
HAL Id: tel-02527656
https://theses.hal.science/tel-02527656

Submitted on 1 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a modelling framework with temporal and
uncertain data for adaptive systems

Ludovic Mouline

To cite this version:
Ludovic Mouline. Towards a modelling framework with temporal and uncertain data for adaptive sys-
tems. Software Engineering [cs.SE]. Université de Rennes; Université du Luxembourg, 2019. English.
�NNT : 2019REN1S074�. �tel-02527656�

https://theses.hal.science/tel-02527656
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

L'UNIVERSITE DU LUXEMBOURG

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

TOWARDS A MODELLING FRAMEWORK WITH TEMPORAL AND
UNCERTAIN DATA FOR ADAPTIVE SYSTEMS

Thèse présentée et soutenue à Luxembourg, le 29/11/2019
Unité de recherche : Équipe DiverSE, IRISA, Rennes et Équipe SerVal, SnT, Luxembourg

Par

Ludovic MOULINE

Rapporteurs avant soutenance :

Philippe COLLET Professeur, Université Côte d’Azur, Nice, France
Manuel WIMMER Professeur, JKU Linz, Linz, Autriche

Composition du Jury :

Président : Prénom Nom Fonction et établissement d’exercice (9) (à préciser après la soutenance)
Examinateurs : Nicolas NAVET Professeur, Université du Luxembourg, Luxembourg, Luxembourg

Manuel WIMMER Professeur, JKU Linz, Linz, Autriche
Philippe COLLET Professeur, Université Côte d’Azur, Nice, France

 Johann BOURCIER Maître de conférence, Université de Rennes 1, Rennes, France
Dir. de thèse : Olivier BARAIS Professeur, Université de Rennes 1, Rennes, France
Co-dir. de thèse : Yves LE TRAON Professeur, Université du Luxembourg, Luxembourg, Luxembourg

Invité(s)
François FOUQUET CTO, DataThings, Luxembourg, Luxembourg
Ada DIACONESCU Maître de conférence, Telecom ParisTech, Paris, France

This thesis has been done under the supervision of:

Prof. Dr. Yves Le Traon, supervisor
Professor, University of Luxembourg, Luxembourg, Luxembourg

Prof. Dr. Olivier BARAIS, supervisor
Professor, University of Rennes 1, Rennes, France

Dr. François Fouquet, advisor
CTO, DataThings S.A.R.L., Luxembourg, Luxembourg

Dr. Johann Bourcier, advisor
Associate Professor, University of Rennes 1, Rennes, France

Abstract

Vision: As state-of-the-art techniques fail to model efficiently the evolution
and the uncertainty existing in dynamically adaptive systems, the adaptation
process makes suboptimal decisions. To tackle this challenge, modern modelling
frameworks should efficiently encapsulate time and uncertainty as first-class
concepts.

Context Smart grid approach introduces information and communication tech-
nologies into traditional power grid to cope with new challenges of electricity5

distribution. Among them, one challenge is the resiliency of the grid: how to
automatically recover from any incident such as overload? These systems therefore
need a deep understanding of the ongoing situation which enables reasoning tasks
for healing operations. Abstraction is a key technique that provides a description
of systems, their behaviours, and/or their environments alleviating their complexity.10

Adaptation is a cornerstone feature that enables reconfiguration at runtime for
optimising software to the current and/or future situation.

The model-driven engineering (MDE) methodology promotes the use of abstrac-
tion in software engineering. However, information concerning the grid, such as
loads, is not always known with absolute confidence. Through the thesis, this lack of15

confidence about data is referred to as data uncertainty. They are approximated
from the measured consumption and the grid topology. This topology is inferred
from fuse states, which are set by technicians after their services on the grid. As
humans are not error-free, the topology is therefore not known with absolute confi-
dence. This data uncertainty is propagated to the load through the computation20

made. If it is neither present in the model nor considered by the adaptation process,
then the adaptation process may make suboptimal reconfiguration decisions.

The literature refers to systems which provide adaptation capabilities as dynam-
ically adaptive systems (DAS). One challenge in the grid is the phase difference
between the monitoring frequency and the time for actions to have measurable25

effects. Actions with no immediate measurable effects are named long-term ac-
tions. On the one hand, an incident should be detected in the next minutes. On

the other hand, a reconfiguration action can take up to several hours. For example,
when a tree falls on a cable and cuts it during a storm, the grid manager should be
noticed in real time. The reconfiguration of the grid, to reconnect as many people
as possible before replacing the cable, is done by technicians who need to use their
cars to go on the reconfiguration places. In a fully autonomous adaptive system, the5

reasoning process should consider the ongoing actions to avoid repeating decisions.

Problematic Data uncertainty and long-term actions are not specific to
smart grids.

First, data are, almost by definition, uncertain and developers work with
estimates in most cases. Hardware sensors have by construction a precision that10

can vary according to the current environment in which they are deployed. A simple
example is the temperature sensor that provides a temperature with precision to the
nearest degree. Software sensors approximate also values from these physical sensors,
which increases the uncertainty. For example, CPU usage is computed counting
the cycle used by a program. As stated by Intel, this counter is error-prone1.15

Second, it always exists a delay between the moment where a suboptimal state
is detected by the adaptation process and the moment where the effects of decisions
taken are measured. This delay is due to the time needed by a computer to process
data and, eventually, to send orders or data through networks. For example,
migrating a virtual machine from a server to another one can take several minutes.20

Through this thesis, we argue that this data uncertainty and this
delay cannot be ignored for all dynamic adaptive systems. To know if
the data uncertainty should be considered, stakeholders should wonder if this
data uncertainty affects the result of their reasoning process, like adap-
tation. Regarding long-term actions, they should verify if the frequency of the25

monitoring stage is lower than the time of action effects to be measur-
able. These characteristics are common to smart grids, cloud infrastructure or
cyber-physical systems in general.

Challenge These problematics come with different challenges concerning the
representation of the knowledge for DAS. The global challenge addresses by this30

thesis is: how to represent an uncertain knowledge that can be efficiently
queried with ongoing actions in order to improve adaptation processes?

Vision This thesis defends the need for a unified modelling framework
which includes, besides all traditional elements, temporal and uncer-
tainty as first-class concepts. Therefore, a developer will be able to abstract35

1https://software.intel.com/en-us/itc-user-and-reference-guide-cpu-cycle-
counter

https://software.intel.com/en-us/itc-user-and-reference-guide-cpu-cycle-counter
https://software.intel.com/en-us/itc-user-and-reference-guide-cpu-cycle-counter

information related to the adaptation process, the environment as well as the
system itself.

Concerning the adaptation process, the framework should enable abstraction
of the actions, their context, their impact, and the specification of this process
(requirements and constraints). It should also enable the abstraction of the system5

environment and its behaviour. Finally, the framework should represent the
structure, behaviour and specification of the system itself as well as the actuators
and sensors. All these representations should integrate the data uncertainty.

Contributions Towards this vision, this document presents two contributions: a
temporal context model and a language for uncertain data.10

The temporal context model allows abstracting past, ongoing and future actions
with their impacts and context. First, a developer can use this model to know
what the ongoing actions, with their expected future impacts on the system, are.
Second, she/he can navigate through past decisions when they led to a sub-optimal
state to understand why they have been made .15

The language, named Ain’tea, integrates data uncertainty as a first-class citizen.
It allows developers to attach data with a probability distribution which represents
their uncertainty. Besides, it maps all arithmetic and boolean operators to un-
certainty propagation operations. Thus, developers can automatically propagate
the uncertainty of data without additional effort, compared to an algorithm which20

manipulates certain data.

Validation Each contribution has been evaluated separately. First, the context
model has been evaluated through the performance axis. The dissertation shows
that it can be used to represent the Luxembourg smart grid. The model also
provides an API which enables the execution of query for diagnosis purpose. In25

order to show the feasibility of the solution, it has also been applied to the use case
provided by the industrial partner.

Second, the language has been evaluated through two axes: its ability to
detect errors at development time and its expressiveness. Ain’tea can detect
errors in the combination of uncertain data earlier than state-of-the-art approaches.30

The language is also as expressive as current approaches found in the literature.
Moreover, we use this language to implement the load approximation of a smart
grid furnished by an industrial partner, Creos S.A.2.

Keywords: dynamically adaptive systems, knowledge representation, model-
driven engineering, uncertainty modelling, time modelling35

2Creos S.A. is the power grid manager of Luxembourg. https://www.creos-net.lu

https://www.creos-net.lu

Contents

I Context and challenges in modelling adaptive systems 1

1 Introduction 3
1.1 Context . 4
1.2 Challenges . 5

1.2.1 Engineering uncertainty-aware software 5
1.2.2 Reasoning over long-term actions 6
1.2.3 Diagnosing the adaptation process 7
1.2.4 Modelling inconsistent states of systems 8
1.2.5 Modelling temporal and interconnected data 9

1.3 Scope of the thesis . 10
1.4 Contribution & validation . 10
1.5 Structure of the document . 12

2 Background 15
2.1 Adaptive systems . 16

2.1.1 Principles and vision . 16
2.1.2 Models@run.time . 18
2.1.3 Characterisation of information of the knowledge 19
2.1.4 Key concepts for this thesis 21

2.2 Model-Driven Engineering . 21
2.2.1 Principles and vision . 22
2.2.2 Metamodel, model . 23
2.2.3 Tooling . 24
2.2.4 Concepts used in this thesis 25

2.3 Software Language Engineering . 26
2.3.1 Software Languages . 26
2.3.2 SLE in this thesis . 27

2.4 Probability theory . 27
2.4.1 Random variables . 28
2.4.2 Distribution . 28
2.4.3 Distribution used in this thesis 29

3 Motivating example: smart grid 31
3.1 Smart grid overview . 32
3.2 Data uncertainty . 33

3.2.1 Impacts of ignoring data uncertainty 33
3.2.2 Managing uncertainty is not effortless 34

3.3 Long-term actions . 38
3.3.1 Examples . 38
3.3.2 Use case scenario . 42

4 State of the art 45
4.1 Review methodology . 46
4.2 Results RQ1: long-term actions . 48

4.2.1 Modelling the evolution of system’s context, structure, or
behaviour . 48

4.2.2 Modelling actions, their circumstances, and their effects . . . 51
4.2.3 Reasoning over evolving context or behaviour 55
4.2.4 Modelling and reasoning over long-term actions 58

4.3 Results RQ2: data uncertainty . 58
4.3.1 Categories of data uncertainty 59
4.3.2 Modelling data uncertainty 60
4.3.3 Propagation and reasoning over uncertainty 63
4.3.4 Modelling of data uncertainty and its manipulation 65

4.4 Threat to validity . 66
4.5 Conclusion . 66

II Towards a modelling frameworks for adaptive systems 69

5 Uncertainty and time in modeling frameworks 71
5.1 Summary of previous chapter . 72
5.2 Vision . 72

6 Ain’tea: managing data uncertainty at the language level 75
6.1 Uncertainty as a first-class language citizen 77

6.1.1 Language overview . 77
6.1.2 Uncertain boolean . 78
6.1.3 Uncertain number . 83
6.1.4 Uncertain references . 89
6.1.5 Static semantic: typing rules 91

6.2 Evaluation . 92
6.2.1 Ain’tea: our implementation 93

6.2.2 Conciseness . 95
6.2.3 Error handling at development time 98
6.2.4 Discussion . 99

6.3 Conclusion . 101

7 A temporal knowledge metamodel of adaptive systems 103
7.1 Knowledge formalization . 104

7.1.1 Formalization of the temporal axis 105
7.1.2 Formalism of the knowledge 106
7.1.3 Application on the use case 109

7.2 Modelling the knowledge . 113
7.2.1 Parent element: TimedElement class 113
7.2.2 Knowledge metamodel . 113
7.2.3 Context metamodel . 114
7.2.4 Requirement metamodel . 115
7.2.5 Action metamodel . 116

7.3 Validation . 117
7.3.1 Diagnostic: implementation of the use case 117
7.3.2 Reasoning over unfinished actions and their expected effects 120
7.3.3 Performance evaluation . 121
7.3.4 Discussion . 124

7.4 Conclusion . 126

III Conclusion and future work 127

8 Conclusion 129
8.1 Summary . 130
8.2 Future work . 131

8.2.1 Software language and uncertain data 132
8.2.2 (Self-)Explanation of adaptive systems 135

Glossary i

Abbreviations v

List of publications and tools vi

List of figures viii

List of tables ix

French summary - Résumé en français xi
8.3 Contexte . xii
8.4 Défis . xiii

8.4.1 Ingénierie de logiciels sensibles à l’incertitude xiii
8.4.2 Raisonnement sur les actions à long terme xv
8.4.3 Diagnostic du processus d’adaptation xvi
8.4.4 Modélisation des états incohérents des systèmes xvii
8.4.5 Modélisation des données temporelles et interconnectées . . xvii

8.5 Périmètre de la thèse .xviii
8.6 Contribution & validation . xix

Bibliography xxiii

Part I

Context and challenges in
modelling adaptive systems

1

1
Introduction

Contents
1.1 Context . 4
1.2 Challenges . 4
1.3 Scope of the thesis . 9
1.4 Contribution & validation . 10
1.5 Structure of the document . 12

Model-driven engineering methodology and dynamically adaptive systems ap-
proach are combined to tackle challenges brought by systems nowadays. After
introducing these two software engineering techniques, we describe five problems
that we identified for such systems: data uncertainty, actions with long-term effects,
emergent behaviours of such systems, different evolution paces of the subparts,
and the temporal dimension in their structures and behaviours. We present the
challenges that come with these problems. Before describing the two contributions
of this thesis, we scope to the addressed sub-challenges tackled.

3

Model Systemupdates
Adaptation

process

re-configures

Environment

used as knowledge by

adds result in

Focus

Figure 1.1: Overview of the models@run.time and focus of the thesis

1.1 Context
Self-Adaptive Systems (SAS) optimize their behaviours or configurations at run-

time in response to a modification of their environments or their behaviours [CdLG+09].
Kephart and Chess [KC03] laid the groundwork for this approach, based on an
IBM white paper [Com+06]. Since then, practitioners have applied it to differ-5

ent domains [GVD19] such as cloud infrastructure [JG17; Tea15; BKF+17] or
Cyber-Physical System (CPS) [LGC17; FMF+12; HFK+14a]. One example of such
a system is a smart grid, which employs the adaptation capacity to heal itself
autonomously.

A smart grid is a power grid in which utilities introduce Information and10

Communication Technology (ICT) to face the new challenges of electricity sup-
ply [Far10; IA09; FMX+12]. One of the required feature is the self-healing capacity.
A self-healing system can automatically repair any incident, software or hardware,
at runtime [KC03]. For example, a smart grid can optimise the power flow to deal
with failures of transformers1 [FMX+12].15

The adaptation process can be performed only if the system has a deep under-
standing of the situation and the problem. In this case, the situation comprises the
structure (elements that compose the system), the behaviour (the set of possible
executions of the system) and the environment (where it is executed) of the system.
This understanding can be extracted from an, or a set of, abstraction(s) of these20

elements. Abstractions provide a description of systems, their behaviours, or their
environments. For example, Hartmann et al., [HFK+14b] provide a class diagram
that describes the smart grid topology, when it uses power lines communications2.

Model-Driven Engineering (MDE) defenders argue for using the abstrac-
tion mechanism to facilitate the development of current software [Sch06; Ken02;25

BCW17]. This methodology can be applied to different stages of software develop-
ment. In this thesis, we focus on one of its paradigms: models@run.time [BBF09;

1Transformers change the voltage in the cables.
2Data are sent through cables that also distribute electricity.

4

time

cable load

Real value

Uncertainty
of the data

Confidence level

Threshold to detect an overload

Overload detected whereas
the situation is normal

Figure 1.2: Illustration of the problem due to data uncertainty

MBJ+09]. As we depict in Figure 1.1, using this paradigm, the adaptation process
relies on a model for analysing the situation and triggering the adaptation. In
this document, we say that the model represents the knowledge of the adaptation
process. Developers can use this paradigm to implement adaptive systems [MBJ+09;
HFK+14a]. This dissertation contributes to this modelling layer.5

1.2 Challenges
During our study, we have identified five characteristics of adaptive systems that

bring challenges to the software engineering research community. First, information
gathered is not always known with absolute confidence. Second, reconfigurations
may not be immediate, and their effects are not instantaneously measured. Third,10

system behaviour may be emergent [ZA11], i.e., it cannot be entirely known at
design time. Four, the different sub-parts of the system do not evolve at the same
rate. Five, structure and behaviour of systems have a time dimension. The last one
has been published in our vision paper regarding time awareness in MDE [BHM+17].
We detailed them in this section.15

1.2.1 Engineering uncertainty-aware software
Most fuses are manually opened and closed by technicians rather than auto-

matically modified. Then, technicians manually report the modifications done
on the grid. Due to human mistakes, this results in errors. The grid topology is
thus uncertain. This uncertainty is propagated to the load approximation, used20

to detect overloads in the grid. Wrong reconfigurations might be triggered, which

5

could be even worse than if no change would have been applied.
More generally, data are, almost by definition, uncertain and devel-

opers work with estimates in most cases [BMM14; Met08; AY09]. The
uncertainty may be explained by how data are collected. We can distinguish three
categories: sensors, humans, and results of computations. Sensors (software or5

hardware) always estimate the value and have a precision value due to the method
of measurement [Met08; BMM14]. Humans are error-prone. Computations can
either give an approximation or be based on uncertain data. This uncertainty is
then propagated through all steps until the final result.

For a specific domain, this uncertainty may impact the understanding of the10

real situation as depicted in Figure 1.2. For example, the uncertainty of the Central
Processing Unit (CPU) clock is too low to damage the percentage load of the
processor. However, the uncertainty of the cable load in a smart grid may trigger
false detection of an overload, as depicted in Figure 1.2. If the data uncertainty
can mislead the understanding of a system behaviour or state, then15

developers should implement an uncertainty-aware system. For adaptive
systems, this lack of confidence may trigger suboptimal adaptations.

Therefore, we argue that data uncertainty impacts all the development stages
of software, from the design to the execution. Among the different stages, in this
thesis we focus on the design one. We firmly think that design techniques should20

provide mechanisms to help developers abstract and manipulating uncertain data.
The literature provides approaches to help engineers reason or manipulate

data uncertainty, or at least probability distributions. For example, believe func-
tions [Sha76] help to reduce this uncertainty by combining several sources of data.
The probabilistic programming [GHN+14] community provide frameworks and25

languages [MWG+18; BDI+17] to propagate probabilities through computations.
However, from the best of our knowledge, no study has been done to evaluate

the impact of data uncertainty on the development of software. The following
challenge still remains an open question for the software engineering community:

30

How to engineer uncertainty-aware software (design, implement, test, and vali-
date)?

1.2.2 Reasoning over long-term actions
Reconfiguring a smart grid implies to change the power flow by opening or

closing fuses. As said before, technicians need to drive physically to fuse locations
to modify their states. In the case of the Luxembourg smart grid, meters send35

energy measurement every 15 min, non-synchronously. Therefore, between the
time a reconfiguration of the smart grid is decided, and the time the effects are
measured, a delay of at least 15 min occurs. On the other hand, an incident should

6

time

Monitoring
frequency (fM)

Incident detected
Action triggered Effects measurable

Delay before measuring effects

Action is executed

t1 t2 t3

t1: time before executing the action t2: execution time t3: delay to measure effects
t1 + t2 + t3 >> fM

Tracing back effects to circumstances

Figure 1.3: Illustration of a long-term action

be detected in the next minutes. If the adaptation process does not consider this
difference of rates, it can cause repeated decisions.

More generally, a difference may exist between the monitoring frequency and the
time for action effects to be measured. One cause of this is what we call long-term
actions in this document, illustrated in Figure 1.3. A long-term action is defined as5

an action that takes time to be executed (delay to be executed and execution time)
or that have long-term effects. A second cause is an impossibility to reduce the
monitoring frequency since systems must be reactive in some cases. This difference
in rates may damage the decision process.

Therefore, we argue that decision-making processes should consider this10

delay if the frequency of the monitoring stage is lower than the time of
action effects to be measurable. From the best of our knowledge, none of the
approaches allows developers implementing such tools. One open challenge for the
research community is thus:

15

How to model, store, and query long-term actions with their effects?

1.2.3 Diagnosing the adaptation process
Smart grid behaviour is affected by several factors that cannot be controlled

by the grid manager. One example is weather conditions. Smart grids rely on an
energy production distributed over several actors. For instance, users, who were20

mainly consumers before, can now produce energy by adding solar panels on the
roof of their houses. The production of such energy depends on the weather, and

7

even on the season3. Despite this stochasticity of the behaviour, engineers need to
implement an adaptation process, that can lead to suboptimal grid configuration.

Faced with growingly complex and large-scale software systems (e.g. smart
grid systems), we can all agree that the presence of residual defects becomes
unavoidable [BdMM+17; MPS15; HBB15]. Even with a meticulous verification5

or validation process, it is very likely to run into an unexpected behaviour that
was not foreseen at design time. Alone, existing formal modelling and verification
approaches may not be sufficient to anticipate these failures [TOH17]. As such,
complementary techniques need to be proposed to locate the anomalous behaviour
and its origin in order to handle it in a safe way.10

Bencomo et al., [BWS+12] argue that comprehensive explanation about the sys-
tem behaviour contributes drastically to the quality of the diagnosis, and eases the
task of troubleshooting the system behaviour. To enable this, as shown in Figure 1.3,
we believe that adaptive software systems should be equipped with traceability
management facilities to link the decisions made to their (i) circumstances, that15

is to say, the history of the system states and the targeted requirements,
and (ii) the performed actions with their impact(s) on the system. In
particular, an adaptive system should keep a trace of the relevant histor-
ical events. Additionally, it should be able to trace the goals intended to
be achieved by the system to the adaptations and the decisions that20

have been made, and vice versa. Finally, in order to enable developers to
interact with the system in a clear and understandable way, appropriate abstraction
to enable the navigation of the traces and their history should also be
provided. In other words, one global challenge that remains unaddressed is:

25

How to trace back adaptation decision effects to their circumstances?

1.2.4 Modelling inconsistent states of systems
Every meter sends consumption and production data every 15 min. However,

this collection is not synchronous. That is, not all meters send their data at the
same timestamp. The global system, which receives all data, has not thus a global30

vision with the same freshness for all the part of the grid. Electricity data are
volatile: a peak or a drop may happen in less than a minute due to, for instance,
the starting or the finishing of a washing machine. Reconfiguration of the grid may
thus be suboptimal due to outdated information.

Different parts of a system may evolve at different rates. Some systems35

are heterogeneous in terms of hardware and software. This diversity results in
different evolution or reaction rates. For example, if some components are working

3The angle of the sun has an impact on the amount of energy produced by solar panels. This
angle varies according to the season.

8

on batteries, they will have a sleep cycle to save energy. Contrary, if some others
are running connected directly to a power source, they can react faster.

Despite this difference of rates, a global vision of a system at a precise time
point may be still required. The vision should deal with data that have different
freshness. For example, the adaptation process may require a global view of the5

system. In the worst case, some data would be outdated and cannot be used.
When designing the adaptation process, engineers need thus solutions to deal

with an inconsistent system state. One solution can, for example, seamlessly
estimate what should be the current value of outdated data. One global challenge
for the software engineering community is therefore:10

How to represent, query, and store inconsistent system states and behaviours?

1.2.5 Modelling temporal and interconnected data
Power flow is impacted by consumption and production of users, and by the

modifications of the topology. Knowing the last status of the grid is as important as15

knowing how it evolves. Based on the evolution, the grid operator can predict any
future incidents, like overloads. It could also compare this evolution of behaviour
with a normal one to detect, for example, any malicious behaviour.

Evolution of systems is inherently linked with a time dimension. Evo-
lution and time are two related concepts. For some systems, not only the last states20

are important but also how they evolve. Then, analysis processes will investigate
this evolution to know if it is a normal one or not. They can also use this evolution
to predict how systems will evolve. Based on these predictions, they can proact on
future incidents in the system.

Decisions are not made upon the last state of the system but how it evolves.25

The analysis process should thus navigate both in the structure of the system
and its behaviour over time. Engineers need efficient tooling to structure,
represent, query, and store temporal and interconnected data on a large
scale.

Time in software engineering is not a new challenge. For example, Riviera et30

al., [RRV08] have already identified time as a challenge for the MDE community.
Different approaches have been defined [BCC+15; KT12; KH10; HFN+14b].

However, we notice that research efforts made by the MDE community did
not focus on the modelling, persistence, and processing of evolving data. Thomas
Hartmann started addressing these challenging in his PhD thesis [Har16]. The final35

global challenge, not fully addressed, is thus:

How to structure, represent, query, and store efficiently temporal data on a large
scale?

9

1.3 Scope of the thesis
Among all the challenges described in the previous section, this thesis focuses on

three of them: data uncertainty (Section 1.2.1), long-term actions (Section 1.2.2),
and error-prone adaptation process (Section 1.2.3). More precisely, we address
three sub-problems of these challenges.5

Managing uncertainty requires significant expertise in probability and statistics
theory. The literature provides different solutions to manage uncertainty [Zad;
Met08; Sha76]. The application of these techniques requires a deep understanding
of the underlying theories and is a time-consuming task [VMO16]. Moreover, it is
hard to test and perhaps most importantly, very error-prone. In this thesis, we10

address thus the following problem:

Sub-challenge #1: How to ease the manipulation of data uncertainty for
software engineers?

Adaptation processes may rely on long-term action like resource migration in
cloud infrastructure. Due to the lack of information about unfinished actions and15

their expected effects on the system, the reasoning component may take repeated
or sub-optimal decisions. One step for enabling this reasoning mechanism is to
have an abstraction layer which can represent these long-term actions efficiently.
In this thesis, we, therefore, cope with the following challenge:

20

Sub-challenge #2: How to enable reasoning over unfinished actions and their
expected effects?

Due to the increasing complexity of systems, developers have difficulties in
delivering error-free software [BdMM+17; MPS15; HBB15]. Moreover, complex
systems or large-scale systems may have emergent behaviours. Systems very likely
have an abnormal behaviour that was not foreseen at design time. Existing formal25

modelling and verification approaches may not be sufficient to verify and validate
such processes [TOH17]. In such situations, developers usually apply diagnosis
routines to identify the causes of the failures. During our studies, we tackle the
following challenge:

30

Sub-challenge #3: How to model the decisions of an adaptation process to
diagnose it?

1.4 Contribution & validation
In this thesis, we argue that modern modelling frameworks should consider

uncertainty and time as first-class concepts. In this dissertation, I present two
contributions that support this vision. First, we define a language with uncertainty35

10

Figure 1.4: Overview of the language proposed, Ain’tea

at a first-class citizen: Ain’tea. We detail this contribution in Chapter 6. Second,
we define a metamodel, and we formalise it, of the knowledge of adaptive systems.
We present this contribution in Chapter 7.

Ain’tea: Managing Data Uncertainty at the Language Level This con-
tribution addresses the challenge of the manipulation of uncertain data (cf. Sub-5

Challenge #1). We propose Ain’tea, a language able to represent uncertain data
as built-in language types along with their supported operations. An overview
of the language is depicted in Figure 1.4. It contains a sampling of distributions
(Gaussian, Bernoulli, binomial, Dirac delta function, and Rayleigh) that covers
the different data types (booleans, numbers, and references). We implement a10

prototype of the language, publicly available on GitHub4. We use a real-world case
study based on smart grid, built with our partner Creos S.A.. It shows first that
our approach does not impact the conciseness of the language. Second, it highlights
the feasibility and the advantages of uncertainty-aware type checking systems on
the language level.15

This contribution is under submission at the JOT Journal5:
• “Ain’tea: Managing Data Uncertainty at the Language Level”, Mouline,

Benelallam, Hartmann, Bourcier, Barais, and Cordy

A temporal knowledge metamodel This contribution addresses the challenge
of reasoning over unfinished actions, and understanding of adaptive system be-20

haviour (cf. Sub-Challenge #2 and #3). First, we formalise the common core
concepts implied in adaptation processes, also referred to as knowledge. The
formalisation is based on temporal graphs and a set of relations that trace decision
impacts to circumstances. Second, we propose a framework to structure and store
the state and behaviour of a running adaptive system, together with a high-level25

Application Programming Interface (API) to efficiently perform diagnosis routines.
Our framework relies on a temporal model-based solution that efficiently abstracts
decisions, their corresponding circumstances, and their effects. We give an overview

4https://github.com/lmouline/aintea/
5http://www.jot.fm/

11

https://github.com/lmouline/aintea/
http://www.jot.fm/

Goal

ContextValueDecision

/goals1..*

1execute
*

/input

/impacted

*
*

*
*

ActionExecution

TemporalElement

Figure 1.5: Overview of the temporal knowledge model

Challenges Contributions Document
Chapt. 1

Conclusion

A temporal
knowledge model

Ain’tea

State of the art
Motivating example
Background
Introduction

Chapt. 2
Chapt. 3
Chapt. 4

Chapt. 6

Chapt. 7

Chapt. 8

Modelling inconsistent
states of system

Modelling temporal and
interconnected data

Ain’tea
A language that integrates uncertainty as

a first-citizen concept

Temporal knowledge model
Data structure to represent, store, and
query decisions of an adaptation process,
with their circumstances and effects

Engineering uncertainty-
aware software

Reasoning over long-
term actions

Diagnosing the
adaptation process

Uncertainty and time in
modeling frameworks

Chapt. 5

Figure 1.6: Structure of the document

of the metamodel in Figure 1.5. We demonstrate the applicability of our approach
by applying it to a smart grid based example. We also show that our approach can
be used to diagnose the behaviour of at most the last five days of a district in the
Luxembourg smart grid in ∼2.4 seconds.

Part of this contribution has been published at the IEEE International Confer-5

ence on Autonomic Computing6 (ICAC) and at the ACM/SIGAPP Symposium
On Applied Computing7 (SAC):
• “Enabling temporal-aware contexts for adaptative distributed systems”,

Mouline, Benelallam, Hartmann, Fouquet, Bourcier, Morin, and Barais
• “A Temporal Model for Interactive Diagnosis of Adaptive Systems”, Mouline,10

Benelallam, Fouquet, Bourcier, and Barais

1.5 Structure of the document
We split the remaining part of this document into seven chapters, as shown

in Figure 1.6. First, Chapter 2 describes the necessary background of the thesis.
Then, Chapter 3 describes a motivating example, based on a smart grid system. We15

6http://icac2018.informatik.uni-wuerzburg.de/
7http://www.sigapp.org/sac/sac2018/

12

http://icac2018.informatik.uni-wuerzburg.de/
http://www.sigapp.org/sac/sac2018/

present concepts related to MDE and adaptive systems. Based on this background,
we show the gap of the current state of the art in Chapter 4. Chapter 5 explains
our vision. Chapter 6 and Chapter 7 describe our two contributions. The former
details our language, Ain’tea, that integrates uncertainty as a first-class citizen.
The latter explains our temporal metamodel that can represent past and ongoing5

actions with their circumstances and effects. Finally, we conclude in Chapter 8,
and we present future work.

13

14

2
Background

Contents
2.1 Adaptive systems . 14
2.2 Model-Driven Engineering . 19
2.3 Software Language Engineering 24
2.4 Probability theory . 25

In this chapter, we describe the principles of the different software engineering
approaches related to this thesis: adaptive systems, Model-Driven Engineering
(MDE), and Software Language Engineering (SLE). Moreover, we introduce the
elements of the probability theory used in this thesis. For each of them, we also
detail the concepts used in our work, and we explicitly link them to our vision and
our contributions.

15

Environment

Managed
system

(or adaptive system)

Managing
system

Adaptation
goals

reads

adaptssenses

senses senses affects

Self-adaptive system

Figure 2.1: Conceptual vision of adaptive system (based on [Wey19])

2.1 Adaptive systems
This section introduces the background to understand adaptive systems. First,

we describe the principles and vision of adaptive systems. Before we characterise
the information used by an adaptation process, we detail a model-based technique
to implement them: models@run.time. Finally, we highlight the key concepts used5

in this thesis and link them to the contributions.

2.1.1 Principles and vision
Adaptive systems take their origins in the vision paper of Kephart and

Chess [KC03], which is based on the autonomic computing vision pushed by IBM
engineers [Com+06]. These systems are recognised by their ability to have their10

behaviour or structure adapted automatically in response to changes in their environ-
ment or of the systems themselves. This adaptation helps them to achieve their goals
based on high-level objectives [CdLG+09]. If a system performs itself this adaptation
mechanism with minimal interference, the literature refers to it as a SAS [BSG+09].

Danny Weyns identified two principles for adaptive systems [Wey19]: the15

internal and the external principles. The former one is based on the “discipline
split” defined by Andersson et al., [AdLM+09]: each adaptive system can be split
into two concerns. First, the domain concern categorises the part of the system
that deals with the purpose for which the system has been built. Second, the
adaptation concern handles the adaptation mechanism and interacts with the first20

one without interfering with it [KM90]. The external principle says that adaptive
systems should handle changes and uncertainties in their environment, the managed
systems, and the goal autonomously.

In addition to these principles, the literature has defined four adaptation
goals, usually called the self-* features [Com+06]: self-healing, self-optimising,25

16

self-configuring, and self-protecting. First, the healing capacity, defined when the
failures in the system can be automatically discovered, diagnosed, and repaired.
Second, the adaptation mechanism can be used to optimise the system by tuning
resources and balancing workloads. Third, the system can be autonomously config-
ured for dynamically adapting to the changes in the environment. Four, threats5

can be anticipated, detected, and identified by the adaptation process to protect
the managed system. Besides, we can add the self-organisation feature [Dem98]:
adaptive systems can “acquire and maintain themselves, without external con-
trol.” [WH04]. It is mainly discussed for distributed systems, where local rules are
applied to adjust their interactions and act co-operatively for adaptation. However,10

this mechanism can lead to emergent behaviour [WH04].

As depicted in Figure 2.1, each adaptive system is composed of four elements:
the environment, the managed system, adaptation goals, and the managing sys-
tem [Wey19]. The environment includes all external entities, virtual or physical,
with which the adaptive system interacts on each it effects [Jac97]. Only the15

elements that are monitored are part of the system. One may distinguish the
environment to the adaptive system as, contrary to the element of the adaptive
system, it cannot be directly impacted by the engineer. The managed system
evolves in the environment and covers all the part of the system that implements
the domain concern. In the literature, researchers use different names to refer to it:20

managed element [KC03], system layer [GCH+04], core function [ST09], base-level
subsystem [WMA12], or controllable plant [FHM14]. To enable the adaptation
process, the managed system should contain sensors, for monitoring, and actuators,
for modifications. This adaptation process needs adaptation goals to perform.
They are related to the managed system and mainly concern its software quality25

metrics [WA13]. At the roots of the self-* features, Kephart and Chess have defined
four families of goals: configuration, optimisation, healing, and protection [KC03].
Engineers can redefine these goals over time, which should consider the uncertainty
of the environment or the system. To express such goals, different approaches have
been defined, such as probabilistic temporal logic [CGK+] or fuzzy goals [BPS10].30

Finally, the managing system will use these goals to drive the adaptation of the
managed system in response to changes in the environment. It thus continuously
monitor the environment and the managing system. Researchers use different names
to refer to this element: autonomic manager [KC03], architecture layer [GCH+04],
adaptation engine [ST09], reflective subsystem [WMA12], controller [FHM14].35

In the literature, we can find different approaches to engineer adaptive sys-
tems [GCH+04]. Among them, the most used one took its inspiration from control
theory [BSG+09]: the feedback control loop. The common implementation is
the Monitor, Analyse, Plan, and Execute over knowledge (MAPE-k) loop [KC03;
Com+06], shown in Figure 2.2. This loop is split into four phases: monitoring,40

17

Plan

Execute

Managed system

Monitor

Analyse

Knowledge

Adaptation process

Managing system

Figure 2.2: MAPE-k loop (based on [KC03])

analyse, planning, and executing. During the monitoring phase, all information of
the managed system and the environment are put into the knowledge. Based on
the updated knowledge, the analyse phase detects any need for adaptation using
the adaptation goals. If any, the planning phase computes the set of actions to
adjust the managing system structure or behaviour. Finally, the executing phase5

completes the plan. From the MDE community, one approach to implement such
a feedback look is to use the models@run.time paradigm, explained in the next
section.

2.1.2 Models@run.time
The adaptation process needs to have a deep understanding of the system and10

its environment. Following the MDE methodology1, research efforts have led to
the models@run.time paradigm [MBJ+09; BBF09]. It stresses the use of a model
layer, causally connected to the system, and used by the adaptation process. The
causal connection encompasses two features of the model. First, the model reflects
the up-to-date state of the system (structure and behaviour) and its environment.15

Second, any modification of the model triggers a modification of the system. In this
way, the model can be used as an interface between the system and the adaptation
process, as shown in Figure 1.1. The layer can contain several models to represent
different aspect of the system at runtime [MBJ+09]: structure, behaviour, envi-
ronment, etc. Moreover, it can contains representation that guide the adaptation20

process [CGF+09; HHP+08] such as configurations point.
Following the MAPE-k, the model layer should structure the knowledge. In this

thesis, we define a metamodel of this knowledge to enable developers diagnosing,
understanding, and reasoning over long-term action (cf. Chapter 7). In the next

1MDE is a methodology that promotes the usage of models for software engineering activities
(cf. Section 2.2)

18

Element Description
Context Context data are characterised by: their volatility, their tempo-

rality, their uncertainty, their source, or their connection.
Requirement Three kinds of requirements: performance, specific quality, and

constraint.
Action Four pieces of information characterise an action: requirement(s)

to achieve, initial context, effects, and execution information
(start time, end time, status).

Table 2.1: Characterisation of information of the knowledge

section, we thus characterise the information that composes the knowledge.

2.1.3 Characterisation of information of the knowledge
General concepts of adaptation processes

Similar to the definition provided by Kephart [KC03], IBM defines adaptive
systems as “a computing environment with the ability to manage itself and dynam-5

ically adapt to change in accordance with business policies and objectives.
[These systems] can perform such activities based on situations they observe
or sense in the IT environment [...]” [Com+06].

Based on this definition, we can identify three principal concepts involved in
adaptation processes. The first concept is actions. They are executed to perform a10

dynamic adaptation through actuators. The second concept is business policies
and objectives, which is also referred to as the system requirements in the
domain of (self-)adaptive systems. The last concept is the observed or sensed
situation, also known as the context. The following subsections provide more
details about these concepts. Table 2.1 gives an overview of these different elements.15

Context
In this thesis, we use the widely accepted definition of context provided by

Dey [Dey01]: “Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and [the system], including the user20

and [the system] themselves”. In this section, we list the characteristics of this
information based on several works found in the literature [HIR02; HFN+14b;
BBH+10; PZC+14]. We use them to drive our design choices of our Knowledge
metamodel (cf. Section 7.2.2).
Volatility Data can be either static or dynamic. Static data, also called frozen,25

are data that will not be modified, over time, after their creation [HIR02; MSS13;
BBH+10]. For example, the location of a machine, the first name or birth date of

19

a user can be identified as static data. Dynamic data, also referred to as volatile
data, are data that will be modified over time.

Temporality In dynamic data, we may be interested not only in storing the
latest value, but also the previous ones [HFN+14b; HIR02]. We refer to these
data as historical data. Temporal data is not only about past values, but also5

future ones. Two kinds of future values can be identified, predicted and planned.
Thanks to machine learning or statistical methods, dynamic data values can be
predicted. Planned data are set by a system or a human to specify planned
modification on the data.

Uncertainty One of the recurrent problems facing context-aware applications is10

the data uncertainty [dLGM+10; HIR02; MSS13; BBH+10]. Uncertain data are
not likely to represent reality. They contain noise that makes it deviate from its
real value. This noise is mainly due to the inaccuracy and imprecision of sensors.
Another source of uncertainty is the behaviour of the environment, which can be
unpredictable. All the computations that use uncertain data are also uncertain by15

propagation.

Source In this dissertation, we distinguish three main categories of data source:
sensed, computed, profiled, and given. Sensed data are thous measured by a sensor
(hardware of software). Computed data result from a process that combine different
data. And profiled data are those that are learned. Finally, given data are static20

data manually set in a software.

Connection Context data entities are usually linked using three kinds of con-
nections: conceptual, computational, and consistency [HIR02; BBH+10]. The
conceptual connection relates to (direct) relationships between entities in the real
world (e.g. smart meter and concentrator). The computational connection is set25

up when the state of an entity can be linked to another one by a computation
process (derived, predicted). Finally, the consistency connection relates to entities
that should have consistent values. For instance, temperature sensors belonging to
the same geographical area.

Requirement30

Adaptation processes aim at modifying the system state to reach an optimal one.
All along this process, the system should respect the system requirements estab-
lished ahead. Through this thesis, we use the definition provided by IEEE [III17]:
“(1) Statement that translates or expresses a need and its associated constraints
and conditions, (2)Condition or capability that must be met or possessed35

by a system [...] to satisfy an agreement, standard, specification, or other formally
imposed documents".

Although in the literature, requirements are categorised as functional or non-

20

functional, in this document we use a more elaborate taxonomy introduced by
Glinz [Gli07]. It classifies requirements in four categories: functional, performance,
specific quality, and constraint. All these categories share a common feature: they
are all temporal. During the life-cycle of an adaptive system, a stakeholder can
update, add or remove some requirements [CA07; PSR10].5

Action
In the IEEE Standards [III17], an action is defined as: “process of trans-

formation that operates upon data or other types of inputs to create data,
produce outputs, or change the state or condition of the subject software”.

In the context of adaptive systems, we can define an action as a process that,10

given the context and requirements as input, adjusts the system behaviour. This
modification will then create new data that correspond to an output context. In
the remainder of this document, we refer to the output context as impacted context,
or effect(s). Whereas requirements are used to add preconditions to the actions,
context information is used to drive the modifications. Actions executions have a15

start time and a finish time. They can either succeed, fail, or be cancelled by an
internal or external actor.

2.1.4 Key concepts for this thesis
Adaptive systems have been proposed to tackle the growing complexity of

systems (structure and behaviour) and their environment. One common model for20

implementing them is the well-known MAPE-k loop, a feedback control loop based
on shared knowledge. Applying the models@run.time paradigm, this knowledge
can be structured by a model, which is causally connected to the system. This
model should represent the uncertain and time dimension of the knowledge. In
this thesis, we consider that the knowledge comprises information related to the25

context, the actions, and the requirements. In this thesis, we propose a meta-
model2 to represent the decisions made by the adaptation process over time (cf.
Chapter 7). Additionnaly, we define a language, Ain’tea, to propagate uncertainty
in the computation made during the adaptation process (cf. Chapter 6).

2.2 Model-Driven Engineering30

Abstraction, also called modelling, is the heart of all scientific discipline, in-
cluding computer science [Kra07]. One will abstract a system, computer or not,
a problem, or a solution to reason about it for a specific purpose. Abstraction
reduces the scope to relevant parts, removing the extra that complexify the under-
standing. For example, a climatologist models all elements that impact the global35

climate (wind, ocean current, temperature, ...), ignoring local information, like
2A metamodel is a model that defines another model (cf. Section 2.2).

21

the temperature under a forest, or global ones, like the solar system. In contrast,
astronomers model the solar system, ignoring all information regarding the Earth
climate.

In computer science, different modelling formalisms have been proposed. We
can cite the entity-relationship [Che76] that is used to describe the data model for5

relational databases. In the web community, they use the ontology [Gru95] formal-
ism to define the semantic web3 [BHL+01]. The software engineering community
applies the Unified Modelling Language (UML) [OMG17] to formalism software
system structure or behaviour.

Extending this need for abstraction to all software engineering activities, prac-10

titioners have proposed the MDE methodology [Sch06; Ken02]. This methodology
advocates the use of models, or abstractions, as primary software artefacts [WHR].
The contributions proposed in this thesis are in line with this vision. In the following
sections, we give an overview of the MDE methodology and how we will use it.

2.2.1 Principles and vision15

Global overview Software systems tend to be more and more complex. To
tame this complexity [FR07; Sch06], the MDE methodology suggests to use mod-
els for all the steps of software development and maintenance [Sch06; BCW17;
HRW11; BLW05; HWR+11; AK03]: design, evolution, validation, etc. The core
idea of this approach is two reduce the gap between the problem and the solu-20

tion space [Sch06]. Two main mechanisms have been defined: Domain Specific
Modelling Language (DSML) and model transformation. The former is based on
the separation of concern principle. Each concern4 should be addressed with a
specific language, which manipulates concepts, has a type system, and a seman-
tics dedicated to this concern. These languages allow to create and manipulate25

models, specific for a domain. The latter enables engineers to generate auto-
matically software artefacts, such as documentation, source code, or test cases.
Using these mechanisms, stakeholders can focus on their problem keeping in
mind the big picture. A well-known example is the Structured Query Language
(SQL) [fSta16] Using this language, engineers can query a relational database, the30

data model being the model. They don’t have to consider indexes (hidden behind
the concept of, for example, primary keys) or all the mechanisms to persist and
retrieve data from the disk.
Advantages and disadvantages Defenders of the MDE approach mainly high-
light the benefits of abstraction in software engineering[Sch06; Ken02; BLW05].35

First, using the same model, engineers can target different specific platforms. For
example, the ThingML [HFM+16] language allow specifying the behaviour of the

3The Semantic Web is defined as en extension of the Web to enable the processing by machines.
4The definition of concern is intentionally left undefined as it is domain-specific.

22

system through state machines. The same ThingML code can be deployed on differ-
ent platform such as Arduino, Raspberry Pi. Second, thanks to the transformation
engine, the productivity and efficiency of developers is improved. Third, models
allow engineers to implement verification and validation techniques, like model
checking [BK08], which will enhance the software quality. Finally, the models5

enable the separation of application and infrastructure code and the reusability of
models.

