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In the modeling and performance evaluation of wireless cellular communication, stochastic geometry is widely applied, in order to provide more efficient and accurate solutions. Homogeneous Poisson point process (H-PPP) with identically independently distributed variables, is the most widely used point process to model the spatial locations of base stations (BSs) due to its mathematical tractability and simplicity. For strong spatial correlations between locations of BSs, only point processes (PPs) with spatial inhibitions and attractions can help. However, the long simulation time and weak mathematical tractability make non-Poisson PPs not suitable for system level performance evaluation. Therefore, to overcome mentioned problems, we have the following contributions in this thesis: First, we introduce a new methodology for modeling and analyzing downlink cellular networks, where the base stations constitute a motion-invariant point process that exhibits some degree of interactions among the points. The proposed approach is based on the theory of inhomogeneous Poisson PPs (I-PPPs) and is referred to as inhomogeneous double thinning (IDT) approach. The proposed approach consists of approximating the original motion-invariant PP with an equivalent PP that is made of the superposition of two conditionally independent I-PPPs. The inhomogeneities of both PPs are created from the point of view of the typical user. The inhomogeneities are mathematically modeled through two distance-dependent thinning functions and a tractable expression of the coverage probability is obtained. Sufficient conditions on the parameters of the thinning functions that guarantee better or worse coverage compared with the baseline homogeneous PPP model are identified. The accuracy of the IDT approach is substantiated with the aid of empirical data for the spatial distribution of the BSs.

4.2.1

R ésum é : Dans la mod élisation et l' évaluation des performances de la communication cellulaire sans fil, la g éom étrie stochastique est largement appliqu ée afin de fournir des solutions plus efficaces et plus pr écises. Le processus ponctuel de Poisson homog ène (H-PPP) est le processus ponctuel le plus largement utilis é pour mod éliser les emplacements spatiaux des stations de base (BS) en raison de sa facilit é de traitement math ématique et de sa simplicit é. Pour les fortes corr élations spatiales entre les emplacements des stations de base, seuls les processus ponctuels (PP) avec inhibitions et attractions spatiales peuvent être utiles. Cependant, le temps de simulation long et la faible aptitude math ématique rendent les PP non-Poisson non adapt és à l' évaluation des performances au niveau du syst ème. Par cons équent, pour surmonter les probl èmes mentionn és, nous avons les contributions suivantes dans cette th èse: Premi èrement, nous introduisons une nouvelle m éthodologie de mod élisation et d'analyse de r éseaux cellulaires de liaison descendante, dans laquelle les stations de base constituent un processus ponctuel invariant par le mouvement qui pr ésente un certain degr é d'interaction entre les points. L'approche propos ée est bas ée sur la th éorie des PP inhomog ènes de Poisson (I-PPP) et est appel ée approche à double amincissement non homog ène (IDT). L'approche propos ée consiste à approximer le PP initial invariant par le mouvement avec un PP équivalent constitu é de la superposition de deux I-PPP conditionnellement ind épendants. Les inhomog én éit és des deux PP sont cr é ées du point de vue de l'utilisateur type "centr é sur l'utilisateur". Des conditions suffisantes sur les param ètres des fonctions d'amincissement qui garantissent une couverture meilleure ou pire par rapport au mod èle de PPP homog ène de base sont identifi ées. La pr écision de l'approche IDT est justifi ée à l'aide de donn ées empiriques sur la distribution spatiale des stations de base. Ensuite, sur la base de l'approche IDT, une nou-velle expression analytique traitable du rapport de brouillage moyen sur signal (MISR) des r éseaux cellulaires o ù les stations de base pr ésentent des corr élations spatiales est introduite. Pour les PP non-Poisson, nous appliquons l'approche IDT propos ée pour estimer les performances des PP non-Poisson. En prenant comme exemple le processus de points β -Ginibre (β -GPP), nous proposons de nouvelles fonctions d'approximation pour les param ètres cl és dans l'approche IDT afin de mod éliser diff érents degr és d'inhibition spatiale et de prouver que MISR est constant en densification de r éseau avec les fonctions d'approximation que nous proposons. Nous prouvons que la performance MISR dans le cas β -GPP ne d épend que du degr é de r épulsion spatiale, c'est-àdire β, quelles que soient les densit és de BS. Les nouvelles fonctions d'approximation et les tendances sont valid ées par des simulations num ériques. Troisi èmement, nous étudions plus avant la m étadistribution du SIR à l'aide de l'approche IDT. La m éta-distribution est la distribution de la probabilit é de r éussite conditionnelle compte tenu du processus de points. Nous d érivons et comparons l'expression sous forme ferm ée pour le b-ème moment dans les cas PP H-PPP et non-Poisson. Le calcul direct de la fonction de distribution cumulative compl émentaire (CCDF) pour la m éta-distribution n' étant pas disponible, nous proposons une m éthode num érique simple et pr écise bas ée sur l'inversion num érique des transform ées de Laplace. L'approche propos ée est plus efficace et stable que l'approche conventionnelle utilisant le th éor ème de Gil-Pelaez. La valeur asymptotique de la CCDF de la m éta distribution est calcul ée dans la nouvelle d éfinition de la probabilit é de r éussite. En outre, la m éthode propos ée est compar ée à certaines autres approximations et limites, par exemple l'approximation b êta, les bornes de Markov et les liaisons de Paley-Zygmund. Cependant, les autres mod èles et limites d'approximation sont compar és pour être moins pr écis que notre m éthode propos ée.

Then, based on the IDT approach, a new tractable analytical expression of mean interference to signal ratio (MISR) of cellular networks where BSs exhibits spatial correlations is introduced.For non-Poisson PPs, we apply proposed IDT approach to approximate the performance of non-Poisson PPs. Taking β-Ginibre point process (β-GPP) as an example, we propose new approximation functions for key parameters in IDT approach to model different degree of spatial inhibition and we successfully prove that MISR for β-GPP is constant under network densification with our proposed approximation functions. We prove that of MISR performance under β-GPP case only depends on the degree of spatial repulsion, i.e., β, regardless of different BS densities. The new approximation functions and the trends are validated by numerical simulations. Third, we further study meta distribution of the SIR with the help of the IDT approach. Meta distribution is the distribution of the conditional success probability P S (τ ) given the point process. We derive and compare the closed-form expression for the b-th moment M b under H-PPP and non-Poisson PP case. Since the direct computation of the complementary cumulative distribution function (CCDF) for meta distribution is not available, we propose a simple and accurate numerical method based on numerical inversion of Laplace transforms. The proposed approach is more efficient and stable than the conventional approach using Gil-Pelaez theorem. The asymptotic value of CCDF of meta distribution is computed under new definition of success probability. Furthermore, the proposed method is compared with some other approximations and bounds, e.g., beta approximation, Markov bounds and Paley-Zygmund bound. However, the other approximation models and bounds are compared to be less accurate than our proposed method. PDFs for some well-known fading models . . . . . . . . . . . . . . . .
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Auxiliary functions used in Theorem 2 

(D F = (c F -b F )/(c F -b F )a F a F , D K = (c K -b K )/(c K -b K )a K a K )

3.7

Parameters of the IDT approach (spatial inhibition). ǎ(•) In order to meet the high demand on fast, reliable and well-covered wireless communications, the new generation of networks have been studied and designed. Dierent from the previous generations, the fth generation (5G) wireless networks is an evolution of mobile broadband networks since it brings new unique network and service capabilities [START_REF] Association | The 5g infrastructure public private partnership: The next generation of communication networks and services[END_REF].

Firstly, Network densication. With the increasing number of wireless connected devices, the ever-rising demand for wireless data causes that conventional cellular architectures based on large macro cells are expected to be unable to support the anticipated density of high-data-rate users [START_REF] Mukherjee | Analytical Modeling of Heterogeneous Cellular Networks[END_REF]. Seamless handover between heterogeneous wireless access technologies also requires the ultra-dense deployment of 5G networks with numerous small cells. One typical example is in an urban area or a stadium where numerous users are gathered and in demand of data in the same time, the drawbacks of conventional cellular networks are revealed. Therefore, network densication becomes an inevitable trend for future network design.

In addition, Wider Spectrum. More available spectrum, rather than crowded conventional spectrum bands below 24 GHz, is gaining more and more attention nowadays. Spectrum bands above 24 GHz, loosely known as mmWave, are capable of delivering extreme data rate and capacity. On the other hand, cognitive radio and 1 opportunistic communications could be possible way to oer extra spectrum without more cost in developing corresponding technology in mmWave communication.

Third, Spectral and Energy Eciency. Massive MIMO (Multiple-Input Multiple-Output) is one of the most promising techniques in 5G [START_REF] Larsson | Massive mimo for next generation wireless systems[END_REF]. It uses large antenna arrays at base stations to simultaneously serve many autonomous terminals, which brings excellent spectral eciency and energy eciency. Also beamforming allows the same resources be reused for multiple users in a cell. Besides, RF energy harvesting, wireless power transfer, full-duplex also helps to improve energy eciency.

The aspects mentioned above are the three key points in the next generation network design. Besides, there are also some other hot issues in 5G network study, for example, software-dened networks, centrally-controlled networks, shared networks, virtualized networks and network slicing.

Since network densication plays an important role in future network design, it is vital to analyze the modeling techniques and the performance metrics of ultra dense networks (UDNs) [START_REF] Kamel | Ultra-dense networks: A survey[END_REF]. There are dierent techniques used in modeling of the problems in UDNs, among which stochastic geometry is the two most commonly used tools. Here in this thesis, we focus on the modeling and performance evaluation of spatially-correlated cellular networks using stochastic geometry.

Contributions

The contributions of this thesis can be summarized into four main parts.

( (2) Based on the IDT approach, a new tractable analytical expression of the mean interference to signal ratio (MISR) of cellular networks is introduced. For homogeneous PPP, MISR is proved to be constant under network densication.

However the MISR for non-Poisson point process has not yet been explored.

IDT approach provides a more tractable way to approximate the performance of non-Poisson point processes. Taking the β-Ginibre Point Process (β-GPP)

as an example of repulsive point processes, we successfully proved that MISR for β-GPP is constant under network densication based on our proposed approximation function of key parameters in IDT approach. We proved the trend of MISR performance only depends on the degree of spatial repulsion or spatial clustering regardless of dierent BS densities. We nd that with the increase of β or γ (given xed γ or β respectively), the corresponding MISR for β-GPP decreases.

(3) Following the extension and application of IDT approach, we further utilize it to study the meta distribution of the SIR, which is the distribution of the conditional success probability P S (τ ) given the point process. The conventional coverage probability can be obtained by integrating the Complementary Cumulative Distribution Function (CCDF) of the meta distribution. The motivation to study the meta distribution is that individual user performance cannot always be represented by average coverage probability. Thanks to the IDT approach, which provides a simple and accurate way to model the performance of non-Poisson PPs, we are able to derive the closed-form expressions of the moments M b for homogeneous PPP and non-PPPs by using IDT approach. We are also able to compare the order of moments from H-PPP and non-PPPs.

Then, to compute the CCDF of the meta distribution more eciently, we proposed a new numerical way to CCDF based on numerical inversion of Laplace transforms, more stable and ecient than the conventional approach using Gil-Pelaez theorem. The proposed approach is ecient and robust, and is validated by numerical simulations. Some other approximations, e.g., beta approximation is compared with our proposed approach, and is proved to be less accurate.

Several classic bounds are given as comparisons as well.

1. 

P {Φ (A 1 ) = n 1 , ..., Φ (A k ) = n k } = k i=1 e -Λ(A i ) -Λ(A i ) n i n i ! , (2.1) 
for every k = 1, 2, ... and all bounded, mutually disjoint sets A i for i = 1, ..., k. If Λ(dx) = λdx is multiple of Lebesgue measure (volume) in R d , we call Φ a homogeneous Poisson p.p. and λ is its intensity parameter.

Special case from (2.1) when n = 0, k = 1 gives us the void probability, that if and only if there exists a locally nite non-atomic measure Λ such that for any subset A,

P {Φ (A) = 0} = e -Λ(A) (2.2)
where A denotes the area that there are no points in it. This probability is also called the CCDF of contact distance distribution for homogeneous PPP, also known as empty space distribution. It should be noted that the reference point, i.e., the origin, is not a part of the original point process. The contact distance distribution can provide us with important and useful information about distance distribution between a typical receiver and its nearest PPPdistributed BSs. Figure 2-1 shows a realization of homogeneous PPP, where the red node and the red circle denotes typical user and its void area.

Apart from the contact distance distribution, there is another important property for motion-invariant processes, called Ripley's K function. It is a simple function but often useful, also called the reduced second moment function [START_REF] Ripley | The second-order analysis of stationary point processes[END_REF]. The K function is dened as:

K (r) = 1 λ K (b (o, r)) , r ≥ 0 (2.3)
where K (b (o, r)) or λK (r) denotes the number of points that lie in the ball centered at origin o with radius r. For homogeneous PPP, the Ripley's K function is K (r) = πr 2 .

Also, it is interesting to know that the Ripley's K function can also be a good criteria to see if a point process is spatially attractive or repulsive. Given a point process, if K pp (r) > πr 2 , it is considered as a clustering point process, while if K pp (r) < πr 2 , it is considered as a repulsive point process. More comparison and details can be found in section 2.2.

Why the PPP is so popular in performance analysis of wireless communication network? The mathematically tractable properties of PPP make the resulting framework simple to study. For example, with PPP, we can have closed form expression of coverage probability, i.e., P cov [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], when Rayleigh fading is considered, and the path-loss exponent α = 4.

In the last few years, the theory of PPPs has been extensively employed for modeling, analyzing and optimizing the performance of emerging cellular network architectures [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. Notable examples include, Heterogeneous Cellular Networks (HCNs) [START_REF] Dhillon | Modeling and analysis of k-tier downlink heterogeneous cellular networks[END_REF], [START_REF] Di Renzo | Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[END_REF], MIMO HCNs [START_REF] Dhillon | Downlink mimo hetnets: Modeling, ordering results and performance analysis[END_REF], [START_REF] Di Renzo | Stochastic geometry modeling and performance evaluation of mimo cellular networks using the equivalent-in-distribution (eid)-based approach[END_REF], millimeter-wave cellular HCNs [START_REF] Bai | Coverage and rate analysis for millimeter-wave cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF], and massive MIMO cellular networks [START_REF] Bai | Analyzing uplink sinr and rate in massive mimo systems using stochastic geometry[END_REF]. Recently, comprehensive mathematical frameworks taking into account the impact of spatial blockages, antenna radiation patterns and the network load have been introduced [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF] and empirically validated [START_REF] Lu | Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental validation[END_REF]. Surveys and tutorials on the application of PPPs to the modeling and analysis of HCNs are available in [1922].

Although modeling cellular networks by using PPPs has the inherent advantage of mathematical tractability, empirical evidence suggests that practical cellular network deployments are likely to exhibit some degree of interactions among the locations of the BSs, which include spatial inhibition, i.e., repulsion [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], and spatial aggregation, i.e., clustering [START_REF] Deng | Heterogeneous cellular network models with dependence[END_REF]. erties, like the contact distance distribution, and Ripley's K function (if applicable) are introduced in this section.

Log-Gaussian Point Process

In [START_REF] Kibiªda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF], the Log-Gaussian Cox Process (LGCP) is proposed, based on empirical data, to account for the spatial correlation arising in multi-operator cellular networks.

A Cox process is regarded as doubly stochastic as it arises as an inhomogeneous

Poisson process with a random intensity measure [START_REF] Møller | Log gaussian cox processes[END_REF]. Cox processes where the logarithm of the intensity surface is a Gaussian process. There are some main properties of LGCP as follows:

• The distribution is characterized by the intensity and the pair correlation function (PCF) of the Cox process.

• The theoretical properties of LGCP can be easily derived. For example, the higher-order properties can be simply expressed by the intensity and PCF of the LGCP.

• The underlying Gaussian process and intensity surface can be predicted from a realization of a LGCP observed within a bounded window using Bayesian methods.

• There is no problem with border(edge) eects as the distribution of the LGCP restricted to a bounded subset is known.

The realizations of a LGCP can be easily generated by function `rLGCP' in `R' using the package `spatstat'. Denitions for the contact distribution and Ripley's K function can be found as follows [START_REF] Møller | Log gaussian cox processes[END_REF]: 

F µ,σ 2 ,β(a) = 1 -E µ,

Poisson Hole Process

In [START_REF] Yazdanshenasan | Poisson hole process: Theory and applications to wireless networks[END_REF], the Poisson Hole Process (PHP) is proposed to model the spatial interactions in cognitive and device-to-device networks. PHP can be very useful especially in modelling the BSs where a large amount of people aggregate and necessitate a reliable communication infrastructure. The deployment of aerial access points, often known as drones or unmanned aerial vehicles, oer a suitable solution for providing ad hoc connectivity.

It is also known as Hole-1 process, which is dened as: Let Φ 1 , Φ 2 ∈ R 2 be independent uniform PPPs, called as parent process and children process. The intensity for Φ 1 and Φ 2 are denoted as λ 1 and λ 2 , (λ 2 > λ 1 ), respectively. Further let

E r ∆ = {x ∈ Φ 1 : B (x, D
)} be the union of all disks of radius D centered at a point of Φ 1 . Then, the Poisson hole process is:

Φ = {x ∈ Φ 2 : x / ∈ E r } = Φ 2 \E r (2.6)
An example of realization of PHP can be found in Figure 2 

Matérn Cluster PP

In [START_REF] Saha | 3gpp-inspired hetnet model using poisson cluster process: Sum-product functionals and downlink coverage[END_REF], a general class of Poisson cluster PPs is studied for modeling the spatial coupling between dierent tiers of HCNs. The Matérn Cluster PP (MCPP) is used, e.g., for modeling the locations of small-cell BSs.

The Matérn Cluster point process is rst brought up by [START_REF] Moller | Statistical inference and simulation for spatial point processes[END_REF]. It is a type of cluster point process formed by rst generating parent points according to a Poisson point process with intensity λ parent . Then for each parent point, the ospring points are generated around its parent point. For each cluster of ospring points, the number of ospring points is a Poisson random variable and the locations of the ospring points of one parent are independent and uniformly distributed inside a circle of radius r d centered on the parent point. The radius r d is equal to the parameter scale.

When it comes to the contact distance distribution, there are two scenarios, the rst is when the cluster centered at x ∈ Φ p includes origin, i.e., x ∈ b (0, r d ). And the second is when the cluster centered at x ∈ Φ p does not include origin, i.e. x / ∈ b (0, r d ).

In conclusion, the nal contact distance distribution in [START_REF] Afshang | Nearest-neighbor and contact distance distributions for matérn cluster process[END_REF] can be written as:

F C (r) = 1-exp      -2πλ p      r d 0   1 -exp   - m   min(r,r d -x) 0 χ (1) (z, x) dz + min(r,r d +x) min(r,r d -x) χ (2) (z, x) dz       xdx + ∞ r d 1 -exp -m min(r,x+r d ) min(r,x-r d ) χ (3) (z, x) dz xdx           (2.7)
where m represents the mean number of children in the ball centered at parent point.

χ (1) (z, x) = 2z r 2 d χ (2) (z, x) = 2z πr 2 d cos -1 z 2 +x 2 -r 2 d 2zx χ (3) (z, x) = χ (2) (z, x) (2.8)
Ripley's K Function for Matérn Cluster point process can be found in [START_REF] Baddeley | Spatial point patterns: methodology and applications with R[END_REF]:

K (r) = πr 2 + h r 2r d /λ P (2.9) 
where

h (z) = H (1 -z)   2 + 1 π   8z 2 -4 Arccos (z) -2Arcsin (z) +4z (1 -z 2 ) 3 -6z √ 1 -z 2     + H (z -1)
(2.10)

where H () represents the Heaviside function. 

Lattice Point Process

In [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF], a cellular network model constituted by the superposition of a shifted lattice PP and a PPP is introduced, by bridging the gap between completely regular and totally random networks. This random shifted lattice model is obtained by shifting the points in the standard square 2D grid via a single uniform random variable.

The original regular square lattice point process can be easily generated by deploying points evenly with xed distance between neighboring points. The contact distance distribution and Ripley's K function are computed as: 

F Lattice (r) =            πr 2 R 2 r < R/2 r R 2 πr + 2R 1 -R 2 4r 2 -4rArcCos( R 2r ) R/2 ≤ r < √ 2 2 R 1 √ 2 2 R ≤ r K(r) =      0 r < R 4 Nr i=1 √ r 2 -(iR) 2 R + 1 r ≥ R (2.11)
where R is the inter-cell distance between two points in Lattice point process; N r = 

Determinantal Point Processes

Determinantal PPs (DPPs) are typical repulsive point process. It has many categories, like Cauchy DPP, Gaussian DPP and Generalized Gamma DPP. In [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF],

DPPs are investigated and their accuracy is substantiated with the aid of practical network deployments.

By denition, the point process dened on a locally compact space Λ is called a determinantal point process with kernel K : Λ × Λ → C, if its n-th joint intensity has the following form

ρ (n) (x 1 , ..., x n ) = det (K (x i , x j )) 1≤i,j≤n , (x 1 , ..., x n ) ∈ Λ n (2.12)
where det (•) is the determinant function.

Note that PPP is a special case of DPP whenever K (x, y) = 0 for x = y. The kernel function K (x, y) is assumed to be a continuous, Hermitian, locally square integrable and non-negative denite function. If we focus on DPPs dened on the Euclidean plane R 2 , the generalized contact distance distribution for DPP is:

F (r) = +∞ n=1 (-1) n-1 n! (B(0,r)) n det (K(x i , x j )) 1≤i,j≤n dx 1 ...dx n (2.13)
It can be seen that F function is a kernel-dependent function.

For Cauchy and Gaussian Determinantal Point Process, they have two dierent kernel functions K (x, y), where K (x, y) = K 0 (x -y) , x, y ∈ R 2 , K 0 (x -y) is the covariance functions, which are denoted as:

K Cauchy 0 (x) = λ (1 + ||x|| 2 /α 2 ) ν+1 , x ∈ R 2 K Gaussian 0 (x) = λ exp -||x|| 2 /β 2 (2.14)
where λ describes the intensity, α is the scale parameter and ν is the shape parameter.

Both α and ν aect the repulsiveness of the Cauchy DPP; β is a measure of the repulsiveness of Gaussian DPP.

The spectral density is another important property of DPPs, and it is useful when simulating stationary DPPs. In addition, the spectral density can also be used to assess the existence of the DPP associated with a certain kernel. Specically, from [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF]Def. 2], the existence of a DPP is equivalent to its spectral density φ belonging to [0, 1]. Then, it is noticed that, to guarantee the existence of a Cauchy DPP, the parameters need to satisfy:

λ Cauchy ≤ ν ( √ πα) 2 (2.15)
Similar constraints exist for Gaussian DPP, which is λ Gaussian ≤ (

√ πβ) -2
. Then, contact distance distribution can be computed by taking (2.14) into (2.13). However, the computation in (2.13) seems to be very complicated due to the multi-dimension integrals. To solve this complexity problem, Quasi-Monte Carlo (QMC) method is introduced [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF], [START_REF] Kuo | Lifting the curse of dimensionality[END_REF], the F function can be rewritten as:

F (r) = +∞ n=1 (-1) n-1 (2r) 2n n! ([0,1]×[0,1]) n det (K 0 (2r(x i -x j ))) 1≤i,j≤n × i 1 {||x i -( 1 2 , 1 2 )||≤ 1 2 } dx 1 ...dx n (2.16)
where QMC approximate the multi-dimension integration of function for f :

[0, 1] n → R: [0,1] n f (x)dx ≈ 1 N N -1 n=0 f (x n ).
Though F function can be computed using QMC approach, the accuracy of F function depends a lot on the number of Sobol points used in the computation of approximation. Shown in Figure 2-10, the accuracy is signicantly dierent when dierent number of Sobol points are used in the computation of approximation. It should be noted that even with QMC approximation, the computation time for F function can still be a main disadvantage in applying DPPs. The other vital feature of DPP is Ripley's K function. They can be obtained easier than the F function for Cauchy and Gaussian DPP, which are denoted as [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]:

K Cauchy (r) = πr 2 - πα 2 2µ + 1 1 - α 2 α 2 + r 2 2µ+1 K Gaussian (r) = πr 2 - πβ 2 2 1 -exp -2r 2 β 2
(2.17)

Ginibre Point Process

Ginibre point process (GPP) is also one kind of DPPs. In [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF], GPP is proposed for modeling repulsive cellular networks in urban and rural environments. Further experimental validation of the suitability of GPPs is available in [START_REF] Gomez | A case study on regularity in cellular network deployment[END_REF]. A thinned and re-scaled GPP (β-GPP), where 0 < β < 1, is also introduced in [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF]. The contact distance distribution and Ripley's K function is given by: 

F β-GP P (r) = 1 - ∞ k=1 1 -βγ k, c β r 2 K β-GP P (r) = πr 2 - βπ c 1 -e -c β r 2
P cov (τ, α, β) = β ∞ 0 e -s exp -µτ σ 2 βs c α 2 M (τ, s, α, β) S (τ, s, α, β) ds (2.19)
where,

M (τ, s, α, β) = ∞ k=1 ∞ s v k-1 e -v (k -1)! β 1 + τ s v α 2 dv + 1 -β S (τ, s, α, β) = ∞ i=1 s i-1 ∞ s v i-1 e -v β 1 + τ s v α 2 dv + (1 -β) (i -1)! -1 (2.20)
And for given system parameters, gure 2-13 is obtained after several days of simulation time on the platform of Matlab. Threshold here means SINR threshold τ . Taking the β-GPP as an example, it can be argued that non-PPPs are not mathematically tractable. Although they can model the performance of actual BSs much better than homogeneous PPP, the complexity and simulation time is usually quite high. Also, it is dicult to study the performance trends.

To overcome the drawbacks of non-PPPs , the author introduces the As-A-PPP (ASAPPP) approach ( [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF], [START_REF] Haenggi | Asappp: A simple approximative analysis framework for heterogeneous cellular networks[END_REF]), which consists of obtaining the coverage probability of repulsive PPs through a right shift of the coverage probability under the PPP model. The right-shift to be applied is termed (asymptotic) deployment gain. General results on the existence and computation of the asymptotic deployment gain are available in [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF], [START_REF] Ganti | Asymptotics and approximation of the sir distribution in general cellular networks[END_REF]. The ASAPPP method is generalized for application to HCNs in [START_REF] Wei | Approximate sir analysis in general heterogeneous cellular networks[END_REF].

By carefully analyzing all the above-mentioned proposals for modeling cellular networks via non-PPPs, two main conclusions can be drawn: 1) non-PPPs are more accurate than PPPs for modeling emerging cellular architectures and 2) the price to pay is the loss of mathematical tractability and the limited insight in network design can be obtained from the resulting frameworks. As far as the computation of the coverage probability is concerned, among all the available approaches, the ASAPP method is certainly the most tractable. The asymptotic deployment gain, however, may not be always explicitly computable [START_REF] Guo | Asymptotic deployment gain: A simple approach to characterize the sinr distribution in general cellular networks[END_REF]Lemma 3]. The approaches proposed so far are, PP-specic: Each spatial PP results in a dierent formulation of the coverage probability. Therefore, there is a compelling need for a unied and tractable methodology for modeling cellular networks that exhibit spatial repulsion and/or clustering.

