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Absence epilepsy syndrome is accompanied with sudden appearance of seizures in dierent regions of the brain. The sudden generalization of absence seizures to every region of the brain shows the existence of a mechanism which can quickly synchronizes the activities of the majority of neurons in the brain. The presence of such a mechanism challenges our information about the integrative properties of neurons and the functional connectivity of brain networks. For this reason, many researchers have tried to recognize the main origin of absence seizures. Recent studies have suggested a theory regarding the origin of absence seizures which states that somatosensory cortex drives the thalamus during the rst cycles of absence seizures, while thereafter, cortex and thalamus mutually drive each other and continue absence seizures.

This theory motivated the neuroscientists in Grenoble Institute of Neurosciences (GIN) to record data from dierent layers of somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg (GAERS), which is a well-validated animal model for absence epilepsy, to explore the main starting region of absence seizures locally. An electrode with E = 16 sensors was vertically implanted in somatosensory cortex of GAERS, and potentials were recorded. In this study, we aim to localize the onset layers of somatosensory cortex during absence seizures and investigate the temporal evolution and dynamics of absence seizures using the recorded data. It is worth mentioning that all previous studies have investigated absence seizures using the data recorded from dierent regions of the brain, while this is the rst study that performs the local exploration of absence seizures using the data recorded from dierent layers of somatosensory cortex, i.e., the main starting region of absence seizures.

Using factor analysis, source separation, and blind deconvolution methods in dierent scenarios, we show that 1) the top and bottom layers of somatosensory cortex activate more than the other layers during absence seizures, 2) there is a background epileptic activity during absence seizures, vi 3) there are few activities or states which randomly activate with the background epileptic activity to generate the absence seizures, and 4) one of these states is dominant, and the others are unstable.

The axial view of implementation scheme in the data acquisition.

1.2

The recording electrode and a recorded absence seizure. The beginning and the end of the absence seizure are indicated by t onset and t oset , respectively. . . . . . . . . . . . . . . . . . .

2.1

The recording electrode, an absence seizure and a spike (in the green frame) isolated from the raw data. The beginning and the end of the absence seizure are indicated by t onset and t oset , respectively. . . . . . . . . . . . . . . . . . . . . . . . .

2.2

Interaction of current sources and sinks generating LFPs at one instant. The points and the curves in the middle plot respectively show the current source and sink, and the corresponding equipotential lines. We can assign a CSD vector to a LFP vector at every time point as explained in 2. List of Tables 2.1 Relative reconstruction error for ve absence seizures of the rst rat, which consist of K 1 = 87, K 2 = 94, K 3 = 95, K 4 = 88, and K 5 = 390 spikes. The diagonal and non-diagonal entries of the table respectively show Er train and Er test . . .

2.2

Relative reconstruction error for four absence seizures of the second rat which consist of K 1 = 181, K 2 = 300, K 3 = 350, 

2.3

Relative reconstruction error by considering the absence seizures of the rst and second rat as the training and testing data, respectively. The bad results are due to the high inter-rats variability, and consequently, it is not possible to use the parameters learned from one rat for the other rats. . . . . . . .

2.4

The cross correlation coecient between the spatial topographies of the atoms obtained from the rst and second rat. . .

2.5

The average and variance of the contribution of each factor in the generation of spikes for ve absence seizures of the rst rat. k s , cs and σ 2 cs for s = {1, 2} respectively show the number of spikes, the average and variance of the contribution of each factor corresponding to the s th state. Also, k c , cc and σ is not xed [START_REF] Panayiotopoulos | Typical absence seizures and related epileptic syndromes: Assessment of current state and directions for future research[END_REF]], localizing their origins (spatial analysis) [START_REF] Meeren | Cortical Focus Drives Widespread Corticothalamic Networks During Spontaneous Absence Seizures in Rats[END_REF]; [START_REF] Marten | Derivation and analysis of an ordinary dierential equation mean-eld model for studying clinically recorded epilepsy dynamics[END_REF]; [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]] and investigating their dynamics (temporal analysis) [START_REF] Amor | Cortical Local and Long-range Synchronization Interplay in Human Absence Seizure Initiation[END_REF][START_REF] Moeller | Dynamic analysis of absence seizures in humans: all the same but all dierent[END_REF]; [START_REF] Amini | Dynamical analysis of brain seizure activity from EEG signals[END_REF]] have been challenging problems over the past decades. In fact, we can prevent the origins from communicating with other regions of the brain to stop propagating the absence seizures if we have a comprehensive spatio-temporal analysis from absence seizures. The importance of modelling absence seizures as spatio-temporal patterns has been discussed in [START_REF] Baier | The importance of modeling epileptic seizure dynamics as spatio-temporal patterns[END_REF]].

In the spatial domain, researchers have studied the epileptic events leading to absence seizures [START_REF] Williams | Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model[END_REF]; [START_REF] Polack | Sensory processing during absence seizures[END_REF]]. The sudden generalization of absence seizures to every region of the brain shows the existence of a mechanism which can quickly synchronizes the activities of the majority of neurons in the brain [START_REF] Polack | Sensory processing during absence seizures[END_REF]]. The presence of such a mechanism challenges our information about the integrative properties of neurons and the functional connectivity of brain networks. Hence, researchers have tried to accurately dene the networks involved in absence seizures and their starting points (origins) [START_REF] Panayiotopoulos | A Clinical Guide to Epileptic Syndromes and their Treatment[END_REF]; [START_REF] Vlachos | The concept of eective inow: Application to interictal localization of the epileptogenic focus from iEEG[END_REF]]. Several theories have been suggested about the main origin of seizures. Some researches point to a faulty thalamus as the origin, while others consider an hyper-excitable region in the cortex area as the origin of absence seizures [START_REF] Meeren | Cortical Focus Drives Widespread Corticothalamic Networks During Spontaneous Absence Seizures in Rats[END_REF]; [START_REF] Avoli | A brief history on the oscillating roles of thalamus and cortex in absence seizures[END_REF]]. The most recent theory lling the gap between cortical and thalamic origin is that both cortex and thalamus participate in the generation of absence seizures [START_REF] Meeren | Cortical Focus Drives Widespread Corticothalamic Networks During Spontaneous Absence Seizures in Rats[END_REF]; [START_REF] Steriade | Neuronal Substrates of Sleep and Epilepsy[END_REF]]. By studying non-linear similarities between signals recorded from multiple zones of cortex and thalamus in the Wistar Absence Glaxo from Rijswik (WAG/Rij) rat model, which is an animal model for absence epilepsy, it has been shown that during the rst cycles of absence seizures, somatosensory cortex drives thalamus, while thereafter, somatosensory cortex and thalamus drive each other until the end of absence seizures.

Existence of a cortical starter has also been recognized in Genetic Absence Epilepsy Rat from Strasbourg (GAERS), which is one of the well-validated animal models for absence epilepsy [START_REF] Depaulis | The genetic absence epilepsy rat from strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]; [START_REF] Depaulis | Genetic models of absence epilepsy in the rat[END_REF]]. For GAERS, it has been reported that spike-and-wave discharges (SWDs) [START_REF] Archer | fMRI deactivation of the posterior cingulate during generalized spike and wave[END_REF]; [START_REF] Hamandi | Bold and perfusion changes during epileptic generalised spike wave activity[END_REF]], which are the most important indication of absence seizures, start from somatosensory cortex more than 90% of the time [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]].

In the temporal domain, the challenge is about the dynamics of brain activities within the absence seizures. As a major work in this domain, authors of [START_REF] Amini | Dynamical analysis of brain seizure activity from EEG signals[END_REF]] studied the temporal evolution of absence seizures using intracranial EEG (iEEG) recordings from dierent regions of GAERS brain. At rst, source separation methods are applied on temporal sliding windows of the data and the relevant temporal sources are estimated for each window. Then, the temporal sources are compared quantitatively, giving a map of dynamic behavior. By analyzing this map, it has been shown that the relevant sources become more stationary after a latency from the onset of absence seizures. Dynamic analysis of absence seizures has also been done

in humans [START_REF] Moeller | Dynamic analysis of absence seizures in humansan EEG fMRI study[END_REF]; [START_REF] Wu | Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures[END_REF]; [START_REF] Moeller | Dynamic analysis of absence seizures in humans: all the same but all dierent[END_REF]]. For instance in [START_REF] Moeller | Dynamic analysis of absence seizures in humansan EEG fMRI study[END_REF]], the EEG-fMRI data were acquired from 13 patients suering from absence epilepsy. Then, by applying gamma function regressors on sliding time windows of the data, and calculating the F-value, it was shown that the cortical activations and deactivations tend to occur earlier than the thalamic responses during absence seizures. As another example in [START_REF] Wu | Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures[END_REF]], neuromagnetic sources were volumetrically scanned with accumulated source imaging from 14 patients. Then, eective connectivity networks of the entire brain, including the corticothalamo network, were evaluated at the source level through Granger causality analysis [START_REF] Seth | Granger causality analysis in neuroscience and neuroimaging[END_REF]]. The obtained results show that the corticothalamic eective connectivity increases during absence seizures. Moreover, the direction of the connectivity is predominantly from the cortex to the thalamus in the beginning of absence seizures.

All previous works spatially or temporally analyze absence seizures using the data recorded from dierent areas of the brain, while in this study, the focus is on the analysis of dierent cortical layers of somatosensory cortex as the main onset region of absence seizures. In order to attain a comprehensive spatio-temporal analysis of absence seizures, a data set was acquired in Grenoble Institute of Neurosciences (GIN) from dierent layers of somatosensory cortex of GAERS. Using the recorded data, we aim to: 1) localize the onset layers of somatosensory cortex during absence seizures and 2) investigate the dynamics of absence seizures.

The acquisition process of the data is explained in the following. Then, we briey explain how the data are analyzed in dierent chapters to achieve our goals.

Data Acquisition

The data were acquired in four GAERS rats [START_REF] Danober | Pathophysiological Mechanisms Of Genetic Absence Epilepsy In The Rat[END_REF] Animals were anesthetized (100 mg/kg ketamine, i.p. plus 10 mg/kg xylazine, i.p.) and placed into a stereotactic frame (see [START_REF] Depaulis | The genetic absence epilepsy rat from strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies[END_REF]] for a complete description of this preparation). One electrode (∅: 0.125 mm, polyester isolated) with sixteen sensors (E = 16) was stereotaxically implanted at dierent layers of somatosensory cortex with the bregma as the reference [START_REF] Paxinos | The Rat Brain In Stereotaxic Coordinates: Compact 6th Edition[END_REF]], and extracellular eld potentials were recorded. The distance between the sensors was h = 150 µm. In fact, we want to answer the following questions using the recorded absence seizures:

1) Are there some specic layers in somatosensory cortex which generate the absence seizures? or which layers have more activity during absence seizures? (spatial analysis)

2) Is there any specic pattern during absence seizures over time? or how do the absence seizures change over time? (temporal analysis)

Answering these questions is dicult because if we look at the data, we nd that the data are highly correlated in dierent channels, and the time delay between the channels is almost negligible. Therefore, we try to answer these questions throughout this thesis.

Thesis Overview

Chapter 2

Both localizing the active layers of somatosensory cortex (spatial analysis)

and investigating the dynamics of recorded absence seizures (temporal analysis) are the goals of this chapter. During the recorded absence seizures, a characteristic spike waveform is repeatedly observed. We model these epileptic spike discharges using a generative spatio-temporal model. We assume that there are some hidden states under rst-order Markovian model during absence seizures, and each spike is generated when the corresponding state is activated. We also assume that a few specic epileptic activities (or factors) exist in each state, that are linearly combined to form the observed spikes.

Each epileptic activity is described by two important characteristics: 1) spatial topography which shows the organization of current sources and sinks in dierent layers of somatosensory cortex, and 2) temporal representation which illustrates the activation function of epileptic activity. We estimate parameters of the considered model, i.e., states and their epileptic activities, using a factor analysis method. Experimental results show that during absence seizures there are one dominant and one unstable state, with two epileptic activities in each. The interesting point is that one of the epileptic activities is common between the states, hence, it always participates in the generation of spikes. We also show that contributions of epileptic activities in the generation of spikes can be modeled by stationary random processes, and the top and bottom layers of somatosensory cortex are the most active layers during absence seizures. After determination of the model parameters, generality of the proposed model in characterizing absence epileptic seizures is conrmed using a cross validation framework.

Chapter 3

In this chapter, the focus is on analyzing the dynamics of absence seizures Chapter 5

In this chapter, we conclude the thesis, present the comprehensive analysis of absence epileptic seizures, and answer the scientic questions mentioned in the end of data acquisition section, based on the results obtained in previous chapters. We also state the perspectives and future works.

Notation

Throughout the paper, we use bold capital letters to show matrices (X) and bold small letters to show vectors (x). The i th column and the (i, j) th entry of X are shown by x i and x ij , respectively. The i th entry of x is represented by x(i). We use (.) T , (.) H , and ( * ) to denote transpose, conjugate transpose, and convolution operator, respectively. diag(X) keeps the diagonal entries of X, and trace(X) shows the trace of X. Finally, X F , x 2 and x 0

show the Frobenius, Euclidean, and l 0 norm, respectively.

SEIZURES

Main Idea

In this chapter, we aim to: 1) estimate the onset layers of somatosensory cortex during absence seizures (spatial analysis), and 2) investigate the dynamics of absence seizures (temporal analysis).

Since the data were recorded locally, when one spike appears in one layer of somatosensory cortex during the absence seizures, we can consider a multisensor recording of a single spike, from hereon referred to as spike, as shown in Fig. 2.1 (in the green frame).

Figure 2.1: The recording electrode, an absence seizure and a spike (in the green frame) isolated from the raw data. The beginning and the end of the absence seizure are indicated by t onset and t oset , respectively.

