 96 well plate (COSTAR®
3603, Corning Inc.) was prepared and each well was filled with 120 pl of cell
suspension and 30 pl of a solution containing Psicose and IPTG. Different
concentrations of Psicose (0, 0.1 pM, 1 uM, 10 pM, 100 pM, 1 mM, 10 mM, 100 mM,
200 mM and 300 mM) and IPTG (0, 1, 10, 100, 1000 pM) were tested. The plate was
incubated at 37°C at 200 rpm, fluorescence and ODy,,, Were measured every 7 min
during 150 cycles. Fluorescence of mCherry was measured using CLARIOstar® plate
reader (BMG Labtech) at 587/610 nm, the mCherry wavelengths of fluorescence
excitation and emission [330]. Fluorescence of mEmerald was measured using
Synergy™ HTX plate reader (BioTek® Instruments, Inc.) at 485/528 nm, the mEmerald
wavelengths of fluorescence excitation and emission [331]. The experiments were
performed in triplicate and the fluorescence values (background subtracted) normalized
by cell density (ODgygnm)-

2.3 Fluorescence-activated cell sorting (FACS)

A library of DPEase of C. cellulolyticum mutants was generated following the
error-prone PCR protocol using the OneTag DNA Polymerase (New England Biolabs),
the forward primer 5-GCCGTCTCGGATGAAACACGGTATCTACTAC-3’, the reverse
primer 5’-GCCGTCTCCCGCTTTAAGAGTGTTTGTGGCATTC-3’ and as template a
gBlock encoding the C. cellulolyticum DPEase. A control library was performed with
the Q5® High-Fidelity DNA Polymerase (New England Biolabs). Each library was
inserted in the Mutant Drop Zone downstream of the psicose biosensor
(BBa_K2448057) by Golden Gate, using the BsmBI restriction enzyme (Thermo Fisher
Scientific). Ten pl of the Golden Gate reaction were used to transform chemically
competent E. coli DH5a cells. After over night culturing in LB media supplemented with
35 pg/ml chloramphenicol, transformed cells were centrifuged, washed with IsoFlow
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Sheath Fluid (Beckman Coulter) and resuspended in this same isotonic fluid at a
concentration of 10° cells/ml. Flow cytometric measurements were performed at
Genoscope on a MoFlo Astrios cell sorter (Beckam Coulter), using a 488 nm laser for
excitation and a 513/26 nm filter for detection of the mEmerald fluorescence. The data
were analysed using the Summit V6.2 Software (Beckam Coulter).

2.4 Bioproduction of psicose from fructose

The pSB1C3 plasmids harbouring the DPEase under the control of pTacl promoter
(BBa_K2448033) were introduced into E. coli BL21-Al (New England Biolabs).
Transformed cells were grown at 37°C in mineral salts medium [332,333] (7 g/L
K,HPO,, 3 g/L KH,PO,, 1 g/L (NH,),SO,, 2 pM FeSO,, 0.4 mM MgSO,, 1.44 mM sodium
citrate, 0.1 mg/L Thiamine, 2 g/L glucose) containing 35 pg/ml chloramphenicol. When
cells reached early/middle exponential growth phase (ODg,,, = 0.6), protein expression
was induced with 1 mM isopropyl B-D-thiogalactopyranoside (IPTG) and the media was
supplemented with fructose at various concentrations. Cultures were sampled
afterwards every two hours and, after centrifugation at high speed, the supernatant
was analysed by HPLC.

2.5 HPLC analysis

HPLC analysis was carried out using a Shimadzu Prominence LC20/SIL-20AC
equipped with a SUPELCOGEL™ Ca column (300 x 7.8 mm, 9 ym particle size, 6%
Crosslinked) and a RID-10A refractive index detector. The separation was performed
isocratically using pure water as mobile phase, at a flow rate of 500 pl/min on the
column thermostated at 85°C. The sample injection volume was 20 pl. Quantification of
sugars was done by interpolation of the integrated peak areas using a calibration curve
prepared with standard samples.

2.6 Purification of DPEase under native conditions

The pSB1C3 plasmids harbouring the His-tagged DPEase variants under the control of
pTacl promoter (BBa_K2448054) were introduced into E. coli BL21-Al (New England
Biolabs). Transformed cells were grown at 37°C in 50 ml LB medium containing 35
pg/ml chloramphenicol. When cells reached early/middle exponential growth phase
(ODgoonm =0.6),  protein  expression was induced with 1 mM isopropyl
B-D-thiogalactopyranoside (IPTG). After overnight culture, cells were harvested by
centrifugation at 5000 g for 30 minutes at 4°C. The cell pellet was resuspended in 2 ml
Lysis Buffer containing 50 mM Tris-HCI Buffer pH 7.5, 100 mM NaCl, 10 pg/ml
lysozyme, 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 pg/ml DNase and 10 pg/ml
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RNase. Cells were broken with 1 g of glass beads by vortexing 3 times 1 minute at
maximum speed interrupted by 1 minute on ice. Debris were removed by centrifugation
(14000 g for 20 minutes at 4°C) and the supernatant collected. Purification of Dpe was
performed essentially as described [334] using the Ni-NTA Spin kit (Qiagen). Briefly, the
column was equilibrated with 600 pl Equilibration Buffer (50 mM Tris-HCI Buffer pH 7.5,
500 mM NaCl), then 1,2 ml of crude soluble lysate from E. coli cells were loaded. After
washing twice with 600 pl of Equilibration Buffer, then twice with 600 pl Wash Buffer
(50 mM Tris-HCI Buffer pH 7.5, 500 mM NaCl, 50 mM Imidazole), the target protein was
eluted with 3 x 600 pl Elution Buffer (50 mM Tris-HCI Buffer pH 7.5, 500 mM NaCl, 500
mM Imidazole). All manipulations were performed at 4°C. Protein purification was
visualised by SDS-PAGE. Protein samples (10 pl) to be analysed by SDS-PAGE were
mixed with Laemmli Buffer (final concentrations 20.83 mM Tris-HCI pH 6.8, 0.67% (w/v)
SDS, 3.33% glycerol, 1.67% 2-mercaptoéthanol, 0.5% bromophenol blue) and after
heating for 3 minutes at 95°C, they were loaded onto a 12 % SDS-polyacrylamide gel
for protein separation, using a Bio-Rad Protean mini-gel system. Electrophoresis was
performed in the SDS-PAGE running buffer (3.03 g/L Tris base, 14.4 g/L Glycine, 1 g/L
SDS, pH 8.3) at constant 200 V, until the dye migrated close to the bottom of the gel.
The gel was then stained with Coomassie Blue R-250. The total amount of proteins
was determined by Bradford protein assay using the Pierce™ Coomassie Plus Assay
Kit (Thermo Scientific™) following the manufacturer’s instructions for the Micro Test
protocol. Briefly, the protein solution was mixed to an equal volume of 1x dye reagent
and the absorbance was measured at 595 nm after 5 min of incubation at room
temperature. A calibration curve was created using a set of bovine serum albumin
(BSA) dilutions with concentrations ranging from 0 to 25 pg/ml.

2.7 Enzyme Activity

Initial rates of DPEase activity were assayed essentially as described [325] at 55°C in
50 mM Tris—=HCI pH 8.0 containing 7.5 pg/mL protein, 0.1 mM CoCl, and up to 100 g/L
substrate (D-fructose or D-psicose). The reactions were stopped by boiling and
analysed by HPLC. Data were fitted to the Michaelis-Menten equation using
least-squares non-linear regression to generate estimates of K and k_,, values.

cat

3. Results and Discussion

3.1 Design-build-test of seven psicose biosensors
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To achieve a precise and rapid engineering of transcription factor-based biosensors,
we first designed the Universal Biosensing Chassis (UBC) (Figure 5.1A) that allows two
different assembly methods for the insertion of transcription factors and promoters: the
Golden Gate assembly, or the traditional digestion-ligation. UBC contains insertion
markers in order to enable quick and easy identification of the colonies carrying the
right construct: mEmerald for the transcription factors and LacZ-alpha for the
promoters. An inducible pTacl promoter controls the transcription factor expression in
the chassis and we selected strong RBSs and efficient synthetic terminators to regulate
the overall transcription and translation in the chassis. Finally, we used mCherry as a
reporter. This monomeric fluorescent protein shows rapid maturation, low brightness as
well as an improved photostability and resistance to bleaching which makes it the
perfect reporter for precise measurements. Moreover, unlike GFP-like proteins, there is
no E. coli cell auto-fluorescence effect at its excitation wavelength.

To construct a variety of psicose biosensors, using the UBC architecture, it was
essential to identify a transcription factor with a high affinity to D-psicose. Using the
SensiPath tool [46], we identified PsiR of Rhizobiales that appeared to be a great
candidate. It is a predicted Lacl family transcription factor with high affinity for
D-psicose. This implies that PsiR is potentially capable of binding a consensus
sequence in the promoter region and prevent transcription of the regulated promoters
in the absence of D-psicose, in a manner similar to the way Lacl does in the absence
of allolactose (or the synthetic IPTG). PsiR occurs naturally in different Rhizobiales
species (Agrobacterium tumefaciens, Sinorhizobium fredii, Sinorhizobium meliloti)
where it regulates an operon while also self-regulating its own expression. In all these
species, the genetic context is similar as illustrated in Supplementary Figure S5.1:
psiR gene precedes an operon which starts with the psiA gene, but faces in the
opposite direction, meaning that the promoter regions of psiA and psiR are
overlapping. Furthermore, using the BPROM webserver, we identified two -35 and -10
boxes in close proximity to two 20 bp sequences conserved between different
Rhizobiales species and that could be the PsiO sequences, with a function equivalent
to the LacO sequences of the lactose operon These regulatory regions could be great
candidates for a PsiR regulated promoter, regulating the transcription of mCherry.
Thus, the 400 bp sequences upstream of psiA and psiR were extracted from the
genome of each species, to generate two promoter regions that are denoted pPsiA and
pPsiR respectively.
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Figure 5.1. Design and characterisation of six psicose biosensors. (A) Schematic representation of
the Universal Biosensing Chassis (UBC) used as a platform to build the psicose biosensors (B). (C-H) In
vivo characterisation of mCherry expression by E. coli cells harbouring (C) the psicose biosensor based
on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from
Agrobacterium tumefaciens (BBa_K2448025), (D) the psicose biosensor based on pPsiR promoter from
Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens
(BBa_K2448026), (E) the psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the
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PsiR transcription factor from Sinorhizobium fredii (BBa_K2448028), (F) the psicose biosensor based on
pPsiR promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii
(BBa_K2448029), (G) the psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and
the PsiR transcription factor from Sinorhizobium meliloti (BBa_K2448030), (H) the psicose biosensor
based on pPsiR promoter from Sinorhizobium meliloti and the PsiR transcription factor from
Sinorhizobium meliloti (BBa_K2448031). Fluorescence values (background subtracted) were normalized
by ODgyonm- The data and error bars are the mean and standard deviation of six measurements (three
biological replicates each measured as two technical duplicates).

Using the UBC (Figure 5.1A) six different biosensors were generated by replacing the
mEmerald with one of the three codon-optimized PsiR of A. tumefaciens, S. fredii or S.
meliloti and lacZ with a corresponding pPsiR or pPsiA from the same species (Figure
5.1B). The six D-psicose biosensors should work in the following way: when pTacl is
induced by IPTG, it drives the transcription of psiR gene encoding the PsiR protein that
is predicted to be a transcription factor able to bind D-psicose. If D-psicose is present
in the cell, the PsiR transcription factor will bind preferentially to it and thus the
transcription factor becomes inactivated. The repression of the related promoter pPsi
will be released which will enable the expression of a fluorescent protein, mCherry. If
D-psicose is not present in the cell, PsiR will bind to pPsi, preventing any expression of
mCherry.

To determine which of the six constructed biosensors were the most suited for our
screening process, E. coli cultures were transformed with individual biosensors and
characterized using in a plate reader. By measuring the fluorescence intensity of the
mCherry protein, normalized by the cell density, critical parameters were evaluated
such as the optimal measurement time, the basal expression, and the responsive range
(Figure 5.1C-H and Supplementary Figure S5.2). The optimal measurement time,
which is the shortest time to get an observable signal for each biosensor, was
assessed using a range of D-psicose concentrations. It turned out that for the majority
of our biosensors, if D-psicose concentrations were above 10 mM, a 9 hours
incubation after induction would give relevant results. The basal activity of biosensors
corresponds to the signal emitted in the absence of D-psicose, which is due to the
imbalance between the amount of PsiR transcription factor available and the pPsi
promoter strength. Even when PsiR is produced, the transcription factor cannot totally
prevent the transcription of the mCherry gene from happening. A biosensor with a low
basal activity could seem favourable; however, it is often related to lower sensing
abilities. This parameter is therefore not sufficient in itself and should be associated
with other criteria. For a biosensor characterization, the fold change of fluorescence is
more interesting than the absolute intensity (Supplementary Figure S$5.2). The
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sensitivity of a biosensor is determined when a significant change in the fluorescence
intensity can be measured in relation to D-psicose concentration. For our biosensors,
we can observe that a signal arises from the basal signal around 1 mM (Figure 5.1C-H
and Supplementary Figure S$5.2). The different versions of the biosensor are also
saturated around a concentration of 300 mM of D-psicose. The span of concentrations
between the detection and the saturation is reflected by the responsive range, which is
essential to evaluate to which range of concentration our biosensor can be used to give
a significant output.

From these results, we can see that each PsiR behaved as predicted, inhibiting the
pPsi promoters and interacting with D-psicose. Their responsive ranges are similar
ranging from 1 mM to 300 mM of D-psicose. The difference appears in the fold change
and the linearity profile of the response (the fluorescence fold change being the ratio of
the fluorescence values when 300 or 0 mM of D-psicose are added). The biosensor
based on pPsiA and PsiR from A. tumefaciens shows both high fold change (90.4+1.4)
and linearity in the range of concentrations corresponding to those of the bioproduction
(1 mM to 300 mM of D-psicose) (Figure 5.1C and Supplementary Figure S5.2A, H).
The biosensor based on pPsiR and PsiR from A. tumefaciens shows saturation at high
concentrations but also a weak fold change (3.4+1.1x), making it not suitable for an
enzyme improvement (Figure 5.1D and Supplementary Figure S5.2B, H). The
biosensors based on pPsiA and PsiR from S. fredii and on the pPsiR and PsiR from S.
meliloti show similar characteristics with an early saturation upon increasing the
concentration and a very low fold change (1.5+0.05x and 1.7+0.04x respectively)
making them bad candidates even if they display great sensitivity (Figure 5.1 E, H and
Supplementary Figure S5.2C, F, H). The biosensor based on pPsiR and PsiR from S.
fredii displays a high fold change (20.3+0.3x) but it tends to saturate at high
concentrations (Figure 6.1F and Supplementary Figure S5.2D, H). This biosensor is
still suitable for screening. Finally, the biosensor based on pPsiA and PsiR from S.
meliloti is not suitable because of an early saturation with increasing concentration of
D-psicose combined with a very low fold change 3.7+0.1x) (Figure 5.1G and
Supplementary Figure S5.2E, H).

The biosensor based on pPsiA and PsiR from A. tumefaciens is the best candidate
because of its linearity and fold change, but it also has to work in D-psicose
bioconversion conditions. The PsiR from A. tumefaciens has to specifically respond to
its ligand and not to other molecules of the cell or the media, such as D-fructose,
which will be at high concentration. Using the same range of concentrations of
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D-fructose, on the pPsiA-PsiR biosensor from A. tumefaciens we can see that
D-fructose does not influence the biosensor behaviour since mCherry production isn’t
a function of fructose concentration in the media (Figure 5.1C and Supplementary
Figure S5.2A). This finding implies that our transcription factor does not bind to
D-fructose and that it can be used in high fructose level media to measure psicose
concentration. Therefore, the pPsiA-PsiR biosensor from A. tumefaciens is suitable for
assessing the activity of D-psicose 3-epimerase converting D-fructose into D-psicose.

The results presented in Figure 5.1 show that all pPsiR and pPsiA natural promoters
are active in E. coli and that are regulated by the corresponding PsiR and by the
presence of D-psicose. Knowing that PsiR is a Lacl family transcription factor, and that
these transcription factors modulate the expression of regulated genes by binding to a
specific operator DNA sequence [335], we decided to further characterise this inducible
system by engineering a hybrid synthetic promoter. We have based this hybrid
synthetic promoter on the well-known Lacl regulated promoter, pTacl [336] and we
replaced the LacO sequence of pTacl by a consensus 20 bp sequence on which PsiR
is predicted to bind according to RegPrecise database. The thus newly created
promoter region, pPsiTacl (Figure 5.2A) combined with the PsiR from A. tumefaciens
led to the seventh D-psicose biosensor which displays the same responsive range as
the other six psicose biosensors described above, a high fold change (24.7+0.6x) and
a satisfactory linearity (Figure 5.2B and Supplementary Figure S$5.2G, H). pPsiTacl
behaved as predicted being tightly regulated by PsiR thanks to the 20 bp consensus
sequence.
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Figure 5.2. Design and characterisation of a synthetic psicose biosensor. (A) Sequence comparison
between the pTacl promoter and the pPsiTacl synthetic promoter. (B) In vivo characterisation of mCherry
expression by E. coli cells harbouring the psicose biosensor based on pPsiTacl synthetic promoter and
the PsiR transcription factor from Agrobacterium tumefaciens (BBa_K2448027). Fluorescence values
(background subtracted) were normalized by ODgy,,,. The data and error bars are the mean and
standard deviation of six measurements (three biological replicates, each measured as two technical
duplicates).

To the best of our knowledge, the results we present in Figure 5.1 and 5.2 are a first
proof that PsiR is a transcription factor that negatively regulates the pPsi promoters in
the absence of D-psicose and which, in the presence of D-psicose, allows the
expression of a gene placed under the control of the pPsi promoter. The regulation is
dependent on a 20 bp sequence (Figure 5.2) present in pPsi to which PsiR (potentially)
binds. This sequence was sufficient to change the induction specificity of a Lacl
regulated promoter (pTacl) and convert it into a psicose inducible promoter. The seven
psicose biosensors allowed us to develop a set of seven psicose inducible promoters
with variable strengths, working in a widely used chassis E. coli and that allow
fine-tuning of gene expression levels with applications that go beyond the scope of this

paper

3.2 Bioproduction of D-psicose from D-fructose
.In order to improve the bioconversion of D-fructose into D-psicose, we decided to
engineer the DPEase from C. cellulolyticum and screen mutants for potentially
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improved catalytic efficiency using the best psicose biosensor described above. For
this, a sine qua none condition is the expression of a functional DPEase that is able to
convert D-fructose into D-psicose at 37°C during E. coli growth.

To demonstrate the whole cell bioproduction of D-psicose from D-fructose, E. coli cells
were transformed with the pSB1C3 plasmid harbouring the DPEase under the
regulation of the pTacl promoter. The optimal concentration of substrate was
investigated using concentrations of D-fructose ranging from 2 g/L to 300 g/L. A
decrease in the growth of the culture could be noticed above 100 g/L of D-fructose,
which might be due to osmotic stress on the cells. A maximal production of 9 g/L of
D-psicose was reached after 24h, using a D-fructose concentration of 50 g/L, which
represents a yield of 18%.

This conversion rate is comparable to the biocatalysis yield described in the literature
for this enzyme which retains at 37°C only 60% of its maximum activity that it has at
55°C [325]. Higher biocatalysis yields have been reached, for example 23% at 70°C
when using purified DPEase from Dorea sp. CAG317 [337], 31% at 65°C when
permeabilizing the membrane of cells [338] or even 70% at 45°C with a mutated
DPEase from A. tumefaciens immobilised on a surface [339].

Many aspects of the bioconversion could, therefore, be improved, using for instance
higher temperatures to harness the optimal activity of DPEase, by permeabilizing the
cells or even working on a cell free method. However, the production conditions should
match our screening process, which needs living cells. In the current settings, the
primary bioconversion improvement will come from the selection of enhanced DPEase.
These enzyme candidates could then be used in any D-psicose bioproduction process.

3.3 A screening method for gain of function mutants of C. cellulolyticum DPEase

Enzyme engineering currently focuses on computation modelling followed by directed
mutagenesis on specific amino acids of the protein to improve its characteristics. This
maximizes the probability of improving activity for a defined number of mutants but
restricts possible random conformational changes, with the potential to improve
catalytic sites. Conversely, random mutagenesis favours completely new
conformations but requires screening a much larger number of mutants, hence the
need to use an efficient screening system. For this purpose, we first engineered the
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biosensor to allow the insertion of mutants into the vector, in order to build the mutant
library, and finally screened all the mutants for potentially improved catalytic efficiency.

The engineering of the biosensor consisted of adding, downstream of the reporter
gene, a sequence that we refer to as the Mutant Drop Zone (MDZ) (Figure 5.3A). MDZ
comprise the pTacl promoter followed by restriction sites that allow insertion of the
DPEase in the same plasmid as the biosensor. To build the mutant DPEase library we
chose to use error-prone PCR because it favours mutations during the elongation
phase, thanks to a mutagenic buffer (for example imbalance in dNTPs concentrations)
and low fidelity polymerases. This technique remains more efficient than chemical
methods, which rely on reagents to modify the sequence, and is safer for the user, as
chemical mutagens are highly toxic. Moreover, it is an a priori free method compared to
saturating mutagenesis. The protocol described by Wilson & Keefe [329] was applied
on the full length coding sequence of C. cellulolyticum DPEase encoding gBlocks to
build the library. According to this protocol, variants were obtained with a theoretical
mutation average of 8 amino acids. A high fidelity PCR was performed on the same
gBlocks with the same primers in order to obtain a non-mutated enzyme, as a positive
control. Library sequences were inserted by Golden Gate assembly in the Mutant Drop
Zone downstream of the psicose biosensor based on pPsiA promoter and the PsiR
transcription factor from A. tumefaciens (Figure 5.3B) and the Golden Gate assembly
products were transformed into E. coli. Due to technical constraints related to the cell
sorter characteristics, the reporter gene mCherry was replaced by mEmerald (Figure
5.3C with Figure 5.1C). The mEmerald reporter shares common characteristics with
mCherry relevant to the framework, such as rapid maturation and photostability, and
proved to be sufficient to distinguish potentially improved mutants during screening.

In order to assess the DPEase enzyme activity, all the screening process was
conducted on an E. coli cells cultured in the presence of 50 g/L of fructose for 9 to 10
hours before measurement, as this is the optimal measurement time according to our
biosensor characterization. Then, fluorescence-activated cell sorting (FACS) was used
on a liquid culture of transformed cells (Figure 5.3D) to isolate the mutants displaying a
superior catalytic efficiency compared to the wild-type DPEase enzyme. Cells having
the fluorescence / size ratio above average (dotted line) were isolated (regions R1, R2,
R3) and subsequently spread on LB agar plates containing 35 pg/ml chloramphenicol.
A total of 848 colonies were isolated between R1, R2 and R3 during this procedure.
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In the next step, we chose 10 mutants to more precisely evaluate the psicose
production using the biosensor. The fluorescence values of the cells producing psicose
as well as the OD,,,, were measured in a plate reader 10 hours after culturing in LB
media supplemented with 80 g/L D-fructose. Figure 5.3E shows the relative
fluorescence expression of the mutants with regard to the wild type DPEase. Not
surprisingly, the gain of function mutations are less likely to happen than loss of
function and neutral mutations. Nonetheless, using FACS and then the plate reader
characterization of 10 mutants we found 6 DPEase variants displaying various degrees
of improvement in psicose production. We chose the mutant with the highest ratio of
Fluorescence/ODy,,,,, compared to the wild-type enzyme (t-test p-value <0.01) to
further characterize it using purified DPEase.

Sequence analysis of the selected DPEase mutant revealed the presence of two
mutations: a synonymous mutation of the codon of the serine residue in position 110
(TCT to TCA) and a non-synonymous mutation leading to alanine to asparagine
substitution in position 142 (GCT to GAT). To further characterise this mutant, the
DPEase sequence was extracted by PCR and placed under the control of the pTacl
promoter. During this process, a Histidine Tag (identical to the one used in the literature
for this DPEase [334]) was added at the C-terminus to allow rapid purification of the
protein by Ni affinity chromatography. After protein overexpression in E. coli BL21-Al
and purification, the kinetic parameters for the conversion of D-fructose to D-psicose
were determined for the C. cellulolyticum DPEase (Supplementary Figure S3). The
A142N mutant displayed a higher K, for D-fructose (164 mM versus 77 mM for the
wild-type enzyme) and a higher turnover number (8613 min™' versus 3515 min™ for the
wild-type enzyme). A142 is a residue located at the end of an a-helix that is followed by
a small loop and the B-strand bearing the catalytic glutamate (E150) (Supplementary
Figure S4). This proximity may explain the differences in the kinetic parameters of the
A142N mutant. An increased k_, value is an interesting feature for an enzyme as it
allows to speed up the conversion rate of the substrate into product, in our case
D-fructose to D-psicose and it can be very useful in continuous psicose production
methods like for instance those that use enzymes immobilised on a surface. For an in
vivo production experiment in batch cultures of E. coli, this feature may have very
limited effect, as the bioconversion of D-fructose to D-psicose reaches an equilibrium
that depends on temperature and standard Gibbs free energy. Indeed, using the
mutated enzyme in E. coli the production of D-psicose from was D-fructose (at an
initial concentration of 50 g/L) was not significantly different from the wild-type histidine
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tagged DPEase (8.96+0.61 for the A142N mutant versus 8.72+0.11 for the wild-type
enzyme, the t-test p-value equals 0.3572).
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Figure 5.3. D-Psicose 3-epimerase (DPEase) mutant library screening. (A) Schematic representation
of the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR
transcription factor from Agrobacterium tumefaciens with downstream the Mutant Drop Zone
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(BBa_K2448057). (B) The DPEase from C. cellulolyticum or a DPEase mutant library generated by
error-prone PCR were inserted in the Mutant Drop Zone of (A) by Golden Gate cloning using the BsmBI
restriction endonuclease (BBa_K2448058). (C) In vivo characterisation of mEmerald expression as the
reporter gene of psicose biosensor represented schematically in (A). Fluorescence values (background
subtracted) were normalized by OD,,,. The data and error bars are the mean and standard deviation of
six measurements (three biological replicates, each measured as two technical duplicates). (D)
Fluorescence-activated cell sorting (FACS) of E. coli cells harbouring the psicose biosensor with a
downstream Dpe library represented schematically in (B). Cells having the fluorescence / size ration
above average (dotted line) were isolated (regions R1, R2, R3). (E) In vivo characterisation of mEmerald
expression by E. coli cells harbouring the psicose biosensor and ten DPEase mutants represented
schematically in (B). All the data points are fluorescence values (background subtracted) normalized by
ODgoonm Of €ach mutant normalized by the same value from the control (wild-type DPEase). The data and
error bars are the mean and standard deviation of three measurements.

4. Conclusions

In this work, we developed multiple biosensors for a high-value rare sugar, psicose,
and screened its improved bioproduction using random mutagenesis. Recent
advances in synthetic biology enable efficient implementation of design-build-test
(DBT) cycle to develop new devices for industrial, medical and environmental
applications. In this direction, biosensors are promising tools to equip metabolic and
enzyme engineering with a monitoring facility. In this study, we showed a workflow to
design-build-test unconventional biosensors sensing new chemicals rather than those
with well-known characterization. To do so, we provided the Universal Biosensing
Chassis (UBC) to utilize the state of the art of characterized genetic parts as well as
uncharacterized genes and promoters. The UBC architecture enables faster “design”
and “build” of the biosensors which can be applied to a large humber of transcription
factors responding to different small molecules [47]. Due to the ability of the quick
characterization and prototyping using the biosensors, the “test” phase of the DBT
cycle can also be performed in a highly automated manner. Therefore, using this
workflow and taking the advantage of the characterized genetic parts, an engineering
DBT cycle brings sophisticated biosensors to pathway and enzyme engineers.
Synthetic biosensors not only speed up the prototyping of the existing enzymes and
pathways, but also provide the ability for monitoring rational engineering of the
enzymes and pathways to develop new phenotypes.
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Supplementary figures, tables. and materials & methods
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Supplementary Figure S5.1. The gene clusters in A. tumefaciens, S. fredii and S. meliloti predicted to

be involved in D-psicose utilization. The genome location of the clusters is indicated according to the
NCBI reference sequences NC_003063.2, NC_012586.1 et NC_003078.1 respectively. For each of the 8

genes, the locus tag and the function of the encoded proteins is compiled. The two divergently oriented

putative D-psicose inducible promoters are depicted.
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Supplementary Figure S5.2. Fluorescence/ODg,,,,, of the seven psicose biosensors. (A-H) In vivo
characterisation of mCherry expression by E. coli cells harbouring (A) the psicose biosensor based on
pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens (BBa_K2448025), (B) the psicose biosensor based on pPsiR promoter from Agrobacterium
tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens (BBa_K2448026), (C) the

psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the PsiR transcription factor
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from Sinorhizobium fredii (BBa_K2448028), (D) the psicose biosensor based on pPsiR promoter from
Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii (BBa_K2448029), (E) the
psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR transcription
factor from Sinorhizobium meliloti (BBa_K2448030), (F) the psicose biosensor based on pPsiR promoter
from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti
(BBa_K2448031), (G) the psicose biosensor based on pPsiTacl synthetic promoter and the PsiR
transcription factor from Agrobacterium tumefaciens (BBa_K2448027). Fluorescence values (background
subtracted) were normalized by ODgy,,., and represented as fold change between 300 and 0 mM
D-psicose. The data and error bars are the mean and standard deviation of six measurements (three

biological replicates each measured as two technical duplicates).
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Supplementary Figure S5.3. Purification and kinetic characterization of C. cellulolyticum DPEase. (A)

Coomassie blue-stained SDS-PAGE profiles of crude soluble extract preparations obtained from the E.

coli cells transformed with the plasmids expressing the D-Psicose 3-epimerase (DPEase) from

Clostridium cellulolyticum with a C-terminal Histidine tag under the control of pTacl promoter and of the

purified preparations derived from the corresponding crude extracts. (B) Steady-state kinetic parameters

for the conversion of D-fructose into D-psicose by wild-type and mutant A142N DPEase. The assays

were carried out as described in Materials and Methods. (C) The kinetic parameters of wild-type and

mutant A142N DPEase determined from the plots are presented along with the values reported in the

literature for the wild-type enzyme [325].
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Supplementary Figure S5.4. Structure of C. cellulolyticum DPEase. (A) Protein feature view of PDB
entry 3VNK mapped to the UniProt sequence B81944. (B) Ribbon representation of PDB entry 3VNK
(image created with NGL Viewer [340]). The catalytic glutamate (E150) is indicated as well as the alanine
residue (A142) that was found mutated into an asparagine upon screening of a random mutant library for

DPEase mutants for potentially improved catalytic efficiency.
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Supplementary Table S1. Sequences used in this study.

Sequence PsiR from Agrobacterium tumefaciens
name

Description E. coli codon optimized version of the PsiR found in Agrobacterium tumefaciens
str. C58 (gene Atu4743, UniProt AQCH24)

Acc. number iGEM Parts Registry: BBa_K2448006
http://parts.igem.org/Part:BBa_K2448006

Sequence ATGACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCTGTCTATCCTGTCTG
GTGCTTCTGCTTCTACCGTTTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCG
TATCTCTGAAGAAACCGCTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTAC
ACCACCAACTTACAGGCTCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGT
CTGCTGGTTCCGGTTTACGACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCG
AAGGTCAGGCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTG
ACCCGGAAGAAGAACGTCGTACCGTTGAAACCCTGATCGCTTACTCTATCGAC
GCTCTGTTCATCGCTGGTGTTACCGACCCGGACGGTGTTCACCAGGTTTGCGC
TCGTGCTGCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTC
TGTTATCTCTAACAACCGTCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCT
CACGCTGCTAAAGGTGGTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGG
TCACGACGACCACGCTTCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAG
CTGACTACTTCGGTGTTGAAGGTGGTGACGACATCGAAATCACCGGTTACTCTC
CGCACATGACCGAAATGGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTG
CCGCGTTGCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCA
TGGGTCGTCACGACGGTGAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACT
ACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACA
TCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAA
CCGGAAGTTACCATCATCGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGA
AGGTCCGCTGGACGACATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAAT

AA
Sequence PsiR from Sinorhizobium fredii
name
Description E. coli codon optimized version of the PsiR found in Sinorhizobium fredii (gene

NGR_b11520, UniProt C3KR97)

Acc. number iGEM Parts Registry: BBa_K2448007
http://parts.igem.org/Part:BBa_K2448007

Sequence ATGGCTAACTCTGGTAAAAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTG
GTTCTTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTC
GTATCAAAGAATCTACCGCTGAACTGATCCGTAACCTGGCTGAAACCCACCAGT
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ACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTG
GTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCT
TCGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTC
GTGACCCGCAGGAAGAACGTAAAACCGCTGAAACCCTGATCTCTTACTCTATCG
ACGAACTGTTCATCTGCGGTGCTACCGACCCGGACGGTGTTCACGAAGTTTGC
GAAGCTGCTGGTCTGAAACACATCAACATCGACCTGCCGGGTACCAAAGTTCC
GTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATC
CGTCACTTCCCGGCTGACCGTGCTCTGGCTCCGACCGACCTGTACCTGTTCGG
TGGTCGTAACGACCACGCTTCTCACGAACGTATCCGTGGTTTCCGTGCTGTTAA
AAAAGACCTGCTGGGTGACGACCCGGACGAATGCATCCAGCCGACCGGTTAC
GCTGCTAACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAA
CTGCCGCGTGGTCTGTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTT
TCATGGCTGAACACCCGCACGACAACTTCACCGACCTGGTTGTTGGTTGCTAC
GACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAG
GACGTTGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCT
CTGGCTCGTATCCACCTGGTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCT
GACCGGTCCGCTGGACGCTCTGAAAGACATCGACCTGCCGCGTGGTTCTCAG

TAA
Sequence PsiR from Sinorhizobium meliloti
name
Description E. coli codon optimized version of the PsiR found in Sinorhizobium meliloti

(gene SMb20483, UniProt Q92W80)

Acc. number iGEM Parts Registry: BBa_K2448008
http://parts.igem.org/Part:BBa K2448008

Sequence ATGACCAACGGTGGTCGTAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTG
GTTCTTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTC
GTATCAAAGAATCTACCGCTGAACTGATCCGTTCTCTGGCTGAAACCCACCAGT
ACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTG
GTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCT
TCGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTC
GTGACCCGGAAGAAGAACGTCGTACCGCTGAAACCCTGATCTCTTACTCTATCG
ACGAACTGTTCATCTGCGGTGCTACCGACCCGGACGGTGTTCACGAAGTTTGC
GAAGCTGCTGGTCTGCGTCACATCAACATCGACCTGCCGGGTACCAAAGTTCC
GTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATC
CGTCACTTCCCGGCTGAACGTCCGCTGGAACCGGACGACCTGTACCTGTTCG
GTGGTCGTGACGACCACGCTACCCGTGAACGTATCCGTGGTTTCCGTGCTGTT
AAATCTGACCTGCTGGGTGCTGACCCGGACGAATGCATCTGGCCGACCGGTTA
CGCTGCTGACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGAACAGCACGGTA
AACTGCCGCGTGGTTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCG
TTTCATGGCTGAACACCCGCTGGAAAACTTCACCGACCTGGTTGTTGGTTGCTA
CGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCA
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GAACATCGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGC
TTCTCTGCAAATCCACATGATCGAACCGCAGCTGGTTCCGCCGCGTACCGCTC
TGACCGGTCCGCTGGACGCTCTGATGGACTCTGAAATGCCGCGTGAATAA

Sequence D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum
name

Description E. coli codon optimized version of the D-psicose 3-epimerase (DPEase) from
Clostridium cellulolyticum str. ATCC 35319 (gene Ccel_0941, UniProt B81944)

Acc. number iGEM Parts Registry: BBa_K2448021
http://parts.igem.org/Part:BBa _K2448021

Sequence ATGAAACACGGTATCTACTACGCTTACTGGGAACAGGAATGGGAAGCTGACTAC
AAATACTACATCGAAAAAGTTGCTAAACTGGGTTTCGACATCCTGGAAATCGCTG
CTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTTGCG
CTCACGGTAACGGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAACAG
AACCTGTCTTCTCCGGACCCGGACATCCGTAAAAACGCTAAAGCTTTCTACACC
GACCTGCTGAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGTGCTCTG
TACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAAAAGGTGACTGG
GAACGTTCTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGT
GTTGACTTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGATCAACACC
GCTCAGGAAGGTGTTGACTTCGTTAAACAGGTTGACCACAACAACGTTAAAGTT
ATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTATCGGTGGTGCTATC
CGTACCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACCGTAA
AGTTCCGGGTCGTGGTCGTATCCCGTGGGTTGAAATCGGTGAAGCTCTGGCTG
ACATCGGTTACAACGGTTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTGGTAC
CGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGTGCTGACGAAAA
AATGCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTCTGGA

ATGCCACAAACACTCTTAA
Sequence D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a
name C-terminal HisTag
Description E. coli codon optimized version of the D-psicose 3-epimerase (DPEase) from

Clostridium cellulolyticum str. ATCC 35319 (gene Ccel_0941, UniProt B81944)
with a C-terminal HisTag

Acc. number iGEM Parts Registry: BBa_K2448053
http://parts.igem.org/Part:BBa K2448053

Sequence ATGAAACACGGTATCTACTACGCTTACTGGGAACAGGAATGGGAAGCTGACTAC
AAATACTACATCGAAAAAGTTGCTAAACTGGGTTTCGACATCCTGGAAATCGCTG
CTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTTGCG
CTCACGGTAACGGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAACAG
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AACCTGTCTTCTCCGGACCCGGACATCCGTAAAAACGCTAAAGCTTTCTACACC
GACCTGCTGAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGTGCTCTG
TACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAAAAGGTGACTGG
GAACGTTCTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGT
GTTGACTTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGATCAACACC
GCTCAGGAAGGTGTTGACTTCGTTAAACAGGTTGACCACAACAACGTTAAAGTT
ATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTATCGGTGGTGCTATC
CGTACCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACCGTAA
AGTTCCGGGTCGTGGTCGTATCCCGTGGGTTGAAATCGGTGAAGCTCTGGCTG
ACATCGGTTACAACGGTTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTGGTAC
CGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGTGCTGACGAAAA
AATGCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTCTGGA
ATGCCACAAACACTCTCTCGAGCACCACCATCACCACCACTAA

Sequence mCherry

name

Description E. coli codon optimized version of the mCherry fluorescent protein (UniProt
X5DSL3)

Acc. number iGEM Parts Registry: BBa_K2448004
http://parts.igem.org/Part:BBa _K2448004

Sequence ATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTT
CAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGA
AGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCA
AAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTAC
GGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACT
GTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGG
TGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAA
GTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAA
ACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCT
GAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACG
CTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTT
ACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGT
TGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACT

GTACAAATAA

Sequence mEmerald

name

Description E. coli codon optimized version of the mEmerald fluorescent protein (FPbase
AD4BK)

Acc. number iGEM Parts Registry: BBa_K2448001
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http://parts.igem.org/Part:BBa K2448001

Sequence ATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAA
CTGGACGGTGACGTTAACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGT
GACGCTACCTACGGTAAACTGACCCTGAAATTCATCTGCACCACCGGTAAACTG
CCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAGTGCTT
CGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCC
GGAAGGTTACGTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAA
AACCCGTGCTGAAGTTAAATTCGAAGGTGACACCCTGGTTAACCGTATCGAACT
GAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCACAAACTGGAATA
CAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAACGGTATC
AAAGTTAACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAGCTGGCT
GACCACTACCAGCAGAACACCCCGATCGGTGACGGTCCGGTTCTGCTGCCGG
ACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAGACCCGAACGAAAAAC
GTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCCTGGGTAT

GGACGAACTGTACAAATAA
Sequence LacZ-alpha
name
Description alpha fragment of the LacZ gene derived from the pUC19 cloning vector

Acc. number iGEM Parts Registry: BBa_K2448003
http://parts.igem.org/Part:BBa K2448003

Sequence ATGACCATGATCACCCCGAGCCTGCACGCTTGCCGTTCTACCCTGGAAGATCC
GCGTGTTCCGAGCTCTAACTCTCTGGCTGTTGTTCTGCAACGTCGTGACTGGGA
AAACCCGGGTGTTACCCAGCTGAACCGTCTGGCTGCTCACCCGCCGTTCGCTT
CTTGGCGTAACTCTGAAGAAGCTCGTACCGACCGTCCGAGCCAGCAGCTGCG
TTCTCTGAACGGTGAATGGCGTCTGATGCGTTACTTCCTGCTGACCCACCTGTG
CGGTATCTCTCACCGTATCTGGTGCACCCTGTCTACCATCTGCTCTGACGCTGCT

