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Synthetic biology is the field of engineerable life science to design-build-test novel biological systems through reprogramming the code of DNA. Synthetic biocircuits are sophisticated tools to reconstruct biological networks for a variety of applications. This doctoral thesis focuses on the development of synthetic metabolic pathways designed by computer-aided tools integrated with the transcriptional regulatory layer for bioproduction, biosensing, and biocomputation in whole-cell and cell-free systems. The bioproduction-biosensing section of the thesis is to build a novel sensor for a rare sugar used to improve the catalytic activity of its producing enzyme in the whole-cell system ( in vivo ) and its optimization of biosensing-bioproduction in a TX-TL cell-free system ( in vitro ). The development of cell-free prokaryotic biosensors which are mostly relying on repressors enables faster and more efficient design-build-test cycle for metabolic pathways prototyping in cell-free systems. The biosensing application of the metabolic circuits for diagnosis is the implementation and optimization of cell-free metabolic transducers that expand the number of biologically detectable small molecules in cell-free systems. Finally, as a radical approach to perform biocomputation, metabolic pathways were applied to build metabolic adders and metabolic perceptrons in whole-cell and cell-free systems. An integrated model trained on the experimental data enabled the designing of a metabolic perceptron for building four-input binary classifiers.

Résumé

La biologie de synthèse est le domaine de la bioingénierie permettant de concevoir, de construire et de tester de nouveaux systèmes biologiques en réécrivant le code génétique. Les circuits biologiques synthétiques sont des outils sophistiqués permettant diverses applications. Cette thèse de doctorat porte sur le développement de voies métaboliques synthétiques conçues à l'aide d'outils informatiques. Ces voies métaboliques sont connectés à des réseaux de régulation transcriptionnelle pour développer des biocircuits pour la bioproduction, la biodétection et la biocalcul. La partie "bioproduction-biodétection" de la thèse vise à développer un nouveau biocapteur pour un sucre rare. Ce biocapteur a été utilisé pour améliorer l'activité catalytique d'enzyme dans la cellule. Il a ensuite été optimisé dans un système acellulaire pour le suivie de la bioproduction de ce sucre. La partie "biodétection-diagnostic" montre la mise en oeuvre et l'optimisation des transducteurs métaboliques dans le système acellulaire, permettant une augmentation du nombre de petites molécules biologiquement détectables. La partie "biocalculs" décrit une nouvelle approche utilisant des circuits métaboliques qui ont été redesigné pour construire des additionneurs et des perceptrons métaboliques dans des systèmes cellulaires et acellulaires. Dans ce rapport de thèse, j'ai présenté ma contribution à des projets au cours de mes 3 années de doctorat sous la forme d'une histoire de "Circuits Métaboliques Synthétiques pour la Bioproduction, la Biodétection et la Biocomputation". Ma proposition de doctorat a débuté avec une idée proche de celle présentée dans le dernier chapitre. Cependant, ma contribution à deux projets iGEM ainsi que mes collaborations m'ont amené à faire un doctorat plus large, toute l'histoire qui est présentée en neuf chapitres. Grâce à l'étonnant voyage que j'ai fait pendant ces trois années avec mes collègues, amis et collaborateurs, j'ai fini par apprendre des concepts et des techniques pour la recherche dans le domaine de la biologie synthétique.

Le métabolisme a été l'outil principal de cette thèse de doctorat comme l'est celui des principaux outils des systèmes vivants. Dans ce rapport de thèse, j'ai d'abord mis en oeuvre deux chapitres présentant i) les "circuits biologiques synthétiques", leurs types, applications et outils (chapitre 1), et ii) la "biologie synthétique sans cellules", différents types de systèmes sans cellules et leurs applications (chapitre 2). Ces deux chapitres donnent un aperçu de l'ensemble de l'histoire, des approches, des outils et de la terminologie utilisés dans le rapport de thèse. Ces 

Overview on the thesis report

Synthetic biology is the field of making life science and technology as an engineering field by standardization and modularization of tools, methods and biological parts to "design-build-test" novel biological systems. DNA is the core of synthetic biology and the progress of the field is highly dependent on the cost of writing (non-template chemical/enzymatic synthesis) and reading (sequencing) of DNA which is rapidly becoming cheaper. The synthesized biological systems, from simple sensors, circuits and pathways to more sophisticated networks toward synthetic cells are utilized for medical, industrial and environmental applications. Developing such systems requires reprogramming the genes and regulatory parts by rewriting the DNA. Metabolic engineering and bioproduction aim for producing fine molecules, from small chemicals to large macromolecules such as proteins using the cell factory. The biosensing or developing sensors using biological components provides fabricating the monitoring, screening or detection devices for metabolic engineering or diagnosis application. More sophisticated devices closer to complex cell regulatory circuitry, called synthetic biocircuits are reconstructed networks mimicking electrical circuits in receiving and processing multiple input signals such as chemicals and stimuli and actuating proper outputs. Computational tools inspired by electronics and computer science, provide "designing" ability of such systems in the same way that they are used to build computational algorithms and electrical circuits. Thanks to the decreasing cost of DNA synthesis and sequencing, and modular tools and methods developed by the community, high-throughput "build" and "test" phases generate a huge collection of devices and data. The existing technology of the automation using an already advanced field of robotics speeds of "build" and "test" phases and the efficiency and costs are improving. Machine learning which is transforming the today's technology in every aspect of science, technology, and even human science and daily life of people, takes the advantages of enormous data generated in the field of biology and high-throughput experiments in individual studies to add a "learn" phase and make "design-build-test-learn" cycle for a highly efficient and automated engineerable biology.

This thesis consists of nine chapters starting with two chapters for introduction, four chapters on Bioproduction-Biosensing (Section I) , one chapter on Biosensing-Diagnosis (Section II) and one chapter on Biocomputation (Section III) . Chapter 1 focuses on introducing synthetic biological circuits, their types (gene/metabolic digital/analog circuits), applications (diagnosis, therapeutics, Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi metabolic engineering) and tools (DNA, transcriptional, translational and post-translational level). Chapter 2 introduces cell-free systems, their types (Cell lysate, pure systems, freeze-dry cell-free) and applications (metabolic engineering, biosensors and diagnosis, studying biological mechanisms, building Synthetic cells, self-assembly of phages, medicine and therapeutics, proteomics and protein evolution, education kit) because a considerable part of the thesis uses cell-free systems which are emerging platforms in synthetic biology. Chapter 3 is a review on custom-made transcriptional biosensors for metabolic engineering applications (engineering allosteric transcription factors, extending the chemical space for biosensors, computer-assisted fine-tuning of biosensor properties). Chapter 4 is a collection of systems and synthetic biology methodologies for bioproduction(choosing the chassis, pathway enumeration, metabolic network optimization using FBA/FVA and mathematical modeling, biosensors for dynamic regulation). Chapter 5 is engineering a whole-cell transcriptional biosensor for a valuable rare sugar, D-psicose, to improve the catalytic activity of the enzyme that produces D-psicose from fructose. Chapter 6 is about optimization of repressor-based biosensors (with an example of a sensor for D-psicose) in cell-free system that suffer from low fold repression. Three strategies (doping, preincubation and reinitiation of the reaction or two-step cell-free reaction) were applied to optimize D-psicose biosensor and optimal conditions were used to monitor enzymatic production of psicose from fructose in the cell-free system. Chapter 7 is a manually and automated collected list of small molecules presented as the largest dataset of small molecules that trigger transcriptional and translational responses. Chapter 8 is to build and optimize cell-free metabolic networks to expand the number of biologically detectable molecules in the cell-free system. This chapter presents a workflow for fabricating metabolic transducers that are devices converting a molecule using metabolic enzymes to another molecule which is an inducer of transcriptional biosensors. Finally, Chapter 9 , the main work of this thesis, is applying metabolic pathways for biocircuit development to build whole-cell and cell-free metabolic transducers and adders. Advantages of cell-free systems such as high adjustability and rapid characterization enabled building of weighted metabolic transducers and adders in which the weight of the metabolic devices is controlled by tuning the concentration of enzyme DNA in the reaction mix. A model trained on the experimental data predicted the weights to design metabolic perceptrons for building four-input classifiers. At the end of the report, an overall "conclusion and perspective" for the whole thesis is provided.

Chapter 1: Current Progress in Synthetic Biological Circuits

Introductions to synthetic biological circuits Synthetic biological circuits or gene circuits are advanced tools to implement synthetic biological systems for a variety of medical, industrial and environmental applications [1,2] . The aim of these devices is to engineer biological systems receiving multiple inputs such as nutrition and signals, compute them through its artificial networks and actuate the integrated outputs responding to the environment [3] . The term "computation" which is used in this context means computing biological signals through a synthetic network composed of biological components. As one of the main tools in the field of synthetic biology, biological circuits have been synthesized for the development of i) biosensors for detection of biomarkers or pollutants, ii) screening or engineering the dynamic regulation of metabolic pathways, or iii) smart therapeutics [1] .

Inspired by electrical engineering, several synthetic biological devices have been synthesized since the emergence of the field of synthetic biology [START_REF] Selberg | The Potential for Convergence between Synthetic Biology and Bioelectronics[END_REF] . These devices mimic the digital or analog computation paradigm by applying different classes of cellular components [3] . To name some of the approaches, the synthetic biological circuits implemented so far consist of single or multi-layer logic gates [START_REF] Nielsen | Genetic circuit design automation[END_REF][START_REF] Guiziou | Hierarchical composition of reliable recombinase logic devices[END_REF] , oscillators [START_REF] Rosier | How to make an oscillator[END_REF] , amplifiers [START_REF] Bonnet | Amplifying genetic logic gates[END_REF][START_REF] Zeng | A Synthetic Microbial Operational Amplifier[END_REF][START_REF] Wang | Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities[END_REF] , switches [START_REF] Gardner | Construction of a genetic toggle switch in Escherichia coli[END_REF] and memory devices [START_REF] Bonnet | Rewritable digital data storage in live cells via engineered control of recombination directionality[END_REF][START_REF] Farzadfard | Synthetic biology. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations[END_REF] , toehold circuits [START_REF] Green | Toehold switches: de-novo-designed regulators of gene expression[END_REF] , CRISPR circuits [START_REF] Bikard | Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[END_REF][START_REF] Nielsen | Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks[END_REF] , metabolic logic gates [START_REF] Courbet | Computer-aided biochemical programming of synthetic microreactors as diagnostic devices[END_REF] , as well as metabolic perceptrons and classifiers [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF] .

Thanks to the substantial efforts by the synthetic biology community, standard and modular methodologies have been established to engineer different above-mentioned devices [START_REF] Kelwick | Developments in the tools and methodologies of synthetic biology[END_REF][START_REF] Marchisio | Parts & pools: a framework for modular design of synthetic gene circuits[END_REF] . Computer-assisted and bioinformatic tools are the accessory tools through which these methodologies can be generated [START_REF] Nowogrodzki | The automatic-design tools that are changing synthetic biology[END_REF][START_REF] Macdonald | Computational design approaches and tools for synthetic biology[END_REF] . These approaches employ cellular components, from gene expression regulators to post-translational level and metabolic enzymes.

The standardized and modular strategies have led the field to very advanced achievements to build sophisticated biological circuits. However, the next-generation of synthetic cellular networks needs to focus on the integration of different approaches enabling hybrid analog-digital computation by the use of several types of cellular machineries [1,[START_REF] Goñi-Moreno | High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits[END_REF] . The integration strategies and cross-species approaches [START_REF] Kushwaha | A portable expression resource for engineering cross-species genetic circuits and pathways[END_REF][START_REF] Xiao | Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin[END_REF] empower the potential of artificial biological networks to be applied for several applications in diverse living species and cell-free systems.

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Figure 1.1 An overview of the whole chapter on synthetic biological circuits. This chapter is presented in three parts to cover the current progress in synthetic biological circuits . Top panel: Classification of the synthetic biological circuits in four classes depending on the computation approach that they rely on, digital/analog in gene expression/metabolic layer. Middle panel: Applications of synthetic biological circuits in diagnosis, smart therapeutics and metabolic engineering. Bottom panel: Designing strategies and tools to implement synthetic biological circuits using different biological components of the cell in DNA level, transcriptional and translational, post-translational and metabolic components. The designed biological networks then will be implemented in eukaryotic/prokaryotic cells or in cell-free systems.

Classification of synthetic biological circuits

Designer biological networks can be categorized based on the computational approach that they lay on, digital and analog [3] , or based on the biological functionality of genes they employ, regulatory and metabolic [START_REF] Goñi-Moreno | High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits[END_REF] (top panel in Figure 1.1 ).

Digital and analog gene circuits

As in the electrical circuits engineering, biological gene circuits can perform digital or analog computation depending on their design [3] . So far, the majority of the implementation of biological circuits have focused on digital computation as it is more standardizable using well-established tools such as Verilog [START_REF] Nielsen | Genetic circuit design automation[END_REF] . The digital gene implementation follows the logic functions. For instance, if A and B both are needed to generate an output (either a reporter in medical or environmental diagnosis or expression of a functional gene), this is an AND logic. The OR gate is the logic gate output of which is active (ON) when two or even of the conditions/inputs of A or B are "ON".

So far, several digital gene circuits have been implemented using different cell components at the level of DNA [START_REF] Guiziou | Hierarchical composition of reliable recombinase logic devices[END_REF][START_REF] Guiziou | An Automated Design Framework for Multicellular Recombinase Logic[END_REF][START_REF] Engelen | Antibody-controlled actuation of DNA-based molecular circuits[END_REF][START_REF] Genot | Reversible logic circuits made of DNA[END_REF] , transcription [START_REF] Nielsen | Genetic circuit design automation[END_REF][START_REF] Kim | A CRISPR/Cas9-based central processing unit to program complex logic computation in human cells[END_REF][START_REF] Gander | Digital logic circuits in yeast with CRISPR-dCas9 NOR gates[END_REF][START_REF] Buchler | On schemes of combinatorial transcription logic[END_REF][START_REF] Bradley | Recognizing and engineering digital-like logic gates and switches in gene regulatory networks[END_REF] and RNA [START_REF] Green | Toehold switches: de-novo-designed regulators of gene expression[END_REF][START_REF] Deng | DNA logic gate based on metallo-toehold strand displacement[END_REF][START_REF] Martini | In Vitro Selection Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity[END_REF][START_REF] Kim | Ribocomputing: Cellular Logic Computation Using RNA Devices[END_REF][START_REF] Wu | Automated design of highly diverse riboswitches[END_REF] , as well as the protein level [START_REF] Gao | Programmable protein circuits in living cells[END_REF][START_REF] Fink | Design of fast proteolysis-based signaling and logic circuits in mammalian cells[END_REF][START_REF] Razavi | Cellular signaling circuits interfaced with synthetic, post-translational, negating Boolean logic devices[END_REF][START_REF] Fernandez-Rodriguez | Post-translational control of genetic circuits using Potyvirus proteases[END_REF] . In cases where there are more than two inputs with complex relationships, their behavior cannot be captured as easy as for simple AND or OR gates. This is where computational tools can be used to introduce a complex logic circuit in which the relationship between inputs and output(s) can be computed through multi-layer digital gene networks [START_REF] Nielsen | Genetic circuit design automation[END_REF] .

Since most of the synthetic biocircuits have been built in the gene expression level, the digital-like behavior (ON/OFF) in the gene expression system has compatibilized the digital computation approach. Therefore, a number of successful digital computation approaches have been introduced during the past few years. However, digital-like behavior is not the only using which cells perform computation. A considerable contribution of biological computation in living cells takes place in an analog manner where the continuous concentrations of the cellular components define the phenotype, not their presence or absence (ON/OFF) [3,[START_REF] Sauro | It's an analog world[END_REF] .

The substantial contribution of the analog computation in living systems brings the mindset of implementing analog gene circuits. In electronics, analog circuits consume Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi lower energy and require fewer parts to function. In the same way, analog gene networks save cellular energy and avoid the burden [START_REF] Daniel | Analog transistor models of bacterial genetic circuits[END_REF][START_REF] Sarpeshkar | Analog synthetic biology[END_REF] . This valuable advantage promotes the system orthogonality by using fewer synthetic parts.

There have been only a few studies investigating the analog computation in living systems [START_REF] Daniel | Analog transistor models of bacterial genetic circuits[END_REF][START_REF] Daniel | Synthetic analog computation in living cells[END_REF] . Daniel et al. [44] developed synthetic analog computation in living cells using a feedback loop inspired by the feedback loop of operational amplifiers in analog electronics. In this study, a simple transcriptional circuit has been designed in a construct such that: i) in a low-copy plasmid, the transcription factor (TF) is expressed under its cognate promoter controlled by the externally added inducer, and ii) in a high-copy plasmid, the cognate promoter expresses a fluorescent protein reporting the concentration of the ligand. This design alleviates the saturation of the TF (through the feedback loop in the low-copy plasmid that produces more TF and delays its saturation) as well as the saturation of the cognate promoter (through pulling the flux of transcription to the responsive promoter in the high-copy plasmid). This construction linearizes the dose-response of the circuit from a digital-like to an analog behavior [START_REF] Daniel | Synthetic analog computation in living cells[END_REF] .

Digital and analog metabolic circuits Although the analog behavior is one of the characteristics of living cells, it is difficult to implement analog gene circuits which naturally show a digital-like behavior (ON/OFF). However, using other biological mechanisms such as metabolism is more compatible to implement analog computation [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF] . In this direction, an analog metabolic computation approach has been recently established that is using metabolic enzymes to perform analog biocomputation [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF] . In this study, metabolic pathways were designed using computer-aided tools [START_REF] Delépine | RetroPath2.0: A retrosynthesis workflow for metabolic engineers[END_REF][START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] and were implemented in whole-cell and cell-free systems. Multiple metabolic transducers were implemented that are metabolic pathways composed of one or more enzymes transforming a metabolite into another, a product that can be sensed using transcriptional or translational regulators [START_REF] Koch | A dataset of small molecules triggering transcriptional and translational cellular responses[END_REF] . By combining metabolic transducers, analog adders were built in both whole-cell and cell-free systems. Cell-free systems enabled performing more complex computations by tightly controlling the amount of DNA of the circuit added to the reaction. This advantage of the cell-free system, high adjustability, along with rapid characterization and possibility of mixing multiple genes at different concentrations, enabled the development of four-input classifiers. In the classifiers, a metabolic perceptron receives four input metabolites and convert them into a common metabolite by model-computed concentrations of their associated enzyme DNA and finally reported through a gene circuit actuator. The metabolic perceptron was inspired by a perceptron algorithm invented in the 1960s to mimic human neural systems in information processing and decision making [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] . Since then, perceptrons have become the building blocks of several neural computing and deep learning algorithms [START_REF] Haykin | Neural Networks and Learning Machines[END_REF] .

Digital metabolic circuits are other types of biological computation using artificial networks that apply metabolic enzymes to build metabolic logic gates. A number of metabolic logic gates including AND, OR, XOR, NAND, and their combination in order to build complex circuits have been developed [START_REF] Courbet | Computer-aided biochemical programming of synthetic microreactors as diagnostic devices[END_REF][START_REF] Katz | Enzyme-Based Logic Gates and Networks with Output Signals Analyzed by Various Methods[END_REF] . In most of cases, dealing with cellular cofactors and coenzymes for the signal processing makes the application of digital metabolic circuits limited in whole-cell systems and biological samples. Nevertheless, depending on the case they have a valuable potential to build synthetic biological circuits.

Applications of synthetic biological circuits

Application of synthetic gene networks in a variety of aspects (middle panel in Figure 1.1 ) are presented as follows:

Diagnosis One of the main applications of synthetic genetic networks is to develop diagnostic devices [START_REF] Slomovic | Synthetic biology devices for in vitro and in vivo diagnostics[END_REF] . In this context, gene and metabolic circuits have been used to build various biological circuits. For instance, a simple genetic network comprising the quorum sensing regulatory system of Pseudomonas aeruginosa has been engineered in the cell-free system to detect this pathogen in clinical samples [START_REF] Wen | A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples[END_REF] . In a different approach, paper-based cell-free toehold circuits built using RNA switches were utilized to sense RNAs for Zika virus [START_REF] Pardee | Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components[END_REF] , Ebola virus [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] or gut microbiome bacteria in fecal samples [START_REF] Takahashi | A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers[END_REF] . The CRISPR machinery also has been adapted to detect DNA and RNA of viruses and bacterial pathogens in vitro using strategies called SHERLOCK [START_REF] Gootenberg | Nucleic acid detection with CRISPR-Cas13a/C2c2[END_REF][START_REF] Gootenberg | Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[END_REF] , DETECTR [START_REF] Chen | CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[END_REF] and HOLMES [START_REF] Li | CRISPR-Cas12a-assisted nucleic acid detection[END_REF] . In another approach applying gene switches built by recombinases in vivo enabled detection of glucose in diabetic clinical samples [START_REF] Courbet | Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates[END_REF] . Using a radically different approach, metabolic enzymes have enabled increasing the number of detectable small molecules. In this work, by plugging metabolic enzyme a molecule is converted to another which is sensible through transcriptional regulator [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] . The authors have introduced a modular tool to implement and optimize cell-free biosensors and used this strategy to sense benzoic acid in beverages, as well as hippuric acid and cocaine in clinical samples [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] .

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Biological circuits have also been used for the detection of environmental samples. In a recent study, the authors developed a strategy to build cell-based biosensors to detect toxic pollutants in environmental samples [START_REF] Wan | Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals[END_REF] . They engineered multilayer amplifiers enabling a high signal to noise ratio detection through the transcriptional regulatory system. This promising approach provided facilities to build biosensors for arsenic and mercury with a very high fold-change response to the inducers. Thus, they were able to introduce a strategy to engineer sophisticated gene networks for in vivo diagnosis [START_REF] Wan | Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals[END_REF] . In another work related to environmental diagnosis, a recent attempt used RNA output sensors activated by ligand induction (ROSALIND) in the cell-free system to detect pollutants in water [START_REF] Alam | Rapid, Low-Cost Detection of Water Contaminants Using Regulated In Vitro Transcription[END_REF] . ROSALIND consists of three components: highly-processive RNA polymerases, allosteric transcription factors, and synthetic DNA transcription templates. These elements together have provided the modular detection of a variety of water pollutants such as antibiotics, toxic small molecules, and metals [START_REF] Alam | Rapid, Low-Cost Detection of Water Contaminants Using Regulated In Vitro Transcription[END_REF] .

Therapeutics

Synthetic biological networks provide a new generation of therapeutics called smart therapeutics. One of the earliest attempts was designing a synthetic mammalian circuit to maintain uric acid homeostasis [START_REF] Kemmer | Self-sufficient control of urate homeostasis in mice by a synthetic circuit[END_REF] . This synthetic gene network consists of a uric acid sensor triggering the secretion of a urate oxidase enzyme which eliminates uric acid. In a mice harboring this device, the synthetic circuit decreased the amount of blood urate and reduced uric acid crystals in the kidney [START_REF] Kemmer | Self-sufficient control of urate homeostasis in mice by a synthetic circuit[END_REF] . In a recent study, Isabella et al. [START_REF] Isabella | Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[END_REF] provided a smart alternative for the protein-restricted diet for phenylketonuria, a genetic-metabolic disorder in metabolizing phenylalanine. For this purpose, the authors have engineered Escherichia coli Nissle to actuate phenylalanine metabolizing enzymes responding to anoxic conditions in the mammalian gut [START_REF] Isabella | Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[END_REF] . Designer circuits can be applied in the development of antimicrobials [START_REF] Bikard | Marraffini Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi LA: Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials[END_REF][START_REF] Bikard | Using CRISPR-Cas systems as antimicrobials[END_REF] , anticancers [START_REF] Ding | p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy[END_REF][START_REF] Nissim | Synthetic RNA-Based Immunomodulatory Gene Circuits for Cancer Immunotherapy[END_REF][START_REF] Liu | Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells[END_REF][START_REF] Prindle | Genetic Circuits in Salmonella typhimurium[END_REF] , microbiome editing [START_REF] Ramachandran | Editing the microbiome the CRISPR way[END_REF][START_REF] Piraner | Tunable thermal bioswitches for in vivo control of microbial therapeutics[END_REF] or medical imaging [START_REF] Piraner | Tunable thermal bioswitches for in vivo control of microbial therapeutics[END_REF][START_REF] Farhadi | Ultrasound Imaging of Gene Expression in Mammalian Cells[END_REF][START_REF] Lu | Proteins, air and water: reporter genes for ultrasound and magnetic resonance imaging[END_REF][START_REF] Bourdeau | Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts[END_REF] .

Metabolic engineering

Utilizing synthetic gene networks for bioproduction application has rapidly grown during the last years. Genetic sensors have been applied in the field of metabolic/enzymatic engineering for i) screening the enzymes and pathways, ii) monitoring the evolution of the products, and for iii) dynamically regulating the enzymes or metabolites level [START_REF] Liu | Applications and advances of metabolite biosensors for metabolic engineering[END_REF][START_REF] De Frias | Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors[END_REF][START_REF] Liu | Optimization and Application of Small Molecule Biosensor in Metabolic Engineering[END_REF][START_REF] Rogers | Biosensor-based engineering of biosynthetic pathways[END_REF][START_REF] Koch | Custom-made transcriptional biosensors for metabolic engineering[END_REF][START_REF] Venayak | Engineering metabolism through dynamic Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi control[END_REF] . This strategy substantially increases the speed of the design-build-test cycle in improving metabolic pathways and enzymes or exploring novel synthetic enzymes and pathways. Synthetic gene circuits have shown an increasing potential to engineer dynamic regulation, regulatory cascades to dynamically control and improve the evolution of a product. The dynamic regulation improves the product yield either through directing metabolic fluxes into the direction of the desired product or by adjusting the expression of the enzymes and amount of intermediates as well as preventing the accumulation of a toxic intermediate [START_REF] Venayak | Engineering metabolism through dynamic Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi control[END_REF] . One of the interests regarding metabolic engineering application is coupling cellular growth and product evolution which can improve the production as it keeps a balance or controllable switch between growth and target production [START_REF] Williams | Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae[END_REF][START_REF] Anesiadis | Analysis and design of a genetic circuit for dynamic metabolic engineering[END_REF][START_REF] Gupta | Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[END_REF][START_REF] He | Autoinduced AND Gate Controls Metabolic Pathway Dynamically in Response to Microbial Communities and Cell Physiological State[END_REF][START_REF] Kim | Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli[END_REF][START_REF] Shong | Quorum sensing-modulated AND-gate promoters control gene expression in response to a combination of endogenous and exogenous signals[END_REF] . This coupling can be implemented using natural (native of the host cell) or synthetic quorum sensing network regulating the expression of the enzymes in the metabolic pathway.

Design and tools

Different cellular components providing the implementation of synthetic gene networks (bottom panel in Figure 1.1 ) are presented as follows:

Transcriptional level Undoubtedly, transcriptional regulators are the most studied tools to implement synthetic biological circuits for prokaryotic and eukaryotic applications [START_REF] Nielsen | Genetic circuit design automation[END_REF][START_REF] Khalil | A synthetic biology framework for programming eukaryotic transcription functions[END_REF] . Since transcriptional regulators are directly in contact with gene expression and DNA, and a number of these regulators are widely studied and characterized, utilizing them has become more scalable and programmable. In this direction, an enormous number of biological parts consisting of promoters, RBSs, terminators and regulatory transcription factors have been characterized. These parts are characterized natural sequences or they are synthetic sequences providing the orthogonality which is of very crucial aspects in developing synthetic biological networks [START_REF] Stanton | Genomic mining of prokaryotic repressors for orthogonal logic gates[END_REF][START_REF] Chen | Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors[END_REF][START_REF] Zong | Insulated transcriptional elements enable precise design of genetic circuits[END_REF][START_REF] Rudge | Characterization of Intrinsic Properties of Promoters[END_REF] . Moreover, the community has introduced methodologies for building, automizing, optimizing, and integrating various devices from simple gene networks to complex multilayer circuits [START_REF] Nielsen | Genetic circuit design automation[END_REF][START_REF] Zong | Insulated transcriptional elements enable precise design of genetic circuits[END_REF][START_REF] Rudge | Characterization of Intrinsic Properties of Promoters[END_REF][START_REF] Otero-Muras | SYNBADm: a tool for optimization-based automated design of synthetic gene circuits[END_REF][START_REF] Boada | Multiobjective Identification of a Feedback Synthetic Gene Circuit[END_REF] . Nielsen et al. have developed a tool called Cello using which complex relationships between a number of inputs could be computed through proposed circuits and the DNA sequence associated with those circuits is also generated [START_REF] Nielsen | Genetic circuit design automation[END_REF] .

Apart from transcriptional factors (including activators or repressors), CRISPR/dCas9 also have shown promising characteristics for synthesizing modular transcriptional regulators [START_REF] Bikard | Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[END_REF][START_REF] Russa | The New State of the Art: Cas9 for Gene Activation and Repression[END_REF][START_REF] Kundert | Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi sgRNAs[END_REF] . The mutant version of Cas9 or other Cas nucleases which lack the nuclease activity but still maintain the specific binding through their designed gRNA Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi can be used to target anywhere in the genome through highly specific binding of the gRNA-dCas9 complex to the target DNA [START_REF] Rousset | Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors[END_REF] . By targeting desired sequences of the genome gRNAs can simultaneously block several points in the genome acting as transcriptional repressors [START_REF] Vigouroux | Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes[END_REF] . The CRISPR/dCas9 also can be fused to other proteins such as activators to regulate the activation [100,101] . There are computational and experimental tools to design such devices by tuning the level of binding through the complementarity of the gRNA and the target sequence [START_REF] Vigouroux | Tuning dCas9's ability to block transcription enables robust, noiseless knockdown of bacterial genes[END_REF] .

Translational level

Translational regulators are components that control the translation of mRNA through the ribosome. RNA genetic switches or riboswitches are tools that regulate gene expression in response to their input [102,103] . Although some riboswitches function in the transcriptional processes such as in termination of the transportation [104,105] . Riboswitches consist of an aptamer (sensing) domain and an actuator (regulating) domain for binding to an input molecule and control the gene expression, respectively [102,106] . The binding of an input to its aptamer makes the actuator to alter the structure of the RNA, hence changing the translation process. A riboswitch can be actuated by a small molecule or another RNA sequence which in this case is called toehold circuit [102,107] .

Toehold circuits are RNA switches in which a short sequence of its input RNA regulates the expression of a mRNA [START_REF] Green | Toehold switches: de-novo-designed regulators of gene expression[END_REF] . The mRNA gene is designed to have a UTR sequence right upstream of the start codon that forms a secondary structure inhibiting the access of ribosomes to this mRNA [108] . At the presence of the input RNA, it opens up the secondary structure of mRNA by binding to the upstream sequence with higher affinity and exposes the RBS to ribosomes to be translated. By designing short sequences in the upstream of a reporter gene different toehold circuits can be designed for input RNAs (a short RNA or a short sequence of a long RNA) [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] . Logic gates can be made by designing riboswitches structure of which in their upstream is controlled by several inputs [1,109] . Similar to toehold circuits, siRNAs also could be used to silence or inhibit mRNAs from translation [110][111][112] .

Others: DNA and post-translational level Gene networks can be programmably designed at the DNA level by applying natural regulatory processes that occur on DNA. One of the main such tools are DNA switches enabled by recombinases [START_REF] Bonnet | Rewritable digital data storage in live cells via engineered control of recombination directionality[END_REF]113] . Depending on their type, reversible or irreversible recombinases can be engineered with their specific recognition sites on DNA [START_REF] Bonnet | Rewritable digital data storage in live cells via engineered control of recombination directionality[END_REF] . A Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi specific recombinase binds to its target site and flips a unidirectional terminator in front of a promoter to turn off/on a gene. Irreversible recombinases are tools to implement biological memory because they do not rely on the presence of the input after recombining their target sequence and turning on/off a gene [START_REF] Bonnet | Rewritable digital data storage in live cells via engineered control of recombination directionality[END_REF]114] . These switches have also been applied to digitize or amplify the behavior of gene circuits [START_REF] Bonnet | Amplifying genetic logic gates[END_REF] . From simple devices to complex and multilayer gene circuits have been built using the recombinases strategy [START_REF] Guiziou | Hierarchical composition of reliable recombinase logic devices[END_REF][START_REF] Guiziou | An Automated Design Framework for Multicellular Recombinase Logic[END_REF] . There are multiple recombinases present in all kingdoms of life making them applicable in distinct cell hosts.

Although both prokaryotic and eukaryotic cells have signaling pathways [115,116] , signal transduction is more a characteristic to the eukaryotic cell. The signal transduction is faster than gene circuits that function at DNA, transcriptional or translational level. This high speed is because it usually has only the outputs at gene expression level and all the rest act in a transduction path of multiple components already expressed [117] . A recent study introduces a modular synthetic GPCR (G protein-coupled receptor) signal transduction system that can be used to engineer GPCRs to respond to different ligands as inputs [118] . A famous example of bacterial signal transduction is the quorum sensing of the bacteria which is the sensory system to cellular populations [START_REF] Gupta | Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[END_REF] .

Cell-free systems as a new platform Cell-free systems are reliable platforms to test or implement synthetic biological networks [119] . These membrane-less and nucleic acid-free platforms are made up of cell extract plus additional elements to support the functionality of the system [120] . Eukaryotic cell-free systems have shown only the ability of translation from mRNA added to the extract [121,122] . However, prokaryotic cell-free systems can perform both transcription and translation thus work by adding only the coding DNA of the genes involved in the circuitry [123] . The cell-free system can be chemically defined and constructed in a bottom-up approach from required components called "purified recombinant elements" (PURE) system [124] . However, the PURE system is costly since everything should be provided to make the functional system. The alternative for this is TX-TL cell-free system made up by bacterial cell-lysate mixed with energy mix, amino acids, tRNAs, nucleotides, etc [120] . TX-TL systems have been applied as a chassis to build biosensors and genetic circuits, also for metabolic engineering application [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF][START_REF] Koch | Custom-made transcriptional biosensors for metabolic engineering[END_REF]125,126] .
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Cell-free systems provide advantages over in vivo systems: 1) non-GMO platform to produce biological products and to build portable biosensors, 2) lower noise and higher precision as there is no growth and cellular maintenance [127] , 3) rapid characterization of biological networks through quick mixing of the elements and fast expression of the circuits [126] , 4) possibility of adding linear DNA of PCR product [128-130] , 5) rapid cloning since there is no limitation of number of plasmids, origin of replications and antibiotic resistance genes [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] , 6) higher number of genes can be used since there is less limitation of burden and resource competition [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF]131] , and 7) high tunability of the biological parts and system components as they can be altered by pipetting at any concentration [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF] . Apart from above-mentioned applications, cell-free systems can also provide tools to study biological phenomena [132,133] . Successful protocols have been developed to make cell-free lysate of different organism [120,121,[134][135][136][137][138][139][140][141] . Also, optimization protocols have been shown ways in improving the functionality of cell-free systems in different condition [142,143] .

Perspectives

Synthetic gene networks are sophisticated tools to provide facilities in engineering biology. Since the dawn of synthetic biology, modular biological parts and methods have been increasingly equipped scientists toward a future in which cells and biological systems can be engineered for medical, environmental and industrial applications [1] . The advances made so far have applied from genetic central dogma level to post-translational, signal transduction and metabolic enzymes in different prokaryotic cells, eukaryotic cells, and cell-free systems. Moreover, the experimental and computational approaches provide a potential perspective for the construction of next-generation synthetic biological networks. The next generation of such circuits is the integration of different tools and approaches for mix-hybrid gene circuits implementation [1,3,[START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF][START_REF] Goñi-Moreno | High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits[END_REF]114] .

Decreasing the cost of chemical DNA synthesis and DNA sequencing provides a more affordable reading and writing of DNA (sequencing and gene synthesis respectively). Hence, the field of synthetic biology will be rapidly advancing through high throughput experiments exploring the potential of the synthetic version of the code of life, DNA. The enormous available data of biological datasets and the future data that will be generated could be the training datasets for machine learning and deep learning exploration on these data to learn more and more about biology as well as to predict the future biological circuits [144] .

Introduction

Cell-free protein synthesis is an alternative tool to applying cellular protein production machinery beyond the living cells' growth and maintenance [119,123] . This tool has been used since the dawn of molecular biology for the discovery of genetic codes, mechanisms of the "genetic central dogma" [145] . Moreover, cell-free protein synthesis has provided an alternative for recombinant protein and toxic protein production [146,147] .

Cell free systems may perform only the protein translation from mRNA called "uncoupled" translation with regard to "coupled" in which both transcription and translation are processed in vitro from DNA [147] . Cell-free systems could be prepared either from cell lysate or using defined purified components depending on the applications.

In the last few years, cell-free systems have opened doors in the field of synthetic biology as a potential host/expression platform. Although cell-free systems are not sustainable as living systems, they provide advantages over whole-cell systems such as:

• Abiotic and non-GMO tools for bioproduction and diagnostic kits • Fast and high-throughput prototyping and characterization of biological circuits and pathways because of the quicker gene expression and the ease of building combinatorial libraries without transforming cells [126] • High tunability provided by the membraneless system in which the components can be easily tuned by pipetting [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] • Easier cloning as there is no need to assemble multiple genes in a one or two vectors. In cell-free multiple plasmids with the same origin of replication and antibiotic resistance can be expressed at the same time. Linear DNA generated by PCR can also be used [128][129][130] • Lower noise in gene expression and susceptibility to toxicity [127] • Less limitation on the number of genes used in the pathways and circuits since there is no growth hence, no burden due to resource competition with the host [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF] .

All the above-mentioned advantages of cell-free systems have attracted the community's attention to describing a variety of protocols for different organisms ( , cell-free systems provide a promising platform for metabolic engineering and diagnosis as well as to construct synthetic cell in a bottom-up approach. In this chapter, we focus on the current protocols used to provide the extract as well as a variety of applications of the cell-free systems in the field on synthetic biology and bioengineering ( Figure 2.1 ). The E. coli extract can be obtained through mechanical disruption of the membrane using sonication [148,149] , beads beating [150,151] or French press [152] .

Nevertheless, these methods required specific equipment: sonicator, shaker or French press that are not available in every laboratory. Moreover, samples obtained using such method can be damaged by the high temperature/pressure reached during the process leading to protein denaturation. A Chemical approach using lysozyme can also be used to obtain a lysate [153] avoiding steps in the protocols with high temperature/pressure. In a recent approach, autolysis strain has been developed with a protocol based on a constitutively expressed phage lambda endolysin coupled with a -80°C step to weaken the membrane [154] .

An In vitro transcription and translation system can also be constructed in a bottom-up approach from defined required components called "purified recombinant elements" (PURE) system [124,155] . However, the PURE system is costly since 32 components of the transcription (RNA polymerase) and translation (translation initiation factors, elongation factors, release factor, aminoacyl-tRNA synthetases,methionyl-tRNA transformylase, ribosomes) machineries must be purified independently to make the functional system.

Cell-free components are mostly stocked in a liquid form at -20/-80°C and the reaction is started at 30°C or 37°C when DNA is added to the mix. Liquid Cell-free mixes cannot be conserved at room temperature but can be freeze-dried on paper and remain functional even after a year at room temperature [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] . Such, Paper-based cell-free system has been developed using PURE system or lysate-based cell-free system [START_REF] Pardee | Paper-based synthetic gene networks[END_REF]154] . Cell-free reaction is then activated by adding DNA and water on paper making it easy to use, stock and transport. 

Applications of cell-free systems

Cell-free systems, which emerged as tools to discover multiple biological mechanisms in the 20th century, are becoming platforms for rapid and high-throughput characterization and prototyping of biological systems. Moreover, cell-free systems are applied for diagnostic devices and for the bottom-up synthetic cell construction. Here we present different categories of applications (Bottom panel, Figure 2.1 ) with a few examples for each.

Metabolic engineering

One of the applications of cell-free protein synthesis is the prototyping of metabolic pathways [126,167] . Easier cloning and the possibility of using PCR products make prototyping faster and more efficient. Since in vivo synthetic pathways can be toxic, cell-free systems have privileges over whole-cell systems through enabling expression of higher number of genes (as there is no resource competition with the host) and decreasing the harmful effects of intermediates (as there is no impact on cell physiology).

In such an open system, multiple parameters such as the level of gene expression, the combination of different genes and the concentration of different elements (reaction buffer composition) can be adjusted in an efficient design-build-test-learn cycle [125] . This ease of use makes cell-free a powerful tool for synthetic biologists and metabolic engineers to find new synthetic pathways as well as to optimize metabolic pathways [125] .

The prototyped metabolic pathway candidates with a higher performance can be transformed into whole-cell systems. In vivo , the genes should be cloned in a limited number of plasmids or integrated into the genome of the host. Since the properties of the host cell and the cell-free system are different, developing computational models will enable more predictable transfer from cell-free into in vivo chassis [168] . For highly valuable/toxic products, the cell-free system itself might be used as the production chassis [169] .

To perform a metabolic production in cell-free system, genes encoding enzymes can be added to a TX-TL cell-free extract supplied by the reaction buffer [125] . The enzymes can also be provided with a doped extract, a cell lysate prepared with the cells harboring a plasmid encoding a specific enzyme [170] . However, doping of the extract with a multi-enzyme pathway reduces the growth and causes the burden in the cells used to prepare the extract. To avoid such issues, each enzyme can be expressed Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi in a separate cell line and a mix of different extracts can be used to provide the multi-enzyme pathway in cell-free [170] . In a similar approach, purified enzymes can also be directly added to the reaction. Cell-free systems with DNA, doped extract or supplied by purified enzymes have been used for bioproduction of psicose, vi olacein, 1,4-butanediol, polyhydroxyalkanoates, mevalonate, n-butanol, raspberry ketone, and limonene [170-177] . In a recent study, a biosensor screening method was developed to monitor the cell-free bioproduction [START_REF] Haykin | Neural Networks and Learning Machines[END_REF]. Biosensors provide monitoring tools in metabolic engineering for pathway/enzyme optimization and screening through sensign the final products or intermediates [START_REF] Koch | Custom-made transcriptional biosensors for metabolic engineering[END_REF] . The biosensor development further speeds up the design-build-test-learn cycle of metabolic engineering using cell-free systems [START_REF] Koch | Custom-made transcriptional biosensors for metabolic engineering[END_REF] .

Biosensors and diagnosis

Biosensor development for medical and environmental diagnosis is where the potential of cell-free systems in building portable abiotic kits plays a principal role [127,[178][179][180] . Cell-free systems allow building of abiotic and portable diagnosis kits that are safer and simpler to maintain and distribute. These kits keeps their functionality after months when freeze-dried [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] . The low susceptibility of cell-free systems to the toxicity of chemicals and lower noise in gene expression with regard to living cells are other advantages of cell-free diagnostic devices. In addition, biosensors optimization can be facilitated by rapid prototyping and high throughput characterization that these systems offer [181] .

During the last decade, cell-free protein synthesis has been used to develop medical diagnostic devices. In an early study, the Collins' lab introduced a cell-free transcription-translation approach to build paper-based gene circuits [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] . Pardee et al. described a modular strategy to design and build toehold switches (gene circuits that respond to a short sequence of RNA when the small sequence of RNA opens the designed loop around the RBS and start codon) in cell-free systems [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] . As proof of concept, they built multiple gene circuits for Ebola virus detection which were able to distinguish between viruses from two distinct populations. The same research group later extended their methodology and build cell-free devices for Zika virus as well [START_REF] Pardee | Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components[END_REF] .

A few years later they developed an in vitro method called SHERLOCK by employing high potential of Cas proteins (CRISPR machinery) to detect RNA and DNA sequences [START_REF] Gootenberg | Nucleic acid detection with CRISPR-Cas13a/C2c2[END_REF][START_REF] Gootenberg | Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[END_REF] . In a recent study, toehold circuits were also applied to detect human gut microbiome composition in fecal samples [START_REF] Takahashi | A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers[END_REF] .
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The other approach to build cell-free biosensors is through transcriptional regulators.

Wen et al. constructed a biosensor responding to quorum molecule of Pseudomonas aeruginosa along with its cognate transcription factor to detect this pathogen in clinical samples [START_REF] Wen | A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples[END_REF] . In a recent study, Voyvodic et al. proposed a modular way to extend the number of detectable molecules using metabolic enzymes in the cell-free system [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] .

The enumerated pathway using computer-aided tools [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] enables the conversion of an undetectable molecule to another which is a transcriptional or translational regulator. They optimized cell-free biosensors by adjusting the concentrations of DNA plasmids encoding the transcription factor, the GFP reporter gene, and the metabolic enzymes. Eventually, they used these sensors to detect cocaine and hippuric acid in clinical samples and benzoic acid in beverages [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] . Taking two or more biomarkers into consideration will increase the precision of the medical diagnosis. A sophisticated device called "metabolic perceptron" allows the integration of multiple signals for multiplex detection [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF] . The metabolic perceptron also brings an alternative approach to perform biological computation using biological circuits [START_REF] Pandi | Metabolic Perceptrons for Neural Computing in Biological Systems[END_REF] .

Cell-free biosensors can also be used for industrial and environmental applications [179] . The non-GMO diagnostic kit can be distributed to a wide geographical area as a cheap and easy way of detecting hazardous and pollutant molecules in the environment and industry. In a recent work, Alam et al. used RNA output sensors activated by ligand induction (ROSALIND) to detect pollutants in environmental water samples [START_REF] Alam | Rapid, Low-Cost Detection of Water Contaminants Using Regulated In Vitro Transcription[END_REF] . They developed a modular strategy for the detection of different water pollutants such as antibiotics, toxic molecules, and metals [START_REF] Alam | Rapid, Low-Cost Detection of Water Contaminants Using Regulated In Vitro Transcription[END_REF] . As an industrial/food example, Pandi et al. [START_REF] Haykin | Neural Networks and Learning Machines[END_REF] demonstrated that a repressor-based transcriptional sensor that suffers from low fold repression in the cell-free system can be optimized in several ways. Without optimizations a repressor based system may exhibits weak fold change in the cell-free system. They introduced three strategies to do so: doping the extract with a transcription factor, preincubation of the extract with the components which is needed to be in excess (the repressor), and reinitiation of the cell-free reaction when the system's ability in gene expression diminishes. They then used the optimized biosensor of psicose to monitor its bioproduction from fructose using a metabolic enzyme.

Studying biological mechanisms

The ability of cell-free systems to perform minimal biological functions without the need to express a full genome makes them a promising tool to study specific mechanisms independently. In a recent attempt, E. coli TX-TL system was used to predict the cost Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi of protein expression in living cells [132] . The authors proposed a standard cell-free assay to relatively measuring the resource consumption of the expression of a protein sequence. In this approach, the in vivo burden of growing cells expressing a variety of proteins and multigene operons can be predicted [132] . In another study, the cell-free system was used to study the CRISPR mechanisms such as characterization of gRNAs and anti-CRISPR proteins [133] .

Building a synthetic cell Building synthetic cells is one of the main goals of synthetic biology to understand the minimal elements necessary for life. The synthetic cell can be applied as a universal minimal chassis in systems and synthetic biology and for medical applications such as drug delivery [182] . There are two approaches to build a minimal cell: top-down and bottom-up [183] . In the top-down path, the genome of an existing organism, preferably an organism which is well-known and/or with a small genome such as E. coli or Mycoplasma mycoides is reduced [184] . In the bottom-up construction, the minimal components are assembled from scratch to build a system which is sustainable, can divide and interact with its environment [185] . The encapsulation of the minimal system harboring the genetic material for necessary functions is similar to how life emerged on earth more than three billion years ago [186] . The same process can be used in synthetic biology to encapsulate a cell-free system and build a synthetic minimal living system. Attempts toward creating synthetic cells using a minimal cell-free system or a lysate were able to demonstrate living cells-like behavior [187,188] . Vogele et al. succeeded in encapsulating the TX-TL cell-free system with amphipathic peptides as the membrane [189] . They then used the gene that expresses the amphipathic peptide coding its membrane to extend the size of encapsulated system [189] .

