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Abstract

On the dynamic of orientation reversing

homeomorphisms of surfaces

We first prove that if h is an orientation reversing homeomorphism of the sphere S2
without a 2-periodic orbit then the complementary domain of the fixed point set may be
foliated with “Brouwer manifolds”. These are 1-dimensional submanifolds (topologically
circles, lines or pairs of lines) allowing to define some invariant open sets on which h is
conjugated to one of three simple possible models. So, this theorem is a foliated version of
a resultat by Bonino asserting that S2 \ Fix(h) can be covered with Brouwer manifolds. It
also appears as a natural counterpart for orientation reversing homeomorphisms of the Le
Calvez’s foliated version of the Brouwer’s plane translation theorem. As an application of
this foliation theorem, we next obtain the following result about the fixed point index of
the iterates of an orientation reversing local homeomorphism h of R2: as soon as 0 is an
isolated fixed point of each iterate hn (n > 1), the Poincaré-Lefschetz indices Ind(h2k−1, 0)
and Ind(h2k, 0) do not depend on the integer k > 1.

Keywords: Surface homeomorphism · orientation reversal · 2-periodic point · topological
foliation · Poincaré-Lefschetz index.
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Résumé

Sur la dynamique des homéomorphismes de surfaces

qui renversent l’orientation

Nous prouvons d’abord que si h est un homéomorphisme de la sphère S2 renversant
l’orientation et sans orbite périodique de période minimale 2, alors on peut feuilleter l’ensem-
ble complémentaire des points fixes avec des “variétés de Brouwer”. Celles-ci sont des sous-
variétés de dimension 1 (topologiquement des cercles, des droites ou des paires de droites)
permettant de définir des ouverts invariants sur lesquels h est conjugué à un modèle simple
parmi trois possibles. Ce théorème est ainsi une version feuilletée d’un résultat de Bonino
affirmant que S2 \ Fix(h) peut être recouvert par des variétés de Brouwer. Il apparait
aussi comme un analogue, pour les homéomorphismes renversant l’orientation, de la version
feuilletée du théorème de translation plane de Brouwer donnée par Le Calvez. Comme
application de ce théorème de feuilletage, on obtient ensuite le résultat suivant sur l’indice
de point fixe des itérés d’un homéomorphisme local h de R2 renversant l’orientation: dès
que 0 est un point fixe isolé de tous les itérés hn (n > 1) les valeurs des indices de Poincaré-
Lefschetz Ind(h2k−1, 0) et Ind(h2k, 0) ne dépendent pas de l’entier k > 1.

Mots-Clés: Homéomorphisme de surface · renversement de l’orientation · point 2-périodique
· feuilletage topologique · indice de Poincaré-Lefschetz.
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2 CHAPTER 1. INTRODUCTION

1.1 Variations autour du théorème de translation

plane

Un outil important pour l’étude de la dynamique des homéomorphismes de sur-

faces est la théorie de Brouwer qui, de façon générale, explique qu’un homéomor-

phisme du plan R2 préservant l’orientation et sans point fixe a une dynamique très

peu récurrente. Un énoncé classique de cette théorie est le théorème de translation

plane:

Théorème 1.1. Soit f un homéomorphisme de R2 qui préserve l’orientation et qui

n’a pas de point fixe. Alors pour tout point m ∈ R2 il existe une droite topologique

L passant par m, proprement plongée dans R2, disjointe de son image par f et

séparant f−1(L) et f(L) dans R2.

Γ
f(Γ)f−1(Γ)

Figure 1.1 – Une droite de Brouwer

On peut se référer à l’article d’origine de Brouwer [Bro12] ou bien à [Gui94, LCS96]

pour des preuves plus récentes et plus accessibles. Un homéomorphisme f et une

droite topologique L comme dans le théorème précédent sont respectivement appelés

un homéomorphisme de Brouwer et une droite de Brouwer (de f). Ainsi le théorème

de translation plane dit que, pour tout homéomorphisme de Brouwer f , on peut

recouvrir le plan par des droites de Brouwer. Il peut aussi s’énoncer de façon un peu

différente en disant que, sous les mêmes hypothèses pour f , tout point de m ∈ R2 est

contenu dans un domaine de translation, c’est à dire un ouvert connexe, simplement

connexe et f -invariant sur lequel f est conjugué à une translation. Plus précisément

encore, un domaine de translation est l’image ϕ(R2) du plan R2 par une application

ϕ : R2 → R2 continue injective qui envoie chaque verticale {x} × R sur un fermé de

R2.
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1.1.1 Les versions feuilletées de Le Calvez

Il est naturel vouloir renforcer le théorème 1.1 en feuilletant (et non pas seulement

en recouvrant) le plan R2 par des droites de Brouwer. C’est exactement la version

feuilletée du théorème de translation plane obtenue dans l’article [LC04].

Théorème 1.2 (Le Calvez, [LC04]). Soit f un homéomorphisme de Brouwer. Il

existe alors un feuilletage topologique orienté F de R2 dont toute feuille est une

droite de Brouwer de f .

Le lecteur notera bien que dans cet énoncé le feuilletage F n’a aucune raison d’être

invariant par f . Ce théorème peut se voir comme une étape vers la version feuilletée

équivariante du théorème de translation plane:

Théorème 1.3 (Le Calvez, [LC05]). Soit G un groupe discret d’homéomorphis-

mes de R2 préservant l’orientation, agissant librement et proprement. Soit f un

homéomorphisme de Brouwer commutant avec les éléments de G. Il existe alors un

feuilletage topologique orienté F de R2, invariant sous l’action de G, dont toute

feuille est une droite de Brouwer de f .

Dans ce dernier énoncé, f doit être regardé comme un relèvement d’un homéomor-

phisme f̂ de la surface S = R2/G isotope à IdS. Le feuilletage F se projette alors

sur un feuilletage F̂ de S qui est “transverse à la dynamique de f̂ ”. Ceci constitue

un nouvel outil puissant pour l’étude dynamique des homéomorphismes de surfaces

(voir par exemple [LC05, LC06b, LC08] ou [LR13]).

1.1.2 Un analogue dans le cas renversant l’orientation

Bien que la littérature sur le sujet soit moins abondante, les homéomorphismes

de surfaces renversant l’orientation constituent une classe intéressante de systèmes

dynamiques, que l’on ne peut pas comprendre en se contentant “d’élever au carré”

pour revenir au cas préservant l’orientation. L’article [Bon04] de Bonino montre

cependant qu’il existe de fortes similarités entre les homéomorphismes de Brouwer

et les homéomorphismes de la sphère S2 qui renversent l’orientation et qui n’ont pas

d’orbite périodique de période minimale 2. En particulier le résultat suivant peut se

voir comme un analogue du théorème de tranlation plane.

Théorème 1.4 (Bonino, [Bon04]). Soit h un homéomorphisme renversant l’orien-

tation de la sphère S2 et sans point 2-périodique. Alors, pour tout point m ∈
S2 \Fix(h), où Fix(h) est l’ensemble des points fixes de h, il existe une application

continue injective ϕ : O → S2 \ Fix(h) telle que
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1. O est R2 ou {(x, y) ∈ R2 | y 6= 0} ou R2 \ {(0, 0)};
2. m ∈ ϕ(O);

3. Si O = R2 ou O = {(x, y) ∈ R2 | y 6= 0} alors
• h ◦ ϕ = ϕ ◦G|O où G(x, y) = (x+ 1,−y),

• pour tout x ∈ R, ϕ(({x} ×R) ∩ O) est un ensemble fermé de S2 \ Fix(h);

4. Si O = R2 \ {(0, 0)} alors
• h ◦ ϕ = ϕ ◦H|O où H(x, y) =

1

2
(x,−y).

Dit rapidement, sous les hypothèses de ce dernier résultat, tout point m ∈ S2 \Fix(h)

est contenu dans un ouvert h-invariant ϕ(O) ⊂ S2 \ Fix(h) où la dynamique de h est

celle d’un modèle simple parmi trois possibles. L’ouvert S2\Fix(h) est ainsi recouvert

par trois types de sous-variétés de dimension 1 similaires (bien que plus compliquées)

aux droites de Brouwer du théorème de translation plane: il s’agit des ensembles

ϕ(({x} ×R) ∩O) lorsque O est R2 ou {(x, y) ∈ R2 | y 6= 0} et, quand O = R2 \ {(0, 0)},
des ensembles ϕ(C) où C est un cercle euclidien centré sur l’origine (0, 0). Ces sous-

variétés sont donc topologiquement des cercles, des droites ou des paires de droites

proprement plongées dans S2 \ Fix(h). Ces variétés ont un rôle central dans cette

thèse et seront appelées variétés de Brouwer dans tout le texte.

1.2 Présentation des résultats et organisation du

texte

Une question naturelle au vu de ce qui précède est la suivante: existe-t-il une

version feuilletée du théorème 1.4, de même que le théorème 1.2 est une version

feuilletée du théorème de translation plane ?

Cette question est la première motivation de notre travail. Nous y apportons

une réponse positive en prouvant que, pour tout homéomorphisme h comme dans

le théorème 1.4, il existe un feuilletage de l’ouvert S2 \ Fix(h) par des composantes

connexes de variétés de Brouwer (théorème 4.1, Chapitre 4). La preuve de ce résultat

est exposée dans le chapitre 5 et s’obtient en combinant les techniques des articles

[Bon04] et [LC04]. Nous aurons besoin au préalable de décrire avec précision les

variétés de Brouwer, ce qui est fait dans le chapitre 3. En particulier nous verrons

comment distinguer naturellement le coté gauche et le coté droit d’une telle variété,

en fonction de la dynamique de h. Le court chapitre 2 est consacré aux notations et

aux notions de base utilisées tout au long de ce texte.

Nous obtenons aussi, comme première application de notre théorème de feuil-

letage, un théorème d’indice pour les itérés d’un homéomorphisme (local) h du plan

R2 qui renverse l’orientation: si l’origine 0 est un point fixe isolé de tous les itérés hn,

alors l’indice de Poincaré-Lefschetz Ind(hn, 0) dépend seulement du caractère pair ou
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impair de l’entier n > 1 (théorème 4.2, Chapitre 4). Ce résultat est démontré dans le

chapitre 6. La preuve s’appuie sur une analyse du feuilletage F obtenu en appliquant

notre théorème principal à un homéomorphisme de S2 ayant seulement deux points

fixes ainsi que sur la version feuilletée équivariante du théorème de translation de

Brouwer (théorème 1.3 ci-dessus) dans le cas simple où la surface S est un anneau

ouvert.
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2.1 Notations and basic definitions

First of all, we give some basic notations. We think of the 2-sphere S2 as the

one point compactification of R2, that is S2 = R2 ∪ {∞}. If Y is a topological space

and X ⊂ Y we write generally IntY (X), ClY (X) and ∂Y (X) = ClY (X) \ IntY (X) for

respectively the interior, the closure and the frontier of X with respect to Y . For the

sake of simplicity we omit the subscript Y when Y = S2.

A set X ⊂ S2 is called a half-plane, a strip, an annulus, a disc if it is homeomorphic

to, respectively, [0,+∞)×R, [0, 1]×R, [0, 1]×S1, the closed unit disc of R2. A segment

(resp. a circle) is a subset of S2 homeomorphic to the interval [0, 1] (resp. to the unit

circle S1). A Jordan domain is a connected component of the complementary set of

a circle in S2. An arc is the image of a continuous map α : I → S2 where I ⊂ R is

any nonempty interval. Consider now an open subset M of S2. A line of M (resp. a

half-line of M) is a set X ⊂ M which is homeomorphic to R (resp. to [0,+∞)) and

which is properly embedded in M (that means that X is closed in M).

Let A,B and C be three subsets of a topological space Y . We say that A separates

B and C in Y if there are two distinct connected components X1 and X2 of Y \ A
such that B ⊂ X1 and C ⊂ X2. Note that in this definition we do not assume that B

or C is connected.

If Γ is a segment or a line of M ⊂ S2 with a provided orientation and if a, b are

two points met in this order on Γ, then [a, b]Γ is the sub-segment of Γ from a to b

for the chosen orientation of Γ. We also denote (a, b)Γ = [a, b]Γ \ {a, b} as well as

(a, b]Γ = [a, b]Γ \ {a} and likewise [a, b)Γ.

Finally Fix(f) denotes the fixed point set of any map f : X → Y and we write

](X) for the cardinality of any finite set X.

2.2 Brick decompositions

2.2.1 First definitions and properties

The notion of brick decomposition was introduced by Le Calvez and Sauzet

in [LCS96, Sau01] and is used in several papers on the dynamics of surface homeo-

morphisms (e.g. [Bon04], [LC04, LC06b], [LR04]). For completeness we recall here

the most basic facts about bricks decompositions, following closely the presentation

by Le Calvez in [LC05] or [LC06a].

A brick decomposition of a surface M without boundary is given by a one dimen-

sional stratified set Σ ⊂ M with a zero dimensional submanifold V such that any

vertex v ∈ V is locally the endpoint of exactly three edges. An edge is the closure in

M of a connected component of Σ \ V . It is the image in M of a proper topological
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embedding of [0, 1], [0,+∞),R or S1. A brick is the closure in M of a connected com-

ponent of M \ Σ. Writing E (resp. B) for the set of edges (resp. bricks) we say that

D = (V,E,B) is a brick decomposition of M with skeleton Σ = Σ(D).

Figure 2.1 – A brick decomposition

Given such a brick decomposition of M , remark that for any X ⊂ B the union⋃
β∈X β is a closed subset of M ; if furthermore X 6∈ {∅, B} then

⋃
β∈X β is also a

surface with boundary and in particular any connected component of ∂M
(⋃

β∈X β
)

is either a circle or a line of M . This is an elementary but important property of

brick decompositions. Given X ⊂ B, we will abuse notation slightly and use the same

letter X for its “geometric realization”
⋃
β∈X β ⊂ M , writing X ⊂ B (resp. X ⊂ M)

if we want to insist on the fact that X is regarded as a subset of B (resp. of M).

Moreover X ⊂ B is said to be connected if the corresponding set X ⊂M is connected;

equivalently, for any two bricks β, β′ in X, there exists a sequence (βi)06i6n of bricks

of X from β0 = β to βn = β′ such that βi and βi+1 are adjacent (that means βi, βi+1

contain a common edge) for every i ∈ {0, ..., n− 1}. A connected component of X ⊂ B

is defined as a maximal connected set Y ⊂ X; then Y ⊂M is a connected component

of X ⊂M in the usual sense.

Another brick decomposition D′ = (V ′, E′, B′) ofM is said to be a subdecomposition

of D if Σ(D′) ⊂ Σ(D); we then write D′ ⊂ D.
If B = ti∈IXi is a partition of B into connected subsets then the set

⋃
i∈I ∂MXi is

a skeleton of a subdecomposition D′ of D whose bricks are the Xi’s. Let us say that

D is a filled if D′ = D where D′ is defined by the partition of B into singletons. In

other words, D is filled iff any edge of D is contained in exactly two bricks of D.

2.2.2 Dynamics on a brick decomposition

Let M be a surface without boundary endowed with a brick decomposition D =

(V,E,B) and let h : M →M be a homeomorphism. We denote P(B) the set of all the

subsets of B. Le Calvez and Sauzet (see e.g. [Sau01], [LC05], [LC06a]) introduced
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two natural maps ϕ : P(B)→ P(B) and ϕ− : P(B)→ P(B) defined by

ϕ(X) = {β ∈B | there exists β′ ∈X such that β ∩ h(β′) 6= ∅}
= {β ∈B | β ∩ h(X) 6= ∅}.

and

ϕ−(X) = {β ∈B | there exists β′ ∈X such that β ∩ h−1(β′) 6= ∅}
= {β ∈B | β ∩ h−1(X) 6= ∅}.

These maps send connected subsets of B onto connected subsets of B. One checks

that

ϕ

(⋃
i∈I

Xi

)
=
⋃
i∈I

ϕ(Xi), ϕ

(⋂
i∈I

Xi

)
⊂
⋂
i∈I

ϕ(Xi),

for any family (Xi)i∈I of subsets of B and of course an analogous property also holds

for ϕ−.

We call attractor any set X ⊂ B verifying ϕ(X) ⊂ X, which is equivalent to

h(X) ⊂ Int(X). A repellor is a set X ⊂ B such that ϕ−(X) ⊂ X; equivalently it is the

complement of an attractor. The union or the intersection of a family of attractors

(resp. repellors) is itself an attractor (resp. a repellor).

We will explain in Section 5.2 how to use these objects in our framework.
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3.1 Definition

We first recall the main result of [Bon04].

Theorem 3.1. ([Bon04, Theorem 5.1]) Let h be an orientation reversing homeo-

morphism of the sphere S2 without a 2-periodic point. For any point m ∈ S2\Fix(h)

there exists a topological embedding (i.e., a continuous one-to-one map) ϕ : O →
S2 \ Fix(h) such that

(i) O is either R2 or {(x, y) ∈ R2 | y 6= 0} or R2 \ {(0, 0)},
(ii) m ∈ ϕ(O),

(iii) if O = R2 or O = {(x, y) ∈ R2 | y 6= 0} then
• h ◦ ϕ = ϕ ◦G|O where G(x, y) = (x+ 1,−y),

• for every x ∈ R, ϕ(({x}×R)∩O) is a closed subset of S2 \Fix(h) (we say

that ϕ is a proper embedding),

(iv) if O = R2 \ {(0, 0)} then
• h ◦ ϕ = ϕ ◦H|O where H(x, y) =

1

2
(x,−y).

For the rest of this Chapter 3 we consider a homeomorphism h as in the above the-

orem, that means an orientation reversing homeomorphism of S2 such that Fix(h) =

Fix(h2), and we let M = S2 \ Fix(h). We keep the notation of the Theorem 3.1 and

we also write rS1 for the Euclidean circle with center 0 = (0, 0) ∈ R2 and radius

r > 0. A set ϕ(rS1) in (iv) is said to be a Brouwer manifold of type 1 of h. A set

ϕ(({x} × R) ∩ O) in (iii) is named a Brouwer manifold of type 2 (resp. type 3) of h

if O = R2 (resp. O = {(x, y) ∈ R2 | y 6= 0}). Brouwer manifolds of type 1, 2 or 3

are commonly called Brouwer manifolds. One knows from the invariance of domain

that ϕ(O) is an open subset of S2 and that ϕ realizes a homeomorphism from O onto

ϕ(O) ⊂M . Consequently a Brouwer manifold of h is a 1-dimensional submanifold of

the open set M . Moreover if Γ = ϕ
(
{x} × (R \ {0})

)
is a Brouwer manifold of type

3 then Γ1 = ϕ
(
{x} × (0,+∞)

)
and Γ2 = ϕ

(
{x} × (−∞, 0)

)
are also closed subsets of

M and are the two connected components of Γ. Thus, using the vocabulary from

Section 2.1, if Γ∗ is either a Brouwer manifold of type 2 or a connected component of

a Brouwer manifold of type 3 then Γ∗ is a line of M and consequently Cl(Γ∗) \ Γ∗ is

a nonempty subset of Fix(h) with at most two connected components. Observe that

Γ ∩ hn(Γ) = ∅ for any integer n 6= 0 and any Brouwer manifold Γ.

3.2 Left and right sides of a Brouwer manifold

Let Γ be a Brouwer manifold of h. Recall that Γ has at most two connected

components and that h(Γ) ∩ Γ = ∅. We define the right side (resp. the left side) of

Γ, denoted by R(Γ) (resp. L(Γ)) as the closure in M of the union of the connected
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components of M \ Γ which meet h(Γ) (resp. h−1(Γ)).

Proposition 3.1. Assume that Fix(h) is either a circle or a totally disconnected

set. Then one has the following properties for any Brouwer manifold Γ of h:

(i) L(Γ) ∪R(Γ) = M ;

(ii) L(Γ) ∩R(Γ) = Γ;

(iii) ∂ML(Γ) = Γ = ∂MR(Γ), L(Γ) = ClM (Int(L(Γ))) and R(Γ) = ClM (Int(R(Γ))).

Moreover Int(L(Γ))
(
resp. Int(R(Γ))

)
is the union of the connected components

of M \ Γ which meet h−1(Γ)
(
resp. h(Γ)

)
;

(iv) h(R(Γ)) ⊂ Int(R(Γ));

(v) h−1(L(Γ)) ⊂ Int(L(Γ)).

Remark 3.1. It follows from the results in Section 5.1 below that Proposition 3.1

actually holds true without the assumption on Fix(h). We write this slightly weaker

statement to make the proof easier and because it is enough to get our main result

Theorem 4.1.

Proof. Given a Brouwer manifold Γ of h, the union of the connected components of

M \Γ meeting h−1(Γ) (resp. h(Γ)) is denoted by U∗Γ (resp. V ∗Γ ) so that L(Γ) = ClM (U∗Γ)

and R(Γ) = ClM (V ∗Γ ).

We first remark that Properties (i)-(ii) imply (iii). Suppose indeed that (i)-(ii)

hold true. If there exists x ∈ Γ ∩ Int(L(Γ)) then one can consider a neighborhood N

of x so small that N ⊂ L(Γ) and (ii) then gives

∅ 6= V ∗Γ ∩N ⊂
(
R(Γ) \ Γ

)
∩ L(Γ) = ∅

which is absurd. Thus we have Γ ∩ Int(L(Γ)) = ∅. The set M \ Γ is locally connected

(as an open subset of S2) hence its connected components are open in M \ Γ and so

is U∗Γ. This implies ∂MU∗Γ = L(Γ) \ U∗Γ ⊂ Γ and then L(Γ) ⊂ Γ t U∗Γ ⊂ Γ t Int(L(Γ))

where the symbol t emphasizes a disjoint union. Using again (ii) one deduces L(Γ) =

ΓtInt(L(Γ)) and U∗Γ = Int(L(Γ)). One checks in the same way that R(Γ) = ΓtInt(R(Γ))

and V ∗Γ = Int(R(Γ)) which proves (iii).

Observe secondly that if (i)-(ii) and (iv) hold then one has

L(Γ) = M \ Int(R(Γ)) ⊂M \ h(R(Γ)) = h(M \R(Γ)) = h(Int(L(Γ)))

and (v) follows. Our next task is to prove (i)-(ii) and (iv).

• Assume first that Fix(h) is totally disconnected.

Case 1. Γ is a Brouwer manifold of type 1.

We have Γ = ϕ(rS1) for some r > 0 and some embedding ϕ : R2 \ {(0, 0)} → M as

described in (iv) of Theorem 3.1. Then Γ is a circle and the Jordan curve theorem tell
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us that S2\Γ has two connected components U, V with furthermore ∂U = ∂V = Γ. The

segment ϕ([r/2, 2r]×{0}) joins ϕ((r/2, 0)) ∈ h(Γ) and ϕ((2r, 0)) ∈ h−1(Γ) and intersects

Γ transversely only at the point ϕ((r, 0)) therefore Γ separates h−1(Γ) and h(Γ) in S2,

let us say h−1(Γ) ⊂ U and h(Γ) ⊂ V . It follows that h(Cl(V )) ⊂ V since otherwise the

connected set h(Cl(V )) would meet ∂V which implies h(V )∩Γ 6= ∅ and then contradicts

h−1(Γ) ⊂ U . According to Lemma 5.2 one has U∗Γ = U \Fix(h) and V ∗Γ = V \Fix(h) with

furthermore L(Γ) = ClM (U∗Γ) = Cl(U) \ Fix(h) and R(Γ) = ClM (V ∗Γ ) = Cl(V ) \ Fix(h).

This gives immediately (i)-(ii). Moreover (iv) also holds because

h(R(Γ)) = h((Cl(V )) \ Fix(h) ⊂ V \ Fix(h) = V ∗Γ = Int(R(Γ)).

possible fixed points

Γ h∓1(Γ)

h±1(Γ)

Figure 3.1 – A Brouwer manifold of type 1 and its images by h±1

Case 2. Γ is a Brouwer manifold of type 2.

We write Γ = ϕ({x}×R) where ϕ is a embedding as in (iii) of Theorem 3.1 defined

on O = R2. We also let

γ− = ϕ
(
(x− 1, x)× {0}

)
,

γ+ = ϕ
(
(x, x+ 1)× {0}

)
= ϕ ◦G

(
(x− 1, x)× {0}

)
= h(γ−),

γ = ϕ
(
(x− 1, x+ 1)× {0}

)
= γ− ∪ {ϕ(x, 0)} ∪ γ+,

where we recall from Theorem 3.1 that G(x, y) = (x + 1,−y). We already know that

Cl(Γ) \ Γ is a subset of Fix(h) containing one or two points. We show now that it

actually contains a single point (the following arguments already appear in [Bon04]).

Otherwise we have Cl(Γ) \ Γ = {a, b} where a, b are two distinct fixed points of h and

the set C = Cl(Γ ∪ h(Γ)) = Γ ∪ h(Γ) ∪ {a, b} is a circle disjoint from γ±. According to

the Jordan curve theorem, S2 \ C has exactly two connected components, call them

V−, V+, and ∂V− = ∂V+ = C. The segment γ ⊂ M intersects C only at the point

ϕ(x, 0) which furthermore is a point of transverse intersection hence C separates the

two connected sets h−1(Γ)∪γ− and γ+ in S2, let us say h−1(Γ)∪γ− ⊂ V− and γ+ ⊂ V+.

It follows that

∂h−1(V+) ∩ V+ = h−1(C) ∩ V+ = h−1(Γ) ∩ V+ = ∅
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so we have either V+ ⊂ h−1(V+) or V+∩h−1(V+) = ∅. We observe that none of these two

situations is possible. The first one implies γ− ∪ γ+ = h−1(γ+) ∪ γ+ ⊂ h−1(V+) which

cannot hold because γ intersects Γ ⊂ h−1(C) transversely. Suppose V+ ∩ h−1(V+) = ∅.
Then we cannot have Cl(V+)∪h−1(Cl(V+)) = S2 since this would imply h−1(Γ) = h(Γ)

which is not possible for a Brouwer manifold. Consequently Cl(V+) ∪ h−1(Cl(V+)) is

contained in the domain of a single chart of S2 and can be represented as in Fig.

3.2. Keeping in mind that a, b are fixed points of h, this contradicts the fact that h

reverses the orientation.

b

a

h(Γ)h−1(Γ) Γ

h−1(V+) V+

Figure 3.2 – V+ ∩ h−1(V+) = ∅ is not possible

Thus we get as announced Cl(Γ) \Γ = {a} for some a ∈ Fix(h) and Cl(Γ) = Γ∪ {a}
is then a circle. Write U, V for the two connected components of S2 \ Cl(Γ), with

∂U = ∂V = Cl(Γ). The circle Cl(Γ) separates h−1(Γ) and h(Γ) in S2 because the

segment γ ⊂ M joins ϕ(x − 1, 0) ∈ h−1(Γ) and ϕ(x + 1, 0) ∈ h(Γ) and it intersects

transversely Cl(Γ) only at the point ϕ(x, 0). Assuming for example h−1(Γ) ⊂ U and

h(Γ) ⊂ V one deduces easily that h(Cl(V )) ⊂ V ∪ {a}. Properties (i)-(ii) and (iv) now

follow from Lemma 5.2 which gives U∗Γ = U \ Fix(h) and V ∗Γ = V \ Fix(h) as well as

L(Γ) = ClM (U∗Γ) = Cl(U) \ Fix(h) and R(Γ) = ClM (V ∗Γ ) = Cl(V ) \ Fix(h).

Γ

h±1(Γ)

possible fixed points

h∓1(Γ)

Figure 3.3 – A Brouwer manifold of type 2 and its images by h±1
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Case 3. Γ is a Brouwer manifold of type 3.

Let us write Γ = Γ1 t Γ2 with Γi = ϕ(∆i) where ϕ is a embedding as in (iii) of

Theorem 3.1 defined on O = R2 \ {(x, y) ∈ R2 | y = 0} and where ∆1 = {x} × (0,+∞)

and ∆2 = {x} × (−∞, 0) for some x ∈ R. Then h±1(Γi) = ϕ(G±1(∆i)) where G(x, y) =

(x + 1,−y) (i ∈ {1, 2}). Recall that each Γi is a line of M so Cl(Γi) \ Γi is a subset of

Fix(h) with cardinality one or two. Let us prove that moreover Cl(Γ1)\Γ1 = Cl(Γ2)\Γ2.

- Assume first that Cl(Γ1) \ Γ1 = {a} where a ∈ Fix(h). Of course we also have

Cl(h±1(Γ1)) \ h±1(Γ1) = {a}. Using the Schoenflies theorem, one can construct a

homeomorphism of S2 mapping h−1(Γ1), h(Γ1) and a onto respectively {−1} × R,
{1} ×R and ∞. It follows that S2 \ Cl(h−1(Γ1) ∪ h(Γ1)) = S2 \ (h−1(Γ1) ∪ h(Γ1) ∪ {a})
has three connected components and only one of them, call it E0, has its frontier

in S2 which meets both h−1(Γ1) and h(Γ1). We have then more precisely ∂E0 =

h−1(Γ1) ∪ h(Γ1) ∪ {a}. Consider the domain B− = (x − 1, x + 1) × (−∞, 0) ⊂ O.
Then ϕ(B−) is a connected subset of M , it is disjoint from h−1(Γ1) ∪ h(Γ1) ∪ {a}
and contains Γ2. Moreover h±1(Γ1) ⊂ ϕ(ClO(B−)) ⊂ Cl(ϕ(B−)) so necessarily Γ2 ⊂
ϕ(B−) ⊂ E0. The segment ϕ([x, x+ 2]×{−1}) ⊂M has endpoints ϕ((x,−1)) ∈ E0 and

ϕ((x+ 2,−1)) ∈ h2(E0) and it intersects the circle Cl(h(Γ1)) = h(Γ1)∪{a} transversely
only at the point ϕ((x+ 1,−1)). Since h2(E0)∩ h(Γ1) = h2(E0 ∩ h−1(Γ1)) = ∅ it follows
that Cl(h(Γ1)) separates the two connected sets E0 and h2(E0) in S2. This shows that

E0 is disjoint from Fix(h2) = Fix(h) and then Cl(Γ2) \ Γ2 ⊂ Fix(h) ∩ Cl(E0) = {a} so
one also has Cl(Γ2) \ Γ2 = {a}.

- Assume now Cl(Γ1)\Γ1 = {a, b} where a, b are two distinct fixed points of h. Then

Cl(h−1(Γ1)∪h(Γ1)) = h−1(Γ1)∪h(Γ1)∪{a, b} is a circle. The two connected components

of S2\Cl(h−1(Γ1)∪h(Γ1)) given by the Jordan curve theorem are denoted by U, V with

for instance Γ2 ⊂ U . The segment ϕ([x−3, x]×{−1}) ⊂M joins ϕ(x−3,−1) ∈ h−3(Γ1)

and ϕ(x,−1) ∈ Γ2 and it intersects transversely the circle Cl(h−1(Γ1) ∪ h(Γ1)) only at

the point ϕ(x − 1,−1) so one deduces h−3(Γ1) ⊂ V . A similar argument involving

the segment ϕ([x, x+ 2]× {−1}) shows that h2(U) ∩ V 6= ∅ and afterwards h2(U) ⊂ V

because h2(U) is connected and

h2(U) ∩ ∂V = h2
(
U ∩ (h−3(Γ1) ∪ h−1(Γ1) ∪ {a})

)
= ∅.

In particular U is disjoint from Fix(h) and consequently Cl(Γ2)\Γ2 ⊂ Cl(U)∩Fix(h) =

{a, b}. The set Cl(Γ2) \ Γ2 cannot be reduced to a single point since the same would

be true for Cl(Γ1) \ Γ1 (just reverse the roles of Γ1 and Γ2 in the previous paragraph)

so one gets as expected Cl(Γ2) \ Γ2 = {a, b}. The continuation of the proof depends

on the cardinality of these sets Cl(Γi) \ Γi.

a) We suppose Cl(Γ1) \ Γ1 = Cl(Γ2) \ Γ2 = {a}.
Thus Cl(Γ) is the union of the two circles Cl(Γ1) = Γ1 ∪ {a} and Cl(Γ2) = Γ2 ∪

{a} intersecting only at the point a. Using again the Schoenflies theorem, one can

construct a homeomorphism of S2 mapping Cl(Γ) onto the “figure eight curve” hence
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S2\Cl(Γ) has exactly three connected components U1, U2, U3 as follows: U1 (resp. U2) is

a connected component of S2\Cl(Γ1) (resp. S2\Cl(Γ2) and U3 = V1∩V2 where V1 (resp.

V2) denotes the connected component of S2 \Cl(Γ1) (resp. S2 \Cl(Γ2)) other than U1

(resp. U2). Furthermore ∂Ui = Cl(Γi) = Γi∪{a} for i ∈ {1, 2} and ∂U3 = Cl(Γ) = Γ∪{a}.
Let us prove there exists ε ∈ {±1} such that hε(Cl(Ui)) ⊂ Uj ∪ {a}, or equivalently

hε(Ui ∪ Γi) ⊂ Uj, for any 1 6 i 6= j 6 2 (see Fig. 3.4).

h∓1(Γ1)

h±1(Γ1)

h∓1(Γ2)

h±1(Γ2)

Γ1

Γ2

possible fixed points

Figure 3.4 – A Brouwer manifold of type 3 and its images by h±1 in the subcase (a)

The segment ϕ([x − 1, x + 1] × {1}) ⊂ M has one endpoint on h−1(Γ2) and the

other on h(Γ2) and it intersects transversely the circle Cl(Γ1) only at the point ϕ(x, 1)

hence Cl(Γ1) separates h−1(Γ2) and h(Γ2) in S2. One checks similarly that Cl(Γ2)

separates h−1(Γ1) and h(Γ1) in S2. Observe also that ϕ
(
[x − 1, x + 1] × (0,+∞)

)
and ϕ

(
[x − 1, x + 1] × (−∞, 0)

)
are two disjoint connected subsets of M , the first

one containing h−1(Γ2) ∪ Γ1 ∪ h(Γ2) and the latter containing h−1(Γ1) ∪ Γ2 ∪ h(Γ1).

Clearly Γ1 ⊂ V2 and Γ2 ⊂ V1 so one deduces ϕ
(
[x − 1, x + 1] × (0,+∞)

)
⊂ V2 and

ϕ
(
[x − 1, x + 1] × (−∞, 0)

)
⊂ V1. Combining with the previous separation properties

it follows there exists (ε1, ε2) ∈ {±1}2 such that hε1(Γ1) ⊂ U2, h−ε1(Γ1) ⊂ V2 ∩ V1 = U3

and hε2(Γ2) ⊂ U1, h−ε2(Γ2) ⊂ V1 ∩ V2 = U3. If ε1 = 1 and ε2 = −1 then one has Γ2 =

h(h−1(Γ2)) ⊂ Cl(U3)∩h(U1) so the open set h(U1) meets U3 and afterwards U3 ⊂ h(U1)

because of the connectedness of U3 and because U3 ∩ ∂h(U1) = U3 ∩
(
h(Γ1) ∪ {a}

)
⊂

U3 ∩ U2 = ∅. Thus we have h(Γ2) ⊂ U3 ⊂ h(U1) so Γ2 ⊂ U1 ∩ Cl(U2) and consequently

U2 ∩ U1 6= ∅ which is absurd. One checks in the same way that ε2 = 1 = −ε1 is not

possible so we may define ε = ε1 = ε2. For i 6= j in {1, 2} the set hε(Ui∪Γi) is connected

and hε(Ui∪Γi)∩∂Uj = hε(Ui)∩Γj ⊂ hε(Ui∩U3) = ∅ hence hε(Ui∪Γi) ⊂ Uj as expected.

As a consequence, one gets S2\(U3∪{a}) = U1∪U2∪Γ ⊂ h−ε(U1∪U2) = S2\h−ε(Cl(U3))

so h−ε(Cl(U3)) ⊂ U3 ∪ {a}. Properties (i)-(ii) and (iv) now follow since, using again

Lemma 5.2, one has

- if ε = −1 then U∗Γ = (U1 ∪ U2) \ Fix(h), V ∗Γ = U3 \ Fix(h), L(Γ) = ClM (U∗Γ) =

ClM (U1 \Fix(h))∪ClM (U2 \Fix(h)) =
(
Cl(U1)∪Cl(U2)

)
\Fix(h) and R(Γ) = ClM (V ∗Γ ) =
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Cl(U3) \ Fix(h);

- if ε = 1 then U∗Γ = U3 \ Fix(h), V ∗Γ = (U1 ∪ U2) \ Fix(h), L(Γ) = ClM (U∗Γ) =

Cl(U3) \ Fix(h) and R(Γ) = ClM (V ∗Γ ) =
(
Cl(U1) ∪ Cl(U2)

)
\ Fix(h).

b) We now suppose Cl(Γ1) \ Γ1 = Cl(Γ2) \ Γ2 = {a, b}, a 6= b.

Then Cl(Γ) = Γ ∪ {a, b} is a circle and we write U, V for its two complementary

domains. In particular ∂U = ∂V = Γ ∪ {a, b}. We shall show that there exists

ε ∈ {±1} such that hε(Cl(U)) ⊂ U ∪ {a, b}, i.e., hε(U ∪ Γ) ⊂ U . The circle Cl(Γ)

separates h−1(Γ1) and h(Γ1) (resp. h−1(Γ2) and h(Γ2)) in S2 because the segment

ϕ([x − 1, x + 1] × {−1}) ⊂ M (resp. the segment ϕ([x − 1, x + 1] × {1}) ⊂ M) joins

ϕ(x − 1,−1) ∈ h−1(Γ1) and ϕ(x + 1,−1) ∈ h(Γ1) (resp. ϕ(x − 1, 1) ∈ h−1(Γ2) and

ϕ(x+1, 1) ∈ h(Γ2)) and it intersects transversely Cl(Γ) only at the point ϕ(x,−1) (resp.

ϕ(x, 1)). Thus for both i = 1 and i = 2 there exists εi ∈ {±1} such that hεi(Γi) ⊂ U

and h−εi(Γi) ⊂ V . Up to conjugagy in S2, one may assume without loss of generality

that Cl(U) is the Euclidean closed unit disc in R2 with also a = (0,−1), b = (0, 1),

Γ1 = ∂U ∩
(
(−∞, 0) × R

)
, Γ2 = ∂U ∩

(
(0,+∞) × R

)
and hε1(Γ1) = {0} × (−1, 1) ⊂ U .

Thus U is located on the right of Γ1 oriented from a to b. Since a, b are fixed points of

h and since hε1 reverses the orientation, the set hε1(U) is located on the left of hε1(Γ1)

oriented from a to b and then hε1(U) meets the half-disc D = Cl(U) ∩
(
(−∞, 0)×R

)
.

Moreover Γ1 = hε1(h−ε1(Γ1)) ⊂ D ∩ hε1(V ) hence ∅ 6= D ∩ ∂hε1(U) = D ∩ hε1(Γ2) and

consequently hε1(Γ2) ⊂ D \ Γ1 ⊂ U because ∂D = Γ1 ∪ hε1(Γ1) ∪ {a, b} is disjoint from
hε1(Γ2). This gives ε2 = ε1 and, letting ε = ε1 = ε2, one has then hε(Γ) ⊂ U and

h−ε(Γ) ⊂ V . One deduces easily that hε(Cl(U)) ⊂ U ∪ {a, b} and also h−ε(Cl(V )) ⊂
V ∪ {a, b} (see Fig. 3.5).

Γ1 Γ2

a

b

h±1(Γ1) h∓1(Γ1)

h∓1(Γ2)

h±1(Γ2)

possible fixed points

Figure 3.5 – A Brouwer manifold of type 3 and its images by h±1 in the subcase (b)

One derive one more time Properties (i)-(ii) and (iv) from Lemma 5.2 which gives

U∗Γ = U \ Fix(h), V ∗Γ = V \ Fix(h), L(Γ) = ClM (U∗Γ) = Cl(U) \ Fix(h) and R(Γ) =

ClM (V ∗Γ ) = Cl(V ) \ Fix(h). This completes the proof when M is connected.

• Assume now that Fix(h) is a circle.
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Then one knows from the Jordan curve Theorem that M has exactly two con-

nected components M1, M2. Moreover h(M1) = M2 and h(M2) = M1 because the

homeomorphism h reverses the orientation hence only Brouwer manifolds of type 3

can arise. We keep the notations Γ = Γ1 t Γ2 as in the third case above. Each Mi

is homeomorphic to R2 and Γi is a line of Mi therefore, by the Jordan curve Theo-

rem, Mi \ Γi has two connected components Ui, Vi with ∂Mi
Ui = ∂Mi

Vi = Γi. The arc

ϕ([x− 1, x+ 1]×{1}) ⊂M1 joins ϕ((x− 1, 1)) ∈ h−1(Γ2) and ϕ((x+ 1, 1)) ∈ h(Γ2) and it

intersects Γ1 transversely only at the point ϕ(x, 1) thus Γ1 separates h−1(Γ2) and h(Γ2)

in M1, let us say h−1(Γ2) ⊂ U1 and h(Γ2) ⊂ V1. One obtains likewise h−1(Γ1) ⊂ U2 and

h(Γ1) ⊂ V2 where U2, V2 are the two connected components of M2 \ Γ2. One derives

from these separation properties that h(ClMi
(Vi)) ⊂ Vj for any 1 6 i 6= j 6 2 and we

conclude simply observing that U∗Γ = U1∪U2, V ∗Γ = V1∪V2, L(Γ) = ClM1
(U1)∪ClM2

(U2)

and R(Γ) = ClM1
(V1) ∪ ClM2

(V2).

Remark 3.2. A Brouwer manifold of type 2 cannot be a connected component of a

Brouwer manifold of type 3. Indeed the proof of Proposition 3.1 shows (at least when

Fix(h) is totally disconnected) that a Brouwer manifold Γ of type 2 separates h(Γ) and

h−1(Γ) in S2 \Fix(h) while this is not true for a connected component Γ of a Brouwer

manifold of type 3.

3.3 Brouwer manifolds without transverse

intersection

We say that two Brouwer manifolds Γ and Γ′ have no transverse intersection of h

if the following two conditions hold:

1. Γ ⊂ R(Γ′) or Γ ⊂ L(Γ′),

2. Γ′ ⊂ R(Γ) or Γ′ ⊂ L(Γ).

This definition is clearly symmetric with respect to Γ and Γ′. However it is maybe

not entirely obvious that (i) and (ii) are equivalent. Let us give a few additional

details.

Proposition 3.2. Assume that Fix(h) is either a circle or a totally disconnected

set. Then two conditions (i) and (ii) are equivalent.

Remark 3.3. As for Proposition 3.1 this result is true without the assumption on

Fix(h) but we will need only this weakened version.

Proof. We first suppose that Fix(h) is totally disconnected. We keep the notation

U1, U2, U3 = V1 ∩ V2 as in the proof of Proposition 3.1 for the connected components

of S2 \ Cl(Γ) when Γ is a Brouwer manifold of type 3 accumulating on a single fixed

point. We define similarly U ′1, U
′
2, U

′
3 = V ′1 ∩V ′2 if Γ′ is a Brouwer manifold of the same
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type. Considering only the topological description of L(Γ) and R(Γ) given in the proof

of Proposition 3.1 for the various types of Brouwer manifolds, it is not difficult to

check that if (i) holds true but (ii) does not then one of the three following situations

arises:

(a) Γ (resp. Γ′) is a Brouwer manifold of type 2 (resp. type 3) with Cl(Γ) \ Γ =

Cl(Γ′) \ Γ′ = {a} and the circle Cl(Γ) separates U ′1 and U ′2 in S2 (Fig. 3.6 (a));

(b) Γ and Γ′ are Brouwer manifolds of type 3 with Cl(Γ)\Γ = {a, b}, Cl(Γ′)\Γ′ = {a}
(a 6= b) and the circle Cl(Γ) separates U ′1 and U ′2 in S2 (Fig. 3.6 (b));

(c) Γ = Γ1 t Γ2 and Γ′ = Γ′1 t Γ′2 are Brouwer manifolds of type 3 with Cl(Γ) \ Γ =

Cl(Γ′) \Γ′ = {a} such that one of the two sets U ′1, U
′
2 is contained in U3 while the

other one is contained in U1 or U2 (Fig. 3.6 (c)).

Γ Γ

Γ

Γ′
Γ′

Γ′

(a) (b) (c)

Figure 3.6 – The cases where (i) holds true but (ii) does not

We conclude by showing that (a)-(b)-(c) are actually not possible, due to the

dynamics of h. If Γ,Γ′ are Brouwer manifolds as in (a) or (b) we know there exists

ε ∈ {±1} and a connected component U of S2\Cl(Γ) such that hε(U ′i) ⊂ U ′j for any two

distinct i, j in {1, 2} and hε(U) ⊂ U . Moreover the separation assumption in (a) or

(b) allows one to choose i 6= j in {1, 2} in such a way that U ′i ⊂ U and U ′j ⊂ S2 \Cl(U)

hence one obtains ∅ 6= hε(U ′i) = hε(U ′i)∩U ′j ⊂ hε(U)∩U ′j ⊂ U ∩U ′j = ∅ which is absurd.

In the situation (c) consider (ε, ε′) ∈ {±1}2 such that hε(Ui) ⊂ Uj and hε
′
(U ′i) ⊂ U ′j for

any i 6= j in {1, 2}. The hypothesis says there exist i 6= j and k 6= l in {1, 2} such that

U ′i ⊂ Uk and U ′j ⊂ U3. If ε′ = ε then one obtains ∅ 6= hε(U ′i) = hε(U ′i)∩U ′j ⊂ hε(Uk)∩U3 ⊂
Ul∩U3 = ∅ and if ε′ = −ε then ∅ 6= h−ε(U ′j) = h−ε(U ′j)∩U ′i ⊂ h−ε(U3)∩Uk ⊂ U3∩Uk = ∅,
which proves that (c) cannot hold.

Secondly we suppose that Fix(h) is a circle. In this case Γ = Γ1 t Γ2 and Γ′ =

Γ′1 t Γ′2 are Brouwer manifolds of type 3. We use the same convention as in the

proof of Proposition 3.1 for the two connected components Ui, Vi of Mi \ Γi and the

connected components of Mi \ Γ′i are named U ′i , V
′
i analogously (i ∈ {1, 2}). Since

Int(L(Γ)) = U1 ∪ U2, Int(R(Γ)) = V1 ∪ V2, Int(L(Γ′)) = U ′1 ∪ U ′2 and Int(R(Γ′)) = V ′1 ∪ V ′2
one checks that if (i) holds true but (ii) does not then there exist i 6= j in {1, 2} such
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that (
Vi ⊂ V ′i and Uj ⊂ V ′j

)
or

(
Vi ⊂ U ′i and Uj ⊂ U ′j

)
.

One gets in first case

Mi = h(Mj) = h(ClMj
(Vj) ∪ Uj) = h(ClMj

(Vj)) ∪ h(Uj) ⊂ Vi ∪ h(V ′j ) ⊂ Vi ∪ V ′i = V ′i

and in the second case

Mj = h−1(Mi) = h−1(ClMi
(Ui)∪Vi) = h−1(ClMi

(Ui))∪h−1(Vi) ⊂ Uj∪h−1(U ′i) ⊂ Uj∪U ′j = U ′j

which are two contradictions.

Proposition 3.3. Assume that Fix(h) is either a circle or a totally disconnected

set and let Γ,Γ′ be two Brouwer manifolds of h. Then one has

1) Γ ⊂ R(Γ′) if and only if R(Γ) ⊂ R(Γ′) or L(Γ) ⊂ R(Γ′).

2) Γ ⊂ L(Γ′) if and only if L(Γ) ⊂ L(Γ′) or R(Γ) ⊂ L(Γ′).

Remark 3.4. As for Propositions 3.1 and 3.2 this result remains valid without the

assumption on Fix(h).

Proof. It is enough to show the first assertion, the same arguments proving the second

one by reversing the roles of L(Γ) and R(Γ).

If Fix(h) is a circle then the result is an easy consequence of Proposition 3.2.

Suppose now that Fix(h) is totally disconnected set and let Γ,Γ′ be two Brouwer

manifolds such that Γ ⊂ R(Γ′).

We first consider the case where Cl(Γ) is a circle. Clearly the proposition is true

if Cl(Γ′) is also a circle. If Γ′ is a Brouwer manifold of type 3 with Cl(Γ′) \ Γ′ = {a}
then one also gets the results using the fact that the situations (a) and (b) in the

proof of Proposition 3.2 are not possible.

We consider now the case where Γ = Γ1 t Γ2 is a Brouwer manifold of type 3

accumulating on a single fixed point a ∈ Fix(h). Keeping the same notations as in

the proof of Proposition 3.1, it is enough to prove that Cl(U1 ∪ U2) \ {a} ⊂ R(Γ′) or

Cl(U3) \ Fix(h) ⊂ R(Γ′).

- Assume that Cl(Γ′) is a circle. Then S2 \ Cl(Γ′) has two connected components

denoted by U ′, V ′ with R(Γ′) = Cl(V ′)\Fix(h) and L(Γ′) = Cl(U ′)\Fix(h). For every i ∈
{1, 2} we deduce from Γ ⊂ R(Γ′) that ∂Ui ⊂ Cl(V ′). This implies either Cl(Ui) ⊂ Cl(V ′)

or Cl(U ′) ⊂ Cl(Ui). If Cl(Ui) ⊂ Cl(V ′) for every i ∈ {1, 2} then Cl(U1∪U2)\{a} ⊂ R(Γ′).

If there exists i ∈ {1, 2} such that Cl(U ′) ⊂ Cl(Ui) then S2 \ Cl(Ui) ⊂ V ′ and hence

U3 ⊂ V ′. This implies Cl(U3) \ Fix(h) ⊂ Cl(V ′) \ Fix(h) = R(Γ′).

- Next assume that Γ′ = Γ′1tΓ′2 is also a Brouwer manifolds of type 3 accumulating

on a single fixed point b ∈ Fix(h). As a first case, suppose that R(Γ′) has two connected

components Cl(U ′1) \ {b} and Cl(U ′2) \ {b}. Because Γ ⊂ R(Γ′) one has Cl(Γ1) ⊂ Cl(U ′k)
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for some k ∈ {1, 2}. This implies either Cl(U1) ⊂ Cl(U ′k) or Cl(V1) ⊂ Cl(U ′k). The

second inclusion actually does not hold because it implies U3 ⊂ V1 ⊂ U ′k. Defining the

integer l so that {k, l} = {1, 2} one deduces ∅ 6= h(U3)∩U3 ⊂ h(U ′k)∩U ′k ⊂ U ′l ∩U ′k = ∅,
a contradiction. The first inclusion implies U1 ⊂ U ′k. Of course one gets likewise

U2 ⊂ U ′j for some j ∈ {1, 2} (actually j 6= k but and then a = b but it doesn’t matter

here) and therefore U1 ∪ U2 ⊂ U ′1 ∪ U ′2. This implies Cl(U1 ∪ U2) \ {a} ⊂ R(Γ′). As

a second case suppose that R(Γ′) is connected, that means R(Γ′) = Cl(U ′3) \ Fix(h).