To overcome those mentioned diculties, we propose a new methodology for modeling and analyzing downlink cellular networks, which can approximate point processes that exhibits spatial repulsion or clustering between points. More details can be found in chapter 3.

Performance Analysis with Stochastic Geometry

Besides the basic point process we need to take into consideration, stochastic geometry gives to us the tools for computing important performance metrics in a computable form. According to the conventional denition of SINR in the downlink cellular network, we have:

SIN R = P tx |h x 0 | 2 G tx G rx /l (x 0 ) σ 2 + i∈Φ/x 0 I agg (x i |x 0 ) (2.21)
where P tx is the transmit power, l (x) represents the path-loss function, |h x | 2 is the channel gain, G tx and G rx are the antenna gain at transmitter and receiver end, σ 2 is the background noise power and I agg is the aggregated interference denoted as:

I agg (x i |x 0 ) = P tx |h x i | 2 G tx G rx /l (x i ) (2.22)
Usually, the conventional coverage probability is dened as the probability that received SIN R is greater than a threshold τ :

P cov = Pr {SIN R > τ } (2.23)
A new denition of coverage probability proposed in [START_REF] Di Renzo | System-level modeling and optimization of the energy eciency in cellular networksa stochastic geometry framework[END_REF] overcomes the limitations of currently available analytical frameworks and is suitable for system-level optimization.

P cov (τ D , τ A ) = Pr SIR > τ D , SN R > τ A (2.24)
where τ D and τ A set the thresholds for SIR and SN R. SN R is averaged over fast fading. When τ A = 0, it goes back to the conventional denition of coverage probability.

Load Model

If we consider a downlink cellular network, the capacity of this wireless network depends on the number of active BSs in one resource block in one snapshot. In the case that all BSs are active to serve mobile users in its cells, the capacity should be at its maximum. Many previous studies on cellular networks assumed that BSs are positioned regularly.

However fully-loaded BSs are not always true in reality, as mobility of users may bring some random characteristics and aect the performance of BSs. In [43, (12)],

the authors propose a new model to approximate the probability density function (PDF) of the size of a typical Voronoi cell,

f d (x) = ((3d + 1) /2) (3d+1)/2 Γ ((3d + 1) /2) x 3d-1 2 exp - 3d + 1 2 x (2.25)
where d gives the dimensionality of the space. Although this distribution function

is not an exact one and for sure it is less accurate than a more complicated three parameter t [43, (1)]. However due to its simplicity, it provides us with a easy way without losing mathematical tractability.

The user selection probability that a randomly chosen user is assigned to a resource block at a given time and is served by the nearest BS is [START_REF] Yu | Downlink capacity and base station density in cellular networks[END_REF]:

p selection = λ b λ u 1 -1 + 3.5 -1 λ u λ b -3.5 (2.26)
This model is applied in many scenarios. In [START_REF] Singh | Ooading in heterogeneous networks: Modeling, analysis, and design insights[END_REF], the optimum fraction of trac ooaded to maximize SINR coverage is not in general the same as the one that maximizes rate coverage. A tractable model for rate in self-backhauled millimeter wave cellular networks is proposed in [START_REF] Singh | Tractable model for rate in self-backhauled millimeter wave cellular networks[END_REF].

Antenna Radiation Pattern

Omni Directional Pattern

Most of literatures prefer to use omni directional antenna radiation pattern, which is particularly favoured for wireless communication networks due to the cost and size limitations. Also, it is simple and easy for people to model and analyze.

However with the exponential increase of number of mobile subscribers, the drawbacks of omni directional antenna are starting to become signicant resulting from the high inter-cell interference from simultaneously transmitting BSs. If the transmitter and receiver are equipped with omni direction antenna, the antenna gain, G tx and G rx , for transmitter and receiver, would be constant respectively.

3GPP Pattern

According to the technical report produced by the 3rd Generation Partnership Project (3GPP) [47], the realistic antenna pattern (6 sectors) of a BS, after matching empirical data, is denoted as:

G 3GP P (θ q ) = γ (3GP P ) q 10 -6 5 (θq/φq) 2 1 [0,φq] (|θ q |) + γ (3GP P ) q 10 -Aq 2 1 [φq,π] (|θ q |) (2.27)
where φ (3dB) q = 35 degrees, A q = 23, φ q = 48.46 degrees and γ

(3GP P ) q = 9.33.
The advantage of 3GPP model is the accuracy. Although it can provide excellent modelling to realistic radiation pattern, it is still intractable from a mathematical point of view.

Multi Lobe Pattern

Recently, directional antennas have been considered to improve the spectral reuse and eciency and to control the level of interference in the systems.

The general case of multi-lobe pattern can be found in [START_REF] Lu | Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental validation[END_REF] and [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF]. Let G actual (θ)

be the actual antenna radiation pattern of interest, the proposed multi-lobe approximation can be formulated as G actual (θ) = G M ultiLobe (θ) in mathematical terms:

G M ultiLobe (θ) =               
g (1) |θ| ≤ φ (1) g (2) φ (1) < |θ| ≤ φ (2) . . . . . .

g (K) φ (K-1) < |θ| ≤ π (2.28)
where K denotes the number of lobes and 0 < φ (1) < . . . < φ (K-1) < π are the angles that correspond to the K lobe. It is clear that the larger the value of K, the better the approximation. As the cost, the numerical complexity also increases.

The two lobe antenna pattern is a simplied version considering main-lobe and side-lobe, [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF] shows the antenna gain can be denoted as:

G T woLobe (θ) =    G max |θ| ≤ φ q G min |θ| > φ q (2.29)
where the antenna gain for main-lobe is simplied to be constant as G max while the gain of side-lobe is G min .

Other Patterns

There are some other antenna radiation patterns used in the literature. For example, Uniformly Weighted Linear Array (UWLA) as mentioned in [START_REF] Van Trees | Optimum array processing: Part IV of detection, estimation, and modulation theory[END_REF]:

G U W LA (θ q ) = γ U W LA q |N -1 q sin (N q πv -1 cos (θ q ) d q ) sin (πv -1 cos (θ q ) d q ) | 2 
(2.30)

where N q = 8 is the number of antenna elements, d q = v/2 is the uniform spacing between them and v is the wavelength, γ U W LA q = 12.1631.

Channel Modeling

Unbounded Path-Loss model

The common unbounded path-loss model is also the most widely-used one. Assuming

x is the distance between the transmitting BS and the receiving user, the path-loss is dened as:

l (x) = κx α (2.31)
where κ and α > 2 are the path-loss constant and the path-loss slope (exponent) and

κ = 4π c/f carrier 2 .
This unbounded model is easy for mathematical modeling, but also brings the singularity problem: when x → 0, the path-loss l (x) → 0 as well, while the received power at the user end would experience singularity problem. Moreover, the unbounded model cannot give good approximation to real scenario, since when x → 0, the radiation pattern lies in near eld region, which is no longer in far eld region.

The path-loss model used in far eld is not valid. Then the bounded path-loss model is proposed to overcome the singularity problem.

Bounded Path-Loss model

The bounded path-loss model [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF] can be obtained by adding a minimum distance x s as the constraint on s, written as:

l (x) = κ max (x, x s ) α (2.32)
There are some other bounded path-loss model, e.g., in [START_REF] Georgiou | Directional antennas improve the link-connectivity of interference limited ad hoc networks[END_REF], l (x) = x α + ε, which applies similar idea of setting a constraint on the minimum distance between BS and user.

With the presence of high rise buildings and stationary points, it makes multipath propagation and signal reections more complicated in the urban environment.

If we take blockage into account, the path-loss exponent α is no longer independent on x as LOS (line-of-sight) and NLOS (non-line-of-sight) will play important roles in both unbounded and bounded path-loss models.

This probability that whether a BS-user link is LOS or NLOS is called the link model, and here is the multi state link models used in [START_REF] Lu | Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental validation[END_REF]:

p s (x) = B+1 b=1 q [D b-1 ,D b ] s 1 [D b-1 ,D b ] (r) (2.33) with s∈S q [D b-1 ,D b ] s = 1, for b = 1, 2, . . . , B + 1
, where B denotes the number of ball, D b is the radius of bth ball with D 0 = 0 and D B+1 = ∞, q

[D b-1 ,D b ] s is the probability that the link is in state s if x ∈ [D b-1 , D b ).
Similar as the multi lobe antenna radiation pattern, the higher the number of states B, the more accurate approximation can be obtained. There are also other link state models, e.g., 3GPP model in [47], random shape model in [START_REF] Bai | Analysis of blockage eects on urban cellular networks[END_REF] and linear model [START_REF] Ding | Performance impact of los and nlos transmissions in dense cellular networks[END_REF].

Fast Fading

In a complex urban environment, there could be many factors that can aect wireless propagation, like the fast changes in signal power over a small distance or time interval, random frequency modulation due to Doppler Eect on multi path signals and time dispersion caused by multi path propagation delays. Then some statistical models are proposed to quantify these fading channels with various characteristics.

Here are some widely-used channel models listed in Table 2.1 [START_REF] Simon | Digital communication over fading channels[END_REF]:

where I 0 (•) is the zeroth-order modied Bessel function of the rst kind, and q is the Nakagami-q fading parameter which ranges from 0 to 1.

The most widely-used fast fading model is Rayleigh fading due to its simplicity and mathematical tractability. If we assume G tx G rx = 1, and |h x 0 | 2 follows the exponential distribution with unit mean, the conventional coverage probability can 

0 ≤ q ≤ 1 (1+q 2 ) 2qγ exp - (1+q 2 ) 2 γ 4q 2 γ I 0 (1-q 4 )γ 4q 2 γ Nakagami-n(Rice) 0 ≤ n (1+n 2 )e -n 2 γ exp - (1+n 2 ) 2 γ γ I 0 2n (1+n 2 )γ γ Nakagami-m 1/2 ≤ m m m γ m-1 γ m Γ(m) exp -mγ γ Log-Normal Shadowing σ 4.34 √ 2πσγ exp -(10log 10 γ-µ) 2 2σ 2
be denoted as:

Pcov = Pr      P tx |h x 0 | 2 /l (x 0 ) σ 2 + i∈Φ/x 0 I agg (x i |x 0 ) > τ      = Pr    |h x 0 | 2 > τ l (x 0 ) P tx   σ 2 + i∈Φ/x 0 I agg (x i |x 0 )      = E x 0 ,Iagg    exp - τ l (x 0 ) P tx σ 2 exp   - τ l (x 0 ) P tx i∈Φ/x 0 I agg (x i |x 0 )      (2.34)
where if noise power σ 2 = 0, transmit power is constant for each BS, and ||x i || follows homogeneous PPP, the coverage probability can be represented in a closedform expression. More details can be found in section 2.4. Given a single tier downlink cellular network, the BSs are modeled as points in Then the serving BS is denoted as BS 0 with location x 0 . The remaining interfering BSs consist of point process Φ

Coverage Probability

(I) BS .

The path-loss model is denoted as l (r) = κr γ , where κ and γ > 2 are the path-loss constant and the path-loss slope (exponent) respectively. Gaussian noise with power σ 2

N is not considered in the interference-limited networks. All the BSs and MTs are equipped with omni-directional antenna. The BSs transmits with constant power P tx and the fully loaded assumption is taken into account here. The simultaneously transmitting BSs are sharing the same physical channel. Fading h x 0 has unit mean.

Then, the coverage probability is actually the CCDF of SINR, where SINR is denoted as in (2.23) with G tx = G rx = 1. Since we are considering Rayleigh fading with unit mean as channel fading, we can have the following derivation:

P cov = P |h x 0 | 2 > τ l (x 0 ) P tx σ 2 N + I agg (x 0 ) |hx 0 | 2 ∼exp = E x 0 exp - σ 2 N τ l (x 0 ) P tx M GF Iagg(x 0 ) τ l (x 0 ) P tx = +∞ 0 exp - σ 2 N τ l (ξ) P tx M GF Iagg(x 0 ) τ l (ξ) P tx P DF x 0 (ξ) dξ (2.35)
where the moment generating function M GF Iagg(x 0 ) τ l(ξ) Ptx can be further computed as :

M GF Iagg τ l (ξ) P tx = E Φ,|hx i | 2    exp   -τ l (ξ) xi∈Φ\x0 |h xi | 2 x i -γ      = E Φ,    xi∈Φ\x0 E |hx i | 2 exp -τ l (ξ) |h xi | 2 x i -γ    (a) = exp -2πλ BS ∞ x0 1 -E |hx i | 2 exp -τ l (ξ) |h xi | 2 x i -γ x i dx i = exp πλ BS x 2 0 1 -2 F 1 1, - 2 γ , 1 - 2 γ , -τ (2.36) 
where (a) comes from probability-generating functional.

With the help of these useful and powerful theorems and functions, we are able to derive the moment generating function (MGF) in the closed-form expression. Then, by taking P DF x 0 (ξ) = 2πλ BS ξ exp (-πλ BS ξ 2 ) into (2.36) and consider σ 2 N = 0, we simplify the computation and obtain the following closed-form expression for coverage probability:

P cov = 1 2 F 1 1, -2 γ , 1 -2 γ , -τ (2.37)
In the interference-limited cellular network, where noise can be negligible, it is inferred that the coverage probability in the above closed-form expression is independent of BS density λ BS for H-PPP case. However it stays unknown if non-Poisson PPs are considered as BS distribution. Therefore, this motivates us to explore the coverage performance under non-Poisson PPs with spatial correlations.

Mean Interference to Signal Ratio

Apart from coverage probability, mean interference to signal ratio (MISR) can be another important metric to analyze the performance of wireless cellular networks [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF].

It can be used to compute the deployment gain between two SIR distributions. The interference to signal ratio is dened as:

I SR ∆ = I E h (S) (2.38)
where I is the summation of all interference and S = E h (S) is the signal power averaged over the fading. Its mean is denoted by M ISR

∆ = E I SR .
For example, if we assume homogeneous PPP, the MISR is computed as M ISR

P P P = 2 α-2
, and the proof can be found in [1, (8)]. MISR can be used to quantify the horizontal gap between two SIR distributions. Mathematically, this horizontal shift can be computed by:

G (p) ∆ = F -1 SIR 2 (p) F -1 SIR 1 (p) (2.39) where F -1 SIR 1
is the inverse of the CCDF of the SIR and p is the target success probability. Here the CDF of SIR is obtained by:

F SIR (τ ) = 1 -P τ I SR < |h| 2 = 1 -e τ I SR ∼ τ M ISR (2.40)
where |h| 2 is assumed to be Rayleigh fading. Then, F -1 SIR (p) ∼ (1 -p) /M ISR when the target success probability p → 1. As a result, the horizontal gain can be rewrit-

ten as G = M ISR 1 /M ISR 2 .
This new approach may help with the analysis of coverage performance for non-Poisson point process. However, due to the complexity and uniqueness of each non-Poisson point process, the MISR may not be explicitly computed, which brings problems to analyze coverage performance.

To overcome this diculty in computing MISR for specic point processes, we apply the proposed IDT approach, our contribution can be summarized as follows:

• We propose a new framework for computing MISR in downlink cellular network scenario for non-Poisson point process case. The locations of BSs in non-Poisson point processes, are approximated closely by IDT approach. Based on the IDT approach, the MISR for specic PPs can be analyzed and compared with homogeneous PPP and other point processes with spatial correlations. The proposed framework is validated by simulations.

• The Asymptotic value of MISR is studied under dierent cases for β-GPP case, i.e., xed repulsion (β), xed density λ. We observed from simulation and proved from framework, that for xed spatial correlation, xed value of β, the performance of MISR is constant, while lower than MISR P P P .

• Continue with analysis on proposed MISR, the asymptotic value of MISR for varying β cases are studied as well. Since the relationship between spatial correlation and density is not clear due to the lack of empirical data. Both positive and negative correlation of β as a function of λ are studied.

Meta Distribution

In the above sections, the focus is on the average performance of SIR or ISR, while mean cannot represent the quality for each individual BS to MT link. Therefore, the distribution of SIR, which is also known as Meta distribution, comes into people's attention.

Meta distribution is rst mentioned in [START_REF] Wang | The meta distribution of the sir for cellular networks with power control[END_REF]. Assuming Φ to be the point process and user o is the typical user, usually, its performance is evaluated by averaging over all users. However, in a realization Φ, there is no `typical' user, the SIR performance for each individual user will depends on its spatial location and channel quality. The traditional average analysis cannot demonstrate this feature, and then it motivates the study of distributions of conditional success probability given point process Φ,

where the conditional success probability is dened as: The average of success probability for all the links, also known as coverage probability, is usually analyzed while it cannot give the information that how concentrated the link success probabilities are. For example, in one network model, all users could have success probabilities between 0.7 and 0.88, while in another network model, some links may have 0.4 and some may have 0.98. In both cases, we nd the coverage probability p s (τ ) = 0.85, but the performances of two mentioned networks in terms of connectivity, end-to-end delay would dier greatly.

P s (τ ) = P (SIR (Φ) > τ |Φ) (2.41)
To demonstrate the meta distribution more clearly, x is set to be the threshold of conditional success probability and the target is to nd the ratio of P s (τ ) greater than threshold x, denoted as:

FPs (x) ∆ = P !t (P s (τ ) > x) , x ∈ [0, 1] (2.42) 
where P !t denotes the reduced Palm measure of the point process. Given that there is an active transmitter at a prescribed location, the SIR is measured at the receiver of that transmitter. P s (τ ) is the success probability given point process, in which τ is the threshold of SIR.

The conventional coverage probability can also be obtained by computing the mean of CCDF FPs as:

p s (τ ) = E !t {P s (τ )} = 1 0 FPs (x) dx (2.43)
According to [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF], the direct computation of CCDF FPs seems to be impossible.

Then the author proposes the computation based on moments of P s (τ ), which has the advantage of closed-form expression for moments and allows for the derivation of an exact analytical expression. The b-th moment of P s (τ ) is denoted by:

M b (τ ) ∆ = E !t P s (τ ) b = 1 0 bx b-1 FPs (x) dx (2.44)
where M 1 (τ ) gives conventional success probability p s (τ ) according to denition of moments.

By the Gil-Pelaez theorem [START_REF] Gil-Pelaez | Note on the inversion theorem[END_REF], the CCDF can be computed through moments as:

FPs (τ, x) = 1 2 + 1 π ∞ 0 Im e -jt log x M jt t dt (2.45)
where M b is the b-th moment dened in (2.44).

However, this explicit computation via moments takes quite long time to obtain results. The author from [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] continues to propose the approximation based on Beta distribution as a highly accurate method, since CCDF of meta distribution is also supported on [0, 1].

Then in [START_REF] Hayajneh | Optimal coverage and rate in downlink cellular networks: A sir meta-distribution based approach[END_REF], the authors propose a new numerical approach to compute the result, which claims that CCDF can be computed quickly and accuracy increases with upper limit in the numerical summation.

However, the above mentioned approaches cannot be applied with new denition of coverage probability. And the proposed numerical approach is not stable as parameters are required to be wisely chosen, not as high as possible. Due to these limitations, we propose a new numerical approach to compute the CCDF with good accuracy and robustness which can be applied into dierent point processes and cov-erage models. In the chapter 5, we have the following contributions:

• We propose the new framework for meta distribution for non-PPPs with the aid from IDT approach under the new denition of success probability. With specic choice of parameters in IDT approach, the framework for non-PPPs can go back to H-PPP case. The proposed framework is validated by empirical simulations. The other approximation models in the literature are compared with the proposed approach and are proved to be less accurate.

• We proposed a new numerical approach to compute CCDF of meta distribution, based on the inversion of Laplace Transform. The proposed approximation is validated by simulations to be accurate and robust enough in several dierent scenarios.

• The moments under non-PPP cases with spatial inhibition and clustering features are proved mathematically to have a better or worse performance compared with homogeneous PPP case, which matches with simulation results as well. The asymptotic value of CCDF of meta distribution are analyzed when

x → 0.

• Some bounds provided by concentration inequalities are applied, (i.e., Markov Bound, Chebyshev Bound, Paley-Zygmund Bound) and analyzed. Among all bounds, Paley-Zygmund Bound gives the closest approximation to the exact results, but still behave much worser than our proposed approach.

Chapter 3

Inhomogeneous Double Thinning Approach

Introduction

In the last few years, the theory of Poisson Point Processes (PPPs) has been extensively employed for modeling, analyzing, and optimizing the performance of emerging cellular network architectures [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. Notable examples include, Heterogeneous Cellular Networks [START_REF] Dhillon | Modeling and analysis of k-tier downlink heterogeneous cellular networks[END_REF], [START_REF] Di Renzo | Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[END_REF], MIMO HCNs [START_REF] Dhillon | Downlink mimo hetnets: Modeling, ordering results and performance analysis[END_REF], [START_REF] Di Renzo | Stochastic geometry modeling and performance evaluation of mimo cellular networks using the equivalent-in-distribution (eid)-based approach[END_REF], millimeter-wave cellular HCNs [START_REF] Bai | Coverage and rate analysis for millimeter-wave cellular networks[END_REF], [START_REF] Renzo | Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks[END_REF],

and massive MIMO cellular networks [START_REF] Bai | Analyzing uplink sinr and rate in massive mimo systems using stochastic geometry[END_REF]. Recently, comprehensive mathematical frameworks for taking into account the impact of spatial blockages, antenna radiation patterns, and the network load have been introduced [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF] and empirically validated [START_REF] Lu | Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental validation[END_REF]. Surveys and tutorials on the application of PPPs to the modeling and analysis of HCNs are available in [START_REF] Haenggi | Stochastic geometry and random graphs for the analysis and design of wireless networks[END_REF]- [START_REF] Andrews | A primer on cellular network analysis using stochastic geometry[END_REF].

Beyond the Poisson Point Process Model: State-of-the-

Art and Limitations

Modeling cellular networks by using PPPs has the inherent advantage of mathematical tractability. Empirical evidence suggests, however, that practical cellular network deployments are likely to exhibit some degree of interactions among the locations of the BSs, which include spatial inhibition, i.e., repulsion [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], and spatial aggregation, i.e., clustering [START_REF] Deng | Heterogeneous cellular network models with dependence[END_REF]. More recently, several other spatial models have been proposed

for overcoming the complete spatial randomness property of PPPs, i.e., their inherent limitation of modeling spatial correlations [START_REF] Ibrahim | Coverage probability analysis for wireless networks using repulsive point processes[END_REF]- [START_REF] Saha | 3gpp-inspired hetnet model using poisson cluster process: Sum-product functionals and downlink coverage[END_REF]. In [START_REF] Ibrahim | Coverage probability analysis for wireless networks using repulsive point processes[END_REF], Matérn PPs are used for modeling cellular networks that exhibit spatial repulsion. In [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF] and [START_REF] Haenggi | Asappp: A simple approximative analysis framework for heterogeneous cellular networks[END_REF], the author introduces the As-A-PPP (ASAPPP) approach, which consists of obtaining the coverage probability of repulsive PPs through a right-shift of the coverage probability under the PPP model. The right-shift to be applied is termed (asymptotic) deployment gain. General results on the existence and computation of the asymptotic deployment gain are available in [START_REF] Guo | Asymptotic deployment gain: A simple approach to characterize the sinr distribution in general cellular networks[END_REF], [START_REF] Ganti | Asymptotics and approximation of the sir distribution in general cellular networks[END_REF]. The ASAPPP method is generalized for application to HCNs in [START_REF] Wei | Approximate sir analysis in general heterogeneous cellular networks[END_REF]. In [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF], GPP is proposed for modeling repulsive cellular networks in urban and rural environments. Further experimental validation of the suitability of GPPs is available in [START_REF] Gomez | A case study on regularity in cellular network deployment[END_REF]. In [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF], Determinantal PPs are investigated and their accuracy is substantiated with the aid of practical network deployments.

In [START_REF] Yazdanshenasan | Poisson hole process: Theory and applications to wireless networks[END_REF], the Poisson Hole Process is proposed to model the spatial interactions in cognitive and device-to-device networks. In [START_REF] Kibiªda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF],

LGCP is proposed, based on empirical data, to account for the spatial correlation arising in multi-operator cellular networks.

In [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF], a cellular network model constituted by the superposition of a shifted lattice PP and a PPP is introduced, by bridging the gap between completely regular and totally random networks. In [START_REF] Saha | 3gpp-inspired hetnet model using poisson cluster process: Sum-product functionals and downlink coverage[END_REF], a general class of Poisson cluster PPs is studied for modeling the spatial coupling between dierent tiers of HCNs. The Matérn Cluster PP is used, e.g., for modeling the locations of small-cell BSs.

By carefully analyzing all the above-mentioned proposals for modeling cellular networks via non-PPPs, two main conclusions can be drawn: 1) non-PPPs are more accurate than PPPs for modeling emerging cellular architectures and 2) the price to pay is the loss of mathematical tractability and the limited design insight that can be obtained from the resulting frameworks. As far as the computation of the coverage probability is concerned, among all the available approaches, the ASAPP method is certainly the most tractable. The asymptotic deployment gain, however, may not be always explicitly computable [START_REF] Guo | Asymptotic deployment gain: A simple approach to characterize the sinr distribution in general cellular networks[END_REF]Lemma 4]. The approaches proposed so far are, in addition, PP-specic: Each spatial PP results in a dierent formulation of the coverage probability. Therefore, there is a compelling need for a unied and tractable methodology for modeling cellular networks that exhibit spatial repulsion and/or clustering. a suitable approximation for modeling the otherwise intractable spatial correlations that characterize the locations of the users scheduled for transmission on the same physical channel [START_REF] Haenggi | User point processes in cellular networks[END_REF], [START_REF] Wang | The meta distribution of the sir for cellular networks with power control[END_REF]. We use a similar line of thought for approximating both repulsion and clustering among the locations of cellular BSs.