Self-assembly of phages Transcription-translation cell-free systems have been employed to assemble and amplify a number of phagemids [190] . The phagemid assembly has been done in one-pot reaction from the genome of MS2, ΦX174, and T7 [131,191] . In a recent work, the complete T4 phage has been synthesized from its 169-kbp genome in single . This achievement shows that genomes can be functionally expressed to build grand organized systems in vitro .

Medicine and therapeutics

One of the earliest applications of the cell-free protein synthesis was the production of biologically active proteins [147,193] . Key challenges are a correct protein folding and Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi post-translational modifications as observed in native cells [194] . Since cell-free systems are open platforms, their components can be easily adjusted. For example, redox buffers can be used to control the disulfide bond formation [195] .

Post-translational modifications such as phosphorylation and glycosylation can also be performed to produce functional proteins in vitro [196][197][198] . The majority of commercially available technologies for these types of applications use mammalian cell-free systems. Mammalian cell-free systems are able to implement post-translational modifications which are necessary for many therapeutic proteins. However, a recent study described a method to implement glycosylation (a common post-translational modification of eukaryotic proteins) using bacterial transcription-translation system [198] . This achievement brings a cheap and more efficient bacterial cell-free system for medical applications.

Proteomics and protein evolution By decreasing the cost of cell-free systems, using automation and optimization, these systems allow high-throughput protein synthesis and characterizations [199,200] . This trend brings the advantage of applying cell-free protein synthesis for proteomics analysis [147] . Moreover, cell-free systems enable directed evolution to generate proteins with desired phenotypes especially through applications such as ribosome display, in vitro compartmentalization, and in vitro virus (also known as RNA-peptide fusion or mRNA display) [147] .

Education kit

The development of education kits in the field of biology is limited compared to other branches of science and engineering due to the obstacles of dealing with living organisms and the lack of portable and affordable devices. BioBits TM [201] is a collection of freeze-dried educational kit established recently by leveraging cell-free transcription-translation systems. This collection provides portable non-GMO kits for young students to learn and practice synthetic biology. BioBits TM kit consists of simple transcription and translation set of fluorescent proteins and more complex devices for enzymatic reactions and RNA responding circuits. The components of the kit are easily usable after adding water to freeze-dried cell-free systems. All the experiments are practiced by employing only the senses of sight, smell, and touch through outputs that produce fluorescence, fragrances, and hydrogels, respectively. The DIY collection provided by the kit makes it affordable and valuable for young students to get trained and learn molecular biology and synthetic biology.

Cell-free systems have an old history since the dawn of molecular biology and will have a future through their peculiar properties. Since high-throughput and engineering approaches are getting integrated into life science applications, cell-free systems play an important role in studying, prototyping and engineering biological systems. In the coming years, the preparation of various cell-free systems should get more affordable and standardized. The limitations as the lack of post-translational modifications in prokaryotic systems or the lack of transcription machinery in eukaryotic systems can be compensated by adding specific components like kinase or T7 polymerase to the cell extracts [202] . Moreover, new achievement such as glycosylation using bacterial extract is a cutting edge advancement in cell-free biology. Cell-free systems have extended their shadows in the whole field of biology from basic science to building sophisticated synthetic devices and synthetic cells. With the achievement gained in the 21st century, the cell-free synthetic biology has a bright future for medical, environmental and industrial applications. 

Synthetic Metabolic

Introduction

Metabolic engineering allows the production of value-added compounds from renewable sources, therefore making it a key discipline for a greener and more sustainable chemistry. As the domain of synthetic biology has matured, numerous techniques have been developed and applied in metabolic engineering, allowing for cheaper and faster DNA synthesis, sequencing and assembly. It is nowadays faster to design and build constructs than to characterize them as testing often involves expensive mass spectrometry analyses. This has led to an increased interest in biosensors, which can allow fast and real-time screening, selection or dynamic regulation engineering of metabolic pathways. Cells harboring fluorescent proteins as the reporter of the biosensor allow screening of a huge number of variants, both for experimental growth conditions or genetic constructs (enzymes, RBS, promoters). Moreover, dynamic regulation can be used to monitor intermediates, final products or quorum molecules, allowing for optimal pathway balancing and resource consumption.

The advantages of using biosensors in metabolic engineering have been extensively reviewed before [START_REF] Liu | Applications and advances of metabolite biosensors for metabolic engineering[END_REF][START_REF] De Frias | Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors[END_REF][START_REF] Liu | Optimization and Application of Small Molecule Biosensor in Metabolic Engineering[END_REF] and will not be detailed further. Moreover, a wide array of techniques now exists to develop biosensors, from FRET [203] to riboswitches [204,205] : the interested reader is referred to those two excellent reviews that cover the strengths and limitations of the above-mentioned technologies [START_REF] Rogers | Biosensor-based engineering of biosynthetic pathways[END_REF]206] . In this review, we will focus on transcriptional biosensors in three different aspects. First, we will review techniques for discovery and engineering of transcriptional biosensors for new compounds, second, we will present how computer-assisted modeling can facilitate the tuning of biosensors for custom-made behavior, and third we will review the advances and advantages of using cell-free systems for biosensor characterization and metabolic engineering. 

Synthetic Metabolic

Designing a transcriptional biosensor to detect a compound of interest

Engineering allosteric transcription factors

The first step to engineer a biosensor, whether homologous or heterologous, is to identify the transcription factor (TF) and promoters that respond to it. Strategies involving transcriptional micro-arrays and identification of the up-or down-regulated genes in response to the ligand of interest provide first leads. These approaches can suffer from important limitations for metabolic engineering use: the identified genes can be either indirectly regulated by the ligand of interest, or very unspecific. This strategy has been successfully applied for 1-butanol detection [207] . Another strategy for identification of potential TF-promoter pair comes from Zhang et al. [208] who identified pairs that could detect lactam derivatives: they used a chemo-informatics approach to reveal operons listed in BRENDA (Braunschweig Enzyme Database) [209] that detected similar chemicals, and identified the gene likely coding the transcription factor. We recently published [START_REF] Koch | A dataset of small molecules triggering transcriptional and translational cellular responses[END_REF] a dataset of detectable metabolites ( Figure 3.1a ). This dataset, includes a manually curated list of experimentally validated detectable metabolites and information from databases of regulation, which contain known or putative detectable Once a potential TF/promoter pair is identified, the bioengineering workflow involves modifying the promoter, RBS and binding sites to improve selectivity, dynamic, operational range, fold change and leakiness. A number of successful biosensors have been developed in recent years, including heterologous TF despite the challenges faced to adapt the transcriptional machinery. This technology is becoming increasingly mature, as shown by the numerous examples in Table 1. In addition, engineering of specific biosensors for Malonyl-CoA is reviewed by Johnson et al. [227] , while Ambri [228] describes in detail an implementation of bacterial TF in yeast. Voigt's group recently published an E. coli strain containing twelve genomically integrated small molecule sensors, using a directed evolution strategy. It has been developed as a synthetic biology tool but the presented methods are applicable to metabolic However, the above-mentioned strategies are only applicable if a natural transcription factor-biosensor pair exists for a given compound. We will now review strategies to extend the chemical scope of transcriptional biosensors.

Extending the chemical space for biosensors A strategy to extend the chemical scope is to start from a known transcription factor and apply rounds of protein engineering to change its specificity ( Figure 3.2b ). For example, to design a biosensor for lactulose, LacI was altered using saturation mutagenesis, with rounds of selection to ensure specificity to lactulose [230] . Taylor et al. [231] used computer-assisted protein design, followed by saturation or random mutagenesis to modify LacI to sense either fucose, gentiobiose, lactitol or sucralose. The promiscuous MphR transcription factor has been modified with a similar strategy to change its selectivity towards various macrolides [226] . Despite their successes, these examples still rely on well-known transcription factors and labor-intensive mutagenesis or computationally assisted protein design to change the specificity of a transcription factor to, still, a chemically similar molecule.

Several groups have tried radical approaches, fusing DNA binding domain (DBD) to determine ligand binding domains in different ways ( Figure 3.2c ). This strategy has been successfully applied to maltose [232] and benzoate [233] by testing various linkers and DBD systematically. Another strategy, also applied to maltose, was to randomly insert the DBD into the metabolite binding protein, using transposon insertion reaction, to select constructs presenting biosensor-like behavior [234] . In a recent study [235] , the authors use a ligand dependent stabilization strategy, fusing LacI (respectively MphR) to the Zif268 DBD and RNA polymerase ω-subunit transcription-activating domain. Those constructs are quickly degraded unless the ligand is present. The authors managed to engineer biosensors responding to IPTG and D-glucose with satisfying dose-response (respectively erythromycin with a modest response). However, to underline the difficulty of this approach, they report that in two structurally similar periplasmic binding proteins, a similar mutation did not confer ligand dependent stabilization. Another similar approach was developed recently, it uses both ligand dependent stabilization and protein dimerization: two ligand binding domains (that can homodimerize, but bind different ligands) are fused respectively to the activation domain and the DBD. Upon ligand binding, the two proteins are stable and Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi can homodimerize, resulting in biosensing. This system allows for better range tuning and possible orthogonal biosensing of different ligands [236] .

Other known metabolite responsive proteins are two-component systems, which have also been used as biosensors. By fusing the transmembrane sensing domain of another species detecting methanol with the cytoplasmic phosphorylation domain of E. coli , binding of methanol activates a phosphorylation cascade enabling biosensing [237] . In an elegant study, transmembrane and cytosolic receptors for caffeine were built by fusing single-domain antibodies to monomeric DBDs [238] . Different DBDs were used, proving the scalability of the method. These two platforms should allow bioengineers to tap into the vast reservoir of two-component systems and antibodies to design new sensors.

A radically different approach to engineer the sensing scope of bacteria was coined Sensing-Enabling Metabolic Pathways (SEMP) ( Figure 3.2d ). The principle of this method is to metabolically convert an undetectable ligand into an already detectable one. This method makes the most of existing biosensors as well as of the impressive accumulated knowledge on metabolic reactions. It has been successfully applied in a metabolic engineering project to produce 3-hydroxypropionate [239] , and its modularity was shown by Libis et al. [240] . A web-server is now available to design SEMP for compounds of interest [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] .

Computer-assisted fine-tuning of biosensor properties While the scientific community agrees that biosensors need to be fine-tuned for selectivity, sensitivity and dynamic range, tuning strategies are usually based on labor-intensive and costly rounds of selection and mutagenesis. Controlling those properties is especially interesting for metabolic engineering as the specifications of a biosensor needed during various stages of the process will change, from detecting micromolar amounts before pathway optimization to g/L titers in later development stages. Therefore, after engineering a biosensor with new specificity, its properties also need to be fine-tuned to match the metabolic engineer's needs.

A detailed mechanistic model of the ArsR arsenic biosensor was developed by Berset et al. [241] , which recapitulates the sensor behavior under various circuit configurations, different ArsR alleles, promoter strengths, and presence or absence of arsenic efflux in the bioreporters. This model was then used to predict a circuit variant Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi with steeper response at low arsenite concentrations. A thermodynamical model was developed in a recent study [START_REF] Chen | Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors[END_REF] , which was used to tune the dynamic range of ligand-inducible promoters (mainly AraC and LasR), using binding energies calculated for different promoter sequences. Both studies proved that with sufficiently detailed models, tailoring biosensor properties for custom-made behavior can be achieved. Another interesting study based on the Lac system and involving extensive phenomenological modeling sought to find theoretical constraints for biosensor design, notably a maximum achievable dynamic range and exposing tunable parameters for orthogonal control of dynamic range and response threshold [242] . As impressive as these studies are, they are based on well-characterized and known systems and such modeling cannot be applied easily to a new biosensor.

However, a simpler formalism (Michaelis-Menten) for mathematical modeling was used to tune a biosensor used for selection of lignin transforming enzymes, giving insights on parameters influencing sensitivity, such as TF concentrations or copy number [212] . The role of plasmid copy number on sensitivity and fold-change of a pinocembrin and naringenin biosensor was investigated through a mathematical modeling [214] , using the common Hill framework, allowing for a better understanding of the biosensor behavior and suggestions for further tuning of properties according to desired outputs. Landry et al. [243] used mathematical modeling with Hill formalism to tune the detection range of a two-component system. They successfully applied it to improve their detection threshold up to two orders of magnitude. These later studies showed that simple mathematical models can help to understand and tune specific properties of a biosensor, even in less known systems.

Computer-assisted design does not always yield the expected results, as current models are often more explicative a posteriori than predictive a priori. Therefore, we believe investing the time needed to develop reliable models for a library of constructs can only be worthwhile in the long run for designing biosensors, as formalized knowledge is more easily translatable to other situations.

Custom-made biosensors' new application domain: cell-free metabolic engineering

Despite the advances presented in this review, biosensor design still necessitates rounds of trial and error. This limitation can be significantly sped up by using cell-free Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi systems ( Figure 3.2e ). Moreover, cell-free systems, are poised to become a key characterization tool in the metabolic engineering workflow before in vivo implementation. Cell-free systems lead to quicker responses, simpler cloning and larger combinatorial libraries screening, without requiring transformation steps. This systems can also be an appropriate platform for production because of lower noise and toxicity and absence of resource competition between pathway and cell growth. To date, cell-free systems have been applied to implement pathways for violacein [244] , , polyhydroxyalkanoates bioplastics [246] , mevalonate [174] , n -butanol [170] and raspberry ketone [247] , using either transcription-translation (TX-TL) systems, overexpressed enzymes in the crude extract or purified enzymes. Advantages and possibilities of cell-free systems for metabolic engineering has been reviewed elsewhere [126] , and a methods chapter for pathway prototyping in cell-free systems has recently been published [167] .

Cell-free biosensors for various applications have been reviewed elsewhere [178] and we will focus on strategies applicable to metabolic engineering. In a recent study, a vanillin biosensor was developed in cell-free systems [181] . The authors first used computational protein design and then rapid cell-free prototyping to develop a biosensor for this toxic effector, which was subsequently used in dynamic control loops in vivo to alleviate toxicity. For this review, we implemented our in vivo -characterized pinocembrin biosensor [214] in a cell-free system ( Figure 3.3a ). The cell-free biosensor exhibited a linear correlation between input concentration and fluorescence intensity as well as a wider dynamic and operational range ( The graph shows a dose response RFP fluorescence after 9 hours incubation in a plate reader at 30℃. 40 nM of biosensor plasmid is added with 0, 1,2,[START_REF] Wang | Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities[END_REF][START_REF] Marchisio | Parts & pools: a framework for modular design of synthetic gene circuits[END_REF]100,200 or 1000 µM of pinocembrin in 10.5 µl of cell-free reaction. RFP fluorescence points and error bars are the mean and standard deviation of three measurements.

Cell-free systems provide fascinating new opportunities for metabolic engineering, both for faster biosensor development, notably for toxic products, but also for prototyping whole pathways. Cell-free based metabolic engineering can benefit from all advantages of biosensor-based screening or dynamic regulation engineering, as does traditional metabolic engineering.

Conclusion

Thanks to extensive efforts by the research community, it has never been easier to develop transcriptional biosensors for new compounds, either from existing TF or engineering strategies. We believe the next frontier in custom-made biosensor design resides in efficient fine-tuning of properties, which is greatly advanced by modeling efforts. Moreover, metabolic engineering might be entering a new phase, with cell-free systems enabling faster prototyping of biosensors and even whole pathways. The current advances in biosensors for high-throughput screening will truly allow the field to move from the Design-Build-Test cycle to the Design-Build-Test-Learn cycle. [250,251] .

Techniques of synthetic biology have become crucial for metabolic engineering of microorganisms by conceiving of them as machines or cell factories. In the last decade, omics technologies have contributed to an accurate description of gene regulatory systems of these microbial factories, as well as its metabolic pathways. Concerning this, synthetic biology tools have facilitated the study of their optimization and tuning, providing a new paradigm that analyzes all the elements and increases production efficiency [2,[252][253][254][255] .

Synthetic biology has brought forward engineering techniques that have improved robustness and control on metabolic and genetic circuits. These circuits, when described by mathematical models, have a calculable behavior and it is possible to predict the effect of particular components and mechanisms on the production flux distribution as well as dynamics [250,256] . Further, stoichiometric modelling of metabolic networks and dynamic simulation using a synthetic feedback regulation are promising approaches [257,258] . However, further efforts are needed to combine omics and synthetic biology tools for cellular design [259] .

The goal of this report is to present the design methodology employed by the Team Évry during the iGEM competition in 2016, which can serve as a practical model to design optimized synthetic bioproduction of a compound of interest. In this methodology, a step by step procedure is presented, from choosing a host cell factory to searching, optimizing and finally implementing the pathway.

In the case study project, the initial objective was the bioproduction of Poly-Lactic Acid (PLA), a polymer used as bioplastic, and its further manufacturing and preparation for real-life applications. A design was described based on the literature that would enable further optimization compared to previous attempts of PLA bacterial production [260] .

Due to several problems during the wet-lab experimental part and a lack of time to
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For this reason, this report organizes the steps followed for bioproduction optimization into an integrative methodology, using the PLA project as example case study; becoming a potential guide for future iGEM participants or synthetic metabolic engineers.

Methodology

Metabolic engineering is being informed by the synthetic biology framework of biological parts. Thus, our methodology provides a standard procedure that can be applied to manufacture a given product using the sustainable cell factory. Herein, we present a step by step methodology to follow, once the compound that one attempts to produce is known, from choosing the host chassis to optimizing and implementing the designed system, as resumed in 

A. Pathway enumeration

First of all, depending on the purpose, the heterologous pathway producing the specific compound must be sought ( Figure 4.1A ). To do this, one might utilize personal knowledge of the metabolism along with literature and databases, in order to find the enzymes manufacturing the product of interest. However, there are some tools and databases which are dedicated to this task. In this direction, FMM (From Metabolite to Metabolite) [261] finds the possible pathway from KEGG database enzymes in order to produce a target metabolite from a given precursor. Moreover, XTMS (eXTended Metabolic Space) [262] enumerates pathways connecting the desired metabolite to the chassis metabolism suing a rethrosynthesis approach, expands the scope of the possible pathway, scores them, and even discovers new reactions based on enzyme promiscuity for designing the pathways for unnatural compounds.

There are imperative points that have to be deliberated when designing the pathway: i) ensuring that the chassis is compatible with heterologous enzymes in cases such as enzyme post-translational modification (e.g. the glycosylation of the eukaryotic world which does not occur in prokaryotic cells) and codon usage, ii) verifying that well annotated mutant (when synthetic) and natural enzymes exist, iii) seeking the closest enzyme for a wanted substrate due to the large variability of substrate range for a given EC number in different organisms. For these purposes, there are informative databases easy to use. For instance, BRENDA [263] gives the different substrates associated with a given enzyme or EC number in different organisms, as well as inhibitors, kinetic values, mutant and recombinant version of the enzymes. KEGG [264] is useful to obtain different reactions and pathways associated with an enzyme. UniProt [265] contains the annotation of the genes from several organisms of a given enzyme and characteristic of the enzymes.

As a developing approach in synthetic biology, amending the enzyme and pathway efficiency or making the completely new enzyme activity using directed evolution or rational design, will increase the need for standard techniques to synthesize and screen the phenotypes. Furthermore, screening and selecting the best enzymes for an efficient pathway is being sophisticated by biosensor-based screening along with transcription factor and more recently RNA biosensors [239,[266][267][268] .

B. Choosing the chassis
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Choosing the appropriate host for manufacturing a product, depends on i) the nature of the product and its required precursors, as well as their potential toxicity, ii) compatibility of the chassis cellular process to form the functional enzymes and pathway requirements, iii) whether the enzyme is prokaryotic or eukaryotic, iv) localization of the product, and v) scaling up the process in the future goals ( Figure 4.1B ).

Moreover, the host must have available genetic tools. For instance, Escherichia coli is the most known microorganism with well characterized cellular processes which could be used in order to develop new tools in synthetic biology, standardizing the methods as well as improving the production process. Other bacterial species, such as Bacillus subtilis and Pseudomonas putida , have attracted the interest of many scientists and engineers being more adaptable to industrial purposes and more suitable for several types of products. On the other hand, Saccharomyces cerevisiae has been welcomed as a promising cell factory carrying more developed cell processes, and more importantly, to perform simple eukaryotic post-translational modifications on enzymes and products. From another aspect, S. cerevisiae could be easily assented for scaling up procedures. More recently, scientists have developed new chassis which have shown more adaptability especially for industrial conditions, including microorganisms able to utilize cheap substrates as a carbon source. Choosing the most compatible cell factory is a crucial step which has to be carefully investigated from the very beginning compeer with choosing the production pathway and its enzymes [269,270] .

C. Optimization of bioproduction Synthetic metabolic engineering does not only deal with implementing the heterologous enzymes in a chassis and obtaining the product. Optimizing cellular and environmental conditions is necessary to achieve an interesting production yield ( Figure 4.1C ). In this direction, three ways of optimization are described: engineering, which goal is to produce a novel compound or overproduce a native compound through a synthetic pathway, first of all, metabolites and reactions associated with the pathway have to be added to the SBML file of the host's metabolic network.

C.I) Metabolic
Once the GMM modified, the next step is to run multiple simulations in order to gain a profound insight on the pathway and its bottlenecks, and optimal growth condition while the product is manufactured [274,275] . To do this, as mentioned, FBA is the main tool which finds the balanced flux distribution in the metabolic network from the feeding sources downward to the objective function of the simulation. The objective function is a reaction of the metabolism set to be maximized. Biomass is a hypothetical reaction representing the growth rate of the cell in which all the precursors of the cellular dry weight are substrates of this reaction. Also, there are FBA derivatives such as FVA (Flux Variability Analysis) giving the conscious range of flux for all GMM reactions while the objective function is maximized. OptKnock and evolutionary algorithms are the other derivatives of the FBA finding the mutant by which the growth rate and product flux are optimized simultaneously [271] .

Eventually, comparing several types of simulations on GMM provides a perspective on i) the best carbon source, ii) optimum growth condition e.g. oxygen level and iii) pathway bottlenecks to evaluate gene deletion and/or overexpression (see the case study and the wiki for the practical procedures). In order to perform these operations, there are popular, promising and easy to use available toolboxes such as COBRA toolbox [271] ,RAVEN toolbox [276] and OptFlux [277] , with user manual to accomplish from very beginner levels to professional tasks.

C.II) Dynamic regulation systems

Natural biological feedback processes provide dynamic regulation and metabolic optimization, through controlling activation or inactivation of gene expression. In the past few years, synthetic circuits have been constituted to integrate metabolic and gene expression levels connecting and regulating the synthetic metabolic pathway tightly into the cell metabolism and more importantly to the cell gene expression and regulation network [START_REF] Venayak | Engineering metabolism through dynamic Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi control[END_REF]278] .

Metabolic network optimization solely remarks the systems as an enormous stoichiometric matrix. However, the enumerated synthetic pathway and intrinsic genetic modifications have to be solved into the host cellular processes. This negates Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi the stress on cell equilibrium, and also maximizes the in vivo product yield. Moreover, this brings most of the theories achieved in the metabolic network optimization to practice.

For constructing such a system, first, the most effective precursor of the pathway has to be chosen. This precursor essentially must be the precursor of the pathway which is located at the bottleneck of the pathway to perform very effective dynamic regulation.

Generally, these metabolites associated with specific transcription factors, used to trigger sensor responses. Then, the genes coding for enzymes catalyzing the reactions at the upstream of the precursor have to be constructed under promoters responsive to these transcription factors. Optionally, orthogonal repressors can be implemented to control the genes encoding the enzymes downstream of the precursor [START_REF] Stanton | Genomic mining of prokaryotic repressors for orthogonal logic gates[END_REF] . Such repressors would be expressed under the control of the same biosensors, thus reversing the activating effect of the promoter for downstream enzymes (see Case Study). Therefore, this dynamic regulator increases the carbon flux to the final product not being toxic for the cell by expressing the enzyme at the certain required amount. Furthermore, such a system amends the product yield with Le Chatelier's effect of chemical equilibrium [278] .

As mentioned, the biosensor is built from the main precursor of the pathway [279,280] .

Commonly, the main precursor is located at the branch of central metabolism toward the synthetic pathway. For these points at the cell metabolism, oftentimes, specific transcription factor could be found in some organisms. To seek this, a recent tool, SensiPath [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF]240] has been made to wisely search for the transcription factor responding to a given metabolite. Moreover, assessing the strength of the promoters expressing enzymes and engineering them is a key point to reach the acceptable dynamic regulated system, thus higher yield.

When the parts and their positioning are defined, simulating the system can predict its behavior over time. Then, in the design-model-test cycle, the promoter strengths, RBSs and other variables can be tuned to get the optimal yield of the product, considering the usage of the cellular resources for enzyme production and growth. In order to model the genetic-metabolic circuits (dynamic regulation system), several kinds of methods could be applied. These methods should be linked to dynamical modeling, being stochastic/deterministic or continuous/discrete depending on the particular case and goal priorities. Similarly, the model could use paradigms such as ordinary or partial differential equations, network dynamics or agent interactions [281,282] .

C.III) Fermentation process optimization

Optimization of the fermentation process is also a key step to achieve the maximum product yield. There are different operational modes to be used in bioreactors, such as batch, fed-batch or continuous, which determine the evolution of cell culture over time [283] . Depending on the goal, the bioprocess should be design with one bioreactor type or the other.

For instance, fed-batch cultures are very common, but using continuous-stirred tanks could be favorable for metabolic engineering purposes [284] . Since conditions reach a steady state and side-parameters do not vary over time, continuous systems are attainable to be characterised. They often use chemostats, which maintain constant volume on the tank and facilitate the assessment of metabolites [285] . Besides, bioprocesses of all types can be designed in a stepwise fashion, allowing control of precursors and intermediates concentration along the production pathway and the way of feeding the medium.

Accuracy in these combinations can provide ease of tuning towards the total optimization of the cell; whether maximising cell growth and precursor accumulation, or by the separation of the bioprocesses in different steps.

D. Implementing the pathway and its associated parts Once the pathway has been enumerated, theoretically optimized and dynamically regulated, its genetic parts have to be built and cloned into the chosen chassis ( Figure 4.1D ). This procedure strongly depends on the chassis compatibility with the synthetic biology tools. Before that, the parts have to be adapted with host cellular machinery system and the genes codon optimized to be fully functional in the chassis. Then, the gene parts have to be designed, and synthesized or purchased. Toward assembling the defined genetic parts, two most used general approaches, Gibson assembly [286] and Golden Gate [287] and their similar and derived methods [288] could be used (or BioBrick Assembly especially in the iGEM competition) in well-known cell cloning factories such as E. coli . Rather than assembling the parts, the recently welcomed alternative way is to synthesize the whole constructs and transforming them into the cell directly [289] . Daily plunging in the price of gene synthesis is dramatically widening the usage of this admirable tool as an exceedingly faster-cheaper-better road.
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Poly-Lactic Acid (PLA) is a polymer of lactic acid with a wide range of applications due to its properties as biodegradable plastic. Frequently, its synthesis combines biological and chemical processes, the latter being expensive and detrimental for environment [290,291] .

In 2010, Y.K. Jung, S. Y. Lee and their colleagues produced PLA by engineering E. coli [260] . They reported the heterologous biosynthesis of the PLA homopolymer and its copolymer, poly(3-hydroxybutyrate-co-lactate) or P(3HB-co-LA). However, when reviewing recent approaches at industrial scale, at the moment of the study only the enterprise Carbios [292] reported PLA manufactured solely biologically.

The assumption presented here is that metabolic optimization of PLA biosynthesis would foster its implementation on the bioplastic industry. Thus, during iGEM 2016 competition, the team Évry applied the methodology previously described for studying bioproduction of PLA. The following sections refer to the four presented steps, each including details and specifications concerning the PLA case.

A Afterwards, several characteristics of the necessary enzymes were analyzed. On one hand, their original forms were both coming from prokaryotic bacteria [260] : this would assume bacterial chassis to be more suitable than others, i.e. yeast, which may use different machinery for post-translational modifications. On the other hand, the polymerization reaction could be a pathway bottleneck to overcome. Therefore, organisms that naturally produce polyesters similar to PLA, would provide better reaction efficiency. Pseudomonas spp. , bacteria able to synthesize Polyhydroxyalkanoates (PHA) [296] , could be an example fitting the two criteria. However, as aiming to genetically modify the chassis, two additional criteria had to be considered: ease of manipulation and safety. For that, it should be a GRAS (Generally Recognized As Safe) bacterium with well described metabolism and commonly used for synthetic biology purposes. Finally, it was concluded that P. putida KT2440 would be the most suitable chassis for obtaining our PLA because of being a lactate producer efficient at polymerization [295,296] [55,56], and being a GRAS strain widely used as work-horse for bioproduction [START_REF] He | Autoinduced AND Gate Controls Metabolic Pathway Dynamically in Response to Microbial Communities and Cell Physiological State[END_REF] .

C. Optimization of PLA bioproduction
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Once conceived a basic design for PLA bioproduction in P. putida KT2440, three optimization approaches were used for improving the theoretical design: metabolic network optimization, dynamic regulation systems and fermentation process optimization.

C.I) Metabolic network optimization

A FBA was reported on P. putida KT2440, analyzing the flux distribution and thus improving the PLA yield [297] . A synthetic pathway with the reactions of exogenous Pct* and PhaC* and their corresponding metabolites was implemented in the GMM. The final PLA-producing P. putida KT2440 metabolic network contained 962 genes, 980 reactions and 899 metabolites.

During the optimization process, glucose and fructose were tested as substrates with two objective functions: PLA producing reaction and Biomass, the latter being a hypothetical reaction in which the flux is identical to cell growth rate. The implementation of PLA as a precursor of biomass was also studied to obtain a more realistic view on cell growth and PLA production simultaneously. All FBA experiments were performed using OptFlux toolbox [277] .

-First experiment: Glucose was set as the substrate. that fructose is a more suited substrate to promote both growth and PLA production. In growth conditions, the flux of the fermentation pathway was approximately zero. As a result, lactate supply was detected as being a main challenge in PLA production. In this direction, a useful mutant of lactate dehydrogenase (LDH) enzyme, d-LDH* , was found in the literature [298] enabling the use of both NADH and NADPH efficiently and giving access to a higher substrate consumption. The implementation of this mutant would be particularly necessary for PLA production optimization.

On the other hand, the oxygen uptake flux for PLA production, when used as the objective function, was 6-fold less consumed than when optimizing biomass in FBA.

That indicated that low levels of oxygen would be sufficient for PLA production. Indeed, lower oxygen levels reduce biomass production and leads to carbon transformation into lactate via fermentation process and finally leads to PLA formation. However, due to the necessity of cellular biomass as the cell factory, the best solution would be to design a two step fermentation: first, the oxygen level would be set up with high aeration to increase the biomass; then, microaerobic conditions would be used to redirect the most of the carbon and energy into production of PLA.

Finally, in terms of carbon source, the in silico experiments indicated the use of fructose as carbon source should be prioritized over glucose for PLA production. Further experimental tests of growth rates should be performed in order to reassure the fructose employment significance shown by FBA.

A more detailed description of the experiments and analysis on the results can be found in the wiki FBA modeling page: http://2016.igem.org/Team:Evry/Model/FBA.

C.II) Dynamic regulation using biosensors

For optimizing PLA production, a feedback system depending on a lactate biosensor and repressible promoters was conceived, that would regulate the expression of our d-LDH* , Pct* and PhaC* genes. The designed system has synthetic regulation and improves the ratio PLA produced / enzyme needed. More precisely, the system increases the PLA yield by controlling the carbon flux of the pathway and the precursor toxicities in accordance with Le Chatelier's principle, avoiding gene overexpression. As shown in This system was modelled to observe and predict the dynamics generated by different elements. Two strategies were used: agent-based modeling and differential equations modeling in the system represented as genetic circuit.

-Kappa model: Agent-based modeling represents stochastic systems where agents and their interactions are defined [300] . In the model, the dynamics that the responsive elements would present if implemented on experimental lab were studied. The objective was to get to know the optimal combination of element variable features (ex. RBS strength) on the feedback loops to optimize PLA production. Because of having several elements to represent, interactions between the elements, and parameters that could be approximated using rate probabilities, Kappa language [301] -which uses agent-based modeling -was considered adequate for its implementation. -Dynamic modeling using differential equations: The interaction of the subsystems from a designed biosensor-based regulon can be translated into differential equations of the evolution of each component of the system. In the PLA system, these equations were designed based on mass action law, representing the different components of the genetic-metabolic circuit. Solving these equations demonstrated the evolution of each component time-proportionally.

Using a Kappa agent-based model, several simulations were run testing variations in agent reaction rates and LldR system was found to be the key factor. When tuning the promoter and RBS strength on LldR, so on its mRNA transcription and translation rates, different ratios PLA/Lactate were observed. In the optimal case, as shown in In the second model, differential equations of the dynamics of each component were extracted using a mathematical method from Brian Ingalls lab, University of Waterloo [302] . All the constants were set to 1, as the aim was to show how to extract equations related to the synthetic dynamic regulation system and observe its approximated behavior. They were solved using Python (equations and its code are described on the corresponding wiki section). Figure 4.7 shows that PLA production (red curve) increases while all the other components reach a balance after a period of time (in seconds), demonstrating that the evolution system works maximizing PLA production even using the constant parameter approximation. Acid, and are contiguously represented in the metabolic pathway to optimize. After the chemostats, an homogeniser followed by an auxiliary reactor helps the extension of the polymeric PLA chain (orange). Finally, an extrusion system consists of a heated piston followed by a cooled roller to store the final product. Each bioprocess is covered by a particular set of genes (upper and bottom sections of the figure, respectively).

The whole bioprocess consisted on a DIY continuous pump, two bioreactors, one additional auxiliary reactor, a DIY-PLA-Extruder and a DIY-roller for final storage of the PLA product. Its main characteristic was the implementation of the continuous bioprocess in a stepwise manner which, by splitting the bioproduction in two chemostats, could induce progressively the crucial steps of the metabolic pathway.

Using chemostats
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In this type of bioreactor the mass balance is described as indicated in eq.1. Once the steady state has been reached, the specific growth rate (µ) of microorganisms can be controlled. The steady flow (F) allows a system of a fixed volume (V), where accumulation or leakage of biomass in the system over time is null (dM/dt=0). This characteristic allows cells to grow at a fixed specific growth rate (μ) for the achievement of a fixed value of biomass concentration (x) over time (t). This value can be controlled according to the Dilution time (D), which is equivalent to the Flow (F) per Volume (V) unit, that is D = F/V. As a consequence, the amount of product can be maximized by increasing the cell concentration (x) and correlated to the flow optimization (F). According to this, the pumping system for the chemostats is optimized to provide a dilution time (D) never greater than the value of the maximum growth rate for P. putida under specific conditions (µmax in glucose: 0.212 h-1 = 0.0035min-1; µmax in glycerol: 0.206 h-1 = 0.0034min-1. Calculated from experiments.) Optimal dilution times (Dopt < Dmax) can only be obtained by plotting the substrate consumption rate of the microorganism, which has not been assessed in this study.

Plotting growth rates and enabled dilution times under specific genetic modifications is a systematic approach for the step-wised maximisation of the production of specific products or metabolites (i.e. PLA or preceding precursors in preceding chemostats).

By using this approach, the effects of particular modifications can be assessed in specific steps in the metabolic pathway, since an increase in the productivity of a specific metabolite can be modeled and estimated in vivo in a single chemostat. The more chemostats, the more precursors to be studied throughout the bioprocess; providing a better optimisation of the metabolic pathway.

The bioprocess was manufactured in a DIY manner, to show its implementation would be affordable. Moreover, there were possible improvements in the mechanical system of extrusion and storage: a PLA extruder, with the help of a heater, would allow ejection of raw PLA filaments which, at their turn, would roll over a roller, solidify and be stored.
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Further details on the manufacturing of the system, mathematical modeling of the bioprocess and steady flow testing are described on the wiki section of bioprocess: http://2016.igem.org/Team:Evry/Improvements/Bioreactor D. Implementation To achieve a correct implementation and expression of our genes, works of well-known laboratories using Pseudomonas spp. as engineering chassis were studied. Advised by Victor de Lorenzo (CNB-CSIC, Madrid, Spain), the best option was set to be using Standard European Vector Architecture plasmids (SEVA). The plasmid construction was set as follows:

For the implementation of the basic operon, the choice would be an inducible promoter by IPTG, as it is well known and regulable. In terms of antibiotic, P. putida is naturally resistant to Chloramphenicol, so an alternative resistance gene such as Kanamycin would be used. Next step would be the insertion of LDH encoding gene, to foster lactate production as described on optimization. The best strategy would consist in using another inducer to regulate the lactate production and induction of PLA genes. Cyclohexanone (CH) would be a good example of inducer, combined with Spectinomycin resistance.

Besides, the selection of an optimal RBS for P. putida should be taken into account. If implementing the dynamic regulation system, the two plasmid systems described would be modified by adding extra elements of control, as shown in Finally, it would be necessary to include in our gene design the overhangs or necessary bases needed for the assembly method chosen. For the PLA production case, the choice was the Standard BioBrick Assembly, so its characteristic Prefix and Suffix would be required, as well as checking absence of the restriction sites (EcoRI, PstI, SpeI, XbaI) in the gene sequence.

Conclusion

In this report, we presented a well-organized plan for synthetic metabolic engineering. Following this protocol enables one to design an elaborate experiment through a standardized protocol for future research and industrial purposes. Our approach brings together two distinct disciplines related to cell engineering: synthetic biology and Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi systems biology. This integration has been neglected despite massive progress in synthetic biology and systems biology separately [303,304] . This protocol was followed by our iGEM team with a case study on PLA production to build a platform for future studies in this era of bioproduction.

Since some parts of the methodology had to go more in detail, continuing each step with a PLA example guides to the procedure has to be done for any arbitrary project. Even though this project did not succeed in the wet lab experiment, the main goal was achieved in the integration of several tools to present a cohesive protocol validated by judging comments on that. Participation of several students from different backgrounds facilitated the iGEM team to get to this destination.

The perspective of this report is to accomplish more combination in the daily-used tools of biotechnology, systems and synthetic biology. This will negate obstacles in bioproduction such as i) expensive inducers for biochemical production, ii) lack of the enzymes and pathways for manufacturing the unnatural products iii) improving the yield through several optimization processes [270,305] .
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Introduction

For the last few decades, finding new solutions for sustainable production of valuable compounds and chemicals has been increasingly important. One of the most promising and efficient methods lies in harnessing the synthesis capabilities of engineered microbes. However, precise and robust engineering of these organisms remains challenging. Indeed, numerous steps of optimization are required for an implemented heterologous pathway to reach industrial synthesis capabilities and economical viability. Advances in the design have allowed generating millions of cell variants with different synthesis capabilities, but a major bottleneck resides in the screening and selection process. To help circumvent this hurdle, synthetic biology provides many valuable tools. Amongst these tools, biosensors have been extensively used for metabolic engineering with success in various organisms [START_REF] Liu | Applications and advances of metabolite biosensors for metabolic engineering[END_REF][START_REF] De Frias | Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors[END_REF][START_REF] Liu | Optimization and Application of Small Molecule Biosensor in Metabolic Engineering[END_REF]306,307] , but mainly bacteria and yeast. Overall, two types of biosensors are extensively used for metabolic engineering: transcription factor based biosensors, relying on transcriptional regulators to sense metabolites [210] and RNA based biosensors, using riboswitches to trigger pathways in presence of the desired compound [308,309] . However, transcription factor based biosensors remain the most convenient and frequent to engineer [210] and have been successfully employed to detect amino acids [310][311][312] , fatty acids [278,313] , or sugars [231,314,315] , but also a large variety of other types of metabolites [212,214,216,219,316] directly or indirectly [240] .

Indeed, metabolic engineering heavily contributes to sugar technologies. Sugar consumption and production remain a major environmental and societal problem. Recently, rare sugars, i.e. sugar occurring in small quantities in nature, emerged as a potential solution [317] . Indeed, rare sugars like D-allose, D-psicose, D-tagatose or L-xylose display numerous biological properties and could help to fight obesity and t ype 2 diabetes, two diseases with dramatically increasing incidence in the population and for which the main factor linked with these pathologies is the over consumption of sugar as well as high-fat diet. For example, D-psicose, also known as D-allulose, a C3 epimer of D-fructose is an ideal substitute for sucrose with around 70% of its sweetness. Thanks to a low absorption by the human gastrointestinal tract [318] , D-psicose shows beneficial hypoglycemic and hypolipidemic properties for weight reduction and demonstrate important antioxidant activities [319,320] . In addition, D-psicose is also Generally Recognized As Safe (GRAS) by the U.S. Food and Drug Administration in June 2014 (GRAS Notice No. GRN 498) which allows its use for industrial food and beverage manufacturing as a sweetener. Therefore, achieving an Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi efficient production of D-psicose could be very valuable. The rare sugar's synthesis can be achieved chemically using organic synthesis, which proves to be a time consuming, and polluting process, inducing high manufacturing costs [321,322] . However, it is also possible to produce D-psicose through biocatalysis but it remains highly challenging. This biocatalysis generally harnesses the ability of D-psicose 3-epimerases (DPEase) and D-tagatose 3-epimerases (DTEase) for the bioconversion, by epimerization on the C3 position, of D-fructose into D-psicose. Numerous DPEase and DTEase have been reported, mainly from plant pathogens like Pseudomonas cichorii [323] , Agrobacterium tumefaciens ) [324] or Clostridium cellulolyticum [325,326] . These enzymes could be good candidates for industrial biocatalysis, particularly the DPEase from the C. cellulolyticum for its thermal stability, but they demonstrate low enzymatic activity rendering costly all current industrial applications.

Here, we develop a framework to efficiently evolve and select for DPEase in order to improve its enzymatic activity, therefore enabling potentially significant production cost reduction. First, we designed seven different transcription factor based biosensors to detect the D-psicose. We combined the use of PsiR, a predicted LacI family transcription factor with high affinity for D-psicose with both natural and synthetic inducible promoters. In order to efficiently build, test and optimize the different biosensor variants, we developed a Universal Biosensing Chassis. This synthetic construct optimized for Golden Gate assembly allowed a standardized, fast and reliable assembly of any transcription factor with its suitable inducible promoter. We then characterized each biosensor, regarding basal expression of fluorescence and responsive (operational) range, to assess which one would be the more suitable to screen for DPEase. The psicose biosensor based on the pPsiA promoter and PsiR transcription factor from Agrobacterium tumefaciens demonstrated the best characteristics. Next, we engineered this biosensor to allow the insertion by Golden Gate assembly of a DPEase expression cassette into the biosensor vector. Using random mutagenesis and fluorescence-activated cell sorting (FACS), we generated and screened DPEase mutants displaying higher level of reporter production. Finally, we identified and characterized a C. cellulolyticum DPEase mutant, demonstrating the framework's efficiency.

Materials and methods

Plasmid construction

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Escherichia coli strain DH5α was used for cloning. pSB1C3 plasmid was used as the backbone for all constructs. Transformed bacteria were selected on LB medium containing 35 µg/ml chloramphenicol.

All plasmids were assembled by the Golden Gate cloning method [327,328] . The T4 DNA ligase was purchased from New England Biolabs as well as the type II restriction endonucleases BsaI and BbsI. BsmBI was purchased from Thermo Fisher Scientific. DNA fragments were synthesized as gBlocks by Integrated DNA Technologies, Inc. (IDT) or amplified by PCR with oligonucleotide primers bearing Golden Gate adapters at their 5' ends (synthesized by IDT). PCR reactions were carried out using the Q5 ® High-Fidelity DNA Polymerase (New England Biolabs) according to the manufacturer's protocol. Error prone PCR was performed according to the protocol described by Wilson & Keefe [329] using the OneTaq DNA Polymerase (New England Biolabs). Successful cloning was verified by sequencing (GATC Biotech, now Eurofins Genomics).

This work was initiated in the framework of the international Genetically Engineered Machines (iGEM) competition by the Evry Paris-Saclay 2017 team. Consequently, all nucleotide sequences were submitted to the publicly available iGEM's Registry of Standard Biological Parts ( http://parts.igem.org/ ). The Sequence information about all individual functional parts (genes, promoters, terminators) are indicated in Supplementary Table S5.1 and their sequences are available in GenBank format in the supplementary material . All plasmids accession numbers are listed in Table 5.1 . All plasmids follow the BioBrick RFC [START_REF] Wang | Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities[END_REF] standard and are in the pSB1C3 backbone. The details of the construction of each plasmid including the sequences of all primers used for PCR and all gBlocks can be found in the Supplementary Materials and Methods section. 

Biosensor in vivo characterization

The pSB1C3 plasmids harbouring the psicose biosensors were introduced into E. coli DH5α. Transformed cells were grown overnight at 37°C in LB medium containing 35 µg/ml chloramphenicol. The suspension was diluted by 100 in the same medium and incubated at 37°C and 200 rpm for one hour. Afterwards, a 96 well plate (COSTAR ® 3603, Corning Inc.) was prepared and each well was filled with 120 µl of cell suspension and 30 µl of a solution containing Psicose and IPTG. Different concentrations of Psicose (0, 0.1 µM, 1 µM, 10 µM, 100 µM, 1 mM, 10 mM, 100 mM, 200 mM and 300 mM) and IPTG (0, 1, 10, 100, 1000 µM) were tested. The plate was incubated at 37°C at 200 rpm, fluorescence and OD 600nm were measured every 7 min during 150 cycles. Fluorescence of mCherry was measured using CLARIOstar ® plate reader (BMG Labtech) at 587/610 nm, the mCherry wavelengths of fluorescence excitation and emission [330] . Fluorescence of mEmerald was measured using Synergy™ HTX plate reader (BioTek ® Instruments, Inc.) at 485/528 nm, the mEmerald wavelengths of fluorescence excitation and emission [331] . The experiments were performed in triplicate and the fluorescence values (background subtracted) normalized by cell density (OD 600nm ).

Fluorescence-activated cell sorting (FACS)

A library of DPEase of C. cellulolyticum mutants was generated following the error-prone PCR protocol using the OneTaq DNA Polymerase (New England Biolabs), the forward primer 5'-GCCGTCTCGGATGAAACACGGTATCTACTAC-3', the reverse primer 5'-GCCGTCTCCCGCTTTAAGAGTGTTTGTGGCATTC-3' and as template a gBlock encoding the C. cellulolyticum DPEase. A control library was performed with the Q5 ® High-Fidelity DNA Polymerase (New England Biolabs). Each library was inserted in the Mutant Drop Zone downstream of the psicose biosensor (BBa_K2448057) by Golden Gate, using the BsmBI restriction enzyme (Thermo Fisher Scientific). Ten µl of the Golden Gate reaction were used to transform chemically competent E. coli DH5α cells. After over night culturing in LB media supplemented with 35 µg/ml chloramphenicol, transformed cells were centrifuged, washed with IsoFlow Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Sheath Fluid (Beckman Coulter) and resuspended in this same isotonic fluid at a concentration of 10 6 cells/ml. Flow cytometric measurements were performed at Genoscope on a MoFlo Astrios cell sorter (Beckam Coulter), using a 488 nm laser for excitation and a 513/26 nm filter for detection of the mEmerald fluorescence. The data were analysed using the Summit V6.2 Software (Beckam Coulter).

Bioproduction of psicose from fructose

The pSB1C3 plasmids harbouring the DPEase under the control of pTacI promoter (BBa_K2448033) were introduced into E. coli BL21-AI (New England Biolabs). Transformed cells were grown at 37°C in mineral salts medium [332,333] (7 g/L K 2 HPO 4 , 3 g/L KH 2 PO 4 , 1 g/L (NH 4 ) 2 SO 4 , 2 µM FeSO 4 , 0.4 mM MgSO 4 , 1.44 mM sodium citrate, 0.1 mg/L Thiamine, 2 g/L glucose) containing 35 µg/ml chloramphenicol. When cells reached early/middle exponential growth phase (OD 600nm = 0.6), protein expression was induced with 1 mM isopropyl ß-D-thiogalactopyranoside (IPTG) and the media was supplemented with fructose at various concentrations. Cultures were sampled afterwards every two hours and, after centrifugation at high speed, the supernatant was analysed by HPLC.

