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Nomenclature

X Training set/Learning dataset1with high dimension

Xn n-th element (sample) of X

x Low-dimensional embedding for X

M High-dimensional manifold subspace

E Low-dimensional embedding obtained from M
Ns Number of samples for the training set X

d Dimension of the ambient space for X

m Dimension of the subspace/manifold/embedding

Y A test sample (or a set of test samples)

y Low-dimension equivalent of Y

Rp Residual of order p for a projection algorithm

Rp,n Residual of order p for the n-th sample of the dataset

AT Transpose of matrix A

A−1 Inverse of matrix A

A Sample-wise mean of A

σ2
A Unbiased sample-wise variance of set A

Ã A − A

< u, v > Dot product of two vectors u and v

u ⊥ v u and v are othogonal

Projection Getting a sample from high dimension to high dimension

µ Projection in HD (µ : R
d Ô→ R

d)

π Dimension reduction function (π : X Ô→ R
m)

ρ Reconstruction function (ρ : R
m Ô→ R

d)

π̃ Out-of-sample extension of π : R
d Ô→ R

m

‖u‖p Lp norm of u

1All matrices and vectors are column vectors, with as many columns as the number of
samples



9

K Kernel or Gram matrix of a set (K ∈ RNs×Ns)

(Xn)s s-th pixel of image Xn

r Number of regressors

V Validation set

#S Cardinal of a set S

NX(Y ) Neighborhoud of Y in the set X

A < 0 Element-wise positivy of A: ∀s, As ≤ 0

D A design matrix

β A vector of regressors

ε A noise variable

1N Column vector of ones of size N

IN Identity matrix of size N

Sm The m-dimensional sphere
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0.1 General Introduction

Throughout this thesis, we considered the problem of anomaly detection in
neuroimaging data, in the context of comparing a single subject to a normal
control group. Anomaly detection in medical images is a task focused on
detecting abnormal patterns in images, rather than whether the image itself is
abnormal or not. Most standard algorithms of anomaly detection are usually
performing a one-class classification problem, detecting outliers with respect
to the distribution of normal subjects. Our interest is not to make a global
statement about the sample, but instead to provide a spatial localization of
abnormal patterns within the subject’s image data by creating a model for
healthy samples, that can be applied to test images in order to evaluate whether
they conform to the model or not. This task is usually done on sight by medical
experts, but given the 3D nature of these data, and the small size of areas to
be detected, this can be both an arduous and cumbersome task. This work is
thus aimed at providing helpful detections for the experts, to guide them in
their diagnostic. Figure 1 illustrates such type of detections.

Figure 1: Illustration of an anomaly detection over a single subject over a
sagittal slice. Red and yellow areas are detected as abnormal.

This thesis is based on the works of several previous PhD students, the one
we put our main focus on being Torbjørn Vik [1]. In his thesis, he was already
focused on performing anomaly detection using linear multivariate models, al-
though on different medical datasets. Our goal was to go one step further in
this modelization, while keeping an application in medical images. At Vik’s
time, the most widely used tool for performing anomaly detection in medical
images was the software Statistical Parametric Mapping, and it still is nowa-
days. SPM is an univariate, linear model, making strong assumptions on the
distribution of the analysed dataset. Its popularity is mostly due to its ability
to provide a fast, reliable detection, based on strong statistical foundations
even with large datasets. The main use of SPM by doctors is to perform group
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versus group analysis, allowing them to better apprehend the two populations
differences or equivalently the effect of the studied disease. The work presented
in this document concentrates on the analysis of one subject compared to a
group. While SPM does provide a framework for this type of analysis, it does
have the same drawbacks than his group vs group counterpart. We thus de-
fined some quite simple specifications for the methods we wanted to develop.
These methods should be:

• Non-linear, multivariate methods, to take into account spatial correla-
tions in our data;

• Do not make assumption on the data distribution.

As we introduce these methods, we should clarify that even though we
worked with a specific application to an Alzheimer’s Disease dataset, our goal
here is not to perform prediction on some test subjects images (as to whether
or not they are -or will be- afflicted with the disease), as this diagnostic is rarely
ever done by doctors solely by looking at medical images, however incriminat-
ing they appear. This anomaly detection is used in a single subject vs group
context to provide an helpful preliminary indication for the doctor, to focus
on some areas rather than others or that he could have missed. Obviously the
developed methods could also be used in a group vs group setting.

0.2 Document Layout

This manuscript is organized as follows:
In the first chapter, after introducing the paradigm of anomaly detection

that we will be using throughout all of this work, we will take a look at methods
that are the state of the art methods for our whole paradigm. We will then
present methods of the literature that can be used as basic building elements
for the paradigm.

Moving on, the second chapter will be dedicated to introducing our own
contributions to the paradigm of anomaly detection. First we will explain
how all of our anomaly detection methods are actually manifold projection
methods, and how the anomaly detection is rather made by statistical testing.
Then we will present two “classes” of projection methods: a first based on the
framework and algorithms from the first chapter, and a second one that skips
one step of the previous framework and unites various methods under a kernel
approach. Finally we will explain in this chapter how we managed to apply to
non-linear methods the robust algorithms that are usually associated to linear
methods.

The third chapter is dedicated to getting a better understanding of the
problems we are faced with, how the specific properties of our datasets will
impact the methods we developed, and what to expect once we deal with the
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real dataset. To do so, we will present the elaboration of several synthetic
datasets with controllable properties and with abnormal subjects for which
a clear ground truth is known. We will then proceed to analyse the results
obtained over these datasets.

A fourth chapter is focused on the study of the real dataset, and the as-
sociated results of the best methods we introduced. As we are deprived of
a ground truth for the real dataset, we will therefore only present averaged
results of single subjects, with an analysis of these results by doctors.

The fifth and last chapter will be the conclusion of this document.

0.3 Contributions

The contributions presented in this document can be synthesized by the fol-
lowing list:

• The creation of fully functional methods of manifold projection based
on classical non-linear dimensions algorithm, based on previously known
methods of out-of-sample extension and reconstruction.

• The introduction of fully original methods of projection via a new frame-
work able to link together all kernel methods of dimension reduction.

• The extension of robust algorithms to all of these methods.

• The elaboration of several databases, from purely synthetics to a real
medical one, and the design of several tests for the comparison of all the
new methods together, along with the state of the art ones.

• Convincing, consistent results on real data, that lend themselves to med-
ical interpretation of the different forms of the AD pathology and its
evolution.
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1.1 A projection paradigm

Contents for this section

1.1.1 Theoretical paradigm . . . . . . . . . . . . . . . . . . . . 16
1.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.3 Anomaly detection . . . . . . . . . . . . . . . . . . . . . 19
1.1.4 The need for robustness . . . . . . . . . . . . . . . . . . 19
1.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.1 Theoretical paradigm

In this thesis, we aim to introduce several statistical models designed to tackle
the multiple drawbacks of the global linear model. They all share common
characteristics: these models are multivariate (as to take into account the
obvious spatial correlations that exist in our data), non-linear (to efficiently
model the dataset geometry, as we will see further on) and based on the same
paradigm.

This paradigm can be synthesized as:
Given a dataset X representative of the normality against which we wish

to confront a test subject Y , finding the closest image to Y that could belong

to the geometric structure underlying X.
From a computer science point of view, it consists in learning a model over a

globally consistent dataset of individuals. We will perform the task of learning
this model by means of statistical machine learning and thereby, as for any
machine learning problem, we will need to gather the most possible data with
the most representativeness to obtain a model with a good understanding of
the normality. Once this model is known, we need to apply it to new test
samples in order to “normalize” them, i.e. make them look like part of the
training dataset.

Before going into details, we need to introduce two key concepts who in-
tervene while dealing with the type of application this thesis focuses on. The
first one is the curse of dimensionality: it is a well-documented [2, 3] effect
first described by Bellman in 1961 [4], that tends to rapidly happen as the
number of dimensions of the space data lies in rises. As dimensionality grows,
the sparsity of data density in the intrinsic space increases exponentially with
its volume (e.g. to uniformly sample the n-dimensional cube with k points
along each side, one would need kn points in total to do so). This tends to
transform the function approximation problem (density estimation, classifica-
tion, regression, etc.) into an arduous one. Indeed, for independent identically
distributed random variables, it can be shown [5] that distances between points
sampled from these variables become less and less meaningful as the number
of dimension increases, thus making the nearest-neighbours problem used in
many of the machine learning algorithms less and less efficiently solved.
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However, all hope is not lost as we are obviously not dealing with indepen-
dent random variables. Furthermore, we will put to good use the second key
concept inducing this paradigm: the manifold hypothesis [6]. This hypothe-
sis (that we could easily recharacterize as an axiom in our case), states that
not only are high-dimensional data such as (medical) images not “independent
identically distributed random variables”, but they are actually lying into a
subset of the ambient space called a manifold (see appendix 5.1.3): a non-
linear subset of the euclidean space, heavily structured and possessing its own
inner dimension, that is supposed to be extremely small compared to the one
of the ambient space. One crucial property of manifolds is that, although they
are inherently globally non-linear spaces, they are locally linear, i.e. similar
(in a diffeomorphic sense) in all points to an euclidean space whose dimension
is the one of the manifold.

1.1.2 Methodology

To alleviate both previously mentioned problems, we considered dimension
reduction algorithms, and especially non-linear ones. This kind of algorithms
is made to deal with the high dimensionality of these datasets while efficiently
modeling their underlying manifold.

As our paradigm for anomaly detection is to find the closest image of our
test image that has a coherent geometric and topological information with the
control group, we thus aim at finding what we call a projection function µ, that
transforms any sample into a “control sample” by performing a mathematical
projection over the inherent geometric structure of our control set. As previ-
ously mentioned, to learn the geometric structure of our control group while
coping with the huge dimensionality of our data, we will consider the set of
training samples a training set for dimension reduction algorithms. Hence, we
will have to learn two mappings in order to obtain µ: one dimension reduction

mapping π (or embedding function), that transforms high dimensional data
points into their lower dimensional embedding, and a ireconstruction function

ρ, that is able to provide a high dimensional sample from a low dimensional
one. As a result, we get µ = ρ ◦ π.

We denote the mapping obtained by our algorithm from the original space
to the dimension reduction space, or embedding, by π:

π : X ⊂ R
d → R

m

Xi Ô→ π(Xi) (1.1)

where X, our sample set (control group), lies in R
d, with d ≫ m (see figure 1.1

for a graphical representation).
As most dimension reduction are tools designed to be applied once to a

whole dataset, they are not equipped to deal with new sample points not
belonging to the training dataset X and that ought to be tested (projected)
for anomalies. Thus, the embedding function π is only defined on the training
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dataset X, and not on the whole space R
d. Therefore, to find a low-dimensional

representation of a test sample Y /∈ X, we will need to find what is called an
out-of-sample extension of π, denoted π̃:

π̃ : R
d → R

m

Y Ô→ y = π̃(Y ) (1.2)

To serve our purposes, the out-of-sample extension π̃ should be a driving force
of our normalization processr. It should respect the modelization of the dataset
X given by π in the sense that it provides meaningful low-dimensional counter-
part y = π̃(Y ) for test subject Y according to the embedding of X; and ideally
the obtained representation y of Y should also be the one of its normalized
version in high-dimension (the out-of-sample extension should yield the same
result as the embedding function on the training dataset, i.e. π̃X = π).

In addition to finding an out-of-sample extension of our embedding func-
tion, we will need to provide a reconstruction function ρ that is able to come
back from the low-dimensional space into the high-dimensional one of our sam-
ple dataset, as most of the dimension reduction algorithms we used are also
not designed from a generative model, and are therefore not provided with an
invertible dimension reduction function.

ρ : R
m → R

d

y Ô→ ρ(y) (1.3)

Just as for the out-of-sample extension, ρ should be as respectful as possible
of the model learned by π: applied to the embedding of the dataset X itself, it
should provide a reconstruction somehow close to the original image involved,
in such a way that after the whole process of projection, “normal” samples
should stay relatively unchanged: µM ≈ IM. It should also be a part of the
normalizing process: images reconstructed by ρ ought to be ones that are part
of the control set manifold (and thus present no trace of any anomaly).
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M

π

µ

π̃

ρ

Figure 1.1: Summary of the proposed method. Control samples (in blue) in
the manifold M are reduced in the embedding E with π. A new sample point
(in red) is then embedded in the manifold (olive point) via an extension π̃.
Finally a control correspondent (in cyan) to the test point is found by the
reconstruction function ρ, applied to the embedded point.

1.1.3 Anomaly detection

The anomaly detection itself is performed via statistical testing. First, we
split the training dataset to keep a small portion of control samples aside
(that we will call validation samples). Once we have learned the model using
the training samples, we apply our projection to these validation samples, and
subtract these projections to the original images to obtain residuals (R(V ) =
µ(V ) − V , with V the validation set). A voxel-wise standard deviation σ is
then computed over this set of residual in order to statistically confront test
samples residuals to this standard deviation: ∀Yi ∈ Y, T (Yi) = µ(Yi)−Yi

σ
, where

we denote T our testing function.

1.1.4 The need for robustness

Our proposed paradigm involves projecting a sample over our “normal space”,
with the idea that the projected sample is a normalized version of our sample.
This paradigm is easily performed over normal, or nearly normal samples, but
can be much harder for a pathological one. Indeed the heavier an anomaly
impacts people, the more it will generate outlier samples (images) that are
deeply altered from their healthy versions, and that have a deeply changed
relationship towards control samples from the training set.

This is not a problem for univariate methods, as their interest is only in
voxel-wise anomaly detection: a pathology affecting a great number of voxels
and one only affecting a few will be treated the same. This is of greater
concern however for multivariate algorithms such as ours, as they all rely on
some form of proximity to the manifold: if we recall figure 1.1 it is intuitive that
the further a sample is pathological, the further it will be from the manifold
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and the harder it will be to get a meaningful global projection of our sample
over it.

Hence, for large alterations of our images (a large number of affected vox-
els, or even a few percentage of voxels that are largely affected), we will need
to introduce robust versions of multivariate algorithms as they will inevitably
strongly decrease in performance with the percentage of altered voxels. It is
noteworthy that our focus for robustness should be on the out-of-sample exten-
sion π̃, as it is the “normalisation function” of the paradigm: the embedding
of a test sample should already have the same characteristic as an control one,
and if our out-of-sample extension is robust enough, then the reconstruction
does not need to be.

1.1.5 Conclusion

In this chapter, we presented the paradigm of high-dimensional projection that
we will use to perform our anomaly detection task. This paradigm is essentially
a three-steps problem:

• First, we need to learn a model over a set of control samples, and
provide a low-dimensional embedding that nicely captures the control
samples geometry while untangling a (very) high-dimensional dataset.
This step will be performed by dimension reduction algorithms.

• Then, we will need to extend this dimension reduction to all points
in the ambient space, and not just the ones in our control set. To
carry out this task, we will introduce out-of-sample extensions to our
dimension reduction algorithms. We also stressed out the need for multi-
variate methods to introduce a robust version of their out-of-sample
extension, capable of dealing with the pathology-induced alteration of
our data.

• Finally, we will have to provide high-dimensional images corre-
sponding to the points in the embedding as to perform a recon-
struction of the low-dimensional samples, thus completing the pro-
jection scheme we are establishing.

We also presented the final step of our anomaly detection: an individual,
voxel-wise, statistical test of the residual between our high-dimensional
projection and the original test sample. The following chapter will focus on
presenting dimension reduction techniques able to cope with the first step of
our projection paradigm.



21

1.2 Dimension Reduction Algorithms
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1.2.1 Linear Dimension Reduction Algorithms

Linear dimension reduction techniques aim to find a linear transformation
of our data that provides low dimensional features given high dimensional
data points, while trying to maximize a measure of information (e.g. mutual
information, variance, etc.). We denote X our training data, which lies in R

d,
where d is the dimensionality of our data. X is the sample mean derived from
the training set X (X = 1

Ns

∑Ns

i=1 Xi), and X̃ = X − X the centred dataset.

Principal Component Analysis

Principal Component Analysis (PCA) is the most classic dimension reduction
technique. It was originally introduced by Pearson as early as in 1901 [7] and
independently developed by Hotelling in 1933 [8]. However, it is truly with
the development of computing power and the discovery of the Singular Value
Decomposition (SVD) algorithm [9] -a method to identify the singular elements
of a matrix- that PCA has grown from a statistical method to a computer
science one, which has had a an extremely wide range of applications from
chemistry [10] to biology [11].

The aim of the PCA algorithm is to find orthogonal principal axis (i.e. an
orthogonal euclidean subspace of the ambient space) over which data can be
linearly projected. The projection over each principal axis (or component) pro-
vides a natural dimension reduction for our data: principal components being
vectors from an orthogonal basis, the representation of our data’s projection
in this basis is a low-dimensional vector of dimension the size (cardinality) of
our basis. Thus by computing a given number of principal components, we
can obtain a representation of our data point of desired dimension.

In practice, the dataset is centred (figure 1.2), and then principal compo-
nents are computed based on eigenvector decomposition (figure 1.3). Finally,
data points are orthogonally projected over these principal components (fig-
ure 1.4).

Principal axis can be derived from two equivalent paradigms. The first
paradigm is a maximum variance one: principal axis form an orthogonal basis
of “directions” (one dimensional vector spaces) which sequentially maximizes
the variance of the projected data over each direction. The first principal
component is the unit vector such that the data projection over this vector is
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Figure 1.2: PCA algorithm: Left panel presents the original dataset (in
orange), a two-dimensional multivariate heterostedastic normal distribution.
Right panel showcases the dataset after being centred.
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Figure 1.3: PCA algorithm: After centring the dataset, the first principal
component is derived from the covariance matrix eigenvectors. The direction
associated by this component is given by the blue line, while the direction
given by the second component is given by the green line in the second panel.

of maximal variance; the second principal component is then the unit vector
that maximizes the projected data variance along every direction orthogonal
to the first principal component (i.e. the PCA algorithm can be viewed as a
recursive algorithm finding the p + 1-th principal component over the residual
of the original data and its orthogonal projection over the set of the first p
ones in a Gram-Schmidt fashion).