Interpretation The spatial models proposed in [START_REF] Ibrahim | Coverage probability analysis for wireless networks using repulsive point processes[END_REF]- [START_REF] Saha | 3gpp-inspired hetnet model using poisson cluster process: Sum-product functionals and downlink coverage[END_REF] are based on motioninvariant PPs. Hence, the PPs are invariant under translations (i.e. are stationary)

and rotations around the origin (i.e., are isotropic) [START_REF] Blaszczyszyn | Stochastic geometry and wireless networks[END_REF], [START_REF] Haenggi | Stochastic geometry for wireless networks[END_REF]. This implies that, e.g., the coverage probability of a randomly distributed (typical) user is independent of its actual location. For this reason, the typical user is always assumed to be at the origin [START_REF] Ibrahim | Coverage probability analysis for wireless networks using repulsive point processes[END_REF]- [START_REF] Saha | 3gpp-inspired hetnet model using poisson cluster process: Sum-product functionals and downlink coverage[END_REF]. I-PPPs, on the other hand, are non-stationary PPs and the performance of a randomly chosen user depends on its actual location, i.e, on the panorama or view that the user has of the network. Bearing this dierence in mind, the proposed approach has an unambiguous interpretation: It consists of approximating a motion-invariant PP, e.g., one of those in [START_REF] Ibrahim | Coverage probability analysis for wireless networks using repulsive point processes[END_REF]- [START_REF] Saha | 3gpp-inspired hetnet model using poisson cluster process: Sum-product functionals and downlink coverage[END_REF], with an equivalent I-PPP whose inhomogeneity is created from the point of view of the typical user of the original motion-invariant PP, e.g., the user located at the origin. In simple terms, Challenge I-PPPs are more mathematically tractable than PPs that exhibit spatial repulsion and clustering [58, Sec. 2]. I-PPPs may, however, be more difcult to handle [START_REF] Schilcher | Quantifying inhomogeneity of spatial point patterns[END_REF]. Let us consider, e.g., GPPs [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] and DPPs [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF]. They are uniquely determined by one or two distance-independent parameters that are simple to be estimated based on empirical data. I-PPPs necessitate, on the other hand, the denition of a distance-dependent intensity function, whose choice is a non-trivial challenge as no a priori information on its structure exists to date. Its denition, in addition, needs to account for the critical balance between modeling accuracy and mathematical tractability.

In summary, the specic intention of the present chapter is to study whether I-PPPs are suitable for modeling practical cellular network deployments and whether tractable analytical frameworks can be obtained, even though, compared with other PPs, I-PPPs may be more dicult to t from empirical data. An important contribution of the present chapter is, in addition, to introduce tractable yet accurate distance-dependent intensity functions and to propose a simple approach for estimating their parameters from empirical data sets that correspond to practical cellular network deployments.

Inhomogeneous Double Thinning: Novelty and Contribution

The proposed approach based on I-PPPs is referred to as Inhomogeneous Double Thinning (IDT) approach. The specic novelty and contributions made by the present chapter are as follows.

• For the rst time, we propose I-PPPs for modeling the spatial correlations inherently present in cellular network deployments. The IDT approach is general and exible enough for modeling cellular networks that exhibit spatial inhibition, aggregation, as well as cellular networks where some BSs may exhibit spatial inhibition and some other BSs may exhibit spatial aggregation (e.g., a multi-tier cellular network where the rst and second tiers of BSs are distributed according to, e.g., a GPP or DPP and a LGCP or MCPP, respectively).

• We introduce two distance-dependent intensity functions to create the inhomogeneities based on spatial inhibition and aggregation properties empirically observed in practical cellular networks. They are shown to yield a good trade-o between accuracy and tractability.

• We devise a method for approximating the network's panorama of the typical user of the original motion-invariant PP with the network's panorama of a probe user located at the origin of the equivalent I-PPP. The essence of the method is as follows. In a motion-invariant PP, the distribution of the distance from the typical user to its nearest BS (the F-function [31, Sec. • Based on the IDT approach, a new tractable analytical expression of the coverage probability of cellular networks is introduced. The approach is generalized for application to cellular networks with spatial-dependent blockages [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF] and multi-tier deployments [START_REF] Di Renzo | Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach[END_REF].

• The analytical frameworks of the coverage probability obtained from homogeneous PPP and I-PPP modeling approaches are compared against each other.

Notably, sucient conditions on the parameters of the proposed thinning functions that guarantee a better or worse coverage probability compared with the baseline homogeneous PPP model are identied.

• The accuracy of the IDT approach is substantiated via empirical data for the locations of cellular BSs. The study unveils that the IDT approach yields accurate estimates of the coverage for several non-Poisson PPs, e.g., GPPs, DPPs,

LGCPs, PHPs, MCPPs, and lattice PPs.

chapter Organization and Structure

The rest of the present chapter is organized as follows. In Section 3.2, the system model is presented. In Section 3.3, the IDT approach is introduced. In Section 3.4, the analytical framework of the coverage probability is provided. In Section 3.5, the IDT approach is generalized for application to spatial-dependent blockage models and multi-tier deployments. In Section 3.6, the IDT approach is substantiated via empirical data and simulations. Finally, Section 3.7 concludes this chapter.

Notation : The main symbols and functions used in this chapter are reported in the beginning of the thesis.

System Model

In this section, the network model is introduced. We focus our attention on singletier cellular networks, by assuming an unbounded path-loss model and neglecting spatial blockages [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF]. System models with blockages and multi-tier deployments are discussed in Section 3.5. of PPs that satisfy these assumptions are reported in [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF], [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF], [START_REF] Yazdanshenasan | Poisson hole process: Theory and applications to wireless networks[END_REF]- [START_REF] Saha | 3gpp-inspired hetnet model using poisson cluster process: Sum-product functionals and downlink coverage[END_REF] 2 . The BSs and MTs are equipped with a single omnidirectional antenna. Each BS transmits with a constant power denoted by P tx . A fully loaded assumption is considered, i.e., λ MT λ BS , which implies that all the BSs are active and have MTs to serve. These latter assumptions may be removed based on [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF]. This is not considered, however, in the present chapter, in order to keep the focus on the new approach for modeling the spatial distribution of the BSs. All available BSs transmit on the same physical channel as BS 0 . The PP of interfering BSs is denoted by Ψ (I) BS . Besides the inter-cell interference, Gaussian noise with power σ 2
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N is taken into account as well.

Channel Modeling

For each BS-to-MT 0 link, path-loss and fast-fading are considered. Shadowing is not explicitly considered for simplicity, but it can be taken into account by using the approach in [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF]. All BS-to-MT 0 links are assumed to be mutually independent and identically distributed (i.i.d.).

Path-Loss Consider a generic BS whose location is x ∈ Ψ BS . The path-loss is dened as l (x) = κ x γ , where κ and γ > 2 are the path-loss constant and the path-loss slope (exponent).

Fast-Fading Consider a generic BS-to-MT 0 link. The power gain due to small-scale fading is assumed to follow an exponential distribution with mean m. Without loss of generality, m = 1 is assumed. The power gain of a generic BS-to-MT 0 link is denoted by g x for x ∈ Ψ BS .

Cell Association Criterion

A cell association criterion based on the highest average received power is assumed.

Let x ∈ Ψ BS be the location of a generic BS. The location, x 0 , of the serving BS, BS 0 , is obtained as follows:

x 0 = arg max x∈Ψ BS {1/l (x)} = arg max x∈Ψ BS {1/L x } (3.1)
where L x = l (x) is a shorthand. As for the intended link, L 0 = l (x 0 ) = min x∈Ψ BS {L x } holds.

Coverage Probability

The performance metric of interest is the coverage probability, P cov , that is dened as follows:

P cov = Pr P tx g 0 /L 0 σ 2 N + x∈Ψ (I) BS P tx g x /L x > T where Ψ (I) BS = Ψ BS \x 0 . (3.2)
We focus our attention on the coverage probability because it corresponds to the complementary cumulative distribution function of the SINR, and, thus, it completely characterizes the statistical properties of the SINR. Other relevant performance metrics, e.g., the average rate, the potential spectral eciency, and the local delay, that depend on the SINR can be directly obtained from the coverage probability [START_REF] Di Renzo | Stochastic geometry modeling and system-level analysis of uplink heterogeneous cellular networks with multi-antenna base stations[END_REF], [START_REF] Di Renzo | System-level modeling and optimization of the energy eciency in cellular networksa stochastic geometry framework[END_REF].

Under the assumptions of this chapter, P cov can be formulated as shown in the following lemma.

Lemma 1 An analytical expression of the coverage probability in (3.2) is as follows:

P cov = +∞ 0 exp -ξTσ 2 N P tx M I,L 0 (ξ; T) f L 0 (ξ) dξ (3.3)
where f L 0 (•) is the PDF of L 0 introduced in Section 3. 

M I,L 0 (ξ = L 0 = l (x 0 ) ; T) = E !x 0 Ψ BS x∈Ψ BS \x 0 (1 + T (ξ/l (x))) -1 (3.4) 
Proof: It directly follows from [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF] by averaging fast fading. Ψ BS {•}, is obtained by conditioning upon x 0 and by removing it from the PP.

By direct inspection of (3.3) and (3.4), we infer that the mathematical tractability of P cov depends on f L 0 (•) and M I,L 0 (•;•). In general, the following holds [START_REF] Blaszczyszyn | Stochastic geometry and wireless networks[END_REF], [START_REF] Haenggi | Stochastic geometry for wireless networks[END_REF]: i) f L 0 (•) depends on the Contact Distance Distribution (CDD) of the PP, Ψ BS , of BSs (see Denition 1), and ii) M I,L 0 (•;•) depends on the Laplace functional of the PP, Ψ (I) BS = Ψ BS \x 0 , of interfering BSs, which requires the reduced Palm distribution of the PP, Ψ BS , of BSs to be known. The CDD and reduced Palm distribution of an arbitrary motion-invariant PP, however, may not be known or may not be mathematically tractable. The tractability of the H-PPP lies in the simple analytical expression of f L 0 (•) [START_REF] Bªaszczyszyn | Using poisson processes to model lattice cellular networks[END_REF] and in the fact that the reduced Palm distribution of a H-PPP coincides with the distribution of the H-PPP itself. Other motion-invariant PPs, e.g., GPPs and DPPs, admit analytical expressions of the CDD and their reduced Palm distribution is known. Their P cov has, however, a limited analytical tractability [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF], [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF]. In Section 3.3, we propose a tractable analytical approach that overcomes this limitation, by leveraging the theory of I-PPPs.

Preliminary Denitions

For ease of exposition, we introduce a few denitions that are used in the next sections. Denition 1 Let Ψ BS be a motion-invariant PP. Let u ∈ R 2 be the location of a random MT. The CDD or F-function of Ψ BS at location u is F (u) 

Ψ BS (r) = Pr { u -Ψ BS < r} (a) = Pr { Ψ BS < r} = F Ψ BS (r), i.e.,
function of Ψ BS is K (x) Ψ BS (r) = E !x Ψ BS { x -Ψ BS < r} (a) = E !0 Ψ BS { Ψ BS < r} (b) = K Ψ BS (r),
Sec. 2.2]. If Φ BS is a H-PPP, the non-regularized K-function is Λ Φ BS (B (x, r)) = Λ Φ BS (B (x = 0, r)) = λ Φ BS πr 2 , which is independent of x.
Remark 4 Let Φ BS be an I-PPP with intensity measure Λ Φ BS (•). The CDD or F-

function of Φ BS at location u ∈ R 2 is F (u) Φ BS (r) = 1 -exp (-Λ Φ BS (B (u, r))), where B (u, r) is the ball of center u and radius r [58, Sec. 2.2]. If Φ BS is a H-PPP, the F-function is F (u) Φ BS (r) = F (u=0) Φ BS (r) = 1 -exp (-λ Φ BS πr 2 )
, which is independent of the location u.

The Inhomogeneous Double Thinning Approach

The approach that we propose for computing P cov consists of introducing an equivalent abstraction for the system model detailed in Section 3.2.1 that is based on I-PPPs. For ease of exposition, we rst introduce the equivalent network model in general terms and then describe the IDT approach. The equivalent network model, in particular, is constituted by two I-PPPs, Φ (F ) BS and Φ (K) BS , which are constructed in a very special way and with the only purpose of approximating the original motion-invariant PP from the point of view of the typical user.

Cellular Networks Abstraction Modeling Based on I-PPPs

We consider the same system model as in Section 3. x In the proposed network model, which is based on I-PPPs whose serving and interfering BSs are dened in (3.5), the coverage probability of the probe MT at the origin can be formulated as:

(F ) 0 = arg max x∈Φ (F ) BS {1/l (x)} Φ (I) BS = Φ (I) BS x (F ) 0 = x ∈ Φ (K) BS : l (x) > L (F ) 0 = l x
P (o) cov = Pr    P tx g 0 L (F ) 0 σ 2 N + x∈Φ (I) BS P tx g x /l (x) > T    (3.6)
where the superscript (o) highlights that (3.6) holds for the probe MT at the origin.

The coverage probability, P (o) cov , in (3.6) is explicitly formulated in the following lemma.

Lemma 2 An analytical expression of the coverage probability in (3.6) is as follows:

P (o) cov = +∞ 0 exp -ξTσ 2 N P tx M I,L (F ) 0 (ξ; T) f L (F ) 0 (ξ) dξ (3.7)
where f

L (F ) 0 (•) is the PDF of L (F ) 0 and M I,L (F ) 0 (•;•) is the Laplace functional of Φ (I) BS
as follows:

f L (F ) 0 (ξ) = ξ κ 1/γ 1 γξ Λ (1) Φ (F ) BS B 0, ξ κ 1/γ exp -Λ Φ (F ) BS B 0, ξ κ 1/γ M I,L (F ) 0 (ξ; T) = exp - +∞ ξ 1 + z Tξ -1 z κ 1/γ 1 γz Λ (1) Φ (K) BS B 0, z κ 1/γ dz (3.8)
and Λ

(1)

(•) (B (0, r)) = dΛ (•) (B (0, r)
) dr is the rst-order derivative of the intensity measure.

Proof: It follows by applying the same approach as in [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF].

The aim of the proposed IDT approach is to make the original network model the original motion-invariant PP, which make them independent, e.g., of the transmission scheme and of the path-loss model being used, ii) they need to be determined by a few parameters and need to be simple to compute, iii) they need to lead to a tractable analytical expression of P (o) cov as opposed to P cov , iv) they need to lead to an analytical expression of the coverage that provides insight for system analysis and design, and v) they need to be applicable to advanced network models, e.g., that account for spatial blockages and multi-tier setups (see Sec. The following lemma provides closed-form expressions for the intensity measures in (3.9).

Lemma 3 Let Υ (r; a, b, c) be dened as follows:

Υ (r; a, b, c) = 2πλ BS (a/3) r 3 + (b/2) r 2 1 (r ≤ (c -b)/a) + 2πλ BS (c/2) r 2 -(c -b) 3 6a 2 1 (r > (c -b)/a) (3.12)
The intensity measures in (3.10) can be written as

ΛΦ (•) BS (B (0, r)) = Υ r; ǎ(•) , b(•) , č(•) and ΛΦ (•) BS (B (0, r)) = Υ r; -â (•) , b(•) , ĉ(•)
for PPs that exhibit repulsion and cluster- ing, respectively.

In addition, let Υ (1) (r; a, b, c) = dΥ (r; a, b, c) dr be the rst-order derivative of Υ (r; •, •, •):

Υ (1) (r; a, b, c) = 2πλ BS ar 2 + br 1 (r ≤ (c -b)/a) + 2πλ BS cr1 (r > (c -b)/a) (3.13)
where 1 (•) is the indicator function. The rst-order derivatives of the intensity measures are Λ( 1)

Φ (•) BS (B (0, r)) = Υ (1) (r; ǎ(•) , b(•) , č(•) ) and Λ (1) 
Φ (•) BS (B (0, r)) = Υ (1) r; -â (•) , b(•) , ĉ(•)
for PPs that exhibit repulsion and clustering, respectively. (10), Eq. ( 19)] and [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF], we observe that the F-function and non-regularized Kfunction of repulsive PPs have opposite trends compared with the same functions of a H-PPP: The F-function of a repulsive PP is usually greater than the F-function of a H-PPP, while the K-function of a repulsive PP is usually smaller than the Kfunction of a H-PPP. These conicting trends, which determine the distribution of the distances of serving and interfering BSs, are dicult to model with a single I-PPP. Remark 12 In network models where the smallest path-loss is equivalent to the shortest distance, the proposed equivalent network model may be obtained by using only the I-PPP obtained from the non-regularized K-function. The serving BS may, in fact, be obtained by generating a single point (rather than the complete I-PPP based on the F-function), whose distance from the probe MT is a random variable with distribution equal to the F-function. In general, however, the generation of a complete I-PPP may be still more convenient due to its simplicity of implementation and generality.

Condition f L (F ) 0 (ξ) ≈ f L 0 (ξ) f L (F ) 0 ( 
In network models where the smallest path-loss is not equivalent to the shortest distance, both I-PPPs are needed in order to account for the distance and the path-loss model and, hence, to correctly identify the serving BS. An example is the network model in the presence of spatial blockages that is analyzed in Section 3.5.1.

Remark 13

The proposed approximations based on the F-function and non-regularized K-function are convenient for two reasons: i) they can be readily estimated from em-pirical data sets or by using open-source statistical toolboxes for analyzing PPs [START_REF] Baddeley | Spatial point patterns: methodology and applications with R[END_REF] 3

and ii) they are available in closed-form for many PPs that exhibit spatial inhibition and aggregation. As far as the PPs of interest for this chapter are concerned, Table 3.9 summarizes where they can be found.

In summary, the triplets of parameters that determine the intensity measures

Λ Φ (F ) BS (•) and Λ Φ (K) BS (•)
in Lemma 3 can be obtained by solving the following minimization problems:

(a F , b F , c F ) = arg min (a,b,c)∈Ω F +∞ 0 F Ψ BS (r) -1 -exp -Λ Φ (F ) BS (B (0, r) ; a, b, c) 2 dr (a K , b K , c K ) = arg min (a,b,c)∈Ω K +∞ 0 K Ψ BS (r) -Λ Φ (K) BS (B (0, r) ; a, b, c) 2 dr (3.14)
where the denitions 

Ω F = ǎF , bF , čF : čF ≥ bF ≥ 1 and Ω K = { ǎK , bK , čK : bK ≤ čK ≤ 1} or Ω F = âF , bF , ĉF : ĉF ≤ bF ≤ 1 and Ω K = { âK ,
a (•) , b (•) , c (•)
and by setting a

(•) , b (•) , c (•) = ǎ(•) , b(•) , č(•) and a (•) , b (•) , c (•) = -â (•) , b(•) , ĉ(•) for
PPs that exhibit spatial inhibition and aggregation, respectively.

The following theorem provides a tractable expression for P (o) cov in (3.6). Two case studies are considered: i) the network is innitely large and ii) the network has a nite size whose radius is R A . The second case study is useful for comparing the analytical frameworks against estimates obtained by using empirical data, especially for small values of the path-loss exponent. This is because it is not possible, in many cases, to obtain or generate data sets for very large geographical regions.

Theorem 1 Based on the intensity measures in (3.9)-(3.11), P (o) cov in (3.6) can be formulated as follows:

P (o) cov = κ((c F -b F )/a F ) γ 0 exp -ξTσ 2 N P tx exp (-I (ξ)) U IN (ξ) dξ + Θ κ((c F -b F )/a F ) γ exp -ξTσ 2 N P tx exp (-I (ξ)) U OUT (ξ) dξ (3.15)
where Θ → ∞ and I (ξ) = I ∞ (ξ) for innite-size networks, Θ → κR γ A and I (ξ) = I R A (ξ) for nite-size networks of radius R A , and

I ∞ (•), I R A (•), U IN (•), U OUT (•) are dened in Table 3.1.
Proof: It follows by inserting (3.12) and (3.13) in (3.7), and by computing the integral in (3.8) with the aid of the following (υ 

1 (x) = 2 F 1 (1, -n/γ, 1 -n/γ, x),
U IN (ξ) = 2πλ BS a F γξ ξ κ 3/γ + b F γξ ξ κ 2/γ exp -2πλ BS a F 3 ξ κ 3/γ + b F 2 ξ κ 2/γ U OUT (ξ) = 2πλ BS c F γξ ξ κ 2/γ exp -2πλ BS c F 2 ξ κ 2/γ -(c F -b F ) 3 6a 2 F I 1 (ξ) = 2πλ BS a K 3 D K 3 2 F 1 1, 3 γ , 1 + 3 γ , -κ Tξ D K γ 1 (ξ ≤ κD K γ ) I 2 (ξ) = 2πλ BS b K 2 D K 2 2 F 1 1, 2 γ , 1 + 2 γ , -κ Tξ D K γ 1 (ξ ≤ κD K γ ) I 3 (ξ) = -2πλ BS a K 3 ξ κ 3/γ 2 F 1 1, 3 γ , 1 + 3 γ , -1 T 1 (ξ ≤ κD K γ ) I 4 (ξ) = -2πλ BS b K 2 ξ κ 2/γ 2 F 1 1, 2 γ , 1 + 2 γ , -1 T 1 (ξ ≤ κD K γ ) I 5 (ξ) = -2πλ BS c K 2 D K 2 1 -2 F 1 1, -2 γ , 1 -2 γ , -Tξ κ D K -γ 1 (ξ ≤ κD K γ ) I 6 (ξ) = -2πλ BS c K 2 ξ κ 2/γ 1 -2 F 1 1, -2 γ , 1 -2 γ , -T 1 (ξ ≥ κD K γ ) I 7 (ξ) = 2πλ BS c K 2 R 2 A 2 F 1 1, 2 γ , 1 + 2 γ , -κ Tξ R γ A 1 (ξ ≤ κD K γ ) I 8 (ξ) = -2πλ BS c K 2 D K 2 2 F 1 1, 2 γ , 1 + 2 γ , -κ Tξ D K γ 1 (ξ ≤ κD K γ ) I 9 (ξ) = 2πλ BS c K 2 R 2 A 2 F 1 1, 2 γ , 1 + 2 γ , -κ Tξ R γ A 1 (ξ ≥ κD K γ ) I 10 (ξ) = -2πλ BS c K 2 ξ κ 2/γ 2 F 1 1, 2 γ , 1 + 2 γ , -1 T 1 (ξ ≥ κD K γ ) I ∞ (ξ) = I 1 (ξ) + I 2 (ξ) + I 3 (ξ) + I 4 (ξ) + I 5 (ξ) + I 6 (ξ) I R A (ξ) = I 1 (ξ) + I 2 (ξ) + I 3 (ξ) + I 4 (ξ) + I 7 (ξ) + I 8 (ξ) + I 9 (ξ) + I 10 (ξ) υ 2 (x) = 2 F 1 (1, n/γ, 1 + n/γ, x)): J 1 (z) = +∞ A (1 + t/θ) -1 (z/γ) t n/γ-1 dt = -(z/n) A n/γ (1 -υ 1 (-θ/A)) for γ > n J 2 (z) = B A (1 + t/θ) -1 (z/γ) t n/γ-1 dt = (z/n) B n/γ υ 2 (-B/θ) -(z/n) A n/γ υ 2 (-A/θ) (3.16)
Then the nal expression for P (o) cov is obtained.

Remark 15 From Remark 8, the coverage probability of H-PPPs follows from (3.15) by setting b F = c F = 1 and b K = c K = 1. Throughout this chapter, it is denoted by

P (H-PPP) cov .
Remark 16 The coverage probability in (3.15) is formulated in terms of a single integral whose numerical complexity is not higher than that of currently available frame-works based on H-PPPs [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF]. Since (3.15) cannot be explicitly computed in closed form, a promising research direction is to develop closed-form bounds and approximations for P

(o) cov in order to simplify analysis and optimization.

Comparison with Homogeneous Poisson Point Processes

From Remark 8, it follows that network models based on H-PPPs constitute a special case of network models based on I-PPPs, i.e., the IDT approach. In this section, we are interested in comparing the coverage of PPs that exhibit spatial inhibition and aggregation against the coverage of H-PPPs. More precisely, we aim to identify sucient conditions on the triplets of parameters (a F , b F , c F ) and (a K , b K , c K ) that make the coverage probability of cellular networks with spatial repulsion and clustering better and worse than the coverage probability of H-PPPs, respectively. The main result is reported in Proposition 1. Three lemmas used for its proof are provided as follows.

Lemma 4 The intensity measure of a H-PPP with constant intensity function λ BS is Λ H-PPP (B (0, r)) = πλ BS r 2 and its rst-order derivative is Λ

H-PPP (B (0, r)) = 2πλ BS r. BS obtained by applying the IDT approach in (3.14). If čF ≥ bF ≥ 1 and bK ≤ čK ≤ 1, then:

ΛΦ (F ) BS (B (0, r)) ≥ Λ H-PPP (B (0, r)) , Λ (1) 
Φ (F ) BS (B (0, r)) ≥ Λ (1) 
H-PPP (B (0, r))

ΛΦ (K) BS (B (0, r)) ≤ Λ H-PPP (B (0, r)) , Λ (1) 
Φ (K) BS (B (0, r)) ≤ Λ (1) 
H-PPP (B (0, r))

(3.17 

ΛΦ (F ) BS (B (0, r)) ≤ Λ H-PPP (B (0, r)) , Λ (1) 
Φ (F ) BS (B (0, r)) ≤ Λ (1) 
H-PPP (B (0, r))

ΛΦ (K) BS (B (0, r)) ≥ Λ H-PPP (B (0, r)) , Λ (1) 
Φ (K) BS (B (0, r)) ≥ Λ (1) 
H-PPP (B (0, r)) Proof: Let us consider the case study when Ψ BS exhibits spatial inhibition. The case study when Ψ BS exhibits spatial aggregation can be proved by using a similar line of thought and, hence, the details are omitted for brevity. By applying some changes of variable and by adopting a simpler notation for ease of writing, P

cov = P I and P (H-PPP) cov = P H can be written as follows:

P I = +∞ 0 e -ηζ γ M I (ζ) f I (ζ) dζ, P H = +∞ 0 e -ηζ γ M H (ζ) f H (ζ) dζ (3.19)
where η = Tκσ 2 N /P tx , and the subscripts I and H are referred to the network models based on I-PPPs (the IDT approach) and H-PPPs, respectively. By introducing the

shorthand notation Λ Φ (•) BS (B (0, ζ)) = Λ (•) (ζ) and Λ (1) 
Φ (•) BS (B (0, ζ)) = Λ (1) (•) (ζ), the follow- ing holds: f I (ζ) = Λ (1) F (ζ) exp (-Λ F (ζ)), M I (ζ) = exp(- +∞ ζ (1 + (y/ζ) γ T -1 ) -1 Λ (1) K (y) dy), Λ H (ζ) = πλ BS ζ 2 , Λ (1) 
H (ζ) = 2πλ BS ζ, f H (ζ) = Λ (1) H (ζ) × exp (-Λ H (ζ)) = 2πλ BS ζ exp (-πλ BS ζ 2 ), and M H (ζ) = exp - +∞ ζ (1 + (y/ζ) γ T -1 ) -1 Λ (1) 
H (y)dy , which can be rewritten as M H (ζ) = πλ BS ζ 2 ( 2 F 1 (1, -2/γ, 1 -2/γ, -T) -1).

If bK ≤ čK ≤ 1, from Lemma 5, we have Λ 

P I ≥ P (LB) I = +∞ 0 e -ηζ γ M H (ζ) f I (ζ) dζ (a) = +∞ 0 -χ (1) (ζ) (1 -exp (-Λ F (ζ))) dζ
F (ζ) ≥ Λ (1) H (ζ) for ζ ≥ 0. This implies 1 -exp (-Λ F (ζ)) ≥ 1 -exp (-Λ H (ζ)) for ζ ≥ 0.
As a result, the following LB for P (LB) I holds:

P I ≥ P (LB) I = +∞ 0 -χ (1) (ζ) 1 -e -Λ F (ζ) dζ ≥ +∞ 0 -χ (1) (ζ) 1 -e -Λ H (ζ) dζ (b) = P H (3.21)
where (b) follows from P H in (3.19) by applying the integration by parts formula similar to (a) in (3.20). In summary, the condition P I ≥ P H is proved.