However, the literature has also identified some drawbacks of the MDE ap-
proach [Ken02; BLW05; WHR+13; HRW11]. First, it requires a significant initial
effort when the DSML needs to be defined. Second, current approaches do not10

allow the definition of very large models. This drawback can be mitigated with
new methods such as NeoEMF [BGS+14; DSB+17], which enable the storage of
large models, and Mogwaï [DSC16], a query engine for large models. Third, this
approach suffers from poor tooling support, as they should be reimplemented for
each model. As for the second drawback, recent contributions try to remove this15

limitation. For example, we can cite the work of Bousse et al., [BLC+18] that
define a generic omniscient debugger5 for DSML. Third, introducing MDE in a
software development team presents organisational challenges. It changes the way
developers interact and work together. Finally, abstraction is a two edges sword.
Indeed, reasoning at an abstract level may be more complex as some prefer to work20

with concrete examples and based on simulation.

Fundamentals concepts MDE is based on three fundamentals concepts: meta-
model, model, and model transformation. In this thesis, we do not use any
transformation technique. In the next section, we thus detail the concept of
metamodel and model.25

2.2.2 Metamodel, model
Metamodel Metamodels the different concepts in a domain and their relation-
ships. They represent the knowledge of a domain, for a specific purpose [BJT05].
Also, they define the semantics rules and constraints to apply [Sch06]. They can
be seen as models of models. In the MDE community, they are generally defined30

using the class diagram of the UML specification [OMG17], as shown in Figure 2.3.
They, therefore, contain classes, named metaclass, and properties (attributes or
references). In the language engineering domain, metamodels are used to define the
concepts that a language can manipulate (cf. Section 2.3). Object Management
Group (OMG)6 define a standard metamodeling architecture: Meta Object Facility35

5Debuggers, generally, allow engineers to execute step-by-step programs, that is, forward. An
omniscient debugger is also able to go backwards: to navigate back in the previous states of a
program [Lew03].

6https://www.omg.org/

23

https://www.omg.org/

Metamodel

Model

conforms to

SmartGrid

sg: SmartGrid

instance of

Class

Object

Cable Entity

c1: Cable substation: Entity

instance of instance of

instance of

Figure 2.3: Difference and relation between metamodel and model

(MOF) [Gro16a]. It is set aside with Object Constraint Language (OCL) [Gro14],
the standard constraint language to define constraints that cannot be specified
by a class diagram, and XML Metadata Interchange (XMI) [Gro15], the standard
data format to persist (meta)models.
Model Models capture some of the system characteristics into an abstraction5

that can be understood, manipulated, or processed by engineers or another system.
They are linked to their metamodels through the conformance relationship as
depicted in Figure 2.3. A model is conformed to exactly one metamodel if and
only if it satisfies all the rules of the metamodel. That is, each element of a
model should instantiate at least one element of the metamodel and respect all10

the semantics rules and constraints, that can be defined using OCL. Based on
these models, stakeholders can apply verification and validation techniques, such
as simulation and model checking, or model transformation. France et al., have
identified two classes of models [FR07]: development and runtime models. The
former are abstraction above the code level. It regroups requirements, architectural,15

or deployment models. The latter abstract runtime behaviour or status of systems.
They are the basis of the models@run.time paradigm, explained in Section 2.1.2.
The models@run.time paradigm uses metamodels to define the domain concepts
of a real system, together with its surrounding environment. Consequently, the
runtime model depicts an abstract and yet rich representation of the system context20

that conforms to (is an instance of) its metamodel.

2.2.3 Tooling
Tooling is an essential aspect of every approach to be adopted. Development

platforms allow developers to create, manipulate, and persist (meta)models through
high or low-level programming interfaces. For example, a graphical language can25

be used for this purpose. Additionally, these tools should embed transformation
engines such as a code generator.

In the MDE community, the standard tool is the Eclipse Modelling Frame-

24

work (EMF) [SBM+08]. It is the defacto baseline framework to build mod-
elling tools within the Eclipse ecosystem. It embeds its metamodelling language,
ECore [SBM+08; Fou10]. ECore is thus the standard implementation of Essential
MOF (EMOF) [Gro16a], a subset of MOF that corresponds to facilities found in
object-oriented languages. As written on the EMF-website7, this modelling frame-5

work “provides tools and runtime support to produce a set of Java classes for the
model, along with a set of adapter classes that enable viewing and command-based
editing of the model, and a basic editor”.

However, as highlighted by Fouquet et al., [FNM+14; FNM+12], models gen-
erated by EMF have some limitations, which prevent their use for the models-10

@run.time paradigm. The models@run.time can be used to implement an adaptive
Internet of Things (IoT) systems8. These systems contain small devices, like micro-
controllers, that have limited memory, disk space, and process capacity. If one
wants to deploy a model on it, thus it should have a low memory footprint, a low
dependency size, a thread safety capacity, an efficient model (un)marshalling and15

cloning, a lazy loading mechanism, and compatibility with a standard design tool,
here EMF. However, the approaches at this time failed to tame the first four require-
ments. They, therefore, define Kevoree Modelling Framework (KMF) [FNM+14;
FNM+12], a modelling framework specific to the models@run.time paradigm.

Hartmann extended this work and created the GreyCat Modelling Environment20

(GCM)9. Using this environment, a developer can create high-scalable models,
designed for models@run.time[HFN+14b; MHF+15], with time as a first-class
concept. All metaclasses have a default time attribute to represent the lifetime of
the model element that instantiates it. The created models are object graphs stored
on a temporal graph database, called GreyCat10 [HFM+19; Har16]. In addition to25

time, metamodels defined by GCM can have an attribute with a value computed
from a machine learning algorithm [HMF+19]. Based on the metamodel definition,
a Java and a Javascript API are generated, to manipulate the model, i.e., the
temporal object graph.

2.2.4 Concepts used in this thesis30

The models@run.time paradigm is a well-known approach to handle the chal-
lenges faced in adaptive system development. Plus, the GCM has been designed to
design a data model, with time as the first-class concept. In this thesis, we will use
this tool to define a metamodel to abstract the knowledge of adaptive systems (cf.

7https://www.eclipse.org/modeling/emf/
8Definition of IoT by Gubbi et al., [GBM+13]: “Interconnection of sensing and actuating

devices providing the ability to share information across platforms through a unified framework,
developing a common operating picture for enabling innovative applications.”

9https://github.com/datathings/greycat/tree/master/modeling
10https://greycat.ai/

25

https://www.eclipse.org/modeling/emf/
https://github.com/datathings/greycat/tree/master/modeling
https://greycat.ai/

Abstract
 metamodel

Concrete
 textual or graphicalStatic

 e.g., type system

Dynamic
Semantics Syntax

Software Language

Figure 2.4: Composition of a software language

Chapter 7).

2.3 Software Language Engineering
As stated by Favre et al., [FGL+10], software languages are software. Like

traditional software, they need to be designed, tested, deployed, and maintained.
These activities are grouped under the term Software Language Engineering (SLE)5

[Kle08]. Before explaining the role of software languages in this thesis, we will first
define them in this section.

2.3.1 Software Languages
Most of, not to say all of, developers have used, at least once, a programming

language to develop software. For example, one may use JavaScript to implement10

client-side behaviour of a web site and another one C to implement a driver. We
can distinguish another kind of language, named modelling languages. Those
models allow developers to implement a model. For example, we can argue that
many developers have already used the HTML language to implement a Document
Object Model (DOM)11 With the emergence of executable models12, the difference15

between models and programs are more and more blurry. So it is for the difference
between programming and modelling language. Hence, Annake Kleppe uses the
term software language to combine both kinds of languages.

Another way to classify software languages is by their scope [vDKV00]. General
Purpose Language (GPL) are languages that can be used for any domain whereas20

Domain Specific Language (DSL)13 that are restricted to a specific domain. Using a
GPL, a developer can use it to implement a full software benefit from great tooling
support. However, she may manipulate concepts that are different from those
of the problem space. For example, implementing an automatic coffee machine
in Java, she will have to manipulate the concept of class, object, functions. In25

11“The DOM is a platform -and language- neutral interface that will allow programs and scripts
to dynamically access and update the content, structure and style of [web] documents.” [W3C05]

12Executable models are models that have a semantics attached to their concepts.
13In this thesis, we do not make the difference between DSML and DSL

26

contrary, DSLs are close to their problem domain [vDK98] but might suffer from
poor tooling support [Voe14]. As for MDE, there are some research efforts to
remove this disadvantage [BLC+18]. Using DSLs, developers can have simpler code,
easier to understand and maintain [vDKV00; vDK98].

As depicted in Figure 2.4, Software languages are composed of two parts [HR04]:5

syntax and semantics. The syntax defines the element allowed in the language
and the semantics their meaning. We can distinguish two kinds of syntax: the
abstract one and the concrete one. The abstract one defines the different concepts
manipulated with the language and their relationships. A metamodel can express
it. The concrete abstract describes how these concepts are represented. It exists10

two categories of concrete syntax: graphical and textual. As for the syntax, there
are two kinds of semantics: the static and the dynamic. The static semantics
defines the constraints of the abstract syntax that cannot be directly expressed
in the formalism chosen. For example, the static semantics will define uniqueness
constraints for some elements or will forbid any cycle in dependencies (if any). The15

type system usually goes in part of the static semantics. The dynamic semantics
defines the behaviour of the language.

When designing a language, engineers can start with the abstract or with the
concrete abstract. In the first case, we say that they define the language in a
model-first way. Others will prefer to start by the concrete syntax, and thus they20

are using a grammar-first approach. Some tools, like XText [EB10], can generate
the model automatically from the grammar.

2.3.2 SLE in this thesis
In our vision, we argue that uncertainty should be considered as a first-class

citizen for modelling frameworks. This modelling framework should allow the25

definition of metamodels with uncertainty management capacities. As described in
the previous sections, these metamodels can correspond to the abstract syntax of a
language. As a contribution, we, therefore, propose a language with uncertainty as
a first-class citizen: Ain’tea(cf. Chapter 6).

2.4 Probability theory30

Data uncertainty, and more generally uncertainty, is linked with confidence.
Indeed, the confidence level that one can give to data depends on its uncertainty.
The more uncertain value is, the less trust it can be placed in it. However, it is
rather difficult to put exact numbers on this confidence level. A strategy used
by experts to formalise this confidence level, and thus the uncertainty, is to use35

probability distributions.
In this section, we thus introduce the necessary concepts of these distributions.

We first describe the concept of random variables in probability theory. Then we

27

describe what a probability distribution is and the properties that will be used in
this thesis. Finally, we will explain the distributions used in this thesis.

2.4.1 Random variables
Definition The three base elements of the probability theory are: an outcome, an
event, and a sample space. An outcome is the occurrence of a random phenomenon.5

An event is a set of outcomes, and a sample space S is the set of all possible
outcomes. Let us take an example: the rolling of two dice. i denotes the result of
one die and j the result of the other. An example of an outcome is the result of a
roll, like the pair (2, 6). An event could contain all outcomes where both dice have
an even result: E = {(i, j) | i, j ∈ {2, 4, 6}}. The sample space of our example is10

this equals to: S1 = {(i, j) | i, j ∈ {1, 2, . . . , 6}}. We thus have:
A random variable is a function from the sample space S to R. In our example,

we can define two random variables X and Y that represent, respectively, the
minimum of the two dice and the sum of the two. We have thus: X = min(i, j)
and Y = i + j.15

Discrete and continuous Random variable can be either discrete or continuous.
For discrete random variables, we can list all the events of the sample space, whereas
we cannot for continuous ones. For example, it is possible to list all results of the
rolling of n dice, n ∈ N. But we cannot list all possible temperatures of a room (if
we consider that we have an infinite precision).20

Independence and disjoint Independence and joint are defined at the event
level. Two events are independent if the probability of occurrence of one does not
impact the probability of occurrence of the others. Two events are disjoint if and
only if they do not share any outcome. Mathematically speaking, events A and B
are independent if and only if P (A ∩B) = P (A) ∗ P (B), and they are disjoint if25

and only if P (A ∩B) = 0.

2.4.2 Distribution
A probability distribution of a random variable X is a function that gives the

probability that X takes on the values x, for all possible values of the sample
space. Here, we can distinguish two cases: discrete and continuous distributions.30

A distribution is said discrete when it is based on a discrete random variable, and
continuous when the random variable is continuous.

The difference that will interest us in this thesis between the two is how they
compute the probability, and thus the confidence level. For discrete distributions,
the probability that X = x corresponds to the result of the function. By definition,35

the probability that the random variable is inferior to a vale x is thus equals to the
sum of probability for X < x.

Contrary, for continuous distribution, the probability is mapped to the area

28

(a) Gaussian (b) Rayleigh (c) binomial (d) Dirac delta function

Figure 2.5: Probability distributions used in this thesis

under the function that which defines the probability distribution, i.e., the integral
of the function. For example, the confidence that a given uncertain value is greater
than zero is the surface under the function f(x) for any f(x) | f(x) > 0. As the
area under a precise point is null, the probability that a continuous random variable
equals x is zero.5

2.4.3 Distribution used in this thesis
Probability distributions have proven their ability to represent uncertain data.

Among the existing distributions, in this thesis, we use on five of them: Gaussian
(or Normal) distribution, Rayleigh distribution, binomial distribution, Bernoulli
distribution and the Dirac delta function. We give an example of these distributions10

in Figure 2.5. The Gaussian and the Rayleigh distributions will represent continuous
distributions. The Bernoulli and the binomial one represent discrete distributions.
Finally, the Dirac delta function can represent the confidence level of exactly one
value.

Bernoulli distribution Bernoulli distribution represents the distribution of a15

binary phenomenon. One well-known example is the flip of a fair coin. Bernoulli(p)
denotes a random variable that equals 1 with a probability of p and 0 with a
probability of (1− p). Following the coin example, 1 can represent the head and 0
tail.

Binomial distribution The binomial distribution represents the probability of20

success of a binary phenomenon over a set of trials. Figure 2.5c illustrates an
example of a Binomial distribution. It is defined by two parameters: n and p. n
is the number of trials done and p the probability of success. By definition, it is
defined over a discrete domain, more specifically on the set of natural number N.
In this case, the confidence level corresponds to the values of the function.25

It has been proven that this distribution is similar to a Gaussian distribution
in certain cases [BHH05]. If the domain definition can be changed from discrete to
continuous, a binomial distribution can be approximated by a Gaussian distribution.

29

Gaussian (or Normal) distribution The Gaussian distribution, commonly
referred to as normal distribution, is the most general probability distribution. For
example, the International Bureau of Weights and Measures encourages the use
of this distribution to quantify the uncertainty of measured values [Met08]. It is
defined by two parameters: a mean and a variance. The distribution is defined on5

a continuous domain:]−∞; +∞[. An example of this distribution is illustrated in
Figure 2.5a.
Rayleigh distribution Another distribution defined on a continuous domain
([0; +∞[) is the Rayleigh distribution. It is often used for GPS positions [Bor13].
This distribution is defined using a unique parameter: a variance. We depict an10

example of this distribution in Figure 2.5b.
Dirac delta function The Dirac delta function is defined as a probability
function with f(x) = +∞ for x = 0 and f(x) = 0 for all the other points. To
represent other values than zero, the following variable substitution can be used
x = x− a, where. We call a the shifting value. By definition, the integral of this15

function on the whole domain definition is equal to 1. As it is considered as a
continuous distribution, confidence is mapped to the integral of the function. By
applying a coefficient, we can modify the value of this integral, e.g., to have 0.8
as the integral. We define this probability distribution using two parameters a
coefficient and a shifting value. An example of this probability distribution is shown20

in Figure 2.5d. Conventionally, the Dirac function is represented as a vertical line
that stops at the coefficient. The figure shows a Dirac function with a coefficient of
0.8 and a shifting value of 3. As it is defined on a single value, this distribution can
be used for any numbers. This distribution can be used to represent uncertainty
that is due to human errors.25

30

3
Motivating example: smart grid

Contents
3.1 Smart grid overview . 30
3.2 Data uncertainty . 31
3.3 Long-term actions . 36

In this chapter, we present our motivating example, based on the Luxembourg
Smart Grid. This example has been built in collaboration with our partner, Creos
S.A., the Luxembourgish grid manager. We first several examples of long-term
action and then we motivate the need for a language with uncertainty as a first-class
citizen with code samples.

31

In this chapter, we exemplify the impacts of uncertain data and long-term
actions on a smart grid system. We built these example with Creos Luxembourg,
our partner1. We first give an overview of a smart grid. Then, we focus on cable
load estimation and the impacts of not taking uncertainty into consideration. Then,
we concentrate on the reconfiguration feature of smart grids and the effect of5

long-term action. We also extend this example with other examples from other
domain such as cloud infrastructure.

3.1 Smart grid overview

Cabinet

Substation

Fuse 1 Fuse 2

Fuse 3 Fuse 4

Fuse 5

Arbitrary
number of

smart meters
Total

consumption:
14A

Arbitrary
number of

smart meters
Total

consumption:
25A

Arbitrary
number of

smart meters
Total

consumption:
10A

(a) Electricity flow 1

Cabinet

Substation

Fuse 1 Fuse 2

Fuse 3 Fuse 4

Fuse 5

Arbitrary
number of

smart meters
Total

consumption:
14A

Arbitrary
number of

smart meters
Total

consumption:
25A

Arbitrary
number of

smart meters
Total

consumption:
10A

(b) Electricity flow 2

Figure 3.1: Two different electric flows for a same grid topology

The National Institute of Standards and Technology (NIST) defines a smart
grid as “a planned nationwide network that uses information technology to deliver10

electricity efficiently, reliably, and securely"2. Conceptually, a smart grid is com-
posed of different entities, like smart meters, cabinets (connection points of cables)
and power substations. These entities are connected, forming a network, and able
to exchange information using different technologies [HFK+14b; HMF+16].

The network is the connection linking the smart grid entities by means of15

physical cables. Every cable has a maximum load depending on its diameter and
the used material. Figure 3.1 depicts an example of such a network. This network
is composed of one substation, one cabinet, and an arbitrary number of smart
meters. Every cable has two fuses (to connect or disconnect the cable), one at

1Creos Luxembourg is the main grid operator in the country
2https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-beginners-

guide

32

https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-beginners-guide
https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-beginners-guide

each endpoint. By opening or closing fuses, one can influence the electricity flow
through the network. Figure 3.1a and 3.1b show two possible electricity flows over
the same physical network. We depict closed fuses in black and the direction of
the electricity flow using black arrows.

Smart meters continuously measure electricity consumption and periodically5

report it to a central data centre. Based on this information, together with the grid
topology, the electric load of cables can be computed. If the reader wants to go
more into the details of this computation, we invite him or her to read [HMF+16].
The flow has a big impact on the load cables. In Figure 3.1, we depict two different
flows for the same grid topology. In both cases, the measured electric consumption10

are equal. However, in Figure 3.1a the load on the left cable (thick line) equals
14+25+10

2 = 24.5 whereas it equals 14 + 25 + 10 = 49 in Figure 3.1b.
The central system monitors electric loads to avoid any overload in the network,

implementing the adaptive system vision. In the remaining part of this document,
we refer to this goal as the "no overload" policy. They have two action points: either15

on the production side or the consumption side. They can reduce or increase the
production by (dis)connecting production unit or the consumption by modifying
the maximum permitted consumption. We called these actions: reduce production,
increase production, reduce amps limit and increase amps limit. However, as all
adaptive systems, smart grids are prone to failures [HFK+14a]. In case of a failure,20

an engineer could diagnose the system, and determine the adaptation process
responsible for this failure. For instance, considering some reports about regular
power cuts during the last couple of days, in a particular area, a stakeholder may
want to interrogate the system and determine what past decision(s) have led to
this suboptimal state. More concretely, he will ask: did the system make any25

decisions that could have impacted the customer consumption? If so, what goal(s)
the system was trying to reach and what were the values used at the time the
decision(s) was(were) made?

3.2 Data uncertainty
3.2.1 Impacts of ignoring data uncertainty30

Although power grids are becoming more and more automated, today human
interventions are still the norm. For example, most fuses are manually modified by
technicians rather than automatically reconfigured. The states of fuses are thus
manually documented by technicians on the field. This of course results in mistakes.
One way to address this problem is to take uncertainty into consideration. This35

means considering fuse states as uncertain.
As a consequence, this uncertainty propagates to the load calculation formulas,

which depend on the fuse states. If the uncertainty of fuse states is not considered,
it exists a non-null probability that the observed phenomenon does not reflect

33

the real situation. For example, as we have seen in the previous subsection, a
modification of the electricity flow may impact the load of a cable with a factor of
2. Cable load approximations are used to detect cable overloads and to reconfigure
the network if necessary. By not considering uncertainty, wrong reconfigurations
might be triggered, which could worsen the situation.5

3.2.2 Managing uncertainty is not effortless
In the following, we describe how uncertainty is commonly handled by appli-

cation developers using current state-of-the-art approaches. We show, through
code samples, the limitations of these approaches and why we think that these
limitations can be addressed by integrating uncertainty management directly at10

the language level. In the code excerpts below, we compute the average cable load
over the whole grid based on uncertain cable loads. A complete version can be
found on the GitHub repository. All codes contain at least two classes: SmartGrid
and Cable. The former contains two fields: an array of Cables named cables and a
function to compute the average load of cables, named compute_avg_load. The15

latter contains one field: an uncertain number which represents the uncertain load.

Manual implementation One approach for managing uncertainty is to manu-
ally implement all the required features. Listing 3.1 illustrates this in Python. In
addition to the SmartGrid and Cable class, the excerpt contains an additional one:
UNumber.20

As we can see, this approach comes with several drawbacks. First, developers
are required to have deep knowledge of probability theory. For example, uncertainty
can be represented by a normal distribution identified by its mean and variance
as shown in the constructor (__init__), line 2. One needs knowledge on how
to represent it, how to add two normal distributions, etc. For example, here we25

overload the sum and the division operators for two normal distributions (__plus__
and __div__ methods).

Second, manual implementation inevitably increases the size of the code base.
This will de facto augment the risk of errors in the code. Plus, the code will be
more difficult to maintain afterwards.30

Third, although some languages offer the possibility to overload operators,
some typing errors can only be detected at runtime. For instance, since Python
is dynamically typed, performing an addition operation between two types of
uncertain numbers (i.e., represented by two classes) fails and raises an exception
only at runtime. Whilst, statically typed languages such as C# can detect such35

typing errors at development time. Nonetheless, the returned exception message
would not be particularly meaningful, as can be seen on the example of C#:
Operator ‘+’ cannot be applied to operands of type UNumber1 and UNumber2.

1class UNumber :40

34

2def __init__ (self , mean =0, variance =0):
3[...]
4
5def __add__ (self , other):
6[...] # typing error management + casting other to UNumber if it is a Number5
7return UNumber (self.mean + other .mean , self. variance + other . variance)
8
9def __div__ (self , other):
10[...] # typing error management + casting other to UNumber if it is a Number
11value = ((self.mean/ other .mean)10
12+ (self.mean* other . variance)) / pow(other .mean , 3)
13variance = (self. variance / other .mean) +
14(pow(self.mean , 2) * other . variance) / pow(other .mean , 4)
15return UNumber (value , variance)
1615
17class SmartGrid :
18[...]
19def compute_avg_load (self):
20sum_load = 0
21for c in self. cables :20
22sum_load += c.load
23return sum_load / len(self. cables)
24
25class Cable :
26def __init__ (self , id , load= UNumber (0, 0)):25
27[...]

Listing 3.1: Manual management of uncertainty in Python

Using existing libraries for probability theory Since uncertainty manage-
ment relies on probability theory, another approach is using a library implementing
common probability distributions. Staying in Python, there is a widely used library30

called SciPy3 and in particular the stats module, defining different probability
distributions. Whereas these libraries are suitable to compute different properties
of probability distributions, it remains the responsibility of developers to define
how to perform arithmetic operations on distributions, as depicted in Listing 3.2.

Using such libraries does not prevent developers to have a deep understanding35

of the probability theory. They have been designed to help them manipulating
probability distributions, but they still required knowledge about them. For
example, as shown in Listing 3.2, one may access the mean and the variance
of a normal distribution. However, she or he needs to know how two normal
distributions can be added. This also increases the code base and thus is prone to40

errors. Finally, as it is a library, typing errors will still remain either detected at
runtime or not helpful for developers.

1from scipy . stats import norm
245
3def add_gaussian (g1 , g2):
4[...]
5return norm(g1.mean () + g2.mean (), g1.var () + g2.var ())
6

3https://www.scipy.org/

35

https://www.scipy.org/

7def div_gaussian (g1 , g2):
8[...]
9
10class SmartGrid :
11[...]5
12def compute_avg_load (self):
13sum_load = 0
14for c in self. cables :
15sum_load = add_gaussian (sum_load , c.load)
16return div_gaussian (sum_load , len(self. cables))10
17
18class Cable :
19def __init__ (self , id , load=norm (0, 0)):
20[...]15

Listing 3.2: Limitation using a probability library (Python)

Using existing libraries for uncertainty Another commonly used approach
is to use existing libraries for data uncertainty. For example, in Python, using the
uncertainties [LEB18] library, a developer can manipulate uncertain floats using
variables of type ufloat. The uncertainty propagation is handled transparently. In
Listing 3.3, we depict the code of the load average computation using this library.20

The only difference from the previous code snippet, is the missing of the UNumber
class, not required anymore, and the use of the ufloat type for the cable load
variable.

Using a library can tackle the two first drawbacks existing in the previous
approach: required knowledge of probability theory and code complexity. Indeed,25

the implementation of the probability theory and its complexity are encapsulated
inside the library. We can argue that the library will be well tested and documented.
However, similarly to the previous example, this approach does not extend the
type system.

30
1from uncertainties import ufloat
2
3class SmartGrid :
4def __init__ (self):
5self. cables = []35
6
7def compute_avg_load (self):
8[...] # same as in Listing 3.1
9
10class Cable :40
11def __init__ (self , id , load= ufloat (0, 0)):
12[...]

Listing 3.3: Managing uncertainty in Python using uncertainties [LEB18]

Using a probability programming framework Developers can also use a
probabilistic programming framework like Infer.NET [MWG+18] or PyMC3 [SWF16].45

These frameworks allow defining complex probabilistic models and applying infer-
ence algorithms. Contrary to previously described libraries, these frameworks put

36

an effort to set a proper API. They can be thought as internal domain-specific
languages (DSL)[Fow10]4. In Listing 3.4, we show how the cable load can be
computed using the Infer.NET framework. This approach exposes probability
as a first-class language citizen. Hence, developers are expected to manipulate
probability distributions and not uncertain data types. This framework relies5

on an inference engine to transparently combine probability distributions. Using
such an approach requires a decent acquaintance with probability theory. We can
assume that they are heavily tested, which limits the number of errors. Plus, in
this framework they map arithmetic operators to the combination of probability
distributions: developers do not require to create additional work as with the10

library approach. But, as it is not implemented at the language level, the typing
system is not extended. Errors will thus either be raised at runtime or not be
helpful for developers.

1public class SmartGit {15
2public List <Cable > cables { get; private set; }
3private readonly InferenceEngine inference ;
4
5public Gaussian computeAvgLoad () {
6Variable <double > sum = Variable20
7. GaussianFromMeanAndVariance (0 ,0)
8. Named ("sum");
9int i = 0;
10foreach (Cable c in cables)
11sum = (sum + c.load). Named ("sum" + i);25
12i++;
13Variable <double > result = (sum / cables . Capacity). Named (" AvgLoad ");
14return (Gaussian) this. inference . Infer (result);
15}
16}30
17
18public class Cable {
19public Variable <double > load { get; set; }
20}35

Listing 3.4: Limitation using a probability programing framework (C#)

Sum-up Using state-of-art solutions to manage uncertainty, developers have three
possibilities: manual implementation, using existing libraries or using a probability
programming framework. As detailed in this section, these approaches will cope
with at least one of these drawbacks: developers require a deep understanding of the
probability theory, code base will increases which augments the risk of errors, and40

the type systems may detect errors at runtime or do not provide helpful messages.

4Martin Fowler defines a DSL as “a computer programming language of limited expressiveness
focused on a particular domain”[Fow10]. An internal DSL is defined inside a general-purpose
language, using only a subset of its concept.

37

3.3 Long-term action
3.3.1 Examples
Long-term actions

In this section, we motivate the need to reason over long-term actions. We first
give four examples of these actions. Then, we detail why the effects of actions should5

be considered. Finally, we summarise and motivate the need for incorporating
actions and their effects on the knowledge.

Long-term action examples In the previous sections, we have claimed that
adaptation processes should handle long-term actions. In order to show their
existence, we give four different examples: two based on our use case, one on cloud10

infrastructure and a last one on smart homes. From our understanding, three
phenomena can explain this delay: the time to execute an action(s) (Example
1), the time for the system to handle the new configuration (Example 3) and the
inertia of the measured element (Example 2 and 4).

Example 1: Modification of fuse states in smart grids Even if the15

Luxembourg power grid is moving to an autonomous one, not all the elements can
be remotely controlled. One example is the fuses that still need to be opened or
closed by a human operator. Open and close actions in the Luxembourg smart grid
both imply technicians who are contacted, drive to fuse locations and manually
change their states. If several fuses need to be changed due to one decision, only20

one technician will drive to them, sequentially, and execute the modifications. For
example, our industrial partner asks us to consider that each fuse modification
takes 15 min whereas any incident should be detected in the minute. Let’s imagine
that an incident is detected at 4 p.m. and can be solved by modifying three fuses.
The incidents will be seen as resolved by the adaptation process at 4 p.m. + 1525

min * 3 = 4:45 p.m. In this case, the delay of the action is due to the execution
time that is not immediate.

Example 2: Reduction of amps limit in smart grids5 Creos S.A. en-
visages controlling remotely amps limits of customers in its smart grid project.
Customers will have two limits: a fixed one, set at the beginning, and a flexible one,30

remotely managed. The action to remotely change amps limits will be performed
through specific plugs, such as one for electric vehicles. Even if the action is near
instant, due to how power consumption is collected, its impacts would not be
visible immediately. Indeed, data received by Creos S.A. corresponds to the total

5This example is based on randomly generated data. As this action is not yet available on the
Luxembourg smart grid, we miss real data. However, it reflects an hypothesis shared with our
partner.

38

time

t1 t15t5 t10 t20 t25 t30 t35 t40 t45

38
39

40
38

35
35

37
40

40
38

35
40

37
37

36
35

37
37

39
15

20
15

15
15

19
16

17
15

20
15

20
16

15
15

19
20

17
17

19
19

16
17

18
16

20

avg= 37,67 avg= 22 avg= 17,6

data sent data sent data sent
Amps limit changed

from 40 to 20

Figure 3.2: Example of consumption measurement before and after a limitation of
amps has been executed at t20.

energy consumed since the installation. From this information, only the average of
consumed data for the last period can be computed.

In Figure 3.2, we depict a scenario that shows the delay between the action is
executed and the impacts are measured. Each time point represents one minute,
with the consumption at this moment.5

Let us imagine a customer who has his or her limit set to 40 amps6 and consumes
near this limit. We consider that data is sent every 15 min. After receiving data
sent t15 and processing them, the adaptation process detects an overload and
decides to reduce the limits to 20 amps for the customer. However, considering
the delay for data to be collected and the one to send data7, the action is received10

and executed at t20. At t30, new consumption data is sent, and equals 22 amps.
Two situations are now possibles. First, this reduction was enough to fix the
overload. Even in this idealistic scenario, the adaptation process must wait in the
worst case for 15 min (t30 - t15) to observe the resolution (without considering the
communication time). Second, this reduction was not enough - as the adaptation15

process considered that the consumption data will be at worst 20 amps and here it
is 22. Before observing the incident as solved and knowing that the decision fixed
the incident, the adaptation process needs to wait for new data, sent at t45, i.e.,
around 30 min (t45 − t15) after the detection. In this case, the delay of this action
can be explained by the inertia in the average of the consumption.20

Example 3: Switching off a machine from a load balancer An example
based on cloud infrastructure of long-term actions is to remove a machine from a
load balancer, for example during a scale down operation. Scale down operations
allows cloud managers to reduce allocated resources for a specific task. It is used
either to reduce the cost of the infrastructure or to reallocate them to other tasks.25

In [WBR11], Wang et al., present a load-balancing algorithm. In their evaluation,
they present the figure depicted in Figure 3.3 that shows the evolution of the
throughput after the server Replica 2 (R2) is removing from the load balancer.

6The user cannot consume more than 40 amps at a precise time ti.
7The smart grid is not built upon a fast network such a fiber network.

39

Figure 4: Throughput of experiment demonstrating abil-
ity to adapt to changes in division of load. Vertical lines
indicate start and end of transitions.

by the first vertical bar), the load on server R2 starts to de-
crease, since all new connections go to replicas R1 and R3.
Sixty seconds later (indicated by the second vertical bar),
the controller installs the new wildcard rules. R2’s load
eventually drops to 0 as the last few ongoing connections
complete. Initially, there were 6 wildcard rules installed.
4 of these were aggregated into a single wildcard rule af-
ter reassigning load with only 3 requiring a transition, 2
of which were rules to R2 which is unavoidable. The re-
sulting experiment concluded with only 3 wildcard rules.

Overhead of transitions: To evaluate the overhead
and delay on the controller during transitions, we have
ten clients simultaneously download a 512MB file from
two server replicas. We start with all traffic directed to
R1, and then (in the middle of the ten downloads) start
a transition to replica R2. The controller must install a
microflow rule for each connection, to ensure they com-
plete at the old replica R1. In our experiments, we did
not see any noticeable degradation in throughput during
the transition period; any throughput variations were in-
distinguishable from background jitter. Across multiple
experimental trials, the controller handled a total of 18 to
24 packets and installed 10 microflow rules. Because of
the large file size and the small round-trip time, connec-
tions often had multiple packets in flight, sometimes al-
lowing multiple packets to reach the controller before the
microflow rule was installed. We expect fewer extra pack-
ets would reach the controller in realistic settings with a
smaller per-connection throughput.

3 Wild Ideas: Ongoing Work

Our current prototype assumes a network with just two
switches and uniform traffic across client IP addresses.
In our ongoing work, we are extending our algorithms
to handle non-uniform traffic and an arbitrary network

topology. Our existing partitioning and transitioning algo-
rithms are essential building blocks in our ongoing work.

3.1 Non-Uniform Client Traffic
Our partitioning algorithm for generating the wildcard
rules assumed uniform client traffic across source IP ad-
dresses. Under non-uniform traffic, the wildcard rules
may deviate from target division of traffic. Consider Fig-
ure 5, where the target distribution of load is 50%, 25%,
and 25% for R1, R2, and R3, respectively. Our partition-
ing algorithm would correctly generate the set of wildcard
rules on the left of Figure 5. Unfortunately, if traffic is
non-uniform as expressed below the leaf nodes, then the
actual division of load would be an overwhelming 75%
for R1, and an underwhelming 12.5% for R2 and R3 each.

Figure 5: a1 = 2, a2 = 1, and a3 = 1. At the bottom
are the non-uniform traffic measurements. Left: wildcard
rules assuming uniform distribution of traffic. Right: wild-
card rules adjusted for non-uniform traffic.

The set of wildcard rules that account for non-uniform
traffic is on the right in Figure 5. To go from the rules
on the left to the ones on the right, the algorithm must
measure the traffic matching each rule using OpenFlow
counters. Next, the algorithm should be able to identify
severely overloaded and underloaded replicas and then
identify the set of rules to shift. This may involve split-
ting a wildcard rule into several smaller ones to collect
finer-grain measurements (e.g., replacing 0* with 00* and
01* to have separate counters for the two sets of clients).
These finer-grain measurements make it easier to incre-
mentally shift smaller groups of clients to avoid a large
shift that results in an even less accurate division of load.
The algorithm can repeat this process recursively to more
closely approximate the desired distribution of traffic. Af-
ter identifying which wildcard rules to shift, the transi-
tioning algorithm can handle the necessary rule changes.

The result of these operations may not achieve the min-
imal set of wildcard rules. Ideally, the algorithm needs to
strike a balance between minimizing the number of wild-
card rules and dividing load accurately. Our initial parti-
tioning algorithm emphasizes generating a minimal num-
ber of wildcard rules, at the expense of some inaccuracy
in the load distribution. In our ongoing work, we are ex-
ploring algorithms that make incremental adjustments to
the wildcard rules based on measurements, with the goal

5

Figure 3.3: Figure extracted from [WBR11]. The red bar depicted the moment
when Replica 2 stop receiving new connections. The green one represents the
moment where all the rules in the load balancer stop considering R2. Despite these
two actions, the throughput of the machine does not drop to 0 due to existing and
active connections.

The red bar shows the moment where R2 stop receiving new connection and the
green the moment where it is removed from the load balancer algorithm. However,
despite these actions have been taken, R2 should finish the ongoing tasks that it is
executing. This explains why the throughout is progressively decreasing to 0 and
there is a delay of around 100s between the red bars and the moment where R25

stop being active.
This example shows a long-term action due to the time required by the system

to handle the new configuration.

Example 4: Modifying home temperature through a smart home
system Smart home systems have been implemented in order to manage remotely10

a house or to perform automatically routines. For example, it allows users to close
or open blinds from their smartphones. Based on instruction temperatures, smart
home systems manage the heating or cooling system to reach them at the desired
time. However, heating or cooling a house is not immediate, it can take several
hours before the targeted temperature is reached. Plus, if the temperature sensor15

and the heating or cooling system are not placed nearby, the new temperature can
take time before being measured. This can be explained due to the temperature
inertia plus the delay for the temperature to be propagated.

Through these four examples, we show that long-term actions can be found in
different kinds of systems, from CPS to cloud infrastructure. However, not only20

knowing that an action is running is important but also knowing its expected effect.
We detail this point in the following section.

40

The need to consider effects One may argue that action statuses are already
integrated into the knowledge. For example, the OpenStack Watcher framework
stores them in a database8, accessible through an API. However, for the best of
our knowledge, Watcher does not store the expecting effects of each action. While
the adaptation process knows what action is running, it does not know what to5

expect from them.
Considering our example based on the modification of fuses, if the system

knows that the technician is modifying fuse states, it does not know what would
be the effects. In this case, when the adaptation process analyses the system
context it may wonder: what will be the next grid configuration? How will the10

load be balanced? Will the future configuration fix all the current incidents? If the
effects are not considered by the adaptation process, then it may take suboptimal
decisions.

Let’s exemplify this claim through a scenario based on the fuse example (cf.
Example 1). As explained before, the overload detected at 4 p.m. takes around 4515

min to be fixed. The system marks this incident as “being resolved”. In addition
to this information, the knowledge contains another one saying that it is being
solved by modifying three fuses. However, during the resolution stage, a cable is
also being overloaded. The adaptation process has two solutions. It can either
wait for the end of the resolution of the first incident to see if both overloaded20

elements will be fixed or it takes other actions without considering the ongoing
actions and their impacts. Applying the first strategy may make the resolution
of the second incident late, whereas the second one may generate a suboptimal
sequence of actions. For example, the second modifications may undo what has
been done before or both actions may be conflicting.25

Sum-up Actions, like fuse modification in a smart grid or removing a server from
a load balancer, generated during by adaptation processes could take time upon
completion. Moreover, the expected effects resulting from such action is reflected in
the context representation only after a certain delay. One used workaround is the
selection, often empirically, of an optimistic time interval between two iterations30

of the MAPE-K loop such that this interval is bigger than the longest action
execution time. However, the time to execute an action is highly influenced by
system overload or failures, making such empirical tuning barely reliable. We argue
that by enriching context representation with support for past and future planned
actions and their expected effects over time, we can highly enhance reasoning35

processes and avoid empirical tuning.
Fined and rich context information directly influences the accuracy of the

actions taken. Various techniques to represent context information have been
8https://docs.openstack.org/watcher/latest/glossary.html#watcher-database-

definition

41

https://docs.openstack.org/watcher/latest/glossary.html#watcher-database-definition
https://docs.openstack.org/watcher/latest/glossary.html#watcher-database-definition

Legend:Substation

Smart meter

Cables

Dead-end
cabinet

Fuse

Smart meters

Figure 3.4: Simplified version of a smart grid

proposed; among which we find the models@run.time [MBJ+09; BBF09]. The mod-
els@run.time
paradigm inherits model-driven engineering concepts to extend the use of models
not only at design time but also at runtime. This model-based representation has
proven its ability to structure complex systems and synthesise its internal state as5

well as its surrounding environment.

3.3.2 Use case scenario
Excerpt of a smart grid Figure 3.4 shows a simplified version of a smart grid
with one substation, one cable, three smart meters and one dead-end cabinet. Both
the substation and the cabinet have one fuse each. The meters regularly send10

consumption data at the same timestamp. For this example, we consider one
requirement: minimizing the number of overloads. To achieve this, two actions are
taken into account in this example: decreasing or increasing the amps limits of
smart meters.

Adaptation scenario The system starts at t0 with the actions, the requirements15

and all element of the context that remain fixed: the grid installation. Meters
send their values at t1, t2 and t3. Based on these data, the load on cables and
substation is computed. On t1, an overload is detected on the cable, which breaks
the requirement. At the same time point, the system decides to reduce the load of
all smart meters. The impact of these actions will be measured at t2 and t3, i.e.,20

the consumption will slowly reduce until the cable is no longer overloaded from t3.

Diagnosis scenario As all adaptive systems, smart grids are prone to
failures [HFK+14a]. Using our approach, an engineer could diagnose the sys-
tem, and determine the adaptation process responsible for this failure. For instance,
considering some reports about regular power cuts during the last couple of days, in25

a particular area, a stakeholder may want to interrogate the system and determine
what past decision(s) have led to this suboptimal state. More concretely, he will
ask: did the system make any decisions that could have impacted the customer
consumption? If so, what goal(s) the system was trying to reach and what were

42

the values used at the time the decision(s) was(were) made?

43

44

4
State of the art

Contents
4.1 Review methodology . 44
4.2 Results RQ1: long-term actions 46
4.3 Results RQ2: data uncertainty 56
4.4 Threat to validity . 63
4.5 Conclusion . 64

This chapter reviews works related to the one presented in this dissertation.
Two research questions drove this review. The first one aims at investigating state-
of-the-art solutions that model adaptive systems to see those that consider long-term
action. With the second research question, we search current approaches that handle
data uncertainty. Our review shows that none of the studies performed until now
take into account long-term action. Additionally, it indicates that different solutions
exist to model data uncertainty, but some efforts need to be performed to provide
solutions at a higher level.

45

4.1 Review methodology
This review aims at answering two global research questions. To help us answer

them, we split them into three sub-research questions.

Research questions The first research question has been set to study the
presence of long-term actions in the modelling layer: (RQ1) do state-of-the-art5

solutions that model adaptive systems allow representing and reasoning over long-
term actions (design time and runtime)? We split it into the following sub-questions:
• RQ1.1: How current approaches model the evolution of the context or the

evolution of systems (structure or behaviour) over time?
• RQ1.2: What are the solutions that model actions, their circumstances10

and their effects over time at design time and runtime? Can this model be
processed or navigated automatically?
• RQ1.3: What are the solutions that enable the reasoning over the evolving

context, structure, or behaviour of systems? Do they also enable reasoning
over running actions and their effects?15

With RQ1.1, we investigated the approaches that model the context, structure,
or behaviour of adaptive systems. The second one filters those that also consider
long-term actions. Finally, we use RQ1.3 to list solutions that provide a technique,
such as an algorithm, to reason over evolving context, structure, or behaviour.

With the second research question, we seek for modelling solutions that consider20

uncertain data and its propagation: (RQ2) do state-of-the-art solutions allow
modelling uncertainty of data and its manipulation (propagation, reasoning over)?
The three sub-questions are:
• RQ2.1: What are the categories of uncertainties that have been addressed

by the literature?25

• RQ2.2: How the uncertainty of data is modelled?
• RQ2.3: What are the solutions that enable an imperceptible propagation

and reasoning over uncertainty?
We set RQ2.1 to identify the different kinds of uncertainties that bring challenges in
software engineering. Then, we search for the technique to model uncertainty, with30

a particular interest in data uncertainty with RQ2.2. Lastly, we review approaches
that allow developers to propagate uncertainty without writing specific code for
that and to reason over uncertainty using RQ2.3.

Methodology To review the literature, we applied a technique inspired by the
snowballing approach [Woh14]. But, due to limited resources, we did not fully35

implement it. The methodology advocates the use of bibliography (backward
navigation) and papers that cite (forward navigation) the selected ones to navigate
in the literature. Each article should be evaluated according to a set of inclusion
and exclusion criteria. And a starting set should be defined.

46

In our case, we use the bibliography of the papers that ground in this thesis
as the starting set (cf. Section 1.4). Then, we apply the backward navigation for
a subset of them. Then, we select the paper to add in this review according to
a set of inclusion and exclusion criteria. To be picked, a paper should satisfy all
inclusion criteria and should not fulfil any of the exclusion criteria. These criteria5

are the following:

• Inclusion criteria (IC):
– IC1: The paper has been published before August 9 2019.
– IC2: The paper is available online and written in English.
– IC3: The paper describes a modelling approach that abstract the con-10

text, the structure, or the behaviour of a system, an approach that
enables to reason or navigate through a temporal model, an approach
that describes a solution used to engineer a adaptive system, an ap-
proach that handles uncertainty, or an approach that helps to manipulate
probability distributions.15

• Exclusion criteria (EC):
– EC1: The paper has at most four pages (short paper).
– EC2: The paper presents a work in progress (workshop papers), a

poster, a vision, a position, an exemplar, a data set, a tutorial, a project,
or a Bachelor, Master or PhD dissertation.20

– EC3: The paper describes a secondary study (e.g., literature reviews,
lessons learned).

– EC4: The document has not been published in a venue with a peer-
review process. For example, technical and research report or white
papers.25

– EC5: The document is an introduction to the proceedings of a venue
or a special issue, or it is a guest paper.

The first two inclusion criteria are accessibility criteria: they guarantee that
the paper is accessible for any reader of this document. With the third one, IC3,
we can include all papers that can be used to answer our research questions. We30

define the exclusion criteria to keep only papers that have been published in a
peer-reviewed venue, and that present an approach.

In this review, 412 papers have been processed, and 84 kept for the review. We
report our selection results in an Excel file publicly available on GitHub 1. Results
have also been exported to Comma-separated values (CSV) files for those who35

cannot open Excel files.

