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“Now we are not afraid,

Although we know there’s much to fear,

We were moving mountains,

Long before we knew we could, whoa, yes.”

When you believe - a song from the 1989 animation film The Prince of Egypt,
written and composed by Stephen Schwartz.
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as well as their patience and continuous support related to both of professional and personal
perspectives. They, being as elder sister and father, have actually created a family for me - an
international student living far from home. I will never forget the first time I arrived to Valence,
being exhausted after 24-hour journey and I saw Professor Laurent standing there waiting for
me at 1 a.m. Also, during my intern period, Assistant Professor Ionela helped me a lot on
adapting to the French life by inviting me to various special occasions: the scientific meetings,
the Aerospace day as well as various archaeological and historical visits. About academic aspect,
they both encouraged and supported me to explore new research challenges and to pursue them
until my succeeds. Spending lots of time on organizing mobility projects, they also gave me
various opportunities for visiting different laboratories in Europe where I could actually merge
with people in the field and extend my knowledge.

My appreciation is further sent to the other members of the committee: Directeur de Recherche
CNRS Mazen Alamir, Professor Fernando Pereira, Professor Tor Arne Johansen and Dr. Julien
Marzat, for their efforts on evaluating my thesis and for lots of interesting questions. I especially
thank the Reviewers, Professor Fernando Pereira and Professor Tor Arne Johansen, for their
careful reading and the valuable remarks which improve significantly the quality of the exposi-
tion.

As mentioned above, during my thesis, I had the chance to visit different labs and hence, to work
with a large number of people. The discussions with them brought me new ideas and helped
me to open questions. Therefore, I also take this opportunity to express my gratitude to all the
colleagues:

• the members of my laboratory LCIS, especially of my team MACSY-COSY as well as the
technical and administration offices for their support, time availability and kindness;

• Professor Florin Stoican from “Politehnica” University of Bucharest, Romania for all of
his help and valuable remarks from the beginning of my thesis;

ii



iii
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and Thiên. You all have shown me the meaning of friendship and brought to my life lots of
wonderful memories which I can never ever forget.

Last but not least, despite the fact that I am living abroad, my family is forever in my heart. I
am sorry for making all of you worried about me during these years, especially my grandparents
and parents. I am really thankful to Mai - my little sister for being brave enough and for being
healthy to take care of Mom and Dad. Finally, a special thank is also dedicated to my fiancée,
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Notations

Operator

Notation Description
ẋ time derivative of x
A> transpose matrix of A
diag{x, y, z} diagonal matrix with the diagonal elements x, y, z
‖x‖P x>Px for a vector x ∈ Rn and a matrix P ∈ Rn×n

|x|
[
|x1| |x2| . . . |xn|

]>
for a vector x = [x1 x2 . . . xn]> ∈ Rn

eig(A) eigenvalues of the square matrix A
sk(x) skew-symmetric matrix in Rn×n

satisfying sk(x)v = x× v for any vectors x, v ∈ Rn

Re(x) real part of a complex number x
In, 0n identity matrix and zero matrix of size n× n
〈x, y〉 x and y. E.g., 〈x, y〉 ≤ z means x ≤ z and y ≤ z.
sign(x) sign of a real number x.
max(x, y) maximum value between two real numbers x and y.
sat(x, xmax) standard saturation function, applied for x = [x1, . . . , xn]> ∈ Rn

and its limit xmax = [xmax1 , . . . , xmaxn ]> ∈ Rn
+.

sat(x, xmax) = [sat(x1, xmax1), . . . , sat(xn, xmaxn)]>

with sat(xi, xmaxi) = sign(xi) max(|xi|, xmaxi) for all i = 1, . . . , n.

Number set and vector space

Notation Description
R set of real numbers
R+ set of non-negative real numbers
Rn vector space of n-dimension real vectors
Rm×n matrix space of m× n real matrices
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Variables regarding a general system

Notation Description
ẋ = f(x,u) general system with state vector x ∈ Rn and input vector u ∈ Rm.
(xe,ue) equilibrium point satisfying f(xe,ue) = 0
X ,U the state and input constraint sets
z flat output vector in Rm, same dimension with the input vector
Υx, Υu flatness-based representations of x and u, respectively
uFL(ıx, µ) feedback linearization law with ı ∈ {0, 1} the state-dependence indicator
µ virtual control input
XFL constraint admissible set under the feedback liearization controller
x̄t(s), ūt(s) predicted state and input at time instant s

employed in the optimization control problem (OCP) executed at time t
x̄∗t (s), ū

∗
t (s) optimal state and input solutions for the OCP at time t

uloc local controller employed for designing an NMPC controller
`(x,u) stage cost of an NMPC controller
F (x) terminal cost of an NMPC controller

Variables regarding the multicopter system

Notation Description
m system mass

J , diag{Jx, Jy, Jz} inertial tensor in R3×3

G global North-East-Altitude coordinate of the TPV system
B body coordinate frame attached to the TPV system
R rotation matrix transforming the body frame B to the global frame G
ξ , [x y z]> position vector in R3

gathering three positions (x, y, z) defined in frame G.

v , [vx vy vz]
> velocity vector in R3

gathering three velocities (vx, vy, vz) along the three axes.

η , [φ θ ψ]> angle vector in R3 gathering the roll, pitch and yaw angles.

ω , [ωx ωy ωz]
> angle rate vector in R3 defined in frame B.

T thrust magnitude in R+

τ , [τ x τ y τ z]> torque vector in R3

x , [ξ v η ω]> state vector in R12

u , [T τ x τ y τ z]> input vector in R4

ẋ = f(x, u) dynamics of the thrust-propelled vehicle system
(XMC,UMC) state and input constraint sets of the multicopter system

p , [ξ v]> translation state vector in R6

u , [T φ θ] the translation input vector in R3

ṗ = fp(p, u, ψ) translation sub-system
W transformation matrix employed in (2.1.7)
ε angle boundary satisfying |φ|, |θ| ≤ ε from (2.2.14)
ωb angle rate boundary satisfying |ωx|, |ωy| ≤ ωb from (2.2.20)



Nomenclatures

UAV Unmanned Aerial Vehicle
VTOL Vertical Take-Off and Landing
FL Feedback Linearization
CTC Computed-Torque Control
MPC Model Predictive Control
NMPC Nonlinear Model Predictive Control
FTC Fault-Tolerant Control
FDI Fault Detection and Isolation
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Chapter 1

Introduction

UAVs (Unmanned Aerial Vehicles) [Nex and Remondino, 2014,González-Jorge et al., 2017] and
multicopters in particular (e.g., quadcopters, hexacopters as shown in Figure 1.0.1) in particular,
are already impacting our society: from military applications to assessing damage, locating
victims in case of natural disasters to delivering pizzas, and more [Intwala and Parikh, 2015,
Mogili and Deepak, 2018,Nascimento and Saska, 2019]. In the research community, these systems
are involved in a broad range of control applications including, among others, motion planning
[Mellinger and Kumar, 2011,Rucco et al., 2015], control designs [Hua et al., 2009,Rucco et al.,
2016,Nguyen et al., 2018b] and fault tolerant control [Freddi et al., 2010,Saied et al., 2015,Hasan
and Johansen, 2018].

(a) Quadcopter (b) Hexacopter

Figure 1.0.1: Examples of multicopters.

The multicopter (also referred as multirotor as in [Klausen et al., 2017,Nascimento and Saska,
2019]) is defined as a rotorcraft with more than two rotors and named accordingly to the specific
number of its rotors such as quadcopter, hexacopter or octocopter as illustrated in Figure 1.0.1.
Having more than two rotors, the multicopter system offers a simple flight control mechanics, i.e.:
using fixed-pitch blades and varying the rotor speeds to control their thrusts and torques [Intwala
and Parikh, 2015, Nascimento and Saska, 2019] (in comparison with the complex blade pitch
control mechanism applied for single- and double-rotor helicopters [Hoffmann et al., 2007] or
the constraints on banking and heading angle which appear at fixed-wing UAVs [Reinhardt
and Johansen, 2019]). However, note that, variable-pitch blades are still considered in some
works relating to the multicopters which require the vehicles to perform significantly aggressive
maneuvers [Cutler and How, 2012,Pretorius and Boje, 2014].
Even though the concept of a quadcopter system appeared long time ago with its first prototype,
named Bréguet-Richet Gyroplane No.1 built in 1907 by the brothers Louis and Jacques Bréguet
under the guidance of the French scientist Charles Richet [Leishman, 2002]. Yet the multicopters
have only started to gain substantial attention from the research community at the beginning
of the twenty-first century when the number of related works increased rapidly year over year
[Nascimento and Saska, 2019]. E.g., several works like [Altug et al., 2002, Bouabdallah et al.,
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2004, Cowling et al., 2007] were published in the early 2000s and then, we observe a massive
number of studies being presented up to now [Freddi et al., 2010,Chamseddine et al., 2012,Bipin
et al., 2014, Rucco et al., 2016, Hasan and Johansen, 2018, Nguyen et al., 2019b]. Hence, the
following question arises:

Why have the multicopters become so popular in the research community ?

The answer for this question is twofold. The first part relies on their natural properties which
seem to create a perfect exhibition for numerous control applications, i.e., strongly nonlinear
dynamics, under-actuated configuration [Nguyen et al., 2017b], high working frequency while
being limited by the low computational power of the on-board micro controllers [Nascimento and
Saska, 2019], relative ease to setup and especially their capacity to perform various autonomous
tasks such as navigation [Bipin et al., 2014], path following/ trajectory tracking [Roza and
Maggiore, 2012, Nguyen et al., 2018b], aerial rescue [Klausen et al., 2018] and so on. The
second reason is due to the widespread growth of civil applications involving the multicopters
[Giones and Brem, 2017]. The global drone market is estimated to reach 4.9 billions dollars
this year, 2019, and up to 14 billions over next decade according to the Reuters newspaper1.
Multicopters are already employed all over the world for aerial camera (e.g., photography and
filming), agricultural purposes [González-Jorge et al., 2017,Mogili and Deepak, 2018], emergency
response, conservation, construction planning and aerial package delivery. For example, in 2014,
graduate student Alec Momont of Delft University of Technology has designed an unmanned
mini aeroplane that can quickly deliver a defibrillator to where it is needed2. In 2017, Land
Rover partnered with the Austrian Red Cross to design a special operations vehicle with a roof-
mounted, thermal imaging drone which can securely land atop the vehicle while moving. This,
so called, ”Project Hero”, hopes to save lives by speeding up response times3. Similarly, Zipline
(one of the most prominent venture-backed medical delivery companies) has launched delivery
drones in order to provide people in rural areas throughout Africa with instant access to urgent
medicines4. Regarding the commercial transportation purposes, the octocopter of UPS shown

(a) UPS package delivery using an octocopter
(Photo: https://www.ups.com/)

(b) “Prime Air” octocopter
(Photo: https://www.amazon.com/)

Figure 1.0.2: Octocopters employed for aerial package delivery.

in Figure 1.0.2a is able to autonomously deliver a 4.5-kg package and come back to the delivery
truck within a 30-minute fly time while the “Prime Air” octocopter of Amazon as shown in
Figure 1.0.2b is anticipated to be able to lift a 25-kg package [Cheung et al., 2017]. These
examples further encourage the research community to seek and open similar problems, e.g.,
optimal control design for a camera multicopter [Engelhardt et al., 2016], autonomous landing

1
https://www.reuters.com/article/us-usa-security-drones/global-drone-market-estimated-to-reach-14-billion-over-next-decade-study-idUSKCN1UC2MU

2
https://www.tudelft.nl/en/2014/tu-delft/tu-delfts-ambulance-drone-drastically-increases-chances-of-survival-of-cardiac-arrest-patients/

3
https://www.cbinsights.com/research/drone-impact-society-uav/

4
https://flyzipline.com/

https://www.ups.com/
https://www.amazon.com/
https://www.reuters.com/article/us-usa-security-drones/global-drone-market-estimated-to-reach-14-billion-over-next-decade-study-idUSKCN1UC2MU
https://www.tudelft.nl/en/2014/tu-delft/tu-delfts-ambulance-drone-drastically-increases-chances-of-survival-of-cardiac-arrest-patients/
https://www.cbinsights.com/research/drone-impact-society-uav/
https://flyzipline.com/
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on a moving target [Borowczyk et al., 2017], 3D (three-dimensional) structure inspection by using
a camera multicopter [Eudes et al., 2018,Stoican et al., 2019], control design for multicopter with
suspended load [Klausen et al., 2017] and so on.

Hence, being motivated by the expanding use of multicopters as well as the existing challenges
in the research community when tackling the control of such systems, we provide in this thesis
our original findings related to the hierarchical control of multicopter systems. In this sense, a
literature review is provided in the following.

1.1 Hierarchical control for multicopters

As mentioned above, research and industrial communities have shown an increasing interest
in multicopter aerial vehicles, e.g., tricopter, quadcopter, hexacopter since they manifest strong
nonlinearities as well as being naturally coupling and having underactuated dynamics, i.e., having
six degrees of freedom (to fully describe the movement of a rigid body in three-dimensional space)
with only four inputs (the upward thrust and three angle torques) while their relative ease of
fabrication results in low-cost experimental platforms. The systems are also subject to many
operating and possibly non-convex or nonholonomic constraints [Nguyen et al., 2017b], hence,
being a real challenge to control.
In the literature, the solutions can be classified into two control design perspectives, the first is
to apply only one control layer which considers the whole multicopter dynamics and provides the
four inputs at once [Cowling et al., 2007,Chang and Eun, 2014] and the other is to take advantage
of the naturally coupling multicopter dynamics by employing a cascade control design [Hua
et al., 2009, Freddi et al., 2011, Formentin and Lovera, 2011, Nguyen et al., 2017b] . The latter
case is referred to as a hierarchical two-layer control scheme, shown in Figure 1.1.1 where the
position controller at high level tracks the reference trajectory by providing the necessary thrust
force and the desired angles while the attitude controller at low level stabilizes the vehicle’s
attitude at the desired set-points [Hua et al., 2009, Freddi et al., 2011]. Our works within this
thesis also follow the hierarchical control direction due to several reasons presented hereinafter.
Each control layer considers the translation and rotation dynamics of the multicopter system
separately, hence, reducing the complexity of the control designs. Furthermore, the stability
of the whole scheme is facilitated by the theory of singular perturbation, also referred as the
time-scale separation principle [Zagaris et al., 2004]. The design only needs to ensure that the
low control layer is exponentially stable and that the low level bandwidth is higher than the
one of the high level dynamics, thus, the high level controller can be designed ignoring the low
level loop [Nascimento and Saska, 2019] and furthermore, can be easily applied on commercial
drone platforms since most of them already have their built-in attitude controllers running at
significantly higher frequency [Intwala and Parikh, 2015,Giernacki et al., 2017].

Thrust 

 

 

Reference 

trajectory 
Trajectory 

generation / 

Path planning 

Inputs Multicopter 

system 

Desired 

angles 

Position 

controller Attitude 

controller 

Figure 1.1.1: General hierarchical control scheme for a multicopter system.

The general control scheme for the multicopter illustrated in Figure 1.1.1 is also similar
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to various control applications on different UAV systems [Prodan et al., 2013, Rucco et al.,
2015] where the first step is to generate a reference trajectory (or path) which is subject to
requirements defined by users (e.g., passing through way-points, pointing to targets, etc) as well
as operating constraints of the systems (e.g., respecting constraints on states and inputs) awhich
is subsequently tracked by the UAV by using tracking feedback controllers (e.g., the two-layer
controller for the multicopter’s case). Note that, many studies also consider only parts of the
scheme, e.g. works like [Chamseddine et al., 2012, Eliker et al., 2018, Nguyen et al., 2018a]
concentrate on the trajectory generation problems while works like [Formentin and Lovera,
2011, Cao and Lynch, 2016, Nguyen et al., 2019b] propose different tracking control designs
(while assuming the reference to be already given). In the following, we present in sequence the
state of the art in the two processes: trajectory generation and tracking control design for the
multicopters and also for UAVs in general.

1.1.1 Reference trajectory generation

The reference trajectory generation problem is crucial for any realistic multicopter applications
since these systems are challenging due to their strongly nonlinear dynamics and various con-
straints on states and inputs. Hence, an infeasible trajectory (in the sense of one which does not
respect the internal dynamics or disregards the constraints, e.g., a step reference) causes much
difficulty for the later tracking process and probably leads to poor control performance or even to
instability [Chamseddine et al., 2012,Prodan et al., 2013,Klausen et al., 2017]. It is worthwhile
to mention that for the multicopter case, angles are expressed as second order derivatives of
position (i.e., accelerations) and torques as fourth order derivatives. Hence, a trajectory which
appears to be reasonable in its position, can still be extremely challenging to track.
In the literature, such a feasible trajectory for multicopter systems is usually obtained by solving
an optimization problem subject to constraints (e.g., passing through waypoints, speed/angle
limitations, and the like). This process can be done either off-line or online depending on the
application purposes and in general, an online algorithm takes into account less constraints than
the off-line one [Hehn and D’Andrea, 2015, Rousseau et al., 2019] (further information will be
provided hereinafter). We may classify existing approaches as follows:

1. From path to trajectory:
The steps to follow in this approach are: generate a suitable geometric path (e.g. passing
through way-points, having collision-free behavior) and parametrize it in terms of time.
Then, we scale the time while checking the imposed constraints until obtaining a feasible
trajectory [Hoffmann et al., 2008,Mellinger and Kumar, 2011,Bipin et al., 2015,Rousseau
et al., 2019]. Both the path and the time functions need to be parametrized by using
specific splines: e.g. B-splines [Piegl and Tiller, 1995] as employed in [Hoffmann et al.,
2008,Bipin et al., 2015,Rousseau et al., 2019] or piecewise polynomial functions as employed
in [Mellinger and Kumar, 2011]. The scaling can be done by solving an optimization
problem as in [Rousseau et al., 2019] or by iterating the tuning process [Mellinger and
Kumar, 2011].

2. Trajectory parametrization with predefined time range:
We parametrize the trajectory by using specific splines without pre-planning a path. Then,
construct an optimization problem in terms of the trajectory, in which, the internal dynam-
ics as well as all the imposed constraints (or only part of them if some simplifications are
required for real-time generation [Hehn and D’Andrea, 2015]) are taken into account. The
cost is to minimize certain objectives such as, curve length by using B-spline parametriza-
tion [Stoican et al., 2017, Nguyen et al., 2018b], fuel consumption by using Laguerre and
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Chebyshev polynomials [Cowling et al., 2010] or also final time instant by using a pice-
wise function defined by the authors of [Hehn and D’Andrea, 2015]. Note that, the choice
of the parametrization facilitates the construction of a specific cost function, hence, an
inappropriate choice complicates the problem without any qualitative gain.

3. Trajectory generation using the MPC approach:
This approach solves an MPC (Model Predictive Control) optimization problem for gener-
ating a point-to-point trajectory. The cost is chosen such as to minimize the distance from
the initial state to the final target and the constraints consist of the internal dynamics and
further operating constraints on states and inputs. If the MPC problem is infeasible to
solve which may be due to the conservativeness of the constraints, the method requires the
user to increase the prediction horizon (i.e., the time required for reaching the target) in
order to obtain a solution. Examples for this trajectory generation method can be found
in [Singh and Fuller, 2001,Mueller and D’Andrea, 2013,Engelhardt et al., 2016].

Note that depending on the complexity of the established algorithms, the process may need
to be solved off-line [Stoican et al., 2015,Stoican et al., 2017,Cowling et al., 2007] or can be done
on-line [Prodan et al., 2013, Mellinger and Kumar, 2011, Hehn and D’Andrea, 2011, Hehn and
D’Andrea, 2015]. Some differences between the two approaches are given as follows:

• When solving an off-line trajectory generation (almost) all of the system’s state and input
constraints are taken into account since the restrictions on the computation time are usually
less demanding [Cowling et al., 2007].

• When solving on-line the planning problem, only some constraints (e.g., passing-through
way-points [Prodan et al., 2013,Mellinger and Kumar, 2011], maximum thrust force [Hehn
and D’Andrea, 2011,Hehn and D’Andrea, 2015]) can be considered and after finishing the
process, the rest of the constraints (e.g., rotors speed bounds) are checked. If they are not
validated, some adjustments are made (e.g., reducing the maximum thrust, relaxing the
time constraints) and the algorithms iteratively solve the optimization problems [Mellinger
and Kumar, 2011,Hehn and D’Andrea, 2011,Hehn and D’Andrea, 2015]:

From the above summary, it can be observed that all the existing methods are required to check
the constraints on states and inputs as well as the internal dynamics of the systems. This is
not an easy task since the considered dynamics are strongly nonlinear and in high dimensional
spaces. An appropriate tool for tackling the constrained trajectory generation problem is repre-
sented by differential flatness [Fliess et al., 1995]. Recently, many works related to the trajectory
generation for the UAVs have made use of this concept. For example, by using flatness, [Cowl-
ing et al., 2007] generates a reference trajectory with minimum fuel consumption and [Bouktir
et al., 2008, Chamseddine et al., 2012] address the minimum-time trajectory generation prob-
lems. Also, [Mellinger and Kumar, 2011] considers a trajectory passing through way-points and
staying within the defined safety corridors. By further combining B-spline parametrization [Piegl
and Tiller, 1995] with the flatness properties, [Prodan et al., 2013] obtains a trajectory pass-
ing through way-points with constant velocity, [Stoican et al., 2017, Nguyen et al., 2018b] can
generate a trajectory with minimum-length subject to various constraints and [Rousseau et al.,
2019] achieves a minimum-time trajectory with corridor constraints. Hence, we will briefly ex-
plain in the following what is differential flatness and why it is appropriate for works related to
trajectory generation and control designs for the UAVs and multicopters systems.

Differential flatness: A generic system is called differentially flat if there exists a flat out-
put defined in terms of states and inputs of the system such that, the states and inputs can
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be expressed algebraically by using only the flat output and a finite number of its higher-order
derivatives (the reader is referred to Definition 2.2.1 for a more detailed version). It is inter-
esting that, by coincidence, the flat outputs of the general fixed-wing UAV and the multicopter
systems are also their controlled outputs, i.e., the 2D position for the fixed-wing UAV [Pro-
dan et al., 2013] as well as the 3D position and the yaw angle (direction angle) in case of the
multicopter system [Chamseddine et al., 2012,Nguyen et al., 2018b] (the multicopter’s case will
be discussed further in Chapter 2 of the thesis). Therefore, whether the notion of flatness is
explicitly mentioned or not, a great part of the existing works on the trajectory generation for
the UAVs employ all or some of the flatness properties within their algorithms. For example,
works like [Hehn and D’Andrea, 2011,Hehn and D’Andrea, 2015] do not specifically mention the
use of flatness, but they make use of an input thrust of the quadcopter system which is given
in terms of its 3D position (i.e., part of the flat output) and up to its second derivatives, hence,
being exactly a flatness-based representation. We emphasize this since there exists a searching
procedure introduced in [Lévine, 2011] which can find the flat output and the corresponding
flatness-based representations of a generic, flat, system, hence, reducing time and improving the
compactness when formulating the problems.
The widespread use of the differential flatness and its huge impact on the trajectory generation
problems is due to the fact that the flat output characterizations allow us to mathematically
formulate a reference path that validates specific objectives (i.e., passing through a priori given
way-points, fuel consumption minimization, time-to-target minimization and state/input con-
straints satisfaction) [Cowling et al., 2007,Chamseddine et al., 2012,Prodan et al., 2013,Stoican
et al., 2017]. One more advantage of constructing the flatness-based representations is that they
can further provide us with some robustness properties (e.g., maintaining the angular constraints
irrespective of the changes in the predefined yaw angle [Nguyen et al., 2018a]) and also a clear
path for feedback linearization [Hagenmeyer and Delaleau, 2003]. Therefore, by exploiting the
differential flatness property of the systems, the challenging tasks associated to trajectory gener-
ation and feedback linearization control design (with the added possibility of deriving robustness
properties) can be alleviated.
Recalling the reference trajectory classification delineated at the beginning of this subsection,
we briefly summarize next some parametrizations usually employed in the literature for the first
two methods.

Polynomials parametrization: With their strengths already validated through a massive
number of robotics applications during recent years [Chand and Doty, 1985, Ata, 2007], using
the polynomials appears as a natural choice for solving the trajectory generation problem. The
main advantage is that the polynomials provide familiar formulations with clear interpretation.
Works like [Kaminer et al., 2006,Cowling et al., 2010,Mellinger and Kumar, 2011] firstly define
the trajectory as standard polynomials in terms of a virtual time variable and then, parametrize
the variable as another polynomial of the real time. The approach succeeds in dealing with
various convoluted constraints and conditions such as passing through way-points, collision-
free and changing time coordinates for multiple UAVs [Kaminer et al., 2006] as well as staying
within safety corridors [Mellinger and Kumar, 2011]. Furthermore, [Cowling et al., 2010] presents
a thorough comparison between using Chebyshev, Laguerre functions [Fahroo and Ross, 2002,
Valencia-Palomo and Rossiter, 2010] and the polynomial parametrization within the trajectory
generation problem for a quadcopter system in which, the latter appears as the best candidate.
However, a draw back of the polynomials is that their degree increases accordingly to the number
of constraints [Cowling et al., 2010] and the coefficients (i.e., the tuning parameters) do not
provide any direct and illustrative meaning. Therefore, for more recent applications, another
parametrization with more advantages (namely, B-spline functions) is replacing the classical
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polynomials.

B-splines parametrization: B-splines [Piegl and Tiller, 1995] are involved in plenty of
studies on the trajectory generation for UAVs and multicopters [Hoffmann et al., 2008,Prodan
et al., 2013, Bipin et al., 2014, Nguyen et al., 2018b, Rousseau et al., 2019]. A B-spline curve is
parameterized by a set of control points and a knot vector which defines the moments when the
curve switches between two polynomial basis functions. The two most interesting properties of
the B-spline curve are given as follows:

1) the curve always lies within the convex hull of the control points;

2) a derivative of the B-spline function can be expressed in terms of a linear combination of
the basis functions [Suryawan et al., 2011,Mercy et al., 2017].

The first property inspires various geometrical applications on the UAVs and multicopters, e.g.,
[Stoican et al., 2017] and [Rousseau et al., 2019] generate the reference trajectories constrained
to pass through (or near) predefined way-points and to stay within a polytope and a cylindrical
flight corridor, respectively. Next, the linear derivative relation helps to greatly reduce the
complexity when formulating the constraints or the cost functions which employ the high-order
derivatives of the trajectory. For example, [Stoican et al., 2015] and [Nguyen et al., 2018b]
consider the problem of minimizing the lengths of the reference trajectories for the UAV and
the multicopter, respectively, in which, the cost functions given in terms of the velocity are
transformed into a quadratic function of the control points, and hence, become easy to solve
for its minimum value. It is worth mentioning that most of the works employ a uniform B-
spline which requires the knot vector (i.e., defining the switching moments between different
basis functions) to be equally distributed [Hoffmann et al., 2008, Prodan et al., 2013, Stoican
et al., 2015, Stoican et al., 2017] and this causes difficulty when considering the minimum-time
trajectory generation problem. Therefore, by considering non-uniform B-spline curves, the works
in [Bipin et al., 2015, Rousseau et al., 2019] can mitigate the issue and succeed in minimizing
the time for reaching their targets.

MPC (Model Predictive Control): MPC (or also referred as receding horizon control)
is a control strategy in which, an optimization problem, subject to system dynamics, state and
input constraints and initial condition, is solved at each time step to obtain an optimal control
sequence for a finite number of future steps (the so called prediction horizon). From the sequence,
the first input value is applied to the system. At the next time step, the newly obtained state is
introduced into the optimization problem as the new initial condition. The process is repeated
to create the closed-loop controlled system [Alamir and Bornard, 1994,Mayne et al., 2000,Grüne
and Pannek, 2011]. The strategy is well-known for its capability of handling explictly constraints
while having a structural design. The cost function of the optimization problem is usually de-
signed to minimize the tracking error (e.g. being a quadratic form in terms of the error) for the
standard tracking control design or even to maximize the economic benefits for the, so called,
economic MPC controller [Rawlings et al., 2012]. Due to its implicit control law resulted from
solving the optimization problem, typical issues on designing the MPC scheme are closed-loop
stability, feasibility of the solution and also computation burden [Mayne et al., 2000].
In order to apply the MPC method within the trajectory generation problem, besides the initial
condition, we also constrain the final predicted state to arrive to the predefined ending point.
The optimization problem is solved once and the optimal state sequence is used as the reference
trajectory. The method requires to tune the prediction horizon such that the problem is feasible.
Note that the approach also allows to reconfigure the trajectory by simply introducing a new
initial condition to the MPC scheme [Hehn and D’Andrea, 2015].
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Next, we summarize the existing approaches on designing the tracking controllers for the multi-
copters. The main sources of the study are the comprehensive bibliography reviews [Hua et al.,
2013] and [Nascimento and Saska, 2019].

1.1.2 Tracking control architectures

In Figure 1.1.1, we do not explicitly define the outputs of the attitude controller nor the in-
puts of the multicopter system since they are very diverse for various applications. E.g., some
platforms receive thrust and angles as their inputs as in [Giernacki et al., 2017, Nguyen et al.,
2018b] while others can admit thrust and angle rates as used in [Hehn and D’Andrea, 2015].
Therefore, we classify existing works on the multicopter control by the inputs admitted by the
employed platforms. The classification is summarized in Figure 1.1.2 which should be read from
up to down. We emphasize that accepting the inputs of the platforms also implies a certain
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Figure 1.1.2: Classification of tracking control designs for the multicopters.

simplification level w.r.t. the full dynamical model of the multicopter represented by the blue
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box at the end of Figure 1.1.2. For example, at the simplification level 1 corresponding to the
less simplified multicopter dynamics employed in the control scheme, the inputs are defined as
its actual rotor speeds which are different from the rotor speeds references resulted from the
whole control scheme [Jiang et al., 2016,Borisov et al., 2017]. The internal rotor dynamics and
even actuator faults (if applicable) act as the uncertainties affecting the system. In contrast, at
the highest simplification level 5, the employed platforms receives the desired values of thrust
and angles as its inputs [Giernacki et al., 2017,Nguyen et al., 2018b,Eudes et al., 2018]. (i.e., the
platforms already have their built-in controllers which control the rotors to stabilize the platform
at these desired inputs), and hence, works classified at this level consider only the translation
dynamics of the multicopter system while neglecting the rest of the scheme. More precisely, the
existing works are classified as follows:

• Level 1: As mentioned above, the works at this level distinguish the actual rotor speeds
and their references provided by the designed controller. Hence, they can take into account
the rotor dynamics (e.g., can be explicitly given as in [Bouabdallah et al., 2004] but mostly
being simplified as saturation effects [Jiang et al., 2016, Borisov et al., 2017] or low-pass
filters [Shao et al., 2018]) and actuator faults such as loss of efficiency [Chamseddine et al.,
2012, Avram et al., 2017], complete loss of rotor(s) [Mueller and D’Andrea, 2014, Falcońı
et al., 2016, Sun et al., 2018] and stuck rotor faults [Freddi et al., 2011, Nguyen et al.,
2017b]. Hence, this level includes the works on FTC (Fault Tolerant Control) designs
and/or on the designs of the related fault diagnosis modules [Hasan and Johansen, 2018].
For the control design part, a two-layer hierarchical control scheme is usually employed.
The position controller at the high level provides the desired thrust and the desired angles
for the controller at the low level, called attitude controller, to track. Then, the attitude
controller gives the desired torques which are combined with the desired thrust in order to
calculate the rotating speed references for the rotors. Note that, as aforementioned, the
actual rotor speeds (i.e., the inputs of the multicopter system) track these references but
are subject to the rotor dynamics and faults.

• Level 2: The multicopter system at this level admits its inputs as the rotor speeds under
actuator saturation constraints only (i.e. still under the simplified rotor dynamics but
not subject to fault(s)) [Chen and Huzmezan, 2003, Monteiro et al., 2016, Convens et al.,
2017, Wang et al., 2017]. For guaranteeing these constraints, it is necessary to design the
aforementioned two-layer hierarchical control scheme subject to polytopic constraints on
the desired thrust and torques due to the use of the control allocation (i.e., the linear
relation between the desired thrust, torques and the rotor speed references). A natural
solution is to employ the (Nonlinear) MPC controllers as proposed in [Monteiro et al.,
2016, Wang et al., 2017]. Other methods can be considered as H −∞ as proposed [Chen
and Huzmezan, 2003] or a sophisticated Lyapunov control design as given in [Convens
et al., 2017].

• Level 3: This level contains most of the existing works related to the control designs
of the multicopters. At this level, the inputs of the system are considered as either the
rotor speeds references without constraints (which are equivalent to the desired thrust,
torques without constraints due to their linear relation described by the control allocation)
as in [Hua et al., 2009,Formentin and Lovera, 2011,Mellinger and Kumar, 2011,Roza and
Maggiore, 2012, Klausen et al., 2014, Nguyen et al., 2017b] or with more difficulty, the
desired thrust and torques subject to their saturation constraints [Limaverde Filho et al.,
2016, Lu et al., 2017, Nguyen et al., 2017a]. The first class represents for the nominal de-
signs of the aforementioned hierarchical control scheme where the main goal is to establish
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the stability of the whole scheme by designing the position and attitude controllers while
no input constraints are taken into account. This freedom facilitates various sophisticated
control applications such as Lyapunov-based design [Hua et al., 2009,Mellinger and Kumar,
2011], flatness-based control [Formentin and Lovera, 2011, Nguyen et al., 2017b], output
feedback linearization control [Roza and Maggiore, 2012], Model Predictive Control [Engel-
hardt et al., 2016,Zanelli et al., 2018] and so on. For the second class, in which the desired
thrust and torques are subject to the saturation constraints, the related works usually ap-
ply a hierarchical optimization-based controller for counteracting these problems. E.g., [Lu
et al., 2017] designs an MPC scheme at the high control level and an H −∞ controller
with a disturbance observer at the low control level. In a similar fashion, [Nguyen et al.,
2017a] employs an MPC position controller for guaranteeing the constraint on thrust and
next, uses a combination of computed-torque control [Craig, 2005] and MPC for ensuring
the torque constraints.

• Level 4: In this category, the multicopters are considered to admit the desired thrust and
three angle rates as their input [Hehn and D’Andrea, 2011,Mueller and D’Andrea, 2013,Ha
et al., 2014, Hehn and D’Andrea, 2015]. Therefore, at this level, besides the translation
dynamics, only the attitude kinematics (i.e., describing the dynamical relation between the
attitude and the angle rates) are considered and as a result, it is more convenient to control
both of them at once. For example, works from the group of D’Andrea Raffaello [Hehn
and D’Andrea, 2011, Mueller and D’Andrea, 2013, Hehn and D’Andrea, 2015] solve one
optimization problem (being similar to a MPC approach [Mayne et al., 2000]) subject to
constraints on states and inputs of the system (considered decoupled, for simplification)
in real time. The first optimal input values are applied to the multicopter and then,
the algorithm re-plans the entire trajectory from the present state. Similarly, [Ha et al.,
2014] constructs only one passivity-based adaptive backstepping controller for tackling the
trajectory tracking problem of the multicopter dynamics described by this simplification
level.

• Level 5: There exist some multicopter platforms which already have their built-in
controller to stabilize the system at the desired values of thrust and angles [Giernacki
et al., 2017, Nguyen et al., 2018b, Eudes et al., 2018]. Therefore, using these platforms
allows the researcher to concentrate only on developing the position controller [Roza and
Maggiore, 2014, Nguyen et al., 2018b, Nguyen et al., 2019b]. Note that, even though
we are classifying this category at the highest simplification level of the dynamics, it
does not imply that the position control designs of these works are simpler than those
of the other levels, but probably vice versa. E.g., [Roza and Maggiore, 2014] proposes
the general principles for designing the position controller with almost global stability
guarantee, then, apply the theorem on three different control designs. [Nguyen et al.,
2018b] and [Nguyen et al., 2019b] follow the aforementioned theorem and construct a
flatness-based feedback linearization controller and an NMPC (Nonlinear MPC) controller
with guaranteed stability, respectively.

By this summary, we have classified the works related to the multicopter control designs in
the literature based on the complexity of the employed dynamical models (see again Figure
1.1.2). Their corresponding main difficulties as well as the typically employed solutions are also
discussed. In the following, we provide some recent updates on designing the position and the
attitude controllers.
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Position control designs:

The position control problem of the multicopters has been studied with vigour in the literature
recently [Nascimento and Saska, 2019]. The position controller is responsible for controlling the
outer loop which provides the desired thrust and the desired angles for the low control level
to follow. The goals of the control designs can be for trajectory tracking [Hoffmann et al.,
2008, Nguyen et al., 2018b], for target tracking (i.e., stabilizing or hovering at a desired point)
[Choi and Ahn, 2014, Kuantama et al., 2018, Nguyen et al., 2019b] and even only for altitude
tracking [Muñoz et al., 2017]. Over two hundreds different works are summarized and classified
in the bibliography review [Nascimento and Saska, 2019] which show a diversity of the employed
control methods: adaptive control [Borisov et al., 2017], backstepping control [Ha et al., 2014],
differential flatness-based [Formentin and Lovera, 2011, Nguyen et al., 2017b], Lyapunov-based
control [Hua et al., 2009, Convens et al., 2017], NMPC [Merabti et al., 2015, Nguyen et al.,
2019b] and so on. Among them, we find out interest in the method of feedback linearization
control based on differential flatness [Hagenmeyer and Delaleau, 2003] which not only benefits
from the existing flatness representation of the multicopter system (c.f. the use of flatness
on the trajectory generation as detailed in Section 1.1.1) but also provides several robustness
properties on the roll, pitch angles under undefined yaw angle as detailed in [Nguyen et al.,
2018b]. Theses properties are useful when considering actuator faults (c.f. Level 1 of the
classification given at the beginning of this section) which usually lead to uncontrolled yaw
motion [Freddi et al., 2011, Nguyen et al., 2017b]. Especially, this control design facilitates the
construction of an invariant set which can be employed to guarantee the stability of an NMPC
controller as introduced in [Nguyen et al., 2019b].

Attitude control designs:

Recalling the classification given in Figure 1.1.2, we consider that the attitude control problem
is to stabilize the whole rotation dynamics at the desired angles with the inputs defined as the
desired torques. Our definition is different from the one of the bibliography review [Nascimento
and Saska, 2019] where the authors define the attitude control problem as only the attitude
kinematics controller shown in Figure 1.1.2. To the best of our knowledge, this covers most of
the works related to attitude control in the literature while the works considering the angle rates
as the multicopter inputs (i.e., belonging to the simplification level 4 of our classification given
in Figure 1.1.2) are in minority.
The attitude control designs gained a substantial interest in the research community in the
last 6 years [Nascimento and Saska, 2019] and various control methods have been applied in the
literature: PID [Bolandi et al., 2013,Yu et al., 2015], dynamics inversion control (e.g., computed-
torque control) [Nguyen et al., 2017b, Das et al., 2009], Lyapunov-based control [Mellinger and
Kumar, 2011], quaternion-based control [Do, 2015, Liu et al., 2015], (Nonlinear) MPC [Alexis
et al., 2014,Nguyen et al., 2017a] and so on. Beside the common goal of stabilizing the attitude,
there also exist several interesting directions as follows:

• robust control designs with disturbance rejection. E.g.: [Lu et al., 2017] combines dis-
turbance observer-based control and H − ∞ control in order to construct a composite
hierarchical anti-disturbance controller. Also, [Lotufo et al., 2019] makes use of active
disturbance rejection control and embedded model control to design its robust attitude
controller against multiple disturbance types.

• FTC designs for counteracting specific actuator faults (i.e., employed for the works at the
simplification level 1 of our classification): loss of efficiency [Chamseddine et al., 2012,
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Avram et al., 2017], complete loss of rotor(s) [Mueller and D’Andrea, 2014,Falcońı et al.,
2016,Sun et al., 2018] and stuck rotor faults [Freddi et al., 2011,Nguyen et al., 2017b].

The foregoing literature review demonstrates the variety and vastness of the existing ap-
proaches on trajectory planning and control designs for the UAVs and the multicopters in par-
ticular. It also proves the tremendous interest in drone applications (e.g., applied control designs,
mapping, navigation, aerial photography), shared by both research and industrial communities.
However, we find out that there are still several open problems in the literature which, if being
solved, will strongly improve and expand the use of the multicopters. These questions will be
addressed in the following section.

1.1.3 Open problems

Problem 1. [Constraints validation under change of the predefined direction angle]
Usually, a reference trajectory for a multicopter system is generated with a desired direction
(yaw) angle [Cowling et al., 2007, Lu et al., 2017, Abadi et al., 2019]. However, changing of
the predefined direction angle during flight is necessary and unavoidable for some realistic and
common applications such as aerial photography [Engelhardt et al., 2016] or consideration of
faults [Chen and Jiang, 2005, Freddi et al., 2011]. Therefore, the a priori computed flight path
may become suboptimal or even infeasible and, hence, impossible to follow/track. Consequently,
it is worth investigating on effective states/inputs constraints for the multicopter system which
do not depend on a predefined yaw trajectory, and hence, can be satisfied even under change of
the direction angle during flight.

Problem 2. [NMPC design with stability guarantee and fast response requirement]
Let us consider various existing NMPC designs for a multicopter system [Zanelli et al., 2018,Li-
maverde Filho et al., 2016, Mueller and D’Andrea, 2013] and also for a fixed-wing UAV sys-
tem [Prodan et al., 2013,Gros et al., 2012]. It is well-known that the common problems for an
optimization-based controller are its heavy computational burden and the difficulties in guaran-
teeing the feasibility of the solution as well as the closed-loop stability (even for nominal con-
sideration) due to its implicit control law [Alamir and Bornard, 1994,Mayne et al., 2000,Alamir
and Murilo, 2008]. These issues are even more critical for aerial vehicles since they requires
not only rapid but also accurate responses. The foregoing works on NMPC designs for UAVs
concentrate only on reducing the computation time but disregard the stability and the feasibility
problems, hence, possibly yielding an infeasible solution or even leading to instability. Thus,
designing an NMPC scheme which not only requires fast computation time but also guarantees
the closed-loop stability as well as the feasibility still remains an open and valuable question.

Problem 3. [NMPC design with semi-global stability guarantee] C.f. Problem 2, there
exists a region of attraction for any NMPC design with guaranteed stability [Alamir and Bornard,
1994,Mayne et al., 2000,Grüne and Pannek, 2011]. It is also trivial that increasing the prediction
horizon length of the NMPC controller will enlarge this region. However, the prediction horizon
has its upper limit due to the effect it has on computation time, hence, limiting the region of
attraction around the desired equilibrium. Thus, an NMPC design with guaranteed stability
whose region of attraction is easy to tune such that it covers a compact set containing feasible
initial states of the system even with a fixed value of the prediction horizon (so called semi-global
stability) is new to the state of the art.

Problem 4. [Functioning under stuck actuator fault and constraints] In the literature,
an unique stuck rotor fault is considered for the spacecrafts [Yang and Lum, 2003,Marzat et al.,
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2012,Jiang et al., 2016] and for the quadcopter system [Freddi et al., 2011,Nguyen et al., 2017b].
Specially, for more information, once being stuck, the faulty actuators keep rotating at a constant
speed regardless of the variation of the control inputs. Thus, under a unique stuck rotor fault,
the quadcopter system not only loses one degree of freedom in its control ability but also gains
persistent external disturbances [Chen and Jiang, 2005]. The aforementioned existing works all
assume that the fault diagnosis module is already installed to detect, isolate, and identify the
fault parameters, i.e., the stuck rotor and its associated speed, and then, propose the control
reconfiguration designs and several related analysis. However, due to the complexity of the
faulty system, these works do not consider any actuator constraints. This may lead to harmful
saturation effects under real applications and as a result, the desired control properties (e.g.,
stability, performance) cannot be held. Therefore, improving the works on counteracting the
stuck actuator fault for the multicopter as in [Freddi et al., 2011, Nguyen et al., 2017b] is also
an interesting question.

1.2 Thesis orientation

The bibliography review detailed in Section 1.1 highlights the fact that the motion planning
problem for a multicopter system shows a great deal of variety in the employed dynamical mod-
els, control architectures and design methods. Thus, in this thesis, we limit ourselves to the
most general control architecture for a standard multicopter system which is illustrated at the
simplification level 3 in Figure 1.1.2. The scheme consists of a trajectory planner, a two-layer
hierarchical control scheme in consideration of the constraints on states and inputs (i.e., thrust
and three angle torques). Bear in mind that without specifying the multicopter’s type, we do
not have the rotor configuration (i.e., number and arrangement), hence, we cannot obtain the
rotor speeds (i.e., required for applying the simplification levels 1 and 2 in Figure 1.1.2).

The control approach considered within the thesis is to generate off-line a feasible reference tra-
jectory with respect to the nominal functioning of the multicopter system and then, to design
the tracking hierarchical controller. Regarding the trajectory generation, the reference has to
pass through way-points, to satisfy the system constraints and to take into account that the
yaw motion can be modified during flight due to intentional change for aerial camera/filming
applications or due to faults. We exploit the differential flatness properties of the multicopter
system for seeking a solution to Problem 1, i.e., maintaining the constraints satisfactions (i.e.,
the feasibility w.r.t. to the system) of the reference trajectory under change of the predefined
yaw angle.

Next, for the tracking control design, we exploit the properties of a feedback linearization con-
troller via flatness at the high level and a computed-torque controller at the low level. We first
deal with the trajectory tracking problem under these feedback linearization controllers. Then,
in order to fulfill various state and input constraints of the nonlinear multicopter dynamics,
NMPC appears as a suitable candidate. Noticing Problems 2 and 3, we also analyze the stabil-
ity, feasibility and computation burden problems affecting the NMPC controller.

Furthermore, we concentrate on a particular type of multicopter, the quadcopter, to propose
solutions for Problem 4 which addresses questions on a reliable control design for such systems
under a stuck actuator fault.
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1.3 Thesis contributions

This thesis addresses the multicopter hovering, trajectory generation and tracking problems
through a coherent hierarchical control framework exploiting the properties of differential flat-
ness, feedback linearization, and in particular computed-torque control, and NMPC design with
stability guarantees.
More precisely, the trajectory generation problem is solved by combining the differential flatness,
B-spline parametrization and the robust angular constraint formulations proposed in [Nguyen
et al., 2018a]. The resulted trajectory achieves the minimum length curve and validates the sys-
tem constraints even under mismatches on the desired direction angle tracking. The approach
is validated over a generic indoor trajectory generation application [Nguyen et al., 2018b] and
a building inspection scenario where the vehicle’s direction is varying over time for pointing
the mounted camera towards the building [Stoican and Prodan and Grøtli and Nguyen, 2019].
Then, the flatness representation of the system and the angular constraint formulations de-
signed in [Nguyen et al., 2018a] further facilitate a feedback linearization (FL) design for the
position controller at the high control level with saturation guarantees. An unstable mode of
this controller is also addressed which can lead to instability in case of large altitude error even
under nominal functioning. The controller is validated through simulation and experimental
tests over the Crazyflie 2.0 quadcopter platform [Nguyen et al., 2018b]. It is worth mentioning
that our method is tested independently through numerical experiments in the Gazebo software
by [Silano et al., 2019], which highlight its effectiveness.

Furthermore, a hierarchical optimization-based control scheme is first introduced in [Nguyen
et al., 2017a] (where linear MPC-based controllers are employed at both the two control layers)
and is significantly developed in the thesis by using different NMPC (Nonlinear Model Predictive
Control) designs with guaranteed stability. More precisely, for the position controller at high
level we employ:

1. NMPC design with terminal constraints: The design is an extension of our work in [Nguyen
et al., 2019b] which includes an invariant set under the aforementioned FL controller and
standard qudratic stage and terminal costs. The tuning parameters are chosen according to
the existing NMPC design principles in order to establish the (locally) asympotic stability
of the closed-loop system. Then, by exploiting the special construction of the admissible
set, we are able to enlarge infinitely the terminal region (if not restricted otherwise by
state constraints), hence, also increasing the domain of attraction unlimitedly and finally,
achieving the semi-global stability property of the design.

2. NMPC design using a terminal relaxed invariant set [Nguyen et al., TSMC]: The design is
constructed similarly to the previous one but using a δ-invariant set (with δ the sampling
time of the NMPC controller) as its terminal region. The set allows the state to escape
from itself but guarantees that it will come back at predefined periodic time instants and
always stay within the admissible set. Due to this relaxation, the terminal region can be
obtained through simple box-type constraints. This reduces the complexity of the NMPC
optimization problem (i.e., less computation burden) and ensures the closed-loop stability.

3. NMPC design without terminal constraints [Nguyen et al., 2020c]: This design ensures the
closed-loop stability by defining an appropriate prediction horizon length corresponding to
a specific domain of attraction. A thorough analysis is conducted by applying the existing
design procedure to the FL controller which provides the shortest required length as 150
steps in comparison with thousands steps obtained when using a standard linear controller.
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Next, for the attitude controller at the low control level, we present a general construction
of an admissible invariant set under the classical CTC (Computed-Torque Control) law of a
“computed-torque like” system and employ it as the terminal region within an NMPC design
for guaranteeing the closed-loop stability. Next, the approach is applied to design the NMPC
attitude controller with further improvements on the parameter calculation process. All the pro-
posed approaches are validated through extensive simulations and comparison with the existing
designs in the literature while the NMPC position controllers are also experimentally tested over
the Crazyflie quadcopter platform.

Furthermore, a reliable hierarchical control scheme is designed for the case of a quadcotper under
a unique stuck rotor fault. We extend our work in [Nguyen et al., 2017b] by developing an under-
fault functioning mode for the aforementioned NMPC attitude controller and the corresponding
fault diagnosis module which allows to analyze the faulty quadcopter system in a similar fashion
to the nominal case, hence, still guaranteeing the tracking capability. The proposed FTC (Fault
Tolerant Control) scheme shows its effectiveness through various simulations.

Finally, this thesis can be placed in a line of research which includes the (relatively recent) re-
sults in [Formentin and Lovera, 2011,Freddi et al., 2011,Prodan et al., 2013,Hehn and D’Andrea,
2015,Engelhardt et al., 2016,Zanelli et al., 2018]. With respect to their results, we significantly
improve the control methods despite the fact that they can share similar tools. More precisely,
the FL controller (i.e., obtained via flatness as aforementioned) is also applied in [Formentin
and Lovera, 2011, Freddi et al., 2011] but these works have some major drawbacks: no input
constraints are employed and furthermore, the authors do not notice the unstable mode which
is discovered in [Nguyen et al., 2018b]. Therefore, under realistic applications with essential
actuator limits, their designs will obviously lose the feedback linearization properties and prob-
ably fail into instability. Furthermore, [Engelhardt et al., 2016,Zanelli et al., 2018] also designs
NMPC controllers for the multicopter system but these works do not treat thoroughly the sta-
bility issues. Unlike those, we propose three different original approaches to stabilize the NMPC
designs for the multicopter which are validated in simulation and experiment.

In the sequel, we provide both the list of publications accepted/submitted to various conferences
and journals, and the presentations given by the candidate at various scientific days or within
various mobility projects of the co-supervisor.

Journal articles:

[1] N.T. Nguyen, I. Prodan, L. Lefèvre, “Stability guarantees for translational thrust-propelled
vehicles dynamics through NMPC designs”. IEEE Transactions on Control Systems Technology,
2020. Article in Press, pp. 1–13. DOI: https://doi.org/10.1109/TCST.2020.2974146.
[2] N.T. Nguyen, I. Prodan, L. Lefèvre, “Flat trajectory design and tracking with saturation
guarantees: a nano-drone application”. International Journal of Control, 2018. Article in Press,
pp. 1–14. DOI: https://doi.org/10.1080/00207179.2018.1502474.
[3] N.T. Nguyen, I. Prodan, L. Lefèvre, “Stabilising VTOL system through an NMPC design
with a relaxed terminal region”. Submitted to the IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2019.
[4] N.T. Nguyen, I. Prodan, L. Lefèvre, “NMPC design with semi-global stability guarantee
for thrust-propelled vehicles dynamics”. Submitted to the IEEE Control Systems Letters, 2020.

Conference papers:

[1] N.T. Nguyen, I. Prodan, L. Lefèvre, “Multicopter attitude control through NMPC design
with guaranteed stability”. Accepted for publication at the 2020 IFAC World Congress, held in
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https://doi.org/10.1080/00207179.2018.1502474
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Berlin, July, 2020.
[2] N.T. Nguyen, I. Prodan, F. Petzke, S. Streif, L. Lefèvre, “Hierarchical control of a quad-
copter under stuck actuator fault”. Accepted for publication at the 2020 IFAC World Congress.
[3] H.T. Nguyen, N.T. Nguyen, I. Prodan, “Trajectory tracking for a quadcopter under a
quaternion representation”. Accepted for publication at the 2020 IFAC World Congress.
[4] N.T. Nguyen, I. Prodan, L. Lefèvre, “On the use of a computed-torque control law for
the terminal region of an NMPC scheme”, in Proc. of the 2019 American Control Conference
(ACC’19), pp. 1008–1013, held in Philadelphia, USA, 2019.
[5] N.T. Nguyen, I. Prodan, L. Lefèvre, “A stabilizing NMPC design for thrust-propelled ve-
hicles dynamics via feedback linearization”, in Proc. of the 2019 American Control Conference
(ACC’19), pp. 2909–2914, held in Philadelphia, USA, 2019.
[6] F. Stoican, I. Prodan, E.I. Grøtli, N.T. Nguyen, “Inspection Trajectory Planning for 3D
Structures under a Mixed-Integer Framework”, in Proc. of the 2019 IEEE International Confer-
ence on Control & Automation (ICCA’19), pp. 1349–1354, held in Edinburgh, Scotland, 2019.
[7] N.T. Nguyen, I. Prodan, L. Lefèvre, “NMPC design with invariance induced by a computed-
torque control law”. Abstract publication at the 6th IFAC Conference on Nonlinear Model Pre-
dictive Control (NMPC’18), held in Madison, Wisconsin, USA, 2018.
[8] N.T. Nguyen, I. Prodan, L. Lefèvre, “Effective angular constrained trajectory generation
for thrust-propelled vehicles”, in Proc. of the 2018 European Control Conference (ECC’18), pp.
1833–1838, held in Limassol, Cyprus, 2018.
[9] N.T. Nguyen, I. Prodan, F. Stoican, L. Lefèvre, “Reliable nonlinear control for quadcopter
trajectory tracking through differential flatness”, in Proc. of the 20th IFAC World Congress,
held in Toulouse, France, IFAC-PapersOnline, vol. 50, no. 1, pp. 6971–6976, 2017.
[10] N.T. Nguyen, I. Prodan, L. Lefèvre, “Multi-layer optimization-based control design for
quadcopter trajectory tracking”, in Proc. of the 25th Mediterranean Conference on Control and
Automation (MED’17), pp. 601–606, held in Valletta, Malta, 2017.

Presentations:

1. “Reliable motion planning strategies for nonlinear dynamics”, presentation at Institute for
Robotics and Cognitive Systems, Lübeck, Germany, on August 15th, 2019.
2. “Trajectory generation and tracking for a quadcopter system”, presentation at Department of
Electronic & Electrical Engineering, of the University College London, London, United King-
dom, on May 8th, 2019.
3. “On the use of a computed-torque control law for the terminal region of an NMPC scheme”,
presentation at the laboratory of Automatic Control and System Dynamics, at Technische Uni-
versität (TU), Chemnitz, Germany, on February 14th, 2019.
4. “Flat trajectory design and tracking with saturation guarantees: a nano-drone application”,
presentation at the laboratory of Automatic Control and System Dynamics, at Technische Uni-
versität (TU), Chemnitz, Germany, on January 16th, 2019.
5. “An NMPC design for stabilizing thrust-propelled underactuated vehicles”, presentation at the
Réunion du GT–CPNL (Groupe de Travail – Commande Prédictive Nonlinéaire), at ONERA
(The French Aerospace Lab), Châtillon, France, on June 4th, 2018.
6. “Multi-layer optimization-based control design for quadcopter trajectory tracking”, open in-
vited track for GDR MACS Young PhD researchers at 20th IFAC World Congress, Toulouse,
France, on July 11th, 2017.
7. “Reliable motion planning strategies for nonlinear dynamics under uncertainties”, presenta-
tion at Norwegian University of Science and Technology (NTNU), Trondheim, Norway, on June
9th, 2017.
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1.4 Organization of the manuscript

This thesis is organized into five chapters excluding this introduction:

Chapter 2 presents the global view of the multicopter control problem. It details the dynamical
model, the off-line trajectory generation process and the general ideas on hierarchical control
design of the system. For illustration, we also introduce two control design candidates, i.e., the
feedback linearization control via flatness for the position controller at the high level and the
computed-torque attitude controller at the low level with their advantages/disadvantages. Then,
the trajectory generation results are shown for an indoor trajectory generation application and a
building inspection scenario. The indoor trajectory is then employed for conducting simulation
and experimental tests of the tracking control designs.

Chapter 3 addresses the use of a computed-torque control law within an NMPC framework
for a particular class of systems, the “computed-torque like” systems. We firstly recapitulate
the existing principles of designing NMPC with terminal stabilizing constraints and apply them
to the computed-torque controller. We propose an ellipsoid input constraint admissible set ob-
tained by using Taylor’s approximation theory and a condition on choosing the control gain
such that the set also becomes positive invariant. The bound of the computed-torque controller
within the set is constructed in terms of the state. All the aforementioned elements are gathered
to guarantee the stability of an NMPC design using the admissible invariant set as its terminal
constraint set. Next, we apply the method to design an NMPC attitude controller for stabilizing
the rotation dynamics of the multicopter system. Several elements are modified to adapt to the
fast changes of the desired angle. The proposed method is validated through simulations and
comparison with the quasi-infinite horizon NMPC design.

Chapter 4 proposes three different NMPC designs for the position controller. The first design
makes use of a terminal invariant set under the feedback linearization controller obtained via
flatness (provided in Chapter 2). We show that the set can be extended to cover an arbitrarily
defined compact set containing all the feasible initial states, and by this, the design achieves its
semi-global stability property. The second NMPC design has its terminal constraint set given
as a relaxed invariant set under the aforementioned feedback linearization controller. The set is
obtained in a simple formulation - linear box-type constraints, hence, reducing the complexity
as well as the computation time while still guaranteeing the stability. The final NMPC scheme
does not use terminal stabilizing constraints but only requires an appropriate prediction horizon
length. We demonstrate that using the feedback linearization controller reduces the required
prediction horizon length in comparison with using a standard linear controller. The contribu-
tions are validated through proofs of concepts, various examples and extensive simulations. The
controllers are also experimentally tested over a real nano-quadcopter platform.

Chapter 5 addresses a FTC (Fault Tolerant Control) design for a quadcopter system under
stuck rotor fault. The reconfiguration part consists of the NMPC attitude controller introduced
in Chapter 3 and the speed calculator which provides the rotor speeds references to the rotors.
A fault diagnosis module is also proposed to identify the faulty rotor and estimate the stuck
speed. Simulation results show the effectiveness of the whole scheme.

Chapter 6 concludes the thesis and discusses future directions.