TAA
Sequence pPsiA from Agrobacterium tumefaciens
name
Description the promoter region (0.4 kb upstream) of the PsiA gene of Agrobacterium

tumefaciens str. C58 (gene Atu4744) corresponding to nucleotides 1912931 to
1913328 of Agrobacterium tumefaciens str. C58 (GenBank AE007870.2)

Acc. number iGEM Parts Registry: BBa_K2448010
http://parts.igem.org/Part:BBa K2448010

Sequence GTATAAATGGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTG
ATTCCGATTATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGG
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TTATTGCACCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTA
TGGGAGTGGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCG
TCCGGGAAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGG
AACATCAATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCT
CTCATCCGCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATC
GGCGGCATTCCGTGGTTCAACGCC

Sequence pPsiR from Agrobacterium tumefaciens
name

Description the promoter region (0.36 kb upstream) of the PsiR gene of Agrobacterium
tumefaciens str. C58 (gene Atu4743) corresponding to nucleotides 1912967 to
1913328 of Agrobacterium tumefaciens str. C58 (GenBank AE007870.2)

Acc. number iGEM Parts Registry: BBa_K2448011
http://parts.igem.org/Part:BBa K2448011

Sequence GGAGGCGTTGAACCACGGAATGCCGCCGATCTTGACGACGACGCCCACCTTC
GGCCCTTCGGCAAAGGCTGCGGATGAGAGCAACGCCAGCGACAGACCAACC
GCCGCAGCAATAATTTTCTTCATTGATGTTCCTCCTCAAAAATTCGGCAAACGAA
ATCCGCCCGCAGCCCGTTTTTCCCGGACGCGTTCAAAATCTCTCATCTCGCTTA
TTCGAGACTCTCCCTTGCCACTCCCATAGCAACCACCATGCACAATCGATATTG
CCAATCTGCACAATCGATGGTGCAATAACCATATCATGAAGCGCCCTTCCGTCAA
GGGGATGCGTGCTCTAATAATCGGAATCAGTTGGGGAGATCACAT

Sequence pPsiA from Sinorhizobium fredii
name

Description the promoter region (0.4 kb upstream) of the PsiA gene of Sinorhizobium fredii
(gene NGR_b11530) corresponding to nucleotides 1113914 to 1114313 of
Sinorhizobium fredii NGR234 plasmid pNGR234b (GenBank CP000874.1) with
2 modifications to remove a Bsal site and a Pstl site (to allow Golden Gate
assembly use and comply to iGEM BioBrick RFC[10] standard)

Acc. number iGEM Parts Registry: BBa_K2448012
http://parts.igem.org/Part:BBa K2448012

Sequence GGTGGGTCTGGGCGAGGTTGCGGATCAACTCGGCGGTGCTTTCCTTGATGCG
CCGCTTGCGCCAGGTGCCGTTCAGCACGGCGCTGACCGTCGAGGGCGAGCT
GCCGGAGAGCACCGAGAGATCGTAGATCGTCGCCTTTTTCTTGCCGCTGTTCG
CCATCCGAGCCCCCTCGAATCTCTTAGAGCCGTTTTGCGCTTGACGAAAGATTA
AGTCTGCACGATAGTCTTTGCACCATCGATTGTGCAAATAAGAAATATCGATTGTG
CAGCTCTTTGGGCCGTCTGAGGAGGCGGCGGTCAGCGGCGGGAAACGCGCT
TCTCGTCATGGAGGATTGAAACTGGAGGCCGGCGCGCCAGCGCCCGGGAGA
GTTCCCGTTGCGGGAACCTGTGGAGGAGAGAC
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Sequence
name

pPsiR from Sinorhizobium fredii

Description

the promoter region (0.4 kb upstream) of the PsiR gene of Sinorhizobium fredii
(gene NGR_b11520) corresponding to nucleotides 1114473 to 1114074 of
Sinorhizobium fredii NGR234 plasmid pNGR234b (GenBank CP000874.1) with
2 modifications to remove a Ncol site and a Pstl site (to allow Golden Gate
assembly use and comply to iGEM BioBrick RFC[10] standard)

Acc. number

iGEM Parts Registry: BBa_K2448013
http://parts.igem.org/Part:BBa K2448013

Sequence

GGCCGCGCTCCTTGATGCCGACTTGCATGGCGTTGAACCACGGAATGCCGCC
GATCTTGACGACCACGCCGACCTTCGGCGCATCCTGCGCCGCGACGGAAAAG
GCACCGGCGAGCGAAAGCGAAGCCGCCAGAGCGGCAGCAAGAAATGTCTTG
ATCATGTCTCTCCTCCACAGGTTCCCGCAACGGGAACTCTCCCGGGCGCTGGC
GCGCCGGCCTCCAGTTTCAATCCTCCATGACGAGAAGCGCGTTTCCCGCCGC
TGACCGCCGCCTCCTCAGACGGCCCAAAGAGCTGCACAATCGATATTTCTTATT
TGCACAATCGATGGTGCAAAGACTATCCTGCTGACTTAATCTTTCGTCAAGCGCA
AAACGGCTCTAAGAGATTCGAGGGGGCTCGG

Sequence
name

pPsiA from Sinorhizobium meliloti

Description

the promoter region (0.4 kb upstream) of the PsiA gene of Sinorhizobium meliloti
(gene SMb20484) corresponding to nucleotides 499435 to 499834 of
Sinorhizobium meliloti 1021 plasmid pSymB (GenBank AL591985.1)

Acc. number

iGEM Parts Registry: BBa_K2448014
http://parts.igem.org/Part:BBa K2448014

Sequence

CGGTGCTTTCCTTGATCCGTCGCTTGCGCCACGTGCCGTTTAGCACCGCACTG
ACGGTAGAGGGCGAACTTCCCGACAGCACCGAGAGATCATAGATCGTCGCTTT
TTTCCTGCCGCCGTTCGTCATCTGACCTCCTCCAAACCCCGGAAAACCGATGC
GCACGTTTCCTGGAATTGCTCTAGTGCCGATTTCGGCTTGACGAAAGATTAAGT
CTGAATGATAGTCATTGCACCATCGATTGTGCAAAAAAGAAATATCGATTGTGCAA
GTTGTTGGTGCCGTCTGAGGAGGCGGCCGTCAGCGGCGGGATATCCCCTTCC
GTGCAAAAGAATTAAGCTGGAGGCCGGCGCGTGAAGCGCCCGGGAGCGTTC
CCCTCGGGGAAACATGTGGAGGAGAAAC

Sequence
name

pPsiR from Sinorhizobium meliloti

Description

the promoter region (0.4 kb upstream) of the PsiR gene of Sinorhizobium meliloti
(gene SMb20483) corresponding to nucleotides 499961 to 499562 of
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Sinorhizobium meliloti 1021 plasmid pSymB (GenBank AL591985.1)

Acc. number

iGEM Parts Registry: BBa_K2448015
http://parts.igem.org/Part:BBa _K2448015

Sequence

TGAACCACGGTATGCCGCCGATCTTGACGACGACACCGACCTTGCCCGTATCC
TGCGCCGCGGCGGTATAGGCACCCGCAAGCGAAAGCGACGCCGCCAGAGC
GGCGGCAAGAATTTTCTTGATCATGTTTCTCCTCCACATGTTTCCCCGAGGGGA
ACGCTCCCGGGCGCTTCACGCGCCGGCCTCCAGCTTAATTCTTTTGCACGGA
AGGGGATATCCCGCCGCTGACGGCCGCCTCCTCAGACGGCACCAACAACTTG
CACAATCGATATTTCTTTTTTGCACAATCGATGGTGCAATGACTATCATTCAGACT
TAATCTTTCGTCAAGCCGAAATCGGCACTAGAGCAATTCCAGGAAACGTGCGCA
TCGGTTTTCCGGGGTTTGGAGGAGGTCAG

Sequence
name

pPsiTacl

Description

a hybrid synthetic promoter composed of the -35 and the Pribnow box
sequences of pTacl promoter and the consensus binding site of PsiR regulator
of Rhizobiale

Acc. number

iGEM Parts Registry: BBa_K2448016
http://parts.igem.org/Part:BBa K2448016

Sequence TGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGATTGCACAATCGATG
GTGCAA

Sequence pTacl

name

Description a hybrid synthetic promoter derived from the E. coli trp and lac UV5 promoters

Acc. number

iGEM Parts Registry: BBa_K864400
http://parts.igem.org/Part:BBa_K864400

Sequence GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATA
ACAATT

Sequence J23100 promoter

name

Description a constitutive synthetic promoter isolated from a small combinatorial library

Acc. number

iGEM Parts Registry: BBa_J23100
http://parts.igem.org/Part:BBa J23100
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Sequence

TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGC

Sequence
name

B0015 Terminator

Description

double transcriptional terminator consisting of terminator T1 of the Escherichia
coli rrnB gene and the terminator TE of coliphage T7 DNA ligase gene

Acc. number

iGEM Parts Registry: BBa_B0015
http://parts.igem.org/Part:BBa B0015

Sequence CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTA
TCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGG
GTGGGCCTTTCTGCGTTTATA

Sequence L2U3HO03 Terminator

name

Description synthetic transcriptional terminator

Acc. number

iGEM Parts Registry: BBa_K2448059
http://parts.igem.org/Part:BBa K2448059

Sequence

TAGCGTGACCGGCGCATCGGTCACGCTATTTGTTGAG

Sequence
name

Universal Biosensing Chassis (UBC)

Acc. number

iGEM Parts Registry: BBa_K2448023
http://parts.igem.org/Part:BBa K2448023

Sequence

TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
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AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGAGGAAAAGAGGAGAAAAGATCAATGGTTTCTAAAGGTGAA
GAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAACTGGACGGTGACGTTAAC
GGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAA
CTGACCCTGAAATTCATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGAC
CCTGGTTACCACCCTGACCTACGGTGTTCAGTGCTTCGCTCGTTACCCGGACC
ACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACGTTCAGG
AACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTA
AATTCGAAGGTGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCA
AAGAAGATGGTAACATCCTGGGTCACAAACTGGAATACAACTACAACTCTCACAA
AGTTTACATCACCGCTGACAAACAGAAAAACGGTATCAAAGTTAACTTCAAAACC
CGTCACAACATCGAAGATGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAAC
ACCCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTAC
CCAGTCTAAACTGTCTAAAGACCCGAACGAAAAACGTGACCACATGGTTCTGCT
GGAATTTGTTACCGCTGCTGGTATCACCCTGGGTATGGACGAACTGTACAAATAA
GAGAGCAGATCGTCTCAGCAGGCATGCCCAGGCATCAAATAAAACGAAAGGCT
CAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCT
ACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACGTAC
GTACGTACGTACGTTGGAGAGAGGATCCCTTGGAAAGTCTTCACTTGACGGCTA
GCTCAGTCCTAGGTACAGTGCTAGCAATTAAAGAGGAGAACAGCTATGACCATG
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ATCACCCCGAGCCTGCACGCTTGCCGTTCTACCCTGGAAGATCCGCGTGTTCC
GAGCTCTAACTCTCTGGCTGTTGTTCTGCAACGTCGTGACTGGGAAAACCCGG
GTGTTACCCAGCTGAACCGTCTGGCTGCTCACCCGCCGTTCGCTTCTTGGCGT
AACTCTGAAGAAGCTCGTACCGACCGTCCGAGCCAGCAGCTGCGTTCTCTGAA
CGGTGAATGGCGTCTGATGCGTTACTTCCTGCTGACCCACCTGTGCGGTATCTC
TCACCGTATCTGGTGCACCCTGTCTACCATCTGCTCTGACGCTGCTTAAGCCAG
GCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGT
TGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG
CCTTTCTGCGTTTATATGAAGACAGGCAGCCATGGGAGAGCAGGGTACAAAGA
GGAGAAATACTAGATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAA
GAATTTATGCGTTTCAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTG
AAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAA
CTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCC
GCAGTTCATGTACGGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGA
CTACCTGAAACTGTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTC
GAAGATGGTGGTGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAA
TTTATCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTA
TGCAGAAAAAAACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAA
GATGGTGCTCTGAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGG
TCACTACGACGCTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCT
GCCGGGTGCTTACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGA
TTACACCATCGTTGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGG
TATGGACGAACTGTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCG
AAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGA
GTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAG

CGGCCGCTGCAG
Sequence Psicose biosensor based on pPsiA promoter from Agrobacterium
name tumefaciens and the PsiR transcription factor from Agrobacterium

tumefaciens with mCherry as reporter gene

Acc. number iGEM Parts Registry: BBa_K2448025
http://parts.igem.org/Part:BBa K2448025

Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
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GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTA
AAAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGT
TTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGC
TGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGC
TCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTAC
GACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAA
CGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACG
TCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT
GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC
ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG
TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT
TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT
GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT
TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 1 1 7



GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGTATAAAT
GGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTGATTCCGAT
TATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGGTTATTGCA
CCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTATGGGAGT
GGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCGTCCGGG
AAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCA
ATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCTCTCATCC
GCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATCGGCGGC
ATTCCGTGGTTCAACGCCAGCAGCCATGGGTACAAAGAGGAGAAATACTAGATG
GTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTTCAA
AGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGAAGG
TGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAG
GTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTACGGTT
CTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCTT
TCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGGTGTTG
TTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAA
ACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAAACTAT
GGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCTGAAAG
GTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAA
GTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAAC
GTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGTTGAAC
AGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACTGTACA
AATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTC
GTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACC
TTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG

Sequence Psicose biosensor based on pPsiR promoter from Agrobacterium
name tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mCherry as reporter gene

Acc. number iGEM Parts Registry: BBa_K2448026
http://parts.igem.org/Part:BBa _K2448026

Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 1 1 8



AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTA
AAAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGT
TTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGC
TGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGC
TCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTAC
GACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAA
CGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACG
TCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT
GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC
ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG
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TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT
TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT
GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT
TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT
GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGGAGGCG
TTGAACCACGGAATGCCGCCGATCTTGACGACGACGCCCACCTTCGGCCCTT
CGGCAAAGGCTGCGGATGAGAGCAACGCCAGCGACAGACCAACCGCCGCAG
CAATAATTTTCTTCATTGATGTTCCTCCTCAAAAATTCGGCAAACGAAATCCGCC
CGCAGCCCGTTTTTCCCGGACGCGTTCAAAATCTCTCATCTCGCTTATTCGAGA
CTCTCCCTTGCCACTCCCATAGCAACCACCATGCACAATCGATATTGCCAATCTG
CACAATCGATGGTGCAATAACCATATCATGAAGCGCCCTTCCGTCAAGGGGATG
CGTGCTCTAATAATCGGAATCAGTTGGGGAGATCACATAGCAGCCATGGGTACA
AAGAGGAGAAATACTAGATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCAT
CAAAGAATTTATGCGTTTCAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAA
TTTGAAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGC
TAAACTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTC
TCCGCAGTTCATGTACGGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCC
GGACTACCTGAAACTGTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAA
CTTCGAAGATGGTGGTGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGG
TGAATTTATCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCG
GTTATGCAGAAAAAAACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCG
GAAGATGGTGCTCTGAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGG
TGGTCACTACGACGCTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCA
GCTGCCGGGTGCTTACAACGTTAACATCAAACTGGACATCACCTCTCACAACGA
AGATTACACCATCGTTGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGG
TGGTATGGACGAACTGTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAG
TCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACT
AGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAG

TAGCGGCCGCTGCAG
Sequence Psicose biosensor based on pPsiTacl synthetic promoter and the PsiR
name transcription factor from Agrobacterium tumefaciens with mCherry as

reporter gene

Acc. number iGEM Parts Registry: BBa_K2448027
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Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTA
AAAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGT
TTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGC
TGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGC
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TCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTAC
GACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAA
CGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACG
TCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT
GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC
ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG
TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT
TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT
GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT
TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT
GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGATGAGCTG
TTGACAATTAATCATCGGCTCGTATAATGTGTGGATTGCACAATCGATGGTGCAAA
GCAGCCATGGGTACAAAGAGGAGAAATACTAGATGGTTTCTAAAGGTGAAGAAG
ATAACATGGCTATCATCAAAGAATTTATGCGTTTCAAAGTTCACATGGAAGGTTCT
GTTAACGGTCACGAATTTGAAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAA
GGTACCCAGACCGCTAAACTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGC
TTGGGACATCCTGTCTCCGCAGTTCATGTACGGTTCTAAAGCGTACGTTAAACAC
CCGGCTGACATCCCGGACTACCTGAAACTGTCTTTCCCGGAAGGTTTCAAATG
GGAACGTGTTATGAACTTCGAAGATGGTGGTGTTGTTACCGTTACCCAGGACTC
TTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAAACTGCGTGGTACCAACTTC
CCGTCTGACGGTCCGGTTATGCAGAAAAAAACTATGGGTTGGGAAGCGAGCTC
TGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGAAATCAAACAGCGTCT
GAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAAAACCACCTACAAAG
CTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAACGTTAACATCAAACTGGACA
TCACCTCTCACAACGAAGATTACACCATCGTTGAACAGTACGAACGTGCTGAAG
GTCGTCACTCTACCGGTGGTATGGACGAACTGTACAAATAATCCAGGCATCAAAT
AAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTC
GGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCT
GCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG

Sequence Psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and
name the PsiR transcription factor from Sinorhizobium fredii with mCherry as
reporter gene

Acc. number iGEM Parts Registry: BBa_K2448028
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Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGGCTAACTCTGGTAAAA
AAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCGT
TTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCT
GAACTGATCCGTAACCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGC
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TCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCA
CGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTTC
TAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGCAGGAAGAAC
GTAAAACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG
TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGAAAC
ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT
CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGACC
GTGCTCTGGCTCCGACCGACCTGTACCTGTTCGGTGGTCGTAACGACCACGCT
TCTCACGAACGTATCCGTGGTTTCCGTGCTGTTAAAAAAGACCTGCTGGGTGAC
GACCCGGACGAATGCATCCAGCCGACCGGTTACGCTGCTAACAACGCTCGTAA
AGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAACTGCCGCGTGGTCTGTTCG
TTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCA
CGACAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTT
CTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGGACGTTGAAGGTATGATCG
CTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCTCTGGCTCGTATCCACCTG
GTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG
CTCTGAAAGACATCGACCTGCCGCGTGGTTCTCAGTAAAGCAGGCATGCCCAG
GCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGT
TGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG
CCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGGTGGGTCTG
GGCGAGGTTGCGGATCAACTCGGCGGTGCTTTCCTTGATGCGCCGCTTGCGC
CAGGTGCCGTTCAGCACGGCGCTGACCGTCGAGGGCGAGCTGCCGGAGAGC
ACCGAGAGATCGTAGATCGTCGCCTTTTTCTTGCCGCTGTTCGCCATCCGAGC
CCCCTCGAATCTCTTAGAGCCGTTTTGCGCTTGACGAAAGATTAAGTCTGCACG
ATAGTCTTTGCACCATCGATTGTGCAAATAAGAAATATCGATTGTGCAGCTCTTTG
GGCCGTCTGAGGAGGCGGCGGTCAGCGGCGGGAAACGCGCTTCTCGTCATG
GAGGATTGAAACTGGAGGCCGGCGCGCCAGCGCCCGGGAGAGTTCCCGTTG
CGGGAACCTGTGGAGGAGAGACAGCAGCCATGGGTACAAAGAGGAGAAATAC
TAGATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCG
TTTCAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGT
GAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTAC
CAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGT
ACGGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAA
CTGTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGT
GGTGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACA
AAGTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAA
AAACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCT
CTGAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGA
CGCTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTG
CTTACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCAT
CGTTGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACG
AACTGTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACT
GGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACAC
TGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCG
CTGCAG
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Sequence Psicose biosensor based on pPsiR promoter from Sinorhizobium fredii and
name the PsiR transcription factor from Sinorhizobium fredii with mCherry as
reporter gene

Acc. number iGEM Parts Registry: BBa_K2448029
http://parts.igem.org/Part:BBa_K2448029

Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
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GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGGCTAACTCTGGTAAAA
AAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCGT
TTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCT
GAACTGATCCGTAACCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGC
TCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCA
CGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTTC
TAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGCAGGAAGAAC
GTAAAACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG
TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGAAAC
ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT
CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGACC
GTGCTCTGGCTCCGACCGACCTGTACCTGTTCGGTGGTCGTAACGACCACGCT
TCTCACGAACGTATCCGTGGTTTCCGTGCTGTTAAAAAAGACCTGCTGGGTGAC
GACCCGGACGAATGCATCCAGCCGACCGGTTACGCTGCTAACAACGCTCGTAA
AGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAACTGCCGCGTGGTCTGTTCG
TTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCA
CGACAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTT
CTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGGACGTTGAAGGTATGATCG
CTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCTCTGGCTCGTATCCACCTG
GTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG
CTCTGAAAGACATCGACCTGCCGCGTGGTTCTCAGTAAAGCAGGCATGCCCAG
GCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGT
TGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG
CCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGGCCGCGCTC
CTTGATGCCGACTTGCATGGCGTTGAACCACGGAATGCCGCCGATCTTGACGA
CCACGCCGACCTTCGGCGCATCCTGCGCCGCGACGGAAAAGGCACCGGCGA
GCGAAAGCGAAGCCGCCAGAGCGGCAGCAAGAAATGTCTTGATCATGTCTCTC
CTCCACAGGTTCCCGCAACGGGAACTCTCCCGGGCGCTGGCGCGCCGGCCT
CCAGTTTCAATCCTCCATGACGAGAAGCGCGTTTCCCGCCGCTGACCGCCGC
CTCCTCAGACGGCCCAAAGAGCTGCACAATCGATATTTCTTATTTGCACAATCGA
TGGTGCAAAGACTATCCTGCTGACTTAATCTTTCGTCAAGCGCAAAACGGCTCTA
AGAGATTCGAGGGGGCTCGGAGCAGCCATGGGTACAAAGAGGAGAAATACTAG
ATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTT
CAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGA
AGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCA
AAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTAC
GGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACT
GTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGG
TGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAA
GTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAA
ACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCT
GAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACG
CTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTT
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ACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGT
TGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACT
GTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGC
CTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCT
CACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCA
G

Sequence
name

Psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti
and the PsiR transcription factor from Sinorhizobium meliloti with mCherry
as reporter gene

Acc. number

iGEM Parts Registry: BBa_K2448030
http://parts.igem.org/Part:BBa K2448030

Sequence

TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
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TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCAACGGTGGTCGT
AAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCG
TTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGC
TGAACTGATCCGTTCTCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGG
CTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTC
ACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTT
CTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGGAAGAAGAAC
GTCGTACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG
TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGCGTC
ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT
CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGAAC
GTCCGCTGGAACCGGACGACCTGTACCTGTTCGGTGGTCGTGACGACCACGC
TACCCGTGAACGTATCCGTGGTTTCCGTGCTGTTAAATCTGACCTGCTGGGTGC
TGACCCGGACGAATGCATCTGGCCGACCGGTTACGCTGCTGACAACGCTCGTA
AAGCGTTCGAAGCGTTCTACGAACAGCACGGTAAACTGCCGCGTGGTTTCTTC
GTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCG
CTGGAAAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCT
TCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGAACATCGAAGGTATGATCG
CTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGCTTCTCTGCAAATCCACATGA
TCGAACCGCAGCTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG
CTCTGATGGACTCTGAAATGCCGCGTGAATAAAGCAGGCATGCCCAGGCATCA
AATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTG
TCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTT
CTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGACGGTGCTTTCCTTGAT
CCGTCGCTTGCGCCACGTGCCGTTTAGCACCGCACTGACGGTAGAGGGCGAA
CTTCCCGACAGCACCGAGAGATCATAGATCGTCGCTTTTTTCCTGCCGCCGTTC
GTCATCTGACCTCCTCCAAACCCCGGAAAACCGATGCGCACGTTTCCTGGAAT
TGCTCTAGTGCCGATTTCGGCTTGACGAAAGATTAAGTCTGAATGATAGTCATTG
CACCATCGATTGTGCAAAAAAGAAATATCGATTGTGCAAGTTGTTGGTGCCGTCT
GAGGAGGCGGCCGTCAGCGGCGGGATATCCCCTTCCGTGCAAAAGAATTAAG
CTGGAGGCCGGCGCGTGAAGCGCCCGGGAGCGTTCCCCTCGGGGAAACATG
TGGAGGAGAAACAGCAGCCATGGGTACAAAGAGGAGAAATACTAGATGGTTTCT
AAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTTCAAAGTTCA
CATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGAAGGTGAAGG
TCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAGGTGGTC
CGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTACGGTTCTAAAG
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CGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCTTTCCCG
GAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGGTGTTGTTACC
GTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAAACTGC
GTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAAACTATGGGTT
GGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGAA
ATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAAA
ACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAACGTTAAC
ATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGTTGAACAGTACG
AACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACTGTACAAATAAT
CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTA
TCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGG
GTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG

Sequence Psicose biosensor based on pPsiR promoter from Sinorhizobium meliloti
name and the PsiR transcription factor from Sinorhizobium meliloti with mCherry
as reporter gene

Acc. number iGEM Parts Registry: BBa_K2448031
http://parts.igem.org/Part:BBa _K2448031

Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
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ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCAACGGTGGTCGT
AAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCG
TTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGC
TGAACTGATCCGTTCTCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGG
CTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTC
ACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTT
CTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGGAAGAAGAAC
GTCGTACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG
TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGCGTC
ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT
CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGAAC
GTCCGCTGGAACCGGACGACCTGTACCTGTTCGGTGGTCGTGACGACCACGC
TACCCGTGAACGTATCCGTGGTTTCCGTGCTGTTAAATCTGACCTGCTGGGTGC
TGACCCGGACGAATGCATCTGGCCGACCGGTTACGCTGCTGACAACGCTCGTA
AAGCGTTCGAAGCGTTCTACGAACAGCACGGTAAACTGCCGCGTGGTTTCTTC
GTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCG
CTGGAAAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCT
TCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGAACATCGAAGGTATGATCG
CTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGCTTCTCTGCAAATCCACATGA
TCGAACCGCAGCTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG
CTCTGATGGACTCTGAAATGCCGCGTGAATAAAGCAGGCATGCCCAGGCATCA
AATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTG
TCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTT
CTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGATGAACCACGGTATGC
CGCCGATCTTGACGACGACACCGACCTTGCCCGTATCCTGCGCCGCGGCGGT
ATAGGCACCCGCAAGCGAAAGCGACGCCGCCAGAGCGGCGGCAAGAATTTT
CTTGATCATGTTTCTCCTCCACATGTTTCCCCGAGGGGAACGCTCCCGGGCGC
TTCACGCGCCGGCCTCCAGCTTAATTCTTTTGCACGGAAGGGGATATCCCGCC
GCTGACGGCCGCCTCCTCAGACGGCACCAACAACTTGCACAATCGATATTTCTT
TTTTGCACAATCGATGGTGCAATGACTATCATTCAGACTTAATCTTTCGTCAAGCC
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GAAATCGGCACTAGAGCAATTCCAGGAAACGTGCGCATCGGTTTTCCGGGGTT
TGGAGGAGGTCAGAGCAGCCATGGGTACAAAGAGGAGAAATACTAGATGGTTT
CTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTTCAAAGTT
CACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGAAGGTGAA
GGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAGGTGG
TCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTACGGTTCTAA
AGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCTTTCCC
GGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGGTGTTGTTAC
CGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAAACTG
CGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAAACTATGGGT
TGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGA
AATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAA
AACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAACGTTAA
CATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGTTGAACAGTAC
GAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACTGTACAAATAA
TCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT
ATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGG
GTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG

Sequence Psicose biosensor based on pPsiA promoter from Agrobacterium
name tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mEmerald as reporter gene and a downstream the
Mutant Drop Zone

Acc. number iGEM Parts Registry: BBa_K2448057
http://parts.igem.org/Part:BBa K2448057

Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
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TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGACTCGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAA
AAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGTT
TCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGCT
GACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCT
CGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACG
ACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAAC
GTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACGT
CGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT
GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC
ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG
TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT
TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT
GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT
TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT
GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
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GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGTATAAAT
GGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTGATTCCGAT
TATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGGTTATTGCA
CCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTATGGGAGT
GGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCGTCCGGG
AAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCA
ATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCTCTCATCC
GCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATCGGCGGC
ATTCCGTGGTTCAACGCCAGCAGCCATGGGTACAAATGGAGGAAAAGAGGAGA
AAAGATCAATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCT
GGTTGAACTGGACGGTGACGTTAACGGTCACAAATTCTCTGTTTCTGGTGAAGG
TGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATTCATCTGCACCACCGG
TAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTC
AGTGCTTCGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTG
CTATGCCGGAAGGTTACGTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTA
ACTACAAAACCCGTGCTGAAGTTAAATTCGAAGGTGACACCCTGGTTAACCGTA
TCGAACTGAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCACAAAC
TGGAATACAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAA
CGGTATCAAAGTTAACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAG
CTGGCTGACCACTACCAGCAGAACACCCCGATCGGTGACGGTCCGGTTCTGC
TGCCGGACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAGACCCGAACG
AAAAACGTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCC
TGGGTATGGACGAACTGTACAAATAAGAGAGCAGTTGGATAGCGTGACCGGCG
CATCGGTCACGCTATTTGTTGAGGAGAGAGAGCTGTTGACAATTAATCATCGGCT
CGTATAATGTGTGGAATTGTGAGCGGATAACAATTGTACAAAGAGGAGAAACTCG
AGGATGAGAGACGGATCGATCCGTCTCAAGCGGCATGCCCAGGCATCAAATAA
AACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGG
TGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGC
GTTTATAGCAGAACTAGTAGCGGCCGCTGCAG

Sequence Psicose biosensor based on pPsiA promoter from Agrobacterium

name tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mEmerald as reporter gene and a downstream
D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the
control of pTacl promoter

Acc. number iGEM Parts Registry: BBa_K2448058
http://parts.igem.org/Part:BBa K2448058

Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
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CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
AGTGGAAGACTCGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAA
AAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGTT
TCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGCT
GACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCT
CGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACG
ACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAAC
GTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACGT
CGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT
GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC
ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG
TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
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GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT
TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT
GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT
TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT
GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGTATAAAT
GGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTGATTCCGAT
TATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGGTTATTGCA
CCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTATGGGAGT
GGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCGTCCGGG
AAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCA
ATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCTCTCATCC
GCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATCGGCGGC
ATTCCGTGGTTCAACGCCAGCAGCCATGGGTACAAATGGAGGAAAAGAGGAGA
AAAGATCAATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCT
GGTTGAACTGGACGGTGACGTTAACGGTCACAAATTCTCTGTTTCTGGTGAAGG
TGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATTCATCTGCACCACCGG
TAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTC
AGTGCTTCGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTG
CTATGCCGGAAGGTTACGTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTA
ACTACAAAACCCGTGCTGAAGTTAAATTCGAAGGTGACACCCTGGTTAACCGTA
TCGAACTGAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCACAAAC
TGGAATACAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAA
CGGTATCAAAGTTAACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAG
CTGGCTGACCACTACCAGCAGAACACCCCGATCGGTGACGGTCCGGTTCTGC
TGCCGGACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAGACCCGAACG
AAAAACGTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCC
TGGGTATGGACGAACTGTACAAATAAGAGAGCAGTTGGATAGCGTGACCGGCG
CATCGGTCACGCTATTTGTTGAGGAGAGAGAGCTGTTGACAATTAATCATCGGCT
CGTATAATGTGTGGAATTGTGAGCGGATAACAATTGTACAAAGAGGAGAAACTCG
AGGATGAAACACGGTATCTACTACGCTTACTGGGAACAGGAATGGGAAGCTGAC
TACAAATACTACATCGAAAAAGTTGCTAAACTGGGTTTCGACATCCTGGAAATCG
CTGCTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTT
GCGCTCACGGTAACGGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAA
CAGAACCTGTCTTCTCCGGACCCGGACATCCGTAAAAACGCTAAAGCTTTCTAC
ACCGACCTGCTGAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGTGC
TCTGTACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAAAAGGTGA
CTGGGAACGTTCTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTG
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CGGTGTTGACTTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGATCAA
CACCGCTCAGGAAGGTGTTGACTTCGTTAAACAGGTTGACCACAACAACGTTAA
AGTTATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTATCGGTGGTGC
TATCCGTACCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACC
GTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGGTTGAAATCGGTGAAGCTCTG
GCTGACATCGGTTACAACGGTTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTG
GTACCGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGTGCTGACG
AAAAAATGCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTC
TGGAATGCCACAAACACTCTTAAAGCGGCATGCCCAGGCATCAAATAAAACGAA
AGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACG
CTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA
GCAGAACTAGTAGCGGCCGCTGCAG

Sequence D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the
name control of pTacl promoter
Acc. number iGEM Parts Registry: BBa_K2448033
http://parts.igem.org/Part:BBa K2448033
Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA

AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
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CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGAGGAGCTGT
TGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTT
AACTTTAAGAAGGAGATATACAAATGAAACACGGTATCTACTACGCTTACTGGGA
ACAGGAATGGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAAACTGGG
TTTCGACATCCTGGAAATCGCTGCTTCTCCGCTGCCGTTCTACTCTGACATCCA
GATCAACGAACTGAAAGCTTGCGCTCACGGTAACGGTATCACCCTGACCGTTG
GTCACGGTCCGTCTGCTGAACAGAACCTGTCTTCTCCGGACCCGGACATCCGT
AAAAACGCTAAAGCTTTCTACACCGACCTGCTGAAACGTCTGTACAAACTGGAC
GTTCACCTGATCGGTGGTGCTCTGTACTCTTACTGGCCGATCGACTACACCAAA
ACCATCGACAAAAAAGGTGACTGGGAACGTTCTGTTGAATCTGTTCGTGAAGTT
GCTAAAGTTGCTGAAGCTTGCGGTGTTGACTTCTGCCTGGAAGTTCTGAACCGT
TTCGAAAACTACCTGATCAACACCGCTCAGGAAGGTGTTGACTTCGTTAAACAG
GTTGACCACAACAACGTTAAAGTTATGCTGGACACCTTCCACATGAACATCGAA
GAAGACTCTATCGGTGGTGCTATCCGTACCGCTGGTTCTTACCTGGGTCACCTG
CACACCGGTGAATGCAACCGTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGGT
TGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGGTTCTGTTGTTATGGAA
CCGTTCGTTCGTATGGGTGGTACCGTTGGTTCTAACATCAAAGTTTGGCGTGAC
ATCTCTAACGGTGCTGACGAAAAAATGCTGGACCGTGAAGCTCAGGCTGCTCT
GGACTTCTCTCGTTACGTTCTGGAATGCCACAAACACTCTTAATACTAGTAGCGG

CCGCTGCAG
Sequence D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a
name C-terminal Histidine tag under the control of pTacl promoter

Acc. number iGEM Parts Registry: BBa_K2448054
http://parts.igem.org/Part:BBa K2448054

Sequence TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
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CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGAGGAGCTGT
TGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTT
AACTTTAAGAAGGAGATATACAAATGAAACACGGTATCTACTACGCTTACTGGGA
ACAGGAATGGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAAACTGGG
TTTCGACATCCTGGAAATCGCTGCTTCTCCGCTGCCGTTCTACTCTGACATCCA
GATCAACGAACTGAAAGCTTGCGCTCACGGTAACGGTATCACCCTGACCGTTG
GTCACGGTCCGTCTGCTGAACAGAACCTGTCTTCTCCGGACCCGGACATCCGT
AAAAACGCTAAAGCTTTCTACACCGACCTGCTGAAACGTCTGTACAAACTGGAC
GTTCACCTGATCGGTGGTGCTCTGTACTCTTACTGGCCGATCGACTACACCAAA
ACCATCGACAAAAAAGGTGACTGGGAACGTTCTGTTGAATCTGTTCGTGAAGTT
GCTAAAGTTGCTGAAGCTTGCGGTGTTGACTTCTGCCTGGAAGTTCTGAACCGT
TTCGAAAACTACCTGATCAACACCGCTCAGGAAGGTGTTGACTTCGTTAAACAG
GTTGACCACAACAACGTTAAAGTTATGCTGGACACCTTCCACATGAACATCGAA
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GAAGACTCTATCGGTGGTGCTATCCGTACCGCTGGTTCTTACCTGGGTCACCTG
CACACCGGTGAATGCAACCGTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGGT
TGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGGTTCTGTTGTTATGGAA
CCGTTCGTTCGTATGGGTGGTACCGTTGGTTCTAACATCAAAGTTTGGCGTGAC
ATCTCTAACGGTGCTGACGAAAAAATGCTGGACCGTGAAGCTCAGGCTGCTCT
GGACTTCTCTCGTTACGTTCTGGAATGCCACAAACACTCTCTCGAGCACCACCA
TCACCACCACTAATACTAGTAGCGGCCGCTGCAG
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Supplementary materials and methods

Plasmid construction

Universal Biosensing Chassis (UBC) was constructed in 5 steps:

Step 1: The pSB1C3 backbone vector contains a BsmBl cloning site within the chloramphenicol
resistance gene. Its presence prevents from using the Golden Gate assembly technique with this
backbone. To circumvent this issue, we performed a site-directed mutagenesis and created the pSB1C3
BsmBI free backbone. The single synonymous mutation (G1385C) was introduced by the Single-Primer
Reactions IN Parallel (SPRINP) site directed mutagenesis protocol using the primers
5’-AGGGATTGGCTGACACGAAAAACAT-3" and 5’-ATGTTTTTCGTGTCAGCCAATCCCT-3". The pSB1C3
BsmBI free backbone is available in the iGEM’s Registry of Standard Biological Parts repository under
the acc. number BBa_K2448036 (http://parts.igem.org/Part:BBa K2448036).

Step 2: The pSB1C3 BsmBI free backbone was used as template in a PCR reaction with the primers
5’-GCGGTCTCTGCAGTCCGGCAAAAAAGGGCAAGG-3’ and 5-GCGGTCTCTTCCAGAAATCATCC
TTAGCG-3’ and the PCR product was assembled by Golden Gate with Bsal to a gBlock fragment
5’-GCTACGATCTGGTCTCATGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTGACAATTAATCATCGGCTCG
TATAATGTGTGGAATTGTGAGCGGATAACAATTCTCGAGTGGAAGAGACGGTACCATCGTCTCAGCAGGCA
TGCCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCG

GTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACGTACGTAC

GTACGTGGATCCCTTGGAAAGTCTTCACTGTTTGAAGACAGGCAGCCATGGGTACAAAGAGGAGAAATACT
AGATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTTCAAAGTTCACATGGA
AGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAG

ACCGCTAAACTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCA
TGTACGGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCTTTCCCGGAA
GGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGGTGTTGTTACCGTTACCCAGGACTCTTCTCTG
CAAGACGGTGAATTTATCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCA

GAAAAAAACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGAA
ATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAAAACCACCTACAAAGCTAA
AAAACCGGTTCAGCTGCCGGGTGCTTACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGATT
ACACCATCGTTGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACTGTACAAA
TAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCG
GTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGT
AGCGGCCGCTGCAGTGAGACCGCTACGATC-3'. The resulting plasmid, the Universal Biosensing
Chassis (UBC) short version, is available in the iGEM’s Registry of Standard Biological Parts repository
under the acc. number BBa_K2448024 (http://parts.igem.org/Part:BBa K2448024).

Step 3: The BBa_K2448024 was used as template in a PCR reaction with the primers 5’-GCGCGGTC
TCAGCAGATCGTCTCAGCAGGCATGC-3’ and 5’-GCGCGGTCTCATCCACTCTTCCACTCGAGAA TTG-3’
and the PCR product was assembled by Golden Gate with Bsal to a gBlock fragment containing the
mEmerald insertion marker 5’-GCGCGCGGTCTCATGGAGGAAAAGAGGAGAAA
AGATCAATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAACTGGACGGTGA
CGTTAACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGA
AATTCATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGT
TCAGTGCTTCGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTT
ACGTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAA
GGTGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCA
CAAACTGGAATACAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAACGGTATCAAAGT
TAACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACACC
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CCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAG
ACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCCTGGGTATG
GACGAACTGTACAAATAAGAGAGCAGTGAGACCGCGCGC-3..

