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Résumé
Les papillomavirus humains (HPV) constituent une famille de petits virus à double 

brin d’ADN qui ont un tropisme pour les cellules épithéliales de la peau et des 

muqueuses. Plus de 200 types d’HPV ont été découverts, et classifiés en plusieurs 

genres taxonomiques en fonction de la constitution de leur séquence ADN. De part le 

rôle de certains HPV dans les maladies affectant les humains, allant de l’apparition 

de verrues anogénitales bénignes jusqu’au développement d’un cancer, il est 

nécessaire de développer des méthodes de détection et de caractérisation de la 

population d’HPV dans un échantillon d’ADN. Elles sont nécessaires à la clarification 

du rôle de l’HPV dans les différentes étapes de la progression de la maladie. Cette 

détection d’HPV lors d’approches ciblées en laboratoire a principalement reposé sur 

des méthodes de PCR couplées avec du séquençage Sanger. Avec l’introduction 

des nouvelles technologies de séquençage haut débit (NGS), ces approches 

peuvent être revisitées afin d’intégrer la puissance de séquençage de ces 

technologies. Alors que des outils d’analyse in-silico ont été développés pour la 

recherche de virus, connus ou nouveaux, à partir de données de NGS, aucun outil 

approprié n’est disponible pour la classification et l’identification de nouvelles 

séquences virales à partir de données produites par des méthodes de séquençage 

d’amplicons. Dans cette thèse, la première partie présente cinq nouveaux génomes 

d’HPV isolés via l’utilisation d’amorces d’amplification dégénérées ciblant le gène L1

à partir d’échantillons de peau humaine. Puis, dans une seconde partie, nous 

présentons PVAmpliconFinder, un outil d’analyse de données conçu pour identifier 

et classifier rapidement des séquences connues et potentiellement nouvelles de la 

famille Papillomaviridae, à partir de données de NGS d’amplicons générées par PCR 

via l’utilisation d’oligonucleotides dégénérés ciblants les HPV. Enfin, les 

caractéristiques de PVAmpliconFinder sont présentées, ainsi que plusieurs 

applications sur des données biologiques obtenues lors du séquençage d’amplicons 

de spécimens humains. Ces applications ont permis la découverte de nouveaux 

types d’HPV.
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Abstract
Human Papillomaviruses (HPV) are a family of small double-stranded DNA viruses 

that have a tropism for the mucosal and cutaneous epithelia. More than 200 types of 

HPV have been discovered so far and are classified into several genera based on 

their DNA sequence. Due to the role of some HPV types in human disease, ranging 

from benign anogenital warts to cancer, methods to detect and characterize HPV 

population in DNA sample have been developed. These detection methods are 

needed to clarify the implications of HPV at the various stages of the disease. The 

detection of HPV from targeted wet-lab approaches has traditionally used PCR-

based methods coupled with cloning and Sanger sequencing. With the introduction of 

next generation sequencing (NGS) these approaches can be improved by integrating 

the sequencing power of NGS. While computational tools have been developed for 

metagenomic approaches to search for known or novel viruses in NGS data, no 

appropriate bioinformatic tool has been available for the classification and 

identification of novel viral sequences from data produced by amplicon-based 

methods. In this thesis, we initially describe five fully reconstructed novel HPV 

genomes detected from skin samples after amplification using degenerate L1 primers. 

Then, in the second part, we present PVAmpliconFinder, a data analysis workflow 

designed to rapidly identify and classify known and potentially new Papillomaviridae

sequences from NGS amplicon sequencing with degenerate PV primers. This thesis 

describes the features of PVAmpliconFinder and presents several applications 

using biological data obtained from amplicon sequencing of human specimens, 

leading to the identification of new HPV types.
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Résumé en français
Les papillomavirus humains (HPV) constituent une famille de petits virus à double 

brin d’ADN qui ont un tropisme pour les cellules épithéliales de la peau et des 

muqueuses. Plus de 200 types d’HPV ont été découverts, et classifiés en plusieurs 

genres taxonomiques en fonction de la constitution de leur séquence ADN. Certains 

HPV possèdent un génotype qui les rend responsables de l’apparition et du 

développement de pathologies affectant les humains, allant de l’apparition de 

verrues anogénitales bénignes jusqu’au développement d’un cancer. Dans la 

majorité des cas, l’infection est transitoire car le système immunitaire permet 

d’éliminer spontanément les virus. Néanmoins, un groupe de 12 HPV infectant les 

muqueuses a été défini comme «à haut risque» de par leur association avec le 

développement du cancer du col de l’utérus. HPV16 et HPV18 sont responsables de 

50 % et 20 %, respectivement, du nombre total de cas de cancer du col de l’utérus 

dans le monde, et cette pathologie est la cause de plus de 236 000 morts dans le 

monde chaque année. Les HPV étant particulièrement contagieux, on estime que 

près de 80 % des hommes et des femmes sexuellement actifs ont été au moins une 

fois en contact avec un HPV infectant les muqueuses. De par leur pathogénicité, il 

est nécessaire de développer des méthodes de détection et de caractérisation de la 

population d’HPV dans un échantillon d’ADN. Elles sont nécessaires à la clarification 

du rôle de l’HPV dans les différentes étapes de la progression de la maladie. Cette 

détection d’HPV lors d’approches ciblées en laboratoire a principalement reposé sur 

des méthodes de PCR. Ces PCR sont effectuées à partir d’amorces construites dans 

des régions génomiques conservées entre les HPVs, et contiennent souvent des 

oligonucléotides dégénérés afin d’augmenter la sensibilité de la détection. 

Initialement, ces méthodes de détection ont été développées afin d’amplifier les HPV 

mucosaux, et dans le même temps la connaissance sur la diversité des HPV s’est 

élargie, menant à l’établissement de nouveaux couples d’amorces ciblant les HPV 

cutanés. L’élaboration de ces nouvelles amorces d’amplifications a été motivée par 

la découverte d’associations entre les HPV cutanés et l’apparition de maladies. Ainsi, 

les HPV cutanés du genre taxonomique -3 ont été associés avec le développement 

de carcinomes épidermoïdes, en particulier lors d’une co-exposition avec un autre 

agent carcinogène. Par exemple l’exposition aux UV de l’épiderme de rongeurs 

infectés par les oncogènes E6 et E7 de HPV38 favorise l’apparition de cancer de la 
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peau. Par ailleurs, il semblerait que l’infection ne soit nécessaire qu’aux stades 

précoces du développement du cancer, et aide l’accumulation de mutations 

somatiques causées par les UV. Ce phénomène, dénommé «frapper et courir», met 

en exergue l’importance de la sensibilité de la détection des papillomavirus chez les 

individus immunocompétents, pour lesquels la charge virale peut être très faible. 

Suivant leur détection, la reconstruction de nouveaux génomes d’HPV a 

originairement été possible via le clonage du nouveau génome dans un vecteur de 

type plasmide, grâce à l’utilisation d’amorces spécifiques de la nouvelle cible, 

construites dans la région initialement amplifiée par les amorces non-spécifiques. Ce 

clonage est communément suivi d’un séquençage Sanger afin d’obtenir la 

composition nucléotidique du génome au complet. L’ensemble de ce protocole est 

long et nécessite beaucoup de labeur. Avec l’introduction des nouvelles technologies 

de séquençage haut débit (NGS), ces approches peuvent être revisitées afin 

d’intégrer la puissance de séquençage de ces technologies. Pour cela, des 

méthodes d’analyses spécifiques de ces données doivent être mises en place, dans 

l’objectif précis de la découverte et la caractérisation de nouveaux HPV. Alors que 

des outils d’analyse in-silico ont été développés pour la recherche de virus, connus 

ou nouveaux, à partir de données de NGS, aucun outil approprié n’est disponible 

pour la classification et l’identification de nouvelles séquences virales à partir de 

données produites par des méthodes de séquençage d’amplicons. Ce projet de 

recherche est axé autour de deux parties : la première partie présente cinq nouveaux 

génomes d’HPV isolés soit via l’utilisation d’amorces d’amplification dégénérées

ciblant le gène L1, soit à partir d’une méthode d’amplification spécifique de l’ADN 

circulaire. Lors de ces travaux, les amorces d’amplification utilisées sont celles déjà 

publiées : leur utilisation permettant de confirmer leur usage dans les échantillons de 

peau humaine. La reconstruction de ces génomes a été effectuée in-silico à partir de 

données de séquençage Sanger, via l’utilisation d’une stratégie nommée «Arpentage 

chromosomique». Puis, dans une seconde partie, nous présentons 

PVAmpliconFinder, un outil d’analyse de données conçu pour identifier et classifier 

rapidement des séquences connues et potentiellement nouvelles de la famille 

Papillomaviridae, à partir de données de NGS d’amplicons générées par PCR via 

l’utilisation d’oligonucléotides dégénérés ciblant les HPV. Dans cette partie, la 

description de nouveaux oligonucléotides partiellement dégénérés est présentée, 

puis leur utilisation en combinaison du NGS est décrite, ayant mené au 
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développement d’un outil d’analyse dédié : PVAmpliconFinder. Les caractéristiques 

de PVAmpliconFinder sont présentées, reposant sur des méthodes de similarité et 

de phylogénie, afin de définir les séquences potentiellement nouvelles d’HPV, mais 

aussi d’obtenir une inférence de leur classification taxonomique via l’utilisation de 

l’état des lieux de la connaissance sur la diversité des HPV. Finalement, plusieurs 

applications sur des données biologiques obtenues lors du séquençage d’amplicons 

de spécimens humains sont commentées. Ces applications ont permis la découverte 

de nouveaux types d’HPV.
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Introduction
Human Papillomaviruses (HPV) belong to a large family of viruses including 

hundreds of members, which are classified into several genera based on their 

deoxyribonucleic acid (DNA) sequence. HPV infections can, depending on the HPV 

genotype, lead to different clinical outcomes ranging from genital warts to cancer 

lesions. Based on available biological data, a group of 12 mucosal HPV types have 

been defined as high-risk (HR) types, having clear evidence of their association with 

the development of cervical cancer. HPV16 and HPV18, the most carcinogenic types, 

are responsible for approximately 50% and 20% of all cervical cancers worldwide, 

respectively. Despite the availability of a vaccine and the implementation of 

screening programs, cervical cancer remains a public health problem on a global 

level, causing 236,000 deaths worldwide. Papillomaviruses are particularly 

contagious and nearly 80% of sexually active men and women are in contact with a 

mucosal HPV at least once during their lifetime. Contact with infected hands is also a 

route of cutaneous HPV transmission between individuals. Due to the pathogenicity 

of some HPV types, it is crucial to develop rapid, specific and sensitive methods to 

identify and characterize the HPV population in human clinical samples.

I. The papillomaviridae family

The papillomaviridae family belongs to the phylum Incertae sedis, and the taxonomic 

class and taxonomic order of the same name. Incertae sedis refers to a complex 

taxonomic group in which the relationship between representatives of this taxonomic 

group is still unknown or poorly defined. It includes organisms as disparate as some 

fossils (1), or the HeLa cells (2). In 2016, a PV in fish (SaPV1) was characterized, 

rendering this family of viruses much older than expected, with an emergence 450 

million years ago (3). Papillomaviruses (PVs) are small non-enveloped icosahedral 

viruses, presenting circular double-stranded DNA ranging from 5.7 kb for the smallest 

genome (3) to 8.6 kb for the longest genome (4). The capsid is constituted of 72 

pentameric capsomers that are composed of two structural proteins - L1 (55 kDa in 

size) and L2 (70 kDa) (Figure 1). PVs are widely distributed across vertebrates, and 

have a tropism for mucosal and cutaneous epithelia of human and other vertebrates



4

(e.g. mammalians, reptiles, birds, etc.) (5). They are traditionally described as ‘‘types’’ 

based on their genome sequences and identified by a number provided by the 

International HPV Reference Center, the Karolinska Institute 

(https://ki.se/en/labmed/international-hpv-reference-center

https://ki.se/en/labmed/international-hpv-reference-center). So far, more than 300 

PVs types have been characterized, completely sequenced and referenced, including 

more than 200 HPVs. In addition, more than 100 PV types have recently been 

identified using in-silico methods from metagenomics data 

(https://pave.niaid.nih.gov/#explore/reference_genomes). HPV types have been 

shown to be ubiquitous and widely distributed in the human population, where they 

can infect various anatomical sites depending on their tropism, and cause lesions 

with distinctive clinical pathologies. There are five major known HPV genera: -

- -papillomavirus, mu-papillomavirus and nu-

papillomavirus (6). Alpha-PVs preferentially infect the oral or anogenital mucosa, but 

have also been found in lesions of cutaneous sites, and some members are 

considered oncogenic in view of their regular presence in malignant tissue. Beta-PVs 

typically cause latent infections, but can also cause warts or progress to cutaneous 

squamous cell carcinomas (SCC) in immunocompromised individuals. They are the 

most common HPV types found in the human oral cavity and some have been 

prospectively associated with oropharyngeal cancer development (7). Gamma-PVs 

are typically found on the skin and oral mucosa and their infections are usually 

asymptomatic. However, some infections cause cutaneous lesions in their host. Mu 

and Nu-PVs are also associated with cutaneous lesions, which are sometimes 

malignant but most often only benign.

Adapted from (8).

Figure 1: 3D representation of HPV16 particle
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I.1 - The genomic structure of PVs

The circular dsDNA genome is approximately 8 kb in size. All PVs share a common 

genetic structure that generally contains eight ORFs, all transcribed from a single 

DNA strand. The viral genome can be divided into three functional parts (Figure 2):

An upstream regulatory region (URR), also called the long control region (LCR), 

containing early promoter and transcription factor binding sites and controlling 

gene expression, located between the L1 and E6 open reading frames.

An early region, that encodes for six genes (E1, E2, E4, E5, E6 and E7) involved 

in multiple functions such as viral gene expression, replication and cell 

transformation.

A late region, encoding for two capsid proteins (L1 and L2) which yields to the 

virion structure.

A smaller non-coding region (denoted by NCR) is also located between the E5 and 

L2 ORFs and harbors an early polyadenylation signal (pAE) required for gene 

expression from the early promoter, including alternatively spliced early transcripts 

and their gene products (9). Both the NCR and the URR viral regions display 

variability and are useful in assessing genetic heterogeneity (10).

The LCR, and the 4 following ORFs - namely E1, E2, L1 and L2 - are required to 

ensure viral replication and regulation (11). These 4 proteins are sufficient for the 

release of progeny virions (12). In addition, PVs have the potential to express an 

E8^E2C transcript for which the protein acts as a transcriptional repressor of E1/E2-

dependent replication of the viral origin (13-16). Although HPV genera have basically 

the same genome organization, the majority of beta and gamma HPV types lack of 

the E5 protein (17).

(in black), schematized on HPV16, presenting the 

LCR, the early genes (in blue), the late genes (in 

orange) and the E8^E2C transcript (in green). 

Adapted from (18).

Figure 2: Genomic organization of PVs 
dsDNA genome
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I.2 – PV taxonomic classification

The International Committee for the Taxonomy of Viruses (ICTV; 

http://ictvonline.org/index.asp)http://ictvonline.org/index.asp defines the rules for the 

nomenclature and taxonomic classification of PVs. The taxonomy of PVs is based on 

the nucleotide sequence of the L1 ORF: the nucleotide sequence of L1 must differ by 

more than 10% of the closest known PV type to define a new type, more than 30% to 

define a new species, and more than 40% to define a new genus (6, 19). Closely 

related PVs types based on this classification can present different phenotypes, 

prevalence and tropisms (20, 21). In particular, HPVs are classified into five genera, 

namely Alpha, Beta, Gamma, Mu and Nu (22) that are subdivided into species and 

then into types. The majority of the HPV types of genus alpha have a mucosal 

tropism, while beta and gamma HPV types appear to preferentially infect the skin 

(23).

The IARC classifies PV types based on the evidence of their carcinogenicity (Table 
1). PV carcinogenicity is evaluated based on information from case reports and 

epidemiological studies, as well as biological data on humans and animal models.

as defined by the International Agency for Research on Cancer (IARC Monographs 

vol. 100B and 104) - Adapted from (24).

Table 1: Classification of PV type carcinogenicity
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To be recognized as a novel PV type, in addition to presenting at least 10% 

dissimilarity to any other PV type on its L1 ORF, a viral genome needs to be 

referenced and must meet a strict set of requirements defined as followed: the entire 

viral genome must be cloned, as a whole or as an overlapping fragment, and this 

cloned genome must be submitted and reviewed by the International Human 

Papillomavirus Reference Center or the Animal Papillomavirus Reference Center 

(https://pave.niaid.nih.gov/#explore/taxonomy/taxonomy_concept;

https://ki.se/en/labmed/international-hpv-reference-center;

http://vandoorslaer.info/Ref).

I.3 – PV life cycle

PVs sustain their life cycle through the keratinocyte proliferation and differentiation 

process (Figure 3). The HPV life cycle can be divided into two stages: non-

productive and productive. The non-productive stage occurs in proliferating basal 

layers of the epithelium where the virus replicates its genome at a low copy number. 

The productive stage occurs in differentiated layers of the epithelium (25, 26).

The basal layer of the keratinocyte is initially targeted by PV virions, through 

microwounds or hair follicles (27-29). Cell surface receptors allow the binding of the 

viral capsid and facilitate virion entry into the targeted cells, but this is not sufficient to 

trigger production of virions or to allow the virus to replicate (30-32). The viral 

particles interact with the cell surface via interaction of the major capsid protein, L1, 

with heparin sulfate proteoglycans. Evidence also suggests the involvement of a 

secondary receptor and a possible role for the minor capsid protein, L2, in cell 

surface interaction (33).

The replication of the viral genome is performed by high-fidelity polymerase and 

allows viral replication in the nucleus of infected cells after incorporation of the viral 

genome, maintaining approximately 50-100 copies per cell (34).

Viral gene expression is regulated differently depending on the degree of 

differentiation of the infected cells. In the skin, the only actively dividing cells are 

located in the basal layers, and are composed of two main cell types: the transit 

amplifying cells (TA), which are proliferating cells that can undergo terminal 

differentiation, and the stem cells, that rarely divide in order to refresh the TA pool. 

Upon cell division, TA cells produce daughter cells which migrate away from the 
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basal layer and start to differentiate (35). As infected cells divide, viral DNA is equally 

distributed between both daughter cells. One of the daughter cells migrates and 

initiates a program of differentiation, while the other continues to divide in the basal 

layer and provides a reservoir of viral DNA for further cell division (36). Keratinocytes

migrate upward as they enter through the differentiation process.

In the early phase of the viral life cycle, limited viral DNA amplification is supported 

by the viral E1 and E2 replication proteins (37), while E5, E6, and E7 are key to 

stimulating and enhancing viral proliferation. When HPV-infected cells divide and 

leave the basal layer undergoing differentiation, activation of the late viral promoter 

occurs and the level of viral proteins increases dramatically. As a result, the viral 

copy number soars from 50-200 copies to several thousand copies per cell (38).

When reaching the upper layer of the epithelium, the capsid proteins L1 and L2 are 

involved in the encapsidation of the newly replicated genome, resulting in virion 

release during desquamation (39). Virion release is facilitated by E4 that interacts 

with the keratin network. The entire HPV life cycle is completed without causing cell 

death, viremia or apparent inflammation, in order to prevent alerting the immune 

responses (37, 40).

over the squamous epithelium with corresponding PV gene expression at each stage 

of the keratinocyte differentiation program. Adapted from (24).

Figure 3: Summary of PV gene function and schematic view of PV life cycle
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I.4 – Clinical implications

Most PV infections are asymptomatic, indicating a commensalism between the PV 

and its host (41)(41). Some Gamma-PV infections can lead to benign lesions such as 

warts affecting children in boundary epithelia in the fingers, lips or eyelids. Sexual 

transmission of certain Alpha-PVs is also recognized as a cause of anogenital warts, 

possibly the most common sexually transmitted disease (42). The majority of viral 

infections are cleared by the host’s immune system within 1 or 2 years (43) as a 

result of a cell-mediated immune response. However, a minority of infections become 

persistent, which increases the risk of cancer (44). A number of mucosal HPV types 

belonging to the alpha genus are classified as high-risk (HR) and low-risk (LR) HPVs 

based on their ability to induce malignant lesions. The International Agency for 

Research on Cancer (IARC) has classified 12 different HR HPV types as 

carcinogenic to humans, i.e. types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 and 59

(45). HPV types 16 and 18 are the most frequently found in cervical cancers 

worldwide (in approximately 50% and 20% of squamous cell carcinoma, respectively, 

and in 35% of cervical adenocarcinoma for HPV18) (46-48). High-risk HPV types are 

also involved in a subset of other genital cancers, such as vulvar (around 40%), 

vaginal (70% to 90%), anal (around 80%) and penile (around 50%) cancers, as well 

as head and neck cancers where HPV16 is responsible for the majority (86-95%) of 

HPV-positive oropharyngeal carcinomas (49).

Several factors promote viral persistence of the oncogenic types, e.g. viral genomic 

variation, the host’s genetics and the lifestyle behavior of the infected organism. In 

immunocompromised hosts, such as people infected with HIV, persistent high-risk 

infections are more frequent and severe (50). Some other sexually transmitted Alpha-

PVs are also responsible for anogenital warts (42), but these PVs are also found in 

children before sexual debut, suggesting they are transmitted in other ways, for 

example through mother and child contact during labor (51-53).

The progression from HPV-associated lesion to invasive cervical cancer generally 

requires more than one decade and all of these steps are facilitated by deregulation 

and over-expression of the high-risk E6 and E7 viral oncoproteins together with the 

E5 oncoprotein. These viral oncoproteins target tumor suppressor pathways as well 

as paths involved in evasion from the host immune system in order to ensure viral 

genome replication and create a cellular environment at risk for oncogenic 
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transformation. Checkpoint mechanisms ensuring cell viability and integrity are 

hijacked by PVs’ E6 and E7 proteins, causing uncontrolled cell proliferation (Figure 3)

(54). E2F transcription factor family proteins are released and activated due to the E7 

protein that causes degradation of Retinoblatoma family proteins through binding, 

leading to an unexpected re-entry into the S-phase. The cellular response to this 

unscheduled S-phase entry is cell apoptosis, but the E6 protein prevents 

programmed cell death through P53 degradation (55). Lastly, infected cells 

hyperproliferate due to E5 protein expression, facilitating malignant progression (56).

Immune surveillance is also reduced by the E5 protein activity of oncogenic PVs (57).

The outcome is uncontrolled proliferation activity and facilitation of mutations 

accumulation over time, leading to cancers. Thus, E1, E2, E4 and E5 expression is 

triggered in combination with E6 and E7, resulting in viral amplification of up to 

thousands of copies per cell (38, 58).

Approximately 75% of human HPV types are cutaneotropic, represented mainly by 

the beta and gamma genera, which are widely present in the skin of normal 

individuals. Beta HPV types were originally isolated in patients suffering from a rare 

autosomal recessive disorder, Epidermodysplasia verruciformis (EV), and several 

studies have proved the role of HPV infection in the pathogenesis of skin cancer 

associated with EV (59).

Cutaneous PV infections occur early in the lifetime (60, 61) and can cause benign 

lesions, but are mostly eradicated by the immune system in the following years (62).

Several means of transmission have been described, including contact with infected 

hand or linens (63).

Many findings support the role of cutaneous beta HPV, together with ultraviolet (UV) 

irradiation, in the development of non-melanoma skin cancer (NMSC) (64, 65). One 

meta-analysis showed that five beta HPV types - HPV5, 8, 17, 20, and 38 - are 

significantly associated with the risk of cutaneous squamous cell carcinoma (cSCC) 

in immunocompetent subjects (66). However, experiments in animal models have 

provided evidence for the cooperation of the viral proteins with UV radiation in 

promoting cSCC (64, 65, 67).

In contrast to mucosal HPV infections in cervical cancer, where E6 and E7 

expression is required for the initiation and maintenance of cellular transformation, 

beta HPV appears to play a role only at an early stage of cancer development. 
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Indeed, a higher copy number of beta HPV genomes is found in pre-malignant actinic 

keratosis lesions compared to skin squamous cell carcinoma (SSC) (68, 69).

However, because of the plurality of HPV types found in the normal tissue and in the 

lesion of a single skin biopsy, the role of cutaneous HPV types in skin cancer

remains unclear and requires further investigation.

I.5 – PV Evolution 

A virus-host coevolution is suggested as being the main driving force of PV evolution, 

leading to an evolution directed towards adaption to their hosts, but only accounting 

for about one-third of the evolutionary events explaining PV-host evolutionary 

histories (70, 71). Even though PVs do not encode for DNA polymerase and use 

high-fidelity cellular polymerase, their mutation rates and mutational biases, as well 

as their codon usage preferences, do not match those of their host genome. Indeed, 

extreme codon usage preferences have been observed in PV genomes, specifically 

in E2, E6, L1 and L2 ORFs, in which a bias correlates positively with A+T content at 

the codon 3rd position (72). This codon usage preference seems to be conserved 

across the different PV types, regardless of the infected host, and it is thought to 

provide the replicational fitness of PVs in mammalian epithelial cells, even though 

this process still needs to be better understood. This codon usage preference can 

also be related to some selective processes, and several adaptive explanations have 

been proposed. One of these hypotheses is that PV codon usage lowers viral protein 

synthesis, enabling decreased immune exposure (73). Another adaptive process that 

could explain PV codon usage preference is the fitting of this codon usage with the 

variation in the keratinocyte tRNA profile during the differentiation program (74). A 

third explanation could be accommodation to the complex differential methylation 

occurring in the convoluted PV genome, including overlapping genes and regulatory 

regions, in order to avoid CpG island accumulation and thus escape immune 

response (75).

As PVs are dsDNA viruses, they present the slowest substitution rate among viruses, 

estimated between 2x10-8 and 5x10-9 substitutions per site per year for coding 

regions, although non-coding regions accumulate mutations faster (76-78). However, 

it seems that PV genomes are subjected to endogenous DNA mutation processes 

common to those of their host and leading to a specific type of DNA mutation. For 
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example, C>T mutation biases due to APOBEC3 cytidine deaminase similar to those 

retrieved in cancer genomes have been observed in PV genomes (79). Moreover, 

the viral genome is also exposed to the same exogenous processes as the host cells, 

especially to the pyrimidine cyclobutane dimers due to UV radiation, as viral 

replication occurs in the upper layer of the skin (80).

Another molecular event – recombination - plays a role in the dynamics of PVs and is 

suspected of having important implications for the emergence of oncogenic 

phenotypes, as well as for the colonization of new niches. Homologous 

recombination occurs during PV replication, during the productive stages of the 

infection when the rolling circle-like replication produces concatenated viral genomes 

that require excising and re-circularizing into individual plasmid genomes (81, 82). In 

rare cases, non-homologous recombination during natural infection has also been 

observed in HPV16 (83). One particularly important recombination event occurring 

between the early and late regions has oriented the evolution of PVs, is related to the 

integration of the E5 ORF, and has been associated with the infection phenotype (57,

84). Thus, viruses associated with similar clinical phenotypes cluster together when 

phylogeny is inferred using the early genes, but this pattern is not observed when 

phylogeny is inferred using the late genes. Acquisition of the E5 gene helps to 

sustain growth and escape immune response elicitation. This adaptive radiation has 

generated most of the PVs responsible for genital or cutaneous warts, as well as 

those responsible for mucosal lesions, some of them having carcinogenic potential 

(57). A few cases of distantly relative PVs presenting recombination events have also 

been observed, but these remain unusual (85, 86).

II. Detection of PV sequences

For several decades, PCR has been shown to be the most sensitive method for 

identifying HPV infection in clinical samples (87-91). Different sets of consensus 

or/and degenerate primers have been developed and used to detect HPV (92).

However, primers amplifying DNA fragments in the conserved L1 region have 

become the most widely used in clinical and epidemiological studies. 
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II.1 PCR methods

The MY09/MY11 primer set-mediated PCR (MY-PCR) (93) and the GP5/GP6 primer 

set-mediated PCR (GP-PCR) (94) have been the most frequently used amplification 

systems for the detection of HPV DNA in clinical samples. Both sets of primers were 

developed in the early 1990s in order to detect mucosal HPV types in the genital tract 

(95, 96).

II.1.1 MY09/MY11 primer set

In 1989, the MY09-MY11 primer set was developed. This PCR protocol uses a set of 

25 degenerate primers. The sensitivity of the MY09/MY11 primers set was improved 

few years later (92).

II.1.2 Nested-PCR protocols for genital HPV

In 1995, Ylitalo et al. developed a nested-PCR protocol (97). Conserved regions 

were retrieved on the L1 and the E1 ORF after the alignment of 19 different mucosal 

HPV types, using a multiple alignment program like Megalign (98) (Figure 4A). The 

panel of HPV types considered showing great diversity, the primer set has been 

synthesized with several degenerate nucleotides (Figure 4B). When compared to 

MY09/MY11 primers, these new primers enable identification of all genital HPV types 

known at this time with better sensitivity (HPV6, 11, 16, 18, 30, 31, 33, 34, 35, 39, 40, 

42, 45, 51, 52, 53, 56, 57, and HPV58).

II.1.3 MY09/MY11 primer set improvement

In the beginning of 21st century, MY09/11 primers were redesigned to increase the 

sensitivity of amplification across the different PV types, still using the same kind of 

primers targeting the L1 ORF (99). For this purpose, multiple primer sequences were 

designed and combined in order to increase sequence heterogeneity capture ability, 

thereby avoiding the use of degenerate bases that could yield to irreproducible 

primer syntheses. These new PGMY09/11 primers appeared to be significantly more 

sensitive for HPV26, 35, 42, 52, 54, 55, 59, 66 and HPV73 detection than the 

MY09/11 system when tested on a set of cervicovaginal specimens.
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The arrows mark the locations of the primer pairs. The position number is relative to 

the HPV16 genome. (B) Alignment of the conserved L1 open reading frames regions 

among 19 PV, showing the positions of the primers, and the top line shows the 

resulting degenerate primer sequences (S = G or C; R = A or G; N = A, C, G, or T; Y 

= T or C; W = T or A; H = A, T, or C; M = A or C; K = G or T; D = T, G, or A). 

Deletions are indicated by asterisks, and nucleotides identical to those in the 

consensus sequence are indicated by dashes. Adapted from (97).

II.1.4 GP5/GP6 primer set

In 1990, the L1 conserved primers GP5 and GP6 were developed by Snijders et al., 

allowing the detection of 11 HPV (HPV1a, HPV6, HPV8, HPV11, HPV13, HPV16, 

HPV18, HPV30, HPV31, HPV32 and HPV33) (94). These primers consist of a fixed 

nucleotide sequence and detect a wide range of HPV types. Using a lower annealing 

temperature during PCR, there can be up to three mismatches between primers and 

B

A

Figure 4: (A) Schematic representation of the location of the MY09/MY11 
primers along the L1 ORF - (B) Alignment of the conserved L1 open reading 
frames regions among 19 PV
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target DNA without affecting the efficiency of the assay. Five years later, the same 

research group published an improved 

version of these GP primers, GP5+ and 

GP6+, elongated at their 3’ ends with 

adjacent highly conserved L1 sequences 

(100) (Figure 5). Multiple alignment of 

putative amino acid sequences from the L1 

region flanked by both GP5 and GP6 of 24 

mucosotropic HPVs revealed the consensus 

sequences Thr-Arg-Ser-Thr-Asn (TRSTN) 

immediately downstream of the GP5 

(forward primer) region and Arg-His-X-Glu-

Glu (RHXEE) upstream of the GP6 

(backward primer) region (101). Moreover,

increased primer length contributes to more 

efficient amplification, and has helped to 

improve the initial GP primers. When 

compared to their previous versions, these 

new primers present 10- to 100-fold higher 

sensitivity.

with corresponding regions of L1 ORF of 23 mucosotropic HPV genotypes. 

Characters indicate mismatched pairs and nucleotides identical to those in the 

consensus sequence are indicated by dots. Adapted from (100).

II.1.5 BSGP5+/BSGP6+ primer set

More recently, the GP-PCR protocol has been improved to include L1 sequence 

information of up to 48 HPV types (102). This new BSGP5+/BSGP6+ protocol 

increased plasmid amplification of genital HPV types 10- to 1000-fold compared to 

GP5+/GP6+. Suitable for epidemiological and diagnostic applications, integration of 

internal Beta-globulin PCR allows simultaneous DNA quality control without affecting 

Figure 5: Alignment of GP5 and GP5+ (A) 
and GP6 and GP6+ primers (B)
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the sensitivity of HPV detection. This protocol has been combined with Luminex 

technology to perform large-scale epidemiological studies (103, 104).

II.1.6 Primer set targeting mucosal and cutaneous PVs

As the diversity of identified HPVs increased over the years, and their biology was 

deciphered, a few types were suspected of being associated with skin cancer (105).

Thus, the interest in detecting not only genital but also cutaneous PVs, and even all 

potential pathogenic PV types in general, increased over time. Thus, in 1994, 

Shamanin et al. published new primers aiming at detecting not only the known PV 

types, but also very distantly related types (106). Looking for the most conserved 

regions between L1 ORF of 45 HPV and 9 animal PV, it appeared that this region 

happened to coincide with the previously described GP-PCR region (94). These 

degenerate primers were successfully used to detect known HPVs and animal PVs, 

but also generated some false positive signals, raising concerns about the specificity 

of the assay. Subsequent DNA sequencing of the obtained PCR product appears to 

be the only way to confirm the presence of PV sequences. Two years later, De 

Villiers et al. used several combinations of these primers, enabling detection of 18 

cutaneous HPVs associated with Epidermodysplasia Verruciformis (EV) (107).

II.1.7 Primer set targeting EV-associated HPV

Due to the increased interest in EV-associated HPV, Berkhout et al. developed a 

nested PCR protocol that enables detection of all known EV-associated HPV types at 

relatively low-copy-number levels (108). Combined with radioactive sequencing, 

these degenerate primers reveal many multiple infections never characterized before. 

A slightly modified version of these primers was subsequently developed by Boxman 

et al. (109).

All of these PCR methods allowed the detection of a wide range of cutaneous PV 

types, but their combined usage over time has resulted in discrepant reports (110).

II.1.8 FAP primer set

Hence, a general PCR method using single pair of degenerate primers and enabling 

detection of a broad range of HPV was developed in 1999 by Forslund et al. (111).
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Using information from the L1 ORF of 80 HPV types from the HPV Sequence 

Database Compendia (112), two regions were defined with a relatively high degree of 

nucleotide sequence identity, leading to the construction of two degenerate primer 

sequences, FAP59 and FAP64 (Figure 6).

Lines and characters represent 

identical and mismatched 

nucleotides, respectively.

Degenerate nucleotides :W = T, A ; 

I = inosine ; Y = C, T ; D = A, G, T ; 

B = G, C, T ; H = A, C, T ; V = A, C, 

G. Adapted from (111).

Generating an amplicon of 478 bp, these primers allowed the characterization of 12 

new HPV candidates. The method presents high sensitivity and allows detection of 

fewer than 10 copies of certain cloned HPV genomes. The technique was also found 

to detect significantly higher numbers of HPV from skin samples when compared to 

the nested PCR test described by Berkhout et al. (108). The main limitation is that 

direct sequencing of the amplicons from clinical material was unsuccessful due to the 

Figure 6: Alignment of the FAP59 
(a) and FAP64 (b) sequences.
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presence of more than one type of HPV template in each sample. Moreover, the 

same authors observed an underestimated HPV prevalence in biopsies from 

immunocompetent patients, raising the need to increase the method’s sensitivity 

(113). In any case, this method was successfully used in the following years after its 

development, and has led to characterization of 30 putative new human PVs (41) and 

53 putative new animal PVs (114).

Four years later, the same author published an improved version of these primers 

using single-tube nested ‘hanging droplet’ PCR (115). The 15 EV associated HPVs 

-related HPV types 

(116). The goal of this primer improvement was to be able to capture more skin-

primers’ sensitivity through the use of nested primer pairs without increasing the risk 

of cross contamination from the primary amplification product due to the two-tube 

system needed to perform a nested PCR (117). Thus, a single-tube nested ‘hanging 

droplet’ PCR was developed. A region of 235bp between the original FAP 59/64 

primers was identified when looking for a conserved region between the L1 genes of 

the 1996 HPV Sequence Database compendia (112) and two candidate HPVs, 

HPV92 and HPV93. A couple of new primers, FAP6085F and FAP6319R, were 

designed in this region (Figure 7). The sensitivity of these newly designed primers 

was increased 10-fold compared to the initial FAP primer protocol. The FAP primers 

have since been actively used to study HPV diversity in the skin (118, 119) as well as 

to develop new HPV detection methods (120, 121) that can be combined with 

Luminex (122) or with NGS (123, 124). Moreover, many animal PVs have also been 

characterized using these primers (125-129). In 2015, at least twenty-eight sub-

genomic fragments identified using the FAP primer (FA-fragments) were recognized 

as novel HPV types (130) (Table 2).



19

Lines and characters represent identical and mismatched nucleotides, respectively. 

species have an HPV name in bold font. Degenerate nucleotides: W = T, A ; I = 

inosine ; Y = C, T ; D = A, G, T ; B = G, C, T ; H = A, C, T ; V = A, C, G. Adapted from 

(115).

Adapted from (130).

Figure 7: Alignment of the FAP6085F (a) and FAP6319R (b) sequences

Table 2: Twenty-eight sub-genomic FA-
fragments recognized as novel HPV types 
in 2015
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II.1.9 CUT primer set

In 2010, Chouhy et. al. developed a new generic primer system targeting both 

mucosal/genital HPV and cutaneous HPV, leading to the characterization of HPV115, 

type (131). The L1 ORF of 88 cutaneotropic and mucosotropic 

HPVs were aligned to find conserved regions, and led to the design of 4 forward 

primers, namely CUT1Fw, CUT1AFw, CUT1BFw and CUT1CFw, and one reverse 

primer, CUT1BRv (Figure 8).

Lines and characters represent identical and mismatched nucleotides, respectively. 

Degenerate nucleotides of primers: I = inosine, Y= C or T, R= A or G. Adapted from 

(131).

The 5 primers can be prepared as a mix (CUT1ABCFw) and yield an amplicon of 370 

bp. When comparing the efficiency of CUT primers with that of FAP primers using 

Figure 8: Alignments of the forward and reverse CUT primer sequences with the 
corresponding region in the L1 ORF of 88 selected HPV types
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skin samples, it appears that they have a differential specificity, with only a subset of 

samples tested being positive using both primers. Moreover, the sample that came 

back positive for both primer systems only presents the same viruses in 22% of 

cases (12/55), for a total of 69 different HPV types or putative new types identified, 

including 10 detected by both primer systems (Figure 9).

Adapted from (131).

Presenting a better capacity to identify novel HPVs, the CUT primer system also 

showed a broader capacity to detect HPVs from different genera and species with 

respect to the FAP primer system. This primer system was thus used in the following 

years for prevalence studies (132), as well as in combination with NGS (133).

II.1.10 Consensus-degenerate hybrid oligonucleotide primers (CODEHOP)

In 2004 Baines et. al. also developed new consensus-degenerate hybrid 

oligonucleotide primers named CODEHOP to detect novel PVs (134). Clues 

indicating the possibility that some HPVs may be more closely phylogenically related 

to animal PVs than to human genital or mucosal PVs motivated the synthesis of 

these primers. PVs sequences from the Human Papillomaviruses Database hosted 

by the Los Alamos National Laboratory (LANL) between 1994 and 1997 were used to 

design the primers. Conserved amino acid sequences from the PV L1 protein of 

Figure 9: Differential capacity of CUT and FAP primer systems for HPV type/novel 
putative type detection
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representatives from many different PV types (human and animal) were retrieved, 

and blocks were defined using the Blocks program (135). Two blocks (E and H) 

yielded primers that could amplify plasmids containing representative PVs from three 

of the six supergroups defined as follows: (A) for mucosal/genital HPV types, (B) for 

cutaneous/EV-associated HPV types, (C) for bovine and deer PVs, (D) including 

BPV4, (E) for rabbit PVs and variants of HPV1 and, lastly, the group (S) to represent 

Mastomys natalensis PV (MnPV). Degenerate primers Mayo E (ME) and Mayo H 

(MH) were derived from these blocks, and subsequent consensus partially 

degenerate primers were created for each group, including a clamp region to match 

the specific group of papillomaviruses (Figure 10).

for each group. Adapted from (134).

Even though they present equivalent sensitivity for HPV detection in the 

genital/mucosal group (group A) when compared to previous MY09/11 primers, 

Figure 10: CODEHOP PCR sequences
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CODEHOP primers show greater ability to detect PVs from the other 5 groups when 

tested on plasmid and clinical samples from esophageal and tonsillar cancer.

In 2013, approximately 200 to 250 putative HPV types were identified using one of 

were fully cloned and characterized (136). To obtain longer sequences, primers 

located in the L1 and E1 primers were used together to reach around 4 kb amplicon 

and enabled the characterization of HPV156 (136). Using this primer in order to 

isolate and reconstruct a full genome was successful when combined with cloning 

and Sanger-sequencing-based strategies. However, this approach is quite laborious 

and time-consuming, and enables identification of only the most represented 

amplicons. In particular, this strategy is ineffective in the context of multiple infections, 

or in the event of a very low amount of viral DNA in the initial sample.

II.2 Rolling circle amplification (RCA)

Identification of novel PV types has been greatly facilitated by the use of a special 

isothermal DNA amplification technique, RCA, enabling amplification of any circular 

single- or double-stranded DNA molecule using bacteriophage phi29 DNA 

polymerase and random hexamer primers (Figure 11) (137). This method does not 

require any prior knowledge of the nucleotide sequence content and allows the 

detection and high-fidelity amplification of circular viral genomes, the polymerase 

being highly efficient and less error-prone. Used in combination with genus-specific 

primers, RCA can be directed towards specific PV types (138).

(A) Primer hybridization on circular 

denatured dsDNA. (B) DNA synthesis 

by phi29 DNA polymerase following the 

matrix. (C) Non-stop amplification of 

concatemeric repetitions of the circular 

genome (D) DNA strand movement 

permitting exponential amplification (E).

Figure 11: Amplification of circular 
DNA matrix by RCA
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Restriction analysis, cloning and Sanger sequencing of RCA led to the identification 

of novel HPVs (139). One limitation of the RCA technique is its capacity to also 

amplify the host genome due to RCA’s ability to also amplify linear DNA to a lesser 

extent. Thus, pretreatment with exonuclease or separation of the targeted 8kb 

fragment by gel electrophoresis must be applied (140) to select for the amplified viral 

DNA material. Optimized RCA protocols followed by restriction enzyme analysis and 

qPCR have been applied to improve HPV16 detection in human keratinocytes (137).

II.3 Combination with NGS

The first robust DNA sequencing method was developed during the 1970s at the 

Medical Research Council Center in Cambridge by Frederick Sanger (141), who was 

awarded the Nobel Prize in 1980 for this innovative discovery. The method is based 

on incorporating complementary nucleotides during in vitro DNA replication, which 

can be determined at the end of the experiment. The Sanger sequencing method 

was used to produce the first human genome in 2001 (142). Nevertheless, the main 

disadvantage of this sequencing technique is its limited throughput.

This need has driven the development of new high-throughput sequencing methods, 

known as High-Throughput Sequencing (HTS) or Next Generation Sequencing (NGS) 

(143). NGS, or “deep sequencing”, refers to high-throughput sequencing 

technologies that allow massive parallel sequencing of different DNA molecules in a 

short period of time. Several NGS platforms are available, and differ in the 

technology used, the costs of sequencing and the amount of sequence data 

generated (144).

Whatever the sequencing technology, the NGS DNA sequencing method follows 

three steps: library preparation, amplification of DNA fragments and sequencing of 

these fragments (143). The resulting entity is called a sequencing read, which 

identifies the sequence of a particular DNA segment, and an NGS experiment can 

create a massive amount of reads, up to several hundred million. Most NGS 

technologies can generate "paired-end" reads (i.e. read from the two ends of a 

particular DNA fragment) but some are limited to "single-end" reads.
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The capacity of NGS technologies to sequence millions of DNA fragments is a major 

improvement when comparing NGS and traditional Sanger sequencing: NGS offers 

the unique ability to detect many diverse DNA sequences simultaneously.

The raw sequencing only outputs small segments corresponding to initial DNA, but 

these small fragments need to be mapped to the reference DNA to then entirely 

reconstruct the DNA sequence or mapped to an annotated DNA sequence database 

to characterize the sequencing reads. There are multiple methods of NGS alignment 

based on different algorithms. The main challenges justifying these developments 

are computing time and accuracy of the method (145).

II.3.1 Metagenomics

In recent years, the genome sequences of several novel PV types have been 

identified using NGS in various specimens such as the skin (123, 140, 146, 147),

head and neck mucosal sites (148-150) and genital tissues (151). NGS has similarly 

been commonly used to analyze amplicons containing PV sequences generated 

using the original RCA method (152), in combination with PV type-specific primers 

(138) or using junction probes (153).

In the fall of 2018, Pastrana et. al. published an important metagenomic study 

leading to the discovery of 83 novel HPVs in immunodeficient patients (154). Using 

virion enrichment, RCA and NGS, they identified all circular DNA viruses in 48 

patients presenting immunodeficiencies (warts, hypogammaglobulinemia, infections, 

myelokathexis (WHIM) syndrome or EV) and compared them with healthy adults and 

non-immunodeficient individuals. Such a study has required crucial bioinformatics 

support and the building of a data processing strategy (https://github.com/BUCK-

LCO-NCI/VirConTaxa). Here, contigs were de-novo assembled using SPAdes (155)

after quality trimming of the reads. Contigs longer than 300 nt were subsequently 

identified using the MegaBlast algorithm against the nr/nt NCBI database and all 

sequences presenting at least 95% identity with their matches were considered as 

known sequences. To identify distantly related previously unknown viral sequences, 

a viral protein database was created utilizing a custom library of ORFs that are 

known to be well conserved, such as E1 and L1 of HPV16, and many other virus 

proteins. tBlastn was used to query this database, Blastn against Genbank enabled 

false positive elimination and criteria such as contig length, coverage and percentage 
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of identify were defined to select for more promising putative new HPV sequences. 

Circularity of the promising sequence identified was confirmed by re-mapping the raw 

reads to their respective contigs in order to find reads overlapping both ends of the 

candidate genome. Incomplete sequences (non-circular and with a length different 

than the expected 8kb) were extended at their ends by re-mapping of raw reads if 

coverage, extension length, overlapping region length and percentage of identity on 

the overlapping region criteria were met. An iterative process was used until the 

aforementioned criteria were no longer met, and Sanger sequencing was used to 

confirm the low covered novel HPVs. Lastly, phylogenetic analysis was performed to 

better characterize putative new HPV genomes (Figure 12). Sixty-nine out of the 83 

new HPVs are Gamma types, 8 are Beta types, 1 is Mu, 1 is Alpha and 4 are 

potential new HPV types (<70% identity). In addition, the authors characterized 35 

incomplete genomes representing potential new types.

Asterisks show known representative species that did not fit due to the figure’s space 

restrictions (counterclockwise, Beta 3-HPV49, Gamma 20-HPV163, Gamma 21-

Figure 12: Phylogenetic analysis of 83 reported novel HPV types based on the L1 
protein sequence
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HPV167, and Gamma 2-HPV48). Orange, Alpha; red, Beta; blue, Gamma; pink, Mu;

green, Nu. Dotted lines are not significant and arrows indicate potential new species. 

Adapted from (154).

Around the same time that the Pastrana et. al. results were published, Tirosh et.al. 

published deep metagenomic sequencing data from dedicator of cytokinesis 8 

(DOCK8) -deficient skin samples, describing 250 putative new HPV genomes (156).

DOCK8 deficiency is a rare primary human immunodeficiency characterized by 

recurrent cutaneous and systemic infections, as well as atopy and cancer 

susceptibility (157). Total DNA was isolated and library preparation was performed to 

generate shotgun metagenomic sequence data from skin sites. Reads were also de-

novo assembled using SPAdes (155) to form contigs. Contigs less than 750 nt in 

length and contigs presenting aberrant GC content were filtered out, and remaining 

sequences were taxonomically classified to a taxon based on the BLASTN best hit 

against the nt database. In all, 8,631 of the contigs were identified as belonging to 

the Papillomaviridae family, including 3,725 contigs with a size comparable to an 

HPV genome (~7.9kb). Using the Papillomavirus Episteme (PaVE) Database (158)

(www.pave.niaid.nih.gov), the contigs were masked if presenting more than 90% 

identity on a 500nt window, and subsequently excluded if more than 4000nt of the 

contigs was masked, resulting in 2,189 contigs. The mash algorithm (159) was used 

to build a graph of 95% identical contigs which were then clustered using SPICi (160)

to remove redundant genomes. This clustering resulted in 208 clusters and 42 

singleton genomes, for a total of 250 non-redundant HPV genomes. Using the L1 

taxonomy tool available on the PaVe website 

(https://pave.niaid.nih.gov/#analyze/l1_taxonomy_tool), 205 out of the 250 novel 

genomes were depicted as novel types and 45 genomes were depicted as members 

of a single novel species. The novel species were subsequently verified by targeted 

PCR to the L1 region from the original DNA extracted from the skin swabs. In all, 229 

of the 250 novel HPV genomes belonged to gamma genus of HPV, 19 belonged to 

the beta genus and 2 belonged to mu genus (Figure 13).
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Each genus is depicted by a different color; pie slices represent different species 

within a genus and lighter shades represent new HPV types within the species. 

Numbers around the pie refer to the HPV type count. Adapted from (156).

The main pitfall of massive parallel sequencing is that contig assembly can result in 

artifactual assembly of chimeric genomes (161, 162), particularly when closely 

related viral strains are present in the same sample, and methods are still being 

developed to limit the occurrence of chimeric sequence reconstruction (163, 164).

Pastrana et. al. found a way to address this issue, for the case of long chimeric 

reconstruction, by creating phylogenetic trees based on E1 protein sequences and 

L1 protein sequences, to enable checking of artifactual chimerization between early 

and late genome segments (156). Yet, small artifactual re-arrangement among 

closely related genomes remains undetectable. As well, as already stated in the RCA 

section, the capacity of RCA to additionally amplify the human genome may impair 

the amplification of HPV genomes if present in low amounts. The preference of WGA 

to amplify circular molecules is an advantage when detection of PVs is desired, but 

the lower efficiency in amplifying linear molecules impairs the ability to infer what 

amount of circular and linear viruses may have been present in the original sample 

(165-167). For example, in the study of Bzhalava D. et. al., NGS of FAP PCR 

amplicons of skin samples detected 352 different HPV types/putative novel types 

compared with only 26 different HPVs detected by NGS of RCA-amplified samples 

(140).

Figure 13: HPV diversity on DOCK8-deficient patients’ skin
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II.3.2 Amplicon-based experiment

Paired-end NGS has also been used to analyze amplicons of various PV-specific 

broad-range PCRs (123, 124, 146). In 2011, Ekström et. al. studied the diversity of 

HPV types in skin lesions such as squamous cell carcinoma (SCC), actinic keratoses 

(AK) and keratoacanthomas (KA) from fresh frozen biopsies (123). The FAP primers 

were used in combination with NGS, leading to the discovery of 44 novel putative 

HPV types. After the removal of primer sequences and all sequences at least 80% 

similar to the human genome, the MIRA assembler (168) was used to assemble 

contiguous sequences and, subsequently, a Blastn against GenBank was launched 

to identify putative novel HPVs presenting more than 10% dissimilarity to other HPV 

genomes. In this study, a large number of putative novel types were found in spite of 

the fact that the degenerate primer pair used was not able to detect all HPV types. 

Moreover, sequences from the genus Alpha - HPV 3, 16, and 77 - were also found. 

However, correct classification of the novel putative viruses can only be obtained by 

cloning and sequencing the full viral genomes.

In 2013 and 2014, the same research team published two other studies describing 

the use of PV-specific broad-range primer systems in combination with NGS (124,

146). The samples processed came from frozen biopsies and skin swabs from SCC, 

AK and KA, as well as from basal cell carcinomas (BCC) in the most recent study. 

For their study in 2013, the FAP56/64 primer was used to amplify the L1 region in 

each individual sample, and pools of samples were constructed and bidirectionally 

sequenced at least twice, using multiplex identifiers (MIDs) allowing separation of 

individual samples from each other in a single sequencing run and without the use of 

MIDs (124). In order to increase the coverage of HPV types and investigate whether 

their broad detection by the FAP primers could be further improved, FAP primer 

sequences were aligned against all HPV sequences from GenBank. As well, five 

forward and four reverse partially degenerate new primers were designed. Used in 

combination with the FAP6085 and FAP64 primers, the reads generated were 

trimmed for low quality bases and primer sequences, and SSAHA2 software was 

used to screen for human and bacterial DNA (169). The remaining sequences were 

assembled using MIRA (168) and identified by Blastn against GenBank, and a 

protocols was set up to identify potential chimeric sequences. In short, the sequence 

that aligned to its most closely related sequence in GenBank was divided into three 
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equal segments. If at least one of the segments differed in similarity to the 

corresponding nearby parts by more than 5% (e.g., if segment 1 was 88% similar and 

segment 2 was 94% similar) the sequence was considered as a “possible chimera”. 

Lastly, HPV-related sequences, which had less than 90% identity over 90% of their 

length to known HPV genomes, were classified as putative new HPV types. Analysis 

of their sequencing runs led to the identification of 273 different HPV types or 

putative types, including 87 known HPV types, 139 sequences from previously 

known putative HPV types and 47 sequences of putative novel types (44 putative 

new Gamma PVs and 5 putative new Beta PVs). Only 17 of the 44 putative new 

sequences were detected in Luminex-based testing of the same samples, suggesting 

low copy numbers and/or mismatches to the PCR primer sequence. Their results 

proved that by using updated sequencing methods and PCR protocols, even HPV 

types present in low copy numbers can be found. Furthermore, twenty-five different 

known mucosal types from the Alpha genus were also detected, highlighting the 

value of updating the primer systems. Finally, the re-sequencing provided a clear 

distinction between HPV types detected by all MIDs, probably present at high copy 

numbers, and HPV types only picked up by a subset of the MIDs, and therefore 

probably present at a much lower abundance.

II.3.3 Evaluation of the methods

One year later, this research team published a third study following the same 

protocols, leading to the characterization of HPV197 (146). At the same time, they 

launched two other NGS (using MiSeq and HiSeq Illumina machine) without any prior 

PCR on the same samples in order to compare the efficiency of both methodologies. 

The main bioinformatic steps were as follows: quality control (QC) and trimming of 

raw reads, exclusion of reads presenting high similarity to the human genome over 

their length when aligned with BWA-MEM (170), normalization (redundant read 

exclusion and reduction of sampling variation and sequencing errors), and lastly de-

novo assembly using the SOAPdenovo (171), SOAPdenovo-Trans (171), Trinity (172)

and IDBA-UD (173) assemblers. Finally, reads were mapped back to the 

reconstructed contigs in order to increase their coverage. The same chimeric 

detection protocol described above was applied (124). The MiSeq produced a total of 

0.03% viral reads, 75% of which were HPV-related reads, identified in 28 out of 91 
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specimens (four known HPV types, one putative known and one unknown). The 

HiSeq produced a total of 0.04% viral reads, 96.4% of which were HPV-related reads, 

identified in 31 out of 91 specimens (three known HPV types, two putative known and 

four unknown). Putative known types are types for which the International HPV 

Reference Center (https://ki.se/en/labmed/international-hpv-reference-center) did not 

receive a biological clone, did not re-sequence the genome, and thus are not part of 

the reference taxonomic classification of the Papillomaviridae sequences, and do not 

have any official HPV number. The author gave no information on the fraction of viral 

reads when using PCR-guided amplification before sequencing. Nonetheless, a total 

of 24 known HPV types, 13 putative known types and 3 novel types were detected 

using this methodology. Only two HPV types were detected both when sequencing 

without prior general primer PCR and when sequencing PCR amplicons, and 

HPV197 was detected only without prior HPV-specific amplification. The FAP PCR 

primer sequence had several mismatches with HPV197, indicating that this virus 

could not be amplified by this primer set.

To conclude, viruses with low similarity to primer sequences will not be amplified 

during the PCR reaction and thus, will remain undetected if a PCR reaction is used 

before the detection step. The unbiased method is not dependent on any particular 

sequence but is less sensitive in detecting low amounts of virus. Moreover, without 

prior HPV-specific amplification, most of the sequencing reads will be discarded due 

to the very low specificity of the protocol. The most sensitive method is to perform 

sequencing of PCR amplicons. The review of the different techniques to detect and 

characterize PVs from PCR methods highlights the power of NGS, and raises the 

need to update the HPV-PCR primers in order to accurately represent today’s PV 

diversity, and improve their ability to detect a broad range of diverse PVs.

III. Bioinformatics workflows for virus detection

Rapid advances in NGS technologies have helped the development of new 

bioinformatics methods for identifying and characterizing pathogens (174), and more 

broadly to study the genetic material recovered directly from environmental samples. 

Amplification and sequencing of the 16S rRNA gene has allowed for high-throughput 

detection of prokaryotic communities, while shotgun metagenomic sequencing 
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approaches have enabled the capture of the composition and functional potential of 

multi-species populations. 

The first approach required a good biomarker, constructed based on conserved 

features shared among the representatives of the group studied, but also presenting 

sufficient diversity to enable a clear distinction between them (175). Such a 

biomarker is not always available for all groups of organisms studied and is even less 

common when representatives of the group studied present a significant molecular 

divergence during the time. Moreover, the pertinence of using such biomarkers is 

also linked to the biomarker’s capacity to reconstruct the phylogenetic history of the 

group studied (176).

The second approach aims to identify any genetic material present in a given sample 

by employing non-specific amplification and sequencing of nucleic acid. 

Metagenomics has been used extensively to identify already-known and novel 

viruses in seawater, nearshore sediments, feces, serum, plasma and respiratory 

secretions (177). This approach has helped scientists to study extraordinarily diverse 

and previously unexplored microorganisms, which has led to the realization that there 

are many organisms yet to be discovered (178).

The fact that these two techniques are independent of lab culturing makes it easier to 

sequence large groups of microorganisms in many environments without the need for 

a wet lab approach. Because there is no gene that is common to every virus, viral 

metagenomics based on sequencing of non-specifically amplified genomic material 

has become more commonly used. Nonetheless, strategies have been developed to 

study subgroups of viruses sharing some genetic elements used as a biomarker (179,

180). In both methodologies, cost reductions paired with the increased amount of 

data thanks to the advent of next-generation sequencing has led to a rapidly growing 

demand for bioinformatics software. Sophisticated bioinformatics tools able to 

process millions of reads in a reasonable time are thus required and therefore must 

be available to the scientific community. Difficulties have emerged due to NGS 

instruments producing inherent platform-specific error profiles. Possible biases and 

artifacts introduced during the sequencing process need to be sufficiently understood. 

However, it could be shown that they can, if left untreated, have a falsifying impact on 

study results (181-187).
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III.1 Quality control

Quality control (QC) must be performed prior to any other data manipulation steps to 

remove artifacts, such as low-quality and contaminant reads. Low-quality reads may 

compromise downstream analysis, and their removal therefore increases accuracy in 

detecting the microbial or viral diversity of the sample (188). Identification of low-

quality reads is possible during the QC stage thanks to the PHRED score. The 

PHRED score is part of the files containing the DNA sequencing data, coming from 

the analyses of the base calls, and encompassing a quality value for each call based 

that base call (189). Thus, the Qphred score corresponds to the probability that a 

base has been erroneously incorporated (Figure 14). A Qphred value ranging from 

25 to 30 is commonly employed to guarantee sequence confidence.

The NGS QC Toolkit is one existing tool for quality checking, filtering, trimming, 

generating statistics and converting NGS data files to different formats (190). One of 

today’s most commonly used tools to perform QC on NGS data is FastQC (191),

which enables processing of the same step described above, and generates a user-

friendly Hypertext Markup Language (HTML) report.

are trimming of adapters inserted during library preparation and the removal of reads 

possessing low-quality base calls identified based on the Qphred score value for 

each sequenced base. Adapted from (192).

Sequences from adapters, which are chemically synthesized linkers ligated to the 

end of the DNA fragment to be sequenced during library preparation and enabling 

binding of the DNA fragment to the sequencing support (flowcell), must also be 

removed. This step can be performed using Cutadapt, which aligns the reads with all 

Figure 14: The main steps during QC
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adapter sequences, depending on the sequencing platform (193). The algorithm 

penalizes alignments in which adapter sequences are aligned with

reads, and thus all sequences from the adapters are removed. On the other hand, if 

the adapter sequence is overlapped at the beginning of the read, the sequences prior 

to the overlap are removed. Trim Galore (194)

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) is a wrapper tool 

incorporating the Cutadapt algorithm and the QC reports from FastQC, making it a 

convenient tool for the QC step.

III.2 Assembly algorithms for metagenomic data

In general, there are two approaches for WGS metagenomics: read-based and 

assembly- based metagenomics (Figure 15). The former aims to classify single 

reads with regard to taxonomy and function. It is well suited to answer questions 

concerning the taxonomic composition of a sample or related to the presence or 

absence of organisms, genes or metabolic pathways. A fragment of metagenome 

sequences can be aligned to known reference genomes or genes to examine their 

coverage and variation, but this method is not suitable for discovery of novel 

organisms. 

In assembly-based metagenomics, reads are first de-novo assembled into contigs 

and then clustered into so-called “genome bins” during a binning process, in order to 

reconstruct scaffolds. Contigs are continuous stretches of sequence containing only 

A, C, G, or T bases without gaps, and scaffolds are created by chaining contigs 

together (sometimes separated by gaps) using additional information about the 

relative position and orientation of the contigs in the genome. Thereby, it is possible 

to reconstruct genomes of abundant taxa from a metagenomic sample. For this 

purpose, the corresponding workflow includes an assembler that is well suited for the 

reconstruction of long contigs and a genome binner to cluster such sequences from 

the same organism in order to reconstruct scaffolds.

The difficulty of metagenome assemblies lies in the biological complexity of the 

sample, being a mixture of genomic elements from different genomes at varying 

coverages. Such a mixture contains some low-complexity sequences (i.e. dimer 

repetitions), as well as orthologous and paralogous sequences of different organisms. 

Homologous sequences refer to historical continuity, in which biological features in 
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related taxa are similar in pattern or form because they evolved from a corresponding 

structure in a common ancestor. Paralogous sequences are related to biological 

features retrieved in the same organism by descent from a single ancestral feature 

that was duplicated, and that may have a different DNA sequence and function. The 

difficulties in differentiating such sequences can lead to intragenomic or intergenomic 

chimeric assemblies (195, 196).

Square boxes represent data and results, and oval boxes represent processing steps. 

Adapted from (197).

Many tools are available to agglutinate reads into large contiguous segments, and 

most of them are based on de-novo assembly, defined as the reconstruction of long 

segments or genomes without a reference to guide the assembly, and thus, without 

the help of databases (198, 199). Contigs allow for multiple sequence alignments of 

Figure 15: Schematic overview of the possible major steps in a metagenomic 
workflow
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reads relative to a consensus sequence, and the performance of the genome 

assembly is evaluated based on the size of the smallest contigs in a set of contigs 

that makes up at least 50% of the assembly, named N50 (199).

Two main types of algorithms have been implemented in de-novo assembler tools: 

the greedy algorithm, which aims for a local optimum, and graph-based algorithms, 

which aim for a global optimum. In the former, identical or nearly identical reads are 

retrieved by constructing a matrix of pairwise distances between reads, and reads 

presenting the greatest overlap are assembled into contigs. The newly formed 

contigs then have their distance with each other evaluated, and aggregation is 

repeated until a certain distance threshold is met. An example of the greedy 

algorithm is the overlap-layout-consensus algorithm that was incorporated into 

assembly tools at the end of the 20th century to find overlaps between reads, in order 

to determine a layout of the reads to produce consensus sequences (200, 201). The 

limitations of this algorithm implementation are the time of execution when dealing 

with large read sets, and poor performance on repeated regions (202). In graph-

based algorithms, a global optimum is reached instead of a local optimum, and these 

algorithms are mainly based on de Bruijn graph methods (Figure 16). De-novo 

assembly methods based on de Bruijn graphs rely on k-mers: the sequences are 

divided into pre-defined segments of size k which are overlapped to form a network 

of overlapping paths that interactively form the contigs, allowing the discovery and 

reconstruction of new genomes (198). In graph theory, k-mers are the nodes, and the 

overlapping parts are the edges, which can be weighted based on the overlapping 

length. Graph-based assemblers are nowadays the most commonly used type of de-

novo assembly algorithm.

Graph-based de-novo assembly programs can be geared towards single genome 

assembly or towards metagenomic assembly. In the first case, the algorithm is 

optimized to reconstruct a single genome out of the sequencing reads but does not 

allow the capture of the polymorphisms among subspecies or genomic regions 

shared among several species. This can prevent the generation of long contigs, 

essential for the elucidation of full genomes, due to distinct ramifications in the de

Bruijn graph.

A range of specialized short-read metagenome assemblers are now available, all 

utilizing different techniques to deal with data complexity.
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where overlaps among complementary reads are represented by de Bruijn graph 

pathways. As several genomes are present, many branches are expected in a de 

Bruijn graph, and following the pathway, the assembler identifies a large sequence. 

The results of the overlapped reads can be aligned against a dedicated database for 

taxonomic and functional annotation. Adapted from (192).

In 2011, Peng et al. developed Meta-IDBA, a metagenomic assembler for paired-end

reads (203). Oriented towards the consideration that multi-species presenting 

polymorphic regions are present in the analyzed sample, the software identifies and 

Figure 16: Genome assembly based on a de Bruijn graph
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removes the branches originating from such regions with the aim of discriminating 

species and thus forming a de Bruijn graph with a set of connected components, 

each corresponding to a set of subspecies. Each component is transformed into a 

multiple alignment with a consensus sequence, representing the contigs of different 

polymorphisms of the same species to differentiate the diversity of microbial or viral 

groups in the sample. The assembler Meta-IDBA is still limited in its ability to 

separate low-complexity sequences from different species into independent 

components.

A year later, the same research group published IDBA-UD, a de novo assembler for 

single-cell and metagenomic sequencing data with highly uneven depth (173).

Improvements in this new assembler include better handling of sequencing errors 

present in k-mer sequences that decrease de Bruijn graph accuracy as well as a 

better tackling of insertion/deletion (indels). A local assembly technique with paired-

end read information was also used to solve the branch problem of low-depth short 

repeat regions.

The same year, Namiki et al. published MetaVelvet, an assembler for de novo

metagenome assembly that prefers to decompose the multi-species de Bruijn graphs 

into individual subgraphs for each species instead of considering a unique de Bruijn

graph incorporating information from many species (204) (Figure 17). Once the initial 

de Bruijn graph has been built, MetaVelvet uses the k-mer distribution frequency 

(node coverage) information as well as the information on the number of incoming 

and outgoing edges for each node to decompose the graphs into subgraphs and thus 

proceed with contig assembly.

Once again in 2012, a massively distributed metagenome assembler (Meta) was 

coupled with Ray Communities (205), which profiles microbiomes based on uniquely 

colored k-mers in a taxonomic tree, to related taxonomic information from the 

assembly into functional annotation (206). Each k-mer is directed to a higher taxon 

as the number of taxa with the same k-mer increases, classifying the taxa based on 

the closest common ancestor. This required a reference database (i.e. NCBI or 

GreenGenes) to color the k-mers, and thus enable taxonomic classification of the 

organisms as they are reconstructed.

Another software, MetAMOS, available starting in 2013, also allows assembly and 

taxonomic profiling, and is a concatenation of public tools covering those tasks (207).

In this tool, contigs are constructed using software specific to the sequencing 
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platform and the library sizes are re-estimated based on the mapping of reads back 

to the contigs. Then, repeated regions are identified and scaffolds are assembled 

based on groups of contigs, followed by correction of the extended contig assemblies 

and detection of genomic variants. Finally, the scaffolds used to determine the 

taxonomic profile and functional annotation are visualized in an HTML report.

Adapted from (204).
Figure 17: Decomposition of a mixed de Bruijn graph by MetaVelvet
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In 2015, computational time and memory performance were improved in MEGAHIT, 

through the use of succinct de Bruijn graphs, a compressed version of de Bruijn

graphs (208). Moreover, MEGAHIT takes into consideration singletons, i.e. reads that 

do not participate in the reconstruction of any contigs, enabling better recovery of 

taxa with a low abundance.

One of the most recent assembly tools for metagenomics is MetaSPADES (209),

which is built upon the commonly used SPAdes genome assembler (155) and

combines graphs of different k values. Assemblers using a range of k-mers feature 

overall better performance compared to single k-mer assemblers because larger k-

mers tend to facilitate the reconstruction of highly abundant genomes, whereas 

smaller k-mers are better suited for low abundant genomes (210). Of note, Spades 

includes an option to look for circular genomes, a highly important feature in the 

context of PV detection.

III.3 Taxonomic classification

Taxonomic classification of metagenomic reads consists in assigning sequences to a 

taxonomic group, and thus identifying the profile of the microbial/viral community in 

the analyzed sample. Two types of taxonomic classification can be applied: 

reference-based and reference-free.

Reference-based classification relies mainly on local alignment tools against a more 

or less complete database. MG-RAST was one of the first reference-based 

taxonomic classifiers available (211), predicting genes using FragGeneScan 

prediction of protein-coding regions in short read tools that combines sequencing 

error models and codon usages in a Hidden Markov Model (HMM) (212). Gene 

sequence predictions are then translated into amino acids using UCLUST (213) and

aligned against the M5nr database (214) using BLAT, a BLAST-based alignment tool 

designed for taxonomic annotation (215). The last version of MG-RAST is available 

through a web server as a public resource and includes post-annotation analysis and 

visualization using a MG-RAST API web interface (216).

In 2016, MEGAN, a program that can work with contigs or directly with raw short 

reads, was developed. It also relies on BLAST (217) to compare the input sequence 

against known sequences (218). Using taxonomic information from the NCBI 

database, the tool assigns each read its Last Common Ancestor (LCA) from each hit 
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of the read with a reference taxon. This tool also allows integration of functional 

analysis by incorporating InterPro2GO annotation (219).

CARMA3 (220), an improvement of the initial CARMA (221), uses a reciprocal 

BLAST search to improve classification accuracy, and includes HMMER3-based 

variants to query the Pfam database (222). This tool is also available as a web server. 

All of these similarity-based methods usually offer a high classification resolution and 

accuracy but also lack processing speed.

Reference-based taxonomic classification tools can also rely on k-mers, making the 

process faster: in KRAKEN (223), fixed-length k-mers are extracted from the query 

sequences in a hash-based index structure built from the references, and taxonomy 

is inferred based on the query’s individual k-mer matches to the prebuilt index. 

Ambiguous k-mers are assigned based on the LCA strategy, and reads are classified 

based on a path finder algorithm in a tree containing all matched k-mer taxa.

The main limitation of k-mer-based classifiers is the memory requirements. Thus, 

Centrifuge was implemented (224), indexing k-mer structures using compressed 

Burrows-Wheeler-transformed Ferragina-Manzini indexes. Short exact matches 

between a read and the index are identified and extended, and a score for each 

species hit is assigned (with longer segments having a higher score). Abundance of 

each taxa at any taxonomic rank is also computed using an Expectation-

Maximization (EM) algorithm.

Reference-free classifiers are less common, and rely mainly on sequence 

composition, such as k-mer frequency. Frequency values can be used in supervised 

machine learning approaches, as developed in PhylopythiaS+, a Support Vector 

Machine (SVM) trained on a set of reference sequences (225). K-mer frequencies of 

the reads are then used to predict the taxon.

There are some other classifiers based on machine learning, but these are designed 

to work with full-length sequences to present accurate results (226).

III.4 Virome composition and virus discovery analysis tools

Several bioinformatic tools have been developed to analyze NGS data for the 

detection of viruses, but most of them are designed to analyze the virome 

composition of known viruses in clinical settings, or to discover new viruses from 

DNA or RNA shotgun sequencing.
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In 2014, three bioinformatics tools for known pathogen identification in clinical 

samples were published, namely SURPI (Sequence-based Ultra Rapid Pathogen 

Identification (227), MePIC (Metagenomic Pathogen Identification for Clinical 

specimens) (228) and PathoScope 2.0 (229), an improvement on the initial 

PathoScope (230). SURPI, deployable on both cloud-based and standalone servers, 

focuses on process speed by proposing a “fast mode”, in contrast to its 

“comprehensive mode”, and relies on two existing alignment tools, SNAP (231) and 

RAPSearch (232). Once the common QC preprocessing step on the raw data is 

completed (removal of adapter, low-quality and low-complexity sequences), SURPI 

applies a methodology shared by nearly all bioinformatics tools for pathogen 

detection: the subtraction of host reads. This method consists in aligning the 

metagenomic reads against a database containing sequences from the host and 

excludes all of the reads that align against the host sequences. This method has 

several nomenclatures: digital subtraction, host subtraction and host read removal. In 

short, in its fast mode, remaining reads are aligned against a bacterial database, and 

reads that do not match are eventually aligned to a viral database (Figure 18). In its 

comprehensive mode, non-human reads are aligned against the full NCBI nt 

database, clustered based on the type of organism they matched (bacteria, fungi, 

viruses, etc.), and de novo aligned using AbySS (233) and Minimo (234). Finally, 

unmatched reads and contigs generated from de novo assembly are aligned to a 

viral protein database or all protein sequences in the NCBI nr collection using 

RAPSearch.

MePIC is a cloud-computing pipeline: once human reads have been removed, 

sequences are aligned against a comprehensive nucleotide database, and the 

strength of the tool relies on the use of the cloud for fast analysis.

Finally, Pathoscope 2.0 is based on several modules that perform all of the various

computational analysis steps, including reference genome library extraction and 

indexing, read quality control and alignment, strain identification, and summarization 

and annotation of results. The main strength of the tool is the PathoID module, which 

uses a penalized statistical mixture model to reassign ambiguous reads to the most 

likely source genome, based on an EM algorithm.

These tools are designed for clinical settings, and thus favor the speed of the 

process over the accuracy or sensitivity of the method.
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Adapted from (227).

Metavir2 (235) and Virome (236) are two web-based tools for virome analysis. They 

focus heavily on data visualization of environmental samples and do not focus on 

virus discovery. In MetaVir2, reads are compared to the complete viral genomes of 

the RefSeq Virus database using BLAST, and taxonomy is inferred from the best hits. 

K-mer frequency bias is used to compute a hierarchical clustering and a non-metric 

multidimensional scaling, followed by phylogenetic tree construction. Many 

interactive plots are drawn at each step. Contigs can also be given as inputs and 

ORFs are inferred based on comparison to public database like PFAM (237). Virome

Figure 18: SURPI analysis workflow
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(the Viral Informatics Resource for Metagenome Exploration) classifies viral 

metagenome reads (predicted open-reading frames) based on homology search 

results. Functional and taxonomic information is derived from databases linked to the 

UniRef 100 database and environmental classifications are obtained from hits 

against a custom database named MetaGenomes On-Line. Web-server tools require 

an internet connection to operate and can pose concerns regarding data privacy.

CaPSID (238) is a platform made up of three components: a computational pipeline 

written in Python for executing digital subtraction, a core MongoDB database for 

storing reference sequences and alignment results, and a web application in Grails 

for visualizing and querying the data. The main feature is the use of the MongoDB 

that stores host genomes and target genomes, and it has been designed to be used 

as a platform for large collaborative projects, but not for pathogen discovery.

Bioinformatic solutions for virus detection have also been developed to specifically 

target some types of viruses, as in VirFind (239), focusing on plant virus discovery. 

Based on specific dsRNA amplification methods using barcoded PCR primers 

facilitating the multiplexing of NGS library generation, the first step of VirFind analysis 

is host read removal using Bowtie2 (240). De novo sequence assembly is then 

performed on unmapped reads using Velvet (241), and the resulting contigs are 

subjected to a Blastn search against the GenBank nt database. Sequences without 

any matches are then subjected to a Blastx search against all GenBank virus protein 

sequences. Taxonomy is inferred based on official ICTV taxonomic information, and 

remaining reads without matches are translated into the six possible frames before 

looking for conserved domains. VirFind is available through a web interface for the 

user to submit their sequences.

VirusDetect (242) was also initially applied to plant and animal viruses and is 

specifically designed for virus-derived small interfering RNA detection. The program 

first maps the sRNA reads to known virus reference sequences using BWA (170) and 

then assembles the reads into virus contigs using a reference-guided approach 

(Figure 19). De novo assembly of sRNAs is also performed in parallel using Velvet 

(241) with optimized k-mer lengths. The de novo assembled contigs are pooled 

together with those generated from reference-guided assemblies and redundancy is 

removed. BlastN is launched against a reference virus database to identify virus 

contigs, and remaining contigs are further compared against the reference virus 

protein sequences using the BLASTX program. The depth of each virus contig 
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covered by sRNA reads is calculated and normalized to reads per million (RPM), 

enabling abundance calculation and inference of the detected sequence’s reliability.

Adapted from (242).

VirusSeq (243) and VERSE (244) are original tools using a custom reference 

database made up of the host genome combined with pathogens of interest 

genomes, enabling inference of the integration site. In both tools, computational 

subtraction is applied, and non-host sequences are subsequently aligned against a 

comprehensive database containing viral sequences from Genome Information 

Broker for Viruses (http://gib-v.genes.nig.ac.jp/) in VirusSeq, and against a

concatenated virus-host reference genome in VERSE (containing a separate 

pseudo-chromosome name “chrVirus”). In the latter, inter-chromosomal structural 

Figure 19: VirusDetect flowchart
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variants (SVs) are detected from aligned reads allowing inference of virus integration-

harboring regions in the host genome, considering that high-quality consensus SNPs 

and indels detected from aligned reads at the different steps are used to modify the 

virus reference genome, thus increasing alignment accuracy. In VirusSeq, initial 

alignment enables quantification of identified viruses and removal of host reads. 

Then, remaining reads are aligned against the custom reference, and discordant 

read pairs (one mate aligning to the host genome and the second mate to the virus 

genome) that support the same integration (fusion) event are clustered and fusion 

candidates are reported.

VirusHunter (245) is a bioinformatic solution for novel virus identification of data 

coming from Roche/454 and other long read NGS platforms. CD-HIT (246) is used to 

remove redundant sequences using a clustering strategy, and quality control is 

applied, consisting of repetitive region masking with RepeatMasker 

(http://www.repeatmasker.org) and low-quality sequence removal. Then, remaining 

sequences are subjected to BLASTn alignment against the host genome and aligning 

sequences are removed from the analysis. Sequences retained from the previous 

step are queried against the NCBI nt database using BLASTn and subsequently 

taxonomically classified. If a sequence aligns to both a virus and a sequence derived 

from another organism type with the same e value, it is classified as “ambiguous”. 

Finally, sequences are queried against the NCBI nr database using BLASTx and 

findings are reported.

READSCAN (247) uses SMALT (H. Postingl 2012, personal communication; 

https://www.sanger.ac.uk/science/tools/smalt-0) to align chunks of sequences to 

chunks of k-mer indexed host and pathogen database sequences. The result of the 

mapping procedure is filtered and classified into several bins, namely, host, pathogen, 

ambiguous and unmapped. The use of indexation and many parallel chunks of 

sequences analyzed simultaneously allows the speed of the process to be 

significantly increased.

Rapid identification of non-human sequences (RINS) (248) is an intersection-based 

pathogen detection workflow. BLAT (215), a blast-like aligner, is used to align non-

overlapping k-mers for each read against user-provided pathogen reference 

genomes. Reads with >80% identity are then aligned to the human genome using 

Bowtie (249) and reads with >97% identity are removed from the read set. Then, 

remaining reads are complexity filtered with LZW compression. The read set is finally 
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assembled into pathogen sequence contigs, and subsequently extended by mapping 

the original read set back to the contigs. A second alignment of the contigs against a 

non-human origin database is performed using BLAST. The author claims that RINS 

is faster than other similar tools, even though many time-consuming alignment steps 

are required.

PathSeq (250) is designed using the Apache Hadoop implementation of the 

MapReduce programming framework (http://hadoop.apache.org/mapreduce) and can 

be run on the Amazon Compute Cloud (EC2) (http://aws.amazon.com/ec2/). The 

workflow is comprised of three modules: pre-subtraction (corresponding to QC), 

subtraction (with MAQ (251) against a set of six human sequence databases, 

remaining reads being masked for repetition, and re-subtracted two times using 

MegaBlast and BlastN, respectively), and post-subtraction (BlastN and BlastX 

against NCBI viruses sequences). Finally, de novo assembly of the full set of 

remaining reads is performed before another BLAST alignment.

Finally, to our knowledge, the most recent tool for virus detection, published last year, 

is VirusSeeker (252), a BLAST-based NGS data analysis pipeline designed for 

virome composition description and novel virus discovery. Two modules have been 

specifically deployed for each purpose: VirusSeeker-Virome and VirusSeeker-

Discovery, respectively (Figure 20).

.
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Adapted from (252)

VS-Virome consists in QC (trimming of adapter and low-quality sequences), merging 

of reads pairs, redundant sequence removal and masking of interspersed repeats 

and low-complexity DNA sequences. Next, digital subtraction is applied using BWA-

MEM (170) and MegaBlast, and remaining reads are subjected to BLASTn alignment 

against the virus-only nucleotide database to detect those that share nucleotide 

sequence similarity to known viruses. Remaining sequences are then aligned using 

BLASTx against the virus-only protein database to detect viruses sharing protein 

Figure 20: VS-Virome and VS-Discovery workflows
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sequence similarity to known viruses. Candidate viral sequences are queried against 

the NCBI Bacteria reference genomes using BWA-MEM, against the nt database 

using MegaBLAST, BLASTn, and against the NCBI nr database using BLASTx. 

Finally, the sequences are taxonomically classified based on Blast best hit. 

The VS-Discovery pipeline consists in the same pre-processing step with minor 

changes, and reads are assembled using Newbler, followed by two re-assemblies of 

contigs and singletons, respectively. CD-HIT is used to further remove redundant 

sequences and repeatmasker is applied. Finally, the sequential BLAST module from 

VS-Virome is applied.

None of these tools are specifically designed for PV detection even though, recently, 

a novel approach for characterization of HPV genomic variability and chromosomal 

integration has been published, but no associated bioinformatics tools are available 

yet (253). Moreover, none of these tools are designed to process amplicon data, and 

there is thus a need for bioinformatics tools able to detect new PVs from amplicon-

based NGS data.
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Aims and objectives
The papillomaviridae family includes a highly diverse roster of viruses having 

genomic features varying among the representatives, providing them with biological 

capabilities potentially pathogenic for their host, and classified into several genera 

based on their L1 gene nucleotide sequence composition. Evaluation of the likely 

scientific research interest for certain PV types is hard to decipher, due to taxonomy 

into genera and species based on the L1 gene not being in accordance with the 

oncogenic capabilities of the PVs, nor in agreement with the type of host organism 

infected. Detection of PVs, and particularly of HPVs, has always been an important 

public health concern, and PCR-based methods have proven to be the most 

sensitive technique over the years, in both clinical and fundamental research settings. 

This has led to the development of many amplification primer pairs, constructed by 

multiple alignments of a region of the L1 gene from papillomaviruses sharing the 

same tropisms, and sometimes bearing degenerate nucleotide bases in order to 

increase the range of targeted types. Over the past decades, these PCR-based 

methods used in combination with Sanger sequencing have enabled the detection 

and identification of many new HPVs, including some showing manifest oncogenic 

proprieties. However, the detection limits of these previously published L1 primers 

have been reached, and new primers are needed in order to consider the nucleotide 

diversity of the most recently discovered HPV types. Furthermore, thanks to the 

development of NGS, the sequencing power of these technologies can be used to 

increase experiment sensitivity and speed. Moreover, recently published 

metagenomic studies suggest that many more HPV types remain to be discovered 

and that additional research is required to characterize the biology and epidemiology 

of a vast number of HPV types that have been poorly investigated so far, with the 

final aim of clarifying their potential roles in human diseases. This requires the 

development of a novel laboratory protocol and specific in-sillico analysis tool to 

process the vast quantity of data generated from NGS. Though many bioinformatic 

tools have been developed in recent years, all have been designed to process 

shotgun metagenomic data, all lack specificity for the Papillomaviridae family, and all 

are oriented towards application in clinical settings. Moreover, most of them allow 

description of the known PV population in a biological sample and are not geared 
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towards discovering novel viruses. Thus, there is a need to deploy new bioinformatic 

methods able to handle papillomaviridae amplicon-based NGS data.

The aim of the thesis was to develop a new strategy for the detection of HPV in 

human samples, including the known PV population and potentially novel PV types. 

The objectives were to evaluate previously published PCR-based methodologies for 

HPV detection, to improve these methods in order to take into account the recently 

described diversity of HPVs, to deploy a strategy combining the use of amplicon 

sequencing with NGS, to implement a bioinformatic workflow to quickly process 

amplicon-based NGS data and, finally, to test the novel protocols on experimental 

data.
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Results and application

I - HPV Genome reconstruction and identification

The following studies describe a total of five novel HPV types, comprising four 

Gammapapillomaviruses (papers nr 1, 3, 4) and one Betapapillomavirus (paper 
nr 2). In the three studies published in “Genome Announcements”, novel HPV types 

were identified in the skin of immunocompetent individuals, while for the study 

published in “Virus Research” the two novel HPV types were isolated from 

immunodeficient individuals. The use of RCA combined with restriction enzyme 

allowed the isolation of three different Gammapapillomaviruses (publications 1 and 4) 

as well as one Betapapillomavirus (publication 2), while FAP primer was used to 

amplify another novel Betapapillomavirus (publication 3). The five novel HPV types 

described in the publications below have since been cloned into a synthetic vector 

and have already obtained, or are in the process of obtaining, an official HPV number 

from the Karolinska HPV Reference Center, and thus are part of the official taxonomy 

on papillomaviruses. These studies have confirmed the use of previously published 

FAP primers and RCA methods, and have highlighted the need to develop a protocol 

using the power of NGS, the sequencing and reconstruction of the genome one by 

one being a slow and laborious process.