Then one has ∂Ui ∩ U ′k = ∅ for every i, k ∈ {1, 2} hence either Ui ∩ U ′k = ∅ or U ′k ⊂ Ui.

Observe that if there exist i, k such that U ′k ⊂ Ui then also U ′l ⊂ Uj where {i, j} =

{k, l} = {1, 2}. Indeed there is ε ∈ {±1} such that hε(Ui) ⊂ Uj hence if U ′k ⊂ Ui one

obtains ∅ 6= U ′l ∩hε(U ′k) ⊂ U ′l ∩hε(Ui) ⊂ U ′l ∩Uj . This together with ∂Uj ∩U ′l = ∅ implies

U ′l ⊂ Uj.

Consequently one of the two situations occurs.

- One has U ′1 ∪ U ′2 ⊂ U1 ∪ U2 and then Cl(U3) \ Fix(h) ⊂ R(Γ′).

- Otherwise Ui∩U ′k = ∅ for every i, k ∈ {1, 2}. It follows that (U1∪U2)∩(U ′1∪U ′2) = ∅
hence U1 ∪ U2 ⊂ Cl(U ′3) and finally Cl(U1 ∪ U2) \ Fix(h) ⊂ R(Γ′).

The proof of the proposition is completed.

According to Proposition 3.3, two Brouwer manifolds Γ and Γ′ have no transverse

intersection iff one of the following four properties is verified

- R(Γ) ⊂ R(Γ′),

- L(Γ) ⊂ R(Γ′),

- R(Γ) ⊂ L(Γ′),

- L(Γ) ⊂ L(Γ′).

As a remark on our vocabulary, observe that the opposite of the property “Γ and

Γ′ have no transverse intersection” does not imply that Γ∩Γ′ 6= ∅ because Γ and Γ′ are

generally not connected. Nevertheless it implies that Cl(Γ)∩Cl(Γ′) 6= ∅ if furthermore

Fix(h) is assumed to be totally disconnected.
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Theorem 3.1 says that if h is an orientation reversing homeomorphism of the 2-

sphere without a 2-periodic point then one can cover S2\Fix(h) by Brouwer manifolds

of h. Our first goal in this work is to prove a foliated version of Theorem 3.1 similarly

as Le Calvez gave a foliated version of the classical Brouwer plane translation theorem

(see [LC04]).

Precisely our main result is the following.

Theorem 4.1. Let h : S2 → S2 be an orientation reversing homeomorphism without

a 2-periodic point. Then there exists a family {Φs}s∈Λ of Brouwer manifolds of h

such that

- S2 \ Fix(h) =
⋃
s∈Λ Φs;

- any two Φ,Φ′ ∈ {Φs}s∈Λ have no transverse intersection;

- the set {φ | φ is a connected component of some Φs, s ∈ Λ} is the set of leaves
of a topological oriented foliation F of S2 \ Fix(h).

Chapter 5 is entirely devoted to the proof of this result. As an application of

Theorem 4.1, we prove in Chapter 6 the following result.

Theorem 4.2. Let U, V be two open neighborhoods of 0 in the plane R2 and let

h : U → V be an orientation reversing homeomorphism such that Fix(h) = Fix(h2) =

{0} . Then the fixed point index Ind(hn, 0) is well-defined for every integer n 6= 0

(i.e. 0 is an isolated fixed point of hn) and one has Ind(h2k−1, 0) = Ind(h, 0) and

Ind(h2k, 0) = Ind(h2, 0) for every integer k > 1.

In the above statement, the fact that 0 is an isolated fixed point of hn for every

integer n 6= 0 is not new (see [Bon04, Theorem 4.1]) and our interest is in the values

of the fixed point index Ind(hn, 0). Note that such a result is already contained in the

paper [RdPS10] by Del Portal and Salazar assuming some extra properties on the

fixed point 0 (see [RdPS10, Main Theorem 2]). It was also known for odd iterates by

a paper of Graff and Nowak-Przygodzki ([GNP03]) using entirely different methods.
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Throughout this Chapter 5 we fix once and for all an orientation reversing home-

omorphism h of the sphere S2 without any 2-periodic point and we keep the notation

M = S2 \ Fix(h) = S2 \ Fix(h2).

5.1 Simplification of the fixed point set

According to a theorem of Epstein (see [Eps81]), any connected component K of

Fix(h) is either a point or a segment or a circle and in the last two cases h interchanges

locally the two sides of K. Combining with the Jordan curve theorem, it follows that

one of the two following situations holds:

– The set Fix(h) is reduced to a circle and M has exactly two connected compo-

nents which are interchanged by h.

– The set Fix(h) has only points and segments as connected components; then

S2\K is connected for every connected component K of Fix(h) and this implies

that M is also connected (see for example [New61, Chapter V, Theorem 14.3]).

Lemma 5.1. Suppose that M is connected or, equivalently, that any connected

component of Fix(h) is either a point or a segment. Then there exist an orientation

reversing homeomorphism ĥ of S2 and a continuous map p̂ : S2 → S2 with the

following properties:

1. Fix(ĥ) is totally disconnected and Fix(h) = p̂−1(Fix(ĥ));

2. p̂ maps any two distinct connected components of Fix(h) onto two distinct

points of Fix(ĥ);

3. the restricted map p̂|M : M → S2 \ Fix(ĥ) is a conjugacy between the two

restricted homeomorphisms h|M : M → M and ĥ|S2\Fix(ĥ)
: S2 \ Fix(ĥ) → S2 \

Fix(ĥ).

Proof. Consider the topological space S obtained by identifying each connected com-

ponent K of Fix(h) with a single point pK . Precisely S denotes the quotient space

S2/ ∼ where ∼ is the equivalence relation defined by x ∼ y iff x = y or x, y belong to the

same connected component of Fix(h). Writing p : S2 → S for the canonical projection,

the homeomorphism h induces a map H : S → S naturally defined by H ◦ p = p ◦ h.
One checks that H is a homeomorphism of S such that Fix(h) = p−1(Fix(H)). It

follows that p(M) = S \ Fix(H) and the map p|M : M → S \ Fix(H) is clearly a

homeomorphism conjugating the two restricted homeomorphisms h|M : M →M and

H|S\Fix(H) : S \Fix(H)→ S\Fix(H). Observe now that Fix(H) is totally disconnected.

Indeed the compactness of the sphere and the fact that p−1({s}) is connected for every

s ∈ S imply that p−1(C) is connected for every connected set C ⊂ S (see for example

[Kur68, Chapter 10]). Consequently, if C ⊂ Fix(H) is connected then p−1(C) ⊂ K for

some connected component K of Fix(h) and then C ⊂ p(K) contains a single point.



5.2. MAXIMAL BRICK DECOMPOSITIONS 27

Because the connected components of Fix(h) do not separate S2, a result of Moore

([Moo25, Theorem 25], see also [Kur68, Chapter 10]) tells us that S and S2 are

homeomorphic so that one gets the result by letting ĥ = ψ−1 ◦H ◦ ψ and p̂ = ψ−1 ◦ p
where ψ : S2 → S is any homeomorphism between S2 and the “abstract sphere” S.
Note that h and ĥ are conjugated on nonempty open subsets of S2 hence ĥ also

reverses the orientation.

Observe that Theorem 4.1 only involves the conjugacy class of the homeomorphism

h|M : M →M . Hence, replacing h with ĥ, Lemma 5.1 allow us to reduce conveniently

to the cases where Fix(h) is either a circle or a totally disconnected set. This will be

assumed from now on.
One may also note that Lemma 5.1 explains Remarks 3.1, 3.3 and 3.4.

We will use repeatedly the following technical result.

Lemma 5.2. Let F be a totally disconnected closed subset of S2 and let X be a

closed subset of S2 \ F . If {Ui}i∈I is the collection of all the connected components

of S2 \ Cl(X) then {Ui \ F}i∈I is the collection of all the connected components of

S2 \ (F ∪X). Moreover ClS2\F (Ui \ F ) = Cl(Ui) \ F for every i ∈ I.

Proof. Define U∗i = Ui\F for every i ∈ I. Each Ui is a nonempty open subset of S2 and

F a closed subset of S2 without interior point so U∗i is also a nonempty open subset

of S2 and clearly U∗i ⊂ S2 \ (F ∪X). Let us check that U∗i is connected. Consider a

universal covering map π : R2 → Ui. The set F̃i = π−1(Ui ∩ F ) is closed in R2 and

it is easily seen, using the fact that π is a locally one-to-one map, that F̃i is totally

disconnected. It follows for example from [New61][Chapter V, Theorem 14.3] that

R2\F̃i is connected and then so is π(R2\F̃i) = U∗i . Let V
∗
i be the connected component

of S2\(F∪X) containing U∗i . Since X is closed in S2\F one has S2\(F∪X) ⊂ S2\Cl(X)

hence V ∗i ⊂ Ui and consequently V ∗i \ U∗i ⊂ (Ui \ U∗i ) ∩ (S2 \ F ) = ∅ which shows that

V ∗i = U∗i and even better that any connected component of S2 \ (F ∪ X) is equal to

some U∗i . Finally the property ClS2\F (U∗i ) = Cl(Ui) \ F is an easy consequence of the

closedness of F .

5.2 Maximal brick decompositions

We describe here what kind of brick decompositions are useful for our purpose

(see Section 2.2 for basic facts on brick decompositions).

Clearly h(M) = M 6= ∅ and, according to Lefschetz-Hopf Theorem, M 6= S2.

Abusing notation slightly, we also use the letter h for the restricted homeomorphism

h|M : M → M . A brick decomposition D = (V,E,B) of M is said to be adapted to h

if it satisfies the two following properties:
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(P1) : For every brick β ∈ B, h(β) ∩ β = ∅ = h2(β) ∩ β,
(P2) : For any two bricks β, β′ ∈ B, at most one of the two sets h(β)∩β′ or h−1(β)∩β′

is nonempty.

If moreover there is no subdecomposition D′ of D, D′ 6= D, which is still adapted to

h then we say that D is maximal. One constructs easily a brick decomposition D0 of

M adapted to h and one gets using Zorn Lemma a subdecomposition D of D0 which

is maximal.

Lemma 5.3. Any maximal brick decomposition D = (V,E,B) of M is filled.

Proof. Let D′ be the subdecomposition of D defined by the partition B = tβ∈B{β}.
Then D′ has the same bricks as D so it is adapted to h and the maximality of D
implies D = D′.

A key result is the following. This is the same as [Bon04, Lemma 5.9] in a slightly

more general context.

Lemma 5.4. If D = (V,E,B) is a brick decomposition of M adapted to h then for

every β ∈ B we have

β 6∈
⋃
n>1

ϕn({β}).

Proof. Suppose that β ∈
⋃
n>1 ϕ

n({β}) for some brick β ∈ B. In other words there

exist an integer n > 1 and a sequence of bricks
(
βi
)

16i6n
such that β1 = β, h(βi) ∩

βi+1 6= ∅ for i = 1, · · · , n − 1 and h(βn) ∩ β1 6= ∅. Since D is adapted to h, this is in

particular a sequence of bricks satisfying the following four properties (i)-(iii)-(iv’):

(i) for every i, j ∈ {1, ..., n}, βi = βj or Int(βi) ∩ Int(βj) = ∅;
(iii) for every i ∈ {1, ..., n}, h(βi) ∩ βi = ∅ = h2(βi) ∩ βi;
(iii) for every i, j ∈ {1, ..., n}, βj meets at most one of the two sets h(βi) or h−1(βi);

(iv’) for every i ∈ {1, ..., n − 1}, there exists ki > 1 such that hki(βi) ∩ βi+1 6= ∅, and
there exists kn > 1 such that hkn(βn) ∩ β1 6= ∅.

Let n0 be the smallest positive integer for which there exists a sequence
(
βi
)

16i6n0

of bricks of D with these properties (i)-(iii)-(iv’). Each βi is a connected subsurface

of S2 so one can proceed exactly as in the proof of [Bon04][Lemma 5.4] to construct

a sequence
(
D′i
)

16i6n0
of discs such that D′i ⊂ βi, D′i ∩ D′j = ∅ (0 6 i 6= j 6 n0) and

satisfying the following property (iv) slightly stronger than (iv’):

(iv) for every i ∈ {1, ..., n0 − 1}, there exists ki > 1 such that hki(D′i) ∩ Int(D′i+1) 6= ∅,
and there exists kn0 > 1 such that hkn0 (D′n0

) ∩ Int(D′1) 6= ∅.
Then

(
D′i
)

16i6n0
is a sequence of discs satisfying the conditions (i)-(iv) in Lemma 5.3

of [Bon04] so h possesses a 2-periodic point, a contradiction.
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5.2.1 Topology of the bricks

We fix from now on a maximal brick decomposition D = (E, V,B) of the surface

M . If Fix(h) is a circle then we know that M has exactly two connected compo-

nents M1,M2 which are interchanged by h and we will write B = B1 t B2 for the

corresponding partition of B.

We begin with a few remarks and notations.

Given β ∈ B and a connected component X of B \ {β} recall that X is closed in

M (as an union of bricks of D). Moreover it is easily seen that if Fix(h) is totally

disconnected (so that M is connected) then ∅ 6= ∂MX ⊂ ∂Mβ and more precisely

that ∂MX is the union of some connected components of ∂Mβ. If Fix(h) is a circle

and β ∈ Bi then either X = Bj (1 6 i 6= j 6 2) or X is a connected component of

Bi \ {β} whose frontier ∂MX = ∂Mi
X 6= ∅ is the union of some connected components

of ∂Mβ = ∂Mi
β.

Observe also that there is a 1-to-1 correspondence between the connected com-

ponents of B \ {β} and those of M \ β: indeed if X is any connected component of

B \ {β} then one deduces from ClM (X) = ClM (Int(X)) that Int(X) is a connected

component of M \ β; conversely, if U denotes a connected component of M \ β then

X = {b ∈ B | b ∩ U 6= ∅} is a connected component of B \ {β} and Int(X) = U .

For k ∈ {1, 2} the sets ϕk−({β}) ⊂ B and ϕk({β}) ⊂ B are connected and do

not contain β (Lemma 5.4) so they are contained in some connected components of

B \ {β} denoted respectively by X−kβ and Xk
β . In particular we have hk(β) ⊂ Int(Xk

β)

and h−k(β) ⊂ Int(X−kβ ). Especially if Fix(h) is a circle and β ∈ Bi then X−1
β = X1

β = Bj

(1 6 i 6= j 6 2 ) while X−2
β , X2

β are contained in Bi (maybe X−2
β = X2

β).

Lemma 5.5. Assume that Fix(h) is totally disconnected. Given β ∈ B and k ∈
{1, 2}, let Y = B \ (Xk

β ∪X−kβ ). Then we have hk(Y ) ∩ Y = ∅.

Proof. The connectedness ofM together with the fact that Y is the union of {β} with
some connected components of B \ {β} implies that Y is connected, as well as hk(Y ).

The latter also intersects Xk
β because β ∈ Y . Now one deduces from h−k(∂MX

k
β) ⊂

h−k(β) ⊂ Int(X−kβ ) that ∂MXk
β ∩ hk(Y ) ⊂ hk(Int(X−kβ ))∩ hk(Y ) = hk(Int(X−kβ )∩ Y ) = ∅

hence hk(Y ) ⊂ Int(Xk
β). In particular hk(Y ) is disjoint from Y .

Using similar arguments as for Lemma 5.5 one also gets the following lemma.

Details are left to the reader.

Lemma 5.6. Assume that Fix(h) is a circle. Given β ∈ Bi (with i ∈ {1, 2}), let
Z = Bi \ (X2

β ∪X−2
β ). Then we have h2(Z) ∩ Z = ∅.
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Lemma 5.7. For any brick β ∈ B we have B \ (X1
β ∪X−1

β ∪X2
β ∪X−2

β ) = {β}.

Proof. We define Ω = B \ (X1
β ∪ X−1

β ∪ X2
β ∪ X−2

β ). If Fix(h) is a circle and β ∈ Bi

then Ω = Bi \ (X−2
β ∪X2

β) so Ω is a connected subset of B whether Fix(h) is a circle

or a totally disconnected set. Consider the subdecomposition D′ of D defined by the

partition B = Ω t tb∈B\Ω{b}; in other words the bricks of D′ are the ones of D which

do not belong to Ω as well as Ω ⊂ M . Since D is maximal, it is enough to prove

that D′ is adapted to h in order to get Ω = {β}. Clearly Lemmas 5.5-5.6 imply that

hi(Ω) ∩ Ω = ∅ for i ∈ {1, 2} hence D′ satisfies Property (P1). If Property (P2) does

not hold true for D′ then there exists β′ ∈ B such that h(Ω) ∩ β′ 6= ∅ 6= h−1(Ω) ∩ β′.
Remark that necessarily h(∂MΩ) ∩ β′ = ∂Mh(Ω) ∩ β′ 6= ∅ since otherwise β′ ⊂ h(Ω)

and then h(Ω) ∩ h−1(Ω) 6= ∅, which is not possible because h2(Ω) ∩ Ω = ∅. Moreover

∂MΩ ⊂ ∂Mβ ⊂ β so one obtains ∅ 6= h(∂MΩ) ∩ β′ ⊂ h(β) ∩ β′. Replacing h with h−1

one gets in the same way h−1(β) ∩ β′ 6= ∅. This contradicts the fact that D satisfies

(P2).

Lemma 5.8. If Fix(h) is totally disconnected, then one of the following possibilities

holds for any brick β ∈ B:
1. X−2

β = X−1
β 6= X1

β = X2
β,

2. X−2
β = X−1

β = X1
β = X2

β,

3. X−2
β = X−1

β = X1
β 6= X2

β,

4. X−2
β 6= X−1

β = X1
β = X2

β.

In particular, B \ {β} has at most two connected components.

Proof. We first suppose X1
β 6= X−1

β . We have ∂Mh(X1
β) = h(∂MX

1
β) ⊂ h(β) ⊂ Int(X1

β).

This together with the connectedness of M \ Int(X1
β) = B \X1

β implies that we have

either (a) h(X1
β) ⊂ Int(X1

β) or (b) h(M\X1
β) = M\h(X1

β) ⊂ Int(X1
β). Case (b) is actually

not possible since, using X1
β 6= X−1

β , it would implies β = h(h−1(β)) ⊂ h(M \ X1
β) ⊂

Int(X1
β) which is absurd. It follows from (a) that h2(β) ⊂ h(X1

β) ⊂ Int(X1
β) and

consequently X1
β = X2

β. The same arguments with h replaced by h−1 give X−1
β = X−2

β .

We now suppose X1
β = X−1

β and we let X±β = X1
β = X−1

β . We have h2(X±β ) ∩
Int(X2

β) 6= ∅ because h2(∂MX
±
β ) ⊂ h2(∂Mβ) ⊂ h2(β) ⊂ Int(X2

β). Since h2(X±β ) is

connected, it follows that we have either h2(X±β ) ⊂ Int(X2
β) or ∅ 6= h2(X±β ) ∩ ∂MX2

β ⊂
h2(X±β ) ∩ β. In the first case we obtain h(β) = h2(h−1(β)) ⊂ h2(X±β ) ⊂ Int(X2

β) so

X±β = X2
β. In the second case we get X±β ∩ h−2(β) 6= ∅ hence X±β = X−2

β .
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Proposition 5.1. Assume that Fix(h) is totally disconnected. Then any brick

β ∈ B is either a disc or an annulus or a half-plane or a strip.

Proof. First of all, observe that M \β ⊂ S2\Cl(β) because β is closed in M hence each

connected component of M \ β is contained in a connected component of S2 \ Cl(β).

Moreover the fixed point set Fix(h) has empty interior so any connected component

of S2 \ Cl(β) contains some connected component Int(Xi
β) of M \ β (i ∈ {±1,±2}). If

β is compact, it follows from Lemma 5.8 that β is a compact subsurface of S2 whose

complement S2 \ β has one or two connected components, so that β is a disc or an

annulus. We suppose now that β is not compact.

Claim 1. Every connected component of ∂Mβ is a line of M .

Proof. Otherwise there is a connected component δ of ∂Mβ which is a circle. Accord-

ing to the Jordan curve Theorem, the set S2\δ has exactly two connected components,

call them U and V , with ∂U = ∂V = δ. We suppose for example that the connected

set Int(β) ⊂ S2 \ δ is contained in U . Then we have Cl(β) = Cl(Int(β)) ⊂ Cl(U) so V

is also a connected component of S2 \ Cl(β) and then there exists i ∈ {±1,±2} such
that Int(Xi

β) ⊂ V . Since β is not compact, the set Cl(β) \ β ⊂ Fix(h) ∩ U contains at

least one point x and one gets

x = hi(x) ∈ U ∩ hi(Cl(β)) = U ∩ Cl(hi(β)) ⊂ U ∩ Cl(Int(Xi
β)) ⊂ U ∩ Cl(V ) = ∅,

a contradiction.

Claim 2. The set ∂Mβ has at most two connected components. Furthermore if δ 6= δ′

are the two connected components of ∂Mβ then Cl(δ) \ δ = Cl(δ′) \ δ′ and this set

consists of one or two fixed points of h.

Proof. The previous claim and the fact that Fix(h) is totally disconnected tell us

that, for any connected component δ of ∂Mβ, the set Cl(δ) \ δ ⊂ Fix(h) is nonempty

and contains at most two points.

Consider now two connected components δ1, δ2 of ∂Mβ and write Cl(δi)\δi = {ai, bi}
with possibly ai = bi (i ∈ {1, 2}). We want to prove that Cl(δ1) \ δ1 = Cl(δ2) \ δ2. It

is enough to check that the two situations a2 6= a1 = b1 and a2 6= a1 6= b1 6= a2 are

not possible. For the first one, the argument is almost the same as in the proof of

Claim 1. Assuming a1 = b1, the set C = Cl(δ1) = δ1∪{a1} is a circle so that S2 \C has

exactly two connected components U, V such that ∂U = ∂V = C; one of them, say U ,

contains the connected set Int(β) ⊂ M \ δ1. Consequently Cl(β) = Cl(Int(β)) ⊂ Cl(U)

hence V is also a connected component of S2 \ Cl(β) and then Int(Xi
β) ⊂ V for some

i ∈ {±1,±2}. If a2 6= a1 one obtains

a2 = hi(a2) ∈
(
Cl(β) \C

)
∩ hi(Cl(β)) ⊂ U ∩Cl(hi(β)) ⊂ U ∩Cl(Int(Xi

β)) ⊂ U ∩Cl(V ) = ∅
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which is absurd. Suppose now that a1, b1, a2 are three distinct points. Since h−2(β)∩
β = ∅ the set C1 = Cl(h−2(δ1) ∪ δ1) = h−2(δ1) ∪ δ1 ∪ {a1, b1} is a circle hence S2 \ C1

has precisely two connected components U1, V1 with C1 as their common frontier.

Since Int(β) is connected and disjoint from C1 one can assume Int(β) ⊂ U1 hence

Cl(β) = Cl(Int(β)) ⊂ Cl(U1) and also a2 ∈ Cl(β)\C1 ⊂ U1. It follows from a2 = h2(a2) ∈
Cl(h2(β)) that h2(β) meets the open set U1 and afterwards that h2(δ1) ⊂ h2(β) ⊂ U1

because h2(β) is connected and disjoint from C1 ⊂ h−2(β)∪β∪{a1, b1}. Define another

circle by C2 = δ1∪h2(δ1)∪{a1, b1} and write U2, V2 for the two connected components

of S2 \ C2. One checks with Schoenflies Theorem that one of these two connected

components is included in U1 while the other one contains V1 ∪ h−2(δ1), let us say

U2 ⊂ U1 and V1 ∪ h−2(δ1) ⊂ V2. One deduces from δ1 ⊂ Cl(Int(β)) ⊂ Cl(U1) and

from Int(β) ∩ C2 = ∅ that Cl(β) ⊂ Cl(U2) hence a2 ∈ Cl(β) \ C2 ⊂ U2. Moreover

a2 = h−2(a2) ∈ Cl(h−2(β)) so h−2(β) intersects both U2 and V2 which is not possible

due to h−2(β) ∩ C2 ⊂ h−2(β) ∩
(
β ∪ h2(β) ∪ {a1, b1}

)
= ∅.

Finally the fact that ∂Mβ cannot have three distinct connected components δ1, δ2, δ3

follows easily from the connectedness of β and from the equality of the sets Cl(δi) \ δi
(i ∈ {1, 2, 3}).

Claim 3. One has Cl(β) ∩ Fix(h) = Cl(∂Mβ) ∩ Fix(h).

Proof. If this is not true one can find x ∈ Cl(β)∩Fix(h) with an open disc U containing

x and disjoint from ∂Mβ. Clearly U∩Fix(h) is a totally disconnected closed subset of U

and it follows for example from [New61, Chapter 5, Theorem 14.3] that U \ Fix(h) =

U ∩ M is connected. Letting V = U ∩ M one also has V ∩ β = U ∩ β 6= ∅ and

V ∩ ∂Mβ = U ∩ ∂Mβ = ∅ hence V ⊂ Int(β). Choosing now another neighbourhood U ′

of x so small that U ′ ∪ h(U ′) ⊂ U one gets

∅ 6= U ′ ∩ β ⊂ (U ∩ h−1(U)) ∩M = V ∩ h−1(V ) ⊂ β ∩ h−1(β) = ∅,

a contradiction.

The claims above show that there are only three possible topologies for Cl(β) (see

also Fig. 5.1).

— Cl(β) is a disc containing a single fixed point a which moreover belongs to the

boundary circle ∂Cl(β). Then β = Cl(β) \ {a} is a half-plane.

— Cl(β) is a disc containing exactly two fixed points a, b and these fixed points

lie on the boundary circle ∂Cl(β). Then β = Cl(β) \ {a, b} is a strip.

— Cl(β) is a pinched annulus and the pinching point a is the only fixed point in

Cl(β). Then β = Cl(β) \ {a} is a strip.

The proof of Proposition 5.1 is complete.
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β β βa

a

b

a

Figure 5.1 – The closure of a noncompact brick β [assuming Fix(h) totally disconnected]

Proposition 5.2. Assume that Fix(h) is a circle. Then any brick β ∈ B is either

a disc or a half-plane or a strip.

Proof. The situation is here similar to the one studied by Le Calvez. For completeness

we give a proof directly adapted from the one of [LC05, Proposition 2.6]. We suppose

for example β ∈ B1. In this case X1
β = X−1

β = B2 and X−2
β , X2

β are also the connected

components of B1 \ β. Since M1 is homeomorphic to R2 and β is closed in M1, it

is classical that every connected component U of M1 \ β has a connected frontier

∂M1
U = ∂MU contained in ∂M1

β = ∂Mβ (see e.g. [New61, Chapter V, Theorem 14.4].

It follows that
{
∂MX

−2
β , ∂MX

2
β

}
is also the set of the connected components of ∂Mβ.

Suppose that ∂MX2
β is a circle. According to the Jordan curve theorem, M1\∂MX2

β

has exactly two connected components U, V , say with ∂MU = ∂MV = ∂MX
2
β and

Fix(h) ⊂ ∂V . One has h2(∂MX
2
β) ⊂ h2(β) ⊂ Int(X2

β) which implies that X2
β = ClM (V )

since otherwise X2
β = ClM (U) is a topological disc such that h2(X2

β) ⊂ X2
β and the

Brouwer fixed point theorem then would give a fixed point point of h2 in X2
β ⊂ M1,

a contradiction. In particular one gets β ⊂ ClM (U) so β is compact and ∂MX
−2
β

is also a circle. Replacing h2 with h−2, the same argument shows that X−2
β is the

connected component V ′ of M1 \ ∂MX−2
β satisfying Fix(h) ⊂ ∂V ′ hence X2

β = X−2
β and

consequently β = U ∪ ∂MX2
β is a disc. Of course the same conclusion holds if it is

first assumed that ∂MX
−2
β is a circle.

Suppose finally that ∂MX2
β and ∂MX

−2
β are lines of M1. Then clearly β is a half-

plane if ∂MX2
β = ∂MX

−2
β and β is a strip if ∂MX2

β 6= ∂MX
−2
β .

5.2.2 Orientation of the skeleton

Our goal is to endow the skeleton Σ = Σ(D) with a natural orientation and to

study the induced orientation on the boundary of the bricks.

Let us consider an edge α ∈ E and the two bricks β 6= β′ which are adjacent to

α. Because of the maximality of D, the subdecomposition D′ of D whose skeleton is
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Σ(D′) = Σ \ IntΣ(α) cannot be adapted to h.

– If D′ does not satisfies Property (P1) then we have hk(β ∪ β′) ∩ (β ∪ β′) 6= ∅ for
some k ∈ {1, 2} and consequently hk(β) ∩ β′ 6= ∅ or hk(β′) ∩ β 6= ∅;

– If D′ does not satisfies Property (P2) then there exists β′′ ∈ B such that h(β ∪
β′) ∩ β′′ 6= ∅ 6= h−1(β ∪ β′) ∩ β′′ and we deduce that h(β) ∩ β′′ 6= ∅ 6= h−1(β′) ∩ β′′ or
h(β′) ∩ β′′ 6= ∅ 6= h−1(β) ∩ β′′.

Anyway one of the following two possibilities holds:

1. β′ ∈ ϕ({β}) ∪ ϕ2({β}),
2. β ∈ ϕ({β′}) ∪ ϕ2({β′}).

As an important consequence of Lemma 5.4, the two situations (i) and (ii) cannot

happen simultaneously so we can choose unambiguously the orientation of the edge

α in such a way that r(α) ∈ ϕ({l(α)}) ∪ ϕ2({l(α)}) where r(α) (resp. l(α)) is the one

of the two bricks β, β′ which is located on the right (resp. on the left) of α. We also

write v−(α) (resp. v+(α)) for the initial (resp. final) vertex of α if it exists.

Proposition 5.3. Let α ∈ E be an edge of D. Define the attractor associated to

l(α) ∈ B and the repellor associated to r(α) ∈ B by respectively

A(l(α)) =
⋃
n>0

ϕn({l(α)}) and R(r(α)) =
⋃
n>0

ϕn−({r(α)}).

Then A(l(α)) and R(r(α)) have at most two connected components. More precisely

either A(l(α)) (resp. R(r(α))) is connected or it has exactly two connected compo-

nents which are

Ae(l(α)) =
⋃
n>0

ϕ2n({l(α)}) and Ao(l(α)) =
⋃
n>0

ϕ2n+1({l(α)}),

(resp. Re(r(α)) =
⋃
n>0

ϕ2n
− ({r(α)}) and Ro(r(α)) =

⋃
n>0

ϕ2n+1
− ({r(α)})),

where the subscripts e and o stand for respectively even and odd. The result also

hold true for the following sets A∗(l(α)) = A(l(α)) \ {l(α)} and R∗(r(α)) = R(r(α)) \
{r(α)}.

Proof. We know that r(α) ∈ ϕ({l(α)}) ∪ ϕ2({l(α)}). If r(α) ∈ ϕ({l(α)}) then l(α) ∪
ϕ({l(α)}) is connected. Moreover one can write

A(l(α)) =
⋃
n>0

ϕn
(
{l(α)} ∪ ϕ({l(α)})

)
so A(l(α)) is the union of the connected sets Xn = ϕn

(
{l(α)} ∪ ϕ({l(α)})

)
verifying

Xn ∩ Xn+1 6= ∅ for every n > 0. It follows that A(l(α)) is connected. Similarly we

write A∗(l(α)) =
⋃
n>1Xi, and thus A∗(l(α)) is connected.
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If r(α) ∈ ϕ2({l(α)}) then l(α) ∪ ϕ2({l(α)}) is connected and one gets the connect-

edness of Ae(l(α)) and Ao(l(α)) by writing Ae(l(α)) =
⋃
n>0 ϕ

2n
(
{l(α)} ∪ ϕ2({l(α)})

)
and Ao(l(α)) =

⋃
n>0 ϕ

2n+1
(
{l(α)} ∪ ϕ2({l(α)})

)
. In the same way, the set A∗(l(α)) is

the union of the following connected sets⋃
n>1

ϕ2n
(
{l(α)} ∪ ϕ2({l(α)})

)
and

⋃
n>0

ϕ2n+1
(
{l(α)} ∪ ϕ2({l(α)})

)
.

The result for R(r(α)) and R∗(r(α)) may be proved similarly.

Following Le Calvez ([LC04],[LC05]) we say that a sequence (αi)i∈I of edges,

where I is a nonempty Z-interval, is admissible if v+(αi) = v−(αi+1) for every pair

{i, i+ 1} ⊂ I (in particular this holds if ](I) = 1). Given such a sequence (αi)i∈I , the

arc Γ =
∏

i∈I αi ⊂M obtained by concatening the αi’s is naturally endowed with the

orientation which agrees with the one of each αi; then Γ is called an oriented arc and

one defines the left neighborhood of Γ by

l(Γ) = {l(αi) | i ∈ I},

and the right neighborhood of Γ by

r(Γ) = {r(αi) | i ∈ I}.

For several oriented arcs Γ1, · · · ,Γn one let naturally l(Γ1 ∪ · · · ∪ Γn) =
⋃n
i=1 l(Γi) and

r(Γ1 ∪ · · · ∪ Γn) =
⋃n
i=1 r(Γi).

Proposition 5.4. Suppose that β ∈ B is a disc. Then the circle ∂Mβ = ∂β is the

union of two oriented segments

Γ =

n∏
i=0

αi and Γ′ =

n′∏
i=0

α′i

where (αi)06i6n and (α′i)06i6n′ are finite admissible sequences of edges such that

v−(α0) = v−(α′0), v+(αn) = v+(α′n′) and l(Γ) = r(Γ′) = {β}. In this case, we denote

v−(β) = v−(α0) (resp. v+(β) = v+(αn)) and we say that v−(β) (resp. v+(β)) is the

initial vertex (resp. the final vertex) of β.

Proof. We first prove that there is at least one edge α ∈ E such that l(α) = β.

Suppose this is not true, that is r(α) = β for every edge α ⊂ ∂Mβ = ∂β. Choose an

edge α1 ⊂ ∂β and define β1 = l(α1). We know that β belongs to the connected set

ϕk({β1}) ⊂ B for some k ∈ {1, 2} hence {β} ∪ ϕk({β1}) is also connected. Moreover

this latter set cannot be reduced to {β} because hk(α1) = hk(β1∩β) is disjoint from β

so there exists a brick β2 ∈ ϕk({β1}) which is adjacent to β. Continuing in the same

way, one constructs inductively a sequence of bricks (βi)i>1 which are adjacent to β
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and such that βi+1 ∈ ϕ({βi}) ∪ ϕ2({βi}) for every i > 1. Since there are only finitely

many bricks adjacent to β, one has βi1 = βi2 ∈
⋃
n>0 ϕ

n({βi1}) for some i2 > i1 > 1

which contradicts Lemma 5.4. Replacing ϕ with ϕ−, one proves likewise that there

exists at least one edge α′ ⊂ ∂β such that r(α′) = β. For later use, let us remark

here that the above argument holds for any brick β whose frontier ∂Mβ contains only

finitely many edges.

We end by proving that it is not possible to find two edges α1, α2 such that

l(α1) = l(α2) = β and which are separated in ∂β by two edges α′1, α
′
2 verifying r(α′1) =

r(α′2) = β. Arguing again by contradiction, suppose that such edges exist and then

define βi = r(αi) ∈ ϕ({β}) ∪ ϕ2({β}) and β′i = l(α′i) ∈ ϕ−({β}) ∪ ϕ2
−({β}) for i ∈ {1, 2}.

Remark that there is a connected set X ⊂
⋃
n>0 ϕ

n({β}) which contains {β1, β2}.
Indeed, if βi ∈ ϕ({β}) for some i ∈ {1, 2} then {β} ∪ ϕ({β}) is connected and we take

X = ϕ
(
{β} ∪ ϕ({β})

)
= ϕ({β}) ∪ ϕ2({β}); otherwise we just let X = ϕ2({β}). One

checks similarly that {β′1, β′2} ⊂ X ′ for some connected set X ′ ⊂
⋃
n>0 ϕ

n
−({β}). Choose

now two segments γ and γ′ lying respectively in Int(X) and in Int(X ′) except for their

endpoints, and joining respectively z1 ∈ IntΣ(α1), z2 ∈ IntΣ(α2) and z′1 ∈ IntΣ(α′1),

z′2 ∈ IntΣ(α′2). Since the α′i’s separate the αi’s on the circle ∂β one can also find

two segments γ̂, γ̂′ in β whose endpoints are, respectively, z1, z2 and z′1, z
′
2, and which

intersect transversely in only one point. According to Lemma 5.4 Int(X)∩ Int(X ′) = ∅
hence one gets two circles γ∪γ̂ and γ′∪γ̂′ with a unique point of transverse intersection,

which is absurd.

Proposition 5.5. Suppose that β ∈ B is an annulus. Then its two boundary circles

may be written Γ =
∏

i∈I αi and Γ′ =
∏

i∈I ′ α
′
i where (αi)i∈I and (α′i)i∈I ′ are finite

admissible sequences of edges such that l(Γ) = r(Γ′) = {β}.

Proof. In this case, one knows that the set S2 \ β has two connected components

and that the annulus β separates Int(X2
β) and Int(X−2

β ) in S2. We will first prove

that these two connected components are X1
β = X2

β and X−1
β = X−2

β . Let us write

U, V for these two connected components, say with Int(X−2
β ) ⊂ U and Int(X2

β) ⊂ V .

Arguing by contradiction, we suppose that the situation (4) in Lemma 5.8 holds.

Let D = β ∪ U , so that D is a disc whose frontier ∂D is one of the two boundary

circles of β. We have h−2(β) ⊂ h−2(D) ∩ Int(D) and then h−2(D) ⊂ Int(D) because

D ∩ h2(∂D) ⊂ D ∩ h2(β) ⊂ D ∩ Int(X2
β) ⊂ D ∩ V = ∅. According to the Brouwer fixed

point theorem one has Int(D)∩Fix(h−2) 6= ∅ which implies Int(h−1(D))∩D 6= ∅ because
Fix(h) = Fix(h2). Now X−1

β = X2
β gives

D ∩ ∂h−1(D) = D ∩ h−1(∂D) ⊂ D ∩ h−1(β) ⊂ D ∩ Int(X−1
β ) ⊂ D ∩ V = ∅

hence D ⊂ h−1(D) and afterwards D ⊂ h−1(D) ⊂ h−2(D) ⊂ D so that D = h−1(D)

and then ∂D = h−1(∂D) ⊂ β ∩ h−1(β) = ∅, which is absurd. Interchanging the roles
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of h and h−1, one checks similarly that the situation (3) in Lemma 5.8 cannot occur

and consequently that X−2
β = X−1

β 6= X1
β = X2

β.

Let α ⊂ ∂β be an edge such that l(α) = β. The brick r(α) is included in a

connected component of B \ {β}, namely in X1
β = X2

β. Therefore α is contained in

∂MX
1
β. Similarly if r(α) = β then α ⊂ ∂MX

−1
β .

Proposition 5.6. If β ∈ B is a half-plane then its frontier ∂Mβ is the union of

two oriented half-lines Γ and Γ′ with the same endpoint σ ∈ V . Moreover Γ is the

product of the edges satisfying l(α) = β and Γ′ is the product of the edges satisfying

r(α) = β. The vertex σ is denoted by v−(β) if it is the initial vertex of Γ and Γ′ and

it is denoted by v+(β) if it is the final vertex of Γ and Γ′.

Proof. The proof is divided into two parts.

First part. We prove that there exists at least one edge α such that l(α) = β and

at least one edge α′ such that r(α′) = β. This is already known to be true if ∂Mβ

contains only finitely many edges (recall the remark in the proof of Proposition 5.4)

so we can suppose

∂Mβ =
∏
m<i<l

αi,

where (αi)m<i<l is an admissible sequence (i.e., for all m < i < l− 1 we have v+(αi) =

v−(αi+1)) with m < 0 < 1 < l and moreover m = −∞ or l = +∞. We also define

σ0 = v+(α0) = v−(α1). By contradiction, we suppose that r(αi) = β for every i ∈ (m, l).

Remark that D is also a maximal brick decomposition of M for h−1 and that the

orientation induced by h−1 of the skeleton is opposite to the one induced by h.

Hence, replacing h with h−1, the following arguments also show that one cannot have

β = l(αi) for every i ∈ (m, l). Let us introduce some notation which will allow to deal

simultaneously with the case where Fix(h) is a circle and the case where Fix(h) is a

totally disconnected set.

• Suppose first that Fix(h) is totally disconnected. Then Cl(β) \ β consists of a

single fixed point p of h and the sets Cl(hi(β)) = hi(β) ∪ {p} (i ∈ Z) are discs

intersecting pairwise at p. Using the Schoenflies theorem one can also assume

(up to conjugacy) that p = ∞ and that the frontiers of the discs Cl(hi(β)),

i ∈ {0,±1,±2}, form a standard bouquet of 5 circles. It follows that there exists

a segment γ ⊂ S2 linking σ0 and h2(σ0), and disjoint from
⋃2
i=−2 h

i(β) except

for its endpoints σ0, h
2(σ0). Using Lemma 5.2, it is not difficult to see that one

can choose γ ⊂M .

We have two possible cyclic orders around ∞:

Cl(β) < h−1(Cl(β)) < h(Cl(β)) or Cl(β) < h(Cl(β)) < h−1(Cl(β)).
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If Cl(β) < h−1(Cl(β)) < h(Cl(β)) then, since h reverses the orientation, we also

have Cl(β) < h−2(Cl(β)) < h−1(Cl(β)) and h2(Cl(β)) < Cl(β) < h(Cl(β)) so we get

(see Fig. 5.2)

(?) Cl(β) < h−2(Cl(β)) < h−1(Cl(β)) < h(Cl(β)) < h2(Cl(β)).

Cl(β)

Cl(h2(β))

Cl(h(β))

Cl(h−1(β))

Cl(h−2(β))

Λ−

Λ+

σ0

h2(σ0)

V

U

∞

γ

Figure 5.2 – The discs Cl(hi(β)) around ∞ (−2 6 i 6 2)

If Cl(β) < h(Cl(β)) < h−1(Cl(β)) then one gets by the same argument

(??) Cl(β) < h2(Cl(β)) < h(Cl(β)) < h−1(Cl(β)) < h−2(Cl(β))

and the picture is the same after interchanging the roles of h and h−1.

Define D = S2 \ (Int(β) ∪ h2(Int(β)) ∪ {∞}) = R2 \ (Int(β) ∪ h2(Int(β)). Using

the Schoenflies theorem, one can check that D is a strip and that D \ γ has

exactly two connected components having γ as their common frontier in D.

Observe also that the cyclic order of the Cl(hi(β))’s around ∞ (−2 6 i 6 2)

implies that h−1(β) and h−2(β) are included in the same connected component of

D\γ. These connected components of D\γ are named U, V with the convention

h−1(β) ∪ h−2(β) ⊂ U . More precisely note that h−1(β) ∪ h−2(β) is contained in

Int(U) since it is disjoint from β ∪ h2(β) (see Fig. 5.2).

• Suppose now that Fix(h) is a circle. Assume for instance that β ⊂ M1. Since

M1 is homeomorphic to R2 one can find a segment γ ⊂ M1 joining σ0 ∈ ∂Mβ

and h2(σ0) ∈ ∂Mh2(β) such that γ is disjoint from β ∪ h2(β) ∪ h−2(β) except for

its endpoints. We let D = M1 \ (Int(β)∪ h2(Int(β))). As in the case where Fix(h)

is totally disconnected, D is a strip and D \ γ has two connected components

having γ as their common frontier in D; these connected components are named

again U, V with h−2(β) ⊂ Int(U).
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With the previous definitions for D,U and V , the following arguments are valid

whether Fix(h) is a circle or a totally disconnected set. Write Λ− =
⋃
i60 αi and

Λ+ =
⋃
i>1 αi. Note that one of the two connected sets Λ− \ {σ0} or Λ+ \ {σ0} is

contained in U while the other one is contained in V .

(a) We first assume Λ− \ {σ0} ⊂ U and Λ+ \ {σ0} ⊂ V (in the case where Fix(h)

is totally disconnected, this corresponds to the situation pictured on Fig. 5.2). For

each integer i ∈ (m, l), let us define βi = l(αi). Then β = r(αi) ∈ ϕ({βi}) ∪ ϕ2({βi}) so

one of the following two situations occurs:

(∗) βi ∩ (h−1(β) ∪ h−2(β)) 6= ∅,
(∗∗) βi ∩ h−1(τβi) 6= ∅ and h−1(τβi) ∩ h−2(β) 6= ∅ for some τβi ∈ B.
We denote by BR∗ (resp. BR∗∗) the set of the bricks βi, 1 6 i < l, verifying (∗)

(resp. (∗∗)). We let

BR = BR∗ ∪ BR∗∗ = {βi | 1 6 i < l}.

Remark that the set {β′ ∈ BR | β′ 6⊂ V } is finite. Indeed, for every integer i ∈ (m, l)

one has β ∈ ϕ({βi})∪ϕ2({βi}). Therefore one gets with Lemma 5.4 that βi∩h2(β) = ∅
and then βi ⊂ D for every i ∈ (m, l). If i > 1 and βi 6⊂ V then βi ∩ γ 6= ∅. Since γ

is a compact subset of M , it intersects only finitely many bricks, which proves the

assertion. As a consequence, the set BR∗ ⊂ {β′ ∈ BR | β′ 6⊂ V } is also finite.

We shall prove there exists b ∈ B with the following properties:

- there is a connected subset X of R(b) such that h−2(X) ⊂ Int(X) and moreover

X satisfies the following condition (C )

- if l < +∞ then αl−1 ⊂ X,

- if l = +∞ then αi ⊂ X for infinitely many i > 1;

- there is a connected subset X ′ of A∗(b) = A(b) \ {b} such that β ∈ X ′ and

h2(X ′) ⊂ X ′.

Let us explain why this leads to a contradiction. The above properties imply β ∪
h2(β) ⊂ X ′ hence, since X ′ ⊂ B is connected, one can find a segment ω ⊂ Int(X ′)

joining a point of ∂Mβ and a point of ∂Mh2(β) and which is contained in Int(D)

except for its endpoints. Then D \ ω has exactly two connected components Ω+ and

Ω− and one of them, say Ω+, contains the connected set X ⊂ M because ω ∩ X ⊂
Int(A∗(b)) ∩ R(b) = ∅. Suppose that θ : R → ∂Mβ is a parameterization of ∂Mβ

which agrees with the orientation of ∂Mβ. Define tγ , tω ∈ R so that θ(tγ) = γ ∩ ∂Mβ,
θ(tω) = ω ∩ ∂Mβ, and let

- ∆− = θ
(
(−∞,min{tγ , tω})

)
;

- ∆0 = θ
(
[min{tγ , tω},max{tγ , tω}]

)
;

- ∆+ = θ
(
(max{tγ , tω},+∞)

)
.

Thus ∂Mβ = ∆− t ∆0 t ∆+ with ∆− ∩ Cl(Ω+) = ∅ and ∆+ ∩ Cl(U) = ∅. Similarly

the set ∂Mh2(β) is partitioned into three pairwise disjoint connected arcs ∆′−, ∆′0 and
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∆′+ such that ∆′− ∩ Cl(Ω+) = ∅, and ∆′+ ∩ Cl(U) = ∅. We write {Ji}i∈I for the set

of all the connected components of Int(Ω+) ∩ Int(U) (where I is a finite or countable

set). Suppose first that Fix(h) is totally disconnected. Then Int(Ω+) and Int(U)

are two Jordan domains whose boundary circles contain ∞. Since
(
S2 \ Cl(Ω+)

)
∩(

S2 \ Cl(U)
)
6= ∅ (for instance this set contains Int(β)) one deduces from a classical

result of Kerékjártó (see [dK]) that each Ji is also a Jordan domain with moreover

∂Ji ⊂ ∂U ∪ ∂Ω+ ⊂ {∞} ∪ ∂Mβ ∪ ∂Mh2(β) ∪ γ ∪ ω. However ∂Ji ∩ ∆− ⊂ Cl(Ω+) ∩
∆− = ∅ and similarly ∂Ji ∩ ∆+ = ∂Ji ∩ ∆′− = ∂Ji ∩ ∆′+ = ∅. Consequently one

has ∂Ji ⊂ ∆0 ∪ ∆′0 ∪ ω ∪ γ and then ∞ 6∈ Cl(Ji). Because of the condition (C )

there exists a sequence (xn)n>0 ⊂ X ∩ ∂Mβ such that limn→+∞ xn = ∞ hence also

limn→+∞ h
−2(xn) = ∞ and h−2(xn) ∈ h−2(β) ⊂ Int(U). Since ∞ 6∈ Cl(Ji) for every

i ∈ I one obtains h−2(xn) ∈ Int(U)∩ Int(Ω−) for any large enough n. Therefore we get

h−2(xn) ∈ Int(Ω−)∩h−2(X) ⊂ Int(Ω−)∩X ⊂ Int(Ω−)∩Ω+ = ∅ which gives the expected

contradiction. If Fix(h) is a circle then consider Int(Ω+) and Int(U) as Jordan domains

in the one-point compactification M1 ∪ {∞1} of M1, whose boundary circles contain

∞1. The same arguments give again a contradiction.

It remains to prove the existence of the brick b ∈ B as above. We have to consider

the following two cases.

Case 1. l < +∞ or there exists i > 1 such that βj = βi for infinitely many j > 1.

We define k = l − 1 if l < +∞ and k = i in the second situation. Let α be the

edge distinct from αk−1 and from αk such that σ = v+(αk−1) = v−(αk) is a vertex

of α. Then b = r(α) is a brick as required. Indeed {βk−1, βk} = {l(α), b} is then a

connected subset of R(b) ⊂ B hence it is contained in a connected component X of

R(b). According to Proposition 5.3, one has h−2(X) ⊂ X. Since βk ∈ X the set X

satisfies the condition (C ). We also have b = l(α′) for some α′ ∈ {αk−1, αk} hence

β ∈ A∗(b). Defining X ′ to be the connected component of A∗(b) ⊂ B containing β,

we deduce from Proposition 5.3 that h2(X ′) ⊂ X ′.