We model the process by which these spikes are generated to achieve the mentioned targets. We assume that there are some hidden states which are activated under rst-order Markovian model during an absence seizure, and each spike of an absence seizure is generated when one of these states is activated. Each state consists of a few specic epileptic activities which are linearly combined and generate the associated spikes. We call each of the epileptic activities as one factor. Each factor is described with two important characteristics. The rst one is the spatial topography which shows the SEIZURES distribution or the organization of current sources and sinks generating the factor, and the second one is the temporal representation which illustrates the activation function or the waveform of the factor. Estimating the explained states and their factors using factor analysis methods [START_REF] Mulaik | Foundations of factor analysis[END_REF]], and investigating the transition between the states help us nd the most active layers of somatosensory cortex during absence seizures (spatial analysis) and analyze the dynamics of absence seizures (temporal analysis).

In the following, Section 2. 

Model Definition

The factor model is based on factorization of multi-dimensional measurements of local eld potentials (LFPs) into spatial factors and temporal loadings. The spatial factors get their full expressive power when they are given as current source densities (CSDs) which allow to describe the observed potentials as consequence of current sources and sinks. Hence, we rst review the relation between LFP and CSD. Then, we dene an epileptic activity (a factor) as the atomic element of our model. After that, the relation between a spike and the dened epileptic activity is explained, and nally, we introduce our complete model for an absence seizure.

CSD as a representation of LFP

Since the data consist of multichannel measurements of extracellular eld potentials, using the concepts of LFP and CSD is a suitable solution for revealing the interaction of dierent layers of somatosensory cortex. The LFP is generated by transmembrane currents in the vicinity of the recording electrode, and provides valuable information like understanding cortical SEIZURES functions that cannot be obtained by only measuring the spiking activity of a small population of neurons [START_REF] Mazzoni | Information content of local eld potentials[END_REF]; [START_REF] Einevoll | Modelling and analysis of local eld potentials for studying the function of cortical circuits[END_REF]].

Mathematically, the LFP is obtained by low-pass ltering of the extracellular eld potential recorded by the electrode [START_REF] Mazzoni | Information content of local eld potentials[END_REF]]. The biophysical origin of LFP is well understood in the framework of volume conductor theory, and using CSD is a standard way for representing LFP.

The CSD representation shows the current sources and sinks generating the 

Definition of Epileptic Activity

We characterize an epileptic activity by a synchronous activity of current The main advantage of this denition is that the obtained CSD map over time (0 ≤ t ≤ T ) can be described by only two characteristics. The rst one is the spatial topography which shows the distribution or the organization of the current sources and sinks in dierent layers, and the second one is SEIZURES the temporal representation which illustrates the temporal evolution of the current sources and sinks. Mathematically, we can say that an epileptic activity is produced by the vector multiplication of its spatial topography and temporal representation, hence, it is a rank-one factor.

Model for Generation of Spikes

Spikes are the most important epileptic discharges during the absence seizures because they are the spatial integration of potentials [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]].

Therefore, we analyze the absence seizures based on investigation of spikes.

At the moment, we suppose that we have already accurately extracted the spikes from the data. The extraction method will be explained later. We assume that each spike is generated by a linear combination of J epileptic activities. Hence, we can consider the following rank-J factorization for each spike X k ∈ IR E×T , where E and T respectively show the number of sensors and samples in each spike.

X k = J j=1 c kj a j b T j (2.1)
Based on this decomposition, if we assume that X k is generated by a linear superposition of J epileptic activities, and consider each epileptic activity as a factor, c kj ∈ IR, a j ∈ IR E and b j ∈ IR T respectively show the contribution of the j th factor in the generation of X k , the spatial topography, and the temporal representation of the j th factor. In fact, a j shows the spatial distribution of the CSD in dierent layers of somatosensory cortex and b j informs temporal activation function of each factor.

For instance, Fig. 2.4 schematically shows that J = 2 dierent epileptic activities linearly contribute to the construction of the considered spike. It must be mentioned that linearity is a reasonable assumption because we process the low frequency content of the data (LFP or CSD) which does not include eects of capacity and induction. Therefore, there is no building up of charges and we can directly measure the elds [START_REF] Reitz | Foundations of electromagnetic theory[END_REF]]. Each epileptic activity is described by two characteristics; 1) the spatial topography (with colorcoded positive and negative values) and 2) the temporal representation.

Model for Absence Seizure

We can consider each absence seizure as a train of spikes as shown in Fig.

2.1.

Based on the similarity of spikes, meaning that they have temporal activation functions that are almost equal, we assume that there are a few hidden states (S) during an absence seizure, and each spike is generated when the corresponding state is activated. In order to model the dynamics of the state activations, we also assume the state activations are modeled by a rst-order Markovian model with a xed transition probability matrix P ∈ IR S×S for the state activations, where the (i, j) th entry of P, or in other words, p ij shows the probability of transition from state i to state j. The rst-order Markovian model means that the activation of each state is only dependent on the previous active state. Generally, this assumption enables reasoning and computation with the data that would otherwise be intractable. Fig. 2.5 shows the considered model for the generation of a train of spikes, or in other words, an absence seizure assuming S = 2, i.e., when there are two states.

In fact, each state consists of a few specic factors (e.g., J factors) which participate in the generation of spikes. If we assume that there are K spikes during an absence seizure and stack them in a three dimensional tensor 

Data Processing Pipeline

The proposed data processing pipeline is shown in Fig. 

Reference Removal

Since the recorded raw data for each sensor is the potential dierence between the tip of the sensor and a distant cortical site, the rst pre-processing step SEIZURES consists in removing the eect of reference point by subtracting each column of the data from its average. In fact, we re-reference to the average as a proxy of the unknown reference. The common information between all of the channels is removed by this subtraction. Subtraction of the common average has also been shown to be useful for other reasons [START_REF] Ludwig | Using a common average reference to improve cortical neuron recordings from microelectrode arrays[END_REF]].

For instance, some sources of noise, especially those from non-physiological external sources, are removed by this pre-processing step because the sensors are located very close to each other.

LFP Extraction

The LFP is obtained by low-pass ltering of the extracellular eld potential recorded by the electrode [START_REF] Mazzoni | Information content of local eld potentials[END_REF]]. Therefore, the recorded signal of each sensor (channel) is ltered by a 5th-order low pass Butterworth lter with a cuto frequency equal to 100 Hz. In fact, the high-frequency content (above 100 Hz) of the data consists of action potentials and noise which are not of interest in this research. The main target of this preprocessing step is preparing the data for calculating the CSD.

CSD Extraction

The biophysical origin of LFP is well understood in the framework of volume conductor theory, and CSD is one of the standard ways of representing LFP.

In fact, the CSD representation shows the current sources and sinks generating the measured potentials. We use an inverse CSD (iCSD) [START_REF] Pettersen | Current-source density estimation based on inversion of electrostatic forward solution: Eects of nite extent of neuronal activity and conductivity discontinuities[END_REF]] method to extract the CSD from the LFP, as explained in the following.

In iCSD method, there is a linear relationship between LFPs (φ ∈ IR E ) and CSDs (µ ∈ IR E ) at each time instant by means of a coecient matrix F ∈ IR E×E as follows:

φ = Fµ (2.2)
where E = 16 shows the number of channels. If we assume the recording SEIZURES electrode is located on the z axis, each entry of the coecient matrix f ij =

[F] ij is calculated as follow:

f ij = z i + h 2 z i -h 2 1 2σ ( (z j -z ) 2 + r 2 + |z j -z|)dz (2.3)
where z i (i = 1, 2, ..., 16) shows the positions of the sensors on the recording electrode and h = 150 µm denotes the distance between the sensors. r

represents the radius of the cylindrical volume around the sensors which consists of current sources and sinks as shown in Fig. 2.8, and it is considered equal to r = 50 µm [START_REF] Einevoll | Modelling and analysis of local eld potentials for studying the function of cortical circuits[END_REF]] in this research. The value of σ, which shows the extracellular electrical conductivity, is not important here, and it is just a scaling factor. It should be noted that we assume the sensors are located in the homogeneous media. Therefore, the CSD vector in each time instant is extracted by µ = F -1 φ. We aim to investigate the absence seizures, therefore, we must separate them from the data. A good survey on seizure detection methods can be found in [START_REF] Alotaiby | EEG seizure detection and prediction algorithms: a survey[END_REF]]. Since the amplitudes of the signals (now, the CSDs) change signicantly in the beginning and end of absence seizures (as shown in Fig. 2.1), we identify absence seizures by simple thresholding. It is worth mentioning that after detecting the seizures, we also apply a median ltering on a window around each peak which its amplitude is greater than the half of the maximum absolute amplitude of the signals for the whole period of processing to remove the outliers and artifacts from the seizures. The length of moving median window is equal to 0.2 s with 70 % overlap and the length of window around the peak is equal to 0.4 s [START_REF] Amini | Dynamical analysis of brain seizure activity from EEG signals[END_REF]].

Spike Detection

Once the absence seizures are separated from the data, we detect the spikes.

Following [START_REF] Quiroga | Unsupervised Spike Detection And Sorting With Wavelets And Superparamagnetic Clustering[END_REF]], we again use thresholding to detect the spikes. Each spike is shown by

X (t k ) k
∈ IR E×T , where t k denotes the starting time of the k th spike, E = 16 shows the number of channels (sensors), and T = 1750 samples (87.5 ms) [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]] represents the length of each spike.

Aligning and Stacking Spikes

The alignment of spikes is a necessary step to obtain accurate results. We align the spikes using the improved version of Woody's method proposed in [START_REF] Cabasson | Time delay estimation: A new insight into the Woody's method[END_REF]]. For this purpose, in an iteration loop, each spike X (t k ) k is aligned with the average of the other spikes until convergence of the algorithm. Considering X 0 as the average of all spikes except X

(t k ) k ,
we shift the window of spike X

(t k ) k until achieving the maximum cross corre- lation between X (t k ) k
and X 0 . Mathematically, the following calculations are SEIZURES performed in each iteration:

τ * k = argmax τ i ρ(X 0 , X (t k -τ k ) k ), |τ k | < T 2 t k ← t k -τ * k (2.4)
The cross correlation coecient is calculated as follows:

ρ(X 0 , X (t k -τ k ) k ) = T r{X T 0 X (t k -τ k ) k } X 0 F X (t k -τ k ) k F (2.5)
where T r and . F denote the trace function and Frobenius norm, respectively. In fact, we repeat (2.4) for all spikes until the algorithm convergence.

After aligning the spikes, we drop the starting time of each spike and consider each one as X k . Once the spikes were aligned, we stack them in 3way data tensor T as shown in 

test , ...,

T (M )
test } consists of spikes of M absence seizures. In the following, estimation of the model parameters using T train is explained.

Parameters Estimation

According to the proposed model and as shown in Fig. 2.6, the main idea for estimating the model parameters is factorizing T train ∈ IR E×T ×K , which is a cube of data, using tensor factorization. Hence, the desired factorization for T train is as follows:

T train S s=1 J j=1 a (s) j ⊗ b (s) j ⊗ c (s) j (2.6)
where E, T , K, S, and J are respectively the number of channels, samples in each spike, spikes, states, and factors. ⊗ denotes the tensor product. a

(s) j ∈ IR E , b (s) 
j ∈ IR T , and c

(s) j ∈ IR K show spatial topography of each factor, SEIZURES temporal representation of each factor and contribution of each factor in the generation of spikes, respectively. This factorization is schematically shown in Fig. 2.6 assuming S = J = 2. We also consider the following constraints in this factorization:

1-According to the model, there is a rst-order Markovian model in the activation of the states, i.e., the (k + 1) th state only depends on the k th state.

The transition probability matrix P ∈ IR S×S , which shows the probability of activation of each state subject to knowing the previous activated state, must also be estimated during the factorization. It should be noted that if the considered absence seizure was almost noiseless, we could ignore the Markovian dependency between the spikes and estimate the parameters (see Appendix A).

2-In order to omit the scaling and a part of polarization ambiguities, a (s) A noticeable point here is that we do not have any prior information about the number of states (S) and factors (J ). However, we have to x them to be able to extract the unknown parameters. Since we are looking for results which have biophysiological interpretation, at rst we estimate the unknown parameters for dierent S and J, then, we select the one with the best biophysiological interpretation. We discuss more about this issue later.

We use the maximum likelihood estimator (MLE) and the expectation maximization (EM) to obtain the unknown parameters as explained in the following.

We consider the parameters of the s th state in the matrices A (s) ∈ IR E×J , B (s) ∈ IR T ×J and C (s) ∈ IR K×J as follows:

A (s) = [a (s) 1 a (s) 2 ... a (s) J ] B (s) = [b (s) 1 b (s) 2 ... b (s) J ] C (s) = [c (s) 1 c (s) 2 ... c (s) J ], [C (s) ] kj = c (s) kj (2.7) SEIZURES
Therefore, the set of unknown parameters is as follows:

Θ = {A, B, C, P} (2.8) 
where A = [A (1) ... A (S) ] ∈ IR E×JS , B = [B (1) ... 1) ... C (S) ] ∈ IR K×JS , and P ∈ IR S×S shows the transition probability matrix.

B (S) ] ∈ IR T ×JS , C = [C ( 
We assume that the error of the measurement is modeled as an additive white Gaussian term. Hence, each recorded spike X k ∈ IR E×T is expressed as:

H (s) k : X k = J j=1 c (s) kj a (s) j b (s) j T + N k (2.9)
where H

(s)

k (s = 1, 2, ..., S) means that state s is active for generating the k th spike. c Therefore, we have:

f (X k |H (s) k , Θ) = ( 1 2πσ 2 0 ) E T exp   - X k -J j=1 c (s) kj a (s) j b (s) j T 2 F 2σ 2 0   (2.10)
It should be noted that since σ 2 0 is unknown, it is also added to the set of unknown parameters. Considering (2.10), we can use the maximum loglikelihood estimator (MLE) to nd the set of unknown parameters, i.e.,

Θ * = argmax Θ log(f (T train |Θ)) (2.11)
where the superscript * shows the optimum value of the parameter. Since the noise matrices N k (k = 1, 2, ..., K) are independent, the observations X k for k = 1, 2, ..., K are also independent given Θ. Therefore, the objective SEIZURES function can be expressed as follows:

log(f (T train |Θ)) = K k=1 log(f (X k |Θ)) = K k=1 log S s=1 p(H (s) k )f (X k |H (s) k , Θ) (2.12)
where p(H

(s)
k ) shows the probability of the activation of the s th state in the generation of the k th spike. Since p(H (s) k ) is unknown, and the summation over s in (2.12) is like an expectation operator, we solve this optimization problem using the expectation maximization (EM) method. This means that the following two steps are alternately performed to extract the unknown parameters (E-step and M-step).