Let us denote (u1, . . . , um) the m first principal components of the dataset
X. The first paradigm to find the first principal component of X can be
written as follows:

u1 = arg max
u∈Rd

var(X.u) s.t. ‖u‖2 = 1 (1.4)

and any principal component up+1 can be derived given the first p principal
components in the following fashion:

up+1 = arg max
u∈Rd

var(Rp.u) s.t. ‖u‖2 = 1, u ⊥ (u1, . . . , up) (1.5)
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Figure 1.4: PCA algorithm: Finally, the data is projected in the principal
component space. As we computed as much principal components as the
ambient space dimension, PCA here is just a change of frame (specifically a
rotation).

where Rp is the residual (of order p) between X and the projection of X over
the p first principal components, i.e. for each sample Xn in X, we have

Xn =
p

∑

i=1

< X̃n, ui > ui + Rp,n + X

With Rp ∈ R
Ns×d, and Rp,n ∈ R

d.
The projection model for PCA can then be written for each sample Xn as:

X̃n =
∑m

i=1 uixn,i, with ∀i ∈ J1, NsK xn,i =< X̃n, ui > (xn ∈ R
m).

This can be rewritten for convenience:

Xn = W.xn + X (1.6)

xn = W T (Xn − X) (1.7)

Where
W =

(

u1 . . . um

)

is the matrix of principal components called the projection matrix.
The second paradigm (which, as we previously mentioned, has exactly the

same solution as the first one), is a reconstruction one. Principal components
form the orthogonal subspace that best embeds the data in a compressed
sensing view: that is to say the projection over the principal components is
the linear orthogonal projection that, after reconstruction, is the closest to our
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original data with a L2 criteria. As we are looking for a number of components
far lesser than the original dimension of our data, the “compression” notion
associated with PCA appears quite intuitively with this paradigm: we can learn
the reconstruction model, and only store the samll sized dimension reductions
of our samples.

With the same notations as before, the second paradigm can quite easily
be formulated as finding the orthonormal basis u = (u1, . . . , up)

u = arg min
u∈Rp×d

‖Rp‖2 (1.8)

It can be shown that principal components are actually the eigenvectors of our
training dataset covariance matrix C, associated with the largest eigenvalues:

C =
1

Ns

Ns
∑

i=1

(Xi − X)(Xi − X)T =
1

Ns

X̃X̃T

It can also easily be shown that, as proposed in the first paradigm, each
eigenvalue associated with a principal component corresponds to the variance
of our data in the direction of the principal component, e.g. the direction of
largest variance in X is given by u1, and the associated variance is λ1, where
(λ1, . . . , λNs

) are the eigenvalues of C. Finding the eigen elements of C being
closely linked to finding the singular elements of X, the SVD algorithm is thus
particularly helpful in applying PCA to a dataset. One can derive from this
a very useful property to “automatically” select the number of components
that ought to be kept (or respectively at which we can stop), which is the
proportion of explained variance:

Cp =

∑p
i=1 λi

∑

i λi

(1.9)

this ratio is a guide on how much of the data has already been “explained”
by the first p components of PCA. A classic threshold for the proportion of
explained variance is the infamous 0.9 mark.

As we have seen in eqs. (1.6) and (1.7), the solution of both paradigm as a
dimension reduction for the training set X has the form of xn = (< X̃n, u1 >
, . . . , < X̃n, u1 >), and the associated high-dimensional projected point Wxn +
X. Furthermore, it can be shown that the out-of sample projection of any
given sample Y (not necessarily in the training set X), if written as such, is
also the solution to the least-squares problem for projecting Y over X principal
directions of variance. Therefore, we can now connect the PCA algorithm
to the projection paradigm we introduced in section 1.1.2. The embedding
of our data point Y in the low-dimensional euclidean space M is given by
y = π̃(Y ) = W T (Y −X), its reconstruction ρ(y) = Wy+X̃, and the associated
high-dimensional projection is then just µ(Y ) = ρ◦π̃(Y ) = WW T (Y −X)+X.

Figure 1.5 presents the projection of a set of noisy, linearly distributed,
data points, such that the projection of each two dimensional data point is
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a real-valued one dimensional feature, representing the dot product between
our data point and the principal vector obtained by the PCA, which is a
direction vector of the orange line. Figure 1.6 showcases another test in which
the data is this time non-linearly distributed on a one dimensional manifold
that is voluntarily approximated for example purposes as a one dimensional
euclidean space by the PCA algorithm. We can see that in this case, both the
low-dimensional reduction and high-dimensional projection are untrue to the
data distribution, as points diametrically opposed on the circle have nearly
the same projection and reconstruction. Thus we will have to carefully select
the number of components that we will use while performing linear dimension
reduction.

Figure 1.5: Projection of samples over the first PCA component in a regression
scheme: the blue dotted line represents the original model from which data
points are sampled before adding random gaussian noise. The orange line
represents the linear regression corresponding to the L2 minimization presented
in the second paradigm of PCA. Dotted line between the orthogonal projection
(orange points) and original points corresponds to the residual.

Remark: As it is based on an eigen decomposition, PCA (and all eigen-
based dimension reduction algorithms for that matter) is limited by the fun-
damental theorems of linear algebra. In this context, by trying to decompose
a matrix of size Ns × d, we cannot hope to recover more eigenvectors than
min(ns, d) (and more generally no more than rank(X) ≤ min(ns, d)). As the
number of dimensions we have to deal with is generally far greater than the
number of samples we can rely on, the number of principal components that
we are effectively able to compute is lesser than the number of samples we
gathered.
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Figure 1.6: Projection where the data is non linearly distributed. Here data
points are sampled over a circle (a one dimensional manifold), and we project
them over a one dimensional euclidean space in a linear fashion with PCA.
The obtained projection is widely inadequate.

1.2.2 Non Linear Dimension Reduction Algorithms

Ideas for non-linear dimension reduction techniques have been developed as
early as in the 1950s with noticeable examples such as Multidimensional Scal-
ing (MDS) [12, 13], whose purpose is to find points in a lower dimensional space
that best respects a certain metric between points in the high-dimensional
space (usually euclidean distances, or rank ordering of these distances), or
later the Self Organizing Map (SOM) algorithm [14, 15] that fits a grid in low
dimension to high-dimensional data to find a non-linear mapping from a low-
dimensional space to the data. The kernel PCA algorithm (KPCA) [16, 17],
provides a kernel extension to the previously introduced PCA algorithm that,
by using the kernel trick [18], is also able to project non linearly distributed
data along greatest variance directions.

The emphasis of all these techniques was always to modelize a set sampling
a manifold embedded in an euclidean space, albeit a (very) low-dimensional
one. Our focus in this thesis was on more recent non linear methods inspired
or directly derived from these ones.

The interest of non-linear dimension reduction methods is obviously highly
dependent of the dataset it is aimed to be used on. In the case of samples
distributed as in figure 1.5, none of them would be more relevant than PCA for
instance, as this dataset is linearly distributed (with a bit of noise). However,
it is quite clear from figure 1.6 that there is a lot of improvement to be expected
from non linear methods over such a kind of dataset, provided that the non
linear algorithms we use are able to “untangle” the non linearities in the data
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with the correct amount of dimensions.

Isometric Feature Mapping

Isometric Feature Mapping [19, 20] (Isomap) is one of the currently most
used non-linear dimension reduction algorithm. As the vast majority of other
non-linear algorithms, it relies on the hypothesis that our data lies in a low-
dimensional manifold, set in a high dimensional space, and it is directly relying
on this assumption in the core of its algorithm. Indeed, Isomap aims at pro-
viding an embedding for a training set in an isometric way, that reproduces
its global geometry by preserving in the low-dimensional space an estimation
of geodesic distances (geodesic distances are the closest distances between two
points on a manifold, while this distance must be the length of a curve linking
the two points by staying in the manifold, see figure 1.7) between the dataset
samples. Such an approach (isometric), is inherently flawed to deal with non
isometric manifolds [20, 21] (manifolds that are isometric result from an iso-
metric mapping of a closed, convex set in a low-dimensional euclidean space,
into a high-dimensional one), as we will see further on, but still very effective
on natural image manifolds.

A

B

Figure 1.7: A trivial illustration of the geodesic distances between two points
over a manifold. Here the manifold is a one dimensional circle manifold embed-
ded in the two dimensional plan. The red path links both points by realizing
the euclidean distance, while the green curve links the points by staying on
the manifold (and is of minimal length). Its length is the geodesic distance
between A and B.

In the case of Isomap, said estimation of geodesic distances is done by cre-
ating a graph over our training samples. This graph is created by performing a
k-neighbourhood search (with L2 euclidean distances to find neighbours) over
our samples, and computing the associated distances between them. Then,
with the help of Dijkstra’s algorithm [22] as a shortest-path finding algorithm,
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we approximate pairwise geodesic paths between our samples by a set of local
neighbourhood-constrained paths, ensuring that a global path links two sam-
ples by “travelling” from sample to sample while each local step is done in the
neighbourhood of the current sample (see figure 1.8 for a visualisation of the
distance computation).

Figure 1.8: A showcase for the geodesic distance computation by the Isomap
algorithm. Circles represent the neighbourhood of the data points on the path
(only half of them are represented). The global path (in green), links the
starting points (purple fringed points), by assembling local paths (in green)
that pass from neighbourhood to neighbourhood. Dijkstra’s algorithm ensures
that given such constraints, the global green path is the shortest one between
both starting points.

Providing a low-dimensional embedding is done while attempting to pre-
serve the distances by ways of classical Multidimensional Scaling [23] (MDS).
Essentially what the classical MDS does, given pairwise distances between all
of our sample points and a lower dimension m, is trying to set points in the
lower dimensional space (or embedding) corresponding to the ones in our train-
ing data while keeping distances between embedding points as close as possible
as the precomputed ones. This amounts to finding the solution of the following
problem:

(x1, . . . , xNs
) = arg min

RNs×m

∑

i,j(dij − d̂ij)
2

∑

i,j d2
ij

(1.10)

with d̂ij = ‖xi −xj‖2 being the euclidean distances between two sample dimen-
sion reductions (i.e. distances in feature space) and dij the original distances.
Interestingly, the solution to this problem is quite close to the PCA solution
previously introduced, in the sense that it is also provided by the eigenvectors
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of an affinity matrix. However this time, instead of a covariance matrix, MDS
provides one created from the geodesic distances that has been normalized by
double centring: K ′ = −1

2
JKJ , where J = INs

− 1
Ns

11
T . The double centring

is a way to transform a distance kernel into a dot-product one.

Locally Linear Embedding

Locally Linear Embedding (LLE) has been introduced [24] nearly simulta-
neously to Isomap. The LLE algorithm has obviously the same purpose as
Isomap (performing a non-linear dimension reduction of a training dataset
that “untangles” the data in the embedding) and both algorithms are using
the manifold hypothesis (and thus manifold properties) to achieve this pur-
pose. However, the two algorithms differ in the way they apply these manifold
properties to obtain their embedding.

As the name suggests, LLE is a locally linear method. It makes use of the
local linear property of the manifolds (see appendix 5.1.3), whereas Isomap
was relying on the existence of a distance intrinsic to the manifold, (suppos-
edly) more suited to express relationships between data samples. Here, LLE is
applying a linear algorithm of dimension reduction in neighbourhoods of each
data point where, under correct sampling of the manifold and given a correct
choice of embedding dimension, the dataset is indeed locally linear.

For each sample, LLE provides a linear projection of the data point: (linear)
barycentre weights according to its closest L2 neighbours are computed, and
the algorithm then tries to find a low dimensional space that ensures all these
barycentric weights are respected, in the same way that Isomap would attempt
to respect ordering in pairwise distances.

The LLE optimization problem of finding the weights for each neighbours
of each sample given in equation 1.11 can analytically be solved [24, 25].

∀Xn ∈ X, Wp = arg min
w

‖Xn −
∑

i∈N (Xn)

Xiwi‖2,

s.t.
∑

i

wi = 1
(1.11)

where N (Xn) is the neighbourhood of our sample Xn (i.e. the indices of
training samples closest to it in euclidean distance). Finding a corresponding
embedding that best preserves the weights computed for each sample is a
matter of optimizing the following quadratic form:

(x1, . . . , xNs
) = arg min

x∈RNs×m

∑

i

‖xi −
∑

j

(Wi)jxj‖2 (1.12)

which, as a quadratic form, is coincidentally solved via an eigenvector de-
composition, with the following constraints to make it a well-posed problem:
∑

i xi = 0 (centred embedding) and 1
Ns

∑

i xix
T
i = INs

(unit covariance embed-
ding).
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An illustration of the algorithms two steps is given in figure 1.9, and an
execution of the algorithm over three toy example datasets will be provided
in figs. 1.10, 1.11 and 1.13.

E

M

Xp

(Wp)i
(Wp)i

Figure 1.9: An illustration of the LLE algorithm. Left panel presents the
high- dimensional training data in its underlying manifold. Barycentric weights
(Wn)i are learned for each sample Xn in an analytic fashion. The sample data
is then projected in a low-dimensional embedding (right panel) that ensures
that barycentric weights are respected for each low-dimensional sample. The
embedding supposedly captures the data inherent non-linearities to restore a
linear behaviour in low-dimension.

Diffusion Maps

Diffusion Maps have been developed since 2005 [26, 27, 28] and are a gen-
eralization of numerous non-linear dimension reduction techniques (laplacian
eigenmaps [29], hessian eigenmaps [30], or even LLE) that uses kernel and
graph properties such as deriving the laplacian of a graph [31, 32, 33] (i.e.

the difference between the matrix of its vertices degrees and its adjacency ma-
trix), to perform their dimension reduction. Diffusion Maps aim at providing
a good geometric representation of our dataset by using a different paradigm
of dimension reduction than the ones used by PCA or Isomap.

The main idea here is to represent our data on a connected graph. We then
define a Markov chain over the data graph by designing a transition matrix
between our different data samples. The Markov chain is designed by using
a kernel over the usual pairwise L2 distances between samples. The kernel
that will be used (usually the gaussian kernel, as it has the nice property
of being invariant by rotations and translations) is an approximation of the
“local geometry in X” and each kernel, having its inherent properties, can have
a different effect over the dataset modelization. The newly designed Markov
chain over our dataset is the direct modelization of a heat diffusion process from
which the algorithm gets its name. Using a kernelized version of the euclidean
distances yields as a result a new distance called the diffusion distance, that
somehow is an approximation of the degree of difficulty to reach a point starting
from another one over the manifold M (or the mean time needed to travel
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between both point in a sense). One selling point of the Isomap and LLE
algorithms was their obvious robustness to many geometric transformations of
the training data: neighbours weights are unaffected by rotations, translations
or scalings (homothetic transformations). This diffusion distance, while only
being to one the two former (rotations), offers the advantage of being more
robust to outlier [26, 34] and to be differentiable (which will be particularly
helpful in optimization schemes).

A natural dimension reduction arises when we consider that we modelized
our dataset with a Markov chain: the behaviour of the chain over long periods
of transitions is a natural way of finding out the profound relationships between
samples (samples that are frequently “visited” together by the chain over a
short period of time are bound to be part of the same geometrical area in
M). Recalling that the long-term behaviour of a Markov chain is given by
its first eigenvectors, we get intuitively that the local geometrical aspect of
our manifold can be captured by the eigenvectors of the normalized laplacian
corresponding to the largest eigenvectors of L. A quick pseudocode for the
Diffusion Maps algorithm is given in algorithm 1.

Algorithm 1 Diffusion Maps algorithm

Require: X dataset, γ

1: dij = ‖Xi − Xj‖2 ⊲ Compute pairwise distances
2: Kij = exp(−dij

2γ
) ⊲ Compute affinity matrix

di =
∑

j Kij

3: Kij = Kij√
didj

⊲ Normalize the kernel matrix

di =
∑

j Kij

4: Lij = Kij

di
⊲ Normalize the Laplacian matrix

5: Return eigenvectors of L

1.2.3 Toy Examples

We designed several toy examples to highlight the different strengths and flaws
of the dimension reduction techniques presented in the previous section. The
two first are two dimensional manifolds embedded in the three dimensional
space, but with different properties. The first is the “fish bowl” dataset: a
severed sphere uniformly sampled from two angles (polar and azimuthal angles)
but for which the elevation (or altitude) is limited to a range strictly included
in the one of the original sphere (for instance an altitude inferior to 0.8 for a
unit sphere). Parametrization for the fish bowl according to its two angles is
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given in equation 1.13.

φ ∈ [0, 2π], θ ∈ arccos([−1, 0.8]),















x = sin(θ) cos(φ)

y = sin(θ) sin(φ)

z = cos(θ)

(1.13)

The second classic dataset is the “swiss roll” dataset, which is basically
a rectangular layer that has been rolled over itself in a spiral fashion and is
thus embedded in the three dimensional space. The swiss roll parametrization
according to the original width of the rectangle and to the angle resulting to
the curvature is given in equation 1.14.

φ ∈ [0, 3 ∗ π], Z ∈ [0, 10],















x = sin(φ)φ

6

y = cos(φ)φ

6

z = Z

(1.14)

Lastly, a more practical toy example dataset is given by the “astronaut”
dataset, for which we naturally embed a two-dimensional manifold into a high-
dimensional space: indeed we consider an original image (the astronaut image
of figure 1.12) over which we apply a set of two different transformations (whose
parameters are uniformly sampled over a rectangle), a rotation and a scaling.
The rotation angle is sampled between 0 and π, while the images can be scaled
from 10% of the original size (with zero padding) to full size. By composing
both transformations over the original image, we create a dataset in the original
image space of very high dimension (256 × 256), linked to our 2D rectangle by
an (obviously) non-linear (and non-trivial) function.