Remark 18 Proposition 1 yields the conditions that need to be fullled by an I-PPP to be stochastically greater or smaller than a H-PPP according to the coverage probability order [START_REF] Lee | Stochastic ordering of interference in large-scale wireless networks[END_REF]. The proof of Proposition 1, in particular, provides a formal proof of the stochastic ordering that exists between I-PPPs and H-PPPs, as a function of the triplet of parameters ǎF , bF , čF and ǎK , bK , čK .

AS-A-PPP: Simplied Expression of the Deployment Gain

In [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF] and [START_REF] Haenggi | Asappp: A simple approximative analysis framework for heterogeneous cellular networks[END_REF], the author introduces the ASAPPP approach, which consists of obtaining the coverage probability of repulsive PPs through a right-shift of the coverage probability under the H-PPP model. The right-shift to apply is termed asymptotic deployment gain. In this section, we show that the asymptotic deployment gain of the network model based on I-PPPs has a simple analytical formulation. For simplicity, we focus our attention on the original denition of the asymptotic deployment gain, henceforth denoted by G ∞ , for interference-limited cellular networks, i.e., for σ 2 N = 0.

From [1, Eq. ( 5)], G ∞ can be formulated as G ∞ = (MISR IDT /MISR H-PPP ) -1 , where MISR stands for Mean Interference-to-Signal Ratio, MISR H-PPP = 2/(γ -2) for H-PPPs and the following holds for I-PPPs with spatial repulsion:

MISR IDT = +∞ 0 x γ +∞ x y -γ Λ(1) Φ (K) BS (B (0, y)) dy Λ(1) Φ (F ) BS (B (0, x)) × exp -ΛΦ (F ) BS (B (0, x)) dx (3.22)
The following proposition provides us with a tractable expression of G ∞ based on (3.22).

Proposition 2 The asymptotic deployment gain G ∞ can be formulated as follows:

1/G ∞ = πλ BS (čK-bK)/ ǎK 0 x γ γ -3 čK -bK 3-γ ǎ2-γ K + γ -2 γ -3 ǎK x 3 + bK x 2 F (x) dx + πλ BS čK +∞ (čK-bK)/ ǎK x 2 F (x) dx (3.23)
where

F (x) = Λ (1) 
Φ (F ) BS (B (0, x)) exp -ΛΦ (F ) BS (B (0, x)) .
Proof: It follows by inserting (3.12) and (3.13) in (3.22), and by computing the inner integral.

Remark 19

The analytical expression of G ∞ in (3.23) holds for γ = 3. The setup γ = 3 can be obtained from (3.22) as a special case. For brevity, the nal formula is not reported in the present chapter.

The asymptotic deployment gain in (3.23) may be further simplied and studied as a function of the triplets ǎF , bF , čF and ǎK , bK , čK . This is, however, beyond the scope of the present chapter. Our aim is to show an important application of the proposed IDT approach for modeling cellular networks: The simple calculation of G ∞ under the proposed modeling approach, as opposed to the general denition based on the Palm measure [START_REF] Ganti | Asymptotics and approximation of the sir distribution in general cellular networks[END_REF]. The generalization of (3.23) to multi-tier and other network models can be obtained by applying the methods discussed in Section 3.5.

Generalizations

In this section, we generalize the IDT approach for application to system models that account for spatial blockages and multi-tier network deployments. Due to space limitations, we focus our attention only on the computation of the coverage probability.

It can be shown, however, that the ndings in Lemma 5, Lemma 6, and Proposition 1 apply unaltered to the system model with spatial blockages. The proofs follow the same rationale as the methods reported in Section 3.4.1.

Cellular Networks in the Presence of Spatial Blockages

Due to its mathematical tractability yet accuracy for modeling spatial blockages, we adopt the distance-dependent single-ball blockage model in [START_REF] Di Renzo | The intensity matching approach: A tractable stochastic geometry approximation to system-level analysis of cellular networks[END_REF]. In particular, each BS-to-MT 0 link of length r = x , where x is the location of a generic BS, can be either in Line-Of-Sight (LOS) or in Non-Line-Of-Sight (NLOS) with a probability that depends only on the distance r. Blockage conditions between dierent links are assumed to be mutually independent. More precisely, the probability that a link of length r is in LOS is p los (r) = q

(in) los 1 (r ≤ D B ) + q (out) los 1 (r > D B )
, where D B is the radius of the so-called LOS-ball that depends on the area covered by blockages, and

0 ≤ q (in)
los ≤ 1 and 0 ≤ q (out) los ≤ 1 are the probabilities that links of length smaller and larger than D B , respectively, are in LOS. The probability that the same links

are in NLOS is p nlos (r) = q (in) nlos 1 (r ≤ D B ) + q (out) nlos 1 (r > D B ), with p los (r) + p nlos (r) = q (in) los + q (in) nlos = q (out) los + q
(out) nlos = 1 for r ≥ 0. The path-loss of LOS and NLOS links is l los (x) = κ los x γ los and l nlos (x) = κ nlos x γ nlos , respectively, where (κ los , κ nlos ) and

(γ los , γ nlos ) have the same meaning as in Section 3.2.2.

The following theorem provides us with a tractable expression of the coverage probability in (3.6), by considering a network model based on I-PPPs, a single-ball blockage model, and a cell association criterion based on the smallest path-loss. Since the BS-to-MT 0 links can be either in LOS or NLOS, the serving BS is not necessarily the nearest BS to the probe MT (see Section 3.3.3 and Remark 12). In particular, P

cov in (3.6) is formulated for two generic triplets of parameters (a F , b F , c F ) and (a K , b K , c K ) and, hence, it is applicable to network models with spatial inhibition and aggregation.

Theorem 2 In the presence of spatial blockages, P (o) cov in (3.6) can be formulated as 

(D F = (c F -b F )/(c F -b F )a F a F , D K = (c K -b K )/(c K -b K )a K a K ).
Function Denition (J 1 (•) and J 2 (•) are dened in (3.16))

U 0 (ξ) = 2πλ BS s∈{los,nlos} (γ s ξ) -1 (ξ/κ s ) 1/γs φ s ξκ s -1 γs × exp -2πλ BS s∈{los,nlos} ϕ s ξκ s -1 γs φ s (ζ) = φ s,1 (ζ) 1 (ζ ≤ min {D F , D B }) + φ s,2 (ζ) 1 (D B ≤ ζ ≤ D F , D B ≤ D F ) +φ s,3 (ζ) 1 (D F ≤ ζ ≤ D B , D F ≤ D B ) + φ s,4 (ζ) 1 (ζ ≥ D F , D B ≤ D F ) +φ s,5 (ζ) 1 (ζ ≥ D B , D F ≤ D B ) ϕ s (ζ) = ϕ s,1 (ζ) 1 (ζ ≤ min {D F , D B }) + ϕ s,2 (ζ) 1 (D B ≤ ζ ≤ D F , D B ≤ D F ) +ϕ s,3 (ζ) 1 (D F ≤ ζ ≤ D B , D F ≤ D B ) + ϕ s,4 (ζ) 1 (ζ ≥ D F , D B ≤ D F ) +ϕ s,5 (ζ) 1 (ζ ≥ D B , D F ≤ D B ) ϕ s,1 (ζ) = q (in) s a F ζ 3 /3 + b F ζ 2 /2 , ϕ s,3 (ζ) = q (in) s -a F D 3 F /6 +c F ζ 2 /2 ϕ s,2 (ζ) = q (out) s a F ζ 3 /3 + b F ζ 2 /2 + q (in) s -q (out) s a F D 3 B /3 + b F D 2 B /2 ϕ s,4 (ζ) = q (in) s a F D 3 B /3 + b F D 2 B /2 -q (out) s a F D 3 F /6 + D 3 B /3 +q (out) s c F ς 2 /2 -b F D 2 B /2 ϕ s,5 (ζ) = q (in) s -a F D 3 F /6 + c F D 2 B /2 + q (out) s c F ζ 2 /2 -D 2 B /2 φ s,1 (ζ) = q (in) s a F ζ 2 + q (in) s b F ζ, φ s,2 (ζ) = q (out) s a F ζ 2 + q (out) s b F ζ φ s,3 (ζ) = q (in) s c F ζ, φ s,4 (ζ) = φ s,5 (ζ) = q (out) s c F ζ Q s (ξ) = q (in) s a K Q s,1 (ξ) + q (in) s b K Q s,2 (ξ) + q (out) s a K Q s,3 (ξ) + q (out) s b K Q s,4 (ξ) +q (in) s c K Q s,5 (ξ) + q (out) s c K (Q s,6 (ξ; Θ nlos ) + Q s,7 (ξ; Θ nlos )) 1 B,K = 1 (D B ≤ D K ) , 1 K,B = 1 (D K ≤ D B ) , 1 B (ξ) = 1 ξκ s -1 γs ≤ D B , 1 K (ξ) = 1 ξκ s -1 γs ≤ D K Q s,1 (ξ) = J 2 ξ; θ = Tξ, γ = γ s , n = 3, z = κ s -3 γs , A = A s,1 , B = B s,1 Q s,2 (ξ) = J 2 ξ; θ = Tξ, γ = γ s , n = 2, z = κ s -2 γs , A = A s,2 , B = B s,2 Q s,3 (ξ) = J 2 ξ; θ = Tξ, γ = γ s , n = 3, z = κ s -3 γs , A = A s,3 (ξ) , B = B s,3 (ξ) 1 B,K 1 K (ξ) Q s,4 (ξ) = J 2 ξ; θ = Tξ, γ = γ s , n = 2, z = κ s -2 γs , A = A s,4 (ξ) , B = B s,4 (ξ) 1 B,K 1 K (ξ) Q s,5 (ξ) = J 2 ξ; θ = Tξ, γ = γ s , n = 2, z = κ s -2 γs , A = A s,5 (ξ) , B = B s,5 (ξ) 1 K,B 1 B (ξ) Q s,6 (ξ; Θ nlos → ∞) = J 1 ξ; θ = Tξ, γ = γ s , n = 2, z = κ s -2 γs , A = A s,6 (ξ) 1 B,K Q s,7 (ξ; Θ nlos → ∞) = J 1 ξ; θ = Tξ, γ = γ s , n = 2, z = κ s -2 γs , A = A s,7 (ξ) 1 K,B Q s,6 ξ; Θ nlos = κ nlos R γ nlos A = 1 B,K ×J 2 ξ; θ = Tξ, γ = γ s , n = 2, z = κ s -2 γs , A = A s,6 (ξ) , B = B s,6 (ξ) Q s,7 ξ; Θ nlos = κ nlos R γ nlos A = 1 K,B ×J 2 ξ; θ = Tξ, γ = γ s , n = 2, z = κ s -2 γs , A = A s,7 (ξ) , B = B s,7 (ξ) A s,1 (ξ) =A s,2 (ξ) = min ξ, min κ s D γs K , κ s D γs B , A s,3 (ξ) =A s,4 (ξ) = A s,7 (ξ) = max ξ, κ s D γs B A s,5 (ξ) =A s,6 (ξ) = max ξ, κ s D γs K , B s,1 (ξ) =B s,2 (ξ) = min κ s D γs K , κ s D γs B B s,3 (ξ) =B s,4 (ξ) = κ s D γs K , B s,5 (ξ) =κ s D γs B , B s,6 (ξ) =B s,7 (ξ) =κ nlos R γ nlos A follows: P (o) cov = Θ nlos 0 exp -ξTσ 2 N P tx exp (-2πλ BS (Q los (ξ) + Q nlos (ξ))) U 0 (ξ) dξ (3.24)
where Θ nlos → ∞ and Θ nlos = κ nlos R γ nlos A for innite-size and nite-size networks, respectively, and the rest of the functions are provided in Table 3.2 for s ∈ {los, nlos}. 

Multi-Tier Cellular Networks

In this section, we consider a two-tier cellular network. The tiers are denoted by T1 and T2. The BSs of tiers T1 and T2 belong to two independent and motioninvariant PPs that are denoted by Ψ T1 and Ψ T2 , respectively. The system model is the same as in Section 3.2 for single-tier cellular networks, with a few exceptions. Let x ∈ Ψ T be the location of a BS of tier T ∈ {T1, T2}. The path-loss at location

x is l T (x) = κ T x γ T , where κ T and γ T are the path-loss constant and slope of tier T similar to Section 3.2.2. The transmit power of tier T is P T = δ T P tx , where δ T ≥ 0. A similar notation is employed for the other system parameters introduced in Section 3.2. The cell association criterion is based on the highest average received power. More precisely, let x T ,0 be the location of the BS of tier T that provides the smallest path-loss to the typical MT and that is computed by using (3.1). Then, the location of the serving BS of the typical MT of the two-tier cellular network is x T1,0 if P T1 /l T1 (x T1,0 ) ≥ P T2 /l T2 (x T2,0 ) and x T2,0 otherwise. For ease of writing, we introduce the shorthand κT = κ T /δ T for T ∈ {T1, T2}.

We apply the IDT approach for modeling the locations of the BSs of Ψ T1 and Ψ T2 . In particular, each motion-invariant PP is approximated by using two I-PPPs, which, similar to Section 3. where SINR is as follows:

SINR = P T1 g T1,0 l T1 x (F ) T1,0
1 (P T1 /l T1 (x T1,0 ) ≥ P T2 /l T2 (x T2,0 ))

σ 2 N + x∈Φ (I) T1 x (F ) T1,0 P T1 g T1,x /l T1 (x) + x∈Φ (I) T2 x (F ) T2,0 P T2 g T2,x /l T2 (x) + P T2 g T2,x l T2 x (F ) T2,0 + P T2 g T2,0 l T2 x (F ) T2,0
1 (P T2 /l T2 (x T2,0 ) > P T1 /l T1 (x T1,0 ))

σ 2 N + x∈Φ (I) T2 x (F ) T2,0 P T2 g T2,x /l T2 (x) + x∈Φ (I) T1 x (F ) T1,0 P T1 g T1,x /l T1 (x) + P T1 g T1,x l T1 x (F ) T1,0 (3.25) 
Remark 20 The direct inspection of the SINR in (3.25) highlights the fundamental dierence between the proposed IDT approach based on conditionally independent I-PPPs and the conventional modeling approach based on H-PPPs. Let us consider the rst line of the SINR in (3.25), i.e., the probe MT is served by a BS that belongs to tier T1. Similar comments apply to the second line of (3.25). The interference in the denominator is the sum of three terms: i) the second addend in the denominator is the interference that originates from the BSs of tier T1, whose path-loss is greater than the path-loss of the serving BS at location x (F ) T1,0 , ii) the third addend in the denominator is the interference that originates from the BSs of tier T2, whose pathloss is greater than the path-loss of the BS of tier T2 that is at location x (F ) T2,0 , instead of at location x (F ) T1,0 as is the case in models based on H-PPPs, and iii) the fourth addend in the denominator is the interference that originates from the BS of tier T2 at location x (F ) T2,0 , which is not treated separately in models based on H-PPPs.

These dierences with respect to spatial models based on H-PPPs are specic of the Theorem 3 In two-tier cellular networks, P (o) cov in (3.25) can be formulated as follows:

= {κ = κT , γ = γ T , a F = a T ,F , b F = b T ,F , c F = c T ,F }) U T ,0 (ξ) = U IN (ξ; Π T ) 1 (ξ ≤ κT ((c T ,F -b T ,F ) /a T ,F ) γ T ) +U OUT (ξ; Π T ) 1 (ξ ≥ κT ((c T ,F -b T ,F ) /a T ,F ) γ T ) S T (x, y; Θ → ∞) = I
P (o) cov = Θ T1 0 Θ T2 ξ 1 e -ξ 1 Tσ 2 N /Ptx (1 + T (ξ 1 /ξ 2 )) -1 e -W 1 (ξ 1 ,ξ 2 ) U T2,0 (ξ 2 ) dξ 2 U T1,0 (ξ 1 ) dξ 1 + Θ T2 0 Θ T1 ξ 2 e -ξ 1 Tσ 2 N /Ptx (1 + T (ξ 2 /ξ 1 )) -1 e -W 2 (ξ 1 ,ξ 2 ) U T1,0 (ξ 1 ) dξ 1 U T2,0 (ξ 2 ) dξ 2 (3.26)
where, for T ∈ {T1, T2}, Θ T → ∞ and Θ T = κT R γ T A for innite-size and nite-size

networks, respectively, W 1 (ξ 1 , ξ 2 ) = S T1 (ξ 1 , ξ 1 ) +S T2 (ξ 2 , ξ 1 ), W 2 (ξ 1 , ξ 2 ) = S T1 (ξ 1 , ξ 2 )
+S T2 (ξ 2 , ξ 2 ), and the rest of the functions are given in Table 3.3 for T ∈ {T1, T2}

where Remark 21 Compared with Theorem 1 and Theorem 2, the coverage probability in (3.26) is formulated in terms of a two-fold integral. This originates from Remark 20 and, more precisely, from the fact that the SINR in (3.25) depends on the locations of the BSs of each tier that provide, in their own tier, the smallest path-loss to the probe MT. Simple bounds may be used to obtain a single-integral expression of the coverage probability. This study is, however, outside the scope of the present chapter due to space limitations. In addition, the computation of (3.26) is suciently simple for two-tier networks. Simple bounds may, on the other hand, be needed if more than two tiers are considered. In general, the number of fold integrals coincides with the number of tiers. Remark 22 In Theorem 2 and Theorem 3, the spatial inhomogeneities of the I-PPPs are the same as in Theorem 1. They depend only on the spatial characteristics of the original motion-invariant PP and are independent of, e.g., blockages and LOS/NLOS channel parameters.

D K = c K -b K a K .

Numerical and Simulation Results

In this section, we illustrate several numerical results that substantiate the applicability of the IDT approach for the modeling and analysis of practical cellular network deployments. The network deployments considered in our study are reported in Table 3.4. The simulation setup is summarized in Table 3.5. Table 3.6 reports the algorithm used for simulating the IDT approach in the general case of a two-tier cellular network. Point Process Parameters (λ BS by N BS /km 2 , Area by km 2 ) Cauchy DPP-LA [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF] λ BS = 0.2346 , α = 2.13, µ = 3.344, Area = 28 × 28 Cauchy DPP-Houston [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF] λ BS = 0.4490 , α = 1.558, µ = 3.424, Area = 16 × 16 Gaussian DPP-LA [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF] λ BS = 0.2345 , α = 1.165, Area = 28 × 28 Gaussian DPP-Houston [START_REF] Li | Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes[END_REF] λ BS = 0.4492 , α = 0.8417, Area = 16 × 16 GPP-Urban, β = 0.900 [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] λ BS = 31.56 , Area = 3.784 2 π , γ = 3.5 GPP-Urban, β = 0.925 [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] λ BS = 31.56 , Area = 3.784 2 π , γ = {2.5, 4} GPP-Urban, β = 0.975 [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] λ BS = 31.56 , Area = 3.784 2 π , γ = 3 GPP-Rural, β = 0.200 [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] λ BS = 0.03056 , Area = 124.578 2 π , γ = 3.5 GPP-Rural, β = 0.225 [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] λ BS = 0.03056 , Area = 124.578 2 π , γ = {3, 4} GPP-Rural, β = 0.375 [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] λ BS = 0.03056 , Area = 124.578 2 π , γ = 2.5 Lattice PP ISD = {100, 200, 300, 500} m Perturbed Lattice PP ISD = 100m, s = {50, 80, 100, 200} m LGCP (Urban) [START_REF] Kibiªda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF] λ BS = 4 , β = 0.03, σ 2 = 3.904, µ = -0.5634, Area = 20×20 LGCP (London) [START_REF] Kibiªda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF] λ BS = 9.919, β = 0.054, σ 2 = 2.0561, µ = 1.2665, Area = 6×6 LGCP (Warsaw) [START_REF] Kibiªda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF] λ BS = 27.36 , β = 0.0288, σ 2 = 2.7228, µ = 1.9477, Area = 8×8 PHP [START_REF] Yazdanshenasan | Poisson hole process: Theory and applications to wireless networks[END_REF] R cell = 0.5 km, λ hole = 0.005λ BS , R hole = 4 km PHP [START_REF] Yazdanshenasan | Poisson hole process: Theory and applications to wireless networks[END_REF] R cell = 0.1 km, λ hole = 0.005λ BS , R hole = 0.8 km MCPP [START_REF] Yazdanshenasan | Poisson hole process: Theory and applications to wireless networks[END_REF] R cell = R parent = 0.25 km, R offspring = 50 m, N offsprings = 5 

= ×1000) γ {2.5, 3.5} κ = 4πf c /3 • 10 8 2 f c = 2.1 GHz σ 2 N 0 Watt P tx 1 Watt λ BS 1/ (πR 2 cell ) BSs/km 2 Two-tier network δ T1 = δ T2 = 1 τ T1 = τ T2 = 1 γ T1 = γ T2 = γ γ los , γ nlos 2.5, 3.5 D B [18]
109.8517 m q (in) los , q (in) nlos [18] 0 3.7 and Table 3.8, we evince, notably, that all the triplets of parameters satisfy the constraints stated in Lemma 5 and Lemma 6.

In Figure 3-1, we compare the F-function and non-regularized K-function of the original PP against those obtained by using the IDT approach. The curve labelled Empirical is obtained by generating the data set in Table 3.4 (GPP-Urban with β = 0.9) with the aid of the simulation method in [START_REF] Decreusefond | Ecient simulation of the ginibre point process[END_REF]. The curve labelled PPP-IDT is obtained by using the triplets of parameters, (a

F , b F , c F ) and (a K , b K , c K ),
reported in Table 3.7. We note an almost perfect overlap between the curves. The results, in addition, are in agreement with the analytical expressions in [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF]. In 4 Leading zeros are considered to be never signicant. . Remove all BSs of T1 (T2) whose average rx power is higher than that of BS T1,0 (BS T2,0 ) The numerical results of P cov are reported from Figure 3-4 to 3-13, by considering single-tier, single-tier with spatial blockages, and two-tier cellular network models. In each gure, Monte Carlo simulations are compared against the analytical frameworks in Theorems 1-3. As far as the system setups with a small path-loss exponent ( γ = 2.5 or γ los = 2.5) are concerned, the analytical frameworks for nite-size networks are employed and R A is set according to the data set being considered due to the saturation problem. In all the other cases, the analytical frameworks for innitesize networks are used. Three curves are shown in each gure: i) the curve labelled Empirical (R) is obtained by generating the data sets listed in Table 3.4 by using R [START_REF] Baddeley | Spatial point patterns: methodology and applications with R[END_REF], as described in Table 3.5. The data sets are imported in Matlab and the coverage is obtained through Monte Carlo simulations. The data sets of the GPP are obtained by using the simulation method in [START_REF] Decreusefond | Ecient simulation of the ginibre point process[END_REF]; ii) the curve labelled PPP-IDT is obtained by using the IDT approach with the triplets of parameters listed in The analytical frameworks are obtained from Theorems 1-3 according to Remark 8.

As far as two-tier cellular networks are concerned, in particular, two independent H-PPPs of the same densities as the original motion-invariant PPs are considered. and conrms the good accuracy oered by the IDT approach. To better highlight the gap between the curves labelled PPP-IDT and PPP-H, the other gures depict only the main body of the coverage probability.

From Figure 3-4 to 3-13, we evince that the IDT approach is accurate, tractable, and capable of reproducing the spatial interactions of several PPs widely used for modeling the locations of BSs. It is worth mentioning that these promising ndings do not imply the universal applicability of the IDT approach to any PPs that may be available in the open technical literature. We believe, e.g., that there may exist PPs for which the retaining probabilities to use may be dierent from those reported in (3.10) and (3.11). The results reported in the present chapter provide, however, the indisputable evidence that the proposed IDT approach is suciently accurate, general, and analytically tractable for modeling, studying, and optimizing cellular network deployments whose BSs are distributed according to several empirically validated PPs.

Conclusion

In the present chapter, we have introduced a new tractable approach for modeling and analyzing cellular networks where the locations of the BSs exhibit some degree of spatial interaction, i.e., repulsion or clustering. The proposed IDT approach is based on the theory of I-PPPs, and it is shown to be tractable and insightful. Tractability and accuracy have been substantiated by using several data sets for the locations of cellular BSs that are available in the literature. The IDT approach may be applied in dierent ways to simplify the analysis and optimization of cellular networks. A

non-exhaustive list of potential uses for system-level analysis is the following.

To use it as an approximation of general PPs If a PP is not analytically tractable but its F-function and non-regularized K-function are available in a computable form, the IDT approach may be used to approximate the network panorama of the typical user and to obtain a tractable expression of the coverage probability that may be studied as a function of many radio access technologies.

To use it as a tractable model whose parameters are obtained from empirical data If the PP model is unknown and the analysis can be based only on empirical data sets for the locations of the BSs, the IDT approach may be applied for system-level analysis and optimization by simply estimating the F-function and the non-regularized K-function from the empirical data set. This may be done by using the Fest function [65, p. 483] and the Kest function [65, p. 683] that are available in the spatstat package of the R software environment for statistical computing and graphics.

To use it to simplify the computation of relevant performance metrics As discussed in Section 3.4.2, the IDT approach may be used to simplify the computation of relevant performance metrics that quantify the impact of spatial repulsion and clustering in cellular networks.

To use it as a new parametric approach for modeling and optimizing cellular networks The IDT approach may be considered to be a spatial model on its own, which may allow one to generate PPs with dierent kinds of spatial interactions.

The triplets of parameters (a F , b F , c F ) and (a K , b K , c K ) may not be obtained from the F-function and non-regularized K-function of other PPs, but they may be considered as free parameters as a function of which the network performance can be studied and optimized. One may compute the best triplets that optimize the coverage probability under some communication constraints and then use them for optimal network planning.

Based on these potential applications, we argue that the IDT approach may constitute an ecient alternative to employing system-level simulations for analyzing and optimizing cellular networks. The reason is that the proposed equivalent system based on I-PPPs depends only on the network geometry. This implies that the triplets of parameters that determine the spatial inhomogeneities of the equivalent network model need to be determined just once for a given network deployment, while they can be used to formulate several optimization problems in order to identify the best communication technologies and protocols to be employed in cellular networks. Usually, this is a more ecient approach than using brute-force system-level simulations.