2.5 HPLC analysis HPLC analysis was carried out using a Shimadzu Prominence LC20/SIL-20AC equipped with a SUPELCOGEL™ Ca column (300 x 7.8 mm, 9 μm particle size, 6% Crosslinked) and a RID-10A refractive index detector. The separation was performed isocratically using pure water as mobile phase, at a flow rate of 500 µl/min on the column thermostated at 85°C. The sample injection volume was 20 µl. Quantification of sugars was done by interpolation of the integrated peak areas using a calibration curve prepared with standard samples.

Purification of DPEase under native conditions

The pSB1C3 plasmids harbouring the His-tagged DPEase variants under the control of pTacI promoter (BBa_K2448054) were introduced into E. coli BL21-AI (New England Biolabs). Transformed cells were grown at 37°C in 50 ml LB medium containing 35 µg/ml chloramphenicol. When cells reached early/middle exponential growth phase (OD 600nm = 0.6), protein expression was induced with 1 mM isopropyl ß-D-thiogalactopyranoside (IPTG). After overnight culture, cells were harvested by centrifugation at 5000 g for 30 minutes at 4°C. The cell pellet was resuspended in 2 ml Lysis Buffer containing 50 mM Tris-HCl Buffer pH 7.5, 100 mM NaCl, 10 µg/ml lysozyme, 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 µg/ml DNase and 10 µg/ml Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi RNase. Cells were broken with 1 g of glass beads by vortexing 3 times 1 minute at maximum speed interrupted by 1 minute on ice. Debris were removed by centrifugation (14000 g for 20 minutes at 4°C) and the supernatant collected. Purification of Dpe was performed essentially as described [334] using the Ni-NTA Spin kit (Qiagen). Briefly, the column was equilibrated with 600 µl Equilibration Buffer (50 mM Tris-HCl Buffer pH 7.5, 500 mM NaCl), then 1,2 ml of crude soluble lysate from E. coli cells were loaded. After washing twice with 600 µl of Equilibration Buffer, then twice with 600 µl Wash Buffer (50 mM Tris-HCl Buffer pH 7.5, 500 mM NaCl, 50 mM Imidazole), the target protein was eluted with 3 x 600 µl Elution Buffer (50 mM Tris-HCl Buffer pH 7.5, 500 mM NaCl, 500 mM Imidazole). All manipulations were performed at 4°C. Protein purification was visualised by SDS-PAGE. Protein samples (10 µl) to be analysed by SDS-PAGE were mixed with Laemmli Buffer (final concentrations 20.83 mM Tris-HCl pH 6.8, 0.67% (w/v) SDS, 3.33% glycerol, 1.67% 2-mercaptoéthanol, 0.5% bromophenol blue) and after heating for 3 minutes at 95°C, they were loaded onto a 12 % SDS-polyacrylamide gel for protein separation, using a Bio-Rad Protean mini-gel system. Electrophoresis was performed in the SDS-PAGE running buffer (3.03 g/L Tris base, 14.4 g/L Glycine, 1 g/L SDS, pH 8.3) at constant 200 V, until the dye migrated close to the bottom of the gel. The gel was then stained with Coomassie Blue R-250. The total amount of proteins was determined by Bradford protein assay using the Pierce™ Coomassie Plus Assay Kit (Thermo Scientific™) following the manufacturer's instructions for the Micro Test protocol. Briefly, the protein solution was mixed to an equal volume of 1x dye reagent and the absorbance was measured at 595 nm after 5 min of incubation at room temperature. A calibration curve was created using a set of bovine serum albumin (BSA) dilutions with concentrations ranging from 0 to 25 µg/ml.

Enzyme Activity

Initial rates of DPEase activity were assayed essentially as described [325] at 55°C in 50 mM Tris-HCl pH 8.0 containing 7.5 μg/mL protein, 0.1 mM CoCl 2 and up to 100 g/L substrate (D-fructose or D-psicose). The reactions were stopped by boiling and analysed by HPLC. Data were fitted to the Michaelis-Menten equation using least-squares non-linear regression to generate estimates of K m and k cat values.

Results and Discussion

Design-build-test of seven psicose biosensors
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To achieve a precise and rapid engineering of transcription factor-based biosensors, we first designed the Universal Biosensing Chassis (UBC) ( Figure 5.1A ) that allows two different assembly methods for the insertion of transcription factors and promoters: the Golden Gate assembly, or the traditional digestion-ligation. UBC contains insertion markers in order to enable quick and easy identification of the colonies carrying the right construct: mEmerald for the transcription factors and LacZ-alpha for the promoters. An inducible pTacI promoter controls the transcription factor expression in the chassis and we selected strong RBSs and efficient synthetic terminators to regulate the overall transcription and translation in the chassis. Finally, we used mCherry as a reporter. This monomeric fluorescent protein shows rapid maturation, low brightness as well as an improved photostability and resistance to bleaching which makes it the perfect reporter for precise measurements. Moreover, unlike GFP-like proteins, there is no E. coli cell auto-fluorescence effect at its excitation wavelength.

To construct a variety of psicose biosensors, using the UBC architecture, it was essential to identify a transcription factor with a high affinity to D-psicose. Using the SensiPath tool [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] , we identified PsiR of Rhizobiales that appeared to be a great candidate. It is a predicted LacI family transcription factor with high affinity for D-psicose. This implies that PsiR is potentially capable of binding a consensus sequence in the promoter region and prevent transcription of the regulated promoters in the absence of D-psicose, in a manner similar to the way LacI does in the absence of allolactose (or the synthetic IPTG). PsiR occurs naturally in different Rhizobiales species ( Agrobacterium tumefaciens , Sinorhizobium fredii , Sinorhizobium meliloti ) where it regulates an operon while also self-regulating its own expression. In all these species, the genetic context is similar as illustrated in Supplementary Figure S5.1 : psiR gene precedes an operon which starts with the psiA gene , but faces in the opposite direction, meaning that the promoter regions of psiA and psiR are overlapping. Furthermore, using the BPROM webserver, we identified two -35 and -10 boxes in close proximity to two 20 bp sequences conserved between different Rhizobiales species and that could be the PsiO sequences, with a function equivalent to the LacO sequences of the lactose operon These regulatory regions could be great candidates for a PsiR regulated promoter, regulating the transcription of mCherry . Thus, the 400 bp sequences upstream of psiA and psiR were extracted from the genome of each species, to generate two promoter regions that are denoted pPsiA and pPsiR respectively.

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Using the UBC ( Figure 5.1A ) six different biosensors were generated by replacing the mEmerald with one of the three codon-optimized PsiR of A. tumefaciens , S. fredii or S. meliloti and lacZ with a corresponding pPsiR or pPsiA from the same species ( Figure 5.1B ). The six D-psicose biosensors should work in the following way: when pTacI is induced by IPTG, it drives the transcription of psiR gene en coding the PsiR protein that is predicted to be a transcription factor able to bind D-psicose. If D-psicose is present in the cell, the PsiR transcription factor will bind preferentially to it and thus the transcription factor becomes inactivated. The repression of the related promoter pPsi will be released which will enable the expression of a fluorescent protein, mCherry. If D-psicose is not present in the cell, PsiR will bind to pPsi, preventing any expression of mCherry.

To determine which of the six constructed biosensors were the most suited for our screening process, E. coli cultures were transformed with individual biosensors and characterized using in a plate reader. By measuring the fluorescence intensity of the mCherry protein, normalized by the cell density, critical parameters were evaluated such as the optimal measurement time, the basal expression, and the responsive range ( Figure 5.1C-H and Supplementary Figure S5.2 ). The optimal measurement time, which is the shortest time to get an observable signal for each biosensor, was assessed using a range of D-psicose concentrations. It turned out that for the majority of our biosensors, if D-psicose concentrations were above 10 mM, a 9 hours incubation after induction would give relevant results. The basal activity of biosensors corresponds to the signal emitted in the absence of D-psicose, which is due to the imbalance between the amount of PsiR transcription factor available and the pPsi promoter strength. Even when PsiR is produced, the transcription factor cannot totally prevent the transcription of the mCherry gene from happening. A biosensor with a low basal activity could seem favourable; however, it is often related to lower sensing abilities. This parameter is therefore not sufficient in itself and should be associated with other criteria. For a biosensor characterization, the fold change of fluorescence is more interesting than the absolute intensity ( Supplementary Figure S5.2 ). The Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi sensitivity of a biosensor is determined when a significant change in the fluorescence intensity can be measured in relation to D-psicose concentration. For our biosensors, we can observe that a signal arises from the basal signal around 1 mM ( Figure 5.1C-H and Supplementary Figure S5.2 ). The different versions of the biosensor are also saturated around a concentration of 300 mM of D-psicose. The span of concentrations between the detection and the saturation is reflected by the responsive range, which is essential to evaluate to which range of concentration our biosensor can be used to give a significant output.

From these results, we can see that each PsiR behaved as predicted, inhibiting the pPsi promoters and interacting with D-psicose. Their responsive ranges are similar ranging from 1 mM to 300 mM of D-psicose. The difference appears in the fold change and the linearity profile of the response (the fluorescence fold change being the ratio of the fluorescence values when 300 or 0 mM of D-psicose are added). The biosensor based on pPsiA and PsiR from A. tumefaciens shows both high fold change (90.4±1.4) and linearity in the range of concentrations corresponding to those of the bioproduction (1 mM to 300 mM of D-psicose) ( The biosensor based on pPsiA and PsiR from A. tumefaciens is the best candidate because of its linearity and fold change, but it also has to work in D-psicose bioconversion conditions. The PsiR from A. tumefaciens has to specifically respond to its ligand and not to other molecules of the cell or the media, such as D-fructose, which will be at high concentration. Using the same range of concentrations of Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi D-fructose, on the pPsiA-PsiR biosensor from A. tumefaciens we can see that D-fructose does not influence the biosensor behaviour since mCherry production isn't a function of fructose concentration in the media ( Figure 5.1C and Supplementary Figure S5.2A ). This finding implies that our transcription factor does not bind to D-fructose and that it can be used in high fructose level media to measure psicose concentration. Therefore, the pPsiA-PsiR biosensor from A. tumefaciens is suitable for assessing the activity of D-psicose 3-epimerase converting D-fructose into D-psicose.

The results presented in Figure 5.1 show that all pPsiR and pPsiA natural promoters are active in E. coli and that are regulated by the corresponding PsiR and by the presence of D-psicose. Knowing that PsiR is a LacI family transcription factor, and that these transcription factors modulate the expression of regulated genes by binding to a specific operator DNA sequence [335] , we decided to further characterise this inducible system by engineering a hybrid synthetic promoter. We have based this hybrid synthetic promoter on the well-known LacI regulated promoter, pTacI [336] and we replaced the LacO sequence of pTacI by a consensus 20 bp sequence on which PsiR is predicted to bind according to RegPrecise database. The thus newly created promoter region, pPsiTacI ( To the best of our knowledge, the results we present in Figure 5.1 and 5.2 are a first proof that PsiR is a transcription factor that negatively regulates the pPsi promoters in the absence of D-psicose and which, in the presence of D-psicose, allows the expression of a gene placed under the control of the pPsi promoter. The regulation is dependent on a 20 bp sequence ( Figure 5.2 ) present in pPsi to which PsiR (potentially) binds. This sequence was sufficient to change the induction specificity of a LacI regulated promoter (pTacI) and convert it into a psicose inducible promoter. The seven psicose biosensors allowed us to develop a set of seven psicose inducible promoters with variable strengths, working in a widely used chassis E. coli and that allow fine-tuning of gene expression levels with applications that go beyond the scope of this paper 3.2 Bioproduction of D-psicose from D-fructose .In order to improve the bioconversion of D-fructose into D-psicose, we decided to engineer the DPEase from C. cellulolyticum and screen mutants for potentially Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi improved catalytic efficiency using the best psicose biosensor described above. For this, a sine qua none condition is the expression of a functional DPEase that is able to convert D-fructose into D-psicose at 37°C during E. coli growth .

To demonstrate the whole cell bioproduction of D-psicose from D-fructose, E. coli cells were transformed with the pSB1C3 plasmid harbouring the DPEase under the regulation of the pTacI promoter. The optimal concentration of substrate was investigated using concentrations of D-fructose ranging from 2 g/L to 300 g/L. A decrease in the growth of the culture could be noticed above 100 g/L of D-fructose, which might be due to osmotic stress on the cells. A maximal production of 9 g/L of D-psicose was reached after 24h, using a D-fructose concentration of 50 g/L, which represents a yield of 18%. This conversion rate is comparable to the biocatalysis yield described in the literature for this enzyme which retains at 37°C only 60% of its maximum activity that it has at 55°C [325] . Higher biocatalysis yields have been reached, for example 23% at 70°C when using purified DPEase from Dorea sp. CAG317 [337] , 31% at 65°C when permeabilizing the membrane of cells [338] or even 70% at 45°C with a mutated DPEase from A. tumefaciens immobilised on a surface [339] .

Many aspects of the bioconversion could, therefore, be improved, using for instance higher temperatures to harness the optimal activity of DPEase, by permeabilizing the cells or even working on a cell free method. However, the production conditions should match our screening process, which needs living cells. In the current settings, the primary bioconversion improvement will come from the selection of enhanced DPEase. These enzyme candidates could then be used in any D-psicose bioproduction process.

A screening method for gain of function mutants of C. cellulolyticum DPEase

Enzyme engineering currently focuses on computation modelling followed by directed mutagenesis on specific amino acids of the protein to improve its characteristics. This maximizes the probability of improving activity for a defined number of mutants but restricts possible random conformational changes, with the potential to improve catalytic sites. Conversely, random mutagenesis favours completely new conformations but requires screening a much larger number of mutants, hence the need to use an efficient screening system. For this purpose, we first engineered the Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi biosensor to allow the insertion of mutants into the vector, in order to build the mutant library, and finally screened all the mutants for potentially improved catalytic efficiency.

The engineering of the biosensor consisted of adding, downstream of the reporter gene, a sequence that we refer to as the Mutant Drop Zone (MDZ) ( Figure 5.3A ). MDZ comprise the pTacI promoter followed by restriction sites that allow insertion of the DPEase in the same plasmid as the biosensor. To build the mutant DPEase library we chose to use error-prone PCR because it favours mutations during the elongation phase, thanks to a mutagenic buffer (for example imbalance in dNTPs concentrations) and low fidelity polymerases. This technique remains more efficient than chemical methods, which rely on reagents to modify the sequence, and is safer for the user, as chemical mutagens are highly toxic. Moreover, it is an a priori free method compared to saturating mutagenesis. The protocol described by Wilson & Keefe [329] was applied on the full length coding sequence of C. cellulolyticum DPEase encoding gBlocks to build the library. According to this protocol, variants were obtained with a theoretical mutation average of 8 amino acids. A high fidelity PCR was performed on the same gBlocks with the same primers in order to obtain a non-mutated enzyme, as a positive control. Library sequences were inserted by Golden Gate assembly in the Mutant Drop Zone downstream of the psicose biosensor based on pPsiA promoter and the PsiR transcription factor from A. tumefaciens ( Figure 5.3B ) and the Golden Gate assembly products were transformed into E. coli . Due to technical constraints related to the cell sorter characteristics, the reporter gene mCherry was replaced by mEmerald ( Figure 5.3C with Figure 5.1C ). The mEmerald reporter shares common characteristics with mCherry relevant to the framework, such as rapid maturation and photostability, and proved to be sufficient to distinguish potentially improved mutants during screening.

In order to assess the DPEase enzyme activity, all the screening process was conducted on an E. coli cells cultured in the presence of 50 g/L of fructose for 9 to 10 hours before measurement, as this is the optimal measurement time according to our biosensor characterization. Then, fluorescence-activated cell sorting (FACS) was used on a liquid culture of transformed cells ( Figure 5.3D ) to isolate the mutants displaying a superior catalytic efficiency compared to the wild-type DPEase enzyme. Cells having the fluorescence / size ratio above average (dotted line) were isolated (regions R1, R2, R3) and subsequently spread on LB agar plates containing 35 µg/ml chloramphenicol. A total of 848 colonies were isolated between R1, R2 and R3 during this procedure.
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In the next step, we chose 10 mutants to more precisely evaluate the psicose production using the biosensor. The fluorescence values of the cells producing psicose as well as the OD 600nm were measured in a plate reader 10 hours after culturing in LB media supplemented with 80 g/L D-fructose. Figure 5.3E shows the relative fluorescence expression of the mutants with regard to the wild type DPEase. Not surprisingly, the gain of function mutations are less likely to happen than loss of function and neutral mutations. Nonetheless, using FACS and then the plate reader characterization of 10 mutants we found 6 DPEase variants displaying various degrees of improvement in psicose production. We chose the mutant with the highest ratio of Fluorescence/OD 600nm compared to the wild-type enzyme (t-test p-value <0.01) to further characterize it using purified DPEase.

Sequence analysis of the selected DPEase mutant revealed the presence of two mutations: a synonymous mutation of the codon of the serine residue in position 110 (TCT to TCA) and a non-synonymous mutation leading to alanine to asparagine substitution in position 142 (GCT to GAT). To further characterise this mutant, the DPEase sequence was extracted by PCR and placed under the control of the pTacI promoter. During this process, a Histidine Tag (identical to the one used in the literature for this DPEase [334] ) was added at the C-terminus to allow rapid purification of the protein by Ni affinity chromatography. After protein overexpression in E. coli BL21-AI and purification, the kinetic parameters for the conversion of D-fructose to D-psicose were determined for the C. cellulolyticum DPEase ( Supplementary Figure S3 ). The A142N mutant displayed a higher K m for D-fructose (164 mM versus 77 mM for the wild-type enzyme) and a higher turnover number (8613 min -1 versus 3515 min -1 for the wild-type enzyme). A142 is a residue located at the end of an α-helix that is followed by a small loop and the β-strand bearing the catalytic glutamate (E150) ( Supplementary Figure S4 ). This proximity may explain the differences in the kinetic parameters of the A142N mutant. An increased k cat value is an interesting feature for an enzyme as it allows to speed up the conversion rate of the substrate into product, in our case D-fructose to D-psicose and it can be very useful in continuous psicose production methods like for instance those that use enzymes immobilised on a surface. For an in vivo production experiment in batch cultures of E. coli , this feature may have very limited effect, as the bioconversion of D-fructose to D-psicose reaches an equilibrium that depends on temperature and standard Gibbs free energy. Indeed, using the mutated enzyme in E. coli the production of D-psicose from was D-fructose (at an initial concentration of 50 g/L) was not significantly different from the wild-type histidine Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi tagged DPEase (8.96±0.61 for the A142N mutant versus 8.72±0.11 for the wild-type enzyme, the t-test p-value equals 0.3572). 

Conclusions

In this work, we developed multiple biosensors for a high-value rare sugar, psicose, and screened its improved bioproduction using random mutagenesis. Recent advances in synthetic biology enable efficient implementation of design-build-test (DBT) cycle to develop new devices for industrial, medical and environmental applications. In this direction, biosensors are promising tools to equip metabolic and enzyme engineering with a monitoring facility. In this study, we showed a workflow to design-build-test unconventional biosensors sensing new chemicals rather than those with well-known characterization. To do so, we provided the Universal Biosensing Chassis (UBC) to utilize the state of the art of characterized genetic parts as well as uncharacterized genes and promoters. The UBC architecture enables faster "design" and "build" of the biosensors which can be applied to a large number of transcription factors responding to different small molecules [START_REF] Koch | A dataset of small molecules triggering transcriptional and translational cellular responses[END_REF] . Due to the ability of the quick characterization and prototyping using the biosensors, the "test" phase of the DBT cycle can also be performed in a highly automated manner. Therefore, using this workflow and taking the advantage of the characterized genetic parts, an engineering DBT cycle brings sophisticated biosensors to pathway and enzyme engineers. Synthetic biosensors not only speed up the prototyping of the existing enzymes and pathways, but also provide the ability for monitoring rational engineering of the enzymes and pathways to develop new phenotypes. 

Synthetic Metabolic

Plasmid construction

Universal Biosensing Chassis (UBC) was constructed in 5 steps:

Step 1: The pSB1C3 backbone vector contains a BsmBI cloning site within the chloramphenicol resistance gene. Its presence prevents from using the Golden Gate assembly technique with this backbone. To circumvent this issue, we performed a site-directed mutagenesis and created the pSB1C3 BsmBI free backbone. The single synonymous mutation (G1385C) was introduced by the Single-Primer Reactions IN Parallel (SPRINP) site directed mutagenesis protocol using the primers 5'-AGGGATTGGCTGACACGAAAAACAT-3' and 5'-ATGTTTTTCGTGTCAGCCAATCCCT-3'. The pSB1C3 BsmBI free backbone is available in the iGEM's Registry of Standard Biological Parts repository under the acc. number BBa_K2448036 ( http://parts.igem.org/Part:BBa_K2448036 ).

Step 2: The pSB1C3 BsmBI free backbone was used as template in a PCR reaction with the primers 5'-GCGGTCTCTGCAGTCCGGCAAAAAAGGGCAAGG-3' and 5'-GCGGTCTCTTCCAGAAATCATCC TTAGCG-3' and the PCR product was assembled by Golden Gate with BsaI to a gBlock fragment Step 4: Due to a design error, the insertion mEmerald in BBa_K2448024 (step 3) destroyed the BsmBI site between the pTacI promoter and mEmerald. This error was corrected by site directed mutagenesis following the Single-Primer Reactions IN Parallel (SPRINP) protocol (3) using the primers 5'-CGAGTGGAAGAGACGAGGAAAAGAGG-3' and 5'-CCTCTTTTCCTCGTCTCTTCCACT CG-3'.

Step 5: The plasmid obtained at step 4 was used as template in a PCR reaction with the primers 5'-GCGCGGTCTCAGCAGGGTACAAAGAGGAGAAATACTAGATGGTTTC-3' and 5'-GCGCGGTCTC ATCCAACGTACGTACGTACGTACGTTATAAACGCAG-3' and the PCR product was assembled by Golden Gate with BsaI to a gBlock fragment containing the LacZα insertion marker under the control of J23100 constitutive promoter 5'-GCGGTCTCATGGAGAGAGGATCCCTTGGAAAGTCTTCACTTG ACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCAATTAAAGAGGAGAACAGCTATGACCATGATCACCCCGA GCCTGCACGCTTGCCGTTCTACCCTGGAAGATCCGCGTGTTCCGAGCTCTAACTCTCTGGCTGTTGTTCT GCAACGTCGTGACTGGGAAAACCCGGGTGTTACCCAGCTGAACCGTCTGGCTGCTCACCCGCCGTTCG CTTCTTGGCGTAACTCTGAAGAAGCTCGTACCGACCGTCCGAGCCAGCAGCTGCGTTCTCTGAACGGTG AATGGCGTCTGATGCGTTACTTCCTGCTGACCCACCTGTGCGGTATCTCTCACCGTATCTGGTGCACCCTG TCTACCATCTGCTCTGACGCTGCTTAAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGG CCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG CCTTTCTGCGTTTATATGAAGACAGGCAGCCATGGGAGAGCAGTGAGACCGC-3'. The resulting plasmid is the Universal Biosensing Chassis (UBC). Psicose biosensor based on pPsiR promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene was constructed in 2 steps:

Psicose biosensor based on pPsiA promoter from

Step 1: The pPsiR was amplified by PCR using Agrobacterium tumefaciens str. C58 genomic DNA as template and the primers 5'-GCGGATCCCGAGAAGACAATGGAGGAGGCGTTGAACCACGGA ATG-3' and 5'-GCCATATGCCATGGTGAAGACTTCTGCTATGTGATCTCCCCAACTGATT-3' and then inserted by Golden Gate with BbsI into the Universal Biosensing Chassis.

Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock fragment containing the PsiR gene 5'-GCAGCGCCTCGAGCGTCTCATGGAAGAGACGGTAC AAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCTGTCTATCCTGTCTG GTGCTTCTGCTTCTACCGTTTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCG CTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCTCGTGGTCTGCGTTCT TCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACGACAACCGTTTCTTCTCTTCTATGGCTCAGACC TTCGAAGGTCAGGCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAG AACGTCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGTGTTACCGACCCG GACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTCG CTTCTTCTGTTATCTCTAACAACCGTCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTA AAGGTGGTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCTTCTCGTGAAC GTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTTGAAGGTGGTGACGACATCGAAATCACC GGTTACTCTCCGCACATGACCGAAATGGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTT GCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGTGAAGCTT TCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTTACATG ATCAAACCGGACATCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCG GAAGTTACCATCATCGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGACATC TGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGTGAGACGGCATGCGCGCGC-3'. The resulting plasmid is the psicose biosensor based on pPsiR promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene.

Psicose biosensor based on pPsiTacI synthetic promoter and the PsiR transcription factor from

Agrobacterium tumefaciens with mCherry as reporter gene was constructed in 2 steps:

Step 1: A gBlock fragment containing the pPsiTacI promoter 5'-GCGGATCCCGAGAAGACAATGGAT GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGATTGCACAATCGATGGTGCAAAGCAGAAGTCT TCACCATGGCATATGGC-3' was inserted by Golden Gate with BbsI into the Universal Biosensing Chassis.

Step 2: The plasmid obtained at 

Wild-type D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal

Histidine tag under the control of pTacI promoter was constructed in 1 step:

Step 1: The D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter was used as template in a PCR reaction with the primers 5'-GCGGTCTCACCATCAC CACCACTAATACTAGTAGCGGCCGCTGCA-3' and 5'-GCGGTCTCGATGGTGGTGCTCGAGAGAGT GTTTGTGGCATTCCAG-3' and the PCR product was self assembled by Golden Gate with BsaI. The resulting plasmid is the wild-type D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal Histidine tag under the control of pTacI promoter.

Mutant A142N of D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal Histidine tag under the control of pTacI promoter was constructed in 1 step:

Step 1: The psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum (mutant A142N) under the control of pTacI promoter was used as template in a PCR reaction with the primers 5'-GCGGTCTCGATGGTGGTGCTCGAGAGAGTGTTTGTGGCATTCCAG-3' and 5'-GCGGTCTCAGG AGATATACAAATGAAACACGGTATCTACTAC-3'. A second PCR reaction was conducted in parallel using the primers 5'-GCGGTCTCACCATCACCACCACTAATACTAGTAGCGGCCGCTGCA-3' and 5'-GCGGTCTCTCTCCTTCTTAAAGTTAAAATTGTTATCCGCTCACAATTCC-3' and as template the D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter. The two PCR products were assembled by Golden Gate with BsaI. The resulting plasmid is the mutant A142N of D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal Histidine tag under the control of pTacI promoter.

Chapter 6: Optimizing Cell-Free Biosensors to Monitor Enzymatic Production

This work has been originally published by Amir Pandi, Ioana Grigoras, Olivier Borkowski, and Jean-Loup Faulon on ACS Synthetic Biology . The full citation:
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Introduction

Cell-free systems are emerging platforms for quick characterization of biological parts and circuits in synthetic biology and metabolic engineering [119,126,159] . These low-cost abiotic tools provide high-throughput characterization and decrease whole-cell growth-dependent limitations such as toxicity, noise and resource competition. Recent advances have enabled various applications of cell-free systems, from part characterization to biosensor and pathway prototyping as well as to study biological phenomena [132,167,341,342] .

Transcription-translation (TX-TL) cell-free system has brought a new facility for metabolic engineers to bioproduce fine chemicals [START_REF] Koch | Custom-made transcriptional biosensors for metabolic engineering[END_REF]343] . It also gives the possibility of leveraging synthetic biology tools such as biosensors to monitor and to dynamically engineer metabolic pathways [START_REF] Koch | Custom-made transcriptional biosensors for metabolic engineering[END_REF] . The TX-TL crude extract, used to express the genes of metabolic pathways, is a bacterial lysate which might be made directly from wild-type, engineered strains or cells harboring overexpressed enzymes [170] . As in whole-cell systems, biosensors can provide monitoring capability in cell-free systems for diagnosis and pathway engineering applications. Cell-free biosensors for quorum molecules, amino acids, nucleic acids, vanillin, and benzoic acid have been implemented and characterized [START_REF] Pardee | Paper-based synthetic gene networks[END_REF][START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF]178,341] . In a recent study, the fold repression has been improved using promoter and TF engineering [342] . Also, CRISPR has been implemented in the Escherichia coli TX-TL cell-free system and a preincubation step has been applied to improve its behavior [133] .

Here, we study and improve cell-free biosensing of a valuable compound, D-psicose, to monitor its bioproduction. D-Psicose is a rare sugar with properties to fight against obesity and diabetes [320] , bioproduction and biosensing of which have been investigated recently in a whole-cell E. coli system [344] . In this study, we first seek to characterize and improve the D-psicose biosensor in the cell-free system. The improvement methods used i) a TF-doped extract based on cells harboring TF plasmid to prepare the cell lysate, ii) a preincubation strategy based on the production of the TF in the extract prior to adding the reporter DNA, or iii) a reinitiation strategy or two-step cell-free reaction applied for an 8 hours reaction expressing the TF gene followed by the addition of the reporter DNA plus a fresh cell-free mix. In the next step, we show that the optimized biosensor can be used to quantify D-psicose and report D-psicose production by D-psicose 3-epimerase (DPEase) from fructose. The strategies that we introduce here brings cell-free metabolic/enzyme engineering and biosensor Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi development together for further applications of biosensors for pathway monitoring or dynamic regulation.

Results and Discussion

First, we aimed to study and optimize the efficiency of the D-psicose biosensor in the cell free system. Escherichia coli BL21 lysate along with reaction buffers and DNA vectors are essentials to run a cell-free reaction [150] . In the cell-free system, different genes can be cloned individually, mini/maxiprepped and pipetted at any concentration to fine-tune biological circuits. We inserted the transcription factor (PsiR) and reporter (pPsiA-sfGFP) in separate vectors to fine-tune their concentrations independently ( Figure 6.2a ). We altered the concentration of TF DNA and reporter DNA with 100 or 0 mM D-psicose (inducer). A high concentration of D-psicose is needed to activate the transcription factor which is not surprising behavior for a primary metabolite [307] . The surface plot in Figure 6.2b presents the fluorescence fold change, the ratio of the fluorescence values when 100 or 0 mM of D-psicose is added to the mix.

( Supplementary Figure S6.1 shows that D-psicose does not affect the production of the GFP reporter in the absence of the TF). This sensor showed a low fold change with a maximum of 1.6 (with 100 nM TF DNA and 10 nM reporter DNA). This low value is due to the biosensor design: PsiR poorly represses GFP production since both TF and GFP genes are expressed at the same time ( Supplementary Figure S6.2 and S6.3a ).

While the repressor gene is being expressed, the GFP gene under the control of the responsive promoter is also expressed, especially at a high concentration of the reporter DNA. Therefore, the conditions with the maximum fold change of the biosensor are with a TF DNA at the maximum concentration (maximum repression in the absence of the inducer) and the reporter DNA at low concentration (minimum leakiness in the absence of the inducer). As a result, the fold change of a repressor based cell-free biosensor is far from the scale of an activator based cell-free biosensor [START_REF] Wen | A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples[END_REF][START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] .

We applied three strategies to increase the fold change of the D-psicose biosensor.

The first strategy was to dope the extract with the TF ( Figure 6.2c ). The living bacteria, used to prepare the cell lysate, contained a plasmid expressing the TF gene. With this approach, the TF is already present in the cell lysate and is ready to repress the promoter when the reporter DNA is added to the cell-free reaction. When the TF is already present in the lysate, the maximum fold change is obtained with the maximum concentration of the reporter DNA, 100 nM ( ). However, the doping approach exhibited only a 30% improvement in the maximum fold change. As the TF is already present in the cell-lysate, we moved to another strategy to tune the amount of TF and its expression to further improve the fold change. The second strategy is using preincubation ( Figure 6.2e ): we added 100 nM of TF DNA (that led to the maximum fold change observed in the initial experiment in Figure 6.2b ) in the cell-free mix and incubated at 30 °C during several hours before complementing the reaction with the reporter plasmid. We then added the inducer (D-psicose) and several concentrations of the reporter DNA: 10, 25, 50, and 100 nM after 1.5, 3, 6 or 8 hours. We looked for the best balance between reaching a sufficient amount of TF and GFP production the reporter DNA as the protein production diminishes over time [150] .

As expected, increasing the preincubation time led to an increase of promoter repression (less GFP produced in the absence of D-psicose) but a decrease in GFP production (in both the presence or absence of D-psicose) ( Supplementary Figure S6.4 ). Figure 6.2f shows that for different preincubation time periods there are conditions that improved the fold change with regard to no preincubation as in the initial experiment ( Although our pathway is composed of only one enzyme, our study introduces a workflow which can be applied for multi-enzyme pathways. Noted that the resource competition can raise when multiple enzymes are produced. Moreover, in this study, we demonstrated that a repressor based biosensor that suffers from low fold change can be improved to quantify the production of a metabolite. Such improved biosensors can be used to monitor pathways activity for prototyping or to implement dynamic regulation. Cell-free biosensors enable faster screening of the enzymatic pathways where combinations of different enzymes at different concentrations can be explored, therefore speeding up the design-build-test cycle in metabolic/enzyme engineering.

Methods
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Molecular biology

The source of transcription factor (TF)-promoter pair is Agrobacterium tumefaciens and the DPEase enzyme is from Clostridium cellulolyticum [346] . All sequences are available in Supplementary Table S6.1 . The sequences were cloned in the pBEAST backbone [START_REF] Voyvodic | Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors[END_REF] , a derived version of pBEST [347] vector using Golden Gate assembly in E. coli Mach1 chemically competent cells. To build the reporter plasmid, the psicose responsive promoter (pPsiA) were inserted upstream of sfGFP in pBEAST. DPEase and PsiR were cloned under control of J23101 and B0032 RBS. Plasmids for cell-free reactions were prepared using Macherey-Nagel Maxiprep kit from overnight bacterial cultures.

Extract preparation

The cell lysate preparation is based on the protocol of Sun et al. [150] . Briefly, this is a 5-day protocol in three phases; i) harvesting the cells: E. coli BL21 colonies (for TF-doped extract: cells transformed with TF DNA) grow on a plate overnight at 37°C, 50 ml preculture at 37°C during 8 h, 4 liters of cultures at 37°C until OD 600 nm = 1.5-2.0, ii) extract preparation: multiple pellet washing with S30A buffer followed by sonication (instead of beads-beating in the original protocol) to obtain the extract and iii) cell-free reaction optimization: optimization by varying the Mg-glutamate and K-glutamate concentrations. After washing the cells based on the Sun et al. protocol (Day 3 step 18) with S30A buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, 2 mM DTT, pH 7.7), the cells were centrifuged 2000×g for 8 minutes at 4 °C. The pellet was resuspended in S30A (pellet mass (g) × 0.9 ml). The solution was split into 1 ml aliquots in 1.5 ml Eppendorf tubes. Eppendorf tubes were placed in a cold block and sonicated using a vibracell 72408 (Fisher Bioblock Scientific) with the following procedure: GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, 2% PEG-8000.

Cell-free experiments

For all cell-free reactions, 33% extract, 40% buffer, DNA plasmids, D-psicose or fructose, and water were mixed in PCR tubes to the final volume of 15.75 µl per reaction. 15 µl of each reaction was pipetted in a 384-well plate (Thermo Fisher Scientific) to measure GFP fluorescence in a Biotek Synergy HTX plate reader. All reactions were incubated at 30 °C in the plate reader and fluorescence (gain: 50, ex: 458 nm, em: 528 nm) kinetic data was recorded. For all presented results, the fluorescence measurement was taken after 8 hours or 4 hours for preincubation experiments. All the fold change data represent the ratio of the GFP fluorescence at a specific concentration of psicose or fructose with regards to fluorescence at 0 mM psicose or fructose for each concentration of reporter and TF DNA.

Supplementary Figure S6.7. In vivo characterization of D-pisoce production using the wild-type

DPEase. The cells harboring the psicose biosensor along with the wild-type DPEase monitor the production of D-psicose from fructose in LB (a) , complex medium, and MS (b) , minimal medium (7 g/L K2HPO4, 3 g/L KH2PO4, 1 g/L (NH4)2SO4, 2 µM FeSO4, 0.4 mM MgSO4, 1.44 mM sodium citrate, 0.1 mg/L Thiamine, 2 g/L glucose). In the reach medium psicose can be produced even in the absence of fructose because there are enough resources for the cells to grow and for the enzyme to convert part of cellular fructose to psicose, wheres in the minimal medium the enzyme needs high enough fructose to do so. (c) The absence of the DPEase (Dpe) enzyme shows no reporter GFP fluorescence with regard to the presence of the enzyme hence D-psicose is not produced from different concentrations of fructose added to the LB medium. For these experiments the cells were incubated at 37 °C in the plate reader and GFP fluorescence (ex: 458 nm, em: 528 nm) and OD 600 kinetic data was recorded. The data points are the mean and error bars are the SD of normalized values (fluorescence/OD 600 ) from three measurements.

Sequence 

Specifications Table

Subject area Biology

More specific subject area

Synthetic biology

Type of data • This dataset provides a basis for the development of new biosensing circuits for synthetic biology and metabolic engineering applications, e.g. the design of whole-cell biosensors, high-throughput screening experiments, dynamic regulation of metabolic pathways, transcription factor engineering or creation of sensing-enabling pathways • This dataset provides a unique source of a broad number of compounds that can be detected and acted upon by a cell, increasing the possibility of orthogonal circuit design from the few usual compounds used in those applications
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• The manually curated section provides information on where the biosensor has been first reported and successfully used, enabling the reader to select trustworthy information for his application of choice • Detectable compounds can be searched by both by name and chemical similarity • This dataset is an update of [10.6084/m9.figshare.3144715.v1] 

Data

The aim of this dataset is to identify and collect compounds that are known for being detectable by a living cell, through the action of a genetically encoded biosensor and is centred on bacterial transcription factors. The dataset should allow the synthetic biology community to consider a wide range of applications. The reader will find in this dataset the name of the compounds, their InChI (molecular structure), the publication where the detection was reported, the organism in which this was detected or engineered, the type of detection and experiment that was performed as well as the name of the biosensor. A comment field is also provided that explains why the compound was included in the dataset, based on quotes from the reference publication or the database it was extracted from. Manual curation of ACS synthetic biology abstracts (Volumes 1 to 6 and Volume 7 issue 1) was performed as well as extraction from the following databases: Bionemo v6. This dataset is available online on GitHub to allow for further updates as well as community contributions.

Experimental Design and Methods

•

Manual curation of ACS synthetic biology (Volume 1 to 6 and Volume 7 issue 1): All abstracts of ACS Synthetic biology (Volume 1 to 6 and Volume 7 issue 1) were read and information relevant to this dataset was extracted from those abstracts. The aim of this manual curation was to establish a list of detectable compounds whose detection method was already successfully implemented in a synthetic circuit, providing a good basis for further implementation for synthetic biologists. The RegPrecise website was accessed (version v4.0) and all relevant data was extracted from the effector pages of the website.

• Sigmol v20170216 [353] :

Sigmol was accessed on 16/02/2017 and all effector data was retrieved from the unique Quorum Sensing Signaling Molecule page. In the "detected by" column, we provide the class of signaling compounds the compound belongs to. The comment field reads 'Extracted from Sigmol v20170216 -Uniq_QSSM_"number"'.
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All sources 882 3681 729

In Table 7.1 are presented some characteristics of each data source: number of compounds without a structure from this source, total number of compounds with a structure from this source and number of compounds with a structure found only in this source. The last column in particular shows that around half the compounds are found in more than one data source. 

Introduction

There is currently an urgent need for low-cost biosensors in a variety of fields from environmental remediation to clinical diagnostics [127,354,355] . The ability of living organisms to detect signals in their environment and transduce them into a response can be utilized to create cheap, novel sensors with high sensitivity and specificity. By leveraging the ability of transcription factors to control gene expression, synthetic biologists have genetically engineered microbes to detect a wide range of compounds, from clinical biomarkers to environmental pollutants [356][357][358][359] .

Cell-free transcription/translation (TXTL) systems have great promise as the next generation of synthetic biology-derived biosensors. They are cheap to produce [150] , abiotic, and can be lyophilized such that they are stable at room temperature for up to one year: a vital necessity for point-of-care applications such as low-resource nation and home diagnostic use [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] . Cell-free TXTL toolboxes have been designed that support the operation of many of the circuits previously engineered in vivo [360,361] . Encapsulated cell extracts can also be used in combination with living cells to produce new sensing modalities [362] . Cell-free biosensors were engineered to successfully detect Zika virus in rhesus macaques and an acyl homoserine lactone, 3OC12-HSL, from Pseudomonas aeruginosa in human clinical samples [START_REF] Pardee | Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components[END_REF]363] . However, current cell-free biosensors have been limited to detection of nucleic acid sequences, via toehold displacement, or well-characterized transcription factor ligands.

Here we put forward a generalized, modular workflow utilizing metabolic transducers to rapidly expand the chemical space detectable by cell-free biosensors in a plug-and-play manner. We then illustrate our workflow with a proof-of-concept example: the transcription factor BenR, which is activated by benzoic acid, and two metabolic modules, HipO and CocE, which convert hippuric acid and cocaine, respectively, into benzoic acid. Each component is individually cloned into a cell-free vector, such that the DNA concentrations can be titrated over three orders of magnitude to optimize sensor performance. Finally, we demonstrate that these sensors can function in complex solutions, detecting benzoic acid in commercial beverages and hippuric acid and cocaine in human urine.

Results

Design workflow for cell-free biosensors

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Synthetic metabolic cascades have been used by the synthetic biology community for a wide range of applications, including production of biofuels, pharmaceuticals, and biomaterials [364][365][366] . As such, there is a wide variety of well-characterized enzymes catalyzing various reactions transforming one molecule into another. Our framework harnesses this power by using metabolic enzymes as transducers to allow us to 'plug in' a given enzyme into our characterized biosensor modules to detect a ligand with no known transcription factor analog ( Figure 8.1a ). Specifically, the metabolic enzyme converts the undetectable molecule into one for which we have an existing transcription factor-based genetic circuit ( Figure 8.1b ). We used the SensiPath webserver that we previously designed and validated in vivo to determine the required metabolic cascade [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF]240] .

The workflow to engineer a cell-free biosensor detecting a novel molecule is straightforward (Figure 8.1c) . First, possible metabolic pathways to convert the molecule of interest into a detectable ligand are identified using SensiPath. Second, the genes coding for the metabolic transducer enzyme, the transcription factor (TF) sensor, and the reporter module are synthesized and cloned into cell-free expression vectors. The biosensor design workflow starts with retrosynthetic pathway design using the SensiPath server [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] . Once the transducer and sensor modules are determined, the genes encoding enzymes, transcription factors, and target promoters driving a reporter are cloned into cell-free expression vectors. The sensor is calibrated by titrating the concentrations of each plasmid to maximize signal output and dynamic range.

As a proof-of-concept example of this system, we engineered a sensor for benzoic acid using the transcription factor BenR and expanded its detection capabilities with two different metabolic transducers: one for hippuric acid using the HipO hippurate hydrolase and one for cocaine using the CocE cocaine esterase.

Optimization of cell-free benzoic acid sensor BenR is a member of the AraC/XylS family of transcription factors, originally from Pseudomonas putida . In the presence of benzoate, BenR binds to the P Ben promoter and activates transcription ( ) and driven by a strong constitutive promoter, OR2-OR1-Pr. The P Ben promoter is cloned into another pBEAST backbone and drives expression of the superfolder green fluorescent protein (sfGFP). Because the system operates without a cellular boundary, multiple plasmids encoding different components of the network can easily be used simultaneously.

Plasmid concentrations can then be fine tuned to identify optimal operating conditions. ( b ) Optimization of the BenR sensor and reporter modules. Cell-free reactions of 20 µl containing different concentrations of the BenR and reporter plasmids were prepared and their response to different concentrations of benzoic acid were monitored. The white square represents the optimal condition (100 nM reporter and 30 nM BenR plasmid) with the highest relative fluorescence. (see Supplementary Figure S8.2 and Supplementary Table S8.1 ). Reactions were run in sealed 384 well-plates in a plate-reader at 37˚C for at least eight hours. The heat maps represent the signal intensity after four hours. Data are the mean of three experiments performed on three different days and all fluorescence values are expressed in Relative Expression Units (REU) compared to 100 pM of a strong, constitutive sfGFP-producing plasmid. See methods for more details. ( c ) Upper panel : The BenR sensor can detect benzoic acid over three orders of magnitude and at concentrations as low as 1 µM. Shaded area around curves corresponds to +-SD from the mean of the three experiments. Lower panel : GFP expression in response to the same range of concentrations of benzoic acid as in the upper panel is easily detectable by eye on a UV table.

One advantage of working in a cell-free framework is that the DNA concentration is directly controlled by pipetting. As such, the process of finding an optimal DNA concentration is relatively straightforward: we created a matrix of DNA concentrations for TF and reporter plasmids between 0 nM and 100 nM and induced these different cell-free reactions using four different concentrations of benzoic acid: 0 µM, 10 µM, 100 µM, and 1000 µM ( Figure 8.2b, Supplementary Table S8.1 ).

Encouragingly, the system had extremely low background signal in the absence of benzoic acid, indicating that the P Ben promoter has very little 'leakiness' in a cell-free environment. When benzoic acid was added to the reaction, the sfGFP output signal was clearly detectable and fluorescence intensity was correlated with increasing reporter plasmid concentration. However, the signal reached a plateau for increasing concentrations of TF plasmid at 30 nM. We hypothesize that this plateau is due to competition for transcriptional and translational resources between transcription factor and reporter plasmid. This plateau is also observed in a mathematical model of cell-free biosensors (method section and Supplementary Figure S8.1 ). Based on these data, we set the optimal plasmids concentrations to 30 nM for the TF plasmid and 100 nM for the reporter plasmid. ). These results exemplify the advantages of cell-free systems for rapidly engineering biosensors with optimal properties.

Expansion of benzoic acid sensor with hippuric acid and cocaine metabolic modules With the sensor and output modules optimized, we demonstrated the ability of our system to expand its chemical detection space using different metabolic transducer modules. HipO is an enzyme from Campylobacter jejuni and CocE is an esterase from Rhodococcus sp. that convert hippuric acid and cocaine into benzoic acid, respectively. We cloned each enzyme into the cell-free expression vector and, using the optimized DNA concentrations of TF and reporter plasmids, titrated different concentrations of metabolic transducer DNA for a range of inducer inputs ( Figure 8.3a, Supplementary Table S8.2 ). Interestingly, we observed a clear peak in sfGFP signal corresponding to a particular concentration effectiveness: 3 nM for HipO and 10 nM for CocE. We built several mathematical models based on different assumptions that could reproduce the observed bell-shaped response to enzyme DNA concentration as well as its shift between the two enzymes ( Supplementary Figure S8.3 ). Based on these models, we hypothesized that the observed bell-shaped response is likely due to competition between the different modules, leading to an important and unnecessary enzyme production at high DNA concentrations that divert resources such as RNA polymerase, ribosomes, and energy from sfGFP transcription and translation, as well as generating toxic byproducts. Moreover, we provide evidence that the shifting peak between the two setups is most likely due to lower expression of CocE (method section and Supplementary Figure S8.4 ). Additionally, the model hypothesized that using a higher TF concentration would necessitate a higher level of metabolic enzyme without an increase in overall signal, a shift that we subsequently saw experimentally (method section and Supplementary Figure S8.5 ). A key observation is that even at very high levels of inducer, there is very little signal in the absence of DNA encoding the metabolic transducer. These data indicate that the metabolic enzyme is essential for sensor selectivity and differentiation between hippuric acid and cocaine from benzoic acid and that they have minimal off-target binding to BenR. Strikingly, both the hippuric acid and cocaine biosensors exhibit fold change and detection range highly similar to that of the benzoic acid sensor, demonstrating the high conversion rate of the metabolic transducer ( Figure 8.3b ). The conversion also appears to be extremely fast as no significant difference was observed in response kinetics with or without the metabolic transducer, although the lower incubation temperature of the cocaine biosensor showed slightly slower kinetics ( Supplementary Figures S8.2, 6, 7) .

