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Abstract

On the dynamic of orientation reversing

homeomorphisms of surfaces

We first prove that if h is an orientation reversing homeomorphism of the sphere S?
without a 2-periodic orbit then the complementary domain of the fixed point set may be
foliated with “Brouwer manifolds”. These are 1-dimensional submanifolds (topologically
circles, lines or pairs of lines) allowing to define some invariant open sets on which A is
conjugated to one of three simple possible models. So, this theorem is a foliated version of
a resultat by Bonino asserting that S? \ Fix(h) can be covered with Brouwer manifolds. It
also appears as a natural counterpart for orientation reversing homeomorphisms of the Le
Calvez’s foliated version of the Brouwer’s plane translation theorem. As an application of
this foliation theorem, we next obtain the following result about the fixed point index of
the iterates of an orientation reversing local homeomorphism h of R?: as soon as 0 is an
isolated fixed point of each iterate h™ (n > 1), the Poincaré-Lefschetz indices Ind(h?*~1,0)
and Ind(h*,0) do not depend on the integer k > 1.

Keywords: Surface homeomorphism - orientation reversal - 2-periodic point - topological
foliation - Poincaré-Lefschetz index.
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Résumé

Sur la dynamique des homéomorphismes de surfaces

qui renversent 1’orientation

Nous prouvons d’abord que si h est un homéomorphisme de la sphére S? renversant
I’orientation et sans orbite périodique de période minimale 2, alors on peut feuilleter I’ensem-
ble complémentaire des points fixes avec des “variétés de Brouwer”. Celles-ci sont des sous-
variétés de dimension 1 (topologiquement des cercles, des droites ou des paires de droites)
permettant de définir des ouverts invariants sur lesquels h est conjugué a un modele simple
parmi trois possibles. Ce théoreéme est ainsi une version feuilletée d’un résultat de Bonino
affirmant que S? \ Fix(h) peut étre recouvert par des variétés de Brouwer. Il apparait
aussi comme un analogue, pour les homéomorphismes renversant 1’orientation, de la version
feuilletée du théoreme de translation plane de Brouwer donnée par Le Calvez. Comme
application de ce théoreme de feuilletage, on obtient ensuite le résultat suivant sur 'indice
de point fixe des itérés d'un homéomorphisme local h de R? renversant l'orientation: des
que 0 est un point fixe isolé de tous les itérés A" (n > 1) les valeurs des indices de Poincaré-
Lefschetz Ind(h?*~1,0) et Ind(h?*,0) ne dépendent pas de I'entier k > 1.

Mots-Clés: Homéomorphisme de surface - renversement de I’orientation - point 2-périodique
- feuilletage topologique - indice de Poincaré-Lefschetz.
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2 CHAPTER 1. INTRODUCTION

1.1 Variations autour du théoreme de translation
plane

Un outil important pour I'étude de la dynamique des homéomorphismes de sur-
faces est la théorie de Brouwer qui, de facon générale, explique qu'un homéomor-
phisme du plan R? préservant 'orientation et sans point fixe a une dynamique treés
peu récurrente. Un énoncé classique de cette théorie est le théoreme de translation
plane:

Théoréme 1.1. Soit f un homéomorphisme de R? qui préserve l'orientation et qui
n’a pas de point fize. Alors pour tout point m € R? il existe une droite topologique
L passant par m, proprement plongée dans R?, disjointe de son image par f et
séparant f~1(L) et f(L) dans R2.

Figure 1.1 — Une droite de Brouwer

On peut se référer a 'article d’origine de Brouwer [Brol2] ou bien & [Gui94, LCS96]
pour des preuves plus récentes et plus accessibles. Un homéomorphisme f et une
droite topologique L comme dans le théoréeme précédent sont respectivement appelés
un homéomorphisme de Brouwer et une droite de Brouwer (de f). Ainsi le théoreme
de translation plane dit que, pour tout homéomorphisme de Brouwer f, on peut
recouvrir le plan par des droites de Brouwer. Il peut aussi s’énoncer de facon un peu
différente en disant que, sous les mémes hypotheses pour f, tout point de m € R? est
contenu dans un domaine de translation, c’est a dire un ouvert connexe, simplement
connexe et f-invariant sur lequel f est conjugué a une translation. Plus précisément
encore, un domaine de translation est I'image ¢(R?) du plan R? par une application
¢ : R?2 — R? continue injective qui envoie chaque verticale {x} x R sur un fermé de
R2.
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1.1.1 Les versions feuilletées de Le Calvez

I1 est naturel vouloir renforcer le théoréme 1.1 en feuilletant (et non pas seulement
en recouvrant) le plan R? par des droites de Brouwer. C’est exactement la version
feuilletée du théoreme de translation plane obtenue dans l'article [LCO4].

Théoreme 1.2 (Le Calvez, [LCO04]). Soit f un homéomorphisme de Brouwer. Il
existe alors un feuilletage topologique orienté F de R? dont toute feuille est une
droite de Brouwer de f.

Le lecteur notera bien que dans cet énoncé le feuilletage .# n’a aucune raison d’étre
invariant par f. Ce théoréme peut se voir comme une étape vers la version feuilletée

équivariante du théoréme de translation plane:

Théoreme 1.3 (Le Calvez, [LCO05]). Soit G un groupe discret d’homéomorphis-
mes de R? préservant 'orientation, agissant librement et proprement. Soit f un
homéomorphisme de Brouwer commutant avec les éléments de G. Il existe alors un
feuilletage topologique orienté . de R?, invariant sous 'action de G, dont toute

feuille est une droite de Brouwer de f.

Dans ce dernier énoncé, f doit étre regardé comme un relevement d’'un homéomor-
phisme fde la surface S = R?/G isotope & Idg. Le feuilletage .# se projette alors
sur un feuilletage Z de S qui est “transverse a la dynamique de f 7. Ceci constitue
un nouvel outil puissant pour I’étude dynamique des homéomorphismes de surfaces
(voir par exemple [LC05, LCO6b, LCO8] ou [LR13]).

1.1.2 Un analogue dans le cas renversant ’orientation

Bien que la littérature sur le sujet soit moins abondante, les homéomorphismes
de surfaces renversant l’orientation constituent une classe intéressante de systeémes
dynamiques, que I'on ne peut pas comprendre en se contentant “d’élever au carré”
pour revenir au cas préservant lorientation. L’article [Bon04] de Bonino montre
cependant qu’il existe de fortes similarités entre les homéomorphismes de Brouwer
et les homéomorphismes de la sphere S? qui renversent ’orientation et qui n’ont pas
d’orbite périodique de période minimale 2. En particulier le résultat suivant peut se

voir comme un analogue du théoreme de tranlation plane.

Théoréme 1.4 (Bonino, [Bon04]). Soit h un homéomorphisme renversant l’orien-
tation de la sphére S? et sans point 2-périodique. Alors, pour tout point m €
S?\ Fix(h), ou Fix(h) est I’ensemble des points fizes de h, il existe une application
continue injective o : O — S?\ Fix(h) telle que
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1. O est R? ou {(z,y) € R? |y # 0} ou R?\ {(0,0)};
2. m € p(0);
3. 81 0=R2 ou O={(z,y) € R? | y # 0} alors

e hop=90Glo od Gzy) = (o +1,—y),
e pour tout x € R, p(({z} x R)NO) est un ensemble fermé de S? \ Fix(h);

4. Si O =R2\{(0,0)} alors

. 1
e hop=9poH|p ou H(x,y)zé(:z:,—y).

Dit rapidement, sous les hypotheses de ce dernier résultat, tout point m € S?\ Fix(h)
est contenu dans un ouvert h-invariant p(0) C S? \ Fix(h) ou la dynamique de h est
celle d’un modele simple parmi trois possibles. L’ouvert S?\ Fix(h) est ainsi recouvert
par trois types de sous-variétés de dimension 1 similaires (bien que plus compliquées)
aux droites de Brouwer du théoreme de translation plane: il s’agit des ensembles
o(({z} x R)N O) lorsque O est R? ou {(z,y) € R? |y # 0} et, quand O = R?\ {(0,0)},
des ensembles ¢(C') ou C est un cercle euclidien centré sur l'origine (0,0). Ces sous-
variétés sont donc topologiquement des cercles, des droites ou des paires de droites
proprement plongées dans S? \ Fix(h). Ces variétés ont un role central dans cette
these et seront appelées variétés de Brouwer dans tout le texte.

1.2 Présentation des résultats et organisation du
texte

Une question naturelle au vu de ce qui précede est la suivante: existe-t-il une
version feuilletée du théoreme 1.4, de méme que le théoreme 1.2 est une version
feuilletée du théoreme de translation plane ?

Cette question est la premiere motivation de notre travail. Nous y apportons
une réponse positive en prouvant que, pour tout homéomorphisme A comme dans
le théoreme 1.4, il existe un feuilletage de 'ouvert S? \ Fix(h) par des composantes
connexes de variétés de Brouwer (théoréme 4.1, Chapitre 4). La preuve de ce résultat
est exposée dans le chapitre 5 et s’obtient en combinant les techniques des articles
[Bon04] et [LC04]. Nous aurons besoin au préalable de décrire avec précision les
variétés de Brouwer, ce qui est fait dans le chapitre 3. En particulier nous verrons
comment distinguer naturellement le coté gauche et le coté droit d’une telle variété,
en fonction de la dynamique de h. Le court chapitre 2 est consacré aux notations et
aux notions de base utilisées tout au long de ce texte.

Nous obtenons aussi, comme premiére application de notre théoreme de feuil-
letage, un théoreme d’indice pour les itérés d’'un homéomorphisme (local) i du plan
R? qui renverse I'orientation: si l’origine 0 est un point fixe isolé de tous les itérés h"”,
alors 'indice de Poincaré-Lefschetz Ind(h",0) dépend seulement du caractere pair ou
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impair de l'entier n > 1 (théoreme 4.2, Chapitre 4). Ce résultat est démontré dans le
chapitre 6. La preuve s’appuie sur une analyse du feuilletage .# obtenu en appliquant
notre théoréme principal & un homéomorphisme de S? ayant seulement deux points
fixes ainsi que sur la version feuilletée équivariante du théoreme de translation de
Brouwer (théoreme 1.3 ci-dessus) dans le cas simple ot la surface S est un anneau

ouvert.
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2.1 Notations and basic definitions

First of all, we give some basic notations. We think of the 2-sphere S? as the
one point compactification of R?, that is S? = R2U {oo}. If Y is a topological space
and X C Y we write generally Inty (X), Cly(X) and dy(X) = Cly(X) \ Inty (X) for
respectively the interior, the closure and the frontier of X with respect to Y. For the
sake of simplicity we omit the subscript Y when Y = S?.

A set X C S? is called a half-plane, a strip, an annulus, a disc if it is homeomorphic
to, respectively, [0, +00) xR, [0,1] xR, [0,1] x S!, the closed unit disc of R%. A segment
(resp. a circle) is a subset of S? homeomorphic to the interval [0, 1] (resp. to the unit
circle S'). A Jordan domain is a connected component of the complementary set of
a circle in S?. An arc is the image of a continuous map o : I — S? where I ¢ R is
any nonempty interval. Consider now an open subset M of S?. A line of M (resp. a
half-line of M) is a set X C M which is homeomorphic to R (resp. to [0, +c0)) and
which is properly embedded in M (that means that X is closed in M).

Let A, B and C be three subsets of a topological space Y. We say that A separates
B and C in Y if there are two distinct connected components X; and X, of Y\ A
such that B ¢ X; and C C X3. Note that in this definition we do not assume that B
or C' is connected.

If I is a segment or a line of M C S? with a provided orientation and if a,b are
two points met in this order on T', then [a,b]p is the sub-segment of T from a to b
for the chosen orientation of I We also denote (a,b)r = [a,b]r \ {a,b} as well as
(a,blr = [a,blr \ {a} and likewise [a,b)r.

Finally Fix(f) denotes the fixed point set of any map f : X — Y and we write
#(X) for the cardinality of any finite set X.

2.2 Brick decompositions

2.2.1 First definitions and properties

The notion of brick decomposition was introduced by Le Calvez and Sauzet
in [LCS96, Sau01] and is used in several papers on the dynamics of surface homeo-
morphisms (e.g. [Bon04], [LC04, LCO6b], [LRO4]). For completeness we recall here
the most basic facts about bricks decompositions, following closely the presentation
by Le Calvez in [LCO05] or [LC06a].

A brick decomposition of a surface M without boundary is given by a one dimen-
sional stratified set ¥ ¢ M with a zero dimensional submanifold V' such that any
vertex v € V is locally the endpoint of exactly three edges. An edge is the closure in

M of a connected component of ¥\ V. It is the image in M of a proper topological
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embedding of [0,1], [0, +o0), R or S!. A brick is the closure in M of a connected com-
ponent of M \ ¥. Writing E (resp. B) for the set of edges (resp. bricks) we say that
D = (V,E,B) is a brick decomposition of M with skeleton ¥ = (D).

Figure 2.1 — A brick decomposition

Given such a brick decomposition of M, remark that for any X C B the union
Upex B 1s a closed subset of M; if furthermore X ¢ {0, B} then (Jycx B is also a
surface with boundary and in particular any connected component of 8M( U Bex 6)
is either a circle or a line of M. This is an elementary but important property of
brick decompositions. Given X C B, we will abuse notation slightly and use the same
letter X for its “geometric realization” |Jscx 8 C M, writing X C B (resp. X C M)
if we want to insist on the fact that X is regarded as a subset of B (resp. of M).
Moreover X C B is said to be connected if the corresponding set X C M is connected;
equivalently, for any two bricks g, 8" in X, there exists a sequence (3;)o<i<n of bricks
of X from Sy = 8 to B, = ' such that 3; and B;;1 are adjacent (that means f;, ;11
contain a common edge) for every i € {0,....,n—1}. A connected component of X C B
is defined as a maximal connected set Y C X; then Y C M is a connected component
of X ¢ M in the usual sense.

Another brick decomposition D' = (V', E', B') of M is said to be a subdecomposition
of D if (D) C X(D); we then write D' C D.

If B = LiesX; is a partition of B into connected subsets then the set | J,.; 0p X; is
a skeleton of a subdecomposition D’ of D whose bricks are the X;’s. Let us say that
D is a filled if D' = D where D’ is defined by the partition of B into singletons. In
other words, D is filled iff any edge of D is contained in exactly two bricks of D.

2.2.2 Dynamics on a brick decomposition

Let M be a surface without boundary endowed with a brick decomposition D =
(V,E,B) and let h : M — M be a homeomorphism. We denote P(B) the set of all the
subsets of B. Le Calvez and Sauzet (see e.g. [Sau01], [LCO05], [LCO06a]) introduced
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two natural maps ¢ : P(B) — P(B) and ¢_ : P(B) — P(B) defined by

¢©(X) = {B € B| there exists ' € X such that 3 N h(8') # 0}
={BeB|B N h(X) #0}.

and

¢_(X)={BeB]| there exists /€ X such that 8 N h=Y(p') # 0}
= {BeB|B N K HX)#0}.

These maps send connected subsets of B onto connected subsets of B. One checks

" o(Ux) =Uetn o(%) <ot

iel iel iel iel
for any family (X;);c; of subsets of B and of course an analogous property also holds
for ¢_.

We call attractor any set X C B verifying ¢(X) C X, which is equivalent to
h(X) C Int(X). A repellor is a set X C B such that ¢_(X) C X; equivalently it is the
complement of an attractor. The union or the intersection of a family of attractors
(resp. repellors) is itself an attractor (resp. a repellor).

We will explain in Section 5.2 how to use these objects in our framework.
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12 CHAPTER 3. BROUWER MANIFOLDS
3.1 Definition

We first recall the main result of [Bon04].

Theorem 3.1. (/Bon04, Theorem 5.1]) Let h be an orientation reversing homeo-
morphism of the sphere S* without a 2-periodic point. For any point m € S?\Fix(h)
there exists a topological embedding (i.e., a continuous one-to-one map) ¢ : O —
S?\ Fix(h) such that
(i) O is either R? or {(z,y) € R?|y # 0} or R2\ {(0,0)},
(if) m € 9(0),
(iii) if O =R? or O = {(z,y) € R? |y # 0} then
e hoyp=ypoG|p where G(x,y) = (x + 1, —y),
o for every x € R, o(({z} x R)NO) is a closed subset of S*\ Fix(h) (we say
that ¢ is a proper embedding),
(iv) if O = R?\ {(0,0)} then
e hop=¢oH|n where H(z,y) = %(m,—y).

For the rest of this Chapter 3 we consider a homeomorphism A as in the above the-
orem, that means an orientation reversing homeomorphism of S? such that Fix(h) =
Fix(h?), and we let M = S? \ Fix(h). We keep the notation of the Theorem 3.1 and
we also write rS! for the Euclidean circle with center 0 = (0,0) € R? and radius
r > 0. A set p(rS!) in (iv) is said to be a Brouwer manifold of type 1 of h. A set
o(({z} x R)N O) in (iii) is named a Brouwer manifold of type 2 (resp. type 3) of h
if O = R? (resp. O = {(z,y) € R?|y # 0}). Brouwer manifolds of type 1, 2 or 3
are commonly called Brouwer manifolds. One knows from the invariance of domain
that ¢(0O) is an open subset of S? and that ¢ realizes a homeomorphism from O onto
©(0) ¢ M. Consequently a Brouwer manifold of 4 is a 1-dimensional submanifold of
the open set M. Moreover if T' = <p({x} x (R {O})) is a Brouwer manifold of type
3 then Ty = p({z} x (0,+00)) and I'y = p({z} x (—00,0)) are also closed subsets of
M and are the two connected components of I'. Thus, using the vocabulary from
Section 2.1, if T, is either a Brouwer manifold of type 2 or a connected component of
a Brouwer manifold of type 3 then T, is a line of M and consequently CI(T',) \ T'x is
a nonempty subset of Fix(h) with at most two connected components. Observe that
I'NnA™(T) =0 for any integer n # 0 and any Brouwer manifold T'.

3.2 Left and right sides of a Brouwer manifold

Let T' be a Brouwer manifold of h. Recall that T' has at most two connected
components and that n(T') NT = (. We define the right side (resp. the left side) of
', denoted by R(T') (resp. L(T)) as the closure in M of the union of the connected
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components of M \ T' which meet h(T') (resp. h~1(T)).

Proposition 3.1. Assume that Fix(h) is either a circle or a totally disconnected

set. Then one has the following properties for any Brouwer manifold T of h:
(i) LT)URT) = M;
(i) L(T)NR(T) =T
(i) O L(I') =T = o R(I'), L(I') = Clpy(Int(L(T))) and R(I') = Clps(Int(R(T))).
Moreover Int(L(T")) ('r’esp. Int(R(F))) is the union of the connected components
of M\ T which meet h~}(T') (resp. h(I'));

(iv) h(R(T)) C Int(R(T));
(v) h=Y(L(T)) C Int(L(T)).

Remark 3.1. It follows from the results in Section 5.1 below that Proposition 3.1
actually holds true without the assumption on Fix(h). We write this slightly weaker
statement to make the proof easier and because it is enough to get our main result
Theorem /4. 1.

Proof. Given a Brouwer manifold I" of h, the union of the connected components of
MN\T meeting h~1(T) (resp. h(T)) is denoted by Uj: (resp. V;¥) so that L(T') = Cly (Uf:)
and R(T) = Cly (Vy%).

We first remark that Properties (i)-(ii) imply (iii). Suppose indeed that (i)-(ii)
hold true. If there exists x € I' N Int(L(T")) then one can consider a neighborhood N
of x so small that N C L(TI") and (ii) then gives

D#£VENNC (RI)\T)NLT) =0

which is absurd. Thus we have T' N Int(L(T')) = 0. The set M \ T is locally connected
(as an open subset of S?) hence its connected components are open in M \ I and so
is Up. This implies dyUp = L(I') \ Up € I' and then L(I') ¢ T'UUp € T'uInt(L(T))
where the symbol U emphasizes a disjoint union. Using again (ii) one deduces L(I") =
I'ulnt(L(T")) and U = Int(L(T")). One checks in the same way that R(I') = T'UInt(R(T"))
and V' = Int(R(I")) which proves (iii).

Observe secondly that if (i)-(ii) and (iv) hold then one has

L(T) = M\ Int(R(T)) € M\ A(R()) = h(M \ R(T)) = h(Int(L(T)))

and (v) follows. Our next task is to prove (i)-(ii) and (iv).

e Assume first that Fix(h) is totally disconnected.
Case 1. T is a Brouwer manifold of type 1.

We have I' = p(rS') for some r > 0 and some embedding ¢ : R?\ {(0,0)} — M as
described in (iv) of Theorem 3.1. Then I is a circle and the Jordan curve theorem tell
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us that S2\TI" has two connected components U, V with furthermore U = 0V =T'. The
segment ¢([r/2, 2r] x {0}) joins ((r/2,0)) € h(T') and »((2r,0)) € h~}(T) and intersects
I' transversely only at the point o((r,0)) therefore T' separates h=(T") and A(T) in S,
let us say h~1(I') ¢ U and h(I') C V. It follows that h(C1(V)) C V since otherwise the
connected set ~A(Cl(V)) would meet 0V which implies h(V)NI" # () and then contradicts
h~}T') C U. According to Lemma 5.2 one has Uf: = U\Fix(h) and V¥ = V\Fix(h) with
furthermore L(I') = Cly(Uft) = CL(U) \ Fix(h) and R(I") = Cly(Vy¥) = CI(V) \ Fix(h).
This gives immediately (i)-(ii). Moreover (iv) also holds because

h(R(T)) = h((CI(V)) \ Fix(h) C V \ Fix(h) = Vi = Int(R(T)).

. possible fixed points

h:l:l (F)

Figure 3.1 — A Brouwer manifold of type 1 and its images by h*!

Case 2. T is a Brouwer manifold of type 2.
We write I' = p({z} x R) where ¢ is a embedding as in (iii) of Theorem 3.1 defined
on O = R% We also let

v- =¢((x—1,2) x {0}),
v+ =¢((@,2+1) x {0}) = po G((z = 1,2) x {0}) = h(y-),
v=¢((x—1z+1) x{0}) =7- U{p(z,0)} Ury,

where we recall from Theorem 3.1 that G(z,y) = (v + 1, —y). We already know that
CI(I") \ I' is a subset of Fix(h) containing one or two points. We show now that it
actually contains a single point (the following arguments already appear in [Bon04]).
Otherwise we have CI(T') \ T = {a, b} where a,b are two distinct fixed points of 4 and
the set C' = CI(T UR(T)) =T UA(T) U{a,b} is a circle disjoint from ~4. According to
the Jordan curve theorem, S? \ C has exactly two connected components, call them
V_, Vi, and 9V_ = 9V = C. The segment v C M intersects C' only at the point
¢(x,0) which furthermore is a point of transverse intersection hence C' separates the
two connected sets h~1(I') U~_ and v, in S?, let us say h~1(I')Uy_ C V_ and vy C V.
It follows that

ontvonvy=r )NV =hrH )NV, =0
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so we have either V., ¢ h=1(V,) or V,.nh=1(Vy) = . We observe that none of these two
situations is possible. The first one implies yv_ U~y; = h~ (1) Uy, € h~1(V,) which
cannot hold because v intersects I' € h=(C) transversely. Suppose V. N~ (V) = 0.
Then we cannot have CI(V, ) Uh~(Cl(V,)) = S? since this would imply 2~1T") = r(T")
which is not possible for a Brouwer manifold. Consequently Cl(V,) U h~1(C1(V,)) is
contained in the domain of a single chart of S? and can be represented as in Fig.
3.2. Keeping in mind that a,b are fixed points of h, this contradicts the fact that h
reverses the orientation.

h_\l(V+)

a

Figure 3.2 - V., Nh~(V,) = () is not possible

Thus we get as announced CI(T') \T' = {a} for some a € Fix(h) and CI(I') =T U{a}
is then a circle. Write U,V for the two connected components of S? \ CI(T'), with
OU = 0V = CII'). The circle CI(T") separates h~1(I') and A(I') in S? because the
segment v C M joins ¢(xr — 1,0) € h~YT") and ¢(z + 1,0) € A(T") and it intersects
transversely CI(T') only at the point ¢(z,0). Assuming for example »~1(TI") € U and
h(I') C V one deduces easily that h(CL(V)) C V U {a}. Properties (i)-(ii) and (iv) now
follow from Lemma 5.2 which gives Uj = U \ Fix(h) and V¥ = V' \ Fix(h) as well as
L(T") = Cly (Uf) = CI(U) \ Fix(h) and R(T") = Clp (V) = CI(V) \ Fix(h).

~_, bossible fixed points

hil(r)

Figure 3.3 — A Brouwer manifold of type 2 and its images by h*!
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Case 3. T is a Brouwer manifold of type 3.

Let us write I' = T'; U T with T'; = p(4;) where ¢ is a embedding as in (iii) of
Theorem 3.1 defined on O = R?\ {(x,y) € R?|y = 0} and where A; = {2} x (0, +00)
and Ag = {z} x (—00,0) for some x € R. Then h*(T;) = p(GF(A;)) where G(z,y) =
(x+1,—y) (2 € {1,2}). Recall that each T'; is a line of M so CI(T';) \ T'; is a subset of
Fix(h) with cardinality one or two. Let us prove that moreover CI(I'1)\I'; = Cl(I'2)\T's.

- Assume first that CI(T';) \ I'; = {a} where a € Fix(h). Of course we also have
Cl(h*1(I'1)) \ h*1(T1) = {a}. Using the Schoenflies theorem, one can construct a
homeomorphism of S? mapping h~(Ty), h(T'1) and a onto respectively {—1} x R,
{1} x R and oo. It follows that S?\ CI(h=1(I';) UR(Ty)) = S?\ (b~ 1(T1) U (1) U {a})
has three connected components and only one of them, call it Ey, has its frontier
in S? which meets both A=1(I';) and h(I';). We have then more precisely 0E, =
h=YT1) U A(T1) U {a}. Consider the domain B_ = (z — 1,7 + 1) x (—00,0) C O.
Then ¢(B_) is a connected subset of M, it is disjoint from A~'(T'y) U 2(T1) U {a}
and contains T'y. Moreover h*¥1(I'1) C ¢(Clp(B-)) C Cl(¢(B-)) so necessarily T'y C
¢(B-) C Ey. The segment ¢([z,z+2] x {—1}) C M has endpoints ¢((x,—1)) € Ep and
o((x+2,-1)) € h?(Ep) and it intersects the circle C1(h(T1)) = h(T'1) U {a} transversely
only at the point ¢((z +1,—1)). Since h?(Ep) Nh(l'1) = h?(Eonh~1(T1)) = 0 it follows
that CI(h(T'1)) separates the two connected sets Ey and h?(Ep) in S?. This shows that
Ep is disjoint from Fix(h?) = Fix(h) and then CI(T) \ 'y C Fix(h) N Cl(Epy) = {a} so
one also has Cl(I'y) \ I'y = {a}.

- Assume now CI(T'1)\T'; = {a, b} where a, b are two distinct fixed points of h. Then
Cl(h~1(I'1)UA(T1)) = h~1(T'1)UA(T1)U{a, b} is a circle. The two connected components
of S?\ Cl(h=}(T'1)Uh(Ty)) given by the Jordan curve theorem are denoted by U, V with
for instance I'y € U. The segment ¢([z —3, 2] x {—1}) € M joins ¢(z—3, —1) € h=3(I'1)
and ¢(z, —1) € T'y and it intersects transversely the circle Cl1(h~1(I'1) U h(I'1)) only at
the point ¢(x — 1,—1) so one deduces h=3(';) € V. A similar argument involving
the segment o([z, z + 2] x {—1}) shows that h?(U) NV # 0 and afterwards r?(U) C V
because h%(U) is connected and

RAU)NOV =h*(Un (W 3T uh 1 (T1) U{a})) = 0.

In particular U is disjoint from Fix(h) and consequently C1(I'y) \T's C Cl(U)NFix(h) =
{a,b}. The set Cl(I'2) \ I'2 cannot be reduced to a single point since the same would
be true for CI(T'1) \ T'1 (just reverse the roles of T’y and Ty in the previous paragraph)
so one gets as expected Cl(T'2) \ 'y = {a,b}. The continuation of the proof depends
on the cardinality of these sets CI(I';) \ T';.

a) We suppose CI(I'1) \ I'; = Cl(I'2) \ I'z = {a}.

Thus CI(T") is the union of the two circles CI(I'1) = T'; U {a} and CI(I'y) = T’y U
{a} intersecting only at the point a. Using again the Schoenflies theorem, one can
construct a homeomorphism of S? mapping CI(I') onto the “figure eight curve” hence



3.2. LEFT AND RIGHT SIDES OF A BROUWER MANIFOLD 17

S?\CI(I") has exactly three connected components Uy, Us, Us as follows: Uy (resp. Us) is
a connected component of S?\ CI(I'y) (resp. S*\Cl(T') and Us = V;NV;, where Vi (resp.
V) denotes the connected component of S?\ CI(Ty) (resp. S?\ CI(T'2)) other than U;
(resp. Us). Furthermore oU; = CI(T;) = I';U{a} for i € {1,2} and U3 = CI(T") = TU{a}.
Let us prove there exists ¢ € {£1} such that r°(Cl(U;)) C U; U {a}, or equivalently
he(U; UT;) C Uj, for any 1 <i# j < 2 (see Fig. 3.4).

__..possible fixed points

K7 (D) hFL(D,)

hil(f‘g)/ o ‘\‘hil(lﬁ)

Figure 3.4 — A Brouwer manifold of type 3 and its images by h*! in the subcase (a)

The segment ¢([x — 1,2 + 1] x {1}) € M has one endpoint on h~'(I';) and the
other on h(T'2) and it intersects transversely the circle C1(T'1) only at the point ¢(z,1)
hence CI(I';) separates h=(T'y) and h(T2) in S?. One checks similarly that CI(I's)
separates h~1(I'1) and h(T';) in S?. Observe also that <p([x — 1,z + 1] x (0,+oo))
and ¢([z — 1,2 + 1] x (—00,0)) are two disjoint connected subsets of M, the first
one containing h~'(T2) UT; U h(T'2) and the latter containing h=(T'y) U 'y U h(T'y).
Clearly T'y € V5 and I'y C V; so one deduces go([x — Lz +1] x (0,+oo)) C V5 and
gp([w — 1,z + 1] x (—o0, O)) C V4. Combining with the previous separation properties
it follows there exists (e1,e2) € {£1}? such that h¥1(I'y) C Us, h=51(T1) € VaN'Vi = U3
and h®2(Ty) C Uy, h™%2(I'y) c ViNVe =Us. If e =1 and e3 = —1 then one has 'y =
h(h~1(I'9)) C Cl(U3) N h(U7) so the open set h(U;) meets Us and afterwards Us C h(Uy)
because of the connectedness of Us and because Us N Oh(Uy) = Us N (h(Fl) U {a}) C
Us N Uy = (). Thus we have h(I's) C Us C h(Uy) so I'y € U; N Cl(Uz2) and consequently
Us N Uy # (0 which is absurd. One checks in the same way that e = 1 = —¢; is not
possible so we may define ¢ = ¢; = e5. For i # j in {1, 2} the set h°(U;UT;) is connected
and hf(U; UL;)NOU; = hE(U;) NIy € h8(U;NU3) = () hence h®(U; UT;) C U; as expected.
As a consequence, one gets S?\ (U3U{a}) = UUUUT C h=¢(U1UUs) = S?\ h=¢(C1(U3))
so h=¢(Cl(Us)) C Us U {a}. Properties (i)-(ii) and (iv) now follow since, using again
Lemma 5.2, one has

- it e = —1 then U} = (Uy U Us) \ Fix(h), V¥ = U3 \ Fix(h), L(I") = Cly(U}) =
Cly (U1 \ Fix(h)) U Cly (U2 \ Fix(h)) = (Cl(U1) UCL(Uz)) \ Fix(h) and R(T') = Cly (Vf¥) =
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CI(Uy) \ Fix(h);

- if ¢ = 1 then Uj = Uz \ Fix(h), V¥ = (U1 U Us) \ Fix(h), L(I') = Cly(Uf) =
Cl(Us) \ Fix(h) and R(T') = Cly(Vy*) = (Cl(U1) U CL(U2)) \ Fix(h).

b) We now suppose CI(I'y) \ I'1 = Cl(I'2) \ I's = {a, b}, a # b.

Then CI(T") = T' U {a, b} is a circle and we write U,V for its two complementary
domains. In particular OU = 0V = I' U {a,b}. We shall show that there exists
e € {#1} such that r¢(CI(U)) Cc U U {a b}, i.e., F(UUT) Cc U. The circle CI(T)
separates h~'(T'1) and A(I'1) (resp. h~(T') and h(T'2)) in S? because the segment
o(lx — 1,z + 1] x {=1}) € M (resp. the segment o([r — 1,z + 1] x {1}) C M) joins
o(r —1,-1) € h}{(I'1) and ¢(z + 1,-1) € h(l'1) (resp. ¢(z —1,1) € h~1(I'y) and
o(z+1,1) € h(T'2)) and it intersects transversely C(T') only at the point ¢(z, —1) (resp.
¢(z,1)). Thus for both i = 1 and i = 2 there exists ¢; € {£1} such that r%(T;) C U
and h=%(I';) c V. Up to conjugagy in S?, one may assume without loss of generality
that Cl(U) is the Euclidean closed unit disc in R? with also a = (0, 1), b = (0, 1),
'y =0UN ((—00,0) x R), [y = 0U N ((0,+00) x R) and he*(I'y) = {0} x (=1,1) C U.
Thus U is located on the right of T'; oriented from a to b. Since a, b are fixed points of
h and since h°* reverses the orientation, the set h°(U) is located on the left of A% (I'})
oriented from a to b and then h*(U) meets the half-disc D = Cl(U) N ((—o0,0) x R).
Moreover T'y = he*(h~¢1(T'1)) € DN A (V) hence O # D N ok (U) = D N ke (T'y) and
consequently A (I'2) € D\ T';y C U because 0D =T'y U h®(I'1) U {a, b} is disjoint from
he1(I'2). This gives e3 = €1 and, letting ¢ = £; = e9, one has then A%(I') C U and
h=E(T") € V. One deduces easily that h¢(Cl(U)) C U U{a,b} and also h=¢(C1(V)) C
V U{a,b} (see Fig. 3.5).

hil(Fg)\_»_»_

hil(rl) h$l(F1)

possible fixed points

Figure 3.5 — A Brouwer manifold of type 3 and its images by h*! in the subcase (b)

One derive one more time Properties (i)-(ii) and (iv) from Lemma 5.2 which gives
Uf = U\ Fix(h), Vff = V \ Fix(h), L(T) = Cly(U}) = CI(U) \ Fix(h) and R(I") =
Cla (V) = CI(V) \ Fix(h). This completes the proof when A is connected.

e Assume now that Fix(h) is a circle.
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Then one knows from the Jordan curve Theorem that M has exactly two con-
nected components Mj, My. Moreover h(M;) = My and h(Ms) = M; because the
homeomorphism h reverses the orientation hence only Brouwer manifolds of type 3
can arise. We keep the notations I' = I'; LI ' as in the third case above. Each M;
is homeomorphic to R? and I'; is a line of M; therefore, by the Jordan curve Theo-
rem, M; \ I'; has two connected components U;, V; with dy,U; = 05, V; = T';. The arc
o([r—1,2+1] x {1}) € My joins o((z —1,1)) € h~1(T'9) and o((z +1,1)) € h(T'2) and it
intersects I'; transversely only at the point o(z, 1) thus I'y separates h=1(I's) and h(I's)
in My, let us say h~!(I'y) ¢ Uy and h(I's) C V4. One obtains likewise h~1(I'1) C Us and
h(I'1) C V, where Us, V, are the two connected components of My \ T's. One derives
from these separation properties that h(Cly,(V;)) C V; for any 1 < i # j < 2 and we
conclude simply observing that U = Uy UUs, V¥ = ViU Vs, L(I') = Clay, (U1) UCly, (Uz)
and R(I") = Clyy, (V1) U Clpy, (Va). []

Remark 3.2. A Brouwer manifold of type 2 cannot be a connected component of a
Brouwer manifold of type 3. Indeed the proof of Proposition 3.1 shows (at least when
Fix(h) is totally disconnected) that a Brouwer manifold T of type 2 separates h(T') and
h=YT) in S?\ Fix(h) while this is not true for a connected component I' of a Brouwer
manifold of type 3.

3.3 Brouwer manifolds without transverse
intersection

We say that two Brouwer manifolds I" and I have no transverse intersection of h
if the following two conditions hold:

I.TCc R(I")or T c L(I'),
2. TV C R(I") or IV C L(T).

This definition is clearly symmetric with respect to I" and I'. However it is maybe
not entirely obvious that (i) and (ii) are equivalent. Let us give a few additional
details.

Proposition 3.2. Assume that Fix(h) is either a circle or a totally disconnected

set. Then two conditions (1) and (ii) are equivalent.

Remark 3.3. As for Proposition 3.1 this result is true without the assumption on

Fix(h) but we will need only this weakened version.

Proof. We first suppose that Fix(h) is totally disconnected. We keep the notation
Up,Us,Us = V1 N V4 as in the proof of Proposition 3.1 for the connected components
of S?\ CI(T") when T is a Brouwer manifold of type 3 accumulating on a single fixed
point. We define similarly Uy, Uj, U; = V/ NVy if I is a Brouwer manifold of the same
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type. Considering only the topological description of L(T") and R(T") given in the proof
of Proposition 3.1 for the various types of Brouwer manifolds, it is not difficult to
check that if (i) holds true but (ii) does not then one of the three following situations

arises:
(a) T (resp. I") is a Brouwer manifold of type 2 (resp. type 3) with CI(T') \ T =
CII")\T" = {a} and the circle CI(T") separates U] and U} in S? (Fig. 3.6 (a));
(b) T and I" are Brouwer manifolds of type 3 with CI(T')\T = {a, b}, CI(T")\T” = {a}
(a # b) and the circle CI(T') separates U] and U, in S? (Fig. 3.6 (b));

(¢c) I =T UTy and IV = Ty UTY% are Brouwer manifolds of type 3 with CI(I') \ T =
CII")\I" = {a} such that one of the two sets U7, U} is contained in Us while the
other one is contained in U; or Uy (Fig. 3.6 (c)).

Figure 3.6 — The cases where (i) holds true but (ii) does not

We conclude by showing that (a)-(b)-(c) are actually not possible, due to the
dynamics of h. If I',T” are Brouwer manifolds as in (a) or (b) we know there exists
e € {£1} and a connected component U of §*\ CI(T) such that r*(U;) C Uj for any two
distinct 4,7 in {1,2} and h°(U) C U. Moreover the separation assumption in (a) or
(b) allows one to choose i # j in {1,2} in such a way that U] C U and U} C S?\ Cl(U)
hence one obtains () # h#(U;) = h*(U]))NU; C h*(U)NU; C UNU; = § which is absurd.
In the situation (c) consider (¢,¢’) € {£1}? such that h*(U;) C U; and h¥ (U!) C U} for
any ¢ # j in {1,2}. The hypothesis says there exist i # j and k # [ in {1,2} such that
U; C Uy and Uj C Us. If ¢’ = e then one obtains () # h(U]) = h*(U;)NU; C h*(Uy)NUs C
UNUs = and if &’ = —¢ then () # h_E(U]/.) = h_E(U]{)ﬂU{ C h™E(Us)NU, C UsNU, = 0,
which proves that (c¢) cannot hold.

Secondly we suppose that Fix(h) is a circle. In this case I' = T'; UT9 and I" =
Iy UTY% are Brouwer manifolds of type 3. We use the same convention as in the
proof of Proposition 3.1 for the two connected components U;, V; of M; \ T'; and the
connected components of M; \ I'; are named U/, V;/ analogously (i € {1,2}). Since
Int(L(T)) = Uy U Uy, Int(R(T)) = Vi UVh, Int(L(I")) = U] U U} and Int(R(I")) = V{ U V]
one checks that if (i) holds true but (ii) does not then there exist i # j in {1,2} such
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that
(VicV/andU; cV/) or (V;cUjandU;CUj).

One gets in first case

M; = h(Mj) = h(Clar, (V) UT;) = h(Clag, (V) UR(U) € Vi UR(V)) € VUV = V]
and in the second case
Mj = h™'(M;) = b~ (Clag, (Ui)UV;) = h™ ' (Clyy, (Us))Uh ™ (Vi) € U;ub™H(Uf) € U;UU;5 = Uj

which are two contradictions. ]

Proposition 3.3. Assume that Fix(h) s either a circle or a totally disconnected
set and let T',T" be two Brouwer manifolds of h. Then one has

1) T c R(") if and only if R(T) C R(T") or L(T') C R(T).