Step 4: Due to a design error, the insertion mEmerald in BBa_K2448024 (step 3) destroyed the BsmBI
site between the pTacl promoter and mEmerald. This error was corrected by site directed mutagenesis
following the Single-Primer Reactions IN Parallel (SPRINP) protocol (3) using the primers
5’-CGAGTGGAAGAGACGAGGAAAAGAGG-3’ and 5’-CCTCTTTTCCTCGTCTCTTCCACT CG-3..

Step 5: The plasmid obtained at step 4 was used as template in a PCR reaction with the primers
5’-GCGCGGTCTCAGCAGGGTACAAAGAGGAGAAATACTAGATGGTTTC-3’ and 5-GCGCGGTCTC
ATCCAACGTACGTACGTACGTACGTTATAAACGCAG-3’ and the PCR product was assembled by Golden
Gate with Bsal to a gBlock fragment containing the LacZa insertion marker under the control of J23100
constitutive promoter 5’-GCGGTCTCATGGAGAGAGGATCCCTTGGAAAGTCTTCACTTG
ACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCAATTAAAGAGGAGAACAGCTATGACCATGATCACCCCGA
GCCTGCACGCTTGCCGTTCTACCCTGGAAGATCCGCGTGTTCCGAGCTCTAACTCTCTGGCTGTTGTTCT
GCAACGTCGTGACTGGGAAAACCCGGGTGTTACCCAGCTGAACCGTCTGGCTGCTCACCCGCCGTTCG
CTTCTTGGCGTAACTCTGAAGAAGCTCGTACCGACCGTCCGAGCCAGCAGCTGCGTTCTCTGAACGGTG
AATGGCGTCTGATGCGTTACTTCCTGCTGACCCACCTGTGCGGTATCTCTCACCGTATCTGGTGCACCCTG
TCTACCATCTGCTCTGACGCTGCTTAAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGG
CCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG
CCTTTCTGCGTTTATATGAAGACAGGCAGCCATGGGAGAGCAGTGAGACCGC-3'. The resulting plasmid
is the Universal Biosensing Chassis (UBC).

Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR
transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene was
constructed in 2 steps:

Step 1: A gBlock fragment containing the pPsiA promoter 5’-GCGGATCCCGAGAAGACAATGGAGTA
TAAATGGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTGATTCCGATTATTAGAGCACG

CATCCCCTTGACGGAAGGGCGCTTCATGATATGGTTATTGCACCATCGATTGTGCAGATTGGCAATATCGAT
TGTGCATGGTGGTTGCTATGGGAGTGGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGC
GTCCGGGAAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCAATGAAGAAA

ATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCTCTCATCCGCAGCCTTTGCCGAAGGGCCGAAG

GTGGGCGTCGTCGTCAAGATCGGCGGCATTCCGTGGTTCAACGCCAGCAGAAGTCTTCACCATGGCATAT
GGC-3’ was inserted by Golden Gate with Bbsl into the Universal Biosensing Chassis.

Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock
fragment containing the PsiR gene 5-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTAC
AAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCTGTCTATCCTGTCTG
GTGCTTCTGCTTCTACCGTTTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCG
CTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCTCGTGGTCTGCGTTCT
TCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACGACAACCGTTTCTTCTCTTCTATGGCTCAGACC
TTCGAAGGTCAGGCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAG
AACGTCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGTGTTACCGACCCG
GACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTCG
CTTCTTCTGTTATCTCTAACAACCGTCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTA
AAGGTGGTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCTTCTCGTGAAC

GTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTTGAAGGTGGTGACGACATCGAAATCACC
GGTTACTCTCCGCACATGACCGAAATGGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTT

GCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGTGAAGCTT
TCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTTACATG
ATCAAACCGGACATCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCG

GAAGTTACCATCATCGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGACATC
TGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGTGAGACGGCATGCGCGCGC-3. The
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resulting plasmid is the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens
and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene.

Psicose biosensor based on pPsiR promoter from Agrobacterium tumefaciens and the PsiR
transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene was
constructed in 2 steps:

Step 1: The pPsiR was amplified by PCR using Agrobacterium tumefaciens str. C58 genomic DNA as
template and the primers 5’-GCGGATCCCGAGAAGACAATGGAGGAGGCGTTGAACCACGGA ATG-3’
and 5’-GCCATATGCCATGGTGAAGACTTCTGCTATGTGATCTCCCCAACTGATT-3’ and then inserted by
Golden Gate with Bbsl into the Universal Biosensing Chassis.

Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBIl to a gBlock
fragment containing the PsiR gene 5-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTAC
AAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCTGTCTATCCTGTCTG
GTGCTTCTGCTTCTACCGTTTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCG
CTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCTCGTGGTCTGCGTTCT
TCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACGACAACCGTTTCTTCTCTTCTATGGCTCAGACC
TTCGAAGGTCAGGCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAG
AACGTCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGTGTTACCGACCCG
GACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTCG
CTTCTTCTGTTATCTCTAACAACCGTCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTA
AAGGTGGTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCTTCTCGTGAAC

GTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTTGAAGGTGGTGACGACATCGAAATCACC
GGTTACTCTCCGCACATGACCGAAATGGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTT

GCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGTGAAGCTT
TCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTTACATG
ATCAAACCGGACATCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCG

GAAGTTACCATCATCGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGACATC
TGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGTGAGACGGCATGCGCGCGC-3. The
resulting plasmid is the psicose biosensor based on pPsiR promoter from Agrobacterium tumefaciens
and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene.

Psicose biosensor based on pPsiTacl synthetic promoter and the PsiR transcription factor from
Agrobacterium tumefaciens with mCherry as reporter gene was constructed in 2 steps:

Step 1: A gBlock fragment containing the pPsiTacl promoter 5’-GCGGATCCCGAGAAGACAATGGAT
GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGATTGCACAATCGATGGTGCAAAGCAGAAGTCT
TCACCATGGCATATGGC-3’ was inserted by Golden Gate with Bbsl into the Universal Biosensing
Chassis.

Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBIl to a gBlock
fragment containing the PsiR gene 5-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTAC
AAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCTGTCTATCCTGTCTG
GTGCTTCTGCTTCTACCGTTTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCG
CTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCTCGTGGTCTGCGTTCT
TCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACGACAACCGTTTCTTCTCTTCTATGGCTCAGACC
TTCGAAGGTCAGGCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAG
AACGTCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGTGTTACCGACCCG
GACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTCG
CTTCTTCTGTTATCTCTAACAACCGTCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTA
AAGGTGGTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCTTCTCGTGAAC

GTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTTGAAGGTGGTGACGACATCGAAATCACC
GGTTACTCTCCGCACATGACCGAAATGGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTT
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GCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGTGAAGCTT
TCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTTACATG
ATCAAACCGGACATCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCG
GAAGTTACCATCATCGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGACATC
TGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGTGAGACGGCATGCGCGCGC-3. The
resulting plasmid is the psicose biosensor based on pPsiTacl synthetic promoter and the PsiR
transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene.

Psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the PsiR transcription
factor from Sinorhizobium fredii with mCherry as reporter gene was constructed in 2 steps:

Step 1: A gBlock fragment containing the pPsiA promoter 5-GCGGATCCCGAGAAGACAATGGAGGT
GGGTCTGGGCGAGGTTGCGGATCAACTCGGCGGTGCTTTCCTTGATGCGCCGCTTGCGCCAGGTGCCG
TTCAGCACGGCGCTGACCGTCGAGGGCGAGCTGCCGGAGAGCACCGAGAGATCGTAGATCGTCGCCTT
TTTCTTGCCGCTGTTCGCCATCCGAGCCCCCTCGAATCTCTTAGAGCCGTTTTGCGCTTGACGAAAGATTA
AGTCTGCACGATAGTCTTTGCACCATCGATTGTGCAAATAAGAAATATCGATTGTGCAGCTCTTTGGGCCGT
CTGAGGAGGCGGCGGTCAGCGGCGGGAAACGCGCTTCTCGTCATGGAGGATTGAAACTGGAGGCCGG

CGCGCCAGCGCCCGGGAGAGTTCCCGTTGCGGGAACCTGTGGAGGAGAGACAGCAGAAGTCTTCACC

ATGGCATATGGC-3’ was inserted by Golden Gate with Bbsl into the Universal Biosensing Chassis.

Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBIl to a gBlock
fragment containing the PsiR gene 5-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTACAAAGA
GGAGAAATACCATATGGCTAACTCTGGTAAAAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTC

TTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCTGA
ACTGATCCGTAACCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCT

CGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTT
CGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGCAGGAAGAA
CGTAAAACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGGTGCTACCGACCCGGA
CGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGAAACACATCAACATCGACCTGCCGGGTACCAAAGTT
CCGTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGC
TGACCGTGCTCTGGCTCCGACCGACCTGTACCTGTTCGGTGGTCGTAACGACCACGCTTCTCACGAACG

TATCCGTGGTTTCCGTGCTGTTAAAAAAGACCTGCTGGGTGACGACCCGGACGAATGCATCCAGCCGACC
GGTTACGCTGCTAACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAACTGCCGCGTG
GTCTGTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCACGACAAC

TTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCAT
GATCCGTCAGGACGTTGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCTCTGGCT
CGTATCCACCTGGTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACGCTCTG
AAAGACATCGACCTGCCGCGTGGTTCTCAGTAAAGCAGTGAGACGGCATGCGCGCGC-3'. The resulting
plasmid is the psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the PsiR
transcription factor from Sinorhizobium fredii with mCherry as reporter gene.

Psicose biosensor based on pPsiR promoter from Sinorhizobium fredii and the PsiR transcription
factor from Sinorhizobium fredii with mCherry as reporter gene was constructed in 2 steps:

Step 1: A gBlock fragment containing the pPsiR promoter 5-GCGGATCCCGAGAAGACAATGGAGG
CCGCGCTCCTTGATGCCGACTTGCATGGCGTTGAACCACGGAATGCCGCCGATCTTGACGACCACGCC
GACCTTCGGCGCATCCTGCGCCGCGACGGAAAAGGCACCGGCGAGCGAAAGCGAAGCCGCCAGAGC
GGCAGCAAGAAATGTCTTGATCATGTCTCTCCTCCACAGGTTCCCGCAACGGGAACTCTCCCGGGCGCT
GGCGCGCCGGCCTCCAGTTTCAATCCTCCATGACGAGAAGCGCGTTTCCCGCCGCTGACCGCCGCCTC
CTCAGACGGCCCAAAGAGCTGCACAATCGATATTTCTTATTTGCACAATCGATGGTGCAAAGACTATCCTGC
TGACTTAATCTTTCGTCAAGCGCAAAACGGCTCTAAGAGATTCGAGGGGGCTCGGAGCAGAAGTCTTCAC
CATGGCATATGGC-3’ was inserted by Golden Gate with Bbsl into the Universal Biosensing Chassis.
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Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBIl to a gBlock
fragment containing the PsiR gene 5-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTACAAAGA
GGAGAAATACCATATGGCTAACTCTGGTAAAAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTC
TTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCTGA
ACTGATCCGTAACCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCT
CGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTT
CGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGCAGGAAGAA
CGTAAAACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGGTGCTACCGACCCGGA
CGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGAAACACATCAACATCGACCTGCCGGGTACCAAAGTT
CCGTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGC
TGACCGTGCTCTGGCTCCGACCGACCTGTACCTGTTCGGTGGTCGTAACGACCACGCTTCTCACGAACG
TATCCGTGGTTTCCGTGCTGTTAAAAAAGACCTGCTGGGTGACGACCCGGACGAATGCATCCAGCCGACC
GGTTACGCTGCTAACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAACTGCCGCGTG
GTCTGTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCACGACAAC
TTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCAT
GATCCGTCAGGACGTTGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCTCTGGCT
CGTATCCACCTGGTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACGCTCTG
AAAGACATCGACCTGCCGCGTGGTTCTCAGTAAAGCAGTGAGACGGCATGCGCGCGC-3. The resulting
plasmid is the psicose biosensor based on pPsiR promoter from Sinorhizobium fredii and the PsiR
transcription factor from Sinorhizobium fredii with mCherry as reporter gene.

Psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR
transcription factor from Sinorhizobium meliloti with mCherry as reporter gene was constructed in
2 steps:

Step 1: A gBlock fragment containing the pPsiA promoter 5’-GCGGATCCCGAGAAGACAATGGACG
GTGCTTTCCTTGATCCGTCGCTTGCGCCACGTGCCGTTTAGCACCGCACTGACGGTAGAGGGCGAACTT

CCCGACAGCACCGAGAGATCATAGATCGTCGCTTTTTTCCTGCCGCCGTTCGTCATCTGACCTCCTCCAA

ACCCCGGAAAACCGATGCGCACGTTTCCTGGAATTGCTCTAGTGCCGATTTCGGCTTGACGAAAGATTAA
GTCTGAATGATAGTCATTGCACCATCGATTGTGCAAAAAAGAAATATCGATTGTGCAAGTTGTTGGTGCCGT

CTGAGGAGGCGGCCGTCAGCGGCGGGATATCCCCTTCCGTGCAAAAGAATTAAGCTGGAGGCCGGCGC
GTGAAGCGCCCGGGAGCGTTCCCCTCGGGGAAACATGTGGAGGAGAAACAGCAGAAGTCTTCACCATG

GCATATGGC-3’ was inserted by Golden Gate with Bbsl into the Universal Biosensing Chassis.

Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock
fragment containing the PsiR gene 5-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTACAAAGA
GGAGAAATACCATATGACCAACGGTGGTCGTAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTC
TTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCTGA
ACTGATCCGTTCTCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCT

CGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTT
CGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGGAAGAAGAA

CGTCGTACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGGTGCTACCGACCCGGA
CGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGCGTCACATCAACATCGACCTGCCGGGTACCAAAGTT
CCGTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGC
TGAACGTCCGCTGGAACCGGACGACCTGTACCTGTTCGGTGGTCGTGACGACCACGCTACCCGTGAACG
TATCCGTGGTTTCCGTGCTGTTAAATCTGACCTGCTGGGTGCTGACCCGGACGAATGCATCTGGCCGACC
GGTTACGCTGCTGACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGAACAGCACGGTAAACTGCCGCGT

GGTTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCTGGAAAA

CTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCA
TGATCCGTCAGAACATCGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGCTTCTCTG
CAAATCCACATGATCGAACCGCAGCTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACGCTCTG
ATGGACTCTGAAATGCCGCGTGAATAAAGCAGTGAGACGGCATGCGCGCGC-3'. The resulting plasmid is
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the psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR transcription
factor from Sinorhizobium meliloti with mCherry as reporter gene.

Psicose biosensor based on pPsiR promoter from Sinorhizobium meliloti and the PsiR
transcription factor from Sinorhizobium meliloti with mCherry as reporter gene was constructed in
2 steps:

Step 1: A gBlock fragment containing the pPsiR promoter 5-GCGGATCCCGAGAAGACAATGGATGA
ACCACGGTATGCCGCCGATCTTGACGACGACACCGACCTTGCCCGTATCCTGCGCCGCGGCGGTATAGG
CACCCGCAAGCGAAAGCGACGCCGCCAGAGCGGCGGCAAGAATTTTCTTGATCATGTTTCTCCTCCACA
TGTTTCCCCGAGGGGAACGCTCCCGGGCGCTTCACGCGCCGGCCTCCAGCTTAATTCTTTTGCACGGAA
GGGGATATCCCGCCGCTGACGGCCGCCTCCTCAGACGGCACCAACAACTTGCACAATCGATATTTCTTTT
TTGCACAATCGATGGTGCAATGACTATCATTCAGACTTAATCTTTCGTCAAGCCGAAATCGGCACTAGAGCA
ATTCCAGGAAACGTGCGCATCGGTTTTCCGGGGTTTGGAGGAGGTCAGAGCAGAAGTCTTCACCATGGC
ATATGGC-3’ was inserted by Golden Gate with Bbsl into the Universal Biosensing Chassis.

Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBIl to a gBlock
fragment containing the PsiR gene 5-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTACAAAGA
GGAGAAATACCATATGACCAACGGTGGTCGTAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTC
TTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCTGA
ACTGATCCGTTCTCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCT
CGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTT
CGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGGAAGAAGAA
CGTCGTACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGGTGCTACCGACCCGGA
CGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGCGTCACATCAACATCGACCTGCCGGGTACCAAAGTT
CCGTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGC
TGAACGTCCGCTGGAACCGGACGACCTGTACCTGTTCGGTGGTCGTGACGACCACGCTACCCGTGAACG
TATCCGTGGTTTCCGTGCTGTTAAATCTGACCTGCTGGGTGCTGACCCGGACGAATGCATCTGGCCGACC
GGTTACGCTGCTGACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGAACAGCACGGTAAACTGCCGCGT
GGTTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCTGGAAAA
CTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCA
TGATCCGTCAGAACATCGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGCTTCTCTG
CAAATCCACATGATCGAACCGCAGCTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACGCTCTG
ATGGACTCTGAAATGCCGCGTGAATAAAGCAGTGAGACGGCATGCGCGCGC-3'. The resulting plasmid is
the psicose biosensor based on pPsiR promoter from Sinorhizobium meliloti and the PsiR transcription
factor from Sinorhizobium meliloti with mCherry as reporter gene.

Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR
transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a
downstream the Mutant Drop Zone was constructed in 3 steps:

Step 1: The psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR
transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene was used as
template in a PCR reaction with the primers 5’-GCGCGGTCTCAGCAGAACTAGTAGCGGCCGCTG
CAG-3’ and 5’-GCGCGGTCTCATCCAATTATTTGTACAGTTCGTCC-3. The PCR product was assembled
by Golden Gate with Bsal to a gBlock fragment containing the Mutant Drop Zone
5’-GCGCTGGTCTCATGGATAGCGTGACCGGCGCATCGGTCACGCTATTTGTTGAGGAGAGAGAGCTGTTG
ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTGTACAAAGAGGAGAAACTCG

AGGATGAGAGACGGATCGATCCGTCTCAAGCGGCATGCCCAGGCATCAAATAAAACGAAAGGCTCAGTC

GAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCAC

CTTCGGGTGGGCCTTTCTGCGTTTATAGCAGTGAGACCGC-3..

Step 2: Due to a design error, the plasmid obtained at step 1, has a BsmBlI site between the pTacl
promoter and PsiR. This error was corrected by site directed mutagenesis following the Single-Primer
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Reactions IN Parallel (SPRINP) protocol (3) using the primers 5-CGAGTGGAAGACTCGGTACAAAG
AGG-3’ and 5’-CCTCTTTGTACCGAGTCTTCCACTCG-3'.

Step 3: The plasmid obtained at step 2 was used as template in a PCR reaction with the primers
5’-GCGCGGTCTCATCCATTTGTACCCATGGCTGCTGGC-3’ and 5-GCGCGGTCTCAGCAGTTGGA
TAGCGTGAC-3’ and the PCR product was assembled by Golden Gate with Bsal to a gBlock fragment
containing the mEmerald reporter 5’-GCGCGCGGTCTCATGGAGGAAAAGAGGAGAAAAG
ATCAATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAACTGGACGGTGACG
TTAACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAA
TTCATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTC
AGTGCTTCGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTAC
GTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAAGG
TGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCACA
AACTGGAATACAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAACGGTATCAAAGTTA
ACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACACCCC
GATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAGAC
CCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCCTGGGTATGGA
CGAACTGTACAAATAAGAGAGCAGTGAGACCGCGCGC-3. The resulting plasmid is the psicose
biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor
from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream the Mutant Drop
Zone.

Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR
transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a
downstream D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control
of pTacl promoter was constructed in 1 step:

Step 1: A gBlock fragment containing the pTacl promoter followed by the C. cellulolyticum DPEase
5’-GCTACGATCTGGTCTCATGGAATTCGCGGCCGCTTCTAGAGAGGAGCTGTTGACAATTAATCATCGGCT
CGTATAATGTGTGGAATTGTGAGCGGATAACAATTTTAACTTTAAGAAGGAGATATACAAATGAAACACGGTA
TCTACTACGCTTACTGGGAACAGGAATGGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAAACTGG
GTTTCGACATCCTGGAAATCGCTGCTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAA
GCTTGCGCTCACGGTAACGGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAACAGAACCTGTCTT
CTCCGGACCCGGACATCCGTAAAAACGCTAAAGCTTTCTACACCGACCTGCTGAAACGTCTGTACAAACT
GGACGTTCACCTGATCGGTGGTGCTCTGTACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAA
AAGGTGACTGGGAACGTTCTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGTGTTGAC
TTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGATCAACACCGCTCAGGAAGGTGTTGACTTCGT
TAAACAGGTTGACCACAACAACGTTAAAGTTATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTAT
CGGTGGTGCTATCCGTACCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACCGTAAAGTT
CCGGGTCGTGGTCGTATCCCGTGGGTTGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGGTTCTG
TTGTTATGGAACCGTTCGTTCGTATGGGTGGTACCGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTA
ACGGTGCTGACGAAAAAATGCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTCTGGA
ATGCCACAAACACTCTTAATACTAGTAGCGGCCGCTGCAGTGAGACCGCTACGATC-3* was wused as
template in a PCR reaction with the primers 5-GCCGTCTCGG ATGAAACACGGTATCTACTAC-3’ and
5’-GCCGTCTCCCGCTTTAAGAGTGTTTGTGGCATTC-3’ and the PCR product was inserted by Golden
Gate with BsmBI in the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens
and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a
downstream the Mutant Drop Zone. The resulting plasmid is the Psicose biosensor based on pPsiA
promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium
tumefaciens with mEmerald as reporter gene and a downstream D-Psicose 3-epimerase (DPEase) from
Clostridium cellulolyticum under the control of pTacl promoter.
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D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacl
promoter was constructed in 1 step:

Step 1: The pSB1C3 backbone was used as template in a PCR reaction with the primers
5’-GCGGTCTCTGCAGTCCGGCAAAAAAGGGCAAGG-3’ and 5-GCGGTCTCTTCCAGAAATCATCC
TTAGCG-3’ and the PCR product was assembled by Golden Gate with Bsal to a gBlock fragment
containing the pTacl promoter followed by the C. cellulolyticum DPEase 5’-GCTACGATCTGGTCTCAT
GGAATTCGCGGCCGCTTCTAGAGAGGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGT

GAGCGGATAACAATTTTAACTTTAAGAAGGAGATATACAAATGAAACACGGTATCTACTACGCTTACTGGGAA
CAGGAATGGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAAACTGGGTTTCGACATCCTGGAAAT

CGCTGCTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTTGCGCTCACGGTAAC

GGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAACAGAACCTGTCTTCTCCGGACCCGGACATCC
GTAAAAACGCTAAAGCTTTCTACACCGACCTGCTGAAACGTCTGTACAAACTGGACGTTCACCTGATCGGT
GGTGCTCTGTACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAAAAGGTGACTGGGAACGTT

CTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGTGTTGACTTCTGCCTGGAAGTTCTGA
ACCGTTTCGAAAACTACCTGATCAACACCGCTCAGGAAGGTGTTGACTTCGTTAAACAGGTTGACCACAAC
AACGTTAAAGTTATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTATCGGTGGTGCTATCCGTACC
GCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACCGTAAAGTTCCGGGTCGTGGTCGTATCC
CGTGGGTTGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGGTTCTGTTGTTATGGAACCGTTCGTT
CGTATGGGTGGTACCGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGTGCTGACGAAAAAAT

GCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTCTGGAATGCCACAAACACTCTTAAT
ACTAGTAGCGGCCGCTGCAGTGAGACCGCTACGATC-3'. The resulting plasmid is the D-Psicose
3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacl promoter.

Wild-type D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal
Histidine tag under the control of pTacl promoter was constructed in 1 step:

Step 1: The D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacl
promoter was used as template in a PCR reaction with the primers 5’-GCGGTCTCACCATCAC
CACCACTAATACTAGTAGCGGCCGCTGCA-3’ and 5’-GCGGTCTCGATGGTGGTGCTCGAGAGAGT
GTTTGTGGCATTCCAG-3’ and the PCR product was self assembled by Golden Gate with Bsal. The
resulting plasmid is the wild-type D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a
C-terminal Histidine tag under the control of pTacl promoter.

Mutant A142N of D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a
C-terminal Histidine tag under the control of pTacl promoter was constructed in 1 step:

Step 1: The psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR
transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream
D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum (mutant A142N) under the control of
pTacl promoter was wused as template in a PCR reaction with the primers
5’-GCGGTCTCGATGGTGGTGCTCGAGAGAGTGTTTGTGGCATTCCAG-3’ and 5’-GCGGTCTCAGG
AGATATACAAATGAAACACGGTATCTACTAC-3'. A second PCR reaction was conducted in parallel using
the primers 5’-GCGGTCTCACCATCACCACCACTAATACTAGTAGCGGCCGCTGCA-3’ and
5’-GCGGTCTCTCTCCTTCTTAAAGTTAAAATTGTTATCCGCTCACAATTCC-3> and as template the
D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacl promoter.
The two PCR products were assembled by Golden Gate with Bsal. The resulting plasmid is the mutant
A142N of D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal Histidine
tag under the control of pTacl promoter.
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Chapter 6:
Optimizing Cell-Free Biosensors to Monitor Enzymatic
Production

This work has been originally published by Amir Pandi, loana Grigoras, Olivier
Borkowski, and Jean-Loup Faulon on ACS Synthetic Biology. The full citation:

Pandi A, Grigoras |, Borkowski O, Faulon J: Optimizing Cell-Free Biosensors to
Monitor Enzymatic Production. ACS Synthetic Biology. ACS Synth Biol 2019,
doi:10.1021/acssynbio.9b00160.

Minor revisions have been introduced to the chapter presented below.

Contribution:
AP and OB designed and performed the experiments and generated the results. AP,
OB, IG and JLF participated in preparation of the manuscript.
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Abstract

Cell-free systems are promising platforms for rapid and high-throughput prototyping of
biological parts in metabolic engineering and synthetic biology. One main limitation of
cell-free systems applications is the low fold repression of transcriptional repressors.
Hence, prokaryotic biosensor development, which is mostly relying on repressors is
limited. In this study, we demonstrate how to improve these biosensors in cell-free
systems by applying a transcription factor (TF)-doped extract, a preincubation strategy
with the TF plasmid, or reinitiation of the cell-free reaction or two-step cell-free
reaction. We use the optimized biosensor to sense the enzymatic production of a rare
sugar, D-psicose. This work provides a methodology to optimize repressor based
systems in cell-free to further increase the potential of cell-free systems for
bioproduction.

Keywords
Cell-free biosensor, E. coli cell-free system, transcriptional repressor, D-psicose,
bioproduction, cell-free optimization
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Figure 6.1. The graphical abstract of the chapter on characterization and optimization of cell-free
biosensors to prototype metabolic pathways.
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Introduction

Cell-free systems are emerging platforms for quick characterization of biological parts
and circuits in synthetic biology and metabolic engineering [119,126,159]. These
low-cost abiotic tools provide high-throughput characterization and decrease
whole-cell growth-dependent limitations such as toxicity, noise and resource
competition. Recent advances have enabled various applications of cell-free systems,
from part characterization to biosensor and pathway prototyping as well as to study
biological phenomena [132,167,341,342].

Transcription-translation (TX-TL) cell-free system has brought a new facility for
metabolic engineers to bioproduce fine chemicals [81,343]. It also gives the possibility
of leveraging synthetic biology tools such as biosensors to monitor and to dynamically
engineer metabolic pathways [81]. The TX-TL crude extract, used to express the genes
of metabolic pathways, is a bacterial lysate which might be made directly from
wild-type, engineered strains or cells harboring overexpressed enzymes [170]. As in
whole-cell systems, biosensors can provide monitoring capability in cell-free systems
for diagnosis and pathway engineering applications. Cell-free biosensors for quorum
molecules, amino acids, nucleic acids, vanillin, and benzoic acid have been
implemented and characterized [54,61,178,341]. In a recent study, the fold repression
has been improved using promoter and TF engineering [342]. Also, CRISPR has been
implemented in the Escherichia coli TX-TL cell-free system and a preincubation step
has been applied to improve its behavior [133].

Here, we study and improve cell-free biosensing of a valuable compound, D-psicose,
to monitor its bioproduction. D-Psicose is a rare sugar with properties to fight against
obesity and diabetes [320], bioproduction and biosensing of which have been
investigated recently in a whole-cell E. coli system [344]. In this study, we first seek to
characterize and improve the D-psicose biosensor in the cell-free system. The
improvement methods used i) a TF-doped extract based on cells harboring TF plasmid
to prepare the cell lysate, ii) a preincubation strategy based on the production of the TF
in the extract prior to adding the reporter DNA, or iii) a reinitiation strategy or two-step
cell-free reaction applied for an 8 hours reaction expressing the TF gene followed by
the addition of the reporter DNA plus a fresh cell-free mix. In the next step, we show
that the optimized biosensor can be used to quantify D-psicose and report D-psicose
production by D-psicose 3-epimerase (DPEase) from fructose. The strategies that we
introduce here brings cell-free metabolic/enzyme engineering and biosensor
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development together for further applications of biosensors for pathway monitoring or
dynamic regulation.

Results and Discussion

First, we aimed to study and optimize the efficiency of the D-psicose biosensor in the
cell free system. Escherichia coli BL21 lysate along with reaction buffers and DNA
vectors are essentials to run a cell-free reaction [150]. In the cell-free system, different
genes can be cloned individually, mini/maxiprepped and pipetted at any concentration
to fine-tune biological circuits. We inserted the transcription factor (PsiR) and reporter
(pPsiA-sfGFP) in separate vectors to fine-tune their concentrations independently
(Figure 6.2a). We altered the concentration of TF DNA and reporter DNA with 100 or O
mM D-psicose (inducer). A high concentration of D-psicose is needed to activate the
transcription factor which is not surprising behavior for a primary metabolite [307]. The
surface plot in Figure 6.2b presents the fluorescence fold change, the ratio of the
fluorescence values when 100 or 0 mM of D-psicose is added to the mix.
(Supplementary Figure S6.1 shows that D-psicose does not affect the production of
the GFP reporter in the absence of the TF). This sensor showed a low fold change with
a maximum of 1.6 (with 100 nM TF DNA and 10 nM reporter DNA). This low value is
due to the biosensor design: PsiR poorly represses GFP production since both TF and
GFP genes are expressed at the same time (Supplementary Figure S6.2 and S6.3a).
While the repressor gene is being expressed, the GFP gene under the control of the
responsive promoter is also expressed, especially at a high concentration of the
reporter DNA. Therefore, the conditions with the maximum fold change of the
biosensor are with a TF DNA at the maximum concentration (maximum repression in
the absence of the inducer) and the reporter DNA at low concentration (minimum
leakiness in the absence of the inducer). As a result, the fold change of a repressor
based cell-free biosensor is far from the scale of an activator based cell-free biosensor
[62,61].

We applied three strategies to increase the fold change of the D-psicose biosensor.
The first strategy was to dope the extract with the TF (Figure 6.2c). The living bacteria,
used to prepare the cell lysate, contained a plasmid expressing the TF gene. With this
approach, the TF is already present in the cell lysate and is ready to repress the
promoter when the reporter DNA is added to the cell-free reaction. When the TF is
already present in the lysate, the maximum fold change is obtained with the maximum
concentration of the reporter DNA, 100 nM (Figure 6.2d and Supplementary Figure
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$6.3). However, the doping approach exhibited only a 30% improvement in the
maximum fold change. As the TF is already present in the cell-lysate, we moved to
another strategy to tune the amount of TF and its expression to further improve the fold
change.
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Figure 6.2. Characterization and optimization of cell-free psicose biosensor. (a) Schematic
representation of D-psicose cell-free biosensor with different concentrations of TF DNA, reporter DNA,
and D-psicose. (b) Surface response of the fold change of the biosensor in a combinatorial space of the
TF and reporter DNA with 100 mM D-psicose. (c) Schematic representation of cell-free biosensor with
expressed TF gene in the cells which were used to prepare the lysate for cell-free reactions (TF-doped
extract). (d) Fold change, between 100 mM and 0 mM D-psicose, of the TF-doped biosensor at distinct
concentrations of the reporter DNA. (e) Schematic representation of cell-free biosensor with
preincubation of 100 nM TF DNA, the optimal concentration of TF based on Figure 6.2b. (f) Fold change,
between 100 mM and 0 mM D-psicose, of the TF-preincubated biosensors after 1.5, 3, 6, and 8 hours,
followed by the addition of the reporter DNA at different concentrations. (g) Schematic representation of
cell-free biosensor with reinitiation of the cell-free reaction after 8 hours with fresh extract, D-psicose,
and the reporter DNA. (h) Fold change of the fluorescence supplied with the same (1:1 fresh extract) or
twice (1:2 fresh extract) volume of the cell-free reaction. The data and error bars are the mean and
standard deviation of three measurements from three independent reaction done in the same day using
the same lysate and maxiprepped plasmids. Bar plots of raw fluorescence data are presented in
Supplementary Figure S6.3-5.

The second strategy is using preincubation (Figure 6.2e): we added 100 nM of TF DNA
(that led to the maximum fold change observed in the initial experiment in Figure 6.2b)
in the cell-free mix and incubated at 30 °C during several hours before complementing
the reaction with the reporter plasmid. We then added the inducer (D-psicose) and
several concentrations of the reporter DNA: 10, 25, 50, and 100 nM after 1.5, 3, 6 or 8
hours. We looked for the best balance between reaching a sufficient amount of TF and
GFP production the reporter DNA as the protein production diminishes over time [150].
As expected, increasing the preincubation time led to an increase of promoter
repression (less GFP produced in the absence of D-psicose) but a decrease in GFP
production (in both the presence or absence of D-psicose) (Supplementary Figure
S$6.4). Figure 6.2f shows that for different preincubation time periods there are
conditions that improved the fold change with regard to no preincubation as in the
initial experiment (Figure 6.2b and red bar plot in Figure 6.2f). However, 1.5 and 6
hours incubation time demonstrated a higher fold change than 3 and 8 hours (Figure
6.2f). After 3 hours of preincubation, the repression increases but is not sufficient to
compensate for the decrease of GFP production (Supplementary Figure S$6.4c) and
after 8 hours, the production of GFP is too low as cell-free protein production
diminishes [150] (Supplementary Figure S6.4e). Therefore, the fold change is a result
of the balance between repression (increases by longer preincubation time) and
resource availability the GFP production (decreases by longer preincubation time).
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With our third strategy, we tried to overtake the decrease in protein production after 8
hours with a two-step cell-free reaction or reinitiation of the cell-free reaction. After 8
hours preincubation of the first reaction mix with 100 nM TF plasmid, we added fresh
cell-free mix (lysate and buffers) along with the reporter DNA (Figure 6.2g). 15 pl (1:1
fresh extract) or 30 pl (1:2 fresh extract) of the fresh cell-free mix, along with different
concentrations of the reporter DNA, were added to the initial 15 pl reaction incubated
with the TF plasmid for 8 hours. In both cases (1:1 fresh extract and 1:2 fresh extract),
the fold change raised (Figure 6.2h) with regard to the purple bar plot in Figure 6.2f
that had the same preincubation time. This improvement is because by adding fresh
reaction mix we provided fresh resources for the GFP production. A fold change of 4
was obtained when 30 pl of the fresh cell-free mix with 50 nM of reporter DNA added
(Figure 6.2h and Supplementary Figure S6.5).

Although the reinitiation approach improved the fold change of 8 hours preincubation,
this is a more costly and time-consuming approach. Additionally, we achieved
relatively high fold changes with only preincubation for 1.5 and 6 hours. Finally, we
chose 100 nM TF, preincubated during 1.5 and 6 hours, followed by the addition of 10
nM (see Supplementary Figure S$6.6) and 50 nM of the reporter DNA respectively, as
our optimized biosensors to quantify D-psicose in our cell-free system. To measure the
quality of the optimized biosensor, we added different concentrations of D-psicose in
the cell-free mix (Figure 6.3a). We observed that preincubation during 1.5 or 6 hours,
followed by the addition of 10 or 50 nM of reporter DNA respectively, allowed a linear

dose-response behavior of the biosensor (Figure 6.3a).
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Figure 6.3. Characterization of psicose production using the optimized biosensor. (a)
Dose-response curve of two optimized sensors, 1.5 h preincubation with 10 nM reporter DNA and 6 h
preincubation with 50 nM reporter DNA, plus the unoptimized D-psicose sensor from Figure 6.2b. (b)
Schematic representation of cell-free biosensor with preincubation of 100 nM TF DNA applied to monitor
the DPEase enzymatic production of D-psicose from 100 mM fructose. (c) Fold change, between 100
mM and 0 mM fructose, using different concentrations of DPEase enzyme DNA. We used two different
optimized biosensors and the unoptimized D-psicose biosensor. The data and error bars are the mean
and standard deviation of three measurements from three independent reaction done in the same day
using the same lysate and maxiprepped plasmids.

In the next step, we used our optimized biosensors to monitor the production of
D-psicose from fructose using D-psicose 3-epimerase (DPEase), an enzyme from
Clostridium cellulolyticum (Figure 6.3b). It has been demonstrated that this biosensor
does not respond to fructose and high concentrations of fructose leads to higher
concentrations of D-psicose produced by the enzyme (see Chapter 5 and
Supplementary Figure S6.7). In this experiment, first, 100 nM of TF DNA plus different
concentrations of DPEase DNA were preincubated. Then we added 10 or 50 nM of
reporter DNA plus fructose. Figure 6.3¢c shows the monitored D-psicose produced
from fructose using the enzyme DPEase. The unoptimized biosensor (red bars in
Figure 6.3c) produces only a limited level of fluorescence at its maximum. In Figure
6.3c, by increasing the concentration of the enzyme, first, the fluorescence level raises
and then decreases (blue bars in Figure 6.3c) or reaches saturation (yellow bars in
Figure 6.3c). The reduction in the fluorescence, at high concentrations of the enzyme,
can be explained by the competition for a fixed amount of resources present in the
lysate [132,345].

Although our pathway is composed of only one enzyme, our study introduces a
workflow which can be applied for multi-enzyme pathways. Noted that the resource
competition can raise when multiple enzymes are produced. Moreover, in this study,
we demonstrated that a repressor based biosensor that suffers from low fold change
can be improved to quantify the production of a metabolite. Such improved biosensors
can be used to monitor pathways activity for prototyping or to implement dynamic
regulation. Cell-free biosensors enable faster screening of the enzymatic pathways
where combinations of different enzymes at different concentrations can be explored,
therefore speeding up the design-build-test cycle in metabolic/enzyme engineering.

Methods
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Molecular biology

The source of transcription factor (TF)-promoter pair is Agrobacterium tumefaciens and
the DPEase enzyme is from Clostridium cellulolyticum [346]. All sequences are
available in Supplementary Table S$6.1. The sequences were cloned in the pBEAST
backbone [61], a derived version of pBEST [347] vector using Golden Gate assembly in
E. coli Mach1 chemically competent cells. To build the reporter plasmid, the psicose
responsive promoter (pPsiA) were inserted upstream of sfGFP in pBEAST. DPEase and
PsiR were cloned under control of J23101 and B0032 RBS. Plasmids for cell-free
reactions were prepared using Macherey-Nagel Maxiprep kit from overnight bacterial
cultures.

Extract preparation

The cell lysate preparation is based on the protocol of Sun et al. [150]. Briefly, this is a
5-day protocol in three phases; i) harvesting the cells: E. coli BL21 colonies (for
TF-doped extract: cells transformed with TF DNA) grow on a plate overnight at 37°C,
50 ml preculture at 37°C during 8 h, 4 liters of cultures at 37°C until ODg, ,,, = 1.5-2.0,
i) extract preparation: multiple pellet washing with S30A buffer followed by sonication
(instead of beads-beating in the original protocol) to obtain the extract and iii) cell-free
reaction optimization: optimization by varying the Mg-glutamate and K-glutamate
concentrations. After washing the cells based on the Sun et al. protocol (Day 3 step 18)
with S30A buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, 2 mM DTT,
pH 7.7), the cells were centrifuged 2000xg for 8 minutes at 4 °C. The pellet was
resuspended in S30A (pellet mass (g) x 0.9 ml). The solution was split into 1 ml aliquots
in 1.5 ml Eppendorf tubes. Eppendorf tubes were placed in a cold block and sonicated
using a vibracell 72408 (Fisher Bioblock Scientific) with the following procedure:

20s ON—1min OFF—20s On—1min OFF—20s ON. Output frequency 20 kHz,
amplitude 25%.

The remaining steps of the protocol followed the procedure of Sun et al. for day 3, step
37. The process of mMRNA and protein synthesis is performed by the molecular
machinery present in the extract, with no addition of external enzymes. The amino acid
solution and energy solution mixes are kept as in the original protocol and are added to
the cell extract. Reactions take place in 15.75 pL volumes at 30 °C in a 384-well plate.
The final cell lysate contains 6 mM Mg-glutamate, 140 mM K-glutamate, 1.5 mM of
each amino acid (except leucine), 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and
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GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM
cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, 2% PEG-8000.