Figures 1.10, 1.11 and 1.13 present applications of the PCA, Isomap, LLE
and Diffusion Maps algorithms over our three toy datasets.
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Swiss roll

PCA ISO

LLE DM

Figure 1.10: A classic toy example over which we applied our algorithm. Left
panel presents the original 3D dataset that is sampled on the “swiss roll” 2D
manifold, and the four right panels showcase the 2D embedding obtained from
our dimensions reduction algorithms on this training set.

As we can see from figure 1.10, the PCA algorithm is unable to provide an
untangled reduction dimension for the swiss roll dataset and provides merely
an orthogonal projection over two of the three basis vectors, while Isomap is
perfectly able to deal with the swiss roll, and its inherent data geometry is
nicely recovered. The application of the LLE algorithm over the swiss roll
is nearly as good as the one from Isomap: even if the inherent geometry of
the dataset is not correctly estimated by LLE, the embedding does manage
to untangle the manifold from its three dimensional structure to a correct two
dimensional one, in which the relationships between our samples are linear.
The dimension reduction of the diffusion maps, while being the most peculiar
is nearly correct: even if the behaviour in this low dimensional subspace cannot
be linear, local neighbourhoods of samples are constituted according to their
sampling parameter, and the swiss roll is partly untangled.
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Figure 1.11: A classic toy example over which we applied our algorithm. Top
left panel presents the original 3D dataset that is sampled on the “fish bowl”
2D manifold, and the four right panels showcase the 2D embedding obtained
from our dimensions reduction algorithms on this training set. Top row is
coloured with a colormap indexed on the azimuthal angle φ, and bottom row
is coloured with a colormap indexed on the polar angle θ

The fish bowl dataset is absolutely not correctly embedded, neither by
PCA, Isomap nor LLE (although the embedding provided by LLE is better
than the Isomap one), and this is due to the fact there is no possiblity that
a global method such as Isomap (or LLE), with its underlying isometric as-
sumption, would find a way to represent the fish bowl in two dimensions while
correctly representing the geodesic distances computed over the severed sphere
in two dimensions (it would violate the fact that the sphere is indeed a non-
euclidean manifold and cannot be mapped isometrically from a set of R

2 into
R

3). Here the dimension reduction of Isomap is merely a projection in the
most basic sense over the xy plane, while the dimension reduction of LLE
slightly untangles the fish bowl but is not completely able to separate points
that are nearly diametrically opposed on the sphere. The dimension reduction
obtained by the Diffusion Maps on the fish bowl dataset is quite satisfying:
the two dimensional embedding nicely “opens” the sphere in the most intuitive
way to obtain a nearly optimal embedding for this dataset.
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Figure 1.12: The astronaut image (from astronaut Eileen Collins, courtesy of
NASA Great Images database) which originates the eponym dataset.

The results of our algorithms on the astronaut dataset are displayed on
figure 1.13. Each scatter plot is coloured according to the rotation parameter
used to sample our points. We also selected six representative samples from
the dataset that we pointed out in each scatter plot. As before, the two di-
mensional representation found by PCA is not a good one for our dataset, as it
mixes points with disparate inherent parameters of rotation and scaling in very
close neighbourhoods. The Isomap and LLE embeddings are both excellent,
untangling the data in the two dimensional plane in which we have a linear be-
haviour, and respecting both sampling parameters (as can be observed by the
colormap and the six representative images repartition). The Diffusion Maps
result is ambiguous: we do obtain an untangled representation of our dataset
in two dimensions, also respecting both parameters, but the relationship be-
tween our points inside this representation is noticeably non linear according
to the scale parameter: a small fraction of the distance required to get from
the lowest scaling to full scaling is sufficient to get to half of the full scaling
parameter. This can affect algorithms of reconstruction based on distances for
instance.

It is crucial to denote that, while being hopelessly inefficient to recover
the true geometric structure underlying a manifold embedded into a higher
dimensional space given the correct number of dimensions, PCA is perfectly
able to do so using a higher one: figure 1.14 presents two three dimensional
views of the embedding obtained by PCA with its three first components. It
is noticeable that now it is a much more correct dimension reduction for our
dataset. Thus the only worry we should have while using PCA as a dimension
reduction algorithm, even on non linear datasets, is making sure we use enough
components in our dimension reduction.
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Figure 1.13: A classic toy example over which we applied our algorithm. The
four panels represent the dimension reduction of each of our four algorithms
over the astronaut dataset. Colormap is done accordingly to the rotation angle
(as it is the hardest to recover). The same six examples have been pointed out
in each algorithm and are meant to be representative of the dataset.
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Figure 1.14: Three dimensional views of the astronaut dataset dimension re-
duction obtained by PCA. The embedding of PCA in 3D spans a two dimen-
sional manifold.

1.2.4 Conclusion

We have presented a wide variety of dimension reduction algorithms as our
first step of anomaly detection. For linear dimension reduction algorithms we
focused on the Principle Component Analysis algorithm, while we pre-
sented three non-linear algorithms: Isomap, LLE and the Diffusion Maps.
We also presented a small set of toy examples over which we applied our algo-
rithms, allowing us to gather some preliminary results about the behaviour of
these techniques, which can be synthesized as follows:

• Non-linear dataset are impossible to be recovered with the cor-
rect amount of dimension with linear methods, and can even be
very challenging for the non-linear ones depending on the geomet-
ric structure and the sampling of the underlying manifold.

• Given enough dimensions, PCA can find an acceptable dimension re-
duction for a non-linear dataset.

• The number of dimensions that we will use to represent our dataset is
limited by the number of training samples available.

• All methods of dimension reduction show impressive results in reduc-
ing the dimensionality of image datasets.

While we solved the problem of getting a low-dimensional representation
of our training data that untangled it while respecting its inherent geometry,
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we did not provide (apart from the PCA algorithm) a way of applying this
reduction dimension to any sample that we wish to test for anomaly detection.
In the following section, we will strive to provide an out-of-sample extension
for the non-linear dimension reduction algorithms.
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1.3 Out-of-sample extension
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As we previously mentioned in sections 1.1 and 1.2, a major downside
of most dimension reduction algorithms is that once an embedding has been
provided for the training set and a model of normality has been learned, the
projection of a new sample is not as straightforward as one could expect,
as these techniques were mostly designed to be used only once over a whole
dataset and not several times over different datasets.

In this section we will address the problem of providing an out-of-sample
extension to the dimension reduction methods we presented in 1.2 and obtain
a model that we can easily apply to any given images of the space from which
the control samples are sampled (or any given vector of the ambient space for
that matter). This is not an easy problem as the samples for which we want
to find an extension do not necessarily belong to the manifold of “normal”
subjects M and that as an additional constraint, we wish for the extension of
any point not belonging to M to have an extension close to the one that its
unaltered counterpart would have.

We would also wish to ensure, as stated in section 1.1.4, that our out-of-
sample extension is somehow robust. Indeed, the dimension reduction of the
training set itself has no need for robustness (although it could be useful in
the case of a training set polluted with outliers) as it is only dealing with
subject which are representatives of the normality and thus present no sign
of a pathology. The second step of our paradigm being the out-of-sample
extension applied to test samples, this is our first and main opportunity to
introduce robustness in our algorithms, as to avoid for pathological samples to
have an accordingly abnormal dimension reduction (if test samples have the
dimension reduction corresponding to their healthy counterparts, then there
is no need for a robust reconstruction).

We will first take a look at simple case of the PCA algorithm.

1.3.1 PCA out-of-sample extension

As we already expressed in 1.2.1, PCA provides a natural out-of-sample ex-
tension that is analytically derived from the dimension reduction function ob-
tained in the training phase over the control samples: π(X) = W T (X − X)
and π̃(Y ) = W T (Y − X). We also stated in 1.2.1 that with such a defini-
tion, the out-of-sample extension for Y is also the orthogonal projection of Y
over the principal components of X. This gives PCA the unique property of
having both an analytical expression for the dimension reduction (as opposed
to non-linear dimension reduction that only provide the final low-dimensional
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points), and the out-of-sample extension. Unfortunately, non-linear dimension
reduction algorithms do not share this extremely helpful property and we will
need to cope for it ourselves to provide an out-of-sample extension hopefully
as equally endowed with statistical properties as the PCA one.

The PCA out-of-sample extension is not inherently robust in our context
of anomaly detection, as it heavily relies on L2 distances or relationships, and
as this distances can be largely affected by the pathology we are focusing on.
Therefore, in an effort to make it more robust to anomalies, Vik et al. [1, 35]
have proposed a robust PCA-based algorithm for data projection in high di-
mension (i.e. the hereby presented paradigm) able to cope with a pathology
altering test samples. An additional modelization [35] can be made in the
embedding space by adding a prior distribution (mixture of gaussians or non-
parametric) to the training set dimension reduction, thus transforming the
robust, maximum likelihood estimation into a maximum a posteriori estima-
tion, which in turn can be solved by adding a mean shift procedure to the
M-estimation scheme.

Let us now look into the extension of non-linear dimension reduction tech-
niques.

1.3.2 The Nyström extension

Fortunately for non-linear methods, we can make use of an old eigenfunction
extension technique called the Nyström extension [36, 37], that was originally
designed to help finding numerical solutions to integral equations. It has been
widely used over the recent years in large dataset sampling, to approximate a
kernel with fewer data points in order to reduce memory and computational
costs [38, 39]. In our context, we will use the Nyström method to provide an
out-of-sample extension to our projection method π. This extension is two-
fold: as it is a kernel method, we first need to extend the kernel K used in our
non-linear dimension reduction algorithms (we will denote K̃ this extension).
The extended kernel is then used to provide the out-of-sample extension given
the Nyström extension formula. Most of the kernel extensions for dimension
reduction algorithms can be found in [40]. Each kernel extension is designed
to be consistent with the natural properties of the kernel that is being used
(geodesic extension of the Dijkstra’s algorithm used in Isomap when adding a
new data point to the training graph, local neighbourhood extension for LLE
and the diffusion process of the Diffusion Maps). The idea being that we are
using a kernel that is defined over our whole ambient space, but only computed
this kernel over our training set. The kernel extensions for Isomap, LLE and
the Diffusion Maps can be found in equations eqs. (1.15) to (1.17).

K̃ISO(Y, Xi) = min
U∈NX(Y )

KISO(U, Xi) + d(Y, U) (1.15)

From equation 1.15, we get that the Isomap kernel extension is fairly intuitive:
a new point kernel extension is based on the one of its neighbours, as it is done
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for any point in the training set. As we are computing geodesic distances, the
geodesic distance from the new point to any point in the training set is derived
as the path of minimal distance from it through one of its neighbour to the
destination.

K̃LLE(Y, Xi) = w(Y, Xi) (1.16)

The extension 1.16 of the LLE kernel is straightforward. The LLE kernel is
neither a distance nor a dot-product kernel, but a (barycentric) weight kernel.
The extension to a new point is simply the computation of the barycentric
weight of this test point Y over the dataset X: w(Y, Xi) Ó= 0 ⇔ Xi ∈ NX(Y )
where NX is the neighbourhood of any point in the dataset X. That is to say
w(Y ) satisfies the optimization problem:

w(Y ) = arg min
w∈RNs

‖Y −
Ns
∑

i=1

wiXi‖2
2 s.t. wi Ó= 0 ⇔ Xi ∈ NX(Y )

As for the extension KDM of the Diffusion Maps kernel, we have:

K̃DM(Y, Xi) =
k(Y, Xi)

√

Ej[k(Y, Xj)]Ej[k(Xi, Xj)]
(1.17)

with Ej[k(Y, Xj)] = 1
Ns

∑

p k(Y, Xp) and where k is the diffusion kernel, i.e.

the kernel used to provide distances accordingly to the diffusion process. The
most widely used kernel and the one that we have been using in this thesis, is
the notorious gaussian kernel given in equation 1.18:

∀a, b ∈ R
d, kg(a, b) = exp

(

−‖a − b‖2
2

2σ2

)

(1.18)

where σ is often called the bandwidth parameter.
Now that extensions for each of the kernels have been provided, we can

extend the dimension reduction algorithms with the help of Nyström formula:

∀k ∈ J1, mK, π̃k(Y ) =
1

λk

N
∑

i=1

πk(Xi)K̃(Y, Xi) (1.19)

Where X = (X1, . . . , XN) is the training set, K̃ is the extended kernel and λk

the k-th largest eigenvalue in the spectral decomposition of K̃. A short analysis
of this equation tells us that that the new embedded point is constructed
as a linear combination of the embedded training sample, weighted by the
kernel distances from the test point to the training set (see figure 1.15 as an
illustration of the out-of-sample extension). This is noteworthy and could be
a benefit of the Nyström method, as this will have a strong normalizing effect
over anomalous test samples.
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E

M

π̃

Figure 1.15: An illustration of the out of sample extension step: distances
between the new sample (red point) and data points (blue points) are used to
extend the kernel and the formula of 1.19 provides the point in the embedding
corresponding to the test sample.

The out-of sample problem could also be tackled with other means of re-
gression, as we are trying to predict the embedding of a new test point cor-
responding to a high dimensional point, a task we already did for the whole
training set. We could thus use a supervised regression algorithm (such as lin-
ear regression, kernel ridge regression [41] random forest [42], etc.) and train
it over our original pairs of high dimensional/low dimensional embedded data.
However, none of this methods extrapolate correctly the geometry of our data
and the Nyström method has the advantage of statistically converging to a
correct estimation of our eigenvectors. It also provides a “normalizing” effect,
as it consists in a linear projection over the training embedding. However, it
is not a robust method of out-of- sample, as it is also strongly affected (via

the kernel) by anomalies. Indeed, a more abnormal subject will have a more
“uniform” kernel, hence a dimension reduction corresponding to the mean of
the training embedding.

Figure 1.16 illustrates as an example a comparison between out-of-sample
extensions of the Diffusion Maps on a trivial dataset (three quarters of a circle
of unit radius, colormap given by the sampled angle). We observe an expected
behaviour from the nearest neighbour and linear regressions: the nearest neigh-
bour regression induce a Vornoï tessellation of the space according to the angle
of the closest neighbours of each point, while the linear regression only captures
one direction of variance for the angle. The Nyström extension, on its side,
is much closer to the ground truth with a smoother evolution than the near-
est neighbours one, and a smaller “border” between the angle values extrema.
However, as can be seen on figure 1.17, if we try to perform an out-of-sample
extension with the Nyström method on points farther than a certain threshold
(established by the kernel used in the dimension reduction method), the pro-
vided extension is only the mean of all training set embeddings, which could
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Figure 1.16: A comparison of different out-of sample solutions for the extension
of a dimension reduction. Top left presents the original data, coloured by its
dimension reduction obtained with isomap, while the other three panels present
respectively the extension of: top-right/Nyström, bottom-left/K-neighbours
regression, bottom-right/Linear regression. The domain of the represented
square is [−1, 1]2

be seen in 1.19: as a point is far from every training samples, its kernel values
will all be quite close and thus the linear combination will translate into a
mean.

1.3.3 Partial Conclusion

In this section, we have highlighted the need for an out-of-sample extension
to our dimension reduction techniques, and have presented a solution for
both the linear one (the inherent extension of PCA), and the non-linear ones
with the help of the Nyström method, an eigenfunction extension function
widely used in kernel methods. We stressed out the need for our out-of-
sample extension to be robust, and presented a robust method based on
the PCA algorithm. Let us now look into the preimage problem for non-
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Figure 1.17: A farther look (the domain is now [−5, 5]2) of the out-of-sample
extension showcased in figure 1.16 for the Nyström method (top-right panel).
Points farther than a given threshold have all the same extension corresponding
to the mean training set embedding.

linear methods.
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1.4 Preimage Problem
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Just as for the out-of-sample problem, non-linear dimension reduction tech-
niques are not equipped with an inner reconstruction method (i.e. a method
to provide a high-dimensional image - called the preimage- corresponding to
a low-dimensional point in the embedding). Finding this preimage is an ill-
defined and complex problem as there is no cause for it to exist [17], nor for it
to be unique.

As we are not looking for an exact preimage but rather an approximation of
it (and actually, in the case where an exact analytic way of finding a preimage
is available, results with it are worse since an exact preimage does not generally
exist [43]), the pre-image problem can be tackled numerically by treating it
like a regression problem. However, we will first deal with the special cases of
PCA and then of kernel methods, as all the methods we presented are kernel
ones.

1.4.1 PCA reconstruction

As we already stated in section 1.2.1 and in similar fashion to the out-of-sample
extension from section 1.3.1, PCA is equipped with an inherent reconstruction
method, which was given by the trivial formula of equation 1.7 as: ρ(xn) =
Wxn + X. This reconstruction is obviously linear, but as opposed to what we
will see further on, not directly based on training samples, but instead on the
eigenvectors obtained in the principal components decomposition obtains in
the training phase.

1.4.2 The Preimage Problem in Kernel Methods

The preimage problem has been extensively addressed in the context of kernel
methods, in particular for the kernel PCA [16] preimage problem [44, 17, 45,
43, 46, 47], in the context of image denoising (mainly applied to the notorious
MNIST dataset). he peculiarity of [46] being that it connects the problem of
finding a high-dimensional pre-image to the one of finding a low-dimensional
out-of-sample extension with the Nyström approach. All the preimage meth-
ods described in the literature are quite similar, in the sense that they rely
on kernel methods properties to provide a solution to the pre-image problem,
especially the definite positiveness of the kernel being used. The Isomap and
LLE kernels, however, are not positive definite kernels, and do not apply for a
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solution such as the Kernel PCA one. The general form of the solution 1.20 for
Kernel PCA is nevertheless a good source of inspiration for finding a solution
to the LLE and Isomap problems.

∑

i αiK(Y, Xi)Xi
∑

i αiK(Y, Xi)
(1.20)

where the αi denote a probabilistic weighting of the samples.

