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Abstract

Absence epilepsy syndrome is accompanied with sudden appearance of

seizures in di�erent regions of the brain. The sudden generalization of ab-

sence seizures to every region of the brain shows the existence of a mechanism

which can quickly synchronizes the activities of the majority of neurons in

the brain. The presence of such a mechanism challenges our information

about the integrative properties of neurons and the functional connectivity

of brain networks. For this reason, many researchers have tried to recog-

nize the main origin of absence seizures. Recent studies have suggested a

theory regarding the origin of absence seizures which states that somatosen-

sory cortex drives the thalamus during the �rst cycles of absence seizures,

while thereafter, cortex and thalamus mutually drive each other and continue

absence seizures.

This theory motivated the neuroscientists in Grenoble Institute of Neuro-

sciences (GIN) to record data from di�erent layers of somatosensory cortex

of Genetic Absence Epilepsy Rats from Strasbourg (GAERS), which is a

well-validated animal model for absence epilepsy, to explore the main start-

ing region of absence seizures locally. An electrode with E = 16 sensors was

vertically implanted in somatosensory cortex of GAERS, and potentials were

recorded. In this study, we aim to localize the onset layers of somatosensory

cortex during absence seizures and investigate the temporal evolution and

dynamics of absence seizures using the recorded data. It is worth mentioning

that all previous studies have investigated absence seizures using the data

recorded from di�erent regions of the brain, while this is the �rst study that

performs the local exploration of absence seizures using the data recorded

from di�erent layers of somatosensory cortex, i.e., the main starting region

of absence seizures.

Using factor analysis, source separation, and blind deconvolution meth-

ods in di�erent scenarios, we show that 1) the top and bottom layers of

somatosensory cortex activate more than the other layers during absence

seizures, 2) there is a background epileptic activity during absence seizures,



vi

3) there are few activities or states which randomly activate with the back-

ground epileptic activity to generate the absence seizures, and 4) one of these

states is dominant, and the others are unstable.

Keywords� Absence Seizure, Spatio-Temporal Analysis, Spike and Wave

Discharges, State, Markovian Model, Epileptic Activity, Factor Analysis,

Static and Dynamic Sources, Source Separation, Blind Deconvolution
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1 Problem Sketch: Absence Epilepsy

and Challenges

Absence epilepsy is a form of epilepsy with genetic origins which is higher

prevalent in children and young adults [Pardoe et al. (2008); Bernhardt et al.

(2009); Williams et al. (2016)]. It is accompanied by sudden seizures that

a�ect the patients' consciousness [Caraballo et al. (2008); Chipaux et al.

(2013); Killory et al. (2011)]. In fact, the emergence of seizures associ-

ated with appearance of spike and wave discharges in electroencephalo-

gram (EEG) recordings is an indication of absence epilepsy [Panayiotopou-

los (2008); Das et al. (2006)]. Absence seizures are usually treated using

anti-epileptic drugs like ethosuximide (Zarontin), but some of the patients

are drug-resistant [Panayiotopoulos (2010)]. Patients who are drug-resistant

must be operated for breaking to neuronal structure responsible of the ab-

sence seizure. Thus it is mandatory to have a better understanding and

accurate localization on spatial and time origins of absence seizures. In this

purpose, researchers have used animal models to understand the process by

which the absence seizures are generated. Since absence seizures simultane-

ously occur in many regions of the brain and the duration of absence seizures

is not �xed [Panayiotopoulos (2008)], localizing their origins (spatial anal-

ysis) [Meeren et al. (2002); Marten et al. (2009); Polack et al. (2007)] and

investigating their dynamics (temporal analysis) [Amor et al. (2009); Moeller

et al. (2010); Amini et al. (2014)] have been challenging problems over the

past decades. In fact, we can prevent the origins from communicating with

other regions of the brain to stop propagating the absence seizures if we

1



CHAPTER 1. PROBLEM SKETCH: ABSENCE EPILEPSY AND

CHALLENGES

have a comprehensive spatio-temporal analysis from absence seizures. The

importance of modelling absence seizures as spatio-temporal patterns has

been discussed in [Baier et al. (2012)].

In the spatial domain, researchers have studied the epileptic events lead-

ing to absence seizures [Williams et al. (2016); Polack (2016)]. The sudden

generalization of absence seizures to every region of the brain shows the

existence of a mechanism which can quickly synchronizes the activities of

the majority of neurons in the brain [Polack (2016)]. The presence of such

a mechanism challenges our information about the integrative properties

of neurons and the functional connectivity of brain networks. Hence, re-

searchers have tried to accurately de�ne the networks involved in absence

seizures and their starting points (origins) [Panayiotopoulos (2010); Vlachos

et al. (2017)]. Several theories have been suggested about the main origin

of seizures. Some researches point to a faulty thalamus as the origin, while

others consider an hyper-excitable region in the cortex area as the origin of

absence seizures [Meeren et al. (2002); Avoli (2012)]. The most recent the-

ory �lling the gap between cortical and thalamic origin is that both cortex

and thalamus participate in the generation of absence seizures [Meeren et al.

(2002); Steriade (2003)]. By studying non-linear similarities between signals

recorded from multiple zones of cortex and thalamus in the Wistar Absence

Glaxo from Rijswik (WAG/Rij) rat model, which is an animal model for

absence epilepsy, it has been shown that during the �rst cycles of absence

seizures, somatosensory cortex drives thalamus, while thereafter, somatosen-

sory cortex and thalamus drive each other until the end of absence seizures.

Existence of a cortical starter has also been recognized in Genetic Absence

Epilepsy Rat from Strasbourg (GAERS), which is one of the well-validated

animal models for absence epilepsy [Depaulis et al. (2016); Depaulis and Van

Luijtelaar (2005)]. For GAERS, it has been reported that spike-and-wave

discharges (SWDs) [Archer et al. (2003); Hamandi et al. (2008)], which are

the most important indication of absence seizures, start from somatosensory

cortex more than 90% of the time [Polack et al. (2007)].
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In the temporal domain, the challenge is about the dynamics of brain ac-

tivities within the absence seizures. As a major work in this domain, authors

of [Amini et al. (2014)] studied the temporal evolution of absence seizures

using intracranial EEG (iEEG) recordings from di�erent regions of GAERS

brain. At �rst, source separation methods are applied on temporal sliding

windows of the data and the relevant temporal sources are estimated for each

window. Then, the temporal sources are compared quantitatively, giving a

map of dynamic behavior. By analyzing this map, it has been shown that

the relevant sources become more stationary after a latency from the onset

of absence seizures. Dynamic analysis of absence seizures has also been done

in humans [Moeller et al. (2009); Wu et al. (2017); Moeller et al. (2010)]. For

instance in [Moeller et al. (2009)], the EEG-fMRI data were acquired from 13

patients su�ering from absence epilepsy. Then, by applying gamma function

regressors on sliding time windows of the data, and calculating the F-value,

it was shown that the cortical activations and deactivations tend to occur

earlier than the thalamic responses during absence seizures. As another

example in [Wu et al. (2017)], neuromagnetic sources were volumetrically

scanned with accumulated source imaging from 14 patients. Then, e�ective

connectivity networks of the entire brain, including the cortico�thalamo net-

work, were evaluated at the source level through Granger causality analysis

[Seth et al. (2015)]. The obtained results show that the cortico�thalamic

e�ective connectivity increases during absence seizures. Moreover, the direc-

tion of the connectivity is predominantly from the cortex to the thalamus in

the beginning of absence seizures.

All previous works spatially or temporally analyze absence seizures using

the data recorded from di�erent areas of the brain, while in this study, the

focus is on the analysis of di�erent cortical layers of somatosensory cortex as

the main onset region of absence seizures. In order to attain a comprehen-

sive spatio-temporal analysis of absence seizures, a data set was acquired in

Grenoble Institute of Neurosciences (GIN) from di�erent layers of somatosen-

sory cortex of GAERS. Using the recorded data, we aim to: 1) localize the
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onset layers of somatosensory cortex during absence seizures and 2) investi-

gate the dynamics of absence seizures.

The acquisition process of the data is explained in the following. Then,

we brie�y explain how the data are analyzed in di�erent chapters to achieve

our goals.

Data Acquisition

The data were acquired in four GAERS rats [Danober et al. (1998)]. All

experiments were performed in accordance with local Ethical Committee and

European Union guidelines (directive 86/609/EEC), and every precaution

was taken to minimize stress and the number of animals used in each series

of experiments.

Animals were anesthetized (100 mg/kg ketamine, i.p. plus 10 mg/kg xy-

lazine, i.p.) and placed into a stereotactic frame (see [Depaulis et al. (2016)]

for a complete description of this preparation). One electrode (∅: 0.125

mm, polyester isolated) with sixteen sensors (E = 16) was stereotaxically

implanted at di�erent layers of somatosensory cortex with the bregma as the

reference [Paxinos and Watson (2009)], and extracellular �eld potentials were

recorded. The distance between the sensors was h = 150µm. Potentials were

ampli�ed through a miniature headstage preampli�er (MPA-8i, 8-channel

single-ended ampli�er with one common subtracting input for an indi�erent

electrode; voltage gain, x10; frequency band, DC to 5 kHz; Multi Channel

Systems, Reutlingen, Germany) connected to a 32-channel programmable

gain ampli�er (PGA-32, voltage gain, x200 Multi Channel Systems) and

sampled at 20 kHz (64 bit ADC). Recordings were collected on a personal

computer via a CED interface (Cambridge Electronic Design, Cambridge,

UK) using the Spike 2 software (Version 6.0). The implementation scheme

and the raw data during a recorded absence seizure are respectively shown

in Figs. 1.1 and 1.2.

In fact, we want to answer the following questions using the recorded
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Figure 1.1: The axial view of implementation scheme in the data acquisition.

Figure 1.2: The recording electrode and a recorded absence seizure. The beginning

and the end of the absence seizure are indicated by tonset and to�set, respectively.

absence seizures:

1) Are there some speci�c layers in somatosensory cortex which generate

the absence seizures? or which layers have more activity during absence

seizures? (spatial analysis)

2) Is there any speci�c pattern during absence seizures over time? or
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how do the absence seizures change over time? (temporal analysis)

Answering these questions is di�cult because if we look at the data, we

�nd that the data are highly correlated in di�erent channels, and the time

delay between the channels is almost negligible. Therefore, we try to answer

these questions throughout this thesis.

Thesis Overview

Chapter 2

Both localizing the active layers of somatosensory cortex (spatial analysis)

and investigating the dynamics of recorded absence seizures (temporal anal-

ysis) are the goals of this chapter. During the recorded absence seizures, a

characteristic spike waveform is repeatedly observed. We model these epilep-

tic spike discharges using a generative spatio-temporal model. We assume

that there are some hidden states under �rst-order Markovian model during

absence seizures, and each spike is generated when the corresponding state is

activated. We also assume that a few speci�c epileptic activities (or factors)

exist in each state, that are linearly combined to form the observed spikes.

Each epileptic activity is described by two important characteristics: 1) spa-

tial topography which shows the organization of current sources and sinks

in di�erent layers of somatosensory cortex, and 2) temporal representation

which illustrates the activation function of epileptic activity. We estimate

parameters of the considered model, i.e., states and their epileptic activi-

ties, using a factor analysis method. Experimental results show that during

absence seizures there are one dominant and one unstable state, with two

epileptic activities in each. The interesting point is that one of the epileptic

activities is common between the states, hence, it always participates in the

generation of spikes. We also show that contributions of epileptic activities

in the generation of spikes can be modeled by stationary random processes,

and the top and bottom layers of somatosensory cortex are the most active
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layers during absence seizures. After determination of the model parameters,

generality of the proposed model in characterizing absence epileptic seizures

is con�rmed using a cross validation framework.

Chapter 3

In this chapter, the focus is on analyzing the dynamics of absence seizures

using source separation methods. Based on the results obtained in chapter

2, we describe the recorded seizures by a linear superposition of static and

dynamic sources. The static sources are stable and have a �xed structure,

while the dynamic sources are unstable and highly non-stationary. The static

sources play the role of background epileptic activities and the dynamic

sources are complementary to the static sources in the generation of seizures.

Retrieving the sources and their structures from the recorded seizures is the

main goal of this chapter from the signal processing point of view which

helps us achieve the desired analysis. Experimental results show existence

of a static source and a few speci�c dynamic sources during the recorded

seizures. Moreover, it is shown that the origins of the sources are the same

in di�erent absence epileptic rats. It is worth mentioning that the considered

model and the proposed method in this chapter can be adapted to several

applications such as radar or brain signals. Moreover, it can provide an

interesting solution to the classical EEG denoising consisting in removing

the EEG background activity and cleaning the EEG epileptic data.

Chapter 4

This chapter spatially and temporally investigates absence epileptic seizures

which are highly noisy and cannot be analyzed using the methods proposed

in chapters 2 and 3. We model these kinds of absence seizures by a lin-

ear superposition of a few epileptic activities which have spatio-temporal

representations. The spatial representation shows the organization of the

current sources and sinks generating the epileptic activity, and the temporal
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representation displays the occurrence time and the activation function of

the epileptic activity. Retrieving the epileptic activities from the recorded

absence seizures which are noisy is the main target of this chapter which

helps us localize the onset layers of somatosensory cortex and understand

the temporal evolution of recorded absence seizures in a general form. The

obtained results are in accordance with the results presented in chapters 2

and 3.

Chapter 5

In this chapter, we conclude the thesis, present the comprehensive analysis of

absence epileptic seizures, and answer the scienti�c questions mentioned in

the end of data acquisition section, based on the results obtained in previous

chapters. We also state the perspectives and future works.

Notation

Throughout the paper, we use bold capital letters to show matrices (X) and

bold small letters to show vectors (x). The ith column and the (i, j)th entry

of X are shown by xi and xij , respectively. The i
th entry of x is represented

by x(i). We use (.)T , (.)H , and (∗) to denote transpose, conjugate transpose,

and convolution operator, respectively. diag(X) keeps the diagonal entries

of X, and trace(X) shows the trace of X. Finally, ‖X‖F , ‖x‖2 and ‖x‖0
show the Frobenius, Euclidean, and l0 norm, respectively.
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CHAPTER 2. SPATIO-TEMPORAL MODELING OF ABSENCE
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2.1 Main Idea

In this chapter, we aim to: 1) estimate the onset layers of somatosensory

cortex during absence seizures (spatial analysis), and 2) investigate the dy-

namics of absence seizures (temporal analysis).

Since the data were recorded locally, when one spike appears in one

layer of somatosensory cortex during the absence seizures, we can consider

a multisensor recording of a single spike, from hereon referred to as �spike�,

as shown in Fig. 2.1 (in the green frame).

Figure 2.1: The recording electrode, an absence seizure and a spike (in the green

frame) isolated from the raw data. The beginning and the end of the absence seizure

are indicated by tonset and to�set, respectively.

We model the process by which these spikes are generated to achieve

the mentioned targets. We assume that there are some hidden states which

are activated under �rst-order Markovian model during an absence seizure,

and each spike of an absence seizure is generated when one of these states is

activated. Each state consists of a few speci�c epileptic activities which are

linearly combined and generate the associated spikes. We call each of the

epileptic activities as one factor. Each factor is described with two important

characteristics. The �rst one is the spatial topography which shows the
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distribution or the organization of current sources and sinks generating the

factor, and the second one is the temporal representation which illustrates the

activation function or the waveform of the factor. Estimating the explained

states and their factors using factor analysis methods [Mulaik (2009)], and

investigating the transition between the states help us �nd the most active

layers of somatosensory cortex during absence seizures (spatial analysis) and

analyze the dynamics of absence seizures (temporal analysis).

In the following, Section 2.2 explains the proposed model, and Section

2.3 presents the proposed framework for extracting the model parameters,

and validation of the results. Section 2.4 is dedicated to the experimental

results. The discussion and concluding remarks are reported in Section 2.5,

and �nally, Section 2.6 concludes this chapter.

2.2 Model Definition

The factor model is based on factorization of multi-dimensional measure-

ments of local �eld potentials (LFPs) into spatial factors and temporal load-

ings. The spatial factors get their full expressive power when they are given

as current source densities (CSDs) which allow to describe the observed po-

tentials as consequence of current sources and sinks. Hence, we �rst review

the relation between LFP and CSD. Then, we de�ne an epileptic activity

(a factor) as the atomic element of our model. After that, the relation be-

tween a spike and the de�ned epileptic activity is explained, and �nally, we

introduce our complete model for an absence seizure.

2.2.1 CSD as a representation of LFP

Since the data consist of multichannel measurements of extracellular �eld

potentials, using the concepts of LFP and CSD is a suitable solution for

revealing the interaction of di�erent layers of somatosensory cortex. The

LFP is generated by transmembrane currents in the vicinity of the record-

ing electrode, and provides valuable information like understanding cortical
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functions that cannot be obtained by only measuring the spiking activity of

a small population of neurons [Mazzoni et al. (2013); Einevoll et al. (2013)].