Cell-free experiments

For all cell-free reactions, 33% extract, 40% buffer, DNA plasmids, D-psicose or
fructose, and water were mixed in PCR tubes to the final volume of 15.75 pl per
reaction. 15 pl of each reaction was pipetted in a 384-well plate (Thermo Fisher
Scientific) to measure GFP fluorescence in a Biotek Synergy HTX plate reader. All
reactions were incubated at 30 °C in the plate reader and fluorescence (gain: 50, ex:
458 nm, em: 528 nm) kinetic data was recorded. For all presented results, the
fluorescence measurement was taken after 8 hours or 4 hours for preincubation
experiments. All the fold change data represent the ratio of the GFP fluorescence at a
specific concentration of psicose or fructose with regards to fluorescence at 0 mM
psicose or fructose for each concentration of reporter and TF DNA.
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Supplementary figures and tables
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Supplementary Figure S6.1. The behavior of the cell-free reaction with 10 nM reporter DNA at
different concentration of Psicose and absence of the TF. This concentration of the inducer does not
statistically affect the production of the reporter (The t-test p-values with fluorescence at 0 mM vs other
psicose concentrations are 0.87* 0.72**, and 0.58***)
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Supplementary Figure S6.2. Kinetic data of the fluorescence level for the maximum fold change
point at Figure 6.2b. The fluorescence fold change plotted in the Figure 6.2b and 10 nM reporter DNA
of the red bar plot in Figure 6.2f is the ratio between two values at 8 hours (480 minutes) presented in
this figure. The curves and shaded areas are the mean and standard deviation of three measurements
from three independent reaction done in the same day using the same lysate and maxiprepped plasmids
(every five-minute measurement in a plate reader).
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Supplementary Figure S6.3 (matches with Figure 6.2d). Fluorescence level for TF-doped extract
with and without psicose. The fluorescence fold change plotted in Figure 6.2d is the ratio between two
bars presented in this figure for different concentrations of reporter DNA. The data and error bars are the
mean and standard deviation of three measurements from three independent reaction done in the same
day using the same lysate and maxiprepped plasmids.
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Supplementary Figure S6.4. Fluorescence level for preincubation experiments with and without
psicose (matches with Figure 6.2f). The fluorescence fold change plotted in Figure 6.2f is the ratio
between two bars presented in this figure for different concentrations of reporter DNA, (a) no
preincubation, (b) 1.5 h preincubation, (c) 3 h preincubation, (d) 6 h preincubation, and (€) 8 h
preincubation. The data and error bars are the mean and standard deviation of three measurements from
three independent reaction done in the same day using the same lysate and maxiprepped plasmids.
Note that the fluorescence in panel (a) is higher than other panels. Thus, panel (a) exhibits a different
y-axis scale. We emphasized the difference in panel (a) scale by adding a ladder (min and max values of
all the other y-axis scale) at the right side of every graph.
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Supplementary Figure S$6.5 (matches with Figure 6.2h). Fluorescence level for 8 hours
preincubation followed by adding extra fresh extract. The fluorescence fold change plotted in Figure
6.2h is the ratio between two bars presented in this figure for different concentrations of reporter DNA,
(@) adding the same amount of the fresh extract as the preincubated reaction (15 pl), and (b) adding twice
more of the fresh extract (30 pl). The data and error bars are the mean and standard deviation of three
measurements from three independent reaction done in the same day using the same lysate and
maxiprepped plasmids.
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Supplementary Figure S6.6. Dose-response curves for 1.5 h preincubation experiments. Two close
fold changes of 1.5 h preincubation from Figure 6.2d. The linearity of 10 nM reporter DNA is higher than
25 nM DNA. The data and error bars are the mean and standard deviation of three measurements from
three independent reaction done in the same day using the same lysate and maxiprepped plasmids.
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Supplementary Figure S6.7. In vivo characterization of D-pisoce production using the wild-type
DPEase. The cells harboring the psicose biosensor along with the wild-type DPEase monitor the
production of D-psicose from fructose in LB (a), complex medium, and MS (b), minimal medium (7 g/L
K2HPO4, 3 g/L KH2PO4, 1 g/L (NH4)2S04, 2 pM FeS04, 0.4 mM MgSO04, 1.44 mM sodium citrate, 0.1
mg/L Thiamine, 2 g/L glucose). In the reach medium psicose can be produced even in the absence of
fructose because there are enough resources for the cells to grow and for the enzyme to convert part of
cellular fructose to psicose, wheres in the minimal medium the enzyme needs high enough fructose to
do so. (c) The absence of the DPEase (Dpe) enzyme shows no reporter GFP fluorescence with regard to
the presence of the enzyme hence D-psicose is not produced from different concentrations of fructose
added to the LB medium. For these experiments the cells were incubated at 37 °C in the plate reader
and GFP fluorescence (ex: 458 nm, em: 528 nm) and ODg,, kinetic data was recorded. The data points
are the mean and error bars are the SD of normalized values (fluorescence/ODy,,) from three
measurements.
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Supplementary Table S6.1. List of sequences used in this study.

Sequence Nucleotide sequence Description/Sour
name ce

PsiR ATGACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCT Agrobacterium
(D-psicose GTCTATCCTGTCTGGTGCTTCTGCTTCTACCGTTTCTGCTG | tumefaciens [346]

transcription
factor)

TTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGA
AACCGCTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGT
TACACCACCAACTTACAGGCTCGTGGTCTGCGTTCTTCTA
AATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACGACAA
CCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAG
GCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTC
GTCGTGACCCGGAAGAAGAACGTCGTACCGTTGAAACCC
TGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGTGTT
ACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCT
GCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTC
GCTTCTTCTGTTATCTCTAACAACCGTCACGGTGCTGAAAT
CCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTGG
TTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCAC
GACGACCACGCTTCTCGTGAACGTATCGACGGTTTCCAC
GCTGCTAAAGCTGACTACTTCGGTGTTGAAGGTGGTGACG
ACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCC
GCGTTGCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTC
TGCTGCGTTTCATGGGTCGTCACGACGGTGAAGCTTTCG
GTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGC
TTCTTTCCTGCCGTTCCCGGTTTACATGATCAAACCGGAC
ATCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAG
AAAACCGTACCGAACCGGAAGTTACCATCATCGAACCGC
AGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTG
GACGACATCTGGGACCCGGTTGCTCTGCGTCGTATGGCT

AAATEA

DPEase
(D-psicose
3-epimerase)

ATGAAACACGGTATCTACTACGCTTACTGGGAACAGGAAT
GGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAA
ACTGGGTTTCGACATCCTGGAAATCGCTGCTTCTCCGCTG
CCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTT
GCGCTCACGGTAACGGTATCACCCTGACCGTTGGTCACG
GTCCGTCTGCTGAACAGAACCTGTCTTCTCCGGACCCGG
ACATCCGTAAAAACGCTAAAGCTTTCTACACCGACCTGCT

Clostridium
cellulolyticum
[346]
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GAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGT
GCTCTGTACTCTTACTGGCCGATCGACTACACCAAAACCA
TCGACAAAAAAGGTGACTGGGAACGTTCTGTTGAATCTGT
TCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGTGTTGAC
TTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGA
TCAACACCGCTCAGGAAGGTGTTGACTTCGTTAAACAGGT
TGACCACAACAACGTTAAAGTTATGCTGGACACCTTCCAC
ATGAACATCGAAGAAGACTCTATCGGTGGTGCTATCCGTA
CCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAAT
GCAACCGTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGG
TTGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGG
TTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTGGTACCG
TTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGT
GCTGACGAAAAAATGCTGGACCGTGAAGCTCAGGCTGCT
CTGGACTTCTCTCGTTACGTTCTGGAATGCCACAAACACT

CTHEA

pPsiA
(responsive
promoter
psiR)

to

GTATAAATGGTGGCTTTTTTTGAACTTATGCCCGTCACTGT
GATCTCCCCAACTGATTCCGATTATTAGAGCACGCATCCC
CTTGACGGAAGGGCGCTTCATGATATGGTTATTGCACCAT
CGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTG
CTATGGGAGTGGCAAGGGAGAGTCTCGAATAAGCGAGAT
GAGAGATTTTGAACGCGTCCGGGAAAAACGGGCTGCGG
GCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCAAT
GAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGC
GTTGCTCTCATCCGCAGCCTTTGCCGAAGGGCCGAAGGT
GGGCGTCGTCGTCAAGATCGGCGGCATTCCGTGGTTCAA
CGCCAGCAGCCATGGGTACAAATGGAGGAAAAGAGGAG
AAAAGATCAATG

Agrobacterium
tumefaciens [346]

sfGFP

ATGCGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTA
TTCTGGTGGAACTGGATGGTGATGTCAACGGTCATAAGTTT
TCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGT
AAACTGACGCTGAAGTTCATCTGTACTACTGGTAAACTGCC
GGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGT
GTTCAGTGCTTTGCTCGTTATCCGGACCATATGAAGCAGC

ATGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCA
GGAACGCACGATTTCCTTTAAGGATGACGGCACGTACAAA
ACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTA

AACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACG
GCAATATCCTGGGCCATAAGCTGGAATACAATTTTAACAGC

Super folder GFP
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CACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCAT
TAAAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGC
AGCGTGCAGCTGGCTGATCACTACCAGCAAAACACTCCA
ATCGGTGATGGTCCTGTTCTGCTGCCAGACAATCACTATCT
GAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAA
ACGCGATCATATGGTTCTGCTGGAGTTCGTAACCGCAGCG
GGCATCACGCATGGTATGGATGAACTGTACAAATGEATGEAR

J23101 AGGATACTAGAGGATGACCCCATCTGTTTACAGCTAGCTC iGEM registry
constitutive AGTCCTAGGTATTATGCTAGCTAGTAGAGTCACACAGGAAA | [348]

promoter + | GTAGTAGATG

B0032 RBS

(expressing

TF and

enzyme gene)
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Chapter 7:
A Dataset of Small Molecules Triggering
Transcriptional and Translational Cellular Responses

This work has been originally published in the journal Data in Brief by Mathilde Koch,
Amir Pandi, Baudoin Delépine, Jean-Loup Faulon. The full citation:

“Koch M, Pandi A, Delépine B, Faulon J-L: A dataset of small molecules triggering
transcriptional and translational cellular responses. Data Brief 2018,
17:1374-1378.”

Minor modifications have been introduced to the chapter presented below.

Contribution:

MK, AP and BD manually generated the list of small molecules triggering transcriptional
and translational responses from publications. MK integrated the the list of compounds
from other database. All authors participated in the preparation of the manuscript and
approved the final version.
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Abstract

The aim of this dataset is to identify and collect compounds that are known for being
detectable by a living cell, through the action of a genetically encoded biosensor and is
centred on bacterial transcription factors. Such a dataset should open the possibility to
consider a wide range of applications in synthetic biology. The reader will find in this
dataset the name of the compounds, their INChl (molecular structure), the publication
where the detection was reported, the organism in which this was detected or
engineered, the type of detection and experiment that was performed as well as the
name of the biosensor. A comment field is also provided that explains why the
compound was included in the dataset, based on quotes from the reference
publication or the database it was extracted from. Manual curation of ACS synthetic
biology abstracts (Volumes 1 to 6 and Volume 7 issue 1) was performed as well as
extraction from the following databases: Bionemo v6.0 [349], RegTransbase r20120406
[350], RegulonDB v9.0 [351], RegPrecise v4.0 [352] and Sigmol v20180122 [353].
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Specifications Table

Subject area Biology

More specific subject | Synthetic biology

area

Type of data Table

How data was | Database extraction from Bionemo v6.0, RegTransbase
acquired r20120406, RegulonDB v9.0, RegPrecise v4.0 and Sigmol

v20180122 as well as manual curation ACS synthetic biology
abstracts (Volumes 1 to 6 and Volume 7 issue 1)

Data format Analysed
Experimental factors | Not applicable
Experimental features | Not applicable

Data source location

https://github.com/brsynth/detectable_metabolites

Data accessibility

Data is with this article and on GitHub
https://github.com/brsynth/detectable_metabolites

at

Value of the data

e This dataset provides a basis for the development of new biosensing circuits for

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi

synthetic biology and metabolic engineering applications, e.g. the design of
whole-cell biosensors, high-throughput screening experiments, dynamic
regulation of metabolic pathways, transcription factor engineering or creation of
sensing-enabling pathways

This dataset provides a unique source of a broad number of compounds that
can be detected and acted upon by a cell, increasing the possibility of
orthogonal circuit design from the few usual compounds used in those
applications
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e The manually curated section provides information on where the biosensor has
been first reported and successfully used, enabling the reader to select
trustworthy information for his application of choice

e Detectable compounds can be searched by both by name and chemical
similarity

e This dataset is an update of [10.6084/m9.figshare.3144715.v1]

Data

The aim of this dataset is to identify and collect compounds that are known for being
detectable by a living cell, through the action of a genetically encoded biosensor and is
centred on bacterial transcription factors. The dataset should allow the synthetic
biology community to consider a wide range of applications. The reader will find in this
dataset the name of the compounds, their INChl (molecular structure), the publication
where the detection was reported, the organism in which this was detected or
engineered, the type of detection and experiment that was performed as well as the
name of the biosensor. A comment field is also provided that explains why the
compound was included in the dataset, based on quotes from the reference
publication or the database it was extracted from. Manual curation of ACS synthetic
biology abstracts (Volumes 1 to 6 and Volume 7 issue 1) was performed as well as
extraction from the following databases: Bionemo v6.0 [349], RegTransbase r20120406
[350], RegulonDB v9.0 [351], RegPrecise v4.0 [352] and Sigmol v20180122 [353].

This dataset is available online on GitHub to allow for further updates as well as
community contributions.

Experimental Design and Methods

Manual curation of ACS synthetic biology (Volume 1 to 6 and Volume 7 issue 1):
All abstracts of ACS Synthetic biology (Volume 1 to 6 and Volume 7 issue 1) were read
and information relevant to this dataset was extracted from those abstracts. The aim of
this manual curation was to establish a list of detectable compounds whose detection
method was already successfully implemented in a synthetic circuit, providing a good
basis for further implementation for synthetic biologists.

Bionemo v6.0 [349]-
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The SQL request used to create this dataset is:

select distinct substrate.id_substrate, minesota_code, name from substrate
inner join complex_substrate on
complex_substrate.id_substrate=substrate.id_substrate
inner join complex on complex.id_complex=complex_substrate.id_complex
Where activity='"REG';

RegTransbase r20120406 [350]:
The SQL request used to create this dataset is:

SELECT DISTINCT a.pmid, e.name, r.name
FROM regulator2effectors as re
INNER JOIN exp2effectors as ee ON ee.effector_guid=re.effector_guid
INNER JOIN dict_effectors AS e ON e.effector_guid=ee.effector_guid
INNER JOIN regulators AS r ON r.regulator_guid=re.regulator_guid
INNER JOIN articles AS a ON a.art_guid=ee.art_guid
ORDER BY e.name;
RegTransbase was not maintained anymore at the time of writing of this manuscript.

RegulonDB v9.0 [351]:
The SQL request used to create this dataset is:

select c.conformation_id, c.final_state, e.effector_id, e.effector_name,
tf.transcription_factor_id, tf.transcription_factor_name, p.reference_id,
xdb.external_db_name
from effector as e
inner join conformation_effector_link as mm_ce on mm_ce.effector_id=e.effector_id
LEFT join conformation as ¢ on c.conformation_id=mm_ce.conformation_id
LEFT JOIN transcription_factor as tf on
tf.transcription_factor_id=c.transcription_factor_id
LEFT join object_ev_method_pub_link as x on x.object_id=c.conformation_id or
x.object_id=tf.transcription_factor_id or x.object_id=e.effector_id
LEFT JOIN publication as p on p.publication_id=x.publication_id
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Left join external_db as xdb on xdb.external_db_id=p.external_db_id
WHERE c.interaction_type is Null or c.interaction_type!='Covalent’;

RegPrecise v4.0 [352]:
The RegPrecise website was accessed (version v4.0) and all relevant data was
extracted from the effector pages of the website.

Sigmol v20170216 [353]:
Sigmol was accessed on 16/02/2017 and all effector data was retrieved from the
unique Quorum Sensing Signaling Molecule page. In the “detected by” column, we

provide the class of signaling compounds the compound belongs to. The comment
field reads ‘Extracted from Sigmol v20170216 — Unig_QSSM_"number”’.
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Data overview

Table 7.1. Contribution of each data source. The first column contains the data source, the second
column the number of compounds found without a structure in that source, the third column the number
of compounds with a structure (InChl) and the last column the number of compounds with a structure

found only in that source.

Source Compounds Compounds with | Unique

without structure | structure compounds with
structure

RegPrecise 136 418 73

BioNemo 5 499 8

RegTransBase 683 2057 63

RegulonDB 12 245 23

Sigmol 2 175 135

ACS synthetic | 44 287 73

biology

All sources 882 3681 729

In Table 7.1 are presented some characteristics of each data source: number of
compounds without a structure from this source, total number of compounds with a
structure from this source and number of compounds with a structure found only in this
source. The last column in particular shows that around half the compounds are found
in more than one data source.
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Figure 7.1 shows the repartition of the type of experiment (in vivo, unspecified or
other), as well as the repartition of Biosensor type (Transcription factor, riboswitch or
unspecified) in the full dataset and the manually curated dataset from ACS synthetic
biology.

Full dataset - Detection method Full dataset - Biosensor type
A B
m Unspecified ® In vivo ® Other ® Unspecified  ® Transcription factor = Riboswitch
ACS - Detection method ACS - Biosensor type
| | ‘.
® Unspecified ® Invivo ® Other ® Unspecified ® Transcription factor ® Riboswitch

Figure 8.1. Type of experiment and biosensor type in the full dataset and the manually curated
dataset. A: Full dataset — detection method. B: Full dataset — biosensor type. C: ACS dataset — detection
method. D: ACS dataset — biosensor type. A and C: other in detection method corresponds to in silico, in
vivo and cell-free detections. C and D: ACS dataset is the dataset obtained from manual curation of ACS
synthetic biology with compounds that have available structures.
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Section II:
Biosensing-Diagnosis
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Chapter 9:
Plug-and-Play Metabolic Transducers Expand the
Chemical Detection Space of Cell-Free Biosensors

This work has been originally published by Peter L Voyvodic, Amir Pandi, Mathilde
Koch, Ismael Conejero, Emmanuel Valjent, Philippe Courtet, Eric Renard, Jean-Loup
Faulon, and Jerome Bonnet on Nature Communication. The full citation is:

Voyvodic PL, Pandi A, Koch M, Conejero |, Valjent E, Courtet P, Renard E, Faulon J-L,
Bonnet J: Plug-and-play metabolic transducers expand the chemical detection
space of cell-free biosensors. Nat Commun 2019, 10:1697.

Minor modifications have been introduced to the chapter represented below.

Contribution:

P.L.V.,, AP, J-L.F. and J.B. designed experiments, P.L.V. and A.P. cloned constructs
and performed experiments, and M.K. constructed the computer model simulations.
I.C., P.C., E.R. and E.V. participated in clinical sample collection and analysis. P.L.V.,,
A.P., M.K,, J-L.F., and J.B wrote the paper. All authors approved the manuscript.
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Abstract

Cell-free transcription-translation systems have great potential for biosensing, yet the
range of detectable chemicals is limited. Here we provide a workflow to expand the
range of molecules detectable by cell-free biosensors through combining synthetic
metabolic cascades with transcription factor-based networks. These hybrid cell-free
biosensors have a fast response time, strong signal response, and a high dynamic
range. Additionally, they are capable of functioning in a variety of complex media,
including commercial beverages and human urine, in which they can be used to detect
clinically relevant concentrations of small molecules. This work provides a foundation
to engineer modular cell-free biosensors tailored for many applications.
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Introduction

There is currently an urgent need for low-cost biosensors in a variety of fields from
environmental remediation to clinical diagnostics [127,354,355]. The ability of living
organisms to detect signals in their environment and transduce them into a response
can be utilized to create cheap, novel sensors with high sensitivity and specificity. By
leveraging the ability of transcription factors to control gene expression, synthetic
biologists have genetically engineered microbes to detect a wide range of compounds,
from clinical biomarkers to environmental pollutants [356-359].

Cell-free transcription/translation (TXTL) systems have great promise as the next
generation of synthetic biology-derived biosensors. They are cheap to produce [150],
abiotic, and can be lyophilized such that they are stable at room temperature for up to
one year: a vital necessity for point-of-care applications such as low-resource nation
and home diagnostic use [54]. Cell-free TXTL toolboxes have been designed that
support the operation of many of the circuits previously engineered in vivo [360,361].
Encapsulated cell extracts can also be used in combination with living cells to produce
new sensing modalities [362]. Cell-free biosensors were engineered to successfully
detect Zika virus in rhesus macaques and an acyl homoserine lactone, 30C12-HSL,
from Pseudomonas aeruginosa in human clinical samples [53,363]. However, current
cell-free biosensors have been limited to detection of nucleic acid sequences, via
toehold displacement, or well-characterized transcription factor ligands.

Here we put forward a generalized, modular workflow utilizing metabolic transducers to
rapidly expand the chemical space detectable by cell-free biosensors in a
plug-and-play manner. We then illustrate our workflow with a proof-of-concept
example: the transcription factor BenR, which is activated by benzoic acid, and two
metabolic modules, HipO and CocE, which convert hippuric acid and cocaine,
respectively, into benzoic acid. Each component is individually cloned into a cell-free
vector, such that the DNA concentrations can be titrated over three orders of
magnitude to optimize sensor performance. Finally, we demonstrate that these sensors
can function in complex solutions, detecting benzoic acid in commercial beverages
and hippuric acid and cocaine in human urine.

Results

Design workflow for cell-free biosensors
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Synthetic metabolic cascades have been used by the synthetic biology community for
a wide range of applications, including production of biofuels, pharmaceuticals, and
biomaterials [364-366]. As such, there is a wide variety of well-characterized enzymes
catalyzing various reactions transforming one molecule into another. Our framework
harnesses this power by using metabolic enzymes as transducers to allow us to ‘plug
in’ a given enzyme into our characterized biosensor modules to detect a ligand with no
known transcription factor analog (Figure 8.1a). Specifically, the metabolic enzyme
converts the undetectable molecule into one for which we have an existing
transcription factor-based genetic circuit (Figure 8.1b). We used the SensiPath
webserver that we previously designed and validated in vivo to determine the required
metabolic cascade [46,240].

The workflow to engineer a cell-free biosensor detecting a novel molecule is
straightforward (Figure 8.1c). First, possible metabolic pathways to convert the
molecule of interest into a detectable ligand are identified using SensiPath. Second, the
genes coding for the metabolic transducer enzyme, the transcription factor (TF) sensor,
and the reporter module are synthesized and cloned into cell-free expression vectors.
Finally, the DNA concentration of each plasmid is titrated in cell-free reactions to
optimize signal strength and dynamic range in response to the molecule of interest
(Figure 8.1c).
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Figure 8.1. A modular design workflow for engineering scalable cell-free biosensors. (a) Cell-free
biosensors are composed of three modules: a generic sensor module linked to an output module and a
metabolic transducer module transforming different molecules into ligands detectable by the sensor
module. (b) An undetectable ligand is converted into a detectable ligand by the enzyme from the
transducer module. Binding to the transcription factor controls the sensor module and downstream gene
expression. (¢) The biosensor design workflow starts with retrosynthetic pathway design using the
SensiPath server [46]. Once the transducer and sensor modules are determined, the genes encoding
enzymes, transcription factors, and target promoters driving a reporter are cloned into cell-free
expression vectors. The sensor is calibrated by titrating the concentrations of each plasmid to maximize
signal output and dynamic range.

As a proof-of-concept example of this system, we engineered a sensor for benzoic
acid using the transcription factor BenR and expanded its detection capabilities with
two different metabolic transducers: one for hippuric acid using the HipO hippurate
hydrolase and one for cocaine using the CocE cocaine esterase.

Optimization of cell-free benzoic acid sensor

BenR is a member of the AraC/XylS family of transcription factors, originally from
Pseudomonas putida. In the presence of benzoate, BenR binds to the Pg,, promoter
and activates transcription (Figure 8.2a). To engineer a benzoate cell-free biosensor,
we cloned BenR under the control of the OR2-OR1-Pr promoter, a modified version of
the lambda phage repressor promoter Cro, known to express strongly in cell-free
systems [347]. The Py, promoter driving super-folder green fluorescent protein (SfGFP)
was cloned in a separate plasmid. After initial pilot tests demonstrated that BenR was
functional in a cell-free environment, we optimized the BenR biosensor by titrating the
DNA concentration of the TF and reporter plasmids.
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Figure 8.2. Calibration of sensor and output modules for benzoate detection. (a) BenR binds to the
Psen Promoter in the presence of benzoate and activates gene expression. Here BenR is cloned in the
pBEAST plasmid (a derivative of pBEST [347]) and driven by a strong constitutive promoter,
OR2-OR1-Pr. The Pg,, promoter is cloned into another pBEAST backbone and drives expression of the
superfolder green fluorescent protein (sfGFP). Because the system operates without a cellular boundary,
multiple plasmids encoding different components of the network can easily be used simultaneously.
Plasmid concentrations can then be fine tuned to identify optimal operating conditions. (b) Optimization
of the BenR sensor and reporter modules. Cell-free reactions of 20 pl containing different concentrations
of the BenR and reporter plasmids were prepared and their response to different concentrations of
benzoic acid were monitored. The white square represents the optimal condition (100 nM reporter and
30 nM BenR plasmid) with the highest relative fluorescence. (see Supplementary Figure S$8.2 and
Supplementary Table $8.1). Reactions were run in sealed 384 well-plates in a plate-reader at 37°C for at
least eight hours. The heat maps represent the signal intensity after four hours. Data are the mean of
three experiments performed on three different days and all fluorescence values are expressed in
Relative Expression Units (REU) compared to 100 pM of a strong, constitutive sfGFP-producing plasmid.
See methods for more details. (¢) Upper panel: The BenR sensor can detect benzoic acid over three
orders of magnitude and at concentrations as low as 1 yM. Shaded area around curves corresponds to
+-SD from the mean of the three experiments. Lower panel: GFP expression in response to the same
range of concentrations of benzoic acid as in the upper panel is easily detectable by eye on a UV table.

One advantage of working in a cell-free framework is that the DNA concentration is
directly controlled by pipetting. As such, the process of finding an optimal DNA
concentration is relatively straightforward: we created a matrix of DNA concentrations
for TF and reporter plasmids between 0 nM and 100 nM and induced these different
cell-free reactions using four different concentrations of benzoic acid: 0 pM, 10 pM,
100 pM, and 1000 uM (Figure 8.2b, Supplementary Table S8.1).

Encouragingly, the system had extremely low background signal in the absence of
benzoic acid, indicating that the P, promoter has very little ‘leakiness’ in a cell-free
environment. When benzoic acid was added to the reaction, the sfGFP output signal
was clearly detectable and fluorescence intensity was correlated with increasing
reporter plasmid concentration. However, the signal reached a plateau for increasing
concentrations of TF plasmid at 30 nM. We hypothesize that this plateau is due to
competition for transcriptional and translational resources between transcription factor
and reporter plasmid. This plateau is also observed in a mathematical model of
cell-free biosensors (method section and Supplementary Figure S$8.1). Based on
these data, we set the optimal plasmids concentrations to 30 nM for the TF plasmid
and 100 nM for the reporter plasmid.

Compared to its in vivo counterpart [240], the cell-free benzoic acid biosensor is faster
(maximum signal reached in four hours, Supplementary Figure $8.2), has a much
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higher sensitivity and dynamic range, and has a maximum fold change of over 200 (vs.
~10-fold in vivo) (Figure 8.2c). These results exemplify the advantages of cell-free
systems for rapidly engineering biosensors with optimal properties.

Expansion of benzoic acid sensor with hippuric acid and cocaine metabolic modules
With the sensor and output modules optimized, we demonstrated the ability of our
system to expand its chemical detection space using different metabolic transducer
modules. HipO is an enzyme from Campylobacter jejuni and CocE is an esterase from
Rhodococcus sp. that convert hippuric acid and cocaine into benzoic acid,
respectively. We cloned each enzyme into the cell-free expression vector and, using
the optimized DNA concentrations of TF and reporter plasmids, titrated different
concentrations of metabolic transducer DNA for a range of inducer inputs (Figure 8.3a,
Supplementary Table S8.2). Interestingly, we observed a clear peak in sfGFP signal
corresponding to a particular concentration effectiveness: 3 nM for HipO and 10 nM for
CocE. We built several mathematical models based on different assumptions that
could reproduce the observed bell-shaped response to enzyme DNA concentration as
well as its shift between the two enzymes (Supplementary Figure S8.3). Based on
these models, we hypothesized that the observed bell-shaped response is likely due to
competition between the different modules, leading to an important and unnecessary
enzyme production at high DNA concentrations that divert resources such as RNA
polymerase, ribosomes, and energy from sfGFP transcription and translation, as well as
generating toxic byproducts. Moreover, we provide evidence that the shifting peak
between the two setups is most likely due to lower expression of CocE (method
section and Supplementary Figure S8.4). Additionally, the model hypothesized that
using a higher TF concentration would necessitate a higher level of metabolic enzyme
without an increase in overall signal, a shift that we subsequently saw experimentally
(method section and Supplementary Figure S8.5).
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Figure 8.3. Expanding the chemical detection space of cell-free biosensors by plugging various
metabolic transducers into an optimized sensor module. (a) Hippurate or cocaine can be detected
using different metabolic transducers. Plasmids encoding the HipO or CocE enzymes, which convert
hippuric acid or cocaine into benzoic acid, were mixed at different concentrations with optimal BenR and
reporter plasmids concentrations as determined in Figure 8.2 (30 nM and 100 nM, respectively). These
reactions were then incubated with increasing concentrations of inducer for at least eight hours. The
heat maps represent the signal intensity after four hours (Supplementary Figure S8.6-7 and
Supplementary Table $8.2). Asterisks denote the optimal DNA concentration for the metabolic module.
Data are the average of three experiments performed on three different days and all fluorescence values
are expressed in Relative Expression Units (REU) compared to 100 pM of a strong, constitutive
sfGFP-producing plasmid. (b) Optimized cell-free biosensors incorporating a metabolic transducer
module exhibit comparable performance to the BenR sensor module (from Figure 8.2c). All data are the
mean of three experiments performed on three different days. Shaded area around curves corresponds
to +-SD from the mean of the three experiments. See methods for more details. Lower panel: GFP

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 1 89



expression in cell-free reactions in response to various concentrations of inducer visualized on a UV
table.

A key observation is that even at very high levels of inducer, there is very little signal in
the absence of DNA encoding the metabolic transducer. These data indicate that the
metabolic enzyme is essential for sensor selectivity and differentiation between
hippuric acid and cocaine from benzoic acid and that they have minimal off-target
binding to BenR. Strikingly, both the hippuric acid and cocaine biosensors exhibit fold
change and detection range highly similar to that of the benzoic acid sensor,
demonstrating the high conversion rate of the metabolic transducer (Figure 8.3b). The
conversion also appears to be extremely fast as no significant difference was observed
in response kinetics with or without the metabolic transducer, although the lower
incubation temperature of the cocaine biosensor showed slightly slower kinetics
(Supplementary Figures S8.2, 6, 7).

Detection of benzoic acid, hippuric acid, and cocaine in complex samples

While the results of our new optimized biosensing were promising, the intended final
environment in which they should operate is far more complex. We thus sought to test
their capabilities for real-world applications. Benzoic acid and sodium benzoate are
widely used food additives for preservation. While classified as ‘Generalized
Recognized As Safe’ (GRAS) by the United States Food and Drug Administration, their
maximal levels in foodstuffs are limited to 0.1%. Additionally, some people respond
poorly to their consumption, particularly patients suffering from chronic inflammation or
orofacial granulomatosis, who are frequently placed on benzoate-free diets by their
physicians [367,368]. Lastly, there is evidence that when benzoates are added to
beverages in the presence of ascorbic acid, they can be converted into low levels of
benzene, a strong carcinogen[369,370]; this reaction is enhanced by increased
temperatures which frequently occur during transportation. In this context, a simple
assay for detecting benzoic acid could be useful.

To test if our benzoic acid sensor could function in a monitoring capacity in the food
industry, we procured several different carbonated orange and energy drinks from a
local supermarket. The nutritional information of each beverage included benzoic acid,
sodium benzoate, or no benzoates. Strikingly, after adding 2 pL of the beverages
directly to 20 pL reactions of our optimized benzoic acid sensor, we were able to
distinguish which beverages contained benzoates with 100% accuracy after only one
hour of incubation (Figure 8.4a, Supplementary Figure S8.8). The beverages were
composed of two categories: carbonated orange drinks and Monster® energy drinks.
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Despite similarities between the non-benzoate ingredients in each class, our cell-free
benzoic acid biosensor rapidly produced sfGFP in beverages with listed benzoate
ingredients with fold changes up to ~180.

While our system has the ability to quickly detect benzoates by directly adding the
beverages to the reaction, we noticed that there was up to 75% inhibition to some of
the cell-free reactions when comparing expression of a constitutive promoter to a
control (Supplementary Figure S8.9). Therefore, to test our sensor’s ability to quantify
benzoates, we performed an experiment with a 1:10 dilution, which showed minimal
reaction interference (Supplementary Figure $8.9), and converted the resulting
fluorescence intensities to concentrations using a calibration curve from a benzoic acid
standard (Supplementary Figure S$8.10). These results were compared against
measurements from liquid chromatography-mass spectrometry (LC-MS) (Figure 8.4b,
Supplementary Table $8.3). Seven of the ten drinks showed very strong agreement
between the quantitative results from our sensor and the LC-MS results. Three of the
beverages (Monster® Zero, Monster® Ultra, and Monster® Ultra Red) had diminished
cell-free values relative to those from LC-MS. Taken together, these results
demonstrate that our sensors can remain functional in commercial products and
rapidly detect and quantify benzoates.

We then wanted to test if our hippuric acid sensor could detect endogenous levels in a
clinical context. Hippuric acid has long been known to be regularly excreted by humans
in urine as the end product of several different aromatic compounds, including
benzoates, that are converted in the liver [371]. While it has been correlated with higher
levels of toluene exposure in some operational conditions[372], following recent
research by Isabella et al. it has recently become an interesting biomarker in a Phase
1/2a clinical trial. In the publication, a synthetic strain of modified E. coli Nissle,
SYNB1618, is used to treat phenylketonuria, a neurotoxic disease characterized by the
inability to process the amino acid phenylalanine [65]. Briefly, the bacteria are
consumed orally where they can convert phenylalanine into frans-cinnamate, which is
subsequently converted to hippuric acid by the liver. In the study, hippuric acid in the
urine is used as a biomarker for treatment efficacy. We thus wanted to test if our sensor
could detect clinical levels of endogenous hippuric acid in human urine. When adding 2
pL of a 1:10 dilution to a 20 pL reaction (1% cell-free reaction concentration) in the
presence of an RNase inhibitor, we found little interference from urine to expression of
a constitutive GFP plasmid relative to the positive control (Supplementary Figure
$8.11). When testing the urine for hippuric acid, we observed little to no response from
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our benzoic acid sensor (without the HipO-expressing plasmid) (Supplementary Table
$8.4), but the complete hippuric acid sensor gave levels that fell within our calibration
curve (Supplementary Figure $8.12). Urinary hippuric acid concentrations estimated
using our cell-free biosensor closely matched the values determined by LC-MS (R? =
0.98, Supplementary Figure S$8.13; Figure 8.4c, Supplementary Table S8.5). These

data are a promising step toward developing cell-free biosensors for biomarker
detection in clinical samples.
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Figure 8.4 Detecting benzoic acid, hippuric acid, and cocaine in complex samples. (a) Cell-free
benzoic acid sensor can detect benzoates in commercial beverages. Addition of an array of different
orange and energy drinks to the optimized benzoic acid biosensor produces up to ~180-fold change
response relative to the negative control after one hour incubation at 37°C. The test showed 100%
specificity and sensitivity to detection of benzoates based on their inclusion in the ingredient label using
a fold-change of 5 as the cut-off point. (b) Benzoic acid sensor is capable of quantifying the
concentration of benzoic acid in different beverages. Beverages were added at 1:10 dilution to cell-free
reactions and the benzoic acid concentration was determined using a calibration curve (Supplementary
Figure S$8.10) after four hours. Results were compared to those determined by LC-MS. (c) Endogenous
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hippuric acid in urine can be quantified with a cell-free biosensor. Clinical urine samples (U1-U6) were
diluted 1:10 and added to the optimized hippuric acid sensor for four hours at 37°C after which
endogenous hippuric acid concentration was determined using a calibration curve (Supplementary
Figure S8.12). Results were compared to those determined by LC-MS. (d) Cocaine can be detected in
clinical urine samples at previously clinically detected concentrations. Cocaine titrations were added to
clinical human urine samples (U1-U6) and cell-free cocaine luciferase-output biosensors and incubated
at 30°C for 8 hours. Subsequently, a luciferase assay was performed to determine the presence of
cocaine. The colored region represents the concentration of cocaine previously measured in human
clinical samples from hospitalized patients (40.13 pg/mL or 118 puM cocaine concentration in urines,
corresponding to a 11.8 pM final concentration in the cell-free reaction- 2 pL urine in a 20 pL reaction)
[873]. All curves are plotted for the mean of three experiments performed on three different days. Error
bars correspond to +-SD from the mean of the three experiments. See methods for more details.

Finally, we aimed to detect cocaine in clinically relevant conditions. Cocaine rapidly
enters the bloodstream after ingestion and is subsequently detectable in the urine for
up to 10 hours[374]. To determine if our system could detect clinically-relevant cocaine
levels, we spiked urine samples with increasing concentrations of cocaine and added 2
ML to 20 pL cell-free reactions with our optimized cocaine biosensor. Our initial
experiment showed small, but detectable sfGFP signal at urinary concentration of 1000
MM, but our system was unable to show adequate fold-change at lower, clinically
relevant concentrations (Supplementary Figure S8.14). We found that cell-free
reactions produce increasing low levels of noise over time in the GFP fluorescence
channel (Supplementary Figure S$8.15) and hypothesized that we could increase our
signal-to-noise ratio by changing our reporter to luciferase. We cloned the firefly
luciferase gene under control of the Py, promoter and in an initial test we indeed
observed an increase in signal-to-noise ratio (Supplementary Figure S.8.16). We then
added increasing cocaine concentrations into six different samples containing our
cell-free cocaine sensor with the luciferase reporter (Figure 8.4d). Five of the six
samples showed strong fold change, with detectable fold changes of 4.3-8.8 at
previous clinically detected cocaine concentrations in urine [373] (40.13 pg/mL or 118
MM cocaine concentration in urine, corresponding to a 11.8 pM final concentration in
the cell-free reaction when using 2 pL urine in a 20 pL reaction). One sample (U3)
showed minimal fold change due to high background signal that was also observed
using the benzoic acid sensor (Supplementary Figure $8.17). As the urine samples
were supplied by subjects from the endocrinology department, it is possible that the
medical condition of this patient results in the presence in their urine of interfering
metabolites that can activate the BenR system. This background signal was minimal
when we detected for hippuric acid in urine, likely because of the urine samples
dilution step (Supplementary Table S$8.4). In conclusion, these data demonstrate that
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our cell-free biosensors can be used to detect clinically relevant levels of drugs and
endogenous metabolites in pure, unprocessed clinical samples.

Discussion

This work demonstrates that we can engineer modular, cell-free biosensors that can be
easily calibrated to have high signal strength and dynamic range and can function in
complex detection environments. Upon engineering a novel cell-free biosensor for
benzoic acid, we show that the system can be scaled by using different metabolic
transducer modules to expand the chemical space that each sensor/reporter pair can
detect. In addition, we provide a three order-of-magnitude titration for each DNA
component to optimize cell-free biosensor performance along with a mathematical
model enabling a better understanding of the parameters governing cell-free
biosensors response which will help future optimisation of such devices. By
demonstrating that these sensors can function in samples from the food and beverage
industry, as well as complex clinical samples such as human urine, we provide an
example for their potential outside the lab in real-world applications. This is the first
time, to our knowledge, that cell-free biosensors have been used to detect
endogenous molecules in unprocessed samples.