Expectation Step (E-step)

In this step, we assume that the set of unknown parameters Θ and conse-

quently f (X k |H (s) k , Θ) are known, then, we estimate p(H (s)
k ). This step is performed using a forward-backward procedure, which is explained in Appendix B. In this procedure, the probability of being in state m for the k th spike and being in state n for the (k + 1) th spike (p(H

(m) k , H (n) k+1 )
) is also calculated which is used in the M-step to extract the transition probability matrix.

Maximization Step (M-step)

Given p(H (s) k ) in the previous step, Θ is extracted in this step. The entries of the transition probability matrix are easily estimated using the following equation:

[P] mn = p mn → p * mn = K-1 k=1 p(H (m) k , H (n) k+1 ) K-1 k=1 p(H (m) k ) (2.13)
For extracting the other parameters, directly maximizing (2.12) is difcult because the log term (log ) cannot be further reduced. Therefore, instead of maximizing this objective function, we consider its lower bound SEIZURES using the Jensen's inequality (log-concavity):

K k=1 log{ S s=1 p(H (s) k )f (X k |H (s) k , Θ)} ≥ K k=1 S s=1 p(H (s) k )log{f (X k |H (s) k , Θ)} Q(Θ) (2.14)
In fact, hereafter, we solve the following optimization problem:

Θ * = argmax Θ Q(Θ) (2.15)
By substituting (2.10) in (2.15), and some simple calculations, we get:

Q(Θ) = - E T 2 log(2πσ 2 0 ) - 1 2σ 2 0 K k=1 S s=1 p(H (s) k ) X k - J j=1 c (s) kj a (s) j b (s) j T 2 F (2.16)
It can be easily seen that maximizing this function is done by maximizing each of its independent terms, i.e., we can separate the parameters of each state in this optimization problem. Therefore, for each state, we have:

{A (s) * , B (s) * , C (s) * } = argmin A (s) ,B (s) ,C (s) K k=1 p(H (s) k ) X k - J j=1 c (s) kj a (s) j b (s) j T 2 F
(2.17)

According to the constraints mentioned in 2.3.7, a

j and b (s) j are unit norm vectors and c

(s) kj is positive. Therefore, we must also consider the following constraints in this optimization:

a (s) j 2 = 1, b (s) j 2 = 1, c (s) kj > 0 j = 1, 2, ..., J s = 1, 2, ..., S k = 1, 2, ..., K (2.18)
Hence, the proposed optimization problem in (2.17) is a constrained weighted least square problems which can be solved using alternating least square method (ALS) [START_REF] Boyd | Convex optimization[END_REF]].

After solving (2.17) for all of the states, and hence determination of {A * , B * , C * }, by computing the rst derivative of Q(Θ) with respect to σ 2 0 , it can SEIZURES be shown that the variance of noise is estimated according to the following formula:

σ 2 0 * = 1 E T K k=1 S s=1 p(H (s) k ) X k - J j=1 c (s) kj * a (s) j * b (s) j * T 2 F (2.19)
The nal set of unknown parameters are extracted by alternately performing the E-step and the M-step until convergence of the parameters.

After the parameter estimation, we must assign one state to each spike, and determine the sequence of states during the training absence seizure.

For this purpose, since we have found all characteristics of the states, the sequence of states can be determined using the Viterbi algorithm [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]].

After determination of the sequence of states, we must apply one minor modication on matrix C to get the optimal parameters for the obtained sequence. In each row of C, we must just have non-zero entries for a single state because only one state is active for each spike. Therefore, we keep the entries of the corresponding activated state (factors), and make the other entries zero. Now, all of the unknown parameters Θ * = {A * , B * , C * , P * , σ 2 0 * } are determined.

Finally, in order to show that the proposed model is adapted to the training data, we must have good reconstruction using the estimated parameters.

This means that the following relative reconstruction error must be small:

Er train = T train -S s=1 J j=1 a (s) j * ⊗ b (s) j * ⊗ c (s) j * 2 F T train 2 F (2.20)
where . F denotes the Frobenius norm. a 

(s) j * , b ( 

Validation of Model

The last block of the proposed framework is cross-validation. We must check the compatibility of the obtained parameters from T train with each of the ab- There is a state corresponding to each spike, therefore, we can assign a sequence of states to each absence seizure as shown in Fig. 2.5. Since all of the model parameters except c

(s) j are determined, and there is a rst-order Markovian model in the activation of the states, we can extract the sequence of states for testing absence seizure T (m) test using Viterbi algorithm [Rabiner (1989)] and following the proposed method in the previous section. Once the sequence of states is determined, we project each spike of the testing absence seizure on the corresponding state (factor) and nd c (s) j *

. Positivity of the coecients must be considered in this decomposition.

Finally, we calculate the following relative reconstruction error to evaluate the goodness of t of the proposed model to the unseen testing data.

Er (m) test = T (m) test -S s=1 J j=1 a (s) j * ⊗ b (s) j * ⊗ c (s) j * 2 F T (m) test 2 F (2.21)
An important point must be discussed before presenting the results obtained from the neural dataset. The data used in this study were acquired from somatosensory cortex using an electrode with E = 16 sensors. The distance between the rst and the last sensor is 2.5 mm which shows that the data were recorded from a very small area of the brain. Hence, the time lag between the channels is negligible and we can consider each 16 spikes recorded in dierent channels as a unique spike time window, and apply the proposed approach on these spike time windows. In fact, the proposed ap-SEIZURES proach can be applied on any databases in which the time delay between the signals recorded in dierent channels is negligible, or in other words, on any database which has been acquired from a very small area of the brain.

Hence, the proposed approach cannot be employed for investigating dierent brain regions to nd the spatial origin of an absence seizure.

Results

In this section, we present the results. The discussion and the interpretation of the results are brought with details in Section 2.5.

Training Phase: Estimation of Parameters

We consider one of the absence seizures of the rst rat which consists of K = 390 spikes as the training data T train ∈ IR 16×1750×390 . In fact, each spike consists of the data of E = 16 channels for T = 1750 samples (87.5

ms). Since we do not have any information about the number of states (S)

and factors (J ), we apply the proposed method on T train with dierent S and J. Then, we select the best model order by considering the following:

1-According to (2.20), the relative reconstruction error must be small. 2-Assuming that the seizures follow the same structural model for all the rats, we enforce the values of J and S to be the same both for dierent seizures of the same rat, and for dierent rats.

Considering the above two points, the best results are obtained using two As shown in part (b) of Fig. 2.13, the contribution of the factors in the second state are dependent because their joint distribution almost has a linear form, while in the rst state, there is no such dependency. It is also observed that for some of the spikes in the rst state, the contribution of the second factor is much greater than the contribution of the rst factor.

With regards to part (a) of Fig. 2.13, it seems that this phenomenon occurs randomly, and there is no specic pattern in the appearance of this kind of spikes.

SEIZURES

In order to show the behavior of current sources and sinks during the spikes in state 1 and state 2, we individually compute the average of the CSD representations of the spikes in each state as shown in Fig. 2.14. We respectively show these average CSD maps by M (1) ∈ IR E×T and M (2) ∈ IR E×T for the rst and second states. Since the relative reconstruction error is very small for the training absence seizure (Er train = 0.05), mathematically, these average CSD maps can be approximately expressed as follows:

M (1) c(1)
1 a

(1)

1 b

(1) 1 For instance, the obtained factors and transition probability matrix for one of the absence seizures of the second rat, which consists of K = 146

T + c(1) 2 a (1) 2 b (1) 2 T M (2) c(2) 1 a (2) 1 b (2) 1 T + c(2) 2 a ( 
spikes, are shown in Fig. 2.17 (compare with Fig. 2.9). Also, the corresponding CSD maps of the factors are shown in Fig. 2.18. The reconstruction error for this absence seizure is Er train = 0.09.

It can be seen that the rst factors of both states are similar, and the rst state is unstable because the probability of remaining in the rst state (p 11 = 0.08) is very low with respect to the probability of transition to the second state (p 12 = 0.92).

The sequence of states for this absence seizure is shown in Fig. 2.19.

During the absence seizure, k 1 = 54 and k 2 = 92 spikes (K = k 1 + k 2 = 146)

respectively belong to the rst and second states.

Similar to the sequence of states for the absence seizures of the rst rat, it seems that there is no specic pattern in the states activation during this absence seizure, and for some time intervals, both states are unstable.

However, on average, state 2 is more stable than state 1 during this absence seizure.

The contribution of the factors (c These results show the accuracy and generality of the proposed model and the obtained results for the recorded absence seizures from the rst rat. For other rats, the relative reconstruction errors have the same order of magnitudes as the rst rat. For instance, the relative reconstruction errors Table 2.3: Relative reconstruction error by considering the absence seizures of the rst and second rat as the training and testing data, respectively. The bad results are due to the high inter-rats variability, and consequently, it is not possible to use the parameters learned from one rat for the other rats. Table 2.4: The cross correlation coecient between the spatial topographies of the atoms obtained from the rst and second rat.

First Rat

Second Rat a These results show that the inter-rat variability is important, therefore, we cannot use the data from one rat for training the model, and then testing on the other rats. In fact, since the temporal representation of the factors are not similar in dierent rats (compare Fig. 2.9 with Fig. 2.17), the results of cross validation among the absence seizures from dierent rats are inferior to the results of cross validation among the absence seizures of the same rat.

It is worth mentioning that based on the results presented in Fig. 2.9 with Fig. 2.17, the spatial topographies of the factors are similar in dierent rats. To show the correctness of this remark quantitatively, we calculate the cross correlation coecient between the spatial topographies of the factors obtained from the two rats. The cross correlation coecients between the SEIZURES spatial topographies of the factors obtained from the rst and second rat are reported in Table 2.4. As reported, the diagonal entries of Table 2.4 are close to one meaning that the spatial topographies of the atoms are similar in the rats, i.e. the localization of atomic epileptic activities are not rat-dependent.

Discussion

In this section, we present the spatial and temporal analysis of the absence seizures recorded from dierent layers of somatosensory cortex of GAERS based on the results obtained in the previous section.

Obtained spatio-temporal model: As shown in Figs. 2.9 and 2.17, there are S = 2 hidden states under rst-order Markovian model during the absence seizures. Each state consists of J = 2 epileptic activities (factors) which are linearly combined and construct the spikes of absence seizures.

Existence of a common epileptic activity (temporal analysis):

An interesting point about the characterizations of the states is that the rst factors of the states are similar. This means that there is a factor which always participate in the generation of spikes. We call this factor as a common epileptic activity (factor). Based on this observation, we can upgrade the proposed model for the absence seizures. We can say that during the absence seizures, there is a common epileptic activity, and there are S = 2

states under the rst-order Markovian model with J = 1 factor (epileptic activity) in each one. The new model for the generation of spikes during the absence seizures of the rst and second rats is shown in Fig. Similarity of spatial topographies in GAERS (spatial analysis):

As shown in Fig. 2.22 and reported in Table 2.4, although the temporal representations of the corresponding factors in the rst and second rats are dierent, the corresponding spatial topographies are similar. Therefore, the organization of current sources and sinks in the corresponding factors (epileptic activities) are the same in dierent rats. Based on the estimated spatial topographies, we can say:

1-For the epileptic activity in the rst state, the current sources and sinks are located in the vicinity of layers VI and II/III. In fact, the information SEIZURES are sent and received among these layers for this epileptic activity. It should be noted that due to the polarization ambiguity, we cannot exactly specify which layer sends or receives information.

2-For the epileptic activity in the second state, the current sources and sinks are located in the vicinity of layers I and V.

3-For the common epileptic activity, the current sources and sinks are located in the vicinity of layers II/III and VI.

Contribution of epileptic activities in generation of spikes (temporal analysis): The characterization of the factors are xed during the absence seizure, while their contribution in generation of spikes changes over time. In fact, the factors and their contribution show the stationary and dynamic part of the model, respectively. Here, we discuss about the dynamic part of the model.

As shown in Figs. 2.13 and 2.16, the distributions of the contribution of factors and their averages are similar in dierent absence seizures of the same rat. This means that we can consider a stationary random process with xed distribution for contribution of each factor in generation of spikes. In fact, dierent absence seizures of a rat can be considered as dierent trials for these random processes.

To show the stationarity of these random processes for dierent absence seizures of a rat quantitatively, for instance, the average and variance of the contribution of each factor in the generation of spikes, based on the upgraded model (Fig. 2.22), for ve absence seizures of the rst rat are reported in Table 2.5. k s , cs and σ 2 cs for s = {1, 2} show the number of spikes corresponding to the s th state, the average of the contribution of the factor corresponding to the s th state in the generation of spikes and the corresponding variance, respectively. Moreover, k c , cc and σ 2 cc are associated with the common factor.

As shown here, the averages and variances are similar in dierent absence seizures of the rst rat verifying the assumption that the contributions of the factors in generating spikes can be considered as stationary random Table 2.5: The average and variance of the contribution of each factor in the generation of spikes for ve absence seizures of the rst rat. k s , cs and σ 2 cs for s = {1, 2} respectively show the number of spikes, the average and variance of the contribution of each factor corresponding to the s th state. Also, k c , cc and σ 2 cc are corresponded to the common factor. processes. The same results are obtained in the other rats. Since the corresponding random processes have the same averages in dierent absence seizures of a rat, and also the factors are similar, we can say that on average, the current sources and sinks have similar behavior in each state during the absence seizures of a rat. This average behaviors is respectively shown in Figs. 2.14 and 2.21 for the rst and second rats.