The foregoing outline is illustrated in Figure 1.4.1 where the arrows show the dependencies
between chapters.
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Chapter 2

Flat trajectory design and tracking
with saturation guarantees

Let us recall the whole control process for a multicopter system given in Figure 1.1.1 in which,
a two-step control approach is employed: off-line trajectory generation and online tracking de-
sign, as similar to various existing works in the literature [Mellinger and Kumar, 2011, Roza
and Maggiore, 2012, Prodan et al., 2013, Zhao and Go, 2014]. The reference trajectory has to
take into account nonlinear dynamics with various operating constraints of the system. Con-
strained trajectory generation problems for aerial vehicles are intensively studied in the liter-
ature [Chamseddine et al., 2012, Prodan et al., 2013, Stoican et al., 2017] which recommends
a feasible and appropriate solution, i.e, employing differential flatness [Fliess et al., 1995] for
formulating the optimal trajectory generation problems taking into account the system con-
straints as considered in [Mellinger and Kumar, 2011,Hehn and D’Andrea, 2011,Prodan et al.,
2013, Hehn and D’Andrea, 2015, Nguyen et al., 2018b]. The flat output characterizations allow
us to mathematically formulate a reference path that tracks specific objectives (i.e., passing
through a priori given way-points, consumption minimization, state/input constraints satis-
faction) [Stoican et al., 2017, Stoican et al., 2015, Prodan et al., 2013]. The next step is to
parametrize the flat outputs by employing a specific parametrization [Cowling et al., 2007,Bipin
et al., 2014, Mueller and D’Andrea, 2013, Engelhardt et al., 2016, Lu et al., 2017], e.g., user-
defined piecewise functions [Mellinger and Kumar, 2011], Laguerre polynomials [Cowling et al.,
2007], B-splines functions [Lu et al., 2017]. Then, the optimization problems are solved by us-
ing various existing solvers (with the caveat that the problem is often nonlinear and nonconvex
and, thus, requires specialized tools). In this thesis, we limit ourselves to the off-line trajectory
generation problem of the multicopter system. When solving an off-line trajectory generation
(almost) all system’s state and input constraints are taken into account since the restrictions on
the computation time are usually less demanding [Cowling et al., 2007], hence, allowing us to
fully exploit the capability of the system.
Next, for the online tracking mechanism, within the two layers of the hierarchical control scheme
chosen by the aforementioned reasons, there are various existing control designs such as classical
PID control [Rivera and Sawodny, 2010], LQR (Linear-quadratic regulator) control [Kuantama
et al., 2018], adaptive control [Ha et al., 2014], feedback linearization-based control [Formentin
and Lovera, 2011,Nguyen et al., 2017b] and optimization-based control [Mueller and D’Andrea,
2013, Nguyen et al., 2017a, Zanelli et al., 2018, Nguyen et al., 2019b]. Beside the natural ca-
pability of fulfilling the system constraints of the optimization-based control strategy [Mayne
et al., 2000], most of the other approaches do not consider constraint validation, not even sat-
uration input constraints (e.g., [Rivera and Sawodny, 2010,Formentin and Lovera, 2011,Freddi
et al., 2011]). This is apologized by the complexity of the control designs taking into account
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constraints but bounding the inputs changes the system’s expected response and probably leads
to undesired consequences (see, e.g., the anti-windup issue [Wu and Lu, 2004]). We would like
to emphasize the work done in [Cao and Lynch, 2016] where the authors design a feedback
control scheme which provides bounded thrust, roll and pitch angles based on the body frame
(BF) consideration. However, it requires a convoluted transformation of the reference from the
inertial frame (IF) to the BF since the reference trajectory is usually designed based on the IF,
e.g. passing through way-points which are determined w.r.t. the IF. Moreover, when considering
the IF representation of the system, [Cao and Lynch, 2016] also state that it is impossible to
impose bounds on these two angles separately due to the existence of the yaw angle in the roll
and pitch angles. Thus, the work raises the following question:

Is it really impossible to design a non-optimization-based control taking into account
the input constraints from the more simpler viewpoint - the IF frame ?

The answer for this question is given in this chapter through an original feedback linearization
control design published in [Nguyen et al., 2018b] which employs the differential flatness repre-
sentation of the multicopter system to derive the control law with saturation guarantees. By
exploiting the robustness properties of the flatness representation of the system, the input con-
straints are ensured even under change of the predefined direction (yaw) angle. More precisely,
the contributions of this chapter are:

i) propose several reliable constraint formulations which is robust under change of the pre-
defined yaw angle value [Nguyen et al., 2018a]. The formulations are constructed based
on the differential flatness representation of the multicopter system and are employed for
both trajectory generation and tracking control design processes.

ii) formulate the constrained trajectory generation problem with the cost minimizing the path
length. The approach is validated through two applications on standard way-point passing
scenario [Nguyen et al., 2018b] and building inspection problem [Stoican et al., 2019].

iii) propose a feedback linearization position controller (at high control level) facilitated by
nested control design which provides bounded inputs (thrust, roll and pitch angles) [Nguyen
et al., 2018b].

iv) propose a modification on the original nested control design [Teel, 1992] which allows the
system to have larger saturation limits. The limits now vary accordingly to the a priori
given references, thus, are able to exploit more capability of the system than the standard
fixed limits [Nguyen et al., 2018b].

v) propose a condition for choosing the angle bounds employed in the control design based on
the a priori given trajectory and a condition for ensuring the existence of all the related pa-
rameters consisting of the reference trajectory, the control design and the input saturation
limits. Thus, we create an unified design scheme for trajectory generation and tracking
with bounded thrust and bounded angles while respecting the physical constraints of the
system [Nguyen et al., 2018b].

vi) validate the control method through simulation and experimental testing over the nano
quadcopter Crazyflie 2.0 platform [Giernacki et al., 2017].

The chapter is organized as follows. Section 2.1 recapitulates the dynamical model of a
standard multicopter system. Next, the differential flatness representation and the trajectory
generation problem is detailed in Section 2.2. Then, Section 2.3 presents the hierarchical control
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scheme and the control problems within each layer. In Section 2.4, the feedback linearization
control candidate for the high control level is presented. Section 2.5 shows the validation of the
proposed approaches under simulation and experiment by using a real nano-quadcopter platform.

2.1 Dynamical models of multicopters

This section recapitulates the dynamical models of a standard multicopter system using fixed
pitch propellers (i.e., producing only upward thrust, compared with variable pitch propeller [Cut-
ler et al., 2011]) as given in [Roza and Maggiore, 2014, Formentin and Lovera, 2011, Zhao and
Go, 2014]. The multicopter operates in two coordinate systems: the global frame G fixed to the
ground and the body frame B attached to the vehicle as shown in Figure 2.1.1.
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Figure 2.1.1: A multicopter vehicle and its coordinate systems.

It manifests an underactuated, highly coupled and nonlinear dynamical model as illustrated in
Figure 2.1.2. The inputs u , [T τ ]> consist of the thrust, T ∈ R+, and three torques gathered
in τ ∈ R3. The outputs are the three positions along the three x, y, z axis of the global frame
G gathered in ξ , [x y z]> and the roll, pitch, yaw angles gathered in η , [φ θ ψ]> whose
directions are defined by the three blue arrows in Figure 2.1.2.
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Figure 2.1.2: Coupled dynamical scheme of a standard multicopter system.

Next, to derive the dynamical model of the multicopter system using the Euler–Lagrange ap-
proach, we consider the multicopter model as a rigid body as usually asummed in various refer-
ences [Roza and Maggiore, 2014,Formentin and Lovera, 2011,Hasan and Johansen, 2018].

Rotation dynamics of the multicopter system:
We firstly address the rotation dynamics of the multicopter system which is influenced by the
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gyroscopic effect [Chaturvedi et al., 2011] and the actuator torques τ , hence, being given by1:

Jω̇ = −ω × (Jω) + τ , (2.1.1)

where ω , [ωx ωy ωz]
> ∈ R3 represents the angle rates in frame B and J , diag{Jx, Jy, Jz} ∈

R3×3 stands for the inertia tensor of the multicopter system.
Then, the angle rates ω affects the rotation motion of the multicopter system via the following
relation:

Ṙ = R sk(ω), (2.1.2)

with R ∈ SO(3), the rotation matrix and sk(ω) the skew-symmetric matrix of ω satisfying
sk(ω)p = ω × p for any vector p ∈ R3. An usual explicit formulation of sk(ω) is as follows
[Chaturvedi et al., 2011,Hehn and D’Andrea, 2015,Do, 2015]:

sk(ω) =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 . (2.1.3)

Since R−1 = R> due to the properties of the group SO(3), (2.1.2) leads to:

sk(ω) = R>Ṙ. (2.1.4)

As usually found in the works related to aerial applications [Freddi et al., 2011, Formentin and
Lovera, 2011, Nguyen et al., 2017b, Hasan and Johansen, 2018], we employ the roll-pitch-yaw
XYZ rotation sequence to transform the body frame B to the global frame G whose rotation
matrix R is defined as:

R =




cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ


 , (2.1.5)

with φ, θ, ψ the roll, pitch, yaw angles illustrated in Figure 2.1.1. Then, by introducing (2.1.5)
to (2.1.4), we have that:

sk(ω) =




0 −ψ̇ cosφ cos θ + θ̇ sinφ ψ̇ sinφ cos θ + θ̇ cosφ

ψ̇ cosφ cos θ − θ̇ sinφ 0 −φ̇+ ψ̇ sin θ

−ψ̇ sinφ cos θ − θ̇ cosφ φ̇− ψ̇ sin θ 0


 . (2.1.6)

This leads to the following formulation of ω in (2.1.1) which is equivalent to (2.1.4) but simpler:

ω = Wη̇, (2.1.7)

with η̇ , [φ̇ θ̇ ψ̇]> and the matrix W defined as:

W =




1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ


 . (2.1.8)

Translation dynamics of the multicopter system:
Next, the translation dynamics of the multicopter system is affected by the thrust acting along
the Bz axis of frame B (as shown by the red arrow in Figure 2.1.1) and the gravity in the reverse

1further details on the rotation motion of a rigid body can be found in [Chaturvedi et al., 2011, Formentin
and Lovera, 2011,Zhao and Go, 2014,Nguyen et al., 2017b]
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Gz axis of frame G. Thus, by applying Newton’s second law of motion, the translation dynamics
are given by:

ξ̈ = −ge3 +
T

m
Re3, (2.1.9)

in which T ∈ R+ is the magnitude of the thrust, e3 , [0 0 1]> denotes the unit vector pointing
along the z axis, g stands for the gravitational acceleration and m is the system mass. Thus,
by combining the rotation and translation subsystems (2.1.1)–(2.1.9), the entire twelve-state,
four-input dynamical model of the multicopter system (c.f. Figure 2.1.2) is given by:

ẋ = f(x, u),

y = [x y z ψ]>,
(2.1.10)

where the state vector is x , [ξ v η ω]> ∈ R12 with v , ξ̇ ∈ R3 the velocity vector, the input
vector is u , [T τ ]> ∈ R4 and the output vector y ∈ R4 consists of the 3D position ξ and the
yaw angle ψ. The function f(x, u) gathers the appropriate elements taken from (2.1.1)–(2.1.9)
and is given by:

f(x, u) =




v
−ge3 + Re3T/m

Wω
J−1(−ω × (Jω) + τ )


 , (2.1.11)

in which, η̇ = Wω is the inversion of (2.1.7) with W = W−1.

State and input constraints of the multicopter system:
Furthermore, the state and input constraints of the multicopter system (2.1.10) are given as
follows:

x ∈ XMC =
{
x ∈ R12

∣∣∣ 〈|φ|, |θ|〉 ≤ εmax, 〈|ωx|, |ωy|〉 ≤ ωmax

}
, (2.1.12)

u ∈ UMC =
{
u ∈ R4

∣∣∣ |τ | ≤ τmax, 0 ≤ T ≤ Tmax

}
, (2.1.13)

with εmax ∈ (0, π/2) the defined maximum angle value, ωmax ∈ R+ the maximum angle rate,
Tmax > 0 the thrust maximum limit and τmax ∈ R3

+ gathering the maximum values of the three
torques on the three axes of the multicopter system. Note that, we use in (2.1.12) the notation
〈|φ| , |θ|〉 ≤ εmax to denote “|φ| ≤ εmax and |θ| ≤ εmax”. A similar reasoning is also applied for
〈|ωx| , |ωy|〉 ≤ ωmax. Imposing the condition on εmax < π/2 is not only to avoid singularities in
(2.1.8) but also to constrain the multicopter system not to tilt up to the perpendicular orientation
which causes the loss of upward thrust and makes the system unable to resist the gravity.

Remark 2.1.1. First, note that in (2.1.12), no constraints on the positions (x, y, z) and the yaw
angle ψ contribute to the shape of the set XMC since (x, y, z, ψ) will appear as the decision pa-
rameters in the reference trajectory generation problem. Depending on the control application,
position and yaw angle constraints will be considered, e.g., by passing through way-points or
maintaining a fixed direction.
Second, note that, the roll, pitch angles (φ, θ) and the two angle rates (ωx, ωy) as in (2.1.12)
can be constrained by different limits for each variable. However, it is customary to impose the
constraints as in (2.1.12) due to the symmetry of the multicopter system [Hehn and D’Andrea,
2015,Lu et al., 2017,Prach and Kayacan, 2018]. In any case, different bounds for these param-
eters can be easily imposed at the price of a more convoluted notation which offers no further
qualitative gain.
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Lastly, bear in mind that the considered inputs: the thrust T and the torques τ as in (2.1.10)
are actually resulted from the rotor configuration corresponding to the real multicopter system
(depending on the number of rotors and their positioning, etc) [Intwala and Parikh, 2015]. Phys-
ically, the rotors speeds have bounds which either translate into additional constraints on the
thrust and torques as in (2.1.13) (i.e., popular configurations are those of quadcopters, hexa-
copters). The quadcopter system case will be presented in Section 5.2.1 where the constraints
on four rotor speeds are transformed into those on the thrust and torques even under the fault
of one rotor. �

In the next section, we present the method for generating off-line a reference trajectory
for the multicopter system (2.1.10) which takes into account the internal dynamics (2.1.1)-
(2.1.9), the system constraints (2.1.12)-(2.1.13) and additional user-defined constraints such as
passing through some way-points. Furthermore, the chosen method allows to generate an optimal
trajectory which minimizes certain objectives such as curve length or acceleration.

2.2 Off-line constrained trajectory generation

This section presents an approach for tackling the off-line trajectory generation problem of the
multicopter system. The trajectory has to be feasible which means that it respects the internal
dynamics (2.1.1)-(2.1.9) and the state and input constraints (2.1.12)-(2.1.13). Furthermore, the
trajectory also takes into account various user-defined constraints such as way-points passing
and initial boundary conditions. For solving these problems, in the following, we firstly present
the differential flatness representation [Fliess et al., 1995, Lévine, 2011] of the multicopter sys-
tem. Then, we introduce several robust constraints formulations which are derived from the
mathematical properties of the flatness. Next, the cost and the constraints are recasted in a
B-splines parametrization [Piegl and Tiller, 1995] in order to generate an optimal reference tra-
jectory which minimizes the path length as similarly considered in [Stoican et al., 2015,Stoican
et al., 2017] and satisfies the imposed constraints.

2.2.1 Differential flatness properties of the multicopter system

Among various approaches for optimal trajectory generation for multicopter systems, a popular
solution is the use of flat output characterizations [Fliess et al., 1995]. There is a number of
works like [Chamseddine et al., 2012, Hehn and D’Andrea, 2015, Stoican et al., 2015, Stoican
et al., 2017, Eliker et al., 2018] which employ differential flatness for dealing with the problems
of constrained trajectory generation for aerial vehicles in general and the multicopter system
in particular. Important features of flatness are well-know, as for example, it takes explicitly
into account the internal dynamics of the systems and (with some difficulty) state and input
constraints. The flatness property of the multicopter system is well-known in the literature and
has been employed in various works related to trajectory generation and control design of the
system like [Rivera and Sawodny, 2010, Formentin and Lovera, 2011, Bipin et al., 2014, Nguyen
et al., 2017b,Nguyen et al., 2018b] . Therefore, we briefly recapitulate the results hereinafter.

Definition 2.2.1 ( [Fliess et al., 1995]). Consider the nonlinear system in general form:

ẋ(t) = f(x(t),u(t)), (2.2.1)

with the state x(t) ∈ Rn and input vectors u(t) ∈ Rm. The system (2.2.1), satisfying the
controllability property, is differentially flat if there exists a flat output z(t) ∈ Rm (i.e., required



2.2. Off-line constrained trajectory generation 25

to have the same dimension with the input u(t)) [Fliess et al., 1995]:

z(t) = Υ(x(t),u(t), u̇(t), . . . ,u(q)(t)), (2.2.2)

such that the states and inputs can be algebraically expressed in terms of z(t) and a finite number
of its higher-order derivatives:

x(t) = Υx(z(t), ż(t), · · · , z(q)(t)), (2.2.3a)

u(t) = Υu(z(t), ż(t), · · · , z(q+1)(t)). (2.2.3b)

In Definition 2.2.1, the derivatives are taken in terms of the time t, hence, denoted by ẋ(t)
for the state x(t) as in (2.2.1). However, throughout most of the thesis, the time notation (t)
will be discarded whenever the meaning is straightforward from the context.

Proposition 2.2.2. The multicopter system ẋ = f(x, u) defined by (2.1.10) is differentially flat
with the associated flat output taken as the output of the system, i.e., y = [x y z ψ]> from
(2.1.10).

Proof. By using the output y as the flat output, the first condition (2.2.2) follows immediately
from the definition of the flat output (2.2.4) while the second condition (2.2.3) is verified con-
structively. Let denote the flat output z as follows:

z =
[
x y z ψ

]>
. (2.2.4)

Let us consider the states x = [ξ v η ω]> defined in (2.1.10). Beside the clear expression of the
position ξ and the yaw angle ψ in terms of the flat output z, it is also trivial to have the velocity
v = ξ̇ expressed in terms of ż. Next, by considering the translation dynamics (2.1.9), the roll,
pitch angles are given by:

φ = Υφ(ξ̈, ψ) , arcsin (Φx sinψ − Φy cosψ) , (2.2.5)

θ = Υθ(ξ̈, ψ) , arctan (Θx cosψ + Θy sinψ) , (2.2.6)

in which, Φx,Φy,Θx,Θy are defined as:

Φx =
ẍ√

ẍ2 + ÿ2 + (z̈ + g)2
, (2.2.7a)

Φy =
ÿ√

ẍ2 + ÿ2 + (z̈ + g)2
, (2.2.7b)

Θx =
ẍ

z̈ + g
, (2.2.7c)

Θy =
ÿ

z̈ + g
, (2.2.7d)

with g the gravitational acceleration from (2.1.9). Next, from (2.1.7), the angular velocity vector
ω is expressed as a function of the angle vector η and its derivative η̇, i.e., ω = Wη̇. Thus, by
introducing (2.2.5)-(2.2.6), the angular velocities ω , [ωx ωy ωz]

> are expressed as the function
of z and its derivatives up to the third-order as follows:

ωx = Υωx(ξ̈,
...
ξ , ψ) ,

Φ̇x sinψ − Φ̇y cosψ

cosφ
, (2.2.8)

ωy = Υωy(ξ̈,
...
ξ , ψ) , cosφ cos2 θ

(
Θ̇x cosψ + Θ̇y sinψ

)
, (2.2.9)

ωz = Υωz(ξ̈,
...
ξ , ψ, ψ̇) , − sinφ cos2 θ

(
Θ̇x cosψ + Θ̇y sinψ

)
+

cos θ

cosφ
ψ̇, (2.2.10)
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in which, we emphasize that Φ̇x ,
dΦx

dt
is a function of the translation acceleration ξ̈ and the

jerk
...
ξ . Similar expressions are obtained for Φ̇y, Θ̇x and Θ̇y.

The next objective is to find the flatness-based representation of the input vector u = [T τ ]>.
From the translation dynamics (2.1.9), we have that ‖ξ̈+ge3‖ = ‖Re3‖T/m. By using ‖Re3‖ = 1,
the thrust T is obtained as a function of the translation acceleration ξ̈ as follows:

T = ΥT (ξ̈) = m
√
ẍ2 + ÿ2 + (z̈ + g)2. (2.2.11)

Finally, the input torques τ is calculated by using the rotation dynamics (2.1.1):

τ = Υτ (ξ̈,
...
ξ , ξ(4), ψ, ψ̇, ψ̈) = Jω̇ + ω × (Jω), (2.2.12)

with ω from (2.2.8)-(2.2.10), hence, allowing to further interpret the torque τ in the flat output
space. Note that, the full expression of the torque τ requires up to the fourth-order derivative
of the flat output z. This also completes the proof.

Remark 2.2.3. In [Bipin et al., 2014,Rivera and Sawodny, 2010,Formentin and Lovera, 2011], a
simplified version of flat representation is usually employed with the assumption that the yaw
angle ψ equals zero. We do not follow these assumptions since we want to exploit all the degrees of
freedom, thus fully taking into account the nonlinear system dynamics including the yaw motion.
Furthermore, in some of our published works [Nguyen et al., 2017b,Nguyen et al., 2018a,Nguyen

et al., 2018b], a different flat output z as in (2.2.4) is employed, i.e., z =
[
x y z arctan(ψ/2)

]>
.

This flat output eliminates the trigonometric term of ψ as appearing in (2.2.5)–(2.2.6), hence,
providing less convoluted flatness representations for the multicopter system (especially for the
torques τ as implicitly given in (2.2.12)). E.g.:

φ = arcsin

(
2z4z̈1 − (1− z2

4)z̈2

(1 + z2
4)
√
z2

1 + z2
2 + (z3 + g)2

)
, (2.2.13)

with
[
z1 z2 z3 z4

]
=
[
x y z arctan(ψ/2)

]
. However, no trigonometric terms appear in (2.2.13),

hence, hiding some trigonometric properties such as sin2 ψ + cos2 ψ = 1 (can still be obtained
from (2.2.13) but not straightforwardly), which will be of use for us to construct several reliable
constraints formulations in the next section. �

2.2.2 Reliable constraints formulation

When solving the trajectory generation problem of a multicopter system, many approximations
(e.g., small or even null roll, pitch angles [Chamseddine et al., 2012, Gandolfo et al., 2016]) are
employed in the literature for simplifying the system dynamics (2.1.1)-(2.1.9). Furthermore,
various states and inputs constraints of the aerial systems are usually imposed based on a
predefined yaw angle trajectory, e.g., zero angle as illustrated in Figure 2.2.1 [Cowling et al.,
2007, Mueller and D’Andrea, 2013, Lu et al., 2017] or a spline with specific degree [Engelhardt
et al., 2016]. Therefore, any change in the yaw angle trajectory (for example, intentionally
modified vehicle direction pointing towards the target for camera applications [Engelhardt et al.,
2016] or changes in the direction due to faulty events [Nguyen et al., 2017b]), will obviously affect
the validation of the above mentioned constraints. These problems raise our interest in designing
several reliable angular constraints formulations which bound the roll, pitch angles (φ, θ as in
(2.2.5)-(2.2.6)) and the angular velocities (ωx, ωy) as in (2.2.8)-(2.2.9)) without requiring any
information of the yaw angle. Thus, we can decouple the trajectory generation problem of the
multicopter system into two separate parts:
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Trajectory constraints: 
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- Input constraints 
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Figure 2.2.1: Illustration of reference trajectory generation under assumption of ψ = 0.

i) position reference trajectory providing the reference ξr of the position ξ in (2.1.9).

ii) yaw reference trajectory ψr.

Especially, the position reference trajectory ξr will still satisfy the predefined constraints on the
angles and the angular velocities even under any modification on the yaw trajectory due to faulty
events or intentional modification of the vehicle direction such as pointing towards the target
for camera application.

2.2.2.1 Constraints on roll, pitch angles φ, θ

Proposition 2.2.4 ( [Nguyen et al., 2018a]). The roll and pitch angles (i.e., φ = Υφ(ξ̈, ψ) and
θ = Υθ(ξ̈, ψ) from (2.2.5)-(2.2.6)) are bounded by the angle boundary ε ∈ [0, π

2
) as follows:

〈|φ| , |θ|〉 ≤ ε, ∀ψ ∈ R, (2.2.14)

where the angle boundary ε ∈ [0, π
2
) is defined as:

ε , Υε(ξ̈) = arcsin

(√
ẍ2 + ÿ2

ẍ2 + ÿ2 + (z̈ + g)2

)
. (2.2.15)

Proof. At first, let us consider the angle boundary ε ∈ [0, π
2
) defined in (2.2.15), after some

trigonometric manipulations, we have that:

sin ε =

√
ẍ2 + ÿ2

ẍ2 + ÿ2 + (z̈ + g)2
, (2.2.16)

tan ε =

√
ẍ2 + ÿ2

(z̈ + g)2
. (2.2.17)

Furthermore, by applying the Cauchy-Schwarz inequality [Bhatia and Davis, 1995] to the flatness-
based formulations of the roll, pitch angles from (2.2.5)-(2.2.6), we can bound the two angles as
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follows:

| sinφ| ≤
√

(sin2 ψ + cos2 ψ)(Φ2
x + Φ2

y) =

√
ẍ2 + ÿ2

ẍ2 + ÿ2 + (z̈ + g)2
, (2.2.18)

| tan θ| ≤
√

(sin2 ψ + cos2 ψ)(Θ2
x + Θ2

y) =

√
ẍ2 + ÿ2

(z̈ + g)2
. (2.2.19)

Then, introducing (2.2.16)-(2.2.17) to (2.2.18)-(2.2.19), we have that: sin (|φ|) ≤ sin(ε) and
tan (|θ|) ≤ tan(ε). These further provide |φ| ≤ ε and |θ| ≤ ε due to the monotonic property of
the sin(·) and tan(·) functions in the range of (−π

2
, π

2
) in which the angles φ and θ are constrained

to stay as detailed in (2.1.12).

2.2.2.2 Constraints on angular velocities ωx, ωy

Proposition 2.2.5 ( [Hehn and D’Andrea, 2015]). The angular velocities ωx = Υωx(ξ̈,
...
ξ , ψ)

from (2.2.8) and ωy = Υωy(ξ̈,
...
ξ , ψ) from (2.2.9) are bounded by the angle rate boundary ωb ∈ R+

as follows:
〈|ωx| , |ωy|〉 ≤ ωb, ∀ψ ∈ R, (2.2.20)

where the angle rate boundary ωb ∈ R+ is defined as:

ωb , Υωb(ξ̈,
...
ξ ) =

√
...
x 2 +

...
y 2 +

...
z 2

ẍ2 + ÿ2 + (z̈ + g)2
. (2.2.21)

Proof. Hereinafter, the proof is briefly presented by using our defined notations while more
details can be found in [Hehn and D’Andrea, 2015].
Recall the translation dynamics given in (2.1.9). By introducing the flatness-based representation
of the thrust T from (2.2.11) to (2.1.9), we have that:

Φ = Re3, (2.2.22)

in which, Φ , [Φx Φy Φz]
> with Φx,Φy given in (2.2.7) and Φz defined as follows:

Φz =
z̈ + g√

ẍ2 + ÿ2 + (z̈ + g)2
. (2.2.23)

Next, by introducing Ṙ = R sk(ω) from (2.1.2) to the derivative of (2.2.22), we obtain that:

Φ̇ = R sk(ω)e3. (2.2.24)

This allows to further express the angular velocities ωx and ωy as:


ωy
−ωx

0


 = R>Φ̇, (2.2.25)

with R> = R−1 as R ∈ SO(3). Then, the following holds:

〈ωx, ωy〉 ≤
√
ω2
x + ω2

y ≤ ‖Φ̇‖ ≤ ωb, (2.2.26)

with ωb from (2.2.21). The final inequality, i.e., ‖Φ̇‖ ≤ ωb is due to the unit norm property of
Φ, i.e., ‖Φ‖ =

√
Φ2
x + Φ2

y + Φ2
z = 1 with Φx,Φy from (2.2.7), Φz from (2.2.23) and is presented

explicitly in [Hehn and D’Andrea, 2015]. This also completes the proof.
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Remark 2.2.6. The formulation of (ωx, ωy) as in (2.2.25) can be transformed into the flatness rep-
resentations of ωx = Υωx(ξ̈,

...
ξ , ψ) and ωy = Υωy(ξ̈,

...
ξ , ψ) given in (2.2.8)-(2.2.9) by introducing

the angles φ = Υφ(ξ̈, ψ) and θ = Υθ(ξ̈, ψ) from (2.2.5)-(2.2.6) to the rotation matrix R given in
(2.1.5). The flatness representations Υωx(ξ̈,

...
ξ , ψ),Υωy(ξ̈,

...
ξ , ψ) from (2.2.8)-(2.2.9) clearly show

the dependence of ωx, ωy on ξ̈,
...
ξ , ψ, hence, being compatible with formulating the trajectory

generation problem. Also, note that the formulation (2.2.25) benefits from the rotation matrix
R ∈ SO(3) and hence, we can easily provide the bound ωb as in (2.2.21). �

2.2.3 B-spline parametrization for the reference trajectory

This section introduces the parametrization of the reference trajectory ξr(t) , [xr(t) yr(t) zr(t)]
>

using B-spline basis functions [Piegl and Tiller, 1995]. B-splines curves are well-suited to flatness
parametrization due to their ease of enforcing continuity and because their degree depends only
up to which derivative is needed to ensure continuity (i.e., 4 for the considered multicopter
system given in (2.1.10)) [Nguyen et al., 2018b,Stoican et al., 2017,Prodan et al., 2013,Stoican
et al., 2015].
The B-spline parametrization of ξr(t) is defined using two basic elements:

i) the degree d ∈ N (d ≥ 4 for guaranteeing the continuity of the input torque τ from
(2.2.12)).

ii) the control points in 3D space R3.

Let us construct the matrix P ∈ R3×(n+1) consisting of n+ 1 control points p0, . . . , pn as follows:

P =
[
p0, p1, . . . , pn

]
. (2.2.27)

Then, a B-spline reference trajectory ξr(t) is defined as a linear combination of the control points
and the same number of B-spline basis functions:

ξr(t) =
n∑

i=0

piBi,d(t) = PBd(t), (2.2.28)

where Bd(t) =
[
B0,d(t) . . . Bn,d(t)

]>
gathers the B-spline basis functions Bi,d(t) defined by a

recursive formula as follows:

Bi,1(t) =

{
1, for t̃i ≤ t < t̃i+1

0, otherwise
, (2.2.29a)

Bi,d(t) =
t− t̃i

t̃i+d−1 − t̃i
Bi,d−1(t) +

t̃i+d − t
t̃i+d − t̃i+1

Bi+1,d−1(t), (2.2.29b)

for d > 1 and i ∈ {0, 1, . . . , n}. The time instants t̃m with m ∈ {0, . . . , n + d} are chosen as
follows:

t̃m =





t0, for m ∈ {0, . . . , d− 1},
t0 +

(
tf − t0
n− d

)
(m− d), for m ∈ {d, . . . , n},

tf , for m ∈ {n+ 1, . . . , n+ d},

(2.2.30)

in which, the first and the last d + 1 points equal to the initial and final time instants t0
and tf , respectively while the intermediary points t̃d, . . . , t̃n are equally distributed along these
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extremes. In literature, this approach is usually referred as “fixed knot-vector” while there also
exist different partition types of {t̃0, . . . , t̃n+d} as in (2.2.30) (e.g., uniform, open uniform, non-
uniform) with the only requirement is on having t̃i ≤ t̃i+1 [Piegl and Tiller, 1995]. The B-spline
curve as in (2.2.28) yields various interesting properties which are enumerated in [Suryawan,
2011, Stoican et al., 2015, Nguyen et al., 2018b]. Some of them are related to the forthcoming
results, and hence, are given in detail:

1. Endpoint interpolation: the first control point coincides with the initial point and the last
control point coincides with the last point. E.g.:

p0 = ξ(t0), pn = ξ(tf ). (2.2.31)

2. The B-spline curve lies in the convex hull generated by the control points gathered in P;

3. The ‘q’ order derivatives of B-spline basis function can be expressed as linear combination
of B-spline basis functions as:

B
(q)
d (t) = Kd,d−qBd(t), (2.2.32)

with matrix Kd,d−q of appropriate dimensions and content given in [Suryawan, 2011, page
55].

2.2.4 State and input constraints parametrization

The reference trajectory has to satisfy the boundary conditions consisting of the initial and final
values of the position ξ and up to its fourth-order derivative ξ(4), i.e., {ξ0, ξ̇0, . . . , ξ

(4)
0 } for the

initial state and {ξf , ξ̇f , . . . , ξ(4)
f } for the final state. By employing the two properties of the

B-splines curve detailed in (2.2.31) and (2.2.32), the boundary constraints are constructed as:

p0 = ξ0, PKd,d−qBd(t = t0) = ξ
(q)
0 , ∀q ∈ {1, . . . , 4}, (2.2.33)

pn = ξf , PKd,d−qBd(t = tf ) = ξ
(q)
f , ∀q ∈ {1, . . . , 4}. (2.2.34)

Note that, Bd(t = t0) =
[
1, 0, . . . , 0

]>
and Bd(t = tf ) =

[
0, . . . , 0, 1

]>
.

Moreover, during the flight, the vehicle has to pass through N way-points2 wk at the time
instances tk associated to them (with k ∈ {1, . . . , N}), i.e.:

PBd(tk) = wk,∀k ∈ {1, . . . , N}. (2.2.35)

Note that, the N way-points wk are not included the initial and final positions ξ0, ξf from
(2.2.33)–(2.2.34) in order not to conflict with these boundary conditions. The equation (2.2.35)
can be relaxed to an inequality describing the region where the trajectory has to pass through
(e.g. pass near the way-point within the region). We provide the equality form in (2.2.35) since
it is conceptually simpler.
Next, since the multicopter system is subject to the state constraint set X from (2.1.12), the
reference trajectory (including both the position and yaw trajectories) also has to limit the
reference roll and pitch angles accordingly:

〈|φr| , |θr|〉 ≤ εrmax , (2.2.36)

2Note that, considering way-points at the trajectory generation level is coherent with typical software-hardware
UAV configurations which use way-points in the communication protocol.
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with the desired maximum value εrmax ∈ (0, εmax] and with εmax the constrained maximum angle
value employed in the set X from (2.1.12). Note that, the reference angles are calculated by
using the flatness-based representations of the angles, i.e., φr = Υφ(ξ̈r, ψr) and θr = Υθ(ξ̈r, ψr)
from (2.2.5)-(2.2.6).
Moreover, since we do not want the multicopter system to have an aggressive altitude variation
and the thrust has to respect its constraint 0 ≤ T ≤ Tmax from (2.1.13), the thrust reference,
Tr, is also limited by its lower bound, 0 < Trmin

< mg and upper bound, mg < Trmax < Tmax,
given as follows:

Trmin
≤ Tr ≤ Trmax , (2.2.37)

Note that, the value mg with m the system mass and g the gravity from (2.1.9) has to lie within
the range [Trmin

, Trmax ] for guaranteeing the hovering capability of the multicopter system.
Then, the reference trajectory also takes into account the constraints on the reference angular
velocities from (2.1.12):

〈|ωxr |, |ωyr|〉 ≤ ωrmax , (2.2.38)

with ωrmax ∈ R+ the desired maximum angle rate satisfying ωrmax ≤ ωmax with ωmax from (2.1.12).
The reference angular velocities are calculated as ωxr = Υωx(ξ̈r,

...
ξ r, ψr) and ωyr = Υωy(ξ̈r,

...
ξ r, ψr)

with Υωx(·),Υωy(·) from (2.2.8)-(2.2.9).
Then, we introduce the constraints formulations which rely only on the position reference ξr
from (2.2.28). The formulations do not require any information on the undefined reference yaw
ψr but still can guarantee the angular constraints (2.2.36)-(2.2.38).

Proposition 2.2.7. If the position reference trajectory ξr has its acceleration ξ̈r and jerk
...
ξ r

satisfying the followings:

(i)
[
ẍ2
r + ÿ2

r (z̈r + g)2
]>

lies inside a polytope P defined as a convex sum of its vertices:

[
ẍ2
r + ÿ2

r

(z̈r + g)2

]
∈ P , Conv(V), (2.2.39)

V =

{(
0,
T 2
rmin

m2

)>
,

(
T 2
rmin

m2
sin2 εrmax ,

T 2
rmin

m2
cos2 εrmax

)>
,

(
T 2
rmax

m2
sin2 εrmax ,

T 2
rmax

m2
cos2 εrmax

)>
,

(
0,
T 2
rmax

m2

)>}
, (2.2.40)

then, the constraints on roll and pitch angles 〈|φr| , |θr|〉 ≤ εrmax in (2.2.36), the constraint
on thrust Trmin ≤ Tr ≤ Trmax in (2.2.37) hold regardless of the reference yaw angle ψr.

(ii) the acceleration ξ̈ and the jerk
...
ξ r satisfies Υωb(ξ̈,

...
ξ ) ≤ ωrmax with Υωb(·) from (2.2.21),

i.e.:
‖
...
ξ r‖√

ẍ2
r + ÿ2

r + (z̈r + g)2
≤ ωrmax , (2.2.41)

then, the constraint on angular velocities 〈|ωxr |, |ωyr|〉 ≤ ωrmax from (2.2.38) are satisfied
regardless of the reference yaw angle ψr. �

Proof. For point (i), from Proposition 2.2.4, we have that:

〈|φr| , |θr|〉 ≤ Υε(ξ̈r), ∀ψr ∈ R. (2.2.42)
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with Υε(·) from (2.2.15). Thus, instead of directly constraining φr = Υφ(ξ̈r, ψr) and θr =
Υθ(ξ̈r, ψr) from (2.2.5)-(2.2.6), we impose a constraint on the angle boundary Υε(ξ̈r) ≤ εrmax .
Next, the constraint on thrust in (2.2.37) is re-formulated as Trmin

≤ ΥT (ξ̈r) ≤ Trmax with ΥT (·)
from (2.2.11). These provides the following system of inequalities:




1 − tan2(εrmax)
−1 −1

1 1
−1 0

0 −1




[
ẍ2
r + ÿ2

r

(z̈r + g)2

]
≤ 1

m2




0
−T 2

rmin

T 2
rmax

0
0



, (2.2.43)

which is equivalently transformed into (2.2.40) using Fourier-Motzkin algorithm [Ziegler, 2012].
Next, from Proposition 2.2.5, the following holds:

〈|ωxr |, |ωyr|〉 ≤ Υωb(ξ̈r,
...
ξ r),∀ψr ∈ R. (2.2.44)

Therefore, by constraining Υωb(ξ̈r,
...
ξ r) ≤ ωrmax as in point (ii) (2.2.41), 〈|ωxr |, |ωyr|〉 ≤ ωrmax are

satisfied for any reference yaw angle ψr. Thus, completing the proof.

Remark 2.2.8. At point (ii) of Proposition 2.2.7, the constraint Υωb(ξ̈,
...
ξ ) ≤ ωrmax as in (2.2.41)

can be replaced by a simpler formulation:

‖
...
ξ r‖ ≤

Trmin

m
ωrmax , (2.2.45)

with Trmin
satisfying Trmin

≤ Tr = m
√
ẍ2 + ÿ2 + (z̈ + g)2 from (2.2.37). The proof is straight-

forward to obtain by introducing Trmin
≤ m

√
ẍ2 + ÿ2 + (z̈ + g)2 to (2.2.45). This replacement

is also employed in the literature [Hehn and D’Andrea, 2011, Hehn and D’Andrea, 2015] but it
is a trade-off between the simplicity and the conservativeness of the resulted reference angular
velocities (ωxr , ωyr). �

Example 2.2.9. Let us illustrate point (i) of Proposition 2.2.7 by using a multicopter system
described in (2.1.9) with the parameters m = 0.5kg, Trmin = 3N , Trmax = 5N and εrmax = π/6.
Then, the polytope P given in (2.2.40) and its vertices V , {v1, . . . , v4} are depicted in Figure
2.2.2.

2.2.5 Constrained trajectory generation with minimal length

In our work, we choose to minimize the length of the geometric trajectory since it appears to be
realistic for various aerial applications [Prodan et al., 2013, Stoican et al., 2017, Nguyen et al.,
2018b] . Note that any trajectory computed offline is only “preliminary” as it cannot account for
run-time disturbance factors (wind gusts for example) and in this regard, the shortest trajectory
cost is usually considered. Therefore, we will generate first the optimal-length position reference
trajectory ξr(t) along the time interval [t0, tf ] which is also subject to various states and input
constraints (2.2.33)-(2.2.38). It results in an optimization problem with a quadratic cost function
in terms of the control points P from (2.2.27) defined as:

P = arg min
P

∫ tf

t0

ξ̇>r (t)ξ̇r(t)dt = arg min
P

∫ tf

t0

(PKd,d−1Bd(t))
> (PKd,d−1Bd(t)) dt,

s.t. constraints (2.2.33), (2.2.34), (2.2.35), (2.2.40) and (2.2.41) are verified,

(2.2.46)
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Figure 2.2.2: Illustration of the polyhedral set P and its vertices as in (2.2.40).

For solving the optimization problem (2.2.46), the constraints (2.2.33), (2.2.34), (2.2.35), (2.2.40)
and (2.2.41) can be enforced at discrete moments [Stoican et al., 2015, Eliker et al., 2018] or
even be guaranteed continuously [Stoican et al., 2017] along the time interval [t0, tf ]. The first
method is straightforward to implement but it does not guarantee the constraints fulfillment
“in-between” the discrete moments. In case of constraints violation, increasing the sampling
points can alleviate the problem. The inevitable drawback of high computation time, can be
accepted since the trajectory generation is done offline before flight. The second method employs
particular geometrical properties of the B-spline functions given in Section 2.2.3 in order to
obtain a continuous constraints validation with fixed complexity (the number of constraints
depends on the B-spline degree and on the number of control points but not on the number of
waypoints) [Stoican et al., 2017].

Remark 2.2.10. Solving the nonlinear optimization problem (2.2.46) may provide a local min-
imum result instead of the expected globally optimal solution (i.e. the shortest curve). The
solution is required to be manually verified after and the parameters (e.g., number of control
points) may be changed until obtaining a good solution. Besides the minimal trajectory length,
(2.2.46) can take into account various optimization objectives like input variation, magnitude,
energy minimization and the like [Eliker et al., 2018]. �

After solving (2.2.46), we obtain the geometric reference trajectory, ξr(t) within the interval
[t0, tf ], which satisfies all the imposed constraints, i.e. boundary condition (2.2.33)–(2.2.34),
waypoints (2.2.35), bounded angles and thrust (2.2.40) and bounded angular velocities (2.2.41).
In order to complete the trajectory part, we simply consider the zero-constant reference yaw
angle trajectory ψr = 0 (even though the imposed constraints are still validated for an arbitrary
yaw angle trajectory as discussed in Proposition 2.2.7) in order to keep the notations simple.
Similar considerations are also used in various works related to trajectory generation and control
of the multicopter system [Formentin and Lovera, 2011, Chamseddine et al., 2012, Eliker et al.,
2018].

2.2.6 Simulation results for constrained trajectory generation

This section presents two simulation scenarios for the proposed constrained trajectory generation
approach.
The first scenario considers an indoor trajectory generation over a nano-drone platform which
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will be further employed in an experimental setup in Section 2.5.
The second scenario considers an outdoor trajectroy generation over a larger multicopter system,
employed in the inspection of a 3D building. The particularity is that a specific yaw profile is
imposed (such as the mounted camera is oriented towards the building at specific time instances).

2.2.6.1 Generic indoor trajectory generation

In this section, we generate a reference trajectory for the Crazyflie 2.0 quadcopter system (c.f.
Figure 2.1.1), we consider its simulation model given in [Luis and Ny, 2016] characterized by the
following parameters (the parameters employed in the dynamical model from (2.1.10)):

- the physical parameters as in (2.1.1), (2.1.9):

m = 0.028 kg, Jx = Jy = 1.4× 10−5 kgm2, Jz = 2.2× 10−5 kgm2; (2.2.47)

- the state constraints as in (2.1.12):

εmax = 10◦, ωmax = 2 rad/s; (2.2.48)

- the input constraints as in (2.1.13):

Tmax = 0.55 N, τmax = 10−4 × [43 43 17]> N/m, (2.2.49)

in which, the angle εmax is chosen to be small due to the limits of the built-in PID controllers
(c.f. Figure 2.5.2) which are designed based on the approximation of the rotation dynamics
(2.1.1)-(2.1.7) around the hovering condition (i.e., zero roll, pitch angles).
The first step is to choose the upper and lower bounds of the reference thrust Trmin

, Trmax and
the boundary angle εrmax satisfying the two consistent conditions (2.4.19)–(2.4.20). Introducing
εmax = 10◦ and Tmax = 0.55 from (2.2.48)–(2.2.49) to (2.4.19)–(2.4.20) leads to the feasible values
of Trmin

, Trmax and εrmax chosen as follows:

Trmin
= 0.2609 N, Trmax = 0.2884 N, εrmax = 5◦, (2.2.50)

in which, Trmin
< mg < Trmax is validated with mg = 0.2747 N .

Constraints

Position, ξr(t) ξr(0) =
[
0 0 0

]>
, ξr(5) =

[
0.5 2 1

]>
,

ξr(10) =
[
1.5 2 1

]>
, ξr(15) =

[
2 0 0

]>

Boundary conditions, ξ
(q)
r (0) =

[
0 0 0

]>
, ∀q ∈ {1, . . . , 4},

ξ
(q)
r (t),∀q ∈ {1, . . . , 4} ξ

(q)
r (15) =

[
0 0 0

]>
, ∀q ∈ {1, . . . , 4}

Angles, φr, θr 〈|φr| , |θr|〉 ≤ εrmax with εrmax = 5◦

Angular rates, ωxr , ωyr 〈|ωxr | , |ωyr |〉 ≤ ωrmax with ωrmax = 1 rad/s

Thrust, Tr Trmin
≤ Tr ≤ Trmax with Trmin

= 0.2609 N, Trmax = 0.2884 N

Table 2.2.1: Constraints imposed on the optimal trajectory generation
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Figure 2.2.3: Reference trajectory ξr(t).
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Next, the trajectory connects two hovering periods, thus, possess all the derivatives of
{x, y, z} up to 4th order equal 0 at the initial and final time instants, i.e., ξ

(q)
0 = ξ

(q)
f =

0,∀q ∈ {1, . . . , 4} as employed in (2.2.33)–(2.2.34). It passes through four waypoints given by

W =
{ [

0 0 0
]>

,
[
0.5 2 1

]>
,
[
1.5 2 1

]>
,
[
2 0 0

]> }
with the associated time instants

{0, 5, 10, 15} seconds. All of the imposed constraints are gathered in Table 2.2.1.
The B-spline parametrization as in (2.2.28) is characterized by the chosen degree d = 5 and

14 control points (n = 13 from (2.2.27)). The number of the control points is required to be
larger than the number of the hard constraints imposed on the trajectory generation problem:
4 waypoints, 6 boundary conditions. The trajectory generation optimization problem as in
(2.2.46) are implemented using Yalmip [Löfberg, 2004] in Matlab 2015a with a total processing
time of 9.4 seconds which provides the reference trajectory ξr(t) and the results of the other
variables corresponding to the choice of ψr(t) = 0 given in Figures 2.2.3-2.2.5. Furthermore, we
also provide the references of the roll, pitch angles and angle rates when choosing ψr(t) = 45◦ in
Figure 2.2.6 to illustrate the effectiveness of Proposition 2.2.7. Next, as can be seen from Figure
2.2.3a, the reference trajectory ξr(t) is extremely abrupt in the sense that the curve looks like
three straight paths passing through four way-points but the values over time given in Figure
2.2.3 are still smooth. The references satisfy all the boundary conditions as clearly seen from
the first and the last four control points having the same values for each curve (plotted in red
for x(t), green for y(t) and blue for z(t)). Furthermore, the thrust as plotted in Figure 2.2.4 and
the angles given in Figure 2.2.5a, all validate their constraints (2.2.36)–(2.2.37) thanks to the
constraint formulation (2.2.40). The flatness properties of 〈φr, θr〉 ≤ Υε(ξ̈r) from Proposition
2.2.4 and 〈ωxr , ωyr〉 ≤ Υωb(ξ̈,

...
ξ ) from Proposition 2.2.5 are illustrated in Figures 2.2.5 for the

choice of ψr(t) = 0◦ and in Figure 2.2.6 when choosing ψr(t) = 45◦ in which the boundary
functions Υε(·) and Υωb(·) (solid blue lines) provide the good bounds for the corresponding
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when fixing ψr(t) = 0◦.

Figure 2.2.5: References of angles and angle rates when fixing ψr(t) = 0◦.

reference variables (the angles φr, θr and the angle rates ωrx , ωry plotted in red, green solid
lines in the two figures). Note that, the maximum value of the angle rates ωmax = 2 rad/s
as in (2.2.48) is clearly respected, hence, not given in Figure 2.2.5b since it is too large to
appear in the plot. From Figures 2.2.5–2.2.6, it has been shown clearly that the references of
the angular variables are varied according to the choice of the yaw angle reference, however,
they still respect their boundary functions, i.e., 〈φr, θr〉 ≤ Υε(ξ̈r) and 〈ωxr , ωyr〉 ≤ Υωb(ξ̈,

...
ξ ) as

given in Propositions 2.2.4–2.2.5. The reference trajectory given in Figure 2.2.3 and the zero
yaw reference ψr(t) = 0 are used for conducting the tracking experiment over a real Crazyflie
2.0 nano drone as will being introduced in Section 2.5. In the following, we present another
application of the proposed approach on the building inspection problem [Stoican et al., 2019].

2.2.6.2 Outdoor trajectory generation for building inspection

In [Stoican et al., 2019], we employ the proposed approach to generate a reference trajectory
which fully covers an a priori known 3D structure. The authors make use of hyperplane ar-
rangement, cell merging procedures and mixed-integer formulations [Prodan et al., 2015] to
provide feasible cells through which the trajectory has to pass (see also the details presented
at (2.2.35)). Then, the minimum-length trajectory generation algorithm (2.2.46) provides the
viewpoints (considered as way-points in the context of this chapter) which allows to generate
the shortest trajectory fully inspecting the 3D structure. The readers are referred to [Stoican
et al., 2019] for more details on the theoretical contributions, hereinafter we present only the
simulation results related to the constrained trajectory generation. For inspecting the building
of 100m × 60m × 60m (length × width × height), the multicopter platform and the reference
trajectory are constrained by the following parameters:

- m = 0.5 kg as in (2.1.9);



2.2. Off-line constrained trajectory generation 37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−4

−2

0

2

4 εrmax = 5◦

−εrmax

ψr = 45◦

Time [s]

A
n

g
le

[d
e
g
re

e
]

φr θr
Υε(ξ̈r) −Υε(ξ̈r)

(a) References of the roll, pitch angles in comparison with the angle boundary Υε(ξ̈r) from (2.2.15)
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Figure 2.2.6: References of angles and angle rates when fixing ψr(t) = 45◦.

- 〈|φr|, |θr|〉 ≤ 15◦ as in (2.2.36), 〈|ωxr |, |ωyr |〉 ≤ 0.27 rad/s as in (2.2.38);

- 4.8 N ≤ Tr ≤ 5 N as in (2.2.37).

- 6 way-points:

ξr(0) =
[
102.5 123 53

]>
, ξr(50) =

[
120 75 75

]>
,

ξr(100) =
[
60 75 75

]>
, ξr(200) =

[
60.74 151.6 53.33

]>
, (2.2.51)

ξr(250) =
[
102.5 175 53.33

]>
, ξr(300) =

[
102.5 130 53.33

]>
.

- ψr(t) varying accordingly to the movement of the multicopter in order to point the camera
(fixed to the vehicle) to the predefined targets.

Note that, the platform does not require any constraints on the torques as in (2.1.13). Therefore,
we neglect the rotation dynamics (2.1.1) but still consider the rotation kinematics given in
(2.1.7). The results are given in Figures 2.2.7–2.2.9 with the calculation time of 20.4 seconds.
In Figure 2.2.7a, the reference trajectory is plotted in solid red line with respect to the building
given as green polytopic blocks. It passes through the predefined way-points (red circle marks)
while trying to keep the connecting paths as short as possible. The yaw angle ψr varies over
time as plotted in Figure 2.2.7b, therefore, any trajectory generation approaches employing the
simplification of ψr(t) = 0 cannot be used under this scenario. Furthermore, as the benefit from
the reliable constraints formulations (c.f. Proposition 2.2.7), the references of the roll, pitch
angles (φr(t), θr(t)) (given in Figure 2.2.8a), the angle rates (ωxr(t), ωyr(t)) (given in Figure
2.2.8b) and the thrust Tr (given in Figure 2.2.9) satisfy the imposed constraints regardless the
varying of the yaw angle.
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Figure 2.2.7: Reference trajectories (ξr(t), ψr(t)) which ensure full coverage of the building.
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Figure 2.2.8: References of the angles ηr and the angle rates ωr under building inspection
scenario.
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By this application on the trajectory generation for building inspection, we complete our
contributions on the off-line trajectory generation problem for the multicopter system subject to
state and input constraints. In the next section, the online tracking mechanism will be presented
which makes use of a hierarchical control scheme (and also referred as cascade control design).

2.3 Hierarchical control design

The typical hierarchical control scheme for controlling the multicopter system is presented in
Figure 2.3.1 (similar design can be found in [Formentin and Lovera, 2011,Freddi et al., 2011,Zhao
and Go, 2014, Xu, 2017, Nguyen et al., 2017b, Nguyen et al., 2018b]). We consider the control
problem of tracking the references of the 3D positions and the yaw (direction) angle, denoted
by ξr ∈ R3 and ψr ∈ R, respectively. For doing this, the scheme contains two control layers in
which the designs exploit the natural decoupling between the rotation and translation dynamics
of the multicopter system as shown in Figure 2.1.2.
At the high control level, the position controller compares the reference position ξr with the
actual position ξ in order to provide the desired thrust Td. It further requires the actual yaw
value ψ for calculating the desired roll, φd, pitch, θd, angles. Then, they are gathered with the
a priori given reference yaw angle ψr to create the reference angles for the attitude controller
to track at the low control level. Based on the angle errors and the actual angle rate ω, the
controller can provide the desired torques τ d. Next, the real inputs u acting on the multicopter
system as in (2.1.10) track their desired values ud , [Td τ d]> through a black box which stands
for various uncertainties such as input saturation as in (2.1.13), rotor configuration and faults.
Within the thesis, we consider full-state feedback control for the multicopter system (2.1.10) and
neither delays nor mismatches on the state feedback are considered.
In the following, we detail the control design problems of the two layers and introduce two
feedback linearization control candidates which are usually applied in the literature.

𝜉, 𝜓  
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Figure 2.3.1: Hierarchical control scheme for a multicopter system.

2.3.1 High level control problem

The position controller as shown in Figure 2.3.1 drives the translation dynamics (2.1.9) to track
the reference position ξr. This leads to an over-actuated problem since there are maximum
four inputs, i.e., thrust T and three angles φ, θ, ψ, which can be employed for controlling the
dynamics (2.1.9) while the output of the dynamics are only three positions gathered in ξ ∈ R3.
In the literature, there are works which consider all of these four input variables, i.e., thrust and
three angles, at the same time, in which the yaw angle input is assumed to be equal to the yaw
reference ψr [Cowling et al., 2007, Mueller and D’Andrea, 2013, Lu et al., 2017]. Therefore, the
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method relies on the yaw angle tracking capability of the attitude controller at the low control
level (c.f. Figure 2.3.1) which actually cannot be well maintained due to difficulties in yaw
angle measurement (in comparison with measuring the roll, pitch angles [Bazin et al., 2008]),
changes in yaw reference during flight (e.g., for camera application as shown in Figure 2.2.7
or [Engelhardt et al., 2016]) and faults [Mueller and D’Andrea, 2014,Jiang et al., 2016,Nguyen
et al., 2017b].
In order to avoid this unnecessary dependence on yaw tracking capability and the complicated
over-actuated control design, we employ only the thrust T and roll, pitch angels φ, θ as the inputs
of the dynamics (2.1.9) while the yaw angle ψ acts an external variable affecting the system.
This decoupling design also receives a lot of attention in the research community [Formentin
and Lovera, 2011,Freddi et al., 2011,Zhao and Go, 2014,Xu, 2017,Nguyen et al., 2017b]) due to
its valuable advantage which is to allow us to compensate the mismatch on yaw angle tracking.
For more details, from the aforementioned control perspective, the translation dynamics (2.1.9)
is transformed into its state-space representation as follows:

ṗ = fp (p, u, ψ) , (2.3.1)

where the state vector is p , [ξ v]> with ξ the position vector, v = ξ̇ is the velocity vector
from (2.1.10). The input vector u , [T φ θ] consists of the thrust and the roll, pitch angles.
The dynamical function fp (p, u, ψ) , [v h(T, η)]> is appropriately taken from (2.1.10) where the
function h(·) is explicitly given by:

h(T, η) = −ge3 +
T

m
Re3 = −




0
0
g


+

T

m




cosφ sin θ cosψ + sinφ sinψ
cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ


 , (2.3.2)

with R the rotation matrix as in (2.1.5) and e3 = [0 0 1]> from (2.1.9).
Furthermore, since the multicopter system is subject to its state and input constraints from
(2.1.12)-(2.1.13), the input u = [T φ θ]> also has to take into account the input saturation
effects:

u = sat(ud, umax), (2.3.3)

with ud , [Td, φd, θd] the control law to be designed and umax , [Tmax εmax εmax] from (2.1.12)–
(2.1.13). The saturation function sat(·) is firstly defined for two scalars, x ∈ R and its limit
xmax ∈ R+, as follows:

sat(x, xmax) = sign(x) max(|x|, xmax), (2.3.4)

and then, it is extended for two vectors as in (2.3.3), i.e., gathering the saturation functions for
each pair of the elements: sat(ud, umax) , [sat(Td, Tmax) sat(φd, εmax) sat(θd, εmax)]>.

2.3.2 Low level control problem

Recall the hierarchical control scheme given in Figure 2.3.1. The attitude controller tracks the
desired angle vector denoted by ηd which gathers the desired roll, pitch angles φd, θd provided
from the high control level and the reference yaw ψr sent from the user:

ηd , [φd θd ψr]
>. (2.3.5)

Furthermore, it is well-known in the literature that the low level is required to execute at faster
frequency than of the controller at the high level in order to establish the stability of the whole
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scheme [Scattolini, 2009,Bemporad et al., 2009,Freddi et al., 2011]. Thus, from the perspective
of the low control level, the desired roll, pitch angles (φd, θd) obtained from the high control
level are usually considered as step references. Many related works in the literature also avoid
taking into account the variation of these references due to large noises potentially introduced
to the controlled system under practical considerations [Cao and Lynch, 2016]. Thus, within
this thesis, the role of the attitude controller is to stabilize the rotation dynamics (2.1.1)–(2.1.7)
around the desired equilibrium point ηd from (2.3.5) at each step.
Moreover, considering the system constraints (2.1.12)–(2.1.13), the control design problem within
the attitude controller is to provide the torque law τ d such that when applying the real torque
τ calculated by:

τ = sat(τ d, τmax), (2.3.6)

with τmax the maximum torque value as in (2.1.13), to the rotation dynamics (2.1.1)–(2.1.7),
the torque τ stabilizes the dynamics around the desired angle ηd from (2.3.5). Furthermore, the
resulted angles and angular velocities are required to satisfy 〈|φ|, |θ|〉 ≤ εmax, 〈|ωx|, |ωy|〉 ≤ ωmax

as delineated in (2.1.12).
Indeed, this control design problem subject to state and input constraints is convoluted. Thus,
in the literature, when considering the rotation controller, both the input saturation as in
(2.3.6) and the state constraints from (2.1.12) are usually neglected [Formentin and Lovera,
2011, Mellinger and Kumar, 2011, Roza and Maggiore, 2012, Carino et al., 2015, Nguyen et al.,
2017b]. Even though these probably lead to undesired and even unstable motions, the obtained
control designs are worth considering in order to obtain an insight on the aforementioned so-
phisticated control problem. Therefore, we present in the following a standard computed-torque
control design for the attitude controller. The design is given under the assumption of no state
and input constraints.