Using our workflow, this process should be applicable to a wide range of other
sensor/reporter pairs. One constraint of our system is that the transcription factor must
respond only to the product of the enzymatic reaction and not the substrate. Such
potential crosstalk can easily be checked by running a control reaction without the
metabolic transducer module. We computed that 1205 disease-associated biomarkers
from the Human Metabolome Database (HMDB) could be converted into detectable
molecules by one enzymatic reaction (Supplementary Table S$9.6). Additionally, 64
HMDB metabolites could be transformed into benzoate and thus theoretically
connected via a metabolic transducer to our optimized sensor (Supplementary Table
S$9.7).

Further improvements to our platform could include exploring sample pre-processing
methods that could improve sensor robustness [375,376] together with adaptation into
an off-the-shelf format more amenable to point-of-care applications [54,377]. Also,
while we could detect clinically relevant concentrations of cocaine, this application will
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likely require achieving higher sensor dynamic range, for example through the use of
downstream genetic amplifiers [60].

In summary, by rapidly expanding the number of detectable compounds and remaining
functional even in complex samples, cell-free biosensors using plug-and-play
metabolic transducers could be used to address many challenges such as
environmental detection, drug enforcement, and point-of-care medical diagnostics.
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Methods

Molecular biology

All clones were based on a previously characterized cell-free expression plasmid
(PBEST-OR2-OR1-Pr-UTR1-deGFP-T500 was a gift from Vincent Noireaux [Addgene
plasmid # 40019] [347]). To better facilitate cloning with a range of techniques and any
future component insertion into larger gene circuits, the construct was modified by
adding 40 base pair spacers and an upstream terminator and renamed pBEAST.
Clones were created via Gibson or Golden Gate assembly in DH5aZ1 chemically
competent E. coli where the deGFP was replaced by BenR or HipO. For CocE, the
promoter was changed to another strong constitutive promoter, J23101, and RBS,
B0032. The reporter plasmid for Pg,, used native RBS from Pseudomonas putida and
superfolder-GFP as the output, which was found to give a stronger, faster signal in
cell-free reactions at 37°C. For experiments testing cocaine levels in urine, the sfGFP
output was changed to firefly luciferase via Gibson assembly cloning. DNA for cell-free
reactions was prepared from overnight bacterial cultures using Maxiprep kits
(Macherey-Nagel). Plasmids used in this paper will be available from Addgene.

Extract preparation.

Cell-free E. coli extract was produced using a modified version of existing protocols
[150,151]. An overnight culture of BL21 Star (DE3)::RF1-CBD, E. coli was used to
inoculate 660 mL of 2xYT-P media in each of six 2 L flasks at a dilution of 1:100. The
cultures were grown at 37°C with 220 rpm shaking for approximately 3.5 hours until the
OD 600 = 2.0. Cultures were spun down at 5000 x g at 4°C for 12 minutes. Cell pellets
were washed twice with 200 mL S30A buffer (14 mM Mg-glutamate, 60 mM
K-glutamate, 50 mM Tris, pH 7.7), centrifuging afterwards at 5000 x g at 4°C for 12
minutes. Cell pellets were then resuspended in 40 mL S30A buffer and transferred to
pre-weighed 50 mL Falcon conical tubes where they were centrifuged twice at 2000 x
g at 4°C for 8 and 2 minutes, respectively, removing the supernatant after each. Finally,
the tubes were reweighed and flash frozen in liquid nitrogen before storing at -80°C.

Cell pellets were thawed on ice and resuspended in 1 mL S30A buffer per gram cell
pellet. Cell suspensions were lysed via a single pass through a French press
homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at
12000 x g at 4°C for 30 minutes to separate out cellular cytoplasm. After centrifugation,
the supernatant was collected and incubated at 37°C with 220 rpm shaking for 60
minutes to digest remaining mMRNA with endogenous nucleases [150]. Subsequently,
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the extract was recentrifuged at 12000 x g at 4°C for 30 minutes, and the supernatant
was transferred to 12-14 kDa MWCO dialysis tubing (Spectrum Labs; Spectra/Por4)
and dialyzed against 2 L of S30B buffer (14 mM Mg-glutamate, 60 mM K-glutamate, ~5
mM Tris, pH 8.2) overnight at 4°C. The following day, the extract was re-centrifuged at
12000 x g at 4°C for 30 minutes. The supernatant was optionally concentrated using a
10,000 MWCO centrifuge column (GE Healthcare; Vivaspin20) based on total protein
levels from a Bradford assay (ThermoScientific) to obtain concentrations above 15
mg/mL, aliquoted, and flash frozen in liquid nitrogen before storage at -80°C.

Cell-free sensor optimization reactions

Cell-free reactions were prepared by mixing 33.3% cell extract, 41.7% buffer, and 25%
plasmid DNA, any inducer, and water. Buffer composition was made such that final
reaction concentrations were as follows: 1.5 mM each amino acid except leucine, 1.25
mM leucine, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL
tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM
spermidine, 30 mM 3-PGA, and 2% PEG-8000. Additionally, the Mg-glutamate (0-6
mM), K-glutamate (20-140 mM), and DTT (0-3 mM) levels were serially calibrated for
each batch of cell-extract for maximum signal. Benzoic acid, hippuric acid, and
cocaine hydrochloride were purchased from Sigma-Aldrich. Permission to purchase
cocaine hydrochloride was given by the French drug regulatory agency (Agence
Nationale de Sécurité du Médicament et des Produits de Santé) to allow the
development of a new biosensor. Inducers were dissolved in ethanol and final reactions
contained 0.5% ethanol for all inducer concentrations including the negative control.
Reactions were prepared in PCR tubes on ice and 20 pL were transferred to a black,
clear-bottom 384 well plate (ThermoScientific), sealed, and the reaction was carried out
in a plate reader (Biotek; Cytation3 or Synergy HTX) to measure both endpoints and
reaction kinetics. The subsequent data were processed and graphs created using
custom Python scripts or Microsoft Excel. Reactions for the representative images in
Figure 9.2c and Figure 9.3b were incubated in PCR tubes at 37°C for four hours and
imaged on a UV table with either a Sony a6000 camera (benzoic and hippuric acid
sensors) or a cell phone camera (cocaine sensor) and background subtracted with
Adobe Photoshop.

Cell-free reactions with commercial beverages or human urine

Cell extract and buffer conditions were maintained from those used in optimization
reactions. For the benzoic acid beverage sensor, 10% reaction volume of either 1x or
0.1x (diluted in water) of each beverage was added, in addition to 30 nM pBEAST-BenR
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and 100 nM pBen-sfGFP plasmids to 20 yL reactions containing extract and buffer. All
beverages were purchased at a local supermarket. For the hippuric acid urine sensor,
each reaction contained 10% volume of 0.1x urine, pre-diluted in water. Human urine
samples were obtained from the Endocrinology Department at the University of
Montpellier in accordance with ethics committee approval (#190102). Additionally, each
reaction was supplemented with 0.8 U/pL of murine Rnase Inhibitor (New England
Biolabs).

Benzoic acid and hippuric acid quantification from cell-free biosensors

In order to quantify fluorescent outputs from our cell-free benzoic and hippuric acid
biosensors in complex samples as a measurement of concentration, we created
calibration curves by adding a range between 0 pyM and 1000 pM of inducer
concentrations to 20 L cell-free reactions. Hippuric acid reactions were supplemented
with 0.8 U/uL RNase inhibitor to match reaction conditions. The subsequent calibration
curves were fit to a Hill plot in Python using: y = (v,., ~ X)/(K;" + X"), where y is the
fluorescence intensity, x is the inducer concentration, vy, . is the maximum
fluorescence intensity, K, is the concentration of ligand needed for half-maximum
binding occupation at equilibrium, and n is the Hill slope. Commercial beverage
benzoic acid and urine hippuric acid concentrations were then calculated by using the
fluorescent values from those experiments as y and solved for the inducer
concentration x. Undiluted concentrations were increased by a factor of 100 to account
for the 1:10 sample dilution and 10% reaction volume contribution (i.e. 2 pL sample in
a 20 pL total reaction volume).

Chemical analysis of beverage and urine by LC-MS

The following procedure was developed for detection of benzoic and hippuric acid by
UHPLC-MS / MS. The analysis was carried out using an LCMS-8050 mass
spectrometer (Shimadzu, Japan) coupled to a NexeraX2 UHPLC chain (Shimadzu,
Japan). The column is a Nucleodur pyramid (1.8 pm, 50 x 2.0 mm, Macherey-Nagel)
maintained at 40°C. The eluents used were: H,O with 0.1% formic acid (A), acetonitrile
with 0.1% formic acid (B). The flow rate was set to 0.5 mL/min. The injection volume
was 5 pl and all the analytes were eluted over a 5 minute binary gradient with a starting
composition percentage of 100/0 (A / B). The LCMS-8050 is a three-quadrupole mass
spectrometer with a heated electrospray ionization (ESI) source. The analytes were
detected in negative MRM mode. The samples were diluted by 20 in water before
injection. Dihydrobenzoic acid was used as an internal standard.
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Cell-free reactions detecting cocaine via luciferase output

To test our luciferase-output cocaine biosensor, 20 pL cell-free reactions containing
CocE, TF, and reporter plasmid concentrations, 0.8 U/uL RNase inhibitor, cocaine
inducer gradient, 2 pL of undiluted human urine samples, extract and buffer were
incubated at 30°C for 8 hours. Samples were then transferred to white 96-well plates
and 50 pL of Luciferase Assay Reagent (Promega) was added and mixed by manual
orbital agitation. The plates were sealed and luciferase levels were measured in a plate
reader two minutes after addition of the reagent. Fold change was calculated relative to
the 0 uM cocaine negative control.

Reaction models

Coarse-grained modeling was performed using ordinary differential equations,
simulated using the R software. Briefly, the model combines Michaelis-Menten kinetics
for the transducer module and resource competition for RNA polymerases and
ribosomes to account for varying DNA concentration effects. Michaelis-Menten
equations are used for promoter activation. Production of toxic byproducts as well as
energy consumption for mRNA production were also included. Full model derivation
can be found in the following sections.

SensiPath Metabolic Space Analysis

In order to probe how many biosensors could be engineered using our workflow, we
downloaded the HMDB database [378] as of 25/05/2018. A set of 1445 biomarkers,
with a molecular weight < 500 amu, was compiled for which at least one disease was
identified (see Supplementary Table 8).

Next, we used the RetroPath algorithm [45] embedded in the SensiPath web server
[46]. RetroPath finds metabolic pathways linking analytes (source set) to effectors (sink
set), i.e. small molecules activating or inhibiting transcription factors. Taking as a sink
set of 727 effectors taken from a database we recently released [47], RetroPath was
run using 20845 metabolic reaction rules extracted from MetaNetX [379]. We found that
192 out of 1445 biomarkers were effectors and could thus directly be detected by
transcription factors. We also found that 1205 out of 1445 biomarkers could be
transformed into 392 effectors through ~80000 one-step pathways. We observed that
several biomarkers could be transformed into the same effector while other biomarkers
could be transformed into different effectors (see Supplementary Table 8). Finally, we
found that ~25% of biomarkers were shared by at least two diseases. Therefore, while
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one can develop biosensors and repurpose them for several diseases, biosensors can
also be designed for a panel of biomarkers specific to a given disease. Altogether
these results show a great potential for our workflow to engineer many biosensors
detecting several pathological biomarkers.

We also probed to which extend our benzoate sensor could be used to detect various
biomarkers. To that end, we computed how many HMDB metabolites could be
connected to benzoate via RetroPath applying reverse reaction rules (computed from
MetaNetX) to benzoate. We found that 64 HMDB metabolites could be transformed
into benzoate via a one-step enzymatic transformation (see Supplementary Table 8.9).

Mathematical Model of Cell-Free Biosensors

We built a mathematical model to gain a better understanding of the behavior of our
system using the metabolic transducer module. Our aim was to derive a relatively
coarse-grained model that could recapitulate key behaviors observed in this dataset.
The first step was to model the TF/reporter DNA assay (Supplementary Figure S8.1).
We then analyzed the behaviors we wanted to reproduce in the hippurate adaptor
dataset, which included: 1) increasing concentrations of hippurate led to increased
signal; 2) at low HipO DNA concentrations, increasing enzyme DNA concentrations led
to higher signal; and 3) at high HipO DNA concentrations, the system reaches a peak
where increasing enzyme DNA concentration leads to lower signal.

Details of the full model derivation are available in the Appendix, and scripts are
available on Github at https://github.com/brsynth. Summary of the main model
features are given here:

k., * inducer
dbenzoate __ enz w

dt inducer + K,
dinducer k., . * inducer
dt enz x inducer + K,
TF =TF 5 —la=ode— +(.0005

activated induc
benzoatet K ;

_ TF e
&= TF—W for BenR
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where the variables are defined as follows:

ke Ky » €NZ Enzyme Michaelis-Menten constants, enzyme concentration

TF, TF uivated Unactivated transcription factor, transcription factor activated by benzoic acid

K jinducer | activated Hill activation constant for the TF activation by benzoic acid/ promoter activation by TF
€ Fraction of activated promoter for induced or constitutive promoters

vy, ® mRNA and protein production rates

K, k Affinity of the RNAP/ribosome for the promoter/RBS.

X,y Free RNAP and ribosome

tox, R ana Accumulated toxic by-product, available resources for mRNA production

The rest of the notation is standard, with three species for mRNA and protein
considered: the enzyme, the transcription factor, and the sfGFP. Spontaneous
transformation is also included in the inducer production rate for cocaine.

Increasing benzoic acid leading to increased signal was expected and we modeled this
using Michaelis-Menten [380] equations for the activation of the transcription factor
and of the promoter. The fact that the signal was low at low TF DNA concentration and
increased with increasing TF DNA concentration meant that increasing enzyme
concentration led to increased signal, which would not happen if all reactions were
catalyzed on very fast time scales (i.e. the enzyme concentration would not matter). We
therefore had to include enzyme kinetics in our model. At high DNA concentrations,
resource competition effects meant that too many resources were diverted towards
enzyme production instead of GFP production, which led to a decrease in signal. We
also decided, as we know these effects exist in cell-free systems, to include resource
depletion and production of toxic byproducts that would inhibit reactions in our model.
For enzyme kinetics, we used the Michaelis-Menten equation [380] with parameters
obtained from Brenda, whereas we used the framework developed by Gyorgy et al. for
modeling resource competition, based on competition between DNA and mRNA for
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RNAP and ribosomes, respectively [381]. More details on the methods employed, as
well as a full model derivation, are presented in Appendix.

The results obtained for HipO-hippurate heatmap are presented in Supplementary
Figure S8.3. No parameter fitting was performed, and minimal parameter tuning was
involved, as most parameters were taken from or derived from the literature. Constants
linked to resource depletion or toxic byproduct production were manually chosen so as
to best capture the data, as well as ribosome or RNAP quantity. This, however, only
quantitatively changed the data, but did not change the data qualitatively when
parameters remained in a realistic range. Therefore, we managed to qualitatively
reproduce the three effects we wanted to account for with this model, supporting our
hypothesis regarding the main factors underpinning the biological effects in our HipO
data.

Next, we decided to apply our model to the CocE data. We changed the enzyme
kinetic parameters, as well as transcription and translation rates linked to the length of
the gene; however, this failed to reproduce our experimental data, as significant signal
was obtained for CocE DNA = 0.1 nM (data was very similar to HipO, despite the
above-mentioned parameter changes, results not shown). We hypothesized that this
was because the CocE promoter was weaker (~3x at four hours, Supplementary
Figure S$8.4). This shifted the peak but significant signal was still obtained for CocE
DNA = 0.1 nM. However, thanks to the model, we postulated another cause due to a
weaker translation initiation rate, as we were using different RBSs for the two enzymes.
Using the RBS calculator, which takes context into account, we found that CocE
translation initiation rate was predicted to be much slower than HipO initiation rate,
which we transcribed in our model as a weaker affinity of the RBS for ribosomes [382].
Results obtained through this strategy are presented in Supplementary Figure S8.3.
Using this RBS affinity change and the changed promoter strength, we managed to
capture two of the three differences in the HipO and CocE datasets: signal for low
CocE value starts at higher enzyme DNA concentrations (which we attribute to lower
enzyme production due to a weaker promoter and putatively weaker RBS); and signal
at 100 nM is higher as there are fewer resources diverted into unnecessary enzyme
production (or less toxicity and resource exhaustion by unnecessary enzymes).
However, we do not capture quantitative values, which could be due to the fact that
measurements were performed in a different set-up or that another component our
model is lacking. Moreover, the CocE experiment was performed at 30°C as it is the
optimal temperature for this enzyme. Our modeling assumption was that this impacted
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only kinetic parameters, which is therefore included in our model. However, it might
also affect the benzoic acid reporter which the model does not account for.

This shows that with our model, changing only parameters linked to the new enzyme
sequence, we accurately captured the differences we aimed to capture in the two
setups. Therefore, our model, without any parameter fitting and minimal parameter
tuning within reasonable ranges, achieves satisfying qualitative reproduction of our
data. Despite these successes, our model has limitations.

We can see that our model does not adequately capture the resource competition or
exhaustion at enzyme concentration of 100 nM (although there is indeed no signal in
our model if we increase the concentration of the simulated DNA to 300 nM, results not
shown). To correct this limitation, including more resource exhaustion could be the
answer. Moreover, although we only tried to qualitatively capture the data, the ease of
explanation of CocE data after preliminary work on HipO only led us to suggest
improvements that could be made to explain the data quantitatively: including GFP
maturation kinetics to become fluorescent, as well as including parameters from the
plate reader. However, complete quantitative modeling seems unrealistic on cell-free
systems based on extracts rather than individual components, as a number of
parameters still vary from batch to batch and will therefore hardly be realistically
estimated for predictive modeling of the time course of the data produced on those
setups without complementary experiments on each batch to determine
batch-dependent relevant parameters. Qualitative predictions seem more relevant in
that type of set-up at the moment. Moreover, as long as no definite hypothesis
emerges as to why cell-free systems stop functioning (amino acid or nucleotide
depletion, energy depletion, toxic byproduct accumulation or any other, as well as any
combination of those hypotheses), different models encompassing these hypotheses
will be derived mathematically, and capture some effects in the data, but no definite
answer on what modeling strategy is the best can be found before this question is
experimentally answered.

Model Prediction Experimental Demonstration

In order to demonstrate that the predictions made by our model were trustworthy, and
to test how altering the optimal TF/reporter DNA concentrations determined in the
benzoic acid sensor affects the metabolic hybrid sensors, we designed a simple
experimental verification. The model predicted that increasing the TF DNA
concentration from our optimised concentration (30 nM) to another concentration that
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also gave good fold change from our initial TF reporter DNA assay (100 nM) would
result in a shift of the dose-response curve of fluorescence to high transducer DNA
concentration. Indeed, the unnecessary resources consumed to increase TF
production would be diverted from the enzyme production that is necessary for
efficient conversion of the inducer to benzoic acid. This effect is competing with the
increased signal that could come from having higher TF levels, but the model predicts
it to be the dominant effect, which was experimentally demonstrated using 1000 uM
hippuric acid and varying the HipO concentration in two set ups, with TF
concentrations either at 30 nM or 100 nM, while keeping the reporter concentration at
100 nM (Supplementary Figure S$89.5). This verification leads us to have greater
confidence in model predictions on effects linked to resource competition.

Chemical identifiers
In order to allow easier parsing of our article by bioinformatics tools, we provide here
the identifiers of our chemical compounds:

Benzoic acid: InChl=1S/C7H602/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)

Hippuric acid:
INnChl=1S/C9H9NOS3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2,(H,10,13)(H,11,12)
Cocaine:
InChl=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-16(19)11-6-4-3-
5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1

Code availability
Simulation scripts are available at https://github.com/brsynth. Custom python scripts
used to process data are available upon request to the authors.
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Supplementary figures and tables
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Supplementary Figure S8.1. Modeling titration of transcription factor and reporter plasmids.
Conditions for reporter and BenR DNA concentrations used in Figure 2 were modeled using ordinary

differential equations to capture qualitative trends in the data. Simulations were rescaled to use the same
scale as data. The heatmap represents GFP model signal after four hours.
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Benzoic Acid Sensor Kinetics
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Supplementary Figure S8.2. Time course of the benzoic acid biosensor response to varying
concentrations of inducer. Kinetics of optimized benzoic acid sensor at 37°C, where the TF plasmid
concentration was 30 nM and the reporter plasmid concentration was 100 nM. Data are the average,
with standard deviation, of three technical repeats from three experiments performed on three different
days and all fluorescence values have relative expression units (REU) compared to the four hour level for
100 pM of a strong, constitutive sfGFP-producing plasmid. Fold change measurements were taken from
the four hour time point.
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Supplementary Figure S8.3. Modeling metabolic transducer behavior for HipO and CocE. Hippurate
or cocaine can be detected using different metabolic transducers. Conditions for inducer and DNA
concentrations used in Figure 8.3 were modeled using ordinary differential equations to capture
qualitative trends in the data. Simulations were rescaled to use the same scale as data. The heatmap

represents GFP model signal after four hours.
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Supplementary Figure S8.4. Superfolder-GFP expression with J23101 and pBEST promoter
(OR2-OR1-Pr). Expression levels of J23101 and OR2-OR1-Pr promoters were compared in a cell-free
reaction to provide comparative strength data for our computer model. Reactions were conducted at 6.5
ng/pL at 37°C for fifteen hours and data at the four hour time point showed that J23101 is approximately
three times weaker than OR2-OR1-Pr in our cell-free system.
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Supplementary Figure S8.5. Model-predicted shift in HipO concentration for peak biosensor signal
at high concentrations of TF plasmid and inducer. Increasing TF plasmid concentration results in a
right-shift of HipO plasmid concentration for optimal performance. Left panel: Model calculations for
sfGFP output for a range of pBEST-HipO concentrations for TF plasmid concentrations at 30 nM and
100 nM. Right panel: Experimental results to examine if the same right-shift could be seen
experimentally. Results are the mean from three experiments on three different days and error bars
represent the standard deviation. For all experiments and model calculations, reporter plasmid
concentration was fixed at 100 nM and a hippurate inducer concentration of 1000 uM was used. All
fluorescence values have relative expression units (REU) compared to the four hour level for 100 pM of a

strong, constitutive sfGFP-producing plasmid.
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Hippuric Acid Sensor Kinetics
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Supplementary Figure S$8.6. Time course of hippuric acid biosensor response to varying
concentrations of inducer. Kinetics of optimized hippuric acid sensor at 37°C, where the HipO plasmid
concentration was 3 nM and the TF and reporter plasmids were maintained at the same concentrations
as the optimized benzoic acid sensor (30 nM and 100 nM, respectively). Data are the average, with
standard deviation of three experiments performed on three different days and all fluorescence values
have relative expression units (REU) compared to the four hour level for 100 pM of a strong, constitutive
sfGFP-producing plasmid. Fold change measurements were taken from the four hour time point.
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Cocaine Sensor Kinetics
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Supplementary Figure S$8.7. Time course of the cocaine biosensor response to varying
concentrations of inducer. Kinetics of optimized cocaine biosensor at 30°C, in which the CocE plasmid
concentration was 10 nM and the TF and reporter plasmids were maintained at the same concentrations
as the optimized benzoic acid sensor (30 nM and 100 nM, respectively). Data are the average, with
standard deviation of three experiments performed on three different days and all fluorescence values
have relative expression units (REU) compared to the four hour level for 100 pM of a strong, constitutive
sfGFP-producing plasmid. Fold change measurements were taken from the four hour time point.
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1x Beverage Benzoic Acid Sensor Kinetics
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Supplementary Figure S$8.8. Time course of the benzoic biosensor response to 1x and 0.1x
beverages. Kinetics of sfGFP expression at 37°C using our optimized benzoic acid biosensor to detect
benzoates in commercial beverages. The top panel depicts kinetics in response to addition of 2 pL of
unaltered beverage to a 20 pL cell-free reaction. The bottom panel depicts kinetics after the samples
were first diluted 1:10 in water before being added to the reaction. ‘Orangina Original’ and ‘Monster
Original’ include sodium benzoate and benzoic acid, respectively, in their list of ingredients. ‘Monster
The Doctor’ lists no benzoates in the ingredients. Water was used in place of the beverage for the
negative control. Data depict the mean of three experiments conducted on three different days and error
bars represent the standard deviation. Fluorescence intensity y-axis scale was adjusted for the weaker
signal dilution experiment to enable adequate visualization of the kinetics.
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Interference of 1x Drinks in GFP Production
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Interference of 0.1x Drinks in GFP Production
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Supplementary Figure S8.9. Interference of 0.1x and 1x beverages on cell-free reaction with
constitutive sfGFP plasmid. Ten-fold dilution of inducing beverage in water greatly reduces their
interference in cell-free reactions. 2 pL of either 1x (top panel) or 0.1x (bottom panel) beverages were
added to 20 pL cell-free reactions containing 10 nM of the strong constitutive GFP plasmid
pBEAST-sfGFP. Fluorescence intensities at four hours were normalized to a negative control containing
water instead of the commercial beverage. Data are mean values from three experiments on three
different days and error bars represent the standard deviation.
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Supplementary Figure S$8.10. Hill plot fit of a standard gradient of benzoic acid to calibrate sensor.
A standard gradient of benzoic acid concentration was added to our optimized benzoic acid sensor at
37°C for four hours. The fluorescence intensity values were fit to a Hill plot function in order to convert
fluorescence measurements of benzoates in beverages into sample concentration. The data are the
mean of three experiments on three different days and error bars represent the standard deviation.
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Interference of 0.1x Urine in GFP Production
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Supplementary Figure S8.11. Interference of human urine on cell-free reaction with constitutive
sfGFP plasmid. Ten-fold dilution in urine in the presence of an RNase inhibitor minimizes interference of
human urine on cell-free production. Urine samples from six patients (U1-U6) were diluted 1:10 in water
and 2 pL were added to 20 pL cell-free reactions (1% final concentration) containing 10 nM of the strong
constitutive GFP plasmid pBEAST-sfGFP and 0.8 U/uL of a murine RNase inhibitor. Fluorescence
intensities at four hours were normalized to a negative control containing water instead of urine. Data are
mean values from three experiments on three different days and error bars represent the standard
deviation.
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Supplementary Figure $8.12. Hill plot fit of a standard gradient of hippuric acid to calibrate sensor.
A standard gradient of hippuric acid concentration was added to our optimized hippuric acid sensor with
0.8 U/uL of a murine RNase inhibitor at 37°C for four hours. The fluorescence intensity values were fit to
a Hill plot function in order to convert fluorescence measurements of hippuric acid in urine samples into
sample concentration. The data are the mean of three experiments on three different days and error bars
represent the standard deviation.
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Supplementary Figure $8.13. Correlation between cell-free biosensor and LC-MS measurements
of endogenous hippuric acid levels in human urine. Quantified cell-free biosensor values of hippuric
acid measurement were determined using a Hill plot fit to our standard curve (Supplementary Figure
$§9.12) and cell-free data are the mean of three experiments on three different days (error bars represent
standard deviation). LC-MS measurements are from a single measurement. R? value was calculated by a
linear regression fit.
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Supplementary Figure S8.14. Detection of cocaine spiked into clinical urine samples with sfGFP
output module. A standard gradient of cocaine hydrochloride was added with 2 pL of a human urine
sample to 20 pL cell-free reactions containing our optimized cocaine biosensor with 0.8 U/uL of a murine
RNase inhibitor and incubated at 30°C for 12 hours. Fold change was calculated relative to the 0 pM
cocaine inducer. Data are from a single pilot experiment.
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Supplementary Figure $8.15. Cell-free reactions accumulate autofluorescent products in the GFP

channel even in the absence of DNA. Data are from one 20 L cell-free reaction containing only buffer,
extract, and water incubated at 37°C for 12 hours.
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Supplementary Figure S$8.16. Use of firefly luciferase as an output module enhances benzoic acid
sensor fold change. The firefly luciferase gene was cloned under the Py, promoter and added to 20 pL
cell-free reactions at the same plasmid concentrations previously used with sfGFP (TF = 30 nM; Reporter
= 100 nM). Reactions were incubated at 37°C for eight hours and subsequently luciferase activity was
measured on a plate reader after addition of 50 pL luciferase assay reagent. Data (purple line) was
normalized to the 0 uM benzoic acid concentration and are from a single pilot experiment. Superfolder
GFP curve (green line) is from Figure 2c and used as visual comparison.
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Supplementary Figure S$8.17. Comparison of benzoic acid and cocaine biosensor expression in
response to urinary cocaine gradient. A standard gradient of cocaine hydrochloride was added with 2
pL of human urine sample to 20 pL cell-free reactions containing either our optimized benzoic acid
sensor or cocaine sensor with 0.8 U/uL RNase inhibitor as in Figure 8.4d. After incubated at 30°C for
eight hours, the samples were transferred to white 96-well plates and 50 pL of luciferase assay reagent
was added. The plates were subsequently read on a plate reader two minutes after adding the reagent
and luciferase measurements in arbitrary units (AU) are shown above for both the benzoic acid sensor
(top panel) and cocaine sensor (bottom panel). Data are mean values from three experiments on three
different days and error bars represent the standard deviation.
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[Reporter Plasmid] (nM) 0 pM Benzoic Acid
100| 0.197 £0.023 | 0.200+0.013 | 0.201 £0.018 | 0.195+0.027 | 0.202 +0.027 | 0.200+0.023 | 0.195+0.034 | 0.177 £ 0.022
30] 0.197 +0.004 | 0.192 + 0.010 | 0.187 4+ 0.027 | 0.190+0.018 | 0.181 +0.013 | 0.188+0.023 | 0.193 +0.029 | 0.186 +0.018
10| 0.169 +0.011 | 0.170+ 0.012 | 0.159 + 0.015 | 0.163 +0.010 | 0.169 +0.014 | 0.187+0.026 | 0.183 +0.026 | 0.189 +0.029
3] 0.152 £0.007 | 0.153£0.012 | 0.151+0.016 | 0.146+0.007 | 0.155£0.008 | 0.179+0.024 | 0.194 £0.034 | 0.188 £ 0.024
1| 0.142 £0.005 | 0.144 £ 0.009 | 0.141%0.014 | 0.140£0.012 | 0.150 +0.010 | 0.167+0.014 | 0.188 £+0.029 | 0.177 £0.021
0.3| 0.143 £0.015 | 0.134+ 0.008 | 0.145+0.015 | 0.145+0.014 | 0.151+0.014 | 0.171+0.021 | 0.187 +0.019 | 0.186 +0.027
0.1 0.146 +0.005 | 0.148 + 0.010 | 0.141+0.010 | 0.137+0.018 | 0.157 +0.022 | 0.165+0.011 | 0.196 +0.030 | 0.179 + 0.021
0| 0.150 £0.010 | 0.150 + 0.015 | 0.143 +0.015 | 0.146+0.014 | 0.147 +0.012 | 0.177+0.023 | 0.197 +0.011 | 0.189 +0.018
0 0.1 0.3 1 3 10 30 100 [TF Plasmid] (nM) |

[Reporter Plasmid] (nM) 10 uM Benzoic Acid
100 0.196+0.018 | 0.199+0.014 | 0.198 £0.015 | 0.283+0.036 | 0.714 £0.145 | 4.583+0.839 | 8.034 £0.361 | 7.445+0.734

30} 0.187 £0.007 | 0.185+0.016 | 0.188 +0.010 | 0.241+0.016 | 0.530£0.124 | 3.114 £ 0.960 | 4.749 + 0.609 | 4.894 +1.405

10| 0.174 +0.014 | 0.168 + 0.009 | 0.161 +0.012 | 0.185+0.022 | 0.322 +0.067 | 0.825+0.204 | 1.892 +0.046 | 2.006 + 0.310

3] 0.147 £0.004 | 0.143 + 0.008 | 0.145+ 0.007 | 0.153+0.013 | 0.207 +0.022 | 0.352+0.014 | 0.661+0.047 | 0.826 +0.063

1] 0.145 +£0.010 | 0.142 £ 0.014 | 0.135+0.008 | 0.137+0.010 | 0.166 £0.022 | 0.253+0.036 | 0.335£0.023 | 0.386 £ 0.030

0.3] 0.146+0.013 | 0.142+0.009 | 0.147 £0.015 | 0.138+0.005 | 0.149+0.018 | 0.180+0.018 | 0.243 £0.011 | 0.247 +0.013

0.1] 0.144 +0.013 | 0.139+0.011 | 0.134+0.014 | 0.132+0.014 | 0.144 +0.020 | 0.176+0.006 | 0.216 +0.009 | 0.215 +0.019

0] 0.148 +0.006 | 0.141+0.012 | 0.143 +0.019 | 0.143+0.009 | 0.148 +0.017 | 0.186+0.012 | 0.198 +0.018 | 0.205 +0.014

0 0.1 0.3 1 3 10 30 100 [TF Plasmid] (nM) |

[Reporter Plasmid] (nM) 100 uM Benzoic Acid
100 0.196 +0.017 | 0.230+ 0.010 | 0.402 +0.029 | 2.128 +0.171 | 8.453 +1.804 [23.268 + 1.200|28.299 + 4.737 | 28.584 +5.207

30 0.188£0.017 | 0.205+0.010 | 0.373£0.009 | 1.454+0.190 | 6.325 £1.350 | 19.134 + 1.013 | 23.251 £ 3.040| 19.890 + 2.750

10| 0.166 £0.011 | 0.186+ 0.013 | 0.284 £0.004 | 0.913+0.037 | 2.508 £0.297 | 4.844+0.303 | 7.614 £0.214 | 8.724 +1.168

3] 0.156 £+0.014 | 0.145+0.012 | 0.174+0.012 | 0.307+0.025 | 0.873 +0.088 | 1.545+0.087 | 2.110+0.131 | 2.819 + 0.440

1] 0.144 +0.003 | 0.143+0.003 | 0.134 +0.019 | 0.166 +0.007 | 0.332 +0.035 | 0.588+0.042 | 0.769 +0.086 | 0.957 +0.106

0.3] 0.148 +0.011 | 0.133 +0.006 | 0.136 + 0.007 | 0.143+0.012 | 0.189 +0.016 | 0.297 + 0.032 | 0.329 +0.016 | 0.390 * 0.006

0.1} 0.145+0.007 | 0.140+0.016 | 0.132£0.011 | 0.137+0.003 | 0.162 £0.024 | 0.200+0.012 | 0.225£0.030 | 0.258 £0.029

0] 0.154 £0.021 | 0.144+0.014 | 0.141+£0.019 | 0.146£0.018 | 0.145 +0.016 | 0.168+0.017 | 0.184 £0.026 | 0.196 + 0.026

0 0.1 0.3 1 3 10 30 100 [TF Plasmid] (nM) |

[Reporter Plasmid] (nM) 1000 uM Benzoic Acid
100 0.205+0.008 | 0.257 +0.002 | 0.624 +0.085 | 3.329+0.575 |12.805 +0.931 [ 27.240 £ 3.315|32.983 £ 6.468 | 33.464 £ 4.077

30] 0.195+0.017 | 0.251 +0.012 | 0.553 +0.047 | 2.407+0.219 | 9.353 +1.242 | 21.718 + 2.330| 25.349 + 2.320|21.771 +4.279

10| 0.178 £0.005 | 0.192 + 0.019 | 0.390+0.008 | 1.257+0.186 | 3.054 £0.262 | 5.401+0.233 | 8.547 +0.270 | 10.253 +1.928

3] 0.163 £0.024 | 0.152 £ 0.008 | 0.184 £ 0.014 | 0.370£0.023 | 1.103 +0.072 | 1.683+0.084 | 2.282 +0.253 | 3.285+0.778

1] 0.139£0.010 | 0.139+0.011 | 0.141+0.010 | 0.171£0.010 | 0.386 £0.038 | 0.666+0.057 | 0.799 £+ 0.086 | 1.087 £0.322

0.3] 0.141 +£0.008 | 0.137+0.012 | 0.128 £0.007 | 0.146+0.007 | 0.194 £0.021 | 0.298+0.026 | 0.351 +0.016 | 0.424 £ 0.034

0.1} 0.146 +0.020 | 0.128 + 0.011 | 0.141 +0.015 | 0.135+0.013 | 0.151 +0.004 | 0.205+ 0.013 | 0.238 + 0.015 | 0.273 +0.021

0] 0.137 £0.017 | 0.134+0.013 | 0.136+0.011 | 0.123+0.012 | 0.137 +0.017 | 0.164+0.018 | 0.192 +0.032 | 0.208 +0.024

0 0.1 0.3 1 3 10 30 100 [TF Plasmid] (nM) |

Supplementary Table S$8.1. Fluorescence results from calibration of TF and reporter plasmids.
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[Hippuric Acid] (um)
1000 3.418+0.937 37.338 £4.207 42.286 +2.880 44.845 + 1.976 44.592 + 1.666 31.485+7.517 18.732 £3.113 2.611+0.698

500 1.823+1.184 34.331 +3.957 37.399 +2.495 43.171+0.853 43.814 +1.988 34.240 + 2.989 15.917 +2.386 2.314 + 0.686

200 0.420+0.010 32.865 +4.769 36.282 +1.553 41.395 + 1.847 40.453 + 3.345 29.809 + 5.084 13.566 +3.224 1.808 + 0.578

100 0.299 + 0.022 29.140 £5.284 33.189 £3.416 36.347 £ 3.867 34.785 + 5.206 25.818 + 4.628 10.590 £3.103 1.256 + 0.487

50| 0.282+0.022 24.886 £5.175 27.684 £4.226 28.876 £4.443 27.634 £ 4.623 19.913 £ 6.594 7.083 £2.380 0.809 £ 0.265

20] 0.267 +0.019 12.607 £3.131 14.963 +4.850 13.064 + 3.845 13.148 + 3.870 8.451 +3.902 2.755+1.121 0.345 +0.100

10| 0.247 +0.026 6.187 +2.189 8.191 + 3.457 6.260 + 1.939 6.573 +1.744 3.319+1.127 1.330 £ 0.549 0.251 +0.053

5| 0.235+0.032 2.157 +0.793 2.129 + 0.697 1.600 +0.339 2.528 +0.482 1.198 +0.365 0.456 +0.150 0.206 + 0.042

2| 0.236+0.031 0.534 +0.100 0.588 + 0.132 0.508 £ 0.111 0.453 + 0.090 0.363 +0.077 0.225 +0.047 0.184 +0.032

1] 0.24410.031 0.323 £0.027 0.32510.032 0.322 £ 0.045 0.296 + 0.046 0.239 £0.044 0.192 £0.039 0.177 £ 0.036
0.5] 0.256+0.028 0.283 +0.008 0.269 + 0.022 0.262 + 0.034 0.255 + 0.044 0.213 +0.050 0.196 +0.039 0.185 + 0.040
0.264 + 0.021 0.268 +0.021 0.266 + 0.020 0.246 + 0.039 0.244 + 0.042 0.210 +0.037 0.195 + 0.045 0.179 + 0.040
0 0.1 0.3 1 3 10 30 100 [HipO Plasmid] (nM)l

[Cocaine] (M)
1000] 24.083 +12.948 24.127+1.216 56.984 + 6.055 80.445+11.017 | 94.253 +13.664 | 107.991 + 18.193 | 105.540 + 15.864 | 89.035 + 12.908
500| 14.616+10.917 15.654 + 1.740 54.427+7.990 | 80.311+11.604 | 95.633 +16.476 | 107.334 + 18.623 | 102.870 + 15.567 | 91.222 + 14.606
200] 6.260 % 4.509 8.904 £ 0.716 48.761 + 5.815 76.948 +11.223 | 95.171 +16.311 | 106.021 + 19.621 | 103.877 +17.949 | 85.047 + 14.092
100] 5.493£5.826 6.856 + 2.948 43.217 £5.932 73.683 £ 11.207 | 86.946 +15.755 | 99.351+17.942 | 98.562+17.365 | 81.615 + 14.440
50| 5.497+6.513 4.600 +1.452 35.109 + 6.509 69.859+11.171 | 88.033 +13.621 | 95.244+13.512 | 88.080+11.762 | 64.205 +12.038
20| 1.956+1.337 1.803 + 0.205 24.087 +6.205 52.674 +10.508 | 64.834+8938 | 68.181+11.806 | 65.340+10.151 | 43.962 +7.367
10| 8.709 +11.304 1.036+0.118 12.201£2.314 28.312+2.812 39.310 £ 7.824 40.145 £ 8.324 34.731 + 3.889 23.756 + 2.999
5] 3.152 +3.522 1.119 +0.026 4.878 £ 0.537 8.934+1.345 13.402 +1.792 12.191 £2.943 11.799 + 0.967 7.943 +0.694
2| 1.113+0.760 0.733+0.166 1.338 + 0.079 1.603 + 0.435 2.292 +0.348 2.230 + 0.402 1.865 + 0.309 1.638 + 0.012
1| 0.502 +0.078 0.703+0.163 0.812 +0.119 0.891 +0.150 1.017 +0.177 1.108 +0.182 0.937 £0.217 0.806 + 0.097
0.5] 0.548£0.132 0.591 £ 0.067 0.633 £0.125 0.648 £ 0.062 0.671 £0.077 0.803  0.094 0.695 £0.143 0.614 £ 0.049
0] 0.495 +0.083 0.498 +0.018 0.513 +0.128 0.469 + 0.056 0.475 +0.019 0.503 +0.071 0.486 + 0.012 0.529 + 0.025
0 0.1 0.3 1 3 10 30 100 [CocE Plasmid] (nM]|

Supplementary Table S$8.2. Fluorescence results from calibration of HipO and CocE metabolic
transducer plasmids.
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Cell-Free Biosensor Concentration (ug/mL)

LC-MS
Concentration

Replicate 1 Replicate 2 Replicate 3 | Mean + St. Dev. | (ug/mL)
Orangina® Bottle 170.5 143.3 197.8 170.6 + 22.3 154.23
Orangina® Can 10.3 3.4 9.6 7.7 +3.1 2.86
Orangina® Zero 16.6 11.8 12.3 13.6 +2.2 1.65
Generic Brand 18.1 13.8 10.3 141 +£3.2 Not detectable
Monster® Original 304.4 172.5 217.4 231.4 +54.8 211.52
Monster® Zero 147.8 139.0 193.9 160.2 + 24.1 718.97
Monster® Ultra 172.3 150.9 154.6 159.3 +9.3 326.88
Monster® Ultra Red 1911 169.0 208.4 189.5 + 16.1 664.35
Monster® ' The [ 19.0 15.6 11.0 152+ 3.3 1.61
Doctor'
Monster® Punch 575.9 157.4 196.3 309.9 + 188.8 315.60

Supplementary Table S$8.3. Benzoate concentration in commercial beverages determined from
three replicates of our cell-free biosensor and LC-MS.
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Benzoic Acid Sensor Fluorescence (AU)

Urinary Samples Replicate 1 Replicate 2 Replicate 3 Mean + St. Dev.
U1 148 148 144 147+2.31

u2 155 157 165 159+5.29

UK] 167 193 210 190+21.7

U4 137 136 129 134+4.36

U5 150 116 131 132+17.04

U6 132 118 136 129+9.45
Negative Control 152 121 134 136+15.6

Supplementary Table S8.4. Benzoic acid sensor shows minimal activation in response to human
urine without HipO metabolic transducer.
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Cell-Free Biosensor Hippuric Acid Concentration (ug/mL) LC-MS
Concentration

Replicate 1 Replicate 2 Replicate 3 | Mean =+ St. Dev. (Mg/mL)

Urine 1 367.1 570.1 800.9 579.4 +177.2 368.90

Urine 2 97.6 167.8 152.2 139.2 + 30.1 145.98

Urine 3 218.5 342.7 471.3 344.2 +103.2 261.91

Urine 4 218.5 331.3 394.3 3147 +72.7 305.49

Urine 5 47.3 72.6 125.1 81.6 £ 324 100.47

Urine 6 697.3 840.1 21425 1226.6 + 650.2 700.91

Supplementary Table $8.5. Endogenous hippuric acid concentration in human urine samples
determined from three replicates of our cell-free biosensor and LC-MS.
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Section llI:
Biocomputation
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Chapter 9:
Metabolic Perceptrons for Neural Computing in
Biological Systems

This works has been originally published by Amir Pandi, Mathilde Koch, Peter L
Voyvodic, Paul Soudier, Jerome Bonnet, Manish Kushwaha, and Jean-Loup Faulon, in
Nature Communications with a citation:

Pandi A*, Koch M*, Voyvodic PL, Soudier P, Bonnet J, Kushwaha M, Faulon J-L:
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Abstract

Synthetic biological circuits are promising tools for developing sophisticated systems
for medical, industrial, and environmental applications. So far, circuit implementations
commonly rely on gene expression regulation for information processing using digital
logic. Here, we present a new approach for biological computation through metabolic
circuits designed by computer-aided tools, implemented in both whole-cell and
cell-free systems. We first combine metabolic transducers to build an analog adder, a
device that sums up the concentrations of multiple input metabolites. Next, we build a
weighted adder where the contributions of the different metabolites to the sum can be
adjusted. Using a computational model fitted on experimental data, we finally
implement two four-input “perceptrons” for desired binary classification of metabolite
combinations by applying model-predicted weights to the metabolic perceptron. The
perceptron-mediated neural computing introduced here lays the groundwork for more
advanced metabolic circuits for rapid and scalable multiplex sensing.
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Introduction

Living organisms are information-processing systems that integrate multiple input
signals, perform computations on them, and trigger relevant outputs. The
multidisciplinary field of synthetic biology has combined their information-processing
capabilities with modular and standardized engineering approaches to design
sophisticated sense-and-respond behaviors [1-3]. Due to similarities in information
flow in living systems and electronic devices [4], circuit design for these behaviors has
often been inspired by electronic circuitry, with substantial efforts invested in
implementing logic circuits in living cells [4,383,384]. Furthermore, synthetic biological
circuits have been used for a range of applications including biosensors for detection
of pollutants [62,385] and medically-relevant biomarkers [52,60], smart therapeutics
[64,65], and dynamic regulation and screening in metabolic engineering [81,386].