Case 2. l = +∞ and for each i > 1 one has βi = βj for only finitely many j > 1.

In particular BR has infinite cardinality and, since {β′ ∈ BR | β′ 6⊂ V } is finite

and contains BR∗, there exists k0 > 1 such that βi ∈ BR∗∗ and βi ⊂ V for every

i > k0. For each β′ ∈ BR∗∗, we choose a brick τβ′ such that β′ ∩ h−1(τβ′) 6= ∅ and

h−1(τβ′) ∩ h−2(β) 6= ∅. We then denote Θ = {τβ′ | β′ ∈ BR∗∗} and, to shorten notation,

we write τi instead of τβi.

For any i > k0 we have h(τi)∩β 6= ∅; it follows from Lemma 5.4 that h−1(τi)∩ (β ∪
h2(β)) = ∅ hence h−1(τi) ⊂ Int(D). We also deduce from βi ⊂ V and h−2(β) ⊂ U that

h−1(τi) ∩ γ 6= ∅, equivalently that h(γ) ∩ τi 6= ∅. Since h(γ) is a compact subset of M ,

it intersects only finitely many bricks, which proves that Θ is a finite set.

We define Θ1 = {τ ∈ Θ |h−1(τ) meets infinitely many bricks of BR∗∗}. Observe

that Θ1 is nonempty since BR∗∗ is infinite but Θ is finite. Each brick of BR contains

only finitely many edges αj with j > 1 and for every τ ∈ Θ \Θ1 the set h−1(τ) meets
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finitely many bricks of BR∗∗ so there exists an integer l0 > k0 such that βi ∈ BR∗∗ and

τi ∈ Θ1 for every i > l0.

We first prove that there are an integer n > l0 and a brick τ∗ ∈ Θ1 such that h−1(τ∗)

meets both βn and βn+1. We know there exists a smallest positive integer k such that

h−1(τl0)∩ βl0+k 6= ∅. If k = 1, then we are done with n = l0 and τ∗ = τl0. Now suppose

that k > 1. One can construct a circle C = γ1∪γ2 where γ1, γ2 are segments as follows:

γ1 is a segment in ∂Mβ from a point x1 ∈ αl0 to a point x2 ∈ αl0+k; moreover γ2 is

another segment from x1 to x2 such that γ2 \ {x1, x2} ⊂ Int(D)∩ (βl0 ∪ βl0+k ∪ h−1(τl0))

and γ2 ∩ ∂Mh−1(τl0) ⊂ βl0 ∪ βl0+k. Since βl0+1 ∩ h−1(τl0) = ∅, there is a connected

component W of S2 \ C such that βl0+1 ⊂ Cl(W ) and clearly Λ+ ∩ Cl(W ) ⊂
⋃l0+k
i=l0

αi.

Observe now that all but finitely many β′ ∈ BR∗∗ are disjoint from Cl(W ) because

αi ∩ Cl(W ) = ∅ for i > l0 + k and because the compact set C ⊂ M meets only finitely

many bricks. Since ∅ 6= h−1(τl0+1)∩βl0+1 ⊂ Cl(W ) and h−1(τl0+1)∩β′ 6= ∅ for infinitely
many β′ ∈ BR∗∗ it follows that necessarily ∅ 6= h−1(τl0+1)∩ C ⊂ Int(D)∩ C ⊂ γ2. Recall

that h−1(τl0+1)∩ Int(h−1(τl0)) = ∅ because τl0+1 6= τl0 hence h
−1(τl0+1)∩ (βl0 ∪βl0+k) 6= ∅

(as a remark, if βl0 = βl0+k then one can choose γ2 ⊂ βl0 and one gets more precisely

h−1(τl0+1) ∩ βl0 6= ∅). If h−1(τl0+1) meets βl0, then we get the result with n = l0 and

τ∗ = τl0+1, see Fig. 5.3 right. If not (see Fig. 5.3 left) we apply this argument again

replacing (l0, l0 +k) with (l0 +1, l0 +k). The process will stop after finitely many steps

and we get then an integer n and a brick τ∗ as expected.

C

βl0 βl0

βl0+1 βl0+1

βl0+k βl0+k

h−1(τl0) h−1(τl0)

h−1(τl0+1)

h−1(τl0+1)

ββ

Figure 5.3 – The two ways that h−1(τl0+1) can intersect βl0+1

We end the proof of this second case by checking that b = τ∗ is a brick with the

required properties. Since βn and βn+1 ate two adjacent bricks, one can define the

integers n1, n2 > 1 in such a way that {n1, n2} = {n, n+1} and βn1 ∈ ϕk−({βn2}) for some
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k ∈ {1, 2}. Since furthermore βn2 ∈ ϕ−({τ∗}) we get βn1 ∈ ϕk−({βn2}) ⊂ ϕk+1
− ({τ∗}).

This implies βn1 ∈ ϕ−({τ∗})∩ϕk+1
− ({τ∗}) and hence ϕ−({τ∗})∪ϕk+1

− ({τ∗}) is connected.
One checks as in the proof of Proposition 5.3 that the connected component X of

R∗(τ∗) containing ϕ−({τ∗}) is either R∗(τ∗) or
⋃
n>0 ϕ

2n+1
− ({τ∗}) depending on whether

k = 1 or k = 2. This implies that X is a connected subset of R(τ∗) verifying h−2(X) ⊂
X. Moreover τ∗ ∈ Θ1 hence ϕ−({τ∗}) contains infinitely many bricks of BR∗∗ and so

does X; this shows that X satisfies the condition (C ). Observe now that h(τ∗) 6⊂
β because otherwise h−1(τ∗) ⊂ h−2(β) which is impossible because h−1(τ∗) meets

infinitely many bricks β′ ∈ BR while h−2(β) ⊂ U meets only finitely many bricks

β′ ∈ BR. It follows from h(τ∗) ∩ β 6= ∅ and h(τ∗) 6⊂ β that h(τ∗) ∩ ∂Mβ 6= ∅ and

then h(τ∗) ∩ βi 6= ∅ for some integer i ∈ (m, l). Then one has βi ∈ ϕ({τ∗}). One

has moreover β ∈ ϕk({βi}) for some k ∈ {1, 2} so β ∈ ϕk+1({τ∗}). Thus we obtain

β ∈ ϕ({τ∗})∩ϕk+1({τ∗}), and consequently ϕ({τ∗})∪ϕk+1({τ∗}) is connected. Defining

X ′ to be the connected component of A∗(τ∗) containing ϕ({τ∗}) we get easily that

X ′ is either A∗(τ∗) or
⋃
n>0 ϕ

2n+1({τ∗}) (depending on whether k = 1 or k = 2) and

consequently h2(X ′) ⊂ X ′.

(b) We suppose now Λ− \ {σ0} ⊂ V and Λ+ \ {σ0} ⊂ U (in the case where Fix(h)

is totally disconnected, this corresponds to the situation obtained by switching the

roles of h and h−1 in Fig. 5.2). By the same argument as above with the edges (αi)i>1

replaced by the edges (αi)i60, we can prove that there exists a brick b′ ∈ B satisfying

the following properties:

- there is a connected subset K of R(b′) such that h−2(K) ⊂ K and moreover K

satisfies the following condition

- if m > −∞ then αm+1 ⊂ K,

- if m = −∞ then αi ⊂ K for infinitely many i 6 0;

- there is a connected subset K ′ of A∗(b′) such that β ∈ K ′ and h2(K ′) ⊂ K ′.

This also gives a contradiction and ends the first part of the proof.

Second part. We now show that two edges α1, α2 ∈ E such that l(α1) = l(α2) = β

cannot be separated in ∂Mβ by an edge α′ ∈ E verifying r(α′) = β. Arguing by

contradiction, suppose there exist α1, α2 and α′ as above. As in the proof of Propo-

sition 5.4, one checks that {r(α1), r(α2)} ⊂ Z where Z is a connected component of

ϕ({β})∪ϕ2({β}). We choose two segments γ and γ′ joining z1 ∈ IntΣ(α1), z2 ∈ IntΣ(α2)

which are included in respectively Int(Z) and Int(β) except for their endpoints. Then

γ ∪ γ′ ⊂M is a circle and moreover (γ ∪ γ′)∩ ∂Mβ = {z1, z2}. We denote by Ω the disc

bounded by γ ∪ γ′ and containing the segment from z1 to z2 in ∂Mβ. One has α′ ⊂
ϕk−({β})∩ Int(Ω) for some k ∈ {1, 2} and also ϕk−({β})∩ ∂Ω ⊂ ϕk−({β})∩ Int(β ∪Z) = ∅
because of Lemma 5.4. Consequently we get h−k(β) ⊂ ϕk−({β}) ⊂ Ω and then

∅ 6=
(
Cl(h−k(β))\h−k(β)

)
∩Ω =

(
Cl(β)\β

)
∩Ω = Cl(β)∩Fix(h)∩Ω = Cl(∂Mβ)∩Fix(h)∩Ω = ∅,
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a contradiction. This completes the proof of the proposition.

Proposition 5.7. Suppose that β ∈ B is a strip. Then the two connected com-

ponents of ∂Mβ may be written Γ =
∏

i∈I αi and Γ′ =
∏

i∈I ′ α
′
i where (αi)i∈I and

(α′i)i∈I ′ are two admissible sequences of edges such that l(Γ) = r(Γ′) = {β}.

Proof. The proof is divided into two cases.

Case 1. Fix(h) is totally disconnected.

We have ∂Mβ = Γ t Γ′ where Γ,Γ′ are two disjoints lines of M and furthermore

Cl(Γ) \ Γ = Cl(Γ′) \ Γ′ = {a, b} where a and b are two fixed points of h with possibly

a = b.

• Assume that a = b. Using the notation from Section 5.2.1, Lemma 5.8 tell us

that B \ {β} has two connected components, with three possible situations:

- X1
β = X2

β 6= X−1
β = X−2

β ,

- X2
β = X±β 6= X−2

β ,

- X−2
β = X±β 6= X2

β.

We only give the proof for the first two cases, the third one being the same as the

second one after replacing h with h−1.

i) Suppose now that X1
β = X2

β 6= X−1
β = X−2

β . The argument is similar to the one

used when β is an annulus (Proposition 5.5). Let α be any edge such that l(α) = β.

The brick r(α) belongs to a connected component of B \{β} which contains ϕ({β}) or
ϕ2({β}), namely r(α) ∈ X1

β. Therefore α is contained in ∂MX
1
β. Similarly if r(α) = β

then α ⊂ ∂MX
−1
β .

ii) Suppose next that X2
β = X±β 6= X−2

β . Under the hypotheses, the set S2 \ Cl(β)

has also two connected components, call them U and V such that Int(X−2
β ) ⊂ U and

Int(X2
β) ⊂ V . The set D = Cl(β) ∪ U is a disc whose frontier is ∂MX2

β ∪ {a}. The

next claim is to prove that D ⊂ h2(D). It follows from the inclusions ∂Mh−2(X−2
β ) =

h−2(∂MX
−2
β ) ⊂ h−2(∂Mβ) ⊂ h−2(β) ⊂ X−2

β and from the connectedness of X−2
β that

either h−2(X−2
β ) ⊂ X−2

β orM \h−2(X−2
β ) ⊂ X−2

β . IfM \h−2(X−2
β ) ⊂ X−2

β it then follows

from X±β 6= X−2
β that h−1(β) = h−2(h(β)) ⊂ h−2(X±β ) ⊂ h−2(M\X−2

β ) = M\h−2(X−2
β ) ⊂

X−2
β which is a contradiction. This shows that h−2(X−2

β ) ⊂ X−2
β and consequently

that D ⊂ h2(D).

One deduces from ∂h(D) = h(∂D) = h(∂MX
2
β ∪ {a}) ⊂ h(β) ∪ {a} ⊂ Int(X1

β) ∪ {a}
that ∂h(D) ⊂ (S2 \ D) ∪ {a}. Thus one has either D ⊂ h(D) or D ∩ h(D) = {a}.
If D ⊂ h(D), then we have h−1(D) ⊂ D hence h−1(β) ⊂ D which contradicts our

assumption X−1
β 6= X−2

β . Hence one has necessarily D ∩ h(D) = {a} or equivalently

that h(D)∩h2(D) = {a}. One deduces h2(D)∩h−1(β) = ∅ because h−1(β) = h(h−2(β)) ⊂
h(D). Even better, we prove now that h2(D) ∩ ϕ−({β}) = ∅. Otherwise there exists

a brick β1 ∈ ϕ−({β}) such that β1 ∩ h2(D) 6= ∅. We deduce from h2(D) ∩ h−1(β) = ∅
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that β1 6⊂ h2(D). It follows that ∅ 6= β1 ∩ ∂h2(D) ⊂ β1 ∩ h2(β) which contradicts

β1 ∈ ϕ−({β}) by Lemma 5.4.

Let α ⊂ ∂Mβ be an edge in E such that r(α) = β. Then one has l(α) ∈ ϕ−({β}) ∪
ϕ2
−({β}). It follows from α ⊂ β ⊂ h2(D) that l(α) ∩ h2(D) 6= ∅. This together with

h2(D) ∩ ϕ−({β}) = ∅ implies that l(α) ∈ ϕ2
−({β}). One concludes that l(α) ∈ X−2

β

and hence that α ⊂ ∂MX
−2
β . If α is any edge contained ∂Mβ such that l(α) = β then

r(α) ∈ ϕ({β}) ∪ ϕ2({β}) ⊂ X1
β = X2

β, consequently α ⊂ ∂MX
2
β.

• Assume now that a 6= b.

First we prove that Γ is an oriented line of M . Otherwise we suppose that there

exist two edges α1, α2 ∈ E included in Γ such that l(α1) = β and r(α2) = β. Since

r(α1) ∈ ϕ({β}) ∪ ϕ2({β}), we define X to be the connected component of ϕ({β}) ∪
ϕ2({β}) containing r(α1). Consider a segment η joining a point w1 ∈ α1 and a point

w2 ∈ Int(r(α1)) such that η \ {w1} ⊂ Int(r(α1)), and thus η \ {w1} ⊂ Int(X). Since

X ∪ {a, b} is connected and contains a, b; we can join a and b by a segment γ ⊂ S2

which, except for its endpoints a and b, lies in Int(X) such that γ ∩ η = {w2}, see Fig.
5.4. We deduce from β ∩ Int(X) = ∅ that γ ∪ Γ is a circle. Define Ω the closure of a

connected component of S2 \ (γ ∪Γ) such that η ⊂ Ω. It is easy to see that Ω∩ β = Γ.

We know that l(α2) ∈ ϕk−({β}) for some k ∈ {1, 2}. Moreover, by Lemma 5.4, one has

∂Ω ∩ Int(ϕk−({β})) = (γ ∪ Γ) ∩ Int((ϕk−({β})) ⊂ (Int(X) ∪ {a, b} ∪ β) ∩ Int(ϕk−({β})) = ∅.

As a consequence we get ∂Ω ∩ Int(l(α2)) = ∅, this together with Int(l(α2)) ∩ Ω 6=
∅ (since Ω ∩ β = Γ and α2 ⊂ Γ) implies that Int(l(α2)) ⊂ Ω. Therefore we get

∅ 6= Int(l(α2)) ⊂ Int(ϕk−({β})) ∩ Ω consequently Int(ϕk−({β})) ⊂ Ω and then h−k(β) ⊂
ϕk−({β}) ⊂ Ω. Thus Cl(h−k(β)) joins a and b in Ω. On the other hand, by construction,

the segment η separates a and b in Ω. This implies that h−k(β)∩η 6= ∅. In consequence

h−k(β) ∩ r(α1) 6= ∅ which contradicts Lemma 5.4, see Fig. 5.4. Therefore we deduce

that Γ is an oriented line of M . By the same argument, one gets also that Γ′ is an

oriented line of M .

Therefore we can write Γ =
∏

i∈I αi and Γ′ =
∏

i∈I ′ α
′
i where (αi)i∈I and (α′i)i∈I ′

are two admissible sequences. Now we suppose that l(αi) = l(α′j) = β for every

i ∈ I, j ∈ I ′. Let us fix an edge α ⊂ Γ and an edge α′ ⊂ Γ′. As in the proof of

Proposition 5.4, we can find a connected component Y of A(β) containing r(α) and

r(α′). We join z1 ∈ IntΣ(α) to z2 ∈ IntΣ(α′) by a segment γ (resp. γ̂) which, except

for its endpoints, lies in Int(β) (resp. Int(Y )), and join a to b by a segment γ′ (resp.

γ̂′) which, except for its endpoints, lies in Int(β) (resp. Int(h−1(β))). One can assume

that the two segments γ and γ′ intersect transversely in only one point. Thus we

get two circles γ ∪ γ̂ and γ′ ∪ γ̂′ with a unique point of transverse intersection, a

contradiction. We conclude that ∂Mβ = Γ ∪ Γ′, with Γ =
∏

i∈I αi and Γ′ =
∏

i∈I ′ α
′
i,

where (αi)i∈I and (α′i)i∈I ′ are admissible such that l(Γ) = {β} = r(Γ′).

Case 2. Fix(h) is a circle.
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a

b

α1

Γ

h−k(β)

r(α1)
w1 w2

η

γ

Γ′

Figure 5.4 – h−k(β) ∩ r(α1) 6= ∅ is impossible

Suppose that β ∈ B1 so that B1 \ {β} has exactly two connected components,

namely X2
β and X−2

β . Let α be an edge such that l(α) = β. The brick r(α) is then

contained in the connected component of B1 \ {β} which contains ϕ2({β}), namely

X2
β. Then α is included in ∂MX

2
β. Similarly we also get that if r(α) = β then

α ⊂ ∂MX
−2
β .

As an easy consequence of Lemma 5.4, we also have the following proposition.

Proposition 5.8. No vertex σ ∈ V is the initial vertex or the final vertex of three

edges. Consequently any vertex σ ∈ V is the initial vertex or the final vertex of a

single brick.

Proof. Because D is filled, each vertex σ is adjacent to three distinct edges. Suppose

that σ is initial of three edges α1, α2 and α3 indexed so that

r(α1) = l(α2) = β1, r(α2) = l(α3) = β2, r(α3) = l(α1) = β3.

Thus we deduce immediately that

β2 ∈ ϕ({β1}) ∪ ϕ2({β1}), β3 ∈ ϕ({β2}) ∪ ϕ2({β2}), β1 ∈ ϕ({β3}) ∪ ϕ2({β3}).

It follows that β1 ∈
⋃
n>1 ϕ

n({β1}). This contradicts Lemma 5.4.
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5.3 Construction of the foliation

5.3.1 Covering the skeleton by Brouwer manifolds

Recall that D = (V,E,B) is a maximal brick decomposition of M . Here we con-

struct a set L of Brouwer manifolds whose union is equal to Σ(D). It follows from

Lemma 5.4 that the relation 60 defined on B by

β 60 β
′ iff β′ ∈

⋃
n>0

ϕn({β})

is antisymmetric. Clearly this relation 60 is also reflexive and transitive hence it is a

(partial) order on B. It is a classical consequence of the Zorn Lemma that any order

on a given set can be extended to a total order hence we may consider a total order

6 on B extending 60. Such an order 6 is introduced here as a way to get easily the

additional property that any two Brouwer manifolds in the set L have no transverse

intersection. The idea of considering a total order extending the natural dynamical

order was already used by Le Calvez to simplify some of the proofs of his foliated

versions of the Brouwer plane translation theorem (see [LC06a] or [LC05][Section 3]).

We begin with the following simple result.

Proposition 5.9. For any Brouwer manifold Γ ⊂ Σ one has the following proper-

ties.

1) The two sets R(Γ) and L(Γ) are unions of bricks and do not have any common

brick;

2) r(α) ⊂ R(Γ) and l(α) ⊂ L(Γ) for every edge α ⊂ Γ; in other words l(Γ) ⊂ L(Γ)

and r(Γ) ⊂ R(Γ).

Proof. The first property is a consequence of Items (ii)-(iii) in Proposition 3.1. Thus

R(Γ) and L(Γ) can be seen as two disjoint subsets of B. Consider now an edge α ⊂ Γ.

Then α is adjacent to two bricks β1, β2 and, according to Item (ii) of Proposition

3.1, one can assume β1 ∈ R(Γ) and β2 ∈ L(Γ). Since h(R(Γ)) ⊂ Int(R(Γ)) (Item

(iv) of Proposition 3.1) we also have ϕ({β1})∪ϕ2({β1}) ⊂ ϕ(R(Γ))∪ϕ2(R(Γ)) ⊂ R(Γ).

Consequently β2 6∈ ϕ({β1})∪ϕ2({β1}) and then β1 ∈ ϕ({β2})∪ϕ2({β2}). The definition
of the orientation on the skeleton Σ gives β1 = r(α) and β2 = l(α).

Proposition 5.10. For any α ∈ E there exists a Brouwer manifold Γ(α) such that

α ⊂ Γ(α) ⊂ Σ(D). Moreover Γ(α) and Γ(α′) have no transverse intersection for

every α, α′ ∈ E.

Proof. The proof is divided into two claims.

Claim 1. For any α ∈ E there exists a Brouwer manifold Γ(α) such that α ⊂ Γ(α) ⊂
Σ(D).
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Proof. Given α ∈ E, we define β = r(α) and A (β) = {β′ ∈ B | β 6 β′}. It is easily seen

that A (β) is an attractor containing {β} ∪ϕ({β}) and moreover l(α) 6∈ A (β) because

β ∈ ϕ({l(α)}) ∪ ϕ2({l(α)}). Recall from Section 2.2 that A (β) is a closed subset of

M and is a surface with boundary. Of course the same holds true for any connected

component A∗ of A (β), so that a connected component Γ∗ of ∂MA∗ is either a circle

or a line of M ; observe that Γ∗ is then also a connected component of ∂MA (β). We

have furthermore hn(A (β)) ⊂ Int(A (β)) for every positive integer n which implies

hn(Γ∗) ∩ Γ∗ = ∅ as well as h−n(Γ∗) ∩A (β) = h−n(Γ∗ ∩ hn(A (β))) = ∅.
Denote by A0 and A1 the connected components of A (β) such that β ∈ A0 and

ϕ({β}) ⊂ A1. Since α = l(α) ∩ β we have α ⊂ ∂MA0 and we define Γ1 to be the

connected component of ∂MA0 containing α.

The set ϕ(A0) is connected because of the connectedness of A0 and contains

ϕ({β}). This together with ϕ(A0) ⊂ ϕ(A (β)) ⊂ A (β) implies ϕ(A0) ⊂ A1. According

to Propositions 5.4-5.7 there exists an edge α′ ⊂ ∂Mβ such that l(α′) = β and we

consider β′ = r(α′). Then one has β′ ∈ ϕi({β}) for some i ∈ {1, 2}. If i = 2 (resp.

i = 1) then β ∪ ϕ2({β}) (resp. β ∪ ϕ({β}) ∪ ϕ2({β})) is connected. Since these two

sets are contained in A (β) we get ϕ2({β}) ⊂ A0. Furthermore ϕ(A1) is connected,

contains ϕ2({β}) and satisfies ϕ(A1) ⊂ ϕ(A (β)) ⊂ A (β) so we deduce ϕ(A1) ⊂ A0.

As a consequence one has ϕ2(A0) ⊂ A0 and then h2(A0) ⊂ Int(A0).

Case 1: Γ1 is a circle in M .

We denote Γ = Γ1 and we shall show that Γ is a Brouwer manifold of type 1. We

know from the Jordan curve theorem that S2 \ Γ has exactly two connected compo-

nents W,W ′ and moreover ∂W = ∂W ′ = Γ. One of these two connected components,

say W , contains the connected set Int(A0) so that h2(Γ) ⊂ h2(A0) ⊂ Int(A0) ⊂ W.

We define R0 to be the connected component of B \A (β) containing l(α). We have

Int(l(α)) ⊂ Int(R0) ∩W ′ and also Int(R0) ∩ ∂W ′ = Int(R0) ∩ Γ ⊂ Int(R0) ∩ A (β) = ∅
because R0 and A (β) are disjoint in B, which implies that the connected set Int(R0)

is contained in W ′. We know that l(α) ∈ ϕi−({β}) for some i ∈ {1, 2}. If i = 1 (resp.

i = 2) then ϕ−({β} ∪ ϕ−({β})) = ϕ−({β}) ∪ ϕ2
−({β}) (resp. ϕ2

−({β})) is a connected

subset of B containing l(α). Since ϕ−({β}) ∪ ϕ2
−({β}) ⊂ B \ A (β) we get anyway

ϕ2
−({β}) ⊂ R0 and consequently h−2(α) ⊂ h−2(β) ⊂ Int(R0) ⊂ W ′. This together with

h−2(Γ) ∩ ∂W ′ = h−2(Γ) ∩ Γ = h−2(Γ ∩ h2(Γ)) = ∅ implies h−2(Γ) ⊂ W ′.

Therefore the set Γ separates h2(Γ) and h−2(Γ) in S2 and we can construct an

embedding ϕ : R2 \ {(0, 0)} → M showing that Γ is a Brouwer manifold of type 1 as

in [Bon04]. The arguments are repeated here only for completeness. Let us consider

the disc D = Cl(W ) = Γ ∪ W . Because h2(Γ) ⊂ W we have either h2(D) ⊂ W or

h2(S2 \W ) ⊂ W and the latter is actually not possible because h−2(∂W ) = h−2(Γ) ⊂
S2 \W . According to the Brouwer fixed point Theorem, h2 possesses a fixed point

z ∈ W and this point is also fixed point of h since h has no 2-periodic point. In

particular we have h(W ) ∩W 6= ∅. We now deduce from h(Γ) ∩ Γ = ∅ that h(Γ) ⊂ W .
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Otherwise we would have h(Γ) ⊂ W ′ and consequently

W ∩ ∂h(W ) = W ∩ h(Γ) = ∅,

so W ⊂ h(W ) ⊂ h2(W ) which contradicts h2(D) ⊂ W . We get similarly h−1(Γ) ⊂ W ′

replacing h,W with h−1,W ′. Hence one has

∂W ∩ h(W ) = Γ ∩ h(W ) = h(h−1(Γ) ∩W ) ⊂ h(W ′ ∩W ) = ∅.

This together with W ∩ h(W ) 6= ∅ implies that h(W ) ⊂ W and even better h(D) ⊂ W

because h(Γ) ⊂ W . Defining Ω = W \h(D), we clearly have Cl(Ω) = Γ∪Ω∪h(Γ) ⊂M .

Let ϕ : S1 → Γ be a homeomorphism. It can be extended to a homeomorphism

ϕ : S1 ∪H(S1)→ Γ ∪ h(Γ)

by defining ϕ|H(S1) = h ◦ ϕ ◦H−1|H(S1). Using suitably the Schoenflies Theorem, one

can extend again ϕ to a homeomorphism from the annulus A = {z ∈ C | 1/2 6 |z| 6 1}
onto Cl(Ω). Finally, for any point z ∈ R2 \ {(0, 0)}, there exists a unique k ∈ Z such

that z ∈ Hk(A \ ∂−A), where ∂−A = {z ∈ C | |z| = 1/2}, and we define

ϕ(z) = hk ◦ ϕ ◦H−k(z) ∈ hk(Cl(Ω)).

One checks that ϕ : O = R2 \ {(0, 0)} → M is a well-defined one-to-one continuous

map such that h◦ϕ = ϕ◦H|O and ϕ(O) =
⋃
k∈Z h

k(Cl(Ω)). This proves that Γ = ϕ(S1)

is a Brouwer manifold of type 1.

Case 2:

- Fix(h) is totally disconnected;

- Γ1 is a line of M such that Cl(Γ1) \ Γ1 = {a} ⊂ Fix(h);

- the circle Cl(Γ1) = Γ1 ∪ {a} separates h−1(Γ1) and h(Γ1) in S2.

Here again the construction of the embedding ϕ is not difficult and is already

present in [Bon04]. We define Γ = Γ1. Let V+ be the connected component of

S2 \ Cl(Γ) containing h(Γ). Since h(Γ) ⊂ ∂h(V+) ∩ V+ we have h(V+) ∩ V+ 6= ∅ and in

fact h(V+ ∪ Γ) ⊂ V+ because

h(V+) ∩ ∂V+ = h(V+) ∩ Cl(Γ) = h(V+) ∩ Γ = h(V+ ∩ h−1(Γ)) = ∅.

We conclude as follows. Define Ω = V+ \ h(Cl(V+)). Obviously Cl(Ω) \ {a} = Γ ∪ Ω ∪
h(Γ) ⊂M . Using the Schoenflies Theorem, one can construct a homeomorphism

ϕ : {(x, y) ∈ R2 | 0 6 x 6 1} ∪ {∞} → Cl(Ω)

such that ϕ(∞) = a, ϕ({0} ×R) = Γ and ∀y ∈ R

ϕ(1, y) = h ◦ ϕ ◦G−1(1, y) ∈ h(Γ).
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Now if k 6 x < k + 1 (k ∈ Z) we let

ϕ(x, y) = hk ◦ ϕ ◦G−k(x, y) ∈ hk(Γ ∪ Ω).

The map ϕ : O = R2 → M defined in this way is a proper topological embedding,

with image ϕ(O) =
⋃
k∈Z h

k(Γ ∪ Ω), such that h ◦ ϕ = ϕ ◦ G|O. This proves that

Γ = ϕ({0} ×R) is a Brouwer manifold of type 2.

Case 3:

- Fix(h) is totally disconnected;

- Γ1 is a line of M such that Cl(Γ1) \ Γ1 = {a} ⊂ Fix(h);

- the circle Cl(Γ1) = Γ1 ∪ {a} does not separate h−1(Γ1) and h(Γ1) in S2.

We name U, V the two connected components of S2 \ Cl(Γ1). They satisfy ∂U =

∂V = Cl(Γ1) and one of them, say U , contains the connected set Int(A0). One

proves similarly as in Case 1 that the circle Cl(Γ1) separates h−2(Γ1) and h2(Γ1)

in S2 and afterwards that h2(U ∪ Γ1) ⊂ U . Let us define V+ = U \ h2(Cl(U)) which

is homeomorphic to (−1, 1) × R and satisfies ∂V+ = Γ1 ∪ h2(Γ1) ∪ {a}. One also has

V+ ∩ h2(V+) ⊂ V+ ∩ h2(U) = ∅ so V+ ⊂ S2 \ Fix(h2) = S2 \ Fix(h) = M .

a

Γ1

h±1(Γ1)

h−1(V+)

h∓1(Γ1)

Γ2

Figure 5.5 – The construction of the line Γ2

Take two points x− ∈ h−1(Γ1) and x+ ∈ h(Γ1). Since h(Γ1) ⊂ h(A0) ⊂ Int(A1)

and h−1(Γ1) ∩ A1 ⊂ h−1(Γ1) ∩ A (β) = ∅ we can choose two segments γ−, γ+ having

respectively x−, x+ as an endpoint and so small that

γ− \{x−} ⊂ h−1(V+)\A1 and γ+ \{x+} ⊂ h−1(V+)∩ Int(A1) = Inth−1(V+)(h
−1(V+)∩A1).

Therefore ∂h−1(V+)(h
−1(V+)∩A1) = h−1(V+)∩ ∂MA1 separates γ− \ {x−} and γ+ \ {x+}

in h−1(V+). Moreover h−1(V+) is homeomorphic to R2 and h−1(V+)∩∂MA1 is closed in

h−1(V+) so, according for example to [New61, Theorem 14.3], there exists a connected

component Γ2 of h−1(V+)∩∂MA1 separating γ− \{x−} and γ+ \{x+} in h−1(V+). Note

that Γ2 cannot be compact because the images of γ±\{x±} under any homeomorphism

from h−1(V+) onto R2 are unbounded. Furthermore Γ2 is also a connected component

of ∂MA1 because h±1(Γ1) ∩ ∂MA1 = ∅ hence Γ2 is a line of M (as a remark, such a

connected component of ∂MA1 separating γ− \ {x−} and γ+ \ {x+} is unique, due
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to the connectedness of A1). Since V+ ⊂ M one also gets that Cl(Γ2) = Γ2 ∪ {a} is
a circle. One checks using the Schoenflies theorem that this circle Cl(Γ2) separates

h−1(Γ1) and h(Γ1) in S2, which shows that Γ1 and Γ2 are two distinct components of

∂MA (β) (Fig. 5.5). We now prove that Γ = Γ1 t Γ2 is a Brouwer manifold of type 3.

We denote in the following

P+ = {(x, y) ∈ R2 | y > 0}, P− = {(x, y) ∈ R2 | y < 0},

δ1 = {(0, y) ∈ R2 | y > 0}, δ2 = {(0, y) ∈ R2 | y < 0},
and τ is the translation of the plane defined by τ(x, y) = (x+ 1, y). Consider the sets

d1 = {(x, 1/x) ∈ R2 | x > 0}, d2 = {(x,−1/x) ∈ R2 | x > 0} and write Ω for the domain

between d1 and τ2(d1) in the upper half-plane P+. Recall that G(x, y) = (x + 1,−y)

so that G(d2) = τ(d1) ⊂ Ω. Using the Schoenflies Theorem one can construct a

homeomorphism

φ : Cl(Ω) = ClR2(Ω) ∪ {∞} → Cl(V+)

such that φ(∞) = a, φ(d1) = Γ1, φ(G(d2)) = h(Γ2) ⊂ V+ and φ ◦G2|d1
= h2 ◦ φ|d1

. Then

we define the map φ on the half-plane P+ by observing that for every z ∈ P+ there

exists a unique even integer 2k ∈ Z such that z ∈ G2k(d1 ∪ Ω), and then defining

φ(z) = h2k ◦ φ ◦G−2k(z) ∈ h2k(Γ1 ∪ V+).

In particular we have at this stage

h2 ◦ φ = φ ◦G2|P+
.

Next we extend φ on P− by

∀y < 0 φ(x, y) = h ◦ φ ◦G−1(x, y) ∈
⋃
k∈Z

h2k+1(Γ1 ∪ V+).

It is easily seen that in this way we have obtained a continuous map

φ : O = {(x, y) ∈ R2 | y 6= 0} →M

satisfying h ◦ φ = φ ◦ G|O and φ(di) = Γi for i ∈ {1, 2}. Next we consider the homeo-

morphism ψ : O → O given by the formula

ψ(x, y) =

(
x+

1

|y| , y
)
.

We clearly have ψ(δi) = di for every i ∈ {1, 2} and G ◦ψ = ψ ◦G|O. Defining ϕ = φ ◦ψ,
we get h ◦ ϕ = ϕ ◦G|O with moreover ϕ(δ1 t δ2) = φ(d1) t φ(d1) = Γ and

Cl
(
ϕ(({x} ×R) ∩ O)

)
\ ϕ
(
({x} ×R) ∩ O

)
= {a} ⊂ Fix(h)

for every x ∈ R, so that ϕ(({x} × R) ∩ O) is a closed subset of M . We conclude

by checking that ϕ is a one-to-one map. Since the circle Cl(Γ1) does not separates

h−1(Γ1) and h(Γ1) in the sphere, we have the following two possibilities.
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i) h−1(Γ1) ∪ h(Γ1) ⊂ V . Then h(Γ1) ⊂ V implies either h(V ) ⊂ V or h(U) ⊂ V and

the first inclusion is actually not possible since it would give V ⊂ h−1(V ) which

contradicts h−1(Γ1) ⊂ V . Hence we get V+ ∩ h(V+) ⊂ U ∩ h(U) ⊂ U ∩ V = ∅.
ii) h−1(Γ1) ∪ h(Γ1) ⊂ U . Switching the roles of U and V in the above argument,

one gets h(V ) ⊂ U . Since V+ = U \ h2(Cl(U)) = h2(V ) \ Cl(V ) one deduces

h−2(V+) ∩ h−1(V+) ⊂ V ∩ h(V ) ⊂ V ∩ U = ∅.
Thus one obtains anyway V+ ∩ h(V+) = ∅. According to [Bon04, Lemma 5.2], this

together with V+∩h2(V+) = ∅ implies that hk(V+)∩hl(V+) = ∅ for any k 6= l. Moreover

one has hk(Γ1) ∩ hl(Γ1) = ∅ for any k 6= l hence the sets hk(Γ1 ∪ V+), where k ∈ Z, are
pairwise disjoint. This proves that φ is a one-to-one map and this also holds true for

ϕ = φ ◦ ψ.
Case 4:

- Fix(h) is totally disconnected;

- Γ1 is a line of M such that Cl(Γ1) \ Γ1 = {a, b} ⊂ Fix(h), with a 6= b.

Observe that C = Γ1 ∪ h2(Γ1) ∪ {a, b} is a circle. The two connected components

of S2 \ C are denoted by U, V with for instance h−2(Γ1) ⊂ U . Up to conjugagy in S2,

one may assume without loss of generality that Cl(V ) is the Euclidean closed unit

disc in R2 with also a = (0,−1), b = (0, 1), Γ1 = ∂V ∩
(
(−∞, 0) × R

)
and h2(Γ1) =

∂V ∩
(
(0,+∞) × R

)
. Thus V is located on the left of h2(Γ1) oriented from a to b.

Since a, b are fixed points of h and since h−2 preserves the orientation, the set h−2(V )

is located on the left of Γ1 oriented from a to b and then h−2(V ) ∩ V = ∅ (see Fig.

5.6). Hence one gets h2(V ) ∩ V = ∅.

a

b

Γ1 h2(Γ1)h−2(Γ1) V

h−2(V )

Figure 5.6 – h−2(V ) ∩ V = ∅

Since h2(Γ1) ⊂ h2(A0) ⊂ Int(A0) and since A0 is arcwise connected, there exists a

segment γ ⊂ A0 from a point of Γ1 to a point of h2(Γ1) and which intersects Γ1∪h2(Γ1)

only at these endpoints. Then we have either γ ⊂ Cl(U) or γ ⊂ Cl(V ). If γ ⊂ Cl(U)

then γ∩h−2(Γ1) 6= ∅ because γ separates a and b in Cl(U) while Cl(h−2(Γ1)) = h−2(Γ1)∪
{a, b} joins a and b in Cl(U). This is not possible since γ∩h−2(Γ1) ⊂ A (β)∩h−2(Γ1) = ∅
so we obtain γ ⊂ Cl(V ). Next we show that h(V ) ∩ V = ∅ (the following arguments



52 CHAPTER 5. PROOF OF THEOREM 4.1

already appear in [Bon04]). Arguing by contradiction, we suppose that h(V )∩V 6= ∅.
Remark that the situations h±1(V ) ⊂ V are not possible because h2(V )∩V = ∅ so one

has ∅ 6= h(V )∩C = h(V )∩ (Γ1 ∪ h2(Γ1)) as well as ∅ 6= V ∩ h(C) = V ∩ (h(Γ1)∪ h3(Γ1)).

Since hk(Γ1)∩hl(Γ1) 6= ∅ for k 6= l each set Γ1 and h2(Γ1) is either disjoint from h(V ) or

entirely contained in h(V ). For the same reason, h(Γ1) and h3(Γ1) are either disjoint

from V or lie entirely in V . If Γ1 ⊂ h(V ) then h−1(Cl(Γ1)) is a connected set joining

a and b in Cl(V ) and then, since γ separates a and b in Cl(V ), one obtains

∅ 6= h−1(Γ1)∩γ = h−1(Γ1∩h(γ)) ⊂ h−1
(
(∂MA0∩h(A0)

)
⊂ h−1

(
∂MA (β)∩Int(A (β))

)
= ∅

which is absurd. Thus one gets Γ1∩h(V ) = ∅ and h2(Γ1) ⊂ h(V ). The latter inclusion

also gives h3(Γ1) ∩ V = ∅ since otherwise h3(Γ1) ⊂ V ∩ h2(V ) = ∅ and it follows that

h(Γ1) ⊂ V , i.e., h2(Γ1) ⊂ h(V ). Observe that we cannot have Cl(V ) ∪ h(Cl(V )) = S2

because this would imply Γ1 ⊂ h(V ) and then h(Γ1) ⊂ h2(V )∩V = ∅. Thus the whole

set Cl(V ) ∪ h(Cl(V )) is contained in the domain of a single chart of S2. In such a

chart the situation is as in Fig. 5.7 and, a and b being fixed points, we obtain a

contradiction with the fact that h reverses the orientation. This contradiction tells

us that h(V ) ∩ V = ∅.

Γ1 h(Γ1)

h2(Γ1)

h3(Γ1)

a

b

V
h(V )

Figure 5.7 – The situation h(Γ1) ⊂ V is not possible

It follows from h−1(V ) ∩ V = ∅ that h−1(ClM (V )) = h−1(V ) ∪ h−1(Γ1) ∪ h(Γ1) ⊂ U .

Since h−1(Γ1) ∩ A1 = ∅ and h(Γ1) ⊂ Int(A1) and V ⊂ M , one can find a (unique)

connected component Γ2 of ∂MA1 contained in h−1(V ) which is a line of M such that

Cl(Γ2) \Γ2 = {a, b}. The argument is similar to the one of Case 3 and we omit details

here. We end by showing that Γ = Γ1 t Γ2 is a Brouwer manifold of type 3. We keep

the notation P+, P−, δ1, δ2 as in Case 3 and we consider the homeomorphism G1 of

O = {(x, y) ∈ R2 | y 6= 0} defined by G1(x, y) = (x+ |y|,−y).
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Remark that ψ : O → O defined by ψ(x, y) = (x|y|, y) is a homeomorphism of O
such that G1 ◦ ψ = ψ ◦G|O with furthermore ψ|δi = Id|δi for i ∈ {1, 2} and

∀x ∈ R Cl
(
ψ({x} ×R) ∩ O

)
\
(
ψ({x} ×R) ∩ O

)
= {(0, 0),∞}.

Denote by Ω the domain in the half-plane P+ between δ1 and G2
1(δ1) = {(2y, y) | y > 0}.

Clearly G1(δ2) ⊂ Ω and using again the Schoenflies Theorem, one can construct a

homeomorphism

φ : Cl(Ω)→ Cl(V )

such that φ((0, 0)) = a, φ(∞) = b, φ(δ1) = Γ1, φ(G1(δ2)) = h(Γ2) and φ ◦ G2
1|δ1 =

h2 ◦ φ|δ1. For every point z ∈ P+ there exists a unique even integer 2k ∈ Z such that

z ∈ G2k
1 (δ1 ∪ Ω), and we set

φ(z) = h2k ◦ φ ◦G−2k
1 (z) ∈ h2k(Γ1 ∪ V ).

We have in this way h2 ◦ φ = φ ◦G2
1|P+

. Extending φ on P− by

∀y < 0 φ(x, y) = h ◦ φ ◦G−1
1 (x, y) ∈

⋃
k∈Z

h2k+1(Γ1 ∪ V ),

we obtain a continuous map φ defined on O and such that h ◦ φ = φ ◦ G1|O. Using

h(V )∩V = ∅ = h2(V )∩V and [Bon04, Lemma 5.2] we get that hk(Γ1∪V )∩hl(Γ1∪V ) = ∅
for k 6= l which ensures that φ is a one-to-one map. Next we define ϕ = φ◦ψ : O →M .

We have h◦ϕ = ϕ◦G|O and ϕ is a one-to-one map because so is φ. Moreover one has

∀x ∈ R Cl(ϕ({x} ×R) ∩ O) \ (ϕ({x} ×R) ∩ O) = {a, b} ⊂ Fix(h).

Hence ϕ({x} × R) ∩ O) is a closed subset of M for every x ∈ R. By construction,

one has Γ1 = φ(δ1) and φ ◦ G1|O = h ◦ φ also gives Γ2 = φ(δ2), which shows that

Γ = φ(δ1 t δ2) is a Brouwer manifold of h of type 3.

Case 5: Fix(h) is a circle.

Recall that M = M1 tM2. The planes M1 and M2 are compactified by adding

one point at infinity ∞′. Repeating the argument in Case 3 with a replaced by ∞′,
we can find a line Γ2 of M such that Γ = Γ1 t Γ2 is a Brouwer manifold of h of type

3.

Therefore for each edge α ∈ E, we have constructed a Brouwer manifold Γ =

Γ(α) ⊂ Σ(D) such that α ⊂ Γ(α).

Claim 2. For every α, α′ ∈ E, the two Brouwer manifolds Γ(α),Γ(α′) have no

transverse intersection.

Proof. We keep the notations A (r(α)),A0 and A1 for the brick r(α) as in the proof of

Claim 1, and we define analogously the notations A (r(α′)),A ′0 and A ′1 for the brick

r(α′). For simplicity, we write Γ = Γ(α) and Γ′ = Γ(α′). Suppose without loss of

generality that r(α) 6 r(α′) and then one has A (r(α′)) ⊂ A (r(α)).
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We now prove that A ′k does not meet both R(Γ) and L(Γ), considered as subsets of

B, for every k ∈ {0, 1}. Otherwise there exists an edge e ⊂ Γ such that l(e) ∈ A ′k∩L(Γ)

because of the connectedness of A ′k. Moreover it is clear that l(e) 6∈ A (r(α)). This

gives a contradiction because A ′k ⊂ A (r(α′)) ⊂ A (r(α)).

Next we prove that A ′0 ∪A ′1 is included either in R(Γ) or in L(Γ), which completes

the proof of Claim 2. Otherwise one supposes that A ′k ⊂ R(Γ) and A ′l ⊂ L(Γ) where

{k, l} = {0, 1}. It follows that

∅ 6= h(A ′k) ⊂ h(R(Γ)) ∩A ′l ⊂ Int(R(Γ)) ∩ L(Γ)

which contradicts Proposition 3.1.

The proof of Proposition 5.10 is now completed.

5.3.2 Construction of an oriented topological quasi-foliation

We first endow the set LΣ of all the Brouwer manifolds lying in the skeleton Σ with

a natural topology. Let us denote E = (E t {∞})Z/δ 1 where δ : (xj)j∈Z 7→ (xj+1)j∈Z

is the shift map and M = E 2/ ∼ where ∼ is the equivalence relation defined by

(a, b) ∼ (b, a). Thus M is nothing but a convenient way to represent the set of all the

subsets of E having cardinality one or two. We now define a map Ψ : LΣ → M as

follows:

- If Γ ⊂ Σ is a Brouwer manifold of type 1 then it is a circle and, according to

Proposition 5.9, it may be written Γ =
∏

i∈I ei where I is a nonempty finite Z-interval
and (ei)i∈I is an admissible sequence of edges. Then we consider the periodic sequence

X = (xj)j∈Z ∈ EZ defined by xj = ei iff j = i mod ](I) where ](I) is the cardinality of

I. Note that the projection X of X in E depends only on Γ and not on the choice of

I hence we may define Ψ(Γ) as the projection in M of the pair (X,X) ∈ E 2.

- If Γ ⊂ Σ is a Brouwer manifold of type 2 then it is a line of M and, using

again Proposition 5.9, one has Γ =
∏

i∈I ei for some nonempty Z-interval I and

some admissible sequence of edges. Here I may be unbounded from above or/and

unbounded from below and we define a sequence X = (xj)j∈Z ∈ (Et{∞})Z by xj = ej

if j ∈ I and xj =∞ if j ∈ Z \ I. Here again the projection X of X in E depends only

on Γ and we define Ψ(Γ) exactly as for a Brouwer manifold of type 1.

- If finally Γ ⊂ Σ is a Brouwer manifold of type 3 then its two connected com-

ponents Γ1,Γ2 are two lines of M . Proposition 5.9 ensures that Γ1 =
∏

i∈I1 ei and

Γ2 =
∏

i∈I2 e
′
i where I1, I2 are nonempty Z-intervals and where (ei)i∈I1, (e′i)i∈I2 are two

admissible sequences of edges. Then we consider the two sequences X1 = (xj)j∈Z and

X2 = (x′j)j∈Z in (E t {∞})Z defined by

xj = ej if j ∈ I1 and xj =∞ if j ∈ Z \ I1

1. The symbol ∞ here is not related to the symbol ∞ used for the one-point compactification S2 =
R2 ∪ {∞}.
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x′j = e′j if j ∈ I2 and x′j =∞ if j ∈ Z \ I2.

Since the projection Xi of Xi in E does not depend on the choice of Ii (i ∈ {1, 2}) we
can define Ψ(Γ) as the projection in M of the pair (X1, X2) ∈ E 2.

One checks that Ψ : LΣ → M so constructed is a one-to-one map hence LΣ

may be identified with its image Ψ(LΣ) ⊂ M . Now E t {∞} is equipped with the

discrete topology and (E t{∞})Z with the product topology. Then E , E 2 and M are

successively endowed with their natural (quotient and product) topologies and LΣ is

topologized as a subset of M . This topology on M is denoted by Top and Top|X is

the topology it induces on a set X ⊂M .

Proposition 5.10 provides a finite or countable set L = {Γ(α)}α∈E ⊂ LΣ where

α ⊂ Γ(α) for every α ∈ E. We define LΣ(α) to be the set of all Brouwer manifolds of

LΣ containing α. We write L∗ = ClLΣ
(L) and L∗(α) = L∗ ∩ LΣ(α). As an important

remark, observe that the subset of LΣ×LΣ containing the pairs of Brouwer manifolds

having no transverse intersection is closed in LΣ×LΣ. Consequently any two Brouwer

manifolds of L∗ have no transverse intersection.

Proposition 5.11. For every α ∈ E, the set L∗(α) endowed with the topology

Top|L∗(α) is compact.

Proof. It is splitted into the following two claims.

Claim 1. For any α ∈ E, there exist finitely many edges α1, ..., αn ∈ E \ {α} such

that for every Brouwer manifold Γ ∈ L∗(α) of type 3, the connected component of Γ

which does not contain α contains αi for some 1 6 i 6 n.

Proof. Let β = r(α). We know that β = l(α′) for some α′ ∈ E (Propositions 5.4-

5.7) so either {β} ∪ ϕ({β}) ∪ ϕ2({β}) or {β} ∪ ϕ2({β}) is connected. Hence we can

join a point x ∈ α ⊂ β and its image h2(x) ∈ h2(β) ⊂ ϕ2({β}) by a segment γ ⊂
{β}∪ϕ({β})∪ϕ2({β}). The compact set h−1(γ) ⊂M meets only finitely many edges,

which are denoted by (αi)16i6n. Suppose now that Γ = Γ1 t Γ2 ∈ L∗(α) is a Brouwer

manifold of type 3 with for instance α ⊂ Γ1. According to Item 2) of Proposition 5.9

one has β ∈ R(Γ) so, using Proposition 3.1 (iii), one also gets γ ⊂ R(Γ). It follows

from the description of R(Γ) and L(Γ) given in the proof of Proposition 3.1 that

γ ∩ h(Γ2) 6= ∅ or, equivalently, that h−1(γ) ∩ Γ2 6= ∅. Hence Γ2 contains αi for some

1 6 i 6 n. This completes the proof of the claim.