In conclusion, we believe that the IDT approach may have wide applicability to the modeling and design of cellular networks, e.g., to study the advantages and limitations of emerging radio access technologies by taking the spatial interactions of practical network topologies into account. There are many possible generalizations of the theories proposed in the present chapter, which include, but are not limited to, the impact of dierent path-loss models [START_REF] Alammouri | Sinr and throughput of dense cellular networks with stretched exponential path loss[END_REF], the analysis of uplink cellular networks [START_REF] Di Renzo | Stochastic geometry modeling and system-level analysis of uplink heterogeneous cellular networks with multi-antenna base stations[END_REF],

the optimization of spectral eciency and energy eciency [START_REF] Di Renzo | System-level modeling and optimization of the energy eciency in cellular networksa stochastic geometry framework[END_REF], the analysis of the spatial correlation between the locations of BSs and MTs [START_REF] Mirahsan | Hethetnets: Heterogeneous trac distribution in heterogeneous wireless cellular networks[END_REF], [START_REF] Saha | Enriched k-tier hetnet model to enable the analysis of user-centric small cell deployments[END_REF]. 

Introduction

As an important metric in wireless communication networks, signal to interference ratio (SIR) distribution gives the information that if signal can be well received in the interference-limited networks. Interference-limited networks are becoming dominant due to the rapid increasing number of wireless devices and limited spectrum resource.

In the conventional analysis and modeling for cellular network, H-PPP is applied to generate BS deployments due to its simplicity and mathematical tractability [START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF].

While in the practical and actual BS deployments in 4G cellular networks, the spatial locations of the BSs tend to be correlated, thus, totally random distributed deployments does not work any more. However, non-Poisson PPs with spatial inhibition or attraction do not have the same mathematical tractability and simplicity as H-PPP, which brings diculties in modeling performance of non-Poisson PPs.

In [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF], the author provides the approximation of SIR gain in the downlink cellular networks over a baseline scheme, based on Mean Interference to Signal Ratio, simplied as MISR. This SIR gain is used to quantify horizontal shift between one specic SIR distributions and the baseline. Here H-PPP networks set the baseline for other non-Poisson PPs. However, the horizontal gain is obtained numerically through larger number of time-consuming iterations. To overcome this diculty, authors in [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous poisson point processes[END_REF] propose a new methodology, called IDT approach, to model and analyze the performance of downlink cellular networks, where BSs constitute a motion-invariant PP that exhibits spatial correlations.

In this chapter, we successfully apply IDT approach to analyze the MISR performance for β-GPP as an example of spatially correlated point processes, which is rst proposed in [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] for modeling repulsive cellular networks in urban and rural environments. We overcome the diculty in analyzing MISR performance for non-Poisson PPs (β-GPP as an example) under network densication scenario. We propose new approximation functions for key parameters in IDT approach, where the key parameters are obtained by solving minimization problem numerically for each dierent system setup. With proposed new parameter functions, we are able to study MISR analytically. MISR for β-GPP is proved to be independent of BS density but only depends on inhibition index β and path-loss exponent γ. The trend of MISR is studied as a function of γ and β (given β or γ xed) and compared with H-PPP case. The approximation functions and trends are validated by numerical simulations.

This chapter is organized as following: The system model can be found in section 4.2. Section 4.3 introduces the approximation functions and corresponding framework for MISR based on proposed approximation functions in IDT approach. Section 4.4

gives the trend analysis under the proposed approximation functions. Numerical results can be found in section 4.5 and section 4.6 concludes the chapter. The symbols and functions used in this chapter can be found in the beginning of the thesis.

System Model

Considering a single tier downlink cellular network, the BSs are modeled as points in an inhomogeneous motion-invariant PP Ψ BS with density λ BS , where the locations of BSs are denoted as x ∈ Ψ BS on R 2 . The MTs are modeled as another motion-invariant point process and they are independent from each other. Since the BSs and MTs are both stationary and isotropic, the performance of MT is represented by typical MT, denoted as MT 0 , which is located at the origin. Then the serving BS is denoted as BS 0 with location x 0 . The remaining interfering BSs consist of point process Ψ (I) BS .

The path-loss model is denoted as l (r) = κr γ , where κ and γ > 2 are the pathloss constant and the path-loss slope (exponent) respectively. Gaussian noise with power σ 2 N is not considered in the interference-limited networks. All the BSs and MTs are equipped with omni-directional antennas. The BSs transmit with constant power P tx and a fully loaded assumption is taken into account in this chapter. The simultaneously transmitting BSs are sharing the same physical channel. Fading h has unit mean. For each BS-MT connection, shadowing is not considered, and all links are assumed to be independent and identically distributed (i.i.d.).

IDT Approach

Due to the diculty in analyzing non-Poisson PPs mathematically, we apply IDT methodology in [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous poisson point processes[END_REF] to approximate the performance of non-Poisson PPs. To be more clear, we use Φ 

λ (F ) BS (r) = λ BS c F min (a F ,b F ,c F )∈Ω F a F c F r + b F c F , 1 , λ (K) 
BS (r) = λ BS min (a F ,b F ,c F )∈Ω K {a K r + b K , c K } (4.1) 
where 

Ω F : {(a F , b F , c F ) : c F ≥ b F ≥ 1}, and Ω K : (a K , b K , c K ) : {b K ≤ c K ≤ 1}.
(a F , b F , c F ) = arg min (a,b,c)∈Ω F ∞ 0 F Ψ BS (r) -F Φ (F ) BS (r; a, b, c) 2 dr (a K , b K , c K ) = arg min (a,b,c)∈Ω K ∞ 0 K Ψ BS (r) -Λ Φ (K) BS (r; a, b , c) 2 dr (4.2) 

Denition of MISR

The CCDF of SIR is dened as FSIR (θ)

∆ = P (SIR > θ). Then, the horizontal gap is dened as G (p) ∆ = F -1 SIR 2 (p) / F -1 SIR 1 (p) for p ∈ (0, 1)
, where F -1 SIR (p) is the inverse of CCDF of the SIR and p is the target success probability. According to [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF], the asymptotic gain between two SIR distributions can be rewritten as G = MISR 1 /MISR 2 when p → 1.

Interference to signal ratio I SR is dened as I SR

∆ = I/E h (S)
, where I is the aggregated interference and S = E h (S) represents the received power averaged over the fading. The mean of I SR is called MISR, computed as:

MISR = E h i ,Φ,r 0      r i ∈Φ ! h i r -γ i r -γ 0      (a) = E Φ,r 0    r γ 0 r i ∈Φ ! r -γ i    = ∞ 0 ξ γ E Φ    r i ∈Φ ! r -γ i    f r 0 (ξ) dξ (4.3) 
where (a) averages the channel fading of h k . E Φ

r i ∈Φ ! r -γ
i is determined by the reduced palm distribution of Ψ BS and f r 0 (x) represents the PDF of contact distance distribution, i.e., distribution of distance between typical MT and its serving BS. Taking H-PPP as an example, reduced palm distribution of Φ is known. Also f r 0 (x) = 2πλ BS x exp (-2πλ BS x 2 ), the MISR for H-PPP is denoted as: MISR H-PPP = 2/ (γ -2).

Proof : For homogeneous PPP,

M ISR = ∞ 0 ξ γ E Φ    r i ∈Φ ! r -γ i    f r 0 (ξ) dξ (b) = E x 0 x γ 0 ∞ x 0 1 x γ Λ (1) ([0, x))dx = E x 0 x γ 0 2πλ ∞ x 0 1 x γ xdx = 2πλ γ -2 E x 0 x 0 2 (4.4)
where (b) comes from applying Campbell's Theorem. 87 then,

M ISR

P P P = 2πλ γ -2 E x 0 x 0 2 = (2πλ) 2 γ -2 ∞ 0 x 3 exp(-πx 2 )dx = 2 γ -2 (4.5)

MISR for Non-PPPs based on IDT Approach

As mentioned in section 4.2.1, if we apply IDT approach to model MISR performance of non-PPPs, the serving BS x (F ) 0 is selected with the smallest path-loss among x 

MISR IDT = 2πλ BS θ 0 Θ (θ) (x) f Φ (F ) BS (x) dx (4.6) 
where

I 1 (x) = d 2-γ K (b K -c K ) (γ-3)(γ-2) x γ + b K γ-2 x 2 + a K γ-3 x 3 1 (x ≤ d K ) , I 2 (x) = c K γ-2 x 2 1 (d K < x) , I 3 (x) = c K x 2 1 (d K ≤ x) , I 4 (x) = x 3 a K ln d K x +a K + b K x 1 (x < d K ) , I 5 (x) = x γ γ-2 d 2-γ K (c K -b K ) -c K R 2-γ A + b K γ-2 x 2 + a K γ-3 x 3 -d 3-γ K x γ 1 (x < d K ) , I 6 (x) = c K γ-2 x 2 -x γ R 2-γ A 1 (d K ≤ x) , I 7 (x) = c K x 2 - x 3 R A 1 (x ≥ d K ) , I 8 (x) = x 3 a K + a K ln d K x + b K x -c K R A 1 (x < d K ) , Θ (∞) γ =3 (x) = I 1 (x) +I 2 (x) , Θ (∞) γ=3 (x) = I 3 (x) +I 4 (x) , Θ (R A ) γ =3 (x) = I 5 (x) + I 6 (x) , Θ (R A ) γ=3 (x) =I 7 (x) +I 8 (x) (4.7) 
where Θ (θ) (x) can be found in (4.7) and when θ → ∞,

Θ (θ) (x) = Θ (∞) (x) for network with innite size, when θ → R A , Θ (θ) (x) = Θ (R A ) (x) for network with nite
Remark 24 Note that MISR IDT is independent of density λ BS with proposed approximation model. The deployment gain, given by G = MISR PPP /MISR IDT is constant as well. As MISR IDT ≈ MISR β-GPP with IDT approach and proposed approximation functions for parameters in IDT functions, it can be inferred that with network densication, the MISR performance for β-GPP is also constant in the interference-limited regime.

Trend of MISR Approximation

From Proposition 1, we know that MISR IDT only depends on β and path-loss exponent γ. In this section, we are interested in comparing the MISR IDT with dierent level of inhibitions and comparison against H-PPP case.

Since there is no data sets or literature of existing BSs deployments available showing density-dependent spatial correlated BSs, it is not clear that how network deniscation changes the spatial inhibition between spatial locations of BSs, which follows β-GPP. However, as we proved in section 4.3, MISR IDT is independent of density λ BS , we propose the following theorems to reveal the relationship between MISR IDT and β.

Trend of MISR on β

Theorem 4 Let path-loss exponent γ > 2 be xed, MISR (A) IDT (β) in (4.10) is monotonically decreasing with the increase of β ∈ [0, 1].

Proof: The MISR expression can be rewritten as:

MISR (A) IDT = ∞ 0 x γ   ∞ x 1 r γ Λ K (1) (r) dr   f r 0 -F (x)dx (a) = ∞ 0 ∞ t t s γ Λ(1) K (s) fF (t)dsdt (4.13)
where (a) comes from double variable changing, i.e., s/ √ λ BS = r and t/ √ λ BS = x, and

Λ(1) K (s, β) = 2π s 2 √ β + b (A) K s H dK -s + c (A) K sH s -dK fF (t, β) = Λ(1) F (t) exp -ΛF (t) Λ(1) F (t, β) = 2π √ β 2 t 2 + b (A) F t H dF -t + c (A) F (β) tH t -dF ΛF (t, β) = 2π      √ β 6 t 3 + b (A) F 2 t 2 H dF -t + c (A) F (β) 2 t 2 - 2 c (A) F (β)-b (A) F 3 3β H t -dF      (4.14) Assuming 0 < β 1 < β 2 < 1, we can have c F (β 1 ) < c F (β 2 ).
As for other parameters b K = 0.01, c K = 1 are constant for dierent β. Therefore, for rst derivative of intensity measure

Λ(1) K (s), we have Λ(1) K (s, β 1 ) ≥ Λ(1) K (s, β 2 ), since in the interval 0, dK (β 1 ) , s 2 / √ β 1 > s 2 / √ β 2 is true. Then, for s in the interval dK (β 1 ) , dK (β 2 ) , s 2 √ β 2 + b K s < c K s due to the continuity of function Λ(1) K (s, β). For interval dK (β 2 ) , ∞ , Λ (1) 
K (s, β 1 ) = Λ(1) K (s, β 2 ) is true. As for ΛF (t), ΛF (t, β) = 2π s 0 min √ β 2 t + b F , c F (β) tdt (4.15) It is obvious ΛF (t, β 1 ) < ΛF (t, β 2 )for β 1 < β 2 , since min √ β 1 2 t + b F , c F (β 1 ) < min √ β 2 2 t + b F , c F (β 2 ) is always true as c F (β 1 ) < c F (β 2 ) on the interval t ∈ [0, +∞].
To conclude, we have

Λ(1) K (s, β 1 ) ≥ Λ(1) K (s, β 2 ) and ΛF (t, β 1 ) < ΛF (t, β 2 ). Then for MISR (A) IDT (β 1 ), MISR (A) IDT (β 1 ) ≥ ∞ 0 ∞ t t s γ Λ(1) K (s, β 2 ) fF (t, β 1 ) dsdt (b) = G (t, β 2 ) FF (t, β 1 ) | ∞ 0 - ∞ 0 G(1) (t, β 2 ) Ft (t, β 1 ) dt = 2πc K t 2 γ -2 - ∞ 0 G(1) (t, β 2 ) Ft (t, β 1 ) dt (4.16) 
where G (t, β) = ∞ t t s γ Λ(1) K (s, β) ds, (b) comes from integration by parts theorem and G (t → 0,

β 2 ) × Ft (t → 0, β 1 ) = 0, G (t, β 2 ) Ft (t, β 1 ) | ∞ = 2πc K t 2 γ-2 .
Since ΛF (t, β 1 ) < ΛF (t, β 2 ) is true, and Ft (t, β) is monotonically increasing with ΛF (t, β), thus we have Ft (t, β 1 ) < Ft (t, β 2 ).

As for the sign of G(1) (t,

β 2 ), G(1) (t, β 2 ) = ∂ ∂t   t γ ∞ t 1 s γ Λ(1) K (s, β 2 ) ds   (c) =   γt γ-1   ∞ t 1 s γ Λ(1) K (s, β 2 ) Λ(1) K (t, β 2 ) ds   -1   Λ(1) K (t, β 2 ) ≥   γt γ-1   ∞ t 1 s γ ds   -1   Λ(1) K (t, β 2 ) = 1 γ -1 Λ(1) K (t, β 2 ) > 0 (4.17)
where (c) comes from Leibniz Rule and 1 γ-1 > 0 is always true for γ > 2.

Therefore, continued with (4.16),

MISR (A) IDT (β 1 ) > 2πt 2 γ -2 - ∞ 0 G(1) (t, β 2 ) Ft (t, β 2 ) dt (d) = MISR (A) IDT (β 2 ) (4.18) 
where (d) comes from the inverse of MISR

(A)
IDT (β) is proved to be monotonically decreasing with the increase of β. As a special case of β-GPP, MISR for H-PPP can be obtained by setting β = 0, which gives maximum value of MISR (A) IDT .

From the proof of Theorem 4, we know that MISR (A) IDT (β) ≥ MISR PPP (β) and MISR PPP is the lower limit for β ∈ [0, 1], where `=' takes place when β = 0. In the case when BSs are distributed more repulsive to each other, increasing β leading to the decrease of MISR IDT , which indicates the improvement of coverage performance in the downlink network. Theorem 4 is validated by numerical simulations in section 4.5.

Trend of MISR on γ

Theorem 5 Let β ∈ [0, 1] be xed, MISR (A) IDT (γ) in (4.10) is monotonically decreasing with the increase of path-loss exponent γ. And with the increase of γ (γ > 2), the dierence

MISR (γ) = MISR PPP (γ) -MISR (A)
IDT (γ) monotonically decreases.

Proof: It can be inferred that MISR (A) IDT (γ) is monotonically decreasing as a function of path-loss exponent γ from (4.13), since t/s < 1 and Λ(1) K (s, γ) and fF (t) are non-negative.

Given xed β, with 2 < γ 1 < γ 2 , the dierence between MISR (A)

IDT (γ 1 ) and MISR PPP (γ 1 ) is compared with the dierence between MISR (A) IDT (γ 2 ) and MISR PPP (γ 2 ). It can be transformed into comparing

MISR (A) IDT = MISR (A) IDT (γ 1 )-MISR (A) IDT (γ 2 ) and MISR PPP = MISR PPP (γ 1 ) -MISR PPP (γ 2 )
. And MISR PPP is denoted as:

MISR PPP (γ) = ∞ 0 ∞ t Ω (t, s, γ 1 , γ 2 ) Λ(1) PPP (s) fPPP (t)dsdt (4.19) 
where Ω (t, s, γ

1 , γ 2 ) = t s γ 1 -t s γ 2 , Λ (1) 
PPP (s) = 2πs and fPPP (t) = 2πt exp (-πt 2 ).

Then MISR (A) IDT is denoted as:

MISR (A) IDT = ∞ 0 ∞ t Ω (t, s, γ 1 , γ 2 ) Λ(1) IDT (s) fIDT (t)dsdt (a) ≤ ∞ 0 ∞ t Ω (t, s, γ 1 , γ 2 ) Λ(1) PPP (s) fIDT (t)dsdt =J PPP (t, γ 1 , γ 2 ) FIDT (t) | ∞ 0 - ∞ 0 J (1) 
PPP (t, γ 1 , γ 2 ) FIDT (t) dt (4.20) 
where (a) comes from J (t,

γ 1 , γ 2 ) = ∞ t Ω (t, s, γ 1 , γ 2 ) Λ (1) 
P P P (s) ds [71, Proof of proposition, 1]. According to denition, J P P P (t → 0, γ 1 , γ 2 ) = FIDT (t → 0) = 0 and 

J P P P (t → ∞, γ 1 , γ 2 ) FIDT (t → ∞) = 4π 1 γ 1 -2 -1 γ 2 -2 t 2 | t→∞ .

M ISR

(A)

IDT < 2π 2 γ 1 -2 - 2 γ 2 -2 t 2 - ∞ 0 J (1) 
P P P (t) F P P P (t) dt

= MISR PPP (4.21)
It is proved that with the increase of path-loss exponent γ, the gap between MISR PPP and MISR

(A) IDT is decreasing.

From Theorem 5, we know when path-loss exponent γ increases, MISR 

Numerical Results

In this section, we illustrate several numerical simulations that substantiate the applicability of proposed approximation model in section 4.3 and validate the trend against λ BS , β and path-loss exponent γ in section 4.4. The system setup is as follows: path [71, (14)]. `Appro.' represents approximation functions in Proposition 4. proposed approximation model respectively. In Figure 4-6 and 4-7, `GPP Simulation' is obtained by generating data sets according to method in [START_REF] Decreusefond | Ecient simulation of the ginibre point process[END_REF] and it gives MISR performance for β-GPP case. While `IDT Simulation' gives MISR exponent γ, it can be inferred that MISR β-GPP is closer to MISR PPP when β decreases.

loss constant κ = (4πf c /3 • 10 8 ) 2 , f c = 2.1GHz, P tx = 1Watt and K = 3.4 for c F is used.
(a F , b F , c F ) and (a K , b K , c K ). `Emp.' represents empirical parameters a (E) F , b (E) F , c (E) F and a (E) K , b (E) K , c (E) K obtained from
And MISR PPP gives the maximum limit for MISR β-GPP .

From Figure 4 between MT and its serving BS. The success probability is the CCDF of SINR distribution, which includes averaging on the spatial locations of MTs in the network for a given point process. However this average performance cannot stand for the individual link quality of each wireless link.

Therefore, author in [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] introduces meta distribution, which is the distribution of success probability for each link with given point process. To be more specic, meta distribution is the distribution of success probability P s for individual links for a given Φ, whose CCDF is denoted as: FPs (x)

∆ = P !t (P s > x) , x ∈ [0, 1].
With the help of meta distribution, we are able to study how concentrated the link success probabilities are. In [START_REF] Elsawy | On the meta distribution of coverage probability in uplink cellular networks[END_REF], meta distribution of coverage probability in uplink cellular networks is analyzed.

However, under the current study of meta distribution, it is not feasible to obtain mathematically tractable framework even for H-PPP case. The Gil-Pelaez based computation approach in [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] costs long simulation time. The beta approximation in [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] is not accurate enough in some scenarios. To overcome these problems and nd an ecient way to compute CCDF of meta distribution, we propose a new numerical computation approach, inspired by numerical inversion of the Laplace transforms in [START_REF] Ko | Outage probability of diversity systems over generalized fading channels[END_REF]. It is ecient and stable to compute CCDF.

Also, the second problem is that there are few applications to non-Poisson PPs.

As we know, modeling cellular networks by using PPPs has the inherent advantage of good mathematical tractability. However, empirical BSs deployments show that, the practical cellular network deployments are likely to exhibit some degree of interactions among the spatial locations of the BSs, including spatial inhibition, i.e., repulsion [START_REF] Guo | Spatial stochastic models and metrics for the structure of base stations in cellular networks[END_REF], and spatial aggregation, i.e., clustering [START_REF] Deng | Heterogeneous cellular network models with dependence[END_REF]. In [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF], GPP is proposed to model repulsive cellular networks in urban and rural environments. In [START_REF] Kibiªda | Modelling multi-operator base station deployment patterns in cellular networks[END_REF],

LGCP is proposed, based on empirical data, to account for the spatial correlation arising in multioperator cellular networks. Those mentioned non-Poisson PPs are more suitable to model practical BS deployments in the cellular network. However, non-Poisson PPs are dicult to generate in numerical simulations and have weak mathematical tractability.

In [START_REF] Kalamkar | A simple approximation of the meta distribution for non-poisson cellular networks[END_REF], a simple approach to approximate the CCDF of meta distribution for non-Poisson networks is proposed, which is based on the ASAPPP in [START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF]. However, the gain is again obtained from simulations while mathematical tractability is weak.

More details can be found in section 5.6.

To overcome it, we apply the IDT approach, which is proved to be accurate and robust in analyzing coverage performance based on non-Poisson PPs in [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous poisson point processes[END_REF].

Then, with the help of IDT approach, for the rst time, we are able to analyze meta distribution for PPs with spatial inhibition and aggregation, with certain constraints on parameters of IDT approach, we are able to prove the order of moments between H-PPP and non-Poisson PPs with the help of IDT approach.

In this chapter, we propose a new numerical approach in computing CCDF of meta distribution, which is simple and robust. With this proposed approach, we are able to compute the CCDF under several scenarios. The analysis is done by considering both conventional denition of coverage probability based on SINR and new denition with double thresholds on SIR and SNR. Besides this new numerical computation approach, we also compare the other approximations in the literature.

We study the asymptotic value of CCDF when x → 0. This chapter is organized as following: Section 5.2 introduces the system model. 

System Model

The single tier downlink cellular networks are considered in this chapter. The BSs are distributed as points in a motion-invariant point process Ψ BS on R 2 with density λ BS .

The locations of BSs are denoted as x ∈ Ψ BS . The locations of the mobile terminals are distributed in another motion-invariant point process, which is independent of Ψ BS . The performance of MT is represented by typical MT, denoted as MT 0 , which is located at the origin. And the serving BS is denoted as BS 0 with location x 0 . The interfering BSs are denoted as Ψ (I) BS .

In this chapter, the universal path-loss model l (r) = κr γ is used to demonstrate the signal attenuation over distance, where κ and γ > 2 are the path-loss constant and the path-loss slope (exponent) respectively. A cell association criterion based on the highest average received power is assumed. Let x ∈ Ψ BS be the location of a generic BS. The location, x 0 , of the serving BS, BS 0 , is obtained as follows:

x 0 = arg max

x∈Ψ BS {1/l (x)} = arg max x∈Ψ BS {1/L x } (5.1)
where L x = l (x) is a shorthand. And for the intended link, L 0 = l (x 0 ) = min x∈Ψ BS {L x } holds.

Gaussian noise with power σ 2 N is considered as well. The omni-directional an- tennas are equipped on all the BSs and MTs. A fully loaded network is taken into account in this chapter and BSs transmit with constant power P tx . The simultaneously transmitting BSs are sharing the same physical channel. Rayleigh fading with unit mean is considered. For each BS-MT connection, shadowing is not considered, and all links are assumed to be independently and identically distributed (i.i.d.).

Given the mentioned system model, we can derive the coverage probability, which is the probability that SINR is greater than a threshold τ : 

p s = +∞ 0 exp - ξτ σ 2 N P tx M I,L 0 (ξ; τ ) f L 0 (ξ) dξ

IDT Approach

According to [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous poisson point processes[END_REF], we know it is dicult to analyze the performance of non-Poisson PPs mathematically due to its weak tractability. Then the IDT approach is proposed to approximate non-Poisson PPs with spatial correlations and provides equivalent performance with better mathematical tractability and simple simulations.

To be more specic, two independent inhomogeneous PPPs, Φ (2) Spatial Aggregation :

λ (F ) BS (r) = λ BS max (âF, bF ,ĉ F) ∈Ω agg F -â F r + bF , ĉF , λ (K) BS (r) = λ BS ĉK max (âK, bK ,ĉ K )∈Ω agg K - âK bK r + 1, ĉK bK (5.6)
where Ω Inh 

New Denition of Coverage Probability

The conventional denition for coverage probability is dened as the probability that SINR of a wireless link is greater than a given threshold τ . However the limitation of SINR based denition of coverage probability is that no closed form expression is available even under H-PPP case, which further limits the insight of resulting framework.

Therefore, a new denition of coverage probability is proposed in [START_REF] Di Renzo | System-level modeling and optimization of the energy eciency in cellular networksa stochastic geometry framework[END_REF] to overcome the limitations of currently available analytical frameworks. It is suitable for systemlevel optimization. Here in this chapter, this new denition of success probability is applied and it is given by:

p s (τ D , τ A ) = Pr SIR > τ D , SNR > τ A (5.8)
where τ D and τ A represent the threshold for SIR and SNR respectively.

It should be noted that with new denition of coverage probability, received signal can be decoded successfully only under the condition that both SIR and SNR meet the thresholds. Here SNR means SNR averaged with respect to the fast fading.

In another word, SNR is xed for given BS and MT pair in a given Φ, and it is similar to the idea that a coverage zone is set for one BS. With new denition, coverage probability is no longer independent of density λ BS and transmit power P tx .

This new denition of coverage probability is closer to the realistic transmissions.

This new denition of coverage probability is applied through out the chapter including the computation of CCDF for meta distribution, approximations and numerical simulations. However this average performance cannot stand for the individual link quality of each MT-BS pair. For example, the average success probability 90% can be achieved with users experiencing 40% to 95% success probability or users experiencing 20% to 98% success probability. It indicates that in a wireless network with average success probability of 90%, users with low success probability cannot be revealed from the average performance.

Therefore, author in [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] introduces meta distribution, which is the distribution of success probability for each link for a given spatial distribution of BSs. To be more specic, meta distribution is the distribution of P s (τ D , τ A ) for a given Φ, whose CCDF is denoted as: FPs (x)

∆ = P !t (P s (τ D , τ A ) > x) , x ∈ [0, 1].
With the help of meta distribution, we are able to study how concentrated the link success probabilities are. In [START_REF] Elsawy | On the meta distribution of coverage probability in uplink cellular networks[END_REF], meta distribution of coverage probability in uplink cellular networks is analyzed.