1https://github.com/lmouline/thesis/tree/master/sota/src

47

https://github.com/lmouline/thesis/tree/master/sota/src

Approach Reference History?
Models@run.-
time-based

[BBF09; MBJ+09; HFN+14b;
HFN+14a]

[HFN+14b; HFN+14a]: add a
time dimension to the models-
@run.time paradigm

Formal model [WMA12; WHH10; BK11] 7

Object-based
model

[HIR02; HFK+14a; TOH17] [HIR02; HFK+14a]: use a
model with temporal relations

Goal model [CvL17; IW14; MAR14;
CPY+14; BPS10; DFM+16]

7

State machine [HFK+14a; IW14; ARS15;
AGR11; BdMM+17; BBG+13;
MCG+15; FGL+11; GS10;
DMS18; DBZ14; ZGC09;
GPS+13; TGE+10]

7

Sequential di-
agram

[TOH17] 7

Component
model

[DL06; DBZ14; GCH+04;
FMF+12]

7

Trace model [Mao09] 7

Graph model [KM90; GvdHT09; MS17] [MS17]: defines a temporal
graph, with two functions to
retrieve temporal information.
[GvdHT09]: historical graph of
configurations.

Table 4.1: Approaches to model systems’ context and behaviour (RQ1.1)

4.2 Results RQ1: long-term actions
In this section, we detail our findings regarding the first research questions.

First, we detail all approaches that propose a solution to model the evolution of a
system’s context, structure, and behaviour. Then, we list approaches that model
actions. Before summarising and answering the research question, we list solutions5

that model and reason over evolving context, behaviour, and behaviour, i.e., that
implement an adaptation process.

4.2.1 Modelling the evolution of system’s context, struc-
ture, or behaviour

Different categories of approaches exist to represent the context, structure, or10

the behaviour of a system. In this section, we detail our findings with an overview
given in Table 4.1.

48

Models@run.time-based approach In the MDE community, researchers de-
fined the models@run.time paradigm to implement an adaptation process [BBF09;
MBJ+09]. This approach is based on a runtime model that reflects the current state
of the system. It can contain information about either the context of the system, its
behaviour, or its structure. Moreover, there is a causal link between the model and5

the system: modifications of the model, made by a stakeholder or a process, trigger
modifications in the system. For example, changing the status of a fuse in a model
that reflects a smart grid triggers the action to open or close it. Hartmann et al.,
extended this paradigm to introduce a temporal dimension [HFN+14b; HFN+14a].
It allows designers to store not only the current state of the system but also its past10

(previous states) and future (predicted). In this thesis, we will use this extension
of the paradigm to build our knowledge model, and more precisely to represent
long-term actions.

Formal model In [WMA12], Weyns et al., defined a formal model for adaptive
systems, called FORMS. Their goal was to establish a reference model, which15

can be used for discussion or implementation. For self-organisation systems, the
literature provides another formal model: MACODO [WHH10]. It uses the Z
language [dL04] to formalise the context of the system following the set theory
and the first order predicate calculus. The behaviour is formalised with what they
call laws. A law is a function from one set to another. The third formal model20

found in our review was specified by Bartels and Kleine [BK11]. This one uses
Communicating Sequential Process principles [Hoa78], a formalism designed for
reactive and concurrent systems. However, none of these models includes a time
dimension, relevant to abstract long-term action.

Object-based model One category of approach found in the literature is object-25

based models. These models follow object-oriented principles. First, Henricksen et
al., defined a model for pervasive computing systems2. In their model, some entities
are linked to their attributes through uni-directional association. These associations
can be dynamic (can evolve) or static (do not change over time). A dynamic
association can also be temporal. In this case, the entity can have several attributes30

with a timestamp attached. Second, Hartmann et al., use a temporal model to
store the context and its history of a smart grid system [HFK+14a]. This model
is based on their extension of the models@run.time described above [HFN+14b;
HFN+14a]. Third, Tahara et al., [TOH17] use the Maude language [CDE+02], to
represent the context. Among these three solutions, only the last one does not35

include a temporal dimension.

2A pervasive system is composed of cheap and interconnected devices that are ubiquitous and
can support users’ tasks.[HIR02]

49

Goal model Goal modelling is a technique used by several contributions in our
findings [CvL17; IW14; MAR14; CPY+14; BPS10]. This technique, mainly used
in requirement engineering, represents the different goals of an application. By
modelling the requirements of a system, we can argue that they de facto represent
the context by the goals that are achieved or not. Moreover, in [CvL17], the authors5

add a satisfactory rate on each goal. Except [DFM+16], these methods do not
include a time dimension. In this approach, the authors add a time scope definition
to goals. This time scope defines when a goal should be reached. But, they do not
keep track of history.

State machine State machines have the capacity to abstract, in the same model,10

the context and the behaviour of a system. The different states represent the context
while the transitions between the states abstract the behaviour. [HFK+14a; IW14;
ARS15; AGR11; GPS+13] use the Final State Machine (FSM) formalism. For
example, Hartmann et al., abstracts the behaviour of a smart meter in [HFK+14a].
In [GPS+13], the authors represent the functionalities of the system and their15

impact with states. And, transitions abstract the different execution flow between
the different functionalities. In [BdMM+17; BBG+13], authors apply the labelled
transition system [Kel76]. When authors want to consider the stochastic behaviour
of the system, then they use probabilistic state machines In [BdMM+17], the
authors extended the model with probabilities, which represent the probability for20

a transition to be executed. Another strategy is to use Markov Chain [MCG+15;
FGL+11; GS10; DMS18] A Markov chain can be thought as a FSM with probabilities
attached to the transition. In [MCG+15], authors also add information regarding
current actions being executed with their progress status. But, no history is kept,
the information is lost when actions finish. Other approaches use state machine25

without specifying the formalism used [DBZ14; ZGC09; TGE+10]. Tajalli et al.,
use two state machines: one to represent the system context and behaviour, and
another one to represent the adaptation mechanism.

Sequential diagram Through our review, we find one approach that uses a
sequential diagram to represent the behaviour of the system [TOH17]. However,30

nothing is mentioned regarding the context of the system and its history.

Component model In order to represent the context of a system, one can
use a component model. This model is at the architecture level and described
the different entities (component) that compose a system with their interactions.
Four contributions apply this technique in our review [DL06; DBZ14; GCH+04;35

FMF+12]. To also represent the behaviour, some have extended this model with a
state machine description in [DBZ14] or with annotation in [GCH+04]. However,
no time dimension is considered in these approaches.

50

Trace model Context and behaviour of a system can be inferred by analysing
its logs. In [Mao09], researchers defined an approach to create a model that reflects
the runtime state of the system. However, this approach does not keep the history
of the system.

Graph model Finally, the last technique used to represent the context of a5

system is to use a graph model [KM90; GvdHT09; MS17]. In the former, nodes
represent process units, and edges the communication between them. In the
second one, nodes represent the possible configurations of the system, and the
edges represent the actions to reach a configuration. The graph used in [GvdHT09]
represents the different configuration over time of the system. Plus, some meta-data10

about previous adaptations (e.g., average time in this configuration) are added.
The latter defined a temporal graph [MS17]. Their temporal graph is a graph
that is augmented with two functions. One function serves to indicate if a graph
element, a node or an edge, exists for a given period. The other can retrieve the
value of a graph element for a given period. Using this temporal graph, one can15

define a model that abstract long-term actions. However, in our work, we use
another temporal graph definition provided by Hartmann et al., and implemented
in our research group [HFM+19].

Sum up Different approaches are used in the literature to represent the context,
the behaviour, or the structure of systems (cf. Table 4.1). However, only a few20

can be used to keep the history of this information [HFN+14b; HFN+14a; MS17;
TOH17; HIR02; HFK+14a]. This feature remains a crucial concern to represent
long-term actions as information about delayed effects and previous circumstances
(next and previous context of an action). In the next section, we detail approaches
that model actions.25

4.2.2 Modelling actions, their circumstances, and their ef-
fects

In Table 4.2, we regroup the different approaches of our review that model
actions. In this section, we describe the different categories that we identified.

Approaches based on rules One solution to model actions is to use a rule en-30

gine [TOH17; ARS15; BCG+12; GHP+08; PFT03; GCH+04]. A condition and an
executable code characterise rules. The executable code is executed if the current
state of the system meets the condition. Conditions can thus serve to abstract
the circumstances of actions and the executable code as its effect. However, this
information is available at design time and lost during the execution. Moreover,35

these approaches do not allow the representation of the side effects of an action. For
example, changing the fuse state has a direct effect on the fuse state. But it also
impacts the power grid load. We can notice two exceptions in our review: [TOH17]

51

Approach Reference Circumstance Effects? Run-
time?

Time?

Rule-based [TOH17; ARS15; BCG+12;
GHP+08; PFT03; GCH+04]

Condition Executable code 7 7

Sate machine [ARS15; IW14; HFK+14a;
MCG+15; FGL+11; DBZ14;
ZGC09; GPS+13; TGE+10]

Guard and ini-
tial state of a
transition

End sate of a transi-
tion

3 7

Publish / Sub-
scribe

[BdMM+17] Condition Executable code 7 7

Goal-modelling [MAR14; BWS+12; BPS10] Unsatisfied goal Fulfilment of a goal 7 7

Programming
language

[CG12] Condition Language operator 7 3

Event-
Condition
Action

[DL06; CDM09; PBC+11] Condition Action code 7 7

Model transfor-
mation

[CPY+14; KM90] Query Transformation rule 7 7

Formal model [WHH10; BK11; CMR15] Condition Code of the action 7 7

Dynamic Soft-
ware Product-
Lines

[GS10; CCH+13] Condition Selected configuration 7 7

Graph model [GvdHT09] Node Node 7 7

Table 4.2: Approaches to model actions, their circumstances, and their effects (RQ1.2)

52

and [ARS15]. In both cases, rules are used to trigger a state modification in a
sate machine. We explain the advantages and disadvantages of the state machine
approach in the next paragraph.

Approaches based on a state machine Several approaches use a state machine
to represent the adaptation mechanism [ARS15; IW14; HFK+14a; MCG+15;5

FGL+11; DBZ14; ZGC09; GPS+13; TGE+10]. States represent the state of the
system, and the transition abstract the execution of actions. One advantage of this
approach is that they represent both the circumstances and the effects of actions.
Additionally, it can be used to represent actions at design time and runtime. But
this link remains at a high-level. An entire state is considered as the circumstance10

or the effect of an action while, in most cases, it just a subset of the elements of
the state that triggers the action or is affected by it.

Approaches based on aPublish/Subscribe mechanism In our review, we
found one approach that uses the publish/subscribe mechanism to trigger
actions [BdMM+17]. The circumstances are thus modelled with the condition15

of the consumer. In this case, the action is a script. The effects are thus spread,
and cannot be navigated. Moreover, this solution only represents the actions at
design time and not their executions.

Approaches based on a goal-model In addition to the goals of the system,
goal models offer the capacity to represent the actions that can achieve them.20

Three approaches have used this ability to represent action in their model [MAR14;
BWS+12; BPS10]. Baresi et al., extended goal model with adaptive goals. These
goals contain a condition, objectives (to weaken or enforce some goals), and actions
(here, an action modify goals or operation-executable code- in the goal model).
Here, effects can be seen as the fulfilment of a goal. And a condition is when a25

goal is not satisfied anymore. However, this information is not kept over time.
Furthermore, no information about the runtime execution of the actions is kept.

Approaches based on a programming language Among our findings, one
approach defined a language to define actions: [CG12]. This language allows
developers modelling their actions, with their conditions, and their effects. However,30

the language does not include a temporal dimension. Plus, the language is suitable
to describe actions at design time but provide no mechanism to track them during
their execution.

Approaches based on the Event-Condition Action mechanism To trigger
adaptation, one can use the Event-Condition Action approach: the action is35

triggered if an event respects the condition. In our review, all the works use
this methodology in order to weave or remove aspects of the program, following

53

Aspect-Oriented Programming3 [CDM09; PBC+11; DL06]. However, there is no
temporal dimension. Plus, this solution is suitable to describe actions at design
time but does not allow navigation through runtime information.
Approaches based on model transformations Following the models@run.-
time, one way to adapt a system is to modify the model to trigger the actions. One5

way to do this, is to use the Query/View/Transformation [Gro16b] approach as
Chen et al., did in [CPY+14]. Here, the circumstance and the effects are represented
at the model level in the query and the transformation part. When the context
is represented as a graph, actions will thus be modelled as graph modifications.
In [KM90], authors represent an action by adding or removing graph elements10

(node and edge). However, these solutions do not take into account any time
dimension, side effects or runtime information.
Approaches based on a formal model In our review, we found three formal
models [WHH10; BK11; CMR15]. First, the MACODO formalisation [WHH10]
that defines actions as functions from one set to another. These functions represent15

actions to reorganise a system: adding, removing, or merging group of components.
Second, in [BK11], the authors use the process calculus Communicating Sequential
Process, which allows engineers formalising reactive and concurrent systems where
atomic events are handled by processes (an infinite transition system). Actions here
correspond to a modification of a component configuration in response to an event.20

Last, Cimatti et al., defined a planning algorithm which includes time [CMR15]. In
their algorithm, they formalise actions as elements with a field to store the execution
time, possibly uncertain. None of these models adds a temporal dimension. Plus
these solutions do not model the execution of actions.
Approaches based on dynamic software product-lines One approach to25

represent the possible adaptation of a system is to use a Software Product-Lines
model. Engineers model all the possible variations of a system. Then, at runtime,
the system selects the one that can achieve the requirements in the current context.
This approach is referred to as Dynamic Software Product-Lines and used by two
approaches in our findings [GS10; CCH+13]. Here actions can be executed to30

achieve the selection of the different variation point. Effects are thus represented
as the new configuration selected. However, these solutions do not include a time
dimension or cannot represent runtime information.
Approaches based on a graph model Finally, the last approach found in our
review is to use a graph model. In [GvdHT09], researchers use a graph where35

nodes represent possible configurations and edges represent the modification of the
configuration, using our wording an action. However, there is no time dimension,

3Aspect-Oriented Programming is a programming paradigm that prones the separation of
concern. For that, a program is seen as a set of aspects, each aspect implementing one concern.

54

and only design time information is modelled.

Sum up As shown in Table 4.2, the literature provides different solutions to
model actions. However, none of them includes a temporal dimension. Thus, even
if they represent effects, they cannot describe them over time. For example, they
will be able to model that a new server will be added, but not when. Moreover,5

these solutions mainly remain at design time, except for those that use a state
machine. No information concerning the runtime, like the status of the execution of
an action, the runtime values or the effects, are not represented. One limitation is
that they do not represent side-effects over time. For example, they will represent
the addition of a server but not the effects on the bandwidth or the workload.10

Additionally, as they do not represent runtime information, no autonomous solution
can be employed to detect any unknown effects of an action to the system. The last
limitation is the representation of circumstances. In the approaches of the review,
they are mainly represented as the condition that triggers the action. Even if a
human can guess it after, there is no direct link between the action execution and15

the circumstances. No model can allow automatic navigation over this time-related
information.

4.2.3 Reasoning over evolving context or behaviour
In this section, we review the solutions that enable reasoning over evolving

context or behaviour. That is solutions that can be used to implement adaptive20

systems. Table 4.3 gives an overview of our findings, detailed in the rest of this
section.

Model-based approach Following the MDE methodology, one approach to rea-
son over an evolving context or behaviour is the models@run.time paradigm [BBF09;
MBJ+09]. Hartmann et al., extended it to include a temporal dimension [HFN+14b;25

HFN+14a] for reasoning over the history of a system. Approaches detailed in
[BdMM+17] and in [CPY+14] follow this paradigm. However, in their process, they
do not consider long-term action, especially those that are under execution of with
effects in the near future.

Rule-based adaptation In our review, some approaches employ a rule-based30

mechanism to define the adaptation mechanism [ARS15; TOH17; GHP+08]. How-
ever, they only reason over the context or the behaviour, not on the running actions
or their future effects.

Architecture-based adaptation Architecture-based adaptations adjust the
architecture of a system to achieve requirements. In our review, different approaches35

use this mechanism [CG12; GCH+04; GvdHT09; FMF+12]. For example, Cheng
et al., define a language to design actions for architecture-based adaptation. Also,
the adaptive mechanism can compute a reconfiguration script by comparing the

55

Approach Reference Reasoning over long-term action
Model-based [BBF09; MBJ+09;

HFN+14b; HFN+14a;
BdMM+17; CPY+14]

None

Rule-based [ARS15; TOH17;
GHP+08]

None

Architecture-
based

[CG12; GCH+04;
GvdHT09; FMF+12]

[CG12] represents action effects
at design time, used as conditions
for the execution of the next ac-
tion.

Simulation-
based

[HFK+14a] Consider effects of actions to se-
lect those to execute. Do not con-
sider running actions

Formal model [WMA12; IW14;
WHH10; BK11]

None

Complex event
processing

[AFR+10] None

Graph model [MS17; KM90] None
Aspect Oriented
Programming

[GB; DL06; CDM09;
PBC+11; FA04; PFT03;
MBN+09]

None

Component-
based

[DL06] None

State machine [MCG+15; FGL+11;
DBZ14; ZGC09;
GPS+13; TGE+10]

Effects modelled but do not con-
tain any runtime information
about actions execution

Dynamic soft-
ware product-
lines

[GS10; CCH+13] None

Requirement-
driven

[BPS10] None

Extension of
MAPE-k

[MBE+11] None

Table 4.3: Approaches to reason over evolving context or behaviour (RQ1.3)

56

current component model with the expected one [FMF+12]. The only solution
to consider running actions and their future effects is [CG12]. In this solution,
designers can add effects to actions. The execution of the next action can be
triggered by the measurement of these effects. But, a reasoning process cannot
automatically navigate the action model to reason over effects before they occur.5

Simulation-based adaptation In our review, one approach applies a simulation-
based approach [HFK+14a]. In their work, the authors simulated different sequences
of actions, evaluate and select the optimal one regarding the requirements. To
perform this approach, they have to know the look ahead and consider the impact
of each action on the system. However, they do not reason over actions being10

executed or their future effects.
Formal model In our review, four formal models describe adaptive systems
with their adaptation mechanism [WMA12; IW14; WHH10; BK11]. For example,
Iftikhar and Weyns use a state machine formalism to specify SASs [IW14]. But,
none of the formal models includes a time dimension, which would allow stakeholders15

to consider running long-term actions.
Approach based on complex event processing Among our findings, one is
using an approach based on a complex event processing engine [AFR+10]. Here,
actions are triggered in response to an event, as much complex as necessary. Using
this approach, one cannot reason over running actions and their future effects.20

Approach based on a graph model Two approaches in our findings employ
a graph model [KM90; MS17]. These approaches reason over a graph to trigger
an adaptation process. In [MS17], authors use a temporal graph algebra, which
can store the history of the context. But, none of them includes running actions in
their model.25

Approach based on aspect-oriented programming From what we see in
our findings, aspect-oriented programming is an approach heavily used by re-
searchers [GB; DL06; CDM09; PBC+11; FA04; PFT03]. More specially, they
use dynamic aspect-oriented programming: aspects are automatically weaved and
removed aspects in a software. Besides, Morin et al., uses aspect-oriented mod-30

elling [MBN+09]. Part of the MDE methodology, this approach models the different
aspects with their pointcuts4. However, none of them allows reasoning over actions
being executed or their future effects.
Component-based appraoch One approach uses a component model as a
basis to reason for the adaptation mechanism [DL06]. Here, actions modify the35

configuration of a component to adjust the behaviour or the context of the system.
But, in this approach, running actions are not considered by the adaptation process.

4A pointcut is part of the software where an aspect can be weaved or removed.

57

Approach based on a state machine Another approach widely adopted in
the findings is the use of a state machine [MCG+15; FGL+11; DBZ14; ZGC09;
GPS+13; TGE+10]. Transitions represent actions. Effects of action are also known
and modelled. However, no information about running actions is represented and
thus considered.5

Approach based on dynamic software product-lines Dynamic software
product-lines approaches see the adaptation mechanism as a runtime selection
between different software product-lines options. However, the two solutions that
use this approach in our finding [GS10; CCH+13] do not use information about
running actions and their future effects to take decisions.10

Requirement-driven adaptation In our review, Baresi et al., defines a reason-
ing approach over a goal model [BPS10]. However, running actions are excluded
from the adaptation process.

Extension of MAPE-k loop Maurer et al., [MBE+11] extended the traditional
MAPE-k loop. Authors added a step before the monitoring one called adaptation.15

In the context of cloud infrastructure, this step allows preparing the entity before
deployment, such as contract establishment for service level agreement. But, the
MAPE-k loop is not modified to consider running action and their effects.

Sum up In the literature, we can find different approaches to reason over an
evolving context or behaviour, as depicted in Table 4.3. However, none of them20

provides a solution to reason over running execution of their future effects. To
make decisions, current solutions only consider current, past, or future context or
behaviour.

4.2.4 Modelling and reasoning over long-term actions
In the previous sections, we detailed our review concerning modelling techniques25

for adaptive systems. First, we saw that just a couple of approaches that model the
context, the structure, or the behaviour include a time dimension. Then, despite
this element, current approaches do not include actions with their circumstances
and their effects over time. Finally, we saw that none of the solutions proposes an
approach to reason over running actions. To answer RQ1, our review shows that30

no solution in the state-of-the-art represents and reason over long-term actions and
their executions.

4.3 Results RQ2: data uncertainty
In this section, we detail our findings regarding the modelling of uncertainty.

First, we categorise the different kinds of uncertainty addressed in the literature.35

Second, we explain how state-of-the-art solutions model data uncertainty. Third, we

58

Category Reference
Data uncertainty [BBM+18; BDI+17; BGG+13; BMB+18; BMM14;

CGH+17; MWV16; SWF16; VMO16; ZAY+19;
Hal06; JWB+15; ZSA+16; BGP92; BSH+06;
BAV+12; CNR13; JK12; PPT08; Pfe01; RP02;
SCG13; SMH11; Thr00; LTB+00; Plu+03]

Design uncertainty [FSC12; FC19; EPR15; EPR14; SCH+13;
ZSA+16]

Requirement uncertainty [WSB+10; WSB+09; SCH+13]
Uncertainty in model
transformations

[BBM+18; EPR15; EPR14]

Time uncertainty [Gar08]
Uncertainty in business
process

[JWB+15]

Environment uncertainty [EM10; ZSA+16]
Behaviour uncertainty [ZAY+19]
Hardware uncertainty [CMR13]

Table 4.4: Categories of uncertainty addressed by the literature (RQ2.1)

show current approaches propagate uncertainty. Finally, we conclude by answering
the second research questions of our review.

4.3.1 Categories of data uncertainty
The literature provides different approaches to tackle challenges that come with

different aspects of uncertainty. In Table 4.4, we give an overview of the different5

categories of these approaches found in our review.

Data uncertainty The main category of uncertainty addressed by the differ-
ent research community if the uncertainty of data [BBM+18; BDI+17; BGG+13;
BMB+18; BMM14; CGH+17; MWV16; SWF16; VMO16; ZAY+19; Hal06; JWB+15;
ZSA+16; BGP92; BSH+06; BAV+12; CNR13; JK12; PPT08; Pfe01; RP02; SCG13;10

SMH11; Thr00; LTB+00; Plu+03]. In these studies, they tackle challenges due to
the uncertainty that can be attached to a value, in our word a data.

Design uncertainty The modelling community studied the uncertainty in the
design of a model-based solution [FSC12; FC19; EPR15; EPR14; SCH+13; ZSA+16].
An example used by Famelis et al., [FSC12], is the uncertainty in modelling a state15

machine. One may not know with the most thorough confidence the transitions to
add.

59

Requirement uncertainty Related to design uncertainty, there is the require-
ment uncertainty. This uncertainty is due to the lack of confidence when stakehold-
ers model the requirements of a system. In our finding, three studies have addressed
challenges related to this kind of uncertainty [WSB+10; WSB+09; SCH+13].

Model transformation Due to design uncertainty, researchers advocate the5

use of partial models [FSC12]. As explained in Section 2.2, model transformation
is a cornerstone feature in the MDE community. But, this process also contains
uncertainty, tackled by three studies from our review [BBM+18; EPR15; EPR14].

Time uncertainty When occurring with time-related phenomena, uncertainty
about when they are expected to occur exists. Garousi et al., studied the time10

uncertainty of events in a distributed system.

Uncertain process Staying in the modelling approaches, we found one study
that deals with the uncertainty in business processes [JWB+15]. In this paper,
Jiménez-Ramírez et al., studied the uncertainty in the properties of business
processes.15

Uncertainty in environment Systems tend to be more and more complex and
evolve in an uncertain environment. To face challenges due to this uncertainty,
researchers defined a new category of systems refers to as adaptive system. Here,
we can add all studies found that answer RQ1 (cf. Section 4.2). For the sake of
conciseness, here we will just add two studies [EM10; ZSA+16]20

Uncertainty in behaviour The uncertainty in the environment can cause
uncertainty in the behaviour of a system. It thus may complexify the testing phase
of the system. In [ZAY+19], the authors tackle a challenge for the testing phase of
a system with uncertain behaviour.

Uncertain hardware Software relies on faulty hardware, which can create errors25

in the computation and damage them. In our review, we found one study that
faces this uncertainty in hardware [CMR13].

Sum up During our review, we found nine different categories of uncertainty
studied in the literature shown in Table 4.4. These categories cover different phase
of a software lifecycle, from requirement specification to the execution environment.30

In this thesis, we focus on data uncertainty: the lack of confidence in the data
manipulated by a software.

4.3.2 Modelling data uncertainty
In this section, we detail the different techniques present in the literature that

an engineer can use to model data uncertainty. We give an overview of the different35

approaches in Table 4.5.

60

Approach Reference Used for data
uncertainty

Data type with
a field for uncer-
tainty

[BBM+18; BMB+18; MWV16; VMO16;
BGP92; SMH11]

3

Probabilistic
programming

[BDI+17; BMM14; BGG+13; CGH+17;
SWF16; BAV+12; CNR13; JK12;
PPT08; Pfe01; RP02; SCG13; Thr00;
LTB+00; Plu+03]

3

Multiple possi-
bilities

[FSC12; FC19; EPR15; EPR14; SCH+13;
BSH+06]

(3)

Randomness [Gar08] 7

Domain specific
language

[WSB+10; WSB+09; JWB+15; CMR13] 3

Model-level un-
certainty

[ZAY+19] 3

Formal model [Hal06; ZSA+16] 3

Table 4.5: Approaches to model data uncertainty (RQ2.2)

Data type with a field for uncertainty In [BBM+18; BMB+18; MWV16;
VMO16], authors use a complex type, named UReal, that contain two fields: one
to represent the value and another one to represent the standard uncertainty. For
example, when manipulating a dimension value, one may say that the value is
19.1cm ± 0.1. With the data type, an instance will have 19.1 as value and 0.15

as standard uncertainty. Then, based on these values, they can define a normal
distribution where the mean equals the value (here 19.1) and the variance the
standard uncertainty (here 0.1). Barbará et al., [BGP92] used a similar approach
in their database model. In their model, a probability value (a value between 0
and 1) is attached to a database value. Finally, Schwarz et al., [SMH11] attached10

a confidence value to variables in a state machine. However, these solutions limit
the representation of uncertainty to one distribution, e.g., a Gaussian distribution.
Although all the complexity of probability theory is hidden from the developer,
it hinders its ability to choose another probability distribution that could better
fit. Depending on the domain, the optimal probability distribution to represent15

the uncertainty of data varies. For example, the Gaussian distribution suits for
metrology data [Met08] whereas Rayleigh distribution fits with GPS location
data [Bor13].

Probabilistic programming The research community has investigated how
to introduce probability distributions in a programming language. The different20

61

approaches are regrouped under the term probabilistic programming [GHN+14].
This strategy remains the main approach used in our review [BDI+17; BMM14;
BGG+13; CGH+17; SWF16; BAV+12; CNR13; JK12; PPT08; Pfe01; RP02; SCG13;
Thr00; LTB+00; Plu+03]. Using this approach, probability distributions can be
manipulated as a variable in a programming language.5

One example is the Uncertain<T> language developed by Bornholt et al.,
[BMM14]. To manipulate uncertain data, they defined an interface, Uncertain<T>,
which can be specialised by any probability distribution. For example, an uncer-
tain double is defined as followed: Uncertain<double> un = new Gaussian(4,1).
Therefore, the language hides the distribution for developers. However, as in ours,10

they can still define and use different distributions. We strongly think that using
dynamic typing and always hiding the real type, developers may not know or
understand what they manipulate. It may end with runtime errors that do not
provide any clear explanation. By forcing static types, we can help developers to
manipulate uncertain data, but we lose in terms of flexibility [MD04].15

As stated by Gordon et al., [GHN+14], “the purpose of a probabilistic program
is to implicitly specify a probability distribution". Knowledge about the probability
distribution is still required to understand and manipulate a code done by one of
these languages. We think that work can be done to abstract the concepts at a
higher level. Doing so, engineers can write reasoning algorithms over uncertain20

data, without knowledge about probability distributions. Moreover, there is a shift
in how to apprehend the problem of uncertain data. Using a probabilistic program,
engineers will try to see the probability of an event E to be in a situation S whereas
in this work they are interested in knowing if the current instance of E is in S. For
example, using a probabilistic program, engineers will see the overall probability25

that the temperature is greater than 20◦C. In our problem, they are want to see
what is the confidence, i.e., the probability, that the current measurement is greater
than 20◦C.

Multiple possibilities In order to face design uncertainty, Famelis et al., defined
the concept of partial models [FSC12; FC19]. A partial model is a graph where30

elements can be annotated with TRUE, FALSE, or MAYBE. TRUE and FALSE
respectively indicate that the graph element should be present or not. When the
presence of the element is uncertain, a designer can annotate it withMAYBE. Eramo
et al., apply this approach to handle uncertainty in model transformation [EPR15;
EPR14]: the process generate partial models. Partial models can also be used to35

reflect requirement uncertainty [SCH+13]. Finally, in the database community,
Benjelloun et al., [BSH+06] defined an approach where data can have different
possible values. This approach is only suitable for data when different possibilities
can be listed.

62

Randomness As seen in the previous section, the time uncertainty may affect
some events, which can complexify the test phase of such systems. To address this
challenge, Garousi et al., [Gar08] defines an approach where the time of occurrence
of events happen with a random parameter. However, this approach can only be
used in the testing phase to represent the lack of confidence in a value. Indeed,5

when one has to reason over received data, such as measurement data, she cannot
randomly select the value.

Domain-specific language In our review, we found four studies that define a
specific language to handle uncertainty in their domain. First, for uncertainty in
requirements, Whittle et al., [WSB+10; WSB+09] designed the RELAX language.10

The language introduces fuzzy words to reflect uncertainty. For example, a re-
quirement could be: “The workload SHALL NOT be greater than THRESHOLD”.
In [JWB+15], the authors present a declarative language for business processes
that allow stakeholders adding probability information to properties. For example,
to handle uncertain hardware, authors of [CMR13] have implemented a language15

that can specify reliability constraints on the execution of a function. If a language
engineer considers that uncertainty is a first-class citizen concern, as done by these
approaches, then she should integrate techniques to handle it in the language.

Model-level uncertainty Zhang et al., [ZAY+19] uses a UML profile to define
different kind of uncertainties, called U-Model [ZSA+16]. Following this approach,20

a designer can define a model to test CPS by generating test cases. One may use
this technique to model data uncertainty.

Formal model In our review, we found two formal models for uncertainty [Hal06;
ZSA+16]. First, Hall et al., defined a model that implements the recommendation
of the GUM [Hal06]. Second, Zhang et al., presented a conceptual model of25

uncertainty which regroups different kinds of uncertainty in a CPS [ZSA+16]. An
engineer can implement one of these formal models to represent data uncertainty.

Sum up As depicted in Table 4.5, in our review, we find seven categories of
approach that model uncertainty, with the most widely present: probabilistic
programming. As shown in the table, most of these approaches can be used to30

implement data uncertainty. In this thesis, we mainly focus on using a similar
approach as probabilistic programming or defining new data types that contain a
field for uncertainty to help developers modelling uncertain data.

4.3.3 Propagation and reasoning over uncertainty
In this section, we study state-of-the-art approaches to propagate uncertainty35

when uncertain data are manipulated. Plus, we study the different approaches to
reason over uncertainty. Table 4.6 and Table 4.7 present a summary of our findings.

63

Approach Reference Imperceptible
propagation?

Attached to lan-
guage operators

[BBM+18; BDI+17; BGG+13; BMB+18;
CGH+17; MWV16; SWF16; VMO16;
BAV+12; CNR13; JK12; PPT08; Pfe01;
RP02; SCG13; Thr00; LTB+00; Plu+03]

3

Through state
machine

[SMH11] 3

Manual [BBM+18] 7

Table 4.6: Approaches to propagate data uncertainty (RQ2.3)

Approach Reference
Access to the
confidence
parameter

[BBM+18; BMB+18; MWV16; VMO16; BGP92; SMH11]

Access to proba-
bility features

[BDI+17; BMM14; BGG+13; CGH+17; SWF16; BAV+12;
CNR13; JK12; PPT08; Pfe01; RP02; SCG13; Thr00;
LTB+00; Plu+03]

Table 4.7: Approaches to reason over the uncertainty of data (RQ2.3)

[Propagation] Attached to language operators According to our finding,
the most common approach to propagate uncertainty is to attache the propagation
mechanism to the language operator [BBM+18; BDI+17; BGG+13; BMB+18;
CGH+17; MWV16; SWF16; VMO16; BAV+12; CNR13; JK12; PPT08; Pfe01;
RP02; SCG13; Thr00; LTB+00; Plu+03]. From a programming language point of5

view, (uncertain) data are mainly manipulated through language operators, such
as arithmetic operators. In these works, researchers define strategies to map the
semantics of a language operator to a process that propagates the uncertainty.
For example, mapping the addition operator to the addition of two probability
distributions.10

[Propagation] Through state machine One study propagate the uncertainty
using a state machine [SMH11]. In this work, uncertain events are handled by
interactors. Due to the uncertainty, multiple interactors can match the event. They
are called, and their results are weighted according to the uncertainty of the event.
The state machine can thus be in different states, with different confidence. The15

most probable one is selected.

[Propagation] Manual propagation Finally, one solution requires manual
propagation [BBM+18]. This work is used in model transformations. When a

64

designer implements a transformation rule, she also has to implement the code
manually to propagate uncertainty.

[Reasoning] Access to the confidence parameter Six approaches in our
findings allow accessing to the confidence parameter. For example, using [VMO16]
developers can access to the standard uncertainty.5

[Reasoning] Access to properties of probability distribution Probabilis-
tic programming allow the manipulation of probability distributions as programming
language variables. Using such approaches, developers can access different proper-
ties of a probability distribution [BDI+17; BMM14; BGG+13; CGH+17; SWF16;
BAV+12; CNR13; JK12; PPT08; Pfe01; RP02; SCG13; Thr00; LTB+00; Plu+03].10

For example, they can access to the mean or the variance of a Gaussian distribution.
Of, they can compute a sample from the distribution.

Sum up The widely used approach to imperceptibly propagate uncertainty is
to attach the propagation uncertainty to the language operators as we can see
in Table 4.6. The main advantage of this approach is to keep a language with15

a syntax as close as possible to what developers are used to. However, current
solutions provide, what we call, low-level techniques to reason over uncertainty (cf.
Table 4.7). Indeed, state-of-the-art solutions allow developers to access either the
values stored or the properties of a probability distribution.

4.3.4 Modelling of data uncertainty and its manipulation20

In this review, we have seen that different kinds of uncertainty have been
addressed by the literature (RQ2.1). Among them, in this thesis, we focus on data
uncertainty. Different strategies can be used to model the uncertainty, with the most
used one, which consists of using a probabilistic program (RQ2.2). This approach
offers the propagation of uncertainty by mapping this process to language operators25

(RQ2.3). Plus, the properties of probability distributions can also be accessed using
such techniques (RQ2.3). However, we think that research efforts now can be done
to provide a language with a higher level of abstraction, as initiated by Vallecillo et
al., [VMO16]. One goal is to help developers implementing reasoning algorithms
over uncertain data with a high-level understanding of the probability theory.30

Moreover, we think that specific operators should be specified to reason over this
uncertainty. Another limitation of these works is that they studied uncertainties on
numerical values. There are still open research questions to employ these techniques
in an object-oriented language, which also contains references, nested objects or
hierarchical relations.35

65

4.4 Threat to validity
In this section, we discussed several threats to validity that may damage the

results of our review.
To perform this review, we use a strategy inspired by the snowballing method-

ology [Woh14]. However, due to a lack of resources, we did not apply the backward5

and forward propagation on all the selected papers. Additionally, as mentioned
by the authors, the quality of the results of a review that follow this methodology
highly depends on the starting set, which can suffer from bias.

Moreover, the results of a review are impacted by the accuracy of the data
extraction step and the research questions formulated. In this case, no discussion has10

been done around the formulation of the research questions. And the data extraction
has been performed by a unique person, which will increase the inaccuracy.

4.5 Conclusion
In this chapter, we review the state-of-the-art approaches to answer two research

questions. First, we look for studies that model adaptive systems, their contexts or15

behaviours to see if they also consider long-term action (RQ1).
In Section 4.2, we answer the first research question. We first show that the

literature provides a few solutions to keep the history of the structure, context, or
behaviour of systems [HFN+14b; HFN+14a; MS17; TOH17; HIR02; HFK+14a].
The other solutions, depicted in Table 4.1, such as goal models [CvL17; IW14;20

MAR14; CPY+14; BPS10] or object-based models [HIR02; HFK+14a; TOH17] do
not support the time dimension natively. However, this feature remains important
to enable the modelling of long-term actions. Then, we show that none of the
state-of-the-art approaches allows stakeholders to model long-term actions. Indeed,
they do not incorporate a time dimension in their models. We give an overview25

of the different solutions in Table 4.2. Finally, we show that, using one of the
current solutions, one cannot reason over running actions with their expected effects.
Some solution exists to represent action effects at design time. First, those that
employ a state machine [MCG+15; FGL+11; DBZ14; ZGC09; GPS+13; TGE+10]
represent actions as state transitions. Effects are thus modelled as the target state.30

In [HFK+14a], the authors model and use the effects of actions to simulate different
sequences of actions. Lastly, researchers defined the Stitch language [CG12] that
can abstract action effects. They are used as conditions for the execution of the next
action. However, none of them models runtime information, useful, for instance,
during a diagnosis task.35

Then, we search for solutions that model data uncertainty and present our
findings in Section 4.3. We first explain that the literature addressed nine kinds
of uncertainties, depicted in Table 4.4. Among them, the most studied one is

66

the uncertainty relative to data [BBM+18; BDI+17; BGG+13; BMB+18; BMM14;
CGH+17; MWV16; SWF16; VMO16; ZAY+19; Hal06; JWB+15; ZSA+16; BGP92;
BSH+06; BAV+12; CNR13; JK12; PPT08; Pfe01; RP02; SCG13; SMH11; Thr00;
LTB+00; Plu+03]. In this thesis, we also concentrated on this kind of uncer-
tainty. Then, we detail how researchers model data uncertainty (cf. Table 4.5).5

In our findings, the most used one is the probabilistic programming [BDI+17;
BMM14; BGG+13; CGH+17; SWF16; BAV+12; CNR13; JK12; PPT08; Pfe01;
RP02; SCG13; Thr00; LTB+00; Plu+03]. Using this programming paradigms,
developers can manipulate probability distribution as variables. They can define
complex probability distributions that result from a sequence of operations. An-10

other approach is to consider a variable as a pair of a standard deviation and
a value [BBM+18; BMB+18; MWV16; VMO16; BGP92; SMH11]. Finally, we
look for studies that propose a solution to propagate or reason over uncertainty
(cf. Table 4.6). The principal approach found to propagate the uncertainty is to
map this operation to language operators [BBM+18; BDI+17; BGG+13; BMB+18;15

CGH+17; MWV16; SWF16; VMO16; BAV+12; CNR13; JK12; PPT08; Pfe01;
RP02; SCG13; Thr00; LTB+00; Plu+03]. Concerning reasoning approaches, we
find only two ways, as shown in Table 4.7. The first one consists in giving access to
the confidence parameter [BBM+18; BMB+18; MWV16; VMO16; BGP92; SMH11].
The second one is to allow developers to read and manipulate features of the20

probability distribution [BDI+17; BMM14; BGG+13; CGH+17; SWF16; BAV+12;
CNR13; JK12; PPT08; Pfe01; RP02; SCG13; Thr00; LTB+00; Plu+03].

To summarise, our review shows that none of the current approaches model or
enable reasoning over actions with delayed effects. Thus, some research efforts are
still required to specify solutions that allow designers to add long-term action in25

their model and to implement techniques to reason over them. In this thesis, we
start studying this problem, and we present a model-based solution, detailed in
Chapter 7. Moreover, it different solutions have been found in our review to manage
data uncertainty, the main one being referred to as probabilistic programming.
This solution allows developers to manipulate probability distributions as common30

variables of a programming language. However, as seen in our review, not all
kinds of uncertainty can be represented by this approach. For example, some
researchers represent the uncertainty of a value with a set of different possibilities.
Therefore, open challenges still need research efforts to handle data uncertainty.
Towards solving these challenges, we start by defining a language that integrates35

data uncertainty as a first-class citizen (cf. Chapter 6).

67

68

Part II

Towards a modelling frameworks
for adaptive systems

69

5
Uncertainty and time in modeling frameworks

Contents
5.1 Summary of previous chapter 70
5.2 Vision . 70

This chapter describes the vision defended in this document. We first summarise
the challenges in modelling adaptive systems. Then, we explain our vision and
introduce our two contributions that support it.

71

In this chapter, we present the vision that we defend in this document. We first
summarise the challenges addressed and our review of the state-of-the-art. Then,
we describe our vision.

5.1 Summary of previous chapter
Adaptive systems engineer can use the MDE methodology to design the adap-5

tation process cf. Chapter 1). Among the open challenges we identified for this
method, this thesis tackles the followings:
• How to ease the manipulation of data uncertainty for software engineers?
• How to enable reasoning over unfinished actions and their expected effects?
(long-term actions)10

• How to model the decisions of an adaptation process to diagnose it?
We show in Chapter 4 that it exists no solution to model long-term action or

to reason over them. Besides, we establish that research efforts are still required
to handle data uncertainty at the language level. To come to this conclusion, we
perform a review driven by two research questions (cf. Section 4.1):15

• [RQ1] Do state-of-the-art solutions that model adaptive systems allow repre-
senting and reasoning over long-term actions?
• [RQ2] Do state-of-the-art solutions allow modelling uncertainty of data and

its manipulation (propagation, reasoning over)?

5.2 Vision20

We think that both challenges can be addressed by the definition of a modelling
framework that includes, besides all traditional elements, temporal and uncertainty
as first-class concepts. We depict this vision in Figure 5.1.

Using this framework, shown on the left-hand side of the figure, one can define a
solution based on the models@run.time paradigm: a runtime model that conforms25

a metamodel, and used as an interface between the adaptation process and the
system. This framework contains three elements: a design modelling tool, an action
language, and a runtime environment with automatic uncertainty propagation.

The design modelling tool is used to define the metamodel, with time and uncer-
tainty as first-class concepts. Instantiated models will benefit from a mechanism to30

keep track of their history. Additionally, specific model elements will be inserted to
index model elements by their timestamps (depicted in orange in Figure 5.1). The
model will also contain uncertain elements (depicted in blue in Figure 5.1). From
the metamodel, a process will be generated: the uncertainty quantification process
(depicted in purple). It aims at quantifying the uncertainty of new elements, or at35

recomputing the uncertainty of existing elements based on new data received. The
generation of this process will be done by the action language.

The action language will help designers to processes for uncertain and temporal

72

Design Modelling

used to define

Modelling framework
with time and uncertainty as a first-

class concept

Action Language

used to
define

System

Environment
adds result

in updates
Model

reconfigures
uses as

knowledge
for

conforms to

A P I

Metamodel

Adaptation

t1 t2 t3 time

with time and uncertainty as a
first-class concept

Processes

Uncertainty
quantification

Runtime environment with auto‐
matic uncertainty propagation

generates

Adaptation

Legend
our framework uncertain dataindex for temporal or uncertain data

modelling relationship
text

data flow
text

generated element

Figure 5.1: Overview of our vision

models. Aside from the uncertainty quantification process, there is the adaptation
process. This one queries and modifies a model to trigger actions. The language will
be executed in a runtime environment that automatically propagates uncertainty.
That is, the propagation is part of the semantics of the language.

Hartmann et al., partially implemented this vision [HFM+19], which led to5

the GCM. Using this framework, a modeller will not specify any time-related
information in the models. They will be automatically generated by the framework,
with dedicated data structures for temporal data to enable efficient storage and
query.

We present, in this thesis, two contributions towards this vision. First, we detail10

our language named Ain’tea, which permits designers managing uncertainty at
the language level, in Chapter 6. We can assume that the language is part of the
modelling framework, used to define reasoning processes such as the adaptation
process. This solution addressed the challenge of the manipulation of uncertain
data (cf. Sub-Challenge #1). Second, we describe a temporal knowledge model15

in Chapter 7 to structure and store the state and behaviour of a running adaptive
system, with running long-term actions. This model addresses the challenge of
reasoning over unfinished actions, and understanding of adaptive system behaviour
(cf. Sub-Challenge #2 and #3). This metamodel can be understood as an example
of a result of our modelling framework.20

73

74

6
Ain’tea: managing data uncertainty at the
language level

Contents
6.1 Uncertainty as a first-class language citizen 75
6.2 Evaluation . 90
6.3 Conclusion . 99

After identifying and discussing the key concepts associated with data uncer-
tainty, this chapter presents Ain’tea, a language that integrates them directly into the
grammar, type system and semantics part. To validate and exemplify our approach,
we apply it to a smart-grid scenario and compare it to framework-based approaches.
We show that developers benefit from the language semantics and type system which
guide them to manipulate uncertain data without deep probability theory knowledge.