Claim 2. For any α′ ∈ E, denote by S(α′) the set of all the sequences (xi)i∈Z ∈
(E ∪ {∞})Z satisfying x0 = α′ and obtained from a connected Brouwer manifold or

from a connected component of a Brouwer manifold of type 3 as explained at the

beginning of this Section 5.3.2. Then S(α′) is a compact subset of (E ∪ {∞})Z.
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Proof. For every e ∈ E, there exist at most two edges whose initial vertices are v+(e)

and at most two edges whose final vertices are v−(e) hence a set S(α′) may be written

as a (countable) product of finite subsets of E ∪ {∞}.

According to Claim 1, one has

L∗(α) =
⋃

06i6n

Li

where L0 is the set of all the connected Brouwer manifolds in L∗(α) and, for 1 6 i 6 n,

Li is the set of all the Brouwer manifolds Γ of type 3 in L∗(α) such that a connected

component of Γ contains α and the other one contains αi. Following Claim 2, each

set Li is the image by a continuous map of a compact subset of
(
(E ∪ {∞})Z

)2
hence

it is compact and so is L∗(α).

For two Brouwer manifolds Γ and Γ′ of h, we write Γ � Γ′ iff R(Γ) ⊂ R(Γ′). One

checks using Proposition 3.1 that � defines an order on the set of all the Brouwer

manifolds of h. Firstly we will be interested with the restriction of � to L∗ and to

the sets L∗(α), α ∈ E. One defines naturally the “open intervals” in these ordered

sets: given Γ and Γ′ in L∗ one lets

(Γ,Γ′) = {Γ′′ ∈ L∗ | Γ ≺ Γ′′ ≺ Γ′}, (←,Γ) = {Γ′′ ∈ L∗ | Γ′′ ≺ Γ}

and (Γ,→) = {Γ′′ ∈ L∗ | Γ ≺ Γ′′}. If furthermore {Γ,Γ′} ⊂ L∗(α) for some α ∈ E then

one also defines (Γ,Γ′)L∗(α) = (Γ,Γ′) ∩ L∗(α) and likewise (←,Γ′)L∗(α) and (Γ,→)L∗(α).

Thought � is not a total order one has the following result.

Lemma 5.9. Let α ∈ E. The restriction of the order � to L∗(α) is total.

Proof. Let Γ,Γ′ be two Brouwer manifolds in L∗(α). Observe that the two sets R(Γ)∩
R(Γ′) and L(Γ)∩L(Γ′) are nonempty because they contain respectively r(α) and l(α)

(Proposition 5.9). Since Γ and Γ′ have no intersection transverse, one of the following

two inclusions Γ ⊂ R(Γ′) or Γ ⊂ L(Γ′) is true.

Suppose first that Γ ⊂ R(Γ′). According to Proposition 3.3, one has either R(Γ) ⊂
R(Γ′) or L(Γ) ⊂ R(Γ′). The second inclusion implies l(α) ∈ L(Γ)∩L(Γ′) ⊂ R(Γ′)∩L(Γ′)

which contradicts Item (i) of Proposition 3.1 and the first one gives Γ � Γ′.

Suppose now that Γ ⊂ L(Γ′). Changing the roles of “the right side” and “the left

side” in the above argument, one gets L(Γ) ⊂ L(Γ′) and then R(Γ′) ⊂ R(Γ) which

shows Γ′ � Γ.

We denote by Top�(L∗(α)) the order topology on L∗(α). The result proved in the

next part is the following.
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Proposition 5.12. For every edge α ∈ E, there exists an increasing homeomor-

phism from the ordered topological space (L∗(α),Top|L∗(α),�) onto a compact subset

of R. In particular (L∗(α),�) possesses a smallest and a largest element denoted

respectively by Γ−α and Γ+
α .

We begin with the following lemma.

Lemma 5.10. Let α ∈ E. The topology Top�(L∗(α)) is smaller than the topology

Top|L∗(α).

Proof. It is enough to show that the open intervals of the ordered set (L∗(α),�)

belong to the topology Top|L∗(α). We write a proof only for a nonempty interval

(Γ,Γ′)L∗(α), similar arguments also hold for intervals (←,Γ)L∗(α) and (Γ,→)L∗(α). Take

Γ′′ ∈ (Γ,Γ′)L∗(α). Since Γ ≺ Γ′′, there exists an edge α1 ⊂ Γ′′ such that IntΣ(α1) ⊂
Int(L(Γ)). Likewise Γ′′ ≺ Γ′ implies that there exists an edge α2 ⊂ Γ′′ such that

IntΣ(α2) ⊂ Int(R(Γ′)). Let U = L∗(α)∩LΣ(α1)∩LΣ(α2), which is an open neighborhood

of Γ′′ in L∗(α) since LΣ(αi) is an open subset of LΣ for every i ∈ {1, 2}. For any

Υ ∈ U we have Υ ≺ Γ′ because IntΣ(α2) ⊂ Υ ∩ Int(R(Γ′)) and also Γ ≺ Υ because

IntΣ(α1) ⊂ Υ ∩ Int(L(Γ)). Hence U ⊂ (Γ,Γ′)L∗(α) and consequently (Γ,Γ′)L∗(α) belongs

to Top|L∗(α).

Lemma 5.11. Let α ∈ E. Then L(α) is a dense subset of (L∗(α),Top|L∗(α)).

Proof. Let Γ ∈ L∗(α) = L∗ ∩ LΣ(α). Given a neighborhood N of Γ in L∗(α), we shall

check that N ∩L(α) 6= ∅. One has N = L∗(α)∩N ′ where N ′ is a neighborhood of Γ in

LΣ. Since LΣ(α) is also a neighborhood of Γ in LΣ one can replace N ′ with N ′∩LΣ(α)

and assume without loss of generality that N ′ ⊂ LΣ(α). This gives N ∩L(α) = N ′ ∩L
and the latter set is nonempty because Γ ∈ L∗.

Proof of Proposition 5.12. Since L is at most countable so is L(α). Lemmas 5.10-5.11

tell us that L(α) is a dense subset of (L∗(α),Top�(L∗(α))) so that this topological set

is separable.

If Γ,Γ′ are two Brouwer manifolds in L∗(α) such that Γ ≺ Γ′ and (Γ,Γ′)L∗(α) =

∅ then one says that Γ (resp. Γ′) is the immediate predecessor (resp. immediate

successor) of Γ′ (resp. Γ). We define S to be the set of all the Brouwer manifolds

in L∗(α) which are the immediate successor of some element of L∗(α). For Γ ∈ S

which is the immediate successor of Γ′, one can choose an edge αΓ ⊂ Γ such that

IntΣ(αΓ) ⊂ Int(L(Γ′)). This provides a map χ : S → E, χ(Γ) = αΓ which is one-to-

one. Indeed, suppose that Γ1 ≺ Γ2 in S are such that χ(Γ1) = χ(Γ2). Consider the
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immediate predecessor Γ′2 of Γ2. One has IntΣ(χ(Γ1)) = IntΣ(χ(Γ2)) ⊂ Γ1 ∩ Int(L(Γ′2))

which implies Γ′2 ≺ Γ1 and then Γ′2 ≺ Γ1 ≺ Γ2, a contradiction. Consequently S is at

most countable because so is E. One checks similarly that the set of all the Brouwer

manifolds in L∗(α) which are an immediate predecessor is also at most countable.

Following [Cat00, Lemma 3], the topological space (L∗(α),Top�(L∗(α))) is second

countable and [Cat00, Theorem II] tells us that there exists an order preserving

homeomorphism f from (L∗(α),Top�(L∗(α))) onto a subspace of R. By Lemma 5.10,

f is also a continuous as a map from (L∗(α),Top|L∗(α)) into R. Recall from Proposition

5.11 that the topological space (L∗(α),Top|L∗(α)) is compact therefore one deduces that

f is an increasing homeomorphism from (L∗(α),Top|L∗(α)) onto its image f(L∗(α)) ⊂ R.
By the way, this also proves that the topologies Top|L∗(α) and Top�(L∗(α)) are the

same.

Following Le Calvez ([LC04]), we say that a Brouwer manifold Γ ∈ L∗ is isolated
from the right (resp. from the left) if there is no sequence (Γn)n>0 in L∗ converging
to Γ (for the topology Top|L∗) and satisfying Γ ≺ Γn (resp. Γn ≺ Γ) for every n ∈ N.

Lemma 5.12. Let Γ,Γ′ be two Brouwer manifolds of type 3 having a common

connected component. Suppose moreover that Γ � Γ′. Then one has

h(R(Γ′)) ⊂ Int(R(Γ)) and h−1(L(Γ)) ⊂ Int(L(Γ′)).

Proof. First let us check h(R(Γ′)) ⊂ Int(R(Γ)). Denote by θ the common connected

component of Γ and Γ′. One writes Γ′1 for the other connected component of Γ′, so

that Γ′ = θtΓ′1. Define S ⊂M to be the strip with frontier ∂MS = θth2(θ) such that

S ⊂ R(Γ) ⊂ R(Γ′). Since Γ′ is a Brouwer manifold of type 3 one has h(Γ′1) ⊂ Int(S)

and therefore h(Γ′) = h(θ) ∪ h(Γ′1) ⊂ h(Γ) ∪ h(Γ′1) ⊂ Int(R(Γ)). Since Γ′ is a Brouwer

manifold, its image h(Γ′) is also a Brouwer manifold with R(h(Γ′)) = h(R(Γ′)) and

L(h(Γ′)) = h(L(Γ′)). Then one deduces from Proposition 3.3 that either h(R(Γ′)) ⊂
Int(R(Γ)) or h(L(Γ′)) ⊂ Int(R(Γ)). The second inclusion gives L(Γ) ⊂ h(R(Γ′)). Since

L(Γ′) ⊂ L(Γ) this also implies that

L(Γ′) ⊂ h
(
Int(L(Γ′))

)
∩ h
(
R(Γ′)

)
= h
(
Int(L(Γ′)) ∩R(Γ′)

)
= ∅,

a contradiction which proves the expected inclusion h(R(Γ′)) ⊂ Int(R(Γ)).

Switching the letters R(·) and L(·), the homeomophisms h and h−1, the Brouwer

manifolds Γ and Γ′ one also gets h−1(L(Γ)) ⊂ Int(L(Γ′)).

Proposition 5.13. A Brouwer manifold Γ ∈ L∗ is isolated from the right (resp.

from the left) if and only if there exists α ∈ E such that Γ = Γ+
α (resp. Γ = Γ−α ).

Proof. We only prove the result for Brouwer manifolds isolated from the right, the

case of the Brouwer manifolds isolated from the left being similar. For any α ∈ E,
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the Brouwer manifold Γ+
α is isolated from the right because L∗(α) is a neighborhood

of Γ+
α in L∗. We now prove the converse implication. Consider a Brouwer manifold

Γ ∈ L∗. We write Γ = Γ1 ∪ Γ2 with the convention that Γ1 = Γ2 = Γ if Γ is connected

(i.e., if Γ has type 1 or 2) and Γ1,Γ2 are the two connected components of Γ otherwise.

Claim 1. For i ∈ {1, 2}, if Γi is the union of finitely many edges then Γi is a

connected component of Γ+
α for some edge α ⊂ Γi.

Proof. Because Γi contains finitely many edges, there exists an edge α0 ⊂ Γi such

that there is no edge α ⊂ Γi satisfying Γ+
α ≺ Γ+

α0
. We write

Γi =
∏

l6k6m

αk,

where −∞ < l 6 0 6 m < +∞. We first prove that αk ⊂ Γ+
α0

for every 0 6 k 6 m.

Suppose m > 1 and let us prove that α1 ⊂ Γ+
α0
. Define α to be the edge different

from α0 and α1 and possessing σ = v+(α0) as a vertex. If v+(α) = σ then it is clear

that α1 ⊂ Γ+
α0
. Assume that v−(α) = σ. One has the following two cases.

- If r(α1) = l(α) then also r(α0) = r(α) and one gets α1 ⊂ Γ+
α0

because otherwise

α ⊂ Γ+
α0

and it follows that Γ+
α0
≺ Γ in L∗(α0) which contradicts the maximality

of Γ+
α0

in L∗(α0).

- If l(α1) = r(α) then also l(α0) = l(α) and one gets α1 ⊂ Γ+
α0

because otherwise

α ⊂ Γ+
α0

so Γ+
α1
≺ Γ+

α0
which contradicts the hypothesis on α0.

Assuming inductively α0 ∪ · · · ∪ αk ⊂ Γ+
α0

for some integer k ∈ {1, · · · ,m − 1} the

same arguments as above give αk+1 ⊂ Γ+
α0

and consequently αk ⊂ Γ+
α0

for every

0 6 k 6 m. Similarly one also has αk ⊂ Γ+
α0

for every l 6 k 6 0 hence one concludes

that Γi ⊂ Γ+
α0
.

Claim 2. Let i ∈ {1, 2}. If for every edge α ⊂ Γi the set Γi is not a connected

component of Γ+
α then there exists a sequence (γn)n>0 in L∗ with Γ ≺ γn converging

to a Brouwer manifold γ � Γ such that Γi is a connected component of γ.

Proof. It is similar to the one of [LC04, Lemma 3.5]. Claim 1 implies that Γi contains

infinitely many edges. We write

Γi =
∏
k∈I

αk,

where I is a Z-interval with infinite cardinality and (αi)i∈I is an admissible sequence

of edges. First we show that, for every finite Z-interval J ⊂ I, there exists a Brouwer

manifold Γ′ ∈ L∗ such that Γ ≺ Γ′ and
∏

k∈J αk ⊂ Γ′. The proof is by induction on the

cardinality p of J . The result is true if p = 1 because Γ ≺ Γ+
αk for every k ∈ I. For any

{k, k+ 1} ⊂ I, the Brouwer manifolds Γ+
αk and Γ+

αk+1
contain respectively αk and αk+1

and satisfy Γ ≺ Γ+
αk , Γ ≺ Γ+

αk+1
. The vertex σ = v+(αk) = v−(αk+1) is the endpoint of
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a third edge α. If σ = v−(α) then clearly αk ⊂ Γ+
αk+1

and consequently Γ+
αk+1
� Γ+

αk . If

σ = v+(α) then αk+1 ⊂ Γ+
αk so Γ+

αk � Γ+
αk+1

. Thus Γ+
αk and Γ+

αk+1
are always comparable

and the smallest of these two Brouwer manifolds contains αk ∪αk+1. This proves the

assertion for p = 2.

Suppose now that the result is true for p > 2 and consider a Z-interval J =

{k, k + 1, ..., k + p} ⊂ I with cardinality p + 1. The induction assumption gives a

Brouwer manifold Γ̂ � Γ containing
∏

k6j6k+p−1 αj and a Brouwer manifold Γ̃ � Γ

containing
∏

k+16j6k+p αj. Then Γ̂ and Γ̃ are comparable because they both contain∏
k+16j6k+p−1 αj and, using the fact that they have no transverse intersection, one

checks that the smallest of these two Brouwer manifolds contains
∏

k∈J αj. This

proves the assertion.

Consider now a sequence (In)n>0 of finite Z-intervals such that In  In+1 for every

n > 0 and
⋃
n>0

In = I. The above remark allows to choose for every n ∈ N a Brouwer

manifold γn ∈ L∗ such that γn � Γ and
∏

k∈In αk ⊂ γn. Given q ∈ I0, one has of course

{Γ} ∪ {γn}n∈N ⊂ L∗(αq) and one deduces from Proposition 5.12 that there exists a

subsequence (γnk)k>0 converging to a Brouwer manifold γ ∈ L∗(αq) such that Γ � γ.

By construction one has Γi ⊂ γ 2.

Recall that a Brouwer manifold of type 2 cannot be a connected component of a

Brouwer manifold of type 3 (Remark 3.2). According to Claim 1, if Γ is a connected

Brouwer manifold containing finitely many edges then Γ = Γ+
α for some α ⊂ Γ.

According to Claim 2, if Γ is a Brouwer manifold of type 2 containing infinitely

many edges and if Γ 6= Γ+
α for every edge α ⊂ Γ then there exists a sequence (γn)n>0

in L∗ converging to Γ with Γ ≺ γn for every n > 0.

It remains to study the case where Γ = Γ1 t Γ2 is a Brouwer manifold of type 3.

For i ∈ {1, 2}, define a Brouwer manifold Γ∗i ∈ L∗ as follows. If Γi is a connected

component of Γ+
α for some edge α ⊂ Γi then let Γ∗i = Γ+

α . Otherwise define Γ∗i to be

the Brouwer manifold γ given by Claim 2. Thus one has anyway Γ � Γ∗i and Γi is a

connected component of Γ∗i . In particular Γ∗i has type 3.

Claim 3. The two Brouwer manifolds Γ∗1 and Γ∗2 are comparable.

Proof. Recall that Γ � Γ∗1 and that these two Brouwer manifolds have one common

connected component Γ1. According to Lemma 5.12 one has h(R(Γ∗1)) ⊂ Int(R(Γ)).

If Γ∗1 ∩ Γ∗2 contains some edge α ∈ E then it is already known from Lemma 5.9

that Γ∗1 and Γ∗2 are comparable hence one can assume that Γ∗i ∩ Γj = ∅ for every

1 6 i 6= j 6 2. It follows from Γ2 ⊂ R(Γ) ⊂ R(Γ∗1) and Γ2 ∩Γ∗1 = ∅ that Γ2 ⊂ Int(R(Γ∗1))

and then Γ∗2 ⊂ R(Γ∗1) because Γ∗2 and Γ∗1 have no transverse intersection. According

to Proposition 3.3 one has L(Γ∗2) ⊂ R(Γ∗1) or R(Γ∗2) ⊂ R(Γ∗1). If R(Γ∗2) ⊂ R(Γ∗1) then

2. As a remark, the sequence (γnk
)k>0 may have some other limits in L∗ \ L∗(αq) because L∗(αq) is

generally a non closed subset of the non Hausdorff space L∗. Such a limit γ′ ∈ L∗ \ L∗(αq) is necessarily
disjoint from Γi.
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Γ∗2 � Γ∗1 and we are done. Suppose now L(Γ∗2) ⊂ R(Γ∗1). Since Γ � Γ∗2 one has

R(Γ) ⊂ R(Γ∗2) and therefore L(Γ∗2) ⊂ R(Γ∗1) ∩ L(Γ). Using h(R(Γ∗1)) ⊂ Int(R(Γ)) one

obtains

L(Γ∗2) ⊂ h(L(Γ∗2)) ∩ L(Γ) ⊂ h(R(Γ∗1)) ∩ L(Γ) ⊂ Int(R(Γ)) ∩ L(Γ) = ∅

which is absurd and ends the proof of Claim 3.

According to Claim 3 one can suppose Γ � Γ∗2 � Γ∗1. Moreover it follows from

Γ1 ⊂ Γ ∩ Γ∗1 that Γ1 ⊂ Γ∗2 hence Γ = Γ1 ∪ Γ2 ⊂ Γ∗2. One concludes that Γ = Γ∗2.

The definition of Γ∗2 tell us that if Γ 6= Γ+
α for every α ∈ E then Γ is the limit of a

sequence (γn)n>0 in L∗ with Γ ≺ γn for every n > 0. The proof of the proposition is

completed.

The next two results are already stated and proved in [LC04] in the context of

Brouwer homeomorphisms and Brouwer lines. Nevertheless Brouwer manifolds are

more complicated than Brouwer lines hence we give the additional arguments needed

in our framework.

Proposition 5.14. For any two edges α, α′ ∈ E we have

- if l(α) = l(α′) then Γ+
α = Γ+

α′;

- if r(α) = r(α′) then Γ−α = Γ−α′;

- if l(α) = r(α′) then Γ+
α ≺ Γ−α′ and (Γ+

α ,Γ
−
α′) = ∅.

Proof. Write β = l(α) = l(α′). According to Propositions 5.4-5.7, there exists an

admissible sequence (αi)06i6n of edges in ∂Mβ such that α0 = α, αn = α′ and l(αi) = β

for every i ∈ {0, · · · , n}. Hence it is enough to prove Γ+
αi = Γ+

αi+1
for every given

i ∈ {0, · · · , n−1}. We name α′′ the third edge having v+(αi) = v−(αi+1) as a vertex. If

v−(α′′) = v+(αi) then clearly αi ⊂ Γ+
αi+1

so Γ+
αi+1
� Γ+

αi. Using Proposition 5.9 one gets

r(αi+1) ⊂ R(Γ+
αi+1

) ⊂ R(Γ+
αi) and also β = l(αi+1) = l(αi) ⊂ L(Γ+

αi). Then it follows

from Proposition 3.1 that αi+1 = l(αi+1)∩r(αi+1) ⊂ L(Γ+
αi)∩R(Γ+

αi) = Γ+
αi which implies

the inverse inequality Γ+
αi � Γ+

αi+1
. If v+(α′′) = v+(αi) then we obtain first αi+1 ⊂ Γ+

αi

so Γ+
αi � Γ+

αi+1
and one checks the other inequality Γ+

αi+1
� Γ+

αi by reversing the roles

of αi, αi+1 in the above argument. This proves the first assertion and the second

one can be obtained likewise. We now prove the last one. We let β = l(α) = r(α′).

If β is an annulus then one deduces from the two previous assertions that Γ+
α and

Γ−α′ are the two boundary components of β. It follows easily that Γ+
α ≺ Γ−α′. If β

is a disc or a half-plane then it possesses an initial vertex v−(β) or a final vertex

v+(β). We deal only with the first case, the other case being similar. We denote

σ = v−(β) and α− the edge such that v+(α−) = σ. Using again the description of

∂Mβ in Propositions 5.4 and 5.6 as well as the two first assertions, we just have to

check Γ+
α ≺ Γ−α′ when the edges α, α′ and α− are all adjacent to the vertex σ, so that
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σ = v−(α) = v−(α′) = v+(α−). Then it is clear that α− ⊂ Γ+
α ∩ Γ−α′ so Γ+

α and Γ−α′ are

comparable and one deduces from β ∈ R(Γ−α′) \ R(Γ+
α ) that Γ+

α ≺ Γ−α′. We consider

now the case where β is a strip. According to Proposition 5.7, one has ∂Mβ = γ t γ′
with

γ =
∏
i∈I

αi, γ′ =
∏
j∈J

α′j ,

where (αi)i∈I and (α′j)j∈J are two admissible sequences of edges such that l(αi) =

r(α′j) = β for every (i, j) ∈ I × J . We know that all the Brouwer manifolds Γ+
αi (resp.

Γ−α′j
) are equal for i ∈ I (resp. j ∈ J) so that γ ⊂ Γ+

αi and γ′ ⊂ Γ−α′j
. According to

Proposition 5.9, one has γ ⊂ β ⊂ R(Γ−α′j
) and γ′ ⊂ β ⊂ L(Γ+

αi). Remark that γ is

disjoint from ∂MR(Γ−α′j
) = Γ−α′j

since otherwise there exists i ∈ I such that αi ⊂ Γ−α′j
which implies l(αi) = β ∈ L(Γ−α′j

)∩R(Γ−α′j
) = ∅, a contradiction. Thus one obtains more

precisely γ ⊂ Int(R(Γ−α′j
)). Similarly γ′ ⊂ Int(L(Γ+

αi)) since otherwise one can find j ∈ J
such that α′j ⊂ ∂ML(Γ+

αi) = Γ+
αi which would imply r(α′j) = β ∈ R(Γ+

αi) ∩ L(Γ+
αi) = ∅.

Since Γ+
αi and Γ−α′j

have no transverse intersection, one deduces from γ ⊂ Int(R(Γ−α′j
))

that Γ+
αi ⊂ R(Γ−α′j

). Then it follows from Proposition 3.3 that L(Γ+
αi) ⊂ R(Γ−α′j

) or

R(Γ+
αi) ⊂ R(Γ−α′j

). On the other hand, α′j ⊂ γ′ ⊂ Int(L(Γ+
αi)) implies l(α′j) ∈ L(Γ+

αi) ∩
L(Γ−α′j

) which shows that the inclusion L(Γ+
αi) ⊂ R(Γ−α′j

) is actually not possible. Thus

we obtain as expected R(Γ+
αi) ⊂ R(Γ−α′j

), i.e., Γ+
αi ≺ Γ−α′j

.

It remains to show that (Γ+
α ,Γ

−
α′) = ∅ for any edges α, α′ satisfying l(α) = β = r(α′).

Suppose that Γ ∈ L∗ is such that Γ+
α � Γ � Γ−α′. According to Proposition 3.1, the

brick β belongs either to L(Γ) or to R(Γ) and Γ � Γ−α′ also means L(Γ−α′) ⊂ L(Γ). If

β ∈ R(Γ) then one gets

α′ = l(α′) ∩ r(α′) = l(α′) ∩ β ⊂ L(Γ−α′) ∩R(Γ) ⊂ L(Γ) ∩R(Γ) = Γ

which implies Γ−α′ � Γ and afterwards Γ−α′ = Γ. If β ∈ L(Γ) then

α = l(α) ∩ r(α) = β ∩ r(α) ⊂ L(Γ) ∩R(Γ+
α ) ⊂ L(Γ) ∩R(Γ) = Γ

hence Γ � Γ+
α and consequently Γ = Γ+

α .

For every β ∈ B, Proposition 5.14 allows one to define Γ+
β = Γ−α′ and Γ−β = Γ+

α

where α, α′ are any edges such that r(α′) = β = l(α). One has then Γ−β ≺ Γ+
β and

(Γ−β ,Γ
+
β ) = ∅. According to Propositions 5.4-5.7, there exist two oriented arcs γ−β and

γ+
β such that ∂Mβ = γ−β ∪ γ+

β and l(γ−β ) = r(γ+
β ) = {β}. Then we have γ−β ⊂ Γ−β and

γ+
β ⊂ Γ+

β . We define an equivalence relation ∼ on the set of bricks by

β ∼ β′ ⇔ Γ+
β = Γ+

β′ and Γ−β = Γ−β′ .

The equivalence class of β ∈ B is denote by β̂.
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For later use, observe that two adjacent bricks are not equivalent. Indeed, for

every edge α ∈ E, one has

Γ+
l(α)
� Γ−

l(α)
= Γ+

α � Γ−α = Γ+
r(α)

.

Proposition 5.15. Let β ∈ B. The following three properties are equivalent :

i) β′ ∈ β̂,
ii) β′ ∈ r(Γ+

β ) ∩ l(Γ−β ),

iii) β′ ∈ R(Γ+
β ) ∩ L(Γ−β ).

Proof. As a first step, one has the following assertion.

Claim 1. The properties i) and ii) are equivalent.

Proof. If β′ ∈ β̂ then β′ ∈ r(Γ+
β′)∩ l(Γ−β′) = r(Γ+

β )∩ l(Γ−β ) hence the implication i)⇒ ii)

holds. Let β′ be a brick in r(Γ+
β ) ∩ l(Γ−β ). There exist two edges e1 ⊂ Γ+

β and e2 ⊂ Γ−β
such that β′ = r(e1) = l(e2). Then we get

Γ−β � Γ+
e2

= Γ−β′ ≺ Γ+
β′ = Γ−e1

� Γ+
β .

According to Proposition 5.14 one has (Γ−β ,Γ
+
β ) = ∅ so Γ−β = Γ−β′ and Γ+

β = Γ+
β′, i.e.,

β′ ∈ β̂. The implication ii)⇒ i) is proved.

Combining Claim 1 with Proposition 5.9 one gets β̂ = r(Γ+
β )∩l(Γ−β ) ⊂ R(Γ+

β )∩L(Γ−β )

hence it is now enough to prove the converse inclusion R(Γ+
β ) ∩ L(Γ−β ) ⊂ β̂.

We write Γ−1 (resp. Γ+
1 ) for the connected component of Γ−β (resp. Γ+

β ) containing

γ−β (resp. γ+
β ). Remember that maybe Γ−1 = Γ−β (resp. Γ+

1 = Γ+
β ) if Γ−β (resp. Γ+

β ) is

connected, i.e., has type 1 or 2.

If β is a disc or a half-plane then β possesses an initial vertex v−(β) and/or a

final vertex v+(β) (Propositions 5.4 and 5.6). Assume for instance that β has a final

vertex. Then there exists α0 ∈ E such that v+(β) = v−(α0). Of course α0 ⊂ Γ−1 ∩ Γ+
1

so we can consider the longest admissible sequence of edges beginning with α0 and

containing only edges included in Γ−1 ∩ Γ+
1 . It is convenient to denote this sequence

by (αi)06i<n with n ∈ N ∪ {+∞} so that one of the following situations occurs :

a) n = +∞,

b) n < +∞ and αn−1 has no final vertex,

c) n < +∞ and αn−1 has a final vertex.

In the first two cases, the concatenation
∏

06i<n αi is a half-line of M so it con-

verges to a fixed point. If (c) holds true then there exist two edges α−n ⊂ Γ−1
and α+

n ⊂ Γ+
1 such that v+(αn−1) = v−(α−n ) = v−(α+

n ) and r(α+
n ) = l(α−n ). Defin-

ing β1 = r(α+
n ) (maybe β1 = β when β is a disc), one has then β1 ∈ r(Γ+

β ) ∩ l(Γ−β )
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hence β1 ∼ β because of Claim 1. This implies γ−β1
⊂ Γ−1 and γ+

β1
⊂ Γ+

1 . Similarly, if β

has an initial vertex v−(β) then either there exists a half-line of M emanating from

v−(β) and included in Γ−1 ∩Γ+
1 or there exists a finite admissible sequence of compact

edges α′l, ..., α
′
0 such that v+(α′0) = v−(β), v−(α′l) = v+(β−1) for some brick β−1 ∼ β and

α′i ⊂ Γ−1 ∩ Γ+
1 for every i ∈ {l, ..., 0}.

Iterating these arguments one finds a sequence (βi)i∈I of pairwise distinct bricks

equivalent to β, where I is a Z-interval containing 0 and β0 = β, such that

Γ−1 = (Γ−1 ∩ Γ+
1 ) ∪

⋃
i∈I

γ−βi and Γ+
1 = (Γ−1 ∩ Γ+

1 ) ∪
⋃
i∈I

γ+
βi
.

Note that this writing is still valid when β is a strip with simply I = {0}, Γ−1 = γ−β
and Γ+

1 = γ+
β . It is also valid if β is an annulus with I = {0}, Γ−β = Γ−1 = γ−β

and Γ+
β = Γ+

1 = γ+
β . Since

⋃
i∈I βi is closed in M , if M is connected then one has

Cl(Γ−1 ) \ Γ−1 = Cl(Γ+
1 ) \ Γ+

1 ⊂ Fix(h) which also gives Cl(Γ−β ) \ Γ−β = Cl(Γ+
β ) \ Γ+

β .

It is already known that βi ∈ l(Γ−1 ) ∩ r(Γ+
1 ) ⊂ l(Γ−β ) ∩ r(Γ+

β ) ⊂ L(Γ−β ) ∩ R(Γ+
β )

for every i ∈ I. More precisely each singleton {βi} is a connected component of

L(Γ−β ) ∩ R(Γ+
β ) ⊂ B because r(γ−βi) ⊂ r(Γ−β ) ⊂ R(Γ−β ) and l(γ+

βi
) ⊂ l(Γ+

β ) ⊂ L(Γ+
β ) and

because, for any j ∈ I \ {i}, the bricks βi and βj are not adjacent. If Γ−β is not

connected (i.e., has type 3) and if Γ−2 denotes its connected component other than

Γ−1 then one also has βi 6∈ l(Γ−2 ) because γ−βi ⊂ Γ−1 . Defining R+ = R(Γ−β )∪
⋃
i∈I βi, the

previous observations together with Γ−β � Γ+
β show that R+ is a connected subset of

R(Γ+
β ) verifying ∂MR+ = Γ+

1 ∪
(
Γ−β \ Γ−1 ) and

⋃
i∈I IntΣ(γ−βi) ⊂ Int(R+) and having the

same number (at most two) of connected components as R(Γ−β ). Precisely, if R(Γ−β )

has two connected components then they can be named R−1 , R
−
2 with Γ−k = ∂MR

−
k

and the two connected components of R+ are R−1 ∪
⋃
i∈I βi and R−2 .

If Γ−β and Γ+
β are connected then R(Γ−β ) and R(Γ+

β ) are also connected. One obtains

then ∂MR
+ = Γ+

β = ∂MR(Γ+
β ) which implies R+ = R(Γ+

β ) and therefore, regarding

R(Γ+
β ) and L(Γ−β ) as subsets of B, one obtains R(Γ+

β ) ∩ L(Γ−β ) = R(Γ+
β ) \ R(Γ−β ) =

{βi | i ∈ I} ⊂ β̂. This proves the proposition when Γ±β are both connected.

Claim 2. Γ−β is connected iff Γ+
β is connected.

Proof. If Fix(h) is a circle then all the Brouwer manifolds have type 3. Assume

now that Fix(h) is totally disconnected. Recall that Cl(Γ−β ) \ Γ−β = Cl(Γ+
β ) \ Γ+

β ⊂
Fix(h). If Γ−β or Γ+

β is not connected then this set has cardinality one or two. If it

contains two points then Γ±β are Brouwer manifolds of type 3. It remains to study

the situation where Cl(Γ−β ) \ Γ−β = Cl(Γ+
β ) \ Γ+

β contains a single point a ∈ Fix(h).

Under this assumption, the description of the Brouwer manifolds given by the proof

of Proposition 3.1 shows that Γ−β (resp. Γ+
β ) is connected iff L(Γ−β ) and R(Γ−β ) (resp.

L(Γ+
β ) and R(Γ+

β )) are both connected hence one just has to check that R(Γ−β ) and

R(Γ+
β ) are simultaneously connected or not and likewise for L(Γ±β ). Suppose that

R(Γ+
β ) is not connected and name R+

1 , R
+
2 its two connected components with Γ+

k =
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∂MR
+
k . Then R(Γ−β ) is also not connected since otherwise, due to Γ−β � Γ+

β , one can

find i 6= j in {1, 2} such that R(Γ−β ) ⊂ R+
i and

h(R(Γ−β )) ⊂ R(Γ−β ) ∩ h(R+
i ) ⊂ R+

i ∩R+
j = ∅,

a contradiction. Suppose now that R(Γ−β ) is not connected. As observed above, R+ ⊂
R(Γ+

β ) also has two connected components which can be written R1 = R−1 ∪
⋃
i∈I βi and

R2 = R−2 where R−1 , R
−
2 are the two connected components of R(Γ−β ) with Γ−k = ∂MR

−
k .

One deduces from ∂MR1 = Γ+
1 that R1 is also a connected component of R(Γ+

β ).

Moreover βi ∈ L(Γ−β ) for every i ∈ I hence R1∩R−2 = ∅ as subsets of B. Consequently
R(Γ+

β ) possesses a connected component other than R1 which contains R−2 . Switching

above the roles of L(·) and R(·), of Γ+
β and Γ−β , of h and h−1 one proves likewise that

L(Γ−β ) is connected iff L(Γ+
β ) is connected. This ends the proof of Claim 2.

According to Claim 2 it remains only to study the case where Γ±β are Brouwer

manifolds of type 3. We write as usual Γ−β = Γ−1 t Γ−2 and Γ+
β = Γ+

1 t Γ+
2 .

Observe that Γ−2 is disjoint from Γ+
1 because

Γ−2 ∩ Γ+
1 = Γ−2 ∩ (Γ+

1 \ Γ−1 ) ⊂ R(Γ−β ) ∩
(⋃
i∈I

IntΣ(γ+
βi

)

)
⊂ R(Γ−β ) ∩ Int(L(Γ−β ) = ∅

and likewise

Γ+
2 ∩ Γ−1 = Γ+

2 ∩ (Γ−1 \ Γ+
1 ) ⊂ L(Γ+

β ) ∩
(⋃
i∈I

IntΣ(γ−βi)

)
⊂ L(Γ+

β ) ∩ Int(R(Γ+
β ) = ∅.

Claim 3. Assume that Γ−2 ∩ Γ+
2 = ∅. Then l(Γ−2 ) = r(Γ+

2 ) and this set is reduced to a

single brick β∗ ∈ β̂ which is a strip with frontier ∂Mβ∗ = Γ−2 t Γ+
2 . Moreover one has

L(Γ−β ) ∩R(Γ+
β ) = {β∗} t {βi | i ∈ I} ⊂ B.

Proof. One also knows that Γ−2 ∩ Γ+
1 = ∅ hence Γ−2 ⊂ Int(R(Γ+

β )). Consider an edge

e ⊂ Γ−2 and let β∗ = l(e) ∈ l(Γ−2 ) ⊂ L(Γ−β ). Remark that e ⊂ γ−β∗ ∩ Γ−2 ensures

β∗ 6∈ {βi}i∈I .
• As a first step, we show that there is a connected component S of L(Γ−β )∩R(Γ+

β )

which is a strip with frontier ∂MS = Γ−2 t Γ+
2 and which contains β∗ and satisfies

S ∩ h(S) = ∅. One needs to distinguish the following three cases.

First case : Fix(h) is totally disconnected and Cl(Γ±β ) \ Γ±β consists of a single point

a ∈ Fix(h).

Suppose first that R(Γ−β ) is not connected. One knows from the proof of Claim 2

that R(Γ+
β ) is also not connected. Even better, if R−i denotes the connected compo-

nents of R(Γ−β ) such that ∂MR
−
i = Γ−i then the two connected components of R(Γ+

β )
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may be named R+
1 and R+

2 with R+
1 = R−1 ∪

⋃
i∈I βi and R−2 ⊂ R+

2 . Since R−2 ∪ {a}
and R+

2 ∪ {a} are two discs with frontier, respectively, Γ−2 ∪ {a} and Γ+
2 ∪ {a}, one

deduces from the assumption Γ−2 ∩ Γ+
2 = ∅ that the set S = R+

2 \ Int(R−2 ) ⊂ M is a

strip with frontier ∂MS = Γ−2 t Γ+
2 . It is easily seen that S is a connected component

of L(Γ−β )∩R(Γ+
β ) such that β∗ ⊂ l(Γ−2 )∪ r(Γ+

2 ) ⊂ S. One also has h(S)∩S = ∅ because
h(S) ⊂ h(R+

2 ) ⊂ Int(R+
1 ). Suppose now that R(Γ−β ) is connected. Then L(Γ−β ) has

two connected components as well as L(Γ+
β ) (see again the proof of Claim 2) and the

proof is similar as above: the required strip S ⊂ M is defined by S = L−2 \ Int(L+
2 )

where L±2 is the connected component of L(Γ±β ) such that ∂ML
±
2 = Γ±2 , observing that

S and h−1(S) are contained in two distinct connected components of L(Γ−β ).

Second case : Fix(h) is totally disconnected and Cl(Γ±β ) \ Γ±β consists of two points

a, b ∈ Fix(h).

In this case one knows that R(Γ−β ) and R(Γ+
β ) are connected with D− \ Fix(h) =

R(Γ−β ) ⊂ R(Γ+
β ) = D+\Fix(h) where D− (resp. D+) is one of the two discs with frontier

∂D− = Γ−β ∪ {a, b} (resp. ∂D+ = Γ+
β ∪ {a, b}). Clearly one also has Cl(R(Γ−β )) = D− ⊂

D+ = Cl(R(Γ+
β )). Since Γ−2 ∩ Γ+

2 = ∅ one gets Γ−2 ⊂ Int(R(Γ+
β )) ⊂ Int(D+). It follows

that D+ = D+
1 ∪ D+

2 where D+
1 , D

+
2 are two discs such that D+

1 ∩ D+
2 = Γ−2 ∪ {a, b},

∂D+
1 = Γ+

1 ∪ {a, b} ∪ Γ−2 and ∂D+
2 = Γ+

2 ∪ {a, b} ∪ Γ−2 . Recall that Γ−1 ∪
⋃
i∈I βi is a

connected set such that Γ+
1 ⊂ Γ−1 ∪

⋃
i∈I βi ⊂ R(Γ+

β ). It is also disjoint from Γ−2 ∪{a, b}
because Γ−2 ∩ βi = Γ−2 ∩ ∂Mβi ⊂ (Γ−2 ∩ Γ+

1 ) ∪ (Γ−2 ∩ Γ−1 ) = ∅ for every i ∈ I hence one

deduces that Γ−1 ∪
⋃
i∈I βi ⊂ D+

1 . In particular ∂D− ⊂ D+
1 and, since D− ⊂ D+, one

obtains more precisely D−∪
⋃
i∈I βi ⊂ D+

1 (actually these two sets are equal but we do

not use this property). It follows that D+
2 ⊂ D+ \ Int(D−) hence l(Γ−2 ) ∪ r(Γ+

2 ) ⊂ D+
2 .

Defining S = D+
2 \ {a, b} one gets a strip such that β∗ ⊂ l(Γ−2 ) ∪ r(Γ+

2 ) ⊂ S and

whose boundary components are Γ±2 . It remains to see that S ∩ h(S) = ∅, which is

easily seen to imply that S is a connected component of L(Γ−β )∩R(Γ−β ). Remark that

h(Γ−2 ) ⊂ Int(R(Γ−β )) ⊂ Int(D+
1 ). Up to conjugacy by a suitable orientation preserving

homeomorphism of S2, one may assume that D+
1 is the Euclidean closed unit disc in

R2 with a = (0,−1), b = (0, 1), Γ+
1 = ∂D+

1 ∩ ((−∞, 0)×R), Γ−2 = ∂D+
1 ∩ ((0,+∞)×R)

and moreover h(Γ−2 ) = {0} × (−1, 1). Because l(Γ−2 ) ⊂ S ⊂ S2 \ Int(D+
1 ) the line Γ−2 is

oriented from b to a. Moreover h reverses the orientation hence h(S) lies locally on

the right of h(Γ−2 ) oriented from h(b) = b to h(a) = a. Writing ∆ for the left half of

D+
1 , that means for the disc with frontier ∂∆ = Γ+

1 ∪ {a, b} ∪ h(Γ−2 ) and included in

D+
1 , one gets afterwards h(S) ⊂ ∆\ (Γ+

1 ∪{a, b}) because h(S)∩Γ+
1 = h

(
S∩h−1(Γ+

1 )
)
⊂

h
(
D+ ∩ Int(L(Γ+

β ))
)

= ∅. In particular h(S) ∩ S = ∅ (see Fig. 5.8).

Third case : Fix(h) is a circle.

Suppose for instance β∗ ⊂ M1. Working in the one point compactification of M1,

one checks similarly as in the first case that there is a strip S ⊂ M1 with frontier

∂MS = Γ−2 t Γ+
2 which contains l(Γ−2 )∪ r(Γ+

2 ). Then h(S)∩ S = ∅ because h(M1) = M2

and it is easily seen that S is a connected component of L(Γ−β ) ∪R(Γ+
β ).
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a

b

S

Γ+
2Γ−

2Γ+
1

h(Γ−
2 )

h(S)

Figure 5.8 – h(S) ∩ S = ∅ [second case]

• As a second step we show that β∗ ∈ r(Γ+
2 ).

Suppose β∗ 6∈ r(Γ+
2 ) and therefore β∗ ⊂ Int(R(Γ+

β )). According to Propositions

5.4-5.7 there exists e′ ∈ E such that r(e′) = β∗. Since e ⊂ Γ−β one has Γ−β � Γ+
e =

Γ−β∗ ≺ Γ+
β∗

= Γ−e′ � Γ+
e′ and consequently R(Γ−β ) ⊂ R(Γ+

e′), i.e., L(Γ+
e′) ⊂ L(Γ−β ). Because

e′ ⊂ β∗ ⊂ Int(R(Γ+
β )) and because Γ+

e′ ,Γ
+
β have no transverse intersection one knows

that Γ+
e′ ⊂ R(Γ+

β ). Following Proposition 3.3 one has either R(Γ+
e′) ⊂ R(Γ+

β ) or L(Γ+
e′) ⊂

R(Γ+
β ). If R(Γ+

e′) ⊂ R(Γ+
β ) then Γ−β ≺ Γ+

e′ � Γ+
β . Furthermore Γ+

e′ 6= Γ+
β because e′ 6⊂ Γ+

β

which contradicts the fact that the L∗-interval (Γ−β ,Γ
+
β ) is empty (Proposition 5.14).

If L(Γ+
e′) ⊂ R(Γ+

β ) then

L(Γ+
e′) ⊂ R(Γ+

β ) ∩ L(Γ−β ) = S t {βi | i ∈ I} ⊂ B.

One knows that any connected component of L(Γ+
e′) intersects its image under h2 and

consequently is included in S because each brick βi satisfies h2(βi) ∩ βi = ∅. Hence

one obtains h−1(L(Γ+
e′)) ⊂ L(Γ+

e′) ⊂ S which contradicts h(S) ∩ S = ∅.
• We check finally that S = {β∗} ⊂ β̂.

One has β∗ ∈ l(Γ−2 ) ∩ r(Γ+
2 ) ⊂ l(Γ−β ) ∩ r(Γ−β ) hence Claim 1 gives β∗ ∈ β̂ and then

γ−β∗ ⊂ Γ−β∗ = Γ−β and γ+
β∗
⊂ Γ+

β∗
= Γ+

β . More precisely γ−β∗ ⊂ Γ−2 because e ⊂ γ−β∗ ∩Γ−2 and

furthermore γ+
β∗
⊂ Γ+

2 due to β∗ ∈ r(Γ+
2 ). Afterwards one deduces from Γ−2 ∩ Γ+

2 = ∅
that γ−β∗ = Γ−2 and γ+

β∗
= Γ+

2 , thus proving S = β∗ ⊂M .

One can end now the proof of Claim 3. One knows that two distinct equivalent

bricks are not adjacent hence β∗ ∩ βi = ∅ for every i ∈ I and therefore R+ ∪ β∗ =

R(Γ−β )∪β∗∪
⋃
i∈I βi is a connected subset of R(Γ+

β ) satisfying ∂M (R+∪β∗) = Γ+
1 tΓ+

2 =

Γ+
β = ∂MR(Γ+

β ). This implies R+ ∪ β∗ = R(Γ+
β ) and, as subsets of B, one has then

R(Γ+
β ) ∩ L(Γ−β ) = R(Γ+

β ) \R(Γ−β ) = {β∗} t {βi | i ∈ I}. Claim 3 is proved.

If Γ−2 ∩ Γ+
2 = ∅ Claim 3 gives R(Γ+

β ) ∩ L(Γ−β ) = {βi | i ∈ I} ∪ {β∗} ⊂ β̂ and we are

done. Otherwise Γ−2 ∩ Γ+
2 contains at least one edge α′0. Except if α

′
0 = Γ−2 = Γ+

2 , one

finds as for Γ−1 and Γ+
1 a sequence (β′j)j∈J of bricks equivalent to β, where J is a non

empty Z-interval, such that

Γ−2 = (Γ−2 ∩ Γ+
2 ) ∪

⋃
j∈J

γ−β′j
and Γ+

2 = (Γ−2 ∩ Γ+
2 ) ∪

⋃
j∈J

γ+
β′j
.
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For convenience we also allow J = ∅ iff Γ−2 = Γ+
2 and if this line of M consists of a

single edge. Let us define

R = R+ ∪
⋃
j∈J

βj = R(Γ−β ) ∪
⋃
i∈I

βi ∪
⋃
j∈J

β′j .

Then R has the same number of connected components as R(Γ−β ) and R ⊂ R(Γ+
β ).

Moreover, again because any two distincts bricks of β̂ are not adjacent, one has

∂MR = Γ+
β = ∂MR(Γ+

β ). Therefore one gets R = R(Γ+
β ) and it follows that

R(Γ+
β ) ∩ L(Γ−β ) = R(Γ+

β ) \R(Γ−β ) = {βi | i ∈ I} ∪ {β′j | j ∈ J} ⊂ β̂

which completes the proof of Proposition 5.15.

By definition of the equivalence relation ∼ on B one can let Γ+

β̂
= Γ+

β and Γ−
β̂

= Γ−β

for every β ∈ B. The union of common edges of Γ−
β̂
and Γ+

β̂
and of the bricks equivalent

to β is a closed subset of M denoted by C
β̂
and called the equivalence chain of β̂.

Proposition 5.15 tells us that C
β̂
has at most two connected components. Precisely

C
β̂
has as many connected components as R(Γ−

β̂
) (or R(Γ+

β̂
)).

If β is an annulus then C
β̂

= β and one has Γ+

β̂
= γ+

β and Γ−
β̂

= γ−β .

If β is a strip then the connected component of C
β̂
containing β is reduced to β

and γ−β (resp. γ+
β ) is a connected component of Γ−

β̂
(resp. Γ+

β̂
). If moreover C

β̂
is

connected then C
β̂

= β and Γ−β = γ−β , Γ+
β = γ+

β .

If β is a disc or a half-plane the sets Γ+

β̂
and Γ−

β̂
have at least one common edge

which contains the final vertex and/or the initial vertex of β if any. Furthermore one

has γ+
β = Γ+

β̂
∩ β and γ−β = Γ−

β̂
∩ β.

One foliates now naturally each brick β ∈ B as it is already explained in [LC05,

page 40] (except for the case where β is an annulus, which does not appear in [LC05]).

Any disc β ∈ B is foliated by a continuous family (γtβ)t∈[−1,1] of segments having

endpoints v−(β), v+(β) and intersecting pairwise only at these common endpoints

(see Fig. 5.9 or [LC04, page 245]). Any half-plane β ∈ B possessing an initial (resp.

a final) vertex v−(β) (resp. v+(β)) is foliated by a continuous family (γtβ)t∈[−1,1] of

half-lines with endpoint v−(β) (resp. v+(β)) and intersecting pairwise only at this

common endpoint. Note that in these cases the word “foliated” is used slightly

abusively because of the local picture near v±(β). Any annulus β ∈ B is foliated by

a continuous family (γtβ)t∈[−1,1] of circles and any strip β ∈ B is trivially foliated by a

continuous family (γtβ)t∈[−1,1] of lines of M . Whatever is the topology of β, the above

parameterizations by t are choosen so that γ−1
β = γ−β and γ1

β = γ+
β . Given β ∈ B,

remark moreover that there is a unique way to orient each γtβ so that (γtβ)t∈[−1,1] defines

an oriented topological foliation of β compatible with the orientation of γ±β ⊂ Σ given

by Propositions 5.4-5.7.
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v+(β)

γ−
β

γ+
β

v−(β)

Figure 5.9 – The quasi-foliation in a disc β ∈ B.