Mathematically, the LFP is obtained by low-pass �ltering of the extracel-

lular �eld potential recorded by the electrode [Mazzoni et al. (2013)]. The

biophysical origin of LFP is well understood in the framework of volume

conductor theory, and using CSD is a standard way for representing LFP.

The CSD representation shows the current sources and sinks generating the

LFPs. In fact, the information are sent and received among the sources and

sinks. Fig. 2.2 schematically shows the relation between the CSD and the

LFP at one speci�c instant in di�erent layers of somatosensory cortex. The

mathematical details for extracting CSD from LFP in this research would

be explained later in 2.3.3.

Figure 2.2: Interaction of current sources and sinks generating LFPs at one instant.

The points and the curves in the middle plot respectively show the current source

and sink, and the corresponding equipotential lines. We can assign a CSD vector

to a LFP vector at every time point as explained in 2.3.3. CSD is shown by color

coding to clearly show the organization of sources and sinks in di�erent layers of

somatosensorry cortex.

As sketched in Fig. 2.2, and explained formally in 2.3.3, CSD clearly
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exposes the equivalent current source and sink model for LFP. We can use

the CSD representation to localize the current sources and sinks generating

the measured potentials. Therefore, we de�ne our model based on the CSD

representation of the data.

2.2.2 Definition of Epileptic Activity

We characterize an epileptic activity by a synchronous activity of current

sources and sinks. Assume that there are a few current sources and sinks in

the vicinity of the recording electrode which are well localized, i.e., they have

a spatial localization, which does not move over time. If the amplitudes of

the sources and sinks change according to a speci�c temporal function over

time 0 ≤ t ≤ T , we say an epileptic activity has been generated. An epileptic

activity is schematically shown in Fig. 2.3.

Figure 2.3: CSD representation of an epileptic activity. An epileptic activity is

described by two characteristics, spatial topography and temporal representation.

The CSD map over time (0 ≤ t ≤ T ) is shown by color coding to clearly show the

organization of sources and sinks in di�erent layers of somatosensorry cortex.

The main advantage of this de�nition is that the obtained CSD map over

time (0 ≤ t ≤ T ) can be described by only two characteristics. The �rst one

is the spatial topography which shows the distribution or the organization

of the current sources and sinks in di�erent layers, and the second one is
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the temporal representation which illustrates the temporal evolution of the

current sources and sinks. Mathematically, we can say that an epileptic

activity is produced by the vector multiplication of its spatial topography

and temporal representation, hence, it is a rank-one factor.

2.2.3 Model for Generation of Spikes

Spikes are the most important epileptic discharges during the absence seizures

because they are the spatial integration of potentials [Polack et al. (2007)].

Therefore, we analyze the absence seizures based on investigation of spikes.

At the moment, we suppose that we have already accurately extracted the

spikes from the data. The extraction method will be explained later. We

assume that each spike is generated by a linear combination of J epileptic

activities. Hence, we can consider the following rank−J factorization for

each spike Xk ∈ IRE×T , where E and T respectively show the number of

sensors and samples in each spike.

Xk =
J∑
j=1

ckj ajb
T
j (2.1)

Based on this decomposition, if we assume that Xk is generated by a linear

superposition of J epileptic activities, and consider each epileptic activity as

a factor, ckj ∈ IR, aj ∈ IRE and bj ∈ IRT respectively show the contribu-

tion of the jth factor in the generation of Xk, the spatial topography, and

the temporal representation of the jth factor. In fact, aj shows the spatial

distribution of the CSD in di�erent layers of somatosensory cortex and bj

informs temporal activation function of each factor.

For instance, Fig. 2.4 schematically shows that J = 2 di�erent epileptic

activities linearly contribute to the construction of the considered spike. It

must be mentioned that linearity is a reasonable assumption because we

process the low frequency content of the data (LFP or CSD) which does not

include e�ects of capacity and induction. Therefore, there is no building up

of charges and we can directly measure the �elds [Reitz et al. (2008)].
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Figure 2.4: Proposed model for the generation of a spike. The considered spike

is constructed by a linear superposition of J = 2 epileptic activities (or factors).

Each epileptic activity is described by two characteristics; 1) the spatial topography

(with colorcoded positive and negative values) and 2) the temporal representation.

2.2.4 Model for Absence Seizure

We can consider each absence seizure as a train of spikes as shown in Fig.

2.1. Based on the similarity of spikes, meaning that they have temporal

activation functions that are almost equal, we assume that there are a few

hidden states (S) during an absence seizure, and each spike is generated

when the corresponding state is activated. In order to model the dynamics

of the state activations, we also assume the state activations are modeled

by a �rst-order Markovian model with a �xed transition probability matrix

P ∈ IRS×S for the state activations, where the (i, j)th entry of P, or in

other words, pij shows the probability of transition from state i to state

j. The �rst-order Markovian model means that the activation of each state

is only dependent on the previous active state. Generally, this assumption

enables reasoning and computation with the data that would otherwise be

intractable. Fig. 2.5 shows the considered model for the generation of a

train of spikes, or in other words, an absence seizure assuming S = 2, i.e.,

when there are two states.

In fact, each state consists of a few speci�c factors (e.g., J factors) which

participate in the generation of spikes. If we assume that there are K spikes

during an absence seizure and stack them in a three dimensional tensor

15



CHAPTER 2. SPATIO-TEMPORAL MODELING OF ABSENCE

SEIZURES

Figure 2.5: There are S states under �rst-order Markovian model during an absence

seizure. Each spike, which is speci�ed by a color rectangle, is generated when the

corresponding state is activated. The activated state for the kth spike is shown by

qk ∈ {1, 2, ..., S}.

T ∈ IRE×T×K , where E and T respectively show the number of channels

(sensors) and the length of each spike, Fig. 2.6 schematically shows the

complete model for the generation of spikes assuming that there are S = 2

states and J = 2 factors in each state. It should be noted that S, J , and the

factors are unknown, and Fig. 2.6 is just a schematic �gure.

Figure 2.6: Proposed model for the generation of spikes during an absence seizure

considering S = 2 states and J = 2 factors in each state.
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It is worth noting that only one state can be active for each spike (see

Fig. 2.6) which results in zeroing the factor loadings of all non-active states

for that spike. Now that the model de�nition is complete, we propose a

framework to extract the hidden states, their factors, and the transition

probability matrix from the recorded absence seizures, and cross validate

the obtained results.

2.3 Data Processing Pipeline

The proposed data processing pipeline is shown in Fig. 2.7. There are three

main stages in this pipeline: pre-processing, proposed method, and cross

validation. In the �rst stage, the pre-processing steps are performed. The

parameters of the model are extracted in the second stage, and �nally, we

cross validate the extracted results in the last stage. In the following, each

block of the proposed pipeline is explained.

Figure 2.7: Block diagram of the proposed pipeline for 1) pre-processing the data,

2) estimating the unknown parameters of the model, and 3) validation of the results.

2.3.1 Reference Removal

Since the recorded raw data for each sensor is the potential di�erence between

the tip of the sensor and a distant cortical site, the �rst pre-processing step
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consists in removing the e�ect of reference point by subtracting each column

of the data from its average. In fact, we re-reference to the average as a

proxy of the unknown reference. The common information between all of the

channels is removed by this subtraction. Subtraction of the common average

has also been shown to be useful for other reasons [Ludwig et al. (2009)].

For instance, some sources of noise, especially those from non-physiological

external sources, are removed by this pre-processing step because the sensors

are located very close to each other.

2.3.2 LFP Extraction

The LFP is obtained by low-pass �ltering of the extracellular �eld potential

recorded by the electrode [Mazzoni et al. (2013)]. Therefore, the recorded

signal of each sensor (channel) is �ltered by a 5th-order low pass Butterworth

�lter with a cuto� frequency equal to 100 Hz. In fact, the high-frequency

content (above 100 Hz) of the data consists of action potentials and noise

which are not of interest in this research. The main target of this prepro-

cessing step is preparing the data for calculating the CSD.

2.3.3 CSD Extraction

The biophysical origin of LFP is well understood in the framework of volume

conductor theory, and CSD is one of the standard ways of representing LFP.

In fact, the CSD representation shows the current sources and sinks gener-

ating the measured potentials. We use an inverse CSD (iCSD) [Pettersen

et al. (2006)] method to extract the CSD from the LFP, as explained in the

following.

In iCSD method, there is a linear relationship between LFPs (φ ∈ IRE)

and CSDs (µ ∈ IRE) at each time instant by means of a coe�cient matrix

F ∈ IRE×E as follows:

φ = Fµ (2.2)

where E = 16 shows the number of channels. If we assume the recording
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electrode is located on the z axis, each entry of the coe�cient matrix fij =

[F]ij is calculated as follow:

fij =

∫ zi+
h
2

zi−h2

1

2σ
(

√
(zj − z)2

+ r2 + |zj − z|)dz (2.3)

where zi (i = 1, 2, ..., 16) shows the positions of the sensors on the recording

electrode and h = 150µm denotes the distance between the sensors. r

represents the radius of the cylindrical volume around the sensors which

consists of current sources and sinks as shown in Fig. 2.8, and it is considered

equal to r = 50µm [Einevoll et al. (2013)] in this research. The value of σ,

which shows the extracellular electrical conductivity, is not important here,

and it is just a scaling factor. It should be noted that we assume the sensors

are located in the homogeneous media. Therefore, the CSD vector in each

time instant is extracted by µ = F−1φ.

Figure 2.8: Considered cylinders for sources and sinks in iCSD method. zi (i =

1, 2, ..., 16) shows the positions of the sensors on the electrode.
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2.3.4 Seizure Detection

We aim to investigate the absence seizures, therefore, we must separate them

from the data. A good survey on seizure detection methods can be found in

[Alotaiby et al. (2014)]. Since the amplitudes of the signals (now, the CSDs)

change signi�cantly in the beginning and end of absence seizures (as shown

in Fig. 2.1), we identify absence seizures by simple thresholding. It is worth

mentioning that after detecting the seizures, we also apply a median �ltering

on a window around each peak which its amplitude is greater than the half

of the maximum absolute amplitude of the signals for the whole period of

processing to remove the outliers and artifacts from the seizures. The length

of moving median window is equal to 0.2 s with 70 % overlap and the length

of window around the peak is equal to 0.4 s [Amini et al. (2014)].

2.3.5 Spike Detection

Once the absence seizures are separated from the data, we detect the spikes.

Following [Quiroga et al. (2004)], we again use thresholding to detect the

spikes. Each spike is shown by X
(tk)
k ∈ IRE×T , where tk denotes the starting

time of the kth spike, E = 16 shows the number of channels (sensors), and

T = 1750 samples (87.5 ms) [Polack et al. (2007)] represents the length of

each spike.

2.3.6 Aligning and Stacking Spikes

The alignment of spikes is a necessary step to obtain accurate results. We

align the spikes using the improved version of Woody's method proposed in

[Cabasson and Meste (2008)]. For this purpose, in an iteration loop, each

spike X
(tk)
k is aligned with the average of the other spikes until convergence

of the algorithm. Considering X0 as the average of all spikes except X
(tk)
k ,

we shift the window of spike X
(tk)
k until achieving the maximum cross corre-

lation between X
(tk)
k and X0. Mathematically, the following calculations are
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performed in each iteration:

τ∗k = argmax
τi

ρ(X0,X
(tk−τk)
k ), |τk| <

T

2

tk ← tk − τ∗k (2.4)

The cross correlation coe�cient is calculated as follows:

ρ(X0,X
(tk−τk)
k ) =

Tr{XT
0 X

(tk−τk)
k }

‖X0‖F ‖X(tk−τk)
k ‖F

(2.5)

where Tr and ‖.‖F denote the trace function and Frobenius norm, respec-

tively. In fact, we repeat (2.4) for all spikes until the algorithm convergence.

After aligning the spikes, we drop the starting time of each spike and

consider each one as Xk. Once the spikes were aligned, we stack them in 3-

way data tensor T as shown in Fig. 2.6 to prepare the data for estimating the

model parameters, i.e. the states, their factors, and the transition probability

matrix.

As shown in the block diagram of the proposed framework (Fig. 2.7), we

split the data into two groups of training set and testing set. Ttrain consists

of spikes of only an absence seizure and Ttest = {T (1)
test, T

(2)
test, ..., T

(M)
test } consists

of spikes of M absence seizures. In the following, estimation of the model

parameters using Ttrain is explained.

2.3.7 Parameters Estimation

According to the proposed model and as shown in Fig. 2.6, the main idea

for estimating the model parameters is factorizing Ttrain ∈ IRE×T×K , which

is a cube of data, using tensor factorization. Hence, the desired factorization

for Ttrain is as follows:

Ttrain '
S∑
s=1

J∑
j=1

a
(s)
j ⊗ b

(s)
j ⊗ c

(s)
j (2.6)

where E, T , K, S, and J are respectively the number of channels, samples

in each spike, spikes, states, and factors. ⊗ denotes the tensor product. a
(s)
j

∈ IRE , b
(s)
j ∈ IRT , and c

(s)
j ∈ IRK show spatial topography of each factor,
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temporal representation of each factor and contribution of each factor in the

generation of spikes, respectively. This factorization is schematically shown

in Fig. 2.6 assuming S = J = 2. We also consider the following constraints

in this factorization:

1- According to the model, there is a �rst-order Markovian model in the

activation of the states, i.e., the (k + 1)th state only depends on the kth state.

The transition probability matrix P ∈ IRS×S , which shows the probability

of activation of each state subject to knowing the previous activated state,

must also be estimated during the factorization. It should be noted that

if the considered absence seizure was almost noiseless, we could ignore the

Markovian dependency between the spikes and estimate the parameters (see

Appendix A).

2- In order to omit the scaling and a part of polarization ambiguities, a
(s)
j

and b
(s)
j are considered unit norm vectors, and entries of c

(s)
j are considered

positive for all of the factors [Comon and Jutten (2010)].

A noticeable point here is that we do not have any prior information

about the number of states (S) and factors (J). However, we have to �x

them to be able to extract the unknown parameters. Since we are looking

for results which have biophysiological interpretation, at �rst we estimate

the unknown parameters for di�erent S and J , then, we select the one with

the best biophysiological interpretation. We discuss more about this issue

later.

We use the maximum likelihood estimator (MLE) and the expectation

maximization (EM) to obtain the unknown parameters as explained in the

following.

We consider the parameters of the sth state in the matrices A(s) ∈ IRE×J ,

B(s) ∈ IRT×J and C(s) ∈ IRK×J as follows:

A(s) = [a
(s)
1 a

(s)
2 ... a

(s)
J ]

B(s) = [b
(s)
1 b

(s)
2 ... b

(s)
J ]

C(s) = [c
(s)
1 c

(s)
2 ... c

(s)
J ], [C(s)]kj = c

(s)
kj (2.7)

22



CHAPTER 2. SPATIO-TEMPORAL MODELING OF ABSENCE

SEIZURES

Therefore, the set of unknown parameters is as follows:

Θ = {A,B,C,P} (2.8)

where A = [A(1)...A(S)] ∈ IRE×JS , B = [B(1)...B(S)] ∈ IRT×JS , C =

[C(1)...C(S)] ∈ IRK×JS , and P ∈ IRS×S shows the transition probability

matrix.

We assume that the error of the measurement is modeled as an additive

white Gaussian term. Hence, each recorded spike Xk ∈ IRE×T is expressed

as:

H(s)
k : Xk =

J∑
j=1

c
(s)
kj a

(s)
j b

(s)
j

T
+ Nk (2.9)

where H(s)
k (s = 1, 2, ..., S) means that state s is active for generating the kth

spike. c
(s)
kj ∈ IR+ shows the contribution of the jth factor from the sth state

in the generation of Xk. a
(s)
j ∈ IRE and b

(s)
j ∈ IRT respectively represent

the spatial topography and the temporal representation of the jth factor

from the sth state. Finally, Nk ∈ IRE×T is additive white Gaussian noise

with independent and identically distributed (i.i.d.) entries, and each entry

of this matrix has a normal distribution with zero mean and variance σ2
0.