75

In this chapter, we present the contribution that tackles Sub-challenge #1
described in Section 1.3, concerning data uncertainty. Our contribution is split in
three parts.
• Description and definition of the main concepts and operators to introduce
in a language with uncertainty as a first-class citizen. Doing so, developers5

will be able to manipulate uncertain and certain data in a similar way, hiding
complex concepts behind ones they are used to.
• An uncertainty-aware static type checker enabling the design-time detection of

programming errors. This type checker can be used as implicit documentation,
which helps developers in implementing uncertainty-aware algorithms.10

• We implement these two contributions in the Ain’tea language, publicly
available1. An overview of this language is depicted in Figure 1.4. Then, we
use a real-world case study, built with our partner Creos S.A., to answer the
two following research questions:
– RQ1: Does the uncertainty management have an impact on the concise-15

ness of a language?
– RQ2: Can the type system detect errors related to uncertainty manage-

ment?
Our use-case implementation shows first that our approach does not impact

the conciseness of the language (RQ1). Second, it highlights the feasibility and the20

advantages (RQ2) of an uncertainty-aware type checking system on the language
level.

The remainder of this chapter is as follows. In Section 6.1, we present and
discuss the main concepts and operators for uncertainty management as a first-class
citizen of a language. Section 6.2 presents our Ain’tea implementation and validates25

the design time error detection and its impact on language conciseness. Section 6.3
concludes and presents some open research perspectives.

1https://github.com/lmouline/aintea/

76

https://github.com/lmouline/aintea/

Static Semantics

Abstract Syntax

Concrete Syntax

Dynamic Semantics

⁃ Primitive types to represent probability distributions
⁃ Primitive types to represent uncertain data (boolean, number, reference)
⁃ Operators to manipulate uncertain data and propagate uncertainty
⁃ Syntax for uncertain data and the operators

⁃ Typing rules which follow the probability theory

⁃ Execution of the operators: uncertainty propagation

Sy
nt

ax
Se

m
an

tic
s

Figure 6.1: Impact of having uncertainty as a first-class language citizen on a
language

6.1 Uncertainty as a first-class language citizen
6.1.1 Language overview

Data are uncertain when some data points are not precisely known. This lack of
confidence is generally represented by a probability distribution, like the Gaussian
distribution [Met08]. Let D be a set of data points and PD a set of probability5

distributions. An uncertain data point ud ∈ UD is therefore defined by a
pair (d, pd), where d ∈ D and pd ∈ PD. This representation permits to
store a value, which has been observed, computed, given, or measured
with a probability distribution that represents the certainty.

Thus, we associate one data point to the value of a variable in a programming10

language. Adding uncertainty as a first-class language citizen thus implies to enable
the creation and the manipulation of such pairs. We propose to add new data
types to represent such pairs and define operators on top of these data types to
manipulate them. Uncertainty propagation is done through these operators. This
impacts the different elements of our language [HR04; Deg16]: the syntax (abstract15

and concrete) and the semantics (static and dynamic). This is summarised in
Figure 6.1.

In the abstract syntax, we define the probability distributions and uncertain
data types as primitive types. Plus, it contains a definition of the operators to
manipulate them. In this article, we do not propose a concrete syntax as part of20

the contribution, we only give an example through our implementation, Ain’tea.
In the static semantics, the type system implements typing rules that follow the
probability theory. Moreover, meaningful error messages for end users are provided.
Finally, dynamic semantics define how the different operators are executed and
thus how uncertainty is propagated. We define the dynamic semantics following25

the operational approach [Mos01]. It also defines the execution of the creation or
deletion of uncertain data in the program.

77

To facilitate reading, we start by explaining the principles behind the manipu-
lation of uncertain data based on the boolean case and deal with the numeric case
(discrete and continuous) afterwards. We define the operators that can be applied
on such data as well as their formal semantics.

6.1.2 Uncertain boolean5

What an uncertain boolean is?

Boolean variables can take only two possible values, TRUE and FALSE . For
a given data point d, the levels of confidence that d actually takes each of these
values are thus proportionally tied to each other. The higher the confidence level
of one value is, the lower the confidence level of the other. More precisely, if d10

takes the value TRUE with probability c then it takes the value FALSE with a
probability (1 − c). That is, P (b = TRUE) = 1 − P (b = FALSE), with P (X) a
function that computes the probability of X.

Bernoulli distribution for uncertain boolean values

We use the Bernoulli probability distribution [Wal96] to represent the confidence15

level of uncertain boolean values. Bernoulli(p) denotes a random variable that
equals 1 with a probability of p and 0 with a probability of (1− p). Without loss of
expressiveness, we arbitrarily decide that p represents the probability that the data
point takes the TRUE value. In other words, a TRUE value with a confidence level
c1 is associated with a Bernoulli(p = c1), while a FALSE value with a confidence20

level (c2) is associated with a Bernoulli(p = 1− c2). Thus, the uncertain booleans
(TRUE , 0.76) and (FALSE , 0.24) differ in their observed value but not in the
probability distribution.

More generally, in our proposed language, an uncertain boolean is thus repre-
sented as a pair (d, pd), with d is a boolean value and pd is a Bernoulli distribution25

set with the probability of the TRUE value. The abstract syntax of our lan-
guage contains thus the Bernoulli distribution and a definition of the
pair (boolean value, Bernoulli distribution). Existing approaches [BMB+18]
store only the Bernoulli distribution and use the aforementioned equivalence to
convert a FALSE value to a TRUE one. We find these approaches to be counter-30

intuitive as developers would only manipulate TRUE values, regardless of the
value actually observed. As we want to keep the data manipulation as close as
possible to common programming languages, we decide to represent a boolean as
the composition of both the value and the Bernoulli distribution. Moreover, our
approach keeps the initial value, which has been observed or measured.35

The abstract syntax also contains the following operators. First, the definition
of boolean (and, or, not) and equality (=, 6=) operators are extended to uncertain
booleans. In addition, we define the cast operator between these two data types.

78

Finally, one may reason over the confidence level. We thus define four novel
operators: existence, confidence, dot, and uncertain equality. We detail them in
the next section.
Operational semantics

We denote by (b, B(p)) an uncertain boolean with a boolean value b and a5

Bernoulli distribution B(p) with probability p. In order to distinguish between
the equality operator and the mathematical equality symbol, in the rest of this
article, we represent the first by = and the second by :=. We define the following
uncertain booleans to exemplify the different operators: ub1 := (TRUE, B(0.3)),
ub2 := (TRUE, B(0.65)), and ub3 := (FALSE, B(0.45)).10

Operator 1 The existence operator returns true if an uncertain data point
ud ∈ UD has a value with at least a given probability t ∈ C, where C := {c ∈ R |
0 6 c 6 1}, and false otherwise: UD × C

exists−−−−→ B.

Using this operator, developers know if it exists at least one value for which its
confidence level is greater than a given threshold. For example, using it, one may15

know if a fuse is open (isOpen := TRUE) or closed (isOpen := FALSE) with a
confidence of at least 80%. The operational semantics of this operator is specified
by the following function:

exists((v, B(p)), t) := (p > t)‖(1− p > t)

Applying the operator on ub1, we thus get:
• exists(ub1, 0) := (0.3 > 0) ‖ (0.7 > 0) := TRUE ,20

• exists(ub1, 0.5) := (0.3 > 0.5) ‖ (0.7 > 0.5) := TRUE ,
• exists(ub1, 0.9) := (0.3 > 0.9) ‖ (0.7 > 0.9) := FALSE .

In plain English, these examples mean: considering ub1, there exists a value with a
confidence level of at least 0 and 0.5 but there is no value with a confidence level
of at least 0.9.25

Operator 2 The confidence operator computes the most confident value D
with a minimal confidence level t ∈ C of a given uncertain data point u ∈ UD:
UD × C

confidence−−−−−−−→ D.

Taking an example from the smart grid domain, one may use this operator to
get the most probable state of the fuse (open or close), if its confidence is superior30

to 80%.
This operator raises an error in two cases: when (i) no value exists with at least

the given confidence level or (ii) the confidence level of both values, true or false,

79

are equal. Its semantics is thus:

confidence((v, B(p)), t) :=


true, when exists((v, B(p)), t) ∧ p > 1− p

false, when exists((v, B(p)), t) ∧ p < 1− p

⊥ , when p = 0.5

If we apply this operator on ub1 with the same base as the previous example,
then it returns:
• confidence(ub1, 0) := FALSE,
• confidence(ub1, 0.5) := FALSE,5

• confidence(ub1, 0.9) := ERROR.
With a confidence level of at least 0 or 0.5, ub1 is more likely to be equal to FALSE .
Otherwise, we cannot know its value with a minimal confidence level of 0.9.

Operator 3 The cast operator casts an uncertain data point to a certain one
and vice-versa. The cast operation from uncertain to certain is defined as follow:10

UD
cast−−−→ D. Formally, the opposite operation is described as follows: D

cast−−−→ UD.

The cast operation from an uncertain to a certain one can be used to get the
most confident value, without any constraint on the confidence (which is done by
the confidence operator). This helps developers to reason or to make decisions
upon the most probable situation. It can be performed by using the confidence15

operator with 0 as given confidence level:

cast(ub) := confidence(ub, 0)

The opposite operation, from certain to uncertain, is mainly a syntactic ma-
nipulation. Indeed, certain data is always considered as uncertain data with the
maximum confidence level. In the case of uncertain boolean, it’s 1:

cast(b) :=

(b, B(1)), when b = TRUE
(b, B(0)), when b = FALSE

Performing this operator on our example results in:20

• cast(ub1) := confidence(ub1, 0) := FALSE ,
• cast(ub2) := confidence(ub2, 0) := TRUE ,
• cast(TRUE) := (TRUE , B(1)),
• cast(FALSE) := (FALSE , B(0)),

Operator 4 The dot operator allows accessing both elements of uncertain data:25

the value d ∈ D or the probability distribution pd ∈ PD: UD
dot−−−→ D ∪ PD.

80

This operator allows accessing the elements that compose uncertain data. For
the value, it permits to resolve what is the value measured, observed, computed or
given, without uncertainty consideration using the value keyword:

(v, B(p)).value := v

For the confidence, it gives access to the confidence in order to reason over the
probability distribution using the confidence keyword:5

(v, B(p)).confidence := B(p)

Used on ub1 and ub3, this operator will return:
• ub1.value := TRUE ,
• ub1.confidence := B(0.3),
• ub3.value := FALSE,
• ub3.confidence := B(0.45),10

Operator 5 When applied between two uncertain data, uncertain equality op-
erators (=, 6=) compute the probability that both uncertain values are equal or not:
U2

D

u−equality−−−−−−−→ UB, where UB is the set of uncertain booleans. When used between
an uncertain and a certain value, they return the probability that the uncertain
variable is equal to the certain value: UD ×D

u−equality−−−−−−−→ UB.15

In both cases, the resulting value of the uncertain boolean is computed by apply-
ing the operator to the boolean values. When used between two uncertain booleans,
the calculated probability corresponds to the probability that both values are equal
to TRUE or both equal to FALSE . To do so, we compute the union of the inter-
section of the different probabilities. It results therefore in the following semantics:20

(v, B(p)) = b :=

ub[v = b, B(p)], when b = TRUE
ub[v = b, B(1− p)], when b = FALSE

(v1, B(p1)) 6= b :=

ub[v 6= b, B(1− p)], when b = TRUE
ub[v 6= b, B(p)], when b = FALSE

(v1, B(p1)) = (v2, B(p2)) := (v1 = v2, [B(p1) ∩B(p2)] ∪ [B(1− p1) ∩B(1− p2)])
(v1, B(p1)) 6= (v2, B(p2)) := (v1 6= v2, [B(p1) ∩B(1− p2)] ∪ [B(1− p1) ∩B(p2)])

To compute the intersection of the union of Bernoulli distributions, first, we
should evaluate whether they are disjoint and dependent. We call two variables
dependent if they are, directly or indirectly, defined based on at least one common
variable (uncertain or not). For example, let temp be a temperature, the boolean

81

b1 = t 6 0 and b2 = t > 18 are dependent because they share the same variable
t. As both values are directly defined using t, they are dependent. We call two
variables disjoint when they do not share the same a common set of possible values.
In our example, b1 and b2 are disjoint because they don’t share any possible values,
i.e.,]−∞, 0]∩]18, +∞[= ∅.5

Below we illustrate the different formulas to compute the union or intersection
of Bernoulli distributions. Overall, there are three cases: (i) disjoint variables,
regardless if they are independent or not, (ii) independent and non-disjoint variables,
and (iii) dependent and non-disjoint variables. To the best of our knowledge, there
is no formula in the latter case. An exception is raised in such cases.10

B(p1) ∩B(p2) = 0
B(p1) ∪B(p2) = B(p1 + p2)

(Disjoint var.)

B(p1) ∩B(p2) = B(p1 ∗ p2)
B(p1) ∪B(p2) = B((p1 + p2)− (p1 ∗ p2))

(Indep. and non-disjoint var.)

B(p1) ∩B(p2) =⊥
B(p1) ∪B(p2) =⊥

(Dep. and non-disjoint var.)

Let us consider ub1 and ub3 two independent and non-disjoint variables. Applying
the equality operators on them will result in:
• ub1 = ub3 := (TRUE = FALSE, B(0.3 ∗ 0.45) ∪B(0.7 ∗ 0.55))

:= (FALSE, B(0.135 + 0.385)) := (FALSE, B(0.52))
• ub1 6= ub3 := (TRUE 6= FALSE, B(0.3 ∗ 0.55) ∪B(0.7 ∗ 0.45))15

:= (TRUE, B(0.165 + 0.315)) := (FALSE, B(0.48))
In plain English, ub1 and ub3 have a probability of 52% of having the same value,
i.e., 48% of having different values.

Operator 6 Identity operators (==, 6=6=) return true if two uncertain data are
identical: same value and same probability distribution. Formally, U2

D

identity−−−−−→ B20

This operator is an extension of the equal operator available in programming
languages or the equals method in Java. It compares the probability parameter of
the Bernoulli distribution and the values of the uncertain booleans:

(v1, B(p1)) == (v2, B(p2)) := (p1 = p2) ∧ (v1 = v2)
(v1, B(p1)) 6=6= (v2, B(p2)) := p1 6= p2 ∨ (v1 6= v2)

For example, the comparison of ub1 and ub2 returns:
• ub1 == ub2:= (0.65=0.3) ∧ (TRUE=TRUE) := FALSE ,
• ub1 6=6= ub2 := (0.65 6=0.3) ∨ (TRUE 6=TRUE) := TRUE .

82

Type Data type Gaussian Rayleigh binomial Dirac
Continuous float, double 3 3 3

Discret byte, short, integer, long 3 3

Table 6.1: Which distribution can be used to represent the uncertainty of which
data type

Operator 7 Uncertain boolean operators (∧, ∨, ¬) compute the result of the
boolean operation and its confidence: U2

B
u−booleans−−−−−−−→ UB

The value of the resulting uncertain boolean is computed by applying the
boolean algebra on the values of both input uncertain booleans. The second part of
the computation combines (union and intersection) their probability distributions:

(v1, B(p1)) ∧ (v2, B(p2)) := (v1 ∧ v2, B(p1) ∩B(p2))
(v1, B(p1)) ∨ (v2, B(p2)) := (v1 ∨ v2, B(p1) ∪B(p2))

¬(v1, B(p1)) := (¬v1, B(1− p1))

If we assume ub1 and ub3 independent and non-disjoint variables, applying these
operators return:
• ub1 && ub3 := (TRUE && FALSE , B(0.65*0.45)) := (FALSE , B(0.2925)),5

• ub1 ‖ ub3 := (TRUE ‖ TRUE , B(0.65 + 0.45 - 0.65*0.45)) := (TRUE ,
B(0.8075)),
• ¬ub1 := ¬(¬TRUE, B(1 - 0.65)) := (FALSE , B(0.35)).

6.1.3 Uncertain number
What is an uncertain number?10

Numerical variables can theoretically take an infinite number of values. They
can be either on a continuous domain, simulated by floating-point values, or on
a discrete one, simulated by integer values. The confidence level of such data is
either precisely linked to the value (observed, measured, ...) or is distributed
over the range of possible values. For example, values get from sensors are15

always given with a certain accuracy, e.g., 18.4◦C ± 0.1◦C. The confidence level
of the measured values is thus distributed over a range. Values set by humans
are also uncertain due to possible human errors. However, there might be no
information concerning the distribution of this uncertainty. The confidence level is
thus attached to the precise value.20

Representation of uncertain numbers
Like uncertain booleans, uncertain numbers are composed of two elements:

a numerical value and a probability distribution that represents its uncertainty.

83

According to the nature of the numerical value, developers have to decide which
distribution fits the uncertainty of their variable. In probability theory, one
distinguishes between continuous distributions and discrete distributions. The
former defines the distribution of the probability density over a continuous do-
main. The latter instead apply to a discrete domain. In our proposed language,5

we support the following distributions: two continuous probability distributions,
Gaussian [Wal96] and Rayleigh [Wal96], and one discrete distribution, the binomial
distribution [Wal96]. In addition, we support the Dirac delta function [GS64],
which can be used on a continuous or a discrete domain. We refer to Chapter 2 for
a detailed description of these distributions.10

In our language, we add new data types that represent each distribution. In
addition, we add a new type for all possible combinations, described in Table 6.1.
Existence, confidence, dot, cast and uncertain equality operators are also defined
for these data types. We add operators specific to numerical values: arithmetic
and comparison operators. The semantics of these operators are formalised in the15

next section.

Operational semantics
We denote by (v, pd) an uncertain number with a numerical value v and a

probability distribution pd ∈ PD. The following uncertain numbers are defined to
be used as examples for the description of the operators:20

• un1 := (7, binomial(20, 0.37)),
• un2 := (10, binomial(30, 0.33)),
• un3 := (12, Gaussian(12, 9)),
• un4 := (23, Gaussian(23, 5)).

Operator 1 - Existence operator.25

In probability distributions, the value with the highest probability is called the
mode [MGB63]. We denote it by m. For discrete uncertain numbers, the operator,
defined in Operator 1, returns TRUE if the probability of the mode value is greater
or equal to a given base:

exists((v, p), t) := P (x = m) > t, where P (x = m) is the probability of m

Based on un1, we thus get:30

• exists(un1, 0) := P (x=7) > 0 := 0.1542985 > 0 := TRUE ,
• exists(un1, 0.5) := P (x=7) > 0.5 := 0.1542985 > 0.5 := FALSE ,
• exists(un1, 0.9) := P (x=7) > 0.9 := 0.1542985 > 0.9 := FALSE .

This operator allows verifying that there is no value with a confidence level of at
least 50 or 90% for un1, but there is at least one value with a non-null confidence35

level.

84

For uncertain continuous numbers, no semantic exists for a continuous domain
since the probability of the mode cannot be computed for continuous probability
distributions,

∫ m
m P (un) dx = 0:

exists((v, p), t) :=⊥

Operator 2 - Confidence operator.
The semantics of the confidence operator relies on the existence operator. For un-5

certain discrete numbers, it returns the mode if the existence operator returns true:

confidence((v, p), t) :=

m, if exists((v, p), t)
⊥ , otherwise

Applying this operator on the un1 using the same base as in the previous
example, the operator returns the mode value, 7, only for the first case:
• confidence(un1, 0) := 7,
• confidence(un1, 0.5) :=⊥,10

• confidence(un1, 0.9) :=⊥.
This means that the most probable value which has at least zero as confidence

level is 7 for un1.
For continuous numbers, as this operator is based on the existence operator,

which is not defined, it is also not defined:15

confidence((v, p), t) :=⊥

Operator 3 - Cast operator. In addition to the cast operator between uncertain
and certain data, this operator is extended to support casting operations between
two uncertain numbers, when an approximation function between two distributions
exists. In Table 6.2, we summarize the permitted casts in our language.

When casting an uncertain number (discrete or continuous) to a certain one,20

we return the value with the highest confidence, i.e., the mode m.

cast((v, p) := m

For example, casting un1 and un3 to certain numbers will result in:
• cast(un1) := 7,
• cast(un3) := 12.
When casting a certain to an uncertain number, we should be able to specify a25

distribution that represents a confidence level of 100% on a precise value. This is
not always possible with all distributions. From the distributions implemented in
our language, it is only possible for the binomial distribution and the Dirac delta

85

function. For the other distributions, it is either impossible, like for the Poisson
distribution (not implemented here) or it requires domain-specific heuristics. For
example, the Gaussian distribution can be initialized with a variance value that is as
close as possible to zero. But the definition of “as close as possible” differs according
to the domain. For instance, when handling temperature values, 0.01 could be5

considered sufficiently close to 0. Nonetheless, this accuracy is not sufficient for
other fields such as meteorology. As no global value could be selected, we decided
to forbid such casting operations when it is not possible without heuristics. We,
therefore, define the following semantics:

cast(v) :=



(v, Dirac(coeff = 1, shift = v), when the expected distribution
is a Dirac delta function

(v, binomial(n = v, p = 1)), when the expected distribution
is a binomial distribution delta function and v ∈ N
⊥ , otherwise

For example, casting 30 and 6.7 would result in:10

• cast(30) := (v, Dirac(1, 30))
• cast(30) := (v, binomial(30, 1))
• cast(6.7) := (v, Dirac(1, 6.7))
Finally, the operator can be applied between two uncertain numbers if and

only if a mapping or an approximation between the source and target probability15

distributions exists in probability theory:

cast(v, p1) :=

(v, approximation(p1)), if the approximation exists
⊥ , otherwise

Following the casting rules described in Table 6.2, un1 can be cast into an
uncertain number with a Gaussian distribution and un3 can be cast into an uncertain
number with a binomial distribution:
• cast(un1) = (7, Gaussian(7.4, 4.662)),20

• cast(un3) = (12, binomial(48, 0.25)).

Operator 4 - Dot operator. For uncertain numbers, this operator has the same
semantics as described in Operator 4:

(v, pd).value := v

(v, pd).confidence := pd

When used on un1 and un3, this operator returns:25

86

To
From Gaussian Rayleigh binomial Dirac certain number

Gaussian 3

Rayleigh
binomial 3 3 3

Dirac. 3

certain nb. 3 3 3 3
From: source type of uncertain number; To: targetted type. For readability purpose, we

put the distribution names to represent the different types of uncertain numbers

Table 6.2: Cast operations allowed in our language

• un1.value := 7,
• un1.confidence := binomial(20, 0.37),
• un3.value := 12,
• un3.confidence := Gaussian(12, 9).

Operator 8 Uncertain arithmetic operators (+, −, ∗, /) compute the arith-5

metic operation for uncertain numbers UN : U2
N

u−arithmetic−−−−−−−−−→ UN

When performing arithmetic operations on uncertain variables, both values and
probability distributions are considered. Two strategies to perform arithmetic
operations on uncertain numbers are identified: numerical and analytical. While
the second strategy is used in simple expressions, the first strategy is used when the10

expression is complex by returning an approximation of the arithmetic expression.
Our language implements only the analytical method. Therefore, any semantics
that requires the execution of a numerical method is considered undefined. If the
second one is required, we consider the operator undefined. In Section 6.1.5, we
detail the allowed operations in our language.15

As with boolean expressions, the independence and joint of the two combined
variables impact on the formula used to effectuate an arithmetic operation. Calcu-
lations are more complex when they are dependent. For example, although the
addition of two independent Gaussian is done by adding the mean and the variance
of the two distributions, the covariance matrix must be calculated when they are20

dependent. In such cases, the numerical approach is used.
Arithmetic operations are applied on both elements that define an uncertain

87

number, the value and the probability distribution:

(v1, p1) + (v2, p2) = (v1 + v2, p1 + p2)
(v1, p1)− (v2, p2) = (v1 − v2, p1 − p2)

(v1, p1) ∗ (v2, p2) = (v1 ∗ v2, p1 ∗ p2)
(v1, p1)/(v2, p2) = (v1/v22, p1/p2)

For example, adding un3 and un4 will result in: un3+un4 := (12+23, Gaussian(12+
23, 5 + 9)) := (35, Gaussian(35, 14)).

Operator 9 Inequality operators (<, 6, >, >) computes the confidence that
the left side value is (strictly) less or greater than the right one : (UN×N)2 inequality−−−−−→
UB5

When the inequality operator is used between an uncertain and a certain
number, we compute the confidence that the left-hand side is greater than or equal
to the right-hand side:

(v, pd) ≺ a := (c > 0, B(c)); c := P (un ≺ a); ≺∈ {<, >,6,>}
a, a numeric number in the same set as v

For example, comparing un1 and un3 will return:
• un1 > 10 := (0.17 > 0 , B(0.17)) := (TRUE , B(0.17)),
• un3 6 10 := (0.25 > 0, B(0.25)) := (TRUE , B(0.25)).
When the inequality operator is used between two uncertain numbers, the

probability variable is substituted by un1 ≺ un2 ⇔ un1 − un2. From there, we can10

apply the operator, ≺, between the result and 0. An operation can be executed, if
and only if the subtraction is defined between the two operands.

(v1, p1) ≺ (v2, p2) := [(v1, p1)− (v2, p2)] ≺ 0; ≺∈ {<, >,6,>}

For example, comparing un3 and un4 will result in: un3 > un4 := un3 − un4 >
0 := (−11, Gaussian(−11, 4)) > 0 := (FALSE, B(0.00)).

Operator 5 - Uncertain equality operator.15

When the equality operator is applied to a discrete uncertain and a certain
number, it returns the probability that the uncertain number equals (or not) the
certain one:

(v1, p1) ≺ a := (c > 0, B(c)); c := P (un ≺ a); ≺∈ {=, 6=}

For example, applying these operators on un1 or un2 will result in:

88

• un1 = 2 := (0.00 > 0, B(0.00)) := (FALSE , B(0.00)),
• un2 6= 13 := (0.89 > 0, B(0.89)) := (TRUE , B(0.89)).
As it is impossible to compute the confidence of a precise number, this operation

cannot be performed for continuous uncertain numbers:

(v1, p1) ≺ a :=⊥

To compare two discrete uncertain numbers, we use the same strategy as for5

the inequality operator: we subtract both and compare it with zero.

(v1, p1) ≺ (v2, p2) := (v1, p1)− (v2, p2) ≺ 0; ≺∈ {=, 6=}

As this comparison is impossible with continuous uncertain numbers, this
operator is undefined for such:

(v1, p1) ≺ (v2, p2) :=⊥

Operator 6 - Identity operator. Similarly to uncertain booleans, the identity
operator (==) applied to uncertain numbers returns true only if both values and10

both probability distributions are equal:

(v1, p1) = (v2, p2) := v1 = v2&&p1 = p2

The unequal operator (6=6=) returns true if both values or distributions are
unequal:

(v1, p1) 6= (v2, p2) := v1 6= v2‖p1 6= p2

6.1.4 Uncertain references
What is an uncertain reference?15

References, or pointers, allow storing a directed association from one element
(e.g., a Java object) to another one. A reference is defined as uncertain when
the existence of this relation is not known with the most thorough
confidence. For example, to represent the topology of the smart grid we can
imagine substituting cables by simple references from one entity to another. These20

references are not known with absolute confidence due to the uncertainty of fuses
states.
Mapping to uncertain booleans

Like for uncertain booleans, uncertain references have two states: either the
reference exists or not. The confidence level on the existence can thus be represented25

by an uncertain boolean. We map the TRUE value to the existence of the reference

89

and the FALSE one to its non-existence. Internally, uncertain references are
represented by two components: a reference value and an uncertain boolean.

(Reference, c) 7→ (Reference, (v, B(p = c))), v ∈ {TRUE,FALSE}

The abstract syntax of our language is thus extended to add a new data type:
uncertain reference. The semantics of the existence, confidence, cast, and dot
operator are extended to consider this new type.5

Operational semantics
We denote by (r, ub) an uncertain reference with a value r and an uncertain

boolean ub, which represents its uncertainty. The following two uncertain references
exemplify this:
• ur1:=(r1, ub1), ub1:=(TRUE , B(0.88)),10

• ur2:=(r2, ub2), ub2:=(TRUE , B(0.34)).

Operator 1 - Existence operator. The semantics of this operator is defined
upon the existence operator of the uncertain boolean that represents the uncertainty:

exists((r, ub), t) := exists(ub, t)

When applied on the two examples from above, this operator would return:
• exists(ur1, 0.8) := exists(ub1, 0.8) := TRUE ,15

• exists(ur2, 0.8) := exists(ub2, 0.8) := FALSE .
Operator 2 - Confidence operator. This operator relies on the confidence
operator of the uncertain boolean. If this operation tells that the most confident
value given a base is TRUE , then the existence operator returns the reference when
applied on an uncertain reference:20

confidence((r, ub), t) :=

r, when confidence((ub), t) = TRUE,

⊥ , otherwise

If applied to the two examples, it will return:
• confidence(ur1, 0.8) := r1,
• confidence(ur2, 0.8) := ⊥.

Operator 3 - Cast operator.
When casting an uncertain reference to a certain one, it will return the reference25

value only if its confidence level is strictly superior to zero:

cast(r, ub) := confidence((r, ub), 0)

Casting both of our results into certain references will thus return in:

90

• cast(ur1) := confidence(ur1, 0) := r1,
• cast(ur2) := confidence(ur2, 0) := r2.
When casting a reference to an uncertain one, the confidence level of its existence

is set at the maximum, 1:

cast(r) := (r, (TRUE, 1))

For example, casting a reference r3 to an uncertain one returns: cast(r3) :=5

(r3, (TRUE, 1)).

Operator 4 - Dot operator.
The dot operator allows accessing the different elements of the uncertain

reference:

(r, ub).value := r

(r, ub).confidence := ub

Applying this operator on ur1 thus returns:
• ur1.value(ur1) := r1,
• ur1.confidence(ur1) := ub1.10

6.1.5 Static semantic: typing rules
This section introduces the particularity of the type-system of our language

compared to those without support for uncertainty. In particular, we stress two
points. First, the typing of implicit casts between uncertain and certain data.
Second, the typing and interactions between different data types when applying15

arithmetic operations.
Implicit casts In our language, we enable implicit casts. In addition to the
casting operations shown in Table 6.2, our proposed type system enables casts
between uncertain and certain booleans.
Typing rules for arithmetic operations Probability theory defines how two20

probability distributions can be combined and what the result should be, when
possible. We follow these rules to define the result of the arithmetic operations
between uncertain numbers. Below, Table 6.3 depicts the results of each operation
between two uncertain numbers.

When an arithmetic operation is applied to uncertain values with two different25

probability distributions, the resulting distribution may follow a well-defined distri-
bution or not. In case the resulting distribution is different from the distributions
supported by our language, we consider it as undefined. For example, performing
an arithmetic operation between a Gaussian and a Rayleigh distribution is not

91

Gaussian Rayleigh binomial Dirac certain nb.
Gaussian Gaussian 7 Gaussian Gaussian Gaussian
Rayleigh 7 Rayleigh 7 Rayleigh Rayleigh
binomial Gaussian 7 binomial binomial binomial
Dirac Gaussian Rayleigh binomial Dirac Dirac

certain nb. Gaussian Rayleigh binomial Dirac certain nb.

Table 6.3: Typing rules for arithmetic operations

permitted since it does not result in a well-defined distribution and should be
calculated by applying the convolution rule.

For the implemented distributions, all operations between two numbers rep-
resented by the same distribution, result in an uncertain number with the same
distribution. For example, an addition between two uncertain numbers with a5

Gaussian distribution returns another one with a Gaussian distribution. One
exception: combining two binomial distributions result in another one only if the
parameter p is identical in both cases. If p is different, the resulting distribution is
a Poisson distribution, not implemented in our language. Hence, we consider it as
undefined.10

An operation between a probability distribution and a scalar results in this
probability distribution, shifted (for addition or subtraction) or with a coefficient
applied (for multiplication or division). We perform these operations on the
probability distribution when an uncertain number is combined with a certain one.

A Gaussian distribution can be approximated by a binomial one and vice-versa.15

When these two are being combined, the type of the final result can be one of
these two. There are thus two possible choices: either we cast both into uncertain
numbers with a Gaussian distribution or both into uncertain numbers with a
binomial distribution. By default, we decide to opt for the first option. Therefore,
the arithmetic operator returns an uncertain number with a Gaussian distribution.20

6.2 Evaluation
We validated our approach by implementing a language named Ain’tea, which

features an uncertainty-aware static type system and provides the concepts and
operators presented in Section 6.1. We evaluate the following two research questions
based on our implementation of Ain’tea:25

• RQ1: Does native uncertainty management on the language level have an
impact on the conciseness of a language, i.e., its ability to express concisely
statements?
• RQ2: Can the type system detect errors related to uncertainty management?
To address them, we compared our implementation to two state-of-the-art frame-30

works: Infer.NET [MWG+18] and OpenTURNS [BDI+17]. The code used for the

92

experiments of the validation is available on the repository of our implementation.
In this section, we first detail the implementation of the Ain’tea language. Then,

we show that our solution can detect type errors earlier than the two solutions we
compare our work to. Before discussing the results, we compare the number of lines
of codes required for the different solutions to perform uncertainty propagation.5

6.2.1 Ain’tea: our implementation
We use the Xtext language workbench2 to define the concrete syntax and the

type checker of our language (static semantics). Based on the concrete syntax,
Xtext generates the abstract one. We implement the dynamic semantics with K33.

In addition, we implemented different code samples which shows the different10

features of our language.We also developed a simplified version of our use case
example, introduced in Chapter 3. We presented it as a tutorial of our language.All
code can be executed using a runner, available on the project repository.

Overview of the language

Ain’tea supports classes, with fields and functions. It has an expression language15

with arithmetic and boolean expressions, IF-conditions and affectation statements.
Ain’tea is composed of four elements: an abstract syntax, a concrete syntax,

static and dynamic semantics. As depicted in Figure 6.2, the concrete syntax
has been implemented using Xtext. As we used a grammar-first approach, the
abstract syntax has been automatically generated from the concrete one. In20

addition, stub-classes are generated for the semantics (static and dynamic). Using
Xtend, we implement the static semantics. The dynamic semantics is defined as an
operational semantics and implemented using K3 [JCB+15]. The implementation
of our uncertainty-aware type checker and semantic uses two strategies. For
simple operations (e.g. operator semantics for uncertain booleans), we implement25

them using K3. For more complex operations, like the computation of integral or
combining different distributions, we use a third party library: Apache Commons
Math Library4.

Finally, by using the Xtext language workbench, other important features
have been generated for our language. Among them, there is the error maker,30

auto-completion and an Eclipse plugin.

Syntax

The syntax of the language has been inspired by Java: keywords to define
classes, fields and functions are similar. Regarding the uncertain operators defined

2http://www.eclipse.org/Xtext/
3http://diverse-project.github.io/k3/
4http://commons.apache.org/proper/commons-math/

93

http://www.eclipse.org/Xtext/
http://diverse-project.github.io/k3/
http://commons.apache.org/proper/commons-math/

Ain'tea

Abstract syntaxConcrete syntaxStatic semanticsDynamic semantics

generates

Figure 6.2: Global architecture of Ain’tea

in Section 6.1, we use the same syntax as for certain operators where ever possible.
We give an overview of their corresponding syntax in the following list:
• confidence: []
• existence: exist
• cast: as5

• dot: .
• inequality: >, >=, <, <=
• (uncertain) equality: ==, !=
• identity: ===, !==
• uncertain arithmetic: +, -, *, /10

• uncertain boolean: &&, ‖, !
Inequality, arithmetic and boolean operators have identical syntax for uncertain

and certain data. By making this choice, combining uncertain or certain data
is done with the same syntax. For example, adding two uncertain numbers is
performed by the following syntax: uN1 + uN2.15

When the equality operator (==, !=) is used with at least one uncertain data
type, we apply the uncertain equality operator. For example, the following code
uN1 == uN2 returns the confidence that both values are equal. To use the identity
operator, we use the following syntax: === and !==. For example, this code
uN1 === uN2 checks if both uncertain numbers are identical (cf. Operator 6).20

Following his name, the syntax of the dot operator is a dot (.). The value
can be accessed using the value keyword. For example, to get the value of an
uncertain boolean, one will write ub.value. To get the probability distribution, the
confidence keyword has been introduced. For example, the Bernoulli distribution
of an uncertain boolean is resolved using the following syntax: ub.confidence.25

For the cast operator, we add the as keyword. For instance, to cast an uncertain
number to a certain one, one will do un as Number. Here, Number represents any
number type of our language: short, integer, long, float and double.

An internal method is used to call the existence operator: exist. For example, in
order to check if a value of an uncertain boolean exists with at least 0.8 confidence,30

94

one needs to add the following line in its code: exist(uB, 0.8).
Finally, the confidence operator is called using square brackets: []. For example,

to get the most confidence value of an uncertain number with at least 0.7 as
confidence, one will write: uN [0.7]

The type of uncertain data can be thought of as a pair of two types: one for5

the raw data and one for the uncertainty representation. We decide to use a syntax
similar to the one used in Java to declare generic types: Type1<Type2>. We
arbitrarily choose to put the probability distribution for the first type and the type
of the raw data point for the second. For example, the declaration of an uncertain
boolean is done using the following syntax: Bernoulli<bool>.10

Dependency and joint detection
As we explained in Section 6.1, dependency and joint between two variables

impact the semantics of the different operators. In our implementation, we first
consider that any variable initialized by a constant is independent. Then, we
compute a dependency graph between the different variables. However, we use an15

algorithm which covers only the simple cases.
Concerning the joint, we also apply a simple and naive algorithm to compute

the domain covered by boolean variables. But, this is only performed on boolean
resulting from comparison operators with one static constant. We let for future
work the implementation of an algorithm that applies the same rules at runtime.20

Below, an example of what our implementation can do.
Let us imagine three uncertain booleans b1, b2, and b3 defined as follow, with

un an uncertain number:
• b1 := un >= 10
• b2 := un < 1525

• b3 := un > 20
From this definition, b1 is defined on the range [10, +∞), b2 on (−∞, 15), and

b3 on (20, +∞). b1 and b2 are thus non-disjoint, like b1 and b3. Indeed, b1 and b2
are both defined on the range [10, 15), and b1 and b3 on (20, +∞). However, b2 and
b3 are disjoint as it does not exist any common range between their definition.30

6.2.2 Conciseness
Regarding the syntax, we distinguish three kinds of operations which manipulate

data: writing5, reading, and combination. For these three kinds of operations,
we compare the number of lines of codes required by our language and the two
frameworks. To perform this, we implemented a simplified version of our case study35

using these three solutions. Excerpts of the source code are shown in Listing 6.1-6.3.
5This operation also includes the creation and the deletion. The first one corresponds to the

first write operation and the last one is done by setting the value to NULL.

95

Writing and reading operations remain similar to what exists in many other
programming languages. There is no difference between the three solutions to this
aspect. In the listings, we can notice that all lines of code relative to it have the
same size: line 6, 11, and 20 in Listing 6.1; line 7, 11-12, and 21 in Listing 6.2; and
line 9, 16, and 27 in Listing 6.3.5

Both languages used for developing the frameworks (C#6 and Python7) allow
overloading operators. As highlighted in the listings, the three solutions have the
same syntax to combine (through arithmetic or boolean operators) uncertain and
certain data: lines 9 and 23 in Listing 6.1; lines 10 and 23 in Listing 6.2; and lines
13 and 34 in Listing 6.3.10

In contrary to OpenTurns and our solution, Infer.NET requires an explicit
call to the engine which computes and propagates the probabilities. We can see
these calls in line 10, 16 and 22 in Listing 6.1. This framework is mainly done for
probabilistic programming, where developers implement a model, then executes
it. From our understanding of this tool, it was not designed to allow an iterative15

propagation of uncertainty and a control flow that depends on this propagation.
Thus, we need to split the propagation in different models and explicitly call their
inference engine to enable such a process.

Finally, all three solutions allow reasoning on uncertain data. In Listing 6.1 at
line 17, Listing 6.2 at line 18, and Listing 6.3 at line 24, we highlight an IF-condition20

based on the confidence of an uncertain boolean8. Infer.NET provides a method to
help manipulate uncertain booleans, by providing methods to access the probability
of the TRUE and FALSE value. In this case, our confidence operator can be
thought of as a sugar syntax of these methods.

25
1public void ComputeLoadNoCable (Substation substation) {
2Variable <bool > noCableConn = Variable . Bernoulli (1);
3if(substation . Fuses . Count > 0)
4noCableConn = substation . Fuses [0]. IsClosed ;
5else30

6substation.Load = GaussianFromMeanAndVariance(0, 0.001);
7return ;
8for(int i=1; i< substation . Fuses . Count ; i++)
9noCableConn = noCableConn & substation.Fuses[i].IsClosed;

10Bernoulli bernoulli = (Bernoulli) InferenceEngine.Infer(noCableConn);35

11substation.Load = GaussianFromMeanAndVariance(0, bernoulli.GetVariance());
12}
13
14public void ComputeLoad (Substation substation) {
15Variable <bool > isDisco = substation . IsDisconnected ();40

6https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-
expressions-operators/overloadable-operators

7https://docs.python.org/3/reference/datamodel.html#special-method-names
8As OpenTurns does not include an uncertain boolean implementation, we implemented one

similar to the one we provide in Ain’tea, using their Bernoulli implementation. The implementation
is accessible in our GitHub repository

96

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/overloadable-operators
https://docs.python.org/3/reference/datamodel.html#special-method-names

16Bernoulli bern = (Bernoulli) InferenceEngine.Infer(isDisco);

17if(bern.GetProbTrue() >= 0.95)
18ComputeLoadNoCable (substation);
19return ;
20Variable<double> load = GaussianFromMeanAndVariance(0, 0.001);5

21foreach (Fuse fuse in substation . Fuses)
22Bernoulli isClosedBern = (Bernoulli) InferenceEngine.Infer(fuse.IsClosed);

23load = load + (fuse.Cable.Load * isClosedBern.GetProbTrue());
24substation .Load = load;
25}10

Listing 6.1: Excerpt of the Infer.NET implementation (C#)

1def compute_load_no_cable (substation):
2if not isinstance (substation , Substation):
3raise TypeError (’Wrong type ’)15
4if len(substation . fuses) > 0:
5no_cable_conn = substation . fuses [0]. isClosed
6else:
7substation.load = ot.Normal(0, 0.001)
8return20
9for fuse in substation . fuses [1:]:
10no_cable_conn = no_cable_conn & fuse.isClosed

11substation.load = ot.Normal(0,

12no_cable_conn.getStandardDeviation()*no_cable_conn.getStandardDeviation())
1325
14def compute_load (substation):
15if not isinstance (substation , Substation):
16raise TypeError (’Wrong type ’)
17is_disco = substation . is_disconnected ()
18if is_disco.exist(0.95) and is_disco.value_with_confidence(0.95):30

19compute_load_no_cable (substation)
20return
21load = ot.Normal(0, 0.001)
22for fuse in substation . fuses :
23load = load + (fuse.cable.load*fuse.isClosed.confidence.getP())35

24substation .load = load

Listing 6.2: Excerpt of the OpenTurns implementation (Python)

1void ComputeLoadNoCable (Substation substation) {
2Bernoulli <bool > noCableConn = new Bernoulli <bool >(true , 1);40
3Fuse [] fuses = substation . fuses ;
4Fuse f;
5if(fuses . length > 0)
6f = fuses [0];
7noCableConn = f. isClosed ;45
8else
9substation.load = new Gaussian<double>(0, 0.001);
10return ;
11for(int i=1; i< fuses . length ; i=i+1)
12f = fuses [i];50

13noCableConn = noCableConn && f.isClosed;
14Bernoulli bern = noCableConn . confidence ;
15if(bern. probability >= 0.97) {
16substation.load = new Gaussian<double>(0, 0.0289);

97

17} else {
18[...]
19}
20}
215
22void ComputeLoad (Substation substation) {
23Bernoulli <bool > isDisco = substation . isDisconnected ();
24if(exist(isDisco, 0.95) && isDisco[0.95])
25ComputeLoadNoCable (substation);
26return ;10

27Gaussian<double> load = new Gaussian<double>(0, 0.001);
28Fuse [] fuses = substation . fuses ;
29for(int i=0; i< fuses . length ; i=i+1)
30Fuse f = fuses [i];
31Cable c = f. cable ;15
32Bernoulli <bool > isClosed = f. isClosed ;
33Bernoulli bern = isClosed . confidence ;
34load = load + c.load * bern.probability;
35substation .load = load;
36}20

Listing 6.3: Excerpt of the Ain’tea implementation

RQ1 aims at evaluating the impact of native uncertainty management on the
conciseness of a language. As shown by the above evaluation, adding uncertainty as
a first-class citizen can be done without damaging the conciseness. As we have seen
through this chapter, managing uncertainty impacts the semantics of the language,25

by complexifying the traditional operators (arithmetic, boolean, comparison). A
few operators can also be added in order to enable reasoning over the uncertainty.
The impact on the concrete syntax is thus limited.

However, developers will use the same syntax to manipulate more complex
concepts. Adding two uncertain numbers and two numbers is semantically different.30

One threat to validity is the lack of impact assessment on developers, who may
have difficulty manipulating these concepts. However, as we hide this complexity
behind traditional operators, the risk is rather low.

6.2.3 Error handling at development time
Among the different root causes of typing errors, one is code refactoring. In35

order to validate our approach, we thus define a scenario based on it.
Let’s assume a developer implements the load approximation for a smart grid.

She/he must consider different scenarios that can exist from a simple cable to a
more complex situation which looks like a small graph. As the code is complex, in
one place (e.g., a file) she/he defines the smart grid classes and she/he implements40

this computation in another one. At first, the developer decides to use the Dirac
delta function to represent the uncertainty of the substation load. During the
development process, she/he notices that the Gaussian one suit more his/her
problem. However, all the operations are not compatible with this new type, for
example when there is no cable connected.45

98

Figure 6.3: Detection of a type error

As we depict in Figure 6.3, our approach can detect this type of error statically.
Plus, we can also notice that we can help developers fix this kind of issue by listing
the compatible types with the new substation type (Gaussian<double>).

Among the two selected framework, only Infer.NET is implemented in a lan-
guage which supports static type checking: C#9. We also implement a simplified5

example that raises a typing error. To do so, we perform an addition between two
incompatible probability distributions: a Gaussian and a Gamma10. As we show in
Figure 6.4, the error is only detected at runtime.