For every β ∈ B, the sets Γ−
β̂
and Γ+

β̂
are Brouwer manifolds of h so we have

h(Γ−
β̂

) ⊂ Int(R(Γ−
β̂

)) and h−1(Γ+

β̂
) ⊂ Int(L(Γ+

β̂
)).

Then we can also assume that the family (γtβ)t∈[−1,1] is chosen in such a way that

(?)

 t ∈ [−1,−1/3] =⇒ h(γtβ) ⊂ Int(R(Γ−
β̂

)),

t ∈ [1/3, 1] =⇒ h−1(γtβ) ⊂ Int(L(Γ+

β̂
)).

As a remark, note that if β is compact (an annulus or a disk) then this assertion

follows simply from a suitable parameterization by t. If β is a half-plane or a strip, this

also requires a more careful construction of the family (γtβ)t∈[−1,1] in the neighborhood

of the points of Cl(β) \ β ⊂ Fix(h). Details are left to the reader.

According to [LC04, Lemma 4.1], there exists a family (µβ′)β′∈β̂ of increasing

homeomorphisms of [−1, 1] such that if {β′, β′′} ⊂ β̂ and β′ < β′′ then µβ′′(1/3) <

µβ′(−1/3). Clearly if β̂ = {β} then one can simply choose µβ = Id[−1,1]. Let us define

Γt
β̂

=

(
Γ+

β̂
∩ Γ−

β̂

)
∪
⋃
β′∈β̂

γ
µ−1
β′ (t)

β′ .

Remark 5.1. It is easily seen from the proof of Proposition 5.15 that, given β ∈ B,
all the sets Γt

β̂
are homeomorphic (−1 6 t 6 1). In particular this implies that the

Brouwer manifolds Γ−
β̂

= Γ−1

β̂
and Γ+

β̂
= Γ1

β̂
have the same type. Moreover if Fix(h) is

totally disconnected then the set Cl(Γt
β̂
) \ Γt

β̂
does not depend on t.

Lemma 5.13. Let Γ be a Brouwer manifold of h. Let ∆ ⊂ M satisfying the

following conditions:

a) ∆ is closed in M and homeomorphic to Γ;

b) ∆ ⊂ L(Γ), i.e., Int(R(Γ)) ⊂M \∆;
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c) If Fix(h) is totally disconnected then Cl(Γ)\Γ = Cl(∆)\∆. If Fix(h) is a circle

(which implies that Γ has type 3) then ∆ has a connected component in each

connected component M1,M2 of M .

We define L(∆) (resp. R(∆)) to be the closure in M of the union of the connected

components of M \∆ which are disjoint from (resp. which meet) Int(R(Γ)). Suppose

moreover that

d) L(∆) ∪R(∆) = M and L(∆) ∩R(∆) = ∆. Furthermore L(∆) (resp. R(∆))

has the same number of connected components as L(Γ) (resp. R(Γ)).

e) ∆ satisfies the following Property (L−R) :

h−1(∆) ⊂ Int(L(∆)) and h(∆) ⊂ Int(R(∆)).

Then ∆ is a Brouwer manifold of h with the same type as Γ and furthermore

R(Γ) ⊂ R(∆) = R(∆) and L(∆) = L(∆) ⊂ L(Γ).

Remark 5.2. i) Suppose that Fix(h) is totally disconnected. If Γ has type 1

or 2, or has type 3 with ]
(
Cl(Γ)\Γ

)
= 2, then Cl(Γ) is a circle and one knows

from the proof of Proposition 3.1 that L(Γ) = ClM (U \Fix(h)) = Cl(U)\Fix(h)

and R(Γ) = ClM (V \Fix(h)) = Cl(V )\Fix(h) where U, V are the two connected

components of S2 \ Cl(Γ). Assumptions a), b) and c) then show that Cl(∆)

is a circle contained in Cl(U) hence the connected components of S2 \Cl(∆)

can be named U ′, V ′ with U ′ ⊂ U and V ⊂ V ′. According again to the proof

of Proposition 3.1 one has Int(R(Γ)) = V \ Fix(h) ⊂ V ′ \ Fix(h). Combining

with Lemma 5.2 one obtains L(∆) = ClM (U ′ \ Fix(h)) = Cl(U ′) \ Fix(h) and

R(∆) = ClM (V ′ \ Fix(h)) = Cl(V ′) \ Fix(h). Ones deduces immediately that

d) holds true, thus showing that d) is actually a consequence of a), b) and

c) in these cases. It is easy to see that the same is true when Fix(h) is

a circle, so that the assumption d) is actually useful only when Fix(h) is

totally disconnected and ]
(
Cl(Γ) \ Γ

)
= 1.

ii) Assumption d) also implies ∂ML(∆) = ∆ = ∂MR(∆) as well as L(∆) =

Cl(Int(L(∆))) and R(∆) = Cl(Int(R(∆))). Moreover Int(L(∆)) (resp. Int(R(∆)))

is the union of the connected components of M \ ∆ which are disjoint

from (resp. which meet) Int(R(Γ)). For instance the reader is referred to

“(i) + (ii)⇒ (iii)” in the proof of Proposition 3.1.

iii) Suppose that the four conditions a)-d) hold true and moreover that h(R(∆)) ⊂
Int(R(∆)). Then one has h(∆) ⊂ h(R(∆)) ⊂ Int(R(∆)) and

L(∆) = M \ Int(R(∆)) ⊂M \ h(R(∆)) = h(Int(L(∆))).

This implies h−1(∆) ⊂ h−1(L(∆)) ⊂ Int(L(∆)) hence ∆ satisfies the condi-

tion (L−R).
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iv) The reader should keep in mind that the definition of L(∆) and R(∆) also

involves Γ althought, for simplicity, this does not appear in the notation.

The considered Brouwer manifold Γ will be unambiguously specified every

time we use Lemma 5.13.

Proof. We first show that ∆ is a Brouwer manifold with the same type as Γ.

• We begin with the case where Fix(h) is totally disconnected and Γ is a Brouwer

manifold of type 1 or 2. Assumptions a)-e) tell us that Cl(∆) is a circle separating

h(∆) and h−1(∆) in S2. One constructs as in Case 1 (resp. Case 2) of Proposition

5.10 a topological embedding ϕ : O →M defined on O = R2 \ {(0, 0)} (resp. O = R2)

such that ∆ = ϕ(S1) (resp. ∆ = ϕ({0} × R)) showing that ∆ is a Brouwer manifold

of type 1 (resp. type 2).

• Suppose now that Fix(h) is totally disconnected and Γ is a Brouwer manifold

of type 3. Then ∆ has two connected components ∆1 and ∆2 which are two disjoint

lines of M . One needs to study separately the two following situations.

1. The set Cl(Γ) \ Γ is reduced to a single point a ∈ Fix(h).

Then Cl(Γ) = Γ ∪ {a} and Cl(∆) = ∆ ∪ {a} are both homeomorphic to the figure

eight curve. It is equivalent to show that ∆ is a Brouwer manifold for h or for h−1

hence, changing the roles of h and h−1, one may suppose without loss that R(Γ) has

two connected components R1 and R2. Assumption d) tell us that R(∆) also has two

connected components R1 and R2. Even better, it is not difficult to deduce from

the hypothesis ∆ ⊂ L(Γ) and from ∂MR(∆) = ∆ that (possibly after switching the

names of R1 and R2) one has Ri ⊂ Ri for every i ∈ {1, 2}.
One knows that h(Ri) ⊂ Rj hence h(Ri) ⊂ h(Ri)∩Rj for every 1 6 i 6= j 6 2. This

together with

Ri ∩ h−1(∂MRj) ⊂ Ri ∩ h−1(∆) ⊂ Ri ∩ Int(L(∆)) = ∅

implies h(Ri) ⊂ Int(Rj) for every 1 6 i 6= j 6 2 and consequently h2(R1) ⊂ h(R2) ⊂
Int(R1). We now define V = Int(R1) \ h2(R1). Then the set V satisfies the following

properties:

- h(∆2) ⊂ V ,

- h2(V ) ∩ V = ∅ and h(V ) ∩ V ⊂ R2 ∩R1 = ∅.
One constructs as in Case 3 of Proposition 5.10 a topological embedding ϕ : O →M

with O = {(x, y) ∈ R2 | y 6= 0} and ∆ = ϕ
(
({0}×R)∩O

)
showing that ∆ is a Brouwer

manifold of type 3.

2. One has Cl(Γ) \ Γ = {a, b} with a 6= b in Fix(h).

Let ∆1 and ∆2 be the two connected components of ∆. One knows that R(∆) =

D \ Fix(h) where D is one of the two discs bounded by the circle Cl(∆) = ∆ ∪ {a, b}.
According to e), this circle separates h−1(∆) and h(∆) in S2 hence one deduces h(∆) ⊂
h(D) ⊂ Int(D)∪{a, b}. Let us write 6 for the cyclic order around a naturally induced



72 CHAPTER 5. PROOF OF THEOREM 4.1

by the counterclockwise orientation of S2. Possibly after changing the names of ∆1

and ∆2, the fact that h reverses the orientation implies ∆2 < h(∆1) < h(∆2) < ∆1.

Iterating h, one obtains hi(D) ⊂ Int(hi−1(D))∪{a, b} ⊂ Int(h2(D))∪{a, b} ⊂ Int(h(D))∪
{a, b} ⊂ Int(D) ∪ {a, b} with the following cyclic order around a:

∆2 < h(∆1) < h2(∆2) < h3(∆1) < h4(∆2) < h4(∆1) < h3(∆2) < h2(∆1) < h(∆2) < ∆1.

Then the set C = ∆1∪h2(∆1)∪{a, b} is a circle disjoint from h−2(∆1) and one can let

W to be the connected component of S2 \C which is disjoint from h−2(∆1). Because

C ⊂ D and h−2(∆1) ∩ D = ∅ one gets W ⊂ D hence h(W ) ∪ h2(W ) ⊂ D. This

together with the cycle order as above implies that W ∩ h(W ) = ∅ = W ∩ h2(W ) and

h(∆2) ⊂ W . As in Case 4 of Proposition 5.10 one can construct now a topological

embedding ϕ : O → M , where O = {(x, y) ∈ R2 | y 6= 0} and ∆ = ϕ
(
({0} × R) ∩ O

)
which shows that ∆ is a Brouwer manifold of type 3.

• Suppose finally that Fix(h) is a circle. Then the proof works similarly as in the

case where Fix(h) is totally disconnected and Γ is a Brouwer manifold of type 3 with

]
(
Cl(Γ) \ Γ

)
= 1. Details are left to the reader.

Thus we proved that ∆ is a Brouwer manifold and it remains to explain why

L(∆) = L(∆) ⊂ L(Γ) and R(∆) = R(∆) ⊃ R(Γ). Let U (resp. V ) be any connected

component of M \∆ meeting h−1(∆) (resp. h(∆)). Recall that each set Int(L(∆)) and

Int(R(∆)) is the union of some connected components of M \ ∆ (see (ii) in Remark

5.2) hence the assumption e) gives U ⊂ Int(L(∆)) and V ⊂ Int(R(∆)). Using (iii) in

Proposition 3.1 one deduces Int(L(∆)) ⊂ Int(L(∆)) and Int(R(∆)) ⊂ Int(R(∆)) and

afterwards L(∆) = Cl(Int(L(∆))) ⊂ Cl(Int(L(∆))) = L(∆) and R(∆) = Cl(Int(R(∆))) ⊂
Cl(Int(R(∆))) = R(∆). Because L(∆) ∪ R(∆) = M = L(∆) ∪ R(∆), it follows that

L(∆) = L(∆) and R(∆) = R(∆). Item (ii) in Remark 5.2 also gives Int(R(Γ)) ⊂
Int(R(∆)) and R(Γ) = Cl(Int(R(Γ))) ⊂ Cl(Int(R(∆))) = R(∆) = R(∆), which implies

L(∆) ⊂ L(Γ). This ends the proof of Lemma 5.13.

Proposition 5.16. Let β ∈ B. For every t ∈ [−1, 1] the set Γt
β̂
is a Brouwer

manifold of h with the same type as Γ±
β̂
. Moreover the names L(Γt

β̂
) and R(Γt

β̂
) are

consistent with the orientation of Γt
β̂
, that means that L(Γt

β̂
) (resp. R(Γt

β̂
)) lies

locally one the left (resp. right) of Γt
β̂
.

Proof. It is already known that Γ−1

β̂
= Γ−

β̂
and Γ1

β̂
= Γ+

β̂
are two Brouwer manifolds

with the same type hence one can assume t ∈ (−1, 1). For simplicity we write Γ±

and Γt instead of respectively Γ±
β̂
and Γt

β̂
. One applies Lemma 5.13 to the Brouwer

manifold Γ = Γ− and to ∆ = Γt. It is not difficult to check that the four conditions
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a)-d) in Lemma 5.13 are satisfied. Observe moreover that

R(Γt) = R(Γ−) ∪
⋃
b ∈ β̂

⋃
s∈ [−1,t]

γ
µ−1
b (s)

b and L(Γt) = L(Γ+) ∪
⋃
b ∈ β̂

⋃
s∈ [t,1]

γ
µ−1
b (s)

b .

which implies in particular ∂ML(Γt) = Γt = ∂MR(Γt) (this is also known from Remark

5.2).

It remains to prove the so-called Property (L−R) in e) of Lemma 5.13, that

means

h(Γt) ⊂ Int(R(Γt)) and h−1(Γt) ⊂ Int(L(Γt)).

As a preliminary result, let us observe that h(Γt) ∩ Γt = ∅. Indeed Γt = (Γ− ∩ Γ+) ∪⋃
b∈β̂ γ

µ−1
b (t)

b and one knows that h−1(Γ+) ⊂ Int(L(Γ+)) ⊂ Int(L(Γt)) and h(Γ−) ⊂
Int(R(Γ−)) ⊂ Int(R(Γt)). Furthermore if β′, β′′ ∈ β̂ are such that

∅ 6= h(γ
µ−1
β′′(t)

β′′ ) ∩ γµ
−1
β′ (t)

β′ ⊂ h(β′′) ∩ β′

then one gets µ−1
β′′ (t) > −1/3 and µ−1

β′ (t) < 1/3 because of the property (?) for the pa-

rameterizations of (γtβ′)t∈[−1,1] and (γtβ′′)t∈[−1,1]. Equivalently µβ′′(−1/3) < t < µβ′(1/3).

On the other hand it follows from h(β′′) ∩ β′ 6= ∅ that β′′ < β′ which contradicts the

property of the family (µβ′)β′∈β̂ given by Le Calvez’s lemma ([LC04, Lemma 4.1]).

One concludes as expected that h(Γt) ∩ Γt = ∅ for every t ∈ [−1, 1].

• We first consider the cases where β is an annulus or a strip satisfying C
β̂

= β

(they are the only situations where C
β̂

= β).

One has then Γt ⊂ β. One knows from Proposition 5.15 that R(Γ+) = R(Γ−) ∪ β
or, equivalently, that L(Γ−) = L(Γ+)∪ β. Using Items (iv)-(v) of Proposition 3.1 one

obtains

h(β) ⊂ h(R(Γ+)) ⊂ R(Γ+) = R(Γ−)∪β and h−1(β) ⊂ h−1(L(Γ−)) ⊂ L(Γ−) = L(Γ+)∪β.

Recall that h(β) ∩ β = ∅ hence

h(Γt) ⊂ h(β) ⊂ R(Γ−) ⊂ R(Γt) and h−1(Γt) ⊂ h−1(β) ⊂ L(Γ+) ⊂ L(Γt)

and consequently, since h(Γt) is disjoint from Γt = ∂MR(Γt) = ∂ML(Γt), one gets

h(Γt) ⊂ Int(R(Γt)) and h−1(Γt) ⊂ Int(L(Γt)). This shows that Γt satisfies the condition

(L−R) and therefore it is a Brouwer manifold of h with the same type as Γ±, that

means with type 1 (resp. type 2) if β is an annulus (resp. a strip satisfying C
β̂

= β).

• We exclude from now on the above simple cases, in other words we suppose

β  C
β̂
.

We write Γ±1 for the connected component of Γ± containing γ±β . As usual Γ±2
denotes the other connected component of Γ± if any and otherwise Γ±2 = Γ±1 = Γ±.

A similar convention is used for Γt = Γt1 ∪ Γt2 with γ
µ−1
β (t)

β ⊂ Γt1.
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Given i ∈ {1, 2}, remark that if Γ−i and Γ+
i intersect then they have at least one

common edge α with also α ⊂ Γti. It follows that

h(α) ⊂ h(Γti) ∩ h(Γ−) ⊂ h(Γti) ∩ Int(R(Γ−)) ⊂ h(Γti) ∩ Int(R(Γt)).

Since h(Γti) ⊂ h(Γt) is disjoint from Γt = ∂MR(Γt) one deduces that the connected set

h(Γti) is included in Int(R(Γt)). Similarly h−1(α) ⊂ h−1(Γti)∩ Int(L(Γt)) and afterwards

h−1(Γti) ⊂ Int(L(Γt)).

As an immediate consequence of the above remark, the condition (L−R) is sat-

isfied when Γ−i ∩ Γ+
i 6= ∅ for every i ∈ {1, 2}, in particular when Γ± are connected.

Note that Γt and Γ± have then the same type because they are homeomorphic.

It remains to consider the situations where Γ± are not connected and Γ+
i ∩Γ−i = ∅

for at least one index i ∈ {1, 2}.
First case : Γ−1 ∩ Γ+

1 = ∅ and Γ−2 ∩ Γ+
2 6= ∅.

In this case, the brick β is a strip containing Γt1 with ∂Mβ = γ−β t γ+
β = Γ−1 t Γ+

1

and one already knows that h(Γt2) ⊂ Int(R(Γt)) and h−1(Γt2) ⊂ Int(L(Γt)). It is also

known that the connected sets h±(Γt1) are disjoint from ∂MR(Γt) = Γt = ∂ML(Γt)

hence, in order to prove that the condition (L−R) holds, it is enough to show that

h−1(Γt1) ∩ L(Γt) 6= ∅ and h(Γt1) ∩R(Γt) 6= ∅. One has with Proposition 5.15

(∗) h(Γt1) ⊂ h(R(Γ+)) ⊂ R(Γ+) = R(Γ−) ∪
⋃
β′∈β̂

β′.

Clearly h(Γt1) ∩ β ⊂ h(β) ∩ β = ∅. Let us show that there is no brick β′ ∈ β̂ \ {β}
satisfying h(Γt1) ⊂ β′. This is certainly true if Fix(h) is totally disconnected and

]
(
Cl(Γ±) \ Γ±

)
= 2. Indeed, on one hand Cl(h(Γt)) \ h(Γt) = Cl(Γt) \ Γt = Cl(Γ±) \ Γ±

and on the other hand one deduces from Γ−2 ∩ Γ+
2 6= ∅ that every brick β′ ∈ β̂ \ {β} is

either a disc or a half-plane and therefore accumulates on at most one fixed point.

Assume now that Fix(h) is totally disconnected and Cl(Γ±)\Γ± = {a}. Then Cl(Γt1) =

Γt1 ∪ {a} is a circle and, because Γt1 ⊂ β = l(Γ−1 ) ∩ r(Γ+
1 ), each of both discs D1, D2

bounded by Cl(Γt1) contains at least one connected component of R(Γ−) or of L(Γ+).

Arguing by contradiction, suppose that h(Γt1) ⊂ β′ for some brick β′ ∈ β̂ \ {β} which
is necessarily a half-plane accumulating on a. Then for every i ∈ {1, 2} one has

∂h(Di) = h(Γt1) ∪ {a} ⊂ β′ ∪ {a} = Cl(β′). Since Cl(β′) is a disc, it follows that

there exists i ∈ {1, 2} such that h(Di) ⊂ Cl(β′). Thus β′ contains the h-image of

a connected component of R(Γ−) or of L(Γ+) which contradicts h2(β′) ∩ β′ = ∅. If

finally Fix(h) is a circle then one can compactify each connected component M1,

M2 of M with one point and the same arguments as in the previous situation also

work. This proves that in every case h(Γt1) 6⊂ β′ for all β′ ∈ β̂. Recall furthermore

that the bricks in β̂ are pairwise disjoint hence one deduces from (∗) above that

∅ 6= h(Γt1) ∩R(Γ−) ⊂ h(Γt1) ∩R(Γt).
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One obtains similarly from

(∗∗) h−1(Γt1) ⊂ h−1(L(Γ−)) ⊂ L(Γ−) = L(Γ+) ∪
⋃
β′∈β̂

β′.

that h−1(Γt1)∩L(Γt) 6= ∅. Thus the condition (L−R) holds true and Γt is a Brouwer

manifold of type 3.

Second case : Γ−1 ∩ Γ+
1 6= ∅ and Γ−2 ∩ Γ+

2 = ∅.
One knows that the strip with frontier Γ−2 tΓ+

2 and containing l(Γ−2 )∪r(Γ+
2 ) actually

consists of a single brick β∗ ∈ β̂ (see Claim 3 in the proof of Proposition 5.15) hence

one reduces to the first case replacing β with β∗.

Third case : One has Γ+
i ∩ Γ−i = ∅ for every i ∈ {1, 2}.

For convenience we rename β = β1. Then for every i ∈ {1, 2} there is a brick βi

which is is a strip with frontier ∂Mβi = γ−βi t γ
+
βi

= Γ−i t Γ−i (for i = 2 this requires

again Claim 3 in the proof of Proposition 5.15) and one has β̂ = β̂1 = β̂2 = {β1, β2}.
Let us show that h(Γt2) ⊂ Int(R(Γt)) and h−1(Γt2) ⊂ Int(L(Γt)). Since h(Γt) is disjoint

from Γt = ∂ML(Γt) = ∂MR(Γt), one of the following situations occurs:

1. h(Γt2) ⊂ Int(R(Γt)) and h−1(Γt2) ⊂ Int(L(Γt)),

2. h(Γt2) ⊂ Int(L(Γt)),

3. h−1(Γt2) ⊂ Int(R(Γt)).

Let us prove that actually neither (ii) nor (iii) occurs.

- Suppose first that (ii) holds. For every i ∈ {1, 2} we denote by Si the strip

included in βi and with frontier ∂MSi = Γti t Γ+
i , in other words Si =

⋃
s∈[t,1] Γsi . Note

that S1 t S2 = R(Γ+) \ Int(R(Γt)) whether Fix(h) is a circle or a totally disconnected

set and, when Fix(h) is totally disconnected, whether Cl(Γ±) \Γ± has cardinality one

or two. Our aim is to prove that h(S2) ⊂ Int(S1) and afterwards it will be shown that

this inclusion lead to a contradiction.

Since Γt2 ⊂ R(Γt) ⊂ R(Γ+) one gets h(Γt2) ⊂ Int(R(Γ+)) \R(Γt) = Int(S1) t Int(S2)

and more precisely h(Γt2) ⊂ Int(S1) because h(Γt2) ∩ Int(S2) ⊂ h(β2) ∩ β2 = ∅.

� Suppose also that Fix(h) is totally disconnected and Cl(Γ±) \ Γ± = {a, b} with

a 6= b in Fix(h). Recall from the proof of Proposition 3.1 that R(Γ−) = D−\Fix(h)

where D− is one of the two discs bounded by the circle Cl(Γ−) = Γ− ∪ {a, b} and
let W = β1 ∪ D− ∪

⋃
s∈[−1,t] Γs2. In other words, W is the disc bounded by the

circle Cl(Γ+
1 ∪ Γt2) = Γ+

1 ∪ Γt2 ∪ {a, b} and such that R(Γ−) ⊂ W . One knows that

h(Γt2) ⊂ Int(S1) ⊂ Int(W ) hence, up to conjugacy by an orientation preserving

homeomophism of S2, one can assume thatW is the Euclidean closed unit disc in

R2 with a = (0,−1), b = (0, 1), Γ+
1 = ∂W ∩

(
(−∞, 0)×R

)
, Γt2 = ∂W ∩

(
(0,+∞)×R

)
and h(Γt2) = {0} × (−1, 1). By construction, the strip S2 lies locally on the left

of Γt2 ⊂ ∂MS2 and S2 ∩ W = Γt2 hence Γt2 is oriented from b to a. Because h

reverses the orientation, h(S2) lies locally on the right of h(Γt2) oriented from
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h(b) = b to h(a) = a. Since moreover h(S2) ∩ Γ+
1 ⊂ Int(R(Γ+)) ∩ Γ+ = ∅ one

obtains h(S2) ⊂ W∗ \ Cl(Γ+
1 ) where W∗ = {(x, y) ∈ W | x 6 0}. Furthermore

h(Γt2) ⊂ Int(S1) separates Γt1 and Γ+
1 in S1 ⊂ W and therefore Γt1 ⊂ W \W∗. It

follows that Int(W∗) ⊂ Int(S1) which implies h(S2) ⊂ Int(S1) (Fig. 5.10).

b

a

Γ+
1

Γt
2

Γ+
2

S2

Γt
1

h(S2)

h(Γt
2)

S1

Figure 5.10 – The situation (ii) when ](Cl(Γ±) \ Γ±) = 2

� Suppose next that Fix(h) is totally disconnected and that ]
(
Cl(Γ±)\Γ±

)
= 1. We

first deal with the case where R(Γ+) has two connected components, denoted

by R+
1 and R+

2 . Then the set R(Γ−) (resp. R(Γt)) also has two connected

components R−1 and R−2 (resp. Rt
1 and Rt

2) which can be numbered so that

R−i ⊂ Rt
i ⊂ R+

i for every i ∈ {1, 2}. In this case one has Si = R+
i \Int(Rt

i) for every

i ∈ {1, 2}. One knows from the proof of Proposition 3.1 that h(R−i ) ⊂ Int(R−j ) and

h(R+
i ) ⊂ Int(R+

j ) for every i 6= j in {1, 2}. One has then ∅ 6= h(R−2 ) ⊂ h(Rt
2)∩R−1 ⊂

h(Rt
2) ∩Rt

1. This together ∂Mh(Rt
2) ∩Rt

1 = h(Γt2) ∩Rt
1 ⊂ Int(L(Γt)) ∩R(Γt) = ∅

implies Rt
1 ⊂ Int(h(Rt

2)). Hence one obtains as announced h(S2) = h(R+
2 ) \

Int(h(Rt
2)) ⊂ Int(R+

1 ) \Rt
1 = Int(S1) (Fig 5.11).

Let us study now the case where L(Γ+) has two connected components, denoted

by L−1 and L−2 . Then L(Γt) (resp. L(Γ−)) also has two connected components

Lt1 and Lt2 (resp. L−1 and L−2 ) with L+
i ⊂ Lti ⊂ L−i for any i ∈ {1, 2}. Recall that

h−1(L−i ) ⊂ Int(L−j ) and h−1(L+
i ) ⊂ Int(L+

j ) for 1 6 i 6= j 6 2. In this situation one

has Si = Lti \ Int(L+
i ). One deduces from h(Γt2) ⊂ Int(L(Γt)) = Int(Lt1) t Int(Lt2)

that h(Γt2) ⊂ Int(Lt1) since otherwise h(Γt2) ⊂ Lt2 and therefore

∅ 6= h(Γt2) ∩ Lt2 ⊂ h(L−2 ) ∩ L−2 = h
(
L−2 ∩ h−1(L−2 )

)
⊂ h(L−2 ∩ L−1 ) = ∅

which is absurd. Now h(Γt2) ⊂ Int(Lt1) implies that h(Lt2) ⊂ Int(Lt1) or M \
h(Int(Lt2)) ⊂ Int(Lt1). The second inclusion is equivalent toM\Int(Lt2) ⊂ h−1(Int(Lt1))
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a

Γ+
2

Γt
2

S2

Γ+
1

h(S2)

Γt
1

h(Γ+
2 )

S1

Figure 5.11 – The situation (ii) when ](Cl(Γ±) \ Γ±) = 1 and R(Γ±) has two connected
components

hence it implies

Γ−2 ⊂M \ Int(Lt2) ⊂ h−1(Lt1) ⊂ h−1(L−1 ) ⊂ Int(L−2 )

which is certainly not true. Then one obtains h(Lt2) ⊂ Int(Lt1) and it also follows

that

h(S2) = h(Lt2) \ Int(h(L+
2 )) ⊂ Int(Lt1) \ L+

1 = Int(S1).

� If Fix(h) is a circle then one obtains h(S2) ⊂ Int(S1) similarly as in the previous

case where Γ± accumulate on a single fixed point. Details are left to the reader.

Thus it has been shown that if (ii) holds true then one always has h(S2) ⊂ Int(S1).

Since the foliation F is trivial in S2, there exists a segment γ ⊂ S2 joining a point

xt ∈ Γt2 and a point x+ ∈ Γ+
2 such that γ \ {xt, x+} ⊂ Int(S2) and γ intersects the

leaf Γs2 transversely at only one point for every s ∈ (t, 1). We also join a point of Γ+
1

and h(x+) by a segment γ1 and a point of Γt1 and h(xt) by a segment γ2 such that

γ∗ = γ1 ∪ h(γ) ∪ γ2 ⊂ S1 is a segment. As a remark, h(Γ+
2 ) and h(Γt2) are arranged in

Int(S1) as pictured on Fig. 5.12, that means that h(Γ+
2 ) separates Γ+

1 and h(Γt2) in

S1. This simple property is left to the reader because it is not used in the rest of the

proof.

We construct now a continuous map ψ : γ∗ → γ∗ as follows. For each m ∈ γ∗

there exists a unique s ∈ [t, 1] such that m ∈ Γs1. Because the set Γs2 ∩ γ consists of

a single point, we may define ψ(m) to be the point in h(Γs2 ∩ γ) ⊂ h(γ) ⊂ γ∗ (see

Fig. 5.12). It is not difficult to check that ψ is continuous hence there exists m ∈ γ∗
such that ψ(m) = m. This implies h(Γs2) ∩ Γs1 6= ∅ where m ∈ Γs1, a contradiction with

h(Γs) ∩ Γs = ∅. This proves that the situation (ii) cannot occur.

- Suppose now that (iii) holds. Consider the strip Si ⊂ βi with frontier ∂MSi =

Γ−i t Γti (i ∈ {1, 2}). By switching the letters R(·) and L(·), the letters R(·) and

L(·), the homeomorphisms h and h−1, the same arguments as above arguments give

h−1(S2) ⊂ S1 (see Figs. 5.13 and 5.14) and then there exists s ∈ [−1, t] such that

h−1(Γs) ∩ Γs 6= ∅ which is again a contradiction.
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Γ+
1

m
ψ(m)

h(Γs
2)

Γs
1

h(Γ+
2 ) h(Γt

2) Γt
1

γ∗

Figure 5.12 – The construction of the map ψ

b
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Γ−
1

Γt
2

Γ−
2

S2

Γt
1

h−1(S2)

S1

h−1(Γt
2)

Figure 5.13 – The case ](Cl(Γ±) \ Γ±) = 2

a

Γ−
2

Γt
2

S2

Γ−
1

h−1(S2)

Γt
1

h−1(Γ−
2 )

S1

Figure 5.14 – The case ](Cl(Γ±)\Γ±) = 1 and the set L(Γ±) has two connected components

This proves the property (i), that means h(Γt2) ⊂ Int(R(Γt)) and h−1(Γt2) ⊂
Int(L(Γt)). Clearly the same inclusions are still true with Γt1 instead of Γt2 which

shows that Property (L−R) holds and therefore Γt is a Brouwer manifold.

Finally the assertion about the orientation of Γt and its two sides L(Γt) and R(Γt)

is direct consequence of L(Γt) = L(Γt) and R(Γt) = R(Γt). This ends the proof of

Proposition 5.16.
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Proposition 5.17. For every β, β′ ∈ B and t, t′ ∈ [−1, 1] the two Brouwer manifolds

Γt
β̂
and Γt

′

β̂′
have no transverse intersection.

Proof. The result is clear if β̂ = β̂′. Let us consider the case β̂ 6= β̂′. Observe first that

the two sets L(Γ−
β̂

) and L(Γ−
β̂′

) are disjoint in B iff they are disjoint in M hence we do

not need to specify the reference set B or M when we write below that L(Γ−
β̂

)∩L(Γ−
β̂′

)

is empty or not. Similarly for R(Γ−
β̂

)∩R(Γ−
β̂′

) and L(Γ+

β̂
)∩L(Γ+

β̂′
) and R(Γ+

β̂
)∩R(Γ+

β̂′
).

Claim 1. One has

• R(Γ−
β̂

) ∩R(Γ−
β̂′

) = ∅ iff R(Γ+

β̂
) ∩R(Γ+

β̂′
) = ∅,

• L(Γ−
β̂

) ∩ L(Γ−
β̂′

) = ∅ iff L(Γ+

β̂
) ∩ L(Γ+

β̂′
) = ∅.

Proof. We only prove the first assertion since the second one can be obtained in

the same way by switching the letters l(·) and r(·), the letters R(·) and L(·) and the

symbols + and −. If R(Γ+

β̂
)∩R(Γ+

β̂′
) = ∅ then also R(Γ−

β̂
)∩R(Γ−

β̂′
) = ∅ because Γ−

β̂
� Γ+

β̂

and Γ−
β̂′
� Γ+

β̂′
. Conversely, suppose that R(Γ−

β̂
) ∩ R(Γ−

β̂′
) = ∅. Using Proposition 5.15

one gets

R(Γ+

β̂
) ∩R(Γ+

β̂′
) =
((
R(Γ+

β̂
) ∩ L(Γ−

β̂
)
)
∪
(
R(Γ+

β̂
) ∩R(Γ−

β̂
)
))
∩((

R(Γ+

β̂′
) ∩ L(Γ−

β̂′
)
)
∪
(
R(Γ+

β̂′
) ∩R(Γ−

β̂′
)
))

=
(
β̂ ∩ β̂′

)
∪
(
β̂ ∩R(Γ+

β̂′
) ∩R(Γ−

β̂′
)
)
∪
(
β̂′ ∩R(Γ+

β̂
) ∩R(Γ−

β̂
)
)
∪

∪
(
R(Γ+

β̂
) ∩R(Γ−

β̂
) ∩R(Γ+

β̂′
) ∩R(Γ−

β̂′
)
)
.

By hypothesis one has β̂ ∩ β̂′ = ∅ = R(Γ+

β̂
) ∩ R(Γ−

β̂
) ∩ R(Γ+

β̂′
) ∩ R(Γ−

β̂′
). Using again

Proposition 5.15 one also has β̂ ∩ R(Γ+

β̂′
) ∩ R(Γ−

β̂′
) ⊂ l(Γ−

β̂
) ∩ R(Γ−

β̂′
) and this latter

set is empty (as a subset of B) because otherwise there exists an edge α ⊂ Γ−
β̂
such

that l(α) ∈ R(Γ−
β̂′

) and then r(α) ∈ r(Γ−
β̂

) ∩ R(Γ−
β̂′

) ⊂ R(Γ−
β̂

) ∩ R(Γ−
β̂′

) = ∅ which is

absurd. One gets likewise β̂′ ∩ R(Γ+

β̂
) ∩ R(Γ−

β̂
) ⊂ l(Γ−

β̂′
) ∩ R(Γ−

β̂
) = ∅ which proves

R(Γ+

β̂
) ∩R(Γ+

β̂′
) = ∅.

- If L(Γ−
β̂

) ∩ L(Γ−
β̂′

) = ∅ then Γt
β̂
⊂ L(Γt

β̂
) ⊂ L(Γ−

β̂
) ⊂ R(Γ−

β̂′
) ⊂ R(Γt

′

β̂′
) hence Γt

β̂
and

Γt
′

β̂′
have no transverse intersection.

- If R(Γ−
β̂

) ∩ R(Γ−
β̂′

) = ∅ then by Claim 1 R(Γ+

β̂
) ∩ R(Γ+

β̂′
) = ∅ and therefore Γt

β̂
and

Γt
′

β̂′
have no transverse intersection because Γt

β̂
⊂ R(Γt

β̂
) ⊂ R(Γ+

β̂
) ⊂ L(Γ+

β̂′
) ⊂ L(Γt

′

β̂′
).

- It remains to study the situation where R(Γ−
β̂

)∩R(Γ−
β̂′

) 6= ∅ and L(Γ−
β̂

)∩L(Γ−
β̂′

) 6= ∅.
One has the following result.

Claim 2. Suppose that R(Γ−
β̂

) ∩ R(Γ−
β̂′

) 6= ∅ and L(Γ−
β̂

) ∩ L(Γ−
β̂′

) 6= ∅. Then the four

Brouwer manifolds Γ−
β̂
, Γ+

β̂
, Γ−

β̂′
and Γ+

β̂′
are pairwise comparable.
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Proof. - One already knows that Γ−
β̂
≺ Γ+

β̂
and Γ−

β̂′
≺ Γ+

β̂′
.

- One also knows that the Brouwer manifolds Γ−
β̂

and Γ−
β̂′

have no transverse

intersection. Then combining Proposition 3.3 with our assumption R(Γ−
β̂

) ∩
R(Γ−

β̂′
) 6= ∅ 6= L(Γ−

β̂
) ∩ L(Γ−

β̂′
) one obtains that either R(Γ−

β̂
) ⊂ R(Γ−

β̂′
) or L(Γ−

β̂
) ⊂

L(Γ−
β̂′

), that means Γ−
β̂
� Γ−

β̂′
or Γ−

β̂′
� Γ−

β̂
.

- One has ∅ 6= R(Γ−
β̂

) ∩ R(Γ−
β̂′

) ⊂ R(Γ−
β̂

) ∩ R(Γ+

β̂′
) hence R(Γ−

β̂
) 6⊂ L(Γ+

β̂′
) in B and

moreover, with Claim 1, ∅ 6= L(Γ+

β̂
)∩L(Γ+

β̂′
) ⊂ L(Γ−

β̂
)∩L(Γ+

β̂′
) hence L(Γ−

β̂
) 6⊂ R(Γ+

β̂′
)

in B. Since Γ−
β̂
and Γ+

β̂′
have no transverse intersection, the above observations

together with Proposition 3.3 imply that R(Γ−
β̂

) ⊂ R(Γ+

β̂′
) or L(Γ−

β̂
) ⊂ L(Γ+

β̂′
), i.e.,

Γ−
β̂
� Γ+

β̂′
or Γ+

β̂′
� Γ−

β̂
. Reversing the roles of β and β′ one checks likewise that

Γ−
β̂′

and Γ+

β̂
are comparable.

- Finally L(Γ+

β̂
)∩L(Γ+

β̂′
) 6= ∅ 6= R(Γ−

β̂
)∩R(Γ−

β̂′
) ⊂ R(Γ+

β̂
)∩R(Γ+

β̂′
) also imply L(Γ+

β̂
) 6⊂

R(Γ+

β̂′
) and R(Γ+

β̂
) 6⊂ L(Γ+

β̂′
) in B. Using one more time Proposition 3.3 with the

fact that Γ+

β̂
and Γ+

β̂′
have no transverse intersection, one deduces that R(Γ+

β̂
) ⊂

R(Γ+

β̂′
) or L(Γ+

β̂
) ⊂ L(Γ+

β̂′
). Equivalently Γ+

β̂
� Γ+

β̂′
or Γ+

β̂′
� Γ+

β̂
.

This completes the proof of Claim 2.

Recall that the L∗-intervals (Γ−
β̂
,Γ+

β̂
) and (Γ−

β̂′
,Γ+

β̂′
) are empty (Proposition 5.14)

hence Claim 2 shows that either Γ+

β̂
� Γ−

β̂′
or Γ+

β̂′
� Γ−

β̂
. The first inequality implies

that Γt
β̂
⊂ R(Γt

β̂
) ⊂ R(Γ+

β̂
) ⊂ R(Γ−

β̂′
) ⊂ R(Γt

′

β̂′
) and then Γt

β̂
and Γt

′

β̂′
have no transverse

intersection. The second inequality gives likewise Γt
′

β̂′
⊂ R(Γt

β̂
) hence again Γt

β̂
and

Γt
′

β̂′
have no transverse intersection. Proposition 5.17 is proved.

At this stage we have built a family (Γt
β̂
)β∈B, t∈[−1,1] of Brouwer manifolds which

have pairwise no transverse intersection and which cover M . Moreover the collection

F∗ of all the connected components of these Brouwer manifolds defines an oriented

topological quasi-foliation of M . Precisely any point z 6∈ Σ(D) belongs to a unique

Brouwer manifold Γt
β̂
and F∗ defines a foliation in the neighborhood of z. A point

z ∈ Σ(D) \ V may belong to several Γt
β̂
but all of them contain the (unique) edge

passing through z hence F∗ also defines a foliation in a neighborhood of z. It remains

to remove the singularities at the vertices z ∈ V , which is the purpose of the next

Section 5.3.3

5.3.3 Construction of an oriented topological foliation

Following Le Calvez ([LC04]), it is possible to desingularize the “quasi-foliation”

F∗ above in order to get an oriented topological foliation of M . The modifications

to perform are already explained in [LC04] and they are repeated below only for the

reader’s convenience; we just add a few details about non compact edges and bricks,
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which do not exist in [LC04] (similar variations are also implicit in [LC05]). After

performing these perturbations of F∗ we shall show that the obtained foliation F of

M comes from a family of Brouwer manifolds as mentionned in Theorem 4.1.

An edge α is said to be singular if L∗(α) contains a single element; otherwise α is

said to be regular. We know that there are two types of vertices:

- a vertex of the first type is the initial vertex of two edges and the final vertex

of one edge. It is then also the initial vertex of some brick;

- a vertex of the second type is the initial vertex of one edge and the final vertex

of two edges. It is then the final vertex of some brick.

For every α ∈ E, we choose a connected and simply connected open neighborhood

Uα of α in M verifying h(Uα) ⊂ Int(R(Γ−α )) and h−1(Uα) ⊂ Int(L(Γ+
α )). Thus for every

Γ ∈ L∗(α) we get h(Uα) ⊂ Int(R(Γ)) and h−1(Uα) ⊂ Int(L(Γ)). We can also ask that for

any two distinct edges α, α′ ∈ E one has Uα∩Uα′ 6= ∅ iff α and α′ are adjacent. Next we

choose for every vertex σ ∈ V a connected and simply connected open neighborhood

Uσ of σ included in Uα1 ∩ Uα2 ∩ Uα3, where α1, α2, α3 are the edges having σ as an

endpoint, such that Uσ meets only the bricks and the edges adjacent to σ.

σ

α1 α2

α3

Kσ

Figure 5.15 – The square Kα ⊂ Uσ for a vertex σ of the first type

• Let σ be a vertex of the first type and consider the edges (αi)16i63 such that σ =

v+(α1) = v−(α2) = v−(α3), r(α3) = l(α2). Conjugating h by an orientation preserving

homeomorphism, one may suppose that σ = (0, 0) and that Kσ = [−1, 1]2 ⊂ Uσ with

- α1 ∩Kσ = [−1, 0]× {0},

- α2 ∩Kσ = [0, 1]× {0},

- α3 ∩Kσ = {0} × [0, 1] (see Fig. 5.15).

The edge α1 is regular since it is included in at least two manifolds of L∗, one of

them containing α2 and the other containing α3. Remark also that σ is the initial

vertex of the brick β = l(α2) = r(α3).

� Suppose that both α2 and α3 are regular (see Fig. 5.16). We define three

quadrangles T 1
σ , T

2
σ and T 3

σ as follows
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- the vertices of T 1
σ are (−1, 0), (0, 0), (0, 1/4) and (−1, 1/4);

- the vertices of T 2
σ are (−1, 1/4), (0, 1/4), (0, 1) and (−1, 1/2);

- the vertices of T 3
σ are (−1, 1/2), (0, 1), (−1/2, 1) and (−1, 3/4).

Next we define the following segments

- I+(α1) = {−1} × [0, 3/4], I−(α2) = {0} × [0, 1/4], I−(α3) = [−1/2, 0]× {1},
- I−(β) = {0} × [1/4, 1] and Ic+(α1) = {−1} × [1/4, 1/2].

The segments I+(α1), I−(α2) and I−(β) are oriented with y increasing and the segment

I−(α3) is oriented with x decreasing. One foliates the quadrangles T iσ, i ∈ {1, 2, 3}, by
segments oriented with x increasing as follows. The quadrangle T 1

σ is foliated by

the horizontal segments, T 3
σ by the segments parallel to the oblique segments and

finally T 2
σ by the segments joining z ∈ Ic+(α1) to λσ(z) ∈ I−(β) where λσ : Ic+(α1) →

I−(β) is an increasing homeomorphism, called a link homeomorphism. According to

Proposition 5.12 one can construct in each segment I−(αi), i ∈ {2, 3}, a compact set

L−(αi) containing the endpoints of I−(αi) which is isomorphic to L∗(αi) as an ordered

topological space. We denote by θ−(αi) : L∗(αi)→ L−(αi) an increasing isomorphism

between these two sets. Transporting L−(α2) t L−(α3) on I+(α1) with the foliation

of T 1
σ t T 3

σ , one obtains an isomorphism θ+(α1) : L∗(α1) = L∗(α2) t L∗(α3) → L+(α1)

with L+(α1) ⊂ I+(α1).

I−(α3)

I−(β)

I−(α2)

I+(α1)

T 3
σ

T 2
σ

T 1
σ

σ

Figure 5.16 – The case where α2 and α3 are regular

� Suppose that α2 is regular and α3 is singular. Then we consider only the

two quadrangles T 1
σ and T 2

σ with their foliations as above (see Fig. 5.17). We let

I+(α1) = {−1} × [0, 1/2] which is oriented with y increasing, the segments I−(α2)

and I−(β) are the same as before and I−(α3) is reduced to the point (0, 1). We let

L−(α3) = {(0, 1)}. We construct in I−(α2) a closed set L−(α2) containing the endpoints

of this segment and which is isomorphic to L(α2). Then L−(α2) is transported in

I+(α1) by the foliation of T 1
σ which gives, after adding the point (−1, 1/2), a set

L+(α1) ⊂ I+(α1) isomorphic to L∗(α1).

� Suppose now that α2 is singular and α3 is regular. Then the quadrangle T 3
σ

and its foliation are the same as in the first case. The quadrangle T 2
σ has vertices

(−1, 0), (0, 0), (0, 1), (−1, 1/2) (see Fig. 5.18). One defines



5.3. CONSTRUCTION OF THE FOLIATION 83

σα1 α2

α3

Figure 5.17 – The case where α2 is regular and α3 is singular

- I+(α1) = {−1} × [0, 3/4],

- I−(α3) = [−1/2, 0]× {1},
- I−(β) = {0} × [0, 1].

One lets I−(α2) = {(0, 0)} = L−(α2) and L−(α3) is a closed subset of I−(α3) containing

the endpoints of this segment and which is isomorphic to L∗(α3). Transporting L−(α3)

in I+(α1) with the foliation of T 3
σ and adding the point (−1, 0), one gets a set L+(α1) ⊂

I+(α1) isomorphic to L∗(α1).

σα1 α2

α3

Figure 5.18 – The case where α2 is singular and α3 is regular

� Suppose finally that both α2 and α3 are singular. In this case, we consider

only the quadrangle T 2
σ with vertices (−1, 0), (0, 0), (0, 1) and (−1, 1/2). It is foliated

using a link homeomorphism λσ (Fig. 5.19). The sets L−(α2) and L−(α3) are reduced

to {σ} = {(0, 0)} and {(0, 1)} respectively. We have L+(α1) = {(−1, 0), (−1, 1/2)}.
Remark that only two Brouwer manifolds of L∗ contain α1.

α3

α2α1 σ

Figure 5.19 – α2, α3 are singular

It is also convenient to think of T 1
σ (resp. T 3

σ) as the emptyset when α2 (resp.

α3) is singular. This allows to write for instance
⋃
i∈{1,2,3} T

i
σ in all cases, avoiding a

cumbersome discussion about regular/singular edges among α2 and α3.

• Consider now a vertex σ of the second type with the edges (αi)16i63 such that

σ = v−(α1) = v+(α2) = v+(α3), r(α3) = l(α2). Remark that σ is the final vertex of
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the brick β = l(α2) = r(α3). As explained in [LC04], similar objects as before may

be constructed in this situation. We start from the previous situation and carry out

a symmetry with respect to the vertical axis. Let us explain the construction in the

case where α2 and α3 are regular (see Fig. 5.20). We also suppose that σ = (0, 0),

Kσ = [−1, 1]2 ⊂ Uσ and

- α1 ∩Kσ = [0, 1]× {0},
- α2 ∩Kσ = [−1, 0]× {0},
- α3 ∩Kσ = {0} × [0, 1].

Note that α1 is necessarily regular since it lies on at least two manifolds of L∗, one
of them containing α2 and the other containing α3. We define three quadrangles T 1

σ ,

T 2
σ and T 3

σ as follows

- the vertices of T 1
σ are (0, 0), (1, 0), (1, 1/4) and (0, 1/4);

- the vertices of T 2
σ are (0, 1/4), (1, 1/4), (1, 1/2) and (0, 1);

- the vertices of T 3
σ are (0, 1), (1, 1/2), (1, 3/4) and (1/2, 1).

Next we define the following segments

- I−(α1) = {1} × [0, 3/4], I+(α2) = {0} × [0, 1/4], I+(α3) = [0, 1/2]× {1},
- I+(β) = {0} × [1/4, 1] and Ic−(α1) = {1} × [1/4, 1/2].

The segments I−(α1), I+(α2) and I+(β) are oriented with y increasing and the segment

I−(α3) is oriented with x increasing. For i ∈ {1, 2, 3}, the quadrangle T iσ is foliated

by some segments oriented with x increasing as follows (see also Fig. 5.20). One

foliates T 1
σ by the horizontal segments, T 3

σ by the segments parallel to the oblique

segments. Finally T 2
σ is foliated by the segments joining the points z ∈ I+(β) to

λσ(z) ∈ Ic−(α1) where λσ is a link homeomorphism from I+(β) onto Ic−(α1). For

i ∈ {2, 3}, one can construct in the segment I+(αi) a closed set L+(αi) containing the

endpoints of I+(αi) which is isomorphic to L∗(αi) as an ordered topological space.

We denote by θ+(αi) : L∗(αi) → L+(αi) an increasing isomorphism between these

two sets. Transporting L+(α2) t L+(α3) on I−(α1) with the foliation of T 1
σ t T 3

σ , we

obtain an increasing isomorphism θ−(α1) : L∗(α1) = L∗(α2) t L∗(α3) → L−(α1) where

L−(α1) ⊂ I−(α1).