Detection of benzoic acid, hippuric acid, and cocaine in complex samples While the results of our new optimized biosensing were promising, the intended final environment in which they should operate is far more complex. We thus sought to test their capabilities for real-world applications. Benzoic acid and sodium benzoate are widely used food additives for preservation. While classified as 'Generalized Recognized As Safe' (GRAS) by the United States Food and Drug Administration, their maximal levels in foodstuffs are limited to 0.1%. Additionally, some people respond poorly to their consumption, particularly patients suffering from chronic inflammation or orofacial granulomatosis, who are frequently placed on benzoate-free diets by their physicians [367,368] . Lastly, there is evidence that when benzoates are added to beverages in the presence of ascorbic acid, they can be converted into low levels of benzene, a strong carcinogen [369,370] ; this reaction is enhanced by increased temperatures which frequently occur during transportation. In this context, a simple assay for detecting benzoic acid could be useful.

To test if our benzoic acid sensor could function in a monitoring capacity in the food industry, we procured several different carbonated orange and energy drinks from a local supermarket. The nutritional information of each beverage included benzoic acid, sodium benzoate, or no benzoates. Strikingly, after adding 2 µL of the beverages directly to 20 µL reactions of our optimized benzoic acid sensor, we were able to distinguish which beverages contained benzoates with 100% accuracy after only one hour of incubation ( Despite similarities between the non-benzoate ingredients in each class, our cell-free benzoic acid biosensor rapidly produced sfGFP in beverages with listed benzoate ingredients with fold changes up to ~180.

While our system has the ability to quickly detect benzoates by directly adding the beverages to the reaction, we noticed that there was up to 75% inhibition to some of the cell-free reactions when comparing expression of a constitutive promoter to a control ( Supplementary Figure S8.9 ). Therefore, to test our sensor's ability to quantify benzoates, we performed an experiment with a 1:10 dilution, which showed minimal reaction interference ( Supplementary Figure S8.9 ), and converted the resulting fluorescence intensities to concentrations using a calibration curve from a benzoic acid standard ( Supplementary Figure S8.10 ). These results were compared against measurements from liquid chromatography-mass spectrometry (LC-MS) ( Figure 8.4b , Supplementary Table S8.3 ). Seven of the ten drinks showed very strong agreement between the quantitative results from our sensor and the LC-MS results. Three of the beverages (Monster® Zero, Monster® Ultra, and Monster® Ultra Red) had diminished cell-free values relative to those from LC-MS. Taken together, these results demonstrate that our sensors can remain functional in commercial products and rapidly detect and quantify benzoates.

We then wanted to test if our hippuric acid sensor could detect endogenous levels in a clinical context. Hippuric acid has long been known to be regularly excreted by humans in urine as the end product of several different aromatic compounds, including benzoates, that are converted in the liver [371] . While it has been correlated with higher levels of toluene exposure in some operational conditions [372] , following recent research by Isabella et al. it has recently become an interesting biomarker in a Phase 1/2a clinical trial. In the publication, a synthetic strain of modified E. coli Nissle, SYNB1618, is used to treat phenylketonuria, a neurotoxic disease characterized by the inability to process the amino acid phenylalanine [START_REF] Isabella | Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[END_REF] . Briefly, the bacteria are consumed orally where they can convert phenylalanine into trans -cinnamate, which is subsequently converted to hippuric acid by the liver. In the study, hippuric acid in the urine is used as a biomarker for treatment efficacy. We thus wanted to test if our sensor could detect clinical levels of endogenous hippuric acid in human urine. When adding 2 µL of a 1:10 dilution to a 20 µL reaction (1% cell-free reaction concentration) in the presence of an RNase inhibitor, we found little interference from urine to expression of a constitutive GFP plasmid relative to the positive control ( Supplementary Figure S8.11 ). When testing the urine for hippuric acid, we observed little to no response from Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi our benzoic acid sensor (without the HipO-expressing plasmid) ( Supplementary Table S8.4 ), but the complete hippuric acid sensor gave levels that fell within our calibration curve ( Supplementary Figure S8.12 ). Urinary hippuric acid concentrations estimated using our cell-free biosensor closely matched the values determined by LC-MS (R 2 = 0.98, Supplementary Figure S8.13 ; Figure 8.4c, Supplementary Table S8.5 ). These data are a promising step toward developing cell-free biosensors for biomarker detection in clinical samples. hippuric acid in urine can be quantified with a cell-free biosensor. Clinical urine samples (U1-U6) were diluted 1:10 and added to the optimized hippuric acid sensor for four hours at 37ºC after which endogenous hippuric acid concentration was determined using a calibration curve ( Supplementary Figure S8.12 ). Results were compared to those determined by LC-MS. ( d ) Cocaine can be detected in clinical urine samples at previously clinically detected concentrations. Cocaine titrations were added to clinical human urine samples (U1-U6) and cell-free cocaine luciferase-output biosensors and incubated at 30ºC for 8 hours. Subsequently, a luciferase assay was performed to determine the presence of cocaine. The colored region represents the concentration of cocaine previously measured in human clinical samples from hospitalized patients (40.13 µg/mL or 118 µM cocaine concentration in urines, corresponding to a 11.8 µM final concentration in the cell-free reaction-2 µL urine in a 20 µL reaction) [373] . All curves are plotted for the mean of three experiments performed on three different days. Error bars correspond to +-SD from the mean of the three experiments. See methods for more details.

Finally, we aimed to detect cocaine in clinically relevant conditions. Cocaine rapidly enters the bloodstream after ingestion and is subsequently detectable in the urine for up to 10 hours [374] . To determine if our system could detect clinically-relevant cocaine levels, we spiked urine samples with increasing concentrations of cocaine and added 2 µL to 20 µL cell-free reactions with our optimized cocaine biosensor. Our initial experiment showed small, but detectable sfGFP signal at urinary concentration of 1000 µM, but our system was unable to show adequate fold-change at lower, clinically relevant concentrations ( Supplementary Figure S8. [START_REF] Green | Toehold switches: de-novo-designed regulators of gene expression[END_REF]. We found that cell-free reactions produce increasing low levels of noise over time in the GFP fluorescence channel ( Supplementary Figure S8. [START_REF] Bikard | Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[END_REF] ) and hypothesized that we could increase our signal-to-noise ratio by changing our reporter to luciferase. We cloned the firefly luciferase gene under control of the P Ben promoter and in an initial test we indeed observed an increase in signal-to-noise ratio ( Supplementary Figure S.8.16 ). We then added increasing cocaine concentrations into six different samples containing our cell-free cocaine sensor with the luciferase reporter ( Figure 8.4d ). Five of the six samples showed strong fold change, with detectable fold changes of 4.3-8.8 at previous clinically detected cocaine concentrations in urine [373] (40.13 µg/mL or 118 µM cocaine concentration in urine, corresponding to a 11.8 µM final concentration in the cell-free reaction when using 2 µL urine in a 20 µL reaction). One sample (U3) showed minimal fold change due to high background signal that was also observed using the benzoic acid sensor ( Supplementary Figure S8.17 ). As the urine samples were supplied by subjects from the endocrinology department, it is possible that the medical condition of this patient results in the presence in their urine of interfering metabolites that can activate the BenR system. This background signal was minimal when we detected for hippuric acid in urine, likely because of the urine samples dilution step ( Supplementary Table S8.4 ). In conclusion, these data demonstrate that Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi our cell-free biosensors can be used to detect clinically relevant levels of drugs and endogenous metabolites in pure, unprocessed clinical samples.

Discussion

This work demonstrates that we can engineer modular, cell-free biosensors that can be easily calibrated to have high signal strength and dynamic range and can function in complex detection environments. Upon engineering a novel cell-free biosensor for benzoic acid, we show that the system can be scaled by using different metabolic transducer modules to expand the chemical space that each sensor/reporter pair can detect. In addition, we provide a three order-of-magnitude titration for each DNA component to optimize cell-free biosensor performance along with a mathematical model enabling a better understanding of the parameters governing cell-free biosensors response which will help future optimisation of such devices . By demonstrating that these sensors can function in samples from the food and beverage industry, as well as complex clinical samples such as human urine, we provide an example for their potential outside the lab in real-world applications. This is the first time, to our knowledge, that cell-free biosensors have been used to detect endogenous molecules in unprocessed samples.

Using our workflow, this process should be applicable to a wide range of other sensor/reporter pairs. One constraint of our system is that the transcription factor must respond only to the product of the enzymatic reaction and not the substrate. Such potential crosstalk can easily be checked by running a control reaction without the metabolic transducer module. We computed that 1205 disease-associated biomarkers from the Human Metabolome Database (HMDB) could be converted into detectable molecules by one enzymatic reaction ( Supplementary Table S 9. 6 ) . Additionally, 64 HMDB metabolites could be transformed into benzoate and thus theoretically connected via a metabolic transducer to our optimized sensor ( Supplementary Table S9.7 ) .

Further improvements to our platform could include exploring sample pre-processing methods that could improve sensor robustness [375,376] together with adaptation into an off-the-shelf format more amenable to point-of-care applications [START_REF] Pardee | Paper-based synthetic gene networks[END_REF]377] . Also, while we could detect clinically relevant concentrations of cocaine, this application will Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi likely require achieving higher sensor dynamic range, for example through the use of downstream genetic amplifiers [START_REF] Courbet | Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates[END_REF] .

In summary, by rapidly expanding the number of detectable compounds and remaining functional even in complex samples, cell-free biosensors using plug-and-play metabolic transducers could be used to address many challenges such as environmental detection, drug enforcement, and point-of-care medical diagnostics.
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Methods

Molecular biology

All clones were based on a previously characterized cell-free expression plasmid (pBEST-OR2-OR1-Pr-UTR1-deGFP-T500 was a gift from Vincent Noireaux [Addgene plasmid # 40019] [347] ). To better facilitate cloning with a range of techniques and any future component insertion into larger gene circuits, the construct was modified by adding 40 base pair spacers and an upstream terminator and renamed pBEAST.

Clones were created via Gibson or Golden Gate assembly in DH5αZ1 chemically competent E. coli where the deGFP was replaced by BenR or HipO. For CocE, the promoter was changed to another strong constitutive promoter, J23101, and RBS, B0032. The reporter plasmid for P Ben used native RBS from Pseudomonas putida and superfolder-GFP as the output, which was found to give a stronger, faster signal in cell-free reactions at 37°C. For experiments testing cocaine levels in urine, the sfGFP output was changed to firefly luciferase via Gibson assembly cloning. DNA for cell-free reactions was prepared from overnight bacterial cultures using Maxiprep kits (Macherey-Nagel). Plasmids used in this paper will be available from Addgene.

Extract preparation.

Cell-free E. coli extract was produced using a modified version of existing protocols [150,151] . An overnight culture of BL21 Star (DE3)::RF1-CBD 3 E. coli was used to inoculate 660 mL of 2xYT-P media in each of six 2 L flasks at a dilution of 1:100. The cultures were grown at 37°C with 220 rpm shaking for approximately 3.5 hours until the OD 600 = 2.0. Cultures were spun down at 5000 x g at 4°C for 12 minutes. Cell pellets were washed twice with 200 mL S30A buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, pH 7.7), centrifuging afterwards at 5000 x g at 4°C for 12 minutes. Cell pellets were then resuspended in 40 mL S30A buffer and transferred to pre-weighed 50 mL Falcon conical tubes where they were centrifuged twice at 2000 x g at 4°C for 8 and 2 minutes, respectively, removing the supernatant after each. Finally, the tubes were reweighed and flash frozen in liquid nitrogen before storing at -80°C.

Cell pellets were thawed on ice and resuspended in 1 mL S30A buffer per gram cell pellet. Cell suspensions were lysed via a single pass through a French press homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at 12000 x g at 4°C for 30 minutes to separate out cellular cytoplasm. After centrifugation, the supernatant was collected and incubated at 37°C with 220 rpm shaking for 60 minutes to digest remaining mRNA with endogenous nucleases [150] . Subsequently, Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi the extract was recentrifuged at 12000 x g at 4°C for 30 minutes, and the supernatant was transferred to 12-14 kDa MWCO dialysis tubing (Spectrum Labs; Spectra/Por4) and dialyzed against 2 L of S30B buffer (14 mM Mg-glutamate, 60 mM K-glutamate, ~5 mM Tris, pH 8.2) overnight at 4°C. The following day, the extract was re-centrifuged at 12000 x g at 4°C for 30 minutes. The supernatant was optionally concentrated using a 10,000 MWCO centrifuge column (GE Healthcare; Vivaspin20) based on total protein levels from a Bradford assay (ThermoScientific) to obtain concentrations above 15 mg/mL, aliquoted, and flash frozen in liquid nitrogen before storage at -80°C.

Cell-free sensor optimization reactions Cell-free reactions were prepared by mixing 33.3% cell extract, 41.7% buffer, and 25% plasmid DNA, any inducer, and water. Buffer composition was made such that final reaction concentrations were as follows: 1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, and 2% PEG-8000. Additionally, the Mg-glutamate (0-6 mM), K-glutamate (20-140 mM), and DTT (0-3 mM) levels were serially calibrated for each batch of cell-extract for maximum signal. Benzoic acid, hippuric acid, and cocaine hydrochloride were purchased from Sigma-Aldrich. Benzoic acid and hippuric acid quantification from cell-free biosensors In order to quantify fluorescent outputs from our cell-free benzoic and hippuric acid biosensors in complex samples as a measurement of concentration, we created calibration curves by adding a range between 0 µM and 1000 µM of inducer concentrations to 20 µL cell-free reactions. Hippuric acid reactions were supplemented with 0.8 U/µL RNase inhibitor to match reaction conditions. The subsequent calibration curves were fit to a Hill plot in Python using: y = (y max * x n )/(K D n + x n ), where y is the fluorescence intensity, x is the inducer concentration, y max is the maximum fluorescence intensity, K D is the concentration of ligand needed for half-maximum binding occupation at equilibrium, and n is the Hill slope. Commercial beverage benzoic acid and urine hippuric acid concentrations were then calculated by using the fluorescent values from those experiments as y and solved for the inducer concentration x. Undiluted concentrations were increased by a factor of 100 to account for the 1:10 sample dilution and 10% reaction volume contribution (i.e. 2 µL sample in a 20 µL total reaction volume).

Chemical analysis of beverage and urine by LC-MS

The following procedure was developed for detection of benzoic and hippuric acid by UHPLC-MS / MS. The analysis was carried out using an LCMS-8050 mass spectrometer (Shimadzu, Japan) coupled to a NexeraX2 UHPLC chain (Shimadzu, Japan). The column is a Nucleodur pyramid (1.8 μm, 50 × 2.0 mm, Macherey-Nagel) maintained at 40°C. The eluents used were: H 2 O with 0.1% formic acid (A), acetonitrile with 0.1% formic acid (B). The flow rate was set to 0.5 mL/min. The injection volume was 5 μl and all the analytes were eluted over a 5 minute binary gradient with a starting composition percentage of 100/0 (A / B). The LCMS-8050 is a three-quadrupole mass spectrometer with a heated electrospray ionization (ESI) source. The analytes were detected in negative MRM mode. The samples were diluted by 20 in water before injection. Dihydrobenzoic acid was used as an internal standard.
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Cell-free reactions detecting cocaine via luciferase output To test our luciferase-output cocaine biosensor, 20 µL cell-free reactions containing CocE, TF, and reporter plasmid concentrations, 0.8 U/µL RNase inhibitor, cocaine inducer gradient, 2 µL of undiluted human urine samples, extract and buffer were incubated at 30ºC for 8 hours. Samples were then transferred to white 96-well plates and 50 µL of Luciferase Assay Reagent (Promega) was added and mixed by manual orbital agitation. The plates were sealed and luciferase levels were measured in a plate reader two minutes after addition of the reagent. Fold change was calculated relative to the 0 µM cocaine negative control.

Reaction models Coarse-grained modeling was performed using ordinary differential equations, simulated using the R software. Briefly, the model combines Michaelis-Menten kinetics for the transducer module and resource competition for RNA polymerases and ribosomes to account for varying DNA concentration effects. Michaelis-Menten equations are used for promoter activation. Production of toxic byproducts as well as energy consumption for mRNA production were also included. Full model derivation can be found in the following sections.

SensiPath Metabolic Space Analysis

In order to probe how many biosensors could be engineered using our workflow, we downloaded the HMDB database [378] as of 25/05/2018. A set of 1445 biomarkers, with a molecular weight < 500 amu, was compiled for which at least one disease was identified (see Supplementary Table 8).

Next, we used the RetroPath algorithm [START_REF] Delépine | RetroPath2.0: A retrosynthesis workflow for metabolic engineers[END_REF] embedded in the SensiPath web server [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] . RetroPath finds metabolic pathways linking analytes (source set) to effectors (sink set), i.e. small molecules activating or inhibiting transcription factors. Taking as a sink set of 727 effectors taken from a database we recently released [START_REF] Koch | A dataset of small molecules triggering transcriptional and translational cellular responses[END_REF] , RetroPath was run using 20845 metabolic reaction rules extracted from MetaNetX [379] . We found that 192 out of 1445 biomarkers were effectors and could thus directly be detected by transcription factors. We also found that 1205 out of 1445 biomarkers could be transformed into 392 effectors through ~80000 one-step pathways. We observed that several biomarkers could be transformed into the same effector while other biomarkers could be transformed into different effectors (see Supplementary Table 8). Finally, we found that ~25% of biomarkers were shared by at least two diseases. Therefore, while Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi one can develop biosensors and repurpose them for several diseases, biosensors can also be designed for a panel of biomarkers specific to a given disease. Altogether these results show a great potential for our workflow to engineer many biosensors detecting several pathological biomarkers.

We also probed to which extend our benzoate sensor could be used to detect various biomarkers. To that end, we computed how many HMDB metabolites could be connected to benzoate via RetroPath applying reverse reaction rules (computed from MetaNetX) to benzoate. We found that 64 HMDB metabolites could be transformed into benzoate via a one-step enzymatic transformation (see Supplementary Table 8.9 ).

Mathematical Model of Cell-Free Biosensors

We built a mathematical model to gain a better understanding of the behavior of our system using the metabolic transducer module. Our aim was to derive a relatively coarse-grained model that could recapitulate key behaviors observed in this dataset. The first step was to model the TF/reporter DNA assay ( Supplementary Figure S8.1 ). We then analyzed the behaviors we wanted to reproduce in the hippurate adaptor dataset, which included: 1) increasing concentrations of hippurate led to increased signal; 2) at low HipO DNA concentrations, increasing enzyme DNA concentrations led to higher signal; and 3) at high HipO DNA concentrations, the system reaches a peak where increasing enzyme DNA concentration leads to lower signal.

Details of the full model derivation are available in the Appendix, and scripts are available on Github at https://github.com/brsynth . Summary of the main model features are given here: x , y Free RNAP and ribosome tox, R mRNA Accumulated toxic by-product, available resources for mRNA production

The rest of the notation is standard, with three species for mRNA and protein considered: the enzyme, the transcription factor, and the sfGFP. Spontaneous transformation is also included in the inducer production rate for cocaine.

Increasing benzoic acid leading to increased signal was expected and we modeled this using Michaelis- Menten [380] equations for the activation of the transcription factor and of the promoter. The fact that the signal was low at low TF DNA concentration and increased with increasing TF DNA concentration meant that increasing enzyme concentration led to increased signal, which would not happen if all reactions were catalyzed on very fast time scales (i.e. the enzyme concentration would not matter). We therefore had to include enzyme kinetics in our model. At high DNA concentrations, resource competition effects meant that too many resources were diverted towards enzyme production instead of GFP production, which led to a decrease in signal. We also decided, as we know these effects exist in cell-free systems, to include resource depletion and production of toxic byproducts that would inhibit reactions in our model.

For enzyme kinetics, we used the Michaelis- The results obtained for HipO-hippurate heatmap are presented in Supplementary Figure S8.3 . No parameter fitting was performed, and minimal parameter tuning was involved, as most parameters were taken from or derived from the literature. Constants linked to resource depletion or toxic byproduct production were manually chosen so as to best capture the data, as well as ribosome or RNAP quantity. This, however, only quantitatively changed the data, but did not change the data qualitatively when parameters remained in a realistic range. Therefore, we managed to qualitatively reproduce the three effects we wanted to account for with this model, supporting our hypothesis regarding the main factors underpinning the biological effects in our HipO data.

Next, we decided to apply our model to the CocE data. We changed the enzyme kinetic parameters, as well as transcription and translation rates linked to the length of the gene; however, this failed to reproduce our experimental data, as significant signal was obtained for CocE DNA = 0.1 nM (data was very similar to HipO, despite the above-mentioned parameter changes, results not shown). We hypothesized that this was because the CocE promoter was weaker (~3x at four hours, Supplementary Figure S8.4 ). This shifted the peak but significant signal was still obtained for CocE DNA = 0.1 nM. However, thanks to the model, we postulated another cause due to a weaker translation initiation rate, as we were using different RBSs for the two enzymes. Using the RBS calculator, which takes context into account, we found that CocE translation initiation rate was predicted to be much slower than HipO initiation rate, which we transcribed in our model as a weaker affinity of the RBS for ribosomes [382] .

Results obtained through this strategy are presented in Supplementary Figure S8.3 . Using this RBS affinity change and the changed promoter strength, we managed to capture two of the three differences in the HipO and CocE datasets: signal for low CocE value starts at higher enzyme DNA concentrations (which we attribute to lower enzyme production due to a weaker promoter and putatively weaker RBS); and signal at 100 nM is higher as there are fewer resources diverted into unnecessary enzyme production (or less toxicity and resource exhaustion by unnecessary enzymes). However, we do not capture quantitative values, which could be due to the fact that measurements were performed in a different set-up or that another component our model is lacking. Moreover, the CocE experiment was performed at 30°C as it is the optimal temperature for this enzyme. Our modeling assumption was that this impacted only kinetic parameters, which is therefore included in our model. However, it might also affect the benzoic acid reporter which the model does not account for.

This shows that with our model, changing only parameters linked to the new enzyme sequence, we accurately captured the differences we aimed to capture in the two setups. Therefore, our model, without any parameter fitting and minimal parameter tuning within reasonable ranges, achieves satisfying qualitative reproduction of our data. Despite these successes, our model has limitations.

We can see that our model does not adequately capture the resource competition or exhaustion at enzyme concentration of 100 nM (although there is indeed no signal in our model if we increase the concentration of the simulated DNA to 300 nM, results not shown). To correct this limitation, including more resource exhaustion could be the answer. Moreover, although we only tried to qualitatively capture the data, the ease of explanation of CocE data after preliminary work on HipO only led us to suggest improvements that could be made to explain the data quantitatively: including GFP maturation kinetics to become fluorescent, as well as including parameters from the plate reader. However, complete quantitative modeling seems unrealistic on cell-free systems based on extracts rather than individual components, as a number of parameters still vary from batch to batch and will therefore hardly be realistically estimated for predictive modeling of the time course of the data produced on those setups without complementary experiments on each batch to determine batch-dependent relevant parameters. Qualitative predictions seem more relevant in that type of set-up at the moment. Moreover, as long as no definite hypothesis emerges as to why cell-free systems stop functioning (amino acid or nucleotide depletion, energy depletion, toxic byproduct accumulation or any other, as well as any combination of those hypotheses), different models encompassing these hypotheses will be derived mathematically, and capture some effects in the data, but no definite answer on what modeling strategy is the best can be found before this question is experimentally answered.

Model Prediction Experimental Demonstration

In order to demonstrate that the predictions made by our model were trustworthy, and to test how altering the optimal TF/reporter DNA concentrations determined in the benzoic acid sensor affects the metabolic hybrid sensors, we designed a simple experimental verification. The model predicted that increasing the TF DNA concentration from our optimised concentration (30 nM) to another concentration that Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi also gave good fold change from our initial TF reporter DNA assay (100 nM) would result in a shift of the dose-response curve of fluorescence to high transducer DNA concentration. Indeed, the unnecessary resources consumed to increase TF production would be diverted from the enzyme production that is necessary for efficient conversion of the inducer to benzoic acid. This effect is competing with the increased signal that could come from having higher TF levels, but the model predicts it to be the dominant effect, which was experimentally demonstrated using 1000 µM hippuric acid and varying the HipO concentration in two set ups, with TF concentrations either at 30 nM or 100 nM, while keeping the reporter concentration at 100 nM ( Supplementary Figure S89.5 ). This verification leads us to have greater confidence in model predictions on effects linked to resource competition.

Chemical identifiers

In order to allow easier parsing of our article by bioinformatics tools, we provide here the identifiers of our chemical compounds:

Benzoic acid: InChI=1S/C7H6O2/c8-7( 9)6-4-2-1-3-5-6/h1-5H, (H,8,9) Hippuric acid: InChI=1S/C9H9NO3/c11-8( 12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2, (H,10,13)(H,11,12) Cocaine: InChI=1S/C17H21NO4/c1- 18-12-8-9-13(18)15(17(20)21-2)14 (10-12)22-16(19)11-6-4-3-5-7-11/h3-7,12-15H,8- 

Introduction

Living organisms are information-processing systems that integrate multiple input signals, perform computations on them, and trigger relevant outputs. The multidisciplinary field of synthetic biology has combined their information-processing capabilities with modular and standardized engineering approaches to design sophisticated sense-and-respond behaviors [1][2][3] . Due to similarities in information flow in living systems and electronic devices [START_REF] Selberg | The Potential for Convergence between Synthetic Biology and Bioelectronics[END_REF] , circuit design for these behaviors has often been inspired by electronic circuitry, with substantial efforts invested in implementing logic circuits in living cells [START_REF] Selberg | The Potential for Convergence between Synthetic Biology and Bioelectronics[END_REF]383,384] . Furthermore, synthetic biological circuits have been used for a range of applications including biosensors for detection of pollutants [START_REF] Wan | Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals[END_REF]385] and medically-relevant biomarkers [START_REF] Wen | A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples[END_REF][START_REF] Courbet | Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates[END_REF] , smart therapeutics [START_REF] Kemmer | Self-sufficient control of urate homeostasis in mice by a synthetic circuit[END_REF][START_REF] Isabella | Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[END_REF] , and dynamic regulation and screening in metabolic engineering [START_REF] Koch | Custom-made transcriptional biosensors for metabolic engineering[END_REF]386] .

Synthetic circuits can be implemented at different layers of biological information processing, such as: (i) the genetic layer comprising transcription [START_REF] Nielsen | Genetic circuit design automation[END_REF] and translation [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] , (ii) the metabolic layer comprising enzymes [START_REF] Courbet | Computer-aided biochemical programming of synthetic microreactors as diagnostic devices[END_REF][START_REF] Katz | Enzyme-Based Logic Gates and Networks with Output Signals Analyzed by Various Methods[END_REF] , and (iii) the signal transduction layer comprising small molecules and their receptors [117,118] . Most designs implemented so far have focused on the genetic layer, developing circuits that perform computations using elements such as feedback control [START_REF] Daniel | Synthetic analog computation in living cells[END_REF] , memory systems [START_REF] Bonnet | Rewritable digital data storage in live cells via engineered control of recombination directionality[END_REF][START_REF] Farzadfard | Synthetic biology. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations[END_REF] , amplifiers [START_REF] Bonnet | Amplifying genetic logic gates[END_REF][START_REF] Zeng | A Synthetic Microbial Operational Amplifier[END_REF] , toehold switches [START_REF] Green | Toehold switches: de-novo-designed regulators of gene expression[END_REF] , or CRISPR machinery [START_REF] Bikard | Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[END_REF]387] . However, gene expression regulation is not the only way through which cells naturally perform computation. In nature, cells carry out parts of their computation through metabolism, receiving multiple signals and distributing information fluxes to metabolic, signaling, and regulatory pathways [START_REF] Courbet | Computer-aided biochemical programming of synthetic microreactors as diagnostic devices[END_REF][START_REF] Goñi-Moreno | High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits[END_REF]388] . Integrating metabolism into synthetic circuit design can expand the range of input signals and communication wires used in biological circuits, while bypassing some limitations of temporal coordination of gene expression cascades [389,390] .

The number of inputs processed by synthetic biological circuits has steadily increased over the years, including physical inputs like heat, light, and small molecules such as oxygen, IPTG, aTc, arabinose and others. However, most of these circuits process input signals using digital logic, which despite its ease of implementation lacks the power that analog logic can offer [3,[START_REF] Sauro | It's an analog world[END_REF][START_REF] Daniel | Analog transistor models of bacterial genetic circuits[END_REF] . The power of combining digital and analog processing is exemplified by the "perceptron", the basic block of artificial neural networks inspired by human neurons [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] that can, for instance, be trained on labelled input datasets to perform binary classification. After the training, the perceptron Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi computes the weighted sum of input signals (analog computation) and makes the classification decision (digital computation) after processing it through an activation function.

Here we describe the development of complex metabolic circuitry implemented using analog logic in whole-cell and cell-free systems by means of enzymatic reactions. For circuit design, we first employ computational design tools, Retropath [START_REF] Delépine | RetroPath2.0: A retrosynthesis workflow for metabolic engineers[END_REF] and Sensipath [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] , that use biochemical retrosynthesis to predict metabolic pathways and biosensors. We then build and model three whole-cell metabolic transducers and an analog adder to combine their outputs. Next, we transfer our metabolic circuits to a cell-free system [119,159] in order to take advantage of the higher tunability and the rapid characterization it offers [170,181,342] , expanding our system to include multiple weighted transducers and adders. Finally, using our integrated model fitted on the cell-free metabolic circuits we build a more sophisticated device called the "metabolic perceptron", which allows desired binary classification of multi-input metabolite combinations by applying model-predicted weights on the input metabolites before analog addition, and demonstrate its utility through two examples of four-input binary classifiers. Altogether, in this work we demonstrate the potential of synthetic metabolic circuits, along with model-assisted design, to perform complex computations in biological systems.

Results

Whole-cell processing of hippurate, cocaine and benzaldehyde inputs

To identify the metabolic circuits to build, we use our metabolic pathway design tools, Retropath [START_REF] Delépine | RetroPath2.0: A retrosynthesis workflow for metabolic engineers[END_REF] and Sensipath [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] . These tools function using a set of sink compounds at the end of a metabolic pathway, here metabolites from a dataset of detectable compounds [START_REF] Koch | A dataset of small molecules triggering transcriptional and translational cellular responses[END_REF] , and a set of source compounds that can be used as desired inputs for the circuit. The tools then propose pathways and the enzymes that can catalyze the necessary reactions, allowing for promiscuity. Our metabolic circuit layers are organized according to the main processing functions: transduction and actuation ( Figure 9.1a ). Transducers are the simplest metabolic circuits that function as sensing enabling metabolic pathways (SEMP) [240] , consisting of one or more enzymes that transform an input metabolite into a transduced metabolite. The transduced molecule, in turn, is detected through an actuation function that is implemented using a transcriptional regulator.

We used benzoate as our transduced metabolite, its associated transcriptional activator BenR, and the responsive promoter pBen to construct the actuator layer of our whole-cell metabolic circuits [391] . To compare the shape of the response curve, we constructed the actuator layer in two formats: (i) an open-loop circuit ( Figure 9.1b ) and (ii) a feedback-loop circuit ( Figure S9.1 ). When compared to the open-loop format, the feedback-loop circuit has previously been shown to exhibit a linear dose-response to input [START_REF] Daniel | Synthetic analog computation in living cells[END_REF]392] . We found that while the feedback-loop format does linearize the actuator response curve, it also reduces its dynamic range ( Supplementary Figure S9.1 ). Furthermore, the growth inhibition observed at higher concentrations makes it difficult to recover the lost dynamic range by further addition of benzoate concentration ( Supplementary Figure S9.6b ). Therefore, we selected the open-loop format due to its higher dynamic range of activation in the tested range of benzoate concentration ( A metabolic concentration adder is an analog device composed of more than one transducer that converts their respective input metabolites into a common transduced output metabolite. For our whole-cell concentration adder, we combined two transducers to build a hippurate-benzaldehyde adder actuated by the benzoate circuit ( The maximum output signal for our analog adder, when hippurate and benzaldehyde were both at the maximum concentration of 1000 µM, was lower than the maximum signal produced by hippurate and benzaldehyde transducers alone ( Supplementary Figure S9.2 ). However, as seen above, the difference between the maximum signal of their transducers and the actuator was smaller. The dissipation in signal could either be because of resource competition (as a result of adding more genes) or because of enzyme efficiency (as a result of poorly balanced enzyme stoichiometries). To test these two hypotheses, we investigated the effect of the enzymes on cellular resource allocation. For this purpose, the cocaine transducer and the hippurate-benzaldehyde adder were characterized by adding benzoate to these circuits ( Supplementary Figures S9. [START_REF] Selberg | The Potential for Convergence between Synthetic Biology and Bioelectronics[END_REF] and S9.5 ). Comparing the results of these characterizations with the benzoate actuator reveals that dissipation in signal from the transducers to the actuators is due to enzyme efficiency ( Supplementary Figure S9.4 ), whereas that from the adders to the actuators is due to resource competition ( Supplementary Figure S9.5 ). The effect of the metabolic circuits on cell physiology are presented as the specific growth rate (μ) of the cells harboring the circuits at different concentrations of inputs ( Supplementary Figures S9. [START_REF] Guiziou | Hierarchical composition of reliable recombinase logic devices[END_REF] and S9.7 ). Compared to the specific growth rate of cells containing empty plasmids (μ = 1.05 ± 0.32 h -1 ), adding the metabolic circuits alone results only in a mild growth reduction. However, adding the metabolic circuits with their input metabolite(s) has a much more pronounced effect on growth reduction, particularly at high concentrations.

In order to gain a quantitative understanding of the circuits' behavior, we empirically modeled their individual components to see if we were able to successfully capture their behavior. We first modeled the actuator (gray curve in Figure 9.1c ) using Hill formalism [394] as it is the component that is common to all of our outputs and Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi therefore constrains the rest of our system. We then modeled our transducers, considering enzymes to be modules that convert their respective input metabolites into benzoate, which is then converted to the fluorescence output already modeled above.

T his simple empirical modeling strategy would be able to explain our transducer data, including the effects of enzyme efficiency, but not to account for observations made in Supplementary Figure S9.5 , which is why we also included resource competition is our models to explain circuits with one or more transducers. To this end, we extended the Hill model to account for resource competition following previous works [395,396] , with a fixed pool of available resources for enzyme and reporter protein production that is depleted by the transducers. This extension is further presented in the Methods section. We fitted our model on all transducers, with and without resource competition (i.e. individual transducers, or transducers where another enzyme competes for the resources). This model (presented in gray lines in Figure 9.1d,e,f and Figure 9.2c ), which was not trained on adder data but only on actuator, transducer, and transducers with resource competition data, recapitulates it well. This indicates that the model accounts for all important effects underlying the data. The full training process is presented in the Methods section, and a table summarising scores of estimated goodness of fit of our model is presented in Supplementary Table S9.1 . Cell-free processing of multiple metabolic inputs

Cell-free systems have recently emerged as a promising platform [119] that provide rapid prototyping of large libraries by serving as an abiotic chassis with low susceptibility to toxicity. We took advantage of an E. coli cell-free system with the aim of increasing the computational potential of metabolic circuits in several ways ( Figure 9.3a ). Firstly, a higher number of genes can be simultaneously and combinatorially used to increase the complexity and the number of inputs for our circuits. Secondly, the lower noise provided by the absence of cell growth and maintenance of cellular pathways [397] improves the predictability and accuracy of the computation. Thirdly, having genes cloned in separate plasmids enables independent tunability of circuit behavior by varying the concentration of each part individually. Finally, cell-free systems are highly adjustable for different performance parameters and components. In all, these advantages of cell-free systems enable us to develop more complex computations than the whole-cell analog adder.

Following from our recent work [345] , we first characterized a cell-free benzoate actuator to be used downstream of other metabolic transducers. Figure 9.3a shows a schematic of the cell-free benzoate actuator composed of a plasmid encoding the BenR transcriptional activator and a second plasmid expressing sfGFP reporter gene under the control of a pBen promoter. This actuator showed a higher operational range than the whole-cell counterpart ( Figure 9.1c ). The optimal concentration of the TF plasmid (30 nM) and the reporter plasmid (100 nM) were taken from our recent study [345] . Following successful implementation of the actuator, we proceeded to build five upstream cell-free transducers for hippurate, cocaine, benzaldehyde, benzamide, and biphenyl-2,3-diol ( without the need of the transducer enzyme vdh. This behavioral difference between the whole-cell and cell-free setups could be due to the difference in redox states inside an intact cell and the cell-free reaction mix [398,399] . Furthermore, benzamide and biphenyl-2,3-diol transducers exhibit reduction in fluorescence outputs at very high (1000 μM) input concentrations. 

Cell-free weighted transducers and adders

After characterizing different transducers in the cell-free system that enable building a multiple-input metabolic circuit, we sought to rationally tune the transducers. Cell-free systems allow independent tuning of each plasmid by pipetting different amounts of DNA. We applied this advantage to weight the flux of enzymatic reactions in cell-free transducers ( Figure 9.4a ). The concentration range we used was taken from our recent study [345] , in order to have an optimal expression with minimum resource competition. We built four weighted transducers for hippurate ( Data in Figure 9.4 show that similar output levels can be achieved for different input concentrations, provided the appropriate transducer concentrations are used. In the next step, we applied this finding to build hippurate-cocaine weighted adders by altering either the concentration of the enzymes or the concentration of the inputs ( Figure 9.5a ). The fixed-input adder is an analog adder in which the concentration of inputs, hippurate and cocaine, are fixed to 100 µM and the concentration of the enzymes is altered (top panel in Figure 9.5b ). In this device, the weight of the reaction fluxes is continuously tunable. We then characterized a fixed-enzyme adder by fixing the concentration of the enzymes (1 nM for HipO, 3 nM for CocE; the cocaine signal is weaker, which is why a higher concentration of its enzyme is used) and varying the inputs, hippurate and cocaine (top panel in Figure 9.5c ). However, it is important to note that the observed GFP is not a direct output from the weighted adders. Instead, the adder output is transformed by the actuator to produce the GFP signal. Since the benzoate actuator has a sigmoidal response curve ( Figure 9. 3b ), the transformation by the actuator layer makes the visible output appear more switch-like (ON / OFF).

In order to have the ability to build any weighted adder with predictable results, we developed a model that accounts for the previous data. We first empirically modeled the actuator (gray curve in Figure 9.3b ) since all other functions are constrained by how the actuator converts metabolite data (benzoate) into a detectable signal (GFP).

We then fitted our model with individual weighted transducers ( Supplementary Figure S9.9 ) and predicted the behaviors of the weighted adders (bottom panel in S9.2 summarizes the different scores to estimate the goodness of fit of our model. Briefly, the model quantitatively captures the data but tends to overestimate values at intermediate enzyme concentration ranges and does not capture the inhibitory effect observed at the high concentration of benzamide or biphenyl-2,3-diol, as this was not accounted for in the model.

Using the above strategy, we can build any weighted adder for which we have pre-calculated the weights using the model on weighted transducers. We use this ability in the following section to perform more sophisticated computation for a number of classification problems.

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Cell-free perceptron for binary classifications

The perceptron algorithm was first developed to computationally mimic the neuron's ability to process information, learn, and make decisions [400] . Perceptrons are the basic blocks of artificial neural networks enabling the learning of deep patterns in datasets by training the model's input weights [START_REF] Haykin | Neural Networks and Learning Machines[END_REF] . Like a neuron, the perceptron receives multiple input signals ( x i ) and triggers an output depending on the weighted ( w i ) sum of the inputs [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] . A perceptron can be used to classify a set of input combinations after it is trained on labeled data. In binary classification, the weighted sum is first calculated (Σ w i .x i ) and an activation function ( f ), coupled with a decision threshold d, finally makes the decision: ON if f(Σ w i .x i ) > d, OFF otherwise ( Figure 9.6a ).

The activation function can be linear or non-linear (Sigmoid, tanh, ReLU, etc.) depending on the problem [401] , although a sigmoid is generally used for classification.

Since our weighted transducer models have already been fitted on the cell-free experimental data, we checked if we could use them to calculate the weights needed to classify different combinations of two inputs: hippurate and cocaine. We tested our model on five different 2-input binary classification problems ( Supplementary Figure S9.10 ). For each problem, the two types of data were represented as a cluster of dots on the scatter plot, with the axes representing the two inputs. The fitted model was then used to identify weights needed to be applied to the weighted transducers such that a decision threshold 'd' exists to classify the two clusters into red (ON, >d) or blue (OFF, <= d). In each binary classification, three iso-fluorescence lines threshold the data into the binary categories: ON and OFF ( Supplementary Figure S10 ). These theoretical classification problems demonstrate the ability of our perceptron model to successfully carry out binary classification.

Using the integrated model from our weighted transducers and adders, we next sought to design four-input binary classifiers using a metabolic perceptron, and test them experimentally. Our metabolic perceptron is a device enabling signal integration of multiple inputs with associated weights, represented by enzyme DNA concentrations ( Finally, we used the cell-free system to implement the classifiers using the calculated weights and to execute the computations. While our perceptrons are trained in silico , they are executed in the cell-free system to predict the outcome of a given set of input signals. This is comparable to how computational perceptrons also proceed in the two phases of training and prediction. For the classifiers, the input metabolites are fixed to 100 µM, as it allows the best ON-OFF behavior for all inputs and weight-tuning according to model simulations. The model accurately predicted weights to obtain the simple "full OR" classifier behavior ( Figure 9.6d ), as well as cocaine, benzamide, and biphenyl-2,3-diol weights for the second complex classifier. The initial weights computed by the model are presented in Supplementary Figure S9.11 . The optimal weight of HipO (hippurate transducing enzyme) was calculated to be 0.1 nM, which leads to higher signals than predicted, particularly for the "ON" behavior with only hippurate. To further characterize the HipO weights at still lower concentrations of the enzyme, we performed an additional complementary characterization ( Supplementary Figure S9.12 ). Our aim here was to find a weight for HipO through which a classifier outputs a low signal ("OFF") with only hippurate and high signal ("ON") when coupled with other inputs. We arrived at 0.03 nM HipO which exhibited this shifting behavior between "OFF" and "ON" ( Figure 9.6d and Supplementary Figure S9.12 ). Using our model-guided design and rapid cell-free prototyping on the HipO weight, we were able to design two 4-input binary classifiers. In 

Discussion

Computing in synthetic biological circuits has largely relied on digital logic-gate circuitry for almost two decades [383,402] , treating inputs as either absent (0) or present (1). While such digital abstraction of input signals provides conceptual modularity for circuit design, it is less compatible with the physical-world input signals that vary between low and high values on a continuum [403] . As a result, digital biological circuits must carefully match input-output dynamic ranges at each layer of signal transmission to ensure successful signal processing [1,[START_REF] Goñi-Moreno | High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits[END_REF] . More recently, the higher efficiency of analog computation on continuous input has been recognized [404] , and some analog biological circuits have started emerging [START_REF] Daniel | Synthetic analog computation in living cells[END_REF] . In this regard, using metabolic pathways for cellular computing seems like a natural progression for analog computation in biological systems [START_REF] Goñi-Moreno | High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits[END_REF][START_REF] Daniel | Synthetic analog computation in living cells[END_REF] .

In this study, we investigated the potential of metabolism to perform analog computations using synthetic metabolic circuits. To that end, we first established a benzoate actuator to report the output from our metabolic circuits in both whole-cell and cell-free systems ( Figures Unlike genetic circuits that experience expression delays [1] , metabolic circuits have the advantage of faster response times since the genes have already been expressed in the system. Yet, metabolic circuits can be connected with the other layers of cellular information processing (like genetic or signal transduction layers) when needed, to build more complex sense-and-respond behaviors. The actuator layer of our perceptrons is a good example of this, where the calculated weighted sum is converted to fluorescence output via the genetic layer. In addition, we took advantage of the properties of cell-free systems, such as higher tunability and lack of toxicity [345,405] , to rapidly build and characterize multiple combinations of transducer-actuator circuits.

Cell-free systems can be lyophilized on paper and stored at ambient temperature for <1 year for diagnostic applications [START_REF] Pardee | Paper-based synthetic gene networks[END_REF] . This expands the potential scope of cell-free metabolic perceptrons for use in multiplex detection of metabolic profiles in medical or environmental samples [START_REF] Pardee | Paper-based synthetic gene networks[END_REF]345] .

Here, we have built a single-layer perceptron, with positive weights, that can classify different profiles of input metabolites by applying different weights to each transducer. In the future, by adding competing or attenuating reactions that reduce the concentration of the transduced metabolite in response to an input, it may be possible to expand the training space by applying negative weights to certain inputs [406] . Furthermore, a single-layer perceptron can only classify data that is linearly separable [407] , which means that it should be possible to draw a line between the two classes of data points in order for the perceptron to classify them ( Supplementary and can be used for more complex pattern recognition tasks [409] . With the use of bioretrosynthesis-based computational tools for metabolic pathway design, like Retropath [START_REF] Delépine | RetroPath2.0: A retrosynthesis workflow for metabolic engineers[END_REF] and Sensipath [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] , although challenging it will be possible to build strategies for multiple layers of metabolic perceptrons that can classify complex patterns of metabolic states in vivo , or identify different metabolite concentrations in analytical samples ( Supplementary Figure S9. [START_REF] Bikard | Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[END_REF] ). Finally, it may also be possible to apply in situ learning (within the whole-cell or cell-free environment) by applying winner selection strategies on successful classifiers [410] .

However, the use of the metabolic layer for biological computing is currently underexplored. To expand the computing potential of metabolic circuits, many more metabolic parts and devices (transducers, adders, and actuators) will need to be exhaustively characterised and databases built with descriptions of activities, dynamic ranges, cross-talk, chassis dependence, cell-free composition dependence, and other functional parameters. Here, we provide a detailed method for the identification of novel parts and the step-wise building of new devices, and make our scripts available. These can form the stepping-stone for building a larger framework for fully automated design of metabolic circuits, similar to the Cello tool for automated genetic circuit design [START_REF] Nielsen | Genetic circuit design automation[END_REF] . Cell-free extract and buffer preparation Cell-free E. coli extract was produced as previously described [150,151,345] . Briefly, an overnight culture of BL21 Star (DE3)::RF1-CBD 3 E. coli was used to inoculate 4L of 2xYT-P media in six 2 L flasks at a dilution of 1:100. The cultures were grown at 37°C with 220 rpm shaking for approximately 3.5-4 hours until the OD 600 = 2-3. Cultures were centrifuged at 5000 x g at 4°C for 12 minutes. Cell pellets were washed twice with 200 mL S30A buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 50 mM Tris, pH 7.7), centrifuging after each wash at 5000 x g at 4°C for 12 minutes. Cell pellets were then resuspended in 40 mL S30A buffer and transferred to pre-weighed 50 mL Falcon conical tubes where they were centrifuged twice at 2000 x g at 4°C for 8 and 2 minutes, respectively, removing the supernatant after each. Finally, the tubes were reweighed and flash frozen in liquid nitrogen before storing at -80°C.

Cell pellets were thawed on ice and resuspended in 1 mL S30A buffer per gram of cell pellet. Cell suspensions were lysed via a single pass through a French press

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi homogenizer (Avestin; Emulsiflex-C3) at 15000-20000 psi and then centrifuged at 12000 x g at 4°C for 30 minutes to separate out cellular cytoplasm. After centrifugation, the supernatant was collected and incubated at 37°C with 220 rpm shaking for 60 minutes. The extract was recentrifuged at 12000 x g at 4°C for 30 minutes, and the supernatant was transferred to 12-14 kDa MWCO dialysis tubing (Spectrum Labs; Spectra/Por4) and dialyzed against 2 L of S30B buffer (14 mM Mg-glutamate, 60 mM K-glutamate, ~5 mM Tris, pH 8.2) overnight at 4°C. The following day, the extract was re-centrifuged one final time at 12000 x g at 4°C for 30 minutes, aliquoted, and flash frozen in liquid nitrogen before storage at -80°C.