In addition, we see in Figure 6.3 that by specifying the type system, the language
is able to provide high-level explanations of the errors. Here, it explains that the10

two distributions are not compatible plus gives the list of compatible distributions
with the field type. In contrary, in Figure 6.4, the error is detected later than its
root cause and informs that the operation is not supported. Indeed, as depicted
in Figure 6.4a, the error of line 19 is detected at line 21 (highlighted in green)
without any reference to this operation. Plus, the error message detailed all type15

mismatches between the declaration of the method and the given types.
This evaluation validates the ability of a type system to detect errors related

to uncertainty management (RQ2). When a type system is implemented, error
messages are defined to help developers. And so, support to develop uncertainty-
aware software can be provided.20

6.2.4 Discussion
By mapping arithmetic and boolean operators to the propagation of uncertainty,

we hide the complexity of the combination of probability distributions. It helps
developers to stay in the paradigm that they use every day, introducing as few
concepts as possible. This being said, as we intend to have a language that25

9https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/index
10The Rayleigh distribution is not present in the framework. We thus choose another one.

99

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/index

(a) Code with a type error, detected at the green highlighted line

(b) Console output

(c) Excerpt of the error message

Figure 6.4: Infer.NET detect the error at runtime.

manipulates several kinds of uncertainties, they still need a high-level knowledge
of probability distributions. For example, they should understand the difference
between a Gaussian and a Rayleigh. But they do not need to know if or how they
can be combined. Indeed, thanks to our type checker, the language will provide
information or raise errors when it is not possible.5

However, if the uncertainty of a domain can be represented using only one
probability distribution, thus this distribution could also be hidden for the developer.
Therefore, they will only manipulate uncertain and certain data. For example,
using the approach introduced in [MWV16], a developer will only manipulate UReal
and Real for uncertain and certain numbers.10

By hiding the complexity of the combination of probability distributions, we
also hide the computation overhead introduced. This work has not been done with
performance as a goal. We do not guarantee any performance of our language. The
evaluation lacks a quantification of this overhead.

100

6.3 Conclusion
Data are inherently uncertain. This uncertainty can modify the understanding

of the elements represented by these data. Furthermore, it may damage the
decision made upon this knowledge. Managing this uncertainty calls for a strong
understanding of probability theory. However, it can be far from developers5

expertise. In order to help them manipulating this uncertainty, we define Ain’tea,
a language which integrates concepts related to data uncertainty. Mainly, we
define uncertain data types and we map uncertainty propagation to arithmetic,
boolean, and comparison operators. In addition, we define operators specific to the
manipulation of the uncertainty representation. In our validation, we show that10

our language is as concise as state-of-the-art solutions. Contrary to these solutions,
we also show that our solution can detect errors earlier. Thanks to the semantics,
which supports uncertainty, errors message help developers in their development of
algorithms that use uncertain data.

101

102

7
A temporal knowledge metamodel of adaptive
systems

Contents
7.1 Knowledge formalization . 102
7.2 Modelling the knowledge . 111
7.3 Validation . 115
7.4 Conclusion . 124

In this chapter, we first propose a knowledge formalism to define the concept
of a decision. Second, we describe a novel temporal knowledge model to represent,
store and query decisions as well as their relationship with the knowledge (context,
requirements, and actions). We validate our approach through a use case based on
the smart grid at Luxembourg. We also demonstrate its scalability both in terms of
execution time and consumed memory.

103

To address Sub-challenge #2 and Sub-challenge #3 (cf. Section 1.3), we propose
a temporal knowledge model which can trace decisions over time, along with their
circumstances and effects. By storing the decisions, the adaptation process could
consider ongoing actions with their expected effects, also called impacts. Besides,
in case of faulty decisions, developers may trace back effects to their circumstances.5

Our approach allows structuring and storing the state and behaviour of a
running adaptive system, together with a high-level API to efficiently perform
diagnosis routines. Our framework relies on a temporal model-based solution that
efficiently abstracts decisions and their corresponding circumstances. Specifically,
based on existing approaches for modelling and monitoring adaptation processes,10

we identify a set of properties that characterise context, requirements, and actions
in self-adaptive systems. Then, we formalise the common core concepts implied in
adaptation processes, also referred to as knowledge, by means of temporal graphs
and a set of relations that trace decisions’ impact to circumstances. Finally, thanks
to exposing common interfaces in adaptation processes, existing approaches in15

requirements and goal modelling engineering can be easily integrated into our
framework.

The rest of this chapter is structured as follows. In the remaining part of this
section, we motivate our approach, we summarise core concepts manipulated in
adaptation processes, and we present a use case scenario based on the Luxembourg20

Smart Grid (cf. Chapter 3). Then, we provide a formal definition of these concepts
in Section 7.1. After, we describe the proposed data model in Section 7.2. In
Section 7.3, we demonstrate the applicability of our approach by applying it to the
smart grid example. We conclude this chapter in Section 7.4.

7.1 Knowledge formalization25

We consider knowledge to be the association of context information, require-
ments, and action information, all in one global and unified model. While context
information captures the state of the system environment and its surroundings, the
system requirements define the constraints that the system should satisfy along
the way. Actions, on the other hand, are meant to reach the goals of the system.30

In this section, we provide a formalization of the knowledge used by adaptation
processes based on a temporal graph. Due to the complexity and interconnectivity
of system entities, graph data representation is an appropriate way to represent the
knowledge. Augmented with a temporal dimension, temporal graphs are then able
to symbolize the evolution of system entities and states over time. We benefit from35

the well-defined graph manipulation operations, namely temporal graph pattern
matching and temporal graph relations to represent the traceability links between
the decisions made and their circumstances.

Before describing this formalism, we describe the semantics used for the temporal

104

t∞t0 t1 t2 t3

t

t5 t6 t7

Tpast Tfuture

I1 I2]]

t4

Figure 7.1: Time definition used for the knowledge formalism

axis. Then, we exemplify the knowledge formalism using the Luxembourg smart
grid use case, detailed in Section 3.3.2.

7.1.1 Formalization of the temporal axis
The formalism described below has been defined with two goals in mind. First,

the definition of the time space should allow the distinction between past and5

future. Making this distinction enables the differentiation between measured data
and predicted (or planned data). Second, it should permit the definition of the life
cycle of an element of the knowledge, which can be seen as a succession of states
with a validity period that should not overlap each other.

Time space T is considered as an ordered discrete set of time points non-10

uniformly distributed. As depicted in Figure 7.1, this set can be divided into 3
different subsets T = Tpast ∪ {t} ∪ Tfuture, where:
• Tpast is the subdomain {t0;t1;. . . ;tcurrent−1} representing graph data history

starting from t0, the oldest point, until the current time, t, excluded.
• {t} is a singleton representing the current time point15

• Tfuture is subdomain {tcurrent+1; . . . ; t∞} representing future time points
The three domains depend completely on the current time {t} as these subsets slide
as time passes. At any point in time, these domains never overlap: Tpast ∩ {t} = ∅,
Tfuture ∩ {t} = ∅, and Tpast ∩ Tfuture = ∅. The definition of these three subsets
reaches the first goal.20

In addition, there is a right-opened time interval I ∈ T × T as [ts, te) where
te − ts > 0. In English words, it means that the interval should represent at least
one time point and should follow the time order. For any i ∈ I, start(i) denotes
its lower bound and end(i) its upper bound. As detailed in Section 7.1.2, these
intervals are used to define the validity period for each node of the graph (our25

second goal).
Figure 7.1 displays an example of a time space T1 = {t0, t1, t2, t3, t4, t5, t6, t7}.

In this case, the current time is t = t4. According to the definition of the past
subset (Tpast) and the future one (Tfuture), there is: Tpast1 = {t0, t1, t2, t3} and
Tfuture1 = {t5, t6, t7}. Two intervals have been defined on T1, namely I1 and I2.30

The first one starts at t2 and ends at t5 and the last one is defined from t6 to t7.

105

time

t1 t2 t3

Legend:
 element removed from
 the previous time point

e1

e2 e2 e2

n1 n4

n5

element added from
the previous time point

e3

t∞

n1

e1

n2 n3 n2 n3 n2 n3

n4

Figure 7.2: Evolution of a temporal graph over time

As shown with I1, an interval could be defined on different subsets, in this case it
is on all of them (Tpast, t, and Tfuture).

7.1.2 Formalism of the knowledge
Graph definition First, let K be an adaptation process over a system knowledge
represented by a graph such as K = (N, E), comprising a set of nodes N and a5

set of edges E. Nodes represent any element of the knowledge (context, actions,
etc.) and edges represent their relationships. Nodes have a set of attribute values:
∀n ∈ N, n = (id, P), where P is the set of key-value attributes. An attribute value
has a type (numerical, boolean, . . .). Every relationship e ∈ E can be considered
as a couple of nodes with a label (ns, nt, label) ∈ N × N , where ns is the source10

node and nt is the target node.
Adding the temporal dimension In order to augment the graph with a tem-
poral dimension, the relation V T is added. So now the knowledge K is defined as
a temporal graph such as K = (N, E, V T).

A node is considered valid either until it is removed or until one of its attributes15

value changes. In the latter case, a new node with the updated value is created.
Whilst, an edge is considered valid until either its source node and target node are
valid, or until the edge itself is removed. Otherwise, nodes and edges are considered
invalid. The temporal validity relation is defined as V T : N ∪ E → I. It takes as a
parameter a node or an edge (k ∈ N ∪ E) and returns a time interval (i ∈ I, cf.20

Section 7.1.1) during which the graph element is valid.
Figure 7.2 shows an example of a temporal graph K1 with five nodes (n1, n2,n3,

n4, and n5) and three edges (e1, e2, and e3) over a lifecycle from t1 to t3. In this
way, K1 equals ({n1, n2, n3, n4, n5}, {e1, e2, e3}, V T

1). Let’s assume that the graph is
created at t1. As n1 is modified at t2, its validity period starts at t1 and ends at t2:25

V T
1 (n1) = [t1, t2). n2 and n3 are not modified; their validity period thus starts at t1

and ends at t∞: V T
1 (n2) = V T

1 (n3) = [t1, t∞). Regarding the edges, the first one, e1,

106

is between n1 and n2 and the second one, e2 from n2 to n3. Both are created at t1.
As n1 is being modified at t2, its validity period goes from t1 to t2: V T

1 (e1) = [t1, t2).
e2 is deleted at t3. Its validity period is thus equal to: V T

1 (e2) = [t1, t3).
Lifecycle of a knowledge element One node represents the state of exactly
one knowledge element during a period named the validity period. The lifecycle5

of a knowledge element is thus modeled by a unique set of nodes. By definition,
the validity periods of different nodes cannot overlap. A same time period cannot
be represented by two different nodes, which could create inconsistency in the
temporal graph.

To keep track of this knowledge element history, the ZT relation is added to10

the graph formalism: K = (N, E, V T , ZT). It serves to trace the updates of a
given knowledge element at any point in time. This relation can also be seen as
a temporal identity function which takes as parameters a given node n ∈ N and
a specific time point t ∈ T , and returns the corresponding node at that point.
Formally, ZT : N × T → N .15

In order to consider this new relation in the example presented in Figure 7.2,
the definition of K1 is modified to K1 = ({n1, n2, n3, n4, n5}, {e1, e2, e3}, V T

1 , ZT
1) In

Figure 7.2, let’s imagine that n1, n4, and n5 represent the same knowledge element
ke. The lifecycle of ke is thus:
• n1 for period [t1, t2),20

• n4 for period [t2, t3),
• n5 for period [t3, t∞).
Let t′1 be a timepoint between t1 and t2. When one wants to resolve the node

representing the knowledge element at t′1, she or he gets n1 node, no matter of the
node input (n1, n4, or n5): ZT

1 (n4, t1) = n1. On the other hand, applying the same25

relation with another node (n2 or n3) returns another node. For example, if n2
and n3 do not belong to the same knowledge element, then it will return the node
given as input, for example ZT

1 (n2, t1) = n2.
Knowledge elements stored in nodes Nodes are used to store the different
knowledge elements: context, requirements and actions. The set of nodes N is thus30

split in three subsets: N = C ∪ R ∪ A where C is the set of nodes which store
context information, R a set of nodes for requirement information and A a set of
nodes for action information.

Actions define processes that indirectly impact the context: they will change
the behaviour of the system, which will be reflected in the context information.35

Requirements are also processes that are continuously run over the system in order
to check the specifications. Here, the purpose of the A and R subset is not to store
these processes but to list them. It can be thought as a catalogue of actions and
requirements, with their history.

Using a high-level overview, these processes can be depicted as: taking the40

107

knowledge as input, perform tasks, and modify this knowledge as output. As
detailed in the next two paragraphs, action executions and requirement analysis
can be formalized by relations.

Temporal queries for requirements At the current state, the formalism of
the knowledge K does not contain any information regarding the requirement5

analysis. To overcome this, system requirements analysis RA are added such as
K = (N, E, V T , ZT , RA). RA is a set of couples composed of patterns P[tj ,tk](K)
and requirements R over these patterns: RP = P ∪R.

P[tj ,tk] denotes a temporal graph pattern, where tj and tk are the lower and upper
bound of the time interval respectively. P[tj ,tk] is the result of a function which takes10

the knowledge and an interval as input: P[tj ,tk] : K × I. The time interval can be
either fixed (absolute), i.e., both bounds are precisely defined, or sliding (relative),
i.e., the upper bound is computed from the lower bound. For example, P[t0,t4] is
considered as fixed and P[t0,t0+4] is considered as relative. Each element of the
pattern should be valid for at least one timepoint: ∀ p ∈ P[tj ,tk), V T (e)∩ [tj, tk) 6= ∅.15

Patterns can be seen as temporal subgraphs of K, with a time limiting constraint
coming in the form of a time interval.

Temporal relations for actions Like for RA, the knowledge K needs to be
augmented with action executions AE: K = (N, E, V T , ZT , RA, AE). Actions
executions AE can be regarded as a couple (A, AF), where A is the action that is20

executed and AF a set of relations or isomorphisms mapping a source temporal
graph pattern P[tj ,tk] to a target one P[tl,tm], AF : K × I → K × I.

The left-hand side of the AF relation depicts the temporal graph elements over
which an action is applied. Every relation may have a set of application conditions.
They describe the circumstances under which an action should take place. These25

application conditions are either positive, should hold, or negative, should not hold.
Application conditions come in the form of temporal graph invariants. The side
effects of these actions are represented by the right-hand side.

Finally, we associate to AE a temporal function EAE
to determine the time

interval at which an action has been executed. Formally, EAE
: AE → I.30

Temporal relations for decisions Finally, the knowledge formalism needs to
include the last, but not the least, element: decisions made by the adaptation,
K = (N, E, V T , ZT , RA, AE, D) While the source of relations in D represents the
state before the execution of an action, the target shows its impact on the context.
Its intent is to trace back impacts of action executions to the decisions35

they originated from.
A decision in D is defined as a set of executed actions, i.e., a subset of AE,

combined with a set of requirement analysis, i.e., a subset of RA. Formally,
D = { AD ∪RD | AD ⊆ AE, RA ⊆ RP}. We assume that each action should result

108

from only one decision: ∀a ∈ A, ∀d1, d2 ∈ D | a ∈ d1 ∧ a ∈ d2→ d1 = d2.
The temporal function EAE

is extended to decisions in order to represent the
execution time: EAE

: (A ∪D)→ I. For decision, the lower bound of the interval
corresponds to the lowest bound of the action execution intervals. Following the
same principle, the upper bound of the interval corresponds to the uppermost5

bound of the action execution intervals. Formally, ∀d ∈ D → EAE
(d) = [l, u),

where l = min
a∈Ad

{EAE
(a)[start]} and u = max

a∈Ad

{EAE
(a)[end]}.

Sum up Knowledge of an adaptive system can be formalism with a temporal
graph such as K = (N, E, V T , ZT , RA, AE, D), wherein:
• N is a set of nodes to represent the different information (context, actions10

and requirements)
• E is a set of edges which connects the different nodes,
• V T is a temporal relation which defines the temporal validity of each element,
• ZT is a relation to track the history of each knowledge elements,
• RA is a relation that defines the different requirements processes,15

• AE is a relation that defines the different action processes,
• D is a set of action executions, which result from the same decision, and

requirement analysis.
Decisions D can allow adaptation processes to reason over ongoing and future

executions of decisions. Moreover, it allows tracing the state of the knowledge20

before and after the decision has been or is executed, thanks to its AD component.
Plus, it represents which action has been used for this. Thanks to the RA relation,
one can access the requirements at the root of the decision and the state of the
knowledge used by this requirement.

In the next section, we exemplify this formalism over our case study.25

7.1.3 Application on the use case
In this section we apply the formalism described on the use case presented in

Section 3.3.2.
Let KSG be the temporal graph that represents the knowledge of this adaptive

system: KSG = (NSG, ESG, V T
SG, ZT

SG, RPSG
, APSG

, DSG). Figure 7.3 shows the30

nodes and edges of this knowledge.

Description of NSGNSGNSG NSG is divided into three subsets: CSG, RSG and ASG.
RSG contains one node, R1 in Figure 7.3, which represents the requirement of
this example (minimizing the number of overloads): RSG = {R1}. Two nodes, A1
and A2, belong to ASG: ASG = {A1, A2}. They represent the two actions of this35

example, respectively decreasing and increasing amps limits. Regarding the context
CSG, there are three nodes to represent the three smart meters (M1, M2, and M3),
one for the substation (S1), two for the fuses (F1 and F2), one for the dead-end

109

time

A1 A2

R1

t0

M2M1 M3

t1 t2

F1

E1

F2

S1

C1

t3

e1
e2e3

e4 e5 e7e6

A1 A2

R1

A1 A2

R1

A1 A2

R1

M2M1 M3

F1

E1

F2

S1

C1

e1
e2e3

e4 e5 e7e6

V1 V2 V3

e8 e9 e10

M2M1 M3

F1

E1

F2

S1

C1

e1
e2e3

e4 e5 e7e6

V4 V5 V6

e11 e12 e13

M2M1 M3

F1

E1

F2

S1

C1

e1
e2e3

e4 e5 e7e6

V7 V8 V9

e14 e15 e16

Legend:
Node that represents an
action
Node that represents a
requirement
Node that represents a
context element

A1

R1

S1

Figure 7.3: Application of the formalism with a temporal graph that represents
the knowledge of the smart grid described in Section 3.3.2

cabinet (E1), one for the cable (C1) and one node per consumption value received
(Vi): CSG = {M1, M2, M3, S1, F1, F2, E1, C1} ∪ {Vi|i ∈ [1..9]}.

According to the scenario, except for nodes to store consumption values, the
other nodes are created at t0 and are never modified. Therefore, their validity period
starts at t0 and never ends: ∀n ∈ ASG∪RSG∪{M1, M2, M3, S1, F1, F2, E1, C1}, V T

SG(n) =5

[t0, t∞). Considering the consumption values, all the nodes represent the history of
the values for the three smart meters. In other words, there are three knowledge
elements: the consumption measured for each meter. Let Ci notes the consumption
measured by the smart meter Mi. As shown in Figure 7.3, there is:
• C1 of M1 is represented by {V1, V4, V7},10

• C2 of M2 is represented by {V2, V5, V8},
• C3 of M3 is represented by {V3, V5, V9}.

Taking C2 as an example, V2 is the initial consumption value, replaced by V5 at t2,
itself replaced by V8 at t3. Applying the V T

SG on these different values, results are
thus:15

• V T
SG(V2) = [t1, t2),

• V T
SG(V5) = [t2, t3),

• V T
SG(V8) = [t3, t∞).

These validity periods are shown in Figure 7.4a. As meters send the new con-
sumption values at the same time, this example can also be applied to C1 and20

C3.
From these validity periods, the ZT

SG can be used to navigate to the different
values over time. Let’s continue with the same example, C2. In order to get the
evolution of the consumption value C2, given the initial one, one will use the ZT

SG

relation:25

110

time
t0 t1 t2

V2
V5
V8

[

[

[]

]

t3

(a) Consumption values C2

time
t0 t1 t2

e9 [

[

[]

]

t3

e12
e15

(b) Edges linking the meter node M2 to
its consumption values C2

Figure 7.4: Validity periods of consumption values and their edges to the smart
meter M2

• ZT
SG(V2, ts1) = ∅, where t0 6 ts1 < t1

• ZT
SG(V2, ts2) = V2, where t1 6 ts2 < t2

• ZT
SG(V2, ts3) = V5, where t2 6 ts3 < t∞.

• ZT
SG(V2, ts4) = V8, where t2 6 ts4 < t∞.

Description of ESGESGESG In this example, edges are used to store the relationships5

between the different context elements. For example, the edge between the substa-
tion S1 and the fuse F1 allow representing the fact that the fuse is physically inside
the substation. Another example, edges between the cable C1 and the meters M1,
M2 and M3 represent the fact that these meters are connected to the smart grid
through this cable.10

One may consider that relations (validity, ZT , decisions, action executions
and requirements analysis) will be stored as edges. But this decision is let to the
implementation part of this formalism.

In our model, only consumption values (Vi nodes) are modified over time. Plus,
since the scenario does not imply any edge modifications, only those between meters15

and values are modified. The edge set contains thus sixteen edges: ESG = {ei | i ∈
[1..16]}.

By definition, the unmodified edges have a validity period starting from t0 and
never ends: ∀i ∈ [1..7], V T

SG(ei) = [t0, t∞). The history of the three knowledge
elements that represent consumption values do not only impact the nodes which20

represent the values but also the edges between those nodes and the meters ones:
• C1 impacts edges between M1 and V1, V4, and V7, i.e., {e8, e11, e14},
• C2 impacts edges between M2 and V2, V5, and V8, i.e., {e9, e12, e15},
• C3 impacts edges between M3 and V3, V6, and V9, i.e., {e10, e13, e16}.
Continuing with C2 as an example, the initial edge value is e9 from t1, which is25

replaced by e12 from t2, itself replaced by e15 from t2. The validity relation, applied
to these edges, thus returns:
• V T

SG(e9) = [t1, t2) = V T
SG(V2),

• V T
SG(e12) = [t2, t3) = V T

SG(V5),
• V T

SG(e15) = [t3, t∞) = V T
SG(V8),30

111

These validity periods are depicted in Figure 7.4b. As they are driven by those
of consumption values (V2, V5, and V8), they are equal.

As for nodes, the ZT
SG relation can navigate over time through these values. For

example, to get the history of the edges between the consumption value C2 and
the meter represented by M2, one can apply the ZT

SG relation as follows:5

• ZT
SG(e9, ts1) = ∅, where t0 6 ts1 < t1

• ZT
SG(e9, ts2) = e9, where t1 6 ts2 < t2,

• ZT
SG(e9, ts3) = e12, where t2 6 ts3 < t3,

• ZT
SG(e9, ts4) = e15, where t3 6 ts4 < t∞.

Description of DSGDSGDSG, AESG
AESGAESG

, and RASG
RASGRASG

As described in the scenario (cf. Sec-10

tion 3.3.2), the requirement analysis detects that t1 the requirement is broken. The
adaptation process will thus apply the “decreasing amps limits” action on the three
meters. Following Example 2 detailed in Section 3.3.1, we consider that the action
will impact the consumption values on the next two measurements: t2 and t3.

In the knowledge, we thus have one decision: DSG = D1. This decision has15

been taken after one requirement analysis, RASG1, that detects no respect of the
requirement R1. To determine if there is an overload, this analysis needs to know
the topology and the consumption values. The pattern is thus defined by all
nodes related to the grid network and consumption values at t1: P1[t1,t1+1] =
{S1, F1, F2, C1, E1, M1, M2, M3, V1, V2, V3}. So we have: RASG1 = {R1, P1[t1,t1+1]}.20

The knowledge also includes the three action executions: AESG1, AESG2, and
AESG3 . These actions have been executed on, respectively, M1, M2, and M3.
Following the definition, they all contain the action A1 and similar relation which
linked the circumstances to the impacts. The circumstances are the state of
the knowledge at t0, which contain all information of the grid network and the25

consumption values. We denote them P2[t1,t1+1], P3[t1,t1+1], and P4[t1,t1+1], all equal
P1[t1,t1+1]. The impact contains all consumption values received at t2 and t3. Each
action impacts the consumption value of the meter that it modifies. For example,
AESG2 only impacts values of meter M2. For this action, the output pattern is thus
: P5[t2,t3] = {V5, V8}. In summary, AESG1 , AESG2 , and AESG3 are defined as follows:30

• for the action executed on M1: AESG1 = (A1, AF 1), with AF 1 : P2[t1,t1+1] →
{V4, V7},
• for the action executed on M2: AESG2 = (A1, AF 2), with AF 2 : P3[t1,t1+1] →
{V5, V8},
• for the action executed on M3: AESG3 = (A1, AF 3), with AF 3 : P4[t1,t1+1] →35

{V6, V9},
The decision described in the scenario is thus equal to: D1 = {RASG1 , AESG1 , AESG2 , AESG3}.

At t2, this decision will still be valid. The adaptation process can thus include it
in the adaptation process to reason over the ongoing actions. If at t3 the cable
remains overloaded, then one may use this element to check if the system tried to40

112

fix it, how and based on which information.

7.2 Modelling the knowledge
In order to simplify the diagnosis of adaptive systems, this thesis proposes

a novel metamodel that combines, what we call, design elements and runtime
elements. Design elements abstract the different elements involved in knowledge5

information to assist the specification of the adaptation process. Runtime elements
instead, represent the data collected by the adaptation process during its execution.
In order to maintain the consistency between previous design elements and newly
created ones, instances of design elements (e.g., actions) can be either added or
removed. Modifying these elements would consist in removing existing elements10

and creating new ones. Combining design elements and runtime elements in the
same model helps not only to acquire the evolution of system but also the evolution
of its structure and specification (e.g. evolution of the requirements of the system).
Design time elements are depicted in gray in the Figures 7.5– 7.8. Note that, this
thesis does not address how runtime information is collected.15

For the sake of modularity, the metamodel has been split into four packages:
Knowledge, Context, Requirement and Action. All the classes of these packages have
a common parent class that adds the temporality dimension: TimedElement class.
Before describing the Knowledge (core) package, we detail this element. Then, we
introduce in more details the other three packages used by the Knowledge package:20

Context, Requirement, and Action. In below sections, we use "Package::Class"
notation to refer to the provenance of a class. If the package is omitted, then the
provenance package is this one described by the figure or text.

7.2.1 Parent element: TimedElement class
We assume that all the classes in the different packages extend a TimedElement25

class. This class contains three methods: startTime, endTime, and modification-
sTime. The first two methods allow accessing the validity interval bounds defined
by the previously discussed V T relation. The last method resolves all the times-
tamps at which an element has been modified: its history. This method is the
implementation of the relation ZT described in our formalism (cf. Section 7.1.2).30

7.2.2 Knowledge metamodel
In order to enable interactive diagnosis of adaptive systems, traceability links

between the decisions made and their circumstances should be organized in a well-
structured representation. In what follows, we introduce how the knowledge meta-
model helps to describe decisions, which are linked to their goals and their context35

(input and impact). Figure 7.5 depicts this metamodel.
Knowledge package is composed of a context, a set of requirements, a set of

113

Decision

Requirement::Goal

Context::Value

Knowledge

Context::ContextRequirement::Requirement
Action::Strategy

Action::TemporalQuery

Context::Information

strategies * context

1

requirements*

implement

1..*
goals*

/goals1..*

/impacted
**

/input
**

decisions*

values*

Action:: TacticExecution

Action::Tactic
*tactics

* executions

1..*

execute*

1

query1

Action::Action input * impact*
actions
*

Figure 7.5: Excerpt of the knowledge metamodel

strategies, and a set of decisions. A decision can be seen as the output of the
Analyze and Plan steps in the MAPE-k loop.

Decisions comprise target goals and trigger the execution of one tactic or more.
A decision has an input context and an impacted context. The context impacted by
a decision (Decision.impacted) is a derived relationship computed by aggregating5

the impacts of all actions belonging to a decision (see Fig. 7.8). Likewise, the input
relationship is derived and can be computed similarly. In the smart grid example,
a decision can be formulated (in plain English) as follows: since the district D is
almost overloaded (input context), we reduce the amps limit of greedy consumers
using the “reduce amps limit" action in order to reduce the load on the cable of10

the district (impact) and satisfy the “no overload" policy (requirement).
As all the elements inherit from the TimedElement, we can capture the time at

which a given decision and its subsequent actions were executed, and when their
impact materialized, i.e., measured. Thanks to this metamodel representation,
a developer can apprehend the possible causes behind malicious behaviours by15

navigating from the context values to the decisions that have impacted its value
(Property.expected.impact) and the goals it was trying to reach (Decision.goals).
An example for such in interactive diagnosis can be found in Section 3.3.2.

7.2.3 Context metamodel
Context models structure context information acquired at runtime. For example,20

in a smart-grid system, the context model would contain information about smart-
grid users (address, names, etc.) resource consumption, etc.

An excerpt of the context model is depicted in Figure 7.6. we propose to
represent the context as a set of structures (Context.structures) and global attributes
(Context.globals). A structure can be viewed as a C-structure with a set of properties25

(Property): attributes (Attribute) or relationships (Relation). A structure may
contain other nested structures (Structure.inner). Structures and properties have
values. They correspond to the nodes described in the formalization section (cf.

114

Structure

<<abstract>>
Property

isTemporal: Boolean
isStatic: Boolean*

propertiesinner
*

*
*

influence
* *

computedUsing
* *

Relation

<<enum>>
Type

Numerical
Boolean
Text
Byte

Attribute
type: Type
isArray: Boolean

type
1

<<abstract>>
Uncertainty

<<abstract>>
Source

consistentWith

source
1

uncertainty
1

Context
name: String

structures *

<<abstract>>
Value

uncertainty1

values
*

globals
*

Information
name: StringsubValues*

Figure 7.6: Excerpt of the context metamodel

Requirement
- name: String Performance

Goal
goal: String

<<abstract>>
Nature

- name: String
Functional

QualityConstraint

<<abstract>>
ConstrainedNature

goals
*

1
nature

appliesTo

1

1

Figure 7.7: Requirement metamodel

Section 7.1.2). The connection feature described in Section 2.1.3 is represented
thanks to three recursive relationships on the Property class: consistentWith,
computedUsing and influence. Additionally, each property has a source (Source)
and an uncertainty (Uncertainty). It is up to the stakeholder to extend data with the
appropriate source: measured, computed, provided by a user, or by another system5

(e.g., weather information coming from a public API). Similarly, the uncertainty
class can be extended to represent the different kinds of uncertainties. Finally, a
property can be either historic or static.

7.2.4 Requirement metamodel
As different solutions to model system requirements exist (e.g., KAOS [DvLF93],10

i* [Yu11] or Tropos [BPG+04]), in this metamodel, we abstract their shared concepts.
The requirement model, depicted in Figure 7.7, represents the requirement as a
set of goals. Each goal has a nature and a textual specification. The nature of the
goals adheres to the four categories of requirements presented in Section 2.1.3. One
may use one of the existing requirements modelling languages (e.g., RELAX) to15

define the semantics of the requirements. Since the requirement model is composed
solely of design elements, we may rely on static analysis techniques to infer the
requirement model from existing specifications. The work of Egyed [Egy01] is one
solution among others. This work is out of the scope of the thesis and envisaged
for future work.20

115

Strategy
- name: String

Tactic
name: String

*

tactics
TemporalQuery

1

queryAction
- name: String actions

*

strategy

1

Context::Information
uses

*
impact

*
Context::Value

ActionExecution

TacticExecution

Execution
 - status: Status
/ start: Time
/ stop: Time

tacticExec

*

actExec

impactedValues

inputValues

*

*

*
type

1

values
*

Figure 7.8: Excerpt of the action metamodel

In the guidance example, the requirement model may contain a balanced
resource distribution requirement. It can be split into different goals: (i)
minimizing overloads, (ii) minimizing production lack, (iii) minimizing production
loss.

7.2.5 Action metamodel5

Similar to the requirements metamodel, the actions metamodel also abstracts
main concepts shared among existing solutions to describe adaptation processes
and how they are linked to the context. Figure 7.8 depicts an excerpt of the
action metamodel. we define a strategy as a set of tactics (Strategy). A tactic
contains a set of actions (Action). A tactic is executed under a precondition10

represented as a temporal query (TemporalQuery) and uses different data from
the context as input. In future work, we will investigate the use of preconditions
to schedule the executions order of the actions, similarly to existing formalisms
such as Stitch [CG12]. The query can be as complex as needed and can navigate
through the whole knowledge model. Actions have impacts on certain properties,15

represented by the impacted reference.
The different executions are represented thanks to the Execution class. Each

execution has a status to track its progress and links to the impacted context
values(Execution.impactedValues). Similarly, input values are represented thanks to
the Execution.inputValues relationship. An execution has start and end time. Not20

to confuse with the startTime and endTime of the validity relation V T . Whilst the
former corresponds to the time range in which a value is valid, the start and stop
time in the class execution correspond to the time range in which an action or a tactic
was being executed. The start and stop attributes correspond to the relationL EAE

(see Section 7.1.2). These values can be derived based on the validity relation. They25

116

correspond to the time range in which the status of the execution is “RUNNING”.
Formally, for every execution node e, EAE

(e) = (V (e) | e.status = “RUNNING”).
Similarly to requirement models, it is possible to automatically infer design

elements of action models by statically analyzing actions specification. Since
acquiring information about tactics and actions executions happens at runtime,5

one way to achieve this is by intercepting calls to actions executions and updating
the appropriate action model elements accordingly. This is out of the scope of this
thesis and planned for future work.

7.3 Validation
To validate and evaluate our approach, we implemented a prototype publicly10

available online1. This implementation leverages the GreyCat framework2, more
precisely the modelling plugin, which allows designing a metamodel using a textual
syntax. Based on this specification, GreyCat generates a Java and a JavaScript
API to create and manipulate models that conform to the predefined metamodel.
The GreyCat framework handles time as a built-in concept. Additionally, it has15

native support of a lazy loading mechanism and an advanced garbage collection.
This is achieved by dynamically loading and unloading model elements from the
main memory when necessary.

The validation of our approach has been driven by the two research questions
formulated in the introduction section:20

• How to diagnose the self-adaptation process?
• How to enable reasoning over unfinished actions and their expected effects?
To address the first one, we describe how one can use our approach to represent

the knowledge of an adaptation process for a smart grid system. Then, we present a
code to extract the circumstances and the goals of a decision. For the second one, we25

present a scenario where a developer can use our approach to reason over unfinished
actions and their expected effects. The presented code shows how information can
be extracted from our model to enable any reasoning algorithm. Finally, we present
a performance evaluation to show the scalability of our approach.

7.3.1 Diagnostic: implementation of the use case30

In what follows, we explain how a stakeholder, Morgan, can apply our approach
to a smart grid system in order to, first, abstract adaptive system concepts, then,
structure runtime data, and finally, query the model for diagnosis purpose. The
corresponding object model is depicted in Figure 7.9. Due to space limitation, we
only present an excerpt of the knowledge model. An elaborate version is accessible35

in the tool repository.
1https://github.com/lmouline/LDAS
2https://github.com/datathings/greycat

117

Abstracting the adaptive system At design time (td), either manually or
using an automatic process, Morgan abstracts the different tactics and actions
available in the adaptation process. Among the different tactics that Morgan would
like to model is “reduce amps limit". It is composed of three actions: sending a
request to the smart meter (askReduce), checking if the new limit corresponds to5

the desired one (checkNewLimit), and notifying the user by e-mail (notifyUser).
Morgan assumes that the askReduce action impacts consumption data (csmpt).
This tactic is triggered upon a query (tempQ) that uses meter (mt), consumption
(csmpt) and customer (cust) data. The query implements the “no overload" goal:
the system shall never have a cable overload. Figure 7.9 depicts a flattened version10

of the temporal model representing these elements. The tag at upper-left corner of
every object illustrates the creation timestamp. All the elements created at this
stage are tagged with td.

Adding runtime information The adaptation process checks if the current
system state fulfills the requirements by analyzing the context. To perform this,15

it executes the different temporal queries, including tempQ. For some reasons, the
tempQ reveals that the current context does not respect the “no overload" goal. To
adapt the smart grid system, the adaptation process decides to start the execution
of the previously described tactic (exec1) at ts. As a result, a decision element is
added to the model along with a relationship to the unsatisfied goal. In addition,20

this decision entails the planning of a tactic execution, manifested in the creation of
the element exec1and its subsequent actions (notifyU, checkLmt, and askRed). At
ts, all the actions execution have an IDLE status and an expected start time. All
the elements created at this stage are tagged with the ts timestamp in Figure 7.9.

At ts+1, the planned tactic starts being executed by running the action askReduce.25

The status of this action turns from IDLE to RUNNING. Later, at ts+2, the
execution of askReduce finishes with a SUCCEED status and triggers the execution
of the actions notifyUser and checkNewLimit in parallel. The status of askReduce
changes to SUCCEED while the status of notifyUser and checkNewLimit turns to
RUNNING. The first action successfully ends at ts+3 while the second ends at ts+4.30

As all actions terminates with a SUCCEED status at ts+4, accordingly, the final
status of the tactic is set SUCCEED and the stop attribute value is set to te.

Interactive diagnosis query After receiving incident reports concerning regular
power cuts, and based on the aforementioned knowledge model, Morgan would be
able to query the system’s states and investigate why such incidents have occurred.35

As described in Section 3.3.2, she/he will interactively diagnose the system by
interrogating the context, the decisions made, and their circumstances.

The first function, depicted in Listing 7.1, allows to navigate from the currently
measured values (vcur1) to the decision(s) made. The for-loop and the if-condition
are responsible for resolving the measured data for the past two days. Past40

118

:Tactic
-name: “reducingAmps”

exec1: TacticExecution
- status: “IDLE”
- startTime: @ts + 1

askRdc: ActionExecution
- status: “IDLE”
- start: @ts+1

chckLmt: ActionExecution
- status: “IDLE”
- start: @ts+2

notifyU: ActionExecution
- status: “IDLE”
- start: @ts+2

executions

actionsactionsactions

actions

actions actions

: Decision

: Goal
- goal: “The
system
shall never
have a
cable over-
load”

goals

implement

v1 : Value
…

vn: Value
…

inputValues

inputValues

impactValues

values

values

execute

ve1: Value
…

@te

tempQ: TemporalQuery

mt: Structure
- name: “Meter”

cust: Structure
- name: “Customer”

: Action
-name: “askReduce”

: Action
-name: “checkNewLimit”

: Action
-name: “notifyUser”

actions

actions

actions

tactic
tactic

tactic

query

input

input

csmpt: Structure
- name: “Consumption”

impact

@tcvcurm: Value
…

vcur1: Value
…

@tc

values
values

@ts

@ts

@ts @ts @ts

@ts

@td

@td

@td

@td

@td

@td
@td

@ts

@td

@td

Legend:
@tX Start time of the model entity

Chronology: @td < @ts < @te < @tc

input

…

values

impacted

Figure 7.9: Excerpt of the knowledge object model related to our smart grid
example

elements are accessed using the resolve function that implements the ZT relation
(cf. Section 7.1.2). After extracting the decisions leading to power cuts, Morgan
carries on with the diagnosis by accessing the circumstances of this decision.
The code to perform this task is depicted in Listing 7.1, the second function
(getCircumstances). Note that the relationship Decision.input is the aggregation of5

Decision.excecute.inputValues.

// e x t r a c t i n g the d e c i s i o n s
Dec i s i on [] impactedBy (Value v) {

Dec i s i on [] respD10
for (Time t : v . modi f i cat ionTimes ()) :

i f (t >= v . startTime () − 2 day)
Value resV = resolve (v , t)

respD . addAll (from (resV) . nav igate (Value . impacted))
return respD15

}
// e x t r a c t i n g the circumstances o f the made d e c i s i o n s
Tuple<Value [] , Goal [] > getCircumstance (Dec i s i on d) {

Value [] r e sVa lues = from (d) . nav igate (Dec i s i on . input)
Goal [] r e sGoa l s = from (d) . nav igate (Dec i s i on . g o a l s)20
return Tuple<>(resValues , r e sGoa l s)

}

Listing 7.1: Get the goals used by the adaptation process from executed actions

119

7.3.2 Reasoning over unfinished actions and their expected
effects

By associating the action model to the knowledge model, we aim at enhancing
adaptation processes with new abilities to reason. In this section, we present an
example of a reasoning algorithm which considers the impacts of running actions.5

This example is based on our use case (cf. Chapter 3).
Let’s imagine that the adaptation process detects overloaded cables in the smart

grid. To fix this situation, it takes several countermeasures, among which there are
fuse state modifications. As detailed in Section 3.3.1, this action is considered as
long-term action. Later, another incident is detected, for example, a substation is10

being overloaded. Before taking any actions, the adaptation process can, thanks
to our solution, verify if the running actions will be sufficient to solve this new
incident. If not, it can either take additional actions or replan the running one.
The algorithm to reschedule current actions or to compute additional actions is
out of the scope of this thesis. Here, we present the code to extract the required15

information from our model.
Checking if the running actions will be sufficient to solve all current issues can

also be thought as: will the issue remain with the new context, i.e., after each
action have been executed. In our case, it is like verifying if the second overload
will still remain with the new topology, which is coming. The adaptation process,20

therefore, needs to extract the context in the future. To do so, the adaptation
process should know the latest timepoint at which the impact will be measured.
Listing 7.2 shows the code to get this timepoint. Running, idle and finished actions
are accessed thanks to the first two nested loops with the if-condition. We consider
that failed and canceled actions have no effects. As finished actions may still have25

effects, we also consider them. Then we navigate through all impacted values to
get their start time, i.e., the beginning of their validity period (V T relation, cf.
Section 7.1.2). Doing so, we are sure to get the latest timepoint at which an impact
will be measurable.

30
Time l a t e s t I m p a c t (Knowledge k) {

Time lates tTime = CURRENT_TIME

for (Dec i s i on d : from (k) . nav igate (d e c i s i o n s))
for (Tact icExecut ion te : from (d) . nav igate (execute))35

i f (te . s t a t u s == "RUNNING" | | t e . s t a t u s == "IDLE" | | t e . s t a t u s == "SUCCEED")
for (Value v : from (te) . nav igate (impactedValues))

i f (v . startTime () > latestTime)
lates tTime = v . startTime ()

40
return l a tes tTime

}

Listing 7.2: Get latest timepoint at which the impact will be measured

Using this timepoint, then the adaptation process can then compute how the

120

grid should be after the actions have been executed. If the system has no prediction
mechanism, then the adaptation process can verify how the power will be balanced
over the new topology. Otherwise, it can use this prediction feature to compute
the expected loads with the coming topology. Using this information, it can verify
if all current incidents will be solved by the ongoing actions or not. If not, it may5

take additional actions or reschedule them.
Listing 7.3 depicts the code to extract all running actions. The nested loops

allow accessing all executions made by decision. Then, we filter only those with the
“RUNNING” status. The resulting collection should then be given to the scheduling
algorithm, which will decide if rescheduling is possible and how.10

Tact icExecut ion [] runningAct ions (Knowledge k) {
Tact icExecut ion [] resA
for (Dec i s i on d : k . d e c i s i o n s) {

for (Tact icExecut ion te : d . execute) {15
i f (te . s t a t u s == Status .RUNNING) {

resA . add (te)
}

}
}20
return resA

}

Listing 7.3: Extract ongoing actions and their effects

Using our model, developers have two solutions to model a rescheduling opera-
tion. Either they modify the actions, which may delete the history of the previous25

decision, or they mark all running and idle actions as “CANCELED” and create a
new decision, with new actions, which update the circumstances and re-use the
same requirements.

7.3.3 Performance evaluation
GreyCat stores temporal graph elements in several key/value maps. Thus,30

the complexity of accessing a graph element is linear and depends on the size
of the graph. Note that in our experimentation we evaluate only the execution
performance of diagnosis algorithms. For more information on I/O performance in
GreyCat, please refer to the original work by Hartmann et al., [HFJ+17; Har16].

35
MATCH (input)−[∗4]−>(output)
WHERE input . id IN [randomly generated s e t]
RETURN output
LIMIT O40

Listing 7.4: Traversal used during the experimentations

We consider a diagnosis algorithm to be a graph navigation from a set of nodes
(input) to another set of nodes (output). Unlike typical graph algorithms, diagnosis
algorithms are simple graph traversals and do not involve complex computations
at the node level. Hence, we believe that three parameters can impact their

121

performance (memory and/or CPU): the global size of the graph, the size of the
input, and the number of traversed elements. In our evaluation, we altered these
parameters and report on the behaviour of the main memory and the execution
time. The code of our evaluation is publicly available online3. All experiments
reporting on memory consumption were executed 20 times after one warm-up5

round. Whilst, execution time experiments were run 100 times after 20 warm-up
rounds. The presented results correspond to the mean of all the iterations. We
randomly generate graph with sizes (N) ranging from 1 000 to 2 000 000. At every
execution iteration, we follow these steps: (1) in a graph with size N, we randomly
select a set of I input nodes, (2) then traverse M nodes in the graph, (3) and we10

collect the first O nodes that are at four hops from the input element. Listing 7.4
describes the behaviour of the traversal using Cypher, a well-known graph traversal
language.

We executed our experimentation on a MacBook Pro with an Intel Core i7
processor (2.6 GHz, 4 cores, 16GB main memory (RAM), macOS High Sierra15

version 10.13.2). We used the Oracle JDK version 1.8.0_65.

How is the performance influenced by the graph size N? This experimen-
tation aims at showing the impact of the graph size (N) on memory and execution
time while performing common diagnosis routines. We fix the size of I to 10. To
assure that the behaviour of our traversals is the same, we use a seed value to select20

the starting input elements. We stop the algorithm when we reach 10 elements.
Results are depicted in Figure 7.10.