Synthetic circuits can be implemented at different layers of biological information
processing, such as: (i) the genetic layer comprising transcription[5] and translation[54],
(i) the metabolic layer comprising enzymes [17,50], and (jii) the signal transduction
layer comprising small molecules and their receptors [117,118]. Most designs
implemented so far have focused on the genetic layer, developing circuits that perform
computations using elements such as feedback control [44], memory systems [12,13],
amplifiers [8,9], toehold switches [14], or CRISPR machinery [15,387]. However, gene
expression regulation is not the only way through which cells naturally perform
computation. In nature, cells carry out parts of their computation through metabolism,
receiving multiple signals and distributing information fluxes to metabolic, signaling,
and regulatory pathways [17,23,388]. Integrating metabolism into synthetic circuit
design can expand the range of input signals and communication wires used in
biological circuits, while bypassing some limitations of temporal coordination of gene
expression cascades [389,390].

The number of inputs processed by synthetic biological circuits has steadily increased
over the years, including physical inputs like heat, light, and small molecules such as
oxygen, IPTG, aTc, arabinose and others. However, most of these circuits process
input signals using digital logic, which despite its ease of implementation lacks the
power that analog logic can offer [3,41,42]. The power of combining digital and analog
processing is exemplified by the “perceptron”, the basic block of artificial neural
networks inspired by human neurons[48] that can, for instance, be trained on labelled
input datasets to perform binary classification. After the training, the perceptron
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computes the weighted sum of input signals (analog computation) and makes the
classification decision (digital computation) after processing it through an activation
function.

Here we describe the development of complex metabolic circuitry implemented using
analog logic in whole-cell and cell-free systems by means of enzymatic reactions. For
circuit design, we first employ computational design tools, Retropath[45] and
Sensipath[46], that use biochemical retrosynthesis to predict metabolic pathways and
biosensors. We then build and model three whole-cell metabolic transducers and an
analog adder to combine their outputs. Next, we transfer our metabolic circuits to a
cell-free system[119,159] in order to take advantage of the higher tunability and the
rapid characterization it offers[170,181,342], expanding our system to include multiple
weighted transducers and adders. Finally, using our integrated model fitted on the
cell-free metabolic circuits we build a more sophisticated device called the “metabolic
perceptron”, which allows desired binary classification of multi-input metabolite
combinations by applying model-predicted weights on the input metabolites before
analog addition, and demonstrate its utility through two examples of four-input binary
classifiers. Altogether, in this work we demonstrate the potential of synthetic metabolic
circuits, along with model-assisted design, to perform complex computations in
biological systems.

Results

Whole-cell processing of hippurate. cocaine and benzaldehyde inputs
To identify the metabolic circuits to build, we use our metabolic pathway design tools,

Retropath [45] and Sensipath [46]. These tools function using a set of sink compounds
at the end of a metabolic pathway, here metabolites from a dataset of detectable
compounds[47], and a set of source compounds that can be used as desired inputs for
the circuit. The tools then propose pathways and the enzymes that can catalyze the
necessary reactions, allowing for promiscuity. Our metabolic circuit layers are
organized according to the main processing functions: transduction and actuation
(Figure 9.1a). Transducers are the simplest metabolic circuits that function as sensing
enabling metabolic pathways (SEMP) [240], consisting of one or more enzymes that
transform an input metabolite into a transduced metabolite. The transduced molecule,
in turn, is detected through an actuation function that is implemented using a
transcriptional regulator.
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We used benzoate as our transduced metabolite, its associated transcriptional
activator BenR, and the responsive promoter pBen to construct the actuator layer of
our whole-cell metabolic circuits [391]. To compare the shape of the response curve,
we constructed the actuator layer in two formats: (i) an open-loop circuit (Figure 9.1b)
and (ii) a feedback-loop circuit (Figure $9.1). When compared to the open-loop format,
the feedback-loop circuit has previously been shown to exhibit a linear dose-response
to input [44,392]. We found that while the feedback-loop format does linearize the
actuator response curve, it also reduces its dynamic range (Supplementary Figure
$9.1). Furthermore, the growth inhibition observed at higher concentrations makes it
difficult to recover the lost dynamic range by further addition of benzoate concentration
(Supplementary Figure S$9.6b). Therefore, we selected the open-loop format due to its
higher dynamic range of activation in the tested range of benzoate concentration
(Figure 9.1c), setting the maximum concentration of benzoate used in this work to the
saturation point of this open-loop circuit.

We have previously implemented sensing-enabling metabolic pathways in whole-cells
for detection of molecules like cocaine, hippurate, parathion and nitroglycerin [240].
Building on that work, here we implemented three upstream transducers that convert
different input metabolites into benzoate for detection by the actuator layer already
tested. The transducer layers were composed of enzymes HipO for hippurate (Figure
9.1d), CocE for cocaine (Figure 9.1e), and vdh for benzaldehyde (Figure 9.1f).
Compared to the benzoate output signal, we found that the transduction capacities of
the three transducers were 99.6%, 49.2%, and 77.8%, respectively (Supplementary
Figure $9.2), indicating a partial dissipation in signal.
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Figure 9.1. Whole-cell actuator and metabolic transducers. (a) Designed synthetic metabolic circuits
using Retropath[45] or Sensipath[46] consist of a transducer layer and an actuator layer. (b) Open-loop
circuit construction of the benzoate actuator, which is used downstream of transducer metabolic circuits
in this work. For the open-loop circuit, the gene encoding transcription factor (TF) is expressed
constitutively under control of the promoter J23101 and RBS B0032. (c) Dose-response plot of the
open-loop circuit for the benzoate actuator. The gray curve is a model-fitted curve (see Methods section)
for the open-loop circuit. (d,e,f) Whole-cell metabolic transducers for hippurate (d), cocaine (e) and
benzaldehyde (f) represented in dose-response plots (orange circles) and their associated
dose-response when there is no enzyme present (blue circles). The blue dotted lines refer to the
maximum signal from the actuator (c). The transducer output benzoate is reported through the
open-loop circuit actuator. The genes encoding the enzymes are expressed under constitutive promoter
J23101 and RBS B0032. All data points and the error bars are the mean and standard deviation of
normalized values from measurements taken from three different colonies on the same day.

A Whole-cell metabolic concentration adder
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A metabolic concentration adder is an analog device composed of more than one
transducer that converts their respective input metabolites into a common transduced
output metabolite. For our whole-cell concentration adder, we combined two
transducers to build a hippurate-benzaldehyde adder actuated by the benzoate circuit
(Figure 9.2a). Unlike digital bit-adders that exhibit an ON-OFF digital behavior, our
metabolic adders exhibit a continuous analog behavior that is natural for metabolic
signal conversion [393] (Figure 9.2b and Supplementary Figure S9.3) . Increasing the
concentration of one of the inputs at any fixed concentration of the other shows an
increase in the output benzoate, and thus in the resulting fluorescence (Figure 9.2b
and Supplementary Figure S9.3).

The maximum output signal for our analog adder, when hippurate and benzaldehyde
were both at the maximum concentration of 1000 pM, was lower than the maximum
signal produced by hippurate and benzaldehyde transducers alone (Supplementary
Figure S9.2). However, as seen above, the difference between the maximum signal of
their transducers and the actuator was smaller. The dissipation in signal could either be
because of resource competition (as a result of adding more genes) or because of
enzyme efficiency (as a result of poorly balanced enzyme stoichiometries). To test
these two hypotheses, we investigated the effect of the enzymes on cellular resource
allocation. For this purpose, the cocaine transducer and the hippurate-benzaldehyde
adder were characterized by adding benzoate to these circuits (Supplementary
Figures S9.4 and S9.5). Comparing the results of these characterizations with the
benzoate actuator reveals that dissipation in signal from the transducers to the
actuators is due to enzyme efficiency (Supplementary Figure S$9.4), whereas that from
the adders to the actuators is due to resource competition (Supplementary Figure
$9.5). The effect of the metabolic circuits on cell physiology are presented as the
specific growth rate (u) of the cells harboring the circuits at different concentrations of
inputs (Supplementary Figures S$9.6 and §9.7). Compared to the specific growth rate
of cells containing empty plasmids (u = 1.05 + 0.32 h'"), adding the metabolic circuits
alone results only in a mild growth reduction. However, adding the metabolic circuits
with their input metabolite(s) has a much more pronounced effect on growth reduction,
particularly at high concentrations.

In order to gain a quantitative understanding of the circuits’ behavior, we empirically
modeled their individual components to see if we were able to successfully capture
their behavior. We first modeled the actuator (gray curve in Figure 9.1c) using Hill
formalism [394] as it is the component that is common to all of our outputs and
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therefore constrains the rest of our system. We then modeled our transducers,
considering enzymes to be modules that convert their respective input metabolites into
benzoate, which is then converted to the fluorescence output already modeled above.
This simple empirical modeling strategy would be able to explain our transducer data,
including the effects of enzyme efficiency, but not to account for observations made in
Supplementary Figure S9.5, which is why we also included resource competition is
our models to explain circuits with one or more transducers. To this end, we extended
the Hill model to account for resource competition following previous works [395,396],
with a fixed pool of available resources for enzyme and reporter protein production that
is depleted by the transducers. This extension is further presented in the Methods
section. We fitted our model on all transducers, with and without resource competition
(i.e. individual transducers, or transducers where another enzyme competes for the
resources). This model (presented in gray lines in Figure 9.1d,e,f and Figure 9.2c),
which was not trained on adder data but only on actuator, transducer, and transducers
with resource competition data, recapitulates it well. This indicates that the model
accounts for all important effects underlying the data. The full training process is
presented in the Methods section, and a table summarising scores of estimated
goodness of fit of our model is presented in Supplementary Table S9.1.
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Figure 9.2. Whole-cell metabolic adder of hippurate and benzaldehyde. (a) Hippurate and
benzaldehyde transducers are combined to build a metabolic adder producing a common output,
benzoate, which is reported through the benzoate actuator. The genes encoding the enzymes are
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expressed in one operon under control of constitutive promoter J23101 and RBSs B0032 for HipO and
B0034 for vdh. (b) Heatmap representing the output of the adder while increasing the concentration of
both inputs, hippurate and benzaldehyde. All data points are the mean of normalized values from
measurements taken from three different colonies on the same day. (¢) Model simulations for
experimental conditions presented in (b). The model was fitted on transducer data and resource
competition data.

Cell-free processing of multiple metabolic inputs

Cell-free systems have recently emerged as a promising platform[119] that provide
rapid prototyping of large libraries by serving as an abiotic chassis with low
susceptibility to toxicity. We took advantage of an E. coli cell-free system with the aim
of increasing the computational potential of metabolic circuits in several ways (Figure
9.3a). Firstly, a higher number of genes can be simultaneously and combinatorially
used to increase the complexity and the number of inputs for our circuits. Secondly,
the lower noise provided by the absence of cell growth and maintenance of cellular
pathways [397] improves the predictability and accuracy of the computation. Thirdly,
having genes cloned in separate plasmids enables independent tunability of circuit
behavior by varying the concentration of each part individually. Finally, cell-free
systems are highly adjustable for different performance parameters and components.
In all, these advantages of cell-free systems enable us to develop more complex
computations than the whole-cell analog adder.

Following from our recent work [345], we first characterized a cell-free benzoate
actuator to be used downstream of other metabolic transducers. Figure 9.3a shows a
schematic of the cell-free benzoate actuator composed of a plasmid encoding the
BenR transcriptional activator and a second plasmid expressing sfGFP reporter gene
under the control of a pBen promoter. This actuator showed a higher operational range
than the whole-cell counterpart (Figure 9.1c). The optimal concentration of the TF
plasmid (30 nM) and the reporter plasmid (100 nM) were taken from our recent study
[345]. Following successful implementation of the actuator, we proceeded to build five
upstream cell-free transducers for hippurate, cocaine, benzaldehyde, benzamide, and
biphenyl-2,3-diol (Figure 9.3c,d,e,f,g) that convert these compounds to benzoate.
Each of the five transducers used 10 nM of enzyme DNA per reaction, except the
biphenyl-2,3-diol transducer that used two metabolic enzymes with 10 nM DNA each.

Compared to its whole-cell counterpart (Figure 9.1f), in the cell-free transducer
reaction (Figure 9.3e) benzaldehyde appears to spontaneously oxidise to benzoate
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without the need of the transducer enzyme vdh. This behavioral difference between the
whole-cell and cell-free setups could be due to the difference in redox states inside an
intact cell and the cell-free reaction mix [398,399]. Furthermore, benzamide and
biphenyl-2,3-diol transducers exhibit reduction in fluorescence outputs at very high
(1000 uM) input concentrations.
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Figure 9.3. Cell-free actuator and metabolic transducers. (a) Implementing benzoate actuator and
transducers in E. coli transcription/translation (TXTL) cell-free system. Cell-free reactions are composed
of cell lysate, reaction buffer (energy source, tRNAs, amino acids, etc.) and DNA plasmids. (b)
Dose-response plot of the benzoate actuator in the cell-free system with 30 nM of TF-plasmid
(constitutively expressed BenR) and 100 nM of reporter plasmid (pBen-sfGFP) per reaction. The data
points represent the dose-response of the actuator to different concentrations of benzoate and the gray
curve is a model-fitted curve on actuator data (c,d,e,f,g). Cell-free transducers coupled with the
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benzoate actuator for hippurate (c), cocaine (d), benzaldehyde (e), benzamide (f), and biphenyl-2,3-diol
(9), which is composed of two enzymes. All enzymes are cloned in a separate plasmid under the control
of a constitutive promoter J23101 and RBS B0032. 10 nM of each plasmid was added per reaction. The
bars are the response of the circuits to different concentrations of input with (transducers, black bars)
and without enzyme (red bars). All data are the mean and the error bars are the standard deviation of
normalized values from measurements taken from three independent cell-free reactions on the same day
(RFU: Relative Fluorescence Unit).

Cell-free weighted transducers and adders

After characterizing different transducers in the cell-free system that enable building a
multiple-input metabolic circuit, we sought to rationally tune the transducers. Cell-free
systems allow independent tuning of each plasmid by pipetting different amounts of
DNA. We applied this advantage to weight the flux of enzymatic reactions in cell-free
transducers (Figure 9.4a). The concentration range we used was taken from our recent
study [345], in order to have an optimal expression with minimum resource
competition. We built four weighted transducers for hippurate (Figure 9.4b), cocaine
(Figure 9.4¢), benzamide (Figure 9.4d) and biphenyl-2,3-diol (Figure 9.4e). Increasing
the concentration of the enzymes produces a higher amount of benzoate from the input
metabolites, and hence higher GFP fluorescence. Compared to the others, the
hippurate transducer reached higher GFP expression at a given concentration of the
enzyme and the input, and biphenyl-2,3-diol reached the weakest signal. For the
biphenyl-2,3-diol transducer built with two enzymes (Figure 9.4e), both enzymes are
added at the same concentration (e.g., 1 nM of “enzyme DNA” indicates 1 nM each of
plasmids encoding enzymes bphC and bphD). For a given concentration of the input
there is a range within which the concentration of the enzyme DNA(s) can be varied to
tune the weight of the input (Supplementary Figure S9.8).
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Figure 9.4. Cell-free weighted transducers characterized by varying the concentration of the
enzyme DNA. (a) In the cell-free system, the circuits can be tuned by varying the amount of each
enzyme pipetted per reaction. Weighted transducers are characterized by varying the concentration of
the enzymes in transducers which then are reported through the benzoate actuator. The range of the
concentrations was varied to get optimal expression and minimum resource competition. (b,c,d,e)
Heatmaps representing weighted transducers at different concentrations of input molecules and
enzymes DNA for hippurate (b), cocaine (c), benzamide (d) and biphenyl-2,3-diol (e). For the
biphenyl-2,3-diol weighted transducer (e), concentrations represent those of each metabolic plasmid
(e.g., 1 nM of “enzyme DNA” refers to 1 nM of bphC plus 1 nM of bphD). See Supplementary Figure
$§9.9 for model results of each weighted transducer. All data are the mean of normalized values from
three measurements. (RFU: Relative Fluorescence Unit).
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Data in Figure 9.4 show that similar output levels can be achieved for different input
concentrations, provided the appropriate transducer concentrations are used. In the
next step, we applied this finding to build hippurate-cocaine weighted adders by
altering either the concentration of the enzymes or the concentration of the inputs
(Figure 9.5a). The fixed-input adder is an analog adder in which the concentration of
inputs, hippurate and cocaine, are fixed to 100 uM and the concentration of the
enzymes is altered (top panel in Figure 9.5b). In this device, the weight of the reaction
fluxes is continuously tunable. We then characterized a fixed-enzyme adder by fixing
the concentration of the enzymes (1 nM for HipO, 3 nM for CocE; the cocaine signal is
weaker, which is why a higher concentration of its enzyme is used) and varying the
inputs, hippurate and cocaine (top panel in Figure 9.5c). However, it is important to
note that the observed GFP is not a direct output from the weighted adders. Instead,
the adder output is transformed by the actuator to produce the GFP signal. Since the
benzoate actuator has a sigmoidal response curve (Figure 9.3b), the transformation by
the actuator layer makes the visible output appear more switch-like (ON / OFF).

In order to have the ability to build any weighted adder with predictable results, we
developed a model that accounts for the previous data. We first empirically modeled
the actuator (gray curve in Figure 9.3b) since all other functions are constrained by
how the actuator converts metabolite data (benzoate) into a detectable signal (GFP).
We then fitted our model with individual weighted transducers (Supplementary Figure
$9.9) and predicted the behaviors of the weighted adders (bottom panel in Figure
9.5b,c). The results shown in Figure 9.5b,c indicate that our model describes the
adders well, despite being fitted only on transducer data. Supplementary Table S9.2
summarizes the different scores to estimate the goodness of fit of our model. Briefly,
the model quantitatively captures the data but tends to overestimate values at
intermediate enzyme concentration ranges and does not capture the inhibitory effect
observed at the high concentration of benzamide or biphenyl-2,3-diol, as this was not
accounted for in the model.

Using the above strategy, we can build any weighted adder for which we have
pre-calculated the weights using the model on weighted transducers. We use this
ability in the following section to perform more sophisticated computation for a number
of classification problems.
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Figure 9.5. Multiple transducers are combined to shape an adder while weighting inputs or
enzymes. (a) Cell-free adder characterization by varying the concentration of either inputs or enzymes
producing different levels of fluorescence through the actuator. (b) Heatmap showing fixed-input adder in
which the inputs, hippurate and cocaine, are fixed to 100 uM and concentrations of associated enzyme
are altered by altering the concentration of plasmid DNA encoding them. Top: Cell-free experiment of
hippurate-cocaine fixed-input (weighted) adder. Bottom: Model simulation (prediction) of
hippurate-cocaine fixed-input (weighted) adder. (¢) Fixed-enzyme adder with fixed concentrations of the
enzyme DNAs, 1 nM for HipO and 3 nM for CocE, and various concentrations of the inputs, hippurate
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and cocaine. Top: Cell-free experiment of hippurate-cocaine fixed-enzyme adder. Bottom: Model
simulations (prediction) of hippurate-cocaine fixed-enzyme adder. All data are the mean of normalized
values from three measurements. (RFU: Relative Fluorescence Unit).

Cell-free perceptron for binary classifications

The perceptron algorithm was first developed to computationally mimic the neuron’s
ability to process information, learn, and make decisions [400]. Perceptrons are the
basic blocks of artificial neural networks enabling the learning of deep patterns in
datasets by training the model’s input weights [49]. Like a neuron, the perceptron
receives multiple input signals (x) and triggers an output depending on the weighted
(w) sum of the inputs [48]. A perceptron can be used to classify a set of input
combinations after it is trained on labeled data. In binary classification, the weighted
sum is first calculated (w,.x) and an activation function (f), coupled with a decision
threshold d, finally makes the decision: ON if f(Zw,.x) > d, OFF otherwise (Figure 9.6a).
The activation function can be linear or non-linear (Sigmoid, tanh, RelU, etc.)
depending on the problem [401], although a sigmoid is generally used for classification.

Since our weighted transducer models have already been fitted on the cell-free
experimental data, we checked if we could use them to calculate the weights needed
to classify different combinations of two inputs: hippurate and cocaine. We tested our
model on five different 2-input binary classification problems (Supplementary Figure
$§9.10). For each problem, the two types of data were represented as a cluster of dots
on the scatter plot, with the axes representing the two inputs. The fitted model was
then used to identify weights needed to be applied to the weighted transducers such
that a decision threshold ‘d’ exists to classify the two clusters into red (ON, >d) or blue
(OFF, <= d). In each binary classification, three iso-fluorescence lines threshold the
data into the binary categories: ON and OFF (Supplementary Figure S10). These
theoretical classification problems demonstrate the ability of our perceptron model to
successfully carry out binary classification.

Using the integrated model from our weighted transducers and adders, we next sought
to design four-input binary classifiers using a metabolic perceptron, and test them
experimentally. Our metabolic perceptron is a device enabling signal integration of
multiple inputs with associated weights, represented by enzyme DNA concentrations
(Figure 9.6b). The 4-input adder performs the weighted sum and the benzoate actuator
acts as the activation function of the metabolic perceptron. Similar to the 2-input binary
classifications above (Supplementary Figure $9.10), the weights of the four inputs can
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be adjusted to implement different classification functions. To illustrate the potential of
building perceptrons with metabolic weighted adders, we computed adder weights
using our model for two different classifiers: a simple classifier equivalent to a “full OR”
gate (Figure 9.6c), and a more complex classifier. To define the second classifier, we
used our fitted model to simulate with different weights various 4-input functions that
combined AND and OR behaviors. Our simulation outcomes were most reliable for
hippurate and cocaine inputs since we had previously verified our model predictions on
the fixed enzyme and fixed input adders (Figures 9.4 and 9.5). Consequently, we
decided to test the classification function equivalent to a “[cocaine AND hippurate] OR
benzamide OR biphenyl-2,3-diol” gate (Figure 9.6d). Weight calculation methods are
reported in the Methods section.

Finally, we used the cell-free system to implement the classifiers using the calculated
weights and to execute the computations. While our perceptrons are trained in silico,
they are executed in the cell-free system to predict the outcome of a given set of input
signals. This is comparable to how computational perceptrons also proceed in the two
phases of training and prediction. For the classifiers, the input metabolites are fixed to
100 pM, as it allows the best ON-OFF behavior for all inputs and weight-tuning
according to model simulations. The model accurately predicted weights to obtain the
simple “full OR” classifier behavior (Figure 9.6d), as well as cocaine, benzamide, and
biphenyl-2,3-diol weights for the second complex classifier. The initial weights
computed by the model are presented in Supplementary Figure S$9.11. The optimal
weight of HipO (hippurate transducing enzyme) was calculated to be 0.1 nM, which
leads to higher signals than predicted, particularly for the “ON” behavior with only
hippurate. To further characterize the HipO weights at still lower concentrations of the
enzyme, we performed an additional complementary characterization (Supplementary
Figure §9.12). Our aim here was to find a weight for HipO through which a classifier
outputs a low signal (“OFF”) with only hippurate and high signal (“ON”) when coupled
with other inputs. We arrived at 0.083 nM HipO which exhibited this shifting behavior
between “OFF” and “ON” (Figure 9.6d and Supplementary Figure $9.12). Using our
model-guided design and rapid cell-free prototyping on the HipO weight, we were able
to design two 4-input binary classifiers. In Figure 9.6c¢,d red circles are the weights
predicted with 0.03 nM for HipO and the bars are experimental results. As noted earlier,
the sigmoidal nature of the benzoate actuator’s response curve (Figure 9.3b) is key to
achieving the “OFF” and “ON” behavior exhibited by our binary classifiers. All actual
values of the model and the experiments are provided in Supplementary Table S9.9.
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Figure 9.6. Cell-free perceptron enabling development of classifiers. (@) A perceptron scheme
showing the inputs and their associated weights, the computation core, and the output. The perceptron
computes the weights and actuates the weighted sum through an activation function. (b) Metabolic
perceptron integrating multiple inputs and actuating an output. The benzoate actuator acts as the
activation function of the perceptron reporting the sum of benzoate produced by the metabolic
perceptron. Hippurate, cocaine, benzamide, and biphenyl-2,3-diol are the inputs of the metabolic
perceptron fixed to 100 pM. The weights of the perceptron are the concentration of the enzymes
calculated using the model made on weighted metabolic circuits (red circles). These weights are
calculated to develop two classifiers using the metabolic perceptron and benzoate actuator. “Full OR”
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classifier (c), “[cocaine (C) AND hippurate (H)] OR benzamide (B) OR biphenyl-2,3-diol (F)” classifier (d)
are the two classifiers built using this metabolic perceptron. The “Full OR” classifier (c) classifies to
“OFF” when none of the inputs is present and it passes an arbitrary threshold to “ON” when any of the
inputs or their combinations are present. The second classifier (d) performs a more complex
computation. The shading represents the arbitrary threshold that allows for perceptron decision making
and the panel of “OFF” and “ON” at the top of the bars are the expected output of the classifiers. All
data are the mean and the error bars are the standard deviation of normalized values from three
measurements and red circles are the model predictions. (RFU: Relative Fluorescence Unit).

Discussion

Computing in synthetic biological circuits has largely relied on digital logic-gate
circuitry for almost two decades [383,402], treating inputs as either absent (0) or
present (1). While such digital abstraction of input signals provides conceptual
modularity for circuit design, it is less compatible with the physical-world input signals
that vary between low and high values on a continuum [403]. As a result, digital
biological circuits must carefully match input-output dynamic ranges at each layer of
signal transmission to ensure successful signal processing [1,23]. More recently, the
higher efficiency of analog computation on continuous input has been recognized[404],
and some analog biological circuits have started emerging [44]. In this regard, using
metabolic pathways for cellular computing seems like a natural progression for analog
computation in biological systems [23,44].

In this study, we investigated the potential of metabolism to perform analog
computations using synthetic metabolic circuits. To that end, we first established a
benzoate actuator to report the output from our metabolic circuits in both whole-cell
and cell-free systems (Figures 9.1c and 9.3b, also see Supplementary Figure
$§9.13a). Upstream of the actuator, we constructed hippurate, cocaine, and
benzaldehyde transducers in the whole-cell system (Figures 9.1d,e,f, also see
Supplementary Figure S9.13b) and a metabolic analog adder by combining the
benzaldehyde and hippurate transducers (Figure 9.2, also see Supplementary Figure
$9.13c). Similarly, we constructed hippurate, cocaine, benzaldehyde, benzamide, and
biphenyl-2,3-diol transducers in the cell-free system (Figures 9.3c,d,e,f,g) and
weighted adders by combining them (Figure 9.5). Compared to the numerous digital
biological devices, which compute through multi-layered genetic logic circuits, the
metabolic adder is a simple one-layered device with fast execution times.
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Our computational models fitted only on the actuator and transducer data predicted
adder behaviors with high accuracy (Supplementary Tables §9.1 and S9.2). This
further enabled us to calculate the required weights for more complex “metabolic
perceptrons” that compute weighted sums from multiple inputs and use them to
classify the multi-input combinations in a binary manner (Figures 9.6 and
Supplementary Figure S9.11). Although we used fixed concentrations of inputs to
demonstrate the ability of our perceptrons to classify, models fitted on characterization
data from weighted transducers should enable one to build classifiers for other
concentrations in the operational range of the transducers (Supplementary Figure
$9.14). Indeed, as shown in Figures 9.4 and 9.5, for different input concentrations in
the operational range the weight of the input can be tuned through the concentration of
the enzyme DNA. To the best of our knowledge, the metabolic adders and perceptrons
presented in this work are the first engineered biological circuits that use metabolism
for analog computation.

Unlike genetic circuits that experience expression delays [1], metabolic circuits have
the advantage of faster response times since the genes have already been expressed
in the system. Yet, metabolic circuits can be connected with the other layers of cellular
information processing (like genetic or signal transduction layers) when needed, to
build more complex sense-and-respond behaviors. The actuator layer of our
perceptrons is a good example of this, where the calculated weighted sum is converted
to fluorescence output via the genetic layer. In addition, we took advantage of the
properties of cell-free systems, such as higher tunability and lack of toxicity [345,405],
to rapidly build and characterize multiple combinations of transducer-actuator circuits.
Cell-free systems can be lyophilized on paper and stored at ambient temperature for
<1 year for diagnostic applications [54]. This expands the potential scope of cell-free
metabolic perceptrons for use in multiplex detection of metabolic profiles in medical or
environmental samples [54,345].

Here, we have built a single-layer perceptron, with positive weights, that can classify
different profiles of input metabolites by applying different weights to each transducer.
In the future, by adding competing or attenuating reactions that reduce the
concentration of the transduced metabolite in response to an input, it may be possible
to expand the training space by applying negative weights to certain inputs [406].
Furthermore, a single-layer perceptron can only classify data that is linearly
separable[407], which means that it should be possible to draw a line between the two
classes of data points in order for the perceptron to classify them (Supplementary
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Figure S9.10). In contrast, multi-layer perceptrons, can approximate any function [408]
and can be used for more complex pattern recognition tasks[409]. With the use of
bioretrosynthesis-based computational tools for metabolic pathway design, like
Retropath [45] and Sensipath [46], although challenging it will be possible to build
strategies for multiple layers of metabolic perceptrons that can classify complex
patterns of metabolic states in vivo, or identify different metabolite concentrations in
analytical samples (Supplementary Figure S$9.15). Finally, it may also be possible to
apply in situ learning (within the whole-cell or cell-free environment) by applying winner
selection strategies on successful classifiers [410].

However, the use of the metabolic layer for biological computing is currently
underexplored. To expand the computing potential of metabolic circuits, many more
metabolic parts and devices (transducers, adders, and actuators) will need to be
exhaustively characterised and databases built with descriptions of activities, dynamic
ranges, cross-talk, chassis dependence, cell-free composition dependence, and other
functional parameters. Here, we provide a detailed method for the identification of
novel parts and the step-wise building of new devices, and make our scripts available.
These can form the stepping-stone for building a larger framework for fully automated
design of metabolic circuits, similar to the Cello tool for automated genetic circuit
design [9].
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Methods

Designing synthetic metabolic circuits

Retropath [45] and Sensipath [46] were used to design the metabolic circuits between
potential input metabolites and detectable metabolites as outputs [47]. These tools
function using a set of sink compounds, a set of source compounds, and a set of
chemical rules [47,411] implementing enzyme-mediated chemical transformations.
They then use retrosynthesis to propose pathways and the enzymes that can catalyze
the necessary reactions, allowing promiscuity, between compounds from the sink and
compounds from the source. To design the adder, the Retropath software was used
with a set of detectable compounds as the sink and the molecules we wish to use as
circuit inputs as the source. The results were potential pathways and the associated
enzymes, which were then analyzed for feasibility. The sequences of the enzymes were
codon-optimized, synthesized and implemented in E. coli or taken from a previous
study.

Molecular biology

All plasmids were made using Golden Gate assembly in E. coli Mach1 chemically
competent cells (strain W, genotype: F ®80(acZ)AM15 AlacX74 hsdR(r, m")
ArecA1398 endA1 tonA). Whole-cell constructs were cloned in BioBrick standard
vectors pSB1K3 (kanamycin resistance, pMB1 replication origin, high-copy plasmid,
~32 plasmids per genome [412]) and pSB4C5 (chloramphenicol resistance, pSC101
replication origin, low-copy plasmid, ~3.4 plasmids per genome [412]) and the genes
encoding TF and all the enzymes were expressed under constitutive promoter J23101
and RBS B0032. All cell-free plasmids were cloned in pBEAST [345] (a derived vector
from pBEST [347], ampicillin resistance, pMB1 replication origin, high-copy plasmid,
~32 plasmids per genome [412]). BenR cell-free plasmid and its cognate responsive
prompter, pBen, expressing super-folder GFP were taken from our recent work [345].
All other cell-free enzymes were cloned under constitutive promoter J23101 and RBS
B0032. Sequence and source of all the genes and parts are available in
Supplementary Table $9.5 and the plasmids used in this study (Addgene deposit) are
listed in Supplementary Table S9.6. Synthetic sequences were provided by Twist
Bioscience. Enzymes for cloning including Q5 DNA polymerase, Bsal, and T4 DNA
ligase were purchased from New England Biolabs. DNA plasmids for cell-free reactions
were prepared using the Macherey-Nagel maxiprep kit.
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Characterization of whole-cell circuits

For each circuit separate colonies of E. coli TOP10 (strain K-12, genotype: F- mcrA
A(mrr-hsdRMS-mcrBC) ¢$80/lacZAM15 AlacX74 recAl1 araD139 Alara-leu)7697 galU
galK rpsL (Str®) endA1 nupG) strains harboring the circuit plasmids were cultured
overnight at 37 °C in LB with appropriate antibiotic. The next day each culture was
diluted 100x in LB with antibiotics. 95 pL of fresh cultures were distributed in 96-well
plate (Corning 3603) and the plate was incubated to reach the ODy,,~ 0.1 in a plate
reader (Biotek Synergy HTX). Then 5 pL of the input metabolites (100x ethanol
solutions 5x diluted in LB) were added and the plate was incubated for 18 hours at
37°C. During the incubation, the OD4,, and GFP fluorescence (gain: 35, ex: 458 nm,
em: 528 nm) were measured. Benzoate, hippurate, cocaine hydrochloride,
benzaldehyde, benzamide and biphenyl-2,3-diol (2,3-dihydroxy-biphenyl) were
purchased from Sigma-Aldrich. Permission to purchase cocaine hydrochloride was
given by the French drug regulatory agency (Agence Nationale de Sécurité du
Médicament et des Produits de Santé). For all chemicals, serial dilutions of 100x
concentrations were prepared in ethanol. The formula presenting the results of the
circuits’ characterization is shown in data normalization section. The mean and
standard deviation of all normalized data are provided in Supplementary Table S$9.7.

Cell-free extract and buffer preparation

Cell-free E. coli extract was produced as previously described [150,151,345]. Briefly, an
overnight culture of BL21 Star (DE3)::RF1-CBD, E. coli was used to inoculate 4L of
2xYT-P media in six 2 L flasks at a dilution of 1:100. The cultures were grown at 37°C
with 220 rpm shaking for approximately 3.5-4 hours until the OD,,, = 2-3. Cultures
were centrifuged at 5000 x g at 4°C for 12 minutes. Cell pellets were washed twice with
200 mL S30A buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, pH 7.7),
centrifuging after each wash at 5000 x g at 4°C for 12 minutes. Cell pellets were then
resuspended in 40 mL S30A buffer and transferred to pre-weighed 50 mL Falcon
conical tubes where they were centrifuged twice at 2000 x g at 4°C for 8 and 2
minutes, respectively, removing the supernatant after each. Finally, the tubes were
reweighed and flash frozen in liquid nitrogen before storing at -80°C.

Cell pellets were thawed on ice and resuspended in 1 mL S30A buffer per gram of cell
pellet. Cell suspensions were lysed via a single pass through a French press
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homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at
12000 x g at 4°C for 30 minutes to separate out cellular cytoplasm. After centrifugation,
the supernatant was collected and incubated at 37°C with 220 rpm shaking for 60
minutes. The extract was recentrifuged at 12000 x g at 4°C for 30 minutes, and the
supernatant was transferred to 12-14 kDa MWCO dialysis tubing (Spectrum Labs;
Spectra/Por4) and dialyzed against 2 L of S30B buffer (14 mM Mg-glutamate, 60 mM
K-glutamate, ~5 mM Tris, pH 8.2) overnight at 4°C. The following day, the extract was
re-centrifuged one final time at 12000 x g at 4°C for 30 minutes, aliquoted, and flash
frozen in liquid nitrogen before storage at -80°C.