Therefore, we have:

f(Xk|H
(s)
k ,Θ) = (

1√
2πσ2

0

)E T exp

−‖Xk −
∑J

j=1 c
(s)
kj a

(s)
j b

(s)
j

T
‖2F

2σ2
0


(2.10)

It should be noted that since σ2
0 is unknown, it is also added to the set

of unknown parameters. Considering (2.10), we can use the maximum log-

likelihood estimator (MLE) to �nd the set of unknown parameters, i.e.,

Θ∗ = argmax
Θ

log(f(Ttrain|Θ)) (2.11)

where the superscript ∗ shows the optimum value of the parameter. Since

the noise matrices Nk (k = 1, 2, ...,K) are independent, the observations Xk

for k = 1, 2, ...,K are also independent given Θ. Therefore, the objective
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function can be expressed as follows:

log(f(Ttrain|Θ)) =
K∑
k=1

log(f(Xk|Θ)) =
K∑
k=1

log

{
S∑
s=1

p(H(s)
k )f(Xk|H

(s)
k ,Θ)

}
(2.12)

where p(H(s)
k ) shows the probability of the activation of the sth state in the

generation of the kth spike. Since p(H(s)
k ) is unknown, and the summation

over s in (2.12) is like an expectation operator, we solve this optimization

problem using the expectation maximization (EM) method. This means that

the following two steps are alternately performed to extract the unknown

parameters (E-step and M-step).

2.3.7.1 Expectation Step (E-step)

In this step, we assume that the set of unknown parameters Θ and conse-

quently f(Xk|H
(s)
k ,Θ) are known, then, we estimate p(H(s)

k ). This step is

performed using a forward-backward procedure, which is explained in Ap-

pendix B. In this procedure, the probability of being in state m for the kth

spike and being in state n for the (k + 1)th spike (p(H(m)
k ,H(n)

k+1)) is also

calculated which is used in the M-step to extract the transition probability

matrix.

2.3.7.2 Maximization Step (M-step)

Given p(H(s)
k ) in the previous step, Θ is extracted in this step. The entries

of the transition probability matrix are easily estimated using the following

equation:

[P]mn = pmn → p∗mn =

∑K−1
k=1 p(H(m)

k ,H(n)
k+1)∑K−1

k=1 p(H(m)
k )

(2.13)

For extracting the other parameters, directly maximizing (2.12) is dif-

�cult because the log term (log
∑
) cannot be further reduced. Therefore,

instead of maximizing this objective function, we consider its lower bound
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using the Jensen's inequality (log-concavity):

K∑
k=1

log{
S∑
s=1

p(H(s)
k )f(Xk|H

(s)
k ,Θ)} ≥

K∑
k=1

S∑
s=1

p(H(s)
k )log{f(Xk|H

(s)
k ,Θ)}︸ ︷︷ ︸

Q(Θ)

(2.14)

In fact, hereafter, we solve the following optimization problem:

Θ∗ = argmax
Θ

Q(Θ) (2.15)

By substituting (2.10) in (2.15), and some simple calculations, we get:

Q(Θ) = −E T
2
log(2πσ2

0)− 1

2σ2
0

K∑
k=1

S∑
s=1

p(H(s)
k )‖Xk −

J∑
j=1

c
(s)
kj a

(s)
j b

(s)
j

T
‖2F

(2.16)

It can be easily seen that maximizing this function is done by maximizing

each of its independent terms, i.e., we can separate the parameters of each

state in this optimization problem. Therefore, for each state, we have:

{A(s)∗,B(s)∗,C(s)∗} = argmin
A(s),B(s),C(s)

K∑
k=1

p(H(s)
k )‖Xk −

J∑
j=1

c
(s)
kj a

(s)
j b

(s)
j

T
‖2F

(2.17)

According to the constraints mentioned in 2.3.7, a
(s)
j and b

(s)
j are unit norm

vectors and c
(s)
kj is positive. Therefore, we must also consider the following

constraints in this optimization:

‖a(s)
j ‖2 = 1, ‖b(s)

j ‖2 = 1, c
(s)
kj > 0

j = 1, 2, ..., J s = 1, 2, ..., S k = 1, 2, ...,K (2.18)

Hence, the proposed optimization problem in (2.17) is a constrained weighted

least square problems which can be solved using alternating least square

method (ALS) [Boyd and Vandenberghe (2004)].

After solving (2.17) for all of the states, and hence determination of {A∗,

B∗, C∗}, by computing the �rst derivative of Q(Θ) with respect to σ2
0, it can
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be shown that the variance of noise is estimated according to the following

formula:

σ2
0
∗

=
1

E T

K∑
k=1

S∑
s=1

p(H(s)
k )‖Xk −

J∑
j=1

c
(s)
kj

∗
a

(s)
j

∗
b

(s)
j

∗T
‖2F (2.19)

The �nal set of unknown parameters are extracted by alternately per-

forming the E-step and the M-step until convergence of the parameters.

After the parameter estimation, we must assign one state to each spike,

and determine the sequence of states during the training absence seizure.

For this purpose, since we have found all characteristics of the states, the

sequence of states can be determined using the Viterbi algorithm [Rabiner

(1989)].

After determination of the sequence of states, we must apply one minor

modi�cation on matrix C to get the optimal parameters for the obtained

sequence. In each row of C, we must just have non-zero entries for a single

state because only one state is active for each spike. Therefore, we keep the

entries of the corresponding activated state (factors), and make the other en-

tries zero. Now, all of the unknown parameters Θ∗ = {A∗,B∗,C∗,P∗, σ2
0
∗}

are determined.

Finally, in order to show that the proposed model is adapted to the train-

ing data, we must have good reconstruction using the estimated parameters.

This means that the following relative reconstruction error must be small:

Ertrain =
‖Ttrain −

∑S
s=1

∑J
j=1 a

(s)
j

∗
⊗ b

(s)
j

∗
⊗ c

(s)
j

∗
‖2F

‖Ttrain‖2F
(2.20)

where ‖.‖F denotes the Frobenius norm. a
(s)
j

∗
, b

(s)
j

∗
and c

(s)
j

∗
show spatial

topography, temporal representation, and contribution of each factor esti-

mated from the training absence seizure. In fact, we check this error to

evaluate the goodness of �t of the proposed model to the training data.

2.3.8 Validation of Model

The last block of the proposed framework is cross-validation. We must check

the compatibility of the obtained parameters from Ttrain with each of the ab-
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sence seizures in the testing set, i.e., T (m)
test for m = 1, 2, ...,M . For this pur-

pose, we suppose that the main parameters of the proposed model including

the spatial topography of the factors (a
(s)
j

∗
), the temporal representation of

the factors (b
(s)
j

∗
), and the transition probability matrix (P∗) are common

for all of the absence seizures. Therefore, we just estimate the contribution of

the factors (c
(s)
j ) in the generation of T (m)

test and calculate the relative recon-

struction error. In fact, we assume that the main parameters of the model

are independent of absence seizures, hence the only free parameters that

need to be estimated are the contributions of the factors in the construction

of T (m)
test . The estimation procedure of c

(s)
j is explained in the following.

There is a state corresponding to each spike, therefore, we can assign a

sequence of states to each absence seizure as shown in Fig. 2.5. Since all of

the model parameters except c
(s)
j are determined, and there is a �rst-order

Markovian model in the activation of the states, we can extract the sequence

of states for testing absence seizure T (m)
test using Viterbi algorithm [Rabiner

(1989)] and following the proposed method in the previous section. Once the

sequence of states is determined, we project each spike of the testing absence

seizure on the corresponding state (factor) and �nd c
(s)
j

∗
. Positivity of the

coe�cients must be considered in this decomposition.

Finally, we calculate the following relative reconstruction error to eval-

uate the goodness of �t of the proposed model to the unseen testing data.

Er
(m)
test =

‖T (m)
test −

∑S
s=1

∑J
j=1 a

(s)
j

∗
⊗ b

(s)
j

∗
⊗ c

(s)
j

∗
‖2F

‖T (m)
test ‖2F

(2.21)

An important point must be discussed before presenting the results ob-

tained from the neural dataset. The data used in this study were acquired

from somatosensory cortex using an electrode with E = 16 sensors. The

distance between the �rst and the last sensor is 2.5mm which shows that

the data were recorded from a very small area of the brain. Hence, the time

lag between the channels is negligible and we can consider each 16 spikes

recorded in di�erent channels as a unique spike time window, and apply the

proposed approach on these spike time windows. In fact, the proposed ap-
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proach can be applied on any databases in which the time delay between

the signals recorded in di�erent channels is negligible, or in other words, on

any database which has been acquired from a very small area of the brain.

Hence, the proposed approach cannot be employed for investigating di�erent

brain regions to �nd the spatial origin of an absence seizure.

2.4 Results

In this section, we present the results. The discussion and the interpretation

of the results are brought with details in Section 2.5.

2.4.1 Training Phase: Estimation of Parameters

We consider one of the absence seizures of the �rst rat which consists of

K = 390 spikes as the training data Ttrain ∈ IR16×1750×390. In fact, each

spike consists of the data of E = 16 channels for T = 1750 samples (87.5

ms). Since we do not have any information about the number of states (S)

and factors (J), we apply the proposed method on Ttrain with di�erent S

and J . Then, we select the best model order by considering the following:

1- According to (2.20), the relative reconstruction error must be small.

2- Assuming that the seizures follow the same structural model for all

the rats, we enforce the values of J and S to be the same both for di�erent

seizures of the same rat, and for di�erent rats.

Considering the above two points, the best results are obtained using two

states (S = 2) and two factors in each state (J = 2) with Ertrain = 0.05. The

probability of transition between the states (transition probability matrix),

the spatial topography, and the temporal representation of the factors are

shown in Fig. 2.9. It should be noted that the �rst factors of both states are

similar, and the �rst state is unstable because the probability of remaining

in the �rst state (p11 = 0.01) is very low with respect to the probability of
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transition to the second state (p12 = 0.99).

Figure 2.9: Estimated parameters of the considered model for the training absence

seizure. The probability of transition between the states is shown in the left plot.

The obtained factors associated with the �rst and second states are respectively

shown in the �rst and second rows of the right plot.

Figure 2.10: The CSD maps of the factors for the training absence seizure. The

probability of transition between the states is shown in the left plot. The CSD maps

of the obtained factors associated with the �rst and second states are respectively

shown in the �rst and second rows of the right plot.

For each factor, we can also obtain a CSD map by vector multiplication

of the spatial topography and the temporal representation. These maps are
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shown in Fig. 2.10.

The sequence of states for the training absence seizure is shown in Fig.

2.11. It seems that there is no speci�c pattern in the activation of the states

during the training absence seizure. Moreover, both states are unstable for

some time intervals. However, on average, state 2 is more stable than state

1 during the training absence seizure.

Figure 2.11: Sequence of states for the training absence seizure consisting of K =

390 spikes.

To investigate the behavior of spikes and their corresponding states dur-

ing the training absence seizure, two windows have been speci�ed in Fig.

2.11. The spikes and their states in these windows are shown in Fig. 2.12.

During the training absence seizure, k1 = 94 and k2 = 296 spikes (K =

k1 + k2 = 390) respectively belong to the �rst and second states. The spikes

in each state are generated by a linear combination of J = 2 �xed factors.

The only di�erence among the spikes in a state, is the contribution of the

factors (c
(s)
j ) in the generation of spikes. In fact, the factors (a

(s)
j , b

(s)
j ) show

the stationary part, and c
(s)
j represents the dynamic part of the model for

absence seizures.

The contribution of the factors in the generation of spikes for the training

absence seizure data is shown in part (a) of Fig. 2.13. To better show the

dynamics of the spikes, we have removed the entries of c
(s)
j which are equal to

zero. It should be noted that the factors of a single state are only activated

for each spike (see Fig. 2.6). In fact, we respectively have c
(1)
j ∈ IRk1 and
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(a) Spikes and their states in window 1.

(b) Spikes and their states in window 2.

Figure 2.12: Spikes and their states during the windows speci�ed in Fig. 2.11.

c
(2)
j ∈ IRk2 for the �rst and second states in part (a) of Fig. 2.13. The joint

distribution of the contribution of the factors in each state is also shown

in part (b) of Fig. 2.13. The average of components of c
(s)
j (c̄

(s)
j ∈ IR) is

shown by red color in Fig. 2.13. These values are c̄
(1)
1 = 0.11, c̄

(1)
2 = 0.11,

c̄
(2)
1 = 0.24 and c̄

(2)
2 = 0.14.
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(a) Contribution of factors in the generation of spikes.

(b) Joint distribution of the contributions of the factors in each state.

Figure 2.13: (a) Contributions of factors and (b) their joint distribution in each

state for the training absence seizure. The average of c
(s)
j is shown by red dashed

line in (a) and the average of each joint distribution is shown by a red square in

(b).

As shown in part (b) of Fig. 2.13, the contribution of the factors in

the second state are dependent because their joint distribution almost has a

linear form, while in the �rst state, there is no such dependency. It is also

observed that for some of the spikes in the �rst state, the contribution of

the second factor is much greater than the contribution of the �rst factor.

With regards to part (a) of Fig. 2.13, it seems that this phenomenon occurs

randomly, and there is no speci�c pattern in the appearance of this kind of

spikes.
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In order to show the behavior of current sources and sinks during the

spikes in state 1 and state 2, we individually compute the average of the CSD

representations of the spikes in each state as shown in Fig. 2.14. We respec-

tively show these average CSD maps by M(1) ∈ IRE×T and M(2) ∈ IRE×T

for the �rst and second states. Since the relative reconstruction error is very

small for the training absence seizure (Ertrain = 0.05), mathematically, these

average CSD maps can be approximately expressed as follows:

M(1) ' c̄(1)
1 a

(1)
1 b

(1)
1

T
+ c̄

(1)
2 a

(1)
2 b

(1)
2

T

M(2) ' c̄(2)
1 a

(2)
1 b

(2)
1

T
+ c̄

(2)
2 a

(2)
2 b

(2)
2

T
(2.22)

Figure 2.14: The average of the CSD representations of the spikes in each state.

2.4.1.1 Other Absence Seizures of The First Rat

The same results are obtained if we consider other absence seizures of the �rst

rat in the training phase. This means that the spatial topography and the

temporal representation of the factors, and the transition probability matrix

are similar to Figs. 2.9 and 2.10. The obtained relative reconstruction error

(Ertrain) for four absence seizures of the �rst rat, which consist of K1 = 87,

K2 = 94, K3 = 95, and K4 = 88 spikes are respectively equal to 0.04, 0.07,

0.07 and 0.09.

The sequence of states for the mentioned absence seizures is shown in

Fig. 2.15. Similar to the training absence seizure, it seems that there is no

speci�c pattern in the activation of the states during these absence seizures,
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and for some time intervals, both states are unstable. However, on average,

state 2 is more stable than state 1 during these absence seizures.

Figure 2.15: The sequence of states for four absence seizures of the �rst rat which

consist of K1 = 87, K2 = 94, K3 = 95 and K4 = 88 spikes, respectively.

To see the dynamic part of the model for the new absence seizures, i.e.,

the contribution of the factors in the generation of spikes, c
(s)
j for the fourth

absence seizure is shown in part (a) of Fig. 2.16. The joint distribution of

the contribution of the factors in each state is also shown in part (b) of Fig.

2.16. k1 = 32 and k2 = 56 spikes (K4 = k1 + k2 = 88) respectively belong

to the �rst and second states during the considered absence seizure.

Since the number of spikes in the considered absence seizure and the

training absence seizure in the previous section are di�erent, comparison of

c
(s)
j over time in these two absence seizures is not possible, but it can be

seen that the joint distribution of the contribution of the factors is similar

in these two absence seizures (compare Fig. 2.16 with Fig. 2.13). Hence, all

of the mentioned remarks in the previous section regarding the contribution

of the factors are again valid for the new absence seizure. Moreover, the

average values of c
(s)
j (c̄

(s)
j ) are equal to c̄

(1)
1 = 0.11, c̄

(1)
2 = 0.13, c̄

(2)
1 = 0.23
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(a) Contribution of factors in the generation of spikes.

(b) Joint distribution of the contributions of the factors in each state.

Figure 2.16: (a) The contributions of factors and (b) their joint distribution in each

state for the fourth absence seizure of the �rst rat. The average of c
(s)
j is shown by

red dashed line in (a), and the average of each joint distribution is shown by a red

square in (b).

and c̄
(2)
2 = 0.12 for the considered absence seizure, which are very close to

the obtained results for the training absence seizure in the previous section.

Similar results are obtained if we consider other absence seizures of the �rst

rat.

Since the average values of c
(s)
j and the factors (a

(s)
j , b

(s)
j ) in the new

absence seizures are similar to the results of the training absence seizure in

the previous section, the average of the CSD representations of the spikes

in each state is also similar to Fig. 2.14. This means that on average, the
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current sources and sinks in each state have similar behavior in di�erent

absence seizures of the �rst rat.

2.4.1.2 Other Rats

The best results are again obtained by considering two states (S = 2) and

two factors (J = 2) for the absence seizures of other rats. Also, the spatial

topography of the factors and the transition probability matrix are similar

to the �rst rat, one of the factors of the states is again similar, and one of

the states is unstable. However, the temporal representation of the factors

are di�erent.