2) T c L(I") if and only if L(T') C L(T’) or R(T") C L(I").

Remark 3.4. As for Propositions 3.1 and 3.2 this result remains valid without the

assumption on Fix(h).

Proof. Tt is enough to show the first assertion, the same arguments proving the second
one by reversing the roles of L(I') and R(T).

If Fix(h) is a circle then the result is an easy consequence of Proposition 3.2.
Suppose now that Fix(h) is totally disconnected set and let T',T" be two Brouwer
manifolds such that I' ¢ R(I).

We first consider the case where CI(T") is a circle. Clearly the proposition is true
if CI(T”) is also a circle. If I is a Brouwer manifold of type 3 with CI(I") \ I” = {a}
then one also gets the results using the fact that the situations (a) and (b) in the
proof of Proposition 3.2 are not possible.

We consider now the case where I' = I'; LI Ty is a Brouwer manifold of type 3
accumulating on a single fixed point a € Fix(h). Keeping the same notations as in
the proof of Proposition 3.1, it is enough to prove that Cl(U; U Us) \ {a} C R(I") or
Cl(Us) \ Fix(h) € R(I").

- Assume that CI(I") is a circle. Then S? \ CI(I") has two connected components
denoted by U’, V' with R(I') = C1(V')\Fix(h) and L(I') = CI(U’")\Fix(h). For every i €
{1,2} we deduce from I" C R(I") that oU; ¢ CI(V’). This implies either C1(U;) c CI(V")
or Cl(U") c CI(U;). If CI(U;) < CI(V') for every i € {1,2} then Cl(U; UU2)\ {a} C R(I).
If there exists i € {1,2} such that CI(U’) c CI(U;) then S?\ Cl(U;) C V' and hence
Us ¢ V'. This implies C1(U3) \ Fix(h) C CI(V') \ Fix(h) = R(I").

- Next assume that I'" = I'; UT", is also a Brouwer manifolds of type 3 accumulating
on a single fixed point b € Fix(h). As a first case, suppose that R(I"”) has two connected
components CL(U7) \ {b} and Cl(U3) \ {b}. Because I' C R(I") one has CI(T'1) C CL(U})
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for some k € {1,2}. This implies either Cl(U;) c ClUj) or Cl(Vi) C CI(U;). The
second inclusion actually does not hold because it implies Uz C Vi C U;. Defining the
integer [ so that {k,l} = {1,2} one deduces 0 # h(Us)NUs C h(U;)NU, C U NU; =0,
a contradiction. The first inclusion implies U; C U;. Of course one gets likewise
Uy C Uj{ for some j € {1,2} (actually j # k but and then a = b but it doesn’t matter
here) and therefore U; U Uy € Uj U UL This implies Cl(Uy U Us) \ {a} C R(I). As
a second case suppose that R(I") is connected, that means R(I") = CL(U3) \ Fix(h).
Then one has oU; N U, = 0 for every i,k € {1,2} hence either U; N U, =0 or U, C Uj.
Observe that if there exist i,k such that U, C U; then also U/ C U; where {i,j} =
{k,1} = {1,2}. Indeed there is ¢ € {£1} such that h°(U;) C U; hence if U, C U; one
obtains @ # U/Nh*(U}) C U/Nhe(U;) C U/NU;. This together with U;NU/ = 0 implies
U C Uj.
Consequently one of the two situations occurs.

- One has U; U U} C Uy UU; and then Cl(Us) \ Fix(h) C R(I").

- Otherwise U;NU}, = 0 for every i,k € {1,2}. It follows that (U;UU2)N(U;UUY) = 0
hence Uy U Uy C CI(U}) and finally CI(Uy U Us) \ Fix(h) C R(IV).

The proof of the proposition is completed. O]

According to Proposition 3.3, two Brouwer manifolds I' and I have no transverse
intersection iff one of the following four properties is verified

- R(T") C R(I),
- L(I') C R(I),
~ R(D) ¢ L(I),

- L(T) c L{T).

As a remark on our vocabulary, observe that the opposite of the property “I" and
IV have no transverse intersection” does not imply that I'NI” # () because I" and I are
generally not connected. Nevertheless it implies that CI(T") N CI(T”) # 0 if furthermore
Fix(h) is assumed to be totally disconnected.
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Theorem 3.1 says that if h is an orientation reversing homeomorphism of the 2-
sphere without a 2-periodic point then one can cover S?\ Fix(h) by Brouwer manifolds
of h. Our first goal in this work is to prove a foliated version of Theorem 3.1 similarly
as Le Calvez gave a foliated version of the classical Brouwer plane translation theorem
(see [LCO4]).

Precisely our main result is the following.

Theorem 4.1. Let h : S — S? be an orientation reversing homeomorphism without
a 2-periodic point. Then there exists a family {®s}sen of Brouwer manifolds of h
such that
- SP\ Fix(h) = Jyep Pss
- any two ®, " € {D;}sen have no transverse intersection;
- the set {¢ | ¢ is a connected component of some @4, s € A} is the set of leaves
of a topological oriented foliation F of S?\ Fix(h).

Chapter 5 is entirely devoted to the proof of this result. As an application of
Theorem 4.1, we prove in Chapter 6 the following result.

Theorem 4.2. Let U,V be two open neighborhoods of 0 in the plane R? and let
h:U — V be an orientation reversing homeomorphism such that Fix(h) = Fix(h?) =
{0} . Then the fixed point index Ind(h™,0) is well-defined for every integer n # 0
(i.e. 0 is an isolated fived point of h"™) and one has Ind(h?*~1 0) = Ind(h,0) and
Ind(h?*,0) = Ind(h%,0) for every integer k > 1.

In the above statement, the fact that 0 is an isolated fixed point of A" for every
integer n # 0 is not new (see [Bon04, Theorem 4.1]) and our interest is in the values
of the fixed point index Ind(h"™,0). Note that such a result is already contained in the
paper [RAPS10] by Del Portal and Salazar assuming some extra properties on the
fixed point 0 (see [RAPS10, Main Theorem 2}). It was also known for odd iterates by
a paper of Graff and Nowak-Przygodzki ([GNPO03]) using entirely different methods.
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Throughout this Chapter 5 we fix once and for all an orientation reversing home-

omorphism A of the sphere S? without any 2-periodic point and we keep the notation
M = S?\ Fix(h) = S? \ Fix(h?).

5.1 Simplification of the fixed point set

According to a theorem of Epstein (see [Eps81]), any connected component K of
Fix(h) is either a point or a segment or a circle and in the last two cases h interchanges
locally the two sides of K. Combining with the Jordan curve theorem, it follows that
one of the two following situations holds:

— The set Fix(h) is reduced to a circle and M has exactly two connected compo-
nents which are interchanged by h.

— The set Fix(h) has only points and segments as connected components; then
S?\ K is connected for every connected component K of Fix(h) and this implies
that M is also connected (see for example [New61, Chapter V, Theorem 14.3]).

Lemma 5.1. Suppose that M is connected or, equivalently, that any connected
component of Fix(h) is either a point or a segment. Then there exist an orientation
reversing homeomorphism h of S? and a continuous map p : S* — S with the

following properties:
1. Fix(/ﬁ) 15 totally disconnected and Fix(h) = ﬁfl(FiX(/ﬁ));

2. p maps any two distinct connected components of Fix(h) onto two distinct

A~

points of Fix(h);

3. the restricted map plyr : M — S?\ Fix(ﬁ) s a conjugacy between the two
restricted homeomorphisms h|y; : M — M and ﬁ|§2\FiX@) : S2\ Fix(h) — S?\

A~

Fix(h).

Proof. Consider the topological space S obtained by identifying each connected com-
ponent K of Fix(h) with a single point pg. Precisely S denotes the quotient space
S?/ ~ where ~ is the equivalence relation defined by x ~ y iff z = y or 2,y belong to the
same connected component of Fix(h). Writing p : S — S for the canonical projection,
the homeomorphism 4 induces a map H : S — S naturally defined by Hop = po h.
One checks that H is a homeomorphism of S such that Fix(h) = p~}(Fix(H)). It
follows that p(M) = S\ Fix(H) and the map p|y : M — S\ Fix(H) is clearly a
homeomorphism conjugating the two restricted homeomorphisms Al : M — M and
H|s\pix(r) : S\Fix(H) — S\Fix(H). Observe now that Fix(H) is totally disconnected.
Indeed the compactness of the sphere and the fact that p~1({s}) is connected for every
s € S imply that p~1(C) is connected for every connected set C' C S (see for example
[Kur68, Chapter 10]). Consequently, if C' C Fix(H) is connected then p~1(C) c K for

some connected component K of Fix(h) and then C' C p(K) contains a single point.
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Because the connected components of Fix(h) do not separate S?, a result of Moore
([M0025, Theorem 25|, see also [Kur68, Chapter 10]) tells us that S and S? are
homeomorphic so that one gets the result by letting 2 =10 Ho and p=1Lop
where ¢ : S? — S is any homeomorphism between S? and the “abstract sphere” S.
Note that h and % are conjugated on nonempty open subsets of S? hence h also

reverses the orientation. L]

Observe that Theorem 4.1 only involves the conjugacy class of the homeomorphism
hlpr : M — M. Hence, replacing h with /l;, Lemma 5.1 allow us to reduce conveniently
to the cases where Fix(h) is either a circle or a totally disconnected set. This will be

assumed from now on.

One may also note that Lemma 5.1 explains Remarks 3.1, 3.3 and 3.4.
We will use repeatedly the following technical result.

Lemma 5.2. Let F be a totally disconnected closed subset of S* and let X be a
closed subset of S?\ F. If {U;}icr is the collection of all the connected components
of S\ CI(X) then {U; \ F}icr is the collection of all the connected components of
S*\ (FUX). Moreover Clsz\p(U; \ F) = Cl(U;) \ F for everyi € I.

Proof. Define U} = U;\ F for every i € I. Each U; is a nonempty open subset of S and
F a closed subset of S? without interior point so U} is also a nonempty open subset
of S? and clearly U ¢ §?\ (F U X). Let us check that U is connected. Consider a
universal covering map 7 : R2 — U;. The set F; = 7~ L(U; N F) is closed in R? and
it is easily seen, using the fact that 7 is a locally one-to-one map, that £ is totally
disconnected. It follows for example from [New61][Chapter V, Theorem 14.3] that
R2\ F; is connected and then so is w(R2\ F}) = U;. Let V* be the connected component
of S?\ (FUX) containing U;. Since X is closed in S*\ F one has $?\ (FUX) C S?\CI(X)
hence V;* C U; and consequently V;*\ UF C (U; \ UF) N (S*\ F) = 0 which shows that
V* = U and even better that any connected component of §*\ (F U X) is equal to
some U Finally the property Clg:\ p(U]) = CI(U;) \ F' is an easy consequence of the
closedness of F. O

5.2 Maximal brick decompositions

We describe here what kind of brick decompositions are useful for our purpose
(see Section 2.2 for basic facts on brick decompositions).

Clearly h(M) = M # ( and, according to Lefschetz-Hopf Theorem, M # S2.
Abusing notation slightly, we also use the letter h for the restricted homeomorphism
hlpr : M — M. A brick decomposition D = (V, E, B) of M is said to be adapted to h

if it satisfies the two following properties:
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(Py) : For every brick 8 € B, h(8) N B =0=hr*B)N 3,
(P2) : For any two bricks 3, 8/ € B, at most one of the two sets h(3)Na" or h=1(B)N A’
is nonempty.

If moreover there is no subdecomposition D’ of D, D’ # D, which is still adapted to
h then we say that D is mazimal. One constructs easily a brick decomposition Dy of
M adapted to h and one gets using Zorn Lemma a subdecomposition D of Dy which

is maximal.
Lemma 5.3. Any maximal brick decomposition D = (V, E, B) of M 1is filled.

Proof. Let D' be the subdecomposition of D defined by the partition B = Ugep{S}.
Then D’ has the same bricks as D so it is adapted to h and the maximality of D
implies D = D'. o

A key result is the following. This is the same as [Bon04, Lemma 5.9] in a slightly

more general context.

Lemma 5.4. If D= (V, E, B) is a brick decomposition of M adapted to h then for
every € B we have

e (sy).

n>1

Proof. Suppose that 8 € (J,-, ¢"({8}) for some brick g € B. In other words there
exist an integer n > 1 and a sequence of bricks (ﬁi)lgign such that 51 = 3, h(B;) N
Bit1 # 0 for i =1,--- ;n—1and h(B,) N B # 0. Since D is adapted to h, this is in
particular a sequence of bricks satisfying the following four properties (i)-(iii)-(iv’):
(i) for every i,j € {1,....,n}, Bi = B; or Int(8;) N Int(3;) = 0;

(iii) for every i € {1,....,n}, h(B;) N B; = 0 = h2(B;) N Bi;

(iii) for every i,j € {1,...,n}, B; meets at most one of the two sets h(8;) or h=1(8;);
(iv’) for every i € {1,...,n — 1}, there exists k; > 1 such that h*(5;) N Biy1 # 0, and

there exists k, > 1 such that h¥=(3,) N B # 0.

Let ng be the smallest positive integer for which there exists a sequence (61')1 i<y
of bricks of D with these properties (i)-(iii)-(iv’). Each 3; is a connected subsurface
of S? s0 one can proceed exactly as in the proof of [Bon04|[Lemma 5.4] to construct
I<icn, Of discs such that Dj C §;, D;n D} =10 (0<i#j<ng) and

satisfying the following property (iv) slightly stronger than (iv’):

a sequence (D))

(iv) for every i € {1,...,ng — 1}, there exists k; > 1 such that »¥(D}) N Int(D}, ) # 0,
and there exists ky, > 1 such that h¥n (D] )N Int(Dy) # 0.

Then (D;) L<i<ne

of [Bon04] so h possesses a 2-periodic point, a contradiction. O

is a sequence of discs satisfying the conditions (i)-(iv) in Lemma 5.3
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5.2.1 Topology of the bricks

We fix from now on a maximal brick decomposition D = (E,V, B) of the surface
M. If Fix(h) is a circle then we know that M has exactly two connected compo-
nents My, My which are interchanged by h and we will write B = B LI By for the
corresponding partition of B.

We begin with a few remarks and notations.

Given § € B and a connected component X of B\ {8} recall that X is closed in
M (as an union of bricks of D). Moreover it is easily seen that if Fix(h) is totally
disconnected (so that M is connected) then 0 # 9y X C 9yB and more precisely
that dj/X is the union of some connected components of dy;5. If Fix(h) is a circle
and 3 € B; then either X = B; (1 < i # j < 2) or X is a connected component of
B; \ {B} whose frontier )y X = 9y, X # 0 is the union of some connected components
of Oy = O, 5.

Observe also that there is a 1-to-1 correspondence between the connected com-
ponents of B\ {8} and those of M \ §: indeed if X is any connected component of
B\ {p} then one deduces from Cly;(X) = Cly/(Int(X)) that Int(X) is a connected
component of M \ §; conversely, if U denotes a connected component of M \ § then
X ={be B|bnU # 0} is a connected component of B\ {f} and Int(X) =U.

For k € {1,2} the sets ¢* ({#}) ¢ B and ¢*({#}) C B are connected and do
not contain 8 (Lemma 5.4) so they are contained in some connected components of
B\ {3} denoted respectively by XB”’€ and X§. In particular we have h*(8) C Int(X})
and h™*(53) C Int(X ;). Especially if Fix(h) is a circle and § € B; then X! = X} = B;
(1<i#j<2) while XB_Q, Xg are contained in B; (maybe XB_2 = Xg)

Lemma 5.5. Assume that Fix(h) s totally disconnected. Given € B and k €

{1,2}, let Y = B\ (Xéc U ijk’) Then we have R*(Y)NY = 0.

Proof. The connectedness of M together with the fact that Y is the union of {5} with
some connected components of B\ {8} implies that Y is connected, as well as h¥(Y).
The latter also intersects XJ because § € Y. Now one deduces from h=*(9y X)) C
h7k(8) C Int(X ") that dy Xk N BE(Y) € h¥(Int(X5%) N RE(Y) = hF(Int(X 57 NY) = 0
hence h¥(Y') C Int(X}). In particular A*(Y) is disjoint from Y. O

Using similar arguments as for Lemma 5.5 one also gets the following lemma.

Details are left to the reader.

Lemma 5.6. Assume that Fix(h) is a circle. Given 8 € B; (with i € {1,2}), let

Z = Bi\ (X3 U X3?). Then we have h*(Z)NZ = 0.
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Lemma 5.7. For any brick § € B we have B\ (X3 U Xﬁ_1 UXZzU Xﬂ_z) = {B}.

Proof. We define Q = B\ (XjU X;'UX3UX,?). If Fix(h) is a circle and § € B;
then Q = B; \ (X/3_2 U Xg) so ) is a connected subset of B whether Fix(h) is a circle
or a totally disconnected set. Consider the subdecomposition D’ of D defined by the
partition B = QU Uyep\o{b}; in other words the bricks of D’ are the ones of D which
do not belong to Q as well as Q@ C M. Since D is maximal, it is enough to prove
that D’ is adapted to h in order to get Q = {8}. Clearly Lemmas 5.5-5.6 imply that
R(Q)NQ = 0 for i € {1,2} hence D’ satisfies Property (P;). If Property (P) does
not hold true for D’ then there exists ' € B such that h(Q)N g # 0 # L= HQ) N B
Remark that necessarily h(9y;Q) N 3" = 0y h(Q) N 3 # (O since otherwise 3 C h(N)
and then h(2) N h~1(Q) # 0, which is not possible because h?(2) N Q = (). Moreover
o) C Oy C B so one obtains @ # h(0yQ) N A C h(B) N B'. Replacing h with A~1
one gets in the same way h=1(8) N 3’ # (). This contradicts the fact that D satisfies
(). O

Lemma 5.8. IfFix(h) is totally disconnected, then one of the following possibilities
holds for any brick 5 € B:

1. X3° =Xz' # X} = X2

ﬂ;
2. Xg°=Xz'= X} = X2,
3. Xg%=Xz' =X} # X3,

—2 -1 _ 1 _ 2
4 X2 £ X1 = XL = X3,

In particular, B\ {8} has at most two connected components.

Proof. We first suppose X # Xﬁ_l. We have dyh(X ) = h(0uX5) C h(8) C Int(X}).
This together with the connectedness of M \ Int(X é) = B\ Xé implies that we have
either (a) h(X3) C Int(X}) or (b) h(M\X3) = M\h(X}) C Int(X}). Case (b) is actually
not possible since, using X} # X', it would implies 8 = h(h™'(8)) C h(M \ X}) C
Int(X3) which is absurd. It follows from (a) that h*(8) C h(X}) C Int(Xj) and
consequently X; = X3. The same arguments with % replaced by h~" give Xgl = Xﬁ’2.

We now suppose X} = Xﬁ_1 and we let XT = X1 = Xﬂ_l. We have hQ(XgF) N

Int(X3) # 0 because h*(OyXy) C h*(0uf) C h*(8) C Int(X3). Since hQ(Xﬂi) is

connected, it follows that we have either hQ(Xg) C Int(X3) or 0 # hQ(Xg[) NouX3 C
hQ(XBi) N g. In the first case we obtain A(8) = h*(h~'(8)) C A*(X}) C Int(X3) so

XBjE = XE. In the second case we get Xﬂi Nh=2(B) # ) hence Xﬂi = Xﬂ_z. ]
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Proposition 5.1. Assume that Fix(h) is totally disconnected. Then any brick
B € B s either a disc or an annulus or a half-plane or a strip.

Proof. First of all, observe that M\ 8 ¢ S?\ Cl(8) because §3 is closed in M hence each
connected component of M \ 3 is contained in a connected component of S? \ CI(3).
Moreover the fixed point set Fix(h) has empty interior so any connected component
of §?\ CI(3) contains some connected component Int(Xé) of M\ B (i € {£1,+2}). If
$ is compact, it follows from Lemma 5.8 that 3 is a compact subsurface of S? whose
complement S?\ 3 has one or two connected components, so that 3 is a disc or an
annulus. We suppose now that / is not compact.

CrAM 1. Every connected component of Oy is a line of M.

Proof. Otherwise there is a connected component § of 9,,8 which is a circle. Accord-
ing to the Jordan curve Theorem, the set S?\ ¢ has exactly two connected components,
call them U and V, with 90U = 9V = §. We suppose for example that the connected
set Int(8) C S?\ ¢ is contained in U. Then we have Cl(8) = Cl(Int(8)) c CL(U) so V
is also a connected component of S?\ Cl(3) and then there exists i € {#1,42} such
that Int(X%) c V. Since 3 is not compact, the set CI(3)\ 3 C Fix(h) N U contains at

B
least one point z and one gets

x = h'(x) € UNK(CI(B)) = U NCIAL(B)) C UNClInt(Xp)) C UNCIV) =,
a contradiction. ]

CLAIM 2. The set Oy 8 has at most two connected components. Furthermore if § # ¢
are the two connected components of Oy B then C1(6) \ § = CI(¢') \ & and this set
consists of one or two fized points of h.

Proof. The previous claim and the fact that Fix(h) is totally disconnected tell us
that, for any connected component ¢ of 9y, the set Cl(0) \ § C Fix(h) is nonempty
and contains at most two points.

Consider now two connected components d1, d3 of 9y 8 and write C1(6;)\d; = {a;, b; }
with possibly a; = b; (i € {1,2}). We want to prove that CI(d1) \ 61 = Cl(d2) \ da. It
is enough to check that the two situations as # a1 = by and ag # a1 # by # ag are
not possible. For the first one, the argument is almost the same as in the proof of
Claim 1. Assuming a; = by, the set C = C1(61) = 61 U{a1} is a circle so that S?\ C has
exactly two connected components U,V such that oU = 0V = C'; one of them, say U,
contains the connected set Int(5) € M \ §;. Consequently Cl(5) = Cl(Int(5)) C CL(U)
hence V is also a connected component of S? \ CI(3) and then Int(Xé) C V for some
i € {£1,+2}. If ay # a; one obtains

ag = h'(ag) € (CI(B)\ C') N (CI(B)) C UNCI(K'(B)) C UNCYInt(X})) CUNCIV) =0
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which is absurd. Suppose now that as, b1, as are three distinct points. Since h=2(8) N
B = 0 the set C; = Cl(h=2(61) U 1) = h~2(81) U 61 U {a1,b1} is a circle hence S? \ ¢4
has precisely two connected components Uy, Vi with €7 as their common frontier.
Since Int(5) is connected and disjoint from C; one can assume Int(5) C U; hence
Cl(B) = Cl(Int(B)) c Cl(U1) and also ag € C1(8)\C1 C U;. It follows from ag = h?(az) €
Cl(h?(B)) that h%(8) meets the open set U; and afterwards that h?(8;) C h?(8) C Uy
because h?(3) is connected and disjoint from C; ¢ h=2(8)UBU{a1,b1}. Define another
circle by Cy = 6, UR%(61) U {a1,b1} and write Us, Va for the two connected components
of §?\ 3. One checks with Schoenflies Theorem that one of these two connected
components is included in U; while the other one contains V4 U h=2(61), let us say
Uy € Uy and V3 Uh™2(81) € Vi, One deduces from §; ¢ Cl(Int(3)) ¢ CI(U;) and
from Int(8) N Cy = O that ClI(8) c Cl(U) hence as € CI(B) \ Cy C Uy. Moreover
as = h™2(az) € CI(h=2(B)) so h=2(B) intersects both Uy and V5 which is not possible
due to n72(8) N Cy C h™2(B) N (BURA(B) U{ar,b1}) = 0.

Finally the fact that 9,;5 cannot have three distinct connected components 41, ds, d3
follows easily from the connectedness of 5 and from the equality of the sets Cl(9;) \ 0;
(i €{1,2,3}). O

CLAIM 3. One has CI(8) N Fix(h) = Cl(dy ) N Fix(h).

Proof. 1If this is not true one can find = € Cl(5)NFix(h) with an open disc U containing
x and disjoint from 0y;5. Clearly UNFix(h) is a totally disconnected closed subset of U
and it follows for example from [New61, Chapter 5, Theorem 14.3] that U \ Fix(h) =
U N M is connected. Letting V = UN M one also has VN g =UnNp # () and
VNoyB=UnNoyB =0 hence V C Int(f). Choosing now another neighbourhood U’
of z so small that U’ URL(U’) C U one gets

VAU NBCcUNh Y UN)VNM=VnhtV)cBnhB) =0,
a contradiction. ]

The claims above show that there are only three possible topologies for C1(5) (see
also Fig. 5.1).
— CI(B) is a disc containing a single fixed point a which moreover belongs to the
boundary circle 9CI(g). Then g = CI(B) \ {a} is a half-plane.
— CI(p) is a disc containing exactly two fixed points a,b and these fixed points
lie on the boundary circle OC1(3). Then 5 = CI(5) \ {a, b} is a strip.
— CI(B) is a pinched annulus and the pinching point a is the only fixed point in
Cl(8). Then g = Cl(5) \ {a} is a strip.
The proof of Proposition 5.1 is complete. ]
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Figure 5.1 — The closure of a noncompact brick 5 [assuming Fix(h) totally disconnected]

Proposition 5.2. Assume that Fix(h) is a circle. Then any brick § € B s either

a disc or a half-plane or a strip.

Proof. The situation is here similar to the one studied by Le Calvez. For completeness
we give a proof directly adapted from the one of [LC05, Proposition 2.6]. We suppose
for example § € B;. In this case X! = Xﬁ’1 = By and X§2, Xé are also the connected
components of By \ 3. Since M; is homeomorphic to R? and 3 is closed in M, it
is classical that every connected component U of M; \ § has a connected frontier
O, U = 0 U contained in 9y, 8 = OB (see e.g. [New61, Chapter V, Theorem 14.4].
It follows that {8MX_2, 8MX§} is also the set of the connected components of 9;8.

Suppose that 8MX§ is a circle. According to the Jordan curve theorem, M, \8MX§
has exactly two connected components U,V , say with 0,,U = oy V = GMXE and
Fix(h) C V. One has h*(9yX3) C h*(8) C Int(X3) which implies that X7 = Cly/(V)
since otherwise X3 = Cly(U) is a topological disc such that h*(X7) C X3 and the
Brouwer fixed point theorem then would give a fixed point point of h? in Xg) C My,
a contradiction. In particular one gets § C Cly(U) so § is compact and 8MX§2
is also a circle. Replacing h? with h~2, the same argument shows that XB_Q is the
connected component V' of M; \8MX§2 satisfying Fix(h) C 0V’ hence Xg = Xﬁ’2 and
consequently 5 = U U 8MX§ is a disc. Of course the same conclusion holds if it is
first assumed that 8MX5_2 is a circle.

Suppose finally that 8MX§ and oy X 5 2 are lines of M;. Then clearly § is a half-
plane if 9y, X2 = 8MX5_2 and 3 is a strip if 8MX§ £ 8MX§2. O]

5.2.2 Orientation of the skeleton

Our goal is to endow the skeleton X = (D) with a natural orientation and to
study the induced orientation on the boundary of the bricks.
Let us consider an edge a € E and the two bricks 3 # 5’ which are adjacent to

a. Because of the maximality of D, the subdecomposition D’ of D whose skeleton is
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Y(D') = ¥\ Intg(a) cannot be adapted to h.

— If D’ does not satisfies Property (P;) then we have h*(BU ') N (BUB) # O for
some k € {1,2} and consequently h¥(8) N 3 # 0 or h*(8") N B # 0;

— If D' does not satisfies Property (P) then there exists 8” € B such that h(5 U
BYNB" # 0 #h 1 (BUpB)NB" and we deduce that h(B)NB" # 0 # h=1(B)Np" or
h(B)NB"#0#h=H(B) N p".

Anyway one of the following two possibilities holds:

1. 8" € o({B}) UL ({B}),

2. Bep({BHU{B'D).
As an important consequence of Lemma 5.4, the two situations (i) and (ii) cannot
happen simultaneously so we can choose unambiguously the orientation of the edge
a in such a way that r(a) € p({l(a)}) U@?({l(a)}) where r(a) (resp. I(a)) is the one
of the two bricks 3, 8’ which is located on the right (resp. on the left) of a. We also
write v_(a) (resp. vy(«)) for the initial (resp. final) vertex of « if it exists.

Proposition 5.3. Let o € E be an edge of D. Define the attractor associated to
[(a) € B and the repellor associated to r(«) € B by respectively

— Je"@@Y) and R(r(a) = | " {r(a

n=0 n=0

Then A(l ( )) and R(r(«a)) have at most two connected components. More precisely
either A(l()) (resp. R(r(c))) is connected or it has exactly two connected compo-

nents whzch are

=@} and  A(U(e) = [ {Ule
n=0 n>0
(resp. Rel U o ({r(a and R U o> ({r(a
n=0 n=0

where the subscripts e and o stand for respectively even and odd. The result also
hold true for the following sets A.(l(«)) = A(l(a)) \ {l(a)} and Ri(r(a)) = R(r(a))\
{r(a)}.

Proof. We know that r(a) € o({l(a)}) U 2({l(a)}). If r(a) € o({l(a)}) then I(a) U

¢({l(«)}) is connected. Moreover one can write

= U e ({tta)} U e({ie)))

n=0

so A(l(«)) is the union of the connected sets X, = ¢" ({l(a)} U o({i()})) verifying
X, N Xn+1 ;é ) for every n > 0. It follows that A(l(«)) is connected. Similarly we
write A (! = U,=1 Xis and thus A.(l(«)) is connected.
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If 7(a) € p?({l(a)}) then I(a) U @?({l(a)}) is connected and one gets the connect-

edness of A.(I(a)) and A,(I(a)) by writing Ac(i(e)) = U, ©*" ({1(2)} U @*({l()}))
and A,(l(a)) = U5 ™™ ({I(a)} U @*({l()})). In the same way, the set A.(I(a)) is
the union of the following connected sets

U@ {Ha)} u({i@)}) and | ™ ({I(e)} U@ ({i(a)}):

n=1 n=0

The result for R(r(«)) and R.«(r(a)) may be proved similarly. ]

Following Le Calvez ([LCO04],[LCO05]) we say that a sequence (a;);e; of edges,
where [ is a nonempty Z-interval, is admissible if vi(o;) = v_(a;41) for every pair
{i,i+1} C I (in particular this holds if §(7) = 1). Given such a sequence (o;);cs, the
arc T' = [],.; s C M obtained by concatening the a;’s is naturally endowed with the
orientation which agrees with the one of each «;; then T is called an oriented arc and
one defines the left neighborhood of T' by

) = {i(e) | € I},

and the right neighborhood of T' by

r(I) ={r(a)|i € I}.

For several oriented arcs I'y,---, I, one let naturally ((Ty U---UT,) = J_, {(I;) and
r(CyU---Uly) = Ui, ().

Proposition 5.4. Suppose that 8 € B is a disc. Then the circle O3 = 0B is the
union of two oriented segments

n

F:Hai and F’:ﬁaé
i=0

=0

where (a;)o<i<n and (o))o<i<ns are finite admissible sequences of edges such that
v—(ag) = v ( 0), (o) = ve(ad,) and [(T) = r(I") = {B}. In this case, we denote
v_(B) = v_(ap) (resp. v(B) = vy(an)) and we say that v_(3) (resp. v4(B)) is the

initial Vertex (resp. the final vertex) of 3.

Proof. We first prove that there is at least one edge o € E such that I(a) = 3.
Suppose this is not true, that is r(«) = g for every edge oo C 9p/8 = 9. Choose an
edge a1 C 98 and define 51 = l(a;). We know that g belongs to the connected set
©*({$1}) C B for some k € {1,2} hence {3} U p*¥({B1}) is also connected. Moreover
this latter set cannot be reduced to {5} because h*(a1) = h¥ (51N J) is disjoint from f
so there exists a brick £ € ¢*({81}) which is adjacent to 8. Continuing in the same

way, one constructs inductively a sequence of bricks (3;);>1 which are adjacent to (
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and such that 811 € o({B:}) U?({B:}) for every i > 1. Since there are only finitely
many bricks adjacent to 3, one has 8, = B, € U, 5" ({8i,}) for some iz > iy > 1
which contradicts Lemma 5.4. Replacing ¢ with ¢_, one proves likewise that there
exists at least one edge o/ C 98 such that r(a/) = 3. For later use, let us remark
here that the above argument holds for any brick g whose frontier 9,5 contains only
finitely many edges.

We end by proving that it is not possible to find two edges «ai,a9 such that
(o) = l(ag) = 6 and which are separated in 95 by two edges o}, of, verifying r(of) =
r(ay) = . Arguing again by contradiction, suppose that such edges exist and then
define i = r(as) € p({8}) U?({B}) and B = I(af) € o_({B}) U2 ({3}) for i € {1,2}.
Remark that there is a connected set X C J,5,¢"({#}) which contains {51, B2}
Indeed, if 5; € ({B}) for some i € {1,2} then {5} U p({5}) is connected and we take
X = o({8Y Ue({8))) = ¢({8}) U ¢2({8)); otherwise we just let X = ¢2({}). One
checks similarly that {5}, 83} C X' for some connected set X’ C |, ¢" ({8}). Choose
now two segments v and 4/ lying respectively in Int(X) and in Int(X’) except for their
endpoints, and joining respectively z; € Inty(ai), 22 € Inty(az) and 2] € Inty(a)),
2, € Inty(aj). Since the of’s separate the «;’s on the circle 98 one can also find
two segments 7,7 in 8 whose endpoints are, respectively, z1, 29 and 21, 25, and which
intersect transversely in only one point. According to Lemma 5.4 Int(X)NInt(X') =0
hence one gets two circles yUy and 7/ with a unique point of transverse intersection,

which is absurd. ]

Proposition 5.5. Suppose that 8 € B is an annulus. Then its two boundary circles
may be written T' = [[,c.; 00 and T" = [],.; o where (o)icr and (o))ier are finite
admissible sequences of edges such that [(T') = r(I') = {5}.

Proof. In this case, one knows that the set S? \ 8 has two connected components
and that the annulus § separates Int(X3) and Int(X[;Q) in S2. We will first prove
that these two connected components are X} = Xg and Xﬂ_1 = XﬁTQ. Let us write
U,V for these two connected components, say with Int(Xﬁ_Q) C U and Int(Xg) cV.
Arguing by contradiction, we suppose that the situation (4) in Lemma 5.8 holds.
Let D = BUU, so that D is a disc whose frontier 9D is one of the two boundary
circles of 3. We have h=2(8) ¢ h=2(D) N Int(D) and then A=2(D) C Int(D) because
DNh%20OD)c DNh?(B)c DN Int(X%) C DNV = 0. According to the Brouwer fixed
point theorem one has Int(D)NFix(h~2) # ) which implies Int(h~1(D))N D # 0 because
Fix(h) = Fix(h?). Now X! = X7 gives

DNor~ Y (D)=Dnh ' (@D)c DNh™'(B) Cc DNInt(Xz") c DNV =0

hence D ¢ h~1(D) and afterwards D ¢ h~Y(D) c h™2(D) C D so that D = h=1(D)
and then 0D = h~1(dD) c BN h~1(B) = 0, which is absurd. Interchanging the roles
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of h and h~!, one checks similarly that the situation (3) in Lemma 5.8 cannot occur
and consequently that Xﬂ_2 = Xﬁ_1 # X5 = X3

Let « C 98 be an edge such that [(a) = . The brick r(a) is included in a
connected component of B\ {$}, namely in X} = XZ. Therefore a is contained in

O X} Similarly if r(a) = 3 then a C aMxﬂ—l. O

Proposition 5.6. If 5 € B is a half-plane then its frontier Oy 83 is the union of
two oriented half-lines T' and T with the same endpoint o € V. Moreover ' is the
product of the edges satisfying l(a) = 5 and T" is the product of the edges satisfying
r(a) = 8. The vertezx o is denoted by v_(B) if it is the initial vertex of T and T” and
it is denoted by vy (B) if it is the final vertex of T and T”.

Proof. The proof is divided into two parts.

First part. We prove that there exists at least one edge « such that i(«) = 8 and
at least one edge o' such that r(a/) = §. This is already known to be true if 9y,
contains only finitely many edges (recall the remark in the proof of Proposition 5.4)

B =[] o

m<i<l

SO we call Suppose

where (o;),<i<; is an admissible sequence (i.e., for all m < i <1—1 we have v4(q;) =
v_(it1)) with m < 0 < 1 < [ and moreover m = —oo or [ = +o0o0. We also define
oo = v+ (ap) = v_(a1). By contradiction, we suppose that r(«;) = g for every i € (m,1).
Remark that D is also a maximal brick decomposition of M for h~! and that the
orientation induced by h~! of the skeleton is opposite to the one induced by h.
Hence, replacing h with h~1, the following arguments also show that one cannot have
B = l(y;) for every i € (m,l). Let us introduce some notation which will allow to deal
simultaneously with the case where Fix(h) is a circle and the case where Fix(h) is a

totally disconnected set.

e Suppose first that Fix(h) is totally disconnected. Then CI(5) \ § consists of a
single fixed point p of h and the sets Cl(h(3)) = h'(B) U {p} (i € Z) are discs
intersecting pairwise at p. Using the Schoenflies theorem one can also assume
(up to conjugacy) that p = oo and that the frontiers of the discs CIl(h%(3)),
i € {0,+1,+2}, form a standard bouquet of 5 circles. It follows that there exists
a segment ~ C S? linking o and h2(oy), and disjoint from |J2__, hi(8) except
for its endpoints o, h?(0g). Using Lemma 5.2, it is not difficult to see that one

can choose v C M.

We have two possible cyclic orders around oc:

Cl(B) < h~'(C1(B)) < h(CL(B)) or CI(B) < h(CL(B)) < h™ (CL(B)).
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If C1(3) < h=1(C1(B)) < h(CI(B)) then, since h reverses the orientation, we also
have Cl(8) < h=2(C1(8)) < h=1(C1(8)) and h2(CL(B)) < CL(B) < h(CL(B)) so we get
(see Fig. 5.2)

(x)  CUB) < B >(CUB)) < h 1 (CL(B)) < h(CL(B)) < h*(CL(B)).

Cl(h(5))
Figure 5.2 — The discs Cl(h*(3)) around oo (—2 < i < 2)

If C1(B) < h(C1(B)) < h~1(CI(B)) then one gets by the same argument
(%) CU(B) < h*(CU(B)) < h(CL(B)) < h™H(CL(B)) < h™*(CL(B))

and the picture is the same after interchanging the roles of A and h.

Define D = S? \ (Int(3) U R?(Int(B)) U {o0}) = R?\ (Int(3) U h?(Int(B)). Using
the Schoenflies theorem, one can check that D is a strip and that D \ v has
exactly two connected components having ~ as their common frontier in D.
Observe also that the cyclic order of the CI(hi(3))’s around oo (-2 < i < 2)
implies that h=1(3) and h=2() are included in the same connected component of
D\ ~v. These connected components of D\~ are named U,V with the convention
r=Y(B) U h=2(B) C U. More precisely note that h=1(3) Uh=2(B) is contained in
Int(U) since it is disjoint from S U h?(B) (see Fig. 5.2).

e Suppose now that Fix(h) is a circle. Assume for instance that 5 C M;. Since

M; is homeomorphic to R? one can find a segment v C M; joining g € O
and h?(og) € Oyh?(B) such that v is disjoint from B U h?(8) Uh2(B) except for
its endpoints. We let D = M; \ (Int(3) Uh%(Int(B3))). As in the case where Fix(h)
is totally disconnected, D is a strip and D \ v has two connected components
having v as their common frontier in D; these connected components are named
again U,V with h=2(8) C Int(U).
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With the previous definitions for D,U and V, the following arguments are valid
whether Fix(h) is a circle or a totally disconnected set. Write A_ = J;.qai and
Ay = U, @i- Note that one of the two connected sets A_\ {o0} or Ay \ {00} is
contained in U while the other one is contained in V.

(a) We first assume A_ \ {09} C U and Ay \ {69} C V (in the case where Fix(h)
is totally disconnected, this corresponds to the situation pictured on Fig. 5.2). For
each integer i € (m,1), let us define 3; = l(oy). Then 38 = (o) € p({B:}) U p?({B:}) so
one of the following two situations occurs:

(%) Bin (A= H(B)URT2(B)) # 0,

(#x) BiNh~Yrg) # 0 and h=t(75,) Nh=2(B) # 0 for some 75, € B.