Denition of Meta Distribution

As mentioned in the previous section, meta distribution is brought up to study the distribution of success probability P s (τ D , τ A ). The CCDF of meta distribution is dened as:

FPs (x)

∆ = P !t (P s (τ D , τ A ) > x) , x ∈ [0, 1]
(5.9)

where x is the threshold of success probability, P !t gives the reduced Palm measure of the point process, given that there is an active transmitter at a prescribed location, and SIR and SNR are measured at the receiver end. P s (τ D , τ A ) denotes the joint probability that SIR is greater than a threshold τ D and SNR is greater than τ A averaged over fading, given Φ.

As FPs (x) denotes the CCDF of a conditioned probability, then it is called meta distribution. The conventional success probability p s (τ D , τ A ) can be obtained by averaging FPs (x):

p s (τ D , τ A ) = E !t (P s (τ D , τ A )) = 1 0
FPs (x) dx

(5.10)

According to [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF], the direct computation of FPs (x) is not available, then several computation approaches and approximations are proposed.

Conventional Computation Approach

Authors in [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] proposes methods of computing CCDF of meta distribution from moment functions. Then, the b-th moment of P s (τ D , τ A ) is denoted as:

M b (τ D , τ A ) ∆ = E !t P s (τ D , τ A ) b = 1 0 bx b-1
FPs (x) dx (5.11) where the rst moment M 1 denotes the mean according to the denition, which is

p s (τ D , τ A ). The variance is represented as: varP s (τ D , τ A ) ∼ M 2 (τ D , τ A ) -M 2 1 (τ D , τ A ).

Gil-Pelaez based Approach

It is proposed in [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] that CCDF of meta distribution can be computed by applying Gil-Pelaez theorem [START_REF] Gil-Pelaez | Note on the inversion theorem[END_REF] , which is:

F (τ D , τ A ; x) = 1 2 + 1 π ∞ 0 Im e -it log(x) M jt (τ D , τ A ) t dt
(5.12)

Theorem 6 Let M b be b-th moment for a given Φ, τ D and τ A , the CCDF of meta distribution is computed as:

F (log x) = 2 -Q e A/2 -log x Q q=0   Q q   N +q n=0 (-1) n β n R    M -A+2πjn 2 log x A+2πjn -2 log x    + |E (A, N, Q) | (5.15)
where the overall error term |E (A, N, Q) | is denoted as:

|E (A, N, Q) | ≈ e -A 1 -e -A + | 2 -Q e A/2 -log x Q q=0 (-1) N +1+q   Q q   R    M -A+2πj(N +q+1) 2 log x A+2πj(N +q+1) -2 log x    | (5.16) 
Proof: According to [73, (11)], the outage probability P out is recovered through moment generating function, which is: 17) where E (A, N, Q) is the error term; M γt (-s) = pγt (s) denotes the Laplace transform of p γt (s), where p γt (γ t ) is the PDF of γ t . Similarly, we can adopt this approach into computation of CCDF. The denition of CCDF is the probability that P s (τ D , τ A ) is greater than the threshold x, which can be rewritten as:

P out = 2 -Q e A/2 γ th Q q=0   Q q   N +q n=0 (-1) n β n R    M -A+2πjn 2γ th A+2πjn 2γ th    + E (A, N, Q) (5.
F (τ D , τ A ; x) = Pr (P s (τ D , τ A ) > x) = Pr (-log (P s (τ D , τ A )) < -log (x)) (5.18) 
Then, if we let X ∆ = -log (P s (τ D , τ A )), MGF of -log (P s (τ D , τ A )) can be denoted as:

M X (s) = E e sX = E e -s log(Ps(τ D ,τ A )) = E P s (τ D , τ A ) -s (5.19)
where E P s (τ D , τ A ) -s is the transformation of the moments, i.e., E P s (τ D , τ A ) -s = M -s . After taking M -b into (5.17) and replacing γ th with -log (x), we can have the nal expression as shown in (5.15).

Remark 25 The accuracy of proposed numerical computation method is aected by parameters (A, N, Q). Therefore, a proper selection of (A, N, Q) is vital to obtain accurate results. Here in this chapter, we adopt the same selection of parameters in [START_REF] Ko | Outage probability of diversity systems over generalized fading channels[END_REF], which is A 10 ln 10 to guarantee a discretization error less than 10 -10 , and N = 21, Q = 15 to ensure the resulting truncation error less than 10 -10 .

Moments in Meta Distribution

In this section, we present some other approaches used in the literature to approximate the CCDF of Meta distribution given moment functions. 

M H-PPP b = 1 -exp -Ptx κσ 2 τ A 2 γ πλ 2 F 1 b, -2 γ , 1 -2 γ , -τ D 2 F 1 b, -2 γ , 1 -2 γ , -τ D (5.20) 
Proof: According to denition, M b is denoted as:

M b = E x∈Φ (P S (τ D , τ A )) b (5.21) 
where P s (τ D , τ A ) given Φ is written as:

P s (τ D , τ A ) = Pr SIR ≥ τ D , SNR ≥ τ A = E Iagg exp (-κτ D r γ 0 I) , r 0 ≤ P tx κσ 2 τ A 1/γ |Φ (5.22)
where I = x∈Φ h x 1 κr γ . r represents the distance between BS and MT 0 and r 0 corresponds to the distance from serving BS to MT 0 . Then P S (τ D , τ A ) is further written as:

P s (τ D , τ A ) = E Iagg exp -τ D x∈Φ h x r 0 r γ , r 0 ≤ P tx κσ 2 τ A 1/γ (a) = x∈Φ E hx exp -τ D h x r 0 r γ , r 0 ≤ P tx κσ 2 τ A 1/γ = x∈Φ 1 1 + τ D r 0 r γ , r 0 ≤ P tx κσ 2 τ A 1/γ (5.23)
where (a) comes from independence of fading h x for dierent links.

If we take (5.23) into (5.21), and assuming f (

r 0 r ) = (1 + τ D (r 0 /r) γ ) -b , b-th mo-
ments can be denoted as:

M b = E r>r 0 f ( r 0 r ) (b) = E r exp - ∞ r 0 1 -f ( r 0 r ) Λ (r)dr r=r 0 y = P tx κσ 2 τ A 1/γ 0 exp      -x ∞ 1 1 -f ( 1 y ) Λ (xy) dy Q      f r 0 (x)dx (5.24)
where f r 0 (x) = 2πλ BS x exp (-πλ BS x 2 ) is the PDF for distance r 0 between typical MT and its serving BS for H-PPP case. (b) comes from probability-generating function. It should be noticed that the integral upper limit is not ∞, but

Ptx κσ 2 τ A 1/γ
, which comes from the second constraint on SNR in (5.23). The inner integral Q can be expanded as:

Q = 2πλx 2 ∞ 1    1 -   1 1 + τ D 1 y γ   b    ydy s= 1 y = 2πλx 2 1 0 1 - 1 1 + τ D s γ b s -3 ds = πλx 2 2 F 1 b, - 2 γ , 1 - 2 γ , -τ D -1 (5.25)
Therefore, the b-th moment for homogeneous PPP can be obtained by taking (5.25) and PDF of contact distance into (5.24).

Remark 26 Note that M H-PPP b is in closed-form and if we set τ A = 0, then it will come back to the conventional denition of success probability, which is probability that SIR is greater than τ D in the interference-limited regime. where

Θ (r) = 2πλ          a K r 3 3 2 F 1 b, -3 γ , 1 -3 γ , -τ D -1 + b K r 2 2 2 F 1 b, -2 γ , 1 -2 γ , -τ D -1 - a K d 3 K 3 2 F 1 b, -3 γ , 1 -3 γ , -(r/d K ) γ τ D -1 + (c K -b K )d 2 K 2 2 F 1 b, -2 γ , 1 -2 γ , -(r/d K ) γ τ D -1          H (d K -r) + πλc K r 2 2 F 1 b, - 2 γ , 1 - 2 γ , -τ D -1 H (r -d K ) f Φ (F ) BS (r) = 2πλ BS   (a F r 2 + b F r) exp -2πλ BS a F 3 r 3 + b F 2 r 2 1 (r ≤ d F ) +c F r exp -2πλ BS (b F -c F ) 3 6a 2 F + c F 2 r 2 1 (d F ≤ r)   (5.27) 
Proof: As mentioned in (5.24), the b-th moment is dened as: The inner integral Θ (x) is further represented as:

M b = P tx κσ 2 τ A 1/γ 0 exp - ∞ 1 1 -f ( 1 y ) Λ (1) 
Θ (x) = ∞ 1 1 -f ( 1 y ) Λ (1) 
Φ (K) BS (xy) xdy (a) = 2πλ BS x 2    1 x d K 1 -(1 + τ D s γ ) -b a K x s + b K s -3 ds +c K x d K 0 1 -(1 + τ D s γ ) -b s -3 ds    H (d K -x) + 2πλ BS c K x 2 1 0 1 -(1 + τ D s γ ) -b s -3 dsH (x -d K ) = 2πλ             1 0 1 -(1 + τ D s γ ) -b a K x s + b x 2 s -3 ds T 1 - x d K 0 1 -(1 + τ D s γ ) -b a K x s + b x 2 s -3 ds T 2 + c K d K 2 2 2 F 1 b, -2 γ , 1 -2 γ , -(r/d K ) γ τ D -1             H (d K -x) + πλc K x 2 2 F 1 b, - 2 γ , 1 - 2 γ , -τ D -1 H (x -d K ) (5.29) 
where Λ y . The other two inner integrals can be further simplied as following:

T 1 = x 2 1 0 1 - 1 1 + τ D s γ b a K x s + b K s -3 ds (b) = x 2 1 0   1 - ∞ k=0   b + k -1 k   (-τ D s γ ) k   a K x s + b K s -3 ds = -x 2 ∞ k=1   b + k -1 k   a K x(-τ D ) k kγ -3 -x 2 ∞ k=1   b + k -1 k   b K (-τ D ) k kγ -2 = a K x 3 3 2 F 1 b, - 3 γ , 1 - 3 γ , -τ D -1 + b K x 2 2 2 F 1 b, - 2 γ , 1 - 2 γ , -τ D -1 (5.30) 
where (b) comes from Newton's generalized binomial theorem.

T

2 (x) = x 2 x d K 0 1 - 1 1 + τ D s γ b a K x s + b K s -3 ds (c) = -x 2 ∞ k=1   b + k -1 k   r d K 0 a K x s (-τ D s γ ) k s -3 ds -x 2 ∞ k=1   b + k -1 k   x d K 0 (b K ) (-τ D s γ ) k s -3 ds = a K d 3 K 3 2 F 1 b, - 3 γ , 1 - 3 γ , -(x/d K ) γ τ D -1 + b K d 2 K 2 2 F 1 b, - 2 γ , 1 - 2 γ , -(x/d K ) γ τ D -1 (5.31) 
where (c) is obtained from Newton's generalized binomial theorem as well.

Therefore, the b-th moment based on IDT approach is proved and concluded as:

M IDT b = P tx κσ 2 τ A 1/γ 0 exp (-Θ (r)) f Φ (F ) BS (r) dr (5.32) where Θ (x) = 2πλ             a K x 3 3 2 F 1 b, -3 γ , 1 -3 γ , -τ D -1 + b K x 2 2 2 F 1 b, -2 γ , 1 -2 γ , -τ D -1 - a K d 3 K 3 2 F 1 b, -3 γ , 1 -3 γ , -(x/d K ) γ τ D -1 - b K d 2 K 2 2 F 1 b, -2 γ , 1 -2 γ , -(x/d K ) γ τ D -1 + c K d 2 K 2 2 F 1 b, -2 γ , 1 -2 γ , -(r/d K ) γ τ D -1             H (d K -x) + πλc K x 2 2 F 1 b, - 2 γ , 1 - 2 γ , -τ D -1 H (x -d K ) (5.33)
Remark 27 The b-th moment for PPs with spatial repulsion and clustering can be obtained by setting a

(•) , b (•) , c (•) = ǎ(•) , b(•) , č(•) and a (•) , b (•) , c (•) = â(•) , b(•) , ĉ(•) ,
respectively. According to our knowledge, the closed-form expression for CCDF based on IDT approach is not available.

Lemma 6] with parameters a

(•) , b (•) , c (•) = â(•) , b(•) , ĉ(•) .
Remark 29 It should be noticed that the proposition holds when b = 1 as well, where M 1 goes back to success probability p s . This coincides with the same conclusion in [START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous poisson point processes[END_REF].

Limit when x → 0

Since the coverage probability under new denition is dened as: 

P s (τ D , τ A ) = Pr SIR ≥ τ D , SNR ≥ τ A |Φ BS ( 
P s (τ D , τ A ) =      Pr {SIR ≥ τ D |Φ BS } , r 0 ≤ Ptx τ A κσ 2 1/γ 0 r 0 > Ptx τ A κσ 2 1/γ (5.40)
where Pr {SIR ≥ τ D |Φ BS } is the coverage probability under conventional denition.

For a given τ A , when τ D → 0, P cov is simplied to r 0 ≤ Ptx τ A σ 2

1/γ , which can be further written as:

Pr r 0 ≤ γ P tx κσ 2 τ A = F r 0 γ P tx κσ 2 τ A (5.41)
The CCDF of meta distribution is dened as F

(x) = Pr {P cov (τ D , τ A ) ≥ x}. If we let Y ∆ = Pr {SIR ≥ τ D |Φ BS }, Y is a non-zero random variable, then CCDF is denoted as: F (x) =      Pr {Y ≥ x} , r 0 ≤ Ptx τ A κσ 2 1/γ 0 r 0 > Ptx τ A κσ 2 1/γ (5.42)
Therefore, when x → 0, CCDF is simplied as:

F (x) =      1 , r 0 ≤ Ptx τ A κσ 2 1/γ 0 r 0 > Ptx τ A κσ 2 1/γ = Pr r 0 ≤ P tx τ A κσ 2 1/γ = F r 0 P tx τ A κσ 2 1/γ (5.43)
It is worth noting that the limit when x → 0 under conventional denition of coverage probability can be obtained by setting τ A = 0. Then F (x → 0) = 1 is obtained from (5.43).

Other Approximations and Bounds

In this section, some other approximation models and classic bounds are presented.

Under some bounds, the moment function based on H-PPP and non-PPPs are compared as well.

Approximation based on Mnatsakanov's Theorem

According to [START_REF] Mnatsakanov | Recovery of distributions via moments[END_REF], a numerical method is proposed to recover the original CDF F X (x) through moment function M X b from the original distribution for variable X.

F X * (x) = [ax] k=0 a b=k   a b     b k   (-1) b-k M X b (5.44)
where F X * (x) is the recovered CDF and F X * (x) ≈ F X (x).

It is mentioned in [START_REF] Hayajneh | Optimal coverage and rate in downlink cellular networks: A sir meta-distribution based approach[END_REF], that the higher a is, the higher accuracy can be obtained, while longer computation time comes as a price. And a = 25 is used in [START_REF] Hayajneh | Optimal coverage and rate in downlink cellular networks: A sir meta-distribution based approach[END_REF] to recover CCDF for PPP case. They also claim that they are able to recover the distribution of any arbitrary random variable, conditioned on the requirement that any real integer's b-th moment is dened. However, according to our tests, this approximation approach is not stable and cannot be applied to non-Poisson PPs.

Markov Bounds

Given moment function dened in Proposition 2 and (5.26), Markov bound can provide the upper and lower bounds for meta distribution, written as:

1 -

E (1 -P s (τ )) b (1 -x) b < F (τ, x) ≤ M b x b (5.45)
where binomial expansion can be applied into lower bound, which is further written 

Chebyshev Bound

Let V ∆ = varP s (τ ) = M 2 -M 1 2 , when x < M 1 , Chebyshev lower bound is denoted as: F (τ, x) > 1 - V (x -M 1 ) 2 (5.46) when x > M 1 , Chebyshev upper bound is denoted as: F (x) ≤ V (x -M 1 ) 2

Paley-Zygmund Bound

Meta distribution is lower bounded by:

F (x) ≥ (1 -x) 2 1 -M 1-2 γ 1 + (1 -x) 2 
(5.48)

It can be inferred easily as well that bound for IDT is always greater than PPP, since we have

M (IDT) 1 > M (H-PPP) 1 > M (IDT) 1 .

Best Bounds Given Four Moments

Let m i dened as: denition of coverage probability from [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF]. The proposed numerical approximation approach is proved to be tightly overlapped with numerical simulations.

m i (x) ∆ = i k=0   i k   (-x) i-k M k (5.
It should be noticed that Beta approximation cannot be applied to meta distribution based on new denition of coverage probability since CCDF of Beta distribution can only be within range [0, 1], which means when x → 0, CCDF goes to 1. However under the new denition of coverage probability, it no longer holds according to conclusion in section 5.4.4.

It can be observed that there is an increasing gap between simulations under different denition of success probability when x → 0. The asymptotic value for CCDF can be computed by 5.4.4. Given the same system parameters used in curves of CCDF converges to the same value 0 when x → 1 while dierent converging asymptotic value for three curves when x → 0.

The result also reveals the actual performance for 5% user, which is the user in the bottom 5-th percentile in terms of performance. The 5% user also corresponds to the cell-edge users in the cellular network. It is shown in Figure 5-5, even if x → 0, the performance of 5% users cannot be perfect due to the existence of noise, which is closer to the real scenario. 

Conclusion

In this chapter, the CCDF of meta distribution is analyzed for non-PPPs exhibiting spatial inhibition and attraction by using IDT approach. The new denition of success probability, which is double thresholds for SIR and SNR, is considered in this chapter. The IDT approach is applied to model the performance of PPs with spatial correlations, i.e., spatial inhibition and aggregation. We propose a new numerical computation approach to compute CCDF of meta distribution eciently and accurately. The b-th moment function of meta distribution based on H-PPP and non-Poisson PPs are compared and validated by numerical simulations with the aid of empirical data sets. The asymptotic value of CCDF is given and proved by simulations when x → 0. The other approximation models and bounds are also given in the results while none of them not as good as our proposed approximation approach.

Chapter 6

Conclusions and Future Work

Conclusions

In this thesis, we rst propose a new methodology for modeling and analyzing downlink cellular networks, where the BSs constitute a motion-invariant PP that exhibits some degree of interactions among the points. The proposed approach is based on the theory of I-PPPs and is referred to as IDT approach. The proposed approach consists of approximating the original motion-invariant PP with an equivalent PP that is made of the superposition of two conditionally independent I-PPPs. The inhomogeneities of both PPs are created from the point of view of the typical user (user-centric).

The inhomogeneities are mathematically modeled through two distance-dependent thinning functions and a tractable expression of the coverage probability is obtained.

Sucient conditions on the parameters of the thinning functions that guarantee better or worse coverage compared with the baseline homogeneous PPP model are identied.

The accuracy of the IDT approach is substantiated with the aid of empirical data for the spatial distribution of the BSs.

Then, based on the IDT approach, a new tractable analytical expression of MISR of cellular networks is introduced. For homogeneous PPP, MISR is proved to be constant with network densication. For non-Poisson PPs, we apply IDT approach to approximate the performance of non-Poisson point process. Taking β-GPP as an example, we successfully proved that MISR for β-GPP is constant under network densication with our proposed approximation functions of key parameters in IDT approach. We proved the trend of MISR performance only depends on the degree of spatial repulsion regardless of dierent BS densities. We prove that with the increase of β or γ (given xed γ or β respectively), the corresponding MISR performance for β-GPP decreases.

Third, following the extension and application of IDT approach, we further utilize it to study meta distribution of the SIR, which the distribution of the conditional success probability P S (τ ) given the point process. Thanks for IDT approach, who provides a simple and accurate way to model the performance of non-Poisson PPs, we are able to derive the closed-form expressions of the moments M b for homogeneous PPP and non-PPPs by using IDT approach. We are also able to compare the order of moments from H-PPP and non-PPPs. Then, to compute the CCDF of meta distribution more eciently, we proposed a new numerical way based on the trapezoidal integration rule and the Euler sum method, which is more stable and ecient than the conventional approach using Gil-Pelaez theorem. The proposed approach is ecient and robust, validated by numerical simulations. Some other approximations and bounds are compared with our proposed approach, and are proved to be less accurate than our proposed approach.

6.2 Future Work 1. Visible Light Communication. The higher the transmission frequency, the higher the attenuation that the signals usually undergo. This implies that transmission technologies in the THz and VLC spectrum can be applied to shorter transmission distances. This implies that future networks will need to be very ultra-dense, much more that current and 5G networks are expected to be. The analysis and design of such networks cannot be conducted by using conventional methodologies because they are not scalable with the network density and size. In addition, approaches based on numerical simulations are not aordable due to the long simulation times, the amount of memory that is needed for simulations, as well as the many parameters that aect the system performance, which would require too many options to be analyzed before identifying the optimal setup. The result is that new approaches need to be used for modeling the locations of the access points and of the mobile devices. Today, the current approach for handling at least in part this issue is to rely upon tools from stochastic geometry tools and more in particular on the theory of Poisson point processes. Unfortunately, this approach is not applicable anymore and, at the time of writing, there are not tractable and accurate approaches that overcome this limitation. The underlaying assumption of Poisson point processes is that the access points are distributed at random, without spatial interactions.

This can serve as a rst approximation but it is not true in reality and is not acceptable in emerging networks, based on a mixture of radio and light. Let us consider an example that is related to light transmission. Light-based communication can be used either in indoor or outdoor, the rst being the most promising in terms of revenues. In these cases, LEDs are expected to be deployed in a regular fashion: for example, data can be transmitted from lamp posts, which are regularly deployed in the streets, or data is transmitted by indoor deployments that form regular grids. In this case, the devices show repulsive characteristics. In this case, the proposed innovative approach can be applied in VLC communication. It has been tested for applications in radio-based networks. While it is possible to extend the current work in light communication networks as well.

2. Modeling Uplink Communication Network. The energy eciency (EE) and spectral eciency are regarded as important performance metrics in optimization of cellular networks. The energy eciency is dened as a benet-cost ratio where the benet is given by the amount of information data per unit time and area that can be reliably transmitted in the network. Spectral eciency refers to the information rate that can be transmitted over a given bandwidth. These two metrics will be analyzed in uplink cellular networks. Due to the lack of theoretical expression for PDF for active interfering MTs' distribution in uplink cellular networks, an accurate and good approximation is in need. And with the new approximation of PDF, we want to derive tractable framework for EE and spectral eciency in the closed form expressions. The analytical optimization of EE and spectral eciency in terms of the transmit power (given the density of base stations) and the density of base stations (given the transmit power) are required as well.

However, there are some challenges needed to be overcome. This has been the status quo so far but it is not sucient anymore. At present, we deploy the access points based on some a priori information on the network trac. Once the base stations are installed, they are usually kept there forever due to the cost. This strategy has been successful since data trac usually changes very slowly and usually more access points are needed in densely deployed areas. In the future, this status quo will change for several reasons, since new and emerging applications will require connectivity on an opportunistic and capillary manner rather than conventional communication networks. The most typical application scenario, but it is not the only one, is when distastes of various nature occur in both densely urban and more rural scenarios. It is known that communication networks are usually unreliable if such events occur. The deployment of aerial access points, often known as drones or unmanned aerial vehicles, oer a suitable solution for providing ad hoc connectivity.

Other scenarios are rural areas or events that occur in dierent places but where a large amount of people aggregate and necessitate a reliable communication infrastructure. In all these scenarios, it is not cost-ecient to deploy terrestrial infrastructure due to the associated cost and the fact that it will become obsolete at the end of the event of interest. Somebody may even envision a future where only aerial access point will be available in order to totally avoid the cost of deploying cellular infrastructure and to provide connectivity when and if it is needed. In order to enable this vision, the drones will have to be energy-neutral since it may not be possible to re-charge them or they may not have access to reliable power sources. The design and optimization of a communication network solely based on drones or relying on both terrestrial and aerial access points is a challenging and open research issue. This is because the service depends on several factors, such as the density, the altitude, the velocity, etc.

of the drones, which change from scenario to scenario. In addition, the propagation channels of terrestrial and aerial base stations are complexity dierent, which aect performance and optimization. In addition, the drones may have local storage capabilities and may, on the other hand, have very strict power requirements and transmission range constraints. Where and how to deploy the drones in urban and rural areas is unknown to date. The new methodologies for network modeling and design will have to account for this new generation of ad hoc access points and their potential application in the IoT market. At present, no clear approach for modeling this scenario is available.

In this case, the proposed approach has been validated in conventional cellular networks that it can model the dierent point processes well, including repul- Abstract : In the modeling and performance evaluation of wireless cellular communication, stochastic geometry is widely applied, in order to provide more efficient and accurate solutions. Homogeneous Poisson point process (H-PPP) with identically independently distributed variables, is the most widely used point process to model the spatial locations of base stations (BSs) due to its mathematical tractability and simplicity. For strong spatial correlations between locations of BSs, only point processes (PPs) with spatial inhibitions and attractions can help. However, the long simulation time and weak mathematical tractability make non-Poisson PPs not suitable for system level performance evaluation. Therefore, to overcome mentioned problems, we have the following contributions in this thesis: First, we introduce a new methodology for modeling and analyzing downlink cellular networks, where the base stations constitute a motion-invariant point process that exhibits some degree of interactions among the points. The proposed approach is based on the theory of inhomogeneous Poisson PPs (I-PPPs) and is referred to as inhomogeneous double thinning (IDT) approach. The proposed approach consists of approximating the original motion-invariant PP with an equivalent PP that is made of the superposition of two conditionally independent I-PPPs. The inhomogeneities of both PPs are created from the point of view of the typical user. The inhomogeneities are mathematically modeled through two distance-dependent thinning functions and a tractable expression of the coverage probability is obtained. Sufficient conditions on the parameters of the thinning functions that guarantee better or worse coverage compared with the baseline homogeneous PPP model are identified. The accuracy of the IDT approach is substantiated with the aid of empirical data for the spatial distribution of the BSs.

Then, based on the IDT approach, a new tractable analytical expression of mean interference to signal ratio (MISR) of cellular networks where BSs exhibits spatial correlations is introduced.For non-Poisson PPs, we apply proposed IDT approach to approximate the performance of non-Poisson PPs. Taking β-Ginibre point process (β-GPP) as an example, we propose new approximation functions for key parameters in IDT approach to model different degree of spatial inhibition and we successfully prove that MISR for β-GPP is constant under network densification with our proposed approximation functions. We prove that of MISR performance under β-GPP case only depends on the degree of spatial repulsion, i.e., β, regardless of different BS densities. The new approximation functions and the trends are validated by numerical simulations.