The buffer for cell-free reactions is composed such that final reaction concentrations were as follows: 1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg.mL -1 tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, and 2% PEG-8000. Additionally, the Mg-glutamate (0-6 mM), K-glutamate (20-140 mM), and DTT (0-3 mM) levels were serially calibrated for each batch of cell-extract for maximum signal. One batch of buffer was made for each batch of extract, aliquoted, and flash frozen in liquid nitrogen before storage at -80°C.

Characterization of cell-free circuits Cell-free reactions were performed in 15.75 µL of the mixture of 33.3% cell extract, 41.7% buffer, and 25% plasmid DNA, input metabolites, and water. The reactions were prepared in PCR tubes on ice and 15 µL of each was pipetted into 384-well plates (Thermo Scientific 242764). GFP fluorescence out of each circuit was recorded in the plate reader at 30 °C (gain: 50, ex: 458 nm, em: 528 nm). The background (cell-free reaction without any plasmid) corrected fluorescence data were normalized by 20 ng.µL -1 of a plasmid expressing strong constitutive sfGFP (under OR2-OR1-Pr promoter [345] ) and were plotted after 8 hours incubation. The mean and standard deviation of all normalized data are provided in Supplementary Table S9.7.

Data normalization:

For whole-cell data, we use the following normalization: Simulation tools and parameter fitting: All data analysis and simulations were run on R (version 3.2.3). Dose-response curves were fitted using ordinary least squares errors and the R optim function (from Package stats version 3.2.3, using the L-BFGS-B method implementing the Limited-memory Broyden Fletcher Goldfarb Shanno algorithm, which is a quasi-Newton method). For the random parameter sampling around the mean fit, values were sampled from within +-1.96 standard error of the mean of the parameter estimation. The seed was set so as to ensure reproducibility. All simulations were run in the Rstudio development environment.

All parameters are presented in Supplementary Tables S9. 3 and S9.4 .

Whole-cell model

The whole-cell model is composed of three parts: the actuator, the transducers (which all obey the same law) and the resource competition.

ctuator asal A (total) = c ( (total) hill_a (K ) + (total) M hill_a hill_a * f + 1 )* b
where total is the concentration of the considered input (in µM), K M is the concentration that allows for half-maximum induction (in µM), also termed IC 50 , hill_a is the Hill coefficient that characterizes the cooperativity of the induction system, fc is the dynamic range (in AU) and basal is the basal GFP fluorescence without input (benzoate).

ransducer nput ange_enz T

(input) = i * r Where input is the input concentration in µM and range_enz is a dimensionless number characterizing the capacity of the enzyme to transduce the signal. When combining transducers with the actuator, transducer results are added before being fed into the actuator equation, just as benzoate concentrations are added before being converted to a fluorescent signal in the cell.
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To account for resource competition, given our experimental results where there is little competition with one enzyme and significant competition with two, we used an equation including cooperativity of resource competition. This reduces the fold change of the actuator as there are less resources available for producing transcription factors and GFP. where out is the result of the actuator transfer function before accounting for resource competition, range_res, E, nr characterize the Hill function that accounts for competition, coce, benz and hipo are the enzyme plasmid concentrations. ratio accounts for the differences in burden from different enzymes, its value around 0.8 is close to the ratio between enzyme lengths (1500 for benzaldehyde transducing enzyme and 1200 for HipO).

Cell-free model

The model is composed of two parts: the actuator and the transducers. where total is the concentration of the considered input metabolite (in µM), Km is the concentration that allows for half-maximum induction (in µM), also termed IC 50 , hill_a is the Hill coefficient that characterizes the cooperativity of the induction system, fc is the dynamic range (in AU) and basal is the basal GFP fluorescence without input (benzoate). Lin accounts for the linearity observed in the actuator behavior at concentrations saturating the Hill transfer function.

ransducer ange T (input) = r enzyme * ) ( (E) n E (K ) + (E) E n E n E )* ) ( (input) n input (K ) + (input) I n input n input )
Where range_enzyme is a dimensionless number characterizing the capacity of the enzyme to transduce the signal. The activity of the enzyme is characterized by a Hill function as increasing concentrations do not lead to a linear increase but enzymes saturate ( E is the enzyme quantity in nM, K E and n E are its Hill constants), and similarly, input is the input metabolite concentration in µM with K I and n_input as its Hill constants.
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When combining transducers, transducer results are added before being fed into the actuator equation, just as benzoate concentrations are added before being converted to the fluorescent signal in the cell.

Full model training process

Our training process is detailed in the Readme files supporting our modeling scripts provided in GitHub and is summarized here.

As the first step, the actuator transfer function model (benzoate transformed into fluorescence) is fitted 100 times on the actuator data, with all actuator parameters allowed to vary. The mean, standard deviation, standard error of the mean and confidence interval were saved at 95% of the estimation of those parameters. For transducer fitting (all transducers in cell-free and all except cocaine in whole-cell), we constrained the actuator characteristics in the following way: upper and lower allowed values are within the 95% confidence interval (or plus or minus one standard deviation from the mean for fold change and baseline in cell-free as it allowed a wider range, accounting for the decrease in actuator signal in transducer experiments without affecting the shape of the sigmoid). The initial values for the fitting process were sampled from a Gaussian distribution centered on the mean parameter estimation and spread with a standard deviation equal to the standard error of this parameter estimation. We then allowed fitting of all transducer parameters freely and of the actuator parameters within their 95% confidence interval.

Once this is done, all common parameters (actuator transfer function and resource competition) were sampled using the same procedure and fitting on the cocaine transducer was performed. To show that parameters are well constrained (proving they minimally explain the data), Supplementary Figures S9. [START_REF] Bikard | Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[END_REF] and S9. [START_REF] Nielsen | Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks[END_REF] show results of sampling parameters from the final parameters distribution (without fitting at that stage) and how they compare to the data.

Objective functions and model scoring:

In order to evaluate and compare our models, we used the following functions.

M SD R

= √ n ∑ n 1 (y y ) i true -i pred 2
Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi S1 andS2 .

Perceptron weights calculation

In order to calculate the weights for the classifiers presented in Figure 9.6 , we followed the following procedure. First, we defined the expected results (expressed in "OFF"s and "ON"s). We also defined a list of weights to test for each enzyme (here, between 0.1 nM and 10 nM, as tested in our weighted transducers). Then, for each combination of enzyme weights, we simulated the outcome of the classifiers for all possible input combinations. We then tested various possible thresholds and kept the enzyme combinations for which a threshold exists that allows for the expected behavior. As the last step, we manually analyzed the classifier to keep the ones both a high difference between ON and OFF, and a minimal enzyme weight to prevent resource competitions issues that could arise as we are adding more genes than previous experiments. In order to perform clusterings presented in Supplementary Figure S9.11 , we sampled values uniformly within the stated ranges ([0, 2µM] for low values and [80, 100µM] for high values). We then simulated the results to assess the robustness of our designs.

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

The difference between our metabolic perceptron and an in silico perceptron is that the latter exhibits a perfect activation behavior: digital (0 / 1), sigmoidal, ReLU, or another activation function; its weights can be tuned exactly as desired. In our implementation of the cell-free metabolic circuits, many biological details complicate the relationship between the inputs and the activator output. We therefore used more detailed step-wise empirical modeling to account for the biology in our system rather than an off-the-shelf perceptron code that would be unable to capture all the subtleties in our data.

Binary clustering experiments

In order to perform the binary/2D clustering experiments, we sampled values uniformly within the stated ranges ([0, 2µM] for low values and [80, 100µM] for high values). For different weight (HipO and CocE) values, we simulated the fluorescence output of each of those cocaine-hippurate combinations. Moreover, for different threshold values (3, 3.5 and 4, as presented in Supplementary Figure S9.10 ), we numerically solved for the benzoate concentration such that ransf er luorescence_threshold t (benzoate) = f and then for values of cocaine and hippurate such that ransducer ransducer enzoate t (cocaine) + t (hippurate) = b This equation with two unknowns gives us a curve of cocaine and hippurate values that would lie on our decided threshold for this set of weights. All combinations on the top right of that curve will be classified to "ON" and all combinations below will be classified as "OFF".

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi build four transducers on its upstream for sarcosine, L-sorbose, L-pipecolate, N-acetyl-L-aspartate ( E. coli IDTl-codon-optimized genes UniProtKB -P40859, UniProtKB -Q6UG02 (K312E & E540K), UniProtKB -Q88CC4, UniProtKB -P10902 (E121A) respectively) based on a study on prostate cancer biomarkers [413] and HMDB database that only two of them gave a responsive behavior to their inputs illustrated in (b) . Sensipath was used to find these enzymes converting these molecules to H 2 O 2 and sense them through feedback-loop H 2 O 2 actuator. Bottom panel: Cell-free characterization of H 2 O 2 actuator using TF and the reporter plasmids cloned in two separate cell-free plasmids, pBEAST ( Chapter 6,8 and 9 ) that each can be added in different concentrations to the cell-free reaction mix. This transcription factor has a special behavior such that it binds to its target promoters both in presence and absence of the inducer [414] . Not surprisingly, as discussed in Chapter 6 , not all systems function well in the cell-free system, whereas this actuator did not show a desired behavior in whole-cell either (a) . 

HipO

UniProtKB -P45493

Taken from Libis et al. [240] Hippurate hydrolase ( EC : 3.5.1.32) 

Thesis Conclusions and Perspectives

In this thesis report, I presented my contribution to projects during my 3-year PhD told as a story of "Synthetic Metabolic Circuits for Bioproduction, Biosensing, and Biocomputation". My PhD proposal was started with an idea close to the one presented in the last chapter. However, my contribution to two iGEM projects as well as collaborations led me doing a broader PhD, the whole story that presented in nine chapters. Thanks to the amazing journey that I had during these three years with my colleagues, friends, and collaborators I ended up learning concepts and techniques for research in the field of synthetic biology.

Metabolism was the main tool of this doctoral thesis as is of the main tools of living systems. In this thesis report, I first implemented two chapters introducing i) "synthetic biological circuits" their types, applications and tools ( Chapter 1 ), and ii) "cell-free synthetic biology", different types of cell-free systems and their applications ( Chapter 2 ). These two chapters open up an overview of the whole story, approaches and tools and terminology used in the thesis report. These two chapters also are overall review for those who aim to get familiar with the stare of the art advances in biological circuits and cell-free systems.

Section I , Bioproduction-Biosensing , consists of four chapters, this section starts with a review of the most recent approaches to develop biosensors for metabolic engineering application ( Chapter 3 ). What makes this chapter special is discussing the tools to engineer biosensors which do not naturally exist, using modeling approaches to fine-tune the biosensors' behavior and presenting cell-free approaches. The next chapter ( Chapter 4 ) in this section is helpful for those who aim to produce a chemical using cell-factory and presented tools and techniques from choosing a host chassis and enumerating a pathway even for molecules that do not exist in nature to pathway optimizations using systems and synthetic biology methodologies. Chapter 5 , is a proof of concept of what was discussed in two previous chapters. This chapter was to engineer a novel biosensor for D-psicose to improve the catalytic activity of its producing enzyme. What makes this chapter promising, is the standardized way of engineering biosensors using which several constructions were designed-built-tested and the optimal construct was used to find an enzyme's mutant with improved feathers. Bringing the D-psicose sensor into the E. coli TX-TL cell-free system ( Chapter 6 ), it was observed that this does not work in vitro unless the concentration of the DNA plasmids for transcription factor and reporter gene are adjusted so that a very weak signal was observed (Figure 6.2b) . Three strategies, doping, preincubation and reinitiation of the reaction were used to optimize this weak signal as a proof of concept of repressor based systems in cell-free systems. The optimized sensors were able to report the enzymatic production of the D-psicose. This chapter shows ways of functionalizing repressor based systems that do not work in the cell-free system or to improve those with weak behavior. Moreover, it is the first study coupling bioproduction and biosensing in the cell-free system. The last chapter of this section ( Chapter 7 ) is a collection of small molecules for which there are transcriptional or translational regulatory cell component for sensing. This collection provides easy access to the largest dataset of detectable molecules using which one can start discovering new biosensors. This list can be used by Retrosynthesis algorithm as target molecules that any small molecule can be converted to and the pathways enabling this are enumerated using retrosynthesis algorithm. This is the strategy that was used in Section II and Section III for Biosensing-Diagnosis and Biocomputation . Chapter 8 demonstrated that metabolic transducers which had been constructed in whole-cell by previous PhD student in our lab are implementable and functional in cell-free as well. Optimization of benzoate biosensor and cocaine and hippurate transducers was done in cell-free then these devices were applied by our colleagues to detect benzoate in beverages, and cocaine and hippurate in clinical samples. Chapter 9 explored the potential of metabolic pathways for biocomputation, multiple analog devices including transducers, address and perceptrons proved this potential and their functionality in whole-cell and cell-free systems. This work had novel aspects such as the first analog metabolic devices, the first neural computing paradigm in biological systems through the perceptrons and perceptron-mediated classifiers. Preliminary results of diseases' biomarkers detection presented in Supplementary Figure S9.13 betoken future applications of metabolic transducers, adders and perceptrons for diagnosis and metabolic engineering applications as simple examples were shown in Chapter 8 and Chapter 4 respectively. To overcome weak signals in Supplementary Figure S9.13 either other inducers can be applied ( Chapter 7 ) or the actuators can be optimized using approaches presented in Chapter 6 . Enzyme engineering similar to what presented in Chapter 5 can be also used to extend the numbers of transducers through improving the enzymes or engineering new enzymes. Altogether these tools with the extendable computational power of metabolic circuits ( Supplementary Figure S9. [START_REF] Bikard | Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[END_REF] ) let an open end to the achievements of this thesis to be further discovered by the synthetic biology and bioengineering community for a variety of applications. Résumé: La biologie de synthèse est le domaine de la bioingénierie permettant de concevoir, de construire et de tester de nouveaux systèmes biologiques en réécrivant le code génétique. Les circuits biologiques synthétiques sont des outils sophistiqués permettant diverses applications. Cette thèse de doctorat porte sur le développement de voies métaboliques synthétiques conçues à l'aide d'outils informatiques. Ces voies métaboliques sont connectés à des réseaux de régulation transcriptionnelle pour développer des biocircuits pour la bioproduction, la biodétection et la biocalcul. La partie "bioproductionbiodétection" de la thèse vise à développer un nouveau biocapteur pour un sucre rare. Ce biocapteur a été utilisé pour améliorer l'activité catalytique d'enzyme dans la cellule. Il a ensuite été optimisé dans un système acellulaire pour le suivie de la bioproduction de ce sucre. La partie "biodétection-diagnostic" montre la mise en oeuvre et l'optimisation des transducteurs métaboliques dans le système acellulaire, permettant une augmentation du nombre de petites molécules biologiquement détectables. La partie "biocalculs" décrit une nouvelle approche utilisant des circuits métaboliques qui ont été redesigné pour construire des additionneurs et des perceptrons métaboliques dans des systèmes cellulaires et acellulaires.

Title : Synthetic Metabolic Circuits for Bioproduction, Biosensing, Biocomputation Keywords : Synthetic biology, Metabolic circuits, Bioproduction, Biosensing, Biocomputation Abstract: Synthetic biology is the field of engineerable life science to design-build-test novel biological systems through reprogramming the code of DNA. Synthetic biocircuits are sophisticated tools to reconstruct biological networks for a variety of applications. This doctoral thesis focuses on the development of synthetic metabolic pathways designed by computer-aided tools integrated with the transcriptional regulatory layer for bioproduction, biosensing, and biocomputation in whole-cell and cell-free systems. The bioproduction-biosensing section of the thesis is to build a novel sensor for a rare sugar used to improve the catalytic activity of its producing enzyme in the whole-cell system (in vivo) and its optimization of biosensing-bioproduction in a TX-TL cell-free system (in vitro).

The development of cell-free prokaryotic biosensors, which are mostly relying on repressors, enables faster and more efficient design-build-test cycle for metabolic pathways prototyping in cell-free systems. The biosensing application of the metabolic circuits for diagnosis is the implementation and optimization of cell-free metabolic transducers that expand the number of biologically detectable small molecules in cell-free systems. Finally, as a radical approach to perform biocomputation, metabolic pathways were applied to build metabolic adders and metabolic perceptrons in whole-cell and cellfree systems. An integrated model trained on the experimental data enabled the designing of a metabolic perceptron for building four-input binary classifiers.
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  Introduction |184 ❏ Results |184 ❏ Design workflow for cell-free biosensors |184 ❏ Optimization of cell-free benzoic acid sensor |186 ❏ Expansion of benzoic acid sensor with hippuric acid and cocaine metabolic modules |188 ❏ Detection of benzoic acid, hippuric acid, and cocaine in complex samples |190 ❏ Discussion |194 ❏ Methods |196 ❏ Supplementary figures and tables |205 Section III: Biocomputation ❏ Chapter 9 : Metabolic Perceptrons for Neural Computing in Biological Systems |228 ❏ Abstract |229 ❏ Introduction |230 ❏ Results |231 ❏ Whole-cell processing of hippurate, cocaine and benzaldehyde inputs |231 ❏ A Whole-cell metabolic concentration adder |233 ❏ Cell-free processing of multiple metabolic inputs |236 ❏ Cell-free weighted transducers and adders |238 ❏ Cell-free perceptron for binary classifications |242 ❏ Discussion |245 ❏ Methods |248 ❏ Supplementary figures and tables |258 Thesis Conclusions and Perspectives |305 References |307 Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi ançais La biologie synthétique est le domaine de la bioingénierie permettant de concevoir, de construire et de tester de nouveaux systèmes biologiques en réécrivant de l'ADN. Les circuits biologiques synthétiques sont des outils sophistiqués permettant de construire des réseaux biologiques pour des applications médicales, industrielles et environnementales. Cette thèse de doctorat porte sur le développement de voies métaboliques synthétiques conçues à l'aide d'outils informatiques. Ces voies métaboliques sont connectés à la couche de régulation transcriptionnelle pour développer des biocircuits pour la bioproduction, la biodétection et la biocalcul dans des systèmes cellulaires et acellulaires. Les résultats obtenus durant cette thèse de doctorat révèlent le nouveau potentiel des voies métaboliques dans l'établissement de biocircuits synthétiques. Le chapitre bioproduction-biodétection de la thèse vise à développer un nouveau biocapteur pour un sucre rare utilisé pour améliorer l'activité catalytique d'enzyme dans la cellule (in vivo). Ce biocapteur a ensuite été implémenté dans un système acellulaire (in vitro) pour découvrir et optimiser le comportement de biocapteurs à base de répresseurs. Une fois optimisé en système acellulaire, notre Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Synthèse de la thèse, en français biocapteur a été utilisé pour surveiller la production enzymatique de sucre rare. Le développement de biocapteurs procaryotes acellulaires, qui repose principalement sur l'utilisation de répresseurs, permet d'accélérer et de rendre plus efficace le cycle "design-build-test" dans le prototypage des voies métaboliques dans les systèmes acellulaires. L'application de la biodétection des circuits métaboliques pour le diagnostic est la mise en oeuvre et l'optimisation des transducteurs métaboliques dans le système acellulaire. Les transducteurs sont des voies métaboliques composées d'au moins une enzyme catalysant un métabolite indétectable en un inducteur transcriptionnel, augmentant ainsi le nombre de petites molécules biologiquement détectables. En tant que nouvelle approche pour effectuer des biocalculs, des circuits métaboliques ont été appliqués pour construire des additionneurs métaboliques et des perceptrons métaboliques. Dans la cellule, trois transducteurs métaboliques et un additionneur métabolique ont été construits et caractérisés. Les systèmes acellulaires permettent d'accélérer la caractérisation de circuits biologiques, de finement régler le niveau d'expression d'un ou plusieurs gènes et facilite l'expression de plusieurs plasmides simultanément. Ceci a permis de construire de multiples transducteurs pondérés et des additionneurs métaboliques. Le modèle basé sur des données expérimentales a permis de concevoir un perceptron métabolique pour construire des classificateurs binaires à quatre entrées. Les additionneurs, perceptrons et classificateurs peuvent être utilisés dans des applications avancées telles que la détection de précision et dans le Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi développement de souches pour le génie métabolique ou la thérapeutique intelligente. La biologie synthétique est le domaine de la fabrication des sciences de la vie et de la technologie en tant que domaine de l'ingénierie par la normalisation et la modularisation d'outils, de méthodes et d'éléments biologiques pour concevoir, construire et tester de nouveaux systèmes biologiques. L'ADN est au coeur de la biologie synthétique et les progrès dans ce domaine dépendent fortement du coût de l'écriture (synthèse chimique/enzymatique sans modèle) et de la lecture (séquençage) de l'ADN qui devient rapidement moins cher. Les systèmes biologiques synthétisés, qu'il s'agisse de simples capteurs, circuits et voies d'accès à des réseaux plus sophistiqués ou de cellules synthétiques, développement de tels systèmes nécessite la reprogrammation des gènes et des parties régulatrices en réécrivant l'ADN. L'ingénierie métabolique et la bioproduction visent à produire des molécules fines, de la petite chimie aux macromolécules de grande taille comme les protéines en utilisant l'usine cellulaire. La biodétection ou la mise au point de capteurs utilisant des composants biologiques permet de fabriquer des dispositifs de surveillance, de dépistage ou de détection pour l'ingénierie métabolique ou les applications de diagnostic. Des dispositifs plus sophistiqués, plus proches des circuits complexes de régulation cellulaire, appelés biocircuits synthétiques, sont des réseaux reconstruits qui imitent les circuits électriques dans la réception et le traitement de signaux d'entrée multiples tels que les Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi produits chimiques et les stimuli, et qui activent les sorties appropriées. Les outils informatiques inspirés de l'électronique et de l'informatique permettent de "concevoir" de tels systèmes de la même manière qu'ils sont utilisés pour construire des algorithmes de calcul et des circuits électriques. Grâce à la diminution des coûts de synthèse et de séquençage de l'ADN, ainsi qu'aux outils et méthodes modulaires développés par la communauté, les phases de " construction " et de " test " à haut débit génèrent une énorme collection de dispositifs et de données. La technologie existante de l'automatisation utilisant un champ déjà avancé de vitesses robotiques des phases "build" et "test" ainsi que l'efficacité et les coûts s'améliorent. L'apprentissage machine, qui transforme la technologie d'aujourd'hui dans tous les aspects de la science, de la technologie, et même de la science humaine et de la vie quotidienne des gens, profite des énormes données générées dans le domaine de la biologie et des expériences à haut débit dans les études individuelles pour ajouter une phase "apprendre" et faire un cycle "conception-construction-essai-apprentissage" pour une biologie hautement efficace et automatique. Cette thèse se compose de neuf chapitres commençant par deux chapitres d'introduction, quatre chapitres sur la Bioproduction-Biosensibilisation (Section I), un chapitre sur la Biosensibilisation-Diagnostic (Section II) et un chapitre sur la Biocomputation (Section III). Le chapitre 1 porte sur l'introduction des circuits biologiques synthétiques, leurs types (circuits numériques/analogiques gènes/métaboliques), leurs applications (diagnostic, thérapeutique, génie métabolique) et leurs outils (ADN, Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi niveau transcriptionnel, traductionnel et post-traductionnel). Le chapitre 2 présente les systèmes sans cellules, leurs types (lysat cellulaire, systèmes purs, sans cellules lyophilisées) et leurs applications (génie métabolique, biocapteurs et diagnostic, -assemblage de phages, médecine et thérapeutique, protéomique et évolution des protéines, kit pédagogique) car une partie importante de la thèse utilise des systèmes sans cellules qui sont des plateformes émergentes en biologie synthétique. Le chapitre 3 passe en revue les biocapteurs transcriptionnels faits sur mesure pour les applications de génie métabolique (génie des facteurs de transcription allostérique, extension de l'espace chimique pour les biocapteurs, mise au point assistée par ordinateur des propriétés des biocapteurs). Le chapitre 4 est un ensemble de systèmes et de méthodologies de biologie synthétique pour la bioproduction (choix du châssis, dénombrement des voies, optimisation du réseau métabolique par FBA/FVA et modélisation mathématique, biocapteurs pour la régulation dynamique). Le chapitre 5 met au point un biocapteur transcriptionnel à cellules entières pour un sucre rare précieux, le D-psicose, afin d'améliorer l'activité catalytique de l'enzyme qui produit le D-psicose à partir du fructose. Le chapitre 6 traite de l'optimisation des biocapteurs à base de répresseurs (avec un exemple de capteur pour le D-psicose) dans les systèmes sans cellules qui souffrent d'une répression à faible pli. Trois stratégies (dopage, préincubation et réinitiation de la réaction ou réaction sans cellules en deux étapes) ont été appliquées pour optimiser le biocapteur D-psicose et des conditions optimales ont été utilisées Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi pour surveiller la production enzymatique du psicose à partir du fructose dans le système sans cellules. Le chapitre 7 est une liste manuelle et automatisée de petites molécules, présentée comme le plus grand ensemble de données sur les petites molécules qui déclenchent des réponses transcriptionnelles et translationnelles. Le chapitre 8 a pour but de construire et d'optimiser des réseaux métaboliques sans cellules afin d'augmenter le nombre de molécules biologiquement détectables dans le système sans cellules. Ce chapitre présente un flux de travail pour la fabrication de transducteurs métaboliques qui sont des dispositifs convertissant une molécule à l'aide d'enzymes métaboliques en une autre molécule qui est un inducteur des biocapteurs transcriptionnels. Enfin, le chapitre 9, le principal travail de cette thèse, consiste à appliquer des voies métaboliques pour le développement de biocircuits afin de construire des transducteurs et des additionneurs métaboliques à cellules entières et sans cellules. Les avantages des systèmes sans cellules, tels qu'une grande adaptabilité et une caractérisation rapide, ont permis de construire des transducteurs et des additionneurs métaboliques pondérés dans lesquels le poids des dispositifs métaboliques est contrôlé en ajustant la concentration de l'ADN enzymatique dans le mélange réactionnel. Un modèle formé sur les données expérimentales a prédit les poids pour concevoir des perceptrons métaboliques pour construire des classificateurs à quatre entrées. A la fin du rapport, une "conclusion et perspective" globale pour l'ensemble de la thèse est fournie. Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

  figure S9.13, entre les applications futures des transducteurs métaboliques, des additionneurs et des perceptrons pour le diagnostic et le génie métabolique, ont été présentés à titre d'exemples simples au chapitre 8 et au chapitre 4 respectivement. . Pour surmonter les signaux faibles de la figure supplémentaire S9.13, on peut appliquer d'autres inducteurs (chapitre 7) ou optimiser les actionneurs à l'aide des approches présentées au chapitre 6. L'ingénierie enzymatique similaire à celle présentée au chapitre 5 peut également être utilisée pour augmenter le nombre de transducteurs en améliorant les enzymes ou en créant de nouvelles enzymes. Ensemble, ces outils et la puissance de calcul extensible des circuits métaboliques (Figure S9.15) permettent à la communauté de la biologie synthétique et de la bio-ingénierie de découvrir les résultats de cette thèse pour une variété d'applications.

Figure 2 . 1 .

 21 Figure 2.1. Overview of the research field of cell-free synthetic biology. Top panel : Schematic representation of the preparation of TX-TL cell-free reaction. Extract is obtained from living cells and is used along with DNA (see middle panel) and reaction buffer (energy mix, amino acids and nucleotides) to perform the cell-free reaction which can be characterized in a rapid and high throughput manner. Middle panel : DNA molecules used in transcription-translation cell-free reaction. DNA is expressed using transcription and translation machineries present in the cell-free reaction. The chemically synthesized gene (or amplified from an already existing DNA molecule) can be used as linear DNA (to save time and cost of cloning), individual plasmids (to have higher expression of genes with regard to linear DNA) or assembled plasmid (in cases such as incorporating a set of genes for synthetic cell application). Bottom panel: Schematic representation of the main applications of cell-free systems in the field of synthetic biology and bioengineering.
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Figure 3 . 2 .

 32 Figure 3.2. Different strategies to develop a TF based biosensor for a given metabolite. There is either an existing TF for a metabolite (a) or it could be engineered using evolved TF (b), chimeric protein (c), or a metabolic pathway (SEMP) (d). A designed biosensor could be implemented in whole-cell or cell-free system (e). Abbreviations: TF : Transcription Factor, LDB : Ligand Binding Domain, DBD : DNA Binding Domain, SEMP : Sensing-Enabling Metabolic Pathways.
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 3 3b ) compared to its in vivo counterpart [214] . These tools could be used for real-time screening and speed up the design-build-test-learn workflow for metabolic engineering. Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

Figure 3 . 3 .

 33 Figure 3.3. Pinocembrin cell-free biosensor. Cell-free reaction consists of TX-TL cell lysate, reaction buffer and DNA plus inducer for the biosensor (a). (b)The graph shows a dose response RFP fluorescence after 9 hours incubation in a plate reader at 30℃. 40 nM of biosensor plasmid is added with 0,1, 2,[START_REF] Wang | Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities[END_REF][START_REF] Marchisio | Parts & pools: a framework for modular design of synthetic gene circuits[END_REF] 100, 200 or 1000 µM of pinocembrin in 10.5 µl of cell-free reaction. RFP fluorescence points and error bars are the mean and standard deviation of three measurements.
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Figure 4 . 1 .

 41 Figure 4.1. Step by step protocol for a synthetic metabolic engineering program. (A, B) Choosing the chassis and seeking for the efficient pathway are the first and the most critical stage. (C) Optimizing the pathway, cellular process and fermentation, additionally integrating them allow the synthetic pathway for evolving into an economical production yield. (D) The last step is to implement the pathway and its companion parts into the host. Abbreviations : Kyoto Encyclopedia of Genes and Genomes (KEGG), From Metabolite to Metabolite (FMM), eXTended Metabolic Space (XTMS), Genome-scale Metabolic network Models (GMM), Flux Balance Analysis (FBA), Flux Variance Analysis (FVA), Ribosome Binding Site (RBS).
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 42 shows two independent FBA on biomass (blue fluxes) and PLA producing reaction (red fluxes) as objective functions, using glucose as sole carbon source. Due to a biased optimization of FBA, the yield of PLA production equals to zero when the biomass is maximized, and vice versa . Besides, a comparison of flux distribution in the central metabolism of these two independent FBA demonstrates that the main bottleneck of PLA production locates in pyruvate fermentation to lactate.
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 42 Figure 4.2. Schematic representation of the central metabolism with PLA pathway, using glucose as substrate. In this flux distribution, glucose was defined as the carbon source. The blue flux values are associated with Biomass optimized FBA and the red flux values are associated with PLA production FBA. These two FBAs were done in independent experiments.
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 43 Figure 4.3. Schematic representation of the central metabolism with PLA pathway, using fructose as substrate. In this flux distribution, fructose is the carbon source. The blue flux values are associated with Biomass optimized FBA and the red flux values are associated with PLA production FBA. These two FBAs were done in independent experiments.
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 44 Figure 4.4. Schematic representation of the central metabolism with PLA pathway, using glucose as substrate and considering PLA as biomass precursor . In this flux distribution, glucose is the carbon source and PLA has been set as a precursor of biomass.
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 45 it relies on two main mechanisms of regulation: an LldR system and a McbR system.

Figure 4 . 5 .

 45 Figure 4.5. Dynamics of responsive elements. (A) Initially, LDH and LldR are expressed. (B) LldR inhibits LldR responsive promoters. (C) Presence of lactate provokes unbinding of LldR from LldR responsive promoters, activating transcription of PhaC-Pct operon and McbR. (D) There is gene expression of PhaC-Pct operon and McbR and protein synthesis. (E) McbR inhibits LDH expression by repressing the promoter, by feedback regulation.

Figure 4 . 6

 46 part B, was figured out setting a weak RBS strength. Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

Figure 4 . 6 .

 46 Figure 4.6. Dynamics of LldR, LDH, Lac and PLA number of agents over time. (A) Rate parameters: lldR mRNA synthesis 0.15, degradation 0.1; lldR protein synthesis 0.15, degradation 0.05. (B) Parameters: lldR mRNA synthesis 0.5, degradation 0.1; lldR protein synthesis 0.15, degradation 0.05. (C) Parameters: lldR mRNA synthesis 0.5, degradation 0.1; lldR protein synthesis 0.5, degradation 0.05. (D) Parameters: lldR mRNA synthesis 0.15, degradation 0.1; lldR protein synthesis 0.5, degradation 0.05.

Figure 4 . 7 .

 47 Figure 4.7. Dynamics of each system element over time. (A) The red curve associated with evolution of PLA indicates that the network maximizes PLA production. (B) Increasing the time range of the solution confirms the stability of the all components of the system after a period of time, while PLA is still increasing.
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 48 Figure 4.8. Diagram of the bioprocess . The two first chemostats (green and blue) host different bioprocesses, conversion of carbon source into Lactic Acid and conversion of Lactic Acid in Poly-LacticAcid, and are contiguously represented in the metabolic pathway to optimize. After the chemostats, an homogeniser followed by an auxiliary reactor helps the extension of the polymeric PLA chain (orange). Finally, an extrusion system consists of a heated piston followed by a cooled roller to store the final product. Each bioprocess is covered by a particular set of genes (upper and bottom sections of the figure, respectively).
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  on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as the reporter gene BBa_K24480 26 Psicose biosensor based on pPsiR promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as the reporter gene BBa_K24480 27 Psicose biosensor based on pPsiTacI synthetic promoter and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as the reporter gene BBa_K24480 28 Psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as reporter gene BBa_K24480 29 Psicose biosensor based on pPsiR promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as the reporter gene BBa_K24480 30 Psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as the reporter gene BBa_K24480 31 Psicose biosensor based on pPsiR promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as the reporter gene BBa_K24480 57 Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as the gene and a downstream the Mutant Drop Zone BBa_K24480 58 Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as the reporter gene and a downstream D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi BBa_K24480 33 D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter BBa_K24480 54 D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal Histidine tag under the control of pTacI promoter 2.

Figure 5 . 1 .

 51 Figure 5.1. Design and characterisation of six psicose biosensors. (A) Schematic representation of the Universal Biosensing Chassis (UBC) used as a platform to build the psicose biosensors (B). (C-H) In vivo characterisation of mCherry expression by E. coli cells harbouring (C) the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens (BBa_K2448025), (D) the psicose biosensor based on pPsiR promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens (BBa_K2448026), (E) the psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the

Figure 5 .

 5 1C and Supplementary Figure S5.2A, H ). The biosensor based on pPsiR and PsiR from A. tumefaciens shows saturation at high concentrations but also a weak fold change (3.4±1.1x), making it not suitable for an enzyme improvement (Figure 5.1D and Supplementary Figure S5.2B, H ). The biosensors based on pPsiA and PsiR from S. fredii and on the pPsiR and PsiR from S. meliloti show similar characteristics with an early saturation upon increasing the concentration and a very low fold change (1.5±0.05x and 1.7±0.04x respectively) making them bad candidates even if they display great sensitivity ( Figure 5.1 E, H and Supplementary Figure S5.2C, F, H ). The biosensor based on pPsiR and PsiR from S. fredii displays a high fold change (20.3±0.3x) but it tends to saturate at high concentrations ( Figure 6.1F and Supplementary Figure S5.2D, H ). This biosensor is still suitable for screening. Finally, the biosensor based on pPsiA and PsiR from S. meliloti is not suitable because of an early saturation with increasing concentration of D-psicose combined with a very low fold change 3.7±0.1x) ( Figure 5.1G and Supplementary Figure S5.2E, H ).

Figure 5 .

 5 2A ) combined with the PsiR from A. tumefaciens led to the seventh D-psicose biosensor which displays the same responsive range as the other six psicose biosensors described above, a high fold change (24.7±0.6x) and a satisfactory linearity ( Figure5.2B and Supplementary FigureS5.2G, H ). pPsiTacI behaved as predicted being tightly regulated by PsiR thanks to the 20 bp consensus sequence.

Figure 5 . 2 .

 52 Figure 5.2. Design and characterisation of a synthetic psicose biosensor. (A) Sequence comparison between the pTacI promoter and the pPsiTacI synthetic promoter. (B) In vivo characterisation of mCherry expression by E. coli cells harbouring the psicose biosensor based on pPsiTacI synthetic promoter and the PsiR transcription factor from Agrobacterium tumefaciens (BBa_K2448027). Fluorescence values (background subtracted) were normalized by OD 600nm . The data and error bars are the mean and standard deviation of six measurements (three biological replicates, each measured as two technical duplicates).

Figure 5 .

 5 Figure 5.3. D-Psicose 3-epimerase (DPEase) mutant library screening. (A) Schematic representation of the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with downstream the Mutant Drop Zone

  Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi from Sinorhizobium fredii (BBa_K2448028), (D) the psicose biosensor based on pPsiR promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii (BBa_K2448029), (E) the psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti (BBa_K2448030), (F) the psicose biosensor based on pPsiR promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti (BBa_K2448031), (G) the psicose biosensor based on pPsiTacI synthetic promoter and the PsiR transcription factor from Agrobacterium tumefaciens (BBa_K2448027). Fluorescence values (background subtracted) were normalized by OD 600nm and represented as fold change between 300 and 0 mM D-psicose. The data and error bars are the mean and standard deviation of six measurements (three biological replicates each measured as two technical duplicates). Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

  . The resulting plasmid, the Universal Biosensing Chassis (UBC) short version, is available in the iGEM's Registry of Standard Biological Parts repository under the acc. number BBa_K2448024 ( http://parts.igem.org/Part:BBa_K2448024 ).Step 3: The BBa_K2448024 was used as template in a PCR reaction with the primers 5'-GCGCGGTC TCAGCAGATCGTCTCAGCAGGCATGC-3' and 5'-GCGCGGTCTCATCCACTCTTCCACTCGAGAA TTG-3' and the PCR product was assembled by Golden Gate with BsaI to a gBlock fragment containing the mEmerald

  Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene was constructed in 2 steps:Step 1: A gBlock fragment containing the pPsiA promoter 5was inserted by Golden Gate with BbsI into the Universal Biosensing Chassis.Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock fragment containing the PsiR gene 5for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi resulting plasmid is the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene.

  step 1 was assembled by Golden Gate with BsmBI to a gBlock fragment containing the PsiR gene 5the psicose biosensor based on pPsiTacI synthetic promoter and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene.Psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as reporter gene was constructed in 2 steps:Step 1: A gBlock fragment containing the pPsiA promoter 5was inserted by Golden Gate with BbsI into the Universal Biosensing Chassis.Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock fragment containing the PsiR gene 5resulting plasmid is the psicose biosensor based on pPsiA promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as reporter gene.Psicose biosensor based on pPsiR promoter fromSinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as reporter gene was constructed in 2 steps: Step 1: A gBlock fragment containing the pPsiR promoter 5'-GCGGATCCCGAGAAGACAATGGAGG CCGCGCTCCTTGATGCCGACTTGCATGGCGTTGAACCACGGAATGCCGCCGATCTTGACGACCACGCC GACCTTCGGCGCATCCTGCGCCGCGACGGAAAAGGCACCGGCGAGCGAAAGCGAAGCCGCCAGAGC GGCAGCAAGAAATGTCTTGATCATGTCTCTCCTCCACAGGTTCCCGCAACGGGAACTCTCCCGGGCGCT GGCGCGCCGGCCTCCAGTTTCAATCCTCCATGACGAGAAGCGCGTTTCCCGCCGCTGACCGCCGCCTC CTCAGACGGCCCAAAGAGCTGCACAATCGATATTTCTTATTTGCACAATCGATGGTGCAAAGACTATCCTGC TGACTTAATCTTTCGTCAAGCGCAAAACGGCTCTAAGAGATTCGAGGGGGCTCGGAGCAGAAGTCTTCAC CATGGCATATGGC-3' was inserted by Golden Gate with BbsI into the Universal Biosensing Chassis. Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir PandiStep 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock fragment containing the PsiR gene 5resulting plasmid is the psicose biosensor based on pPsiR promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as reporter gene.Psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as reporter gene was constructed in 2 steps:Step 1: A gBlock fragment containing the pPsiA promoter 5was inserted by Golden Gate with BbsI into the Universal Biosensing Chassis.Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock fragment containing the PsiR gene 5'. The resulting plasmid is Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi the psicose biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as reporter gene.Psicose biosensor based on pPsiR promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as reporter gene was constructed in 2 steps:Step 1: A gBlock fragment containing the pPsiR promoter 5was inserted by Golden Gate with BbsI into the Universal Biosensing Chassis.Step 2: The plasmid obtained at step 1 was assembled by Golden Gate with BsmBI to a gBlock fragment containing the PsiR gene 5. The resulting plasmid is the psicose biosensor based on pPsiR promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as reporter gene.Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream the Mutant Drop Zone was constructed in 3 steps:Step 1: The psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene was used as template in a PCR reaction with the primers 5'-GCGCGGTCTCAGCAGAACTAGTAGCGGCCGCTG CAG-3' and 5'-GCGCGGTCTCATCCAATTATTTGTACAGTTCGTCC-3'. The PCR product was assembled by Golden Gate with BsaI to a gBlock fragment containing the Mutant Drop Zone 5'-GCGCTGGTCTCATGGATAGCGTGACCGGCGCATCGGTCACGCTATTTGTTGAGGAGAGAGAGCTGTTG ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTGTACAAAGAGGAGAAACTCG AGGATGAGAGACGGATCGATCCGTCTCAAGCGGCATGCCCAGGCATCAAATAAAACGAAAGGCTCAGTC GAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCAC CTTCGGGTGGGCCTTTCTGCGTTTATAGCAGTGAGACCGC-3'.Step 2: Due to a design error, the plasmid obtained at step 1, has a BsmBI site between the pTacI promoter and PsiR. This error was corrected by site directed mutagenesis following the Single-Primer Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Reactions IN Parallel (SPRINP) protocol (3) using the primers 5'-CGAGTGGAAGACTCGGTACAAAG AGG-3' and 5'-CCTCTTTGTACCGAGTCTTCCACTCG-3'.Step 3: The plasmid obtained at step 2 was used as template in a PCR reaction with the primers 5'-GCGCGGTCTCATCCATTTGTACCCATGGCTGCTGGC-3' and 5'-GCGCGGTCTCAGCAGTTGGA TAGCGTGAC-3' and the PCR product was assembled by Golden Gate with BsaI to a gBlock fragment containing . The resulting plasmid is the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream the Mutant Drop Zone.Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter was constructed in 1 step:Step 1: A gBlock fragment containing the pTacI promoter followed by the C. cellulolyticum DPEase 5used as template in a PCR reaction with the primers 5'-GCCGTCTCGG ATGAAACACGGTATCTACTAC-3' and 5'-GCCGTCTCCCGCTTTAAGAGTGTTTGTGGCATTC-3' and the PCR product was inserted by Golden Gate with BsmBI in the psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream the Mutant Drop Zone. The resulting plasmid is the Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter. D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter was constructed in 1 step:Step 1: The pSB1C3 backbone was used as template in a PCR reaction with the primers 5'-GCGGTCTCTGCAGTCCGGCAAAAAAGGGCAAGG-3' and 5'-GCGGTCTCTTCCAGAAATCATCC TTAGCG-3' and the PCR product was assembled by Golden Gate with BsaI to a gBlock fragment containing the pTacI promoter followed by the C. cellulolyticum DPEase 5. The resulting plasmid is the D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter.
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 6 2d and Supplementary Figure Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi S6.3
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 62 Figure 6.2. Characterization and optimization of cell-free psicose biosensor. (a) Schematic representation of D-psicose cell-free biosensor with different concentrations of TF DNA, reporter DNA, and D-psicose. (b) Surface response of the fold change of the biosensor in a combinatorial space of the TF and reporter DNA with 100 mM D-psicose. (c) Schematic representation of cell-free biosensor with expressed TF gene in the cells which were used to prepare the lysate for cell-free reactions (TF-doped extract). (d) Fold change, between 100 mM and 0 mM D-psicose, of the TF-doped biosensor at distinct concentrations of the reporter DNA. (e) Schematic representation of cell-free biosensor with preincubation of 100 nM TF DNA, the optimal concentration of TF based on Figure 6.2b . (f) Fold change, between 100 mM and 0 mM D-psicose, of the TF-preincubated biosensors after 1.5, 3, 6, and 8 hours, followed by the addition of the reporter DNA at different concentrations. (g) Schematic representation of cell-free biosensor with reinitiation of the cell-free reaction after 8 hours with fresh extract, D-psicose, and the reporter DNA. (h) Fold change of the fluorescence supplied with the same (1:1 fresh extract) or twice (1:2 fresh extract) volume of the cell-free reaction. The data and error bars are the mean and standard deviation of three measurements from three independent reaction done in the same day using the same lysate and maxiprepped plasmids. Bar plots of raw fluorescence data are presented in Supplementary Figure S6.3-5 .

Figure 6 .Figure 6 . 3 .

 663 Figure 6.3. Characterization of psicose production using the optimized biosensor. (a) Dose-response curve of two optimized sensors, 1.5 h preincubation with 10 nM reporter DNA and 6 h preincubation with 50 nM reporter DNA, plus the unoptimized D-psicose sensor from Figure 6.2b . (b) Schematic representation of cell-free biosensor with preincubation of 100 nM TF DNA applied to monitor the DPEase enzymatic production of D-psicose from 100 mM fructose. (c) Fold change, between 100 mM and 0 mM fructose, using different concentrations of DPEase enzyme DNA. We used two different optimized biosensors and the unoptimized D-psicose biosensor. The data and error bars are the mean and standard deviation of three measurements from three independent reaction done in the same day using the same lysate and maxiprepped plasmids.

  20 s ON-1 min OFF-20 s On-1 min OFF-20 s ON. Output frequency 20 kHz, amplitude 25%. The remaining steps of the protocol followed the procedure of Sun et al. for day 3, step 37. The process of mRNA and protein synthesis is performed by the molecular machinery present in the extract, with no addition of external enzymes. The amino acid solution and energy solution mixes are kept as in the original protocol and are added to the cell extract. Reactions take place in 15.75 μL volumes at 30 °C in a 384-well plate. The final cell lysate contains 6 mM Mg-glutamate, 140 mM K-glutamate, 1.5 mM of each amino acid (except leucine), 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

  This work has been originally published in the journal Data in Brief by Mathilde Koch, Amir Pandi, Baudoin Delépine, Jean-Loup Faulon. The full citation: "Koch M, Pandi A, Delépine B, Faulon J-L: A dataset of small molecules triggering transcriptional and translational cellular responses . Data Brief 2018, 17:1374-1378." Minor modifications have been introduced to the chapter presented below. Contribution: MK, AP and BD manually generated the list of small molecules triggering transcriptional and translational responses from publications. MK integrated the the list of compounds from other database. All authors participated in the preparation of the manuscript and approved the final version. Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

  0 [349] , RegTransbase r20120406 [350] , RegulonDB v9.0 [351] , RegPrecise v4.0 [352] and Sigmol v20180122 [353] .

Figure 7 . 1

 71 Figure 7.1 shows the repartition of the type of experiment ( in vivo , unspecified or other), as well as the repartition of Biosensor type (Transcription factor, riboswitch or unspecified) in the full dataset and the manually curated dataset from ACS synthetic biology.

Figure 8 . 1 .

 81 Figure 8.1. Type of experiment and biosensor type in the full dataset and the manually curated dataset. A: Full dataset -detection method. B: Full dataset -biosensor type. C: ACS dataset -detection method. D: ACS dataset -biosensor type. A and C: other in detection method corresponds to in silico, in vivo and cell-free detections. C and D: ACS dataset is the dataset obtained from manual curation of ACS synthetic biology with compounds that have available structures.