We denote by BR, (resp. BR..) the set of the bricks g;, 1 < i < [, verifying (x)
(resp. (xx)). We let

BR = BR, UBR,, = {8 |1 <i < .

Remark that the set {’ € BR|p' ¢ V} is finite. Indeed, for every integer i € (m,!)
one has 3 € o({8:;}) Ue?({B;}). Therefore one gets with Lemma 5.4 that 8;nh?(3) = 0
and then 3; € D for every i € (m,l). If i > 1 and 8; ¢ V then 5; N~ # (). Since ~
is a compact subset of M, it intersects only finitely many bricks, which proves the
assertion. As a consequence, the set BR. C {#’ € BR|5 ¢ V} is also finite.

We shall prove there exists b € B with the following properties:

- there is a connected subset X of R(b) such that Ah=2(X) C Int(X) and moreover
X satisfies the following condition (€)
- if | < 400 then a;_1 C X,
- if | = 400 then «o; C X for infinitely many ¢ > 1;
- there is a connected subset X’ of A.(b) = A(b) \ {b} such that 8 € X' and
R*(X') C X',
Let us explain why this leads to a contradiction. The above properties imply 5 U
h%(B) € X' hence, since X' C B is connected, one can find a segment w C Int(X’)
joining a point of dy8 and a point of dy/h%(B) and which is contained in Int(D)
except for its endpoints. Then D \ w has exactly two connected components Q4 and
Q_ and one of them, say ., contains the connected set X € M because w N X C
Int(A.(b)) N R(b) = 0. Suppose that § : R — 9y/8 is a parameterization of 9y
which agrees with the orientation of dy/3. Define t¢,,t, € R so that 6(t,) = v N oup,
0(tw) = w N oy B, and let

A = 0((—oo,min{t7,tw}))§
- Ag= 9([min{tv,tw},maX{twtw}])Q
- AL = 0((1’[1&X{t7,tw}7 +OO))-
Thus 9y = A~ UAgU Ay with AN CI(Q,) = 0 and Ay A CIU) = 0. Similarly

the set 9prh?(B) is partitioned into three pairwise disjoint connected arcs A’ ; A} and
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A’ such that A” N Cl(Qy) = 0, and A, NCLU) = 0. We write {J;}icr for the set
of all the connected components of Int(€2) N Int(U) (where I is a finite or countable
set). Suppose first that Fix(h) is totally disconnected. Then Int(Q) and Int(U)
are two Jordan domains whose boundary circles contain co. Since (82 \ CI(Q+)) N
(82 \ CI(U )) # () (for instance this set contains Int(3)) one deduces from a classical
result of Kerékjart6 (see [dK]) that each J; is also a Jordan domain with moreover
0J; C OU U004+ C {oo} Udyp U 8Mh2(ﬁ) Uy Uw. However 0J; N A_ C ClI(Q24+) N
A_ = 0 and similarly 0J; N AL = 0, N AL = 9J; n A/, = (. Consequently one
has 0J; € AgUAjUw U~ and then co ¢ CI(J;). Because of the condition (%)
there exists a sequence (z,)p>0 C X N dyB such that lim,_ 1. 2, = 0o hence also
limy, 100 h2(2,) = 00 and h2%(x,) € h™%(B) C Int(U). Since oo ¢ CI(J;) for every
i € I one obtains h=2(x,) € Int(U) NInt(Q2_) for any large enough n. Therefore we get
h=2(x,) € Int(Q_)NA~2(X) C Int(Q_)NX C Int(Q_)NQ = O which gives the expected
contradiction. If Fix(h) is a circle then consider Int(Q24 ) and Int(U) as Jordan domains
in the one-point compactification M; U {oo;} of M;, whose boundary circles contain
oo1. The same arguments give again a contradiction.

It remains to prove the existence of the brick b € B as above. We have to consider
the following two cases.

Case 1. | < 400 or there exists i > 1 such that B; = f; for infinitely many j > 1.

We define k =1 —1if | < +o0 and k = 7 in the second situation. Let « be the
edge distinct from aj_; and from o such that o = vy(ap_1) = v_(ag) is a vertex
of @. Then b = r(a) is a brick as required. Indeed {5;_1,5r} = {l(«),b} is then a
connected subset of R(b) C B hence it is contained in a connected component X of
R(b). According to Proposition 5.3, one has h=2(X) c X. Since 3; € X the set X
satisfies the condition (%). We also have b = [(a/) for some o« € {aj_1,ax} hence
B € A«(b). Defining X’ to be the connected component of A.(b) C B containing 3,
we deduce from Proposition 5.3 that h?(X’) C X'.

Case 2. | = 400 and for each i > 1 one has 3; = ; for only finitely many j > 1.

In particular BR has infinite cardinality and, since {8’ € BR|5" ¢ V} is finite
and contains BR,, there exists kg > 1 such that 8; € BR,, and 3; C V for every
i = ko. For each ' € BR.., we choose a brick 74 such that 5’ n h_l(m/) #+ () and
h=Y(15) N h=2(8) # 0. We then denote © = {73 | 8 € BR.} and, to shorten notation,
we write 7; instead of 7g,.

For any i > ko we have h(r;) N3 # 0; it follows from Lemma 5.4 that h=1(r;) N (BU
h%(B)) = 0 hence h~'(;) C Int(D). We also deduce from 3; ¢ V and h=2(8) C U that
h=Y (7)) N~ # 0, equivalently that h(y) N7 # 0. Since h(7) is a compact subset of M,
it intersects only finitely many bricks, which proves that © is a finite set.

We define ©; = {r € ©|h~!(7) meets infinitely many bricks of BR,.}. Observe
that © is nonempty since BR,. is infinite but © is finite. Each brick of BR contains
only finitely many edges a; with j > 1 and for every 7 € © \ ©; the set h~1(7) meets
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finitely many bricks of BR,, so there exists an integer iy > kg such that g8; € BR,, and
7; € ©1 for every i > lp.

We first prove that there are an integer n > Iy and a brick 7, € ©1 such that h=1(7)
meets both g, and §,.1. We know there exists a smallest positive integer & such that
h=Y(1,) N Biyar # 0. If k =1, then we are done with n = Iy and 7. = 7;,. Now suppose
that £ > 1. One can construct a circle C = v U~y where 71, v2 are segments as follows:
v1 is a segment in dyf from a point z; € oy, to a point za € «qj, 4; moreover s is
another segment from z; to x5 such that v\ {z1, 22} C Int(D) N (B, U Biysrx UL (7))
and 2 N Oyh~1(7,) C By, U Biysk- Since B,.1 N h~1(7,) = 0, there is a connected
component W of §?\ C such that £;,,1 € CI(W) and clearly A, N Cl(W Ul°+k
Observe now that all but finitely many 3 € BR,, are disjoint from Cl( ) because
a; NCL(W) =0 for ¢ > |y + k and because the compact set C C M meets only finitely
many bricks. Since () # h™1(7,11) N B, 41 € CL W) and h=Y(7,41) N B’ # @ for infinitely
many 3’ € BR,, it follows that necessarily  # h=!(7;,41) NC C Int(D)NC C 72. Recall
that h=1(7, 1) NInt(h (7)) = 0 because 7,11 # 7, hence h=1(7, 1) N (B, U Biysk) # 0
(as a remark, if 3, = 3;,.x then one can choose v, C 3, and one gets more precisely
h=Y(1,01) N By, # 0). If h1(7,,1) meets B, then we get the result with n = Iy and
Te = T, 11, see Fig. 5.3 right. If not (see Fig. 5.3 left) we apply this argument again
replacing (lg, lo+ k) with (lo+1,lp+ k). The process will stop after finitely many steps
and we get then an integer n and a brick 7, as expected.

Bio
ht (Tlo-‘rl)
/\ﬁlo-i-l c
B B
|
. h~ 1 Tlo
h_l (Tlo+1)

Figure 5.3 — The two ways that h~1(7,,1) can intersect (3,41

We end the proof of this second case by checking that b = 7, is a brick with the
required properties. Since (3, and 3,41 ate two adjacent bricks, one can define the
integers ni, no > 1in such a way that {n1,ns} = {n,n+1} and 3,, € ©* ({B,,}) for some
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k € {1,2}. Since furthermore 3,, € v_({7}) we get Bn, € " ({Bn,}) C "T{R}).
This implies 8, € ¢_({n})N" 1 ({r}) and hence ¢_ ({r.}) U* 1 ({r.}) is connected.
One checks as in the proof of Proposition 5.3 that the connected component X of
R.(7+) containing ¢ ({7.}) is either R.(7) or [ J, 5 ©*""1({r.}) depending on whether
k=1 or k = 2. This implies that X is a connected subset of R(r,) verifying h=2(X) C
X. Moreover 7, € ©; hence ¢_({7.}) contains infinitely many bricks of BR,, and so
does X; this shows that X satisfies the condition (¢). Observe now that h(r.) ¢
B because otherwise h=!(r.) € h~?(8) which is impossible because h~1(7.) meets
infinitely many bricks 3’ € BR while h=2(3) € U meets only finitely many bricks
p" € BR. It follows from A(7,) NG # 0 and h(ri) ¢ 5 that h(r) N oyB # 0 and
then h(7,) N B; # 0 for some integer i € (m,l). Then one has 8; € p({r}). One
has moreover 8 € ©*({3;}) for some k € {1,2} so B € "1 ({r.}). Thus we obtain
B € o({r. )N ({r}), and consequently ({7 }) U1 ({r.}) is connected. Defining
X' to be the connected component of A,(7.) containing ¢({7.}) we get easily that
X' is either A.(7) or J,59*" " ({n}) (depending on whether k = 1 or k = 2) and
consequently h?(X') c X'.

(b) We suppose now A_\ {op} C V and Ay \ {09} C U (in the case where Fix(h)
is totally disconnected, this corresponds to the situation obtained by switching the
roles of h and h~! in Fig. 5.2). By the same argument as above with the edges (o;)i>1
replaced by the edges («;)i<0, we can prove that there exists a brick b’ € B satisfying
the following properties:

- there is a connected subset K of R(b) such that h~2(K) C K and moreover K
satisfies the following condition

- if m > —oco then a1 C K,
- if m = —oo then «; C K for infinitely many ¢ < 0;
- there is a connected subset K’ of A, (b) such that 8 € K’ and h?(K') C K'.

This also gives a contradiction and ends the first part of the proof.

Second part. We now show that two edges aj, a2 € E such that i(a;) = () = 5
cannot be separated in 9y by an edge o/ € FE verifying r(a/) = 5. Arguing by
contradiction, suppose there exist aj,as and o’ as above. As in the proof of Propo-
sition 5.4, one checks that {r(ai1),r(a2)} C Z where Z is a connected component of
o({BHUP?({B}). We choose two segments v and 7' joining z; € Inty(a1), 22 € Inty(az)
which are included in respectively Int(Z) and Int(5) except for their endpoints. Then
yU~" C M is a circle and moreover (yU~')Ndy B = {21, 22}. We denote by Q the disc
bounded by v U+’ and containing the segment from z; to z9 in dy;8. One has o' C
©F ({B}) NInt(Q) for some k € {1,2} and also ¢* ({8})NoQ C ¢* ({B}) NInt(BUZ) =0
because of Lemma 5.4. Consequently we get h*(5) C ©* ({8}) € Q and then

0 # (CURF(B)\hF(B))NQ = (CI(B)\B)NQ = CI(B)NFix(h)NQ = CL(Oy B)NFix(h)NQ = 0,
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a contradiction. This completes the proof of the proposition. ]

Proposition 5.7. Suppose that 8 € B is a strip. Then the two connected com-
ponents of Oy may be written T' = [[,.;a; and I" = ], o) where (o;)ier and
(o)ier are two admissible sequences of edges such that [(T') = r(I") = {B}.

Proof. The proof is divided into two cases.
Case 1. Fix(h) is totally disconnected.

We have 0y/8 = I' UT” where I',T” are two disjoints lines of M and furthermore
C(T)\T = CI(I")\ I" = {a,b} where a and b are two fixed points of h with possibly
a=>b.

e Assume that a = b. Using the notation from Section 5.2.1, Lemma 5.8 tell us

that B\ {#} has two connected components, with three possible situations:

- Xp=X3# X5 = X572,

- X% = X5 # X5°,

- X537 = X5 # X3

We only give the proof for the first two cases, the third one being the same as the
second one after replacing h with A1

i) Suppose now that X} = Xg # Xgl = Xﬁ_z. The argument is similar to the one
used when f is an annulus (Proposition 5.5). Let o be any edge such that I(a) = .
The brick r(«) belongs to a connected component of B\ {5} which contains ¢({5}) or
¢*({B}), namely r(a) € Xj. Therefore « is contained in 9y X 3. Similarly if r(a) = 3
then o C 8MX§1.

ii) Suppose next that X2 = X;[ + Xﬁ’?. Under the hypotheses, the set S?\ CI(3)
has also two connected components, call them U and V' such that Int(X[;Q) C U and
Int(X3) C V. The set D = CI(8) UU is a disc whose frontier is 9y X3 U {a}. The
next claim is to prove that D c h%(D). It follows from the inclusions 9y/h=2(X 5 2) =
h=2(0pX5?) € h™2(8upB) € h™2(8) C X;? and from the connectedness of X;? that

either h™%(X;?) C X% or M\h 2(X?) é X% I M\h™2(X5?) C X5? it then follows
from X5 # X2 that h=(8) = h2(h(B)) C h™2(X}) C h2(M\X;?) = M\h™2(X;?) C
ng which is a contradiction. This shows that h_2(Xg2) C Xy %2 and consequently
that D c h?(D).

One deduces from 9h(D) = h(dD) = h(dyXj U {a}) C h(8) U {a} C Int(X}) U {a}
that On(D) c (S?\ D) U {a}. Thus one has either D c h(D) or D N h(D) = {a}.
If D c h(D), then we have h=}(D) C D hence h~'(8) C D which contradicts our
assumption Xﬁ’1 # XB’Q. Hence one has necessarily D N h(D) = {a} or equivalently
that h(D)Nh?(D) = {a}. One deduces h?(D)Nh~1(B) = @) because h=1(B) = h(h=2(B)) C
h(D). Even better, we prove now that h?(D) N ¢_({8}) = 0. Otherwise there exists

a brick 81 € ¢_({B}) such that g N h?(D) # 0. We deduce from h?(D)Nh=1(B) =
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that 81 ¢ h?*(D). Tt follows that () # By N OR*(D) C By N h3(B) which contradicts
p1 € p_({B}) by Lemma 5.4.

Let a € 9p0 be an edge in E such that r(«) = 5. Then one has I(a) € ¢_({5}) U
©* ({B}). It follows from a C B C h%(D) that I(a) N h*(D) # (. This together with
h3(D) N ¢_({B}) = 0 implies that i(a) € ¥%({B8}). One concludes that I(a) € XgQ
and hence that o C E)MXEQ. If « is any edge contained 00 such that i(«) = 8 then
r(a) € p({B}) U*({8}) C X} = X3, consequently o C 9y X5

e Assume now that a # b.

First we prove that I' is an oriented line of M. Otherwise we suppose that there
exist two edges aj, a9 € E included in T" such that I(ag) = 5 and r(az) = 5. Since
r(ar) € o({B}) U p?({B}), we define X to be the connected component of p({3}) U
©*({B}) containing r(a7). Consider a segment 7 joining a point w; € a; and a point
wy € Int(r(ap)) such that n \ {w1} C Int(r(aq)), and thus n \ {wi} C Int(X). Since
X U {a,b} is connected and contains a,b; we can join a and b by a segment v C S?
which, except for its endpoints a and b, lies in Int(X) such that v Nn = {w2}, see Fig.
5.4. We deduce from gNInt(X) = 0 that yUT is a circle. Define Q2 the closure of a
connected component of S?\ (yUT) such that n C Q. It is easy to see that QN3 =T.
We know that I(as) € ¢ ({8}) for some k € {1,2}. Moreover, by Lemma 5.4, one has

o2 NInt(P" ({8})) = (yUT) N Int((W" ({8})) € (Int(X) U {a, b} U B) N Int(pE ({5})) = 0.

As a consequence we get 9Q N Int(l(ag)) = 0, this together with Int(i(ag)) N Q #
0 (since QN B =T and ay C I') implies that Int(l(ag)) C Q. Therefore we get
0 # Int(l(az2)) C Int(¢® ({8})) NQ consequently Int(¢* ({5})) € Q and then h=*(3) C
©* ({B}) € Q. Thus CI(h=%(3)) joins a and b in Q. On the other hand, by construction,
the segment 7 separates a and b in Q. This implies that 2=%(3)Nn # 0. In consequence
h=*(B) Nr(a1) # O which contradicts Lemma 5.4, see Fig. 5.4. Therefore we deduce
that I' is an oriented line of M. By the same argument, one gets also that I is an
oriented line of M.

Therefore we can write I' = [[,.; o and IV = [[,_,, o) where (a;)ic; and (o)icr
are two admissible sequences. Now we suppose that I(a;) = l(o) = B for every
i€ l,jel. Letusfixan edge o c ' and an edge o c I''. As in the proof of
Proposition 5.4, we can find a connected component Y of A(3) containing r(«) and
r(a’). We join z; € Inty(a) to 29 € Intg(a’) by a segment ~ (resp. 7) which, except
for its endpoints, lies in Int(3) (resp. Int(Y)), and join a to b by a segment ' (resp.
7") which, except for its endpoints, lies in Int(3) (resp. Int(h~1(3))). One can assume
that the two segments v and +' intersect transversely in only one point. Thus we
get two circles y U5 and +' U5 with a unique point of transverse intersection, a
contradiction. We conclude that dy/8 = TUTY, with T' =[], ;; and IV = [], ., o,
where (o;)ier and (af)icr are admissible such that I(T') = {5} = r(I").

Case 2. Fix(h) is a circle.
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b

F/

(o)

a

Figure 5.4 — h=%(8) Nr(a;) # 0 is impossible

Suppose that 5 € B; so that By \ {#} has exactly two connected components,
namely Xg and Xﬂ’Q. Let a be an edge such that [(a) = f. The brick r(«) is then
contained in the connected component of By \ {8} which contains ¢?({3}), namely
X5 Then « is included in 9y X3. Similarly we also get that if 7(a) = § then

B

aC aMX/;? H

As an easy consequence of Lemma 5.4, we also have the following proposition.

Proposition 5.8. No vertex o € V is the initial vertex or the final vertex of three
edges. Consequently any vertex o € V is the initial vertex or the final vertex of a
single brick.

Proof. Because D is filled, each vertex o is adjacent to three distinct edges. Suppose
that o is initial of three edges a1, as and a3 indexed so that

r(a1) = l(az) = B1,7(a2) = l(ag) = B2, r(az) = (1) = Bs.

Thus we deduce immediately that

B2 € p({B1}) U ({B1}), B3 € p({Ba}) U0*({B2}). B1 € o({B3}) Up”({Bs}).

It follows that £ € |, ¢"({f1}). This contradicts Lemma 5.4. ]
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5.3 Construction of the foliation

5.3.1 Covering the skeleton by Brouwer manifolds

Recall that D = (V, E, B) is a maximal brick decomposition of M. Here we con-
struct a set £ of Brouwer manifolds whose union is equal to (D). It follows from
Lemma 5.4 that the relation <y defined on B by

B <o B itf B e | e"({8)
n=0

is antisymmetric. Clearly this relation <y is also reflexive and transitive hence it is a
(partial) order on B. It is a classical consequence of the Zorn Lemma that any order
on a given set can be extended to a total order hence we may consider a total order
< on B extending <p. Such an order < is introduced here as a way to get easily the
additional property that any two Brouwer manifolds in the set £ have no transverse
intersection. The idea of considering a total order extending the natural dynamical
order was already used by Le Calvez to simplify some of the proofs of his foliated
versions of the Brouwer plane translation theorem (see [LC06a] or [LC05][Section 3]).
We begin with the following simple result.

Proposition 5.9. For any Brouwer manifold ' C X one has the following proper-
ties.

1) The two sets R(I") and L(T") are unions of bricks and do not have any common
brick;,

2) r(a) € R(T") and l(a) C L(T) for every edge o C T'; in other words I(T') C L(T)
and r(I') C R(T").

Proof. The first property is a consequence of Items (ii)-(iii) in Proposition 3.1. Thus
R(T") and L(I") can be seen as two disjoint subsets of B. Consider now an edge o C T'.
Then « is adjacent to two bricks 81,82 and, according to Item (ii) of Proposition
3.1, one can assume 1 € R(I') and By € L(T'). Since h(R(T)) C Int(R(T")) (Item
(iv) of Proposition 3.1) we also have p({81}) U@?({51}) C o(R(I")) Up?(R(T")) C R(I).
Consequently S & p({f1})Up*({#1}) and then 81 € p({B2})Up*({B2}). The definition
of the orientation on the skeleton X gives 8; = r(a) and Sy = l(a). ]

Proposition 5.10. For any a € E there exists a Brouwer manifold T'(«) such that
a C T'(a) C (D). Moreover T'(a) and T'(a/) have no transverse intersection for
every o, € E.

Proof. The proof is divided into two claims.
CLAIM 1. For any o € E there exists a Brouwer manifold T'(«) such that o C T'(«) C
(D).
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Proof. Given a € E, we define 8 = r(«) and «7(8) = {8 € B| 8 < f'}. It is easily seen
that <7(f) is an attractor containing {8} U ¢({8}) and moreover I(«) & <7 () because
B € o({l(a)}) U?({l(a)}). Recall from Section 2.2 that </(3) is a closed subset of
M and is a surface with boundary. Of course the same holds true for any connected
component 7 of &/ (f), so that a connected component T, of 9),.47% is either a circle
or a line of M; observe that I, is then also a connected component of dy,.47(5). We
have furthermore h"(</(B)) C Int(</(5)) for every positive integer n which implies
R (Ty) NT. =0 as well as () N/ (8) = h (T« NA"(A(B))) = 0.

Denote by %4 and @ the connected components of &7 () such that g € o4 and
o({B}) C . Since a = l(a) N 5 we have o C Iyro% and we define T'; to be the
connected component of 9y;.9% containing a.

The set p(a%) is connected because of the connectedness of of and contains
©({B}). This together with p(w%) C ¢((B)) C &/(B) implies p(%) C <. According
to Propositions 5.4-5.7 there exists an edge o/ C 9y such that I(¢/) = § and we
consider 8’ = r(a’). Then one has ' € ¢'({8}) for some i € {1,2}. If i = 2 (resp.
i = 1) then BU ¢*({B}) (resp. BU p({B}) U?({B})) is connected. Since these two
sets are contained in &7 (8) we get ¢*({8}) C «%. Furthermore ¢(<) is connected,
contains ¢?({8}) and satisfies p() C (' (B)) C Z(B) so we deduce ¢(e) C .
As a consequence one has ¢?(#) C o4 and then h?() C Int(#).

Case 1: T’y 1s a circle in M.

We denote I' = T'; and we shall show that I" is a Brouwer manifold of type 1. We
know from the Jordan curve theorem that S?\ I' has exactly two connected compo-
nents W, W’ and moreover OW = 0W’ =T'. One of these two connected components,
say W, contains the connected set Int(<f) so that h*(I') C h%(#%) C Int(eh) C W.
We define Z, to be the connected component of B\ &7 () containing /(). We have
Int(l(a)) C Int(Zy) N W' and also Int(Zy) N OW' = Int(%Zy) NT C Int(%y) N () =0
because Zy and «7(/3) are disjoint in B, which implies that the connected set Int(%y)
is contained in W’. We know that i(a) € ¢ ({3}) for some i € {1,2}. If i = 1 (resp.
i =2) then ¢_({B} Up_({8})) = o-({8}) U2 ({B}) (resp. ¢®({B})) is a connected
subset of B containing I(a). Since p_({8}) U p2({8}) C B\ #(B) we get anyway
©% ({B}) C %y and consequently h=2(a) C h=2(8) C Int(%y) C W’. This together with
R2(D)NoW' = h=2(D)NT = h=2(I' N h3(I")) = () implies h=2(I") ¢ W".

Therefore the set I' separates h?(I') and A=2(I') in S? and we can construct an
embedding ¢ : R%\ {(0,0)} — M showing that T' is a Brouwer manifold of type 1 as
in [Bon04]. The arguments are repeated here only for completeness. Let us consider
the disc D = CI(W) = TUW. Because h*(I') ¢ W we have either h?(D) C W or
h%(S?\ W) c W and the latter is actually not possible because h=2(0W) = h=2(T') C
S?2\ W. According to the Brouwer fixed point Theorem, h? possesses a fixed point
2z € W and this point is also fixed point of i since h has no 2-periodic point. In
particular we have h(W)NW # (. We now deduce from A(I') N T = () that h(T") C W.
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Otherwise we would have h(I') € W' and consequently
W Noh(W) =W Nh() =0,

so W c h(W) c h?(W) which contradicts h?(D) ¢ W. We get similarly h=5T") c W’
replacing h, W with h~!, W’. Hence one has

OW Nh(W)=Tnh(W)=hhYT)NW)Ch(W NW)=.

This together with W N (W) # () implies that A(W) C W and even better h(D) C W
because h(I') C W. Defining Q = W\ h(D), we clearly have C1(Q) =TUQUA(T) C M.
Let ¢ : S' = I' be a homeomorphism. It can be extended to a homeomorphism

¢ :STUH(SY) - TUR(T)

by defining @[z sy =hopo H -1 H(s!)- Using suitably the Schoenflies Theorem, one
can extend again ¢ to a homeomorphism from the annulus A ={z € C|1/2 < |2| < 1}
onto C1(Q2). Finally, for any point z € R?\ {(0,0)}, there exists a unique k € Z such
that z € H¥(A\ 0~ A), where 0~ A = {z € C | |z| = 1/2}, and we define

o(z) = h* o Yo H_k(z) € hk(Cl(Q)).

One checks that ¢ : O = R?\ {(0,0)} — M is a well-defined one-to-one continuous
map such that hoy = o H|p and ¢(O) = |, h¥(C1(Q)). This proves that ' = ¢(S?)
is a Brouwer manifold of type 1.

Case 2:

- Fix(h) is totally disconnected;
- Ty @s a line of M such that CI(T'1) \ T'1 = {a} C Fix(h),
- the circle CI(T'y) = Ty U {a} separates h=1(I'1) and h(I'1) in S?.

Here again the construction of the embedding ¢ is not difficult and is already
present in [Bon04]. We define I' = T';. Let V4 be the connected component of
S?\ CI(T") containing h(T"). Since h(I') C dh(Vy) NV, we have (Vo) NV, # () and in
fact h(Vy UT) C Vi because

h(Vy) N oVy = h(Vy) N CUT) = h(Vy)NT = h(Vy N h~HT)) = 0.

We conclude as follows. Define Q2 = V4 \ h(C1(V4)). Obviously CI(Q2) \ {a} =T UQU

h(T") ¢ M. Using the Schoenflies Theorem, one can construct a homeomorphism
o {(z,y) eR? |0 <z <1} U {o0} = CI(Q)
such that ¢(c0) =a, ({0} x R) =T and Yy € R

o(1,y) =howoG Y1,y) € h(I).
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Now if k <z <k+1(keZ) we let
o(z,y) :hkocpoG_k(x,y) € hk(FUQ).

The map ¢ : O = R? — M defined in this way is a proper topological embedding,
with image ¢(0) = U,y R¥(T' U Q), such that hoy = ¢ o G|p. This proves that
I' = ({0} x R) is a Brouwer manifold of type 2.

Case 3:

- Fix(h) is totally disconnected;

- I'1 is a line of M such that CI(I'y) \ I'1 = {a} C Fix(h);

- the circle CI(T1) = 'y U {a} does not separate h=1(T'1) and h(Ty) in S%.

We name U,V the two connected components of S? \ CI(T';). They satisfy oU =
dV = CI(I';) and one of them, say U, contains the connected set Int(<%). One
proves similarly as in Case 1 that the circle CI(I'y) separates h=2(T'y) and h%(Ty)
in S? and afterwards that h2(U UTy) C U. Let us define V, = U \ h?(C1(U)) which

is homeomorphic to (—1,1) x R and satisfies 0V, = I'1 U h*(T'1) U {a}. One also has
Vinh2(Vy) Cc Vinh2(U) =0 so Vi C S\ Fix(h?) = §?\ Fix(h) = M.

Iy

hil(rl)

V)

h¥H(Iy)

Figure 5.5 — The construction of the line I'y

Take two points z_ € h=}(Ty) and =4 € h(T'y). Since h(Ty) C h(a%) C Int(eA)
and h~1(I')) Ny € h"1(T'1) N/(B) = 0 we can choose two segments v_, 74 having
respectively z_, xy as an endpoint and so small that

v \z-} T (V)N and vy \{z1} C A7 (VE) NInt() = Ity (B H(V3) N).

Therefore 91y, (h™' (Vi) Na1) = h™1 (Vi) N O separates y— \ {z—} and ~y \ {2}
in n=1(V). Moreover h~!(V,) is homeomorphic to R? and =1 (V,)Ndy.44 is closed in
h=1(V) so, according for example to [New61, Theorem 14.3], there exists a connected
component I'y of h=1(V,)Ndye separating v_ \ {z_} and v, \ {4} in A~ }(V). Note
that I's cannot be compact because the images of v+ \{z+} under any homeomorphism
from h=(V) onto R? are unbounded. Furthermore I's is also a connected component
of Oyt because h*1(Ty) N dyr.eh = O hence I'y is a line of M (as a remark, such a

connected component of 0y, separating v_ \ {z_} and ~; \ {4} is unique, due
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to the connectedness of @). Since Vi C M one also gets that Cl(I'y) = 'y U {a} is
a circle. One checks using the Schoenflies theorem that this circle Cl(I'y) separates
R=Y(T1) and h(T;) in S?, which shows that I'y and I's are two distinct components of
o (8) (Fig. 5.5). We now prove that I' = I'; UT'y is a Brouwer manifold of type 3.
We denote in the following

Pi={(z,y) eR*|y>0}, P ={(x,y) eR?*|y <0},

o={(0,y) eR? [y >0},  &={(0,y) eR?*|y <0},
and 7 is the translation of the plane defined by 7(x,y) = (z +1,y). Consider the sets
dy = {(z,1/2) € R? | 2 > 0}, doy = {(2, —1/2) € R? | 2 > 0} and write Q for the domain
between d; and 72(d;) in the upper half-plane Py. Recall that G(z,y) = (z + 1, —y)
so that G(d2) = 7(d1) € Q. Using the Schoenflies Theorem one can construct a
homeomorphism
¢ : C1(Q) = Clgs(Q) U {oo} — CL(V,)

such that ¢(c0) = a, ¢(d1) =T1, ¢(G(d2)) = h(I's) C Vi and ¢ o G?|g, = h? 0 ¢|q,. Then
we define the map ¢ on the half-plane P, by observing that for every 2 € P, there
exists a unique even integer 2k € Z such that z € G?¥(d; UQ), and then defining

d(2) = h** oo G72(2) e (T UVL).
In particular we have at this stage
h?o¢=¢oGp,.
Next we extend ¢ on P_ by

Wy <0  olz,y) =hosoG a,y) € | JrHFTTLIUVY).
keZ

It is easily seen that in this way we have obtained a continuous map
0:0={(r.y) eR*|y#0} > M

satisfying ho ¢ = ¢ o G|o and ¢(d;) =T; for i € {1,2}. Next we consider the homeo-
morphism ¢ : O — O given by the formula

1
Wa,y) = (“W’)'

We clearly have v(d;) = d; for every i € {1,2} and Go1) = oG|p. Defining p = o),
we get h oy = poG|p with moreover ¢(01 U d2) = ¢(d1) U p(dy) =T and
Cl(p(({z} x R) N O)) \ p(({z} x R)N O) = {a} C Fix(h)

for every x € R, so that ¢(({z} x R) N O) is a closed subset of M. We conclude
by checking that ¢ is a one-to-one map. Since the circle CI(T';) does not separates
h=1(Ty) and h(I';) in the sphere, we have the following two possibilities.
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i) h~1(I'y) U h(T1) C V. Then h(T;) C V implies either h(V) C V or h(U) C V and
the first inclusion is actually not possible since it would give V' c h=1(V) which
contradicts h~}(T';) C V. Hence we get Vo, Nh(Vy) CUNAU) CcUNV =0.

ii) h~1(';) UA(Ty) C U. Switching the roles of U and V in the above argument,
one gets h(V) c U. Since Vi = U\ h?(CL(U)) = R*(V) \ CI(V) one deduces
A2V N YV cVNh(V)cVNU = 0.

Thus one obtains anyway Vi N h(Vy) = 0. According to [Bon04, Lemma 5.2], this
together with V, nh%(V,) = @) implies that h*(V,)NA!(V,) = § for any k # [. Moreover
one has h*(I'1) N hY(T'1) = 0 for any k # [ hence the sets R¥(T'y UV,), where k € Z, are
pairwise disjoint. This proves that ¢ is a one-to-one map and this also holds true for
p=0poy.

Case 4:

- Fix(h) is totally disconnected;
- I'; is a line of M such that CI(I'}) \ I'1 = {a,b} C Fix(h), with a # b.

Observe that C = T'y Uh?(I'1) U {a,b} is a circle. The two connected components
of S2\ C are denoted by U,V with for instance h=2(I'1) € U. Up to conjugagy in S?,
one may assume without loss of generality that C1(V') is the Euclidean closed unit
disc in R? with also a = (0,—1), b = (0,1), I'1 = 8V N ((—o0,0) x R) and h?(I'}) =
8V N ((0,4+00) x R). Thus V is located on the left of ?(T'1) oriented from a to b.
Since a, b are fixed points of h and since h=2 preserves the orientation, the set h=2(V)
is located on the left of I'; oriented from a to b and then h=2(V) NV = 0 (see Fig.
5.6). Hence one gets h?(V)NV = .

h*Q(Fl) hQ(Fl)

a

Figure 5.6 - h (V) NV =)

Since h%(T'1) C h?(e) C Int(of) and since o is arcwise connected, there exists a
segment v C o from a point of I'; to a point of h?(I'1) and which intersects I'y Uh?(T'1)
only at these endpoints. Then we have either v ¢ CI(U) or v c CI(V). If v C CI(U)
then yNh=2(T'1) # () because v separates a and b in Cl(U) while Cl(h=2(T'1)) = h=2(I'1)U
{a,b} joins a and b in C1(U). This is not possible since yNh=2(T'1) C &/ (B)Nh~2(T1) =
so we obtain v C CI(V). Next we show that h(V) NV = @ (the following arguments
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already appear in [Bon04]). Arguing by contradiction, we suppose that h(V)NV # 0.
Remark that the situations (V) C V are not possible because h?(V)NV = () so one
has 00 £ h(V)NC = (V)N (T3 UA%(Ty)) as well as § # VN R(C) =V N (W(T1) UL (T1)).
Since h¥(T'1)NhY(Ty) # O for k # [ each set I'y and h?(T') is either disjoint from h(V') or
entirely contained in h(V). For the same reason, h(I'1) and h3(I';) are either disjoint
from V or lie entirely in V. If I'y € h(V) then h=1(CI(Ty)) is a connected set joining
a and b in CI(V) and then, since v separates a and b in CI(V'), one obtains

0 #h TNy = (T1Nk()) € (O nh(eh)) € bt (0ne/ (B)NInt (< (8))) = 0

which is absurd. Thus one gets 't NA(V) = @ and h?(I'1) C h(V). The latter inclusion
also gives h3(I'1) NV = () since otherwise h3(I'1) € V N A%(V) = 0 and it follows that
h(T1) C V, d.e., h2(T1) € h(V). Observe that we cannot have CI(V) U h(Cl(V)) = S?
because this would imply 'y € A(V) and then h(T'1) € h?(V)NV = (). Thus the whole
set CI(V) U h(C1(V)) is contained in the domain of a single chart of S?. In such a
chart the situation is as in Fig. 5.7 and, a and b being fixed points, we obtain a
contradiction with the fact that h reverses the orientation. This contradiction tells
us that A(V)NV = 0.

a

Figure 5.7 — The situation h(I';) C V is not possible

It follows from A=Y (V) NV = that A= (Cly(V)) = = Y(V)u h=}T1) UR(Ty) C U.
Since h~1(T'1) N« = 0 and h([';) C Int(=) and V C M, one can find a (unique)
connected component I's of 9y;.9% contained in =1 (V) which is a line of M such that
Cl(T'2) \T'2 = {a,b}. The argument is similar to the one of Case 3 and we omit details
here. We end by showing that I' = I'y LT, is a Brouwer manifold of type 3. We keep
the notation P, P_,01,d2 as in Case 3 and we consider the homeomorphism G; of
O = {(z,y) € R?|y # 0} defined by Gi(z,y) = (z + [y, —y).
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Remark that ¢ : O — O defined by ¥(z,y) = (z|y|,y) is a homeomorphism of O
such that Gy o9 = ¢ o G|p with furthermore |5, = Id|s, for i € {1,2} and

veeR  Cl(v({z} x R)n O)\ (¢({z} x R)n O) = {(0,0), 00}.

Denote by Q the domain in the half-plane P; between 6; and G2(61) = {(2y,y) |y > 0}.
Clearly G1(d2) € Q and using again the Schoenflies Theorem, one can construct a

homeomorphism
¢ : CL(Q) — CL(V)

such that ¢((0,0)) = a, ¢(c0) = b, ¢(61) = T, ¢(G1(%2)) = h(T2) and ¢ o G|, =
h% o ¢|5,. For every point z € P, there exists a unique even integer 2k € Z such that
z € G5, UQ), and we set

o(z) = h* o po GT?F(2) € BF (T UV).
We have in this way h?o ¢ = ¢ o G¥|p,. Extending ¢ on P_ by

¥y <0 @(z,y) =hopoGyl(z,y) € | Jr*FHIT1UY),
keZ
we obtain a continuous map ¢ defined on O and such that ho ¢ = ¢ o G1]p. Using
R(V)NV = = h?(V)NV and [Bon04, Lemma 5.2] we get that h¥(D UV)NRY (T UV) = @
for k # | which ensures that ¢ is a one-to-one map. Next we define ¢ = ¢op : O — M.
We have hop = poG|p and ¢ is a one-to-one map because so is ¢. Moreover one has

Vre R Clle({z} x R)NO)\ (¢({z} x R)nO) = {a,b} C Fix(h).

Hence ¢({z} x R) N O) is a closed subset of M for every = € R. By construction,
one has I't = ¢(01) and ¢ o G1|lo = h o ¢ also gives I's = ¢(d2), which shows that
[' = ¢(d1 U d2) is a Brouwer manifold of & of type 3.

Case 5: Fix(h) is a circle.

Recall that M = M; U Ms. The planes M; and M> are compactified by adding
one point at infinity oo’. Repeating the argument in Case 3 with a replaced by oo,
we can find a line I's of M such that I' = T'; U T is a Brouwer manifold of h of type
3. ]

Therefore for each edge o € FE, we have constructed a Brouwer manifold I' =
['(a) € 3(D) such that a C I'(a).
CLAIM 2. For every a,a’ € E, the two Brouwer manifolds T'(«),T'(a/) have no

transverse intersection.

Proof. We keep the notations o (r(«a)), o and < for the brick r(a) as in the proof of
Claim 1, and we define analogously the notations < (r(¢/)), #/ and <7 for the brick
r(a). For simplicity, we write I' = T'(«) and I” = T'(¢/). Suppose without loss of
generality that r(a) < r(a’) and then one has & (r(a/)) C & (r(a)).
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We now prove that 7/ does not meet both R(T') and L(T'), considered as subsets of
B, for every k € {0,1}. Otherwise there exists an edge e C T' such that i(e) € &//NL(T)
because of the connectedness of .27/. Moreover it is clear that i(e) ¢ &7 (r(a)). This
gives a contradiction because @] C o (r(o/)) C o (r()).

Next we prove that 7 U</ is included either in R(T") or in L(T"), which completes
the proof of Claim 2. Otherwise one supposes that < C R(I') and .« C L(I") where
{k,1} ={0,1}. Tt follows that

0 # h() C h(R()) N CInt(R(T)) N L(T)
which contradicts Proposition 3.1. []

The proof of Proposition 5.10 is now completed. O]

5.3.2 Construction of an oriented topological quasi-foliation

We first endow the set Ly, of all the Brouwer manifolds lying in the skeleton X with
a natural topology. Let us denote & = (E U {o0})%/§ ! where 6 : (7)) jez = (Tj41)jez
is the shift map and .# = &2/ ~ where ~ is the equivalence relation defined by
(a,b) ~ (b,a). Thus .# is nothing but a convenient way to represent the set of all the
subsets of & having cardinality one or two. We now define a map ¥ : Ly, — .# as
follows:

- If T ¢ ¥ is a Brouwer manifold of type 1 then it is a circle and, according to
Proposition 5.9, it may be written I = [[,_; e; where I is a nonempty finite Z-interval
and (e;);¢r is an admissible sequence of edges. Then we consider the periodic sequence
X = (2j)jez € E? defined by z; = ¢; iff j =i mod #(I) where #(I) is the cardinality of
I. Note that the projection X of X in & depends only on I' and not on the choice of
I hence we may define ¥(I') as the projection in .# of the pair (X, X) € &2.