Computed-torque control for attitude control:
Computed-torque control (CTC) is a special application of feedback linearization control par-
ticularized for a broad range of robotics systems [Craig, 2005]. These systems are also referred
as “computed-torque like” systems and admit the Lagrangian dynamical models [Lewis et al.,
2003]. Some typical examples are industrial robot arms and also the rotation dynamics (2.1.1)–
(2.1.7) which is transformed into its “computed-torque like” formulation by using ω = Wη̇ from
(2.1.7):

JWη̈ + JẆ η̇ + (Wη̇)× (JWη̇) = sat(τ , τ d), (2.3.7)

with J = diag{Jx, Jy, Jz} the inertial tensor and the matrix W from (2.1.8). The CTC design
presented in [Craig, 2005] provides the desired torque τ d given by:

τ d , τ CTC = JWµη + JẆ η̇ + (Wη̇)× (JWη̇), (2.3.8)

in which, J is the inertial tensor and W, η, η̇ are obtained as feedback from the system (2.3.7).
The virtual input µη ∈ R3 is designed using the well-known PD control method:

µη = η̈d +Kηeη +Kη̇eη̇, (2.3.9)

with eη = η − ηd, eη̇ , ėη = η̇ − η̇d the errors on the angles and the angle derivatives. Note
that, the reference terms (ηd, η̇d, η̈d) are taken and derived from the desired angle signal ηd. The
control gain matrices are chosen as Kη = diag{Kφ, Kθ, Kψ} and Kη̇ = diag{Kφ̇, Kθ̇, Kψ̇} in
which all the control gains are strictly negative to ensure the closed-loop stability. Thus, by
introducing τ = τ CTC as in (2.3.7)–(2.3.8) (i.e., no consideration on the input saturation) to the
dynamics (2.3.7), we obtain the following error dynamics:

ëη +Kη̇ėη +Kηeη = 0, (2.3.10)
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which can be made asymptotically stable by appropriate choices of the tuning parameters ac-
cording to Routh-Hurwitz criterion [Craig, 2005].

Remark 2.3.1. The torque design using CTC method as in (2.3.8) implies several robustness
problems especially when considering model mismatches, measurement delays and system con-
straints [Egeland, 1986]. Therefore, a more advanced control technique must be applied instead.
We will show in the next chapter that an optimization-based controller with the capability of
guaranteeing the imposed state and input constraints (2.1.12)-(2.1.13) can be derived from the
knowledge on the CTC controller (2.3.8). More precisely, the CTC controller (2.3.8) will act only
as a feasibility guarantee for the optimization problem and its applying region will be limited
around the desired equilibrium point, hence, ensuring the satisfaction of the system constraints.
Note also that, the PD control design as employed in (2.3.9) is just a simple choice for illustra-
tion purpose. Various control techniques such as nested control design [Teel, 1992], LQR (Linear
Quadratic Regulator) [Kuantama et al., 2018], etc, can be applied to control the resulted linear
error dynamics (2.3.10). �

In the following, we present a control candidate for the position controller at the high level.
Not like the CTC attitude controller given in (2.3.8), the design fully satisfies the control prob-
lem presented in Section 2.3.1, i.e., ensuring the trajectory tracking capability under input
constraints. The design is actually a feedback linearization controller which makes use of the
flatness properties of the translation dynamics as presented in Section 2.2.1, thus, being reliable
even under tracking mismatch or intentional change of the predefined yaw angle.

2.4 Position control through feedback linearization via

flatness

For controlling the dynamics (2.3.1), there exists a feedback linearization control candidate which
is facilitated by the differential flatness property of the multicopter system introduced in Section
2.2.1. The controller is denoted by uFL(µξ, ψ) , [TFL(µξ) φFL(µξ, ψ) θFL(µξ, ψ)]> in which
TFL(µξ) , ΥT (µξ), φFL(µξ, ψ) , Υφ(µξ, ψ) and θFL(µξ, ψ) , Υθ(µξ, ψ) with ΥT (·) from (2.2.11),
Υφ(·) from (2.2.5) and , Υθ(·) from (2.2.6) are the flatness representations of thrust and roll,
pitch angles, respectively. Explicitly, the elements are given as follows:

TFL(µξ) = m
√
µ2
x + µ2

y + (µz + g)2, (2.4.1a)

φFL(µξ, ψ) = arcsin


 µx sinψ − µy cosψ√

µ2
x + µ2

y + (µz + g)2


 , (2.4.1b)

θFL(µξ, ψ) = arctan

(
µx cosψ + µy sinψ

µz + g

)
, (2.4.1c)

with µξ , [µx µy µz]
> the virtual input vector of the dynamics (2.3.1). Even though the

feedback linearization law (2.4.1) has been employed widely in the literature [Formentin and
Lovera, 2011, Freddi et al., 2011, Zhao and Go, 2014, Xu, 2017, Nguyen et al., 2017b]), most of
the works do not notice its restriction. To the best of our knowledge, the limitation was first
discussed in [Nguyen et al., 2018b] and will be recapitulated hereinafter.

Proposition 2.4.1 ( [Nguyen et al., 2018b]). The feedback law uFL(µξ, ψ) given by (2.4.1) drives
the dynamics ṗ = fp (p, uFL(·), ψ) from (2.3.1) to one of the two following systems depending on
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the value of the virtual input µz:




ẋ = vx, v̇x = µx

ẏ = vy, v̇y = µy

ż = vz, v̇z = µz

(equivalent to ξ̈ = µξ), if µz ≥ −g, (2.4.2)





ẋ = vx, v̇x = − cos(2ψ)µx − sin(2ψ)µy

ẏ = vy, v̇y = − sin(2ψ)µx + cos(2ψ)µy

ż = vz, v̇z = −µz − 2g

, if µz < −g. (2.4.3)

Proof. We provide here the sketch of the proof while further details can be found in [Nguyen
et al., 2018b]. Let us consider the altitude dynamics exploited from (2.3.1) given as:

mv̇z = −mg + T cosφ cos θ. (2.4.4)

Since T cosφ cos θ ≥ 0, v̇z+g always has a non-negative value. Thus, introducing (2.4.1) into the
dynamics (2.3.1) leads to v̇z +g = |µz + g|. Consequently, v̇z = µz if µz ≥ −g and v̇z = −µz−2g
if µz < −g. Introducing them back to the system (2.3.1) leads to the corresponding results of
v̇x and v̇y. The relation v = ξ̇ is not affected.

The dynamical system (2.4.2) is usually the desired goal of using the feedback law uFL from
(2.4.1) in various works [Nguyen et al., 2017b,Zhao and Go, 2014,Formentin and Lovera, 2011].
However, if the condition of µz ≥ −g is not validated, the undesired dynamics (2.4.3) may
occur which probably leads to unstable behavior. Furthermore, it requires the desired input
ud = uFL(µξ, ψ) from (2.4.1) not to be affected by the saturation constraint u = sat(ud, umax)
(2.3.3), hence, providing exactly u = uFL(·) for the closed-loop system ṗ = fp (p, u, ψ) from (2.3.1)
to be perfectly feedback linearized. Therefore, we introduce another result published in [Nguyen
et al., 2018b] related to the construction of an input constraint admissible set for the feedback
linearization law uFL(·) from (2.4.1).

Proposition 2.4.2 ( [Nguyen et al., 2018b]). By choosing the values of the three positive satu-
ration limits Ux, Uy and Uz such that:

Uz < g, (2.4.5)

U2
x + U2

y ≤ (−Uz + g)2 tan2 εmax, (2.4.6)

m
√
U2
x + U2

y + (Uz + g)2 ≤ Tmax, (2.4.7)

with εmax, Tmax from (2.1.12)-(2.1.13), the following holds. If the virtual inputs µξ from (2.4.1)
satisfy3:

|µξ| ≤ Uξ, (2.4.8)

with Uξ , [Ux Uy Uz]
>, then, the feedback linearization input uFL(µξ, ψ) from (2.4.1) satisfies the

system constraints, i.e. |uFL(·)| ≤ umax from (2.3.3), for all values of the yaw angle ψ ∈ R. �

Proof. At first, (2.4.5) is to ensure the achievement of the desired dynamics (2.4.2). Then, let
us apply the results of Proposition 2.2.4 to φFL = Υφ(µξ, ψ) and θFL = Υθ(µξ, ψ) from (2.4.1b)-
(2.4.1c):

〈|φFL(µξ, ψ)|, |θFL(µξ, ψ)|〉 ≤ Υε(µξ) = arctan

(√
µ2
x + µ2

y

(µz + g)2

)
, (2.4.9)

3In (2.4.8), |µξ| ≤ Uξ is used to express the triplet of |µx| ≤ Ux, |µy| ≤ Uy and |µz| ≤ Uz with Uξ , [Ux Uy Uz]
>

from (2.4.5)–(2.4.7).
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with Υε(·) the angle boundary from (2.2.15). Next, by introducing |µx| ≤ Ux, |µy| ≤ Uy and
|uz| ≤ Uz with Uz < g from (2.4.5) to the final term of (2.4.9) and to TFL(µξ) from (2.4.1a), we
have that:

〈|φFL(µξ, ψ)|, |θFL(µξ, ψ)|〉 ≤ arctan

(√
U2
x + U2

y

(−Uz + g)2

)
, ∀ψ ∈ R, (2.4.10)

TFL(µξ) ≤ m
√
U2
x + U2

y + (Uz + g)2. (2.4.11)

Therefore, by introducing the two first conditions (2.4.5)-(2.4.6) to (2.4.10) and the last one
(2.4.7) to (2.4.11), we obtain 〈|φFL(·)|, |θFL(·)|〉 ≤ εmax and TFL(µξ) ≤ Tmax, hence, completing the
proof.

2.4.1 Virtual input design using nested-control method

By Proposition 2.4.2, we need to ensure the bound of the virtual inputs, i.e., |µ|p ≤ Uξ from
(2.4.8) in order to guarantee the feedback linearization property of uFL(·) as shown in (2.4.2). In
the literature, a popular candidate for guaranteeing the input saturation constraints is nested-
control method [Teel, 1992] which will be employed for designing the virtual inputs |µ|p here-
inafter.

Proposition 2.4.3 ( [Nguyen et al., 2018b]). Let us consider the design of the virtual input
vector µξ , [µx µy µz] from (2.4.1) given by:

µξ = ξ̈r + sat

(
K1ėξ + sat

(
−K1K2eξ +K2ėξ,

λ

2

)
, λ

)
, (2.4.12)

where eξ = ξ − ξr represents the position tracking error and K1, K2 ∈ R3×3 the control gain
matrices required to be diagonal and negative definite. The saturation function sat(·) is defined
in (2.3.4) while the limit λ ∈ R3

+ is given by:

λ = Uξ −
∣∣∣ξ̈r
∣∣∣ , (2.4.13)

where Uξ ∈ R3
+ from Proposition 2.4.1 are chosen (beside the conditions (2.4.5)-(2.4.7)) such

that:
Uξ > max

t

∣∣∣ξ̈r(t)
∣∣∣ . (2.4.14)

Then, the design in (2.4.12) satisfies |µξ| ≤ Uξ (required by Proposition 2.4.2). Furthermore,
introducing the controller ud := uFL(µξ, ψ) with µξ from (2.4.12) to the system ṗ = fp (p, u, ψ) with
u = sat(ud, umax) given in (2.3.1), (2.3.3) leads to globally asymptotically stable error dynamics
in terms of the position tracking error eξ. �

Proof. Applying the Triangle inequality [Meyer, 2000] to the virtual input µξ from (2.4.12) leads
to:

|µξ| ≤
∣∣∣ξ̈r
∣∣∣+ λ = Uξ, (2.4.15)

with λ defined as in (2.4.13). Then, from Proposition 2.4.2, we have that |uFL(µξ, ψ)| ≤ umax

with µξ as in (2.4.12) and umax from (2.3.3). Thus, introducing the controller ud := uFL(µξ, ψ) to
the dynamics ṗ = fp (p, u, ψ) with u = sat(ud, umax) given in (2.3.1), (2.3.3) leads to the following
system:

ëξ = sat

(
K1ėξ + sat

(
−K1K2eξ +K2ėξ,

λ

2

)
, λ

)
, (2.4.16)
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with eξ = ξ − ξr from (2.4.12). The error dynamics (2.4.16) is obtained from the dynamics
(2.4.2) and is globally asymptotically stable for any negative definite and diagonal matrices K1

and K2 following the nested-control design method introduced in [Teel, 1992] and recapitulated
in Appendix C.

Remark 2.4.4. Instead of applying the nested control design as in (2.4.12), the usual PD control
can also be employed for designing the virtual input µξ from (2.4.1) as follows:

µξ = ξ̈r +Kξeξ +Kvėξ, (2.4.17)

with ξ̈r the reference acceleration, eξ the position tracking error as in (2.4.12). The control gain
matrices Kξ ∈ R3×3 and Kv ∈ R3×3 are chosen to be diagonal and negative definite as similar
to (2.4.12). Then, the closed-loop error dynamics are locally asymptotically stable. This is due
to the condition |µξ| ≤ Uξ from Proposition 2.4.2 which can only be satisfied locally where the
following condition holds:

|ξ̈r +Kξeξ +Kvev| ≤ Uξ. (2.4.18)

Note that, (2.4.18) can be enforced by designing a positive invariant set in which |Kξeξ+Kvev| ≤
Uξ−maxt |ξ̈r(t)| is guaranteed (note that, the condition Uξ > maxt |ξ̈r(t)| as in (2.4.14) is required
again). These results will be introduced in Chapter 4 where a constraint admissible and positive
invariant set is essential for the design of an optimization-based controller. �

2.4.2 Consistency of the constraints on thrust and roll, pitch angles

 

 

|𝜃𝑑| ≤ 𝜖𝑚𝑎𝑥 

𝜉, 𝜓 

|𝜙𝑑| ≤ 𝜖𝑚𝑎𝑥 

𝑇𝑑 ≤ 𝑇𝑚𝑎𝑥  

𝜉𝑟 

Flatness-based 

trajectory generation 

Requirements: 

… 

 |𝜙𝑟|, |𝜃𝑟| ≤ 𝜖𝑟𝑚𝑎𝑥
 

Trmin
≤ 𝑇𝑟 ≤ Trmax

  

 

The attitude 

controller and the 

entire multicopter 

system 

 

 

Position 

controller 

Figure 2.4.1: Flatness-based trajectory generation process and the position controller sharing
similar constraints on thrust and roll, pitch angles.

Let us recall the saturation limits Uξ = [Ux Uy Uz] from Proposition 2.4.2 which are required
to satisfy the conditions (2.4.5)–(2.4.7) and also (2.4.14) (note that, (2.4.14) is employed not
only for the nested control design but also the PID design as in (2.4.18)). This raises a question
on the existence of these saturation limits or in other words, on the consistency between the re-
lated variables: m, g, εmax, Tmax (representing the physical parameters of the multicopter system)
employed in (2.4.5)–(2.4.7) and ξ̈r (representing the reference trajectory) used in (2.4.14). In
the following, we provide the sufficient condition for the existence of Uξ satisfying (2.4.5)–(2.4.7)
and (2.4.14). Furthermore, via the answer, we propose a condition for choosing the parameters
of the reference trajectory such that it allows to design the tracking controller uFL(µξ, ψ) as in
(2.4.1) subject to the limits of the multicopter system.
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Proposition 2.4.5 ( [Nguyen et al., 2018b]). A sufficient condition for the existence of Ux, Uy, Uz
satisfying (2.4.5)–(2.4.7) and (2.4.14) is that the reference boundary angle εrmax from (2.2.36) and
the reference thrust limits Trmin , Trmax from (2.2.37), all employed within the trajectory generation
problem (2.2.46), have to satisfy:

• If Trmin cos εrmax + Trmax < 2mg holds, then:

√
2
Trmax

Trmin

tan εrmax < tan εmax, (2.4.19)

√
(2mg − Trmin cos εrmax)

2 + 2T 2
rmax

sin2 εrmax < Tmax, (2.4.20)

• otherwise, if Trmin cos εrmax + Trmax ≥ 2mg holds, then:

Trmax(1 +
√

2 cotan (εmax) sin εrmax) ≤ 2mg, (2.4.21)

Trmax

√
1 + sin2 εrmax ≤ Tmax, (2.4.22)

with m the system mass, g the gravity, εmax and Tmax the constraint parameters of the multicopter
system given in (2.1.12)–(2.1.13). �

Proof. The proof is explicitly given in Appendix D and also in [Nguyen et al., 2018b]. Note that,
in [Nguyen et al., 2018b], the condition Trmin

cos εrmax + Trmax < 2mg is enforced by constraining
Trmin

+ Trmax = 2mg, hence, the second case does not appear there. We also emphasize that the
domain where Trmin

cos εrmax + Trmax < 2mg holds is usually the operating zone of the standard
multicopter system (near hovering), the other case is only applied when considering extremely
aggressive movements (e.g., requiring very large thrust) as in [Landry et al., 2016].

By Proposition 2.4.5, we link the constraints shown in Figure 2.4.1 i.e., Trmin
≤ Tr ≤ Trmax as

in (2.2.37) and 〈|φr| , |θr|〉 ≤ εrmax imposed on the trajectory generation problem (2.2.46) with
their actual constraints Td ≤ Tmax and 〈|φd| , |θd|〉 ≤ εmax considered within the design of the
position controller. Therefore, we create a unified design scheme for trajectory generation and
tracking with bounded thrust and bounded angles while respecting the physical constraints of
the system.

As a summary, this section introduces the design of the position controller using the feedback
linearization controller uFL(µξ, ψ) from (2.4.1) with µξ the virtual control input designed as in
(2.4.17). Based on the properties of the flatness-based representations of the system, the feedback
linearization controller can ensure the saturation guarantees as detailed in Proposition 2.4.2.
The nested control design of the virtual inputs µξ as in (2.4.12) allows the closed-loop system
to overcome the unstable mode as in (2.4.3) and to achieve the global asymptotic stability for
tracking the reference trajectory ξr(t). The existence of the control design parameters (i.e., the
saturation limit Uξ from Proposition 2.4.2) is enforced by constraining the reference angle limit
εrmax , the lower and upper bounds of thrust Trmin

, Trmax , employed for generating the trajectory,
to satisfy the conditions (2.4.19)-(2.4.20).

Next section will present the validation of the proposed feedback linearization position con-
troller through simulation and experimental results over a real quadcopter platform.

2.5 Simulation and experimental results for trajectory

tracking

This section firstly introduces the experimental platform using the Crazyflie 2.0 (CF) nano-
drone equipped at the Laboratory of Conception and Integration of System (LCIS), in Valence,
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France. Then, we show the experimental results for tracking the reference trajectory generated
as in Section 2.2.6 by using the hierarchical control scheme detailed in Section 2.3.

2.5.1 Experimental platform

The experimental platform at laboratory LCIS shown in Figure 2.5.1 includes an indoor CF
quadcopter equipped with a 10-DOF Inertial Measurement Unit (accelerometer, gyro, mag-
netometer, and high-precision pressure sensor) and a motion tracking system called the Loco
positioning system4 including a deck attached to the CF quadcopter and six nodes fixed around
the experimental room with known positions. The Loco positioning system is functioning in
Two Way Ranging (TWR) mode in which, the deck pings the nodes in sequence. This allows
the deck to obtain the distance between itself and the six nodes, then, the deck can calculate its
position compared to the six nodes. After gathering all the necessary feedback information such
as the position and the angles using the embedded software, the CF quadcopter communicates
with the ground station computer through a 2.4Ghz low-latency/long-range radio messages by
using the Crazyradio PA USB radio dongle. The computer sends an input message including the
four inputs {Td, φd, θd, ψ̇r} to the CF quadcopter with the maximum communicating frequency
of 100 Hz. Note that the thrust input Td after being calculated by the desired control law (e.g.,
the feedback linearizaion controller TFL as in (2.4.1a)) is required to be converted into the thrust
unit of the CF quadcopter system, i.e. 16-bit integer valued from 0 to 65535. Furthermore, since
the Loco positioning system provides only the position of the CF, its velocity is estimated by
using a Kalman filter in which the required noise information is measured beforehand.

Two Way Ranging 

radio message 

 

Input message {𝑇𝑟 , 𝜙𝑟 , 𝜃𝑟 , �̇�𝑟} 

Feedback {𝜉, 𝜂} 

   
 

× 6 

Loco Positioning node 

Crazyflie 2.0 with 

Loco Positioning deck 

Crazyflie client 

interface 

Crazyradio PA 

USB radio dongle 

Experimental room equipped with 

the Loco Positioning system 

Figure 2.5.1: Experiment setup using the Crazyflie 2.0 nano-quadcopter.

Figure 2.5.2 shows the hierarchical control scheme of the CF in which the built-in controller
controls the four rotors (by sending PWM signals) to track the desired set-point of thrust Td,
roll and pitch angles, φd, θd, and reference yaw rate ψ̇r. The built-in controllers of CF contain
two loops [Luis and Ny, 2016,Giernacki et al., 2017]:

i) an attitude PID controller which compares the desired angles, and the real angles received
as the feedback from CF, then, provides the references of the roll and pitch angle rates;

4More information of the Crazyflie quadcopter and the Loco positioning system can be found in https:

//www.bitcraze.io

https://www.bitcraze.io
https://www.bitcraze.io
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Figure 2.5.2: Hierarchical control scheme with the built-in controller of the Crazyflie quadcopter
system.

ii) a PID rate controller which compares the rate references included the foregoing yaw rate
input ψ̇r, and the real angle rates obtained from CF quadcopter in order to calculate the
torques.

Finally, the torques and the desired thrust input Td are transformed into the four rotor speeds
by using the appropriate configuration (i.e. X configuration for the CF quadcopter [Luis and
Ny, 2016]).
Note that, for experimental validation, we only apply the position controller detailed in Section
2.3.1 and directly employ the built-in controller without any modification while for simulation,
we employ the CTC controller given in (2.3.8) (with noticing all of its drawbacks) in order to
obtain the whole controlled multirotor system.

2.5.2 Simulation and experiment results for trajectory tracking

In this section, we consider the simulation scenario of tracking the a priori given reference
trajectory ξr(t) as shown in Figure 2.2.3b during the first 15 seconds, then, hovering at the final
position ξr(15) = [2 0 0]> for 5 seconds. Under simulation, we validate both the position and
attitude controller detailed in Sections 2.3.1–2.3.2 while only the position controller uFL(µξ, ψ) as
in (2.4.1), (2.4.12) is tested under real experiment due to the technical limitation of the platform
(as shown in Figure 2.5.2). Note that, the drone actually starts and finishes the trajectory with
the two hovering periods. After obtaining the experimental results, we move the coordinate such
that the first hovering position becomes the zero point.
We show in Table 2.5.1 the tuning parameters of the feedback linearization controller uFL(µξ, ψ)
as in (2.4.1), (2.4.12) and the computed-torque attitude controller τ CTC from (2.3.8). The
saturation limits Uξ = [Ux Uy Uz]

> are chosen to satisfy the conditions (2.4.5)–(2.4.7) and also
Uξ > maxt |ξ̈r(t)| as in (2.4.14) with maxt |ξ̈r(t)| = [0.2396 0.5948 0.2974]> obtained from the
reference trajectory ξr(t) in Figure 2.2.3b. We choose Ux = Uy and maximize the value of Uz
since we focus more on the convergence of the altitude while equally treat the motions along x
and y axes.

The tracking motions of the CF quadcopter using the position controller uFL(µξ, ψ) are shown
in Figures 2.5.3a-2.5.3b in which the reference trajectories ξr = [xr yr zr]

> are plotted in dashed
red lines while the simulation and experimental results are illustrated by a thin blue line and
thick green line, respectively. Both tracks well the reference during the time interval of [0, 15]
seconds and also provides good hovering capability as can be seen during the last 5 seconds (3D
motions of hovering scenario can be seen from the magnifying inset in Figure 2.5.3a).
Next, the desired values of thrust Td obtained from the feedback linearization position controller
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Parameter Value

Position controller uFL(µξ, ψ)

from (2.4.1), (2.4.12)

Uξ as in (2.4.13) [0.7168 0.7168 2.5970]>

K1 as in (2.4.12) − diag{1, 1, 2}
K2 as in (2.4.12) − diag{2, 2, 3}

Attitude controller τ CTC

from (2.3.8)
Kη as in (2.3.9) − diag{10, 10, 4}
Kη̇ as in (2.3.9) − diag{25, 25, 4}

Table 2.5.1: Parameters of the position and attitude controllers given in (2.4.1) and (2.3.8).
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(b) Tracking results along three axes.

Figure 2.5.3: Position tracking results along the three axes of the feedback linearization position
controller uFL(µξ, ψ) given in (2.4.1),(2.4.12) [Nguyen et al., 2018b].
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Figure 2.5.4: The desired thrust values Td provided by the feedback linearization position con-
troller uFL(µξ, ψ) given in (2.4.1),(2.4.12) with respect to the thrust reference Tr [Nguyen et al.,
2018b].
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Figure 2.5.5: Three actual Euler angles (φ, θ, ψ) with respect to their desired values: φd, θd
obtained from the feedback linearization position controller uFL(µξ, ψ) given in (2.4.1),(2.4.12)
and ψ̇r(t) = 0 under experiment [Nguyen et al., 2018b].
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Figure 2.5.7: Angle rates (ωx, ωy, ωz) under simulation using the CTC attitude controller given
in (2.3.8).
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uFL(µξ, ψ) from (2.4.1) are given in Figure 2.5.4 for both experiment (plotted in green line) and
simulation (plotted in blue line). The simulation thrust follows well the reference Tr while the
experiment thrust oscillates around the reference with large amplitude. This is due to the lim-
ited precision of the Loco positioning system (c.f. Figure 2.5.1) of around 10 centimeters, hence,
even during the hovering period in the last five seconds, the position feedback is still varying
significantly as can be seen from Figure 2.5.3b. Note that, all the signals respect the thrust limit
Tmax = 0.55 N which is hidden from the plot to enhance the clarity.
The position controller uFL(µξ, ψ) from (2.4.1) also provides the desired roll, pitch angles (φd, θd)
which are given in Figure 2.5.5 for the experimental scenario and in Figure 2.5.6 for simulation.
From Figure 2.5.5, it can be observed that the actual yaw angle ψ plotted in solid blue line
varies significantly and does not follow the predefined reference ψr(t) = 0. This is due to the
fact that we intentionally give ψ̇r = 0 as the input to the CF system, thus, we can examine the
validation of the reliable constraints 〈φFL(µξ, ψ), θFL(µξ, ψ)〉 ≤ εmax, ∀ψ ∈ R from (2.4.10). And
as can be seen from Figure 2.5.5, even under this unpredicted varying yaw angle ψ, the controller
uFL(µξ, ψ) from (2.4.1) is still capable of providing φd (dashed red line) and θd (dashed green
line) which respect the maximum angle εmax = 10◦, and furthermore, ensures the trajectory
tracking capability as mentioned before. Note that, since the yaw angle ψ has been changed
from its reference ψr = 0, the desired roll, pitch angles (φd, θd) do not follow their references
(φr, θr) given in Figure 2.2.5a.
Next, under simulation, the CTC attitude controller τ tiny CTC from (2.3.8) tracks well the de-
sired roll, pitch angles (φd, θd) as observed in Figure 2.5.6. It further provides the angle rates
(ωx, ωy, ωz) and the torques (τ φ, τ θ, τψ) shown in Figures 2.5.7-2.5.8 which clearly respect the
corresponding constraints, i.e., 〈|ωx|, |ωy|〉 ≤ ωmax with ωmax = 1 rad/s from (2.2.48) and
|τ | ≤ τmax with τmax = 10−4[43 43 17]> N/m. Note that, these constraint validations are
mostly due to the fact that the reference trajectory is already feasible for the system, i.e., it
validates all the aforementioned constraints as can be seen from Figures 2.2.5a-2.2.5b. The CTC
attitude controller does not possess any mechanism for guaranteeing these constraints.

2.6 Concluding remarks and open questions

This chapter presented the fundamental tools for solving the motion planning problem for mul-
ticopter systems. These will also be used to tackle further extensions. The overall process can
be summarized as follows:

i) examine the system dynamics in order to derive its flatness-based representation;

ii) generate off-line a feasible reference trajectory by using flatness and a specific parametriza-
tion - the B-splines curves;

iii) design an online tracking mechanism.

Following the aforementioned steps, this chapter firstly addresses the dynamical model of a stan-
dard multicopter system including two subsystems: rotation and translation dynamics with their
corresponding constraints. Then, the flatness property is introduced which allows us to formu-
late some reliable angular constraint formulations. These constraints help not only guaranteeing
the constraints under change of a predefined yaw angle trajectory but also provide the ease to
counteract the control design problem with respect to the uncertainties on yaw angle tracking.
Next, we parametrize the flatness representation of the system by using B-spline curves which
provide the ease to formulate the minimal-length trajectory generation problem into a standard
optimization problem with a quadratic cost.
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Then, for online tracking control design, we employ the standard hierarchical control scheme
consisting of two layers due to the natural decoupling of the system dynamics. The position
controller at the high level compensate the position errors by providing the desired values of the
thrust and the roll, pitch angles. These desired angles are tracked by the attitude controller at
the low level. The two control candidates are introduced into the scheme:

i) at the high level, the feedback linearization controller via flatness uFL(µξ, ψ) (with µξ the
virtual input employing nested control method) is employed;

ii) at the low level, the computed-torque controller τ CTC ensures the angle tracking.

The controller uFL is capable of globally guaranteeing the thrust and angle constraints even
under the uncontrolled yaw motion while the controller τ CTC is employed locally where all the
constraints are assumed to be satisfied.
The whole process is successfully validated through simulations. Furthermore, by using a real
experimental platform consisting of a Crazyflie 2.0 nano-quadcopter and a position estimation
system, the position controller uFL shows its capability of counteracting the mismatch on yaw
angle tracking and of guaranteeing all the imposed constraints. The attitude controller is not
implemented for a real test due to the non-modifiable built-in controller of the platform.
The results are promising, however, they still raise some questions:

1. The feedback linearization controller uFL(µξ, ψ) from (2.4.1), (2.4.12) can guarantee the
input constraints, but at the price of providing needlessly conservative values which causes
significant loss of efficiency. Furthermore, it requires a sophisticated design process (i.e.,
the feedback law uFL(µξ, ψ) from (2.4.1), the nested control design µξ from (2.4.12), the
saturation limits Uξ from Proposition 2.4.2 and the consistency conditions from Proposition
2.4.5). Hence, the following question arises: can we employ another control candidate
which can still guarantee the imposed constraints but allow a less complicated design
procedure?

2. The CTC controller τ CTC can only be used locally where all the system constraints are
not violated. Even though this restriction can be counteracted by generating a feasible
reference before applying the controller, it still limits the operation of the system when
considering uncertainties.

These open problems will be answered in the following chapters. We firstly answer the second
problem in the next chapter since this is more general than the particular case of the translation
dynamics. In order to overcome the difficulties, we propose the design of an optimization-
based controller with stability induced by the existence of a computed-torque control law of the
considered system. The proposed theory will be applied for designing the attitude controller at
the low level of the control scheme.



Chapter 3

Attitude control through NMPC with
guaranteed stability

The attitude control of aerial vehicles (usually considered as 3D rigid bodies) has raised much
interest in both the research and the aerospace industrial communities [Chaturvedi et al., 2011,
Intwala and Parikh, 2015] due to the growth of various applications such as path/trajectory
tracking or inspection and surveillance using drones including commercial fly-cams. The attitude
controller is an important element of the control process since it stabilizes the vehicle at the
desired angle set-point received from the high control level (c.f. the hierarchical control scheme
of the multicopter system given in Figure 2.3.1). While conceptually simple, there are interesting
intricacies due to two reasons:

i) the angle rate vector ω from (2.1.1) is not directly integrated into the attitude but through
a nonlinear transformation ω = Wη̇ as in (2.1.7);

ii) the attitude, as characterized by the three Euler angles η from (2.1.5), implies the existence
of singularities occurring at some specific orientations (e.g., upright position).

Even though the second point ii) can be easily overcame by using the quaternion representa-
tion [Nguyen et al., 2020a,Carino et al., 2015,Tayebi and McGilvray, 2006], we still employ the
Euler angles representation since it has been widely used in various aerospace applications and
furthermore, has been applied to numerous existing commercial platforms (e.g., the Crazyflie
nano-drone as shown in Figure 2.5.1). A practical reason for this is the equivalent between the
yaw angle and the vehicle’s direction [Nex and Remondino, 2014, Intwala and Parikh, 2015].
Therefore, in order to avoid the singularities, it is essential to take into account all the state con-
straints as in (2.1.12) and also the torque constraint as in (2.1.13) when designing the controller.
However, various attitude control applications in the literature following the same reasoning only
assume that the controlled system will operate in the admissible range without any necessary
enforcement [Cowling et al., 2007,Freddi et al., 2011,Mueller and D’Andrea, 2014,Nguyen et al.,
2017b]. In view of these shortcomings, we propose in this chapter an NMPC (Nonlinear Model
Predictive Control) controller for tackling the attitude control problem under state and input
constraints since the MPC approach is well-known for its capability of easily handling various
constraints with a standard design while still providing good control performance [Mayne et al.,
2000].
MPC is a control strategy in which, at each time step, a finite horizon open-loop optimal control
problem, subject to (linear or nonlinear) system dynamics and constraints on states (including
the current state as the initial condition) and inputs, is solved to obtain an optimal control
sequence. From the sequence, only the control action in the first sampling time interval is ap-
plied to the system (considered here in the continuous-time domain). At the next sampling
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instant, the state is measured again and introduced into the optimization problem. The process
is iteratively executed to establish the closed-loop controlled system. Thanks to its capacity
to handle various constraints, MPC has become a popular control candidate for both research
and industrial purposes [Mayne et al., 2000, Badgwell and Qin, 2015]. However, there are still
various remaining issues on MPC design, such as heavy computation requirements, stability and
feasibility. Recently, the consequence of the computational burden has been reduced by vari-
ous research works on fast-solving methods [Alamir and Murilo, 2008,Badgwell and Qin, 2015],
more powerful solvers [Houska et al., 2011, Wächter and Biegler, 2006] and advancing proces-
sors/microprocessors technologies [Mayne, 2014]. As a result, it has already become possible
to employ MPC method for aerospace applications [Marchand and Alamir, 2003, Rucco et al.,
2015, Reinhardt and Johansen, 2019, Nguyen et al., 2019b], well-known for their strict timing
demands.
Furthermore, it is important to mention that the stability and feasibility issues need to be taken
into account from the beginning of the design process, hence, avoiding the possibility of leading
to infeasible solutions during execution or even to instability. For tackling these issues, two
additional ingredients in the MPC scheme are reported in the literature: a terminal cost and
a terminal constraint set (besides the standard indispensable stage cost). This design is facil-
itated by the existing designing rules presented in [Mayne et al., 2000] which revolve around
an important ingredient , usually hidden from the MPC scheme: a local controller. The term
“local” refers to the fact that it is locally input constraint admissible. The terminal constraint
set is usually positive invariant and both state and input constraints are admissible within the
set under this local controller. Therefore, it is required to define explicitly the local controller
and then, to construct the corresponding constraint admissible positive invariant set in order to
apply the method. Bear in mind that the local controller is only used to design the ingredients
of the MPC controller and furthermore, it has less advantages in comparison with the MPC one.
I.e., the MPC controller allows the system to start from an initial state outside the terminal
constraint set (only the final predicted state is required to stay within the set) while using only
the local controller implies that the operating zone should be restricted within the set (in order
to respect all the system’s constraints and to achieve the positive invariant property). Further-
more, the MPC strategy allows the controlled system to efficiently make use of its power (as
the input is only restricted by its constraints) while the local controller has to follow its defined
formulation. Last but not least, using a local controller not only guarantees stability but also
functions as an initial guess for the optimal control, to be found by the optimization problem.
Thus, while nominally the local control is never used, it can still function as a fail-back if the
optimization problem cannot provide an optimal results within the predefined solving time.
In the literature, almost all related NMPC (nonlinear MPC, i.e., using nonlinear prediction
model) applications employ a linear local controller [Chen and Allgöwer, 1998, Mayne et al.,
2000,Cannon et al., 2003,Kohler et al., 2018] due to the complexity of the nonlinear controlled
systems. However, employing a linear controller for a general nonlinear system obviously restricts
the corresponding invariant set (also serving as the terminal region), reducing the efficiency of
the associated NMPC controller. In view of these shortcomings and also motivated by our pur-
suit of a more appropriate local controller for the NMPC design of robotics systems, the CTC
(Computed-Torque Control) law appears as a promising candidate which hopefully provides a
larger invariant set and a better insight into the system’s behavior (w.r.t. the set associated to
the linear controller). Indeed, one way to classify robotic control schemes is to divide them into
“computed-torque-like” or “non-computed-torque-like” [Lewis et al., 2003]. There is a broad
range of systems employing a “computed-torque-like” controllers, such as, aerospace crafts, in-
dustrial robot arms and mobile robots [Poignet and Gautier, 2000, Ferrara et al., 2013, Uebel
et al., 1992] among which are the rotation dynamics given in (2.1.11) and which are the main
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control objective in this chapter. Thus, by exploiting the CTC law, we propose several contri-
butions related to improvements for the NMPC design, which are, to the best of our knowledge,
new to the state of the art:

1. An application of the CTC law to the existing NMPC design principles with guaranteed
stability. The CTC law allows to construct an ellipsoidal invariant set (serving as the
terminal region) associated with the closed-loop linear dynamics. It also guarantees the
input constraint validation within this set;

2. An upper bound is provided for the weighted norm of the CTC controller in terms of the
corresponding state within the terminal region. This is obtained using Taylor’s approxi-
mation for the CTC controller;

3. An explicit formulation of the terminal region is provided in terms of the design parameters,
thus, the NMPC design is capable of easily modifying (e.g., re-orientating or enlarging)
the proposed terminal region.

4. An NMPC design for attitude control with stability guaranteed by the existing CTC law
of the rotation dynamics which is obtained by applying the proposed theorem.

This chapter is organized as follows. Section 3.1 presents the principles of NMPC design with
stability guaranteed by using a terminal invariant set. Next, in Section 3.2, we first introduce
a “computed-torque like” system and continue by detailing the constraint satisfaction, the con-
struction of an invariant set and the input boundedness under the computed-torque controller.
These ingredients will be combined to formulate an NMPC design in Section 3.3 which satisfies
all the general principles, and hence, guarantees the system’s closed-loop stability. The per-
formance and advantages of the design are illustrated through various examples on an inverted
pendulum system and a comparison with the classical quasi-infinite horizon NMPC design [Chen
and Allgöwer, 1998] in Section 3.4. Next, an NMPC design for the attitude control of a mul-
ticopter system is addressed in Section 3.5. We apply the proposed method to the existing
compute-torque controller of the rotation dynamics with several important improvements on
reducing the complexity of the design and finally obtain an NMPC controller for angle set-point
tracking. Section 3.5.2 presents the simulation results on tracking the flatness-based reference
angle trajectory obtained in the previous chapter.

3.1 Principles of NMPC design with terminal stabilizing

constraints

In this section, we recapitulate the design principles of an NMPC controller using both a terminal
cost and a terminal constraint set. The principles have their origin in [Chen and Allgöwer, 1998]
and are summarized in [Mayne et al., 2000].
Specially, the terminal set is required to be constraint admissible and positive invariant under
a predefined local controller. Then, the NMPC design enforces the terminal predicted state of
the present prediction horizon to stay within the set which ensures the feasibility of the next
NMPC iteration. Furthermore, the closed-loop stability is established by choosing the terminal
cost such that the optimal cost value becomes a Lyapunov function [Mayne et al., 2000].
The approach considers a nonlinear system given as follows:

ẋ = f(x,u), (3.1.1)
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where the function f(·) admits one unique solution for a given initial condition. The control
problem is to stabilize the system (3.1.1) around its equilibrium denoted by (xe,ue) which
satisfies the standard equilibrium definition:

f(xe,ue) = 0. (3.1.2)

The state x ∈ Rn and input u ∈ Rm, both subject to constraints:

x ∈ X , u ∈ U , (3.1.3)

with X ⊆ Rn and U ⊆ Rm. For the problem to be well-defined, X × U also contains the
equilibrium point (xe,ue) from (3.1.2).
The NMPC optimization problem for stabilizing the dynamics (3.1.1) at the equilibrium point
(xe,ue) at time instant t, using the known state x(t) is defined as follows:

min
ūt(·)

J(x(t), ūt(·)), (3.1.4)

with

J(x(t), ūt(·)) =

∫ t+Tp

t

`(x̄t(s), ūt(s))ds+ F (x̄t(t+ Tp)), (3.1.5)

subject to

˙̄xt = f(x̄t, ūt), (3.1.6a)

x̄t(s) ∈ X , ūt(s) ∈ U , s ∈ [t, t+ Tp], (3.1.6b)

x̄t(t) = x(t), (3.1.6c)

x̄t(Tp) ∈ Xf , (3.1.6d)

with Tp ∈ R+ the prediction horizon. Furthermore, x̄t(s) and ūt(s) represent the predicted
state and input at time s (t ≤ s ≤ t + Tp) while ūt(·) as in (3.1.4)-(3.1.5) stands for the whole
predicted input trajectory along the prediction horizon length [t, t + Tp], all corresponding to
the optimization problem (3.1.4) at time t. Next, the stage cost ` : X × U → R is a positive
definite function satisfying `(xe,ue) = 0 and `(x,u) > 0, ∀(x,u) ∈ X × U\{xe,ue}. The
terminal cost F : X → R (also required to be positive definite, i.e., satisfying F (xe) = 0 and
F (x) > 0 ∀x ∈ X\{xe}) and the terminal region Xf ⊆ Rn are both chosen to satisfy the design
principles presented hereinafter.
Assuming that at time t, the optimization problem (3.1.4)–(3.1.6) provides the optimal input
denoted by ū∗t (s) with s ∈ [t, t+Tp], then, the control action applied to the system (3.1.1) during
the time interval [t, t+ δ] is defined as follows:

uMPC(s) = ū∗t (s), ∀s ∈ [t, t+ δ], (3.1.7)

where the NMPC sampling time 0 < δ < Tp is chosen depending on the specification requirements
of the considered system. More precisely, for a real implementation, it needs to be larger than
the computing time of the optimization problem (3.1.4)-(3.1.6) so that there remains time for
other control processes such as state measurement or estimation.
According to the MPC design classification presented in [Mayne et al., 2000], the NMPC problem
proposed in (3.1.4)-(3.1.6) belongs to the category in which both terminal cost and constraint
set are employed. For this category, [Chen and Allgöwer, 1998,Mayne et al., 2000] also provide
four design conditions, that, if satisfied, ensure the recursive feasibility1 and the closed-loop
asymptotic (exponential) stability of the scheme. These are summarized in the followings.

1The initial iteration successfully executed implies the feasibility of all the further steps [Chen and Allgöwer,
1998].
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Lemma 3.1.1 ( [Mayne et al., 2000], page 799). Let us consider the NMPC controller (3.1.4)-
(3.1.7) for stabilizing the system ẋ = f(x,u) from (3.1.1) around its equilibrium point xe. If
there exists a local controller uloc(x) : Rn → Rm such that the four following conditions hold:

C1: [State constraints satisfied in Xf ]. The terminal region Xf is required to satisfy:

Xf ⊂ X , Xf closed, xe ∈ Xf . (3.1.8)

C2: [Input constraints satisfied in Xf ]. The local controller uloc(x) respects the input constraints
within Xf :

uloc(x) ∈ U , ∀x ∈ Xf . (3.1.9)

C3: [Invariant terminal constraint set]. The terminal region Xf from (3.1.6d) is positive in-
variant under uloc(x).

C4: [Local Lyapunov function existence]. For all x ∈ Xf , the following condition holds:

∂F (x)

∂x
f(x,uloc(x)) + `(x,uloc(x)) ≤ 0, (3.1.10)

where F (·) and `(·) are the terminal and stage costs from (3.1.5), respectively.

Then, the closed-loop control system ẋ = f(x,uMPC) with f(·) from (3.1.1) and uMPC from (3.1.7)
achieves the recursive feasibility and (nominal) asymptotic stability. �

Proof. The proof is given in [Mayne et al., 2000], pages 797-799. Furthermore, [Chen and
Allgöwer, 1998] shows how to apply a linear local controller uloc(x) to design a quasi-infinite
horizon NMPC scheme satisfying Lemma 3.1.1.

Example 3.1.2. Figure 3.1.1 illustrates the proof detailed in [Chen and Allgöwer, 1998,Mayne
et al., 2000] for the recursive feasibility property of an NMPC scheme satisfying Lemma 3.1.1
through an application on a simple dynamics ẋ = f(x,u) as in (3.1.1) with its scalar state and
input (x,u) ∈ R. The terminal constraint set Xf of the NMPC controller as in (3.1.6d) and

0 δ 2δ 3δ 4δ 5δ

ue

xe

δ Tp Tp + δ

x̄δ|c(Tp) = x̄∗0(Tp)

uloc(x̄δ|c)

x(0)
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Time

x
∈
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u
∈
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⊂
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Xf U
x̄∗0 ū∗0
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x̄δ|c ūδ|c
x̄∗δ ū∗δ

Figure 3.1.1: Illustration of the recursive feasibility property of a scalar system.
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the input constraint set U are given by the blue and yellow polytopic regions with the equilibrium
values (xe,ue) in their middles, respectively. The simulation scenario is to stabilize the dynamics
around (xe,ue) from its initial state x(0).
Recursive feasibility implies that the first NMPC iteration successfully executed guarantees the
feasibility of the solution for all future steps. Therefore, let us assume that the first NMPC
iteration at time t = 0 provides the optimal state x̄∗0 and the optimal input ū∗0 (plotted in thick
gray lines with square and triangle marks, respectively). Then, by applying the NMPC input uMPC

taken from the optimal input profile ū∗0 within the first sampling time δ as in (3.1.7) (plotted in
blue line with square marks), the state arrives to x(δ) = x̄∗0(δ) as shown by the overlap between
the ending point of x(t) (plotted in red line with circle marks) and the second square gray point
of the line x̄∗0.
Next, we will show that there exists a feasible solution for the next NMPC iteration starting from
x(δ) at time t = δ. Let us consider the candidate input profile ūδ|c(s) (plotted in magenta line
with square marks) defined as follows:

ūδ|c(s) =

{
ū∗0(s), s ∈ [δ, Tp],

uloc(x̄δ|c), s ∈ (Tp, Tp + δ].
(3.1.11)

Since the first part of ūδ|c(s) is taken from the previous optimal input profile ū∗0(s), it results in
the overlapping between the candidate state profile denoted by x̄δ|c(s) (plotted in green line with
circle marks) and the previous optimal state profile x̄∗0(s) within the interval of s ∈ [δ, Tp]. Then,
x̄δ|c(Tp) = x̄∗0(Tp) ∈ Xf as noted within the yellow region representing Xf . Next, due to the third
condition C3 of Lemma 3.1.1, Xf is positive invariant under the local controller uloc, hence, the
rest of the candidate state profile stays within Xf (green profile inside the yellow set) so it can
vary inside the sampling time because we see the control and state which would result from the
continuous local controller. Furthermore, since Xf is input constraint admissible from the second
condition C2 as in (3.1.9), the candidate input profile ūδ|c(s) within the interval s = [Tp, Tp + δ]
always respects the input constraint (as shown by the smoothly varying part of the magenta line
within the blue region). Thus, these candidate profiles of state and input are acceptable, hence,
guaranteeing the feasibility of the second NMPC iteration.
Starting from the candidate profiles x̄δ|c(s) and ūδ|c(s), the optimization solver provides the
optimal solutions of state, x̄∗δ(s) and input ū∗δ(s) for the interval s = [δ, Tp + δ] (as plotted by
black lines with square and triangle marks, respectively). This also completes the illustrative
proof.

The continuous-time NMPC setup given as in (3.1.4)-(3.1.7) allows the discretization step
of the prediction model (3.1.6a) (denoted by ∆) to be smaller than the NMPC sampling time
δ in (3.1.7) without requiring the explicit formulation as in discrete domain, hence, taking into
account inter-sample behavior [Magni and Scattolini, 2004]. More precisely, if the prediction
model as in (3.1.6a) is discretized with the step ∆, the discrete implementation of the proposed
NMPC scheme in (3.1.4)-(3.1.6) will have Np prediction steps with

Np =
Tp
∆
, (3.1.12)

with Tp the prediction horizon interval. Next, the resulted NMPC input can be taken as Nu first
steps (compared to the usage of the only one first step in the standard discrete NMPC design)
with:

Nu =
δ

∆
, (3.1.13)
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with Nu ∈ N∗ and δ the NMPC sampling time (between two consecutive moments when applying
the NMPC input uMPC (3.1.7)). We emphasize that various works in the literature also consider
this NMPC setup in continuous-time [Mayne et al., 2000, Magni and Scattolini, 2004, Chen
and Allgöwer, 1998, Reble and Allgöwer, 2012]. In these works, the real implementation of the
controller employs a piece-wise constant control input within the sampling time interval (i.e.,
the input is constrained to keep the same value within every Nu steps) which results in having
no differences with the standard discrete NMPC design but at the price of enhancing accuracy
of the prediction model.
We decide to employ the continuous-time NMPC formulation not only due to the aforementioned
reasons but also due to the ease of integrating the multicopter dynamics (2.1.10) within a
continuous NMPC framework. In the next sections, we will particularize the general NMPC
design (3.1.4) for a class of “computed-torque like” systems which stand for a broad range of
mechanical and robotics systems.

3.2 Use of computed-torque control in NMPC design

In this section, we first present the CTC (Computed-Torque Control) law and its associated
dynamical system. Next, we show the construction of an input constraint admissible set under
the CTC controller which is obtained by applying Taylor’s approximation to the controller.
The set allows us to obtain an admissible positive invariant set as required by Lemma 3.1.1
for designing an NMPC scheme with guaranteed stability (i.e., being employed as the terminal
constraint set within the NMPC design). Finally, an upper bound is provided for the weighted
norm of the CTC controller in terms of the corresponding state within the invariant set which
will be used to satisfy the fourth condition (3.1.10) of Lemma 3.1.1.
Let us start by giving the dynamical model of a system admitting a CTC law in its original
form and then, adapt it to the general state-space formulation ẋ = f(x,u) as in (3.1.1). A
“computed-torque like” system is expressed in the second-order dynamics as follows [Craig,
2018,Lewis et al., 2003,Uebel et al., 1992]:

M (q)q̈ +N (q̇, q) = u, (3.2.1)

with the state q ∈ Rm and the actuator input u ∈ Rm. M (q) ∈ Rm×m is a symmetric and
positive definite inertia matrix, N (q̇, q) ∈ Rm is the vector gathering the nonlinear terms (e.g.,
Coriolis forces, centrifugal forces [Craig, 2018, Lewis et al., 2003]). By defining the new state
vector x = [q q̇]> ∈ R2m, the system (3.2.1) is transformed into the state-space formulation
given by:

ẋ = f(x,u), (3.2.2)

as similar to the general system considered in (3.1.1), Chapter 2, with

f(x,u) =

[
Im 0m
0m M(q)−1

] [
q̇

−N (q̇, q) + u

]
. (3.2.3)

The equilibrium point of the system (3.2.1)-(3.2.2) satisfying f(xe,ue) = 0 is defined as:

xe = [qe 0]> and ue = N (0, qe), (3.2.4)

with qe ∈ Rm the desired output. The state x and the input u are constrained as follows:

x ∈ X , u ∈ U , (3.2.5)

where the state and input constraint sets are denoted by X and U and are convex in R2m and
Rm, respectively. X × U contains (xe,ue) in its relative interior.
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3.2.1 Linearization effect of computed-torque control

The system (3.2.1)-(3.2.2) admits a special feedback linearization law called CTC law [Craig,
2018,Lewis et al., 2003] given as:

uCTC(x, µ) = M (q)µ+N (q̇, q), (3.2.6)

where µ ∈ Rm gathers the so-called virtual control inputs. The equilibrium value of the virtual
input vector µe is given by:

µe = 0, (3.2.7)

which further provides uCTC(xe, µe) = ue = N (0, qe) as in (3.2.4). If uCTC(x, µ) satisfies the
input constraint (3.2.5), it transforms the system (3.2.1)-(3.2.2) into the controllable linear
system:

ẋ = Ax+Bµ, (3.2.8)

with A ∈ R2m×2m and B ∈ R2m×m given by:

A =

[
0m Im
0m 0m

]
, B =

[
0m
Im

]
. (3.2.9)

Furthermore, we can stabilize the linear system (3.2.8) around its equilibrium point (xe, µe) from
(3.2.4), (3.2.7) by applying a simple linear control design for the virtual input µ as follows:

µ := µK(x) = K(x− xe) + µe, (3.2.10)

in which, xe is given in (3.2.4), µe is from (3.2.7) and the notation “:=” means “to be defined as”.
Since linear dynamics (3.2.8) are equivalent to n double integrator sub-systems, an appropriate
design for the control gain matrix K ∈ Rn×2n is given by:

K = [diag{Kp1 , . . . , Kpn} diag{Kd1 , . . . , Kdn}], (3.2.11)

with all the control gains required to be strictly negative, i.e., 〈Kpi , Kdi〉 < 0, ∀i ∈ {1, . . . , n}.
Note that, introducing the virtual input µK(x) from (3.2.10) to the system (3.2.8) results in the
following linear system:

ė = AKe, (3.2.12)

with e = x − xe the tracking error with xe as in (3.2.4) and AK = A + BK with A, B, K
as in (3.2.8)–(3.2.10). The system (3.2.12) is stable due to the use of all negative control gains
〈Kpi , Kdi〉 < 0,∀i ∈ {1, . . . , n} as in (3.2.11).
Hereinafter, we illustrate the aformentioned content through a typical example of a “computed-
torque like” system - an inverted pendulum.

Example 3.2.1. The dynamical system of the inverted pendulum illustrated in Figure 3.2.1 is
given by:

ml2q̈ −mgl sin q = u, (3.2.13)

with q ∈ R the angle between the vertical line and the pendulum, u ∈ R the input torque acting
on the pendulum, m the mass at the end of the pendulum, g the gravity and l the length of the
assumed-massless link. For simplicity, no constraints on state and input are considered. The
dynamics (3.2.14) admits the CTC law given as follows:

uCTC(q, µ) = ml2µ−mgl sin q, (3.2.14)

which linearizes the system (3.2.13) into a double integrator system q̈ = µ. Furthermore, in case
of stabilizing around qe = 0, by applying µ = Kpq + Kdq̇ with any pair of 〈Kp, Kd〉 < 0, the
closed-loop controlled system is asymptotically stable.
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Figure 3.2.1: Schematic of an inverted pendulum.

3.2.2 Satisfaction of input constraints under computed-torque con-
trol

In this section, we present the construction of an input constraint admissible set of the CTC
law uCTC(x, µ) defined in (3.2.6). The first step is to define the shape of the set which is usually
chosen either as an ellipsoid [Chen and Allgöwer, 1998,Kohler et al., 2018,Nguyen et al., 2019a],
or as a polytope [Cannon et al., 2003,Nguyen et al., 2019b]. The decision is usually made based
on the complexity resulted from considering the shape in conjunction with the control law, i.e.,
the CTC law uCTC(x, µ) as in (3.2.6). Since we will employ the input constraint admissible set to
construct a positive invariant set later, an ellipsoid set appears as a more promising candidate.
Therefore, let us consider a ball B centered in (xe, µe) and parameterized by a radius ε ∈ R+ as
follows:

B(qe, ε) =
{

(x, µ) ∈ R2m × Rm
∣∣∣ ‖x− xe‖2 + ‖µ− µe‖2 ≤ ε2

}
, (3.2.15)

in which, the notation B(qe, ε) is due to the equilibrium value defined as e = [qe 0]> and µe = 0
from (3.2.4) and (3.2.7). Assuming that the CTC law uCTC(x, µ) (3.2.6) is continuous and twice
differentiable around the point (xe, µe) with uCTC(xe, µe) = ue ∈ U , it is trivial that we can find
a “small enough” value of the radius ε such that, for all (x, µ) within the ball B(·), the CTC law
uCTC(x, µ) satisfies the input constraint (3.2.5), i.e., uCTC(x, µ) ∈ U , ∀(x, µ) ∈ B(qe, ε) due to
the continuity of uCTC(x, µ) around (xe, µe). Then, the problem turns out to estimate how small
the radius ε should be such that the set B(qe, ε) as in (3.2.15) is input constraint admissible.
The problem is illustrated by the following example.

Example 3.2.2. Let us consider again Example 3.2.1 on stabilizing the inverted pendulum sys-
tem (3.2.13) around qe = 0. The corresponding CTC law uCTC(q, µ) as in (3.2.14) depends only
on the controlled angle q and the virtual input µ. Therefore, the ball B from (3.2.15) is rewritten
as follows:

B(ε) =
{

(q, µ) ∈ R× R
∣∣ q2 + µ2 ≤ ε2

}
. (3.2.16)

We will then illustrate in Figure 3.2.2a the results of the following optimization problem:

max
q,µ
|uCTC(q, µ)| (3.2.17)

subject to q2 + µ2 ≤ ε2,

with uCTC(q, µ) from (3.2.14) and the radius ε used as the main variable of the problem. It shows
that the maximum value of the torque magnitude |uCTC(q, µ)| for all (q, µ) ∈ B(ε) is increasing
when enlarging the set B(ε). The case of ε = 0.5 (as marked by red circles) is detailed in Figure
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3.2.2b which shows the intersection between the mapping uCTC(q, µ) and the vertical cylinder with
its radius ε = 0.5.
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Figure 3.2.2: Analysis of the relation between max |uCTC(q, µ)|, ∀(q, µ) ∈ B(ε) and ε.

Through Example 3.2.2, we notice that the “small enough” value of ε such that the CTC
law uCTC(x, µ) from (3.2.6) satisfies the input constraint (3.2.5) can be obtained by solving the
optimization problem (3.2.17). However, it does require the global optimal solution of (3.2.17)
which even contains the generally nonlinear and multi-variable function uCTC(x, µ). These ob-
stacles usually prevents us from obtaining the required value of ε. Therefore, in the following,
we provide another method for estimating the radius ε based on the Taylor’s approximation
of uCTC(x, µ) [Nguyen et al., 2019a]. We first derive an upper bound for uCTC(x, µ), then, we
introduce a condition on ε in order to validate the input constraint (3.2.5) limited by the bound.

We start by addressing the Taylor’s approximation [Folland, 1990] of uCTC(x, µ) from (3.2.6)
for all (x, µ) ∈ B(qe, ε) as in (3.2.15):

uCTC(x, µ) = uCTC(xe, µe)+
∂uCTC

∂x

∣∣∣∣
x = xe
µ = µe︸ ︷︷ ︸

xJ(qe)

(x−xe)+
∂uCTC

∂µ

∣∣∣∣
x = xe
µ = µe︸ ︷︷ ︸

µJ(qe)

(µ−µe)+R(x, µ, qe, ε), (3.2.18)

in which, the Jacobian matrix µJ(qe) is explicitly given by µJ(qe) = M(qe) withM(·) the inertia
matrix from (3.2.1) and qe the desired output from (3.2.4). The remainder vector R ∈ Rn is
bounded from Taylor’s inequality [Folland, 1990] as follows2:

|R(x, µ, qe, ε)| ≤
M(qe, ε)

2!