As we can notice, the graph size does not have a significant impact on the
execution time of diagnosis algorithms. For graphs with up to 2,000,000 elements,
execution time remains between 2 ms and four 4 ms. We can also notice that the25

memory consumption insignificantly increases. Thanks to the implementation of
a lazy loading and a garbage collection strategy by GreyCat, the graph size does
not influence memory or execution time performance. The increase in memory
consumption can be due to the internal indexes or stores that grow with the graph
size.30

How is the performance influenced by the input size (I)? The second
experiment aims to show the impact of the input size (I) on the execution of
diagnosis algorithms. We fix the size of N to 500 000 and we variate I from 1 000
nodes to 100 000, i.e., from 0.2% to 20% of the graph size. The results are depicted
in Figure 7.11 (straight lines).35

Unlike to the previous experiment, we notice that the input size (I) impacts
the performance, both in terms of memory consumption and execution time. This
is because our framework keeps in memory all the traversed elements, namely the

3https://bitbucket.org/ludovicpapers/icac18-eval

122

1 10 50 100 200 300 400 500 600 700 800 900 1e3 2e3

Graph size (# elements × 103)

T
im

e
(m

s)

2

4

6

8

10
12
14
16

(a) Execution time evolution

1 10 50 100 200 300 400 500 600 700 800 900 1e3 2e3

Graph size (# elements × 103)

JV
M

 H
ea

p
si

ze
 (

M
B

)

10

12

14

16

18

20

22
24
26
28

(b) Memory evolution

Figure 7.10: Experimentation results when the knowledge based size increases

123

input elements. The increase in memory consumption follows a linear trend with
regards to N. As it can be noticed, it reaches 2GB for I=100 000. The execution
time also shows a similar curve, while the query response time takes around than
around 60ms to run for I=1000, it takes a bit more than 4 seconds to finish
for I=100 000. Nonetheless, these results remain very acceptable for diagnosis5

purposes.

How is the performance influenced by the number of traversed elements
(M)? For the last experiment, we aim to highlight the impact of the number of
traversed elements (M). For this, we fix I and O to 1, and randomly generate a
graph with sizes ranging from 1 000 to 100 000. Our algorithm navigates the whole10

model (M=N). We depict the results in Figure 7.11 (dashed curve). As we can
notice, the memory consumption increases in a quasi-linear way. The memory
footprint to traverse M = 100 000 elements is around 0.9GB. The progress of the
execution time curve behaves similarly, in a quasi-linear way. Finally, the execution
time of a full traversal over the biggest graph takes less than 2.5 seconds.15

7.3.4 Discussion
By linking context, actions, and requirements using decisions, data extraction for

explanation or fault localization can be achieved by performing common temporal
graph traversal operations. In the detailed example, we show how a stakeholder
could use our approach to define the different elements required by such systems, to20

structure runtime data, finally, to diagnose the behaviour of adaptation processes.
Our implementation allows to dynamically load and release nodes during the

execution of a graph traversal. Using this feature, only the needed elements are
kept in the main memory. Hence, we can perform interactive diagnosis routines on
large graphs with an acceptable memory footprint. However, the performance of25

our solution, in terms of memory and execution time, is restricted by the number
of traversed elements and the number of input elements. Indeed, as shown in
our experimentation, both the execution time and the memory consumption grow
linearly.

In the Luxembourg smart grid, a district contains approximatively 3 data30

concentrators and 227 meters4. Counting the global datacenter, the network
is thus composed of 231 elements. Each meter sends the consumption value
every 15 min, being 908 every hours. Plus, there is from 0 to 273 topology
modifications in the network. In total, the system generates from 908 to 1,181
new values every hour. If we consider that we have one model element per35

smart grid entity and one model element per new value, 100,000 model elements
4Previously, our studies uses the data described in [HFK+14b], which corresponded to the all

Luxembourg at this date. Since 2014, the smart grid has been more and more deployed. Numbers
present in this document now corresponds more to one district.

124

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 10 20 30 40 50 60 70 80 90 100

Size (# elements × 103)

T
im

e
(s

)

Series Modification of Input size Modification of number of traversed nodes

(a) Evolution of the execution time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1 10 20 30 40 50 60 70 80 90 100

Size (# elements × 103)

JV
M

 H
ea

p
si

ze
 (

G
B

)

Series Modification of Input size Modification of number of traversed nodes

(b) Evolution of the memory consumption

Figure 7.11: Results of experiments when the number of traversed or input elements
increases

125

correspond thus from ((100, 000 − 231) ∗ 1H)/1, 181 = 84, 5H (∼ 3,5 days) to
((100, 000 − 231) ∗ 1H)/908 = 109, 9H (∼ 4,6 days) of data. In other word, our
approach can efficiently interrogate up to ∼5 days history data in 2.4s of one
district.

7.4 Conclusion5

Adaptive systems are prone to faults given their evolving complexity. To enable
interactive diagnosis over these systems, we proposed a temporal data model to
abstract and store knowledge elements. We also provided a high-level API to
specify and perform diagnosis algorithms. Thanks to this structure, a stakeholder
can abstract and store decisions made by the adaptation process and link them10

to their circumstances –targeted requirements and used context– as well as their
impacts. In our evaluation, we showed that our solution can efficiently handle up to
100 000 elements, in a single machine. This size is comparable to five days history
of one district in the Luxembourg smart grid.

126

Part III

Conclusion and future work

127

8
Conclusion

Contents
8.1 Summary . 128
8.2 Future work . 129

In this chapter, we conclude our dissertation by summarising the challenges
and the contributions presented in this document. Then, we detail future work. We
finish this dissertation by giving an outlook on this thesis.

129

8.1 Summary
Software systems are more and more pervasive and evolve in a more and more

complex environment. This complexity comes with a price: the environment is
less and less known with high confidence. To face this challenge, systems became
adaptive: their structure and their behaviour can be adjusted at runtime in response5

to changes in the environment, behaviour, or even their specification. One example
of such a system is a smart grid: a power grid which includes ICT to optimise
energy delivery and service quality. They continuously monitor cable loads to detect
any overloads or outages. If one is detected, the system triggers a modification of
power flow to heal the system.10

One way to implement an adaptive system, like a smart grid, is to apply the
models@run.time paradigm. This paradigm is part of the MDE methodology,
which advocates for the use of models in software engineering. As mentioned in the
name, models@run.time defines runtime model with a causal link to the system. A
runtime model reflects the state of a system, during its execution. Any modification15

of the system triggers an update of the model, and vice-versa (causal link).
However, we have identified five problems that can reduce the usability of this

approach (cf. Chapter 1). First, data collected are, for the most part, uncertain,
which can mislead the understanding of a system’s behaviour, structure, or environ-
ment. Second, adaptation actions are never immediate, take time to be executed,20

and have long-term effects. We refer to these actions as long-term actions. Third,
these systems can have emergent behaviour. Four, the different components of a
system can evolve at different rates. Last, the evolution of the system is linked
with time.

Within this dissertation, we argue towards a novel modelling framework that25

efficiently encapsulates time and uncertainty as first-class concepts. Therefore, in
this thesis, we focus on three challenges:

1. How to ease the manipulation of data uncertainty?
2. How to enable reasoning over unfinished actions and their expected effects?
3. How to diagnose the self-adaptation process?30

In order to solve them, we propose two contributions in this dissertation. First,
to answer the first challenge, we defined a language that integrates concepts related
to data uncertainty as a first-class citizen named Ain’tea (cf. Chapter 6). In
addition to traditional object-oriented language type (boolean, numeric, reference),
the language has uncertain boolean, uncertain numeric, and uncertain reference.35

These types encapsulate two elements: one element to represent the value, and
one to represent the uncertainty. Following what has been done in probabilistic
programming, the uncertainty is abstracted by a probability distribution. Ain’tea
manages five distributions. One distribution is used for uncertain boolean and

130

reference: Bernoulli. The four other distributions are employed for uncertain
numbers: Gaussian, Rayleigh, binomial, and Dirac delta function.

As we add new data types, we also modify the language operators and the
type system in consequence. Following what is done in the literature, we map the
different operators (arithmetic, boolean, comparison) to a process to propagate5

uncertainty. Therefore, a developer can combine uncertain data as she is used
to doing with certain data. Additionally, we define specific operators to reason
over uncertainty, such as the confidence and exist operators. The type system
natively considers these new data types. Statically, it checks if the combination
of uncertain data follows the constraint of uncertainty propagation, that is the10

probability theory. If not, error messages are thrown during the development time
to guide developers in their choices.

In our validation, we show that our language is as concise as state-of-the-art
solutions. Contrary to these solutions, we also show that our solution can detect
errors earlier. Thanks to the semantics, which supports uncertainty, errors message15

help developers in their development of algorithms that use uncertain data.
Our second contribution, which tackles the two other challenges, is a temporal

knowledge metamodel (cf. Chapter 7). Contrary to state-of-the-art solutions,
this metamodel adds the concept of long-term action. Thanks to this structure,
a stakeholder can abstract and store decisions made by the adaptation process20

and link them to their circumstances –targeted requirements and used context– as
well as their effects. Moreover, the metamodel is also supported by a graph-based
formalism. We formalise the different elements of the knowledge of an adaptive
system: requirements, actions (design time and runtime), and context.

When a designer defines a model that conforms to our metamodel, she will25

benefit from an API. An engineer can use this API to interact with the model at
runtime. In our evaluation, we showed that our solution can efficiently handle up
to 100 000 elements in a single machine. This size is comparable to 5 days history
of the Luxembourg smart grid.

These contributions do not answer all questions related to the problems identified.30

Besides, they suffer from limitations that can lead to further research efforts. In
the next section, we detail these limitations with the perspectives.

8.2 Future work
Both our contributions suffer from limitations that call for further research.

First, our work does not study all the impacts of uncertainty in software languages.35

Second, our model is just one step towards (self-)explanation of adaptive system1.
In this section, we describe two research directions left open by our work.

1Explanation is a capacity of software that helps engineers to understand the system behaviour.

131

8.2.1 Software language and uncertain data
Software relies more and more on data to make decisions or to help decision-

making processes. Engineers should, therefore, handle the uncertainty existing in
data. In this document, we argue for managing this uncertainty at the language
level. Our contribution addresses uncertainty on values and with a limited number5

of probability distributions. In our language, we focus our studies on primitive
data types (numeric and boolean) and references (1:1 relation). Moreover, we map
the uncertainty propagation to operators.

However, we do not tackle the global challenge regarding the introduction of
data uncertainty management at the language level. We can formulate the challenge10

as follows: how to handle data uncertainty at the language level? We can split it
into different problems that call for research efforts:
• What are the impacts of data uncertainty on the control flow?
• How to extend all data structures with uncertainty?
• What are the mechanisms to evaluate and reduce uncertainty and how to15

integrate them into the language?
• How to represent data uncertainty?

Data uncertainty and control flow We did not study the impact of control
flow statements on the uncertainty propagation. Introducing uncertainty as a first-
class citizen will inevitably modify current behaviour of control flow statements such20

as IF -conditions. We strongly think that this new data type in the type system will
lead to further research directions. We identified two other situations that should
be considered, with their challenges. The first one is the propagation through
control flow statements: how the uncertainty is propagated after an IF -condition,
a FOR-loop and a WHILE-loop. The second one is the propagation from one kind25

of uncertainty to another one. For example, how the uncertainty of presence should
be propagated to the uncertainty of a sum, average or variance computation?

Conditional expressions, which have a boolean type, modify the control flow
by forking it. With certain boolean, the expression is evaluated at runtime, and
one branch is selected according to the result. With uncertain ones, the executor30

cannot decide which branch to execute. We thus identified two possible controls
flows: the classical and the uncertain execution.

For the classical one, a cast operation should be performed to get a certain one.
It can be done using at least two strategies. First, a random selection from the
probability distribution can be made. Second, a cast can be done using the cast or35

confidence operator of our language (cf. Chapter 6). This operation gives the most
confident value. Let us take an example, an uncertain boolean that equals FALSE
with a confidence of 40%. Following the first strategy, there is a 40% chance of
getting FALSE , and so 60% for TRUE . Using the second one, it always results in
a TRUE value, as it’s the most confident value.40

132

For the uncertain execution, as the executor cannot decide which branch should
be executed, it should execute all of them and propagate the uncertainty. For
example, let us imagine the following code:

1uncertain_bool b = (TRUE , 0.4)5
2uncertain_int n;
3if(b)
4n = (5, 0.8)
5else
6n = (-5, 0.8)10

Listing 8.1: Example for uncertain control flow

As b is true with a confidence of 40%, n should be equal to 5 with a confidence of
(40% * 80% = 32%) and to -5 with a confidence of (60% * 80% = 48%) (considering
b and n independent).

These two execution semantics come with several open questions. One is related15

to the impact of such techniques to performances (CPU, memory, etc.). For the
uncertain execution, additional problems persist such as: should the execution be
parallel or not? How to ensure that the execution does not have a side effect(s)?
And a final one: can other semantics be defined?
Data structures and data uncertainty In a software language, it exists several20

data structures, from the simplest ones like arrays to complex ones like graphs
or trees. Additionally, the UML specification contains different kinds of relations
(1:1, 1:n, n:n, etc.). While these data structure and relations are useful to build
algorithms to reason over data, they come with new challenges. First, it opens
new questions concerning the meaning of an uncertain data structure: what an25

uncertain array? What an uncertain tree, graph?
Let us develop here the challenges brought by an uncertain array. We think

that there are three possible definitions of an uncertain array, the last one being
the combination of the first two:
• an uncertain array is a collection when the collection itself is uncertain,30

• an uncertain array is a collection that contains uncertain elements,
• an uncertain array is a collection that contains uncertain elements and when

the collection itself is uncertain.
Let us consider the following array of integers: [54, 10, 3, 24]. Following the first
definition, the array is uncertain if this collection is not known with the most35

thorough confidence. That is, the value of the array can be [6, 10, 3, 26] or [6, 10,
3, 26, 587]. As a consequence, the size of the array is also uncertain. In the case of
an ordered array, the order can also be uncertain. Using the second definition, 54,
10, 3, and 24 are all uncertain integers.

Additionally, research efforts have to be done to specify the semantics of40

operators on these uncertain structures. For example, one may focus on how the
uncertainty of the array will be impacted by an add or remove operation. These

133

operations do no affect the uncertainty of uncertain arrays that respect the second
definition, if we consider the operation as certain. But it brings open questions for
the two other definitions. As they will modify the size of the collection, the size
will be, in the best cases, as uncertain it was or more uncertain.

Lastly, one may investigate the impact of introducing uncertain data structures5

in common algorithms. For example: how to sort an uncertain collection? How
to balance an uncertain tree? How to compute the shortest path? Let us details
the sorting of an array. If the full collection is uncertain, a common sorting
algorithm can be applied without impacting the uncertainty. In the other cases,
algorithms should be redesigned. Indeed, as uncertainty propagation is mapped10

to operators, and each algorithm will use the comparison operators differently,
the result can differ. Sorting the first integer array ([54, 10, 3, 24]), merge sort
makes five comparisons while quick sort makes 4. These algorithms should consider
uncertainty at a higher level than language operators.

Quantification and reduction of uncertainty In our work on uncertainty,15

we focus on the definition of uncertain data and the propagation of uncertainty.
However, while talking about uncertainty, there are two other key concepts: quan-
tification and reduction. The former is to quantify the uncertainty at runtime of
a received data, e.g., to find the appropriated probability distribution with its
parameter. For example, when a smart grid system receives a consumption value,20

the quantification consists in adding the probability distribution that represents
the uncertainty. The latter is to increase the confidence of received values. For
instance, by comparing the consumption value with past ones, one may increase its
confidence in the value. The literature provides techniques to evaluate the uncer-
tainty [WKE08; Met08] and to reduce it [Sha76]. Thus, we think that future work25

for the modelling community are open. A direction could focus on a model that
abstracts these techniques to help engineers to manipulate and integrate them into
their models. For example, using a descriptive language that adds meta-information
to uncertain values. Below, we show a possible language for that.

30
1uatt att1: double {
2min 0
3max 100
4past " GaussianMixtureModel "
5timeValidity 5 seconds35
6consistentWith att2[att1 ~ 2 * att2]
7}

Listing 8.2: Example of a descriptive language to define meta-information uncer-
tainty

This language can define some information that can be used to quantify or
reduce uncertainty. For example, minimal and maximal values can be used to check40

if the received value is in this range or not. If not, the uncertainty will increase.

134

The past attribute can be used to define how it should be represented. The model
will then be used to compare the received values with past ones. TimeValidity is
here to help the quantification of the temporal uncertainty. More the value reaches
the given validity, more it is uncertain. Finally, consistentWith can be used to
compare the value with another one, here att2. Plus, the function given into square5

brackets can be used to formalise the relation between the two attributes. In the
listing, att1 is approximately equal to the double of att2. This language results
from a first brainstorming, but research efforts are still required to design and
validate it.

Data uncertainty representation Researchers defined different strategies, like10

keeping multiple possibilities, to represent several kinds of uncertainties. As
examples, we identified the uncertainty of existence and the temporal uncertainty.
The first one corresponds to the confidence that a value exists or not. It can result
from faulty data sources that send wrong data. The second one can be used to
represent the loss of confidence in value over time.15

First future work would be to investigate how to introduce such techniques
inside a programming language. For example, the language should be able to
store and manipulate different values for a same attribute. Another example, the
language should support a 3 dimensional representation of the value: one for the
possible values, one for the confidence, and one for the time. Then, research efforts20

can focus on the definition of a language that uses different strategies to handle
uncertainty. One may study the impacts on the type system, the semantics, and
the syntax of the language.

Second, introducing new probability distributions lead to complex combinations
of probability distributions. In the current approach, we use an analytical approach25

(we compute the exact solution). However, this cannot be performed between
some probability distributions. In such a situation, a numerical method should be
applied. This leads to challenges regarding the threshold between the performance
of the language and the accuracy of the method.

8.2.2 (Self-)Explanation of adaptive systems30

The complexity of adaptive system behaviour makes it hard to understand sys-
tem behaviour and adaptation decisions made. If the system enters in a suboptimal
state, engineers may have difficulties to figure out the reasons. In this thesis, we
define a temporal knowledge model to help them to perform diagnosis routines (cf.
Chapter 7).35

However, this work is just one step towards fully explainable adaptive systems.
To achieve this goal, research efforts should be made to answer the following
challenge: how to enable autonomous explanation of system behaviour? We
identified several sub-challenges that should be addressed first:

135

• How to accurately link decisions with their impacts?
• How to deal with a large amount of data required for diagnosis purpose?
• How to autonomously extract explanations from the data model?

Link effects to decisions When we defined our temporal knowledge model
(cf. Chapter 7), we assumed that designers can link actions with their expected5

effects at design time with the most thorough confidence. However, as systems
are more and more complex, we think that they do not know all the impacts in
advance. There is an unknown part. As done by Donald Rumsfeld in a famous
US Department of Defense press briefing, we can identify two levels of unknowns:
unknown knowns, and unknown unknowns. Moreover, these relations are uncertain.10

All traceability links that we model in this thesis should not be considered as
entirely accurate. Lastly, decision effects will be combined with the evolution of
the system context and behaviour.

Research efforts are, therefore, needed to define techniques to discover these
unknown relations and to separate decisions effects from the evolution of the system.15

One approach could be to use a learning algorithm to find them. Besides, research
efforts are still required to combine our two contributions and achieve our vision of
an uncertain and time-aware modelling framework.

Large amount of data We are conscious that the metamodel defined in Chap-
ter 7 remains large. A model that conforms this metamodel can be challenging to20

be defined and manipulated manually.
Research efforts are required to define DSL to facilitate the manipulation of

the model. Moreover, autonomous processes can be defined to populate a model
conforms to our metamodel automatically. For example, one can specify a method
for analysing the code or the model that describes actions to populate the temporal25

knowledge with long-term actions. Another process can be formalised to add model
elements related to context information, the status of action executions, etc..

Automatic extraction of explanation In the contribution presented in Chap-
ter 7, we defined a data model. One can navigate in this structure to identify
the causes of a suboptimal decision. However, this task remains manual, and we30

strongly think that it can be long, redundant, and error-prone. Research efforts
should thus be performed to define an algorithm(s) that autonomously extracts
explanations.

On a request, from a human or another system, the algorithm should collect all
the information required to establish an explanation. The algorithm should put35

this information in a human-readable format. We can distinguish different kinds of
information:
• Information that explains why the system is defined as suboptimal. Here, the

algorithm can compare the actual state with the requirements of the systems.

136

• Information that determines if the system has ended in this state because
of decisions made or because of the evolution of its context and behaviour.
To achieve this, the algorithm should be able to separate decisions effects
from evolution impacts. The algorithm requires thus accurate links between
decisions and their effects. Moreover, it needs to know how the system evolves5

thanks to, for example, learning techniques or function that encodes it.
• Information that represents the circumstances of previous decisions. It can

be collected by navigating our temporal data model.
• Information that details past decisions made and their execution status. If

some actions have failed, data about the reasons for their failure should also10

be collected.
If one can achieve this research direction, we think that other research directions

will be opened. A solution could analyse the explanations to detect any sub-optimal
decisions and suggest a set of correctives. This solution would integrate learning
mechanisms.15

137

138

139

Glossary

adaptive system In this document, we modified the definition of self-adaptive
systems provided by Cheng et al., in [CdLG+09]. Adaptive systems are able to
have their behaviour adjusted in response to the perception of the environment and
the system themselves. If a system perform this adjustment on itself, the literature5

refers to it as self-adaptive system.
action In this document, we use the definition provided by IEEE Standards [III17]:
“Process that, given the context and requirements as input, adjusts the system
behaviour”.

behaviour We refer to system behaviour.10

circumstance State of the knowledge when a decision has been taken.
context In this document, we use the definition provided by Anind K. Dey [Dey01]:
“Context is any information that can be used to characterise the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and [the system], including the user and [the system]15

themselves”.

data uncertainty Data are uncertain when some data points are not precisely
known..
decision A set of actions taken after comparing the state of the knowledge with
the requirement.20

DSL In this document, we use the definition provided by Deursen et al., [vDKV00]:
“is a programming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain.”.

environment See system environment.25

execution In this document, we use the definition provided in the UML specifi-
cation [OMG17]: “An execution is a performance of a set of actions (potentially
over some period of time) that may generate and respond to occurrences of events,
including accessing and changing the state of [the system]”.

i

knowledge The knowledge of an adaptive system gathers information about the
context, actions and requirements.

long-term action An action that is not immediate, or that takes time to be
executed, or that has long-term effects..

MAPE-k A theoretical model of the adaptation process proposed by Kephart5

and Chess [KC03]. It divides the process in four stages: monitoring, analysing,
planning and executing. These four stages share a knowledge.
metamodel In this document, we use the definition provided by Douglas C.
Schmidt [Sch06]: “[Metamodels] define the relationships among concepts in a
domain and precisely specify the key semantics and constraints associated with10

these domain concepts”.
model In this document, we use the definition provided by Brambilla et al.,
[BCW17]: “[A model is] a simplified or partial representation of reality, defined
in order to accomplish a task or to reach an agreement on a topic.” The model
should conform to a metamodel: each element of the model instantiates one from15

the metamodel and satisfies all semantics rules [BJT05].
models@run.time In this document, we use the definition provided by Blair et
al., [BBF09]: “A model@run.time is a causally connected self-representation of the
associated system that emphasises the structure, behaviour, or goals of the system
from a problem space perspective”.20

requirement In this document, we use the definition provided by IEEE Stan-
dards [III17]: “(1) Statement that translates or expresses a need and its associated
constraints and conditions, (2) Condition or capability that must be met or pos-
sessed by a system [...] to satisfy an agreement, standard, specification, or other
formally imposed documents”.25

self-adaptive system See adaptive system.
self-healing Refers to the capacity of detecting, diagnosing, and repairing any
error in the system. See self-healing system.
self-healing system In this document, we use the definition provided by Kephart
and Chess [KC03]: “[A self-healing] system automatically detects, diagnoses, and30

repairs localised software and hardware problems.”.
SLE In this document, we use the definition provided by Anneke Kleppe [Kle08]:
“the application of systematic, disciplined, and measurable approaches to the
development, use, deployment, and maintenance of software languages”.
smart grid In this document, we use the definition provided by the National35

Institute of Standards and Technology (NIST) [oSN]: “a modernized grid that
enables bidirectional flows of energy and uses two-way communication and control
capabilities that will lead to an array of new functionalities and applications.”.

ii

software language In this document, we use the definition provided by Anneke
Kleppe [Kle08]: “any language that is created to describe and create software
systems”.
structure See system structure.
system behaviour In this document, we use the definition provided in the UML5

specification [OMG17]: “A behaviour describes a set of possible executions.”(p. 12)
“Behaviour may be executed, either by direct invocation or through the creation of
an [element] that hosts the behaviour. Behaviour may also be emergent, resulting
from the interaction of one or more [elements] that are themselves carrying out
their own individual behaviours.”(p. 285).10

system environment Where the system is executed or is running. For example,
a cloud application have the cloud infrastructure as environment.
system structure The structure describes all elements that compose the system.

iii

iv

Abbreviations

API Application Programming Interface.

CPS Cyber-Physical System.
CPU Central Processing Unit.
CSV Comma-separated values.5

DOM Document Object Model.
DSL Domain-Specific Language.
DSML Domain Specific Modelling Language.

E-MOF Essential MOF (EMOF).
EMF Eclipse Modelling Framework.10

FSM Final State Machine.

GCM GreyCat Modelling Environment.
GPL General Purpose Language.
GUM Guide to the expression of Uncertainty in Measurement (GUM).

ICT Information and communication technology.15

IoT Internet of Things.

KMF Kevoree Modelling Framework.

MAPE-k Monitor, Analyse, Plan, and Execute over knowledge.
MDE Model-Driven Engineering.
MOF Meta Object Facility.20

NIST National Institute of Standards and Technology.

OCL Object Constraint Language.
OMG Object Management Group.

SAS Self-Adaptive System.

v

SLE Software Language Engineering.

UML Unified Modelling Language.

XMI XML Metadata Interchange.

vi

List of publications and tools

Papers included in the dissertation
• 2017

– Amine Benelallam, Thomas Hartmann, Ludovic Mouline, François Fou-
quet, Johann Bourcier, Olivier Barais, and Yves Le Traon. Raising5

time awareness in model-driven engineering: vision paper. In 20th
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS, 2017. url: https://doi.org/10.
1109/MODELS.2017.11

• 201810

– Ludovic Mouline, Amine Benelallam, François Fouquet, Johann Bour-
cier, and Olivier Barais. A temporal model for interactive diagnosis of
adaptive systems. In 2018 IEEE International Conference on Autonomic
Computing, ICAC, 2018. url: https://doi.org/10.1109/ICAC.2018.
0002915

– Ludovic Mouline, Amine Benelallam, Thomas Hartmann, François Fou-
quet, Johann Bourcier, Brice Morin, and Olivier Barais. Enabling
temporal-aware contexts for adaptative distributed systems. In Proceed-
ings of the 33rd Annual ACM Symposium on Applied Computing, SAC,
2018. url: https://doi.org/10.1145/3167132.316728620

• in the process of submission
– Ludovic Mouline, Amine Benelallam, Thomas Hartmann, Johann Bourcier,

Olivier Barais, and Maxime Cordy. Ain’tea: managing data uncertainty
at the language level. Forthcoming, forthcoming

Papers not included in the dissertation25

• 2017
– Ludovic Mouline, Thomas Hartmann, François Fouquet, Yves Le Traon,

Johann Bourcier, and Olivier Barais. Weaving rules into models@run.time
for embedded smart systems. In Companion to the first International
Conference on the Art, Science and Engineering of Programming, Pro-30

gramming, 2017. url: https://doi.org/10.1145/3079368.3079394

vii

https://doi.org/10.1109/MODELS.2017.11
https://doi.org/10.1109/MODELS.2017.11
https://doi.org/10.1109/MODELS.2017.11
https://doi.org/10.1109/ICAC.2018.00029
https://doi.org/10.1109/ICAC.2018.00029
https://doi.org/10.1109/ICAC.2018.00029
https://doi.org/10.1145/3167132.3167286
https://doi.org/10.1145/3079368.3079394

• 2018
– Alejandro Sánchez Guinea, Andrey Boytsov, Ludovic Mouline, and

Yves Le Traon. Continuous identification in smart environments using
wrist-worn inertial sensors. In Proceedings of the 15th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking5

and Services, MobiQuitous, 2018. url: https://doi.org/10.1145/
3286978.3287001

Tools included in the dissertation
• Ain’tea: a language which integrated data uncertainty as a first-class citizen

– https://github.com/lmouline/aintea10

• LDAS: a metamodel of knowledge for adaptive systems
– https://github.com/lmouline/LDAS

List of figures

1.1 Overview of the models@run.time and focus of the thesis 4
1.2 Illustration of the problem due to data uncertainty 515

1.3 Illustration of a long-term action 7
1.4 Overview of the language proposed, Ain’tea 11
1.5 Overview of the temporal knowledge model 12
1.6 Structure of the document . 12

2.1 Conceptual vision of adaptive system (based on [Wey19]) 1620

2.2 MAPE-k loop (based on [KC03]) 18
2.3 Difference and relation between metamodel and model 24
2.4 Composition of a software language 26
2.5 Probability distributions used in this thesis 29

3.1 Two different electric flows for a same grid topology 3225

3.2 Example of consumption measurement before and after a limitation
of amps has been executed at t20. 39

3.3 Figure extracted from [WBR11]. The red bar depicted the moment
when Replica 2 stop receiving new connections. The green one
represents the moment where all the rules in the load balancer stop30

considering R2. Despite these two actions, the throughput of the
machine does not drop to 0 due to existing and active connections. 40

viii

https://doi.org/10.1145/3286978.3287001
https://doi.org/10.1145/3286978.3287001
https://doi.org/10.1145/3286978.3287001
https://github.com/lmouline/aintea
https://github.com/lmouline/LDAS

3.4 Simplified version of a smart grid 42

5.1 Overview of our vision . 73

6.1 Impact of having uncertainty as a first-class language citizen on a
language . 77

6.2 Global architecture of Ain’tea . 945

6.3 Detection of a type error . 99
6.4 Infer.NET detect the error at runtime. 100

7.1 Time definition used for the knowledge formalism 105
7.2 Evolution of a temporal graph over time 106
7.3 Application of the formalism with a temporal graph that represents10

the knowledge of the smart grid described in Section 3.3.2 110
7.4 Validity periods of consumption values and their edges to the smart

meter M2 . 111
7.5 Excerpt of the knowledge metamodel 114
7.6 Excerpt of the context metamodel 11515

7.7 Requirement metamodel . 115
7.8 Excerpt of the action metamodel 116
7.9 Excerpt of the knowledge object model related to our smart grid

example . 119
7.10 Experimentation results when the knowledge based size increases . . 12320

7.11 Results of experiments when the number of traversed or input ele-
ments increases . 125

8.1 Aperçu du models@run.time et objet de la thèse xiii
8.2 Illustration du problème causé par l’incertitude des données xiv
8.3 Illustration d’une action à long terme xv25

8.4 Overview of the language proposed, Ain’tea xix
8.5 Overview of the temporal knowledge model xx

List of tables

2.1 Characterisation of information of the knowledge 19

4.1 Approaches to model systems’ context and behaviour (RQ1.1) . . . 4830

ix

4.2 Approaches to model actions, their circumstances, and their effects
(RQ1.2) . 52

4.3 Approaches to reason over evolving context or behaviour (RQ1.3) . 56
4.4 Categories of uncertainty addressed by the literature (RQ2.1) 59
4.5 Approaches to model data uncertainty (RQ2.2) 615

4.6 Approaches to propagate data uncertainty (RQ2.3) 64
4.7 Approaches to reason over the uncertainty of data (RQ2.3) 64

6.1 Which distribution can be used to represent the uncertainty of which
data type . 83

6.2 Cast operations allowed in our language 8710

6.3 Typing rules for arithmetic operations 92

x

French summary - Résumé en français

La méthodologie d’ingénierie dirigée par les modèles et l’approche des systèmes
dynamiquement adaptatifs sont combinées pour relever les défis posés par les sys-
tèmes d’aujourd’hui. Après avoir présenté ces deux techniques de génie logiciel, nous
décrivons cinq problèmes que nous avons identifiés pour ces systèmes : l’incertitude
des données, les actions avec effets à long terme, les comportements émergents de
ces systèmes, les différents rythmes d’évolution des sous-parties du système, et la
dimension temporelle de leurs structures et comportements. Nous présentons les
défis qui accompagnent ces problèmes. Avant de décrire les deux contributions de
cette thèse, nous abordons les sous-défis abordés.

xi

8.3 Contexte
Les systèmes auto-adaptatifs (SAS) optimisent leurs comportements ou configu-

rations au cours de l’exécution en réponse à une modification de leur environnement
ou de leurs comportements [CdLG+09]. Kephart et Chess [KC03] ont défini les
bases de cette approche, basée sur un livre blanc d’IBM [Com+06]. Depuis, les5

praticiens l’ont appliqué à différents domaines [GVD19] tels que l’infrastructure
cloud [JG17 ; Tea15 ; BKF+17] ou les Système Cyber-Physique (CPS) [LGC17 ;
FMF+12 ; HFK+14a]. Un exemple d’un tel système est un réseau intelligent, qui
utilise la capacité d’adaptation pour s’auto-guérir de manière autonome.

Un réseau intelligent est un réseau électrique dans lequel les services publics10

ont introduit les Technologies de l’Information et de la Communication (TIC)
pour faire face aux nouveaux défis de l’approvisionnement en électricité [Far10 ;
IA09 ; FMX+12]. L’une des caractéristiques requises est la capacité d’auto-guérison.
Un système d’auto-guérison peut réparer automatiquement tout incident, logiciel
ou matériel, au moment de l’exécution [KC03]. Par exemple, un réseau intelli-15

gent peut optimiser le flux d’énergie pour faire face aux pannes des transforma-
teurs 2 [FMX+12].

Le processus d’adaptation ne peut être réalisé que si le système a une connais-
sance approfondie de la situation et du problème. Dans ce cas, la situation comprend
la structure (les éléments qui composent le système), le comportement (l’ensemble20

des exécutions possibles du système) et l’environnement (où il est exécuté) du
système. Cette compréhension peut être extraite d’une ou d’un ensemble d’abstrac-
tion(s) de ces éléments. Les abstractions fournissent une description des systèmes,
de leurs comportements ou de leur environnement. Par exemple, Hartmann Hart-
mann et al., [HFK+14b] fournissent un diagramme de classes qui décrit la topologie25

du réseau intelligent, lorsqu’il utilise les communications par lignes électriques3.
Les défenseurs de l’Ingénierie Dirigée par les Modèles (IDM) plaident pour l’uti-

lisation du mécanisme d’abstraction pour faciliter le développement des logiciels
actuels [Sch06 ; Ken02 ; BCW17]. Cette méthodologie peut être appliquée à diffé-
rentes étapes du développement logiciel. Dans cette thèse, nous nous concentrons30

sur l’un de ses paradigmes : models@run.time [BBF09 ; MBJ+09]. Comme nous
l’illustrons par la Figure 8.1, en utilisant ce paradigme, le processus d’adaptation
s’appuie sur un modèle pour analyser la situation et déclencher l’adaptation. Dans
ce document, nous supposons que le modèle représente la connaissance du processus
d’adaptation. Les développeurs peuvent utiliser ce paradigme pour mettre en œuvre35

des systèmes adaptatifs [MBJ+09 ; HFK+14a]. Cette thèse contribue à cette couche
de modélisation.

2Les transformateurs modifient la tension dans les câbles.
3Les données sont transmises par des câbles qui distribuent également l’électricité.

xii

Modèle Systèmemet à jour
Processus

d’adaptation

re-configure

Environnement

utilisé comme
connaissance par

ajoute les
résultats dans

Objet de la thèse

Figure 8.1 : Aperçu du models@run.time et objet de la thèse

8.4 Défis
Au cours de notre étude, nous avons identifié cinq caractéristiques des systèmes

adaptatifs qui posent des défis pour la recherche en génie logiciel. Premièrement,
l’information recueillie n’est pas toujours connue avec une confiance absolue. Deuxiè-
mement, les reconfigurations peuvent ne pas être immédiates et leurs effets ne sont5

pas instantanément mesurés. Troisièmement, le comportement du système peut être
émergent [ZA11], c’est-à-dire qu’il ne peut être entièrement connu au moment de la
conception. Quatrièmement, les différentes sous-parties du système n’évoluent pas
au même rythme. Cinquièmement, la structure et le comportement des systèmes
ont une dimension temporelle. La dernière a été publiée dans notre document de10

vision concernant la prise de conscience du temps dans l’IDM [BHM+17]. Nous les
avons détaillés dans cette section.

8.4.1 Ingénierie de logiciels sensibles à l’incertitude
La plupart des fusibles sont ouverts et fermés manuellement par les techniciens

plutôt que modifiés automatiquement. Ensuite, les techniciens rapportent manuel-15

lement les modifications effectuées sur la grille. En raison d’erreurs humaines, il en
résulte des erreurs. La topologie de la grille est donc incertaine. Cette incertitude
se propage à l’approximation de la charge, utilisée pour détecter les surcharges
dans le réseau. De mauvaises reconfigurations pourraient être déclenchées, ce qui
pourrait être encore pire que si aucun changement n’avait été appliqué.20

Plus généralement, les données sont, presque par définition, incertaines et les
développeurs travaillent avec des estimations dans la plupart des cas [BMM14 ;
Met08 ; AY09]. L’incertitude peut s’expliquer par la façon dont les données sont
recueillies. On peut distinguer trois catégories : les capteurs, les humains et les
résultats des calculs. Les capteurs (logiciels ou matériels) estiment toujours la valeur25

et ont une valeur de précision grâce à la méthode de mesure [Met08 ; BMM14]. Les
humains sont sujets à l’erreur. Les calculs peuvent soit donner une approximation,
soit être basés sur des données incertaines. Cette incertitude se propage ensuite à
travers toutes les étapes jusqu’au résultat final.

xiii

temps

charge du cable

Valeure réelle

Incertitude
de la donnée

Niveau de confiance

Seuil de detection d’une surcharge

Surcharge détectée alors que
la situation est normale

Figure 8.2 : Illustration du problème causé par l’incertitude des données

Pour un domaine spécifique, cette incertitude peut avoir une incidence sur la
compréhension de la situation réelle, comme le montre la Figure 8.2. Par exemple,
l’incertitude de l’horloge CPU est trop faible pour endommager le pourcentage de
charge du processeur. Cependant, l’incertitude de la charge du câble dans un réseau
intelligent peut déclencher une fausse détection d’une surcharge, comme le montre5

la Figure 8.2. Si l’incertitude des données peut induire en erreur la compréhension
du comportement ou de l’état d’un système, les développeurs doivent mettre en
œuvre un système conscient de l’incertitude. Pour les systèmes adaptatifs, ce
manque de confiance peut entraîner des adaptations sous-optimales.

Par conséquent, nous soutenons que l’incertitude des données a une incidence10

sur toutes les étapes du développement d’un logiciel, de la conception à l’exécution.
Parmi les différentes étapes de cette thèse, nous nous concentrons sur celle de la
conception. Nous croyons fermement que les techniques de conception devraient
fournir des mécanismes pour aider les développeurs à abstraire et à manipuler des
données incertaines.15

La littérature fournit des approches pour aider les ingénieurs à raisonner ou à
manipuler les données sans certitude, ou du moins les distributions de probabilité.
Par exemple, les fonctions de croyances [Sha76] aident à réduire cette incertitude
en combinant plusieurs sources de données. La communauté de programmation
probabilistic [GHN+14] fournit des frameworks et des langages de programma-20

tion [MWG+18 ; BDI+17] pour propager les probabilités lors des calculs.
Cependant, à notre connaissance, aucune étude n’a été effectuée pour évaluer

l’impact de l’incertitude des données sur le développement des logiciels. Le défi

xiv

time

Fréquence de
surveillage (fM)

Incident detecté
Action déclenchée Effets mesurable

Délai avant la mesure des effets

Action est executée

t1 t2 t3

t1: temps avant l’execution de l’action t2: temps d’execution t3: délai pour mesurer les effects
t1 + t2 + t3 >> fM

Remonter des effets vers leurs circonstances

Figure 8.3 : Illustration d’une action à long terme

suivant demeure une question ouverte pour la communauté du génie logiciel :
Comment concevoir des logiciels sensibles à l’incertitude (conception, mise en
œuvre, test et validation) ?

8.4.2 Raisonnement sur les actions à long terme
La reconfiguration d’un réseau intelligent implique de modifier le flux de puis-5

sance en ouvrant ou en fermant les fusibles. Comme nous l’avons déjà dit, les
techniciens doivent se rendre physiquement sur les lieux des fusibles pour modifier
leur états. Dans le cas du réseau intelligent luxembourgeois, les compteurs envoient
des mesures d’énergie toutes les 15 minutes, de manière non synchrone. Par consé-
quent, entre le moment où une reconfiguration du réseau intelligent est décidée et10

le moment où les effets sont mesurés, un retard d’au moins 15 minutes se produit.
D’autre part, un incident devrait être détecté dans les minutes qui suivent. Si le
processus d’adaptation ne tient pas compte de cette différence de rythme, il peut
entraîner des décisions répétées.

De façon plus générale, il peut exister une différence entre la fréquence de15

surveillance et le temps nécessaire pour mesurer les effets de l’action. L’une des
causes de cette différence est ce que nous appelons les actions à long terme dans ce
document, illustrées à la Figure 8.3. Une action à long terme est définie comme une
action qui prend du temps à être exécutée (retard à exécuter et temps d’exécution)
ou qui a des effets à long terme. Une deuxième cause est l’impossibilité de réduire20

la fréquence de surveillance puisque les systèmes doivent être réactifs dans certains
cas. Cette différence de taux peut nuire au processus décisionnel.

Par conséquent, nous soutenons que les processus décisionnels devraient tenir
compte de ce délai si la fréquence de l’étape de surveillance est inférieure à la durée
des effets de l’action pour pouvoir être mesurée. A notre connaissance, aucune des25

xv

approches ne permet aux développeurs d’implémenter de tels outils. L’un des défis
ouverts pour la communauté des chercheurs est donc le suivant :
Comment modéliser, stocker et interroger les actions à long terme avec leurs
effets ?

8.4.3 Diagnostic du processus d’adaptation5

Le comportement du réseau intelligent est affecté par plusieurs facteurs qui ne
peuvent pas être contrôlés par le gestionnaire de réseau. Les conditions météorolo-
giques en sont un exemple. Les réseaux intelligents reposent sur une production
d’énergie répartie entre plusieurs acteurs. Par exemple, les utilisateurs, qui étaient
auparavant principalement des consommateurs, peuvent maintenant produire de10

l’énergie en ajoutant des panneaux solaires sur le toit de leur maison. La produc-
tion de cette énergie dépend de la météo, et même de la saison4. Malgré cette
stochasticité du comportement, les ingénieurs doivent mettre en œuvre un processus
d’adaptation qui peut conduire à une configuration de grille sous-optimale.

Face à des systèmes logiciels de plus en plus complexes et à grande échelle15

(par exemple les systèmes de réseaux intelligents), nous pouvons tous convenir que
la présence de défauts résiduels devient inévitable [BdMM+17 ; MPS15 ; HBB15].
Même avec un processus méticuleux de vérification ou de validation, il est très
probable de se heurter à un comportement inattendu qui n’était pas prévu au
moment de la conception. À elles seules, les approches formelles de modélisation20

et de vérification existantes peuvent ne pas être suffisantes pour anticiper ces
défaillances [TOH17]. A ce titre, des techniques complémentaires doivent être
proposées pour localiser le comportement anormal et son origine afin de le manipuler
en toute sécurité.

Bencomo et al., [BWS+12] soutiennent qu’une explication complète du com-25

portement du système contribue de manière drastique à la qualité du diagnostic et
facilite la tâche de dépannage du comportement du système. Pour ce faire, comme
le montre la Figure 8.3, nous pensons que les systèmes logiciels adaptatifs devraient
être dotés d’installations de gestion de la traçabilité pour relier les décisions prises
à (i) leur situation, c’est-à-dire l’historique des états du système et les exigences30

visées, et (ii) les actions réalisées et leur(s) impact(s) sur le système. En particulier,
un système adaptatif devrait conserver une trace des événements historiques perti-
nents. En outre, il devrait être en mesure de lier les objectifs que le système entend
atteindre aux adaptations et aux décisions qui ont été prises, et vice versa. Enfin,
afin de permettre aux développeurs d’interagir avec le système d’une manière claire35

et compréhensible, une abstraction appropriée pour permettre la navigation des
traces et leur historique devrait également être fournie. En d’autres termes, un défi
qui n’a pas encore été relevé est le suivant :4L’angle du soleil a un impact sur la quantité d’énergie produite par les panneaux solaires.
Cet angle varie selon la saison.

xvi

Comment faire remonter les effets des décisions d’adaptation à leur situation ?

8.4.4 Modélisation des états incohérents des systèmes
Chaque compteur envoie des données de consommation et de production toutes

les 15 minutes. Cependant, cette collection n’est pas synchrone. Autrement dit,5

tous les compteurs n’envoient pas leurs données au même moment. Le système
global, qui reçoit toutes les données, n’a donc pas une vision globale avec la même
fraîcheur pour toute la partie de la grille. Les données électriques sont volatiles : un
pic ou une baisse peut survenir en moins d’une minute en raison, par exemple, du
démarrage ou de la finition d’une machine à laver. La reconfiguration de la grille10

peut donc être sous-optimale en raison d’informations périmées.
Les différentes parties d’un système peuvent évoluer à des rythmes différents.

Certains systèmes sont hétérogènes en termes de matériel et de logiciels. Cette
diversité se traduit par des évolutions ou des taux de réaction différents. Par
exemple, si certains composants fonctionnent sur batteries, ils auront un cycle15

de sommeil pour économiser de l’énergie. A l’inverse, si d’autres sont connectés
directement à une source d’énergie, ils peuvent réagir plus rapidement.

Malgré cette différence de rythmes, une vision globale d’un système à un moment
précis peut encore être nécessaire. La vision devrait porter sur des données qui ont
une fraîcheur différente. Par exemple, le processus d’adaptation peut nécessiter une20

vision globale du système. Dans le pire des cas, certaines données seraient périmées
et ne pourraient être utilisées.