Figure 8 . 1 .

 81 Figure 8.1.A modular design workflow for engineering scalable cell-free biosensors. ( a ) Cell-free biosensors are composed of three modules: a generic sensor module linked to an output module and a metabolic transducer module transforming different molecules into ligands detectable by the sensor module. ( b ) An undetectable ligand is converted into a detectable ligand by the enzyme from the transducer module. Binding to the transcription factor controls the sensor module and downstream gene expression. ( c ) The biosensor design workflow starts with retrosynthetic pathway design using the SensiPath server[START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] . Once the transducer and sensor modules are determined, the genes encoding enzymes, transcription factors, and target promoters driving a reporter are cloned into cell-free expression vectors. The sensor is calibrated by titrating the concentrations of each plasmid to maximize signal output and dynamic range.

Figure 8 .

 8 2a ). To engineer a benzoate cell-free biosensor, we cloned BenR under the control of the OR2-OR1-Pr promoter, a modified version of the lambda phage repressor promoter Cro, known to express strongly in cell-free systems[347] . The P Ben promoter driving super-folder green fluorescent protein (sfGFP) was cloned in a separate plasmid. After initial pilot tests demonstrated that BenR was functional in a cell-free environment, we optimized the BenR biosensor by titrating the DNA concentration of the TF and reporter plasmids.

Figure 8 . 2 .

 82 Figure 8.2. Calibration of sensor and output modules for benzoate detection.( a ) BenR binds to the P Ben promoter in the presence of benzoate and activates gene expression. Here BenR is cloned in the pBEAST plasmid (a derivative of pBEST[347] ) and driven by a strong constitutive promoter, OR2-OR1-Pr. The P Ben promoter is cloned into another pBEAST backbone and drives expression of the superfolder green fluorescent protein (sfGFP). Because the system operates without a cellular boundary, multiple plasmids encoding different components of the network can easily be used simultaneously. Plasmid concentrations can then be fine tuned to identify optimal operating conditions. ( b ) Optimization of the BenR sensor and reporter modules. Cell-free reactions of 20 µl containing different concentrations of the BenR and reporter plasmids were prepared and their response to different concentrations of benzoic acid were monitored. The white square represents the optimal condition (100 nM reporter and 30 nM BenR plasmid) with the highest relative fluorescence. (see Supplementary FigureS8.2 and Supplementary TableS8.1 ). Reactions were run in sealed 384 well-plates in a plate-reader at 37˚C for at least eight hours. The heat maps represent the signal intensity after four hours. Data are the mean of three experiments performed on three different days and all fluorescence values are expressed in Relative Expression Units (REU) compared to 100 pM of a strong, constitutive sfGFP-producing plasmid. See methods for more details. ( c ) Upper panel : The BenR sensor can detect benzoic acid over three orders of magnitude and at concentrations as low as 1 µM. Shaded area around curves corresponds to +-SD from the mean of the three experiments. Lower panel : GFP expression in response to the same range of concentrations of benzoic acid as in the upper panel is easily detectable by eye on a UV table.

  Compared to its in vivo counterpart [240] , the cell-free benzoic acid biosensor is faster (maximum signal reached in four hours, Supplementary Figure S8.2 ), has a much Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi higher sensitivity and dynamic range, and has a maximum fold change of over 200 (vs. ~10-fold in vivo ) ( Figure 8.2c

Figure 8 . 3 .

 83 Figure 8.3. Expanding the chemical detection space of cell-free biosensors by plugging various metabolic transducers into an optimized sensor module. ( a ) Hippurate or cocaine can be detected using different metabolic transducers. Plasmids encoding the HipO or CocE enzymes, which convert hippuric acid or cocaine into benzoic acid, were mixed at different concentrations with optimal BenR and reporter plasmids concentrations as determined in Figure 8.2 (30 nM and 100 nM, respectively). These reactions were then incubated with increasing concentrations of inducer for at least eight hours. The heat maps represent the signal intensity after four hours ( Supplementary Figure S8.6-7 and Supplementary Table S8.2 ). Asterisks denote the optimal DNA concentration for the metabolic module. Data are the average of three experiments performed on three different days and all fluorescence values are expressed in Relative Expression Units (REU) compared to 100 pM of a strong, constitutive sfGFP-producing plasmid. ( b ) Optimized cell-free biosensors incorporating a metabolic transducer module exhibit comparable performance to the BenR sensor module (from Figure 8.2c ). All data are the mean of three experiments performed on three different days. Shaded area around curves corresponds to +-SD from the mean of the three experiments. See methods for more details. Lower panel : GFP
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 8 4a , Supplementary Figure S8.8 ). The beverages were composed of two categories: carbonated orange drinks and Monster® energy drinks. Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi
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 84 Figure 8.4 Detecting benzoic acid, hippuric acid, and cocaine in complex samples. ( a ) Cell-free benzoic acid sensor can detect benzoates in commercial beverages. Addition of an array of different orange and energy drinks to the optimized benzoic acid biosensor produces up to ~180-fold change response relative to the negative control after one hour incubation at 37ºC. The test showed 100% specificity and sensitivity to detection of benzoates based on their inclusion in the ingredient label using a fold-change of 5 as the cut-off point. ( b ) Benzoic acid sensor is capable of quantifying the concentration of benzoic acid in different beverages. Beverages were added at 1:10 dilution to cell-free reactions and the benzoic acid concentration was determined using a calibration curve ( Supplementary Figure S8.10 ) after four hours. Results were compared to those determined by LC-MS. ( c ) Endogenous

  for the TF activation by benzoic acid/ promoter activation by TF ε Fraction of activated promoter for induced or constitutive promoters , γ π mRNA and protein production rates , k κ Affinity of the RNAP/ribosome for the promoter/RBS.

Figure 9 .

 9 1c ), setting the maximum concentration of benzoate used in this work to the saturation point of this open-loop circuit.We have previously implemented sensing-enabling metabolic pathways in whole-cells for detection of molecules like cocaine, hippurate, parathion and nitroglycerin[240] . Building on that work, here we implemented three upstream transducers that convert different input metabolites into benzoate for detection by the actuator layer already tested. The transducer layers were composed of enzymes HipO for hippurate ( Figure 9.1d ), CocE for cocaine ( Figure 9.1e ), and vdh for benzaldehyde ( Figure 9.1f ). Compared to the benzoate output signal, we found that the transduction capacities of the three transducers were 99.6%, 49.2%, and 77.8%, respectively ( Supplementary Figure S9.2 ), indicating a partial dissipation in signal. Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

Figure 9 . 1 .

 91 Figure 9.1. Whole-cell actuator and metabolic transducers. ( a ) Designed synthetic metabolic circuits using Retropath [45] or Sensipath [46] consist of a transducer layer and an actuator layer. ( b ) Open-loop circuit construction of the benzoate actuator, which is used downstream of transducer metabolic circuits in this work. For the open-loop circuit, the gene encoding transcription factor (TF) is expressed constitutively under control of the promoter J23101 and RBS B0032. ( c ) Dose-response plot of the open-loop circuit for the benzoate actuator. The gray curve is a model-fitted curve (see Methods section) for the open-loop circuit. ( d,e,f ) Whole-cell metabolic transducers for hippurate ( d ), cocaine ( e ) and benzaldehyde ( f ) represented in dose-response plots (orange circles) and their associated dose-response when there is no enzyme present (blue circles). The blue dotted lines refer to the maximum signal from the actuator ( c ). The transducer output benzoate is reported through the open-loop circuit actuator. The genes encoding the enzymes are expressed under constitutive promoter J23101 and RBS B0032. All data points and the error bars are the mean and standard deviation of normalized values from measurements taken from three different colonies on the same day.

Figure 9 .

 9 2a ). Unlike digital bit-adders that exhibit an ON-OFF digital behavior, our metabolic adders exhibit a continuous analog behavior that is natural for metabolic signal conversion [393] ( Figure9.2b and Supplementary FigureS9.3 ) . Increasing the concentration of one of the inputs at any fixed concentration of the other shows an increase in the output benzoate, and thus in the resulting fluorescence ( Figure9.2b and Supplementary FigureS9.3 ).

Figure 9 . 2 .

 92 Figure 9.2. Whole-cell metabolic adder of hippurate and benzaldehyde. ( a ) Hippurate and benzaldehyde transducers are combined to build a metabolic adder producing a common output, benzoate, which is reported through the benzoate actuator. The genes encoding the enzymes are

Figure 9 .

 9 3c,d,e,f,g) that convert these compounds to benzoate. Each of the five transducers used 10 nM of enzyme DNA per reaction, except the biphenyl-2,3-diol transducer that used two metabolic enzymes with 10 nM DNA each.Compared to its whole-cell counterpart ( Figure 9.1f ), in the cell-free transducer reaction ( Figure 9.3e ) benzaldehyde appears to spontaneously oxidise to benzoate Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

Figure 9 . 3 .

 93 Figure 9.3. Cell-free actuator and metabolic transducers. ( a ) Implementing benzoate actuator and transducers in E. coli transcription/translation (TXTL) cell-free system. Cell-free reactions are composed of cell lysate, reaction buffer (energy source, tRNAs, amino acids, etc.) and DNA plasmids. ( b ) Dose-response plot of the benzoate actuator in the cell-free system with 30 nM of TF-plasmid (constitutively expressed BenR ) and 100 nM of reporter plasmid (pBen-sfGFP) per reaction. The data points represent the dose-response of the actuator to different concentrations of benzoate and the gray curve is a model-fitted curve on actuator data ( c,d,e,f,g ). Cell-free transducers coupled with the

Figure 9 .Figure 9 . 4 .

 994 Figure 9.4. Cell-free weighted transducers characterized by varying the concentration of the enzyme DNA. ( a ) In the cell-free system, the circuits can be tuned by varying the amount of each enzyme pipetted per reaction. Weighted transducers are characterized by varying the concentration of the enzymes in transducers which then are reported through the benzoate actuator. The range of the concentrations was varied to get optimal expression and minimum resource competition. ( b,c,d,e ) Heatmaps representing weighted transducers at different concentrations of input molecules and enzymes DNA for hippurate ( b ), cocaine ( c ), benzamide ( d ) and biphenyl-2,3-diol ( e ). For the biphenyl-2,3-diol weighted transducer ( e ), concentrations represent those of each metabolic plasmid (e.g., 1 nM of "enzyme DNA" refers to 1 nM of bphC plus 1 nM of bphD). See Supplementary Figure S9.9 for model results of each weighted transducer. All data are the mean of normalized values from three measurements. (RFU: Relative Fluorescence Unit).

Figure 9 .

 9 5b,c ). The results shown in Figure 9.5b,c indicate that our model describes the adders well, despite being fitted only on transducer data. Supplementary Table

Figure 9 . 5 .

 95 Figure 9. 5. Multiple transducers are combined to shape an adder while weighting inputs or enzymes. ( a ) Cell-free adder characterization by varying the concentration of either inputs or enzymes producing different levels of fluorescence through the actuator. ( b ) Heatmap showing fixed-input adder in which the inputs, hippurate and cocaine, are fixed to 100 µM and concentrations of associated enzyme are altered by altering the concentration of plasmid DNA encoding them. Top: Cell-free experiment of hippurate-cocaine fixed-input (weighted) adder. Bottom: Model simulation (prediction) of hippurate-cocaine fixed-input (weighted) adder. ( c ) Fixed-enzyme adder with fixed concentrations of the enzyme DNAs, 1 nM for HipO and 3 nM for CocE, and various concentrations of the inputs, hippurate

Figure 9 .

 9 6b ). The 4-input adder performs the weighted sum and the benzoate actuator acts as the activation function of the metabolic perceptron. Similar to the 2-input binary classifications above ( Supplementary Figure S9.10 ), the weights of the four inputs can Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

Figure 9 . 9 .

 99 6c,d red circles are the weights predicted with 0.03 nM for HipO and the bars are experimental results. As noted earlier, the sigmoidal nature of the benzoate actuator's response curve ( Figure9. 3b ) is key to achieving the "OFF" and "ON" behavior exhibited by our binary classifiers. All actual values of the model and the experiments are provided in Supplementary TableS9.Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

Figure 9 . 6 .

 96 Figure 9.6. Cell-free perceptron enabling development of classifiers. ( a ) A perceptron schemeshowing the inputs and their associated weights, the computation core, and the output. The perceptron computes the weights and actuates the weighted sum through an activation function. ( b ) Metabolic perceptron integrating multiple inputs and actuating an output. The benzoate actuator acts as the activation function of the perceptron reporting the sum of benzoate produced by the metabolic perceptron. Hippurate, cocaine, benzamide, and biphenyl-2,3-diol are the inputs of the metabolic perceptron fixed to 100 µM. The weights of the perceptron are the concentration of the enzymes calculated using the model made on weighted metabolic circuits (red circles). These weights are calculated to develop two classifiers using the metabolic perceptron and benzoate actuator. "Full OR"

  = GF P (input) GF P (extract) -GF P (ref erence) GF P (extract) -Reference: 20 ng.µL -1 of a plasmid expressing the constitutive sfGFP under OR2-OR1-Pr promoter[345] .
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Table 2

 2 

.1 ). Apart from the facilities to study biological mechanisms and rapid Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

Table 2 .1. Different types of cell-free systems Organisms Reference

 2 

		Escherichia coli	[150,156]
		Streptomyces venezuelae	[136]
		Vibrio natriegens	[138,139,157,158]
		Bacillus subtilis	[134]
		Bacillus megaterium	[134,159]
	Prokaryotic	Pseudomonas putida	[135,160]
		Escherichia fergusonii	[160]
		Pantoea agglomerans	[160]
		Corynebacterium glutamicum	[160]
		Salmonella enterica	[160]
		Klebsiella oxytoca	[160]
		Lactococcus lactis	[160]
		Wheat germ	[161]
		Rabbit reticulocyte	[162]
	Eukaryotic	Insect cells	[163]
		Leishmania tarentolae	[164]
		Human cells	[165]
		Saccharomyces cerevisiae	[166]
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  . Other strategies for mining parts have been discussed in a previous review[210] .

Table 3 .1. Successful homologous and heterologous biosensor design based identified on transcription factor/promoter pairs. Compound Original organism Implementation organism Design strategy Biosensor application Ref.

 3 

	Itaconic acid	Yersinia	Escherichia coli	Identified TF and	Used	for	[211]
		pseudotubercu		promoter		from	enzyme
		losis		catabolism		improvement
				pathways			in	pathway
							prototyping
	Vanillin	Escherichia	Escherichia coli	Natural	E.	coli	Used	for
		coli		regulator		tuned	library		[212]
				with mathematical	screening
				modeling				
	Syringaldehyde Escherichia	Escherichia coli	Natural	E.	coli	Used	for
		coli		regulator		tuned	library		[212]
				with mathematical	screening
				modeling				
	Muconic acid	Acinetobacter	Saccharomyces	Identified from a	Used	for	[213]
		sp. ADP1	cerevisiae	previous			selection	of
				publication		high producing
							strains	
	Pinocembrin	Herbaspirillum	Escherichia coli	Tuned with the help	Can be used	[214]
		seropedicae		of a mathematical	for metabolic
				model			engineering
	Pamamycin	Streptomyces	Streptomyces	Improved		from	Can be used	[215]
		alboniger	alboniger	native	genetic	for metabolic
				elements			engineering
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	p-coumaric	Bacillus subtilis Escherichia coli	Identified		from	Used	for	[216]
	acid			literature and library	screening	a
				design of RBS to	producer strain
				tune the repressor	in microfluidic
				properties		droplets
	Formaldehyde	Escherichia	Escherichia coli	Optimized	from	Used	to	[217]
		coli		native	regulatory	identify
				elements.			promising
								enzymes	for
								methanol
								assimilation.
	N-acetylneura	Escherichia	Escherichia coli	Modularization of	Used	for	[218]
	minic acid	coli		the			native	screening
				biosensing system	high-producin
								g strains
	Putrescine	Escherichia	Escherichia coli	Modularization of	Used	for
		coli		the			native	screening	[219]
				biosensing system	high-producin
								g strains
	L-phenylalanin	Escherichia	Escherichia coli	Modularization of	Used	for	[220]
	e	coli		the			native	screening
				biosensing system	high-producin
								g strains
	Shikimic acid	Corynebacteriu	Corynebacterium	Using the promoter	Used	for	[221]
		m glutamicum	glutamicum	from native genetic	screening
				elements,			high-producin
				considering	the	g strains
				transcription factor	
				to	be	naturally	
				expressed		
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	Cellobiose	Thermobifida	Escherichia coli	Identified		from	Used	to	[222]
		fusca		literature		and	identify	
				expressed in E. coli	promising	
							cellulases	
	Naringenin	Herbaspirillum	Escherichia coli	Identified		from	Can be used	[223]
		seropedicae		literature,			for metabolic
				modularized	and	engineering
				expressed in E. coli		
	Naringenin	Acinetobacter	Saccharomyces	Identified		from	Used	for	[224]
		sp. ADP1	cerevisiae	literature,			pathway	
				modularized	and	prototyping -
				expressed in E. coli	screening	
	Various	Sphingobium	Escherichia coli	Identified		from	Used to screen
	aromatic	sp. SYK-6		literature,			for	lignin	[225]
	blocks			modularized	and	degrading
				expressed in E. coli	enzymes	
	Various	MphR, isolated	Escherichia coli	Directed evolution	Can be used	[226]
	macrolides	from		and	random	for metabolic
		wastewater		mutagenesis	to	engineering
		treatment plant		improve selectivity		

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Chapter 4: Integrated SynBio Tools Applied for Optimized Bioproduction of Poly-Lactic Acid

  

	Initially described in the pages of Léduc and Loeb's essays one century ago [248,249] ,
	synthetic biology has recently emerged as a promising subject on the boundary of
	diverse fields such as molecular biology, biotechnology and engineering. Its definition
	relies on the application of engineering principles to understand and modify life, and
	identifies the cell as a controllable entity with parts that are standardizable and modular
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	network optimization
	Genome-scale Metabolic Network Models (GMMs) representing stoichiometric whole
	cell metabolism are used to study, optimize and manipulate the cell metabolism [271] .
	To date, the GMMs of several organisms have been reconstructed and are freely
	available to download in SBML format [272] . To employ GMMs, one of the most used
	approaches is Flux Balance Analysis (FBA) [273] . Thereby, in metabolic engineering,
	GMMs can be applied for analyzing and manipulating the flux distribution in order to
	optimize the yield of the desired product. Obviously, for synthetic metabolic
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	By having lactate as precursor, any bacterial chassis with these two functional
	enzymes would be expected to produce PLA. The following procedure was the analysis
	of candidate chassis that could provide a proper synthesis efficiency.
	B. Pseudomonas putida , the best candidate chassis
	As mentioned, synthetic bioproduction of PLA was already developed in E. coli [260] .
	However, we determined that several criteria could set other organisms as better
	chassis for such heterologous production.
	First, considering the natural presence of precursor, species with high lactate yield
	were listed and highlighted:
	-Wild type Lactobacillus casei RL20: Its production yield is 72 g/L at 48h,
	reaching 144.2 g/L at 48h when expressing the genes Pfk and Glk [293] .
	-Bacillus subtilis MUR1: It can produce 99.3 g/L and 183.2 g/L of L-lactic acid in
	12h and 52h respectively, with a maximum L-lactic acid production rate of 16.1
	g/L/h [294] .
	-Pseudomonas putida : Good yield results of lactic acid have been observed from
	the activities of its iLDH (22.1 nmol/min*mg for L-isomer and 66.6 nmol/min*mg
	for D-isomer) [295] .
	. Basic pathway: Pct and PhaC engineered enzymes
	Following the article from Jung et al. [260] , two genes were described as essential for
	PLA biosynthesis: an engineered Propionate CoA transferase ( Pct ) encoding for an
	enzyme which uses lactate as subtract and converts it into Lactyl-CoA, and an
	engineered PHA synthase ( PhaC ) which enzyme can polymerize monomers of
	Lactyl-CoA into PLA.
	-Engineered Pct ( Pct* ): The wild type form of Pct , present in Clostridium
	propionicum , catalyzes the formation of propanoyl-CoA from propanoate. The
	introduction of the amino acid mutation A243T was found to efficiently convert
	lactate into lactyl-CoA.
	-Engineered PhaC ( PhaC* ): Pseudomonas sp. MBEL 6-19 PHA synthase 1 is the
	original enzyme from which they performed four amino acid substitutions:
	E130D, S325T, S477F, and Q481K. The engineered version had enhanced
	activity towards (D)-lactyl-CoA and allowed its polymerization.

Table 5 .1. Plasmids build and used in this study.

 5 

Supplementary Table S1 .

 SupplementaryS1 Sequences used in this study.

		ACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTG GAACATCGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGC
		GTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCT TTCTCTGCAAATCCACATGATCGAACCGCAGCTGGTTCCGCCGCGTACCGCTC
	Sequence name	ACGAACTGTTCATCTGCGGTGCTACCGACCCGGACGGTGTTCACGAAGTTTGC GTGACCCGCAGGAAGAACGTAAAACCGCTGAAACCCTGATCTCTTACTCTATCG PsiR from Agrobacterium tumefaciens TCGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTC TGACCGGTCCGCTGGACGCTCTGATGGACTCTGAAATGCCGCGTGAATAA
	Description name Sequence	str. C58 (gene Atu4743, UniProt A9CH24) GTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATC E. coli codon optimized version of the PsiR found in Agrobacterium tumefaciens GAAGCTGCTGGTCTGAAACACATCAACATCGACCTGCCGGGTACCAAAGTTCC D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum
		CGTCACTTCCCGGCTGACCGTGCTCTGGCTCCGACCGACCTGTACCTGTTCGG
	Acc. number Description	iGEM Parts Registry: BBa_K2448006 http://parts.igem.org/Part:BBa_K2448006 E. coli codon optimized version of the D-psicose 3-epimerase (DPEase) from TGGTCGTAACGACCACGCTTCTCACGAACGTATCCGTGGTTTCCGTGCTGTTAA AAAAGACCTGCTGGGTGACGACCCGGACGAATGCATCCAGCCGACCGGTTAC Clostridium cellulolyticum str. ATCC 35319 (gene Ccel_0941, UniProt B8I944)
	Sequence Acc. number Sequence Sequence name Description Acc. number Sequence	ATGACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCTGTCTATCCTGTCTG GTGCTTCTGCTTCTACCGTTTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCG GCTGCTAACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAA iGEM Parts Registry: BBa_K2448021 CTGCCGCGTGGTCTGTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTT http://parts.igem.org/Part:BBa_K2448021 TCATGGCTGAACACCCGCACGACAACTTCACCGACCTGGTTGTTGGTTGCTAC TATCTCTGAAGAAACCGCTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTAC GACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAG ATGAAACACGGTATCTACTACGCTTACTGGGAACAGGAATGGGAAGCTGACTAC ACCACCAACTTACAGGCTCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGT GACGTTGAAGGTATGATCGCTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCT AAATACTACATCGAAAAAGTTGCTAAACTGGGTTTCGACATCCTGGAAATCGCTG CTGCTGGTTCCGGTTTACGACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCG CTGGCTCGTATCCACCTGGTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCT CTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTTGCG AAGGTCAGGCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTG GACCGGTCCGCTGGACGCTCTGAAAGACATCGACCTGCCGCGTGGTTCTCAG CTCACGGTAACGGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAACAG ACCCGGAAGAAGAACGTCGTACCGTTGAAACCCTGATCGCTTACTCTATCGAC TAA AACCTGTCTTCTCCGGACCCGGACATCCGTAAAAACGCTAAAGCTTTCTACACC GCTCTGTTCATCGCTGGTGTTACCGACCCGGACGGTGTTCACCAGGTTTGCGC GACCTGCTGAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGTGCTCTG TCGTGCTGCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTC TACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAAAAGGTGACTGG TGTTATCTCTAACAACCGTCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCT PsiR from Sinorhizobium meliloti GAACGTTCTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGT CACGCTGCTAAAGGTGGTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGG GTTGACTTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGATCAACACC TCACGACGACCACGCTTCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAG GCTCAGGAAGGTGTTGACTTCGTTAAACAGGTTGACCACAACAACGTTAAAGTT CTGACTACTTCGGTGTTGAAGGTGGTGACGACATCGAAATCACCGGTTACTCTC CGCACATGACCGAAATGGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTG E. coli codon optimized version of the PsiR found in Sinorhizobium meliloti ATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTATCGGTGGTGCTATC (gene SMb20483, UniProt Q92W80) CGTACCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACCGTAA CCGCGTTGCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCA TGGGTCGTCACGACGGTGAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACT ACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACA AGTTCCGGGTCGTGGTCGTATCCCGTGGGTTGAAATCGGTGAAGCTCTGGCTG iGEM Parts Registry: BBa_K2448008 ACATCGGTTACAACGGTTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTGGTAC http://parts.igem.org/Part:BBa_K2448008 CGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGTGCTGACGAAAA TCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAA ATGACCAACGGTGGTCGTAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTG AATGCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTCTGGA CCGGAAGTTACCATCATCGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGA ACACCGCTAACCGTCAGGCTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTG AA GTATCAAAGAATCTACCGCTGAACTGATCCGTTCTCTGGCTGAAACCCACCAGT AGGTCCGCTGGACGACATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAAT GTTCTTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTC ATGCCACAAACACTCTTAA
	Sequence	GTCTGCTGCTGCCGGTTCACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCT D
	Sequence name name	ACGAACTGTTCATCTGCGGTGCTACCGACCCGGACGGTGTTCACGAAGTTTGC GTGACCCGGAAGAAGAACGTCGTACCGCTGAAACCCTGATCTCTTACTCTATCG PsiR from Sinorhizobium fredii TCGAAGCTCACGTTCGTTCTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTC
	Description	GAAGCTGCTGGTCTGCGTCACATCAACATCGACCTGCCGGGTACCAAAGTTCC E. coli codon optimized version of the PsiR found in Sinorhizobium fredii (gene NGR_b11520, UniProt C3KR97) GTCTGTTATCTCTGACAACTTCGAAGGTGGTCGTCTGCTGACCGAAGCTATCATC
		CGTCACTTCCCGGCTGAACGTCCGCTGGAACCGGACGACCTGTACCTGTTCG
	Acc. number	iGEM Parts Registry: BBa_K2448007 GTGGTCGTGACGACCACGCTACCCGTGAACGTATCCGTGGTTTCCGTGCTGTT
		http://parts.igem.org/Part:BBa_K2448007 AAATCTGACCTGCTGGGTGCTGACCCGGACGAATGCATCTGGCCGACCGGTTA
	Sequence	CGCTGCTGACAACGCTCGTAAAGCGTTCGAAGCGTTCTACGAACAGCACGGTA ATGGCTAACTCTGGTAAAAAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTG AACTGCCGCGTGGTTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCG GTTCTTCTCCGTCTACCGTTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTC TTTCATGGCTGAACACCCGCTGGAAAACTTCACCGACCTGGTTGTTGGTTGCTA GTATCAAAGAATCTACCGCTGAACTGATCCGTAACCTGGCTGAAACCCACCAGT CGACTACGACCCGTTCGCTTCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCA
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-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal HisTag

  

		AACCTGTCTTCTCCGGACCCGGACATCCGTAAAAACGCTAAAGCTTTCTACACC http://parts.igem.org/Part:BBa_K2448001 TTATTGCACCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTA
	Sequence Sequence name Description Sequence name Acc. number Description Sequence	GACCTGCTGAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGTGCTCTG TACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAAAAGGTGACTGG GAACGTTCTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGT GTTGACTTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGATCAACACC GCTCAGGAAGGTGTTGACTTCGTTAAACAGGTTGACCACAACAACGTTAAAGTT ATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAA TGGGAGTGGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCG pPsiR from Sinorhizobium fredii TCCGGGAAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGG CTGGACGGTGACGTTAACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGT AACATCAATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCT GACGCTACCTACGGTAAACTGACCCTGAAATTCATCTGCACCACCGGTAAACTG the promoter region (0.4 kb upstream) of the PsiR gene of Sinorhizobium fredii CTCATCCGCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATC CCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAGTGCTT CGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCC (gene NGR_b11520) corresponding to nucleotides 1114473 to 1114074 of GGCGGCATTCCGTGGTTCAACGCC Sinorhizobium fredii NGR234 plasmid pNGR234b (GenBank CP000874.1) with ATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTATCGGTGGTGCTATC GGAAGGTTACGTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAA 2 modifications to remove a NcoI site and a PstI site (to allow Golden Gate CGTACCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACCGTAA AGTTCCGGGTCGTGGTCGTATCCCGTGGGTTGAAATCGGTGAAGCTCTGGCTG ACATCGGTTACAACGGTTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTGGTAC CGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGTGCTGACGAAAA AACCCGTGCTGAAGTTAAATTCGAAGGTGACACCCTGGTTAACCGTATCGAACT assembly use and comply to iGEM BioBrick RFC[10] standard) pPsiR from Agrobacterium tumefaciens GAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCACAAACTGGAATA iGEM Parts Registry: BBa_K2448013 CAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAACGGTATC AAAGTTAACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAGCTGGCT http://parts.igem.org/Part:BBa_K2448013 the promoter region (0.36 kb upstream) of the PsiR gene of Agrobacterium AATGCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTCTGGA GACCACTACCAGCAGAACACCCCGATCGGTGACGGTCCGGTTCTGCTGCCGG tumefaciens str. C58 (gene Atu4743) corresponding to nucleotides 1912967 to GGCCGCGCTCCTTGATGCCGACTTGCATGGCGTTGAACCACGGAATGCCGCC ATGCCACAAACACTCTCTCGAGCACCACCATCACCACCACTAA ACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAGACCCGAACGAAAAAC 1913328 of Agrobacterium tumefaciens str. C58 (GenBank AE007870.2) GATCTTGACGACCACGCCGACCTTCGGCGCATCCTGCGCCGCGACGGAAAAG
	Sequence Acc. number name Sequence	mCherry GTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCCTGGGTAT GGACGAACTGTACAAATAA GCACCGGCGAGCGAAAGCGAAGCCGCCAGAGCGGCAGCAAGAAATGTCTTG iGEM Parts Registry: BBa_K2448011 ATCATGTCTCTCCTCCACAGGTTCCCGCAACGGGAACTCTCCCGGGCGCTGGC http://parts.igem.org/Part:BBa_K2448011 GCGCCGGCCTCCAGTTTCAATCCTCCATGACGAGAAGCGCGTTTCCCGCCGC GGAGGCGTTGAACCACGGAATGCCGCCGATCTTGACGACGACGCCCACCTTC TGACCGCCGCCTCCTCAGACGGCCCAAAGAGCTGCACAATCGATATTTCTTATT
	Description Sequence	E. coli codon optimized version of the mCherry fluorescent protein (UniProt LacZ-alpha GGCCCTTCGGCAAAGGCTGCGGATGAGAGCAACGCCAGCGACAGACCAACC TGCACAATCGATGGTGCAAAGACTATCCTGCTGACTTAATCTTTCGTCAAGCGCA
	name	X5DSL3) GCCGCAGCAATAATTTTCTTCATTGATGTTCCTCCTCAAAAATTCGGCAAACGAA AAACGGCTCTAAGAGATTCGAGGGGGCTCGG
	Acc. number Description Sequence Acc. number name Sequence	iGEM Parts Registry: BBa_K2448004 ATCCGCCCGCAGCCCGTTTTTCCCGGACGCGTTCAAAATCTCTCATCTCGCTTA alpha fragment of the LacZ gene derived from the pUC19 cloning vector TTCGAGACTCTCCCTTGCCACTCCCATAGCAACCACCATGCACAATCGATATTG http://parts.igem.org/Part:BBa_K2448004 ATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTT http://parts.igem.org/Part:BBa_K2448003 GGGGATGCGTGCTCTAATAATCGGAATCAGTTGGGGAGATCACAT iGEM Parts Registry: BBa_K2448003 CCAATCTGCACAATCGATGGTGCAATAACCATATCATGAAGCGCCCTTCCGTCAA pPsiA from Sinorhizobium meliloti
	Sequence Description Sequence name	CAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGA AGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCA AAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTAC GGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACT the promoter region (0.4 kb upstream) of the PsiA gene of Sinorhizobium meliloti ATGACCATGATCACCCCGAGCCTGCACGCTTGCCGTTCTACCCTGGAAGATCC GCGTGTTCCGAGCTCTAACTCTCTGGCTGTTGTTCTGCAACGTCGTGACTGGGA AAACCCGGGTGTTACCCAGCTGAACCGTCTGGCTGCTCACCCGCCGTTCGCTT (gene SMb20484) corresponding to nucleotides 499435 to 499834 of pPsiA from Sinorhizobium fredii Sinorhizobium meliloti 1021 plasmid pSymB (GenBank AL591985.1)
	Description Description Acc. number Sequence Sequence name Acc. number Description Sequence	E. coli codon optimized version of the D-psicose 3-epimerase (DPEase) from Clostridium cellulolyticum str. ATCC 35319 (gene Ccel_0941, UniProt B8I944) with a C-terminal HisTag GTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGG TGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAA GTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAA ACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCT GAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACG CTTGGCGTAACTCTGAAGAAGCTCGTACCGACCGTCCGAGCCAGCAGCTGCG TTCTCTGAACGGTGAATGGCGTCTGATGCGTTACTTCCTGCTGACCCACCTGTG iGEM Parts Registry: BBa_K2448014 the promoter region (0.4 kb upstream) of the PsiA gene of Sinorhizobium fredii http://parts.igem.org/Part:BBa_K2448014 (gene NGR_b11530) corresponding to nucleotides 1113914 to 1114313 of CGGTATCTCTCACCGTATCTGGTGCACCCTGTCTACCATCTGCTCTGACGCTGCT TAA Sinorhizobium fredii NGR234 plasmid pNGR234b (GenBank CP000874.1) with CGGTGCTTTCCTTGATCCGTCGCTTGCGCCACGTGCCGTTTAGCACCGCACTG 2 modifications to remove a BsaI site and a PstI site (to allow Golden Gate ACGGTAGAGGGCGAACTTCCCGACAGCACCGAGAGATCATAGATCGTCGCTTT assembly use and comply to iGEM BioBrick RFC[10] standard) TTTCCTGCCGCCGTTCGTCATCTGACCTCCTCCAAACCCCGGAAAACCGATGC CTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTT ACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGT pPsiA from Agrobacterium tumefaciens GCACGTTTCCTGGAATTGCTCTAGTGCCGATTTCGGCTTGACGAAAGATTAAGT iGEM Parts Registry: BBa_K2448012 http://parts.igem.org/Part:BBa_K2448012 CTGAATGATAGTCATTGCACCATCGATTGTGCAAAAAAGAAATATCGATTGTGCAA TGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACT GTTGTTGGTGCCGTCTGAGGAGGCGGCCGTCAGCGGCGGGATATCCCCTTCC GTACAAATAA the promoter region (0.4 kb upstream) of the PsiA gene of Agrobacterium GGTGGGTCTGGGCGAGGTTGCGGATCAACTCGGCGGTGCTTTCCTTGATGCG GTGCAAAAGAATTAAGCTGGAGGCCGGCGCGTGAAGCGCCCGGGAGCGTTC
	Acc. number Sequence Acc. number Sequence Sequence name Description Acc. number name Sequence	iGEM Parts Registry: BBa_K2448053 http://parts.igem.org/Part:BBa_K2448053 ATGAAACACGGTATCTACTACGCTTACTGGGAACAGGAATGGGAAGCTGACTAC CTCACGGTAACGGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAACAG iGEM Parts Registry: BBa_K2448001 ATTCCGATTATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGG GTTCCCGTTGCGGGAACCTGTGGAGGAGAGAC CTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTTGCG AD4BK) GTATAAATGGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTG TCTCGTCATGGAGGATTGAAACTGGAGGCCGGCGCGCCAGCGCCCGGGAGA AAATACTACATCGAAAAAGTTGCTAAACTGGGTTTCGACATCCTGGAAATCGCTG tumefaciens str. C58 (gene Atu4744) corresponding to nucleotides 1912931 to CCGCTTGCGCCAGGTGCCGTTCAGCACGGCGCTGACCGTCGAGGGCGAGCT CCCTCGGGGAAACATGTGGAGGAGAAAC 1913328 of Agrobacterium tumefaciens str. C58 (GenBank AE007870.2) GCCGGAGAGCACCGAGAGATCGTAGATCGTCGCCTTTTTCTTGCCGCTGTTCG mEmerald E. coli codon optimized version of the mEmerald fluorescent protein (FPbase CCATCCGAGCCCCCTCGAATCTCTTAGAGCCGTTTTGCGCTTGACGAAAGATTA iGEM Parts Registry: BBa_K2448010 http://parts.igem.org/Part:BBa_K2448010 AGTCTGCACGATAGTCTTTGCACCATCGATTGTGCAAATAAGAAATATCGATTGTG CAGCTCTTTGGGCCGTCTGAGGAGGCGGCGGTCAGCGGCGGGAAACGCGCT pPsiR from Sinorhizobium meliloti

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi 108 Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi 110 Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Description the promoter region (0.4 kb upstream) of the PsiR gene of Sinorhizobium meliloti (gene SMb20483) corresponding to nucleotides 499961 to 499562 of Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation ,

Doctoral thesis_Amir Pandi 112

  

	Sequence	Sinorhizobium meliloti 1021 plasmid pSymB (GenBank AL591985.1) TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGC AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG ATCACCCCGAGCCTGCACGCTTGCCGTTCTACCCTGGAAGATCCGCGTGTTCC
	Acc. number Sequence Sequence name Description Acc. number Sequence Sequence name Description Sequence name	AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT GAGCTCTAACTCTCTGGCTGTTGTTCTGCAACGTCGTGACTGGGAAAACCCGG iGEM Parts Registry: BBa_K2448015 TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT GTGTTACCCAGCTGAACCGTCTGGCTGCTCACCCGCCGTTCGCTTCTTGGCGT http://parts.igem.org/Part:BBa_K2448015 TGAACCACGGTATGCCGCCGATCTTGACGACGACACCGACCTTGCCCGTATCC GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT AACTCTGAAGAAGCTCGTACCGACCGTCCGAGCCAGCAGCTGCGTTCTCTGAA B0015 Terminator TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG CGGTGAATGGCGTCTGATGCGTTACTTCCTGCTGACCCACCTGTGCGGTATCTC AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC TCACCGTATCTGGTGCACCCTGTCTACCATCTGCTCTGACGCTGCTTAAGCCAG TGCGCCGCGGCGGTATAGGCACCCGCAAGCGAAAGCGACGCCGCCAGAGC double transcriptional terminator consisting of terminator T1 of the Escherichia TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA GCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGT GGCGGCAAGAATTTTCTTGATCATGTTTCTCCTCCACATGTTTCCCCGAGGGGA coli rrnB gene and the terminator TE of coliphage T7 DNA ligase gene TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG TGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG ACGCTCCCGGGCGCTTCACGCGCCGGCCTCCAGCTTAATTCTTTTGCACGGA CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA CCTTTCTGCGTTTATATGAAGACAGGCAGCCATGGGAGAGCAGGGTACAAAGA AGGGGATATCCCGCCGCTGACGGCCGCCTCCTCAGACGGCACCAACAACTTG CACAATCGATATTTCTTTTTTGCACAATCGATGGTGCAATGACTATCATTCAGACT iGEM Parts Registry: BBa_B0015 TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC GGAGAAATACTAGATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAA http://parts.igem.org/Part:BBa_B0015 GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA GAATTTATGCGTTTCAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTG TAATCTTTCGTCAAGCCGAAATCGGCACTAGAGCAATTCCAGGAAACGTGCGCA TCGGTTTTCCGGGGTTTGGAGGAGGTCAG ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA AAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAA CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTA CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG CTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCC TCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGG AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA GCAGTTCATGTACGGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGA GTGGGCCTTTCTGCGTTTATA ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT CTACCTGAAACTGTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTC pPsiTacI GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC GAAGATGGTGGTGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAA a hybrid synthetic promoter composed of the -35 and the Pribnow box sequences of pTacI promoter and the consensus binding site of PsiR regulator CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA TTTATCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTA L2U3H03 Terminator TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG TGCAGAAAAAAACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAA GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA GATGGTGCTCTGAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGG
	Description	of Rhizobiale synthetic transcriptional terminator ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA TCACTACGACGCTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCT
	Acc. number Acc. number	GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA GCCGGGTGCTTACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGA iGEM Parts Registry: BBa_K2448016 iGEM Parts Registry: BBa_K2448059 AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG TTACACCATCGTTGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGG http://parts.igem.org/Part:BBa_K2448016 http://parts.igem.org/Part:BBa_K2448059 CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT TATGGACGAACTGTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCG
	Sequence Sequence	TGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGATTGCACAATCGATG AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA AAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGA TAGCGTGACCGGCGCATCGGTCACGCTATTTGTTGAG GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG GTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAG GTGCAA ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG CGGCCGCTGCAG
		AGTGGAAGAGACGAGGAAAAGAGGAGAAAAGATCAATGGTTTCTAAAGGTGAA
	Sequence Description Acc. number name name Sequence name Sequence	a hybrid synthetic promoter derived from the E. coli trp and lac UV5 promoters ACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACGTTCAGG http://parts.igem.org/Part:BBa_K2448023 CCTGGTTACCACCCTGACCTACGGTGTTCAGTGCTTCGCTCGTTACCCGGACC iGEM Parts Registry: BBa_K2448023 CTGACCCTGAAATTCATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGAC pTacI Universal Biosensing Chassis (UBC) GAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAACTGGACGGTGACGTTAAC GGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAA Psicose
	Acc. number Sequence	iGEM Parts Registry: BBa_K864400 TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA AACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTA http://parts.igem.org/Part:BBa_K864400 AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG AATTCGAAGGTGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCA
	Sequence	TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA AAGAAGATGGTAACATCCTGGGTCACAAACTGGAATACAACTACAACTCTCACAA GAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATA TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA AGTTTACATCACCGCTGACAAACAGAAAAACGGTATCAAAGTTAACTTCAAAACC ACAATT AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC CGTCACAACATCGAAGATGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAAC
		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA ACCCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTAC
	Sequence name	ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG CCAGTCTAAACTGTCTAAAGACCCGAACGAAAAACGTGACCACATGGTTCTGCT J23100 promoter CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC GGAATTTGTTACCGCTGCTGGTATCACCCTGGGTATGGACGAACTGTACAAATAA TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT GAGAGCAGATCGTCTCAGCAGGCATGCCCAGGCATCAAATAAAACGAAAGGCT
	Description	GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC CAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCT a constitutive synthetic promoter isolated from a small combinatorial library GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC ACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAACGTAC
	Acc. number	iGEM Parts Registry: BBa_J23100 GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA GTACGTACGTACGTTGGAGAGAGGATCCCTTGGAAAGTCTTCACTTGACGGCTA
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG GCTCAGTCCTAGGTACAGTGCTAGCAATTAAAGAGGAGAACAGCTATGACCATG
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biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene

  

		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGTATAAAT
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC GGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTGATTCCGAT
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA TATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGGTTATTGCA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG CCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTATGGGAGT
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA GGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCGTCCGGG
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC AAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCA
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA ATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCTCTCATCC
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA GCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATCGGCGGC
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG ATTCCGTGGTTCAACGCCAGCAGCCATGGGTACAAAGAGGAGAAATACTAGATG
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA GTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTTCAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT AGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGAAGG
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC TGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAG
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA GTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTACGGTT
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG CTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCTT
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA TCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGGTGTTG
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA TTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA ACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAAACTAT
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG GGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCTGAAAG
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT GTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAA
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA GTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAAC
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG GTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGTTGAAC
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG AGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACTGTACA
		AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTA AATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTC
		AAAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGT GTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACC
		TTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGC TTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG
	Acc. number	iGEM Parts Registry: BBa_K2448025 TGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGC
		http://parts.igem.org/Part:BBa_K2448025 TCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTAC
	Sequence name Sequence	TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA TCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG CGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACG TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA GACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAA Psicose
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biosensor based on pPsiR promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene

  

		AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT
		ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT
		CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
		TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT
		GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT
		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGGAGGCG
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC TTGAACCACGGAATGCCGCCGATCTTGACGACGACGCCCACCTTCGGCCCTT
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA CGGCAAAGGCTGCGGATGAGAGCAACGCCAGCGACAGACCAACCGCCGCAG
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG CAATAATTTTCTTCATTGATGTTCCTCCTCAAAAATTCGGCAAACGAAATCCGCC
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA CGCAGCCCGTTTTTCCCGGACGCGTTCAAAATCTCTCATCTCGCTTATTCGAGA
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC CTCTCCCTTGCCACTCCCATAGCAACCACCATGCACAATCGATATTGCCAATCTG
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA CACAATCGATGGTGCAATAACCATATCATGAAGCGCCCTTCCGTCAAGGGGATG
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA CGTGCTCTAATAATCGGAATCAGTTGGGGAGATCACATAGCAGCCATGGGTACA
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG AAGAGGAGAAATACTAGATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCAT
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA CAAAGAATTTATGCGTTTCAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT TTTGAAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGC
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC TAAACTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTC
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA TCCGCAGTTCATGTACGGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCC
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG GGACTACCTGAAACTGTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAA
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA CTTCGAAGATGGTGGTGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGG
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA TGAATTTATCTACAAAGTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCG
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA GTTATGCAGAAAAAAACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCG
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG GAAGATGGTGCTCTGAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGG
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT TGGTCACTACGACGCTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCA
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA GCTGCCGGGTGCTTACAACGTTAACATCAAACTGGACATCACCTCTCACAACGA
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG AGATTACACCATCGTTGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGG
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG TGGTATGGACGAACTGTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAG
		AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTA TCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACT
		AAAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGT AGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAG
		TTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGC TAGCGGCCGCTGCAG
	Acc. number	iGEM Parts Registry: BBa_K2448026 TGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGC
		http://parts.igem.org/Part:BBa_K2448026 TCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTAC
	Sequence name Sequence	ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA TCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG CGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACG TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA GACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAA Psicose

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi

biosensor based on pPsiTacI synthetic promoter and the PsiR transcription factor from Agrobacterium tumefaciens with mCherry as reporter gene

  

		http://parts.igem.org/Part:BBa_K2448027
	Sequence	TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
		AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
		TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
		TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
		AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
		ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
		CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
		TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
		GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
		AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTA
		AAAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGT
		TTCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGC
	Acc. number	iGEM Parts Registry: BBa_K2448027 TGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGC

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi 120 Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation ,

Doctoral thesis_Amir Pandi 121

  

		TCGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTAC
		GACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAA
		CGTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACG
		TCGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT
		GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC
		ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG
		TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
		GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT
		TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT
		GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT
		GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT
		TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT
		GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT
		TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA
		AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT
		CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA
		CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC
		AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC
		TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT
		GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGATGAGCTG
		TTGACAATTAATCATCGGCTCGTATAATGTGTGGATTGCACAATCGATGGTGCAAA
		GCAGCCATGGGTACAAAGAGGAGAAATACTAGATGGTTTCTAAAGGTGAAGAAG
		ATAACATGGCTATCATCAAAGAATTTATGCGTTTCAAAGTTCACATGGAAGGTTCT
		GTTAACGGTCACGAATTTGAAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAA
		GGTACCCAGACCGCTAAACTGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGC
		TTGGGACATCCTGTCTCCGCAGTTCATGTACGGTTCTAAAGCGTACGTTAAACAC
		CCGGCTGACATCCCGGACTACCTGAAACTGTCTTTCCCGGAAGGTTTCAAATG
		GGAACGTGTTATGAACTTCGAAGATGGTGGTGTTGTTACCGTTACCCAGGACTC
		TTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAAACTGCGTGGTACCAACTTC
		CCGTCTGACGGTCCGGTTATGCAGAAAAAAACTATGGGTTGGGAAGCGAGCTC
		TGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGAAATCAAACAGCGTCT
		GAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAAAACCACCTACAAAG
		CTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAACGTTAACATCAAACTGGACA
		TCACCTCTCACAACGAAGATTACACCATCGTTGAACAGTACGAACGTGCTGAAG
		GTCGTCACTCTACCGGTGGTATGGACGAACTGTACAAATAATCCAGGCATCAAAT
		AAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTC
		GGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCT
		GCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG
	Sequence	Psicose
	name	

biosensor based on pPsiA promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as reporter gene