(
‖x− xe‖2 + ‖µ− µe‖2

)
, (3.2.19)

2In (3.2.19), |R(x, µ, qe, ε)| is a vector in Rm containing the norms of all the elements of R(x, µ, qe, ε).
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with M(qe, ε) ∈ Rm gathering m elements denoted by Mi(·) ∈ R+ with i ∈ {1, . . . ,m}. Each
element Mi(·) is defined as:

Mi(qe, ε) = max
(x,µ)∈B(qe,ε)

|H(uCTC,i(x, µ))|, (3.2.20)

where uCTC,i(·) is the ith element of the vector function uCTC(·) from (3.2.6). H(·) is the Hessian
matrix of a scalar-valued function containing all of its second-order partial derivatives [Meyer,
2000]. Furthermore, by introducing (3.2.19) and the Cauchy-Schwarz inequality [Meyer, 2000]
to each element uCTC,i(·) from (3.2.18) (i ∈ {1, . . . ,m}), it is straightforward to obtain:

|uCTC,i(x, µ)− ue,i| ≤ Ci(qe)
√
‖x− xe‖2 + ‖µ− µe‖2 +

Mi(qe, ε)

2

(
‖x− xe‖2 + ‖µ− µe‖2

)
,

(3.2.21)
in which Ci(qe) ∈ R+ (i ∈ {1, . . . ,m}) is defined as:

Ci(qe) =
√
‖xJi(qe)‖2 + ‖µJi(qe)‖2, (3.2.22)

with xJi(qe) and µJi(qe) the ith rows of the Jacobian matrices xJ and µJ in (3.2.18), respectively.
Then, since we are considering the region defined by ‖x− xe‖2 + ‖µ− µe‖2 ≤ ε2, (3.2.21) leads
to:

|uCTC,i − ue,i| ≤
(
Ci(qe) +

Mi(qe, ε)

2
ε

)√
‖x− xe‖2 + ‖µ− µe‖2. (3.2.23)

Then, let define εmax ∈ R+ as the largest possible value of ε satisfying:

εmax = max ε,

subject to C(qe)ε+
M(qe, ε)

2
ε2 ≤ umax,

(3.2.24)

in which C(·) , [C1(·), . . . , Cm(·)]> with Ci(·) from (3.2.22) and umax ∈ Rm
+ gathers all the

user-defined maximum input values along each input axis. More precisely, umax is chosen such
that:

U∗ = {u ∈ Rm| − umax + ue ≤ u ≤ umax + ue} ⊆ U , (3.2.25)

with U the input constraint set from (3.2.5) and U∗ the alternative input constraint set composed
of all saturation constraints. Then, by introducing (3.2.24) to (3.2.23), we have that:

uCTC(x, µ) ∈ U∗, ∀(x, µ) ∈ B(qe, ε), ∀ε ≤ εmax, (3.2.26)

with U∗ ⊆ U from (3.2.25), B(qe, ε) from (3.2.15) and εmax the largest possible value of ε as in
(3.2.24).
Furthermore, by summing the inequalities (3.2.23), we obtain the Lipschitz bound of the CTC
law uCTC(x, µ) defined (3.2.6) within the set B(qe, ε):

‖uCTC − ue‖2 ≤ LCTC

(
‖x− xe‖2 + ‖µ− µe‖2

)
, (3.2.27)

with the Lipschitz constant LCTC taken as follows:

LCTC(qe, ε) =
∥∥∥C(qe) +

M(qe, ε)

2
ε
∥∥∥

2

, (3.2.28)

with C(qe) as in (3.2.22) and M(qe, ε) as in (3.2.20).
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Remark 3.2.3. In the literature, εmax is usually assumed to be known [Kohler et al., 2018] since
the numerical result of εmax can be obtained by progressively increasing an arbitrary small value
ε ∈ R+ while guaranteeing that uCTC(x, µ) ∈ U , for all (x, µ) ∈ B(qe, ε) as in (3.2.26). However,
the method requires heavier computation effort than validating condition (3.2.24) and it does
not provide the useful quadratic bound of the controller uCTC as in (3.2.27).
Futhermore, the Lipschitz constant LCTC(qe, ε) as in (3.2.28) can be numerically obtained by
solving:

log LCTC = max
x,µ

{
2 log ‖uCTC(x, µ)− ue‖ − log

(
‖x− xe‖2 + ‖µ− µe‖2

) }
, (3.2.29)

subject to (x, µ) ∈ B(qe, ε),

with uCTC as in (3.2.27) and B(qe, ε) as in (3.2.30). However, this numerical approach requires
much computation time for solving the nonlinear optimization problem (3.2.29) while it is not
the case for the analytical formulation of LCTC(qe, ε) as given in (3.2.28). �

In this section, we have shown the method to obtain the input constraint admissible set and
the Lipstchiz bound of the CTC law uCTC(x, µ) defined in (3.2.6). The method is constructed
based on the Taylor’s approximation of the CTC law and the bound on the remainder term
which can be generalized for various nonlinear controllers. The next section will employ the
presented results in order to construct a constraint admissible and positive invarian set under
the CTC law.

3.2.3 Construction of invariant set associated to the computed-torque
control

In this section, we enforce the a priori obtained input constraint admissible set B(qe, ε) from
(3.2.15) to become positive invariant. To do so, the control gain matrix K from (3.2.10) needs
to be chosen appropriately. Let us start by introducing µ = µK(x) as in (3.2.10) to the set
B(qe, ε) as in (3.2.15) (originally described in terms of x and µ). The resulted input constraint
admissible set, denoted by BK(qe, ε), is given as follows:

BK(qe, ε) =
{
x ∈ R2m

∣∣∣ (x− xe)>(I2m +K>K)(x− xe) ≤ ε2
}
, (3.2.30)

with K the control gain matrix as in (3.2.11), I2m the identity matrix of size 2m × 2m and
ε ∈ R+ the radius satisfying ε ≤ εmax as in (3.2.26).
Next, we introduce a condition on choosing K as in (3.2.11) such that the input constraint
admissible set BK(qe, ε) from (3.2.30) becomes positive invariant.

Lemma 3.2.4. Let us consider the matrix K defined in (3.2.11) where the 2m control gains
Kp1 , . . . , Kpm and Kd1 , . . . , Kdm satisfy the following conditions:

{
Kpi < 0, Kdi < 0,

4K2
di
> −Kpi(Kpi + 1)2 −Kpi −

(Kpi+1)2

Kpi
,
i ∈ {1, . . . ,m}, (3.2.31)

and the set BK(qe, ε) from (3.2.30) where the radius ε is chosen such that:
{

ε ≤ εmax,

BK(qe, ε) ⊆ X ,
(3.2.32)

with εmax from (3.2.24). Then, the set BK(qe, ε) is constraint admissible and positive invariant
under the CTC controller uCTC(x, µK(x)) with uCTC(x, µ) from (3.2.6) and µK(x) from (3.2.10).
�
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Proof. At first, choosing the radius ε as in (3.2.32) makes BK(qe, ε) admissible for both input
and state constraints. Then, the invariant property is proved by the Lyapunov function V =
(x−xe)>(I2m+K>K)(x−xe) as employed for constructing BK(qe, ε) in (3.2.30). Without loss
of generality, let us consider the case of xe = 0. Then, by using x , [x1, . . . , x2m]> and K as
defined in (3.2.11), we have that:

V =
n∑

i=1

(
(x2

i + x2
i+m + (Kpixi +Kdixi+m)2

)
. (3.2.33)

Next, from (3.2.9), for i ∈ {1, . . . ,m}, we have that ẋm = xi+m and ẋi+m = Kpixi + Kdixi+m
which lead to:

V̇ =
m∑

i=1

X>i ΓiXi, (3.2.34)

with Xi = [xi xi+m]> and the matrix Γi ∈ R2×2 given by:

Γi =

[
2KdiK

2
pi

Γi,12

Γi,21 2Kdi(K
2
di

+Kpi + 1)

]
, (3.2.35)

with Γi,12 = Γi,21 = Kpi(2K
2
di

+Kpi + 1) + 1. By introducing the conditions (3.2.31) to (3.2.35),

the matrix Γi is shown to be negative definite, leading to V̇ < 0. Thus, BK(qe, ε) from (3.2.30)
is positive invariant, completing the proof.

In this section, we have discussed how to construct a constraint admissible and positive
invariant set for a “computed-torque like” system as in (3.2.1). The following section will gather
all the presented items into an algorithm which provides an NMPC scheme for the considered
system.

3.3 NMPC design with stability induced by a computed-

torque controller

Lemma 3.3.1 (NMPC design with stability induced by a local computed-torque control law).
Let us apply the general NMPC setup (3.1.4)-(3.1.7) for stabilizing the system (3.2.2) admitting
the CTC law (3.2.6). Then, the NMPC design will satisfy the four design conditions C1-C4
given in Lemma 3.1.1 by using the ingredients defined as follows:

• the CTC controller uCTC(x, µK(x)) from (3.2.6) and (3.2.10) is used as the local controller
uloc employed in (3.1.8)–(3.1.10):

uloc(x) := uCTC(x, µK(x)), (3.3.1)

in which, := means “to be defined as”.

• the terminal constraint set Xf employed in (3.1.6d) is taken as the constraint admissible
and positive invariant set BK(qe, ε) defined in (3.2.30):

Xf := BK(qe, ε). (3.3.2)
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• the stage and terminal costs are in their standard quadratic forms:

`(x,u) := (x− xe)>Q(x− xe) + (u− ue)>R(u− ue), (3.3.3)

F (x) := (x− xe)>P (x− xe), (3.3.4)

in which, Q ∈ Rn×n is a positive definite matrix and R ∈ Rm×m is a positive semi-definite
matrix, all being symmetric. The matrix P ∈ R6×6 is obtained as the unique positive
definite matrix solution of the following Lyapunov equation:

A>KP + PAK +Q+R∗ = 0, (3.3.5)

with AK the stable matrix from (3.2.12) and R∗ ∈ Rn×n the positive definite matrix satis-
fying:

R∗ � max(eig(R))L(In +K>K), (3.3.6)

with the Lipschitz bound L from (3.2.28) and the control gain matrix K from (3.2.10).

Using these elements ensures the recursive feasibility and asymptotic stability of the (nominal)
closed-loop controlled system. �

Proof. Conditions C1-C3 given in (3.1.8)-(3.1.9) are validated by employing the constraint
admissible and positive invariant set BK(qe, ε) as in (3.2.30).
Next, for Condition C4, by introducing the proposed elements (3.3.1)-(3.3.4) to the requirement
(3.1.10), we have that:

∂F (x)

∂x
f(x,uloc(x)) = (x− xe)>(A>KP + PAK)(x− xe), (3.3.7)

`(x,uloc(x)) = (x− xe)>Q(x− xe) + (uCTC(·)− ue)>R(uCTC(·)− ue), (3.3.8)

in which, (3.3.7) is due to the feedback linearization effect of the local CTC controller (3.3.1)
(c.f. the linear system (3.2.12)). Moreover, the input term in (3.3.8) is bounded as follows:

(uCTC(x, µK(x))− ue)>R(uCTC(x, µK(x))− ue) ≤ max(eig(R))‖uCTC(x, µK(x))− ue‖2

(3.3.9)

≤ max(eig(R))LCTC(‖x− xe‖2 + ‖K(x− xe)‖2),

with LCTC the Lipschitz constant from (3.2.28), K the control gain matrix from (3.2.11) and R
as in (3.3.3) having all non-negative real eigenvalues. Note that, (3.3.9) is due to the quadratic
bound of the CTC controller as in (3.2.27). Then, introducing (3.3.7)-(3.3.9) to (3.1.10) ulti-
mately leads to:

∂F (x)

∂x
f(x,uloc(x)) + `(x,uloc(x))

≤ (x− xe)>(A>KP + PAK +Q+ max(eig(R))L(In +K>K))(x− xe)
≤ (x− xe)>(A>KP + PAK +Q+R∗)(x− xe) = 0,

(3.3.10)

in which, R∗ is chosen as in (3.3.6) and P satisfied the Lyapunov equation (3.3.5). This validates
Condition C4 given in (3.1.10) of Lemma 3.1.1, hence, completing the proof.

Hereinafter, we summarize the design procedure of an NMPC scheme presented above.

Procedure 3.3.2 (NMPC design with stability induced by a CTC law). The design procedure
of the NMPC controller defined in (3.1.4)–(3.1.7) employing the CTC controller (3.2.6) as the
local controller for guaranteeing the closed-loop stability is given as follows:
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1. Analyze the CTC law (3.2.6) of the system then calculate C(qe) as in (3.2.22) and formulate
M(qe, ε) as in (3.2.20). Then, find the largest possible radius εmax satisfying (3.2.24).

2. Define the control gains matrix K as in (3.2.11) satisfying (3.2.31).

3. Choose the symmetric matrices Q ∈ R2m×2m (positive definite) and R ∈ Rm×m (positive
semi-definite) to formulate the stage cost as in (3.3.3).

4. Estimate the prediction horizon Tp based on the computational limits of the platform.

5. Find the radius ε satisfying (3.2.32) to obtain the constraint admissible and positive in-
variant set BK(qe, ε) as in (3.2.30).

6. Define the matrix R∗ satisfying (3.3.6) with the Lipschitz bound LCTC(qe, ε) from (3.2.28),
then, solve the Lyapunov equation (3.3.5) for the terminal weight matrix P .

For a predefined initial state x0, the procedure requires the users to run the NMPC algorithm
once in order to check if the first iteration is feasible. If not, one solution is to progressively
increase the prediction horizon until the optimization problem becomes feasible. However, the
computation time is greatly affected by any increase of the prediction length. Thus, in order
to continue increasing the region of attraction when the prediction horizon Tp is already large
(i.e., the computing time reaches the platform limit), one can increase the size of the terminal
constraint set BK(qe, ε) given in (3.2.30) instead. The parameters which affects most the size of
the set BK(qe, ε) is the control gain matrix K defined at Step 2 of the procedure. In general,
decreasing the magnitudes of the control gains increase the size of the set BK(qe, ε) and vice
versa. Furthermore, Procedure 3.3.2 can be also applied for tracking control design with only
slight modification. If all the information of the reference trajectory is available, i.e., (qr, q̇r, q̈r)
beforehand, then, the radius ε as in (3.2.32) (c.f. Step 5 in Procedure 3.3.2) can be found off-line
such that the sets BK(qr, ε) (i.e., qr is varying) defined along the trajectory are all constraint
admissible and positive invariant.

Remark 3.3.3. At Step 2, if the control gains matrix K as in (3.2.11) does not satisfy the second
condition of (3.2.31), the set BK(qe, εmax) is still input constraint admissible but not positive
invariant. Then, another invariant set can be obtained as follows:

I(qe, r) = {(x− xe)>P (x− xe) ≤ r2}, (3.3.11)

with xe = [qe 0]> as in (3.2.4) and P as in (3.3.5). The invariant property of I(qe, r) from
(3.3.11) is guaranteed by the Lyapunov equation (3.3.5), however, the parameter r ∈ R+ needs
to be scaled such that:

I(qe, r) ⊆ BK(qe, εmax) and I(qe, r) ⊆ X , (3.3.12)

with BK(qe, εmax) as in (3.2.30) being input constraint admissible and X as in (3.1.6) the state
constraint set. Depending on the choice of Q and R∗ as in (3.3.5), the resulted shape of I(qe, r)
from (3.3.11) is probably different from the set BK(qe, εmax) from (3.2.30), hence, leading to
a challenging tuning procedure. We illustrate the idea in Figure 3.3.1 in which we fix the
equilibrium at zero and the set BK(qe, εmax) as in (3.2.30) (yellow ellipsoid) is obtained with K =
[−1 −2] and εmax = 1, being both state and input constraint admissible (i.e., BK(qe, εmax) ⊆ X as
in (3.1.6)). It is much larger than the invariant set I(qe, r) as defined in (3.3.11) (blue ellipsoid)
which is obtained by introducing an arbitrarily chosen Q + R∗ = I2 to the Lyapunov equation
(3.3.5) and then, by scaling the radius r down to 0.29 so that the condition I(qe, r) ⊆ BK(qe, εmax)
(3.3.12) is satisfied. Note that, with the optimal choice of Q + R∗ = [4 7; 7 16] and r = 1, the
set I(qe, r) as in (3.3.11) will equal the yellow ellipsoid set BK(qe, εmax) in Figure 3.3.1. �
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Figure 3.3.1: Illustration of the set BK(qe, ε) from (3.2.30) and the invariant set I(qe, r) from
(3.3.11) using r = 0.29, K = [−1 − 2] as in (3.2.11) and Q+R∗ = I2 as in (3.3.5).

In the next section, the design procedure is applied on a well-known mechanical system, i.e.,
to stabilize an inverted pendulum on a cart. The resulted NMPC controller is validated through
various simulations and is compared with the quasi-infinite horizon NMPC design approach
[Chen and Allgöwer, 1998].

3.4 Application on stabilizing a cart-pendulum system

In this section, we consider the problem of stabilizing a well-known mechatronics system, an
inverted pendulum robot on a cart [Mazenc and Praly, 1996, Srinivasan et al., 2009]. The
angular dynamics of the system are as in (3.2.1) with q ∈ R, the angle between the vertical line
and the pendulum (as defined in Figure 3.2.1). The terms M (q) and N (q, q̇) as in (3.2.1) are
given by:

M(q) = µ cos q − mJ

µ cos q
, N (q, q̇) = mg − µq̇2 sin q, (3.4.1)

with m = 0.3235, µ = 1.3625 × 10−3 and J = 1.5265 × 10−4 the physical parameters of the
system, g = 9.81 the gravity and u ∈ R the force applied to the cart (not the torque on the
pendulum as employed in Example 3.2.1). The input constraint is |u| ≤ umax with umax = 0.6
and the state is constrained by |q| ≤ 0.16, |q̇| ≤ 0.3. All the parameters are taken from a real
experimental setup given in [Srinivasan et al., 2009]. The control problem is to stabilize the
pendulum at the upright position, i.e., qe = 0 from its initial state fixed at q0 = 0.15 rad. For
doing this, we employ two NMPC controllers, one following the proposed Procedure 3.3.2 and the
other called quasi-infinite horizon NMPC (denoted by qMPC hereinafter) detailed in [Chen and
Allgöwer, 1998] in order to analyze and compare the performances. In the following, we briefly
introduce the qNMPC design procedure (we employ the second method presented in [Chen and
Allgöwer, 1998] which provides less conservative results).

3.4.1 Comparison with quasi-infinite horizon NMPC

Let us consider the general system ẋ = f(x,u) and the corresponding state and input constraints
given in (3.1.1)–(3.1.3). The qMPC approach stabilizes the system around its equilibrium point
(xe,ue) from (3.2.4) by using a similar design as in (3.1.5)–(3.1.6) but with the closed-loop
stability guaranteed by a local linear controller defined as follows:

uloc(x) , ul,q(x) = Kq(x− xe) + ue, (3.4.2)
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with uloc(x) the local controller as employed in (3.1.9)–(3.1.10). The control gain matrix Kq ∈
Rm×n is chosen such that the controller ul,q(x) from (3.4.2) stabilizes the linear system:

ẋ = Aq(x− xe) +Bq(u− ue), (3.4.3)

which is obtained by linearizing the system (3.1.1) around the equilibrium point with Aq =
(∂f)/(∂x)(xe,ue) and Bq = (∂f)/(∂u)(xe,ue). The next step is to define κ ∈ R+ such that:

κ < −max{Re{eig
(
Aq +BqKq︸ ︷︷ ︸

,AKq

)
}}, (3.4.4)

with Re{eig(AKq)} giving the real parts of all the eigenvalues of AKq . Then, the terminal
weighting matrix Pq (employed similarly as P in (3.3.4)) is obtained by solving the following
Lyapunov equation:

(
AKq + κIn

)>
Pq + Pq

(
AKq + κIn

)
= −Q−K>q RKq, (3.4.5)

with Q and R the weighting matrices as employed in (3.3.3). The qMPC design also uses the
terminal weight matrix Pq to formulate the terminal constraint set given as follows:

Ωα(xe) = {x ∈ Rn|(x− xe)>Pq(x− xe) ≤ α}, (3.4.6)

in which, the parameter α ∈ R+ is chosen as the largest possible value such that the followings
hold:

Ωα(xe) ⊆ X , (3.4.7)

ul,q(x) ∈ U , ∀x ∈ Ωα(xe), (3.4.8)

(x− xe)>Pq[f(x,ul,q(x))− AKq(x− xe)] ≤ κ(x− xe)>Pq(x− xe), ∀x ∈ Ωα(xe), (3.4.9)

with X , U the state and input constraint sets in (3.1.3), ul,q(x) the linear controller as in (3.4.2),
f(·) the system dynamics as in (3.1.1), AKq , κ as in (3.4.4) and Pq from (3.4.5).

Remark 3.4.1. The quasi-infinite horizon NMPC design proposed in [Chen and Allgöwer, 1998]
makes use of a local linear feedback controller, hence, being capable of dealing with any general
nonlinear system as in (3.1.1). However, employing a linear controller for a nonlinear system is
not always appropriate and obviously restricts the corresponding invariant set Ωα as in (3.4.6).
The complexity of finding an acceptable value of the “radius” α satisfying (3.4.7)–(3.4.9) is
significant in comparison with the proposed approach, i.e. finding the control gain matrix K
as in (3.2.31) to guarantee the invariant property and scale the radius ε as in (3.2.32) for the
invariant set BK(qe, ε) given in (3.5.24) to be constraint admissible. We consider these results
evolutionary and differ from the qMPC approach [Chen and Allgöwer, 1998] as delineated in
Table 3.4.1.

3.4.2 Simulation results

For the designing of the proposed NMPC scheme, we follow Procedure 3.3.2 to establish the
optimization problem (3.1.4)–(3.1.6). In order to compare and analyze the performances of
different controllers, we consider three scenarios with the common goal of stabilizing the inverted
pendulum (3.4.1) where we change the control law as follows:

Scenario 1 : The CTC controller uCTC(x, K1x) from (3.2.6) with the control gain matrix K1

chosen as in (3.2.31) such that the resulted invariant set Xf1 , BK1(qe, ε) (3.5.24) contains the
initial state x0, thus, showing its positive invariant property.
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Table 3.4.1: Differences in desing principles between quasi-infinite horizon NMPC and the pro-
posed NMPC scheme.

Ingredients
Quasi-infininite horizon NMPC NMPC design using

[Chen and Allgöwer, 1998] local CTC controller
Conditions C1-C4

Origin Usage
in Lemma 3.1.1

Local Linear controller (3.4.2) CTC controller
controller ul,q(x) = Kq(x− xe) + ue uCTC(x, Kx) (3.2.6)

Weighting
matrix P

Obtained from (3.4.5),
required as prerequisite for
further analysis

Obtained from (3.3.5) as
final step of the design
procedure

Input constraint Scaling a predefined
ellipsoid region Ωα (3.4.6)
by choosing α satisfying
(3.4.7)-(3.4.9)

Approximating uCTC(x) by
satisfaction using Taylor’s theory

State constraint Scaling ε (3.2.32)
Invariant set Choosing K (3.2.31)

Condition
C4 (3.1.10)
satisfaction

1) ‖ul,q − ue‖2
R = ‖x− xe‖2

K>q RKq
1) ‖uCTC − ue‖2

R ≤ ‖x− xe‖2
R∗

2)
d

dt
‖x− xe‖2

Pq
is bounded 2)

d

dt
‖x− xe‖2

P =

by using (3.4.9) ‖x− xe‖2
A>KP+PAK

3) Terminal weighting matrix Pq 3) Terminal weighting matrix P
satisfies Lyapunov equation (3.4.5) satisfies Lyapunov equation (3.3.5)

Scenario 2 : The proposed NMPC design (3.1.4)–(3.1.6) with the gain matrix K2 chosen as
in (3.2.31), different from K1 used in Scenario 1 such that the terminal region Xf2 , BK2(qe, ε)
(3.5.24) does not contain the initial state x0. Note that, we keep the same value of the radius
ε under both Scenarios 1 and 2. The aim is to show the ease to tune the orientation of the
terminal constraint set by changing the gain matrix since scaling ε is straightforward.

Scenario 3 : The qMPC controller recalled in Section 3.4.1.
All the design parameters concerning the three Scenarios are gathered in Table 3.4.2.

Regarding the prediction model as in (3.1.6a), we employ the Runge-Kutta 4-order discretiza-
tion method to discretize the cart-pendulum dynamics (3.4.1) with a step ∆ = 0.1 seconds. The
NMPC sampling time is also fixed at δ = 0.1 seconds making the formulation identical with
a standard discrete MPC setup. The optimization problem (3.1.4) is solved by using solver
IPOPT [Wächter and Biegler, 2006] within Matlab version R2015a. Note that in the presented
figures, the variables concerning Scenario 1 are plotted in blue, for Scenario 2 in red and for
Scenario 3 in green. Furthermore, in the figures labels, we denote our proposed approach by
NMPC and the quasi-infinite horizon NMPC by qMPC.
Figure 3.4.1 illustrates the three terminal regions under three scenarios, Xf1 = BK1(0, ε) (blue
ellipsoid), Xf2 = BK2(0, ε) (red ellipsoid) with BK1(·), BK2(·) from (3.5.24) and Ωα from (3.4.6)
(green ellipsoid). We observe that the proposed terminal regions, Xf1 and Xf2 , are signifi-
cantly larger than the terminal region Ωα. Furthermore, by tuning the gain matrix from
K1 = [−0.5 − 0.55] to K2 = [−1 − 0.6], the invariant set BK1(0, ε) under Scenario 1 is
easily modified into BK2(0, ε) under Scenario 2, both staying within the constraint set X (black
rectangle). These results illustrate the ease of modifying the terminal region of the proposed
NMPC method which is not the case for the qMPC design under Scenario 3. Indeed, it is diffi-
cult to predict the shape of the invariant set Ωα from (3.4.6) under the linear controller ul,q in
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Table 3.4.2: Design parameters for stabilizing the pendulum

Parameters Values

Common
parameters

NMPC sampling time δ from (3.1.7) 0.1 sec
Model discretization step ∆ from (3.1.12) 0.1 sec

Weighting matrices Q, R as in (3.1.5) diag{5, 1}, 1
Jacobian matrices xJ , µJ as in (3.2.18) [3.1735 0], −0.0349

C as in (3.2.22) 3.1737
Mε as in (3.2.20) 1.1882

Radius ε = εmax as in (3.2.24) 0.1793
Scenario 1 Gain matrix K1 as in (3.2.31) [−0.5 − 0.55]

Scenario 2

Prediction horizon Tp2 as in (3.1.5) 0.4 sec
Gain matrix K2 as in (3.2.31) [−1 − 0.6]

R∗ as in (3.3.6) [21.52 6.46; 6.46 14.63]
Terminal weighting matrix P as in (3.3.5) [36.63 13.26; 13.26 35.13]

Scenario 3

Prediction horizon Tp3 as in (3.1.5) 0.6 sec
Gain matrix Kq as in (3.4.4) [7.0557 1.2216]

κ as in (3.4.4) 3
Terminal weighting matrix Pq as in (3.4.5) [29.90 1.05; 1.05 0.072]

α as in (3.4.7)-(3.4.9) 0.003

(3.4.2) since the matrix Pq is obtained as the solution of the Lyapunov equation (3.4.5) and there
is no available information of α until the final design step (3.4.7)–(3.4.9). These observations
again confirm that applying a linear controller for a general system (and, in particular, for the
considered inverted pendulum) restricts the size of the resulted invariant set and furthermore,
causes difficulties in employing it as a terminal constraint set in the NMPC design. By using a
larger terminal region Xf2 , our proposed NMPC controller can be executed with any prediction
horizon larger than 0.2 seconds (we employ T2 = 0.4 seconds for better performances), while the
qMPC in Scenario 3 does not accept any prediction horizon smaller than T3 = 0.6 seconds as
shown in Table 3.4.2.
The positive invariant property of the set Xf1 (as proved in Lemma 3.2.4) is illustrated in Figure
3.4.1 by the dash-dotted blue cyclic trajectory under Scenario 1 resulted from the CTC controller
uCTC(x, K1x) (3.2.6) (with the input values given in dashed-dotted blue line in Figure 3.4.2b)
which always lies inside the invariant set Xf1 .
Regarding the performances of the two NMPC controllers, as observed from Figure 3.4.2a, both
our proposed NMPC scheme under Scenario 2 (red lines) and the qMPC controller under Sce-
nario 3 (green lines) obtain the similar convergence times of 2 seconds. This is mostly due
to the fact that both qMPC and NMPC designs employ the same matrices Q,R as shown in
Table 3.4.2. We note that, the performance of the proposed NMPC controller can be enhanced
by choosing more appropriate matrices Q and R (e.g., larger values in Q). All the states and
inputs of the three controllers under the three scenarios satisfy the system constraint as shown
in Figures 3.4.1–3.4.2b which are due to the design of the constraint admissible set Xf1 under
Scenario 1 and the usage of the NMPC controllers under the two other scenarios. Next, Figure
3.4.3 presents the computation times per step for Scenarios 2 and 3. Regarding the proposed
NMPC controller (red line with circle marks), after the first several iterations, the computation
times stabilize around 0.15 seconds, which is significantly less than those corresponding to the
qMPC under Scenario 3 (green line with triangle marks). These differences imply the advantage
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Figure 3.4.2: States and inputs under different scenarios.

of having the larger terminal region Xf2 (red ellipsoid in Figure 3.4.1), as resulted from applying
the CTC controller uCTC(x) (3.2.6) within the NMPC scheme when compared to the usage of
the local linear controller ul,q(x) as in (3.4.2) for the qMPC strategy.
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Figure 3.4.3: Computing time under the two Scenarios 2 and 3.

By this example on stabilizing the cart-pendulum system, we have illustrated the NMPC
design presented in this Chapter which is particularized for a “computed-torque like” system by
using its available CTC controller. Our proposed construction including: i) the upper bound
of the CTC law through Taylor’s approximation as detailed in Section 3.2.2; ii) the bound of
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the input term as given in (3.2.28); and iii) the invariant set construction by employing the
linear system as presented in Section 3.2.3, can be generalized for any feedback linearization
controller. Hence, using these results, various applications of nonlinear controllers for stabilizing
NMPC schemes can be conducted.

In the following section, we apply the proposed NMPC scheme to design the attitude con-
troller at the low control level for the multicopter system (c.f. Figure 2.3.1). More precisely,
the controller provides the torque for the rotation dynamics (2.1.1) to track the angle set-points
received from the high control level. This significantly increases the complexity of setting up
the controller due to the fact that the terminal constraint set BK(qe, ε) from (3.5.24) and the
terminal weighting matrix P from (3.3.5) are constructed based on the desired equilibrium point
qe. A similar problem also occurs for the quasi-infinite horizon NMPC design as it is constructed
based on the system linearized around the equilibrium. Therefore, the next section will present
how we reduce the dependence of the controller setup on the desired equilibrium qe in order to
overcome the aforementioned difficulties.

3.5 Application on attitude control for a multicopter sys-

tem

This section presents an NMPC attitude controller [Nguyen et al., 2020b] which solves the
control problem presented in Section 2.3.2: to stabilize the rotation dynamics around the desired
equilibrium point defined as:

ηe = ηd, ωe = 0, τ e = 0, (3.5.1)

in which the angle reference ηd = [φd θd ψr]
> is defined in (2.3.5) and is supposed to be piece-wise

constant.
For the reader to easily follow, we will briefly recapitulate the rotation dynamics and the required
constraints which are required within the NMPC setup. At first, the rotation dynamics are partly
taken from the full dynamics of the multicopter system (2.1.11):

η̇ = Wω, (3.5.2a)

ω̇ = J−1 (−ω × (Jω) + τ ) , (3.5.2b)

with η = [φ θ ψ]> ∈ R3 gathering the three Euler angles, ω = [ωx ωy ωz]
> ∈ R3 the angle

rate vector, τ ∈ R3 the torque vector3 and J = diag{Jx, Jy, Jz} the inertial tensor. The matrix
W = W−1 ∈ R3×3 with W as in (2.1.8) is explicitly given by:

W =




1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ


 . (3.5.3)

Furthermore, system (3.5.2) is subject to its state and input constraints as follows:

Xrot =
{
〈|φ|, |θ|〉 ≤ εmax, 〈|ωx|, |ωy|〉 ≤ ωmax

}
, (3.5.4)

Urot =
{
|τ | ≤ τmax

}
, (3.5.5)

3The input constraint (3.5.5) will be enforced by the NMPC controller, hence, leading to no difference between
the desired torque law τ d and the input torque τ as being distinguished in (2.3.6).
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with εmax ∈ (0, π/2) the given maximum angle value, ωmax ∈ R+ the maximum angle rate and
τmax ∈ R3

+ gathering the maximum values of three torques on three axes as defined in (2.1.12)-
(2.1.13). Note that, the condition 〈|φ|, |θ|〉 ≤ εmax < π/2 is sufficient to avoid singularities of the
matrix W (3.5.3) which happens at the perpendicular position, i.e., φ = π/2 and θ = π/2. In the
followings, we apply the NMPC design particularized for the “computed-torque like” systems
proposed in Section 3.4 for the rotation dynamics (3.5.2). We give the details about how to
construct the NMPC parameters required in Procedure 3.3.2. This has the scope of reducing
their dependence on the reference ηd received from the high control level in order to decrease
the complexity of the controller.

3.5.1 Parameters design for the NMPC attitude controller

In order to apply the proposed NMPC design with stability induced by a CTC law, we firstly
transform the dynamics (3.5.2) into their “computed-torque like” representation by using the
relation ω = Wη̇ from (2.1.7):

JWη̈ + JẆ η̇ + (Wη̇)× (JWη̇) = τ , (3.5.6)

with J as in (3.5.2) and W ∈ R3×3 depending on η as given in (2.1.8) and recapitulated below:

W (η) =




1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ


 . (3.5.7)

Note that the controlled state is the three angles η = [φ θ ψ]> ∈ R3 and the control input is the
torque vector τ ∈ R3 (instead of the general state q and input u as employed in (3.2.1)). The
CTC law of the dynamics (3.5.6) is given by [Nguyen et al., 2017b,Nguyen et al., 2020b]:

τ CTC(η, η̇, µη) = JWµη + JẆ η̇ + (Wη̇)× (JWη̇), (3.5.8)

with µη ∈ R3 the virtual input vector. From (3.5.1), the equilibrium values are:

ηe = ηd, η̇e = 0, τ e = 0, µηe = 0, (3.5.9)

with ηd the desired angles received from the higher control level. Following the design procedure
given in Section 3.4, the first step is to find the maximum radius εmax such that the set B(ηe, εmax)
from (3.2.15) is input constraint admissible with respect to the constraints |τ CTC(η, η̇, µη)| ≤
τmax as in (3.5.5). To better emphasize the result, the set B(·) from (3.2.15) is re-written
explicitly in terms of the depending variables (η, η̇, µη) as follows:

B(ηd, ε) =
{

(η, η̇, µη) ∈ R3 × R3 × R3
∣∣∣ ‖η − ηd‖2 + ‖η̇‖2 + ‖µ‖2 ≤ ε2

}
. (3.5.10)

The Taylor’s approximation of the CTC law τ CTC(η, η̇, µη) (3.5.8) around the equilibrium (3.5.9)
within the ball B(·) is given by (c.f. the general Taylor’s approximation detailed in (3.2.18)):

τ CTC(η, η̇, µη) = τ e + ηJ(η − ηd) + η̇J(η̇ − η̇e) + µηJ(µη − µηe) +R(η, η̇, µη, ηd, ε), (3.5.11)

with the Jacobian matrices (all in R3×3 space) given by:

ηJ =
∂τ CTC

∂η

∣∣∣∣
(ηd,0,0)

= 0, η̇J =
∂τ CTC

∂η̇

∣∣∣∣
(ηd,0,0)

= 0, µηJ =
∂τ CTC

∂µη

∣∣∣∣
(ηd,0,0)

= JW (ηd), (3.5.12)
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in which W (ηd) is obtained by introducing η = ηd to (3.5.7). Then, by applying the triangle and
Cauchy-Schwarz inequalities, the CTC law τ CTC(η, η̇, µη) from (3.5.11) is bounded by:

|τ CTC(η, η̇, µη)| ≤ |JW (ηd)|‖µη‖2 + |R(η, η̇, µη, ηd, ε)|, (3.5.13)

in which, |JW (ηd)| ≤ C with the vector C ∈ R3 given by:

C =
[
Jx
√

1 + sin2 εmax Jy Jz

]>
, (3.5.14)

with εmax the maximum angle value as in (3.5.4). Furthermore, the remainder termR(η, η̇, µη, ηd, ε)
is bounded as in (3.2.19), however, this approach requires to solve (3.2.20) for M(ηd) at each
step. Therefore, in the following, we introduce an alternative way to calculate the constant term
M∈ R3 which becomes independent from the desired reference angle ηd.

Proposition 3.5.1 ( [Nguyen et al., 2020b]). The remainder term R(η, η̇, µη, ηd, ε) of the Tay-
lor’s approximation of the CTC law τ CTC(η, η̇, µη) as in (3.5.11) is bounded as follows4:

|R(η, η̇, µη, ηd, ε)| ≤
M
2

(
‖η − ηd‖2 + ‖η̇‖2 + ‖µη‖2

)
, (3.5.15)

with the vector M∈ R3 given as follows:

M =




Jx + 2|Jz − Jy|
2Jy + 2

√
1 + sin2 εmax|Jz − Jx|

2Jz + 2
√

1 + sin2 εmax|Jx − Jy|


 , (3.5.16)

with εmax the maximum angle value in (3.5.4) and (Jx, Jy, Jz) the moments of inertia along the
three axes of the multicopter system as in (3.5.6).

Proof. The proof is constructed by exploiting the explicit formulation of the remainder term
Rε , [Rε,1 Rε,2 Rε,3]> derived from (3.5.11):

Rε,1 =− Jx
(

(s θ − s θd)µψ + θ̇ψ̇ c θ
)

+ (Jz − Jy)(θ̇ cφ+ ψ̇ sφ c θ)(−θ̇ sφ+ ψ̇ cφ c θ), (3.5.17)

Rε,2 =Jy

(
(cφ− cφd)µθ + (sφ c θ − sφd c θd)µψ − φ̇θ̇ sφ+ ψ̇(θ̇ cφ c θ − θ̇ sφ s θ)

)

+ (Jx − Jz)
(
φ̇− s θψ̇

)(
− sφθ̇ + cφ c θψ̇

)
, (3.5.18)

Rε,3 =Jz

(
−(sφ− sφd)µθ + (cφ c θ − cφd c θd)µψ − φ̇θ̇ cφ− ψ̇φ̇ sφ c θ − ψ̇θ̇ cφ s θ

)

+ (Jy − Jx)(φ̇− s θψ̇)(cφθ̇ + sφ c θψ̇), (3.5.19)

with s(·) and c(·) representing the sin(·) and cos(·) functions, respectively. As detailed in Ap-
pendix B, from (3.5.17)–(3.5.19), we have that:

|Rε,1| ≤
Jx
2

(
(θ − θd)2 + µ2

ψ + φ̇2 + ψ̇2
)

+ |Jz − Jy|(θ̇2 + ψ̇2)2

≤
(
Jx
2

+ Jz − Jy
)(
‖η − ηd‖2 + ‖η̇‖2 + ‖µη‖2

)
, (3.5.20)

|Rε,2| ≤
Jy
2

(
2(φ− φd)2 + (θ − θd)2 + µ2

θ + 2µ2
ψ + ‖η̇‖2

)
+ |Jz − Jx|

√
1 + s2 εmax ‖η̇‖2,

≤
(
Jy + |Jz − Jx|

√
1 + s2 εmax

) (
‖η − ηd‖2 + ‖η̇‖2 + ‖µη‖2

)
, (3.5.21)

4Note that, |x| = [|x1| |x2| . . . |xn|]> for all x , [x1 x2 . . . x2]> ∈ Rn.



3.5. Application on attitude control for a multicopter system 76

|Rε,3| ≤
Jz
2

(
2(φ− φd)2 + (θ − θd)2 + µ2

θ + 2µ2
ψ + ‖η̇‖2

)
+ |Jy − Jx|

√
1 + s2 εmax ‖η̇‖2,

≤
(
Jz + |Jx − Jy|

√
1 + s2 εmax

) (
‖η − ηd‖2 + ‖η̇‖2 + ‖µη‖2

)
, (3.5.22)

with εmax the maximum angle value as constrained in (3.5.4). Then, by re-formulating (3.5.20)–
(3.5.22) into (3.5.15), the vector M is obtained as given in (3.5.16).

Therefore, by introducing (3.5.15) to (3.5.13), the maximum radius εmax which ensures that
the set B(ηd, εmax) as in (3.2.16) is input constraint admissible is calculated by finding the largest
possible εmax > 0 such that:

Cεmax +
M
2
ε2

max ≤ τmax, (3.5.23)

with C as in (3.5.14), M given in (3.5.16) and τmax the maximum torque values as in (3.5.5).
The next step is to choose the control gain matrix K ∈ R3×6 as in (3.2.11) satisfying the
conditions (3.2.31) in order to construct the positive invariant set BK(ηd, ε) similarly to (3.2.30)
and which is explicitly given by:

BK(ηd, ε) =

{
(η, η̇) ∈ R3 × R3

∣∣∣ ‖η − ηd‖2 + ‖η̇‖2 +

[
η − ηd
η̇

]>
K>K

[
η − ηd
η̇

]
≤ ε2

}
. (3.5.24)

Then, at each time step, the radius ε needs to be scaled corresponding to the desired angles ηd
received from the high control level such that the conditions (3.2.32) are satisfied in order to
make the set BK in (3.5.24) constraint admissible. However, the second requirement of (3.2.32),

i.e., BK(ηd, ε) ⊆ Xrot (the state constraint set Xrot =
{
〈|φ|, |θ|〉 ≤ εmax, 〈|ωx|, |ωy|〉 ≤ ωmax

}

as in (3.5.4)) brings difficulties due to the nonlinear relation ω = Wη̇ from (2.1.7). Therefore,
in the following, we propose an alternative condition on η̇ which ensures the satisfaction of
〈|ωx|, |ωy|〉 ≤ ωmax from (3.5.4).

Proposition 3.5.2 ( [Nguyen et al., 2020b]). The state conditions on angular velocities: 〈|ωx|, |ωy|〉 ≤
ωmax as in (3.5.4) are satisfied if the following holds:

‖η̇‖ ≤ ωmax√
1 + sin2 εmax

, (3.5.25)

with εmax the maximum angle value from (3.5.4).

Proof. From ω = Wη̇ given in (2.1.7), we have that:

ωx = φ̇− ψ̇ sin θ, (3.5.26)

ωy = θ̇ cosφ+ ψ̇ sinφ cos θ. (3.5.27)

Next, applying Cauchy-Schwarz inequality to (3.5.26)–(3.5.27) leads to:

|ωx| ≤
√

(1 + sin2 θ)(φ̇2 + ψ̇2) ≤
√

1 + sin2 εmax‖η̇‖, (3.5.28)

|ωy| ≤
√

(cos2 φ+ sin2 φ cos2 θ)(θ̇2 + ψ̇2) ≤ ‖η̇‖, (3.5.29)

in which, the second inequality of (3.5.28) is due to |θ| ≤ εmax as constrained in (3.5.4) and to
the fact that sin is monotonously increasing on the interval [0, π/2]. Next, (3.5.29) comes by
using cos2 φ+ sin2 φ cos2 θ ≤ cos2 φ+ sin2 φ = 1. Therefore, introducing the proposed condition
(3.5.25) to (3.5.28)–(3.5.29) ultimately leads to 〈|ωx|, |ωy|〉 ≤ ωmax.
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Next, we propose a method to efficiently choose the radius ε such that the requirements in
(3.2.32) are satisfied.

Proposition 3.5.3 ( [Nguyen et al., 2020b]). The invariant set BK(ηd, ε) given in (3.5.24) is
admissible for both the input and state constraints given in (3.5.4)–(3.5.5) for any control gain
matrix K satisfying (3.2.31) if the radius ε is chosen such that:

ε ≤ min

{
εmax, εmax −max{|φd|, |θd|},

ωmax√
1 + sin2 εmax

}
, (3.5.30)

with εmax the maximum radius as in (3.5.23), εmax, ωmax the maximum angle and angular velocity
as in (3.5.4) and φd, θd the desired roll, pitch angles sent from high control level as in (3.5.1).

Proof. At first, ε ≤ εmax is as required in (3.2.32) for ensuring the input constraint admissible
property. Next, introducing ε ≤ εmax−max{φd, θd} to the formulation of BK(ηd, ε) as in (3.5.24)
leads to:

‖η − ηd‖ ≤ εmax −max{|φd|, |θd|}, (3.5.31)

which further provides:

〈|φ− φd|, |θ − θd|〉 ≤ εmax −max{|φd|, |θd|}. (3.5.32)

This leads to the satisfaction of the angle constraints as required in (3.5.4):

|φ| ≤ |φ− φd|+ |φd| ≤ |φ− φd|+ max{|φd|, |θd|} ≤ εmax, (3.5.33)

|θ| ≤ |θ − θd|+ |θd| ≤ |θ − θd|+ max{|φd|, |θd|} ≤ εmax. (3.5.34)

Next, constraining ε ≤ ωmax/
√

1 + sin2 εmax is to obtain the condition ‖η̇‖ ≤ ωmax/
√

1 + sin2 εmax

as in (3.5.25), hence, Proposition 3.5.2 provides 〈|ωx|, |ωy|〉 ≤ ωmax as required in (3.5.4), com-
pleting the proof.

By Proposition 3.5.3, we achieve the construction of the constraint admissible and positive
invariant set BK(ηd, ε) given in (3.5.24) as required for designing the NMPC controller. Next,
we provide the details on how to choose the terminal weighting matrix P as employed in (3.3.4).
The general approach is to solve the Lyapunov equation (3.3.5), however, the Lipschitz bound L
(more precisely, LCTC from (3.2.28) since the CTC law is used as the local controller) is dependent
of the desired angle ηd and the radius ε as detailed in (3.2.28). Then, the symmetric matrix
R∗ as in (3.3.6) satisfying R∗ � max(eig(R))LCTC(In +K>K) is re-computed at each time step
which increases complexity when solving on-line the NMPC controller. Thus, we further detail
how to choose the matrix R∗ only one time but ensuring the condition (3.3.6) for all the desired
angle ηd and the radius ε (which are expected to change at each time step).

Proposition 3.5.4 ( [Nguyen et al., 2020b]). Let us consider the Lipschitz bound LCTC(ηd, ε) as
defined in (3.2.28). For all the desired angles |ηd| ≤ εmax as in (3.5.4) and the radius ε ≤ εmax

as in (3.2.32), we have that:
LCTC(ηd, ε) ≤ LCTC,max, (3.5.35)

in which, LCTC,max is given by:

LCTC,max =
∥∥∥C +

M
2
εmax

∥∥∥
2

, (3.5.36)

with the vectors C given in (3.5.14) and M defined in (3.5.16). If the symmetric matrix R∗

employed in (3.3.5) is chosen such that:

R∗ � max(eig(R))LCTC,max(In +K>K), (3.5.37)

with R the weighting matrix as in (3.3.3), K the control gain matrix as in (3.2.11), then, con-
dition (3.3.6) is satisfied for all the simulation steps.
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Proof. The proof is straightforward to obtain due to the positiveness of all the elements of the
vectors C as in (3.5.14) and M as in (3.5.16). Therefore, ε ≤ εmax leads to (3.5.35). Then, by
introducing (3.5.35) to (3.5.37), we obtain:

R∗ � max(eig(R))LCTC,max(In +K>K) � max(eig(R))LCTC(ηd, ε)(In +K>K), (3.5.38)

which validates the requirement (3.3.6), hence, completing the proof.

Remark 3.5.5. Employing LCTC,max as in (3.5.37) does not affect the terminal constraint set (i.e.,
the set BK(ηd, ε) given in (3.5.24)) but only the terminal weighting matrix P obtained from
(3.3.5). This will not increase the conservativeness of the NMPC results since the matrix R∗

can be freely chosen with the only requirement being the satisfaction of (3.3.6) at each NMPC
steps. Therefore, by using R∗ as defined in (3.5.37), we can avoid changing R∗ and hence, are
able to keep the same value of the terminal weighting matrix P obtained from (3.3.5) during the
simulation time. This reduces the complexity of the on-line process and also the computation
time per step.

3.5.2 Simulation results of the NMPC attitude controller

In this section, we present the implementation process and the simulation results of the NMPC
controller designed for the rotation dynamics (3.5.6) as proposed in Section 3.5. The requirement
is to track the angle references ηr = [φr θr ψr]

> given in Figure 2.2.5a which are obtained by
the flatness-based trajectory generation procedure detailed in Section 2.2. In order to make the
reference piece-wise constant, similarly to those obtained from the high control level running
at lower frequency (further details can be found in Section 2.3.2), we apply the zero-order hold
method with the holding time of 0.1 seconds for discretizing the smooth reference ηr (c.f. Figure
2.2.5a), hence, obtaining the roll reference φd (plotted in thin red line in Figure 3.5.1b) and also
the pitch reference θd (plotted in thin green line) while keeping ψr = 0. The NMPC controller
is simulated at the sampling time of δ = 0.01 seconds while the prediction horizon is chosen as
Tp = 0.05 seconds, thus, having 5 steps. The prediction model (3.1.6a) employed in the NMPC
controller is the Forward Euler discrete model of the rotation dynamics (3.5.6) with discretization
step ∆ = 0.01 seconds while the simulation model (to which the input torques are applied) is
still in the continuous form (i.e., numerically integrated with ode45). The optimization problem
in (3.1.4) is implemented with the Pyomo framework [Hart et al., 2011] and solved by with solver
IPOPT [Wächter and Biegler, 2006] in Python.
At the off-line preparation stage, we find the largest possible radius εmax as in (3.5.23) which
further allows us to obtain the constant Lipschitz bound LCTC, max defined in (3.5.36). Next, we
choose the control gain matrix K as in (3.2.11) with the control gains satisfying the conditions
(3.2.31). The next step is to choose the positive definite weighting matrices Q ∈ R6×6 and
R ∈ R3×3, define the symmetric matrix R∗ ∈ R6×6 satisfying (3.5.37) and then, solve the
Lyapunov equation (3.3.5) for the terminal weighting matrix P ∈ R6. All the parameters
related to this off-line preparation process are gathered in Table 3.5.1. Note that the physical
parameters of the rotation dynamics are given in (2.2.47)–(2.2.49) (i.e., J = 10−6 diag{14, 14, 22}
as in (3.5.6), εmax = 5◦ as in (3.5.14), ωmax = 0.2 as in (3.5.25) and τmax = [43 43 17]>10−4 as
in (3.5.23)).
At each on-line simulation step, after taking the angle references ηd = (φd, θd, ψr)

> as shown
by thin step lines in Figure 3.5.1b, the controller first chooses the radius ε as given in (3.5.30)
(plotted in Figure 3.5.1a) in order to fully obtain the terminal constraint set BK(ηd, ε) defined
in (3.5.24). Then, the NMPC controller solves the optimization problem (3.1.4) and provides
the input torques (τ φ, τ θ, τ ψ) as shown in Figure 3.5.1d. The angle tracking results are shown
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in Figure 3.5.1b in which the simulation angles plotted by thick lines (red for φ, green for θ and
blue for ψ) closely track their piece-wise constant references given in thin lines with according
colors. The resulting angular velocities are given in Figure 3.5.1c in which we observe a slight
chattering phenomenon (can also be seen from the torques plotted in Figure 3.5.1d). This
chattering problem is caused by the controller’s effort to stabilize the angular velocities and the
torques at their zero equilibrium values as in (3.5.9). By conducting multiple simulations, we
find that this issue is aggravated by increasing the value of the weighting matrix R. Thus, we
have reduced this phenomenon by decreasing the value of R and also the gain of the angular
velocities within the cost function `(·) from (3.3.3) as shown in Table 3.5.1 (i.e., 0.1 for ω and
0.01 for τ in comparison with 1 for the angle η). Also, the issue can be further mitigated by
adding a penalty on the input variation to the cost `(·) from (3.3.3) as proposed in [Badgwell and
Qin, 2015]. It also should be clarified that all the states and inputs validates their constraints
given in (3.5.4)–(3.5.5) due to the usage of the NMPC algorithm and the limits are not plotted
in Figures 3.5.1b–3.5.1d to reduce the clutter since they are much larger than the states and
inputs values.

Parameters Value

Prediction horizon Tp as in (3.1.4) 0.05 seconds

NMPC sampling time δ as in (3.1.7) 0.01 seconds

Model discretizing step ∆ as in (3.1.12) 0.01 seconds

C as in (3.5.14) [14.05 14 22]>10−6

M as in (3.5.16) [30 44.6 44]>10−6

εmax as in (3.5.23) 8.3047

LCTC, max as in (3.5.36) 10−7

K as in (3.2.11) and (3.2.31) [−0.1I3 − 0.2I3]

Q and R as in (3.3.3) diag{1, 1, 1, 0.1, 0.1, 0.1} and 0.01I3

R∗ as in (3.5.37)

[
101I3 2I3

2I3 104I3

]
10−11

P as in (3.3.5)

[
3.525I3 5I3

5I3 25.25I3

]

Table 3.5.1: Parameters prepared off-line of the NMPC controller of the rotation dynamics
(3.5.6).

Beside the tracking results, the computing time per step is also important when discussing
the implementing details for the NMPC controller. In Table 3.5.2, we gather all the information
of the computing time through the whole simulation, i.e., 1500 steps. The average computing
time is 54 milliseconds while the minimum value reaches 30.9 milliseconds. Note that, the
maximum computing time of 93.7 milliseconds as noted in Table 3.5.2 happens at the first
simulation time which usually requires more time than the rest for the solver to set up the
algorithm. For the first 100 steps, the computing time is plotted in red line with circle marks
in Figure 3.5.2 in comparison with the mean value given in solid blue line. We notice that
the computing time is larger than the chosen sampling time δ = 0.1 seconds as given in Table
3.5.1, hence, this setup (including both the formulation of the optimization problem (3.1.4) and
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Figure 3.5.1: Simulation result on angle tracking of the proposed NMPC controller.
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Figure 3.5.2: Computing time per step of the first 100 steps under simulation.

the employed hardware) is not ready for a real implementation. However, we are confident that
various speeding-up approaches can be applied in order to mitigate the issue. E.g., [Zanelli et al.,
2018] succeeds in embedding the optimization problem (3.1.4) into a low-power micro controller
by re-formulating the problem into its approximated quadratic formulation and then, solving
it by using a modified interior-point method. Also, different solving methods can be employed
to speed-up the controller such as multiple shooting [Gros et al., 2012] or convex lifting [Gulan
et al., 2017].

Mean Min Max Standard deviation

Value [ms] 54 30.9 93.7 10

Table 3.5.2: Information on the computing time of the NMPC controller designed for angle
tracking of the rotation dynamics. Solver: IPOPT [Wächter and Biegler, 2006] in Python 3.0.
Simulation steps: 1500.
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3.6 Concluding remarks and open questions

Even though the name “Attitude control through using NMPC with guaranteed stability” in-
dicates as premier contribution the design of an NMPC controller for attitude set-point angle
tracking of the multicopter system, the content of this chapter is larger. It firstly details how to
use the existing computed-torque controller of various robotics/mechanical systems (admitting
Lagrangian dynamics), as the local controller to guarantee the closed-loop stability and feasi-
bility of the corresponding NMPC design. In order to do so, the principles of designing NMPC
with terminal stabilizing constraint given in [Chen and Allgöwer, 1998, Mayne et al., 2000] are
applied:

• construct an input constraint admissible set of the CTC controller by using Taylor’s ap-
proximation theory and also derive to its Lipschitz bound.

• propose the condition for choosing the control gain matrix such that the aforementioned
input constraint admissible set becomes positive invariant, therefore, avoiding the conser-
vativeness and the difficulties implied by tuning the parameters when using an arbitrary
invariant set (c.f. Figure 3.3.1).

• validate the contributions through a simulation on a cart-pendulum system and through
a comparison with quasi-infinite horizon NMPC [Chen and Allgöwer, 1998].

• apply the proposed design to stabilize the rotation dynamic of the multicopter system
(i.e., the attitude control problem). The novelties lie in the several alternative designs for
elements such as the Lipschitz constant and the radius of the terminal region. We reduce
the dependence of the design on the desired set-points received from the high control
level since they are not known in advance, and hence, cause much complexity for on-line
computation when applying the originally proposed design without any modification.

• validate the NMPC attitude controller under simulation and obtain the average computing
time per step of 54 milliseconds.

Some open questions which should be considered for improving and strengthening the contribu-
tions are given below:

• How to solve the proposed NMPC problem using a low-power microprocessor since the
attitude controller is usually implemented on board? How are the computing time and the
control performance affected by various compromises imposed by the processor architecture
(e.g., solving an approximated optimization problem)?

• The inertial tensor J in (3.5.6) is difficult to obtain. What is the effect of any uncertainties
in J for the controlled system? Can these be estimated and their effect bounded?



Chapter 4

Position control through NMPC
designs with guaranteed stability

Recently, the multicopter platforms usually have their built-in controllers which control the
rotors to track the four inputs consisting of the thrust level and the three Euler angles [Giernacki
et al., 2017, Nguyen et al., 2018b, Nguyen et al., 2018a]. Therefore, controlling the multicopter
vehicles requires only the maneuvering of their translation dynamics [Nguyen et al., 2018a].
This is already a challenging task as the dynamics are not only strongly nonlinear but also
subject to many operating constraints [Nguyen et al., 2018b, Cao and Lynch, 2016, Lu et al.,
2017,Giernacki et al., 2017]. For these reasons many researchers develop sophisticated feedback
linearization controllers (e.g. the controller uFL(·) from (2.4.1)) in order to satisfy the system
constraints [Nguyen et al., 2018b,Cao and Lynch, 2016,Lu et al., 2017].
Model Predictive Control (MPC), as already introduced in the previous chapter, is a popular
candidate for easily handling the constraints [Mayne et al., 2000, Badgwell and Qin, 2015].
With recently advances in microprocessor technology, it becomes possible to implement MPC
algorithms for controlling the UAVs [Gros et al., 2012, Mueller and D’Andrea, 2013, Nguyen
et al., 2017a, Zanelli et al., 2018]. However, most of the works in the literature disregard the
stability problem in the MPC designs due to the extremely nonlinear dynamics of the drones,
thus possibly leading to instability or even to infeasible solutions during execution. Therefore,
in view of these shortcomings and also motivated by the expanding use of drones, we propose
here three different NMPC designs for stabilizing the translational dynamics of the multicopter
vehicles with the corresponding closed-loop stability properties guaranteed by:

• a standard ellipsoid terminal invariant set under the aforementioned FL controller (2.4.1):
the set can be enlarged unlimitedly (but subject to the state constraints that might exist),
covering an arbitrarily chosen compact set containing the initial states and hence, the
NMPC design achieves the semi-global stability property (c.f. Definition 4.2.3);

• a relaxed invariant set under the FL controller: the invariant set is replaced by a pair of
admissible and attractive sets such that the state trajectory is guaranteed to remain inside
the later and to return at predefined periodic time instants into the later. Due to this
relaxation, the terminal region can be obtained as a box. This reduces the complexity of
the NMPC optimization problem while still guarantee the closed-loop stability;

• a “long-enough” prediction horizon: the NMPC design ensures the closed-loop stability
by defining an appropriate prediction horizon length corresponding to a specific domain of
attraction [Grüne, 2012,Kohler et al., 2018]. We prove that the existing design principles
given in [Grüne, 2012, Kohler et al., 2018] can be satisfied by using the results obtained
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from applying the aforementioned FL controller as a feasible initial guess of the NMPC
optimization problem. Henceforth, we propose a thorough analysis on how to optimally
tune the prediction horizon’s length which turns out to be orders of magnitude less than
when employing a linear controller (150 steps versus thousands).

The outline of the chapter is as follows. Firstly, in Section 4.1, we recapitulate the translation
dynamics of the multicopter system and some preliminary results concerning the FL controller
introduced in Section 2.4. Next, Section 4.2 details the two NMPC designs with different terminal
constraint sets: i) an ellipsoid invariant set which guarantees semi-global stability and ii) a
relaxed invariant set described through box-type linear constraints which also ensures closed-
loop stability. Then, Section 4.3 shows that the FL controller further allows us to design an
unconstrained NMPC scheme without using the terminal stabilizing constraints but with its
stability guaranteed by an appropriately-chosen prediction horizon length. All of the proposed
approaches are validated through extensive simulations and comparison with the classic quasi-
infinite horizon NMPC design [Chen and Allgöwer, 1998]. Finally, the experimental validations
of the two NMPC designs with terminal stabilizing constraints over the nano-drone Crazyflie
2.0 platform (c.f. Section 2.5.1) are presented in Section 4.5.