1) Dutta S., Robitaille A, Olivier M, Rollison DE, Tommasino M, Gheit T. (2017). 

Genome Sequence of a Novel Human Gammapapillomavirus Isolated from Skin. 

Genome Announc., 5(23), e00439-17. 

2) Dutta S, Robitaille A, Rollison DE, Tommasino M, Gheit T. (2017). Complete 

Genome Sequence of a Novel Human Betapapillomavirus Isolated from a Skin 

Sample. Genome Announc., 5(13), e01642-16 

3) Brancaccio RN, Robitaille A, Dutta S, Rollison DE, Fischer N, Grundhoff A, ..., 

Gheit T. (2017). Complete Genome Sequence of a Novel Human 

Gammapapillomavirus Isolated from Skin. Genome Announc., 5(34), e00833-17. 

4) Dutta S, Robitaille A, Aubin F, Fouéré S, Galicier L, Boutboul D, ..., Gheit T. 

(2018). Identification and characterization of two novel Gammapapillomavirus 
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genomes in skin of an immunosuppressed Epidermodysplasia Verruciformis patient. 

Virus research, 249, 66-68. 
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ABSTRACT A new human gammapapillomavirus (HPV_MTS2) genome was isolated
and fully cloned from a skin swab. The L1 open reading frame of HPV_MTS2 was
79% and 80% identical to those of its closest relatives, HPV type 149 (species
Gamma-7 of the genus Gammapapillomavirus) and HPV isolate Dysk2 (GenBank ac-
cession no. KX781281), respectively, thus qualifying it as a new HPV type.

H
uman papillomaviruses (HPVs) belonging to the genus Gammapapillomavirus
(gamma-HPVs) have traditionally been classified as cutaneotrophic (1). However, a

growing body of evidence suggests a much broader tissue tropism with gamma-HPVs
detected in mucocutaneous areas of the anogenital region, oral and nasal mucosa, and
various cutaneous and genital lesions (2–9). With the identification of new gamma-HPV
genomes, the genus Gammapapillomavirus has been growing rapidly in recent years
and is currently divided into 27 species. Here, we report the complete genome
sequence of a novel HPV type obtained from a skin swab of a healthy individual.

The complete genome of a new HPV type (HPV_MTS2; 7,319 bp) was obtained by
amplifying DNA from a human forearm skin swab using multiply-primed rolling circle
amplification (RCA) according to the manufacturer’s instructions (illustra TempliPhi 100
amplification kit, GE Healthcare, USA). The amplified product was digested with EcoRI
and cloned into the pUC19 vector for sequencing using a primer-walking strategy
(GATC-Biotech, Germany), which covered nucleotides 647 to 6489 (5,843 bp) of the viral
genome. To obtain the missing part of the viral genome, long-range PCR was per-
formed on the RCA product template using TaKaRa LA Taq DNA polymerase and
HPV_MTS2-specific primers (forward: 5= TCCGCTTCTGTTACAATATACCA 3=; reverse:
5= GTTTAGAAGCAGATATTCTTGC 3=). The amplicon was cloned in the pCR-XL-TOPO
vector using the TOPO-XL PCR cloning kit (Invitrogen, USA) and sequenced. The
sequence of the whole viral genome was confirmed by a strategy that implies the use
of a proofreading Pfu DNA polymerase (Agilent Technologies, USA).

An HPV genome is considered to be a novel type if it shares less than 90% sequence
similarity to the closest papillomavirus type in the L1 open reading frame (ORF) (1). The
L1 ORF of HPV_MTS2 demonstrated 79% nucleotide homology to its closest relative,
HPV type 149, belonging to species Gamma-7, and the newly identified HPV isolate
Dysk2 (GenBank accession no. KX781281). However, the overall nucleotide homology
between HPV_MTS2 and HPV isolate Dysk2 was 80%, and the homology between
HPV_MTS2 and HPV type 149 was 79%. Overall, the G�C content of HPV_MTS2 was
37.8%. The genome contains five early (E1, E2, E4, E6, and E7) and two late (L1 and L2)
ORFs, but no E5 ORF, a genomic organization typical of other gamma-HPVs. The long
control region between L1 and E6 is 512 bp long and contains the TATA box (TATAAA),
one polyadenylation site (AATAAA) for L1 and L2 transcripts, and four consensus
palindromic E2-binding sites (ACC-N6-GGT). Two conserved zinc-binding domains
[CxxC(x)29CxxC] separated by 36 amino acids were identified in E6 and one in E7 (10).
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The consensus motif for binding to the pRB and its related proteins was observed
in E7; however, serine was substituted for cysteine, thus forming the LxSxE motif (10).
Such a modified LxSxE motif is common among members of the genus Gammapapil-
lomavirus. In the carboxy terminus of E1 we identified a GPPNTGKS motif to be the
putative ATP-binding site. Moreover, the E1 protein contained a cyclin interaction RXL
motif required for viral replication (11).

To conclude, the genetic characterization of HPV_MTS2 expands the species com-
position of gamma-HPVs.

Accession number(s). The complete genome sequence of HPV_MTS2 is available in
GenBank under the accession number KY780961.
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ABSTRACT We report the genetic characterization of a new papillomavirus (HPV_
MTS1) isolated and fully cloned from a skin swab. The L1 open reading frame of
HPV_MTS1 was 85% identical to its closest human papillomavirus (HPV) type 80,
which belongs to the species beta-2 of the genus Betapapillomavirus, hence qualify-
ing it as a new HPV type.

H
uman papillomaviruses (HPVs) that belong to the Betapapillomavirus genus (beta-
HPVs) are broadly classified as cutaneotrophic viruses (1). More than 50 beta-HPV

types have been identified to date and are widely prevalent in the skin of normal
individuals (2, 3). However, this list continues to expand as many new beta-HPVs have
recently been isolated from specimens of skin, oral cavities, and other anatomical sites
(4, 5). Here, we report the complete genomic sequence of a novel HPV type obtained
from the skin swab of a healthy individual.

The complete genome of a new HPV type (HPV_MTS1; 7,405 bp) was obtained by
amplifying skin swab DNA using multiply primed rolling circle amplification (RCA)
according to the manufacturer’s instructions (Illustra TempliPhi 100 amplification kit, GE
Healthcare, Piscataway, NJ). The amplified product was digested with EcoRI and cloned
into the pUC19 vector for sequencing using the primer-walking strategy (GATC Biotech,
Germany) which covered nucleotides (nt) 842 to 6,935 (6,094 bp) of the viral genome.
Furthermore, a long-range PCR was performed on the RCA product as a template using
TaKaRa LA Taq DNA polymerase (TaKaRa Bio Inc.) and HPV_MTS1 specific primers
(forward: 5=-CATATTTTGTACCTTTGTCGTC-3= and reverse: 5=-GTAAAGTACCTTTAAAAGC
GGA-3=) to obtain the remaining part of the genome. Amplification was performed for
35 cycles at 94°C for 30 s, 56°C for 30 s, and 72°C for 5 min and cloned in pCR-XL-TOPO
vector using the TOPO XL PCR cloning kit (Invitrogen, Carlsbad, CA) and sequenced. The
sequence was checked using the proof reading Pfu DNA polymerase (Agilent Technol-
ogies, Santa Clara, CA, USA).

A novel HPV type shares less than 90% sequence similarity to the closest papillo-
mavirus type in the L1 open reading frame (ORF) (1). Pairwise comparison of the L1 ORF
of HPV_MTS1 demonstrated 85% nucleotide homology to its closest HPV type 80,
which belongs to the genus Betapapillomavirus, species beta-2. The overall nucleotide
homology between HPV_MTS1 and HPV80 was 89% with a G�C content of 39.8%. The
genomic organization of this virus is typical of cutaneotrophic HPVs, containing five
early (E1, E2, E4, E6, and E7) and two late (L1 and L2) genes but no E5 ORF. The long
control region (LCR) is 384 bp and located between the L1 and E6 genes. LCR contains
one polyadenylation site (AATAAA) for L1 and L2 transcripts, four consensus palin-
dromic E2-binding sites (ACC-N6-GGT � 2 and slightly modified ACC-N5-GGT � 2) and
two TATA Boxes (TATAAA) for the downstream early promoter. The two conserved
zinc-binding domains of the viral E6 protein [CxxC(x)29CxxC and CxxC(x)30CxxC] are
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separated by 36 amino acids (6). The zinc-binding domain [CxxC(x)29CxxC] and the
LxCxE motif for interaction with pRB and its related proteins are present in the E7
protein (6). The presence of ATP-binding site (GPPDTGKS) in the carboxy-terminal of the
E1 protein confirms its ATP-dependent helicase activity. The E4 protein is encoded from
an internal start codon of the E2 ORF and completely overlaps it.

To conclude, the genetic characterization of HPV_MTS1 expands the species com-
position of beta-2 papillomaviruses.

Accession number(s). The complete genome sequence of HPV_MTS1 is available in

GenBank under the accession no. KY349817.
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ABSTRACT A novel human papillomavirus (HPV ICB1) was fully characterized from
a skin swab by using a sensitive degenerate PCR protocol combined with next-
generation sequencing. The L1 open reading frame of HPV ICB1 shares 70.54% nu-
cleotide homology with its closest relative, HPV164, and thus constitutes a novel hu-
man gammapapillomavirus.

H
uman papillomaviruses (HPVs) are nonenveloped double-stranded DNA viruses
approximately 8 kb in size with an epithelial tropism. HPVs colonize normal skin

and mucosa and can induce cutaneous and mucosal lesions (1–4). The L1 gene is well
conserved among the papillomaviruses, and thus, it is used for taxonomic classification
(5, 6). Here, we report the complete genome sequence of a novel HPV type isolated
from a skin swab from a healthy individual.

Degenerate PCR primers (7) were used to screen a cohort of skin samples. The
amplicons were purified, pooled, and sequenced by next-generation sequencing (NGS)
using the NEBNext Ultra DNA library prep kit and MiSeq reagent kit version 2 (Illumina).
NGS analysis revealed the presence of a sequence of approximately 205 bp from a
putative new HPV.

The complete viral genome of a new HPV type (HPV ICB1, 7,233 bp), with a G�C
content of 38.09%, was obtained by DNA amplification using multiply primed rolling
circle amplification (RCA) according to the manufacturer’s instructions (illustra
TempliPhi 100 amplification kit; GE Healthcare, USA). RCA was combined with long-
range PCR (LA Taq polymerase; TaKaRa Bio, Japan) performed with outward-directed
primers specific for the putative new HPV (forward primer, 5=-CATTTTGCTCATCATCAC
ATGGCC-3=; reverse primer, 5=-CTGGTGACTGTCCTCCTATCC-3=). An amplicon of approx-
imately 8 kb in size was cloned in the pCR-XL-TOPO vector using the TOPO-XL PCR
cloning kit (Invitrogen, USA) and sequenced by a primer walking strategy (GATC
Biotech, Germany). The sequence was validated using a proofreading polymerase,
followed by Sanger sequencing.

HPV L1 sequences that share less than 90% sequence similarity to the closest
papillomavirus type are traditionally considered to be distinct HPV types (5, 8). The L1
open reading frame (ORF) of HPV ICB1 showed 70.54% nucleotide homology (9) with
its closest HPV type, HPV164, belonging to species gamma-8 (GenBank accession no.
JX413106). In addition, according to a BLASTn search, the overall nucleotide homology
between HPV ICB1 and HPV119 (gamma-8; GenBank accession no. GQ845441) was 69%.
Analysis of the HPV ICB1 genome showed the presence of five early (E1, E2, E4, E6, and
E7) and two late (L1 and L2) ORFs. The E5 ORF was absent. The long control region
between L1 and E6 has a length of 514 bp and contains the TATA box (TATAAA), one
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polyadenylation site (AATAAA) for L1 and L2 transcripts, and four consensus palin-
dromic E2-binding sites (ACC-N6-GGT). Like all HPV types, E6 and E7 have zinc-binding
domains [CxxC(x)29CxxC] containing two and one zinc-binding domains, respectively.
In addition, E7 contains an LxSxE retinoblastoma (RB)-binding motif (10). Analysis of the
E1 ORF revealed the presence of a putative ATP-binding site of the ATP-dependent
helicase, a GPPDTGKS motif (11). Moreover, two cyclin interaction RXL motifs (10, 11)
have been localized in the E1 protein. In conclusion, analysis of the complete nucleo-
tide sequence showed that HPV ICB1 shares the features of other known gammapap-
illomaviruses.

Accession number(s). The complete genome sequence of HPV ICB1 is available in
GenBank under the accession number MF356498.
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A B S T R A C T

Two novel human gamma-papillomavirus genomes (HPV_MTS3, and HPV_MTS4) were isolated from the skin of
an immunosuppressed, late-onset Epidermodysplasia Verruciformis patient and fully cloned. The L1 open
reading frames of HPV_MTS3 and HPV_MTS4 were 77% and 91% identical to their closest HPV full genome
isolates w18c39 and EV03c60, which belong to the species gamma-22and gamma-7 of the genus
Gammapapillomavirus, respectively.

Human papillomaviruses (HPVs) belonging to the beta and gamma
genus have traditionally been classified as cutaneotropic types (de
Villiers, 2013). However, a growing body of evidences suggest a much
broader tissue tropism with these cutaneotropic HPVs detected in
muco-cutaneous areas of anogenital region, oral and nasal mucosa, and
various cutaneous and genital lesions (Moscicki et al., 2017; Bottalico
et al., 2011; Ekstrom et al., 2011; Foulongne et al., 2012; Ma et al.,
2014; Antonsson et al., 2003; Sichero et al., 2013; Forslund et al., 2013;
Tommasino, 2017). Infection and prevalence of cutaneotropic-HPV is
also reported to synergize with environmental factors, such as UV-ra-
diations and individual immune status (Accardi and Gheit, 2014).
Epidermodysplasia Verruciformis (EV) is a rare primarily autosomal
recessive disorder in which the patients develop Pityriasis versicolor-
like lesions along with atypical, flat-topped coalescing warts. Such
warts frequently progress to cutaneous squamous cell carcinoma (SCC)
in the sun-exposed areas of the body (Tommasino, 2017; McDermott
et al., 2009; Vohra et al., 2010; Androphy et al., 1985; Orth, 2006).
Furthermore, several cutaneotropic HPV types have been found in 90%
of SCC lesions in EV patients which believed to synergize as co-carci-
nogen with UVR (Patel et al., 2010).

Here, we report the complete genomic sequence of two novel HPVs
isolated from cutaneous lesions in a T-Cell lymphoma patient. The

patient was a 29-years-old Kurdish woman with late onset EV-like
phenotype and primary combined immune deficiency, characterized by
naïve T-Cell and memory B-Cell lymphopenia and low immunoglobulin
levels.

Previously, in an independent study, systemic infection of oncogenic
alpha-HPV type 39, beta-HPV types 5, and 38, several gamma-HPV
types, the Merkel Cell Polyomavirus, and herpesviruses EBV, HHV6 and
HHV7 was detected in this patient (Fouéré et al., 2017 and unpublished
data). This observation instigates us for further investigation on the
possible presence of novel viral sequences in this patient. We extracted
the DNA from cytobrush samples, collected from the flat warts on the
back of hand, eyebrows, oral mucosa and vulva (Schowalter et al.,
2010). Next, the DNA samples were subjected to multiple primed
Rolling Circle Amplification (RCA) using the Illustra TempliPhi 100
Amplification Kit according to the manufacturer’s recommendations
(GE Healthcare, Piscataway, NJ), with supplementation of 450 μM
dNTPs (Johne et al., 2009). The amplified products were digested with
EcoRI; the ∼7-8Kb bands obtained from the eyebrow hair DNA were
cloned into pUC19 vector and sequenced using primer-walking strategy
(GATC Biotech, Germany). Furthermore, a long-range PCR was per-
formed on the RCA product for amplification of remaining part of one
of the viral genomes using the Takara LA Taq HS polymerase (Takara
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Bio Inc.) and specific sets of primers. The PCR product was cloned in
pCR-XL-TOPO® vector using TOPO® XL PCR Cloning Kit (Invitrogen,
Carlsbad, CA) and sequenced. The sequence has been confirmed using
the proof reading Pfu DNA Polymerase (Agilent Technologies, Santa
Clara, CA, USA).

The complete genomes of two novel HPVs (provisionally named,
HPV_MTS3; 7223 bp and HPV_MTS4; 7320 bp) were identified from the
eyebrow swab DNA samples using multiply primed RCA. A novel HPV
type shares less than 90% sequence similarity to the closest papillo-
mavirus type in the L1 open reading frame (ORF) (de Villiers, 2013). A
BLASTn search against the Nucleotide collection nr/nt database version
December 2017 revealed that the L1 ORF of HPV_MTS3 shares 77%
nucleotide similarity to its closest HPV isolate w18c39, species Gamma-
22 (accession number: MF588741). The L1 ORF of HPV_MTS4 showed
91% similarity with the HPV isolate EV03c60, species Gamma-7 (ac-
cession number: MF588699). The genomic sequences from these two
novel HPVs were described in Table 1. The complete genome sequences
of HPV_MTS3 and HPV_MTS4 are available in GenBank under the ac-
cession number MG063749 and MG520499, respectively.

To investigate the evolutionary history of HPV_MTS3 and
HPV_MTS4, we constructed Maximum-likelihood (ML) phylogenetic
tree using MEGA7 based on the MUSCLE alignment of the full length L1
ORF nucleotide sequences of 458 papillomaviruses (PVs) (288 full L1
ORF from HPV and 170 full L1 ORF from animal PVs) retrieved from
PaVE database in January 2018 (Supplementary Fig. S1) (Van
Doorslaer et al., 2017; Kumar et al., 2016; Nei and Kumar, 2000; Edgar,
2004). The alignments of the nucleotide and amino acid sequences are
available as supplementary data S1a and S1b, respectively. HPV_MTS3
and HPV_MTS4 clustered significantly with HPV types belonging to the
genus Gammapapillomavirus, and do not clustered with animal PVs.
Furthermore, a comprehensive ML phylogenetic analysis, consisting of
159 full genomes of gamma-HPV, confirmed the HPV isolates w18c39
and EV03c60 as among the closest relatives to HPV_MTS3 and
HPV_MTS4, respectively (Supplementary Fig. S2).

Furthermore, to study the molecular evolution of HPV_MTS3 and
HPV_MTS4, a partition scheme was also explored consisting of six
partitions corresponding to the E6, E7, E1, E2, L2 and L1 genes. The
multigene genome partition scheme encompassed 159 multigene
genome nucleotide sequences of Gammapapillomavirus. The MUSCLE

multigene genome alignment of the 159 Gammapapillomavirus reference
genomes is available at nucleotide level (Supplementary Data S2). The
tree obtained by a ML phylogenetic inference confirmed the HPV iso-
lates w18c39 and EV03c60 as among the closest relatives to HPV_MTS3
and HPV_MTS4, respectively (Supplementary Fig. S3).

All the details regarding the length of the alignments, number of
distinct patterns, the models of substitution, the rate of heterogeneity
parameters and the numbers of bootstrap replicates used for each of the
phylogenetic trees are available as Supplementary Materials and
Methods.

Next, to ascertain if the two HPV sequences were also present in the
other three anatomical sites (viz. flat warts on the back of hand, oral
mucosa and vulva); the DNA samples were screened by PCR using E6/
E7 specific primers to HPV_MTS3 and HPV_MTS4 (Table 2). The ana-
lyses confirmed the presence of HPV_MTS3 and HPV_MTS4 in the
samples from all three anatomical sites. The specificity of the amplicons
was confirmed by direct sequencing (GATC Biotech, Germany). Nega-
tive controls have been included during the DNA extraction and PCR
analysis steps, and all tested negative. As the tissue architecture of oral
mucosa and vulva is different from skin, HPV_MTS3 and HPV_MTS4
might have a broader tissue tropism. Recent studies suggested that
some ‘cutaneotropic’ HPVs, might have a higher affinity to mucosal
than to keratinized tissues (Bottalico et al., 2011; Hampras et al., 2017;
Weissenborn et al., 2009; Pierce Campbell et al., 2013; Torres et al.,
2015).

The analysis of healthy human skin scraping specimens collected in
Rome using a sterile spatula showed that HPV_MTS3 and HPV_MTS4
were present in human skin, although, in varied frequencies. The study
population comprised of 103 Italian subjects, consists of 51 females and
52 males, all were white and at the mean age of 71.3 years (age range
50–94 years). All participants gave signed informed consent and the
study was approved by the Ethical Commissions of both NIHMP and
San Gallicano Dermatologic Institute. The prevalence was evaluated by
PCR using L1 specific primers (Table 2). In the analysis only one skin
sample was tested positive for HPV_MTS3 (1/103, 0.97%), whereas, 10
out of 103 (10/103; 9.7%) were positive for HPV_MTS4. The sequence
of the amplicons was validated by Sanger sequencing.

EV is manifested by cutaneous immunodeficiency and is extremely
susceptible to repeated and persistent HPV infection (Patel et al., 2010).
In this study, the prevalence of two novel gamma-HPV genomic se-
quences is discussed in an immunosuppressed late onset EV patient, co-
infected with other oncogenic alpha and beta-HPV types. Despite the
prevalence in oral, anogenital mucosa and skin the natural history of
gamma-HPV have been poorly investigated. However, several studies
contributed to a better knowledge of its biodiversity (Moscicki et al.,
2017; Dona et al., 2015; Grace and Munger, 2017; Köhler et al., 2011;
Li et al., 2013; Bolatti et al., 2016). On contrary, the association of
gamma-HPV with non-melanoma skin cancer is well established
(McLaughlin-Drubin, 2015; Hampras et al., 2014; Rahman et al., 2016;
Deng et al., 2016; Nindl et al., 2007). Though, these two HPVs possess
all important features to interact with the cellular partners like p53 and
pRb; this might also be possible that the immunosuppressed subject act
as a reservoir of subclinical HPV infection. Nevertheless, this study

Table 1
Characteristic features of HPV-MTS3 and HPV-MTS4 full genomes.

HPV Type

MTS3 MTS4

Genome size (bp) 7223 7320
G+C content (%) 37.07 38.22

ORF
E6 Nucleotide positions 1–423 1–414

Zinc-binding domain [CxxC(x)29CxxC] Two Two
E7 Nucleotide positions 420–719 414–698

Zinc-binding domain [CxxC(x)29CxxC] One One
pRb binding motif LxCxE LxSxE

E1 Nucleotide positions 703–2499 688–2520
C-terminus ATP-binding motif GPSDTGKS GPPNTGKS
Cyclin interacting RXL motif Present Present

E2 Nucleotide positions 2435–3634 2462–3661
E2 ORF is encoded from an internal start codon
of E4

Yes Yes

E4 Nucleotide positions 2967–3383 3039–3419
L2 Nucleotide positions 3637–5187 3664–5235
L1 Nucleotide positions 5198–6760 5171–6808
LCR Nucleotide positions 6761–7223 6809–7320

Polyadenylation site (AATAAA) One One
Consensus palindromic E2-binding sites (ACC-
N6-GGT)

Four Four

TATA Box Two One
GenBank accession number MG063749 MG520499

Table 2
Primers used for HPV_MTS3 and HPV_MTS4 DNA screening.

Name Oligonucleotide sequence (5′-3′)

MTS3 E6/E7 sense CATCAGTGCTGTCGTCAAACAA
MTS3 E6/E7 anti-sense AGGACCAGAATGTAATAGTGGT
MTS3 L1 sense GACAGAAGTAAAGATCAA
MTS3 L1 anti-sense TAGTTCTTAAAATCCTTAGCTTTGTATG
MTS4 E6/E7 sense TTCAGCTTCAGTCACAACATAC
MTS4 E6/E7 anti-sense CTTATCAGGATTTGTGTGCATTC
MTS4 L1 sense TTGTTCCTCCTCCTGCTGGTGGAA
MTS4 L1 anti-sense CCCTGAACTGCAGACCGTTTGCG

S. Dutta et al.



increases the knowledge concerning the diversity and evolution of
gamma-PV types.
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II - Combining NGS & Amplicon sequencing: the 
need for a bioinformatics workflow

In the following papers, we present the new wet-lab and bioinformatics approach we 

have developed for the identification of HPV sequences using degenerated primers 

and NGS amplicon-sequencing.

In paper nr 5, we describe a novel protocol that combines the use of a novel L1 

region amplification primer, an improvement on the original FAP primers, with the 

power of NGS. This novel method has allowed the discovery of 105 putative novel 

PV types from skin swabs and oral gargles of immunocompetent individuals. One of 

the 105 putative novel HPV types was fully reconstructed, and its clone was sent to 

the Karolinska HPV Reference Center during spring 2019. 

In paper nr 6, we describe the novel Beta-2 HPV type isolated from skin samples 

based on the results of paper n°5. This novel genome is awaiting its official HPV 

number classification. 

In paper nr 7, under review in “Nucleic Acid Research Genomic and Bioinformatics”, 

we present the bioinformatics workflow we developed for the analysis of HPV 

amplicon data. The code for this worklflow is publicly available for the scientific 

community on the IARC GitHub platform 

(https://github.com/IARCbioinfo/PVAmpliconFinderhttps://github.com/IARCbioinfo/PVAmp

liconFinder). 

In paper nr 8, submitted to “The Journal of Infectious Diseases”, we present an 

application of the method on healthy skin and actinic keratosis of the same 

individuals, allowing not only to identify novel HPV types, but also to observe PV 

composition differences based on clinical status. 
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A B S T R A C T

With the advent of new molecular tools, the discovery of new papillomaviruses (PVs) has accelerated during the
past decade, enabling the expansion of knowledge about the viral populations that inhabit the human body.
Human PVs (HPVs) are etiologically linked to benign or malignant lesions of the skin and mucosa. The detection
of HPV types can vary widely, depending mainly on the methodology and the quality of the biological sample.
Next-generation sequencing is one of the most powerful tools, enabling the discovery of novel viruses in a wide
range of biological material. Here, we report a novel protocol for the detection of known and unknown HPV
types in human skin and oral gargle samples using improved PCR protocols combined with next-generation
sequencing. We identified 105 putative new PV types in addition to 296 known types, thus providing important
information about the viral distribution in the oral cavity and skin.

1. Introduction

Human papillomaviruses (HPVs) are non-enveloped viruses with
double-stranded circular DNA of about 8 kb that can colonize the mu-
cosal and cutaneous epithelia (Bernard et al., 2010; Bzhalava et al.,
2013). To date, more than 200 PVs have been isolated from different
body sites and fully characterized, and this number continues to grow
(Bzhalava et al., 2015; Smelov et al., 2017). Based on the nucleotide
sequences of the major capsid protein L1, HPVs are classified into
genera, species, and types (Bernard et al., 2010). HPV types are orga-
nized into five major genera: alpha, beta, gamma, mu, and nu (de
Villiers et al., 2004). The genera alpha, beta, and gamma include the
majority of the known HPVs. The alpha HPV types have been ex-
tensively studied, because of their clear association with human carci-
nogenesis (Tommasino, 2014). The high-risk (HR) HPV group includes
at least 12 HPV types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58,
and 59), which are the etiological agents of anogenital cancers and a
subset of head and neck cancers, particularly oropharyngeal cancer

(Bouvard et al., 2009; Haedicke and Iftner, 2013). The genus alpha also
includes the low-risk HPV types (HPV6 and 11) that are associated with
benign genital lesions and with laryngeal disease in children (Giuliano
et al., 2008b; Goon et al., 2008).

The genus beta includes approximately 50 different HPV types, fully
characterized, that are subdivided into five species (beta HPV species
1–5). The majority of the beta HPV types belong to species beta-1 and
beta-2 and are widely present in the skin of healthy individuals. Only 7
HPV types have been classified into the species beta-3 (n=4), beta-4
(n=1), and beta-5 (n=2). HPV types of genus beta can induce warts
and have been associated with certain forms of non-melanoma skin
carcinoma (NMSC) (Orth, 2006). The first beta HPVs, HPV5 and 8, were
isolated from the skin of patients with epidermodysplasia verruciformis
(EV), a rare autosomal recessive hereditary skin disorder that confers
high susceptibility to beta HPV infection and cutaneous squamous cell
carcinoma development at sun-exposed regions (Pfister, 2003). Several
studies showed that beta HPV types are associated with NMSC devel-
opment in non-EV individuals (Andersson et al., 2008; Berkhout et al.,
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2000; Bouwes Bavinck et al., 2010; Casabonne et al., 2007; Cornet
et al., 2012; de Jong-Tieben et al., 1995; Harwood et al., 2000;
Iannacone et al., 2014; Iftner et al., 2003; Karagas et al., 2006;
Waterboer et al., 2008). Patients with a history of NMSC show elevated
positivity for markers of beta HPV infection compared with healthy
individuals (Ally et al., 2013; Asgari et al., 2008; Iannacone et al.,
2012). Recent studies reported the presence of beta HPV types at ad-
ditional anatomical sites other than the skin, such as the oral mucosal
epithelium, eyebrow hairs, penile and external genital samples, and the
anal canal (Arroyo et al., 2013; Barzon et al., 2011; Donà et al., 2016;
Pierce Campbell et al., 2016; Smelov et al., 2017).

Species beta-3 HPV types appear to have a dual tropism, being
present in the skin and the mucosal epithelia (Forslund et al., 2013;
Hampras et al., 2017). Interestingly, studies in in vitro and in vivo ex-
perimental models have highlighted some biological similarities be-
tween beta-3 HPV and mucosal HR HPV types (Cornet et al., 2012;
Viarisio et al., 2016). In addition, Viarisio et al. (2016) showed that
beta-3-HPV49 transgenic mice were highly susceptible to upper diges-
tive tract carcinogenesis upon initiation with 4-nitroquinoline 1-oxide.

HPVs from the gamma, mu, and nu genera induce cutaneous pa-
pillomas or warts (de Villiers et al., 2004) and have been poorly in-
vestigated so far. To date, approximately 80 different gamma HPV types
have been isolated from the skin and genital tract (retrieved from
GenBank, September 2017).

In addition to the fully characterized HPV types, a substantial
number of partial genomic sequences of putative novel HPV types have
been deposited to GenBank, indicating that many more HPV types exist.
So far, the molecular biology techniques for the isolation of novel HPV
types have been based mainly on the use of degenerate and/or con-
sensus primers, followed by cloning and Sanger sequencing (Chouhy
et al., 2010; Forslund et al., 1999). However, considering the large
number of recently characterized HPV genomes, degenerate primers
may be improved in order to discover novel HPV types. In particular,
this strategy may lead to the expansion of species that so far include a
very small number of HPV types, such as species beta-3 (n=4), beta-4
(n=1), and beta-5 (n=2).

In this study, we used novel and well-validated consensus and de-
generate primers to amplify genomic HPV sequences from human DNA
isolated from oral and skin specimens. Analysis of the PCR products by
next-generation sequencing (NGS) resulted in the identification of 105
putative new PV types.

2. Materials and methods

2.1. Sample collection and DNA extraction

Skin swabs and oral rinses from two different ongoing studies
aiming to determine the prevalence of viral DNA and its associations
with disease were used in the present analysis (Hampras et al., 2014,
2015; Nunes et al., 2016; Pierce Campbell et al., 2013, 2016).

Skin swab specimens (n=119) were randomly selected from the
VIRUSCAN Study, an ongoing five-year (2014–2019) prospective co-
hort study conducted at Moffitt Cancer Center and the University of
South Florida (R01CA177586-01; “Prospective study of cutaneous viral
infections and non-melanoma skin cancer”). An area of approximately
5× 5 cm of the top of the sun-exposed forearm was sprayed with 0.9%
saline solution. A cotton-tipped Dacron swab (Digene, Gaithersburg,
MD, USA) was then rubbed back and forth a few times to collect ex-
foliated skin cells. Individual swabs were placed in a separate vial and
preserved in Digene Standard Transport Medium.

In addition, 62 oral rinses were randomly selected from the HPV
Infection in Men (HIM) study, a large, multinational (Brazil, Mexico,
and the USA) prospective cohort study of the natural history of HPV
infection in men. The HIM study methods have previously been de-
scribed in detail (Giuliano et al., 2008a, 2009, 2011; Nyitray et al.,
2011). A further 85 oral samples were selected from a pilot study that

aimed to estimate the prevalence of Helicobacter pylori in oral gargles
from a Latvian population. The study was approved (No. 8-A/15) by the
Ethics Committee of Riga East University Hospital Support Foundation.

After DNA extraction, all samples were analyzed at the International
Agency for Research on Cancer (Lyon, France) for viral DNA from HPV.

2.2. PCR protocols

The following PCR protocols using different sets of primers were run
(Table 1): (i) CUT primers, as previously described (Chouhy et al.,
2010); (ii) FA-type (FAP) primers, as previously described (Forslund
et al., 1999); (iii) a new set of FAP primers, i.e. FAP59.1, FAP59.2, and
FAP64.1 (Fig. 1; Table 1); these primers were used to generate two
different primer mixtures (FAPM1 and FAPM2); the PCR conditions
were the same as for the original FAP protocol; (iv) a set of 11 beta-3
specific primers (henceforth referred to as beta-3-1) (Table 1); and (v) a
set of 4 broad-spectrum beta-3 degenerate primers (henceforth referred
to as beta-3-2). The beta-3-1 and beta-3-2 primers were synthesized by
MWG Biotech (Ebersberg, Germany) and mixed to obtain a 10× solu-
tion containing 2 μM of each primer. PCR was performed with the
Qiagen Multiplex PCR kit (Hilden, Germany) according to the manu-
facturer's instructions. The use of these primers enables the amplifica-
tion of a region in the L1 gene of approximately 450 bp.

2.3. Validation of the new set of primers

To evaluate the sensitivity of the novel HPV PCR protocols (beta-3-
1, beta-3-2, FAPM1, and FAPM2), we used an artificial mixture con-
taining cloned HPV genomes at different relative concentrations (10-

Table 1
Sequences of the oligonucleotides and composition of the different protocols.
i= inosine; W = A or T; D = A or G or T; K = T or G; Y = C or T; M = A or C;
R = A or G; V = A or C or G; H = A or C or T.

Primer mix Primer sequence (5–3′)

Beta-3-1
B3L1FW3 AGGACATCCATACTTTGAGGTTCGAG
B3L1FW4 TAGGACATCCATATTTTGATGTGAGAG
B3L1FW5 GATGTTAGAGACACTGGAGATTCAACA
B3L1FW6 GATGTTAGAGACACTGGGGATTCAACA
B3L1FW7 GATGTTAGAGACACTGTGGATCAAACA
B3L1RW ATAATAGTATTTCTTAATTCTAATGGAGG
B3L1RW4 ATAACTGAATTGATTAATTCTAATGGAGG
B3L1RW5 ATAACTGTATTTACTAATTCTAAAGGTGG
B3L1RW6 TACAGTATTTACCAGTTCCAAAGGTGG
B3L1RW7 ATTACAGTATTAACTAATTCTAAAGGTGG
B3L1RW8 ATTACAGTATTTACTAATTCTAAAGGTGG
Beta-3-2
B3L1FW1 GTAGGACATCCATAYTTTGAKGTKiGAG
B3L1FW2 TTGATGTTAGAGACACTGiDGATYMAACA
B3L1RW1 ATAAiWGWATTKYTTAATTCTAATGGAGG
B3L1RW2 ATTACAGTATTiACKARTTCYAAAGGTGG
CUT
CUT1Fw TRCCiGAYCCiAATAARTTTG
CUT1AFw TRCCiGAYCCiAACAGRTTTG
CUT1BFw TRCCiGAYCCiAATAGRTTTG
CUT1CFw TRCCiGAYCCiAACAARTTTG
CUT1BRv ARGAYGGiGAYATGGTiGA
FAP
FAP59 TAACWGTiGGiCAYCCWTATT
FAP64 CCWATATCWVHCATiTCiCCATC
FAPM1
FAP59.1 TAACAGTDGGiCAYCCWTWTT
FAP59.2 TAACAGTDGGiCAYCCWTAYT
FAP64.1 CCDATATCWVHCATATCiCCATC
FAP59 TAACWGTiGGiCAYCCWTATT
FAP64 CCWATATCWVHCATiTCiCCATC
FAPM2
FAP59.2 TAACAGTDGGiCAYCCWTAYT
FAP64.1 CCDATATCWVHCATATCiCCATC
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Fig. 1. Construction of improved FAP degenerate primers by alignment of 46 beta HPV type L1 regions with MUSCLE 3.8.
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fold dilution series starting from 10,000 to 0 copies of the viral genome)
and mixed with human genomic DNA. PCR products were analyzed by
electrophoresis on a 2% agarose gel.

2.4. NGS analysis

The PCR products were purified on a 2% agarose gel using the
QIAquick gel extraction kit (Qiagen, Hilden, Germany) according to the
manufacturer's instructions. One additional purification step was per-
formed to remove any remaining contaminants using the Agencourt
AMPure XP PCR purification kit with a beads ratio of 1.8× (Beckman
Coulter). Purified PCR products were divided into eight different pools.
Each pool included approximately 50 different amplicons generated
from different PCR protocols (Table 2).

Libraries were prepared using the Nextera XT DNA Library pre-
paration kit (Illumina, San Diego, CA, USA). Illumina MiSeq dual-in-
dexed adapters (Illumina, San Diego, CA, USA) were added to each of
the PCR pools.

NGS was performed using the Illumina MiSeq kit v3 (600 cycles) on
the Illumina MiSeq system. In order to enrich the diversity of the li-
braries, 10% of PhiX (Illumina, San Diego, California, USA) was added
to the NGS reaction.

2.5. Bioinformatics analysis

Quality control was conducted using FastQC (Andrews, 2010)
(v0.11.5) and MultiQC (Käller and Ewels, 2016) (v1.0). Trim Galore
(v0.4.4) (Krueger, 2015) was used to remove remaining adapter se-
quences and trim low-quality ends of reads. The merging of forward
and reverse reads, the de-replication step, the de novo chimeric se-
quence identification, and the clustering steps were carried out using
VSEARCH (Mahé and Rognes, 2016) (v2.4.0). MegaBlast in the Blast
package (v2.6.0+) (Altschul et al., 1990) was launched against the
nucleotide collection (nr/nt, March 2017) database in a local server to
enable the identification of the previously constructed clusters.

Another level of clustering was applied for the reads having the
same best MegaBlast results inside each pool (based on the E-value).
Each cluster of reads was then processed using the CAP3 program in
order to assemble contigs (Huang and Madan, 1999).

A reference species phylogenetic tree was constructed based on the
full-L1 ORF nucleotide sequences of 458 available PV genomes re-
trieved from the PaVE database (https://pave.niaid.nih.gov/) (Van
Doorslaer et al., 2013) in January 2018. The sequences were aligned at
the nucleotide level using the MUSCLE algorithm, with the default
parameters (Edgar, 2004), in MEGA7 (Kumar et al., 2016). The final
full-length L1-ORF alignment encompassed 458 full L1-ORF nucleotide
sequences, 2259 positions, and 627 distinct alignment patterns. MEGA7
was used to test the best substitution model and for the phylogenetic
inference. The codon positions included were 1st+ 2nd+3rd+non-

coding. Based on the alignment using MUSCLE, all positions with<
95% site coverage were eliminated (partial deletions), to enable the
inclusion of taxa with some missing data. There was a total of 1383
positions in the final dataset.

A discrete gamma distribution was used to model evolutionary rate
differences among sites (five categories; +G, parameter = 1.0326).
The rate variation model allowed for some sites to be evolutionarily
invariable ([+I], 2.5307% sites).

The initial trees for the heuristic search were obtained automatically
by applying the neighbor-joining (NJ)/BioNJ algorithm to a matrix of
pairwise distances estimated using the maximum composite likelihood
(MCL) approach and then by selecting the topology with the highest log
likelihood value (−389774.5274).

Phylogenetic inference was performed with MEGA7 using the gen-
eral time reversible (GTR) model of nucleotide substitution and 500
bootstrap replicates (Nei and Kumar, 2000).

PaPaRa (v2.5) (Berger and Stamatakis, 2011) was used to align the
sequences reconstructed using the CAP3 algorithm with respect to the
reference multiple sequence alignment. Subsequently, the evolutionary
placement algorithm (EPA) in RAxML (v8.2.11) (Berger et al., 2011;
Stamatakis, 2014) was run to place the sequences into the reference
species phylogenetic tree. The EPA was run using the same nucleotide
substitution model used to infer the reference phylogenetic tree. A
script was developed in-house to parse the output format (Matsen et al.,
2012) of the EPA.

In addition, a blastn local alignment query of the contigs was used
to align them against a comprehensive database of reference PVs pre-
sent in the PaVE database (n= 330 genomes). This approach mimics
locally the L1 taxonomic tool of the PaVE database.

All the results in this study are based on the identification of the
sequences using the EPA in RAxML (henceforth referred to as RAxML-
EPA). Only the longest sequence was considered for RAxML-EPA clas-
sification when several singlets or contigs were available. Krona (Ondov
et al., 2011) was used for the graphical representation of the data.

3. Results

3.1. Design and validation of novel HPV PCR primers

As a first step, we generated new consensus primers considering all
known beta HPV types. HPV beta-3 species primers were designed by
aligning the L1 open reading frame (ORF) from all four beta-3 HPV
types (HPV49, 75, 76, and 115) using the ClustalW2 multiple sequence
alignment tool (Chenna et al., 2003). Two different sets of primers were
generated: (i) a set of 11 specific primers, termed beta-3-1, and (ii) a set
of 4 degenerate primers, termed beta-3-2. The composition of the two
primer mixtures is shown in Table 1.

As a second approach, we generated additional degenerate primers
based on the well-validated FAP primers (Forslund et al., 1999). The
FAP primers were developed in 1999 by aligning 77 L1 ORF sequences
from different genera that included at that time only a limited number
of beta (n=22) and gamma (n=5) HPV type sequences, obtained
from the 1996 and 1997 HPV Sequence Database Compendia (Myers
et al., 1996, 1997).

Forty-six L1 sequences representative of the beta HPV types known
to date (Van Doorslaer et al., 2017) were aligned against FAP primer
sequences, using the MUSCLE (3.8) multiple sequence alignment tool
(Edgar, 2004). Subsequently, three improved broad-spectrum FAP pri-
mers, with an increased specificity for beta HPV types, were generated
(Fig. 1): FAP59.1, FAP59.2, and FAP64.1. These were mixed in different
combinations, generating two different mixtures: FAPM1 and FAPM2
(Table 1). The beta-3 protocol enabled the detection of beta-3 HPVs
with a limit of detection of 10 copies. The detection limit using the
FAPM1 mixture was 10 copies for HPV types that belong to species
beta-2, beta-3, and beta-4 and 1000 copies for beta-5. Using the FAPM2
protocol, the detection limit was 10 copies for HPV types that belong to

Table 2
Description of the PCR protocols and NGS pools.

PCR pools PCR protocols Specimens N NGS pools

1 Beta-3-1 Skin swab 41 1
2 Beta-3-2 9
3 FAP 52 2
4 FAPM1 54 3
5 CUT 57 4
6 FAPM2 Oral gargle 43 5
7 FAPM1 56 6
8 CUT 55 7
9 Beta-3-1 9 8
10 Beta-3-2 4
11 FAP 11
12 FAPM1 11
13 FAPM2 12
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beta-3, beta-4, and beta-5; however, a lower sensitivity was observed
for species beta-2 (10,000 copies) (data not shown).

3.2. NGS data analysis: characterization and taxonomic classification

Randomly selected DNA extracted from skin swabs (n=119) and
oral gargles (n=147) obtained from healthy individuals was amplified
using the PCR protocols described above and the original FAP and CUT
protocols (Table 2) (Chouhy et al., 2010; Forslund et al., 1999). PCR
products were mixed to obtain 8 different pools (Table 2) and se-
quenced using the Illumina MiSeq sequencing platform.

A total of 50,017,076 paired-end raw reads were obtained from the
NGS analysis. After quality trimming, de-replication, and chimeric PCR
sequence removal, 47.3% (23,647,656) of the reads were considered for
further analysis. Approximately 67% (16,043,298 reads) were related
to PV sequences. Each read was matched against National Center for
Biotechnology Information (NCBI) database sequences (nr/nt, March
2017) using the MegaBlast algorithm and assigned to its closest PV
type, before contig construction.

Analysis of the data with RAxML-EPA revealed that the reads gen-
erated from the sequencing of the 119 skin DNA samples were assigned
to a total of 265 different PV types (Fig. 2A; Table S1), which belong
mainly to the alpha (33.4%) and beta (29.5%) genera, thus representing
the PV distribution in skin. In addition, a substantial fraction of reads
(12.9%) was assigned to taxonomically unclassified PV sequences
(hereafter called “unclassified PVs”): bovine papillomavirus type 19
(BPV19), equine papillomavirus type 8 (EcPV8), Myotis ricketti pa-
pillomavirus 1 (MrPV1), Pudu puda papillomavirus type 1 (PpuPV1),
and Sparus aurata papillomavirus type 1 (SaPV1). Moreover, 9% of the
reads were assigned to the gamma genus.

The FAPM1 protocol enabled the detection of 107 PVs (8 alpha, 37
beta, 60 gamma, and 2 mu), and the CUT and FAP protocols enabled
the detection of 118 PVs (11 alpha, 36 beta, 68 gamma, 2 mu, and 1 nu)
and 87 PVs (3 alpha, 34 beta, 49 gamma, and 1 mu), respectively. The
combined beta-3-1 and beta-3-2 protocols generated a majority of reads
assigned to a non-human alpha PV type: Colobus guereza monkey pa-
pillomavirus type 1 (CgPV1). Two reads were assigned to HPV16. Five
beta HPVs were detected using these combined protocols (797,800
reads), of which 3 were assigned to species beta-3. Only 2 non-refer-
enced gamma HPV types were detected (HPV-mDysk1 – KX781280 and
HPV-mDysk6 – KX781285).

The reads generated from the sequencing of the 147 oral DNA
samples were assigned to a total of 161 different PV types. PV types that
belong to the genus beta were most common (29.5%), followed by
genus gamma (19.6%) and genus alpha (7.8%) (Fig. 2B; Table S2). In
addition, a substantial fraction of reads (36.9%) was assigned to tax-
onomically unclassified PVs: EcPV8, Miniopterus schreibersii papilloma-
virus type 1 (MscPV1), PpuPV1, and SaPV1 (Fig. 2B; Table S2).

The FAPM1 and FAPM2 protocols enabled the detection of 55 PVs
(4 alpha, 30 beta, and 21 gamma) and 42 PVs (5 alpha, 21 beta, and
16 gamma), respectively. Forty-six PVs (6 alpha, 17 beta, and
23 gamma) were detected using the CUT protocol (Fig. 2B; Table S2).

Substantial numbers of reads identified in both skin (745,860 reads)
and oral (163,448 reads) samples were related to taxonomically clas-
sified non-human PVs (i.e. PVs not belonging to the genera alpha, beta,
gamma, mu, and nu) (Tables S1 and S2; Fig. 2).

3.3. Subdivision of the NGS reads into known and putative novel PVs

The NGS sequences were divided into two groups, on the basis of the
initial MegaBlast results: (i) L1 sequences with ≥ 90% similarity with a
known PV (i.e. known PV types) and (ii) L1 sequences with< 90%
similarity with any known PV (i.e. putative novel PV types). This sub-
division was followed by contig construction and sequences identifi-
cation using CAP3 and RAxML-EPA, respectively.

Regarding the sequences that share ≥ 90% of identity with known

PVs, a total of 8,002,617 reads were generated. The majority were from
the genus beta (2,358,670 reads), followed by alpha (1,992,264 reads)
and gamma (1,002,061 reads) (Fig. 3A). A substantial proportion of the
reads (1,678,061 reads) was assigned to the “unclassified PVs” cate-
gory, mainly represented by SaPV1 (KX643372.1). The beta-3-1 and
beta-3-2 protocols generated a total of 2,588,649 reads (pool 1,
Table 2), with a majority (56.6%) of alpha PV sequences, followed by
beta HPV sequences (30.8%) (Fig. 3A). The FAP protocol (pool 2)
generated 985,675 reads in skin samples, of which 40.8% belonged to
the genus beta and 14.5% to gamma (Table 2; Fig. 3A). The FAPM1
protocol (pool 3) enabled the detection in skin samples of 861,810
reads, comprising alpha (23.3%), beta (13.6%), gamma (14.3%), and
mu (7.6%) PV-related sequences (Table 2; Fig. 3A). In oral samples
(pool 6), when the same PCR protocol was used, generating 244,587
reads, a different distribution of alpha, beta, and gamma PVs was ob-
served, with 0.1%, 53.6%, and 12.3%, respectively (Table 2; Fig. 3A).

The use of the CUT protocol on skin samples (pool 4) generated
884,923 reads, from the alpha (13%), beta (19.5%), and gamma
(23.3%) genera. When the same protocol was used on oral samples
(pool 7), generating 78,060 reads, the proportion of alpha (2.1%), beta
(11%), and gamma (17.2%) PV-related sequences was different
(Table 2; Fig. 3A). The highest proportion of reads (43.4%) generated
from this pool corresponded to an unclassified PV (SaPV1).

The FAPM2 protocol (pool 5), used in oral samples, generated
466,004 reads, with a distribution of 9.3% alpha, 39.6% beta, and
32.5% gamma PV-related sequences (Table 2; Fig. 3A).

In addition, products from five PCR protocols (pool 8, Table 2) were
pooled and analyzed by NGS. This pool generated 1,892,909 reads, of
which 24.5% were representative of beta, 8.8% alpha, and 17.6%
gamma PVs. The highest proportion of reads (44.3%) was re-
presentative of unclassified PVs (Tables S2).

All the reads correspond to 296 known PV types, including 30 alpha
PVs, of which 14 were found in skin samples, 8 in oral samples, and 8 in
both tissues. Fifty-four beta HPVs were identified, of which 13 were
from the skin, 3 from the oral cavity, and 38 from both tissues.
Regarding the genus gamma, 123 known HPVs were identified, of
which 70 were isolated from the skin, 8 from the oral cavity, and 45
from both anatomical sites. Three mu HPVs were found (1 in the skin
and 2 in both skin and oral samples), and only 1 nu HPV was found (in
the skin). Six unclassified PV types were identified, of which 2 were
isolated from the skin, 1 from the oral cavity, and 3 from both sites
(data not shown).

In addition, 11.3% of the reads (n=909,308) corresponded to 79
sequences of diverse PVs that do not belong to any of the five PV genera
(alpha, beta, gamma, mu, and nu) that contain HPVs; 34 of these 79
sequences were isolated from the skin, 11 from the oral cavity, and 34
from both sites (data not shown).

Regarding the putative novel PVs, we identified 19,032 reads
with< 90% similarity with known PVs. The majority of these reads
were related to beta (35.6%) and gamma (23.2%) HPV types (Fig. 3B;
Table S3). The beta-3-1 and beta-3-2 protocols enabled the identifica-
tion in pool 1 of 22 reads (26.8%) that are representative of 2 putative
new beta-3-related sequences (Fig. 3B; Table S3). In the same pool, 54
reads (65.8%) were assigned to an unclassified PV. However, in the
same cluster, a smaller contig was assigned to Psipapillomavirus (Table
S3). The remaining reads (n=6, 7.3%) were assigned to Dyophipa-
pillomavirus 1, but were matched against HPV115 using the PaVE
classification. The FAP protocol enabled the detection in pool 2 of pu-
tative new beta (40 reads, 1.2%) and gamma (2228 reads, 69.2%) HPV
types. Of the 116 reads that were assigned to unclassified PV using
RAxML-EPA, 2 were related to HPV MTS2 (gamma-7) according to the
PaVE classification (Dutta et al., 2017). Finally, 833 reads were iden-
tified as Taupapillomavirus 3, 4 reads as Deltapapillomavirus 5, and 3
reads as Dyorhopapillomavirus 1 (Table S3).

The FAPM1 protocol enabled the detection in pool 3 of sequences
representative of putative new beta (294 reads, 70.2%), gamma (48
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Fig. 2. Graphical representation of the unnormalized abundance of PV genera and species in terms of number of reads: (A) skin samples, (B) oral samples.
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reads, 11.5%), delta-2 (52 reads, 12.4%), and lambda-3 (7 reads, 1.7%)
PV types. In oral samples, the same protocol enabled the identification
of 21 reads, of which 9.5% were found to be related to putative new
beta-1 HPV types, 23.8% to Sigmapapillomavirus 1, and 66.7% to
Dyoiotapapillomavirus 2 using RAxML-EPA (Fig. 3B; Table S3). No pu-
tative new gamma HPV types were identified.

The use of the CUT protocol on skin samples (pool 4) revealed
the presence of 2126 reads (72.7%) representative of putative new
gamma HPV types. A smaller fraction (4.2%) was representative of
putative new beta HPV types. This protocol also revealed the presence
of 12 nu and 12 alpha (assigned to species alpha-2 and alpha-3) PV-
related reads. RAxML-EPA indicated that 2 reads corresponded to
Lambdapapillomavirus 3, whereas the same reads got their best initial
MegaBlast match against canine papillomavirus 6 (CPV6). Eight other
putative non-human PVs were also found (Table S3).

In oral samples (pool 5), when the FAPM2 protocol was used, 6295
reads (99.9%) were representative of putative new beta HPV types, and
0.1% were representative of putative new gamma HPV types (Fig. 3B;
Table S3). The CUT protocol (pool 7) enabled the identification in oral
samples of only one putative new non-human PV (Chipapapillomavirus
2), as well as an unclassified type using RAxML-EPA, but all such reads
were assigned to species beta-1 using the PaVE database (Table S3).

Regarding pool 8, only 0.07% and 0.3% of the reads were assigned
to beta and mu HPVs, respectively. The remaining reads were related to
an unclassified PV (3308 reads), to Treisdeltapapillomavirus 1 (2713

reads), and to other non-human PV genera (Treisepsilonpapillomavirus,
Treisdeltapapillomavirus, and Treiszetapapilloamvirus; 16 reads).

In summary, all the reads corresponded to 105 putative novel PV
types, including 29 beta HPVs, of which 21 were found in skin and 8 in
oral samples. Thirty-two gamma HPV types were identified, of which
30 were found in skin and 2 in oral samples. Only 2 putative new alpha
HPVs were found in the skin. One mu HPV was found in skin samples.
Twenty-four diverse PVs that do not belong to any of the five PV genera
that contain HPVs were identified, of which 17 were found in skin and 7
in oral samples. Moreover, 17 unclassified PVs were isolated from skin
(n=15) and oral (n=2) samples. However, these reads were found to
correspond to beta (n=9) and gamma (n=8) HPVs when the PaVE
algorithm was used.

4. Discussion

Since the discovery of the first HPV type four decades ago (Orth
et al., 1978), 127 alpha, 93 beta, and 135 gamma HPVs have been
described in the Papillomavirus Episteme database (Van Doorslaer
et al., 2017). Alpha, beta, and gamma are the most representative
genera (Doorbar et al., 2012).

To identify new HPV types, FAP and CUT primers combined with
cloning and Sanger sequencing-based strategies have been used suc-
cessfully in the past (Chouhy et al., 2010; Forslund et al., 1999).
However, this approach is quite laborious and time-consuming, and

Fig. 3. (A) Distribution of the known PVs detected in the different NGS pools, in terms of percentage of reads within each pool; (B) distribution of the putative new
PVs detected in the different NGS pools, in terms of percentage of reads within each pool (RAxML-EPA).
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enables the identification of the most represented amplicons only. In
particular, this strategy is ineffective in the context of multiple infec-
tions. With the advent of new molecular tools (e.g. NGS), the discovery
of new HPVs has accelerated over the past few years (Bzhalava et al.,
2014; Kocjan et al., 2015). Several studies have shown the capability of
NGS in detecting low-copy HPV infections, especially in multiple in-
fections (Arroyo et al., 2013; Barzon et al., 2011; Ekström et al., 2011;
Johansson et al., 2013).

Here, we developed a strategy that combines the use of specific or
degenerate primers targeting the L1 region of a broad spectrum of HPVs
with NGS, for the detection of new HPV types, especially from the genus
beta. This strategy incorporates the selective enrichment of PV se-
quences before NGS is performed. Approximately two thirds of the
reads were related to PV sequences. Similar approaches have been re-
ported previously (Arroyo Mühr et al., 2015; Ekström et al., 2013,
2011).

The growing interest in the beta genus arises from evidence that a
number of beta HPV types may be involved in pre-malignant and ma-
lignant skin lesions (Pfister et al., 2003; Tommasino, 2017). Interest-
ingly, species beta-3 HPV types have been detected in the skin and
mucosal epithelia (Forslund et al., 2013; Hampras et al., 2017). Func-
tional studies in in vitro and in vivo experimental models have high-
lighted some biological similarities between beta-3 and mucosal HR
HPV types. HPV49 shows transforming activity in primary human
keratinocytes, and shares some features with HPV16 (Cornet et al.,
2012; Viarisio et al., 2016). One of our objectives was to expand the
biologically relevant species beta-3, which includes only 4 HPV types,
by using beta-3 consensus and degenerate primers.

Combining PCR with novel sets of HPV primers and NGS, we
showed the presence of a total of 105 putative new PVs. This procedure
also demonstrated the presence of 296 known PV types. Our study
showed the presence of a substantial number of beta and gamma HPV
types in the oral cavity, which supports the hypothesis of a possible
mucosal tropism. However, environmental contamination of the oral
cavity cannot be excluded. Furthermore, several other sequences re-
lated to unclassified and non-human PVs were identified in skin and
oral samples. Environmental contamination may explain the presence
of non-human PVs in skin and oral samples. However, cross-species
transmission of PVs between animals and humans may also be a con-
sideration (Bravo and Félez-Sánchez, 2015; Gottschling et al., 2011),
even though PVs are typically considered to be highly host-restricted
(with a few exceptions). Sequences related to bovine PVs have been
found in horses and other equids, suggesting interspecies transmission
events (Lunardi et al., 2013; Trewby et al., 2014). Other studies also
reported cases of cross-species transmission of PVs between bat species
(García-Pérez et al., 2014), between rhesus and cynomolgus macaques
(Chen et al., 2009), and between humans and cats (Anis et al., 2010;
O’Neill et al., 2011); however, additional studies are needed to confirm
the latter.

In addition, the notion of “non-human” PV genera needs to be in-
terpreted with caution as they may also include some HPVs. Similarly,
alpha and beta genera include few non-human primate PVs (Bernard
et al., 2010; Rector and Van Ranst, 2013).

All the results in this study are based on the identification of the
sequences using the RAxML-EPA classification. A total of 105 putative
new PVs (including 29 beta, 32 gamma, 2 alpha, and 1 mu PVs) were
found. In addition, 24 diverse PVs that do not belong to any of the five
PV genera that contain HPVs were identified. Interestingly, 17 of the
105 putative new PVs (16.2%) were assigned to taxonomically un-
classified PVs. These PVs may not belong to any of the known genera
that contain human or animal PVs, and thus may be representative of
putative new genera.

The taxonomic assignment performed in this study must be inter-
preted cautiously, because only small portions of putative new PV
genomes have been obtained. In addition, the results obtained using the
blastn algorithm refer exclusively to the fraction of the sequence that is

aligned by the algorithm. The percentage of similarity indicated by the
initial MegaBlast results must also be interpreted with caution, because
the definition of novelty for a PV is based on the full L1 ORF length.

In this study, the different protocols were run on different human
specimens, and showed different efficacies in detecting putative new
PVs, as well as known PVs. The beta-3-1 and beta-3-2 protocols enabled
the identification of 4 new beta-3-related sequences in skin samples
(using the RAxML-EPA classification), which may potentially expand
the beta-3 group to 8 PV types. In vitro experiments are needed to
provide insight into the biological properties of these PV types, and to
investigate whether these types share biological features with HPV49
(Cornet et al., 2012; Viarisio et al., 2016). The CUT primers enabled the
detection of a broad range of PV types in skin and oral samples, in-
cluding alpha PV types, as previously reported (Chouhy et al., 2010). In
contrast, the original FAP protocol was much less likely to identify PVs
belonging to the genus alpha. The FAPM1 and FAPM2 protocols en-
abled the detection of the largest number of putative new PVs in oral
samples, whereas the CUT primers enabled the detection of the largest
number of putative new PVs in skin samples. Interestingly, the FAPM1
and CUT protocols showed good performance in the detection in skin
samples of new PV types that belong to non-human PV genera.

Together, the different protocols enabled the identification of a
substantial number (n= 62) of putative new beta and gamma HPV
types, as well as putative non-human PVs (n= 24), in both skin and
oral samples.

The gamma HPV types constitute a large group of HPVs that are not
yet clearly associated with human disease. However, HPV197, a
member of species gamma-24, has recently been detected in human
skin cancer specimens (Arroyo Mühr et al., 2015; Grace and Munger,
2017). To date, only 3 HPV types have been classified into the species
gamma-24. The use of consensus or degenerate gamma-24 primers
might facilitate the discovery of new related PV types, if any exist. Some
of the putative new beta or gamma HPV types may also show trans-
forming activity.

In summary, the present study describes a robust strategy based on
the use of specific or degenerate primers and NGS technology to detect
putative novel PVs. Although the identification of novel PV types or
species can only be definitively confirmed by sequencing the whole L1
ORF, initial studies have confirmed the validity of our new protocol as a
first step for the isolation and full characterization of novel HPV gen-
omes (e.g. HPV ICB1) (Brancaccio et al., 2017).

The discovery of novel HPV types remains of paramount im-
portance, because new associations between HPV infections and human
diseases may be established.
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ABSTRACT We report the complete genome characterization of a novel human
papillomavirus (HPV) (ICB2) isolated from a skin swab. The L1 region of HPV ICB2
shares 87.9% nucleotide similarity with its closest relative, HPV37, and thus consti-
tutes a novel human betapapillomavirus.

H
uman papillomaviruses (HPVs) are double-stranded circular DNA viruses with a
genome of approximately 8 kb and belong to the Papillomaviridae family. HPVs

infect basal keratinocytes of the mucosal and cutaneous epithelia. Based on the
nucleotide sequences of the major capsid protein L1, HPVs are classified into five major
genera, Alphapapillomavirus, Betapapillomavirus, Gammapapillomavirus, Mupapilloma-
virus, and Nupapillomavirus (1–3). The mucosal high-risk HPV types, which belong to the
genus Alphapapillomavirus, are the etiological agents of anogenital cancers and of a
subset of head and neck cancers (4). Moreover, an etiological role of cutaneotrophic
HPVs from the genus Betapapillomavirus in association with exposure to UV radiation
in the development of nonmelanoma skin cancer is also suggested (5–7).

Here, we report the complete genome sequence of a novel HPV type (HPV ICB2;
7,441 bp) isolated from a human forearm skin swab.

A partial L1 region sequence of HPV ICB2 (99 bp) was previously obtained from DNA
extracted from the skin swab using broad-spectrum primers in combination with
next-generation sequencing (8). Multiply primed rolling-circle amplification (RCA) was
performed on the corresponding skin swab DNA according to the manufacturer’s
instructions (illustra TempliPhi 100 amplification kit; GE Healthcare, USA). To obtain the
complete viral genome, first, long-range PCR was performed on the RCA product using
PrimeSTAR GXL DNA polymerase (TaKaRa Bio), outward-directed primers specific for
HPV ICB2 (forward primer, 5=-CAGACAGAACACATCTTTTGATCC-3=; and reverse primer,
5=-TCGTCCCGTGACCCACCCTGA-3=).

The resulting amplicon of approximately 8 kb was then cloned in pCR-XL-2 TOPO
vector using the TOPO XL-2 complete PCR cloning kit (Invitrogen, Carlsbad, CA). The
sequence of the whole genome was obtained by Sanger sequencing using a primer-
walking strategy (GATC Biotech, Germany). This sequencing service uses cycle sequenc-
ing technology (dideoxy chain termination/cycle sequencing) on an ABI 3730XL
sequencing machine. The viral genome was covered at least twice in order to identify
and correct sequencing errors. Thirty-one sequences were generated and aligned to
reconstruct the whole genome using the CAP3 sequence assembly program (9), with
default parameters.

The clone has been submitted to the International Human Papillomavirus Reference
Center in Stockholm (www.hpvcenter.se) for assignment of HPV type number.

The L1 open reading frame (ORF) of HPV ICB2 showed 87.9% nucleotide identity
with its closest relative, HPV37, which belongs to the species beta-2 of the genus
Betapapillomavirus. HPV ICB2 thus constitutes a novel human betapapillomavirus by
sharing less than 90% nucleotide sequence identity with the closest HPV type in the L1
ORF (3).
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The G�C content of ICB2 is 40.7%. The virus has the typical genome organization of
other cutaneotrophic HPVs; it is composed of five early (E1, E2, E4, E6, and E7) and two
late (L1 and L2) ORFs, and no E5 was identified.

The long control region (LCR) is 382 bp. This region contains two polyadenylation
sites (AATAAA) for L1 and L2 transcripts and four consensus palindromic E2-binding
sites, as follows: ACCG-N4-CGGT (n � 2), ACC-N5-GGT (n � 1), and ACC-N1-GGT (n � 1).
A putative TATA box domain (TATAAGA) for the downstream early promoter was also
identified.

The two conserved zinc-binding domains of the viral E6 protein [CxxC(x)29CxxC and
CxxC(x)30CxxC] are present and are separated by 36 amino acids (5).

A zinc-binding domain [CxxC(x)29CxxC] and one LxCxE motif are located in the E7
protein (5). An ATP-binding site (GPPDTGKS) for ATP-dependent helicase activity was
identified in the carboxy terminus of the E1 protein. In conclusion, we identified and
fully characterized a new HPV belonging to species beta-2, HPV ICB2. This finding
contributes to the expansion of our knowledge about the impressive diversity of the
Betapapillomavirus genus.

Data availability. The complete genome sequence of HPV ICB2 is available in
GenBank under accession number MK080568.
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Abstract

The detection of known human papillomaviruses (PVs) from targeted wet-lab approaches 
has traditionally used PCR-based methods coupled with Sanger sequencing. With the 
introduction of next-generation sequencing (NGS), these approaches can be revisited to 
integrate the sequencing power of NGS. Although computational tools have been 
developed for metagenomic approaches to search for known or novel viruses in NGS data, 
no appropriate tool is available for the classification and identification of novel viral 
sequences from data produced by amplicon-based methods. We have developed 
PVAmpliconFinder, a data analysis workflow designed to rapidly identify and classify 
known and potentially new Papillomaviridae sequences from NGS amplicon sequencing 
with degenerate PV primers. Here, we describe the features of PVAmpliconFinder and its 
implementation using biological data obtained from amplicon sequencing of human skin 
swab specimens and oral rinses from healthy individuals. PVAmpliconFinder identified 
putative new HPV sequences, including one that was validated by wet-lab experiments. 
PVAmpliconFinder can be easily modified and applied to other viral families. 
PVAmpliconFinder addresses a gap by providing a solution for the analysis of NGS 
amplicon sequencing, increasingly used in clinical research. The PVAmpliconFinder 
workflow, along with its source code, is freely available on the GitHub platform: 
https://github.com/IARCbioinfo/PVAmpliconFinder.
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1 Introduction

Papillomaviruses (PVs) are widely distributed across vertebrates. PVs are classified into 
genera, species, and types based on the nucleotide sequence identity of the major capsid 
protein L1. Human PVs (HPVs) have a tropism for the skin and mucosal epithelia of 
different anatomical sites and are organized into five major genera: alpha, beta, gamma, 
mu, and nu (1, 2). HPV infection is responsible for various diseases, including several 
types of cancer (3, 4). To date, more than 200 HPVs have been fully characterized (1, 5). 
Recent studies have provided evidence that many more HPV types exist (6, 7). Thus, it is 
important to comprehensively describe the family of HPV types and evaluate their role in 
human diseases.
Traditionally, single-step or nested PCR amplification using consensus or degenerate 
primers has been used for the identification and characterization of novel HPVs (8–10). 
This approach is time-consuming and laborious and has limitations in terms of sensitivity, 
especially in samples with low viral DNA load or in the case of co-infections with multiple 
HPV types. More recently, several PCR-based strategies using degenerate primers have 
been combined with the use of next-generation sequencing (NGS) to characterize PV 
virome composition or to search for new viruses (11–13). We have recently developed a 
novel approach that enabled the description of 105 putative new PV types in skin and oral 
samples (7). This approach required the development of a specific bioinformatics 
workflow, because no existing tools were adapted to our protocol design. Several 
bioinformatics tools have been developed to analyze NGS data for the detection of 
viruses, but most of them are designed to analyze the virome composition of known 
viruses in clinical settings, or to discover new viruses from DNA or RNA shotgun 
sequencing (14–21).

Here, we describe a new bioinformatics workflow, PVAmpliconFinder, specifically 
designed to rapidly identify and classify known and potentially novel viruses from the 
Papillomaviridae family from amplicon NGS using degenerate PV primers. 
PVAmpliconFinder is based on alignment similarity metrics, but also considers molecular 
evolution time for improved identification and taxonomic classification of novel PVs. The 
final output of the tool includes a list of fully characterized putative new Papillomaviridae 
sequences together with a graphical representation of the relative abundance and diversity 
of HPV sequence diversity in the tested samples.

2 Materials and Methods

Details of the workflow can be found in Supplementary Data 2. Briefly, PVAmpliconFinder 
takes paired-end FastQ files as input and applies common data preprocessing steps for 
quality control and filtering (Figure 1A). Then, data complexity is reduced before the 
identification of the PV-related sequences (Figure 1B). Groups of sequences are defined 
based on similarity between identified sequences and available PV sequences in the NCBI 
database (Figure 1C). De novo assembly is then performed to reconstruct the full amplified 
region covered by several primer systems (Figure 1D). Finally, the reconstructed 
sequences are taxonomically classified based on two independent methodologies, which 
are alignment-based and homology-based, respectively, before the generation of diverse 
output reports (Figure 1E and F).

3. Results
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We applied the PVAmpliconFinder workflow (Figure 1) to the data obtained from amplicon 
sequencing of human skin swab specimens and oral rinses from healthy individuals, 
aiming to identify new PVs (the detailed protocol is in Supplementary Data 4). Different 
sets of degenerate primers targeting the L1 region of HPVs (7) were used to amplify 8 
DNA sample pools. The 8 DNA sample pools were subjected to paired-end sequencing on 
the Illumina MiSeq system, generating about 2.65 million raw reads in total (331,359 raw 
reads on average per sample pool) (Table 1). PVAmpliconFinder was run with an info file 
describing the characteristics of each sample pool to enable the output of data stratified by 
tissue type and primer system (Supplementary Table S1).

3.1 Preprocessing and complexity reduction analysis

The first step of the analysis, consisting of quality trimming, had a small impact on the total 
numbers of reads, removing less than 2% of the reads in the 8 DNA sample pools (Table 
1). Merging the paired reads (step 2) reduced by at least two-fold the total number of 
sequences but extended their length. Although more than 90% of the reads were merged 
for most samples, about 40% of the reads were not successfully merged at this step for 
DNA sample pool 6 (Table 1). A quality check of this sample pool with the FastQC report 
generated in step 2 enabled the identification of primer contamination in about 10% of the 
reads, explaining a sub-optimal reconstruction of the full insert (data not shown).
The following step, de-replication, consisted of collapsing identical sequences into a single 
template but keeping the information on the number of reads used to form the final 
template. For the 8 DNA sample pools, the different amplicons were highly represented, as 
shown by the substantial decrease in the number of unique sequences remaining after this 
step (about 5% of the total number of sequences after merging of the mate reads) (Table 
1). Less than 1% of the sequences were identified as potentially chimeric (Table 1). Then, 
a de novo clustering of highly related sequences was performed to correct for sequencing 
and/or polymerase errors present at low frequency at each position. A user-defined 
threshold had been set to 98% of identity for two sequences to cluster together. This 
clustering step drastically reduced the number of unique sequences retained, decreasing 
the number of sequences from about 8% to 1% of the overall sequences considered in the 
preceding step (Table 1). Overall, for the entire run, about 28.5% (756,506/2,650,877) of 
the total raw reads were retained for the MegaBlast step (Supplementary Table S5A).

3.2 Identification of PV-related sequences and definition of groups

To identify the sequences in an unbiased manner, the sequences were aligned against the 
complete NCBI “nt” nucleotide sequence database, which includes all sequences from all 
species (Figure 1C). Subsequently, groups of sequences were defined based on two 
characteristics: the best MegaBlast subject sequence for each query, and the percentage 
of similarity of each sequence with its corresponding best subject sequence (Figure 1C).

3.2.1 Identification of PV-related sequences

On average, more than 90% of the centroid-clustered unique sequences of the 5 pools 
from skin swab specimens (S1-S5) matched against a Papillomaviridae family sequence, 
highlighting the specificity of the amplification using partially degenerate primers (Table 1). 
This represented a mean of 99.5% of Papillomaviridae-related reads among all reads 
submitted to MegaBlast from those 5 skin sample pools (Supplementary Table S5A).
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For the 3 pools from oral rinses (S6-S8), about 86.5% of the centroid-clustered unique 
sequences had their best match against a Papillomaviridae family sequence (Table 1), 
representing a mean of 18.5% of Papillomaviridae-related reads among all reads 
submitted to MegaBlast from those 3 oral sample pools (Supplementary Table S5A).
A total of 549,280 reads (72.6%) of the sequences subjected to MegaBlast matched 
against Papillomaviridae family sequences (Supplementary Table S5A).

3.2.2 Definition of groups

When all the PV-related sequences identified above were grouped based on the best 
match and percentage of similarity, a total of 139 groups of PV sequences were found in 
the overall NGS run, including 136 known PVs or putative known PV variants (presenting 
less than 10% of dissimilarity with an already characterized PV) and 3 putative new PVs 
(Table 1). The known PV sequences corresponded to 549,273 raw reads, and the putative 
new PV sequences were supported by 7 raw reads (Supplementary Tables S5 E and G).

3.3 De novo assembly of grouped sequences

The grouped sequences for each sample pool were then de novo assembled to extend the 
sequence lengths in order to cover the full L1 region targeted by the different primer 
systems used in the PCRs (Figure 1D).

3.4 Taxonomic classification of PV sequences

The taxonomic classification of each PV sequence was then assigned to the extended 
sequences using two methods, one based on the taxonomic classification of the best 
subject match (using the e-value computed by BlastN) when aligned against a 
comprehensive database of PV sequences, and the other based on molecular evolution 
using the Randomized Axelerated Maximum Likelihood-Evolutionary Placement Algorithm 
(RaxML-EPA) (Figure 1E). For details, see Supplementary Data 2.
The results of the classification for DNA sample pool S5 (skin samples pool; CUT primer) 
are described in Table 2. In this sample pool, 2 putative new PV sequences represented 
by 5 reads and 39 putative known PV sequences represented by 60,892 reads were 
identified (Tables 1 and 2; Supplementary Tables S5 E and G).
One of the putative new PV sequences in this pool was represented by 3 reads (PV_2). 
The MegaBlast algorithm (using the full “nt” database) aligned it against 
“Gammapapillomavirus 13 isolate Gamma13_HIVGc158, complete genome” 
(MF588722.1) with 81.25% of identity. Of note, although the Gamma13_HIVGc158 is a 
complete genome, this sequence is not reported in the Papillomavirus Episteme (PaVE) 
database. The BlastN algorithm (using the PaVE database) aligned this sequence against 
HPV-mEV03c45 (MF588721), an unreferenced Gamma PV genome, with 78.69% of 
identity. RaxML-EPA found the best position of this putative new sequence in the 
reference tree close to HPV213 (MF509818), also a potential Gamma PV, but with 
pending approval of its classification by the International Committee on Taxonomy of 
Viruses (ICTV) (Tables 2 and 3). Although the three methodologies agreed on classifying 
this sequence as a putative Gamma PV, the two alignment methods did not perfectly align 
the putative new PV sequence (less than 85% similarity against known PVs).
Among the 39 putative known PV sequences identified in this sample pool, one was 
represented by about 7% of the total reads (4,211 raw reads out of 60,892 reads) (Table 2; 
Supplementary Table S6: Sequence identifier “69VIRUSput”). The MegaBlast algorithm 
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aligned this sequence to a partial cds (342 bp) of a major capsid protein L1 gene (isolate 
GC12_1; FJ969907.1) with nearly 99% of identity. In comparison, the BlastN alignment 
against the PaVE database aligned this sequence against a Gamma-10 referenced PV 
genome (HPV130; GU117630), with a percentage of identity below 10% (86.12%). When 
aligning the isolate GC12_1 partial cds and the HPV130 full genome with the MegaBlast 
algorithm, the two sequences presented 86.01% of identity on 98% coverage. Finally, 
RaxML-EPA found homology with EdPV2 (MH376689), an unclassified Erethizon 
dorsatum PV species (Table 2; Supplementary Table S6). EdPV2 was proposed to 
represent a new genus in the family Papillomaviridae (22). From these results, this 352 bp 
sequence may represent a novel PV type, although it remains to be fully characterized.

3.5 Relative unnormalized abundance of Papillomaviridae-related sequence: 
differences based on the methodology

The relative unnormalized abundance of Papillomaviridae-related sequences identified by 
MegaBlast, BlastN, and RaxML-EPA for all samples is shown in Figures 2, 3, and 4, 
respectively, and Supplementary Tables S2, S3, and S4 provide the detailed taxonomic 
assignation based on MegaBlast, BlastN, and RaxML-EPA, respectively. Beta-3 species 
were the most represented species identified by the three methods, with 42% of beta-3-
related sequences identified by MegaBlast, and 62% identified by both BlastN and RaxML-
EPA (Supplementary Tables S2, S3, and S4). The second most represented group was 
the “unclassified” sequences for MegaBlast (28% of the sequences), due to the incomplete 
taxonomic classification of a proportion of Papillomaviridae-related sequences present in 
the NCBI database. The third most represented genus based on MegaBlast was the 
gamma genus, with about 24% of the sequence, followed by the alpha genus (2%) and a 
small proportion of Lambdapapillomavirus (0.03%) due to the identification of a feline PV 
partial cds sequence (EF535004.1) in sample pools 1 and 2 (Supplementary Tables S2 
and S6).
The second most represented group based on BlastN and RaxML-EPA was the 
unreferenced PVs, with a major subset putatively classified as unreferenced 
Gammapapillomavirus sequences (about 17%) and a small subset as unreferenced 
Betapapillomavirus sequences (about 1%). Of note, unreferenced sequences represented 
about 40% of the total entries available in the PaVE database version used (version of 
May 23, 2019). The third and fourth most represented genera were the referenced gamma 
and alpha PVs by both BlastN and RaxML-EPA (Figures 3 and 4). BlastN could not 
classify 0.008% of the sequences, due to a best subject sequence associated with an e-
value under the threshold defined as 1e-1 (Supplementary Table S3). RaxML-EPA also 
classified 0.8% of the sequences as “Unclassified” because those sequences presented 
homology to a newly described Erethizon dorsatum PV (EdPV2; MH376689), not yet 
classified by the ICTV, and potentially the first representative genome of a new PV genus 
(22). Interestingly, the 46 reads that were unclassified by BlastN (due to the e-value 
threshold) were classified as Taupapillomavirus by RaxML-EPA, with homology to Felis 
catus PV type 4 and 5 (Supplementary Table S4).

3.6 Discovery and characterization of putative new PV-related sequences

Overall, from the entire run, a total of 3 putative new sequences belonging to the 
Papillomaviridae family were identified by the algorithm (Table 3). Based on MegaBlast, 
“PV_1” is close to an unreferenced Gamma-12 complete genome, also present in the 
PaVE database (MF588716). However, it shows a higher percentage of identity with HPV-
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mSK197 (MH777339) based on BlastN alignment against the PaVE database. RaxML-
EPA was in agreement with BlastN results, finding homology with the unreferenced 
Gammapapillomavirus HPV-mSK197. “PV_2” presented similarity (based on MegaBlast) 
with an unreferenced Gamma-13 complete genome (MF588722), which is absent from the 
PaVE database. BlastN found similarity with HPV-mEV03c45 (MF588721), an 
unreferenced Gammapapillomavirus genome, and RaxML-EPA found homology to 
HPV213 (MF509818), a referenced but unofficially classified Gammapapillomavirus 
genome. “PV_3” presented similarity with an unclassified partial cds of the isolate GC04 
(FJ969896), but presented a higher similarity with the unreferenced HPV-mSK014 
(MH777162) when aligned using BlastN. RaxML-EPA also found homology with the same 
HPV-mSK014 unreferenced Gammapapillomavirus genome. The sequence sizes ranged 
from 160 to 372 nucleotides, and all sequences presented more than 15% of dissimilarity 
with non-referenced PV sequences based on MegaBlast. All were amplified from skin DNA 
samples, using FAP and CUT primers (8, 9).
A previous analysis of the same data had led to the characterization of the full genome 
sequence of a novel Gamma-8 PV (Table 3, “37VIRUSput“) (23). In the current analysis, 
this sequence appeared in the putative known PV sequence, because it is now included in 
the NCBI database (MF356498.1) as well as in the PaVE database. However, this 
sequence is still assigned to an unclassified group by the BlastN algorithm because the 
taxonomy has not yet been updated in the PaVE database (Supplementary Table S6, 
“37VIRUSput”). The official number of this novel PV, named “HPV isolate ICB1” in the 
NCBI database, is HPV224.

3.7 Performances

The PVAmpliconFinder execution time on this dataset was less than 150 minutes when 
using an indexed NCBI database (Table 4). The most time-consuming step was the 
MegaBlast search against the full “nt” NCBI database (more than 95% of total time). When 
using a non-indexed NCBI “nt” database, the MegaBlast computational time was reduced 
to less than 5 minutes (Supplementary Table S7). For most of the steps, parallelization at 
the sample level was implemented to reduce the total computation time.