  

		http://parts.igem.org/Part:BBa_K2448028
	Sequence	TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
		AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
		TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
		TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
		AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
		ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
		CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
		TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
		GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG
		AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGGCTAACTCTGGTAAAA
		AAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCGT
		TTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCT
	Acc. number	iGEM Parts Registry: BBa_K2448028 GAACTGATCCGTAACCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGC

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi 122 Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation ,

Doctoral thesis_Amir Pandi 123

  

	TCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCA
	CGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTTC
	TAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGCAGGAAGAAC
	GTAAAACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG
	TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGAAAC
	ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT
	CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGACC
	GTGCTCTGGCTCCGACCGACCTGTACCTGTTCGGTGGTCGTAACGACCACGCT
	TCTCACGAACGTATCCGTGGTTTCCGTGCTGTTAAAAAAGACCTGCTGGGTGAC
	GACCCGGACGAATGCATCCAGCCGACCGGTTACGCTGCTAACAACGCTCGTAA
	AGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAACTGCCGCGTGGTCTGTTCG
	TTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCA
	CGACAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTT
	CTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGGACGTTGAAGGTATGATCG
	CTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCTCTGGCTCGTATCCACCTG
	GTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG
	CTCTGAAAGACATCGACCTGCCGCGTGGTTCTCAGTAAAGCAGGCATGCCCAG
	GCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGT
	TGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG
	CCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGGTGGGTCTG
	GGCGAGGTTGCGGATCAACTCGGCGGTGCTTTCCTTGATGCGCCGCTTGCGC
	CAGGTGCCGTTCAGCACGGCGCTGACCGTCGAGGGCGAGCTGCCGGAGAGC
	ACCGAGAGATCGTAGATCGTCGCCTTTTTCTTGCCGCTGTTCGCCATCCGAGC
	CCCCTCGAATCTCTTAGAGCCGTTTTGCGCTTGACGAAAGATTAAGTCTGCACG
	ATAGTCTTTGCACCATCGATTGTGCAAATAAGAAATATCGATTGTGCAGCTCTTTG
	GGCCGTCTGAGGAGGCGGCGGTCAGCGGCGGGAAACGCGCTTCTCGTCATG
	GAGGATTGAAACTGGAGGCCGGCGCGCCAGCGCCCGGGAGAGTTCCCGTTG
	CGGGAACCTGTGGAGGAGAGACAGCAGCCATGGGTACAAAGAGGAGAAATAC
	TAGATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCG
	TTTCAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGT
	GAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTAC
	CAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGT
	ACGGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAA
	CTGTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGT
	GGTGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACA
	AAGTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAA
	AAACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCT
	CTGAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGA
	CGCTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTG
	CTTACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCAT
	CGTTGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACG
	AACTGTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACT
	GGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACAC
	TGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCG
	CTGCAG

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation ,

Doctoral thesis_Amir Pandi Sequence name Psicose biosensor based on pPsiR promoter from Sinorhizobium fredii and the PsiR transcription factor from Sinorhizobium fredii with mCherry as reporter gene

  

	Acc. number	iGEM Parts Registry: BBa_K2448029
		http://parts.igem.org/Part:BBa_K2448029
	Sequence	TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
		AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
		TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
		TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
		AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
		ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
		CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
		TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
		GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA

Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation ,

Doctoral thesis_Amir Pandi 125

  

		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG ACAACGTTAACATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGT
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG TGAACAGTACGAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACT
		AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGGCTAACTCTGGTAAAA GTACAAATAATCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGC
		AAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCGT CTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCT
		TTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGCT CACCTTCGGGTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCA
		GAACTGATCCGTAACCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGGC G
		TCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTCA
		CGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTTC
	Sequence	TAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGCAGGAAGAAC Psicose
	name	GTAAAACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG
		TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGAAAC
		ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT
		CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGACC
		GTGCTCTGGCTCCGACCGACCTGTACCTGTTCGGTGGTCGTAACGACCACGCT
		TCTCACGAACGTATCCGTGGTTTCCGTGCTGTTAAAAAAGACCTGCTGGGTGAC
		GACCCGGACGAATGCATCCAGCCGACCGGTTACGCTGCTAACAACGCTCGTAA
		AGCGTTCGAAGCGTTCTACGCTCGTCACGGTAAACTGCCGCGTGGTCTGTTCG
		TTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCGCA
		CGACAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCTT
		CTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGGACGTTGAAGGTATGATCG
		CTAAAGCGTTCGAAGTTATCGAACAGCCGCGTGCTCTGGCTCGTATCCACCTG
		GTTCAGCCGGAACTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG
		CTCTGAAAGACATCGACCTGCCGCGTGGTTCTCAGTAAAGCAGGCATGCCCAG
		GCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGT
		TGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGG
		CCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGGCCGCGCTC
		CTTGATGCCGACTTGCATGGCGTTGAACCACGGAATGCCGCCGATCTTGACGA
		CCACGCCGACCTTCGGCGCATCCTGCGCCGCGACGGAAAAGGCACCGGCGA
		GCGAAAGCGAAGCCGCCAGAGCGGCAGCAAGAAATGTCTTGATCATGTCTCTC
		CTCCACAGGTTCCCGCAACGGGAACTCTCCCGGGCGCTGGCGCGCCGGCCT
		CCAGTTTCAATCCTCCATGACGAGAAGCGCGTTTCCCGCCGCTGACCGCCGC
		CTCCTCAGACGGCCCAAAGAGCTGCACAATCGATATTTCTTATTTGCACAATCGA
		TGGTGCAAAGACTATCCTGCTGACTTAATCTTTCGTCAAGCGCAAAACGGCTCTA
		AGAGATTCGAGGGGGCTCGGAGCAGCCATGGGTACAAAGAGGAGAAATACTAG
		ATGGTTTCTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTT
		CAAAGTTCACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGA
		AGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCA
		AAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTAC
		GGTTCTAAAGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACT
		GTCTTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGG
		TGTTGTTACCGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAA
		GTTAAACTGCGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAA
		ACTATGGGTTGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCT
		GAAAGGTGAAATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACG
		CTGAAGTTAAAACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTT
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biosensor based on pPsiA promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as reporter gene

  

	Acc. number	iGEM Parts Registry: BBa_K2448030
		http://parts.igem.org/Part:BBa_K2448030
	Sequence	TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA
		AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
		TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA
		TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA
		AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC
		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA
		ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG
		CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC
		TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT
		GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC
		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
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		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG CGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCTTTCCCG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA GAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGGTGTTGTTACC
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA GTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAAACTGC
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA GTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAAACTATGGGTT
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG GGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGAA
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT ATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAAA
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA ACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAACGTTAAC
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG ATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGTTGAACAGTACG
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG AACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACTGTACAAATAAT
		AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCAACGGTGGTCGT CCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTA
		AAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCG TCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGG
		TTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGC GTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG
		TGAACTGATCCGTTCTCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGG
		CTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTC
	Sequence	ACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTT Psicose
	name	CTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGGAAGAAGAAC
		GTCGTACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG
		TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGCGTC
		ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT
		CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGAAC
		GTCCGCTGGAACCGGACGACCTGTACCTGTTCGGTGGTCGTGACGACCACGC
		TACCCGTGAACGTATCCGTGGTTTCCGTGCTGTTAAATCTGACCTGCTGGGTGC
		TGACCCGGACGAATGCATCTGGCCGACCGGTTACGCTGCTGACAACGCTCGTA
		AAGCGTTCGAAGCGTTCTACGAACAGCACGGTAAACTGCCGCGTGGTTTCTTC
		GTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCG
		CTGGAAAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCT
		TCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGAACATCGAAGGTATGATCG
		CTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGCTTCTCTGCAAATCCACATGA
		TCGAACCGCAGCTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG
		CTCTGATGGACTCTGAAATGCCGCGTGAATAAAGCAGGCATGCCCAGGCATCA
		AATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTG
		TCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTT
		CTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGACGGTGCTTTCCTTGAT
		CCGTCGCTTGCGCCACGTGCCGTTTAGCACCGCACTGACGGTAGAGGGCGAA
		CTTCCCGACAGCACCGAGAGATCATAGATCGTCGCTTTTTTCCTGCCGCCGTTC
		GTCATCTGACCTCCTCCAAACCCCGGAAAACCGATGCGCACGTTTCCTGGAAT
		TGCTCTAGTGCCGATTTCGGCTTGACGAAAGATTAAGTCTGAATGATAGTCATTG
		CACCATCGATTGTGCAAAAAAGAAATATCGATTGTGCAAGTTGTTGGTGCCGTCT
		GAGGAGGCGGCCGTCAGCGGCGGGATATCCCCTTCCGTGCAAAAGAATTAAG
		CTGGAGGCCGGCGCGTGAAGCGCCCGGGAGCGTTCCCCTCGGGGAAACATG
		TGGAGGAGAAACAGCAGCCATGGGTACAAAGAGGAGAAATACTAGATGGTTTCT
		AAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTTCAAAGTTCA
		CATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGAAGGTGAAGG
		TCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAGGTGGTC
		CGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTACGGTTCTAAAG
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biosensor based on pPsiR promoter from Sinorhizobium meliloti and the PsiR transcription factor from Sinorhizobium meliloti with mCherry as reporter gene

  

		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA GAAATCGGCACTAGAGCAATTCCAGGAAACGTGCGCATCGGTTTTCCGGGGTT
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG TGGAGGAGGTCAGAGCAGCCATGGGTACAAAGAGGAGAAATACTAGATGGTTT
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA CTAAAGGTGAAGAAGATAACATGGCTATCATCAAAGAATTTATGCGTTTCAAAGTT
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT CACATGGAAGGTTCTGTTAACGGTCACGAATTTGAAATCGAAGGTGAAGGTGAA
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC GGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTTACCAAAGGTGG
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA TCCGCTGCCGTTCGCTTGGGACATCCTGTCTCCGCAGTTCATGTACGGTTCTAA
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG AGCGTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCTTTCCC
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA GGAAGGTTTCAAATGGGAACGTGTTATGAACTTCGAAGATGGTGGTGTTGTTAC
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA CGTTACCCAGGACTCTTCTCTGCAAGACGGTGAATTTATCTACAAAGTTAAACTG
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA CGTGGTACCAACTTCCCGTCTGACGGTCCGGTTATGCAGAAAAAAACTATGGGT
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG TGGGAAGCGAGCTCTGAACGTATGTACCCGGAAGATGGTGCTCTGAAAGGTGA
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT AATCAAACAGCGTCTGAAACTGAAAGACGGTGGTCACTACGACGCTGAAGTTAA
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA AACCACCTACAAAGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAACGTTAA
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG CATCAAACTGGACATCACCTCTCACAACGAAGATTACACCATCGTTGAACAGTAC
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG GAACGTGCTGAAGGTCGTCACTCTACCGGTGGTATGGACGAACTGTACAAATAA
		AGTGGAAGAGACGGTACAAAGAGGAGAAATACCATATGACCAACGGTGGTCGT TCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT
		AAAAAAGCTACCATCTACGACCTGTCTGTTCTGTCTGGTTCTTCTCCGTCTACCG ATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGG
		TTTCTGCTGTTCTGAACGGTACCTGGCGTAAACGTCGTATCAAAGAATCTACCGC GTGGGCCTTTCTGCGTTTATATGTTTACTAGTAGCGGCCGCTGCAG
	Acc. number	iGEM Parts Registry: BBa_K2448031 TGAACTGATCCGTTCTCTGGCTGAAACCCACCAGTACACCGCTAACCGTCAGG
		http://parts.igem.org/Part:BBa_K2448031 CTCGTGGTCTGCGTTCTTCTCGTTCTGGTCTGGTTGGTCTGCTGCTGCCGGTTC
	Sequence name Sequence	TTTTGCACAATCGATGGTGCAATGACTATCATTCAGACTTAATCTTTCGTCAAGCC GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA GCTGACGGCCGCCTCCTCAGACGGCACCAACAACTTGCACAATCGATATTTCTT TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC TTCACGCGCCGGCCTCCAGCTTAATTCTTTTGCACGGAAGGGGATATCCCGCC CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA CTTGATCATGTTTCTCCTCCACATGTTTCCCCGAGGGGAACGCTCCCGGGCGC TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG ATAGGCACCCGCAAGCGAAAGCGACGCCGCCAGAGCGGCGGCAAGAATTTT TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA CGCCGATCTTGACGACGACACCGACCTTGCCCGTATCCTGCGCCGCGGCGGT AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC CTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGATGAACCACGGTATGC TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG TCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTT GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT AATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTG TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT CTCTGATGGACTCTGAAATGCCGCGTGAATAAAGCAGGCATGCCCAGGCATCA AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT TCGAACCGCAGCTGGTTCCGCCGCGTACCGCTCTGACCGGTCCGCTGGACG AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG CTAAAGCGTTCGAAGTTATCGAAGAACCGCGTGCTTCTCTGCAAATCCACATGA TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG TCTTTCCTGCCGTTCCCGGTTATCATGATCCGTCAGAACATCGAAGGTATGATCG GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA CTGGAAAACTTCACCGACCTGGTTGTTGGTTGCTACGACTACGACCCGTTCGCT GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC GTTAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGCTGAACACCCG GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC AAGCGTTCGAAGCGTTCTACGAACAGCACGGTAAACTGCCGCGTGGTTTCTTC TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT TGACCCGGACGAATGCATCTGGCCGACCGGTTACGCTGCTGACAACGCTCGTA CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC TACCCGTGAACGTATCCGTGGTTTCCGTGCTGTTAAATCTGACCTGCTGGGTGC ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG GTCCGCTGGAACCGGACGACCTGTACCTGTTCGGTGGTCGTGACGACCACGC CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA CGAAGGTGGTCGTCTGCTGACCGAAGCTATCATCCGTCACTTCCCGGCTGAAC AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC ACATCAACATCGACCTGCCGGGTACCAAAGTTCCGTCTGTTATCTCTGACAACTT TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA TGCTACCGACCCGGACGGTGTTCACGAAGTTTGCGAAGCTGCTGGTCTGCGTC TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA GTCGTACCGCTGAAACCCTGATCTCTTACTCTATCGACGAACTGTTCATCTGCGG AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG CTAAAGGTCAGTGCCCGATCGTTGTTTCTGCTTCTCGTGACCCGGAAGAAGAAC TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA ACGACAACCGTTACTTCTCTTCTCTGGCTCAGACCTTCGAAGCTCACGTTCGTT Psicose
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biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream the Mutant Drop Zone

  

		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGTATAAAT
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC GGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTGATTCCGAT
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA TATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGGTTATTGCA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG CCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTATGGGAGT
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA GGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCGTCCGGG
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC AAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCA
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA ATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCTCTCATCC
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA GCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATCGGCGGC
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG ATTCCGTGGTTCAACGCCAGCAGCCATGGGTACAAATGGAGGAAAAGAGGAGA
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA AAAGATCAATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCT
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT GGTTGAACTGGACGGTGACGTTAACGGTCACAAATTCTCTGTTTCTGGTGAAGG
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC TGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATTCATCTGCACCACCGG
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA TAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTC
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG AGTGCTTCGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA CTATGCCGGAAGGTTACGTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTA
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA ACTACAAAACCCGTGCTGAAGTTAAATTCGAAGGTGACACCCTGGTTAACCGTA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA TCGAACTGAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCACAAAC
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG TGGAATACAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAA
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT CGGTATCAAAGTTAACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAG
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA CTGGCTGACCACTACCAGCAGAACACCCCGATCGGTGACGGTCCGGTTCTGC
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG TGCCGGACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAGACCCGAACG
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG AAAAACGTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCC
		AGTGGAAGACTCGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAA TGGGTATGGACGAACTGTACAAATAAGAGAGCAGTTGGATAGCGTGACCGGCG
		AAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGTT CATCGGTCACGCTATTTGTTGAGGAGAGAGAGCTGTTGACAATTAATCATCGGCT
		TCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGCT CGTATAATGTGTGGAATTGTGAGCGGATAACAATTGTACAAAGAGGAGAAACTCG
	Acc. number	iGEM Parts Registry: BBa_K2448057 GACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCT AGGATGAGAGACGGATCGATCCGTCTCAAGCGGCATGCCCAGGCATCAAATAA
		http://parts.igem.org/Part:BBa_K2448057 CGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACG AACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGG
	Sequence Sequence name	ACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAAC TGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGC TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA GTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACGT GTTTATAGCAGAACTAGTAGCGGCCGCTGCAG AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG CGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG
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Psicose biosensor based on pPsiA promoter from Agrobacterium tumefaciens and the PsiR transcription factor from Agrobacterium tumefaciens with mEmerald as reporter gene and a downstream D-Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter

  

		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA GTTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCACGACGACCACGCT CGGTGTTGACTTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGATCAA
		ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG TCTCGTGAACGTATCGACGGTTTCCACGCTGCTAAAGCTGACTACTTCGGTGTT CACCGCTCAGGAAGGTGTTGACTTCGTTAAACAGGTTGACCACAACAACGTTAA
		CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC GAAGGTGGTGACGACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT AGTTATGCTGGACACCTTCCACATGAACATCGAAGAAGACTCTATCGGTGGTGC
		TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCCGCGTTGCTTCTTCGT TATCCGTACCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAATGCAACC
		GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC TAACTCTTCTATCAACTTCGAAGGTCTGCTGCGTTTCATGGGTCGTCACGACGGT GTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGGTTGAAATCGGTGAAGCTCTG
		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC GAAGCTTTCGGTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGCTTCT GCTGACATCGGTTACAACGGTTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTG
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA TTCCTGCCGTTCCCGGTTTACATGATCAAACCGGACATCGCTCAGATGCTGGAA GTACCGTTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGTGCTGACG
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG AAAGGTTTCGAACTGCTGGAAGAAAACCGTACCGAACCGGAAGTTACCATCAT AAAAAATGCTGGACCGTGAAGCTCAGGCTGCTCTGGACTTCTCTCGTTACGTTC
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG CGAACCGCAGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTGGACGA TGGAATGCCACAAACACTCTTAAAGCGGCATGCCCAGGCATCAAATAAAACGAA
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT CATCTGGGACCCGGTTGCTCTGCGTCGTATGGCTAAATAAAGCAGGCATGCCC AGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACG
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC CTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATA
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT TGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGT GCAGAACTAGTAGCGGCCGCTGCAG
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG GGGCCTTTCTGCGTTTATAACGTACGTACGTACGTGGATCCCTTGGAGTATAAAT
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC GGTGGCTTTTTTTGAACTTATGCCCGTCACTGTGATCTCCCCAACTGATTCCGAT
	Sequence	TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA TATTAGAGCACGCATCCCCTTGACGGAAGGGCGCTTCATGATATGGTTATTGCA D-
	name	TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG CCATCGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTGCTATGGGAGT
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA GGCAAGGGAGAGTCTCGAATAAGCGAGATGAGAGATTTTGAACGCGTCCGGG
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC AAAAACGGGCTGCGGGCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCA
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA ATGAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGCGTTGCTCTCATCC
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA GCAGCCTTTGCCGAAGGGCCGAAGGTGGGCGTCGTCGTCAAGATCGGCGGC
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG ATTCCGTGGTTCAACGCCAGCAGCCATGGGTACAAATGGAGGAAAAGAGGAGA
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA AAAGATCAATGGTTTCTAAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCT
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT GGTTGAACTGGACGGTGACGTTAACGGTCACAAATTCTCTGTTTCTGGTGAAGG
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC TGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATTCATCTGCACCACCGG
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA TAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTC
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG AGTGCTTCGCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA CTATGCCGGAAGGTTACGTTCAGGAACGTACCATCTTCTTCAAAGACGACGGTA
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA ACTACAAAACCCGTGCTGAAGTTAAATTCGAAGGTGACACCCTGGTTAACCGTA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA TCGAACTGAAAGGTATCGACTTCAAAGAAGATGGTAACATCCTGGGTCACAAAC
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG TGGAATACAACTACAACTCTCACAAAGTTTACATCACCGCTGACAAACAGAAAAA
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT CGGTATCAAAGTTAACTTCAAAACCCGTCACAACATCGAAGATGGTTCTGTTCAG
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA CTGGCTGACCACTACCAGCAGAACACCCCGATCGGTGACGGTCCGGTTCTGC
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGGAGCTGTTG TGCCGGACAACCACTACCTGTCTACCCAGTCTAAACTGTCTAAAGACCCGAACG
		ACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTCTCG AAAAACGTGACCACATGGTTCTGCTGGAATTTGTTACCGCTGCTGGTATCACCC
		AGTGGAAGACTCGGTACAAAGAGGAGAAATACCATATGACCGGTATCTCTTCTAA TGGGTATGGACGAACTGTACAAATAAGAGAGCAGTTGGATAGCGTGACCGGCG
		AAAAGCTACCATCTACGACCTGTCTATCCTGTCTGGTGCTTCTGCTTCTACCGTT CATCGGTCACGCTATTTGTTGAGGAGAGAGAGCTGTTGACAATTAATCATCGGCT
		TCTGCTGTTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGAAACCGCT CGTATAATGTGTGGAATTGTGAGCGGATAACAATTGTACAAAGAGGAGAAACTCG
	Acc. number	iGEM Parts Registry: BBa_K2448058 GACAAAATCCTGTCTCTGGCTAAAGCTCAGCGTTACACCACCAACTTACAGGCT AGGATGAAACACGGTATCTACTACGCTTACTGGGAACAGGAATGGGAAGCTGAC
		http://parts.igem.org/Part:BBa_K2448058 CGTGGTCTGCGTTCTTCTAAATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACG TACAAATACTACATCGAAAAAGTTGCTAAACTGGGTTTCGACATCCTGGAAATCG
	Sequence	ACAACCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAGGCTCGTAAAC CTGCTTCTCCGCTGCCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTT TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA GTGGTCTGTCTCCGATGGTTGTTTCTGGTCGTCGTGACCCGGAAGAAGAACGT GCGCTCACGGTAACGGTATCACCCTGACCGTTGGTCACGGTCCGTCTGCTGAA AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG CGTACCGTTGAAACCCTGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGT CAGAACCTGTCTTCTCCGGACCCGGACATCCGTAAAAACGCTAAAGCTTTCTAC TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA GTTACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCTGCTCTGCCGC ACCGACCTGCTGAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGTGC TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA ACGTTAACATCGACCTGCCGGGTAAATTCGCTTCTTCTGTTATCTCTAACAACCG TCTGTACTCTTACTGGCCGATCGACTACACCAAAACCATCGACAAAAAAGGTGA AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC TCACGGTGCTGAAATCCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTG CTGGGAACGTTCTGTTGAATCTGTTCGTGAAGTTGCTAAAGTTGCTGAAGCTTG
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Psicose 3-epimerase (DPEase) from Clostridium cellulolyticum under the control of pTacI promoter

  

		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGAGGAGCTGT
		TGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTT
		AACTTTAAGAAGGAGATATACAAATGAAACACGGTATCTACTACGCTTACTGGGA
		ACAGGAATGGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAAACTGGG
		TTTCGACATCCTGGAAATCGCTGCTTCTCCGCTGCCGTTCTACTCTGACATCCA
	Acc. number	iGEM Parts Registry: BBa_K2448033 GATCAACGAACTGAAAGCTTGCGCTCACGGTAACGGTATCACCCTGACCGTTG
		http://parts.igem.org/Part:BBa_K2448033 GTCACGGTCCGTCTGCTGAACAGAACCTGTCTTCTCCGGACCCGGACATCCGT
	Sequence	AAAAACGCTAAAGCTTTCTACACCGACCTGCTGAAACGTCTGTACAAACTGGAC TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA GTTCACCTGATCGGTGGTGCTCTGTACTCTTACTGGCCGATCGACTACACCAAA AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG ACCATCGACAAAAAAGGTGACTGGGAACGTTCTGTTGAATCTGTTCGTGAAGTT TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA GCTAAAGTTGCTGAAGCTTGCGGTGTTGACTTCTGCCTGGAAGTTCTGAACCGT TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA TTCGAAAACTACCTGATCAACACCGCTCAGGAAGGTGTTGACTTCGTTAAACAG AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC GTTGACCACAACAACGTTAAAGTTATGCTGGACACCTTCCACATGAACATCGAA CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA GAAGACTCTATCGGTGGTGCTATCCGTACCGCTGGTTCTTACCTGGGTCACCTG ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG CACACCGGTGAATGCAACCGTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGGT CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC TGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGGTTCTGTTGTTATGGAA TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT CCGTTCGTTCGTATGGGTGGTACCGTTGGTTCTAACATCAAAGTTTGGCGTGAC GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC ATCTCTAACGGTGCTGACGAAAAAATGCTGGACCGTGAAGCTCAGGCTGCTCT GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC GGACTTCTCTCGTTACGTTCTGGAATGCCACAAACACTCTTAATACTAGTAGCGG GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG CCGCTGCAG
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
	name Sequence	AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT D-Psicose 3
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
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-epimerase (DPEase) from Clostridium cellulolyticum with a C-terminal Histidine tag under the control of pTacI promoter

  

		CGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAA GAAGACTCTATCGGTGGTGCTATCCGTACCGCTGGTTCTTACCTGGGTCACCTG
		ACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTG CACACCGGTGAATGCAACCGTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGGT
		CGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCC TGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGGTTCTGTTGTTATGGAA
		TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGT CCGTTCGTTCGTATGGGTGGTACCGTTGGTTCTAACATCAAAGTTTGGCGTGAC
		GTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCC ATCTCTAACGGTGCTGACGAAAAAATGCTGGACCGTGAAGCTCAGGCTGCTCT
		GACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC GGACTTCTCTCGTTACGTTCTGGAATGCCACAAACACTCTCTCGAGCACCACCA
		GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTA TCACCACCACTAATACTAGTAGCGGCCGCTGCAG
		TGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG
		AAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
		AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTT
		TGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTT
		GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT
		TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG
		AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGGC
		TTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAA
		TCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCGAG
		CTCGATATCAAATTACGCCCCGCCCTGCCACTCATCGCAGTACTGTTGTAATTCA
		TTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAATC
		GCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAA
		ACGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAA
		CTCACCCAGGGATTGGCTGACACGAAAAACATATTCTCAATAAACCCTTTAGGG
		AAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATATGTGTAGAA
		ACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTT
		GCTCATGGAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCAC
		CGTCTTTCATTGCCATACGAAATTCCGGATGAGCATTCATCAGGCGGGCAAGAA
		TGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCTTTACGGTCTTTAAAAAG
		GCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTGAA
		ATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCA
		GTGATTTTTTTCTCCATTTTAGCTTCCTTAGCTCCTGAAAATCTCGATAACTCAAAA
		AATACGCCCGGTAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTG
		CCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
		AACCTATAAAAATAGGCGTATCACGAGGCAGAATTTCAGATAAAAAAAATCCTTA
		GCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGAGGAGCTGT
		TGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTT
		AACTTTAAGAAGGAGATATACAAATGAAACACGGTATCTACTACGCTTACTGGGA
		ACAGGAATGGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAAACTGGG
		TTTCGACATCCTGGAAATCGCTGCTTCTCCGCTGCCGTTCTACTCTGACATCCA
	Acc. number	iGEM Parts Registry: BBa_K2448054 GATCAACGAACTGAAAGCTTGCGCTCACGGTAACGGTATCACCCTGACCGTTG
		http://parts.igem.org/Part:BBa_K2448054 GTCACGGTCCGTCTGCTGAACAGAACCTGTCTTCTCCGGACCCGGACATCCGT
	Sequence	AAAAACGCTAAAGCTTTCTACACCGACCTGCTGAAACGTCTGTACAAACTGGAC TCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCCCTTTTTCTTTAAAACCGA GTTCACCTGATCGGTGGTGCTCTGTACTCTTACTGGCCGATCGACTACACCAAA AAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGG ACCATCGACAAAAAAGGTGACTGGGAACGTTCTGTTGAATCTGTTCGTGAAGTT TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA GCTAAAGTTGCTGAAGCTTGCGGTGTTGACTTCTGCCTGGAAGTTCTGAACCGT TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA TTCGAAAACTACCTGATCAACACCGCTCAGGAAGGTGTTGACTTCGTTAAACAG AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTC GTTGACCACAACAACGTTAAAGTTATGCTGGACACCTTCCACATGAACATCGAA
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		GAAACGTCTGTACAAACTGGACGTTCACCTGATCGGTGGT CACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCAT	
		GCTCTGTACTCTTACTGGCCGATCGACTACACCAAAACCA TAAAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGC	
		Nucleotide sequence TCGACAAAAAAGGTGACTGGGAACGTTCTGTTGAATCTGT AGCGTGCAGCTGGCTGATCACTACCAGCAAAACACTCCA	Description/Sour
	name	TCGTGAAGTTGCTAAAGTTGCTGAAGCTTGCGGTGTTGAC ATCGGTGATGGTCCTGTTCTGCTGCCAGACAATCACTATCT	ce
		TTCTGCCTGGAAGTTCTGAACCGTTTCGAAAACTACCTGA GAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAA	
	PsiR	ATG ACCGGTATCTCTTCTAAAAAAGCTACCATCTACGACCT TCAACACCGCTCAGGAAGGTGTTGACTTCGTTAAACAGGT ACGCGATCATATGGTTCTGCTGGAGTTCGTAACCGCAGCG	Agrobacterium
	(D-psicose	GTCTATCCTGTCTGGTGCTTCTGCTTCTACCGTTTCTGCTG TGACCACAACAACGTTAAAGTTATGCTGGACACCTTCCAC GGCATCACGCATGGTATGGATGAACTGTACAAA TGATGAT	tumefaciens [346]
	transcription	TTCTGAACGGTTCTTGGCGTAAACGTCGTATCTCTGAAGA ATGAACATCGAAGAAGACTCTATCGGTGGTGCTATCCGTA AA	
	factor) J23101 enzyme gene) TF and (expressing B0032 RBS promoter + constitutive	CCGCTGGTTCTTACCTGGGTCACCTGCACACCGGTGAAT AACCGCTGACAAAATCCTGTCTCTGGCTAAAGCTCAGCGT GCAACCGTAAAGTTCCGGGTCGTGGTCGTATCCCGTGGG AGGATACTAGAGGATGACCCCATCTGTTTACAGCTAGCTC TACACCACCAACTTACAGGCTCGTGGTCTGCGTTCTTCTA ACCGACCCGGACGGTGTTCACCAGGTTTGCGCTCGTGCT CT TAA TGATCGCTTACTCTATCGACGCTCTGTTCATCGCTGGTGTT CTGGACTTCTCTCGTTACGTTCTGGAATGCCACAAACACT GTCGTGACCCGGAAGAAGAACGTCGTACCGTTGAAACCC GCTGACGAAAAAATGCTGGACCGTGAAGCTCAGGCTGCT GCTCGTAAACGTGGTCTGTCTCCGATGGTTGTTTCTGGTC TTGGTTCTAACATCAAAGTTTGGCGTGACATCTCTAACGGT CCGTTTCTTCTCTTCTATGGCTCAGACCTTCGAAGGTCAG TTCTGTTGTTATGGAACCGTTCGTTCGTATGGGTGGTACCG GTAGTA G ATG AATCTGGTCTGGTTGGTCTGCTGGTTCCGGTTTACGACAA TTGAAATCGGTGAAGCTCTGGCTGACATCGGTTACAACGG AGTCCTAGGTATTATGCTAGCTAGTAGAGTCACACAGGAAA	iGEM registry [348]
	pPsiA psiR) promoter to (responsive	GCTCTGCCGCACGTTAACATCGACCTGCCGGGTAAATTC GTATAAATGGTGGCTTTTTTTGAACTTATGCCCGTCACTGT GCTTCTTCTGTTATCTCTAACAACCGTCACGGTGCTGAAAT ATCGCTCAGATGCTGGAAAAAGGTTTCGAACTGCTGGAAG AAAAGATCA ATG TTCTTTCCTGCCGTTCCCGGTTTACATGATCAAACCGGAC CGCCAGCAGCCATGGGTACAAATGGAGGAAAAGAGGAG GTGACATCGTTGTTGGTTGCTTCGACTACGACCCGTTCGC GGGCGTCGTCGTCAAGATCGGCGGCATTCCGTGGTTCAA TGCTGCGTTTCATGGGTCGTCACGACGGTGAAGCTTTCG GTTGCTCTCATCCGCAGCCTTTGCCGAAGGGCCGAAGGT GCGTTGCTTCTTCGTTAACTCTTCTATCAACTTCGAAGGTC GAAGAAAATTATTGCTGCGGCGGTTGGTCTGTCGCTGGC GGCTTTCGAACGTTTCTTCGGTCGTCGTGGTCGTCTGCC GCGGATTTCGTTTGCCGAATTTTTGAGGAGGAACATCAAT ACATCGAAATCACCGGTTACTCTCCGCACATGACCGAAAT GAGAGATTTTGAACGCGTCCGGGAAAAACGGGCTGCGG GCTGCTAAAGCTGACTACTTCGGTGTTGAAGGTGGTGACG CTATGGGAGTGGCAAGGGAGAGTCTCGAATAAGCGAGAT GACGACCACGCTTCTCGTGAACGTATCGACGGTTTCCAC CGATTGTGCAGATTGGCAATATCGATTGTGCATGGTGGTTG TTCTCTGGGTCCGGACGACGTTATCCTGTTCGGTGGTCAC CTTGACGGAAGGGCGCTTCATGATATGGTTATTGCACCAT CCTGACCGCTGCTATCCTGGCTCACGCTGCTAAAGGTGG GATCTCCCCAACTGATTCCGATTATTAGAGCACGCATCCC	Agrobacterium tumefaciens [346]
	sfGFP	AAAACCGTACCGAACCGGAAGTTACCATCATCGAACCGC AAACTGACGCTGAAGTTCATCTGTACTACTGGTAAACTGCC AAA TAA TCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGT GACGACATCTGGGACCCGGTTGCTCTGCGTCGTATGGCT TTCTGGTGGAACTGGATGGTGATGTCAACGGTCATAAGTTT AGCTGATCCCGCCGCGTACCGCTCTGGAAGGTCCGCTG ATG CGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTA	Super folder GFP
	DPEase (D-psicose 3-epimerase)	ATG AAACACGGTATCTACTACGCTTACTGGGAACAGGAAT GGGAAGCTGACTACAAATACTACATCGAAAAAGTTGCTAA ACTGGGTTTCGACATCCTGGAAATCGCTGCTTCTCCGCTG GGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGT GTTCAGTGCTTTGCTCGTTATCCGGACCATATGAAGCAGC ATGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCA GGAACGCACGATTTCCTTTAAGGATGACGGCACGTACAAA CCGTTCTACTCTGACATCCAGATCAACGAACTGAAAGCTT ACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTA GCGCTCACGGTAACGGTATCACCCTGACCGTTGGTCACG AACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACG GTCCGTCTGCTGAACAGAACCTGTCTTCTCCGGACCCGG ACATCCGTAAAAACGCTAAAGCTTTCTACACCGACCTGCT GCAATATCCTGGGCCATAAGCTGGAATACAATTTTAACAGC	Clostridium cellulolyticum [346]
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Value of the data

  

				Table
	How	data	was	Database extraction from Bionemo v6.0, RegTransbase
	acquired			r20120406, RegulonDB v9.0, RegPrecise v4.0 and Sigmol
				v20180122 as well as manual curation ACS synthetic biology
				abstracts (Volumes 1 to 6 and Volume 7 issue 1)
	Data format		Analysed
	Experimental factors	Not applicable
	Experimental features Not applicable
	Data source location	https://github.com/brsynth/detectable_metabolites
	Data accessibility		Data is with this article and on GitHub at
				https://github.com/brsynth/detectable_metabolites

  Left join external_db as xdb on xdb.external_db_id=p.external_db_id WHERE c.interaction_type is Null or c.interaction_type!='Covalent';

	The SQL request used to create this dataset is:	
	select distinct substrate.id_substrate, minesota_code, name from substrate • RegPrecise v4.0 [352] :
			inner	join	complex_substrate	on
	complex_substrate.id_substrate=substrate.id_substrate
		inner join complex on complex.id_complex=complex_substrate.id_complex
		Where activity='REG';			
	•	RegTransbase r20120406 [350] :		
	The SQL request used to create this dataset is:	
	SELECT DISTINCT a.pmid, e.name, r.name	
		FROM regulator2effectors as re		
		INNER JOIN exp2effectors as ee ON ee.effector_guid=re.effector_guid
		INNER JOIN dict_effectors AS e ON e.effector_guid=ee.effector_guid
		INNER JOIN regulators AS r ON r.regulator_guid=re.regulator_guid
		INNER JOIN articles AS a ON a.art_guid=ee.art_guid
		ORDER BY e.name;			
	RegTransbase was not maintained anymore at the time of writing of this manuscript.
	•		RegulonDB v9.0 [351] :			
	The SQL request used to create this dataset is:	
	select	c.conformation_id,	c.final_state,	e.effector_id,	e.effector_name,
	tf.transcription_factor_id,	tf.transcription_factor_name,	p.reference_id,
	xdb.external_db_name			
		from effector as e			
		inner join conformation_effector_link as mm_ce on mm_ce.effector_id=e.effector_id
		LEFT join conformation as c on c.conformation_id=mm_ce.conformation_id
			LEFT	JOIN	transcription_factor	as	tf	on
	tf.transcription_factor_id=c.transcription_factor_id	
		LEFT join object_ev_method_pub_link as x on x.object_id=c.conformation_id or
	x.object_id=tf.transcription_factor_id or x.object_id=e.effector_id
		LEFT JOIN publication as p on p.publication_id=x.publication_id

•

Bionemo v6.0

[349] 

:

Synthetic
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Table 7 .1. Contribution of each data source.

 7 The first column contains the data source, the second column the number of compounds found without a structure in that source, the third column the number of compounds with a structure (InChI) and the last column the number of compounds with a structure found only in that source.

	Source		Compounds	Compounds with	Unique
			without structure	structure	compounds with
					structure
	RegPrecise	136	418	73
	BioNemo		5	499	8
	RegTransBase	683	2057	63
	RegulonDB	12	245	23
	Sigmol		2	175	135
	ACS	synthetic	44	287	73
	biology				
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  Permission to purchase cocaine hydrochloride was given by the French drug regulatory agency (Agence Nationale de Sécurité du Médicament et des Produits de Santé) to allow the development of a new biosensor. Inducers were dissolved in ethanol and final reactions contained 0.5% ethanol for all inducer concentrations including the negative control. Reactions were prepared in PCR tubes on ice and 20 µL were transferred to a black, clear-bottom 384 well plate (ThermoScientific), sealed, and the reaction was carried out in a plate reader (Biotek; Cytation3 or Synergy HTX) to measure both endpoints and reaction kinetics. The subsequent data were processed and graphs created using custom Python scripts or Microsoft Excel. Reactions for the representative images in Figure9.2c and Figure9.3b were incubated in PCR tubes at 37°C for four hours and imaged on a UV table with either a Sony 𝛼6000 camera (benzoic and hippuric acid sensors) or a cell phone camera (cocaine sensor) and background subtracted with Adobe Photoshop. 100 nM pBen-sfGFP plasmids to 20 µL reactions containing extract and buffer. All beverages were purchased at a local supermarket. For the hippuric acid urine sensor, each reaction contained 10% volume of 0.1x urine, pre-diluted in water. Human urine samples were obtained from the Endocrinology Department at the University of Montpellier in accordance with ethics committee approval(#190102).

	Additionally, each
	reaction was supplemented with 0.8 U/µL of murine Rnase Inhibitor (New England
	Biolabs).
	Cell-free reactions with commercial beverages or human urine
	Cell extract and buffer conditions were maintained from those used in optimization
	reactions. For the benzoic acid beverage sensor, 10% reaction volume of either 1x or
	0.1x (diluted in water) of each beverage was added, in addition to 30 nM pBEAST-BenR
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  Menten equation [380] with parameters obtained from Brenda, whereas we used the framework developed by Gyorgy et al. for modeling resource competition, based on competition between DNA and mRNA for and ribosomes, respectively[381] . More details on the methods employed, as well as a full model derivation, are presented in Appendix.

Table S8 .3. Benzoate concentration in commercial beverages determined from three replicates of our cell-free biosensor and LC-MS.

 S8 

				Cell-Free Biosensor Concentration (µg/mL)		LC-MS
								Concentration
				Replicate 1	Replicate 2	Replicate 3	Mean ± St. Dev.	(µg/mL)
	Orangina® Bottle		170.5	143.3	197.8	170.6 ± 22.3	154.23
	Orangina® Can		10.3	3.4	9.6	7.7 ± 3.1	2.86
	Orangina® Zero		16.6	11.8	12.3	13.6 ± 2.2	1.65
	Generic Brand			18.1	13.8	10.3	14.1 ± 3.2	Not detectable
	Monster® Original		304.4	172.5	217.4	231.4 ± 54.8	211.52
	Monster® Zero		147.8	139.0	193.9	160.2 ± 24.1	718.97
	Monster® Ultra		172.3	150.9	154.6	159.3 ± 9.3	326.88
	Monster® Ultra Red	191.1	169.0	208.4	189.5 ± 16.1	664.35
	Monster®	'	The	19.0	15.6	11.0	15.2 ± 3.3	1.61
	Doctor'							
	Monster® Punch		575.9	157.4	196.3	309.9 ± 188.8	315.60
				10H2,1-2H3/t12-,13+,14-,15+/m0/s1	
	Supplementary						

  be adjusted to implement different classification functions. To illustrate the potential of building perceptrons with metabolic weighted adders, we computed adder weights using our model for two different classifiers: a simple classifier equivalent to a "full OR" gate ( Figure9.6c ), and a more complex classifier. To define the second classifier, we used our fitted model to simulate with different weights various 4-input functions that combined AND and OR behaviors. Our simulation outcomes were most reliable for hippurate and cocaine inputs since we had previously verified our model predictions on the fixed enzyme and fixed input adders (Figures 9.4 and 9.5). Consequently, we decided to test the classification function equivalent to a "[cocaine AND hippurate] OR benzamide OR biphenyl-2,3-diol" gate ( Figure9.6d ). Weight calculation methods are reported in the Methods section.

9.1c and 9.3b, also see Supplementary Figure S9.13a

  Our computational models fitted only on the actuator and transducer data predicted adder behaviors with high accuracy ( Supplementary TablesS9.1 and S9.2). This further enabled us to calculate the required weights for more complex "metabolic perceptrons" that compute weighted sums from multiple inputs and use them to classify the multi-input combinations in a binary manner ( Figures 9.[START_REF] Guiziou | Hierarchical composition of reliable recombinase logic devices[END_REF] and Supplementary FigureS9.11 ). Although we used fixed concentrations of inputs to demonstrate the ability of our perceptrons to classify, models fitted on characterization data from weighted transducers should enable one to build classifiers for other concentrations in the operational range of the transducers ( Supplementary FigureS9.[START_REF] Green | Toehold switches: de-novo-designed regulators of gene expression[END_REF]. Indeed, as shown in Figures 9.4 and 9.5 , for different input concentrations in the operational range the weight of the input can be tuned through the concentration of the enzyme DNA. To the best of our knowledge, the metabolic adders and perceptrons presented in this work are the first engineered biological circuits that use metabolism for analog computation.

	). Upstream of the actuator, we constructed hippurate, cocaine, and
	benzaldehyde transducers in the whole-cell system ( Figures 9.1d,e,f, also see
	Supplementary Figure S9.13b ) and a metabolic analog adder by combining the
	benzaldehyde and hippurate transducers ( Figure 9.2, also see Supplementary Figure
	S9.13c ). Similarly, we constructed hippurate, cocaine, benzaldehyde, benzamide, and
	biphenyl-2,3-diol transducers in the cell-free system ( Figures 9.3c,d,e,f,g ) and
	weighted adders by combining them ( Figure 9.5 ). Compared to the numerous digital
	biological devices, which compute through multi-layered genetic logic circuits, the
	metabolic adder is a simple one-layered device with fast execution times.
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  ). In contrast, multi-layer perceptrons, can approximate any function[408] 

  Characterization of whole-cell circuitsFor each circuit separate colonies of E. coli TOP10 (strain K-12, genotype: F -mcr A Δ( mrr -hsd RMS-mcr BC) φ80 lac ZΔM15 Δ lac X74 rec A1 ara D139 Δ( ara-leu )7697 gal U gal K rps L (Str R ) end A1 nup G) strains harboring the circuit plasmids were cultured overnight at 37 °C in LB with appropriate antibiotic. The next day each culture was diluted 100x in LB with antibiotics. 95 µL of fresh cultures were distributed in 96-well plate (Corning 3603) and the plate was incubated to reach the OD 600 ~ 0.1 in a plate reader (Biotek Synergy HTX). Then 5 µL of the input metabolites (100x ethanol solutions 5x diluted in LB) were added and the plate was incubated for 18 hours at 37℃. During the incubation, the OD 600 and GFP fluorescence (gain: 35, ex: 458 nm, em: 528 nm) were measured. Benzoate, hippurate, cocaine hydrochloride, benzaldehyde, benzamide and biphenyl-2,3-diol(2,3-dihydroxy-biphenyl) were purchased from Sigma-Aldrich. Permission to purchase cocaine hydrochloride was given by the French drug regulatory agency (Agence Nationale de Sécurité du Médicament et des Produits de Santé). For all chemicals, serial dilutions of 100x concentrations were prepared in ethanol. The formula presenting the results of the circuits' characterization is shown in data normalization section. The mean and standard deviation of all normalized data are provided in Supplementary TableS9.7.