Parameters k 1 c1 σ 2 c 1 k 2 c2 σ 2 c 2 kc cc σ 2

Conclusion

In this chapter, we considered a spatio-temporal model for the generation of spikes which are the most important epileptic events during absence seizures. We assumed that there were some hidden states under the rst- activities corresponded to blinking or eye movements [START_REF] Boudet | Filtering by optimal projection and application to automatic artifact removal from EEG[END_REF]].

The rest of this chapter is organized as follows. section 3.2 introduces the considered model for absence seizures. Problem formulation and considered assumptions are stated in section 3.3. The proposed method for estimating the model parameters is explained in section 3.4, while section 3.5 is dedicated to simulations and experimental results. Finally, the discussion and concluding remarks are reported in section 3.6.

Model Definition

We assume that some physical activities or phenomena are taking place In the recorded data, the spikes appear in dierent channels simultaneously during the absence seizures because the data have been acquired very locally. Hence, we consider each n = 16 spikes (at the same time) as one time window as shown in Fig. 3.1. For this purpose, we must at rst separate the absence seizures from the data, and then, detect the spikes during the absence seizures. The same procedure as explained in the previous chapter is employed to perform these preprocessing steps. This means that since the amplitude of the signals changes signicantly at the beginning and at the end of the absence seizures, we separate the absence seizures from the data by simple thresholding. Once the absence seizures were separated from the data, we detect the spikes for each absence seizure individually, following the proposed method in [START_REF] Quiroga | Unsupervised Spike Detection And Sorting With Wavelets And Superparamagnetic Clustering[END_REF]] and construct the time windows (each of length 87.5 ms, L = 1750 samples). The length of the time windows is chosen according to the length of the spikes during absence seizures [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]]. We also align the time windows using improved version of Woody's method proposed in [START_REF] Cabasson | Time delay estimation: A new insight into the Woody's method[END_REF]] to achieve higher SEIZURES correlation among the time windows, and get accurate results. Finally, the time windows are consecutively placed for each absence seizure separately.

Thus, an absence seizure constituted by K spikes, is represented by the concatenation of its K elementary time windows. Hence, we remove the part of the recordings, which are not directly related to spikes. Now, we dene our problem on the time windows of an absence seizure for estimating the model parameters.

Problem Formulation

Assume that the considered absence seizure has K elementary time windows (each of length L). The data for the k th time window at time instant t

((k -1 )L + 1 ≤ t ≤ kL) can be expressed as: y (k) t = As (k) t + B (k) u (k) t + n (k) t (3.1)
where y

(k) t = [y (k) 1 (t), ..., y (k) n (t)] T ∈ IR n , A ∈ IR n×m and s (k) t = [s (k)
1 (t), ..., s ∈ IR n×r k and u

(k) t = [u (k) 1 (t), ..., u (k)
r k (t)] T ∈ IR r k show the dynamic structure and the dynamic sources, respectively. Finally, n

(k) t = [n (k) 1 (t), ..., n (k) n (t)] T ∈ IR n is
an independent and identically distributed (i.i.d.) noise vector at dierent sensors, which is considered to be a zero-mean Gaussian noise with an unknown covariance matrix Σ N ∈ IR n×n .

For each time window k (k = 1, 2, ..., K), if we concatenate the L vectors (samples) of the recorded signals, the static sources, the dynamic sources and the noise, we obtain the matrices Y (k) ∈ IR n×L , S (k) ∈ IR m×L , U (k) ∈ IR r k ×L and N (k) ∈ IR n×L . Therefore, (3.1) can be written as:

Y (k) = AS (k) + B (k) U (k) + N (k) (3.2)

SEIZURES

Hence, the set of unknown parameters (Θ) can be expressed as

Θ = {A, K k=1 { S (k) , r k , B (k) , U (k) }} (3.3)
We aim to extract Θ using recorded signals in all of the time windows, i.e., Y (k) for k = 1, 2, ..., K.

Known Characteristics of The System:

The following assumptions are considered in the procedure of parameters extraction:

(A1) The number of static sources (m) is a constant for all the seizures, and it is determined by physiological reasons.

Neuroscientists have spatially and temporally explored the spike and wave discharges generating the seizures, and they have shown that these spike and wave discharges are similar in dierent seizures of a specic rat [START_REF] Meeren | Cortical Focus Drives Widespread Corticothalamic Networks During Spontaneous Absence Seizures in Rats[END_REF]; [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]]. In other words, there is intra-rat similarity between the seizures. We use this suitable physiological information to obtain m. In fact, we expect to obtain results with intra-rat similarity.

For this purpose, we extract the model parameters by considering dierent m. Then, the number of static sources which leads to the results with better intra-rat similarity is considered as the optimum number of static sources.

It is worth mentioning that the similarity between results can be measured by the cross correlation coecient.

(A2) The total number of static and dynamic sources (m + r k ) is less than the number of sensors (n) in each time window. Consider (3.2) without presence of noise: k) ] for estimating the sources. Therefore, m + r k ≤ n and [A B (k) ] must be a full column rank matrix.

Y (k) = [A B (k) ]   S (k) U (k)   (3.4) If we assume [A B (k) ] ∈ IR n×(m+r k ) is known, it is needed to compute the inverse of [A B (
(A3) The columns of A are unit norm.

SEIZURES

To omit the scaling ambiguity problem in separation of the static sources, the columns of A are considered unit norm vectors [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]].

(A4) Static sources and dynamic sources are considered uncorrelated in each time window.

When the sources are considered uncorrelated, it means that there is no linear relationship between them. In fact, we assume that all of the sources have their own specic origins. Mathematically, we can write:

kL t=(k-1)L+1 s (k) t u (k) t T = 0 ∈ IR m×r k 1 L kL t=(k-1)L+1 s (k) t s (k) t T = Λ (k) s ∈ IR m×m 1 L kL t=(k-1)L+1 u (k) t u (k) t T = Λ (k) u = I ∈ IR r k ×r k (3.5)
where

Λ (k)
s is the auto-correlation matrix of the static sources in the k th time window and unknown. It is a diagonal matrix with positive entries which are not necessarily constant during dierent time windows. Auto-correlation matrix of dynamic sources (Λ (k) u ) is considered equal to identity matrix (I) in order to omit the scaling ambiguity problem in separation of dynamic sources [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]].

(A5) The dynamic sources are considered statistically independent in each time window.

There is no synchronization between the dynamic sources, and they may randomly activate in each time window. Hence, we assume that they are statistically independent. It should be noted that two random variables (X, Y )

are independent when their joint probability distribution is the product of their marginal probability distributions, i.e., p X,Y (x, y) = p X (x) p Y (y)

(3.6)
If X and Y are independent, then, they are also uncorrelated because

E X,Y (xy) = E X (x) E Y (y) (3.7)

SEIZURES

However, the reverse of this remark is not correct. This means that if X and Y are uncorrelated, then they are not essentially independent. Hence, independency is a stronger condition than uncorrelatedness [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]].

(A6) The noise is uncorrelated with all of the sources in each time window.

Since the noise is zero-mean and independent of the sources, it is uncorrelated with all of the sources in each time window, i.e.,

kL t=(k-1)L+1 s (k) t n (k) t T = 0 ∈ IR m×n kL t=(k-1)L+1 u (k) t n (k) t T = 0 ∈ IR r k ×n (3.8)
Now, the problem statement is complete and the goal is estimating the set of unknown parameters (Θ) from the time windows of a recorded absence seizure (Y (k) for k = 1, 2, ..., K) based on the known characteristics of the model.

Proposed Method

At rst, we estimate the static structure (A) and the number of dynamic sources in each time window (r k ). Then, the dynamic sources (U (k) ) are obtained in each time window. Finally, we estimate the static sources (S

(k) )
and the dynamic structure (B (k) ) in each time window.

Extraction of The Static Structure and The Number of Dynamic Sources

We follow the proposed method in [START_REF] Yeredor | Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[END_REF]], regarding the joint diagonalization of a set of target matrices, to estimate the static structure and the number of dynamic sources in each time window. Since the sources are SEIZURES uncorrelated according to (A4), we solve the following optimization problem:

Θ * 1 = argmin Θ 1 g(Θ 1 ) Θ 1 = {A, K k=1 { Λ (k) s , r k , R (k) B }} g(Θ 1 ) = K k=1 R (k) y -AΛ (k) s A T -B (k) I Λ (k) u B (k) T R (k) B 2 F (3.9)
where . F denotes the Frobenius norm, and the auto-correlation matrix

of recorded signals (R (k)
y ∈ IR n×n ) in the k th time window is calculated as follows:

R (k) y = 1 L kL t=(k-1)L+1 y (k) t y (k) t T (3.10)
It should be mentioned that Λ (k) s is not an important parameter, but it must be estimated during the optimization. The other noticeable point is that the

rank of R (k)
B is equal to r k , and since r k < n, it is a low-rank matrix. We use this information to extract the number of dynamic sources (r k ) in each time window.

The following constraints must also be considered in the optimization:

c 1 ) The columns of A are unit norms. c 2 ) Λ (k)
s is diagonal with positive entries.

c 3 ) R (k)
B is a low-rank and positive semidenite matrix (R (k) B 0).

We use alternating least square (ALS) method to solve the optimization problem. We consider some feasible initial values for Θ 1 , then, we alternately perform the following steps until the convergence of the parameters.

Step 1. Assuming Λ (k) s and R

B for k = 1, 2, ..., K are xed, we have:

A * = argmin A K k=1 R (k) y -AΛ (k) s A T -R (k) B 2 F s.t. diag(A T A) = I (3.11) SEIZURES
where diag(X) keeps the diagonal entries of X, and makes the other entries equal to zero. This constrained optimization problem can easily be solved using gradient-projection (GP) method [START_REF] Kelley | Iterative Methods for Optimization[END_REF]] (see Appendix C.1).

Step 2. Assuming A and R (k)

B are xed, we have:

Λ (k) s * = argmin Λ (k) s R (k) y -AΛ (k) s A T -R (k) B 2 F s.t. Λ (k) s = diag(Λ (k) s ), Λ (k) s 0 (3.12)
This optimization problem is solved using non-negative least square (NNLS) method if we consider the vectorization form of all matrices in the optimization (see Appendix C.2). This step must be performed for all of the time windows (k = 1, 2, ..., K) separately.

Step 3. Assuming A and Λ (k)

s are xed, we have:

R (k) B * = argmin R (k) B R (k) y -AΛ (k) s A T -R (k) B F s.t. R (k) B 0, R (k) 
B is low -rank.

(

This step must also be performed for all of the time windows (k = 1, 2, ..., K)

separately. We will explain later why we remove the power two in the objective function. Since we must impose R (k) B to be a low-rank matrix, we use a penalty parameter (λ (k) ) to minimize both the objective function and the rank of R (k) B . Hence, we have: is that the penalty parameter can be obtained independently from variance of the noise. In fact, we dropped the power of two in the objective function considered in (3.13) to solve the problem similar to the square-root LASSO problem. The nal optimization problem can be solved using well known solvers like sdpt3 and cvx [START_REF] Toh | SDPT3 a matlab software package for semidenite programming, version 1.3[END_REF]].

R (k) B * = argmin R (k) B R (k) y -AΛ (k) s A T -R (k) B F + λ (k) rank(R (k) B ) s.t. R ( 
By performing a few iterations between these three steps, the static structure (A * ), the auto-correlation matrix of static sources (Λ (k) s *

) and R

(k) B * for k = 1, 2, ..., K are estimated. Finally, the number of dynamic sources in each time window is obtained as follows:

r * k = rank (R (k) B * ) (3.15) 

Extraction of Dynamic Sources

Consider the singular value decomposition (SVD) of the static structure as follows:

A = V Σ Q T V = [v 1 ... v m V 1 v m+1 ... v n V 2 ] (3.16)
where V 1 ∈ IR n×m is an orthonormal basis for columns of A and V 2 ∈

IR n×(n-m) spans the null space of A because we know that rank (A) = m.

Hence, if we left multiply both sides of (3.2) by V T 2 , we can omit the contri- bution of the static sources in each time window:

V T 2 Y (k) Y (k) = V T 2 AS (k) 0 + V T 2 B (k) B (k) U (k) + V T 2 N (k) N (k) (3.17) where Y (k) ∈ IR (n-m)×L , B (k) ∈ IR (n-m)×r k and N (k) ∈ IR (n-m)×L are
respectively the new data, the new dynamic structure and the new noise in the k th time window. The distribution of each column of the new noise is

N (0, V T 2 Σ N V 2 ).
The important point here is that we must be sure that SEIZURES sources (S (k) *

) and the dynamic structures (B

(k) *
) in all of the time windows.

By determination of the static sources and the dynamic structure in all of the time windows, all parameters of the model are determined.

Simulation and Experimental Results

In this section, we rst show the eciency of the proposed method using simulated data. Then, the results obtained from depth recordings are presented.

3.5.1 Simulations

Data Generation

We generate the data according to (3.1) for each time window. We consider K = 50 time windows (each of length L = 100), n = 10 sensors, m = 5 static sources, and at most n -m = 5 dynamic sources in each time window.

The number of dynamic sources (r k ) are chosen randomly between 1 and 5

in each time window. Then, we generate the static structure A by a random matrix of size 10×5 with zero-mean and unit-variance i.i.d. Gaussian entries, followed by normalizing the columns. In each time window, the static sources are considered sine signals with dierent frequencies as follows: 

s (k) i (t) = α ik sin(2π(2 i-1 f 0 ) t) i = 1, 2, ..., 5 k = 1, 2, ..., 50 (k -1 )100 + 1 ≤ t ≤ k 100
u (k) i (t) = √ 2Lsin(2π(2 i+4 f 0 ) t) i = 1, ..., r k k = 1, 2, ..., 50 (k -1 )100 + 1 ≤ t ≤ k 100 (3.21)
where √ 2L is equal to √ 200 in order to have unit norm dynamic sources. According to (A4) and (A5), the frequencies are selected such that the dynamic sources are mutually independent and uncorrelated with the static sources.