1.4.3 The Nadaraya-Watson Kernel Regression

The expression given in 1.20 is unmistakeably close to a form of Nadaraya-
Watson Kernel Regression [48] (NWKR). NWKR is a non-parametric, unsu-
pervised, statistical method of multivariate regression based on kernel density
estimation. Given a kernel K (that can be extended in K̃), the formula for
NWKR is the one from equation 1.21. In our context, it can be applied to
solving the pre-image problem [49, 50] (both based on [51]) by providing a
high-dimensional image corresponding to a low-dimensional embedding point,
according to its relationship to the training embedding points with the kernel,
and based on the high-dimensional training points.

ρ(y) =

∑N
i=1 K̃(Xi, y)Xi

∑N
i=1 K̃(Xi, y)

(1.21)

A commonly used kernel for regression is the gaussian kernel with bandwidth
parameter σ. For two sample points Xi, Xj of the original space:

K(Xi, Xj) = exp

(

−‖π(Xi) − π(Xj)‖2

σ

)

(1.22)

And a natural extension arises for a new embedding sample point y:

K̃(Xi, y) = exp

(

−‖π(Xi) − y‖2

σ

)

(1.23)

The bandwidth of the gaussian kernel can either be automatically estimated
as σ = mean{‖π(Xi) − π(Xj)‖2}, ∀i, j ∈ J1, NK}, or by cross-correlation over
our training set by minimizing the mean squared error of reconstruction.

A great advantage of taking the gaussian kernel is that its exponential decay
provides a natural “neighbour selection” for a new sample among the training
points in the embedding: numerically, after the kernel evaluation, only points
in the embedding sufficiently close to our test points will have non-zero kernel
values.

Figure 1.18 illustrates the reconstruction process with kernel regression:
first we compute the kernel distances ki, then we perform a linear combination
of all our training set according to the corresponding weights.

Just as for the out-of sample problem, this could be treated as a simple
regression problem where we try to predict high dimensional images coming
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Figure 1.18: Illustration of the preimage computation via the Nadaraya-
Watson Kernel Regression

from low dimensional embedding, and we can indeed see our solution to this
problem as one. However, we will see in the following section that in addition
of making a nice link with kernel pre-image methods and being extremely fast
to compute, the Nadaraya-Watson kernel regression also fits wonderfully well
as a projection method for our anomaly detection.

1.4.4 Diffusion Maps and Original Space Gradient

As previously stated in section 1.2.2, the Diffusion Maps algorithm comes
equipped with a diffusion distance in its embedding, which possesses the nice
property of being differentiable and, provided that we correctly chose the kernel
associated with the algorithm, of being analytically derivable. Here lies the
idea exploited in [52] in the context of shape priors to obtain a preimage:
try to find a high dimensional image in the original space minimizing the
diffusion distance (i.e. the euclidean distance in the reduced space) between
the test image and the out-of-sample extension of the image we are doing the
optimization on. This optimization is non-convex and thus of course highly
dependent of the initial guess, but it also provides a much larger search space
for reconstruction than the training points convex hull on which we worked in
the previous sections.

The major flaw of this method is that the optimization is done in the high
dimensional space, and thus is quite computationally intensive and difficult to
do. Equation 1.24 presents the optimization that needs to be solved to obtain
a preimage.

µ(Y ) = arg min
Z

‖π̃(Z) − π̃(Y )‖ (1.24)

with some constraint to avoid trivial solutions, such as:

Z ∈ CX(Y )

where CX(Y ) is the convex hull formed by the closest neighbours of Y in the



48

training set X. More details on the reconstruction problem for the DM can be
found in the dedicated section 2.3.2.

1.4.5 Partial Conclusion

In this section, we presented several approaches to perform a reconstruction
from the low-dimensional embedding to the ambient space, also called the pre-
image problem. As it is an ill-posed problem, we established that we would
look for an approximate pre-image using numerical methods.

This problem has been dealt with for the different situations corresponding
to each class of algorithms:

• In the case of PCA, a linear reconstruction based on the principal
components is inherently part of the algorithm.

• For kernel methods with a positive definite kernel, various methods of
obtaining a preimage can be obtained, involving optimization schemes.

• For non-positive definite kernels such as Isomap or LLE, a reconstruc-
tion inspired by the positive definite case can be computed, using the
Nadaray-Watson kernel regression.

• Finally for the Diffusion Maps, as it provides an embedding distance
differentiable in the ambient space, an optimization procedure allows
for a pre-image computation.
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1.5 Deep Learning Methods

Over the course of recent years, deep learning techniques have taken an in-
creasing place in computer vision methods (and publications). With a turning
point being the introduction of the backpropagation algorithm [53, 54] and
help from the rise of computing power nearly following Moore’s law in Graphics
Processing Units, neural network based algorithms (that can be traced all the
way back to the 1950s [55, 56]) have skyrocketed to undoubtedly become the
most popular machine learning techniques nowadays. With extremely notori-
ous applications in seemingly simple tasks such as character recognition [57]
or image recognition [58], but also in fields closer to our paradigm, such as
image synthesis with the successive apparition of Deep Belief Networks [59]
(DBN), Restricted Boltzmann machine [60] (RBM) and Generative Adversar-
ial Networks[61, 62] (GANs), the latter being now one of the gold standard
for audio or image synthesis. In relation to our domain, some deep learning
techniques have had a tremendous success [63], and are now extremely popular.

An observant reader should have noticed at this point the closeness be-
tween our paradigm and a specific class of neural networks being auto-encoders.
These deep learning algorithms provide multiple representations of our data
with decreasing dimensionality, with non-linear relationships from one repre-
sentation to the next, leading to a final low-dimensional representation of our
data which is reconstructed step by step with representations of increasing
dimensionality into a data point of dimensionality equal to the original point.
Thus, synthetically an auto-encoder consists in a non-linear dimension reduc-
tion step, and a non-linear reconstruction one, which is indeed close to the
projection paradigm we are using. In relation to the paradigm, auto-encoders
have the amazing properties of having not only the out-of-sample extension
but also the reconstruction built-in with the dimension reduction into only
one method. Starting from a simple dense, feed-forward neural network with
a single intermediate layer and “linear activation functions” (which can be
shown to be equivalent to the modelization of PCA [64, 65]), autoencoders
have evolved into deep networks with complex layers and modelizations, for
instance sparse [66], variational [67] or convolutional [68] autoencoders.

Nevertheless, to the best of our knowing, neither auto-encoders nor GANs
are yet used to perform anomaly detection in the same sense that we are doing
in a 3D setting. While we would not provide a reason for real researchers, we
should try to explain why we did not use this kind of techniques ourselves.
First, deep learning algorithms and especially the recent kinds of deep con-
volutional autoencoders/GANs are incredible algorithms, capable of learning
extremely complex models over non-linearly distributed dataset in a much
more precise manner than many previous machine learning algorithms. In or-
der to learn a meaningful model however, they do need an according number of
training samples. The most impressive deep learning results over classical ma-
chine learning have been obtained with (extremely) large number of samples
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Figure 1.19: A graphical model of a dense, auto-associated autoencoder. Start-
ing from the original data, an encoding phase compresses the data using linear
combination of neurons from the previous layer and non-linear activation func-
tions, until the “embedding layer” (in dark grey), from which a decoding phase
decompresses the data in similar fashion until reaching the original data di-
mension.

(sometimes in the order of millions), or with dataset that can be artificially
“augmented”. Data augmentation is a technique consisting on expending the
training set based on the samples we already have. They usually rely on ge-
ometric transformations, such as rotations or jittering (small translations in
various directions), in order to make the model robust to these transforma-
tions. One other way of augmenting the data in a sense, is to consider only
parts of it and create a problem with a smaller dimensionality with a drasti-
cally increased number of samples (for instance by working with patches) . In
this thesis, the number of training samples originally available was around 30,
and has slowly increased along the way to reach about 1500 samples which is
still not near what can be considered a large dataset, especially considering
the dimensionality of the problem (nearly 10 millions of voxels in the brain
a full-size MRI). Data augmentation using geometric transformations is not a
solution for us as we are dealing with registered data. Neither are local ap-
proaches such as patch, as we want our model to capture global correlations
in our data (such as left-right brain symmetry). Therefore we are stuck in a
few samples/high-dimensionality setup, for which deep learning techniques are
not really famous.

A second problem is computational. As we previously mentioned, we are
dealing with 3D data with a huge count of voxels. Deep learning algorithms
(especially convolutional ones that are widely used in image processing) tend
to be greedy in the number of parameters used in the model and thereby in
memory usage for the GPU used to train it. This is a problem considering
most of the available GPUs are limited to 8GB of VRAM. To alleviate this
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issue, some methods using deep learning over 3D datasets either use patches
approaches, or 2.5D ones where only a small number of image slices are con-
sidered at once. As we already asserted, we unfortunately cannot use this kind
of techniques with our approach.

For these reasons, we decided to stick with the “conventional” machine
learning methods described in sections 1.2 to 1.4, and create the anomaly
detection algorithms that we will present in the following section with them.
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This chapter is dedicated to presenting anomaly detection methods based
on the paradigm and various methods we presented in chapter 1. After a
brief section on the usage of statistical testing for anomaly detection, we will
move along with our second section 2.2, that will be consecrated to state-of-
the-art methods of anomaly detection used in our voxel-wise medical images
context of detecting pathology afflicted areas. The following section 2.3 will
introduce anomaly detection methods using the tools provided in the previous
section, where we provided few contributions but that were either not used as
anomaly detection methods, or not in this context. The last section 2.4 will
be focused on methods using a new framework of manifold projection, using
kernel methods.
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2.1 Z-Score for Anomaly Detection

In order to provide anomaly detection methods that can be backed up with
probabilities or scores of detection, we will add a final step to our algorithms
of projection (the first one being the computation of the residuals 2.1). This
final step (see figure 2.2) consists in computing a Z-score at each voxel of
our images based on the residuals between our original test image and the
high-dimensional projected data (whatever the projection method).

First, for each voxel, we will learn the distribution of the residuals Ri

under the null hypothesis H0 that no anomaly is present in this voxel. This
distribution will be modelled as a gaussian distribution with 0 mean (residuals
are centred under H0). Therefore the variance at each voxel can be computed
as: σ2 = 1

N

∑

i
R2

i (here we omit notations for voxels to make it less cluttered,

and present it as in a one dimensional setting). To avoid any bias, we do not
estimate the variance of the distribution of residuals on the training set (that
we only use to learn the model of projection), but rather on what we call a
validation set (denoted V ): normal samples that have been put aside from the
training set in this purpose and are therefore not used to learn the projection.

Finally, the Z-score associated to a test subject can be computed as:

Ztest =
Rtest

σV

(2.1)

Where σV is the standard deviation over set V . This Z-score computation
will be the ending step of all our methods of projection, thus completing the
transition of our projection paradigm into a voxel-wise anomaly detection one.
All methods of projection will therefore also be considered anomaly detection
ones, as long as they provide a projection for any test sample. A most “normal”
voxel would correspond to a null Z-score, while a more suspect one would have
a bigger Z-score in magnitude (either strongly negative, or strongly positive).

Training set S

New sample

µ

Projection

Residual

Figure 2.1: Residual computation for a test sample, based on its projection µ.
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Validation residuals ⇒ σvalid =

√

∑

i∈valid

R2

i

Rtest Ztest

/σvalid

Figure 2.2: Z-score computation of a test residual against “validation” residuals
under the null hypothesis that residuals are centred.
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2.2 Linear Methods of Anomaly Detection

Contents for this section

2.2.1 Global Linear Model for Anomaly Detection . . . . . . . 57
2.2.2 PCA-Based Methods for Anomaly Detection . . . . . . . 61
2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 61

In this section, we will consider methods of voxel-wise anomaly detection/high-
dimensional projection that are both linear and state-of-the-art in voxel-wise
anomaly detection for medical images. As such, they are prime comparison
points to the algorithms we developed on our own and that we will present
later on.

2.2.1 Global Linear Model for Anomaly Detection

The general linear model (GLM) is a statistical framework including meth-
ods of hypothesis testing such as the analyse of variance (ANOVA [69]), the
analyse of covariance (ANCOVA [70]) and their multivariate counterparts
(MANOVA [71], MANCOVA). The GLM has been first used in medical imag-
ing with its most famous Matlab implementation, Statistical Parametric Map-

ping [72, 73] and both now make reference in medical image analysis fields such
as voxel-based morphometry [74, 75, 76, 77], which looks for volume regres-
sions or dilatations into the brain and is concurrently one of our focuses. It
is widely used in the medical community as a framework for statistical group
comparison (pathological vs healthy essentially) in order to statistically de-
limit abnormal areas and therefore spot which organs are most susceptible to
be affected by the pathology. This in turn, gives doctors insights into the
pathology behaviour [76, 77].

The GLM can be written as:

X = Dβ + ε (2.2)

where X is our complete dataset of samples (possibly with several groups,
with N total samples), D a design matrix of explanatory variables, β a vector
of r unknown parameters or regressors that are used as coefficients for the
explanatory variables, and ε the noise variable, with usually ε ∼ N (0, σ2I)
under the homostedasticity hypothesis.

Remark: The GLM model is a univariate one, each statistical test is done
independently on each voxel. Therefore for readability purposes, we will drop
any voxel- wise notation. Please bare in mind however that all the presented
equations are derived for “one-dimensional” samples (each voxel).

Under the homostedasticity hypothesis, the optimal least-square estimation
for β gives us:

β̂ = (DT D)−1DT X (2.3)
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and is an unbiased estimator of β, with variance-covariance matrix:

Σβ = σ2(DT D)−1 (2.4)

provided that DT D is invertible, and thus that D is a full rank matrix.
As σ is generally unknown, it is also estimated: σ̂2 = εT ε

N−r
. Whereof we get

that the covariance matrix of β̂ can be estimated as:

Σ̂β =
εT ε(DT D)−1

N − r
(2.5)

A common use case of the GLM in statistical group comparison is per-
forming statistical tests between two groups, which is remarkably easy to do
in this framework. For instance, assuming we would like to perform the most
classical Student’s t-test of equal mean between two populations X1 and X2

(of respective sizes N1 and N2), we could set up a GLM expression of this
t-test by using the following design matrix:

D =

1 0
...

...
1 0

0 1
...

...
0 1





























































N1

N2

With this design matrix we trivially derive the following steps: DT D =
(

N1 0
0 N2

)

, from where it simply follows that

(DT D)−1DT =
1/N1 . . . 1/N1 0 . . . 0

0 . . . 0 1/N2 . . . 1/N2

















N1 N2
and finally the estimation of β:

β̂ = (X1, X2)
T (2.6)

A statistical test is then derived using a contrast vector c: under the null

hypothesis H0, a contrast vector is used to confront a linear combination of our
regressors to 0, that is to say under H0, cT β = 0. As c is fixed, the estimator
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for cT β is naturally cT β̂, while the estimated variance of cT β is given by cT Σ̂βc.
Ultimately, under H0,

cT β̂
√

cT Σ̂βc
∼ tN−r (2.7)

where tk is the Student’s law with k degrees of freedom, which rapidly
converges to a centred, reduced, normal law as k tends to fairly large values
(100 samples is large enough to consider t100 being the normal law), which is

usually the case when dealing with group analysis. Using a

(

1
−1

)

contrast

with the previously defined contrast matrix D, we derive a statistical test
designed to check for equal means between the two populations under H0.
Indeed, the estimator of the “contrasted regressors” is cT β̂ = β̂1 − β̂2 and once
the associated variance has been computed, starting from equation 2.5 and
coupling it with equation 2.7, we get that under H0:

β̂1 − β̂2
√

εT ε( 1
N1

+ 1
N2

)/(N1 + N2 − 2)
∼ tN1+N2−2

with the equation of the GLM 2.2.1, r = 2 and the choice of equation 2.2.1 for
D, we have for ε:

ε =
XT

1 − X1

XT
2 − X2

















and therefore:

εT ε = X1 − X1 X2 − X2

( )

X1 − X1 X2 − X2

XT
1 − X1

XT
2 − X2

















XT
1 − X1

XT
2 − X2

(X1 − X1)(X1 − X1)
T

+(X2 − X2)(X2 − X2)
T

















Let us denote respectively s2
X1

and s2
X2

the unbiased estimators of variance for
X1 and X2. s2

X1
and s2

X2
are defined as such:

s2
X1

=
1

N1 − 1

N1−1
∑

i=1

((X1)i − X1)
2
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s2
X2

=
1

N2 − 1

N2−1
∑

i=1

((X2)i − X2)
2

which is very close to the expressions found in εT ε (recall here that we are
doing a voxel-wise analysis). Rewriting the expression of εT ε with s2

X1
and

s2
X2

, we get:

εT ε = (N1 − 1)s2
X1

+ (N2 − 1)s2
X2

Therefore, if we define s2
P as the pooled variance of X1 and X2, we have:

εT ε = (N1 + N2 − 2)s2
P

which in turns, yields a simplified expression for equation 2.2.1:

β̂1 − β̂2

sP

√

1
N1

+ 1
N2

∼ tN1+N2−2 (2.8)

This is precisely the expression for a two-sampled t-test with same variance
aimed at testing for equal means between X1 and X2 under homostedasticity
hypothesis, with the general approximation being that this Student distribu-
tion is actually a gaussian one. This demonstrates the ability of the GLM to
easily perform (one of) the most classical statistical analysis of our dataset.