4.1 Preliminary results on the feedback linearization law

Let us briefly recapitulate the translation dynamics ṗ = fp (p, u, ψ) defined as in (2.3.1) by
re-formulating it as follows:

[
ξ̇
v̇

]
=

[
03×3 I3

03×3 03×3

]

︸ ︷︷ ︸
A

[
ξ
v

]

︸︷︷︸
p

+

[
03×3

h(T, η),

]
(4.1.1)

in which, the input term h(T, η) is defined in (2.3.2), the state vector p ∈ R6 gathers the positions
ξ = [x y z]> and velocities v = [vx vy vz]

> along the three axes, the input vector u , [T φ θ]
consists of the thrust and the roll, pitch angles while the yaw angle ψ ∈ [−π, π] is an, assumed
known, constant affecting the system (usually considered to be zero as in [Cowling et al., 2007,Lu
et al., 2017] but here we consider an arbitrary value of ψ). Note that, we use the notation A in
(4.1.1) similarly to the use of A in (3.2.9) since they share a similar construction with the only
difference being their dimensions, i.e., A in (3.2.9) is a general case of the one in (4.1.1).
The translation system (4.3.6) is also subject to input constraints partly taken from those of the
multicopter system (2.1.12)–(2.1.13):

u ∈ Up =
{

0 ≤ Tk ≤ Tmax, |φk| ≤ εmax, |θk| ≤ εmax

}
, (4.1.2)

with Tmax, εmax the maximum thrust and angle from (2.1.12)–(2.1.13). Note that, we only
consider the input u of the system (4.3.6) without distinguishing the actual input and its desired
control law as in (4.3.6) in order to simplify the notations. However, we impose the input
constraint u ∈ Up as in (4.1.2) to the system (4.1.1) then enforce it by using the NMPC strategy,
hence, still respecting the saturation effect as considered in (2.3.3).
Within this chapter, we address the problem of stabilizing the dynamics (4.1.1) at the reference
position ξr = [xr yr zr]

>. Since we do not consider any state constraints for the dynamics, it is
without loss of generality to transform the initial problem into once concerned with stabilizing
the dynamics (4.1.1) around the zero equilibrium point:

pe = 0, ue =
[
mg 0 0

]>
, (4.1.3)
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with m the system mass and g the gravity as in (2.1.9).
The system (4.1.1) admits the feedback linearization (FL) law uFL(µξ, ψ) as defined in (2.4.1)
which is re-written hereinafter for completeness:

TFL(µξ) = m
√
µ2
x + µ2

y + (µz + g)2, (4.1.4a)

φFL(µξ, ψ) = arcsin


 µx sinψ − µy cosψ√

µ2
x + µ2

y + (µz + g)2


 , (4.1.4b)

θFL(µξ, ψ) = arctan

(
µx cosψ + µy sinψ

µz + g

)
, (4.1.4c)

with uFL(µξ, ψ) , [TFL(µξ) φFL(µξ, ψ) θFL(µξ, ψ)]> the FL-based control, µξ , [µx µy µz]
> the

virtual input vector and ψ the yaw angle as in (4.1.1). Below is also a recap of several important
remarks on the FL-based control (4.1.1) which have been discussed in Section 2.4:

• By Proposition 2.4.1, under the FL-based control uFL(µξ, ψ) from (4.1.4), if µz ≥ −g, then,
the nonlinear dynamics (4.3.6) are linearized into the three decoupled double integrators
(2.4.2). They are gathered into a matrix form as follows:

ṗ = Ap +Bµξ, (4.1.5)

with1 A as in (4.1.1) and B = [03×3 I3]>.

• By Proposition 2.4.2, the input constraint admissible set w.r.t. the FL-based control
uFL(µξ, ψ) given in (4.1.4) is as follows:

XFL =
{
|µx| ≤ Ux, |µy| ≤ Uy, |µz| ≤ Uz

}
, (4.1.6)

with (Ux, Uy, Uz) the positive constants defined as in (2.4.5)–(2.4.7). Furthermore, since
we do not consider state constraint for the system (4.1.1), the set XFL also plays the role
of the admissible set.

Next, we show that within the admissible set XFL defined in (4.1.6), the FL law uFL(µξ, ψ) as
in (4.1.4) admits a Lipschitz bound (i.e., similar to the case of the computed-torque controller
given in (3.2.27)). This property will be employed to prove the stability of the NMPC designs
introduced in the following sections.

Proposition 4.1.1. For all µξ , [µx µy µz]
> ∈ XFL as in (4.1.6), each element of the FL law

uFL(µξ, ψ) defined in (4.1.4) is bounded as follows:

|TFL(µξ)−mg| ≤ m‖µξ‖, (4.1.7)

〈
|φFL(µξ, ψ)|, |θFL(µξ, ψ)|

〉
≤
√
µ2
x + µ2

y

g − Uz
, ∀ψ ∈ R, (4.1.8)

with m, the system mass, g, the gravity and 0 < Uz < g the positive constant defined as in
(2.4.5). As a result, the value of ‖uFL(µξ, ψ)− ue‖ with ue given in (4.1.3) admits the following
Lipschitz bound:

‖uFL(µξ, ψ)− ue‖2 ≤ L‖µξ‖2, (4.1.9)

1We keep the same notations: A and B in (4.1.5) of the dynamics (4.1.1) as similar to A and B in (3.2.9) of
the general system (3.1.1) since they provide the same meaning.
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with the Lipschitz constant L given by:

L = m+
2

g − Uz
. (4.1.10)

Proof. Let us start by proving (4.1.7). Considering TFL(µξ) as in (4.1.4a), we have that:

(TFL(µξ)−mg)2 = m2(µ2
x + µ2

y + µ2
z) + 2m2g

(
µz + g −

√
µ2
x + µ2

y + (µz + g)2
)
. (4.1.11)

Next, if uz + g > 0, we have that:

√
µ2
x + µ2

y + (µz + g)2 ≥ |µz + g| = µz + g, (4.1.12)

otherwise, if µz + g ≤ 0, it is straightforward to obtain:

µz + g −
√
µ2
x + µ2

y + (µz + g)2 ≤ 0. (4.1.13)

Thus, introducing (4.1.12) and (4.1.13) to (4.1.11) leads to:

(TFL(µξ)−mg)2 ≤ m2(µ2
x + µ2

y + µ2
z), (4.1.14)

which is equivalent to (4.1.7).
Next, to prove (4.1.8), using the differential flatness properties given in Proposition 2.2.4, we
have that:

〈
|φFL(µξ, ψ)|, |θFL(µξ, ψ)|

〉
≤ arctan

(√
µ2
x + µ2

y

(µz + g)2

)

︸ ︷︷ ︸
Υε(µξ)

,∀ψ ∈ R, (4.1.15)

in which, Υε(·) is defined in (2.2.15) and its tangent is given in (2.2.17). Next, we have that
|µz| < Uz due to µξ ∈ XFL as in (4.1.6) and Uz < g (2.4.5) which ultimately leads to |µz + g| ≥
g − Uz. Then, introducing this result and arctan(x) ≤ x, ∀x > 0 to (4.1.15) results in (4.1.8).
The norm as in (4.1.9) is straightforward to obtain by using (4.1.7)–(4.1.8), hence, completing
the proof.

Remark 4.1.2. A preliminary version of Proposition 4.1.1 has been published in [Nguyen et al.,
2019b] where the inequality (4.1.7) is given in a more conservative form: |TFL(µξ) − mg| ≤
3m‖µξ‖. The new result as in (4.1.7) improves significantly the corresponding NMPC designs
in comparison with the one in [Nguyen et al., 2019b]. �

In the next section, we will employ the presented results for designing two NMPC schemes
with stability guaranteed by two different terminal constraint sets. The sets posses different
properties (invariant and δ-invariant) but both are constructed from the FL law (4.1.4).

4.2 NMPC designs with terminal constraint for position

control

In this section, we detail the NMPC design with terminal stabilizing constraints (c.f. the NMPC
scheme in (3.1.4)) for the system (4.1.1). We will make use of two different constructions of the
terminal constraint set: i) a standard ellipsoid invariant set and ii) a relaxed invariant set, called
δ-invariant set with δ, the sampling time. The latter construction allows the state to escape
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from the set but enforces it to return to the set periodically, hence, being a generalization of
the standard invariant set notion [Doban and Lazar, 2018, Lazar and Spinu, 2015]. Both the
invariant and δ-invariant sets are designed under the FL law (4.1.4) in order to benefit from the
simpler linear system (4.1.5) instead of dealing with the original nonlinear dynamics (4.1.1).
In the following, we particularize the general NMPC optimization problem given in (3.1.4) for
the system (4.1.1) for completeness sake. For stabilizing the system (4.1.1) around the zero
equilibrium point (4.1.3), the NMPC controller at time t is designed in the following form:

ū∗t (·) = arg min
ūt(·)

{∫ t+Tp

t

`(p̄t(s), ūt(s))ds+ F (p̄t(t+ Tp))

}
, (4.2.1)

subject to:

˙̄pt = fp(p̄t, ūt), the dynamics as in (4.1.1), (4.2.2a)

ūt(s) ∈ Up, s ∈ [t, t+ Tp], the input constraints as in (4.1.2), (4.2.2b)

p̄t(t) = p(t), the initial condition, (4.2.2c)

p̄t(t+ Tp) ∈ Xf , the terminal stabilizing constraint, (4.2.2d)

in which, p̄t(s) and ūt(s) stand for the predicted state and input at time s (t ≤ s ≤ t+Tp) while
ūt(·) as in (4.2.1) gives the whole predicted input trajectory along the prediction horizon interval
[t, t + Tp], all corresponding to the optimization problem (4.2.1) at time t. The stage cost `(·)
and terminal cost F (·) will be defined in their standard quadratic form hereinafter while the
terminal constraint set Xf ∈ R6 used in (4.2.2d) will be taken either as the standard invariant
set or as the δ-invariant set in the two next sections, respectively. The NMPC input is taken
from the optimal input profile of (4.2.1) within the first sampling time δ, similar to (3.1.7):

uMPC(s) = ū∗t (s), ∀s ∈ [t, t+ δ], (4.2.3)

with ū∗t (·) the optimal input trajectory resulted from (4.2.1).
Even though we will employ two different designs for the terminal constraint set Xf from (4.2.2d),
the two NMPC designs share the same stage and terminal costs defined as follows (useful from
the viewpoint of the subsequent comparisons: only the terminal set construction differs and
hence its influence on the performance can be easily isolated):

`(p, u) := ‖p‖2
Q + ‖u− ue‖2

R, (4.2.4)

F (p) := ‖p‖2
P , (4.2.5)

in which, ‖p‖2
Q = p>Qp with Q ∈ R6×6 a symmetric positive definite matrix; similar reasoning is

applied for ‖u−ue‖2
R and ‖p‖2

P with the two matrices R ∈ R3 (symmetric positive semi-definite)
and P ∈ R6×6 (symmetric positive definite). The matrices Q, R are defined by the user while the
terminal weighting matrix P in (4.2.5) is obtained by solving the following Lyapunov equation:

A>KP + PAK +M = 0, (4.2.6)

in which, the elements are given as follows:

• the matrix AK ∈ R6×6 describes the closed-loop behavior of the linear system (4.1.5):

ṗ = (A+BK)︸ ︷︷ ︸
AK

p, (4.2.7)
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with the matrix A, B as in (4.1.5) and the gain matrix K ∈ R3×6 given by:

K =
[
diag{Kpx , Kpy , Kpz} diag{Kdx , Kdy , Kdz}

]
, (4.2.8)

with all the control gains required to be negative to ensure the stability of (4.2.7). The
linear system (4.2.7) is resulted from using the feedback linearization controller uFL(Kp, ψ)
from (4.1.4) as the local controller (denoted by uloc(x) for the general case as in (3.1.9))
within the NMPC design:

uloc(p) := uFL(Kp, ψ). (4.2.9)

with uloc(p) the local controller particularized for the system (4.1.1), K given in (4.2.8)
and ψ the yaw angle received as the feedback of the system.

• The symmetric matrix M ∈ R6×6 is chosen such that:

M � Q+ Lmax(eig(R))K>K, (4.2.10)

with the Lipschitz bound L from (4.1.10), max(eig(R)) the maximum eigenvalues of the
weighting matrix R from (4.2.1) and the control gain matrix K as in (4.2.8).

The aforementioned calculation process for P as in (4.2.6) may raise questions on why the two
NMPC designs with two different constructions of the terminal constraint sets can be stabilized
by using the same method for finding the terminal weighting matrix P . The explicit answers
will be given in the corresponding sections while in the following, we provide a hint which shows
that using P from (4.2.6) can guarantee condition C4 (3.1.10) of Lemma 3.1.1 in the whole
admissible set XFL as in (4.1.6), thus, also ensuring (3.1.10) for any subsets of XFL (the terminal
constraints are always required to be an admissible set as in (3.1.8)–(3.1.9)).

Proposition 4.2.1. The requirement (3.1.10) (as required by Lemma 3.1.1) is ensured for all
p ∈ XFL in (4.1.6) by employing the terminal quadratic cost F (p) := ‖p‖2

P as in (4.2.5) with
P ∈ R6×6 satisfying (4.2.6) and the local FL controller uloc(p) := uFL(Kp, ψ) as in (4.2.9).

Proof. The proof is constructed similar to the one of Lemma 3.3.1 but with a slight difference.
I.e., since the set XFL is admissible, we can apply ṗ = fp (p, uFL(Kp, ψ), ψ) = AKp as given in
(4.2.7) for all p ∈ XFL. Then, with the current notations, condition C4 (3.1.10) is re-formulated
as follows:

p>A>KP p + p>PAKp + ‖p‖2
Q + ‖uFL(Kp, ψ)− ue‖2

R︸ ︷︷ ︸
LHS of (4.2.11)

≤ 0, (4.2.11)

with AK as in (4.2.7), P the terminal weighting matrix from (4.2.6), Q, R the weighting matrices
in (4.2.1) andK the control gain matrix in (4.2.8). By introducing the bound of ‖uFL(Kp, ψ)−ue‖
as in (4.1.9) to the left-hand side of (4.2.11), we have that:

LHS of (4.2.11) ≤ p>
(
A>KP + PAK +Q+ max(eig(R))LK>K

)
p (4.2.12)

≤ p>
(
A>KP + PAK +M

)
p = 0,

with the constant L as in (4.1.10), M as in (4.2.10) and P satisfying (4.2.6), hence, completing
the proof.

Choosing the symmetric matrix M as in (4.2.10) causes difficulties since the matrix lies
in R6×6 space, hence, having 21 tuning variables. Therefore, we will prove that it is possible
to employ a diagonal matrix M with only 6 tuning variables but still satisfying requirement
(4.2.10).
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Proposition 4.2.2. Let us parameterize the positive definite matrix M ∈ R6×6 employed in
(4.2.10) as follows (simultaneously, restricting it to a diagonal form):

M = diag{mx,my,mz,mvx ,mvy ,mvz}, (4.2.13)

then, there always exist some values of (mx,my,mz,mvx ,mvy ,mvz) > 0 such that M � Q +
Lmax(eig(R))K>K, as required in (4.2.10), holds.

Proof. At first, let us define the matrix Q∗ = Q+Lmax(eig(R))K>K with the elements defined
in (4.2.10). Then, Q∗ has a symmetrical structure defined as follows:

Q∗ =

[
diag{Q∗1x , Q∗1y , Q∗1z} diag{Q∗3x , Q∗3y , Q∗3z}
diag{Q∗3x , Q∗3y , Q∗3z} diag{Q∗2x , Q∗2y , Q∗2z}

]
, (4.2.14)

which is due to the symmetry of Q as in (4.2.4) and of the term K>K with K defined in (4.2.8).
Next, in order to examine the positive definiteness of the matrix M − Q∗, we introduce an
arbitrary vector p = [x y z vx vy vz]

> ∈ R6 to p>(M −Q∗)p with M , Q∗ as in (4.2.13)–(4.2.14):

p>(M −Q∗)p =
∑

q∈{x,y,z}

(
(mq −Q∗1q)q2 + (mvq −Q∗2q)v2

q − 2Q∗3qqvq

)
. (4.2.15)

Therefore, from (4.2.15), we can obtain p>(M − Q∗)p ≥ 0, ∀p ∈ R6 by constraining the main
coefficients (mq − Q∗1q ,mvq − Q∗2q) and the discriminant 4Q∗3q

2 − 4(mq − Q∗1q)(mvq − Q∗2q) to be
positive as follows:





mq −Q∗1q > 0,

mvq −Q∗2q > 0,

(mq −Q∗1q)(mvq −Q∗2q) ≥ Q∗3q
2,

∀q ∈ {x, y, z}. (4.2.16)

One possible and simple solution for the inequalities (4.2.16) is to ensure mq − Q∗1q > Q∗3q and
mvq −Q∗2q > Q∗3q , hence, leading to the following conditions on choosing M as in (4.2.13):

{
mq > Q∗1q +Q∗3q ,

mvq > Q∗2q +Q∗3q ,
∀q ∈ {x, y, z}. (4.2.17)

This also completes the proof.

4.2.1 NMPC design with semi-global stability guarantee

In this section, we address an NMPC design with semi-global stability guarantees for the dy-
namics (4.1.1). The design makes use of a terminal invariant set and follows the NMPC design
principles given in Lemma 3.1.1, hence, it is able to guarantee the recursive feasibility and asymp-
totic stability of the closed-loop controlled system (c.f. Figure 3.1.1). However, the recursive
feasibility implies the feasibility of the controller only after the first successful iteration. The
reason is due to the terminal constraint as given in (3.1.6d) which enforces the final predicted
state to enter the terminal invariant set by the end of the prediction horizon. This obviously
prevents starting from an arbitrary initial state far from the terminal region, hence, causing a
limited domain of attraction.
One trivial solution is to increase the prediction horizon length, but, this obviously results in
a heavier computational burden. Thus, in order to continue increasing the region of attraction
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when the prediction horizon is already large, we can increase the size of the terminal constraint
set instead. However, due to the complexity of the existing NMPC designs with guaranteed
stability, tuning the set is not always easy. One illustrative example is the quasi-infinite horizon
NMPC design [Chen and Allgöwer, 1998] which has been summarized in Section 3.4.1. Within
the design, the size of the terminal constraint set has to be scaled to ensure not only the ad-
missible properties (3.4.7)–(3.4.8) but also the stability (3.4.9), hence, any modifications on the
tuning parameters results in various re-checks. Furthermore, the design is not initially-state-
oriented, in the sense that, we cannot directly obtain the parameters which allow us to stabilize
the system from a predefined initial state but always have to check for the first iteration. This is
also a common limitation of various existing NMPC designs with guaranteed stability [Cannon
et al., 2003,Magni and Scattolini, 2004,Simon et al., 2013].
Noticing these shortcomings, we propose in this section an NMPC design for the system (4.1.1)
whose terminal constraint set is easy to tune, and furthermore, can be enlarged accordingly
to the initial condition and unlimitedly. Hence, the NMPC controller achieves the semi-global
asymptotic stability (c.f. Definition 4.2.3).

Definition 4.2.3 (Semi-global stabilization [Braslavsky and Middleton, 1996]). A system is
semi-global stabilizable to the considered equilibrium point xe by means of a class F of feedback
control laws, if, for any a priori determined compact set X0 of initial conditions, there exists a
control law in F that makes xe asymptotically stable with a domain of attraction that contains
X0.

Regarding Definition 4.2.3, we adopt it for designing our NMPC controller with a relaxation:
we undervalue the region of attraction by the terminal constraint set. More precisely, since the
region of attraction increases accordingly to the prediction horizon length and it is impossible
to determine how large the prediction horizon should be for a specific computing system, we,
ultimately, present how to tune the control parameters such that the corresponding terminal
invariant set contains the predefined initial state. However, bear in mind that the set can be
easily modified according to the user’s desire (e.g, slightly reducing the size of the set to improve
the convergence speed).

4.2.1.1 NMPC design with terminal invariant set for position control

The NMPC design makes use of the local FL controller uFL(Kp, ψ) as defined in (4.1.4) and
(4.2.8). In the following, we provide the most important element of the design - the construction
of the positive invariant set under the FL controller uFL(Kp, ψ).

Proposition 4.2.4 ( [Nguyen et al., 2019b]). Let us consider the set S(P, r) defined as follows:

S(P, r) = {p ∈ R6| p>P p ≤ min(eig(P ))r2}, (4.2.18)

with P ∈ R6×6 obtained from (4.2.6) by using a symmetric positive definite matrix M ∈ R6×6

satisfying (4.2.10) (e.g. as in (4.2.13)). The parameter r ∈ R+ is chosen as follows:

r = min{rx, ry, rz}, (4.2.19)

in which, rq with q ∈ {x, y, z} is defined as:

rq =
Uq√

K2
pq +K2

dq

, (4.2.20)
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with (Ux, Uy, Uz) the positive constants as in (2.4.5)–(2.4.7) and (Kpq , Kdq) the control gains as in
(4.2.8). Then, the set S(P, r) defined in (4.2.18) is constraint admissible and positive invariant
under the FL controller uFL(Kp, ψ) from (4.2.9).

Proof. Using a symmetric positive definite M ensures the symmetry and positive definiteness
of the matrix P obtained as the solution of the Lyapunov equation (4.2.6). Therefore, all the
eigenvalues of P are positive scalars which further leads to:

min(eig(P ))‖p‖2 ≤ ‖p‖2
P ≤ max(eig(P ))‖p‖2. (4.2.21)

Then, for all p ∈ S(P, r) as defined in (4.2.18), we have that:

min(eig(P ))‖p‖2 ≤ ‖p‖2
P ≤ min(eig(P ))r2, (4.2.22)

with r as in (4.2.19). This leads to ‖p‖2 ≤ r2 which further implies that:

q2 + v2
q ≤ r2

q , ∀q ∈ {x, y, z}, (4.2.23)

with rq as in (4.2.20).
Next, the virtual input design µ = Kp employed in the FL controller uFL(Kp, ψ) as in (4.2.9)
with K from (4.2.8) has its explicit formulation along each axis provided by:

µq = Kpqq +Kdqvq, ∀q ∈ {x, y, z}, (4.2.24)

with µ = [µx µy µz]
> as defined in (4.1.6). Applying the Cauchy-Schwarz inequality to the

virtual input from (4.2.24) leads to:

|µq| ≤
√(

K2
pq +K2

dq

) (
q2 + v2

q

)
. (4.2.25)

Introducing (4.2.23) to (4.2.25) provides:

|µq| ≤
√(

K2
pq +K2

dq

) U2
q

K2
pq +K2

dq

= Uq, ∀q ∈ {x, y, z}, (4.2.26)

for all p ∈ S(P, r) defined in (4.2.18), which further provides:

S(P, r) ⊂ XFL, (4.2.27)

with XFL the input constraint admissible set from (4.1.6). Therefore, the set S(P, r) is input
constraint admissible w.r.t. the FL controller uFL(Kp, ψ) given in (4.2.9). This further implies
that within S(P, r), the controlled system is equivalent to ṗ = AKp as in (4.2.7). Then, the
invariant property of S(P, r) as in (4.2.18) is proved by considering the following Lyapunov
function V = p>P p whose derivative is given by:

V̇ = ṗ>P p + p>P ṗ = p>
(
A>KP + PAK

)
p = −p>Mp < 0, (4.2.28)

with P , M the symmetric positive definite matrices satisfying the Lyapunov equation (4.2.6).
Since V̇ < 0 as in (4.2.28), the set S(P, r) as defined in (4.2.18) is positive invariant, hence,
completing the proof.

Next, by using the aforementioned invariant set, we will complete the NMPC design given
in (4.2.1)–(4.2.5) (i.e, still lacking of the terminal constraint set Xf as in (4.2.2d)). The stability
proof is also given hereinafter.
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Proposition 4.2.5 ( [Nguyen et al., 2019b]). Let us consider the NMPC design given in (4.2.1)–
(4.2.5) for stabilizing the system (4.1.1). By using the terminal invariant set S(P, r) as defined
in (4.2.18):

Xf := S(P, r), (4.2.29)

with P ∈ R6×6 the terminal weighting matrix obtained from (4.2.6) and r as in (4.2.19), the
closed-loop controlled system achieves (nominal) asymptotic stability.

Proof. The stability is proven by the satisfaction of the four NMPC design principles given in
Lemma 3.1.1. The first three conditions C1–C3 as in (3.1.8)–(3.1.9) are obviously validated by
using Xf := S(P, r) with the set S(P, r) being both constraint admissible and positive invariant
as detailed in Proposition 4.2.4. The final condition C4 as in (3.1.10) is also satisfied within the
set S(P, r) ⊂ XFL (as proven in (4.2.27)) by applying Proposition 4.2.1.

Remark 4.2.6. In [Nguyen et al., 2019b], we present Propositions 4.2.4 and 4.2.5 in discrete
domain. The only difference is that the matrix P ∈ R6×6 employed to construct the invariant
set S(P, r) as in (4.2.18) is obtained from the discrete version of the Lyapunov equation (4.2.6)
while the rest is without any modifications.
Furthermore, the NMPC controller given in Proposition 4.2.5 is fully capable of handling stan-
dard state constraints of the system (4.1.1), e.g.:

p ∈ Xp, (4.2.30)

with Xp, the non-empty set containing the equilibrium point pe as in (4.1.3). Then, the radius
r as in (4.2.19) has to be chosen such that:

{
r ≤ min{rx, ry, rz},
S(P, r) ⊂ Xp,

(4.2.31)

with (rx, ry, rz) as defined in (4.2.20) and Xp the state constraint set from (4.2.30). However,
considering the state constraint as in (4.2.30) also impends proving the semi-global stability
property of the design given in Proposition 4.2.5 (as will be detailed hereinafter). The reason is
that the shape of Xp from (4.2.30) is arbitrary (subject to the user demand, physical constraints,
etc.) while the terminal constraint set S(P, r) as in (4.2.18) is an ellipsoid in R6. Thus, it is
impossible to tune S(P, r) such that it covers an arbitrarily predefined point in Xp without
exceeding Xp due to some restricted areas at corners or edges of the undetermined set Xp from
(4.2.30). In any case, we emphasize again that reducing the radius r in (4.2.19) is always feasible
and should be considered according to specific applications. �

4.2.1.2 Unlimited expandability of terminal invariant set

This section proves the semi-global stability property of the proposed NMPC design (4.2.1)–
(4.2.3) using the terminal invariant set S(P, r) as in (4.2.18). We firstly show that the set
S(P, r) can be enlarged covering an arbitrarily chosen initial state p0 ∈ R6, then, the result is
extended for a compact set X0 containing all the feasible initial states.

Proposition 4.2.7. For any arbitrarily predefined state p0 ∈ R6, there always exist some values
of the control gain matrix K defined as in (4.2.8), and of the matrix M as in (4.2.13) such that,
the corresponding invariant set S(P, r) as in (4.2.18) contains p0. I.e.:

p0 ∈ S(P, r) = {p ∈ R6| p>P p ≤ min(eig(P ))r2}, (4.2.32)

with P obtained from (4.2.6) and r as in (4.2.19).
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Figure 4.2.1: Illustration in 2D space of the two sets S(P, r) and S ′(P, r) as in (4.2.32)–(4.2.33).

In the rest of the section, we concentrate on providing the proof of the aforementioned
proposition. Since it will require many materials (some of them are given as new propositions
and corollaries), we do not limit the content in a proof paragraph and for those who want to
check fast the results, the solutions are given in (4.2.60)–(4.2.61). The insight of the proof is to
consider the set S ′(P, r) defined as follows:

S ′(P, r) =

{
p ∈ R6| ‖p‖2 ≤ min(eig(P ))

max(eig(P ))
r2

}
, (4.2.33)

with P , r the same parameters as in (4.2.32) which always admits:

S ′(P, r) ⊂ S(P, r), (4.2.34)

with S(P, r) as in (4.2.32). This is due to the fact that p>P p ≤ max(eig(P ))‖p‖2 ≤ min(eig(P ))r2

for all p ∈ S ′(P, r) defined in (4.2.33). We provide an illustration for the relation (4.2.34) in
Figure 4.2.1 in the two-dimensional case where we arbitrarily choose P = [2 1; 1 4] and r = 1.
We can see that the set S ′(P, r) (yellow circle with radius r

√
min(eig(P ))/max(eig(P )) as in

(4.2.33)) stays within the blue ellipsoid set S(P, r) defined in (4.2.18). Furthermore, the figure
also provides our further direction which is to prove that there always exists the values of K as
in (4.2.8) and M as in (4.2.13) such that an arbitrarily chosen initial state p0 (illustrated by the
red dot) belongs to the set S ′(P, r) from (4.2.34), i.e.:

min(eig(P ))

max(eig(P ))
r2 ≥ ‖p0‖2, (4.2.35)

with P and r as employed in (4.2.32). In order to prove that assertion, an explicit formulation
of P (which is obtained by solving the Lyapunov equation (4.2.6)) described in terms of the
tuning parameters: K as in (4.2.8) and M as in (4.2.13) will be useful.

Proposition 4.2.8. Let us consider the Lyapunov equation A>KP +PAK +M = 0 as in (4.2.6)
with the stable matrix AK as in (4.2.7) and the diagonal matrix M as in (4.2.13). Then, the
matrix solution P of (4.2.6) is explicitly given by:

P =

[
diag{P1x , P1y , P1z} diag{P3x , P3y , P3z}
diag{P3x , P3y , P3z} diag{P2x , P2y , P2z}

]
, (4.2.36)
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with the positive scalars Piq (i ∈ {1, 2, 3}, q ∈ {x, y, z}) calculated as follows:

P1q =
1

2

(
Kdq

Kpq

− 1

Kdq

)
mq +

Kpq

2Kdq

mvq , (4.2.37)

P2q =
mq

2KpqKdq

− mvq

2Kdq

, (4.2.38)

P3q = − mq

2Kpq

, (4.2.39)

with (mq,mvq) positive parameters as in (4.2.13) and (Kpq , Kdq) negative control gains as in
(4.2.8) (q ∈ {x, y, z}). Furthermore, the values of (P1q , P2q , P3q) given in (4.2.37)–(4.2.39) admit
the following Lyapunov equation:

A>KqPq + PqAKq +Mq = 0, (4.2.40)

in which, the elements are defined as follows:

AKq =

[
0 1
Kpq Kdq

]
, Pq =

[
P1q P3q

P3q P2q

]
, Mq =

[
mq 0
0 mvq

]
, (4.2.41)

with (Kpq , Kdq) as in (4.2.8), (P1q , P2q , P3q) as in (4.2.36) and (mq,mvq) as in (4.2.13) with
q ∈ {x, y, z}.

Proof. The Lyapunov equation (4.2.6) is actually a full-rank system of linear equations in terms
of P . I.e., if we introduce a complete parametrization of P ∈ R6×6 (36 variables) to the equation
(4.2.6) with AK as in (4.2.41) and M as in (4.2.13), then, we obtain 36 linear equations which
definitely provide the solution for P . Furthermore, since M is symmetric, we obtain the sym-
metrical structure of P beforehand, hence, the number of variables is reduced to 21. Explicitly
solving them leads to the results presented in (4.2.36)–(4.2.39).
We will illustrate the aforementioned solving process by applying it to the Lyapunov equation
(4.2.40) which is explicitly given as follows:

[
0 Kpq

1 Kdq

] [
P1q P3q

P3q P2q

] [
0 1
Kpq Kdq

]
+

[
mq 0
0 mvq

]
=

[
0 0
0 0

]
, (4.2.42)

and then transformed into the full-rank system of linear equations:




0 Kpq Kpq 0
1 Kdq 0 Kpq

1 0 Kdq Kpq

0 1 1 2Kd







P1q

P3q

P3q

P2q


 = −




mq

0
0
mvq


 , (4.2.43)

with (mq,mvq) as in (4.2.13), (Kpq , Kdq) as in (4.2.8) and (P1q , P2q , P3q) the variable to be solved
(q ∈ {x, y, z}). Due to the symmetry of Mq, as defined in (4.2.40), the two middle equations is
in fact equivalent. Then, solving (4.2.43) provides again the solutions given in (4.2.37)–(4.2.39),
hence, completing the proof.

After obtaining the parametrization of the matrix P as in (4.2.36), we further provide the
formulations of its eigenvalues since they are employed in (4.2.32)–(4.2.33) and directly involved
into the problem (4.2.35).
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Corollary 4.2.9. The eigenvalues of the matrix P ∈ R6×6 as in (4.2.36) consist of all the
eigenvalues of the three matrices Px, Py, Pz defined in (4.2.41):

eig(P ) =
{

eig(Px), eig(Py), eig(Pz)
}
, (4.2.44)

in which, the eigenvalues of the matrix Pq with q ∈ {x, y, z} are given by:

eig(Pq) =

{
1

2

(
P1q + P2q ±

√
(P1q − P2q)

2 + 4P 2
3q

)}
, (4.2.45)

with (P1q , P2q , P3q) as in (4.2.37)–(4.2.39).

Proof. By defining e ∈ R one eigenvalue and ζ , [ζx ζvx ]
> ∈ R2 as the corresponding eigenvector

of the matrix Px ∈ R2×2 from (4.2.41), we have that:

[
P1x P3x

P3x P2x

] [
ζx
ζvx

]
= e

[
ζx
ζvx

]
. (4.2.46)

Next, let us define a new vector ζ∗ ∈ R6 as follows:

ζ∗ =
[
ζx 0 0 ζvx 0 0

]>
, (4.2.47)

with (ζx, ζvx) two elements of eigenvector ζ as in (4.2.46). Then, it is straight forward to obtain:

Pζ∗ =
[
(P1xζx + P3xζvx) 0 0 (P3xζvx + P2xζx) 0 0

]>
, (4.2.48)

with P as in (4.2.36). From (4.2.46), we also have P1xζx+P3xζvx = eζx and P3xζvx+P2xζx = eζvx ,
hence, it leads to Pζ∗ = eζ∗. Therefore, e as in (4.2.46) and ζ∗ as in (4.2.47) are one eigenvalue
and the corresponding eigenvector of the matrix P from (4.2.36). Similar reasoning is also applied
for the other eigenvalues of Px and the matrices Py, Pz from (4.2.41). The three matrices Px, Py,
Pz from (4.2.41) are constructed independently, their eigenvalues are also independent with each
other while the matrix P ∈ R6×6 can have only six eigenvalues, hence, the statement (4.2.44) is
validated.
Next, the eigenvalues of the matrix Pq (q ∈ {x, y, z}) as given in (4.2.45) are straightforward to
obtain by using the explicit formulation of Pq as in (4.2.41). This also completes the proof.

By Proposition 4.2.8 and Corollary 4.2.9, we are now able to parametrize completely the
proposed problem (4.2.35) in terms of the tuning parameters, i.e., the control gain matrix K as
in (4.2.8) and the diagonal matrix M as in (4.2.13). In the following, we will point out a feasible
choice of these parameters such that (4.2.35) holds with an arbitrarily chosen initial state p0.
The approach treats the motions along the three axes equally by choosing K from (4.2.8) and
M from (4.2.13) as follows:

Kpx = Kpy = Kpz = kp, (4.2.49)

Kdx = Kdy = Kdz = kd, (4.2.50)

mx = my = mz = mvx = mvy = mvz = m1, (4.2.51)

with (kp, kd) ∈ R− and m1 ∈ R+ the new tuning parameters (m1 is different from the system
mass m employed in (4.1.4a)). Note that, due to the conditions (4.2.17) on choosing M as in
(4.2.13), m1 has to satisfy:

m1 > max
{
Q∗1q +Q∗3q , Q

∗
2q +Q∗3q

}
, ∀q ∈ {x, y, z}, (4.2.52)
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with (Q∗1q , Q
∗
2q , Q

∗
3q) defined in (4.2.14). By using the parametrization defined in (4.2.49)–

(4.2.51), it is straightforward to obtain:

Px = Py = Pz, (4.2.53)

r =
min{Ux, Uy, Uz}√

k2
p + k2

d

, (4.2.54)

with (Px, Py, Pz) the matrices in R2×2 defined in (4.2.41) and r as in (4.2.19). By introducing
(4.2.53) to the relation eig(P ) = {eig(Px), eig(Py), eig(Pz)} as in (4.2.44), we further achieve:

min(eig(P )) = min(eig(Pq)) and max(eig(P )) = max(eig(Pq)), (4.2.55)

with Pq representing for one among the three equal matrices (Px, Py, Pz). Then, by introducing
the explicit formulation of eig(Pq) as in (4.2.45) to (4.2.55), we obtain:

min(eig(P )) =
m1

4

(
kd
kp

+
1

kpkd
+
kp − 2

kd

)
− m1

2

√
1

4

(
kd
kp
− 1

kpkd
+
kp
kd

)2

+
1

k2
p

, (4.2.56)

max(eig(P )) =
m1

4

(
kd
kp

+
1

kpkd
+
kp − 2

kd

)
+
m1

2

√
1

4

(
kd
kp
− 1

kpkd
+
kp
kd

)2

+
1

k2
p

, (4.2.57)

with (kp, kd,m1) the three tuning parameters as in (4.2.49)–(4.2.51). Therefore, by using the
eigenvalues of P as in (4.2.56)–(4.2.57) and the radius r as in (4.2.54), the problem (4.2.35)
turns out into finding only the negative scalars (kp, kd) such that the following holds:

min{U2
x , U

2
y , U

2
z }
(

(kp − 1)2 + k2
d −

√
(k2
p + k2

d − 1)2 + 4k2
d

)

(
k2
p + k2

d

) (
(kp − 1)2 + k2

d +
√

(k2
p + k2

d − 1)2 + 4k2
d

)

︸ ︷︷ ︸
r2 min(eig(P ))/max(eig(P ))

≥ ‖p0‖2, (4.2.58)

with p0 ∈ R6 an arbitrarily chosen initial state and (Ux, Uy, Uz) three positive scalars as in
(4.1.6). We will not provide the explicit design law for the control gains (kp, kd) to satisfy
the condition (4.2.58). However, we prove hereinafter the proof for guaranteeing the solution
of (kp, kd) employed in (4.2.58). We will prove that the left-hand-side of (4.2.58) increases to
infinity as long as the control gains (kp, kd) approaches minus zero:

lim
kp→−0
kd→−0

(kp − 1)2 + k2
d −

√
(k2
p + k2

d − 1)2 + 4k2
d

(
k2
p + k2

d

) (
(kp − 1)2 + k2

d +
√

(k2
p + k2

d − 1)2 + 4k2
d

)

= lim
kp→−0
kd→−0

−4kp
(
k2
p + k2

d

)
+ 8k2

p − 4kp
(
k2
p + k2

d

) (
(kp − 1)2 + k2

d +
√

(k2
p + k2

d − 1)2 + 4k2
d

)2

︸ ︷︷ ︸
=4

(4.2.59)

= lim
kp→−0
kd→−0

−4kp
(
k2
p + k2

d

)

4
(
k2
p + k2

d

)

︸ ︷︷ ︸
=0

+ lim
kp→−0
kd→−0

8k2
p − 4kp

4
(
k2
p + k2

d

) = lim
kp→−0
kd→−0

2− 1

kp

1 +
k2
d

k2
p

= +∞,
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if
k2
d

k2
p

6→ +∞ or even if
k2
d

k2
p

→ +∞ but slower than
−1

kp
.

Thus, by (4.2.59), we guarantee the solution of the condition (4.2.10), hence, be able to ensure
the requirement p0 ∈ S ′(P, r) as in (4.2.35) and also p0 ∈ S(P, r) as in (4.2.32). As a result,
Proposition 4.2.7 is validated by choosing the tuning parameters as follows:

M := m1I6, (4.2.60)

K :=
[
kpI3 kdI3

]
, (4.2.61)

with m1 the positive scalar satisfying (4.2.52) and (kp, kd) the negative gains satisfying (4.2.58).
This also completes the proof for Proposition 4.2.7.

Corollary 4.2.10 (Extended version of Proposition 4.2.7 for a compact set X0). For any arbi-
trarily predefined compact set X0 ∈ R6 containing all the considered initial states of the system
(4.1.1), there always exist some values of the negative control gains (kp, kd) as in (4.2.61) and
the positive scalar m1 as in (4.2.60) such that the invariant set S(P, r) as in (4.2.18) contains
X0, i.e.:

X0 ⊂ S(P, r), (4.2.62)

with P obtained as in (4.2.36) and r as in (4.2.54).

Proof. Since X0 is a compact set, it is possible to obtain a value D which is larger than any
norm of all the elements within the set:

D ≥ ‖p0‖, ∀p0 ∈ X0. (4.2.63)

Note that, D can be taken as a exact maximum value of all the norms (if applicable). Then, by
using the result in (4.2.58), the control gains (kp, kd) can be chosen such that:

min{U2
x , U

2
y , U

2
z }
(

(kp − 1)2 + k2
d −

√
(k2
p + k2

d − 1)2 + 4k2
d

)

(
k2
p + k2

d

) (
(kp − 1)2 + k2

d +
√

(k2
p + k2

d − 1)2 + 4k2
d

) ≥ D2, (4.2.64)

with D as in (4.2.63) and (Ux, Uy, Uz) as in (4.1.6). The gains (kp, kd) as in (4.2.64) and the
matrix M as in (4.2.60) will guarantee p0 ∈ S(P, r) as in (4.2.32) for all initial states p0 having
‖p0‖ ≤ D (c.f. Figure 4.2.1). Then, due to the definition of D as in (4.2.63), Corollary 4.2.10 is
validated, completing the proof.

Example 4.2.11. In this example, we illustrate Corollary 4.2.10 by considering a compact set
X0 ∈ R6 containing all the static initial states defined as follows:

X0 =
{

[ξ0 v0]> ∈ R6
∣∣ ξ0 ∈ P0, v0 = 0

}
, (4.2.65)

with the polytope P0 ∈ R3 defined as follows:

P0 = Conv
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1
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1
1
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2
1
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2
1
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1
2
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1
2
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3
2
2


 ,




1
2
2




 , (4.2.66)

which is illustrated as the blue rectangular box in Figure 4.2.2a. Then, the furthest distance D
defined in (4.2.63) (i.e., having largest norm) of all the elements within the set X0 as in (4.2.65)
is given by:

D =
√

32 + 22 + 22 = 4.12. (4.2.67)



4.2. NMPC designs with terminal constraint for position control 97

−4
−2

0
2

4

−4
−2

0
2

4

−4

−2

0

2

4

kp = −0.03
kd = −0.006

xy

z

S ′(P, r)
P0

(a) Illustratation in 3D space of the set X0 cov-
ering the set S ′(P, r) defined in (4.2.33).
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(b) Radius of S ′(P, r) explicitly given in (4.2.64)
w.r.t. different values of (kp, kd) (4.2.49)–(4.2.50).

Figure 4.2.2: Example on designing the terminal invariant set S(P, r) as in (4.2.18) containing
a compact set X0.

Next, we will define the control gains (kp, kd) satisfying condition (4.2.64) with D = 4.12 and
min{Ux, Uy, Uz} = 0.7168 as given in Table 2.5.1. We show the values of the radius of the set
S ′(P, r) as in (4.2.33) w.r.t. different values of the control gains (kp, kd) in Figure 4.2.2b where
the red part contains all the feasible choices, i.e., the radius is larger than D = 4.12 as required in
(4.2.64). From these feasible choices, we choose the control gains (kp, kd) = (−0.03,−0.006) and
the corresponding set S ′(P, r) defined in (4.2.33) is illustrated in Figure 4.2.2a by the meshed
sphere in 3D space. Note that the sphere is defined by x2+y2+z2 ≤ r2 min(eig(P ))/max(eig(P )),
hence, obviously being a subset of S ′(P, r) as in (4.2.33). Therefore, the real invariant set S(P, q)
defined in (4.2.18) and also the region of attraction of the NMPC design (4.2.1) using S(P, q)
as its terminal constraint set (c.f. Proposition 4.2.5) surely contains all the compact set X0 as
in (4.2.65). This validates the semi-global stability properties of the proposed NMPC design.

Procedure 4.2.12 (NMPC design using terminal invariant set with semi-global stability). Here-
inafter, we summarize the design procedure of the NMPC controller (4.2.1)–(4.2.3) using the ter-
minal invariant terminal set for stabilizing the multicopter’s translation dynamics (4.1.1). The
steps to follow are:

1. Choose the symmetric matrices Q ∈ R6×6 (positive definite) and R ∈ R3×3 (positive semi-
definite) to formulate the stage cost as in (4.2.4).

2. Choose the negative control gains matrix (Kpq , Kdq) (q ∈ {x, y, z}) as in (4.2.8) and define
the symmetric matrix M satisfying (4.2.10).

3. Solve the Lyapunov function (4.2.6) for the weighting matrix P which allows to formulate
the terminal cost as in (4.2.5) and the terminal invariant set S(P, r) as in (4.2.79).

4. Choose the prediction horizon Tp as in (4.2.1).

Remark 4.2.13. The most important step in Procedure 4.2.12 is at step 2 where the control
gains (Kpq , Kdq) (q ∈ {x, y, z}) and the matrix M are defined. We have shown in Section 4.2.1.2
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that the set S(P, r) as in (4.2.79) can be enlarged unlimitedly in order to cover any compact set
X0 as in (4.2.62) containing all feasible initial states. However, a real efficient implementation
will require only the domain of attraction to cover X0, hence, we have to balance between
the size of the terminal invariant set S(P, r) (mostly affecting the convergence speed) and the
prediction horizon Tp (mostly affecting the computing time). The tuning is particular for a
specific scenario including both the construction of X0 and the computing hardware, and hence,
cannot be explicitly instructed in this thesis. �

4.2.1.3 Simulation validation of NMPC design with terminal invariant set

In this section, we consider the simulation model (4.1.1)–(4.2.2) of a Crazyflie 2.0 nano-quadcopter
platform [Nguyen et al., 2018b] with the parameters given in (2.2.47)–(2.2.49) and recapitulated
hereinafter:

m = 0.028 kg , εmax = 10◦, Tmax = 0.55 N. (4.2.68)

The NMPC sampling time and the discretization step are chosen as the same value of δ = 0.1
seconds (as employed in (4.2.3)). We will also employ the quasi-infinite horizon NMPC design
(which makes use of a similar terminal invariant set but under the linear controller (3.4.2)) [Chen
and Allgöwer, 1998] for comparison. Recalling the quasi-infinite horizon NMPC design procedure
summarized in Section 3.4.1, the control gain matrix Kq as in (3.4.2) is chosen as follows:

Kq =




0 0 mkp 0 0 mkd

sin(ψ)
m

g
kp − cos(ψ)

m

g
kp 0 sin(ψ)

m

g
kd − cos(ψ)

m

g
kd 0

cos(ψ)
m

g
kp sin(ψ)

m

g
kp 0 cos(ψ)

m

g
kd cos(ψ)

m

g
kd


 , (4.2.69)

with (kp, kd) negative control gains (as similar to (4.2.49)–(4.2.50)), m the system mass, g the
gravity and ψ the yaw angle as in (4.1.1). The goal of choosing Kq as in (4.2.69) is to obtain
the simple closed-loop matrix AKq (defined in (3.4.4)) as follows:

AKq =

[
03×3 I3

kpI3 kdI3

]
, (4.2.70)

which is identical to the closed-loop system (4.2.7) under the FL controller (4.1.4).

We fix the initial state at p0 =
[
−0.1 0.3 −0.2 0.8 0 0

]>
and the yaw angle at ψ = 0.

Three scenarios will be considered:

• Scenario 1: Using the proposed NMPC controller with the terminal invariant set S(P1, r1)
such that p0 6∈ S(P1, r1) with P1, r1 given in Table 4.2.1.

• Scenario 2: Using the proposed NMPC controller with the terminal invariant set S(P2, r2)
such that p0 ∈ S(P2, r2) with P2, r2 given in Table 4.2.1.

• Scenario 3: Using the quasi-infinite horizon NMPC (qMPC) controller with the largest-
possible terminal invariant set Ωα as in (3.4.6).

The parameters of the proposed NMPC design (4.2.1)–(4.2.3) corresponding to the two first
scenarios are gathered into Table 4.2.1. For Scenario 1, we arbitrarily choose kp = kd = −2
and then increase the prediction horizon up to Tp = 0.7 seconds while for Scenario 2, the ter-
minal constraint set S(P2, r2) containing p0 allows us to employ the shorter prediction horizon
of Tp = 0.2 seconds. Next, the parameters of the qMPC controller are given in Table 4.2.2 in
which the control gains (kp, kd) as in (4.2.69) are chosen to be equal to those under Scenario
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Parameters Scenario 1 Scenario 2
Q, R as in (4.2.4) I6, 0.1I3

(kp, kd) as in (4.2.49)–(4.2.50) (−2,−2) (−1,−1)
M as in (4.2.13) 2I6

P as in (4.2.6) P1 =

[
2.5I3 0.5I3

0.5I3 0.75I3

]
P2 =

[
3I3 I3

I3 2I3

]

r in (4.2.19) r1 = 0.2534 r2 = 0.5069

Tp as in (4.2.1) 0.7 seconds (7 steps) 0.2 seconds (2 steps)

Table 4.2.1: Parameters of the NMPC controllers with terminal invariant sets under the local
FL controller.

Parameters Values

(kp, kd) as in (4.2.69) (−2,−2)

κ as in (3.4.4) 0.9

Pq as in (3.4.5)

[
15.3960I3 7.1782I3

7.1782I3 6.9803I3

]

α as in (3.4.6) 2.5× 10−4

Tp as in (3.1.5) 1.2 seconds (12 steps)

Table 4.2.2: Parameters of the quasi-infinite horizon NMPC controller.

1 given in Table 4.2.1 for the two resulted linear systems (i.e., (4.2.7) and (4.2.70)) to have
the same convergence speed. We provide the trajectories of (y, vy) and (z, vz) in comparison
with the three terminal invariant sets in Figure 4.2.3a and the position’s convergence results in
Figure 4.2.3b which are plotted in green, red, blue for Scenarios 1, 2 and 3, respectively. Note
that, since the sets are all in six-dimensional space, we have intentionally constructed them
symmetrically such that the three 2D subspaces, obtained by slicing along (x, vx), (y, vy) and
(z, vz) are coincident with each other (c.f. the parameters given in Tables 4.2.1–4.2.2). Hence,
they will be illustrated by their images on these three 2D spaces. E.g. the set S(P, r) ∈ R6

as in (4.2.79) will be illustrated by the 2D set P1xx
2 + P2xv

2
x + 2P3xxvx ≤ min(eig(P ))r2 since

Pix = Piy = Piz , ∀i ∈ {1, 2, 3}.
From Figure 4.2.3a, the semi-global stability property of the proposed NMPC design (c.f. Sec-
tion 4.2.1.2) is proved emperically. It is straighforward to increase the size of the terminal
constraint set from the set S(P1, r1) under Scenario 1 (green ellipsoid) to the larger set S(P2, r2)
under Scenario 2 (red ellipsoid) by only increasing the control gains from kp = kd = −2 to
kp = kd = −1 as shown in Table 4.2.1. In comparison, the tuning procedure of the qMPC
controller is very exceedingly convoluted (c.f. Section 3.4.1), we have to define the control gains
(kp, kd) as in (4.2.69), then, choose κ satisfying (3.4.4) without any specific information on the
effect of these parameter [Chen and Allgöwer, 1998]. Furthermore, the next step is to tune the
radius α of the terminal region Ωα as in (3.4.6) such that the three conditions (3.4.7)–(3.4.9)
are satisfied at once. Bear in mind that (3.4.7)–(3.4.9) are three nonlinear inequalities subject
to the quadratic constraint (3.4.6) and hence, the value of α is hard to obtain. We give in Table
4.2.2 the best solution of α which we can find and the resulted invariant set Ωα is illustrated by
the blue ellipsoid in Figure 4.2.3a which can be seen only in the 6× zooming inset. The only
advantage of using this small terminal constraint set is the fastest convergence speed (i.e., 2.6
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seconds) as can be seen from blue lines in Figure 4.2.3b. However, the price to pay manifests
itself in the large input effort as can be seen from Figure 4.2.4a (the blue lines have the largest
amplitudes) and in the high computational burden as can be seen from Figure 4.2.4b (blue line
with the mean value of 77 milliseconds) due to the required prediction horizon of 12 steps (c.f.
Table 4.2.2). We emphasize that the maximum computing time of the qMPC controller reaches
109 millisecond while the predefined NMPC sampling time is δ = 100 milliseconds, hence, being
infeasible for real implementation.
On the contrary, our proposed method, with its larger terminal invariant sets S(P1, r1) and
S(P2, r2) (c.f. Figure 4.2.3a) provide slower convergence speeds, i.e., 4.4 and 5.2 seconds as
observed from Figure 4.2.3b (plotted in green and red lines for the two scenarios, respectively).
However, the larger terminal invariant sets S(P1, r1) and S(P2, r2) allow us to reduce the predic-
tion horizon to 7 steps and 2 steps (c.f. Table 4.2.1), hence, significantly reducing the computing
time to average values at 55 and 42 milliseconds, respectively (as plotted in green and red lines
in Figure 4.2.4b). The results strongly confirm the effectiveness of the proposed approach on
using the FL controller (4.1.4) to design the NMPC scheme with guaranteed stability.
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Figure 4.2.3: State convergences under NMPC controllers using terminal invariant sets.
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Figure 4.2.4: Inputs and computing time of three NMPC controllers using terminal invariant
sets.

In the next section, we will continue with a new NMPC design using a relaxed invariant set
as its terminal region. The construction allows to employ linear box-type terminal constraints,
and hence, to further reduce the complexity of the optimization problem (4.2.1) and also the
computation time.
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4.2.2 NMPC design with relaxed invariant terminal constraint set

We propose in this section the design of the terminal constraint set Xf as in (4.2.2d) of the
NMPC controller (4.2.1)–(4.2.3) which is described through simple box-type linear constraints.
The proposed design makes use of the continuous-time δ-invariant set [Doban and Lazar, 2018]
(with δ the sampling time of the NMPC controller as in (4.2.3)). The δ-invariant property is a
relaxation of the standard invariant notion which allows the state trajectory to escape from the
set and come back at predefined, periodic, time instants. Note that, the similar notion in discrete
time is called a finite-step invariant set. I.e., in [Lazar and Spinu, 2015], a chain of polytopic
finite-step invariant sets is used as the sequence of terminal sets for stabilizing an NMPC scheme.
This allowed to reduce the complexity of the optimization problem since one polytopic terminal
set will provide lower complexity than the standard invariant set (e.g., S(P, r) as in (4.2.18))
as also confirmed by the approach of approximating a standard ellipsoidal invariant set by a
polytopic set [Cannon et al., 2003]. To easily illustrate the idea, the terminal constraint set Xf
considered within this section admits the following formulation:

Xf =




x ∈ R6

∣∣∣∣∣





|x| ≤ Xx, |vx| ≤ Vx

|y| ≤ Xy, |vy| ≤ Vy

|z| ≤ Xz, |vx| ≤ Vz




, (4.2.71)

with Xq, Vq > 0 the position and velocity limits along the three axes, chosen according to the
design procedure presented in the following sections. Hence, we are introducing novel terminal
constraints (as employed in (4.2.2d)) with clear interpretation to the NMPC formulation (4.2.1)–
(4.2.3) for stabilizing system (4.1.1). They require that the terminal predicted position lies
within the 3D rectangular box bounded in each direction by (Xx, Xy, Xz), respectively, and a
small terminal predicted velocity along the three axes (bounded by (Vx, Vy, Vz), respectively).
In the rest of this section, we will prove that the above formulation guarantees the stability of
the NMPC controller (4.2.1)-(4.2.3) in a fashion similar to the standard ellipsoidal terminal sets
(e.g., S(P, r) as in (4.2.18), or the quasi-infinite horizon NMPC design [Chen and Allgöwer,
1998] as summarized in Section 3.4.1) but reducing the complexity of the NMPC optimization
problem (i.e., quadratic cost with linear constraints in comparison with quadratic cost with
quadratic inequality constraints when employing the standard ellipsoidal invariant sets).
In the next section, we firstly present the characterization of a δ-invariant set and its usage
within the NMPC design (4.2.1)–(4.2.3).

4.2.2.1 δ-invariant and safe sets characterization

Definition 4.2.14 (δ-invariant set). Consider the general nonlinear system:

ẋ = f(x,u). (4.2.72)

with x ∈ Rn and u ∈ Rm the state and input vectors2.
Given a real positive scalar δ and a controller uloc(x) : Rn → Rm, the compact set R ⊆ Rn

is called a δ-invariant set under uloc(x) if the state trajectory of the system ẋ = f(x,uloc(x))
admits:

if ∃ t0 ≥ 0 such that x(t0) ∈ R holds, then x(t0 + δ) ∈ R. (4.2.73)

2The general system (4.2.72) is defined similarly to (3.1.1) but without explicitly considering the system
constraints as in (3.1.3). Also, the controller uloc(x) is named according to its usage in the NMPC design
principles presented in the following.
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Furthermore, if the following also holds:

x(t0) ∈ R ⇒ x(t) ∈ BR, ∀t ≥ t0. (4.2.74)

for the set BR with R ⊆ BR ⊆ Rn, then, the set BR is called the safe set associated with the
δ-invariant set R.

Remark 4.2.15. Definition 4.2.14 is adapted from [Magni and Scattolini, 2004,Doban and Lazar,
2018, Lazar and Spinu, 2015] in which [Magni and Scattolini, 2004] does not name the set,
[Doban and Lazar, 2018] provides the same definition for the δ-invariant set as in (4.2.73)
while [Lazar and Spinu, 2015] similarly defines a finite-step contractive set in discrete time. For
more details, [Doban and Lazar, 2018] uses the δ-invariant set for computing Lyapunov functions
for nonlinear continuous-time differential equation via a Massera-type construction and [Lazar
and Spinu, 2015] employs a finite number (undefined by the practitionners but resulted from the
designing procedure) of finite-step contractive sets as a chain of terminal regions in an NMPC
design. Also, [Wildhagen et al., 2019] uses “M-step invariant set” for stabilizing an NMPC with
varying prediction horizon.
In comparison with [Magni and Scattolini, 2004,Lazar and Spinu, 2015], we exploit one polytopic
(in a simple rectangle form) δ-invariant set R as the terminal region of a continuous-time NMPC
controller while the associated safe set BR is required to be constraint admissible and ensures
the existence of a local Lyapunov function within the set. �

Example on constructing a box-type δ-invariant set and the corresponding safe set for a double
integrator system:
Let us consider an autonomous double integrator system:

[
ẋ1

ẋ2

]
=

[
0 1

−s1s2 s1 + s2

] [
x1

x2

]
, (4.2.75)

with s1 < s2 < 0, the system’s real pole, defined in order to avoid the oscillator effect on the
state response. Then, the state response of the system (4.2.75) is easily obtained for all t ≥ 0
as follows: [

x1(t)
x2(t)

]
=

[
λ1(s, t) λ2(s, t)
λ3(s, t) λ4(s, t)

]

︸ ︷︷ ︸
Λ(s,t)

[
x1(0)
x2(0)

]
, (4.2.76)

with s = [s1 s2]> and the auxiliary functions λi(s, t), with i ∈ {1, . . . , 4} defined as follows:

λ1(s, t) =
s2e

s1t − s1e
s2t

s2 − s1

, λ2(s, t) =
es2t − es1t
s2 − s1

,

λ3(s, t) =
s1s2(es1t − es2t)

s2 − s1

, λ4(s, t) =
s2e

s2t − s1e
s1t

s2 − s1

.