4. Discussion

We developed PVAmpliconFinder, a complete workflow enabling the discovery and 
identification of viral sequences related to the Papillomaviridae family from targeted 
amplicon sequencing by NGS. PVAmpliconFinder is an easy single-line command 
workflow that takes FastQ files as input files and generates tabular and graphical output 
files that describe the nature and abundance of PV-related sequences present in a 
complex mixture of host, phage, bacterial, and viral DNA. The data output discriminates 
between putative new and previously known Papillomaviridae-related sequences. 
Furthermore, it includes sequencing metrics and sequence details, enabling the design of 
subsequent laboratory experiments for confirming the in silico findings (Supplementary 
Data 3).
In contrast to read-subtraction methods, PVAmpliconFinder performs an alignment step 
against the entire NCBI database. This is a deliberate choice because removing host 
sequences may remove potentially new viral sequences that present some similarity to the 
host. Indeed, viruses are the fastest mutating DNA element on Earth (24), so the chance 
of random sequence similarity between a large host genome and a small viral sequence is 
high. Moreover, the use of degenerate primer leads to the amplification of more diverse 
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pieces of DNA and finding the best match against a Papillomaviridae sequence when 
aligning against a multi-organism database provides more robust results.
Several steps of the workflow are specifically tailored to deal with the specificity of NGS 
amplicon sequencing: the merging of the read pairs, enabling the reconstruction of the full 
insert; the de-replication step, to reduce data complexity and keep only one copy of 
identical sequences; and the elimination of chimeric sequences (PCR-derived sequences 
should be represented by at least two copies during the de-replication step; thus, single 
copies are probably sequences without biological significance). The number of de-
replicated sequences corresponding to each template is saved in memory by the program 
to compute an unnormalized abundance. A step of clustering of highly related sequences 
is applied to correct for PCR amplification and sequencing errors. Because 2% of 
dissimilarity from any known L1 gene is enough to define a new PV variant (25), the tool 
uses a 98% identity threshold for clustering by default. When searching for new PV types 
(at least 10% of dissimilarity on the L1 gene), this threshold is a good compromise 
between sensitivity and specificity, because the potential loss of precision at the variant 
taxonomic level may be counterbalanced by an increased specificity of the reconstructed 
sequence.
To identify sequences in an unbiased manner, the sequences are aligned against the 
entire “nt” NCBI database. Although this step is time-consuming due to the large size of 
the database, it reduces the false-positive discovery rate. Indeed, querying a database 
with reduced diversity (such as a virus database) using the e-value as a threshold could 
increase the chances of getting a hit even if the subject sequence has a low identity with 
the queried sequence. Considering only the sequences that have their best match against 
a Papillomaviridae family sequence produces an unbiased result.
PVAmpliconFinder includes a grouping step to separate sequences that are putative new 
PVs from those that are already known PVs, using the threshold of 10% of dissimilarity. 
This grouping is done before the de novo assembly and classification steps because, 
although they are partially degenerate, the primers favor the amplification of known PV 
sequences. Because the tool is focused on the discovery of new PVs, it is important to 
separate potential new sequences at the earliest possible stage. A de novo assembly step 
is performed because of the possibility of using several primer sets that have different 
hybridization positions along the L1 gene. The objective is to reconstruct the longest 
possible sequence for each potential PV sequence.
PVAmpliconFinder uses an advanced identification and taxonomic classification of the 
sequences using both sequence similarity and homology. For the sequence similarity, the 
BlastN algorithm is used against the PaVE database (5). This database is the most 
complete PV database. It includes PV sequences validated by full genome resequencing, 
but also several “non-referenced” genomes that are not classified taxonomically. Currently, 
non-referenced PV genomes in the PaVE database represent more than 37% of the 
overall available PV genomes (244/649), and this percentage continues to increase (26, 
27). PVAmpliconFinder presents the results based on the initial MegaBlast step and those 
obtained based on BlastN alignment against the PaVE database, but a huge number of 
sequences remain unclassified using the former approach because they match against 
incomplete L1 cds. Moreover, pairwise alignment with a low percentage of similarity raises 
a concern about the pertinence of the results obtained. This is especially true for the 3 
putative new sequences identified in the application example reported here, because all 
sequences had at least 15% of dissimilarity against their best match. To circumvent this 
limitation, we use a complementary approach in parallel based on a molecular evolution 
method: RaxML-EPA (28). A multiple sequence alignment is used to infer evolutionary 
time and to reconstruct a phylogenetic reference tree of selected species. Then, the 
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Parsimony-based Phylogeny-Aware Read alignment (PaPaRa) algorithm is used to find 
the best position of the sequence into the reference multiple sequence alignment (29). 
RaxML-EPA is subsequently used to find the best position of those sequences in the 
reference tree. The accuracy of the PaPaRa alignment is critical for the correct positioning 
of the query sequence into the reference tree.
Some limitations of the PVAmpliconFinder workflow are due to the inherent limitations of 
the methods implemented. Evolutionary based methods such as RaxML suffer from long-
branch attraction errors. Long-branch attraction is an error where distant lineages are 
inferred to be close relatives because both have undergone a large number of changes. 
This is what is suspected to happen for the classification by EPA of the Erethizon 
dorsatum sequences identified in our experiment. They are inferred to be close to EdPV2 
(MH376689), a recently referenced but unclassified Erethizon dorsatum PV (22), 
presenting large differences from other known PVs on its L1 gene, and thought to 
represent a new genus in the family Papillomaviridae. Although this led to an incomplete 
classification, these sequences may represent new species or virus features. Finally, 
PVAmpliconFinder does not control for potential contamination. Cross-contamination 
between samples during library preparation, amplification, and sequencing, or 
environmental contamination are difficult to detect using in silico methods. Low-abundance 
sequences may truly be present in the samples but may also come from cross-
contamination from another sample. PVAmpliconFinder will report sequences represented 
by only 2 reads. These low-abundance sequences should be considered with caution. 
Defining an empirical abundance threshold could be considered. Environmental 
contamination may explain the presence of non-human PV in human samples. However, 
cross-contamination between species has recently been described (30, 31) and thus 
cannot be excluded.
While there is an increasing use of NGS amplicon sequencing in the clinical research 
setting,  only few bioinformatics methods are available for the sensitive detection of HPV, 
and they are often restricted to a panel of already well characterized PV types (32). The 
use of degenerated primers and PVAmpliconFinder may thus provide a solution for the 
detection and discovery of a broad range of HPV types.
In summary, we have developed the first bioinformatics tool for the identification of novel 
viruses of the Papillomaviridae family from amplicon sequencing data. This tool addresses 
a gap because no other tool exists for the analysis of this type of data. PVAmpliconFinder 
uses an advanced identification and taxonomic classification of the viral sequences 
extracted, which combines methodologies based on sequence similarity and homology. 
PVAmpliconFinder produces several tabular and graphical outputs that provide the 
necessary information to select the most promising putative new PV sequences that may 
be validated by further wet-lab approaches. Furthermore, PVAmpliconFinder can be easily 
modified and applied to other viral families, because this would only require a change in 
the interrogated databases and the reconstruction of a reference tree for the viral family 
considered. As no other tool exist for the analysis of NGS amplicon sequencing data of 
PV, PVAmpliconFinder addresses a gap with potential application in clinical research 
settings.

5. Data availability

The PVAmpliconFinder workflow, along with its source code, is freely available on the 
GitHub platform: https://github.com/IARCbioinfo/PVAmpliconFinder. Raw sequencing files 
have been deposited in the NCBI database under the BioProject accession number 
PRJNA555194.
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6. Supplementary Data

Supplementary Data are available at NAR online.
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Figure Legends

Figure 1: Workflow of PVAmpliconFinder
Figure 2: Graphical representation of the unnormalized abundance of PV genera and 
species in terms of number of reads based on MegaBlast alignment
Figure 3: Graphical representation of the unnormalized abundance of PV genera and 
species in terms of number of reads based on BlastN alignment
Figure 4: Graphical representation of the unnormalized abundance of PV genera and 
species in terms of number of reads based on RaxML-EPA
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Appendix. Supporting information

Supplementary Tables

Supplementary Table S1: Info file
Supplementary Table S2: Taxonomic classification of the reads identified in the overall 
NGS experiment by MegaBlast alignment
Supplementary Table S3: Taxonomic classification of the reads identified in the overall 
NGS experiment by BlastN alignment
Supplementary Table S4: Taxonomic classification of the reads identified in the overall 
NGS experiment by RaxML-EPA
Supplementary Table S5: NGS metrics, summary classification of putative known and 
putative new virus based on the three methodologies
Supplementary Table S6: Putative known Papillomaviridae-related sequences detected 
in the NGS experiment
Supplementary Table S7: Performances using non-indexed NCBI database

Supplementary Data

Supplementary Data 1: Info file description
Supplementary Data 2: Details of the workflow steps
Supplementary Data 3: Description of output files format
Supplementary Data 4: Sample collection, preparation, and sequencing
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Figure 1: Workflow of PVAmpliconFinder 
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Figure 2: Graphical representation of the unnormalized abundance of PV genera and species in terms of 
number of reads based on MegaBlast alignment 
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Figure 3: Graphical representation of the unnormalized abundance of PV genera and species in terms of 
number of reads based on BlastN alignment 
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Figure 4: Graphical representation of the unnormalized abundance of PV genera and species in terms of 
number of reads based on RaxML-EPA algorithm 
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Supplementary Data 1: Info file description

This file should be a simple tabular text file (.txt or .csv) containing in the first column a 
character string corresponding to the FastQ file name upstream of the “R1” or “R2” tag 
(one line for one sample). The second column should be named “primer”, and should 
contain the information about the primer set used to amplify the L1 region (e.g. CUT or 
FAP) of the corresponding sample. The third and last column should be named “tissue” 
and should describe the sample source (e.g. skin or oral swabs). This information will be 
used during the creation of the output files and will help to distinguish the virome 
composition and the new target coming from different tissue types and amplified by 
different primer sets. If this option remains empty while the program is called, all the 
samples will be consider as coming from the same tissue type and being amplified with the 
same degenerate primers.
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Supplementary Data 2: Details of the workflow steps

2.1 Input data type and format
The PVAmpliconFinder workflow is designed for the analysis of sequencing reads 
generated from paired-end sequencing of DNA amplified using degenerate primers 
targeting specifically the L1 sequence of papillomaviruses (1–3). These primers enable the 
amplification of a region in the L1 gene out of a region of approximately 450 bp. The input 
data are FastQ files that can be uncompressed or compressed. The files will be 
automatically uncompressed if the detected format is a common compression format such 
as .zip, .gz, or .tar.gz. FastQ files from the forward and reverse reads of the same sample 
should have the same name, with only “R1” and “R2” differentiating the two files.

2.2 Input parameters
Three mandatory input parameters must be set: the path to the input directory that 
contains the FastQ files; a tag corresponding to the suffix of the FastQ file names to be 
selected for the analysis in the input directory; and the path to the output directory where 
the output files will be written. The following optional input arguments can also be set: [1] 
the name of the identifier of the NCBI “nt” database to be used (the Blast database should 
be present in the environment, and the default value is “nt”); [2] the number of threads to 
be used for the analysis (the default value is 2); [3] the directory path of an info file 
containing information on sample type and primer used (see Supplementary Table 1 for an 
example, and Supplementary Data 1 for how to format the file); [4] the threshold for the 
percentage of identity to be used in the de novo centroid-based clustering (the default 
value is 98).

2.3 Data preprocessing
The preprocessing of the FastQ files includes an initial quality control (QC) of the raw 
FastQ files using FastQC (4) and the aggregation of the FastQC reports using MultiQC (5) 
(Figure 1A). FastQ files are then trimmed for adapter sequences and sequences of 
amplification primers if required, using TrimGalore (6). This step also discards low-quality 
bases, sequences of less than 32 bp, poly-A sequences, and reads with low average 
quality score. FastQC and MultiQC are run on the trimmed FastQ files for a final QC 
(Figure 1A).

2.4 Complexity reduction and removal of artifacts
The step’s aim is to eliminate the redundant sequences generated during the different 
PCR steps preceding sequencing and to correct sequencing and/or polymerase errors. 
Four modules from the existing tool VSEARCH (7) are used to perform three different 
steps, as described below (Figure 1B).

2.4.1 Merging of reads
The ”fastq_mergepairs” module merges Read 1 and Read 2 pairs and reconstructs the full 
amplicon (around 450 bp);

2.4.2 De-replication of reads
The “derep_fulllength” module de-replicates reads by keeping only one template of several 
identical sequences. This step is particularly important because duplicates are generated 
during the PCR amplification steps used to amplify the L1 region as well as for the pre-
sequencing processing of samples.

2.4.3 Chimera detection
The “uchime_denovo” module is then run to identify and remove chimeric DNA sequences 
that often form during PCR amplification, especially when sequencing a unique region. 
The option –minuniquesize is used with 2 as default value to account for the fact that at 
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this step each of the sequences is expected to be represented by at least 2 raw 
sequencing reads, corresponding to a minimum of one PCR cycle.

2.4.4 Reduction of amplification artifacts
The “cluster_size” module consists of de novo, centroid-based clustering of the sequences 
sharing more than a user-defined level of identity: 98% is the default value. This unique 
sequence will be used for downstream analysis. 2% of dissimilarity from any known L1 
gene is enough to define a new PV variant (8). When searching for new PV types (at least 
10% of dissimilarity on the L1 gene), 98% of identity enables a good clustering to balance 
between sensitivity and specificity.

2.5 Identification of PV-related sequences
All sequences identified by the preceding metagenomic analysis are subject to a 
MegaBlast alignment against the full “nt” nucleotide collection from the NCBI database 
(default parameters) (9). All sequences that have their best hit against any sequence 
belonging to the Papillomaviridae family with an e-value smaller than or equal to 1e-5 are 
kept for the next steps of the workflow (Figure 1C). Papillomaviridae-related sequences 
are identified using a lineages file created using the “ncbitax2lin” tool (10) 
(https://github.com/zyxue/ncbitax2lin).

2.6 Classification of PV sequences
This step uses two different approaches based on two different tools, BlastN and 
Randomized Axelerated Maximum Likelihood-Evolutionary Placement Algorithm (RaxML-
EPA) (11), and the results of both approaches are returned. With RaxML-EPA, a method 
based on molecular evolution, a full taxonomic classification of the putative new 
sequences is obtained based on the homology of each sequence to its closest taxon. In 
both approaches, PV sequences are first grouped based on both the best MegaBlast 
subject sequence for each query and the percentage of similarity of this sequence with its 
corresponding best subject sequence. Then, a de novo assembly of sequences formed by 
this “two-features” grouping is performed with CAP3 (12) to reconstruct the full PCR 
amplicon because the different primers systems used are not targeting exactly the same 
L1 region. Finally, a taxonomic classification is performed on the reconstructed sequences 
(Figure 1C and Figure 1D), as detailed below.

2.6.1 Definition of groups and de novo assembly
For each sample, the sequences that have their best MegaBlast hit against a sequence 
belonging to the Papillomaviridae family are kept for the analysis. These sequences are 
grouped if their best hit is the same subject sequence. Subsequently, the grouped 
sequences are split into two groups: [1] putative known PVs, corresponding to sequences 
that present less than 10% of dissimilarity on their aligned portion with a known PV; [2] 
putative new PVs, corresponding to sequences that present more than 10% of dissimilarity 
on their aligned portion with a known PV. A de novo assembly is then performed for each 
group with CAP3 with default parameters (12) for contigs reconstruction (Figure 1C and 
Figure 1D).

2.6.2 BlastN-based taxonomical classification
Each contig sequence reconstructed during the previous step is then classified based on 
the taxonomic classification of its best alignment (BlastN best match) against the full L1 
gene nucleotide sequence database available in the Papillomavirus Episteme (PaVE) 
database, the most comprehensive database of PVs (13) (Figure 1E). This step mimics 
the L1 taxonomic tool of the PaVE database (L1 Taxonomic tool, 1). The PaVE database 
provides full papillomavirus genome sequences with complete taxonomic classification 
(referenced PV), as well as full genomes with incomplete taxonomic classification 

Page 26 of 31

https://mc.manuscriptcentral.com/nargab

NAR Genomics and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

(unreferenced PV). Referenced genomes correspond to genomes validated and fully 
characterized by the re-sequencing of the entire genome. Unreferenced genomes are 
mostly genomes identified through metagenomics approaches and submitted to PaVE but 
not validated for accuracy or novelty of the PV (14).

2.6.3 RaxML-EPA-based taxonomical classification
A reference phylogenetic tree (reference tree; RT) was constructed based on the full-L1 
ORF nucleotide sequences of 597 available PV genomes retrieved from the PaVE 
database (https://pave.niaid.nih.gov/) in June 2019 (13). The sequences were aligned at 
the nucleotide level using the MUSCLE algorithm, with the default parameters (15) in 
MEGA7 (16). The final full-length L1-ORF alignment encompassing 597 full L1-ORF 
nucleotide sequences, 2913 positions, and 468 distinct alignment patterns constitutes the 
reference multiple sequence alignment (MSA). MEGA7 was used to test the best 
substitution model and for the phylogenetic inference. The codon positions included were 
1st + 2nd + 3rd + non-coding. Based on the alignment using MUSCLE, all positions with 
<95% site coverage were eliminated (partial deletions), to enable the inclusion of taxa with 
some missing data. There were a total of 1383 positions in the final dataset.
A discrete gamma distribution was used to model evolutionary rate differences among 
sites (five categories; +G, parameter = 0.658). The rate variation model allowed for some 
sites to be evolutionarily invariable ([+I], 0.019% sites). The initial trees for the heuristic 
search were obtained automatically by applying the neighbor-joining (NJ)/BioNJ algorithm 
to a matrix of pairwise distances estimated using the maximum composite likelihood (MCL) 
approach and then by selecting the topology with the highest log likelihood value (-
468961.607). The final tree selected constitutes the RT.
Phylogenetic inference was performed with MEGA7 using the general time-reversible 
(GTR) model of nucleotide substitution and 500 bootstrap replicates (17).
The Parsimony-based Phylogeny-Aware Read alignment (PaPaRa) program (18) 
algorithm is used to align each contig sequence, reconstructed during the previous de 
novo assembly step, against the MSA (19) (Figure 1E). Subsequently, the evolutionary 
placement algorithm (EPA) (20) in RaxML (11) is run to place the sequences into the RT 
(Figure 1E), based on PaPaRa multiple alignment. The EPA is run using the same 
nucleotide substitution model used to infer the reference phylogenetic tree. A script was 
developed in-house to parse the output format of the EPA (21) to extract, for each 
reconstructed sequence, its closest related taxon in the phylogenetic tree, and use this 
taxon to assign a taxonomic classification.

2.7 Output reports
Several output reports are generated as Excel files, fasta files, or graphical images from 
the different steps of the workflow. They describe summary sequencing statistics, the 
sequences of known or putative new PVs, the relative unnormalized abundance of PV 
types, and the taxonomic classification of all identified PV sequences. The use of an info 
file providing sample characteristics enables the output of statistics stratified by these 
characteristics (Figure 1F, Supplementary Table 1). The detailed list of files and file 
contents is available in Supplementary Data 3.

2.8 Performance testing
The performance of the bioinformatics workflow has been estimated on a computer with an 
Intel® Core™ i7-6700 processor CPU @ 3.40GHz × 8, 64 bits, 62.9 GB RAM, 256 GB 
SSD, in the Linux environment (Ubuntu 16.04 LTS).
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Supplementary Data 3: Description of output files format

The output files generated by PVAmpliconFinder are:
- an Excel file named “Table_Summary_MegaBlast” (Supplementary Table 5) that 

contains several tables providing sequencing metrics by sample, primer set, or tissue type, 
and a classification of putative new and known PVs found in the samples, based on 
MegaBlast, RaxML, and BlastN results.

- several Excel file(s) containing a full taxonomic classification of the species 
present in the samples based on MegaBlast, BlastN, or RaxML-EPA results, with 
unnormalized relative abundance estimated as number of reads (Supplementary Tables 2, 
3, and 4, respectively). Several tables are created if several tissue types have been 
specified in the info file, for the three methodologies applied to classify the PV sequences, 
and the information about primer used to detect the species is present (if also specified in 
the info file).

- a KRONA (22) graphical representation of the unnormalized abundance of PV 
genera and species, taxonomically classified based on MegaBlast, BlastN, and RaxML-
EPA results, in terms of number of reads (Figure 2, 3 and 4, respectively). If an info file 
was provided as input, a graphical representation is produced for each tissue type, as well 
as an overall representation mixing the different tissue types.

- an Excel file named “Table_putative_known_PV”, containing the putative known 
PV sequences detected in the different samples (Supplementary Table 6). This file contain 
information such as: a unique identification for the sequence or the cluster of sequences 
corresponding to a putative known PV; the percentage of dissimilarity on the aligned 
portion of the sequence returned by MegaBlast (if several sequences in the cluster, the 
percentage of dissimilarity of the longest sequence is reported); the relative unnormalized 
abundance of the sequence(s) into the overall reads generated for the sample; the 
absolute number of reads used to generate the sequence(s); the GI number from 
MegaBlast rent; the closest PV species given by the BlastN against the PaVE database; 
the taxonomic classification at the genus level given by the BlastN against the PaVE 
database; the closest PV species given by the RaxML-EPA algorithm; the taxonomic 
classification at the genus level given by the RaxML-EPA algorithm; and the nucleotide 
sequence(s).

- an Excel file named “Table_putative_new_PV”, containing the putative new PV 
sequences detected in the different samples (Table 3). This file contains the same 
information as the “Table_putative_known_PV” Excel file described above.

- fasta files of the putative known and putative new PVs, named 
“Putative_known_PV.fa” and “Putative_new_PV.fa”, respectively. If a cluster contains 
several sequence, the sequences are attributed a unique incremental number after the 
unique name of the cluster (e.g. if there are 3 sequences in the cluster named “PV_1”: 
>PV_1.1, >PV_1.2, >PV_1.3).
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Supplementary Data 4: Sample collection, preparation, and 
sequencing

Skin swab specimens (n = 25) were randomly selected baseline samples from the 
VIRUSCAN Study, an ongoing five-year (2014–2019) prospective cohort study conducted 
at Moffitt Cancer Center and the University of South Florida (R01CA177586-01; 
“Prospective study of cutaneous viral infections and non-melanoma skin cancer”).
In addition, oral rinses (n = 22) were randomly selected from a pilot study that aimed to 
estimate the prevalence of Helicobacter pylori in oral gargles from a Latvian population. 
The study was approved (No. 8-A/15) by the Ethics Committee of Riga East University 
Hospital Support Foundation.
After DNA extraction, all samples were analyzed at the International Agency for Research 
on Cancer (Lyon, France). The PCR protocols use different sets of primers as described in 
(23). The use of these primers enables the amplification of a region in the L1 gene of 
approximately 450 bp. Each NGS pool included approximately 5 different samples 
generated from different PCR protocols.
Libraries were prepared using the NEBNext Ultra DNA library prep kit and MiSeq reagent 
kit version 2 (Illumina). Paired-end NGS sequencing was performed using an Illumina 
MiSeq (600 cycles), and final mean read size was 227 bp. The SRA accession number of 
the data is PRJNA555194.
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ABSTRACT 

Actinic keratosis (AK) arises on photo-damaged skin and is considered to be the precursor lesion 

of cutaneous squamous cell carcinoma (cSCC). Many findings support the involvement of

human papillomaviruses (HPVs) in cSCC HPV types. The 

objective of this study was to characterize the spectrum of PV types in healthy skin (HS) and AK

samples of the same immunocompetent individuals using next generation sequencing (NGS).

Viral DNA of 244 AK and 242 HS specimens were amplified by PCR using two different sets of 

primers (FAP59/64 and FAPM1). Purified amplicons were pooled and sequenced using NGS.

The study resulted in the identification of a large number of known PV types. In addition, 

27 putative novel and 16 and 4 unclassified PVswere isolated. Only HPV types of species -1

(e.g. HPV4) appeared to be strongly enriched in AK versus HS. The NGS analysis revealed that 

a large spectrum of known and novel PVs is present in HS and AK. The evidence that species -

1 HPV types appears to be enriched in AK in comparison to HS warrants further biological and 

epidemiological studies to evaluate their role in development of skin (pre)cancerous lesions.
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INTRODUCTION

Cutaneous squamous cell carcinoma (cSCC) arises from progression of the precursor lesion, 

actinic keratosis (AK), which develops on photo-damaged skin (Hasche et al., 2018). Ultraviolet 

(UV) radiation exposure is the main risk factor in the development of AK and cSCC (Brash et 

al.,1991) (Werner et al., 2015). Skin lesion development is also positively associated with fair 

skin, advanced age and immunosuppression (Didona et al., 2018). The concept that impairment 

of the immune system favors cSCC development supports the involvement of an infectious 

agent, such as the epitheliotropic human papillomaviruses (HPVs). HPVs are circular double-

stranded DNA viruses infecting mucosal and cutaneous epithelia. To date, more than 200 HPV 

genotypes have been fully characterized and classified into five genera ( , , , mu and nu

papillomaviruses) according to the nucleotide sequences of the ORF encoding for the major 

capsid protein L1 (Bzhalava et al., 2015) (https://pave.niaid.nih.gov/). A subgroup of -genus 

HPV types, referred to as mucosal high-risk (HR) HPV types, has been clearly associated with 

human carcinogenesis (Egawa et al., 2015; Schiffman et al., 2016). Twelve HR HPV types, 

namely 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 have been classified as Group 1, carcinogens

to humans, by the International Agency for Research on Cancer (IARC) (Bouvard et al., 2009).

In addition to the mucosal HR HPV types, epidemiological and biological studies support the 

role of -genus HPV types in the development of cSCC, together with UV radiation (Wang and 

Roden, 2013). HPV5 and 8, were identified in skin lesions of 

epidermodysplasia verruciformis (EV) patients, who are highly susceptible to HPV infection 

and UV-induced cSCC (Orth, 1987; Patel et al. 2010). Accordingly, IARC has classified HPV 

5 and HPV 8 as "possibly carcinogenic" agents (Group 2B) in EV patients (Bouvard et al.,

2009). Since their isolation, additional 52 HPV types have been characterized so far, which are 

subdivided into -5 (http://www.nordicehealth.se/hpvcenter/reference_clones/), and 

are abundantly present on the skin of healthy individuals (Antonsson et al., 2003a; Antonsson et 

al., 2003b; Foulongne et al., 2012; Wylie et al., 2014). In addition to EV patients HPV types 

appear to be involved in cSCC development also in immunocompromised individuals, such as 

organ transplant recipients (OTR), as well as in elderly general population (Nunes et al., 2018;

Harwood et al., 2017; Quint et al., 2015; Bouwes Bavinck et al., 2018). In contrast to HPV 

HPVs does not appear to be required for the maintenance of the 

malignant phenotype (Viarisio et al., 2018). Studies in in vivo experimental models provide 
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evidence for a “hit-and-run” involvement in UV-induced skin 

carcinogenesis (Viarisio et al., 2018; Viarisio et al., 2017; Hasche et al., 2018; Viarisio et al.,

2011). Accordingly HPV prevalence and viral load decrease during carcinogenesis process in 

humans, being significantly higher in AK than in cSCC (Weissenborn et al. 2005; Rollison et al., 

2019). Other cutaneous HPV types that are frequently detected in skin are the ones that belong 

to genus. They represent the largest clade within the Papillomaviridae family. Almost 100 

HPV types subdivided into 27 species have been fully characterized so far. No clear association 

of HPVs with malignant lesions has been demonstrated, although biological studies showed 

that E6 and E7 proteins from in vitro transforming activities (Grace and 

Munger, 2017).

To gain new insights on the presence of a broad spectrum HPV types in healthy skin 

(HS) and actinic keratosis (AK) of the same individual, we used different PCR protocols

(Forslund et al., 1999; Forslund et al., 2003; Brancaccio et al., 2018) combined with Next 

Generation Sequencing (NGS). The results revealed the presence of a large spectrum of and 

HPV types. Interestingly, species -1 HPV types appear to be more represented in AK than in 

HS.

RESULTS

Amplification of HPV DNA by two PCR protocols

Skin scrapings from 244 patients, for a total of 244 AK and 242 HS samples of the 

corresponding patients were processed for total DNA extraction, and subsequent PCR

amplifications using FAP59/FAP64 and an improved version (FAPM1) of the original FAP

primers, targeting part of L1 ORF (Forslund et al. 1999) (Forslund et al. 2003) (Bolatti et al. 

2018). HPV DNA was detected in 75.2% (182/242) and in 85.1% (206/242) of HS samples,

using FAP59/FAP64 and FAPM1 protocols, respectively. A PCR product of the expected size 

was detected in 71.2% (175/244) and in 50% (122/244) of the AK samples by using the primer 

sets FAP59/FAP64 and the novel FAPM1, respectively. 

NGS data and known PVs sequence analyses 
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PCR amplicons generated by the use of the two different sets of primers on HS and AK DNA 

samples were pooled as shown in method section and sequenced using the NGS platform MiSeq 

Illumina. The NGS analysis generated a total of 1,209,249 reads. A total of 1,208,356 of the 

reads were considered for further analysis after quality trimming, and chimeric PCR sequence 

removal. All of them, were identified as related to PVs sequences (>99% of reads). Each read 

was matched against the National Center for Biotechnology Information (NCBI) sequences 

database by means of BLAST algorithm and assigned to its closest PV types. 

The different PV sequences were analyzed following the official taxonomic HPV classification 

based on the similarity in L1 ORF (Bzhalava et al., 2015).

Data analysis obtained using RAxML-EPA, a method that offers an accurate classification of 

short PV fragments, reported that the 1,208,356 reads analyzed comprised 1,204,447 (99.7%)

reads from known PVs ( 90% of identity with L1 ORF of any known PV). The majority of the 

reads (81.1%, 976,693 reads) corresponded to PVs, followed by (17.3%, 208,932 reads) and

types (0.01%, 121 reads) (Table 1). According to RaxML-EPA analysis of known PV 

sequences, the major number of reads were related to human PVs (n= 1,181,306), while the 

remaining were closely related to non-human PVs (total non-human reads: 23,141) i.e. Macaca 

fascicularis PV type 2 (MfPV2) belonging to -6 genus (3,769 reads), Macaca mulatta 

papillomavirus type 5 (MmPV5) (671 reads) that is classified into the genus, and Erethizon 

dorsatum papillomavirus 2 (EdPV2) (18,701 reads), a new PV still unclassified (Table S1). In 

summary, 1,204,447 reads are representative of 1786 PVs sequences. As a specific PV sequence 

can be represented more than one time among the different pools, or different PV sequences can 

be assigned to the same PV type, thus 1786 PV sequences corresponded to 195 distinct PV types 

(Table 1 and Table S1). Of the 195 PV types, 93 resulted to be officially recognized, namely 2 

- -6 and 42 sequences spreading into 18 

species (Figure 1). The remaining sequences corresponded to 12 unclassified-

unclassified- PVs. Only one sequence remained unclassified and was assigned by RAxML-

EPA analysis to a divergent and unclassified EdPV2 sequence (Tables 1 and S1).

Known PV sequences in HS and AK
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We next compared the distribution of the different PVs sequences in AK and HS. The 

distribution of all known HPV types detected in HS and AK is shown in Table S1 and Figure 1.

y the 

FAPM1 protocol corresponded to sequences of the two closely related cutaneous HPVs 3 and 28. 

However, most of the reads were from HPV28, which was equally distributed in HS and AK 

(Table S1 ented in HS and AK 

(485,918 and 490,775 respectively), with the -4 species, represented by HPV type 

92 only. For this the number of reads was more abundant in AK than HS (1440 vs 198 reads) 

(Figure 1A, Table S1). 

reads for the different species were differently detected in HS 

(85,568 reads) and AK (123,364 reads) samples, being in some cases higher in AK than HS (i.e.

-1, -3, -7, -8, -9, -11, -15, -17) and vice versa in other cases (i.e. -12, -13, -21, -24)

(Figure1B). Moreover, for the majority of the species only a small number of reads were 

- - -25). Interestingly, -1 species 600 fold 

difference in number of reads was observed in AK versus HS (13,248 and 22 reads, respectively)

(Figure 1B and Table S1 -1 reads corresponded to HPV4 (13,207 

reads) (Table S1).

Putative novel PVs

Finally, 3,909 (0.3%) reads generated a total of 47 putative novel PV types, since the fragment 

sequence showed less than 90% similarity to L1 ORF of any known PVs. As per the RaxML-

EPA classification, the majority of reads were closely related to human PVs (3,827 reads). Of the 

3,827 reads, a substantial number of reads were closely related to -HPVs (3,457 reads), and -

HPVs (370 reads). Whereas, for the non-human PVs, out of 82 reads, 74 reads were from the 

unclassified PVs category (Table S2).

Among the unknown PV sequences, 26 (55.3%) putative novel sequences were found in HS and 

21 (44.7%) in AK specimens, respectively (Tables 1 and S2). The FAPM1 primers detected a 

slightly higher number of putative novel HPV sequences than FAP59/64, i.e. 27 and 20,

respectively (Table 1). 

Using RAxML-EPA classification, 15 putative novel PVs and 11 putative novel PVs were 

isolated from HS samples, whereas 12 novel PVs and 5 PVs were isolated from AK samples. 
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The remaining 4 putative novel PVs, isolated from AK samples, remained unclassified (Table 

1). 

The FAPM1 protocol allowed the isolation of a total of 12 novel PVs in AK and HS samples,

while the FAP protocol allowed the isolation of 4 PVs only in HS samples (Tables 1 and S2).

Putative new PV types in AK samples were related to HPV5, 21 (belonging to species -1),

HPV15, 22, 23, 120 (species - -10) (Table S2). In HS samples, the 

new PV sequences were related to - - -10

-27 (HPV201).

DISCUSSION

Cutaneous HPV types spread over all five HPV genera and are abundantly present in normal 

skin. Since several lines of evidence support the role of HPV types in favoring the UV-induced

skin carcinogenesis, epidemiological studies focused mostly only on -HPV detection in pre-

malignant and malignant skin lesions. In contrast to HPV types, the biology and epidemiology 

of HPV types have been poorly investigated so far. In a recent study, we have determined the

prevalence of 46 and 52 HPV types in HS and AK of the same individuals who have been 

included in this study (Donà et al., 2019). Dona’ et al. reported that the prevalence of most of the 

and HPV types decreased from HS to AK, suggesting that cutaneous HPVs may play a role at 

early phase of AK lesion development and can be lost once the lesion is fully established (Donà 

et al., 2019). To have a more accurate scenario on the HPV types present in HS and AK, we have 

re-analyzed the same cohort performing a broad spectrum analysis of cutaneous HPV types by 

NGS. Our data confirmed previous findings that 1 and 2 are the most represented species in 

both HS and AK, followed by 3, and (Hampras et al., 2017; Donà et al. 2019). It is not 

yet clear why the 4 and 5 HPV types are poorly present in the skin. One possible hypothesis is 

that these HPVs have a low efficiency in persisting in the host skin. Alternatively -5 HPV 

types may preferentially infect other anatomical sites than the skin. In support of this hypothesis, 

epithelia than in the skin (Forslund et 

al., 2013; Hampras et al., 2017). In agreement with the epidemiological data, functional studies 

49 and 76 share some biological properties with the mucosal HR 

HPV16 in vitro and in vivo experimental models (Cornet et al., 2012; Viarisio et al., 2016; White 

et al. 2014).
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The genus is the largest clade within the Papillomaviridae family and the improvement of 

sequencing methods has led to the identification of many novel types over the last years (Dutta 

et al., 2017; Bolatti et al., 2018; Pastrana et al. 2018). The PVs can be found in common warts, 

in skin tumors and AK samples, as well as in normal skin (Ekström et al., 2011; Ekström et al.,

2013; Hošnjak et al., 2015; Donà et al., 2019) .

In our study, the comparison of HS and AK samples collected from the same individuals (n=244)

revealed that the number of NGS reads for PVs were differently represented in HS (85,568 

reads) vs AK (123,364 reads) samples. These results are consistent with prevalence studies that 

reported a high value of PVs in AK (Bolatti et al., 2018). Our NGS-based analysis revealed that 

almost all species were represented in HS and AK, except for -2, -5, -6, -14, -18 and -23. 

In addition to this, a relevant number of species that are not yet classified by the HPV reference 

center was also found.

Interestingly, although most of the and HPV types were equally represented in HS and AK 

samples, -1 HPV4 was strongly enriched in AK samples versus HS. Similar results were 

observed in our recent study where HPV detection was performed by a highly specific 

genotyping assay (Donà et al., 2019). In this study, using the same samples, the number of reads 

that correspond to HPV4 was indeed higher in AK (13,207 reads) in comparison to HS (20

reads). These findings suggest a possible link between HPV4 infection and AK development. 

Alternatively, this specific HPV type might have some biological differences with respect to 

the other HPV types, for instance it could benefit from the tissue alterations occurring in AK

for completion of its life cycle. Additional work is required to further evaluate these two 

hypothesis. So far, it has been reported that HPV4 is associated with the development of mosaic

warts (Cubie, 2013; Doorbar et al. 2015). Regarding HPV4 biological properties, it has been 

shown that its E7 is able to degrade pRb (Wang et al., 2010), as the mucosal HR HPV E7s.

In the present study we identify 195 known HPV types and in addition to this, using different 

PCR protocols combining with NGS, we identified 47 putative novel PVs. The analysis of these

putative novel PVs revealed that they are related to 27 , 16 and 4 unclassified PVs. Of which,

1 PV, 1 and 4 unclassified PVs were non-human PVs. The presence of non-human PV 

sequences in human skin may be explained by environmental contamination, or alternately it

may result from human viruses closely related to animal PVs. Interestingly, our study led to the 
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identification of 15 putative novel -2 HPV types phylogenetically related to HPV38, which 

displays in vitro and in vivo transforming properties. Also HPv38 has been found significantly 

associated with the risk of cSCC in a recent meta-analysis (Chahoud et al., 2016).

In summary, using a robust strategy based on the use of specific or degenerate primers and NGS 

technology this study expanded our knowledge and efficiently depicted the PV population in AK 

and HS sample. Moreover, it allowed the detection of putative novel PVs, although the 

identification of novel PV types or species can only be definitively confirmed by sequencing the 

whole L1 ORF. Finally, it showed that some HPV types (e.g., HPV4) are enriched in AK vs. 

HS, and might thus play a role in skin carcinogenesis, thus deserving further in vivo and in vitro

investigations.

MATERIALS AND METHODS 

Patient selection, sample collection and DNA extraction 

Skin scraping samples (HS and AK) from a previous study aimed to determine the prevalence of 

cutaneous HPVs in AK lesions by using a sensitive Luminex based-beads multiplex assay were 

used in the present analysis (Donà et al., 2019). Skin samples were collected from 244 

immunocompetent patients (142 men and 102 women in age range 48-94 years) with a diagnosis 

of AK attending the dermatology outpatient clinic of the National Institute for Health, Migration 

and Poverty (NIHMP) in Rome (Italy). A total of 488 individual samples were collected by 

scraping the lesions and, separately, the healthy skin of the glabellar region with a sterile spatula.

The majority of the AK lesions were in the head region (n=221) while others were located in the 

limbs (n=5) and other anatomical sites (n=18). In the present analysis, two HS samples were 

excluded due to the shortage of the residual sample. Samples were stored at -80°C until treatment 

with proteinase K for 4h at 50°C in 10 mM Tris-HCl pH 8.0, 50 mM NaCl, 5 mM EDTA, 1 mM 

DTT, 0.5% SDS (0.4 ml/sample). Nucleic acids, extracted by magnetic silica using the 

automated system NucliSENS EasyMag (Biomérieux, France) according to the manufacturer’s 

directions, were analyzed at IARC (Lyon, France) by NGS. Written informed consent was 

obtained from all enrolled patients. The study was approved by the Ethical Commettes of both 

NIHMP (2014) and San Gallicano Dermatologic Institute (CE943/17).
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PCR amplification and amplicon purification

Extracted DNA was amplified using two different sets of primers; the consensus primer pair FAP 

(FAP59\FAP64) targeting the 5’end of the L1 ORF as previously reported (Forslund et al. 1999),

and a new set of degenerated FAP primers (FAPM1 primer mix) as previously described by 

Brancaccio et al. (Brancaccio et al., 2018). Both FAP and FAPM1 primers target a region of the 

L1 ORF yielding an amplicon of about 480 bp. PCR amplicons were visualized by 

electrophoresis on a 2% agarose gel and purified using QIAquick gel extraction purification kit 

according to the manufacturer’s instructions (QIAGEN, Hilden, Germany).

Library preparation and NGS

Purified PCR amplicons were divided into twelve different pools as described in Table 2. Each 

pool was obtained using 2 l of each purified PCR product. Before library preparation, one 

additional purification step was performed in each pool to remove any residual contaminants 

using the Agencourt AMPure XP PCR purification kit with a beads ratio of 1.8 X (Beckman 

Coulter) according to the manufacturer's instructions. 

Twelve libraries were prepared using the Nextera TM DNA Flex Library preparation kit (Illumina, 

San Diego, CA, US). Illumina MiSeq dual-indexed adapters (Illumina, San Diego, CA, US) were 

added to each of the PCR pools. The library sizes were checked using the Bioanalyzer 2100 

Expert (Agilent) using high sensitivity DNA assay. NGS analysis was performed on 4 nM of 

DNA pooled library using an Illumina MiSeq instrument (2 X 150 paired-end reads with the 

Illumina MiSeq kit v3). In order to enrich the diversity of the libraries, 10% of PhiX (Illumina, 

San Diego, CA, US) was added to the NGS reaction.

Bioinformatic analysis of NGS sequences 

The bioinformatic workflow includes common data preprocessing steps for quality control and 

filtering. Then, data complexity is reduced before the identification of the PV-related sequences. 

Groups of sequences are defined based on similarity between identified sequences and available 

PVs sequences in the NCBI database. De-novo assembly is then performed to reconstruct the full 

amplified region covered by several primers systems. Finally, the reconstructed sequences are 

taxonomically classified based on two independent methodologies: alignment-based, and 
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homology-based, respectively, before generation of diverse output reports. Details of the 

bioinformatic pipeline named “PVAmpliconFinder” and parameters used can be found in 

(Robitaille A. et al., 2019), and the code of the tool is freely available at 

(https://github.com/IARCbioinfo/PVAmpliconFinder).

All the results in this study are based on the identification of the sequences following the 

homology-based classification using the EPA in RAxML (Stamatakis, 2014; Berger and 

Stamatakis, 2011) (henceforth referred to as RAxML-EPA). Only the longest sequence was 

considered for RAxML-EPA classification when several singlets or contigs were available.
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Table 1. Known and putative novel PVs sequences in healthy skin (HS) and actinic 

keratosis (AK) samples. The number of sequences and corresponding reads are reported for 

alpha, beta, gamma and unclassified PVs, stratified according to the primer set, by RAxML-EPA 

taxonomic classification. 

Table S1. Known PV types in healthy skin (HS) and actinic keratosis (AK) samples 

according to RAxML-EPA taxonomic classification.  

PV types (n=195) and corresponding NGS reads are reported for PV species stratified according 

to the PCR primer sets and skin specimen. 

KNOWN PVs UNKNOWN PVs

HS AK HS AK

PV genus
Known PVs
sequences
N (reads)

FAP59/64
PV sequences

(N reads)

FAPM1
PV sequences

(N reads)

FAP59/64
PV sequences

(N reads)

FAPM1
PV sequences

(N reads)

Putative 
new PV 

sequences
N (reads)

FAP59/64
Unique PV 
sequences
(N reads)

FAPM1
Unique PV 
sequences
(N reads)

FAP68/64
Unique PV 
sequences
(N reads)

FAPM1
Unique PV
sequences
(N reads)

alpha 2 
(121) 0 (0) 2 (54) 0 (0) 1 (67) 0 0 (0) 0 (0) 0 (0) 0 (0)

beta 61 
(976,693) 54 (311,187) 60 (174,731) 54 (253,407) 57 (237,368) 27

(3,459) 9 (1878) 6 (206) 6 (675) 6 (700)

gamma 131 
(208,932) 67 (46,262) 91 (39,306) 85 (61,128) 87 (62,236) 16 

(376) 4 (153) 7 (117) 0 (0) 5 (106)

unclassified 
PV

1
(18,701) 1 (1,510) 1 (8,678) 1 (2,568) 1 (5,945)

4
(74)

0 (0) 0 (0) 1 (14) 3 (60)

Total 195 
(1,204,447) 122 (358,959) 154 (222,769) 140 (317,103) 146 (305, 616) 47 

(3,909) 13 (2,031) 13 (323) 7 (689) 14 (866)
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Table 2. Description of the NGS pools. All the PCR products (n=685) were stratified in 12 

NGS pools according to the type of skin sample and PCR protocol applied. The paired samples 

both positive in HS and AK (1-3, 2-4, 5-7, 6-8) and the unpaired samples (9, 10, 11 and 12) are 

reported.

NGS 

pool

PCR 

protocol

Specimen

(AK or HS)*

Total 

number

1 FAP59/64 AK 71

Paired PV-positive 

samples

3 FAP59/64 HS 71

2 FAP59/64 AK 70

4 FAP59/64 HS 70

5 FAPM1 AK 53

7 FAPM1 HS 53

6 FAPM1 AK 53

8 FAPM1 HS 53

9 FAP59/64 AK 34

Unpaired PV-positive 

samples

10 FAPM1 AK 16

11 FAP59/64 HS 41

12 FAPM1 HS 100

*AK, actinic keratosis; HS, healthy skin                         685          

Table S2. Putative new PVs in healthy skin (HS) and actinic keratosis (AK) samples 
according to RAxML-EPA taxonomic classification.  
The 47 putative new PVs and corresponding NGS reads are listed according to the PCR primer 
sets and skin specimens. 

Figure Legend

Figure 1. Detected PV species in HS and AK samples. Proportions (%) of beta (1A) and 
gamma (1B) species according to RaxML-EPA classification in both healthy skin (HS) and 
actinic keratosis (AK) samples are shown.







129

Discussion and conclusion
The discovery of novel HPV types remains of paramount importance, as new 

associations between HPV infections and human diseases may be established. In 

this thesis, we developed a novel strategy for the detection of new HPV types, in 

particular from the genus beta. This strategy combines the use of specific or 

degenerate primers targeting the L1 region of a broad spectrum of HPVs with NGS, 

and an automated bioinformatic workflow, PVAmpliconFinder. PVAmpliconFinder is 

an easy single-line command workflow that takes FastQ files as input files and 

generates tabular and graphical output files that describe the nature and abundance 

of PV-related sequences present in a complex mixture of host, phage, bacterial, and 

viral DNA. The data output discriminates between putative new and previously known 

Papillomaviridae-related sequences. Furthermore, it includes sequencing metrics and 

sequence details, enabling the design of subsequent laboratory experiments to

confirm the in silico findings. 

The beta genus

The growing interest in the beta genus arises from evidence that a number of beta 

HPV types may be involved in pre-malignant and malignant skin lesions (254).

Moreover, the hypothesis has been raised that beta HPV infection is only required at 

the first stages of skin cancer initiation and is not required for cancer development 

and progression (the hit-and-run mechanism) (65). Thus, there is a clear need to 

have highly sensitive methods, allowing the detection of even minute amounts of 

sequences in a DNA sample in which the viral load is low. For this purpose, the novel 

strategy incorporates the selective enrichment of PV sequences before NGS is 

performed. 

The choice of the bioinformatic strategy

Several choices were made during the design of the bioinformatic workflow. The first 

was to identify sequences in an unbiased manner, as the sequences are aligned 

against the entire “nt” NCBI database. Although this step is time consuming due to 
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the large size of the database, it reduces the false-positive discovery rate. Indeed, 

querying a database with reduced diversity (such as a virus database) using the e-

value as a threshold could increase the chances of getting a hit even if the subject 

sequence has a low identity with the queried sequence. Considering only the 

sequences that have their best match against a Papillomaviridae family sequence 

produces an unbiased result. The second choice was not to combine similar 

sequences from the different samples. Indeed, a specific HPV can be identified in two 

independent samples during a single in silico analysis, with the exact same sequence. 

The choice to keep the results separated for each sample is due to the fact that the 

perfect identity between the sequences coming from the 2 independent samples may 

not be conserved once the full L1 is reconstructed. Thus, merging the results inter-

sample would report only one of the sequences as the putative novel HPV type, but 

there could be two independent putative novel types. The third choice was to 

combine alignment methods with phylogeny-based methods. This double 

classification comes from the fact that pairwise alignment with a low percentage of 

similarity raises a concern about the pertinence of the results obtained. This is 

especially true for the putative new sequences having a greater than 15% 

dissimilarity against their best match. The maximum size of the amplicon is 450 

nucleotides, thus à 15% dissimilarity corresponds to nearly 70 mismatches along the 

sequence. To circumvent this limitation, we used a complementary parallel approach 

based on a molecular evolution method, RaxML-EPA. Lastly, the fourth choice was 

the use of a greedy algorithm, CAP3, for the de novo reconstruction of sequence 

clusters. Due to the possibility to use several primer sets that have different 

hybridization positions along the L1 gene, it is important to reconstruct the longest 

possible sequence for each potential PV sequence. As the sequences are already 

clustered based on their best BLAST hit and their percentage of similarity to this hit, 

and because the input sequence length cannot exceed a few hundred bases, local 

optimal assembly is sufficient.

Limits of the bioinformatic methods

The main limit of the methods is that the taxonomic assignment performed must be 

interpreted with caution, because only small portions of putative new PV genomes 

have been obtained. In addition, the results obtained using the blastn algorithm refer 
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exclusively to the fraction of the sequence that is aligned by the algorithm. The 

percentage of similarity indicated by the initial MegaBlast results must also be 

interpreted with caution, because the definition of novelty for a PV is based on the full 

L1 ORF length. Thus, the alignment position for the MegaBlast and the BlastN are 

specified in the output files. The second limit is that evolutionary-based methods such 

as RaxML suffer from long-branch attraction. Long-branch attraction is an error

where distant lineages are inferred to be close relatives because both have 

undergone a large number of changes. This is what is suspected of happening for 

the EPA classification of the Erethizon dorsatum papillomavirus (EdPV) sequences, 

for example, as EdPV2 is a novel PV genome presenting large differences from other 

known PVs on its L1 gene and is thought to represent a new genus in the family 

Papillomaviridae. This is also suspected of occurring when sequences are classified 

close to the Sparus aurata papillomavirus 1 (SaPV1), which has unique 

characteristics, such as an intron within the L1 gene (3). Although this led to an 

incomplete classification, these sequences may represent new species or virus 

features. The third limit is the absence of control for potential contamination. Cross-

contamination between samples during library preparation, amplification and 

sequencing, or environmental contamination, are difficult to detect using in silico

methods. Low-abundance sequences may truly be present in the samples but may 

also come from cross-contamination from another sample. PVAmpliconFinder will 

report sequences represented by only 2 reads. These low-abundance sequences 

should be considered with caution and defining an empirical abundance threshold 

could be considered. This environmental contamination may explain the presence of 

non-human PVs in human skin and oral samples. However, cross-species 

transmission of PVs between animals and humans may also be a consideration (24,

71). In addition, the notion of “non-human” PV genera needs to be interpreted with 

caution as they may also include some HPVs. 

The issue of the taxonomic definition

PVAmpliconFinder presents the results based on the initial MegaBlast step and those 

obtained based on BlastN alignment against the PaVE database, but a huge number

of sequences remain unclassified using the former approach because they match 

against incomplete L1 cds. The PaVE database includes PV sequences validated by 
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full genome resequencing, but also several “non-referenced” genomes that are not 

classified taxonomically. Currently, non-referenced PV genomes in the PaVE 

database account for more than 37% of the overall available PV genomes (244/649). 

The choice to include non-referenced genomes thus comes from their huge 

proportion. However, as this in silico reconstructed genome can produce chimeric 

sequences, comparison using the 10% dissimilarity threshold to this genome can 

lead to false assumptions if it appears that the non-reference genome is a chimera or 

is full of artifact bases occurring during the bioinformatics step. Questions regarding 

taxonomic classification of genomes reconstructed only from metagenomic 

experiments are currently being discussed by the International Committee on

Taxonomy of Viruses (ICTV) (255, 256).

Future prospects

PVAmpliconFinder has been developed for classification of Papillomaviridae-related 

sequences. Nonetheless, it can be easily modified and applied to other viral families, 

as this would only require a change in the interrogated databases and the 

reconstruction of a reference tree for the viral family being considered. The only 

limitation would be the number of sequences in the viral family of interest. Indeed, 

construction of the reference phylogenetic tree, and the use of RaxML-EPA, is time 

consuming and the computational time will increase with the number of sequences.

Once the partial L1 gene sequence of a putative novel HPV type has been 

characterized, the full genome reconstruction can be realized. To reach this goal, the 

use of the primer-walking strategy is one solution, but this method is laborious and 

time consuming. Another option is to use long-read technology, such as the MinION 

using a Nanopore technology. Although this novel sequencing technology is error-

prone, the advantage of the long reads avoids potential chimeric reconstruction.

Conclusions

In summary, the present thesis describes a robust strategy based on the use of 

specific or degenerate primers and NGS technology to detect putative novel PVs. 

Although the identification of novel PV types or species can only be definitively 

confirmed by sequencing the entire L1 ORF, initial studies have confirmed the validity 
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of our new protocol as a first step in the isolation and full characterization of novel 

HPV genomes. While there is increasing use of NGS amplicon sequencing in clinical 

research settings, only few bioinformatics methods are available for the sensitive 

detection of HPV, and they are often restricted to a panel of already well-

characterized PV types (257). The use of degenerate primers and PVAmpliconFinder 

may thus provide a solution for the detection and discovery of a broad range of HPV 

types.
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Abstract

Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block

innate immune responses and to persist in the host. However, to avoid viral persistence, the

immune response attempts to clear the infection. IL-1 is a powerful cytokine produced

when viral motifs are sensed by innate receptors that are members of the inflammasome

family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway

remains unknown. Here, we show that infection of human keratinocytes with HPV16

induced the secretion of IL-1 . Yet, upon expression of the viral early genes, IL-1 transcrip-

tion was blocked. We went on to show that expression of the viral oncoprotein E6 in human

keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1 promoter activ-

ity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation

of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to

the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus

E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1 .

Our findings reveal a struggle between oncoviral persistence and host immunity; which is

centered on IL-1 regulation.

Author summary

Oncoviruses block innate immune responses to persist in the host. However, to avoid

viral persistence, the immune response attempts to clear the infection. IL-1 is a pro-

inflammatory cytokine produced by the inflammasome pathway. Whether oncoviruses

such as human papillomavirus (HPV) can activate the inflammasome remains to be

explored. We demonstrated that keratinocytes, the host cell type for papillomaviruses,
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when infected with HPV16 induced IL-1 transcription and secretion. Yet, upon expres-

sion of the viral oncoprotein E6, IL-1 transcription was blocked. E6 expression inhibited

IRF6 transcriptional regulation of the IL-1 promoter. Preventing E6 expression, or its

ability to degrade p53, restored the ability of IRF6 to bind to the IL-1 promoter. HPV16

abrogation of p53, IRF6 and IL-1 expression was fully confirmed in cervical cancer cells

and tissues from patients. These data highlight the equilibrium between the host innate

immune rheostat and viral immune escape.

Introduction
The innate immune system is the first line of defense in response to danger signals from

microbial invasion or tissue injury. Viruses are sensed by several immune receptors that acti-

vate signaling pathways leading to cytokine production. Many oncogenic viruses can deregu-

late several immune-related pathways which guarantee a persistent infection. High-Risk

Human Papilloma Viruses (HR HPV) are the etiological factor of cervical as well as certain

head and neck cancers and is responsible for 20% of all human cancers linked to infection [1].

Persistence and progression of the disease are achieved by deregulating both cellular and

immune defense mechanisms. Among the HR types, HPV16 is the most prevalent type in pre-

malignant and malignant cervical lesions [2]. HPV16 viral oncoproteins E6 and E7 can target

many cellular proteins such as binding and degrading the tumor suppressors’ p53, and pRb,

respectively. In parallel E6 and E7 are able to deregulate several innate immune-related path-

ways that block cytokine and chemokine production, antigen presentation, and adherence

molecules [3]. Recently Lau et al., showed that E7 from HPV18 suppresses the cGAS pathway

by inhibiting the adapter protein STING [4]. Similarly, some antiviral genes induced by inter-

ferons such as IFIT1, MX1 and the innate sensors RIG-I, TLR3 and TLR9 are also inhibited by

HPV [5,6]. Indeed, Niebler et al., and Karim et al., have shown that HPV is capable of blocking

IL-1 [7,8]. On the flip side, host cells have strategies to thwart viral immune escape.

IL-1 is crucial in host-defenses towards infection and injury. Our current understanding is

that regulation of IL-1 is controlled by two checkpoints: 1. The activation and translocation

of the nuclear factor- B (NF- B) which initiates the transcription of the pro-IL-1 gene. 2.

Post-translational regulation of pro-IL-1 into its cleaved form by the inflammasome cytosolic

multi-protein complex. The inflammasome complex consists of an innate pathogen recogni-

tion receptors such as the nucleotide-binding domain and leucine-rich repeat pyrin domain 3

(NLRP3) or absent in melanoma 2 (AIM2). Upon viral recognition the inflammasome sensor

recruits the apoptosis-associated, speck-like protein containing a carboxy-terminal CARD

(ASC). Caspase-1 is activated within the inflammasome multiprotein complex through inter-

action with ASC that bridges NLRP3 or AIM2. The activation of caspase-1 is associated with

pyroptosis, a form of programmed cell death distinct from apoptosis, as well as the cleavage of

the proinflammatory cytokines IL-1 and IL-18. Once released, mature IL-1 and IL-18 signal

to their target cells, thus allowing the expansion of innate and adaptive immune responses.

NLRP3 inflammasomes are activated by viruses such as adenovirus [9], vaccinia virus [10],

and hepatitis C virus (HCV) [11]. The AIM2 inflammasome has been shown to detect vaccinia

virus [12] and murine CMV [13]. Whether the inflammasome plays a protective role against

HPV16 remains to be investigated.

Here we demonstrate that HPV16 induces the secretion of IL-1 from human keratino-

cytes. IL-1 produced from HPV16 infected keratinocytes blocked gene viral transcription.

However, inhibition was lost after 8h due to the ability of the viral oncoprotein E6 (16E6) to

HPV16 blocks IRF6 transcription of IL-1
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inhibit IL-1 transcription. A 16E6 protein binding domain essential for p53 degradation

played a crucial role in regulating IL-1 transcription. 16E6 blocked the p53 transcriptional

regulation of Interferon Regulatory Factor 6 (IRF6), which we found was essential for IL-1

promoter activity. The identification of this inhibitory transcriptional loop represents an

undiscovered mechanism of oncoviral immune hijacking in the infected host cell.

Results

HPV16 induces the transcription and secretion of IL-1

We first determined whether inflammasome activation could be achieved in normal human

keratinocytes, the host of HPV infection. Addition of poly dA:dT (an AIM2 activator) or

Nigericin (an NLRP3 agonist) led to the secretion of IL-1 (S1 Fig). Of note, the induction of

pro-IL-1 did not require the first check point signal (S1A Fig). Pro-IL-1 is constitutively

expressed in human keratinocytes and has been previously described by Sand et al., and Zepter

et al [14,15]. We next tested whether HPV16 induced IL-1 gene expression in human kerati-

nocytes. To do this, we generated HPV16 Quasivirions (16QsV) that closely resemble the natu-

ral virus as well control Pseudovirions (PsV). 16QsV are viral particles that contain the full

viral genome of HPV16 encaspidated by the viral late proteins L1 and L2 (L1/L2). PsV are viral

particles that contain GFP DNA encaspidated by L1/L2 [6]. Infection in keratinocytes with

16QsV up to 4h led to an increase of IL-1 transcripts (Fig 1A). However, post 8h infection,

IL-1 transcription decreased (Fig 1A). The level of IL-1 gene expression inversely correlated

to viral gene transcription (Fig 1B). Furthermore, primary keratinocytes infected with 16QsV

induced IL-1 or IL-18 secretion at 4h but not at 24h (Fig 1C). 16QsV induction of IL-1

depended on caspase-1 activity (S1B Fig). Pyroptosis was also induced by 16QsV as measured

by lactate dehydrogenase activity (S1C Fig). We did not observe IL-1 secretion when PsV or

when extracts of the late proteins L1/L2 was added to keratinocytes (Fig 1C). These data sug-

gest that 16QsV can induce caspase -1 dependent IL-1 , IL-18 as well as pyroptosis during the

early phases of infection.

IL-1 production is blocked by the viral oncoproteins 16E6 and E7

IL-1 has been shown to block HBV replication in human hepatocytes [16]. Therefore we eval-

uated whether IL-1 could inhibit HPV16 viral gene transcription. Primary keratinocytes were

infected with 16QsV or PsV ± recombinant IL-1 . We observed that IL-1 blocked 16QsV

viral expression as measured by E1 transcripts (Fig 1D). This effect was reversed when we

blocked the IL-1 receptor using Anakinra (Fig 1E). The viral oncoproteins E6 and E7 inhibit

several innate immune pathways such as TLR9, STING and IRF signaling [4,6,17]. Based on

these reports we hypothesized that E6 and E7 were responsible for the inhibition of IL-1 . To

test this, human primary keratinocytes were transduced with recombinant retrovirus express-

ing HPV16 E6 and E7 (16E6E7) or with the empty vector control (pLXSN). 16E6E7 blocked

both AIM2 and NLRP3-mediated secretion of IL-1 (Fig 2A). Furthermore, knock down of

the viral oncoproteins using siRNA targeting16E6E7 restored the ability of cells to produce IL-

1 (Fig 2B). In the epidermis, keratinocytes are the first cells to be encountered by external sti-

muli to induce IL-1 which in turn stimulates IL-8 secretion by human dermal fibroblasts

[18]. We established an IL-8 bioassay in which addition of recombinant IL-1 induced IL-8

promoter activity of the luciferase gene in HEK293 cells (Fig 2C). Specificity of the assay was

controlled using IL-1R inhibitor (Anakinra) (Fig 2C). Supernatants that were derived from

AIM2 stimulated primary human keratinocytes induced the expression of the IL-8 luciferase

gene. However, supernatants derived from AIM2 stimulated 16E6E7 cells failed to induce IL-8

transcription (Fig 2D). Furthermore, knock down of the viral oncoproteins using siRNA for

HPV16 blocks IRF6 transcription of IL-1
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Fig 1. HPV16 induces transient IL-1 secretion by keratinocytes. (A) Human primary keratinocytes were treated as indicated with 16QsV or PsV (at 200
viral genome equivalents (v.g.e) per cell). IL-1 transcripts were determined by RT-qPCR. n = 5. (B) As in A, E1, E6 and E7 mRNA relative levels were
determined by RT-qPCR. n = 4. (C) Human keratinocytes were treated at 4, 8 and 24 h with 16QsV at different v.g.e per cell. Supernatants were harvested and
IL-1 or IL-18 production was measured by ELISA. PsV or L1/L2 fractions were added as controls. n = 5. (D) Human keratinocytes were treated with 16QsV

HPV16 blocks IRF6 transcription of IL-1
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16E6E7 restored the ability of a cervical cancer-derived cell line (SiHa HPV16+) to produce

IL-1 in response to Nigericin, poly dA:dT and 16QsV (Fig 2E). Thus 16E6E7 oncoproteins

block IL-1 secretion. We corroborated our findings using supernatants from cervical cancer

cell lines that were stimulated with the NLRP3 ligand. We observed that supernatants from the

cervical cell line C33A (HPV-) stimulated with nigericin induced IL-8 luciferase activity (Fig

2F). Furthermore, Anakinra blocked IL-8 gene induction from supernatants derived from

C33A cells stimulated with the NLRP3 ligand (Fig 2F). In contrast, supernatants taken from

SiHa and CaSki cells (HPV16+) that were stimulated with nigericin failed to induce IL-8 pro-

moter activity (Fig 2F). In summary, we have demonstrated the ability of HPV16 E6 and/or E7

to block IL-1 paracrine induction of IL-8 transcription.

HPV16E6E7 abrogates mRNA expression of pro-IL-1

We hypothesized that the loss of IL-1 production might be due to the ability of 16E6E7 to

block NLPR3 and AIM2 transcription. Neither AIM2 nor NLRP3 transcript levels were altered

in human primary keratinocytes transduced with 16E6E7, compared to the pLXSN control

(S2A Fig). HPV16 E6 and E7 interact with p53 and retinoblastoma (pRb), respectively, and

promote their degradation via the proteasome pathway [19]. Therefore, we next determined

whether a similar mechanism affected NLRP3 or AIM2 protein expression in 16E6E7-expres-

sing keratinocytes. Human NLRP3-CFP, AIM2-CFP or p53 constructs were co-transfected

with 16E6E7 or pLXSN in human primary keratinocytes and their expression was examined

by immunoblotting. We did not observe any alteration in AIM2 or NLRP3 protein levels. As

expected we found that p53 was degraded by 16E6E7 (S2B Fig). As we did not detect any

change at the receptor level, we next focused our attention on the downstream signaling mole-

cules that are shared between NLRP3 and AIM2. Inflammasome activation requires ASC

dependent caspase-1 maturation of pro-IL-1 [12]. Neither ASC nor caspase-1 transcript levels

were altered in 16E6E7 compared to pLXSN transduced cells (S2C Fig). In addition cleavage

of pro-caspase-1 was detected in 16E6E7 transduced cells stimulated with NLRP3 or AIM2

ligands (S2D Fig). We observed that levels of the pro-form of IL-1 were already reduced in

16E6E7 compared to LXSN transduced cells. These data indicated that the synthesis of IL-1

was affected by the viral oncoproteins before AIM2 or NLRP3 stimulation (Fig 3A–3C). The

same loss of pro-IL-1 was observed in cervical cancer cell lines positive for HPV16 (Fig 3D).

All these observations showed that 16E6E7 exerts an inhibitory effect on the synthesis of the

pro-form of IL-1 . While Niebler et al., previously reported the ability of 16E6 to degrade pro-

IL-1 via the proteasome [8], under our experimental conditions the addition of a specific pro-

teasome inhibitor on 16E6E7 expressing keratinocytes did not restore the pro-IL-1 protein

(Fig 3E). As expected, p53 levels increased in the presence of 16E6E7 confirming the specificity

of the proteasome inhibitor (Fig 3E). Protein levels for 16E6 were controlled by western blot

(Fig 3E). Indeed an alternative hypothesis was that 16E6E7 proteins can alter IL-1 mRNA, as

shown by Karim et al, and Niebler et al., [7,8]. We observed that 16E6E7 blocked the level of

IL-1 transcripts compared to normal cells (Fig 3F). Little or no IL-1 mRNA was detected in

CaSki or SiHa compared to C33A cells (Fig 3G). These data indicated that 16E6E7 in human

keratinocytes as well as in cervical cancer cells supresses mRNA expression of IL-1 .

or PsV at decreasing v.g.e per cell for 24 h ± recombinant IL-1 (200pg/ml). Cells were harvested and E7 mRNA levels were measured by RT-qPCR. n = 5. (E)
Human keratinocytes were treated with 16QsV or PsV (200 v.g.e) for 24 h ± IL-1R inhibitor (Anakinra). Cells were harvested and E1 mRNA levels were
measured by RTqPCR. qPCR. n = 5. Data are representative of n independent experiments performed. Shown are the mean ± SEM with ���, P< 0.0001,
based on a two way ANOVA test.

https://doi.org/10.1371/journal.ppat.1007158.g001
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Fig 2. 16E6E7 block IL-1 production in primary human keratinocytes and in cervical cancer derived cells lines. (A) Analysis of the IL-1
production by ELISA in human keratinocytes transduced with pLXSN or 16E6E7 stimulated with nigericin or poly dA:dT. n = 10. (B) Human
keratinocytes transduced with pLXSN or 16E6E7 transfected with a siRNA targeting 16E6E7 (+) or the scramble control (-). Cells were stimulated
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16E6 as well as E6 from other high-risk HPV types block IL-1 transcription

HPV16 may use E6 and/or E7 to directly inhibit IL-1 transcription. To determine whether

HPV16 E6 or E7 proteins influence IL-1 transcription, the IL-1 promoter linked to the lucif-

erase reporter gene was co-transfected ±16E6E7, 16E6 or E7 into spontaneously immortalized

human keratinocytes (NIKs). NIKs already expressed high protein levels of endogenous pro-

IL-1 . Indeed high basal luciferase activity was detected in these cells after transient transfec-

tion. However, 16E6E7 inhibited IL-1 luciferase activity even with low DNA concentrations

(Fig 4A left), indicating that 16E6E7 can block the transcription of the IL-1 .. Furthermore

16E6, and to a lesser extent 16E7, inhibited IL-1 promoter activity (Fig 4A and 4B). Knock

down of 16E6 restored pro-IL-1 (Fig 4C). We also compared the efficiency of E6 from other

high-risk (HR) human papillomavirus types and one low risk (LR) type in repressing IL-1

transcriptional activity. HR types 18E6 and 31E6 inhibited IL-1 transcription, although less

efficiently than 16E6 (S3A Fig). LR HPV6E6 did not affect IL-1 promoter activity (S3A Fig).

These data demonstrated that E6 from HPV16 as well as other HR types strongly inhibit IL-1

transcription.

The inhibition of IL-1 transcription by 16E6 involves an ISRE cis element
on the IL-1 promoter

We next made deletions in the promoter to determine which region is required by 16E6 to

inhibit IL-1 transcription. (Fig 4D). WT and IL-1 deletion constructs were co-transfected

with 16E6. We restored IL-1 promoter activity with deletion 2 in the presence of 16E6 (Fig

4E). The deletion contains an area called LILRE was previously characterized by Unlu and col-

leagues [20]. The LILRE element has a high degree of inter-species conservation and plays and

important role in IL-1 regulation (Fig 4F). Within the LILRE region, Unlu et al., showed the

involvement of three different protein binding sites [20], an Spi-1 cis site (ETS); an IRF8-bind-

ing site (ISRE) and a Stat1 cis site (GAS) [20].

We hypothesized that 16E6 requires the regulatory LILRE site to inhibit IL-1 transcription.

To test this, primary human keratinocytes were co-transfected ± 16E6 or pLXSN withWT, del-

LILRE (deletion of the LILRE site) and constructs that contained point mutations (m) for

ISRE, ETS or GAS on the IL-1 promoter. Luciferase activity was restored with the delLILRE

promoter indicating that this site contains a region required for IL-1 inhibition by 16E6 (Fig

4G). Luciferase activity remained suppressed in cells transfected with ETS mutant, suggesting

that this cis element was not involved in the down-regulation of IL-1 transcription by 16E6

(Fig 4G). Luciferase activity was partially rescued in cells transfected with the mGAS promoter

(Fig 4G). However, a complete rescue was observed in cells that were transfected with the

mISRE promoter in the presence of 16E6. These results suggested that IL-1 down regulation

by 16E6 principally involves the ISRE site on the IL-1 promoter.

with the NLRP3 ligand nigericin and IL-1 secretion was measured by ELISA. Middle, western blot of E6 or E7 siRNA efficacy on 16E6E7 or PLXSN
transduced cells. n = 4. Left SiHa cell were treated with a siRNA targeting 16E6E7 (+) or the scramble control (-). Cells were stimulated with the
NLRP3 ligand nigericin and IL-1 secretion was measured by ELISA. n = 4. (C) IL-8 bioassay: HEK293T cells transiently expressing the IL-8
promoter linked to luciferase gene were treated with increasing concentrations of recombinant IL-1 ± Anakinra. Twenty four h post treatment cells
were harvested and luciferase activity was measured. n = 4. (D) IL-8 bioassay using supernatants from human keratinocytes transduced with pLXSN
or 16E6E7±AIM2 ligand poly dA:dT. n = 4. (E) Cervical cancer cells (SiHa) were transfected with a siRNA targeting 16E6E7 or the scramble control.
The cells were stimulated with the NLRP3 ligand nigericin, AIM2 ligand poly dA:dT or 16QsV (200 v.g.e per cell) and IL-1 was measured by ELISA.
n = 4. (F) IL-8 bioassay using supernatants from cervical cancer cell lines ± nigericin. n = 6. Data are representative of n independent experiments
performed in triplicate. Shown are the mean ± SEM with ���, P< 0.0001, based on a two way ANOVA test. For immunoblotting data, 1 out of n = 3
experiments is shown.

https://doi.org/10.1371/journal.ppat.1007158.g002
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Fig 3. HPV16 oncoproteins inhibit pro-IL-1 levels. (A) Human keratinocytes transduced with pLXSN or 16E6E7 were
stimulated with AIM2 and (B) NLPR3 ligands and both pro-IL-1 and IL-1 from cell lysates or supernatants were analysed by
immunoblotting. -actin was used as a loading control. Densitometry analysis was performed n = 3. (C) Immunoblotting of pro-IL-
1 in human keratinocytes transduced with pLXSN or 16E6E7. (D) Cervical cancer cell lines were lysed and immunoblotting for
pro-IL-1 was performed. n = 4 (E) Human keratinocytes transduced with pLXSN or 16E6E7 were treated for 24 h with
N-CBZ-Leu-Leu-Leu-al. Cells were harvested and p53, E6 as well as pro-IL-1 levels were determined by immunoblotting. Right,
p53 densitometry levels were normalized to -actin. Below, immunoblot analysis of the 16E6 protein. n = 3. (F) RNA was extracted
from Human keratinocytes transduced with pLXSN or 16E6E7 and IL-1 transcripts relative expression was determined by RT-
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16E6 expression inhibits the binding of IRF6 and not IRF8 on the IL-1
promoter

The observation that an ISRE site is required for IL-1 suppression by 16E6 prompted us to

determine which transcription is involved in this event. IRF8 is required for the development

of monocytes, macrophages, dendritic cells (DCs), basophils, and eosinophils, while it inhibits

the generation of neutrophils [21], yet nothing has been described for its role in keratinocytes.

We observed no difference in gene or protein expression of IRF8 in primary human keratino-

cytes vs. 16E6 or E7 transduced cells (S3B Fig). Furthermore, by ChIP we observed in human

macrophages IRF8 binding on the ISRE element, however in human keratinocytes we failed to

demonstrate binding (S2C Fig). We concluded that IRF8 did not regulate the IL-1 promoter

in human keratinocytes. In contrast to most IRFs, IRF6 has no identified function in innate

immunity but is essential for normal keratinocyte epidermal development and differentiation

[22]. We hypothesized that IRF6 might be involved in IL-1 transcription. To test this we co-

transfected the IL-1 promoter with IRF8, IRF6 or pUNO expression vectors in HEK293 cells.

As expected, IRF8 induced a significant increase in IL-1 luciferase activity when compared to

pUNO transfected cells (Fig 5A). We also observed for the first time that IRF6 expression also

increased IL-1 promoter activity in a dose dependent manner (Fig 5A). Oligo pull-down

assays revealed IRF6 as well as IRF8 specific binding to the ISRE site on the IL-1 promoter

(Fig 5B).

Having established that IRF6 binds to the IL-1 promoter and induces IL-1 transcription,

we hypothesized that 16E6 might alter IRF6 expression. Indeed, IRF6 expression in human

keratinocytes was decreased in cells expressing 16E6 (Fig 5C and 5D). Furthermore, immuno-

fluorescence detection of IRF6 in primary keratinocytes was localized in the nucleus but

shifted into the cytoplasm in 16E6 cells (Fig 5E). ImageJ analysis of IRF6 fluorescence showed

that both cytoplasmic and nuclear levels were reduced in keratinocytes expressing 16E6 (Fig

5E). Furthermore, both mRNA and protein levels for IRF6 were lower in CaSki (HPV16+) ver-

sus NIKs (Fig 5F and 5G). siRNA targeting of 16E6 reversed the effect, and IRF6 levels were

resorted (Fig 5H). We also observed that IRF6 protein levels and mRNA levels were reduced

when epithelial cells were treated with increasing amounts of 16QsV (Fig 5I and 5J). The

decrease of IRF6 mRNA levels was inversely proportional to viral DNA expression of E7 (Fig

5J). ChIP assays revealed that IRF6 bound less to the ISRE element when cells were infected

with 16QsV (Fig 5K).

In summary, we confirmed that IRF8 is required to induce IL-1 expression in monocytes,

yet in human keratinocytes IRF6 regulates IL-1 transcription. Furthermore, IRF6 binding to

the ISRE site on the IL-1 promoter is inhibited by 16E6 expression in primary human

keratinocytes.

16E6 mutations reveal that E6 degradation of p53 is required to inhibit
IRF6 transcription

The HPV16 oncoprotein E6 interacts with numerous proteins by hijacking several host cellular

networks. To gain further insight into the mechanistic role of 16E6 on IL-1 transcription, we

co-transfected the IL-1 promoter with plasmid constructs that contain point mutations that

qPCR. n = 5. (G) RNA was extracted from patient derived cervical cancer cell lines and IL-1 transcripts were determined by RT-
qPCR. n = 6. Panels A-E. Data are representative of n independent experiments performed in triplicate. Shown are the mean ± SEM
with ���, P< 0.0001, based on a two way ANOVA test. Panel F P< 0.0001, based on a one way ANOVA test. Panel G Student
unpaired T test was performed comparing C33A to CaSki or SiHa. For immunoblotting data, 1 out of 3 experiments is shown.

https://doi.org/10.1371/journal.ppat.1007158.g003
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Fig 4. HPV16 E6 down-regulates the IL-1 promoter in cervical cells via the ISRE site. (A) NIKs were co-transfected with the IL-1 promoter with increasing
concentrations of pLXSNHPV16E6E7 or 16E6 or 16E7 as indicated. After 48 h, cells were harvested and luciferase activity was measured. n = 5. (B) Relative
expression of 16E6E7, 16E6 or 16E7 were measured by RT-qPCR. n = 5. (C) Primary human keratinocytes transduced with 16E6 and treated with a scramble or
siRNA against 16E6. Protein levels of pro-IL-1 and loading control -tubulin were evaluated by immunoblotting. n = 4. (D) Schematic representation of IL-1
promoter luciferase deletion mutations. (E) WT and deleted IL-1 promoter constructs were transiently transfected into NIKs expressing pLXSN or 16E6. After
48 h, cells were harvested and luciferase activity was measured. n = 4. (F) Schematic representation of the IL-1 LILRE site. (G) WT and deleted or mutated IL-1
promoter constructs were transiently transfected into NIKs expressing pLXSN or 16E6. After 48 h, cells were harvested and luciferase activity was measured.
n = 4. Data are representative of n independent experiments performed in triplicate. Panel A and B shown are the mean ± SEM with ���, P< 0.0001, based on a
two way ANOVA test. Panel F, is based on an one way ANOVA test and panel G a paired T test. For immunoblotting data, 1 out of 4 experiments is shown.

https://doi.org/10.1371/journal.ppat.1007158.g004
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Fig 5. IRF6 and not IRF8 is recruited to the IL-1 promoter which is blocked by HPV16E6. (A) HEK293 cells were co-transfected with IL-1
promoter luciferase construct along with the empty vector pUNO, IRF8 or IRF6 plasmid at the indicated concentration. Post 48 h cells were lysed
and luciferase activity measured. n = 4. (B) Oligo pulldown assay for WT or the mutated ISRE site using protein lysates from HEK293 cells
transfected with IRF6 or IRF8. Bound proteins were assessed by immunoblotting for IRF8 or IRF6. Input controls (10%). n = 4. (C) Immunoblot
analysis of IRF6 protein levels in in pLXSN and 16E6 transduced human primary keratinocytes. n = 4. (D) IRF6 relative levels were measured in
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alter E6 binding to cellular host proteins [23,24,25,26,27,28] (S4A and S4B Fig and Fig 6A).

We then co-transfected increasing amounts of 16E6WT or mutations with the IL-1 promoter

(Fig 6A and 6B). IL-1 luciferase activity was restored with the 16E6F47RdelPBMmutant and

partial restored with delPBM and 4C/4S K11E. These data indicated that the 16E6F47R muta-

tion, which fully disrupts its ability to degrade p53 [23,28] can no longer block IL-1 transcrip-

tion. These data suggest that p53 also regulates IL-1 transcription (Fig 6A and 6B). We next

explored the role of p53 on IL-1 transcription. We suppressed p53 expression in primary

human keratinocytes using the CRISPR/CAS9 technology (Fig 6C). Suppression of p53 led to

a decrease in IL-1 and IRF6 transcription (Fig 6C). Blocking 16E6 mediated E6AP proteo-

some degradation of p53 using a siRNA for E6AP restored p53 protein levels as well as IL-1

and IRF6 mRNA expression (S4C Fig and Fig 6D). Over expression of p53 restored IL-1 pro-

moter activity in the presence of 16E6 (Fig 6E). In addition, overexpression of p53 or IRF6

expression in keratinocytes transduced with 16E6 also reconstituted pro-IL-1 protein levels

(Fig 6E). Taken together, these data show that 16E6 degradation of p53 is required to inhibit

IL-1 transcription.

So far we have shown that both IRF6 and/or p53 regulate IL-1 transcription and that both

proteins are blocked by 16E6. Whether both proteins independently or dependently control

IL-1 transcription remained to be determined. IRF6 transcription was no longer inhibited

when cells transiently expressed 16E6 mutations that altered p53 degradation (Fig 7A). Based

on these data we hypothesized that p53 regulates IRF6 transcription. Indeed, using the gene

card software, we identified a p53 cis element on the IRF6 promoter. We, therefore, performed

ChIP experiments in human primary keratinocytes ±16E6 to determine if p53 was able to bind

to the IRF6 promoter (Fig 7B). We observed that p53 bound to the cis element on the IRF6

promoter in human keratinocytes (Fig 7C and 7D). Occupation of this site was reduced in

16E6 expressing cells (Fig 7C and 7D). In summary we demonstrated the existence of a nega-

tive feedback loop in which 16E6 degradation of p53 prevented the transcription of IRF6 and

the subsequent transcription of IL-1 .

IRF6 transcriptional regulation by p53 is lost in cervical neoplasia

Our next approach was to validate our in vitro findings in patients with cervical cancer.

(HPV16 +). Cervical cancer and matched normal tissue biopsies were taken from 6 patients

and snap frozen. After analysis and HPV typing, sections were stained by immunofluorescence

for IL-1 as well as p53. Basal cells of the normal epidermis showed strong cytoplasmic

staining for IL-1 and nuclear staining for p53 (Fig 8A). No staining for IL-1 and p53 was

observed in tumour cells (representative staining in Fig 8A). Quantification of the cytoplasmic

staining clearly showed that IL-1 expression was strongly down-regulated in cancerous com-

pared to normal tissue (Fig 8A). We next wanted to determine if IL-1 and IRF6 transcripts

pLXSN, 16E6 and 16E7 transduced human primary keratinocytes by RT-qPCR. n = 4. (E) Immunofluorescent staining of IRF6 in human
keratinocytes transduced with pLXSN or HPV16E6. Left, semi-quantative analysis of IRF6 was examined by calculating immunofluorescent
intensity. The mean and S.E.M of five fields were plotted. n = 4. (F) Immunoblot analysis of IRF6 protein levels in C33A and NIKs. n = 4. (G)
IRF6 mRNA levels detected by RT-qPCR in NIKs and CaSki cells. n = 4. (H) NIKs and CaSki cells were co-transfected with IL-1 promoter
luciferase construct ± siRNA for 16E6. Post 48 h cells were lysed and luciferase activity measured. (I) C33A cells were treated with control PsV or
16QsV at different v.g.e per cell for 24 h and IRF6 protein levels were examined by immunoblot. n = 3. (J) C33A cells were treated with control
PsV or HPV16 at different v.g.e for 24h and IRF6 mRNA levels were examined by RT-qPCR and (below) viral DNA expression of E7 vs
2-microgloubulin. n = 3. (K), ChIP using IgG, IRF6 or IRF8 antibodies was performed for the ISRE site on C33A cells infected with HPV16 or
PsV for 24 h. n = 3. Data are representative of n independent experiments performed in triplicate. Panels A, E, J and K are shown as the
mean ± SEM with ���, P< 0.0001, � P,< 0,01, based on a two way ANOVA test. Panels D and G are shown as the mean ± SEM with ���,
P< 0.0001 based on an unpaired T test. For immunoblotting data, 1 out of 4 experiments is shown. For immunoblotting data, 1 out of 4
experiments is shown.

https://doi.org/10.1371/journal.ppat.1007158.g005
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Fig 6. Loss of p53 inhibition by 16E6 restores IRF6 activity. (A) Table defining the 16E6 mutations that alter p53, E6AP or PDZ
binding sites. (B) NIKs were co-transfected with IL-1 promoter luciferase construct along with the HPV16E6WT and mutated
constructs at the indicated concentration. n = 5. (C) Human primary keratinocytes were transfected with cas9/sgRNA for p53 or
control and 36h later cells were examined for mRNA levels for p53, IL-1 or IRF6. n = 4. (D) siRNAE6AP (+) or siRNA scramble

HPV16 blocks IRF6 transcription of IL-1
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were down regulated in cervical cancer patients. To do this we used a larger cohort from nor-

mal (29 patients) and cervical tumor biopsies (29 patients) and RNA was extracted. RT-qPCR

of IRF6 and IL-1 transcripts revealed that both genes were reduced in tumor tissues com-

pared to normal biopsies (Fig 8B).

Cervical intraepithelial neoplasia (CIN) is the premalignant abnormal growth of squamous

cells on the surface of the cervix. Most cases of CIN remain stable, or are eliminated by the

host’s immune system without intervention. We next explored if IL-1 and IRF6 transcription

were altered in patients during the progression of CIN positive for HPV16. We obtained For-

malin-Fixed Paraffin-Embedded biopsies from normal cervical tissues (n = 4) as well as

HPV16-positive CINI (n = 8), II (n = 8) and III (n = 5; Fig 8C). Immunohistochemical staining

of normal cervical tissue revealed high nuclear expression of IRF6 in the basal layers; which

decreased as CIN status increased (Fig 8C and 8D). We observed a decrease in both IRF6 and

control (-) was transfected into PLXSN or 16E6 transduced human keratinocytes for 48 h, cells were harvested for protein and RNA.
Western blot analysis for p53 and -actin. Left top, RT-qPCR for IL-1 and, left below IRF6. n = 3, (E) NIKs were co-transfected
with the IL-1 promoter and pLXSN, E6, p53 or E6 with p53. Luciferase activity was measured 48 h post infection. n = 4. (F) 16E6
transduced primary keratinocytes were transfected with vector control (-), p53 or IRF6 expression vectors. Twenty-four hours later
cells were harvested and pro-IL-1 , p53 or IRF6 levels were examined by immunoblotting. n = 4. Data are representative of n
independent experiments performed in triplicate. Shown are the mean ± SEM with ���, P< 0.0001, based on an one or two way
(applicable to> 2 conditions) ANOVA test. For immunoblotting data, 1 out of 4 experiments is shown.

https://doi.org/10.1371/journal.ppat.1007158.g006

Fig 7. p53 is a transcription factor required for IRF6 transcription in human keratinocytes. (A) HPV16E6WT or mutations were
transfected into NIKs and IRF6 mRNA levels were measured by RT-qPCR. Data were normalised to 2-microglpbulin and GAPDH house-
keeping genes. n = 4. (B) Schematic diagram of the p53 binding site and sequence on the IRF6 promoter. The red arrow indicates the
transcription start site along Chr1. The green line indicated where the p53 cis element is located (written in red). The blue arrows indicate the
primer amplication over 200bp. (C, D) ChIP assay of p53 binding on the IRF6 promoter in human primary cells (LXSN) as well as in 16E6
transduced cells. n = 3. Data are the representative of n independent experiments performed in triplicate. Shown are the mean ± SEM with
���, P< 0.0001, based on an one way ANOVA test.

https://doi.org/10.1371/journal.ppat.1007158.g007
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Fig 8. HPV16-positive cervical cancer lesions contain less IRF6 and IL-1 . (A) Immunofluorescence of normal cervical
issue and HPV16+ cervical cancer biopsies. IL-1 (green), p53 (red) with trace indicating the basal layer and nucleus
(white). Normal (HPV−) and a neoplastic biopsy (HPV16+) from one representative patient out of six with similar results
are shown. Bars represent a scale of 10 μm. For each stained biopsy, six fields were examined IL-1 staining was counted
manually and the percentage scored out of 100 cells. n = 4. (B) RNA was extracted from normal (29) and cervical cancer
biopsies (29). IL-1 relative and IRF6 mRNA levels were measured by RT-qPCR. n = 4. (C) Table of immunohistochemical
scoring IRF6 in patients at different stages of cervical neoplasia. Scoring, ��� strong, �� medium, � low and—no
staining (4 normal, 8 CINI, 8 CINII, 5 CINIII). n = 2. All tissue staining data were examined by two pathologists. (D),
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IL-1 mRNA during disease progression, (Fig 8E). ChIP experiments using chromatin

extracted from patient tissue revealed that IRF6 binding to the ISRE site on the IL-1 promoter

decreased during CIN severity (Fig 8F), indicating that loss of IRF6 inversely correlates with

cervical neoplasia progression. Furthermore, p53 binding was observed in normal cervical

biopsies, but binding was reduced in patients with cervical tumors (Fig 9). These data strongly

suggest that the p53/IRF6 regulation of IL-1 transcription is lost during CIN disease stages

that could lead to cervical cancer.