For instance, the obtained factors and transition probability matrix for

one of the absence seizures of the second rat, which consists of K = 146

spikes, are shown in Fig. 2.17 (compare with Fig. 2.9). Also, the correspond-

ing CSD maps of the factors are shown in Fig. 2.18. The reconstruction error

for this absence seizure is Ertrain = 0.09.

It can be seen that the �rst factors of both states are similar, and the

�rst state is unstable because the probability of remaining in the �rst state

(p11 = 0.08) is very low with respect to the probability of transition to the

second state (p12 = 0.92).

The sequence of states for this absence seizure is shown in Fig. 2.19.

During the absence seizure, k1 = 54 and k2 = 92 spikes (K = k1 +k2 = 146)

respectively belong to the �rst and second states.

Similar to the sequence of states for the absence seizures of the �rst

rat, it seems that there is no speci�c pattern in the states activation during

this absence seizure, and for some time intervals, both states are unstable.

However, on average, state 2 is more stable than state 1 during this absence

seizure.

The contribution of the factors (c
(s)
j ) in the generation of spikes and their

joint distribution in each state are shown in Fig. 2.20. With regards to part

(b) of Fig. 2.20, it can be observed that the joint distributions of the factors

are di�erent from the obtained results in the absence seizures of the �rst rat
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Figure 2.17: Estimated parameters of the proposed model for an absence seizure

of the second rat. The probability of transition between the states is shown in

the left plot. The obtained factors associated with the �rst and second states are

respectively shown in the �rst and second rows of the right plot.

Figure 2.18: The CSD maps of the factors for an absence seizure of the second

rat. The probability of transition between the states is shown in the left plot. The

CSD maps of the obtained factors associated with the �rst and second states are

respectively shown in the �rst and second rows of the right plot.
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Figure 2.19: The sequence of states for an absence seizure of the second rat.

(a) Contribution of factors in the generation of spikes.

(b) Joint distribution of the contributions of the factors in each state.

Figure 2.20: (a) The contributions of factors and (b) their joint distribution in each

state for an absence seizure of the second rat. The average of c
(s)
j is shown by

red dashed line in (a) and the average of each joint distribution is shown by a red

square in (b).
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(compare Fig. 2.20 with Fig. 2.13 or Fig. 2.16). Moreover, the average

values of c
(s)
j (c̄

(s)
j ) are equal to c̄

(1)
1 = 0.24, c̄

(1)
2 = 0.14, c̄

(2)
1 = 0.12 and

c̄
(2)
2 = 0.15 for the absence seizure, which are not similar to the results of

the �rst rat. Based on these results, it seems that there is no similarity in

dynamics of the absence seizures in di�erent rats.

The average of the CSD representations of the spikes in each state for the

considered absence seizure is also shown in Fig. 2.21. Since the temporal

representation of the factors and the values of c̄
(s)
j are di�erent from the

results of the �rst rat, the obtained CSD maps are also di�erent.

Figure 2.21: The average of the CSD representations of the spikes in each state for

an absence seizure of the second rat.

2.4.2 Testing Phase: Validation of Model

For the absence seizures of the �rst rat used in 2.4.1 and 2.4.1.1, the relative

reconstruction errors are reported in Table 2.1. The absence seizures consist

of K1 = 87, K2 = 94, K3 = 95, K4 = 88, and K5 = 390 spikes. The last one

was used in 2.4.1, and the others were used in 2.4.1.1. In Table 2.1, T (m)
train

and T (m)
test for m ∈ {1, 2, ..., 5} are associated with the tensor of spikes of

the mth absence seizure. The diagonal and non-diagonal entries of the table

respectively show Ertrain and Ertest.

These results show the accuracy and generality of the proposed model

and the obtained results for the recorded absence seizures from the �rst

rat. For other rats, the relative reconstruction errors have the same order of

magnitudes as the �rst rat. For instance, the relative reconstruction errors
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Table 2.1: Relative reconstruction error for �ve absence seizures of the �rst rat,

which consist of K1 = 87, K2 = 94, K3 = 95, K4 = 88, and K5 = 390 spikes.

The diagonal and non-diagonal entries of the table respectively show Ertrain and

Ertest.

Training on \Testing on T (1)
test T (2)

test T (3)
test T (4)

test T (5)
test

T (1)
train 0.04 0.13 0.14 0.13 0.09

T (2)
train 0.08 0.07 0.11 0.10 0.10

T (3)
train 0.10 0.12 0.07 0.11 0.10

T (4)
train 0.12 0.10 0.12 0.09 0.11

T (5)
train 0.11 0.11 0.12 0.13 0.05

Table 2.2: Relative reconstruction error for four absence seizures of the second rat

which consist of K1 = 181, K2 = 300, K3 = 350, K4 = 260 and K5 = 146 spikes.

The diagonal and non-diagonal entries of the table respectively show Ertrain and

Ertest.

Training on \Testing on T (1)
test T (2)

test T (3)
test T (4)

test T (5)
test

T (1)
train 0.04 0.06 0.12 0.08 0.13

T (2)
train 0.07 0.04 0.09 0.10 0.11

T (3)
train 0.12 0.13 0.08 0.12 0.11

T (4)
train 0.09 0.09 0.10 0.07 0.14

T (5)
train 0.11 0.12 0.11 0.13 0.09

for �ve absence seizures of the second rat which consist of K1 = 181, K2 =

300, K3 = 350, K4 = 260 and K5 = 146 spikes are reported in Table 2.2.

The last one is the absence seizure discussed in 2.4.1.2.

Based on the results presented in Table 2.2 (and also Table 2.1), we �nd

that the model estimated on any seizure of one rat can be used for modeling

any other seizure of the same rat.

We can also cross validate the results obtained from two di�erent rats.

For instance, we consider the absence seizures of the �rst (in Table 2.1) and

second (in Table 2.2) rat as the training and testing data, respectively. The

relative reconstruction errors are reported in Table 2.3.
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Table 2.3: Relative reconstruction error by considering the absence seizures of the

�rst and second rat as the training and testing data, respectively. The bad results

are due to the high inter-rats variability, and consequently, it is not possible to use

the parameters learned from one rat for the other rats.

Training on \Testing on T (1)
test T (2)

test T (3)
test T (4)

test T (5)
test

T (1)
train 0.38 0.37 0.28 0.33 0.41

T (2)
train 0.36 0.32 0.39 0.46 0.37

T (3)
train 0.27 0.32 0.36 0.34 0.41

T (4)
train 0.23 0.34 0.31 0.37 0.35

T (5)
train 0.36 0.37 0.34 0.44 0.38

Table 2.4: The cross correlation coe�cient between the spatial topographies of the

atoms obtained from the �rst and second rat.

First Rat Second Rat

a
(1)
1 a

(1)
2 a

(2)
1 a

(2)
2

a
(1)
1 0.97 -0.78 0.96 0.65

a
(1)
2 -0.77 0.94 -0.78 -0.83

a
(2)
1 0.96 -0.79 0.98 0.66

a
(2)
2 0.64 -0.81 0.65 0.96

These results show that the inter-rat variability is important, therefore,

we cannot use the data from one rat for training the model, and then testing

on the other rats. In fact, since the temporal representation of the factors

are not similar in di�erent rats (compare Fig. 2.9 with Fig. 2.17), the results

of cross validation among the absence seizures from di�erent rats are inferior

to the results of cross validation among the absence seizures of the same rat.

It is worth mentioning that based on the results presented in Fig. 2.9

with Fig. 2.17, the spatial topographies of the factors are similar in di�erent

rats. To show the correctness of this remark quantitatively, we calculate the

cross correlation coe�cient between the spatial topographies of the factors

obtained from the two rats. The cross correlation coe�cients between the
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spatial topographies of the factors obtained from the �rst and second rat are

reported in Table 2.4. As reported, the diagonal entries of Table 2.4 are close

to one meaning that the spatial topographies of the atoms are similar in the

rats, i.e. the localization of atomic epileptic activities are not rat-dependent.

2.5 Discussion

In this section, we present the spatial and temporal analysis of the absence

seizures recorded from di�erent layers of somatosensory cortex of GAERS

based on the results obtained in the previous section.

Obtained spatio-temporal model: As shown in Figs. 2.9 and 2.17,

there are S = 2 hidden states under �rst-order Markovian model during the

absence seizures. Each state consists of J = 2 epileptic activities (factors)

which are linearly combined and construct the spikes of absence seizures.

Existence of a common epileptic activity (temporal analysis):

An interesting point about the characterizations of the states is that the

�rst factors of the states are similar. This means that there is a factor

which always participate in the generation of spikes. We call this factor

as a common epileptic activity (factor). Based on this observation, we can

upgrade the proposed model for the absence seizures. We can say that during

the absence seizures, there is a common epileptic activity, and there are S = 2

states under the �rst-order Markovian model with J = 1 factor (epileptic

activity) in each one. The new model for the generation of spikes during the

absence seizures of the �rst and second rats is shown in Fig. 2.22.

Unstable and dominant states (temporal analysis): Based on the

obtained results for the transition probability matrix, on average, we can say

that state 1 is an unstable state during the absence seizures because p11, the

probability to stay on state 1 when state 1 is active, is very small. Moreover,

state 2 more occurs than state 1, or in other words, state 2 is the dominant

state because p12 and p22 are respectively larger than p11 and p21. These

results can also be seen in the sequence of states for the absence seizures in
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(a) Model for the �rst rat.

(b) Model for the second rat.

Figure 2.22: Final spatio-temporal model for the generation of spikes during absence

seizures of the �rst and second rats.

Figs. 2.11, 2.15, and 2.19. It should be noted that for some time intervals,

both states are unstable.

Similarity of spatial topographies in GAERS (spatial analysis):

As shown in Fig. 2.22 and reported in Table 2.4, although the temporal

representations of the corresponding factors in the �rst and second rats are

di�erent, the corresponding spatial topographies are similar. Therefore, the

organization of current sources and sinks in the corresponding factors (epilep-

tic activities) are the same in di�erent rats. Based on the estimated spatial

topographies, we can say:

1- For the epileptic activity in the �rst state, the current sources and sinks

are located in the vicinity of layers VI and II/III. In fact, the information
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are sent and received among these layers for this epileptic activity. It should

be noted that due to the polarization ambiguity, we cannot exactly specify

which layer sends or receives information.

2- For the epileptic activity in the second state, the current sources and

sinks are located in the vicinity of layers I and V.

3- For the common epileptic activity, the current sources and sinks are

located in the vicinity of layers II/III and VI.

Contribution of epileptic activities in generation of spikes (tem-

poral analysis): The characterization of the factors are �xed during the

absence seizure, while their contribution in generation of spikes changes over

time. In fact, the factors and their contribution show the stationary and dy-

namic part of the model, respectively. Here, we discuss about the dynamic

part of the model.

As shown in Figs. 2.13 and 2.16, the distributions of the contribution

of factors and their averages are similar in di�erent absence seizures of the

same rat. This means that we can consider a stationary random process with

�xed distribution for contribution of each factor in generation of spikes. In

fact, di�erent absence seizures of a rat can be considered as di�erent trials

for these random processes.

To show the stationarity of these random processes for di�erent absence

seizures of a rat quantitatively, for instance, the average and variance of

the contribution of each factor in the generation of spikes, based on the

upgraded model (Fig. 2.22), for �ve absence seizures of the �rst rat are

reported in Table 2.5. ks, c̄s and σ2
cs for s = {1, 2} show the number of

spikes corresponding to the sth state, the average of the contribution of the

factor corresponding to the sth state in the generation of spikes and the

corresponding variance, respectively. Moreover, kc, c̄c and σ
2
cc are associated

with the common factor.

As shown here, the averages and variances are similar in di�erent ab-

sence seizures of the �rst rat verifying the assumption that the contributions

of the factors in generating spikes can be considered as stationary random
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Table 2.5: The average and variance of the contribution of each factor in the gener-

ation of spikes for �ve absence seizures of the �rst rat. ks, c̄s and σ
2
cs for s = {1, 2}

respectively show the number of spikes, the average and variance of the contribution

of each factor corresponding to the sth state. Also, kc, c̄c and σ
2
cc are corresponded

to the common factor.

Parameters k1 c̄1 σ2
c1

k2 c̄2 σ2
c2

kc c̄c σ2
cc

Seizure 1 24 0.13 33× 10−4 63 0.13 38× 10−4 87 0.21 55× 10−4

Seizure 2 12 0.14 29× 10−4 82 0.15 31× 10−4 94 0.22 49× 10−4

Seizure 3 18 0.12 36× 10−4 77 0.12 35× 10−4 95 0.20 61× 10−4

Seizure 4 32 0.13 41× 10−4 56 0.12 39× 10−4 88 0.19 57× 10−4

Seizure 5 94 0.11 32× 10−4 296 0.14 33× 10−4 390 0.21 84× 10−4

processes. The same results are obtained in the other rats. Since the cor-

responding random processes have the same averages in di�erent absence

seizures of a rat, and also the factors are similar, we can say that on average,

the current sources and sinks have similar behavior in each state during the

absence seizures of a rat. This average behaviors is respectively shown in

Figs. 2.14 and 2.21 for the �rst and second rats.

2.6 Conclusion

In this chapter, we considered a spatio-temporal model for the generation

of spikes which are the most important epileptic events during absence

seizures. We assumed that there were some hidden states under the �rst-

order Markovian model during the absence seizures, and each spike of the

absence seizures, consisting of spikes of di�erent layers of somatosensory

cortex, was generated when one of the states was activated. Each state con-

sisted of a few epileptic activities (factors) which were linearly combined,

and generated the spikes. Each epileptic activity had two important fea-

tures. The �rst one was the spatial topography which helped us recognize

the distribution of current sources and sinks for the epileptic activity, and the
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second one was the temporal representation which showed us the temporal

activation function or waveform for the epileptic activity. We extracted the

model parameters using a speci�c factor analysis method, and con�rmed the

generality of the proposed model and the obtained results using cross valida-

tion. The �nal results showed that there were a dominant and an unstable

state (with an epileptic activity in each one), and a common epileptic activ-

ity during the recorded absence seizures (temporal analysis). It was shown

that the organization of current sources and sinks in the obtained epileptic

activities was the same in di�erent GAERS, and they were located in the

vicinity of top (layers I, II/III) and bottom (layers V, VI) of somatosensory

cortex (spatial analysis). It was also shown that the contribution of epileptic

activities in generating spikes were stationary random processes, with �xed

distributions for the absence seizures of each GAERS (temporal analysis).

The most interesting result of this chapter is that there is a background or

common epileptic activity during the recorded absence seizures. This result

motivates us to propose a new model for analyzing the absence seizures as

explained in Chapter 3.

On the other hand, the drawback of the proposed model in this chapter

is that the model is based on investigation of spikes. The segmentation of an

absence seizure to several spike time windows is not always possible because

the data may contain some noise which makes the spike detection step very

di�cult. In Chapter 4, we propose a method for solving this issue.
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3.1 Main Idea

In this chapter, another model is considered for the recorded absence seizures,

and the main focus is on analyzing the dynamics of recorded absence seizures

using source separation methods (temporal analysis). For this purpose, we

describe the recorded absence seizures by a linear combination of few speci�c

sources. Based on the results obtained in the previous chapter, we assume
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that there are two kinds of sources during absence seizures, 1) static and

2) dynamic sources. Static sources play the role of common or background

epileptic activities and dynamic sources are complementary to static sources

in the generation of absence seizures. In other words, if we segment one

absence seizure into non-overlapped time windows as shown in Fig. 3.1, the

static sources participate in the generation of the data in all of the time

windows, while the dynamic sources exist in some of the time windows. The

static sources are stable and always on, while the dynamic sources are un-

stable and they may be o� for several time windows. We propose a method

to retrieve the static and dynamic sources and their structures from the

recorded absence seizures. Then, we analyze the dynamics of recorded ab-

sence seizures using the obtained results.

Figure 3.1: From left to right, the recording electrode, an absence seizure and a time

window (length of 87.5ms) which consists of n = 16 spikes from di�erent channels.

The absence seizure onset and the end of the absence seizure are indicated by tonset

and to�set, respectively.

It should be noted that the considered model and the proposed method

in this chapter can be adapted to several applications such as radar sig-

nals [Zhu et al. (2018); Dai et al. (2015)], brain images or signals like func-

tional magnetic resonance imaging (fMRI) or electroencephalography (EEG)

[Gonzalez-Navarro et al. (2017); Becker et al. (2012)], and target tracking in
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videos [Hu et al. (2017); Du et al. (2017)]. For instance, in radar signals, the

clutters like mountains and earth act as static sources, and the targets in

the sky perform like the dynamic sources [Wang et al. (2018)]. As another

example, in brain signals like EEG, the static sources can play the role of

background brain activities such as neural activities corresponded to breath-

ing, and the dynamic sources can act as temporary activities such as neural

activities corresponded to blinking or eye movements [Boudet et al. (2007)].