The GLM is also used in a somehow degenerate case to provide an anomaly
detection in the single subject vs group setting (ours). In this setup, an indi-
vidual sample Y is confronted to a group by performing the same statistical
test (i.e. Student’s t-test mean comparison between two groups). By con-
sidering the second group to be constituted with only the individual to be
tested (and therefore that N2 = 1 and SX2 = 0), we derive a functional -albeit
sketchy- test to perform anomaly detection on a single subject compared to
a normal group (the obtained p-values or t-statistics can be thresholded to
obtain a binary voxel-wise detection): starting from equation 2.8, we get:

β̂1 − Y

sX1

√

1
N1

+ 1
∼ tN1−1 (2.9)

with the approximations resulting from large enough values of N1, we obtain
the associated expression:

X1 − Y

sX1

∼ N (0, 1) (2.10)

which coincidentally is the same expression as the one we used for our own
methods from equation 2.1, where the projection of a any test sample Y is
constant and equal to the mean of the training sample:

µGLM(Y ) = X1 (2.11)
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with the slight difference that in our case the variance s2
X1

is learned on an
independent dataset of validation samples. We stated that the difference be-
tween the true modelization of the GLM, that we just described, and the one
using our paradigm with the projection 2.11 was negligible, and that we would
rather have all the tested methods belong to the same paradigm. We will thus
refer further to the method obtained by projecting each sample onto the mean
of the training sample as GLM.

2.2.2 PCA-Based Methods for Anomaly Detection

The PCA algorithm presented in section 1.2.1 also directly translates into
an anomaly detection method. As it provides a high-dimensional projec-
tion/normalization of our subject, we only need to perform a Z-score com-
putation over our test residuals, as mentioned in section 1.1. For future
reference, we will denote as PCA the anomaly detection algorithm derived
from the Z-score computation carried out in equation 2.1 over the projection
obtained with the PCA algorithm. On a similar point, we will denote RPCA
the one we get with the robust counterpart of PCA introduced in section 1.3.1.

2.2.3 Conclusion

In this section, we reviewed the main linear, state-of-the-art methods for voxel-
wise anomaly detection in images (or equivalently the projection ones, as stated
by our paradigm).

• The most frequently used one in a medical context being the GLM and
its implementation SPM. While SPM is more frequently used for group
comparison rather than subject-vs-group analysis, it provides a powerful
but flawed tool for our purposes and a challenging contestant for our
methods.

• We also presented the extremely classic method of projection (and there-
fore anomaly detection) derived from the PCA algorithm, and its robust
version the RPCA.

We will now shift our attention to more original methods, that are not com-
pletely innovative in the sense that a method close to the ones described in
this work has already been presented in the literature, but never in a context
of anomaly detection.
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2.3 Dimension Reduction-Based Non-Linear Meth-
ods
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2.3.1 Nadara-Watson Kernel Regression for Reconstruc-
tion

As we previously addressed in section 1.4.3, NWKR can be used to solve
the preimage problem for any dimension reduction techniques deprived of an
inherent preimage method, thus completing the projection algorithm needed
to achieve a full high-dimensional projection. As we have seen in the previous
section with the example of PCA, this projection is all that is needed to perform
anomaly detection, as statistical testing is carried out on the ensuing residuals
(i.e. with no step in between). In the case of Isomap, in [51] and [49] authors
present a way to provide a preimage for training samples using NWKR and
use it as a generative model [49] by sampling in the embedding space. But
their modelization is different from ours in the sense that they only address
the problem of generating new samples: they provide an embedding for the
training set and sample new elements by reconstructing sampled points from
the embedding with NWKR. They do not deal with any test sample, and
therefore do not compute any out-of-sample extension of a new sample outside
the training set, let alone its high-dimensional projection.

Hence, to the best of our knowledge, the method of projecting a test sample
with the help of the Nyström out-of-sample extension and the NWKR, is
original and our own. We have yet however to demonstrate its utility in the
field of voxel-wise anomaly detection. For the rest of this thesis, we will denote
the anomaly detection based on the Isomap dimension reduction with Nyström
out-of-sample extension and NWKR preimage as the ISO method. We will
not use NWKR to provide a preimage for LLE or the diffusion maps, as better
options are available in both cases.

We will perform our NWKR reconstruction using a gaussian kernel 1.18,
for which we need to provide the bandwidth parameter. This is done by cross-
validation: we optimize the bandwidth parameter on the reconstruction of
normal samples from the training set by classically splitting it in folds, one of
the fold being a testing set while the others are used for training, and cycling
these roles around all the folds. The resulting bandwidth parameter is the one
that minimizes the mean MSE across all the permutations.
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2.3.2 Diffusion Maps and Original Space Gradient

As we previously introduced in section 1.2.2, the Diffusion Maps algorithm
can be used as a direct method of projection (and therefore an anomaly de-
tection method) by using an optimization scheme. This optimization scheme
focuses on minimizing (with constraints) the diffusion distance (i.e. the em-
bedding space distance) between our test sample and its projection. Recall
the objective function that is used with a convex hull constraint to perform
the pre-image computation (the out-of-sample extension being the one of the
Nyström extension 1.3.2):

µ(Y ) = arg min
Z

‖π̃(Z) − π̃(Y )‖ s.t. Z ∈ CX(Y ) (2.12)

The idea of performing the projection of a test sample over a previously learned
manifold is not ours, but rather the one of [52, 78, 79, 80], where the authors
describe a novel method based on the Diffusion Maps algorithm that aims at
performing what is called the (weighted) karcher mean of points in a manifold,
that is to say the geodesic mean of such points: the point in the manifold evenly
close to all the points over which we are performing the mean. This karcher
mean is then used, either to interpolate a shape (not originally present in the
training set, and presenting alterations such as occlusions) using its diffusion
distance neighbours, or to denoise a manifold of digits images. This method
was applied to occluded 3D medical shapes, and was initially aimed only to
shape datasets, therefore using tools specific to this domain of research. We
did not come up with any of the ideas presented in these articles, but neither
did we apply them directly to shape manifolds: we had to adapt the method to
our own manifold of medical images and thus drop any use of shape analysis
tools. In [80], a variational formulation of the problem is built around an
energy that can classically be split into a prior term and an active contour
term. After establishing the solution of the variational approach as the solution
of a constrained optimization, they define an iterative method to solve this
optimization problem in which the tangent space to the space of acceptable
solution is computed. The gradient of the cost function at each iteration is
projected over this tangent space in order to ensure that, starting from a point
in the space of acceptable solutions, the intermediate points considered by the
algorithm until it reaches convergence are also acceptable solutions.

The following equation 2.13 presents the optimization problem we derived
to perform our own manifold projection, that is directly inspired by the work
we just introduced (albeit at the expense of the tangent space computation):
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µ(Y ) =
∑

i ∈Nx(y)

θ̂iXi (2.13)

s.t. θ̂ = arg min
θ

‖π̃(
∑

i ∈Nx(Y )

θiXi) − π̃(Y )‖2

and θ < 0,
∑

i

θi = 1

where Nx(Y ) is the indices of the closest neighbours of Y in the embedding.
Here we take advantage of the advanced modelization of the diffusion maps by
looking for a projection that is still a linear combination of training samples,
but relying on the diffusion distance (and not the one in the original space)
between our test sample embedding and the embedded point of the variable
solution. We thus ensure our solution is both close to the original point in
ambient and embedding spaces.

E

M

Y

π̃(Y )π̃(µ(Y ))

wi

µ(Y ) =
∑

i
wiXi

π̃

π̃

Figure 2.3: An illustration of the optimization solution for the manifold pro-
jection technique using the diffusion maps modelization. The algorithm looks
for a point in the original space M (in cyan) that has a corresponding point
in the embedding E as close to the one of the test sample as possible, while
being expressed as a barycentric combination of the test sample Y neighbours
(the neighbours being chosen among the learning samples Xi, but according
to the embedding distance).

As before, we will refer to the anomaly detection method resulting from this
projection method as its inherent dimension reduction method: DM (Diffusion
Maps).
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2.3.3 Projection by out-of-sample optimization

In the previous methods, our reconstruction was determined most of the times
by the out-of sample extension being used (i.e. most generally the Nyström
extension 1.3.2) to extend our mapping π from the training set to our test
sample. This obviously highly relies on the result of the Nyström method,
while being extremely constrained: the Nyström extension is expressed as a
weighted linear combination of the low dimensional embeddings of our train-
ing samples. This could potentially be performance-impairing, as it prevents
us from exploiting the full low dimensional embedding as search space for a
projection of our test sample (there is a priori no cause for any given test point
low dimensional embedding to be expressed as such). We will not try here to
construe whether the Nyström extension is good or bad for our own projec-
tion problem, but rather to introduce a new optimization scheme that aims
at tackling both the out-of-sample and preimage problems together, while ob-
taining a hopefully better reconstructed image. The reconstructed image will
still be obtained via the NWKR, in the same way that it would be done with
the algorithm described in section 2.3.1, but the out-of-sample extension from
which the image is reconstructed will not be the one of the Nyström method.

The idea behind this optimization scheme is, starting from any dimension
reduction method, to find the best low dimensional embedding point corre-
sponding to a high dimensional one, where best refers to the one minimizing
the mean squared reconstruction error by the Nadaraya-Watson kernel regres-
sion. It can be written as follows:

π̃optim(Y ) = arg min
y

‖ρNW (y) − Y ‖2

where ρNW (y) refers to the Nadaraya-Watson reconstruction of y, based on
the kernel distances from the training set embedding, and over the train set
samples. This in turn yields for the projection µ over the manifold:

µ(Y ) = ρNW (π̃optim(Y )) (2.14)

This optimisation scheme is non-convex, and is thus susceptible to fall in
local minima. But the objective function we defined is easily differentiable, and
thus solutions can be obtained fast enough by any minimization algorithm,
even with multiple starts to avoid local minima. It is noteworthy that this
is still a heavily constrained model as it enforces that our weights w must
be consistent with the kernel relationship of our out-of-sample extension with
other embedding data points, but it is still less constrained than requiring
the dimension reduction of Y to be the Nyström one. We denote Isoptim
the projection obtained with this optimization scheme and using Isomap as a
dimension reduction algorithm.
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2.3.4 Partial Conclusion

In this section, we presented methods of manifold projection that previously
existed, or were adapted from pre-existing methods from other fields, but that
had not been used before in our context of learning a manifold of normality
and project a new sample over it.

• The first method that we presented is the one built over the association
of the Isomap dimension reduction, the Nyström out-of-sample ex-
tension, and the Nadaraya-Watson kernel regression for pre-image
reconstruction. Associating these three elements allows for a complete
method of projection of any new sample over the training set inherent
manifold. We called this method of anomaly detection ISO.

• A second one, refered to as DM is obtained by using the non-linear
modelization of the Diffusion Maps algorithm 1.2.2. We look here
for a projection that can be written as a positive, linear combination
of training samples. For the reconstructed point, the optimization is
done in the embedding.

• The last one is also based on an optimization in the embedding
space that gets rid of the Nyström extension to attempt to find the
best low-dimension point that has the closest NWKR reconstruc-
tion to our test point. Associated with the Isomap dimension reduction
algorithm, we get the Isoptim method.

The last section of this chapter is dedicated to presenting techniques for
anomaly detection that are not using the embedding provided by the pre-
sented original dimension reduction algorithms, but are still using the idea
developed in these algorithms to perform a direct manifold projection.
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2.4 Projection-Based Methods for Anomaly De-
tection
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In this section we will introduce original methods for direct manifold pro-
jection that have been developed during this work. These methods provide a
new way of performing either the projection task (finding µ), while not mak-
ing use of the embedding (the π function) provided by dimension reduction
algorithms (nor its out-of-sample extension π̃).

2.4.1 Locally Linear Projection

The simplest approach for reconstruction, whether we talk about preimage
(coming from a low dimensional embedding such as Isomap) or projection (from
the original high dimensional space), is to express the reconstructed sample as a

linear combination of the training samples, i.e. ρ(Y ) =
N
∑

i=0
wi(Y )Xi. Without

constraints however, this reconstruction is prone to overfitting. Furthermore,
the less we constraint w, the less we corroborate with our manifold hypothesis.
In this sections we will present a novel method for high-dimensional projection
of any test sample point over a manifold of control samples with what we call
locally linear projection, or LLP (after this section, we will also refer to it as
its eponymic dimension reduction method from section 1.2.2, LLE).

LLE is the method which modelization is the closest to the manifold def-
inition: indeed, the manifold hypothesis states that locally, the topological
space in which our samples lie is identified as a euclidean space (i.e a linear
one). With locally linear projection however, we will perform no dimension
reduction and obtain no low-dimensional subspace. The idea of this method
is to come by our high-dimensional projection by using the core concept of
LLE: local weights, minimizing L2 error. While LLE attempted to create a
low-dimensional subspace in which local relationships between original space
samples were preserved, we merely find a corresponding high-dimensional im-
age to our test image that is as respectful to the local relationships it has with
the training set (i.e. the weights) as possible, while looking for it as a lin-
ear combination of training set samples. Simply put, locally linear projection
amounts to find the same weights as LLE and use them to perform a linear
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M

Y

wi

µ(Y ) =
∑

i
wiXi

Figure 2.4: A graphical representation of the locally linear projection: A test
point (in red) is projected onto the manifold M by using weights wi learned
over its set of neighbours in the training set (blue points). The resulting
projection (in cyan) is obtained via a linear combination of the red points
using the weights wi.

combination of training samples:

µLLP (Y ) =X arg min
w

‖Xw − Y ‖2,

s.t.
∑

i

wi = 1, wi Ó= 0 ⇔ i ∈ NX(Y )
(2.15)

Just as for the LLE algorithm (it is the same algorithm up until now), the

optimization for the weights has a closed-form solution wi =

∑

j
C−1

ij
∑

k,l
C−1

kl

, where C

is the local covariance matrix: Cij = (Y −Xi)
T (Y −Xj). As mentioned, once we

have found the weights w, the resulting projection is just the linear combination
µ(Y ) =

∑

i wiXi = Xw (see figure 2.4 for a graphical representation of the
method). Ideally, this linear combination of Y local neighbours belongs to
the manifold M and is close to the projection of Y onto M that we are
looking for. As is occasionally done in implementations of LLE, we added to
the multiple constraints of w a L2 regularization constraint, to alleviate any
nearest-neighbour-like overfitting issues, where the weights have the form of a
canonical basis vector with a single non-zero, unit coefficient, corresponding to
the index of the nearest-neighbour of our test sample (i.e. we enforce a much
smoother repartition of the coefficients across all neighbours). The ensuing
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equations for w is the following one:

µLLP (Y ) =X arg min
w

‖Xw − Y ‖2 + λ‖w‖2

s.t.
∑

i

wi = 1, wi Ó= 0 ⇔ i ∈ NX(Y )
(2.16)

This constrained optimization problem seems familiar if we recall the expres-
sion of the DM problem from 2.13: indeed, in DM we looked for our projection
as being the closest to the test point embedding while being expressed as a
weighted sum of training samples. But while DM tried to minimize the diffu-
sion distance (i.e. the distance in the embedding space), LLP is focusing on
the L2 distance in the original space.

The closest algorithm to LLP we were able to find in the literature is
the locally linear (weighted) regression [81] which is mainly used as a non-
parametric multivariate smoothing of scattered datasets, and thus completely
foreign to any anomaly detection by projection scheme. While not fully original
(as it is completely based on the ideas and methods behind the LLE algorithm),
LLP is original in the sense that it provides not an embedding but a projection,
that will later be used in an anomaly detection scheme, both of which have
not (to the best of our knowledge again) been previously developed.

Remark: The already heavy constraints imposed on w can be be made even
heavier by adding a convex constraint over w: w < 0 as is often found in the
literature (in this case, the w are the test point barycentric coordinates over
the set of its closest neighbours). This is the heaviest constraint for w: a local,
convex one. It requires for w to be element-wise non-negative, to have a L1

norm of 1, and to be expressed only over the set of closest L2 neighbours of
our test point in the training set. However, the results we obtained with this
additional constraint were not as good as without. We thus stuck to the set
of constraints presented in equation 2.16.

2.4.2 Kernel Manifold Projection

The main idea of what we call kernel manifold projection (KMP), is to define
a kernel method that is able to properly model the underlying manifold of
our training data, and to provide a projection method onto this manifold. We
performed the first task using the fact that many (if not all) the dimension
reduction techniques we presented in section 1.2 are actually kernel methods.
Indeed Isomap, LLE, and the Diffusion Maps are all relying on the use of a
kernel to capture the relationships between sample points (and with the help
of the Nyström extension, with any point) in their own, non-linear fashion:
Isomap is using what is called a geodesic kernel, with its approximation of
geodesic distances. LLE is using what we could call a neighbourhood kernel

with its local L2 reconstruction weigths. Finally, the Diffusion Maps are using
a diffusion kernel, built upon the symmetrized laplacian graph of kernelized
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L2 distances. The three of them are computing eigenvectors of the “Gram
matrices” sampled from their kernel over training and test samples to perform
a dimension reduction by providing a low-dimensional embedding that respects
the modelization they performed in the high-dimensional space (with the help
of some form of MDS). Our idea here is to skip this step of dimension reduction,
as we are not directly focused on obtaining a low-dimensional embedding, but
rather performing a correct non-linear modelization of the training samples
manifold, which is done by these algorithms when they compute the Gram
matrices before they determine the embedding. These Gram matrices are what
we rely on to perform our manifold projection. We inject them straight into
the Nadaraya-Watson kernel regression to obtain a projection that is a linear
(even convex) projection of the original samples (as most of our projection
methods), with weights that are depending on the kernel that is being used to
model our data. In practice, if we denote K the Gram matrix of the kernel
being used over the training samples, and K̃ its extension to test samples
obtained with the Nyström extension, our projection of a test sample can be
written as:

µ(Y ) =

∑

i K̃(Xi, Y )Xi
∑

i K̃(Xi, Y )
(2.17)

Remark: This idea is (obviously) inspired by what we are already doing
with the Isomap method, but is motivated by the fact that when we perform
a reconstruction from the embedding with NWKR, we merely compute dis-
tances in the embedding space that are supposed to be good approximations
of the geodesic distances between our points. We never use the dimension
reduction points for anything else than distance computation. Nevertheless,
those embedding points are actually themselves computed to respect what was
our initial approximation of the geodesic distances with the kernel obtained
with Dijkstra’s algorithm, or the diffusion kernel. Therefore, the idea here is to
avoid performing an approximation of the approximation, and to avoid having
to perform the Nyström out-of-sample extension reduction step, which per-
forms yet again an approximation for the testing samples. Another important
point to be made is that LLP is actually a KMP method for the “locally linear
kernel”, where said kernel is computed by solving the optimization problem
of 2.16). Indeed, projection for LLP is simply done by linear combination of
weighted original samples and therefore (as weights are normalized to sum to
1), the projection for LLP can be written with the expression of 2.17 provided
that for all Y , K(Xi, Y ) is found via the optimization of 2.16 (K is not a
proper kernel, but for convenience purposes we will often denote it as such).
We separately introduced LLP on itself as it is a much more intuitive and
simple method that the more general KMP one, that does not need NWKR
for projection.