- If ' ¢ ¥ is a Brouwer manifold of type 2 then it is a line of M and, using

again Proposition 5.9, one has I' = [[,_;e; for some nonempty Z-interval I and

iel
some admissible sequence of edges. Here I may be unbounded from above or/and
unbounded from below and we define a sequence X = (z;)jez € (EU{o0})? by z; = ¢;
if j € I and z; = 0o if j € Z\ I. Here again the projection X of X in & depends only
on I' and we define ¥(I") exactly as for a Brouwer manifold of type 1.

- If finally ' € ¥ is a Brouwer manifold of type 3 then its two connected com-

ponents I';,I'y are two lines of M. Proposition 5.9 ensures that I'y = []..; e¢; and

i€lh
Ty = [[;cy, € Where Ih, I are nonempty Z-intervals and where (e;)icr,, (€))icr, are two
admissible sequences of edges. Then we consider the two sequences X1 = (z;),cz and

Xy = () jez in (E U {oco})? defined by

Tj = ¢j iijIl andxj:ooiijZ\Il

1. The symbol co here is not related to the symbol oo used for the one-point compactification S? =
R? U {o0}.
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ai=¢; if jeland 2} =00 if j € Z\ L.

Since the projection X; of X; in & does not depend on the choice of I; (i € {1,2}) we
can define ¥(T') as the projection in .# of the pair (X1, X3) € &2.

One checks that ¥ : Ly — .# so constructed is a one-to-one map hence Ly
may be identified with its image V(Ly) C #. Now E U {0} is equipped with the
discrete topology and (E'L{co})% with the product topology. Then &, &? and .# are
successively endowed with their natural (quotient and product) topologies and Ly, is
topologized as a subset of .Z. This topology on .# is denoted by Top and Top| 4 is
the topology it induces on a set 2" C .#.

Proposition 5.10 provides a finite or countable set £ = {T'(a)}necr C Ly where
a C I'(a) for every v € E. We define Ly () to be the set of all Brouwer manifolds of
Ly containing a. We write £* = Clz(£) and £*(a) = £* N Lx(«). As an important
remark, observe that the subset of Ly, x Ly containing the pairs of Brouwer manifolds
having no transverse intersection is closed in Ly, x Ly.. Consequently any two Brouwer

manifolds of £* have no transverse intersection.

Proposition 5.11. For every a € E, the set L*(a) endowed with the topology

Top|z«(a) s compact.

Proof. Tt is splitted into the following two claims.

CrAamM 1. For any o € E, there exist finitely many edges aq,...,a, € E\ {a} such
that for every Brouwer manifold T' € L*(«) of type 3, the connected component of T'
which does not contain o contains «; for some 1 < i < n.

Proof. Let B = r(a). We know that 8 = I(«’) for some o/ € E (Propositions 5.4-
5.7) so either {8} U o({B}) U ©?({B}) or {B} U ¢*({B}) is connected. Hence we can
join a point * € a C f and its image h?(x) € h%(3) C p*({B}) by a segment v C
{BYUe({BH)UP*({B}). The compact set h=1(y) C M meets only finitely many edges,
which are denoted by («;)1<i<n. Suppose now that I' =T'; UT2 € £*(a) is a Brouwer
manifold of type 3 with for instance oo C T';. According to Item 2) of Proposition 5.9
one has 8 € R(T) so, using Proposition 3.1 (iii), one also gets v C R(T). It follows
from the description of R(I') and L(I') given in the proof of Proposition 3.1 that
v N h(I's) # 0 or, equivalently, that h=1(y) NIy # (. Hence I'y contains a; for some
1 < < n. This completes the proof of the claim. O

CLAIM 2. For any o € E, denote by S(d') the set of all the sequences (x;)icz €
(E U {oo})? satisfying xo = o/ and obtained from a connected Brouwer manifold or
from a connected component of a Brouwer manifold of type 3 as explained at the
beginning of this Section 5.5.2. Then S(/) is a compact subset of (E U {oo})Z.
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Proof. For every e € E, there exist at most two edges whose initial vertices are v, (e)
and at most two edges whose final vertices are v_(e) hence a set S(a’) may be written
as a (countable) product of finite subsets of E U {oo}. O

According to Claim 1, one has

where Ly is the set of all the connected Brouwer manifolds in £*(«) and, for 1 <i < n,
L; is the set of all the Brouwer manifolds I" of type 3 in £*(«) such that a connected
component of T' contains o and the other one contains «;. Following Claim 2, each
set £; is the image by a continuous map of a compact subset of ((E U {oo})Z)2 hence
it is compact and so is L*(«). O]

For two Brouwer manifolds " and TV of h, we write I' < T" iff R(T") ¢ R(I"”). One
checks using Proposition 3.1 that < defines an order on the set of all the Brouwer
manifolds of h. Firstly we will be interested with the restriction of < to £* and to
the sets £*(a)), @ € E. One defines naturally the “open intervals” in these ordered
sets: given I' and IV in £* one lets

O, ={I"el"|T<T"<T'}, (D={"eL"|T"=<T}

and (I',—) = {I" € £* | T < I"}. If furthermore {TI",T"} C £*(a) for some a € E then
one also defines (I',T")z+(q) = (T, T") N L*(a) and likewise (<,T") (o) and (T', =)z« (q)-
Thought < is not a total order one has the following result.

Lemma 5.9. Let o € E. The restriction of the order < to L*(«) is total.

Proof. Let T',T' be two Brouwer manifolds in £*(«). Observe that the two sets R(I')N
R(I') and L(T") N L(I") are nonempty because they contain respectively r(«) and I(«)
(Proposition 5.9). Since I' and I” have no intersection transverse, one of the following
two inclusions I' € R(I”) or I' C L(I") is true.

Suppose first that I' ¢ R(I”). According to Proposition 3.3, one has either R(T") C
R(I") or L(T") € R(I"). The second inclusion implies {(a) € L(T')NL(I) € R(I")NL(T")
which contradicts Item (i) of Proposition 3.1 and the first one gives I' < T".

Suppose now that I' ¢ L(I'"). Changing the roles of “the right side” and “the left
side” in the above argument, one gets L(I') € L(I”) and then R(I') C R(I') which
shows IV < T. ]

We denote by Top~(L*(c)) the order topology on L£L*(c). The result proved in the
next part is the following.
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Proposition 5.12. For every edge o € E, there exists an increasing homeomor-
phism from the ordered topological space (L* (), Top|ze(ay, X) onto a compact subset
of R. In particular (L*(a), =) possesses a smallest and a largest element denoted

respectively by T, and T}.

We begin with the following lemma.

Lemma 5.10. Let o € E. The topology Top<(L*(a)) is smaller than the topology

Top|+(a)-

Proof. Tt is enough to show that the open intervals of the ordered set (L£*(a), <)
belong to the topology Top

£+(a)- We write a proof only for a nonempty interval
(T, T") £+(a), similar arguments also hold for intervals (<, ') z+(o) and (', =) z+(4). Take
" € (I'T")ge(a)- Since T' < T, there exists an edge a; C I' such that Intg(a) C
Int(L(T)). Likewise I' < I' implies that there exists an edge as C I' such that
Inty(a2) C Int(R(I)). Let U = L*(a)NLyx(a1)NLyx(asz), which is an open neighborhood
of I' in £*(«) since Lyx(«a;) is an open subset of Ly for every i € {1,2}. For any
T € U we have T < I" because Inty(a2) € T NInt(R(I')) and also I' < T because
Intg(ar) C T NInt(L(T)). Hence U C (T,T") £+(o) and consequently (I',T”) () belongs
to Top|z+(a)- O

Lemma 5.11. Let « € E. Then L(«) s a dense subset of (L*(«), Top

Lo (@)

Proof. Let I € L*(a) = L* N Lx(a). Given a neighborhood N of T" in £*(«), we shall
check that NN L(a) # 0. One has N = L*(a) N N" where N’ is a neighborhood of I' in
Ly. Since Lx(«) is also a neighborhood of ' in Ly, one can replace N’ with N'NLy(«a)
and assume without loss of generality that N’ C Lx(a). This gives NN L(a) = N'NL
and the latter set is nonempty because I' € £*. ]

Proof of Proposition 5.12. Since L is at most countable so is £(a). Lemmas 5.10-5.11
tell us that £(«) is a dense subset of (L*(a), Top<(£L*(a))) so that this topological set
is separable.

If T,T" are two Brouwer manifolds in £*(a) such that I' < T" and (T',T")z(q) =
0 then one says that I' (resp. I”) is the immediate predecessor (resp. immediate
successor) of ' (resp. T'). We define S to be the set of all the Brouwer manifolds
in £*(«) which are the immediate successor of some element of £L*(a). For T" € S
which is the immediate successor of IV, one can choose an edge ar C I' such that
Inty(ap) C Int(L(I”)). This provides a map x : S — E, x(I') = ar which is one-to-
one. Indeed, suppose that I'y < I's in S are such that x(I'1) = x(I'2). Consider the



o8 CHAPTER 5. PROOF OF THEOREM 4.1

immediate predecessor Iy of I's. One has Inty(x(I'1)) = Inty;(x(T2)) € T'1 N Int(L(T%))
which implies I'; < I'y and then I', < T’y < T's, a contradiction. Consequently S is at
most countable because so is E. One checks similarly that the set of all the Brouwer
manifolds in £*(«) which are an immediate predecessor is also at most countable.
Following [Cat00, Lemma 3], the topological space (L*(a), Top<(L*(«))) is second
countable and [Cat00, Theorem II] tells us that there exists an order preserving
homeomorphism f from (£*(«), Top<(£*(a))) onto a subspace of R. By Lemma 5.10,
[ is also a continuous as a map from (£*(a), Top|-(4)) into R. Recall from Proposition
5.11 that the topological space (L*(«), Top

£+(a)) 18 compact therefore one deduces that
f is an increasing homeomorphism from (£*(«), Top

£+(a)) ONto its image f(L*(a)) C R.
By the way, this also proves that the topologies Top|.-() and Top<(L*(a)) are the
same. [

Following Le Calvez ([LLC04]), we say that a Brouwer manifold I' € £* is isolated
from the right (resp. from the left) if there is no sequence (T'y),>0 in L£* converging
to T' (for the topology Top

c+) and satisfying T' < T, (resp. I';, < T) for every n € N.

Lemma 5.12. Let T',TV be two Brouwer manifolds of type 8 having a common
connected component. Suppose moreover that ' X I”. Then one has

h(R(I")) C Int(R(T")) and h™Y(L(I")) C Int(L(I")).

Proof. First let us check h(R(I")) C Int(R(T")). Denote by 6 the common connected
component of I' and I". One writes I} for the other connected component of I, so
that I = UT. Define S C M to be the strip with frontier 95,5 = §Uh?(#) such that
S C R(I') ¢ R(I'). Since I" is a Brouwer manifold of type 3 one has h(I'}) C Int(S)
and therefore h(I") = h(0) U A(I'}) C h(I') UA(I}) C Int(R(I")). Since I is a Brouwer
manifold, its image A(I') is also a Brouwer manifold with R(h(I'")) = h(R(I")) and
L(h(I")) = R(L(T")). Then one deduces from Proposition 3.3 that either h(R(I")) C
Int(R(T")) or h(L(T")) C Int(R(T")). The second inclusion gives L(I') C h(R(I")). Since
L(I') ¢ L(T) this also implies that

LIy € h(Int(LI"))) N h(RI”)) = h(Int(L(I")) N R(I")) =0,

a contradiction which proves the expected inclusion h(R(I")) C Int(R(T)).
Switching the letters R(-) and L(-), the homeomophisms h and h~!, the Brouwer
manifolds T' and I one also gets h~1(L(I")) C Int(L(I")). O

Proposition 5.13. A Brouwer manifold T' € L* is isolated from the right (resp.
from the left) if and only if there exists a € E such that T =T (resp. T =T, ).

Proof. We only prove the result for Brouwer manifolds isolated from the right, the
case of the Brouwer manifolds isolated from the left being similar. For any a € F,
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the Brouwer manifold T} is isolated from the right because £*(«) is a neighborhood
of I'l in £*. We now prove the converse implication. Consider a Brouwer manifold
I' e £*. We write I' =T'; UT'y with the convention that I'y = I'y = T" if T is connected
(i.e., if T has type 1 or 2) and I'y, T's are the two connected components of T' otherwise.
CraM 1. For i € {1,2}, if T; is the union of finitely many edges then T'; is a
connected component of T} for some edge o C T;.

Proof. Because T'; contains finitely many edges, there exists an edge oy C I'; such
that there is no edge o C T satisfying I'f < T'f . We write

where —oo <1 < 0 < m < +oo. We first prove that aj C Fj;o for every 0 < k < m.
Suppose m > 1 and let us prove that a; C I’} . Define o to be the edge different
from ¢ and «; and possessing o = v;(ap) as a vertex. If vy(a) = o then it is clear
that oy C I'f, . Assume that v_(a) = 0. One has the following two cases.

- If 7(on) = l(«) then also r(ap) = r(a) and one gets a; C I'} because otherwise
o C T} and it follows that ' < T'in £*(ap) which contradicts the maximality
of ' in L*(ap).

- If l(a1) = r(«) then also I(ag) = I(a) and one gets a1 C I'f because otherwise

a C T} soT'f <T which contradicts the hypothesis on «y.

Assuming inductively ag U --- Uy C T'f for some integer k € {1,---,m — 1} the
same arguments as above give oy C I'f and consequently « C I' for every
0 < k < m. Similarly one also has a;, C T’} for every I < k < 0 hence one concludes

that T; € T . O

CramM 2. Let i € {1,2}. If for every edge o C T'; the set T'; is not a connected
component of T} then there exists a sequence (vn)n>0 i L* with T < ~, converging
to a Brouwer manifold v = T such that T'; is a connected component of .

Proof. 1t is similar to the one of [LC04, Lemma 3.5]. Claim 1 implies that I'; contains
infinitely many edges. We write

I = Halm

where I is a Z-interval with infinite cardinality and («;);c; is an admissible sequence
of edges. First we show that, for every finite Z-interval J C I, there exists a Brouwer
manifold I'" € £* such that ' < T" and [],.; . C I". The proof is by induction on the
cardinality p of J. The result is true if p = 1 because I' < T’} for every k € I. For any
{k,k+1} C I, the Brouwer manifolds I'}, and T'j,  contain respectively a; and oy
and satisfy ' < T}, T < TS

o axsr - Lhe vertex o = vy (o) = v_(ag11) is the endpoint of



60 CHAPTER 5. PROOF OF THEOREM 4.1

a third edge a. If 0 = v_(«) then clearly ay C T and consequently I'Y =~ =<T{ . If

Q41 Q41

o =wvi(a) then oy CTE, soTE, <T7 . ThusT'f, and T'f, are always comparable
and the smallest of these two Brouwer manifolds contains a; U ay 1. This proves the
assertion for p = 2.

Suppose now that the result is true for p > 2 and consider a Z-interval J =
{k,k +1,...,k + p} C I with cardinality p + 1. The induction assumption gives a
Brouwer mamfold [~T contammg Hk <j<kip—1 @ and a Brouwer manifold r>T
containing [ [, , <j<hip® . Then T and T are comparable because they both contain
| P i<kip1 O and, usmg the fact that they have no transverse intersection, one
checks that the smallest of these two Brouwer manifolds contains [],_;a;. This
proves the assertion.

Consider now a sequence (I,),>0 of finite Z-intervals such that I,, & I,,4; for every

n >0 and J I,, = I. The above remark allows to choose for every n € N a Brouwer
n=0
manifold v, € £* such that v, =T and [],.; ar C y. Given g € Iy, one has of course

{T} U {m}nen C L*(y) and one deduces from Proposition 5.12 that there exists a
subsequence (vy,)r>0 converging to a Brouwer manifold v € £*(ag) such that I' < ~.
By construction one has T'; € 72 O

Recall that a Brouwer manifold of type 2 cannot be a connected component of a
Brouwer manifold of type 3 (Remark 3.2). According to Claim 1, if " is a connected
Brouwer manifold containing finitely many edges then I' = T'} for some a C T.

According to Claim 2, if T' is a Brouwer manifold of type 2 containing infinitely
many edges and if T' # T’} for every edge a C T then there exists a sequence (vy)n>0
in £* converging to I" with T" < ~,, for every n > 0.

It remains to study the case where I' = I'; U T’y is a Brouwer manifold of type 3.
For i € {1,2}, define a Brouwer manifold I/ € £* as follows. If I'; is a connected
component of I'Y for some edge o C I'; then let I'f = I'l. Otherwise define I'f to be
the Brouwer manifold ~ given by Claim 2. Thus one has anyway I' < I'f and I'; is a
connected component of I'Y. In particular I'f has type 3.

CLAIM 3. The two Brouwer manifolds I'; and I'5 are comparable.

Proof. Recall that I' < I'] and that these two Brouwer manifolds have one common
connected component I'y. According to Lemma 5.12 one has h(R(I'})) C Int(R(T)).
If 'y NT'5 contains some edge a € E then it is already known from Lemma 5.9
that I'j and I'; are comparable hence one can assume that Iy NT'; = ( for every
1 <i#j <2 It follows from I'y € R(I') C R(I']) and 'y NI} = 0 that T'y € Int(R(I']))
and then I'; ¢ R(I'f) because I'j and I'; have no transverse intersection. According
to Proposition 3.3 one has L(I'}) ¢ R(I'}) or R(I';) € R(I'7). If R(I'S) C R(I'}) then

2. As a remark, the sequence (v, )rk>0 may have some other limits in £* \ L*(a) because L£*(ay) is
generally a non closed subset of the non Hausdorff space £*. Such a limit v € £* \ L*(¢y) is necessarily
disjoint from T7;.
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Iy < IT'f and we are done. Suppose now L(I'j) C R(I']). Since I' < I'j one has
R(I') ¢ R(I'5) and therefore L(I';) C R(I'7) N L(I"). Using A(R(I7)) C Int(R(I")) one
obtains

L(T5) € h(L(T%)) N L(T) € h(R(TT))NL(T) Cc Int(RT))NLT) =0
which is absurd and ends the proof of Claim 3. O

According to Claim 3 one can suppose I' < I'; < I'{. Moreover it follows from
I'' c I'nIy that Ty € I'S hence I' = I'y UT's € I'5. One concludes that I' = I'S.
The definition of T’ tell us that if I' # I'} for every « € E then T is the limit of a
sequence (Vn)n>0 in L* with T' < ~,, for every n > 0. The proof of the proposition is
completed. O

The next two results are already stated and proved in [LC04] in the context of
Brouwer homeomorphisms and Brouwer lines. Nevertheless Brouwer manifolds are
more complicated than Brouwer lines hence we give the additional arguments needed
in our framework.

Proposition 5.14. For any two edges a, o’ € E we have

- if l(a) = 1U(d)) then Tf =T7,;
-if r(a) =r(d/) then Ty =T,;
- if lla) =r(d!) thenTE < T, and (TL,T,,) =0.

Proof. Write g = l(a) = l(¢/). According to Propositions 5.4-5.7, there exists an
admissible sequence («;)o<i<n Of edges in 9y, 8 such that ag = o, a;, = o/ and l(a;) =
for every i € {0,---,n}. Hence it is enough to prove T'y, = I'j ., for every given
i€{0,---,n—1}. We name o the third edge having vy (a;) = v_(a;41) as a vertex. If
v_ (@) = vy (a;) then clearly a; C T}, soT'; =T/ Using Proposition 5.9 one gets

r(aiv1) C R(TY, ) € R(TE,) and also 8 = l(aiv1) = () C L(TE,). Then it follows
from Proposition 3.1 that a1 = {(eit1)Nr(eir1) € LI )NR(T ) =Tt which implies
the inverse inequality 'y, < T4, . If vy (a”) = vy (a;) then we obtain first a;11 C T',
so 'y, < I'f.., and one checks the other inequality I';, | < T';. by reversing the roles
of a;, ;11 in the above argument. This proves the first assertion and the second
one can be obtained likewise. We now prove the last one. We let g = I(a) = r(d/).
If 8 is an annulus then one deduces from the two previous assertions that I'f and
', are the two boundary components of 5. It follows easily that I'f < T',. If 3
is a disc or a half-plane then it possesses an initial vertex v_(5) or a final vertex
v4(B). We deal only with the first case, the other case being similar. We denote
o = v_(f) and o~ the edge such that v4(a~) = 0. Using again the description of
Oy B in Propositions 5.4 and 5.6 as well as the two first assertions, we just have to

check I’ < T, when the edges o, o’ and o~ are all adjacent to the vertex o, so that
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0 =v_(a) =v_(a/) = vy(a). Then it is clear that = Cc T, NT,, so I'} and I'_, are
comparable and one deduces from g € R(I',,) \ R(I'}) that I’ < I'_,. We consider
now the case where 3 is a strip. According to Proposition 5.7, one has dy;8 = v U~/

with

o | | 1

iel jeJ

where (@;)ier and (o})je; are two admissible sequences of edges such that I(«;) =
r(a}) = B for every (z,]) € I x J. We know that all the Brouwer manifolds I'}, (resp.
Fc:;) are equal for ¢ € I (resp. j € J) so that v Cc T and o/ C F;}' According to
Proposition 5.9, one has v ¢ § ¢ R(T'_,) and o/ C § C L(I'},). Remark that v is
disjoint from 9y R(T", ) =1 o since othejrvvlse there exists i € I such that a; C T,
which implies I(«;) = 6 € L(I', )OR( ) 0, a contradiction. Thus one obtains mor(]a
precisely v C Int(R(T, )) Slmllarly v c Int(L(T'Y))) since otherwise one can find j € J
such that o) C 8ML(F+) = I'y, which would imply r(a) = g € R(T'y,) N L(T,) = 0.
Since I'}, and I, have no transverse intersection, one deduces from v C Int(R(I",,))
that I'} C R(F‘J). Then it follows from Proposition 3.3 that L(I'}) C R(F_ ) or
R(I'}) C R(T,, ) On the other hand, o) C 4" C Int(L(I',)) implies I(a}) € L(I‘*)
L(T",) which shows that the inclusion L(Ff;) C R(I", ) is actually not pos&ble Thus
we oi)tain as expected R(I',) C R(T',), i.e., Tf < F_

It remains to show that (I'},T",) = - () for any edges a, o satisfying I(a) = 8 = (/).
Suppose that I' € £* is such that I'f < <T,,. According to Proposition 3.1, the
brick 8 belongs either to L(I') or to R(I') and I' < I'_, also means L(I',) C L(I'). If
B € R(I") then one gets

o =ld)nr@)=1d)nBc L(T,)NRT)C L)NR(I) =T
which implies I', < T" and afterwards I', =TI". If § € L(T") then
a=Ila)Nr(a)=8n7ra) c LO)NRITL) c LINRT) =T
hence I' < '} and consequently ' = T';. O

For every g € B, Proposition 5.14 allows one to define FE =TI, and Iy = =Tt
where «a, o’ are any edges such that r(a/) = 8 = I(«). One has then Iy < I‘g and
(Fﬁ F;) = 0. According to Propositions 5.4-5.7, there exist two oriented arcs v, and
'yﬂ such that Oy f = v, U 76 and I(y5) = r(yﬁ) = {#}. Then we have 5 C I'; and
75 F*. We define an equlvalence relation ~ on the set of bricks by

,6~5’<:>F+_F+, and Iy =T,

The equivalence class of 8 € B is denote by E
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For later use, observe that two adjacent bricks are not equivalent. Indeed, for
every edge « € E, one has

+ —
Fl(a) =T

Proposition 5.15. Let 5 € B. The following three properties are equivalent :
i) g €B,
ii) 8 € r(T5) NUTR),

iii) ' € R(T}) N L(T'y).

Proof. As a first step, one has the following assertion.
CLAIM 1. The properties i) and ii) are equivalent.

Proof. 1f B’ € B then 3’ € r(T4)NI(T5) =r(U;) NI(T;) hence the implication i) = ii)
holds. Let 5’ be a brick in r(F*) NI(I';). There exist two edges e; C F and ez C I'y
such that 8" = r(e1) = l(e2). Then we get

Iy <Tf =T, <Th =T, <T}.

B B’ B
According to Proposition 5.14 one has (I, T'}) =0 so I'; =T and Ty =T, ie
B e B The implication ii) = i) is proved. D

Combining Claim 1 with Proposition 5.9 one gets B= r(Fﬂﬂl(I") C R(F+)DL(I‘§)

hence it is now enough to prove the converse inclusion R(Fg) N LT ) c B.

We write I'; (resp. T'f") for the connected component of I'y (resp. Fg) containing

75 (resp. 75). Remember that maybe I'[ = T'; (resp. I'[ =T) if T (vesp. T'j) is
connected, i.e., has type 1 or 2.

If g is a disc or a half-plane then 3 possesses an initial vertex v_(3) and/or a
final vertex v4(8) (Propositions 5.4 and 5.6). Assume for instance that 3 has a final
vertex. Then there exists ag € E such that vy (8) = v_(ag). Of course ap C I'y NI
so we can consider the longest admissible sequence of edges beginning with ay and
containing only edges included in I'y NT. It is convenient to denote this sequence

by (a;)o<i<n With n € NU {400} so that one of the following situations occurs :
a) n = 400,
b) n < +oco and «a;,_1 has no final vertex,
¢) n < +oo and a,—; has a final vertex.

In the first two cases, the concatenation [],.;_, @i is a half-line of M so it con-
verges to a fixed point. If (c) holds true then there exist two edges a;, C I'y
and of C I'f such that vy(an—1) = v_(a,) = v_(a;}) and r(e;}) = l(a;). Defin-

ing 31 = r(o;f) (maybe 81 = 8 when 8 is a disc), one has then 3; € T(PE) NiTy)
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hence 1 ~ 3 because of Claim 1. This implies v; C I'; and 75 € T} Similarly, if 3
has an initial vertex v_(f) then either there exists a half-line of M emanating from
v_(B) and included in I'; NI or there exists a finite admissible sequence of compact
edges o), ..., aj such that vy (o) = v_(B), v—(a}) = v4(B-1) for some brick f_; ~ 3 and
of Ty NI for every i € {I,...,0}.

[terating these arguments one finds a sequence (f3;);e; of pairwise distinct bricks
equivalent to 3, where I is a Z-interval containing 0 and 5y = 3, such that

ry =@y nrHul Jys and 17 =@ nrhHul i
iel iel
Note that this writing is still valid when § is a strip with simply I = {0}, I'| = V5
and I'f = 5. It is also valid if 8 is an annulus with I = {0}, T; = I} = 74
and FE =TI7 = 75. Since J;¢; B is closed in M, if M is connected then one has
CITT)\Ty = CITY)\ T C Fix(h) which also gives CI(I';) \T; = CI(I'}) \ T'y.

It is already known that 8; € I(I'y) N r(I}) C (T5) Nr(T}) C LT )m R(T'})
for every ¢ € I. More precisely each singleton {3;} is a connected component of
L(Tz) N R(T}) C B because r(y;) C () C R(I'z) and I(v) C I(T'y) C L(T'}) and
because, for any j € I\ {i}, the bricks 8; and BJ are not adjacent. If I'; is not
connected (i.e., has type 3) and if ', denotes its connected component other than
I'; then one also has f; ¢ I(T'y ) because v, C I'y. Defining R™ = R(I';) U, Bi, the
previous observations together with Iy = F; show that R is a connected subset of
R(T}) verifying 9y R* =T U (T3 \T7) and ;. Ints(v5) C Int(R") and having the
same number (at most two) of connected components as R(I';). Precisely, if R(T 5)
has two connected components then they can be named R, R with T') = GMR_
and the two connected components of R* are Ry UlJ,.; 5 and R; .

IfT'; and I'; are connected then R(I';) and R(I'}) are also connected. One obtains

B
then GMR+ = I'; = Oy R(I'y) which 1mphes R* = R(I';) and therefore, regarding
R(T}) and L(T ) as subsets of B, one obtains R(TI';) N L(I'y) = R(T}) \ R(I'y) =
{Biliel}C B. T his proves the proposition when F;E are both connected.

CLAIM 2. Iy s connected iff Fg 15 connected.

Proof. If Fix(h) is a circle then all the Brouwer manifolds have type 3. Assume
now that Fix(h) is totally disconnected. Recall that ClI'y) \ Ty = CI(I’B’) \ FE C
Fix(h). If 'y or FE is not connected then this set has cardinality one or two. If it
contains two points then F;E are Brouwer manifolds of type 3. It remains to study
the situation where CI(T'y) \ I'y = CI(F+) \ F+ contains a single point a € Fix(h).
Under this assumption, the descrlptlon of the Brouwer manifolds given by the proof
of Proposition 3.1 shows that I'; (resp. FE) is connected iff L(I'y) and R(I'y) (resp.
L(FZ{) and R(FE)) are both connected hence one just has to check that R(I';) and
R(F;) are simultaneously connected or not and likewise for L(Fg). Suppose that

R(T'}) is not connected and name Ry, Ry its two connected components with T} =
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Om Ry . Then R(I 5) 1s also not connected since otherwise, due to I'; =< Fg, one can
find i # j in {1,2} such that R(I';) C R} and

WR(T'5)) C RT;) NA(R}) C RF N RS =0,

a contradiction. Suppose now that R(Fg) is not connected. As observed above, RT C
R(F;) also has two connected components which can be written Ry = Ry UJ,; 8 and
Ry = Ry where Ry, Ry are the two connected components of R(I'y) with I';” = Oy R, .

One deduces from 0y Ry = I'f that R; is also a connected component of R(F;).
Moreover §; € L(Fg) for every i € I hence Ry N R, = 0 as subsets of B. Consequently

R(I'}) possesses a connected component other than Ry which contains R, . Switching

B
above the roles of L(-) and R(-), of FE and I'y, of h and h~! one proves likewise that
L(I'y) is connected iff L(FE) is connected. This ends the proof of Claim 2. ]

According to Claim 2 it remains only to study the case where Fg are Brouwer
manifolds of type 3. We write as usual I'y =T'; UT, and It =ryury.
Observe that I'; is disjoint from I'] because

Ly NI =T, Ny \T) C R(T;)N (Ulntg(ygi)> C R(Tz) NInt(L(T) =0
el

and likewise

IyNTy =3 Ny \T{) c LI (Ulntg (v3,) ) C L(I'z) NInt(R(T;) = 0.

CrLAIM 3. Assume that Ty NTy = 0. Then I(Ty) =r(T'y) and this set is reduced to a
single brick By € B\ which is a strip with frontier Oy B, = Ty UTS. Moreover one has

L(F[;)mR( 5 ={83u{siliel}cB.

Proof. One also knows that I'; NT'{ = 0 hence I'; C Int(R(I‘E)). Consider an edge
e C Iy and let 8, = I(e) € I(T'y) € L(I'y). Remark that e C 75 NIy ensures
Bs & {Bitier-

e As a first step, we show that there is a connected component S of L(T) ﬂR(Fg)
which is a strip with frontier 9)/S = I'; UTJ and which contains 3. and satisfies
SN h(S)=10. One needs to distinguish the following three cases.

First case : Fix(h) is totally disconnected and Cl(l%) \ 1% consists of a single point
a € Fix(h).

Suppose first that R(I';) is not connected. One knows from the proof of Claim 2

that R(T'}) is also not connected. Even better, if R; denotes the connected compo-

B
nents of R(I';) such that 9y R, =T then the two connected components of R(Fg)
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may be named R{ and Ry with R = Ry UJ,; 8 and R, C R;. Since R, U {a}
and Ry U {a} are two discs with frontier, respectively, I'; U {a} and T'J U {a}, one
deduces from the assumption I'; NT3 = 0 that the set S = Ry \ Int(R;) C M is a
strip with frontier 9,5 = I'; UT'5. It is easily seen that S is a connected component
of L(';) N R(T'}) such that g, C {(Ty)Ur(T'y) € S. One also has h(S)NS = @ because
h(S) C h(Ry) C Int(R]). Suppose now that R(I';) is connected. Then L(T';) has
two connected components as well as L(Fg) (see again the proof of Claim 2) and the
proof is similar as above: the required strip S € M is defined by S = L; \ Int(L;)
where L7 is the connected component of L(Fg) such that 9y, LF = I's, observing that
S and h~1(S) are contained in two distinct connected components of L(T'5).

Second case : Fix(h) is totally disconnected and CI(FE) \Fg consists of two points
a,b € Fix(h).

In this case one knows that R(I';) and R(F*) are connected with D~ \ Fix(h) =
R(I'y) C R(Fg) = DT \Fix(h) where D (resp. D+) is one of the two discs with frontier
0D~ =14 U{a,b} (resp. DT = FZg U {a,b}). Clearly one also has CI(R(I'y)) = D~ C
Dt = CI(R(T'})). Since Iy NTy = 0 one gets I'; C Int(R(I'})) C Int(DF). It follows
that D* = D} U DJ where D, DJ are two discs such that D N Dy =T, U {a,b},
oDy =TT U{a,b} UT5 and 9D3 = I'J U{a,b} UT;. Recall that TT U|J,.,; 5 is a
connected set such that I c I'T U, 6i C R(F*) It is also disjoint from I'; U{a, b}
because I'; N3 =T5 NoypB; € (T NI U (T; NIy) = 0 for every i € I hence one
deduces that I'T UJ,.; 8 € Dy. In particular 9D~ C DY and, since D~ C DT, one
obtains more precisely D~U|J,.; 8i C Di (actually these two sets are equal but we do
not use this property). It follows that D ¢ D'\ Int(D~) hence {(Ty)Ur(Ty) C DS
Defining S = DJ \ {a,b} one gets a strip such that g, c I(I';) Ur(Ty) C S and
whose boundary components are T'y. It remains to see that S N h(S) = (), which is
casily seen to imply that S is a connected component of L(I';) N R(I';). Remark that
h(I'y) € Int(R(I')) C Int(D;). Up to conjugacy by a suitable orlentatlon preserving
homeomorphism of S?, one may assume that D] is the Euclidean closed unit disc in
R? with a = (0,—1), b= (0,1), I'f = 9D} N ((—00,0) x R), I'; =D} N ((0,+c) x R)
and moreover h(Ty) = {0} x (=1,1). Because [(Ty) C S C S?\ Int(D;") the line T is
oriented from b to a. Moreover h reverses the orientation hence h(S) lies locally on
the right of h(I';) oriented from h(b) = b to h(a) = a. Writing A for the left half of
D, that means for the disc with frontier A = I'f U {a,b} U h(T'y) and included in
Dy, one gets afterwards h(S) C A\ (I'f U{a,b}) because h(S)NTT = h(SNA™YTY)) C
h(D* N Int(L(FE))) = (. In particular h(S)NS =0 (see Fig. 5.8).

Third case : Fix(h) is a circle.

Suppose for instance 8, C M;. Working in the one point compactification of M,
one checks similarly as in the first case that there is a strip S € M; with frontier
Op S =T, LTS which contains [(T; ) Ur(I'y). Then h(S)N S = 0 because h(M;) = Mo
and it is easily seen that S is a connected component of L(I'y) U R(FE).
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Figure 5.8 — h(S) N S = ) [second case]

e As a second step we show that 8, € r(T'y).
Suppose B, ¢ r(I'y) and therefore 8, C Int(R(Fg)). According to Propositions
5.4-5.7 there exists ¢’ € E such that r(e’) = 8. Since e C I'y one has T'y X T'Y =

B
Iy < I’E* =T, < T and consequently R(I';) C R(TY), ie., L(T'}) C L(T 5)- Because

¢ C B C Int(R(T'})) and because I';;,T'; have no transverse mtersectlon one knows
that I}, C R(I';). Following Proposition 3.3 one has either R(T'};) C R(I'y) or L(F:)

R(Ty). 1f R(F+) C R(T'y) then I'y < T'} < T4. Furthermore I'}; # '} because ¢’ ¢ I';
Wthh contradicts the fact that the L- mterval (5, T%) is empty (Proposition 5.14).

BB
If L(T}) € R(I'}) then
L(T)) CRTHNL(Ig) =SU{Bi|iel} CB.

One knows that any connected component of L(I'},) intersects its image under h? and
consequently is included in S because each brick f; satisfies h?(3;) N B; = 0. Hence
one obtains h~1(L(I'})) ¢ L(T')) S which contradicts h(S)N S = 0.

e We check finally that S = {g.} C B.

One has g, € l(F;) NnrTy) C I(T'y) Nr(I's) hence Claim 1 gives f, € 3 and then
75, C Ty =T5 and 75 C F; = F+ More precisely v, C Ty because e C v, NIy and
furthermore 75 C Ty due to S e r(Ty). Afterwards one deduces from I'; N F; =
that 7, =T, and yg* =I'J, thus proving S = . C M.

One can end now the proof of Claim 3. One knows that two distinct equivalent
bricks are not adjacent hence 3, N B; = 0 for every ¢ € I and therefore RT U 8, =
R(T5)UBUU;c; Bi is a connected subset of R(I';) satisfying dar(RTUS,) = T'f Uy =
[y = 0yR(T}). This implies R* U 3, = R(I'}) and, as subsets of B, one has then

B B
R(T3)NL(T,) = R(T) \ R(Ty) = {#:} U{B;|i € I}. Claim 3 is proved. O

[f Ty NTy =0 Claim 3 gives R(T;) N L(I';) = {Bi |1 € [JU{B} C 3 and we are
done. Otherwise I'; NTJ contains at least one edge of. Except if af, =T, =T, one
finds as for '] and I'] a sequence (/B;) jeg of bricks equivalent to 8, where J is a non

empty Z-interval, such that

Ly =@ ntHul oy and T3 =@ nrHul )
jeJ ’ jed
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For convenience we also allow J = 0 iff T', = F; and if this line of M consists of a
single edge. Let us define

R=r"ulJp; =Ry ul Jaul]s)

jeJ iel jeJ

Then R has the same number of connected components as R(I';) and R C R(F;;).
Moreover, again because any two distincts bricks of B are not adjacent, one has
O R =T5 = 0y R(T). Therefore one gets R = R(T'}) and it follows that

R(T$) N L('5) = ROCH\ R('5) = {4 i€ NU{B, | je sy C B
which completes the proof of Proposition 5.15. O

By definition of the equivalence relation ~ on B one can let F;I = FE and Fé =Ty

for every 5 € B. The union of common edges of Fé and FE and of the bricks equivalent

to [ is a closed subset of M denoted by CE and called the equivalence chain of 3.
Proposition 5.15 tells us that Cg has at most two connected components. Precisely
Cs has as many connected components as R(Fé) (or R(Fg)).

If 3 is an annulus then C3 = 3 and one has FE = ygf and Fé =5

If 5 is a strip then the connected component of CE containing (3 is reduced to 8
and 75 (resp. 75) is a connected component of Fé (resp. FZ?F) If moreover Cj is
connected then C5 = 8 and I'; = 75, Fg = Pyg.

If 5 is a disc or a half-plane the sets F% and Fé have at least one common edge
which contains the final vertex and/or the initial vertex of 3 if any. Furthermore one
has VE:Fgﬂﬁ andvﬁ_:lgﬂﬁ.

One foliates now naturally each brick g € B as it is already explained in [L.C05,
page 40] (except for the case where 3 is an annulus, which does not appear in [LC05]).
Any disc 8 € B is foliated by a continuous family (vg)te[,l,u of segments having
endpoints v_(5),v+(f) and intersecting pairwise only at these common endpoints
(see Fig. 5.9 or [LCO04, page 245]). Any half-plane 8 € B possessing an initial (resp.
a final) vertex v_(8) (resp. v4(fB)) is foliated by a continuous family (’Yfg)te[—m] of
half-lines with endpoint v_(3) (resp. v4(8)) and intersecting pairwise only at this
common endpoint. Note that in these cases the word “foliated” is used slightly
abusively because of the local picture near vy (5). Any annulus 5 € B is foliated by
a continuous family (Vé)te[fl,l] of circles and any strip 8 € B is trivially foliated by a
continuous family (ﬁ)te[—l,l} of lines of M. Whatever is the topology of 3, the above
parameterizations by t are choosen so that 751 = 75 and = VZ;. Given 3 € B,
remark moreover that there is a unique way to orient each ’Yfa so that (’Yf;)te[—l,l] defines
an oriented topological foliation of 8 compatible with the orientation of vﬁi C X given
by Propositions 5.4-5.7.
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Figure 5.9 — The quasi-foliation in a disc g € B.