• Consider a regular edge α which is a segment, so that it possesses an initial

vertex v−(α) and a final vertex v+(α). One constructs a quadrangle Tα ⊂ l(α) whose

frontier consists of I−(α) t I+(α) together with a segment from the upper endpoint

of I−(α) to the one of I+(α) together with the subsegment of α joining the lower

endpoint of I−(α) with the one of I+(α). We consider the increasing homeomorphism

fα = θ+(α) ◦ (θ−(α))−1 : L−(α)→ L+(α)

which may be extended to a homeomorphism (again denoted by fα) from I−(α) onto

I+(α).
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α3

α1α2

β

β

I+(α3)

I−(α1)

I+(α2)

I+(β)

σ σ

Figure 5.20 – σ is a vertex of the second type and α2, α3 are regular

The quadrangle Tα is foliated by oriented segments, each of them beginning at

some point z ∈ I−(α) and ending at fα(z) ∈ I+(α). We give two examples, the first

one is pictured on Fig. 5.21 where v−(α) is a vertex of the first type and v+(α) is of

the second type; the second example is pictured on Fig. 5.22 where v−(α) and v+(α)

are vertices of the first type.

α v+(α)v−(α)

Tα

I+(α)

I−(α)

Figure 5.21 – v−(α) is of the first type and v+(α) is of the second type

αv−(α)

I−(α)

v+(α)

Tα

I+(α)

Figure 5.22 – v−(α) and v+(α) are of the first type

• If a regular edge α is a half-line of M , so that it possesses only an initial vertex

v−(α) (resp. a final vertex v+(α)) then one choose a half-plane Tα ⊂ l(α) which is
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closed in M and whose frontier ∂MTα contains I−(α) (resp. I+(α)) together with the

half-line included in α emanating from the lower endpoint of I−(α) (resp. I+(α)).

Then Tα is foliated by a continuous family of half-lines whose endpoints belong to

I−(α) (resp. to I+(α)) and which are oriented from (resp. towards) their endpoints.

Figure 5.23 describes the foliation of Tα in the case where M is connected. In all

cases it is supposed that Tα ⊂ Uα.

fixed points

α α

I−(α)

I+(α)

v−(α) v+(α)

Tα

Figure 5.23 – Examples of sets Tα when the edge α is an half-line

The set ( ⋃
σ∈V

⋃
i∈{1,2,3}

∂MT
i
σ

)
∪
( ⋃
α∈E

∂MTα

)
∪ Σ(D)

is the skeleton of a new brick decomposition D∗ of M whose set of bricks is denoted

by B∗. Observe that T kσ ∈ B∗ and Tα ∈ B∗ for every σ ∈ V , k ∈ {1, 2, 3} and α ∈ E.
These bricks are foliated as explain above. By construction, every other brick of B∗

is included in a brick β ∈ B and every brick β ∈ B contains a single brick of B∗

different from the T kσ ’s and the Tα’s, which is denoted by Tβ, (maybe Tβ = β if γ−β is

reduced to a single edge). More precisely the bricks of B∗ included in β ∈ B are

- the brick Tα for every edge α such that l(α) = β;

- the bricks T kσ , k ∈ {1, 2, 3}, for every vertex σ ∈ V such that there exist two

distinct edges α, α′ included in γ−β and satisfying v+(α) = v−(α′) = σ (if any);

- the brick Tβ, which is always homeomorphic to β.

The Tβ’s (β ∈ B) are foliated as follows:

- If β ∈ B is a disc then one foliates the brick Tβ by a continuous family (γtβ)t∈[−1,1]

of oriented segments joining a point of I−(β) and a point of I+(β) (Fig. 5.24).

- If β ∈ B is a half-plane then one foliates the brick Tβ by a continuous family

(γtβ)t∈[−1,1] of oriented half-lines of M emanating from a point of I−(β) (resp. ending

at a point of I+(β)) if β admits an initial (resp. a final) vertex (Fig. 5.25). If β is an

annulus then one foliates the brick Tβ by an family (γtβ)t∈[−1,1] of oriented circles.

- Finally if β ∈ B is a strip then Tβ is trivially foliated by a family (γtβ)t∈[−1,1] of

oriented lines of M .

Let us emphasize that then these leaves γtβ ⊂ Tβ are different from the leaves

γtβ ⊂ β considered in Section 5.3.2, except when Tβ = β. In the current Section 5.3.3,
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Tβ

Figure 5.24 – The foliation in Tβ when β ∈ B is a disc

Tβ

fixed point

Figure 5.25 – The foliation in Tβ when β ∈ B is a half-plane with an initial vertex

the symbol γtβ always refers to a leaf of Tβ as defined above when t ∈ [−1, 1]. The

symbols γ−β and γ+
β denote as before the subsets of ∂Mβ given by Propositions 5.4-5.7,

so that γ−β ∪ γ+
β = ∂Mβ. The parameterization by t of any such family (γtβ)t∈[−1,1] is

choosen coherently with the signs ± in γ±β , that means that

γ−1
β ⊂ ∂M

( ⋃
α∈E |α⊂γ−β

Tα ∪
⋃
σ

⋃
i∈{1,2,3}

T iσ

)
and γ1

β ⊂ γ+
β

where
⋃
σ denotes here the union over all the vertices σ ∈ V such that there exists

two edges α 6= α′ in γ−β satisfying v+(α) = σ = v−(α′). Moreover the orientation of

γ1
β is choosen compatibly with the one of γ+

β ⊂ Σ given by Proposition Propositions

5.4-5.7, which defines unambiguously the orientation of each leaf γtβ ⊂ Tβ.

Piecing together the above foliations in the various bricks of B∗ one gets an ori-

ented topological foliation F of M . We introduce now some notation in order to

describe conveniently the leaves of F . We let A = E t B. A sequence (εi)i∈I ∈ AI ,
where I is a Z-interval, is said to be admissible if εi (resp. εi+1) has a final (resp.

initial) vertex and v+(εi) = v−(εi+1) for every pair {i, i+ 1} ⊂ I.

- If ε ∈ A has an initial vertex and a final vertex then any leaf in Tε originates from

some point z ∈ I−(ε) and ends at a point of I+(ε) so that it may be concatenated

with a (unique) leaf in some quadrangle T kv+(ε) (k ∈ {1, 2, 3}) ending at a point

z′ ∈ I−(ε′) for some ε′ ∈ A such that v−(ε′) = v+(ε). Such a concatenation is
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denoted by ξzε and one gets a continuous one-to-one map

ψε : I−(ε)→
⋃

{ε′ ∈A | v−(ε′)=v+(ε)}

I−(ε′)

by letting ψε(z) = z′.

- If ε ∈ A has an initial vertex but no final vertex then we define ξzε to be the leaf

in Tε originating from z ∈ I−(ε).

- If ε ∈ A has a final vertex but no initial vertex then any leaf in Tε ends at

some point of I+(ε) and may be concatenated with a (unique) leaf of T kv+(ε) for

some k ∈ {1, 2, 3} which ends at a point z ∈ I−(ε′) for some ε′ ∈ A such that

v+(ε) = v−(ε′). This concatenation is denoted by ξzε .

Thus any leaf F of F may be described in one of the two followings way:

- F = γtβ ⊂ Tβ for some t ∈ [−1, 1] and some β ∈ B which is an annulus or a strip.

- F =
∏

i∈I ξ
zi
εi where (εi)i∈I is an admissible sequence of at least two elements of

A and (zi)i∈I is a sequence of points in M satisfying some natural connection

assumptions which we detail now. If I is unbounded from below then it is simply

asked that zi ∈ I−(εi) for every i ∈ I and ψεi(zi) = zi+1 for every pair {i, i+1} ⊂ I.

If I is bounded from below then there are two situations. Letting i0 = min I, it is

first possible that εi0 has no initial vertex; then it is required that zi ∈ I−(εi) for

every i ∈ I\{i0} and zi0 = zi0+1 and ψεi(zi) = zi+1 for every pair {i, i+1} ⊂ I\{i0}.
It is also possible that εi0 possesses an initial vertex; then I is a finite set, say

I = {i0, i1, · · · , ik}, and one has zi ∈ I−(εi) for every i ∈ I and ψεi(zi) = zi+1 for

every pair {i, i+ 1} ⊂ I as well as ψεik (zik) = zi0, which implies that F is a circle.

In this last case, one could also describe F by taking I = Z and by considering

periodic sequences (εi)i∈Z and (zi)i∈Z. Nevertheless we adopt here the convention

to always use a finite Z-interval I to describe such a circle F .

Remark 5.3. In the above notation, it should be observed that

i) One may have a priori εi = εj and zi 6= zj for i 6= j in I, that means that a leaf

F may intersects a segment I−(εi) at several points. Nevertheless this situation

will not arise for a suitable choice of the homeomorphisms λσ.

ii) If I is an infinite set bounded from above then εmax I has an initial vertex but no

final vertex.

iii) Given a leaf F of F , the writing F =
∏

i∈I ξ
zi
εi is generally non unique. Suppose

indeed there exists i ∈ I such that εi is a brick with an initial vertex and zi =

max I−(εi). We denote α+ the edge contained in γ+
εi such that v−(α+) = v−(εi).

Since max I−(εi) = min I−(α+) one may also write F =
∏

j∈J ξ
z′j
ε′j

with εi 6∈ {ε′j}j∈J
and α ∈ {ε′j}j∈J for every edge α ⊂ γ+

εi . One has then z′j = min I−(ε′j) for every
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j ∈ J such that ε′j is an edge included in γ+
εi . If εi ∈ B has an initial vertex

and zi = min I−(εi) then one can write likewise F =
∏

j∈J ξ
z′j
ε′j

where εi 6∈ {ε′j}j∈J
and α ∈ {ε′j}j∈J for every edge α ⊂ γ−εi . Then z′j = max I−(ε′j) for every j ∈ J

such that ε′j is an edge contained in γ−εi . If εi is a brick with only a final vertex

(which implies that I is bounded from below and i = min(I)) similar remarks

hold: just replace above the assumption zi = max I−(εi) (resp. zi = min I−(εi))

with zi = max I−(εi+1) (resp. zi = min I−(εi+1)).

As a direct consequence of the construction of the foliation F in the Tα’s (α ∈ E)
and in the T kσ ’s (σ ∈ V, k ∈ {1, 3}) one has the following result.

Proposition 5.18. Let Γ ∈ L∗(α) where α is an edge with an initial vertex v−(α).

Define z = θ−(α)(Γ) and let F be the leaf of F passing through the point z.

Then for every edge α′ ∈ E possessing an initial (resp. a final) vertex one has

F ∩ I−(α′) = {θ−(α′)(Γ)} (resp. F ∩ I+(α′) = {θ+(α′)(Γ)}) if α′ is included in the

same connected component of Γ as α and F ∩ I−(α′) = ∅ (resp. F ∩ I+(α′) = ∅)
otherwise.

A similar property holds if α has a final vertex v+(α), just defining z = θ+(α)(Γ).

Lemma 5.14. Let e ∈ E. If e has an initial vertex v−(e) and if (z−, z+) is a

connected component of I−(e) \ L−(e) then there exists b ∈ B such such that z− =

θ−(e)(Γ−b ) and z+ = θ−(e)(Γ+
b ).

Proof. We know that z− = θ−(e)(Γ) and z+ = θ−(e)(Γ′) where Γ and Γ′ are two

Brouwer manifolds in L∗(e) such that Γ ≺ Γ′ and (Γ,Γ′)L∗(e) = ∅ (this actually implies

(Γ,Γ′) = ∅ but we will note use this fact). Since L∗(e) is a neighborhood of Γ and Γ′

in L∗, this shows that Γ (resp. Γ′) is isolated from the right (resp. from the left).

According to Proposition 5.13 there exist two edges α1, α2 such that Γ = Γ+
α1

and

Γ′ = Γ−α2
. Letting b1 = l(α1) and b2 = r(α2) one gets Γ−b1 = Γ ≺ Γ′ = Γ+

b2
and it remains

to prove that b1 ∼ b2.

Let us check that e ⊂ Γ−b2. Otherwise one has IntΣ(e) ⊂ Int(L(Γ−b2)) because e ⊂
Γ+
b2
� Γ−b2. Moreover e ⊂ Γ−b1 and Γ−b1 ,Γ

−
b2

have no transverse intersection so Γ−b1 ⊂
L(Γ−b2). Then it follows from Proposition 3.3 that R(Γ−b1) ⊂ L(Γ−b2) or L(Γ−b1) ⊂ L(Γ−b2).

The first inclusion implies R(Γ−b1) ⊂ R(Γ+
b2

)∩L(Γ−b2) = b̂2 which is not possible because

each connected component of b̂2 is a brick (so it is disjoint from its image by h2)

while each connected component of R(Γ−b1) contains its image by h2. The second

inclusion gives Γ−b2 � Γ−b1 ≺ Γ+
b2

hence Γ−b2 = Γ−b1 due to (Γ−b2 ,Γ
+
b2

) = ∅ (Proposition 5.14

and notation thereafter). This contradicts the assumption e 6⊂ Γ−b2. Thus we have

proved e ⊂ Γ−b2 so that Γ−b1 and Γ−b2 are comparable in L∗(e). Since (Γ−b1 ,Γ
+
b2

)L∗(e) = ∅
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and (Γ−b2 ,Γ
+
b2

) = ∅ one obtains Γ−b1 = Γ−b2. One proves similarly that e ⊂ Γ+
b1

and

Γ+
b1

= Γ+
b2
.

Let us study more precisely the leaves of F with the following result.

Proposition 5.19. Let F be a leaf of F . Suppose that there is no brick β ∈ B

which is an annulus or a strip such that F = γtβ for some t ∈ [−1, 1].

Then, for some Z-interval I with ](I) > 2, one can write F =
∏

i∈I ξ
zi
εi in such

a way that one of the following two assertions holds.

i) Every εi is an edge, the set
∏

i∈I εi is a connected component of a Brouwer

manifold Γ ∈ L∗ and zi = θ−(εi)(Γ) ∈ L−(εi) for every εi possessing an initial

vertex.

ii) The set
∏

i∈I εi is a connected component of the equivalence chain C
β̂
for some

β ∈ B and there is no index i ∈ I such that zi ∈ L−(εi). Moreover if εi ∈ B
then F meets the interior of Tεi, i.e., γ

t
εi ⊂ F for some t ∈ (−1, 1).

Proof. The assumption tell us that one can write F =
∏

i∈I ξ
zi
εi where (εi)i∈I is an

admissible sequence in A = E tB and ](I) > 2. We have the following three cases to

consider.

1) First we suppose that εi ∈ E for every i ∈ I and moreover that zi0 ∈ L−(εi0) for

some i0 ∈ I such that εi0 has an initial vertex. According to Proposition 5.18 there

exists Γ ∈ L∗ such that zi = θ−(εi)(Γ) for every i ∈ I such that the edge εi possesses

an initial vertex v−(εi), that means for every i ∈ I except maybe for i = min I if I is

bounded from below. In this case i = min I > −∞, the edge εi may have only a final

vertex v+(εi) but Proposition 5.18 also tells us that F intersects I+(εi) at the point

θ+(εi)(Γ). In particular εi ⊂ Γ for every i ∈ I so that the concatenation Γ1 =
∏

i∈I εi is

included in Γ. One knows that Γ1 is an open subset of Σ (Remark 5.3) and then it is

also open in Γ. Moreover Γ1 is clearly closed in Γ hence it is a connected component

of Γ and Property i) holds.

2) Assume now that εi ∈ B for some i ∈ I. We define I ′ ⊂ I to be the set of all

these indices. First suppose that for every i ∈ I ′ either εi has an initial vertex and zi is

an endpoint of the segment I−(εi) or εi only has a final vertex (then i = min I > −∞)

and zi is an endpoint of I−(εi+1). Then one may rewrite F =
∏

j∈J ξ
z′j
ε′j

with ε′j ∈ E
for every j ∈ J (see Remark 5.3) and we are reduced to the previous case. Suppose

secondly there exists i0 ∈ I ′ such that εi0 has an initial vertex and zi0 is an interior

point of I−(εi0) or such that εi0 only has an final vertex and zi0 is an interior point

of I−(εi0+1). The same arguments as in the proof of [LC04, Proposition 5.2 (ii)]

then show that
∏

i∈I εi is a connected component of the equivalence chain Cε̂i0 and

moreover εi ∈ ε̂i0 and F ∩ Int(Tεi) 6= ∅ for every i ∈ I ′. This is the situation described

in ii).
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3) We finally deal with the case where assumption 1) does not hold true although

εi ∈ E for every i ∈ I. Fixing i0 ∈ I such that εi0 has an initial vertex, one has

then zi0 ∈ I−(εi0) \ L−(εi0). One can assume without loss that i0 = 0 ∈ I. Denote

by (x0, y0) the connected component of I−(ε0) \ L−(ε0) which contains z0. Lemma

5.14 tells us that there exists β ∈ B such that x0 = θ−(ε0)(Γ−β ) and y0 = θ−(ε0)(Γ+
β ).

In particular ε0 ⊂ Γ−β ∩ Γ+
β . We also write Fx0 and Fy0 for the leaves of F passing

through respectively x0 and y0.

Let us check that if 1 ∈ I then ε1 ⊂ Γ−β ∩ Γ+
β . This is obvious if v+(ε0) is a

vertex of the second type. Suppose now that v+(ε0) is a vertex of the first type.

Then there are e−, e+ ∈ E such that v−(e−) = v−(e+) = v+(ε0) and l(e−) = r(e+).

If e− ⊂ Γ−β and e+ ⊂ Γ+
β then one obtains l(e−) ∼ β (Proposition 5.15). Letting

b = l(e−) this gives Γ−β = Γ−b = Γ+
e− and Γ+

β = Γ+
b = Γ−e+. Recalling Proposition 5.18,

one deduces that the oriented segment ξx0
ε0
⊂ Fx0 (resp. ξy0

ε0 ⊂ Fy0) ends at ψε0(x0) =

θ−(e−)(Γ−β ) = max I−(e−) = min I−(b) (resp. at ψε0(y0) = θ−(e+)(Γ−β ) = min I−(e+) =

max I−(b)). Since ψε0 : I−(ε0) →
⋃
{ε∈A, v−(ε)=v+(ε0)} I−(ε) is a continuous and one-to-

one map, one gets that z1 = ψε0(z0) is an interior point of I−(b) hence necessarily

ε1 = b ∈ B, a contradiction. This proves that e ⊂ Γ−β ∩ Γ+
β where e ∈ {e−, e+}.

Then the subsegment of
⋃
{ε∈A, v−(ε)=v+(ε0)} I−(ε) whose endpoints are x1 = ψε0(x0)

and y1 = ψε0(y0) is included in I−(e) and has again z1 = ψε0(z0) as an interior point.

This proves that ε1 = e ⊂ Γ−β ∩Γ+
β . The fact that x1 = θ−(ε1)(Γ−β ) and y1 = θ−(ε1)(Γ+

β )

allows to continue inductively and to get εi ⊂ Γ−β ∩ Γ+
β for every i > 0 in I.

Since ε0 has an initial vertex then −1 ∈ I and ε−1 has a final vertex v+(ε−1) =

v−(ε0). There are two edges α−, α+ such that v+(α−) = v+(α+) = v−(ε0) and r(α−) =

l(α+). Of course ε−1 ∈ {α−, α+} and one checks similarly as above that ε−1 ⊂ Γ−β ∩Γ+
β .

If −2 ∈ I (i.e., if ε−1 has an initial vertex) then we let x−1 = θ−(ε−1)(Γ−β ) and

y−1 = θ−(ε−1)(Γ+
β ). Then z−1 is an interior point of the subsegment of I−(ε−1) with

endpoints x−1, y−1 because ψε−1 : I−(ε−1) →
⋃
{ε∈A, v−(ε)=v+(ε−1)} I−(ε) is a continuous

one-to-one map and ψε−1(x−1) = x0 and ψε−1(y−1) = y0. An easy induction then

gives εi ⊂ Γ−β ∩ Γ+
β for every i 6 −1 in I. It follows that the concatenation

∏
i∈I εi

is a connected component of both Γ−β and Γ+
β which are then necessarily Brouwer

manifolds of type 3. Clearly
∏

i∈I εi is also a connected component of C
β̂
and ii) then

holds.

We denote by F
⊎

F the set whose elements are either a leaf of F or the union

of two leaves of F . One constructs a map Ψ : L∗ → F
⊎

F as follows. Consider

a Brouwer manifold Γ ∈ L∗ whose connected components are Γ1 and Γ2, where one

allows as usual Γ1 = Γ2 = Γ. For each k ∈ {1, 2} one associates to Γk a leaf Fk of F .

If Γk is reduced to a single edge then one let Fk = Γk. Otherwise one has

Γk =
∏
i∈Ik

αki
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where (αki )i∈Ik is an admissible sequence of edges with ](Ik) > 2. Let zki = θ−(αki )(Γ) ∈
L−(αki ) for every i ∈ Ik such that αki possesses an initial vertex (that means for every

i ∈ Ik except maybe for i = min Ik if Ik is bounded from below). Then, according

to Proposition 5.18, there is a leaf Fk of F passing through every point zki (i ∈ Ik),
namely Fk =

∏
i∈Ik

ξz
k
i

αki
. Thus we obtain a map Ψ : L∗ → F

⊎
F by letting Ψ(Γ) = F1∪F2.

Proposition 5.20. One has the following properties.

1) The map Ψ : L∗ → F
⊎

F defined above is a one-to-one map.

2) For every Γ ∈ L∗, Ψ(Γ) is a Brouwer manifold of h with the same type as Γ

and satisfies Γ � Ψ(Γ). Moreover

- L(Ψ(Γ)) (resp. R(Ψ(Γ))) lies locally on the left (resp.right) of Ψ(Γ);

- if Fix(h) is totally disconnected then Cl(Ψ(Γ)) \Ψ(Γ) = Cl(Γ) \ Γ.

3) The map Ψ is increasing with respect to the order � on Brouwer manifolds.

Proof. 1) If Γ, Γ′ are two distinct Brouwer manifolds in L∗ then there exists an edge

α ∈ E such that α ⊂ Γ and α 6⊂ Γ′. By construction of the map Ψ one has then

Ψ(Γ) 6= Ψ(Γ′).

2) Let Γ ∈ L∗ whose connected components are denoted

Γ1 =
∏
i∈I1

α1
i and Γ2 =

∏
i∈I2

α2
i

where (αki )i∈Ik is an admissible sequence in E (k ∈ {1, 2}) and maybe Γ = Γ1 = Γ2.

Write Ψ(Γ) = F1 ∪ F2 where F1, F2 are two leaves of F as explained in the definition

of Ψ. Remark that Ψ(Γ) = F1 = F2 iff Γ = Γ1 = Γ2.

As a first step, let us check that Ψ(Γ) is closed in M . This is certainly true if Γ is

a Brouwer manifold of type 1 because Ψ(Γ) is then also a circle. Suppose now that

Γ has type 2 or 3. If Γk consists of a single edge (i.e., if ](Ik) = 1) then Fk = Γk is

closed in M . Otherwise one has ](Ik) > 2 and, using the notations in the definition

of Ψ, one has Fk =
∏
i∈Ik

ξz
k
i

αki
. By construction of the foliation F one also has

Fk ⊂
⋃
i ∈ Ik

(
Tαki ∪

⋃
l ∈ {1,3}

T lv+(αki )

)
⊂ l(Γk).

Note that the notation in the first inclusion is slightly abusive since αmax Ik has no

final vertex if Ik is bounded from above.

Observe that Fk intersects the segment I−(αki ) at only one point for every i ∈ Ik
such that αki possesses an initial vertex. Indeed, otherwise there exist i 6= j ∈ Ik

such that zki and zkj are two distinct points of I−(αki ) which implies that αki = αkj .

This is not possible because Γk is a line of M . Hence the intersection of Fk and Tαki
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(resp. T l
v+(αki )

) is either empty or a single leaf of Tαki (resp. T l
v+(αki )

). Therefore Fk

does not accumulate on a point of Tαki or T k
v+(αki )

which shows that Ψ(Γ) is closed in

M . If moreover Fix(h) is totally disconnected then the fact that
∏
i∈Ik

ξz
k
i

αki
= F k ⊂ l(Γk)

(k ∈ {1, 2}) clearly shows that Cl(Ψ(Γ)) \Ψ(Γ) = Cl(Γ) \ Γ.

As a second step, one proves that Ψ(Γ) is a Brouwer manifold of h. One uses

Lemma 5.13 with the given Brouwer manifold Γ and with ∆ = Ψ(Γ). Again it is not

difficult to check that the four conditions a)-d) of Lemma 5.13 are satified. In the

notation of this lemma, one has moreover

R(∆) ⊂ R(Γ) ∪
⋃

{α∈E | α⊂Γ}

Uα

and therefore

h(R(∆)) ⊂ h(R(Γ)) ∪
⋃

{α∈E | α⊂Γ}

h(Uα) ⊂ Int(R(Γ)) ⊂ Int(R(∆)).

According to Item (iii) in Remark 5.2 one obtains that Property (L−R) holds true.

Then Lemma 5.13 tell us that ∆ is a Brouwer manifold of h with the same type as

Γ and moreover L(∆) = L(∆) and R(Γ) ⊂ R(∆) = R(∆). These last two equalities

also show that L(∆) (resp. R(∆)) lies locally on the left (resp. right) of ∆ as well as

Γ � ∆.

3) Let Γ ≺ Γ′ in L∗. One writes Γ1 and Γ2 (resp. F1 and F2) for the connected

components of Γ (resp. Ψ(Γ)) with possibly Γ = Γ1 = Γ2 and Ψ(Γ) = F1 = F2. One

may assume that Fk is associated to Γk in the construction of Ψ(Γ). One also has

Ψ(Γ′) = F ′1 ∪ F ′2 with similar conventions.

We first show that Ψ(Γ) ⊂ R(Ψ(Γ′)). Let k ∈ {1, 2}.
- Suppose that Γk is reduced to a single edge in E. The definition of Ψ then gives

Fk = Γk and moreover, since Γ ≺ Γ′, either Γk is included in Int(R(Γ′)) or Γk is also a

connected component of Γ′. One gets anyway Fk ⊂ R(Γ′) ⊂ R(Ψ(Γ′)).

- Suppose now that Γk is the concatenation of at least two edges. Let us write

Γk =
∏
i∈Ik

αki and Fk =
∏
i∈Ik

ξz
k
i

αki

as in the definition of Ψ, with ](Ik) > 2. It is enough to show that ξz
k
i

αki
⊂ R(Ψ(Γ′)) for

any given ik ∈ Ik. For short we let α = αki and z = zki .

• We begin with the case where α ⊂ Γ′. Assume moreover that α has an initial

vertex, so that z ∈ L−(α) ⊂ I−(α). Since α ⊂ Γ′ one has ξz
′
α ⊂ F ′k where z′ =

θ−(α)(Γ′) ∈ L−(α). Let X =
⋃
i∈{1,2,3} T

i
v+(α) if α has a final vertex and X = ∅

otherwise. One knows from Proposition 5.18 that z′ is the only point in Ψ(Γ′) ∩
I−(α) hence Ψ(Γ′) ∩

(
Tα ∪ X

)
= ξz

′
α . Moreover z < z′ in L−(α) because Γ ≺ Γ′
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and therefore ξzα lies between ξz
′
α and α in Tα ∪ X; more precisely ξzα separates

ξz
′
α and α ∩ Tα in Tα ∪ X. It is then clear that ξzα is included in a connected

component V of M \Ψ(Γ′) meeting Int(R(Γ′)). Consider the set R(Ψ(Γ′)) obtained

when applying Lemma 5.13 to the Brouwer manifold Γ′ and ∆ = Ψ(Γ′). One gets

then ξzα ⊂ V ⊂ R(Ψ(Γ′)) = R(Ψ(Γ′)), the last equality being a by-product of the

proof of 2) where Γ is replaced with Γ′. If α has no initial vertex (which implies

ik = min Ik > −∞) then one has {z, z′} ⊂ L(αik+1) ⊂ I−(αik+1) by definition of ξzα
and ξz

′
α but the argument works likewise.

• Next we assume α 6⊂ Γ′. One has then IntΣ(α) ⊂ Int(R(Γ′)) and one gets ξzα ⊂
l(α) ⊂ R(Γ′) ⊂ R(Ψ(Γ′)).

Thus we proved the expected inclusion Ψ(Γ) ⊂ R(Ψ(Γ′)). It follows from Propo-

sition 3.3 that either R(Ψ(Γ))) ⊂ R(Ψ(Γ′)) or L(Ψ(Γ)) ⊂ R(Ψ(Γ′)). Let α ∈ E be an

edge included in Γ′ and let b = l(α) ∈ L(Γ′) ⊂ L(Γ). By the construction of F one has

Int(Tb) ⊂ Int(L(Ψ(Γ))) ∩ Int(L(Ψ(Γ′)) thus showing that actually L(Ψ(Γ)) 6⊂ R(Ψ(Γ′))

and consequently R(Ψ(Γ)) ⊂ R(Ψ(Γ′)). This completes the proof of Proposition

5.20.

Remark 5.4. The proof of Proposition 5.20 shows that

Ψ(Γ) ⊂
( ⋃
α∈E

Tα

)
∪
( ⋃
σ∈V

⋃
i∈{1,3}

T iσ

)
for every Γ ∈ L∗ so that Ψ(Γ) ∩ Int(Tb) = ∅ for every b ∈ B. This will allow farther

to add new conditions on the families (γtb)t∈[−1,1] foliating the bricks Tb ∈ B∗ without
altering the truthfulness of this Proposition 5.20.

Let β̂ be an equivalence class in B/ ∼. Recall that the equivalence chain C
β̂

has at most two connected components which we name C
1, β̂

and C
2, β̂

with maybe

C
1, β̂

= C
2, β̂

= C
β̂
and with the convention that C

1, β̂
contains at least one brick β ∈ β̂.

For simplicity we omit the subscript β̂ in the following paragraph, so that C
β̂

= C and
likewise for its connected components C1, C2. Moreover for every k ∈ {1, 2} one can

write

Ck =
∏
i∈Ik

εki

where (εki )i∈Ik is an admissible sequence of pairwise distinct elements in A = E tB.
We also consider the connected components Γ−1 and Γ−2 of Γ−

β̂
with γ−β ⊂ Γ−1 and

maybe Γ−1 = Γ−2 = Γ−
β̂
. Similarly one writes Γ+

β̂
= Γ+

1 ∪ Γ+
2 with γ+

β ⊂ Γ+
1 .

Now let Ψ(Γ−
β̂

) = F−1 ∪ F−2 and Ψ(Γ+

β̂
) = F+

1 ∪ F+
2 where the leaf F±k ⊂ l(Γ±k ) is

associated to Γ±k in the definition of Ψ(Γ±
β̂

). Recall that Γ−
β̂
≺ Γ+

β̂
(see Proposition

5.14 and notations thereafter) hence Proposition 5.20 gives Ψ(Γ−
β̂

) ≺ Ψ(Γ+

β̂
). One also

knows that the four Brouwer manifolds Γ±
β̂
and Ψ(Γ±

β̂
) have the same type. Remark
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that the leaves F−1 ⊂ l(Γ−1 ) and F+
1 ⊂ l(Γ+

1 ) are different because C1 contains some

brick β ∈ β̂ but it is possible that F−2 = F+
2 ; precisely this equality holds true iff there

is an edge e ∈ E such that e = Γ−2 = Γ+
2 .

Let us define Ω
β̂

= R(Ψ(Γ+

β̂
))\Int(R(Ψ(Γ−

β̂
))), which is clearly a closed subset of M .

Since ∂MR(Ψ(Γ±
β̂

)) = Ψ(Γ±
β̂

) ∈ F
⊎

F , each set R(Ψ(Γ±
β̂

)) is saturated by the foliation

F (that means it is the union of some leaves of F ) and then the same is true from

Ω
β̂
. It is also not difficult to see that Ω

β̂
possesses one or two connected components.

Let us give some additionnal details.

Suppose that ε1
i ∈ E for some i ∈ I1, so that ε1

i is an edge contained in Γ−1 ∩ Γ+
1 .

Note that ε1
i has an initial vertex or a final vertex because C1 contains some brick β ∈ β̂

(actually ε1
i has both an initial and a final vertex except maybe if i = min Ik > −∞

or if i = max Ik < +∞). If ε1
i has an initial vertex then one knows that Ψ(Γ−

β̂
)

(resp. Ψ(Γ+

β̂
)) intersects the segment I−(ε1

i ) only at the point a−i = θ−(ε1
i )(Γ

−
β̂

) ∈ F−1
(resp. a+

i = θ−(ε1
i )(Γ

+

β̂
) ∈ F+

1 ) and a−i < a+
i in I−(ε1

i ). The same arguments as in

the proof of Item 3) of Proposition 5.20 show that [a−i , a
+
i ]I−(ε1

i )
⊂ Ω

β̂
. If ε1

i has a

final vertex then Ψ(Γ−
β̂

) ∩ I+(ε1
i ) = {b−i } ⊂ F−1 and Ψ(Γ+

β̂
) ∩ I+(ε1

i ) = {b+i } ⊂ F+
1 with

b−i = θ+(ε1
i )(Γ

−
β̂

) < θ+(ε1
i )(Γ

+

β̂
) = b+i in the segment I+(ε1

i ) and [b−i , b
+
i ]I+(ε1

i )
⊂ Ω

β̂
.

Consider now i ∈ I1 such that ε1
i ∈ B. For simplicity we let b = ε1

i . For any edge

α ∈ E such that α ⊂ γ−b one knows that Γ−
β̂

= Γ−b = Γ+
α . If furthermore α possesses

an initial (resp. a final) vertex then it follows that the leaf F−1 passes through the

point maxL−(α) = max I−(α) (resp. maxL+(α) = max I+(α)). In particular if b has

an initial (resp. a final) vertex then one can choose α such that v−(α) = v−(b) (resp.

v+(α) = v+(b)) which shows that F−1 contains the point max I−(α) = min I−(b) (resp.

max I+(α) = min I+(b)). Similarly, for any edge α′ ⊂ γ+
b one has Γ+

β̂
= Γ+

b = Γ−α′ and

one obtains that minL−(α′) = min I−(α′) ∈ F+
1 (resp. minL+(α′) = min I+(α′) ∈ F+

1 )

as soon as α′ has an initial (resp. a final) vertex. In particular F+
1 contains max I−(b)

or/and max I+(b) when b has an initial or/and a final vertex. In all cases ones gets

γ−1
b ⊂ F−1 and γ1

b ⊂ F+
1 . Since moreover Ψ(Γ±

β̂
) are disjoint from Int(Tb) (as any

Brouwer manifold in Ψ(L∗)) one deduces that Ω
β̂
∩ b = Tb.

All these intervals [a−i , a
+
i ]I−(ε1

i )
and [b−i , b

+
i ]I+(ε1

i )
where ε1

i ∈ E as well as the sets

Tε1
i
where ε1

i ∈ B are contained in the same connected component of Ω
β̂
, call it Ω

1,β̂
,

because they are pairwise linked by some leaves of F lying in Ω
β̂
. It is not difficult to

see that Ω
1,β̂

is either an annulus or a strip (depending on whether Γ±
β̂
are compact

or not) with frontier ∂MΩ
1,β̂

= F−1 t F+
1 . Remark also that all the above segments

[a−i , a
+
i ]I−(ε1

i )
and [b−i , b

+
i ]I−(ε1

i )
(when εi ∈ E) as well as the segments I±(εi) (when

εi ∈ B) define a global cross-section of F , that means that every leaf of F cross

tranversely such a segment. Consequently :

- if Ω
1,β̂

is an annulus then it does not contain any Reeb component of F ;

- if Ω
1,β̂

is a strip then, for every leaf φ ⊂ Ω
1,β̂

and every i ∈ I, the set φ ∩ Tεi is
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connected, which implies that φ a line of M . Moreover Ω
1,β̂

is trivially foliated by F .

Assume now that Γ±
β̂

has type 3, so that Ω
β̂
has another connected component

Ω
2,β̂

. Remember that maybe C2 = Γ−2 = Γ+
2 = e for some edge e ∈ E which is a

line of M . If this situation holds then F−2 = Γ−2 = Γ+
2 = F+

2 and it follows that

Ω
2,β̂

= F±2 = Γ±2 . In any other situation, the set Ω
2,β̂

may be described as Ω
1,β̂

above.

In particular Ω
2,β̂

is then a strip with ∂MΩ
2,β̂

= F−2 t F+
2 and Tb ⊂ Ω

2,β̂
for any brick

b ∈ β̂ verifying b ⊂ C2 (if any).

It is convenient in the following to allow Ω
1,β̂

= Ω
2,β̂

= Ω
β̂
when Ω

β̂
is connected,

i.e., when the Brouwer manifolds Γ±
β̂
have type 1 or 2.

Proposition 5.21. Let β̂ 6= β̂′ in B/ ∼. Then one has Int
(
Ω
β̂

)
∩ Ω

β̂′
= ∅.

Proof. Remark that

(∗) Ω
β̂
⊂
⋃
b∈ β̂

Tb ∪
⋃

α⊂Γ−
β̂
∩Γ+

β̂

(
Tα

⋃
σ=v±(α)

⋃
i∈{1,2,3}

T iσ

)

where
⋃
α⊂Γ−

β̂
∩Γ+

β̂

denotes the union over all the edges α ∈ E included in Γ−
β̂
∩Γ+

β̂
and

where
⋃
σ=v±(α) denotes the union over the vertices σ ∈ V belonging to α.

One has likewise

(∗∗) Ω
β̂′
⊂
⋃
b′ ∈ β̂′

Tb′ ∪
⋃

α′⊂Γ−
β̂′
∩Γ+

β̂′

(
Tα′

⋃
σ′=v±(α′)

⋃
i∈{1,2,3}

T iσ′

)
.

Suppose that the result is not true, so that Int(Ωk)∩Ω′l 6= ∅ where Ωk (resp. Ω′l) is a

connected component of Ω
β̂
(resp. Ω

β̂′
). Since Int(Ω

β̂
)∩Σ = ∅ the set Ω′l is not reduced

to a single edge in E hence each set Ωk and Ω′l is either an annulus or a strip and

therefore Int(Ωk)∩Int(Ω′l) 6= ∅. One also denotes by Ck the connected component of C
β̂

corresponding naturally to Ωk. Precisely, this means that Ck contains the connected

components Γ±k of Γ±
β̂
such that F±k ⊂ l(Γ±k ) where F±k are the leaves in ∂MΩk.

Pickm ∈ Int(Ωk)∩Int(Ω′l). Recall that Int(Ωk) and Int(Ω′l) are saturated by F hence

if Ck contains some brick b ∈ β̂ then the leaf φm passing through m also contains a

point m′ ∈ Int(Tb)∩Int(Ω′l). This is not possible because Int(Tb) is clearly disjoint from

all the Tb′’s and Tα′’s and T iσ′’s appearing in the above inclusion (∗∗). Consequently Ck
is a common connected component of Γ−

β̂
and Γ+

β̂
which may be written Ck =

∏
i∈I αi

where (αi)i∈I is an admissible sequence in E with ](I) > 2. In particular there is at

least one edge α ∈ {αi}i∈I having an initial vertex. Reversing the roles of Ωk and Ω′l
one obtains likewise that there is no brick b′ ∈ β̂′ in the connected component C′l of
C
β̂′

corresponding to Ω′l, so that C′l =
∏

j∈J α
′
j with α′j ∈ E for every j ∈ J .

Because φm also contains a point m′ ∈ Int(Tα) ∩ Int(Ω′l) one gets α ⊂ Γ−
β̂′
∩ Γ+

β̂′

hence α = α′j for some j ∈ J . Consequently the four Brouwer manifolds Γ±
β̂
and Γ±

β̂′
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belong to L∗(α). One knows that

{z−} = I−(α) ∩Ψ(Γ−
β̂

), {z+} = I−(α) ∩Ψ(Γ+

β̂
),

and

{z′−} = I−(α) ∩Ψ(Γ−
β̂′

), {z′+} = I−(α) ∩Ψ(Γ+

β̂′
)

where z± = θ−(α)(Γ±
β̂

) and z′± = θ−(α)(Γ±
β̂′

).

According to Proposition 5.14 one has (Γ−
β̂
,Γ+

β̂
) = ∅ = (Γ−

β̂′
,Γ+

β̂′
) hence (z−, z+)I−(α)∩

(z′−, z
′
+)I−(α) = ∅. This is absurd since the leaf φm intersects both (z−, z+)I−(α) and

(z′−, z
′
+)I−(α).

Given an equivalence class β̂ ∈ B/ ∼, our next goal is to choose suitably some link

homeomorphisms λσ and to reparameterize the family (γtb)t∈[−1,1] in such a way that

all the leaves in Ω
β̂
define Brouwer manifolds.

Lemma 5.15. Let β̂ ∈ B/ ∼ and consider C
β̂

= C
1, β̂
∪ C

2, β̂
and Ω

β̂
= Ω

1, β̂
∪ Ω

2, β̂

as defined above. Let k ∈ {1, 2}. The link homeomorphisms λσ, where σ = v+(b)

for some brick b ∈ β̂ with b ⊂ Ck, may be choosen in such a way that the following

property holds true:

For every leaf F ⊂ Ω
k, β̂

there exists t ∈ [−1, 1] such that

∀b ∈ β̂ b ⊂ C
k, β̂

=⇒ F ∩ Tb = γ
µ−1
b (t)

b .

Consequently, if Γ±
β̂
have type 1 then every leaf included in Ω

k, β̂
is a circle.

Proof. Letting again Ck = C
k, β̂

, one can write Ck =
∏

i∈Ik ε
k
i for some admissible

sequence (εki )i∈Ik of pairwise distinct elements of A = E t B. For simplicity we write

εi and I instead of, respectively, εki and Ik. One can also suppose that the sequence

(εi)i∈I contains at least one brick since otherwise the result is empty.

If there are several bricks in the sequence (εi)i∈I then there exists (i, j) ∈ I2

such that j > i + 1, {εi, εj} ⊂ B and εl ∈ E for every l ∈ {i + 1, · · · , j − 1}. For

l ∈ {i+ 1, · · · , j− 1} we let z−l = θ−(εl)(Γ
−
β̂

) ∈ L−(εl) and z
+
l = θ−(εl)(Γ

+

β̂
) ∈ L−(εl) and

furthermore z−j = min I−(εj) and z+
j = max I−(εj). Thus one has

ψεl
(
[z−l , z

+
l ]I−(εl)

)
= [z−l+1, z

+
l+1]I−(εl+1)

for every l ∈ {i+ 1, · · · , j − 1} and therefore

κ = ψεj−1 ◦ · · · ◦ ψεi+1

∣∣
Ic−(εi+1)

: Ic−(εi+1)→ I−(εj)

defines an increasing homeomorphism. One chooses the link homeomorphism λv+(εi)

so that, for every t ∈ [−1, 1], it maps the final point of γ
µ−1
εi

(t)
εi onto the κ−1-image
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of the initial point of γ
µ−1
εj

(t)
εj . More explicitly, denote by zεi : [−1, 1] → I+(εi) the

parametrization of the segment I+(εi) induced by the family (γtεi)t∈[−1,1], that means

{zεi(t)} = γtεi ∩ I+(εi) for every t ∈ [−1, 1]. Likewise zεj : [−1, 1] → I−(εj) is the

parameterization of I−(εj) induced by the family (γtεj)t∈[−1,1]. Then κ
−1◦zεj : [−1, 1]→

Ic−(εi+1) is a parameterization of Ic−(εi+1) and we define

λv+(εi) = κ−1 ◦ zεj ◦ µ−1
εj ◦ µεi ◦ z−1

εi : I+(εi)→ Ic−(εi+1)

so that one has λv+(εi) ◦ zεi ◦ µ−1
εi = κ−1 ◦ zεj ◦ µ−1

εj .

After selecting λv+(εi) for every such pair (i, j) ∈ I2 (if any), there are two cases to

consider.

- If Ck is not compact (i.e., if Γ±
β̂
have type 2 or 3) then we are done.

- If Ck is compact (i.e., if Γ±
β̂

have type 1) then C
β̂

= Ck and moreover Ω
β̂

=

Ω
k, β̂

is an annulus. In order to prevent spiraling leaves in Ω
β̂
one needs to choose

suitably another link homeomorphism. Clearly I is a finite Z-interval and v+(εmax I) =

v−(εmin I). Write N = ](I) and let m (resp. n) be the minimum (resp. the maximum)

of the set {i ∈ I | εi ∈ B} (maybe m = n). Now extend periodically the sequence (εi)i∈I

so that εi = εi+N for every i ∈ Z. Replacing (i, j) with (n,m+N) in the construction

above, one gets a link homeomorphism λv+(εn) which completes the proof of Lemma

5.15.

Any vertex σ ∈ V is the final vertex of at most one brick b ∈ B hence it makes

sense to apply Lemma 5.15 simultaneously to different equivalent classes in B/ ∼.
Consequently we may assume from now on that the conclusion of Lemma 5.15 holds

true for every β̂ ∈ B/ ∼.
Given β̂ ∈ B/ ∼ and k ∈ {1, 2}, this ensures that the foliation F restricted to Ω

k, β̂

defines a continous family (φt
k,β̂

)t∈[−1,1] of circles (resp. of lines of M) when Γ±
β̂
have

type 1 (resp. type 2 or 3). The parameterization by t is choosen so that φ±1

k,β̂
= F±k

where F±k is the leaf in ∂MΩ
k, β̂

contained in Ψ(Γ±
β̂

). Moreover, writing C
k,β̂

for the

connected component of C
β̂
corresponding naturally to Ω

k, β̂
(as explained in the proof

of Proposition 5.21), one can ask that

∀t ∈ [−1, 1] ∀b ∈ β̂ : b ⊂ C
k,β̂

=⇒ φt
k,β̂
∩ Tb = γ

µ−1
b (t)

b .

Recall that if Γ−
β̂

and Γ+

β̂
have a common connected component e ∈ E0 then

φt
2,β̂

= e = F−2 = F+
2 for every t ∈ [−1, 1] and this set is a line of M .

For every brick b ∈ β̂ one has γ−b ⊂ Γ−
β̂
and therefore, since Γ±

β̂
are two Brouwer

manifolds, one gets

h(γ−1
b ) ⊂ h

( ⋃
{α∈E |α⊂γ−b }

Uα

)
⊂ Int

(
R(Γ−

β̂
)
)

and h−1(γ1
b ) ⊂ h−1(Γ+

β̂
) ⊂ Int

(
L(Γ+

β̂
)
)
.

Then one can construct the family (γtb)t∈[−1,1] foliating Tb in such a way that
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- t ∈ [−1,−1/3] =⇒ h(γtb) ⊂ Int(R(Γ−
β̂

)),

- t ∈ [1/3, 1] =⇒ h−1(γtb) ⊂ Int(L(Γ+

β̂
)).

Now we let Φt
β̂

= φt
1,β̂
∪φt

2,β̂
∈ F

⊎
F for every t ∈ (−1, 1) (this is an unambiguous

definition due to Proposition 5.21) and Φ±1

β̂
= Ψ(Γ±

β̂
).

Proposition 5.22. Let β̂ ∈ B/ ∼. For every t ∈ [−1, 1] the set Φt
β̂
defined above is

a Brouwer manifold of h with the same type as Γ±
β̂
. Moreover L(Φt

β̂
) (resp. R(Φt

β̂
))

lies locally on the left (resp. right) of Φt
β̂
.

Proof. It is very similar to the one of Proposition 5.16 and we only mention the

needed modifications. For t = ±1 the result is contained in Proposition 5.20 hence

one can assume t ∈ (−1, 1). For simplicity one writes Φt
β̂

= Φt = φt1 ∪ φt2 where φt1,

φt2 are the connected components of Φt with possibly Φt = φt1 = φt2 and as usual

C
β̂

= C1 ∪ C2, Γ±
β̂

= Γ±1 ∪ Γ±2 with Γ−k ∪ Γ+
k ⊂ Ck for every k ∈ {1, 2}.

We apply Lemma 5.13 to the Brouwer manifold Γ = Γ−
β̂
and to the set ∆ = Φt.

It is easily seen that the properties a)-d) of Lemma 5.13 are true and in particular

∂ML(Φt) = Φt = ∂MR(Φt) (see Remark 5.2). It remains to prove the property (L−R)

in e) of Lemma 5.13. As for Proposition 5.16 one needs to prove first that h(Φt
β̂
)∩Φt

β̂
=

∅ but the argument is slightly different. One has

Φt
β̂
⊂
⋃
b∈ β̂

Tb ∪
⋃

α⊂Γ−
β̂
∩Γ+

β̂

(
Tα

⋃
σ=v±(α)

⋃
i∈{1,2,3}

T iσ

)

where the symbols
⋃
α⊂Γ−

β̂
∩Γ+

β̂

and
⋃
σ=v±(α) have the same meaning as at the begin-

ning of the proof of Proposition 5.21. It follows that

Φt
β̂
\
⋃
b∈ β̂

Tb ⊂
⋃

α⊂Γ−
β̂
∩Γ+

β̂

Uα

and therefore

h

(
Φt
β̂
\
⋃
b∈ β̂

Tb

)
⊂
⋃
α⊂Γ−

β̂

h(Uα) ⊂ Int(R(Γ−
β̂

)) ⊂ Int(R(Φt))

which gives

h

(
Φt
β̂
\
⋃
b∈ β̂

Tb

)
∩ Φt

β̂
= ∅.

One also has

Φt
β̂
\
⋃
b∈ β̂

Tb ⊂
⋃

α⊂Γ−
β̂
∩Γ+

β̂

l(α) ⊂ L(Γ+

β̂
)
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hence

h−1

(
Φt
β̂
\
⋃
b∈ β̂

Tb

)
∩
⋃
b∈ β̂

Tb ⊂ Int(L(Γ+

β̂
)) ∩

⋃
b∈ β̂

b = ∅

where the last equality follows from Proposition 5.15.

Moreover for every b ∈ β̂ one has

Φt ∩ Tb = γ
µ−1
b (t)

b .

Consequently if h(Φt) ∩ Φt 6= ∅ then there exists b, b′ ∈ β̂ such that

h
(
γ
µ−1
b (t)

b

)
∩ γµ

−1
b′ (t)

b′ 6= ∅

and one gets a contradiction as in the proof of Proposition 5.16.

Now one considers the same two situations as in Proposition 5.16.