Discussion
We showed that human keratinocytes produce IL-1 when exposed to 16QsV. Furthermore,

addition of recombinant IL-1 on 16QsV infected keratinocytes led to a block in viral gene

transcription. Viral gene transcription was restored in the presence of an antagonist for the IL-

1 receptor. More importantly we delineated that IL-1 gene transcription increased when

exposed to 16QsV. These data show that HPV16 stimulates IL-1 secretion that has an anti-

viral effect on infected cells. IL-1 depends on inflammasome activation; we have data showing

that 16QsV was not sensed by NLPR3 or AIM2 (S5A Fig). Bone marrow derived macrophages

from NLRP3 and AIM2 knock out mice were still able to produce IL-1 in the presence of

16QsV (S5A Fig). Therefore we still need to elucidate which innate-inflammasome sensor can

detect 16QsV. However IL-1 gene expression began to decrease post 8h infection with

16QsV. These data implicate that HPV16 has developed an escape mechanism to block IL-1

production. Our findings are summarised in Fig 10.

Characterizing how HPV blocks immune surveillance is central in understanding the

events involved in the establishment of head and neck as well as cervical cancers. In this study

we showed the loss of IL-1 transcription was mediated mainly by oncoprotein 16E6. Our data

Immunohistochemical staining of IRF6 in cervical tissue in patients with CINI, II or III. n = 2. (E) RT-qPCR of IL-1 and
IRF6 mRNA expression levels in normal vs neoplastic cervical tissue. n = 3.A p53 site is required to bind to the IRF6
promoter but is lost in cervical cancer tissues. (F) ChIP analysis was performed on normal and cervical neoplastic tissue
for IRF6 binding on ISRE site on the IL-1 promoter. n = 3.

https://doi.org/10.1371/journal.ppat.1007158.g008

Fig 9. Four normal and tumor biopsies from (A) were used to perform ChIP analysis for p53 binding onto the
IRF6 promoter. n = 3. Data are representative of n independent experiments performed in triplicate. Shown are the
mean ± SEM with ���, P< 0.0001, ��, P< 0.0005 based on a paired Student’s t test (when patient matched) or
unpaired when not patient matched.

https://doi.org/10.1371/journal.ppat.1007158.g009
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are in line with Karim et al., showing that IL-1 mRNA levels were decreased in epithelial cells

expressing 16E6E7 [29]. The addition of 16QsV, or expression of E6 alone, blocked IRF6

expression and binding to the ISRE site on the IL-1 promoter. IRF6 has previously been

shown to play an important role in the embryonal development of the craniofacial region.

Mutations in this gene have been found in two human syndromes: Van der Woude and Popli-

teal Pterygium Syndrome, which are characterized by the cleft palate, lip pits, skin webbings,

syndactyly, genital deformities and oral adhesions. In contrast to most IRFs shown to be essen-

tial in IFN gene regulation, IRF6 had no identified function in innate immune gene activation.

Other IRF family members have been shown to be hijacked during HPVmediated carcinogen-

esis, such as IRF1 [30]. We demonstrated that mutation of the ISRE site on the IL-1 promoter

prevented 16E6 to inhibit IL-1 promotor activity. Gene silencing of the viral oncoproteins

16E6E7 or 16E6, restored IRF6 and IL-1 expression in human keratinocytes. This was shown

Fig 10. Model representing the induction and inhibition of IL-1 by HPV16. Infection of the basal keratinocytes with HPV16 induces inflammasome dependent
IL-1 production sensed by an unknown innate receptor. p53 transcriptional regulation of IRF6 is increased, which we show drives IL-1 transcription. The pro
form of IL-1 is cleaved by caspase 1 (red bar). The active form of IL-1 can block the increase in viral copies. However, when the oncoprotein E6 is expressed this
drives p53 degradation by E6AP preventing IRF6 and consequently IL-1 transcription. This mechanism of viral inhibition of innate responses may contribute to
HPV16 persistence in the host.

https://doi.org/10.1371/journal.ppat.1007158.g010
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by calculating the percentage of 16E6 inhibition against the cells that are induced with the

PLXSN vector alone (S5B Fig). Furthermore we showed that p53 regulated IRF6 transcription.

Using 16E6 mutations that cannot, partially or fully degrade p53 allowed us to correlate the

degradation of p53 by 16E6 led to the loss of IRF6 transcription (Fig 10). p53 has also been

shown to amplify intracellular IFN responses. IFN-stimulated genes (ISG) promoters do not

contain p53 consensus binding sites. However Munoz-Fontela et al., identified IFN regulatory

factor 9 (IRF9), a component of the ISG factor 3 (ISGF3) complex, as a p53 target gene. ISGF3

directly induces the expression of ISRE-containing genes and could represent a mechanistic

link between p53 and ISG induction [31]. Several additional IFN-stimulated mediators of ISG

expression, including IFN regulatory factor 5 (IRF5), immune-stimulated gene 15 (ISG15) and

the Toll-like receptor 3 (TLR3), have been identified as direct p53 target genes. Therefore IRFs

and p53 play a central role in regulating innate immune responses.

To our knowledge, this is the first description of p53-IRF6 axis mediating differential regu-

lation of an immune gene. Our ChIP experiments showed that lack of p53 protein due to 16E6

prevented its recruitment to the IRF6 promoter in cervical cancer patients. Based on our find-

ings we hypothesized that loss of IRF6 and IL-1 expression favours cervical cancer develop-

ment. These data were corroborated in cervical neoplasia and tumours. In cohorts of cervical

neoplastic patients we observed a decrease in both IL-1 and IRF6 mRNA levels. Rotondo

et al., evaluated the gene expression changes involved in neoplastic progression of cervical

intraepithelial neoplasia compared to normal keratinocytes [32]. Microarray analysis revealed

that IRF6 was one of the 24 genes significantly down regulated during CIN progression [32].

Furthermore two independent studies showed that IRF6 gene mutations were associated to

head and neck squamous cell carcinomas [33] [34]. However these scientific findings conflict

with two other data sets. Our analysis of the data set by den Boon et al., showed that IL-1 was

not affected during cervical cancer progression [35]. Also neither IRF6 nor IL-1 mRNA levels

were suppressed when analysing the data set from the TCGA cervical carcinoma cohort [36].

One should consider that neither studies were hypothesis driven nor were the data sets

designed to examine the mechanism of HPV16E6 regulation on p53/IRF6/IL-1 . We validated

that IRF6 and IL-1 expression were altered by the viral oncoprotein 16E6 using several read-

outs and models. Furthermore, we showed that IL-8 gene transcription depends on IL-1 stim-

ulation. An increase in local cervical IL-8 levels correlates with HPV viral clearance [37].

Experts in HPV incidence have discussed that infection of the cervical epithelium is a prereq-

uisite for the development of cervical cancer and the local immune response is an important

determinant of progression and disease outcome [38]. The transiency of most HPV infections

and the observed regression of certain cervical intraepithelial neoplasia lesions to normal epi-

thelium suggest a change in local immune responses, which may be caused by differences in

host genomics. We observed that loss of IL-1 production in cervical cancer cells led to a loss

of paracrine IL-8 transcription. Furthermore, IL-1 down regulation in HPV induced carcino-

genesis is underlined by the fact that specific polymorphisms in IL-1 have been demonstrated

to be associated with cervical carcinoma risk [38].

The work of Niebler et al., showed that 16E6 alters IL-1 by proteosome degradation of the

pro-form [8]. We did not observe the same findings using our cellular models. This could be

due to the fact that the primary keratinocytes used by Niebler et al., were from neonatal fore-

skin, whereas our model used keratinocytes from adult female skin (see Method and materi-

als). Yet, Niebler et al., also showed in Fig 6 of their article a drop in mRNA IL-1 levels in

CIN patients [8]. These data fall in line with our findings.

We propose that inflammasome activation of IL-1 secretion favors’ HPV viral clearance.

Loss of IRF6 and IL-1 function during cervical neoplastic stages reflects a prognostic read out

towards cancer development. Thus, interfering with the regulation of IL-1 with synthetic
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agonists that target p53 and IRF6 levels may provide a novel therapeutic strategy for cervical

cancer patients.

Methods andmaterials

Cell culture

Cervical cancer cell lines C33A (HPV negative cat: HTB-31), SiHa (HPV16 positive cat: HTB-

35), CaSki (HPV16 positive cat: CRL-1550), HeLa (HPV18 positive cat: CCL-2) and Human

embryonic kidney 293 (HEK293 cat: CRL-1573) cells were purchased from American Type

Culture Collection (Manassas, VA) and cultured in DMEMmedium (Life technologies), sup-

plemented with 10% foetal bovine serum (FBS), L-glutamine, pyruvate and 0.1% ciprofloxacin

(Euromedex). HEK293TT cells were a kind gift from the lab of Dr. Pawlita (DKFZ, Germany).

Cells were cultured with hygromycin using the same culture medium as HEK293. When pre-

paring HEK293TT cells for transfection cells were grown without hygromycin and antibiotics.

Cells were cultured at 37˚C with 5% CO2. Immortalized near-diploid human keratinocyte

cell line (NIKS, kind gift from Professor John Doorbar, University of Cambridge, UK) and

Human Primary Keratinocytes produced by the lab of Massimo Tommasino were from Adult

female, or femaile skin keraintocytes were purchased from American Type Culture Collection

Cat: PCS-200-011). Cells were cultured as previously described [6]. Human Primary Keratino-

cytes were cultivated at low passages numbers for a period of 3 weeks (called keratinocytes

after 1 passage). High-titer retroviral supernatants (>5 × 106 IU/ml) were generated as previ-

ously described [39]. The 16QsV and PV production, infection, and viral genome expression

quantification of HPV16 are described below.

Agonists and antagonists

NLRP3 ligand Nigericin was used at 1μg/mL (Sigma), AIM2 ligand poly(dA:dT) was used at

1μg/well (Invivogen) and transfected using lipofectamine 2000 (Invitrogen). ANAKINRA

(Biovitrum) was used at 200μg/ml.

Oligo pull-down

Oligo pulldown was performed as previously described [40] with cellular extracts as stated in

the figure legend and oligo probes as listed in Table 1. IRF8 and IRF6 antibodies were pur-

chased from Cell Signaling.

Table 1. Oligo sequences.

Deletions IL-1 OLIGO PULL DOWN IL-1
FWD 1 CTAGCTAGCTCTAGACCAGGGA FWD Biotin’ TTTGACATAAGAGGTTTCACTTCC

FWD 2 CTAGCTAGCTAAGAGGTTTCACT REV GGAAGTGAAACCTCTTATGTCAAA

FWD 3 CTAGCTAGCCTCCAGCCTGGGG IRF6 qPCR
FWD 4 CTAGCTAGCCCTGAATGTACATGCC FWD GGCATAGCCCTCAACAAGAA

FWD 5 CTAGCTAGCTTAGGCAGAGCTCAT REV CACCCCTTCCTGGTACTTCC

REV 1 GAAGATCTAAGAGGTTGGTA IRF8 qPCR
REV 2 GAAGATCTAAGAGGTTTG FWD ACGAGGTTACGCTGTGCTTT

REV GACATCTCGGCAGGGCTATG

p53 qPCR
FWD GGTTTGTAATGCAGGGCTGAGG

REV GGGTATGGTGGTGTATGCCTGT

https://doi.org/10.1371/journal.ppat.1007158.t001
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ChIP

ChIP assays were performed using the Shearing Optimization kit and the OneDay ChIP kit

(Diagenode). For C33A cells or primary keratinocytes, cell sonication cycles last 15s with 5s on

and 2 s off at 20% of amplitude and were repeated four times. For tissue, immunoprecipitation

was performed overnight on a rotating wheel at 4˚C. 2.5 μl/reaction of DNA solution was used

for qPCR. The primers used to amplify IL-1 , or IRF6 binding regions are available on request.

ChIP on the tissue was performed according to the protocol from Epigenome Network of Excel-

lence for tissue preparation after the Red ChIP kit from diagenode was used to prepare chroma-

tin and the 1-d ChIP kit for the immunoprecipitation. Immunoprecipitation was performed

overnight on a rotating wheel at 4˚C. 2.5 μl/reaction of DNA solution was used for qPCR.

Plasmid constructs

The constructs pLXSN empty, pLXSN-16E6E7, pLXSN-HPV16E6, pLXSN-HPV16E7 and

pLXSN-HPV18E6E7 were obtained fromM.Tommasino (IARC, Lyon, France) (6). The pGL3

Luc vector was purchased from Promega. The constructs The full-length IL-1 -Luc, LILRE

(IL-1 response element) and mutants were obtained from Philip E.Auron (University of Pitts-

burgh, Pittsburgh, PA 15261, USA). IL-1 deletions were cloned using the primers listed in

Table 1. Nine E6 mutations were obtained from Dr Gilles Trave (CNRS, Illkirch, France); and

previously described. These mutations were cloned into the pX5 plasmid. The retroviral

pBabe-puro encoding HPV16 and 6 E6 and or E7 have been previously described [41]. The

constructs pLXSN-HPV16 E6, HPV18 and HPV38 E6 and HPV6 E6 were a gift from D. Gallo-

way (Fred Hutchinson Cancer Research Center, Seattle, WA). The plasmids used for HPV16

structural genes and control PsV production, the target HPV16 genome, and GFP (for PsV

control) were kindly donated from the laboratories of Martin Muller and Angel Alonso

(DKFZ, Germany). pUNO, human IRF6 and IRF8 constructs were purchased from Invivogen.

The p53 plasmid was obtained from Addgene. siRNA for 16E6E7 and E6 was purchased from

Dharmacon and Sigma respectively. siRNA for E6AP [42]CRISPR for p53 was purchased from

Santa Cruz.

Viral production 16QsV and PsV [43],[44]

16QsV are viral particles that contain the full viral genome of HPV16 encaspidated by the viral

late proteins L1 and L2. PsV contain GFP DNA encaspidated by L1 and L2.

293TT cells at 75% confluency the day of transfection. The transfection mix consisted of

13μg of the L1-L2 expression vector and ~ the same amount of HPV16DNA or GFP control

vector were prepared in a separate tube, a mix 85μl of Lipofectamine with 2ml OptiMEM.

Both mixtures were incubated separately at RT for 10´-30´, then combined and incubated for

at least another 20 minutes. The resulting lipid/DNA complexes were directly added to the

pre-plated cells. The cells were incubated with the transfection mix for 4–6 h then split 1:2 or

1:3 and left overnight. The next day cells were detached, spun down and the supernatant dis-

carded. Cell lysis and Capsid Maturation: Using a 5ml plastic pipet, cells were suspended in

0.5ml in DPBS-Mg and transferred to a siliconized 2ml tube, screw-capped (Nalgene tubes for

freezing cells). For 100 million cells 1 ml of lysis buffer was prepared and incubated for 1-2h at

37C then with inversion for a further 16 h at least at 37C.

Salt extraction

The next day optiprep gradients prepared were diffused for 4 hours. The lysate was then lay-

ered on top of the gradient. The tubes were spun for using 13.2ml tubes SW40.1 Ti 14 h at 16
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C. The L1 band is a visible as a slight grey layer a little over a third of the gradient. Using a

large needle and a 5ml syringe we removed the 60% cushion layer, then we tool a 1.0ml syringe

and 26 gauge needle to extract 250μl fractions (6–8 fractions). Each fraction was placed into a

screw cap tube (not freezing tubes). Screen fractions by SDS PAGE: A mini gel of 10% were

used to screen fractions for the presence of the L1 protein (55kDa) fractions with significant

amounts of L1 were pooled, aliquoted and frozen; the protein yield can be estimated through

BSA standards or BCA assay. Analysis of virions- Encapsidated DNA: Fifty μl of fractions were
run on a 0,8% agarose gel. Supercoiled DNA from the HPV genome, linear human DNA with

nucleases and exonuclease treatment captured by L1 and L2 will run at 8Kb. �nuclease should
cut up all the human genomic DNA, then any tailed DNA that gets incorporated into the cap-

sid were cut off with the exonucleases. Capsid protein levels: Capsid protein levels (20μl frac-
tions) were measured on 10% SDS-PAGE and silver staining with serially diluted BSA as

concentration standard or by western blotting for L1. Viral genome equivalents were measured

by qPCR on the viral DNA of infected HEK293T cells using W-12 cell lysates as a standard

(kind gift from Dr Franck. Stubenrauch, Forschungssektion Experimentelle Virologie,

Tubingen, Germany).

Ethics statement

Our cohort of normal, CIN and tumor samples was provided by the hospital in Lyon Sud,

Lyon, France. Samples were obtained with written informed consent from each patient with

the procedure approved by the local Ethics Committee, Comités de Protection des Personnes.

All, normal, CIN or tumor biopsies were from females aged between 30–50 years. Where avail-

able the same normal patient-matched samples were provided (HPV negative genotyped using

multiplex PCR with HPV type-specific primers). Biopsies were either snap frozen or FPPE.

Genotyping

CIN and Tumor samples were genotyped using multiplex PCR with HPV type-specific prim-

ers for amplification of viral DNA and array primer extension for typing [41].

Infectivity and viral gene transcription assay

NIKs or primary keratinocytes were infected with packaged viruses as stated in the figure leg-

ends at 37C. Cells were removed, and RNA extracted for RT-PCR for E1, E6 and E7 transcripts

(mRNA) or DNA to measure viral DNA expression for E7 [6].

Immunofluorescence and immunohistochemistry

Keratinocytes transduced with pLXSN or HPV16E6 were fixed as previously described [45].

Sections of 5-μm thickness were cut and either stained for immunofluorescence using the TSA

system (PerkinElmer). The p53 antibody was purchased from Cell Signaling and the anti-IL1

3ZD (kindly provided by Dr. Trinchieri, NCI). The IRF6 antibody (F12) was purchased from

Santa Cruz. Cells or tissues were washed, the coverslips were mounted onto slides using a 1/10

dilution of 40,60-diamidino-2-phenylindole (nuclear stain; Invitrogen) in fluoromount (South-

ern Biotechnology Associates), and protein expression was detected by direct fluorescence

microscopy. Photographs were taken at magnification x40 using the Zeiss confocal 710 micro-

scope. Semi-quantitative analysis of IRF6 levels was estimated using the ImageJ software.

Immunohistochemistry staining for IRF6 was performed as previously described [6].
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ELISA

NIK, primary keratinocytes, HPV16E6 and E7 induced keratinocytes were seeded into a six-

well plate with 2.5 x105 cells per well with 4x103 NIH 3T3 feeders. Two days later the feeders

were removed, and the medium was replaced. After two hours; keratinocytes were stimulated

either with 20μM of Nigericin (Sigma) or transfected with 1ug/mL of poly (dA:dT) (Invivogen)

using lipofectamine 2000 (Invitrogen). After the indicated period (see figure legend), the super-

natant was harvested and quantified for IL-1 by ELISA (Bender Med System) or IL-18 [46].

Luciferase assay

Twenty-four hours before transfection HEK293 cells were plated at 20% of confluency in 96

well plates with 180μl of complete medium per well. Cells were transfected using GeneJuice

Transfection Reagent (Novagen) following the manufacturer’s instructions. Cells were tran-

siently co-transfected with HPV constructs as indicated with pGL3-LILRE, mutants or

pGL3-XTLuc. A Renilla plasmid with a CMV promoter was used to normalize transfection

efficiency. Twenty-four hours after transfection cells were lysed at room temperature in passive

lysis buffer (Promega) for 20 minutes. Luciferase buffer was composed of MgSO4 (2,67mM),

EDTA pH8 (0.1 mM), DTT (33.3 mM), ATP (0.53 mM), acetyl-CoA (207 μg/ml), luciferin

(0.13 mg/ml), Magnesium carbonate hydroxide (0,265 mM) and tricine (20 mM). Renilla

buffer was made by diluting coelenterazine. Luciferase and renilla activity from transfected

cells were measured using a luminoskan Ascent (Thermo). A single read program with an inte-

gration time of 1000 ms was used. Firefly luciferase (Photinuspyralis) activity of individual cell
lysates was normalized against renilla (Renillareniformis) activity to correct for transfection
efficiency in each reaction.

IL-8 bioassay

Supernatants from stimulated cells were added onto HEK 293 cells transfected with IL-8 lucif-

erase promoter, and a Renilla plasmid with a CMV promoter was used to normalise transfec-

tion efficiency [47]. Twenty-four post stimulation cells were processed as listed above.

Protein/RNA extraction

Cells were preserved in RP1 lysis buffer complemented with -mercaptoethanol (1%) until RNA

and total proteins extraction using the NucleoSpin RNA/protein extraction kit (Macherey-

Nagel). Supernatants from stimulated cells where concentrated using MeOH/chloroform. All

RNA samples were treated with DNAse before reverse transcription was performed.

Western blot analysis

Eighteen μg of total cellular protein were incubated during 5 minutes at 95˚C. The protein

samples were separated by electrophoresis using Novex 4–20% Tris-Glycine gels (Life Tech-

nologies) for 1 hour at 100V. Proteins then were transferred on a PVDF membrane (PerkinEl-

mer) during 1 hour at 100V. After blocking with PBS 0.1% tween and 5%milk for 1 hour,

membranes were probed with the following primary antibodies: anti-caspase 1 P10 (SantaCruz

Biotechnology), anti-IL1 3ZD (kindly provided by Dr Trinchieri, NCI), anti-ASC (Santa

Cruz Biotechnology), 16E6 (provided by the lab of Dr Trave (GBMC, France) and 16E7 (Santa

Cruz, France) over night at 4˚C. -actin (Sigma) primary antibodies were added for 2h at RT.

After three PBS 0.1% tween washes, secondary antibodies are added for two hours at RT. Anti-

Rabbit and anti-mouse HRP conjugate secondary antibodies were provided by Promega.
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Proteins were revealed with Lumiglo chemiluminescent substrate system (Kpl). Western blots

were developed using the intelligent dark box (Fuji film).

RT qPCR

We retro transcribed (RT) 1–1.5 μg of RNA extracted from cells using first strand RT-PCR kit

with oligodT primers (Fermentas). The RT reaction was diluted according to detection sensitiv-

ity. One μl of the diluted samples was added to a 20 μl PCR mixture containing 0.4 μl of primers

forward and reverse (10 μM) and 10 μl of Master Mix. Mx300P real-time PCR system (Strata-

gene, La Jolla, CA) were used to performed qPCR with Mesa Green qPCRMaster Mix Plus

(Eurogentec) on CaSki, C33A and SiHa cells. Primer sequences designed to detect gene expres-

sion of AIM2, NLRP3, ASC, IL-1 , house-keeping 2-microglubulin and GADPDH are listed

as previously described [46]. As relative levels of house-keeping genes between samples did not

alter, data were plotted against GAPDH. Primers for IRF6, IRF8, and p53 are listed in Table 1.

Statisical tests

Where appropriate, anova, unpaired or paired T test were performed using prism software ver-

sion 6 (Graph Pad) Statistical studies were validated by Omran Allatif (Statistician CIRI, Lyon,

France[46,48]).

Supporting information
S1 Fig. IL-1 production by primary human keratinocytes. A: IL-1 was measured by

ELISA in human keratinocytes (pLXSN) in response to NLRP3 or AIM2 ligands. n = 10. B

IL-1 was measured by ELISA in human keratinocytes in response to PV or 16QsV at 250

v.g.e ±Glybride (inhibits ATP mediated proton pump) or ± Caspase-1 inhibitor. C IL-1 was

measured a 4h and 8h by ELISA in human keratinocytes (pLXSN) in response to NLRP3,

AIM2 ligands or 16QsV (left Y axis) or LDH release (right Y axis) using the Pierce ™ LDH kit

(Thermofisher). n = 4. Shown are the mean ± SEM with ���, P< 0.0001, based on a two way

ANOVA test.

(TIF)

S2 Fig. 16E6E7 has no effect on the inflammasome activation of caspase-1. (A) RNA was

extracted from Human keratinocytes ± 16E6E7 and NLRP3 or AIM2 relative expression was

determined by RT-qPCR. n = 5. (B) Immunoblot analysis of keratinocytes transduced with

LXSN or 16E6E7 were transfected with NLRP3-CFP or AIM2-CFP. Membranes were probed

for GFP, p53 or -actin n = 5. (C) RNA was extracted from human keratinocytes ± 16E6E7

and ASC or caspase-1 relative expression was determined by RT-qPCR. n = 5. (D) Human

keratinocytes ±HPV16E6E7 were stimulated with AIM2 and NLPR3 ligands and both pro-or

mature caspase-1 were analysed in cell lysates or in the supernatant by immunoblotting. -

actin was used as a loading control. n = 3.

(TIF)

S3 Fig. Other HPV HR types but not LR blocks IL-1 promoter activity. (A) NIKs were co-

transfected with the IL-1 promoter with pLXSN, 16E6, 18E6, 31E6 or 6E6 as indicated. After

48 h, cells were harvested and luciferase activity was measured. n = 5. IRF8 is not involved in

IL-1 transcription in human keratinocytes. (B) IRF8 relative levels were measured in

pLXSN, 16E6 and 16E7 transduced human primary keratinocytes by RT-qPCR. n = 4. Immu-

noblot analysis of IRF8 protein levels in in pLXSN, 16E6 and 16E7 transduced human primary

keratinocytes. n = 4. (C) ChIP assay of IRF8 binding on the IL-1 promoter in human primary
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cells (LXSN) as well as in human macrophages. n = 4.

(TIF)

S4 Fig. Mutations in 16E6 restore IL-1 activity. (A) Table describing 16E6 mutations. NIKs

were transfected with 16E6Wt and mutations were co-transfected with IL-1 promoter lucifer-

ase construct. Forty-eight hours post transfection cells were lysed and luciferase activity mea-

sured. n = 4. (B) NIKs were transfected with WT and mutations for 16E6. Forty-eight hours

post transfection proteins were probed using 16E6 antibody. n = 3. (C) Western blot to control

E6AP knock down by control and SiRNA E6AP, using -actin as a loading control. n = 4. Data

are representative of n independent experiments; graphs shown are the mean ± SEM from

triplicate values.

(TIF)

S5 Fig. (A) 16QsV activates IL-1 production independently of AIM2 and NLRP3. Bone mar-

row derived macrophages from C56BL/6 WT, AIM2-/-, ASC -/-, Caspase 1 -/- (from Thomas

Henry, France) and NLRP3 mice (From Virginie Petrilli, France) were isolated and cultivated

as previously described [49]. (B) Percentage of IL-1 promoter inhibition with PLXSN cells vs

16E6 transfected with the IL-1 point mutation or LILRE deletion.

(TIF)
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A B S T R A C T

The small double-stranded DNA polyomaviruses (PyVs) form a family of 73 species, whose natural hosts are
primarily mammals and birds. So far, 13 PyVs have been isolated in humans, and some of them have clearly
been associated with several diseases, including cancer. In this study, we describe the isolation of a novel PyV in
human skin using a sensitive degenerate PCR protocol combined with next-generation sequencing. The new
virus, named Lyon IARC PyV (LIPyV), has a circular genome of 5269 nucleotides. Phylogenetic analyses showed
that LIPyV is related to the raccoon PyV identified in neuroglial tumours in free-ranging raccoons.

Analysis of human specimens from cancer-free individuals showed that 9 skin swabs (9/445; 2.0%), 3 oral
gargles (3/140; 2.1%), and one eyebrow hair sample (1/439; 0.2%) tested positive for LIPyV.

Future biological and epidemiological studies are needed to confirm the human tropism and provide insights
into its biological properties.

1. Introduction

Members of the polyomaviruses (PyVs) are non-enveloped double-
stranded DNA viruses with a genome of approximately 5000 nucleo-
tides. The organization of the viral genome is highly conserved
throughout the PyV family and comprises early and late coding regions
and the viral non-coding control region (NCCR) of approximately
500 bp. The early region encodes for two regulatory proteins: small T-
antigen (ST-Ag) and large T antigen (LT-Ag). The late region encodes
for three viral proteins that are necessary for formation of the capsid:
the major capsid protein VP1 and two minor capsid proteins, VP2 and
VP3. The NCCR contains the origin of DNA replication, regulatory
elements, and transcription promoters (Moens et al., 2008).

With the development of high-performance molecular biology tools,
many of the PyVs have been isolated during the past decade, mainly from
mammals, birds, and fish (Johne et al., 2011; Peretti et al., 2015). Based on
the observed distance between LT-Ag coding sequences, the International
Committee on Taxonomy of Viruses (ICTV) Polyomaviridae Study Group
has classified the different species of PyVs into four genera: alpha-, beta-,
gamma- and delta-PyV) (Calvignac-Spencer et al., 2016).

To date, a total of 13 PyVs have been isolated from humans: BKPyV
(Gardner et al., 1971), JCPyV (Padgett et al., 1971), KIPyV (Allander
et al., 2007), WUPyV (Gaynor et al., 2007), Merkel cell PyV (MCPyV)
(Feng et al., 2008), human PyV 6 (HPyV6) (Schowalter et al., 2010),
human PyV 7 (HPyV7) (Schowalter et al., 2010), trichodysplasia
spinulosa-associated PyV (TSPyV) (van der Meijden et al., 2010),
human PyV 9 (HPyV9) (Scuda et al., 2011), Malawi PyV (MWPyV)
(Siebrasse et al., 2012), Saint Louis PyV (STLPyV) (Lim et al., 2013),
human PyV 12 (HPyV12) (Korup et al., 2013) and New Jersey PyV
(NJPyV) (Mishra et al., 2014). PyVs are widely spread in the human
population. Many PyV infections occur early in life, and in most cases it
remains asymptomatic (Nickeleit et al., 2015). Serological studies have
shown that up to 90% of the human population has been exposed to
HPyV, with several HPyV infections occurring during childhood (Egli
et al., 2009; Kean et al., 2009; Sroller et al., 2016).

Four HPyVs have been clearly associated with human diseases,
many occurring more frequently in immunocompromised individuals.
JCPyV has been associated with progressive multifocal leukoencepha-
lopathy, a fatal brain disease, in immunocompromised individuals
(Jiang et al., 2009; Koralnik, 2006), and BKPyV has been associated
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with nephropathy and hemorrhagic cystitis (Azzi et al., 1994; Coleman
et al., 1978), particularly among kidney transplant patients; MCPyV
has been isolated from Merkel cell carcinomas of the skin (Feng et al.,
2008), a cancer with higher incidence in immunocompromised in-
dividuals, and TSVPyV has been associated with a rare cutaneous
condition, trichodysplasia spinulosa, in an immunocompromised pa-
tient (van der Meijden et al., 2010). A possible association between
HPyV7 and non-neoplastic diseases in immunosuppressed individuals
has also been reported recently (Ho et al., 2015; Toptan et al., 2016). In
addition, HPyV7 has been found in human thymic epithelial tumours,
but a causal association has not been established (Rennspiess et al.,
2015). The remaining PyVs that have been isolated from humans,
KIPyV, WUPyV, HPyV6, HPyV9, HPyV12, MWPyV, STLPyV and
NJPyV, have not so far been associated with any human diseases.

The oncogenic potential of HPyVs has been extensively studied in
experimental animal models, where these viruses induce a wide range of
tumours. The inoculation of JCPyV in a small rodent model and in non-
human primates leads to the development of brain tumours (Miller et al.,
1984; Varakis et al., 1978; Walker et al., 1973; Zu Rhein et al., 1979).
Transgenic mice expressing the early region of HPyVs have been used to
investigate the carcinogenesis induced by MCPyV (Shuda et al., 2015;
Verhaegen et al., 2015), JCPyV (Shollar et al., 2004), and BKPyV
(Dalrymple et al., 1990). In addition, simian virus 40 (SV40), BKPyV,
and JCPyV have been shown to display transforming activity in in vitro
experimental models (Moens et al., 2008). It is still unclear whether other
HPyVs exist. Here, we report the characterization of a new PyV isolated
from human skin swabs. We found it to be phylogenetically related to the
raccoon PyV (RacPyV) associated with brain tumours in free-ranging
raccoons, and gave it the provisional name of Lyon IARC PyV (LIPyV).

2. Materials and methods

2.1. Human specimens

Skin swabs, eyebrow hairs and oral gargles from three different
ongoing studies aiming to determine the prevalence of human papillo-
maviruses (HPVs) and HPyVs were used in the present analysis
(Franceschi et al., 2015; Hampras et al., 2015, 2014; Nunes et al.,
2016; Pierce Campbell et al., 2016, 2013). Skin swabs and eyebrow hairs
were collected at baseline from 448 subjects participating in the
VIRUSCAN study, an ongoing five-year (2014–2019) prospective cohort
study being conducted at Moffitt Cancer Center and the University of
South Florida (R01CA177586-01; “Prospective study of cutaneous viral
infections and non-melanoma skin cancer”). In addition, 25 cutaneous
skin swabs were randomly selected from the HPV Infection in Men (HIM)
study, a large, multi-national prospective cohort study of the natural
history of HPV infection in men. The 25 skin swabs were collected from
men in Tampa, Florida, USA. The HIM study methods have been
described in detail previously and are similar to those used in the
VIRUSCAN Study (Giuliano et al., 2011). An area of approximately
5×5 cm of the top of the sun-exposed forearm was sprayed with 0.9%
saline solution. A cotton-tipped Dacron swab (Digene, Gaithersburg, MD,
USA) was then rubbed back and forth a few times to collect exfoliated skin
cells. Individual swabs were placed in a separate vial and preserved in
Digene Standard Transport Medium (STM). Three or four eyebrow hairs
were plucked from each eyebrow using disposable tweezers. The eyebrow
hairs with attached follicles were snap-frozen in liquid nitrogen and stored
at −80 °C until further use.

We used 140 oral gargles that were collected for the Study of
Natural History of HPV Infection and Precancerous Lesions in the
Tonsils (SPLIT), which is an ongoing study on the detection of HPV
infection and precancerous lesions in age-stratified immunocompetent
individuals who underwent tonsillectomy for benign diseases in
selected university hospitals across France (Combes et al., In press;
Franceschi et al., 2015).

After DNA extraction, all samples were analysed at the International

Agency for Research on Cancer (Lyon, France) for HPVs and all
known HPyVs.

2.2. Design of degenerate primers and PCR conditions for PyV
screening

Complete HPyV sequences were obtained from GenBank and were
used for alignment of the early region genes. A pair of degenerate
primers was developed based on the more conserved parts of LT-Ag of
several PyV genomes. The accession numbers of the GenBank se-
quences that were used as references, with the corresponding HPyV
types given in parentheses, are EU37584 (MCPyV), NC_001538
(BKPyV), NC_001669 (SV40), EF520287 (KIPyV), NC_009539
(WUPyV), and NC_001699 (JCPyV). Two oligonucleotides (forward
primer, 5′-CAW GCT GTR TIT AGT AAT A-3′ and reverse primer, 5′-
RWT TAT TMA CHC CIT TAC-3′), allowing the amplification of a
region of approximately 240 bp, were synthesized by MWG Biotech
(Ebersberg, Germany). The polymerase chain reaction (PCR) mix
contained 1x PCR buffer, 200 μmol/L of each dNTP, 0.2 μmol/L of
each primer, and 0.625 U of HotStarTaq DNA polymerase in a final
volume of 25 μL (Qiagen). Forty-five amplification cycles were run in
the GeneAmp PCR System 2400 with a 94 °C denaturation step
(1 min), a 48 °C annealing step (1 min), and a 72 °C extension step
(1 min), including an initial denaturation step of 15 min and a final
extension step of 10 min, resulting in a 240-bp product.

2.3. Next-generation sequencing

The libraries were prepared using 50 ng of the PCR products with
DNA NEBNext Fast DNA Library Prep Set for Ion Torrent (New
England Biolabs, Ipswich, MA, USA) following the manufacturer’s
protocol, and sequenced with the Ion Torrent PGM sequencer (Life
Technologies) at 100x coverage using the Ion OneTouch 200 Template
Kit v2 DL and the Ion PGM Sequencing 200 Kit v2 with the 314 or 316
chip kits (all produced by Life Technologies), following the manufac-
turer’s instructions. The data analysis was conducted using Geneious
version 6.0.1 (http://www.geneious.com) (Kearse et al., 2012).

2.4. Luminex assay for high throughput screening of LIPyV

As described previously, LIPyV DNA from eyebrow hairs, and skin
swabs was detected using a highly sensitive and specific assay which
combines multiplex PCR and bead-based Luminex technology (Schmitt
et al., 2006, 2010). The following PCR primers and Luminex probe
were used: forward primer, 5′-CAA GCC TTG CTG CAG CAT TCC TAG-
3′ and reverse primer, 5′-ATC TTT GTT TTG TCC TCT AGA ACC CT-3′;
and probe, 5′-ATC TAT CTT GGG GGC AAT-3′. Briefly, PCR products
were denatured and hybridized to the beads coupled with specific
probes for LIPyV. Results were expressed as the median fluorescence
intensity (MFI) of at least 100 beads per bead set. For each probe, MFI
values with no respective PCR product added to the hybridization
mixture were considered background values. The cut-off was computed
by adding 5 MFI to 1.1x the median background value.

2.5. Rolling circle amplification

DNA was extracted and purified from skin swabs as described
previously (Schowalter et al., 2010). The DNA was amplified by
multiply primed rolling circle amplification (RCA) using the Illustra
TempliPhi 100 Amplification Kit according to the manufacturer’s
recommendations (GE Healthcare, Piscataway, NJ), with supplemen-
tation of 450 μM dNTPs as described by Rector et al. (2004).

2.6. Long-range PCR

Long-range PCR was performed for amplification of the entire

T. Gheit et al. Virology 506 (2017) 45–54

46



genome using the Takara LA Taq HS polymerase, following the
manufacturer’s instructions (Takara Bio Inc.). The following primers
were used at a final concentration of 0.5 μM each: forward primer, 5′-
TAA ATT TTG AGT TGG GTT GTG CAC AAG AT-3′ and reverse
primer, 5′-ATC TAT CTT GGG GGC AAT TAA TAT TTA ATG-3′.

2.7. Proofreading PCR

PCR using the proofreading Pfu ultra hot start DNA polymerase
(Agilent Technologies, Santa Clara, CA, USA) was performed according
to the manufacturer’s instructions.

2.8. Cell culture and transient transfection

First, HEK293 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS),
100U/ML penicillin G, 100 μg/ML streptomycin, 2 mM L-glutamine
(Invitrogen Life Technologies), and 1 mM sodium pyruvate (Sigma-
Aldrich). Then, 1.5×105 cells were transiently transfected with 1.0 μg of
pcDNA3 expression vector (Invitrogen) containing the early region of
LIPyV by using the X-tremeGENE 9 reagent (Roche) according to the
manufacturer’s protocols. At 48 h after transfection, cells were col-
lected for isolation of total RNA.

2.9. Reverse transcription and qPCR

Total RNA was extracted using the NucleoSpin RNA kit (Macherey-
Nagel). The obtained RNA was reverse-transcribed to cDNA with the
RevertAid H Minus M-MuLV Reverse Transcriptase kit (ThermoFisher
Scientific) according to the manufacturer’s instructions. The LIPyV
cDNA was amplified by PCR using the following pair of specific
primers: forward primer, 5′-AGA ATA TGG TAA TAT ACC ATT AAT
GAA GAA TG-3′ and reverse primer 5′-GTG ATC AGA TTG TGA TTT
TGC TGA G-3′. The amplicon was purified using the QIAquick gel
extraction kit (Qiagen) and sequenced by GATC (GATC Biotech,
Germany).

2.10. Phylogenetic analyses

Phylogenetic trees were constructed from the alignments of the
nucleotide sequences of LT-Ag and VP1, and the amino acid sequences
of LT-Ag from the following 47 avian and mammalian PyVs: budgerigar
PyV (NC_004764), crow PyV (NC_007922), finch PyV (NC_007923),
goose hemorrhagic PyV (NC_004800), TSPyV (NC_014361), Bornean
orangutan PyV1 (NC_013439), chimpanzee PyV (NC_014743), murine
PyV (NC_001515), hamster PyV (NC_001663), HPyV9 (NC_015150),
African green monkey PyV (NC_004763), SV40 (NC_001669), BKPyV
(NC_001538), JCPyV (NC_001699), simian virus 12 (NC_007611),
California sea lion PyV1 (NC_013796), bovine PyV (NC_001442),
murine pneumotropic virus (NC_001505), squirrel monkey PyV
(NC_009951), HPyV6 (NC_014406), HPyV7 (NC_014407), KIPyV
(NC_009238), WUPyV (NC_009539), MWPyV_MA095 (JQ898291),
MWPyV_WD976 (JQ898292), STLPyV_MA138 (NC_020106), STL
PyV_WD972 (JX463184), raccoon PyV_R45 (JQ178241), raccoon
PyV_Rac17 (KU533635), equine PyV (NC_017982), Artibeus planir-
ostris PyV3_A504 (JQ958890), Myotis PyV (NC_011310), Mastomys
PyV (AB588640), dolphin PyV1 (KC594077), vervet monkey PyV1
(NC_019844), Otomops PyV2 (NC_020066), Chaerephon PyV1
(NC_020065), bat PyV_B0454 (JQ958888), Eidolon PyV1
(NC_020068), Pan troglodytes verus PyV1a (HQ385746), Pan troglo-
dytes verus PyV2a (HQ385748), MCPyV (NC_010277), gorilla PyV1
(HQ385752), Cardioderma PyV1 (NC_020067), Otomops PyV1
(NC_020071), bat PyV (JQ958889) and LIPyV (KY404016).

The sequences were aligned using the MUSCLE algorithm with
default parameters (Edgar, 2004a), implemented in MEGA7 (Kumar
et al., 2016). MEGA7 was used to test substitution models, and for all

the following phylogenetic analysis. Based on the alignment with
MUSCLE, all positions with less than 95% site coverage were elimi-
nated (partial deletion), to allow the inclusion of taxa with some
missing data. Codon positions included were 1st+2nd+3rd+ non-
coding. There were a total of 1011 positions in the final dataset for
VP1 nucleotide sequences, 1674 for LT-Ag nucleotide sequences, and
554 for LT-Ag amino acid sequences. A discrete gamma distribution
was used to model evolutionary rate differences among sites (five
categories; +G, parameter=0.8203 and 1.1058, respectively, for VP1
and LT-Ag nucleotides sequences, and 1.1420 for LT-Ag amino acid
sequences). The rate variation model allowed for some sites to be
evolutionarily invariable ([+I], 8.6157% sites and 10.0832% sites,
respectively, for VP1 and LT-Ag nucleotides sequences, and 8.9514%
for LT-Ag amino acid sequences).

The initial trees for the heuristic search were obtained automati-
cally by applying the Neighbour-Joining (NJ)/BioNJ algorithm to the
three different matrixes of pairwise distances estimated using the
maximum composite likelihood (MCL) approach for the VP1 and LT-
Ag nucleotide sequences, and estimated using a Jones–Thornton–
Taylor (JTT) model for the LT-Ag amino acid sequences. The initial
trees were obtained using the NJ/BioNJ algorithm to have a first
representation of the relationships between the sequences according to
their genetic distance, because this algorithm produces a single tree.

In the next step, the statistical method used was the maximum
likelihood (ML) algorithm, applied with the goal of comparing the
initial trees with other trees generated by the ML search, using the
likelihood criterion. During this ML run, the parameter values were
optimized to converge to the true parameter value, aiming to find the
smallest possible variance among all estimates with the same expected
value.

For the nucleotide sequences of both VP1 and LT-Ag, the evolu-
tionary history was inferred by using the ML method based on the
general time-reversible model (a nucleotide substitution model),
whereas for the amino acid sequences of LT-Ag, the evolutionary
history was inferred by using the ML method based on the
Le_Gascuel_2008 model (Le and Gascuel, 2008) (an amino acid
substitution model).

For all trees, the topology was then optimized using the nearest-
neighbour-interchange heuristic (NNI) to improve the likelihood. This
heuristic specifies a neighbour relation between two unrooted trees and
then swaps their subtrees in an attempt to obtain a tree that has a
higher likelihood.

The final trees that are kept are the trees with the highest log
likelihood. Five-hundred ML bootstrap replicates were performed and
the support for each node annotated onto the ML tree for each of the
phylogenetic trees.

2.11. Nucleotide sequence accession number

The sequence of LIPyV was submitted to Gen Bank and was
assigned accession number KY404016.

3. Results

3.1. Viral discovery and sequencing of a new polyomavirus

To identify new human PyVs, 25 skin swabs from the HIM study
were tested for PyV using a sensitive degenerate PCR that amplifies a
region of approximately 240 bp in LT-Ag. Electrophoretic analysis of
the PCR products revealed the presence of amplicons of the expected
size in 6 skin swab samples (6/25; 24%). The purified PCR products
were pooled and sequenced using Ion Torrent technology (Life
Sciences). Approximately 1900 reads were obtained, generating 37
contigs. Nucleotide sequence analysis (BLASTn) revealed that a group
of 105 reads of approximately 200 bp shared the highest nucleotide
sequence similarity (76%) to RacPyV strains (accession numbers
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KU533635 and JQ178241), thus representing a potential new PyV. The
re-analysis by PCR of the 25 skin swabs using specific primers showed
that only one skin swab (1/25; 4%) tested positive for the new PyV
sequence.

Multiply primed RCA (Johne et al., 2009) was performed on the
DNA extracted from the skin swab of a woman aged 65 years, who had
previously tested positive for the new PyV sequence by PCR. To obtain
the complete viral genome, first, long-range PCR was performed using
outward-directed primers specific for the putative new PyV and the
RCA product as template, generating an amplicon of approximately
5 kb. Then, by a primer-walking strategy (GATC Biotech, Germany), a
sequence of 5269 bp representing a whole circular genome of the PyV
was obtained. The sequence was validated twice using a proofreading
polymerase followed by Sanger sequencing.

BLASTn analysis of the whole viral genome confirmed the RacPyV
as the closest relative among all known PyVs. Moreover, using
MUSCLE (Edgar, 2004b), the new PyV showed the highest nucleotide
sequence identity (~65%) to RacPyV strains (accession numbers
KU533635 and JQ178241). Because PyV sequences that share less
than 81% whole-genome nucleotide sequence identity to members of
known species are traditionally considered to be distinct viral species
(Buck et al., 2016; Johne et al., 2011), this new species of PyV was
given the provisional name of Lyon IARC PyV (LIPyV).

3.2. Genome characterization

The genome of LIPyV is circular and 5269 bp in length (accession
number KY404016), encoding open reading frames (ORFs) for all of
the major PyV proteins. Analysis of the complete nucleotide sequence
showed that the LIPyV genome shares the features of other known
PyVs with an early region consisting of ST-Ag and LT-Ag and a late
region coding for the VP1, VP2, and VP3 structural proteins. A NCCR
(nucleotide positions 1–401) sharing the characteristics of the ori
regions of most of the mammalian polyomaviruses was found (Fig. 1A).
This region contains six LT-Ag binding sites (An et al., 2012; Pipas,
1992): four GAGGC, one reverse complement GCCTC, and the sixth
with the sequence 5′-GTGGC-3′.

The early gene expression region (nucleotide positions 2455–5269)

has a length of 2815 bp and contains ORFs encoding for ST-Ag and LT-
Ag. To accurately determine the splice donor and splice acceptor giving
rise to LT-Ag (Fig. 1B), the entire early region was cloned into an
expression vector (pcDNA3), and 293 cells were transfected for 48 h.
Reverse transcription PCR (RT-PCR) was performed using the primers
spanning a region of 900 bp that most likely harbours the splice sites.
An amplicon of 488 bp was obtained and sequenced in order to identify
the splice junction, resulting in the identification of a LT ORF of
2403 bp that encodes for a LT-Ag of 800 amino acids. In addition, the
RT-PCR experiment enabled the identification of two additional mRNA
transcripts that correspond to (i) a splicing of 98 bp within the
transcript that gives rise to ST-Ag of 179 amino acids (Shuda et al.,
2009), and (ii) a splicing of 222 bp that yields an ORF of 148 amino
acids, with the first 138 amino acids shared with ST-Ag. We named this
putative protein 148T-Ag (Figs. 1B and 2). Experiments with the entire
viral genome may reveal additional alternative mRNA splice variants;
however, we do not yet have indications about whether LIPyV could
efficiently replicate in in vitro experimental models.

As for MCPyV (Carter et al., 2013) or TSPyV (van der Meijden et al.,
2015), we identified a putative alternate T antigen ORF (ALTO)
overprinted in the +1 frame of the second exon of LIPyV LT (nucleotide
positions 4035–4619). This ORF encodes for 194 amino acids
(Fig. 1A).

The structure of ST-Ag, LT-Ag and 148T-Ag is shown in Fig. 2 and
Table 1. The late region of LIPyV includes ORFs that encode for the
VP1 (nucleotide positions 1120–2427), VP2 (nucleotide positions
402–1145), and VP3 (nucleotide positions 630–1145) capsid proteins.
The start codon for the VP3 ORF is located within the VP2 ORF, and
the start codon for the VP1 ORF overlaps the C-terminal region of the
VP2 ORF (Fig. 1A).

3.3. Phylogenetic relationship among polyomaviruses

To investigate the evolutionary history of LIPyV, we constructed
ML phylogenetic trees using MEGA7 (Kumar et al., 2016) based on an
alignment of the nucleotide sequences of VP1 and LT-Ag (Fig. 3A and
B), and on the alignment of the amino acid sequences of LT-Ag
(Fig. 3C) of 47 mammalian or avian PyVs. The phylogenies of VP1 and

Fig. 1. Genome organization of LIPyV. (A) The viral genome of 5269 bp comprises early and late coding regions that encode for two regulatory proteins (small T-antigen and large T-
antigen), the 148 T-antigen, the putative alternate T antigen (ALTO), the major capsid protein VP1, and two minor capsid proteins, VP2 and VP3. These regions are separated by a non-
coding control region (NCCR) of 401 bp. (B) Transcript mapping of small, large, and 148 T-antigens.
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LT-Ag showed that LIPyV is closely related to RacPyVs. In all trees,
LIPyV and RacPyVs clustered significantly with different mammalian
PyVs that include one HPyV (MCPyV) and several PyVs isolated from
bats (Otomops, Cardioderma, Eidolon) or primates (gorilla, Pan
troglodytes verus, vervet monkey).

3.4. LIPyV prevalence in human specimens

The prevalence of LIPyV in humans was evaluated using a highly
specific and sensitive Luminex-based assay (Schmitt et al., 2006,
2010). The analysis was performed on skin swabs and eyebrow hairs

Fig. 2. Structure of the large, small, and 148 T-antigens.

Table 1
Description of the LIPyV T-antigens.

T-antigens Amino acid motifs Names Amino acid positions References

Large T-antigen
LCLLL CR1 13–17 Pipas (1992)
HPDKGG DnaJ 42–47
YGT YGT 80–82 Houben et al. (2015)
LFCDE pRB-binding motif 160–164 DeCaprio et al. (1988)
KRNRKNQSFGGIPSPGSRRSFSSTPPKQKRYK Nuclear localization signal* 213–244 Kosugi et al. (2009a)

Kosugi et al. (2009b)
TPPK threonine–proline–proline–lysine 236–239 DeCaprio and Garcea (2013)
SNKT DNA-binding domain A 266–269 Johne et al. (2006)
HRVTA DNA-binding domain B2 318–322 Schuurman et al. (1990)

Simmons et al. (1990)
CDKCSKLPLKPHEAH Zinc-finger motif 413–427 Ehlers and Moens (2014)
GPINSGKT Walker A box/ATPase domain 532–539 Pipas (1992)
GSVNVNLE ATPase domain 609–616
MVCFED Walker B box 575–580 van der Meijden et al. (2010)
TTCNE Helicase superfamily 3 motif C 632–636

Small T-antigen
LCLL CR1 13–17 Pipas (1992)
HPDKGG DnaJ 42–47
YGT YGT 80–82 Houben et al. (2015)
CRCIVC PP2A binding site 113–118 Pipas (1992)
CYCYYC PP2A binding site 141–146

148 T-antigen
LCLL CR1 13–17 Pipas (1992)
HPDKGG DnaJ 42–47
YGT YGT 80–82 Houben et al. (2015)
CRCIVC PP2A binding site 113–118 Pipas (1992)

* A putative nuclear localization signal (NLS) has been predicted using an NLS-prediction algorithm, cNLS Mapper (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi).
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collected in the USA from 448 skin cancer screening patients partici-
pating in the VIRUSCAN study prospective cohort. The mean age at
study enrolment was 69.4 years. The study population included 54.7%
women, 96.4% Whites, and 93.4% non-Hispanics. Skin swabs and
eyebrow hair samples were obtained at baseline from 445 and 439
individuals, respectively. Based on the Luminex analysis, 9 skin swabs
(9/445; 2.0%) and 1 eyebrow hair sample (1/439; 0.2%) tested positive
for LIPyV. The LIPyV-positive eyebrow hair sample was obtained from
a Hispanic White man aged 79 years. The LIPyV-positive skin swabs
were obtained from 4 non-Hispanic White men, 1 Hispanic White man,
and 4 non-Hispanic White women, aged 62–81 years. Interestingly, the
eyebrow hair follicles and the skin swab collected from one individual
both tested positive for LIPyV.

In addition, 140 oral gargles from the SPLIT study were collected in

France from 59 women and 81 men, aged 18–67 (mean age=29.3
years). A total of 3 oral gargles (3/140; 2.1%) tested positive for LIPyV.
Two women (aged 34 and 51 years) and one man (aged 26 years) were
positive for LIPyV.

4. Discussion

Polyomaviridae is a growing family that infects fish, birds, rodents,
humans, and non-human primates (Johne et al., 2011; Peretti et al.,
2015). With the advent of new molecular tools, the discovery of new
PyVs has accelerated over the past decade. However, although a large
number of PyVs have been detected in different animals, the discovery
of new HPyVs has been less frequent. The latest HPyV (NJPyV) was
discovered in 2014 (Mishra et al., 2014). Although most of the HPyV

Fig. 3. Maximum-likelihood phylogenetic unrooted trees produced from different regions of the LIPyV genome. The VP1 open
reading frame (A), the large T-antigen (LT-Ag) open reading frame (B), and the amino acid sequence of LT-Ag (C) are compared
separately. Scale bar shows substitution rate per site.
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infections are asymptomatic, a few HPyVs may induce diseases or
cancer, notably in immunocompromised individuals (Feng et al., 2008;
Jiang et al., 2009; van der Meijden et al., 2010).

In the present study, the use of degenerate PCR primers combined
with high-throughput sequencing enabled the discovery of a new PyV
in human skin specimens. The analysis of the LIPyV genome showed
that its organization shares most of the features of other known PyVs,
and contains conserved domains that play roles in PyV-induced cell
transformation. The N-terminal region of LIPyV LT-Ag contains a
LXCXE motif that has the ability to bind pRB family members
(Chestukhin et al., 2002; Moens et al., 2007). The pRB binding motif
is always preserved after the integration of MCPyV LT into the host
genome; in addition, it has been shown to be required in promoting
growth of Merkel cell carcinoma cells (Houben et al., 2012; Shuda
et al., 2008). LIPyV LT-Ag also has an ATPase domain that contains
two highly conserved motifs, GPXXXGKT and GXXXVNLE, that are
necessary for complex formation with p53 (Pipas, 1992). LIPyV ST-Ag

contains two PP2A binding sites. Several ST-Ag PyVs (BKPyV, JCPyV,
MuPyV, SV40, and MCPyV) have the ability to interact and inhibit
PP2A phosphatase activity. SV40 ST-Ag alters PP2A activity by
interacting with the PP2A scaffolding A subunit; the loss of this
interaction impairs the tumorigenic activity of ST-Ag (Cho et al.,
2007; Guergnon et al., 2011; Kwun et al., 2015; Sablina et al., 2008;
Yu et al., 2001). However, in vitro experimental studies are required to
demonstrate the ability of LIPyV to replicate in human cells, and to
characterize the biological activity of its viral proteins; such studies will
make it possible to predict the potential role of this newly discovered
PyV in human transformation.

LIPyV shares approximately 65% sequence identity with RacPyV, a
PyV that has been found in brain tumours from raccoons (Dela Cruz
et al., 2013). This proximity with the RacPyV strains has been
confirmed by a phylogenetic analysis based on the LT-Ag and VP1
ORFs and suggests an oncogenic potential of LIPyV. In the present
study, human specimens collected from different anatomical sites in

Fig. 3. (continued)
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individuals from subjects in the USA and France were tested for LIPyV,
showing a relatively low prevalence of approximately 2% in oral gargles
and skin swabs. Interestingly, the eyebrow hair follicles and the skin
swab collected from one individual were both positive for LIPyV, which
may suggest a possible replication and shedding of this virus in the
human host. Moreover, this prevalence is comparable to those ob-
served for other human PyVs in stool, blood, cerebrospinal fluid, urine,
or respiratory specimens (Li et al., 2015; Lim et al., 2013; Rockett
et al., 2013; Siebrasse et al., 2012).

It is also possible that LIPyV has a tropism for other anatomical sites
that still need to be elucidated. In addition, we cannot exclude the
possibility that LIPyV is an animal virus and its presence in the human
body may represent an environmental contamination. However, the
detection of LIPyV DNA in eyebrow hair follicles does not support this
hypothesis. Serological studies aiming to determine the presence of
antibodies against LIPyV in human sera will further clarify this issue and
will conclusively demonstrate whether LIPyV represents the 14th HPyV.
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Abstract 54 

Merkel cell polyomavirus (MCPyV) is the first human polyomavirus etiologically associated 55 

with Merkel cell carcinoma (MCC), a rare and aggressive form of skin cancer. Similar to other 56 

polyomaviruses, MCPyV encodes early T antigen genes, a viral oncogene required for MCC 57 

tumor growth. To identify the unique oncogenic properties of MCPyV, we analysed the gene 58 

expression profiles in human spontaneously immortalized keratinocytes (NIKs) expressing the 59 

early genes from six distinct human polyomaviruses (PyVs), including MCPyV. A comparison 60 

of the gene expression profiles revealed 28 genes specifically deregulated by MCPyV. In 61 

particular, the MCPyV early gene downregulated the expression of the tumor suppressor gene N-62 

myc downstream regulated gene-1 (NDRG1) in NIKs-MCPyV and hTERT-MCPyV human 63 

keratinocytes (HK) as compared to their controls. In MCPyV-positive MCC cells, the expression 64 

of NDRG1 was downregulated by the MCPyV early gene, as T antigen knockdown rescued the 65 

level of NDRG1. In addition, NDRG1 overexpression in hTERT-MCPyV HK or MCC cells 66 

resulted in decrease of cells in S phase and cell proliferation inhibition. Moreover, a decrease in 67 

wound healing capacity in hTERT-MCPyV HK was observed. Further analysis revealed that 68 

NDRG1 exerts its biological effect in Merkel cell lines by regulating the expression of CDK2 69 

and cyclinD1 proteins. Overall NDRG1 plays an important role in MCPyV induced cellular 70 

proliferation.  71 

Importance 72 

Merkel Cell Carcinoma was first described in 1972 as a neuroendocrine tumor of skin most of 73 

which in 2008, was reported to be caused by a PyV named Merkel Cell Polyomavirus (MCPyV), 74 

the first PyV linked to human cancer. Thereafter, numerous studies have been conducted to 75 

understand the etiology of this virus induced carcinogenesis. However, it is still a new field and 76 

much work is needed to understand the molecular pathogenesis of MCC. In the current work, we 77 

sought to identify the host genes specifically deregulated by MCPyV as opposed to other PyVs 78 

in order to better understand the relevance of the genes analyzed on the biological impact and 79 

progression of the disease. These findings open newer avenues for targeted drug therapies 80 

thereby providing hope for management of patients suffering from this highly aggressive cancer. 81 
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Introduction 82 

For nearly 40 years, BK polyomavirus (BKPyV) and JC polyomavirus (JCPyV) have been the 83 
only known human polyomaviruses (PyVs). During the last decade, 11 new human PyVs, 84 
including KI polyomavirus (KIPyV), WU polyomavirus (WUPyV), Merkel cell polyomavirus 85 
(MCPyV), Human polyomavirus 6 (HPyV6), Human polyomavirus 7 (HPyV7), Human 86 
polyomavirus 9 (HPyV9), New Jersey Polyomavirus (NJPyV), Trichodysplasia spinuolsa-87 
associated polyomavirus (TSPyV), Malawi polyomavirus (MWPyV), HPyV12, and St Louis 88 
polyomavirus (STLPyV) have been discovered (1). To add to this list, a putative human PyV 89 
named IARC-Lyon PyV (LIPyV) was recently isolated from human skin (2). Although there is 90 
little information known about the pathogenesis of these novel human PyVs, some of them have 91 
been linked to human diseases: BKV-associated nephropathy, JCV-associated progressive 92 
multifocal leukoencephalopathy (PML), WU-PyV-associated bronchitis, HPyV6/HPyV7-93 
associated dermatosis and TSPyV-associated trichodysplasia spinulosa. MCPyV is responsible 94 
for an aggressive type of skin cancer called Merkel cell carcinoma (MCC) (3, 4), as its presence 95 
has been confirmed in 80% of MCC cases (5). MCPyV is clonally integrated into the host cancer 96 
cell genome and harbours mutations that impair viral replication activity, which are important 97 
events in MCPyV-mediated MCC (4).  98 

PyVs are small (40-50 nanometres in diameter), non-enveloped, double-stranded (ds) DNA 99 
viruses that have a capsid with icosahedral symmetry (6, 7). All PyVs harbour a circular genome 100 
with a size ranging from 4.5 to 5.4 kbp, which can be divided into two oppositely oriented 101 
protein encoding regions: the early T antigen gene and the late VP gene, separated by a non-102 
coding control segment (8). Alternative splicing of all PyVs early genes gives rise to viral 103 
proteins large T-antigen (LT) and small T-antigen (ST) while late region encodes viral capsid 104 
forming proteins VP1, VP2, and VP3 (9, 10). MCPyV-positive MCCs express the early T 105 
antigen gene and require the early gene products for tumor cell survival and proliferation (11). 106 

Although LT and ST of almost all known human PyVs have displayed transforming properties in 107 
various experimental models, the oncogenic potential varies among these proteins (12). Unlike 108 
other human PyVs where LT acts as a major transforming protein, MCPyV ST has shown strong 109 
transforming activities (13), indicating that in some aspects MCPyV behaves differently from 110 
other human PyVs (14). In addition, the proven implication of only one PyV (MCPyV) in human 111 
carcinogenesis raises the question, why MCPyV alone is carcinogenic and not the other human 112 
PyVs. Even though some efforts were made to explain the structural and biological differences 113 
between MCPyV and other human PyVs (15, 16), the mechanistic aspect which renders MCPyV 114 
to be carcinogenic is not very well defined. 115 
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Virus-mediated host genetic alteration is one of the major contributing factors in virus-induced 116 
cancers. The aim of this study is to investigate the effect of human PyVs early genes on host 117 
global gene expression with a focus on identification of the genes uniquely altered by the 118 
expression of MCPyV early genes that could confer the transforming abilities to MCPyV. Of the 119 
numerous genes identified in this study, N-myc downstream regulated gene-1 (NDRG1) was 120 
downregulated by MCPyV T antigen. Interestingly, previous studies have shown that NDRG1 121 
functions as a metastatic suppressor (17-20) and a transcriptional repressor and is involved in cell 122 
cycle inhibition (21, 22), cellular differentiation (20) and in apoptosis (23). However, nothing is 123 
known about the role of this protein and the underlying mechanism by which it affects the cell 124 
transforming ability of MCPyV. Taken together, our work identifies significant changes in gene 125 
expression upon MCPyV oncogene expression which may explain the difference in the 126 
carcinogenic potential of MCPyV compared to other human PyVs. In addition, altered 127 
expression of NDRG1 by MCPyV provides mechanistic insight in host-cell signaling 128 
deregulation in MCPyV-mediated cellular proliferation. 129 
 130 

Results 131 

Early gene products from different human PyVs differently affect cellular gene expression 132 

To determine whether some human PyVs differ in their ability to alter cellular gene expression, 133 
we generated normal immortalized keratinocyte (NIK) lines expressing the entire early region of 134 
five human PyVs, namely, BKV, JCV, KIV, MCV, and WUV. In addition, SV40 was included 135 
in the study due to its well characterized transforming activities in experimental models. NIKs 136 
were transduced with recombinant retroviruses containing the early regions of the six PyVs and 137 
the relative and absolute expression levels of sT and LT were found to be nearly the same as 138 
shown in our previously published data (24). The expression profiles of 24000 annotated genes 139 
were determined by Illumina microarray (Illumina HT-12 v4). The microarray data were first 140 
subjected to quality control where 3 different methods namely unsupervised hierarchical 141 
clustering of the duplicates, scatterplots, and boxplots of gene expression data, were applied. All 142 
samples analysis was performed in duplicates except for MCPyVs with its corresponding 143 
negative control for which a quadruplicate was analyzed. Unsupervised hierarchical clustering 144 
was performed on genes that passed the filtering criteria revealed that all the samples clustered 145 
separately with their duplicates and quadruplicates clustering next to each other (Figure 1A).  146 

Subsequently, we compared the expression profile data of each PyV with the expression profile 147 
of the negative control, i.e. NIKs transduced with empty retrovirus (pLXSN). The expressions of 148 
genes are mentioned in ratios of the values obtained relative to the control condition after 149 
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normalization of the data. For comparison between these classes, genes were considered 150 
differentially expressed when they displayed a difference of at least 1.5-fold increase or decrease 151 
in expression pattern in both replicates, with a p and false discover rate (FDR) values < 0.001. 152 
Using these selection criteria, we identified numerous genes deregulated by each PyV upon 153 
comparison with negative control (Figure 1B). Notably, most of the genes were downregulated 154 
in each class comparison except for WUV, for which the upregulated genes were higher than the 155 
downregulated ones. However, SV40 scored a maximum for the deregulation of genes (n=967) 156 
while MCPyV scored for 325 genes on list (n=325).  157 

A comparison of the genes deregulated by MCPyV in this study with the published datasets from 158 
3 different studies (25-27) revealed a total of 73 genes to be commonly deregulated in our and at 159 
least one of the previous studies (Figure 1C). Only 1 gene was found unanimously deregulated in 160 
all studies included in the comparative analysis, HIST1H1C. The encoded protein is involved in 161 
cell senescence, DNA repair and cell cycle. A comprehensive list of the 73 genes was prepared 162 
which is included as a Supplemental Table 1. Strikingly, the pathway analysis of the 73 genes 163 
showed genes regulating mostly the cell senescence, DNA repair, cell cycle and signal 164 
transduction pathways which are included in Supplemental Table 2. 165 

Next, we focused on the expression profile induced by MCPyV, since it is the only PyV clearly 166 
associated with human carcinogenesis. The MCPyV-deregulated genes (n=325) were subjected 167 
to Biocarta pathways analysis. Although a significant number of altered genes by MCPyV are 168 
functionally related to many pathways, the cell cycle regulation and MAP kinase pathways 169 
ranked the highest with a significant number of variable genes (Supplemental Table 3). Our 170 
observation revealed essential genes involved in cell cycle regulation, particularly at the G1/S 171 
phase, are modulated by the expression of MCPyV early genes (Figure 1D). These genes include 172 
cyclins, cyclin dependent kinases (CDKs) and cyclin dependent kinase inhibitors (28). These 173 
results further strengthen the notion that cell cycle deregulation could be one of the major driving 174 
factors in MCPyV-mediated carcinogenesis. 175 

Comparative analyses of deregulated cellular gene expression mediated by the 6 PyVs 176 

Next, we determined whether the MCPyV displays unique features in deregulating cellular 177 
geneexpression in comparison to the other PyVs. For this purpose, single class comparisons 178 
between 6 PyVs early genes expressed in NIKs and NIKs/ pLXSN control, were followed by 179 
Venn intersections of the 6 datasets using R scripts. This led to the identification of a total of 23 180 
genes, namely: C12orf24, C1orf116, C9orf41, CCNA1, CDR2L, CTSH, DLK2, ECM1, FOXQ1, 181 
INPP4B, KIAA0101, KIF13B, KLF6, LIPG, MXRA5, NDRG1, PTPRE, PYGB, S100A16, 182 
SH3KBP1, SLC1A3, TRIB1, and UGT1A6, specifically altered by MCPyV while 60 other 183 
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deregulated genes were common to all PyVs (Figure 2A). In addition, 97, 44, 25, 285, and 398 184 
genes were specifically deregulated by BKV, JCV, KIV, WUV and SV40, respectively. To 185 
further elucidate the MCPyV signature genes, BRB-ArrayTools were used whereby a single 186 
class comparison between MCPyV and pLXSN were made after subtracting the background 187 
genes and the genes resulting from the class comparisons of BKV, JCV, KIV, WUV, SV40, and 188 
the negative control, pLXSN. Interestingly, this method also showed that MCPyV exclusively 189 
and significantly altered 28 genes in comparison to other PyVs (Figure 2B). Notably, 23 of 28 190 
MCPyV-deregulated genes identified with this analysis, were also found by Venn Diagram 191 
intersections. However, an increase of 5 significant genes namely, SPRR2E, CTSC, ANXA2, 192 
PTGS1, and DUSP10 was seen in the latter approach. Further to understand whether these 23 193 
genes are specific to MCPyV mediated deregulation, we did a comparative analysis between the 194 
published datasets for SV40 (29, 30), BKV (31, 32) and JCV (33, 34) and found 2 genes CCNA1 195 
and LIPG commonly deregulated for SV40 and 3 genes KIAA0101, MXRA5 and SLC1A3 196 
commonly deregulated for BKV (Figure 2C and 2D). However, no gene was found to be 197 
commonly deregulated for JCV.  198 

We also evaluated whether the products of these MCPyV-deregulated genes are involved in 199 
crucial cellular pathways by using GeneOntology software. The analysis showed that 19 of these 200 
genes were involved in the response to stimuli and in the regulation of processes linked to 201 
cellular transformation (Figure 2E). Importantly, as shown in Supplemental Table 4, some of 202 
these genes have been found deregulated in different types of human cancers. Reactome Pathway 203 
analysis using 23 genes revealed glucuronidation, biological oxidation and Tp53 and G1-S 204 
mediated transcription to be the top 5 pathways regulated by them (Figure 2F). Together, these 205 
results show that the products of the MCPyV early gene have a unique property to deregulate 206 
cellular gene expression in comparison to other PyVs.  207 

Validation of the role of MCPyV early proteins in altering cellular gene expression  208 

In order to confirm the microarray data, we performed quantitative RT-PCR. Of the 28 MCPyV-209 
deregulated genes, we selected 5 (NDRG1, KLF6, TRIB1, INPP4B and ANX2A) based on their 210 
biological functions as major tumor suppressors as described in Supplemental Table 4. 211 
Quantitative RT-PCR confirmed that all 5 genes were downregulated in NIKs in the presence of 212 
the viral genes (Figure 3A). Similar findings were obtained when MCPyV early genes were 213 
expressed in hTERT- human keratinocytes. NDRG1, KLF6, TRIB1, and INPP4B, but not 214 
ANXA2, were significantly downregulated in the presence of viral early genes (Figure 3B). To 215 
corroborate our findings, we also determined whether silencing the expression of MCPyV large 216 
and/or small antigens (LT and ST, respectively) in the MCPyV-positive MCC cell line (MKL-1) 217 
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could influence the expression of the 5 selected genes. Figure 3C shows that silencing the 218 
expression of ST alone or both ST and LT (PAN) resulted in a significant increase of NDRG1, 219 
KLF6, and INPP4B. There were no observed changes in their transcript levels in the MCPyV-220 
negative cell line, UISO, when transduced with ST or PAN shRNAs (Figure 3D). 221 

When comparing the data obtained in the different cell lines, it indicated NDRG1 is the most 222 
consistent MCPyV-deregulated gene in keratinocytes and in the Merkel cell carcinoma-derived 223 
cell line. Moreover, NDRG1 is participating in the second most important pathway, being the 224 
transcriptional regulation of cell death genes by Tp53, as revealed by the Reactome Pathway 225 
analysis (Figure 2F). To further confirm these observations, we determined the NDRG1 protein 226 
levels in the three experimental models described above. Silencing the early gene expression by 227 
PAN shRNA in MKL-1 or expression of MCPyV early genes in NIKs as well as in hTERT-HK 228 
resulted in a rescue or decrease in NDRG1 protein levels respectively, (Figure 3E). Together, 229 
this data show that MCPyV ST and LT can downregulate the NDRG1 mRNA and protein levels.  230 

Ectopic expression of NDRG1 in cells expressing early genes of MCPyV or MCC cell lines 231 
inhibits cellular proliferation and migration  232 

Next, we aimed to understand the biological significance of MCPyV-mediated NDRG1 233 
downregulation. hTERT-HK, previously transduced with recombinant retroviruses containing 234 
the MCPyV early gene (MCPyV-hTERT HK), were transfected with the NDRG1 pBABE vector 235 
(Figure 4A). Ectopic expression of NDRG1 decreased the number of colonies by approximately 236 
50% (Figure 4B and 4C). To corroborate these findings, MCC cell lines, MKL-1 and MKL-2 237 
were transduced with lentiviruses expressing NDRG1 under the control of a doxycycline-238 
inducible promoter. Induction of NDRG1 expression by doxycycline resulted in a decrease in 239 
cellular proliferation of the MCC cell lines. At day 12, MKL-1 and MKL-2 showed a 31.9% and 240 
34.4% decrease compared to doxycycline treated controls respectively (p<0.05) (Figures 4D and 241 
E). Interestingly, the cellular morphology of the two MCC cell lines showed distinct features. 242 
MKL-1 cell lines, upon NDRG1 induction, form smaller cellular aggregates compared to the 243 
controls whereas MKL-2 cells showed larger clumps (Figure 4F). Even though NDRG1 244 
decreases the overall cellular proliferation in MCC cell lines, these results indicate NDRG1 245 
differentially impacts the cellular physiology in the two cell lines.  246 

As NDRG1 is also implicated as a metastasis suppressor (35), we evaluated whether NDRG1 247 
influences the cell migration in our experimental models. MCPyV-hTERT HK were transiently 248 
transfected with the NDRG1 overexpression vector and a wound healing assay was performed 249 
every 24 h for a period of 2 days. We observed nearly complete wound closure (94.9%) in 250 
MCPyV-hTERT HK control cells after 48 h whereas we only observed 26.1%, wound closure in 251 
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NDRG1 overexpressing MCPyV-hTERT HK (Figure 4G and 4H). Together, these results show 252 
that NDRG1 plays an important role in cellular proliferation and migration. 253 

NDRG1 overexpression differentially regulates cell cycle in MCC cell lines 254 

Analysis of the cell cycle profile by flow cytometry showed that NDRG1 overexpression 255 
resulted in a modest, but reproducible decrease of cells in S/G2 phase (22.4% decrease; Figure 256 
5A and 5B). In addition, an increase of sub-G0 population were observed in the same cells in 257 
presence of ectopic NDRG1 levels (2.1-fold, p<0.01 as compared to control; Figure 5A and 5C). 258 
Interestingly, there were not many differences observed in the cell cycle profile of the MCC cell 259 
lines (Figure 5D). This can be attributed to how they are slow cycling cells with doubling times 260 
of nearly 3 days. However, the BrdU incorporation assay also did not show many changes in 261 
MKL-1 cell lines overexpressing NDRG1 (Figure 5D, left panel and Figure 5E) whereas MKL-2 262 
showed a significant decrease (49.1% decrease over control, p<0.05, Figure 5D, right panel and 263 
Figure 5E). This data highlights a different mechanism in the NDRG1-mediated inhibition of 264 
cellular proliferation in hTERT-HK and Merkel cancer-derived cell lines.  265 

NDRG1 regulates expression of key cell cycle regulators, CDK2 and cyclinD1 266 

After studying the role of NDRG1 in cell cycle regulation, we aimed to investigate the 267 
expression of cell cycle regulators in the presence of NDRG1. First, we determined by 268 
immunoblotting whether the expression of MCPyV early genes in hTERT HK influences the 269 
protein levels of positive regulators of the cell cycle, namely cyclin D1 and cyclin-dependent-270 
kinase 2 (CDK2). Figure 6A shows the expression of viral genes resulted in a significant increase 271 
of cyclin D1, and CDK2 protein levels (6.6- and 3.5-fold respectively compared to control, 272 
p<0.001, 0.01 respectively). Overexpression of NDRG1 in the same cells partially reduced the 273 
levels of these cellular proteins (43.6% and 49.6% respectively; Figure 6B). However, as seen in 274 
the BrdU incorporation assay, MCC cell lines, MKL-1 and MKL-2 transduced with lentiviruses 275 
expressing NDRG1 in the presence of doxycycline showed differential regulation of cyclin D1 276 
and CDK2 expression. A significant decrease in cyclin D1 expression along with a modest 277 
decrease in CDK2 expression was observed for MKL-2 whereas no changes in expression of the 278 
two proteins were observed for MKL-1 cell lines (Figure 6C). This justifies the observed 279 
discrepancies in the BrdU incorporation observed for the MCC cell lines.  280 

Furthermore, to understand whether the MCPyV early genes expression has any impact on the 281 
regulation of NDRG1, CDK2 and cyclin D1 in different MCC cell lines, we knocked-down the 282 
early genes in MKL-1, MKL-2, MS-1 and CVG-1 and checked their protein expression by 283 
western blot. The immunoblot shows an increase in NDRG1 expression in all the four cell lines 284 
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upon transduction with PAN shRNA compared to controls (Figure 6D-G). However MKL-2, 285 
MS-1 and CVG-1 showed decrease in cyclin D1 and CDK2 levels upon ST and LT knockdown 286 
(Figure 6D-G). Thus, while in the less transformed hTERT-HK NDRG1 overexpression resulted 287 
in a reduction in the levels of positive cell cycle regulators, this phenomenon is only conserved 288 
in some Merkel cancer-derived cell lines, possibly due to a different status of their cellular 289 
transformation. In any case, silencing the expression of the viral oncogenes rescues the NDRG1 290 
protein levels in all analyzed Merkel cancer-derived cell lines.  291 

To further characterize the role of cyclin D1 in proliferation of cells expressing the MCPyV early 292 
genes, we silenced cyclin D1 expression in MCPyV-hTERT HK by siRNA (Figure 6H). 293 
Although we did not observe significant changes in total number of colonies of the mock and 294 
siRNA cyclin D1 cells, silencing of cyclin D1 expression resulted in a strong reduction of colony 295 
size (Figure 6I and J), highlighting the inhibition of cellular proliferation. These results further 296 
indicated and validated our previous observation in Figure 5D, that NDRG1 might involve 297 
multiple downstream effector molecules. 298 

Discussion 299 

In this study, we performed a comparative gene expression profiling of cells expressing the early 300 
genes of 6 PyVs namely BKV, JCV, KIV, MCPyV, SV40, and WUV, with the aim of 301 
identifying the unique features of MCPyV that endows it with oncogenic characteristics. Our 302 
results showed that in comparison to other 5 PyVs, MCPyV uniquely deregulated 28 genes with 303 
13 genes showing upregulation and 15 genes displaying downregulation. We hypothesized 304 
specific deregulation of these 28 genes could be due to the direct oncogenic potential of the 305 
MCPyV early protein activities, as the transforming nature of these oncoproteins have been 306 
previously described (13). Also, comparisons between our datasets and datasets from different 307 
publications revealed differences in the deregulated gene list. This may be due to the 308 
experimental models, cell types, type of transfection, technology used to appreciate the gene 309 
expression changes, which are not exactly the same compared to ours, leading to a "not so 310 
perfect" overlap. The same can also be considered true for gene list comparisons we found for 311 
SV40, BKV and JCV. In fact, MCPyV distinctly downregulated certain genes, including tumor 312 
suppressor genes such as NDRG1, INPP4B, KLF6, TRIB1 and ANXA2. The reduced expression 313 
of these tumor suppressor genes has been reported in several cancer types including lung, 314 
prostate, and breast cancer (36-38). Strikingly, the genes which were specifically upregulated by 315 
MCPyV also included oncogenes such as FOXQ1, DUSP10, and CTSH. The unique ability of 316 
MCPyV to suppress tumor suppressor genes and activate oncogenes could explain its high 317 



11 
 

oncogenic potential in comparison to other human PyVs, as viral-mediated cancers are thought to 318 
be the result of accumulation of genetic alterations induced by their oncoproteins.  319 

The genetic alterations disturbing cell cycle regulation are one of the leading causes for cancer 320 
development. In fact, cell cycle progression is a firmly controlled process where cyclins, cyclins 321 
dependent kinases (CDKs), and CDK interacting protein/kinase inhibitory proteins (cip/kip 322 
family) coordinate to ensure the proper transition of the cell cycle across cell cycle checkpoints 323 
(28). Certain oncoviruses have evolved diverse strategies to deregulate the cell cycle progression 324 
because the loss of proper cell cycle control is one of the major driving forces in cellular 325 
transformation (39). In fact, dsDNA viruses, such as human papilloma viruses (HPVs) and PyVs, 326 
depend on cell cycle machinery for replication. Therefore, they need to push the cell into S-phase 327 
of the cell cycle. Although the PyV early region gene products have been reported to target 328 
cellular proteins implicated in cell cycle regulation, there is little known about cell cycle 329 
regulation for cells infected with MCPyV (1).  330 

Our results showed the significant modulation in the expression of genes related to particular cell 331 
cycle genes involved in the G1/S checkpoint, showing cell cycle regulation is a highly influenced 332 
pathway in MCPyV infected cells. Several CDK inhibitors, including cyclin-dependent kinase 333 
inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 2B (CDKN2B), cyclin-dependent 334 
kinase inhibitor 2C (CDKN2C), and cyclin-dependent kinase inhibitor 2D (CDKN2D) are 335 
known to prevent the progression of the cell cycle, are strongly downregulated by MCPyV 336 
(Supplemental Table 3 and Figure 1D). Interestingly, the regulation of CDKN1A by KLF6 has 337 
been reported (37), which we also found to be strongly downregulated by the MCPyV. In 338 
addition to some other CDKs, CDK4 is strongly upregulated in the presence of MCPyV early 339 
genes (Figure 1D). Furthermore, there was an observable slight upregulation of some cyclins, 340 
including CCNE1 (cyclin E1), CCND3 (cyclin D3), CCND2 (cyclin D2), and core cell cycle 341 
regulation gene CDC25, with a marginal suppression of Retinoblastoma 1 (RB1) in the presence 342 
of MCPyV early genes. All these indicators of cell cycle modulations suggest that MCPyV favor 343 
S-phase progression. However, the impact of MCPyV on cell cycle deregulation needs to be 344 
further elucidated. There is evidence that MCPyV early proteins promote the cell growth as 345 
illustrated by the reported robust cell death and cell cycle arrest associated to the inhibition of 346 
early gene expression, using PAN shRNA in MCC cell lines (13). The requirement of an intact 347 
pRb binding site by MCPyV to induce cellular growth shed light on the fact that MCPyV targets 348 
the cell cycle to increase its replication (40). Moreover, a MCPyV-infected MCC cell line 349 
showed impaired cell cycle arrest following exposure to UV radiation. Subsequently linked to 350 
LT these results suggest that the presence of the virus affects the normal cell cycle in cells 351 
exposed to UV (41). 352 
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Our results further indicated that among the genes deregulated specifically by MCPyV, NDRG1 353 
was reproducibly downregulated in all model systems. NDRG1 is known to be a tumor 354 
suppressor and metastasis suppressor in a variety of cancer cells like brain, breast, colon and 355 
rectum, pancreas, prostate and esophagus whereas it is also known to promote tumorigenesis in 356 
some other cancer forms of kidney, liver, mouth, skin and uterine cervix (42). The mechanism by 357 
which NDRG1 exerts its effect is largely dependent on the cellular context (42). In MCF-7 breast 358 
and EJ bladder cancer cell lines, NDRG1 overexpression was shown to decrease cellular 359 
proliferation (21). Similarly, in pancreatic cancers, NDRG1 overexpression led to an inhibition 360 
of tumor growth and an increase in apoptosis (43). Keeping in line with these observations, our 361 
results also showed that NDRG1 overexpression served to induce cell arrest in MCPyV early 362 
gene-transduced cells as evident from the reduced number of cells in S/G2 phase compared to 363 
control. These results further imply MCPyV downregulates NDRG1 to aid cell cycle progression 364 
thereby promoting cell survival.  365 

Our investigation further revealed the wound healing capacity to be severely compromised in 366 
Merkel positive cells overexpressing NDRG1. However, majority of the works with NDRG1 fail 367 
to unravel the underlying mechanism responsible for these diverse biological effects. One of the 368 
reports suggests that NDRG1 expression results in ATF3 mediated expression of the KAI gene to 369 
inhibit metastasis in prostate cancer (44). Another study highlights the upregulation of PTEN, 370 
SMAD4, and NEDD4L as important contributors of anti-tumor effect of NDRG1 (45). However, 371 
a number of studies support the fact that NDRG1 via interacting with either the Wnt receptor (46) 372 
or GSK3β (47) leads to regulation of β-catenin distribution and activity affecting cell 373 
proliferation and migration. We show here that NDRG1 overexpression has important effects on 374 
the expression of CDK2 and cyclinD1 which are important regulators of cell cycle check point.  375 