As KMP can be used with any kernel (provided we can extend it to any
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new sample), we will denote it as KMP, while specifying the kernel in used
(diffusion or geodesic).

2.4.3 Conclusion

In this section, we presented two original methods for manifold projection that
were designed during this thesis. Both have roots in the methods presented
earlier in 2.3 and are based on the Nadaraya-Watson kernel regression of sec-
tion 1.4.3.

• A first technique is derived from the LLE algorithm 1.2.2, but where
the embedding computation is actually not required. We rather use the
weights obtained from the LLE algorithm (which are usually computed in
the purpose of finding points in low-dimensional space that respect those
weights), and directly use them to find our projection as a local, linear
combination of training samples. As it is a locally linear projection,
we naturally refer to this method as LLP.

• The second one is what we call kernel manifold projection (KMP),
in which we use the Gram matrix of the kernel being used, sampled over
the traning set and extended to the test sample, as the kernel matrix
used in the NWKR.
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2.5 Synthesis of methods and discussion

At this point we have introduced a wide variety of methods that are all seem-
ingly close looking, while each having their own peculiarities. They all have
the common goal to perform a non-linear modelization of our embedding. But
which are theoretically the closest to achieving this purpose? What is the
most common denominator between these methods? What performance can
be expect from a method given the performance of another one? In this sec-
tion we propose to synthesize each of the presented methods, and to have
an open discussion about the modelization used in our algorithms, compared
to the state-of-the-art methods or to other approaches that could have been
considered.
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2.5.1 Method synthesis

Method Dimension Reduction Out-of-sample Extension Reconstruction

GLM None None Mean of the training set

PCA
Eigenvectors of the
covariance matrix

Same projection
as training

Analytic reconstruction

ISO
Eigenvectors of the

geodesic Gram matrix
Nyström extension

NWKR with gaussian kernel computed
over the embedding distances

KMP (Locally Linear): LLP
KMP (DM): KMPDM

KMP (Geodesic): KMPISO

None Kernel extension
NWKR with weights computed

using the extended kernel

DM
Eigenvectors of the

diffusion Gram matrix
Nyström extension

Reconstruction as a convex sum
of training samples with weights obtained by

optimization in the embedding

ISOPTIM Classic Isomap one
Optimization in
the embedding

NWKR using the gaussian kernel
computed on the result of

the optimization and the embedding

Table 2.1: Summary of all the presented methods for kernel manifold projection.
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A few remarks over the summary presented in table 2.1:

• The GLM is obviously the simplest of methods.

• PCA is the only one (with GLM) to be fully analytical.

• All our non linear methods have quite similar reconstruction methods.

2.5.2 Discussion

As an observant reader will have noticed at this point, all our methods are
actually looking for a (manifold) projection in the form of a linear combination
of training samples (albeit with weights that are computed in various non-linear
fashions). This is obviously a highly constrained modelization, which raises
the legitimate question:

Problematic: Is our modelization a true non-linear one, able to capture
all the behaviour of a non-linear subspace of the euclidean one, when our
reconstruction is based on a pseudo-linear modelization?

The answer to this question is rather complex, and possibly at the heart of
all the work presented in this manuscript. We cannot provide a full answer at
this stage (if we dare say that we can provide one at all!), but we can provide
the elements of reflection that have guided us to this kind of modelization:

• First, we should state that while not being fully linear, all (or most) of
our methods are at least much more non-linear that the likes of GLM and
PCA: we are not really close to a fully linear reconstruction as our weights
are computed either by optimization of truly non-linear distances, or
only expressed on neighbourhoods of the test sample (therefore using
the locally linear hypothesis of our manifold). In simple case, this is
easily enough to model a non-linear set, and outperform a linear one.

• Several of our methods rely on optimization to obtain a preimage, which
could be a key to provide a projection with a fully non-linear modeliza-
tion. Ours plainly rely on the linear combination of training samples,
but one could provide a projection by using an optimization in the orig-
inal space. This is evidently much harder than it sounds, and relies on
finding a good cost function (preferably differentiable) that respects the
manifold. This can be done depending on the data being used: [80]
have presented one in the context of shape manifolds, and [82, 83] for
manifolds of medical images, but none were adapted to our problem.

• Performing a fully non-linear reconstruction is actually in our opin-
ion, a much harder task than performing a non-linear dimension reduc-
tion. We base this on the fact that while the dimension reduction task
(roughly) consists in simplifying the information from a high-dimensional
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space to a low-dimensional one (like a compression algorithm), the re-
construction must try to reconstruct all the details from an image and
all the non-linearities from a very complex dataset, starting from what
is only a simplified version of it. One could obviously try to use fully
non-linear methods of regression to perform the reconstruction, as we
already stated in section 1.4 (and as we tried), but it is our belief that a
completely non-linear regression method would not perform any better
on such a task of regression, and that performance would overall be the
same (see figure 2.5 for more on this topic).

Figure 2.5 represents the problem of trying to apply our paradigm of pro-
jection to an insufficiently sampled manifold. We first consider a manifold in
a high dimensional space where a “curved” portion of the manifold (repre-
senting the details we mentioned during the discussion) has not been sampled
by our training set. The first line presents 3 point on a “curved” manifold:
X1, Y2, X3, where only X1 and X3 belongs to the training set (Y2 belongs to the
manifold but has not been sampled). The second line of the figure represents
the embedding that can be obtained with a non-linear dimension reduction
tool. The last line shows what the reconstructed points from the embedding
with any non-linear method of reconstruction should look like, without further
modelization of the manifold.

Trying to find the projection of any point Y2 close to this curve with our
paradigm and without any additional modelization is hopeless: its out-of-
sample projection, based on the distances to closest neighbours (X1 and X3),
even if perfectly correct (in our example, right at the middle of its two closest
neighbours embedding, as the original space is in the geodesic mean of the
two high dimensional samples) is not enough information for any method to
be able to reconstruct the curved part that as not been sampled any better
than what our own methods will do (essentially a straight line between the
two neighbours).
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ρ

Figure 2.5: The sampling problem in manifolds: providing a pertinent re-
construction for a test point located in a previously unsampled area of the
manifold is extremely challenging. X1, Y2 and X3 belong to the same manifold
represented in the first line, but Y2 is not in the training set. The dimension
reduction is found for each of them, and a reconstruction is made based on
these dimension reduction.

Overall, it seems to us that this modelization is a good compromise: it
should be simple enough to “interpolate” our manifold between training sam-
ples, perhaps while loosing some details of the manifold structure if we have
not been able to sample it in “high frequency areas”, but never as much as a
linear modelization (provided that the dataset is indeed non-linear).

Remark: While our non-linear methods have some form of proximity with
PCA by having a reconstruction that is a linear combination of training sam-
ples, the PCA reconstruction itself is not based on training samples, but rather
on components that are extracted from the covariance matrix of the dataset,
thus rising the question of which is better to be used for our images recon-
struction.

As we already raised in section 1.3, none of the methods for manifold pro-
jection we presented in this chapter are inherently robust to outliers introduced
by a pathology. Therefore, the following section is dedicated to robust versions
of the algorithms we introduced.
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2.6 Robust Extensions
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In this section, we will focus on adding a “robustness layer” to our manifold
projection methods. All of the methods we presented are perfectly able to
perform as intended over samples that belong to the manifold of normal images,
but that are not part of the training set, such as the validation samples used
for statistical testing (see section 2.1). Indeed the projection in this case is
quite an easy one, as projecting a point onto a manifold that belongs to said
manifold should amount to do nothing. As we only sampled the manifold of
normal images, with relatively few samples (compared to the dimensionality
of the manifold), we do not expect the projection of normal samples to be this
easy but at least to be manageable by our algorithms.

2.6.1 The Need for Robustness: the Era of Fake Rela-
tionships

The task is however much more difficult on samples presenting anomalies linked
to their pathology, as introducing anomalies will inevitably result in a sample
that is further and further away from the manifold as the intensity of the
anomaly increases. This notion of remoteness is especially important with
our multivariate approach and the algorithms that we developed upon it (as
opposed to the GLM, for instance), as we always rely on some sort of proximity

to perform our projection. Isomap, LLE, PCA and the diffusion maps all rely
on the L2 distance and/or the associated closest neighbours to consider the
relationship between a test sample and the ones of the training set. If our
test sample were to be altered by the anomalies introduced with a pathology,
these L2 distances (and therefore these L2 neighbourhoods) should in turn be
greatly altered, therefore introducing fake relationships with training samples
and providing a final result that is not what we could expect (see figure 2.6
and 2.7 for an analysis of the alteration of distances and neighbours introduced
by an anomaly). These relationship are the heart of our methods: essentially
they will assume for them to be correct, while attempting to recover a point
that is coherent with the sampled manifold and respecting these relationships.
The more relationships are changed, the further the resulting projection will
be from the normal version of our test sample. This phenomenon is peculiar
to us, as it is widely unintuitive: a highly modified image should be easier to
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detect than a lightly altered one, but in our case, our projection (and therefore
our anomaly detection) will be better for the lightly altered one. Univariate
models such as the GLM are not as easily disturbed by anomalies, on the
contrary: the further a voxel intensity is to the mean intensity of the training
voxels, the better it will be detected.

In figure 2.6, we used a set of MRI jacobian images (see section 3.3 for
further introduction on this dataset) as a test case. We randomly selected
one sample Y amongst all the normal ones (about 1000), and computed the
L2 distances to its 20 closest neighbours. Then, we introduced an anomaly
by adding a multiple of the voxel-wise variance vector (computed on the 1000
healthy MRI scans) in the ventricle area of the brain (representing between 5%
and 10% of the brain). By controlling a multiplication factor of the variance
vector, we control the norm of the perturbation P = ασ we introduce. We then
plotted the effect on the original L2 distances between Y and its neighbours
against the distances between Y + P and the closest neighbours of Y : the
lighter a data point appears, the greater the norm of the perturbation is. We
can see the large effect of the perturbation P over the original distances. Nearly
all are modified (and not in the same way, as some increases whereas others
increases), thus introducing fake relationships between our samples that will
inevitably lead our algorithms to provide mistaken projections.
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Figure 2.6: Scatter plot representing the L2 relationships between a normal
samples and its 20 closest neighbours in the training set, along with the altered
counterparts (the lighter the point, the more it has been altered), depending
on the norm of the perturbation introduced. A vastly altered sample will have
L2 distances to the training set widely different than the original image.
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In a similar fashion, in figure 2.7, we looked at not only one test subject, but
a hundred. For each one, we computed the “original” 20 closest neighbours,
introduced a perturbation just as before, and recomputed the set of neighbours
for each test sample. This figure presents the common fraction of neighbours
between our test samples and the original, unaltered counterparts. What we
observe is that this fraction of common neighbours will (globally) rapidly de-
crease as the norm of the perturbation increases, and thus our algorithms will
use incorrect neighbours to project our test samples.
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Figure 2.7: Multiple histograms representing the common fraction of neigh-
bours (inside the training set) between a normal sample and its altered counter-
parts depending on the norm of the perturbation introduced. A vastly altered
sample will have nearly no neighbours in common with the original image.

What we take from these experiments is that we cannot stress enough the
need for our algorithms to be robust, if we want to have the same kind
of performances between highly suspect samples and less suspect ones.

Let us now take a closer look at the robust version of PCA, which is at the
origins of our algorithm that provides a robust version for any of our methods.

2.6.2 Robust PCA

The PCA algorithm has dealt with its inherent non-robustness (see section 1.3.1)
by transforming its L2 distances into a robust version with the help of a ro-
bust function f . Such a function is generally designed to present a quadratic
behaviour when the Z-score is small (in order to ensure we obtain the same
performance over normal subjects as we would without the robust overlay),
and to rapidly decrease to 0 when the Z-score magnitude is high (so that the
influence of a highly suspect voxel is null).
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In [1, 35], the quadratic cost function associated with PCA is replaced
with a robust cost function that reduces the weight given to outlier voxels in
the image. The dimension reduction is still acquired via maximum likelihood
estimation, but this time the solution of the optimization problem (roughly
presented in 2.18), has no analytic solution, and is non convex. One can how-
ever attempt to find an iterative solution thanks to an iterative reweighted
least-square (IRLS) [84, 85, 86] optimization scheme. IRLS offer a local solu-
tion to non-convex problems (under conditions over our optimization function
that are validated in our case).

π̃robust(Yn) = arg max
x∈Rm

exp

(

−1

2

∑

s

f

(

(Yn)s − ρP CA(x)s

σLS

))

(2.18)

in which σ2
LS is the variance computed at this voxel for the classic least-squares

residuals obtained with the unchanged PCA method, which is passed as a
parameter of function f . σLS is computed on the validation set V , but is not
to be confused with the variance we will obtain with our robust method and
use further on to compute Z-scores for our test samples.

With IRLS, a weighting scheme is introduced to put in effect how the
robust function is reducing the effect of outlier voxel values: a voxel which has
a suspect value (given the training set values for this voxel), will not be dealt
with as PCA might do. In the classical PCA algorithm, each voxel has the
same contributing power, and the distance function of PCA being quadratic,
voxels with widely different values from the training set drastically contribute
to our cost function. In the robust PCA algorithm 2 however, the influence
of highly-irregular voxels is tuned down by the robust function, with the help
of the weighting system: the suspect voxel individual cost in the global cost
function is decreased until reaching 0 for extremely abnormal values. This
weighting problem intuitively calls for an iterative method in which we will
aternate between computing weights and residuals using these weights. The
IRLS optimization scheme therefore transforms the original problem of solving
equation 2.18 into solving a weighted least-square problems at each iteration:

π̃(Y ) = arg min
y

‖B(Y − X − Wy)‖2
2 (2.19)

These optimization subproblems have an analytic solution quite close the least-
squares one, as can be seen from step 4 of algorithm 2.

A popular robust function (and consequently the one we will be using) is
Tukey’s bisquare function:

f(x) =







(1 − (x
h
)2)2 if x ≤ h

0 otherwise
(2.20)

where h is a scaling parameter typically [87] chosen to be h = 4.685 for 95%
efficiency when the samples are normal.
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Figure 2.8: Tukey’s bisquare robust function with h = 4.685.

Algorithm 2 ARTUR algorithm for IRLS

Require: X dataset, Y test, f robust function, ǫ stopping criterion, σLS

1: B(0) = Id ⊲ Initialize with PCA solution
2: k = 0
3: while ‖B(k) − B(k−1)‖ > ǫ do

k = k + 1
4: π̃(k)(Y ) = (W T B(k−1)W )−1W T B(k−1)(Y − X) ⊲ Compute robust DR

of Y
5: r(k) = Y − X − Wπ̃(k)(Y ) ⊲ Compute RLS residual for Y with non

robust reconstruction
6: b(k)

s = f ′( R
(k)
s

(σLS)s
)/ 2R

(k)
s

(σLS)s
⊲ Compute the weights associated to each voxel

7: B(k) =









b
(k)
0

. . .
b(k)

s









8: Return last residual R(k) = Y − X − ρP CA((π̃)(k)(Y ))

This iteration scheme provides us with an algorithm for projection that
we use, as described in our paradigm, on the validation set to compute the
variance of residuals σV with a robust version of PCA. Finally we compute a
Z-score for test samples with σV as in equation 2.1.
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2.6.3 Robust non-linear projection

2.6.4 ISOPTIM extension

The closest formulation to PCA is the one of ISOPTIM, and is the only one of
our methods is actually expressed as a least-square optimization like PCA. We
can transform it in a similar way to equation 2.18 to produce a M-estimation
for ISOPTIM (see equation 2.21).

π̃robust(Y ) = arg max
y∈Rm

exp

(

−1

2

∑

s

f

(

Ys − ρNW KR(y)s

σ

))

(2.21)

We can define just as well an IRLS scheme to provide a solution for 2.21 as
we did for PCA. The “transformed” problem of equation 2.21 by IRLS is now
to find the solution to the weighted least-squares problem of algorithm 3 (step
5). Unfortunately, while in the case of PCA the solution of this problem was
analytic, this is not he case here, as our least-square problem is this time non-
linear. Therefore, each step of IRLS for ISOPTIM leads to a new optimization
problem that we must solve with conventional gradient methods (unlike for
RPCA where it is solved analytically) similar to the original non-robust one of
ISOPTIM. This is however only a computation time concern for our problem.

Just as for the RPCA IRLS, we first need to compute the variance of vali-
dation residuals using the non robust version of ISOPTIM (that we will denote
σNR in the description of the IRLS algorithm for convenience reasons). Then
we start an iterative algorithm using weights obtained in the same manner as
for RPCA, in which the residuals obtained with the previous weights are used
to compute the new weights. The following algorithm 3 details the computa-
tion steps of the IRLS scheme associated to our robust ISOPTIM.