• Suppose first that C
β̂

= β for some brick β ∈ B.
Then β is either an annulus or a strip, β̂ = {β} and Φt = γtβ ⊂ Tβ ⊂ β. The

same arguments as in the proof of Proposition 5.16 show that Φt = γtβ is a Brouwer

manifold of h.

• Assume now that C
β̂
is not reduced to a single brick, i.e., β  C

β̂
for every brick

β ∈ β̂.
Remark that if Γ−i ∩ Γ+

i 6= ∅ for some i ∈ {1, 2} then one has

h(φti) ⊂ Int(R(Φt)) and h−1(φti) ⊂ Int(L(Φt))

(an analogous remark was used in the proof of Proposition 5.16 with Γti instead of

φti).

Indeed Γ−i ∩ Γ+
i 6= ∅ implies α ⊂ Γ−i ∩ Γ+

i for some edge α ∈ E and ∅ 6= φti ∩
Tα ⊂ Uα ∩ l(α). Since α ⊂ Γ−

β̂
one has h(Uα) ⊂ Int(R(Γ−

β̂
)) ⊂ Int(R(Φt)) which gives

h(φti) ∩ Int(R(Φt)) 6= ∅ and therefore h(φti) ⊂ Int(R(Φt)) because h(Φt) ∩ ∂MR(Φt) =

h(Φt) ∩ Φt = ∅.
On the other hand α ⊂ Γ+

β̂
implies h−1(l(α)) ⊂ h−1(L(Γ+

β̂
)) ⊂ Int(L(Γ+

β̂
)). Note that

L(Γ+

β̂
) 6⊂ L(Φt) hence the second inclusion to be proved requires a little more work

than its analoque in Proposition 5.16. For any edge e ⊂ Γ−
β̂
one has

h−1(l(α)) ∩ Ue = h−1
(
l(α) ∩ h(Ue)

)
⊂ h−1

(
L(Γ−

β̂
) ∩ Int((R(Γ−

β̂
)
)

= ∅.

Observing furthermore that

L(Γ+

β̂
) ⊂ L(Φt) ∪

⋃
{e∈E | e⊂Γ−

β̂
∩Γ+

β̂
}

Ue

one deduces that h−1(l(α)) ⊂ Int(L(Φt)). It follows that h−1(φti) ∩ Int(L(Φt)) 6= ∅ and
therefore h−1(φti) ⊂ Int(L(Φt)) due to h−1(Φt) ∩ ∂ML(Φt) = h−1(Φt) ∩ Φt = ∅.

The proof of Proposition 5.22 works now exactly as the one of Proposition 5.16,

just replacing Γti with of φti.
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Corollary 5.1. There exists a family P of Brouwer manifolds of h such that

- P ⊂ F
⊎

F , i.e., the connected components of any Φ ∈P are leaves of F ;

- any leaf of F is a connected component of some Φ ∈P.

Proof. Let

P = Ψ(L∗) ∪
{

Φt
β̂

}
β̂∈B/∼ , t∈[−1,1]

= Ψ(L∗) t
{

Φt
β̂

}
β̂∈B/∼ , t∈(−1,1)

.

Clearly P ⊂ F
⊎

F and Propositions 5.20 and 5.22 tell us that every Φ ∈ P is a

Brouwer manifold of h. One aslo knows from Proposition 5.19 that every leaf of F

is a connected component of such a Φ ∈P

The next task is to prove that any two Brouwer manifolds of P have no transverse

intersection. We begin with the following result.

Lemma 5.16. Let Γ,Γ′ ∈ L∗ be such that R(Γ) ⊂ L(Γ′). Then one has R(Ψ(Γ)) ∩
R(Ψ(Γ′)) = ∅.

Proof. The hypothesis tell us that R(Γ)∩R(Γ′) = ∅ in B. Observe that Γ∩Γ′ = ∅ since
otherwise Γ∩Γ′ contains at least one edge α ∈ E and one obtains l(α)∪ r(α) ⊂ L(Γ′)∪
R(Γ) = L(Γ′) which contradicts α ⊂ Γ′ = ∂ML(Γ′). Thus one gets R(Γ) ∩ R(Γ′) = ∅ in
M . Defining

∆ = R(Γ) ∪
⋃

{e∈E | e⊂Γ}

Te ∪
⋃

{σ∈V | σ∈Γ}

⋃
i ∈ {1,2,3}

T iσ

and

∆′ = R(Γ′) ∪
⋃

{e∈E | e⊂Γ′}

Te ∪
⋃

{σ∈V | σ∈Γ′}

⋃
i ∈ {1,2,3}

T iσ

one has then ∆ ∩∆′ = ∅. By the definition of the map Ψ one also has

R(Ψ(Γ)) ⊂ ∆ and R(Ψ(Γ′)) ⊂ ∆′

which implies R(Ψ(Γ)) ∩R(Ψ(Γ′)) = ∅.

Proposition 5.23. Any two Brouwer manifolds of P have no transverse inter-

section.

Proof. Given β̂ ∈ B/ ∼ and t, t′ ∈ [−1, 1], it is clear that Φt
β̂
≺ Φt′

β̂
iff t < t′; in

particular Ψ(Γ−
β̂

) ≺ Φt
β̂
≺ Ψ(Γ+

β̂
) when t ∈ (−1, 1). This also implies that Φt

β̂
and Φt′

β̂

have no transverse intersection. This simple remark will be repeatedly used in the

following.

Consider two Brouwer manifolds Φ and Φ′ of P. According to the definition of

P, one has three cases to consider.

First case : {Φ,Φ′} ⊂ Ψ(L∗).
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Then Φ = Ψ(Γ) and Φ′ = Ψ(Γ′) for some Γ,Γ′ ∈ L∗. Recall that Γ and Γ′ have

no transverse intersection (see the paragraph before Proposition 5.11) hence one has

either Γ′ ⊂ R(Γ) or Γ′ ⊂ L(Γ). According to Proposition 3.3 one of the following four

situations holds:

- R(Γ′) ⊂ R(Γ), i.e., Γ′ � Γ; then by Item (3) of Proposition 5.20 one also has

Φ′ � Φ.

- L(Γ′) ⊂ R(Γ); then Item (2) of Proposition 5.20 gives L(Φ′) ⊂ L(Γ′) ⊂ R(Γ) ⊂
R(Φ).

- L(Γ′) ⊂ L(Γ), i.e., Γ � Γ′; then using again Item (3) of Proposition 5.20 one gets

Φ � Φ′.

- R(Γ′) ⊂ L(Γ); then by Lemma 5.16 one has R(Φ) ∩R(Φ′) = ∅.
Thus anyway Φ and Φ′ have no transverse intersection.

Second case : Φ ∈ Ψ(L∗) and Φ′ = Φt
β̂

for some β̂ ∈ B/ ∼ and some t ∈ (−1, 1).

Write Φ = Ψ(Γ) where Γ ∈ L∗ and for short let Φ− = Ψ(Γ−
β̂

) and Φ+ = Ψ(Γ+

β̂
), so

that Φ− ≺ Φ′ ≺ Φ+. If Γ ⊂ R(Γ−
β̂

) or Γ ⊂ L(Γ+

β̂
) then one knows from Proposition 3.3

that one of the following situation arises.

- R(Γ) ⊂ R(Γ−
β̂

), i.e., Γ � Γ−
β̂
; according to Item (3) of Proposition 5.20 this implies

Φ � Φ− ≺ Φ′.

- L(Γ) ⊂ R(Γ−
β̂

); using Item (2) of Proposition 5.20 one has then L(Φ) ⊂ L(Γ) ⊂
R(Γ−

β̂
) ⊂ R(Φ−) ⊂ R(Φ′).

- L(Γ) ⊂ L(Γ+

β̂
), i.e., Γ+

β̂
� Γ; again by Item (3) of Proposition 5.20 one has

Φ′ ≺ Φ+ � Φ.

- R(Γ) ⊂ L(Γ+

β̂
); according to Lemma 5.16 one also has R(Φ)∩R(Φ+) = ∅ and then

R(Φ) ∩R(Φ′) = ∅ due to Φ′ � Φ+.

Hence in all these situations the Brouwer manifolds Φ and Φ′ have no transverse

intersection. We study now the case where Γ 6⊂ R(Γ−
β̂

) and Γ 6⊂ L(Γ+

β̂
). Since the

Brouwer manifolds in L∗ have pairwise no transverse intersection one has then

Γ ⊂ L(Γ−
β̂

) ∩R(Γ+

β̂
) =
(
Γ−
β̂
∩ Γ+

β̂

)
∪
⋃
b∈ β̂

b.

where the latter equality is given by Proposition 5.15. Because Γ ⊂ Σ one gets more

precisely

Γ ⊂
(
Γ−
β̂
∩ Γ+

β̂

)
∪
⋃
b∈ β̂

(γ−b ∪ γ+
b ).

Observe that for every set {b, b′} ⊂ β̂ one has either Γ∩ γ−b = ∅ or Γ∩ γ+
b′ = ∅ because

otherwise one can find two edges α, α′ ∈ E such that α ⊂ Γ ∩ γ−b and α′ ⊂ Γ ∩ γ−b′ and
therefore

Γ � Γ+
α = Γ−b = Γ−

β̂
≺ Γ+

β̂
= Γ+

b̂′
= Γ−α′ � Γ
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which is absurd. Clearly a Brouwer manifold cannot be strictly included in an other

one hence one deduces that Γ = Γ−
β̂
or Γ = Γ+

β̂
, so that Φ = Φ− ≺ Φ′ or Φ = Φ+ � Φ′.

Again Φ and Φ′ have no transverse intersection.

Third case : Φ = Φt
β̂
and Φ′ = Φt′

β̂′
for some β̂, β̂′ ∈ B/ ∼ and some t, t′ ∈ (−1, 1).

The result is contained in the initial remark if β̂ = β̂′. Assume now that β̂ 6= β̂′

and pick β ∈ β̂ and β′ ∈ β̂′. According to Proposition 5.15 one has β ∈ R(Γ−
β̂′

)∪L(Γ+

β̂′
).

Suppose first that β ∈ R(Γ−
β̂′

). If β ⊂ Int(R(Γ−
β̂′

)) then γ−β ⊂ Γ−
β̂
∩ Int(R(Γ−

β̂′
)) and

γ+
β ⊂ Γ+

β̂
∩ Int(R(Γ−

β̂′
)). Since any two Brouwer manifolds in L∗ have no transverse

intersection, it follows that Γ−
β̂
∪ Γ+

β̂
⊂ R(Γ−

β̂′
). If β 6⊂ Int(R(Γ−

β̂′
)) then there exists

an edge e ⊂ ∂Mβ ∩ Γ−
β̂′

and necessarily e ⊂ γ+
β because β ∈ R(Γ−

β̂′
). This gives Γ−

β̂
≺

Γ+

β̂
= Γ−e � Γ−

β̂′
and one gets again Γ−

β̂
∪ Γ+

β̂
⊂ R(Γ−

β̂′
). This together with Proposition

3.3 implies that either R(Γ+

β̂
) ⊂ R(Γ−

β̂′
) or L(Γ−

β̂
) ⊂ R(Γ−

β̂′
). Indeed, otherwise one

has L(Γ+

β̂
) ⊂ R(Γ−

β̂′
) and R(Γ−

β̂
) ⊂ R(Γ−

β̂′
) and therefore, using again Proposition 5.15,

β′ ∈ L(Γ−
β̂′

) ⊂ R(Γ+

β̂
) ∩ L(Γ−

β̂
) = β̂, a contradiction. Using one more time Proposition

5.20 one has:

- If R(Γ+

β̂
) ⊂ R(Γ−

β̂′
) then Φ ≺ Ψ(Γ+

β̂
) � Ψ(Γ−

β̂′
) ≺ Φ′.

- If L(Γ−
β̂

) ⊂ R(Γ−
β̂′

) then L(Φ) ⊂ L(Ψ(Γ−
β̂

)) ⊂ L(Γ−
β̂

) ⊂ R(Γ−
β̂′

) ⊂ R(Ψ(Γ
β̂′

)) ⊂ R(Φ′).

Let us consider now the second situation β ∈ L(Γ+

β̂′
). Similarly as above one gets

Γ−
β̂
∪ Γ+

β̂
⊂ L(Γ+

β̂′
) and afterwards R(Γ+

β̂
) ⊂ L(Γ+

β̂′
) or L(Γ−

β̂
) ⊂ L(Γ+

β̂′
).

- If R(Γ+

β̂
) ⊂ L(Γ+

β̂′
) then Lemma 5.16 gives R(Ψ(Γ+

β̂
)) ∩ R(Ψ(Γ+

β̂′
)) = ∅. Moreover

Φ ≺ Ψ(Γ+

β̂
) and Φ′ ≺ Ψ(Γ+

β̂′
) hence R(Φ) ∩R(Φ′) = ∅.

- If L(Γ−
β̂

) ⊂ L(Γ+

β̂′
), i.e., Γ+

β̂′
� Γ−

β̂
, then it follows from Item (3) of Proposition 5.20

that Φ′ ≺ Ψ(Γ+

β̂′
) � Ψ(Γ−

β̂
) ≺ Φ.

Hence in all cases Φ and Φ′ have no transverse intersection.

Therefore we have constructed a family P of Brouwer manifolds of h satisfying

the conditions of Theorem 4.1.

5.4 Some remarks on the set of Brouwer manifolds P

Of course two distinct Brouwer manifolds Φ,Φ′ in P may intersect. More precisely,

observe that Φ∩Φ′ 6= ∅ iff Φ∩Φ′ = α where α ∈ E is an edge which is also a common

connected component of Γ−
β̂

and Γ+

β̂
for some β̂ ∈ B/ ∼. Such an edge α is then

regular and is a line of M , denote by E0 the set of such all edges. Moreover the four

Brouwer manifolds Φ, Φ′ and Γ±
β̂
have the same type 3.
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Proposition 5.24. For α ∈ E0 define Sα =
(
R(Ψ(Γ+

α ))∩L(Ψ(Γ−α ))
)
\α ⊂M . Then

one has the following properties.

(1) Sα is a strip with frontier ∂MSα = F− t F+ where F−, F+ are the leaves of F

such that α t F− = Ψ(Γ−α ) and α t F+ = Ψ(Γ+
α ).

(2) Sα is trivially foliated by F .

(3) For every leaf F of F such that F ⊂ Int(Sα), the only Brouwer manifold in P

possessing F as a connected component is αtF . Conversely, if α is a connected

component of Φ ∈ P then there exists a leaf F of F such that F ⊂ Sα and

Φ = α t F . Consequently, one has Ψ(Γ−α ) � Φ � Ψ(Γ+
α ).

(4) for any two distinct α, α′ ∈ E0 one has Int(Sα) ∩ Int(Sα′) = ∅.

Proof. We provide a proof assuming that Fix(h) is totally disconnected. If Fix(h) is

a circle then one can compactify each connected component M1,M2 of M with one

point and one obtains the result with minor adaptations of the same arguments.

(1) Write Cl(α) \ α = {a, b} ⊂ Fix(h) with possibly a = b. The definition of E0 tell

us that there exists β̂∗ ∈ B/ ∼ such that α is a common connected component of the

Brouwer manifolds Γ−
β̂∗

and Γ+

β̂∗
which have type 3. Consequently Γ−α � Γ−

β̂∗
≺ Γ+

β̂∗
�

Γ+
α and one deduces from Proposition 5.20 that Ψ(Γ−α ) and Ψ(Γ+

α ) are two Brouwer

manifolds of type 3 such that Ψ(Γ−α ) ≺ Ψ(Γ+
α ). By the definition of Ψ they also both

have α as a connected component. It follows that the set

S′α =
(
Cl(R(Ψ(Γ+

α ))) ∩ Cl(L(Ψ(Γ−α )))
)
\
(
{a, b} ∪ α

)
is a strip in S2 having F− t F+ as boundary lines and such that S′α ⊂ Sα ∪ Fix(h).

Now it follows from Lemma 5.12 that

h(Sα) ∩ Sα ⊂ h(R(Ψ(Γ+
α ))) ∩ L(Ψ(Γ−α )) ⊂ Int(R(Ψ(Γ−α ))) ∩ L(Ψ(Γ−α )) = ∅.

Since Fix(h) has empty interior this also implies h(S′α)∩S′α = ∅ so that S′α is actually

contained in M and S′α = Sα.

(2) It is enough to prove that any given leaf F of F included in Int(Sα) = Sα\(F−∪
F+) separates F− and F+ in the strip Sα ⊂ M . Arguing by contradiction, suppose

that F− and F+ are contained in the same connected component W of Sα\F ⊂M \F .
Then necessarily F accumulates on a single fixed point a ∈ Cl(F±) \ F± = Cl(α) \ α
so that Cl(F ) = F ∪ {a} is a circle. Lemma 5.2 tell us that M \ F has exactly two

connected components U and V with for instance F− ∪ F+ ⊂ W ⊂ U . Moreover

F ⊂ ClM (V ) ∩ Int(Sα) hence V ∩ Sα 6= ∅ and afterwards V ⊂ Sα because V ∩ ∂MSα =

V ∩ (F− ∪ F+) = ∅. One knows that there exists at least one Brouwer manifold

ΦF ∈ P possessing F as a connected component (Corollary 5.1). Then there is a

connected component V ′ of M \ ΦF such that V ′ ⊂ V ⊂ Sα. Since hi(V ′) ⊂ V ′ for
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some i ∈ {±2} one deduces that h2(Sα) ∩ Sα 6= ∅. On the other hand, one gets with

Lemma 5.12 that h2(R(Ψ(Γ+
α ))) ⊂ h(R(Ψ(Γ+

α ))) ⊂ Int(R(Ψ(Γ−α ))) and therefore

h2(Sα) ∩ Sα ⊂ Int(R(Ψ(Γ−α ))) ∩ L(Ψ(Γ−α )) = ∅,

a contradiction.

(3) Let F be a leaf of F such that F ⊂ Int(Sα). First we shall prove that F t α is

a Brouwer manifold of h. It is not difficult to see with (2) above that the Brouwer

manifold Γ = Φ(Γ−α ) and the set ∆ = F tα satisfy the conditions a)-d) of Lemma 5.13.

Observe also that R(Ψ(Γ−α )) ⊂ R(F tα) ⊂ R(Ψ(Γ+
α ))). Then using again Lemma 5.12

one obtains

h(F t α) ⊂ h(Sα t α) ⊂ h(R(Ψ(Γ+
α )) ⊂ Int(R(Ψ(Γ−α )) ⊂ R(F t α)

and

h−1(F t α) ⊂ h−1(Sα t α) ⊂ h−1(L(Ψ(Γ−α ))) ⊂ Int(L(Ψ(Γ+
α ))) ⊂ L(F t α).

Thus Property (L−R) in Item e) of Lemma 5.13 also holds true and consequently

F t α is a Brouwer manifold of h.

Now consider a Brouwer manifold ΦF ∈ P containing F . One has F  ΦF ,

in other words F is not a Brouwer manifold of type 2, because otherwise ΦF =

F accumulates on only one fixed point (see the proof of Proposition 3.1) and one

obtains a contradiction with h2(Sα) ∩ Sα = ∅ exactly as in the proof of (2). Thus

ΦF has type 3 and we write F ′ for its connected component other than F . One has

F ′ ∩ Sα = ∅ since otherwise, according to (2), there is a strip S ⊂ Sα with frontier

∂MS = F t F ′ whose interior intersects both Int(R(ΦF )) and Int(L(ΦF )), which is not

possible because also F t F ′ = ΦF = ∂R(ΦF ) = ∂L(ΦF ). One the other hand, one

has F ⊂ Int(Sα) = Int(R(Ψ(Γ+
α ))∩ Int(L(Ψ(Γ−α )) and one knows that any two Brouwer

manifolds in P have no transverse intersection (Proposition 5.23) hence one deduces

F ′ ⊂ ΦF ⊂ R(Ψ(Γ+
α )) ∩ L(Ψ(Γ−α )) = α t Sα

which shows as expected that F ′ = α.

Let Φ ∈P be a Brouwer manifold possessing α as a connected component. Recall

from Remark 3.2 that α cannot be a Brouwer manifold of type 2 hence α  Φ. By

definition of P one has either Φ ∈ Ψ(L) or there exists b̂ ∈ B/ ∼ and t ∈ (−1, 1) such

that Φ = Φt
b̂
and Ω

2, b̂
= α. If the first case occurs then Φ = Ψ(Γ) for some Γ ∈ L∗.

Clearly α ⊂ Γ hence Γ ∈ L∗(α) and therefore Γ−α � Γ � Γ+
α . According to Item (3) of

Proposition 5.20 one obtains Ψ(Γ−α ) � Φ � Ψ(Γ+
α ) which gives Φ\α ⊂ Sα. If the second

case occurs then both Γ−
b̂
and Γ+

b̂
contain α and consequently Γ−α � Γ−

b̂
≺ Γ+

b̂
� Γ+

α .

Combining Item (3) of Proposition 5.20 and the remark at the beginning of the proof

of Proposition 5.23 one gets Ψ(Γ−α ) ≺ Φ ≺ Ψ(Γ+
α ) and it follows again that Φ \α ⊂ Sα.

Since Φ \ α 6= ∅ one gets as required Φ = αtF where F is a leaf of F included in Sα.
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(4) Suppose now that there exists a point x ∈ Int(Sα)∩ Int(Sα′) 6= ∅. Denote by Fx
the leaf of F passing through x. According to Item (3) one obtains that Fx t α and

Fxtα′ are two Brouwer manifolds in P. Since the strip Sα′ is trivially foliated by F ,

one gets as in the proof of (3) that α∩Sα′ = ∅, i.e., α ⊂ Int(L(Ψ(Γ+
α′))∪ Int(R(Ψ(Γ−α′)).

These last two sets are disjoint because Ψ(Γ−α′) � Ψ(Γ+
α′) hence one gets either α ⊂

Int(L(Ψ(Γ+
α′)) or α ⊂ Int(R(Ψ(Γ−α′)). The first inclusion together with Fx ⊂ Int(Sα′) ⊂

Int(R(Ψ(Γ+
α′))) implies a contradiction since Ψ(Γ+

α′) and Fx t α have no transverse

intersection as Brouwer manifolds in P. Similarly the second inclusion also lead to

a contradiction because Fx ⊂ Int(Sα′) ⊂ Int(L(Ψ(Γ−α′))) and because Ψ(Γ−α′) ∈ P and

Fx t α ∈P have no transverse intersection.
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Our goal in this section is to give some applications of Theorem 4.1 to the fixed

point index. Precisely we prove Theorem 4.2 stated in Section 4.

The following statement of Le Roux (see [LR13, Appendix A]) allows to deal

conveniently with homeomorphisms of the whole sphere.

Theorem 6.1. Let h : U → V be a homeomorphism between two neighbourhoods

U, V of 0 in the plane R2 verifying Fix(h) = Fix(h2) = {0}. Then there exists a

homeomorphism H of R2 such that Fix(H) = Fix(H2) = {0} and H|W = h|W for

some neighborhood W ⊂ U of 0.

A planar homeomorphism H as in Theorem 6.1 also extends to a homeomorphism

of the sphere S2 = R2 ∪ {∞} such that Fix(H) = Fix(H2) = {0,∞} by letting H(∞) =

∞. Moreover the Lefschetz index of an isolated fixed point depends only on the

local behavior of the considered map, hence Theorem 4.2 is a direct consequences of

Theorem 6.2 below, which shall be proved in this Chapter 6.

Theorem 6.2. Let h be an orientation reversing homeomorphism of the sphere

S2 such that Fix(h) = Fix(h2) = {0,∞}. Then Ind(hn, 0)) is well-defined for every

integer n > 1 and one has Ind(h2k+1, 0) = Ind(h, 0) and Ind(h2k, 0) = Ind(h2, 0) for

every k > 1.

Throughout this Chapter 6, we fix once and for all an orientation reversing home-

omorphism h of S2 such that Fix(h) = Fix(h2) = {0,∞} and a set P = {Φs}s∈Λ of

Brouwer manifolds of h covering S2 \ {0,∞} provided by Theorem 4.1.

Thus the sets Φs, where s ∈ Λ, are Brouwer manifolds of h which have pairwise no

transverse intersection and the set F = {φ | φ is a connected component of Φs for some s ∈
Λ} defines an oriented topological foliation of S2 \ {0,∞}. In particular every leaf

φ of F is either a circle or a line of S2 \ {0,∞}. In the first case, φ is called a

circle-leaf. In the latter case, one has ∅ 6= Cl(φ) \ φ ⊂ {0,∞} and we say that φ is a

petal-leaf at 0 (resp. at ∞) if Cl(φ) \ φ = {0} (resp. Cl(φ) \ φ = {∞}) and a line-leaf

if Cl(φ) \ φ = {0,∞}. In the following, we write φz for the leaf of F passing through

z ∈ S2 \ {0,∞}. If φz is a line of S2 \ {0,∞} we denote by φ+
z (resp. φ−z ) the positive

(resp. negative) half-leaf in φz with endpoint z.

We recall some definitions allowing to describe the behaviour of h. Given i ∈ {1, 2},
we define following [LR04] an attracting hi-petal at 0 to be a disc P ⊂ S2 such that

- 0 ∈ ∂P ,
- hi(P ) ⊂ Int(P ) ∪ {0}.

A repelling hi-petal at 0 is an attracting h−i-petal at 0.

Another useful notion from [LR04] is the following. For i ∈ {1, 2}, an attracting

hi-croissant is a disc C ⊂ S2 verifying
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- {0,∞} ⊂ ∂C;

- hi(C) ⊂ Int(C) ∪ {0,∞} (Fig. 6.1).

A repelling hi-croissant is an attracting h−i-croissant.

P

hi(P )

C

hi(C)

0 0

∞

Figure 6.1 – An attracting hi-petal at 0 and an attracting hi-croissant

We are mainly interested in this work by croissants and petals bounded by leaves

of F . Precisely we say that a hi-croissant A (repelling or attracting) is a (F , hi)-

croissant if ∂A \ {0,∞} is the union of two leaves of F . Similarly, a (F , hi)-petal at

a ∈ {0,∞} is a hi-petal at a such that ∂P \ {a} is a leaf of F . A (F , hi)-croissant

A is said to be minimal if there is no (F , hi)-croissant A′ satisfying A′  A. For

short, we simply use the word F -croissant (resp. F -petal) to indicate a set which is

a (F , hi)-croissant (resp. a (F , hi)-petal) for some integer i ∈ {1, 2}.
Remark that if Φ ∈P is a Brouwer manifold of type 3 such that Cl(Φ)\Φ = {0,∞}

then Cl(R(Φ)) = R(Φ) ∪ {0,∞} and Cl(L(Φ)) = L(Φ) ∪ {0,∞} are respectively an

attracting and a repelling (F , h)-croissant.

For any z ∈ S2 \ {0,∞}, there exist a compact set K ⊂ S2 \ {0,∞} containing

z in its interior, called trivializing neighborhood of z, and an orientation preserving

homeomorphism ψ : K → [−1, 1]2 ⊂ R2, called trivialization chart at z, such that

ψ maps the foliation F |K induced by F on K onto the foliation by vertical lines

with their upward orientation. The couple (K,ψ) is called a flow-box of F at z. For

t ∈ [−1, 1], the sets ψ−1
(
{t} × [−1, 1]

)
are named the local leaves of F in K.

6.1 Description of the foliation F when it has no

circle-leaf

Lemma 6.1. Suppose that (xk)k>0 is a sequence in S2 \ {0,∞} converging to a ∈
{0,∞} and such that φxk is a petal-leaf at b ∈ {0,∞} \ {a} for every k ∈ N. Then

the set
⋂
k∈NCl

(⋃
n>k φn

)
contains a line-leaf oriented from 0 to ∞ and a line-leaf

oriented from ∞ to 0.
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Proof. The points 0 and ∞ have symmetric roles in this statement hence it is enough

to deal with the case a = ∞ and b = 0. For short we write φk and φ−k instead of

respectively φxk and φ−xk .

Define L =
⋂
k∈NCl

(⋃
n>k φ

−
n

)
which is a connected compact set (as a nested

intersection of connected compact sets) such that {0,∞} ⊂ L. Let us check that L is

saturated by F , that means that any leaf intersecting L is entirely contained in L.

Suppose that φ is a leaf of F and y ∈ φ ∩ L. Consider a trivializing neighborhood V

of y. From the definition of L there exists a sequence (ki)i>0 in N and yi ∈ φ−ki such
that limi→+∞ ki = +∞ and limi→+∞ yi = y. For i large enough one has yi ∈ V and

even better the local leaf of F in V containing yi lies entirely in φ−ki because xk →∞
as k → +∞. It follows that L contains the whole local leaf of F in V passing through

y and consequently φ ∩ L is open in φ. Clearly φ ∩ L is also closed in φ so φ ⊂ L, as

expected.

Denote by L0 (resp. L∞) the union of all the petal-leaves at 0 (resp. at ∞)

included in L. Observe that for any two distinct leaves φ and φ′ included in L0, the

F -petals P and P ′ bounded by respectively φ∪ {0} and φ′ ∪ {0} satisfy P ∩P ′ = {0}.
Indeed, otherwise one can suppose φ ⊂ Int(P ′). Since φ ⊂ L one has φ−k ∩ Int(P ′) 6= ∅
and then φk ⊂ Int(P ′) for infinitely many k ∈ N, which contradicts the fact that

(xk)k>0 converges to ∞.

Claim 1. Given any point z ∈ S2 \ {0,∞} and any trivializing neighborhood V of z,

there exist at most two leaves contained in L0 which meet V .

Proof. A classical argument from the proof of Poincaré-Bendixson Theorem (see e.g.

[PdM82]) tells us that a leaf of F which accumulates on a single point in {0,∞}
intersects V in at most one connected component. Consequently, if φ, φ′ and φ′′ are

three distinct leaves in L0 intersecting V then each set φ∩V , φ′∩V and φ′′∩V consists

of exactly one local leaf of F in V . Then there exists a segment in V joining two of

these leaves, say φ and φ′, and intersecting the third one φ′′ transversely in only one

point. It follows that the circle φ′′ ∪ {0} separates φ and φ′ in S2 and afterwards that

the petal P ′′ at 0 bounded by φ′′ ∪ {0} contains one of the two petals P, P ′ bounded

by respectively φ ∪ {0} and φ′ ∪ {0}, which is known to be not possible.

As a consequence, one gets that L0 ∪ {0} is a closed subset of L which does not

contains ∞. Indeed the above Claim clearly shows that L0 ∪ {0} is closed in L \ {∞}
hence one just needs to check that ∞ 6∈ Cl(L0). Let D be a disc neighborhood of ∞
so small that 0 6∈ D. There exists a finite open covering ∂D ⊂ Int(V1) ∪ · · · ∪ Int(VN )

where each Vi is a trivializing neighborhood of some point in ∂D. According again

to Claim 1, only finitely many leaves in L0 intersect ∂D so there is a smaller disc

D′ ⊂ D neighborhood of ∞ which is disjoint from L0 so that ∞ 6∈ Cl(L0).
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Reversing the roles of 0 and ∞ one also obtains that L∞ ∪ {∞} is a closed subset

of L which does not contains 0. Since L is connected one cannot have a partition

L = (L0 ∪ {0}) t (L∞ ∪ {∞}) so L contains some line-leaf.

Claim 2. Any line-leaf φ ⊂ L is oriented from 0 to ∞.

Proof. Arguing by contradiction we suppose that φ is oriented from∞ to 0. Let w ∈ φ
and let W be a trivializing neighborhood of w. Since φ is a line of S2 \ {0,∞} one

can choose W so small that φ ∩W consists of a single local leaf of F in W . Because

w ∈ L one has φ−k ∩ Int(W ) 6= ∅ for infinitely many k ∈ N. As recalled in the proof

of Claim 1, the set φk ∩W is empty or connected and moreover limk→+∞ xk = ∞.

Hence, possibly after replacing (φk)k>0 with a suitable subsequence, one can assume

that, for k > k0, the leaves φk are pairwise distinct and that the sets φ−k ∩W are local

leaves of F in W located on the same side of φ∩W in W , say for instance on the right

of φ ∩W , with moreover φ−k+1 ∩W closer than φ−k ∩W from φ ∩W . Letting φ′ = φk0
,

choose a point z ∈ φ′ ∩ Int(W ) and join z to w with a segment η ⊂ Int(W ) which is

transverse to F . Then C = {0} ∪ φ′−z ∪ η ∪ φ+
w is a circle which clearly separates ∞

and xk0
in S2 (see Fig. 6.2).

0

∞

W

φ

xk0
xk

w

η

φ′

φk (k > k0)

z

Figure 6.2 – The points xk for k large enough

Moreover φ−k intersects η transversely at only one point zk 6= xk for every k > k0 and

xk belongs to the same connected component of S2 \C as xk0
. This is a contradiction

because xk →∞ as k → +∞.

This proves the existence of a leaf-line oriented from 0 to ∞ and contained in

L ⊂
⋂
k∈NCl

(⋃
n>k φn

)
, as expected. One gets similarly the result concerning a

leaf-line oriented from ∞ to 0, replacing above L with L′ =
⋂
k∈NCl

(⋃
n>k φ

+
xn

)
.
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Proposition 6.1. The foliation F contains at least one line-leaf oriented oriented

from 0 to ∞ and one line-leaf orientated from ∞ to 0.

Proof. One can assume that the hypothesis of Lemma 6.1 are not satisfied since

otherwise we are done. Hence there exist two disjoint discs V0, V∞ neighborhoods

of respectively 0, ∞ such that every petal-leaf at ∞ (resp. at 0) is disjoint from V0

(resp. from V∞). Observe moreover that it is sufficient to prove the existence of one

line-leaf. Indeed any line-leaf φ of F is a connected component of some Brouwer

manifold Φ = φ t φ′ ∈ P of type 3 and one of the line-leaves φ, φ′ is oriented from 0

to ∞ while the other one is oriented from ∞ to 0.

Arguing by contradiction, let us suppose that F contains no line-leaf. Choose a

segment ∆ ⊂ S2 joining 0 to ∞, oriented from 0 to ∞, which intersects ∂V0 (resp.

∂V∞) at a single point θ1 (resp. θ2) and let

∆0 = {x ∈ [θ1, θ2]∆ such that φx is a petal-leaf at 0}.

Since F is assumed to have no circle-leaf one has θ1 ∈ ∆0. Moreover θ2 6∈ ∆0.

The compact set Cl(∆0) ⊂ [θ1, θ2]∆ possesses a maximum (the segment ∆ is naturally

ordered by its orientation) which is denoted by θ∗. One has the following two cases.

- First case : θ∗ ∈ ∆0. Then θ∗ < θ2 so there exists a sequence (xn)n>0 in (θ∗, θ2)∆

such that limn→+∞ xn = θ∗. By the definition of θ∗, the φxn’s are petal-leaves at

∞. Since φθ∗ ∩ Int(V0) 6= ∅ and xn goes to θ∗ as n → ∞, the leaf φxn also meets

V0 for n large enough, which contradicts the choice of V0.

- Second case : θ∗ 6∈ ∆0. In other words, the leaf φθ∗ is a petal-leaf at ∞. Consider

a sequence (zn)n>0 in ∆0 such that limn→+∞ zn = θ∗. Since φθ∗ ∩ Int(V∞) 6= ∅, one
also has φxn ∩ V∞ 6= ∅ for n large enough, which is another contradiction.

Proposition 6.2. Let φ (resp. φ′) be a line-leaf oriented from 0 to ∞ (resp. from

∞ to 0). Then each disc bounded by the circle φ∪ φ′ ∪ {0,∞} contains at least one
minimal (F , h2)-croissant.

Proof. We only deal with the disc D with frontier φ ∪ φ′ ∪ {0,∞} which lies locally

on the right of φ and φ′. One proves likewise the result for the other disc bounded

by φ ∪ φ′ ∪ {0,∞}.
Consider a segment ∆ with endpoints x ∈ φ and x′ ∈ φ′ such that ∆ \ {x, x′} ⊂

Int(D). It is naturally ordered by choosing an orientation, say from x towards x′. We

denote by ω the set of all the points in ∆ which belong to a line-leaf oriented from 0

to ∞. Note that x ∈ ω and x′ 6∈ ω. Then the compact set Cl(ω) ⊂ ∆ has a maximum

y ∈ ∆ and one has y = limn→+∞ xn where xn ∈ ω. Then L =
⋂
k∈NCl(

⋃
n>k φxn) is
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clearly a connected compact set satisfying {0,∞} ⊂ L ⊂ D and one checks that it is

also saturated by F (the argument is similar to the one in the proof of Lemma 6.1).

Since y = limn→+∞ xn one gets y ∈ L and then φy ⊂ L ⊂ D. Let us prove that φy is a

line-leaf oriented from 0 to ∞. First suppose that φy is a petal-leaf at a ∈ {0,∞} and
let V be a trivializing neighborhood of y′ = max{φy ∩∆}. Then φy ∩ V consists of a

single local leaf of F in V and V \ φy has two connected components V1 and V2. One

of them, say V1, is contained in the interior of the petal P bounded by φy ∪ {a} so
V ∩φxn = V2 ∩φxn for every n ∈ N. One also has V1 ∩ (y′, x′]∆ = ∅ because (y′, x′]∆ ∪φ′
is connected and disjoint from ∂P = φy ∪ {a} hence V ∩ (y′, x′]∆ = V2 ∩ (y′, x′]∆.

Consequently the connected component of V ∩ [y′, x′]∆ containing y′ is a segment

[y′, y′′]∆ ⊂ V2 with y′′ ∈ ∂V2 \φy. Since y′ ∈ L there exists n ∈ N such that φxn contains

a local leaf of F in V lying between the ones passing through y′ and y′′. This implies

∅ 6= φxn ∩ (y′, y′′)∆ ⊂ φxn ∩ (y, x′]∆ and contradicts the maximality of y. Thus φy is

a line-leaf of F . Now let V be a trivializing neighborhood of y and fix n ∈ N so

large that xn ∈ V . The leaves φy and φxn are lines of S2 \ {0,∞} hence, replacing if

necessary V with a smaller trivializing neighborhood of y, one can assume that each

set φy ∩V and φxn ∩V consists of only one local leaf of F in V . If φy is oriented from

∞ to 0 then of course φy 6= φxn and there exists a segment η ⊂ V from xn to y which

is transverse to F . Then the set φ−xn ∪ η ∪ φ+
y ∪ {0} is a circle which is easily seen to

separate {∞} and φ+
xn \ {xn}, which is not possible because ∞ ∈ Cl(φ+

xn). This shows

that φy is oriented from 0 to ∞.

In particular φy and φ′ are two distinct line-leaves so one may define D1 to be

the disc bounded by φy ∪ φ′ ∪ {0,∞} and such that D1 ⊂ D. Note that [y, x′]∆ ⊂ D1

and define ω′ to be the set of all the points in [y, x′]∆ which belong to some line-leaf

oriented from ∞ to 0. Obviously y 6∈ ω′ and x′ ∈ ω′. The compact set Cl(ω′) ⊂ ∆

possesses a minimum z ∈ [y, x′]∆ and one proves similarly as above that φz is a line-

leaf contained in D1 and oriented from ∞ to 0. Notably φz 6= φy hence one may

consider the disc C included in D1 and bounded by φy ∪ φz ∪ {0,∞}.
We prove now that C is a minimal (F , h2)-croissant. By the construction there is

no line-leaf in Int(C) hence it is sufficient to show that C is an attracting h2-croissant.

We first prove that there exists a sequence (φn)n>0 of petal-leaves at a ∈ {0,∞}
such that φy ∪ φz ⊂

⋂
k∈NCl(

⋃
n>k φn) and such that the circle φn ∪ {a} bounds an

attracting (F , h2)-petals at a. Using again the fact that Int(C) contains no line-leaf,

one checks as in the proof of Proposition 6.1 that any neighborhood of ∞ meets

some petal-leaf at 0 contained in Int(C) or that any neighborhood of 0 meets some

petal-leaf at ∞ contained in Int(C). Possibly after switching the roles of 0 and ∞,

one may suppose that the first situation holds. This gives a sequence (xi)i>0 in Int(C)

converging to ∞ and such that φxi ⊂ Int(C) is a petal-leaf at 0. According to Lemma

6.1 one has φy ∪ φz ⊂
⋂
j∈NCl(

⋃
i>j φxi) ⊂ C. For every i ∈ N, we define Pi to be

the F -petal at 0 with frontier φxi ∪ {0}. Clearly Pi ⊂ Int(C) ∪ {0}. Choose any
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point m ∈ φy and let V be a trivializing neighborhood of m so small that φy ∩ V is

reduced to a single local leaf of F in V . Because m ∈
⋂
j∈NCl(

⋃
i>j φxi) there exists

a sequence (in)n>0 in N converging to +∞ such that φxin ∩ Int(V ) 6= ∅ for every n ∈ N.
Moreover any leaf φxi accumulates on only one point in {0,∞} so φxin ∩ V consists

of a single local leaf of F in V for every n ∈ N. The local leaf φxin ∩ V ⊂ Int(C)

is located on the right of the local leaf φy ∩ V in V because the disc C lies locally

one the right of φy (and φz). Then the F -petal Pin is located on the right of φxin
in V since otherwise φy ∩ Pin 6= ∅ and afterwards φy ⊂ Pin which is absurd because

∞ ∈ Cl(φy). This implies that Pin lies locally on the right of φxin and consequently

Pin is an attracting h2-petal. Applying Lemma 6.1 with the sequence (φxin )n>0 one

also obtains φy ∪ φz ⊂
⋂
k∈NCl

(⋃
n>k φxin

)
. One gets a sequence of petal-leaves as

required by letting φn = φxin .

One has notably h2(φn) ⊂ h2(Int(C)) ∩ h2(Pn \ {0}) ⊂ h2(Int(C)) ∩ Int(Pn) ⊂
h2(Int(C)) ∩ Int(C) for every n ∈ N. Observe that any open set U ⊂ S2 meeting

h2(φy ∪ φz) ⊂
⋂
k∈NCl

(⋃
n>k h

2(φn)
)
also intersects h2(φn) for infinitely many n ∈ N;

in particular U ∩ h2(Int(C)) ∩ Int(C) 6= ∅. This implies h2(φy ∪ φz) ⊂ C. This also im-

plies φz 6= h2(φy). Indeed, if this is not true then the two discs C and h2(C) lie locally

on opposite sides of φz = h2(φy) ⊂ ∂C ∩ ∂h2(C) because h2 preserves the orientation

and 0,∞ are fixed points of h2. Hence, given p ∈ φz = h2(φy), one can find an open

neighborhood U of p such that U ∩ Int(C) ∩ Int(h2(C)) = ∅, a contradiction. Further-

more φy is contained in a Brouwer manifold of h so h2(φy)∩ φy = ∅ and consequently

h2(φy) ∩ Int(C) 6= ∅. One gets likewise h2(φz) ∩ Int(C) 6= ∅.
One deduces from h2(φy∪φz) ⊂ C that either h2(C) ⊂ C or h2(S2\Int(C)) ⊂ C. Let

us prove that the latter inclusion actually does not hold. According to the previous

paragraph, one can pick p ∈ h2(φy) ∩ Int(C) (resp. p′ ∈ h2(φz) ∩ Int(C)). Let U (resp.

U ′) be a connected open neighborhood of p (resp. of p′) so small that U ∪ U ′ ⊂ C

and Cl(U) ∩ h2(∂C) = Cl(U) ∩ h2(φy) and Cl(U ′) ∩ h2(∂C) = Cl(U ′) ∩ h2(φz). There

exists a sequence (nk)k>0 in N such that limk→+∞ nk = +∞ and ∅ 6= φxnk ∩ h−2(U) ⊂
Int(C) ∩ h−2(U) for every k ∈ N. Applying Lemma 6.1 with the sequence (xnk)k>0

one gets φz ⊂
⋂
l∈NCl

(⋃
k>l φxnk

)
hence there exists k ∈ N such that ∅ 6= φxnk ∩ U ′ ⊂

Int(C) ∩ h−2(U ′). Consequently there exists a connected component V (resp. V ′) of

Int(h2(C)) ∩ U (resp. of Int(h2(C)) ∩ U ′) such that V ∩ h2(φxnk ) 6= ∅ 6= V ′ ∩ h2(φxnk ).

One has easily ∂V ⊂ h2(∂C) ∪ ∂U and moreover ∂V ∩ h2(φy) = ∂V ∩ h2(∂C) 6= ∅
because otherwise V = U ⊂ Int(h2(C)) which contradicts p ∈ U ∩ h2(φy). Similarly

∂V ′ ⊂ h2(∂C)∪∂U ′ with ∂V ′∩h2(φz) = ∂V ′∩h2(∂C) 6= ∅ so the setX = V ∪(∂V ∩h2(C))∪
h2(φxnk )∪V ′∪ (∂V ′∩h2(C)) is a connected subset of C∩h2(C)\{0,∞} and meets both

h2(φy) and h2(φz). It is not difficult to check that if h2(S2 \ Int(C)) ⊂ C then h2(φy)

and h2(φz) are contained in two distinct connected components of (C∩h2(C))\{0,∞}
which is incompatible with the existence of X above, thus one gets h2(C) ⊂ C.

It remains to check that h2(φy ∪ φz) ⊂ Int(C). This is a consequence of the
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fact that h2 preserves the orientation. Let us give some additional details. It is

already know that h2(φy ∪ φz)∩ (φy ∪ φz) = (h2(φy)∩ φz)∪ (h2(φz)∩ φy). Suppose first

that h2(φy) ⊂ Int(C). Thanks to the Schoenflies Theorem, one may assume up to

conjugacy that C =
(
R × [0,+∞)

)
∪ {∞}, φy = (−∞, 0) × {0}, φz = (0,+∞) × {0}

and h2(φy) = {0} × (0,+∞). Since h2 preserves the orientation and has 0,∞ as fixed

points, the disc h2(C) lies locally on the right of h2(φy) oriented from 0 to∞ so clearly

h2(φz) ⊂ h2(C) is disjoint from φy. One gets similarly h2(φy)∩φz = ∅ if h2(φz) ⊂ Int(C).

Suppose finally that h2(φy) ∩ φz 6= ∅ 6= h2(φz) ∩ φy. Choose a segment ∆ joining 0

and ∞ such that ∆ \ {0,∞} ⊂ Int(h2(C)). Up to conjugagy, one may assume that C

is an Euclidean disc in the plane R2 with ∆ as its horizontal diameter. Note that

h2(φy)∪φz and h2(φz)∪φy are two connected subsets of C\∆ so one of them is included

in the upper connected component of C \∆ and the other one in the lower connected

component of C \∆. Choosing any point p0 ∈ ∆ \ {0,∞} ⊂ Int(h2(C)) ⊂ Int(C), one

deduces that, when p moves along ∂C, the winding numbers of the vectors p − p0

and h2(p) − p0 have opposite values (±1), which is not possible for the orientation

preserving homeomorphism h2.

Proposition 6.3. For every i ∈ {1, 2}, an attracting (resp. a repelling) minimal

(F , hi)-croissant lies locally on the right (resp. left) of the two leaves in its frontier.

Proof. We only consider the case where A is an attracting (F , hi)-croissant. Replacing

h with h−1, one gets likewise the result for a repelling (F , hi)-croissant. Write ∂A \
{0,∞} = φ1 t φ2 where φ1, φ2 are two leaves of F . There exists a leaf φ′1 of F such

that Φ = φ1tφ′1 ∈P is a Brouwer manifold of type 3 with Cl(Φ)\Φ = {0,∞} and it is

enough to check that Int(A) ⊂ Int(R(Φ)). One has hi(φ1) ⊂ Int(A)∩ Int(R(Φ)) because

A is an attracting hi-croissant. Hence if the above inclusion does not hold then one

gets ∅ 6= Int(A) ∩ ∂R(Φ) = Int(A) ∩ φ′1. In particular φ′1 6= φ2 so φ′1 ∩ ∂A = ∅ and then

φ′1 ⊂ Int(A). It follows that one of the two (F , hi)-croissants Cl(R(Φ)) = R(Φ)∪{0,∞}
or Cl(L(Φ)) = L(Φ)∪{0,∞} is strictly contained in A, which contradicts the minimality

of A.

As an immediate consequence of Propositions 6.1-6.3 one has the following result.

Corollary 6.1. - There exist at least two minimal (F , h2)-croissants.

- For any minimal (F , h2)-croissant A, there is no line-leaf included in Int(A).

- For any two distinct minimal (F , h2)-croissants A,A′, one has Int(A)∩Int(A′) = ∅.

For any i ∈ {1, 2}, we say following [LR04] that an attracting (F , hi)-croissant A

has dynamical type 0−∞ if for every neighborhood V∞ of∞ there exists an attracting

(F , hi)-petal P at 0 such that

- P ⊂ A,
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- P ∩ V∞ 6= ∅.

By reversing the roles of 0 and ∞, one may also consider an attracting (F , hi)-

croissant A with dynamical type ∞− 0. The dynamical type of a repelling (F , hi)-

croissant is defined likewise, just asking for the petal P above to be “repelling” instead

of “attracting”.

∞

0

type 0−∞

V∞

γ

∞

V0

γ

type ∞− 0

0

Figure 6.3 – Two dynamical types of croissants

Proposition 6.4. Any minimal (F , h2)-croissant has dynamical type 0 − ∞ or

∞− 0 but not both.

Proof. We only prove the result concerning an attracting minimal (F , h2)-croissant

C, the other one being similar. Write ∂C \ {0,∞} = γ− t γ+ where γ− ∈ F (resp.

γ+ ∈ F ) is oriented from 0 to ∞ (resp. from ∞ to 0). Recall from Corollary 6.1

that Int(C) does not contain any line-leaf of F hence, with the same argument as in

the proof of Proposition 6.1, we get that at least one of the following two situations

occurs:

i) there exists a sequence (xn)n>0 of points in Int(C) such that xn →∞ as n→ +∞
and that φxn is a petal-leaf at 0 for every n > 0;

ii) there exists a sequence (ym)m>0 of points in Int(C) such that ym → 0 as m→ +∞
and that φym is a petal-leaf at ∞ for every m > 0;

Suppose for instance that i) holds true. As in the proof of Proposition 6.2 one obtains

a subsequence (xnk)k>0 such that

- xnk →∞ as k → +∞,

- Pk is an attracting (F , h2)-petal at 0 for every k large enough, where Pk is the

F -petal whose frontier is φxnk ∪ {0}.
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It implies that C is an attracting (F , h2)-croissant with dynamical type 0 − ∞. If

ii) holds then one obtains likewise that C is an attracting (F , h2)-croissant with

dynamical type ∞− 0.

xz

V

0

∞

γ+

φxn

φym

Ω

Figure 6.4 – The disc Ω

It remains to prove that the two situations i) and ii) cannot occur simultaneously.