Even though the works in MCPyV-hTERT-HK showed clear roles of NDRG1 in limiting 376 
cellular proliferation via inhibiting cell cycle progression, NDRG1 overexpression in MCC cell 377 
lines shows that differential mechanisms may exist by which NDRG1 mediates its effects in 378 
MKL-1 and MKL-2 cell lines. This may be partly attributed to the fact that cell lines may have 379 
accumulated changes over period owing to continuous passage leading to differential outcomes. 380 
However, as seen with 3 of 4 MCC cell lines, MKL-2, MS-1 and CVG-1 there was a decrease in 381 
expression of CDK2 and cyclin D1 upon early gene knockdown along with increase in NDRG1 382 
expression indicating a redundant role of NDRG1 in regulating these cell cycle regulators. 383 
Further studies are needed to understand what features distinguish one MCC cell line from others 384 
leading to the observed discrepancies in terms of NDRG1. This is in line with previous 385 
observation where expression of a protein survivin was differentially regulated in MS-1 as 386 
opposed to three other cell lines under study including MKL-1 (48). 387 
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Recently, it was shown that NDRG1 is important in HCV assembly by regulating the biogenesis 388 
of lipid droplets, considered to be the main site for virus assembly (49). In yet another study, it 389 
has been described that miRNAs encoded by EBV can downregulate NDRG1, to promote EBV-390 
mediated epithelial carcinogenesis (50). This might be another aspect of regulation of viral loads 391 
for which the viruses have developed strategies to downregulate this versatile tumor suppressor. 392 
While this feature of NDRG1 was beyond the scope of present investigation, it will be interesting 393 
to have a deeper understanding of the role of NDRG1 in MCPyV viral assembly as little is 394 
known in this area. Moreover, the mechanism of NDRG1 downregulation by viral early genes 395 
needs to be investigated as a clear decrease of the NDRG1 expression was seen at both 396 
transcriptional and translational levels.  397 

In summary, we showed that MCPyV deregulates the cell cycle by specifically modulating genes 398 
associated with cell cycle regulation and MAPK pathways, and that NDRG1 is a key player in 399 
cell arrest and migration by mediating its effect in downregulating cyclinD1 and CDK2 in 400 
Merkel cell carcinoma. 401 

Materials and Methods 402 

Expression vectors 403 

All expression vectors for early genes of BKV, JCV, KIV, SV40, WUV were prepared as 404 
mentioned before (24). Full-length MCPyV early genes were a kind gift from Dr. D.A. Galloway 405 
(Fred Hutchinson Cancer Research Center, Seattle, USA). NDRG1 of 1185bp length was 406 
subcloned in retroviral vector pBABE-Hyg or lentiviral vector pLenti TRE empty EF-puro (51). 407 
To knockdown ST alone or both LT and ST mRNA expression in MCC cells (Figure 3 C and D), 408 
pLKO sh sT1 (ST) and pLKO sh pan-T1 (PAN) were used together with a control pLKO shCtrl 409 
construct (Scr) (13). In Figure 6, pan T antigen knockdown (PAN) was performed by pLenti 410 
e7SK-shpanT-puro and pLenti e7SK-Ctrl-puro (Scr), in which shRNA sequences identical to 411 
pLKO sh pan-T1 and pLKO shCtrl were cloned under e7SK promoter (51). Lentivirus was 412 
produced as described (13). 413 

MCPyV-positive MCC cells (MKL-1, MKL-2, CVG-1 and MS-1) were cultured in RPMI 1640 414 
medium (Invitrogen Life Technologies, Cergy-Pontoise, France) supplemented with 10% fetal 415 
bovine serum (PAA, Pasching, Austria), 100 U/ml penicillin and 0.1 mg/ml streptomycin (Pen 416 
Strep; GIBCO, Invitrogen), 2 mM L-glutamine (PAA), and 1 mM sodium pyruvate (PAA) (11, 417 
13). NIH3T3, 293FT and Phoenix cells were cultured following the previously described 418 
protocol (13, 52) Naturally immortalized keratinocytes (NIKS) and hTERT-HK were grown 419 
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together with NIH3T3 feeder cells in FAD medium, containing Ham’s F-12 (PAA), DMEM 420 
(GIBCO), 2% fetal calf serum (PAA), 100 U/ml penicillin and 0.1mg/ml streptomycin (Pen 421 
Strep; GIBCO, Invitrogen), adenine (SIGMA), 10 ng/ml human epidermal growth factor (R&D), 422 
5 mg/ml insulin (Sigma-Aldrich), 400 μg/ml hydrocortisone (SIGMA), 10 mg/ml ciprofloxacin 423 
hydrochloride (EUROMEDEX) and 20 mg of cholera toxin (List Biological Laboratories). All 424 
cells were cultured at 37°C with 5% CO2.  425 

Retroviral and lentiviral infections 426 

Retroviral transduction of keratinocytes with the early genes from PyVs cloned in pLXSN was 427 
performed as previously described (24, 52). After viral transduction, keratinocytes were selected 428 
in medium containing 1 mg/ml G418 (PAA). Lentiviral transductions were performed as 429 
previously described (13). Briefly, MCC cells infected with indicated lentiviruses were selected 430 
for 6 days with 1 μg/mL puromycin. After puromycin selection of infected cells, fresh cell 431 
culture medium was added to recover cells, and cells were harvested for analysis as indicated. 432 
For NDRG1 experiments, 0.5 μg/mL of doxycycline was added to puromycin-selected cells.  433 

Transfection 434 

Cells were plated in 6 well plates and transfected with control or cyclin D1 siRNA (Dharmacon) 435 
using Lipofectamine 2000 following the manufacturers protocol.  436 

Image acquisition and processing 437 

The images were acquired directly in 6 well plates using Nikon Eclipse Ti wide-field inverted 438 
microscope. The images thus captured were analyzed using ImageJ software.  439 

mRNA extraction and quality control 440 

For microarray, total RNA was extracted from NIKs cell expressing early genes of 6 PyVs, by 441 
using Absolutely RNA miniprep kit (Stratagene) according to the manufacturer protocol. RNA 442 
integrity and quantification were characterized by measuring the 28s/18s rRNA ratio and RIN 443 
(RNA Integrity Number) using the Agilent 2100 bioanalyzer instrument and the RNA 6000 444 
Nano kit.  445 

Genome expression profiling 446 

Genome-wide gene expression profiling analysis was performed using Illumina Human HT-12 447 
v4 Expression Bead Chips, providing a coverage of more than 24,000 annotated genes (47,231 448 
probes corresponding to 1 to 3 probes per gene) including well characterized genes and splice 449 
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variants derived from the National Center for Biotechnology Information Reference Sequence 450 
(NCBI). Using the Illumina Total Prep RNA Amplification Kit (Ambion®), 500 ng of extracted 451 
RNAs was converted to cDNAs and subsequent biotin labelled single-stranded cRNAs. The 452 
distribution of homogeneous in vitro transcription products (cRNAs) was checked with the 453 
Agilent bioanalyzer instrument and the RNA 6000 Nano kit. 750 ng of biotin labelled cRNAs 454 
was then hybridized overnight to Human HT-12 Expression Bead Chips. Subsequent steps 455 
included washing, streptavadin-Cy3 staining and scanning of the arrays on an Illumina Bead 456 
Array Reader. Fluorescence emission by Cy3 was quantitatively detected for downstream 457 
analysis. The Illumina Genome Studio V2010.2 was used to obtain the signal values (AVG-458 
Signal), with no normalization and no background subtraction. 459 

Data analysis 460 

Quality of the bead array data was verified using the internal controls present on the HumanHT-461 
12 bead chip and was visualized as a control summary plot. Non-normalized raw data was then 462 
imported to BRB-Array Tools version 4.3.0 (developed by Dr. Richard Simon and the BRB-463 
ArrayTools Development Team) for downstream analyses. Background subtraction, color 464 
correction and SSN normalization was performed using the lumi R package plugin (53). Quality 465 
of the data was further checked by generating boxplots of total gene expression data, principal 466 
component analysis, unsupervised clustering using centered correlation and average linkage of 467 
replicates, and consistency between duplicated probes. For class comparisons, genes were 468 
considered differentially expressed between groups when mean expression was at least 1.5-fold 469 
different (up or down), with a corrected p value and false discovery rate (FDR) below 0.001. The 470 
test was based on comparing the differences in mean log-intensities between classes relative to 471 
the variation expected in the mean differences. Technical replicates were averaged before class 472 
comparison. 473 
Gene ontology analyses were performed with the WEB-based GEne SeT AnaLysis Toolkit 474 
(WebGestalt) using the whole human genome as reference. In addition, gene set comparison was 475 
done in BRB-Array Tools for Gene Ontology categories, and biological pathways (BioCarta and 476 
KEGG). The gene set comparison tool analyzes pre-defined gene sets for differential expression 477 
among pre-defined classes. The significance values are based on testing the null hypothesis that 478 
the list of genes that belong to a given GO category is a random selection from the project gene 479 
list, against the alternative hypothesis that it contains more genes differentially expressed 480 
between the classes being compared. Pathway analysis was performed using the Reactome 481 
pathway database (54).  482 

RT-PCR and Quantitative PCR 483 
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Quantitative real-time PCR (qRT-PCR) was performed as previously described (55). Briefly, 484 
total RNA was extracted from cells using NucleoSpin RNA (Macherey-Nagel) and reverse 485 
transcribed to cDNA by using RevertAid H-Minus M-MuLV Reverse Transcriptase (MBI; 486 
Fermentas) according to the manufacturer’s protocol. The primer sequences used for qRT- PCR 487 
are listed in Supplemental Table 5. 488 

Immunoblotting and antibodies 489 

Whole cell lysates were prepared and sodium dodecyl sulphate-polyacrylamide gel 490 
electrophoresis (SDS-PAGE) and immunoblotting (IB) were performed according to previously 491 
described protocols (55, 56). Protein concentrations were measured with bicinchoninic acid 492 
(BCA) assay reagent; 30-40 μg of protein extracts were used for SDS-PAGE and immunoblot 493 
analyses, and IB was performed according to the previously described method. The antibodies 494 
used for IB were β-actin (MP Biomedicals), NDRG1 (Cell Signaling), cyclinD1 (Cell Signaling), 495 
CDK2 (Pharmingen), MMP-7 (Santa Cruz). 496 

Cell cycle analysis 497 

Analysis of cellular DNA content was ascertained by propidium iodide (PI) staining to determine 498 
the proportion of cells in different phases of cell cycle. Cells were harvested by trypsinization 499 
and fixed using ice-cold 70% ethanol at 4°C for 30 mins. Cells were pelleted and washed with 500 
phosphate-buffered saline (PBS) 3 times. Cells were resuspended in 500μl of PBS with 20 μg/ml 501 
PI and 10μg/ml RNase A and incubated at room temperature for 30 mins. Analysis was 502 
performed using FACSCanto flow cytometer.  503 

BrdU (10μM) was added to MCC cells expressing with or without NDRG1 for 1 hour before 504 
harvesting. Cells were fixed in ,10% buffered formalin for 10 min denatured with 2N HCl for 30 505 
min, permebialized in 0.3% Ttiron X/PBS for 10 min at room temperature. Cells were 506 
neutralized and incubated with anti-BrdU antibody (1:2000, Cell Signaling) in 1% BSA/PBS 507 
overnight at 4°C. Cells were washed with 1% BSA/PBS once and incubated with secondary anti-508 
mouse IgG Alexa Fluor 488 (1:1000), Invitrogenin 1% BSA/PBS for 1 hour at room temperature. 509 
Cells were washed, suspended in PBS containing ribonuclease A (100 μg/ml), propidium iodide 510 
(50 μg/ml), and 0.05% Triton X, incubated for 30 min at 37°C in the dark, and then analyzed 511 
with BD Accuri C6 flow cytometer. (Beckton Dickinson)  512 

Colony Formation Assay 513 

After 24 h of transient transfection, hygromycin was added to the medium and cells selected for 514 
72h. Thereafter cells were split at 1:10, 1:100 or 1:1000 and allowed to grow for several days in 515 
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hygromycin selection (57). Cells were washed in phosphate-buffered saline (PBS), fixed and 516 
stained with crystal violet in 20% methanol and the number of colonies was counted. 517 

Wound Healing Assay 518 

Transfected cells were wounded using a pipette tip in a continuous straight line. The images were 519 
obtained under a light microscope using an objective with 5x magnification at 0, 24 and 48 h 520 
postscratch (57).  521 

Cell Proliferation Assay 522 
At day 6 post-transduction, 2.5×104 cells were seeded in a 96-well plate (day 0). Cell 523 
proliferation was measured using WST-8 (Wako) at days 1, 3, 5, 8, 10, and 12. OD values were 524 
normalized by values from day 1. The WST-8 formazan product was measured at 440 nm with a 525 
reference filter at 600 nm.  526 
 527 
Statistical analyses 528 

The Student’s t test was applied to check the statistical significance of the obtained data. p values 529 
< 0.05 and > than 0.01 are indicated with *, p values < 0.01 and > than 0.001 are indicated with 530 
** and p values < 0.0001 are indicated with ***. Error bars in the graphs represent the standard 531 
deviation (SD). 532 
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Legends of Figures 724 

Fig. 1. The ability of deregulating the cellular genome expression varies among different 725 
PyVs. (A) Schematic presentation of the unsupervised clustering of replicates after removing the 726 
background. The dendrogram (upper panel) shows the clustering of duplicates and 727 
quadruplicates using centered correlation and average linkages. Heat map (lower panel) shows 728 
the differential expression of genes in all samples. Each row indicates the expression of a 729 
specific gene across all the samples while each column represents the sample in which gene 730 
expression was measured. The colour scale at the bottom reveals the relative expression level of 731 
the genes among all the samples. Blue and red colors represent down- and upregulation 732 
respectively. (B) The histogram shows the total number of differentially expressed (either 733 
downregulated or upregulated) genes, upon each class comparison. Each PyV representing one 734 
class was compared with the negative control pLXSN and the resulting deregulated genes at 1.5-735 
fold change with p and FDR <0.001 for each class are represented in the graph. The numbers on 736 
the top of each bar shows the total up- and downregulated genes by early genes of each PyV. (C) 737 
Venn diagram represents the common and differentially expressed genes by MCPyV dataset 738 
from this publication and publications by Berrios et al (25), Masterson et al (26), and Daily et al 739 
(27). The number 1 in the middle showing the gene HIST1C1 that was commonly deregulated in 740 
the 4 mentioned datasets. (D) Cluster analysis of differentially expresses genes involved in cell 741 
cycle regulation. The heat maps obtained from the Biorcarta shows the differential expression of 742 
28 genes involved in cell cycle at G1/S check point (left panel) or 23 genes related to cyclins and 743 
cell cycle regulation (right panel) between MCPyV and pLXSN. Colour intensities reflect the 744 
fold change relative to the control cells. Blue and brown colors show the down and upregulation 745 
respectively. 746 

Fig. 2. MCPyV specifically deregulates certain cellular genes. (A) Venn diagram represents 747 
the common and differentially expressed genes by 6 PyVs: MCV, JCV, KIV, WUV, BKV, and 748 
SV40. Single class comparisons were made between all 6 PyVs and pLXSN control and then 749 
using R scripts performed Venn intersections of the 6 datasets. The numbers at the extremities 750 
represent the specifically deregulated genes by each PyV while number 60 in the middle are the 751 
genes that are commonly deregulated by the mentioned 6 PyVs. The 23 genes showing the 752 
MCPyV specific signature are highlighted in red colour. (B) Heatmap shows the relative 753 
expression of 28 genes in other 5 human PyVs, which were uniquely and specifically deregulated 754 
by MCPyV early genes. The 28 genes enlisted are uniquely and significantly deregulated by 755 
MCPyV with 15 genes downregulated and 13 upregulated. The numbers at the Y-axis shows the 756 
number of genes while the X-axis represents the number of samples. The colour bar at the 757 
bottom represents the fold change scale varying between -2.4 (blue, down regulated) to 2.3 (red, 758 
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upregulated). (C and D) The 23 genes of the MCPyV specific signature compared to SV40 (C) 759 
and BKV (D). (E) Bar diagram shows the number of genes involved in the biological (left panel) 760 
and molecular (right panel) functions. Using GeneOntology software, the 28 genes representing 761 
the specific signature of MCPyV were analyzed for the involvement in various biological 762 
processes. Each bar represents one biological category and numbers on the top of each bar shows 763 
the genes out of 28, involved in the respective functional category. The number of genes is 764 
reported on the Y-axis while X-axis represents the categories of biological functions. (F) The 765 
Reactome pathway analysis showing the top 5 pathway regulated by the 23 genes. FDR, False 766 
Discovery Rate. 767 

Fig. 3. Expression of differently expressed genes across different Merkel cell lines Total 768 
RNA was extracted from the NIKS (A) or hTERT HK (B) stably expressing the early genes of 769 
MCPyV and converted into cDNA as described in Material and Methods. Expression of 770 
indicated genes were analysed in these samples. (C-D) The knockdown of both LT and sT (Pan) 771 
or sT alone in positive MCC cells, MKL-1 and MCPyV negative (UISO) was achieved by 772 
transduction with lentiviral-based shRNA as described in Material and Methods. Scrambled 773 
shRNA (Scr) was used as negative control. Cells were collected and processed for total RNA. 774 
After reverse transcription, mRNA levels of the indicated genes were determined by qRT-PCR 775 
and normalized to the levels of the housekeeping GAPDH gene. (E) Total protein lysates isolated 776 
from Merkel positive cell line MKL-1 transduced with PAN shRNA or NIKs or hTERT HK 777 
stably expressing MCPyV early genes were subjected to immunoblotting and expression of 778 
NDRG1 was checked in these samples. The results (±S.D) are representative of atleast two 779 
independent experiments performed in duplicates.  780 

Fig. 4. Effect of NDRG1 overexpression on cellular activities in hTERT-HK cells expressing 781 
early genes of MCPyV or MCC cell lines. hTERT-HK cells expressing early region of MCPyV 782 
was transiently transfected with pBABE empty vector or pBABE-NDRG1 vector. (A) 783 
Expression of NDRG1 in the transfected cells. (B-C) Cells transfected with NDRG1 or not were 784 
plated in 6-well plates at ratio 1:10, 1:100 or 1:1000 after selection with hygromycin for 7-8 days 785 
as described in Materials and Methods section. Representative image (B) and the number of 786 
colonies are shown in bar graph (C). (D-F) MCC cell lines MKL-1 and MKL-2 were transduced 787 
with empty or NDRG1 expressing doxycycline-inducible lentiviral constructs in presence of 788 
0.5μg/ml. NDRG1 expression in MKL-1 and MKL-2 was confirmed by immunoblot (D). Cell 789 
proliferation was monitored by WST8 cell proliferation assay reagent (Dojindo). First, a fold-790 
increase of cell proliferation for the assay data point (day12) was determined by dividing the OD 791 
value of the data point by that of day 1. To calculate the relative cell proliferation activity in the 792 
presence of NDRG1 expression, the fold increase value of NDRG1-induced cells was divided by 793 
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that of empty vector control cells (E). Representative image of MCC cell lines expressing or not 794 
NDRG1 5-days post doxycycline treatment (F). (G-H) As before MCPyV keratinocytes were 795 
seeded in 6 well plates and transiently transfected with pBABE empty or pBABE-NDRG1 vector. 796 
After 48 h of transfection, a scratch was introduced using a pipette tip and imaged every 24 h as 797 
mentioned in Materials and Methods. Migration of cells in hTERT keratinocytes was observed 798 
for 48 h and representative image (G) and bar graph (H) showing the wound healing or closure 799 
of wound are expressed as ratio over 0 h control. Results were obtained by three independent 800 
experiments. Error bars indicate standard deviation. Statistical significance was determined by 801 
student t-test. 802 

Fig. 5. Cells engaged in DNA synthesis are reduced in MCPyV-hTERT-HK and MKL-2 803 
but not MKL-1 cells expressing NDRG1.  804 

(A-C) hTERT-HK cells expressing early region of MCPyV was transiently transfected with 805 
pBABE empty vector or pBABE-NDRG1 vector. Cell cycle profiles (A) of cells overexpressing 806 
NDRG1 or not were fixed and stained with PI. The percentage of cells in S/G2 (B) or percentage 807 
of cells in sub-G0 population (C) are represented as bar graph. (D-E) Representative results 808 
depicting cell cycle profile (top) and BrdU incorporation in S phase of cell cycle (bottom). MKL-809 
1 or MKL-2 cells treated with doxycycline for 8 days were labelled with 10mM BrdU for 1h. 810 
Incorporated BrdU and cellular DNA was stained by anti-BrdU antibody and propidium iodide. 811 
Cells were analyzed by flowcytometry (D). Quantitation of BrdU incorporation (E). The results 812 
(±S.D) are representative of three independent experiments. Statistical analysis was performed 813 
using the Student’s t test.  814 

Fig. 6. Interrelation between products of early genes of MCPyV, NDRG1 and cell cycle 815 
regulatory proteins CDK2 and cyclin D1 (A) Total protein lysates from cells stably expressing 816 
early genes of MCPyV (MCPyV) or not (pLXSN) were prepared and immunoblotted (A) for the 817 
indicated proteins mostly known to be involved in cell cycle regulation. (B) Protein lysates from 818 
cells expressing early genes of MCPyV and overexpressing NDRG1 were subjected to Western 819 
Blotting and probed with the indicated antibodies. (C) Lysates from MKL-1 and MKL-2 cells 820 
overexpressing NDRG1 were probed for indicated proteins. (D-G) The knockdown of both LT 821 
and sT (PAN) MCC positive cells (MKL-1, MKL-2, MS-1 and CVG-1) was achieved by 822 
transduction with lentiviral-based shRNA as described in Material and Methods. Scrambled 823 
shRNA (Scr) was used as negative control. Immunoblot analysis for NDRG1, β-catenin, CDK2, 824 
cyclinD1 and LT was performed in MKL-1 (D), MKL-2 (E), MS-1 (F) and CVG-1 (G). β-actin 825 
was used as a loading control. (H-J) Total protein lysates from cells stably expressing early genes 826 
of MCPyV transfected with cyclinD1 siRNA or control siRNA were prepared and 827 
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immunoblotted (H) for expression of cyclinD1. (I-J) Cells transfected with NDRG1 or not were 828 
plated in 6-well plates at 1:100 ratio for 7-8 days as described in Materials and Methods section. 829 
Representative image showing colonies and number of cells per colony (I) and the number of 830 
cells per colony are shown in bar graph (J). 831 
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Abstract

Background
In Latin America (LA), there is a high incidence rate of breast cancer (BC) in premenopausal

women, and the genomic features of these BC remain unknown. Here, we aim to character-

ize the molecular features of BC in young LA women within the framework of the PRECAMA

study, a multicenter population-based case–control study of BC in premenopausal women.

Methods
Pathological tumor tissues were collected from incident cases from four LA countries. Immu-

nohistochemistry (IHC) was performed centrally for ER, PR, HER2, Ki67, EGFR, CK5/6,

and p53 protein markers. Targeted deep sequencing was done on genomic DNA extracted

from formalin-fixed, paraffin-embedded tumor tissues and their paired blood samples to

screen for somatic mutations in eight genes frequently mutated in BC. A subset of samples

was analyzed by exome sequencing to identify somatic mutational signatures.
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Results
The majority of cases were positive for ER or PR (168/233; 72%), and 21% were triple-nega-

tive (TN), mainly of basal type. Most tumors were positive for Ki67 (189/233; 81%). In 126

sequenced cases, TP53 and PIK3CA were the most frequently mutated genes (32.5% and

21.4%, respectively), followed by AKT1 (9.5%). TP53mutations were more frequent in

HER2-enriched and TN IHC subtypes, whereas PIK3CA/AKT1mutations were more fre-

quent in ER-positive tumors, as expected. Interestingly, a higher proportion of G:C T:A

mutations was observed in TP53 in PRECAMA cases compared with TCGA and METAB-

RIC BC series (27% vs 14%). Exome-wide mutational patterns in 10 TN cases revealed

alterations in signal transduction pathways and major contributions of mutational signatures

caused by altered DNA repair pathways.

Conclusions
These pilot results on PRECAMA tumors give a preview of the molecular features of pre-

menopausal BC in LA. Although the overall mutation burden was as expected from data in

other populations, mutational patterns observed in TP53 and exome-wide suggested possi-

ble differences in mutagenic processes giving rise to these tumors compared with other pop-

ulations. Further -omics analyses of a larger number of cases in the near future will enable

the investigation of relationships between these molecular features and risk factors.

Introduction
Breast cancer (BC) incidence is increasing sharply in countries in economic transition, with a

large number of cases in premenopausal women. In Latin America (LA), the proportion of BC

in women younger than 45 years is nearly twice the proportion in developed countries, a dif-

ference that is only partly explained by population age structure [1]. Behavioral, reproductive,

and lifestyle factors typical of Western populations are becoming more prevalent in LA and

may play a role in the increased BC incidence in this population, but the reason for the sharp

increase in incidence in premenopausal women in LA remains to be established [2].

BC is a heterogeneous disease in terms of biology and outcome. It is clinically classified into

four subtypes (luminal A, luminal B, HER2-positive, and triple-negative [TN]), based on the

expression of the estrogen receptor (ER), the progesterone receptor (PR), the human epider-

mal growth factor receptor 2 (HER2), and the proliferation marker Ki67 [3]. More sophisti-

cated classifications based on genomic and transcriptional analyses provide a better

description of the tumor biology and outcome [4, 5]. The two most frequently somatically

mutated genes in BC are TP53 and PIK3CA [6]. Mutations in PIK3CA, which render cells

dependent on PI3K pathway signaling, are the most common genetic abnormality identified

in hormone receptor-positive BC, whereas mutations in the tumor suppressor gene TP53 are
more prevalent in the HER2-enriched and TN subtypes [6–8].

Genomic analyses can also provide information related to tumor etiology. Indeed, somatic

mutational signatures can reveal the contribution of specific mutational processes to the devel-

opment of cancer. For example, TP53mutation patterns specific to exposure to exogenous

mutagens have been reported in several cancer types [9], and at the genome-wide level, more

than 30 mutational signatures have been described in cancer tissues and some have been

Pilot genomic results from the PRECAMA study
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linked to endogenous mechanisms of mutagenesis or to exposure to human carcinogens [10,

11].

Although BC genomic subtypes have been associated with different patient outcomes, how

specific genomic alterations relate to risk factors or etiology remains largely unknown. More-

over, knowledge of the genomic features of premenopausal BC (preBC), particularly in coun-

tries in economic transition, is limited. The PRECAMA study was initiated to investigate the

molecular, pathological, and risk factor patterns of preBC in LA (http://precama.iarc.fr/). It is

the largest case–control study conducted in four countries in LA that systematically collects

extensive information on lifestyle and risk factors as well as different biological samples

(tumor tissues, blood fractions, and urine) according to standardized procedures. PRECAMA

is thus a powerful framework for investigating relationships between BC tumor biology and

etiology.

Here, we investigate the tumor genomic features of preBC in women in LA using the first

set of samples collected within the framework of the PRECAMA study.

Materials andmethods

Study population

The present study included 126 cases recruited between August 2012 and November 2015 in

the context of the PRECAMA case–control study (http://precama.iarc.fr). Subjects included in

PRECAMA are women diagnosed with BC at age 20–45 years and recruited at major general

or cancer-dedicated hospitals in Chile, Colombia, Costa Rica, and Mexico that cover popula-

tions with a wide range of socioeconomic status. Women who had a positive biopsy for BC

were recruited before any treatment. Women were invited to a home or hospital visit, during

which a trained nurse presented the informed consent, collected biological samples and

anthropometric measurements (height, weight, and hip and waist circumferences), and

administered a standardized questionnaire on clinical, reproductive, and lifestyle risk factors.

All participants gave written informed consent before enrollment, and the study protocols

were approved by the institutional review boards of Chile (Oncologic Institute Foundation

Arturo Lopez Pérez and National Cancer Institute), Colombia (Cancer Institute Las Americas

and University of Antioquia), Costa Rica (Costa Rican Institute of Clinical Research [ICIC]

and Center for Strategic Development and Information in Health and Social Security [CEN-

DEISSS] of the Costa Rican Social Security Fund [CCSS]), Mexico (National Institute of Public

Health and the Mexican Social Security Institute), and the International Agency for Research

on Cancer (IARC).

Biological specimens

Each study site applied common standardized protocols for specimen collection. The protocols

were previously developed and extensively used by IARC [12, 13], and were subsequently fine-

tuned based on a detailed review of the conditions at each center. Blood samples were obtained

at recruitment by venipuncture using vacutainers, and buffy coats were prepared and stored at

−80˚C less than 6 hours after the blood draw. Buffy coats were shipped to IARC for genomic

DNA extraction. Tumor samples were formalin-fixed and paraffin-embedded (FFPE) accord-

ing to standard operating procedures. Paraffin blocks and hematoxylin and eosin sections

were stored at the local pathology service facilities. Sections from tumor tissues were sent to

Fred Hutchinson Cancer Research Center for centralized immunohistochemistry (IHC) analy-

ses and tumor DNA extraction.

Pilot genomic results from the PRECAMA study
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Pathology review and IHC analyses

Histology sections from tumor biopsies obtained before any treatment were reviewed for his-

tological diagnosis and grade, lymphovascular invasion, and stromal and lymphocyte response.

IHC was conducted for ER (SP1, LabVision, Fremont, CA), PR (PgR 636, Dako, Denmark),

HER2 (AO485, Dako, Denmark), epidermal growth factor receptor (EGFR) (31G7, Invitrogen,

Camarillo, CA), CK5/6 (D5/16 B4, Dako, Denmark), p53 (Pab 1801, Calbiochem, La Jolla,

CA), and Ki67 (MIB-1, Dako, Denmark) according to standardized and optimized protocols

that included antigen retrieval when required. BCs were classified into subtypes according to

ER, PR, and HER2 IHC results. Triple-negative (ER-, PR-, HER2-) BCs were additionally sub-

typed using EGFR and CK5/6 staining to define basal-like cancers. ER and PR positivity were

defined as staining score>1%, and Ki67 positivity as staining>14%, as recommended by the

St Gallen International Breast Cancer Conference [3].

DNA extraction and sequencing

Tumor genomic DNA was extracted from 3–9 sections of 6 μm using the QIAamp DNA FFPE

Tissue Kit (Qiagen) following the manufacturer’s recommended protocol, with the following

modification. The tissue was incubated in ATL buffer and proteinase K overnight at 56˚C with

agitation, with the addition of 20 μL of proteinase K after the first 4 hours. Matched constitu-

tive genomic DNA from cases was isolated from buffy coats at IARC with the Autopure LS sys-

tem (Qiagen) using the "frozen buffy coat" protocol and following the manufacturer’s

instructions. DNA was quantified by PicoGreen (ThermoFisher Scientific).

For targeted sequencing, exonic regions of the selected gene panel (AKT1, CDH1, ERBB2,
NOTCH1, PIK3CA, PTEN, RB1, and TP53) were amplified from 80 ng of genomic DNA using

GeneRead DNAseq Mix-n-Match Panel V2 (Qiagen) following the manufacturer’s instruc-

tions. Libraries were prepared with NEBNext reagents (New England BioLabs) following the

manufacturer’s instructions. Libraries were quantified by PicoGreen (ThermoFisher Scientific)

and pooled in equal quantities, and the library pool was quantified by the Qubit fluorometer

(ThermoFisher Scientific) and quality checked with the Bioanalyzer (Agilent Technologies).

Then, 800 pM of the library pool was used for sequencing on a Ion Proton sequencer (Life

Technologies) according to the manufacturer’s instructions, aiming at a minimum of 100X

coverage for blood DNA and 1000X coverage for tumor DNA. Tumor samples were processed

in duplicate to control for artefactual mutations from FFPE fixation (see bioinformatics analy-

ses below).

For whole-exome sequencing, exonic regions and splice junctions of tumor–blood DNA

sample pairs were captured using the SeqCap EZMedExome kit (Roche Diagnostics France)

following the manufacturer’s instructions. This assay captures exonic regions covering 47 Mb

of protein-coding bases. Libraries were prepared with the KAPA Hyper Prep Kit (Roche Diag-

nostics France) following the manufacturer’s instructions, and sequenced by 150-base paired-

end massively parallel sequencing on an Illumina HiSeq 4000 sequencer at the New York Uni-

versity Langone Medical Center according to the manufacturer’s instructions.

Bioinformatics analyses

Data from the Ion Proton sequencer were processed with the Ion Torrent built-in pipeline

(TorrentSuite V4) to generate BAM files, and variant calling was done with the built-in ITVC

in the somatic mode and with a minimum allele frequency threshold of 4%. Variants were

annotated with Annovar and filtered to eliminate known single nucleotide polymorphisms

(SNPs) (variants present in the Exome Aggregation Consortium [ExAC] or 1000 Genomes

[1000G] databases at a frequency>0.001) and sequencing artefacts using the MutSpec Galaxy

Pilot genomic results from the PRECAMA study
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package developed in-house [14]. Further manual checks of BAM files using IGV were done

when appropriate. All non-synonymous mutations found in the targeted regions and present

in both duplicates of tumor samples but not in any blood samples of the 126 cases were

retained for analysis.

Exome data from the HiSeq 4000 sequencer were analyzed with a pipeline developed in-

house and based on standard tools for quality control and processing (FastQC 0.11.3, Adapter-

Removal 2.1.7, BWA-MEM 0.7.15, Qualimap 2, GATK 3.5, and Picard 1.131). Somatic variant

calling was done on tumor–blood sample pairs with Strelka [15] using the default parameters.

Variant annotation and filtering was done as described above with MutSpec [14], and only

somatic indels and single nucleotide variants (SNVs) in coding regions were retained and ana-

lyzed. Pathway analysis of mutated genes was done with ConsensusPathDB (r32) using the

KEGG, Biocarta, Reactome, andWikiPathways databases and a minimum of 3 overlapping

genes and q-value<0.05 as settings [16]. To define cancer genes, we used the Catalogue of

Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (v82) [17], and genes identified

as drivers for BC in the IntOGen database (r2014.12) [18].

Public data on somatic mutations in breast cancer

Data from The Cancer Genome Atlas (TCGA) breast and METABRIC genomic studies [19,

20] and from the IARC TP53 Database [21] were used as comparison datasets. Gene-specific

mutation files (AKT1, CDH1, ERBB2, NOTCH1, PIK3CA, PTEN, RB1, and TP53) and related
clinical files for the TCGA and METABRIC studies were retrieved from cBioPortal [22, 23] in

February 2017. MAF files from exome sequencing data of TCGA BC cases were retrieved on

26 March 2015 via a https protocol at https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_

ftpusers/anonymous/tumor/. Gene-specific data from TCGA and METABRIC were com-

bined, including only cases with documented age and ER, PR, and HER2 status, and stratified

by age (younger than 45 or older than 55 years). For TCGA exome data, only data with docu-

mented age and ER, PR, and HER2 status were selected, resulting in a dataset of 453 samples,

including 96 preBC and 357 postBC. Version R18 of the somatic dataset of the IARC TP53

Database was used to select for mutations reported in primary BC in women age 45 or younger

and in studies using Sanger sequencing. Finally, another independent dataset, named hereafter

560BC, was assembled from public data obtained from whole-genome sequencing of 560 BC

cases [6]. For this dataset, mutation data were retrieved from COSMIC and clinical data were

retrieved from the original publication. Only cases with documented ER, PR, and HER2 status

and diagnosed at 45 years or younger were included (N = 123).

Statistical analyses

Associations between study variables were tested using Fisher’s exact test. For mutational sig-

nature analyses, we used PRECAMA exome data (N = 12 samples) and TCGA exome data

(N = 453). Mutations were classified into 96 types, corresponding to the 6 possible base substi-

tutions (C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G, and T:A>G:C) and the 16 pos-

sible pairs of nucleotides immediately flanking 50 and 30. Mutational signatures in these

samples were then extracted using the non-negative matrix factorization (NMF) algorithm

implemented in a NMF R package [24, 25]. NMF decomposition identifies signatures and esti-

mates their contributions to each sample. Six signatures were identified using the cophenetic

correlation coefficient as a measure of stability of the signatures. We calculated the cosine simi-

larity between the 6 extracted signatures and those published in COSMIC and in other original

reports [17, 26], as described elsewhere [27].

Pilot genomic results from the PRECAMA study
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We wished to identify possible systematic differences of signature contributions between

IHC subtypes, by menopausal status, and by study source (TCGA vs PRECAMA). Because of

the small number of PRECAMA samples, we used 2000 permutations of samples to obtain an

empirical distribution of the Kruskal–Wallis rank-sum statistic. This permutation test was

applied to test for possible association of each signature with a) menopausal status; b) IHC sub-

type; c) menopausal status stratified by IHC subtype; d) menopausal status adjusted for sub-

type by linear model; and e) study source, with partial adjustment for subtype (TN vs others)

and also restricted to preBC samples.

All statistical analyses were performed using R statistical software version 3.3.2. The statisti-

cal significance level was set to 0.05, without adjustment for multiple comparisons.

Results

IHC subtypes in PRECAMA tumors

In the first consecutive cases recruited in PRECAMA, for which tumor pathological evaluation

has been completed (N = 229), most BC cases (72%) were ER-positive and 16% were HER2--

positive (Table 1). Using ER/PR/HER2 IHC subtyping, the majority of cases were luminal A

(58%), followed by TN (21%), luminal B (11%), and HER2-enriched (5%) (Table 1). TN

tumors were predominately basal-like (94%) (Table A in S1 File). Proliferation status was

assessed by Ki67 IHC staining. More than 80% (189/233) of cases had high Ki67 staining with

a median percentage of 31.6 (not shown). Overall, Ki67-positivity (staining>14%) was signifi-

cantly associated with IHC subtypes (p-value = 2 × 10−4; Fisher’s exact test). In particular, the

proportion of Ki67-positive cases was significantly lower in luminal A cases than in TN cases

(72% vs 98%, p-value = 2.8 × 10−5).

Table 1. Sample classification by IHC results.

IHC result Number of samples
N (%)

Ki67-positive
N (%)

ER

Negative 65 (28%) 63 (97%)

Positive 168 (72%) 126 (75%)

PR

Negative 71 (30%) 67 (94%)

Positive 162 (70%) 122 (75%)

HER2

Negative 183 (79%) 144 (79%)

Equivocal 13 (6%) 12 (92%)

Positive 37 (16%) 33 (90%)

Total 233 189 (81%)

IHC SUBTYPE�

Luminal A 134 (58%) 96 (72%)

Luminal B 26 (11%) 23 (88%)

HER2-enriched 11 (5%) 10 (91%)

Triple-negative 48 (21%) 47 (98%)

Of basal type 45 (94%) 42 (93%)
Undetermined�� 14 (6%) 13 (93%)

� Tumor subtype definitions: luminal A: ER+/HER2-; luminal B: ER+/HER2+; HER2-enriched: ER-/HER2+; triple-negative: ER-/PR-/HER2-; TN of basal type: EGFR

+ and/or CK5/6+.
�� 14 cases were not assigned a subtype: 13 cases had equivocal HER2 results and no confirmatory FISH; 1 case was ER-/PR+/HER2- with a weak PR positivity.

https://doi.org/10.1371/journal.pone.0210372.t001
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Somatic mutations in premenopausal BC

Tumor genomic DNA was extracted from FFPE tissue sections prepared at each collecting

center according to a standardized protocol. More than 250 ng of DNA was obtained for 75%

of the samples, with a median yield of 994 ng. A limiting amount of DNA (<100 ng) was

obtained for 12% (21/172) of the samples. Targeted deep sequencing of a panel of 8 genes fre-

quently mutated in BC (AKT1, CDH1, ERBB2, NOTCH1, PIK3CA, PTEN, RB1, and TP53) was
successfully performed on 126 cases for which more than 250 ng of tumor genomic DNA was

available. Tumor DNA and patient-matched blood DNA were sequenced at minimum cover-

ages of 1000X and 100X, respectively. To control for potential artefacts due to formalin fixa-

tion, FFPE tumor samples were sequenced in duplicates and only mutations detected in both

duplicates were considered (see Materials and Methods). Potentially deleterious somatic muta-

tions (affecting splicing, indels, nonsense, stop-loss, and non-synonymous substitutions) in

the 8-gene panel were found in 63.5% (80/126) of samples. TP53 was the most frequently

mutated gene (32.5%), followed by PIK3CA (21.4%) and AKT1 (9.5%), whereas other genes

were mutated in less than 5% of samples. This distribution differed from that observed in

preBC from the TCGA/METABRIC datasets (Fig 1A). Indeed, there were fewer cases with

TP53 or PIK3CAmutations and more cases with AKT1 and RB1mutations in PRECAMA ver-

sus TCGA/METABRIC cases (p-values at best = 0.03). These differences may be explained in

part by a different distribution of subtypes between PRECAMA and TCGA/METABRIC cases

(p-value = 8.2 × 10−6), because a higher proportion of luminal A cases (known to carry fre-

quent AKT1 and infrequent TP53mutations) and a lower proportion of TN cases (known to

carry frequent TP53mutations) was observed in PRECAMA compared with TCGA/METAB-

RIC (p-value = 0.04). Interestingly, whereas the PIK3CA/AKT1 pathway was mutated at the

expected rates in the luminal A PRECAMA tumors, AKT1mutations were more frequent rela-

tive to PIK3CAmutations in PRECAMA compared with TCGA/METABRIC luminal A cases

(14% AKT1 and 23% PIK3CAmutations in PRECAMA vs 4% AKT1 and 54% PIK3CAmuta-

tions in TCGA/METABRIC), although this was not statistically significant.

PIK3CA and AKT1mutations were at classical hotspots (p.H1047R, p.E542K, and p.E545K

for PIK3CA and p.E17K for AKT1), and TP53mutations were mostly missense substitutions

that spread across the coding sequence (Table A in S1 File). The relationship between IHC

subtypes and mutated genes was as expected from previous studies (Fig 1B). TP53, RB1, or
PTENmutated samples had higher proportions of the TN subtype, whereas AKT1 or CDH1
mutated samples had higher proportions of the luminal A subtype. The majority of samples

with no mutation in the tested genes were of luminal A subtype (34/46; 74%).

Twenty one tumors had mutations in more than one gene (Table A in S1 File filtered for

genes_mutated>1). One case was of HER2-enriched subtype and had mutations in TP53 and
ERBB2. Three cases were of luminal B subtype and had mutations in PIK3CA and TP53 or
CDH1. Seven cases were of TN subtype and had mutations in TP53 combined with RB1 (3
cases), PTEN (2 cases), PIK3CA (1 case), or NOTCH1 (1 case). Ten cases were of luminal A

subtype and had mutations in TP53 and PIK3CA (4 cases), in TP53 and AKT1 (3 cases), or in
other gene combinations. Details of mutations are provided in Table A in S1 File.

In a subset of 12 samples (2 luminal A and 10 TN cases selected randomly) analyzed with

the 8-gene panel, we also performed whole-exome sequencing. With a median coverage of

200X in tumor DNA and 80X in blood DNA and more than 99.5% of mapped reads (see

Table B in S1 File), we identified 2634 somatic mutations in coding regions, including 2128

non-synonymous SNVs and indels (see Table C in S1 File). All mutations found by targeted

sequencing in the 8-gene panel were confirmed in the exome analysis. There was an average of

3.9 non-synonymous SNVs and indels per MB, with 2 samples carrying more than 6 mutations
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per MB (Fig 2A, top panel). The top mutated genes included four cancer genes (TP53, RB1,
PIK3CA, and AHNAK) and several large genes, such as mucin genes and the TTN gene (Fig

2A, middle panel). AHNAK has recently been described as a novel tumor suppressor gene in

BC, especially in the TN subtype, acting via different signaling pathways, such as AKT/MAPK

or TGF [28, 29]. The AHNAKmutations, like the RB1mutations, were all in TN cases. How-

ever, the impact of AHNAKmutations on protein function is unknown, because AHNAK is a

large gene and 75% of the mutations were predicted as benign by PolyPhen-2 [30]. In TN cases

(N = 10), there were 92 cancer genes mutated, dominated by TP53, which was mutated in all

samples, and with 14 other cancer genes mutated in more than one sample (Fig 2B). Pathway

enrichment analysis of potential driver mutations in these TN samples (Table D in S1 File)

showed enrichment for several growth factor signaling pathways and for pathways involved in

insulin receptor signaling, telomere maintenance, transmembrane transport of small mole-

cules, and G1 checkpoint or O-glycan biosynthesis (Fig 2C and Table E in S1 File).

Mutation patterns and signatures in premenopausal BC

To study the underlying mutational processes involved in the development of preBC tumors

in the studied populations, we analyzed somatic mutation patterns in the TP53 gene and at the
exome-wide level. Fig 3A shows the distribution of TP53mutation types in PRECAMA

tumors and in tumors from young women (< = 45 years) from other datasets. There was a

higher proportion of G:C>T:A mutations in PRECAMA compared with the IARC TP53 Data-

base (p-value = 0.004) or TCGA/METABRIC (p-value = 0.05) datasets. In fact, G:C>T:A was

the most frequent type, followed by indels, in PRECAMA, whereas G:C>A:T at CpG was the

most frequent type in the other datasets. The overall distribution of TP53mutation types was

not significantly associated with IHC subtypes in PRECAMA samples (p-value = 0.06),

although cases with indels were more frequently of the TN subtype (Fig 3B). TP53 indels were
truncating mutations (predicted to result in loss of p53 protein expression) in 6/10 cases, and

5/6 of these truncating mutations were indeed associated with null p53 IHC staining (see

Table A in S1 File). Therefore, although the presence of frequent TP53 truncating mutations

in the TN subtype was similar to previous reports [31], the high frequency of G:C>T:A muta-

tions in PRECAMA was unexpected. To validate this result, we used another dataset from a

whole-genome sequencing study [6], and PRECAMA samples did show a significantly higher

frequency of G:C>T:A mutations (S2B Fig) (p-value = 0.02). Mutational signatures at the

exome-wide level were analyzed using a dataset including the 12 PRECAMA samples and 453

BC samples from TCGA (including both preBC and postBC cases; see Materials and Methods).

We identified 6 signatures that matched with previously reported signatures (Fig 4A and

Table F in S1 File). The estimated contribution of each signature to the mutation load in PRE-

CAMA samples (Fig 4B) showed that 5/6 signatures had a contribution above 20% in at least

one sample. Sig.A had the highest median contribution in these samples (24.3%). Sig.A

matched with COSMIC signature-3, which has been established as a biomarker of homologous

recombination defects through genetic and epigenetic inactivation of the BRCA1/2 pathway, a
distinctive feature of basal-like tumors [6, 10, 32]. Sig.B, which contributed in 6/12 samples,

matched with COSMIC signature-26, proposed to be linked to defective DNA repair and pre-

viously reported in BC. Sig.C, which contributed in 6/12 samples, matched with several

Fig 1. Occurrences of mutations in 8 BC genes. (A) Gene mutation frequencies in PRECAMA samples are compared with those observed in a
dataset of premenopausal women selected from the TCGA andMETABRIC BC series [19, 20]. (B) IHC subtype distributions of samples
according to their mutation status. Luminal A: ER+/HER2-; luminal B: ER+/HER2+; HER2-enriched: ER-/HER2+; triple-negative: ER-/PR-/
HER2-.

https://doi.org/10.1371/journal.pone.0210372.g001
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Fig 2. Whole-exome sequencing results in 12 PRECAMA samples.Only coding non-silent somatic mutations are considered. (A) Mutation rates (top
panel), top mutated genes and their mutation types (middle panel), and IHC features (lower panel), sorted by top mutated genes. Luminal A: ER
+/HER2-; triple-negative: ER-/PR-/HER2-. (B) All cancer genes somatically mutated in the 10 TN samples are depicted; the size of gene names is
proportional to the number of samples mutated for each gene. (C) Pathways enriched (q-value<0.05) in the list of genes mutated in TN cases with allele
frequency>20% and predicted deleterious/probably deleterious by PolyPhen-2 (N = 333 genes). Number of overlapping genes in each pathway is
shown.

https://doi.org/10.1371/journal.pone.0210372.g002
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Fig 3. Distribution of TP53mutation types in preBC. (A) Distribution of mutation types in PRECAMA samples is compared with
those observed in women 45 years old or younger selected from the TCGA andMETABRIC BC series [19, 20] or the IARC TP53
Database [21]. (B) IHC subtype distributions of PRECAMA samples in each mutation type category. Luminal A: ER+/HER2-; luminal
B: ER+/HER2+; HER2-enriched: ER-/HER2+; triple-negative: ER-/PR-/HER2-.

https://doi.org/10.1371/journal.pone.0210372.g003
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Fig 4. Mutational signatures identified in TCGA and PRECAMA samples, and their relationship with tumor subtype and patient
menopausal status. (A) The 6 mutational signatures identified in 453 TCGA samples (including preBC and postBC) plus 12

Pilot genomic results from the PRECAMA study
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signatures characterized by C>T mutations outside CpG sites, including experimental signa-

tures induced by alkylating agents (MNNG and MNU) in rodent systems [26, 27], COSMIC

signature-11, observed in recurrent brain tumors of patients treated with MNNG [33], and

COSMIC signature-30, of unknown origin but previously observed in some BC. Sig.D, which

matched with COSMIC signature-18, was mainly observed in one sample, where it contributed

to 90% of the mutation load and where the overall mutation load was the highest. The origin

of this signature in BC remains to be established, but it has recently been associated with germ-

line mutation in the repair enzymeMUTYH in colorectal and adrenocortical carcinomas [34,

35]. Interestingly, the sample in which Sig.D dominated carried a truncating somatic mutation

inMUTYH (see Table A in S1 File). Finally, Sig.E, characterized by C>T mutations at a CpG

site and matching with COSMIC signature-1, known to be due to spontaneous deamination of

5-methylcytosine (also referred as the “age” signature), had a contribution of at least 20% in

only 3 samples.

As shown in Fig 4C, we explored possible systematic differences of signature contributions

between IHC subtypes, and by menopausal status or study source (TCGA vs PRECAMA). Sig.F,

which matched with COSMIC signature-2 and COSMIC signature-13, linked to mutagenesis by

APOBEC, was more prevalent in HER2-enriched subtype cases and underrepresented in TN

cases (p-value< 5 × 10−4, permutation test), as reported previously [36]. This is consistent with

the fact that we did not find a strong contribution of the APOBEC signature in the PRECAMA

samples (median contribution: 2.9%) because we analyzed only TN and luminal A cases. COS-

MIC signature-3 (Sig.A) was enriched in TN cases (p-value< 5 × 10−4) and preBC (p-value =
0.03). This signature was the predominant one in PRECAMA TN cases (median contribution:

26.8%). The contribution of the “age” signature (Sig.E) was lower in TN cases than in all other

subtypes (p-value< 5 × 10−4) and also lower in preBC compared with postBC (p-value = 0.006).

It was the lowest in PRECAMA samples (13.4% vs 30.5%, p-value = 1 × 10−3). The contribution

of Sig.D was slightly higher in TN cases compared with all other subtypes (p-value = 0.01) and

was the main contributor to the mutation load in one PRECAMA sample (Fig 4B). Because this

sample carried a somatic mutation inMUTYH, and a recent study found germline mutations in

MUTYH in young women with BC [37], it will be interesting to further study the role ofMUTYH
alteration in TN and preBC. In stratified analyses by IHC subtypes, the contributions of signatures

in PRECAMA TN cases were similar to those observed in TCGA TN samples, except for Sig.C

(contribution was higher in PRECAMA than in TCGA TN samples, p-value = 0.006; median con-

tributions: 18.6% vs 10.4%). Because Sig.C matched with several signatures, including signatures

linked to exposure to alkylating agents not expected in these treatment-naive samples, its origin

remains to be established. There was no effect of menopausal status on the contributions of signa-

tures when taking into account IHC subtype using linear models (all p-values> 0.16; permutation

tests of linear regression model).

Discussion
The results obtained in this pilot phase of the PRECAMA study demonstrate the feasibility of

advanced genomic analyses of the tumor and blood samples collected at multiple sites in LA.

PRECAMA samples. The 6 types of base substitutions are color-coded and further stratified by their adjacent 50 and 30 sequence
context. Sig.A matches with COSMIC signature-3; Sig.B matches with COSMIC signature-26; Sig.C matches with COSMIC signatures-
11/19/23/30 and experimental signatures of MNU andMNNG; Sig.D matches with COSMIC signature-18; Sig.E matches with
COSMIC signature-1; and Sig.F matches with COSMIC signatures-2/13 (see Table A in S1 File). (B) Percentage contributions of the 6
mutational signatures to the SNVs found in PRECAMA samples. (C) Percentage contributions of the 6 mutational signatures in the
PRECAMA and TCGA samples stratified by tumor IHC subtypes (left graphs) and by menopausal status (right graphs). PRECAMA
samples are indicated with arrows.

https://doi.org/10.1371/journal.pone.0210372.g004
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They provide a preview of the molecular features of preBC in that population, with interesting

mutational patterns that deserve further study.

Indeed, more than 92% of samples processed for IHC analyses were successfully scored for

7 markers (only 20/253 were excluded due to absence of invasive tumor or insufficient tissue

for testing), and 80% of samples processed for DNA extraction yielded DNA quantities and

quality compatible with genomic analyses (136/172 samples yielded more than 200 ng of

DNA). With a target of 1200 cases recruited for the full study (with Guatemala and Brazil join-

ing the study), this will be the largest series of preBC in Latin American women with genomic

characterization of the tumors.

The IHC analyses showed a majority of ER-positive cases and a proportion of TN subtype

similar to previous reports in Hispanic women [38]. The overall prevalence of ER-negative

tumors in PRECAMA was substantiated by sequencing results on the 8-gene panel analyzed

here. Indeed, TP53mutations, which are strongly associated with ER-negative status [7, 39],

were found in 32.5% of the cases, consistent with an overall 28% of ER-negative cases. Also,

the frequency of AKT1mutations, typical of ER-positive cases [20, 40], was higher in PRE-

CAMA than in the comparative dataset of young women. Continued enrollment will enable us

to determine more precise estimates of subtype distribution in PRECAMA and to explore

potential differences in tumor subtype distributions between countries.

Although the overall tumor characteristics were more similar to those described in postBC

than in preBC from other series, IHC staining with Ki67 showed high levels of staining in

these preBC samples, even in luminal A cases (72% positive cases), which is consistent with

previous reports on preBC [41, 42]. Liao et al. (2015) [43] recently compared the molecular

features of preBC versus postBC from the TCGA and METABRIC datasets using multi-omic

data integration. They reported no difference in gene expression between preBC and postBC

in ER-negative cases but significant differences in ER-positive cases, with activation of integrin

signaling and EGFR pathways and TGF as the top upstream regulator in preBC. It would

therefore be important in future studies to assess whether activation of these pathways drives

the level of proliferation reflected by high Ki67 positivity in ER-positive preBC, because they

may be potential clinical targets.

The characteristics of the mutations found by target sequencing of the 8-gene panel were

similar to those observed in other series of BC, with classical hotpots found in AKT1 and
PIK3CA, a majority of missense mutations found in TP53, a higher proportion of truncating

TP53mutations in TN cases compared with other subtypes, and an expected distribution of

mutated genes within IHC subtypes. However, an interesting difference in the distribution of

TP53 single base substitutions was observed. The most frequent TP53mutation type was G:

C>T:A, which represented 27% of all TP53mutations. This proportion of G:C>T:A mutations

was 1.5–3.3 times those observed in the comparative datasets used here, matching figures

reported in lung cancers linked to exposure to polycyclic aromatic hydrocarbons [44, 45]. This

pattern is therefore unexpected in BC. These G:C>T:A mutations do not exhibit a strand bias,

do not cluster at any hotspot, and seemed similarly distributed within IHC subtypes or country

of origin, although the numbers are still too low to enable any conclusion to be drawn. Because

these results may suggest a specific, as-yet unknown, mutational process at the origin of TP53
mutations, it will be important to confirm them in the full PRECAMA study.

Exome-wide mutation profiling of a subset of basal-like TN tumors confirmed that TP53
and RB1 were the only cancer genes recurrently affected by deleterious mutations (>2 sam-

ples). These results are concordant with previous reports on TNBC of basal-like type that

showed a predominance of TP53mutations and of TP53 and RB1 pathway alterations [40, 46].
These reports also suggest activation of the PIK3CA/AKT pathway, based on gene copy num-

ber analyses (PIK3CA gene amplification, PTEN gene deletion) and protein phosphorylation
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assays [40]. Here, we found one activating PIK3CAmutation in 10 TNBC samples, which is in

the range of previous reports (9%). However, because we limited our analyses to SNVs and

small indels, we could not further assess the functionality of the PIK3CA pathway. Pathway

analysis of potentially functional mutations across all genes showed enrichment of signal trans-

duction pathways including EGFR, PDGF, and IGF1R, and mutational signatures showed a

large contribution of DNA repair defects to the mutation load. These overall results on TN

cases are consistent with our previous analyses of another series of TN cases fromMexico, in

which transcriptomics analyses showed an overexpression of growth-promoting signals

(including EGFR, PDGFR, and PIK3CA), a repression of cell cycle control pathways (TP53 and
RB1), and a deregulation of DNA repair pathways [47].

Our exploratory analysis of exome-wide mutational signatures in relation to IHC subtype

and menopausal status in the TCGA and PRECAMA samples showed that the contributions

of mutational signatures are determined by the tumor subtype but not the menopausal status,

and that PRECAMA TN cases showed contributions similar to TCGA TN samples for 5/6 sig-

natures identified in the analyzed set.

Some limitations of the results presented should be noted. First, the prevalences of IHC

subtypes are based on still-limited numbers and may therefore not be representative of the dis-

tribution at the population level. Second, confirmation of HER2 status by FISH could not be

done in this pilot phase, and therefore the prevalence of the luminal B or HER2-enriched sub-

types may be under- or over-estimated. Third, the exome analyses have been performed on a

limited number of cases to establish the feasibility of these assays. Results on this small set did

show feasibility and enabled us to identify both similarities and differences in genomic alter-

ations compared with other series of BC. Analysis of the full series will determine whether any

specific genomic feature may characterize preBC in women in LA.

Conclusions
These pilot results on PRECAMA tumors give a preview of the molecular features of preBC in

LA. Although the overall mutation burden was as expected from data in other populations,

mutational patterns observed in TP53 suggested possible differences in mutagenic processes

giving rise to these tumors compared with other populations. Further -omics analyses of a

larger number of PRECAMA cases in the near future will enable the investigation of relation-

ships between these molecular features and etiological factors.

Supporting information
S1 File. Tables A-F Table A: Demographics and molecular characteristics of cases analyzed

by next-generation sequencing; Table B: Whole-exome sequencing data metrics; Table C:

Mutations in coding regions from whole-exome sequencing and mutation calling with Strelka;

Table D: List of mutated genes in TN cases with mutations present at an allele frequency

>20% and predicted to affect protein function (splice, truncating, and non-synonymous pre-

dicted deleterious/probably deleterious by PolyPhen-2) (N = 333); Table E: Pathway analysis

of 333 altered genes in TN samples; Table F: Cosine similarity values for the comparisons

between each of the 6 extracted signatures and 37 published signatures.

(XLSX)

S1 Fig. Distribution of IHC subtypes in PRECAMA samples and in preBC extracted from

METABRIC and TCGA studies. Comparison of the distribution of IHC subtypes observed in

PRECAMA and in preBC from a dataset extracted fromMETABRIC and TCGA (see Materials

and Methods). Luminal A: ER+/HER2-; luminal B: ER+/HER2+; HER2-enriched: ER-/HER2
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+; triple-negative: ER-/PR-/HER2-.

(PDF)

S2 Fig. Mutation characteristics and distribution of IHC subtypes in PRECAMA samples

compared with an independent dataset of preBC.Data on 123 preBC cases with receptor sta-

tus information reported in Nik-Zainal et al. (2016) were retrieved from supplementary mate-

rials (clinical information) or from COSMIC (mutation data) [6]. (A) Occurrences of

mutations in the 8 BC genes analyzed in PRECAMA. (B) Distribution of TP53mutation types

in preBC cases. (C). Comparison of the distribution of IHC subtypes observed in preBC in the

two datasets. Luminal A: ER+/HER2-; luminal B: ER+/HER2+; HER2-enriched: ER-/HER2+;

triple-negative: ER-/PR-/HER2-.

(PDF)
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Abstract30

Beta human papillomaviruses (HPVs) appear to cooperate with UV in the development of 31
cutaneous squamous cell carcinoma (cSCC). Accordingly, beta HPV E6 and E7 oncoproteins 32
display transforming activities in vitro and in vivo models. Here, we show that beta HPV38 alters33
the tumour suppressor functions of wild-type (WT) p53, promoting cellular proliferation. WT p5334
is accumulated in human keratinocytes (HK) expressing HPV38 E6 and E7. A proportion of this 35
WT p53 form is phosphorylated at S392 by double-stranded (ds) RNA-dependent protein kinase36
(PKR) and form a complex with DNMT1 acting as a transcriptional repressor, which is recruited to 37
the Integrin alpha 1 promoter (ITGA-1). Ectopic expression of ITGA-1 in HPV38 E6/E7 HK38
promotes EGFR degradation, inhibition of cellular proliferation and cellular death. 39
ITGA-1 expression was also inhibited in the skin of HPV38 transgenic mice. These animals have 40
high susceptibility to UV-induced skin carcinogenesis, and after long-term UV irradiation, they 41
accumulate many DNA exome mutations, including in p53 and ITGA-1 genes.42
In summary, our study shows that beta HPV38 can convert p53 functions from a tumour suppressor 43
to oncoprotein via the formation of a transcriptionally repressive complex and that inactivation of 44
ITGA-1 plays a key role in skin carcinogenesis.45

46

47
INTRODUCTION48

HPV phylogenetic tree classifies the different genotypes into 5 genera. Mucosal HPV types 49
belonging to the genus alpha are referred to as high-risk (HR) HPV types and are the etiological 50
agents of several human cancers. In addition, beta HPV types, together with the ultra-violet (UV) 51
radiations, appear to be involved in cSCC development 1-4. Approximately 50 beta HPV types have 52
been fully characterized so far. They are subdivided in five species (Beta 1-5). Beta-1 and Beta-253
species contributes to the major bulk and are abundantly detected in the skin 5. Epidemiological 54
studies revealed that individuals with history of cSCC are more frequently positive for viral 55
infection markers, such as beta HPV DNA in the skin and/or major capsid protein L1 antibodies56
than the general population 6-11.57
Studies in in vitro experimental models have demonstrated the transforming properties of the early 58
gene products, E6 and E7, from some beta HPV types, e.g. HPV8 and HPV38 12-19. Moreover, we59
previously reported that, beta-2 HPV38 E6 and E7 are able to immortalize primary human HK 2060
similarly to the mucosal HR HPV types, via the inactivation of the tumour suppressor gene 61
products, p53 and retinoblastoma 20,21. However, in comparison to the mucosal HR HPV types that 62
promote p53 degradation via the proteasome pathway, HPV38 leads to accumulation of p53, 63
possibly with an altered transcriptional activity 21,22.64

65
RESULTS66
38HK proliferation is dependent on WT p5367
We have previously shown that HPV38 E6 and E7 induce accumulation of p53 in immortalized 68
human keratinocytes (38HK) (Caldeira et al 2003, J. Virol; Gabet et al. 2008 FASEB J). To clarify 69
the role of this p53 form in 38HK, we have deleted p53 gene using CRISP/CAS9 technology.70
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Figures 1A and B shows that after 72 hours post-transfection the decrease of p53 levels correlate 71
with a significant decrease of cellular proliferation. Similar results were obtained by inhibiting p53 72
functions by Pfithrin (Fig. S1A). Several isoforms of p53 have been identified with truncations at 73
the N- or C-terminus and altered transcriptional functions and oncogenic properties37. Therefore, 74
we next evaluate whether the decrease of cellular proliferation observed in 38HK after deletion of 75
the endogenous p53 gene is linked to the loss of the full-length (FL) p53 form. To evaluate this 76
possibility, we generate a retroviral vector that expresses a N-terminus HA-tagged p53 gene ( -77
CRISP), in which the third base of several codons was mutated (Fig. 1C). This mutated p53 gene 78
encode a WT protein but is not targeted by the guide RNA that was designed to delete the 79
endogenous p53 gene. In addition, two loxP elements were located immediately upstream and 80
downstream of the -CRISP p53 gene in order to modulate its expression via the Cre recombinase. 81
Cre recombinase gene fused to a triple-mutant form of the human estrogen receptor that gains 82
access to the nuclear compartment only after exposure to 4-hydroxytamoxifen (TMX) but not to 83
the natural ligand 17 -estradiol was cloned in a second retroviral vector (Fig. 1C). 38HK were 84
sequentially transduced with two recombinant retroviruses and subsequently the endogenous p53 85
gene was deleted by CRISP/CAS9. We observed that the modified 38HK line expressing ectopic 86
levels of -CRISP p53 gene had a higher proliferation rate than 38HK (Fig.1D). Importantly, after87
TMX addition and loss of HA-p53, the proliferation of these cells was rapidly reduced, while no a 88
significant effect was observed when TMX was added to 38HK (Fig. 1D). To corroborate these 89
findings, we have transduced 38HK with recombinant retroviruses that allow the synthesis of FL 90
p53fused to HA-Tag at the N- or C-terminus.  Both HA-p53 fusion proteins were detected by 91
immunoblotting (Fig. 1F) and able to stimulate the proliferation of 38HK (Fig. 1G and S1B ).92
Together, these findings show that HPV38 E6 and E7 induce a change in the biological properties 93
of full-length WT p53 from tumour suppressor to pro-proliferation factor.94

95
p53 and DNMT1 form a complex that is recruited to ITGA-1 promoter in 38HK96
To valid the ChIP-seq data, we performed an analysis of ITGA-1 promoter to identify putative 97
responsive elements (REs) using TFBind and JASPAR softwares and . The analyses revealed the98
presence of several p53 REs in a region upstream of the transcriptional start site, spanning from the 99
-936 to -835 nucleotides (Fig. 3A). To evaluate whether these putative p53 REs have the ability to 100
interact with p53, we performed an electromobility shift assay (EMSA) using oligos encompassing 101
the WT or mutated REs. RE2 showed a stronger signal for p53 binding that was highly reduced 102
upon mutation of the p53-binding motif (Fig. 3B, lines 2 and 5) or by competition with WT 103
unlabeled probe, but less efficiently with mutated unlabeled probe (Fig. 3B, lines 7-9). These data 104
were corroborated by chromatin immunoprecipitation (ChIP) experiments that showed a significant 105
enrichment on RE2 compared to the negative control (Fig. 3C). Oligo pull-down experiments using 106
biotinylated DNA probes, which contain a region of the ITGA-1 promoter encompassing the RE2,107
revealed that p53 was efficiently precipitated by the RE2 together with the epigenetic enzyme 108
DNMT1, known to be associated with gene expression silencing (Fig. 3D). DNMT1 recruitment to 109
ITGA-1 promoter was also confirmed by ChIP experiments (Fig. 3E).110
Inhibition of p53 functions, by using the chemical inhibitor, pifithrin, severely impaired p53 and 111
DNMT1 interaction with ITGA-1 promoter (Fig. S2A), indicating that two cellular proteins are 112
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part of the same complex. Indeed, ChIP-reChIP experiments confirmed their interaction and their 113
recruitment to p53RE2 of ITGA-1 promoter (Fig. 3F). Similarly to what has been observed with 114
p53 inhibition by pifithrin, silencing the expression of DNMT1 by small interfering RNA (siRNA) 115
significantly affected the recruitment of p53 (Fig. S2B). Together, these data show that p53 and 116
DNMT1 form a complex and their interaction appears to be important for the binding to the p53 117
RE2 of the ITGA-1 promoter.118

119
ITGA-1 expression is inhibited in 38HK in comparison to primary HK120
Next we compared the mRNA levels of ITGA-1 in primary HK and 38HK.  We observed that the 121
expression of ITGA-1 was significantly down-regulated by the viral oncoproteins (Fig. 4A). 122
Therefore, we focused our study on ITGA-1 and further validated its down-regulation in 38HK by 123
using a TaqMan PCR. Also with this assay, we observed a statistically significant decrease in 124
ITGA-1 mRNA levels in comparison with the HK (Fig. S3A). To evaluate whether the decrease of 125
ITGA-1 mRNA levels is a direct consequence of the viral gene expression, and it is not due to the 126
immortalization of the 38HK, we used, as an experimental model, human primary keratinocytes 127
expressing the human telomerase reverse transcriptase gene (hTERT), which extends the lifespan 128
of primary cells. ITGA-1 mRNA levels were also reduced in hTERT/HPKs expressing HPV38 E6 129
and E7 genes in comparison with the mock cells (Fig. S3B). The inhibition of ITGA-1 gene 130
expression appears to be mainly associated with E6 protein (Fig. S3B). In addition, ectopic 131
expression of HA-tagged full-length p53 at the N- or C-terminus in 38HK further repressed ITGA-132
1 expression (Fig. 4D and E). Next we evaluate whether disruption of p53/DNMT1 complex 133
could lead to an activation of ITGA-1 expression. We observed that the knock-down of p53 134
by CRISPR/Cas9 in in 38HK resulted in an increase of ITGA-1 mRNA and protein levels 135
(Fig. 4B and C).136
We have shown above that silencing of DNMT1 expression resulted in a loss of recruitment of the 137
p53/DNMT1 complex on the ITGA-1 promoter Fig. S2B). Accordingly, ITGA-1 mRNA levels 138
increased upon inhibition of DNMT1 expression (Fig. 4F). Similarly, treatment with 5-Aza- -139
deoxycytidine (Aza), -deoxycytidine analogue, a global demethylating agent, resulted in 140
activation of ITGA-1 expression (Figure 4G). This event also coincided with the acetylation in 141
histone 3 at K9 (H3K9), which is associated with transcriptional activation (Fig. 4H).142
Finally, since the 38HK contains also high levels of Np73 that inhibits the expression of p53 143
regulated genes 22, we evaluated the impact of its depletion on ITGA-1 expression. No significant 144
changes in ITGA-1 mRNA levels were detected in 38HK transfected with Np73 antisense or 145
sense oligonucleotides (Fig. S3D).These findings show that p53/DNMT1 inhibits the ITGA-1146
expression. 147

148
Full-length p53 phosphorylated at S392 plays a key role in the inhibition of ITGA-1149
expression 150
We have previously shown that the accumulated p53 in 38HK is phosphorylated only at two 151
serines (15 and 392) 22. We next examined by DNA pull-down assay the binding of p53 Ser15 152
and/or Ser392 phosphorylated forms to ITGA-1 promoter. Fig. 5A shows that the major p53 form, 153
able to bind the p53 RE2 of ITGA-1 promoter, is phosphorylated at Ser392. It has been previously 154
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shown that the double-stranded (ds) RNA-dependent protein kinase (PKR) directly interacts with155
p53 and phosphorylates Ser392 33,34. Immunoblotting showed that HPV38 E6 and E7 activate PKR 156
(Fig. 5B). In addition, blocking the PKR activity by the use of a chemical inhibitor, 2-aminopurine 157
(2-AP) resulted always in a small, but significant reduction, of the levels of Ser392 p53 form, 158
indicating that PKR is not the only cellular kinase involved in p53 phosphorylation in 38HK (Fig.159
5C). Despite the small reduction in Ser392 p53 protein levels upon treatment with 2-AP, a 160
considerable increase of ITGA-1 mRNA levels and proteins (Fig. 5D and E) was seen. In addition, 161
ChIP assay in 38HK cells treated or not-treated with 2-AP demonstrated that the recruitment of 162
both p53 and DNMT1 cellular proteins was affected by chemical inhibition of PKR 163
phosphorylation (Fig. 5F and G).164
To corroborate these data that indicate a cross-talk between p53 and PKR in 38HK, we performed 165
reciprocal immunoprecipitation using PKR or p53 antibodies to assess the possible interaction 166
between the two cellular proteins. Fig. 6A shows that PKR/p53 complex was immunoprecipitated 167
by both antibodies. Importantly, the Ser392 p53 form was found associated with PKR (Fig. 6B). 168
2AP treatment resulted in a strong decrease on Ser392 phosphorylation of the PKR-associated p53 169
form (Fig. 6B). No significant changes were observed in the total form of p53 co-precipitated with 170
PKR, suggesting that the PKR-mediated p53 phosphorylation does not affect the interaction 171
between the two proteins (Fig. 6B). ChIP/re-ChIP assay using an antibody specific for the T446-172
phosphorylated PKR form, showed that the p53/p446PKR complex is able to bind the p53 RE2 of 173
the ITGA-1 promoter (Fig. 6C). To further characterize the p53/PKR complex, we first fractionated 174
the nuclear extracts of 38HK exposed or not exposed to 2AP by sucrose density gradient 175
ultracentrifugation. Subsequently, p53 complex was immunoprecipitated in each sucrose gradient 176
fraction (Fig. 6D). A trimeric complex containing p53/PKR/DNMT1 was found in some fractions 177
of the sucrose gradient (Fig. 6D). 2AP treatment, in agreement with the data shown in Fig. 6B, did 178
not influence the p53/PKR interaction, while DNMT1 is lost from the complex. 179
Together, these findings provide evidence that the full-length p53 form phosphorylated at S392 by 180
PKR interacts with DNMT1 and inhibits ITGA-1 expression.181

182
Ectopic overexpression of ITGA-1 induces cell death and inhibits cell proliferation183

184
Interestingly, it was previously shown that ITGA-1 is implicated in a negative regulation of the 185
epidermal growth factor receptor (EGFR) signalling and cellular proliferation 31. Moreover, ITGA-186
1 down-regulation has been associated to poor patient outcome and drug resistance in ovarian 187
cancer 32. Next, to understand the biological significance of ITGA-1 down-regulation in 38HK, we 188
investigated the impact of ITGA-1 overexpression in 38 HK proliferation using a colony formation 189
assay. Cells were transfected with a construct expressing ITGA-1 and the zeocin-resistant gene and 190
cultured under antibiotic selection. We observed a significant decrease in colony formation in 191
38HK expressing ectopic levels of ITGA-1 in comparison to the mock cells (Fig. 7A). In addition, 192
analysis of the cell cycle profile by flow cytometry showed that ITGA-1 overexpression 193
significantly increased the sub-G0 cell population, which is a sign of cellular death (Fig. 7B). 194
It has been previously reported that ITGA-1 negatively regulates EGFR signalling by promoting 195
EGFR de-phosphorylation, with consequent inhibition of cellular proliferation 31. Therefore, we 196
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evaluated the status of EGFR signalling in 38HK after ITGA-1 ectopic expression by determining 197
the levels of cyclin D1, which is positively regulated by activation of EGFR signalling 35,36. In 198
accordance with the inhibition of cellular proliferation, cyclin D1 levels decreased upon ectopic 199
expression of ITGA-1 (Fig. 7C). Surprisingly, we also observed a reduction in the EGFR protein 200
levels upon ITGA-1 over-expression. However, no significant changes were observed in EGFR 201
mRNA levels upon ITGA-1-overexpression in HK38 and mock cells, suggesting that EGFR 202
destabilization in presence of ITGA-1 is mediated post-translationally (Fig. 7D).203

These findings indicate that HPV38 E6 and E7 inhibit the expression of ITGA-1 to promote 204
cellular proliferation, which in part appears to be mediated by EGFR signalling.205

206

HPV38 E6 and E7 expression in the skin of transgenic mice inhibits the ITGA-1 transcription207

To corroborate our findings in in vitro experimental models, we interrogated whether HPV38 E6 208
and E7 has the ability to alter ITGA-1 expression in the skin keratinocytes in mice. We previously 209
developed a transgenic (Tg) mouse model that expresses HPV38 E6 and E7 in the keratinocytes of 210
the skin basal layer under the control of keratin 14 promoter (K14) 38. After isolation of skin 211
keratinocytes from WT and HPV38 E6/E7 transgenic mice, the ITGA-1 mRNA level was 212
determined by quantitative RT-PCR. Fig. 8A showed that the viral proteins inhibit ITGA-1213
expression in skin keratinocytes, confirming the in vitro findings. 214

We have recently shown that the HPV38 E6/E7 transgenic mice are highly susceptible to UV-215
induced DNA mutations and skin cancer development in comparison to WT animals 39. By whole 216
exome sequencing, we observed that these animals, upon long-term UV exposure, accumulate 217
mutations in crucial cancer-linked genes, including p53 39. Therefore, we next determined whether 218
p53 mutations in the core DNA binding domain detected in 3 different cSCC may result in loss of 219
the inhibition of ITGA-1 expression. Quantitative RT-PCR experiments showed that p53 mutations 220
correlated with an increase of ITGA-1 expression in at least two malignant lesions (Fig. 8A). 221
However, we determined that in 2 cSCC, ITGA-1 gene contains deleterious non-synonymous 222
mutations (Fig. 8B). Although the third cSCC expresses high levels of WT ITGA-1, it contains a 223
non-synonymous, but not deleterious, mutation in a region of EGFR gene encoding the tyrosine 224
kinase domain (Fig.8A and 8B). Mutations in this EGFR domain have been identified in human 225
cancer and result in activation of EGFR signaling 40-42.226

In summary, these results confirm the ability of HPV38 to inhibit ITGA-1 expression and highlight 227
the importance of ITGA-1 inactivation in UV-induced cSCC development.228

229
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DISCUSSIONS230

Oncogenic virus-mediated cellular transformation is intimately linked to the inactivation of p53. 231
Indeed, this tumour suppressor was discovered due to its interaction with simian virus 40 (SV40) 232
large T antigen. In addition, it is now well demonstrated that the E6 oncoprotein from the mucosal 233
HR HPV types interacts with p53, promoting its degradation via the proteasomal pathways 43. In 234
non-virus related cancers, p53 is inactivated by DNA mutation, frequently occurring in the DNA 235
binding motif. As a consequence, mutated p53 loses its normal transcriptional functions as tumour 236
suppressor 44. Importantly, a vast number of studies showed that p53 mutations, in addition to the 237
disruption of its tumour suppressor function, can also confer oncogenic gain-of-function (GOF) 238
activities 45,46. Several findings support the model that GOF p53 mutations induce conformational 239
changes allowing mutated p53 to interact with other cellular proteins, including products of tumour240
suppressor genes or oncogenes as well as specific promoter responsive elements 44. Cellular 241
response to a broad spectrum of stresses leads to post-translational modification of WT p53 that 242
can be phosphorylated, acetylated, and ubiquitinated at specific serine, threonine, and lysine 243
residues respectively 47,48. Similarly, also the mutated p53 forms are post-translationally modified244
at specific residues, with consequent acquisition of more aggressive oncogenic functions. For 245
instance, it has been shown that S392 is one of the most frequently phosphorylated residues in the 246
p53 mutated forms 49,50.247
Although p53 gene is highly mutated, approximately 50% of human cancers retain the WT p53248
gene and its tumour suppressor functions can be altered by additional mechanisms, e.g. by 249
overexpression of truncated N-terminus isoforms of p53 and p73 that act as dominant negative 250
mutants of p53 51. Other plausible models of alteration of WT p53 tumour suppression functions 251
can rely on specific patterns of post-translational modifications and interactions with cellular 252
proteins. In this study, we describe that expression of HPV38 E6 and E7 in HK promotes the 253
formation of a transcriptionally repressive p53/DNMT1 complex on ITGA-1 promoter. Inhibition 254
of ITGA-1 results in activation of EGFR signaling and cellular proliferation. Paradoxically, ectopic 255
levels of WT p53 in 38HK, further repressed the ITGA-1 expression and increased cellular 256
proliferation. Thus, in HPV38-transformed HK, WT p53 acquires oncogenic properties. This 257
conclusion is further corroborated, by the fact that HK38 are addicted to WT p53 for their cellular 258
proliferation. Indeed, deletion of p53 gene by CRISPR/Cas strongly inhibited cellular growth. 259
Interestingly, a previous study has described the formation of a p53/DNMT1 complex with 260
transcriptional repressive function in non-virus related experimental model 52. Therefore, it is 261
plausible to hypothesize that HPV38 oncoproteins exploit cellular mechanisms that can be 262
generated in other contexts. Our data shows that p53 phosphorylation at S392 by PKR is essential 263
for the interaction of p53 with DNMT1. Although PKR has been initially considered to be a 264
tumour suppressor, it is now well demonstrated that it also exert oncogenic functions, being 265
overexpressed and activated in many types of cancers, including several hemapoietic malignancies266
53. Based on these findings, we could hypothesize that HPV38 E6 and E7 generate a specific 267
scenario in the infected cells, in which PKR acts as an oncoprotein. 268
Our experiments in in vitro and in vivo experimental models also support the key role of ITGA-1269
inactivation in cellular transformation. In agreement with these findings, many independent studies 270
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have shown that alteration of integrin network is a frequent event in the development of several 271
types of cancers, including cSCC 23.272
Our previous studies in Tg mouse models demonstrated that expression of E6 and E7 oncoproteins 273
in the skin of the animals strongly increases the susceptibility to UV-induced skin carcinogenesis 274
38. The viral oncoproteins appear to be necessary only at an early stage of carcinogenesis and, after 275
accumulation of a large number of UV-induced mutations, they are dispensable for the 276
maintenance of the malignant phenotype 39. Findings presented in this article further support the 277
concept that beta HPV types act with a “hit-and-run” mechanism in promoting cSCC development. 278
Our data show that HPV38 E6 and E7 inhibit the ITGA-1 expression in mouse skin, but upon UV 279
irradiation and accumulation of DNA mutations, ITGA-1 mRNA levels are elevated and its gene is 280
inactivated by deleterious mutations.281
In conclusion, here we described a novel virus-mediated mechanism that converts WT p53 in an 282
oncoprotein. This WT p53 form acquires the properties to interact with PKR and DNMT1 and to 283
repress cellular gene expression. It will be important to evaluate whether similar mechanisms occur 284
in cancers cells of different origin, offering the possibility to develop novel anti-cancer therapeutic 285
strategies.286

287
METHODS288

Cell cultures and treatments289
The experiments were carried out in HK isolated from neonatal foreskin and in human 290
keratinocyte cell line expressing the human telomerase reverse transcriptase gene (hTERT), in 291
order to prolong the life span of the cells. HK stably expressing HPV38 E6 or E7 as well as 292
p53HA-Tag 38HK were generated by retroviral transduction 20. 38HK, p53HA-Tag 38HK and293
hTERT cell line were cultured together with NIH 3T3 feeder layers in FAD medium containing: 3 294

295
296

pen/strep preparation. Feeder layers were prepared by treating NIH 3T3 with mitomycin for 2h. 297
NIH 3T3 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 298
10% fetal calf serum and 1% pen/strep preparation. 299
Transient transfection experiments were performed using Lipofectamine 2000 transfection reagent 300
(Invitrogen) or TransIT®-Keratinocytes transfection reagents (Mirus) according to manufacture 301
protocols. 302
Cells were incubated for 6 hours in media containing Cyclic Pifithrin-303

-aza-304
2’-deoxycytidine (Sigma).305
2-Aminopurin (Sigma) was prepared in phosphate-buffered saline:glacial acetic acid (200:1). Cells 306
were treated for 4 hours at 10mM final concentration; phosphate-buffered saline:glacial acetic acid 307
(200:1) was used as a mock control.308
For fluorescence-activated cell sorter (FACS) staining, cells were collected, washed twice in PBS, 309
and fixed in 70% of ethanol for 30 minutes in ice. Samples were stained with propidium iodide (PI) 310
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re analyzed by FACS CANTO (Becton 311
Dickinson).312
For the colony formation assay, cells were transfected using TransIT®-Keratinocyte Transfection 313
Reagent (Mirus) according to the manufacturer protocols. Cells were transfected with pcDNA 314
3.1/Zeo (mock) or pcDNA 3.1/Zeo expressing ITGA-1 (2.5 μg) (a gift from A. Pozzi, Vanderbilt 315
University). After 24 hours the cells were splitted for selection in zeocin (Invivogen). They were 316
diluted 10, 100, 1000 times and were allowed to grow for 4 days. After this period the colonies 317
were fixed and stained as described in 54.318
For determination of cell growth curves, 1.5-2.5x105 cells were seeded into 6 well plates. After 24, 319
48 and 72 hours cells were collected and stained with trypan blue (1:1) (Bio rad). Samples were 320
counted in duplicate with TC20 automated cell counter (Bio rad). 321
Microscope images were taken under light microscope 48 hours post-transfection. 322
Cell viability was determined by MTS assay. Briefly, 20 L of CellTiter 96® AQueous One 323
Solution Cell Proliferation Assay (Promega) was added to 1.5x104 cells in 96 well plates and324
incubated for 2 hours at 37°C for 24, 48 and 72 hours. Absorbance at 490nm was read by 325
Multiskan GO (Thermo Scientific) in duplicate. Blank absorbance was subtracted.326

Transgenic mice327
DNA and mRNA were extracted from normal and cancer mouse tissues as previously described 38.328
A detailed description of the HPV38 E6/E7 transgenic mouse line can be found here 329
https://mito.dkfz.de/mito/Animal%20line/10954. A detailed description of the UV-induced skin 330
carcinogenesis protocol can be found here https://mito.dkfz.de/mito/Tumor%20model/10474.331

Ethics statement332
The animal facility of the German Cancer Research Center has been officially approved by 333
responsible authority (Regional Council of Karlsruhe, Schlossplatz 4–6, 76131 Karlsruhe, 334
Germany), official approval file number 35–9185.64. Housing conditions are thus in accordance 335
with the German Animal Welfare Act (TierSchG) and EU Directive 425 2010/63/EU. Regular 336
inspections of the facility are conducted by the Veterinary Authority of Heidelberg (Bergheimer 337
Str. 69, 69115 Heidelberg, Germany). All experiments were in accordance with the institutional 338
guidelines (designated veterinarian according to article 25 of Directive 2010/63/EU and Animal-339
Welfare Body according to article 27 of Directive 2010/63/EU) and were officially approved by 340
Regional Council of Karlsruhe (File No 35–9185.81/G-64/13 and 35–9185.81/G-200/15).341