Finally, each column of the noise N (k) is generated from Gaussian distribution with zero-mean and covariance matrix σ 2 0 I ∈ IR 10×10 for all of the time windows. We also use the following criteria to evaluate the performance of the proposed method in estimation of the parameters:

Er S = mean k S (k) -S (k) * 2 F S (k) 2 F , Er U = mean k: r k =r * k U (k) -U (k) * 2 F U (k) 2 F Er A = A -A * 2 F A 2 F , Er r = mean k |r k -r k * | r k , Er B = mean k: r k =r k * B (k) -B (k) * 2 F B (k) 2 F (3.22)
It should be noted that Er r is not squared. We also consider the signal to noise (SNR) ratio as follows for the simulations:

SNR = 10 log( 1 K K k=1 Y (k) -N (k) 2 F N (k) 2 F ) (3.23) 3.5.1.

Results

It is worth noting that we assume that the number of static sources (m = 5)

is known during the simulations. 

SEIZURES

The normalized squared error ( S (k) -S (k) * 2 F / S (k) 2 F ) for the static sources in these time windows are 0.026 and 0.157, respectively. The quality of the estimation is not good during the 30 th time window because the number of dynamic sources was not estimated correctly in this time window (see Fig. 3.3).

Second Simulation: In this simulation, we repeat the rst simulation for dierent SNR. The values of the criteria introduced in (3.22) are reported in Table 3.1. These results conrm the eciency of the proposed method in retrieving the model parameters.

Depth Recordings

We recall that the data set was acquired from four absence epileptic rats using an electrode with n = 16 sensors. The recorded data from each rat consisted of few absence seizures, and each absence seizure was a train of spike time windows. We apply the proposed method on time windows of an absence seizure to extract the static and dynamic sources and their structures. 

Results For Other Absence Seizures of The First Rat

The same results are obtained for other absence seizures of the rst rat.

In fact, we have intra-rat similarity between the results obtained from the absence seizures of the rst rat. This means that the extracted average of the 

Results For Other Rats

For other rats, when we extract the model parameters, the best results are again obtained by considering one static source (m = 1). The estimated number of dynamic sources is also equal to one (r k = 1) in each time window. Moreover, the same model as Fig. 3.6 and Fig. 3.8 can be considered after clustering the sources, i.e., there are three kinds of dynamic sources and a static source. Furthermore, one kind of dynamic sources completely disappears towards the end of the absence seizures similar to results of the rst rat.

For instance, the results obtained from one of the absence seizures of the second rat are shown in Fig. 3.12 and 3.13. Moreover, the obtained linear model and the sequence of clusters are respectively shown in 3.14 and Fig.

3.15.

The noticeable point is that the obtained sources in the second rat are dierent from the ones in the rst rat, however, the obtained static structure and averages of clusters for the dynamic structures are similar to ones in the rst rat. Since the structures show the arrangement of the sources around the sensors, we can conclude that the origins of the sources are similar in these two rats. The same results are obtained in other rats. (k) ) can be expressed as:

Y (k) = α (k) a s T + 3 j=1 β (k) j b j u T j Y (k) +N (k) (3.24)
where α (k) and β 

α (k) * = Tr{Y (k) s a T }, β (k) j * = Tr{Y (k) u j b T j } (3.25)

SEIZURES

Now, we can dene the reconstruction error as follows: are also adapted to the other absence seizures or not. Since the sources are not similar in dierent rats, the cross-validation between two absence seizures from two dierent rats is meaningless. Hence, we perform the cross-validation for the absence seizures of the same rat.

Er train = 1 K K k=1 Y (k) -Y (k) 2 F Y (k) 2
We consider one of the absence seizures as the testing absence seizure.

Then, using the obtained parameters from the training absence seizure and regarding (3.24), we estimate the best kind of dynamic source and structure, and scaling coecients for each time window of the testing absence seizure.

If we again employ the MLE method, we get:

{j * , α (k) * , β (k) j * } = argmin j,α (k) ,β (k) j Y (k) -α (k) a s T -β (k) j b j u T j 2 F (3.27)
By determination of the parameters, the reconstructed time window is calculated as follows:

Y (k) = α (k) * a s T + β (k) j * * b j * u T j * (3.28)
Now, we calculate the reconstruction error as follows to check the compatibility of the parameters, obtained from the training absence seizure, with the testing absence seizure:

Er test = 1 K test Ktest k=1 Y (k) -Y (k) 2 F Y (k) 2 F (3.29)
where K test shows the number of time windows in the considered testing absence seizure. We perform the proposed training and testing phase on SEIZURES ve absence seizures of the rst rat. The last absence seizure is the absence seizure considered in the previous part. The results of the reconstruction are reported in Table 3.2. These results show the intra-rat similarity between absence seizures, in the sense that the static and dynamic sources and structures trained on one absence seizure, provide an accurate estimation of signals in other absence seizures. For other rats, the reconstruction errors have the same order of magnitude as the rst rat which show the generality of the results of clustering and proposed model for the recorded absence seizures.

Since there is no inter-rat similarity between the sources, the aforementioned cross-validation framework between two seizures from two dierent rats is meaningless. Hence, we calculate the cross correlation coecient between the results obtained from the two rats. Tables 3.3 and3

.4 respectively

show the cross correlation coecient between the obtained structures and sources from the rst and second rat.

As reported in Table 3.3, since the cross correlation coecients between the structures obtained from two seizures of dierent rats are close to one, we nd that the structures in all seizures and all rats are similar, or in other words, they have inter-rat similarity. Since the structures are corresponding SEIZURES Table 3.3: The cross correlation coecient between the obtained structures from the rst and second rat. to the spatial topography of the sources, we can conclude that the spatial locations of the sources are similar in dierent rats.

Moreover, as reported in Table 3.4, since the cross correlation coecients between the sources obtained from two seizures of dierent rats are not close to one, we nd that the sources do not have inter-rat similarity. Since the sources show the temporal activation functions of their origins, we can conclude that the propagated signals from the origins are not similar in dierent rats.

We recall that the dataset consists of the data recorded from four GAERS rats, and the data of each rat consist of several seizures. We extracted the sources and their structures from all of the seizures in all of the rats. In summary, the obtained results show that:

1) The structures in all seizures and all rats are similar. In fact, the SEIZURES structures have both intra-rat and inter-rat similarities.

2) The sources in all seizures of a specic rat are similar, but the sources obtained from the seizures of dierent rats are not similar. In fact, the sources have intra-rat similarity, but they do not have inter-rat similarity.

The results presented in Tables 3.2, 3.3, 3.4 conrm the above conclusions.

Conclusion

In this chapter, we proposed a method to retrieve the static and dynamic sources which generate the absence seizures to analyze the dynamics of absence seizures. We also extracted the structures of the sources. The considered scenario in this chapter can be employed in several applications such as radar and brain signals. It was shown that there are one background activity (a static source) and three kinds of dynamic sources during absence seizures.

The dynamic sources randomly appear and disappear during the absence seizures, however, one kind of dynamic sources completely disappears towards the end of the absence seizures perhaps due to the performance of the existing circuit between somatosensory cortex and thalamus. These results

were extracted from all of the rats and conrmed using a cross-validation framework. The main dierence between the results of dierent rats was in the shapes of the sources. For example, the shapes of the sources for the rst and second rats are shown in Figs. 3.9 and 3.14, respectively. The interesting point is that the obtained structures were the same in dierent rats which show that the origins of the sources are the same in dierent rats.

This point is in accordance with the result obtained in the previous chapter regarding the spatial analysis of absence seizures.

Similar to the previous chapter, the drawback of the model proposed in this chapter is that it is based on exploration of spike time windows. In the next chapter, we propose a model in which we do not need to detect the spikes for analyzing the absence seizures. In this chapter, we propose a generalized method for analyzing the absence seizures which can even be employed for absence seizures in which The rest of this chapter is organized as follows. Section 4.2 is dedicated to the model and problem denition. We explain the proposed method for estimating the parameters in section 4.3. The results are reported in section 4.4, and nally, section 4.5 concludes the chapter.

Model and Problem Definition

We assume that the linear superposition of a few (R) epileptic activities generates an absence seizure as shown in Fig. As shown in Fig. 4.2, the absence seizure at time instant t (x(t) ∈ IR E ) BLIND DECONVOLUTION can be expressed as:

x(t) = R i=1 c i L i j=1 α i,j s i (t -τ i,j ) + n(t) (4.1)
where R denotes the number of epileptic activities. For the i th epileptic activity, c i ∈ IR E , L i , s i (t), τ i,j and α i,j show the CSD, the number of occurrences of the epileptic activity, the spike signal at time instant t, the occurrence time and the corresponding amplitude, respectively. The noise vector n(t) ∈ IR E is considered zero-mean Gaussian with i.i.d. entries. It should be noted that the spike signal s i (t) has T samples, and it can be shown by s i ∈ IR T in the vector notation. T is considered equal to 1750 samples (87.5 ms) in this study as stated by [START_REF] Polack | Deep Layer Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model of Absence Seizures[END_REF]].

According to (4.1) and Fig. 4.2, estimating the parameters from an absence seizure is similar to solving a multi-channel blind deconvolution problem, which is in general ill-posed [START_REF] Chi | Guaranteed blind sparse spikes deconvolution via lifting and convex optimization[END_REF]]. Therefore, we must consider some additional constraints for the problem. The identiability of this problem for dierent scenarios is discussed in [START_REF] Li | Identiability in blind deconvolution with subspace or sparsity constraints[END_REF]]. We consider the following constraints for the epileptic activities:

(C 1 ) The times series are sparse signals (i.e., L i ≤ L max ). In fact, we assume that each epileptic activity happens at most L max times.

(C 2 ) The CSDs and the spikes are unit norm (i.e., c i 2 = s i 2 = 1), and the amplitudes of the spikes are positive (i.e., α i,j > 0). These assumptions are considered to omit the scaling and polarization ambiguities [START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]].

(C 3 ) The epileptic activities are synchronized. As explained in chapter 2, since the data was recorded very locally, we expect the instantaneous appearance of spikes in dierent layers of somatosensory cortex. Therefore, we assume that the occurrence time of the epileptic activities are similar.

Hence, τ i,j and L i are respectively replaced by τ j and L for all of the epileptic activities.

Now, the problem denition is complete. The set of unknown parameters

Θ = R, L, R i=1 {c i , s i , L j=1 {α i,j }}, L j=1
{τ j } must be estimated based on the BLIND DECONVOLUTION observed absence seizure and the considered constraints.

Proposed Method

Since there is no prior information about the number of epileptic activities (R), we estimate the results for dierent R. 

(Θ) = t x(t) - R i=1 c i L j=1 α i,j s i (t -τ j ) 2 2 (4.2)
Due to the presence of τ j , it is more convenient to deal with this objective function in the Fourier domain. Therefore, we express the objective function as follows:

f (Θ) = f x(f ) - R i=1 c i ŝi (f ) L j=1 α i,j e -2πf τ j 2 2 (4.3)
where x(f ) and ŝi (f ) respectively show the Fourier transform of the data and s i (t) at frequency f . We can state (4.3) in the matrix notation as:

f (Θ) = X -C( Ŝ Â) 2 F (4.4)
where and . F denote the element-wise product and the Frobenius norm, respectively. The columns of X, C and Ŝ are corresponding to x(f ) in dierent frequencies, the CSDs and the Fourier transform of the spikes in dierent epileptic activities, respectively. Also, the (f, i) th entry of  is:

âf i = L j=1 α i,j e -2πf τ j (4.5)
The stated objective function in (4.4) and the considered assumptions in (C 1 ), (C 2 ), and (C 3 ) form a constrained optimization problem. We use alter- nating minimization to solve the problem. Some initial values are considered BLIND DECONVOLUTION for Θ, then, the following three optimization problems are alternately solved until the parameters convergence.

C

opt = argmin C X -C( Ŝ Â) 2 F s.t. diag(C T C) = I (4.6) Ŝopt = argmin Ŝ X -C( Ŝ Â) 2 F s.t. diag( ŜH Ŝ) = I, ŝi (-f ) = ŝ * i (f ), i = 1, 2, ..., R (4.7) Âopt = argmin  X -C( Ŝ Â) 2 F s.t. L ≤ L max , α i,j > 0, i = 1, 2, ..., R, j = 1, 2, ..., L (4.8) 
where the operator diag(.) keeps the diagonal entries of a matrix. The new added constraint in (4. We select the entries of the CSDs from zero-mean and unit-variance i.i.d.

Gaussian distribution, then, we normalize the CSD of each activity. The The data is constructed according to the following expression:

x(t) = R i=1 c i L j=1 α i,j s i (t -τ j ) + n(t) (4.9)
where the entries of noise (n(t)) are i.i.d., and have zero-mean Gaussian distributions with variance σ 2 0 . Fig. 4.4 shows the generated data for σ 2 0 = 0.

Evaluation Criteria

We use the mean squared error (MSE) for the CSDs, spikes, and time series to evaluate the performance of the proposed method in the estimation of the BLIND DECONVOLUTION parameters. For instance, the MSE for the CSDs is dened as follows: 

M SE CSDs = 1 R R i=1 a i -a * i 2 a i 2 , ( 4 

Simulation Results

We apply the proposed method on the simulated data in dierent SNR to estimate the parameters. The obtained MSE for CSDs, spikes, and time series in dierent SNR are reported in Table 4. 

Neural Recording

We apply the proposed method on the absence seizures for dierent number of epileptic activities (R). The best results are extracted by considering three epileptic activities in all of the absence seizures. When we consider R > 3, some of the spikes of the epileptic activities become non-smooth and incomprehensible, and when we consider R < 3, the reconstruction error severely increases. We will dene the reconstruction error later. Therefore, we consider R = 3 to estimate the parameters. (m 1 = 0.22, σ 2 1 = 49 × 10 -4 ), (m 2 = 0.14, σ 2 2 = 29 × 10 -4 ), and (m 3 = 0.15, σ 2 3 = 31 × 10 -4 ) for the epileptic activities.