Algorithm 3 Algorithm for robust ISOPTIM manifold projection

Require: X, V, ǫ, Y, f, σNR

1: R(0)(Y ) = Y − µ(Y ) ⊲ Initialize with ISOPTIM solution
2: k = 0

3: while ‖B(k) − B(k−1)‖ > ǫ do

4: b(k)
s = f ′(R

(k)
s (Y )

(σNR)s
)/2R

(k)
s (Y )

(σNR)s
⊲ Compute weights for each voxel

5: π̃
(k)
B (Y ) = arg miny ‖BY −

∑

i
K(xi,y)BXi

∑

i
K(xi,y)

‖2 ⊲ Compute the robust

Out-of-sample extension
6: R(k)(Y ) = Y − ρ(π̃

(k)
B (Y )) ⊲ Compute the residual using the extended,

weighted kernel
k = k + 1

7: Return last residual R(k)(Y )
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Remark: The weighted extension of the the kernel is the same as the ISO
one, and will be given in the next section.

2.6.5 Extensions for Kernel Methods

It is a bit more complicated to provide a robust algorithm for other non-
linear methods that we developed. As they are not linked to a least-square
optimization problem, we actually have to try to transpose the IRLS concept
to our methods without the same guarantees (of convergence, albeit a local
one) as for PCA or ISOPTIM. As in an IRLS scheme (although this is not one
here, as we are not minimizing any maximum likelihood function), we want
our projection µ to depend on weights that would eliminate the influence of
suspect voxels according to the training set. Therefore we performed a similar
approach to IRLS in order to “robustify” our projection, by using an iterative
scheme of projection using the result of the last anomaly detection as weights
for the next one, in order to reduce the importance of such voxels. This
weighting system had to be introduced at the out-of-sample extension level,
after we computed the embedding for the training set (as no training sample
is supposed to be anomalous, by definition), and before the computation of
any distances or neighbourhoods between our test sample and the training set,
as figs. 2.6 and 2.7 taught us.

The first step of any non-linear robust algorithm, as for PCA or ISOPTIM,
is to compute the residuals for the validation set V with an unchanged, non-
robust, method and to compute the voxel-wise variance of residuals across
all subjects. Then, again, we use this variance as a parameter of a robust
function as a part of our robust algorithm of manifold projection. A first non
robust projection of our test sample Y is performed, to initialize the weights.
Then we iterate the computation of the weights and the projection of Y until
convergence, where the algorithm returns the latest projection of Y , obtained
with the optimal weights. What differs from algorithm to algorithm, is the
manner in which we performed the weighting of our voxels. Algorithms for
robust projection with the ISO 2.3.1 projection and the KMP method 2.4.2
are given respectively in 4 and 5 to shed light on their specific processes of
weighting.

Similarly to ISOPTIM, both algorithms rely on the extension of their kernel
once the weights have been computed, i.e. the new kernel should take the
weights into account. ISO presents the additional constraint that we must
recompute the embedding using this weighted kernel, as to avoid discrepancies
between distances inside the training set and distances from training set to
test point.

To provide robust extensions for non-linear methods, we must weight the
kernels we presented and extended in section 1.2 using weighted distances
instead of classic L2 distances.
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Algorithm 4 Algorithm for robust ISO manifold projection

Require: X, V, ǫ, Y, f, σISO

1: R(0)(Y ) = Y − µ(Y ) ⊲ Initialize with ISO solution
2: k = 0

3: while ‖B(k) − B(k−1)‖ > ǫ do
k = k + 1

4: b(k)
s = f ′(R(k)(Y )

(σISO)s
)/2R

(k)
s (Y )

(σISO)s
⊲ Compute weights for each voxel

5: K̃B(Y, Xi) ⊲ Extend the kernel while weighting each voxel
6: y(k+1) = π̃W (Y ) ⊲ Apply Nyström with extended, weighted kernel
7: x(k) = πB(X) ⊲ Recompute the embedding for distances consistency

8: Return last residual R(k)(Y )

Algorithm 5 Algorithm for robust KMP manifold projection

Require: X, V, ǫ, Y, f, σKMP

1: R(0)(Y ) = Y − µ(Y ) ⊲ Initialize with KMP solution
2: k = 0

3: while ‖B(k) − B(k−1)‖ > ǫ do
k = k + 1

4: b(k)
s = f ′( R

(k)
s (Y )

(σKMP )s
)/ 2R

(k)
s (Y )

(σKMP )s
⊲ Compute weights for each voxel

5: K̃B(Y, Xi) ⊲ Extend the kernel while weighting each voxel
6: R(k)(Y ) = Y − µ

(k)
B (Y ) ⊲ Compute the residual using the extended,

weighted kernel
7: Return last residual R(k)(Y )

This means we obtain for the geodesic kernel:

K̃B,geo(Y, Xi) = min
U∈NBX(BY )

Kgeo(U, Xi) +
d(BY, BU)

B

Here, we look for neighbours of Y in X using weighted L2 distances: ‖B(Xi −
Y )‖2

2 =
∑

s b2
s(Xs − Ys)

2 (ergo the abuse of notation BX). For ISO, we need
to recompute the embedding using this kernel, as we will further on com-
pute distances in the embedding as part of our reconstruction scheme between
training points and testing ones. For the kernel to be consistent between ro-
bust distances (used when testing an abnormal sample) and classic L2 distance
(computed between every control samples), we need to normalize the robust
distances, in order for them to have globally the same amplitude as non-robust
one. We performed this by normalizing using the weights mean. The Nyström
out-of-sample extension is then computed using this kernel instead of the usual
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one, and the reconstruction is done classically with NWKR (as the point in
the embedding should present no trace of anomaly).

For the neighbourhood kernel:

K̃B,LLE(Y, Xi) = w(BY, BXi)

We simply recompute neighbours of Y using weighted distances, and then
reckon the weights to be the ones of weighted version of Y and its neighbours
in X.

Finally, for the diffusion kernel:

K̃B,DM(Y, Xi) =
k(BY, BXi)

√

Ej[k(BY, BXj)]Ek[k(Xi, Xk)]

As for ISO, a normalization of robust distances is actually needed before
computation of the robust kernel k(BY, BXj). This is done by dividing be-
forehand the L2 distances by the weights mean, just as for ISO.

Note: The weighted diffusion kernel will only be used in the KMP setting,
as due to computational issues, no robust DM method could be developed.

2.6.6 Partial Conclusion

In this section, we introduced original robust extensions of our methods.
We presented a cost function for PCA from previous works able to in-
corporate robust functions that decreases the importance of abnormal voxels.
This new cost function being non-convex and having no analytical solution,
we presented a class of optimization algorithms called iterative reweighted
least-squares, that provides an iterative, weighting scheme to solve our
optimization problem. The non-linear method ISOPTIM, being expressed as
a least-square problem, can also be dealt with an IRLS algorithm. Finally, we
adapted this class of algorithms to our non-linear methods, with the additional
difficulty of having no cost function to guide us.
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In this chapter we will attempt to highlight the strengths and weaknesses
of our methods, by using them to perform a voxel-wise anomaly detection in
a subject vs group setting. Our analysis will obviously also try to empha-
size the added value of the robust layer that we superimposed to the original
methods, by naturally comparing each method with its robust version. While
we would like to find a clear and consistent hierarchy of methods across mul-
tiple datasets, we must understand that each dataset has its own geometric
specificities (linear/non-linear, high/low latent dimension, few/many samples,
etc.) that will naturally impact the results of each method in their own way.
Therefore, our main objective is rather to obtain a better understanding of
how the methods work and what makes them fail.

As a start we will present results over multiple synthetic datasets from the
simplest modelization of a half-sphere (section 3.1) and increasingly complexi-
fying the underlying model of our data, first into non-linearly sampled images
(section 3.2) to finally reach a modelization (section 3.3) consistent with what
we have in our real datasets (that will be dealt in a second time in chapter 4).
The synthetic datasets results will thus provide us with a deep analysis of both
our methods and paradigm, and a sense of what to expect on real ones. The
synthetic dataset analysis is also made necessary by the fact that real datasets
do not come with a ground truth that allows for a quantitative analysis of the
results.

First, let us introduce the synthetic datasets by starting with a simple,
geometric one.
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3.1 A Geometric Dataset

Contents for this section

3.1.1 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.2 Reference Test Case . . . . . . . . . . . . . . . . . . . . 92
3.1.3 Large Modifications Test Case . . . . . . . . . . . . . . . 98
3.1.4 Fewer Number of Samples and Greater Intrinsic Dimension102
3.1.5 Large Sample Space Dimension . . . . . . . . . . . . . . 104
3.1.6 Partial Conclusion . . . . . . . . . . . . . . . . . . . . . 105

3.1.1 The Dataset

As our main hypothesis 1.1.1 is that real world data is not sampled from
linear, euclidean spaces but rather from non-linear (yet smooth) manifolds
(see appendix 5.1.3), our synthetic datasets ought to present such properties
as we wish to test our methods on challenges inspired by “real world” data.
The simplest approach in creating a controllable, intuitive, non-linear data set
is to start from a familiar one with a very small intrinsic dimensionality, from
which we can easily sample. Such a dataset can be obtained by embedding an
already non-linear subset of R

m (with m “very small”) into R
d (with d as large

as we want). This embedding is done in the easiest form, by using a linear
application to get from the low dimension dataset to a high dimensional one.
This modelization is therefore consistent with the assumption we made: the
high-dimensional dataset is sampled from a non-linear dataset (composing a
non-linear dataset with a linear function does not make it linear) with a very
small intrinsic dimensionality and with an equivalent smoothness to the one of
the original, low-dimensional dataset.

With this idea in mind, we consider an half-sphere dataset: we sample
our low-dimensional dataset on a semi-sphere (as to avoid closing the sphere
manifold on itself), and embed it in on relatively high dimension using the
previously described manner. We use a sphere, as it is a quite simple object
to mathematically describe and to sample uniformly (according to the sphere
surface). Obviously the sphere is commonly used to refer to the 3D represen-
tation of the word, but in our case we will use the more general definition of
a m dimensional sphere for our test purposes: Sm = {M ∈ R

m / ‖M‖2 = 1}.
This definition allows us to test our methods in different settings with various
intrinsic dimensionality. One beautiful appeal of using a spherical dataset is
that, by using the particular subclass of linear applications called orthonormal
applications to embed our dataset in high dimension, the geometrical property
of the sphere (unit norm) in low dimension is conserved in high dimension.
That is to say that a low-dimensional sphere in low dimension, embedded in
high dimension via an orthonormal application is still on the sphere. To com-
plete the process of generating control samples, a zero-mean gaussian noise
of variance σ2 is added independently on each component of the points. σ is
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specified so that the L2 norm of most of the noisy samples are between 0.95
and 1.05, independently from the value of d (keep in mind that the norm of the
noise-free samples is 1), thus preserving relatively well the topology of the man-
ifold. In order to obtain anomalies on some of our samples with the associated
ground truth, we will consider that a fraction (α%) of our high dimensional
samples components has no added noise, but rather an added constant which
is linked to the noise variance: kσ, with k = 4 in our experiments.

Remark: Obviously, this dataset will be extremely challenging for SPM, as
none of its hypothesis are true in this case. However, while the dataset in itself
is non-linear, the projection method is linear (and furthermore orthogonal).
Therefore, PCA should be able to find the correct mapping (up to a rotation)
between low and high dimension, although without “untangling” the dataset
in the low-dimensional space.

We will start by designing a reference test case which we will use as a point
of comparison while changing each of the test parameters (low dimension: m,
high dimension: d, number of training samples: Ns, percentage of abnormal
area: α) one by one in order to get a sense of their influence over our meth-
ods. The reference case is meant to be an easy one and therefore will have a
low dimensionality with a high number of samples, while the anomaly is not
affecting a large part of our test samples. The reference case will be denoted
Tref and its parameters are the following ones:



























Ns = 10000

α = 5

m = 3

d = 100

(3.1)

Based on this test, we define five experiments, where parameters of the refer-
ence case parameters are changed one by one, with the rest of the parameters
identical to the reference ones: large modifications (α = 30), fewer number of
samples (Ns = 2000) greater intrinsic dimensionality (m = 20), large ambient
dimensionality (d = 1000).

To evaluate the performance of the methods over each of these experiments,
we will obviously use the Z scores we defined in section 2.1 but we will also
look into the mean-squared errors (MSE) of reconstruction of our algorithms.
Of course, anomaly detection and performance in reconstruction are closely
linked, and indeed one can intuitively think that in order to find the most sub-
tle anomalies inside a test sample, we need to be able to reconstruct validation
samples with an accuracy similar to the amplitude of the anomaly; therefore
our aim with our methods of projection should be to minimize errors of recon-
struction on validation samples. However by doing so we run into the issue
of too well reconstruct test samples (and therefore being counterproductive in
our anomaly detection task), by overfitting our dataset in a way and having
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such a complex model that it is able to reconstruct anomalies by extrapolating
over the training set variabilities. Therefore we need to find a balance where
our methods perform well on normal areas and bad on abnormal ones (in the
sense that they are not able to reconstruct them). This leads us to have a
look on one side at Receiver Operating Characteristic (ROC) curves where the
curve is obtained by thresholding our Z scores with multiple values spanning
their complete range in order to obtain true (TPR) and false (FPR) positive
rates that are plotted one against the other. In ROC curves, we are particu-
larly interested in the part of the curve where the FPR is low (at most 10−2),
as it is of greatest concern in medical applications. On the other side, we will
analyse the MSE of our reconstruction methods on both normal samples and
abnormal ones (in both the unchanged area and the one where we introduced
an anomaly). In a perfect setting, we expect our methods to have the same
kind of MSE over the normal samples and the part of abnormal samples where
no perturbation has been introduced.

While the size of the training set (and therefore the validation set) may
vary depending on the experiment, we will always keep the same number (500)
of test samples, split in half between “normal” test samples that have been
sampled just as training ones and that have the same noise, and abnormal
ones created as described in section 3.1.1. For the sake of clarity, we will refer
further on to the following acronyms for their respective area of interest.

• N: The first half (250) of the test samples (all components), composed of
normal samples with the same modelization as train or validation ones.

• AN: The unaltered components of the second half of test samples (ab-
normal ones).

• AA: The altered components of the second half of test samples (abnor-
mal ones).

A graphical representation of the creation and split of our synthetic datasets
is given in figure 3.1.
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Generate healthy samples

Training set Valid Test

divide into 3 sets of unequal size

N set A set

Add anomaly on the A set

250 samples

AN components

AA components Anomaly introduced

Split test set into

two equal parts

Figure 3.1: Synthetic data generation and splitting into training set and testing
set.

Remark: When looking into the MSE of reconstruction in the AA area,
we will compute the MSE without the anomaly added to the test sample, as
to analyse whether or not a method is able to reconstruct the original test
samples (i.e. before the anomaly was added to it) in the AA area. If we did
manage to reconstruct these original test samples (the MSE in AA is small),
this means our model is able to not take the anomalies we introduced in our
test samples into account and extrapolate the AN area to reconstruct AA with
the modelization of healthy samples. We will thus detect the anomaly as its Z
score will probably be high. On the contrary, if we obtain a high MSE in AA,
it means we were not able to reconstruct our original test sample and that we
most likely reconstructed part or all of the anomaly we introduced, making it
unlikely we detect something in this area as abnormal.

3.1.2 Reference Test Case

In all our experiments, methods requiring a low-dimension parameter have
been set with the correct one m, and ones requiring a number of neighbours
have been set with 20. Figure 3.2 presents a complete overview of the perfor-
mance of non-robust methods over the reference test Tref , in the form of ROC
curves.
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Figure 3.2: ROC curves for all the non-robust methods on the half-sphere
dataset, on the reference test case (Ns = 105, d = 100, m = 3, α = 5). FPR
axis is in log scale.

We observe an expected behaviour for the multivariate methods, that per-
form really well on this reference case. Only DM has a sub-par performance
on this test, that might be explained by a sub-optimal value of the diffusion
parameter, that is automatically computed and might therefore not give the
best results. It is noteworthy that the KMP versions of ISO and DM perform
equivalently or slightly better than their original counterparts. Also note-
worthy (and revealing) is the performance of PCA, which nearly bests the
non-linear methods, with the correct number of components (although we did
give it to the algorithm, and did not try to find it out with the help of an-
other algorithm), i.e. matching the intrinsic dimension of the manifold. This
is interesting, as it demonstrates that PCA can correctly model a non-linear
dataset, as long as the projection itself is consistent with the PCA modeliza-
tion (i.e. orthonormal). The poor performance of SPM was also expected, as
our dataset is both multivariate and non-linear and therefore unsuited to SPM
modelization.
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In figure 3.3 are displayed the mean-squared error of reconstruction over
our 500 test samples for non-robust methods.

Method
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0.00016

M
S
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DM ISO Isoptim KMP_dm KMP_iso LLE PCA
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N
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Figure 3.3: Mean-squared errors of non-robust methods over normal (N) sam-
ples, and abnormal ones (split over the normal (AN) and abnormal (AA) areas
of such samples) on the reference case (Ns = 105, d = 100, m = 3, α = 5).

Remark: Remember MSE on the AA area are computed without addition
of the anomaly, and without noise on the AA area. We are thus not limited
to the variance of the noise for our errors of reconstruction on these compo-
nents, contrary to the AN ones. It will therefore be not surprising to observe
much smaller MSE on the AA area than on the normal ones for methods that
successfully recover the original sample.

It is clear that best performing (non-robust) methods are the ones that
have the best reconstruction error on the AA area (i.e. PCA, ISO, KMPdm

and KMPiso). The smaller the MSE in AA, the worst we will reconstruct the
anomaly, and therefore the higher the magnitude of the Z score will be in these
components (as the Z score basically compares the reconstruction error on the
anomaly to the MSE of N), this combined with the fact that those methods
have nearly the same performance on the AN area as in the N one (and thus
few false positives) explains their strong performance on the reference case. As
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for methods such as LLE, it seems apparent that the poor reconstruction (of
the original, unaltered sample) provided on the AA area is the cause of their
slightly weaker result: LLE is reconstructing abnormal test samples including
the anomaly in some form of overfitting where both normal and abnormal
areas are reconstructed with similar precision.