Gene silencing342
Gene silencing of DNMT1 was achieved using synthetic siRNA (Table 1). siRNA or scrambled 343
RNA at a concentration of 250 nM was transfected using TransIT®-Keratinocytes transfection 344
reagents (Mirus) according to the standard protocol. Cells were collected after 72h. 345
Plasmids for CRISPR/Cas9 were obtained from the Addgene plasmid repository. All single-guide 346
RNAs were designed by Thermo Fisher Scientific. The target sequence information is shown in 347
Table S1. The CRISPR/Cas9 vectors were generated according to manufacturer protocols and then 348
transiently transfected into keratinocytes. Purification of the cells carrying the CRISPR/Cas9 349
vectors was performed 48 hours after transfection according to the manufacturer’s protocol 350
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(GeneArt CRISPR Nuclease Vector Kit; Life Technologies).351

Reverse transcription and quantitative PCR 352
For the experiments in vitro models, total RNA was extracted using the NucleoSpin RNA II Kit353
(MACHEREY NAGEL). The RNA obtained was reverse-transcribed to cDNA using the 354
RevertAid H minus First strand cDNA Kit (Life Technologies) according to the manufacturer’s 355
protocols. Real-time quantitative PCR (qPCR) was performed using the MESA GREEN qPCR 356
MasterMix Plus for SYBR Assay (Eurogentec) with the primers listed on Table 2.357

358
For the experiments in mice, total RNA was isolated from dorsal skin of WT (n = 4), K14 HPV38 359
E6/E7 Tg animals (n = 3), histologically confirmed pre-malignant (AK) and SCC from three 360
independent mice. of total RNA using M-MLV reverse 361
transcriptase (Invitrogen, Darmstadt, Germany), and a mix of random hexamers were used as 362
primers. Quantitative reverse transcription PCR (RT-qPCR) was performed using LightCycler 480 363
SYBR Green I Master (Roche) with specific mouse primers (Table 2). 364

365
TaqMan assay was performed with ITGA-1 TaqMan gene expression assay probe 366
(Hs00235006_m1; Life technologies) following manufacturer’s instructions. Reactions were run in 367
triplicate and expression was normalized to GAPDH (Hs99999905_m1; ThermoFisher). 368

Immunoblotting369
Cells were lysed using IP buffer (TrisHCl 20 mM pH 7.5, NaCl 200 mM, EDTA 1 mM, NP-40 370
0.5%) supplemented with Complete Protease Inhibitor mixture (Roche). Samples were resolved by 371
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 372
polyvinylidene difluoride (PVDF) membranes (PERKIN ELMER). Membranes were blocked in 373
5% non-fat milk and incubated overnight at 4°C with the appropriate primary antibody. 374
Membranes were prob -actin (clone C4; MP 375
Biomedicals), p53 (DO-1) (sc-126; Santa Cruz Biotechnology), DNMT1 (clone 60B1220.1; 376
MAB0079; Abnova), PKR (3072; Cell Signaling Technology), phosphorylated PKR Thr 446 377
(PA5-37704; Thermo Fischer Scientific), EGF receptor (4267; Cell Signaling Technology), Cyclin 378
D1 (2978; Cell Signaling Technology), HA-Tag (3F10; Roche) and ITGA-1 (106267; Abcam). 379
Images were produced using the ChemiDoc XRS imaging system (Bio-Rad).380

Chromatin immunoprecipitation381
ChIP was performed using the Shearing ChIP and OneDay ChIP kits (Diagenode) according to the 382
manufacturer’s instructions. Briefly, cells were sonicated to obtain DNA fragments of 200–500 bp. 383
Sheared chromatin was immunoprecipitated with isotype control IgG or the indicated antibodies: 384
p53 (DO-1) (sc-126; Santa Cruz Biotechnology), DNMT1 (clone 60B1220; Abnova) and phospho 385
PKR T446 (ab32036). For ChIP/Re-ChIP experiments, bead-bound protein-DNA complexes 386
obtained after the first ChIP were incubated with 10 mM Reverse dithiothreitol (DTT) for 30 min 387
at 37°C with shaking at 400 rpm. Supernatant was collected after centrifugation at 12,000g for 1 388
min. Pelleted beads were incubated again with 10 mM DTT for 20 min at 37ºC and centrifuged at 389
12,000g for 1 min. Ten percent of the combined supernatants was kept as the input for the second 390
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ChIP, which was performed according to the OneDay ChIP kit (Diagenode) manufacturer’s 391
protocol.392
For histones chromatin immunoprecipitation, chromatin shearing kit Low SDS and Auto iDeal 393
ChIP-seq kit for Histones (Diagenode) were used together with SX-8G IP-Star Compact 394
Automated system and histone H3K9ac antibody (Euromedex).395
The eluted DNA was used as a template for qPCR (Table 2).396

Oligonucleotide pulldown assay397
Cells were lysed and sonicated in HKMG buffer (10 mM HEPES [pH 7.9], 100 mM KCl, 5 mM 398
MgCl2, 10% glycerol, 1 mM DTT, 0.5% Nonidet P-40) containing protease and phosphatase 399
inhibitors. After centrifugation at 12,000g for 10 min, protein extracts were precleared with 400
streptavidin-agarose beads. The ITGA-1 promoter was used as a template to amplify the p53RE. 401
PCR amplification was performed using a biotinylated forward primer and a nonbiotinylated 402
reverse primer listed on table 2. Amplicons were extracted from agarose gel by using a MinElute 403
gel extraction kit (Qiagen) and quantified. Then, 2 mg of cellular protein extracts were incubated 404
with 1 g of biotin-ITGA-1 promoter probes and 10 g of poly(dI-dC)·poly(dI-dC) for 16 h at 4°C. 405
DNA-bound proteins were collected with streptavidin-agarose beads for 1 h and washed five times 406
with HKMG buffer. DNA-bound proteins were then analyzed by IB. 407

Electro mobility shift assay408
Nuclear extracts from cells were prepared as previously described 55. Briefly, 3 × 106 cells were 409
collected, washed in PBS 1×, and resuspended in hypotonic buffer A (10 mM HEPES, pH 7.9; 1.5 410
mM MgCl2; 10 mM KCl; 0.5 mM DTT; 0.2 mM PMSF). The cell suspensions were then 411
incubated on ice and homogenized by 15 passages through a 25-gauge needle. Cytoplasm fractions 412
were collected by centrifugation at 12,000 rpm for 1 min at 4°C. Nuclei were washed in buffer A, 413
centrifuged, and dissolved in hypertonic buffer B (20 mM HEPES, pH 7.9; 25% glycerol; 0.42 M 414
NaCl; 1.5 mM MgCl2; 0.2 mM EDTA; 0.5 mM DTT). The nuclear extracts were collected by 415
centrifugation at 12,000 rpm for 2 min at 4°C. Protein concentration was estimated using an assay416
kit (Bio-Rad Laboratoires, Richmond, CA). Five μg of the extracts were incubated with 0.5 pmoles 417
of biotin-labelled DNA probe listed on Table 2 and poly (dI-dC) in binding buffer (10 mM Tris, 418
100 mM NaCl, 1 mM EDTA, 1 mM DTT, 5% glycerol, pH 7.5) in a final volume of 15 μl. Binding 419
reactions were incubated for 20 min at room temperature. The dye solution was then added and 420
samples were loaded into a 5% polyacrylamide gel in 0.5X TBE buffer for running. The gels were 421
then transferred to BM-Nylon (+) blotting membrane (Roche) and developed by using the 422
“Chemiluminescent Nucleic Acid Detection Module” provided in the nonradioactive “LightShift 423
chemiluminescent EMSA Kit” (Thermo Scientific). Specificity of the protein–DNA complex was 424
verified by a competition experiment where the nuclear extracts were incubated with an excess of 425
unlabelled DNA.426

Sucrose gradient protein complex isolation427
Sucrose density gradients were prepared from 10% to 50% sucrose (10mM NaCl, 2mM TrisHCl 428
and 0.5mM MgCl2). Cells treated with 2-Aminopurin or Acetic acid (200:1) 10mM for 4 hours 429
were processed for nuclear extraction as previously described and a total of 1mg of protein was 430
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added to the sucrose gradient. 20ug of nuclear extract was kept as input control. After 16 hours 431
centrifugation at 35300rpm and 4°C, 21 fractions of a total volume of 500uL were collected. 432

Protein immunoprecipitation433
Immunoprecipitations were performed as previously described 56434
antibodies (p53DO-1, PKR or IgG) pre-adsorbed on 50uL of protein A/G plus agarose beads (SC-435
2003) suspended in PBS-1%Np40 for 2h at 4°C. Suspended beads were also incubated with total 436
protein lysate or sucrose protein fractions 5 to 21 for pre-clearing in rotation at 4°C for 2 hours. 437
After overnight incubation with the extracts, beads were resolved by SDS–PAGE and transferred to 438
PVDF membranes (PERKIN ELMER). Immunoblotting was performed with DNMT1, PKR and 439
p53 antibodies and immunoreactivity was revealed by means of secondary antibodies specific for 440
IP (Abcam). Immunoreactive proteins were visualized by means of the ECL method (Millipore).441

Exome analysis442
The exome analysis was performed as described in 39. SIFT missense predictions for genomes 443
annotator was used to predicts whether the amino acid substitution affects protein function 57.444

Statistical analysis445
Statistical significance was determined using the Student t-test with Prism7 (Graphpad). The levels 446
of statistical significance for each experiment (*p<0.05, **p<0.01,***p<0.001,****p<0.0001 or 447
not significant) are indicated in the corresponding figures. The error bars in the graphs represent 448
the standard deviation.449

450
451
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Figures and figures legends653
Figure 1. ITGA-1 expression is downregulated in HPV38 E6 E7 expressing cells. 654
(A) Human primary keratinocytes were transduced with pLXSN HPV38 E6/E7 or pLSXN. Total 655
RNA levels were measured by RT-qPCR and normalized to GAPDH. Error bars represent standard 656
deviations from three biological replicates of two different donors (n=6). ***, P<0.001 and **** 657
p<0.0001. (B) Total RNA levels of HKs expressing or not HPV38 E6 and E7 were analyzed by 658
TaqMan PCR. Commercial probes for ITGA-1 and GAPDH were used. Results were normalized to 659
GAPDH. Data are the mean of three independent experiments for two different donors (n=6). ****, 660
p<0.0001. (C) TaqMan assay was also performed as previously described in human primary 661
keratinocytes previously retrovirally transduced with hTERT gene and expressing E6 and/or E7 662
from HPV 38 (n=3). Results were normalized to GAPDH. ****, p<0.0001.663

664
Figure 2. p53 and DNMT1 form a complex that is recruited to ITGA-1 promoter. 665
(A) Schematic representation of ITGA-1 promoter sequence. p53 responsive elements were 666
predicted by TFBind and JASPAR softwares.667
(B) Electromobility Shift Assay performed with 38HK nuclear protein extracts and biotinylated 668
probes containing p53REs WT or mutated sequences. Probes were incubated and cross-linked with 669
protein extracts. Unlabeled WT or mutant p53RE2 probes were used as control. Representative 670
images are shown as an example of two different experiments. (C) 38HK cells were cross-linked 671
and chromatin was processed for ChIP using p53 antibody. Results were analyzed by qPCR with 672
primers spanning p53RE1, p53RE2, p53RE3 or intergenic region of chromosome 22 (nc). Error 673
bars represent standard deviation of three independent experiments performed in triplicate. **, 674
p<0.01. (D) Cell lysate was incubated with biotinylated wild type probes containing p53 REs of the 675
ITGA-1 promoter. Incubation without probe was used as control. DNA-associated proteins were 676
recovered by precipitation with streptavidin beads and analyzed by immunoblotting (IB). A 677
representative image is shown as an example of three independent experiments. (E) Chromatin 678
from 38HK was processed for ChIP experiments using p53 or DNMT1 antibodies. Results were 679
obtained by qPCR with primers spanning p53RE2 or the intergenic region of chromosome 22 (nc). 680
Error bars indicate standard deviation from three independent experiments performed in duplicate. 681
**, p<0.01, ***, p<0.001.682

683
Figure 3. p53/DNMT1 interaction on ITGA-1 promoter.684
(A) 38HK were cultured in medium containing Cyclic Pifithrin- or DMSO as a 685

control. Chromatin was processed for ChIP using p53 or DNMT1 antibodies. Results were 686
obtained by qPCR using primers spanning p53RE2. Data are the mean of two independent 687
experiments performed in triplicate. *, p<0.05, **, p<0.01. (B) Chromatin was processed for ChIP-688
reChIP assay in which p53-immunoprecipitated DNA was re-immunoprecipitated by DNMT1. 689
Enrichment on p53RE2 or intergenic region of chromosome 22 (nc) were obtained by qPCR. Data 690
are the mean of three independent experiments performed in triplicate. **, p<0.01. (C) 38HK cells 691
were transfected with DNMT1 siRNA or siRNA control (Scramble). After 72 hours, ChIP assay 692
was performed with p53 or DNMT1 antibodies. Results were obtained by qPCR using p53RE2 693
primers. Error bars represent standard deviation from three independent experiments. *,p<0.05, **, 694
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p<0.01.695
696

Figure 3. p53/DNMT1 complex inhibits ITGA-1 expression. 697
(A)Total RNA levels of 38HK treated with Cyclic Pifithrin- DMSO for 6 hours 698
were analyzed by RT-qPCR and normalized to GAPDH. Histogram represents the mean of at least 699
three independent experiments. ****, p<0.0001. (B and C) ITGA-1 and p53 mRNA and protein 700
levels from 38HK expressing wild type p53 (Scramble) or with CRISPR/Cas9-mediated p53 701
deletion (CRISPRp53) were measured by RT-qPCR and IB. Data show the mean of four 702
independent experiments. *, p<0.05. (D) 38HK cells were transfected with control siRNA 703
(Scramble) or with DNMT1 siRNA (siDNMT1). After 72 hours, cells were collected for RNA 704
extraction and RT-qPCR analysis (n=3). *, p<0.05, ***, p<0.001.(E) ITGA-1 expression was 705
evaluated by RT-qPCR after 24 hours of 5-Aza-2’- deoxycytidine (Aza) or DMSO treatment at a 706
final concentration of 30μM. Error bars represent standard deviation of three independent 707
experiments. **, p<0.01. (F) H3K9ac at the ITGA-1 promoter was evaluated by ChIP assay upon 708
5-Aza-2’- deoxycytidine (Aza) or DMSO treatment as previously described (n=4). Results were 709
obtained by qPCR using primers for p53RE2. *, p<0.05. (G) 38HK cells were transfected with 710

711
processed for RT-qPCR (left) or IB (right) (n=3). ns, not significant. 712

713
Figure 5. Full-length WT p53 displays oncogenic properties in 38HK714
(A and B) 38HK N-HA-p53 or p53-C-HA cells were generated by retroviral transduction with WT-715
p53 tagged at N-terminus or C-terminus. As a control, 38HK cells were transduced with the 716
corresponding empty plasmid. Protein extracts and total mRNA levels were processed for 717
immunoblotting (A) and RT-qPCR analysis (B). A representative image is shown as an example of 718
three independent experiments. ITGA-1 mRNA levels (B) was normalized to GAPDH. Error bars 719
indicate standard deviation of three independent experiments. ***, p<0.001. (C and D) Cells 720
expressing N-HA-p53 or p53-C-HA were seeded into 6 wells plates or 96 well. After 24, 48 and 72 721
hours cells were collected, stained with trypan blue and counted (C). Cells in 96 well were 722
incubated with 20uL of MTS solution for 2 hours (D). Absorbance was obtained at 490nm 723
wavelength. Results are the mean of three and two independent experiments respectively 724
performed in duplicate. ***, p<0.001, ****, p<0.0001. (E and F) 38HK cells were seeded into 6 725
well plate and transfected with Scramble or CRISPRp53 plasmid for p53 knock-out. Immunoblot is 726
an example of two independent experiments (E). After 24, 48 and 72 hours cells were collected, 727
stained with trypan blue and counted (F). Data are the mean of two independent experiments 728
performed in duplicate. *, p<0.05, **, p<0.01,***, p<0.001. (G) Cells treated with pifithrin for 24 729
hours were stained with trypan blue and counted. Histogram represents the mean of four 730
independent experiments. *, p<0.05,**,p<0.01. 731

732
Figure 6. Full-length p53 phosphorylated at S392 plays a key role in ITGA-1 inhibition 733
(A) Protein extracts from 38HK were processed for oligonucleotide pulldown as previously 734
described. The image is an example of three independent experiments.735
(B) HK and 38HK were processed for protein extraction and IB. After p446PKR antibody 736
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incubation, membrane was stripped and incubated with total PKR antibody.737
(C) 38HK were treated with PKR inhibitor, 2-Aminopurine (2AP), or Acetic Acid: PBS solution 738
(1:200), as a control, for 4 hours at 10mM final concentration. p-p53 Ser392 and p53 band 739
intensities were quantified and normalized to total p53 (central panel) -Actin (right panel),740
respectively. Membranes were first incubated with p446PKR, then stripped and incubated with 741
total PKR. Data are the mean of three independent experiments. *, p<0.05, **, p<0.01.742
(D and E) 38HK were treated with 2AP) and ITGA-1 mRNA (D) and protein levels were 743
determined by RT-PCR and IB respectively. The values in (D) are the mean of three independent 744
experiments (**, p<0.01). The image in (E) is representative of three independent experiments. (F 745
and G) ChIP assay using p53 or DNMT1 antibodies was performed in 38HK treated with or Acetic 746
Acid: PBS solution (1:200) (CTR) or 2-Aminopurin (2AP). Results are the mean of two 747
independent experiments performed in duplicate by qPCR using p53RE2 primers. *, p<0.05. 748

749
Figure 7 PKR inhibition reduces p53 phosphorylation and regulates ITGA-1 expression.750
(A) Protein extracts from 38HK were processed for immunoprecipitation. Agarose beads were 751
conjugated with total PKR antibody (top) or p53 antibody (bottom). Conjugated beads were 752
incubated with protein lysate overnight. IgG was used as a control. Results were obtained by IB.753
Pictures were cropped due to the presence of irrelevant samples to this work. They are an example 754
of two independent experiments. (B) Total protein extracts from cells treated with PKR inhibitor, 755
2-Aminopurin (2AP), or Acetic Acid: PBS solution (1:200), as a mock control (-) were obtained 756
for PKR immunoprecipitation as previously described (top). Input was run in a different gel to 757
improve picture quality. (C) 38HK cells were crosslinked and chromatin was extracted for ChIP-758
reChIP assay by p53 immunoprecipitation followed by p446PKR immunoprecipitation. Data from 759
three independent experiments performed in duplicate were analysed by qPCR. P53RE2 and Chr22 760
intergenic sequence (nc) primers were used. *, p<0.05. (D) 38HK were treated with PKR inhibitor, 761
2-Aminopurine (2AP), or Acetic Acid: PBS solution (1:200), as a control, for 4 hours at 10mM 762
final concentration. Nuclear extracts were used for 50% to 10% sucrose gradient protein complex 763
isolation. Fractions obtained were immunoprecipitated with p53 antibody. Results were analysed 764
by IB.765

766
Figure 8. ITGA-1 ectopic overexpression impairs cell growth and induces cell death.767
(A) 38HK cells were transfected with ITGA-1 cDNA (ITGA-1) or empty plasmid control 768
(pcDNA). After zeocin selection, 38HK were fixed with crystal violet and total colony number was 769
counted per well. Results are the mean of three independent experiments. ****,p<0.0001. (B) 770
38HK transfected with ITGA-1 cDNA (ITGA-1) or empty control (pcDNA) plasmid were fixed 771
and stained with Propidium Iodide for Flow cytometry analysis. Histogram (right) represents the 772
mean of sub-G0 population of three independent experiments. **, p<0.01. (C and D) Total protein 773
and mRNA extracts from 38HK transfected cells were analysed by IB and RT-qPCR. Band 774

-Actin (n=4). ITGA-1, EGFR and Cyclin D1 (Cyc D1) 775
mRNA levels were normalized to GAPDH (n=4). *, p<0.05, **p<0.01, ***p<0.001, ns, not 776
significant.777
Figure 9. ITGA-1 is downregulated and mutated in transgenic mice expressing HPV38 778
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E6/E7.779
(A) Skin keratinocytes were isolated from WT animals (n=4) and K14 HPV38 E6/E7 Tg mice 780
(n=3). After 30 weeks UV radiation, squamous cell carcinoma samples (cSCC1-3) were isolated 781
from HPV38 E/E7 Tg mice. Total RNA extraction was performed and ITGA-1 mRNA levels were 782
determined by quantitative RT-PCR by normalizing to GAPDH. Whole exome sequencing DNA 783
sequencing of the same mice was also performed. Mutational analysis of p53, ITGA-1 and EGFR 784
genes was performed as described in materials and methods. 785
(B) Genomic position of the exonic mutations and the corresponding amino acid change are786
represented for ITGA-1 and EGFR genes. WT exons are represented as blue boxes while mutated 787
exons are represented in red boxes. Text boxes describe the squamous cell carcinoma sample, 788
genomic position of nucleotide change on the GRCm38/mm10 mouse reference genome, the type 789
of mutation and the corresponding amino acid change.790
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A B S T R A C T

We present a new database, specifically devoted to ROS homeostasis regulated proteins. This database replaced

our previous database, the PeroxiBase, which was focused only on various peroxidase families. The addition of

20 new protein families related with ROS homeostasis justifies the new name for this more complex and com-

prehensive database as RedoxiBase.

Besides enlarging the focus of the database, new analysis tools and functionalities have been developed and

integrated through the web interface, with which the users can now directly access to orthologous sequences and

see the chromosomal localization of sequences when available.

OrthoMCL tool, completed with a post-treatment process, provides precise predictions of orthologous gene

groups for the sequences present in this database. In order to explore and analyse orthogroups results, taxonomic

visualization of organisms containing sequence of a specific orthogroup as well as chromosomal distribution of

the orthogroup with one or two organisms have been included.

1. Introduction

Reactive Oxygen Species (ROS) are represented by reactive mole-

cules and free radicals derived from molecular oxygen: hydrogen per-

oxide, organic peroxides, superoxide, hydroxy radical, hydroxyl ion,

singlet oxygen, and nitric oxide. They are produced at elevated con-

centrations during several essential biological processes such as re-

spiration in most of living organisms, photosynthesis and photo-

respiration in chloroplastic organisms. They can also be released in a

control manner during various developmental processes and stress re-

sponses. In particular, ROS can be produced as a part of innate im-

munity in Metazoans [1]. Although they can be deleterious, they are

also necessary. To manage this ambivalent situation, each living being

possesses a large battery of proteins which can produce or scavenge

ROS in order to control their homeostasis. Among these proteins, haem

or non-haem peroxidases were already centralized in a dedicated da-

tabase namely the PeroxiBase [2].

In order to have a more integrative and phylogenomic overview on

ROS-regulated proteins, new classes, families and superfamilies have

been added to cover most of the proteins able to regulate ROS level.

Then, the RedoxiBase, which includes all the data and the tools already

present in the former PeroxiBase, was created. In the new database all

living kingdoms are represented. The PeroxiBase served as a reference

in the field of peroxidase families, the new enhanced version of this

database should become a similar reference for all ROS regulation

proteins. It is cross-referenced in UniProt [3] since 2006 and, more

recently, in the Arabidopsis database TAIR [4].

Several databases centralize entries of all (InterPro [5]) or particular

protein families (PLantCAZyme [6], CAZy [7], MEROPS [8], ThYme [9]

and CaspBase, a curated database dedicated to the caspase family [10],

or specific to a species such as GFDP which includes 6551 genes of

poplar from 145 families [11]. Regarding the oxidase families, two

independent databases are currently present in the web. Namely, PREX

[12] is dedicated to only one type of non-haem peroxidases and

fPOXDB [13] a fungal-specific database. They both bring structural and

sequence information complementary to those found in our previous

database PeroxiBase but they are merely devoted to subfamily assign-

ment. Lastly, the antioxidant protein database AOD [14], was

https://doi.org/10.1016/j.redox.2019.101247
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developed to understand the biological function of important anti-

oxidant proteins but is was not maintained anymore.

Despite these different repositories, the (updated) RedoxiBase is still

unique, since it is the only specialized collection of public sequences

deduced from expert annotations with manual curation leading to re-

annotation. Indeed, whole automatic genome annotation generates

numbers of errors, notably with gene merging, splicing problems or

tandem duplications [15]. These problems are exacerbated in the case

of multigenic families like most proteins already included in our data-

base. The guarantee of a high-quality sequence input is a prerequisite

for performing reliable analyses, especially phylogeny. Efforts to pro-

vide only expert annotation derived sequences, in opposition to auto-

mated ones, exist elsewhere, but are still rather marginal.

Since its creation in 2004, the PeroxiBase has been a very active

database with new sequences and new organisms daily added together

with constant update of the interface with new tools and functionalities.

Then, the RedoxiBase will take advantage of this existing dynamics to

go further and pursue increase of available contents and features.

Despite the explosion of genomic projects producing huge amounts of

novel sequences that remain unexploited [16], the database will keep

its initial interest to centralize high quality annotation for peroxidases

and ROS-related proteins whereas it has only slightly evolved for semi-

automatic annotation.

2. Description of tools and functions

2.1. Data available for each entry and tools

In April 2019, the database contains more than 15 000 sequences

distributed over 2599 organisms. This brings an important biodiversity

aspect and can grow further with availability of genomes from novel

organisms. In addition to protein, cDNA, CDS, genomic, 2000 bp up-

stream and downstream sequences, the gene structure information

(intron/exon structure), in Genbank format, is displayed along with a

schematic representation.

The main challenge concerning large multigenic families is to obtain

a comprehensive and reliable image of their evolution. To help estab-

lishing an evolutionary scenario, our interface provides many tools

either to analyse the database entries or to compare them with input

sequences. A regular BLAST including usual options (such as the nature

of query and subject sequences and the choice of organism(s)) allows

the users to search for sequences similar to their query in the database.

Peroxiscan is a tool that provides the user with a prediction of a par-

ticular family or superfamily after testing the query sequence against

pre-defined specific profiles [17]. CIWOG [18] and GECA [19] are tools

that search for common introns in genes families based on intron po-

sition and protein sequence similarity around it. They return a gra-

phical representation and comparison of several gene structures and

highlight the conservation between sequences. The visualization of the

alternative splicing, common in Metazoans, need to be developed. For

multiple alignments, ClustalW and MAFFT are available directly online

following multicriteria or BLAST searches, and a connection to the

French phylogeny web site (http://www.phylogeny.fr) allows for fur-

ther phylogenetic analysis. Cis-regulatory element analysis can be fur-

ther performed with upstream and downstream sequences using PLACE

[20] and MEME [21]. In addition, two major tools have been included

for evolutionary and comparative genomic analyses and are described

below.

2.2. New tool for evolutionary analysis: orthogroup

An orthogroup is defined as a group of peroxidases or ROS-related

proteins that share a common ancestor. They are therefore either or-

thologs or paralogs. To perform clustering analysis and visualization, a

specific pipeline, thereafter called ortho-pipeline, has been developed.

This pipeline is based on OrthoMCL [22] and includes a post-treatment

to reduce the false positives and negatives usually obtained with Or-

thoMCL. The originality and the relevance of our ortho-pipeline is to

provide orthogroup classification even for partial sequences, based on

sequence similarities.

Few new pages (Fig. 1A) were created on the web interface in order

to visualize and analyse the taxonomic distribution of the orthogroups

within different organisms. Graphical representation (Fig. 1B) of the

orthogroup is available directly from one entry or from the tab “Browse

the database by orthogroup” and “Analysis from input/Orthogroup

search”. The green displayed the species and their ancestors, which

Fig. 1. Orthogroup pipeline results. A. List of the organisms containing sequences belonging to the selected orthogroup. B. Visualization of the taxonomic dis-

tribution within an othogroup. Green boxes stand for organisms containing sequences belonging to the selected orthogroup. Gray boxes stand for organisms lacking

sequences belonging to the selected orthogroup. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)

B. Savelli, et al.



possess sequences from the visualized orthogroup, while gray showed

species that do not have sequences from the visualized orthogroup. The

lack of sequence inside a visualized orthogroup can result from the

absence of data or to the loss of sequence in a given species.

2.3. New tools for comparative genomics: Circos and chromodraw

As we are convinced that the information resulting from the

orthoMCL-pipeline can play a major role to elucidate evolutionary

history, an additional pipeline with chromosomal localization was de-

veloped: Circos-like visualization [23] and Chromosome Map (map-

chart like [24]), allowing large scale genomic analysis, have been in-

cluded. Standardised name for each chromosome, the location of each

peroxidase or ROS-related protein on their respective chromosome (if

available) and the paralogy/orthology relathionship obtained from

OrthMCL pipeline were included in the final output (Figs. 2 and 3).

2.4. New web interface and new code

As described above, the availability of a set of tools – some devel-

oped by our team - directly executable through the database website,

facilitates evolutionary analysis. In addition, to improve the manage-

ment of the database, as well as the speed of script execution and the

database querying, the web application has been implemented in an

open-source PHP framework (Codeigniter). This framework uses the

Model-View-Controller concept and allows faster development, best

security, better maintenance of the code and a reusability of applica-

tions developed in the laboratory with the same framework. Since

2008, the database is hosted by the GenoToul bioinformatics facility

(http://bioinfo.genopole-toulouse.prd.fr). Recently, a new powerful

computing cluster is available and can be used for local phylogenetic

and clustering analysis.

3. Discussion and future prospects

With the accumulation of available genomes, the number of se-

quences included in the database was largely increased (from 6026 in

2008 [17] to 10710 in 2012 [2] and 15136 in 2019). Although, the

numbers of organisms within each kingdom are in the same range, the

RedoxiBase (formerly PeroxiBase) is still mainly composed of sequences

originated from Viridiplantae (64%) and from fungi (22%). This is

mainly due to the larger size of the red-ox proteins families found in

plants and fungi which are subjected to large duplication events. Then,

a particular effort needs to be done to increase the representation of

ROS-related proteins from other kingdoms (mainly Protista and Ani-

malia) and within them from exotic and poorly represented organisms.

Special attention must be paid to genes from those species threatened

with global extinction as reported recently by IPBES (Intergovern-

mental Science-Policy Platform on Biodiversity and Ecosystem Services

Paris 2019). Regularly updating RedoxiBase with manually annotated

sequences will allow to perform robust evolutionary analyses also for

concatenated sequences.

The quality of the annotation, which is our main concern since the

creation of the database, has been maintained, but manual annotation

does not allow an efficient coverage of all the available sequences. The

semi-automatic protocols developed will facilitate the upload of per-

oxidase-encoding sequences from already annotated proteomes while

maintaining our high-quality standard. In addition, the annotation

procedure relying on Scipio which has already demonstrated its effec-

tiveness for gene prediction based on homology with closely related

already annotated organisms [25], will be improved. Indeed, a new

strategy that will take advantage of our specific profiles defined with

controlled batches of sequences need to be developed for the prediction

in more divergent genomes.

Many red-ox proteins families included in the RedoxiBase belong to

multigenic families and result from tandem, segmental and chromo-

somal duplication events, which complicates global phylogenetic ana-

lysis and the understanding of their evolutionary history. The visuali-

zation of inter- or intra-species sequence orthogroup belonging and

their chromosomal localization is very helpful in this context. This re-

quires the availability of genomic localization for larger number of

organisms. In addition, we have recently developed ExpressWeb, an

online tool to perform gene clustering using personal or selected ex-

pressed value sets in order to construct co-expression gene networks

[26]. ExpressWeb is available directly from the RedoxiBase and a cur-

rent priority is to set up a pipeline to load publicly available expression

data in order to perform expression clustering with our favorite genes.

Fig. 2. Orthogroup pipeline visualization within one species. A. Circos-like visualization. B. Chromosome Map visualization. Sequences belonging to the same

orthogroup are linked. Each class is represented with one colour. Chromosome and gene loci on chromosomes are on scale. (For interpretation of the references to

colour in this figure legend, the reader is referred to the Web version of this article.)
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ABSTRACT The histone modifier lysine (K)-specific demethylase 2B (KDM2B) plays a
role in the differentiation of hematopoietic cells, and its expression appears to be
deregulated in certain cancers of hematological and lymphoid origins. We have pre-
viously found that the KDM2B gene is differentially methylated in cell lines derived
from Epstein-Barr virus (EBV)-associated endemic Burkitt lymphoma (eBL) compared
with that in EBV-negative sporadic Burkitt lymphoma-derived cells. However,
whether KDM2B plays a role in eBL development has not been previously investi-
gated. Oncogenic viruses have been shown to hijack the host cell epigenome to
complete their life cycle and to promote the transformation process by perturbing
cell chromatin organization. Here, we investigated whether EBV alters KDM2B levels
to enable its life cycle and promote B-cell transformation. We show that infection of
B cells with EBV leads to downregulation of KDM2B levels. We also show that LMP1,
one of the main EBV transforming proteins, induces increased DNMT1 recruitment to
the KDM2B gene and augments its methylation. By altering KDM2B levels and per-
forming chromatin immunoprecipitation in EBV-infected B cells, we show that
KDM2B is recruited to the EBV gene promoters and inhibits their expression. Fur-
thermore, forced KDM2B expression in immortalized B cells led to altered mRNA lev-
els of some differentiation-related genes. Our data show that EBV deregulates
KDM2B levels through an epigenetic mechanism and provide evidence for a role of
KDM2B in regulating virus and host cell gene expression, warranting further investi-
gations to assess the role of KDM2B in the process of EBV-mediated lymphomagen-
esis.

IMPORTANCE In Africa, Epstein-Barr virus infection is associated with endemic
Burkitt lymphoma, a pediatric cancer. The molecular events leading to its develop-
ment are poorly understood compared with those leading to sporadic Burkitt lym-
phoma. In a previous study, by analyzing the DNA methylation changes in endemic
compared with sporadic Burkitt lymphoma cell lines, we identified several differen-
tial methylated genomic positions in the proximity of genes with a potential role in
cancer, and among them was the KDM2B gene. KDM2B encodes a histone H3 de-
methylase already shown to be involved in some hematological disorders. However,
whether KDM2B plays a role in the development of Epstein-Barr virus-mediated lym-
phoma has not been investigated before. In this study, we show that Epstein-Barr vi-
rus deregulates KDM2B expression and describe the underlying mechanisms. We
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also reveal a role of the demethylase in controlling viral and B-cell gene expression,
thus highlighting a novel interaction between the virus and the cellular epigenome.

KEYWORDS Burkitt lymphomas, EBV, epigenetic, KDM2B

E
pstein-Barr virus (EBV) is a human gammaherpesvirus that infects more than 95% of
the adult population worldwide. After infection, EBV establishes a lifelong latency,

often with no adverse health consequences. Despite its ubiquity, EBV infection is also
associated with many human cancer types, among which is endemic Burkitt lymphoma
(eBL), the most common childhood cancer in equatorial Africa (1). Although this
malignancy was associated with EBV infection more than 50 years ago, the exact
mechanism by which the virus contributes to the eBL pathogenic process is still not
fully understood.

Many studies have highlighted a key role of epigenetic deregulations in cell trans-
formation and cancer development. Increasing evidence indicates that different viruses
may abrogate cellular defense systems by hijacking epigenetic mechanisms to dereg-
ulate the host cell gene expression program and modulate their own life cycle (2, 3).
Our recent study of the methylome profiles of sporadic Burkitt lymphoma (sBL)- versus
eBL-derived cell lines revealed an EBV infection-specific pattern of methylation, with
aberrant methylation being detected in genes with a known role in lymphomagenesis,
such as ID3, which is often found to be mutated in sBL (4). We therefore hypothesized
that a virus-driven mechanism is responsible for modifying the epigenome of B cells to
facilitate the lymphomagenic process, circumventing the need for mutations in lym-
phoma driver genes. Among the genes differentially methylated in eBL compared with
sBL, we identified the lysine (K)-specific demethylase 2B (KDM2B) gene, which encodes
a histone H3 demethylase known to target specific sites, such as trimethylated lysine 4
(H3K4me3) and dimethylated lysine 36 (H3K36me2). KDM2B sets the stage for DNA
methylation and gene silencing by recruiting polycomb-1 proteins to unmethylated
CpG regions (5) and plays a key role in somatic cell reprogramming (6). It also represses
the transcription of rRNA genes, thus inhibiting cell growth and proliferation (7). KDM2B
has been identified as a putative tumor suppressor by retroviral insertion analysis in
mice (8). Low levels of KDM2B expression have been found in aggressive brain tumors,
suggesting its potential role in cancer development. Moreover, KDM2B is involved in
hematopoietic cell development and plays opposite roles in tumors of hematopoietic
and lymphoid origins (9). Although high levels of KDM2B expression have been
observed in different hematological malignancies, its depletion from hematopoietic
cells has been reported to activate the cell cycle and reduce the activity of interferon
and lymphoid-specific transcription factors, thereby contributing to myeloid transfor-
mation (9). However, whether KDM2B affects the EBV life cycle has not been deter-
mined, and its role in eBL has not been assessed. Here, using in vitro EBV infection
models, we aimed to assess whether EBV can alter the expression of KDM2B by
inducing methylation of its gene. Finally, we investigated how this event affects EBV
infection and B-cell homeostasis. Overall, our data highlight a novel cross talk between
EBV and the cellular epigenome and identify KDM2B to be a master regulator of EBV
gene expression, in addition to B-cell gene expression, suggesting a role for EBV-
mediated KDM2B deregulation in the lymphomagenic process.

(This article was submitted to an online preprint archive [10].)

RESULTS

KDM2B is epigenetically silenced in EBV(�) BL-derived cell lines. Our previous
comparative analysis of the whole-genome methylation profiles of a set of EBV-positive
[EBV(�)] and EBV-negative [EBV(�)] Burkitt lymphoma (BL)-derived cell lines (4) led to
the identification of two CpGs (CpG15695155 and CpG21423404) flanking a CpG island
named CpG127 (Fig. 1A) in an intragenic putative regulatory region of KDM2B (as
shown by the accumulation of the H3K27 acetylation [H3K27Ac] marker) (Fig. 1A).
CpG15695155 and CpG21423404 were highly methylated in EBV(�) BL-derived cells
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compared with EBV(�) BL-derived cells. Here, to validate these data we performed
direct pyrosequencing on DNA extracted from 10 EBV(�) BL-derived cell lines and 9
EBV(�) BL-derived cell lines (Table 1). The samples for which the pyrosequencing gave
results technically suitable for analysis are displayed in the histogram in Fig. 1B.
Pyrosequencing analysis confirmed that the KDM2B gene is hypermethylated at
CpG15695155 and CpG21423404 in EBV(�) BL cell lines compared with EBV(�) BL cell
lines (Fig. 1B). In contrast, we did not observe high methylation levels or differences
between EBV(�) and EBV(�) BL cell lines when analyzing 17 positions within the CpG
island 127 (Fig. 1C). Next, we assessed whether the high DNA methylation level of the
KDM2B gene would affect its expression level. Treatment of 3 EBV(�) BL and 3 EBV(�)
BL cell lines with the demethylating agent 5-aza-2=-deoxycytidine (Aza) for 48 h led to
a significant rescue of KDM2B expression in EBV(�) BL cells, whereas this treatment had
no noticeable effect on KDM2B mRNA expression in EBV(�) BL cells (Fig. 1D). Pyrose-
quencing analysis of DNA from EBV(�) and EBV(�) BL cell lines exposed to Aza or to

FIG 1 The KDM2B gene is methylated and silenced in EBV(�) BL cell lines and specimens. (A) Schematic diagram of the KDM2B gene (modified from the UCSC
Genome Browser). Red lines show CpG15695155 and CpG21423404, and CpG island 127 is in light blue. ChIP data (obtained with the lymphoma cell line
GM12878) for the distribution of the H3K27Ac marker within the selected region are also shown. ChIP, chromatin immunoprecipitation. (B) The histograms show
the average percentage of methylation measured by pyrosequencing of CpG15695155 and CpG21423404 in the DNA of 10 EBV(�) and 9 EBV(�) BL cell lines
(****, P � 0.0001; **, P � 0.01). (C) The histogram shows the average percentage of methylation at 17 positions within CpG island 127 measured in 2 EBV(�)
and 2 EBV(�) BL cell lines. The difference between the two groups was not significant. (D) Three EBV(�) and 3 EBV(�) BL cell lines were cultured in the presence
of dimethyl sulfoxide (DMSO; nontreated [nt]) or 5-aza-2=-deoxycytidine (Aza; 10 �M) for 48 h. The KDM2B mRNA expression level was evaluated by RT-qPCR.
The pooled results of 4 independent experiments are presented in the histogram (**, P � 0.01; ns, not significant). KDM2B mRNA levels in Aza-treated cells were
measured relative to the levels in DMSO-treated control cells. (E) Aza-treated EBV(�) and EBV(�) BL cells from 2 independent experiments were processed for
DNA extraction and analyzed by pyrosequencing for the methylation level at CpG15695155 (CG15) and CpG21423404 (CG21) as well as for the average
methylation at 17 positions within CpG island 127 (CG127). The average difference in the percentage of methylation between Aza- and DMSO-treated cells is
indicated in the histogram (*, P � 0.05; ns, not significant). (F) Three EBV(�) and 3 EBV(�) BL cell lines were cultured and analyzed by immunoblotting for KDM2B
expression levels. The histogram shows the average KDM2B expression levels normalized to the �-actin signal, measured in 4 independent experiments by
Image Lab software (Bio-Rad) in EBV(�) versus EBV(�) BL cells (*, P � 0.05). (G) KDM2B levels in EBV(�) and EBV(�) BL samples were analyzed by
immunohistochemistry. The same samples were analyzed for EBER expression by ISH for EBER (EBER-ISH) as described in Materials and Methods. The images
shown are representative of the KDM2B staining obtained in 11 EBV(�) and 11 EBV(�) BL specimens.
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dimethyl sulfoxide (DMSO) for 48 h revealed a moderate but significant reduction in the
methylation level at CpG21423404 in Aza-exposed EBV(�) BL cells, whereas methyl-
ation at all the other positions analyzed remained unchanged (Fig. 1E). We then
determined whether the different methylation patterns observed in EBV(�) and EBV(�)
BL cells affected KDM2B protein expression. We analyzed KDM2B protein expression in
3 EBV(�) and 3 EBV(�) BL-derived cell lines and observed a significantly lower
expression level of KDM2B protein in EBV-infected cells (Fig. 1F). Moreover, we analyzed
11 EBV(�) BL and 11 EBV(�) BL samples (Table 2) by immunohistochemistry for the
KDM2B protein expression level; 8 of the 11 EBV(�) BL samples showed weak KDM2B
staining, and 10 of the 11 EBV(�) BL samples showed a strong signal for KDM2B
immunohistochemistry, suggesting that EBV infection induces reduced expression of

TABLE 1 Description of BL-derived cell lines used in the present studya

BL case identifier Diagnosis EBV infection Cytogenetic information Clinical data Ethnic origin

BL103 BL EBV(�) t(8;14) Caucasian
BL70 BL EBV(�) t(8;14) Dec Caucasian
BL56 BL EBV(�) t(8;14) Dec
BL58 BL EBV(�) t(8;14) Dec Caucasian
BL53 BL EBV(�) t(8;14) Dec Caucasian
BL102 BL EBV(�) t(8;22) Dec Caucasian
BL104 BL EBV(�) t(8;22) Caucasian
BL2 BL EBV(�) t(8;22) Dec Caucasian
BL41 BL EBV(�) t(8;14) Caucasian
BL110 BL EBV(�) t(8;14) Caucasian
BL135 BL EBV(�) t(8;14) African
BL65 BL EBV(�) t(8;14) African
BL116 BL EBV(�) t(8;14) African
BL60 BL EBV(�) t(8;22) Dec African
BL79 BL EBV(�) t(8;14) African
BL112 BL EBV(�) t(8;14) Caucasian
I100 EBV(�)
I373 EBV(�)
I176B EBV(�)
aThe cells were obtained from the IARC Biobank. Abbreviations: BL, Burkitt lymphoma; EBV, Epstein-Barr virus; Dec, deceased.

TABLE 2 BL case main featuresa

BL subtype Age (yr) Sex Site of biopsy

Detection of the following:

EBER MYC by FISH B.A. MYC-IGH by FISH MYC-IGK or IGL by FISH

sBL 40 F Inguinal lymph node � � n.p. n.p.
sBL 18 M Ileum � � n.p. n.p.
sBL 38 F Lymph node � � n.p. n.p.
sBL 40 F Bone marrow � � n.p. n.p.
sBL 20 M Lymph node � � � n.p.
sBL 15 M Lymph node � � n.p. n.p.
sBL 25 F Ileum � � n.p. n.p.
sBL 45 M Stomach � � � n.p.
sBL 16 M Abdomen mass � � n.p. n.p.
sBL 20 M Lymph node � � � n.p.
sBL 14 M Lymph node � � n.p. n.p.
eBL 9 F Abdomen mass � � n.p. n.p.
eBL 5 F Soft tissues � � n.p. n.p.
eBL 6 F Maxilla � � n.p. n.p.
eBL 10 F Ileum � � n.p. n.p.
eBL 3 F Lymph node � � n.p. n.p.
eBL 4 F Lymph node � � � n.p.
eBL 10 M Maxilla � � � � (IGL), � (IGK)
eBL 7 M Abdomen � � n.p. n.p.
eBL 12 F Maxilla � � n.p. n.p.
eBL 3 M Stomach � � n.p. n.p.
eBL 5 M Ileum � � n.p. n.p.
aAbbreviations: F, female; M, male; n.p., not performed; EBER, Epstein-Barr virus-encoded small RNA; B.A., break apart; eBL, endemic Burkitt lymphoma; sBL, sporadic
Burkitt lymphoma, FISH, fluorescence in situ hybridization.
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the KDM2B protein in vivo (Fig. 1G). Of note, the EBV(�) samples with stronger KDM2B
staining had fewer Epstein-Barr virus-encoded small RNA (EBER)-expressing cells, as
determined by EBER in situ hybridization (ISH) (data not shown). In conclusion, these
data show that two specific CpG sites in the regulatory region of KDM2B are hyperm-
ethylated in EBV(�) BL cell lines compared with EBV(�) BL cell lines, confirming our
previous whole-genome methylation profiling data (4). Moreover, KDM2B expression
also appears to be reduced in eBL specimens, which is probably mediated by DNA
methylation at CpG21423404. These data suggest that EBV may regulate KDM2B
expression by inducing the methylation of a specific position within a regulatory region
of its gene.

EBV infection of B cells downregulates KDM2B expression. To assess the ability
of EBV to deregulate KDM2B expression, primary B cells isolated from 3 independent
donors were infected with EBV. Cells were collected at different times after infection
and analyzed for the expression level of KDM2B mRNA by reverse transcription-
quantitative PCR (RT-qPCR). It appeared that soon after infection, the expression level
of KDM2B was drastically reduced (Fig. 2A). This downregulation was also seen at the
protein level (Fig. 2B). The reduced expression of KDM2B was maintained during the
immortalization process and stayed low in lymphoblastoid cell lines (LCL). This result
suggests that EBV infection plays a role in the regulation of KDM2B mRNA expression.
To exclude the possibility that this result could be due to the activation of the primary
B cells independently of EBV infection, as a consequence of the engagement of the
membrane B-cell receptors by the virus, we stimulated primary B cells from 2 indepen-
dent healthy donors with CD40 ligand (CD40L) and interleukin 4 (IL-4) with or without
EBV. Analysis of the EBNA1 expression by RT-qPCR showed that the infection worked
efficiently (Fig. 2C). Both treatment with CD40L and IL-4 and infection with EBV similarly
activated the B cells, as shown by the strong induction of expression of CCL22 (Fig. 2D),
a cytokine that is known to be produced during primary B-cell activation and EBV
infection (11). Importantly, significant downregulation of KDM2B mRNA expression was
observed only when the cells were infected with EBV (Fig. 2E). Moreover, infecting the
primary B cells with UV-inactivated EBV led to reduced downregulation of KDM2B
compared with that in the cells infected with the untreated virus (Fig. 2F), further
indicating that this event is independent of B-cell activation and requires active
expression of the viral genes. To assess whether downregulation of KDM2B depends on
differences between the proliferation status of the cells, we measured KDM2B expres-
sion in Akata2000 cells, an EBV(�) BL-derived cell line, and in Akata31 cells, which were
derived by expansion of a clone of Akata2000 cells that had lost the virus. Analysis of
the viral DNA in both cell lines confirmed that Akata31 cells had few or no EBV genomes
compared with Akata2000 cells (Fig. 2G). Interestingly, Akata2000 cells displayed very
low levels of KDM2B mRNA compared with Akata31 cells, indicating that KDM2B
expression varies according to the amount of virus (Fig. 2G) and independently of the
cell type. Similarly, reactivation of EBV by exposing Raji cells to 12-O-tetradecanoylphorbol-
13-acetate (TPA) and sodium butyrate (NaB) treatment led to reduced expression of KDM2B
(Fig. 2H). Finally, at 48 h after EBV infection, KDM2B mRNA and protein expression levels
were reduced in RPMI-8226 (RPMI) cells (Fig. 2I), confirming the results obtained in
EBV-infected primary B cells and further proving that downregulation of KDM2B expression
is a direct effect of the virus and not a side effect of the activation of the cells or of the
immortalization process.

To determine whether the reduced expression of KDM2B in EBV-immortalized cells
could be due to an increase in DNA methylation, LCL were treated with the demethy-
lating agent Aza and analyzed by RT-qPCR for the KDM2B expression level. Aza-treated
LCL showed increased expression of KDM2B mRNA compared with their untreated
counterparts, indicating that downregulation of KDM2B in EBV-infected cells is medi-
ated by DNA methylation (Fig. 3A). Because incorporation of Aza into DNA impedes its
methylation by DNA methyltransferases (DNMTs) (12), we hypothesized that EBV could
contribute to KDM2B silencing by increasing the recruitment of DNMT1 to the KDM2B
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FIG 2 EBV-dependent silencing of KDM2B expression in vitro. (A) Primary B cells from 3 independent donors were infected with EBV and
collected to make dry pellets at the indicated time points. Some of the infected cells were left in culture for 4 weeks (4w) to generate LCL.
Cell pellets were processed and analyzed for the expression level of KDM2B mRNA by RT-qPCR. The difference between the levels of
KDM2B in primary B cells (time point 0) and in EBV-infected cells was significant (*, P � 0.05; **, P � 0.01). The levels of KDM2B were
measured relative to its levels in LCL (which was used as the calibrator, for which the value was 1). (B) KDM2B protein expression levels
in primary B cells mock infected (MI) or infected with EBV for 48 h were analyzed by Western blotting (left). The KDM2B protein signal was
normalized to the levels of GAPDH. The histogram (right) shows the average from 3 independent experiments. (C to E) Primary B cells from
2 independent healthy donors were activated by treating them for 24 h with CD40L and IL-4, as described in Materials and Methods,
and/or infected with EBV for 48 h. Cells were then processed and analyzed for the expression levels of EBNA1 (C), CCL22 (D), and KDM2B
(E) mRNA by RT-qPCR. The results shown in the histogram are the average from 2 independent experiments (*, P � 0.05; ns, not
significant). EBNA1 mRNA levels were measured relative to its levels in EBV-infected untreated cells. CCL22 and KDM2B mRNA levels were
measured relative to their levels in mock-infected untreated cells. (F) Primary B cells were infected with 2 aliquots of the same EBV batch,
one of which was UV inactivated before infection. At 48 h after infection, cells were collected and EBNA1 and KDM2B expression levels
were assessed by RT-PCR and qPCR, respectively. The levels of KDM2B mRNA were measured relative to its levels in mock-infected cells.
(G) Akata2000 and Akata31 cells were collected, processed for DNA/RNA extraction, and analyzed for the presence of the EBV genome
by PCR (left) as well as for KDM2B expression levels by RT-qPCR (lower right) or RT-PCR (upper right). Viral DNA (left) indicates the relative
amount of the BFRF3 gene present in Akata2000 versus Akata31 cells that was analyzed by real-time PCR and normalized to the amount
of GAPDH in the extracted DNA. The levels of KDM2B mRNA were measured relative to its levels in mock-infected cells (*, P � 0.05). (H)

(Continued on next page)
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gene. Indeed, depletion of DNMT1 in LCL by transfection of DNMT1 small interfering
RNA (siRNA) led to an increased KDM2B mRNA level (Fig. 3B). Moreover, chromatin
immunoprecipitation (ChIP) experiments showed increased recruitment of DNMT1 to
the CpG site CpG21423404 of the KDM2B gene in EBV-infected RPMI cells (Fig. 3C).

Taken together, these results indicate that infection of B cells with EBV leads to
reduced expression of KDM2B, mediated by the recruitment of DNMT1 to its gene
promoter.

The oncogenic viral protein LMP1 induces the silencing of KDM2B. Next, we
assessed whether LMP1, the main EBV oncoprotein, plays a role in the deregulation of
KDM2B expression. To do this, we generated RPMI cells stably expressing LMP1
(RPMI-LMP1 cells). As a negative control, the cells were transduced with the empty
retroviral vector (pLNSX) (Fig. 4A). As revealed by RT-qPCR analysis, the expression level
of KDM2B was reduced in the RPMI cells expressing LMP1 (Fig. 4A). Thus, LMP1 appears
to play a role in the EBV-mediated downregulation of KDM2B expression. In addition,
treating RPMI-LMP1 cells with Aza led to a rescue of KDM2B mRNA levels (Fig. 4B). In

FIG 2 Legend (Continued)
Raji cells untreated or treated with TPA (50 ng/ml)-NaB (3 mM) for 48 h were analyzed for expression levels of BZLF1 and KDM2B mRNA
by RT-qPCR (*, P � 0.05). (I) RPMI cells untreated or infected with EBV were collected, processed for RNA and protein extraction, and
analyzed for the levels of the KDM2B protein (Western blotting, top) and mRNA (RT-qPCR, bottom). The levels of KDM2B mRNA were
measured relative to its levels in mock-infected cells.

FIG 3 Methylation-dependent silencing of KDM2B expression. (A) LCL were cultured for 96 h in the presence of
DMSO (nontreated [NT]) or 5-aza-2=-deoxycytidine (Aza). Cells were then collected, and the KDM2B expression
levels were analyzed by RT-qPCR. The histogram shows the average KDM2B mRNA levels measured in 3 indepen-
dent experiments (*, P � 0.05). KDM2B mRNA levels in Aza-treated LCL were measured relative to its levels in
DMSO-treated cells. (B) LCL were transfected with stabilized siRNA targeting DNMT1 (siDNMT1) in two independent
experiments. At 4 days after transfection, cells were collected and analyzed for the protein levels of DNMT1 (top)
and the mRNA levels of KDM2B (bottom). KDM2B mRNA levels in DNMT1-targeted siRNA-treated cells were
measured relative to its levels in cells treated with scrambled (scr) siRNA. (C) RPMI cells infected with EBV or mock
infected were fixed and processed for ChIP with a DNMT1 antibody or an IgG antibody as a negative control. The
eluted DNA was analyzed by qPCR with primers flanking CpG15695155, CpG21423404, and CpG island 127 (primer
sequences are described in Table 3) (*, P � 0.05; ns, not significant).
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contrast, no change in KDM2B mRNA expression was observed in the control cells after
treatment with Aza (Fig. 4B).

LMP1 activates both the NF-�B and Jun N-terminal protein kinase (JNK) pathways
through its CTAR1 and CTAR2 domains, respectively. Therefore, to gain insights into the
mechanism by which LMP1 deregulates KDM2B expression, we generated RPMI and
Louckes cells expressing LMP1 mutants harboring mutations in CTAR1 (3AAA mutant),
CTAR2 (378 mutant), or both (3AAA/378 double mutant) and therefore having a

FIG 4 LMP1 mediates downregulation of KDM2B. (A) RPMI cells were stably transduced with pLXSN or with pLXSN-LMP1 (LMP1) in four
independent transduction experiments. Cells were then collected, and the expression levels of LMP1 (left) and KDM2B (right) were
analyzed by RT-qPCR (****, P � 0.0001). (B) RPMI-pLXSN or RPMI-LMP1 cells were cultured in the presence of Aza (�) or DMSO (�) for 48 h,
and the KDM2B mRNA expression level was analyzed by RT-qPCR. The histogram shows the average from 2 independent experiments (*,
P � 0.05; ns, not significant). (C and D) Louckes cells were stably transduced with pLXSN, pLXSN-LMP1 (LMP1), or pLXSN-LMP1 mutants
(3AAA, 378, and 3AAA/378). Cells were collected and processed for RNA and protein analysis. mRNA expression and protein levels of LMP1
were detected by RT-PCR (C, top) and immunoblotting (C, bottom). KDM2B mRNA and protein levels were also shown by RT-qPCR and
immunoblotting, respectively (D, left and right). In panel D, the difference between KDM2B mRNA and protein levels in Louckes cells with
pLXSN and in Louckes cells stably expressing wild-type LMP1 was significant (*, P � 0.05; **, P � 0.01). The levels of KDM2B mRNA in cells
expressing wild-type (WT) LMP1 and LMP1 mutants were measured relative to its level in cells expressing pLXSN. (E) RPMI-LMP1 cells were
treated for 2 h with BAY11-7082 (Bay11) (10 �M) or with JNK inhibitor II (JNKII) (10 �M) in three independent experiments. KDM2B mRNA
levels were analyzed by RT-qPCR (*, P � 0.05). (F) RPMI pLXSN and RPMI-LMP1 cells, the latter of which were untreated or treated with
BAY11-7082 (10 �M) for 2 h, were fixed to perform ChIP with DNMT1 or IgG antibodies. The eluted DNA was analyzed by qPCR with
primers designed to surround CpG21423404. The histogram shows the average percentage of recruitment of DNMT1 in 4 independent
experiments (*, P � 0.05).
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hampered ability to activate the NF-�B pathway, the JNK pathway, or both (13). After
selection, cells were analyzed for LMP1 expression by RT-qPCR and immunoblotting. All
the cells generated expressed similar levels of the LMP1 transcript and protein (Fig. 4C),
with the exception of the LMP1 3AAA mutant, which appeared to be present at lower
protein levels than the wild-type LMP1 and the other LMP1 mutated molecules. This is
probably due to a reduced protein stability of the LMP1 3AAA mutant caused by the
mutation in the CTAR1 in the context of a wild-type CTAR2 domain; however, the
3AAA/378 double mutant and the 378 mutant showed mRNA and protein levels similar
to those of wild-type LMP1. We then compared the ability of the different LMP1
mutants to deregulate KDM2B expression. Whereas wild-type LMP1 efficiently down-
regulated KDM2B mRNA and protein expression (Fig. 4D), both the 3AAA mutant and
the double mutant were unable to downregulate KDM2B mRNA expression, and the
378 mutant partially maintained the ability to inhibit KDM2B expression (Fig. 4D),
indicating that the CTAR1 domain and, in part, the CTAR2 domain play a role in the
LMP1-mediated regulation process of KDM2B expression. The same results were ob-
served in RPMI cells stably expressing LMP1 and its CTAR mutants (data not shown). To
further evaluate the impact of the NF-�B and JNK pathways on LMP1-mediated KDM2B
deregulation, we treated RPMI-LMP1 cells with specific chemical inhibitors: BAY11-7082
and JNK inhibitor II, respectively. Whereas the JNK inhibitor had no effect, treating
RPMI-LMP1 cells with the NF-�B inhibitor BAY11-7082 led to a rescue of KDM2B mRNA
expression (Fig. 4E).

Previous studies showed that LMP1 activates and induces the recruitment of DNMT
proteins to the promoters of cancer-related genes (14–16). In line with these findings,
our ChIP experiments showed an increase in the recruitment of DNMT1 to the KDM2B
gene at the CpG21423404 position in LMP1-expressing cells compared with control
cells (Fig. 4F). Treating RPMI-LMP1 cells with BAY11-7082 significantly reduced the
amount of DNMT1 recruited to the KDM2B gene. Taken together, these data indicate
that EBV induces silencing of KDM2B expression mainly via the ability of its main
transforming protein, LMP1, to activate the NF-�B signaling pathway.

LMP1 is not the only EBV protein able to induce downregulation of KDM2B

expression. LMP1 is only rarely expressed in EBV(�) BL samples. Therefore, our
observation that KDM2B is downregulated and silenced in EBV(�) BL cell lines and
specimens led us to investigate whether EBV genes other than LMP1 could play a role
in this event. Infection of primary B cells with a recombinant EBV lacking the LMP1 gene
(EBVΔLMP1) still led to decreased expression of KDM2B mRNA (Fig. 5A). Downregula-
tion of KDM2B occurred at 12 h after infection of primary B cells with EBV; as expected
at this early time point, we could not yet detect LMP1 expression, and only the EBNAs
were efficiently expressed (Fig. 5B). Moreover, when comparing KDM2B mRNA expres-
sion levels in different EBV(�) BL-derived cell lines, in an LCL, and in primary B cells, we
observed a reduced level of KDM2B transcript in all the BL cells, independently of
whether they were in latency phase I or III (Fig. 5C). As expected, although BL cells in
phase I expressed EBNA1 but had little or no LMP1 expression, BL cells in phase III and
the LCL efficiently expressed both genes (Fig. 5C). Taken together, these experiments
indicate that KDM2B deregulation can also occur in the absence of LMP1 expression;
therefore, other EBV proteins could be involved in this event in BL cells. Transient
transfection of Louckes and RPMI cells with different constructs expressing a panel of
EBV genes (Fig. 5D and E) indicated that, in addition to LMP1, different latent viral
proteins could downregulate KDM2B mRNA. To rule out the possibility that this result
was the consequence of the activation of the NF-�B pathway as a side effect of the
transfection of the cells, we checked the levels of I�B� phosphorylation. As expected,
based on its known function (17), among the analyzed EBV proteins, LMP1 was the
most efficient in inducing NF-�B activation (Fig. 5F), indicating that the other viral
proteins may use other mechanisms to downregulate KDM2B mRNA expression.
MicroRNA-146-5p (miRNA-146-5p), which is known to target KDM2B expression, has
been reported to deregulate KDM2B mRNA levels during human papillomavirus (HPV)
infection (18). A previous study showed that EBNA2 induces the expression of miRNA-
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FIG 5 EBV also uses LMP1-independent mechanisms to downregulate KDM2B. (A) B cells from two donors were infected with EBV or
EBVΔLMP1 or mock infected (MI) and collected at 48 h after infection. Reverse-transcribed RNA samples were analyzed by qPCR for the KDM2B
expression level. (B) B cells from two donors were infected with EBV and collected at 12, 24, and 48 h after infection. Cells were processed
for RNA extraction and analyzed by qPCR for the expression levels of EBNA1, EBNA2, EBER, LMP1, and KDM2B transcripts. The expression levels
of viral gene transcripts were measured relative to their levels in B cells collected 12 h (EBNA2) or 48 h (EBNA1, EBER, LMP1) postinfection. The
levels of KDM2B mRNA were measured relative to its levels in mock-infected cells. (C) Different EBV(�) cell lines in latency phase I (BL110,
I100, MUTU) or in latency phase III (LCL, Raji, B95) and primary B cells (BC) were collected, processed for RNA extraction and reverse
transcription, and analyzed by qPCR for LMP1 (top), EBNA1 (middle), and KDM2B (bottom) mRNA levels. (D and E) RPMI (D) and Louckes (E)
cells were transiently transfected with different constructs carrying individual EBV genes (TC) in three independent experiments. At 48 h after
transfection, cells were processed for RNA and protein extraction and analyzed for the KDM2B expression level by RT-qPCR analysis. The levels
of KDM2B mRNA were measured relative to its levels in mock-infected cells. Western blotting (LMP1, EBNA1, EBNA3A/3B, and EBNALP) or
RT-PCR analysis (LMP2A, EBNA2, and EBNA3C) was performed to measure the expression of the different viral latent proteins. (F) RPMI cells
were transfected with different EBV gene-carrying constructs. At 44 h after transfection, cells were exposed to the proteasome inhibitor MG132
for 4 h and then collected, processed for total protein extraction, and analyzed for the indicated proteins by immunoblotting. The histogram

(Continued on next page)
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146-5p (19). Therefore, we tested whether miRNA-146-5p could contribute to KDM2B
downregulation during EBV infection. To do this, we treated primary B cells with a
miRNA-146-p5-specific inhibitor before EBV infection. As shown in Fig. 5G, this treat-
ment partially rescued KDM2B expression in the miRNA-146-p5 inhibitor-treated cells.
These results show that EBV may be able to reduce intracellular levels of KDM2B by a
redundancy of mechanisms, further indicating that this event could be important for
the virus.

KDM2B regulates expression of viral genes in EBV-infected B cells. To evaluate
the biological relevance of EBV-mediated KDM2B downregulation, we hypothesized
that the epigenetic enzyme could regulate EBV transcription, similar to what was
observed for other histone modifiers and chromatin-interacting proteins (e.g., EZH2,
CTCF, KMT5B) (20–22). To assess whether ectopic expression of KDM2B in B cells could
have an impact on EBV infection, we transfected increasing concentrations of a KDM2B
construct into Louckes cells, an EBV(�) BL-derived cell line. One day after transfection,
cells were infected with EBV-green fluorescent protein (GFP) and monitored for the
infection efficiency 24 h later. Figure 6A shows efficient overexpression of ectopic
KDM2B at both the protein and mRNA levels at 24 h after transfection. The infection
efficiency of Louckes cells transfected with the KDM2B expression vector or the control
empty vector (pCDNA) was indistinguishable, as revealed by TaqMan PCR, showing that
the increased KDM2B expression level did not alter the viral genome copy number per
cell (Fig. 6B). In contrast, the GFP mean fluorescence intensity (MFI) decreased in the
presence of enhanced KDM2B expression (Fig. 6C), indicating that KDM2B could affect
viral gene expression. Indeed, RT-qPCR analysis of the expression levels of different EBV
transcripts (LMP1, EBNA1, and BZLF1) at 24 h after infection showed a significant and
dose-dependent reduction in their mRNA levels in the presence of an increasing
amount of KDM2B (Fig. 6D). Taken together, these data suggest that KDM2B plays a role
in regulating EBV gene expression.

The results presented above, obtained by overexpressing KDM2B, could be due to
a generalized chromatin demethylation as a consequence of high intracellular levels of
the demethylase. Therefore, next we depleted endogenous KDM2B in Louckes cells by
transfecting an siRNA targeting KDM2B mRNA. RT-qPCR and Western blot analysis
showed that KDM2B was efficiently downregulated 24 h after transfection with the
specific siRNA (Fig. 6E). Cells were then infected with EBV-GFP and monitored for the
infection efficiency, as described above. At 24 h after infection, neither the percentage
of GFP-positive cells nor the genome copy number had changed significantly between
the control cells (cells transfected with scrambled siRNA [siSCR]) and the cells trans-
fected with the siRNA directed against KDM2B (Fig. 6F and data not shown), indicating
that the loss of KDM2B does not affect the efficiency of infection. However, efficient
depletion of KDM2B by siRNA led to a significant increase in EBV transcripts 24 h after
infection (Fig. 6G). This result indicates that a reduced intracellular level of KDM2B
promotes the expression of the viral genes, further confirming the ability of KDM2B to
repress EBV gene expression at early stages of infection.

KDM2B inhibits viral gene expression in latently infected EBV-immortalized B

cells. To test whether the activity of KDM2B in regulating EBV gene expression is
required for the maintenance of virus latency, similar to what has been reported for
other epigenetic enzymes (20), we aimed to overexpress KDM2B ectopically and
examine its impact on viral gene expression in EBV-immortalized B cells. LCL displayed
detectable KDM2B mRNA and protein levels, although they were lower than those in
primary B cells (Fig. 2A and B and data not shown). Therefore, KDM2B was overex-

FIG 5 Legend (Continued)
shows the average phosphorylated I�B� (P-I�B�) signal normalized to the levels of total I�B�. (G) B cells from different donors were untreated
or treated with a miRNA-146a-5p inhibitor for 24 h before infection with EBV. At 48 h after infection, cells were collected and processed for
RNA extraction and reverse transcription. cDNA samples were analyzed by qPCR for LMP1 and KDM2B expression levels. The levels of KDM2B
mRNA were measured relative to its levels in mock-infected cells. The histograms show the average expression levels measured in 2
independent experiments (*, P � 0.05). T0, time zero.
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pressed in LCL by ectopic expression of a KDM2B construct. At 48 h after transfection,
LCL were collected and processed for total protein and DNA/RNA extraction. Western
blotting and RT-qPCR showed substantial increases of KDM2B at the protein and mRNA
levels, respectively (Fig. 7A). LCL overexpressing KDM2B carried a similar number of EBV
genome copies compared with the same cells transfected with the control pCDNA
vector (Fig. 7B), as revealed by TaqMan PCR analysis. We then analyzed the mRNA
expression level of different EBV transcripts by RT-qPCR. Ectopic expression of KDM2B
led to a significant reduction in the mRNA level of all the analyzed EBV genes (Fig. 7C).
In contrast, depletion of KDM2B from LCL by transfecting KDM2B siRNA (Fig. 7D) led to
a significant increase in the expression of the viral genes compared with the expression
level of the same genes in LCL transfected with scrambled siRNA (Fig. 7F). Similar to

FIG 6 KDM2B deregulation alters EBV gene expression. (A) Louckes cells were transiently transfected with increasing concentrations of the KDM2B
expression vector in three independent experiments, collected at 24 h after transfection, and processed for protein and RNA extraction to assess
KDM2B levels by immunoblotting (top) or qPCR (bottom). (B) Cells were then infected with EBV, and at 24 h after infection they were collected
and processed for FACS analysis and for RNA/DNA extraction. DNA samples were used to measure EBV genome copy number by TaqMan PCR
(ns, not significant). (C) Live cells were analyzed by FACS to measure the GFP mean fluorescence intensity (MFI). (D) cDNA samples were analyzed
for the expression level of EBV early and late genes by qPCR. The levels of EBV genes transcripts were normalized to the mRNA levels of the
housekeeping gene �-globin and calculated relative to their levels in cells transfected with the empty vector (KDM2B, 0 �g). The values shown
in the histogram are the average from 3 independent experiments (*, P � 0.05). (E to G) Louckes cells were transfected with KDM2B siRNA and
scrambled siRNA as a control in three independent experiments. (E) At 24 h after transfection, half of the cells were collected and analyzed for
the expression levels of KDM2B protein (top) and mRNA (bottom), and half of the cells were infected with EBV. At 24 h after infection, cells were
collected and processed for RNA/DNA extraction. The number of EBV genome copies per cell was determined by TaqMan PCR on the DNA
template (MI, mock infected; Louckes cell DNA was also included as a negative control) (F), and qPCR of the cDNA samples enabled the assessment
of the mRNA expression levels of different viral genes, calculated as explained in the legend to panel D (G). siSCR, scrambled siRNA; siKDM2B,
siRNA targeting KDM2B mRNA.
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what we observed in EBV-infected Louckes cells, removal of KDM2B did not significantly
affect the EBV genome copy number (Fig. 7E). Taken together, these data indicate that
KDM2B controls viral gene expression in latently infected cells.

Next, we determined whether KDM2B could directly bind to EBV gene promoters to
regulate their expression. To do this, purified primary B cells infected or mock infected
with EBV for 48 h, as well as the corresponding LCL, were formaldehyde fixed and
processed for KDM2B ChIP (Fig. 8A). ChIP analysis showed that KDM2B can be recruited
to the EBV genome and, more precisely, to the Qp promoter at 48 h after infection. We
also found KDM2B recruited to the Cp promoter and to a region of the BZLF1 promoter
proximal to the start site (Zp 0) in EBV-immortalized B cells. However, we did not detect
KDM2B recruitment when we analyzed a region of the BZLF1 promoter 600 bp up-
stream of the start site (Zp �600) in the same cells (Fig. 8A, top), indicating that KDM2B
is specifically recruited to a specific region of the viral genome. As expected, we did not
detect KDM2B recruitment to the promoter of the housekeeping gene GAPDH
(glyceraldehyde-3-phosphate dehydrogenase); however, we observed efficient KDM2B
binding to a sequence located downstream of the transcription start site of the
ribosomal DNA (rDNA) repeated units 8 (H8) (Fig. 8A, bottom), which was previously
reported to be targeted by the epigenetic enzyme (23). These data indicate that KDM2B
is directly recruited to specific EBV promoter regions. To further assess the ability of
KDM2B to be recruited to the EBV genome, B cells were untreated or EBV infected,
collected, and processed for immunofluorescent in situ hybridization (immuno-FISH)
experiments. EBV DNA molecules were detected by FISH with a labeled probe directed
against the BamHI W EBV genomic repeated region; KDM2B was concomitantly de-

FIG 7 KDM2B regulates EBV gene expression in latently infected cells. (A to C) LCL were transfected with 1.5 �g of pCDNA3-KDM2B or with pCDNA
as a control in three independent experiments. Cells were collected at 24 h after transfection and processed for RNA/DNA and total protein
extraction. (A) KDM2B mRNA and protein levels were shown by qPCR (bottom) and immunoblotting (top; the lines corresponding to conditions
with 0.5 �g and 1 �g of KDM2B, originally present in the Western blot, are not shown because they were excluded from all the analyses). (B) DNA
samples were analyzed by TaqMan PCR to assess the number of EBV genome copies per cell (ns, not significant). (C) The mRNA expression levels
of EBV latent and early genes were assessed by qPCR (*, P � 0.05). The mRNA levels of viral genes in LCL overexpressing KDM2B were measured
relative to their levels in pCDNA-transfected control cells and normalized on the mRNA levels of �-globin. (D to F) (D) LCL transfected in three
independent experiments with KDM2B siRNA (siKDM2B) or scrambled siRNA (siSCR) as a control were collected at 48 h after transfection and
analyzed for the levels of KDM2B protein (top) and transcript (bottom). (E) DNA samples were analyzed by TaqMan PCR to assess the number of
EBV genome copies per cell. (F) The mRNA expression levels of EBV latent and early genes were assessed by qPCR (*, P � 0.05). Viral transcript
levels in KDM2B siRNA-treated cells were measured relative to their levels in siSCR-treated cells and normalized to the mRNA levels of �-globin.
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tected by immunofluorescence by using an anti-KDM2B antibody. In EBV-infected B
cells, KDM2B patches partially overlapped or were found in close proximity to the viral
DNA (on average, 40% of the green dots colocalized with the red dots) (Fig. 8B),
suggesting that the epigenetic enzyme is recruited to or is close to the viral genome at
early stages of infection. Taken together, our data demonstrate a role of KDM2B in
controlling EBV gene expression.

Deregulation of KDM2B mRNA level in B cells alters their expression profile.

KDM2B has been shown to play a role in cell differentiation, cell growth, and the
proliferation of hematopoietic cells (9). We therefore assessed whether altered KDM2B
expression could also have an impact on the B-cell phenotype in our experimental
models. Louckes cells and LCL overexpressing KDM2B did not show an altered prolif-
eration ability, nor did they show an altered cell cycle or apoptotic profiles (Fig. 9A to
D). Therefore, to gain further insights into the impact of KDM2B deregulation on B cells,
we performed an analysis with an RNA expression chip array in Louckes cells expressing
increasing levels of KDM2B (Fig. 9E). Cellular genes whose expression was significantly
altered by the enhanced levels of KDM2B were identified by bioinformatics analysis
(Fig. 9E). In line with the known function of KDM2B as a demethylase of H3K4me3, the
set of genes altered by KDM2B was enriched in H3K4me1 (Fig. 9F). Among the genes
that were significantly deregulated in the presence of altered KDM2B expression, some
play a role in immunity (Fig. 9G). Our analysis revealed that KDM2B overexpression was
associated with deregulated expression of genes involved in the tumor necrosis factor
receptor 2 (TNFR2) pathway (Fig. 9G). Interestingly, this pathway is important for the

FIG 8 KDM2B is recruited to the EBV genome. (A) Primary B cells from three donors were infected with EBV for 48 h or left immortalized until
they generated LCL. Mock-infected (MI) B cells, B cells infected with EBV for 48 h, and LCL were formaldehyde fixed and processed for ChIP using
a KDM2B antibody and an IgG antibody. The eluted DNA was analyzed by qPCR with primers designed on different EBV gene promoters. As
negative controls, the GAPDH promoter was also amplified, and the recruitment of KDM2B to its known cellular gene target, H8, was also assessed.
Qprom, Cprom, and Zprom, Qp, Cp, and Zp EBV promoters, respectively. (B) Louckes cells untreated or infected with EBV (the B95-8 strain) were
fixed on glass slides and processed for immuno-FISH. EBV DNA was detected by FISH, and KDM2B was detected by immunofluorescence.
Overlapping EBV and KDM2B signals are shown in the merge fields as yellow dots. The histogram shows the percentage of merged dots,
estimated by counting the number of EBV signals that colocalized with the KDM2B patches in at least 3 different fields from 3 independent
stainings. DAPI, 4=,6-diamidino-2-phenylindole.
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FIG 9 KDM2B deregulation alters cellular gene transcription. (A to D) Louckes cells (A and B) and LCL (C and D) were transfected with increasing
concentrations of the KDM2B expression vector. (A and C) At 24 and 48 h after transfection, viable cells were counted. (B and D) Transfected cells
were ethanol fixed and processed for cell cycle analysis by flow cytometry. (E) Louckes cells, generated as described in the legend to Fig. 5A, were
collected and processed for RNA extraction and RNA expression profiling, as described in Materials and Methods. The differential expression
analysis was conducted using BRB-ArrayTools software. (F and G) Genes differentially regulated in Louckes cells overexpressing KDM2B compared

(Continued on next page)
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transition of B cells from germinal center B cells to resting memory B cells (24).
Moreover, the TNFR2 pathway mediates specific tumor necrosis factor (TNF) effects and
is an important mediator of the cell antiviral response (9). Deregulated expression of
genes in this pathway was confirmed and validated by RT-qPCR (Fig. 9H) and by
Western blot analysis for two of them (MLKL and PRDX2), which were, respectively,
induced and downregulated during KDM2B overexpression in Louckes cells (Fig. 9I).
Taken together, these data indicate that KDM2B plays a role in B-cell differentiation and
in regulation of the TNF pathway, which is often altered during the lymphomagenic
process.

DISCUSSION

In this study, we show that a regulatory region within the gene encoding the KDM2B
protein is more methylated in EBV(�) BL than in EBV(�) BL, confirming data from our
previous study, which aimed to characterize the whole epigenetic profile of a set of
BL-derived cell lines of eBL or sBL origins. This region is found to be methylated in
certain cancer-derived cell lines (ENCODE DNA methylation tracks, CpG methylation by
Methyl 450K bead arrays from ENCODE/HAIB, UCSC Genome Browser). Furthermore,
KDM2B levels appear to be deregulated in cancers of hematological origin (9). We
therefore assessed whether increased methylation of the KDM2B gene in eBL is medi-
ated by EBV to deregulate intracellular levels of the histone modifier and promote
EBV-mediated lymphomagenesis. Indeed, KDMs have been shown to have altered
expression in cancer (25). For instance, a KDM2B paralogue, KDM2A, behaves as a tumor
suppressor in hematopoietic stem cells, in which it antagonizes mixed-lineage
leukemia-associated leukemogenesis by erasing H3K36me2 markers (26). Similarly,
altered levels of KDM2B could modify the chromatin structure and the pattern of
expression of B cells and favor their transformation.

eBL specimens and derived cell lines showed low KDM2B protein expression,
underscoring a potentially important role of KDM2B downregulation in the lymphoma-
genic process in vivo. Treating eBL cell lines with a chemical that blocks DNA methyl-
ation led to a rescue of the KDM2B mRNA level, indicating that DNA methylation
contributes to the silencing of KDM2B expression in these cells. However, the same
treatment left the level of the KDM2B transcript in EBV(�) sBL-derived cell lines
unchanged. These events are similar to what we have previously described for another
gene, ID3 (4). ID3, which plays a key role in lymphomagenesis and which is often found
mutated in the sBL variant (27, 28), was found to be silenced by hypermethylation in
eBL-derived cell lines (4). EBV infection therefore plays a direct role in eBL pathogenesis
by altering the cellular epigenome and deregulating the expression of genes with a key
role in lymphomagenesis. Indeed, in vitro infection of primary B cells with EBV led to
rapid downregulation of KDM2B expression. Low KDM2B mRNA levels at early stages of
EBV infection of primary B cells were also observed in a data set from RNA expression
profiling performed in an independent study (E. Manet, unpublished data). Our data
also show that downregulation of KDM2B by EBV is not due to a specific B-cell
activation status but is, rather, a direct result of infection by an actively transcribing
virus. We also show that downregulation of KDM2B expression in EBV-infected cells is
mediated by DNMT1 recruitment to its gene and by its DNA methylation. It has already
been reported that EBV can alter DNMT1 activity through its viral proteins LMP1 and
LMP2A (29). In particular, Tsai and colleagues showed that LMP1 activates DNMT1
activity (15) and that this event requires activation of the JNK/AP1 pathway.

Here, we show that cells stably expressing LMP1 display lower levels of KDM2B. The

FIG 9 Legend (Continued)
with their expression in Louckes cells transfected with an empty pCDNA vector were analyzed for their enrichment in specific pathways by using
the Enrichr web tool. Enrichment results for the Epigenomics Roadmap HM ChIP sequencing and BioCarta 2016 databases (top and bottom,
respectively) are shown. hESC, human embryonic stem cells; fMLP, N-formyl-methionyl-leucyl-phenylalanine; mhc, major histocompatibility
complex; TCR, T-cell receptor; MEF2D, myocyte enhancer factor 2D. (H and I) Differential expression of a set of genes found to be deregulated
in the expression profile array was validated by qPCR (H) and immunoblotting (I). The levels of the different transcripts were measured relative
to their levels in Louckes cells transfected with 0.5 �g of the KDM2B construct.
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ability of LMP1 to downregulate KDM2B depends mostly on its NF-�B activity, as shown
by using an LMP1 molecule mutated on its NF-�B-activating domain and by blocking
the NF-�B pathway via a specific chemical inhibitor. A LMP1 mutant lacking the JNK
activation pathway also downregulates KDM2B, but to a lesser extent than wild-type
LMP1. This indicates a partial contribution of that pathway to LMP1-mediated KDM2B
downregulation. However, exposing the cells to a specific JNK inhibitor had no effect
on the KDM2B mRNA expression level. Moreover, our ChIP experiments showed that
expression of LMP1 in the EBV(�) RPMI cells is able to trigger DNMT1 recruitment to the
KDM2B gene. The finding that the recruitment of DNMT1 to the KDM2B gene can be
hampered by treating LMP1-RPMI cells with the I�B� kinase inhibitor further confirms
its dependence on the ability of LMP1 to induce the NF-�B pathway. Recently published
data showed that HPV16 E6/E7 transforming proteins inhibit the expression of miRNA-
146-5p, known to target the KDM2B transcript, which results in an increase in the
KDM2B expression level in HPV16-infected cells. In contrast to E6/E7, the EBV trans-
forming protein LMP1 induces miRNA-146-5p via its ability to activate NF-�B (18).
EBNA2 also induces miRNA-146-5p (19). This event could contribute to the reduction in
the KDM2B mRNA level in EBV-infected cells. Our data show that blocking miRNA-
146-5p in primary B cells before infection leads to a partial rescue of KDM2B levels
compared with those in untreated cells. It is therefore possible that the virus uses
alternative mechanisms to target KDM2B: (i) increasing its DNMT1-mediated gene
methylation associated with LMP1 protein expression and (ii) controlling KDM2B mRNA
levels by a specific miRNA associated with the expression of LMP1 and/or EBNA2.
Further studies are needed to assess the contributions of deregulated miRNA-146-5p
levels to the events described here. Our data also indicate that proteins other than
LMP1 and EBNA2 appear to be able to mediate downregulation of KDM2B. EBV may
need to tightly control KDM2B levels and activity to regulate expression of its own
genes as well as that of cellular genes. Indeed, a recent study from Gillman and
colleagues showed that EBNA3C interacts with KDM2B by its TFGC motif (HD motif)
(30). Mutation of the latter motif impairs the ability of EBNA3C to bind to KDM2B and
repress its target genes (30).

Previous studies by us and others showed that EBV can modulate the level and the
activity of different epigenetic enzymes (20, 21, 31), which in turn play a role in
regulating viral gene expression. One example is EZH2, whose intracellular expression
level is induced in B cells by EBV infection in an LMP1-dependent manner (32). EZH2,
in turn, is recruited to the viral genome, where it participates in the establishment and
maintenance of EBV latency by methylating H3K27 in proximity to the BZLF1 and BRFL1
promoters (22). Our observation that EBV infection alters KDM2B expression prompted
us to assess whether the epigenetic enzyme could regulate EBV infection and/or the
EBV life cycle. Altering KDM2B expression in B cells before EBV infection or in latently
EBV-infected B cells led to the deregulated expression of all analyzed viral genes. This
was consistent with the recruitment of KDM2B to their respective promoters, as
observed by ChIP experiments. In line with its ability to demethylate the active
chromatin marker and repress transcription, KDM2B depletion in EBV-infected B cells
led to increased viral gene expression, whereas its forced ectopic expression had the
opposite effect and caused a strong reduction in the levels of viral transcripts. Taken
together, our data indicate that KDM2B plays a role in controlling EBV gene expression,
for instance, during the establishment of latency. Recruitment of KDM2B to the viral
episome during the first step of infection could be necessary for the repression of viral
gene transcription, especially at the end of the pre-latent phase, when the EBV lytic
genes are silenced to allow the virus to persist in resting peripheral B cells (32). In
contrast, KDM2B could work as a host restriction factor; therefore, its downregulation
during the early stages of EBV infection would allow efficient viral gene expression and
replication during the pre-latent phase. Future studies will be needed to investigate the
exact role of EBV-mediated KDM2B deregulation in EBV life cycle control.