For every 8 € B, the sets Fé and F%‘ are Brouwer manifolds of i so we have
h(Fé) C Int(R(Fé)) and h_l(F%) C Int(L(F;A’)).

Then we can also assume that the family ('Vg)te[—l,l] is chosen in such a way that

) tel[-1,-1/3] = h(’yfg) C Int(R(Fé)),

*

te(1/3,1]=h"1(vj) C Int(L(F;A“)).

As a remark, note that if 8 is compact (an annulus or a disk) then this assertion
follows simply from a suitable parameterization by ¢. If 3 is a half-plane or a strip, this
also requires a more careful construction of the family (vg)te[,u] in the neighborhood
of the points of Cl(g) \ 5 C Fix(h). Details are left to the reader.

According to [LC04, Lemma 4.1], there exists a family (ug) 3 of increasing

pe
homeomorphisms of [—1,1] such that if {’,3"} C 8 and g’ < p” then pg/(1/3) <

pe(—1/3). Clearly if B= {B} then one can simply choose ug = Id|_; ;). Let us define

F’fﬁ = <F§ N Fg> U Aygf’l(t).

p'ep
Remark 5.1. It is easily seen from the proof of Proposition 5.15 that, given 8 € B,
all the sets F% are homeomorphic (—1 <t < 1). In particular this implies that the
Brouwer manifolds Fé = Fél and F;}i = 1% have the same type. Moreover if Fix(h) s
totally disconnected then the set CI(F%) \ F% does not depend on t.

Lemma 5.13. Let T' be a Brouwer manifold of h. Let A C M satisfying the
following conditions:

a) A s closed in M and homeomorphic to T’

b) A c L(I"), i.e., Int(R(T")) C M\ A;
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c) If Fix(h) s totally disconnected then CI(I')\T' = CI(A)\ A. If Fix(h) is a circle
(which implies that T has type 3) then A has a connected component in each
connected component My, My of M.

We define £(A) (resp. R(A)) to be the closure in M of the union of the connected
components of M\ A which are disjoint from (resp. which meet) Int(R(T')). Suppose
moreover that
d) £(A)UR(A) = M and £(A)NR(A) = A. Furthermore £(A) (resp. R(A))
has the same number of connected components as L(T) (resp. R(T)).

e) A satisfies the following Property (£ —*R) :
hHA) € Int(L£(A)) and h(A) C Int(SR(A)).

Then A is a Brouwer manifold of h with the same type as T' and furthermore
R(T) C R(A) =*R(A) and £(A) = L(A) c L(T).

Remark 5.2. i) Suppose that Fix(h) is totally disconnected. If T has type 1
or 2, or has type 3 with jj(Cl(F)\F) =2, then CI(T") is a circle and one knows
from the proof of Proposition 5.1 that L(T") = Clps(U\Fix(h)) = CI(U)\Fix(h)
and R(T") = Cly(V\Fix(h)) = CI(V)\Fix(h) where U,V are the two connected
components of S? \ CI(T). Assumptions a),b) and c) then show that Cl(A)
is a circle contained in C1(U) hence the connected components of S?\ CI(A)
can be named U', V' with U' Cc U and V C V'. According again to the proof
of Proposition 3.1 one has Int(R(I")) =V \ Fix(h) € V' \ Fix(h). Combining
with Lemma 5.2 one obtains £(A) = Cly (U’ \ Fix(h)) = CI(U’) \ Fix(h) and
R(A) = Cly (V' \ Fix(h)) = CI(V') \ Fix(h). Ones deduces immediately that
d) holds true, thus showing that d) is actually a consequence of a),b) and
c) wn these cases. It is easy to see that the same is true when Fix(h) s
a circle, so that the assumption d) is actually useful only when Fix(h) is
totally disconnected and ﬁ(Cl(F) \ F) =1.

ii) Assumption d) also implies Oy L(A) = A = IyR(A) as well as L(A) =
Cl(Int(£(A))) and R(A) = Cl(Int(R(A))). Moreover Int(L(A)) (resp. Int(R(A)))
is the union of the connected components of M \ A which are disjoint
from (resp. which meet) Int(R(T)). For instance the reader is referred to
“(i) + (ii) = (iii)” en the proof of Proposition 3.1.

iii) Suppose that the four conditions a)-d) hold true and moreover that h(R(A)) C
Int(MR(A)). Then one has h(A) C h(R(A)) C Int(R(A)) and

L(A) = M\ Int(R(A)) € M\ h(R(A)) = h(Int(L(A))).

This implies h=1(A) € h=Y(L(A)) C Int(L(A)) hence A satisfies the condi-
tion (£ —R).
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iv) The reader should keep in mind that the definition of £(A) and R(A) also
mwvolves T’ althought, for simplicity, this does not appear in the notation.
The considered Brouwer manifold T' will be unambiguously specified every
time we use Lemma 5.15.

Proof. We first show that A is a Brouwer manifold with the same type as T.

e We begin with the case where Fix(h) is totally disconnected and I' is a Brouwer
manifold of type 1 or 2. Assumptions a)-e) tell us that CI(A) is a circle separating
h(A) and h71(A) in S2. One constructs as in Case 1 (resp. Case 2) of Proposition
5.10 a topological embedding ¢ : O — M defined on O = R?\ {(0,0)} (resp. O = R?)
such that A = p(S!) (resp. A = ({0} x R)) showing that A is a Brouwer manifold
of type 1 (resp. type 2).

e Suppose now that Fix(h) is totally disconnected and T' is a Brouwer manifold
of type 3. Then A has two connected components A; and As which are two disjoint
lines of M. One needs to study separately the two following situations.

1. The set CI(I") \ T is reduced to a single point a € Fix(h).

Then CI(I') =T U {a} and CI(A) = A U {a} are both homeomorphic to the figure
eight curve. It is equivalent to show that A is a Brouwer manifold for h or for h~!
hence, changing the roles of h and ™!, one may suppose without loss that R(I') has
two connected components Ry and Re. Assumption d) tell us that SR(A) also has two
connected components $R; and fRy. Even better, it is not difficult to deduce from
the hypothesis A ¢ L(T') and from 9y9R(A) = A that (possibly after switching the
names of Ry and Ry) one has R; C R; for every i € {1,2}.

One knows that h(R;) C R; hence h(R;) C h(9R;) NR; for every 1 < i # j < 2. This
together with

R, N h_l(aM%j) CR;N h_l(A) C RN Int(S(A)) =

implies h(R;) C Int(R;) for every 1 <i # j < 2 and consequently h?(FR;) C h(Rz) C
Int(R1). We now define V = Int(R;) \ h?(R1). Then the set V satisfies the following
properties:

- h(Ag) CV,

-R2(V)NV =0 and h(V)NV C ReNRy = 0.

One constructs as in Case 3 of Proposition 5.10 a topological embedding ¢ : O — M
with O = {(z,y) € R? | y # 0} and A = o(({0} x R)N O) showing that A is a Brouwer
manifold of type 3.

2. One has CI(I") \T" = {a, b} with a # b in Fix(h).

Let A; and Ay be the two connected components of A. One knows that R(A) =
D\ Fix(h) where D is one of the two discs bounded by the circle CI(A) = A U {a, b}.
According to e), this circle separates h=!(A) and h(A) in S? hence one deduces h(A) C
(D) C Int(D)U{a,b}. Let us write < for the cyclic order around a naturally induced
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by the counterclockwise orientation of S2. Possibly after changing the names of A;
and Ay, the fact that h reverses the orientation implies Ay < h(A1) < h(A2) < Aj.
Iterating h, one obtains h(D) C Int(h*~1(D))U{a, b} C Int(h?(D))U{a,b} C Int(h(D))U
{a,b} C Int(D) U {a, b} with the following cyclic order around a:

As < h(A1) < h3(Ag) < B3 (A1) < h*(Ag) < hH(A1) < h3(Ag) < h?(A1) < h(Ag) < Ay

Then the set C = A UA?(A1)U{a,b} is a circle disjoint from h=2(A;) and one can let
W to be the connected component of S?\ C which is disjoint from h=2(A;). Because
C ¢ D and h™3(A1)Nn D = § one gets W C D hence h(W) U h?(W) C D. This
together with the cycle order as above implies that W N h(W) =0 = W N h%(W) and
h(Ag) C W. As in Case 4 of Proposition 5.10 one can construct now a topological
embedding ¢ : O — M, where O = {(z,y) € R? | y # 0} and A = go(({O} x R)N O)
which shows that A is a Brouwer manifold of type 3.

e Suppose finally that Fix(h) is a circle. Then the proof works similarly as in the
case where Fix(h) is totally disconnected and T" is a Brouwer manifold of type 3 with
#(CUT)\T) = 1. Details are left to the reader.

Thus we proved that A is a Brouwer manifold and it remains to explain why
£(A) = L(A) c L(T') and R(A) = R(A) D R(T"). Let U (resp. V) be any connected
component of M\ A meeting h=1(A) (resp. h(A)). Recall that each set Int(£(A)) and
Int(PR(A)) is the union of some connected components of M \ A (see (ii) in Remark
5.2) hence the assumption e) gives U C Int(£(A)) and V C Int(R(A)). Using (iii) in
Proposition 3.1 one deduces Int(L(A)) C Int(£(A)) and Int(R(A)) C Int(PR(A)) and
afterwards L(A) = Cl(Int(L(A))) C Cl(Int(£(A))) = £(A) and R(A) = Cl(Int(R(A))) C
Cl(Int(R(A))) = R(A). Because L(A) U R(A) = M = £(A) UR(A), it follows that
£(A) = L(A) and R(A) = R(A). Ttem (ii) in Remark 5.2 also gives Int(R(T)) C
Int(R(A)) and R(T') = Cl(Int(R(T))) C Cl(Int(R(A))) = R(A) = R(A), which implies
L(A) c L(I"). This ends the proof of Lemma 5.13. O

Proposition 5.16. Let § € B. For every t € [—1,1] the set th 1s a Brouwer
manifold of h with the same type as F;g. Moreover the names L(F%) and R(th) are
consistent with the orientation of F% , that means that L(F%) (resp. R(th) ) lies
locally one the left (resp. right) of F%.

Proof. 1t is already known that Fél = Fé and F% = F% are two Brouwer manifolds
with the same type hence one can assume ¢t € (—1,1). For simplicity we write I'*t
and I'! instead of respectively F%f and F%. One applies Lemma 5.13 to the Brouwer
manifold I' = I'” and to A = I't. It is not difficult to check that the four conditions
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a)-d) in Lemma 5.13 are satisfied. Observe moreover that

wr)=rrHul) |J 4 and gl = ol U

bease[_lvﬂ beﬁ SE[tl]

which implies in particular 9y, £(T') = T't = 9y R(I'") (this is also known from Remark
5.2).
It remains to prove the so-called Property (£ —fR) in e) of Lemma 5.13, that
means
AT C Int(R(TY)) and A~ 1(TY) € Int(L(TY)).

As a preliminary result, let us observe that h(I'*) NT? = (. Indeed I'* = (" NT'T)U
Uses 7t and one knows that h='(I) € Tnt(L(I™)) C Int(€(")) and h(I~) C
Int(R(I'")) C Int(9R(I)). Furthermore if 8, 8" € 8 are such that
0 £ h( Oyl @ cngnn g

then one gets ug,,l (t) > —1/3 and ug,l (t) < 1/3 because of the property (x) for the pa-
rameterizations of (75 )ie—1,1) and (vgu )re[1,1- Equivalently pg.(=1/3) <t < pg(1/3).
On the other hand it follows from h(3”) N 3" # @ that 8” < ' which contradicts the
property of the family (us/) gich
One concludes as expected that h(I'*) NIt = @ for every t € [—1,1].

e We first consider the cases where § is an annulus or a strip satisfying CE =4

given by Le Calvez’s lemma ([LC04, Lemma 4.1]).

(they are the only situations where CE = f).

One has then I'¥ ¢ 8. One knows from Proposition 5.15 that R(I'") = R(I'") U B
or, equivalently, that L(I'") = L(I'") U 8. Using Items (iv)-(v) of Proposition 3.1 one
obtains

h(B) C M(R(I')) c RTT)=RTHUB and h1(B) c h H(L(I7)) c L(T™) = L(I')Ug.
Recall that h(8) N = () hence
(I Cc h(B) c RI™) c R and A YTy) c R Y(B) c L(I'Y) c &)

and consequently, since h(I') is disjoint from I' = 9y R(TY) = 9y L(T"), one gets
R(T?) c Int(R(T?)) and A~ H(T?) C Int(L(T?)). This shows that T satisfies the condition
(£ —R) and therefore it is a Brouwer manifold of h with the same type as T'F, that
means with type 1 (resp. type 2) if 8 is an annulus (resp. a strip satisfying Cs= B).

e We exclude from now on the above simple cases, in other words we suppose
B & Cy

We write I“jE for the connected component of I't containing wﬁi As usual Fi
denotes the other connected component of I't if any and otherwise I's = I'f = I't.

A similar convention is used for T'* =T UTY with 76 e .
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Given i € {1,2}, remark that if T; and T'; intersect then they have at least one
common edge a with also o C T'%. It follows that

h(a) C R(TH N R(TT) C R(TYH NInt(R(I)) € A(ITY) N Int(R(TY)).

Since h(T%) C h(T?) is disjoint from I'* = 9y PR (T?) one deduces that the connected set
h(T't) is included in Int(PR(T'?)). Similarly A71(a) € A71 (T NInt(L(TY)) and afterwards
R=H(TY) C Int(L(T)).

As an immediate consequence of the above remark, the condition (£ — fR) is sat-
isfied when T'; NI} # 0 for every i € {1,2}, in particular when I'* are connected.
Note that I'* and I't have then the same type because they are homeomorphic.

It remains to consider the situations where I'* are not connected and I' NT; =0
for at least one index i € {1,2}.

First case : T{ NT{ =0 and Ty NI # 0.

In this case, the brick 3 is a strip containing T with dyf8 = 75 U 75 =T, ur!
and one already knows that h(T%) C Int(R(T?)) and r~1(T%) C Int(L£(TY)). Tt is also
known that the connected sets h®(T%) are disjoint from 9y R(T?) = I't = 9y, L(T)
hence, in order to prove that the condition (£ — fR) holds, it is enough to show that
R=H(TY) N L(TY) # 0 and h(T'Y) NR(TY) # 0. One has with Proposition 5.15

(x) AT ChRIY)CRIY)=RI)U (.
BeB

Clearly h(I'}) N B C h(B) N B = 0. Let us show that there is no brick g’ € 3\ {6}
satisfying h(I}) c B. This is certainly true if Fix(h) is totally disconnected and
#(CUI*)\I'*) = 2. Indeed, on one hand Cl(h(I')) \ A(I'") = CII') \ T* = CIT*) \ T'*
and on the other hand one deduces from I'; NI’y # 0 that every brick g’ € B \ {B} is
either a disc or a half-plane and therefore accumulates on at most one fixed point.
Assume now that Fix(h) is totally disconnected and CI(I'*)\I'* = {a}. Then CI(I'}) =
I'Y U{a} is a circle and, because Tt ¢ 8 = I(I'[) N r(I']), each of both discs Dy, Dy
bounded by CI(T%) contains at least one connected component of R(I'") or of L(I'").
Arguing by contradiction, suppose that h(I'}) C 8’ for some brick 3’ € B \ {5} which
is necessarily a half-plane accumulating on a. Then for every i € {1,2} one has
Oh(D;) = h(TY) U {a} C B U{a} = CI(B). Since CI(#') is a disc, it follows that
there exists ¢ € {1,2} such that h(D;) c CI(8’). Thus S’ contains the h-image of
a connected component of R(I'") or of L(I'") which contradicts r?(8")n g = . If
finally Fix(h) is a circle then one can compactify each connected component M,
My of M with one point and the same arguments as in the previous situation also
work. This proves that in every case h(I) ¢ f' for all §’ € B\ Recall furthermore
that the bricks in 3 are pairwise disjoint hence one deduces from (x) above that
0 #h(T) NRIT™) C () NRTY.
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One obtains similarly from

(e)  RTNTD) CATHLT) c L) = LU | 8.
BB
that h=1(T'}) N £(I't) # . Thus the condition (£ — 2R) holds true and T is a Brouwer
manifold of type 3.
Second case : T'T NT{ #0 and T3 NI = 0.

One knows that the strip with frontier I'; UI'] and containing [(T'; )Ur(I'J ) actually
consists of a single brick 3, € 3 (see Claim 3 in the proof of Proposition 5.15) hence
one reduces to the first case replacing g with fj,.

Third case : One has T NT; =0 for every i € {1,2}.

For convenience we rename § = ;. Then for every i € {1,2} there is a brick s;
which is is a strip with frontier 0y,5; = Vg, U 75 =TI ul'; (for i = 2 this requires
again Claim 3 in the proof of Proposition 5.15) and one has B 61 Po = {p1, B2}
Let us show that A(I'Y) C Int(PR(T?)) and A= H(T%) C Int(L(I?)). Since h(T?) is disjoint
from I'* = 9y, £(T?) = 9 R(I), one of the following situations occurs:

1. A(TY) C Int(R(IY)) and A~ HTE) C Int(L(TY)),
2. h(T%) C Int(L£(T)),
3. A7 HTE) C Int(R(TY)).

Let us prove that actually neither (ii) nor (iii) occurs.

- Suppose first that (ii) holds. For every i € {1,2} we denote by S; the strip
included in §; and with frontier 9p,S; = T UT, in other words S; = Use[t’l} I's. Note
that S; U Se = R(I'M) \ Int(R(T")) whether Fix(h) is a circle or a totally disconnected
set and, when Fix(h) is totally disconnected, whether C1(I'*) \ I'* has cardinality one
or two. Our aim is to prove that h(S2) C Int(S7) and afterwards it will be shown that
this inclusion lead to a contradiction.

Since Ty, € R(I'Y) € R(I'M) one gets h(T'%) C Int(R(CT)) \ R(T) = ( ) LI Int(Ss)
and more precisely h(I'y) C Int(S;) because h(I'L) NInt(Sy) C h(B2) N P2 =

4 Suppose also that Fix(h) is totally disconnected and CI(I'F) \ I'* = {a,b} with
a # b in Fix(h). Recall from the proof of Proposition 3.1 that R(I'") = D™\ Fix(h)
where D~ is one of the two discs bounded by the circle CI(I'") = I'" U {a, b} and
let W=pUD"U Use[_l’t] I'5. In other words, W is the disc bounded by the
circle CI(I'] UTY) =T UTY U {a,b} and such that R(I'") € W. One knows that
h(T%) C Int(Sy) C Int(W) hence, up to conjugacy by an orientation preserving
homeomophism of S?, one can assume that W is the Euclidean closed unit disc in
R? with a = (0, -1), b= (0,1), I'f =0WnN((—o00,0)xR), T, = 0W N ((0, +00) x R)
and h(T'y) = {0} x (—1,1). By construction, the strip S lies locally on the left
of T C OS2 and So N W = I'y hence Ty is oriented from b to a. Because h

reverses the orientation, h(Ss2) lies locally on the right of h(I'}) oriented from
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h(b) = b to h(a) = a. Since moreover h(S3) NT{ C Int(R(T'*)) NI+ = @ one
obtains h(S2) € Wi \ CI(T') where W, = {(z,y) € W | < 0}. Furthermore
h(I't) C Int(S;) separates I'Y and I'] in S; C W and therefore I'Y ¢ W\ W,. It
follows that Int(W,) C Int(S1) which implies h(S2) C Int(S;) (Fig. 5.10).

b

h(Sy)

s
Figure 5.10 — The situation (ii) when §(CI(I'*) \ ') = 2

¢ Suppose next that Fix(h) is totally disconnected and that §(CI(I'*)\I'*) = 1. We
first deal with the case where R(I'") has two connected components, denoted
by R; and Rj. Then the set R(I'") (resp. PR(I?)) also has two connected
components R, and Ry (resp. R} and 9}) which can be numbered so that
R; C ! C R} for every i € {1,2}. In this case one has S; = R;"\ Int(9R!) for every
i € {1,2}. One knows from the proof of Proposition 3.1 that h(R;") C Int(R;) and
h(R]") C Int(R}) for every i # j in {1,2}. One has then ) # h(R;) C h(Ry)NR; C
h(RE) NRY. This together Ay h(RE) NRE = w(Th) NRE C Int(L(TY)) NR(IT) =0
implies R} C Int(h(RL)). Hence one obtains as announced h(S3) = h(Ry) \
Int(h(R)) C Int(R]) \ R} = Int(S1) (Fig 5.11).
Let us study now the case where L(I'") has two connected components, denoted
by Ly and L;. Then £(I') (resp. L(I'")) also has two connected components
£t and £ (resp. L] and Ly ) with L c £/ c L; for any i € {1,2}. Recall that
h™N(L;) CInt(L;) and h~ (L) € Int(L)) for 1 < # j < 2. In this situation one
has S; = €1\ Int(L;). One deduces from A(I'y) C Int(£(I")) = Int(LY) U Int (L)
that (') C Int(L}) since otherwise h(T'%) C £} and therefore

0 #n(Th)NLy Ch(Ly)NLy =h(Ly Nk~ (Ly)) Ch(Ly NLT) =0

which is absurd. Now A(I'}) C Int(£}) implies that h(£L) C Int(£L) or M \
h(Int(£L)) C Int(LY). The second inclusion is equivalent to M\Int(£5) C h=(Int(LL))
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Figure 5.11 — The situation (ii) when #(CI(I'*) \ I'F) = 1 and R(I'*) has two connected
components

hence it implies
Iy, ¢ M\Int(Lh) c h (L)) c h (L)) € Int(Ly)

which is certainly not true. Then one obtains h(£h) C Int(£!) and it also follows
that
h(S2) = h(L5) \ Int(h(LF)) C Int(Lh) \ LT = Int(S).

¢ If Fix(h) is a circle then one obtains h(S2) C Int(S;) similarly as in the previous
case where I't accumulate on a single fixed point. Details are left to the reader.

Thus it has been shown that if (ii) holds true then one always has h(S2) C Int(S7).
Since the foliation % is trivial in Sy, there exists a segment v C S joining a point
z; € TY and a point x4 € I'y such that v\ {z;,24+} C Int(S2) and v intersects the
leaf T§ transversely at only one point for every s € (¢,1). We also join a point of T'{
and h(zy) by a segment v and a point of I'} and h(z;) by a segment ~2 such that
Y* =y Uh(y)Urye C S is a segment. As a remark, h(I'y) and h(T%) are arranged in
Int(S7) as pictured on Fig. 5.12, that means that h(Ty) separates I'f and h(T'%) in
Si. This simple property is left to the reader because it is not used in the rest of the
proof.

We construct now a continuous map 1 : v* — ~* as follows. For each m € ~*
there exists a unique s € [t,1] such that m € I'j. Because the set I'; N~ consists of
a single point, we may define ¢(m) to be the point in A(T'§ Nvy) C h(y) C 7* (see
Fig. 5.12). Tt is not difficult to check that v is continuous hence there exists m € v*
such that ¢(m) = m. This implies h(I5) NT; # 0 where m € I'], a contradiction with
h(I'*) NT* = (. This proves that the situation (ii) cannot occur.

- Suppose now that (iii) holds. Consider the strip S; C 3; with frontier dy;S; =
I UT? (i € {1,2}). By switching the letters R(-) and L(-), the letters 9(-) and
£(-), the homeomorphisms h and k™!, the same arguments as above arguments give
h=1(Ss) C Sp (see Figs. 5.13 and 5.14) and then there exists s € [—1,¢] such that
h=Y(%) NT* # () which is again a contradiction.
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h(I'3)

Il h(Tf) hI5)  TY

Figure 5.12 — The construction of the map

NS,y

s

Figure 5.13 — The case #(CI(I'¥) \ T'F) = 2

Figure 5.14 — The case $(C1(I'*) \I'*) = 1 and the set L(I'*) has two connected components

This proves the property (i), that means h(T%) C Int(R(I'Y)) and A~1(T%) C
Int(£(T?)). Clearly the same inclusions are still true with I'} instead of I'y which
shows that Property (£ — fR) holds and therefore I'* is a Brouwer manifold.

Finally the assertion about the orientation of I'* and its two sides L(I'!) and R(I'?)
is direct consequence of L(I'*) = £(I'") and R(I'*) = R(I?). This ends the proof of
Proposition 5.16. [l
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Proposition 5.17. For every 3,5 € B andt,t' € [—1,1] the two Brouwer manifolds
F% and Fg\, have no transverse intersection.

Proof. The result is clear if B = 3’ Let us consider the case B + B’ Observe first that
the two sets L(T' 6) and L(T 5 ~ ) are disjoint in B iff they are disjoint in M hence we do

not need to specify the reference set B or M when we write below that L(Fﬁ) N L(F@)
is empty or not. Similarly for R(FB) NR(T P ~) and L(F;) N L(F;) and R(F%) N R(F;ﬁ,).
CrAamM 1. One has

. R(F )N R(FA) =0 iff R(r+) N R(r+) 0,

ﬂ) = szL(F;)mL(F;) = .

Proof. We only prove the first assertion since the second one can be obtained in
the same way by switching the letters [(-) and r(-), the letters R(-) and L(-) and the
symbols + and —. If R(F;I) ﬂR(F%‘) = () then also R(Fg) ﬂR(Fé) = () because Fé < F/;':
and F = F+ Conversely, suppose that R(FA) N R(FA) = (). Using Proposition 5.15

one gets

e L") NL(T

R(F%)OR(FE):(( () N LTr5)) U (R (Fi)ﬂR(PA)))ﬂ
(Rr+ )LL) U (RITE) NR(T)))
= (BnpF)u(BnR( 1“+ mR(Fﬁ))u(ﬁ’mR( B\)mR(Fé))u
U(Rr+ mR )ﬂR(F;)ﬂR(F ).

By hypothesis one has 3N 3 = § = R(Fg) N R(Fé) N R(F%) N R(Fé). Using again

Proposition 5.15 one also has 3 N R(F/JBII) N R(Fé) C l(Fﬁ) N R(T /8/) and this latter
set is empty (as a subset of B) because otherwise there exists an edge o C Fé such
that I(«a) € R(Fj) and then r(a) € r(l“[;) N R(Fj) C R(FA) N R(T ) = ( which is
absurd. One gets likewise 3’ N R(F+) N R(FA) C l(F )n R(F ) = @ which proves

R(r;) N R(F*) 0. O

- = ) = t t t ¢
If L(Fﬁ) N L(I‘Bl) 0 then I‘ﬂ C L(I‘ﬁ) C L(Fﬁ) C R(F ) C R(I‘ﬂ) hence Fg and

/ . .
I' have no transverse intersection.

- If R(T ﬁ) N R(T ﬂ) ¢ then by Claim 1 R(F;) N R(T E) = () and therefore F; and
F%, have no transverse intersection because F% C R(Ftﬁ) C R(F;:) C L(F;:) C L(F;/)

- It remains to study the situation where R(Fé)ﬂR(Fé) # () and L(Fé)ﬂL(FB,) # (.
One has the following result.
CrLAIM 2. Suppose that R(Fé) R(T ) # 0 and L(T )m L(FA) # 0. Then the four

Brouwer manifolds I‘é, F;}f, I‘é{ and F;}II are pairwise compamble
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Proof. - One already knows that FB < F; and FA < F;,

- One also knows that the Brouwer manifolds FB and Fé have no transverse

intersection. Then combining Proposition 3.3 with our assumption R(Fé) N
R(T ) # 0 # LT ) N L(FB> one obtains that either R(T 6) C R(Fﬂ) or L(Fg)

LT ) that means I'-<T'Zorl'>= <TI'%.
B B B B’ B

- One has 0 # R(FA) N R(Fﬂ) C R(Fﬁ) N R(F+) hence R(Fﬂ) ¢ L(FE/ ) in B and
moreover, with Clalm 1,0# L(F%)HL(F%) - L(Fﬁ )ﬂL(F;) hence L(Fé) ¢ R(I%LI)
in B. Since Fé and F; have no transverse intersection, the above observations
together with Proposition 3.3 imply that R(FA) C R(F;}r) or L(Fﬁ) C L(F;)

Fg = FE/ or F; =< FB. Reversing the roles of B and ' one checks likewise that

Fé{ and F% are comparable.

- Finally L(FZ}I) ﬂL(F%,) #0#RIC)NR(T) C R(F;) mR(rﬂ also imply L(I ﬁ) 4
R(F;{) and R(Fg) Z L(F;{) in B. Using one more time Proposmon 3.3 with the
fact that F;: and F;{ have no transverse intersection, one deduces that R(F%) C

R(FE/) or L(F;I) C L(F;I,). Equivalently F;I = P;II or FE/ = Fg.
This completes the proof of Claim 2. O
Recall that the £*-intervals (Fé,l“g) and (Fén F;{) are empty (Proposition 5.14)
hence Claim 2 shows that either F; = Fé or F%“/ =< Fé. The first inequality implies
that F% C R(Ft) C R(F+) C R(F ) C R(Ft ) and then F% and F%/, have no transverse
intersection. The second mequahty gives likewise F% C R(F%) hence again F% and

Ftﬁ have no transverse intersection. Proposition 5.17 is proved. O]

At this stage we have built a family (F%) seB,ie[-1,1) of Brouwer manifolds which
have pairwise no transverse intersection and which cover M. Moreover the collection
7, of all the connected components of these Brouwer manifolds defines an oriented
topological quasi-foliation of M. Precisely any point z ¢ ¥(D) belongs to a unique
Brouwer manifold F% and .7, defines a foliation in the neighborhood of z. A point
z € ¥(D) \ V may belong to several F% but all of them contain the (unique) edge
passing through z hence .Z, also defines a foliation in a neighborhood of z. It remains

to remove the singularities at the vertices z € V, which is the purpose of the next
Section 5.3.3

5.3.3 Construction of an oriented topological foliation

Following Le Calvez ([LCO04]), it is possible to desingularize the “quasi-foliation”
7, above in order to get an oriented topological foliation of M. The modifications
to perform are already explained in [LLC04] and they are repeated below only for the
reader’s convenience; we just add a few details about non compact edges and bricks,
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which do not exist in [LC04] (similar variations are also implicit in [LCO05]). After
performing these perturbations of .%, we shall show that the obtained foliation .# of
M comes from a family of Brouwer manifolds as mentionned in Theorem 4.1.

An edge « is said to be singular if £*(«) contains a single element; otherwise « is
said to be regular. We know that there are two types of vertices:

- a vertex of the first type is the initial vertex of two edges and the final vertex
of one edge. It is then also the initial vertex of some brick;

- a vertex of the second type is the initial vertex of one edge and the final vertex

of two edges. It is then the final vertex of some brick.

For every a € E, we choose a connected and simply connected open neighborhood
Uy of a in M verifying h(Uy,) C Int(R(T',)) and h=1(U,) C Int(L(T'})). Thus for every
I € £*(a) we get h(U,) C Int(R(T")) and h=1(Uy,) C Int(L(T")). We can also ask that for
any two distinct edges a, o’ € E one has U,NU, # 0 iff o« and o' are adjacent. Next we
choose for every vertex o € V' a connected and simply connected open neighborhood
U, of o included in U,, N Uy, N Uys,, Where a1, ag, a3 are the edges having o as an
endpoint, such that U, meets only the bricks and the edges adjacent to o.

a3

aq (0%}

Ko

Figure 5.15 — The square K, C U, for a vertex o of the first type

e Let o be a vertex of the first type and consider the edges («;)1<i<3 such that o =
vy(an) = v_(ag) = v_(a3), r(ag) = l(az). Conjugating h by an orientation preserving
homeomorphism, one may suppose that ¢ = (0,0) and that K, = [-1,1]> ¢ U, with

- apNK, =[-1,0] x {0},

- s N K, =10,1] x {0},

- asN K, ={0} x [0,1] (see Fig. 5.15).

The edge «; is regular since it is included in at least two manifolds of £*, one of
them containing «s and the other containing a3. Remark also that o is the initial
vertex of the brick g =l(ag) = r(a3).

¢ Suppose that both ay and «as are regular (see Fig. 5.16). We define three

quadrangles T}, T2 and T2 as follows
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- the vertices of T} are (—1,0),(0,0),(0,1/4) and (—1,1/4);

- the vertices of T2 are (—1,1/4),(0,1/4),(0,1) and (—1,1/2);

- the vertices of T2 are (—1,1/2),(0,1),(=1/2,1) and (—1,3/4).
Next we define the following segments

- L) = {=1} x [0,3/4], I_(as) = {0} x [0, 1/4], I_(as) = [~1/2,0] x {1},

- I_(B) ={0} x [1/4,1] and I{ (1) = {—1} x [1/4,1/2].
The segments I (a1), [-(a2) and I_(3) are oriented with y increasing and the segment
I_(a3) is oriented with x decreasing. One foliates the quadrangles 7,7 € {1,2,3}, by
segments oriented with x increasing as follows. The quadrangle T! is foliated by
the horizontal segments, 72 by the segments parallel to the oblique segments and
finally T2 by the segments joining z € IS (a1) to A\s(2) € I_(B8) where A\, : I (1) —
I_(5) is an increasing homeomorphism, called a link homeomorphism. According to
Proposition 5.12 one can construct in each segment I_(«a;),i € {2,3}, a compact set
L_(c;) containing the endpoints of I_(«;) which is isomorphic to £*(«;) as an ordered
topological space. We denote by 0_(«a;) : £L*(a;) — L_(cy;) an increasing isomorphism
between these two sets. Transporting £_(az2) U L_(a3) on Iy(a1) with the foliation
of T} LT3, one obtains an isomorphism 6. (ay) : £*(a1) = L*(ao) U L*(ag) — Lo ()
with £ (a1) C Iy (aq).

I_(Oé3) B Tg
2/ 1-(8)
Iy () e 12
: A I_(a2)
' O- 2
1

(o

Figure 5.16 — The case where ay and a3 are regular

¢ Suppose that as is regular and «ag is singular. Then we consider only the
two quadrangles T} and T2 with their foliations as above (see Fig. 5.17). We let
Ii(a1) = {—1} x [0,1/2] which is oriented with y increasing, the segments I_(a2)
and /_(p) are the same as before and I_(a3) is reduced to the point (0,1). We let
L_(a3) ={(0,1)}. We construct in /_(az2) a closed set £_(a2) containing the endpoints
of this segment and which is isomorphic to £(a2). Then L£_(a3) is transported in
I (a1) by the foliation of T! which gives, after adding the point (—1,1/2), a set
Ly(aq) C I4(aq) isomorphic to £*(aq).

¢ Suppose now that as is singular and a3 is regular. Then the quadrangle T2
and its foliation are the same as in the first case. The quadrangle T2 has vertices
(—1,0),(0,0),(0,1), (—=1,1/2) (see Fig. 5.18). One defines
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Y

a3

a1 o Q2

Figure 5.17 — The case where a5 is regular and «ag is singular

- I+(Oél) = {_1} X [073/4]7

- I-(a3) = [~1/2,0] x {1},

- 1-(8) = {0} < [0,1].
One lets I_(a2) = {(0,0)} = L_(a2) and L£_(«3) is a closed subset of I_(«3) containing
the endpoints of this segment and which is isomorphic to £*(«3). Transporting £_(«s3)
in I (a1) with the foliation of 72 and adding the point (—1,0), one gets a set £, (a1) C
I+ () isomorphic to L£*(ay).

a3

I

xq o ()

Figure 5.18 — The case where a5 is singular and «ag is regular

¢ Suppose finally that both as and ag are singular. In this case, we consider
only the quadrangle 7?2 with vertices (—1,0),(0,0),(0,1) and (—1,1/2). It is foliated
using a link homeomorphism A, (Fig. 5.19). The sets £_(a2) and £_(a3) are reduced
to {o} = {(0,0)} and {(0,1)} respectively. We have £ (a;) = {(-1,0),(—1,1/2)}.
Remark that only two Brouwer manifolds of £* contain «;.

a3

(651 U Q2

Figure 5.19 — ay, ag are singular

It is also convenient to think of T! (resp. T3) as the emptyset when as (resp.
a3) is singular. This allows to write for instance | J,. (123} T! in all cases, avoiding a
cumbersome discussion about regular/singular edges among a9 and as.

e Consider now a vertex o of the second type with the edges («;)1<i<3 such that
o =v_(a1) = vy(az) = vi(ag), r(az) = l(az). Remark that ¢ is the final vertex of
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the brick 8 = l(a2) = r(a3z). As explained in [LCO04|, similar objects as before may
be constructed in this situation. We start from the previous situation and carry out
a symmetry with respect to the vertical axis. Let us explain the construction in the
case where ay and ag are regular (see Fig. 5.20). We also suppose that o = (0,0),
K, =[-1,1?> c U, and

- a1 N K, =10,1] x {0},

- agN K, =[—1,0] x {0},

- asN K, ={0} x[0,1].
Note that «; is necessarily regular since it lies on at least two manifolds of £*, one

of them containing as and the other containing a3. We define three quadrangles T},
T? and T2 as follows

- the vertices of T} are (0,0),(1,0),(1,1/4) and (0,1/4);

- the vertices of T2 are (0,1/4),(1,1/4),(1,1/2) and (0,1);

- the vertices of T2 are (0,1),(1,1/2),(1,3/4) and (1/2,1).

Next we define the following segments

- I (a1) = {1} x [0,3/4], I (ag) = {0} x [0,1/4], [1(a3) = [0,1/2] x {1},

- I (B) = {0} x [1/4,1] and I¢(a1) = {1} x [1/4,1/2].

The segments I_(ay), I+ (a2) and I () are oriented with y increasing and the segment
I_(a3) is oriented with x increasing. For i € {1,2,3}, the quadrangle T? is foliated
by some segments oriented with z increasing as follows (see also Fig. 5.20). One
foliates T} by the horizontal segments, T2 by the segments parallel to the oblique
segments. Finally 7?2 is foliated by the segments joining the points z € I, (8) to
Ao(2) € I¢(aq) where A\, is a link homeomorphism from 7,(8) onto I¢(a;). For
i € {2,3}, one can construct in the segment 7 («;) a closed set £4(«;) containing the
endpoints of I;(«;) which is isomorphic to £*(a;) as an ordered topological space.
We denote by 64 (a;) : L*(ovi) — L4(o;) an increasing isomorphism between these
two sets. Transporting £y (a2) L £ (a3) on I_(a7) with the foliation of T! U T3, we
obtain an increasing isomorphism 6_(aq) : £L*(a1) = L*(a2) U L*(ag) — L_ (1) Where
L _(a1) CI-(a).

e Consider a regular edge o which is a segment, so that it possesses an initial
vertex v_(«) and a final vertex vy («). One constructs a quadrangle T, C I(a) whose
frontier consists of I_(a) U I+ («) together with a segment from the upper endpoint
of I_(a) to the one of I(«) together with the subsegment of « joining the lower
endpoint of I_(«) with the one of Iy (o). We consider the increasing homeomorphism

fa=01(a)o(0-(a))™": Lo(a) = Li(a)

which may be extended to a homeomorphism (again denoted by f,) from I_(a) onto
I_|_<Oé>.
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I (a3)

5 LG %
%] +
B I,(Otl)

(6] g 651

Figure 5.20 — o is a vertex of the second type and «s, ag are regular

The quadrangle T, is foliated by oriented segments, each of them beginning at
some point z € I_(«) and ending at f,(z) € I+(a). We give two examples, the first
one is pictured on Fig. 5.21 where v_(«) is a vertex of the first type and vi(«) is of
the second type; the second example is pictured on Fig. 5.22 where v_(a) and v4(«)

are vertices of the first type.

gu(a)

Figure 5.21 — v_(«) is of the first type and vy («) is of the second type

Figure 5.22 — v_(«) and v, («) are of the first type

e If a regular edge « is a half-line of M, so that it possesses only an initial vertex
v_(a) (resp. a final vertex v;(a)) then one choose a half-plane T,, C I(a) which is
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closed in M and whose frontier 9),T, contains I_(«) (resp. I(a)) together with the
half-line included in o emanating from the lower endpoint of I_(«a) (resp. Ii(a)).
Then T, is foliated by a continuous family of half-lines whose endpoints belong to
I_(a) (resp. to I+(a)) and which are oriented from (resp. towards) their endpoints.
Figure 5.23 describes the foliation of T, in the case where M is connected. In all
cases it is supposed that T, C U,.

fixed points

v_(a) vy (@)

Figure 5.23 — Examples of sets T, when the edge « is an half-line

The set
( U U aMT;) U ( U BMTa> U X(D)
o€V ie{1,2,3} acl
is the skeleton of a new brick decomposition D* of M whose set of bricks is denoted
by B*. Observe that TF € B* and T, € B* for every 0 € V, k € {1,2,3} and o € E.
These bricks are foliated as explain above. By construction, every other brick of B*
is included in a brick 8 € B and every brick 8 € B contains a single brick of B*
different from the T¥’s and the T,’s, which is denoted by Tj, (maybe T = 3 if V5 is
reduced to a single edge). More precisely the bricks of B* included in 8 € B are

- the brick T, for every edge « such that I(«a) = 3;
- the bricks TF, k € {1,2,3}, for every vertex o € V such that there exist two

distinct edges «, o’ included in v, and satisfying v (a) =v_(a’) = o (if any);
- the brick T}, which is always homeomorphic to .