Other Absence Seizures of The First Rat

The same results are obtained when we apply the proposed method on the other absence seizures of the rst rat. It means that the estimated CSDs and spikes are similar to the illustrated results in Fig. 

Cross Validation

We also validate and cross validate the obtained results by computing the cross correlation of the obtained results in dierent absence seizures to show the accuracy and generality of the considered model. It should be noted that since the absence seizures considered in this chapter are noisy, the reconstruction error is not a suitable criterion for performing the cross validation.

As an example, the cross correlation coecient between the obtained CSDs in two absence seizures of the rst rat are reported in Table 4.3.

Table 4.3: The cross correlation coecient between the obtained CSDs from two absence seizures of the rst rat whose lengths are 19.3 sec and 18.5 sec, respectively.

First Absence Seizure Second Absence Seizure Moreover, the cross correlation coecient between the obtained spikes in these two absence seizures are reported in Table 4.4.

As reported, at least one of the values are close to one in each column of the tables which shows that the obtained results are similar in the considered absence seizures. The same results are obtained by considering other absence seizures of the rst rat. These results show the accuracy of the obtained results in modeling the absence seizures.

We can also perform the proposed cross validation framework on absence seizures recorded from two dierent rats. For instance, the cross correlation coecient between the obtained CSDs in an absence seizure recorded from the rst rat and an absence seizure recorded from the second rat are reported in Table 4.5.

Table 4.5: The cross correlation coecient between the obtained CSDs from two absence seizures recorded from the rst and second rats whose lengths are 19.3 sec and 21.4 sec, respectively.

First Absence Seizure Second Absence Seizure As reported, the CSDs are similar in these absence seizures meaning that the origins of the epileptic activities are the same in the rats. The cross correlation coecients between the obtained spikes in these two absence seizures are also reported in Table 4.6. Since the spikes of the epileptic activities are not similar in dierent rats, the reported coecients are not close to one. 

Conclusion

In this chapter, we proposed a generalized method for analyzing absence seizures. We described the absence seizures by the linear superposition of a few epileptic activities which have spatio-temporal representations. Then, we proposed a blind deconvolution method to estimate the epileptic activities.

The obtained results show that there are three epileptic activities during the absence seizures. One of the epileptic activities is dominant, and the other epileptic activities randomly activate with the dominant epileptic activity.

It was shown that the origins of the epileptic activities, which are located in the top and the bottom layers of somatosensory cortex, are similar in the GAERS rats, but the propagated spikes from the origins are dierent.

Conclusion and Perspectives

We explored absence epileptic seizures using the data recorded from dierent layers of somatosensory cortex of four GAERS to answer the following scientic questions:

1) Are there some specic layers in somatosensory cortex which generate the absence seizures? or which layers have more activity during absence seizures? (spatial analysis)

2) Is there any specic pattern during absence seizures over time? or how do the absence seizures change over time? (temporal analysis) Three scenarios were considered for modeling the recorded absence seizures to answer the mentioned questions.

In the rst scenario, a spatio-temporal model was considered for the epileptic activities generating the spikes of absence seizures. Then, a factor analysis method was employed to nd the epileptic activities. One of the interesting results obtained in this scenario was that a common or a background epileptic activity exists during the recorded absence seizures. This result motivated us to propose the second scenario for analyzing the absence seizures. In the second scenario, a static-dynamic model was considered for the sources generating the spikes of absence seizures. Then, a source separation method was employed to nd the sources and their structures.

The drawback of the aforementioned scenarios was in the absence seizures in which performing the spike detection is not possible. Hence, we proposed the last scenario. In the third or last scenario, we proposed a blind deconvolution method to directly estimate the epileptic activities producing the absence seizures without employing any spike detection step.

It is worth mentioning that we proposed a validation framework corresponding to each scenario. Hence, all of the obtained results were cross validated, and the generality of the considered models in dierent absence seizures were conrmed. Based on the obtained results, we found that:

1. There is a background event or activity during the absence seizures, and a circuit between layers II/III and VI of somatosensory cortex generate this background event.

2. There are a few events which randomly activate with the background event during the absence seizures, however, there is no specic pattern in the activation of these events. Layers I and V or II/III and VI of somatosensory cortex participate in the generation of these epileptic events.

3. The contribution of the epileptic events in generating the absence seizures of a GAERS are stationary random processes. This means that the epileptic events on average have similar behavior during different absence seizures of a GAERS.

4. The origin of the obtained epileptic events are the same in dierent GAERS.

As the future work for the continuation of this thesis, it would be interesting to:

1. analyze the data recorded between absence seizures. The data in these time intervals are highly noisy, and it is not possible to employ the proposed methods in this study to analyze them. The data in these time intervals could be useful for predicting the onset time of absence seizures.

2. nd that what is going on at the beginning and at the end of absence seizures. We need to understand why an absence seizure starts and why it ends, or in other words, why the duration of an absence seizure is limited. 

B.1 Forward Procedure

The forward variable is dened as follows: α k (s) = p(X 1 , X 2 , ..., X k , H where p qs shows the (q, s) th entry of the transition probability matrix which is known in this step. Therefore, α k (s) for k = 1, 2, ..., K and s = 1, 2, ..., S can be easily calculated using (2.10), (B.2) and (B.3).

B.2 Backward Procedure

In a similar manner, we dene the backward variable as follows:

β k (s) = p(X k+1 , X k+2 , ..., X K | H 
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  2009);[START_REF] Williams | Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model[END_REF]]. It is accompanied by sudden seizures that aect the patients' consciousness[START_REF] Caraballo | Childhood absence epilepsy and electroencephalographic focal abnormalities with or without clinical manifestations[END_REF];[START_REF] Chipaux | Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings[END_REF];[START_REF] Killory | Impaired attention and network connectivity in childhood absence epilepsy[END_REF]]. In fact, the emergence of seizures associated with appearance of spike and wave discharges in electroencephalogram (EEG) recordings is an indication of absence epilepsy[START_REF] Panayiotopoulos | Typical absence seizures and related epileptic syndromes: Assessment of current state and directions for future research[END_REF];[START_REF] Das | Stimulus reconstruction from neural spike trains: Are conventional lters suitable for both periodic and aperiodic stimuli?[END_REF]]. Absence seizures are usually treated using anti-epileptic drugs like ethosuximide (Zarontin), but some of the patients are drug-resistant[START_REF] Panayiotopoulos | A Clinical Guide to Epileptic Syndromes and their Treatment[END_REF]]. Patients who are drug-resistant must be operated for breaking to neuronal structure responsible of the absence seizure. Thus it is mandatory to have a better understanding and accurate localization on spatial and time origins of absence seizures. In this purpose, researchers have used animal models to understand the process by which the absence seizures are generated. Since absence seizures simultaneously occur in many regions of the brain and the duration of absence seizures

Figure 1 . 1 :

 11 Figure 1.1: The axial view of implementation scheme in the data acquisition.

Figure 1 . 2 :

 12 Figure 1.2: The recording electrode and a recorded absence seizure. The beginning and the end of the absence seizure are indicated by t onset and t oset , respectively.

  using source separation methods. Based on the results obtained in chapter 2, we describe the recorded seizures by a linear superposition of static and dynamic sources. The static sources are stable and have a xed structure, while the dynamic sources are unstable and highly non-stationary. The static sources play the role of background epileptic activities and the dynamic sources are complementary to the static sources in the generation of seizures. Retrieving the sources and their structures from the recorded seizures is the main goal of this chapter from the signal processing point of view which helps us achieve the desired analysis. Experimental results show existence of a static source and a few specic dynamic sources during the recorded seizures. Moreover, it is shown that the origins of the sources are the same in dierent absence epileptic rats. It is worth mentioning that the considered model and the proposed method in this chapter can be adapted to several applications such as radar or brain signals. Moreover, it can provide an interesting solution to the classical EEG denoising consisting in removing the EEG background activity and cleaning the EEG epileptic data. Chapter 4 This chapter spatially and temporally investigates absence epileptic seizures which are highly noisy and cannot be analyzed using the methods proposed in chapters 2 and 3. We model these kinds of absence seizures by a linear superposition of a few epileptic activities which have spatio-temporal representations. The spatial representation shows the organization of the current sources and sinks generating the epileptic activity, and the temporal representation displays the occurrence time and the activation function of the epileptic activity. Retrieving the epileptic activities from the recorded absence seizures which are noisy is the main target of this chapter which helps us localize the onset layers of somatosensory cortex and understand the temporal evolution of recorded absence seizures in a general form. The obtained results are in accordance with the results presented in chapters 2 and 3.

  LFPs. In fact, the information are sent and received among the sources and sinks. Fig. 2.2 schematically shows the relation between the CSD and the LFP at one specic instant in dierent layers of somatosensory cortex. The mathematical details for extracting CSD from LFP in this research would be explained later in 2.3.3.

Figure 2 . 2 :

 22 Figure 2.2: Interaction of current sources and sinks generating LFPs at one instant. The points and the curves in the middle plot respectively show the current source and sink, and the corresponding equipotential lines. We can assign a CSD vector to a LFP vector at every time point as explained in 2.3.3. CSD is shown by color coding to clearly show the organization of sources and sinks in dierent layers of somatosensorry cortex.

  sources and sinks. Assume that there are a few current sources and sinks in the vicinity of the recording electrode which are well localized, i.e., they have a spatial localization, which does not move over time. If the amplitudes of the sources and sinks change according to a specic temporal function over time 0 ≤ t ≤ T , we say an epileptic activity has been generated. An epileptic activity is schematically shown in Fig. 2.3.

Figure 2 . 3 :

 23 Figure 2.3: CSD representation of an epileptic activity. An epileptic activity is described by two characteristics, spatial topography and temporal representation. The CSD map over time (0 ≤ t ≤ T ) is shown by color coding to clearly show the organization of sources and sinks in dierent layers of somatosensorry cortex.

Figure 2 . 4 :

 24 Figure 2.4: Proposed model for the generation of a spike. The considered spike is constructed by a linear superposition of J = 2 epileptic activities (or factors). Each epileptic activity is described by two characteristics; 1) the spatial topography (with colorcoded positive and negative values) and 2) the temporal representation.
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 25 Figure 2.5: There are S states under rst-order Markovian model during an absence seizure. Each spike, which is specied by a color rectangle, is generated when the corresponding state is activated. The activated state for the k th spike is shown by q k ∈ {1, 2, ..., S}.

Figure 2 . 6 :

 26 Figure 2.6: Proposed model for the generation of spikes during an absence seizure considering S = 2 states and J = 2 factors in each state.

  2.7. There are three main stages in this pipeline: pre-processing, proposed method, and cross validation. In the rst stage, the pre-processing steps are performed. The parameters of the model are extracted in the second stage, and nally, we cross validate the extracted results in the last stage. In the following, each block of the proposed pipeline is explained.

Figure 2 . 7 :

 27 Figure 2.7: Block diagram of the proposed pipeline for 1) pre-processing the data, 2) estimating the unknown parameters of the model, and 3) validation of the results.

Figure 2 . 8 :

 28 Figure 2.8: Considered cylinders for sources and sinks in iCSD method. z i (i = 1, 2, ..., 16) shows the positions of the sensors on the electrode.

Fig. 2 .

 2 6 to prepare the data for estimating the model parameters, i.e. the states, their factors, and the transition probability matrix. As shown in the block diagram of the proposed framework (Fig. 2.7), we split the data into two groups of training set and testing set. T train consists of spikes of only an absence seizure and T test = {T

j

  are considered unit norm vectors, and entries of c (s) j are considered positive for all of the factors[START_REF] Comon | Handbook of Blind Source Separation: Independent Component Analysis and Applications[END_REF]].

  (s) kj ∈ IR + shows the contribution of the j th factor from the s th state in the generation of X k . a (s) j ∈ IR E and b (s) j ∈ IR T respectively represent the spatial topography and the temporal representation of the j th factor from the s th state. Finally, N k ∈ IR E×T is additive white Gaussian noise with independent and identically distributed (i.i.d.) entries, and each entry of this matrix has a normal distribution with zero mean and variance σ 2 0 .

  representation, and contribution of each factor estimated from the training absence seizure. In fact, we check this error to evaluate the goodness of t of the proposed model to the training data.

  SEIZURESsence seizures in the testing set, i.e., T (m) test for m = 1, 2, ..., M . For this purpose, we suppose that the main parameters of the proposed model including the spatial topography of the factors (a the transition probability matrix (P * ) are common for all of the absence seizures. Therefore, we just estimate the contribution of the factors (c (s) j ) in the generation of T (m) test and calculate the relative recon- struction error. In fact, we assume that the main parameters of the model are independent of absence seizures, hence the only free parameters that need to be estimated are the contributions of the factors in the construction of T (m) test . The estimation procedure of c (s) j is explained in the following.

  states (S = 2) and two factors in each state (J = 2) with Er train = 0.05. The probability of transition between the states (transition probability matrix), the spatial topography, and the temporal representation of the factors are shown in Fig.2.9. It should be noted that the rst factors of both states are similar, and the rst state is unstable because the probability of remaining in the rst state (p 11 = 0.01) is very low with respect to the probability of SEIZURES transition to the second state (p 12 = 0.99).

Figure 2 .

 2 Figure 2.9: Estimated parameters of the considered model for the training absence seizure. The probability of transition between the states is shown in the left plot. The obtained factors associated with the rst and second states are respectively shown in the rst and second rows of the right plot.

Figure 2 .

 2 Figure 2.10: The CSD maps of the factors for the training absence seizure. The probability of transition between the states is shown in the left plot. The CSD maps of the obtained factors associated with the rst and second states are respectively shown in the rst and second rows of the right plot.

Figure 2 .

 2 Figure 2.11: Sequence of states for the training absence seizure consisting of K = 390 spikes.

Figure 2 .