It is known that in order to escape the immune surveillance of the host and establish
a chronic infection, EBV has evolved different mechanisms to maintain B cells in a status

Cross Talk between KDM2B and EBV Infection Journal of Virology

July 2019 Volume 93 Issue 13 e00273-19 jvi.asm.org 17

 on O
ctober 17, 2019 at IAR

C
 Library

http://jvi.asm
.org/

D
ow

nloaded from
 



of long-lived circulating memory B cells and prevent them from differentiating into
antibody-secreting plasma cells. A recent study showed that EBNA3A and EBNA3C
block the terminal differentiation of memory B cells to plasma cells by epigenetically
repressing the gene encoding BLIMP-1, a master regulator in B-cell differentiation (33).
Notably, a previous study showed that KDM2B plays a key role in the differentiation of
hematological stem cells (9). Therefore, EBV-mediated deregulation of KDM2B expres-
sion could contribute to the mechanism that prevents the cells from undergoing
terminal differentiation. This hypothesis is supported by our data from an RNA profile
analysis conducted on cells transfected with increasing levels of a KDM2B-expressing
construct. Cells harboring high KDM2B levels showed a deregulated expression of
genes enriched in the TNFR2 pathway, which is known to play a role in the differen-
tiation from B cells to plasma cells (24). TNFR2 also regulates the interferon pathway, an
important mediator of the antiviral response. Ablation of KDM2B in hematopoietic cells
has previously been shown to downregulate the interferon response (9). The down-
regulation of the KDM2B expression level upon EBV infection could therefore contrib-
ute to the viral escape from immune system surveillance.

Taken together, our data show a novel interplay between EBV infection and the host
epigenome. EBV alters KDM2B expression via an epigenetic mechanism involving LMP1
and other latent viral proteins. The histone modifier, in turn, plays a role in regulating
the expression of viral and host cell genes. These data, in addition to the observed
deregulated KDM2B levels in BL-derived cell lines, indicate that altered expression of
this epigenetic enzyme could contribute to B-cell transformation. Future studies aimed
at investigating the functional importance of KDM2B gene methylation and downregu-
lated expression during the EBV-mediated lymphomagenic process are warranted.

MATERIALS AND METHODS

Case selection, immunophenotype, and FISH. We studied 22 morphologically and immunophe-
notypically typical BL cases (11 sporadic and 11 endemic). All cases were diagnosed according to the
updated World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid
tissues (34). The cases were retrieved from the archives of Siena University Hospital (Siena, Italy; n � 2)
and Nairobi University (Nairobi, Kenya; n � 20). Before enrolling the cases in this study, they were
reevaluated by an expert hematopathologist (L.L.), and the diagnosis was confirmed by morphology on
histological slides stained with hematoxylin and eosin (H&E) or Giemsa and by immunophenotyping. The
main clinical features of our samples are summarized in Table 2. The study was conducted at the
University of Siena in Italy according to the principles of the Helsinki declaration after approval of the
local review board. All the procedures were carried out automatically on representative paraffin sections
from each case by Bench Mark Ultra (Ventana, Monza, Italy) using extended antigen retrieval and with
diaminobenzidine (DAB) as the chromogen.

Cell culture and treatment. Peripheral B cells were purified from blood samples using the Roset-
teSep human enrichment kit (catalog number 15064; Stem Cell Technologies). LCL were generated in this
study by infection of primary B cells from different donors. The myeloma-derived RPMI-8226 cells
(http://web.expasy.org/cellosaurus/CVCL_0014) and the BL-derived cell lines, including the BL EBV(�)
Louckes cell line (http://web.expasy.org/cellosaurus/CVCL_8259), were obtained from the International
Agency for Research on Cancer (IARC) Biobank. The Akata2000 and Akata31 cell lines (35) were also used
in the present study. Primary and immortalized B cells were cultured in RPMI 1640 medium (Gibco,
Invitrogen Life Technologies, Cergy-Pontoise, France) supplemented with 10% fetal bovine serum,
100 U/ml penicillin G, 100 mg/ml streptomycin, 2 mM L-glutamine, and 1 mM sodium pyruvate (PAA;
Pasching, Austria) or in advanced RPMI 1640 medium (catalog number 12633012; Life Technologies). EBV
(the B95-8 strain) particles produced by culturing HEK293EBVgfp cells were used to infect B cells. EBV
infection of B cells was performed either using a recombinant EBV-GFP genome or using the EBV mutant
strain EBVΔLMP1 lacking the entire LMP1. The percentage of GFP-positive cells was assessed by
fluorescence-activated cell sorting (FACS; FACSCanto system; Becton, Dickinson) and spanned from 10%
to 15% at 24 to 48 h postinfection in Louckes and RPMI cells and 60% to 80% when measured at 48 h
postinfection in primary B cells. Analysis of the cell cycle and apoptosis (sub-G1 phase) was performed
by ethanol fixing the cells and staining their DNA with propidium iodide at a final concentration of
5 �g/ml. Subsequently, cells were analyzed by FACS. Inactivation of EBV was performed with UV light
(6 � 10 mJ). EBV reactivation in BL cells was done by treatment of the cells with TPA (50 ng/ml) in
association with NaB (3 mM). Anti-miRNA treatment was done by the addition of Hsa-miR-146a-5p
miRCURY LNA miRNA power inhibitor (250 nM; Qiagen) directly to the cell culture medium 24 h before
infection with EBV. To induce their activation, primary B cells were seeded at a density of 0.5 � 106 cells
in 6-well dishes and treated with 100 ng/ml recombinant human CD40 ligand (hCD40L; catalog number
6245-CL; R&D Systems) and 20 ng/ml of recombinant human IL-4 (R&D Systems) for 48 h. Cells were then
collected and processed for further analysis. To block DNA methylation, cells were treated with 5-aza-
2=-deoxycytidine (�97%; catalog number A3656; Sigma-Aldrich) at a final concentration of 10 �M for 48
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or 96 h. To inhibit the different pathways, cells were treated with the I�B� kinase inhibitor BAY11-7082
(Calbiochem) at a final concentration of 10 �M or with the JNK inhibitor II SP600125 (catalog number
420119; VWR International), used at a final concentration of 10 �M. Cells were preincubated with the
different inhibitors for 1.5 h and 2 h.

qPCR. Total RNA was extracted using an AllPrep DNA/RNA minikit (Qiagen). RNA reverse transcription
to cDNA was carried out by the use of RevertAid H Minus Moloney murine leukemia virus reverse
transcriptase (Thermo Fisher Scientific), according to the manufacturer’s protocol. Quantitative PCR
(qPCR) was performed using a MesaGreen qPCR MasterMix Plus for SYBR assay (Eurogentec). For each
primer set, the qPCR was performed in duplicate and the mRNA levels obtained were normalized to the
average mRNA levels of three housekeeping genes (�-globin, �-actin, and GAPDH) measured in the same
samples or to the mRNA level of �2-microglobulin only. For each PCR, a sample in which the DNA
template was replaced with PCR-grade water was included as a negative control. To measure the EBV
genome copy number per cell, total DNA was extracted using an AllPrep DNA/RNA minikit (Qiagen) and
measured by use of a NanoDrop spectrophotometer. Similar amounts of DNA were used as a template
for TaqMan PCR, performed according to the protocol described by Accardi et al. (36). The PCR primer
sequences are indicated in Table 3. All the primers used for the first time in the present study were
assessed for their efficiency (90% to 110%).

miRNA-146-5p analysis. To analyze cellular miRNA, total RNA extracted by the AllPrep DNA/RNA
minikit (Qiagen) was reverse transcribed using an miRCURY LNA miRNA PCR system (miRCURY LNA RT
kit; catalog number 339340) according to the manufacturer’s protocol. The cDNA was then analyzed for
the levels of miRNA-146-5p using a specific miRNA qPCR primer (catalog number 339306; Hsa-miR-
146a-5p miRCURY LNA miRNA PCR assay) and a PCR kit (catalog number 339345; miRCURY LNA SYBR
green PCR kits) on a Bio-Rad qPCR machine (CFX96 Touch real-time PCR).

KDM2B overexpression and gene expression silencing. The KDM2B coding region was cloned into
a pCDNA3 vector in frame with a hemagglutinin (HA) tag at the N terminus. LCL (1 � 107) and Louckes
cells (5 � 106) were transfected with increasing concentrations of HA-KDM2B pCDNA3 (0.5, 1.0, and
1.5 �g) or with the pCDNA3 vector as a control by electroporation using a Neon transfection system
(10-�l tips; pulse voltage, 1,350 V; pulse width, 30 ms; pulse number, 1). At 24 h after transfection, the
cells were collected and processed for RNA/DNA extraction. Gene silencing of KDM2B was performed

TABLE 3 Primers used for qPCR and ChIP-qPCR

Primer use and primer

Sequence

Forward Reverse

qPCR
LMP1 CCAGTCCAGTCACTCATAACG CCTACATAAGCCTCTCACACT
EBNA1 GGTCGTGGACGTGGAGAAAA GGTGGAGACCCGGATGATG
DNMT1 GAG GAA GCT GCT AAG GAC TAG TTC ACT CCA CAA TTT GAT CAC TAA ATC
�2 microglobulin CTCACGTCATCCAGCAGAGA CGGCAGGCATACTCATCTTT
Beta globin GCATCTGACTCCTGAGGAGA AGCACACACACCAGCACATT
CCL22 ACTGCACTCCTGGTTGTCCT CGGCACAGATCTCCTTATCCC
PRDX2 GTG TCC TTC GCC AGA TCA CT ACG TTG GGC TTA ATC GTG TC
Actin CTG GGA GTG GGT GGA GGC TCA ACT GGT CTC AAG TCA GTG
GAPDH GCCAAAAGGGTCATCATC TGCCAGTGAGCTTCCCGTTC
KDM2B CCC AGC ATC TGA AGG AGA AG GTT GGA GGA ATC AGC CAA AA
LAT2 ACTCCTCTCTCTCCTGCAGA CGAGGATAGTAGGGGCAAGG
GNA15 AGAATCGCTTGAACCCAGGA ATTTCGAACTCCTGGCCTCA
TNFRSF13B AACTCGGGAAGGTACCAAGG GAAGACTTGGCCGGACTTTG
TNFRSF18 CTCTTGAAACCCGAGCATGG ACTCGGAACAGCACTCCTC
LTA ACTCCTCTCTCTCCTGCAGA AGGAAGAGACGTTCAGGTGG
MLKL AGGTCTAGGCCACACTTGTC TGCAGGTCATGGGCTTCTAA
BZLF1 AATGCCGGGCCAAGTTTAAGCA TTGGGCACATCTGCTTCAACAGGA
BDLF1 CGCAGACATGCTCGATGTA TAGTGGTGCCCCAGGTATG
EBER CCCTAGTGGTTTCGGACACA ACTTGCAAATGCTCTAGGCG
BDRF1 CGGAGTGGCTCAGTCTAAGG AGGTGGGCTGACACAGAC

ChIP-qPCR
CpG island 127 TGACCTCTGCAGCTTCCTCT GATGATCTGCCGCCAACTT
Z prom (0) TAGCCTCGAGGCCATGCATATTTCAACT GCCAAGCTTCAAGGTGCAATGTTTAGTG
Z prom (�600) AGGTATGTTCCTGCCAAAGC GTTCATGGACAGGTCCTGTG
H8 rDNA AGTCGGGTTGCTTGGGAATGC CCCTTACGGTACTTGTTGACT
BZLF1 prom GGAGAAGCACCTCAACCTG CTCCTTACCGATTCTGGCTG
EBNA Cp AGT TGG TGT AAA CAC GCC GT TCCACCTCTAAGGTCCCACG
Globin prom AGGACAGGTACGGCTGTCATC TTTATGCCCAGCCCTGGCTC
GAPDH prom CGTGCCCAGTTGAACCAGG AGGAGGAGCAGAGAGCGAAG
EBNA Qp GGCTCACGAAGCGAGAC GTCGTCACCCAATTTCTGTC
KDM2B cg21423404 ACCTGACACACCTCAACTCC TTGTGGTTTGGGAGAAGGGT
KDM2B cg15695155 CTTGCCCCTTCCCACTAGAG CCCTCTTCCCCAAACCATG
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using KDM2B (human) unique 27-mer siRNA duplexes (catalog number HSS150072; Thermo Fisher
Scientific). LCL (1 � 107) and Louckes cells (5 � 106) were transfected with the siRNA (final concentration,
250 nM) by electroporation using the Neon transfection system (10-�l tips; pulse voltage, 1,350 V; pulse
width, 30 ms; pulse number, 1). At 48 h after transfection, the cells were collected and processed for
RNA/DNA extraction. The levels of silencing were evaluated by qPCR using KDM2B-specific primers,
indicated in Table 3.

Immunoblotting and antibodies. Whole-cell lysate extracts were obtained using lysis buffer, as
previously described (37). The cell extracts were then fractionated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and processed for immunoblotting using standard
techniques. The following antibodies were used for immunoblotting: KDM2B (catalog number 09-864
from Merck Millipore and catalog number ab5199 from Abcam), mouse monoclonal anti-human MLKL
(catalog number SC-293201; clone 3B2; CliniSciences), LMP1 (S12 monoclonal antibody), �-actin (clone
C4; MP Biomedicals), and GAPDH. Images were produced using a ChemiDoc XRS imaging system
(Bio-Rad).

Immuno-FISH. Fifty thousand cells were resuspended in 5 �l of phosphate-buffered saline (PBS). The
cells were gently spread on a microscope glass slide, air dried, and fixed in 4% paraformaldehyde–PBS
for 10 min at room temperature. Slides containing fixed cells were washed 3 times in PBS for 5 min,
permeabilized with PBS–0.5% Triton X-100 (Sigma-Aldrich) for 15 min, and then washed twice with
PBS–0.05% Tween. The slides were then soaked in methanol–0.3% H2O2 for 30 min and incubated for 1 h
with antibody diluent (catalog number S3022; Dako) and then for 30 min with Image-iT FX signal
enhancer. The slides were incubated overnight at 4°C with an anti-KDM2B antibody (catalog number
ab5199; Abcam) diluted to a concentration of 1 �g/ml, followed by incubation with a secondary antibody
(anti-goat immunoglobulin; 5 �l/ml; Elite kit; Vector). To amplify the signal, the slides were incubated for
30 min at 37°C with ABC kit reagents according to the manufacturer’s protocol. EBV DNA staining by FISH
was performed as previously described (36), using a biotinylated probe to the EBV DNA genomic region
BWRF1 (A300P.0100 DS-Dish-Probes). The stained cells were visualized with a fluorescence microscope
with an incubator (Nikon Eclipse).

Immunohistochemistry and ISH for EBER. Immunohistochemistry analysis for KDM2B (dilution,
1:200; catalog number ab5199; Abcam) was performed by an automated staining system (Ventana
BenchMark Ultra; Roche Diagnostics, Monza, Italy) on formalin-fixed, paraffin-embedded 4-�m-thick
sections. An UltraView universal detection kit (Ventana) using a horseradish peroxidase multimer and
DAB (as the chromogen) was used. ISH for EBER was carried out in each sample on 4-�m-thick sections,
as previously reported (38). A control slide, prepared from a paraffin-embedded tissue block containing
a metastatic nasopharyngeal carcinoma in a lymph node, was used as a positive control.

Chromatin immunoprecipitation. ChIP was performed with Diagenode Shearing ChIP and OneDay
ChIP kits according to the manufacturer’s protocols. The following antibodies were used: KDM2B (catalog
number ab5199; Abcam), DNMT1 (catalog number MAB0079; Abnova), and IgG (Diagenode). The eluted
DNA was used as a template for qPCR with primers designed on the KDM2B gene. The primers used for
quantitative ChIP are listed in Table 3. The value of binding obtained for each antibody was calibrated
on the input sample and normalized to the values for IgG.

Bisulfite modification and pyrosequencing. Samples for pyrosequencing were processed as pre-
viously described (4, 39). The primers are indicated in Table 4.

Whole-genome expression analysis. Differential expression analysis was performed using human
HT-12 expression BeadChips (Illumina) as previously described (4, 36). Probes with P values of �0.01, a
false-discovery rate (FDR) of �0.05, and a fold change in expression of at least 1.5 were considered
differentially expressed.

TABLE 4 Primers used for pyrosequencing

Pyrosequencing primers

Sequence

Forward Reversea Sequencing primer

KDM2B cg15695155 GGAGTGGGGTAGAGTTGAA CCTACATACTACTAAACCCCC AGGTTTGGT
GAGTTTTAGGTGG
GGATGGGTAGTT
AGGGAAGGAATG
AGTGGAGATAATG

CpG.127 AAATACAACAACCCTCCTACC AAATACAACAACCCTCCTACC GGGTGGTTGGGATAG
TTTGGTTGGTTTGTT
TTTTTTTAAGTATAT
TTAAGTTTTTTTTA

KDM2B cg21423404 GATAAGTATAGGGAGGTTTGTGA CTATAAAACCATTTCCAACCC GTAGGTGGTGATT
GGTTATTAGAGT

GGGTTGGAAATGGTTTTATAG CCTCCCTAATAACTAAAACTACA GTTGTTTATATG
TTAATATAATGGT

KDM2B cg15695155 GAGTTTTAGGTGGTAYGGATG GAYGGATAGGGAGGAGTTAGT GGATGGGTAGTT
KDM2B cg00031896 GTAAAGGAGGAAATTAGGATTA TATGTTTAAAGGAGGTTGTATG TGGTTTGGTTAT
KDM2B cg21423404 AGGAGGAGTTTAGAGGTTATAGT AGTTATTGTAGGGGTAGATTTTAG GTAGGTGGTGATT
KDM2B cg12251659 GGAGGGAGTTYGGGAGGTAT TTGGAGGGTYGAGTTGTAGG AGTGYGTTTTTGTA
aThe reverse primer was labeled with biotin at the 5= end.
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Statistical analysis. Statistical significance was determined by Student’s t test. The P value of each
experiment is indicated in the corresponding figure legend. Error bars in the graphs represent the
standard deviation.
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Abstract

Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together

with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC).

Studies in in vitro and in vivo experimental models have highlighted the transforming proper-

ties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that

beta HPV types may be required only at an initial stage of carcinogenesis, and may become

dispensable after full establishment of NMSC. Here, we further investigate the potential

role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that

expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is

highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we

show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38

E6/E7 Tg mice accumulate a large number of UV-induced DNAmutations, which increase

proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg

skin lesions closely resembles that detected in human NMSC, with the highest mutation rate

in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion

of the viral oncogenes after development of UV-induced skin lesions did not affect the

tumour growth. Together, these findings support the concept that beta HPV types act only at

an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation.

Author summary

Many epidemiological and biological findings support the hypothesis that beta HPV types

cooperate with UV radiation in the induction of NMSC, the most common form of

human cancer. We have previously shown that K14 HPV38 E6/E7 Tg mice, when exposed
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to long-term UV radiation, developed NMSC, whereas WT animals subjected to identical

treatments did not develop any type of skin lesions. Here, we show that the high skin can-

cer susceptibility of these Tg animals tightly correlates with their tendency to accumulate

UV-induced mutations in genes that are frequently mutated in human NMSC. Impor-

tantly, deletion of the HPV38 E6 and E7 genes in existing skin lesions did not affect the

further growth of the cancer cells. Together, these findings support the model that beta

HPV infection is a co-factor in skin carcinogenesis, facilitating the accumulation of the

UV-induced DNAmutations.

Introduction
Non-melanoma skin cancer (NMSC) is the most common cancer in adult Caucasian popula-

tions [1]. The cutaneous human papillomavirus (HPV) types belonging to genus beta are sus-

pected, together with ultraviolet (UV) radiation, to be involved in NMSC [2,3]. The first two

beta HPV types, 5 and 8, were isolated from skin lesions of patients with a disorder called epi-

dermodysplasia verruciformis (EV). EV patients are highly susceptible to beta HPV infection

in the skin and develop cutaneous squamous cell carcinoma (cSCC) at anatomical sites

exposed to sunlight [4]. The fact that organ transplant recipients, due to their immunosup-

pressed status, have an elevated risk of beta HPV infection and development of cSSC provided

evidence for the role of beta HPV types in skin carcinogenesis also in non-EV individuals

[5,6]. Finally, many epidemiological studies support the link between these viruses and cSCC

in the general population [2,3,7]. These studies showed that, compared with the general popu-

lation, patients with a history of cSCC are more frequently positive for viral DNA in the skin

and/or for antibodies against the major capsid protein L1.

Molecular analysis showed that not all cancer cells contain a copy of the beta HPV genome

and that the copy number of the beta HPV genome is higher in pre-malignant actinic keratosis

(AK), a precursor lesion of SCC, than in SCC [8]. Thus, these data suggest that beta HPV types

may act at an initial stage of skin carcinogenesis and that after full transformation of the

infected cells, viral DNA can be lost. This model is consistent with the fact that additional

carcinogens are involved in skin carcinogenesis. Considering that UV radiation is the key risk

factor for cSSC development [9–11], the most plausible hypothesis is that beta HPV types exac-

erbate the accumulation of a large number of UV-induced somatic mutations, facilitating

cellular transformation. Subsequently, the expression of the viral oncogenes may become irrel-

evant for the maintenance of the malignant phenotype.

Several studies in human keratinocytes, the natural host of beta HPV types, showed that E6

and E7 from some beta HPV types target key pathways linked to DNA repair, apoptosis, and

cellular transformation [3]. Several transgenic (Tg) models for beta HPV have been generated

[12–16], some of which have highlighted the synergism between viral oncogene expression in

the skin epithelium and UV radiation in promoting cSCC [3]. Tg mice expressing beta HPV38

E6 and E7 in the basal layer of the epidermis under the control of the cytokeratin K14 pro-

moter (K14) did not spontaneously develop any lesions during their life span. Upon long-term

exposure to UV radiation (30 weeks), they developed first skin lesions closely resembling

human AK and subsequently cSCCs. In contrast, wild-type (WT) mice developed neither pre-

malignant lesions nor cSCCs when exposed to the same dose of UV radiation [15]. However, it

is still unknown whether the high susceptibility of the K14 HPV38 E6/E7 Tg animals to UV-

induced skin carcinogenesis is linked to the accumulation of mutations facilitated by the viral

oncoproteins, which may become dispensable after cSCC development. In this study, we

Hit-and-run mechanism of HPV38 in UV-induced skin carcinogenesis
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addressed this open question on the synergism between UV radiation and beta HPV38 E6 and

E7 oncoproteins using the Tg mouse model. We showed that viral oncoproteins act at an initial

stage of UV-induced skin carcinogenesis, facilitating the accumulation of a large number of

somatic mutations in crucial genes that are associated with cSCC development in humans. In

addition, silencing of the expression of the viral genes in established skin lesions does not affect

further tumour growth.

Results

Expression of HPV38 E6 and E7 in mouse skin facilitates the
accumulation of UV-induced DNAmutations
We have previously shown that HPV38 E6/E7 expression in mouse skin strongly increases sus-

ceptibility to UV-induced carcinogenesis [15]. To evaluate whether the development of skin

lesions present in K14 HPV38 E6/E7 Tg mice of chronic UV irradiation correlated with the

number of accumulated DNAmutations, we used whole-exome sequencing of WT and Tg

samples.

For this analysis, we selected normal skin fromWTmice not exposed or exposed to UV

radiation for 30 weeks (n = 2) and histologically confirmed skin specimens from three inde-

pendent K14 HPV38 E6/E7 Tg mice UV-irradiated for 30 weeks, i.e., (i) normal skin, (ii) pre-

malignant skin lesions and (iii) cSCC. For the pre-malignant lesions, the histological analyses

revealed that they have the classic features observed in humans of the precancerous condition

of AK, including slight atypia, parakeratosis, and acanthosis (S1 Fig) [15]. Exome sequencing

(Illumina Hi-Seq) of collected samples generated an average coverage of 141.71× ± 11.9

(mean ± standard deviation).

The genomic sequence of the WTmouse not exposed to UV radiation was used as a control

sample in paired analysis. Only 10 mutations were detected in the skin of the UV-irradiated

WTmouse. Similarly, less than 10 mutations were detected in the Tg mouse not exposed to

UV irradiation. In both cases, all the mutations were in genes not directly linked to carcino-

genesis (S1 Table).

In UV-irradiated Tg animals, the mutational load varied across our cohort of well-differen-

tiated cSCC exomes, averaging 3541 somatic variants (range, 3261–4027) or 68.58 ± 7.64 vari-

ants per Mb. The exome of the pre-malignant samples had substantially fewer variants, with

an average of 1337 somatic variants (range, 937–2026) or 23.14 ± 14.70 variants per Mb. The

exome of the chronically UV-exposed normal skin of Tg mice harboured an average of 15

somatic variants (range, 11–20) or 0.29 ± 0.08 variants per Mb (S2 Table). Thus, the number of

somatic mutations was proportional to the severity of the skin lesion; the average number in

SCCs was approximately double that in the pre-malignant lesions (Fig 1A).

The vast majority of the somatic mutations detected in SCCs were C:G> T:A mutations,

mutations that are also prevalent in the UV-induced mutational signature (Fig 1B and 1C). We

applied the non-negative matrix factorization (NMF) method to extract the mutational signa-

tures composed of 96 single base substitution (SBS) types considering the sequence context (one

base upstream and one base downstream) (S2 Fig). The extracted signature was compared with

known mutational signatures by the cosine similarity method [17,18]. The value of the similarity

obtained for the new B signature is 0.86 for COSMIC signature 27 (UV signature) (S2 Fig), indi-

cating the clear prevalence of the impact of UV radiation on the etiology of these cSCCs.

To assess the biological significance of the somatic mutations detected in the skin lesions

of the K14 HPV38 E6/E7 Tg mice, we determined whether they were detected in the previously

compiled lists of epi-driver and epi-modifier genes [19–23], as well as genes identified in

the Cancer Gene Census [24]. As shown in Fig 2, three classes of genes were found to be
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recurrently mutated in pre-malignant and malignant skin lesions of K14 HPV38 E6/E7 Tg ani-

mals, suggesting a selective process for the enrichment of mutations in these groups of genes.

Pathway analyses confirmed that the mutations detected in mouse cSCC affect key path-

ways intimately linked to cellular transformation (S3 Table).

A comparison of somatic mutations detected in our experimental Tg mouse model and in

human cSCC [25] revealed that a large number of epi-driver, epi-modifier, and Cancer Gene

Census genes were recurrently mutated in murine and human cSCC (Fig 3A).

A recent study identified the top human genes mutated in cSCC [26]. Interestingly, most of

these genes are also found to be mutated in the UV-induced skin lesions of the K14 HPV38

E6/E7 Tg animals (Fig 3B). In agreement with previous findings on human cSCC [25], Trp53

showed up as the most mutated gene in the murine Tg-derived cSCC (Figs 2A and 3B). Here,

p53 mutations appear to be an early event in skin carcinogenesis, because they were detected

in one sample of normal skin as well as in all pre-malignant lesions and cSCCs. In agreement

with our data, it was reported that p53 mutations can be detected in keratinocytes of UV-

exposed normal skin [27,28]. However, all mutations were identified in the p53 DNA-binding

domain (S4 Table), supporting their key role in the process of carcinogenesis. Consistent with

the fact that in keratinocytes the Notch signalling pathway promotes cell-cycle exit and differ-

entiation [29,30], NOTCH1 and NOTCH2 have been found to be mutated in human cSCC

[25]. In our Tg mouse model, mutated NOTCH1 and/or NOTCH2were also detected in all

three cSCCs, but never in pre-malignant lesions (Fig 3B).

Fig 1. HPV38 E6 and E7 induce an increased steady-state level of UV-inducedmutations inmouse skin keratinocytes. (A) UV-induced cSCCs in
K14 HPV38 E6/E7 Tg mice have a vast number of somatic mutations. SCCs display a very high mutational load, with each Tg animal (Tg1–3) harbouring
almost 3 times the number of variants compared with pre-malignant lesions (Pre-m). All differences in number of DNAmutations among the tree types of
specimens were statistically significant: * �0.05; ** �0.01; ****�0.0001. (B) cSCCs of K14 HPV38 E6/E7 Tgmice display the classic UV-induced
mutation signature with a very high number of C:G T:A mutations. This type of mutation represents the majority of the SNV type in SCC samples of the
three Tg animals. (C) Mutation spectrum of pooled SCC samples from the three mice. This spectrum displays the high prevalence of C:G T:Amutations,
especially in the 50-T_N-30 and 50-C_N-30 context. The y axis represents the percentage of mutations, and the x axis the trinucleotide sequence context.

https://doi.org/10.1371/journal.ppat.1006783.g001
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Fig 2. Cancer-related genes recurrently mutated in cSCCs of K14 HPV38 E6/E7 Tgmice. (A) Circos
presentation of mutations occurring in the same genes between the different mice. From the centre to the
outside, the skin samples (white), the lesion samples (yellow), and the SCC samples (grey) are displayed for
n = 3 mice each. Each track (three per colour) corresponds to one animal. Red dots represent C:G T:A
mutations, and black dots represent the other types of mutations. For Circos A, only the mutations that occur
in genes present in the Cancer Gene Census list from the COSMIC database are displayed, with the number

Hit-and-run mechanism of HPV38 in UV-induced skin carcinogenesis
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of recurrent mutations in these genes in parentheses. (B) For the epigenetic drivers/modifiers, only the
mutations that occur in the epi-driver or the epi-modifier gene lists are displayed. Blue gene names
correspond to genes that are only involved in epigenetic processes, and purple gene names correspond to
genes that are involved in epigenetic processes and that are present in the Cancer Gene Census list. The
total number of recurrent mutations occurring in each of these genes is also displayed in parentheses.

https://doi.org/10.1371/journal.ppat.1006783.g002

Fig 3. Several genesmutated in human skin lesions are alsomutated in the UV-induced skin lesions of cSCCs of K14 HPV38 E6/E7
Tgmice. (A) Heatmap of significantly mutated genes, corresponding to genes recurrently mutated in at least two mouse SCC samples and
reported in the Cancer Gene Census list from the COSMIC database (left panel) or having an impact on epigenetic regulation processes (right
panel). The types of mutation represented by colours are chosen according to the most prevalent mutation type in each sample. The data for
the human samples displayed in the first column are derived from a previous publication on cutaneous SCC. (B) Heatmap of mutations in
genes in normal skin, pre-malignant lesions, and cSCC from different mice (M1–3) reported as significantly mutated in human cSCC.

https://doi.org/10.1371/journal.ppat.1006783.g003
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Our previous data showed that HPV 38 E6 and E7 expression in human keratinocytes

resulted in accumulation of TAp53, which is recruited to the internal promoter located in

intron 3 of p53 gene, with resulting transcriptional activation of Np73 [31,32]. Fig 4 shows

that also in the mouse skin, expression of the viral genes leads to increased Np73 transcrip-

tion. In contrast, in histologically confirmed pre-malignant and SCC lesions, p53 mutation

correlates with a strong decrease in Np73 mRNA levels (Fig 4).

In conclusion, our findings show that the expression of HPV38 E6 and E7 oncogenes in

mouse skin increases susceptibility to UV-induced cSCC by facilitating the accumulation of

somatic mutations that have been clearly associated with skin cancer development in humans.

HPV38 E6 and E7 play a role at initial stages of UV-induced skin
carcinogenesis but are not required for cancer maintenance
Many studies support the role of beta HPV types, together with UV radiation, in the develop-

ment of skin SCC [2,3]. However, in contrast to the mucosal high-risk HPV types such HPV16

that are required in all steps of cervical carcinogenesis, beta HPV types appear to have a role in

the initial steps of carcinogenesis. To test this hypothesis, we constructed our K14 HPV38 E6/

E7 Tg mice as a conditional expression model with two loxP elements, located immediately

upstream and downstream of the viral genes [15]. Originally, we crossed the K14 HPV38 E6/

E7 Tg mice with K14 Cre-ERT2 Tg animals overexpressing the Cre recombinase gene fused to

a triple-mutant form of the human estrogen receptor that gains access to the nuclear compart-

ment only after exposure to 4-hydroxytamoxifen (TMX) but not to the natural ligand 17 -

estradiol, in order to silence E6/E7 expression by Cre-mediated deletion of the floxed viral

genes at different times of the chronic UV irradiation, i.e., different stages of SCC develop-

ment. Although the expression of the viral genes could be efficiently silenced upon administra-

tion of TMX to 5-week-old K14 Cre-ERT2 HPV38 E6/E7 compound mice, in the compound

Fig 4. Np73 mRNA levels are high in the skin of HPV38 E6/E7 Tgmice, but are decreased in the UV-
induced skin lesions harbouring p53mutations. Total RNA was extracted from the skin of WT (n = 4) or
K14 HPV38 E6/E7 Tg animals (n = 5) as well as histologically confirmed pre-malignant (pre-m) and SCC from
three independent mice and harbouring mutated p53. N73 levels were measured by quantitative RT-PCR.
The data shown are the mean of two independent experiments. The differences in N73 mRNA levels
betweenWT and K14 HPV38 E6/E7 Tg animals were statistically significant: * 0.05.

https://doi.org/10.1371/journal.ppat.1006783.g004
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mice a strong decrease in viral gene expression was observed during the 30 weeks of UV irradi-

ation in the absence of TXM treatment (S3 Fig). The loss of HPV38 E6 and E7 genes in long-

term experiments was most likely due to a basal, non-specific Cre recombinase activity in the

nucleus of mouse skin keratinocytes. None of the K14 Cre-ERT2 HPV38 E6/E7 Tg compound

lines developed cSCC after 30 weeks of UV irradiation, further highlighting the importance of

the viral proteins in UV-induced carcinogenesis.

Therefore, we developed a different strategy to evaluate the requirement of HPV38 E6 and

E7 genes for cancer maintenance (Fig 5A). K14 HPV38 E6/E7 Tg mice were exposed to long-

Fig 5. Luciferase expression vectors can be efficiently electroporated into skin lesions of K14 HPV38 E6/E7 Tgmice. (A) Schematic diagram of
the electroporation procedure of skin lesions of K14 HPV38 E6/E7 Tgmice. (B) Luciferase activity is detected in lesions electroporated with the control
vector (Luc) as well as in lesions electroporated with the plasmid coding for the Cre recombinase and luciferase genes (CRE-Luc). Mice and tumour
growth are closely monitored at regular intervals.

https://doi.org/10.1371/journal.ppat.1006783.g005
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term UV irradiation, and after the appearance of well-defined skin lesions, after about 22–25

weeks of irradiation, two different DNA vectors were delivered by electroporation into the

abnormal tissues. Because of the small size of the electroporated skin lesions, we could not per-

form any biopsy; therefore, we did not have any histological information about whether they

correspond to pre-malignant or malignant lesions. Results obtained in several independent

experiments showed that the lesions that occurred after 22–25 weeks of UV irradiation corre-

spond to pre-malignant lesions or an early stage of cSCC [15,16]. Both vectors contain a scaf-

fold/matrix attachment region (S/MAR) that keeps the plasmid in an episomal state, avoiding

any integration-mediated toxicity, and ensures robust and persistent gene expression [33]. The

vector codes for luciferase and Cre recombinase genes (Cre-Luc) separated by the P2A cleav-

age site, whereas the control vector expresses only a luciferase gene (Luc). Luciferase was used

to monitor the efficiency of transfection by non-invasive in vivo imaging, and Cre was used to

induce the excision of the viral genes. A total of 23 lesions on 14 mice were transfected either

with the Luc vector (n = 9) or with the Cre-Luc vector (n = 14). When possible, the same

mouse was injected with both vectors, each on a different lesion. Three representative mice are

shown in Fig 5B. Luciferase activity was detected in the animals’ skin in each of the electropo-

rated areas independently of the vector type.

After electroporation, the animals were irradiated until the end of the 30-week UV irradia-

tion protocol and closely monitored for several weeks to evaluate the progression of the skin

lesions. No significant difference in tumour growth was observed in animals transfected with

the Luc or Cre-Luc vectors (Fig 6A). Histological analyses confirmed that 100% percent of the

Luc-injected lesions and 93% of the Cre-Luc injected lesions (13 out of 14) evolved into inva-

sive cSCC; a morphological examination revealed no major differences between the two

groups of tumours (Fig 6B). Detection of the viral RNA transcripts by RNA-RNA in situ
hybridization confirmed that electroporation of skin lesions with the Cre-Luc vector, but not

with the Luc vector, resulted in the loss of E6/E7 expression in large islands of cancer tissue

(Fig 6B).

In conclusion, our findings show that after the accumulation of UV-induced DNAmuta-

tions and the development of skin lesions, the expression of the HPV38 E6/E7 genes is dis-

pensable for the maintenance of the malignant phenotype of skin cancer cells.

Discussion
Although the HPV family includes more than 200 types, to date only the mucosal high-risk

(HR) HPV types have been clearly associated with human carcinogenesis. These viruses are

the etiological agents of cervical cancers as well as a subset of other genital and oropharyngeal

cancers [34]. Beta HPV types have been proposed to be associated with cSCC. They were ini-

tially linked to cSCC in EV patients, but now many epidemiological and biological studies sup-

port the role of beta HPV types in skin carcinogenesis also in non-EV individuals [3].

We have previously shown in a Tg mouse model that expression of beta HPV38 E6 and E7

in the skin strongly increases the risk of cSCC development upon UV irradiation [15]. Here,

we showed that the higher susceptibility of K14 HPV38 E6/E7 Tg mice to UV-induced skin

carcinogenesis tightly correlates with the accumulation of a high number of mutations in the

keratinocyte genome. Remarkably, exposure of WT animals to the same doses of UV radiation

did not lead to accumulation of DNA mutations and development of cSCC. These data suggest

that the HPV38 oncoproteins can negatively affect the DNA repair machinery and/or immune

pathways that lead to the elimination of damaged cells. We have recently shown that K14

HPV38 E6/E7 Tg mice are hampered in the production of interleukin 18 (IL-18) during their

exposure to UV radiation [16]. Upon UV irradiation and activation of the inflammasome,

Hit-and-run mechanism of HPV38 in UV-induced skin carcinogenesis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006783 January 11, 2018 9 / 20



Fig 6. HPV38 E6 and E7 expression is not required for the viability of cancer cells in K14 HPV38 E6/E7
Tgmice. (A) Electroporated lesions were kept under control and the diameter was recorded weekly. On the day
of injection, the lesion diameter varied between 1.2 mm and 2.5 mm for the lesions injected with the Luc
plasmid, and between 1.3 mm and 2.6 mm for the lesions injected with the Cre-Luc plasmid. To standardize the
measurement, each lesion diameter was set to an arbitrary value of 1 on the day of injection, and the following
measurements were adjusted accordingly. The difference in tumour growth between the lesions injected with

Hit-and-run mechanism of HPV38 in UV-induced skin carcinogenesis
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keratinocytes secrete high levels of cytokines from the IL-1 family, including IL-18, thus induc-

ing a broad spectrum of processes, such as infiltration and activation of inflammatory leuko-

cytes, immunosuppression, DNA repair, and apoptosis [35–38]. Thus, it is likely that the high

susceptibility to UV-induced DNAmutations and skin carcinogenesis of K14 HPV38 E6/E7

Tg mice may be linked to the negative impact of HPV38 on IL-18 production.

Analysis of the mutational profile revealed that a large number of genes encoding for epi-

drivers or epi-modifiers and proteins known to be associated with carcinogenesis (Cancer

Gene Census) harbour missense or nonsense mutations. Most importantly, the gene mutation

profile found in murine cSCC shows remarkable similarities to the mutational profile found in

human cSCC. In particular, mutations in p53 appear to be an early event in murine and

human skin carcinogenesis. We have previously shown that beta HPV38 E7 alters the p53/73

network by inducing accumulation of p53/p73 antagonist Np73 [31,32]. In human kerati-

nocytes expressing beta HPV38 E6 and E7, Np73 forms a transcriptional inhibitory com-

plex, which binds a subset of p53-regulated promoters, preventing their activation in the

presence of cellular stress [39]. Because the major role of p53 is to safeguard genome integrity,

the high cancer susceptibility of K14 HPV38 E6/E7 Tg mice along with the high numbers of

accumulated UV-induced DNAmutations can be explained, at least in part, by the properties

of the beta HPV oncoproteins. However, once p53, and likely other cellular genes, are irrevers-

ibly inactivated by DNAmutations induced by UV radiation, the progression and mainte-

nance of the skin carcinogenic process could become independent of the expression of viral

genes. In agreement with this view, Np73 mRNA levels decrease strongly in UV-induced

skin lesions of K14 HPV38 E6/E7 Tg animals after accumulation of p53 mutations. In addi-

tion, we observed that the deletion of the HPV38 E6 and E7 genes does not affect further

growth of the tumour. In contrast, in K14 Cre-ERT2 HPV38 E6/E7 Tg the loss of the viral

genes at early stages of the irradiation protocol prevents the development of UV-induced skin

lesions, underlining the key function of HPV38 E6 and E7 in UV-mediated carcinogenesis.

These findings in the K14 HPV38 E6/E7 Tg mouse model are in agreement with the studies

on human skin lesions, supporting an early role of beta HPV types in skin carcinogenesis.

Indeed, the copy numbers of the beta HPV genome appear to be higher in the pre-malignant

lesion, AK, than in cSCC [8]. In addition, not all cancer cells contain a copy of a beta HPV

genome [8]. Thus, the mechanisms of carcinogenesis induced by beta HPV types appear to be

substantially different from those of the mucosal HR HPV types. In the case of the mucosal

HR HPV types, the viral oncoproteins are the major drivers of cancer development (e.g. in the

cervix) that, in addition, are required throughout the entire carcinogenic process (Fig 7). In

contrast, UV-induced damage is the main carcinogen of cSCC. Here, however, beta HPV

oncoproteins can facilitate the accumulation of UV-induced DNA damage but they are dis-

pensable after full development of a malignant lesion (Fig 7).

Why do different HPV types display different biological properties? Cutaneous and muco-

sal HPV types infect cells at distinct anatomical sites exposed to different environmental

the Luc plasmid and the lesions injected with the Cre-Luc plasmid was not significant according to an unpaired
two-sample Student’s t-test (p = 0.3108, t = 1.052; df = 14). The test was run on data from the fourth week,
because afterwards the number of living animals was substantially reduced. (B) Representative images of SCC
sections from two different HPV38 E6/E7 Tg mice. Sections were taken from tumours initially electroporated
with pS/MARt-Luc plasmid (Luc) or with pS/MARt-Luc-P2A-Cre plasmid (Cre-Luc). The morphological analysis
revealed no substantial differences between the specimens; the tumours were all classified as invasive cSCC,
with deep penetration into the dermis or into the muscular fibres, and clear and diffuse atypia. The loss of the
viral mRNA in the tumours injected with the Cre-Luc plasmid was confirmed by in situRNA hybridization using a
complementary (antisense) riboprobe, while the staining with a sense probe confirmed the specificity of the
signal.

https://doi.org/10.1371/journal.ppat.1006783.g006
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stresses. Thus, it is not surprising that they have evolved with divergent biological properties.

All HPV types rely on the DNA replication machinery of the host cell. Therefore, they must

have developed several mechanisms to maintain the infected cell in a proliferative state to

guarantee efficient viral genome replication. Exposure of skin keratinocytes to UV radiation

leads to accumulation of DNA damage, which in turn induces cell-cycle arrest or apoptosis to

allow repair or elimination, respectively, of the damaged cell. The cutaneous HPV types appear

to be able to circumvent this adverse effect of UV radiation on keratinocyte proliferation, pro-

moting the accumulation of damaged cells in the skin and, consequently, carcinogenesis.

Our previous findings showed that different HPV38 E6/E7 expression levels in independent

Tg lines influence the rate of SCC development [15]. Thus, it plausible to hypothesize that also

in humans, the viral gene expression levels may have an impact on UV-induced skin carcino-

genesis. Limited data are available on beta E6 and E7 gene expression in normal skin and pre-

malignant and malignant skin lesions (reviewed in [2,3]). There is no information on the dif-

ferent spliced forms of beta HPV genes and how they could determine a different efficiency in

protein synthesis. Thus, additional studies are required in humans to corroborate the findings

obtained in the Tg mouse model on the hit-and-run mechanism of HPV38 in UV-induced

carcinogenesis.

In conclusion, our findings in a Tg mouse model highlight a novel mechanism of infection-

associated carcinogenesis, in which the virus is not the driving force but synergizes with UV

radiation in promoting cSCC.

Fig 7. Schematic representation of well-known and hypothetical models of virus-associated carcinogenesis.

https://doi.org/10.1371/journal.ppat.1006783.g007
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Methods

Tg mice
The transgenic animal model FVB/NTgN(38E6E7)187DKFZ (https://mito.dkfz.de/mito/

Animal%20line/10954) has been previously described [15]. UVB irradiation was performed

under sevoflurane anaesthesia, and every effort was made to minimize suffering.

Ethics statement
The animal facility of the German Cancer Research Center has been officially approved by

responsible authority (Regional Council of Karlsruhe, Schlossplatz 4–6, 76131 Karlsruhe, Ger-

many), official approval file number 35–9185.64. Housing conditions are thus in accordance

with the German Animal Welfare Act (TierSchG) and EU Directive 425 2010/63/EU. Regular

inspections of the facility are conducted by the Veterinary Authority of Heidelberg (Berghei-

mer Str. 69, 69115 Heidelberg, Germany). All experiments were in accordance with the institu-

tional guidelines (designated veterinarian according to article 25 of Directive 2010/63/EU and

Animal-Welfare Body according to article 27 of Directive 2010/63/EU) and were officially

approved by Regional Council of Karlsruhe (File No 35–9185.81/G-64/13 and 35–9185.81/G-

200/15).

Plasmid construction
To generate the Luc and the Luc-Cre vectors, the pS/MARt-GFP DNA vector was first digested

with the restriction enzymes NheI and BglII to linearize the vector and eliminate the transgene

GFP. The InFusion system provided by Clonetech was used to introduce the luciferase gene

alone or in combination with the Cre recombinase gene to generate the vector pS/MARt-Luc

or the vector pS/MARt-Luc-P2A-Cre, respectively.

UVB treatments
UVB irradiation was performed with a Bio-Spectra system (Vilber Lourmat, Marne La Vallee,

France) at a wavelength of 312 nm as previously described [15]. Briefly, animals were anesthe-

tized with 3% Sevorane (Abbott, Wiesbaden, Germany) in an inhalation anesthetizer (Provet,

Lyssach, Switzerland) and placed in a covered compartment with an upper square opening

(3×2 cm) at a distance of 40 cm from the UVB lamp.

To study UV-induced carcinogenesis, 7-week-old female FVB/NWT or K14 HPV38 E6/

E7 Tg animals were shaved on the dorsal skin with electric clippers and irradiated 3 times a

week for 10 weeks with increasing doses of UVB, starting from 120 mJ/cm2 to a final dose of

450 mJ/cm2, with a constant weekly increase to allow skin thickening. For the following 20

weeks, mice were irradiated 3 times a week with 450 mJ/cm2. The UV irradiation protocol

was based on the data described in [40] and to mimic the situation in humans. For instance,

the maximum dose of the UV irradiation protocol, 450 mJ/cm2, corresponds to 50 minutes

of solar exposure in July in Paris. The tumour incidence (tumour bearers/group) was

recorded weekly. Tumours were identified first macroscopically and by histological diagno-

sis. After 30 weeks, or earlier if the tumour reached the ethically allowed maximal size, the

animals were sacrificed and H&E-stained sections of dorsal skin were used for histological

diagnosis.

Excision of floxed viral transgenes
To study the effect of the loss of the viral genes on skin cancer development, 7-week-old K14

HPV38 E6/E7 Tg mice (n = 14) were shaved on the dorsal skin and treated for 30 weeks with
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increasing doses of UVB as previously described [15]. As soon as skin lesions (maximum

diameter 2.6 mm) became evident, 46 μg of pS/MARt-Luc or 50 μg of pS/MARt-Luc-P2A-Cre

dissolved in isotonic saline solution was injected directly into the lesions. To facilitate the

uptake of the injected DNA, an electric field was applied to the area of the injection site using a

Tweezertrodes connected to a BTX ECM 630 generator (Harvard Apparatus, Holliston, MA,

USA). A first high-voltage electric pulse (1400 V/cm, 100 μs, 2 times), to induce temporary

gaps in the keratinocytes cell membrane, was followed by a low-voltage electric field (140

V/cm, 400 ms, 2 times), to facilitate the migration of the DNA into the cells. At 72 h after the

DNA injection, the mice were injected intraperitoneally with 150 mg/kg of luciferin in

sterile water, and the luciferase activity was then assessed using an IVIS Lumina III imaging

system (Perkin Elmer, Rodgau, Germany). When possible, a single mouse received both

plasmids at the same time, each on a different lesion. The UV irradiation continued until

week 30, according to the protocol [15]. The lesions were then closely monitored and the ani-

mals were sacrificed in accordance with an ethical protocol to avoid animal suffering. Skin

lesions were collected for histological examination and detection for HPV38 E6/E7 RNA by

in situ hybridization.

Total RNA isolation and reverse transcription PCR analyses
Total RNA was isolated from dorsal skin of WT (n = 4) or K14 HPV38 E6/E7 Tg animals

(n = 5) as well as histologically confirmed pre-malignant (pre-m) and SCC from three inde-

pendent mice. cDNA was synthesized from 1 μg of total RNA using M-MLV reverse transcrip-

tase (Invitrogen, Darmstadt, Germany), and a mix of random hexamers were used as primers.

Quantitative reverse transcription PCR (RT-qPCR) was performed in a 20 μl mixture contain-

ing 1 μl of 1:10 diluted cDNA and Mesa green quantitative PCR (qPCR) Master Mix (Eurogen-

tec, Angers, France) with specific mouse Np73 primers (50-GCCAAAAGGGTCATCATC-
30 and 50-TGCCAGTGAGCTTCCCGTTC-30) or mouse GAPDH primers to amplify a house-

keeping gene as internal control (50-GTGACCCCATGAGACACCTC-30 and 50-GTATGTC
CAGGTGGCCGAC–30), using an Applied Biosystems 7300 machine (Applied Biosystems,

Darmstadt, Germany). The fluorescence threshold value was calculated using the SDS analysis

software from Applied Biosystems.

In situ hybridization
Once the tumours reached the maximum ethically allowed size, the mice were killed and the

lesions isolated. Half of the lesion was embedded in OCT medium and slowly cooled down

to −80˚C. Sense and antisense riboprobes were generated from linearized plasmid DNA

containing full-length HPV38E6E7 cDNA using the Digoxigenin RNA labelling Mix from

Roche. RNA-RNA in situ hybridization was performed as previously described[41]. In brief,

serial 5 μm cryo-sections were mounted on Superfrost Plus slides (Thermo Scientific), fixed

in 4% paraformaldehyde in 2× SSPE, digested with proteinase K (0.5 μg/ml), and pre-hybrid-

ized at 42˚C for 2–4 h. Hybridization was performed overnight at 42˚C in 50% formamide,

2× SSPE, 10% dextran sulfate, 10 mM Tris-HCl pH 7.5, 1×Denhardt’s solution, 500 μg/ml

tRNA, 100 μg/ml herring sperm DNA, 0.1% SDS, and 10 μg/ml DIG-labelled riboprobe.

After hybridization, slides were washed once in 50% formamide, 2× SSPE; 0.1% SDS for 30

min at 50˚C, treated with RNaseA (50 μg/ml in 2× SSC, 0.1% SDS), and washed again in 50%

formamide, 0.5× SSPE, 0.1% SDS for 30 min at 37˚C. Hybridization signals were visualized

using Biotin Tyramide (TSA Biotin System, PerkinElmer) according to the manufacturer’s

protocol.
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Statistical analysis
Tumour growth values of lesions injected with the pS/MARt-Luc or pS/MARt-Luc-P2A-Cre

vector were compared with the two-sample t-test. The statistical analysis was performed with

GraphPad Prism (version 6, GraphPad Software Inc., La Jolla, CA, USA).

Exome analysis
The quality of the raw reads was estimated with FastQC software (version 0.11.5, http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were mapped to the GRCm38

Mouse reference genome (ftp://hgdownload.cse.ucsc.edu/goldenPath/mm10/) using Bur-

rows-Wheeler Aligner (BWA, http://bio-bwa.sourceforge.net/) version 0.7.15 and producing

a BAM file. The following GATK Best Practice Recommendations were applied to the BAM

files to improve variant detection quality. Picard (version 2.4.1, https://broadinstitute.github.

io/picard/) SortSAM was used to sort and index BAM files, and the AddOrReplaceR-

eadGroups tool was used to replace all read groups with a single new read group. The dupli-

cate reads were marked with the MarkDuplicates tool from Picard, and the newly produced

BAM file was indexed with the BuildBamIndex tool. GATK (version 3.6.0, https://software.

broadinstitute.org/gatk/download/) RealignerTargetCreator was used to determine the posi-

tion concerned by local realignment, and IndelRealigner was used to perform local realign-

ment around these sites. The GATK BaseRecalibrator tool was used to detect systematic

errors in base quality scores. Dbsnp and dbindel (version 142) for the mm10 reference

genome was downloaded from the Sanger website (ftp://ftp-mouse.sanger.ac.uk/REL-

1505-SNPs_Indels/) and considered as input. Lastly, the index of the output BAM file was

created with Picard BuildBamIndex, and GATK PrintReads was used to write out sequence

read data.

The quality of the alignment was estimated with Qualimap (version 2.0.2, http://qualimap.

bioinfo.cipf.es/). Then the variant calling was done with Mutect (version 1.1.7, http://archive.

broadinstitute.org/cancer/cga/mutect), by using a skin sample from aWTmouse not exposed

to UV as the “normal sample” for paired analysis. Only somatic mutations passing Mutect

internal filters were considered for the analysis. The VCF files are annotated with Annovar by

using the MutSpec Annot Tool in Galaxy [42]. Variants were then filtered based on SegDup

databases from UCSC (version from 4 May 2014, http://hgdownload.cse.ucsc.edu/goldenPath/

mm10/database/genomicSuperDups.txt.gz), as well as Tandem Repeat and Repeat Masker

(version from 9 February 2012, http://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/).

House-made scripts were then used to keep only SNPs that have a functional impact and fall in

exonic or splicing regions. Non-negative matrix factorization mutational signatures were

inferred with MutSpec-NMF tools, as previously reported.

The pathway analysis was performed using the EnrichR web application (http://amp.

pharm.mssm.edu/Enrichr/; citations�2). The input gene list was made by merging the

mutations detected in the pre-malignant lesions (n = 3) or cSCCs (n = 3) of the K14 HPV38

E6/E7 Tg animals. The analysis included only genes harbouring mutations that are likely

to alter the biological properties of the encoded products, i.e., 3111 genes in the pre-malig-

nant lesions and 6372 genes in the cSCCs. The gene lists were then loaded into the EnrichR

software, and the result from the KEGG database (version 2016) was considered. Only path-

ways with a significant adjusted p-value are shown in S1 Table. The list of pathways is

ranked by combined score (combined score is computed by taking the log of the p-value
from the Fisher exact test and multiplying it by the z-score of the deviation from the

expected rank).
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Comparison with epigenetic driver/modifier genes and Cancer Gene
Census list
The list of epigenetic driver and modifier genes was constructed on the basis of genes reported

in different publications [19–23]. The Cancer Gene Census list was downloaded from the

COSMIC website (12 November 2016, http://cancer.sanger.ac.uk/census) and is based on a

previous publication [24].

The comparison of the mouse data with the human data [25,26] was done with Bioconduc-

tor (release 3.4, https://www.bioconductor.org/) in R (version 3.3.2, “Sincere Pumpkin

Patch”). The module BioMart[43,44], version 2.3 enables the conversion of nearly 87.86% of

human gene names from the Chitsazzadeh et al. publication [26] to their corresponding

mouse gene names.

Supporting information
S1 Fig. Representative images of H&E-stained sections fromWT or Tg mice from which

the genomic DNA was extracted for exome sequencing. (A, B) Normal skin fromWT (A)

and K14 HPV38 E6/E7 Tg (B) mice UV-irradiated for 30 and 28 weeks, respectively. Both

specimens show a clearly intact epithelium composed of a few layers of keratinocytes. (C, D)

Pre-cancerous lesions from K14 HPV38 E6/E7 Tg mice UV-irradiated for 26 (C) and 28 (D)

weeks, respectively. In both lesions, the keratinocytes present acanthosis, diffused intraepithe-

lial atypia, and a high number of mitosis; an intact basal membrane is evident. Enlargements

of the most affected areas are displayed. (E, F). Cancerous lesions (SCC) from K14 HPV38 E6/

E7 Tg mice UV-irradiated for 26 (E) and 28 (F) weeks, respectively. Both sections are charac-

terized by the presence of polymorphic tumour cells with big nuclei, diffused presence of horn

pearls, and hyperkeratinization. The enlargements show tumour invasion of the subcutaneous

fat (E) or of muscle fibres (F). The stained sections were first scanned with no enlargement

and then zoomed in via software analysis.

(TIF)

S2 Fig. Mutational signature detected in skin keratinocytes of UV-irradiated K14 HPV38

E6/E7 Tg mice. (A) Mutational signature obtained after applying the NMFmethod to all 9

samples (3 normal skin, 3 pre-malignant lesions, and 3 SCCs). (B) The B signature shows a

strong identity with the UV signature (cosine similarity of 0.86). (C) The SCC and pre-malig-

nant samples of the different mice are the main contributors to inference of the B signature.

(TIF)

S3 Fig. Modulation of HPV38 E6 and E7 expression in skin keratinocytes of K14 Cre-ERT2

HPV38 E6/E7 Tg mice. Total RNA was extracted from dorsal skin keratinocytes from K14

HPV38 E6/E7 Tg mice (10-week-old, n = 3; 30-week-old, n = 3), and from Cre-ERT2 HPV38

E6/E7 Tg mice, treated (10-week-old, n = 9; 30-week-old, n = 4) or not (10-week-old, n = 7;

30-week-old, n = 4)) with 4-hydroxytamoxifen (TMX). HPV38 E6 mRNA quantification was

performed by quantitative RT-PCR. The relative quantification + SD is shown. The following

differences are statistically significant according to t-test analysis: 10-week-old K14 HPV38

E6/E7 Tg vs 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p< 0.05; 10-week-old K14 HPV38

E6/E7 Tg vs 30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p< 0.0001; 10-week-old K14

HPV38 E6/E7 Tg vs 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg + TMX, p< 0.0001;

10-week-old K14 HPV38 E6/E7 Tg vs 30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg + TMX,

p< 0.0001; 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg vs 10-week-old K14 Cre-ERT2

HPV38 E6/E7 Tg + TMX, p< 0.0001; 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg vs

30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p< 0.01; 30-week-old K14 HPV38 E6/E7 Tg vs
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30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p< 0.05; 30-week-old K14 Cre-ERT2 HPV38

E6/E7 Tg vs 30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg + TMX, p< 0.01.

(TIF)

S1 Table. Mutated genes in animals without skin lesions. Cellular pathways were linked to

the different gene products using the information at http://www.genecards.org.

(DOCX)

S2 Table. Global view of the somatic mutations and coverage of the sequencing of skin

samples from different mice (M1–3).

(DOCX)

S3 Table. Pathway analyses. The pathway deregulated in the pre-malignant lesions (A) or

cSCC (B). The gene list used as input is the consensus of the genes mutated in the different

pre-malignant samples. Only the significant pathways (adjusted p-value> 0.05) are shown.

(DOCX)

S4 Table. Trp53 nonsynonymous mutations in the DNA-binding domain detected in nor-

mal skin, pre-malignant lesions, and cSCCs.

(DOCX)
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A B S T R A C T

We have previously showed that a transgenic (Tg) mouse model with cytokeratin 14 promoter (K14)-driven
expression of E6 and E7 from beta-3 HPV49 in the basal layer of the epidermis and of the mucosal epithelia of
the digestive tract (K14 HPV49 E6/E7 Tg mice) are highly susceptible to upper digestive tract carcinogenesis
upon exposure to 4-nitroquinoline 1-oxide (4NQO). Using whole-exome sequencing, we show that in K14 HPV49
E6/E7 Tg mice, development of 4NQO-induced cancers tightly correlates with the accumulation of somatic
mutations in cancer-related genes. The mutational signature in 4NQO-treated mice was similar to the signature
observed in humans exposed to tobacco smoking and tobacco chewing. Similar results were obtained with K14
Tg animals expressing mucosal high-risk HPV16 E6 and E7 oncogenes. Thus, beta-3 HPV49 share some func-
tional similarities with HPV16 in Tg animals.

1. Introduction

Human papillomaviruses (HPV) are a large family of double-
stranded DNA viruses that infect the mucosal and cutaneous epithelia.
They are classified in a phylogenetic tree in genera, based on nucleotide
sequence homology of the major capsid protein L1 (Van Doorslaer
et al., 2013). Genus alpha HPV types have been most studied so far,
because a subgroup, the mucosal alpha high-risk (HR) HPV types, is
responsible for the development of cervical cancer and a subset of other
anogenital and oropharyngeal cancers. The products of two early genes,
E6 and E7, are the key oncoproteins of HPV (Tommasino, 2014). In
addition to alpha HPV types, genus beta HPVs also appear to be asso-
ciated with human carcinogenesis. Beta HPV types are subdivided into
five different species (beta-1–5), of which beta-1 and beta-2 are the
largest subgroups (Van Doorslaer et al., 2011). They are abundantly
present on the skin, and many findings support their role, together with
ultraviolet (UV) radiation, in the development of cutaneous squamous
cell carcinoma (cSCC) (Rollison et al., 2019). Accordingly, mechanistic
studies have well demonstrated the transforming properties of E6 and

E7 from a few beta-1 and beta-2 HPV types (e.g. HPV8 and HPV38) in in
vitro and in vivo experimental models (reviewed in refs. (Tommasino,
2017; Hasche et al., 2018). In particular, these viral oncoproteins are
able to promote proliferation and to circumvent cellular stresses in-
duced by UV radiation. These findings indicate that in the context of the
natural infection, beta HPV E6/E7 expression keeps cells alive despite
the accumulation of UV-induced DNA mutations. As a consequence,
beta HPV-infected keratinocytes may acquire a high probability of
progressing towards cellular transformation. Thus, beta HPVs act as
facilitators of the accumulation of UV-induced DNA mutations, but they
are not the main drivers. In agreement with this model, findings in-
dicate that beta HPV types are necessary at an early stage of carcino-
genesis and are dispensable for the maintenance of the cancer pheno-
type (Rollison et al., 2019).

In addition to the skin, beta HPV types can be found at other ana-
tomical sites, including the mucosal epithelia (Bottalico et al., 2011;
Forslund et al., 2013; Hampras et al., 2017; Pierce Campbell et al.,
2013; Torres et al., 2015). In particular, beta-3 HPV types, i.e. HPV
types 49, 75, 76, and 115, appear to preferentially infect the mucosal

https://doi.org/10.1016/j.virol.2019.09.010
Received 18 June 2019; Received in revised form 20 September 2019; Accepted 23 September 2019

∗ Corresponding author. Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas,
69372, Lyon Cedex 08, France.

E-mail address: tommasino@iarc.fr (M. Tommasino).



epithelia compared with the skin (Forslund et al., 2013; Hampras et al.,
2017).

Functional studies showed that E6 and E7 from beta-3 HPV49 and
the mucosal HR HPV16 share some functional similarities (Cornet et al.,
2012; Viarisio et al., 2016). Similarly to what has been observed in
HPV16 E6/E7 transgenic (Tg) mice (Strati et al., 2006), K14-driven
expression of HPV49 E6 and E7 in mouse epithelia resulted in elevated
susceptibility to upper digestive tract carcinogenesis upon initiation
with the tobacco-mimicking and DNA-damaging agent 4-nitroquinoline
1-oxide (4NQO) (Viarisio et al., 2016; Ikenaga et al., 1975). However,
these Tg mice did not show an increased susceptibility to chronic UV
irradiation compared with the wild-type (WT) animals. Vice versa,
beta-2 HPV38 E6 and E7 expression in K14 HPV38 E6/E7 Tg mice
strongly cooperates with UV radiation in the development of cSCC, but
the mice were little affected by 4NQO treatment (Viarisio et al., 2011,
2016). In the case of K14 beta-2 HPV38 E6/E7 Tg mice, the high cSCC
incidence upon long-term UV exposure tightly correlates with their
tendency to accumulate the classic UV-induced DNA mutational profile
(Viarisio et al., 2018), further supporting the model described above for
the role of the beta-1 and beta-2 HPVs as facilitators of UV-mediated
skin carcinogenesis. A similar scenario could be hypothesized in the
cooperation of beta-3 HPV49 E6 and E7 and 4NQO in promoting upper

Fig. 1. Representative images of H&E-stained sections from WT or Tg mice from which the genomic DNA was extracted for whole-exome sequencing.
Normal tissue, pre-malignant lesions (Pre-m), and squamous cell carcinoma (SCC) from the indicated mice exposed to long-term 4NQO treatment were collected for
DNA extraction. Tissues were also processed for histological analyses. The text in brackets indicates the anatomical site, followed by the number of specimens from
independent animals used for the whole-exome sequencing. From left to right, sections of unaffected esophagus, sections of esophagus affected by Pre-m lesions
characterized by medium grade dysplasia (WT, HPV16, HPV49 E6/E7 Tg mice) or high grade dysplasia (HPV38 E6/E7 Tg mouse), and sections of invasive SCC from
the tongue of a WT mouse and from the esophagus of HPV16 and HPV49 E6/E7 Tg mice. The stained sections were first scanned with a 5× enlargement and then
zoomed in via software analysis.

Fig. 2. The number of 4NQO-induced DNA mutations varies in the WT and
different K14 HPV E6/E7 Tg animals. After whole-exome sequencing, the
numbers of somatic mutations (SNPs and indels) were determined that have a
functional impact and fall in exonic or splicing regions, and have an allelic
fraction of 5% or more. The differences in mutation numbers between the
different animal models are statistically significant: normal versus Pre-m,
P=0.004; Normal versus SCC, P=0.002; Pre-m versus SCC, P=0.05. Bars
indicate standard deviations.
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digestive tract carcinogenesis in mice. However, no information is
available for the genome integrity of K14 beta-3 HPV49 E6/E7 Tg mice
upon exposure to 4NQO treatment.

In this study, we perform whole-exome sequencing of upper-diges-
tive tract lesions of different K14 HPV E6/E7 Tg animals and show that
HPV49 E6 and E7 strongly increase the accumulation of 4NQO-induced
DNA mutations.

2. Materials and methods

2.1. Animal models and ethics statement

All Tg animal models used in this study have been previously de-
scribed (Viarisio et al., 2011, 2016, 2018) and https://mito.dkfz.de/
mito/Animal%20line/10954, https://mito.dkfz.de/mito/Animal
%20line/11244, and https://mito.dkfz.de/mito/Animal%20line/
11245).

The animal facility of the German Cancer Research Center has been
officially approved by the responsible authority (Regional Council of
Karlsruhe, Schlossplatz 4–6, 76131 Karlsruhe, Germany) (file no.
35–9185.64). Housing conditions are thus in accordance with the
German Animal Welfare Act (TierSchG) and EU Directive 425 2010/63/
EU. Regular inspections of the facility are conducted by the Veterinary
Authority of Heidelberg (Bergheimer Str. 69, 69115 Heidelberg,
Germany). All experiments were in accordance with the institutional

guidelines (designated veterinarian according to article 25 of Directive,
2010/63/EU and Animal Welfare Body according to article 27 of
Directive, 2010/63/EU) and were officially approved by the Regional
Council of Karlsruhe (file no. 35–9185.81/G-164/12).

2.2. 4NQO treatment

Experimental groups of 6-week-old female WT or K14 HPV E6/E7
Tg mice of type 16, 38, and 49 were treated as described previously
(Viarisio et al., 2016) and https://mito.dkfz.de/mito/Tumor
%20model/10635). Biopsies were taken from the upper digestive
tract (tongue and esophagus) of both control and treated animals, used
for DNA extraction (DNeasy Blood and Tissue Kit, Qiagen, Hilden,
Germany) or fixed in 4% formaldehyde in phosphate-buffered saline for
24 h at room temperature, and embedded in paraffin. Sections of 5 μm
were then stained with hematoxylin and eosin (H&E). The whole-exome
sequencing was performed in the High-Throughput Sequencing unit of
the Genomics & Proteomics Core Facility of the German Cancer Re-
search Center (DKFZ) using Agilent SureSelect Whole Exome Kit.

The histological diagnosis was carried out in a blinded manner by a
certified pathologist (CF).

2.3. Exome analysis

The quality of the raw reads was estimated with FastQC software

Fig. 3. 4NQO-induced DNA mutations increase with the severity of upper digestive tract lesions in the different K14 HPV E6/E7 Tg animals. (A) Different
types of DNA mutations detected in upper digestive tract normal tissue, pre-malignant lesions (Pre-m), and squamous cell carcinoma (SCC) in Tg animals exposed to
long-term 4NQO treatment. (B) SCCs of K14 HPV49 E6/E7 Tg mice treated with 4NQO display a clear tobacco-induced mutational signature with a very high number
of C:G > A:T mutations. This type of mutation makes up the majority of the single-nucleotide variant types in Pre-m and SCC samples from the WT and Tg animals.
The y axis shows the percentage contribution of those mutations to signatures, and the x axis shows the trinucleotide sequence context. (C) Heatmap presenting the
similarity of the 4NQO-induced mutational signature to the 30 mutational signature available in COSMIC database version 2; the 4NQO-induced mutational signature
presents a cosine similarity closer to signature 4 (tobacco smoking; 0.9) than to signature 29 (tobacco chewing; 0.81).
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(version 0.11.5, http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads were mapped to the GRCm38 (mm10) mouse reference
genome (ftp://hgdownload.cse.ucsc.edu/goldenPath/mm10/) using
Burrows-Wheeler Aligner (version 0.7.15, http://bio-bwa.sourceforge.
net/) and producing a BAM file. The following GATK Best Practice
Recommendations were applied to the BAM files to improve variant
detection quality. Picard (version 2.4.1, https://broadinstitute.github.
io/picard/) SortSam was used to sort and index BAM files, and the
AddOrReplaceReadGroups tool was used to replace all read groups with
a single new read group. The duplicate reads were marked with the
MarkDuplicates tool, and the newly produced BAM file was indexed
with the BuildBamIndex tool. GATK (version 3.6.0, https://software.
broadinstitute.org/gatk/download/) RealignerTargetCreator was used
to determine the position concerned by local realignment, and
IndelRealigner was used to perform local realignment around these
sites. The GATK BaseRecalibrator tool was used to detect systematic
errors in base quality scores. dbSNP and dbindel (version 142) for the
GRCm38 (mm10) reference genome was downloaded from the Sanger
website (ftp://ftp-mouse.sanger.ac.uk/REL-1505-SNPs_Indels/) and

considered as input. Lastly, the index of the output BAM file was cre-
ated with Picard BuildBamIndex, and GATK PrintReads was used to
write out sequence read data.

The quality of the alignment was estimated with QualiMap (version
2.0.2, http://qualimap.bioinfo.cipf.es/). Then, the variant calling was
done with MuTect2 (https://software.broadinstitute.org/gatk/
documentation/tooldocs/3.6-0/org_broadinstitute_gatk_tools_walkers_
cancer_m2_MuTect2.php) by using a skin sample from a WT mouse not
exposed to 4NQO as the “normal sample” for paired analysis. Only
somatic mutations passing the MuTect2 internal filters were considered
for the analysis. The VCF files are annotated with Annovar by using the
MutSpec-Annot tool in Galaxy (Ardin et al., 2016). Variants were then
filtered based on SegDup databases from UCSC (version from 4 May
2014, http://hgdownload.cse.ucsc.edu/goldenPath/mm10/database/
genomicSuperDups.txt.gz), as well as Tandem Repeat and Re-
peatMasker (version from 9 February 2012, http://hgdownload.soe.
ucsc.edu/goldenPath/mm10/bigZips/) (Tables S1–17). House-made
scripts were then used to keep only SNPs that have a functional impact
and fall in exonic or splicing regions. NMF mutational signatures were

Fig. 4. Analyses of mutated genes in normal tissue and lesions from 4NQO-exposed Tg animals. (A) Heat-map of significantly mutated genes, corresponding to
genes mutated in the corresponding sample and reported in the Cancer Gene Census list from the COSMIC database. The types of mutations indicated by colors are
chosen according to the most prevalent mutation type in each sample. For categories with more than one sample (WT mice Normal: n=3, HPV49 Tg mice Pre-m:
n=2, and HPV49 Tg mice SCC: n=4), only the genes mutated in more than 50% of the samples are considered, and the type of mutation is defined as the most
prevalent type among the samples. (B) Heatmap of significantly mutated genes, corresponding to genes mutated in the corresponding sample and reported to have an
impact on epigenetic regulation processes. The types of mutations indicated by colors are chosen according to the most prevalent mutation type in each sample. For
categories with more than one sample (WT mice Normal: n=3, HPV49 Tg mice Pre-m: n=2, and HPV49 Tg mice SCC: n=4), only the genes mutated in more than
50% of the samples are considered, and the type of mutation is defined as the most prevalent type among the samples. (C) Heatmap of mutations in top genes mutated
in human esophageal SCCs and their corresponding gene names in 4NQO-exposed animals. The types of mutation indicated by colors are chosen according to the
most prevalent mutation type in each sample.
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inferred with MutSpec-NMF tools, as previously reported.
The raw sequencing data has been deposited in Sequence Read

Archive (NCBI) database, under the accession number PRJNA557836.

2.4. Comparison with epigenetic driver/modifier genes and Cancer Gene
Census list

The list of epigenetic driver and modifier genes was constructed on
the basis of genes reported in different publications (Gonzalez-Perez
et al., 2013; Shen and Laird, 2013; Sturm et al., 2014; Timp and
Feinberg, 2013; Vogelstein et al., 2013).

The Cancer Gene Census list was downloaded from the COSMIC
website (March 2019, http://cancer.sanger.ac.uk/census).

The comparison of the mouse data with the human data was done
with Bioconductor (release 3.6, https://www.bioconductor.org/) in R
(version 3.4.4, codename “Someone to Lean On”). The top mutated
genes in human esophagus SCC were retrieved from the Genomic Data
Commons Data Portal (https://portal.gdc.cancer.gov/). The module
BioMart (Durinck et al., 2005, 2009) (version 2.34.2) enables the
conversion of 35 of the 40 (87.5%) top mutated human gene names to
their corresponding mouse gene names using the Ensembl database
(version 95). The heatmaps were generated considering the genes
mutated in more than 50% of the analyzed samples, i.e. WT mice
Normal: n=3, HPV49 Tg mice Pre-m: n=2, and HPV49 Tg mice SCC:
n=4).

2.5. Comparison with human cancer mutated genes

Data from human head and neck (HNC) cancers were retrieved from
the Genomic Data Commons Data Portal (https://portal.gdc.cancer.

gov/). Sample were selected for the following anatomical divisions:
tonsil, oropharynx or base of the tongue. A gene was included in the
analysis if mutated in at least one individual of the cohort considered.
The module BioMart (Durinck et al., 2005, 2009) (version 2.34.2) en-
ables the conversion of 6056 of the 7030 (86%) mutated mice gene
names.

3. Results

3.1. Whole-exome sequencing analyses of upper digestive tract lesions from
4NQO-treated mice

To evaluate whether the high susceptibility of K14 beta-3 HPV49
E6/E7 Tg mice to 4NQO-induced cancers can be explained by their
tendency to accumulate DNA mutations, we performed whole-exome
sequencing (Illumina HiSeq). WT animals were included in the ex-
periment as a comparative model. In addition, we selected a few spe-
cimens of 4NQO-treated K14 HPV16 or HPV38 E6/E7 Tg animals,
which showed, respectively, high and low susceptibility to 4NQO-
mediated carcinogenesis (Strati et al., 2006; Viarisio et al., 2016). As
shown in Fig. 1, histologically confirmed specimens were selected from
4NQO-treated animals from two independent experiments (Viarisio
et al., 2016) (Fig. 1). In the 4NQO-treated WT animals, only one SCC
was detected and included in the whole-exome analysis, whereas
4NQO-treated K14 HPV38 E6/E7 Tg mice did not develop any SCC
(Viarisio et al., 2016).

For the analysis of the DNA mutations in 4NQO-treated animals, the
genomic sequence of the WT mouse not exposed to any type of treat-
ment was determined in an independent experiment (Viarisio et al.,
2018) and was used as a control sample in paired analysis. Exome

Fig. 4. (continued)
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Fig. 4. (continued)

Table 1
Number and type of mutations in WT and Tg animals upon 4NQO treatments. Each specimen processed for whole exome sequencing was collected from different
mice (n:17).

Mouse
Number

Mouse
Type

Tissue type Histo-
pathology

Mutect2a Somatic
mutations (SNP;
indels)

Number of
mutated genes

Number of cancer
gene census mutated
(n= 801)

Number of cancer gene
Epidriver/EpiModifier
(n=637)

Number of shared mutated
genes in animals and
human ESCAb (n= 40)

1 WT Esophagus Skin 18 (18; 0) 18 1 1 0
2 WT Esophagus Skin 13 (11; 2) 13 1 0 0
3 WT Esophagus Skin 32 (30; 2) 32 0 2 0
4 WT Esophagus Pre-M 739 (726; 13) 694 37 27 10
5 WT Tongue SCC 2056 (2036; 20) 1824 107 86 23
6 HPV16 Esophagus Skin 14 (12; 2) 14 1 1 0
7 HPV16 Esophagus Pre-M 1657 (1640; 17) 1505 73 58 17
8 HPV16 Esophagus SCC 1943 (1931; 12) 1723 93 78 23
9 HPV38 Esophagus Skin 16 (14; 2) 16 3 1 0
10 HPV38 Esophagus Pre-M 324 (315; 9) 316 14 14 5
11 HPV49 Tongue Skin 12 (12; 0) 12 2 0 0
12 HPV49 Esophagus Pre-M 235 (234; 1) 228 10 5 2
13 HPV49 Esophagus Pre-M 2543 (2522; 21) 2216 110 97 23
14 HPV49 Esophagus SCC 3413 (3397; 16) 2795 150 109 26
15 HPV49 Esophagus SCC 3623 (3590; 33) 2994 145 134 25
16 HPV49 Esophagus SCC 2709 (2692; 17) 2318 121 98 25
17 HPV49 Esophagus SCC 1648 (1637; 11) 1484 79 69 21

a Mutect2 filtered mutations (see Methods for filtering parameters).
b ESCA: Esophageal Carcinoma.
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sequencing of the collected samples generated an average coverage of
154.66× ±15.82× (mean ± standard deviation). Normal tissue
from all four types of animals contained a relatively low number of
somatic mutations (18 ± 6.61) (mean ± standard deviation) (Fig. 2).
In contrast, the number of somatic mutations increased according to the
severity of the lesions (Fig. 2). In 4NQO-exposed Tg animals, the mu-
tational load varied across our cohort of pre-malignant lesions, aver-
aging 1102 somatic variants (range, 235–2547) or 4.67 ± 3.73 var-
iants per Mb. The exome of the well-differentiated SCCs had a
substantially higher number of variants, with an average of 2571 so-
matic variants (range, 1648–3638) or 11.89 ± 3.18 variants per Mb.

In conclusion, whole-exome sequencing revealed that K14 HPV16
and HPV49 E6/E7 Tg mice have a high susceptibility to the accumu-
lation of DNA mutations induced by 4NQO treatment.

3.2. Characterization of DNA mutations in 4NQO-treated animals

Most of the somatic mutations detected in pre-malignant lesions and
SCCs were C:G > A:T mutations (Fig. 3A) (Tables S1–17). The appli-
cation of the non-negative matrix factorization (NMF) method enabled
the extraction of the mutational signatures composed of 96 single base
substitution types, considering the trinucleotide sequence context (one
base upstream and one base downstream) (Fig. 3B). Next, we compared
the mutational signature of 4NQO-treated K14 HPV49 E6/E7 Tg mice
mice with the 30 mutational signatures available in COSMIC database
version 2, by the cosine similarity method (Alexandrov et al., 2013;
Olivier et al., 2014). The value of the cosine similarity obtained for the
new signature is 0.9 for COSMIC signature 4 (tobacco smoking) and 0.8
for COSMIC signature 29 (tobacco chewing) (Fig. 3C).

To evaluate whether the somatic mutations detected in specimens
from the 4NQO-treated animals have some biological relevance in the
development of pre-malignant and malignant lesions, we compared the
list of mutated genes in our animal models with one identified in the
Cancer Gene Census (Futreal et al., 2004; Sondka et al., 2018). Cancer
genes were found to be mutated in pre-malignant and malignant lesions
from 4NQO-treated mice (Fig. 4A). In addition, the number of mutated
cancer genes gradually increased in SCCs from WT, K14 HPV16 E6/E7
Tg, and K14 HPV49 E6/E7 Tg animals. Only one cancer gene was found
mutated in the pre-malignant lesion of K14 HPV38 E6/E7 Tg animals.

Similar results were obtained when we analyzed the DNA mutations
in epi-driver and epi-modifier genes (Gonzalez-Perez et al., 2013; Shen
and Laird, 2013; Sturm et al., 2014; Timp and Feinberg, 2013;
Vogelstein et al., 2013) (Fig. 4B). K14 HPV49 E6/E7 Tg animals showed
higher number of mutated genes upon 4NQO exposure in comparison
WT and the other HPV Tg mice (Table 1).

We have previously shown in K14 HPV38 E6/E7 Tg animals that the
viral proteins acts an early stage of UV-induced skin carcinogenesis
facilitating the accumulation of DNA mutations, but they are dis-
pensable for the cancer cell growth after full development of cSCC
(Viarisio et al., 2011; 2018). To evaluate whether HPV38 and HPV49
cooperates with UV and 4NQO, respectively, to alter a similar pattern of
cellular genes/pathways in mouse carcinogenesis, we compared the
DNA mutations of SCC from 4NQO-exposed HPV49 Tg mice and UV-
exposed HPV38 Tg mice. We identified a large number of common
mutations (n=3705) in malignant lesions of both animal models,
leading to alteration of similar cellular pathways (Fig. S1).

Finally, we compared the pattern of DNA mutations detected in
lesions from 4NQO-exposed Tg animals with the pattern of mutations
found in esophageal SCC in humans. As shown in Fig. 4C and Table 1,
29 of the 35 (83%) top genes mutated in human SCCs were found
mutated in lesions from HPV49 E6/E7 Tg animals. In contrast, a lower
number of these human genes were mutated in lesions from WT and
K14 HPV16 E6/E7 Tg animals (Fig. 4C). In addition, we compared the
pattern of mutations detected in SCC of 4NQO-exposed K14 HPV49 E6/
E7 Tg animals with the pattern of mutations detected in human
HNCSCC associated with tobacco, HPV infection or tobacco/HPV

infection. The analysis revealed that a large proportion of genes mu-
tated in human SCC were also detected in the SCC of the Tg animals
(Fig. S2A). Accordingly, the pathway analysis showed that similar al-
terations occurred in human and mouse SCC (Fig. S2B).

In conclusion, HPV49 E6 and E7 expression in upper digestive tract
epithelia favors the accumulation of 4NQO-induced DNA mutations
that resemble the signature of tobacco exposure.

4. Discussion

In a previous study, we showed that beta-3 HPV49 E6 and E7 ex-
pression driven by K14 promoter in a Tg mouse model strongly co-
operates with the carcinogen 4NQO in promoting cancer in the upper
digestive tract (Viarisio et al., 2016). A similar scenario has been ob-
served in a Tg mouse model for the mucosal HR HPV16 (Strati et al.,
2006). The synergism between 4NQO and viral oncogene expression in
promoting carcinogenesis appeared to be beta-HPV-type specific, be-
cause beta-2 HPV38 E6 and E7 weakly cooperated with 4NQO in the
same Tg model, promoting only papillomas but never cSCC (Viarisio
et al., 2016). The opposite situation was observed when K14 HPV38
and K14 HPV49 E6/E7 Tg mice were exposed to another protocol of
carcinogenesis using UV radiation. Only HPV38 E6 and E7 expression in
K14 HPV38 E6/E7 Tg mice was found to cooperate with UV irradiation
in the development of cSCC (Viarisio et al., 2011, 2016, 2018). These
different abilities of HPV38 and HPV49 E6 and E7 in the Tg mouse
models may be explained by the different tissue tropism or intrinsic
properties of the mouse tissue. However as regards to different tissue
tropism, it is possible that these viruses, in order to efficiently complete
their life cycle, may have developed specific mechanisms to counteract
the anti-proliferative events induced by environmental factors at dis-
tinct anatomical sites. Interestingly, compelling lines of evidence from
epidemiological and functional studies support the model that beta-1
and beta-2 HPV types play a role at an initial stage of skin carcino-
genesis, facilitating the accumulation of UV-induced DNA mutations
that, in turn, render cancer cell proliferation independent of the ex-
pression of viral genes. In line with this model, beta HPV DNA is not
detected in all cancer cells, and the viral load decreases with the pro-
gression of the severity of the skin lesion (Correa et al., 2017; Dona
et al., 2019; Weissenborn et al., 2005). Thus, specific beta HPV types
may act with a hit-and-run mechanism in UV-induced cSCC develop-
ment (Rollison et al., 2019). Based on the findings presented here, it is
possible to speculate that a similar synergistic model could exist for
other HPVs and environmental factors at different anatomical sites.
Importantly, it could be possible that oral HPV infections may act with
a hit-and-run mechanism in the development of a subset of HNC can-
cers.