Suppose this is not true. Choose any point x ∈ γ+ and let V be a trivializing

neighborhood of x so small that γ+ ∩ V is reduced to a single local leaf of F in V .

As in the proof of Proposition 6.2, one can also suppose that φxn ∩ V consists of a

single local leaf of F in V for every n large enough. Choose such an integer n. Then

pick a point z ∈ φxn ∩ V and join z to x by a segment η ⊂ V which is transverse to

the foliation F . Of course the set

ω = (γ+)+
x ∪ (φxn)+

z ∪ η ∪ {0}

is a circle (see Fig. 6.4) and we define Ω to be the disc bounded by ω and included in C.

Observe that ∞ 6∈ Ω. According to Lemma 6.1, one has γ+ ⊂
⋂
k>0

(⋃
m>k Cl(φym)

)
.

Then there exists m large enough such that φym ∩ η 6= ∅. Moreover because φym

accumulates on only one point in {0,∞} and η ⊂ V is transverse to F , the leaf φym
intersects η transversely in only one point, denoted by v. Therefore the half-leaf

(φym)+
v is included in Ω which contradicts Cl

(
(φym)+

v

)
\ (φym)+

v = {∞} because φym is

the petal-leaf at ∞.

It is easily seen that there exist only finitely many minimal (F , h2)-croissants

and we let A = {Ai}16i6m be the set of all these minimal (F , h2)-croissants. Ac-

cording to Corollary 6.1 the F -croissants in A may be cyclically ordered around

0.

Proposition 6.5. Assume for convenience that the F -croissants Ai ∈ A are num-

bered so that a cyclic order around 0 is A1 < A2 < · · · < Am < Am+1 = A1 (up to
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circular permutation).

Then we have the following properties.

i) For every 1 6 i 6 m, one of the two croissants Ai, Ai+1 is an attracting

h2-croissant and the other one is a repelling h2-croissant. Consequently the

number m of minimal (F , h2)-croissants is even (m = 2n).

ii) If Ai is an attracting (resp. a repelling) h2-croissant but is not a h-croissant

then there exists a unique attracting (resp. repelling) h2-croissant Aj 6= Ai

such that h(Ai) ⊂ Aj and h(Aj) ⊂ Ai (resp. h−1(Ai) ⊂ Aj and h−1(Aj) ⊂ Ai).

Proof. Suppose that Ai and Ai+1 are two attracting h2-croissants. Then there are

two leaves γi ⊂ ∂Ai and γi+1 ⊂ ∂Ai+1 and a disc D bounded by γi ∪ γi+1 ∪{0,∞} such
that

- D ∩ Int(Ai) = ∅ = D ∩ Int(Ai+1);

- one has the following cyclic order Ai < D < Ai+1.

One of the leaves γi, γi+1 is oriented from 0 to ∞ and the other one is oriented from

∞ to 0. According to Proposition 6.2 the set D contains a minimal (F , h2)-croissant,

a contradiction which proves i).

Suppose for instance that Ai is attracting for h2 but is not a h-croissant. We write

γ−i and γ+
i for the two connected components of ∂Ai \ {0,∞} with γ−i oriented from

0 to ∞ and γ+
i oriented from ∞ to 0. One knows that there exists some Brouwer

manifold Φ− = γ−i t γ− ∈ P and Φ+ = γ+
i t γ+ ∈ P possessing respectively γ−i and

γ+
i as a connected component as follows. If there are several possible choices for

Φ− (resp. Φ+) then one knows from Section 5.4 that γ−i = α (resp. γ+
i = α′) for

some edge α ∈ E0 ⊂ E (resp. α′ ∈ E0 ⊂ E). If this occurs then, with the notation

from Proposition 5.24 in Chapter 5, we choose Φ− = Ψ(Γ−α ) (resp. Φ+ = Ψ(Γ−α′)), in

other words we choose γ− (resp. γ+) to be the connected component of Ψ(Γ−α ) (resp.

Ψ(Γ−α′) other than α (resp. α′). Since Ai is not a h-croissant, the two leaves γ−, γ+
i

are distinct as well as the two leaves γ+, γ−i . Moreover γ− ∩ Int(Ai) = ∅ because of

the minimality of Ai hence one deduces γ+
i ⊂ Int(R(Φ−)) and actually Φ+ ⊂ R(Φ−)

because Φ−,Φ+ have no transverse intersection. One gets similarly Φ− ⊂ R(Φ+). It

is easy to check that L(Φ−) ⊂ R(Φ+) and even better L(Φ−) ⊂ Int(R(Φ+)). Then the

open set Int(R(Φ+))\L(Φ−) has exactly two connected components U and V with for

instance Cl(U) = Ai and Cl(V ) being a disc with boundary circle γ+ ∪ γ− ∪ {0,∞}.
For any k ∈ {1, 2} one has

hk
(
Int(R(Φ+)) \ L(Φ−)

)
⊂ Int(R(Φ+)) \ L(Φ−)

and therefore each connected set hk(U), hk(V ) is contained in either U or V . Since

h2(Ai) ⊂ Ai one has h2(U) ⊂ U . According to Proposition 6.2 the disc D = Cl(V )

contains a minimal (F , h2)-croissant which implies that h2(V ) ∩ V 6= ∅ and then
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h2(V ) ⊂ V . Since the disc D lies locally on the right of γ− and since h2 preserves the

orientation, the disc h2(D) also lies locally on the right of h2(γ−) oriented from ∞
to 0. Similarly h2(D) lies locally on the right of h2(γ+) oriented from 0 to ∞. This

together with h2(γ−) ∩ γ− = ∅ = h2(γ+) ∩ γ+ implies ∂D ∩ ∂h2(D) = {0,∞} hence

h2(D) ⊂ Int(D) ∪ {0,∞}, which means that D is an attracting (F , h2)-croissant.

Suppose now that h(U) ⊂ U . Then one has h(γ−i ) ⊂ Cl(h(U)) ⊂ Cl(U) = Ai.

Moreover one knows that h(γ−i )∩ γ−i = ∅ hence one may consider the disc Ω bounded

by the circle h(γ−i ) ∪ γ−i ∪ {0,∞} and contained in Ai. The description of Brouwer

manifolds provided by the proof of Proposition 3.1 tell us that h(γ−) separates γ−i
and h(γ−i ) in the disc Cl(R(Φ−)) = R(Φ−) ∪ {0,∞}. Consequently one has h(γ−) ⊂
Int(Ω) ⊂ U and, since h(γ−) ⊂ h(D) = Cl(h(V )), one obtains h(V ) ∩ U 6= ∅. Then

one gets h(V ) ⊂ U and therefore h2(V ) ⊂ h(U) ⊂ U which contradicts the fact that

D = Cl(V ) is a h2-croissant. This proves that actually h(U) ⊂ V and it follows

that also h(V ) ⊂ U since otherwise h2(U) ⊂ h(V ) ⊂ V which is not possible because

Ai = Cl(U) is a h2-croissant.

h Ai

D

γ+i

γ−i
γ−

γ+

0

Figure 6.5 – The two attracting minimal (F , h2)-croissants

Thus we obtain h(Ai) ⊂ D and h(D) ⊂ Ai and it remains to prove that D is

minimal among the (F , h2)-croissants. If this is not true then Int(D) = V contains a

line-leaf γ. One knows that γ is a connected component of some Brouwer manifold

Φ = γtγ′ ∈P. Since any two Brouwer manifolds in P have no transverse intersection

one obtains γ′ ⊂ R(Φ−) ∩ R(Φ+) = Ai ∪ D. One has γ′ 6= γ−i since otherwise γ−i is a

connected component of both Φ and Φ− with furthermore Φ ≺ Φ− which contradicts

the choice we made for Φ− (recall Item (3) of Proposition 5.24 in Chapter 5). Similarly

γ′ 6= γ+
i because otherwise Φ and Φ+ have γ+

i as a common connected component and

moreover Φ ≺ Φ+, a contradiction with the choice of Φ+. Moreover one has γ′∩U = ∅
because of the minimality of Ai hence one gets γ′ ∩ Ai = ∅ and consequently γ′ ⊂ D.

This gives Φ ⊂ D and therefore either L(Φ) or R(Φ) is included in D. This implies

that Int(L(Φ)) ⊂ h−1(V ) or Int(R(Φ)) ⊂ h(V ) and contradicts now h(V ) ∩ V = ∅.
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Proposition 6.6. Among the 2n minimal (F , h2)-croissants, there exist exactly

two distinct (F , h)-croissants.

Proof. Suppose that n = 1 so that we have only two minimal (F , h2)-croissants A1

and A2. According to the first item in Proposition 6.5 one of these F -croissant is

h2-attracting and the other is h2-repelling. Item ii) of Proposition 6.5 then implies

that A1 and A2 are also two (F , h)-croissants.

Let us now consider the case n > 2. For every i ∈ {1, 2, ..., 2n} one defines A∗i =

h(Ai) ∩ h−1(Ai). Observe from Corollary 6.1 and Proposition 6.5 that for every i ∈
{1, ..., 2n} there exits a unique j ∈ {1, ..., 2n} such that A∗i ⊂ Aj. Hence one gets a

well-defined map ζ : A → A where ζ(Ai) is the unique Aj ∈ A such that A∗i ⊂ Aj.

Proposition 6.5 also gives ζ2 = IdA (in particular ζ is a one-to-one map) and moreover

A ∈ A is a fixed point of ζ iff A is also a h-croissant. Remark now that ζ reverses the

cyclic order on A. Indeed, assuming again the cyclic order A1 < A2 < · · · < A2n <

A2n+1 = A1 around 0, one has h(A2n) < · · · < h(A2) < h(A1) because h reverses the

orientation. Moreover A∗i ⊂ h(Ai) for every i ∈ {1, 2, ..., 2n} so one has the cyclic order

A∗2n < ... < A∗2 < A∗1 and finally ζ(A2n) < ... < ζ(A2) < ζ(A1) with the definition of

ζ. This implies that ζ has at most two fixed points so we can suppose A1 6= ζ(A1)

which means that A1 is not a h-croissant. Thus according to Proposition 6.5 one

has ζ(A1) = A2k+1 for some k ∈ {1, ..., n}. Define C = {A1, A2, ..., A2k+1}. This set is

naturally endowed with a total order A1 < A2 < · · · < A2k+1 induced by the cyclic

order on A. It is also invariant by ζ and the restricted map ζ|C reverses the restricted
order <. Since C has odd cardinality, one deduces that ζ possesses a unique fixed

point in C. Repeating the above argument with C′ = {A2k+1, · · · , A2n, A1} instead of

C, one also obtains that ζ possesses exactly one fixed point in C′.

Proposition 6.7. Let A ∈ A which is also a (F , h)-croissant. Then we have the

following.

i) A is also a minimal (F , h)-croissant.

ii) A is an attracting (resp. a repelling) (F , h2)-croissant iff A is an attracting

(resp. a repelling) (F , h)-croissant.

iii) If A is a (F , h2)-croissant with dynamical type 0−∞ then A is also a (F , h)-

croissant with dynamical type 0 − ∞. Similarly for a (F , h2)-croissant with

dynamical type ∞− 0.

iv) A minimal (F , h)-croissant cannot have simultaneously the dynamical types

0−∞ and ∞− 0.

Proof. Items i) and ii) are straightforward. Let us prove iii). We suppose for example

that A is an attracting minimal (F , h2)-croissant with dynamical type 0−∞. All the
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other cases can be proved similarly. Then there exists a sequence (xn)n>0 of points

in Int(A) with limn→+∞ xn = ∞ such that φxn is a petal-leaf at 0 and moreover the

F -petal Pn bounded by the circle φxn ∪ {0} is h2-attracting. The point here is to

see that the Pn ’s are actually h-petals (necessarily h-attracting) and not only h2-

petals, at least for infinitely many of them. To do this it is enough to prove that

h(Pn) ∩ Int(Pn) 6= ∅.
Denote by γ± the two line-leaves of F included in ∂A with γ− oriented from 0 to

∞ and γ+ oriented from ∞ to 0. According to Lemma 6.1 and Corollary 6.1 one gets

that

γ− ∪ γ+ ⊂
⋂
k>0

Cl

( ⋃
n>k

φxn

)
.

Take a point x ∈ γ− and a trivializing neighborhood Vx of x so small that γ− ∩ Vx is

reduced to a single local leaf of F in V . Since x ∈
⋂
k>0 Cl

(⋃
n>k φxn

)
there exists a

subsequence (xni)i>0 of (xn)n>0 such that φxni ∩ Vx 6= ∅ for every i ∈ N. Recall that

the set φxni ∩ Vx consists of a single local leaf of F in Vx because φxni accumulates

only on 0. Applying Lemma 6.1 to the sequence (xni)i>0 one still has

γ− ∪ γ+ ⊂
⋂
k>0

Cl

(⋃
i>k

φxni

)
.

Let us remark now that the F -petals Pni (i ∈ N) are pairwise comparable w.r.t. the

inclusion. Indeed if Pni 6= Pnj then one can suppose for instance that the local leaf

φxni ∩ Vx is located on the right of φxnj ∩ Vx in Vx. Then the F -petal Pnj contains

φxni ∩ Vx because otherwise γ− ∩ Vx ⊂ Pnj and then γ− ⊂ Pnj which is certainly not

true. One deduces that Pni ⊂ Pnj .

Since limi→+∞ xni = ∞ it follows from the previous remark that there exists a

subsequence (xmk)k>0 of (xni)i>0 such that Pmk ⊂ Pmk+1 for every k ∈ N. Applying

again Lemma 6.1 to this sequence (xmk)k>0 one gets

(∗) γ− ∪ γ+ ⊂
⋂
l>0

Cl

(⋃
k>l

φxmk

)
.

Since A is an attracting h-croissant one has h(γ−) ⊂ Int(A) and Int(A) \ h(γ−) has

then exactly two connected components U1 and U2 with ∂U1 = γ−∪h(γ−)∪{0,∞} and
∂U2 = γ+ ∪ h(γ−) ∪ {0,∞}. The inclusion (∗) above and the fact that (Pmk)k>0 is an

increasing sequence of F -petals lying in Int(A) ∪ {0} imply that Int(Pmk) ∩ h(γ−) 6= ∅
for every k large enough, say for k > l. Choose a point z ∈ h(γ−) ∩ Int(Pml) and

an open neighborhood W of h−1(z) ∈ γ− so small that h(W ) ⊂ Int(Pml). Then there

exists l′ > l such that W ∩ φxmk 6= ∅ for every k > l′ and consequently

∀k > l′ ∅ 6= h(W ∩ Pmk) ⊂ Int(Pml) ∩ h(Pmk) ⊂ Int(Pmk) ∩ h(Pmk)

which implies as expected that Pmk is a h-petal.
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Remark finally that any minimal (F , h)-croissant with dynamical type 0−∞ (resp.

∞− 0) is also a minimal (F , h2)-croissant with dynamical type 0−∞ (resp. ∞− 0).

Then it follows from Proposition 6.4 that a minimal (F , h)-croissant cannot have

simultaneously the dynamical types 0 −∞ and ∞− 0 which proves Item iv). This

ends the proof of Proposition 6.7.

6.2 Link between the minimal (F , h)-croissants and

the fixed point index

In this Section we mainly use some techniques from [Bon02] to establish the

relationship between the fixed point index Ind(h, 0) and the nature of the two minimal

(F , h)-croissants provided by Section 6.1. Precisely we shall prove the following

result.

Proposition 6.8. Assume that the foliation F possesses no circle-leaf. Let pa
(resp. pr) be the number of attracting (resp. repelling) croissants having dynamical

type 0 −∞ among the two (F , h)-croissants provided by Proposition 6.6. Let also

let qa (resp. qr) be the number of attracting (resp. repelling) croissants having

dynamical type ∞− 0 among the same two (F , h)-croissants. Then one has

Ind(h, 0) =
pa + qr − (pr + qa)

2
∈ {0,±1}.

The next Lemma, which is a precise version of a classical result of Kerékjártó,

corresponds to [Bon02, Proposition 3.1] and is proved in the first section of [LCY97].

From now on, any circle in R2 is counter-clockwise oriented.

Lemma 6.2 ([LCY97]). Let D,D′ be two Jordan domains containing the point 0

such that Cl(D) ∪ Cl(D′) ⊂ R2 and D 6⊂ D′ 6⊂ D. Denote by D ∧ D′ the connected

component of D ∩D′ which contains 0 and by ∂D ∧ ∂D′ the frontier of D ∧D′.
(i) We have a partition

∂D ∧ ∂D′ = ((∂D ∧ ∂D′) ∩ ∂D ∩ ∂D′)
⋃
i∈I

αi
⋃
j∈J

βj

where

• I, J are non-empty and at most countable sets,

• for every i ∈ I, αi = (ai, bi)∂D is a connected component of ∂D ∩D′,
• for every j ∈ J, βi = (cj , dj)∂D′ is a connected component of ∂D′ ∩D.

(ii) For every j ∈ J, D ∧ D′ is contained in the Jordan domain with frontier

βj ∪ [dj , cj ]∂D and containing 0.
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(iii) ∂D ∧ ∂D′ is a circle.

(iv) Three points a, b, c of (∂D∧∂D′)∩∂D (resp. of (∂D∧∂D′)∩∂D′) are met in this

order on ∂D (resp. on ∂D′) iff they are met in the same order on ∂D ∧ ∂D′.

Consider a Jordan domain D containing 0 such that Cl(D) ⊂ R2 and define D′ =

h−1(D). Then D′ is also a Jordan domain with 0 ∈ D′ and Cl(D′) ⊂ R2. Assuming

D 6⊂ D′ 6⊂ D, one may consider the partition (P ) of ∂D∧∂D′ and the segments αi and

βj obtained by applying Lemma 6.2 with these Jordan domains D and D′. Then let φ

be the inversion in the circle C = ∂D. Let Cj = Cl(βj)∪φ(Cl(βj)) and Γ = C ∧h−1(C).

Define a map H from Γ ∪ φ(Γ) to R2 by setting

H(z) =

{
h(z) if z ∈ Γ,

h(φ(z)) if z ∈ φ(Γ).

Following [Bon02] one has the following formula:

(∗) Ind(h, 0) +
∑
j∈J

Ind(H,Cj) = 1.

We consider the two minimal (F , h)-croissants given by Proposition 6.6, denoted

by A1 and A2 in the following. The calculation of the index will be divided into the

following three cases.

Case 1. Both A1 and A2 have dynamical type 0−∞.

Subcase 1− a. A1 and A2 are two attracting (F , h)-croissants.

Let us show that Ind(h, 0) = 1 in this case. Let Pi ⊂ Ai be an attracting (F , h)-

petal at 0 for every i ∈ {1, 2}. Using the Schoenflies Theorem one can suppose that

- P1 is the triangle with vertices 0 = (0, 0), (−1,−1) and (−1, 1),

- P2 is the triangle with vertices 0, (1,−1) and (1, 1),

- h−1(P1) is the triangle with vertices 0, (−2,−3) and (−2, 3),

- h−1(P2) is the triangle with vertices 0, (2,−3) and (2, 3),

and moreover

- h−1((1, 0)) = (2, 0), h−1((−1, 0)) = (−2, 0),

- h−1
(
{−1} × [−1, 1]

)
= {−2} × [−3, 3],

- h−1
(
{1} × [−1, 1]

)
= {2} × [−3, 3].

Let C be the rectangle with vertices (−1,−3), (−1, 3), (1,−3), (1, 3) and let D

be the Jordan with frontier C containing 0 (Fig. 6.6). We write D′ = h−1(D) and

C ′ = ∂D′ = h−1(C). We denote by γ1 (resp. γ2) the straight segment joining (−2,−1)

and (−1, 0) (resp. (2,−1) and (1, 0)). For convenience we also let x1 = (−1, 0) ∈ C∩∂P1

and x2 = (1, 0) ∈ C ∩ ∂P2. It is not difficult to get the following result, whose proof

is left to the reader.
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P1 P2 h−1(P2)h−1(P1)

C

Figure 6.6 – The circle C and the petals P1, P2

Lemma 6.3. • The set

C ′′ = γ2∪
(
[1, 2]×{0}

)
∪[h−1(x2), h−1(x1)]C′∪

(
[−2,−1]×{0}

)
∪γ1∪[(−2,−1), (2,−1)]C′

is a circle contained in Cl(D′) \ {0} (Fig. 6.7);

• The Jordan domain D′′ with frontier C ′′ and containing 0 satisfies D′′ ∩ D =

D′ ∩D;

• For every x 6= y in C ′ ∩ C ′′, the four points x2, x, y, x1 are met in this order on

C ′′ (up to circular permutation) iff h−1(x2), x, y, h−1(x1) are met in this order on

C ′.

If D ⊂ D′ then directly Ind(h, 0) = 1 so one may assume D 6⊂ D′. One also has D′ 6⊂ D

because h−1(x1) ∈ Cl(D′) \ Cl(D) hence one can apply Lemma 6.2 with these two

Jordan domains D,D′. Using the notation in Lemma 6.2, one knows from [Bon02,

Lemma 3.2] that if [h(dj), h(cj)]C ∩ [cj , dj ]C = ∅ then Ind(H,Cj) = 0. According to the

formula (∗), it is enough to check that [h(dj), h(cj)]C ∩ [cj , dj ]C = ∅ for every j ∈ J . By
the construction of C one has

Cl(βj)∩(P1∪P2) ⊂ C ′∩(P1∪P2) = h−1
(
C∩h(P1∪P2)

)
⊂ h−1

(
C∩(Int(P1)∪Int(P2)∪{0})

)
= ∅.

Using moreover item (ii) in Lemma 6.2, one deduces that either [cj , dj ]C ⊂ (x1, x2)C

or [cj , dj ]C ⊂ (x2, x1)C . We only deal with the second situation because the same

argument can be applied to the first one.

Since {x1, x2, cj , dj} ⊂ (C ∧C ′′)∩ (C ∩C ′′) one knows from item (iv) in Lemma 6.2

that x2, cj , dj , x1 are also met in this order on C ′′. According to Lemma 6.3 the points

h−1(x2), cj , dj , h
−1(x1) are met in this order on C ′ and then [h(dj), h(cj)]C ⊂ (x1, x2)C
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x1 x2 h−1(x2)h−1(x1)

cj

dj

βj

C ′′

C

Figure 6.7 – The circles C and C ′′ in Subcase 1− a

because h reverses the orientation. This implies as expected [h(dj), h(cj)]C∩ [cj , dj ]C =

∅ and completes the proof of Ind(h, 0) = 1 in this case.

Subcase 1− b. A1 and A2 are two repelling (F , h)-croissants.

Replacing h with h−1 in the previous Subcase 1− a one has Ind(h−1, 0) = 1 and it

follows that Ind(h, 0) = −Ind(h−1, 0) = −1.

Subcase 1− c. A1 is a repelling (F , h)-croissant and A2 is an attracting (F , h)-

croissant.

We consider P1 ⊂ A1 a repelling (F , h)-petal at 0 and P2 ⊂ A2 an attracting

(F , h)-petal at 0. Using again Schoenflies Theorem one can suppose that

- P1 is the triangle with vertices 0, (−2,−3) and (−2, 3),

- h(P2) is the triangle with vertices 0, (2,−3) and (2, 3),

- h−1(P1) is the triangle with vertices 0, (−1,−1) and (−1, 1),

- P2 is the triangle with vertices 0, (3,−5) and (3, 5),

and moreover

- h−1([−3,−2]× {0}) = [−2,−1]× {0}; in particular h−1((−2, 0)) = (−1, 0);

- h−1
(
{−2} × [−3, 3]

)
= {−1} × [−1, 1];

- h−1
(
{2} × [−3, 3]

)
= {3} × [−5, 5] with h−1(2, 0) = (3, 0).

Let C be the rectangle with vertices (−2,−5), (−2, 5), (2,−5) and (2, 5). We denote

by D the Jordan domain containing 0 with frontier C. For convenience we also let

C ′ = h−1(C), D′ = h−1(D), x1 = (−2, 0) ∈ ∂P1 and x2 = (2, 0) ∈ ∂h(P2).
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h−1

x1 x2

P2

h−1(P1)

h(P2)

P1

βj

βj0

cj0

dj0

h(βj)

0

Figure 6.8 – The circle C and some βj’s in Subcase 1− c

Observe that D 6⊂ D′ 6⊂ D because h−1(x1) ∈ D and h−1(x2) 6∈ Cl(D) hence

Lemma 6.2 applies. Clearly h−1(x1) ∈ {0} × [−1, 1] ⊂ βj0 = (cj0 , dj0)C′ for some

j0 ∈ J so x1 ∈ (h(dj0), h(cj0))C because h reverses the orientation. On the other

hand h−1(x2) ∈ (dj0 , cj0)C′ because h−1(x2) 6∈ Cl(D) hence x2 ∈ (h(cj0), h(dj0))C . Since

h2(P2) ⊂ Int(h(P2)) ∪ {0} one has C ′ ∩ h(P2) = h−1(C ∩ h2(P2)) = ∅ and then

C ′ ∩
(
[−2, 2]× {0}

)
= C ′ ∩

(
[−2,−1]× {0}

)
= h−1

(
C ∩

(
[−3,−2]× {0}

))
= {h−1(x1)} = {(−1, 0)}.

Since D′ lies locally on the left of C ′, this implies cj0 ∈ (x2, x1)C and dj0 ∈ (x1, x2)C .

It follows that [cj0 , dj0 ]C ∩ [h(dj0), h(cj0)]C is a non empty connected set and [Bon02,

Lemma 3.3] then gives Ind(H,Cj0) = 1. One also gets Cl(βj) ∩
(
[−2, 2] × {0}

)
= ∅ for

every j 6= j0 which, together with Item (ii) in Lemma 6.2, implies that [cj , dj ]C ⊂
[dj0 , x2)C ⊂ (x1, x2)C or [cj , dj ]C ⊂ (x2, cj0 ]C ⊂ (x2, x1)C .

Similarly as for Subcase 1− a, one constructs a circle C ′′ bounding a Jordan

domain D′′ such that x2 ∈ C ′′, D∩D′′ = D′∩D′′ and such that, for any x 6= y in C ′∩C ′′,
the points x2, x, y are met in this order on C ′′ iff h−1(x2), x, y are met in this order on

C ′. Consider j ∈ J \{j0} and suppose for instance that [cj , dj ]C ⊂ (x2, cj0 ]C ⊂ (x2, x1)C .

We know from item (iv) in Lemma 6.2 that the points x2, cj , dj , cj0 , dj0 are met in this

order both on C and on C ′′ because they all belong to (C ∧ C ′′) ∩ C ∩ C ′′ (with
possibly dj = cj0). Consequently h−1(x2), cj , dj , cj0 , h

−1(x1), dj0 are met in this order
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on C ′ and afterwards [h(dj), h(cj)]C ⊂ (x1, x2)C (see Fig. 6.8). Using again [Bon02,

Lemma 3.2] one obtains Ind(H,Cj) = 0 and one gets likewise the same conclusion if

[cj , dj ]C ⊂ [dj0 , x2)C ⊂ (x1, x2)C . One concludes with the formula (∗) that Ind(h, 0) = 0.

Case 2. Both A1 and A2 have dynamical type ∞− 0.

Recall that Ind(h, 0) + Ind(h,∞) = 0 because h reverses the orientation. Replacing

0 with ∞ in the arguments for the first case, we obtain that

• If A1 and A2 are two attracting (F , h)-croissants then Ind(h, 0) = −Ind(h,∞) =

−1.

• If A1 is an attracting (F , h)-croissant and A2 is a repelling (F , h)-croissant then

Ind(h, 0) = −Ind(h,∞) = 0.

• If A1 and A2 are two repelling (F , h)-croissants then Ind(h, 0) = −Ind(h,∞) = 1.

Case 3. A1 has dynamical type ∞− 0 and A2 has dynamical type 0−∞.

It is slightly more complicated than in Case 1 to find a circle C suitable to the

computation of Ind(h, 0). We explain a possible construction in each of the four

natural subcases.

Subcase 3− a. A1 is a repelling (F , h)-croissant and A2 is an attracting (F , h)-

croissant.

Consider a repelling (F , h)-petal P1 ⊂ A1 at ∞ and an attracting (F , h)-petal

P2 ⊂ A2 at 0. Up to conjugacy, one may suppose that

- ∂P1\{∞} = {(x,−x+1) ∈ R2 |x 6 −1}∪
(
{−1}×[−2, 2]

)
∪{(x, x−1) ∈ R2 |x 6 −1},

- ∂h−1(P1) \ {∞} = {(x,−x − 1) ∈ R2 |x 6 −2} ∪
(
{−2} × [−1, 1]

)
∪ {(x, x + 1) ∈

R2 |x 6 −2},
- [−1, 0)× {0} ⊂ Int(A1),

- h3(P2) is the triangle with vertices 0, (1,−1) and (1, 1),

- h2(P2) is the triangle with vertices 0, (2,−3) and (2, 3),

- h(P2) is the triangle with vertices 0, (3,−7) and (3, 7),

- h(A2) \ {∞} = {(x, y) ∈ R2 |x > 0, |y| 6 3x}

and moreover

- h−1({−1} × [−2, 2]) = {−2} × [−1, 1] with h−1(−1, 0) = (−2, 0),

- h−1({1} × [−1, 1]) = {2} × [−3, 3],

- h−1({2} × [−3, 3]) = {3} × [−7, 7] with h−1(2, 0) = (3, 0).

Denote x1 = (−1, 0) ∈ ∂P1, x2 = (2, 0) ∈ ∂h2(P2) and δ = [−1, 0]× {0}. Because of the

compactness of h(δ) there exists an Euclidean disc K with center the origin such that

h(δ) ⊂ K. There exist k1 < −1 < 2 < k2 such that the four points M = (k1,−k1 + 1),

N = (k1, k1 − 1), P = (k2,−3k2) and Q = (k2, 3k2) all lie in R2 \ K. Then one can

join M and Q by a segment C+ ⊂ {(x, y) ∈ R2 | y > 0} such that C+ is disjoint from
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M
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Q

0

P1

h−1(P1)

x1 x2

h(P2)

h2(P2)

h3(P2)

h(A2)

C

Figure 6.9 – The circle C in Subcase 3− a

P1 ∪K ∪ h(A2) except for the two endpoints M and Q. Similarly one can join N and

P by a segment C− ⊂ {(x, y) ∈ R2 | y < 0} such that C− is disjoint from P1∪K ∪h(A2)

except for its endpoints N and P . Consider now the segment Cl ⊂ ∂P1 \ {∞} having
M,N as endpoints and the segment

Cr = {(x,−3x) | 2 6 x 6 k2} ∪
(
{2} × [−6, 6]

)
∪ {(x, 3x) | 2 6 x 6 k2} ⊂ h(A2)

so that C = Cl ∪C− ∪Cr ∪C+ is a circle (Fig. 6.9) and easily C ∩ (h(δ) ∪ h3(P2)) = ∅.
This allows to consider the Jordan domain D with frontier C which contains the

connected set h(δ ∪ h2(P2)). We let again C ′ = h−1(C) and D′ = h−1(D). One has

D′ 6⊂ D because h−1(x2) 6∈ Cl(D). If D ⊂ D′ then Ind(h, 0) = 1. If D 6⊂ D′ the

method used in Subcase 1− a also works in the current situation: in the notation

of Lemma 6.2, every segment Cl(βj) = [cj , dj ]C′ is disjoint from the straight segment

[−1, 2] × {0} ⊂ δ ∪ h2(P2) joining x1 and x2 which implies [cj , dj ]C ⊂ (x2, x1)C or

[cj , dj ]C ⊂ (x1, x2)C ; moreover {h−1(x1), h−1(x2)} ∩ Cl(D) = ∅ which allows to check

that Ind(H,Cj) = 0 and finally Ind(h, 0) = 1.

Subcase 3− b. A1 is an attracting (F , h)-croissant and A2 is a repelling (F , h)-

croissant.

Replacing h with h−1 in Subcase 3− a one gets Ind(h, 0) = −Ind(h−1, 0) = −1.
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Subcase 3− c. A1 and A2 are two attracting (F , h)-croissants.

Consider an attracting (F , h)-petal P1 ⊂ A1 at ∞ and an attracting (F , h)-petal

P2 ⊂ A2 at 0. In this case, one may assume that

- ∂P1\{∞} = {(x,−x+1) ∈ R2 |x 6 −1}∪
(
{−1}×[−2, 2]

)
∪{(x, x−1) ∈ R2 |x 6 −1},

- ∂h(P1)\{∞} = {(x,−x−1) ∈ R2 |x 6 −2}∪
(
{−2}× [−1, 1]

)
∪{(x, x+1) ∈ R2 |x 6

−2},
- P2 is the triangle with vertices 0, (2,−3) and (2, 3),

- h(P2) is the triangle with vertices 0, (1,−1) and (1, 1),

- A2 \ {∞} = {(x, y) ∈ R2 |x > 0, |y| 6 2x},
- [−1, 0)× {0} ⊂ Int(A1)

and moreover

- h({−1} × [−2, 2]) = {−2} × [−1, 1] with h(−1, 0) = (−2, 0);

- h({2} × [−3, 3]) = {1} × [−1, 1] with h(2, 0) = (1, 0).

P1

h(P1)

h(P2)

A2

P2

0

C

x1 x2

M

N

P

Q

Figure 6.10 – The circle C in Subcase 3− c

Denote x1 = (−2, 0) ∈ ∂h(P1), x2 = (1, 0) ∈ ∂h(P2) and η = [−1, 0] × {0}. Let K be

an Euclidean disc with center 0 such that h(η) ⊂ K. Let us choose two integers

k1 < −2 < 1 < k2 so large that the four points M = (k1,−k1 − 1), N = (k1, k1 + 1),

P = (k2,−2k2) and Q = (k2, 2k2) all lie in R2 \K. Then one can join M and Q by a
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segment C+ ⊂ {(x, y) ∈ R2 | y > 0} such that C+ is disjoint from h(P1) ∪ K ∪ h(A2)

except for the two endpoints M and Q. Similarly one can join N and P by a segment

C− ⊂ {(x, y) ∈ R2 | y < 0} such that C− is disjoint from P1 ∪K ∪ h(A2) except for its

endpoints N and P . Consider now the segment Cl ⊂ ∂h(P1) \ {∞} with endpoints

M,N as well as

Cr = {(x,−2x) | 1 6 x 6 k2} ∪
(
{1} × [−2, 2]

)
∪ {(x, 2x) | 1 6 x 6 k2} ⊂ A2

so that C = Cl ∪ C− ∪ Cr ∪ C+ is a circle disjoint from h(η) \ {x1} (Fig. 6.10). Let

D be the Jordan domain with frontier C containing h(η) \ {x1} and let C ′ = h−1(C)

and D′ = h−1(D). Note that D 6⊂ D′ 6⊂ D so Lemma 6.2 applies and the computation

of Ind(h, 0) then continues essentially as for Subcase 1− c. First there exists j0 ∈ J
such that h−1(x1) ∈ {−1}× [−2, 2] ⊂ βj0 = (cj0 , dj0)C′; since

(
h(η)∪ h2(P2)

)
∩C = {x1},

i.e.,
(
η ∪ h(P2)

)
∩ C ′ = {h−1(x1)}, one gets cj0 ∈ (x2, x1)C and dj0 ∈ (x1, x2)C and

consequently Ind(H,Cj0) = 1. Secondly
(
η∪h(P2)

)
∩C ′ = {h−1(x1)} together with the

fact that h−1(x2) 6∈ Cl(D) implies [h(dj), h(cj)]C ∩ [cj , dj ]C = ∅ for every j ∈ J \ {j0}
hence Ind(H,Cj) = 0. One obtains finally Ind(h, 0) = 0.

Subcase 3− d. A1 and A2 are two repelling (F , h)-croissants.

Replacing h with h−1 in the subcase 3− c one has Ind(h, 0) = −Ind(h−1, 0) = 0.

The ten columns of the following table (see Table 6.1) summarize the various

kinds of minimal (F , h)-croissants which one can have and they give in each case the

value of the fixed point index of 0.

Number of minimal attracting (F , h)-
croissants with dynamical type 0−∞

2 0 1 0 0 0 1 0 0 1

Number of minimal repelling (F , h)-
croissants with dynamical type 0−∞

0 2 1 0 0 0 0 1 1 0

Number of minimal attracting (F , h)-
croissants with dynamical type ∞− 0

0 0 0 2 0 1 1 1 0 0

Number of minimal repelling (F , h)-
croissants with dynamical type ∞− 0

0 0 0 0 2 1 0 0 1 1

Ind(h, 0) 1 −1 0 −1 1 0 0 −1 0 1

Table 6.1 – The index Ind(h, 0) according to the nature of A1 and A2

This proves the required formula and moreover one gets Ind(h, 0) ∈ {−1, 0, 1} (as
it is already known from [Bon02] in the general case where 0 is simply an isolated

fixed point of h).

6.3 Link with Le Calvez equivariant foliations on the

annulus

Recall that a fixed point free orientation preserving homeomorphism F of the

plane R2 is said to be a Brouwer homeomorphism. Moreover a line L of R2 is named
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a Brouwer line of F if it separates F−1(L) and F (L) in R2. One has the following

powerfull result due to Le Calvez.

Theorem 6.3 ([LC05]). Let G be a discrete group of orientation preserving home-

omorphisms of the plane acting freely and properly and let F be a Brouwer home-

omorphism commuting with every element of G. Then there exists a topological

oriented foliation of the plane, invariant under the action of G, whose leaves are

Brouwer lines of F .

We say that a foliation as in Theorem 6.3 is a Le Calvez foliation for F . Let us

state the result to be proved in this section.

Proposition 6.9. Define f = h2 and M = S2 \ {0,∞} = R2 \ {0} and let F̃ be the

lift of F to the universal cover R2 of M . If F has no circle-leaf then there exists

a lift f̃ : R2 → R2 of f |M : M →M to R2 such that F̃ is a Le Calvez foliation of f̃ .

Proof. We choose the map Π : R2 → M defined in complex notation by Π(x, y) =

ey+2iπx as universal covering map of M . Thus the covering transformations group is

G = {τk}k∈Z where τ(x, y) = (x + 1, y). We also consider the fundamental domain

D = [0, 1)×R.
Note that every lift of f |M to R2 is a Brouwer homeomorphism because f |M

does not have any fixed point and that F̃ is an G-invariant oriented topological

foliation by lines of R2. For any oriented line l of R2, one defines following [LC05]

two half-planes R(l) and L(l) of R2 respectively on the right side and on the left

side of l 1. Precisely R(l) = ϕ−1
(
[0,+∞) × R

)
and L(l) = ϕ−1

(
(−∞, 0] × R

)
where

ϕ is any orientation preserving homeomorphism of R2 mapping the oriented line l

onto the vertical straight line {0} × R oriented from bottom to top. In particular

R(l)∪L(l) = R2 and R(l)∩L(l) = l. Observe that for every lift f̃ of f |M to R2 one has

f̃(R(l)) = R(f̃(l)) and f̃(L(l)) = L(f̃(l)) because f̃ preserves the orientation. Moreover

it is classical that f |M and the identity map IdM are isotopic as homeomorphisms of

M , which ensures that f̃ commutes with the covering transformations τk ∈ G.
Let A be a minimal attracting (F , f)-croissant constructed in Section 6.1. We

know from Proposition 6.3 that ∂A \ {0,∞} = δ t δ′ where δ′ (resp. δ) is a line-leaf

oriented from 0 to ∞ (resp. from ∞ to 0) and that A lies locally on the right of these

two leaves.

Remark that the property to be proved is invariant by conjugacy in the following

sense. Let g be a homeomorphism of S2 having 0 and∞ as fixed points and let g̃ be a

lift of g|M to R2. One defines naturally the foliation g(F ) of M , image of F by g|M .

Write g̃(F ) for the lift of g(F ) to R2. One has g̃(F ) = g̃(F̃ ) because g ◦ Π = Π ◦ g̃
1. We use the letters R(l) and L(l) rather than R(l) and L(l) in order to avoid confusion with R(Φ) and

L(Φ) as defined previously for a Brouwer manifold Φ ⊂M .
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hence, given a lift f̃ of f |M , one obtains that F̃ is a Le Calvez foliation for f̃ iff g̃(F )

is a Le Calvez foliation for g̃ ◦ f̃ ◦ g̃−1, this last homeomorphism being of course a lift

of (g ◦ f ◦ g−1)|M .

Therefore, replacing f with g ◦ f ◦ g−1 for some suitable homeomorphism g of

S2, one can assume without loss that A = {0,∞} ∪ Π(Ã) where Ã = [0, 1
4 ] × R (i.e.,

A = {∞} ∪ [0,+∞)2) and

f−1(A) = {0,∞} ∪ Π
(
[− 1

16
,

5

16
]×R

)
, f(A) = {0,∞} ∪ Π

(
[

1

16
,

3

16
]×R

)
.

We denote δ̃ = {0}×R and δ̃′ = {1
4}×R which are two leaves of F̃ oriented respectively

from top to bottom and from bottom to top satisfying δ = Π(δ̃) = [0,+∞)× {0} and
δ′ = Π(δ̃′) = {0} × [0,+∞). Since f preserves the orientation one has moreover

f−1(δ) = Π({− 1

16
} ×R), f−1(δ′) = Π({ 5

16
} ×R),

f(δ) = Π({ 1

16
} ×R), f(δ′) = Π({ 3

16
} ×R).

Since f(A) ⊂ Int(A) there exists a (unique) lift f̃ of f |M such that f̃(Ã) ⊂ Int(Ã)

and we shall prove that F̃ is a Le Calvez foliation for f̃ . Since Π is a one-to-one

map when restricted to [− 1
16 ,

1
16 ]×R one gets f̃

(
{− 1

16} ×R
)

= δ̃ and f̃(δ̃) = { 1
16} ×R

which shows that δ̃ is a Brouwer line of f̃ . One checks similarly that δ̃′ is a Brouwer

line of f̃ with f̃
(
{ 5

16} × R
)

= δ̃′ and f̃(δ̃′) = { 3
16} × R. Consider now a leaf φ̃ of F̃

which projects onto a leaf φ = Π(φ̃) of F which is different from δ and δ′. Since F̃ is

G-invariant and since f̃ commutes with the elements of G, one can assume φ̃ ⊂ D \ δ̃.
Let Φ be a Brouwer manifold in P having φ as a connected component. The foliation

F has no circle-leaf hence Φ has type 2 or 3 (Φ = φ in the first case). The description

of R(Φ) and L(Φ) given in the proof of Proposition 3.1 provides two strips S− ⊂ M

and S+ ⊂M as follows:

- ∂MS+ = φ t f(φ) and Int(S+) ⊂ Int(R(Φ)),

- ∂MS− = φ t f−1(φ) and Int(S−) ⊂ Int(L(Φ)).

The key observation is that one of the two strips S± is disjoint from δ ∪ δ′ =

∂A \ {0,∞}. This certainly holds if Cl(Φ) \ Φ contains a single point a ∈ {0,∞}
(in particular if Φ = φ is a Brouwer manifold of type 2) because one of the two

discs bounded by φ ∪ {a} is disjoint from δ ∪ δ′ and contains either S− or S+. If

Cl(Φ) \ Φ = {0,∞} then Φ has type 3 has we write φ′ for the connected component

of Φ other than φ. Recall that Int(A) does not contain any line-leaf (Corollary 6.1)

hence φ ∩ A = ∅ and φ′ ∩ Int(A) = ∅. Therefore there are three situations to consider

(see Fig. 6.11 and 6.12).

a) φ′ 6∈ {δ, δ′}. Then one of the two sets R(Φ) or L(Φ) is disjoint from A and the

assertion follows.
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0 0

δ δ

δ′ δ′

φ

φ′

φ

φ′

f(φ)
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Figure 6.11 – The two possibilities for the situation a)

φ′ = δ δ

δ′ φ′ = δ′

0 0

A A

φ
f−1(φ)

S = S− S = S−

φ

f−1(φ)

Figure 6.12 – The situations b) and c)

b) φ′ = δ. Then L(Φ) ∩ A = φ′ and the assertion holds true with S−.

c) φ′ = δ′. Then again L(Φ) ∩ A = φ′ and the assertion holds true with S−.

For convenience we write S for the strip among S± with the required properties

and we let ε = −1 (resp. ε = 1) if S = S− (resp. if S = S+). There is a unique

connected component S̃ of Π−1(S) contained in the fondamental domain D and Π|
S̃

:

S̃ → S is a homeomorphism, so that ∂R2S̃ = φ̃∪ ψ̃ where ψ̃ is a connected component

of Π−1(fε(φ)). One has actually either S̃ ⊂ (0, 1
4) × R or S̃ ⊂ (1

4 , 1) × R because

S ∩ (δ ∪ δ′) = ∅. In the first case one gets S̃ ∪ f̃ε(S̃) ⊂ [− 1
16 ,

5
16 ] × R and in the latter

case S̃∪ f̃ε(S̃) ⊂ [ 3
16 ,

17
16 ]×R. The fact that Π is a one-to-one map on these two vertical

strips implies that f̃ε(φ̃) = ψ̃ in both cases. Since the covering map Π is an orientation

reversing local homeomorphism (its Jacobian determinant is −2πe2y < 0) it follows

that if ε = 1 (resp if ε = −1) then S̃ ⊂ R(φ̃) ∩ L(f̃ε(φ̃)) (resp. S̃ ⊂ L(φ̃) ∩ R(f̃ε(φ̃))).

Using the fact that L(f̃ε(φ̃)) = f̃ε(L(φ̃)) and R(f̃ε(φ̃)) = f̃ε(R(φ̃)) one deduces that

anyway f̃(L(φ̃)) ⊂ Int(L(φ̃)) and f̃−1(R(φ̃)) ⊂ Int(R(φ̃)) which proves that φ̃ is a

Brouwer manifold of f̃ .

6.4 Proof of Theorem 6.2

- Consider first the case where F has at least one circle-leaf φ. Let D be the disc

containing 0 and bounded by φ. Then one has either h(D) ⊂ Int(D) or h−1(D) ⊂
Int(D). In the first (resp. second) case one deduces easily Ind(h2k−1, 0) = 1 (resp.

Ind(h2k−1, 0) = −1) for every integer k > 1 and in both cases Ind(h2k, 0) = 1 for every

k > 1.
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- Suppose now that F has no circle-leaf. Let again f = h2 and M = S2 \ {0,∞} =

R2 \ {0} and consider the lift f̃ of f |M provided by Proposition 6.9. Fix an integer

k > 1 and for convenience define g = fk = h2k. Of course f̃ k is a lift of g|M and F̃

is also a Le Calvez foliation for f̃ k because a Brouwer line of f̃ is a Brouwer line of

f̃ k. According to a remark of Le Calvez (see [LC05, page 4]), this implies that for

every point z̃ ∈ R2 one can choose an oriented arc γ̃z̃ ⊂ R2 from z̃ to f̃ k(z̃) which is

negatively 2 transverse to F̃ . As it is well known, there exists an isotopy I = (gt)t∈[0,1]

on M from g0 = IdM to g1 = g|M which is lifted by an isotopy Ĩ = (g̃t)t∈[0,1] on R2 from

g̃0 = IdR2 to g̃1 = f̃ k. Indeed choose any isotopy J = (ϕt)t∈[0,1] on M from ϕ0 = IdM

to ϕ1 = g|M and consider a lift J̃ = (ϕ̃t)t∈[0,1] of J from ϕ̃0 = IdR2. Then f̃ k and

ϕ̃1 are two lifts of g|M hence, keeping the notation G = {τk}k∈Z as in the proof of

Proposition 6.9, one has f̃ k = τm ◦ ϕ̃1 for some m ∈ Z. One obtains an isotopy I as

expected by letting gt = rmt ◦ ϕt where rt is the rotation with center 0 and angle 2πt.

Projecting down the above arcs γ̃z̃ on M , one obtains that the foliation F is

dynamically transverse to the isotopy I, which means that for every z ∈ M the

trajectory I(z) = {gt(z)}t∈[0,1] is homotopic (relative to the endpoints) to an oriented

arc γz ⊂ M from z to g(z) which is negatively transverse to F . Then one has the

following result which is contained in [LC08].

Proposition 6.10. In the above notation, one has Ind(g, 0) = Ind(F , 0) where

Ind(F , 0) is the Poincaré-Hopf index of the foliation F at the singularity 0.

More precisely this proposition follows from the proof of [LC08, Proposition 3.5].

Indeed, recall that our foliation F possesses a line-leaf δ oriented from 0 to ∞ and

also a line-leaf δ′ oriented from ∞ to 0 hence there is no circle transverse to F .

Thus the arguments in the proof of [LC08, Proposition 3.5] always apply with our

assumptions and give Ind(g, 0) = Ind(F , 0) (even if Ind(F , 0) = 1). Alternatively,

Proposition 6.10 may also be obtained from the proof of [LR13, Proposition 4.2.2]

which gives Ind(g, 0) = Ind(I, 0) = Ind(F , 0) where Ind(I, 0) is the index of the isotopy

I as defined in [LR13].

In particular Proposition 6.10 shows that Ind(h2k, 0) does not depend on the integer

k > 1.

It remains to study the case of the odd iterates h2k−1. Define now g = h2k−1 where

k is a given positive integer. Remark that a Brouwer manifold of h is also a Brouwer

a manifold of g hence the notions of F -petal and F -croissant introduced for h also

make sense for g and all the results in Section 6.1 still hold with g intead of h. For

every i ∈ {1, 2}, a (F , hi)-petal (resp. a (F , hi)-croissant) is also a (F , gi)-petal (resp.

a (F , gi)-croissant) with the same attracting or repelling nature for both hi and gi.

2. This is a minor difference with [LC05] where the author deals with arcs which are positively transverse
to the foliation. It is due to our choice of the covering map Π which locally reverses the orientation so that
f̃ maps any leaf φ̃ of F̃ “on its left side”, that means in Int(L(φ̃)).
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It follows furthermore from Corollary 6.1 that a minimal (F , hi)-croissant is also a

minimal (F , gi)-croissant.

Let A1, A2 be the two minimal (F , h)-croissants of the family A constructed in

Paragraph 6.1. According to the previous remarks, A1 and A2 are also two minimal

(F , g)-croissants with the same attracting or repelling feature and the same dynam-

ical type 0 −∞ or ∞− 0 for h and g. Then the same calculation as in Section 6.2

applies for g instead of h and one concludes that Ind(h2k−1, 0) does not depends on

k.
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