Lors de la conception du processus d’adaptation, les ingénieurs ont donc besoin
de solutions pour faire face à un état inconsistant du système. Une solution peut,
par exemple, estimer de façon transparente ce que devrait être la valeur actuelle de25

données périmées. Un défi pour la communauté du génie logiciel est donc :
Comment représenter, interroger et stocker des états et des comportements
système incohérents ?

8.4.5 Modélisation des données temporelles et interconnec-
tées30

Le flux d’énergie est influencé par la consommation et la production des utilisa-
teurs, ainsi que par les modifications de la topologie. Connaître le dernier statut
de la grille est aussi important que savoir comment elle évolue. En fonction de
l’évolution, l’exploitant du réseau peut prévoir tout incident futur, comme une
surcharge. Il pourrait également comparer cette évolution de comportement avec35

une évolution normale pour détecter, par exemple, tout comportement malveillant.
L’évolution des systèmes est intrinsèquement liée à une dimension temporelle.

Evolution et temps sont deux concepts liés. Pour certains systèmes, non seulement

xvii

les derniers états sont importants, mais aussi leur évolution. Ensuite, les processus
d’analyse examineront cette évolution pour savoir si elle est normale ou non. Ils
peuvent aussi utiliser cette évolution pour prédire comment les systèmes vont
évoluer. En se basant sur ces prévisions, ils peuvent prévoir les incidents futurs
dans le système.5

Les décisions ne sont pas prises en fonction du dernier état du système, mais en
fonction de son évolution. Le processus d’analyse doit donc naviguer à la fois dans
la structure du système et dans son comportement dans le temps. Les ingénieurs
ont besoin d’outils efficaces pour structurer, représenter, interroger et stocker des
données temporelles et interconnectées à grande échelle.10

Le temps n’est pas un nouveau défi pour le génie logiciel . Par exemple, Riviera et
al., [RRV08] ont déjà identifié le temps comme un défi pour la communauté de
l’IDM. Différentes approches ont été définies [BCC+15 ; KT12 ; KH10 ; HFN+14b].

Cependant, nous remarquons que les efforts de recherche déployés par la com-
munauté des EMM n’étaient pas axés sur la modélisation, la persistance et le15

traitement des données en évolution. Thomas Hartmann a commencé à aborder ces
défis dans sa thèse de doctorat [Har16]. Le dernier défi, qui n’est pas entièrement
relevé, est donc :
Comment structurer, représenter, requêter et stocker efficacement des données
temporelles à grande échelle ?20

8.5 Périmètre de la thèse
Parmi tous les défis décrits dans la section précédente, cette thèse se concentre

sur trois d’entre eux : l’incertitude des données (Section 8.4.2), les actions à long
terme (Section 8.4.3) et le processus d’adaptation sujet aux erreurs (Section 8.4.3).
Plus précisément, nous abordons trois sous-problèmes de ces défis.25

La gestion de l’incertitude exige une grande expertise en probabilité et en théorie
statistique. La littérature propose différentes solutions pour gérer l’incertitude [Zad ;
Met08 ; Sha76]. L’application de ces techniques exige une compréhension approfon-
die des théories sous-jacentes et prend beaucoup de temps [VMO16]. De plus, il est
difficile à tester et peut-être plus important encore, très sujet aux erreurs. Dans30

cette thèse, nous abordons donc le problème suivant :
Sous-défi #1: Comment faciliter la manipulation de l’incertitude des données
pour les ingénieurs logiciels ?

Les processus d’adaptation peuvent reposer sur des actions à long terme comme
la migration des ressources dans l’infrastructure cloud. A cause du manque d’infor-35

mation sur les actions inachevées et leurs effets prévus sur le système, la composante
raisonnement peut prendre des décisions répétées ou sous-optimales. Une étape
pour permettre ce mécanisme de raisonnement est d’avoir une couche d’abstraction
qui peut représenter efficacement ces actions à long terme. Dans cette thèse, nous
relevons donc le défi suivant :40 xviii

Figure 8.4 : Overview of the language proposed, Ain’tea

Sous-défi #2: Comment permettre de raisonner sur les actions inachevées et
leurs effets attendus ?

En raison de la complexité croissante des systèmes, les développeurs ont des
difficultés à livrer des logiciels sans erreur [BdMM+17 ; MPS15 ; HBB15]. De plus,
les systèmes complexes ou les systèmes à grande échelle peuvent avoir des compor-5

tements émergents. Les systèmes ont très probablement un comportement anormal
qui n’était pas prévu au moment de la conception. Les approches formelles de
modélisation et de vérification existantes peuvent ne pas être suffisantes pour vérifier
et valider de tels processus [TOH17]. Dans de telles situations, les développeurs
appliquent habituellement des routines de diagnostic pour identifier les causes des10

défaillances. Au cours de nos études, nous relevons le défi suivant :
Sous-défi #3: Comment modéliser les décisions d’un processus d’adaptation
pour le diagnostiquer ?

8.6 Contribution & validation
Dans cette thèse, nous soutenons que les cadres de modélisation modernes15

devraient considérer l’incertitude et le temps comme des concepts de première
classe. Dans ce mémoire, je présente deux contributions qui appuient cette vision.
Tout d’abord, nous définissons une langue avec incertitude chez un citoyen de
première classe : Ain’tea. Deuxièmement, nous définissons un métamodèle, et nous
le formalisons, de la connaissance des systèmes adaptatifs.20

Ain’tea : Gérer l’incertitude des données au niveau du language Cette
contribution aborde le défi de la manipulation des données incertaines (cf. Sous-
défi #1). Nous proposons Ain’tea, un langage capable de représenter des données
incertaines comme des types de données intégrés au language avec leurs opérations
supportées. La Figure 8.4 donne un aperçu du langage utilisé. Il contient un25

échantillon des lois de probabilités (Gaussiennes, Bernoulli, binomiales, Rayleigh,
et la fonction delta de Dirac) qui couvre les différents types de données (booléens,
nombres et références). Nous avons implémenté un prototype du langage, disponible

xix

Goal

ContextValueDecision

/goals1..*

1execute
*

/input

/impacted

*
*

*
*

ActionExecution

TemporalElement

Figure 8.5 : Overview of the temporal knowledge model

publiquement sur GitHub5. Nous utilisons une étude de cas basée sur un réseau
intelligent, réalisée avec notre partenaire Creos S.A.. L’évaluation montre d’abord
que notre approche n’a pas d’impact sur la concision de la langue. Deuxièmement,
elle souligne la faisabilité et les avantages des systèmes de contrôle de type sensibles
à l’incertitude au niveau linguistique.5

Cette contribution a été soumise au journal JOT6 :
• “Ain’tea : Managing Data Uncertainty at the Language Level”, Mouline,

Benelallam, Hartmann, Bourcier, Barais et Cordy
Un métamodèle temporel de la connaissance Cette contribution aborde
le défi du raisonnement sur les actions inachevées et de la compréhension du10

comportement des systèmes adaptatifs (cf. Sous-défi #2 et #3). Tout d’abord,
nous formalisons les concepts de base communs impliqués dans les processus
d’adaptation, également appelés connaissances. La formalisation est basée sur des
graphes temporels et un ensemble de relations qui retracent l’impact des décisions
sur les circonstances. Deuxièmement, nous proposons un framework pour structurer15

et stocker l’état et le comportement d’un système adaptatif en fonctionnement, ainsi
qu’une API de haut niveau pour effectuer efficacement des routines de diagnostic.
Notre framework s’appuie sur une solution basée sur un modèle temporel qui
résume efficacement les décisions, leurs circonstances correspondantes et leurs effets.
Nous donnons un aperçu du métamodèle dans la Figure 8.5. Nous démontrons20

l’applicabilité de notre approche en l’appliquant à un exemple basé sur un réseau
intelligent. Nous montrons également que notre approche peut être utilisée pour
diagnostiquer le comportement d’au plus les cinq derniers jours d’une période de
sur le réseau intelligent luxembourgeois en ∼2.4 secondes.

Une partie de cette contribution a été publiée à la conférence internationale de25

l’IEEE. sur l’informatique autonome7 (ICAC) et au Symposium ACM/SIGAPP
sur l’informatique appliquée8 (SAC) :

5https://github.com/lmouline/aintea/
6http://www.jot.fm/
7http://icac2018.informatik.uni-wuerzburg.de/
8http://www.sigapp.org/sac/sac2018/

xx

https://github.com/lmouline/aintea/
http://www.jot.fm/
http://icac2018.informatik.uni-wuerzburg.de/
http://www.sigapp.org/sac/sac2018/

• “Enabling temporal-aware contexts for adaptative distributed systems”, Mou-
line, Benelallam, Hartmann, Fouquet, Bourcier, Morin et Barais
• “A Temporal Model for Interactive Diagnosis of Adaptive Systems”, Mouline,

Benelallam, Fouquet, Bourcier et Barais

xxi

xxii

Bibliography

[AdLM+09] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns.
Reflecting on self-adaptive software systems. In ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS, 2009. url: https://doi.org/10.1109/SEAMS.2009.5

5069072 (cited on page 16).
[AFR+10] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Ne-

nad Stojanovic, and Rudi Studer. A rule-based language for complex
event processing and reasoning. In Web Reasoning and Rule Systems
RR, 2010. url: https://doi.org/10.1007/978-3-642-15918-10

3%5C_5 (cited on pages 56, 57).
[AGR11] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. CoMA:

conformance monitoring of java programs by abstract state machines.
In Runtime Verification RV, 2011. url: https://doi.org/10.
1007/978-3-642-29860-8_17 (cited on pages 48, 50).15

[AK03] Colin Atkinson and Thomas Kühne. Model-driven development:
A metamodeling foundation. IEEE Software, 2003. url: https:
//doi.org/10.1109/MS.2003.1231149 (cited on page 22).

[ARS15] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. Modeling
and analyzing MAPE-K feedback loops for self-adaptation. In 10th20

IEEE/ACM International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS, 2015. url: https:
//doi.org/10.1109/SEAMS.2015.10 (cited on pages 48, 50–53, 55,
56).

[AY09] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data25

algorithms and applications. IEEE Transactions on Knowledge and
Data Engineering, 2009. url: https://doi.org/10.1109/TKDE.
2008.190 (cited on pages 6, xiii).

xxiii

https://doi.org/10.1109/SEAMS.2009.5069072
https://doi.org/10.1109/SEAMS.2009.5069072
https://doi.org/10.1109/SEAMS.2009.5069072
https://doi.org/10.1007/978-3-642-15918-3%5C_5
https://doi.org/10.1007/978-3-642-15918-3%5C_5
https://doi.org/10.1007/978-3-642-15918-3%5C_5
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1109/TKDE.2008.190
https://doi.org/10.1109/TKDE.2008.190
https://doi.org/10.1109/TKDE.2008.190

[BAV+12] Sooraj Bhat, Ashish Agarwal, Richard W. Vuduc, and Alexander G.
Gray. A type theory for probability density functions. In Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL, 2012. url: https://doi.org/10.
1145/2103656.2103721 (cited on pages 59, 61, 62, 64, 65, 67).5

[BBF09] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Mod-
els@run.time. IEEE Computer, 2009. url: https : / / doi . org /
10.1109/MC.2009.326 (cited on pages 4, 18, 42, 48, 49, 55, 56, ii,
xii).

[BBG+13] Nelly Bencomo, Amel Bennaceur, Paul Grace, Gordon S. Blair, and10

Valérie Issarny. The role of models@run.time in supporting on-the-
fly interoperability. Computing, 2013. url: https://doi.org/10.
1007/s00607-012-0224-x (cited on pages 48, 50).

[BBH+10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indul-
ska, Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A15

survey of context modelling and reasoning techniques. Pervasive and
Mobile Computing, 2010. url: https://doi.org/10.1016/j.pmcj.
2009.06.002 (cited on pages 19, 20).

[BBM+18] Loli Burgueño, Manuel F. Bertoa, Nathalie Moreno, and Antonio Val-
lecillo. Expressing confidence in models and in model transformation20

elements. In Proceedings of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, MOD-
ELS, 2018. url: https://doi.org/10.1145/3239372.3239394
(cited on pages 59–61, 64, 67).

[BCC+15] Erwan Bousse, Jonathan Corley, Benoît Combemale, Jeffrey G. Gray,25

and Benoit Baudry. Supporting efficient and advanced omniscient
debugging for xdsmls. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, SLE,
2015. url: https://dl.acm.org/citation.cfm?id=2814262
(cited on pages 9, xviii).30

[BCG+12] Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-
Lafuente, and Andrea Vandin. Modelling and analyzing adaptive
self-assembly strategies with maude. In Rewriting Logic and Its
Applications WRLA 2012, 2012. url: https://doi.org/10.1007/
978-3-642-34005-5_7 (cited on pages 51, 52).35

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice, Second Edition. 2017. url: https:
/ / doi . org / 10 . 2200 / S00751ED2V01Y201701SWE004 (cited on
pages 4, 22, ii, xii).

xxiv

https://doi.org/10.1145/2103656.2103721
https://doi.org/10.1145/2103656.2103721
https://doi.org/10.1145/2103656.2103721
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1007/s00607-012-0224-x
https://doi.org/10.1007/s00607-012-0224-x
https://doi.org/10.1007/s00607-012-0224-x
https://doi.org/10.1016/j.pmcj.2009.06.002
https://doi.org/10.1016/j.pmcj.2009.06.002
https://doi.org/10.1016/j.pmcj.2009.06.002
https://doi.org/10.1145/3239372.3239394
https://dl.acm.org/citation.cfm?id=2814262
https://doi.org/10.1007/978-3-642-34005-5_7
https://doi.org/10.1007/978-3-642-34005-5_7
https://doi.org/10.1007/978-3-642-34005-5_7
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004

[BDI+17] Michaël Baudin, Anne Dutfoy, Bertrand Iooss, and Anne-Laure
Popelin. OpenTURNS: an industrial software for uncertainty quan-
tification in simulation. Handbook of uncertainty quantification, 2017.
url: https://doi.org/10.1007/978-3-319-12385-1_64 (cited
on pages 6, 59, 61, 62, 64, 65, 67, 92, xiv).5

[BdMM+17] Davi Monteiro Barbosa, Rómulo Gadelha de Moura Lima, Paulo
Henrique Mendes Maia, and Evilásio Costa Junior. Lotus@runtime:
A tool for runtime monitoring and verification of self-adaptive sys-
tems. In 12th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS, 2017.10

url: https://doi.org/10.1109/SEAMS.2017.18 (cited on pages 8,
10, 48, 50, 52, 53, 55, 56, xvi, xix).

[BGG+13] Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James
Margetson, and Jurgen Van Gael. Measure transformer semantics
for bayesian machine learning. Logical Methods in Computer Science,15

2013. url: https://doi.org/10.2168/LMCS-9(3:11)2013 (cited
on pages 59, 61, 62, 64, 65, 67).

[BGP92] Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The man-
agement of probabilistic data. IEEE Transactions on Knowledge
and Data Engineering, 1992. url: https://doi.org/10.1109/69.20

166990 (cited on pages 59, 61, 64, 67).
[BGS+14] Amine Benelallam, Abel Gómez, Gerson Sunyé, Massimo Tisi, and

David Launay. Neo4EMF, A scalable persistence layer for EMF
models. In Modelling Foundations and Applications ECMFA, 2014.
url: https://doi.org/10.1007/978-3-319-09195-2%5C_1525

(cited on page 23).
[BHH05] George E. P. Box, J. Stuart Hunter, and William G. Hunter. Statistics

for Experiments: Design, Innovation, and Discovery, 2nd Edition.
Wiley-Interscience, 2005. isbn: 978-0-471-71813-0 (cited on page 29).

[BHL+01] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic30

web. Scientific american, 2001. url: https://doi.org/10.1038/
scientificamerican0501-34 (cited on page 22).

[BHM+17] Amine Benelallam, Thomas Hartmann, Ludovic Mouline, François
Fouquet, Johann Bourcier, Olivier Barais, and Yves Le Traon. Raising
time awareness in model-driven engineering: vision paper. In 20th35

ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS, 2017. url: https://doi.org/
10.1109/MODELS.2017.11 (cited on pages 5, vii, xiii).

xxv

https://doi.org/10.1007/978-3-319-12385-1_64
https://doi.org/10.1109/SEAMS.2017.18
https://doi.org/10.2168/LMCS-9(3:11)2013
https://doi.org/10.1109/69.166990
https://doi.org/10.1109/69.166990
https://doi.org/10.1109/69.166990
https://doi.org/10.1007/978-3-319-09195-2%5C_15
https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1109/MODELS.2017.11
https://doi.org/10.1109/MODELS.2017.11
https://doi.org/10.1109/MODELS.2017.11

[BJT05] Jean Bézivin, Frédéric Jouault, and David Touzet. Principles, stan-
dards and tools for model engineering. In 10th International Con-
ference on Engineering of Complex Computer Systems (ICECCS),
2005. url: https://doi.org/10.1109/ICECCS.2005.68 (cited on
pages 23, ii).5

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008. isbn: 978-0-262-02649-9 (cited on page 23).

[BK11] Björn Bartels and Moritz Kleine. A CSP-based framework for the
specification, verification, and implementation of adaptive systems.
In 2011 ICSE Symposium on Software Engineering for Adaptive and10

Self-Managing Systems, SEAMS, 2011. url: https://doi.org/10.
1145/1988008.1988030 (cited on pages 48, 49, 52, 54, 56, 57).

[BKF+17] Cornel Barna, Hamzeh Khazaei, Marios Fokaefs, and Marin Litoiu.
Delivering elastic containerized cloud applications to enable devops.
In 12th IEEE/ACM International Symposium on Software Engineer-15

ing for Adaptive and Self-Managing Systems, SEAMS, 2017. url:
https://doi.org/10.1109/SEAMS.2017.12 (cited on pages 4, xii).

[BLC+18] Erwan Bousse, Dorian Leroy, Benoît Combemale, Manuel Wimmer,
and Benoit Baudry. Omniscient debugging for executable dsls. Jour-
nal of Systems and Software, 2018. url: https://doi.org/10.20

1016/j.jss.2017.11.025 (cited on pages 23, 27).
[BLW05] Paul Baker, Shiou Loh, and Frank Weil. Model-driven engineering

in a large industrial context - motorola case study. In Model Driven
Engineering Languages and Systems, MoDELS, 2005. url: https:
//doi.org/10.1007/11557432%5C_36 (cited on pages 22, 23).25

[BMB+18] Manuel F. Bertoa, Nathalie Moreno, Gala Barquero, Loli Burgueño,
Javier Troya, and Antonio Vallecillo. Expressing measurement un-
certainty in OCL/UML datatypes. In Modelling Foundations and
Applications, ECMFA, 2018. url: https://doi.org/10.1007/978-
3-319-92997-2_4 (cited on pages 59, 61, 64, 67, 78).30

[BMM14] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. Uncer-
tain: a first-order type for uncertain data. In Architectural Support
for Programming Languages and Operating Systems, ASPLOS, 2014.
url: https://doi.org/10.1145/2541940.2541958 (cited on
pages 6, 59, 61, 62, 64, 65, 67, xiii).35

xxvi

https://doi.org/10.1109/ICECCS.2005.68
https://doi.org/10.1145/1988008.1988030
https://doi.org/10.1145/1988008.1988030
https://doi.org/10.1145/1988008.1988030
https://doi.org/10.1109/SEAMS.2017.12
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1016/j.jss.2017.11.025
https://doi.org/10.1007/11557432%5C_36
https://doi.org/10.1007/11557432%5C_36
https://doi.org/10.1007/11557432%5C_36
https://doi.org/10.1007/978-3-319-92997-2_4
https://doi.org/10.1007/978-3-319-92997-2_4
https://doi.org/10.1007/978-3-319-92997-2_4
https://doi.org/10.1145/2541940.2541958

[Bor13] James Bornholt. Abstractions and techniques for programming with
uncertain data. PhD thesis, Honors thesis, Australian National
University, 2013. url: https : / / homes . cs . washington . edu /
~bornholt/papers/thesis13.pdf (cited on pages 30, 61).

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and5

John Mylopoulos. Tropos: an agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems, 2004.
url: https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
(cited on page 115).

[BPS10] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy goals10

for requirements-driven adaptation. In RE, 18th IEEE International
Requirements Engineering Conference, 2010. url: https://doi.
org/10.1109/RE.2010.25 (cited on pages 17, 48, 50, 52, 53, 56, 58,
66).

[BSG+09] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger15

Giese, Holger M. Kienle, Marin Litoiu, Hausi A. Müller, Mauro Pezzè,
and Mary Shaw. Engineering self-adaptive systems through feedback
loops. In Software Engineering for Self-Adaptive Systems [outcome of
a Dagstuhl Seminar], 2009. url: https://doi.org/10.1007/978-
3-642-02161-9%5C_3 (cited on pages 16, 17).20

[BSH+06] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer
Widom. ULDBs: databases with uncertainty and lineage. In Proceed-
ings of the 32nd International Conference on Very Large Data Bases,
2006. url: http://dl.acm.org/citation.cfm?id=1164209 (cited
on pages 59, 61, 62, 67).25

[BWS+12] Nelly Bencomo, Kristopher Welsh, Pete Sawyer, and Jon Whittle.
Self-explanation in adaptive systems. In 17th IEEE International
Conference on Engineering of Complex Computer Systems, ICECCS,
2012. url: http://doi.ieeecomputersociety.org/10.1109/
ICECCS.2012.34 (cited on pages 8, 52, 53, xvi).30

[CA07] Betty H. C. Cheng and Joanne M. Atlee. Research directions in
requirements engineering. In Workshop on the Future of Software
Engineering, FOSE, 2007. url: https://doi.org/10.1109/FOSE.
2007.17 (cited on page 21).

[CCH+13] Maxime Cordy, Andreas Classen, Patrick Heymans, Axel Legay,35

and Pierre-Yves Schobbens. Model checking adaptive software with
featured transition systems. In Assurances for Self-Adaptive Systems
- Principles, Models, and Techniques. 2013. url: https://doi.org/
10.1007/978-3-642-36249-1_1 (cited on pages 52, 54, 56, 58).

xxvii

https://homes.cs.washington.edu/~bornholt/papers/thesis13.pdf
https://homes.cs.washington.edu/~bornholt/papers/thesis13.pdf
https://homes.cs.washington.edu/~bornholt/papers/thesis13.pdf
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1109/RE.2010.25
https://doi.org/10.1109/RE.2010.25
https://doi.org/10.1109/RE.2010.25
https://doi.org/10.1007/978-3-642-02161-9%5C_3
https://doi.org/10.1007/978-3-642-02161-9%5C_3
https://doi.org/10.1007/978-3-642-02161-9%5C_3
http://dl.acm.org/citation.cfm?id=1164209
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2012.34
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2012.34
http://doi.ieeecomputersociety.org/10.1109/ICECCS.2012.34
https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1007/978-3-642-36249-1_1
https://doi.org/10.1007/978-3-642-36249-1_1
https://doi.org/10.1007/978-3-642-36249-1_1

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Jose F. Quesada. Maude: spec-
ification and programming in rewriting logic, 2002. url: https:
//doi.org/10.1016/S0304-3975(01)00359-0 (cited on page 49).

[CdLG+09] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inver-5

ardi, Jeff Magee, Jesper Andersson, Basil Becker, Nelly Bencomo,
Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram
Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo
Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu,
Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park,10

Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and
Jon Whittle. Software engineering for self-adaptive systems: A re-
search roadmap. In Software Engineering for Self-Adaptive Systems
[outcome of a Dagstuhl Seminar], 2009. url: https://doi.org/10.
1007/978-3-642-02161-9_1 (cited on pages 4, 16, i, xii).15

[CDM09] Anis Charfi, Tom Dinkelaker, and Mira Mezini. A plug-in architecture
for self-adaptive web service compositions. In IEEE International
Conference on Web Services, ICWS, 2009. url: https://doi.org/
10.1109/ICWS.2009.125 (cited on pages 52, 54, 56, 57).

[CG12] Shang-Wen Cheng and David Garlan. Stitch: A language for architect-20

ure-based self-adaptation. Journal of Systems and Software, 2012.
url: https://doi.org/10.1016/j.jss.2012.02.060 (cited on
pages 52, 53, 55–57, 66, 116).

[CGF+09] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Au-
tonomic computing through reuse of variability models at runtime:25

the case of smart homes. IEEE Computer, 42(10):37–43, 2009. doi:
10.1109/MC.2009.309. url: https://doi.org/10.1109/MC.2009.
309 (cited on page 18).

[CGH+17] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee,
Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo,30

Peter Li, and Allen Riddell. Stan : a probabilistic programming
language. Journal of Statistical Software, 2017. issn: 1548-7660. url:
https://doi.org/10.18637/jss.v076.i01 (cited on pages 59, 61,
62, 64, 65, 67).

[CGK+] Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela35

Mirandola, and Giordano Tamburrelli. Dynamic QoS management
and optimization in service-based systems. IEEE Transactions on
Software Engineering. url: https://doi.org/10.1109/TSE.2010.
92 (cited on page 17).

xxviii

https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/ICWS.2009.125
https://doi.org/10.1109/ICWS.2009.125
https://doi.org/10.1109/ICWS.2009.125
https://doi.org/10.1016/j.jss.2012.02.060
https://doi.org/10.1109/MC.2009.309
https://doi.org/10.1109/MC.2009.309
https://doi.org/10.1109/MC.2009.309
https://doi.org/10.1109/MC.2009.309
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1109/TSE.2010.92
https://doi.org/10.1109/TSE.2010.92
https://doi.org/10.1109/TSE.2010.92

[Che76] Peter P. Chen. The entity-relationship model - toward a unified
view of data. ACM Transactions on Database Systems, 1976. url:
https://doi.org/10.1145/320434.320440 (cited on page 22).

[CMR13] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying
quantitative reliability for programs that execute on unreliable hard-5

ware. In Proceedings of the ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA, 2013. url: https://doi.org/10.1145/2509136.
2509546 (cited on pages 59–61, 63).

[CMR15] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Strong tem-10

poral planning with uncontrollable durations: A state-space approach.
In Proceedings of the AAAI Conference on Artificial Intelligence,
2015. url: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/
paper/view/9728 (cited on pages 52, 54).

[CNR13] Arun Tejasvi Chaganty, Aditya V. Nori, and Sriram K. Rajamani. Effi-15

ciently sampling probabilistic programs via program analysis. In Pro-
ceedings of the Sixteenth International Conference on Artificial Intel-
ligence and Statistics, AISTATS, 2013. url: http://proceedings.
mlr.press/v31/chaganty13a.html (cited on pages 59, 61, 62, 64,
65, 67).20

[Com+06] Autonomic Computing et al. An architectural blueprint for autonomic
computing. IBM White Paper, 31, 2006. url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=
rep1&type=pdf (cited on pages 4, 16, 17, 19, xii).

[CPY+14] Bihuan Chen, Xin Peng, Yijun Yu, Bashar Nuseibeh, and Wenyun25

Zhao. Self-adaptation through incremental generative model trans-
formations at runtime. In 36th International Conference on Soft-
ware Engineering, ICSE, 2014. url: https://doi.org/10.1145/
2568225.2568310 (cited on pages 48, 50, 52, 54–56, 66).

[CvL17] Antoine Cailliau and Axel van Lamsweerde. Runtime monitoring30

and resolution of probabilistic obstacles to system goals. In 12th
IEEE/ACM International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS, 2017. url: https:
//doi.org/10.1109/SEAMS.2017.5 (cited on pages 48, 50, 66).

[DBZ14] Brahim Djoudi, Chafia Bouanaka, and Nadia Zeghib. Model checking35

pervasive context-aware systems. In 2014 IEEE 23rd International
WETICE Conference, WETICE, 2014. url: https://doi.org/10.
1109/WETICE.2014.11 (cited on pages 48, 50, 52, 53, 56, 58, 66).

xxix

https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1145/2509136.2509546
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9728
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9728
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9728
http://proceedings.mlr.press/v31/chaganty13a.html
http://proceedings.mlr.press/v31/chaganty13a.html
http://proceedings.mlr.press/v31/chaganty13a.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
https://doi.org/10.1145/2568225.2568310
https://doi.org/10.1145/2568225.2568310
https://doi.org/10.1145/2568225.2568310
https://doi.org/10.1109/SEAMS.2017.5
https://doi.org/10.1109/SEAMS.2017.5
https://doi.org/10.1109/SEAMS.2017.5
https://doi.org/10.1109/WETICE.2014.11
https://doi.org/10.1109/WETICE.2014.11
https://doi.org/10.1109/WETICE.2014.11

[Deg16] Thomas Degueule. Composition and Interoperability for External
Domain-Specific Language Engineering. PhD thesis, University of
Rennes 1, France, 2016. url: https://tel.archives-ouvertes.
fr/tel-01427009 (cited on page 77).

[Dem98] M Beth L Dempster. A self-organizing systems perspective on plan-5

ning for sustainability. PhD thesis, Citeseer, 1998. url: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.
6090 (cited on page 17).

[Dey01] Anind K. Dey. Understanding and using context. Personal and
Ubiquitous Computing, 2001. url: https://doi.org/10.1007/10

s007790170019 (cited on pages 19, i).
[DFM+16] Ada Diaconescu, Sylvain Frey, Christian Müller-Schloer, Jeremy

Pitt, and Sven Tomforde. Goal-oriented holonics for complex system
(self-)integration: concepts and case studies. In SASO, pages 100–109.
IEEE Computer Society, 2016 (cited on pages 48, 50).15

[dL04] Mark d’Inverno and Michael Luck. Understanding agent systems,
Second Edition. Springer series on agent technology. 2004. isbn:
978-3-540-40700-3 (cited on page 49).

[DL06] Pierre-Charles David and Thomas Ledoux. An aspect-oriented ap-
proach for developing self-adaptive fractal components. In Soft-20

ware Composition, SC, 2006. url: https://doi.org/10.1007/
11821946_6 (cited on pages 48, 50, 52, 54, 56, 57).

[dLGM+10] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jes-
per Andersson, Marin Litoiu, Bradley R. Schmerl, Gabriel Tamura,
Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi,25

Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ronald J.
Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl
M. Göschka, Alessandra Gorla, Vincenzo Grassi, Paola Inverardi,
Gabor Karsai, Jeff Kramer, Antónia Lopes, Jeff Magee, Sam Malek,
Serge Mankovski, Raffaela Mirandola, John Mylopoulos, Oscar Nier-30

strasz, Mauro Pezzè, Christian Prehofer, Wilhelm Schäfer, Richard D.
Schlichting, Dennis B. Smith, João Pedro Sousa, Ladan Tahvildari,
Kenny Wong, and Jochen Wuttke. Software engineering for self-
adaptive systems: A second research roadmap. In Software Engineer-
ing for Self-Adaptive Systems II - International Seminar, Dagstuhl35

Castle, 2010. url: https://doi.org/10.1007/978-3-642-35813-
5_1 (cited on page 20).

xxx

https://tel.archives-ouvertes.fr/tel-01427009
https://tel.archives-ouvertes.fr/tel-01427009
https://tel.archives-ouvertes.fr/tel-01427009
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.6090
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.6090
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.6090
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.6090
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.6090
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/11821946_6
https://doi.org/10.1007/11821946_6
https://doi.org/10.1007/11821946_6
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-642-35813-5_1

[DMS18] Lucio Mauro Duarte, Paulo Henrique Mendes Maia, and Ana Car-
olina Sanchotene Silva. Extraction of probabilistic behaviour models
based on contexts. In Proceedings of the 10th International Workshop
on Modelling in Software Engineering, MiSE, 2018. url: https:
//doi.org/10.1145/3193954.3193963 (cited on pages 48, 50).5

[DSB+17] Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi,
Yoann Vernageau, Abel Gómez, and Jordi Cabot. NeoEMF: A multi-
database model persistence framework for very large models. Science
of Computer Programming, 2017. url: https://doi.org/10.1016/
j.scico.2017.08.002 (cited on page 23).10

[DSC16] Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Mogwaï: A frame-
work to handle complex queries on large models. In IEEE Interna-
tional Conference on Research Challenges in Information Science,
RCIS, 2016. url: https://doi.org/10.1109/RCIS.2016.7549343
(cited on page 23).15

[DvLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Science of Computer Programming,
1993. url: https://doi.org/10.1016/0167-6423(93)90021-G
(cited on page 115).

[EB10] Moritz Eysholdt and Heiko Behrens. Xtext: implement your lan-20

guage faster than the quick and dirty way. In Companion to the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, SPLASH/OOPSLA,
2010. url: https://doi.org/10.1145/1869542.1869625 (cited
on page 27).25

[Egy01] Alexander Egyed. A scenario-driven approach to traceability. In
Proceedings of the 23rd International Conference on Software Engi-
neering, ICSE 2001, 2001. url: https://doi.org/10.1109/ICSE.
2001.919087 (cited on page 115).

[EM10] Naeem Esfahani and Sam Malek. Uncertainty in self-adaptive soft-30

ware systems. In Software Engineering for Self-Adaptive Systems II
- International Seminar, Dagstuhl Castle, 2010. url: https://doi.
org/10.1007/978-3-642-35813-5_9 (cited on pages 59, 60).

[EPR14] Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. Uncertainty
in bidirectional transformations. In 6th International Workshop on35

Modeling in Software Engineering, MiSE 2014, 2014. url: https:
//doi.org/10.1145/2593770.2593772 (cited on pages 59–62).

xxxi

https://doi.org/10.1145/3193954.3193963
https://doi.org/10.1145/3193954.3193963
https://doi.org/10.1145/3193954.3193963
https://doi.org/10.1016/j.scico.2017.08.002
https://doi.org/10.1016/j.scico.2017.08.002
https://doi.org/10.1016/j.scico.2017.08.002
https://doi.org/10.1109/RCIS.2016.7549343
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1109/ICSE.2001.919087
https://doi.org/10.1109/ICSE.2001.919087
https://doi.org/10.1109/ICSE.2001.919087
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1145/2593770.2593772
https://doi.org/10.1145/2593770.2593772
https://doi.org/10.1145/2593770.2593772

[EPR15] Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. Managing
uncertainty in bidirectional model transformations. In Proceedings
of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering, SLE, 2015. url: https://dl.acm.org/
citation.cfm?id=2814259 (cited on pages 59–62).5

[FA04] Paolo Falcarin and Gustavo Alonso. Software architecture evolution
through dynamic AOP. In Software Architecture, First European
Workshop, EWSA, 2004. doi: 10.1007/978-3-540-24769-2_5
(cited on pages 56, 57).

[Far10] Hassan Farhangi. The path of the smart grid. IEEE power and10

energy magazine, 2010. url: https://doi.org/10.1109/MPE.2009.
934876 (cited on pages 4, xii).

[FC19] Michalis Famelis and Marsha Chechik. Managing design-time uncer-
tainty. Software and Systems Modeling, 2019. url: https://doi.
org/10.1007/s10270-017-0594-9 (cited on pages 59, 61, 62).15

[FGL+10] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina
Pek. Empirical language analysis in software linguistics. In Software
Language Engineering, SLE, 2010. url: https://doi.org/10.
1007/978-3-642-19440-5%5C_21 (cited on page 26).

[FGL+11] Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio.20

Self-adaptive software meets control theory: A preliminary approach
supporting reliability requirements. In 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2011. url:
https://doi.org/10.1109/ASE.2011.6100064 (cited on pages 48,
50, 52, 53, 56, 58, 66).25

[FHM14] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated
design of self-adaptive software with control-theoretical formal guar-
antees. In 36th International Conference on Software Engineering,
ICSE, 2014. url: https://doi.org/10.1145/2568225.2568272
(cited on page 17).30

[FMF+12] François Fouquet, Brice Morin, Franck Fleurey, Olivier Barais, Noël
Plouzeau, and Jean-Marc Jézéquel. A dynamic component model for
cyber physical systems. In Proceedings of the 15th ACM SIGSOFT
Symposium on Component Based Software Engineering, CBSE, 2012.
url: https://doi.org/10.1145/2304736.2304759 (cited on35

pages 4, 48, 50, 55–57, xii).

xxxii

https://dl.acm.org/citation.cfm?id=2814259
https://dl.acm.org/citation.cfm?id=2814259
https://dl.acm.org/citation.cfm?id=2814259
https://doi.org/10.1007/978-3-540-24769-2_5
https://doi.org/10.1109/MPE.2009.934876
https://doi.org/10.1109/MPE.2009.934876
https://doi.org/10.1109/MPE.2009.934876
https://doi.org/10.1007/s10270-017-0594-9
https://doi.org/10.1007/s10270-017-0594-9
https://doi.org/10.1007/s10270-017-0594-9
https://doi.org/10.1007/978-3-642-19440-5%5C_21
https://doi.org/10.1007/978-3-642-19440-5%5C_21
https://doi.org/10.1007/978-3-642-19440-5%5C_21
https://doi.org/10.1109/ASE.2011.6100064
https://doi.org/10.1145/2568225.2568272
https://doi.org/10.1145/2304736.2304759

[FMX+12] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart
grid - the new and improved power grid: A survey. IEEE Commu-
nications Surveys and Tutorials, 2012. url: https://doi.org/10.
1109/SURV.2011.101911.00087 (cited on pages 4, xii).

[FNM+12] François Fouquet, Grégory Nain, Brice Morin, Erwan Daubert,5

Olivier Barais, Noël Plouzeau, and Jean-Marc Jézéquel. An eclipse
modelling framework alternative to meet the models@runtime re-
quirements. In Model Driven Engineering Languages and Systems,
MODELS, 2012. url: https://doi.org/10.1007/978-3-642-
33666-9_7 (cited on page 25).10

[FNM+14] François Fouquet, Grégory Nain, Brice Morin, Erwan Daubert,
Olivier Barais, Noël Plouzeau, and Jean-Marc Jézéquel. Kevoree
modeling framework (KMF): efficient modeling techniques for run-
time use. CoRR, 2014. arXiv: 1405.6817. url: http://arxiv.org/
abs/1405.6817 (cited on page 25).15

[Fou10] Eclipse Foundation. Ecore. https://wiki.eclipse.org/Ecore,
2010. [Accessed July 2019] (cited on page 25).

[Fow10] Martin Fowler. Domain-specific languages. Pearson Education, 2010.
isbn: 978-0321712943. url: https://www.martinfowler.com/
books/dsl.html (cited on page 37).20

[FR07] Robert B. France and Bernhard Rumpe. Model-driven development of
complex software: A research roadmap. In International Conference
on Software Engineering, ISCE, 2007. url: https://doi.org/10.
1109/FOSE.2007.14 (cited on pages 22, 24).

[FSC12] Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models:25

towards modeling and reasoning with uncertainty. In 34th Interna-
tional Conference on Software Engineering, ICSE, 2012. url: https:
//doi.org/10.1109/ICSE.2012.6227159 (cited on pages 59–62).

[fSta16] International Organization for Standardization (ISO). Structured
Query Language (SQL). https://www.iso.org/standard/63555.30

html, 2016. [Accessed July 2019] (cited on page 22).
[Gar08] Vahid Garousi. Traffic-aware stress testing of distributed real-time

systems based on UML models in the presence of time uncertainty.
In First International Conference on Software Testing, Verification,
and Validation, ICST, 2008. url: https://doi.org/10.1109/ICST.35

2008.7 (cited on pages 59, 61, 63).

xxxiii

https://doi.org/10.1109/SURV.2011.101911.00087
https://doi.org/10.1109/SURV.2011.101911.00087
https://doi.org/10.1109/SURV.2011.101911.00087
https://doi.org/10.1007/978-3-642-33666-9_7
https://doi.org/10.1007/978-3-642-33666-9_7
https://doi.org/10.1007/978-3-642-33666-9_7
https://arxiv.org/abs/1405.6817
http://arxiv.org/abs/1405.6817
http://arxiv.org/abs/1405.6817
http://arxiv.org/abs/1405.6817
https://wiki.eclipse.org/Ecore
https://www.martinfowler.com/books/dsl.html
https://www.martinfowler.com/books/dsl.html
https://www.martinfowler.com/books/dsl.html
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/ICSE.2012.6227159
https://doi.org/10.1109/ICSE.2012.6227159
https://doi.org/10.1109/ICSE.2012.6227159
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/63555.html
https://www.iso.org/standard/63555.html
https://doi.org/10.1109/ICST.2008.7
https://doi.org/10.1109/ICST.2008.7
https://doi.org/10.1109/ICST.2008.7

[GB] Phil Greenwood and Lynne Blair. A framework for policy driven
auto-adaptive systems using dynamic framed aspects. url: https:
//doi.org/10.1007/11922827_2 (cited on pages 56, 57).

[GBM+13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimu-
thu Palaniswami. Internet of things (IoT): A vision, architectural el-5

ements, and future directions. Future Generation Computer Systems,
2013. url: https://doi.org/10.1016/j.future.2013.01.010
(cited on page 25).

[GBM+18] Alejandro Sánchez Guinea, Andrey Boytsov, Ludovic Mouline, and
Yves Le Traon. Continuous identification in smart environments10

using wrist-worn inertial sensors. In Proceedings of the 15th EAI
International Conference on Mobile and Ubiquitous Systems: Com-
puting, Networking and Services, MobiQuitous, 2018. url: https:
//doi.org/10.1145/3286978.3287001 (cited on page viii).

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R.15

Schmerl, and Peter Steenkiste. Rainbow: architecture-based self-
adaptation with reusable infrastructure. IEEE Computer, 2004. url:
https://doi.org/10.1109/MC.2004.175 (cited on pages 17, 48,
50–52, 55, 56).

[GHN+14] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and20

Sriram K. Rajamani. Probabilistic programming. In Proceedings of
the on Future of Software Engineering, FOSE, 2014. url: https:
//doi.org/10.1145/2593882.2593900 (cited on pages 6, 62, xiv).

[GHP+08] Paul Grace, Danny Hughes, Barry Porter, Gordon S. Blair, Geoff
Coulson, and François Taïani. Experiences with open overlays: a25

middleware approach to network heterogeneity. In Proceedings of the
2008 EuroSys Conference, 2008. url: https://doi.org/10.1145/
1352592.1352606 (cited on pages 51, 52, 55, 56).

[Gli07] Martin Glinz. On non-functional requirements. In 15th IEEE In-
ternational Requirements Engineering Conference, RE, 2007. url:30

https://doi.org/10.1109/RE.2007.45 (cited on page 21).
[GPS+13] Carlo Ghezzi, Leandro Sales Pinto, Paola Spoletini, and Giordano

Tamburrelli. Managing non-functional uncertainty via model-driven
adaptivity. In 35th International Conference on Software Engineering,
ICSE, 2013. url: https://doi.org/10.1109/ICSE.2013.660654935

(cited on pages 48, 50, 52, 53, 56, 58, 66).

xxxiv

https://doi.org/10.1007/11922827_2
https://doi.org/10.1007/11922827_2
https://doi.org/10.1007/11922827_2
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1145/3286978.3287001
https://doi.org/10.1145/3286978.3287001
https://doi.org/10.1145/3286978.3287001
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/1352592.1352606
https://doi.org/10.1145/1352592.1352606
https://doi.org/10.1145/1352592.1352606
https://doi.org/10.1109/RE.2007.45
https://doi.org/10.1109/ICSE.2013.6606549

[Gro14] Object Management Group. Object Constraint Language (OCL),
version 2.4. http://www.omg.org/spec/OCL/, 2014. [Accessed July
2019] (cited on page 24).

[Gro15] Object Management Group. XML Metadata Interchange (XMI),
version 2.5.1. http://www.omg.org/spec/XMI/, 2015. [Accessed5

July 2019] (cited on page 24).
[Gro16a] Object Management Group. Meta Object Facility (MOF), version

2.5.1. http://www.omg.org/spec/MOF/, 2016. [Accessed July 2019]
(cited on pages 24, 25).

[Gro16b] Object Management Group. Query/View/Transformation (OCL),10

version 1.3. https://www.omg.org/spec/QVT, 2016. [Accessed July
2019] (cited on page 54).

[Gru95] Thomas R. Gruber. Toward principles for the design of ontolo-
gies used for knowledge sharing? International Journal of Human-
Computer Studies, 1995. url: https://doi.org/10.1006/ijhc.15

1995.1081 (cited on page 22).
[GS10] Carlo Ghezzi and Amir Molzam Sharifloo. Dealing with non-functional

requirements for adaptive systems via dynamic software product-lines.
In Software Engineering for Self-Adaptive Systems II - International
Seminar, Dagstuhl Castle, 2010. url: https://doi.org/10.1007/20

978-3-642-35813-5_8 (cited on pages 48, 50, 52, 54, 56, 58).
[GS64] Israel M. Gelfand and Georgi E. Shilov. Generalized Functions, Vol-

ume 1, Properties and Operations. American Mathematical Society,
1964. isbn: 978-1-4704-2658-3 (cited on page 84).

[GVD19] Simos Gerasimou, Thomas Vogel, and Ada Diaconescu. Software25

engineering for intelligent and autonomous systems: report from the
GI dagstuhl seminar 18343. CoRR, 2019. url: http://arxiv.org/
abs/1904.01518 (cited on pages 4, xii).

[GvdHT09] John C. Georgas, André van der Hoek, and Richard N. Taylor. Using
architectural models to manage and visualize runtime adaptation.30

IEEE Computer, 2009. url: https://doi.org/10.1109/MC.2009.
335 (cited on pages 48, 51, 52, 54–56).

[Hal06] B. D. Hall. Component interfaces that support measurement un-
certainty. Computer Standards & Interfaces, 2006. url: https :
//doi.org/10.1016/j.csi.2005.07.009 (cited on pages 59,35

61, 63, 67).

xxxv

http://www.omg.org/spec/OCL/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/MOF/
https://www.omg.org/spec/QVT
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1007/978-3-642-35813-5_8
https://doi.org/10.1007/978-3-642-35813-5_8
https://doi.org/10.1007/978-3-642-35813-5_8
http://arxiv.org/abs/1904.01518
http://arxiv.org/abs/1904.01518
http://arxiv.org/abs/1904.01518
https://doi.org/10.1109/MC.2009.335
https://doi.org/10.1109/MC.2009.335
https://doi.org/10.1109/MC.2009.335
https://doi.org/10.1016/j.csi.2005.07.009
https://doi.org/10.1016/j.csi.2005.07.009
https://doi.org/10.1016/j.csi.2005.07.009

[Har16] Thomas Hartmann. Enabling Model-Driven Live Analytics For Cyber-
Physical Systems: The Case of Smart Grids. PhD thesis, University of
Luxembourg, 2016. url: http://orbilu.uni.lu/handle/10993/
28924 (cited on pages 9, 25, 121, xviii).