The Tp’s (8 € B) are foliated as follows:

- If p € B is a disc then one foliates the brick T by a continuous family (”Yé)te[—l,l]
of oriented segments joining a point of 7_(3) and a point of I (3) (Fig. 5.24).

- If 3 € B is a half-plane then one foliates the brick T3 by a continuous family
(’Yf;)te[—l,l] of oriented half-lines of M emanating from a point of I_(3) (resp. ending
at a point of I,.(g)) if 8 admits an initial (resp. a final) vertex (Fig. 5.25). If 8 is an
annulus then one foliates the brick T by an family (7%)156[—1,1} of oriented circles.

- Finally if g € B is a strip then T} is trivially foliated by a family (yg)te[_m] of
oriented lines of M.

Let us emphasize that then these leaves 7% C Ty are different from the leaves
72 C (8 considered in Section 5.3.2, except when T3 = . In the current Section 5.3.3,
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Ty

Figure 5.24 — The foliation in T when 8 € B is a disc

) fixed point

Figure 5.25 — The foliation in 73 when 8 € B is a half-plane with an initial vertex

the symbol 7% always refers to a leaf of T as defined above when t € [-1,1]. The
symbols V5 and 7§ denote as before the subsets of 9,4 given by Propositions 5.4-5.7,
so that V5 U 'yg = dy 8. The parameterization by t of any such family (72)156[—1,1} is
choosen coherently with the signs + in Pyﬁi, that means that

vﬁlcﬁM( U TaUU U Tf,) and WéCVE

a€E | aCyy o i€{1,2,3}

where | J, denotes here the union over all the vertices ¢ € V such that there exists
two edges a # o in Vs satisfying v4 (o) = 0 = v_(a’). Moreover the orientation of
'yé is choosen compatibly with the one of vg C ¥ given by Proposition Propositions
5.4-5.7, which defines unambiguously the orientation of each leaf 7% C Tp.

Piecing together the above foliations in the various bricks of B* one gets an ori-
ented topological foliation .% of M. We introduce now some notation in order to
describe conveniently the leaves of .#. We let A = EL B. A sequence (g;);er € Al,
where I is a Z-interval, is said to be admissible if ; (resp. e;1+1) has a final (resp.

initial) vertex and vy (g;) = v_(g;41) for every pair {i,i +1} C I.

- If £ € A has an initial vertex and a final vertex then any leaf in T originates from
some point z € I_(¢) and ends at a point of I () so that it may be concatenated
with a (unique) leaf in some quadrangle szi(a) (k € {1,2,3}) ending at a point
2 e I_(¢') for some ¢’ € A such that v_(¢’) = vi(e). Such a concatenation is
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denoted by &Z and one gets a continuous one-to-one map

Ve I_(e) — U I_(£))

by letting ¢ (z) = 2/

- If ¢ € A has an initial vertex but no final vertex then we define 7 to be the leaf
in 7. originating from z € I_(e).

- If ¢ € A has a final vertex but no initial vertex then any leaf in 7. ends at
some point of I;(e) and may be concatenated with a (unique) leaf of Tf+(6) for
some k € {1,2,3} which ends at a point z € I_(¢’) for some & € A such that
vy(e) = v_(¢’). This concatenation is denoted by &Z.

Thus any leaf F of .# may be described in one of the two followings way:

- F= 7% C T for some t € [-1,1] and some 8 € B which is an annulus or a strip.

- F =11, 62 where (g)icr is an admissible sequence of at least two elements of
A and (z;);er is a sequence of points in M satisfying some natural connection
assumptions which we detail now. If I is unbounded from below then it is simply
asked that z; € I_(g;) for every i € I and v, (z;) = zi41 for every pair {i,i+1} C I.
If I is bounded from below then there are two situations. Letting ig = min I, it is
first possible that ¢;, has no initial vertex; then it is required that z; € I_(g;) for
every ¢ € I'\{ip} and z;, = zj,+1 and ¥, (z;) = zj4+1 for every pair {i,i+1} C I'\{ip}.
It is also possible that ¢;, possesses an initial vertex; then I is a finite set, say
I = {ig,i1,--- ,ix}, and one has z; € I_(g;) for every i € I and ¢, (z;) = 241 for
every pair {i,i+ 1} C I as well as v, (2;,) = z;,, which implies that F" is a circle.
In this last case, one could also describe F' by taking I = Z and by considering
periodic sequences (g;);ez and (z;);cz. Nevertheless we adopt here the convention
to always use a finite Z-interval I to describe such a circle F.

Remark 5.3. In the above notation, it should be observed that

i) One may have a priori e; = €; and z; # zj for i # j in I, that means that a leaf
F may intersects a segment I_(g;) at several points. Nevertheless this situation
will not arise for a suitable choice of the homeomorphisms Ay .

ii) If I is an infinite set bounded from above then epax 1 has an initial vertexr but no
final vertex.

iii) Given a leaf F of #, the writing F = [],.; &z is generally non unique. Suppose
indeed there exists i € I such that g; 1s a brick with an initial vertex and z; =
max I_(g;). We denote o the edge contained in v7 such that v_(a™) = v_(g;).
Since max I_(g;) = min I (a™) one may also write F' =], 5;3 with e; & {€}jes

and o € {€}}jey for every edge oo C vZ&. One has then Z; =minl_(g}) for every
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j € J such that 5;- is an edge included in ~F. If e; € B has an initial vertex
and z; = min I_(g;) then one can write likewise F = Hjej 55,3 where e; & {€)}jes
and o € {€}}jes for every edge a C ;. Then zj = maxI_(c}) for every j € J
such that 5; is an edge contained in . If €; is a brick with only a final vertex
(which implies that I is bounded from below and i = min(I)) similar remarks
hold: just replace above the assumption z; = maxI_(g;) (resp. z = minl_(g;))
with z; = max I_(g;41) (resp. z; = minI_(g;41)).

As a direct consequence of the construction of the foliation .# in the T,’s (o € E)
and in the T%’s (¢ € V, k € {1,3}) one has the following result.

Proposition 5.18. Let I € L*(a) where a is an edge with an initial verter v_(«).
Define z = 0_(«)(T') and let F be the leaf of F passing through the point =.
Then for every edge o' € E possessing an initial (resp a final) vertex one has

FNI_(o)={0-()T)} (resp. FNIi(a) = {0+(a/)D)}) if & is mcluded in the
same connected component of I' as o and F N [_( =0 (resp. FNIi(a))=10)
otherwise.

A similar property holds if o has a final verter vy (), just defining z = 04 (a)(T).

Lemma 5.14. Let e € E. If e has an initial vertex v_(e) and if (2—,z4) s a
connected component of I_(e)\ L_(e) then there exists b € B such such that z_ =
0_(e)(T';) and z4 = 6_(e)(T}).

Proof. We know that 2 = 6_(e)(I') and 24 = 6_(e)(I') where ' and T” are two
Brouwer manifolds in £*(e) such that I' < I and (I',I") + () = @ (this actually implies
(T, T") = 0 but we will note use this fact). Since L£*(e) is a neighborhood of T" and T’
in £*, this shows that I' (resp. I") is isolated from the right (resp. from the left).
According to Proposition 5.13 there exist two edges ai,as such that I' = T’} and
I =T, Letting by = I(a1) and by = r(ag) one gets T, =T <T" =T, and it remains
to prove that by ~ bs.

Let us check that e C T, . Otherwise one has Inty(e) C Int(L(I"))) because e C
F+ - F_ Moreover e C F_ and Fb_,l“_ have no transverse intersection so F_ -
L( by)- Then it follows from Prop051t10n 3.3 that R( p,) C L(Iy ) or L(I', ) C L(F )
The flrst inclusion implies R(I", ) C R(F+) NL(T,) = by which is not possable because
each connected component of bg is a brick (so it is disjoint from its image by h?)
while each connected component of R(I'; ) contains its image by h%?. The second
inclusion gives I, <T, < T, hence T, =T, due to (T, ,T;) =0 (Proposition 5.14
and notation thereafter). This contradicts the assumption e ¢ T'; . Thus we have
proved e C T, so that T, and I';_ are comparable in £*(e). Since (I, T} ) (o) = 0
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and (I, ,T}) = 0 one obtains T, = TI;. One proves similarly that e C I} and
Ly, =Ty, O

Let us study more precisely the leaves of .# with the following result.

Proposition 5.19. Let F be a leaf of .%. Suppose that there is no brick f € B
which is an annulus or a strip such that F = fyg for some t € [—1,1].

Then, for some Z-interval I with §(I) > 2, one can write F = [],., &2 in such
a way that one of the following two assertions holds.

i) Bvery e; is an edge, the set [[..;ei is a connected component of a Brouwer

iel
manifold T' € L* and z; = 0_(g;)(T") € L_(g;) for every e; possessing an initial

vertez.

ii) The set [[,c;
B € B and there is no index i € I such that z; € L_(g;). Moreover if ¢; € B
then F meets the interior of T.,, i.e., vt C F for some t € (—1,1).

g; 18 a connected component of the equivalence chain CE for some

Proof. The assumption tell us that one can write F = [], ;&2 where (g;)ier is an
admissible sequence in A = EU B and £(I) > 2. We have the following three cases to
consider.

1) First we suppose that ¢; € E for every i € I and moreover that z;,, € L_(g;,) for
some ig € I such that ¢;, has an initial vertex. According to Proposition 5.18 there
exists I' € £* such that z; = 0_(g;)(T") for every i € I such that the edge &; possesses
an initial vertex v_(g;), that means for every i € I except maybe for i = min I if I is
bounded from below. In this case i = minI > —oo, the edge ¢; may have only a final
vertex v, (g;) but Proposition 5.18 also tells us that F' intersects I (g;) at the point
04 (c;)(). In particular e; C T for every i € I so that the concatenation I'y = [ ], &; is
included in I'. One knows that T'y is an open subset of ¥ (Remark 5.3) and then it is
also open in I". Moreover I'; is clearly closed in T" hence it is a connected component
of I' and Property i) holds.

2) Assume now that ¢; € B for some i € I. We define I’ C I to be the set of all
these indices. First suppose that for every ¢ € I’ either ¢; has an initial vertex and z; is
an endpoint of the segment I_(g;) or ¢; only has a final vertex (then i = min 7 > —o0)
and z; is an endpoint of 7_(g;+1). Then one may rewrite F' = Hjej f;é with 83- S
for every j € J (see Remark 5.3) and we are reduced to the previous case. Suppose
secondly there exists iy € I’ such that ¢;, has an initial vertex and z;, is an interior
point of I_(g;,) or such that ;, only has an final vertex and z;, is an interior point
of I_(eiy+1). The same arguments as in the proof of [LC04, Proposition 5.2 (ii)]
then show that [, ,&; is a connected component of the equivalence chain Cer and
moreover ¢; € g, and F NInt(7%,) # 0 for every i € I'. This is the situation described

in ii).
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3) We finally deal with the case where assumption 1) does not hold true although
g; € E for every i € I. Fixing ip € I such that ¢;, has an initial vertex, one has
then z;, € I_(g4,) \ £L_(gi,). One can assume without loss that i) = 0 € I. Denote
by (zo,y0) the connected component of I_(gg) \ £_(g9) which contains z;. Lemma
5.14 tells us that there exists 5 € B such that zo = 0_(eo)(I'y) and yo = 9_(50)(1“;).
In particular eo C I'y N Pg. We also write F,, and F,, for the leaves of .# passing
through respectively z¢ and yo.

Let us check that if 1 € I then ey € Iy NT4. This is obvious if vi(co) is a
vertex of the second type. Suppose now that vi(g9) is a vertex of the first type.
Then there are e~,et € E such that v_(e”) = v_(eT) = vy(gg) and I(e”) = r(e™).
If e- Cc Ty and e* C FE then one obtains I(e”) ~ S (Proposition 5.15). Letting
b=l(e”) this gives Ty =T, = I't and Fg =TI} =T_,. Recalling Proposition 5.18,
one deduces that the oriented segment £2° C F,, (resp. &£ C Fy,) ends at ¢, (x0) =
0_(e—)(I'y) = maxI_(e”) = minI_(b) (resp. at e, (yo) = 0_(e)(I'y) = min /_(et) =
max I_(b)). Since g, : I_(g9) — Ucen, v (e)=o, (o)} 1-(€) is a continuous and one-to-
one map, one gets that z; = ¢.,(z0) is an interior point of 7I_(b) hence necessarily
er = b € B, a contradiction. This proves that e C I'y N FZ; where e € {e™, et}

Then the subsegment of [ J (ceA v (&) I_(e) whose endpoints are x; = 1., (o)

=V4+ (&
and y; = ¥g,(yo) is included in 7_(e) aric(l 0})1;5 again z; = 1.,(20) as an interior point.
This proves that 1 = e C I'; NT';. The fact that 21 = 0_(e1)(I'z) and y1 = 6_(1)(T'y)
allows to continue inductively and to get ¢; C I'yn F; for every ¢ > 0 in 1.

Since ¢ has an initial vertex then —1 € I and _; has a final vertex v (e_1) =
v_(g0). There are two edges a~,a’ such that vi(a™) =vi(a™) =v_(g) and r(a™) =
I(a™). Of course ey € {a~,a"} and one checks similarly as above that e C I'y HFE_}C.
If =2 € I (ie., if e_; has an initial vertex) then we let z_; = 0_(e-1)(I'y) and
Yy_1 = 9_(5_1)(Fg). Then z_; is an interior point of the subsegment of I_(c_;) with
endpoints x_1,y_1 because ¢, , : [_(e_1) — U{seA,v_(s):u+(s_1)} I_(e) is a continuous
one-to-one map and . ,(x_1) = z¢ and ¥, ,(y—1) = yo. An easy induction then
gives g; C I'; N Fzg for every i < —1 in I. It follows that the concatenation [, &;
is a connected component of both Iy and FE which are then necessarily Brouwer
manifolds of type 3. Clearly [[,; ¢ is also a connected component of CB and ii) then

holds. []

We denote by .# |{.Z the set whose elements are either a leaf of .# or the union
of two leaves of .#. One constructs a map ¥ : £* — Z 4. as follows. Consider
a Brouwer manifold I" € £* whose connected components are I'y and I's, where one
allows as usual I'y =T's = I'. For each k € {1,2} one associates to 'y a leaf F} of 7.

If T';, is reduced to a single edge then one let Fj, = I';,. Otherwise one has

Fk:Haf

i€l
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where (a¥);cy, is an admissible sequence of edges with #(1),) > 2. Let 2F = 0_(a¥)(T') €
L_(aF) for every i € Iy such that af possesses an initial vertex (that means for every
i € I except maybe for i = min [}, if I} is bounded from below). Then, according
to Proposition 5.18, there is a leaf F), of .F passing through every point =¥ (i € I.),
namely Fj, = [] fj; Thus we obtain amap ¥ : £L* — .7 [t} .Z by letting U(T') = F1UF>.

1€l v
Proposition 5.20. One has the following properties.
1) The map V : L* — F | F defined above is a one-to-one map.

2) For every I' € £*, ¥(T') 1s a Brouwer manifold of h with the same type as T’
and satisfies T < W(T'). Moreover
- L(Y(T)) (resp. R(¥(T))) lies locally on the left (resp.right) of ¥(T),
- if Fix(h) s totally disconnected then C1(¥(T'))\ ¥(I') = CI(T") \ T.

3) The map ¥ is increasing with respect to the order < on Brouwer manifolds.

Proof. 1) If T, TV are two distinct Brouwer manifolds in £* then there exists an edge
a € E such that ¢ T and o ¢ I". By construction of the map ¥ one has then
U(T) £ ¥(I).

2) Let T" € £* whose connected components are denoted

Fl:HO‘z‘l and F2:Hai2

el 1€l

where (af);cy, is an admissible sequence in E (k € {1,2}) and maybe I' = T'; = I'y.
Write W(T') = Fy U Fy where Fi, F5 are two leaves of .% as explained in the definition
of U. Remark that W(T) = Fy = F iff T =Ty = T.

As a first step, let us check that ¥(T") is closed in M. This is certainly true if ' is
a Brouwer manifold of type 1 because ¥(T') is then also a circle. Suppose now that
' has type 2 or 3. If T, consists of a single edge (i.e., if #(I;) = 1) then F}, = T, is
closed in M. Otherwise one has f(I;) > 2 and, using the notations in the definition

of ¥, one has Fj, = [] fj; By construction of the foliation .# one also has
i€l @

F. C U (Tan U T1l}+(a?)) Cl(Fk)

i€ I le{1,3}

Note that the notation in the first inclusion is slightly abusive since ayaxz, has no

final vertex if I, is bounded from above.

Observe that Fj, intersects the segment I_(a

) at only one point for every i € I

such that of possesses an initial vertex. Indeed, otherwise there exist i # j € Iy

such that 2 and z are two distinct points of I_(a}) which implies that of = af.

This is not possible because I'y is a line of M. Hence the intersection of Fy, and 7«
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(resp. T£+(ak)) is either empty or a single leaf of T, (resp. TL (a’.“))' Therefore Fj,
does not accumulate on a point of 7, or Tf+ (aF) which shows that ¥(I') is closed in

M. If moreover Fix(h) is totally disconnected then the fact that [] 52],1 =Fk Ci(Ty)
i€l ¢
(k € {1,2}) clearly shows that Cl(¥(I"))\ ¥(T') = CI(T") \ T..
As a second step, one proves that U(T') is a Brouwer manifold of A. One uses
Lemma 5.13 with the given Brouwer manifold I' and with A = ¥(I"). Again it is not
difficult to check that the four conditions a)-d) of Lemma 5.13 are satified. In the

notation of this lemma, one has moreover

RA)crROU ) U

{a€F | aCT'}

and therefore

ARA) ChRO)HU | AU) € Int(R(T)) C It(R(A)).
{a€FE | acT}

According to Item (iii) in Remark 5.2 one obtains that Property (£ — fR) holds true.
Then Lemma 5.13 tell us that A is a Brouwer manifold of h with the same type as
I' and moreover L(A) = £(A) and R(I') € R(A) = JR(A). These last two equalities
also show that L(A) (resp. R(A)) lies locally on the left (resp. right) of A as well as
I <A.

3) Let ' < I” in £*. One writes 'y and 'y (resp. F; and Fy) for the connected
components of T' (resp. ¥(I')) with possibly I' =Ty =Ty and ¥(T') = F} = F». One
may assume that Fj is associated to I'y in the construction of ¥(I'). One also has
¥(I') = F] U I} with similar conventions.

We first show that U(I') ¢ R(¥(I")). Let k € {1,2}.

- Suppose that I';, is reduced to a single edge in E. The definition of ¥ then gives
Fj, =T, and moreover, since I' < T, either T';, is included in Int(R(I")) or T'y is also a
connected component of I'. One gets anyway Fj, C R(I'") C R(¥(I")).

- Suppose now that I';, is the concatenation of at least two edges. Let us write

re=[Jof and szﬂgj';

i€l i€l

as in the definition of W, with #(I;) > 2. It is enough to show that éf; C R(Y(1)) for

any given iy, € I. For short we let a = of and z = zF. Z

e We begin with the case where o C TV. Assume moreover that « has an initial
vertex, so that z € £_(a) € I_(a). Since o C I one has & C F, where 2/ =
O-(a)(I') € L(a). Let X = Uicp103 qu+(a) if @ has a final vertex and X = 0
otherwise. One knows from Proposition 5.18 that 2’ is the only point in ¥(I”) N
I_(a) hence ¥(I") N (Ta U X) — €. Moreover z < 2/ in £_(a) because I' < I”
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and therefore ¢ lies between 55: and « in T, U X; more precisely & separates
¢ and aNT, in T, U X. It is then clear that & is included in a connected
component V' of M\ ¥(I") meeting Int(R(I')). Consider the set SR(¥(I"”)) obtained
when applying Lemma 5.13 to the Brouwer manifold I'" and A = ¥(I'). One gets
then ¢ Cc V. C R(¥(IV)) = R(¥(I)), the last equality being a by-product of the
proof of 2) where T is replaced with I'V. If a has no initial vertex (which implies

i = min I > —oo) then one has {z,2'} C L(w,,,) C I-(ai,,,) by definition of &

and fj; but the argument works likewise.

e Next we assume o ¢ IV. One has then Inty(«) C Int(R(I”)) and one gets & C

l() C R(I") € R(¥(I)).

Thus we proved the expected inclusion ¥(T") C R(¥(I”)). It follows from Propo-
sition 3.3 that either R(¥(T"))) c R(V(I)) or L(¥(T")) C R(¥(I”)). Let a € F be an
edge included in I and let b = l(a) € L(I") C L(T"). By the construction of .# one has
Int(Ty) C Int(L(P(T))) N Int(L(P(T")) thus showing that actually L(¥(T")) ¢ R(¥(IV))
and consequently R(¥(T')) C R(¥(I”)). This completes the proof of Proposition
5.20. O

Remark 5.4. The proof of Proposition 5.20 shows that

@(F)c(UTa>u(U U T§>

ack o€V ie{l1,3}

for every T' € L£* so that ¥(T') N Int(Ty) = O for every b € B. This will allow farther
to add new conditions on the families (’Y(i)te[fl,l} foliating the bricks T, € B* without
altering the truthfulness of this Proposition 5.20.

Let B\ be an equivalence class in B/ ~. Recall that the equivalence chain CB

has at most two connected components which we name C, 3 and C, 5 with maybe
C5=Cp >
For simplicity we omit the subscript § in the following paragraph, so that Cﬁ =C and

= Cg and with the convention that C, 5 contains at least one brick g € B\

likewise for its connected components Cj,Cy. Moreover for every k € {1,2} one can
write

where (F);cy, is an admissible sequence of pairwise distinct elements in A = E U B.

We also consider the connected components I'; and I'; of Fé with V5 CTY and
maybe I'] =T, = Fé. Similarly one writes Fg =T} UTy with y5 C T},

Now let W(I'z) = Fy U F, and \II(F%) = F\" U Fy" where the leaf FF C I(TY) is
associated to Fki in the definition of \IJ(F%) Recall that Fé = F;I (see Proposition
5.14 and notations thereafter) hence Proposition 5.20 gives \If(l“é) < \I/(F;I). One also

knows that the four Brouwer manifolds I‘g and \I/(F:Bt) have the same type. Remark
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that the leaves F;” C I(I') and F;" C I(T']) are different because C; contains some
brick g € B\ but it is possible that F, = F,f; precisely this equality holds true iff there
is an edge e € E such that e =T, =T7.

Let us define Qg = R(‘IJ(F%)) \Int(R (\I/(F;))) which is clearly a closed subset of M.

Since (9MR(\I/(F§)) = \I/(F%E) € 7.7, each set R(¥(I' 5)) is saturated by the foliation
Z (that means it is the union of some leaves of .#) and then the same is true from
QE‘ It is also not difficult to see that QB possesses one or two connected components.
Let us give some additionnal details.

Suppose that e} € E for some i € I, so that ¢! is an edge contained in I'T NI
Note that 511 has an initial vertex or a final vertex because C; contains some brick 8 € 3
(actually ! has both an initial and a final vertex except maybe if i = min I, > —oo
or if i = max[; < +oo). If &} has an initial vertex then one knows that \11(1%)
(resp. \IJ(F%)) intersects the segment I_(e}) only at the point a; = 6_ (51-1)(1“5) € Fy
(resp. a = 0_(c 1)(1‘%) € F") and a; < af in I_(g}). The same arguments as in
the proof of Item 3) of Proposition 5.20 show that [a,, :r]f—(E%) C Q3. If ¢! has a
final vertex then \II(FB) NIi(e}) ={b;} C F; and ¥(T %) NIi(e}) = {b}} C F" with
by =0, (c 1)(Fﬁ) < 04 (e} )(F;) = b in the segment I, (f) and [b;, b, -1y C Q3.

Consider now i € I; such that ¢! € B. For simplicity we let b = ¢!. For any edge
a € I such that o C v,” one knows that FB =T, =TI/}. If furthermore o possesses

an initial (resp. a final) vertex then it follows that the leaf F~ passes through the
point max £_(a) = max_(a) (resp. max L («) = max[;(«)). In particular if b has
an initial (resp. a final) vertex then one can choose « such that v_(a) = v_(b) (resp.
v4 (@) = v4(b)) which shows that F|” contains the point maxI_(a) = min/_(b) (resp.
max I (o) = min /;(b)). Similarly, for any edge o/ C 7, one has FE =TIy =T, and
one obtains that min £_(a/) = minI_(a’) € F{" (resp. min £ (/) = min I (o) € F}")
as soon as o/ has an initial (resp. a final) vertex. In particular F}" contains max I_(b)
or/and max I (b) when b has an initial or/and a final vertex. In all cases ones gets
v, ' C F; and 4} C F)". Since moreover \II(F/?BE) are disjoint from Int(7}) (as any
Brouwer manifold in ¥(£*)) one deduces that Q- N0 =T

All these intervals [a;, a;];_(.1y and [b;, b, (1) Where ] € E as well as the sets
T where e} € B are contained in the same connected component of QA call it €, 3
because they are pairwise linked by some leaves of .# lying in QA It is not difficult to
see that 1s either an annulus or a strip (depending on Whether F;: are compact

or not) Wlth frontier 0/ 3= Fru F". Remark also that all the above segments
la; a1 ey and [b7 0] o1y (wWhen &; € E) as well as the segments Ii(s;) (When
g; € B) define a global cross-section of %, that means that every leaf of % cross
tranversely such a segment. Consequently :

- if Q 5 is an annulus then it does not contain any Reeb component of .%;

- if Q 5 Is a strip then, for every leaf ¢ C Q3 and every i € I, the set ¢ NT, is
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connected, which implies that ¢ a line of M. Moreover Q, 5 is trivially foliated by &

1.3

Assume now that F;?[ has type 3, so that QB has another connected Component
Q, 3 Remember that maybe C; = I'; = I'J = e for some edge e € E which is a
line of M. If this situation holds then F, =T, = I'; = F; and it follows that
Q, 5= Ff =TF. In any other situation, the set Q, 5 may be described as Q, 5 3 above.
In particular €, 28 is then a strip with 8MQ =Fy, UF, and T, C Q, 5 for any brick
b € B verifying b C Cy (if any).

It is convenient in the following to allow Q, 3 = Q, 5 = Q5 when Q5 is connected,

1,3 2,8 B B
i.e., when the Brouwer manifolds Fg have type 1 or 2.

Proposition 5.21. Let E;é B in B/ ~. Then one has Int(QA) NQs =0.

B

Proof. Remark that

x  9clnu J (M U TZ>

be B acrgml‘% +(a) 1€{1,2,3}

where J,, crsnr: denotes the union over all the edges o € E included in Fé N F;: and

where | J,_ denotes the union over the vertices o € V' belonging to «.
One has hkevvlse

()  2clJnu ( U U Tz)

b’eﬁA’ O/CF;AIQI‘;, o'=vs(a’) 1€{1,2,3}

Suppose that the result is not true, so that Int(€;) N # 0 where Qy, (resp. ) is a
connected component of Q5 (resp. Q @)' Since Int(€5)NL = 0 the set ] is not reduced
to a single edge in E hence each set Q and ] is either an annulus or a strip and
therefore Int(€,) NInt(€2)) # 0. One also denotes by Cj, the connected component of CB
corresponding naturally to ;. Precisely, this means that C; contains the connected
components FkjE of T such that F,;t C Z(Ff) where F,;t are the leaves in 0p/€.

Pick m € Int(Q;)NInt(€2)). Recall that Int(€2;,) and Int(€;) are saturated by .# hence
if C;, contains some brick b € E then the leaf ¢, passing through m also contains a
point m’ € Int(7},) NInt(€2;). This is not possible because Int(7}) is clearly disjoint from
all the T},’s and T,/’s and T!,’s appearing in the above inclusion (xx). Consequently Cy,
is a common connected component of I'> and I'Y which may be written C, = [[,.; a
where (a;)icr is an admissible sequence in F with §(/) > 2. In particular there is at
least one edge a € {a;}ic; having an initial vertex. Reversing the roles of €, and €]
one obtains likewise that there is no brick ¥’ & B\’ in the connected component C; of
C@/ corresponding to €, so that C; = H eJ o with o} € E for every j € J.

Because ¢,, also contains a point m’ € Int(7,) ﬂ Int(€2)) one gets a C Fé’ N F%/

hence a = a; for some j € J. Consequently the four Brouwer manifolds Fg and I‘ﬁjfl
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belong to £*(«). One knows that
{o} = L@NU(T), {2} =L ()NU(T),

and
{Z}=1(a)N \I/(Fé/), {Z}=1_(a)N \I/(FE/)

where 24 = 9,(04)(1%) and 2/, = &(a)(FZi/).
According to Proposition 5.14 one has (Fé, F;I) =0= (Fé, F%“,) hence (2—, 24)1_ ()N
(21, 24)1_(a) = 0. This is absurd since the leaf ¢, intersects both (z—,21); () and

—

(Z/—7Z{|—)I,(a)' ]

Given an equivalence class 3 € B / ~, our next goal is to choose suitably some link
homeomorphisms )\, and to reparameterize the family ('7(?)156[—171] in such a way that

all the leaves in QE define Brouwer manifolds.

Lemma 5.15. Let 3 € B/ ~ and consider C;=C 3UC 5 and Q =0, 500 5
as defined above. Let k € {1,2}. The link homeomorphisms \,, where o = v (b)
for some brick b € B\ with b C Cr, may be choosen in such a way that the following
property holds true:

For every leaf F C Q, 3 there exists t € [—1,1] such that

weh b, — FAT =1 .

Consequently, if Fg have type 1 then every leaf included in gisa circle.

Proof. Letting again C, = Ck7 5> one can write Cp = [[;c;, e¥ for some admissible
sequence (g¥);cy, of pairwise distinct elements of A = E L B. For simplicity we write
e; and I instead of, respectively, ¥ and Ij. One can also suppose that the sequence
(¢4)ier contains at least one brick since otherwise the result is empty.

If there are several bricks in the sequence (g;);c; then there exists (i,j) € I?
such that j > i+ 1, {ej,¢;} € B and ¢y € E for every [ € {i+1,---,5 —1}. For
le{i+1,---,j—1} welet z; = 9_(51)(1“5) € L_(g) and 7 = 9_(51)(1“%‘) € L_(g) and

furthermore z; = min/_(g;) and z;.L =max /_(g;). Thus one has
Ve (205 1 @) = B Al @)
for every l € {i +1,---,7 — 1} and therefore

K/:ngfl O"‘C”/Jsm :IE(EH‘l) _>I—(€j)

I¢ (git1)

defines an increasing homeomorphism. One chooses the link homeomorphism A, (.,

(t)

-1
so that, for every ¢ € [—1,1], it maps the final point of 447" onto the s~ !-image
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—1

of the initial point of yﬁjj (t). More explicitly, denote by z., : [-1,1] — I.(g;) the
parametrization of the segment 7 (g;) induced by the family (72)756[—1,1}7 that means
{ze,()} = AL N1 (&) for every t € [-1,1]. Likewise z, : [-1,1] — I_(g;) is the
parameterization of I_(e;) induced by the family (7% )ie(—1,1)- Then k™ toz. : [-1,1] —

I€ (gi41) is a parameterization of 1€ (g;41) and we define

/\v+(5i) =K to Zg; © Mg_]-l O lg; © Z;.l : I+(6i) — IE(&Z‘_H)

1 1

O Ze; O fhg

After selecting A, ., for every such pair (,j) € I? (if any), there are two cases to

so that one has X, (.,) © 2, o ' = K~

consider.

- If C, is not compact (i.e., if Fg have type 2 or 3) then we are done.

- If ¢y is compact (i.e., if F%f have type 1) then CE = C;, and moreover Qg =
Qk,E is an annulus. In order to prevent spiraling leaves in QB one needs to choose
suitably another link homeomorphism. Clearly I is a finite Z-interval and v (epax 1) =
v_(emin1). Write N = {(I) and let m (resp. n) be the minimum (resp. the maximum)
of the set {i € I'|e; € B} (maybe m = n). Now extend periodically the sequence (&;);cr
so that ; = ¢,y for every i € Z. Replacing (i, j) with (n,m + N) in the construction
above, one gets a link homeomorphism A, (. ) which completes the proof of Lemma

5.15. []

Any vertex o € V is the final vertex of at most one brick b € B hence it makes
sense to apply Lemma 5.15 simultaneously to different equivalent classes in B/ ~.
Consequently we may assume from now on that the conclusion of Lemma 5.15 holds
true for every 8 € B/ ~.

Given 3 € B/ ~ and k € {1,2}, this ensures that the foliation .# restricted to 2 5
defines a continous family (¢Z,B)t€[_1711 of circles (resp. of lines of M) when F;E have
type 1 (resp. type 2 or 3). The parameterization by ¢ is choosen so that QS:E = F,;t
where F,:E is the leaf in Y, 5 contained in \1/(]?%5)_ Moreover, writing Ckﬁ, for the
connected component of CB corresponding naturally to , - (as explained in the proof

k,p
of Proposition 5.21), one can ask that

R ()
Vte[-1,1]vbep bcckﬁ:qﬁzﬁﬂﬂ,_%b :

Recall that if Fé and F% have a common connected component e € FEy then
gb;ﬁ =e=F, = F, for every t € [-1,1] and this set is a line of M.

For every brick b € B\ one has v, C Fé and therefore, since Fg are two Brouwer
manifolds, one gets

M) h( U Ua> c me(R(T3))  and h~'(v) C h—l(Fg) < Int(L(T'F)).
{a€E|aCy, }

Then one can construct the family (V£)te[—171] foliating 7}, in such a way that
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-tel[-1,-1/3| = h(}) C Int(R(Fé)),
-te1/3,1]=h"'(y}) C Int(L(F%‘)).

Now we let <I>tA = qbt ~U ¢t ;€7 7 |4 Z for every t € (—1,1) (this is an unambiguous
definition due to Proposmon 5.21) and (I)%El = \IJ(F%E).

Proposition 5.22. Let EE B/ ~. For everyt € [—1,1] the set CD; defined above is
a Brouwer manifold of h with the same type as I‘; Moreover L( <I>t (resp. R((I)tﬁ))
lies locally on the left (resp. right) of @%.

Proof. 1t is very similar to the one of Proposition 5.16 and we only mention the
needed modifications. For ¢ = +1 the result is contained in Proposition 5.20 hence
one can assume t € (—1,1). For simplicity one writes @% = ¢! = ¢} U ¢}, where ¢,
¢, are the connected components of ® with possibly ® = ¢} = ¢} and as usual
Cs=C1UCy, F;E =TT Uly with I, UT) C ¢ for every k € {1,2}.

We apply Lemma 5.13 to the Brouwer manifold I" = Fé and to the set A = &,
It is easily seen that the properties a)-d) of Lemma 5.13 are true and in particular
O L(DY) = & = 9),R(PY) (see Remark 5.2). It remains to prove the property (£ — R)
in e) of Lemma 5.13. As for Proposition 5.16 one needs to prove first that h(@%)ﬂ@tﬂ =
() but the argument is slightly different. One has

@%CUTbU U ( U U T’)

bep acT;Nr} o=vi(a) i€{1,2,3}

where the symbols (J, -+ and [, _,, (o) have the same meaning as at the begin-

ning of the proof of Proposition 5.21. It follows that
t
5\ U Ty, C U U,
beR aclzNr}
and therefore

h<q>t \ U T, ) U ) C Int( R(Fé)) C Int(R(Y)

be 5 aCFA

which gives
<<I>t U ) nes =0.
befh

One also has

o\ Unc |J Uoc L)

A —AT+
be B aclznr}
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hence
—1{ gt - _
h (@B\ UAT;,) n UAT,) C Int(L(I'H)) N UAb =0
bep bep bep
where the last equality follows from Proposition 5.15.
Moreover for every b € 3 one has

AT, = ,.yl:l:ljl(t).
Consequently if h(®%) N ®! £ () then there exists b, b € 3 such that
3 (v{;‘b_l“)) m 75;1@) oy
and one gets a contradiction as in the proof of Proposition 5.16.
Now one considers the same two situations as in Proposition 5.16.

e Suppose first that CE = [ for some brick € B.

Then 8 is either an annulus or a strip, 3 = {3} and &' = 75 C Tp C B. The
same arguments as in the proof of Proposition 5.16 show that ®! = ytﬂ is a Brouwer
manifold of h.

e Assume now that CE s not reduced to a single brick, i.e., B & Cﬁ for every brick
Bepb.
Remark that if I'; NT;" # 0 for some i € {1,2} then one has

h(¢!) € Int(R(P)) and h1(¢)) C Int(L(DY))

(an analogous remark was used in the proof of Proposition 5.16 with T'¢ instead of
&)

Indeed I'; NT; # @ implies a C I'; NI} for some edge o € E and 0 # ¢! N
T, C Uy Nli(a). Since o C Fé one has h(U,) C Int(R(Té)) C Int(R(®!)) which gives
h(gl) N Int(R(P')) # 0 and therefore h(¢l) C Int(JR(P?)) because h(P) N IpR(PY) =
h(®!) N ®! = ().

On the other hand o C F;: implies h=(I(a)) C h‘l(L(F%)) C Int(L(F%)). Note that
L(I‘;I) ¢ £(®') hence the second inclusion to be proved requires a little more work

than its analoque in Proposition 5.16. For any edge e C Fé one has
' (1(@) NUe = h™' (I(e) N h(Ue)) € 7 (L(Fé) N Int((R(Fé)) = (.
Observing furthermore that
- t
L(r}) < g@Hu U Ue
{ecFE | eCF%ﬂF%’}

one deduces that h=1(I(a)) C Int(£(®")). It follows that A~ (¢!) N Int(L(PY)) # O and
therefore h=1(¢!) C Int(£(®?)) due to h=1 (@) N Ipr L(P) = h~1(D) N B! = 0.

The proof of Proposition 5.22 works now exactly as the one of Proposition 5.16,
just replacing Tt with of ¢. O
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Corollary 5.1. There exists a family &2 of Brouwer manifolds of h such that
- P CFWHZ, ie., the connected components of any ® € & are leaves of F

- any leaf of F 1s a connected component of some ® € .

Proof. Let

»=Y E* {(I) }BGB/N tel— 11] {cp }ﬂeB/N te(—1,1) -

Clearly & ¢ # |4 and Propositions 5.20 and 5.22 tell us that every ® € & is a
Brouwer manifold of h. One aslo knows from Proposition 5.19 that every leaf of .7
is a connected component of such a ® € & O

The next task is to prove that any two Brouwer manifolds of &2 have no transverse
intersection. We begin with the following result.

Lemma 5.16. Let I',T" € L£* be such that R(T') C L(I"). Then one has R(¥(T)) N
R(¥(T")) = 0.

Proof. The hypothesis tell us that R(T')NR(I) = ) in B. Observe that 'NI" = ) since
otherwise I'NI” contains at least one edge « € E and one obtains I(«)Ur(a) C L(I")U
R(T') = L(I') which contradicts a C T” = 9y L(T"). Thus one gets R(I') N R(I") = 0 in

M. Defining
A=rmyu |J nu | U =
{e€FE | eCcT'} {c€V |oel'} i€ {1,2,3}
and
AN=rryu |J nu (J U 7
{e€E | eCI"} {oeV |oel"} i€ {1,2,3}

one has then AN A’ = (. By the definition of the map ¥ one also has
R(¥(T)) c A and R(¥(I)) C A

which implies R(¥(T)) N R(Y(T)) = 0. O

Proposition 5.23. Any two Brouwer manifolds of &2 have no transverse inter-
section.