(4.2.77)

Since we are interested in box-type δ-invariant set due to their simplicity (different shapes of the
δ-invariant set do exist, e.g., ellipsoidal sets in [Magni and Scattolini, 2004] or general polytopic
sets in [Lazar and Spinu, 2015]), we establish the following condition for the system (4.2.76):

∣∣∣∣∣

[
x1(δ)
x2(δ)

] ∣∣∣∣∣ =

∣∣∣∣∣

[
λ1(s, t) λ2(s, t)
λ3(s, t) λ4(s, t)

] [
x1(0)
x2(0)

] ∣∣∣∣∣ ≤
[
X1max

X2max

]
, ∀

∣∣∣∣∣

[
x1(0)
x2(0)

] ∣∣∣∣∣ ≤
[
X1max

X2max

]
, (4.2.78)

with (X1, X2) positive state limits. The problem turns out to be finding s and (X1, X2) such
that the condition (4.2.78) holds and this will be answered hereinafter.
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Lemma 4.2.16. For a real positive scalar δ, let us consider the set Pδ bounding the possible
pole values (s1, s2) of (4.2.76) which is defined as:

Pδ =

{
s =

[
s1

s2

]
∈ R2|s1 < s2 < 0 and

λ2(s, δ)

1− λ1(s, δ)
≤ 1− |λ4(s, δ)|
−λ3(s, δ)

}
, (4.2.79)

with λi(s, t) (i ∈ {1, . . . , 4}) defined as in (4.2.77). Choosing s ∈ Pδ allows us to choose X1 > 0
and X2 > 0 such that:

λ2(s, δ)

1− λ1(s, δ)
≤ X1

X2

≤ 1− |λ4(s, δ)|
−λ3(s, δ)

. (4.2.80)

Then, the sets Rx and BRx defined as follows are the δ-invariant set and the corresponding safe
set of the double integrator system (4.2.75):

Rx =

{
x =

[
x1

x2

]
∈ R2

∣∣∣ |x1| ≤ X1, |x2| ≤ X2

}
, (4.2.81)

BRx =

{
x =

[
x1

x2

]
∈ R2

∣∣∣ |x1| ≤ X̃1, |x2| ≤ X̃2

}
, (4.2.82)

in which, X̃1 = χ(X1, X2, s, δ) and X̃2 = ν(X1, X2, s, δ) with the two functions χ(·), ν(·) defined
by the following optimization problems:

χ(a, b, s, δ) = max
t∈[0,δ]

{aλ1(s, t) + bλ2(s, t)} , (4.2.83a)

ν(a, b, s, δ) = max
t∈[0,δ]

{−aλ3(s, t) + b|λ4(s, t)|} . (4.2.83b)

Proof. The detailed proof is given in Appendix E and only the main idea is sketched here. The
goals of choosing s ∈ Pδ are twofold: i) we need to ensure the closed-loop stability of the linear
system (4.2.75) by imposing s1 < s2 < 0, ii) the second constraint guarantees the consistency of
(4.2.80), i.e., there always exists a value of X1/X2 satisfying (4.2.80). Then, by choosing X1 > 0
and X2 > 0 satisfying (4.2.80), we guarantee the maximum values of |x1(δ)| and |x2(δ)| obtained
as in (4.2.78) are bounded by X1 and X2, respectively, as proved in (E.0.6). Thus, the condition
(4.2.78) holds and the δ-invariant property (4.2.73) of the set Rx (4.2.81) is established.

Furthermore, X̃1 as in (4.2.83a) and X̃2 as in (4.2.83b) are the maximum values of |x1(t)| and
|x2(t)| as defined in (4.2.76) for all t ∈ [0, δ] and for any initial condition [x1(0) x2(0)]> ∈ Rx

(4.2.81). Thus, we have that |x1(t)| ≤ X̃1 and |x2(t)| ≤ X̃2 which are equivalent to [x1(t) x2(t)]> ∈
BRx (4.2.82) for all t ∈ [0, δ].
Then, as [x1(δ) x2(δ)]> ∈ Rx (4.2.81) (obtained from the δ-invariant property of the set Rx),
further recursive analysis provides [x1(t) x2(t)]> ∈ BRx for all t ≥ 0, completing the proof.

Example 4.2.17. Let us illustrate Lemma 4.2.16 by considering two values of the time step
δ0 = 0.05 seconds and δ = 0.1 seconds. At first, the sets Pδ0 and Pδ from (4.2.79) are found
numerically and illustrated in Figure 4.2.5a within the range of −40 ≤ s1 < s2 < 0 (small blue
region for Pδ0 and red region for Pδ ⊂ Pδ0). Note that, the figure clips the two sets Pδ0 and Pδ
which are unbounded. Having unbounded sets means that an infinite choice of poles satisfying
Lemma 4.2.16 is possible. It is worth pointing out that Pδ0 ⊂ Pδ (as observed in Figure 4.2.5a).
The reason is that from any pole vector s ∈ Pδ0, we can design the associating δ0-invariant set
which always satisfies the δ-invariant property since δ = 2δ0. Thus, any feasible pole vector
s ∈ Pδ0 is also a possible choice for the case of δ but not vice versa.
As the time step δ = 0.1 seconds will be used for controlling the system (4.1.1) later, we will
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construct only the 0.1-invariant set Rx and its associating safe set BRx as defined in (4.2.81)–
(4.2.82). Firstly, from Figure 4.2.5a, s = [−16 − 0.5]> ∈ P0.1 (red region) is a feasible choice
which provides us with X1/X2 = 2 satisfying (4.2.80). Then, by arbitrarily choosing X1 = 2 and

X2 = 1, X̃1 and X̃2 as in (4.2.82) are obtained by solving the optimization problems given in
(4.2.83) with s1 = −16 and s2 = −0.5 as follows:

X̃1 = max
t∈[0,0.1]

{
2
s2e

s1t − s1e
s2t

s2 − s1

+
es2t − es1t
s2 − s1

}
, (4.2.84)

X̃2 = max
t∈[0,0.1]

{
−2

s1s2(es1t − es2t)
s2 − s1

+

∣∣∣∣∣
s2e

s2t − s1e
s1t

s2 − s1

∣∣∣∣∣

}
,

which are straightforward to obtain, X̃1 = 2.0189 and X̃2 = X2 = 1. The 0.1-invariant set Rx

(blue rectangle) and its safe set BRx (green rectangle covering wholly the blue one) are illustrated
in Figure 4.2.5b. The yellow polytopic region Λ(s, δ)Rx with Λ(·) as in (4.2.76) is the image of
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(b) The δ-invariant set Rx and the safe set BRx (with δ=0.1
seconds, s = [−16 − 0.5]>, X1 = 2, X̃1 = 2.0189 and X2 =
X̃2 = 1).

Figure 4.2.5: Construction of δ-invariant set and safe set for the double integrator system
(4.2.75).

the set Rx under the map (4.2.76), i.e., its evolution in one step under the dynamics:

Λ(s, δ)Rx = {x ∈ R2|x = Λ(s, δ)x0, x0 ∈ Rx}, (4.2.85)

which stays within the set Rx. This clearly shows the 0.1-invariant property of Rx. For more
details, there are also illustrations of eight state trajectories (x1, x2) (red lines) starting from eight
different initial conditions (red circles) at t = 0 within the 0.1-invariant set Rx and ending at
t = 0.1 seconds. There are two trajectories which first go out of Rx (can be seen from the right
enlarging inset) but all the eight trajectories stay within the safe region BRx and arrive inside
the set Rx after 0.1 seconds. The trajectories are obtained by explicitly solving the linear system
(4.2.75), and then, by plotting the continuous-time solutions with the time step of 0.01 seconds
much smaller than 0.1 seconds. �

4.2.2.2 δ-invariant set for the multicopter’s translation system

This section introduces the design of the δ-invariant set associated to the FL linearization con-
troller uFL(·) as in (4.2.9). The set is constructed by using the resulted linearized system (4.2.7)
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and hence, the construction makes use of the results (4.2.81)–(4.2.82) corresponding to the dou-
ble integrator system (4.2.75) detailed in the previous section.
At first, let us consider the sampling time δ (4.2.3) of the NMPC controller (4.2.1)–(4.2.3) and
choose the pole vector sq ∈ R2 such that:3

sq , [s1q s2q ]
> ∈ Pδ, q ∈ {x, y, z}, (4.2.86)

with Pδ as in (4.2.79). Next, the control gains (Kpq , Kdq) as employed in (4.2.8) are defined as
follows:

Kpq = −s1qs2q , Kdq = s1q + s2q . (4.2.87)

This allows to define the three pairs of position Xq > 0 and velocity Vq > 0 such that:

λ2(sq, δ)

1− λ1(sq, δ)
≤Xq

Vq
≤ 1− |λ4(sq, δ)|
−λ3(sq, δ)

, (4.2.88)

∣∣Kpq

∣∣ X̃q +
∣∣Kdq

∣∣ Ṽq ≤ Uq, (4.2.89)

with λi(·), i ∈ {1, . . . , 4} defined in (4.2.77) and Uq as in (4.1.6). The parameters (X̃q, Ṽq) are
given by:

X̃q , χ(Xq, Vq, sq, δ), Ṽq , ν(Xq, Vq, sq, δ), (4.2.90)

with χ(·), ν(·) as in (4.2.83a)-(4.2.83b). Then, the δ-invariant set and its corresponding safe set
of the system (4.1.1) are given in the following.

Lemma 4.2.18. Let us define two sets R and BR as follows:

R =




p ∈ R6

∣∣∣∣∣





|x| ≤ Xx, |vx| ≤ Vx

|y| ≤ Xy, |vy| ≤ Vy

|z| ≤ Xz, |vz| ≤ Vz




, (4.2.91)

BR =




p ∈ R6

∣∣∣∣∣





|x| ≤ X̃x, |vx| ≤ Ṽx

|y| ≤ X̃y, |vy| ≤ Ṽy

|z| ≤ X̃z, |vx| ≤ Ṽz




, (4.2.92)

with Xq, Vq, X̃q, Ṽq as in (4.2.88)–(4.2.89). Then, for the system (4.1.1) controlled by the FL
controller uFL(Kp, ψ) as in (4.2.9) with K as in (4.2.87), we have that:

(i) BR is input constraints admissible.

(ii) R ⊂ BR is δ-invariant w.r.t. the safe set BR with δ the sampling time as in (4.2.3). �

Proof. By using µξ = Kp with µξ = [µx µy µz]
>, the virtual input vector as in (4.1.4) and the

gain matrix K from (4.2.8), we obtain the bounds on the virtual inputs µq (q ∈ {x, y, z}):

|µq| ≤
∣∣Kpqq

∣∣+
∣∣Kdqvq

∣∣ . (4.2.93)

Next, for all p ∈ BR as in (4.2.92), we have that |q| ≤ X̃q, |vq| ≤ Ṽq) which further leads to:

|µq| ≤
∣∣Kpq

∣∣ X̃q +
∣∣Kdq

∣∣ Ṽq ≤ Uq. (4.2.94)

3Notation with subscript q, e.g., sq, stands for three similar notations with subscript x, y, z, e.g., sx, sy, sz.
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in which the second inequality is due to (Kpq , Kdq) satisfying the condition (4.2.89). Then,
BR ⊂ XFL with XFL the input constraint admissible set as in (4.1.6), hence, (i) is validated.
At the next step, for all p ∈ BR, with BR the admissible set obtained from (i), the FL controller
uFL(Kp, ψ) as in (4.2.9) linearizes the dynamics (4.1.1) into the linear stable system (4.2.7). Let
us consider only the dynamics of x, vx partly taken from (4.2.7) as follows:

[
ẋ
v̇x

]
=

[
0 1
Kpx Kdx

] [
x
vx

]
, (4.2.95)

which is actually the double integrator system from (4.2.75). Then, with Xx, Vx satisfying the
condition (4.2.88), |x(0)| ≤ Xx and |vx(0)| ≤ Vx imply that |x(δ)| ≤ Xx, |vx(δ)| ≤ Vx and

|x(t)| ≤ X̃x, |vx(t)| ≤ Ṽx as proved in Lemma 4.2.16. Similar results are obtained for (y, vy) and
(z, vz). Thus, (ii) is validated, completing the proof.

Remark 4.2.19. The sizes of the box-type δ-invariant set R and the corresponding safe set as
defined in (4.2.91)–(4.2.92) are easy to tune by applying the following procedure:

i) choose the poles sq with q ∈ {x, y, z} as in (4.2.86);

ii) define the ratio Xq/Vq satisfying condition (4.2.88);

iii) tune the values of (Xq, Vq) while maintaining their predefined ratio and checking the con-
straint (4.2.89).

Note that, the larger values of (Xq, Vq) the larger the δ-invariant set R (4.2.91) becomes. The
set R can also be enlarged significantly but its limit is still under question (in comparison with
the unlimited expandability of the invariant set S(P, r) as detailed in Proposition 4.2.7). The
difficulties on analyzing this problem are twofold: i) the control gains are limited to the choice of

the poles sq ∈ Pδ as in (4.2.86) and ii) the implicit relation of (X̃, Ṽ ) and (X, V ) as in (4.2.90).
These problems are worthy of further consideration. �

4.2.2.3 NMPC design using terminal δ-invariant set

This section firstly presents the principles for an NMPC scheme employing a δ-invariant termi-
nal constraint set with δ the sampling time of the NMPC controller for a general constrained
nonlinear system. The design guarantees the recursive feasibility and asymptotic stability of
the closed-loop controlled system in a manner similar to the design using a standard terminal
invariant set proposed in Lemma 3.1.1. Then, we complete the NMPC design (4.2.1)–(4.2.3) for
the multicopter’s translation system (4.1.1) by using the terminal δ-invariant set as in (4.2.91).

Lemma 4.2.20. Let us consider the NMPC setup (3.1.4)-(3.1.7) for stabilizing the general
system (3.1.1) around the desired equilibrium point (xe,ue) as in (3.1.2). Assume that there
exists a local controller uloc(x) under which, the system (3.1.1), i.e., ẋ = f(x,uloc(x)) admits a
pair of δ-invariant, R, and safe, BR sets as in (4.2.73)-(4.2.74). Then, the recursive feasibility
and asymptotic stability of the closed-loop system controlled by the NMPC controller (4.2.3) can
be achieved if the following design conditions hold:

C1*: [State constraints satisfied in BR]. The safe set BR satisfies:

BR ⊆ X , xe ∈ BR, (4.2.96)

with X the state constraint set as in (3.1.3) and xe the equilibrium point as in (3.1.2).
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C2*: [Input constraints satisfied in BR]. The local controller uloc(x) respects the input con-
straints within the safe set:

uloc(x) ∈ U , ∀x ∈ BR, (4.2.97)

with U the input constraint set as in (3.1.2).

C3*: [Terminal δ-invariant set]. The δ-invariant set R serves as the terminal region Xf as in
(3.1.6d) of the NMPC design.

Xf := R. (4.2.98)

C4*: [Local Lyapunov function existence]. Starting from any x ∈ R, the trajectory of the system
(3.1.1) under uloc(x) satisfies:

dF (x)

dt
+ `(x,uloc(x)) ≤ 0, (4.2.99)

where F (x) and `(x,uloc) are the terminal and stage costs from (3.1.5), respectively. �

Proof. The proof is explicitly given in Appendix F. It is constructed similarly to the one of
Lemma 3.1.1 (i.e., desinging an NMPC with terminal invariant set) as given in [Mayne et al.,
2000] but with the slight difference in the fact that the safe set BR is required to be constraint
admissible as in (4.2.96)–(4.2.97) while the δ-invariant set R is employed as the terminal region
(4.2.98). It is because all the state trajectories starting from the δ-invariant set R lie within
the safe set and come back to the set R at the next sampling time. This ensures the recursive
feasibility of the design while the fourth condition C4* (4.2.99) guarantees the asymptotic
stability of the closed-loop system in the same manner as the condition C4 given in (3.1.10).

Lemma 4.2.20 opens the path on using the δ-invariant set as the terminal constraint set for
guaranteeing the stability of an NMPC design. In the following, we will apply the method for
desinging the NMPC controller for the multicopter’s translation system (4.1.1).

Proposition 4.2.21. Let us consider the NMPC design given in (4.2.1)–(4.2.5) for stabilizing
the system (4.1.1). By using the terminal δ-invariant set R as defined in (4.2.91) (with δ the
NMPC sampling time as in (4.2.3)):

Xf := R, (4.2.100)

the closed-loop controlled system achieves (nominal) asymptotic stability.

Proof. The proof is constructed by guaranteeing the satisfaction of the four conditions C1*–
C4* as in (4.2.96)–(4.2.99). The three first conditions are obviously validated by using the
δ-invariant set R and its corresponding safe set BR as defined in (4.2.91)–(4.2.92). Then, the
fourth condition (4.2.99) is ensured by using the result of Proposition 4.2.1 which points out
that (4.2.99) is validated for all p ∈ XFL with XFL the input constriant admissible set as in (4.1.6)
while any trajectories starting from the δ-invariant set R remains within the safe set BR as in
(4.2.91)–(4.2.92) and BR ⊂ XFL as proved in (4.2.94), hence, completing the proof.

Procedure 4.2.22 (NMPC design using terminal δ-invariant set). The design procedure of the
NMPC controller (4.2.1)–(4.2.3) using the terminal δ-invariant terminal set (with δ the controller
sampling time) for stabilizing the multicopter’s translation dynamics (4.1.1) is summarized here-
inafter. The steps to follow are:

1. Choose the pole vectors sq ∈ Pδ as in (4.2.86) and define the position and velocity limits
(Xq, Vq) satisfying (4.2.88)–(4.2.89) (with q ∈ {x, y, z}). Then, establish the terminal δ-
invariant set R as in (4.2.91).
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2. Choose the symmetric matrices Q ∈ R6×6 (positive definite) and R ∈ R3×3 (positive semi-
definite) to formulate the stage cost as in (4.2.4).

3. Define the symmetric matrix M satisfying (4.2.10), then, solve the Lyapunov function
(4.2.6) to obtain the weighting matrix P of the terminal cost as in (4.2.5).

4. Choose the prediction horizon Tp as in (4.2.1).

Remark 4.2.23. Choosing Tp at step 4 of the Procedure 4.2.22 requires to take into account the
computational constraints of the platform (e.g., the processing speed requirement) as well as
to ensure that the first NMPC iteration is successful. Bear in mind that when the prediction
horizon Tp is already large, one can increase the size of the δ-invariant set R defined (4.2.91)
instead. The solution is similar to the enlarging approach introduced for the invariant set S(P, r)
from (4.2.79) as detailed in Section 4.2.1.2 but using the different tuning method discussed in
Remark 4.2.19. �

4.2.2.4 Simulation validation of NMPC design with δ-invariant set

In this section, we present the simulation results for stabilizing the model of a Crazy flie 2.0
nano quadcopter platform characterized by the parameters given in (4.2.68) using the NMPC
design with terminal δ-invariant set as detailed in Proposition 4.2.21. The simulation employs
the same parameters as considered in Section 4.2.1.3, i.e., the NMPC sampling time and model
discretization step δ = 0.1 seconds, the initial state p0 = [−0.1 0.3 − 0.2 0 0 0]>, the weighting
matrices Q = I6 and R = 0.1I3 as employed in (4.2.4). Also, we will make comparisons with
the results obtained by using the standard invariant set S(P1, r1) (c.f. Figure 4.2.3a and P1, r1

detailed in Table 4.2.1) under Scenario 1 as given in Section 4.2.1.3 since they share various
similarities, e.g., simulation scenario, sizes of terminal regions. Further parameters related to
the δ-invariant set construction can be found in Table 4.2.3. We provide the illustration of

Parameters Values

(Ux, Uy, Uz) as in (4.2.89) (0.7168, 0.7168, 2.597)
(s1, s2) as in (4.2.86) (−16,−0.5)

(Kpq , Kdq) as in (3.4.4) (−8,−16.5), ∀q ∈ {x, y, z}
Xq/Vq as in (4.2.88) 2, ∀q ∈ {x, y, z}

(Xx, Vx) as in (4.2.91) (0.042, 0.021)

(Xy, Vy) as in (4.2.91) (0.042, 0.021)

(Xz, Vz) as in (4.2.91) (0.16, 0.08)

M as in (4.2.6) 20I6 (c.f. Proposition 4.2.2)

P as in (4.2.6)

[
26.0795I3 1.25I3

1.25I3 0.6818I3

]

Tp as in (3.1.5) 0.8 seconds (8 steps)

Table 4.2.3: Parameters of the NMPC deisng using terminal δ-invariant set.

the δ-invariant set R as defined in (4.2.91) in Figure 4.2.6a in which the set is split into three
2D sets Rq = {|q| ≤ Xq, |vq| ≤ Vq} with q ∈ {x, y, z}. It can be observed that the size
of the δ-invariant set is comparable to the size of the invariant set S(P1, r1) considered under
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Scenario 1 of Section 4.2.1.3 (green ellipsoid given in Figure 4.2.6a) and hence, the prediction
horizons of the two NMPC controllers are also similar with 8 steps for the δ-invariant approach
as given in Table 4.2.3 w.r.t. 7 steps for the invariant set under Scenario 1 as given in Table
4.2.1. The important difference between them is the terminal box-type constraints resulted from
the special construction of the δ-invariant set as in (4.2.91) in comparison with the quadratic
inequality as in (4.2.79) of the standard invariant method which leads to a significant decreasing
of the computational burden (average values of 46.5 ms for the δ-invariant approach as can be
observed from Figure 4.2.7b w.r.t. 55 ms when using the invariant approach as given in Figure
4.2.4b). Beside that, the convergence speed is also improved. The δ-invariant approach enforces
the states to converge within 3.2 seconds as can be seen from Figure 4.2.6 while it was 4.4
seconds when using the invariant set S(P1, r1) as being illustrated in Figure 4.2.3. However,
bear in mind that when using a significantly larger invariant set and a clearly shorter prediction
horizon length (e.g., S(P2, r2) in Figure 4.2.3a and the prediction horizon of 2 steps as considered
under Scenario 2 of Section 4.2.1.3), we can further reduce the computing time down to 42 ms
as shown in Figure 4.2.4b but the convergence speed is not better (i.e. up to 5 seconds, c.f.
Figure 4.2.3). All the numerical results corresponding to the simulated NMPC controllers will
be gathered into Table 4.4.1 for a complete comparison.
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Figure 4.2.6: State convergences when using NMPC controllers with terminal δ-invariant set.

To conclude this contribution on the use of the δ-invariant set R (4.2.91) for stabilizing the
NMPC controller (4.2.1)–(4.2.3), we would like to emphasize that using the proposed termi-
nal box-type linear constraints provides many benefits in comparison with using a similar-size
terminal invariant set. These can be enumerated as follows:

1. terminal constraints with clear interpretation as in (4.2.91) (w.r.t. the quadratic inequality
of the standard ellipsoid invariant set (4.2.79)).

2. lower computing time (c.f. Figures 4.2.7b and 4.2.4b).

3. faster convergence speed (c.f. Figures 4.2.6 and 4.2.3).

We strongly prove the effectiveness of exploiting the FL controller (4.1.4) on stabilizing the
NMPC designs (4.2.1)–(4.2.3) by using various terminal constraints which are as diverse in their
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Figure 4.2.7: Inputs and computing time when using NMPC controllers with terminal δ-invariant
set.

formulations (e.g. quadratic and box-type linear inequalities) as they are in their sizes. All the
designs show significant improvements when comparing with the classic quasi-infinite horizon
NMPC design using a local linear controller [Chen and Allgöwer, 1998] in the sense that the
design process and the tuning become easier and more efficient while the results including the
convergence and the computing time are significantly better.
In the next section, we show another use of the FL controller (4.1.4), this time for stabilizing the
NMPC design without terminal constraints. The design requires only a “long-enough” prediction
horizon to guarantee its stability. The obtained results are also better than those of the existing
approach using a standard linear controller [Kohler et al., 2018].

4.3 NMPC design without terminal constraint for posi-

tion control

In the literature, it is well-known that the stability of an MPC controller can be achieved by
either adding terminal stabilizing constraints (as presented in Section 4.2) or simply by enlarging
the prediction horizon [Grüne, 2012]. However, how large the prediction horizon should be is
always a difficult question as also discussed in Remarks 4.2.13 and 4.2.19. Therefore, in this
section, we address an NMPC design for the multicopter’s translation system (4.1.1) with its
stability induced by using a “long-enough” prediction horizon length corresponding to a specific
domain of attraction. The design, again, exploits the FL controller uFL(Kp, ψ) as in (4.1.4) in
order to benefit from the simple linear dynamics (4.2.7). Especially, since the prediction horizon
becomes the only important element, it will be easy to understand and put the design into
practice if the implementation form is addressed from the beginning. Therefore, we consider the
discrete domain for designing the NMPC scheme within this section. We employ the simplest
NMPC implementation form where the dynamics (4.1.1) are discretized by using the same NMPC
sampling time δ and the NMPC input is taken as the first step among the resulted optimal
sequence. More precisely, the optimization problem at time step k is given by:

VNp(pk) = min
ūk(·)

JNp(pk, ūk(·)), (4.3.1)
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subject to

p̄k(i+ 1) = F (p̄k(i), ūk(i), ψ) , (4.3.2a)

ūk(i) ∈ Up, i ∈ {0, . . . , Np − 1}, (4.3.2b)

p̄k(0) = pk, (4.3.2c)

with VNp(p(k)) the optimal value function, (p̄k(i), ūk(i)) the predicted state and input at step i
employed within the problem at step k, F(·) the discrete model of the system (4.1.1) explicitly
defined later, Up the input constraint set as in (4.1.2). Furthermore, pk denotes the state
feedback at time k and ψ represents the yaw angle value assumed to be constant. The cost
function JNp(p(k), ūk(·)) is defined in terms of the stage cost `(·) given in (4.2.4), as follows:

JNp(p(k), ūk(·)) =

Np−1∑

i=0

`(p̄k(i), ūk(i)). (4.3.3)

Then, the NMPC control action and the nominal closed-loop system at time k are given by:

uMPC(pk) = ū∗k(0), (4.3.4)

pk+1 = F(pk, uMPC(pk)) = p̄∗k(1), (4.3.5)

with (p̄∗k(i), ū
∗
k(i)) the optimal state and input at the predicted step i which is resulted from the

optimization problem (4.3.1) at the time step k.
The discrete model employed in (4.3.2a) is obtained by discretizing the continuous system (4.1.1)
with the Runge-Kutta fourth-order method [Hager, 2000]:

pk+1 = F (pk, uk, ψ) , (4.3.6)

with (pk, uk) the state and input at time step k and ψ the yaw angle assumed to be constant.
The function F(·) is explicitly given by:

F (pk, uk, ψ) =

[
I3 δI3

03×3 I3

]
pk +

1

m



δ2

2
I3

δI3





Tk(cosφk sin θk cosψ + sinφk sinψ)
Tk(cosφk sin θk sinψ − sinφk cosψ)

−g + Tk cosφk cos θk


 , (4.3.7)

in which, the input vector uk , [Tk φk θk]
> ∈ R3 and δ is the discretization step which is also

the NMPC sampling time. The discrete system (4.3.6) is linear in the state pk since the original
continuous system (4.1.1) already possesses this property.
The stability of system (4.3.5) is well studied and presented in [Grüne and Pannek, 2011,Kohler
et al., 2018] and summarized hereinafter.

4.3.1 NMPC design with stability induced by a “long-enough” pre-
diction horizon

Assumption 4.3.1. Regarding the NMPC optimization problem (4.3.1), there exist constants
(γ, c) > 0 such that for any Np ≥ 2 and for all the initial state p0 satisfying ‖p0 − pe‖2

Q ≤ c, we
have:

VNp(p0) ≤ γ‖p0 − pe‖2
Q, (4.3.8)

with VNp(p0) the optimal value function as in (4.3.1) at step 0, pe the desired equilibrium and
Q ∈ R6×6 the weighting matrix as in (4.2.4).
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Theorem 4.3.2. Let Assumption 4.3.1 hold. Then, there exists an N0 ∈ N, such that for all
the prediction horizon length Np ≥ N0, the equilibrium pe is uniformly exponentially stable under
the nominal closed-loop dynamics (4.3.5) for any initial state p0 satisfying VNp(p0) ≤ cγ. �

Proof. See Theorem 1 in [Kohler et al., 2018] and Theorem 3.6 in [Grüne, 2012]. At first,
in [Kohler et al., 2018], the authors show that VNp(pk) ≤ cγ implies that VNp(pk) ≤ γ‖pk − pe‖2

Q

with a case dictinction based on whether ‖pk − pe‖2
Q ≤ c or not [Kohler et al., 2018].

Secondly, whenever VNp(pk) ≤ γ‖pk−pe‖2
Q holds, in [Grüne, 2012], the authors show that VNp(pk)

decreases for all Np ≥ N0 with N0 given by (see Variant 3 in [Grüne, 2012] for more details):

N0 = 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
. (4.3.9)

Lastly, the recursive feasibility and exponential stability are obtained with the initial condition
VNp(p0) ≤ cγ.

In the literature, the standard approach for valdating Assumption 4.3.1 and Theorem 4.3.2
is to employ a linear controller and to estimate the parameters (γ, c) as in (4.3.8) within its
associated invariant set (of ellipsoidal form as in [Chen and Allgöwer, 1998,Kohler et al., 2018]
or polyhedral form as in [Cannon et al., 2003]). However, employing a linear controller for
the nonlinear system (4.3.6) obviously restricts the corresponding invariant set, hence, arguably
leading to an impractically large prediction horizon Np from (4.3.9) of the NMPC controller
(4.3.1)-(4.3.4).
Thus, it is worthwhile to ask whether, for the particular dynamics (as those shown in (4.3.6)),
we may dispense with the linearized dynamics/linear controller construction and, instead, check
Assumptions 4.3.1 by applying the FL controller uFL(µξ, ψ) defined in (4.1.4).
In order to do that, we emphasize that the feedback linearization property of the control law
uFL(µξ, ψ) as in (4.1.4) remains validated for the discrete system (4.3.6) but requires the virtual
input vector µξ = [µx µy µz]

> as in (4.1.4) to admit the discrete PD formulation:

µq(pk) = K1qqk +K2qvqk , ∀q ∈ {x, y, z}, (4.3.10)

in which, the control gains (K1q , K2q) is chosen differently in comparison with the continuous
gains (Kpq , Kqq) (only required to be negative) as in (4.2.8):

− 2

δ
< K2q <

δ

2
K1q < 0. (4.3.11)

The condition (4.3.11) is to guarantee the stability of the following linear dynamics obtained
from introducing the FL controller uFL(µξ(pk), ψ) to the nonlinear system (4.3.6):

pk+1 =


I3 +

δ2

2
K1 δI3 +

δ2

2
K2

δK1 I3 + δK2




︸ ︷︷ ︸
AKd

pk, (4.3.12)

in which, the gain matrix Kd ∈ R3×6 gathers all the control gains (K1q , K2q) as in (4.3.11):

Kd =
[
K1 K2

]
, (4.3.13)

with K1 = diag{K1x , K1y , K1z} and K2 = diag{K2x , K2y , K2z}.
Next, we will address the discrete formulation of the corresponding ellipsoid invariant set (i.e.
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the continuous form is given in Proposition 4.2.4) and the convergence rate of the state within
the set which will be useful to check Assumption 4.3.1.
By choosing a symmetric positive definite matrix Md ∈ R6×6, we obtain a symmetric positive
definite matrix Pd ∈ R6×6 as the unique solution of the following discrete Lyapunov equation:

A>KdPdAKd = Pd −Md. (4.3.14)

with the discrete stable matrix Acl from (4.3.12). Note that, the symmetric matrix Md employed
for the discrete Lyapunov equation (4.3.14) does not require to be chosen as in (4.2.10) but only
to be positive definite which is due to the fact that the terminal cost as in (4.2.5) is not used in
the NMPC design (4.3.1)–(4.3.4). The matrix Pd obtained from (4.3.14) allows us to construct
an ellipsoid invariant set for the discrete system (4.3.6) as follows:

S(Pd, rd) = {pk ∈ R6| p>k Pd pk ≤ min(eig(Pd))r
2
d}, (4.3.15)

with rd ∈ R+ chosen similarly to r in (4.2.19) but with the new discrete control gains (K1q , K2q)
as in (4.3.11):

rd = min
q∈{x,y,z}

{
Uq√

K2
1q +K2

2q

}
, (4.3.16)

with (Ux, Uy, Uz) the positive constants as in (4.1.6).

Proposition 4.3.3 ( [Nguyen et al., 2020c]). The set S(Pd, rd) defined in (4.3.15) is input
constraint admissible and positive invariant for the system (4.3.6) under the FL controller
uFL(Kdpk, ψ) as in (4.1.4) with Kd from (4.3.13). Furthermore, within the set, the state conver-
gence speed is bounded by a scalar ρ as follows:

‖pk+1‖2
Pd
≤
(

1− min(eig(M))

max(eig(Pd))

)

︸ ︷︷ ︸
ρ

‖pk‖2
Pd
, (4.3.17)

with M and Pd symmetric positive definite matrices as in (4.3.14).

Proof. The input constraint admissible property of the set S(Pd, rd) as in (4.3.15) is constructed
identically to the one of Proposition 4.2.4. Then, within the set, the FL controller uFL(Kdpk, ψ),
given as in (4.1.4) with Kd from (4.3.13) provides:

‖pk+1‖2
Pd

= p>A>KdPdAKdp = ‖pk‖2
Pd
− ‖pk‖2

M , (4.3.18)

with M and Pd symmetric positive definite matrices as in (4.3.14). This firstly proves the
invariant property of the set S(Pd, rd) from (4.3.15) and further leads to the convergence rate as
in (4.3.17) due to:

‖pk‖2
M ≥ min(eig(M))‖pk‖2 ≥ min(eig(M))

max(eig(Pd))
‖pk‖2

Pd
. (4.3.19)

This also completes the proof.

Hereinafter, we will employ the results of Proposition 4.3.3 to validate the Assumption 4.3.1
and Theorem 4.3.2. We firstly define the positive constants c, γ from (4.3.8) as follows:

c = r2
d min(eig(Q))

min(eig(Pd))

max(eig(Pd))
, γ =

max(eig(Q∗))

min(eig(Q))

max(eig(Pd))

min(eig(Pd))(1− ρ)
, (4.3.20)



4.3. NMPC design without terminal constraint for position control 114

with Q the weighting matrix as in (4.2.4), rd from (4.3.16), Pd obtained from solving the Lya-
punov equation (4.3.14) and ρ as defined in (4.3.17). The matrix Q∗ is given as follows:

Q∗ = Q+ Lmax(eig(R))K>d Kd, (4.3.21)

with R the weighting matrix as in (4.2.4), L a positive constant as in (4.1.10) and Kd the control
gain matrix from (4.3.13).

Proposition 4.3.4 ( [Nguyen et al., 2020c]). Assumption 4.3.1 is satisfied with (c, γ) as in
(4.3.20). Furthermore, the closed-loop dynamics (4.3.5) (controlled by the NMPC controller
(4.3.1)–(4.3.4)) are uniformly exponentially stable for all the initial states p0 satisfying VNp(p0) ≤
cγ with VNp(p0) the optimal value function from (4.3.1). �

Proof. The proof is detailed in Appendix G.

By Proposition 4.3.4, the stability of the NMPC controller (4.3.1)–(4.3.4) is established by
using the parameters (γ, c) as defined in (4.3.20) which are exploited from the FL controller
uFL(Kdp, ψ) as in (4.1.4), (4.3.13). In the following, the design procedure is summarized.

Procedure 4.3.5 (NMPC design without terminal stabilizing constraints).

1. Choose the symmetric matrices Q ∈ R6×6 (positive definite) and R ∈ R3×3 (positive semi-
definite) to formulate the stage cost as in (4.2.4).

2. Choose the control gains (K1q , K2q) (q ∈ {x, y, z}) as in (4.3.13).

3. Choose the symmetric positive definite matrix M in (4.3.14) and solve the Lyapunov equa-
tion (4.3.14) for Pd.

4. Find ρ as in (4.3.17), c and γ as in (4.3.20) in order to find N0 given in (4.3.9).

5. Define the prediction horizon Np ≥ N0 as in (4.3.9).

4.3.2 Tuning the prediction horizon

It is well-known in the literature that an NMPC controller without terminal stabilizing con-
straints as in (4.3.1)–(4.3.4) requires a sophisticated tuning procedure in order to obtain the
reasonable values of the required minimum prediction horizon N0 and also of the region of at-
traction which guarantees the stability [Kohler et al., 2018,Grüne, 2012]. However, to the best
of our knowledge, the tuning problems of the NMPC without terminal stabilizing constraints
have been underestimated in various relating works [Limón et al., 2006,Grüne, 2012,Reble and
Allgöwer, 2012, Kohler et al., 2018]. That is to say, people concentrate mostly on the stability
proofs of their NMPC designs (e.g. as our contribution in Proposition 4.3.4), then, provide one
illustrative example with specific parameters [Kohler et al., 2018, Boccia et al., 2014]. Theses
examples actually aim to show how the results are obtained (e.g. in order for the readers to
validate again the calculation process by themselves) but do not give the insight into the actual
tuning process. For our particular NMPC design (4.3.1)-(4.3.4), the most influential parameters
are the control gains K1q , K2q with q ∈ {x, y, z} satisfying the condition (4.3.11), the symmetric
positive definite matrices M from (4.3.14) and Q, R from (4.2.4) which are not easy to tune
due to a large amount of decision variables. We will show that an arbitrary choice of these
parameters can easily lead to a dramatically large and hence, impractical prediction horizon
length.
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Example 4.3.6 (Effects of tuning parameters on prediction horizon length). The values of
the required prediction horizon length N0 as in (4.3.9) and the corresponding parameter c as in
(4.3.20) w.r.t. to different tuning scenarios are given in Table 4.3.1. It can be observed that
appropriate changes in the tuning parameters allow to reduce the required prediction horizon N0

and to increase the value of c which represents the inner part of the domain of attraction, i.e.,
‖p‖2

Q ≤ c as in (4.3.8), hence, also enlarging the domain. The tuning steps are listed following
Procedure 4.3.4. The values of (Ux, Uy, Uz) as in (4.3.16) are taken from Table 2.5.1.

Description Q R K1 K2 M N0 c

First choice

[
I3 03×3

03×3 0.1I3

]
0.1I3 −I3 −I3 I6 2853 0.01

Tuning R

[
I3 03×3

03×3 0.1I3

]
0.01I3 −I3 −I3 I6 2762 0.01

Tuning Q I6 0.01I3 −I3 −I3 I6 173 0.104

Tuning K1 I6 0.01I3 −1.2I3 −I3 I6 156 0.09

Tuning K2 I6 0.01I3 −1.2I3 −0.9I3 I6 152 0.106

Tuning M I6 0.01I3 −1.2I3 −0.9I3

[
I3 0.1I3

0.1I3 1.3I3

]
150 0.118

Table 4.3.1: Prediction horizon length w.r.t different tuning parameters [Nguyen et al., 2020c].

By Example 4.3.6, we have shown that appropriately tuning the variables can increase the
performance of the NMPC controller (4.3.1)–(4.3.4), however, it also raises a question on:

How to obtain the appropriate parameters for the NMPC design (4.3.1)–(4.3.4) ?

In order to answer this question, we consider the important ingredient γ as calculated in (4.3.20)
which affects the required prediction horizon N0 as in (4.3.9). By introducing ρ from (4.3.17)
into γ as in (4.3.20), we can express γ as the multiplication of γ1 and γ2 as follows:

γ =
max(eig(Q∗))

min(eig(Q))︸ ︷︷ ︸
γ1

(max(eig(Pd)))
2

min(eig(Pd)) min(eig(M))︸ ︷︷ ︸
γ2

, (4.3.22)

with Q as in (4.2.4), Pd, M as employed in the Lyapunov equation (4.3.14) and Q∗ as in (4.3.21),
all symmetric positive definite matrices. At first, from the formulation of N0 given in (4.3.9),
decreasing the value of γ as in (4.3.22) also reduces the prediction horizon N0. Therefore, it is
in our interest to minimize the values of γ1 and γ2 as defined in (4.3.22). In order to reduce the
decision variables, we follow some reasonable assumptions:

• We give equal importance to the motions along the three axes (as similar to (4.2.49)–
(4.2.50)), i.e.:

Q = diag{q1, q1, q1, q2, q2, q2}, (4.3.23)

K1x = K1y = K1z = k1, (4.3.24)

K2x = K2y = K2z = k2. (4.3.25)
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in which, q1, q2 are positive scalars and k1, k2 < 0 have to satisfy (4.3.11). As a result, the
matrix AKd in (4.3.12) becomes:

AKd =



(

1 +
δ2

2
k1

)
I3 δ

(
1 +

δ

2
k2

)
I3

δk1I3 (1 + δk2)I3


 , (4.3.26)

• The symmetric matrix M ∈ R6×6 in (4.3.14) is parametrized as follows:

M =

[
m1I3 m3I3

m3I3 m2I3

]
, (4.3.27)

with m1,m2,m3 ∈ R satisfying the following conditions:

m1m2 > m2
3. (4.3.28)

in which the role of (4.3.28) is to guarantee the positive definite property of M . Note that,
with m1 = 1, (4.3.28) is simplified to m2 > m2

3.

Remark 4.3.7. We fix m1 = 1 as employed in (4.3.27) since any scaling on M results on the same
scaling on P due to the Lyapunov equation (4.3.14). Then, all the eigenvalues of M and P are
scaled similarly, hence, γ2 in (4.3.22) does not change. Therefore, fixing m1 = 1 does not cause
any loss of generality within the analysis (but reduces the numerical issues). �

4.3.2.1 Tuning γ1 as in (4.3.22)

By introducing the parametrizations of Q and (K1q , K2q) (with q ∈ {x, y, z}) (4.3.23)–(4.3.25)
to Q∗ as in (4.3.21), γ1 as defined in (4.3.22) is explicitly given by:

γ1 =
max(eig(Q∗))

min(eig(Q))
=
q1 + q2 + r̃(k2

1 + k2
2) +

√
(q1 − q2 + r̃(k2

1 − k2
2))

2
+ 4r̃2k2

1k
2
2

2 min(q1, q2)
, (4.3.29)

in which, r̃ is directly proportional with the maximum eigenvalue of the positive semi-definite
matrix R:

r̃ = Lmax(eig(R)), (4.3.30)

with L a positive constant as in (4.1.10). From (4.3.29), we obtain that:

q1 + q2 + r̃(k1 + k2)2

2 min(q1, q2)
≤ γ1 ≤

q1 + q2 + r̃(k2
1 + k2

2) +
√

2 (q1 − q2)2 + 2r̃2(k4
1 + k4

2)

2 min(q1, q2)
, (4.3.31)

in which, the first inequality is due to (q1 − q2 + r̃(k2
1 − k2

2))
2 ≥ 0 and the latter one is by using

(q1 − q2 + r̃(k2
1 − k2

2))
2 ≤ 2 (q1 − q2)2 + 2r̃2(k2

1 − k2
2)2. From (4.3.31), it can be observed that

reducing the values of |q1 − q2|, max(eig(R)), k2
1 and k2

2 probably provide a smaller value of γ1

(we use “probably” since the reductions of the aforementioned parameters actually make both
the upper and lower bounds as in (4.3.31) smaller). Especially, in case of q1 = q2 = ar̃ with a
positive scalar a, γ1 from (4.3.29) becomes:

γ1 = 1 +
k2

1 + k2
2

a
, (4.3.32)

which actually allows us to obtain a specific value of γ1 by tuning only two weighting matrices
Q and R as employed in (4.2.4) regardless the predefined values of (k1, k2).
Therefore, for tuning γ1 as in (4.3.29), we propose several general directions:



4.3. NMPC design without terminal constraint for position control 117

• decrease the ratio max(eig(Q))/min(eig(Q)) as much as possible.

• decrease the value of max(eig(R)) based on the employed values of (k1, k2) but bear in
mind that a small value of R causes large input consumption.

• decrease the values of k2
1 and k2

2. However, this is not encouraged since it can cause an
unexpected increase in the value of γ2 as in (4.3.22) and finally result in a larger prediction
horizon N0.

Remark 4.3.8. Formulation (4.3.32) explains the effects of the first two tuning steps given in
Table 4.3.1: i) reducing max(eig(R)) and ii) eliminating the term |q1− q2|. However, it does not
explain for the rest of Table 4.3.1 which requires us to analyze the parameter γ2 as detailed in
the following. �

4.3.2.2 Tuning γ2 as in (4.3.22)

As similar to the analysis on how to tune γ1 as in (4.3.29), the first step is to find the explicit
formulation of γ2 (defined in (4.3.22)) in terms of the tuning variables (4.3.23)–(4.2.13). The
calculation is identically to the one proving the semi-global stability property as in Proposition
4.2.7 and is too cumbersome to present here. Therefore, we give the proof in Appendix H and
present only the steps to follow hereinafter:

1. Solve the discrete Lyapunov equation (4.3.14) with AKd as in (4.3.26) and M as in (4.2.13),
very similar to the approach detailed in Proposition 4.2.8. The matrix solution Pd is
explicitly given in (H.0.1).

2. Obtain the explicit formulations of the eigenvalues of Pd and M (given in (H.0.4)–(H.0.6))
similarly to the results of Corollary 4.2.9.

3. Introduce the eigenvalues of Pd and M as given in (H.0.4)–(H.0.6) to γ2 defined in (4.3.22).

Then, we obtain the explicit formulation of γ2 (4.3.22) in terms of the parameters (k1, k2,m2,m3)
(4.3.24)–(4.2.13) which is defined as follows:

γ2 , γ2(k1, k2,m2,m3), (4.3.33)

with the function γ2(·) illustrated in Figure 4.3.1 for some specific values of (k1, k2).
It will be in our interest to analyze and to find the (local) minimums of the function γ2(·)

defined in (4.3.33). Since the function is strongly nonlinear, non-convex and contains up to four
variables, we have to divide the task into two steps:

1. Find the optimal values of (m2,m3) which provide the local minimum value of γ2 corre-
sponding to a specific values of (k1, k2):

γ∗2(k1, k2) = min
m2,m3

γ2(k1, k2,m2,m3). (4.3.34)

subject to m2 > m2
3 as required in (4.3.28),

(m2,m3) ∈ [m2min
,m2max ]× [−m3max ,m3max ],

with (m2min
,m2max ,m3max) positive scalars specifying the ranges of m2 and m3 as in (4.2.13),

defined by user (c.f. Figure 4.3.1).

2. Apply Step 1 for different choices of (k1, k2), then, compare the obtained minimum values
γ∗2 as in (4.3.34) in order to provide the complete analysis.
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Figure 4.3.1: Illustration of γ2(k1, k2,m2,m3) as in (4.3.33) with different values of (k1, k2).
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Figure 4.3.2: Illustration of the analysis on N0 [Nguyen et al., 2020c]

Remark 4.3.9. The solution of the optimization problem in (4.3.34) is obtained by checking a
mesh grid of the variables (m2,m3) within the specific range [m2min

,m2max ] × [−m3max ,m3max ],
hence, the solution’s accuracy depends on the resolution of the mesh grid. However, the accuracy
problem is not critical due to the fact that we always have to choose the prediction horizon
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Np ≥ N0 and Np ∈ N (e.g., it does not matter if we obtain N0 = 149.4 instead of the precise
value assumed to be 149.36 since the minimum prediction horizon needs to be an integer, which
leads in both case to Np = 150). Furthermore, using the mesh grid method provides very fast
computing times. E.g., it takes only 0.06 seconds to construct the whole data points for Figure
4.3.2 which contains 51× 41 points of (m2,m3) and 11× 11 points of (k1, k2). �

k1 (4.3.24) k2 (4.3.25) m3 (4.3.27) m2 (4.3.27) N0 (4.3.9) c (4.3.20)

−1.3 −1.1 0.2 1.6 150 0.089
−1.3 −1 0.1 1.3 150 0.093
−1.2 −0.9 0.1 1.3 150 0.118
−1.2 −0.8 0 1 150 0.125

−0.1 −0.1 Method in [Kohler et al., 2018] 106 10−4

−1 −1 Using linear controller u = Kdp + ue 5124 10−7

−2 −2 and the linearized dynamics 1112 10−7

Table 4.3.2: Optimal values of (k1, k2,m2,m3) which provide the smallest N0 in comparison with
the method in [Kohler et al., 2018] (using Q = I6 and R = 0.01I3 as in (4.2.4)).

We enumerate in Table 4.3.2 all the scenarios in which, we obtain the smallest value of the
required prediction horizon N0 = 150 by using the weighting matrices Q = I6 and R = 0.01I3.
Table 4.3.2 also shows the corresponding values of c from (4.3.20) which helps identifying all
the feasible initial states p0, i.e., VNp(p0) ≤ cγ as stated in Theorem 4.3.2. All the choices of
(k1, k2,m2,m3) gathered in Table 4.3.2 require the minimum prediction horizon of 150 but they
provide a large range of c from 0.089 to 0.125. Obviously, with the same prediction horizon of
150 (i.e., similar γ), the larger value of c results in larger domain of attraction. Thus, the control
gains (k1, k2) = (−1.2,−0.8) with N0 = 150 and c = 0.125 obtained with M = I6 appears to be
the best choice in our analysis.
For comparison, we use the method proposed in [Kohler et al., 2018] which employs a linear
controller u = Kdp+ue with Kd as in (4.2.50) and ue as in (4.1.3) as well as the linearized model
of the dynamics (4.3.6). The results are given in the last three lines in which both the value of
c and the prediction horizon N0 are much more conservative than the results of our proposed
method. This is due to the restriction of using the linear controller for the strongly nonlinear
system (4.3.6). This strongly confirms the effectiveness of our NMPC design approach using the
local FL controller uFL(Kdp, ψ) as in (4.1.4).
Furthermore, we also notice that even the shortest prediction horizon in our analysis N0 = 150
steps is still extremely large for real implementation. However, bear in mind that the obtained
results (c.f. Table 4.3.2) are still more promising than employing the linear controller as con-
sidered in [Kohler et al., 2018]. This also indicates a big gap still existing between the theory
on NMPC design and their practical formulations since through various simulations and ex-
perimental tests, the NMPC controller (4.3.4)–(4.3.4) requires a prediction horizon of only 10
steps to stabilize the system (4.3.6). This is due to the fact that the NMPC controller can fully
exploit the inputs of the system while a standard controller (e.g. FL controller uFL(Kdp, ψ) as in
(4.1.4) or the linear controller as employed in [Kohler et al., 2018]) enforces the inputs to follow
their explicit formulations, hence, the convergence speed of the standard controller (e.g. ρ as in
(4.3.17)) can not be fast enough to obtain this short prediction horizon of 10 steps.
To conclude, we have completely exploited the usage of the FL controller uFL(Kdp, ψ) for de-
signing the NMPC controller (4.3.4)–(4.3.4) through the stability proof as in Proposition 4.3.4
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and also the tuning procedure as detailed in Section 4.3.2 and positively believe that our com-
plete analysis can be generalized and similarly applied for various nonlinear controllers (e.g.,
passivity-based control [Ha et al., 2014], H∞ control [Kerma et al., 2012], etc) which may result
in more realistic prediction horizons.

4.3.3 Simulation validation of NMPC controller without terminal
stabilizing constraints

This section provides the simulation results for stabilizing the model of a Crazy flie 2.0 nano
quadcopter platform characterized by the parameters given in (4.2.68) using the NMPC design
without terminal constraints (4.3.1)–(4.3.4). The simulation employs the same parameters as
considered in Sections 4.2.1.3 and 4.2.2.4, i.e., the NMPC sampling time and model discretization
step δ = 0.1 seconds and the initial state p0 = [−0.1 0.3 −0.2 0 0 0]>. We consider two simulation
scenarios:
Scenario 1: employing the prediction horizon of Np = 150 steps which guarantees the closed-
loop stability according to Table 4.3.1.
Scenario 2: employing the prediction horizon of Np = 10 steps.
Both scenarios use the weighting matrices Q = I6 and R = 0.01I3 as considered in Table 4.3.1.
We provide the state convergence results in Figure 4.3.3a in which, we can see that the NMPC
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Figure 4.3.3: Position results and computing time when using NMPC controllers without termi-
nal stabilizing constraints.

controller under Scenario 1 (using the 150-step prediction horizon) obtains the transition time of
3.2 seconds while employing the prediction horizon of only 10 steps makes the states converging
in longer time, i.e., 14 seconds. It is also trivial that the computation burden under Scenario 1
is much heavier than the one under Scenario 2 as can be seen from Figure 4.3.3b. The average
computing time of the NMPC controller with the 150-step prediction horizon is 242 milliseconds
while it is only 51.3 second for the second scenario.
In the next section, all the simulation results of the presented NMPC designs in Sections 4.2–4.3
will be gathered together in order to conduct a thorough and complete comparison between
them.
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4.4 Comparisons between different NMPC designs

This section gathers all results of the numerical simulations carried out for the different NMPC
designs introduced in this Chapter. The analysis is given in Table 4.4.1 which includes:

1. the proposed NMPC design with terminal invariant set constructed under the FL con-
troller (4.1.4). The design achieves the semi-global stability property. Two scenarios are
considered:

i) the initial state does not stay within the terminal set, hence, the prediction horizon
length needs to be increased in order to guarantee the feasibility of the NMPC problem
(Scenario 1 in Section 4.2.1.3);

ii) the terminal set is enlarged until covering the initial state. The shortest prediction
horizon of 2 steps is employed (Scenario 2 in Section 4.2.1.3).

2. the quasi-infinite horizon NMPC (denoted by qMPC in the analysis) design [Chen and
Allgöwer, 1998] (Scenario 3 in Section 4.2.1.3).

3. the proposed NMPC design with terminal δ-invariant set under the the FL controller
(4.1.4) (Section 4.2.2.4).

4. the NMPC design without terminal stabilizing constraints which is constructed by using
the FL controller (4.1.4) as the feasible guess and is able to guarantee stability for a
prediction horizon of 150 steps (Scenario 1 in Section 4.3.3).

5. the NMPC design without terminal stabilizing constraints using the prediction horizon of
10 steps which, in simulation proves capable of ensuring a bounded behavior but lacks
theoretical guarantees – it has no stability proof (Scenario 2 in Section 4.3.3).

6. the NMPC design without terminal stabilizing constraints but with its stability guaranteed
by using the method introduced in [Kohler et al., 2018] with the prediction horizon of 1152
steps (c.f. Table 4.3.2). No simulation is conducted for this scenario due to its impractically
long prediction horizon.

The data given in Table 4.4.1 clearly shows that exploiting the FL controller (4.1.4) to design
an NMPC controller provides better results than using a standard linear controller (as used in
qMPC design [Chen and Allgöwer, 1998] and in [Kohler et al., 2018]) for both cases of using
and not using the terminal stabilizing constraints. At first, regarding the first four scenarios,
all making use of the terminal stabilizing constraints, the qMPC design provides the smallest
terminal region (c.f. Ωα in Figure 4.2.3). Hence, it requires the longest prediction horizon of
12 steps. These conservative elements lead to a significantly larger computing time (with the
mean value of 77 milliseconds and the maximum value reaching 109 milliseconds) in comparison
with the three other cases using the proposed methods. Next, the first two scenarios (i.e.,
using the proposed terminal invariant set S(P, d) as in (4.2.79)) indicates the ease to tune the
corresponding NMPC design while still guaranteeing a low computation burden and good control
performance. We can either use the “medium-size” terminal set S(P1, d1) with 7-step prediction
horizon or employ the enlarging approach detailed in Section 4.1 in order to obtain the terminal
set S(P2, d2) ultimately containing the initial state (c.f. Figure 4.2.3a) and hence, to possibly
employ a short prediction horizon of 2 steps which still guarantees the closed-loop stability. The
second design (i.e., using the large-size terminal region S(P2, d2)) requires the least computing
time with only 42 milliseconds per step on average but provides inferior control performance
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with its convergence time of 5.2 seconds - the second slowest in the analysis. However, if the
users want to increase the performance, they can easily reduce the size of the terminal invariant
set and the convergence time can be reduced accordingly, e.g., down to 4.4 seconds when using
the smaller invariant set S(P1, d1).
Furthermore, an interesting point is that we are able not only to increase the control performance
but also to reduce the computing time by using a relaxed invariant set, called δ-invariant set R
as in (4.2.91) with its linear construction as the terminal region of the NMPC design with the
closed-loop stability guaranteed by Proposition 4.2.21. The data given in the fourth scenarios
shows that using these linear box-type constraints (4.2.91) helps reducing the computing time
down to 46.5 milliseconds per step on average (i.e., the second lowest among the considered
scenarios) while its “medium” size (c.f. the set R in Figure 4.2.6a in comparison with the set
P(P1, r1) in Figure 4.2.3a) provides a good convergence speed of 3.2 seconds.
Next, regarding the last three scenarios in which we consider the NMPC design without terminal
stabilizing constraints (denoted by uMPC), the proposed calculation process based on the FL
controller (4.1.4) significantly reduces the minimum required prediction horizon (150 steps) in
comparison with the method using the standard linear controller introduced in [Kohler et al.,
2018] which requires 1152 steps to stabilize the system. However, both the results are not
ready for real implementation since the computing time under the case of 150 steps is already
242 milliseconds on average. When the practical prediction horizon of 10 steps is employed,
the uMPC controller requires only 51.3 milliseconds for one iteration on average, however, the
convergence time is very long which is up to 12.5 seconds - the highest value in the analysis.

Controller’s Terminal Prediction Convergence Computing time [ms]

information region horizon time (95%) Mean Min Max
Ter. invariant set S(P1, r1) in (4.2.79)

7 4.4 55 46.3 62.5
Sce. 1, Sec. 4.2.1.3 p0 6∈ S(P1, r1)
Ter. invariant set S(P2, r2) in (4.2.79)

2 5.2 42 31.2 62.5
Sce. 2, Sec. 4.2.1.3 p0 ∈ S(P2, r2)

qMPC design Ωα in (3.4.6)
12 2.6 77 62.5 109

Sce. 3, Sec. 4.2.1.3 p0 6∈ Ωα

Ter. δ-invariant set R in (4.2.91)
8 3.2 46.5 31.2 63

Sec. 4.2.2.4 p0 6∈ R
uMPC design not

150 2.6 242 226 283
Sce. 1, Sec. 4.3.3 applicable

uMPC design not
10∗ 12.5 51.3 31.2 78.1

Sce. 2, Sec. 4.3.3 applicable
uMPC design not

1152 Not simulated
[Kohler et al., 2018] applicable

Notations: qMPC: quasi-infinite horizon NMPC [Chen and Allgöwer, 1998], uMPC: NMPC
design without terminal stabilizing constraints (also referred as unconstrained NMPC [Grüne,
2009]) and ∗: without stability proof.

Table 4.4.1: Comparison between different NMPC designs under simulation.

In the next section, the two NMPC controllers using the terminal invariant set S(P1, r1) as
considered under Scenario 1 in Section 4.2.1.3 and the terminal δ-invariant set R as considered
in Section 4.2.2.4 will be employed for conducting real experimental tests over the Crazyflie 2.0
nano-quadcopter platform (c.f. Section 2.5.1).
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4.5 Experimental validation

This section introduces the experimental validation of the two proposed NMPC controllers:
using the terminal invariant set S(P, r) as detailed in Proposition 4.2.5 and using the terminal
δ-invariant set R as detailed in Proposition 4.2.21 over the laboratory Crazyflie 2.0 (CF) nano-
quadcopter. The controllers are calculated by using a station computer and only the set-point
consisting of the thrust and the three angles is sent to the Crazyflie 2.0 quadcopter [Nguyen
et al., 2018b]. The station computer is capable of solving the NMPC optimization problem
(4.2.1)–(4.2.3) as its original formulation within the chosen sampling time δt = 0.1 seconds by
using Pyomo [Hart et al., 2011] and the IPOPT solver [Wächter and Biegler, 2006] in Python
3.0. In the following, we describe the limits of the platform and the mismatches between the
theoretically nominal NMPC application and real implementation, then, illustrates the obtained
results of the two proposed NMPC controllers.

4.5.1 Experimental validation limits and how to overcome them

Firstly, the yaw angle ψ as in (4.1.1) is assumed to be a known constant. However, maintaining
a constant direction angle for an aerial vehicle is obviously impossible for long running times.
Thus, we try to stabilize the yaw angle of the CF around zero and update the actual yaw value
to the NMPC optimization problem at each sampling time. This alternative approach still
guarantees the nominal stability of the closed-loop scheme with a less strict assumption, i.e.,
requiring the yaw angle value to be constant only along the prediction horizon 4.

Secondly, the execution time is always significant when considering an NMPC controller,
especially for controlling the Crazyflie 2.0 quadcopter system with the required sampling time
of 0.1 seconds. Thus, even with a perfect state feedback at time instant t, we cannot obtain
the MPC control action immediately at the same time instant t as assumed in (4.2.3). Hence,
we have to relax this assumption by introducing the MPC input computed from information
received at time t to the CF system at time t + δ (i.e., we assume the controller requires a
computation time less than δ).