[HBB15] Sara Hassan, Nelly Bencomo, and Rami Bahsoon. Minimizing nasty5

surprises with better informed decision-making in self-adaptive sys-
tems. In 10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS, 2015.
url: https://doi.org/10.1109/SEAMS.2015.13 (cited on pages 8,
10, xvi, xix).10

[HFJ+17] Thomas Hartmann, François Fouquet, Matthieu Jimenez, Romain
Rouvoy, and Yves Le Traon. Analyzing complex data in motion at
scale with temporal graphs. In The 29th International Conference
on Software Engineering and Knowledge Engineering, 2017. url:
https://doi.org/10.18293/SEKE2017-048 (cited on page 121).15

[HFK+14a] Thomas Hartmann, François Fouquet, Jacques Klein, Grégory Nain,
and Yves Le Traon. Reactive security for smart grids using mod-
els@run. time-based simulation and reasoning. In Smart Grid Se-
curity - Second International Workshop, SmartGridSec, 2014. url:
https://doi.org/10.1007/978-3-319-10329-7_9 (cited on20

pages 4, 5, 33, 42, 48–53, 56, 57, 66, xii).
[HFK+14b] Thomas Hartmann, François Fouquet, Jacques Klein, Yves Le Traon,

Alexander Pelov, Laurent Toutain, and Tanguy Ropitault. Generat-
ing realistic smart grid communication topologies based on real-data.
In 2014 IEEE International Conference on Smart Grid Communi-25

cations, SmartGridComm, 2014. url: https://doi.org/10.1109/
SmartGridComm.2014.7007684 (cited on pages 4, 32, 124, xii).

[HFM+16] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa.
ThingML: a language and code generation framework for heteroge-
neous targets. In Proceedings of the ACM/IEEE 19th International30

Conference on Model Driven Engineering Languages and Systems,
2016. url: http://dl.acm.org/citation.cfm?id=2976812 (cited
on page 22).

[HFM+19] Thomas Hartmann, François Fouquet, Assaad Moawad, Romain
Rouvoy, and Yves Le Traon. GreyCat: efficient what-if analytics for35

data in motion at scale. Information Systems, 2019. url: https:
//doi.org/10.1016/j.is.2019.03.004 (cited on pages 25, 51,
73).

xxxvi

http://orbilu.uni.lu/handle/10993/28924
http://orbilu.uni.lu/handle/10993/28924
http://orbilu.uni.lu/handle/10993/28924
https://doi.org/10.1109/SEAMS.2015.13
https://doi.org/10.18293/SEKE2017-048
https://doi.org/10.1007/978-3-319-10329-7_9
https://doi.org/10.1109/SmartGridComm.2014.7007684
https://doi.org/10.1109/SmartGridComm.2014.7007684
https://doi.org/10.1109/SmartGridComm.2014.7007684
http://dl.acm.org/citation.cfm?id=2976812
https://doi.org/10.1016/j.is.2019.03.004
https://doi.org/10.1016/j.is.2019.03.004
https://doi.org/10.1016/j.is.2019.03.004

[HFN+14a] Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin,
Jacques Klein, Olivier Barais, and Yves Le Traon. A native versioning
concept to support historized models at runtime. In Model-Driven
Engineering Languages and Systems, MODELS, 2014. url: https:
//doi.org/10.1007/978-3-319-11653-2_16 (cited on pages 48,5

49, 51, 55, 56, 66).
[HFN+14b] Thomas Hartmann, François Fouquet, Grégory Nain, Brice Morin,

Jacques Klein, and Yves Le Traon. Reasoning at runtime using time-
distorted contexts: A models@run.time based approach. In The 26th
International Conference on Software Engineering and Knowledge10

Engineering, 2014. url: http://ksiresearchorg.ipage. com/
seke/Proceedings/seke/SEKE2014_Proceedings.pdf (cited on
pages 9, 19, 20, 25, 48, 49, 51, 55, 56, 66, xviii).

[HHP+08] Svein O. Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus
Schmid. Dynamic software product lines. IEEE Computer, 2008.15

url: https://doi.org/10.1109/MC.2008.123 (cited on page 18).
[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy.

Modeling context information in pervasive computing systems. In
Pervasive Computing, First International Conference, Pervasive,
2002. url: https://doi.org/10.1007/3-540-45866-2_14 (cited20

on pages 19, 20, 48, 49, 51, 66).
[HMF+16] Thomas Hartmann, Assaad Moawad, François Fouquet, Yves Reckinger,

Jacques Klein, and Yves Le Traon. Near real-time electric load approx-
imation in low voltage cables of smart grids with models@run.time.
In Proceedings of the 31st Annual ACM Symposium on Applied Com-25

puting, 2016. url: https://doi.org/10.1145/2851613.2853125
(cited on pages 32, 33).

[HMF+19] Thomas Hartmann, Assaad Moawad, François Fouquet, and Yves Le
Traon. The next evolution of MDE: a seamless integration of machine
learning into domain modeling. Software and System Modeling, 2019.30

url: https://doi.org/10.1007/s10270-017-0600-2 (cited on
page 25).

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 1978. url: https://doi.org/10.1145/359576.
359585 (cited on page 49).35

[HR04] David Harel and Bernhard Rumpe. Meaningful modeling: what’s
the semantics of "semantics"? IEEE Computer, 2004. url: https:
//doi.org/10.1109/MC.2004.172 (cited on pages 27, 77).

xxxvii

https://doi.org/10.1007/978-3-319-11653-2_16
https://doi.org/10.1007/978-3-319-11653-2_16
https://doi.org/10.1007/978-3-319-11653-2_16
http://ksiresearchorg.ipage.com/seke/Proceedings/seke/SEKE2014_Proceedings.pdf
http://ksiresearchorg.ipage.com/seke/Proceedings/seke/SEKE2014_Proceedings.pdf
http://ksiresearchorg.ipage.com/seke/Proceedings/seke/SEKE2014_Proceedings.pdf
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1007/3-540-45866-2_14
https://doi.org/10.1145/2851613.2853125
https://doi.org/10.1007/s10270-017-0600-2
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172

[HRW11] John Edward Hutchinson, Mark Rouncefield, and JonWhittle. Model-
driven engineering practices in industry. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE, 2011. url:
https://doi.org/10.1145/1985793.1985882 (cited on pages 22,
23).5

[HWR+11] John Edward Hutchinson, Jon Whittle, Mark Rouncefield, and
Steinar Kristoffersen. Empirical assessment of MDE in industry.
In Proceedings of the 33rd International Conference on Software En-
gineering, ICSE, 2011. url: https://doi.org/10.1145/1985793.
1985858 (cited on page 22).10

[IA09] Ali Ipakchi and Farrokh Albuyeh. Grid of the future. IEEE power
and energy magazine, 2009. url: https://doi.org/10.1109/MPE.
2008.931384 (cited on pages 4, xii).

[III17] ISO, IEC, and IEEE. Systems and software engineering – vocabulary.
In ISO/IEC/IEEE 24765: 2017 (E). 2017. url: https://doi.org/15

10.1109/IEEESTD.2017.8016712 (cited on pages 20, 21, i, ii).
[IW14] M. Usman Iftikhar and Danny Weyns. ActivFORMS: active formal

models for self-adaptation. In 9th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, SEAMS,
2014. url: https://doi.org/10.1145/2593929.2593944 (cited20

on pages 48, 50, 52, 53, 56, 57, 66).
[Jac97] Michael Jackson. The meaning of requirements. Annals of Soft-

ware Engineering, 1997. url: https : / / doi . org / 10 . 1023 / A :
1018990005598 (cited on page 17).

[JCB+15] Jean-Marc Jézéquel, Benoît Combemale, Olivier Barais, Martin25

Monperrus, and François Fouquet. Mashup of metalanguages and its
implementation in the kermeta language workbench. Software and
Systems Modeling, 2015. url: https://doi.org/10.1007/s10270-
013-0354-4 (cited on page 93).

[JG17] Seyyed Ahmad Javadi and Anshul Gandhi. DIAL: reducing tail30

latencies for cloud applications via dynamic interference-aware load
balancing. In 2017 IEEE International Conference on Autonomic
Computing, ICAC, 2017. url: https://doi.org/10.1109/ICAC.
2017.17 (cited on pages 4, xii).

[JK12] Szymon Jaroszewicz and Marcin Korzen. Arithmetic operations35

on independent random variables: A numerical approach. SIAM
J. Scientific Computing, 2012. url: https://doi.org/10.1137/
110839680 (cited on pages 59, 61, 62, 64, 65, 67).

xxxviii

https://doi.org/10.1145/1985793.1985882
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1109/MPE.2008.931384
https://doi.org/10.1109/MPE.2008.931384
https://doi.org/10.1109/MPE.2008.931384
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1145/2593929.2593944
https://doi.org/10.1023/A:1018990005598
https://doi.org/10.1023/A:1018990005598
https://doi.org/10.1023/A:1018990005598
https://doi.org/10.1007/s10270-013-0354-4
https://doi.org/10.1007/s10270-013-0354-4
https://doi.org/10.1007/s10270-013-0354-4
https://doi.org/10.1109/ICAC.2017.17
https://doi.org/10.1109/ICAC.2017.17
https://doi.org/10.1109/ICAC.2017.17
https://doi.org/10.1137/110839680
https://doi.org/10.1137/110839680
https://doi.org/10.1137/110839680

[JWB+15] Andrés Jiménez-Ramírez, Barbara Weber, Irene Barba, and Carmelo
Del Valle. Generating optimized configurable business process models
in scenarios subject to uncertainty. Information & Software Tech-
nology, 2015. url: https://doi.org/10.1016/j.infsof.2014.06.
006 (cited on pages 59–61, 63, 67).5

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. IEEE Computer, 2003. url: https://doi.org/10.
1109/MC.2003.1160055 (cited on pages 4, 16–19, ii, xii).

[Kel76] Robert M. Keller. Formal verification of parallel programs. Commu-
nications of ACM, 1976. url: https://doi.org/10.1145/360248.10

360251 (cited on page 50).
[Ken02] Stuart Kent. Model driven engineering. In Integrated Formal Methods,

Third International Conference, IFM, 2002. url: https://doi.org/
10.1007/3-540-47884-1_16 (cited on pages 4, 22, 23, xii).

[KH10] Maximilian Koegel and Jonas Helming. EMFStore: a model repos-15

itory for EMF models. In Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering, ICSE, 2010. url:
https://doi.org/10.1145/1810295.1810364 (cited on pages 9,
xviii).

[Kle08] Anneke Kleppe. Software language engineering: creating domain-20

specific languages using metamodels. 2008. isbn: 0-321-60646-9. url:
https://www.pearson.com/us/higher- education/program/
Kleppe- Software- Language- Engineering- Creating- Domain-
Specific-Languages-Using-Metamodels/PGM162096.html (cited
on pages 26, ii, iii).25

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers problem:
dynamic change management. IEEE Transactions on Software En-
gineering, 1990. url: https://doi.org/10.1109/32.60317 (cited
on pages 16, 48, 51, 52, 54, 56, 57).

[Kra07] Jeff Kramer. Is abstraction the key to computing? Communications30

of the ACM, 2007. url: https://doi.org/10.1145/1232743.
1232745 (cited on page 21).

[KT12] Bilal Kanso and Safouan Taha. Temporal constraint support for
OCL. In Software Language Engineering, SLE, 2012. url: https:
//doi.org/10.1007/978-3-642-36089-3_6 (cited on pages 9,35

xviii).

xxxix

https://doi.org/10.1016/j.infsof.2014.06.006
https://doi.org/10.1016/j.infsof.2014.06.006
https://doi.org/10.1016/j.infsof.2014.06.006
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/360248.360251
https://doi.org/10.1145/360248.360251
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1145/1810295.1810364
https://www.pearson.com/us/higher-education/program/Kleppe-Software-Language-Engineering-Creating-Domain-Specific-Languages-Using-Metamodels/PGM162096.html
https://www.pearson.com/us/higher-education/program/Kleppe-Software-Language-Engineering-Creating-Domain-Specific-Languages-Using-Metamodels/PGM162096.html
https://www.pearson.com/us/higher-education/program/Kleppe-Software-Language-Engineering-Creating-Domain-Specific-Languages-Using-Metamodels/PGM162096.html
https://www.pearson.com/us/higher-education/program/Kleppe-Software-Language-Engineering-Creating-Domain-Specific-Languages-Using-Metamodels/PGM162096.html
https://www.pearson.com/us/higher-education/program/Kleppe-Software-Language-Engineering-Creating-Domain-Specific-Languages-Using-Metamodels/PGM162096.html
https://doi.org/10.1109/32.60317
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1007/978-3-642-36089-3_6
https://doi.org/10.1007/978-3-642-36089-3_6
https://doi.org/10.1007/978-3-642-36089-3_6

[LEB18] Eric O. LEBIGOT. Uncertainties: a python package for calculations
with uncertainties. http://pythonhosted.org/uncertainties/,
2018. Accessed: 2018-10-11 (cited on page 36).

[Lew03] Bil Lewis. Debugging backwards in time. CoRR, cs.SE/0310016, 2003.
url: http://arxiv.org/abs/cs.SE/0310016 (cited on page 23).5

[LGC17] Philippe Lalanda, Eva Gerbert-Gaillard, and Stéphanie Chollet. Self-
aware context in smart home pervasive platforms. In 2017 IEEE
International Conference on Autonomic Computing, ICAC, 2017.
url: https://doi.org/10.1109/ICAC.2017.1 (cited on pages 4,
xii).10

[LTB+00] David J. Lunn, Andrew Thomas, Nicky Best, and David J. Spiegel-
halter. WinBUGS - A bayesian modelling framework: concepts, struc-
ture, and extensibility. Statistics and Computing, 2000. url: https:
//doi.org/10.1023/A:1008929526011 (cited on pages 59, 61, 62,
64, 65, 67).15

[Mao09] Shahar Maoz. Using model-based traces as runtime models. IEEE
Computer, 2009. url: https://doi.org/10.1109/MC.2009.336
(cited on pages 48, 51).

[MAR14] Danilo F. Mendonça, Raian Ali, and Genaína Nunes Rodrigues.
Modelling and analysing contextual failures for dependability re-20

quirements. In 9th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS, 2014. url:
https://doi.org/10.1145/2593929.2593947 (cited on pages 48,
50, 52, 53, 66).

[MBE+11] Michael Maurer, Ivan Breskovic, Vincent C. Emeakaroha, and Ivona25

Brandic. Revealing the MAPE loop for the autonomic management
of cloud infrastructures. In Proceedings of the 16th IEEE Symposium
on Computers and Communications, ISCC, 2011. url: https://
doi.org/10.1109/ISCC.2011.5984008 (cited on pages 56, 58).

[MBF+18] Ludovic Mouline, Amine Benelallam, François Fouquet, Johann Bour-30

cier, and Olivier Barais. A temporal model for interactive diagnosis
of adaptive systems. In 2018 IEEE International Conference on
Autonomic Computing, ICAC, 2018. url: https://doi.org/10.
1109/ICAC.2018.00029 (cited on pages 12, vii, xxi).

[MBH+18] Ludovic Mouline, Amine Benelallam, Thomas Hartmann, François35

Fouquet, Johann Bourcier, Brice Morin, and Olivier Barais. Enabling
temporal-aware contexts for adaptative distributed systems. In Pro-
ceedings of the 33rd Annual ACM Symposium on Applied Computing,

xl

http://pythonhosted.org/uncertainties/
http://arxiv.org/abs/cs.SE/0310016
https://doi.org/10.1109/ICAC.2017.1
https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1109/MC.2009.336
https://doi.org/10.1145/2593929.2593947
https://doi.org/10.1109/ISCC.2011.5984008
https://doi.org/10.1109/ISCC.2011.5984008
https://doi.org/10.1109/ISCC.2011.5984008
https://doi.org/10.1109/ICAC.2018.00029
https://doi.org/10.1109/ICAC.2018.00029
https://doi.org/10.1109/ICAC.2018.00029

SAC, 2018. url: https://doi.org/10.1145/3167132.3167286
(cited on pages 12, vii, xxi).

[MBH+ng] Ludovic Mouline, Amine Benelallam, Thomas Hartmann, Johann
Bourcier, Olivier Barais, and Maxime Cordy. Ain’tea: managing data
uncertainty at the language level. Forthcoming, forthcoming (cited5

on pages 11, vii, xx).
[MBJ+09] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey,

and Arnor Solberg. Models@run.time to support dynamic adaptation.
IEEE Computer, 2009. url: https://doi.org/10.1109/MC.2009.
327 (cited on pages 5, 18, 42, 48, 49, 55, 56, xii).10

[MBN+09] Brice Morin, Olivier Barais, Grégory Nain, and Jean-Marc Jézéquel.
Taming dynamically adaptive systems using models and aspects. In
31st International Conference on Software Engineering, ICSE, 2009.
url: https://doi.org/10.1109/ICSE.2009.5070514 (cited on
pages 56, 57).15

[MCG+15] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley R.
Schmerl. Proactive self-adaptation under uncertainty: a probabilistic
model checking approach. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE, 2015.
url: https://doi.org/10.1145/2786805.2786853 (cited on20

pages 48, 50, 52, 53, 56, 58, 66).
[MD04] Erik Meijer and Peter Drayton. Static typing where possible, dynamic

typing when needed: the end of the cold war between programming
languages, 2004 (cited on page 62).

[Met08] JCfGi Metrology. Evaluation of measurement data - guide to the25

expression of uncertainty in measurement. Bureau International
des Poids et Mesures, 2008. url: https://www.bipm.org/en/
publications/guides/gum.html (cited on pages 6, 10, 30, 61, 77,
134, xiii, xviii).

[MGB63] Alexander M. Mood, Franklin A. Graybill, and Duane C. Boes.30

Introduction to the Theory of Statistics. McGraw Hill; 3rd edition,
1963. isbn: 978-0070854659 (cited on page 84).

[MHF+15] Assaad Moawad, Thomas Hartmann, François Fouquet, Grégory
Nain, Jacques Klein, and Yves Le Traon. Beyond discrete modeling:
A continuous and efficient model for iot. In 18th ACM/IEEE Inter-35

national Conference on Model Driven Engineering Languages and
Systems, MoDELS, 2015. url: https://doi.org/10.1109/MODELS.
2015.7338239 (cited on page 25).

xli

https://doi.org/10.1145/3167132.3167286
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1109/MC.2009.327
https://doi.org/10.1109/ICSE.2009.5070514
https://doi.org/10.1145/2786805.2786853
https://www.bipm.org/en/publications/guides/gum.html
https://www.bipm.org/en/publications/guides/gum.html
https://www.bipm.org/en/publications/guides/gum.html
https://doi.org/10.1109/MODELS.2015.7338239
https://doi.org/10.1109/MODELS.2015.7338239
https://doi.org/10.1109/MODELS.2015.7338239

[MHF+17] Ludovic Mouline, Thomas Hartmann, François Fouquet, Yves Le
Traon, Johann Bourcier, and Olivier Barais. Weaving rules into
models@run.time for embedded smart systems. In Companion to the
first International Conference on the Art, Science and Engineering
of Programming, Programming, 2017. url: https://doi.org/10.5

1145/3079368.3079394 (cited on page vii).
[Mos01] Peter D. Mosses. The varieties of programming language semantics.

In Perspectives of System Informatics, PSI, 2001. url: https://
doi.org/10.1007/3-540-45575-2_18 (cited on page 77).

[MPS15] Marina Mongiello, Patrizio Pelliccione, and Massimo Sciancalepore.10

AC-Contract: run-time verification of context-aware applications. In
10th IEEE/ACM International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS, 2015. url: https:
//doi.org/10.1109/SEAMS.2015.11 (cited on pages 8, 10, xvi,
xix).15

[MS17] Vera Zaychik Moffitt and Julia Stoyanovich. Temporal graph algebra.
In Proceedings of The 16th International Symposium on Database
Programming Languages, DBPL, 2017. url: https://doi.org/10.
1145/3122831.3122838 (cited on pages 48, 51, 56, 57, 66).

[MSS13] Prodromos Makris, Dimitrios N. Skoutas, and Charalabos Skianis. A20

survey on context-aware mobile and wireless networking: on network-
ing and computing environments’ integration. IEEE Communications
Surveys and Tutorials, 2013. url: https://doi.org/10.1109/SURV.
2012.040912.00180 (cited on pages 19, 20).

[MWG+18] T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J.25

Bronskill. Infer.net 0.3, 2018. url: https://dotnet.github.io/
infer/. [Accessed July 2019] (cited on pages 6, 36, 92, xiv).

[MWV16] Tanja Mayerhofer, Manuel Wimmer, and Antonio Vallecillo. Adding
uncertainty and units to quantity types in software models. In In-
ternational Conference on Software Language Engineering, 2016.30

url: http://dl.acm.org/citation.cfm?id=2997376 (cited on
pages 59, 61, 64, 67, 100).

[OMG17] Object Management Group (OMG). OMG Unified Modeling Lan-
guage, version 2.5.1, 2017. url: https://www.omg.org/spec/UML/
2.5.1. [Accessed July 2019] (cited on pages 22, 23, i, iii).35

xlii

https://doi.org/10.1145/3079368.3079394
https://doi.org/10.1145/3079368.3079394
https://doi.org/10.1145/3079368.3079394
https://doi.org/10.1007/3-540-45575-2_18
https://doi.org/10.1007/3-540-45575-2_18
https://doi.org/10.1007/3-540-45575-2_18
https://doi.org/10.1109/SEAMS.2015.11
https://doi.org/10.1109/SEAMS.2015.11
https://doi.org/10.1109/SEAMS.2015.11
https://doi.org/10.1145/3122831.3122838
https://doi.org/10.1145/3122831.3122838
https://doi.org/10.1145/3122831.3122838
https://doi.org/10.1109/SURV.2012.040912.00180
https://doi.org/10.1109/SURV.2012.040912.00180
https://doi.org/10.1109/SURV.2012.040912.00180
https://dotnet.github.io/infer/
https://dotnet.github.io/infer/
https://dotnet.github.io/infer/
http://dl.acm.org/citation.cfm?id=2997376
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1

[oSN] National Institute of Standards and Technology (NIST). Smart
grid: a beginner’s guide. https://www.nist.gov/engineering-
laboratory/smart-grid/smart-grid-beginners-guide#what.
[Accessed June 2019] (cited on page ii).

[PBC+11] Carlos Parra, Xavier Blanc, Anthony Cleve, and Laurence Duchien.5

Unifying design and runtime software adaptation using aspect models.
Science of Computer Programming, 2011. url: https://doi.org/
10.1016/j.scico.2010.12.005 (cited on pages 52, 54, 56, 57).

[Pfe01] Avi Pfeffer. IBAL: A probabilistic rational programming language.
In Proceedings of the Seventeenth International Joint Conference on10

Artificial Intelligence, IJCAI, 2001 (cited on pages 59, 61, 62, 64, 65,
67).

[PFT03] Mónica Pinto, Lidia Fuentes, and José M. Troya. DAOP-ADL: an
architecture description language for dynamic component and aspect-
based development. In Frank Pfenning and Yannis Smaragdakis, edi-15

tors, Generative Programming and Component Engineering, Second
International Conference, GPCE, 2003. url: https://doi.org/10.
1007/978-3-540-39815-8_8 (cited on pages 51, 52, 56, 57).

[Plu+03] Martyn Plummer et al. Jags: a program for analysis of bayesian
graphical models using gibbs sampling. In Proceedings of the 3rd20

international workshop on distributed statistical computing, 2003
(cited on pages 59, 61, 62, 64, 65, 67).

[PPT08] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilis-
tic language based on sampling functions. ACM Transactions on
Programming Languages and Systems, 2008. url: https://doi.25

org/10.1145/1452044.1452048 (cited on pages 59, 61, 62, 64, 65,
67).

[PSR10] Dhirendra Pandey, Ugrasen Suman, and AK Ramani. An effective
requirement engineering process model for software development
and requirements management. In Advances in Recent Technologies30

in Communication and Computing (ARTCom), 2010, 2010. url:
https://doi.org/10.1109/ARTCom.2010.24 (cited on page 21).

[PZC+14] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dimitrios
Georgakopoulos. Context aware computing for the internet of things:
A survey. IEEE Communications Surveys and Tutorials, 2014. url:35

https://doi.org/10.1109/SURV.2013.042313.00197 (cited on
page 19).

xliii

https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-beginners-guide#what
https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-beginners-guide#what
https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-beginners-guide#what
https://doi.org/10.1016/j.scico.2010.12.005
https://doi.org/10.1016/j.scico.2010.12.005
https://doi.org/10.1016/j.scico.2010.12.005
https://doi.org/10.1007/978-3-540-39815-8_8
https://doi.org/10.1007/978-3-540-39815-8_8
https://doi.org/10.1007/978-3-540-39815-8_8
https://doi.org/10.1145/1452044.1452048
https://doi.org/10.1145/1452044.1452048
https://doi.org/10.1145/1452044.1452048
https://doi.org/10.1109/ARTCom.2010.24
https://doi.org/10.1109/SURV.2013.042313.00197

[RP02] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and
monads of probability distributions. In Conference Record of POPL
2002: The 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2002. url: https://doi.org/10.1145/
503272.503288 (cited on pages 59, 61, 62, 64, 65, 67).5

[RRV08] José Eduardo Rivera, José Raúl Romero, and Antonio Vallecillo.
Behavior, time and viewpoint consistency: three challenges for MDE.
In Models in Software Engineering, Workshops and Symposia at
MODELS, 2008. url: https://doi.org/10.1007/978-3-642-
01648-6_7 (cited on pages 9, xviii).10

[SBM+08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework, 2nd Edition. Addison-Wesley
Professional, 2008. isbn: 0-321-33188-5. url: http://www.informit.
com/store/emf-eclipse-modeling-framework-9780321331885
(cited on page 25).15

[SCG13] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gul-
wani. Static analysis for probabilistic programs: inferring whole
program properties from finitely many paths. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI, 2013. url: https://doi.org/10.1145/2491956.246217920

(cited on pages 59, 61, 62, 64, 65, 67).
[SCH+13] Rick Salay, Marsha Chechik, Jennifer Horkoff, and Alessio Di Sandro.

Managing requirements uncertainty with partial models. Require-
ments Engineering, 2013. url: https://doi.org/10.1007/s00766-
013-0170-y (cited on pages 59–62).25

[Sch06] Douglas C. Schmidt. Guest editor’s introduction: model-driven engi-
neering. IEEE Computer, 2006. url: https://doi.org/10.1109/
MC.2006.58 (cited on pages 4, 22, 23, ii, xii).

[Sha76] Glenn Shafer. A mathematical theory of evidence, volume 42. Prince-
ton university press, 1976. isbn: 9780691100425 (cited on pages 6,30

10, 134, xiv, xviii).
[SMH11] Julia Schwarz, Jennifer Mankoff, and Scott E. Hudson. Monte carlo

methods for managing interactive state, action and feedback under
uncertainty. In Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, 2011. url: https://doi.35

org/10.1145/2047196.2047227 (cited on pages 59, 61, 64, 67).

xliv

https://doi.org/10.1145/503272.503288
https://doi.org/10.1145/503272.503288
https://doi.org/10.1145/503272.503288
https://doi.org/10.1007/978-3-642-01648-6_7
https://doi.org/10.1007/978-3-642-01648-6_7
https://doi.org/10.1007/978-3-642-01648-6_7
http://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
http://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
http://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1007/s00766-013-0170-y
https://doi.org/10.1007/s00766-013-0170-y
https://doi.org/10.1007/s00766-013-0170-y
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/2047196.2047227
https://doi.org/10.1145/2047196.2047227
https://doi.org/10.1145/2047196.2047227

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: land-
scape and research challenges. TAAS, 2009. url: https://doi.org/
10.1145/1516533.1516538 (cited on page 17).

[SWF16] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck.
Probabilistic programming in python using PyMC3. PeerJ Computer5

Science, 2016. url: https://doi.org/10.7717/peerj- cs.55
(cited on pages 36, 59, 61, 62, 64, 65, 67).

[Tea15] Watcher Drivers Team. OpenStackWatcher. https://wiki.openstack.
org/wiki/Watcher, 2015. [Accessed April 2019] (cited on pages 4,
xii).10

[TGE+10] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Med-
vidovic. PLASMA: a plan-based layered architecture for software
model-driven adaptation. In 25th IEEE/ACM International Con-
ference on Automated Software Engineering, 2010. url: https :
//doi.org/10.1145/1858996.1859092 (cited on pages 48, 50,15

52, 53, 56, 58, 66).
[Thr00] Sebastian Thrun. Towards programming tools for robots that inte-

grate probabilistic computation and learning. In Proceedings of the
2000 IEEE International Conference on Robotics and Automation,
ICRA, 2000. url: https://doi.org/10.1109/ROBOT.2000.84407520

(cited on pages 59, 61, 62, 64, 65, 67).
[TOH17] Yasuyuki Tahara, Akihiko Ohsuga, and Shinichi Honiden. Formal

verification of dynamic evolution processes of UML models using
aspects. In 12th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS, 2017.25

url: https://doi.org/10.1109/SEAMS.2017.4 (cited on pages 8,
10, 48–52, 55, 56, 66, xvi, xix).

[vDK98] Arie van Deursen and Paul Klint. Little languages: little maintenance?
Journal of Software Maintenance, 1998. url: https://doi.org/10.
1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%30

3E3.0.CO;2-5 (cited on page 27).
[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific

languages: an annotated bibliography. SIGPLAN Notices, 2000. url:
https://doi.org/10.1145/352029.352035 (cited on pages 26, 27,
i).35

xlv

https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.7717/peerj-cs.55
https://wiki.openstack.org/wiki/Watcher
https://wiki.openstack.org/wiki/Watcher
https://wiki.openstack.org/wiki/Watcher
https://doi.org/10.1145/1858996.1859092
https://doi.org/10.1145/1858996.1859092
https://doi.org/10.1145/1858996.1859092
https://doi.org/10.1109/ROBOT.2000.844075
https://doi.org/10.1109/SEAMS.2017.4
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%3E3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%3E3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%3E3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%3E3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2%3C75::AID-SMR168%3E3.0.CO;2-5
https://doi.org/10.1145/352029.352035

[VMO16] Antonio Vallecillo, Carmen Morcillo, and Priscill Orue. Expressing
measurement uncertainty in software models. In 10th International
Conference on the Quality of Information and Communications Tech-
nology, QUATIC, 2016. url: http://doi.ieeecomputersociety.
org/10.1109/QUATIC.2016.013 (cited on pages 10, 59, 61, 64, 65,5

67, xviii).
[Voe14] Markus Voelter. Generic tools, specific languages. Citeseer, 2014.

isbn: 978-94-6203-586-7. url: https://www.voelter.de/data/
books/GenericToolsSpecificLanguages-1.0-web.pdf (cited on
page 27).10

[W3C05] World Wide Web Consortium (W3C). Document Object Model
(DOM). https://www.w3.org/DOM/, 2005. [Accessed July 2019]
(cited on page 26).

[WA13] DannyWeyns and Tanvir Ahmad. Claims and evidence for architecture-
based self-adaptation: A systematic literature review. In Software15

Architecture ECSA, 2013. url: https://doi.org/10.1007/978-3-
642-39031-9%5C_22 (cited on page 17).

[Wal96] Christian Walck. Hand-book on statistical distributions for experi-
mentalists. Technical report, University of Stockholm, 1996 (cited
on pages 78, 84).20

[WBR11] Richard Wang, Dana Butnariu, and Jennifer Rexford. Openflow-
based server load balancing gone wild. In USENIX Workshop on
Hot Topics in Management of Internet, Cloud, and Enterprise Net-
works and Services, Hot-ICE, 2011. url: https://www.usenix.
org/conference/hot- ice11/openflow- based- server- load-25

balancing-gone-wild (cited on pages 39, 40).
[Wey19] Danny Weyns. Software engineering of self-adaptive systems. In

Handbook of Software Engineering. 2019. url: https://doi.org/
10.1007/978-3-030-00262-6%5C_11 (cited on pages 16, 17).

[WH04] Tom De Wolf and Tom Holvoet. Emergence versus self-organisation:30

different concepts but promising when combined. In Engineering
Self-Organising Systems, Methodologies and Applications, 2004. url:
https://doi.org/10.1007/11494676_1 (cited on page 17).

[WHH10] Danny Weyns, Robrecht Haesevoets, and Alexander Helleboogh.
The MACODO organization model for context-driven dynamic agent35

organizations. TAAS, 2010. url: https://doi.org/10.1145/
1867713.1867717 (cited on pages 48, 49, 52, 54, 56, 57).

xlvi

http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.013
http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.013
http://doi.ieeecomputersociety.org/10.1109/QUATIC.2016.013
https://www.voelter.de/data/books/GenericToolsSpecificLanguages-1.0-web.pdf
https://www.voelter.de/data/books/GenericToolsSpecificLanguages-1.0-web.pdf
https://www.voelter.de/data/books/GenericToolsSpecificLanguages-1.0-web.pdf
https://www.w3.org/DOM/
https://doi.org/10.1007/978-3-642-39031-9%5C_22
https://doi.org/10.1007/978-3-642-39031-9%5C_22
https://doi.org/10.1007/978-3-642-39031-9%5C_22
https://www.usenix.org/conference/hot-ice11/openflow-based-server-load-balancing-gone-wild
https://www.usenix.org/conference/hot-ice11/openflow-based-server-load-balancing-gone-wild
https://www.usenix.org/conference/hot-ice11/openflow-based-server-load-balancing-gone-wild
https://www.usenix.org/conference/hot-ice11/openflow-based-server-load-balancing-gone-wild
https://www.usenix.org/conference/hot-ice11/openflow-based-server-load-balancing-gone-wild
https://doi.org/10.1007/978-3-030-00262-6%5C_11
https://doi.org/10.1007/978-3-030-00262-6%5C_11
https://doi.org/10.1007/978-3-030-00262-6%5C_11
https://doi.org/10.1007/11494676_1
https://doi.org/10.1145/1867713.1867717
https://doi.org/10.1145/1867713.1867717
https://doi.org/10.1145/1867713.1867717

[WHR] Jon Whittle, John Edward Hutchinson, and Mark Rouncefield. The
state of practice in model-driven engineering. IEEE Software. url:
https://doi.org/10.1109/MS.2013.65 (cited on page 22).

[WHR+13] Jon Whittle, John Edward Hutchinson, Mark Rouncefield, Håkan
Burden, and Rogardt Heldal. Industrial adoption of model-driven5

engineering: are the tools really the problem? In Model-Driven En-
gineering Languages and Systems, MODELS, 2013. url: https:
//doi.org/10.1007/978-3-642-41533-3%5C_1 (cited on page 23).

[WKE08] Gerd Wübbeler, Michael Krystek, and Clemens Elster. Evaluation
of measurement uncertainty and its numerical calculation by a10

monte carlo method. Measurement science and technology, 2008.
url: https://doi.org/10.1088/0957-0233/19/8/084009 (cited
on page 134).

[WMA12] Danny Weyns, Sam Malek, and Jesper Andersson. FORMS: unifying
reference model for formal specification of distributed self-adaptive15

systems. TAAS, 2012. url: https://doi.org/10.1145/2168260.
2168268 (cited on pages 17, 48, 49, 56, 57).

[Woh14] Claes Wohlin. Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering. In 18th International
Conference on Evaluation and Assessment in Software Engineering,20

EASE, 2014. url: https://doi.org/10.1145/2601248.2601268
(cited on pages 46, 66).

[WSB+09] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng,
and Jean-Michel Bruel. RELAX: incorporating uncertainty into the
specification of self-adaptive systems. In International Requirements25

Engineering Conference, 2009. url: https://doi.org/10.1109/RE.
2009.36 (cited on pages 59–61, 63).

[WSB+10] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and
Jean-Michel Bruel. RELAX: a language to address uncertainty in
self-adaptive systems requirement. Requirements Engineering, 2010.30

url: https://doi.org/10.1007/s00766-010-0101-0 (cited on
pages 59–61, 63).

[Yu11] Eric Yu. Modelling strategic relationships for process reengineering.
Social Modeling for Requirements Engineering, 2011. url: http:
//ftp.cs.utoronto.ca/public_html/dist/eric/DKBS-TR-94-35

6.pdf (cited on page 115).

xlvii

https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1007/978-3-642-41533-3%5C_1
https://doi.org/10.1007/978-3-642-41533-3%5C_1
https://doi.org/10.1007/978-3-642-41533-3%5C_1
https://doi.org/10.1088/0957-0233/19/8/084009
https://doi.org/10.1145/2168260.2168268
https://doi.org/10.1145/2168260.2168268
https://doi.org/10.1145/2168260.2168268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/RE.2009.36
https://doi.org/10.1109/RE.2009.36
https://doi.org/10.1109/RE.2009.36
https://doi.org/10.1007/s00766-010-0101-0
http://ftp.cs.utoronto.ca/public_html/dist/eric/DKBS-TR-94-6.pdf
http://ftp.cs.utoronto.ca/public_html/dist/eric/DKBS-TR-94-6.pdf
http://ftp.cs.utoronto.ca/public_html/dist/eric/DKBS-TR-94-6.pdf
http://ftp.cs.utoronto.ca/public_html/dist/eric/DKBS-TR-94-6.pdf
http://ftp.cs.utoronto.ca/public_html/dist/eric/DKBS-TR-94-6.pdf

[ZA11] Enrico Zio and Terje Aven. Uncertainties in smart grids behavior
and modeling: what are the risks and vulnerabilities? how to analyze
them? Energy Policy, 2011. url: https://doi.org/10.1016/j.
enpol.2011.07.030 (cited on pages 5, xiii).

[Zad] Lotfi A Zadeh. Fuzzy sets. In Fuzzy Sets, Fuzzy Logic, And Fuzzy5

Systems: Selected Papers by Lotfi A Zadeh. url: https://doi.org/
10.1142/9789814261302_0001 (cited on pages 10, xviii).

[ZAY+19] Man Zhang, Shaukat Ali, Tao Yue, Roland Norgren, and Oscar
Okariz. Uncertainty-wise cyber-physical system test modeling. Soft-
ware and Systems Modeling, 2019. url: https://doi.org/10.1007/10

s10270-017-0609-6 (cited on pages 59–61, 63, 67).
[ZGC09] Ji Zhang, Heather Goldsby, and Betty H. C. Cheng. Modular veri-

fication of dynamically adaptive systems. In Proceedings of the 8th
International Conference on Aspect-Oriented Software Development,
AOSD, 2009. url: https://doi.org/10.1145/1509239.150926215

(cited on pages 48, 50, 52, 53, 56, 58, 66).
[ZSA+16] Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz, and

Roland Norgren. Understanding uncertainty in cyber-physical sys-
tems: A conceptual model. In Modelling Foundations and Applica-
tions, ECMFA, 2016. url: https://doi.org/10.1007/978-3-319-20

42061-5_16 (cited on pages 59–61, 63, 67).

xlviii

https://doi.org/10.1016/j.enpol.2011.07.030
https://doi.org/10.1016/j.enpol.2011.07.030
https://doi.org/10.1016/j.enpol.2011.07.030
https://doi.org/10.1142/9789814261302_0001
https://doi.org/10.1142/9789814261302_0001
https://doi.org/10.1142/9789814261302_0001
https://doi.org/10.1007/s10270-017-0609-6
https://doi.org/10.1007/s10270-017-0609-6
https://doi.org/10.1007/s10270-017-0609-6
https://doi.org/10.1145/1509239.1509262
https://doi.org/10.1007/978-3-319-42061-5_16
https://doi.org/10.1007/978-3-319-42061-5_16
https://doi.org/10.1007/978-3-319-42061-5_16

xlix

Titre : Vers un framework de modélisation avec des données temporelles et incertaines pour les
systèmes adaptatifs

Mots clés : systèmes dynamiquement adaptatifs, représentation des connaissances, ingénierie dirigée
par les modèles, modélisation de l'incertitude, modélisation temporelle

Résumé : Les systèmes auto-adaptatifs optimisent
leurs comportements ou configurations au moment
de l'exécution en réponse à une modification de
leur environnement ou de leurs comportements.
Ces systèmes nécessitent donc une connaissance
approfondie de la situation en cours qui permet de
raisonnement en considérant les opérations
d'adaptation. En utilisant la méthodologie de
l'Ingénierie Dirigée par les Modèles, il est possible
d'abstraire cette situation. Cependant, les
informations concernant le système ne sont pas
toujours connues avec une confiance absolue. De
plus, dans de tels systèmes, la fréquence de
surveillance peut différer du délai nécessaire pour
que les mesures de reconfiguration aient des
effets mesurables.
Ces caractéristiques s'accompagnent d'un défi
global pour les ingénieurs logiciels : comment
représenter les connaissances incertaines tout en
permettant de les interroger efficacement et

de représenter les actions en cours afin
d’améliorer les processus d'adaptation ?
Pour relever ce défi, cette thèse défend la
nécessité d'un framework de modélisation qui
inclut, en plus de tous les éléments traditionnels,
l'incertitude et le temps en tant que concepts de
première classe. Par conséquent, un développeur
sera en mesure d'extraire des informations
relatives au processus d'adaptation, à
l'environnement ainsi qu'au système lui-même.
Dans cette optique, nous présentons deux
contributions évaluées : un modèle de contexte
temporel et un langage pour les données
incertaines. Le modèle de contexte temporel
permet d'abstraire les actions passées, en cours
et futures avec leurs impacts et leur contexte. Le
langage, appelé Ain'tea, intègre l'incertitude des
données en tant que concept de première classe.

Title : Towards a modelling framework with temporal and uncertain data for adaptive systems

Keywords : dynamically adaptive systems, knowledge representation, model-driven engineering,
uncertainty modelling, time modelling

Abstract : Self-Adaptive Systems optimise their
behaviours or configurations at runtime in
response to a modification of their environments or
their behaviours. These systems therefore need a
deep understanding of the ongoing situation which
enables reasoning tasks for adaptation operations.
Using the model-driven engineering (MDE)
methodology, one can abstract this situation.
However, information concerning the system is not
always known with absolute confidence. Moreover,
in such systems, the monitoring frequency may
differ from the delay for reconfiguration actions to
have measurable effects.
These characteristics come with a challenge for

software engineers: how to represent uncertain
knowledge that can be efficiently que-

ried and to represent ongoing actions in order to
improve adaptation processes? To tackle this
challenge, this thesis defends the need for a
unified modelling framework which includes,
besides all traditional elements, temporal and
uncertainty as first-class concepts. Therefore, a
developer will be able to abstract information
related to the adaptation process, the
environment as well as the system itself.
Towards this vision, we present two evaluated
contributions: a temporal context model and a
language for uncertain data. The temporal
context model allows abstracting past, ongoing
and future actions with their impacts and context.
The language, named Ain’tea, integrates data
uncertainty as a first-class citizen.

	I Context and challenges in modelling adaptive systems
	Introduction
	Context
	Challenges
	Engineering uncertainty-aware software
	Reasoning over long-term actions
	Diagnosing the adaptation process
	Modelling inconsistent states of systems
	Modelling temporal and interconnected data

	Scope of the thesis
	Contribution & validation
	Structure of the document

	Background
	Adaptive systems
	Principles and vision
	Models@run.time
	Characterisation of information of the knowledge
	Key concepts for this thesis

	Model-Driven Engineering
	Principles and vision
	Metamodel, model
	Tooling
	Concepts used in this thesis

	Software Language Engineering
	Software Languages
	SLE in this thesis

	Probability theory
	Random variables
	Distribution
	Distribution used in this thesis

	Motivating example: smart grid
	Smart grid overview
	Data uncertainty
	Impacts of ignoring data uncertainty
	Managing uncertainty is not effortless

	Long-term actions
	Examples
	Use case scenario

	State of the art
	Review methodology
	Results RQ1: long-term actions
	Modelling the evolution of system's context, structure, or behaviour
	Modelling actions, their circumstances, and their effects
	Reasoning over evolving context or behaviour
	Modelling and reasoning over long-term actions

	Results RQ2: data uncertainty
	Categories of data uncertainty
	Modelling data uncertainty
	Propagation and reasoning over uncertainty
	Modelling of data uncertainty and its manipulation

	Threat to validity
	Conclusion

	II Towards a modelling frameworks for adaptive systems
	Uncertainty and time in modeling frameworks
	Summary of previous chapter
	Vision

	Ain’tea: managing data uncertainty at the language level
	Uncertainty as a first-class language citizen
	Language overview
	Uncertain boolean
	Uncertain number
	Uncertain references
	Static semantic: typing rules

	Evaluation
	Ain'tea: our implementation
	Conciseness
	Error handling at development time
	Discussion

	Conclusion

	A temporal knowledge metamodel of adaptive systems
	Knowledge formalization
	Formalization of the temporal axis
	Formalism of the knowledge
	Application on the use case

	Modelling the knowledge
	Parent element: TimedElement class
	Knowledge metamodel
	Context metamodel
	Requirement metamodel
	Action metamodel

	Validation
	Diagnostic: implementation of the use case
	Reasoning over unfinished actions and their expected effects
	Performance evaluation
	Discussion

	Conclusion

	III Conclusion and future work
	Conclusion
	Summary
	Future work
	Software language and uncertain data
	(Self-)Explanation of adaptive systems

	Glossary
	Abbreviations
	List of publications and tools
	List of figures
	List of tables
	French summary - Résumé en français
	Contexte
	Défis
	Ingénierie de logiciels sensibles à l'incertitude
	Raisonnement sur les actions à long terme
	Diagnostic du processus d'adaptation
	Modélisation des états incohérents des systèmes
	Modélisation des données temporelles et interconnectées

	Périmètre de la thèse
	Contribution & validation

	Bibliography