A limitation of our study is the relatively small number of specimens
that were subjected to whole-exome sequencing, especially for the K14
HPV16 and HPV38 E6/E7 Tg animals. However, the high susceptibility
of K14 HPV49 E6/E7 animals to 4NQO-induced mutations was con-
sistently observed in all mice in two independent experiments with
4NQO-exposed animals. Further epidemiological and biological studies
are needed to evaluate the possible synergism of beta-3 HPV types and
tobacco exposure in promoting any pathological condition in humans.
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Humans are frequently exposed to acrylamide, a probable human carcinogen found in commonplace sources such as most

heated starchy foods or tobacco smoke. Prior evidence has shown that acrylamide causes cancer in rodents, yet epidemio-

logical studies conducted to date are limited and, thus far, have yielded inconclusive data on association of human cancers

with acrylamide exposure. In this study, we experimentally identify a novel and unique mutational signature imprinted by

acrylamide through the effects of its reactive metabolite glycidamide. We next show that the glycidamide mutational signa-

ture is found in a full one-third of approximately 1600 tumor genomes corresponding to 19 human tumor types from 14 or-

gans. The highest enrichment of the glycidamide signature was observed in the cancers of the lung (88% of the interrogated

tumors), liver (73%), kidney (>70%), bile duct (57%), cervix (50%), and, to a lesser extent, additional cancer types.Overall,

our study reveals an unexpectedly extensive contribution of acrylamide-associated mutagenesis to human cancers.

[Supplemental material is available for this article.]

Cancer can be caused by lifestyle factors, environmental or occu-
pational exposures involving chemicals, their complex mixtures,
and physical and biological agents. Many human carcinogens
show shared key characteristics (Smith et al. 2016), and different
carcinogensmay have a spectrum of such characteristics and oper-
ate through distinct mechanisms to produce genetic alterations.
Recognizable somatic alteration patterns characterize carcinogens
that are mutagenic. Single-base substitution (SBS) mutational sig-
natures can be expressed in simplemathematical terms that enable
them to be extracted from thousands of cancer genomes
(Alexandrov et al. 2013a, 2018). Several of the identifiedmutation-
al signatures have been attributed to specific external exposures or
endogenous factors through epidemiological and/or experimental
studies (Alexandrov et al. 2018). The majority of the signatures re-

main of unknown origin, and additional, yet unrecognized, signa-
tures are likely to be extracted from rapidly accumulating cancer
genome data. Well-controlled experimental exposure systems
can help identify the causes of the orphan mutational signatures
and define new carcinogen-generated patterns (for review, see
Hollstein et al. 2017; Zhivagui et al. 2017).

Various diet-related and iatrogenic exposures contribute to
human cancer burden, involving, for instance, food contaminants
(aflatoxin B1 [AFB1]) or alternative medicines (aristolochic acid
[AA]) with well-documented mutagenic properties; AFB1 induces
predominantly C:G>A:T and AA generates T:A>A:T transver-
sions. These characteristicmutations, arising in preferred sequence
contexts, allowed unequivocal association of exposure to AFB1 or
AA with specific subtypes of hepatobiliary or urological cancers
(Poon et al. 2013; Meier et al. 2014; Scelo et al. 2014; Jelakovic ́
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et al. 2015; Hoang et al. 2016; Chawanthayatham et al. 2017;
Huang et al. 2017; Ng et al. 2017; Zhang et al. 2017).

Among dietary compounds with carcinogenic potential, ac-
rylamide (ACR) is of interest because of its ubiquitous presence.
Important sources of exposure to ACR include tobacco smoke
(Mojska et al. 2016), coffee (Takatsuki et al. 2003), and a spectrum
of occupational settings (IARC 1994). ACR forms in carbohydrate-
rich foods (e.g., potatoes and cereals) heated at high temperatures,
because of Maillard reactions involving reducing sugars and the
amino acid asparagine (Tareke et al. 2002). There is sufficient evi-
dence that ACR is carcinogenic in rodents (Beland et al. 2013,
2015), and it was classified by the International Agency for
Research on Cancer (IARC) as a probable carcinogen (Group 2A)
(IARC 1994). The associations of dietary ACR exposure with renal,
endometrial, and ovarian cancers have been explored in epidemio-
logical studies (Hogervorst et al. 2008; Virk-Baker et al. 2014;
Pelucchi et al. 2015). However, accurate ACR exposure assessment
by questionnaires has been difficult, whereasmore directmeasures
of molecular markers, such as hemoglobin adduct levels, may not
yield conclusive findings on past exposures (Olesen et al. 2008;
Wilson et al. 2009; Xie et al. 2013; Obón-Santacana et al. 2016a,
b,c). Thus, innovative well-controlled exposure model systems
can improve our understandingof theACRexposure–associated ef-
fects and risk.

OxidationofACRbycytochromeP450produces thehighly re-
active electrophilic epoxide glycidamide (GA) (Segerbäck et al.
1995;Sumneretal.1999;Ghanayemetal.2005).TheHrasmutation
loads inneoplasmsofmice exposed toACRorGAwerehigherupon
exposure to GA (Von Tungeln et al. 2012), and more mutations in
the cII reporter gene of Big Blue mouse embryonic fibroblasts were
obtained by GA treatment in comparison to ACR (Besaratinia and
Pfeifer 2003, 2004). In vivo and in vitro reporter genemutagenesis
studies showed an increased association of ACR and GA exposure
with T:A>C:G transitions and T:A>A:T and C:G>G:C transver-
sions (Besaratinia and Pfeifer 2003, 2004; Von Tungeln et al. 2009,
2012; Ishii et al. 2015;Manjanatha et al. 2015). In addition, GA ex-
posure induces C:G>A:T transversions (Besaratinia and Pfeifer
2004). However, these ACR- and GA-specific patterns were based
onlimitedmutationcountsanddonotallowtranslatingadequately
the reportedmutation types into genome-wide patterns.

Massively parallel sequencing allows studying a large number
of mutations in a single sample, thus significantly enhancing the
power of mutation analysis in experimental models. Analogously
to human cancer genome projects, genome-scale mutational sig-
natures can be extracted from highly controlled carcinogen expo-
sure experiments using mammalian cells and animal models, in
combination with advanced computational methods (Olivier
et al. 2014; Nik-Zainal et al. 2015; Huang et al. 2017). By integrat-
ing massively parallel sequencing and DNA adduct analysis in a
mammalian cell clonal expansion model (Olivier et al. 2014;
Nik-Zainal et al. 2015; Huskova et al. 2017) and by computational
interrogation of the Pan-Cancer Analysis of Whole Genomes
(PCAWG) data, we aimed to systematically investigate the muta-
tional signatures of ACR and GA and to determine the contribu-
tion of ACR/GA to human carcinogenesis.

Results

Human TP53 mutations generated by ACR or GA treatment

PrimaryHupkiMEF cultures from three different embryos (Prim_1,
Prim_2, and Prim_3) exposed to ACR or GA at the predetermined

cytotoxic and genotoxic conditions yielded multiple immortal-
ized clones (Methods) (Supplemental Fig. S1) suitable for massive-
ly parallel sequencing (Olivier et al. 2014). Sanger sequencing of
TP53 in the clones derived from ACR exposure (ACR clones) and
GA exposure (GA clones) and spontaneous immortalization
(Spont), showed that ACR clones obtained from the Prim_2
MEFs showed loss of heterozygosity in the TP53 codon 72 involv-
ing a loss of the proline allele (ACR_1 clone), and also loss of the
arginine allele resulting in a hemizygous ACR_2 clone (Table 1).
No TP53mutations were observed in the Spont clones. The detec-
tion of TP53 mutations in three out of seven ACR clones and in
one out of five GA clones (Table 1) provided a sound rationale
for extended sequencing at the exome scale.

Analysis of mutation spectra

Whole-exome sequencing (WES) of all Spont as well as exposed
clones revealed that the total number of acquired SBS did not
differ markedly between the ACR and Spont clones. The Spont
clones harbored on average 190 (median=151, range =141–277)
SBSs, whereas the ACR clones had on average 208 (median=173,
range =151–262) SBSs. In contrast, the total number of SBSs was
considerably increased in the GA clones, with an average of 485
SBSs (median=448, range =370–592) (Supplemental Tables S1,
S2). This finding reveals stronger mutagenic properties of GA in
the MEFs.

Principal component analysis (PCA) performed on the result-
ing SBS spectra unambiguously separated the GA clones from
other experimental conditions (Fig. 1A). The ACR-exposed sam-
ples showed a diffuse pattern across the six SBS classes, whereas
the Spont clones showed an enrichment of C:G>G:C SBS in
the 5′-GCC-3′ context, also present across the exposed cultures
(Supplemental Fig. S2). This backgroundmutation type appears re-
lated to the culture conditions used for the MEF immortalization
assay, and its consistent formation has been observed previously
(Olivier et al. 2014; Nik-Zainal et al. 2015). No significant tran-
scription strand bias (TSB) was observed for any mutation class
in the Spont or ACR clones (Supplemental Fig. S3). In the clones
derived from the GA-treated primary MEF cultures, we observed
an enrichment of T:A>A:T and C:G>A:T transversions and T:A>
C:G transitions (Supplemental Fig. S2B), marked by significant
TSB (Supplemental Fig. S3). The GA-associated clones showed low-
er numbers (25 per clone) of small insertions/deletions (indels) in
comparison to the ACR (44 per clone) or Spont clones (39 per
clone) (see Supplemental Tables S1, S3). Thus, higher SBS counts
owing to GA treatment may selectively promote the senescence
bypass and the selection, with a decreased functional contribution
of indels, whereas an inverse scenario is plausible for the Spont and
ACR clones, consistent with a previous report based on the Big
Blue mouse embryonic fibroblasts and cII transgene (Besaratinia
and Pfeifer 2005).

Variant allele frequency (VAF) analysis performed for GA
clones detected a large proportion of acquiredmutationsmanifest-
ing at VAF between 25% and 75% (Supplemental Fig. S4C). Upon
grouping of substitutions into bins of high (67%–100%), medium
(34%–66%), and low (0%–33%) VAF, the predominant GA-specific
mutation types (T:A>A:T, T:A>C:G, and C:G>A:T) started mani-
festing at high VAF and became increasingly enriched in themedi-
um and low VAF intervals. The background 5′-N[T>G]T-3′ SBS,
corresponding to COSMIC signature 17 arising in cultured mouse
cells including MEFs (Behjati et al. 2014; Nik-Zainal et al. 2015;
Milholland et al. 2017), displayedminor, although not statistically
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significant, lower-VAF enrichment (P=0.25, assessed by χ2 test)
(Supplemental Fig. S5). These observations suggest early effects
of the GA exposure, reproducible contribution of the inducedmu-
tations to senescence bypass, and their clonal propagation during
the immortalization stage.

Mutational signature of GA

Three distinct mutational signatures were extracted from all MEF
clones, termed signatures A, B, and C. Signatures A and C were
enriched in the Spont andACRclones,whereas themore robust sig-
nature B was selectively enriched in theGA clones (Fig. 1B; Supple-
mental Fig. S6). The TSB analysis in the GA clones revealed
significant enrichment of the prominent mutation types C:G>A:T,
T:A >A:T, and T:A>C:G (using the pyrimidine-based mutation
class convention) on the transcribed strand (P<0.05, χ2 test), con-
sistent with the less efficient transcription-coupled nucleotide ex-
cision repair because of adduct formation on purines (Fig. 1C;
Supplemental Fig. S3). In signatureC and to a lesser extent in signa-
turesAandB,weobservedanadmixtureof apattern identical to the
COSMIC signature 17 (T:A>G:C in the 5′-NTT-3′ trinucleotide
context), present in human cancers (notably esophageal and gas-
tric adenocarcinomas) but also seen in AFB1-driven mouse liver
cancers (Huang et al. 2017), in murine small cell lung carcinoma
initiatedby lossofTrp53 andRb1 (McFaddenet al. 2014), and inpri-
mary MEF-derived clones (Olivier et al. 2014; Nik-Zainal et al.
2015). This signature has been linked to cell culture conditions
(Behjati et al. 2014;Milhollandet al. 2017) andmaybe linked toox-
idative stress effects on the free dGTP pool (Tomkova et al. 2018).
To further refine the putative GAmutational signature from signa-
ture B, we used extended-input nonnegative matrix factorization
(NMF) by combining the MEF clone data with signature 17–rich
esophageal adenocarcinoma data from the International Cancer
Genome Consortium (ICGC) ESAD-UK study (Secrier et al. 2016),
as well as with The Cancer Genome Atlas (TCGA) esophageal ade-

nocarcinoma (ESCA) and gastric carcinoma (STAD) samples en-
riched for or lacking signature 17 (see Methods) (Supplemental
Methods; Supplemental Figs. S6, S7). This considerably reduced
(average =47%, median=48%) the signature 17–specific T >G
peaks in signature B associated with GA treatment and resulted in
a cleaner pattern (Fig. 1D; Supplemental Fig. S6). The refined GA
signature retains the strand-biased enrichment of the T:A>A:T
transversions and T:A>C:G transitions in the 5′-CTG-3′ and
5′-CTT-3′ trinucleotide contexts, as well as the C:G>A:T compo-
nent (Fig. 1D; Supplemental Fig. S8A; Supplemental Table S4).

Quantitative DNA adduct analysis supports the GA mutational

signature

Following metabolic activation, ACR induces GA-DNA adducts at
the N7 and N3 positions of guanine and adenine, respectively.
Analysis using liquid chromatography–tandemmass spectrometry
(LC-MS/MS) revealed the absence of these adducts in the untreated
samples, as well as in MEFs exposed to ACR in the absence of S9
fraction (with levels below the limit of detection [LOD]). This sug-
gests a lack of Cyp2e1 activity normally required for the metabo-
lism of ACR to GA in the MEFs. Upon addition of human S9
fraction, N7-(2-carbamoyl-2-hydroxyethyl)-guanine (N7-GA-
Gua) levels increased to 11 adducts/108 nucleotides (twice the
LOD levels), suggesting limited metabolic activation of ACR de-
spite the enzymatic activity of the S9 fraction (Fig. 1E,F). In con-
trast, cells exposed to GA showed high DNA adduct levels, with
N7-GA-Gua and N3-(2-carbamoyl-2-hydroxyethyl)-adenine (N3-
GA-Ade) observed at 49,000 adducts/108 nucleotides and 350 ad-
ducts/108 nucleotides, respectively, after subtracting the trace
amount of contamination from the internal standard (Fig. 1E,F).
These observed DNA adducts provide a possible mechanistic basis
for themutation types, the TSB, and themutational signature aris-
ing upon treatment with GA, the reactive metabolite of ACR.

Table 1. Summary of cell lines, treatment conditions, and TP53 mutation status

Sample
ID Embryo Exposure

Conc.
(mM)

Exposure
duration

(h)
Coding DNA

changea Genomic DNA changeb aa change
Codon 72

(rs1042522)c

Prim_1 E210 - - - Pro/Pro
Prim_2 E213 - - - Arg/Pro
Prim_3 E214 - - - Pro/Pro
Spont_1 E213 - - - Arg/Pro
Spont_2 E214 - - - Pro/Pro
Spont_3 E214 - - - Pro/Pro
ACR_S9_1 E213 ACR 5 24 Arg/Pro
ACR_S9_2 E213 ACR 5 24 Arg/Pro
ACR_1 E213 ACR 10 24 c.881delA g.7577057delT p.E294fs Arg/-
ACR_2 E213 ACR 10 24 c.818G>T g.7577120C>A p.R273L Pro/-
ACR_3 E214 ACR 10 24 c.740A>T; c.839G>C g.7577541T>A; g.7577099C>G p.N247I; p.R280T Pro/Pro
ACR_4 E214 ACR 10 24 Pro/Pro
ACR_5 E214 ACR 10 24 Pro/Pro
GA_1 E210 GA 3 24 Pro/Pro
GA_2 E210 GA 3 24 Pro/Pro
GA_3 E210 GA 3 24 c.309-310CC>TA g.7579377-7579378GG>TA [p.Y103Y; p.Q104K] Pro/Pro
GA_4 E214 GA 3 24 Pro/Pro
GA_5 E214 GA 3 24 Pro/Pro

(TP53) human TP53 gene; (Prim) primary cells; (Spont) spontaneously immortalized clones; (ACR) acrylamide-exposure derived clones; (GA) glycida-
mide-exposure derived clones. Each exposure condition was carried out in two biological replicates (embryos). (S9) human S9 fraction; (Pro) proline;
(Arg) arginine; (Arg/-) or (Pro/-) loss of allele; (fs) frameshift; (aa) amino acid.
aNM_000546.4 coding sequence.
bhg19 genomic coordinates.
cHuman polymorphic site (rs1042522).
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Comparison of the GA signature with PCAWG mutational

signatures

We next performed cosine similarity comparison of the putative
GA signature with the recently updated PCAWG SBS mutational

signatures (Alexandrov et al. 2018) and with known T:A>A:T-
rich experimental signatures (Fig. 2A; Supplemental Figs. S7, S9).
The highest cosine similarity value (84%) corresponded to
PCAWG SBS25 (Fig. 2A). However, unlike the GA signature, nei-
ther SBS25 nor any other signatures show TSB for the three

E F

BA

C

D

Figure 1. Analysis of themutation patterns derived from experimental exome sequencing data. (A) Principle component analysis (PCA) ofWES data. PCA
was computed using as input the mutation count matrix of the clones that immortalized spontaneously (Spont) or were derived from exposure to acryl-
amide (ACR) or glycidamide (GA). Each sample is plotted considering the value of the first and second principal components (Dim1 and Dim2). The per-
centage of variance explained by each component is indicated within brackets on each axis. Spont and ACR- and GA-exposed samples are represented by
differently colored symbols. (B) Mutational signatures (sig A, sig B, and sig C), identified by NMF, and their contribution to each sample (x-axis), assigned
either by absolute SBS counts or by proportion (bar graphs). The reconstruction accuracy of the identified mutational signatures in individual samples is
shown in the bottom dot plot (y-axis value of 1 = 100% accuracy). (C) Transcription strand bias analysis for the six mutation types in GA-exposed clones.
For each mutation type, the number of mutations occurring on the transcribed (T) and nontranscribed (N) strand is shown on the y-axis. (∗∗∗) P<10−8,
(∗) P<10−2. (D) Extraction of GA signature, with arrows pointing at the enriched SBS classes. The contribution of signature 17 (T:A >G:C in 5′-NTT-3′
context), present in all clones, was decreased by performing NMF on human-TP53 knock-in (Hupki) MEF samples pooled with primary tumor samples
with high levels of signature 17 (see Methods and Supplemental Methods). (E) DNA adducts analysis as determined by LC-MS/MS. (F) Levels of N7-GA-
Gua adduct in ACR+ S9- and GA-treated cells and N3-GA-Ade DNA adduct level in GA-treated cells compared with untreated cells yielding no adducts.
The data are presented as the number of adducts in 108 nucleotides in replicated experiments (n≥2).
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mutation classes (C:G>A:T, T:A>A:T, and T:A>C:G). Thus, the
mutation patterns with a three-class strand bias generated by the
GA treatment render the resulting mutational signature unique
and novel.

GA signature in the human pan-cancer genomes

The initial visual comparison with PCAWG signatures indicated
similarity between the GA signature and signature SBS4 of tobacco
smoking (Supplemental Fig. S8; Alexandrov et al. 2018), in keeping
with the established presence of ACR in tobacco smoke. This
was further corroborated by the cosine similarity of 94% between
the adenine (T >N) components of SBS4 and the GA signature
(Fig. 2B). We thus hypothesized that SBS4 reflects the coexposure
to benzo[a]pyrene (B[a]P; generating the predominant, strand-
biased C>N/guanine mutations) and to GA (generating strand-
biased T>N/adenine mutations) (Fig. 2B,C; Supplemental Fig.
S8). To obtain experimental evidence, we modeled a B[a]P muta-
tional signature bywhole-genome sequencing (WGS) of cell clones
derived from B[a]P-exposed normal human mammary epithelial
cells (HMECs) (Stampfer and Bartley 1985, 1988). This yielded a ro-
bust pattern characterized by predominant strand-biased guanine
(mainly C:G>A:T) mutation levels and negligibly mutated ade-
nines (T >N) (Fig. 2B; Supplemental Figs. S8, S10; Supplemental
Table S4). Next, we interrogated the PCAWG data for the presence
of the experimentally defined, 192-class (strand-biased) GA and
B[a]P signatures in 1584 tumors of 19 cancer types from 14 organ
sites (Fig. 3; Supplemental Table S5). The stringency of the process
was controlled by determining the P-value and the false-discovery
rate (FDR) for the signature presence test and the reconstruction ac-
curacy (Supplemental Table S6) and by modeling false-positive
rates (FPRs) andFDRsof the experimental signature detectionusing
2000 synthetic tumors as described in the Methods and in
Supplemental Tables S7 through S10. In the subset of PCAWG-7
cancers known to carry SBS4 signature (adenocarcinomas and squ-
amous cell carcinomas of the lung, hepatocellular carcinomas of

the liver and head, and neck squamous cell carcinomas), we com-
pared the GA and B[a]P signatures to estimated levels of SBS4 and
found that in the lung and head and neck cancers, a combination
of the GA and B[a]P signatures accounted for very similar numbers
of mutations as SBS4, suggesting that SBS4 represents combined
and highly correlated exposure to GA and B[a]P (Fig. 3A). In con-
trast, we found more variability in the assignment of mutation
numbers toGAandB[a]P versus SBS4 in liver cancers (Fig. 3),which
may reflect a weaker relationship between GA and B[a]P exposure
because of generally more complex exposure history in the liver.
Successful reconstruction of SBS4 by the experimental 192-class
(strand-biased) GA and B[a]P signatures in the lung and liver hu-
man tumors enabled correct assignment of the GA signature in a
subset of 24 lung adenocarcinomas, 42 lung SCCs, and239 liver tu-
mors with a subset of 184 GA-positive HCCs lacking the B[a]P sig-
nature mutations (Fig. 3B; Supplemental Table S11). Moreover,
we identified the GA signature in additional 15 cancer types with-
out SBS4, including clear cell renal cell carcinoma (78 GA-positive
of 111 analyzed tumors), papillary renal cell carcinoma (26GA-pos-
itive out of 32), biliary adenocarcinoma (20 GA-positive out of 35),
colorectal adenocarcinomas (24 GA-positive out of 60), stomach
adenocarcinoma (17 GA-positive out of 75), bladder transitional
cell carcinoma (six GA-positive out of 23), and uterine adenocarci-
noma (10 GA-positive out of 51) (Fig. 3B,C). The signature assign-
ments results for the 537 individual GA-positive PCAWG tumors
are summarized by cancer type in the Supplemental Table S11.

Discussion

ACR and GA exposures induce an almost identical set of tumors in
bothmice and rats, providing a substantial argument for a GA-me-
diated tumorigenic effect of ACR (Beland et al. 2015). This is sup-
ported by further mechanistic studies showing that lung tissue
from mice exposed to ACR and GA displays comparable DNA ad-
duct patterns, as well as similar mutation frequencies in the cII
transgene (Manjanatha et al. 2015). Similar observations were

BA C

Figure 2. Comparison of GA signature to known signatures. (A) Cosine similarity matrix comparing GA mutational signature with the human PCAWG
data (SBS3, -4, -5, -8, -22, -25, -35, -39, and -40) and other A > T-rich mutational signatures from experimental exposure assays using specific carcinogens
(7,12-dimethylbenz[a]anthracene [DMBA], urethane, and aristolochic acid [AA]). (B) Comparison of PCAWG SBS4 with two experimentally derived signa-
tures: B[a]P_exp=benzo[a]pyrene mutational signature extracted from HMECs; GA_exp=GA mutational signature extracted from MEF cells. Cosine sim-
ilarity between the T >N (adenine) components of SBS4 and GA signature is shown on the right. (C ) Transcription strand bias analysis for the six mutation
types underlying the signatures in panel B. For each mutation type (using the pyrimidine convention), the number of mutations occurring on the
transcribed (T) and nontranscribed (N) strand is shown on the left y-axis. The significance is expressed as –log10(P-value) indicated on the right y-axis.
(∗∗∗) P<10−8, (∗∗) P<10−4, (∗) P<10−2.

Mutational signature of acrylamide in human cancer

Genome Research 525
www.genome.org



made in the context of in vitro mutage-
nicity of ACR in human andmouse cells,
suggesting the key role for the epoxide
metabolite GA to form premutagenic
DNA adducts (Besaratinia and Pfeifer
2004). Thus, in keeping with the estab-
lished ACR/GA carcinogenicity in ro-
dents (IARC 1994; Olstørn et al. 2007;
Von Tungeln et al. 2012; Beland et al.
2015), our findings provide new infor-
mation on the characteristic mutagenic
effects of GA and their contribution to
tumor development.

The observation that ACR itself is
not efficiently metabolized by MEFs is
consistent with similar differences re-
ported by previous animal carcinogenici-
ty studies. In neonatal B6C3F1 mice,
GA, but not ACR, induces hepatocellular
carcinomas, likely because of the in-
ability of neonatal mice to efficiently
metabolize ACR (Von Tungeln et al.
2012).Moreover, unlikeACR,GA induces
tumors in the small intestine in a dose-
dependent manner upon perinatal
exposure (Olstørn et al. 2007). Similar
differencesbetweenGAandACRmutage-
nicity, possibly because of limitedmetab-
olization of ACR, were observed in vitro
(Besaratinia and Pfeifer 2004). We ad-
dressed the lack of ACR activation by
the addition of human S9 fraction, yet
the assessment ofDNAadducts suggested
limitedmetabolic activation of ACRwith
adduct levels substantially lower com-
pared with the direct GA exposure. This
mayexplain themutagenicitydifferences
observed between GA and ACR. A consis-
tent minor contribution of the GAmuta-
tional signature was detected in the
majority of ACR clones, whereas it was
mostly absent in the Spont clones, sug-
gesting subtle metabolic activation of
ACR in the MEFs resulting in low levels
of GA. However, a robust mutational sig-
nature in the experimental setting was
generated exclusively by exposing the
cells directly to GA.

Single reporter gene studies had pre-
viously linked ACR and GA exposure to
multiple different mutation types.
Thanks to the larger number of muta-
tions obtained by exome sequencing,
we were able to attribute to the GA expo-
sure a particular mutational signature
characterized by three strand-biased mu-
tation classes (C:G>A:T, T:A >A:T, and
T:A>C:G). The identification of the N7-
GA-Gua and N3-GA-Ade DNA adducts
originating from the metabolic conver-
sion of ACR (Segerbäck et al. 1995; da
Costa et al. 2003; Besaratinia and Pfeifer

B

A

C

Figure 3. Identification of experimental GA signature in the human cancer PCAWG data sets. (A)
Scatter plots of the experimental GA_exp and B[a]P_exp mutational signature assignments by
mSigAct show reconstruction of tobacco-smoking signature SBS4 assignments in cancer types with
SBS4 present. (Lung.AdenoCA) Lung adenocarcinoma, (Lung.SCC) lung squamous cell carcinoma,
(Liver.HCC) liver hepatocellular carcinoma (Head.SCC) head squamous cell carcinoma. The combination
of GA_exp and B[a]P_exp mutation counts reconstructed SBS4 mutation counts in Lung.AdenoCA and
Lung.SCC and, to an extent, in Head.SCC. In liver HCCs, GA counts alone partially reconstructed SBS4
mutation counts and indicate GA_exp-positive and B[a]P_exp-negative tumors (third row, right scatter
plot). The lines in GA versus B[a]P scatter plots have a slope of 0.3, reflecting the 3:1 ratio of B[a]P:GA
mutation counts that reconstruct SBS4. (B) Summary of GA mutation assignment analysis of 1584 indi-
vidual tumors of 19 cancer types from the PCAWGdata sets. Assignments were performed usingmSigAct
(positivity was determined by the signature.presence.test tool at FDR<0.05) with the PCAWG annota-
tions of signature present in each subtype, in addition to the GA and B[a]P signatures. The tumor types
manifesting or lacking SBS4 signature of tobacco smoking are labeled accordingly in the column SBS4.
Asterisk denotes borderline SBS4 presence in PCAWG Billiary.AdenoCA (two of 173, 1.16%) and
Eso.AdenoCA (two of 347, 0.06%). Proportion indicates percentage of GA-positive tumors within
each listed cancer type. (C) The dot plot shows the proportion of mutations assigned to GA signature
among other identified signatures (see Supplemental Material) in individual tumors of cancer types
not showing the direct effects of tobacco smoking (i.e., lacking signature SBS4). Red horizontal lines
denote median values (y-axis, 1 = 100%).
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2005), underlines the relationship between DNA adduct profiles
and the mutational signature of GA. N3-GA-Ade and N7-GA-Gua
are depurinating adducts resulting in apurinic/apyrimidinic sites.
During replication, these lead to misincorporation of deoxyade-
nine, leading to the respective T:A>A:T and C:G>A:T transver-
sions observed in the GA signature. The T:A>C:G transitions
enriched in the GA signature correspond to the miscoding
N1-GA-Ade adduct, the most commonly identified adenine ad-
duct in vitro (Randall et al. 1987; da Costa et al. 2003; Besaratinia
and Pfeifer 2005; Ishii et al. 2015). The levels of the guanine adduct
were especially high in the GA-exposed MEF cells, whereas the as-
sociated C:G>A:T transversions in the resulting postsenescence
clones were less represented. This could reflect differences in
DNA repair efficiency concerning the individual guanine and ade-
nine adduct species or the fact that the resulting clones are derived
from single cells that selectively immortalized but do not accurate-
ly represent the bulk exposed primary cell population inwhich the
GA-DNA adduct levels were measured after exposure. It is also
plausible that the excessive and possibly highly cytotoxic N7-
GA-Gua adduct burden leads to negative selection of a large num-
ber of affected cells.

The established animal models (Beland et al. 2013, 2015) of
ACR- and GA-mediated tumorigenesis provide a suitable starting
point for a comparison of the mutational signatures obtained
from the mouse and in vitro. Next, genome-scale sequencing of
human tumors and adduct analysis of normal tissues collected in
well-designed molecular epidemiological studies focusing on
ACR intake are warranted to provide further evidence that the
GA signature mutations identified in various cancer types indeed
correlate with the exposure to ACR.

The GA signature has not been identified among the current-
ly known computationally extracted PCAWG signatures (Fig. 2A;
Alexandrov et al. 2018). Here we show that a new pattern can be
identified in a large subset of pan-cancer tumors when experimen-
tally modeled signatures are combined with sophisticated compu-
tational signature reconstruction methods while considering the
extended features, such as TSB supported by premutagenic adduct
analysis. Such integrated approaches can thus lead to future
identification of yet unrecognized carcinogen signatures that
may be eluding the solely computation-based analyses of the
pan-cancer data.

The quest for understanding the contribution of ACR to can-
cer development is reflected by recent accumulation of mechanis-
tic data on the compound’s mutagenicity and carcinogenicity in
experimental models. The possibly carcinogenic effects of ACR
in humans were recommended for re-evaluation by the Advisory
Group to the Monographs Program of the International Agency
for Research on Cancer (Straif et al. 2014). Our findings related
to the reconstruction of signature SBS4 by the experimental signa-
tures of GA and B[a]P, together with the detection of the GA signa-
ture in lung and liver cancer, are relevant given the established
high content of ACR in tobacco smoke. Compared with the GA ef-
fects, experimental B[a]P exposure generates very few T>N (ade-
nine) mutations. However, we cannot exclude a possibility that
in the human tissues directly exposed to tobacco smoke the ade-
nine residues can be targeted by carcinogens such as B[a]P deriva-
tives or nitrosamines.

A subset of 184 liver tumor samples identified in this study
harbored the GA signature but no features of the B[a]P signature
or SBS4 (Fig. 3B; Supplemental Material). Furthermore, we found
217 GA-positive, SBS4-negative tumors of additional 15 cancer
types (Fig. 3B,C). The numerous GA-positive, SBS4-negative tu-

mors are of particular interest as they likely reflect dietary and/or
occupational exposures to ACR unrelated to tobacco smoking.
Overall, our findings offer new insights into the thus-far tenuous
association of ACR with human carcinogenesis.

Methods

Source and authentication of primary cells

Primary human-p53 knock-in (Hupki) MEFs were isolated from
13.5-d-old Trp53tm/Holl mouse embryos from the Central Animal
Laboratory of the Deutsches Krebsforschungszentrum as described
previously (Liu et al. 2004). The mice had been tested for specific
pathogen-free (SPF) status. The derived primary cells were geno-
typed for the human TP53 codon 72 polymorphism (Table 1) to
authenticate the embryo of origin. Cells from three different em-
bryos (E210, E213, and E214) were used for the exposure experi-
ments (Table 1). All subsequent cell cultures were routinely
tested at all stages for the absence of mycoplasma.

Cell culture, exposure, and immortalization

The primaryMEF cells were expanded in advanced DMEM supple-
mented with 15% fetal calf serum, 1% penicillin/streptomycin,
1% pyruvate, 1% glutamine, and 0.1% β-mercaptoethanol. The
cells were then seeded in six-well plates and, at passage 2, were
exposed for 24 h to 5mMACR (A4058, Sigma-Aldrich) in the pres-
ence of 2% human S9 fraction (Life Technologies) complemented
with NADPH (Sigma-Aldrich) or the absence of S9 to 10 mM ACR
or 3 mM GA (04704, Sigma-Aldrich), or to vehicle (PBS). Exposed
and untreated control primary cells were cultured until they by-
passed senescence and immortalized clonal cell populations could
be isolated (Todaro and Green 1963). The HMEC cultures used in
this study for WGS were generated from primary HMECs (passage
4) exposed to B[a]P and propagated in M87A medium to passage
13, as described previously (Stampfer and Bartley 1985, 1988;
Garbe et al. 2009; Severson et al. 2014).

MTT assay for cell metabolic activity and viability

Cells were seeded in 96-well plates and treated as indicated. Cell
viability was measured 48 h after treatment cessation using
the CellTiter 96 AQueous One Solution Cell Proliferation Assay
(Promega). Plates were incubated for 4 h at 37°C, and absorbance
was measured at 492 nm using the Apollo 11 LB913 plate reader.
The MTT assay was performed in triplicate for each experimental
condition.

Phospho-H2AFX immunofluorescence

Immunofluorescence staining of phosphorylated histone H2AFX
(γH2AFX) was performed using phospho-histone H2A.X (Ser139)
(20E3) Rabbit monoclonal antibody (9718, Cell Signaling Tech-
nology). Briefly, primary MEFs were seeded on coverslips in
12-well plates and, the following day, treated as indicated in dupli-
cate for 24 h. Four hours after treatment cessation, the cells were
fixed with 4% formaldehyde for 15 min at room temperature. Fol-
lowing blocking in 5% normal goat serum (31872, Life Technolo-
gies) for 60 min, they were incubated with the γH2AFX-antibody
(1:500 in 1% BSA) overnight at 4°C. Subsequent incubation with
a fluorochrome-conjugated secondary antibody (4412, Cell Signal-
ing Technology) was performed for 60 min at room temperature.
Coverslips were mounted in Vectashield mounting medium with
DAPI (Eurobio). Immunofluorescence images were captured using
a Nikon Eclipse Ti.
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DNA adduct analysis

GA-DNAadducts (N7-GA-Gua andN3-GA-Ade)were quantified by
LC-MS/MS with stable isotope dilution as previously described (da
Costa et al. 2003). The DNAwas isolated from the cells using stan-
dard digestion with Proteinase K, followed by phenol-chloroform
extraction and ethanol precipitation. The DNA was subsequently
treated with RNase A and T1, extracted with phenol-chloroform,
and reprecipitated with ethanol. N7-GA-Gua and N3-GA-Ade
were released by neutral thermal hydrolysis for 15 min, using
Eppendorf Thermomixer R (Eppendorf North America) set to
99°C. The samples were filtered through Amicon 3K molecular-
weight cutoff filters (Merck Millipore) to separate the adducts
from the intact DNA. The LC-MS/MS used for quantification con-
sisted of an Acquity UPLC system (Waters) and a Xevo TQ-S triple
quadrupole mass spectrometer (Waters). The followingMRM tran-
sitions were monitored with a cone voltage of 50 V and a collision
energy of 20 eV: N3-GA-Ade, m/z 223→178; [15N5]N3-GA-Ade
(internal standard), m/z 228→183; N7-GA-Gua, m/z 239→152;
and [15N5]N7-GA-Gua (internal standard), m/z 244→157 (da
Costa et al. 2003).

TP53 genotyping

Exons 4 to 8 of the knocked-in human TP53 gene (NC_000017.11)
were sequenced using standard protocols. Sanger sequencing of
PCR products was performed at BIOfidal, using the Applied
Biosystems 3730xl genetic analyzer. The amplicon and sequenc-
ing primers are listed in the Supplemental Methods. Sequences
were analyzed using the CodonCode Aligner version 7.1 software.

Library preparation and WES

Refer to the online Supplemental Methods for details on the stan-
dard procedures for library preparation and WES, sequencing data
preprocessing, read alignment, and the calling of the SBS and indel
variants in the MEF and HMEC cell lines.

Bioinformatics and extraction of experimental mutational

signatures

Refer to the Supplemental Methods for detailed information on
PCA, assessment of sequencing-related artifacts and damage, and
computation of the TSB and its significance. The TSB was consid-
ered statistically significant at P-value≤0.05. To analyze themuta-
tion spectra and treatment-specific mutational signatures, filtered
mutations were classified into 96 types corresponding to the six
possible base substitutions (C:G>A:T, C:G>G:C, C:G>T:A, T:A >
A:T, T:A >C:G, T:A >G:C) and the 16 combinations of flanking nu-
cleotides immediately 5′ and 3′ of themutated base. Mutation pat-
terns were then deconvolved into mutational signatures using
NMF (Brunet et al. 2004; Alexandrov et al. 2013b) embedded in
the MutSpec suite (Ardin et al. 2016). For details on estimates of
the optimal number of signatures to extract, see the Supplemental
Methods. The reconstruction error calculation evaluated the accu-
racywithwhich the decipheredmutational signatures describe the
original mutation spectra of each sample by applying Pearson’s
correlation and cosine similarity.

The GA mutational signature was further polished by using
an extended input including samples from ICGC (ESAD-UK study)
with high level of signature 17 (>65% contribution as determined
by independent NMF analysis), and with samples from the TCGA
esophageal adenocarcinoma (ESCA) and gastric cancer (STAD) col-
lection (exon data, to address comparable coverage of the ge-
nome). The samples used for this procedure are listed in the

Supplemental Methods, and the results are summarized in
Supplemental Figures S6 and S7.

Cosine similarity analysis was used to evaluate the concor-
dance between the identified T:A>A:T-rich mutational signature
of GA with the newly characterized SBS mutational signatures
from the PCAWG (pan-cancer whole genome) data (Alexandrov
et al. 2018). Cosine similarity values of more than 0.5 were found
for PCAWG SBS3, SBS4, SBS5, SBS8, SBS22, SBS25, SBS35, SBS39,
and SBS40 and the experimentally derived mutational signature
of AA (Olivier et al. 2014; Ardin et al. 2016), 7,12-dimethylbenz
[a]anthracene (DMBA) (McCreery et al. 2015; Nassar et al. 2015),
and urethane (Westcott et al. 2014).

The experimental B[a]P signature was generated by WGS (us-
ing IlluminaHiSeqXTen byGENEWIZ) of finite lifespanpoststasis
clones derived from primary HMECs treated with B[a]P, as previ-
ously described (Stampfer and Bartley 1985, 1988; Severson et al.
2014). Following read alignment to NCBI GRCh38 genome build,
mutations were called in the two poststasis samples with MuTect2
or Strelka2.8 using a primary HMEC sample as a comparison. Only
mutations called by both algorithmswere retained, and additional
criteria were applied to filter out mutations with a match in public
SNP databases (dbSNP150, and/or AF >0.001 in either 1000 Ge-
nomes, gnomAD or NHLBI-ESP), with an allele frequency above
zero in the primary sample, with coverage lower than 10 reads,
ormutations overlapping tandem repeats. Finally, a cut-off was ap-
plied on VAF, and only mutations with a VAF equal or higher than
20%were retained, being 54,587 uniquemutations. The NMF pro-
cedure to extract the experimental B[a]P signature used input ex-
tended with SBS data from the TCGA lung cancer collection (15
Lung.AdenoCA positive [>50%] for tobacco-smoking SBS4, 15
Lung.AdenoCA negative for SBS4, 15 Lung.SCC positive [>50%]
for SBS4 and 15 Lung.SCC negative for SBS4). See the Supplemen-
tal Methods for sample details. The recovered signatures showed
the strongest enrichment of the C>A-based signature B (Supple-
mental Fig. S10) in the B[a]P-treated HMEC clones. We next calcu-
lated the reconstruction error to evaluate the accuracy with which
the extracted B[a]P_exp signature describes the original mutation
spectra of each sample by applying Pearson’s correlation and co-
sine similarity (Supplemental Fig. S10).

Identification of the experimental signatures in PCAWG data

We used the mutational signature activity (mSigAct v0.10.R) soft-
ware (Ng et al. 2017) to test for the presence of the experimental
mutational signatures of GA and B[a]P in the human primary tu-
mor data from PCAWG study. mSigAct conducts a statistical test
for optimal reconstructions of the observed human tumor muta-
tion spectrum with and without the GA mutational signature, in
addition to a set of other mutational signatures from the PCAWG
study. The 192-class strand-biased versions of the GA and B[a]P
mutational signatures (Supplemental Fig. S8; Supplemental Table
S4) were used to detect tumors with the experimentally defined
signatures present, at high stringency achieved also by incorporat-
ing the same TSB information in the 192-class reconstructions of
each tumor. To generate a 192-class reconstructed spectrum, the
assignment of mutation counts for each 192-class signature is de-
termined by mSigAct and multiplied with the 192-class versions
of the PCAWG,GA, and B[a]Pmutational signatures. The 192-class
versions of each signature and spectrum is equivalent to the
96-class versions when the mutation counts on each strand
are summed and then represented in the pyrimidine mutations
(C>A,C>G,C>T, T>A, T>C, T >G). Specifically, B[a]Pwas added
to cancer types with tobacco-smoking SBS4 signature previously
found in the PCAWG signature set, and a combination of B[a]P
and GA signatures was used in these cancers to reconstruct SBS4.
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For other signatures and cancers without evidence of SBS4 present,
only GA was used to reconstruct the tumor spectra. This was fol-
lowed by computing the likelihood ratio test between the original
spectrum and the reconstructed tumor. A total of 1673 tumor sam-
ples from the PCAWG repository from 20 cancer subtypes were in-
terrogated. We excluded hypermutated and recently identified AA
signature–containing tumors (Ng et al. 2017) as the presence of
strong T>A signature adversely affected the reconstruction pro-
cess. A set of active mutational signatures were obtained from
the PCAWG annotations of each cancer subtype, with flat signa-
tures (SBS3, SBS8) removed to improve the sparsity of themutation
assignments. Final assignments of mutations to each mutational
signature were performed by using the 96-class mutational signa-
tures. Further fine-tuning was conducted using parameters for a
negative binomial model, and the FDR was adjusted for mutation-
al signature presence (FDR<0.05).

The proportion matrices of the strand-biased and NMF ver-
sions of the experimental GA signature, the GA signature normal-
ized to the human genome trinucleotide frequency to allow for
human PCAWG data screening, and the strand-biased and NMF
versions of the whole-genome B[a]P signature are available in
Supplemental Table S4. The statistics underlying the assignment
of GA_exp to PCAWG cancer data sets (P-values for “signature.pre-
sence.test” and cosine similarity between the reconstruction and
spectra) are summarized in Supplemental Table S5.

FPR and FDR estimation for GA signature detection in synthetic

tumors

To determine how often false positives arise when detecting the
GA signature with mSigAct and to accurately estimate the FDR of
the detection of GA signature, we performed a deeper validation
analysis. We generated 2000 synthetic tumors with signatures
from the PCAWG-7 data set and assignments sampled from the as-
signments to each signature in the PCAWG-7 data set, which rep-
resented the tumor types in whichwe foundGA signature present,
with similar signatures andmutation burdens associatedwith each
signature. The synthetic tumors had the same frequency of observ-
ing a particular signature for a cancer type, similar to the PCAWG-7
tumors. One hundred tumors per 20 tumor types (included in the
main analysis and listed in Supplemental Table S9) have been gen-
erated, with 1015 of the tumors harboring GA signature and 985
with GA signature absent. By using the synthetic tumor set and
mSigAct to assign GA signature, we established the true-positive
rates (TPRs), FPRs and FDRs (calculated by using the raw synthetic
tumor counts and the formula FP/(TP+ FP)). The results are shown
as a short summary (Supplemental Table S7), raw tumor counts
(Supplemental Table S8), per cancer type distribution (Supplemen-
tal Table S9) and a full listing of TPRs, FPRs, and FDRs (Supplemen-
tal Table S10).

Data access

Aligned WES reads from the primary MEF cells and clones arising
from ACR- and GA-treated cultures and immortalized spontane-
ously, as well as Sanger sequencing files, have been submitted to
the NCBI BioProject database (BioProject; https://www.ncbi.nlm
.nih.gov/bioproject) under accession number PRJNA238303
(for the individual BioSample accession numbers, refer to
Supplemental Tables S12, S13). The WES data reported here are a
new extension of the BioProject PRJNA238303 dedicated to sys-
tematic identification of mutational signatures of carcinogenic
agents (Olivier et al. 2014).
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Abstract 
Acrylamide, a probable human carcinogen, is ubiquitously present in the human 

environment, with sources including heated starchy foods, coffee and cigarette smoke. 

Humans are also exposed to acrylamide occupationally. Acrylamide is genotoxic, inducing 

gene mutations and chromosomal aberrations in various experimental settings. Covalent 

haemoglobin adducts were reported in acrylamide-exposed humans and DNA adducts in 

experimental systems. The carcinogenicity of acrylamide has been attributed to the effects of 

glycidamide, its reactive and mutagenic metabolite capable of inducing rodent tumors at 

various anatomical sites. In order to characterize the pre-mutagenic DNA lesions and global 

mutation spectra induced by acrylamide and glycidamide, we combined DNA-adduct and 

whole-exome sequencing analyses in an established exposure-clonal immortalization 

system based on mouse embryonic fibroblasts. Sequencing and computational analysis 

revealed a unique mutational signature of glycidamide, characterized by predominant 

T:A>A:T transversions, followed by T:A>C:G and C:G>A:T mutations exhibiting specific 

trinucleotide contexts and significant transcription strand bias. Computational interrogation of 

human cancer genome sequencing data indicated that a combination of the glycidamide 
signature and an experimental benzo[a]pyrene signature are nearly equivalent to the 

COSMIC tobacco-smoking related signature 4 in lung adenocarcinomas and squamous cell 

carcinomas. We found a more variable relationship between the glycidamide- and 
benzo[a]pyrene-signatures and COSMIC signature 4 in liver cancer, indicating more 

complex exposures in the liver. Our study demonstrates that the controlled experimental 

characterization of specific genetic damage associated with glycidamide exposure facilitates 

identifying corresponding patterns in cancer genome data, thereby underscoring how 

mutation signature laboratory experimentation contributes to the elucidation of cancer 
causation. 

A 40-word summary  
Innovative experimental approaches identify a novel mutational signature of glycidamide, a 

metabolite of the probable human carcinogen acrylamide. The results may elucidate the 

cancer risks associated with exposure to acrylamide, commonly found in tobacco smoke, 
thermally processed foods and beverages.  
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Introduction 
Cancer can be caused by chemicals, complex mixtures, occupational exposures, physical 

agents, and biological agents, as well as lifestyle factors. Many human carcinogens show a 

number of characteristics that are shared among carcinogenic agents (1). Different human 

carcinogens may exhibit a spectrum of these key characteristics, and operate through 

separate mechanisms to generate patterns of genetic alterations. Recognizable patterns of 

genetic alterations or mutational signatures characterize carcinogens that are genotoxic. 

Recent work shows that these DNA sequence changes can be expressed in simple 

mathematical terms that enable mutational signatures to be extracted from thousands of 

cancer genome sequencing data sets (2). Several of the over 30 identified mutational 

signatures have been attributed to specific external exposures or endogenous factors 

through epidemiological and experimental studies (2). However, about 40% of the current 

signatures remain of unknown origin, and additional, thus far unrecognized, signatures are 

likely to be defined in rapidly accumulating cancer genome data. Well-controlled 

experimental exposure systems can thus help identify the underlying causes of known 

orphan mutational signatures as well as define new patterns generated by candidate 

carcinogens (reviewed in (3,4)).

 Various diet-related exposures contribute to the human cancer burden. Examples 

include contaminants in food or alternative medicines, such as aflatoxin B1 (AFB1) or 

aristolochic acid (AA). The mutagenicity of these compounds is well-documented; AFB1 

induces predominantly C:G>A:T base substitutions and AA causes T:A>A:T transversions. 

The characteristic mutations coupled with information on the preferred sequence contexts in 

which they are likely to arise allowed unequivocal association of exposure to AFB1 or AA 

with specific subtypes of hepatobiliary or urological cancers, respectively (5-13).  

 Among dietary compounds with carcinogenic potential, acrylamide is of special 

interest due to extensive human exposure. Important sources of exposure to acrylamide 

include tobacco smoke (14), coffee (15), and a broad spectrum of occupational settings (16).

Dietary sources of acrylamide comprise carbohydrate-rich food products that have been 

subject to heating at high temperatures. This is due to Maillard reactions, which involve 

reducing sugars and the amino acid asparagine, present in potatoes and cereals (17). There 

is sufficient evidence that acrylamide is carcinogenic in experimental animals (18,19) and it 

has been classified as a probable carcinogen (Group 2A) by the International Agency for 

Research on Cancer in 1994 (16). The association of dietary acrylamide exposure with 

renal, endometrial and ovarian cancers has been explored in recent epidemiological studies 

(20,21). However, accurate acrylamide exposure assessment in epidemiological studies 

based on questionnaires has been difficult, and more direct measures of molecular markers,

such as hemoglobin adduct levels, may not yield conclusive findings on past exposures (22-
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27). An improved understanding of its mechanism of action using well-controlled 

experimental systems is critical for understanding the potential carcinogenic risk associated 

with exposure. 

 Acrylamide undergoes oxidation by cytochrome P450, producing the reactive 

metabolite glycidamide that is highly efficient in DNA binding due to its electrophilic epoxide 
structure (28-30). The Hras mutation load in neoplasms of mice exposed to acrylamide or 

glycidamide was found to be considerably higher in mice treated with glycidamide (31). This 
finding is corroborated by a considerably higher mutation frequency in the cII reporter gene 

of Big Blue mouse embryonic fibroblasts treated with glycidamide in comparison to 

acrylamide (32,33). Mutation analysis in different experimental in vivo and in vitro models 

using reporter genes showed an increased association of acrylamide and glycidamide 

exposure with T:A>C:G transitions, as well as T:A>A:T and C:G>G:C transversion mutations 

(31-36), whereas glycidamide exposure was also characterized by C:G>A:T transversions 

(33). However, these proposed acrylamide- and glycidamide-specific mutation patterns were 

based on limited mutation counts in reporter genes and thus do not reflect the complexity of 

genome-wide distributions and profiles. Based on the limited data available thus far, it is not 

possible to translate adequately the reported mutation types (T:A>C:G, T:A>A:T, C:G>G:C, 

C:G>A:T) to global alteration patterns.  

 The advent of massively parallel sequencing has created the opportunity to study a

large number of mutations in a single sample, thus significantly enhancing the power of 

mutation analysis in experimental models and enabling reliable identification of specific 

sequence contexts for the induced alterations. Analogously to human cancer genome 

projects, genome-scale mutational signatures can be extracted from highly controlled 

carcinogen exposure experiments using mammalian cell and animal models coupled with 

advanced mathematical approaches (2,3,37,38). 

 Here we report the systematic assessment of acrylamide and glycidamide 

mutagenicity based on DNA adduct formation and mutation profile analysis using massively 

parallel sequencing in a cell model amenable to the analysis of carcinogen-induced mutation 

patterns and their impact on the resulting cell phenotype (3,37-39). We identify a specific 

and robust mutational signature attributable to glycidamide, and by computationally 

interrogating human cancer genome-wide mutation data, we characterize glycidamide 

signature-positive tumors, thereby highlighting a potential contribution of 

acrylamide/glycidamide exposure to carcinogenesis in humans. 
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Materials and methods 
Source and authentication of primary cells 
Primary Human-p53 knock-in mouse embryonic fibroblasts (Hupki MEFs) were isolated from 
13.5-day old Trp53tm/Holl mouse embryos from the Central Animal Laboratory of the 

Deutsches Krebsforschungszentrum, Heidelberg, as described previously (40). The mice 

had been tested for Specific Pathogen-Free (SPF) status. The derived primary cells were 
genotyped for the human TP53 codon 72 polymorphism (Table 1) to authenticate the 

embryo of origin. Cells from three different embryos (E210, E213 and E214) were used for 

the exposure experiments (Table 1). All subsequent cell cultures were routinely tested at all 

stages for the absence of mycoplasma. 

Cell culture, exposure and immortalization 
The primary MEF cells were expanded in Advanced DMEM supplemented with 15% fetal 

calf serum, 1% penicillin/streptomycin, 1% pyruvate, 1% glutamine, and 0.1% β-mercapto-

ethanol. The cells were then seeded in six-well plates and, at passage 2, exposed for 24 

hours to acrylamide (A4058, Sigma), glycidamide (04704, Sigma), or vehicle (PBS).

Acrylamide exposure was carried out in the absence or presence of 2% human S9 fraction 

(Life Technologies) complemented with NADPH (Sigma). Exposed and control primary cells 

were cultivated until they bypassed senescence and immortalized clonal cell populations 

could be isolated (41). The human mammary epithelial cell (HMEC) cultures utilized in this 
study for whole-genome sequencing (WGS) were generated from benzo[a]pyrene (B[a]P) 

exposed HMEC described previously (42,43). 

 
MTT assay for cell metabolic activity and viability 
Cells were seeded in 96-well plates and treated as indicated. Cell viability was measured 48 

hours after treatment cessation using CellTiter 96® Aqueous One solution Cell Proliferation 

Assay (Promega). Plates were incubated for 4 hours at 37°C and absorbance was 

measured at 492 nm using the APOLLO 11 LB913 plate reader. The MTT assay was 

performed in triplicates for each experimental condition. 

 
H2Ax Immunofluorescence 

Immunofluorescence staining was carried out using an antibody specific for Ser139-

phosphorylated H2Ax ( H2Ax) (9718, Cell Signaling Technology). Primary MEFs were 

seeded on coverslips in 12 well-plates. The cells were incubated in with H2Ax-antibody 

(1:500 in 1% BSA) at 4°C overnight. Subsequent incubation with a fluorochrome-conjugated 

secondary antibody (4412, Cell Signaling Technology) was carried out for 60 minutes at 
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room temperature. Coverslips were mounted in Vectashield mounting medium with DAPI 

(Eurobio). Immunofluorescence images were captured using a Nikon Eclipse Ti. 

DNA adduct analysis
Glycidamide-DNA adducts (N7-(2-carbamoy-2-hydroxyethyl)-guanine (N7-GA-Gua) and N3-

(2-carbamoy-2-hydroxyethyl)-adenine (N3-GA-Ade)) were quantified by liquid 

chromatography-mass spectrometry (LC-MS/MS) with stable isotope dilution as previously 

described (44) (see Supplementary Materials and Methods for details). The LC-MS/MS used 

for quantification consisted of an Acquity UPLC system (Waters) and a Xevo TQ-S triple 

quadrupole mass spectrometer (Waters). The same MRM transitions as previously 

described (44) were monitored with a cone voltage of 50V and collision energy of 20eV for 

each adduct transition and its corresponding labeled isotope transition. 

 

TP53 genotyping 
Exons 4 to 8 of the knocked-in human TP53 gene (NC_000017.11) were sequenced using 

standard protocols. Sanger sequencing of PCR products was performed at Biofidal (Lyon, 
France). TP53 primer sequences are listed in Supplementary Materials and Methods. 

Resulting sequences were analyzed using the CodonCode Aligner software. 

Library preparation and whole-exome sequencing (WES)  
Library preparation was carried out using the Kapa Hyper Plus library preparation kit (Kapa 

Biosystems) according the manufacturer’s instructions. Exome capture was performed using 

the SureSelect XT Mouse All Exon Kit (Agilent Technologies). Eighteen exome-captured 

libraries were sequenced in the paired-end 150 base-pair run mode using the Illumina 

HiSeq4000 sequencer.

 
Processing of WES data  
Fastq files were analyzed for data amount and quality using FastQC (0.11.3) and were 

processed with an in-house pipeline for adapter trimming and alignment to the mm10 

genome (release GRCm38). These components of the pipeline are publicly available at 

https://github.com/IARCbioinfo/alignment-nf. The resulting alignment files had a mean depth-

of-coverage of 135 and 175 for acrylamide and glycidamide samples, respectively. All 

alignment files can be accessed from the NCBI Sequence Read Archive (SRA) data portal 

under the BioProject accession number PRJNA238303. Two somatic variant callers were 

employed with default parameters in order to detect single base substitutions (SBS) and 

small insertions/deletions (indels) (MuTect 1.1.6-4 and Strelka 1.015) in exposed clones, 

using primary cells as normal samples. Each immortalized clone was compared to primary 
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MEFs from three different embryos (conditions Prim_1, Prim_2, and Prim_3). The overlap of 

the variant calling outcome with respect to the different primary MEFs showed concordance 

close to 80% (Suppl. Fig. S1) with MuTect exhibiting more stringent calling performance. 

Thus, mutation data obtained from the MuTect variant caller were further processed with the 

MutSpec suite ((45); https://github.com/IARCbioinfo/mutspec). For more details, see 

Supplementary Materials and Methods and the summary of sequencing metrics (Suppl. 

Table S1 – not available in the preprint version), the list of identified MuTect SBS variants 

(Suppl. Table S2 – not available in the preprint version) and indels (Suppl. Table S3 – not 

available in the preprint version).  

 

Bioinformatics and statistical analyses  
The FactoMiner R package (R package version 3.3.2; https://cran.r-

project.org/web/packages/FactoMineR) was used to perform the principal component 
analysis (PCA). To perform the transcription strand bias (SB) analyses, p-values were 

calculated using Pearson’s χ2 test. As multiple comparisons were assessed, the p-value 

was adjusted by applying a false discovery rate (FDR). Statistical analyses were carried out 
using the stats R package. The SB was considered statistically significant at p-value ≤ 0.05. 

To analyze samples mutation spectra and treatment-specific mutational signatures, filtered 

mutations were classified into 96 types corresponding to the six possible base substitutions 

(C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G, T:A>G:C) and the 16 combinations of 

flanking nucleotides immediately 5’ and 3’ of the mutated base. Mutation patterns were then 

deconvoluted into mutational signatures using the non-negative matrix factorization (NMF) 

algorithm (46,47). The reconstruction error calculation evaluated the accuracy with which the 

deciphered mutational signatures describe the original mutation spectra of each sample by 

applying Pearson correlation and cosine similarity.  

 In order to clean up the profile of the glycidamide mutational signature from the 

residual signature 17 signal and to increase the stability of NMF decomposition, we supplied 

the NMF input by adding samples with a high level of signature 17 (over 65% contribution as 

determined by independent NMF analysis, see Supplementary Materials and Methods).

 Cosine similarity analysis was used to evaluate the concordance of the newly 

identified T:A>A:T-rich mutational signature of glycidamide with the previously reported 

mutational signatures characterized by a predominant T:A>A:T content. These comprised 

COSMIC signatures 22 (AA), 25 and 27 (both of unknown etiology(2)), the experimentally
derived mutational signature of AA (37,45), 7,12-dimethylbenz[a]anthracene (DMBA) 

(48,49), and urethane (50). 

 We employed the mutational signature activity (mSigAct) software’s sparse signature 

assignment function (sparse.assign.activity) (13) to assess the presence of the experimental 
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mutational signatures of glycidamide and benzo[a]pyrene in whole-genome somatic mutation 

data from 38 lung adenocarcinomas, 48 lung squamous carcinomas, and 320 liver cancers 

from the ICGC Pan-Cancer Analysis of Whole Genomes (PCAWG) study. We excluded 244 

hyper-mutated microsatellite unstable and aristolochic acid signature-containing liver tumors 

as the presence of high numbers of T>A mutations adversely prevented assessment of the 

possible presence of the glycidamide signature. A set of 11 active COSMIC mutational 

signatures were identified in the remaining tumor samples (excluding COSMIC signature 4). 
We defined a ‘pure’ experimental C>N benzo[a]pyrene signature by WGS (using 

Illumina HiSeq4000 by Genewiz, NJ, USA) of finite lifespan post-stasis clones derived from 

primary human mammary epithelial cells (HMEC) treated with B[a]P as previously described 

(42,43,51). The read alignment to NCBI GRCh38 genome build, variant calling, filtering and 

annotation were consistent with the MutSpec pipeline described above (45). Proportion 

matrices of the experimental GA-signature, the GA-signature normalized to the human 

genome trinucleotide frequency to allow for human PCAWG data screening, and the whole-

genome B[a]P signature are available in Suppl. Table S4 (not accessible in the preprint 

version). 

Results 
Acrylamide and glycidamide induce cytotoxic and genotoxic responses in Hupki 
MEFs 
Upon exposure of primary Hupki MEFs to a range of concentrations of acrylamide (ACR) (in 

the absence or presence of the S9 fraction) and its metabolite, glycidamide (GA), we 

observed a dose-dependent cytotoxic effect on the cells for either compound (Fig. 1A). This 

analysis informed the selection of two conditions for the ACR exposure to be used in the 

subsequent exposure/immortalization experiments, 10 mM ACR for 24 hours in the absence 

of human S9 fraction, and 5 mM ACR for 24 hours in the presence of S9 fraction, which 

elicited 50% (range 30-70%) decrease in cell viability. The IC50 condition for GA was used 

for subsequent mutagenesis analysis, corresponding to a 24-hour treatment with 3 mM of 

the compound. The genotoxic effects of either ACR or GA manifested by a marked increase 

in γH2Ax staining in the exposed cell populations, in comparison to the mock-treated control 

cells (Fig. 1B). 

Immortalized MEF cells accumulate TP53 mutations following acrylamide or 
glycidamide treatment  
Primary MEF cultures from three different embryos (Prim_1, Prim_2, and Prim_3) were 

exposed to ACR or GA using the established conditions and multiple immortalized clones 

were derived. MEF senescence and immortalization phases were evident from the growth 
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curves generated for each culture (Suppl. Fig. S2). Subsequently, the clones derived from 

ACR exposure (ACR clones) and GA exposure (GA clones) and spontaneous 
immortalization (Spont), were pre-screened for TP53 mutations by Sanger sequencing, to 

assess the mutagenic process prior to exome-scale analysis. In the context of ACR 

treatment, clones obtained from the Prim_2 MEFs that were heterozygous for the 

polymorphic site in codon 72 showed a loss of heterozygosity involving a loss of the proline 

allele in the ACR_1 clone whereas the arginine allele was lost in ACR_2, giving rise to a
hemizygous clone (Table 1). No TP53 mutations were observed in any of the three Spont 

clones, whereas 3 out of 7 ACR clones and 1 of 5 GA clones carried non-synonymous TP53

mutations (Table 1). The detected mutations indicated specific selection for mutations in the 
TP53 gene during cell immortalization and confirmed the clonal nature of MEF 

immortalization. 

Analysis of mutation spectra 
Whole-exome sequencing of all spontaneously immortalized and exposed clones and 

subsequent extraction of acquired variants revealed that the total number of acquired SBS 

did not differ markedly between the ACR and Spont clones. The Spont clones harbored on 

average 190 (median = 151, range = 141-277) SBS, whereas the ACR clones had on 

average 208 (median = 173, range = 151-262) SBS. In contrast, the total number of SBS 

was considerably increased in the GA clones, with an average of 485 SBS (median = 448, 

range = 370-592) (Suppl. Table S1 and S2 – not available in the preprint version). This 

finding suggests markedly stronger mutagenic properties of GA in the MEFs. To estimate the 

extent of sequencing-related damage in our samples, we determined the GIV score of each 

sample as described in Materials and Methods and in (52). No detectable damage for any of 

the mutation types was observed in our dataset (data not shown). The ACR exposed 

samples exhibited an overall diffuse pattern across the six different SBS types (Suppl. Fig. 

S3). The Spont clones showed an enrichment of C:G>G:C SBS in the 5’-GCC-3’ context, 

which was also present at varying levels in the exposed cultures. This particular mutation 

type appears to be related to the culture conditions used for the immortalization assay, as its 

presence has previously been noted upon spontaneous as well as exposure-driven MEF 

immortalization (37). No significant transcription strand bias was observed for any of the 

mutation classes in the Spont or ACR clones (Suppl. Fig. S4). In the five clones derived from 

the GA-treated primary MEF cultures, we observed an enrichment of acquired T:A>A:T and 

C:G>A:T transversions and T:A>C:G transitions (Suppl. Fig. S3B), marked by significant 

transcription strand bias (Suppl. Fig. S4).

 PCA performed on the resulting 6-class SBS spectra unambiguously separated the 

GA clones from the remaining experimental conditions (Fig. 2A). The analysis of indels 
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(listed in Suppl. Table S3 – not available in the preprint version) showed lower numbers of 

these alterations in the GA-associated clones compared to the ACR or Spont clones (Fig. 

2B). This suggests that a higher accumulation of SBS may selectively promote the 

senescence bypass and selection of the GA clones, with a decreased functional contribution 

of indels, while an inverse scenario is plausible in case of the Spont and ACR clones,
reminiscent of a previous report based on the Big Blue mouse embryonic fibroblasts and cII

transgene (53).

Variant allele frequency analysis
Variant allele frequency (VAF) analysis was carried out for GA clones. Overall, a significant 

proportion of acquired mutations was present at allelic frequencies between 25-75% (Suppl. 

Fig. S5). Upon grouping of substitutions into bins of high (67-100%), medium (34-66%) and 

low (0-33%) VAF, the predominant GA-specific mutation types (T:A>A:T, T:A>C:G and 

C:G>A:T) started manifesting at high VAF, whereas the 5’-NTT-3’ alterations, corresponding 

to the COSMIC signature 17 previously reported to arise in cultured mouse cells including 

MEFs (38,54,55) showed lower VAF, therefore a later appearance in the cultures (Suppl. 

Fig. S6). This observation suggests the early effects of the GA exposure and the 

reproducible contribution of the induced mutations to the senescence bypass and their clonal 

propagation during the immortalization stage. 

Mutational signature analysis 
Using NMF, we extracted the mutational signatures from all the MEF clones. Using 

computed statistics for estimating the number of signatures, three signatures were identified 

as an optimal number, with signatures A and C enriched in the Spont and ACR clones, and 

signature B selectively enriched in the GA clones (Fig. 2C,D). Reconstruction of the 

observed mutation spectra supports the robustness of the signature analysis with strong 

Pearson’s correlation and cosine similarity in GA-derived clones (Fig. 2D). In signature C 

and also to a lesser extent in signatures A and B, we observed an admixture of a pattern 

identical to the orphan COSMIC signature 17 (T:A>G:C in a 5’-NTT-3’ trinucleotide context),

described in various human cancers (most notably esophageal adenocarcinoma), but also 

seen in aflatoxin B1-driven mouse liver cancers (11), as well as primary MEF-derived clones 
(37,38). In in vitro contexts, this signature has been linked to cell culture conditions and 

associated oxidative stress (54,55). To refine further the obtained experimental signatures, 

we developed a signature ‘baiting’ approach that combined the MEF clones data with 

signature 17-rich data from esophageal adenocarcinomas from the ICGC ESAD-UK study 

for new NMF analysis (56). This resulted in considerable reduction (average = 47%, median 

= 48%) of the signature 17-specific most prominent T>G peaks and a more refined pattern 
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for signature B, associated primarily with GA treatment (Fig. 3A and Suppl. Fig. S7). This 

putative GA signature retains the predominant enrichment for the T:A>A:T transversions and 

T:A>C:G transitions in the 5’-CTG-3’ and 5’-CTT-3’ trinucleotide contexts, and the C:G>A:T 

component. Moreover, these mutation types were marked by significant transcription strand 

bias (Fig. 3B and Suppl. Fig. S4), exhibiting higher accumulation of mutations on the non-

transcribed strand consistent with the decreased efficiency of the transcription-coupled 

nucleotide excision repair due to adduct formation. 

DNA adduct analysis
Following metabolic activation, acrylamide induces well-characterized glycidamide DNA 

adducts at the N7- and N3-positions of guanine and adenine, respectively. LC-MS/MS-based 

adduct quantification revealed the absence of these adducts in the spontaneously 

immortalized control samples as well as in MEFs exposed to acrylamide in the absence of 

S9 fraction (levels below the limit of detection). This suggests the lack of CYP2E1 activity, 

which is required for the metabolism of acrylamide to glycidamide, in the MEFs. Upon 

addition of human S9 fraction, N7-GA-Gua levels increased to 11adducts/108 nucleotides, 

suggesting limited metabolic activation of acrylamide due to the presence of enzymatic 

activity in the S9 fraction (Fig. 3C and Suppl. Fig. S8). Glycidamide-exposed cells exhibited 

significantly increased DNA adduct levels, with both N7-GA-Gua and N3-GA-Ade observed 

at very high average levels, 49 000 adducts/108 nucleotides and 350 adducts/108

nucleotides, respectively, after subtracting the trace amount of contamination from the 

internal standard (Fig. 3C and Suppl. Fig. S8).

 
Comparison of the glycidamide signature to known signatures characterized by 
prominent T:A>A:T profiles
We next performed cosine similarity analysis of the putative GA signature and all known 

T:A>A:T-rich signatures extracted from primary cancers as well as experimental systems 

(Fig. 3D and Suppl. Fig. S9). The best match was 84% pattern similarity with COSMIC 

signature 25 (derived from four Hodgkin lymphoma cell lines) (Fig. 3D). However, unlike the 

GA signature, COSMIC signature 25 exhibits strand bias for only T:A>A:T mutations and no

transcription strand bias for the T:A>C:G mutations. Thus, the mutation patterns and strand 

bias on all three main mutation types generated by GA treatment (Fig. 3A,B) appear specific 

and novel. 

Glycidamide signature screening in human tumor data from the ICGC PCAWG
The initial mSigAct test performed on PCAWG data from lung and liver tumors indicated a

marked presence of the GA signature. This observation was in keeping with the presence of 
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acrylamide in tobacco smoke and was further corroborated by a cosine similarity of 94% 

between the adenine (T>N) components of COSMIC signature 4 (tobacco smoking) and the 

GA signature (Fig. 4A). We thus hypothesized that COSMIC signature 4 reflects co-

exposure to B[a]P (generating C>N/guanine mutations with transcription strand bias) and to 

GA (generating T>N/adenine mutations with transcription strand bias) (Fig. 4A,B). To 

provide further experimental evidence, we generated a ‘pure’ B[a]P mutational signature by 

whole-genome sequencing of cell clones derived from B[a]P-exposed normal human 

mammary epithelial cells (HMEC). This yielded a robust signature characterized by 

predominant strand biased guanine (mainly C>A) mutation levels and negligibly mutated 

adenines (T>N) (Fig. 4A,B). Next, we used mSigAct to interrogate the PCAWG tumor 

samples for the level of exposure to the experimentally defined GA and B[a]P signatures 

(alongside other COSMIC mutational signatures) in 48 lung squamous carcinomas, 38 lung 

adenocarcinomas, and 320 liver cancers. We compared these to estimated levels of 

exposure to COSMIC signature 4, and found that in the lung cancers, a combination of the 

GA and B[a]P signatures accounted for very similar numbers of mutations as COSMIC 

signature 4, thus further supporting the hypothesis that COSMIC signature 4 represents 

combined and highly correlated exposure to GA and B[a]P (Fig. 4C). Compared to lung 

cancers, we found more variability in the assignment of mutation numbers to GA and B[a]P 

versus COSMIC signature 4 in liver cancers (Fig. 4C), which may reflect a decreased 

relationship between GA and B[a]P exposure due to generally more complex exposure 

history in the liver. The successful reconstruction of COSMIC signature 4 by the 

experimental GA- and B[a]P- signatures in the lung and liver human tumors enabled correct 

assignment of the GA-signature in a subset of 29 lung adenocarcinomas, 46 lung SCC and 

26 liver tumors (Fig. 4D). The SBS counts corresponding to GA-mutational signature ranged 

between 300 up to 43,000 mutations/per sample in lung tumors, and between 190 to 23,000 

mutations/per sample in liver tumors (Fig. 4D and Suppl. Table S5 – not available in the

preprint version). These findings indicate exposure to glycidamide linked to tobacco smoking 

– when concomitant with B[a]P-signature, or through diet or occupation – in the absence of 

B[a]P signature (samples Liver-HCC::SP112224; Liver-HCC::SP49551; Liver-

HCC::SP50105; Liver-HCC::SP98861; Liver-HCC::SP50183, see Suppl. Fig. S10 and Suppl. 

Table S5 – not available in the preprint version).

Discussion 
In this study we report the identification of an exome-wide mutational signature for 

glycidamide, a metabolite of the probable human carcinogen acrylamide. The newly 

identified signature is based on massively parallel sequencing performed in a well-controlled 
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experimental carcinogen exposure-clonal immortalization model, revealing characteristic 

mutagenic effects of glycidamide. The glycidamide mutational signature presented here and 

the results of statistical assessment of its presence in multiple human tumor types may help 

clarify the thus-far tenuous association of acrylamide with human cancer.  
 In concordance with its in vivo carcinogenicity in rodents (16,19,31,57), our findings 

in the established MEF carcinogen exposure and immortalization system suggest that 

characteristic mutagenic effects may play a role during acrylamide/glycidamide-driven tumor 

development. In contrast to glycidamide, acrylamide exposure led neither to an increased 

number of SBS nor did it induce characteristic mutation types in the MEF exposure system. 

Despite the absence of a mutagenic effect of acrylamide in our experiments, acrylamide and 

glycidamide exposures induce an almost identical set of tumors in both mice and rats,

providing a substantial argument for a glycidamide-mediated tumorigenic effect of 

acrylamide (19). This is further supported by mechanistic studies showing that lung tissue 

from mice exposed to acrylamide and glycidamide displays comparable DNA adduct 
patterns as well as similar mutation frequencies in the cII transgene (36). Similar 

observations had been made in the context of in vitro mutagenicity of acrylamide in human 

and mouse cells, suggesting the key role for epoxide metabolite glycidamide to form pre-

mutagenic DNA adducts (33). 

 As shown by our adduct analysis, acrylamide is not efficiently metabolized by MEFs.

This finding is in keeping with the results from previous animal carcinogenicity studies. In 

fact, glycidamide induces hepatocellular carcinomas in neonatal B6C3F1 mice, whereas 

administration of acrylamide does not increase the tumor incidence. This has been attributed 

to the inability of neonatal mice to efficiently metabolize acrylamide (31). Moreover, in 

contrast to acrylamide treatment, glycidamide induces tumors of the small intestine in a 

dose-dependent manner upon perinatal exposure (57) and similar observations were made 
for glycidamide mutagenicity in vitro (33). We compensated for the lack of proper acrylamide 

metabolic activation by the addition of human S9 fraction, and the assessment of DNA 

adducts indeed suggests acrylamide metabolic activation upon addition of S9. However, the 

adduct levels are substantially lower compared to glycidamide exposure, which may account 

for the observed differences in mutagenicity. Interestingly, a consistent minor contribution of 

the glycidamide mutational signature was detected in the majority of ACR clones, whereas it 

was absent in the Spont clones. This raises the possibility that partial metabolic activation of 

acrylamide in the MEF system resulted in low levels of glycidamide. However, a clear 

mutational signature in the employed experimental setting was achieved only by exposing 

the cells directly to glycidamide. 

Single reporter gene studies had previously linked acrylamide and glycidamide 

exposure to multiple different mutation types. Thanks to the larger number of mutations 
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captured by exome sequencing, we were able to attribute to the glycidamide exposure a 

particular mutational signature characterized by strand-biased C:G>A:T and T:A>A:T 

transversions, and T:A>C:A transitions towards the non-transcribed strand suggesting a

formation of DNA-adducts. The presence of N7-GA-Gua and N3-GA-Ade, two well-

characterized glycidamide DNA adducts originating from the metabolic conversion of 

acrylamide (30,44,53), shows a remarkable relationship between DNA adduct profiles and 

the putative mutational signature of glycidamide. N3-GA-Ade and N7-GA-Gua are 

depurinating adducts. They can result in apurinic/apyrimidinic sites, which, during replication, 

induce the mis-incorporation of deoxyadenine, leading to the observed T:A>A:T and 

C:G>A:T transversions of the glycidamide signature, respectively. The third mutation type 

specifically enriched in the glycidamide signature, T:A>C:G transitions, has been ascribed to 

the N1-GA-Ade adduct, a miscoding adduct and the most commonly identified adenine 
adduct in vitro (35,44,53,58). Levels of the guanine adduct were especially high in the 

exposed MEF cells, whereas the associated C:G>A:T transversions in the resulting post-

senescence clones were less represented. This could reflect differences in DNA repair 

efficiency concerning individual GA-DNA adduct species, or the fact that the resulting clones 

are derived from single cells whereas the GA-DNA adducts were measured on average in 

the bulk primary cell population. A mechanism of negative selection of cells with high N7-

GA-Gua adduct burden is also plausible.  

We observed consistent presence of COSMIC signature 17 in the data generated 

from the untreated and treated MEF clones. The etiology of signature 17 remains unknown. 

While some candidate causal factors have been proposed in esophageal adenocarcinoma 
and gastric cancers (e.g., inflammatory conditions due to acid reflux, H. pylori) (56) and in 

cultured mouse cell systems (54,55), further studies are required to establish why signature 
17 tends to arise in vitro in immortalized clones derived from mouse embryonic fibroblasts as 

observed in our study and also previous work (38).
 Genome-scale sequencing of tumor tissues will be needed to verify, in vivo, the 

glycidamide mutational signature identified in this study. The established animal models 

(18,19) of acrylamide- and glycidamide-mediated tumorigenesis provide a suitable starting 

point, and it would be interesting to compare mutational signatures derived from these 
models with the in vitro results. The identified glycidamide signature with its extended 

features of transcription strand bias for the major mutation types differs from the currently 

known COSMIC signatures (Fig. 3D). In addition, we show that in the cancer genome 

sequencing data sets from the ICGC PCAWG effort, the putative glycidamide-mutational 

signature can be identified in a subset of tumors of the lung and liver (sites of possible 

acrylamide exposure due to tobacco smoking), based on combining experimentally derived 

signatures with sophisticated computational signature reconstruction approaches (Fig. 4). 
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 The continued interest in understanding the contribution of acrylamide and its 

electrophilic metabolite glycidamide to cancer development reflects recent accumulation of 

new mechanistic data on the animal carcinogenicity of the compounds. The possible 

carcinogenic effects in humans have been recommended for re-evaluation by the Advisory 

Group to the Monographs Program of the International Agency for Research on Cancer (59).

Our findings related to the reconstruction of COSMIC signature 4 using the experimental 

GA-signature and B[a]P signature, together with the presence of the GA signature in the 

lung and liver cancer data are relevant given the established high contents of acrylamide in 

tobacco smoke. Despite the absence of prominent T>N (adenine) mutations in the 

experimental B[a]P exposure setting, we cannot exclude a possibility that in the human lung 

cells the adenine residues can be additionally targeted by other tobacco carcinogens such 
as benzo[a]pyrene derivatives or nitrosamines. Importantly, five liver tumor samples 

identified in this study harbored the GA signature but the major features of signature 4 as 

represented by the experimental B[a]P signature were absent (Suppl. Fig. S10, Suppl. Table 

S5 – not available in the preprint version). These tumors are thus of particular interest as 

they could reflect dietary or occupational exposure to acrylamide.

 The presented mutational signature of glycidamide and its potential use for screening 

of cancer genome sequencing data may provide a basis for relevant assessment of cancer 

risk through new carefully designed molecular cancer epidemiology studies. Future 

validation analyses involving e.g. GA-DNA adduct monitoring in non-tumor tissue of cancer 

patients or in animal exposure models are warranted to provide additional evidence that the 

predominant T>N mutations in the cancers identified in this study indeed originate from 

exposure to acrylamide and its reactive metabolite glycidamide. 
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Figure legends 
Figure 1: Acrylamide- and glycidamide-induced cytotoxicity and genotoxicity in vitro. (A) Cell 

viability, following 24-hour treatment of primary MEFs with the indicated concentrations of 
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acrylamide (top panel), in the absence (diamonds) and presence (circles) of human S9 

fraction, and glycidamide (bottom panel), as determined by MTT assay. Absorbance was 

measured 48 hours after treatment cessation and was normalized to untreated cells. The 
results are expressed as mean percent ±SD of three replicates. (B) DNA damage 

assessment by immunofluorescence with an antibody specific for Ser139-phosphorylated 

histone H2Ax (ɣH2Ax). Primary MEFs were treated with acrylamide or glycidamide for 24 

hours prior to immunofluorescence. Compound concentrations used were based on 20-70% 

viability reduction in the MTT assay: 10 mM acrylamide, 5 mM acrylamide in the presence of 
S9 fraction and 3 mM glycidamide. ACR: acrylamide; GA: glycidamide.  

Figure 2: Analysis of the mutation patterns derived from exome sequencing data from 

immortalized Hupki MEF clones. (A) Principle component analysis (PCA) of WES data. PCA 

was computed using as input the mutation count matrix of the clones that immortalized 

spontaneously (Spont) or were derived from exposure to acrylamide (ACR) or glycidamide 

(GA). Each sample is plotted considering the value of the first and second principal 

components (Dim1 and Dim2). The percentage of variance explained by each component is 

indicated within brackets on each axis. Spont, ACR- and GA-exposed samples are 
represented by differently colored symbols. (B) Representation of small insertions and 

deletions (indels) counts within the immortalized clones as determined by the Strelka variant 
caller. (C) Mutational signatures identified by non-negative matrix factorization (NMF) in the 

15 Hupki MEF-derived clones (sig A, sig B, and sig C). X-axis represents the trinucleotide 

sequence context. Y-axis represents the frequency distribution of the mutations. The 

predominant trinucleotide context for T:A > A:T mutations is indicated in sig B (5’-CTG-3’). 

The trinucleotide contexts for C:G > G:C (5’-GCC-3’) and T:A > G:C mutations (5’-NTT-3’) 
are highlighted in sig C. (D) Contribution of the identified signatures to each sample (X-axis), 

assigned either by absolute SBS counts or by proportion (bar graphs). The reconstruction 

accuracy of the identified mutational signatures in individual samples is shown in the bottom 
scatter plot (Y-axis value of 1 = 100% accuracy). 

Figure 3: (A) Refinement of GA signature. The contribution of signature 17 (T:A>G:C in 5’-

NTT-3’ context), present in all clones, was decreased by performing NMF on Hupki samples 
pooled with primary tumor samples with high levels of signature 17 (see Methods). (B)

Transcription strand bias analysis for the six mutation types in GA-exposed clones. For each 

mutation type, the number of mutations occurring on the transcribed (T) and non-transcribed 
(N) strand is shown on the Y-axis. *** p < 10-8 ; * p < 10-2. (C) DNA adducts analysis as 

determined by LC-MS/MS. Levels of N7-GA-Gua adduct in ACR+S9 and GA treated MEFs 

and N3-GA-Ade DNA adduct level in GA treated MEFs. The data are presented as the 
number of adducts in 108 nucleotides. n ≥ 2. (D) Cosine similarity matrix comparing the 
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putative glycidamide mutational signature with other A>T rich mutational signatures from 

COSMIC (signatures 22, 25, and 27) and from experimental exposure assays using specific 

carcinogens (7,12-dimethylbenz[a]anthracene (DMBA), urethane, and aristolochic acid 
(AA)). 

Figure 4: GA signature in human primary cancer genome PCAWG data. (A) Comparison of 

COSMIC signature 4 with two experimentally derived signatures (B[a]P_Exp = signature in 
clones from benzo[a]pyrene treated HMEC cells; GA_Exp = signature in clones from 

glycidamide-treated MEF cells). Cosine similarity between the T>N (adenine) components of 
signature 4 and GA signature is shown to the right. (B) Transcription strand bias analysis for 

the six mutation types underlying the signatures in panel A). For each mutation type, the 

number of mutations occurring on the transcribed (T) and non-transcribed (N) strand is 

shown on the left Y-axis. The significance is expressed as –log10(p-value) indicated on the 
right Y-axis. *** p < 10-8 ; ** p < 10-4 ; * p < 10-2 . (C) Scatter plots show reconstruction of 

COSMIC signature 4 using B[a]P- and glycidamide- experimental mutational signatures in 

lung adenocarcinoma, lung squamous cell carcinoma and hepatocellular carcinoma from the 

PCAWG data set. (D) mSigAct analysis identifies the assignment and the contributions of 

mutational signatures (including the experimental signature_GA_Exp (red) and 

signature_B[a]P_Exp (blue)) to the mutation burden of a total of 101 PCAWG lung and liver 
tumors identified as positive for the GA signature signal. 
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