The experimental platform consists of a Crazyflie 2.0 nano-quadcopter, a Loco Positioning
system (LPS) and a Z-ranger deck [Nguyen et al., 2018b,Giernacki et al., 2017]. LPS provides the
x and y positions of the CF system but with low accuracy (around 10 cm) (green and blue lines
in Figure 4.5.1 within the first 2 seconds) while the Z-ranger deck measures only the distance
between the CF and the ground (state z) with much higher precision (around few millimeters)
(red lines in Figure 4.5.1). Therefore, in order to mitigate the issues raised by the imprecise
estimation of the positions x and y, we fix the initial state at p0 = [0 0.3 − 0.2 0 0 0]> so that
the motion along the x-axis is reduced and hence, we observe clearly the motions along the y
and z axes. We consider two scenarios over which we conduct the experimental tests:

Scenario 1: use the NMPC controller (4.2.1)–(4.2.3) with the terminal invariant set S(P1, r1)
as in (4.2.79) with P1, r1 the parameters given in Table 4.2.1 (i.e., Scenario 1 in Section 4.2.1.3).

Scenario 2: use the NMPC controller (4.2.1)–(4.2.3) with the terminal δ-invariant set R as
in (4.2.91) and with the tuning parameters given in Table 4.2.3 in Section 4.2.2.4.

Furthermore, the velocity of the CF is estimated by using a Kalman filter with the required
noise information measured before taking off (during the gray time interval given in Figure
4.5.1).

4The stability is still guaranteed since all the required ingredients detailed in Propositions 4.2.5 and 4.2.21
hold with a general constant yaw angle ψ ∈ [−π, π].
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Remark 4.5.1. If the reader is interested in using embedded NMPC with low-power hardware,
a discussion on how to re-formulate the NMPC problem (4.2.1) into its approximated quadratic
formulations, and thereafter, solve them by using a modified interior-point solver is detailed
in [Zanelli et al., 2018]. Another discussion on solving a linear MPC problem with a 8-bit
microcontroller by using a convex lifting method is presented in [Gulan et al., 2017]. �

4.5.2 Experimental results

Figure 4.5.1 shows the experimental results along the x (green), y (blue) and z (red) under two
scenarios which shows that both the proposed NMPC controllers succeed in stabilizing the CF
quadcopter. It can be seen again that the terminal δ-invariant set R under Scenario 2 provides
faster convergence speed than the invariant set S(P1, r2) under Scenario 1 (3.6 seconds vs. 4.2
seconds, as illustrated by the red plot in Figure 4.5.1). The NMPC controller with the terminal
δ-invariant set under Scenario 2 also results in more input consumption as clearly observed from
Figure 4.5.2a (dashed lines) in which the maximum values of the thrust and the pitch angle
under Scenario 2 (dashed lines) are significantly higher than thoses of the NMPC controller
using terminal invariant set S(P1, r1) (solid lines). All the inputs respect their constraints.
The computing times of both NMPC controllers under experiment are given in Figure 4.5.2b are
higher when compared to the simulation results given in Table 4.4.1 but they still share the same
trend, i.e., the NMPC controller using the terminal δ-invariant set R (i.e., using terminal box-
type linear constraints) under Scenario 1 (red line in Figure 4.5.2b) provides less computational
burden than the controller using the terminal invariant set S(P1, r1) (i.e., terminal quadratic
constraints) (blue line in Figure 4.5.2b) with their average computing time of 51.8 milliseconds
and 61.4 milliseconds, respectively. For the whole simulation time, the computing times of both
the two controllers are smaller than the sampling time δt = 0.1 seconds. The obtained results
are summarized in Table 4.5.1.
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Figure 4.5.1: Position convergences under two experimental tests.

The experimental results clearly confirm the effectiveness of the proposed approaches, i.e.,
employing the feedback linearization controller (2.4.1) to design the terminal regions which
guarantee the stability of the corresponding NMPC controllers. The terminal regions can be
either the invariant set S(P, r) as in (4.2.79) or the δ-invariant set R as in (4.2.91). The two
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Figure 4.5.2: Input results and computing time of the two NMPC controllers under two experi-
mental tests.

Controller’s Terminal Prediction Convergence Computing time

information region horizon time (95%) Mean Min Max
Ter. invariant set S(P1, r1) in (4.2.79)

7 4.2 61.4 48 92.9
Sce. 1, Sec. 4.2.1.3 p0 6∈ S(P1, r1)
Ter. δ-invariant set R in (4.2.91)

8 3.6 51.8 46.8 83.7
Sec. 4.2.2.4 p0 6∈ R

Table 4.5.1: Comparison between two NMPC designs using the invariant and δ-invariant sets as
their terminal constraint sets under experiment.

proposed sets are the original contributions of the thesis which provide several unique and useful
advantages, i.e.: the ease of tuning (i.e., enlarging and vice versa) for invariant set S(P, r) as in
(4.2.79) and the clear interpretation, simple construction for the δ-invariant set R as in (4.2.91)
which allows to reduce much of the complexity encountered in a typical NMPC problem.

4.6 Concluding remarks and open questions

In this chapter, we have addressed the problem of exploiting the feedback linearization (FL)
controller uFL(Kp, ψ) as defined in (4.1.4) for designing several NMPC schemes with guaranteed
stability. More precisely, the original contributions include:

1. an NMPC design using terminal invariant set with semi-global asymptotic stability guar-
antee:
The design employs a terminal invariant set and a terminal cost for ensuring the recursive
feasibility and asymptotic stability following the existing design principles in the litera-
ture [Mayne et al., 2000]. The originalities lie in the construction of the invariant set
under the aforementioned FL controller and the corresponding relatively easy tuning pro-
cess (in comparison with employing a standard linear controller as in the quasi-infinite
horizon NMPC design [Chen and Allgöwer, 1998]). We prove that the set can be enlarged
infinitely in the absence of state constraints, hence, the domain of attraction can also be
expanded unlimitedly. Therefore, the proposed NMPC design achieve the semi-global sta-
bility property (c.f. Definition 4.2.3). The controller is validated under both simulation
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and experiment. The controller provides good computing times (i.e., down to 42 mil-
liseconds per step when using the terminal invariant set which contains the initial state,
hence, possibly employing the prediction horizon of 2 steps as detailed in Table 4.4.1) and
also good control performance (i.e., convergence time of 4.4 seconds under simulation and
4.2 seconds under experiment with a “medium-size” terminal invariant set S(P2, r2) as in
Tables 4.4.1 and 4.5.1).

2. an NMPC design using terminal δ-invariant set with asymptotic stability guarantee:
The design is constructed similarly to the previous one but using a δ-invariant set (with δ
the sampling time of the controller, c.f. Definition 4.2.14) as its terminal region. The set
allows the state to escape from itself but guarantees that it will return inside at predefined
periodic time instants and always stay within the admissible set. Due to this relaxation,
the terminal region can be obtained through simple box-type constraints as in (4.2.91).
This can reduce the complexity of the NMPC optimization problem while still guaranteeing
the closed-loop stability. The proposed controller is also validated under both simulation
and experiment with good results on the computing times (i.e., 46.5 milliseconds per step
under simulation and 51.8 milliseconds under experiment in comparison with 55 and 61.4
milliseconds under similar scenarios when using the terminal invariant set with similar size
as detailed in Tables 4.4.1 and 4.5.1).

3. a new process to calculate the required minimum prediction horizon for guaranteeing the
stability of an NMPC design without terminal stabilizing constraints and the correspond-
ing detailed analysis on the tuning parameters:
This unconstrained NMPC design ensures the closed-loop stability by defining an appropri-
ate prediction horizon length according to the existing Theorem 4.3.2 [Grüne, 2012,Kohler
et al., 2018]. We firstly prove that the FL controller (4.1.4) satisfies Assumption 4.3.1 -
the prerequisite of Theorem 4.3.2, then, derive the formulation of the required prediction
horizon from the FL controller (4.1.4). Next, a thorough analysis on how to tune the
parameters is conducted which shows the shortest required prediction horizon length to be
150 steps (c.f. Table 4.3.2), in comparison with the thousands steps obtained when using
the approach proposed in [Kohler et al., 2018] with a standard linear controller.

In this chapter, we have shown that the use of the nonlinear FL controller (4.1.4) significantly
improves the performance and also the design procedure of the NMPC schemes with guaran-
teed stability (i.e., the form of the terminal constraint sets, the computing time, the length of
the prediction horizon and the ease for tuning them). Even though the proposed designs are
particularized for the translation dynamics of the multicopter system (4.1.1), they are actually
the continuations of our contribution on the use of the computed-torque control on stabilizing
the NMPC scheme detailed in the previous Chapter 3. Therefore, the generalization for similar
feedback linearizable systems are possible and promising. Beside that, there are still some open
questions which should be regarded in order to improve the contributions of this Chapter:

• Can we avoid the assumption on the constant yaw angle ψ as in (4.1.1) when designing the
proposed NMPC controllers? This actually increases much the complexity of the works
since we have to take into account the mismatch on the predicted yaw angle and the actual
yaw angle at the next step which is impossible to know before hand. This most probably
leads to a problem of robust control design.

• Can we estimate the domain of attraction of the proposed NMPC design with terminal
invariant set S(P, r) as in (4.2.79) with more accuracy without solving the first iteration?
The aim of this question is to improve the proof of the semi-global stability given in
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Section 4.2.1.2 where we enlarge the terminal invariant set S(P, r) as in (4.2.79) until the
predefined compact set X0 is inside the set S(P, r). This actually results in an oversized
domain of attraction - significantly larger than the necessary size which, hence, reduces the
control performance (i.e., low convergence speed as can be seen from Table 4.4.1, second
scenario).

• Can the NMPC design using the terminal δ-invariant set R as in (4.2.91) achieve the
semi-global stability property, similarly to the one using the terminal invariant set S(P, r)
detailed in Section 4.2.1?

• Regarding the NMPC design without terminal stabilizing constraints as detailed in Section
4.3, can we obtained a shorter prediction horizon than 150 steps as given in Table 4.3.2
by using a more complex paramterization of the tuning parameters ? I.e., for now, we are
constraining the weighting matrix Q, the control gain matrix K and the symmetric matrix
M as in (4.3.23)–(4.3.27) which allows only 7 decision variables from the total of 48 which
are in fact possible and hence, probably restricts the obtained results.



Chapter 5

Reliable control of a quadcopter under
stuck actuator fault

In the three previous chapters, we have presented the hierarchical control architecture with dif-
ferent control strategies for a multicopter system. Even though the control designs have been
validated through various simulations and experiments, the proposed contributions still lack an
anlysis on their reliability under faulty events since they may cause performance degradation
and instability. In the literature, possible faults occurring in the multicopters are usually related
to their rotors, such as loss of effectiveness of the rotors [Chamseddine et al., 2012,Avram et al.,
2017,Hasan and Johansen, 2018], or complete loss of one, two or even three rotors [Freddi et al.,
2011, Mueller and D’Andrea, 2014, Başak and Prempain, 2015, Sun et al., 2018]. One particu-
larly intereting scenario among them is the stuck rotor type of fault [Yang and Lum, 2003,Jiang
et al., 2016,Shao et al., 2018]. Once stuck, the faulty actuators keep rotating at a constant speed
regardless of the actual control inputs. Thus, under a single stuck rotor fault, the multicopter
system not only loses one degree of freedom in its control ability but also suffers from persistent
disturbances [Chen and Jiang, 2005].
Henceforth, we consider the tracking of the position as the main objective (to the detriment
of, e.g., tracking the yaw angle). Then, the consequence of this fault’s effect on the system is
based on the number of rotors: i.e., a tricopter (having two symmetrical rotors and one tail rotor
tilted by another servo [Prach and Kayacan, 2018]) instantly crashes, a quadcopter (having four
symmetrical rotors) loses its yaw control capability [Freddi et al., 2011,Nguyen et al., 2017b] and
multicopters with more than four rotors (e.g., hexacopter with six rotors, octocopter with eight
rotors) are able to compensate for the loss of one stuck rotor by using the remaining healthy
rotors, hence, fully maintaining their capabilities [Saied et al., 2015]. Even if the fault can be
accommodated through hardware redundancy, there is still a need to design a FTC (Fault Tol-
erant Control) scheme which detects and isolates the fault and, consequently, provides control
reconfiguration strategies. In what follows, we find our interest in investigating the quadcopter
case where the unavoidable yaw spinning motion is a significant control challenge while the three
remaining healthy rotors compensate for the forth within the limit of their saturation constraints.
Part of these issues are addressed in our previous paper [Nguyen et al., 2017b] where an FTC
scheme for quadcopter control was developed by using feedback linearization but without pro-
viding a fault diagnosis module and considering the actuator saturation. This shortcoming was
due to the complexity of the whole controlled system under input constraints but can, arguably,
lead to bad behavior such as loss of stability and decrease in performance. Then, in [Nguyen
et al., 2020d], we improve the works in [Nguyen et al., 2017b] by designing a fault diagnosis
module particularized for the stuck rotor fault which consists of three standard elements: fault
detection, fault isolation and fault estimation [Hasan and Johansen, 2018]. The residual vector is

128
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calculated as the differences between the estimated rotor speeds and their references, hence, be-
ing able to detect the faulty rotor’s misbehavior. Furthermore, the saturation constraints on the
rotor speeds are fulfilled by employing the NMPC (Nonlinear Model Predictive Control) design
presented in Chapter 3 with some modifications (e.g., reformulating the rotor speeds constraints
into torques constraints). The control module is also reconfigured by no longer attempting to
control the yaw motion. As an extended version of [Nguyen et al., 2020d], this chapter provides
several contributions which, to the best of our knowledge, are new to state of the art:

• Provides a hierarchical control scheme for the trajectory tracking of a quadcopter system
under actuator saturation and a stuck fault occurrence. The high level employs a feedback
linearization controller while the low level switches between two different NMPC schemes
according to the system’s functioning states (healthy or under fault). The two NMPC
designs guarantees that the rotor speeds do not exceed their limit;

• Designs a fault diagnosis module for detecting the faults of a unique rotor being stuck at
varying speeds. The residue is constructed based on the differences between the estimated
and reference normalized torques (given in the unit of the rotor speed).

• Proposes a model of the uncontrolled yaw motion under fault. This allows the prediction
dynamics employed within the NMPC controller to be more realistic than keeping the yaw
value as a constant feedback within the whole prediction horizon would have been.

The remainder of this chapter is organized as follows. Section 5.1 presents the rotor configuration
of a standard quadcopter system and the modeling of the stuck actuator fault. Next, Section 5.2
introduces the hierarchical FTC scheme and the fault diagnosis module. The simulation results
are given and discussed in Section 5.3. Finally, Section 5.4 draws the conclusions and presents
the future directions.

5.1 Quadcopter rotor configuration under stuck fault

Recall the dynamical model of a general multicopter system ẋ = f(x, u) given in (2.1.10). The
state x , [ξ v η ω]> ∈ R12 gathers the 3D position ξ, translation velocity v, Euler angles η and
the body angle rates ω, all in the vector space R3. The input vector u , [T τ φ τ θ τ ψ]> ∈ R4

represents the thrust force and the three torques acting on the three body axes. These inputs are
created by the rotation of the rotors and are calculated based on the specific rotor architecture
of the considered multicopter system. Particularly, we consider a quadcopter system with its
four rotors being placed symmetrically along the body coordinate axes as shown in Figure 5.1.1.
This configuration is the so-called “plus” type as opposed to the “cross” type illustrated in
Figure 2.1.1 [Prabha et al., 2016]. The reason for choosing this “plus” configuration is that it
provides separate control mechanisms for angle control, i.e., the second and fourth rotors are
in charge of the roll angle while the others are responsible for pitch motion. Thus, it results
in a clearer notation and simpler calculation when considering the rotor faults [Nguyen et al.,
2020d, Nguyen et al., 2017b, Hasan and Johansen, 2018]. Note that, changing from “plus” to
“cross” types simply requires us to rotate the body frame B around its Bz axis by 45◦, hence, the
contributions proposed hereinafter can be applied for all applications on the quadcopter system
regardless its original configuration type.

In Figure 5.1.1, the rotating directions of the propellers are defined by the four green curved
arrows with Ωi (i ∈ {1, . . . , 4}) representing their speeds. Note that, Ωi ∈ R+ since the four
rotors can only rotate in their predefined directions. Whenever the ith propeller is rotating,
it creates the upward force Ti (shown by red arrows) and the torque τ i acting in the inverse
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Figure 5.1.1: Quadcopter and its “plus” rotor configuration.

direction of Ωi (shown by green curved arrows) due to the conservation law of momentum [Craig,
2005]:

Ti = KTΩ2
i , (5.1.1)

τ i = (−1)ibΩ2
i , (5.1.2)

for all i ∈ {1, . . . , 4} and with KT , b ∈ R+ aerodynamics scalars. Therefore, based on the
schematic shown in Figure 5.1.1, the input vector u , [T τ φ τ θ τ ψ]> from (2.1.10) is calculated
in terms of the rotor speeds Ωi as follows:




T
τ φ
τ θ
τ ψ


 =




KT KT KT KT

0 −LKT 0 LKT

−LKT 0 LKT 0
−b b −b b




︸ ︷︷ ︸
M




Ω2
1

Ω2
2

Ω2
3

Ω2
4




︸ ︷︷ ︸
Ω2

, (5.1.3)

with L > 0 the arm length of the quadcopter. Note that, (5.1.3) is shortened as u = MΩ2.
Also, in the rest of this chapter, the square of a vector gives a vector consisting of the squares
of all its elements, e.g. Ω2 ,= [Ω2

1 Ω2
2 Ω2

3 Ω2
4]> with Ω = [Ω1 Ω2 Ω3 Ω4]>. The four rotors are
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Figure 5.1.2: Further details of Figure 2.3.1: transformation from the designed inputs to the
real inputs within the quacopter system under actuator saturation and stuck fault.

assumed to have their own speed controller running at a significantly higher frequency. Therefore,
we consider that the real rotor speeds Ωi (i ∈ {1, . . . , 4}) can instantly track their references,
denoted by Ωi,r, but are still limited by their maximum rotating speed denoted by Ωmax ∈ R+.
Furthermore, the rotors can be affected by stuck actuator fault [Chen and Jiang, 2005, Yang
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and Lum, 2003, Shao et al., 2018] which forces the rotating speed Ωi of the ith faulty rotor to
remain stuck at a constant value Ωi,α, regardless of the actual reference value Ωi,r. Hence, under
both the saturation and fault effects as illustrated within the blue rectangle in Figure 5.1.2, the
rotating speed of the ith rotor is modeled through:

Ωi =

{
sat(Ωi,r,Ωmax), under nominal condition,

Ωi,α, under stuck fault,
(5.1.4)

with the saturation function sat(·) defined in (2.3.4). The constant stuck value Ωi,α is expressed
in terms of 0 ≤ α ≤ 1 as a fraction of the maximum rotor speed, i.e.:

Ωi,α = αΩmax. (5.1.5)

Within this paper, we consider at most one rotor being stuck at a time, so that the quadcopter
can still track a 3D reference trajectory since having one stuck rotor means that one degree of
freedom is lost in the control of the quadcopter system (in the sense of tracking the position
component of the trajectory while losing command over the yaw component). Thus, if the ith

rotor is stuck at Ωi,α from (5.1.5), the rotor speed vector is denoted as follows:

Ωi,α , [Ω1 . . .Ωi,α . . .Ω4]>, (5.1.6)

which further leads to the distinction between the nominal functioning and faulty case when
considering the rotor-to-input relation as in (5.1.3):

u =

{
MΩ2, under nominal condition,

MΩ2
i,α, if the ith rotor under fault (stuck),

(5.1.7)

with the nominal rotor speed vector Ω defined in (5.1.3). By this, we also complete the quad-
copter modeling under actuator saturation and stuck fault consideration which is illustrated by
the red rectangle block shown in Figure 5.1.2. In the followings, we introduce some new notations
for easily describing the system when under the fault of the ith stuck rotor (i ∈ {1 . . . 4}):

• Mi ∈ R4 defines the ith column while M!i gathers all the other columns except the ith

column of the matrix M from (5.1.3).

• Ξ̂ and qΞ for a matrix Ξ ∈ Rn×m gather the first and the last (n − 1) rows of Ξ. The
definitions are also applied for the vector case where m = 1.
Below are some examples employed throughout the chapter. From the input vector u as
in (5.1.3), we have:

û = [T τ φ τ θ]>. (5.1.8)

From the matrix M as in (5.1.3), we have:

M̂1 = [KT 0 − LKT ]>, |M4 = [LKT 0 b]>. (5.1.9)
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• The references of the four rotor speeds from (5.1.4) are gathered into:

Ωr , [Ω1,r . . .Ω4,r]
>, (5.1.11)

while Ωr,!i ∈ R3 represents the three references except the one of the ith stuck rotor. E.g.
for i = 2:

Ωr,!2 , [Ω1,r Ω3,r Ω4,r]
>. (5.1.12)

The next section will address a hierarchical FTC (Fault Tolerant Control) scheme whose goal is
to counteract the stuck fault through the feedback linearization position controller presented in
Section 2.4 and the NMPC attitude controller presented in Section 3.5.

5.2 Fault Tolerant Control design

Figure 5.2.1 presents the control process proposed in this chapter to accommodate the fault
corresponding to a single stuck rotor [Nguyen et al., 2020d]. The design is built upon the
standard hierarchical two-layer control scheme as given in Figure 2.3.1. Under nominal func-
tioning, the position controller and the attitude controller operate similarly to the standard
design as introduced in Section 2.3 while the speed calculator block converts the desired inputs
ud , [Td τ φd τ θd τ ψd ]> into four rotor speed references Ωr (5.1.11) by using the inversion of the
speed-to-rotor relation (5.1.3). Then, the references are sent to the quadcopter system which
actually stands for the whole process subject to actuator saturation and stuck fault as given
inside the red rectangle in Figure 5.1.2.
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Figure 5.2.1: Hierarchical Fault Tolerant Control scheme for the quadcopter system.

Besides that, the speed references Ωr are also sent to the fault diagnosis module (red block
in Figure 5.2.1) in which, they are compared with the estimated rotor speeds (represented by
normalized torques in the chapter) in order to detect the stuck fault, identify the stuck rotor
and estimate the speed at which is stuck. Under fault, as we lose the control of one rotor, we
reconfigure the controller structure to no longer control the yaw motion. The two signals with
dashed slash in Figure 5.2.1 (i.e., yaw angle reference, ψr, and desired yaw torque, τ ψd) will be
discarded. Furthermore, based on the information of the fault provided by the fault diagnosis
block, the attitude controller (blue block in Figure 5.2.1) reconfigurates its control law and the
speed calculator block modifies the speed transformation (e.g., the nominal functioning given in
(5.1.3)) to provide appropriate rotor speed references in order to counteract the detected fault.
Note that, the reconfiguration block at the low level is required to run at a higher frequency than
the position controller in order to achieve the stability of the whole scheme [Scattolini, 2009].



5.2. Fault Tolerant Control design 133

5.2.1 Hierarchical FTC control scheme

In this section, we present the designs of the two control layers employed within the hierarchical
FTC scheme shown in Figure 5.2.1. At first, the role of the position controller does not change
while under stuck fault since we choose to only renounce controlling the yaw motion. Therefore,
in order to simplify the whole control process, we make use of the feedback linearization controller
from Section 2.4 which provides the desired values of the thrust Td = TFL as given in (2.4.1a)
and the roll, pitch angles φd = φFL, θd = φFL as given in (2.4.1b)–(2.4.1c).
The main contributions of the section will be the designs of the attitude controller and the speed
calculator shown in Figure 5.2.1. The FTC law alternates between the healthy and under fault
modes. Each of these correspond to a particular combination of the attitude controller and the
speed calculator. In order to avoid the rotor saturation effect as in (5.1.4) and to respect the state
constraints from (2.1.12), the NMPC strategy introduced in Section 3.1 appears again as a good
control candidate. The main problem is that the saturation constraints from (5.1.4) actually
imposes the time-varying polytopic constraints on the desired torques τ d and furthermore, the
yaw motion becomes uncontrollable under fault. These prevent us from directly applying the
attitude control design given in Section 3.5 even under nominal functioning. In the following
sections, the solutions will be addressed for the nominal and faulty cases, respectively.

5.2.1.1 Nominal functioning

Since we are now considering the quadcopter system as introduced in Section 5.1, the healthy
NMPC attitude controller requires some important changes in comparison with the NMPC
design proposed in Section 3.5. The input constraints are not taken as those given in (3.5.5),
i.e., |τ d| ≤ τmax but have to take into account the desired thrust Td obtained from the position
controller (c.f. Figure 5.2.1) and the rotor speed constraints [Nguyen et al., 2020d]:

τ d ∈ S(Td) =
{
τ d ∈ R3

∣∣∣0 ≤M−1ud ≤ Ω2
max

}
, (5.2.1)

with ud , [Td τ d]>, M in (5.1.3) and Ωmax the maximum rotor speed in (5.1.4). Furthermore,
the terminal constraint set B∗(ηd, ε) from (3.5.24) is constructed to be constraint admissible
w.r.t the torque constraint |τ d| ≤ τmax from (3.5.5) and not for the set S(Td). Therefore, the
next step is to define the parameter τmax ∈ R3

+ such that the condition (5.2.1) holds for all the
feasible values of the desired thrust Td which is facilitated by the following proposition.

Proposition 5.2.1 ( [Nguyen et al., 2020d]). There always exists τmax ∈ R3
+ such that the

following holds:
[−τmax, τmax] ⊆ S(Td), ∀ Td ∈ [Tdmin , Tdmax ], (5.2.2)

where [Tdmin , Tdmax ] represents the range of the desired thrust received from the position controller
and satisfies 0 < Tdmin < Tdmax < 4KTΩ2

max, with Ωmax the maximum rotor speed.

Proof. From the definition of S(Td) in (5.2.1), the polytopic constraints on the desired torques
τ d is explicitly given by:

− Td
4KT




1
1
1
1


 ≤




0 − 1

2LKT

− 1

4b

− 1

2LKT

0
1

4b

0
1

2LKT

− 1

4b
1

2LKT

0
1

4b






τ φd
τ θd
τ ψd


 ≤

(
Ω2

max −
Td

4KT

)



1
1
1
1


 , (5.2.3)



5.2. Fault Tolerant Control design 134

with KT , b, L from (5.1.3) the constant parameters of the quadcopter system. Next, the con-
straints (5.2.3) are split into two separate systems of linear inequalities as follows:

− Td
4KT

[
1
1

]
≤



− 1

2LKT

1

4b
1

2LKT

1

4b



[
τ φd
τ ψd

]
≤
(

Ω2
max −

Td
4KT

)[
1
1

]
, (5.2.4)

− Td
4KT

[
1
1

]
≤



− 1

2LKT

− 1

4b
1

2LKT

− 1

4b



[
τ θd
τ ψd

]
≤
(

Ω2
max −

Td
4KT

)[
1
1

]
. (5.2.5)

The aforementioned constraints imply that (τ φd , τ ψd) and (τ θd , τ ψd) are required to stay inside
the polytopes P1 and P2 defined as follows:

(τ φd , τ ψd) ∈ P1 = Conv(V1), (5.2.6)

(τ φd , τ ψd) ∈ P1 = Conv(V2), (5.2.7)

with the vertices sets V1 and V2 obtained from (5.2.4)–(5.2.5):

V1 =

{(
0,

(
4Ω2

max −
Td
KT

)
b

)
,

(
−LKTΩ2

max,

(
2Ω2

max −
Td
KT

)
b

)
(5.2.8)

(
0,− Td

KT

b

)
,

(
LKTΩ2

max,

(
2Ω2

max −
Td
KT

)
b

)}
,

V2 =

{(
0,−

(
4Ω2

max −
Td
KT

)
b

)
,

(
−LKTΩ2

max,−
(

2Ω2
max −

Td
KT

)
b

)
(5.2.9)

(
0,
Td
KT

b

)
,

(
LKTΩ2

max,−
(

2Ω2
max −

Td
KT

)
b

)}
.

Furthermore, the polytopes P1 and P2 from (5.2.4)–(5.2.5) always overlap with each other due
to Td < 4KTΩ2

max as can be seen from their illustrations given in Figure 5.2.2. The intersection
is given by:

P1∩P2 =





Conv

{(
0,
Td
KT

b

)
,

(
TdL

2
, 0

)
,

(
0,− Td

KT

b

)
,

(
−TdL

2
, 0

)}
, if Td ≤ 2KTΩ2

max,

Conv





(
0,

(
4Ω2

max −
Td
KT

)
b

)
,

(
2LKTΩ2

max −
TdL

2
, 0

)
,

(
0,−

(
4Ω2

max −
Td
KT

)
b

)
,

(
−2LKTΩ2

max +
TdL

2
, 0

)




, if Td > 2KTΩ2

max,

(5.2.10)
and especially, P1 ≡ P2 when Td = 2KTΩ2

max. The overlap region facilitates a simple choice of
the box constraints on the desired torques τ d given as follows (c.f. Figure 5.2.2):

〈|τ φd |, |τ θd |〉 ≤
Tdb

2KT

and |τ ψd| ≤
TdL

4
, if Td ≤ 2KTΩ2

max, (5.2.11)

〈|τ φd |, |τ θd |〉 ≤
(

2Ω2
max −

Td
2KT

)
b and |τ ψd| ≤ LKTΩ2

max −
TdL

4
, if Td > 2KTΩ2

max, (5.2.12)

which, if satisfied, guarantees that τ d ∈ S(Td) as required in (5.2.1). Therefore, the maximum
desired torques τmax = [τ φmax τ θmax τ ψmax ]> as required in (5.2.2) can be found by constraining
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τ φmax = τ θmax and then, finding the minimum values of each limits for all Td ∈ [Tdmin
, Tdmax ]. In

the following, we provide an example for the case of Tdmin
< 2KTΩ2

max < Tdmax :

τ φmax = min

{
min

Td∈[Tdmin
,2KTΩ2

max]

Td
2KT

b, min
Td∈[2KTΩ2

max,Tdmax ]

(
2Ω2

max −
Td

2KT

)
b

}
(5.2.13)

= min

{
Tdmin

2KT

b,

(
2Ω2

max −
Tdmax

2KT

)
b

}
,

τ θmax = τ φmax , (5.2.14)

τ ψmax = min

{
min

Td∈[Tdmin
,2KTΩ2

max]

TdL

4
, min
Td∈[2KTΩ2

max,Tdmax ]
LKTΩ2

max −
TdL

4

}
(5.2.15)

= min

{
Tdmin

L

4
, LKTΩ2

max −
TdmaxL

4

}
.

The algorithms for the two other cases when 2KTΩ2
max < Tdmin

< Tdmax and Tdmin
< Tdmax <

2KTΩ2
max are obtained similarly. This completes the proof.
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Figure 5.2.2: Illustration of the polytopes P1 and P2 from (5.2.4)–(5.2.5) in comparison with a
feasible choice of the constraint set Urot from (3.5.5) when Td ≤ 2KTΩ2

max.

Then, by using the feedback linearization law Td = TFL from (2.4.1a), we can find the range
of the desired thrust Td as required in (5.2.2):

m|Uz − g| ≤ TFL ≤ m
√
U2
x + U2

y + (Uz + g)2, (5.2.16)

with Ux, Uy, Uz the positive scalars defined in Proposition 2.4.2 and m the system mass. Thus,
by applying Proposition 5.2.1, we obtain the value of τmax such that the following holds:

[−τmax, τmax] ⊆ S(Td), ∀Td ∈
[
m|Uz − g|,m

√
U2
x + U2

y + (Uz + g)2
]
, (5.2.17)

with S(Td) from (5.2.1). By this, we achieve all the required elements for constructing the
NMPC scheme proposed in Section 3.5.
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Remark 5.2.2. Bear in mind that we need to ensure 0 < Tdmin
< Tdmax < 4KTΩ2

max, with Ωmax

the maximum rotor speed, as required by Proposition 5.2.1. Hence, this transforms into the
conditions on (Ux, Uy, Uz) from (5.2.16) as follows:

0 < m|Uz − g| < m
√
U2
x + U2

y + (Uz + g)2 < 4KTΩ2
max. (5.2.18)

To guarantee these, we only need to define Tmax from (2.1.13) such that Tmax < 4KTΩ2
max. It is

due to the fact that Uz < g is already established in (2.4.5) and m
√
U2
x + U2

y + (Uz + g)2 < Tmax

is imposed in (2.4.7). �

Then, the desired torques τ d as in (5.2.1) are combined with the thrust Td obtained from
the position controller at the high level to achieve the reference rotor speeds Ωr inside the speed
calculator block (c.f. Figure 5.2.1):

Ω2
r = M−1ud, (5.2.19)

with Ω2
r gathering the squares of the speed references, M the rotor-to-input configuration matrix

as in (5.1.3) and ud as in (5.2.1).
Since the condition τ d ∈ S(Td) from (5.2.1) is fulfilled by the NMPC attitude controller, the
constraint 0 ≤ M−1ud ≤ Ω2

max as in (5.2.1) is guaranteed. This also ensures that the reference
rotor speeds Ωr calculated in (5.2.19) do not exceed their maximum value Ωmax as in (5.1.4),
hence, do not trigger the saturation effect. Therefore, under nominal functioning, the proposed
control scheme ensures:

Ω = Ωr, u = ud, (5.2.20)

with Ω the real rotor speeds obtained from (5.1.4), u the real input vector obtained from (5.1.7)
and ud the desired input as in (5.2.19). As the result, the closed-loop controlled system is stable
according to the hierarchical control design theory detailed in Section 2.3 since the feedback
linearization position controller at high level is globally asymptotically stable from (2.4.16) and
the NMPC attitude controller is also exponentially stable from Lemma 3.1.1 (i.e., under nomi-
nal consideration). Hereinafter, we show the implementation formulation of the nominal NMPC
attitude controller presented in this section. The controller is given in the standard discrete
NMPC form with the prediction model discretized at the same NMPC rate (c.f. the NMPC
sampling time δ and the model discretization step ∆ as in (3.1.12)–(3.1.13)).

NMPC design for the nominal attitude controller:

The NMPC attitude controller runs at the sampling time δatt with its open-loop optimization
problem at time step k given in discrete form as follows:

min
τ̄ (·)

Np−1∑

s=0

([
η̄(s)− ηd(k)

˙̄η(s)

]>
Q

[
η̄(s)− ηd(k)

˙̄η(s)

]
+ τ̄>(s)R τ̄ (s)

)
(5.2.21)

+

[
η̄(Np)− ηd(k)

˙̄η(Np)

]>
P

[
η̄(Np)− ηd(k)

˙̄η(Np)

]
,
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subject to





discrete model with discretization step δatt

obtained from the following continuous model:

˙̄η = W−1ω̄, ˙̄ω = J−1(−ω̄ × (Jω̄) + τ̄ ),

state constraints as in (3.5.4):

〈|φ̄(s)|, |θ̄(s)|〉 ≤ εmax, 〈|ω̄x(s)|, |ω̄y(s)|〉 ≤ ωmax,

torque constraints as in (5.2.1)

τ̄ (s) ∈ S(Td(k)),

terminal stabilizing constraints as in (3.5.24)[
η̄(Np)− ηd(k)

˙̄η(Np)

]
∈ B∗ε(ηd(k)),

initial conditions:

η̄(0) = η(k), Ω̄(0) = Ω(k),

along the prediction horizon, i.e., for all s ∈ {0, . . . , Np},

with Q ∈ R6×6, R ∈ R3×3 the positive definite weighting matrices as in (3.3.3) and P ∈ R6×6

the terminal weighting matrix resulted from the Lyapunov equation (3.3.5). The notations
with a “bar” above denote the variables employed within the prediction model as similar to

their usages in (3.1.4). I.e, τ̄ =
[
τ̄ φ τ̄ θ τ̄ ψ

]>
are the predicted torques acting on the prediction

model. Furthermore, ηd(k) ∈ R3 represents the desired values of the three Euler angles and Td(k)
is the desired thrust, all obtained from the position controller at the high level at time step k.
The terminal constraint set B∗ε(ηd(k)) is constructed as in (3.5.24) by using the parameters τmax

given in (5.2.2).
Solving the problem (5.2.21) provides an optimal sequence of torques: [τ̄ ∗(0), . . . , τ̄ ∗(Np − 1)]
and according to the standard MPC strategy, the desired torques τ d(k) are taken as the first
element from the optimal sequence:

τ d(k) = τ̄ ∗(0). (5.2.22)

5.2.1.2 Under fault functioning (with ith rotor stuck)

Once the fault is detected and the information of the faulty rotor (considered in this section to
be the ith one) as well as its stuck speed (denoted by Ωi,f as in (5.1.5)) is available, the attitude
controller reconfigures to no longer attempt to control the yaw angle (recall also Figure 5.2.1).
It provides only the desired values of the roll, τ φd , and pitch, τ θd , torques to track the roll, pitch
angle references, φd and θd as in (2.4.1b)–(2.4.1c) provided by the position controller at the high
level (i.e., cut off the two signals with dashed red slashes from the control scheme in Figure
5.2.1). Then, the speed calculator block provides the three reference speeds Ωr,!i (as defined in
(5.1.12)) for the three remaining healthy rotors (those of indices {1, 2, 3, 4} \ {i}) as follows:

Ω2
r,!i = M̂−1

!i ûd − M̂−1
!i M̂iΩ

2
i,α, (5.2.23)

with ûd , [Td τ φd τ θd ]> as in (5.1.8), M̂i ∈ R3 from (5.1.9), M̂!i ∈ R3×3 from (5.1.10) and Ωi,α

as in (5.1.5) the stuck speed of the faulty ith rotor. The formulation (5.2.23) is obtained through
the calculating steps: i) introducing the stuck speed Ωi,α into the nominal rotor-to-input relation
(5.1.3), ii) disregarding the last row corresponding to τ ψd , and iii) solving the resulted full-rank
system of linear equations for Ωr,!i. The calculation is illustrated in the following for the case of



5.2. Fault Tolerant Control design 138

the 1st rotor being stuck (i = 1):




Td
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τ θd
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+




KT
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︸ ︷︷ ︸
M̂1

Ω2
1,α. (5.2.24)

In order to complete the references for the four rotor speeds Ωr as in (5.1.11) (c.f. Figure 5.2.1),
we simply use the stuck value Ωi,α from (5.1.5) as the reference for the faulty ith rotor. Thus,
under stuck fault, the speed calculator block provides Ωr as follows:

Ω2
r = I4,:iΩ

2
i,α + I4,!iΩ

2
r,!i, (5.2.25)

with In,:i ∈ Rn the ith column of In and In,!i ∈ Rn×(n−1) gathering all the other columns except
the ith column of the identity matrix In ∈ Rn×n. Let us illustrate the result of the speed
calculator block under stuck fault (5.2.25) for the case of the 4th rotor being stuck (i = 4):

Ω2
r = [Ω2

1,r Ω2
2,r Ω2

3,r Ω2
4,α]>, (5.2.26)

with Ωj,r calculated by (5.2.23), the reference of the healthy jth rotor and Ω4,α4 as in (5.1.5) the
stuck speed of the 4th rotor.
Furthermore, by simply constraining the three remaining healthy rotor speeds references Ωr,!i as
in (5.2.23) to stay within their magnitude bounds [0,Ωmax], we arrive to the constraints on the
two desired torques (τ φd , τ θd) similarly to the constraints in (5.2.1):

[
τ φd
τ θd

]
∈ Si(Td) =

{[
τ φd
τ θd

]
∈ R2

∣∣∣∣0 ≤ M̂−1
!i



Td
τ φd
τ θd


− M̂−1

!i M̂iΩ
2
i,α ≤ Ω2

max

}
, (5.2.27)

with all the employed notations taken from (5.2.23). Even though the formulation (5.2.27) looks
convoluted at the first glance, the set Si(Td) from (5.2.27) is as simple as a normal 2-dimensional
polytopic region which will be illustrated through an example considering the case of the 1st

rotor being stuck.

Example 5.2.3 (Construction of the torque constraint set S1(Td) as in (5.2.27)). When the 1st

rotor being stuck at the speed of Ω1,α as in (5.1.5), the torque constraints within the set S1(Td)
from (5.2.27) with Td the desired thrust received from the position controller at the high level are
explicitly given by:




0
0
0
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2KT

− 1
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− 1

2LKT

0 0
1

LKT
1

2KT
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Ω2
1,α ≤




1
1
1


Ω2

max, (5.2.28)

with L,KT as in (5.1.3) the physical parameters and Ωmax the maximum rotor speed of the
quadcopter system. The constraints are then clearly transformed into a 2-dimensional polytopic
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representation as follows:




Ω2
1,α −

Td
2KT

−Ω2
1,α

Ω2
1,α −

Td
2KT


 ≤




− 1

2LKT

− 1

2LKT

0
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LKT
1

2LKT

− 1
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[
τ φd
τ θd

]
≤




Ω2
max + Ω2

1,α −
Td

2KT

Ω2
max − Ω2

1,α

Ω2
max + Ω2

1,α −
Td

2KT


 , (5.2.29)

which is illustrated in Figure 5.2.3 by the blue polytopic region. �

0 τφd

0

τθd
TdL− 2LKTΩ2

1,α

TdL− 2LKT (Ωmax2 + Ω2
1,α)

τφd + τθd ≤ TdL− 2LKTΩ2
1,α

τφd + τθd ≥ TdL− 2LKT (Ω2
max + Ω2

1,α)
τφd − τθd ≥ 2LKTΩ2

1,α − TdL
τφd − τθd ≤ 2LKT (Ω2

max + Ω2
1,α)− TdL

τθd ≤ LKT (Ω2
max − Ω2

1,α)
τθd ≥ −LKTΩ2

1,α

Polytope S1(Td)

Figure 5.2.3: Illustration of the polytope S1(Td) defined in (5.2.27).

Remark 5.2.4. The polytopic region S1(Td) illustrated in Figure 5.2.3 implies a possibility to
construct an admissible set of the torques (τ φd , τ θd) which remains the same under different
stuck rotors (i.e., the intersection of the four polytopes S1(Td), . . . ,S4(Td) as defined in (5.2.27)).
However, bear in mind that the resulted admissible set still depends on the value of Td and
furthermore, being smaller than the original set Si(Td) (with i numbering the faulty rotor) due
to the intersect operator. Hence, this direction requires more convoluted computation without
any qualitative gains and even leads to more conservative results. �

After constructing the torque constraint set Si(Td) as in (5.2.27), the following proposition
will summarize the saturation-avoiding results of the set and provide the predicted model of
the yaw torque which is not provided by the reconfigured controller under fault, but by the
open-loop behavior (5.1.3) of the quadcopter.

Proposition 5.2.5 ( [Nguyen et al., 2020d]). Let us consider the ith rotor being stuck at the
speed of Ωi,α (i ∈ {1, . . . , 4}). Recalling the FTC control scheme in Figure 5.2.1, the reconfigured
attitude controller constrains the desired torque values τ φd and τ θd to be within the set Si(Td)
from (5.2.27) with Td the desired thrust obtained from the position controller. The speed calculator
block provides the speed references Ωr from (5.2.25). Then, the following hold:

i) the actual values of the four rotor speeds Ωi,α ∈ R4 (i.e., gathering three healthy rotor speed
and the stuck speed of the ith rotor) as in (5.1.7) and of the thrust, roll and pitch torques
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gathered in û ∈ R3 defined as in (5.1.8) (all calculated from the rotor-to-input relation
(5.1.7)) equal their references (Ωr, ûd) as in (5.2.23):

Ωi,α = Ωr, (5.2.30)

û = ûd. (5.2.31)

ii) the uncontrolled yaw torque τ ψ as in (5.1.3) is given by the following formulation:

τ ψ = 4(−b)iΩ2
i,α +M4:I4,!iM̂

−1
!i ûd, (5.2.32)

with b the physical parameter from (5.1.3), M4: the 4th row of M , M̂!i from (5.1.10), ûd
from (5.2.23) and Ωi,α the stuck speed of the faulty ith rotor.

Proof. The constraints (5.2.27) on the desired torques τ φd and τ θd enforce the rotor speeds
references under fault Ωr, as in (5.1.12) (provided by the speed calculator block) to stay within
their limitation [0,Ωmax] from (5.1.4), hence, not being affected by the saturation. This ensures
that the real speeds of the four rotors being equal to their references as stated in (5.2.30) of
point i) which also includes the case of the ith stuck rotor since its reference is the actual stuck
speed Ωi,α as defined in (5.2.25). As the consequence, the real thrust and roll, pitch torques
û = [T τ φ τ θ] partly calculated from (5.1.3) equals their desired values ûd due to the calculation
in (5.2.23), completing point i) of the Proposition.
Next, the uncontrolled yaw torque τ ψ still admits the rotor configuration from (5.1.3) of the
quadcopter, hence, by applying the rotor-to-input relation (5.1.7), it is calculated by:

τ ψ = M4:Ω
2
i,α, (5.2.33)

with M4: the 4th row of the matrix M as in (5.1.3). Next, by using Ω2
i,α = Ω2

r from (5.2.30) at

point i), then, introducing the reference speeds Ω2
r from (5.2.25) to (5.2.33), we have that:

τ ψ = M4:

(
I4,:iΩ

2
i,α + I4,!iΩ

2
r,!i

)
, (5.2.34)

= M4:

(
I4,:iΩ

2
i,α + I4,!i

(
M̂−1

!i ûd − M̂−1
!i M̂iΩ

2
i,α

))
, (by using (5.2.23))

= M4:

(
I4,:i − I4,!iM̂

−1
!i M̂i

)
Ω2
i,α +M4:I4,!iM̂

−1
!i ûd,

= 4(−b)iΩ2
i,α +M4:I4,!iM̂

−1
!i ûd,

in which M4:

(
I4,:i − I4,!iM̂

−1
!i M̂i

)
= 4(−b)i due to the construction of M in (5.1.3). This also

completes the proof.

The representation of the yaw torque τ ψ given in (5.2.32) may causes some implementation
difficulties since the notation changes depending on the number of the stuck rotor. Thus, we
show their explicit formulations in the following:




τ ψ under fault of 1st rotor
τ ψ under fault of 2nd rotor
τ ψ under fault of 3rd rotor
τ ψ under fault of 4th rotor


 =




−bΩ2
1,α

bΩ2
2,α

−bΩ2
3,α

bΩ2
4,α


+




b

KT

0 − 2b

LKT

− b

KT

2b

LKT

0

b

KT

0
2b

LKT

− b

KT

− 2b

LKT

0






Td
τ φd
τ θd


 , (5.2.35)
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with b,KT , L the parameters from (5.1.3), Ωi,α the stuck speed of the faulty ith rotor (i.e., the
notations do not constrain the rotors to remain stuck at the same speed) and (Td, τ φd , τ θd) as
in (5.2.32) the desired inputs.
Next, we present the design of the reconfigured NMPC attitude controller. Since we control
only the two torques (τ φ, τ θ) as in (5.1.3) (i.e., equal their desired values as shown in (5.2.31)),
the yaw angle ψ and its derivatives ψ̇ is out of control. Thus, employing the terminal constraint
set B∗(ηd, ε) as in (3.5.24) which requires the control of the two aforementioned yaw variables
becomes infeasible. Therefore, in order to reduce the complexity of the design problem, we
decide not to use the terminal stabilizing constraints within the reconfigured NMPC attitude
controller but to employ a practical “long-enough” prediction horizon instead. The value is
found by conducting various simulation tests.

NMPC design for the reconfigured attitude controller under fault of the ith stuck rotor:

The NMPC optimization problem employed within the reconfigured attitude controller running
at the sampling time δatt is given in its discrete form at time step k as follows:

min̂̄τ (·)

Npf∑

s=0

((̂̄η(s)− η̂d(k)
)>
Qη̂

(̂̄η(s)− η̂d(k)
)

+ ̂̄ω>(s)Qω̂ ̂̄ω(s) + ̂̄τ>(s)Rτ̂ ̂̄τ (s)

)
, (5.2.36)

subject to





discrete model with discretization step δatt

obtained from the following continuous model:

˙̄η = W−1ω̄, ˙̄ω = J−1(−ω̄ × (Jω̄) + τ̄ ),

yaw torque model as in (5.2.32):

τ̄ ψ(s) = 4(−b)iΩ2
i,α +M4:I4,!iM̂

−1
!i

[
Td(k) τ̄ φ(s) τ̄ θ(s)

]>
,

state constraints as in (3.5.4):

〈|φ̄(s)|, |θ̄(s)|〉 ≤ εmax, 〈|ω̄x(s)|, |ω̄y(s)|〉 ≤ ωmax,

torque constraints as in (5.2.27):
̂̄τ (s) ∈ Si(Td(k)),

initial conditions:

η̄(0) = η(k), Ω̄(0) = Ω(k),

along the prediction horizon, i.e., for all s ∈ {0, . . . , Npf},

with Qη̂, Qω̂, Rτ̂ ∈ R2×2 the positive definite weighting matrices. The notation with a “hat”

above is defined as in (5.1.8), e.g., ̂̄η =
[
φ̄ θ̄
]>

, ̂̄ω =
[
ω̄x ω̄y

]>
, ̂̄τ =

[
τ̄ φ τ̄ θ

]>
while the notations

with a “bar” above denote the variables employed within the prediction model as in (5.2.21).
The prediction horizon Npf is also chosen to be longer than Np as in (5.2.19) under the nominal
functioning.

The reconfigured attitude controller provides the desired torques τ̂ d =
[
τ φd , τ θd

]>
taken as the

first element among the optimal solution sequence [̂̄τ ∗(0), . . . , ̂̄τ ∗(Np)] :

τ̂ d = ̂̄τ ∗(0). (5.2.37)

Note that, by constraining the predicted torques ̂̄τ (s) along the prediction horizon Np to stay
within the set Si(Td(k)), Proposition 5.2.5 is validated. Thus, the predicted yaw torque τ̄ ψ(s)
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employed within the NMPC design (5.2.36) can make use of the formulation (5.2.32). Further-
more, Proposition 5.2.5 also provides that the actual values of the thrust and the roll, pitch
torques û =

[
T τ φ τ θ

]
as in (5.2.31) equal with their desired references ûd =

[
Td τ φd τ θd

]
with

Td provided by the position controller and (τ φd , τ θd) obtained from the reconfigured attitude
controller (5.2.36). The actual roll, pitch angles (φ, θ) as in (3.5.2) asymptotically track their
references (φd, θd) provided by the position controller as in (2.4.1b)–(2.4.1c). These ensure the
stability of the whole hierarchical control scheme.
Both the nominal and reconfigured attitude controllers given in (5.2.21) and (5.2.36) aim to
enforce the actual rotor speeds to equal their references even under a single stuck rotor. Making
use of these properties, in the next section, we introduce a design of the fault diagnosis module
operating at the low control level as shown in Figure 5.2.4.

5.2.2 Fault diagnosis module

The proposed fault diagnosis module calculates a residual vector d which describes the differ-
ences between the actual normalized torque τ̃ from (5.1.3) (i.e., estimated by an input observer
based on the measurement of the angle rate ω) and its desired value τ̃ d - obtained by using the
four desired rotor speeds Ωr as in (5.2.19). By analyzing the residual result, the module can
detect the stuck fault, identify the ith stuck rotor and estimate its stuck speed Ωi,α.
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Figure 5.2.4: Fault diagnosis module for detecting the stuck fault of the quadcopter system.

Torque normalization:

Regarding the rotor-to-input relation as in (5.1.3), the torques τ = [τ φ τ θ τ ψ]> are calculated
as the differences between the rotor speeds multiplying with some constant parameters assumed
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known. In order to simplify the analysis presented in the followings, we define the normalized
torques which are actually the torques τ divided by the parameters and depend only on the
actual rotor speeds:

τ̃ =

{
WΩ2, under nominal condition,

WΩ2
i,α, if the ith rotor stuck,

(5.2.38)

with Ω, Ωi,α from (5.1.7) and the matrix W ∈ R3×4 defined as:

W =




0 −1 0 1
−1 0 1 0
−1 1 −1 1


 . (5.2.39)

Note that the explicit relation between τ̃ and τ is given as follows:

τ̃ = diag

{
1

LKT

,
1

LKT

,
1

b

}
τ , (5.2.40)

with L,KT , b the physical parameters from (5.1.3).
Next, by a similar way, we also construct the normalized desired torques τ̃ d as follows:

τ̃ d = WΩ2
r, (5.2.41)

with Ωr the rotor speeds references obtained by (5.2.19) under nominal functioning and by
(5.2.25) under fault of the ith stuck rotor. Then, it is straightforward to see that if the residual
vector is taken as the difference between τ̃ and τ̃ d as in (5.2.38)–(5.2.41), it obviously shows the
differences between the real rotor speeds Ω and their references Ωr and hence, any mismatches on
their speed tracking due to the stuck fault can be easily detected. However, we do not have any
direct measurement on the rotor speeds, hence, an estimation of τ̃ is essential to obtain. This
is done through the rotation dynamics (3.5.2b) and the available information of the angle rate ω.

Torque observer (yellow block in Figure 5.2.4):

The observer makes use of the Euler discretization of the rotation dynamics Jω̇+ω×(Jω) = τ as
in (3.5.2b). By applying the backward Euler method to the rotation dynamics given in (3.5.2b),
we have that:

τ p(k) = J

(
ω(k)− ω(k − 1)

δFDI

)
+ ω(k)× (Jω(k)) , (5.2.42)

with τ p(k) the estimated torque at time step k, ω(k) the angle rate, δFDI the sampling time of
the FDI module (can be chosen smaller than the sampling time of the attitude controller δatt

as in (5.2.36) to enhance the accuracy, but being limited by the feedback rate of ω). It has
been shown in [El Assoudi et al., 2002] that the construction in (5.2.42) yields a stable observer
in the case where the errors between the actual continuous states and the discrete ones can be
neglected. Then, the normalized estimated torque τ̃ p is calculated by dividing each element of
τ p from (5.2.42) by their corresponding constant parameters as similar to (5.2.40):

τ̃ p(k) = diag

{
1

LKT

,
1

LKT

,
1

b

}
τ p(k), (5.2.43)

with L,KT , b the physical parameters from (5.1.3).
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Remark 5.2.6. The torque observer as in (5.2.42)–(5.2.43) requires a high-accuracy-and-frequency
feedback of the angle rate ω and a good modeling of the quadcopter system. The first require-
ment mostly depends on the quality of the gyroscope installed within the platform. According
to the latest updates in [Passaro et al., 2017], the recent gyroscope techonologies can achieve a
very high precision, e.g., 0.08◦/

√
hour (degree per root hour) Angular Random Walk with the

frequency of up to 2000 Hz [IMU, 2019]. Furthermore, the angle rates values can be re-filtered
before introducing them into (5.2.42) as detailed in [Kownacki, 2011,Jiang et al., 2012].
Next, a good modeling is possible to obtain but requires a sophisticated system identification
process [Doniselli et al., 2002, Bottasso et al., 2009, Previati et al., 2009, Doniselli et al., 2002],.
For example, the work in [Bottasso et al., 2009] considers the same rotation dynamics as in
(3.5.2b) and proposes a method estimating the values of J with ±5% of accuracy. Also, the
aerodynamics parameters KT , b as in (5.2.43) can be measured following the procedure given
in [Förster, 2015,Luis and Ny, 2016]. �

Residual vector and its functioning:

Recalling the FDI module scheme in Figure 5.2.1, the residual vector d ,
[
d1 d2 d3

]>
is simply

taken as follows:
d = τ̃ p − τ̃ d, (5.2.44)

with τ̃ p, the estimated normalized torque as in (5.2.43) and τ̃ d, the normalized desired torque as
in (5.2.41), both taken at the same time instants. Note that, formulation (5.2.44) should be given
in the discrete domain due to the usage of τ̃ p(k) in (5.2.43), i.e., d(k) = τ̃ p(k)− τ̃ d(k). However,
we hide the time step k from (5.2.44) since taking two signals at the same time instant is clear
from the context and furthermore, it simplifies the formulations presented in the following.

Proposition 5.2.7 (Fault detection [Nguyen et al., 2020d]). Let us consider the residual vector

d ,
[
d1 d2 d3

]>
calculated as in (5.2.44) and the quadcopter system controlled by the control

scheme detailed in Section 5.2.1. The followings hold:

1) If the attitude controller given in Section 5.2.1 is functioning in the appropriate mode,
i.e., nominal mode (c.f. Section 5.2.1.1) under nominal case and under-fault mode (c.f.
Section 5.2.1.2) corresponding to the right scenario (ith rotor being stuck at Ωi,α), then the
norm of the residual vector ‖d‖ varies around zero:

‖d‖ ≈ 0. (5.2.45)

2) If the real rotor speeds are not tracking their references, then, the norm of the residual
vector ‖d‖ varies around a non-zero value. More precisely, we consider two following
scenarios:

2a) If the attitude controller given in Section 5.2.1 is functioning in the nominal mode
(c.f. Section 5.2.1.1) and the ith rotor is stuck at the speed of Ωi,α, then we have that:

‖d‖ ≈
√

2|Ω2
i,α − Ω2

i,r|, (5.2.46)

with Ωi,r the speed reference of the ith rotor.

2b) If the attitude controller given in Section 5.2.1 is functioning in under-fault mode
(c.f. Section 5.2.1.2) corresponding to the right ith stuck rotor but with the wrong
stuck speed Ωi,αw in comparison with the actual stuck speed Ωi,α, then:

‖d‖ ≈
√

2|Ω2
i,α − Ω2

i,αw |. (5.2.47)
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Proof. We construct the proof by assuming that the torques estimator as in (5.2.42)–(5.2.43)
works properly and provides that the values of the estimated normalized torque τ̃ p from (5.2.43)
which vary around the actual normalized torque value τ̃ from (5.2.40). Then, we have that:

d ≈ τ̃ − τ̃ d =

{
W (Ω2 −Ω2

r), under nominal functioning,

W (Ω2
i,α −Ω2

r), with the ith rotor being stuck,
(5.2.48)

with W from (5.2.39), Ωr the reference rotor speeds and Ω, Ωi,α the actual rotor speeds under
nominal and faulty cases.
At first, for point 1), under both considered scenarios, the attitude controller ensures that the
actual rotor speeds equal their references, i.e., Ω = Ωr as in (5.2.20) for the nominal functioning
case and Ω2

i,α = Ω2
r as in (5.2.30) for the under-fault case (i.e., under fault, we provide the stuck

speed Ωi,α as the reference for the ith stuck rotor). Therefore, from (5.2.48), we obtain that:

d ≈ 0, (5.2.49)

which also validates (5.2.45).
Next, regarding both scenarios considered at point 2), their common problem is that the ith

faulty rotor (i ∈ {1, . . . , 4}) becomes stuck at the speed of Ωi,α as defined in (5.1.5) and does not
follow its reference, given by the nominal reference Ωi,r as in (5.2.46) and the constant reference
(i.e., incorrect stuck speed) Ωi,αw as in (5.2.47). Hence, the norm of the residual vector d varies
around a non-zero value:

d ≈ Wi∆Ω2
i , (5.2.50)

in which, Wi is the ith column of the matrix W from (5.2.39). The term ∆Ω2
i describing the

speed tracking mismatch of the ith rotor is defined as follows:

∆Ω2
i =

{
Ω2
i,α − Ω2

i,r, under point 2a,

Ω2
i,α − Ω2

i,αw , under point 2b,
(5.2.51)

with Ωi,α, Ωi,r and Ωi,αw given as in (5.2.46)–(5.2.47).
Due to the construction of W from (5.2.39), ‖Wi‖ =

√
2, ∀i ∈ {1, . . . , 4} which further provides

‖d‖ ≈ ‖Wi‖|∆Ω2
i | =

√
2|∆Ω2

i |. This validates both (5.2.46)–(5.2.47) for the cases 2a) and 2b),
hence, completing the proof.

From Proposition 5.2.7, the two faulty scenarios 2a (5.2.46) and 2b (5.2.47) can be distin-
guished from the point 1 (5.2.45) and be detected by checking the value of ‖d‖ over a threshold
γ ∈ R+ (c.f. Figure 5.2.4):

‖d‖ > γ. (5.2.52)

Designing the value of γ requires to take into account the realistic speed speed tracking delays of
the rotors, the mismatch on the measurement of ω and the noises caused by the torque observer
from (5.2.42) and, not in the least, various uncertainties affecting the system as detailed in [Hasan
and Johansen, 2018]. A feasible design for γ can be taken as:

γ =
√

2βΩ2
max, (5.2.53)

with β ∈ (0, 1) the tuning parameter describing the ratio of the acceptable tracking error (e.g.
|Ω2

i,α − Ω2
i,r| as in (5.2.46)) to the maximum squared speed Ω2

max as in (5.1.4).
After detecting the two faulty scenarios 2a (5.2.46) and 2b (5.2.47), the following proposition
details how to isolate the faulty rotor and estimate its stuck speed. The work makes use of the
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formulation (5.2.48) under the same assumption of the torque observer (5.2.42)–(5.2.43) properly
functioning. We will show that the ith stuck rotor can be isolated by comparing the values of

the three elements of the residual vector d =
[
d1 d2 d3

]>
as in (5.2.44) and its stuck speed can

be obtained as a consequence.