The buffer for cell-free reactions is composed such that final reaction concentrations
were as follows: 1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM
HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg.mL™" tRNA, 0.26 mM
CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM
3-PGA, and 2% PEG-8000. Additionally, the Mg-glutamate (0-6 mM), K-glutamate
(20-140 mM), and DTT (0-3 mM) levels were serially calibrated for each batch of
cell-extract for maximum signal. One batch of buffer was made for each batch of
extract, aliquoted, and flash frozen in liquid nitrogen before storage at -80°C.

Characterization of cell-free circuits

Cell-free reactions were performed in 15.75 pL of the mixture of 33.3% cell extract,
41.7% buffer, and 25% plasmid DNA, input metabolites, and water. The reactions were
prepared in PCR tubes on ice and 15 pL of each was pipetted into 384-well plates
(Thermo Scientific 242764). GFP fluorescence out of each circuit was recorded in the
plate reader at 30 °C (gain: 50, ex: 458 nm, em: 528 nm). The background (cell-free
reaction without any plasmid) corrected fluorescence data were normalized by 20
ng.uL?' of a plasmid expressing strong constitutive sfGFP (under OR2-OR1-Pr
promoter [345]) and were plotted after 8 hours incubation. The mean and standard
deviation of all normalized data are provided in Supplementary Table S9.7.

Data normalization:
For whole-cell data, we use the following normalization:

GF P (input)—-GF P (LB) GF P(empty plasmid)—GF P(LB)
OD(input)-OD(LB) ~  OD(empty_plasmid)—OD(LB)

F luorescence (input) =

Reference: cells harboring empty plasmids
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For cell-free data, we consider Relative Fluorescence Unit (RFU):

. _ GF P (input)—GF P (extract)
RFU (lnp l/ll) ~ GFP (reference)—GF P (extract)

Reference: 20 ng.uL"' of a plasmid expressing the constitutive sfGFP under
OR2-OR1-Pr promoter [345].

Simulation tools and parameter fitting:

All data analysis and simulations were run on R (version 3.2.3). Dose-response curves
were fitted using ordinary least squares errors and the R optim function (from Package
stats version 3.2.3, using the L-BFGS-B method implementing the Limited-memory
Broyden Fletcher Goldfarb Shanno algorithm, which is a quasi-Newton method). For
the random parameter sampling around the mean fit, values were sampled from within
+-1.96 standard error of the mean of the parameter estimation. The seed was set so as
to ensure reproducibility. All simulations were run in the Rstudio development
environment.

All parameters are presented in Supplementary Tables S$9.3 and $9.4.

Whole-cell model
The whole-cell model is composed of three parts: the actuator, the transducers (which
all obey the same law) and the resource competition.

hill_a

Actuator (total) = ( o) e ok fet 1) * basal

(K,))"™+ (total)

where total is the concentration of the considered input (in pM), K, is the concentration
that allows for half-maximum induction (in pM), also termed IC,,, hill_a is the Hill
coefficient that characterizes the cooperativity of the induction system, fc is the
dynamic range (in AU) and basal is the basal GFP fluorescence without input
(benzoate).

Transducer (input) = input = range_enz

Where input is the input concentration in uM and range_enz is a dimensionless number
characterizing the capacity of the enzyme to transduce the signal. When combining
transducers with the actuator, transducer results are added before being fed into the
actuator equation, just as benzoate concentrations are added before being converted
to a fluorescent signal in the cell.
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To account for resource competition, given our experimental results where there is little
competition with one enzyme and significant competition with two, we used an
equation including cooperativity of resource competition. This reduces the fold change
of the actuator as there are less resources available for producing transcription factors
and GFP.

Result (out) = range,, « out + (=t

where out is the result of the actuator transfer function before accounting for resource
competition, range_res, E, nr characterize the Hill function that accounts for
competition, coce, benz and hipo are the enzyme plasmid concentrations. ratio
accounts for the differences in burden from different enzymes, its value around 0.8 is
close to the ratio between enzyme lengths (1500 for benzaldehyde transducing enzyme
and 1200 for HipO).

Cell-free model
The model is composed of two parts: the actuator and the transducers.

(lOlal)hI”*a

hill_a

Actuator (total) = ( == % fc+ 1) % basal + lin x 0.0001 « total

Ky + (total) —

where total is the concentration of the considered input metabolite (in pM), Km is the
concentration that allows for half-maximum induction (in pM), also termed IC,,, hill_a is
the Hill coefficient that characterizes the cooperativity of the induction system, fc is the
dynamic range (in AU) and basal is the basal GFP fluorescence without input
(benzoate). Lin accounts for the linearity observed in the actuator behavior at
concentrations saturating the Hill transfer function.

. _ (E)'E (input)"input
Transducer (input) = rangeenzyme * ((K Ve EyE )) ( KT G ))

Where range_enzyme is a dimensionless number characterizing the capacity of the
enzyme to transduce the signal. The activity of the enzyme is characterized by a Hill
function as increasing concentrations do not lead to a linear increase but enzymes
saturate (E is the enzyme quantity in nM, K and n. are its Hill constants), and similarly,
input is the input metabolite concentration in pM with K, and n_input as its Hill
constants.
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When combining transducers, transducer results are added before being fed into the
actuator equation, just as benzoate concentrations are added before being converted
to the fluorescent signal in the cell.

Full model training process
Our training process is detailed in the Readme files supporting our modeling scripts
provided in GitHub and is summarized here.

As the first step, the actuator transfer function model (benzoate transformed into
fluorescence) is fitted 100 times on the actuator data, with all actuator parameters
allowed to vary. The mean, standard deviation, standard error of the mean and
confidence interval were saved at 95% of the estimation of those parameters. For
transducer fitting (all transducers in cell-free and all except cocaine in whole-cell), we
constrained the actuator characteristics in the following way: upper and lower allowed
values are within the 95% confidence interval (or plus or minus one standard deviation
from the mean for fold change and baseline in cell-free as it allowed a wider range,
accounting for the decrease in actuator signal in transducer experiments without
affecting the shape of the sigmoid). The initial values for the fitting process were
sampled from a Gaussian distribution centered on the mean parameter estimation and
spread with a standard deviation equal to the standard error of this parameter
estimation. We then allowed fitting of all transducer parameters freely and of the
actuator parameters within their 95% confidence interval.

Once this is done, all common parameters (actuator transfer function and resource
competition) were sampled using the same procedure and fitting on the cocaine
transducer was performed. To show that parameters are well constrained (proving they
minimally explain the data), Supplementary Figures S9.15 and S9.16 show results of
sampling parameters from the final parameters distribution (without fitting at that stage)
and how they compare to the data.

Objective functions and model scoring:
In order to evaluate and compare our models, we used the following functions.

n

- red\2
z (yih ue__ ylp'ed)
1

n

RMSD =

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 253



It measures how close the model is to the experiments. It allows for comparison of
different models on the same data, the one with the smaller RMSD being better, but
does not allow comparison between experiments.

5 Z’:‘, (yl_true_ yl_pred)z

R=1- 7
Z, (yitrue, ymeantme)z

R* allows measuring the goodness of fit. When the prediction is only around the
sample mean, R* = 0. When the predictions are close to the real experimental value,
R’ gets closer to 1, whereas it can have important negative values when the model is
really far off.

oy true_y, ])red)z
e ——
std 2
i

Weighted R* =1 — .
By rue_y, ey
T .vtdl-2

It is a variant of R* that weights samples according to their experimental error, giving
more weight or more certain samples. It otherwise has the same properties as R*.

true__ red
Error percentage = abs (Z‘JL) x* 100

yitrue
This measures the percentage of error for each point. We present the average on all
experiments in Supplementary Tables S1 and S2.

Perceptron weights calculation

In order to calculate the weights for the classifiers presented in Figure 9.6, we followed
the following procedure. First, we defined the expected results (expressed in “OFF”s
and “ON”s). We also defined a list of weights to test for each enzyme (here, between
0.1 nM and 10 nM, as tested in our weighted transducers). Then, for each combination
of enzyme weights, we simulated the outcome of the classifiers for all possible input
combinations. We then tested various possible thresholds and kept the enzyme
combinations for which a threshold exists that allows for the expected behavior. As the
last step, we manually analyzed the classifier to keep the ones both a high difference
between ON and OFF, and a minimal enzyme weight to prevent resource competitions
issues that could arise as we are adding more genes than previous experiments. In
order to perform clusterings presented in Supplementary Figure S9.11, we sampled
values uniformly within the stated ranges ([0, 2uM] for low values and [80, 100uM] for
high values). We then simulated the results to assess the robustness of our designs.
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The difference between our metabolic perceptron and an in silico perceptron is that the
latter exhibits a perfect activation behavior: digital (0 / 1), sigmoidal, ReLU, or another
activation function; its weights can be tuned exactly as desired. In our implementation
of the cell-free metabolic circuits, many biological details complicate the relationship
between the inputs and the activator output. We therefore used more detailed
step-wise empirical modeling to account for the biology in our system rather than an
off-the-shelf perceptron code that would be unable to capture all the subtleties in our
data.

Binary clustering experiments

In order to perform the binary/2D clustering experiments, we sampled values uniformly
within the stated ranges ([0, 2uM] for low values and [80, 100uM] for high values). For
different weight (HipO and CocE) values, we simulated the fluorescence output of each
of those cocaine-hippurate combinations. Moreover, for different threshold values (3,
3.5 and 4, as presented in Supplementary Figure §9.10), we numerically solved for
the benzoate concentration such that

transfer (benzoate) = fluorescence threshold

and then for values of cocaine and hippurate such that

transducer (cocaine) + transducer (hippurate) = benzoate

This equation with two unknowns gives us a curve of cocaine and hippurate values that
would lie on our decided threshold for this set of weights. All combinations on the top
right of that curve will be classified to “ON” and all combinations below will be
classified as “OFF”.

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 255



Code and data availability:
All scripts and data for generating results presented in this paper are available at
https://qithub.com/brsynth/metabolic _perceptrons.

Biological and chemical identifiers
In order to allow easier parsing of our article by bioinformatics tools, we provide here
the identifiers of our biological sequences and chemical compounds.

Benzoate (Benzoic acid): InChl=1S/C7H602/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)
Hippurate (Hippuric acid):
InChl=1S/C9H9NOS3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2,(H,10,13)(H,11,12)
Cocaine:
INChl=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-12)22-16(19)11-6-4-3-
5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1

Benzaldehyde: InChl=1S/C7H60/c8-6-7-4-2-1-3-5-7/h1-6H

Biphenyl-2,3-diol:
InChl=1S/C12H1002/c13-11-8-4-7-10(12(11)14)9-5-2-1-3-6-9/h1-8,13-14H
Benzamide: InChl=1S/C7H7NO/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H2,8,9)

BenR (Benzoate sensitive transcription factor, Pseudomonas putida) identifier:
UniProtKB - QIL7Y6

HipO (Hippurate hydrolase (EC: 3.5.1.32), Campylobacter jejuni) identifier: UniProtKB -
P45493
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CocE (Cocaine esterase (EC: 3.1.1.84), Rhodococcus sp.) identifier: UniProtKB -
Q9L9D7

vdh (Aryl-aldehyde oxidase (EC: 1.2.3.9), Acinetobacter johnsonii SH046) identifier:
UniProtKB - DORZT4

bphC (Biphenyl-2,3-diol 1,2-dioxygenase (EC: 1.13.11.39), Pseudomonas sp.) identifier:
UniProtKB - P17297

bphD  (2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate  hydrolase  (EC: 3.7.1.8),
Pseudomonas putida) identifier: UniProtKB - Q52036

Benzamide transforming enzyme (Amidase (EC: 3.5.1.4), Rhodococcus erythropolis)
identifier: UniProtKB - B4XEY3

Sequence and source of all the genes and parts are available in Supplementary Table
§9.5 and the plasmids used in this study (Addgene deposit) are listed in
Supplementary Table S$9.6 available at
(https://www.addgene.org/browse/article/28203589/ and
https://www.addgene.org/browse/article/28196338/).
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Supplementary Figure S$9.1. Feedback-loop circuit design of the benzoate actuator. (a)
The open-loop circuit (Figure 9.1b) versus a feedback-loop circuit for the benzoate actuator. In
the feedback-loop actuator the gene encoding TF is expressed under its responsive promoter,
pBen, in a low copy plasmid and sfGFP reporting the signal in a high copy plasmid [44]. (b) The
dose-response of the feedback-loop versus the open-loop circuit (Figure 9.1c) to different
concentrations of benzoate. All data points and the error bars are the mean and standard
deviation of normalized values from measurements taken from three different colonies on the
same day.
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Supplementary Figure $9.2. Comparison of the maximum signals of whole-cell circuits.
Comparison of the maximal signal of hippurate, benzaldehyde, and cocaine transducers (beige)
as well as hippurate-benzaldehyde adder (orange) with benzoate actuator (blue). The maximum
signal of all the circuits are at the maximum concentration of their inputs (1000 uM). The
percentage in each bar represents its value with regard to the maximum signal of benzoate in
benzoate actuator. The actuator (blue) and transducer (beige) data and error bars are from the
results presented in Figure 9.1. The adder (orange) data and error bars are from the results
presented in Figure 9.2.
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Supplementary Figure S$9.3. 2D plots for the data presented in heatmap in Figure 9.2b.
These 14 plots help visualize the linearity of metabolic addition. At the top of each plot the
columns/rows corresponding to the heatmap in Figure 9.2b have been labelled.
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Supplementary Figure $9.4. Examining the effect of resource competition versus enzyme
efficiency on the whole-cell cocaine transducer. To study these effects on the
single-enzyme metabolic circuit, the following experiment was performed: cocaine transducer
(with the highest signal dissipation among the three tested in Figure 9.1) was supplied with
benzoate input, to test the effect of enzymes on only cellular resource allocation but not the
conversion of inputs to benzoate. The cocaine transducer (+ benzoate actuator) with benzoate
input shows a behavior similar or close to the benzoate actuator alone. All data points and the
error bars are the mean and standard deviation of hormalized values from measurements taken
from three different colonies on the same day.

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 261



Benzoate actuator
with benzoate

Hippurate-Benzaldehyde adder + Benzoate actuator
with Hippurate + Benzaldehyde

Hippurate-Benzaldehyde adder + Benzoate actuator
with benzoate

0

3x 10937

2x 10031

1x10%1

Fluorescence/OD (a.u.)

O m
500 1000
Input Concentration (UM)

Supplementary Figure $9.5. Examining the effect of resource competition versus enzyme
efficiency on the whole-cell metabolic adder. To study these effects on the two-enzyme
metabolic circuit (adder) the following experiment was performed: hippurate-benzaldehyde
adder was supplied with benzoate input, to test the effect of enzymes on only cellular resource
allocation but not the conversion of inputs to benzoate. The adder (+ benzoate actuator) with
benzoate input shows a behavior similar to the adder (+ benzoate actuator) with hippurate and
benzaldehyde inputs. All data points and the error bars are the mean and standard deviation of
normalized values from measurements taken from three different colonies on the same day.
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Supplementary Figure S9.6. The specific growth rate (4) values of the whole-cell circuits
presented in Figure 9.1. (a) The schematic of the calculation of the specific growth rate (u)
values from ODy,, kinetic values over time. It is calculated as the slope of the line drawn in the
range of exponential phase of the growth when log (OD,) is plotted over time. The specific
growth rate (u) values of the cells harboring circuits for benzoate actuator (b), hippurate (c),
cocaine (d) and benzaldehyde (e) transducers presented in Figure 9.1. The OD data were
collected from cells exposed to the input metabolite for 2-4 hours and growing at 37 °C in a
96-well plate using a plate reader (Biotek Synergy HTX). All data points and the error bars are
the mean and standard deviation of normalized values from measurements taken from three
different colonies on the same day.
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Supplementary Figure S9.7. The specific growth rate (p) values of the whole-cell adder
presented in Figure 9.2b. The specific growth rate (u) values for the adder presented in Figure
9.2b. The OD data were collected from cells exposed to the input metabolites for 2-4 hours
and growing at 37 °C in a 96-well plate using a plate reader (Biotek Synergy HTX). The
schematic of the calculation of the specific growth rate (u) values from OD, kinetic values over
time is presented in Supplementary Figure $9.6a. It is calculated as the slope of the line
drawn in the range of the exponential phase of growth when log (OD,,) is plotted over time. All
data points are the mean of normalized values from measurements taken from three different
colonies on the same day.
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Supplementary Figure S$9.8. The dose-response of cell-free transducers to different
concentrations of the associated enzyme DNAs (weights) for weighted transducers. The
behavior of the cell-free transducers at constant concentration of inputs (100 pM) while the
weights (concentration of the enzyme DNAs) are varied for hippurate (a), cocaine (b),
benzamide (c) and biphenyl-2,3-diol (d) transducers. These are plotted using the data in the
third column of the heatmaps in Figure 9.4 as the average, and the error bars as SD from
measurements taken from three independent cell-free reactions on the same day (RFU:

Relative Fluorescence Unit).

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi

265



RFU RFU
10 10
= =
£ 3 £ 3
< <
z z
a oy
© @ 12
£ £
> >
g 03 g 03
w, W, 11
0.1 0.1
0 10 100 1000 0 10 100 1000
[Hippurate] uM [Cocaine] uM
c RFU d RFU
10 10
= = 13
£ 3 c 3
< <
& & 2
() 1 () 1
E E
N N
c 03 c 03
L, u, 1"
0.1 0.1
0 10 100 1000 0 10 100 1000 -
[Benzamide] uM [Biphenyl-2,3-diol] uM

Supplementary Figure S$9.9. Weighted transducers model results. The model simulations
for experimental conditions presented in Figure 9.4. (a,b,c,d) Heatmaps representing model
simulations for weighted transducers at different concentrations of input molecules and
enzymes DNA for hippurate (a), cocaine (b), benzamide (¢) and biphenyl-2,3-diol (d).
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Supplementary Figure S$9.10. Five different binary classification problems using a
metabolic perceptron for hippurate and cocaine. (A to E). For each problem, the
scatter plot shows multiple data points that represent a combination of input values of
cocaine and hippurate. The concentrations for those points are sampled between 0
and 2 pM for low values and 80 and 100 pM for high values. The data points in each
problem belong to two different sets that can be separated by a threshold line into two
separate clusters. The trained model is then used to identify weights needed to be
applied to the weighted transducers such that a decision threshold ‘d’ classifies the
two clusters into red (ON, >d) or blue (OFF, <= d). The threshold lines shown in the
plots represent three iso-fluorescence lines that successfully classify the data into the
binary categories: ON and OFF.
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Supplementary Figure $9.11. Model simulations for classifiers in Figure 9.6. Predictions
associated with (a) the full OR classifier (Figure 9.6¢) and (b) the first calculation for “[cocaine
(C) AND hippurate (H)] OR benzamide (B) OR biphenyl-2,3-diol (F)” classifier with 0.1 nM HipO
weight with (instead of 0.03 as experimentally tested and presented in Figure 9.6d). In order to
perform the clusterings, we sampled values uniformly within the stated ranges ([0, 2uM] for low
values and [80, 100uM] for high values). We then simulated the results to assess the
robustness of our designs. Two blue lines refer to the thresholds separating “OFF” and “ON”
states. The panel of “OFF” and “ON” at the top of the plots are the expected outputs. (RFU:
Relative Fluorescence Unit).
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Supplementary Figure $9.12. Further characterization of HipO enzyme (hippurate
transforming enzyme) at lower concentrations of the enzyme and 100 yM hippurate. HipO
enzyme which for its weight led to higher signals than predicted, needed to be further
characterized at concentrations lower than the minimum concentration used for the weighted
metabolic circuits (0.1 nM). For this characterization, this figure shows the effect of 100 pM
hippurate input alone and its additive effect when coupled with 100 pM cocaine at the weight
(CocE enzyme concentration) of 0.1 nM. All data are the mean and the error bars are the
standard deviation of normalized values from measurements taken from two or three
independent cell-free reactions on the same day. (RFU: Relative Fluorescence Unit).
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Supplementary Figure $9.13. Preliminary exploration of application synthetic metabolic
circuits for diseases' biomarker detection. Top panel: Whole-cell actuator, transducers, and
adder toward prostate cancer biomarker detection. (a) Open-loop and feedback-loop design of
the H,O, actuator functioning by OxyR transcription factor and katGp promoter [114]. While
both of them approximately show the same output fold (very low fold clear from left and right
axises for blue and green curves respectively), the open-loop circuits saturates but the
feedback-loop circuit continues a linear response. (b) The feedback-loop actuator was used to
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build four transducers on its upstream for sarcosine, L-sorbose, L-pipecolate,
N-acetyl-L-aspartate (E. coli IDTl-codon-optimized genes UniProtKB - P40859, UniProtKB -
Q6UGO02 (K312E & E540K), UniProtKB - Q88CC4, UniProtKB - P10902 (E121A) respectively)
based on a study on prostate cancer biomarkers [413] and HMDB database that only two of
them gave a responsive behavior to their inputs illustrated in (b). Sensipath was used to find
these enzymes converting these molecules to H,0, and sense them through feedback-loop
H,O, actuator. Bottom panel: Cell-free characterization of H,O, actuator using TF and the
reporter plasmids cloned in two separate cell-free plasmids, pBEAST (Chapter 6,8 and 9) that
each can be added in different concentrations to the cell-free reaction mix. This transcription
factor has a special behavior such that it binds to its target promoters both in presence and
absence of the inducer [414]. Not surprisingly, as discussed in Chapter 6, not all systems
function well in the cell-free system, whereas this actuator did not show a desired behavior in
whole-cell either (a).
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Supplementary Figure S9.14. Exploring Hippurate-Cocaine ON-OFF behavior with
different weights and input concentrations for hippurate. All these experiments were done
while Cocaine is at a concentration of 100 M and weight of 0.1 nM CocE. The beige bars are
for hippurate (UM Hippurate — nM HipO) and the orange bars are for Hippurate (uM Hippurate —
nM HipO) + Cocaine (100 uM Cocaine — 0.1 nM CocE) as inputs. All data are the mean and the
error bars are the standard deviation of nhormalized values from measurements taken from two
independent cell-free reactions on the same day. (RFU: Relative Fluorescence Unit).
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Supplementary Figure S9.15. Strategies for multi-layer perceptron implementation. (a)
Left: The schematic presents how computation is performed in a single-layer perceptron:
inputs (x,,) are converted into a common metabolite using enzymes that allow for weighting (w))
each input (x) individually. The common metabolite is then converted into output O, using a
non-linear activation layer (using a transcription factor =TF). Right: A single-layer metabolic
perceptron composed of multiple input metabolites (x,,) and metabolic enzymes (E,_)
transforming the inputs into a common metabolite. The common metabolite then activates the
gene expression, representing the actuator function. (b) The schematic presents how
computation is performed in a multi-layer perceptron (Top) and a possible implementation of a
multi-layer metabolic perceptron (Bottom). In a multi-layer perceptron, the outputs of the first
perceptron layer are used as inputs for the second layer. We suggest a potential strategy for
such implementation. (1) A TF actuator outputs enzyme E8 (O,,) from the first layer that
behaves as an input (I, ,) for the second layer, in turn producing a metabolite needed as effector
in the next perceptron layer. (2) Similarly, another TF actuator outputs enzyme E9 (O, ,) from the
first layer that behaves as an input (l,,) for the second layer, also producing the same effector
metabolite needed in the next perceptron layer. Weights on the second perceptron layer can be
applied by tuning the concentrations of the substrate metabolites for E8 and E9. This strategy
is the converse of what we did in the first layer, where enzyme DNA concentrations were
weights and input metabolites were ‘0’ or ‘1°. Here, the enzymes E8 and E9 are ‘0’ or ‘1’, as
they are outputs from sigmoidal functions, whereas the metabolite concentrations are the
weights.
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Supplementary Figure $9.15. Simulations from the random sampling of estimated
parameters in whole-cell system. Representation of the experimental data with SEM (n = 3)
in black, and in blue, the results from 100 simulations of the model with parameters drawn from
the final parameters estimation without refitting. The combination of various parameters within
our estimations correctly recapitulates the data. (A) benzoate actuator, (B) benzaldehyde
transducer, (C) cocaine transducer, and (D) hippurate transducer. Scripts provided in GitHub
also allow for visualization of those results for each axis of the adder in Figure 9.2.
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Supplementary Figure $9.16. Simulations from the random sampling of estimated
parameters in the cell-free system. Representation of the experimental data with SEM (n = 3)
in black, and in blue, the results from 100 simulations of the model with parameters drawn from
the final parameters estimation without refitting. The combination of various parameters within
our estimations correctly recapitulates the data. (A) benzoate actuator, (B) benzamide
transducer, (C) biphenyl-2,3-diol transducer, (D) cocaine transducer, and (E) hippurate
transducer. The simulation of the transducers were performed with 100 pM of the input
metabolites as will be used in the classifier experiments. Scripts provided in GitHub also allow
for the visualisation of those results for other axis of the various heatmaps in Figure 4. (RFU:
Relative Fluorescent/expression Unit of GFP).
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Supplementary Table S$9.1. Goodness of fit scores for the whole-cell models. The
correlation (from the R cor function), Weighted R squared and R squared between the
experimental data and the model. Exact definition of the weighted R squared and the R
squared are provided in the Methods section, as well as the RMSD that is used to compare
models.

Score Correlation Weighted R | R squared | Error Fit or
squared percentage | prediction

Actuator 0.999 0.999 0.999 NA Fit

Benzaldehyde 0.995 0.992 0.980 NA Fit

transducer

Hippurate 0.997 0.990 0.983 NA Fit

Transducer

Cocaine 0.965 0.950 0.924 NA Fit

Transducer

Adder - 1 0.958 0.982 0.916 16.8 % Fit (on

complete inducer = 0)
and
prediction

Adder - both | 0.947 0.931 0.889 15.3 % Prediction

inputs present
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Supplementary Table $9.2. Goodness of fit scores for the cell-free models.

Score Correlation Weighted R | R squared Error Fit or
squared percentage | prediction

Actuator 0.990 0.999 0.980 NA Fit

Cocaine 0.923 0.999 0.574 NA Fit

Transducer

Hippurate 0.984 0.999 0.962 NA Fit

Transducer

Benzamide 0.946 0.991 0.659 NA Fit

Transducer

2,3 biphenyl | 0.965 0.998 0.762 NA Fit

Transducer

Fixed enzyme | 0.910 0.998 0.653 10.1% Prediction

Adder

Fixed inducer | 0.919 0.986 0.784 16.0% Prediction

adder

Full OR | 0.973 0.980 0.823 9% Prediction

classifier

(C AND H) OR | 0.985 0.999 0.913 16.9 % Prediction

B Or F- Fig9.6
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Supplementary Table $9.3. Parameter estimations for in vivo model. Mean value plus and
minus 95% Confidence Interval

Parameter Mean Value +- 95 Confidence Interval
Hill_a 1.34 +-1 e-6

Km 114 +-1e-4

Fc 20.6 +-3e-5
Basal 130 +-2 e-4
Range_BenZ 1.1+ 1e-6
Range_HipO 0.787 +- 1 e-6
Range_CocE 0.201 +- 2.97 e-3
E 4.22 +- 0.193
Ratio 0.776 +- 3.7 e-3
nr 1.956 +- 4.56 e-2
Range_res 1.973 +- 0.107
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Supplementary Table S9.4. Parameter estimations for cell-free model. Mean value plus and
minus 95% Confidence Interval (Standard Deviation for fold change and baseline)

Parameter Mean Value +- 95 CI
Hill_a 2.2 +- 0.1

Km 8.40 +-9e-3

Fc 137 +- 1.84 (sd : 9.41)
Basal 3.29e-2+-4e-4 (sd:2e-3)
Lin 8.19 +- 9.3 e-2
Range_HipO 488 +- 35

K_HipO 0.396 +- 0.022
K_hippurate 245 +- 29

n_HipO 1.82 +- 0.052
n_hippurate 1.205 +- 0.046
Range_CocE 337 +- 28

K_CocE 0.799 +- 0.00017
K_cocaine 54 .4 +-5.04
n_CocE 1.713 +- 0.055
n_cocaine 1.44 +- 0.047
range_benzamid_enz 234 +- 20
K_benzamid_enz 3.73 +- 0.27
K_benzamid 48.6 +- 5.5
n_benzamid_enz 0.683 +- 0.072
n_benzamid 0.906 +- 0.087
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range_biphenyl_enz

63.7 +6- 4.79

K_biphenyl_enz 8.63 +- 0.31
K_biphenyl 56.3 +- 4.92
n_biphenyl_enz 1.25 +- 0.067
n_biphenyl 3.05 +- 0.192
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Supplementary Table S9.5. List of sequences and their source used in this study.

Sequence

Description//Nucleotide sequence

BenR

UniProtKB - Q9L7Y6

Taken from Libis et al.

[240]

Transcription factor for benzoate, an activator from Pseudomonas putida [415]

ATGGAATCTCGTCTGCTGTCTGAACGTTCTTCTGTTTTCCACCACGCTGACCCGTACGCTGTTTCTGACTACGTTAACCAG
CACGTTGGTCAGCACTGCATCGGTCTGTCTCGTACCACCCACCCGCAGGCTTCTCTGTCTCACCGTAAATTCGCTGAACT
GGACCTGTGCCGTATCTCTTACGGTGGTTCTGTTCGTGTTACCTCTCCGGCTCTGGAAACCATCTACCACCTGCAGGTTCT
GCTGAACGGTAACTGCCTGTGGCGTGGTCACAAACGTGAACAGCACCTGGTTCCGGGTGAACTGCTGCTGATCAACCCG
GACGACCCGGTTGACCTGACCTACTCTGAAGACTGCGAAAAATTCATCCTGAAAGTTCCGACCCGTCTGCTGGACTCTAT
CTGCGACGAACAGCGTTGGCAGCGTCCGGACGGTGGTGTTCGTTTCCTGCGTAACCACTACCGTCTGGACGAACTGGA
CGGTTTCGTTAACCTGCTGGCTATGGTTTGCCACGAAGCTGAAGTTTCTGACTCTCTGCCGCGTGTTCAGGGTCACTACTC
TCAGATCGTTGCTTCTAAACTGCTGACCCTGATGTCTACCAACATCCGTCGTGAATCTCTGTCTGCTCCGCAGGCTGGTCT
GGAACGTATCCTGGACTACATCGAACGTAACCTGAAACTGGAACTGTCTGCTGAAGTTCTGGCTGAACAGGCTTGCATGT
CTCTGCGTTCTCTGTACGCTCTGTTCGACCAGCACCTGGGTATCACCCCGAAACACTACGTTCGTCAGCGTAAACTGGAA
CGTGTTCACGCTTGCCTGTCTGACCCGACCTGCGGTGTTCGTTCTGTTACCGAACTGGCTCTGGACTACGGTTTCCTGCA
CCTGGGTCGTTTCTCTGAAATCTACCGTCAGCAGTTCGGTGAACTGCCGTCTCAGACCTTCAAACGTCGTGCTIAR

pBen

Taken from Libis et al.

[240]

Promoter responsive to benzoate-BenR

ACTGTTCGAAGCATTGCCATTTTCTGAAGTTACCGAAAAAGTACCGAACATCCGTAAATCTGGATAACGTTCTGCACAATCC
GGATAGCCCCCCGCCAGCCGTCTCCCTAACCTGACCAGGTCTAAACAATAACAAGGGAGAGTCTGGCCATG

Superfolder
GFP
(sfGFP)

ATGCGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGTGATGTCAACGGTCATAAGTTT
TCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGTAAACTGACGCTGAAGTTCATCTGTACTACTGGTAAACTGCC
GGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGACCATATGAAGCAGCA
TGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCCTTTAAGGATGACGGCACGTACAAAA
CGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTAAACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACGG
CAATATCCTGGGCCATAAGCTGGAATACAATTTTAACAGCCACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCATT
AAAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGCTGGCTGATCACTACCAGCAAAACACTCCAAT
CGGTGATGGTCCTGTTCTGCTGCCAGACAATCACTATCTGAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAAC
GCGATCATATGGTTCTGCTGGAGTTCGTAACCGCAGCGGGCATCACGCATGGTATGGATGAACTGTACAAATGAIGA

HipO

UniProtKB - P45493

Taken from Libis et al.

[240]

Hippurate hydrolase (EC: 3.5.1.32), Campylobacter jejuni
Hippurate to benzoate

ATGAACCTGATCCCGGAAATCCTGGACCTGCAGGGTGAATTCGAAAAAATCCGTCACCAGATCCACGAAAACCCGGAAC
TGGGTTTCGACGAACTGTGCACCGCTAAACTGGTTGCTCAGAAACTGAAAGAATTCGGTTACGAAGTTTACGAAGAAATC
GGTAAAACCGGTGTTGTTGGTGTTCTGAAAAAAGGTAACTCTGACAAAAAAATCGGTCTGCGTGCTGACATGGACGCTCT
GCCGCTGCAGGAATGCACCAACCTGCCGTACAAATCTAAAAAAGAAAACGTTATGCACGCTTGCGGTCACGACGGTCAC
ACCACCTCTCTGCTGCTGGCTGCTAAATACCTGGCTTCTCAGAACTTCAACGGTGCTCTGAACCTGTACTTCCAGCCGGC
TGAAGAAGGTCTGGGTGGTGCTAAAGCTATGATCGAAGACGGTCTGTTCGAAAAATTCGACTCTGACTACGTTTTCGGTTG
GCACAACATGCCGTTCGGTTCTGACAAAAAATTCTACCTGAAAAAAGGTGCTATGATGGCTTCTTCTGACTCTTACTCTATC
GAAGTTATCGGTCGTGGTGGTCACGGTTCTGCTCCGGAAAAAGCTAAAGACCCGATCTACGCTGCTTCTCTGCTGATCGT
TGCTCTGCAGTCTATCGTTTCTCGTAACGTTGACCCGCAGAACTCTGCTGTTGTTTCTATCGGTGCTTTCAACGCTGGTCAC
GCTTTCAACATCATCCCGGACATCGCTACCATCAAAATGTCTGTTCGTGCTCTGGACAACGAAACCCGTAAACTGACCGAA
GAAAAAATCTACAAAATCTGCAAAGGTATCGCTCAGGCTAACGACATCGAAATCAAAATCAACAAAAACGTTGTTGCTCCG
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GTTACCATGAACAACGACGAAGCTGTTGACTTCGCTTCTGAAGTTGCTAAAGAACTGTTCGGTGAAAAAAACTGCGAATTC
AACCACCGTCCGCTGATGGCTTCTGAAGACTTCGGTTTCTTCTGCGAAATGAAAAAATGCGCTTACGCTTTCCTGGAAAA
CGAAAACGACATCTACCTGCACAACTCTTCTTACGTTTTCAACGACAAACTGCTGGCTCGTGCTGCTTCTTACTACGCTAAA
CTGGCTCTGAAATACCTGAAATAR

CocE

UniProtKB - Q9L9D7

Taken from Libis et al.