Proof. Given B € B/ ~ and t,¢ € [—1,1], it is clear that <I>’/58 < <I> iff t < ¢/; in

particular \If(l“é) < (I)tg < \I/(F;I) when ¢ € (—1,1). This also implies that &t and dL
have no transverse intersection. This simple remark will be repeatedly used in the
following.

Consider two Brouwer manifolds ® and @' of &. According to the definition of
2, one has three cases to consider.

First case : {®,9'} C U(LY).
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Then & = ¥(I') and &’ = ¥(I') for some I',I” € L*. Recall that I" and I have
no transverse intersection (see the paragraph before Proposition 5.11) hence one has
either I" € R(T") or IV C L(T"). According to Proposition 3.3 one of the following four
situations holds:
- R(I") € R("), i.e., IY X T'; then by Item (3) of Proposition 5.20 one also has
P < .

- L(I'") € R(T); then Item (2) of Proposition 5.20 gives L(®') c L(I") Cc R(T') C
R(®).

- L(I") ¢ L("), i.e., T <X T”; then using again Item (3) of Proposition 5.20 one gets
o <P,

- R(I') € L(T"); then by Lemma 5.16 one has R(®) N R(®') = 0.

3

Thus anyway ® and @' have no transverse intersection.
Second case : ® € U(L*) and ' = d)% for some Be B/ ~ and some t € (—1,1).
Write ® = ¥(I') where I' € £* and for short let &~ = ¥(T 3) and ®F = \I/(ng), SO
that &~ <@ <", If I’ C R(Fé) or ' C L(F%) then one knows from Proposition 3.3
that one of the following situation arises.
- R(I") C R(Fé), e, =< Fé; according to Item (3) of Proposition 5.20 this implies
o <P <P
- L(T) C R(Fé); using Item (2) of Proposition 5.20 one has then L(®) C L(T") C
R(I) € R(®7) C R(¥).
- L) C L(Fg), i.e., Fg =< T'; again by Item (3) of Proposition 5.20 one has
P < T < P,
- R(I") C L(F;) according to Lemma 5.16 one also has R(®)NR(®") = @ and then
R(®)N R(®P') =0 due to &' < oF.
Hence in all these situations the Brouwer manifolds ® and &' have no transverse

intersection. We study now the case where I' ¢ R(Fé) and I ¢ L(Fg). Since the
Brouwer manifolds in £* have pairwise no transverse intersection one has then

I'C L) NR(IY) = r mr+ yulJoe.
bep
where the latter equality is given by Proposition 5.15. Because I' C ¥ one gets more
precisely
re(rynri)ulJoy us).
bep

Observe that for every set {b,0'} C 3 one has either I'n v, =0 or N~ =0 because
otherwise one can find two edges o, o/ € E such that « cI'n~,” and o/ C 'N~,, and
therefore

FjP&L:F;:F§<I‘%:I‘§=I‘;jF
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which is absurd. Clearly a Brouwer manifold cannot be strictly included in an other
one hence one deduces that I' = Fé orI' = F;I, so that ® = ®~ < &' or & = &+ = P’.
Again ® and @' have no transverse intersection.
Third case : ® = @fg and &' = (I)%’/ for some E,BA’ € B/ ~ and some t,t' € (—1,1).
The result is contained in the initial remark if 5 = 3. Assume now that g # 3
and pick 8 € Band 8 € 7. According to Proposition 5.15 one has 3 € R(Fé)UL(F;ﬁ,).
Suppose first that g € R(T ) It pc Int(R(Fé)) then V5 C Fé N Int(R(Fé/)) and
’yﬁ C F; N Int(R(Fé)). Since any two Brouwer manifolds in £* have no transverse
intersection, it follows that Fé U F;: C R(Fé/). Ifg¢ Int(R(Fé/)) then there exists
an edge e C dy SN Fé and necessarily e C 72; because 5 € R(FZ). This gives Fé
F% =T, < FB and one gets again F@ U F; C R(I ) This together with Proposition
3.3 implies that either R(Ff) C R(I’A,) or L(Fg) C R(I’ﬁ ). Indeed, otherwise one
has L(F*) C R(T’ ) and R(T ) C R(I’ ) and therefore, using again Proposition 5.15,

g e L(T 3’) C R(F;I) N L(P§> =B, a Contradlctlon. Using one more time Proposition
5.20 one has:

- If R(r+) C R(T ) then ® < \IJ(F;) < \If(ré,) <9
- If L(T /3) C R(T 5’) then L(®) C L(\I/(Fé)) C L(Fﬁ) C R(Pﬁ) C R(¥(I'z)) C R(®").
Let us consider now the second situation € L(FE,). Similarly as above one gets
ryu F;I C L(P%,) and afterwards R(Ff) - L(F;I) or L(Fé) C L(F;A;).
- If R(I’%) C L(I‘%/) then Lemma 5.16 gives R(\I/(I%L)) N R(\IJ(F;{)) = (). Moreover
P < \p(ri) and ' < \I/(Fg\,) hence R(®) N R(P') = 0.
- If L(T 6) C L(F;) i.e., FE = Fé then it follows from Item (3) of Proposition 5.20
that & < W(I')) 2 W(I) < &,
Hence in all cases ® and & have no transverse intersection. ]

Therefore we have constructed a family &2 of Brouwer manifolds of h satisfying
the conditions of Theorem 4.1.

5.4 Some remarks on the set of Brouwer manifolds &

Of course two distinct Brouwer manifolds @, ®’ in &2 may intersect. More precisely,
observe that ® N @’ £ ) iff ® NP’ = a where a € F is an edge which is also a common
connected component of I'= and I't for some B € B/ ~. Such an edge « is then
regular and is a line of M, denote by Ej the set of such all edges. Moreover the four
Brouwer manifolds ®, ®" and Fg have the same type 3.
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Proposition 5.24. For o € Ey define S, = (R(\D(Fg)) N L(\IJ(F&))) \a C M. Then

one has the following properties.

(1) Sy is a strip with frontier Oy So = F~ U FT where F~,Ft are the leaves of F
such that a U F~ =¥ (T,) and a U FT = W(T'Y).

(2) Sy is trivially foliated by 7.

(3) For every leaf F of % such that F C Int(S,), the only Brouwer manifold in &
possessing F as a connected component is a«lUF. Conversely, if a is a connected
component of ® € & then there exists a leaf F of % such that F C S, and
® =a U F. Consequently, one has ¥(T',) < ® < ¥(T'Y).

(4) for any two distinct o, o’ € Ey one has Int(Sy) N Int(Sy) = 0.

Proof. We provide a proof assuming that Fix(h) is totally disconnected. If Fix(h) is
a circle then one can compactify each connected component M, My of M with one
point and one obtains the result with minor adaptations of the same arguments.

(1) Write Cl(a) \ a = {a, b} C Fix(h) with possibly a = b. The definition of Ej tell
us that there exists 3, € B / ~ such that a is a common connected component of the
Brouwer manifolds FﬂA and F; which have type 3. Consequently T', < FﬂA < F;*
't and one deduces from Proposition 5.20 that ¥(T',) and ¥(T'}) are two Brouwer
manifolds of type 3 such that U(T',) < ¥(T'}). By the definition of ¥ they also both

have o as a connected component. It follows that the set

Se = (CUR(T(T))) N CUL(T(TG))) \ ({a. b} Ua)

is a strip in S? having F~ U F* as boundary lines and such that S, c S, U Fix(h).
Now it follows from Lemma 5.12 that

h(Sa) N Sa € M(R(V(Ty))) N L(¥(T,)) C Int(R(P(Ty,))) N L(¥(T,)) = 0.

Since Fix(h) has empty interior this also implies h(S,) NS, = 0 so that S/, is actually
contained in M and S/, = S,.

(2) It is enough to prove that any given leaf F' of .%# included in Int(S,) = S, \ (F~U
F1) separates F~ and F* in the strip S, € M. Arguing by contradiction, suppose
that F'~ and F™ are contained in the same connected component W of S, \ F C M\ F.
Then necessarily F' accumulates on a single fixed point a € CI(F*) \ F* = Cl(a) \ a
so that CI(F') = F U {a} is a circle. Lemma 5.2 tell us that M \ F has exactly two
connected components U and V with for instance F~ U F* ¢ W c U. Moreover
F c Cly(V) N Int(S,) hence VNS, # 0 and afterwards V' C S, because V Ny Sy =
VN (F-UF') = 0. One knows that there exists at least one Brouwer manifold
bp € & possessing F as a connected component (Corollary 5.1). Then there is a
connected component V' of M \ ®p such that V' ¢ V c S,. Since h'(V') C V' for
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some i € {£2} one deduces that h?(S,) N S, # 0. On the other hand, one gets with
Lemma 5.12 that h?2(R(U(T]))) € M(R(¥(TY))) C Int(R(¥(T,))) and therefore

h*(Sa) N Sa € Int(R(¥(I5))) N L(¥(Ty)) = 0,

a contradiction.

(3) Let F be a leaf of .# such that F' C Int(S,). First we shall prove that F U« is
a Brouwer manifold of h. It is not difficult to see with (2) above that the Brouwer
manifold I' = ®(I',) and the set A = F U« satisfy the conditions a)-d) of Lemma 5.13.
Observe also that R(¥(T,)) C R(FU«a) C R(¥(T'Y))). Then using again Lemma 5.12
one obtains

hFUa) C h(SyUa) C h(RU(T])) c Int(R(U(T)) C R(FUa)
and
R Y (FuUa)ch i (SqUa) c hHL(W(I,))) € Int(L(U(TH)) ¢ &(FUa).

Thus Property (£ —fR) in Item e) of Lemma 5.13 also holds true and consequently
F U« is a Brouwer manifold of h.

Now consider a Brouwer manifold ®r € & containing F. One has F ¢ ®p,
in other words F is not a Brouwer manifold of type 2, because otherwise ®p =
F accumulates on only one fixed point (see the proof of Proposition 3.1) and one
obtains a contradiction with h?(S,) NS, = 0 exactly as in the proof of (2). Thus
& has type 3 and we write F’ for its connected component other than F. One has
F'NS, = 0 since otherwise, according to (2), there is a strip S C S, with frontier
dpS = F U F' whose interior intersects both Int(R(®x)) and Int(L(®f)), which is not
possible because also F U F' = &p = OR(®p) = OL(Pp). One the other hand, one
has F' C Int(Sy) = Int(R(¥(T'L)) NInt(L(¥(T,)) and one knows that any two Brouwer
manifolds in &2 have no transverse intersection (Proposition 5.23) hence one deduces

F' Cc®p C ROU(ID)NLYT,)) =alS,

which shows as expected that F' = «.

Let ® € & be a Brouwer manifold possessing « as a connected component. Recall
from Remark 3.2 that o cannot be a Brouwer manifold of type 2 hence o & ®. By
definition of & one has either ® € V(L) or there exists be B/ ~and t € (—1,1) such
that ® = @% and Q, 3 = a. If the first case occurs then ¢ = ¥(T') for some I' € L*.
Clearly o C T hence ' € L*(«) and therefore T, < T' < T'}. According to Item (3) of
Proposition 5.20 one obtains U(I';) X ® < ¥(T'}) which gives ®\a C S,. If the second
case occurs then both Fg’ and Fg contain a and consequently I'; < FZ’ < F%r =TI,
Combining Item (3) of Proposition 5.20 and the remark at the beginning of the proof
of Proposition 5.23 one gets ¥(T',) < ® < ¥U(I'}) and it follows again that @\ a C S,.
Since ® \ a # () one gets as required ® = a LU F' where F is a leaf of .7 included in S,.
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(4) Suppose now that there exists a point x € Int(S,) NInt(Sy) # 0. Denote by F,
the leaf of .# passing through z. According to Item (3) one obtains that F, L« and
F,Ud are two Brouwer manifolds in &2. Since the strip S, is trivially foliated by .#,
one gets as in the proof of (3) that aN Sy =0, i.e., a C Int(L(Y(I'})) UInt(R(Y(I,)).
These last two sets are disjoint because ¥(I',,) < ¥(I'}) hence one gets either o C
Int(L(¥(I'})) or o € Int(R(¥(T;,)). The first inclusion together with F, C Int(Sq) C
Int(R(¥(T')))) implies a contradiction since ¥(I',) and F, U o have no transverse
intersection as Brouwer manifolds in &2. Similarly the second inclusion also lead to
a contradiction because F, C Int(Sy) C Int(L(¥(I',,))) and because ¥(I',,) € & and
F, Ua € & have no transverse intersection. ]
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Our goal in this section is to give some applications of Theorem 4.1 to the fixed
point index. Precisely we prove Theorem 4.2 stated in Section 4.

The following statement of Le Roux (see [LR13, Appendix A]) allows to deal
conveniently with homeomorphisms of the whole sphere.

Theorem 6.1. Let h : U — V be a homeomorphism between two neighbourhoods
U,V of 0 in the plane R? wverifying Fix(h) = Fix(h?) = {0}. Then there exists a
homeomorphism H of R? such that Fix(H) = Fix(H?) = {0} and H|w = h|w for
some neighborhood W C U of 0.

A planar homeomorphism H as in Theorem 6.1 also extends to a homeomorphism
of the sphere S? = R? U {co} such that Fix(H) = Fix(H?) = {0,000} by letting H(co) =
oo. Moreover the Lefschetz index of an isolated fixed point depends only on the
local behavior of the considered map, hence Theorem 4.2 is a direct consequences of
Theorem 6.2 below, which shall be proved in this Chapter 6.

Theorem 6.2. Let h be an orientation reversing homeomorphism of the sphere
S? such that Fix(h) = Fix(h?) = {0,00}. Then Ind(h",0)) is well-defined for every
integer n > 1 and one has Ind(h?**1,0) = Ind(h,0) and Ind(h?* 0) = Ind(h2,0) for
every k = 1.

Throughout this Chapter 6, we fix once and for all an orientation reversing home-
omorphism h of S? such that Fix(h) = Fix(h?) = {0,00} and a set & = {®s}4ep of
Brouwer manifolds of h covering S? \ {0, 00} provided by Theorem 4.1.

Thus the sets @5, where s € A, are Brouwer manifolds of A which have pairwise no
transverse intersection and the set # = {¢ | ¢ is a connected component of @ for some s €
A} defines an oriented topological foliation of S?\ {0,00}. In particular every leaf
¢ of F is either a circle or a line of S? \ {0,00}. In the first case, ¢ is called a
circle-leaf. In the latter case, one has () # Cl(¢) \ ¢ C {0,00} and we say that ¢ is a
petal-leaf at 0 (resp. at o) if Cl(¢) \ ¢ = {0} (resp. Cl(¢)\ ¢ = {oo}) and a line-leaf
if Cl(¢) \ ¢ = {0,00}. In the following, we write ¢, for the leaf of .7 passing through
z € §?\ {0,00}. If ¢, is a line of S?\ {0, 00} we denote by ¢} (resp. ¢, ) the positive
(resp. negative) half-leaf in ¢, with endpoint 2.

We recall some definitions allowing to describe the behaviour of . Giveni € {1, 2},
we define following [LR04] an attracting hi-petal at 0 to be a disc P C S? such that

- 0€ 0P,
- h{(P) C Int(P) U {0}.

A repelling hi-petal at 0 is an attracting h~*-petal at 0.
Another useful notion from [LR04] is the following. For i € {1,2}, an attracting

h'-croissant is a disc C' C S? verifying
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- {0,00} C OC;
- BY(C) C Int(C) U {0,00} (Fig. 6.1).

A repelling hi-croissant is an attracting h~‘-croissant.

P 0

ni(p) - 1w

0 0

Figure 6.1 — An attracting h'-petal at 0 and an attracting h’-croissant

We are mainly interested in this work by croissants and petals bounded by leaves
of .#. Precisely we say that a hi-croissant A (repelling or attracting) is a (., h')-
croissant if A\ {0,000} is the union of two leaves of .#. Similarly, a (%, h?)-petal at
a € {0,00} is a h-petal at a such that P\ {a} is a leaf of .#. A (F,h%)-croissant
A is said to be minimal if there is no (F,h')-croissant A’ satisfying A’ & A. For
short, we simply use the word .#-croissant (resp. .#-petal) to indicate a set which is
a (F,h')-croissant (resp. a (&, hi)-petal) for some integer i € {1,2}.

Remark that if ® € &7 is a Brouwer manifold of type 3 such that CI(®)\® = {0, 00}
then CI(R(®)) = R(®) U{0,00} and CI(L(P)) = L(P) U {0,00} are respectively an
attracting and a repelling (%, h)-croissant.

For any z € S?\ {0,00}, there exist a compact set K c S?\ {0,00} containing
z in its interior, called trivializing neighborhood of z, and an orientation preserving
homeomorphism v : K — [~1,1]> ¢ R?, called trivialization chart at z, such that
¢ maps the foliation 7|k induced by % on K onto the foliation by vertical lines
with their upward orientation. The couple (K, ) is called a flow-box of # at z. For

€ [—1,1], the sets w_l({t} x [—1, 1]) are named the local leaves of Z in K.

6.1 Description of the foliation .# when it has no
circle-leaf

Lemma 6.1. Suppose that (z1)r>0 i a sequence in S?\ {0,00} converging to a €
{0,00} and such that ¢, is a petal-leaf at b € {0,00} \ {a} for every k € N. Then
the set (e CI(U@k ¢n) contains a line-leaf oriented from 0 to co and a line-leaf
oritented from oo to 0.
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Proof. The points 0 and oo have symmetric roles in this statement hence it is enough
to deal with the case a = co and b = 0. For short we write ¢; and ¢, instead of
respectively ¢, and ¢ .

Define L = (Ve CI(U,.5, @) which is a connected compact set (as a nested
intersection of connected compact sets) such that {0,00} C L. Let us check that L is
saturated by .#, that means that any leaf intersecting L is entirely contained in L.
Suppose that ¢ is a leaf of .# and y € ¢ N L. Consider a trivializing neighborhood V'
of y. From the definition of L there exists a sequence (k;)i>o in N and y; € 1., such
that lim; 1 k; = +00 and lim; .1~ y; = y. For i large enough one has y; € V and
even better the local leaf of # in V' containing y; lies entirely in ¢, because xj — oo
as k — +o0o. It follows that L contains the whole local leaf of .7 in V passing through
y and consequently ¢ N L is open in ¢. Clearly ¢ N L is also closed in ¢ so ¢ C L, as
expected.

Denote by Ly (resp. Lo) the union of all the petal-leaves at 0 (resp. at oo)
included in L. Observe that for any two distinct leaves ¢ and ¢’ included in Ly, the
F-petals P and P’ bounded by respectively ¢ U {0} and ¢’ U {0} satisfy PN P’' = {0}.
Indeed, otherwise one can suppose ¢ C Int(P’). Since ¢ C L one has ¢, N Int(P') # @
and then ¢, C Int(P’) for infinitely many & € N, which contradicts the fact that
(xk)k>0 converges to oo.

CLAM 1. Given any point z € S*\ {0,00} and any trivializing neighborhood V of z,
there exist at most two leaves contained in Ly which meet V.

Proof. A classical argument from the proof of Poincaré-Bendixson Theorem (see e.g.
[PAMS82]) tells us that a leaf of .# which accumulates on a single point in {0, o0}
intersects V' in at most one connected component. Consequently, if ¢, ¢ and ¢” are
three distinct leaves in Ly intersecting V' then each set NV, ¢'NV and ¢” NV consists
of exactly one local leaf of .% in V. Then there exists a segment in V' joining two of
these leaves, say ¢ and ¢’, and intersecting the third one ¢” transversely in only one
point. It follows that the circle ¢” U {0} separates ¢ and ¢’ in S? and afterwards that
the petal P” at 0 bounded by ¢” U {0} contains one of the two petals P, P’ bounded
by respectively ¢ U {0} and ¢’ U {0}, which is known to be not possible. O

As a consequence, one gets that Lo U {0} is a closed subset of L which does not
contains co. Indeed the above Claim clearly shows that Lo U {0} is closed in L\ {oo}
hence one just needs to check that oo & Cl(Ly). Let D be a disc neighborhood of oo
so small that 0 ¢ D. There exists a finite open covering 9D C Int(Vi) U -+ UInt(Vy)
where each V; is a trivializing neighborhood of some point in dD. According again
to Claim 1, only finitely many leaves in Ly intersect 0D so there is a smaller disc
D' ¢ D neighborhood of oo which is disjoint from Ly so that co & Cl(Ly).
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Reversing the roles of 0 and oo one also obtains that L, U{oo} is a closed subset
of L which does not contains 0. Since L is connected one cannot have a partition
L= (LoU{0})U (Lo U{o0}) so L contains some line-leaf.

CLAM 2. Any line-leaf ¢ C L is oriented from 0 to oo.

Proof. Arguing by contradiction we suppose that ¢ is oriented from oo to 0. Let w € ¢
and let W be a trivializing neighborhood of w. Since ¢ is a line of §?\ {0, 00} one
can choose W so small that ¢ N W consists of a single local leaf of .% in W. Because
w € L one has ¢, N Int(W) # 0 for infinitely many & € N. As recalled in the proof
of Claim 1, the set ¢, N W is empty or connected and moreover limy_,, zp = 00.
Hence, possibly after replacing (¢x)r>0 with a suitable subsequence, one can assume
that, for k& > ko, the leaves ¢;, are pairwise distinct and that the sets ¢, NV are local
leaves of .% in W located on the same side of NIV in W, say for instance on the right
of ¢ N W, with moreover ¢, "W closer than ¢, "W from ¢ N W. Letting ¢’ = ¢y,
choose a point 2z € ¢ N Int(W) and join z to w with a segment n C Int(W) which is
transverse to .#. Then C = {0} U ¢, UnU ¢} is a circle which clearly separates oo
and zp, in S? (see Fig. 6.2).

or (k> ko)

Tk, Tk

Figure 6.2 — The points z; for k large enough

Moreover ¢, intersects n transversely at only one point z;, # ;. for every k > kg and
;. belongs to the same connected component of S?\ C as zy,. This is a contradiction
because z;, — oco as k — +oo0. ]

This proves the existence of a leaf-line oriented from 0 to oo and contained in
L C ey Cl(U@k qﬁn), as expected. One gets similarly the result concerning a
leaf-line oriented from oo to 0, replacing above L with L' =, Cl( U=k gb;fn) H
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Proposition 6.1. The foliation .% contains at least one line-leaf oriented oriented

from 0 to oo and one line-leaf orientated from oo to 0.

Proof. One can assume that the hypothesis of Lemma 6.1 are not satisfied since
otherwise we are done. Hence there exist two disjoint discs V), Vi neighborhoods
of respectively 0, oo such that every petal-leaf at oo (resp. at 0) is disjoint from 1}
(resp. from V.,). Observe moreover that it is sufficient to prove the existence of one
line-leaf. Indeed any line-leaf ¢ of .# is a connected component of some Brouwer
manifold ® = ¢ U ¢’ € £ of type 3 and one of the line-leaves ¢, ¢’ is oriented from 0
to oo while the other one is oriented from oo to 0.

Arguing by contradiction, let us suppose that .# contains no line-leaf. Choose a
segment A C S? joining 0 to oo, oriented from 0 to co, which intersects dVy (resp.
0Vs) at a single point 6, (resp. 62) and let

Ag = {x € [#1,02]a such that ¢, is a petal-leaf at 0}.

Since .# is assumed to have no circle-leaf one has 6, € Ag. Moreover 0y & Ay.
The compact set CI(Ag) C [0, #2]a possesses a maximum (the segment A is naturally
ordered by its orientation) which is denoted by 6,. One has the following two cases.

- First case : 6, € Ag. Then 60, < 6 so there exists a sequence (x,)n>0 in (6s,02)A
such that lim, 1 z, = 0. By the definition of 6,, the ¢, ’s are petal-leaves at
oo. Since ¢p, N Int(Vp) # 0 and z,, goes to 0, as n — oo, the leaf ¢, also meets
Vo for n large enough, which contradicts the choice of V4.

- Second case : 6, € Ag. In other words, the leaf ¢y_is a petal-leaf at co. Consider
a sequence (z,)n>0 in Ag such that limy,_, 4 2, = 6. Since ¢y, NInt (V) # 0, one
also has ¢,, NV # 0 for n large enough, which is another contradiction.

[]

Proposition 6.2. Let ¢ (resp. ¢') be a line-leaf oriented from 0 to oo (resp. from
oo to 0). Then each disc bounded by the circle ¢ U @' U{0,00} contains at least one
minimal (F, h?)-croissant.

Proof. We only deal with the disc D with frontier ¢ U ¢’ U {0,000} which lies locally
on the right of ¢ and ¢'. One proves likewise the result for the other disc bounded
by ¢ U ¢’ U{0,00}.

Consider a segment A with endpoints = € ¢ and 2’ € ¢’ such that A\ {z,2'} C
Int(D). It is naturally ordered by choosing an orientation, say from z towards z’. We
denote by w the set of all the points in A which belong to a line-leaf oriented from 0
to oco. Note that 2 € w and 2/ € w. Then the compact set Cl(w) C A has a maximum
y € A and one has y = lim, o 2, Where z, € w. Then L =, Cl(U@/,C ¢p,) 1S



6.1. DESCRIPTION OF THE FOLIATION .# WHEN IT HAS NO CIRCLE-LEAF 113

clearly a connected compact set satisfying {0,00} C L C D and one checks that it is
also saturated by .# (the argument is similar to the one in the proof of Lemma 6.1).
Since y = lim,, 4 2, one gets y € L and then ¢, C L C D. Let us prove that ¢, is a
line-leaf oriented from 0 to co. First suppose that ¢, is a petal-leaf at a € {0, 00} and
let V' be a trivializing neighborhood of 3’ = max{¢, N A}. Then ¢, NV consists of a
single local leaf of . in V and V'\ ¢, has two connected components Vi and V5. One
of them, say Vi, is contained in the interior of the petal P bounded by ¢, U {a} so
VN ¢y, = VaNg,, for every n € N. One also has Vi N (y, 2/]a = 0 because (', 2']a U ¢’
is connected and disjoint from 0P = ¢, U {a} hence V N (y/,2']a = Va N (¢, 2]a.
Consequently the connected component of V N [y, 2']a containing 3’ is a segment
[/, y"|a C Vo with " € 0V5\ ¢,,. Since ¢’ € L there exists n € N such that ¢,, contains
a local leaf of .% in V lying between the ones passing through ¢’ and ¢”. This implies
0 # ¢p, N (Y, y")A C bz, N (y,2']a and contradicts the maximality of y. Thus ¢, is
a line-leaf of .%. Now let V be a trivializing neighborhood of y and fix n € N so
large that z,, € V. The leaves ¢, and ¢,, are lines of S?\ {0, 00} hence, replacing if
necessary V with a smaller trivializing neighborhood of y, one can assume that each
set ¢, NV and ¢,, NV consists of only one local leaf of % in V. If ¢, is oriented from
oo to 0 then of course ¢, # ¢, and there exists a segment n C V from =, to y which
is transverse to .. Then the set ¢, UnU ¢ U {0} is a circle which is easily seen to
separate {oo} and ¢, \ {z}, which is not possible because co € Cl(¢; ). This shows
that ¢, is oriented from 0 to oo.

In particular ¢, and ¢' are two distinct line-leaves so one may define D; to be
the disc bounded by ¢, U ¢’ U {0, 00} and such that D; C D. Note that [y,2'|a C Dy
and define ' to be the set of all the points in [y, 2/]o which belong to some line-leaf
oriented from oo to 0. Obviously y ¢ o’ and 2/ € . The compact set Cl(w') C A
possesses a minimum z € [y, 2']a and one proves similarly as above that ¢, is a line-
leaf contained in D; and oriented from oo to 0. Notably ¢, # ¢, hence one may
consider the disc C' included in D; and bounded by ¢, U ¢, U {0, co}.

We prove now that C is a minimal (%, h?)-croissant. By the construction there is
no line-leaf in Int(C) hence it is sufficient to show that C is an attracting h?-croissant.

We first prove that there exists a sequence (¢,)n>0 of petal-leaves at a € {0, 00}
such that ¢y U ¢, C (Veny CUU, 51 #n) and such that the circle ¢, U {a} bounds an
attracting (#, h?)-petals at a. Using again the fact that Int(C) contains no line-leaf,
one checks as in the proof of Proposition 6.1 that any neighborhood of oo meets
some petal-leaf at 0 contained in Int(C) or that any neighborhood of 0 meets some
petal-leaf at co contained in Int(C). Possibly after switching the roles of 0 and oo,
one may suppose that the first situation holds. This gives a sequence (z;);>¢ in Int(C)
converging to oo and such that ¢,, C Int(C) is a petal-leaf at 0. According to Lemma,
6.1 one has ¢, U ¢, C ﬂjeN CI(U@]‘ ¢z,) C C. For every i € N, we define P; to be
the Z-petal at 0 with frontier ¢,, U {0}. Clearly P, C Int(C) U {0}. Choose any
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point m € ¢, and let V' be a trivializing neighborhood of m so small that ¢, NV is

ien CUU;; @a,) there exists
a sequence (in)n>0 in N converging to +oo such that ¢,, NInt(V) # 0 for every n € N.

reduced to a single local leaf of .% in V. Because m €

Moreover any leaf ¢,, accumulates on only one point in {0,000} so ¢,, NV consists
of a single local leaf of .% in V for every n € N. The local leaf ¢, NV C Int(C)
is located on the right of the local leaf ¢, NV in V' because the disc C lies locally
one the right of ¢, (and ¢,). Then the .#-petal P;, is located on the right of ¢,
in V since otherwise ¢, N P;, # () and afterwards ¢, C P;, which is absurd because
oo € Cl(¢y). This implies that P;, lies locally on the right of ¢,, and consequently
P, is an attracting h-petal. Applying Lemma 6.1 with the sequence (¢, Jnz0 one
also obtains ¢, U ¢, C (\ey CI(U@k ¢r,,)- One gets a sequence of petal-leaves as
required by letting ¢, = ¢, .

One has notably h?(¢,) C h%(Int(C)) N A%(P, \ {0}) C A%(Int(C)) N Int(P,) C
R2(Int(C)) N Int(C) for every n € N. Observe that any open set U C S? meeting
h2(¢y U 62) € Nyen CU(U,sp B2 (0n)) also intersects h?(¢n) for infinitely many n € N;
in particular U N A?(Int(C)) N Int(C) # @. This implies h%(¢, U ¢,) C C. This also im-
plies ¢, # h?(¢,). Indeed, if this is not true then the two discs C' and h%(C) lie locally
on opposite sides of ¢, = h?(¢,) C 9C N Oh*(C) because h? preserves the orientation
and 0,00 are fixed points of 2. Hence, given p € ¢, = h?(¢,), one can find an open
neighborhood U of p such that U N Int(C) N Int(h?(C)) = 0, a contradiction. Further-
more ¢, is contained in a Brouwer manifold of h so h?(¢,) N ¢, = 0 and consequently
h?(¢y) N Int(C) # 0. One gets likewise h?(¢,) N Int(C) # 0.

One deduces from h?(¢p,U¢,) C C that either h2(C) C C or h3(S*\Int(C)) C C. Let
us prove that the latter inclusion actually does not hold. According to the previous
paragraph, one can pick p € h%(¢,) NInt(C) (vesp. p' € h%(¢.) NInt(C)). Let U (resp.
U’) be a connected open neighborhood of p (resp. of p') so small that UUU’ c C
and CL(U) N h3(9C) = CI(U) N h3(¢y) and CL(U’') N h2(dC) = CYU’) N h*(¢,). There
exists a sequence (ng)r>o in N such that limy_, o np = +oo and 0 # ¢, N h=2(U) C
Int(C) N h=2(U) for every k € N. Applying Lemma 6.1 with the sequence (z,,)r>0
one gets ¢, C (V,ey Cl( U %nk) hence there exists & € N such that ) # ¢, NU' C
Int(C) N h=2(U"). Consequently there exists a connected component V (resp. V') of
Int(h*(C)) N U (resp. of Int(h*(C)) N U’) such that V N Ah*(¢p, ) # 0 # V' 0 h* (¢, ).
One has easily 0V C h?(9C) U QU and moreover oV N h2(¢,) = OV N h2(9C) # 0
because otherwise V = U C Int(h?(C)) which contradicts p € U N h?(¢,). Similarly
oV’ C h?2(0C)UdU’ with OV'Nh2(¢,) = OV'NA2(OC) # B so the set X = VU(OVNR2(C))U
h2(¢s,, )UV'U(OV'NK*(C)) is a connected subset of CNA*(C)\{0,00} and meets both
h?(¢y) and h?(¢,). It is not difficult to check that if A%(S? \ Int(C)) C C then h?(¢y)
and h?(¢,) are contained in two distinct connected components of (CNA%(C))\ {0, 0o}
which is incompatible with the existence of X above, thus one gets h%(C) c C.

It remains to check that h?(¢, U ¢,) C Int(C). This is a consequence of the
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fact that h? preserves the orientation. Let us give some additional details. It is
already know that h2(¢, U ¢,) N (dy U ds) = (R2(¢y) N @) U (h3(¢2) N ¢y). Suppose first
that h?(¢,) C Int(C). Thanks to the Schoenflies Theorem, one may assume up to
conjugacy that C = (R X [0,+oo)) U {oo}, ¢y = (—00,0) x {0}, ¢, = (0,4+00) x {0}
and h?(¢y) = {0} x (0, +00). Since h? preserves the orientation and has 0, co as fixed
points, the disc h?(C) lies locally on the right of h%(¢,) oriented from 0 to oo so clearly
h?(¢,) C h?(C) is disjoint from ¢,. One gets similarly h?(¢,)Né, = 0 if h?(¢,) C Int(C).
Suppose finally that h%(¢,) N ¢, # 0 # h*(¢.) N ¢,. Choose a segment A joining 0
and oo such that A\ {0,00} C Int(h?(C)). Up to conjugagy, one may assume that C
is an Euclidean disc in the plane R? with A as its horizontal diameter. Note that
h%(¢,)U¢, and h?(¢,)Ug, are two connected subsets of C'\ A so one of them is included
in the upper connected component of C'\ A and the other one in the lower connected
component of C'\ A. Choosing any point pg € A\ {0,00} C Int(h%(C)) C Int(C), one
deduces that, when p moves along 9C, the winding numbers of the vectors p — pg
and h?(p) — po have opposite values (+1), which is not possible for the orientation
preserving homeomorphism h2. O

Proposition 6.3. For every i € {1,2}, an attracting (resp. a repelling) minimal
(F, hY)-croissant lies locally on the right (resp. left) of the two leaves in its frontier.

Proof. We only consider the case where A is an attracting (.%, hf)-croissant. Replacing
h with h=1, one gets likewise the result for a repelling (%, h')-croissant. Write 9A \
{0,00} = ¢1 U ¢ where ¢y, ¢2 are two leaves of .#. There exists a leaf ¢} of .# such
that ® = ¢ U¢| € & is a Brouwer manifold of type 3 with C1(®)\® = {0, 0o} and it is
enough to check that Int(A) C Int(R(®)). One has hi(¢;) C Int(A) NInt(R(P)) because
A is an attracting h’-croissant. Hence if the above inclusion does not hold then one
gets 0 # Int(A) N OR(P) = Int(A) N ¢}. In particular ¢} # ¢2 so ¢} NIA = 0 and then
¢} C Int(A). It follows that one of the two (Z, h?)-croissants CI(R(®)) = R(®)U{0, 0o}
or CI(L(®)) = L(®)U{0, oo} is strictly contained in A, which contradicts the minimality
of A. ]

As an immediate consequence of Propositions 6.1-6.3 one has the following result.

Corollary 6.1. - There exist at least two minimal (F, h?)-croissants.
- For any minimal (F,h?)-croissant A, there is no line-leaf included in Int(A).
- For any two distinct minimal (F, h?)-croissants A, A’, one has Int(A)NInt(A’) = (.

For any i € {1,2}, we say following [LR04] that an attracting (%, h?)-croissant A
has dynamical type 0— oo if for every neighborhood V, of co there exists an attracting
(Z,hY)-petal P at 0 such that

- PCA,
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- POV #0.

By reversing the roles of 0 and oo, one may also consider an attracting (.%,h')-
croissant A with dynamical type oo — 0. The dynamical type of a repelling (.7, ht)-
croissant is defined likewise, just asking for the petal P above to be “repelling” instead

of “attracting”.

N
; ) v
type 0 — o0 type oo — 0

Figure 6.3 — Two dynamical types of croissants

Proposition 6.4. Any minimal (F,h?)-croissant has dynamical type 0 — oo or
oo — 0 but not both.

Proof. We only prove the result concerning an attracting minimal (.#, h?)-croissant
C, the other one being similar. Write 9C \ {0,00} = v~ U~" where v~ € .F (resp.
vt € ) is oriented from 0 to co (resp. from oo to 0). Recall from Corollary 6.1
that Int(C') does not contain any line-leaf of .# hence, with the same argument as in
the proof of Proposition 6.1, we get that at least one of the following two situations
occurs:

i) there exists a sequence (z,,)n>0 of points in Int(C') such that =, — co as n — +oo
and that ¢, is a petal-leaf at 0 for every n > 0;

ii) there exists a sequence (¥, )m>0 of points in Int(C') such that y,,, — 0 as m — 400

and that ¢,,, is a petal-leaf at oo for every m > 0;

Suppose for instance that i) holds true. As in the proof of Proposition 6.2 one obtains
a subsequence (xp, )r>0 such that

- Ty, — 00 as k — +o0,

- P, is an attracting (.%, h?)-petal at 0 for every k large enough, where P is the
Z-petal whose frontier is ¢, U{0}.
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It implies that C is an attracting (., h?)-croissant with dynamical type 0 — co. If
ii) holds then one obtains likewise that C is an attracting (%, h?)-croissant with

dynamical type oo — 0.

0
Figure 6.4 — The disc 2

It remains to prove that the two situations i) and ii) cannot occur simultaneously.
Suppose this is not true. Choose any point x € " and let V be a trivializing
neighborhood of x so small that v NV is reduced to a single local leaf of .% in V.
As in the proof of Proposition 6.2, one can also suppose that ¢, NV consists of a
single local leaf of .% in V for every n large enough. Choose such an integer n. Then
pick a point z € ¢,, NV and join z to = by a segment n C V which is transverse to
the foliation .#. Of course the set

w= (N U(¢s,)F Unu{0}

is a circle (see Fig. 6.4) and we define Q to be the disc bounded by w and included in C.
Observe that oo & Q. According to Lemma 6.1, one has v+ C (7,5, (Um%€ Cl(¢ym)).
Then there exists m large enough such that ¢,, Nn # 0. Moreover because ¢,,,
accumulates on only one point in {0,00} and n C V' is transverse to .#, the leaf ¢,
intersects n transversely in only one point, denoted by v. Therefore the half-leaf
(¢y,,)7 is included in © which contradicts C1((¢y,,);) \ (¢y,.)d = {oo} because ¢y, is
the petal-leaf at co. O

It is easily seen that there exist only finitely many minimal (.#,h?)-croissants
and we let A = {A;}1<i<m be the set of all these minimal (%, h?)-croissants. Ac-
cording to Corollary 6.1 the .#-croissants in A may be cyclically ordered around
0.

Proposition 6.5. Assume for convenience that the 7 -croissants A; € A are num-
bered so that a cyclic order around 0 is Ay < Ay < -+ < Ay < A1 = Ay (up to
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circular permutation).

Then we have the following properties.

i) For every 1 < i < m, one of the two croissants A;, Ai+1 1S an attracting
h%-croissant and the other one is a repelling h?-croissant. Consequently the
number m of minimal (F, h?)-croissants is even (m = 2n).

ii) If A; is an attracting (resp. a repelling) h*-croissant but is not a h-croissant
then there erists a unique attracting (resp. repelling) h*-croissant A; # A;
such that h(A;) C A; and h(A;j) C A; (resp. h™1(A;) C A; and h™1(A;) C A;).

Proof. Suppose that A; and A;,1 are two attracting h’-croissants. Then there are
two leaves ~; C 0A; and ~;41 C 0A;4+1 and a disc D bounded by 7; U~;+1 U {0, 00} such
that

-Dn Int(Ai) =0=Dn Int(Ai_H);
- one has the following cyclic order A; < D < A;11.

One of the leaves v;, ;11 is oriented from 0 to oo and the other one is oriented from
oo to 0. According to Proposition 6.2 the set D contains a minimal (.#, h?)-croissant,
a contradiction which proves i).