The rest of this chapter is organized as follows. section 3.2 introduces the

considered model for absence seizures. Problem formulation and considered

assumptions are stated in section 3.3. The proposed method for estimating

the model parameters is explained in section 3.4, while section 3.5 is dedi-

cated to simulations and experimental results. Finally, the discussion and

concluding remarks are reported in section 3.6.

3.2 Model Definition

We assume that some physical activities or phenomena are taking place

during the absence seizures and the sensors on the electrode record the in-

stantaneous linear combination of the signals (extracellular �eld potentials)

produced by the mentioned sources. The mixture of the signals is considered

linear and instantaneous due to the quasi-static assumption of Maxwell's

laws. We assume that there are two kinds of sources during the absence

seizures, static and dynamic sources.

Static sources are located in �xed positions and have a static structure.

They always contribute in generation of the signals, and their number is �xed

and equal to m (m < n). Unlike static sources, dynamic sources are highly

non-stationary. They sometimes appear and after a short time disappear. A

few of them are activated in each time window and their number is unknown.

In fact, there is much more variability in dynamic sources than static sources.

Schematic diagrams of the considered model for three time windows are

shown in Fig. 3.2. All of the sources and their structures in di�erent time
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windows are unknown and we should retrieve them from the recorded absence

seizures. In the following, we explain how the time windows are considered

for an absence seizure.

Figure 3.2: Static and dynamic sources for three consecutive time windows. The

static sources (s1, s2, s3) and the dynamic sources (u1, u2, u3) are shown in the

left and right sides of the sensors, respectively.

Time Windows of Absence Seizures: Appearance of spikes in ab-

sence epileptic seizures is the most important indication of this syndrome.

In the recorded data, the spikes appear in di�erent channels simultaneously

during the absence seizures because the data have been acquired very lo-

cally. Hence, we consider each n = 16 spikes (at the same time) as one time

window as shown in Fig. 3.1. For this purpose, we must at �rst separate

the absence seizures from the data, and then, detect the spikes during the

absence seizures. The same procedure as explained in the previous chapter

is employed to perform these preprocessing steps. This means that since the

amplitude of the signals changes signi�cantly at the beginning and at the

end of the absence seizures, we separate the absence seizures from the data

by simple thresholding. Once the absence seizures were separated from the

data, we detect the spikes for each absence seizure individually, following the

proposed method in [Quiroga et al. (2004)] and construct the time windows

(each of length 87.5 ms, L = 1750 samples). The length of the time windows

is chosen according to the length of the spikes during absence seizures [Po-

lack et al. (2007)]. We also align the time windows using improved version of

Woody's method proposed in [Cabasson and Meste (2008)] to achieve higher
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correlation among the time windows, and get accurate results. Finally, the

time windows are consecutively placed for each absence seizure separately.

Thus, an absence seizure constituted by K spikes, is represented by the con-

catenation of its K elementary time windows. Hence, we remove the part of

the recordings, which are not directly related to spikes. Now, we de�ne our

problem on the time windows of an absence seizure for estimating the model

parameters.

3.3 Problem Formulation

Assume that the considered absence seizure has K elementary time windows

(each of length L). The data for the kth time window at time instant t

((k − 1 )L + 1≤ t ≤ kL) can be expressed as:

y
(k)
t = As

(k)
t + B(k)u

(k)
t + n

(k)
t (3.1)

where y
(k)
t = [y

(k)
1 (t), ..., y

(k)
n (t)]T ∈ IRn, A ∈ IRn×m and s

(k)
t = [s

(k)
1 (t), ...,

s
(k)
m (t)]T ∈ IRm represent the recorded signals on the sensors, the static

structure and the static sources, respectively. If we assume that the total

number of activated dynamic sources in the time window k is equal to rk, B
(k)

∈ IRn×rk and u
(k)
t = [u

(k)
1 (t), ..., u

(k)
rk (t)]T ∈ IRrk show the dynamic structure

and the dynamic sources, respectively. Finally, n
(k)
t = [n

(k)
1 (t), ..., n

(k)
n (t)]T

∈ IRn is an independent and identically distributed (i.i.d.) noise vector at

di�erent sensors, which is considered to be a zero-mean Gaussian noise with

an unknown covariance matrix ΣN ∈ IRn×n.

For each time window k (k = 1, 2, ...,K), if we concatenate the L vectors

(samples) of the recorded signals, the static sources, the dynamic sources

and the noise, we obtain the matrices Y(k) ∈ IRn×L, S(k) ∈ IRm×L, U(k)

∈ IRrk×L and N(k) ∈ IRn×L. Therefore, (3.1) can be written as:

Y(k) = AS(k) + B(k)U(k) + N(k) (3.2)
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Hence, the set of unknown parameters (Θ) can be expressed as

Θ = {A,
K⋃
k=1

{S(k), rk ,B
(k),U(k)}} (3.3)

We aim to extract Θ using recorded signals in all of the time windows, i.e.,

Y(k) for k = 1, 2, ...,K.

Known Characteristics of The System: The following assumptions

are considered in the procedure of parameters extraction:

(A1) The number of static sources (m) is a constant for all the seizures,

and it is determined by physiological reasons.

Neuroscientists have spatially and temporally explored the spike and

wave discharges generating the seizures, and they have shown that these

spike and wave discharges are similar in di�erent seizures of a speci�c rat

[Meeren et al. (2002); Polack et al. (2007)]. In other words, there is intra-rat

similarity between the seizures. We use this suitable physiological informa-

tion to obtainm. In fact, we expect to obtain results with intra-rat similarity.

For this purpose, we extract the model parameters by considering di�erent

m. Then, the number of static sources which leads to the results with better

intra-rat similarity is considered as the optimum number of static sources.

It is worth mentioning that the similarity between results can be measured

by the cross correlation coe�cient.

(A2) The total number of static and dynamic sources (m + rk) is less

than the number of sensors (n) in each time window.

Consider (3.2) without presence of noise:

Y(k) = [A B(k)]

S(k)

U(k)

 (3.4)

If we assume [A B(k)] ∈ IRn×(m+rk) is known, it is needed to compute the

inverse of [A B(k)] for estimating the sources. Therefore, m + rk ≤ n and

[A B(k)] must be a full column rank matrix.

(A3) The columns of A are unit norm.
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To omit the scaling ambiguity problem in separation of the static sources,

the columns of A are considered unit norm vectors [Comon and Jutten

(2010)].

(A4) Static sources and dynamic sources are considered uncorrelated in

each time window.

When the sources are considered uncorrelated, it means that there is no

linear relationship between them. In fact, we assume that all of the sources

have their own speci�c origins. Mathematically, we can write:

kL∑
t=(k−1)L+1

s
(k)
t u

(k)
t

T
= 0 ∈ IRm×rk

1

L

kL∑
t=(k−1)L+1

s
(k)
t s

(k)
t

T
= Λ(k)

s ∈ IRm×m

1

L

kL∑
t=(k−1)L+1

u
(k)
t u

(k)
t

T
= Λ(k)

u = I ∈ IRrk×rk (3.5)

where Λ
(k)
s is the auto-correlation matrix of the static sources in the kth time

window and unknown. It is a diagonal matrix with positive entries which

are not necessarily constant during di�erent time windows. Auto-correlation

matrix of dynamic sources (Λ
(k)
u ) is considered equal to identity matrix (I)

in order to omit the scaling ambiguity problem in separation of dynamic

sources [Comon and Jutten (2010)].

(A5) The dynamic sources are considered statistically independent in

each time window.

There is no synchronization between the dynamic sources, and they may

randomly activate in each time window. Hence, we assume that they are sta-

tistically independent. It should be noted that two random variables (X,Y )

are independent when their joint probability distribution is the product of

their marginal probability distributions, i.e.,

pX,Y (x, y) = pX(x) pY (y) (3.6)

If X and Y are independent, then, they are also uncorrelated because

EX,Y (xy) = EX(x)EY (y) (3.7)
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However, the reverse of this remark is not correct. This means that if X and

Y are uncorrelated, then they are not essentially independent. Hence, inde-

pendency is a stronger condition than uncorrelatedness [Comon and Jutten

(2010)].

(A6) The noise is uncorrelated with all of the sources in each time win-

dow.

Since the noise is zero-mean and independent of the sources, it is uncor-

related with all of the sources in each time window, i.e.,

kL∑
t=(k−1)L+1

s
(k)
t n

(k)
t

T
= 0 ∈ IRm×n

kL∑
t=(k−1)L+1

u
(k)
t n

(k)
t

T
= 0 ∈ IRrk×n (3.8)

Now, the problem statement is complete and the goal is estimating the

set of unknown parameters (Θ) from the time windows of a recorded absence

seizure (Y(k) for k = 1, 2, ...,K) based on the known characteristics of the

model.

3.4 Proposed Method

At �rst, we estimate the static structure (A) and the number of dynamic

sources in each time window (rk). Then, the dynamic sources (U(k)) are

obtained in each time window. Finally, we estimate the static sources (S(k))

and the dynamic structure (B(k)) in each time window.

3.4.1 Extraction of The Static Structure and

The Number of Dynamic Sources

We follow the proposed method in [Yeredor (2002)], regarding the joint di-

agonalization of a set of target matrices, to estimate the static structure and

the number of dynamic sources in each time window. Since the sources are

54



CHAPTER 3. STATIC AND DYNAMIC MODELING OF ABSENCE

SEIZURES

uncorrelated according to (A4), we solve the following optimization problem:

Θ∗1 = argmin
Θ1

g(Θ1)

Θ1 = {A,
K⋃
k=1

{Λ(k)
s , rk ,R

(k)
B }}

g(Θ1) =
K∑
k=1

‖R(k)
y −AΛ(k)

s AT −B(k)

I︷︸︸︷
Λ(k)
u B(k)T︸ ︷︷ ︸

R
(k)
B

‖2F (3.9)

where ‖.‖F denotes the Frobenius norm, and the auto-correlation matrix

of recorded signals (R
(k)
y ∈ IRn×n) in the kth time window is calculated as

follows:

R(k)
y =

1

L

kL∑
t=(k−1)L+1

y
(k)
t y

(k)
t

T
(3.10)

It should be mentioned that Λ
(k)
s is not an important parameter, but it must

be estimated during the optimization. The other noticeable point is that the

rank of R
(k)
B is equal to rk, and since rk < n, it is a low-rank matrix. We

use this information to extract the number of dynamic sources (rk) in each

time window.

The following constraints must also be considered in the optimization:

c1) The columns of A are unit norms.

c2) Λ
(k)
s is diagonal with positive entries.

c3) R
(k)
B is a low-rank and positive semide�nite matrix (R

(k)
B � 0).

We use alternating least square (ALS) method to solve the optimization

problem. We consider some feasible initial values for Θ1, then, we alternately

perform the following steps until the convergence of the parameters.

Step 1. Assuming Λ
(k)
s and R

(k)
B for k = 1, 2, ...,K are �xed, we have:

A∗ = argmin
A

K∑
k=1

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖

2
F

s.t. diag(ATA) = I (3.11)
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where diag(X) keeps the diagonal entries of X, and makes the other entries

equal to zero. This constrained optimization problem can easily be solved

using gradient-projection (GP) method [Kelley (1999)] (see Appendix C.1).

Step 2. Assuming A and R
(k)
B are �xed, we have:

Λ(k)
s

∗
= argmin

Λ
(k)
s

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖

2
F

s.t. Λ(k)
s = diag(Λ(k)

s ), Λ(k)
s � 0 (3.12)

This optimization problem is solved using non-negative least square (NNLS)

method if we consider the vectorization form of all matrices in the optimiza-

tion (see Appendix C.2). This step must be performed for all of the time

windows (k = 1, 2, ...,K) separately.

Step 3. Assuming A and Λ
(k)
s are �xed, we have:

R
(k)
B

∗
= argmin

R
(k)
B

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖F

s.t. R
(k)
B � 0, R

(k)
B is low − rank. (3.13)

This step must also be performed for all of the time windows (k = 1, 2, ...,K)

separately. We will explain later why we remove the power two in the objec-

tive function. Since we must impose R
(k)
B to be a low-rank matrix, we use

a penalty parameter (λ(k)) to minimize both the objective function and the

rank of R
(k)
B . Hence, we have:

R
(k)
B

∗
= argmin

R
(k)
B

‖R(k)
y −AΛ(k)

s AT −R
(k)
B ‖F + λ(k) rank(R

(k)
B )

s.t. R
(k)
B � 0 (3.14)

where λ(k) is a penalty parameter which helps to minimize the rank of

R
(k)
B . Since minimization of rank function is an NP-hard problem [Recht

et al. (2010)], we approximate rank(R
(k)
B ) with Tr{R(k)

B } which is a well-

known convex relaxation for this function [Candes and Plan (2010); Malek-

Mohammadi et al. (2015)]. The obtained optimization problem is very simi-

lar to the square root LASSO problem [Belloni et al. (2011); Koochakzadeh
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et al. (2015)], and it can be converted to a semide�nite programming (SDP)

as shown in Appendix C.3. The main advantage of the square-root LASSO

is that the penalty parameter can be obtained independently from variance

of the noise. In fact, we dropped the power of two in the objective function

considered in (3.13) to solve the problem similar to the square-root LASSO

problem. The �nal optimization problem can be solved using well known

solvers like sdpt3 and cvx [Toh et al. (1999)].

By performing a few iterations between these three steps, the static struc-

ture (A∗), the auto-correlation matrix of static sources (Λ
(k)
s

∗
) and R

(k)
B

∗
for

k = 1, 2, ...,K are estimated. Finally, the number of dynamic sources in each

time window is obtained as follows:

r∗k = rank(R
(k)
B

∗
) (3.15)

3.4.2 Extraction of Dynamic Sources

Consider the singular value decomposition (SVD) of the static structure as

follows:

A = V Σ QT

V = [v1 ...vm︸ ︷︷ ︸
V1

vm+1 ...vn︸ ︷︷ ︸
V2

] (3.16)

where V1 ∈ IRn×m is an orthonormal basis for columns of A and V2 ∈

IRn×(n−m) spans the null space of A because we know that rank(A) = m.

Hence, if we left multiply both sides of (3.2) by VT
2 , we can omit the contri-

bution of the static sources in each time window:

VT
2 Y(k)︸ ︷︷ ︸
Y
′(k)

= VT
2 AS(k)︸ ︷︷ ︸

0

+ VT
2 B(k)︸ ︷︷ ︸
B
′(k)

U(k) + VT
2 N(k)︸ ︷︷ ︸
N
′(k)

(3.17)

where Y
′(k) ∈ IR(n−m)×L, B

′(k) ∈ IR(n−m)×rk and N
′(k) ∈ IR(n−m)×L are

respectively the new data, the new dynamic structure and the new noise in

the kth time window. The distribution of each column of the new noise is

N (0,VT
2 ΣNV2). The important point here is that we must be sure that
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B
′(k) is not equal to zero because the dynamic sources must be kept. Ac-

cording to (A2), since we assumed that [A B(k)] ∈ IRn×(m+rk) is a full rank

matrix, each column of B(k) certainly exists in the space of V2, and hence,

B
′(k) would not be equal to zero. Now, we can extract the dynamic sources

in each time window.

According to (A5), since we assumed that the dynamic sources are sta-

tistically independent, we are faced with an overdetermined BSS problem in

the presence of noise. Hence, independent component analysis (ICA) can

be applied to extract the dynamic sources (U(k)) from nosiy measurements

[Arora et al. (2015)]. We use JADE algorithm to extract the dynamic sources

[Cardoso and Souloumiac (1993)]. Since we have estimated the number of

dynamic sources (rk) in the previous part, the dimension of the separating

matrix W(k) ∈ IRrk×(n−m) is known, and regarding (3.17), we get:

W(k)Y
′(k) = W(k)B

′(k)U(k) + W(k)N
′(k) (3.18)

In fact, ICA tries to make the rows of W(k)Y
′(k) as much independent as

possible. After applying ICA, the dynamic sources (U(k)∗) are determined.

For each time window, the explained procedure must be applied to re-

trieve the dynamic sources in all of the time windows.

3.4.3 Extraction of Static Sources and Dynamic

Structure

When the static structure (A) and the dynamic sources (U(k)) are deter-

mined, we can extract the static sources (S(k)) and the dynamic structure

(B(k)) in each time window using the maximum log-likelihood estimator

(MLE). It can be shown that minimizing the following objective function

leads to �nding the MLE solution of the parameters:

q(S(k),B(k)) = ‖(Y(k) −AS(k) −B(k)U(k))‖2F (3.19)

This objective function can simply be minimized using alternation minimiza-

tion. For each time window, (3.19) must be minimized to retrieve the static
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sources (S(k)∗) and the dynamic structures (B(k)∗) in all of the time windows.