Cocaine esterase (EC: 3.1.1.84), Rhodococcus sp.
Cocaine to benzoate

BTGGTTGACGGTAACTACTCTGTTGCTTCTAACGTTATGGTTCCGATGCGTGACGGTGTTCGTCTGGCTGTTGACCTGTAGC
GTCCGGACGCTGACGGTCCGGTTCCGGTTCTGCTGGTTCGTAACCCGTACGACAAATTCGACGTTTTCGCTTGGTCTAC
CCAGTCTACCAACTGGCTGGAATTTGTTCGTGACGGTTACGCTGTTGTTATCCAGGACACCCGTGGTCTGTTCGCTTCTGA
AGGTGAATTTGTTCCGCACGTTGACGACGAAGCTGACGCTGAAGACACCCTGTCTTGGATTTTGGAACAGGCTTGGTGC
GACGGTAACGTTGGTATGTTCGGTGTTTCTTACCTGGGTGTTACCCAGTGGCAGGCTGCTGTTTCTGGTGTTGGTGGTCTG
AAAGCTATCGCTCCGTCTATGGCTTCTGCTGACCTGTACCGTGCTCCGTGGTACGGTCCGGGTGGTGCTCTGTCTGTTGA
AGCGCTGCTGGGTTGGTCTGCTCTGATCGGTACCGGTCTGATCACCTCTCGTTCTGACGCTCGTCCGGAAGACGCTGCT
GACTTCGTTCAGCTGGCTGCTATCCTGAACGACGTTGCTGGTGCTGCTTCTGTTACCCCGCTGGCTGAACAGCCGCTGCT
GGGTCGTCTGATCCCGTGGGTTATCGACCAGGTTGTTGACCACCCGGACAACGACGAATCTTGGCAGTCTATCTCTCTGT
TCGAACGTCTGGGTGGTCTGGCTACCCCGGCTCTGATCACCGCTGGTTGGTACGACGGTTTCGTTGGTGAAAGCCTGCG
TACCTTCGTTGCTGTTAAAGACAACGCTGACGCTCGTCTGGTTGTTGGTCCGTGGTCCCACTCTAACCTGACCGGTCGTA
ACGCTGACCGTAAATTCGGTATCGCTGCTACCTACCCGATCCAGGAAGCTACCACCATGCACAAAGCTTTCTTCGACCGT
CACCTGCGTGGTGAAACCGACGCACTTGCTGGTGTTCCGAAAGTTCGTCTGTTCGTTATGGGTATCGACGAATGGCGTGA
CGAAACCGACTGGCCGCTGCCGGACACCGCTTACACCCCGTTCTACCTGGGTGGTTCTGGTGCTGCTAACACCTCTACC
GGTGGTGGTACCCTGTCTACCTCTATCAGCGGTACCGAATCTGCTGACACCTACCTGTACGACCCGGCTGACCCGGTTCC
GAGCCTGGGTGGTACCCTGCTGTTCCACAACGGTGACAACGGTCCGGCTGACCAGCGTCCGATCCACGACCGTGACGA
CGTTCTGTGCTACTCTACCGAAGTTCTGACCGACCCGGTTGAAGTTACCGGTACCGTTTCTGCTCGTCTGTTCGTTTCTTC
TTCTGCTGTTGACACCGAGCTTCACCGCTAAACTGGTTGACGTTTTCCCGGACGGTCGTGCTATCGCTCTGTGCGACGGTA
TCGTTCGTATGCGTTACCGTGAAACCCTGGTTAACCCGACCCTGATCGAAGCTGGTGAAATCTACGAAGTTGCTATCGACA
TGCTGGCTACCTCTAACGTTTTCCTGCCGGGTCACCGTATCATGGTTCAGGTTTCTTCTTCTAACTTCCCGAAATACGACC
GTAACTCTAACACCGGTGGTGTTATCGCTCGTGAACAGCTGGAAGAAATGTGCACCGCTGTTAACCGTATCCACCGTGGT
CCGGAACACCCGAGCCACATCGTTCTGCCGATCATCAAACGTIIAR

[240] and Bsal site
removed
vdh

UniProtKB - DORZT4

Codon optimized and
chemically synthesized

Aryl-aldehyde oxidase (EC: 1.2.3.9), Acinetobacter johnsonii SH046
Benzaldehyde to benzoate

ATGCACAACGTTCAGCTGAAACAGGACAACACCGTTGACACCTCTTCTTTCGAATCTGCTCCGAACGTTCACACCGTTCA
GCTGCTGATCCACGGTCAGTCTGTTGACGCTTCTAACCAGATGACCTTCAAACGTATCTCTCCGATCGACGGTCAGGTTG
CTTCTATCGCTGCTGCTGCTACCCTGGCTGACGTTGACCTGGCTATCGAATCTGCTGCTAAAGCTTTCCCGATCTGGTCTA
AACTGTCTCCGACCGAACGTCGTCTGCGTCTGCTGAAAGCTGCTGACCTGATGGACGCTCGTACCGACCAGTTCATCCA
GATCGGTATGCGTGAAACCGGTTCTACCGCTACCTGGTACGGCTTCAACGTTCACCTCGCTGCTAACATGCTGCGTGAAG
CTGCTGCTATGACCACCCAGATGGACGGTTCTCTGATCCCGTCTGACGTTCCGGGTAACATGGCTATGGGTATCCGTGTTC
CGTGCGGTGTTGTTGTTGGTATCGCTCCGTGGAACGCTCCGGTTATCCTGCCGACCCGTGCACTGGCTATGCCGCTGGC
TTGCGGTAACACCGTTGTTCTGAAAGCTTCTGAAGCTTGCCCGGCTACCCAGCGTCTGATCGGTCAGGTTCTGCACGAA
GCTGGTCTGGGTGACGGTGTTGTTAACGTTATCACCCACGCTGCTGAAGACGCTTCTCAGATCGTTGAACGTCTGATCTCT
CACCCGGCTGTTAAACGTATCAACTTCACCGGTTCTACCAACGTTGGTAAAATCATCGCTGAAACCGCTGCTAAATACCTG
AAACCGGTTCTGCTGGAACTGGGTGGTAAAGCTCCGGTTGTTGTTCTGAACGAAGCTGACGTTGACGAAGCTGTTAACGC
TGTTGTTTTCGGTGCTTTCTTCAACCAGGGTCAGATCTGCATGTCTACCGAACGTGTTCTGGTTCAGGACCGTATCGCTGA
CCAGTTCATCGAAAAACTGATCGAAAAAACCCGTACCATCCACGCTGGTAACCCGACCTTCAAAGGTCACGTTCTGGGTG
TTCTGGAATCTCAGCGTGCTGCTAACCGTATCCAGCACCTGCTGGAAGACGCTCAGTCTCAGGGTGCTGACCTGCCGCT
GGGTATCCACATCCAGAACACCACCATGCAGCCGACCCTGGTTCTGAACATCCAGCCGGAAATGCTGCTGTACCGTGAA
GAATCTTTCGGTCCGGTTTGCACCGTTCAGCGTTTCAACTCTGTTGAAGAAGGTATCGCCCTGGCTAACGACTCTGAATTC
GGTCTGTCTGCTGCTGTTTTCTCTCAGGACATCGCTCAGGCCCTGGACGTTGCTAAACAGATCGACTCCGGTATCTGCCA
CATCAACGGTGCTACCGTTCACGACGAAGCTCAGATGCCGTTCGGTGGTACCAAAGCTTCTGGTTACGGTCGTTTCGGTT
CTAAAGCTTCTATCGCTGAATTCACCGAACTGCGTTGGATCACCATCCAGACCCAGTCTCGTCACTACCCGATCTAR
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bphC

UniProtKB - P17297

Codon optimized and
chemically synthesized

Biphenyl-2,3-diol 1,2-dioxygenase (EC: 1.13.11.39), Pseudomonas sp.
Biphenyl-2,3-diol to 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate

ATGAGCATTGAACGCTTAGGTTACCTGGGTTTCGCAGTGAAAGATGTGCCAGCCTGGGACCACTTTCTGACGAAATCCGT
GGGCTTAATGGCGGCCGGTAGCGCCGGAGATGCAGCCCTTTACCGTGCGGACCAACGTGCTTGGCGCATCGCAGTACA
ACCTGGTGAGCTTGACGATTTAGCCTATGCAGGCTTAGAGGTGGACGACGCAGCTGCGCTTGAACGTATGGCGGACAAA
TTACGTCAAGCTGGTGTTGCGTTCACCCGTGGGGACGAGGCCCTGATGCAACAGCGCAAAGTGATGGGGCTTCTTTGCT
TGCAGGATCCATTTGGATTACCTTTGGAAATCTATTATGGACCTGCTGAAATTTTCCACGAACCATTCTTGCCGTCTGCTCC
TGTTTCCGGGTTCGTGACCGGGGACCAGGGTATTGGCCATTTTGTCCGTTGTGTTCCCGATACAGCGAAGGCTATGGCTT
TTTACACCGAGGTCCTTGGGTTCGTGCTTTCAGACATTATTGACATTCAAATGGGGCCCGAGACTTCCGTTCCCGCTCACT
TCTTACATTGCAACGGACGCCATCACACTATCGCTTTGGCCGCCTTTCCCATTCCGAAACGTATCCACCACTTCATGTTAC
AGGCAAACACAATCGACGACGTGGGTTACGCATTTGATCGTCTGGATGCAGCAGGGCGCATTACCTCGCTGCTGGGGCG
TCACACCAATGATCAGACCCTGAGCTTTTACGCTGATACCCCAAGCCCCATGATTGAGGTCGAATTCGGTTGGGGCCCGC
GTACAGTGGATTCCTCTTGGACCGTAGCGCGTCACTCGCGCACCGCTATGTGGGGGCATAAGTCTGTTCGCGGACAACG

CIAA

bphD

UniProtKB - Q52036

Codon optimized and
chemically synthesized

2-Hydroxy-6-oxo0-6-phenylhexa-2,4-dienoate hydrolase (EC: 3.7.1.8), Pseudomonas putida
2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate to benzoate

ATGACAGCATTGACTGAAAGCTCTACTAGCAAATTCCTTAACATCAAAGAGAAAGGCTTGTCCGACTTTAAGATTCATTATAA
TGAAGCGGGCAACGGTGAAACTGTCATCATGCTGCATGGCGGTGGACCGGGAGCCGGAGGATGGTCGAACTATTATCGT
AATATCGGACCGTTCGTTGAAGCCGGTTACCGTGTCATTTTGAAGGATTCACCCGGCTTTAACAAATCCGATGCTGTCGTC
ATGGATGAACAACGTGGGCTTGTAAATGCTCGTGCGGTCAAGGGATTGATGGATGCTCTTGGCATTGATCGTGCGCATCTG
GTGGGAAATTCAATGGGAGGTGCAACCGCGCTTAACTTCGCCATCGAGTATCCAGACCGTATTGGAAAACTTATCCTTATG
GGTCCGGGAGGTTTGGGACCCTCCATGTTTGCCCCAATGCCCTTAGAGGGAATTAAATTATTATTTAAGTTATATGCAGAGC
CGTCGTATGAAAATCTGAAACAGATGATCCAAGTGTTCCTTTATGATCAATCTCTGATTACTGAGGAACTTTTACAAGGACGC
TGGGAAGCCATTCAGCGTCAACCAGAACATCTTAAAAACTTCCTGATTTCTGCGCAGAAGGCGCCCCTGAGTACGTGGGA
TGTTACCGCCCGTTTGGGAGAGATTAAGGCGAAGACCTTCATTACATGGGGTCGTGACGACCGCTTCGTGCCGTTAGAC
CATGGTCTGAAACTTTTGTGGAATATTGATGACGCACGCTTGCACGTTTTTTCCAAGTGCGGACATTGGGCACAATGGGAG
CATGCTGACGAGTTTAACCGCTTAGCCATTGACTTTCTGCGCCAGGCTIAR

UniProtKB - B4XEY3

Codon optimized and
chemically synthesized

Amidase (EC: 3.5.1.4), Rhodococcus erythropolis
Benzamide to benzoate

ATGGCGACAATCCGTCCCGATGACAACGCAATTGACACGGCGGCCCGCCATTATGGCATCACCCTTGACCAAAGCGCG
CGTCTTGAGTGGCCCGCACTTATTGACGGAGCCTTAGGGAGCTACGACGTTGTTGACCAGCTGTACGCTGATGAAGCCA
CGCCGCCAACAACGTCGCGTGAACATACTGTCCCTACTGCTAGCGAAAATCCCCTTTCCGCCTGGTACGTTACGACCTCT
ATCCCCCCCACAAGTGACGGAGTGTTGACTGGACGCCGCGTCGCCATCAAAGATAACGTCACAGTAGCTGGCGTGCCAA
TGATGAACGGCTCGCGTACCGTTGAGGGATTTACTCCGTCACGCGACGCCACTGTAGTCACTCGCCTGCTGGCTGCTGG
TGCAACAGTAGCTGGAAAGGCTGTCTGTGAGGACTTATGCTTTTCTGGCTCTAGTTTTACCCCAGCCTCGGGACCTGTTC
GCAATCCCTGGGATCCGCAGCGCGAGGCAGGAGGAAGTTCCGGCGGAAGTGCAGCATTAGTAGCAAATGGCGATGTCG
ACTTCGCAATTGGAGGTGACCAGGGTGGCTCCATCCGTATCCCGGCTGCCTTTTGCGGCGTAGTCGGCCACAAGCCTAC
ATTTGGACTTGTACCATATACGGGAGCCTTCCCAATCGAACGCACGATTGACCACCTTGGACCGATTACACGCACTGTCC
ATGACGCTGCACTTATGCTGTCAGTTATCGCAGGCCGCGATGGAAACGACCCTCGTCAAGCGGATAGTGTGGAAGCGGG
CGACTACCTTAGTACTTTAGATAGCGACGTCGACGGGTTACGTATCGGAATCGTACGTGAGGGTTTTGGCCACGCAGTCA
GCCAACCGGAGGTAGACGACGCGGTTCGTGCAGCGGCTCACAGCTTAGCAGAAATCGGATGCACAGTGGAAGAAGTGA
ACATTCCATGGCACCTGCATGCGTTTCATATCTGGAATGTGATTGCCACCGATGGCGGTGCTTACCAAATGTTAGACGGGA
ACGGTTATGGAATGAATGCAGAAGGTTTATACGACCCTGAACTTATGGCTCACTTCGCATCTCGTCGTCTTCAACATGCAGA
TGCCTTGTCTGAAACCGTTAAGCTTGTAGCTCTGACCGGCCACCACGGGATTACGACATTAGGGGGCGCTTCGTACGGG
AAAGCCCGCAACTTGGTTCCGTTAGCGCGTGCAGCTTACGACACCGCGCTTCGTCAGTTCGACGTGCTTGTAATGCCAA
CTTTACCTTATGTCGCCTCAGAATTACCAGCCAATGATGTCGACCGTGCAACTTTTATTACTAAGGCGCTTGGTATGATCGC

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi

285




TAACACAGCACCTTTCGATGTAACAGGGCACCCGAGCTTATCAGTTCCAGCTGGCCTTGTAAATGGGTTACCTGTCGGTAT
GATGATTACTGGAAAGAC GATGATGCGACAGTGCTTCGTGTAGGGCGTGCCTTTGAGAAATTACGTGGGGCCTTTCC
GACCCCTGCAGATCACATTTCGGATAGTGCCCCGCAATTAAGCCCTGCGTAR

J23101-B0032

From
registry[416]

iIGEM

Constitutive promoter-RBS

AGGATACTAGAGGATGACCCCATCTGTTTACAGCTAGCTCAGTCCTAGGTATTATGCTAGCTAGTAGAGTCACACAGGAAAG
TAGTAGATG
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Supplementary Table S6. List of plasmids used in this study deposited to Addgene [417]

available at:

Voyvodic et al. [61] https://www.addgene.org/browse/article/28196338/
This study https://www.addgene.org/browse/article/28203589/

Plasmids name

Description/Experimental Purpose

Addgene ID

pBEAST-BenR

Strong constitutive expression of
transcription  factor, BenR, for
cell-free expression.

114597
(Voyvodic et al.
[61])

pBEAST-pBen-sfGFP

Output expression of sSfGFP under the
activation of BenR transcription factor
for cell-free expression

114598
(Voyvodic et al.
[61])

pBEAST-J23101-CocE

Strong constitutive expression of
metabolic enzyme, CocE, for cell-free
expression

114600
(Voyvodic et al.
[61])

pPBEAST_J23101-bphD

The cell-free adapted backbone,
pBEAST, expressing gene encoding
bphD (the enzyme converting
2-hydroxy-6-oxo-6-phenylhexa-2,4-di
enoate to benzoate) under control of
the constitutive promoter J23101 and
RBS B0032

128138
(This study)
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PBEAST_J23101-bphC

The cell-free adapted backbone,
pPBEAST, expressing gene encoding
bphC (the enzyme converting
biphenyl-2,3-diol to
2-hydroxy-6-o0xo-6-phenylhexa-2,4-)
under control of the constitutive
promoter J23101 and RBS B0032

128137
(This study)

pBEAST_J23101-amidase

The cell-free adapted backbone,
pBEAST, expressing the amidase
enzyme gene (benzamid to benzoate)
under control of the constitutive
promoter J23101 and RBS B0032

128135
(This study)

pBEAST_J23101-vdh

The cell-free adapted backbone,
pBEAST, expressing gene encoding
vdh (the enzyme  converting
benzaldehyde to benzoate) under
control of the constitutive promoter
J23101 and RBS B0032

128134
(This study)

pBEAST_J23101-HipO

The cell-free adapted backbone,
pBEAST, expressing gene encoding
HipO (the enzyme converting
hippurate to benzoate) under control
of the constitutive promoter J23101
and RBS B0032

128133
(This study)

pSB4C5_J23101-(B0032-
HipO_B0034vdh)

Expressing genes encoding HipO and
vdh in one operon under control of
the constitutive promoter J23101,
and RBS B0032 for HipO and RBS
B0034 for vdh

128131
(This study)

pSB4C5_J23101-vdh

Expressing vdh gene (for the enzyme
transforming benzaldehyde to
benzoate) under control of the
constitutive promoter J23101 and
RBS B0032

128130
(This study)
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pSB4C5_J23101-CocE

Expressing gene encoding CocE
enzyme (cocaine to benzoate) gene
under control of the constitutive
promoter J23101 and RBS B0032

128129
(This study)

pSB4C5_J23101-HipO

Expressing gene encoding HipO
enzyme (hippurate to benzoate) gene
under control of the constitutive
promoter J23101 and RBS B0032

128128
(This study)

pSB4C5_pBen-BenR

Expressing gene encoding BenR
transcription  factor gene under
control of benzoate responsive
promoter (pBen) in a feedback loop.

128127
(This study)

pSB1K3_pBen-sfGFP_J231
01-mRFP

Expressing gene encoding sfGFP
under control of benzoate responsive
promoter (pBen) and expressing gene
encoding mRFP under constitutive
promoter J23101 and RBS B0032

128126
(This study)

pSB1K3_pBen-sfGFP_J231
01-BenR

Expressing gene encoding sfGFP
under control of benzoate responsive
promoter (pBen) and expressing gene
encoding BenR transcription factor
gene under constitutive promoter
J23101 and RBS B0032

128125
(This study)
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Supplementary Table S9.7. The mean and standard deviation of the normalized data of
whole-cell and cell-free data plotted in all figures and supplementary figures, and model
simulated/predicted results associated with each experiment, also submitted as Source
Data excel file.

Open-loop actuator (Fig. 9.1c)

Benzoate Mean sd Model
concentrations

0 137.1253 52.75396 129.5562
1 152.4295 26.17023 134.3022
10 196.3033 15.81854 228.7778
20 370.6038 52.07807 366.597
100 1340.749 104.5505 1345.377
200 1974.003 76.27541 1940.671
500 2401.962 116.8234 2471.769
1000 2702.137 58.75755 2658.252
Feedback-loop actuator (Supp. Fig. S9.1b)
benzoate Mean sd

concentration

0 176.7221 | 14.40118

1 175.5545 | 8.976066

10 186.5161 | 5.700804

20 175.8244 | 11.7473

100 176.3523 | 6.871175

200 186.8994 | 22.29161

500 229.1743 | 24.9362

1000 256.361 26.27477
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Hippurate transducer (Fig. 9.1d)

Hippurate NC sd Mean sd Model
concentrations

0 10.42038 | 10.42038 | 33.83452 | 5.982626 | 138.3214
1 9.230474 | 9.230474 | 36.76217 | 5.931294 | 142.0044
10 9.794407 | 9.794407 | 178.6825 | 20.18181 | 216.074
20 10.39639 | 10.39639 | 392.1922 | 59.44664 | 326.7622
100 11.44233 | 11.44233 | 1170.904 | 136.9077 | 1215.649
200 10.28643 | 10.28643 | 1595.289 | 337.6722 | 1863.389
500 13.43539 | 13.43539 | 2364.503 | 432.4425 | 2529.084
1000 14.14902 | 14.14902 | 2691.25 | 555.3749 | 2786.039

Cocaine transducer (Fig. 9.1¢)

Cocaine NC sd Mean sd Model
concentrations

0 2.578523 | 0.964539 | 0.699758 | 1.519025 | 106.7959
1 3.795796 | 1.281066 | 1.083956 | 0.890681 | 107.2539
10 5.247815 | 0.932223 | 22.44099 | 4.644204 | 116.6802
20 5.259497 | 0.517627 | 77.24693 | 13.89922 | 131.5785
100 5.967215 | 1.530721 | 428.5773 | 131.4049 | 302.8264
200 5.396151 | 1.450211 | 711.0437 | 98.96636 | 542.4661
500 9.127592 | 1.647522 | 1208.372 | 175.431 1110.959
1000 22.80564 | 4.480886 | 1329.617 | 76.54072 | 1601.437

Benzaldehyde transducer (Fig. 9.1f)

Benzaldehyde NC sd Mean sd Model
concentrations

0 2.873426 | 0.87706 68.18518 | 24.74003 | 106.7959

1 3.840284 | 1.429621 | 100.9618 | 37.40521 | 111.2383
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10 4.301073 | 0.731954 | 303.4843 | 122.2295 | 199.2261
20 4.107255 | 0.917198 | 453.409 61.38622 | 326.0815
100 22.17864 | 1.96911 1167.718 | 277.1315 | 1178.782
200 47.23322 | 7.509535 | 1436.268 | 412.567 1659.353
500 157.5873 | 22.40705 | 1970.066 | 69.83603 | 2066.138
1000 433.0743 | 76.723 2103.431 | 74.13477 | 2204.35
Hippurate-benzaldehyde concentration adder (Fig. 9.2b and 9.2¢, in vivo and
model data)
Hippurate Benzaldehyde model Mean sd
concentrations concentrations
1 0 0 48.39032 47.51496 34.85855
2 0 1 50.40322 27.97123 28.93989
3 0 10 90.27141 84.88917 59.20592
4 0 20 147.7509 158.3545 92.4153
5 0 100 534.1186 475.0621 185.3318
6 0 500 936.1886 903.2327 213.803
7 0 1000 998.8138 919.1106 213.8193
8 1 0 49.6788 30.05882 19.74518
9 1 1 52.52181 28.19774 29.37242
10 1 10 94.13735 93.33507 56.48188
11 1 20 152.0326 159.4401 84.51181
12 1 100 536.491 381.3766 79.87722
13 1 500 936.3736 732.908 122.5856
14 1 1000 998.8558 1166.612 236.5423
15 10 0 75.59127 86.21446 50.38076
16 10 1 80.61638 81.19441 49.33897
17 10 10 130.8714 139.937 76.1301
18 10 20 190.7461 188.635 96.26744
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19 10 100 557.122 470.0044 173.4254
20 10 500 938.0144 804.201 224.0854
21 10 1000 999.231 1134.184 295.3284
22 20 0 114.3144 175.0692 115.3943
23 20 1 120.0905 124.1758 84.0242

24 20 10 173.6536 231.4451 163.5917
25 20 20 233.2806 273.8019 134.089

26 20 100 578.5992 463.7883 134.5797
27 20 500 939.7882 704.2105 44.10476
28 20 1000 999.6417 1063.241 377.3755
29 100 0 425.2822 597.2984 288.7776
30 100 1 429.6361 470.3275 285.0136
31 100 10 467.0102 490.0771 278.2035
32 100 20 504.9083 587.1758 308.1422
33 100 100 707.7917 557.0478 123.6608
34 100 500 952.3317 930.1619 287.9087
35 100 1000 1002.709 1092.143 349.8937
36 500 0 884.7742 862.9617 369.9712
37 500 1 885.2747 794.7597 190.4564
38 500 10 889.6618 877.49 145.7884
39 500 20 894.3008 938.5556 119.4559
40 500 100 924.2587 1036.408 163.6042
4 500 500 988.921 1181.836 208.2064
42 500 1000 1013.8 1270.341 369.709

43 1000 0 974.6671 886.9526 220.3447
44 1000 1 974.7888 891.2346 131.7974
45 1000 10 975.8681 899.482 134.6977
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46 1000 20 977.034 1087.89 166.0846
47 1000 100 985.2558 1111.723 233.7399
48 1000 500 1009.024 1158.32 274.9251
49 1000 1000 1021.962 1478.605 287.9171

Benzoate actuator (Fig. 9.3b)

Benzoate Data mean Data sd Model

Concentrations

0 0.033011438 0.007420496 0.032948286

1 0.054448326 0.000653338 0.075157603

5 0.485035272 0.128358282 1.12905611

10 3.21651485 0.14101149 2.723713493

50 4.241992557 0.174111638 4.496461865

100 4.673264388 0.159454201 4.605450067

500 5.017578705 0.074886371 4.951792779

1000 5.259845216 0.156300164 5.361737472

Hippurate transducer (Fig. 9.3c)

Hippurate NC sd Data Data Sd

concentration Means

0 0.01859 0.013555 | 0.018196 0.003558

10 0.028282 | 0.007689 | 1.203237 0.168961

100 0.037257 0.004361 | 3.943558 0.183397

1000 0.061559 0.009436 | 4.414297 0.484822
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Cocaine transducer (Fig. 9.3d)

Cocaine NC sd Data Data Sd

concentration Means

0 0.02859 0.012555 | 0.017033 0.003252

10 0.025282 0.007689 | 0.592297 0.475485

100 0.036257 0.004361 | 2.632578 0.463412

1000 0.055559 0.009436 | 3.42496 0.582069

Benzaldehyde transducer (Fig. 9.3e)

Benzaldehyde NC sd Data Data Sd

concentration Means

0 0.051592 0.007427 | 0.07209 0.04227

10 0.204802 0.034533 | 0.747988 0.26426

100 3.199616 0.08219 3.661972 0.166329

1000 4.784759 0.160701 | 4.322671 0.149633

Benzamide transducer (Fig. 9.3f)

Benzamide NC sd Data Data Sd

concentration Means

0 0.051592 0.007427 | 0.07209 0.04227

10 0.043164 0.009378 | 2.761356 0.099712

100 0.118696 0.023099 | 4.299468 0.11708

1000 0.585144 0.079395 | 3.977133 0.067883

Biphenyl-2,3-diol transducer (Fig. 9.3g)

Biphenyl-2,3-diol NC sd Data Data Sd only sd only sd

concentration Means enzyme 1 enzyme 2

0 0.032658 0.004461 0.032591 0.006763 | 0.032886 0.004461 0.033712 0.014259

10 0.039945 0.01463 0.10021 0.03997 0.041163 0.02168 0.040885 0.018025

100 0.036436 0.015096 3.45308 0.32505 0.038145 0.023125 0.04936 0.025325
Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation, Doctoral thesis_Amir Pandi 295




1000 0.026511 0.002102 2.39105 0.332053 | 0.031618 0.003012 0.030489 0.003325
Hippurate weighted transducer (Fig. 9.4b)

Hippurate HipO [nM] | Data Means | Data Sd Model
concentration

0 0.1 0.00818244 0.00139968 0.03075614
10 0.1 0.65776276 0.04402834 0.05689169
100 0.1 2.57263017 0.10171441 2.24348368
1000 0.1 3.40759119 0.08937716 3.80489409
0 0.3 0.00811206 0.00282825 0.03075614
10 0.3 1.3414102 0.10062636 0.66883489
100 0.3 3.28084253 0.05991059 | 3.95271157
1000 0.3 3.80353341 0.07346332 4.13883002
0 1 0.00336096 0.00195845 0.03075614
10 1 2.54224076 0.16906574 2.06598955
100 1 3.68595259 0.14276648 | 4.08654164
1000 1 4.33864752 0.1752886 4.30217219
0 3 0.00848159 0.00459283 0.03075614
10 3 2.49515212 0.02119017 2.3672994
100 3 4.11198508 0.1491968 4.10493864
1000 3 4.55381935 0.04947948 4.34647867
0 10 0.00721463 0.00211972 0.03075614
10 10 2.49062978 0.1654227 2.41173608
100 10 4.00351933 0.03257552 | 4.10775299
1000 10 4.5330905 0.05971498 4.35371225
Cocaine weighted transducer (Fig. 9.4c)

Cocaine CocE [nM] | Data Means | Data Sd Model
concentration
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0 0.1 0.00783051 0.00331458 | 0.03075614
10 0.1 0.56926921 0.05623263 | 0.05585811
100 0.1 1.57792676 0.2993573 1.52850911
1000 0.1 1.67344138 0.29497577 | 2.21612192
0 0.3 0.00703866 0.00199929 | 0.03075614
10 0.3 1.22031005 0.17895399 | 0.801576
100 0.3 2.69981875 0.12090086 | 3.88620162
1000 0.3 2.85549631 0.12248131 3.97994033
0 1 0.00823523 0.00562331 | 0.03075614
10 1 1.44253814 0.07074442 | 3.21817476
100 1 3.42455436 0.03567821 4.12606657
1000 1 3.34734027 0.03489832 | 4.1766156
0 3 0.00834081 0.00117569 | 0.03075614
10 3 1.56789667 0.15795989 | 3.6579708
100 3 3.82947087 0.39735051 4.19217237
1000 3 3.76300832 0.03985681 4.26325038
0 10 0.00761935 0.00335635 | 0.03075614
10 10 1.65839624 0.0614677 3.71767934
100 10 3.63471115 0.18105836 | 4.20846933
1000 10 3.82883739 0.23721058 | 4.28533365
Benzamide weighted transducer (Fig. 9.4d)

Benzamide Enzyme Data Means | Data Sd Model
concentration [nm]

0 0.1 0.04220047 0.00435683 | 0.03075614
10 0.1 1.41967756 0.18146775 | 0.58093365
100 0.1 2.22916367 0.15121954 | 2.7412603
1000 0.1 2.18053356 0.06430761 | 3.29966523
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0 0.3 0.04071302 0.01579984 | 0.03075614
10 0.3 2.0535243 0.15796188 1.6023616
100 0.3 3.0744446 0.06747095 | 3.62095339
1000 0.3 3.02691809 0.01510055 | 3.8385399
0 1 0.03785807 0.01060016 | 0.03075614
10 1 2.47790413 0.19194935 | 2.89476998
100 1 3.65903747 0.24619976 | 3.94075294
1000 1 3.00772516 0.22694437 | 4.01705851
0 3 0.03740224 0.00908132 | 0.03075614
10 3 2.51796939 0.22721728 | 3.52314283
100 3 3.6559666 0.55775483 | 4.03521326
1000 3 3.28496713 0.20119771 4.08316964
0 10 0.03363562 0.00845691 0.03075614
10 10 1.92860227 0.24099681 3.7854101
100 10 3.61405403 1.07598812 | 4.08345856
1000 10 2.92034931 0.52051559 | 4.12981517
Biphenyl-2,3,diol weighted transducer (Fig. 9.4e)

Biphenyl-2,3-diol Enzyme Data Means Data Sd Model
concentration [nM]

0 0.1 0.04791037 0.01207362 | 0.03075614
10 0.1 0.03557891 0.01257012 | 0.03075718
100 0.1 0.03821794 0.02057939 | 0.03257536
1000 0.1 0.05374022 0.02268666 | 0.03326166
0 0.3 0.0418406 0.00544404 | 0.03075614
10 0.3 0.0342354 0.00946892 | 0.03076068
100 0.3 0.05282856 0.01902893 | 0.06004588
1000 0.3 0.04263231 0.00621908 | 0.07144537
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0 1 0.03814596 0.00687827 | 0.03075614

10 1 0.04745454 0.01676262 | 0.03078609

100 1 0.58461686 0.3580844 0.56334937

1000 1 1.19715945 0.08701882 | 0.73756654

0 3 0.04601507 0.02141733 | 0.03075614

10 3 0.1038098 0.03477485 | 0.03097656

100 3 2.68621947 0.15598616 | 2.65903268

1000 3 1.823377 0.72915661 2.94486015

0 10 0.05254067 0.00957248 | 0.03075614

10 10 0.11484574 0.04520265 | 0.03211607

100 10 2.93037762 0.30506833 | 3.78146507

1000 10 2.34696032 0.46910023 | 3.85731348

Fixed-input adder (Fig. 9.5b)

HipO [nM] CocE [nM] Data Means | Data Sd Model

0 0 0.01557544 0.00744527 0.03075614
0 0.1 0.7363064 0.06655886 1.52850911
0 0.3 2.71275387 0.20333374 3.88620162
0 1 3.92735407 0.23505573 4.12606657
0 3 4.3966056 0.23787075 4.19217237
0 10 4.41544762 0.13869244 4.20846933
0.1 0 2.0035743 0.35953586 2.24348368
0.1 0.1 2.5951096 0.24460087 3.20307532
0.1 0.3 3.30445486 | 0.32274965 3.95395775
0.1 1 4.1505468 0.5274273 4.13491436
0.1 3 4.37186953 0.3436348 4.20007061
0.1 10 4.44330824 0.135122 4.21628257
0.3 0 3.40846471 0.53682725 3.95271157
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0.3 0.1 3.80703499 | 0.30331647 3.98346329
0.3 0.3 3.8872556 0.34385447 4.05846747
0.3 1 4.2076883 0.16863396 4.16847258
0.3 3 4.54940113 | 0.17667821 4.23130119
0.3 10 4.88706623 | 0.18654025 4.24728003
1 0 4.2720731 0.28952273 4.08654164
1 0.1 4.51903139 | 0.1540308 4.09426971
1 0.3 4.21438716 | 0.17078485 4.12633558
1 1 4.54199214 0.29444058 4.21784173
1 3 4.57543909 0.14201456 4.27915312
1 10 4.78379018 | 0.19123379 4.29495066
3 0 4.50312456 | 0.15692217 4.10493864
3 0.1 5.07669365 | 0.04954622 4.11182082
3 0.3 4.73401032 | 0.14025071 4.14164622
3 1 4.76745727 | 0.29080678 4.23142483
3 3 5.04050088 | 0.10178196 4.29250735
3 10 5.02191924 | 0.16487221 4.30827422
10 0 4.86533636 | 0.03951931 4.10775299
10 0.1 4.92018179 | 0.04086461 4.11453635
10 0.3 4.91873787 | 0.02371656 4.1440891
10 1 4.80530701 0.0140498 4.23363984
10 3 4.80684562 | 0.17977087 4.29468972
10 10 4.99640203 | 0.09160087 4.31045211
Fixed-enzyme adder (Fig. 9.5c)

Cocaine Hippurate Data Means | Data Sd Model
concentration concentration

0 0 0.02890776 | 0.01229848 0.03075614
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1 0 2.50704813 0.29159956 0.07282929
10 0 3.72227686 0.27774708 3.6579708

20 0 4.23504694 0.29713403 4.00216523
100 0 4.25802414 0.43255079 4.19217237
500 0 4.37153926 0.38333854 4.25709675
1000 0 4.20253315 0.29124023 4.26325038
0 1 0.14307853 0.02221961 0.04382733
1 1 2.45614662 0.21623354 0.1363302

10 1 3.71735956 0.31739458 3.67413653
20 1 4.03132171 0.25105141 4.00387789
100 1 4.10883624 0.044408 4.19263535
500 1 4.26928923 0.38938268 4.25754555
1000 1 4.13735658 0.65555047 4.26369852
0 10 2.70081955 0.42154458 2.06598955
1 10 3.28219341 0.37028665 2.28823759
10 10 4.32680674 0.15476818 3.83457333
20 10 4.06705409 0.23903666 4.0256109

100 10 4.48165698 0.52572889 4.19943036
500 10 4.35103561 0.08582767 4.26414588
1000 10 4.4131128 0.45672211 4.27028957
0 20 3.55637014 0.08878817 3.43685339
1 20 3.84520936 0.24686224 3.48806007
10 20 3.62735807 0.65475503 3.93533938
20 20 4.0115333 0.33261698 4.04756933
100 20 4.22232156 0.26069877 4.20841057
500 20 4.13085978 0.49486215 4.27290328
1000 20 4.02405007 0.79020601 4.27903609
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0 100 4.30838921 0.33962656 | 4.08654164
1 100 4.38766205 0.18129735 4.08769648
10 100 4.38730443 0.1179161 4.11345613
20 100 4.27849799 0.50736451 4.14590554
100 100 4.55336016 0.18226843 4.27915312
500 100 4.13378036 0.32106185 4.34269266
1000 100 4.26711369 0.19703681 4.3487746
0 500 4.37261213 0.30074501 4.25394378
1 500 4.4606765 0.56314037 | 4.25473605
10 500 4.31503502 0.35309432 4.2740985
20 500 4.82026524 0.34336437 4.3019407
100 500 4.47960066 0.23051345 4.43006894
500 500 4.06151095 0.43288144 4.49309776
1000 500 4.24771271 0.58311348 4.49914761
0 1000 4.46908061 0.41765843 4.30217219
1 1000 4.30874683 0.4911537 4.30295735
10 1000 4.45465653 | 0.65667822 | 4.32217003
20 1000 4.48156758 0.49738212 4.34985842
100 1000 4.33887647 0.23101415 4.47768932
500 1000 4.46812696 0.33022075 4.54066601
1000 1000 4.12260468 0.42281116 4.54671219
Full-OR classifier Fig 9.6¢c

Inputs Data Means Data Sd Model

No input 0.035304 0.012647 0.0307561435577849

H 3.88545 0.224492 4.12606656849739

(o 3.249831 0.164483 4.08654164331305

B 3.739878 0.05422 3.94075294149016
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F 3.136258 0.14312 3.78146507270607
HC 4.188237 0.139133 4.2178417281617
HB 3.979569 0.173847 4.16667903537404
HF 3.915947 0.217096 4.1535358879735
CcB 3.542327 0.016789 4.1330352706629
BF 3.798092 0.066124 4.04111973849995
CF 3.513107 0.064933 4.11868545369628
HCB 4.075715 0.04238 4.25481654344573
HCF 3.98986 0.028954 4.24253751407664
HBF 3.729362 0.208663 4.19226127860961
CBF 4.034102 0.204885 4.1600418007154
HCBF 3.897919 0.056789 4.27923889568576
(C AND H) OR B OR F classifier Fig 9.6d

Inputs Data Means Data Sd Model

No input 0.022609 0.00315 0.0307561435577849
H 1.182528 0.097834 1.52850911478862
C 0.610832 0.04898 0.0874951181769892
B 3.827637 0.100457 3.94075294149016
F 3.411953 0.09547 3.78146507270607
HC 1.769599 0.135243 1.84515671973946
HB 3.703373 0.050647 3.9749354664424
HF 3.27184 0.092088 3.87366620345265
CB 3.676482 0.174047 3.94739701632846
BF 3.837803 0.04878 4.04111973849995
CF 2.982899 0.048738 3.80078972620523
HCB 3.585393 0.184831 3.97965207156987
HCF 3.558552 0.387636 3.88501043634454
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HBF 3.842735 0.124697 4.0530838122063
CBF 3.860462 0.107688 4.04326124317119
HCBF 3.840582 0.147427 4.05494186068752
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Thesis Conclusions and Perspectives

In this thesis report, | presented my contribution to projects during my 3-year PhD told
as a story of “Synthetic Metabolic Circuits for Bioproduction, Biosensing, and
Biocomputation”™. My PhD proposal was started with an idea close to the one
presented in the last chapter. However, my contribution to two iGEM projects as well
as collaborations led me doing a broader PhD, the whole story that presented in nine
chapters. Thanks to the amazing journey that | had during these three years with my
colleagues, friends, and collaborators | ended up learning concepts and techniques for
research in the field of synthetic biology.

Metabolism was the main tool of this doctoral thesis as is of the main tools of living
systems. In this thesis report, | first implemented two chapters introducing i) “synthetic
biological circuits” their types, applications and tools (Chapter 1), and ii) “cell-free
synthetic biology”, different types of cell-free systems and their applications (Chapter
2). These two chapters open up an overview of the whole story, approaches and tools
and terminology used in the thesis report. These two chapters also are overall review
for those who aim to get familiar with the stare of the art advances in biological circuits
and cell-free systems.

Section |, Bioproduction-Biosensing, consists of four chapters, this section starts
with a review of the most recent approaches to develop biosensors for metabolic
engineering application (Chapter 3). What makes this chapter special is discussing the
tools to engineer biosensors which do not naturally exist, using modeling approaches
to fine-tune the biosensors’ behavior and presenting cell-free approaches. The next
chapter (Chapter 4) in this section is helpful for those who aim to produce a chemical
using cell-factory and presented tools and techniques from choosing a host chassis
and enumerating a pathway even for molecules that do not exist in nature to pathway
optimizations using systems and synthetic biology methodologies. Chapter 5, is a
proof of concept of what was discussed in two previous chapters. This chapter was to
engineer a novel biosensor for D-psicose to improve the catalytic activity of its
producing enzyme. What makes this chapter promising, is the standardized way of
engineering biosensors using which several constructions were designed-built-tested
and the optimal construct was used to find an enzyme’s mutant with improved
feathers. Bringing the D-psicose sensor into the E. coli TX-TL cell-free system (Chapter
6), it was observed that this does not work in vitro unless the concentration of the DNA
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plasmids for transcription factor and reporter gene are adjusted so that a very weak
signal was observed (Figure 6.2b). Three strategies, doping, preincubation and
reinitiation of the reaction were used to optimize this weak signal as a proof of concept
of repressor based systems in cell-free systems. The optimized sensors were able to
report the enzymatic production of the D-psicose. This chapter shows ways of
functionalizing repressor based systems that do not work in the cell-free system or to
improve those with weak behavior. Moreover, it is the first study coupling
bioproduction and biosensing in the cell-free system. The last chapter of this section
(Chapter 7) is a collection of small molecules for which there are transcriptional or
translational regulatory cell component for sensing. This collection provides easy
access to the largest dataset of detectable molecules using which one can start
discovering new biosensors. This list can be used by Retrosynthesis algorithm as
target molecules that any small molecule can be converted to and the pathways
enabling this are enumerated using retrosynthesis algorithm. This is the strategy that
was used in Section Il and Section Ill for Biosensing-Diagnosis and
Biocomputation. Chapter 8 demonstrated that metabolic transducers which had been
constructed in whole-cell by previous PhD student in our lab are implementable and
functional in cell-free as well. Optimization of benzoate biosensor and cocaine and
hippurate transducers was done in cell-free then these devices were applied by our
colleagues to detect benzoate in beverages, and cocaine and hippurate in clinical
samples. Chapter 9 explored the potential of metabolic pathways for biocomputation,
multiple analog devices including transducers, address and perceptrons proved this
potential and their functionality in whole-cell and cell-free systems. This work had novel
aspects such as the first analog metabolic devices, the first neural computing
paradigm in biological systems through the perceptrons and perceptron-mediated
classifiers. Preliminary results of diseases’ biomarkers detection presented in
Supplementary Figure S9.13 betoken future applications of metabolic transducers,
adders and perceptrons for diagnosis and metabolic engineering applications as
simple examples were shown in Chapter 8 and Chapter 4 respectively. To overcome
weak signals in Supplementary Figure $9.13 either other inducers can be applied
(Chapter 7) or the actuators can be optimized using approaches presented in Chapter
6. Enzyme engineering similar to what presented in Chapter 5 can be also used to
extend the numbers of transducers through improving the enzymes or engineering new
enzymes. Altogether these tools with the extendable computational power of metabolic
circuits (Supplementary Figure $9.15) let an open end to the achievements of this
thesis to be further discovered by the synthetic biology and bioengineering community
for a variety of applications.
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Résumé: La biologie de synthése est le domaine
de la bioingénierie permettant de concevoir, de
construire et de tester de nouveaux systemes
biologiques en réécrivant le code génétique. Les
circuits biologiques synthétiques sont des outils
sophistiqués permettant diverses applications.

Cette thése de doctorat porte sur le
développement de voies  métaboliques
synthétiques concues a laide d'outils

informatiques. Ces voies métaboliques sont
connectés a des réseaux de régulation
transcriptionnelle  pour  développer  des
biocircuits pour la bioproduction, la biodétection
et la biocalcul. La partie “bioproduction-
biodétection” de la thése vise a développer un

nouveau biocapteur pour un sucre rare. Ce
biocapteur a été utilisé pour améliorer l'activité
catalytique d’enzyme dans la cellule. Il a ensuite
été optimisé dans un systeme acellulaire pour le
suivie de la bioproduction de ce sucre. La partie
"biodétection-diagnostic” montre la mise en
ceuvre et l'optimisation des transducteurs
métaboliques dans le systéme acellulaire,
permettant une augmentation du nombre de
petites molécules biologiquement détectables.
La partie “biocalculs” décrit une nouvelle
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dans des systémes cellulaires et acellulaires.
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Abstract: Synthetic biology is the field of
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biological networks for a variety of applications.
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of synthetic metabolic pathways designed by
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transcriptional regulatory layer for
bioproduction, biosensing, and biocomputation
in  whole-cell and cell-free systems. The
bioproduction-biosensing section of the thesis
is to build a novel sensor for a rare sugar used
to improve the catalytic activity of its producing
enzyme in the whole-cell system (in vivo) and its
optimization of biosensing-bioproduction in a
TX-TL cell-free system (in vitro).

The development of cell-free prokaryotic
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Finally, as a radical approach to perform
biocomputation, metabolic pathways were
applied to builld metabolic adders and
metabolic perceptrons in whole-cell and cell-
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a metabolic perceptron for building four-input
binary classifiers.
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