 2 Figure 2.12: Spikes and their states during the windows specied in Fig. 2.11.

c ( 2 )

 2 j ∈ IR k 2 for the rst and second states in part (a) of Fig. 2.13. The joint distribution of the contribution of the factors in each state is also shown in part (b) of Fig. 2.13. The average of components of c Contribution of factors in the generation of spikes. (b) Joint distribution of the contributions of the factors in each state.

Figure 2 .

 2 Figure 2.13: (a) Contributions of factors and (b) their joint distribution in each state for the training absence seizure. The average of c (s) j is shown by red dashed line in (a) and the average of each joint distribution is shown by a red square in (b).

Figure 2 .

 2 Figure 2.14: The average of the CSD representations of the spikes in each state.

Figure 2 .

 2 Figure 2.15: The sequence of states for four absence seizures of the rst rat which consist of K 1 = 87, K 2 = 94, K 3 = 95 and K 4 = 88 spikes, respectively.

Figure 2 .

 2 Figure 2.16: (a) The contributions of factors and (b) their joint distribution in each state for the fourth absence seizure of the rst rat. The average of c (s) j is shown by red dashed line in (a), and the average of each joint distribution is shown by a red square in (b).

  Figure 2.17: Estimated parameters of the proposed model for an absence seizure of the second rat. The probability of transition between the states is shown in the left plot. The obtained factors associated with the rst and second states are respectively shown in the rst and second rows of the right plot.

Figure 2 .

 2 Figure 2.18: The CSD maps of the factors for an absence seizure of the second rat. The probability of transition between the states is shown in the left plot. The CSD maps of the obtained factors associated with the rst and second states are respectively shown in the rst and second rows of the right plot.

Figure 2 .

 2 Figure 2.19: The sequence of states for an absence seizure of the second rat.

Figure 2 .

 2 Figure 2.20: (a) The contributions of factors and (b) their joint distribution in each state for an absence seizure of the second rat. The average of c (s) j is shown by red dashed line in (a) and the average of each joint distribution is shown by a red square in (b).

Figure 2 .

 2 Figure 2.21: The average of the CSD representations of the spikes in each state for an absence seizure of the second rat.

  Model for the rst rat. (b) Model for the second rat.

Figure 2 .

 2 Figure 2.22: Final spatio-temporal model for the generation of spikes during absence seizures of the rst and second rats.

Figs. 2 .

 2 Figs.2.11, 2.15, and 2.19. It should be noted that for some time intervals, both states are unstable.

order

  Markovian model during the absence seizures, and each spike of the absence seizures, consisting of spikes of dierent layers of somatosensory cortex, was generated when one of the states was activated. Each state consisted of a few epileptic activities (factors) which were linearly combined, and generated the spikes. Each epileptic activity had two important features. The rst one was the spatial topography which helped us recognize the distribution of current sources and sinks for the epileptic activity, and the 3 Idea . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Model Denition . . . . . . . . . . . . . . . . . . . 49 3.3 Problem Formulation . . . . . . . . . . . . . . . . 51 3.4 Proposed Method . . . . . . . . . . . . . . . . . . 54 3.4.1 Extraction of The Static Structure and The Number of Dynamic Sources . . . . . . . . . . . . . . . 54 3.4.2 Extraction of Dynamic Sources . . . . . . . . . . . 57 3.4.3 Extraction of Static Sources and Dynamic Structure 58 3.5 Simulation and Experimental Results . . . . . . 59 3.5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . 59 3.5.2 Depth Recordings . . . . . . . . . . . . . . . . . . 62 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 74 3.1 Main Idea In this chapter, another model is considered for the recorded absence seizures, and the main focus is on analyzing the dynamics of recorded absence seizures using source separation methods (temporal analysis). For this purpose, we describe the recorded absence seizures by a linear combination of few specic sources. Based on the results obtained in the previous chapter, we assume SEIZURES that there are two kinds of sources during absence seizures, 1) static and 2) dynamic sources. Static sources play the role of common or background epileptic activities and dynamic sources are complementary to static sources in the generation of absence seizures. In other words, if we segment one absence seizure into non-overlapped time windows as shown in Fig. 3.1, the static sources participate in the generation of the data in all of the time windows, while the dynamic sources exist in some of the time windows. The static sources are stable and always on, while the dynamic sources are unstable and they may be o for several time windows. We propose a method to retrieve the static and dynamic sources and their structures from the recorded absence seizures. Then, we analyze the dynamics of recorded absence seizures using the obtained results.

Figure 3 . 1 :

 31 Figure 3.1: From left to right, the recording electrode, an absence seizure and a time window (length of 87.5 ms) which consists of n = 16 spikes from dierent channels. The absence seizure onset and the end of the absence seizure are indicated by t onset and t oset , respectively.

  during the absence seizures and the sensors on the electrode record the instantaneous linear combination of the signals (extracellular eld potentials) produced by the mentioned sources. The mixture of the signals is considered linear and instantaneous due to the quasi-static assumption of Maxwell's laws. We assume that there are two kinds of sources during the absence seizures, static and dynamic sources. Static sources are located in xed positions and have a static structure. They always contribute in generation of the signals, and their number is xed and equal to m (m < n). Unlike static sources, dynamic sources are highly non-stationary. They sometimes appear and after a short time disappear. A few of them are activated in each time window and their number is unknown. In fact, there is much more variability in dynamic sources than static sources. Schematic diagrams of the considered model for three time windows are shown in Fig. 3.2. All of the sources and their structures in dierent time SEIZURES windows are unknown and we should retrieve them from the recorded absence seizures. In the following, we explain how the time windows are considered for an absence seizure.

Figure 3 . 2 :

 32 Figure 3.2: Static and dynamic sources for three consecutive time windows. The static sources (s 1 , s 2 , s 3 ) and the dynamic sources (u 1 , u 2 , u 3 ) are shown in the left and right sides of the sensors, respectively.

  )] T ∈ IR m represent the recorded signals on the sensors, the static structure and the static sources, respectively. If we assume that the total number of activated dynamic sources in the time window k is equal to r k , B(k) 

B

  λ (k) is a penalty parameter which helps to minimize the rank of R (k) B . Since minimization of rank function is an NP-hard problem [Recht et al. (2010)], we approximate rank(R } which is a wellknown convex relaxation for this function [Candes and Plan (2010); Malek-Mohammadi et al. (2015)]. The obtained optimization problem is very similar to the square root LASSO problem [Belloni et al. (2011); Koochakzadeh SEIZURES et al. (2015)], and it can be converted to a semidenite programming (SDP) as shown in Appendix C.3. The main advantage of the square-root LASSO

  The amplitude of each static source in each time window (α ik ) is uniformly distributed between 0 and 1. The static sources are not stationary because their amplitudes change in dierent time windows, and according to (A4), they are uncorrelated with each other because they have dierent frequencies in each time window. The entries of the dynamic SEIZURES structure in each time window B (k) ∈ IR 10×r k are independently chosen from zero-mean and unit-variance Gaussian distribution. The dynamic sources in each time window are again considered sine signals as follows:

First 2 0

 2 Figure 3.3: The actual and estimated number of dynamic sources in dierent time windows (SNR = 20 dB).

Figure 3 . 4 :

 34 Figure 3.4: The actual and estimated static sources in the marked region of Fig. 3.3. The vertical dashed line shows the boundary of the time windows.

25≤ 0

 0 .001 0.008 ≤ 0.001 ≤ 0.001 0.004 In a specic time window in which the number of dynamic sources was obtained correctly in dierent SNR, the estimated signals for the rst static source are shown in Fig. 3.5.

  SEIZURESactivity and a dynamic source generates the data in each time window of the training absence seizure. This conclusion is illustrated in Fig.3.9.

Figure 3 . 9 :

 39 Figure 3.9: One kind of the dynamic spikes (sources) is added to the background spike (static source) to generate the spike time windows during the training absence seizure. MUX stands for multiplexer which only allows one dynamic spike to pass in each time window.

  clusters are similar to the results obtained from the training absence seizure. The sequence of the clusters for one of the absence seizures which consists of K = 88 time windows is shown in Fig. 3.11. As shown, again, at the end of the absence seizure, the rst and the third dynamic sources only participate in the generation of the absence seizure.

Figure 3 .

 3 Figure 3.11: Sequence of clusters for one of the absence seizures from the rst rat which consists of K = 88 spike time windows.

Figure 3 .Figure 3 .

 33 Figure 3.12: The static structure (left) and sources (right) obtained from one of the absence seizures of the second rat with K = 560 time windows.

Figure 3 .

 3 Figure 3.14: The obtained average of clusters for the dynamic and static sources in the second rat. One kind of the dynamic spikes (sources) is added to the background spike (static source) to generate the spike time windows during the absence seizures.

3 )

 3 is non-zero, and two of them are zero for each time window. Since we already clustered the dynamic sources and structures, the zero entries are known. It can be shown that the MLE solution of α (k) and non-zero β

F ( 3

 3 .26) This error is equal to 0.03 for the training absence seizure indicating that the obtained results of clustering are compatible with the training absence seizure. Now, we want to check if the results of clustering (average of clusters)

  instance, the noisy and clean data, recorded in channel 1, during two of the absence seizures of the rst rat are respectively shown in the left and right sides of Fig.4.1. As shown here, the spike detection in the noisy data is much more dicult than in the clean data. It should be noted that more than % 90 of absence seizures were clean during the recorded data.

Figure 4 . 1 :

 41 Figure 4.1: (a) the noisy data where the spike detection is dicult, and (b) the clean data where the spike detection can be easily performed.

4 . 2 .

 42 We consider three characteristics for each epileptic activity; 1) the CSD, 2) the spike, and 3) the time series. These characteristics respectively show the pattern of current sources and sinks producing the epileptic activity, the activation function of the epileptic activity, and the ring times and the corresponding amplitudes of the epileptic activity during an absence seizure.In fact, each epileptic activity has a spatio-temporal representation. The CSD is the spatial representation of an epileptic activity, and the convolution of the spike and the time series is the temporal representation of an epileptic activity. The considered model for an absence seizure is schematically shown in Fig.4.2. We extract the epileptic activities and their characteristics from the absence seizures to gure out the onset layers of somatosensory cortex, and investigate the temporal evolution of absence seizures.

Figure 4 . 2 :

 42 Figure 4.2: An absence seizure is modeled by a linear combination of R epileptic activities which have spatio-temporal representations.

  f

  7) forces the spikes to be real signals in the time domain. The rst and the second optimization problems can be solved using Lagrangian multipliers, and any of the spectral estimation methods such as MUSIC, ESPRIT or beamforming techniques can be employed to solve the last optimization problem [Li et al. (2016)]. Once the parameters were found, we easily convert them back to the time domain. there are E = 3 sensors which record the data from R = 2 activities for 2000 samples. The characteristics of the rst and the second activity are shown in the top and the bottom of Fig. 4.3, respectively.

Figure 4 . 3 :

 43 Figure 4.3: Characteristics of the activities generating the simulated data. The top and the bottom gures show the characteristics of the rst and the second activity, respectively.

Figure 4 . 4 :

 44 Figure 4.4: The simulated data in the noise-free model. The data is generated by a linear superposition of two activities.

1 .

 1 Moreover, the estimated spikes of the rst and second activities in dierent SNR are respectively shown in Fig. 4.5 and Fig. 4.6. These results show the accuracy of the proposed method for retrieving the unknown parameters in the considered scenario.
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 45 Figure 4.5: The estimated spikes of the rst activity in dierent SNR. The top left gure shows the original spike.

Figure 4 . 6 :

 46 Figure 4.6: The estimated spikes of the second activity in dierent SNR. The top left gure shows the original spike.
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 4214 Figure 4.7: (a) The CSDs and the spikes of the epileptic activities generating the absence seizure. (b) Two seconds of the time series of the epileptic activities, and (c) the corresponding absence seizure.

For

  other rats, the CSDs of the epileptic activities are similar to ones obtained in the rst rat. Also, there is a dominant epileptic activity during absence seizures, and the non-zero entries of the time series can be considered as stationary random processes for dierent absence seizures of a rat. But the spikes are dierent from the obtained results in the rst rat. For instance, the obtained CSDs and spikes for the epileptic activities generating the absence seizures of the second rat are shown in Fig.4.8. Since the CSDs of the epileptic activities are similar but the spikes are dierent in the rats, we can conclude that the distribution of current sources and sinks, or in other BLIND DECONVOLUTION words, the origins of the epileptic activities are the same in the rats, but the propagated signals from the origins are dierent.

Figure 4 .

 4 Figure 4.8: The CSDs and the spikes of the epileptic activities in the second rat.

3 .

 3 Fig. A.1, and assume that X k-1 has been assigned to state 2, i.e., q k-1 = 2.

Figure A. 1 :

 1 Figure A.1: Scatter plot of two consecutive signals generated under rst-order Markovian model. Assigning X k to one of the states is not independent form the activated state for X k-1 . Assume that a (s) 1 shows the factor associated with the

  probability of observing the spikes until the k th spike and observing state s for the k th spike given the model parameters. The forward variable when k = 1 (α 1 (s)) is equal to α 1 (s) = p(H

(B. 2 )

 2 We assume that the probabilities of activation of the states for the rst spike are equal, hence, because the model parameters are known in E-step. Therefore, α 1 (s) is easily calculated. It can be shown that we can use the following SPATIO-TEMPORAL MODELING OF ABSENCE SEIZURES recursive expression to calculate α k (s):

1 , 1 ,

 11 probability of observing spikes from the (k + 1) th spike until the last spike, given state s for the k th spike and given the model parameters. Assuming β K (s) = 1, again, it can be shown that there is the following recursive expression for calculating β k (s): k (s) for k = 1, 2, ..., K and s = 1, 2, ..., S can be easily calculated using(2.10) and (B.5). Now, we estimate p(H (s) k ) using the forward and backward variables. According to the conditional probability rule, p(H X 2 , ..., X K |Θ) S q=1 p(s k = q, X 1 , X 2 , ..., X K |Θ) X 2 , ..., X K |Θ) = α k (s)β k (s).

k

  ) for k = 1, 2, ..., K and s = 1, 2, ..., S as p(H(s) k ) = α k (s)β k (s) S q=1 α k (q)β k (q) . (B.8) 

  

  

  

  K 2 = 94, K 3 = 95, K 4 = 88 and K 5 = 390 time windows. The diagonal and non-diagonal entries of the table respectively show Er train and Er test . . . . . . . . . . . . . . . . . . . . . . 72
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Absence epilepsy is a form of epilepsy with genetic origins which is higher prevalent in children and young adults
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  the absence seizures of the rst rat used in 2.4.1 and 2.4.1.1, the relative reconstruction errors are reported in Table2.1. The absence seizures consist of K 1 = 87, K 2 = 94, K 3 = 95, K 4 = 88, and K 5 = 390 spikes. The last one was used in 2.4.1, and the others were used in 2.4.1.1. In Table2.1, T test for m ∈ {1, 2, ..., 5} are associated with the tensor of spikes of the m th absence seizure. The diagonal and non-diagonal entries of the table respectively show Er train and Er test .