By determination of the static sources and the dynamic structure in all

of the time windows, all parameters of the model are determined.

3.5 Simulation and Experimental Results

In this section, we �rst show the e�ciency of the proposed method using

simulated data. Then, the results obtained from depth recordings are pre-

sented.

3.5.1 Simulations

3.5.1.1 Data Generation

We generate the data according to (3.1) for each time window. We consider

K = 50 time windows (each of length L = 100), n = 10 sensors, m = 5

static sources, and at most n−m = 5 dynamic sources in each time window.

The number of dynamic sources (rk) are chosen randomly between 1 and 5

in each time window. Then, we generate the static structure A by a random

matrix of size 10×5 with zero-mean and unit-variance i.i.d. Gaussian entries,

followed by normalizing the columns. In each time window, the static sources

are considered sine signals with di�erent frequencies as follows:

s
(k)
i (t) = αiksin(2π(2i−1f0) t)

i = 1, 2, ..., 5

k = 1, 2, ..., 50

(k − 1 )100 + 1≤ t ≤ k 100 (3.20)

where f0 = 1
L = 0.01. The amplitude of each static source in each time

window (αik) is uniformly distributed between 0 and 1. The static sources

are not stationary because their amplitudes change in di�erent time windows,

and according to (A4), they are uncorrelated with each other because they

have di�erent frequencies in each time window. The entries of the dynamic
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structure in each time window B(k) ∈ IR10×rk are independently chosen from

zero-mean and unit-variance Gaussian distribution. The dynamic sources in

each time window are again considered sine signals as follows:

u
(k)
i (t) =

√
2Lsin(2π(2i+4f0) t)

i = 1, ..., rk

k = 1, 2, ..., 50

(k − 1 )100 + 1≤ t ≤ k 100 (3.21)

where
√

2L is equal to
√

200 in order to have unit norm dynamic sources. Ac-

cording to (A4) and (A5), the frequencies are selected such that the dynamic

sources are mutually independent and uncorrelated with the static sources.

Finally, each column of the noise N(k) is generated from Gaussian distribu-

tion with zero-mean and covariance matrix σ2
0I ∈ IR10×10 for all of the time

windows. We also use the following criteria to evaluate the performance of

the proposed method in estimation of the parameters:

ErS = mean
k

‖S(k) − S(k)∗‖2F
‖S(k)‖2F

, ErU = mean
k: rk=r∗k

‖U (k) − U (k)∗‖2F
‖U (k)‖2F

ErA =
‖A−A∗‖2F
‖A‖2F

, Err = mean
k

|rk − rk∗|
rk

, ErB = mean
k: rk=rk∗

‖B(k) −B(k)∗‖2F
‖B(k)‖2F

(3.22)

It should be noted that Err is not squared. We also consider the signal to

noise (SNR) ratio as follows for the simulations:

SNR = 10 log(
1

K

K∑
k=1

‖Y (k) −N (k)‖2F
‖N (k)‖2F

) (3.23)

3.5.1.2 Results

It is worth noting that we assume that the number of static sources (m = 5)

is known during the simulations.

First Simulation: In this simulation, we consider σ2
0 such that SNR =

20 dB. The values of the criteria introduced in (3.22) are reported in the �fth
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Figure 3.3: The actual and estimated number of dynamic sources in di�erent time

windows (SNR = 20 dB).

Figure 3.4: The actual and estimated static sources in the marked region of Fig.

3.3. The vertical dashed line shows the boundary of the time windows.

row of Table 3.1. Moreover, the actual and estimated number of dynamic

sources in each time window are shown in Fig. 3.3.

As shown in Fig 3.3, the estimated number of dynamic sources is often

equal to the actual number. To see the behavior of the actual and estimated

sources, the second and third static sources and their estimations during the

29th and 30th time window are zoomed in Fig. 3.4.
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The normalized squared error (‖S(k) − S(k)∗‖2F /‖S(k)‖2F ) for the static

sources in these time windows are 0.026 and 0.157, respectively. The qual-

ity of the estimation is not good during the 30th time window because the

number of dynamic sources was not estimated correctly in this time window

(see Fig. 3.3).

Second Simulation: In this simulation, we repeat the �rst simulation

for di�erent SNR. The values of the criteria introduced in (3.22) are reported

in Table 3.1.

Table 3.1: Performance of the proposed method in di�erent SNR.

SNR( dB) ErA ErS ErU ErB Err

5 0.155 0.216 0.196 0.131 0.148

10 0.041 0.124 0.102 0.111 0.091

15 0.003 0.083 0.073 0.086 0.045

20 0.001 0.031 0.027 0.041 0.024

25 ≤ 0.001 0.008 ≤ 0.001 ≤ 0.001 0.004

In a speci�c time window in which the number of dynamic sources was

obtained correctly in di�erent SNR, the estimated signals for the �rst static

source are shown in Fig. 3.5.

These results con�rm the e�ciency of the proposed method in retrieving

the model parameters.

3.5.2 Depth Recordings

We recall that the data set was acquired from four absence epileptic rats using

an electrode with n = 16 sensors. The recorded data from each rat consisted

of few absence seizures, and each absence seizure was a train of spike time

windows. We apply the proposed method on time windows of an absence

seizure to extract the static and dynamic sources and their structures.
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Figure 3.5: The actual and estimated signals for the �rst static source in a speci�c

time window in di�erent SNR. The top left �gure shows the actual static source.

3.5.2.1 Parameter Extraction (Training Phase)

Since there is no prior information about the number of static sources (m),

we apply the proposed method on the seizures for di�erent m and select the

one which has suitable biophysiological interpretation. As explained in (A1),

the suitable model order must lead to results with intra-rat similarity. In

other words, the results should be similar in di�erent seizures of a GAERS

rat. Considering this point, the best result is obtained by considering m = 1

for all of the absence seizures. In fact, when we consider m > 1, some of

the sources become non-smooth and incomprehensible. Since a single static

source is su�cient (m = 1), the static structure A ∈ IRn×m reduces to a

simple vector with n = 16 entries. We consider one of the absence seizures

of the �rst rat which consists of K = 390 time windows as the training

absence seizure to show the results.

The obtained static structure (A) and static sources (s
(k)
1 (t)) in di�erent

time windows for the training absence seizure are shown in Fig. 3.6 (for

better representation, we normalized the static sources). It can be observed

that the static sources in di�erent time windows are similar, hence, we can

consider them as one cluster. The average of this cluster is shown in red.
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Figure 3.6: The estimated static structure (left) and the estimated static source in

di�erent time windows (right) for the training absence seizure. To better show the

static sources, they are normalized. The average of the static sources is shown in

red.

The estimated number of dynamic sources is also equal to one (rk = 1)

in all of the time windows of the training absence seizure. The extracted

dynamic structure (B(k)) and source (u
(k)
1 (t)) in di�erent time windows of

the training absence seizure are shown in Fig. 3.7 (for better representation,

the dynamic structures are normalized).

Figure 3.7: The estimated dynamic structure (left) and the estimated dynamic

source in di�erent time windows (right) for the training absence seizure. To better

show the dynamic structures, they are normalized.
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By observing the estimated dynamic sources, it can be understood that

there are a few kinds of dynamic sources in the training absence seizure.

Therefore, we partition the estimated dynamic sources using k-means clus-

tering. The obtained results are shown in the right side of Fig. 3.8. As

shown in Fig. 3.8, there are three clusters in the dynamic sources. After

determination of the clusters, we also separate their corresponding dynamic

structures, which are shown in the left side of Fig. 3.8. The red curves show

the average of the clusters.

Figure 3.8: There are three clusters in the dynamic sources. The average of each

cluster is shown in red.

Based on the obtained results, we can conclude that there is one static

source (background activity), and there are three kinds of dynamic sources

during the training absence seizure. A linear superposition of the background
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activity and a dynamic source generates the data in each time window of the

training absence seizure. This conclusion is illustrated in Fig. 3.9.

Figure 3.9: One kind of the dynamic spikes (sources) is added to the background

spike (static source) to generate the spike time windows during the training absence

seizure. MUX stands for multiplexer which only allows one dynamic spike to pass

in each time window.

Since one kind of dynamic sources participate in the generation of the

data in each time windows, we can assign a cluster to each time window.

The sequence of clusters for the training absence seizure is shown in Fig.

3.10.

As shown, all kinds of dynamic sources participate in generation of the

data in the beginning of the training absence seizure, while in the end of the

training absence seizure, the �rst and the third dynamic sources just partic-

ipate in the generation of data. This phenomenon can be corresponded to

the fact that the performance of the existing circuit between somatosensory

cortex and thalamus changes in the end of the absence seizures [Meeren et al.

(2002); Polack et al. (2007)].
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Figure 3.10: Sequence of clusters for the training absence seizure.

3.5.2.2 Results For Other Absence Seizures of The First Rat

The same results are obtained for other absence seizures of the �rst rat.

In fact, we have intra-rat similarity between the results obtained from the

absence seizures of the �rst rat. This means that the extracted average of the

clusters are similar to the results obtained from the training absence seizure.

The sequence of the clusters for one of the absence seizures which consists of

K = 88 time windows is shown in Fig. 3.11. As shown, again, at the end of

the absence seizure, the �rst and the third dynamic sources only participate

in the generation of the absence seizure.

Figure 3.11: Sequence of clusters for one of the absence seizures from the �rst rat

which consists of K = 88 spike time windows.
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3.5.2.3 Results For Other Rats

For other rats, when we extract the model parameters, the best results are

again obtained by considering one static source (m = 1). The estimated

number of dynamic sources is also equal to one (rk = 1) in each time win-

dow. Moreover, the same model as Fig. 3.6 and Fig. 3.8 can be considered

after clustering the sources, i.e., there are three kinds of dynamic sources

and a static source. Furthermore, one kind of dynamic sources completely

disappears towards the end of the absence seizures similar to results of the

�rst rat.

For instance, the results obtained from one of the absence seizures of the

second rat are shown in Fig. 3.12 and 3.13. Moreover, the obtained linear

model and the sequence of clusters are respectively shown in 3.14 and Fig.

3.15.

The noticeable point is that the obtained sources in the second rat are

di�erent from the ones in the �rst rat, however, the obtained static structure

and averages of clusters for the dynamic structures are similar to ones in the

�rst rat. Since the structures show the arrangement of the sources around

the sensors, we can conclude that the origins of the sources are similar in

these two rats. The same results are obtained in other rats.

Figure 3.12: The static structure (left) and sources (right) obtained from one of

the absence seizures of the second rat with K = 560 time windows.
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Figure 3.13: The dynamic structures (left) and sources (right) obtained from one

of the absence seizures of the second rat with K = 560 time windows.

Figure 3.14: The obtained average of clusters for the dynamic and static sources in

the second rat. One kind of the dynamic spikes (sources) is added to the background

spike (static source) to generate the spike time windows during the absence seizures.
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Figure 3.15: Sequence of clusters for one of the absence seizures of the second rat

which consists of K = 560 time windows.

3.5.2.4 Adaptation of The Average of Clusters to The Training

Absence Seizure

Now, we want to check if the results of clustering (averages of clusters) are

adapted to the training absence seizure or not. For this purpose, we calculate

the reconstruction error as explained in the following.

By considering the obtained static structure, the average of the normal-

ized static sources, the average of the normalized dynamic structures, and

the average of the dynamic sources respectively as a, s, bj (j = 1, 2, 3) and

uj (j = 1, 2, 3), each time window of the training absence seizure (Y(k)) and

its reconstruction (Ŷ(k)) can be expressed as:

Y(k) = α(k)a sT +
3∑
j=1

β
(k)
j bju

T
j︸ ︷︷ ︸

Ŷ(k)

+N(k) (3.24)

where α(k) and β
(k)
j are the scaling coe�cients because we have normalized

the parameters of the model. One of β
(k)
j (j = 1, 2, 3) is non-zero, and two of

them are zero for each time window. Since we already clustered the dynamic

sources and structures, the zero entries are known. It can be shown that the

MLE solution of α(k) and non-zero β
(k)
j are as follows:

α(k)∗ = Tr{Y(k) saT }, β
(k)
j

∗
= Tr{Y(k)ujb

T
j } (3.25)
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Now, we can de�ne the reconstruction error as follows:

Ertrain =
1

K

K∑
k=1

‖Y(k) − Ŷ(k)‖2F
‖Y(k)‖2F

(3.26)

This error is equal to 0.03 for the training absence seizure indicating that

the obtained results of clustering are compatible with the training absence

seizure. Now, we want to check if the results of clustering (average of clusters)

are also adapted to the other absence seizures or not.

3.5.2.5 Cross-Validation (Testing Phase)

Since the sources are not similar in di�erent rats, the cross-validation be-

tween two absence seizures from two di�erent rats is meaningless. Hence, we

perform the cross-validation for the absence seizures of the same rat.

We consider one of the absence seizures as the testing absence seizure.

Then, using the obtained parameters from the training absence seizure and

regarding (3.24), we estimate the best kind of dynamic source and structure,

and scaling coe�cients for each time window of the testing absence seizure.

If we again employ the MLE method, we get:

{j∗, α(k)∗, β
(k)
j

∗
} = argmin

j,α(k),β
(k)
j

‖Y(k) − α(k)a sT − β(k)
j bju

T
j ‖2F (3.27)

By determination of the parameters, the reconstructed time window is cal-

culated as follows:

Ŷ(k) = α(k)∗a sT + β
(k)
j∗
∗
bj∗u

T
j∗ (3.28)

Now, we calculate the reconstruction error as follows to check the compat-

ibility of the parameters, obtained from the training absence seizure, with

the testing absence seizure:

Ertest =
1

Ktest

Ktest∑
k=1

‖Y(k) − Ŷ(k)‖2F
‖Y(k)‖2F

(3.29)

where Ktest shows the number of time windows in the considered testing

absence seizure. We perform the proposed training and testing phase on
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�ve absence seizures of the �rst rat. The last absence seizure is the absence

seizure considered in the previous part. The results of the reconstruction are

reported in Table 3.2.

Table 3.2: Reconstruction error for 5 di�erent absence seizures of the �rst rat. The

absence seizures respectively consist of K1 = 87, K2 = 94, K3 = 95, K4 = 88

and K5 = 390 time windows. The diagonal and non-diagonal entries of the table

respectively show Ertrain and Ertest.

Training on Testing on

seizure 1 2 3 4 5

1 0.05 0.11 0.13 0.12 0.09

2 0.07 0.06 0.10 0.09 0.08

3 0.08 0.11 0.06 0.10 0.09

4 0.10 0.09 0.10 0.08 0.10

5 0.09 0.10 0.11 0.12 0.03

These results show the intra-rat similarity between absence seizures, in

the sense that the static and dynamic sources and structures trained on one

absence seizure, provide an accurate estimation of signals in other absence

seizures. For other rats, the reconstruction errors have the same order of

magnitude as the �rst rat which show the generality of the results of clus-

tering and proposed model for the recorded absence seizures.

Since there is no inter-rat similarity between the sources, the aforemen-

tioned cross-validation framework between two seizures from two di�erent

rats is meaningless. Hence, we calculate the cross correlation coe�cient be-

tween the results obtained from the two rats. Tables 3.3 and 3.4 respectively

show the cross correlation coe�cient between the obtained structures and

sources from the �rst and second rat.

As reported in Table 3.3, since the cross correlation coe�cients between

the structures obtained from two seizures of di�erent rats are close to one,

we �nd that the structures in all seizures and all rats are similar, or in other

words, they have inter-rat similarity. Since the structures are corresponding
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Table 3.3: The cross correlation coe�cient between the obtained structures from

the �rst and second rat.

First Rat Second Rat

a b1 b2 b3

a 0.97 -0.61 -0.54 -0.72

b1 -0.58 0.94 0.78 0.36

b2 -0.46 0.77 0.98 0.27

b3 -0.77 0.35 0.32 0.96

Table 3.4: The cross correlation coe�cient between the obtained sources from the

�rst and second rat.

First Rat Second Rat

s u1 u2 u3

s 0.83 0.86 0.65 0.53

u1 0.78 0.81 0.64 0.58

u2 0.49 0.46 0.88 0.71

u3 0.63 0.66 0.73 0.79

to the spatial topography of the sources, we can conclude that the spatial

locations of the sources are similar in di�erent rats.

Moreover, as reported in Table 3.4, since the cross correlation coe�cients

between the sources obtained from two seizures of di�erent rats are not

close to one, we �nd that the sources do not have inter-rat similarity. Since

the sources show the temporal activation functions of their origins, we can

conclude that the propagated signals from the origins are not similar in

di�erent rats.