Proposition 5.2.8 (Fault isolation and estimation [Nguyen et al., 2020d]). Let us consider two
scenarios 2a (5.2.46) and 2b (5.2.47) from Proposition 5.2.7. After detecting the faults, the ith

faulty rotor can be isolated (i.e., re-checked for scenario 2b) by using the look-up Table 5.2.1 in
which the residual vector d =

[
d1 d2 d3

]
is from (5.2.44) and the notation ∆Ω2

i is defined in
(5.2.51).

Stuck rotor 1 2 3 4

d1 0 −∆Ω2
2 0 ∆Ω2

4

d2 −∆Ω2
1 0 ∆Ω2

3 0

d3 −∆Ω2
1 ∆Ω2

2 −∆Ω2
3 ∆Ω2

4

Table 5.2.1: Stuck rotor identification.

Next, after obtaining the index i, the actual stuck speed Ωi,α is estimated by:

Ω2
i,α =

{
(−1)id3 + Ω2

i,r, under point 2a of Proposition 5.2.7,

(−1)id3 + Ω2
i,αw , under point 2b of Proposition 5.2.7,

(5.2.54)

with Ωi,α the actual stuck speed of the ith rotor and Ωi,r, Ωi,αw two references under two cases 2a
(5.2.46) and 2b (5.2.47) of Proposition 5.2.7.

Proof. The look-up Table 5.2.1 is constructed by using the relation d ≈ Wi∆Ω2
i as in (5.2.50)

with Wi the ith column of W from (5.2.39). Then, by generalizing the last row of Table 5.2.1,
we arrive to:

d3 ≈ (−1)i∆Ω2
i , (5.2.55)

with ∆Ω2
i as in (5.2.51), which further leads to the use as in (5.2.54), completing the proof.

Note that, due to realistic noises and implementation mismatches, it is not required to check
if the values of the three elements of the residual vector d =

[
d1 d2 d3

]
as in (5.2.44) follow

exactly the indications given in Table 5.2.1, e.g., to check the condition d2 = d3 for identifying
if the 1st rotor being stuck. The isolation algorithm can be relaxed by only checking the signs of
the elements (d1, d2, d3). Hereinafter, we summarize all the steps to establish the whole process
of the proposed diagnosis module.

Procedure 5.2.9 (Fault detection, isolation and estimation procedure [Nguyen et al., 2020d]).

1. Fault detection:
• Check ‖d‖ > γ as in (5.2.50). If Yes, continue to Step 2. If No, come back to Step 1.

2. Fault isolation:
• Find the the element dj having the largest magnitudes among (d1, d2). (since according
to Table 5.2.1, the value of d3 is always affected directly by the fault).
• Check the signs of dj and d3 according to Table 5.2.1 in order to isolate the ith stuck
rotor. E.g., if j = 1 and sign(dj) = sign(d3), then, i = 4.
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3. Fault estimation:
• Calculate the actual stuck speed of the ith faulty rotor by using (5.2.54).

5.3 Trajectory tracking under a stuck fault event

In this section, we present the simulation validations of the proposed FTC scheme given in
Figure 5.2.1 under a trajectory tracking scenario [Nguyen et al., 2020d]. We employ again the
model of the Crazyflie 2.0 quadcopter system given in [Luis and Ny, 2016] as already introduced
in Section 2.2.6.1. The only difference is that the input constraints as in (2.2.49) are replaced
by the saturation constraints on the rotor speeds from (5.1.4):

Ωmax = 22000 rpm. (5.3.1)

Also, the values of the physical parameters L,KT , b employed in (5.1.3) are given by:

L = 0.065 m, KT = 3.16× 10−10 N/rpm2, b = 7.94× 10−12 Nm/rpm2. (5.3.2)

The implementation is as follows. The FTC controller (including the two control layers and
the fault diagnosis module as in Figure 5.2.1) is implemented in Python in which, the NMPC
controllers (5.2.21) and (5.2.36) employ the prediction model discretized by using the standard
forward Euler method and make use of the solver IPOPT [Wächter and Biegler, 2006]. Then, the
control signals are given to a model of the quadcopter system as in (2.1.10) simulated through an
Ordinary Differential Equation (ODE) solver. Therefore, we can benefit from the short solving
time of Python and also the simulation accuracy of the ODE solver.
The reference trajectory is generated by using the B-spline parametrization of Section 2.2.3 and
by minimizing the length curve while simultaneously satisfying the system constraints, similarly

to the results given in Section 2.2.6.1. The reference trajectory ξr(t) =
[
xr(t) yr(t) zr(t)

]>
(plotted in dashed red line in Figure 5.3.1a) passes through three a priori given way-points
(given by red dots in Figure 5.3.1a):

ξr(0) =
[
0 0 0

]>
, ξr(2) =

[
0.6 0.3 0.4

]>
, ξr(4) =

[
0.4 0.6 0

]>
, (5.3.3)

while the yaw angle reference is fixed at zero along the simulation horizon, i.e. ψr(t) = 0.

The position controller at the high control level employs the feedback linearization law given
in (2.4.1) and also shares the same parameters as shown in Table 2.5.1. It runs at the frequency
of 10 Hz (in comparison with 100 Hz for the attitude controller at the low level). The rate
difference is clearly observed in Figure 5.3.4a for the desired thrust Td (red line) and in Figure
5.3.4b for the desired roll, pitch angles (solid red and green lines, respectively). We can see that
the desired angles are kept as piece-wise constant references for the attitude controller at the
low control level to follow.
Next, Table 5.3.1 gives the tuning parameters of the two NMPC attitude controllers: under
the nominal case as in (5.2.19) and under the stuck fault as in (5.2.36). We emphasize that
the values of Tdmin

, Tdmax and τmax as in (5.2.2) are obtained by using the values of (Ux, Uy, Uz)
given in Table 2.5.1 and the other parameters regarding the nominal NMPC controller follow the
design procedure given in Section 3.5. For the under-fault mode, the chosen prediction horizon
has Npf = 8 steps as employed in (5.2.36) and is enough to stabilize the attitude through the
various simulation tests. The NMPC sampling time δatt defined as in (5.2.19), (5.2.36) and the
observer sampling time δFDI defined as in (5.2.42) are both fixed at 0.01 seconds.
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Figure 5.3.1: Trajectory tracking result of the proposed FTC scheme under stuck rotor fault.

We provide simulation results for tracking the reference trajectory given in Figure 5.3.1a using
the hierarchical FTC controller detailed in Section 5.2 under the following fault scenario:
- From 0 to 2.5 seconds: nominal functioning;
- From 2.5 to 3 seconds: the 4th rotor is stuck at its previous rotating speed (c.f. Fig. 5.3.2:
ω4,α1 = α1Ωmax with α1 = 0.66);
- From 3 to 4 seconds: the 4th rotor is stuck at another speed of ω4,α2 = α2Ωmax with α2 = 0.68.
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Figure 5.3.2: Rotor speeds values under stuck fault simulation.

Firstly, the proposed FTC scheme ensures the trajectory tracking capability of the quadcopter
system. In Figure 5.3.1a, the simulation motion (plotted in solid green line) tracks well the
reference trajectory (dashed red line) while the position converges over time along the three
axes, as shown in Figure 5.3.1b. For the reader to easily understand the control challenge, we
provide the results of the four rotor speeds in Figure 5.3.2. Under the nominal operation from
0 to 2.5 seconds, all the four rotor speeds are varying over time. Then, from 2.5 to 3 seconds
(plotted within the blue rectangle), the 4th rotor is stuck at α1 = 0.66 (i.e., being stuck at
the previous speed) and from 3 to 4 seconds (within the red rectangle), at α2 = 0.68 which is
illustrated by the blue line remaining constant at two different values. Note that, even though
the change is only 2% but it is in the percentage of Ωmax = 22000 rpm which is actually large
for the considered scenarios as can be seen by the clear jump at t = 3 seconds of the blue line in
Figure 5.3.2. Also, the four rotor speeds clearly respect the maximum speed Ωmax from (5.3.1)
which proves the validation of the torque constraint sets S(Td) as in (5.2.1) under nominal case
and S4(Td) as in (5.2.27) when the 4th rotor is faulty.
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The fault diagnosis module detailed in Section 5.2.2 succeeds in detecting the stuck faults within
two sampling time periods (0.02 seconds) by using the threshold γ as in (5.2.52) with β = 10−2

as given in Figure 5.3.3. This value represents an acceptable speed tracking mismatch of 10% of
the maximum rotor speed Ωmax given in (5.3.1). Note that, a smaller value of γ can be employed
but may result in excessive sensitivity (i.e., false alarms). In Figure 5.3.3, we show that, when
the first stuck fault happens at t = 2.5 seconds for the 4th rotor, both the values of d1 (red line)
and d3 (blue line) from the residual vector d = [d1 d2 d3]> as in (5.2.44) dramatically increase
exceeding the threshold value which clearly indicate that ‖d‖ > γ, correctly serves its role as
condition for accurate fault detection (5.2.50). Furthermore, both d1 and d3 share the same
sign, i.e., having negative values which clearly point out the 4th rotor being stuck according to
the fault isolation scheme given in Table 5.2.1 and, furthermore, allow us to estimate the stuck
speed as in (5.2.54). After detecting the first fault, the attitude controller is reconfigured into
the under-fault mode as detailed in Section 5.2.1.2 in which, we no longer control the yaw angle
as can be seen from the yaw angle trajectory (blue dashed line) starting to decrease after t = 2.5
seconds in Figure 5.3.4b. Using the reconfigured attitude controller (5.2.36) in the appropriate
mode (i.e., for the 4th stuck rotor) allows the residual vector to quickly converge towards zero
as can be seen from t = 2.5 to 3 seconds in Figure 5.3.3 until the second fault happens right
after that. The stuck speed of the 4th rotor changes from Ω4,α1 (α1 = 0.66) to Ω4,α2 (α1 = 0.68)
as shown in Figure 5.3.2. Once again, the values of d1 and d3 from Figure 5.3.3 exceed the
threshold but this time, their values are positive which allows us to validate again the 4th rotor
being stuck and then, estimate the new stuck speed. Right after the attitude controller (5.2.36)
is reconfigured with the correct stuck speed Ω4,α2 , the residual values converges back to zero.
As a part of the fault diagnosis module, the result of the torque observer (5.2.42) is given in
Figure 5.3.4d. We provide only the estimated value of the roll torque τ φp as in (5.2.42) plotted
as a solid green line since the estimated results are noisy due to the usage of the backward Euler
method in (5.2.42) (can be seen from the enlarging circle) which significantly reduce the clarity
of the figure.

Next, Figures 5.3.4b–5.3.4d prove the capability of the FTC attitude controller under both
nominal condition (i.e., its ability to track well the three angle references until t = 2.5 seconds
shown in Figure 5.3.4b) and under fault (i.e., to renounce the control of the yaw angle plotted
in dashed blue line from t = 2.5 seconds but still track the roll, pitch angle references). Under
fault, the quadcopter starts rotating uncontrollably around its z axis which leads to the variation
of yaw angle and results in different vehicle’s orientation at the end w.r.t. the initial value (the
two vectors plotted in blue shown in Figure 5.3.1a). Under nominal functioning (from t = 0 to
2.5 seconds), employing the NMPC controller with terminal constraint set as shown in (5.2.19)
ensures the tracking stability, hence, allowing the actual angles to reach their desired values
within 10 steps as can be seen from the enlarging circle in Figure 5.3.4b. Bear in mind that
under stuck fault, the reconfigured NMPC controller (5.2.36) does not employ the terminal
stabilizing constraints, thus, results in slower convergence speeds regarding both the roll, pitch
angles. Furthermore, as shown in Figure 5.3.4c, the two NMPC controllers keep the angular
velocities ωx (plotted in red line) and ωy (plotted in green line) under their limit ωmax = 2 rad/s
as given in (2.2.48). We also notice the chattering phenomena in the torque results given in
Figure 5.3.4d which is caused by the sudden change of the piece-wise constant angle references
(as shown in Figure 5.3.4b) and by the control effort of stabilizing the torques at their zero
equilibrium. Therefore, we have reduced the phenomena by decreasing the weighting values of
the torques (e.g., Rτ̂ = 0.01I2 as in Table 5.3.1).

Finally, the computation time of the NMPC attitude controllers given in (5.2.21) and (5.2.36)
is plotted in Figure 5.3.5. It can be observed that under nominal cases, on average, the NMPC
controller (5.2.21) (plotted in red line) requires 49.5 milliseconds per step (given by blue line) to
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Figure 5.3.4: States and inputs results of the proposed FTC scheme under simulation.

compute which seems similar to the results given in Section 3.5.2 (where the average computing
time was 54 milliseconds as shown in Figure 3.5.2). The nominal controller also yields less
computing effort than the NMPC scheme under fault as in (5.2.36) (plotted in green line) with
the average computing time of 60 milliseconds. This is due to the use of the prediction model
for the yaw torque given by (5.2.32) and the longer prediction horizon Npf = 8 (w.r.t. Np = 5
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Figure 5.3.5: Computing time of the NMPC attitude controllers (5.2.21), (5.2.36).

under nominal functioning as given in Table 5.3.1). We also notice that the computation times
are higher than the sampling time (i.e., 0.01 seconds) which would make the control strategy,
in its present form, unsuitable for implementation. However, as already discussed at the end of
Section 3.5.2, we strongly believe that employing various advanced works on speeding up NMPC
design (e.g., to refine the algorithm’s implementation [Zanelli et al., 2018] and/or use advanced
solving techniques [Gros et al., 2012,Gulan et al., 2017]) can alleviate the computation burden
of the proposed NMPC controllers (5.2.21), (5.2.36).

5.4 Concluding remarks and open questions

This chapter presented the design of a hierarchical FTC (Fault Tolerant Control) controller for
the reliable trajectory tracking of a quadcopter system under rotor saturation constraints and the
occurrence of a single fault of the “stuck rotor” nature. The high control level makes use of the
feedback linearization controller detailed in Section 2.4 which provides bounded desired values
of thrust and angles. The main contributions appear at the low control level which employs an
NMPC controller, a speed calculator and a fault diagnosis module. The NMPC controller and
the speed calculator function in two different modes: nominal and under-fault modes. Under
both cases, the aim is to avoid the saturation effects on the four rotors, hence, allowing the
actual inputs (thrust, torques) to equal their references, leading to the stability (and accurate
trajectory tracking) of the whole scheme. Particular details are summarized as follows:

- The nominal controller design employs the NMPC attitude controller using terminal sta-
bilizing constraints, as presented in Section 3.5. We also propose a transformation of the
saturation constraints on the four rotor speeds into constraints on the three torques by
making use of the bounded inputs property of the feedback linearization position con-
troller at the high level. The speed calculation block is taken as the inversion of the rotor
configuration matrix.

- Under stuck fault functioning, we provide an explicit formulation of a polytopic torque
constraint set (defined only for two torques, roll and pitch) which guarantees the speed
constraints. Then, a prediction model of the yaw torque is developed to facilitate the
design of an NMPC controller for under fault model. The speed calculator block provides
the speed references such that the faulty rotor receives its stuck speed as its reference.

- The fault diagnosis module constructs a residual multi-valued signal describing the dif-
ferences between the speed references and their actual values. The actual speed values is
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Parameters Value

Sampling time δatt as in (5.2.21) 0.01 seconds

Nominal
functioning (5.2.19)

Np as in (5.2.21) 5 steps

[Tdmin
, Tdmax ] as in (5.2.2) [0.202, 0.3486]

τmax as in (5.2.2) 10−4 × [25 25 50]>

εmax as in (3.5.23) 10.3194

LCTC, max as in (3.5.36) 1.49× 10−7

K as in (3.2.11) and (3.2.31) [−0.1I3 − 0.2I3]

Q as in (5.2.21) diag{1, 1, 1, 0.1, 0.1, 0.1}
R as in (5.2.21) 0.01I3

R∗ as in (3.5.37)

[
150I3 3I3

3I3 155I3

]
10−11

P as in (5.2.21)

[
3.525I3 5I3

5I3 25.25I3

]

Npf as in (5.2.36) 8 steps

Under-fault
functioning (5.2.36)

Qη̂ as in (5.2.36) I2

Qω̂ as in (5.2.36) 0.1I2

Rτ̂ as in (5.2.36) 0.01I2

Table 5.3.1: Parameters of the NMPC attitude controllers (5.2.19) and (5.2.36).

estimated by a torque observer using the available feedback on the angular velocity. We
employ the backward Euler discretization method within the observer.

- The fault detection and isolation is done assuming no concurrent faults (at most, a single
rotor may be stuck) and is based on threshold breaking (detection) and sign and mag-
nitude analysis (isolation) of the residual signal. Furthermore, the residual’s values lead
to an estimation of the fault’s magnitude (i.e., the value, as percentage of the maximum
velocity, at which the rotor gets stuck). Thus, the fault diagnosis module (which con-
tains detection, isolation and estimation) is able to handle a fault occurrence and possible
piece-wise changes in the fault magnitude.

The proposed FTC scheme was validated through extensive simulations and shows promise for
future experimental tests. The NMPC controllers obtained an average computing time per step
of 49.5 milliseconds and 60 milliseconds under nominal and faulty cases, respectively. Various
questions remain open as topics of further research:

- What is the impact of the internal rotor dynamics on the control scheme, especially on the
fault diagnosis module?

- How is the robustness of the control scheme under measurement errors and/or dynamics
uncertainties.
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- How is the performance of the proposed method under real applications? The question
also includes the preparation process, i.e.: embedding the two NMPC attitude controllers,
the speed calculator block and the fault diagnosis module into the on-board controller.



Chapter 6

Conclusions and future developments

6.1 Conclusions

This thesis presented the design of reliable control laws for motion planning of a multicopter
system (with possible generalization for similar feedback linearizable systems) subject to state,
input constraints and unexpected events occurring in the system (e.g., actuator faults). The
chief theoretical notions on which this thesis hinged - differential flatness, FL (feedback lin-
earization) and NMPC (Nonlinear Model Predictive Control) were coherently merged together,
hence paving the way for original results on constrained trajectory generation and tracking con-
trol designs.

The control approach considered in the thesis was to generate off-line a feasible reference tra-
jectory with respect to the nominal functioning of the multicopter system and then, to design
an on-line tracking mechanism. Regarding the trajectory generation problem, we have exploited
the differential flatness property of the system for designing robust angular constraints against
possible modifications of the yaw angle during flight (e.g., for aerial photography/filming ap-
plications). The flat output was parametrized by using the B-spline curves properties (e.g.,the
curve lies inside a union of convex hulls, B-spline derivatives can be expressed as linear com-
binations of lower order B-splines) which allowed us to consider a minimum-length trajectory
generation algorithm subject to various system’s constraints though an optimization problem
with a standard quadratic cost function. The proposed approach was validated in simulation for
a generic indoor trajectory generation application and a building inspection scenario where the
vehicle’s direction was varying over time for pointing the mounted camera towards the building.
For the on-line tracking design, a hierarchical control architecture which decouples the scheme
into position and attitude control was proposed. At the high level the position controller calcu-
lates the position error and provides the desired thrust and angles to the attitude controller at
the low level to stabilize the system around the desired angles.

The originality of the contributions lies in the exploitation of FL controllers (and in particular
a computed-torque control for the attitude control problem) for various tasks related to NMPC
designs. We propose novel approaches for defining the necessary ingredients for guaranteeing the
stability, the recursive feasibility and also for reducing the computing time (in comparison with
existing approaches in the literature) of the NMPC schemes. The first direction is to construct
an invariant set with unlimited expandability which leads to an NMPC design with semi-global
stability guarantees. The design allows to tune the terminal constraint set such that it can
ultimately cover an arbitrary compact set containing the possible initial states and hence, the
prediction horizon length can be significantly reduced while still ensuring the closed-loop sta-
bility. The second approach is to employ a relaxed invariant set as the terminal constraint set

154
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within the NMPC design. The set guarantees the presence of the state within itself at predefined
periodic time instants (i.e., not at all times as considered for the standard invariant set), and
hence, can be described in simple box-type constraints. These mitigate the complexity of the
NMPC optimization problem and hence, remarkably reduce the computing time in comparison
with using the terminal invariant set with similar size. Next, after simplifying the terminal
constraints as done in the foregoing approach, we eliminated them and tried to guarantee the
stability of the NMPC design only by using a “long enough” prediction horizon. We observe
that using the aforementioned FL controller greatly enhances the design in the sense that the
required prediction horizon length is much shorter than when using a standard linear controller
(but still being impractically long for real applications).

The contribution also includes the design of an hierarchical optimization-based FTC (Fault Tol-
erant Control) scheme to counteract the stuck rotor fault for a quadcopter system in which the
high level employs the FL controller while the low level switches between two different NMPC
schemes according to the system’s functioning states (healthy or under fault), both guaranteeing
that the rotor speeds do not exceed their limit. We applied a set theoretic method to transform
the rotor speeds constraints into the saturation constraints on the torques and hence, were able
to apply the proposed NMPC design with guaranteed stability (which was done for the general
multicopter system without specifying the rotors). A model of the uncontrolled yaw motion
under fault was constructed which allows the prediction dynamics employed within the NMPC
controller to be more realistic. We also proposed the design of a fault diagnosis module for
detecting the stuck fault based on the differences between the estimated and reference rotor
speeds.

Throughout the thesis, the contributions were validated under extensive simulations and part of
them were applied for real experimental tests over a Crazyflie 2.0 quadcopter platform. Their
effectiveness was highlighted via comparisons with several existing approaches (e.g., to employ a
linear controller to design an NMPC scheme as in the quasi-infinite horizon NMPC approach).

6.2 Future developments

Throughout the manuscript, we have provided several open questions and remarks on feasible
improvements at the end of each chapter. Some questions have been answered later on, at other
parts of the thesis (e.g., a question about another control candidate for the position controller
at the end of Chapter 2, page 52 is answered by the NMPC designs given in Chapter 4) yet,
most of them still remains open and are classified into several large topics hereinafter.

1) Account for disturbances: The first improvement which can be made is to consider more
uncertainties within the trajectory generation and also the control design. One example is to
add bounded disturbances (e.g. caused by wind gusts [Hasan and Johansen, 2018]) into the
dynamical system of the multicopter, then, take them into account when designing the con-
troller and when analyzing the stability property. For solving this, a feasible solution is to adapt
the proposed NMPC designs with (nominal) stability guarantees by using tube-based NMPC de-
sign [Alvarado et al., 2007,Mayne and Kerrigan, 2007,Yu et al., 2013]. The tube-based approach
guarantees that the state always stays inside the predefined tube in the presence of bounded
disturbances and furthermore, the nominal stability property established in this manuscript can
be re-used for an analysis on the stability of the tube-based NMPC design [Alvarado et al.,
2007].

2) Consider parameter uncertainties: Regarding the multicopter dynamical system as in
(2.1.10), besides the mass m which is relatively easy to obtain, the inertia tensor J also plays an
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important role in the control designs but is well-known for its complicated measuring procedure
(c.f. Remark 5.2.6). Therefore, a mismatch on the value of J always exists in real applications
and should be taken into account in the control design. One existing solution is to develop
an adaptive law which compensates the estimated value of J as proposed in [Achtelik et al.,
2011, Navabi and Soleymanpour, 2017]. However, note that these methods are not straightfor-
ward to apply under input saturation constraints as considered in the manuscript.

3) Enhance and generalize the NMPC scheme with stability guarantees: The contribu-
tions on the NMPC designs of this thesis are based on the use of the appropriate local controllers
(required to design NMPC schemes with guaranteed stability), i.e., the FL (Feedback Lineariza-
tion) controllers which better fit with the strongly nonlinear dynamics of a multicopter, than the
standard linear constructions. Even though they succeed in dealing with the NMPC designs us-
ing terminal stabilizing constraints as considered in Chapter 3 and Section 4.2, their application
for the NMPC design without terminal stabilizing constraints, i.e., still providing the extremely
long prediction horizon lengths (c.f. Table 4.3.1), raise the question: How to determine an ap-
propriate local controller for designing an NMPC scheme for a specific system?

Indeed, this is a big question due to the variety of system’s types and various control designs pos-
sibly employed. For now, we are working on part of the problem. More precisely, by combining
all the results presented in Chapters 3 and 4, we aim to construct an NMPC design framework
for feedback linearizable systems including the partial FL case [Charlet et al., 1989,Spong, 1994].
The direction shows promise since the established elements, e.g., the input constraint satisfac-
tion by using Taylor’s approximation and the invariant set construction based on the resulted
linear stable system as detailed in Section 3.2 for the computed-torque controller, hold for a
general FL controller and hence, offer a possibility of generalizing the proposed NMPC designs
for similar feedback linearizable systems. However, since a FL controller is totally based on the
dynamical model of the system which probably contains errors and mismatches, we also want to
take them into account as already stressed out in the foregoing paragraph as our first concern.
Furthermore, we also look for different control candidates. For example, the multicopter dy-
namics actually admit a passivity-based controller [Ha et al., 2014,Meissen et al., 2017] which is
capable of taking into account uncertainties (e.g., the mass as in [Ha et al., 2014] and supensed
load as in [Meissen et al., 2017]). We positively believe that using this candidate control law
can mitigate the robustness issues and provide a structural framework for designing an NMPC
controller with guaranteed stability.

4) Extend for multi-agent control problems: The next extension which can be considered
is to adapt the proposed controllers for multicopters formation control problems. For the tra-
jectory generation part, the approach of using differential flatness and B-spline parametrization
as proposed in Section 2.2 can be directly applied for the scenarios considering static obstacles
while it needs to be simplified for on-line configuration when considering moving ones. Then,
regarding the tracking mechanism, using an NMPC scheme allows us to take into account colli-
sion and obstacle avoidance by simply adding appropriate terms into the cost function [Prodan
et al., 2013,Kuriki and Namerikawa, 2015,Rucco et al., 2015,Stoican et al., 2016]. Furthermore,
the decentralized or distributed control approaches can be applied to reduce the complexity of
the whole optimization problem and to benefit from the available processors equipped in the
systems [Scattolini, 2009, Bemporad and Rocchi, 2011]. However, the resulted stability prob-
lems will become convoluted due to the fact that the local controller (i.e., having an explicit
formulation) is usually not able to take into account collision and obstacle avoidance constraints.
Therefore, we may mitigate the theoretical proofs of the closed-loop stability but this requires
us to analyze and to demonstrate it through simulations and/or experiment tests, similarly to
various related works in the literature [Bemporad and Rocchi, 2011,Rucco et al., 2015].



Appendix A

Flatness-based representation of the
angular velocities

The flatness formulation of ωx given in (2.2.8) is derived from its original formulation ωx =
φ̇− ψ̇ sin θ given in (2.1.7). At first, by using sinφ = Φx sinψ−Φy cosψ from (2.2.5), we obtain
the formulations of cosφ and the derivative of the roll angle φ̇ as follows:

cosφ =

√
(ẍ cosψ + ÿ sinψ)2 + (z̈ + g)2

√
ẍ2 + ÿ2 + (z̈ + g)2

(A.0.1)

φ̇ =
Φ̇x sinψ − Φ̇y cosψ + ψ̇ (Φx cosψ + Φy sinψ)

cosφ
. (A.0.2)

Next, by using tan θ = Θx cosψ + Θy sinψ from (2.2.5), we have that:

sin θ =
ẍ cosψ + ÿ sinψ√

(ẍ cosψ + ÿ sinψ)2 + (z̈ + g)2
. (A.0.3)

Then, introducing (A.0.1)-(A.0.3) to ωx = φ̇− ψ̇ sin θ from (2.1.7), we arrive to:

ωx =
Φ̇x sinψ − Φ̇y cosψ + ψ̇ (Φx cosψ + Φy sinψ)− ψ̇ (Φx cosψ + Φy sinψ)

cosφ
, (A.0.4)

with Φx,Φy as in (2.2.7). This leads to the flatness formulation of ωx given in (2.2.8).
Next, we show how to construct the angular velocity ωy as in (2.2.9). At first, the derivative of
the pitch angle θ̇ is calculated by using tan θ from (2.2.5) as follows:

θ̇ = cos2 θ
(

Θ̇x cosψ + Θ̇y sinψ + ψ̇ (−Θx sinψ + Θy cosψ)
)
. (A.0.5)

Introducing (A.0.5) to the formulation ωy = θ̇ cosφ+ ψ̇ sinφ cos θ from (2.1.7) leads to:

ωy = cosφ cos2 θ
(

Θ̇ cosψ + Θ̇y sinψ
)

+ ψ̇ cos θ (cosφ cos θ (−Θx sinψ + Θy cosψ) + sinφ) ,

(A.0.6)
in which, cosφ cos θ (−Θx sinψ + Θy cosψ) + sinφ = 0 is obtained by using Θx,Θy from (2.2.7),
sinφ from (2.2.5), cosφ from (A.0.1) and cos θ calculated from (A.0.3). This also validates the
flatness representation of ωy from (2.2.9).
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Appendix B

Proof of Proposition 3.5.1

The explicit formulation of the remainder term Rε , [Rε,1 Rε,2 Rε,3]> as in (3.5.17)–(3.5.19) is
rewritten as follows:

Rε,1 =− Jx
(

(s θ − s θd)µψ + θ̇ψ̇ c θ
)

+ (Jz − Jy)(θ̇ cφ+ ψ̇ sφ c θ)(−θ̇ sφ+ ψ̇ cφ c θ), (B.0.1)

Rε,2 =Jy

(
(cφ− cφd)µθ + (sφ c θ − sφd c θd)µψ − φ̇θ̇ sφ+ ψ̇(θ̇ cφ c θ − θ̇ sφ s θ)

)

+ (Jx − Jz)
(
φ̇− s θψ̇

)(
− sφθ̇ + cφ c θψ̇

)
, (B.0.2)

Rε,3 =Jz

(
−(sφ− sφd)µθ + (cφ c θ − cφd c θd)µψ − φ̇θ̇ cφ− ψ̇φ̇ sφ c θ − ψ̇θ̇ cφ s θ

)

+ (Jy − Jx)(φ̇− s θψ̇)(cφθ̇ + sφ c θψ̇). (B.0.3)

Next, for all [η, η̇, µη]
> ∈ B(ηd, ε), the remainder term Rε is bounded as follows:

|Rε,1| ≤
Jx
2

(
4 s2

(
θ − θd

2

)
+ µ2

ψ + φ̇2 + ψ̇2

)
+ (Jz − Jy)

√
(θ̇2 + ψ̇2)(θ̇2 + ψ̇2)

≤
(
Jx
2

+ Jz − Jy
)(

(φ− φd)2 + (θ − θd)2 + ‖η̇‖2 + ‖µη‖2
)
, (B.0.4)

|Rε,2| ≤
Jy
2

(
4 s2

(
φ− φd

2

)
+ µ2

θ + 4 s2

(
φ− φd

2

)
+ µ2

ψ + 4 s2

(
θ − θd

2

)
+ µ2

ψ + φ̇2 + θ̇2 + ψ̇2

)

+ |Jz − Jx|
√

(1 + s2 φ)(φ̇2 + ψ̇2)(c2 φ+ s2 φ c2 θ)(θ̇2 + ψ̇2)

≤ (Jy + |Jz − Jx|
√

1 + s2 εmax)
(
(φ− φd)2 + (θ − θd)2 + ‖η̇‖2 + ‖µη‖2

)
, (B.0.5)

|Rε,3| ≤
Jz
2

(
4 s2

(
φ− φd

2

)
+ µ2

θ + 4 s2

(
φ− φd

2

)
+ µ2

ψ + 4 s2

(
θ − θd

2

)
+ µ2

ψ + φ̇2 + θ̇2 + ψ̇2

)

+ |Jy − Jx|
√

(1 + s2 θ)(φ̇2 + ψ̇2)(c2 φ+ s2 φ c2 θ)(θ̇2 + ψ̇2)

≤ (Jz + |Jy − Jx|
√

1 + s2 εmax)
(
(φ− φd)2 + (θ − θd)2 + ‖η̇‖2 + ‖µη‖2

)
. (B.0.6)
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Appendix C

Stability of error dynamics (2.4.16) using
the nested control design

This section proves the stability of the error dynamics (2.4.16) which can be split into three
scalar cases due to the definition of the error vector eξ = [ex ey ez]

> ∈ R3 and the usage of the
diagonal weighting matrices K1, K2 as in (2.4.12). We generalize all the three scalar dynamics
by the following system using the indice q (q ∈ {x, y, z}):

ëq = sat

(
K1q ėq + sat

(
−K1qK2qeq +K2q ėq,

λq
2

)
, λq

)
(C.0.1)

with eq ∈ R representing for any element of eξ. The control parameters Kq1 , Kq2 < 0 and λq > 0
taken from the diagonal matrices K1 , diag{K1x , K1y , K1z}, K2 , diag{K2x , K2y , K2z} from

(2.4.12) and λ , [λx λy λz]
> as in (2.4.13). The forthcoming result is a generalization of the

proof for the particular case of Kq1 = Kq2 = 1 which was introduced in [Teel, 1992]. Considering
the new variables e1, e2 defined as:

e1 = −K1qeq + ėq, e2 = ėq. (C.0.2)

Introducing (C.0.2) into (C.0.1) leads to:

ė1 = −K1qe2 + sat

(
K2qe2 + sat

(
K2qe1,

λq
2

)
, λq

)
, (C.0.3)

ė2 = sat

(
K1qe2 + sat

(
K2qe1,

λq
2

)
, λq

)
. (C.0.4)

Then, we will prove that the equilibrium (e1 = 0, e2 = 0) of the system (C.0.3)-(C.0.4) is globally
asymptotically stable.
Firstly, we consider the “big” value of e2, such that:

|e2| >
λq
|K1q |

, (C.0.5)

By defining the Lyapunov function V2 = e2
2, we have that:

V̇2 = 2e2 sat

(
K1qe2 + sat

(
K2qe1,

λq
2

)
, λq

)
. (C.0.6)

Case 1: e2 > 0, (C.0.5) leads to:

K1qe2 + sat

(
K2qe1,

λq
2

)
<
λq
2
− λq

2
= 0. (C.0.7)
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Introducing condition (C.0.7) and e2 > 0 into (C.0.6) strictly leads to V̇2 < 0.
Case 2: e2 < 0, (C.0.5) leads to:

K1qe2 + sat

(
K2qe1,

λq
2

)
> −λq

2
+
λq
2

= 0. (C.0.8)

Introducing condition (C.0.8) and e2 < 0 into (C.0.6) strictly leads to V̇2 < 0.
Thus, if e2 /∈ E2 = {e2 : |e2| ≤ λq/|K1q |}, V2 = e2

2 strictly decreases. Consequentially, e2 enters
E2 in a finite time and remains in E2.
Secondly, we consider that e2 ∈ E2, i.e. |e2| ≤ λq/|K1q |, we arrive to:

∣∣∣∣K1qe2 + sat

(
K2qe1,

λq
2

)∣∣∣∣ ≤
λq
2

+
λq
2

= λq. (C.0.9)

Thus, we have that:

sat

(
K1qe2 + sat

(
K2qe1,

λq
2

))
= K1qe2 + sat

(
K2qe1,

λq
2

)
. (C.0.10)

Introducing (C.0.10) into (C.0.3) leads to:

ė1 = sat

(
K2qe1,

λq
2

)
. (C.0.11)

By considering the Lyapunov function V1 = e2
1, we have that:

V̇1 = 2e1 sat

(
K2qe1,

λq
2

)
< 0. (C.0.12)

Since K2q < 0, V1 is decreasing which indicates that e1 enters E1 = {e1, |e1| ≤ λq/(2|K2q |)} in a
finite time. When e1 ∈ E1, the dynamics (C.0.3)-(C.0.4) become:

ė1 = K2qe1, (C.0.13)

ė2 = K2qe1 +K1qe2, (C.0.14)

which is exponentially stable around the origin (e1 = 0, e2 = 0) since 〈K1q , K2q〉 < 0. Thus,
(eq = 0, ėq = 0) is also globally asymptotically stable for the error dynamics (C.0.1), hence,
completing the proof.



Appendix D

Proof of Proposition 2.4.5

From the polytopic constraint (2.2.40) (c.f. Figure 2.2.2), we obtain that:

ẍ2
r + ÿ2

r ≤
T 2
rmax

m2
sin2 εrmax , (D.0.1)

T 2
rmin

m2
cos2 εrmax ≤ (z̈r + g)2 ≤ T 2

rmax

m2
. (D.0.2)

with q̈r, q ∈ {x, y, z} the references of the translation accelerations, m the system mass,
[Trmin

, Trmax ] the range of the thrust reference as in (2.2.37) and εrmax the maximum value of
the roll, pitch angles references as in (2.2.36). Then, from (D.0.1), we obtain that:

〈max |ẍr|,max |ÿr|〉 ≤
Trmax

m
sin εrmax . (D.0.3)

Therefore, in order to guarantee the existence of (Ux, Uy) such that Ux > max |ẍr| and Uy >
max |ÿr| as required in (2.4.14), we need to ensure:

〈Ux, Uy〉 >
Trmax

m
sin εrmax . (D.0.4)

Next, by introducing |z̈r| < max |z̈r| < Uz < g (obtained from (2.4.5) and (2.4.14)) to (D.0.2),
we have that:

z̈r ∈
[
Trmin

m
cos εrmax − g,

Trmax

m
− g
]
, (D.0.5)

which leads to to:

max |z̈r| ≤ max

(
g − Trmin

m
cos εrmax ,

Trmax

m
− g
)
. (D.0.6)

Therefore, it is necessary to constrain Uz as in (2.4.14) such that:

Uz > max

(
g − Trmin

m
cos εrmax ,

Trmax

m
− g
)
. (D.0.7)

By considering two conditions on (Ux, Uy, Uz) (2.4.6)–(2.4.7), we arrive to:

Uz ≤ g − cotan (εmax)
√
U2
x + U2

y , (D.0.8)

Uz ≤
√
T 2

max

m2
− U2

x − U2
y − g, (D.0.9)
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with Tmax the maximum thrust of the multicopter system as in (2.1.13) (i.e, Tmax > Trmax from
(D.0.7)).
If Trmin

cos εrmax + Trmax < 2mg, introducing (D.0.4) and (D.0.7) to (D.0.8)–(D.0.9) leads to the
following:

√
2 tan εrmax

Trmax

Trmin

< tan (εmax) , (D.0.10)

√
(2mg − Trmin

cos εrmax)2 + 2T 2
rmax

sin2 εrmax < Tmax, (D.0.11)

otherwise, if Trmin
cos εrmax + Trmax ≥ 2mg, we have that:

Trmax(1 +
√

2 cotan (εmax) sin εrmax) ≤ 2mg, (D.0.12)

Trmax

√
1 + sin2 εrmax ≤ Tmax. (D.0.13)

The case of Trmin
cos εrmax + Trmax < 2mg and the corresponding results (D.0.10)–(D.0.11) are

introduced in Proposition 2.4.5 since they are very easy to achieve. This also completes the
proof.



Appendix E

Proof of Lemma 4.2.16

It’s straightforward to obtain the solutions of (4.2.75) given as follows:

x1(t) = x1,0λ1(s, t) + x2,0λ2(s, t), (E.0.1a)

x2(t) = x1,0λ3(s, t) + x2,0λ4(s, t), (E.0.1b)

where the initial conditions are x(0) = [x1,0 x2,0]> and the functions λi(·), with i ∈ {1, . . . , 4} are
given as in (4.2.77). Note that, by considering s1 < s2 < 0, we obtain the following results:

0 < λ1(s, t) ≤ 1, λ2(s, t) > 0, (E.0.2a)

λ3(s, t) < 0, |λ4(s, t)| ≤ 1. (E.0.2b)

Then, by applying the Triangle Inequality (and also considering (E.0.2)) to (E.0.1) we obtain:

|x1(t)| ≤ |x1,0|λ1(s, t) + |x2,0|λ2(s, t), (E.0.3a)

|x2(t)| ≤ −|x1,0|λ3(s, t) + |x2,0λ4(s, t)|, (E.0.3b)

with x1,0 = x1(0) and x2,0 = x2(0). Let us consider the initial state within the set Rx (4.2.81),
i.e., |x1,0| ≤ X1max and |x2,0| ≤ X2max . Then, (E.0.3) leads to:

|x1(t)| ≤ X1maxλ1(s, t) +X2maxλ2(s, t), (E.0.4a)

|x2(t)| ≤ −X1maxλ3(s, t) +X2max |λ4(s, t)|. (E.0.4b)

Furthermore, from (4.2.80) and (E.0.2), X, V will satisfy:

λ2(s, δ)X2max ≤ (1− λ1(s, δ))X1max , (E.0.5a)

−λ3(s, δ)X1max ≤ (1− |λ4(s, δ)|)X2max . (E.0.5b)

By introducing (E.0.5) to (E.0.4) at t = δ, it is straightforward to obtain:

|x1(δ)| ≤ X1max , |x2(δ)| ≤ X2max . (E.0.6)

This proves the δ-invariant property (4.2.73) of Rx (4.2.81).
Then, by considering (E.0.4), for any initial state within the set Rx (4.2.81), we have that:

max
t∈[0,δ]

|x1(t)| ≤ max
t∈[0,δ]

{X1maxλ1(s, t) +X2maxλ2(s, t)}, (E.0.7)

max
t∈[0,δ]

|x2(t)| ≤ max
t∈[0,δ]

{−X1maxλ3(s, t) +X2max|λ4(s, t)|},
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in which the two right hand sides are exactly X̃1max (4.2.83a) and X̃2max (4.2.83b). Furthermore,
the followings hold for any t ∈ [0, δ]:

|x1(t)| ≤ max
t∈[0,δ]

|x1(t)|, |x2(t)| ≤ max
t∈[0,δ]

|x2(t)|. (E.0.8)

Thus, (E.0.7) and (E.0.8) lead to x(t) ∈ BRx for all t ∈ [0, δ]. Since x(δ) ∈ Rx from (E.0.6), we
again obtain x(t) ∈ BRx for all t ∈ [δ, 2δ]. Hence, by further recursive analysis, x(t) ∈ BRx for
any t ≥ 0. Thus, the safe set BRx as in (4.2.82) is validated.



Appendix F

Proof of the closed-loop stability of
Lemma 4.2.20

Recursive feasibility: Assuming that the first NMPC iteration succeeds at time t, we obtain the
following results from the first optimal input, ū∗(τ , t), and state, x̄∗(τ , t), trajectories:





ū∗(τ , t) ∈ U , ∀τ ∈ [t, t+ Tp],

x̄∗(τ , t) ∈ X , ∀τ ∈ [t, t+ Tp],

x̄∗(t+ Tp, t+ δ) ∈ R,
(F.0.1)

in which the terminal δ-invariant set R follows the condition C2. Furthermore, by applying
the control action uMPC (4.2.3) to the nominal system (3.1.1), the resulted state trajectory
x(τ ) = x̄∗(τ , t) for τ ∈ [t, t+ δ].
At the next time step t+ δ, let us consider a candidate input trajectory chosen as follows:

ūc(τ , t+ δ) ,

{
ū∗(τ , t), τ ∈ [t+ δ, t+ Tp],

uloc(x̄c(τ , t+ δ)), τ ∈ [t+ Tp, t+ Tp + δ],
(F.0.2)

where the resulted candidate state x̄c(τ , t + δ) is obtained by introducing ūc(τ , t + δ) to the
dynamics (3.1.1). Within the time interval [t + δ, t + Tp], by applying the candidate input
trajectory ūc (F.0.2) to the nominal system (3.1.1), it is trivial to have that:





ūc(τ , t+ δ) ∈ U , ∀τ ∈ [t+ δ, t+ Tp],

x̄c(τ , t+ δ) = x̄∗(τ , t) ∈ X , ∀τ ∈ [t+ δ, t+ Tp],

x̄c(t+ Tp, t+ δ) ∈ R.
(F.0.3)

Thus, the δ-invariant property of R implies that:





x̄c(t+ Tp + δ, t+ δ) ∈ R,
x̄c(τ , t+ δ) ∈ BR ∈ X , ∀τ ∈ [t+ Tp, t+ Tp + δ],

ūc(τ , t+ δ) , uloc(x̄c(τ , t+ δ)) ∈ U ,
(F.0.4)

in which the third assertion follows condition C1, i.e., the safe set BR is constraints admissible.
Then, (F.0.3)-(F.0.4) validate the candidate input trajectory ūc(·, t+ δ) given in (F.0.2). Hence,
recursive feasibility is obtained by further recursion.
Asymptotic stability: The closed-loop stability is proved similarly to various existing works in the
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literature [Chen and Allgöwer, 1998,Mayne et al., 2000] by employing the optimal cost function
as a Lyapunov function candidate:

V (t) = J(x(t), ū∗(·, t)). (F.0.5)

Then, by employing the candidate input trajectory ūc(·, t+δ) as in (F.0.2) and its resulted state
x̄c(·, t+ δ) as in (F.0.3)-(F.0.4), we obtain that:

V (t+ δ)− V (t) ≤ −
∫ t+δ

t

`(x∗(τ , t),u∗(τ , t))dτ (F.0.6)

∫ t+Tp+δ

t+Tp

(
dF (x̄c(τ ))

dτ
+ `(x̄c(τ ), ūc(τ ))

)
dτ ,

where the candidate state x̄c(τ , t+ δ) and input ūc(τ , t+ δ) are shortened as x̄c(τ ) and ūc(τ ),
respectively. Next, ūc(τ ) = uloc(x̄c(τ )),∀τ ∈ [t + Tp, t + Tp + δ] from (F.0.2) and the state
x̄c(t+ Tp) ∈ R from (F.0.3), hence, from condition C3, we arrive to:

V (t+ δ)− V (t) ≤ −
∫ t+δ

t

`(x∗(τ , t),u∗(τ , t))dτ ≤ 0. (F.0.7)

Thus, the non-negative Lyapunov function V (t) (F.0.5) is decreasing between two consecutive
time instants. This validates the asymptotic stability. Similar proofs can be found in [Chen and
Allgöwer, 1998,Mayne et al., 2000] for the case of using the standard terminal invariant sets.



Appendix G

Proof of Proposition 4.3.4

Since the matrices Q as in (4.2.4) and Pd as in (4.3.14) are both symmetric and positive definite,
we have the following chain of inequalities:

‖pk‖2
Pd
≤ max(eig(Pd))‖pk‖2 ≤ max(eig(Pd))

min(eig(Q))
‖pk‖2

Q, (G.0.1)

which further leads to:
‖pk‖2

Pd
≤ r2

d min(eig(Pd))︸ ︷︷ ︸
pk∈S(Pd,rd)

,∀‖pk‖2
Q ≤ c, (G.0.2)

with c defined in (4.3.20) and S(Pd, rd) the admissible invariant set as in (4.3.15).
Next, let us consider the NMPC optimization problem (4.3.1)–(4.3.3) with an initial state p0

satisfying ‖p0‖2
Q ≤ c as implied in (4.3.8). Next, we propose a feasible candidate for the NMPC

optimization problem (4.3.1)–(4.3.3) consisting of the predicted state and input trajectories
(p̄0(i), ū0(i)) as employed in (4.3.1) for all i ∈ {0, Np−1} (with Np the prediction horizon length
as in (4.3.1)):

p̄0(i+ 1) = F(p̄0(i), ū0(i), ψ), (G.0.3)

ū0(i) = uFL(Kdp̄0(i), ψ), (G.0.4)

with uFL(Kdp̄0(i), ψ) the FL controller as in (4.1.4) and Kd from (4.3.13) being admissible for all
p̄0(i) ∈ S(Pd, rd) as in (4.3.15). Since p̄0(0) = p0 ∈ S(Pd, rd) (due to (G.0.2)), the whole state
trajectory p̄0(·) remains within the invariant set S(Pd, rd) as in (4.3.15) under the FL controller
uFL(·). These validate the the candidates (G.0.3)–(G.0.4).
Then, since VNp as in (4.3.1) is the optimal value function of the optimization problem (4.2.1),
it satisfies:

VNp(p0) ≤ JNp(p0, ū0(·)) =

Np−1∑

i=0

` (p̄0(i), uFL(Kdp̄0(i), ψ)) , (G.0.5)

with ū0(i) = uFL(Kdp̄0(i), ψ) as in (G.0.4). Furthermore, the stage cost ` (p̄0(i), uFL(Kdp̄0(i), ψ))
as in (G.0.5) is bounded as follows:

` (p̄0(i), uFL(Kdp̄0(i), ψ)) = ‖p̄0(i)‖2
Q + ‖uFL(Kdp̄0(i), ψ)− ue‖2

R (G.0.6)

≤ ‖p̄0(i)‖2
Q + max(eig(R))Lp̄>0 (i)K>d Kd p̄0(i) = ‖p̄0(i)‖2

Q∗ , (G.0.7)
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with Q∗ in (4.3.21). Then, since the whole predicted state trajectory p̄0(·) as in (G.0.3), it
exponentially converges as proven in (4.3.17):

` (p̄0(i), uFL(Kdp̄0(i), ψ)) ≤ ‖p̄0(i)‖2
Q∗ ≤

max(eig(Q∗))

min(eig(Pd))
ρi‖p0‖2

Pd

≤ max(eig(Q∗)) max(eig(Pd))

min(eig(Q)) min(eig(Pd))
ρi‖p0‖2

Q. (G.0.8)

Lastly, combining (G.0.5) and (G.0.8) implies that:

VNp(p0) ≤
∞∑

i=0

ρi
max(eig(Q∗)) max(eig(Pd))

min(eig(Q)) min(eig(Pd))
‖p0‖2

Q = γ‖p0‖2
Q, (G.0.9)

with γ from (4.3.20). Thus, Assumption 4.3.1 is validated and the stability of the corresponding
u-NMPC design follows Theorem 4.3.2. Hence, completing the proof.



Appendix H

Construction of function γ2 defined in
(4.3.22)

In a very similar fashion as solving the continuous-time Lyapunov equation (4.2.6) detailed in
Proposition 4.2.8, the symmetric matrix Pd obtained from (4.3.14) is given by:

Pd =

[
p1I3 p3I3

p3I3 p2I3

]
, (H.0.1)

with (p1, p2, p3) ∈ R satisfying:


p1

p2

p3


 =




1− a2
1 −2a1a3 −a2

3

−a2
2 −2a2a4 1− a2

4

−a1a2 1− a1a4 − a2a3 −a3a4



−1 

m1

m2

m3


 , (H.0.2)

in which, (m1,m2,m3) are the parametrization of the matrix M as in (4.2.13) and (a1, a2, a3, a4)
are taken from the matrix AKd as in (4.3.26):

a1 = 1 +
δ2

2
k1, a2 = δ

(
1 +

δ

2
k2

)

a3 = δk1, a4 = 1 + δk2,

(H.0.3)

with δ as in (4.3.26) the sampling time and (k1, k2) the control gains as in (4.3.24)–(4.3.25).
Then, as similar to the results of Corollary 4.2.9, the eigenvalues of the matrix Pd as in (H.0.1)
is given by:

min(eig(Pd)) =
1

2

(
p1 + p2 −

√
(p1 − p2)2 + 4p2

3

)
, (H.0.4)

max(eig(Pd)) =
1

2

(
p1 + p2 +

√
(p1 − p2)2 + 4p2

3

)
, (H.0.5)

with (p1, p2, p3) as in (H.0.2). Note that, the minimum eigenvalue of the matrix M from (4.2.13)
is also constructed similarly to (H.0.4):

min(eig(M)) =
1

2

(
1 +m2 −

√
(1−m2)2 + 4m2

3

)
, (H.0.6)

which is due to m1 = 1 as in (4.2.13). Then, by introducing the three eigenvalues formulations
(H.0.4)–(H.0.6) to γ2 defined in (4.3.22), we have that:

γ2 , γ2(k1, k2,m2,m3). (H.0.7)
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tem through an nmpc design with a relaxed terminal region. Submitted to IEEE Transactions
on Systems, Man, and Cybernetics: Systems. 14

[Nguyen et al., 2020d] Nguyen, N. T., Prodan, I., Petzke, F., Streif, S., and Lefèvre, L. (2020d).
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[Reble and Allgöwer, 2012] Reble, M. and Allgöwer, F. (2012). Unconstrained model predic-
tive control and suboptimality estimates for nonlinear continuous-time systems. Automatica,
48(8):1812–1817. 59, 114

[Reinhardt and Johansen, 2019] Reinhardt, D. and Johansen, T. A. (2019). Nonlinear model
predictive attitude control for fixed-wing unmanned aerial vehicle based on a wind frame
formulation. In 2019 International Conference on Unmanned Aircraft Systems (ICUAS),
pages 503–512. IEEE. 1, 54

[Rivera and Sawodny, 2010] Rivera, G. and Sawodny, O. (2010). Flatness-based tracking control
and nonlinear observer for a micro aerial quadcopter. In Proceedings of the 2010 International
Conference of Numerical Analysis and Applied Mathematics (ICNAAM), volume 1281, pages
386–389. AIP Publishing. 19, 24, 26

[Rousseau et al., 2019] Rousseau, G., Maniu, C. S., Tebbani, S., Babel, M., and Martin, N.
(2019). Minimum-time b-spline trajectories with corridor constraints. application to cine-
matographic quadrotor flight plans. Control Engineering Practice, 89:190–203. 4, 5, 7

[Roza and Maggiore, 2012] Roza, A. and Maggiore, M. (2012). Path following controller for a
quadrotor helicopter. In 2012 American Control Conference (ACC), pages 4655–4660. IEEE.
2, 9, 10, 19, 41

[Roza and Maggiore, 2014] Roza, A. and Maggiore, M. (2014). A class of position controllers
for underactuated vtol vehicles. IEEE Transactions on Automatic Control, 59(9):2580–2585.
10, 21

[Rucco et al., 2015] Rucco, A., Aguiar, A. P., Fontes, F. A., Pereira, F. L., and de Sousa,
J. B. (2015). A model predictive control-based architecture for cooperative path-following of
multiple unmanned aerial vehicles. In Developments in model-based optimization and control,
pages 141–160. Springer. 1, 4, 54, 156

[Rucco et al., 2016] Rucco, A., Aguiar, A. P., Pereira, F. L., and de Sousa, J. B. (2016). A
predictive path-following approach for fixed-wing unmanned aerial vehicles in presence of wind
disturbances. In Robot 2015: Second Iberian Robotics Conference, pages 623–634. Springer.
1, 2

[Saied et al., 2015] Saied, M., Lussier, B., Fantoni, I., Francis, C., Shraim, H., and Sanahuja,
G. (2015). Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor.
In 2015 IEEE International Conference on Robotics and Automation (ICRA’15), pages 5266–
5271. IEEE. 1, 128



Bibliography 182

[Scattolini, 2009] Scattolini, R. (2009). Architectures for distributed and hierarchical model
predictive control–a review. Journal of process control, 19(5):723–731. 41, 132, 156

[Shao et al., 2018] Shao, X., Hu, Q., Shi, Y., and Jiang, B. (2018). Fault-tolerant prescribed per-
formance attitude tracking control for spacecraft under input saturation. IEEE Transactions
on Control Systems Technology. 9, 128, 130

[Silano et al., 2019] Silano, G., Oppido, P., and Iannelli, L. (2019). Software-in-the-loop simu-
lation for improving flight control system design: a quadrotor case study. In Proceedings of
the 2019 International Conference on Systems, Man, and Cybernetics (SMC’19). IEEE. 14

[Simon et al., 2013] Simon, D., Lofberg, J., and Glad, T. (2013). Nonlinear model predictive
control using feedback linearization and local inner convex constraint approximations. In 2013
European Control Conference (ECC), pages 2056–2061. IEEE. 89

[Singh and Fuller, 2001] Singh, L. and Fuller, J. (2001). Trajectory generation for a uav in urban
terrain, using nonlinear mpc. In Proceedings of the 2001 American Control Conference.(Cat.
No. 01CH37148), volume 3, pages 2301–2308. IEEE. 5

[Spong, 1994] Spong, M. W. (1994). Partial feedback linearization of underactuated mechanical
systems. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’94), volume 1, pages 314–321. IEEE. 156

[Srinivasan et al., 2009] Srinivasan, B., Huguenin, P., and Bonvin, D. (2009). Global stabiliza-
tion of an inverted pendulum–control strategy and experimental verification. Automatica,
45(1):265–269. 68
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Abstract

The goal of this thesis is to propose reliable control laws for the motion planning of a multicopter
system under constraints and unexpected events (e.g., actuator faults). A hierarchical control
architecture which decouples the scheme into position and attitude control is proposed. At the
high level the position controller calculates the position error and provides the desired thrust
and angles to the attitude controller at the low level to stabilize the system around the desired
angles. The scheme’s reliability (i.e., ensuring feasibility, stability and constraint validation) is
done through a coherent merging of differential flatness, feedback linearization and Nonlinear
Model Predictive Control (NMPC). Hence, the main thesis contributions lie in:
i) The analysis and design of bounds which characterize the various inputs and states of the sys-
tem (angle position and velocity, torques, etc.). These are subsequently applied for constrained
trajectory design (which combines differential flatness and feedback linearization through the
use of B-spline parametrizations).
ii) Designs which exploit the “computed-torque control law” as local control within an NMPC
with recursive feasibility guarantees. We show that avoiding the standard linearizations em-
ployed for nonlinear dynamics improves performance (in the sense of reducing the prediction
horizon, enlarging the terminal region and reducing the problem’s complexity). Further ad-
vances relax the requirement of set invariance and even discard the need for terminal stabilizing
constraints. Generalizations for similar feedback linearizable systems are discussed.
iii) A hierarchical optimization-based FTC (Fault Tolerant Control) scheme to counteract a stuck
rotor fault. This is done through control reconfiguration at both high and low levels, coupled
with a fault diagnosis mechanism capable of handling fault detection, isolation and estimation.
The results are validated over extensive simulations and laboratory experiments involving a
nano-quadcopter.

Résumé

Le but de cette thèse est de proposer des lois de commande fiables pour la planification du
mouvement d’un système multicoptère sous contraintes et événements inattendus (par exemple,
des défauts d’actionneur). Une architecture hiérarchique qui sépare la commande en position
et attitude est proposée. Au niveau haut, l’erreur de position est calculé et la poussée, ainsi
que les angles désirés qui en découlent sont fournis au contrôleur d’attitude de niveau bas qui
stabilise le système autour des angles désirés. La fiabilité du système est assurée par une com-
binaison cohérente des commandes par de platitude différentielle, par linéarisation et prédictive
nonlinéaire (NMPC). Les principales contributions de la thèse sont les suivantes:
i) La caractérisation des contraintes sur les entrées et états du système (position et vitesse de
l’angle, etc). Celles-ci sont ensuite appliquées pour la conception de trajectoires contraintes
(combinant la platitude differentielle et la linéarisation par feedback via l’utilisation d’une
paramétrisation des trajectoires poursuivies par B-splines.
ii) Des conceptions de commande de type NMPC pour un système obtenu après linéarisation par
feedback (Computed Torque Control) avec des garanties de faisabilité récursives. Nous montrons
en particlier qu’éviter les linéarisations usuelles de la dynamique améliore les performances (i.e.
réduit l’horizon de prédiction, élargit la région terminale et réduit la complexité du problème).
Des améliorations proposées permettent ensuite d’assouplir l’exigence d’invariance d’ensemble
et éliminent la nécessité de contraintes de stabilisation terminales. Des généralisations pour des
systèmes linéarisables similaires sont discutées.
iii) Un schéma hiérarchique de commande tolérante aux pannes de rotor (rotor bloqué).
Les résultats sont validés par des simulations et des expériences de laboratoire impliquant un
nano-quadricoptère.
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