		(m)
		train
	and T	(m)

2.4.2

Testing Phase: Validation of Model For

  2.22. 12 and p 22 are respectively larger than p 11 and p 21 . These

	Unstable and dominant states (temporal analysis): Based on the
	obtained results for the transition probability matrix, on average, we can say
	that state 1 is an unstable state during the absence seizures because p 11 , the
	probability to stay on state 1 when state 1 is active, is very small. Moreover,
	state 2 more occurs than state 1, or in other words, state 2 is the dominant
	state because p

results can also be seen in the sequence of states for the absence seizures in

  Seizure 5 94 0.11 32 × 10 -4 296 0.14 33 × 10 -4 390 0.21 84 × 10 -4

		cc
	Seizure 1	24 0.13 33 × 10 -4 63 0.13 38 × 10 -4 87 0.21 55 × 10 -4
	Seizure 2	12 0.14 29 × 10 -4 82 0.15 31 × 10 -4 94 0.22 49 × 10 -4
	Seizure 3	18 0.12 36 × 10 -4 77 0.12 35 × 10 -4 95 0.20 61 × 10 -4
	Seizure 4	32 0.13 41 × 10 -4 56 0.12 39 × 10 -4 88 0.19 57 × 10 -4

Table 3 .

 3 1: Performance of the proposed method in dierent SNR.

	SNR( dB)	Er A	Er S	Er U	Er B	Err
	5	0.155	0.216	0.196	0.131	0.148
	10	0.041	0.124	0.102	0.111	0.091
	15	0.003	0.083	0.073	0.086	0.045
	20	0.001	0.031	0.027	0.041	0.024

Table 3 .

 3 2: Reconstruction error for 5 dierent absence seizures of the rst rat. The absence seizures respectively consist of K 1 = 87, K 2 = 94, K 3 = 95, K 4 = 88 and K 5 = 390 time windows. The diagonal and non-diagonal entries of the table respectively show Er train and Er test .

	Training on			Testing on		
	seizure	1	2	3	4	5
	1	0.05	0.11	0.13	0.12 0.09
	2	0.07 0.06	0.10	0.09 0.08
	3	0.08 0.11	0.06	0.10 0.09
	4	0.10 0.09	0.10	0.08	0.10
	5	0.09 0.10	0.11	0.12 0.03

Table 3 .

 3 4: The cross correlation coecient between the obtained sources from the rst and second rat.

	First Rat		Second Rat		
		a	b 1	b 2	b 3
	a	0.97	-0.61	-0.54 -0.72
	b 1	-0.58	0.94	0.78 0.36
	b 2	-0.46	0.77	0.98	0.27
	b 3	-0.77	0.35	0.32 0.96
	First Rat		Second Rat		
		s	u 1	u 2	u 3
	s	0.83	0.86	0.65 0.53
	u 1	0.78	0.81	0.64 0.58
	u 2	0.49	0.46	0.88 0.71
	u 3	0.63	0.66	0.73 0.79
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	4.1 Main Idea
	In the previous chapters, we explored absence seizures by segmenting them
	into several spike time windows. This segmentation is not always possible
	because detection of spikes is sometimes dicult when the data is noisy. For

  Then, we select the one which has the best biophysiological interpretation. Therefore, we assume that R

	is xed and known. It can be easily shown that minimizing the following
	objective function leads to the maximum likelihood estimation (MLE) of the
	unknown parameters.

Table 4 .

 4 1: Performance of the proposed method in dierent SNR. MSE CSDs MSE spikes MSE time series

	5	0.321	0.343	0.349
	10	0.127	0.161	0.186
	15	0.038	0.049	0.048
	20	0.011	0.015	0.018
	25	0.002	0.004	0.005

SNR

  4.7. The rst epileptic activity is the dominant epileptic activity, and the second and the third epileptic activities randomly activate with the rst epileptic activity during the absence seizures. The noticeable point is that the average and the variance of the non-zero entries of the time series are very close to the previous results meaning that they can be considered as stationary random processes.For instance, these values for four absence seizures of the rst rat are reported in Table4.2.

Table 4 .

 4 2:The average and variance of the non-zero entries of the time series in four absence seizures of the rst rat. l i shows the number of non-zero entries of the i th time series, and m i and σ 2 i represent the corresponding average and variance.

	Seizure	l 1	m 1	σ 2 1 10 -2	l 2	m 2	σ 2 2 10 -2	l 3	m 3	σ 2 3 10 -2
	1	87 0.21 0.55 24 0.13 0.33 63 0.13 0.38
	2	91 0.20 0.58 14 0.15 0.35 77 0.14 0.37
	3	95 0.20 0.61 18 0.12 0.36 77 0.12 0.35
	4	88 0.19 0.57 32 0.13 0.41 56 0.12 0.39
	4.4.2.3 Other Rats							

Table 4 .

 4 4: The cross correlation coecient between the obtained spikes from two absence seizures of the rst rat whose lengths are 19.3 sec and 18.5 sec, respectively.

	First Absence Seizure		Second Absence Seizure	
		s 1	s 2	s 3
	s 1	0.95	0.82	0.74
	s 2	0.80	0.98	0.83
	s 3	0.72	0.86	0.97

Table 4 .

 4 6: The cross correlation coecient between the obtained spikes from two absence seizures recorded from the rst and second rats whose lengths are 19.3 sec and 21.4 sec, respectively.

	First Absence Seizure		Second Absence Seizure	
		s 1	s 2	s 3
	s 1	0.72	0.76	0.84
	s 2	0.81	0.87	0.71
	s 3	0.67	0.71	0.78
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SEIZURES

Table 2.1: Relative reconstruction error for ve absence seizures of the rst rat, which consist of K 1 = 87, K 2 = 94, K 3 = 95, K 4 = 88, and K 5 = 390 spikes. The diagonal and non-diagonal entries of the table respectively show Er train and Er test .

Training on \Testing on T (1) test T 0.10 0.12 0.07 0.11 0.10 T (4) train 0.12 0.10 0.12 0.09 0.11 T (5) train 0.11 0.11 0.12 0.13 0.05 Table 2.2: Relative reconstruction error for four absence seizures of the second rat which consist of K 1 = 181, K 2 = 300, K 3 = 350, K 4 = 260 and K 5 = 146 spikes. The diagonal and non-diagonal entries of the table respectively show Er train and Er test .

Training on \Testing on T (1) test T 0.12 0.13 0.08 0.12 0.11 T (4) train 0.09 0.09 0.10 0.07 0.14 T (5) train 0.11 0.12 0.11 0.13 0.09 for ve absence seizures of the second rat which consist of K 1 = 181, K 2 = 300, K 3 = 350, K 4 = 260 and K 5 = 146 spikes are reported in Table 2.2.

The last one is the absence seizure discussed in 2.4.1.2.

Based on the results presented in Table 2.2 (and also Table 2.1), we nd that the model estimated on any seizure of one rat can be used for modeling any other seizure of the same rat.

We can also cross validate the results obtained from two dierent rats.

For instance, we consider the absence seizures of the rst (in Table 2.1) and second (in Table 2.2) rat as the training and testing data, respectively. The relative reconstruction errors are reported in Table 2.3.

SEIZURES

second one was the temporal representation which showed us the temporal activation function or waveform for the epileptic activity. We extracted the model parameters using a specic factor analysis method, and conrmed the generality of the proposed model and the obtained results using cross validation. The nal results showed that there were a dominant and an unstable state (with an epileptic activity in each one), and a common epileptic activity during the recorded absence seizures (temporal analysis). It was shown that the organization of current sources and sinks in the obtained epileptic activities was the same in dierent GAERS, and they were located in the vicinity of top (layers I, II/III) and bottom (layers V, VI) of somatosensory cortex (spatial analysis). It was also shown that the contribution of epileptic activities in generating spikes were stationary random processes, with xed distributions for the absence seizures of each GAERS (temporal analysis).

The most interesting result of this chapter is that there is a background or common epileptic activity during the recorded absence seizures. This result motivates us to propose a new model for analyzing the absence seizures as explained in Chapter 3.

On the other hand, the drawback of the proposed model in this chapter is that the model is based on investigation of spikes. The segmentation of an absence seizure to several spike time windows is not always possible because the data may contain some noise which makes the spike detection step very dicult. In Chapter 4, we propose a method for solving this issue. SEIZURES B (k) is not equal to zero because the dynamic sources must be kept. Ac- cording to (A2), since we assumed that [A B (k) ] ∈ IR n×(m+r k ) is a full rank matrix, each column of B (k) certainly exists in the space of V 2 , and hence, B (k) would not be equal to zero. Now, we can extract the dynamic sources in each time window.

According to (A5), since we assumed that the dynamic sources are statistically independent, we are faced with an overdetermined BSS problem in the presence of noise. Hence, independent component analysis (ICA) can be applied to extract the dynamic sources (U (k) ) from nosiy measurements [START_REF] Arora | Provable ica with unknown gaussian noise, and implications for gaussian mixtures and autoencoders[END_REF]]. We use JADE algorithm to extract the dynamic sources [START_REF] Cardoso | Blind beamforming for nongaussian signals[END_REF]]. Since we have estimated the number of dynamic sources (r k ) in the previous part, the dimension of the separating matrix W (k) ∈ IR r k ×(n-m) is known, and regarding (3.17), we get:

In fact, ICA tries to make the rows of W (k) Y (k) as much independent as possible. After applying ICA, the dynamic sources (U (k) * ) are determined.

For each time window, the explained procedure must be applied to retrieve the dynamic sources in all of the time windows. 

This objective function can simply be minimized using alternation minimization. For each time window, (3.19) must be minimized to retrieve the static 

Parameter Extraction (Training Phase)

Since there is no prior information about the number of static sources (m),

we apply the proposed method on the seizures for dierent m and select the one which has suitable biophysiological interpretation. As explained in (A1), the suitable model order must lead to results with intra-rat similarity. In other words, the results should be similar in dierent seizures of a GAERS rat. Considering this point, the best result is obtained by considering m = 1 for all of the absence seizures. In fact, when we consider m > 1, some of the sources become non-smooth and incomprehensible. Since a single static source is sucient (m = 1), the static structure A ∈ IR n×m reduces to a simple vector with n = 16 entries. We consider one of the absence seizures of the rst rat which consists of K = 390 time windows as the training absence seizure to show the results.

The obtained static structure (A) and static sources (s Since there is a rst-order Markovian dependency in activation of the states, if we use the maximum aposteriori (MAP) estimator to nd q k , we get

where A = [a

1 a

(2)

1 ]. According to Bayes' rule, the left and right sides of (A.1) can be simplied and written as

1 ) p(X k |A) .

(A.

2)

It can be seen that not only are the conditional probabilities of X k important for estimating q k , but also the probabilities of transition between the states aect the decision making for q k . Based on Fig. A.1 and (A.2), whenever the signal to noise ratio (SNR)

increases, the produced error decreases. For instance, if the signals were noise free, which is not a practical assumption, the parameters could be learned without any error. Moreover, whenever the probabilities of transition among the states become close to the uniform distribution, i.e., the states become independent, the produced error would decrease. For instance, if p 21 and p 22 were equal to 0.5 in (A.2), they would not aect the decision making.

SPATIO-TEMPORAL MODELING OF ABSENCE SEIZURES

Here, the explanation of the E-step is nished. However, we also calculate another conditional probability which will be used in the Maximization step p(H 

We solve this optimization problem using gradient projection (GP) method.

We iteratively perform the following steps (gradient and projection) until convergence of A.

Gradient

Step: In the gradient step, we use the Newton method to speed up the convergence. The gradient and Hessian of the objective function STATIC AND DYNAMIC MODELING OF ABSENCE SEIZURES with respect to A is calculated as follows:

where ⊗ denotes the Kronecker product, I ∈ IR n×n is the identity matrix, and Π ∈ IR n 2 ×n 2 is the permutation matrix which provides the following equality:

where vec(A) denotes a long vector obtained by stacking the columns of A.

Hence, by considering a = vec(A) and g = vec(G), we perform the following iteration in this step:

Then, we reshape a to construct its matricization form.

Projection

Step: In this step, each column of A is normalized.

C. 

, and ⊗ denotes the Kronecker product. Since we know that λ (k) s just has n non-zero entries, we consider the non-zero entries of λ

∈ IR m , and also, the columns of Q corresponding to the non-zero entries of

. Hence, (C.4) can be expressed as:

where λ (k) 

, we can write (C.7) as: This kind of problems can be solved using well known solvers like sdpt3 and cvx [START_REF] Toh | SDPT3 a matlab software package for semidenite programming, version 1.3[END_REF]. Regarding the penalty term, we can consider the proposed value in square-root LASSO problemBelloni et al. (2011) because the two problems are the same. The penalty term is independent of the noise variance and obtained as follows according to [START_REF] Belloni | Square-root lasso: pivotal recovery of sparse signals via conic programming[END_REF]:

where c > 1 is a constant, φ is the cumulative distribution function (CDF) of a zero-mean and unit variance Gaussian variable, and 1-α is the probability of detection.