Third, we further study meta distribution of the SIR with the help of the IDT approach. Meta distribution is the distribution of the conditional success probability P S (τ ) given the point process. We derive and compare the closed-form expression for the b-th moment M b under H-PPP and non-Poisson PP case. Since the direct computation of the complementary cumulative distribution function (CCDF) for meta distribution is not available, we propose a simple and accurate numerical method based on numerical inversion of Laplace transforms. The proposed approach is more efficient and stable than the conventional approach using Gil-Pelaez theorem. The asymptotic value of CCDF of meta distribution is computed under new definition of success probability. Furthermore, the proposed method is compared with some other approximations and bounds, e.g., beta approximation, Markov bounds and Paley-Zygmund bound. However, the other approximation models and bounds are compared to be less accurate than our proposed method.
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  ) A new methodology for modeling and analyzing downlink cellular networks, where the base stations (BSs) constitute a motion-invariant Point Process (PP) that exhibits some degree of interactions among the points, i.e., spatial repulsion or spatial clustering. The proposed approach is based on the theory of Inhomogeneous Poisson PPs (I-PPPs) and is referred to as Inhomogeneous Double Thinning (IDT) approach. In a PP, the distribution of the distance from a randomly distributed (typical) user to its nearest BS depends on the degree of spatial repulsion or clustering exhibited by the PP. Also, the average number of interfering BSs that lie within a given distance from the typical user is a function of the repulsion and clustering characteristics of the PP. The proposed approach consists of approximating the original motion-invariant PP with an equivalent PP that is made of the superposition of two conditionally independent I-PPPs. The inhomogeneities of both PPs are created from the point of view of the typical user (user-centric): The rst one is based on the distribution of the user's distance to its nearest BS and the second one is based on the distance-dependent average number of interfering BSs around the user. The inhomogeneities are mathematically modeled through two distance-dependent thinning functions and a tractable expression of the coverage probability is obtained. Sucient conditions on the parameters of the thinning functions that guarantee better or worse coverage compared with the baseline homogeneous PPP (H-PPP) model are identied. The accuracy of the IDT approach is substantiated with the aid of empirical data for the spatial distribution of the BSs.
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 21 Figure 2-1: Snapshot of realization of homogeneous PPP with λ = 1, gure on the right shows CCDF of homogeneous PPP, solid line represents simulations, marker `o' represents theoretical expression from (2.2).
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 2 2 shows the Voronoi plots for grid model, random model and Actual BSs. The spatial correlation between locations of BSs in the actual deployments is neither regular, as shown in the `Traditional grid model', nor totally random, as shown in `Completely random BSs'. The actual deployment of BSs is between regular and random while only non-Poisson point processes (non-PPPs) can help.
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 22 Figure 2-2: Deployments of BSs.
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 22324 Figure 2-4 demonstrates the dierent realizations under dierent point processes.Some examples of attractive and repulsive point processes, and their important prop-
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 225 Figure 2-5: Ripley's K function of LGCP
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 6426 Figure 2-6: Realization of PHP
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 2 Figure 2-7 and 2-8 show the plots of F function (in 2.7) and K function (in 2.9) validated by simulations.

Figure 2 - 7 :Figure 2 - 8 :

 2728 Figure 2-7: CDF of Contact Distance distribution for MCPP.
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 29 Figure 2-9: CDF of contact distance distribution and Ripley's K function for Lattice PP.
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 210 Figure 2-10: QMC approximation for contact distance distribution of Cauchy DPP.The F function from empirical data is plotted in solid red line, the QMC approximations are plotted in blue lines.
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 18212 Figure 2-11: F function
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 213 Figure 2-13: coverage probability for GPP

Figure 2 -

 2 Figure 2-14 shows the realization of a downlink cellular network, where BSs are distributed in homogeneous PPP manner. The typical MT is located at origin. Toanalyze and model the cellular network with the tools from stochastic geometry is one of the main contributions of this thesis. Here in this section, the simplest single tier downlink cellular network is presented and its coverage probability is computed as an example.
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 214 Figure 2-14: Deployments of BSs from the view of typical MT.
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 2215 Figure 2-15: Coverage probability for PPP, Ginibre Point Process and shifted PPP with horizontal gain [1], path-loss exponent α = 3.
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 2 Figure 2-16 shows the example for meta distribution in Poisson bipolar network. The transmitters and receivers (blue circle and red cross in the gure) are separated at a xed distance, corresponding to the blue lines shown in the gure. The value displayed on each link is the probability of successful established communication link between each pair averaged over channel fading and ALOHA scheme. It is clear that the link closely surrounded by interference suers from a low success probability while the pair isolated from other transmitter and receiver pairs seems to have a high probability to establish a successfully link.
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 216 Figure 2-16: Snapshot of realization of Poisson Bipolar Network used in [2].
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 12 On Modeling Motion-Invariant PPs via I-PPPs: Rationale, Interpretation, and Challenge Motivated by these considerations, we study the suitability of Inhomogeneous PPPs for modeling cellular networks that exhibit spatial repulsion and clustering. Before proceeding further, three main questions need to be addressed: 1) What is the rationale of using I-PPPs for modeling cellular networks? 2) I-PPPs are non-stationary PPs How to interpret them for analyzing the typical user? 3) What are the modeling challenges for leveraging I-PPPs?Rationale Three reasons motivate us to analyze the suitability of I-PPPs for system-level modeling and analysis of cellular networks. 1) Since there are many possible causes at the origin of the spatial correlation in PPs, empirical evidence shows that inhibition and aggregation may be dicult to be disentangled from spatial inhomogeneity [31, Section 7.3.5.2]. In addition, the inherent inhomogeneity of the spatial distribution of users, who may be concentrated in hotspots, buildings, malls, pedestrian zones, etc., highly determines the resulting spatial correlation of cellular BSs[START_REF] Schilcher | Quantifying inhomogeneity of spatial point patterns[END_REF]. In other words, there is a strong dependence between the spatial distribution of the network trac, which is inhomogeneous, and the actual deployment of cellular BSs. 2) I-PPPs inherit all the main properties of H-PPPs that make them mathematically tractable [58, Sec. 2]. Hence, I-PPPs are the most tractable alternative to PPPs. 3) Recent studies on uplink cellular networks have put forth the I-PPPs as

  we approximate a motion-invariant PP with an equivalent I-PPP, where equivalent means that the network's view of the typical user located at the origin of the original motion-invariant PP is (approximately) the same as the network's view of a probe user located at the origin 1 of the equivalent I-PPP. The equivalency of the network's panoramas is obtained by appropriately choosing the spatial inhomogeneity of the equivalent I-PPP as a function of the spatial inhibition and aggregation properties of the original motion-invariant PP.

  8.3]) and the average number of interfering BSs within a given distance from the typical user (related to the Ripley's K-function [31, Sec. 7.3]) depend on the degree of spatial inhibition and aggregation exhibited by the PP. The IDT approach approximates the original motion-invariant PP with an equivalent I-PPP that is the result of the superposition of two conditionally independent I-PPPs. The inhomogeneities of the rst and second I-PPP are created based on the F-function and the nonregularized K-function of the original motion-invariant PP, respectively. The rst I-PPP and the second I-PPP are employed for modeling the location of the serving BS and the locations of the interfering BSs, respectively.

A

  downlink cellular network is considered. The BSs are modeled as points of a motioninvariant PP, denoted by Ψ BS , of density λ BS . The locations of BSs are denoted by x ∈ Ψ BS ⊆ R 2 . The MTs are distributed independently of each other and uniformly at random in R 2 . The density of MTs is denoted by λ MT . Thanks to the assumption of motion-invariance, the PP of BSs is stationary and isotropic. As a result, the analytical frameworks are developed for the typical MT, denoted by MT 0 , that is located at the origin. The BS serving MT 0 is denoted by BS 0 . Its location is denoted by x 0 ∈ Ψ BS . The cell association criterion is introduced in Section 3.2.3. Examples

  2.3 and M I,L 0 (•;•) is the Laplace functional of the PP, Ψ (I) BS = Ψ BS \x 0 , of interfering BSs:

Remark 1

 1 In (3.4), we have made explicit that the computation of the Laplace functional of the PP of interfering BSs, Ψ (I) BS = Ψ BS \x 0 , necessitates the knowledge of the reduced Palm distribution of the PP, Ψ BS [60, Sec. 8]. In simple terms, the expectation under the reduced Palm distribution, E !x 0

  it is the Cumulative Distribution Function (CDF) of the distance between u and its nearest BS in Ψ BS [60, Sec. 2.8]. The equality in (a) is due to the motion invariance of Ψ BS . Denition 2 Let Ψ BS be a motion-invariant PP. Let x ∈ Ψ BS be the generic location of a BS of Ψ BS . The non-regularized Ripley's function or non-regularized K-

  i.e., it is the average number of BSs in Ψ BS that lie inside the ball of center x and radius r without counting the BS at x [60, Sec. 6.5]. The equalities in (a) and (b) are due to the motion invariance of Ψ BS . Remark 2 The Ripley's K-function in Denition 2 is non-regularized because it is not scaled by the density, λ BS , of the motion-invariant PP, Ψ BS [60, Sec. 6.5]. Remark 3 Let Φ BS be an I-PPP. The non-regularized K-function in Denition 2 is denoted by Λ Φ BS (B (x, r)) = K (x) Φ BS (r), where B (x, r) is the ball of center x ∈ Φ BS and radius r, and Λ Φ BS (•) is the intensity measure of Φ BS [58, Sec. 2.2]. Since I-PPPs are non-stationary PPs, the intensity measure depends on the location x [58,

  2.1 with a single exception: The BSs are modeled as the points of two independent isotropic I-PPPs, denoted by Φ (F ) BS and Φ (K) BS , with intensity measures Λ Φ (F ) BS (•) and Λ Φ (K) BS (•), respectively. Since I-PPPs are non-stationary, the notion of typical user does not apply anymore. We are interested, on the other hand, in computing the coverage probability of a probe (or specic) MT that is located at the origin. The BS serving the probe MT is assumed to belong to Φ (F ) BS and the interfering BSs are assumed to belong to Φ (K) BS . More precisely, by considering the same cell association criterion as in Section 3.2.3, the serving BS and the I-PPP, Φ (I) BS , of interfering BSs can be formulated as follows:

Remark 5

 5 By construction, the I-PPPs Φ (F ) BS and Φ (K) BS are independent. The I-PPPs Φ (F ) BS and Φ (I) BS are, on the other hand, only conditionally independent, where the conditioning is meant upon the location of the serving BS, i.e., x (F ) 0 . In (3.5), this conditioning accounts for the cell association criterion being used and is made explicit with the aid of the notation Φ

  based on the motion-invariant PP Ψ BS and the equivalent network model based on the two conditionally independent I-PPPs Φ (F ) BS and Φ (I) BS approximately the same from the coverage probability standpoint. In other words, the IDT approach aims to nd two suitable intensity measures Λ Φ (F ) BS (•) and Λ Φ (K) BS (•) such that P (o) cov ≈ P cov holds for an arbitrary choice of the network parameters. The intensity measures Λ Φ (F ) BS (•) and Λ Φ (K) BS (•) are determined by taking into account ve requirements: i) they need to depend only on the spatial characteristics of

9 )Remark 6

 96 3.5). In the next two sections, we introduce the proposed intensity measures and the approach to obtain P (o) cov ≈ P cov .3.3.2 IDT Approach: Proposed Intensity Measures of the I-PPPsThe intensity measure of an I-PPP is determined by the intensity function[START_REF] Streit | Poisson point processes: imaging, tracking, and sensing[END_REF] Sec. We propose dierent intensity functions for PPs that exhibit spatial inhibition and aggregation.Spatial InhibitionLet ǎF , bF , čF and ǎK , bK , čK be two triplets of non-negative real numbers such that čF ≥ bF ≥ 1 and bK ≤ čK ≤ 1. The following intensities are proposed: λ (F ) BS (r) = λ BS čF min (ǎ F /č F ) r + bF čF , 1 , λ (K) BS (r) = λ BS min ǎK r + bK , čK (3.10) Spatial Aggregation Let âF , bF , ĉF and âK , bK , ĉK be two triplets of nonnegative real numbers such that ĉF ≤ bF ≤ 1 and bK ≥ ĉK ≥ 1. The following intensities are proposed:λ (F ) BS (r) = λ BS max -â F r + bF , ĉF , λ (K)BS (r) = λ BS bK max -Based on the denitions of the intensity functions in (3.10), the I-PPPs Φ BS can be obtained by rst generating two H-PPPs with intensity functions λ BS čF and λ BS , respectively, and then independently thinning the points with retaining probabilities equal to min (ǎ F /č F ) r + bF čF , 1 and min ǎK r + bK , čK , respec- tively. The constraints on the triplets of parameters ǎF , bF , čF and ǎK , bK , čK allows one to obtain a consistent thinning probability that is less than one. A similar comment holds for the denitions of the intensity functions in(3.11).Remark 7 Besides simplicity and analytical tractability, the choice of min {•, •} and max {•, •} functions for the retaining probabilities in(3.10) and(3.11), respectively, has a profound rationale from the modeling standpoint. From the denition of min {•, •} function, the BSs closer to the origin (where the probe MT is) are retained with a smaller probability. From the probe MT's standpoint, thus, the resulting I-PPP exhibits spatial repulsion. A similar line of thought applies to the max {•, •} function, which allows one to model spatial clustering from the probe MT's standpoint, since the BSs closer to the origin are retained with a higher probability.Remark 8 A network model based on H-PPPs is a special case of the model based on I-PPPs with intensity functions given in (3.10) and(3.11). Consider a F > 0, a K > 0, the H-PPP network model is obtained by setting b F = c F = 1 and b K = c K = 1 for PPs with repulsion or clustering. For ease of writing, the intensity measures of PPs with spatial repulsion and clustering are denoted by Λ Φ (•) BS •; ǎ(•) , b(•) , č(•) = ΛΦ (•) BS (•) and Λ Φ (•) BS •; â(•) , b(•) , ĉ(•) = ΛΦ (•) BS (•), respectively.

Proof:

  It follows by inserting(3.10) and(3.11) in(3.9) and solving the integrals.Remark 9 The functions Υ (r; •, •, •) and Υ(1) (r; •, •, •) in (3.12) and (3.13) are continuous for r ≥ 0 and for every triplet (a, b, c). In particular, they are continuous if r = (c -b)/a ≥ 0.
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 33 IDT Approach: Proposed Criterion for System Equivalence From the intensity functions in (3.10) and (3.11), two triplets of parameters need to be estimated for approximating the network model based on a motion-invariant PP with the network model based on two conditionally independent I-PPPs. The aim of this section is to introduce a criterion for estimating these parameters in order to obtain P (o) cov ≈ P cov . By direct inspection of P cov in (3.3) and P (o) cov in (3.7), we evince that a sucient condition for P (o) cov ≈ P cov to hold is that the following two conditions are fullled simultaneously: f L (F ) 0 (ξ) ≈ f L 0 (ξ) and M I,L (F ) 0 (ξ; T) ≈ M I,L 0 (ξ; T).

1 -

 1 •) and f L 0 (•) are the PDFs of the smallest path-loss of the typical MT (located at the origin without loss of generality) in the original network model and of the smallest path-loss of the probe MT at the origin in the equivalent network model based on I-PPPs. In the considered system model, the smallest path-loss is equivalent to the shortest distance. This assumption is not necessary for the application of the IDT approach, as better discussed in Section 3.5.It helps, however, to introduce the essence of the proposed methodology. The PDF of the shortest distance of a PP to the origin is the rst-order derivative of the CDD introduced in Denition 1. We evince that the condition fL (F ) 0 (ξ) ≈ f L 0 (ξ)is fullled if the CDD of the original motion-invariant PP and the CDD of the I-PPP Φ (F ) BS are close to each other, i.e., F Ψ BS (r) ≈ F exp -Λ Φ (F ) BS (B (0, r)) , whereΛ Φ (F ) BS (B (0, r)) = ΛΦ (F ) BS (B (0, r)) and Λ Φ (F ) BS (B (0, r)) = ΛΦ (F ) BS (B (0, r)) if Ψ BS exhibitsspatial repulsion and clustering, respectively. Condition M I,L (F ) 0 (ξ; T) ≈ M I,L 0 (ξ; T) M I,L (F ) 0 (•; •) and M I,L 0 (•; •) are the Laplace functionals of the PPs of interfering BSs Ψ (I) BS and Φ (I) BS dened in (3.5), respectively. From (3.8), M I,L (F ) 0 (•; •) depends uniquely on the intensity measure of the I-PPP Φ (K) BS , i.e., Λ Φ (K) BS (•). From (3.4), the computation of M I,L 0 (•; •) necessitates the reduced Palm distribution of the motion-invariant PP Ψ BS . Since the latter distribution may not be either known or tractable, our approach for fullling the condition M I,L (F ) 0 (ξ; T) ≈ M I,L 0 (ξ; T) is based on a second-order moment approximation of the spatial interactions among the points of the motion-invariant PP Ψ BS [31, Sec. 7.3].More precisely, our approach relies on Remark 3 and Denition 2. From Remark 3, we know that the intensity measure of an I-PPP coincides with its non-regularized Kfunction. As a result, we propose to choose the intensity measure of Φ (K) BS such that it coincides with the non-regularized K-function of Ψ BS , i.e., Λ Φ(K) BS (B (0, r)) ≈ K Ψ BS (r), where Λ Φ (K) BS (B (0, r)) = ΛΦ (K) BS (B (0, r)) and Λ Φ (K) BS (B (0, r)) = ΛΦ (K) BS (B (0, r)) if Ψ BSexhibits spatial repulsion and clustering, respectively. By using this approach, we ensure that the average number of interfering BSs viewed by the typical MT of the original network model is the same as the average number of interfering BSs viewed by the probe MT at the origin of the equivalent network model based on I-PPPs.Remark 10 The non-regularized K-Function of motion-invariant PPs provides, by denition, the average number of BSs viewed by a BS of the PP (whose contribution is ignored) within a ball centered at the BS and of xed radius. There is no ambiguity, however, in saying that the non-regularized K-Function yields the average number of interfering BSs viewed by the typical MT. This originates from the properties of motion-invariant PPs as detailed in[START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] Sec. III]. In simple terms, the BSs of a motion-invariant PP can be translated, without altering the statistics of the PP, so that the location of the serving BS is moved to the location of the typical MT.Remark 11 Why is the equivalent network model based on two I-PPPs? Isn't one I-PPP sucient? The reason why the IDT approach is based on two I-PPPs can be understood from the approximations proposed to obtain the intensity measures of the I-PPPs. The intensity measures of Φ (F ) BS and Φ (K) BS are obtained from the F-function and non-regularized K-function of the motion-invariant PP Ψ BS . Based on, e.g.,[START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF] Eq. 

  Proof: It follows from Remark 8 and Lemma 3.Lemma 5 Let Ψ BS be a motion-invariant PP with spatial repulsion. Let Λ Φ (F ) BS (B (0, r) ; ǎF , bF , čF ) and Λ Φ (K) BS B (0, r) ; ǎK , bK , čK be the intensity measures of the equivalent I-

  ) Proof: It follows by direct inspection of ε (r) = Λ Φ (•) BS B (0, r) ; ǎ(•) , b(•) , č(•) -Λ H-PPP (B (0, r)) and of its rst-order derivative computed with respect to r.Lemma 6 Let Ψ BS be a motion-invariant PP with spatial clustering. Let Λ Φ (F ) BS B (0, r) ; âF , bF , ĉF and Λ Φ (K) BS B (0, r) ; âK , bK , ĉK be the intensity measures of the equivalent I-PPPs Φ (F ) BS and Φ (K) BS obtained by applying the IDT approach in (3.14). If ĉF ≤ bF ≤ 1 and bK ≥ ĉK ≥ 1, then:

(3. 18 )

 18 Proof: It follows similar to the proof of Lemma 5.Remark 17 The ndings reported in Lemma 5 and Lemma 6 provide relevant insight and intuition on the impact of spatial repulsion and clustering among the BSs of cellular networks. In the presence of spatial repulsion, Lemma 5 states that, under some assumptions on the parameters, the CDD of I-PPPs is greater than the CDD of H-PPPs. This follows from Denition 1 and the condition ΛΦ (F ) BS (•) ≥ Λ H-PPP (•). In addition, Lemma 5 states that the average number of interfering BSs viewed by the typical MT in the presence of spatial repulsion is smaller than the average number of interferers in network models with complete spatial randomness (i.e., based on H-PPPs). This follows from Denition 2 and the condition ΛΦ (K) BS (•) ≤ Λ H-PPP (•).

H

  (ζ) for ζ ≥ 0. This implies M I (ζ) ≥ M H (ζ) for ζ ≥ 0. As a result, the following Lower-Bound (LB) for P I holds:

  follows by applying the integration by parts formula and by introducing the functions χ (ζ) = e -ηζ γ M H (ζ) ≥ 0 and χ (1) (ζ) = dχ (ζ)/dζ ≤ 0, where the inequalities hold for ζ ≥ 0.If bF ≥ čF ≥ 1, from Lemma 5, we have Λ[START_REF] Haenggi | The mean interference-to-signal ratio and its key role in cellular and amorphous networks[END_REF] 

Proof:

  It follows similar to the proof of Theorem 1, since the superposition of two independent I-PPPs is an I-PPP whose intensity measure is the sum of the intensity measures of the two I-PPPs. In particular, the intensity measures of the I-PPPs constituted by the links in LOS and NLOS are obtained from (3.9) by replacing λ BS (ζ) p s (ζ) for s ∈ {los, nlos}.

6 )

 6 3, are denoted by Φ parameters of each pair of I-PPPs are obtained as described in Section 3.3. In simple terms, each motion-invariant PP is approximated, from the typical MT's standpoint, with two I-PPPs as if it was the only tier of the cellular network. The BS of tier T ∈ {T1, T2} that provides that smallest path-loss among all the BSs of tier T and the corresponding I-PPP of conditionally independent interfering BSs are dened similar to(3.5), and are denoted by x , the coverage probability of a two-tier cellular network is P (o) cov = Pr {SINR > T},

1

 1 (x; Π T , T = T = Ty/x) + I 2 (x; Π T , T = T = Ty/x) +I 3 (x; Π T , T = Ty/x) + I 4 (x; Π T , T = Ty/x) +I 5 (x; Π T , T = T = Ty/x) + I 6 (x; Π T , T = Ty/x) S T (x, y; Θ T = κT R γ T A ) = I 1 (x; Π T , T = T = Ty/x) + I 2 (x; Π T , T = T = Ty/x) +I 3 (x; Π T , T = Ty/x) + I 4 (x; Π T , T = Ty/x) +I 7 (x; Π T , T = T = Ty/x) + I 8 (x; Π T , T = T = Ty/x) +I 9 (x; Π T , T = T = Ty/x) + I 10 (x; Π T , T = Ty/x) IDT approach and are necessary because the serving BS and the interfering BSs of each tier are obtained from conditionally independent I-PPPs with dierent spatial inhomogeneities. In models based on H-PPPs, on the other hand, all the BSs are generated from a single H-PPP. In the IDT approach, these dierences in the third and fourth term of the denominator of the SINR ensure that the path-loss of the interfering BSs that belong to Φ is not smaller than the path-loss of the BS at location x (F ) T2,0 , even if it is not the serving BS of the two-tier cellular network. This condition is essential for appropriately reproducing the spatial interactions among the BSs of the original motion-invariant PP. Stated dierently, the SINR in (3.25) is conditioned upon the locations x (F ) T1,0 and x (F ) T2,0 , while in spatial models based on H-PPPs the conditioning is needed only upon the location of the serving BS, i.e., either upon x (F ) T1,0 or x (F ) T2,0 only. The following theorem yields the coverage probability of the two-tier cellular network based on (3.25).

Proof:

  It follows similar to the proof of Theorem 1, by taking into account that the addends in the denominator of the SINR are independent by conditioning upon x
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 32 Figure 3-2, we consider a GPP and depict the triplet of parameters (a F , b F , c F ) as a function of β. The gure is obtained by solving (3.14) for dierent values of β and

17 .

 17 Compute the coverage probability plotting the outcome. The best polynomial tting of sixth degree is shown as well, along with the set of polynomial coecients.

Figure 3 -

 3 2 brings to our attention that the optimization problem in (3.14) may be solved just once as a function of some sample values for the parameters that determine the spatial characteristics of the PP of interest. With these empirical samples at hand, the analytical relation between the triplet of parameters (a, b, c) may be obtained through polynomial tting and then used for further analysis. This conrms, once again, the usefulness of the proposed IDT approach.

Figure 3 -

 3 Figure 3-3 shows the coverage probability for the entire range of values, i.e., [0, 1],

Figure 3 - 1 :

 31 Figure 3-1: F-function and non-regularized K-function of GPP-Urban ( β = 0.9). Markers: Monte Carlo simulations. Solid lines: IDT approach from (3.14).
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 32 Figure 3-2: Triplet of parameters ǎF , bF , čF for a GPP as a function of β. ǎF is multiplied by 1000. The table provides the best polynomial tting of sixth order, e.g., ǎF = 6 n=0 q n β n . Markers: Solution of (3.14). Solid lines: Best polynomial tting.
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 33 Figure 3-3: P cov of GPP-Urban (β = 0.9). Markers: Monte Carlo sims. Solid lines: Analytical frameworks in Th. 1.
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 34 Figure 3-4: P cov of MCPP. Markers: Monte Carlo simulations. Solid lines: Analytical frameworks in Theorem 1.
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 35 Figure 3-5: P cov of GPP-Rural (β = 0.375) and GPP-Urban (β = 0.9). Markers: Monte Carlo simulations. Solid lines: Analytical frameworks in Theorem 1.
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 36 Figure 3-6: P cov of DPP-Cauchy (Houston). Markers: Monte Carlo sims. Solid lines: Analytical frameworks in Th. 1.

Figure 3 - 7 :

 37 Figure 3-7: P cov of DPP-Gaussian (LA). Markers: Monte Carlo sims. Solid lines: Analytical frameworks in Th. 1.
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 38 Figure 3-8: P cov of Square-Lattice (ISD=100m, 300m). Markers: Monte Carlo sims. Solid lines: Anal. fram. in Th. 1.

Figure 3 - 9 :

 39 Figure 3-9: P cov of Perturbed-Square-Lattice (ISD=100m). Markers: Monte Carlo sims. Solid lines: Anal. fram. in Th. 1.
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 310 Figure 3-10: P cov of LGCP. Markers: Monte Carlo simulations. Solid lines: Analytical frameworks in Theorem 1.
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 311 Figure 3-11: P cov of PHP. Markers: Monte Carlo simulations. Solid lines: Analytical frameworks in Theorem 1.