  It measures how close the model is to the experiments. It allows for comparison of different models on the same data, the one with the smaller RMSD being better, but does not allow comparison between experiments. This measures the percentage of error for each point. We present the average on all experiments in Supplementary Tables

	R 2 = 1 -	∑ n 1 ∑ n 1 (y (y i true -mean y i pred 2 ) true -i y ) true 2
	R 2	allows measuring the goodness of fit. When the prediction is only around the
	sample mean,	R 2	= 0. When the predictions are close to the real experimental value,
	R 2	gets closer to 1, whereas it can have important negative values when the model is
	really far off.			
	Weighted	R 2 = 1 -	n ∑ 1 ∑ 1 n (y	(y i true -mean true 2 y ) i pred 2 true -i std i 2 std i 2 y )	.
	It is a variant of	R 2	that weights samples according to their experimental error, giving
	more weight or more certain samples. It otherwise has the same properties as	R 2	.
	E	rror percentage	bs ( = a	y	i	y i true -i true y	pred	) 100 *
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				63.7 +6-4.79
		K_biphenyl_enz	8.63 +-0.31
	K_biphenyl Sequence	56.3 +-4.92 Description//Nucleotide sequence
	BenR	n_biphenyl_enz	1.25 +-0.067 Transcription factor for benzoate, an activator from Pseudomonas putida [415]
	n_biphenyl UniProtKB -Q9L7Y6	3.05 +-0.192 ATG GAATCTCGTCTGCTGTCTGAACGTTCTTCTGTTTTCCACCACGCTGACCCGTACGCTGTTTCTGACTACGTTAACCAG
			CACGTTGGTCAGCACTGCATCGGTCTGTCTCGTACCACCCACCCGCAGGCTTCTCTGTCTCACCGTAAATTCGCTGAACT
			GGACCTGTGCCGTATCTCTTACGGTGGTTCTGTTCGTGTTACCTCTCCGGCTCTGGAAACCATCTACCACCTGCAGGTTCT
	Taken from Libis et al.	GCTGAACGGTAACTGCCTGTGGCGTGGTCACAAACGTGAACAGCACCTGGTTCCGGGTGAACTGCTGCTGATCAACCCG GACGACCCGGTTGACCTGACCTACTCTGAAGACTGCGAAAAATTCATCCTGAAAGTTCCGACCCGTCTGCTGGACTCTAT
	[240]		CTGCGACGAACAGCGTTGGCAGCGTCCGGACGGTGGTGTTCGTTTCCTGCGTAACCACTACCGTCTGGACGAACTGGA
			CGGTTTCGTTAACCTGCTGGCTATGGTTTGCCACGAAGCTGAAGTTTCTGACTCTCTGCCGCGTGTTCAGGGTCACTACTC
			TCAGATCGTTGCTTCTAAACTGCTGACCCTGATGTCTACCAACATCCGTCGTGAATCTCTGTCTGCTCCGCAGGCTGGTCT
			GGAACGTATCCTGGACTACATCGAACGTAACCTGAAACTGGAACTGTCTGCTGAAGTTCTGGCTGAACAGGCTTGCATGT
			CTCTGCGTTCTCTGTACGCTCTGTTCGACCAGCACCTGGGTATCACCCCGAAACACTACGTTCGTCAGCGTAAACTGGAA
			CGTGTTCACGCTTGCCTGTCTGACCCGACCTGCGGTGTTCGTTCTGTTACCGAACTGGCTCTGGACTACGGTTTCCTGCA
			CCTGGGTCGTTTCTCTGAAATCTACCGTCAGCAGTTCGGTGAACTGCCGTCTCAGACCTTCAAACGTCGTGCT TAA
	pBen		Promoter responsive to benzoate-BenR
	Taken from Libis et al.	ACTGTTCGAAGCATTGCCATTTTCTGAAGTTACCGAAAAAGTACCGAACATCCGTAAATCTGGATAACGTTCTGCACAATCC
	[240]		GGATAGCCCCCCGCCAGCCGTCTCCCTAACCTGACCAGGTCTAAACAATAACAAGGGAGAGTCTGGCC ATG
		Superfolder	ATG CGTAAAGGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGTGATGTCAACGGTCATAAGTTT
	GFP (sfGFP)	TCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGTAAACTGACGCTGAAGTTCATCTGTACTACTGGTAAACTGCC GGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGTTATCCGGACCATATGAAGCAGCA TGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCACGATTTCCTTTAAGGATGACGGCACGTACAAAA
			CGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGTAAACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACGG
			CAATATCCTGGGCCATAAGCTGGAATACAATTTTAACAGCCACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCATT
			AAAGCGAATTTTAAAATTCGCCACAACGTGGAGGATGGCAGCGTGCAGCTGGCTGATCACTACCAGCAAAACACTCCAAT
			CGGTGATGGTCCTGTTCTGCTGCCAGACAATCACTATCTGAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAGAAAC
			GCGATCATATGGTTCTGCTGGAGTTCGTAACCGCAGCGGGCATCACGCATGGTATGGATGAACTGTACAAA TGATGA

,

  Campylobacter jejuniHippurate to benzoate

	ATG AACCTGATCCCGGAAATCCTGGACCTGCAGGGTGAATTCGAAAAAATCCGTCACCAGATCCACGAAAACCCGGAAC
	TGGGTTTCGACGAACTGTGCACCGCTAAACTGGTTGCTCAGAAACTGAAAGAATTCGGTTACGAAGTTTACGAAGAAATC
	GGTAAAACCGGTGTTGTTGGTGTTCTGAAAAAAGGTAACTCTGACAAAAAAATCGGTCTGCGTGCTGACATGGACGCTCT
	GCCGCTGCAGGAATGCACCAACCTGCCGTACAAATCTAAAAAAGAAAACGTTATGCACGCTTGCGGTCACGACGGTCAC
	ACCACCTCTCTGCTGCTGGCTGCTAAATACCTGGCTTCTCAGAACTTCAACGGTGCTCTGAACCTGTACTTCCAGCCGGC
	TGAAGAAGGTCTGGGTGGTGCTAAAGCTATGATCGAAGACGGTCTGTTCGAAAAATTCGACTCTGACTACGTTTTCGGTTG
	GCACAACATGCCGTTCGGTTCTGACAAAAAATTCTACCTGAAAAAAGGTGCTATGATGGCTTCTTCTGACTCTTACTCTATC
	GAAGTTATCGGTCGTGGTGGTCACGGTTCTGCTCCGGAAAAAGCTAAAGACCCGATCTACGCTGCTTCTCTGCTGATCGT
	TGCTCTGCAGTCTATCGTTTCTCGTAACGTTGACCCGCAGAACTCTGCTGTTGTTTCTATCGGTGCTTTCAACGCTGGTCAC
	GCTTTCAACATCATCCCGGACATCGCTACCATCAAAATGTCTGTTCGTGCTCTGGACAACGAAACCCGTAAACTGACCGAA
	GAAAAAATCTACAAAATCTGCAAAGGTATCGCTCAGGCTAACGACATCGAAATCAAAATCAACAAAAACGTTGTTGCTCCG
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		GTTACCATGAACAACGACGAAGCTGTTGACTTCGCTTCTGAAGTTGCTAAAGAACTGTTCGGTGAAAAAAACTGCGAATTC
		AACCACCGTCCGCTGATGGCTTCTGAAGACTTCGGTTTCTTCTGCGAAATGAAAAAATGCGCTTACGCTTTCCTGGAAAA
		CGAAAACGACATCTACCTGCACAACTCTTCTTACGTTTTCAACGACAAACTGCTGGCTCGTGCTGCTTCTTACTACGCTAAA
		CTGGCTCTGAAATACCTGAAA TAA
	CocE	Cocaine esterase ( EC : 3.1.1.84), Rhodococcus sp.
		Cocaine to benzoate
	UniProtKB -Q9L9D7	
		ATG GTTGACGGTAACTACTCTGTTGCTTCTAACGTTATGGTTCCGATGCGTGACGGTGTTCGTCTGGCTGTTGACCTGTACC
		GTCCGGACGCTGACGGTCCGGTTCCGGTTCTGCTGGTTCGTAACCCGTACGACAAATTCGACGTTTTCGCTTGGTCTAC
	Taken from Libis et al. [240] and BsaI site	CCAGTCTACCAACTGGCTGGAATTTGTTCGTGACGGTTACGCTGTTGTTATCCAGGACACCCGTGGTCTGTTCGCTTCTGA AGGTGAATTTGTTCCGCACGTTGACGACGAAGCTGACGCTGAAGACACCCTGTCTTGGATTTTGGAACAGGCTTGGTGC GACGGTAACGTTGGTATGTTCGGTGTTTCTTACCTGGGTGTTACCCAGTGGCAGGCTGCTGTTTCTGGTGTTGGTGGTCTG
	removed	AAAGCTATCGCTCCGTCTATGGCTTCTGCTGACCTGTACCGTGCTCCGTGGTACGGTCCGGGTGGTGCTCTGTCTGTTGA
		AGCGCTGCTGGGTTGGTCTGCTCTGATCGGTACCGGTCTGATCACCTCTCGTTCTGACGCTCGTCCGGAAGACGCTGCT
		GACTTCGTTCAGCTGGCTGCTATCCTGAACGACGTTGCTGGTGCTGCTTCTGTTACCCCGCTGGCTGAACAGCCGCTGCT
		GGGTCGTCTGATCCCGTGGGTTATCGACCAGGTTGTTGACCACCCGGACAACGACGAATCTTGGCAGTCTATCTCTCTGT
		TCGAACGTCTGGGTGGTCTGGCTACCCCGGCTCTGATCACCGCTGGTTGGTACGACGGTTTCGTTGGTGAAAGCCTGCG
		TACCTTCGTTGCTGTTAAAGACAACGCTGACGCTCGTCTGGTTGTTGGTCCGTGGTCCCACTCTAACCTGACCGGTCGTA
		ACGCTGACCGTAAATTCGGTATCGCTGCTACCTACCCGATCCAGGAAGCTACCACCATGCACAAAGCTTTCTTCGACCGT
		CACCTGCGTGGTGAAACCGACGCACTTGCTGGTGTTCCGAAAGTTCGTCTGTTCGTTATGGGTATCGACGAATGGCGTGA
		CGAAACCGACTGGCCGCTGCCGGACACCGCTTACACCCCGTTCTACCTGGGTGGTTCTGGTGCTGCTAACACCTCTACC
		GGTGGTGGTACCCTGTCTACCTCTATCAGCGGTACCGAATCTGCTGACACCTACCTGTACGACCCGGCTGACCCGGTTCC
		GAGCCTGGGTGGTACCCTGCTGTTCCACAACGGTGACAACGGTCCGGCTGACCAGCGTCCGATCCACGACCGTGACGA
		CGTTCTGTGCTACTCTACCGAAGTTCTGACCGACCCGGTTGAAGTTACCGGTACCGTTTCTGCTCGTCTGTTCGTTTCTTC
		TTCTGCTGTTGACACCGACTTCACCGCTAAACTGGTTGACGTTTTCCCGGACGGTCGTGCTATCGCTCTGTGCGACGGTA
		TCGTTCGTATGCGTTACCGTGAAACCCTGGTTAACCCGACCCTGATCGAAGCTGGTGAAATCTACGAAGTTGCTATCGACA
		TGCTGGCTACCTCTAACGTTTTCCTGCCGGGTCACCGTATCATGGTTCAGGTTTCTTCTTCTAACTTCCCGAAATACGACC
		GTAACTCTAACACCGGTGGTGTTATCGCTCGTGAACAGCTGGAAGAAATGTGCACCGCTGTTAACCGTATCCACCGTGGT
		CCGGAACACCCGAGCCACATCGTTCTGCCGATCATCAAACGT TAA
	vdh	Aryl-aldehyde oxidase ( EC : 1.2.3.9), Acinetobacter johnsonii SH046
		Benzaldehyde to benzoate
	UniProtKB -D0RZT4	
		ATG CACAACGTTCAGCTGAAACAGGACAACACCGTTGACACCTCTTCTTTCGAATCTGCTCCGAACGTTCACACCGTTCA
		GCTGCTGATCCACGGTCAGTCTGTTGACGCTTCTAACCAGATGACCTTCAAACGTATCTCTCCGATCGACGGTCAGGTTG
	Codon optimized and chemically synthesized	CTTCTATCGCTGCTGCTGCTACCCTGGCTGACGTTGACCTGGCTATCGAATCTGCTGCTAAAGCTTTCCCGATCTGGTCTA AACTGTCTCCGACCGAACGTCGTCTGCGTCTGCTGAAAGCTGCTGACCTGATGGACGCTCGTACCGACCAGTTCATCCA GATCGGTATGCGTGAAACCGGTTCTACCGCTACCTGGTACGGCTTCAACGTTCACCTCGCTGCTAACATGCTGCGTGAAG
		CTGCTGCTATGACCACCCAGATGGACGGTTCTCTGATCCCGTCTGACGTTCCGGGTAACATGGCTATGGGTATCCGTGTTC
		CGTGCGGTGTTGTTGTTGGTATCGCTCCGTGGAACGCTCCGGTTATCCTGCCGACCCGTGCACTGGCTATGCCGCTGGC
		TTGCGGTAACACCGTTGTTCTGAAAGCTTCTGAAGCTTGCCCGGCTACCCAGCGTCTGATCGGTCAGGTTCTGCACGAA
		GCTGGTCTGGGTGACGGTGTTGTTAACGTTATCACCCACGCTGCTGAAGACGCTTCTCAGATCGTTGAACGTCTGATCTCT
		CACCCGGCTGTTAAACGTATCAACTTCACCGGTTCTACCAACGTTGGTAAAATCATCGCTGAAACCGCTGCTAAATACCTG
		AAACCGGTTCTGCTGGAACTGGGTGGTAAAGCTCCGGTTGTTGTTCTGAACGAAGCTGACGTTGACGAAGCTGTTAACGC
		TGTTGTTTTCGGTGCTTTCTTCAACCAGGGTCAGATCTGCATGTCTACCGAACGTGTTCTGGTTCAGGACCGTATCGCTGA
		CCAGTTCATCGAAAAACTGATCGAAAAAACCCGTACCATCCACGCTGGTAACCCGACCTTCAAAGGTCACGTTCTGGGTG
		TTCTGGAATCTCAGCGTGCTGCTAACCGTATCCAGCACCTGCTGGAAGACGCTCAGTCTCAGGGTGCTGACCTGCCGCT
		GGGTATCCACATCCAGAACACCACCATGCAGCCGACCCTGGTTCTGAACATCCAGCCGGAAATGCTGCTGTACCGTGAA
		GAATCTTTCGGTCCGGTTTGCACCGTTCAGCGTTTCAACTCTGTTGAAGAAGGTATCGCCCTGGCTAACGACTCTGAATTC
		GGTCTGTCTGCTGCTGTTTTCTCTCAGGACATCGCTCAGGCCCTGGACGTTGCTAAACAGATCGACTCCGGTATCTGCCA
		CATCAACGGTGCTACCGTTCACGACGAAGCTCAGATGCCGTTCGGTGGTACCAAAGCTTCTGGTTACGGTCGTTTCGGTT
		CTAAAGCTTCTATCGCTGAATTCACCGAACTGCGTTGGATCACCATCCAGACCCAGTCTCGTCACTACCCGATC TAA
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  ,, Pseudomonas sp. Biphenyl-2,3-diol to 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase ( EC : 3.7.1.8), Pseudomonas putida 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate to benzoate

	UniProtKB -P17297	Biphenyl-2ATG AGCATTGAACGCTTAGGTTACCTGGGTTTCGCAGTGAAAGATGTGCCAGCCTGGGACCACTTTCTGACGAAATCCGT
		GGGCTTAATGGCGGCCGGTAGCGCCGGAGATGCAGCCCTTTACCGTGCGGACCAACGTGCTTGGCGCATCGCAGTACA
	Codon optimized and chemically synthesized	ACCTGGTGAGCTTGACGATTTAGCCTATGCAGGCTTAGAGGTGGACGACGCAGCTGCGCTTGAACGTATGGCGGACAAA TTACGTCAAGCTGGTGTTGCGTTCACCCGTGGGGACGAGGCCCTGATGCAACAGCGCAAAGTGATGGGGCTTCTTTGCT TGCAGGATCCATTTGGATTACCTTTGGAAATCTATTATGGACCTGCTGAAATTTTCCACGAACCATTCTTGCCGTCTGCTCC
		TGTTTCCGGGTTCGTGACCGGGGACCAGGGTATTGGCCATTTTGTCCGTTGTGTTCCCGATACAGCGAAGGCTATGGCTT
		TTTACACCGAGGTCCTTGGGTTCGTGCTTTCAGACATTATTGACATTCAAATGGGGCCCGAGACTTCCGTTCCCGCTCACT
		TCTTACATTGCAACGGACGCCATCACACTATCGCTTTGGCCGCCTTTCCCATTCCGAAACGTATCCACCACTTCATGTTAC
		AGGCAAACACAATCGACGACGTGGGTTACGCATTTGATCGTCTGGATGCAGCAGGGCGCATTACCTCGCTGCTGGGGCG
		TCACACCAATGATCAGACCCTGAGCTTTTACGCTGATACCCCAAGCCCCATGATTGAGGTCGAATTCGGTTGGGGCCCGC
		GTACAGTGGATTCCTCTTGGACCGTAGCGCGTCACTCGCGCACCGCTATGTGGGGGCATAAGTCTGTTCGCGGACAACG
		C TAA
	bphD UniProtKB -Q52036	2-ATG ACAGCATTGACTGAAAGCTCTACTAGCAAATTCCTTAACATCAAAGAGAAAGGCTTGTCCGACTTTAAGATTCATTATAA
		TGAAGCGGGCAACGGTGAAACTGTCATCATGCTGCATGGCGGTGGACCGGGAGCCGGAGGATGGTCGAACTATTATCGT
	Codon optimized and chemically synthesized	AATATCGGACCGTTCGTTGAAGCCGGTTACCGTGTCATTTTGAAGGATTCACCCGGCTTTAACAAATCCGATGCTGTCGTC ATGGATGAACAACGTGGGCTTGTAAATGCTCGTGCGGTCAAGGGATTGATGGATGCTCTTGGCATTGATCGTGCGCATCTG GTGGGAAATTCAATGGGAGGTGCAACCGCGCTTAACTTCGCCATCGAGTATCCAGACCGTATTGGAAAACTTATCCTTATG
		GGTCCGGGAGGTTTGGGACCCTCCATGTTTGCCCCAATGCCCTTAGAGGGAATTAAATTATTATTTAAGTTATATGCAGAGC
		CGTCGTATGAAAATCTGAAACAGATGATCCAAGTGTTCCTTTATGATCAATCTCTGATTACTGAGGAACTTTTACAAGGACGC
		TGGGAAGCCATTCAGCGTCAACCAGAACATCTTAAAAACTTCCTGATTTCTGCGCAGAAGGCGCCCCTGAGTACGTGGGA
		TGTTACCGCCCGTTTGGGAGAGATTAAGGCGAAGACCTTCATTACATGGGGTCGTGACGACCGCTTCGTGCCGTTAGAC
		CATGGTCTGAAACTTTTGTGGAATATTGATGACGCACGCTTGCACGTTTTTTCCAAGTGCGGACATTGGGCACAATGGGAG
		CATGCTGACGAGTTTAACCGCTTAGCCATTGACTTTCTGCGCCAGGCT TAA
	UniProtKB -B4XEY3	Amidase ( EC : 3.5.1.4), Rhodococcus erythropolis
		Benzamide to benzoate
	Codon optimized and	ATG GCGACAATCCGTCCCGATGACAACGCAATTGACACGGCGGCCCGCCATTATGGCATCACCCTTGACCAAAGCGCG
	chemically synthesized	CGTCTTGAGTGGCCCGCACTTATTGACGGAGCCTTAGGGAGCTACGACGTTGTTGACCAGCTGTACGCTGATGAAGCCA CGCCGCCAACAACGTCGCGTGAACATACTGTCCCTACTGCTAGCGAAAATCCCCTTTCCGCCTGGTACGTTACGACCTCT
		ATCCCCCCCACAAGTGACGGAGTGTTGACTGGACGCCGCGTCGCCATCAAAGATAACGTCACAGTAGCTGGCGTGCCAA
		TGATGAACGGCTCGCGTACCGTTGAGGGATTTACTCCGTCACGCGACGCCACTGTAGTCACTCGCCTGCTGGCTGCTGG
		TGCAACAGTAGCTGGAAAGGCTGTCTGTGAGGACTTATGCTTTTCTGGCTCTAGTTTTACCCCAGCCTCGGGACCTGTTC
		GCAATCCCTGGGATCCGCAGCGCGAGGCAGGAGGAAGTTCCGGCGGAAGTGCAGCATTAGTAGCAAATGGCGATGTCG
		ACTTCGCAATTGGAGGTGACCAGGGTGGCTCCATCCGTATCCCGGCTGCCTTTTGCGGCGTAGTCGGCCACAAGCCTAC
		ATTTGGACTTGTACCATATACGGGAGCCTTCCCAATCGAACGCACGATTGACCACCTTGGACCGATTACACGCACTGTCC
		ATGACGCTGCACTTATGCTGTCAGTTATCGCAGGCCGCGATGGAAACGACCCTCGTCAAGCGGATAGTGTGGAAGCGGG
		CGACTACCTTAGTACTTTAGATAGCGACGTCGACGGGTTACGTATCGGAATCGTACGTGAGGGTTTTGGCCACGCAGTCA
		GCCAACCGGAGGTAGACGACGCGGTTCGTGCAGCGGCTCACAGCTTAGCAGAAATCGGATGCACAGTGGAAGAAGTGA
		ACATTCCATGGCACCTGCATGCGTTTCATATCTGGAATGTGATTGCCACCGATGGCGGTGCTTACCAAATGTTAGACGGGA
		ACGGTTATGGAATGAATGCAGAAGGTTTATACGACCCTGAACTTATGGCTCACTTCGCATCTCGTCGTCTTCAACATGCAGA
		TGCCTTGTCTGAAACCGTTAAGCTTGTAGCTCTGACCGGCCACCACGGGATTACGACATTAGGGGGCGCTTCGTACGGG
		AAAGCCCGCAACTTGGTTCCGTTAGCGCGTGCAGCTTACGACACCGCGCTTCGTCAGTTCGACGTGCTTGTAATGCCAA
		CTTTACCTTATGTCGCCTCAGAATTACCAGCCAATGATGTCGACCGTGCAACTTTTATTACTAAGGCGCTTGGTATGATCGC
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		Hippurate	Benzaldehyde	model	Mean	sd
		concentrations	concentrations			
	1	0	0	48.39032	47.51496	34.85855
	2	0	1	50.40322	27.97123	28.93989
	3	0	10	90.27141	84.88917	59.20592
	4	0	20	147.7509	158.3545	92.4153
	5	0	100	534.1186	475.0621	185.3318
	6	0	500	936.1886	903.2327	213.803
	7	0	1000	998.8138	919.1106	213.8193
	8	1	0	49.6788	30.05882	19.74518
	9	1	1	52.52181	28.19774	29.37242
	10	1	10	94.13735	93.33507	56.48188
	11	1	20	152.0326	159.4401	84.51181
	12	1	100	536.491	381.3766	79.87722
	13	1	500	936.3736	732.908	122.5856
	14	1	1000	998.8558	1166.612	236.5423
	15	10	0	75.59127	86.21446	50.38076
	16	10	1	80.61638	81.19441	49.33897
	17	10	10	130.8714	139.937	76.1301
	18	10	20	190.7461	188.635	96.26744
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	19	10	100	557.122	470.0044	173.4254
	20	10	500	938.0144	804.201	224.0854
	21	10	1000	999.231	1134.184	295.3284
	22	20	0	114.3144	175.0692	115.3943
	23	20	1	120.0905	124.1758	84.0242
	24	20	10	173.6536	231.4451	163.5917
	25	20	20	233.2806	273.8019	134.089
	26	20	100	578.5992	463.7883	134.5797
	27	20	500	939.7882	704.2105	44.10476
	28	20	1000	999.6417	1063.241	377.3755
	29	100	0	425.2822	597.2984	288.7776
	30	100	1	429.6361	470.3275	285.0136
	31	100	10	467.0102	490.0771	278.2035
	32	100	20	504.9083	587.1758	308.1422
	33	100	100	707.7917	557.0478	123.6608
	34	100	500	952.3317	930.1619	287.9087
	35	100	1000	1002.709	1092.143	349.8937
	36	500	0	884.7742	862.9617	369.9712
	37	500	1	885.2747	794.7597	190.4564
	38	500	10	889.6618	877.49	145.7884
	39	500	20	894.3008	938.5556	119.4559
	40	500	100	924.2587	1036.408	163.6042
	41	500	500	988.921	1181.836	208.2064
	42	500	1000	1013.8	1270.341	369.709
	43	1000	0	974.6671	886.9526	220.3447
	44	1000	1	974.7888	891.2346	131.7974
	45	1000	10	975.8681	899.482	134.6977
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	46	1000	20	977.034	1087.89	166.0846
	47	1000	100	985.2558	1111.723	233.7399
	48	1000	500	1009.024	1158.32	274.9251
	49	1000	1000	1021.962	1478.605	287.9171
	Benzoate actuator (Fig. 9.3b)			
	Benzoate	Data mean	Data sd	Model	
	Concentrations				
	0		0.033011438	0.007420496	0.032948286
	1		0.054448326	0.000653338	0.075157603
	5		0.485035272	0.128358282	1.12905611
	10		3.21651485	0.14101149	2.723713493
	50		4.241992557	0.174111638	4.496461865
	100		4.673264388	0.159454201	4.605450067
	500		5.017578705	0.074886371	4.951792779
	1000		5.259845216	0.156300164	5.361737472
	Hippurate transducer (Fig. 9.3c)		
	Hippurate	NC	sd	Data	Data Sd
	concentration			Means	
	0		0.01859	0.013555 0.018196	0.003558
	10		0.028282	0.007689 1.203237	0.168961
	100		0.037257	0.004361 3.943558	0.183397
	1000		0.061559	0.009436 4.414297	0.484822
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	Cocaine	NC	sd	Data	Data Sd
	concentration			Means	
	0	0.02859	0.012555 0.017033	0.003252
	10	0.025282	0.007689 0.592297	0.475485
	100	0.036257	0.004361 2.632578	0.463412
	1000	0.055559	0.009436 3.42496	0.582069
	Benzaldehyde transducer (Fig. 9.3e)		
	Benzaldehyde	NC	sd	Data	Data Sd
	concentration			Means	
	0	0.051592	0.007427 0.07209	0.04227
	10	0.204802	0.034533 0.747988	0.26426
	100	3.199616	0.08219	3.661972	0.166329
	1000	4.784759	0.160701 4.322671	0.149633
	Benzamide transducer (Fig. 9.3f)			
	Benzamide	NC	sd	Data	Data Sd
	concentration			Means	
	0	0.051592	0.007427 0.07209	0.04227
	10	0.043164	0.		

009378 2.761356 0.099712 100 0.118696 0.023099 4.299468 0.11708 1000 0.585144 0.079395 3.977133 0.067883 Biphenyl-2,3-diol transducer (Fig. 9.3g)

  

	Biphenyl-2,3-diol	NC	sd	Data	Data Sd	only	sd	only	sd
	concentration			Means		enzyme 1		enzyme 2	
	0	0.032658	0.004461	0.032591	0.006763	0.032886	0.004461	0.033712	0.014259
	10	0.039945	0.01463	0.10021	0.03997	0.041163	0.02168	0.040885	0.018025
	100	0.036436	0.015096	3.45308	0.32505	0.038145	0.023125	0.04936	0.025325
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		0.026511	0.002102	2.39105	0.332053	0.031618	0.003012	0.030489	0.003325
	Hippurate weighted transducer (Fig. 9.4b)				
	Hippurate	HipO [nM]	Data Means	Data Sd		Model	
	concentration							
	0	0.1	0.00818244		0.00139968	0.03075614
	10	0.1	0.65776276		0.04402834	0.05689169
	100	0.1	2.57263017		0.10171441	2.24348368
	1000	0.1	3.40759119		0.08937716	3.80489409
	0	0.3	0.00811206		0.00282825	0.03075614
	10	0.3	1.3414102		0.10062636	0.66883489
	100	0.3	3.28084253		0.05991059	3.95271157
	1000	0.3	3.80353341		0.07346332	4.13883002
	0	1	0.00336096		0.00195845	0.03075614
	10	1	2.54224076		0.16906574	2.06598955
	100	1	3.68595259		0.14276648	4.08654164
	1000	1	4.33864752		0.1752886	4.30217219
	0	3	0.00848159		0.00459283	0.03075614
	10	3	2.49515212		0.02119017	2.3672994
	100	3	4.11198508		0.1491968	4.10493864
	1000	3	4.55381935		0.04947948	4.34647867
	0	10	0.00721463		0.00211972	0.03075614
	10	10	2.49062978		0.1654227	2.41173608
	100	10	4.00351933		0.03257552	4.10775299
	1000	10	4.5330905		0.05971498	4.35371225
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	0	0.1	0.00783051	0.00331458	0.03075614
	10	0.1	0.56926921	0.05623263	0.05585811
	100	0.1	1.57792676	0.2993573	1.52850911
	1000	0.1	1.67344138	0.29497577	2.21612192
	0	0.3	0.00703866	0.00199929	0.03075614
	10	0.3	1.22031005	0.17895399	0.801576
	100	0.3	2.69981875	0.12090086	3.88620162
	1000	0.3	2.85549631	0.12248131	3.97994033
	0	1	0.00823523	0.00562331	0.03075614
	10	1	1.44253814	0.07074442	3.21817476
	100	1	3.42455436	0.03567821	4.12606657
	1000	1	3.34734027	0.03489832	4.1766156
	0	3	0.00834081	0.00117569	0.03075614
	10	3	1.56789667	0.15795989	3.6579708
	100	3	3.82947087	0.39735051	4.19217237
	1000	3	3.76300832	0.03985681	4.26325038
	0	10	0.00761935	0.00335635	0.03075614
	10	10	1.65839624	0.0614677	3.71767934
	100	10	3.63471115	0.18105836	4.20846933
	1000	10	3.82883739	0.23721058	4.28533365
	Benzamide weighted transducer (Fig. 9.4d)		
	Benzamide	Enzyme	Data Means	Data Sd	Model
	concentration	[nm]			
	0	0.1	0.04220047	0.00435683	0.03075614
	10	0.1	1.41967756	0.18146775	0.58093365
	100	0.1	2.22916367	0.15121954	2.7412603
	1000	0.1	2.18053356	0.06430761	3.29966523
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	0	0.3	0.04071302	0.01579984	0.03075614
	10	0.3	2.0535243	0.15796188	1.6023616
	100	0.3	3.0744446	0.06747095	3.62095339
	1000	0.3	3.02691809	0.01510055	3.8385399
	0	1	0.03785807	0.01060016	0.03075614
	10	1	2.47790413	0.19194935	2.89476998
	100	1	3.65903747	0.24619976	3.94075294
	1000	1	3.00772516	0.22694437	4.01705851
	0	3	0.03740224	0.00908132	0.03075614
	10	3	2.51796939	0.22721728	3.52314283
	100	3	3.6559666	0.55775483	4.03521326
	1000	3	3.28496713	0.20119771	4.08316964
	0	10	0.03363562	0.00845691	0.03075614
	10	10	1.92860227	0.24099681	3.7854101
	100	10	3.61405403	1.07598812	4.08345856
	1000	10	2.92034931	0.52051559	4.12981517
	Biphenyl-2				

,3,diol weighted transducer (Fig. 9.4e) Biphenyl-2,3-diol concentration Enzyme [nM]

  

			Data Means	Data Sd	Model
	0	0.1	0.04791037	0.01207362	0.03075614
	10	0.1	0.03557891	0.01257012	0.03075718
	100	0.1	0.03821794	0.02057939	0.03257536
	1000	0.1	0.05374022	0.02268666	0.03326166
	0	0.3	0.0418406	0.00544404	0.03075614
	10	0.3	0.0342354	0.00946892	0.03076068
	100	0.3	0.05282856	0.01902893	0.06004588
	1000	0.3	0.04263231	0.00621908	0.07144537
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	0	1	0.03814596	0.00687827	0.03075614
	10	1	0.04745454	0.01676262	0.03078609
	100	1	0.58461686	0.3580844	0.56334937
	1000	1	1.19715945	0.08701882	0.73756654
	0	3	0.04601507	0.02141733	0.03075614
	10	3	0.1038098	0.03477485	0.03097656
	100	3	2.68621947	0.15598616	2.65903268
	1000	3	1.823377	0.72915661	2.94486015
	0	10	0.05254067	0.00957248	0.03075614
	10	10	0.11484574	0.04520265	0.03211607
	100	10	2.93037762	0.30506833	3.78146507
	1000	10	2.34696032	0.46910023	3.85731348
	Fixed-input adder (Fig. 9.5b)			
	HipO [nM]	CocE [nM]	Data Means	Data Sd	Model
	0	0		0.01557544	0.00744527	0.03075614
	0	0.1		0.7363064	0.06655886	1.52850911
	0	0.3		2.71275387	0.20333374	3.88620162
	0	1		3.92735407	0.23505573	4.12606657
	0	3		4.3966056	0.23787075	4.19217237
	0	10		4.41544762	0.13869244	4.20846933
	0.1	0		2.0035743	0.35953586	2.24348368
	0.1	0.1		2.5951096	0.24460087	3.20307532
	0.1	0.3		3.30445486	0.32274965	3.95395775
	0.1	1		4.1505468	0.5274273	4.13491436
	0.1	3		4.37186953	0.3436348	4.20007061
	0.1	10		4.44330824	0.135122	4.21628257
	0.3	0		3.40846471	0.53682725	3.95271157
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	0.3	0.1	3.80703499	0.30331647	3.98346329
	0.3	0.3	3.8872556	0.34385447	4.05846747
	0.3	1	4.2076883	0.16863396	4.16847258
	0.3	3	4.54940113	0.17667821	4.23130119
	0.3	10	4.88706623	0.18654025	4.24728003
	1	0	4.2720731	0.28952273	4.08654164
	1	0.1	4.51903139	0.1540308	4.09426971
	1	0.3	4.21438716	0.17078485	4.12633558
	1	1	4.54199214	0.29444058	4.21784173
	1	3	4.57543909	0.14201456	4.27915312
	1	10	4.78379018	0.19123379	4.29495066
	3	0	4.50312456	0.15692217	4.10493864
	3	0.1	5.07669365	0.04954622	4.11182082
	3	0.3	4.73401032	0.14025071	4.14164622
	3	1	4.76745727	0.29080678	4.23142483
	3	3	5.04050088	0.10178196	4.29250735
	3	10	5.02191924	0.16487221	4.30827422
	10	0	4.86533636	0.03951931	4.10775299
	10	0.1	4.92018179	0.04086461	4.11453635
	10	0.3	4.91873787	0.02371656	4.1440891
	10	1	4.80530701	0.0140498	4.23363984
	10	3	4.80684562	0.17977087	4.29468972
	10	10	4.99640203	0.09160087	4.31045211
	Fixed-enzyme adder (Fig. 9.5c)			
	Cocaine	Hippurate	Data Means	Data Sd	Model
	concentration	concentration			
	0	0	0.02890776	0.01229848	0.03075614
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	1	0	2.50704813	0.29159956	0.07282929
	10	0	3.72227686	0.27774708	3.6579708
	20	0	4.23504694	0.29713403	4.00216523
	100	0	4.25802414	0.43255079	4.19217237
	500	0	4.37153926	0.38333854	4.25709675
	1000	0	4.20253315	0.29124023	4.26325038
	0	1	0.14307853	0.02221961	0.04382733
	1	1	2.45614662	0.21623354	0.1363302
	10	1	3.71735956	0.31739458	3.67413653
	20	1	4.03132171	0.25105141	4.00387789
	100	1	4.10883624	0.044408	4.19263535
	500	1	4.26928923	0.38938268	4.25754555
	1000	1	4.13735658	0.65555047	4.26369852
	0	10	2.70081955	0.42154458	2.06598955
	1	10	3.28219341	0.37028665	2.28823759
	10	10	4.32680674	0.15476818	3.83457333
	20	10	4.06705409	0.23903666	4.0256109
	100	10	4.48165698	0.52572889	4.19943036
	500	10	4.35103561	0.08582767	4.26414588
	1000	10	4.4131128	0.45672211	4.27028957
	0	20	3.55637014	0.08878817	3.43685339
	1	20	3.84520936	0.24686224	3.48806007
	10	20	3.62735807	0.65475503	3.93533938
	20	20	4.0115333	0.33261698	4.04756933
	100	20	4.22232156	0.26069877	4.20841057
	500	20	4.13085978	0.49486215	4.27290328
	1000	20	4.02405007	0.79020601	4.27903609
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	0	100		4.30838921	0.33962656	4.08654164
	1	100		4.38766205	0.18129735	4.08769648
	10	100		4.38730443	0.1179161	4.11345613
	20	100		4.27849799	0.50736451	4.14590554
	100	100		4.55336016	0.18226843	4.27915312
	500	100		4.13378036	0.32106185	4.34269266
	1000	100		4.26711369	0.19703681	4.3487746
	0	500		4.37261213	0.30074501	4.25394378
	1	500		4.4606765	0.56314037	4.25473605
	10	500		4.31503502	0.35309432	4.2740985
	20	500		4.82026524	0.34336437	4.3019407
	100	500		4.47960066	0.23051345	4.43006894
	500	500		4.06151095	0.43288144	4.49309776
	1000	500		4.24771271	0.58311348	4.49914761
	0	1000		4.46908061	0.41765843	4.30217219
	1	1000		4.30874683	0.4911537	4.30295735
	10	1000		4.45465653	0.65667822	4.32217003
	20	1000		4.48156758	0.49738212	4.34985842
	100	1000		4.33887647	0.23101415	4.47768932
	500	1000		4.46812696	0.33022075	4.54066601
	1000	1000		4.12260468	0.42281116	4.54671219
	Full-OR classifier Fig 9.6c			
	Inputs	Data Means	Data Sd	Model	
	No input	0.035304	0.012647	0.0307561435577849
	H	3.88545	0.224492	4.12606656849739
	C	3.249831	0.164483	4.08654164331305
	B	3.739878	0.05422	3.94075294149016
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	F	3.136258	0.14312	3.78146507270607
	HC	4.188237	0.139133	4.2178417281617
	HB	3.979569	0.173847	4.16667903537404
	HF	3.915947	0.217096	4.1535358879735
	CB	3.542327	0.016789	4.1330352706629
	BF	3.798092	0.066124	4.04111973849995
	CF	3.513107	0.064933	4.11868545369628
	HCB	4.075715	0.04238	4.25481654344573
	HCF	3.98986	0.028954	4.24253751407664
	HBF	3.729362	0.208663	4.19226127860961
	CBF	4.034102	0.204885	4.1600418007154
	HCBF	3.897919	0.056789	4.27923889568576
	Inputs	Data Means	Data Sd	Model
	No input	0.022609	0.00315	0.0307561435577849
	H	1.182528	0.097834	1.52850911478862
	C	0.610832	0.04898	0.0874951181769892
	B	3.827637	0.100457	3.94075294149016
	F	3.411953	0.09547	3.78146507270607
	HC	1.769599	0.135243	1.84515671973946
	HB	3.703373	0.050647	3.9749354664424
	HF	3.27184	0.092088	3.87366620345265
	CB	3.676482	0.174047	3.94739701632846
	BF	3.837803	0.04878	4.04111973849995
	CF	2.982899	0.048738	3.80078972620523
	HCB	3.585393	0.184831	3.97965207156987
	HCF	3.558552	0.387636	3.88501043634454

(C AND H) OR B OR F classifier Fig 9.6d
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	HBF	3.842735	0.124697	4.0530838122063
	CBF	3.860462	0.107688	4.04326124317119
	HCBF	3.840582	0.147427	4.05494186068752
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Abstract

Cell-free systems are promising platforms for rapid and high-throughput prototyping of biological parts in metabolic engineering and synthetic biology. One main limitation of cell-free systems applications is the low fold repression of transcriptional repressors. Hence, prokaryotic biosensor development, which is mostly relying on repressors is limited. In this study, we demonstrate how to improve these biosensors in cell-free systems by applying a transcription factor (TF)-doped extract, a preincubation strategy with the TF plasmid, or reinitiation of the cell-free reaction or two-step cell-free reaction. We use the optimized biosensor to sense the enzymatic production of a rare sugar, D-psicose. This work provides a methodology to optimize repressor based systems in cell-free to further increase the potential of cell-free systems for bioproduction.

Keywords

Cell-free biosensor, E. coli cell-free system, transcriptional repressor, D-psicose, bioproduction, cell-free optimization 

Abstract

The aim of this dataset is to identify and collect compounds that are known for being detectable by a living cell, through the action of a genetically encoded biosensor and is centred on bacterial transcription factors. Such a dataset should open the possibility to consider a wide range of applications in synthetic biology. The reader will find in this dataset the name of the compounds, their InChI (molecular structure), the publication where the detection was reported, the organism in which this was detected or engineered, the type of detection and experiment that was performed as well as the name of the biosensor. A comment field is also provided that explains why the compound was included in the dataset, based on quotes from the reference publication or the database it was extracted from. Manual curation of ACS synthetic biology abstracts (Volumes 1 to 6 and Volume 7 issue 1) was performed as well as extraction from the following databases: Bionemo v6. S8 

Supplementary Table

Methods

Designing synthetic metabolic circuits Retropath [START_REF] Delépine | RetroPath2.0: A retrosynthesis workflow for metabolic engineers[END_REF] and Sensipath [START_REF] Delépine | SensiPath: computer-aided design of sensing-enabling metabolic pathways[END_REF] were used to design the metabolic circuits between potential input metabolites and detectable metabolites as outputs [START_REF] Koch | A dataset of small molecules triggering transcriptional and translational cellular responses[END_REF] . These tools function using a set of sink compounds, a set of source compounds, and a set of chemical rules [START_REF] Koch | A dataset of small molecules triggering transcriptional and translational cellular responses[END_REF]411] implementing enzyme-mediated chemical transformations. They then use retrosynthesis to propose pathways and the enzymes that can catalyze the necessary reactions, allowing promiscuity, between compounds from the sink and compounds from the source. To design the adder, the Retropath software was used with a set of detectable compounds as the sink and the molecules we wish to use as circuit inputs as the source. The results were potential pathways and the associated enzymes, which were then analyzed for feasibility. The sequences of the enzymes were codon-optimized, synthesized and implemented in E. coli or taken from a previous study.

Molecular biology

All plasmids were made using Golden Gate assembly in E. coli Mach1 chemically competent cells (strain W, genotype:

Whole-cell constructs were cloned in BioBrick standard vectors pSB1K3 (kanamycin resistance, pMB1 replication origin, high-copy plasmid, ~32 plasmids per genome [412] ) and pSB4C5 (chloramphenicol resistance, pSC101 replication origin, low-copy plasmid, ~3.4 plasmids per genome [412] ) and the genes encoding TF and all the enzymes were expressed under constitutive promoter J23101 and RBS B0032. All cell-free plasmids were cloned in pBEAST [345] (a derived vector from pBEST [347] , ampicillin resistance, pMB1 replication origin, high-copy plasmid, ~32 plasmids per genome [412] ). BenR cell-free plasmid and its cognate responsive prompter, pBen, expressing super-folder GFP were taken from our recent work [345] . All other cell-free enzymes were cloned under constitutive promoter J23101 and RBS B0032. Sequence and source of all the genes and parts are available in Supplementary Table S9.5 and the plasmids used in this study (Addgene deposit) are listed in Supplementary Table S9. [START_REF] Guiziou | Hierarchical composition of reliable recombinase logic devices[END_REF] . Synthetic sequences were provided by Twist Bioscience . Enzymes for cloning including Q5 DNA polymerase, BsaI, and T4 DNA ligase were purchased from New England Biolabs. DNA plasmids for cell-free reactions were prepared using the Macherey-Nagel maxiprep kit.
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Code and data availability: All scripts and data for generating results presented in this paper are available at https://github.com/brsynth/metabolic_perceptrons .

Biological and chemical identifiers

In order to allow easier parsing of our article by bioinformatics tools, we provide here the identifiers of our biological sequences and chemical compounds.

Benzoate (Benzoic acid): InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9) Hippurate (Hippuric acid): InChI=1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2, (H,10,13) (H,11,12) Cocaine: InChI=1S/C17H21NO4/c1- 18-12-8-9-13(18)15(17(20)21-2)14 (10-12)22-16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/s1 Benzaldehyde: 11-8-4-7-10(12(11)14)9-5-2-1-3-6-9/h1-8,13-14H Benzamide: InChI=1S/C7H7NO/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H2,8,9)

BenR (Benzoate sensitive transcription factor, Pseudomonas putida) identifier: UniProtKB -Q9L7Y6 HipO (Hippurate hydrolase (EC: 3.5.1.32), Campylobacter jejuni) identifier: UniProtKB -P45493 Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi CocE (Cocaine esterase (EC: 3.1.1.84), Rhodococcus sp.) identifier: UniProtKB -Q9L9D7 vdh (Aryl-aldehyde oxidase (EC: 1.2.3.9), Acinetobacter johnsonii SH046) identifier: UniProtKB -D0RZT4 bphC , Pseudomonas sp.) identifier: UniProtKB -P17297 bphD , Pseudomonas putida) identifier: UniProtKB -Q52036 Benzamide transforming enzyme (Amidase (EC: 3.5.1.4), Rhodococcus erythropolis) identifier: UniProtKB -B4XEY3

Sequence and source of all the genes and parts are available in Supplementary Table S9.5 and the plasmids used in this study (Addgene deposit) are listed in Supplementary Table S9. [START_REF] Guiziou | Hierarchical composition of reliable recombinase logic devices[END_REF] To study these effects on the single-enzyme metabolic circuit, the following experiment was performed: cocaine transducer (with the highest signal dissipation among the three tested in Figure 9.1 ) was supplied with benzoate input, to test the effect of enzymes on only cellular resource allocation but not the conversion of inputs to benzoate. The cocaine transducer (+ benzoate actuator) with benzoate input shows a behavior similar or close to the benzoate actuator alone. All data points and the error bars are the mean and standard deviation of normalized values from measurements taken from three different colonies on the same day.

Supplementary Figure S9.5. Examining the effect of resource competition versus enzyme efficiency on the whole-cell metabolic adder.

To study these effects on the two-enzyme metabolic circuit (adder) the following experiment was performed: hippurate-benzaldehyde adder was supplied with benzoate input, to test the effect of enzymes on only cellular resource allocation but not the conversion of inputs to benzoate. The adder (+ benzoate actuator) with benzoate input shows a behavior similar to the adder (+ benzoate actuator) with hippurate and benzaldehyde inputs. All data points and the error bars are the mean and standard deviation of normalized values from measurements taken from three different colonies on the same day. [80, 100µM] for high values). We then simulated the results to assess the robustness of our designs. Two blue lines refer to the thresholds separating "OFF" and "ON" states. The panel of "OFF" and "ON" at the top of the plots are the expected outputs. (RFU: Relative Fluorescence Unit).
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Synthetic Metabolic Circuits for Bioproduction, Biosensing and Biocomputation , Doctoral thesis_Amir Pandi Supplementary Figure S9.12. Further characterization of HipO enzyme (hippurate transforming enzyme) at lower concentrations of the enzyme and 100 µM hippurate. HipO enzyme which for its weight led to higher signals than predicted, needed to be further characterized at concentrations lower than the minimum concentration used for the weighted metabolic circuits (0.1 nM). For this characterization, this figure shows the effect of 100 µM hippurate input alone and its additive effect when coupled with 100 µM cocaine at the weight (CocE enzyme concentration) of 0.1 nM. All data are the mean and the error bars are the standard deviation of normalized values from measurements taken from two or three independent cell-free reactions on the same day. (RFU: Relative Fluorescence Unit). The schematic presents how computation is performed in a single-layer perceptron: inputs (x i-n ) are converted into a common metabolite using enzymes that allow for weighting (w i ) each input (x i ) individually. The common metabolite is then converted into output O 1 using a non-linear activation layer (using a transcription factor =TF). Right: A single-layer metabolic perceptron composed of multiple input metabolites (x 1-4 ) and metabolic enzymes (E 1-4 ) transforming the inputs into a common metabolite. The common metabolite then activates the gene expression, representing the actuator function. (b) The schematic presents how computation is performed in a multi-layer perceptron (Top) and a possible implementation of a multi-layer metabolic perceptron (Bottom). In a multi-layer perceptron, the outputs of the first perceptron layer are used as inputs for the second layer. We suggest a potential strategy for such implementation. (1) A TF actuator outputs enzyme E8 (O 1,1 ) from the first layer that behaves as an input (I 2,1 ) for the second layer, in turn producing a metabolite needed as effector in the next perceptron layer. ( 2) Similarly, another TF actuator outputs enzyme E9 (O 1,2 ) from the first layer that behaves as an input (I 2,2 ) for the second layer, also producing the same effector metabolite needed in the next perceptron layer. Weights on the second perceptron layer can be applied by tuning the concentrations of the substrate metabolites for E8 and E9. This strategy is the converse of what we did in the first layer, where enzyme DNA concentrations were weights and input metabolites were '0' or '1'. Here, the enzymes E8 and E9 are '0' or '1', as they are outputs from sigmoidal functions, whereas the metabolite concentrations are the weights. S9.1. Goodness of fit scores for the whole-cell models . The correlation (from the R cor function), Weighted R squared and R squared between the experimental data and the model. Exact definition of the weighted R squared and the R squared are provided in the Methods section, as well as the RMSD that is used to compare models. 
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