Suppose for instance that A; is attracting for 22 but is not a h-croissant. We write
~v; and ~;" for the two connected components of 94; \ {0, 00} with ~; oriented from
0 to oo and ~;" oriented from oo to 0. One knows that there exists some Brouwer
manifold @~ =~ Uy~ € & and ¢ = 7f UyT € & possessing respectively v, and
v as a connected component as follows. If there are several possible choices for
®~ (resp. @) then one knows from Section 5.4 that v, = «a (resp. 7 = o) for
some edge o € Ey C E (resp. o € Ey C E). If this occurs then, with the notation
from Proposition 5.24 in Chapter 5, we choose &~ = ¥(T';) (resp. ®* = ¥(I'_,)), in
other words we choose v~ (resp. 7) to be the connected component of W(T';) (resp.
U(T,,) other than « (resp. o). Since A; is not a h-croissant, the two leaves v=, 7"
are distinct as well as the two leaves vT, ~,". Moreover v~ N Int(4;) = @ because of
the minimality of 4; hence one deduces 7;” C Int(R(®7)) and actually & C R(®™)
because @, ®T have no transverse intersection. One gets similarly @~ C R(®™). It
is easy to check that L(®~) Cc R(®') and even better L(®~) C Int(R(®")). Then the
open set Int(R(®™))\ L(®~) has exactly two connected components U and V' with for
instance CI(U) = A; and CI(V) being a disc with boundary circle v* U+~ U {0, cc0}.
For any k € {1,2} one has

h* (Int(R((I)ﬂ) \ L((D_)) C Int(R(®)) \ L(®)

and therefore each connected set h*(U), h*(V) is contained in either U or V. Since
h%(A;) C A; one has h?(U) C U. According to Proposition 6.2 the disc D = CI(V)
contains a minimal (%,h?)-croissant which implies that h?2(V) NV # @ and then
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R%(V) c V. Since the disc D lies locally on the right of v~ and since h? preserves the
orientation, the disc h%(D) also lies locally on the right of h?(y~) oriented from oo
to 0. Similarly h?(D) lies locally on the right of h%(y*) oriented from 0 to co. This
together with h2(y") Ny~ = 0 = h%(y") NyT implies D N Oh%(D) = {0,000} hence
h%(D) C Int(D) U {0, 00}, which means that D is an attracting (.%, h?)-croissant.

Suppose now that h(U) Cc U. Then one has h(y; ) C Cl(h(U)) C ClU) = A;.
Moreover one knows that h(y; )Ny, = ) hence one may consider the disc 2 bounded
by the circle h(y;") U~ U{0,00} and contained in A;. The description of Brouwer
manifolds provided by the proof of Proposition 3.1 tell us that h(y~) separates ~,
and h(v;") in the disc CI(R(®7)) = R(®~) U {0,00}. Consequently one has h(y~) C
Int(Q) C U and, since h(y~) C h(D) = CI(h(V)), one obtains A(V)NU # (. Then
one gets h(V) C U and therefore h?(V) C h(U) C U which contradicts the fact that
D = CI(V) is a h%-croissant. This proves that actually h(U) C V and it follows
that also h(V) C U since otherwise h?(U) C h(V) C V which is not possible because
A; = CI(U) is a h%-croissant.

Figure 6.5 — The two attracting minimal (%, h?)-croissants

Thus we obtain h(A;) C D and h(D) C A; and it remains to prove that D is
minimal among the (.%, h?)-croissants. If this is not true then Int(D) = V contains a
line-leaf 4. One knows that v is a connected component of some Brouwer manifold
® = vy € Z. Since any two Brouwer manifolds in &2 have no transverse intersection
one obtains v/ C R(®~) N R(®") = A; UD. One has 4/ # v, since otherwise v, is a
connected component of both ® and &~ with furthermore ® < &~ which contradicts
the choice we made for &~ (recall Item (3) of Proposition 5.24 in Chapter 5). Similarly
v # ~; because otherwise ® and T have ;" as a common connected component and
moreover ® < T, a contradiction with the choice of ®*. Moreover one has v'NU = ()
because of the minimality of A; hence one gets v/ N A; = () and consequently ~' C D.
This gives ® C D and therefore either L(®) or R(®) is included in D. This implies
that Int(L(®)) € A~1(V) or Int(R(®)) C h(V) and contradicts now h(V)NV =0. [
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Proposition 6.6. Among the 2n minimal (F,h?)-croissants, there exist exactly
two distinct (F, h)-croissants.

Proof. Suppose that n = 1 so that we have only two minimal (.%, h?)-croissants A;
and As. According to the first item in Proposition 6.5 one of these .Z#-croissant is
h%-attracting and the other is h2-repelling. Item ii) of Proposition 6.5 then implies
that A; and Ay are also two (%, h)-croissants.

Let us now consider the case n > 2. For every ¢ € {1,2,...,2n} one defines A} =
h(A;) N h~1(A;). Observe from Corollary 6.1 and Proposition 6.5 that for every i €
{1,...,2n} there exits a unique j € {1,...,2n} such that A7 C A;. Hence one gets a
well-defined map ¢ : A — A where ((4;) is the unique A; € A such that A7 C A;.
Proposition 6.5 also gives ¢? = Id4 (in particular ¢ is a one-to-one map) and moreover
A € Ais a fixed point of ( iff A is also a h-croissant. Remark now that ¢ reverses the
cyclic order on A. Indeed, assuming again the cyclic order A; < Ay < --- < Ay, <
Agpt+1 = Ay around 0, one has h(Ag,) < -+ < h(A2) < h(A;) because h reverses the
orientation. Moreover AF C h(A;) for every ¢ € {1,2,...,2n} so one has the cyclic order
A < .. < AS < A7 and finally ((A2,) < ... < ((A2) < ((A;) with the definition of
¢. This implies that ¢ has at most two fixed points so we can suppose A; # ((A4;)
which means that A; is not a h-croissant. Thus according to Proposition 6.5 one
has (A1) = Aggyq for some k € {1,...,n}. Define C = {A;, Ay, ..., Agiy1}. This set is
naturally endowed with a total order A; < Ay < -+ < Ag,1 induced by the cyclic
order on A. It is also invariant by ¢ and the restricted map (|¢ reverses the restricted
order <. Since C has odd cardinality, one deduces that { possesses a unique fixed
point in C. Repeating the above argument with ¢’ = {Asy 1, -+, A2y, A1} instead of
C, one also obtains that ¢ possesses exactly one fixed point in C’. O]

Proposition 6.7. Let A € A which is also a (F,h)-croissant. Then we have the
following.

i) A is also a minimal (F, h)-croissant.

ii) A is an attracting (resp. a repelling) (F,h?)-croissant iff A is an attracting
(resp. a repelling) (F,h)-croissant.

iii) If A is a (Z,h?)-croissant with dynamical type 0 — oo then A is also a (F,h)-
croissant with dynamical type 0 — co. Similarly for a (F,h?)-croissant with

dynamical type oo — 0.

iv) A minimal (%, h)-croissant cannot have simultaneously the dynamical types

0— o0 and oo — 0.

Proof. Ttems i) and ii) are straightforward. Let us prove iii). We suppose for example
that A is an attracting minimal (%, h?)-croissant with dynamical type 0 —oo. All the



6.1. DESCRIPTION OF THE FOLIATION .# WHEN IT HAS NO CIRCLE-LEAF 121

other cases can be proved similarly. Then there exists a sequence (x,),>0 of points
in Int(A) with lim,— 1. 2, = 0o such that ¢, is a petal-leaf at 0 and moreover the
Z-petal P, bounded by the circle ¢, U {0} is h?-attracting. The point here is to
see that the P, ’s are actually h-petals (necessarily h-attracting) and not only h2-
petals, at least for infinitely many of them. To do this it is enough to prove that
h(P,) NInt(P,) # 0.

Denote by 4* the two line-leaves of .% included in 0A with v~ oriented from 0 to
oo and yT oriented from oo to 0. According to Lemma 6.1 and Corollary 6.1 one gets

that
Y- unt C ﬂCl( U gbxn).

k=0 n=k
Take a point x € v~ and a trivializing neighborhood V, of z so small that vy~ NV} is
reduced to a single local leaf of .# in V. Since z € (5 C1( Uns @2.) there exists a
subsequence (y,)iz0 of (zn)n>0 such that ¢,, NV, # 0 for every i € N. Recall that
the set ¢,, NV, consists of a single local leaf of .# in V, because ¢, accumulates

only on 0. Applying Lemma 6.1 to the sequence (z,,);>0 one still has

v unt C ﬂ Cl(U¢xni)-
k=0 1=k

Let us remark now that the #-petals P,, (i € N) are pairwise comparable w.r.t. the
inclusion. Indeed if P,, # P,, then one can suppose for instance that the local leaf
G, NV 18 located on the right of ¢xnj NV; in V. Then the #-petal P,, contains
¢z,, N Vi because otherwise v~ NV, C P,; and then v~ C P,; which is certainly not
true. One deduces that P,, C P,,.

Since lim;_, 1o T, = oo it follows from the previous remark that there exists a
subsequence (zp, )r>0 of (zn,)iz0 such that P,, C Pp,,, for every k € N. Applying
again Lemma 6.1 to this sequence (z, )r>0 one gets

() v U~ C HCI(qu»mmk).
1>0 k>l
Since A is an attracting h-croissant one has h(y~) C Int(A) and Int(A) \ h(y~) has
then exactly two connected components U; and Uy with 0U; = v~ Uh(y~)U{0, 00} and
OUs =y U h(y7)U{0,00}. The inclusion (x) above and the fact that (P, )r=0 is an
increasing sequence of .%-petals lying in Int(A4) U {0} imply that Int(P,,) Nh(y~) # 0
for every k large enough, say for £ > [. Choose a point z € h(y~) N Int(P,,) and
an open neighborhood W of h=!(z) € v~ so small that h(W) C Int(P,,,). Then there
exists I' > [ such that W N ¢, # 0 for every k > I’ and consequently

VE =1 04RW N Py,) C Int(Pr,) N h(P,) © Int(Po) N h(Pr,)

which implies as expected that P,,, is a h-petal.
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Remark finally that any minimal (%, h)-croissant with dynamical type 0—oo (resp.
oo —0) is also a minimal (F, h?)-croissant with dynamical type 0 — oo (resp. oo — 0).
Then it follows from Proposition 6.4 that a minimal (%, h)-croissant cannot have
simultaneously the dynamical types 0 — oo and oo — 0 which proves Item iv). This
ends the proof of Proposition 6.7. O

6.2 Link between the minimal (%, h)-croissants and
the fixed point index

In this Section we mainly use some techniques from [Bon02] to establish the
relationship between the fixed point index Ind(h,0) and the nature of the two minimal
(F, h)-croissants provided by Section 6.1. Precisely we shall prove the following
result.

Proposition 6.8. Assume that the foliation 7 possesses no circle-leaf. Let p,

(resp. pr) be the number of attracting (resp. repelling) croissants having dynamical

type 0 — oo among the two (F, h)-croissants provided by Proposition 6.6. Let also

let qo (resp. q) be the number of attracting (resp. repelling) croissants having

dynamical type oo — 0 among the same two (%, h)-croissants. Then one has
Dot @ — (0r )

Ind(h,0) = 5 e {0, +1}.

The next Lemma, which is a precise version of a classical result of Kerékjarto,
corresponds to [Bon02, Proposition 3.1] and is proved in the first section of [LCY97].
From now on, any circle in R? is counter-clockwise oriented.

Lemma 6.2 ([LCY97]). Let D, D’ be two Jordan domains containing the point 0
such that C1(D) UCI(D') c R? and D ¢ D' ¢ D. Denote by D A D' the connected
component of DN D' which contains 0 and by dD A dD' the frontier of D A D'.

(i) We have a partition

oD AOD' = (@D AoD'ynaD naD) | Jei | ) 8
i€l jeJ
where
e [.J are non-empty and at most countable sets,
o for everyi e I, a; = (a;,b;)op is a connected component of 9D N D',
o for every j € J, Bi = (¢j,d;)ap s a connected component of 0D' N D.

(ii) For every j € J, D A D' is contained in the Jordan domain with frontier

B; U [dj, cjlop and containing 0.
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(iii) 9D AAD' is a circle.

(iv) Three points a,b,c of (ODANOD"YNOD (resp. of (DDAOD")NAD’') are met in this
order on 0D (resp. on 0D') iff they are met in the same order on 0D N dD'.

Consider a Jordan domain D containing 0 such that Cl(D) c R? and define D’ =
h=Y(D). Then D' is also a Jordan domain with 0 € D’ and Cl(D’) ¢ R2. Assuming
D ¢ D' ¢ D, one may consider the partition (P) of 9D A9D’ and the segments «; and
f3; obtained by applying Lemma 6.2 with these Jordan domains D and D’. Then let ¢
be the inversion in the circle C = dD. Let C; = C1(3;) Ug(C1(3;)) and I = C AL~L(C).
Define a map H from I' U ¢(I') to R? by setting

{h(z) if 2T,
ho(z)) if z € ¢(I).
Following [Bon02] one has the following formula:
(x)  Ind(h,0)+ » Ind(H,Cj) =1.
jeJ

We consider the two minimal (%, h)-croissants given by Proposition 6.6, denoted
by A; and As in the following. The calculation of the index will be divided into the
following three cases.
Case 1. Both Ay and As have dynamical type 0 — oo.
Subcase 1 —a. Ay and Ay are two attracting (%, h)-croissants.

Let us show that Ind(h,0) = 1 in this case. Let P; C A; be an attracting (.7, h)-
petal at 0 for every i € {1,2}. Using the Schoenflies Theorem one can suppose that

- Py is the triangle with vertices 0 = (0,0),(—1,—1) and (—1,1),
- P is the triangle with vertices 0, (1,—1) and (1,1),

h=1(Py) is the triangle with vertices 0, (-2, —3) and (—2,3),
h=1(P,) is the triangle with vertices 0, (2, —3) and (2, 3),

and moreover

hH((1,0)) = (2,0), h7H(=1,0)) = (=2,0),
h_l({_l} X [_17 1]) = {_2} X [_373]7

h ({1} x [-1,1]) = {2} x [-3,3].

Let C be the rectangle with vertices (—1,-3), (—1,3), (1,-3), (1,3) and let D
be the Jordan with frontier C' containing 0 (Fig. 6.6). We write D’ = h=1(D) and
C' = 0D’ = h=1(C). We denote by v (resp. 72) the straight segment joining (-2, —1)
and (—1,0) (resp. (2,—1) and (1,0)). For convenience we also let z; = (—1,0) € CNIP,
and zo = (1,0) € CNOP,. It is not difficult to get the following result, whose proof
is left to the reader.
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Figure 6.6 — The circle C' and the petals Py, P,

Lemma 6.3. e The set
0= wu([l, Z]X{O})U[h_l(xg), h_l(xl)]czu([—Q, —1]><{O})Ufylu[(—2, —1),(2,—1)]¢

is a circle contained in C1I(D')\ {0} (Fig. 6.7);

o The Jordan domain D" with frontier C"” and containing 0 satisfies D" N D =
D'nD;

e For every x #y in C'NC", the four points xs,x,y,x1 are met in this order on
C" (up to circular permutation) iff h=1(z2), z,y, h=(x1) are met in this order on
.

If D c D’ then directly Ind(h,0) = 1 so one may assume D ¢ D’. One also has D' ¢ D
because h~!(x1) € CI(D') \ CI(D) hence one can apply Lemma 6.2 with these two
Jordan domains D, D’. Using the notation in Lemma 6.2, one knows from [Bon02,
Lemma 3.2] that if [h(d;), h(c;)]c N [¢j,djlc = O then Ind(H, C;) = 0. According to the
formula (x), it is enough to check that [h(d;), h(c;)]cN|cj, djlc = 0 for every j € J. By
the construction of C' one has

CI(B;)N(PLUP,) C C'N(PIUPy) = b~ (CNh(PLUPR,)) C k™' (CNn(Int(Py)Ulnt(P2)u{0})) = 0.

Using moreover item (ii) in Lemma 6.2, one deduces that either [¢;,d;]c C (z1,22)c
or [¢j,djlc C (z2,21)c. We only deal with the second situation because the same
argument can be applied to the first one.

Since {z1,22,¢;,d;} C (CAC")N(CNC") one knows from item (iv) in Lemma 6.2
that z9,¢;, d;, z1 are also met in this order on C”. According to Lemma 6.3 the points
h™1(x3),¢j,dj, h~"}(x1) are met in this order on C’ and then [h(d}), h(cj)lc C (z1,22)c
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Figure 6.7 — The circles C' and C” in Subcase 1 — a

because h reverses the orientation. This implies as expected [h(d;), h(cj)|cN(cj, djlc =
() and completes the proof of Ind(h,0) = 1 in this case.
Subcase 1 —b. Ay and Az are two repelling (.F, h)-croissants.

Replacing h with A~! in the previous Subcase 1 — a one has Ind(h~1,0) = 1 and it
follows that Ind(h,0) = —Ind(h~%,0) = —1.
Subcase 1 —c. Ay is a repelling (F,h)-croissant and Ay is an attracting (F,h)-
croissant.

We consider P; C A; a repelling (#,h)-petal at 0 and P, C Ay an attracting
(%, h)-petal at 0. Using again Schoenflies Theorem one can suppose that

- P is the triangle with vertices 0, (-2, —3) and (-2, 3),

h(P,) is the triangle with vertices 0, (2, —3) and (2, 3),

h=1(Py) is the triangle with vertices 0, (—1,—1) and (—1,1),
- P, is the triangle with vertices 0, (3, —5) and (3,5),
and moreover
- h1([-3,-2] x {0}) = [-2, —1] x {0}; in particular h=1((=2,0)) = (—1,0);
Wt ({=2) x [-3,3]) = {1} x [-1,1];
hH ({2} x [-3,3]) = {3} x [-5,5] with h1(2,0) = (3,0).

Let C be the rectangle with vertices (-2, —5), (=2,5), (2,—5) and (2,5). We denote
by D the Jordan domain containing 0 with frontier C'. For convenience we also let
C'=h"YC), D' =h7 YD), 11 = (—2,0) € OP; and x5 = (2,0) € Oh(P).
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Figure 6.8 — The circle C' and some (3,’s in Subcase 1 — ¢

Observe that D ¢ D’ ¢ D because h™'(x1) € D and h~'(z9) ¢ CI(D) hence
Lemma 6.2 applies. Clearly h71(z1) € {0} x [-1,1] C Bj, = (c¢jy,djy)cr for some
jo € J so z1 € (h(dj,),h(cj,))c because h reverses the orientation. On the other
hand h=Y(z2) € (dj,, cj,)or because h1(z2) € CI(D) hence x5 € (h(cj,), h(dj,))c. Since
h%(P,) C Int(h(P,)) U {0} one has C' N h(Py) = h~1(C Nh2(P)) = 0 and then

C'n([-2,2] x {0}) = ' N ([-2,—1] x {0})

=h7H(Cn([-3,-2] x {0})) = {n " (z1)} = {(-1,0)}.
Since D’ lies locally on the left of C’, this implies ¢;, € (z2,z1)c and dj, € (z1,22)c.
It follows that [cj,, dj)c N [h(dj,), h(cj,)]c is @ non empty connected set and [Bon02,
Lemma 3.3] then gives Ind(H,Cj,) = 1. One also gets CI(3;) N ([-2,2] x {0}) = 0 for
every j # jo which, together with Item (ii) in Lemma 6.2, implies that [¢;,d}]c C
[djo,xg)c - (:rl,xg)c or [Cj,dj]c C (Z‘Q, Cjo]c C (Z‘Q,Il)c.

Similarly as for Subcase 1 —a, one constructs a circle C” bounding a Jordan
domain D" such that zo € C”, DND"” = D'ND" and such that, for any x # y in C'NC”,
the points z9, 2,y are met in this order on C” iff h='(z2), z,y are met in this order on
C'. Consider j € J\{jo} and suppose for instance that [c;, d;]c C (z2,¢j]c C (z2,21)c.
We know from item (iv) in Lemma 6.2 that the points w9, ¢;, d;, ¢y, dj, are met in this
order both on C' and on C” because they all belong to (C' A C”")NnC N C” (with
possibly d; = ¢j,). Consequently h~1(z2),¢;,d;, cjo, h 71 (21),dj, are met in this order
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on ¢’ and afterwards [h(d;), h(cj)lc C (z1,22)c (see Fig. 6.8). Using again [Bon02,
Lemma 3.2] one obtains Ind(H, C;) = 0 and one gets likewise the same conclusion if
[cj,djlc C [dj,, x2)c C (21, 22)c. One concludes with the formula (x) that Ind(h,0) = 0.
Case 2. Both Ay and Ay have dynamical type oo — 0.

Recall that Ind(h,0) + Ind(h,c0) = 0 because h reverses the orientation. Replacing

0 with co in the arguments for the first case, we obtain that

e If A; and A, are two attracting (%, h)-croissants then Ind(h,0) = —Ind(h, 00) =
—1.

e If A; is an attracting (.#, h)-croissant and Aj is a repelling (%, h)-croissant then
Ind(h,0) = —Ind(h, c0) = 0.

e If A; and Ay are two repelling (%, h)-croissants then Ind(h,0) = —Ind(h,o0) = 1.

Case 3. Ay has dynamical type oo — 0 and Ay has dynamical type 0 — co.

It is slightly more complicated than in Case 1 to find a circle C' suitable to the
computation of Ind(h,0). We explain a possible construction in each of the four
natural subcases.

Subcase 3 —a. Ay is a repelling (F,h)-croissant and Az is an attracting (F,h)-
croissant.

Consider a repelling (%, h)-petal P, C A; at co and an attracting (%, h)-petal
P, C Ay at 0. Up to conjugacy, one may suppose that

OP\{o0} = {(z, —o+1) € R? |z < —1}U({~1} x[-2,2)) U{(x,2—1) € R? |z < —1},

Oh~1(P)\ {00} = {(z,—2 — 1) € R? |2 < —2} U ({2} x [-1L,1]) U{(m,z + 1) €
R2 | T g _2}7

[—1,0) x {0} C Int(A;),
h3(P,) is the triangle with vertices 0, (1, —1) and (1, 1),

h%(P,) is the triangle with vertices 0, (2, —3) and (2,3),

h(P) is the triangle with vertices 0, (3,—7) and (3,7),

- h(A2) \ {oo} = {(z,y) e R*[2 > 0, |y < 3x}
and moreover

- b {=1) x [-2,2]) = {-2} x [~1,1] with A1 (—1,0) = (—2,0),
hH{1} x [=1,1)) = {2} x [-3,3],

- h ({2} x [-3,3]) = {3} x [-7,7] with A=1(2,0) = (3,0).
Denote z1 = (—1,0) € 0Py, x5 = (2,0) € 0h*(P) and 6 = [-1,0] x {0}. Because of the
compactness of h(d) there exists an Euclidean disc K with center the origin such that
h(0) C K. There exist k1 < —1 < 2 < kg such that the four points M = (k1,—k1 + 1),
N = (k1,k1 — 1), P = (k2,—3ks) and Q = (kg,3ko) all lie in R? \ K. Then one can
join M and @ by a segment Cy C {(z,y) € R?|y > 0} such that C; is disjoint from
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h(As)

. h(P)

.

Figure 6.9 — The circle C' in Subcase 3 — a

Py U K Uh(Asz) except for the two endpoints M and . Similarly one can join N and
P by a segment C_ C {(x,y) € R?|y < 0} such that C_ is disjoint from P UK Uh(As)
except for its endpoints N and P. Consider now the segment C; C 0P \ {oo} having
M, N as endpoints and the segment

Cp={(z,-32) |2 <z < ha} U ({2} x [-6,6]) U{(,37) |2 < = < ka} C h(Ag)

so that C = C;UC_UC,UCy is a circle (Fig. 6.9) and easily C N (h(8) UR3(P)) = 0.
This allows to consider the Jordan domain D with frontier C' which contains the
connected set k(6 U h?(P)). We let again C' = h=1(C) and D' = h=}(D). One has
D' ¢ D because h™l(x3) ¢ CI(D). If D c D’ then Ind(h,0) = 1. If D ¢ D' the
method used in Subcase 1 — a also works in the current situation: in the notation
of Lemma 6.2, every segment Cl(8;) = [¢;,dj]c is disjoint from the straight segment
[—1,2] x {0} C § U R*(P) joining x1 and zo which implies [¢j,djlc C (22,21)¢c or
[cj,d;le C (z1,22)¢; moreover {h=Y(z1),h 1 (22)} N CI(D) = @ which allows to check
that Ind(H, C;) = 0 and finally Ind(h,0) = 1.
Subcase 3 —b. Ay s an attracting (F,h)-croissant and As is a repelling (%, h)-
croissant.
Replacing h with A~! in Subcase 3 — a one gets Ind(h,0) = —Ind(h~1,0) = —1.
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Subcase 3 —c. Ay and Az are two attracting (F, h)-croissants.
Consider an attracting (%, h)-petal P; C A; at co and an attracting (.#, h)-petal
P, C As at 0. In this case, one may assume that

- 0P \{oo} = {(z,—2+1) e R? |z < —1}U({—1}>< [—2,2])U{(:B,x—1) cR? |z < —1},

- Oh(P)\{oo} = {(z,—x—1) e R?|z < -2} U ({—2} x [—1, 1]) U{(z,z+1) e R?|z <
~2},

- P, is the triangle with vertices 0, (2, —3) and (2, 3),

- h(P») is the triangle with vertices 0, (1,—1) and (1, 1),

- A\ {oo} = {(z,y) e R? |z > 0,]y| < 22},

[—1,0) x {0} C Int(A;)

and moreover
- h({—1} x [-2,2]) = {—2} x [-1,1] with h(—1,0) = (—2,0);
- h({2} x [-3,3]) = {1} x [-1, 1] with h(2,0) = (1,0).

Figure 6.10 — The circle C' in Subcase 3 — ¢

Denote z; = (—2,0) € 0h(P1), 2 = (1,0) € Oh(P) and n = [-1,0] x {0}. Let K be
an Fuclidean disc with center 0 such that h(n) € K. Let us choose two integers
k1 < —2 < 1 < ko so large that the four points M = (ky,—k1 — 1), N = (k1, k1 + 1),
P = (kg,—2ks) and Q = (ko,2ks) all lie in R?\ K. Then one can join M and @ by a
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segment C C {(x,y) € R?|y > 0} such that C, is disjoint from h(Py) U K U h(As)
except for the two endpoints M and @. Similarly one can join N and P by a segment
C_ C {(z,y) € R?|y < 0} such that C_ is disjoint from P, U K U h(As) except for its
endpoints N and P. Consider now the segment C; C 9h(P;) \ {oco} with endpoints
M, N as well as

Cr={(z,—22) |1 <z <k} U ({1} x [-2,2]) U{(2,22) |1 <z < ka} C Ay

so that C' = C;UC_UC, UCy4 is a circle disjoint from h(n) \ {z1} (Fig. 6.10). Let
D be the Jordan domain with frontier C' containing h(n) \ {z1} and let C’ = h=1(C)
and D' = h~}(D). Note that D ¢ D’ ¢ D so Lemma 6.2 applies and the computation
of Ind(h,0) then continues essentially as for Subcase 1 — c. First there exists jyo € J
such that h=1(z1) € {—1} x [-2,2] C B}, = (¢jo, dj,)cr; since (h(n) UR*(P2)) NC = {a1},
ie., (NUA(Py)) NC" = {h~'(z1)}, one gets ¢j, € (x2,71)¢ and dj, € (z1,22)c and
consequently Ind(H, Cj,) = 1. Secondly (nU h(Pg)) NC" = {h~!(x1)} together with the
fact that h=1(z9) ¢ CI(D) implies [h(d;), h(cj)]c N [cj,d;lc = 0 for every j € J\ {jo}
hence Ind(H,C;) = 0. One obtains finally Ind(h,0) = 0.
Subcase 3 —d. Ay and Ay are two repelling (%, h)-croissants.

Replacing h with A~ in the subcase 3 — ¢ one has Ind(h,0) = —Ind(h~1,0) = 0.

The ten columns of the following table (see Table 6.1) summarize the various
kinds of minimal (.#, h)-croissants which one can have and they give in each case the
value of the fixed point index of 0.

Number of minimal attracting (%,h)-|2| 0 |1 0 [0]|O0|1] 0 |01
croissants with dynamical type 0 — oo
Number of minimal repelling (%,h)-|0| 2 |1 0 [0][0|0O| 1 | 1|0
croissants with dynamical type 0 — oo
Number of minimal attracting (Z%,h)-|0| 0 |0 2 [0O|1|1| 1 |00
croissants with dynamical type co — 0
Number of minimal repelling (%,h)-|0| 0 [0 O [2]|1|0| 0 |11
croissants with dynamical type co — 0

nd(h, 0) 1| 1[0 -1]1]0|0]-1]0]1
Table 6.1 — The index Ind(h,0) according to the nature of A; and A,y

This proves the required formula and moreover one gets Ind(h,0) € {—1,0,1} (as
it is already known from [Bon02] in the general case where 0 is simply an isolated
fixed point of h).

6.3 Link with Le Calvez equivariant foliations on the
annulus

Recall that a fixed point free orientation preserving homeomorphism F of the

plane R? is said to be a Brouwer homeomorphism. Moreover a line L of R? is named
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a Brouwer line of F if it separates F~'(L) and F(L) in R2. One has the following
powerfull result due to Le Calvez.

Theorem 6.3 ([LCO05]). Let G be a discrete group of orientation preserving home-
omorphisms of the plane acting freely and properly and let F be a Brouwer home-
omorphism commuting with every element of G. Then there exists a topological
oriented foliation of the plane, invariant under the action of G, whose leaves are

Brouwer lines of F'.

We say that a foliation as in Theorem 6.3 is a Le Calvez foliation for F. Let us
state the result to be proved in this section.
Proposition 6.9. Define f =h? and M = S?\ {0,00} = R2\ {0} and let F be the
lift of F to the universal cover R? of M. If .Z has no circle-leaf then there exists
alift f:R2 = R2 of flar : M — M to R? such that F is a Le Calvez foliation of f.

Proof. We choose the map II : R? — M defined in complex notation by II(z,y) =
e¥+2m a5 universal covering map of M. Thus the covering transformations group is
G = {7} ez where 7(z,y) = (z + 1,y). We also consider the fundamental domain
D=1[0,1) x R.

Note that every lift of f|; to R? is a Brouwer homeomorphism because f|y;
does not have any fixed point and that Z is an G-invariant oriented topological
foliation by lines of R?. For any oriented line I of R?, one defines following [L.CO05]
two half-planes R(I) and L£(I) of R? respectively on the right side and on the left
side of 1. Precisely R(l) = ¢7!([0,+00) x R) and L(I) = ¢~!((—00,0] x R) where
¢ is any orientation preserving homeomorphism of R? mapping the oriented line I
onto the vertical straight line {0} x R oriented from bottom to top. In particular
R(HUL() =R2 and R(1)NL(I) = I. Observe that for every lift f of f|u; to R? one has
f(R(l)) = R(f(l)) and f(ﬁ(l)) = E(f(l)) because f preserves the orientation. Moreover
it is classical that f|;; and the identity map Idy, are isotopic as homeomorphisms of
M, which ensures that fcommutes with the covering transformations 7% € G.

Let A be a minimal attracting (.#, f)-croissant constructed in Section 6.1. We
know from Proposition 6.3 that dA \ {0,00} = 6 U where & (resp. §) is a line-leaf
oriented from 0 to co (resp. from oo to 0) and that A lies locally on the right of these
two leaves.

Remark that the property to be proved is invariant by conjugacy in the following
sense. Let g be a homeomorphism of S? having 0 and oo as fixed points and let § be a
lift of g|/]\£/t0 R2. One defines naturally the foliatigri/g(ﬁ ) of M, image of .% by g|u.

Write g(.#) for the lift of g(.#) to R%2. One has g(F) = §(%) because goll =l oy

1. We use the letters R(l) and £(I) rather than R(!) and L(l) in order to avoid confusion with R(®) and
L(®) as defined previously for a Brouwer manifold & C M.
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hence, given a lift f of f|ys, one obtains that .Z is a Le Calvez foliation for f iff g(.%)
is a Le Calvez foliation for §o fog~1, this last homeomorphism being of course a lift
of (go fog™")u-

Therefore, replacing f with g o f o g~! for some suitable homeomorphism ¢ of
S2, one can assume without loss that A = {0,000} UTI(A) where A = [0 4] xR (i.e
A= {00} U[0,+00)?) and

F71(A) = {0,050} U H([_%, %] xR),  f(A)={0,00} U H([%, 1—36] < R).

We denote § = {0} xR and & = {1} xR which are two leaves of Z oriented respectively
from top to bottom and from bottom to top satisfying 6 = (5) = [0, +00) x {0} and
§ = H(g’) = {0} x [0, +00). Since f preserves the orientation one has moreover

U0 =T~} x B), f70) = ({2} x R),

FO) =T({5} xB), () =T({55} x R).

Since f(A) C Int(A) there exists a (unique) lift f of flasr such that ]7(2) C Int(A)
and we shall prove that ,?N is a Le Calvez foliation for f. Since II is a one-to-one
map when restricted to [, 75] x R one gets f({ L} x R) =4 and f( ) {1 xR
which shows that ¢ is a Brouwer line of f. One checks similarly that & is a Brouwer
line of f with f({ 16} X R) = & and f(6’) = {16} x R. Consider now a leaf ¢ of .#
which projects onto a leaf ¢ = II(¢) of .% which is different from § and §’. Since .Z is
G-invariant and since fcommutes with the elements of G, one can assume (b C D\ 5.
Let ® be a Brouwer manifold in & having ¢ as a connected component. The foliation
Z has no circle-leaf hence @ has type 2 or 3 (® = ¢ in the first case). The description
of R(®) and L(®) given in the proof of Proposition 3.1 provides two strips S_- C M
and Sy C M as follows:

- O Sy = o U f(¢) and Int(S1) C Int(R(D)),
- OpS- = U f7(¢) and Int(S_) C Int(L(P)).

The key observation is that one of the two strips Si is disjoint from 6 U ¢’ =
0A\ {0,00}. This certainly holds if CI(®) \ ® contains a single point a € {0,000}
(in particular if ® = ¢ is a Brouwer manifold of type 2) because one of the two
discs bounded by ¢ U {a} is disjoint from 6 U ¢’ and contains either S_ or Sy. If
Cl(®) \ @ = {0,00} then ® has type 3 has we write ¢’ for the connected component
of ® other than ¢. Recall that Int(A) does not contain any line-leaf (Corollary 6.1)
hence ¢ N A =0 and ¢ NInt(A) = (). Therefore there are three situations to consider
(see Fig. 6.11 and 6.12).

a) ¢’ ¢ {0,8'}. Then one of the two sets R(®) or L(®) is disjoint from A and the
assertion follows.
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@ A

0 0

Figure 6.11 — The two possibilities for the situation a)

5 ' o=

o =b 5
0 0

Figure 6.12 — The situations b) and c)

b) ¢’ =4§. Then L(®) N A = ¢' and the assertion holds true with S_.

c) ¢’ =¢'. Then again L(®) N A = ¢’ and the assertion holds true with S_.

For convenience we write S for the strip among S+ with the required properties
and we let ¢ = —1 (resp. ¢ = 1) if S = S_ (resp. if S = S;). There is a unique
connected component S of II~1(S) contained in the fondamental domain D and II| g
S — S is a homeomorphism, so that dg2S = ¢ U1 where 1 is a connected component
of TI"Y(f%(¢)). Onme has actually either S C (0 ,4) xRor S C (3.1) x R because

SN (U =0. In the first case one gets SU f(S) C [— £, 2] x R and in the latter
case S vag(g) [136, 16] x R. The fact that II is a one-to-one map on these two vertical

strips implies that fE (¢) = w in both cases. Since the covering map II is an orientation
reversing local homeomorphism (its Jacobian determinant is —2me? < 0) it follows
that if e = 1 (resp if e = —1) then S C R(¢) N £(f5(gz$)) (resp S C L(d) NR(fE())).
Using the fact that £(f5(¢)) = f5(£(¢)) and R(f5(4)) = fF(R(4)) one deduces that
anyway f( (¢)) C Int([,(gg)) and f~1(R (¢)) Int(R(qS)) which proves that ¢ is a
Brouwer manifold of f. O

6.4 Proof of Theorem 6.2

- Consider first the case where .# has at least one circle-leaf ¢. Let D be the disc
containing 0 and bounded by ¢. Then one has either h(D) C Int(D) or h=1(D) C
Int(D). In the first (resp. second) case one deduces easily Ind(h?*~' 0) = 1 (resp.
Ind(h?¥~1,0) = —1) for every integer k£ > 1 and in both cases Ind(h?*,0) = 1 for every
k> 1.
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- Suppose now that .# has no circle-leaf. Let again f = h? and M = S?\ {0, 0} =
R?\ {0} and consider the lift fof f |ar provided by Proposition 6.9. Fix an integer
k > 1 and for convenience define g = f* = h2*. Of course fF¥ is a lift of g|p; and .F
is also a Le Calvez foliation for f* because a Brouwer line of f is a Brouwer line of
£k, According to a remark of Le Calvez (see [LCO05, page 4]), this implies that for
every point 2z € R? one can choose an oriented arc 73 ¢ R? from 2 to f (2) which is
negatively > transverse to .%. As it is well known, there exists an isotopy I = (9t)eeo,1]
on M from go = Idys to g1 = g|as which is lifted by an isotopy I= (9t)tefo,1) On R? from
Jo = Idge to g1 = f*. Indeed choose any isotopy J = (¢t)ejoq) on M from po = Idy,
to 1 = g|a and consider a lift J = ($)ieqoq of J from @y = Idge. Then f* and
@1 are two lifts of g|y; hence, keeping the notation G = {7%},cz as in the proof of
Proposition 6.9, one has fk=rmo 1 for some m € Z. One obtains an isotopy I as
expected by letting g = " o ¢y where 4 is the rotation with center 0 and angle 27t.

Projecting down the above arcs 7; on M, one obtains that the foliation .# is
dynamically transverse to the isotopy I, which means that for every z € M the
trajectory I(z) = {g:(2) }sc[,1] is homotopic (relative to the endpoints) to an oriented
arc v, C M from z to g(z) which is negatively transverse to .#. Then one has the
following result which is contained in [LCOS|.

Proposition 6.10. In the above notation, one has Ind(g,0) = Ind(F,0) where
Ind(#,0) is the Poincaré-Hopf index of the foliation Z at the singularity 0.

More precisely this proposition follows from the proof of [LCO8, Proposition 3.5].
Indeed, recall that our foliation .# possesses a line-leaf ¢ oriented from 0 to oo and
also a line-leaf ¢ oriented from oo to 0 hence there is no circle transverse to .%.
Thus the arguments in the proof of [LC08, Proposition 3.5] always apply with our
assumptions and give Ind(g,0) = Ind(#,0) (even if Ind(.%,0) = 1). Alternatively,
Proposition 6.10 may also be obtained from the proof of [LR13, Proposition 4.2.2]
which gives Ind(g,0) = Ind(7,0) = Ind(.%,0) where Ind(Z,0) is the index of the isotopy
I as defined in [LR13].

In particular Proposition 6.10 shows that Ind(h?*,0) does not depend on the integer
k=1

It remains to study the case of the odd iterates h2*~!. Define now g = h?+~1

where
k is a given positive integer. Remark that a Brouwer manifold of & is also a Brouwer
a manifold of g hence the notions of .#-petal and .%-croissant introduced for h also
make sense for g and all the results in Section 6.1 still hold with ¢ intead of h. For
every i € {1,2}, a (Z, h')-petal (resp. a (&, h')-croissant) is also a (.F, g*)-petal (resp.
a (F,g')-croissant) with the same attracting or repelling nature for both A’ and ¢'.

2. This is a minor difference with [LCO05] where the author deals with arcs which are positively transverse
to the foliation. It is due to our choice of the covering map II which locally reverses the orientation so that
f maps any leaf ¢ of F “on its left side” , that means in Int(ﬁ(d))).
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It follows furthermore from Corollary 6.1 that a minimal (., h?)-croissant is also a
minimal (.%, g')-croissant.

Let Ay, A2 be the two minimal (.#, h)-croissants of the family A constructed in
Paragraph 6.1. According to the previous remarks, A; and As are also two minimal
(Z, g)-croissants with the same attracting or repelling feature and the same dynam-
ical type 0 — oo or oo — 0 for h and ¢g. Then the same calculation as in Section 6.2
applies for g instead of h and one concludes that Ind(2?*~1,0) does not depends on
k.
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