Figure 3 - 12 :Figure 3 - 13 :

 312313 Figure 3-12: P cov of DPP-Cauchy (Houston) & GPP (Urban, β = 0.9) and Square-Lattice (ISD = 100 m) & GPP (Urban, β = 0.9). Setup: γ = 3.5. Markers: Monte Carlo sims. Solid lines: Analytical frameworks in Theorem 3.

  independent I-PPPs. The CDD of the original motion-invariant PP and the CDD of the I-PPP Φ (F )BS are close to each other, i.e., F Ψ BS (r) ≈ F coincides with the non-regularized K-function of Ψ BS , i.e., Λ Φ (K) BS (B (0, r)) ≈ K Ψ BS (r). In addition, the two independent and isotropic I-PPPs, BS are where the serving BS and interfering BSs belong to respectively. It is proposed in[START_REF] Di Renzo | Inhomogeneous double thinningmodeling and analysis of cellular networks by using inhomogeneous poisson point processes[END_REF] that intensity measure Λ Φ (F ) BS and Λ Φ (K) BS depend on two triplets of non-negative real numbers, (a F , b F , c F ) and (a K , b K , c K ) respectively. The following density functions for repulsive PPs are proposed:

  rdr. The intensity measure Λ Φ (K) BS can be computed in a similar way. Then, the triplets of parameters that determine the intensity measures Λ Φ (F ) BS and Λ Φ (K) BS can be obtained by solving the following minimization problems:

Proposition 3

 3 BS . The interfering BSs Φ (I) BS are formulated as x ∈ Φ (K) BS : l (x) > l x Taking PPs that exhibit spatial inhibition as example: let (a F , b F , c F ) and (a K , b K , c K ) to be the parameters triplets representing the equivalent I-PPPs, we have MISR based on IDT approach written as:

Figure 4 - 1 :

 41 Figure 4-1: Approximation for {a F , b F , c F } for β-GPP. Solid lines: empirical simulations. Markers: Approximations in (4.9).

  gets closer to MISR PPP (γ). It means that only in the high path-loss environment, H-PPP can give a better approximation to the performance of non-PPPs. Theorem 5 is validated by simulations in section 4.5.
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 42 Figure 4-2: Approximation for {a K , b K , c K } for β-GPP. Solid lines: empirical simulations. Markers: Approximations in (4.9).

Figure 4 -

 4 Figure 4-1 and 4-2 show the numerical validation of proposed approximation functions on parameters (a F , b F , c F ) and (a K , b K , c K ). `Emp.' represents empirical

Figure 4 -

 4 3 and 4-4 show the approximation function especially for a F and a K under several dierent value of β.The

  proposed approximation is proved by simulations to be tightly overlapped with empirical parameters. Also, furthermore, the proposed approximation model can give a good overlap with coverage probability as well (seen from Figure4-5).
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 44344 Figure 4-6 to 4-8 show the MISR performance against density λ BS , β and γ with

Figure 4 - 5 :

 45 Figure 4-5: Coverage probability with proposed approximation function for β = 0.9577, λ BS = 10 -2 /m 2 case. Marker `o' are obtained with path-loss exponent γ = 2.5, marker `*' are obtained with path-loss exponent γ = 3.5.

Figure 4 - 6 :

 46 Figure 4-6: MISR for β-GPP (β = 0.3679). Solid lines: GPP simulations. Markers `o': IDT simulations. Markers `*': H-PPP case.

Section 5 .

 5 3 explains the meta distribution and proposes the new computation approach. Section 5.4 introduces and compares the moment functions for H-PPP and non-Poisson PPs. Section 5.6 shows the numerical simulation results and section 5.7 concludes the chapter.

(5. 2 ) 3 )

 23 where f L 0 (•) is the PDF of L 0 and M I,L 0 (•; •) is the Laplace functional of the PP Ψ (I) BS = Ψ BS \x 0 , of the interfering BSs:M I,L 0 (ξ = L 0 = l (x 0 ) ; τ ) = E !x 0After inspecting (5.2), we infer that the mathematical tractability of P s depends on f L 0 (•) and M I,L 0 (•; •). PDF function f L 0 (•) depends on CDD of the PP of the BSs, which is the distribution of the distance between an arbitrary point u and Ψ [60, Denition 2.38], denoted as F u (r)∆ = P (||u -Ψ|| < r).While M I,L 0 (•; •) depends on the Laplace functional of the PP, which requires the reduced Palm distribution of the PP of the BSs to be known. However, the CDD and reduced Palm distribution of an arbitrary motion-invariant PP may not be known or may not be mathematically tractable. This limitation makes non-Poisson PPs less mathematically tractable compared with H-PPP.

4 )

 4 to approximate Ψ BS . CDD of the original motion-invariant PP Ψ BS and the I-PPP Φ (F ) BS are close to each other, i.e., F Ψ BS (r) ≈ F , where F Ψ (r) represents the CDF of CDD. For Φ (K) BS , the intensity measure of Φ (K) BS coincides with the non-regularized Riley's K-function of Ψ BS , i.e., Λ Φ (K) BS (B (x, r)) ≈ K Ψ BS (r), where B (x, r) is the ball of center x ∈ Φ (K) BS and radius r. K Ψ (r) of the motion-invariant PP Ψ BS is the average number of BSs in Ψ BS that lie inside the ball of center x and radius r without counting the BS at x [60, Section 6.5]. It is non-regularized because it is not scaled by the density λ BS . It should be noticed that since I-PPPs are non-stationary, the notion of typical user does not apply anymore. We are interested in computing the performance of a probe MT that is located at the origin. The BS serving the probe MT is assumed to belong to Λ Φ (F ) BS and the interfering BSs are assumed to belong to Λ Φ (K) BS . If we consider the same cell association as for Ψ BS , the serving BS and interfering BSs are formulated as: The intensity measure Λ Φ (F ) BS and Λ Φ (K) BS for Φ (F) BS and Φ (K) BS depend on two triplets of non-negative real numbers, (a F , b F , c F ) and (a K , b K , c K ) respectively. The following density functions for motion-invariant PPs with spatial inhibition and aggregation are proposed: (1) Spatial Inhibition : λ (F ) BS (r) = λ BS čF min (ǎF, bF ,č F) ∈Ω Inh F (r) = λ BS min (ǎF, bF ,č F) ∈Ω Inh K ǎK r + bK , čK (5.5)

F 0 F 0 K

 00 : ǎF , bF , čF : čF ≥ bF ≥ 1 , Ω Inh K : ǎK , bK , čK : bK ≤ čK ≤ 1 , Ω Agg F : âF , bF , ĉF : ĉF ≤ bF ≤ 1 , and Ω Agg K : âK , bK , ĉK : bK ≥ ĉK ≥ 1 . The intensity measure Λ Φ (F ) BS is computed as Λ Φ (F ) BS (x) = 2π x 0 λ (F ) BS (r) rdr. The intensity measure Λ Φ (K) BS can be computed in the similar way. Then, the triplets of parameters (a F , b F , c F ) and (a K , b K , c K ) that determine the intensity measures Λ Φ (F ) BS and Λ Φ (K) BS can be obtained by solving the following minimization problems: (a F , b F , c F ) = arg min (a,b,c)∈Ω F ∞ Ψ BS (r) -F Φ (F ) BS (r; a, b, c) 2 dr (a K , b K , c K ) = arg min (a,b,c)∈Ω K ∞ Ψ BS (r) -Λ Φ (

5. 3

 3 Meta Distribution of New Denition of Coverage Probability 5.3.1 Beyond Spatial Averages In the analysis and performance evaluation of wireless cellular networks, people would like to investigate the coverage probability, which is an important metric to show the connection quality between MT and its serving BS. With new definition of coverage probability, the success probability is dened as p s (τ D , τ A ) = P SIR > τ D , SNR > τ A . The computation of p s (τ D , τ A ) includes the averaging every P s (τ D , τ A ) measured at dierent spatial locations of MTs in the network for a given point process.
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 42 Moments for Non-PPP Case With the aid of IDT approach, we are able to analyze meta distribution under non-Poisson PPs with spatial inhibition or aggregation. Here we propose the framework of moments for PPs with spatial correlations. Corollary 3 Let (a F , b F , c F ) and (a K , b K , c K ) be non-negative triplets of numbers used in IDT approach and under the new denition for success probability, we have b-th moment function as:

Φ

  and Λ Φ (K) BS (x) are intensity measure based on F and K function and Λ are the rst derivatives of intensity measure.

Φ

  = (a K x 2 y 2 + b K xy) H (d K -xy) and (a) comes from changing variable s = 1

as 1 - 1 ( 1 5 - 1 ,

 1151 1) k M k , where when b = -1, lower bound is denoted as 1 -xM -1 . The order of upper bound between PPP and IDT approach can be easily proved since we have proved, b . When b = -1, the lower bound between H-PPP and IDT approach can be proved as well as we know M the Markov bounds are shown along with simulation results for CCDF of meta distribution under H-PPP case. It is clear that those bounds are not all accurate. So only the closest lower and upper bounds are chosen among those plots for further comparisons.
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 51 Figure 5-1: Markov bounds for b ∈ {1, 2, 3, 4} are shown in the gure. Density for simulations of H-PPP is λ BS = 0.2346/km 2 .

Figure 5 - 2 :

 52 Figure 5-2: Moments comparison. Solid lines: numerical simulations. Markers: obtained from (Corollary 2 and 3).

Figure 5 - 3 :Figure 5 - 4 :

 5354 Figure 5-3: CCDF of meta distribution for LGCP case. Solid lines: Analytical frameworks obtained from Mathematica. Markers: Numerical simulations obtained from R.

Figure 5 -Figure 5 - 5 :

 555 Figure 5-5: CCDF comparison for PPP and IDT case. Solid line shows the simulation results. Markers: Analytical framework. Dashed line: Asymptotic limit.

Figure 5 -Figure 5 - 6 :

 556 Figure 5-6 shows the bounds in section 5.5. Dierent bounds are displayed in red lines in the gure while simulation results are plotted in blue lines as benchmark. It is clear that all the bounds show big gaps to the benchmark. Among all the bounds, Paley-Zygmund Bound gives the closest match to according to Figure 5-6.

1 )

 1 The inhomogeneousity and spatial dependency among the locations of the active interfering MTs. It is dicult to take this into consideration, 2) Diculties in obtaining closed form expressions while considering a `beyond-PPP' distribution of active interfering MTs, 3) Analytical optimization problem in analysing the obtained framework for EE and spectral eciency.

3 .

 3 Drone-based communication networks. Current communication networks are designed and optimized based on the availability of terrestrial base stations.

  sive and attractive cases. It could be a promising way to study Drone-based communication networks. Titre : Mod élisation et Evaluation de la Performance de R éseaux Cellulaires à Corr élation Spatiale Mots cl és : G éom étrie Stochastique, R éseau Cellulaire Corr él é Spatialement, Processus Ponctuels Non-Poisson, Analyse de la Performance du Syst ème, Rapport Interf érence Moyen-Signal, Meta Distribution R ésum é : Dans la mod élisation et l' évaluation des performances de la communication cellulaire sans fil, la g éom étrie stochastique est largement appliqu ée afin de fournir des solutions plus efficaces et plus pr écises. Le processus ponctuel de Poisson homog ène (H-PPP) est le processus ponctuel le plus largement utilis é pour mod éliser les emplacements spatiaux des stations de base (BS) en raison de sa facilit é de traitement math ématique et de sa simplicit é. Pour les fortes corr élations spatiales entre les emplacements des stations de base, seuls les processus ponctuels (PP) avec inhibitions et attractions spatiales peuvent être utiles. Cependant, le temps de simulation long et la faible aptitude math ématique rendent les PP non-Poisson non adapt és à l' évaluation des performances au niveau du syst ème. Par cons équent, pour surmonter les probl èmes mentionn és, nous avons les contributions suivantes dans cette th èse: Premi èrement, nous introduisons une nouvelle m éthodologie de mod élisation et d'analyse de r éseaux cellulaires de liaison descendante, dans laquelle les stations de base constituent un processus ponctuel invariant par le mouvement qui pr ésente un certain degr é d'interaction entre les points. L'approche propos ée est bas ée sur la th éorie des PP inhomog ènes de Poisson (I-PPP) et est appel ée approche à double amincissement non homog ène (IDT). L'approche propos ée consiste à approximer le PP initial invariant par le mouvement avec un PP équivalent constitu é de la superposition de deux I-PPP conditionnellement ind épendants. Les inhomog én éit és des deux PP sont cr é ées du point de vue de l'utilisateur type "centr é sur l'utilisateur". Des conditions suffisantes sur les param ètres des fonctions d'amincissement qui garantissent une couverture meilleure ou pire par rapport au mod èle de PPP homog ène de base sont identifi ées. La pr écision de l'approche IDT est justifi ée à l'aide de donn ées empiriques sur la distribution spatiale des stations de base. Ensuite, sur la base de l'approche IDT, une nou-velle expression analytique traitable du rapport de brouillage moyen sur signal (MISR) des r éseaux cellulaires o ù les stations de base pr ésentent des corr élations spatiales est introduite. Pour les PP non-Poisson, nous appliquons l'approche IDT propos ée pour estimer les performances des PP non-Poisson. En prenant comme exemple le processus de points β -Ginibre (β -GPP), nous proposons de nouvelles fonctions d'approximation pour les param ètres cl és dans l'approche IDT afin de mod éliser diff érents degr és d'inhibition spatiale et de prouver que MISR est constant en densification de r éseau avec les fonctions d'approximation que nous proposons. Nous prouvons que la performance MISR dans le cas β -GPP ne d épend que du degr é de r épulsion spatiale, c'est-àdire β, quelles que soient les densit és de BS. Les nouvelles fonctions d'approximation et les tendances sont valid ées par des simulations num ériques. Troisi èmement, nous étudions plus avant la m étadistribution du SIR à l'aide de l'approche IDT. La m éta-distribution est la distribution de la probabilit é de r éussite conditionnelle compte tenu du processus de points. Nous d érivons et comparons l'expression sous forme ferm ée pour le b-ème moment dans les cas PP H-PPP et non-Poisson. Le calcul direct de la fonction de distribution cumulative compl émentaire (CCDF) pour la m éta-distribution n' étant pas disponible, nous proposons une m éthode num érique simple et pr écise bas ée sur l'inversion num érique des transform ées de Laplace. L'approche propos ée est plus efficace et stable que l'approche conventionnelle utilisant le th éor ème de Gil-Pelaez. La valeur asymptotique de la CCDF de la m éta distribution est calcul ée dans la nouvelle d éfinition de la probabilit é de r éussite. En outre, la m éthode propos ée est compar ée à certaines autres approximations et limites, par exemple l'approximation b êta, les bornes de Markov et les liaisons de Paley-Zygmund. Cependant, les autres mod èles et limites d'approximation sont compar és pour être moins pr écis que notre m éthode propos ée. Universit é Paris-Saclay Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Title : Modeling and Performance Evaluation of Spatially-Correlated Cellular Networks Keywords : Stochastic Geometry, Spatially-correlated Cellular Network, Non-Poisson Point Processes, System Performance Analysis, Mean Interference to Signal Ratio, Meta Distribution
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 2 

		1: PDFs for some well-known fading models
	Type of Fading	Parameter	PDF
	Rayleigh	1 γ exp -γ γ	
	Nakagami-q(Hoyt)		

  BS (•) and K Ψ BS (•) are estimated from empirical data, on the other hand, the errors are computed for 0 ≤ r ≤ R A , where R A is the largest distance from the origin of the geographical region of interest, i.e., the network radius (some examples are available in Table3.4). Equation(3.14) can be eciently solved by employing the function lsqcurvefit that is available Matlab. Further details are provided in Section 3.6.3.4 Tractable Analytical Framework of the Coverage ProbabilityWith the aid of the IDT approach, we introduce a new tractable expression of the coverage probability for cellular networks whose BSs exhibit spatial inhibition and aggregation. Based on Lemma 3, the analysis of network models with spatial repulsion and clustering is unied by considering a generic triplet of parameters

	(F ) BS and Φ

bK , ĉK : bK ≥ ĉK ≥ 1} hold if the motion-invariant PP Ψ BS exhibits spatial repulsion or clustering, respectively. Remark 14 The non-linear optimization problem in (3.14) aims to minimize the error between the exact (or empirically estimated) F-function and non-regularized Kfunction of Ψ BS and the corresponding functions of Φ (K) BS , respectively. The errors are, in general, computed over the entire positive real axis, i.e., for r ≥ 0. If F Ψ

Table 3 .

 3 1: Auxiliary functions used in Theorem 1

	Function Denition
	.

Table 3 .

 3 2: Auxiliary functions used in Theorem 2

Table 3 .

 3 3: Auxiliary functions used in Theorem 3 (U IN (•), U OUT (•), and I (•) (•) are dened in Table 3.1)

	Function Denition (Π T

Table 3 .

 3 4: Empirical PPs (ISD = Inter-Site Distance). Their parameters are dened in the references.

Table 3 .

 3 

	Since the solution of (3.14) depends on the initialization point of the algorithm, no
	general conclusions about the global optimality of the solution can be drawn. There
	may exist multiple triplets of parameters that provide suciently good estimates for
	the F-function and non-regularized K-function. The triplets of parameters reported
	in Table 3.7 and Table 3.8 are obtained by solving (3.14) for several random starting
	points of the search and by choosing the solution that provides the smallest error
	value. It is worth noting that the triplets of parameters reported in Tables IX and X

7 and Table

3

.8 provide the triplets of parameters (a

F , b F , c F ) and (a K , b K , c K )

of the IDT approach that correspond to the PPs in Table

3

.4 and that exhibit spatial inhibition and spatial aggregation, respectively. These triplets of parameters are obtained by solving

(3.14)

. As mentioned in Remark 14, the optimization problem in (3.14) is solved with the aid of the lsqcurvefit function that is available in Matlab. are expressed in terms of a large number of decimal gures, as provided by Matlab to us. An important issue is to study the number of signicant gures that are necessary to retain a good accuracy. Even though this comprehensive study is outside the

Table 3 .

 3 5: Setup of parameters (unless otherwise stated).

	Parameter	Value (k

Table 3 .

 3 6: Simulation of the IDT approach (two-tier, PPs with repulsion or clustering).1. Generate a H-PPP with intensity λ T1 max {1, c T1,F } 2. Thin the obtained H-PPP with ret. prob. in (3.10),(3.11) 3. Generate a H-PPP with intensity λ T2 max {1, c T2,F } Remove all BSs except BS T1,0 and BS T2,0 10. Generate a H-PPP with intensity λ T1 max {1, c T1,K }

	4. Thin the obtained H-PPP with ret. prob. in (3.10), (3.11)
	5. Apply the path-loss and fading models
	6. Compute the average received (rx) power from all BSs
	7. Identify the BSs of each tier (BS T1,0 , BS T2,0 )
	providing the best average rx power in their own tier
	8. Identify the serving BS (BS 0 ) (best average rx power)
	9.

11. Thin the obtained H-PPP with ret. prob. in (3.10), (3.11) 12. Generate a H-PPP with intensity λ T2 max {1, c T2,K } 13. Thin the obtained H-PPP with ret. prob. in (3.10), (3.11) 14. Apply the path-loss and fading models 15. Compute the average rx power from all BSs 16

Table 3 .

 3 7 and Table 3.8. Monte Carlo simulations are obtained in Matlab by using the algorithm reported in Table 3.6. The analytical frameworks are computed with Mathematica; and iii) the curve labelled PPP-H corresponds to the benchmark cellular network deployments where the BSs are distributed according to H-PPPs.

  -8, given β, MISR for β-GPP decreases with the increase of γ, which the same trend as shown in Theorem 5. Also the higher the path-loss exponent γ is, the smaller gap between MISR β-GPP and MISR PPP becomes. this chapter, we derive a new framework of MISR for non-PPPs based on IDT approach, β-GPP is chosen as an example of PPs with spatial inhibition. The new framework is obtained by proposing new approximation functions for parameters (a F , b F , c F ) and (a K , b K , c K ) in IDT approach. With this new framework and proposed approximation functions, we are able to prove that MISR for β-GPP is independent of BS density λ BS , but relies on β, the inherent factor representing inhibition of β-GPP, and path-loss exponent γ. Then, we prove that MISR for β-GPP is inverseproportional to β or γ (given γ or β xed respectively). And the gap of MISR between β-GPP and H-PPP becomes smaller with the increase of path-loss exponent γ. The new framework and trend are validated by simulations as well.
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  5.39) where in the above equation, SIR is a random variable while the averaged signal to noise ratio SNR is determined for one BS-MT pair, which is only based on the distance between BS and MT. It is similar to setting a maximum transmission range for one BS, that within this distance Ptx τ A κσ 2

1/γ

, signal transmitted from the BS can be successfully decoded by the MT if interference is not considered. Adding the eect of interference, the coverage probability under new denition can be rewritten as:

It is worth mentioning that the origin is chosen only for ease of analysis and modeling, any other locations may be considered for the probe user provided that the spatial inhomogeneity is created accordingly.

As discussed in[23, Section II-E], the lattice is not a stationary PP. However, it can be made stationary by introducing a random translation over the Voronoi cell of the origin. Another option is to consider the concept of empirical homogeneity condition [61, Section III]. Either way, the methods discussed and the conclusions drawn in the present chapter apply unaltered.

Similar to[START_REF] Andrews | A tractable approach to coverage and rate in cellular networks[END_REF], the density of BSs, λ BS , needs to be estimated from the data set, e.g., as described in[START_REF] Baddeley | Spatial point patterns: methodology and applications with R[END_REF] Sec. 6.2].

Acknowledgment:

First of all, I would like to thank my supervisor, Prof. Marco Di Renzo for his supervision during my PhD study. I would not be able to to have

LGCP (Warsaw) Lattice PP [START_REF] Choi | An analytical framework for modeling a spatially repulsive cellular network[END_REF], [START_REF] Moltchanov | Distance distributions in random networks[END_REF] [32], [START_REF] Moltchanov | Distance distributions in random networks[END_REF] LGCP Chapter 4

On the MISR based on the IDT

Approach

This chapter studies network densication based on the mean interference to signal ratio (MISR) for spatially-correlated point processes, which are approximated by using the IDT approach. Since spatial-correlated point processes usually have weak mathematical tractability, we apply IDT approach in this chapter to approximate the MISR performance of them. It is proved in chapter 3 that IDT approach can provide good approximation for coverage performance for non-PPPs with spatial inhibition and aggregation. We propose new approximation functions for parameters in IDT approach to ease the steps in obtaining the parameters. With proposed approximation and taking β-Ginibre Point Process (β-GPP) as an example of repulsive point processes, we are able to prove that the MISR performance is independent of BS density, but depends on inhibition index β and path-loss exponent γ. Since there is no practical data sets of BSs deployments showing relationship between density and spatial correlation from points in β-GPP, it is important to study the trend of MISR theoretically. We prove that with the increase of β or γ (given xed γ or β respectively), the corresponding MISR for β-GPP decreases. The proposed approximation as long as trend of MISR against β and γ are validated by numerical simulations.

size.

Proof: See [71, (3)].

The complete closed-form expression for MISR IDT is not available according to our knowledge. The validation of the framework can be found in section 4.5. Observed from (4.6), the MISR IDT is a function of many parameters, i.e., λ BS , β, γ, (a

The more explicit trend is explored in section 4.4 based on proposed approximation functions in section 4.3.

MISR Approximation for β-GPP

In this section, the performance of MISR IDT is further studied for β-GPP case, which 

as functions of λ BS and β to approximate the MISR performance of β-GPP:

where K is a constant value and {a (A) , b (A) , c (A) } represent the approximated parameters.

Remark 23 Observing from approximation functions in (4.9), only parameters a (A) F and a

(A) K depend on density λ BS . And given density λ BS , when β → 0, a BS converges to H-PPP with density λ BS with proposed approximation functions, which coincides with the fact that β-GPP converges to H-PPP when β → 0.

MISR under New Approximation Functions

as in Proposition 4. Then, MISR IDT for network with innite size is rewritten as:

where f (A)

And Θ (A) (t, β, γ) is denoted as

where dK (β) = c

IDT is obtained by rst taking a (A) F (β) and a (A) K (β) from (4.9)into (4.6) and then applying changing variable x = t/ √ λ BS .

Chapter 5

On the Meta Distribution of

Non-PPPs

In this chapter, we study a new system metric, which is the distribution of success probability P s (τ ) from each wireless link, named meta distribution. For the rst time, we can study the meta distribution based on non-Poisson PPs with spatial correlations with the help of IDT approach. We adopt the new denition of coverage probability, which is based on double thresholds on SIR and SNR. Secondly, to compute CCDF of meta distribution eciently and accurately via moment functions, we propose a new numerical computation approach based on numerical inversion of Laplace transforms. The proposed approach is validated by empirical data sets (GPP and LGCP as examples) to be robust and simple in computing CCDF for non-PPPs with both spatial inhibition and aggregation. The proposed approach is compared to be superior to the other approximation models in the literature. The asymptotic value is studied and validated by numerical simulations as well.

Introduction

In the modeling and analysis of wireless cellular networks, people would like to use stochastic geometry as a powerful tool. As an important metric, coverage probability, also known as success probability, can represent the average connection quality where M jt (τ D , τ A ) is given by (5.11). The details of derivation can be found in [2, Corollary 3].

Beta Approximation However, this proposed numerical computation method is not feasible due to the long computation time. This drawback makes this approach not ideal to compute the CCDF. Then the author in [START_REF] Haenggi | The meta distribution of the sir in poisson bipolar and cellular networks[END_REF] proposes another simple approximation based on Beta Distribution.

Beta distribution is proposed to be an approximation model since P s (τ D , τ A ) is supported on [0, 1], same as beta distribution. The CCDF of a beta distributed random variable X is denoted as: α and β are given by:

where the value of α and β are obtained from the denition of beta distribution

, and then taking mean µ = M 1 and the variance

Besides two approaches mentioned above, there is another approach based on recovery of distributions via moments [START_REF] Mnatsakanov | Recovery of distributions via moments[END_REF]. This approach is not introduced here due to the limited feasibility and unstable performance.

New Numerical Approach

In this section, we propose a new numerical computation method, which can compute CCDF eciently and stably. The proposed method is introduced and compared with Beta approximation in section 5.3 and validated by simulations in section 5.6. Proof: Let us consider the case study when Ψ BS exhibits spatial inhibition. The case study when Ψ BS exhibits spatial aggregation can be proved by using a similar line of thought and, hence, the details are omitted for brevity. The moment function for H-PPP and IDT approach can be written as:

H-PPP (y)dy f H-PPP (r)dr

where f

Since r represents the shortest distance of serving BS while r < y is always true, then we have f ( r y ) -1 < 0, then,

H-PPP (y)dy (5.35) where Λ

H-PPP (y) is true according to [71, Lemma 5].

Afterwards,

M (IDT)

b has the following inequality:

where

BS and (a) follows by applying the integration by parts formula.

For G (H-PPP) (r), it can be expanded and further computed as

(H-PPP) (r), it can be proved to be negative as:

Therefore, following (5.36), we have:

(H-PPP) (r)F (H-PPP) (r)dr

where (b) is obtained by applying the integration by parts formula similar to (g) in (5.36).

In summary, the condition

can be proved for PPs with spatial attractions by applying [71, Then, we dene q (x) , p 0 (x) , p 1 (x) , p 2 (x) , y 1 (x) , y 2 (x) as following:

(5.50)

The lower and upper bounds follow as:

(5.51)

Numerical Results

In this section, the numerical results are given to validate the proposed numerical approximation in Theorem 6. We adopt the new denition of coverage probability and apply the proposed approach into H-PPP and non-PPPs with spatial inhibition and attraction. Here, GPP and LGCP are applied as examples. The system parameters can be found in Table 5.1.