We recall that the dataset consists of the data recorded from four GAERS

rats, and the data of each rat consist of several seizures. We extracted the

sources and their structures from all of the seizures in all of the rats. In

summary, the obtained results show that:

1) The structures in all seizures and all rats are similar. In fact, the
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structures have both intra-rat and inter-rat similarities.

2) The sources in all seizures of a speci�c rat are similar, but the sources

obtained from the seizures of di�erent rats are not similar. In fact, the

sources have intra-rat similarity, but they do not have inter-rat similarity.

The results presented in Tables 3.2, 3.3, 3.4 con�rm the above conclu-

sions.

3.6 Conclusion

In this chapter, we proposed a method to retrieve the static and dynamic

sources which generate the absence seizures to analyze the dynamics of ab-

sence seizures. We also extracted the structures of the sources. The consid-

ered scenario in this chapter can be employed in several applications such as

radar and brain signals. It was shown that there are one background activity

(a static source) and three kinds of dynamic sources during absence seizures.

The dynamic sources randomly appear and disappear during the absence

seizures, however, one kind of dynamic sources completely disappears to-

wards the end of the absence seizures perhaps due to the performance of the

existing circuit between somatosensory cortex and thalamus. These results

were extracted from all of the rats and con�rmed using a cross-validation

framework. The main di�erence between the results of di�erent rats was in

the shapes of the sources. For example, the shapes of the sources for the

�rst and second rats are shown in Figs. 3.9 and 3.14, respectively. The

interesting point is that the obtained structures were the same in di�erent

rats which show that the origins of the sources are the same in di�erent rats.

This point is in accordance with the result obtained in the previous chapter

regarding the spatial analysis of absence seizures.

Similar to the previous chapter, the drawback of the model proposed in

this chapter is that it is based on exploration of spike time windows. In the

next chapter, we propose a model in which we do not need to detect the

spikes for analyzing the absence seizures.
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4.1 Main Idea

In the previous chapters, we explored absence seizures by segmenting them

into several spike time windows. This segmentation is not always possible

because detection of spikes is sometimes di�cult when the data is noisy. For

instance, the noisy and clean data, recorded in channel 1, during two of the

absence seizures of the �rst rat are respectively shown in the left and right

sides of Fig. 4.1. As shown here, the spike detection in the noisy data is

much more di�cult than in the clean data. It should be noted that more

than % 90 of absence seizures were clean during the recorded data.

In this chapter, we propose a generalized method for analyzing the ab-

sence seizures which can even be employed for absence seizures in which
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Figure 4.1: (a) the noisy data where the spike detection is di�cult, and (b) the

clean data where the spike detection can be easily performed.

performing the spike detection step is not easy. Similar to chapter 2, we aim

to localize the onset layers of somatosensory cortex during absence seizures

(spatial analysis) and investigate the dynamics of absence seizures (temporal

analysis). Hence, all of the pre-processing steps explained in chapter 2 are

again employed except detection and alignment of spikes.

To achieve our spatio-temporal targets, we model the recorded absence

seizures by a linear combination of a few (R) epileptic activities. Each epilep-

tic activity is represented using a spatio-temporal representation. The spatial

representation shows the pattern of current sources and sinks generating the

epileptic activity, while the temporal representation speci�es the waveform

and the occurrence time of the epileptic activity. Extracting the de�ned

epileptic activities from the recorded absence seizures help us to �nd the

onset layers of somatosensory cortex (spatial analysis) and investigate the

temporal evolution of recorded absence seizures (temporal analysis).

The rest of this chapter is organized as follows. Section 4.2 is dedicated

to the model and problem de�nition. We explain the proposed method for

estimating the parameters in section 4.3. The results are reported in section

4.4, and �nally, section 4.5 concludes the chapter.
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4.2 Model and Problem Definition

We assume that the linear superposition of a few (R) epileptic activities

generates an absence seizure as shown in Fig. 4.2. We consider three char-

acteristics for each epileptic activity; 1) the CSD, 2) the spike, and 3) the

time series. These characteristics respectively show the pattern of current

sources and sinks producing the epileptic activity, the activation function of

the epileptic activity, and the �ring times and the corresponding amplitudes

of the epileptic activity during an absence seizure.

In fact, each epileptic activity has a spatio-temporal representation. The

CSD is the spatial representation of an epileptic activity, and the convolution

of the spike and the time series is the temporal representation of an epileptic

activity. The considered model for an absence seizure is schematically shown

in Fig. 4.2. We extract the epileptic activities and their characteristics from

the absence seizures to �gure out the onset layers of somatosensory cortex,

and investigate the temporal evolution of absence seizures.

Figure 4.2: An absence seizure is modeled by a linear combination of R epileptic

activities which have spatio-temporal representations.

As shown in Fig. 4.2, the absence seizure at time instant t (x(t) ∈ IRE)
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can be expressed as:

x(t) =

R∑
i=1

ci

Li∑
j=1

αi,jsi(t− τi,j) + n(t) (4.1)

where R denotes the number of epileptic activities. For the ith epileptic

activity, ci ∈ IRE , Li, si(t), τi,j and αi,j show the CSD, the number of

occurrences of the epileptic activity, the spike signal at time instant t, the

occurrence time and the corresponding amplitude, respectively. The noise

vector n(t) ∈ IRE is considered zero-mean Gaussian with i.i.d. entries. It

should be noted that the spike signal si(t) has T samples, and it can be

shown by si ∈ IRT in the vector notation. T is considered equal to 1750

samples (87.5ms) in this study as stated by [Polack et al. (2007)].

According to (4.1) and Fig. 4.2, estimating the parameters from an ab-

sence seizure is similar to solving a multi-channel blind deconvolution prob-

lem, which is in general ill-posed [Chi (2016)]. Therefore, we must consider

some additional constraints for the problem. The identi�ability of this prob-

lem for di�erent scenarios is discussed in [Li et al. (2016)]. We consider the

following constraints for the epileptic activities:

(C1) The times series are sparse signals (i.e., Li ≤ Lmax). In fact, we

assume that each epileptic activity happens at most Lmax times.

(C2) The CSDs and the spikes are unit norm (i.e., ‖ci‖2 = ‖si‖2 = 1), and

the amplitudes of the spikes are positive (i.e., αi,j > 0). These assumptions

are considered to omit the scaling and polarization ambiguities [Comon and

Jutten (2010)].

(C3) The epileptic activities are synchronized. As explained in chapter

2, since the data was recorded very locally, we expect the instantaneous

appearance of spikes in di�erent layers of somatosensory cortex. Therefore,

we assume that the occurrence time of the epileptic activities are similar.

Hence, τi,j and Li are respectively replaced by τj and L for all of the epileptic

activities.

Now, the problem de�nition is complete. The set of unknown parameters

Θ =
{
R,L,

R⋃
i=1
{ci, si,

L⋃
j=1
{αi,j}},

L⋃
j=1
{τj}

}
must be estimated based on the
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observed absence seizure and the considered constraints.

4.3 Proposed Method

Since there is no prior information about the number of epileptic activities

(R), we estimate the results for di�erent R. Then, we select the one which

has the best biophysiological interpretation. Therefore, we assume that R

is �xed and known. It can be easily shown that minimizing the following

objective function leads to the maximum likelihood estimation (MLE) of the

unknown parameters.

f̃(Θ) =
∑
t

‖x(t)−
R∑
i=1

ci

L∑
j=1

αi,jsi(t− τj)‖22 (4.2)

Due to the presence of τj , it is more convenient to deal with this objective

function in the Fourier domain. Therefore, we express the objective function

as follows:

f(Θ) =
∑
f

‖x̂(f)−
R∑
i=1

ciŝi(f)
L∑
j=1

αi,je
−2πfτj‖22 (4.3)

where x̂(f) and ŝi(f) respectively show the Fourier transform of the data

and si(t) at frequency f . We can state (4.3) in the matrix notation as:

f(Θ) = ‖X̂−C(Ŝ� Â)‖2F (4.4)

where � and ‖.‖F denote the element-wise product and the Frobenius norm,

respectively. The columns of X̂, C and Ŝ are corresponding to x̂(f) in

di�erent frequencies, the CSDs and the Fourier transform of the spikes in

di�erent epileptic activities, respectively. Also, the (f, i)th entry of Â is:

âfi =
L∑
j=1

αi,je
−2πfτj (4.5)

The stated objective function in (4.4) and the considered assumptions in

(C1), (C2), and (C3) form a constrained optimization problem. We use alter-

nating minimization to solve the problem. Some initial values are considered
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for Θ, then, the following three optimization problems are alternately solved

until the parameters convergence.

Copt = argmin
C

‖X̂−C(Ŝ� Â)‖2F

s.t. diag(CTC) = I (4.6)

Ŝopt = argmin
Ŝ

‖X̂−C(Ŝ� Â)‖2F

s.t. diag(Ŝ
H

Ŝ) = I, ŝi(−f) = ŝ∗i (f), i = 1, 2, ..., R (4.7)

Âopt = argmin
Â

‖X̂−C(Ŝ� Â)‖2F

s.t. L ≤ Lmax, αi,j > 0, i = 1, 2, ..., R, j = 1, 2, ..., L (4.8)

where the operator diag(.) keeps the diagonal entries of a matrix. The new

added constraint in (4.7) forces the spikes to be real signals in the time

domain. The �rst and the second optimization problems can be solved using

Lagrangian multipliers, and any of the spectral estimation methods such as

MUSIC, ESPRIT or beamforming techniques can be employed to solve the

last optimization problem [Li et al. (2016)]. Once the parameters were found,

we easily convert them back to the time domain.

4.4 Experimental Results

4.4.1 Simulation

4.4.1.1 Data Generation

We assume that there are E = 3 sensors which record the data from R = 2

activities for 2000 samples. The characteristics of the �rst and the second

activity are shown in the top and the bottom of Fig. 4.3, respectively.

We select the entries of the CSDs from zero-mean and unit-variance i.i.d.

Gaussian distribution, then, we normalize the CSD of each activity. The
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Figure 4.3: Characteristics of the activities generating the simulated data. The top

and the bottom �gures show the characteristics of the �rst and the second activity,

respectively.

spike of the �rst and the second activities are considered a normalized Mex-

ican hat and Morlet signal, respectively. The length of the spikes is equal to

T = 100 samples. It should be noted that the MATLAB functions Mexican

and Morlet can be employed to generate the spikes. The positions of the

non-zero entries of the time series (τj) are randomly chosen, and their values

(αi,j) are uniformly distributed between [0 1]. We consider L = 10 non-zero

entries for each time series.

The data is constructed according to the following expression:

x(t) =

R∑
i=1

ci

L∑
j=1

αi,jsi(t− τj) + n(t) (4.9)

where the entries of noise (n(t)) are i.i.d., and have zero-mean Gaussian

distributions with variance σ2
0. Fig. 4.4 shows the generated data for σ2

0 = 0.

4.4.1.2 Evaluation Criteria

We use the mean squared error (MSE) for the CSDs, spikes, and time series

to evaluate the performance of the proposed method in the estimation of the
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parameters. For instance, the MSE for the CSDs is de�ned as follows:

MSECSDs =
1

R

R∑
i=1

‖ai − a∗i ‖2
‖ai‖2

, (4.10)

The MSE for the spikes and time series are de�ned similar to the CSDs. The

signal to noise ratio (SNR) of the simulations is also de�ned as:

SNR = 10 log(Et{
‖x(t)− n(t)‖22
‖n(t)‖22

}) (4.11)

Figure 4.4: The simulated data in the noise-free model. The data is generated by

a linear superposition of two activities.

4.4.1.3 Simulation Results

We apply the proposed method on the simulated data in di�erent SNR to

estimate the parameters. The obtained MSE for CSDs, spikes, and time

series in di�erent SNR are reported in Table 4.1. Moreover, the estimated

spikes of the �rst and second activities in di�erent SNR are respectively

shown in Fig. 4.5 and Fig. 4.6. These results show the accuracy of the

proposed method for retrieving the unknown parameters in the considered

scenario.
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Table 4.1: Performance of the proposed method in di�erent SNR.

SNR MSECSDs MSEspikes MSEtime series

5 0.321 0.343 0.349

10 0.127 0.161 0.186

15 0.038 0.049 0.048

20 0.011 0.015 0.018

25 0.002 0.004 0.005

Figure 4.5: The estimated spikes of the �rst activity in di�erent SNR. The top left

�gure shows the original spike.

Figure 4.6: The estimated spikes of the second activity in di�erent SNR. The top

left �gure shows the original spike.
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4.4.2 Neural Recording

We apply the proposed method on the absence seizures for di�erent number

of epileptic activities (R). The best results are extracted by considering

three epileptic activities in all of the absence seizures. When we consider

R > 3, some of the spikes of the epileptic activities become non-smooth and

incomprehensible, and when we consider R < 3, the reconstruction error

severely increases. We will de�ne the reconstruction error later. Therefore,

we consider R = 3 to estimate the parameters.

4.4.2.1 Training Phase

An absence seizures with the length of 19.3 sec from the �rst rat is considered

to present the results. The characteristics of the estimated epileptic activi-

ties, i.e., the CSDs, the spikes, a part of the time series and the corresponding

absence seizure are shown in Fig. 4.7.

With regards to the obtained CSDs, the sources and sinks are distributed

in layers II/III and VI for the �rst and the second epileptic activities, and

in layers I and V for the third epileptic activity. Therefore, the top and the

bottom layers of somatosensory cortex are the most active layers during the

absence seizure similar to the results presented in chapter 2.

Moreover, based on the obtained time series, the �rst epileptic activ-

ity is the dominant activity during the absence seizure because it has more

non-zero entries than the other epileptic activities. Also, the amplitude of

the second or the third epileptic activity is equal to zero when the epilep-

tic activities are activated. In fact, it seems that the second and the third

epileptic activities are two di�erential activities which are randomly acti-

vated and act as a �rst-order correction for the �rst epileptic activity. Sim-

ilar behavior is observed in the other parts of the absence seizure. For the

considered absence seizure, the time series of the epileptic activities have

l1 = 94, l2 = 12 and l3 = 82 non-zero entries, respectively. The average

and the variance (mi, σ
2
i ) of these non-zero values are respectively equal to
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(a)

(b)

(c)

Figure 4.7: (a) The CSDs and the spikes of the epileptic activities generating the

absence seizure. (b) Two seconds of the time series of the epileptic activities, and

(c) the corresponding absence seizure.

(m1 = 0.22, σ2
1 = 49× 10−4), (m2 = 0.14, σ2

2 = 29× 10−4), and (m3 = 0.15,

σ2
3 = 31× 10−4) for the epileptic activities.
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4.4.2.2 Other Absence Seizures of The First Rat

The same results are obtained when we apply the proposed method on the

other absence seizures of the �rst rat. It means that the estimated CSDs

and spikes are similar to the illustrated results in Fig. 4.7. The �rst epilep-

tic activity is the dominant epileptic activity, and the second and the third

epileptic activities randomly activate with the �rst epileptic activity during

the absence seizures. The noticeable point is that the average and the vari-

ance of the non-zero entries of the time series are very close to the previous

results meaning that they can be considered as stationary random processes.

For instance, these values for four absence seizures of the �rst rat are reported

in Table 4.2.

Table 4.2: The average and variance of the non-zero entries of the time series in

four absence seizures of the �rst rat. li shows the number of non-zero entries of the

ith time series, and mi and σ
2
i represent the corresponding average and variance.

Seizure l1 m1
σ2
1

10−2 l2 m2
σ2
2

10−2 l3 m3
σ2
3

10−2

1 87 0.21 0.55 24 0.13 0.33 63 0.13 0.38

2 91 0.20 0.58 14 0.15 0.35 77 0.14 0.37

3 95 0.20 0.61 18 0.12 0.36 77 0.12 0.35

4 88 0.19 0.57 32 0.13 0.41 56 0.12 0.39

4.4.2.3 Other Rats

For other rats, the CSDs of the epileptic activities are similar to ones obtained

in the �rst rat. Also, there is a dominant epileptic activity during absence

seizures, and the non-zero entries of the time series can be considered as

stationary random processes for di�erent absence seizures of a rat. But the

spikes are di�erent from the obtained results in the �rst rat. For instance, the

obtained CSDs and spikes for the epileptic activities generating the absence

seizures of the second rat are shown in Fig. 4.8. Since the CSDs of the

epileptic activities are similar but the spikes are di�erent in the rats, we

can conclude that the distribution of current sources and sinks, or in other
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words, the origins of the epileptic activities are the same in the rats, but the

propagated signals from the origins are di�erent.

Figure 4.8: The CSDs and the spikes of the epileptic activities in the second rat.

4.4.2.4 Cross Validation

We also validate and cross validate the obtained results by computing the

cross correlation of the obtained results in di�erent absence seizures to show

the accuracy and generality of the considered model. It should be noted that

since the absence seizures considered in this chapter are noisy, the reconstruc-

tion error is not a suitable criterion for performing the cross validation.

As an example, the cross correlation coe�cient between the obtained

CSDs in two absence seizures of the �rst rat are reported in Table 4.3.

Table 4.3: The cross correlation coe�cient between the obtained CSDs from two

absence seizures of the �rst rat whose lengths are 19.3 sec and 18.5 sec, respectively.

First Absence Seizure Second Absence Seizure

c1 c2 c3

c1 0.96 -0.25 0.59

c2 -0.27 0.99 -0.43

c3 0.61 -0.42 0.97

Moreover, the cross correlation coe�cient between the obtained spikes in

these two absence seizures are reported in Table 4.4.

As reported, at least one of the values are close to one in each column of

the tables which shows that the obtained results are similar in the considered

absence seizures.
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Table 4.4: The cross correlation coe�cient between the obtained spikes from two

absence seizures of the �rst rat whose lengths are 19.3 sec and 18.5 sec, respectively.

First Absence Seizure Second Absence Seizure

s1 s2 s3

s1 0.95 0.82 0.74

s2 0.80 0.98 0.83

s3 0.72 0.86 0.97

The same results are obtained by considering other absence seizures of

the �rst rat. These results show the accuracy of the obtained results in

modeling the absence seizures.

We can also perform the proposed cross validation framework on absence

seizures recorded from two di�erent rats. For instance, the cross correlation

coe�cient between the obtained CSDs in an absence seizure recorded from

the �rst rat and an absence seizure recorded from the second rat are reported

in Table 4.5.

Table 4.5: The cross correlation coe�cient between the obtained CSDs from two

absence seizures recorded from the �rst and second rats whose lengths are 19.3 sec

and 21.4 sec, respectively.

First Absence Seizure Second Absence Seizure

c1 c2 c3

c1 0.93 -0.27 0.62

c2 -0.31 0.97 -0.48

c3 0.55 -0.43 0.98

As reported, the CSDs are similar in these absence seizures meaning

that the origins of the epileptic activities are the same in the rats. The cross

correlation coe�cients between the obtained spikes in these two absence

seizures are also reported in Table 4.6. Since the spikes of the epileptic

activities are not similar in di�erent rats, the reported coe�cients are not

close to one.
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Table 4.6: The cross correlation coe�cient between the obtained spikes from two

absence seizures recorded from the �rst and second rats whose lengths are 19.3 sec

and 21.4 sec, respectively.

First Absence Seizure Second Absence Seizure

s1 s2 s3

s1 0.72 0.76 0.84

s2 0.81 0.87 0.71

s3 0.67 0.71 0.78

4.5 Conclusion

In this chapter, we proposed a generalized method for analyzing absence

seizures. We described the absence seizures by the linear superposition of a

few epileptic activities which have spatio-temporal representations. Then, we

proposed a blind deconvolution method to estimate the epileptic activities.

The obtained results show that there are three epileptic activities during the

absence seizures. One of the epileptic activities is dominant, and the other

epileptic activities randomly activate with the dominant epileptic activity.

It was shown that the origins of the epileptic activities, which are located

in the top and the bottom layers of somatosensory cortex, are similar in the

GAERS rats, but the propagated spikes from the origins are di�erent.
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5 Conclusion and Perspectives

We explored absence epileptic seizures using the data recorded from di�er-

ent layers of somatosensory cortex of four GAERS to answer the following

scienti�c questions:

1) Are there some speci�c layers in somatosensory cortex which generate

the absence seizures? or which layers have more activity during absence

seizures? (spatial analysis)

2) Is there any speci�c pattern during absence seizures over time? or

how do the absence seizures change over time? (temporal analysis)

Three scenarios were considered for modeling the recorded absence seizures

to answer the mentioned questions.

In the �rst scenario, a spatio-temporal model was considered for the

epileptic activities generating the spikes of absence seizures. Then, a factor

analysis method was employed to �nd the epileptic activities. One of the

interesting results obtained in this scenario was that a common or a back-

ground epileptic activity exists during the recorded absence seizures. This

result motivated us to propose the second scenario for analyzing the absence

seizures. In the second scenario, a static-dynamic model was considered

for the sources generating the spikes of absence seizures. Then, a source

separation method was employed to �nd the sources and their structures.

The drawback of the aforementioned scenarios was in the absence seizures

in which performing the spike detection is not possible. Hence, we proposed

the last scenario. In the third or last scenario, we proposed a blind decon-

volution method to directly estimate the epileptic activities producing the

absence seizures without employing any spike detection step.
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It is worth mentioning that we proposed a validation framework cor-

responding to each scenario. Hence, all of the obtained results were cross

validated, and the generality of the considered models in di�erent absence

seizures were con�rmed. Based on the obtained results, we found that:

1. There is a background event or activity during the absence seizures,

and a circuit between layers II/III and VI of somatosensory cortex

generate this background event.

2. There are a few events which randomly activate with the background

event during the absence seizures, however, there is no speci�c pattern

in the activation of these events. Layers I and V or II/III and VI of

somatosensory cortex participate in the generation of these epileptic

events.

3. The contribution of the epileptic events in generating the absence

seizures of a GAERS are stationary random processes. This means

that the epileptic events on average have similar behavior during dif-

ferent absence seizures of a GAERS.

4. The origin of the obtained epileptic events are the same in di�erent

GAERS.

As the future work for the continuation of this thesis, it would be inter-

esting to:

1. analyze the data recorded between absence seizures. The data in these

time intervals are highly noisy, and it is not possible to employ the

proposed methods in this study to analyze them. The data in these

time intervals could be useful for predicting the onset time of absence

seizures.

2. �nd that what is going on at the beginning and at the end of absence

seizures. We need to understand why an absence seizure starts and

why it ends, or in other words, why the duration of an absence seizure

is limited.
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3. record data from multiple areas of the cortex using several electrodes

with high spatial resolution, and then, �nd the interaction of these

areas during absence seizures.
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A Effect of First-Order Marko-

vian Dependency on Parameters

Estimation

Using a simple example, we show why the Markovian dependency does not

a�ect on estimation of the parameters when the data is noiseless.

Example: Assume that there are S = 2 states with J = 1 factor in each

one, and at most one factor participates in generating the 2×1 (E = 2, T =

1) dimensional signals. Now, we want to estimate the state of the observed

signal Xk, or in other words, select the best factor for Xk. The scatter plot

for Xk−1 and Xk, in the presence of additive noise is schematically shown in

Fig. A.1, and assume that Xk−1 has been assigned to state 2, i.e., qk−1 = 2.

Figure A.1: Scatter plot of two consecutive signals generated under �rst-order

Markovian model. Assigning Xk to one of the states is not independent form the

activated state for Xk−1. Assume that a
(s)
1 shows the factor associated with the

sth state.
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APPENDIX A. EFFECT OF FIRST-ORDER MARKOVIAN

DEPENDENCY ON PARAMETERS ESTIMATION

Since there is a �rst-order Markovian dependency in activation of the

states, if we use the maximum aposteriori (MAP) estimator to �nd qk, we

get

p(qk = 1 |Xk, qk−1,A)︸ ︷︷ ︸
f1

2
≶
1
p(qk = 2 |Xk, qk−1,A)︸ ︷︷ ︸

f2

. (A.1)

where A = [a
(1)
1 a

(2)
1 ]. According to Bayes' rule, the left and right sides of

(A.1) can be simpli�ed and written as

f1 =

p21︷ ︸︸ ︷
p(qk = 1 | qk−1) p(Xk | qk = 1,a

(1)
1 )

p(Xk|A)
,

f2 =

p22︷ ︸︸ ︷
p(qk = 2 | qk−1) p(Xk | qk = 2,a

(2)
1 )

p(Xk|A)
. (A.2)

It can be seen that not only are the conditional probabilities of Xk important

for estimating qk, but also the probabilities of transition between the states

a�ect the decision making for qk.

Based on Fig. A.1 and (A.2), whenever the signal to noise ratio (SNR)

increases, the produced error decreases. For instance, if the signals were noise

free, which is not a practical assumption, the parameters could be learned

without any error. Moreover, whenever the probabilities of transition among

the states become close to the uniform distribution, i.e., the states become

independent, the produced error would decrease. For instance, if p21 and p22

were equal to 0.5 in (A.2), they would not a�ect the decision making.
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B Performing The Expectation Step

in Spatio-Temporal Modeling of

Absence seizures

We assume that the set of unknown parameters Θ is known and �xed, and we

estimate p(H(s)
k ) for k = 1, 2, ...,K and s = 1, 2, ..., S. We use the forward-

backward procedure to estimate p(H(s)
k ).

B.1 Forward Procedure

The forward variable is de�ned as follows:

αk(s) = p(X1,X2, ...,Xk,H
(s)
k |Θ) (B.1)

which shows the probability of observing the spikes until the kth spike and

observing state s for the kth spike given the model parameters. The forward

variable when k = 1 (α1(s)) is equal to

α1(s) = p(H(s)
1 )︸ ︷︷ ︸

1
S

f(X1|H(s)
k ,Θ). (B.2)

We assume that the probabilities of activation of the states for the �rst spike

are equal, hence, p(H(s)
1 ) = 1

S . Moreover, f(X1|H(s)
1 ,Θ) is known according

to (2.10) because the model parameters are known in E-step. Therefore,

α1(s) is easily calculated. It can be shown that we can use the following
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recursive expression to calculate αk(s):

αk(s) = [
S∑
q=1

αk−1(q)pqs]f(Xk|H
(s)
k ,Θ) (B.3)

where pqs shows the (q, s)th entry of the transition probability matrix which

is known in this step. Therefore, αk(s) for k = 1, 2, ...,K and s = 1, 2, ..., S

can be easily calculated using (2.10), (B.2) and (B.3).

B.2 Backward Procedure

In a similar manner, we de�ne the backward variable as follows:

βk(s) = p(Xk+1,Xk+2, ...,XK |H(s)
k , Θ) (B.4)

which shows the probability of observing spikes from the (k + 1)th spike

until the last spike, given state s for the kth spike and given the model

parameters. Assuming βK(s) = 1, again, it can be shown that there is the

following recursive expression for calculating βk(s):

βk(s) =
S∑
q=1

psq f(Xk+1|H
(q)
k+1,Θ)βk+1(q) (B.5)

Therefore, βk(s) for k = 1, 2, ...,K and s = 1, 2, ..., S can be easily calculated

using (2.10) and (B.5).

Now, we estimate p(H(s)
k ) using the forward and backward variables.

According to the conditional probability rule, p(H(s)
k ) can be expressed as

p(H(s)
k ) =

p(H(s)
k , Ttrain|Θ)

p(Ttrain|Θ)
=

p(H(s)
k ,X1,X2, ...,XK |Θ)∑S

q=1 p(sk = q,X1,X2, ...,XK |Θ)
(B.6)

By considering the de�nition of the forward and backward variables in (B.1)

and (B.4), it can be seen that

p(H(s)
k ,X1,X2, ...,XK |Θ) = αk(s)βk(s). (B.7)

Therefore, we can calculate p(H(s)
k ) for k = 1, 2, ...,K and s = 1, 2, ..., S as

p(H(s)
k ) =

αk(s)βk(s)∑S
q=1 αk(q)βk(q)

. (B.8)
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Here, the explanation of the E-step is �nished. However, we also calculate

another conditional probability which will be used in the Maximization step

(M-step) to estimate the transition probability matrix. The probability of

being in state m for the kth spike and being in state n for the (k + 1)th spike

given the observations and the model parameters is calculated as follows in

a similar way to (B.6), (B.7) and (B.8):

p(H(m)
k ,H(n)

k+1) =
αk(m)pmnf(Xk+1|H

(n)
k+1,Θ)βk+1(n)∑S

q=1

∑S
r=1 αk(q)pqrf(Xk+1|H

(r)
k+1,Θ)βk+1(r)

(B.9)
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C Extracting The Model Param-

eters in Static and Dynamic Mod-

eling of Absence Seizures

C.1 Extraction of The static structure

in static and dynamic modeling of

seizures

By assuming Z(k) = R
(k)
y −R

(k)
B , we get:

A∗ = argmin
A

K∑
k=1

‖Z(k) −AΛ(k)
s AT ‖2F

s.t. diag(ATA) = I (C.1)

We solve this optimization problem using gradient projection (GP) method.

We iteratively perform the following steps (gradient and projection) until

convergence of A.

Gradient Step: In the gradient step, we use the Newton method to

speed up the convergence. The gradient and Hessian of the objective function
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with respect to A is calculated as follows:

G =
K∑
k=1

4AΛ(k)
s ATAΛ(k)

s − 2Z(k)AΛ(k)
s

H =
K∑
k=1

4(Λ(k)
s ATAΛ(k)

s ⊗ I) + 4(Λ(k)
s AT ⊗AΛ(k)

s )Π

+4(Λ(k)
s ⊗AΛ(k)

s AT )− 2(Λ(k)
s ⊗ Z(k)) (C.2)

where ⊗ denotes the Kronecker product, I ∈ IRn×n is the identity matrix,

and Π ∈ IRn2×n2
is the permutation matrix which provides the following

equality:

vec(AT ) = Π vec(A) (C.3)

where vec(A) denotes a long vector obtained by stacking the columns of A.

Hence, by considering a = vec(A) and g = vec(G), we perform the following

iteration in this step:

a← a−H−1g

Then, we reshape a to construct its matricization form.

Projection Step: In this step, each column of A is normalized.

C.2 Extracting auto-correlation matrix

of static sources in static and dy-

namic modeling of seizures

By assuming Z(k) = R
(k)
y −R

(k)
B , we get:

Λ(k)
s

∗
= argmin

Λ
(k)
s

‖Z(k) −AΛ(k)
s AT ‖2F

s.t. Λ(k)
s = diag(Λ(k)

s ), Λ(k)
s � 0 (C.4)

We consider the vectorized form of the proposed objective function as:

λ(k)
s

∗
= argmin

λ
(k)
s

‖z(k) −Qλ(k)
s ‖22 (C.5)
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where λ
(k)
s = vec(Λ

(k)
s ) ∈ IRm2

, z
(k)
s = vec(Z(k)) ∈ IRn2

, Q = A ⊗ A ∈

IRn2×m2
, and ⊗ denotes the Kronecker product. Since we know that λ

(k)
s

just has n non-zero entries, we consider the non-zero entries of λ
(k)
s in λ

(k)
s1

∈ IRm, and also, the columns of Q corresponding to the non-zero entries of

λ
(k)
s in Q1 ∈ IRn2×m. Hence, (C.4) can be expressed as:

λ(k)
s1

∗
= argmin

λ
(k)
s1

‖z(k) −Q1λ
(k)
s1 ‖

2
2

s.t. λ(k)
s1 ≥ 0 (C.6)

where λ
(k)
s1 ≥ 0 means each entry of λ

(k)
s1 must be non-negative. This opti-

mization problem is a non-negative least square (NNLS) problem. There are

many toolboxes that can be employed to solve this problem very fast (e.g.,

nnls function in MATLAB).

C.3 Extraction of R
(k)
B in static and dy-

namic modeling of seizures

By assuming Z(k) = R
(k)
y −AΛ

(k)
s AT , we get:

R
(k)
B

∗
= argmin

R
(k)
B

‖Z(k) −R
(k)
B ‖F + λ(k) Tr(R

(k)
B )

s.t. R
(k)
B � 0 (C.7)

If we consider r = vec(Z(k) −R
(k)
B ) ∈ IRn2

, we can write (C.7) as:

R
(k)
B

∗
= argmin

t,R
(k)
B

t+ λ(k) Tr(R
(k)
B )

s.t. R
(k)
B � 0,

√
rT r ≤ t (C.8)

Moreover, using a Schur complement argument, the constraint
√

rT r ≤ t is

equivalent to:  tI r

rT t

 � 0 (C.9)
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where I ∈ IRn2×n2
is the identity matrix. Hence, we can express (C.7) as the

following semide�nite programming (SDP) problem:

R
(k)
B

∗
= argmin

t,R
(k)
B

t+ λ(k) Tr(R
(k)
B )

s.t.


R

(k)
B 0 0

0 tI r

0 rT t

 � 0 (C.10)

This kind of problems can be solved using well known solvers like sdpt3 and

cvx Toh et al. (1999). Regarding the penalty term, we can consider the

proposed value in square-root LASSO problemBelloni et al. (2011) because

the two problems are the same. The penalty term is independent of the noise

variance and obtained as follows according to Belloni et al. (2011):

λ(k) =
c

n
φ−1(1− α

2n2
) (C.11)

where c > 1 is a constant, φ is the cumulative distribution function (CDF) of

a zero-mean and unit variance Gaussian variable, and 1−α is the probability

of detection.
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