Remark: To preserve a sense of scale in the display of our MSE, the SPM
ones are not plotted. Indeed, the MSEs for SPM are around 4 times larger
than the worst multivariate method, and, furthermore, the difference between
MSEs in AA, AN and N is also quite small for SPM.

Figure 3.4 showcases a direct comparison of each multivariate method with
its robust counterpart, whenever possible (due to extreme running time over
the number of samples, the DM and ISO robust version are not presented here).
While not being an extreme improvement over the non-robust multivariate
methods, the robust layer we added to the methods does not impair their
results in the reference experiment. This kind of status quo was expected as
we are dealing with anomaly only affecting 5% of the samples dimensions.
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Figure 3.4: Improvement of robust versions vs non robust ones on the reference
case (Ns = 105, d = 100, m = 3, α = 5) shown over ROC curves. FPR axis in
log scale.

The small improvements we observe can be explained by looking into the
MSE results of figure 3.3 for robust methods. Robust methods (except for
LLE) seem to have been able to find what part of the test samples was cor-
rupted, and thus base their projection only on the non-corrupted areas (thanks
to the weighting system of the IRLS). This is particularly noticeable on the
MSEs: most of the MSE for the abnormal part decrease, suggesting that ro-
bust methods are better able to find the AA components original values for
these test samples. The MSE of the normal area of altered samples (AN) also
decreases, suggesting that these methods had a greater concern to correctly
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Figure 3.5: Mean-squared errors of robust methods over normal (N) samples,
and abnormal ones (split over the normal (AN) and abnormal (AA) areas of
such samples) on the reference case (Ns = 105, d = 100, m = 3, α = 5).

reconstruct those area rather than the affected components (which is indeed
the case given our IRLS optimization).

Remark: The seemingly average results of LLE are rather counter-intuitive,
as we would expect the “threshold” introduced by our arbitrary set up num-
ber of neighbours to prevent LLE from overfitting. However, this dataset is
typically a case where this is not enough, and where adding the convex con-
straints on the LLE weights would help (a lot). Indeed, while the anomaly
tends to move our samples away from the sphere (as their norm is affected
by the anomaly we introduced), LLE is able to provide reconstructions that
have norms greatly superior or inferior to 1, by setting large weights (superior
to 1) on training samples that already have norms larger than 1 (although
much closer) due to the noise, and setting small weights (negative ones) on
training samples with norms inferior to 1. By using a convex (or positivity)
constraint on the weights, we could ensure that the norm of our reconstructed
sample stays between the min and max norms of its neighbours (and thus rel-
atively close to 1). This is obviously very specific to this dataset and as we did
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not find the convex constraint to offer any concrete improvement on further
experiments, we chose not to implement it further on.

Synthesis of reference case The reference test case is indeed an easy one
for multivariate methods, which have strong performances on this test. PCA
was one of the strongest contenders with the correct number of dimensions, as
the projection is orthonormal. Non-linear methods have close results, excepted
for LLE and DM which are slightly worse. All the methods where it was
possible to add an IRLS layer to make them more robust to the anomaly we
introduced on the test samples have seen small benefits from this robust layer.
As expected, and as will be the case for the rest of the synthetic tests, SPM
is completely unable to correctly modelize this kind of dataset. We now have
to look at the effect of large modifications, and of the dimensionality of the
problem on each of the methods performance, in order to assess which of them
have the best chance of getting a strong performance on a real dataset.

3.1.3 Large Modifications Test Case

In this experiment, all parameters are set identically to the reference case,
except for the size of the anomaly that is added to tests samples which increases
from α = 5% to α = 30%. As can be seen on figure 3.6, this test case is much
more difficult than the reference one, which was expected as we perturbed 6
times more of the abnormal samples in this test, making it much harder for
methods to perform a projection consistent with the original samples. All of
the non-robust, multivariate methods have much lower (although decent) area
under the curve (AUC) scores that in the reference test. PCA seems to suffer
the most from its lack of inherent robustness, as it is now one of the worst
multivariate method. The performance of SPM is obviously not affected as it
is a univariate model.
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Figure 3.6: ROC curves for all the non-robust methods on the half-sphere
dataset, on the large modifications test case (α = 30). FPR axis is in log
scale.

MSEs presented in figure 3.7 are also quite different from the ones of the ref-
erence case. MSEs of AA and AN are overall much larger than previously, with
AN MSEs now much greater than N ones, which indicates that an anomaly
of this magnitude contributes to badly reconstruct all the components of an
altered sample, while this was not the case for lightly altered ones. In this
experiment, the anomaly is affecting the reconstruction of non-robust mul-
tivariate models, in both altered (AA) and unaltered (AN) components by
globally “dragging” the reconstructed sample toward the altered one.



100

Method

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

0.00020

0.00022

0.00024

M
S
E

DM ISO Isoptim KMP_dm KMP_iso LLE PCA

AA
AN
N

Area

Figure 3.7: Mean-squared errors of non-robust methods over normal (N) sam-
ples, and abnormal ones (split over the normal (AN) and abnormal (AA) areas
of such samples) on the large deformation case (α = 30).

Non-robust methods have taken quite a hit and the performance (or rather,
improvement) of the robust IRLS layer is critical on such a test. It is a good
indicator of whether or not our methods are able to cope with large anomalies of
high magnitude. Figure 3.8 presents ROC curves for each non-robust method
and its associated robust version. We observe large improvements with the
IRLS layer for most non-linear methods (LLE aside) and PCA, bringing us
back to the standards of the reference experiment.
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Figure 3.8: Improvement of robust versions vs non robust ones on the large
modifications test case (α = 30) shown over ROC curves. FPR axis is in log
scale.

The results presented in figure 3.9 confirm what we expected: the differ-
ence between MSE in N and in AN have been mostly corrected (reducing the
number of false positives), and the MSE in AA suggests the reconstructions are
now much closer to the unaltered test samples (increasing the number of true
positives) than before the IRLS, thus consolidating the interest for a robust
layer in large modifications settings. For LLE, as suggested by the high MSE in
AA prior to the IRLS, the algorithm reconstructs the anomaly nearly as well
as normal areas and therefore IRLS is unable to provide a more interesting
solution as LLE will reconstruct the anomaly at each step.
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Figure 3.9: Mean-squared errors of robust methods over normal (N) samples,
and abnormal ones (split over the normal (AN) and abnormal (AA) areas of
such samples) on the large deformation case (α = 30).

As the need for robustness to our methods is mostly linked to the percentage
of components we altered, results of robust methods and non-robust ones for
further experiments are quite similar. Therefore we purposely chose not to
delve into it for the rest of our experiments on this dataset.

3.1.4 Fewer Number of Samples and Greater Intrinsic
Dimension

Fewer number of samples

We now try to achieve what we did on the reference case with fewer samples
(Ns = 2000). The low-dimensional manifold (i.e. the 3 dimensional half-
sphere) will thus be less well sampled, making it harder for all the methods
to perform the projection of new samples: MSE will inevitably be worse than
in the reference case, and therefore the detection will be coarser. Indeed,
multivariate methods rely on neighbourhoods, proximity, or global covariance
of the training set to perform their projection/anomaly detection. As the
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number of samples decreases, these methods are faced with an increasingly
greater challenge.

Figure 3.10 presents the ROC curves of non-robust methods for this test
case. As expected, the performance of multivariate methods is strongly affected
by the decrease of samples, with FPR values more than halved at a TPR of
10−3 for instance. This means that the performance of our test (TPR at a
given FPR) is strongly linked to the number of samples in our dataset.
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Figure 3.10: ROC curves for all the non-robust methods on the half-sphere
dataset, on the fewer number of samples test case (Ns = 2000). FPR axis is
in log scale.

Greater Intrinsic Dimension

The greater intrinsic dimension test is dedicated to finding the influence of
the intrinsic dimension of the manifold on which our data lies. Obviously the
intrinsic dimension plays a great role in our datasets and for the difficulty of
the task at hand, as it is much harder to correctly sample a manifold of high
intrinsic dimension. This experiment is quite similar to the previous one in the
sense that it tests the effect of badly sampling our manifold. Here however,
this is a much more difficult task, as sampling a 3 dimensional manifold with
2000 points is widely better than a 20 dimensional one with 10000 points, due
to the curse of dimensionality.

Figure 3.11 presents the ROC curves obtained for our non-robust methods
for a test case where intrinsic dimensionality m was set to 20.
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Figure 3.11: ROC curves for all the non-robust methods on the half-sphere
dataset, on the greater intrinsic dimension test case (m = 20). FPR axis is in
log scale.

It is immediately noticeable that every method except PCA has an ex-
tremely poor performance with this test case. Non-linear methods might be
more affected by the emptiness of the incorrectly sampled latent space, as
they mainly rely on the assumption that the number of training samples is
consistent with the intrinsic dimension of the manifold on which the data is
sampled, and therefore rely on neighbourhoods or proximity between samples,
which are strongly altered as the 20 dimensional space is mostly empty. PCA
is less affected, as its only interest is to find the mapping between the high-
dimensional space and the low-dimensional one. This is still a relatively easy
task for PCA (on this specific dataset) as it is a global model, and as we
are still using a linear, orthonormal mapping and PCA does not need for the
manifold to be well-sampled to find this mapping.

3.1.5 Large Sample Space Dimension

None of the presented methods were really affected by the increase of the
sample space dimension d (even with values similar to real dataset problems,
i.e d = 105), which is encouraging as the dimensionality of our samples will
tremendously increase as our datasets move toward real dataset. This was
more or less expected as we are mainly using methods of dimension reduction
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that are designed to cope with very high dimensional problems, and given that
we sampled the intrinsic manifold to the same extent as in the reference case.
As the results for this test case are extremely similar to the ones from the
reference case, we purposely chose not to display them.

3.1.6 Partial Conclusion

With this basic geometric toy example, we have seen a glimpse of what to
expect from the performances of the presented methods and the IRLS layer
we can put on top. While this dataset is far from being perfect as a non-linear
high-dimensional test set, it is full of information on the behaviour of these
methods under particular settings. To synthesize, we have learned that:

• PCA is not disturbed by non-linearities in data when the projection
is orthonormal (non linear projections will be our next focus).

• The IRLS robust layer is often beneficial, even with small anomalies,
but nearly useless when a method is too well reconstructing the anomalies
we are trying to detect.

• High dimensionality of the sample space is a much smaller problem
than the intrinsic dimensionality of the manifold underlying the
data, which can cause any method to collapse due to the vast emptiness
of the intrinsic space.

• The sampling of the manifold is the key to a good anomaly detection: the
better the (low-dimensional) manifold is sampled, the better
the anomaly detection.

• KMP methods are most of the time an improvement over their dimension
reduction counterparts (e.g. KMPiso vs ISO).

Let us now turn to a more realistic dataset on which we will try to confirm our
previous findings and go even further into our understanding of the problem
we are facing.
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3.2 Geometric Images
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The next step in making the synthetic data model closer to real, medical
datasets is to deal with images rather than abstract geometrical representa-
tions. Therefore, we looked for a way to modelize a manifold of images where
we could control the dimensionality as well as the way to introduce anomalies
(and thereby the associated ground truths). A quite simple and intuitive way
we found to do this is using geometrical shapes images, e.g. images of squares
or circles, or any given geometrical shape that can be controlled by few pa-
rameters from which we can sample to generate a dataset. This is not strictly
speaking a direct extension of what we did in the previous section with the
spherical dataset, but the idea is essentially the same: obtain a non-linearly
distributed dataset (of images) in high dimension that is sampled from few
known parameters.

To begin with, we should clarify that all our geometric shapes, unlike math-
ematical ones have an inherent thickness, as any object from discrete geom-
etry. Even more in our setup, as we will use this thickness as one of our
parameters. A simple regular geometrical shape that requires a few parame-
ters to be described is the trapezium, a quadrilateral with at least two parallel
opposite sides. To define a general trapezium, you would be required to provide
4 parameters (for instance the length of three sides and its height), however
for the sake of simplicity we only sampled trapezium which are symmetric ac-
cording to the horizontal axis splitting our images in half (i.e. each parallel
side of the trapezium is centred according to this axis), leaving us with max-
imum 3 parameters to sample from (the lengths of the two parallel sides and
the height). As we are looking at images rather than pure geometrical shapes
we will centre our geometrical forms as to avoid introducing a translation pa-
rameter. Obviously, you should also define the angle between one of the side
and an axis of the coordinate system. This leads to defining a last parameter,
which is a rotation one: each of the trapezium images can be rotated around
its centre to form a new trapezium image. Therefore, we are able to sample
from a manifold of images whose intrinsic dimension is up to 5.

3.2.1 The dataset

Our dataset is made by sampling the different parameters that rule this dataset
(the lengths of the parallel sides, the height, the thickness and the rotation
angle) with the chosen number of samples Ns. Once done, we use these pa-
rameters (upscaled to match the resolution) to create “high-resolution” (400
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by 400) binary images of the corresponding trapezium shapes. To avoid the
pitfall of having sparse images (as the trapezium constitutes only a small part
of our image), we used a technique called distance transformation [88] (pre-
cisely Chamfer distance transform) over the binary high resolution image, that
defines a distance image in which each voxel intensity is set to the minimum
distance between this voxel to a non zero one in the binary image. The high-
resolution image is then downsized into a low-resolution (40 by 40) one. The
upscaling enables us to have distinct resulting images for closely sampled pa-
rameters (e.g. a thickness of 2.5 and 2.6 respectively would be indistinguishable
in a 40 by 40 image). A random gaussian noise is finally added to the signal,
and an anomaly is introduced on abnormal test samples in the same fashion
than for the half-sphere dataset 3.1.1, i.e. instead of adding noise to the target
abnormal area, we add a constant that is a multiple of the noise standard devi-
ation. Abnormal components were (arbitrarily) chosen as a patch in our 40 by
40 image of size 10 by 10 (therefore 1/16-th of the image). In our experiments,
the noise standard deviation is set up to be σ = 0.05 and the amplitude of the
anomaly is 4σ.

Figure 3.12: An example sample from the trapezium dataset with the Chamfer
distance transform (before adding noise).

3.2.2 Trapezium Experiment

Our experiment is designed by sampling 2500 samples of the trapezium dataset
using the 5 parameters available. Setting all our dimension reduction methods
to match the intrinsic dimension of the dataset, we get the ROC curves of
figure 3.13. In this figure, we observe a much greater variance in the multivari-
ate methods results. KMP methods now lead the way, with an exceptionally
strong performance of LLE (for which the dataset is now much more adapted).
Anomaly detection methods making use of the dimension reduction techniques
they are based on have noticeably worse performance than the KMP ones, with
the noteworthy case of PCA, which is now one of the weakest method (probably
due to the inherent non-linearity of the dataset).
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Figure 3.13: ROC curves for all the non-robust methods on the trapezium
dataset. FPR axis is in log scale.

While the MSE scores of most multivariate methods were overall quite
good, the ones from DM and PCA were rather bad (5 times to 10 times the
MSE scores of other methods). The inability of these methods to reconstruct
our samples is the prime cause of their failure on this dataset. For DM it
is either due to a wrong diffusion parameter (although the same is used for
KMPdm), or to the dimension reduction, or to the Nyström extension. Indeed,
as is once again obvious on the ROC curves of figure 3.13, the KMP methods
corresponding to ISO and DM (KMPiso and KMPdm, respectively) show much
better results on the trapezium dataset, suggesting that the embedding part
of the ISO and DM methods has a negative impact on our anomaly detection.
For ISO, as we increase the dimensionality of our embedding, these distances
between embedding points theoretically converge towards the one computed
by KMPiso. Therefore, the distances computed in embedding spaces are only
approximations of the real ones and reducing dimensionality with Isomap is
actually not beneficial. For DM as our reconstruction is not based on NWKR
but rather on an optimization scheme, the analogy is less simple, but the same
phenomenon might be going on too. For both methods, we could also incrimi-
nate the Nyström method, as Isoptim’s performances are widely superior to the
ISO ones on this dataset, while the only difference between the two methods
is Nyström’s extension. The KMP methods are both using this extension too
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suggesting that Nyström’s extension might be damaging only when associated
with a dimension reduction.

LLE excepted, the robust layer that IRLS provides is here not really helpful
as can be seen in figure 3.14, which can be explained both by the small pro-
portion of altered components (around 6%) and the fact that on this dataset,
our methods are able to reconstruct the anomaly even if part of it is masked.
This might be caused by the fact that some samples in our dataset have a
certain resemblance with the anomalies we introduce (i.e. their signal is the
strongest where the anomaly is located, and close to 0 otherwise). While LLE
is constrained to use only neighbours of our sample to reconstruct it, other
multivariate are more global in the sense that they will use any sample as
long as it is not too far from the one we which to reconstruct (which might
be the case here). Therefore, without a perfect initialization, the IRLS will
ultimately provide a solution quite close to the non-robust equivalent method,
or even worse as the noise will be considered more and more abnormal with
each iteration (thus introducing false positives) in some form of overfitting.
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Figure 3.14: Improvement of robust versions vs non robust ones on the trapez-
ium dataset, shown over ROC curves. FPR axis in log scale.
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3.2.3 Dimension Analysis

Upon seeing the results over the trapezium dataset, one might object that
the PCA performance is probably caused by its inability to model a non-linear
dataset with the correct amount of dimensions, as it is after all a linear method.
Therefore a PCA algorithm with more dimensions might perform better than
the one using the intrinsic dimension of the manifold. Indeed, intuitively, PCA
MSEs (over normal samples) are better and better as we increase the dimension
used in the algorithm (as the number of components used to reconstruct our
image increases, the reconstruction error can only decrease). We thus designed
a test to analyse whether or not a PCA algorithm using more components could
perform better than the original one.
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Figure 3.15: Performance of PCA over the trapezium dataset depending on
the used dimension shown in ROC curves. FPR axis in log scale.

Figure 3.15 presents the ROC curves obtained by using PCA with 5 to
as much of 400 dimensions to reconstruct our data, while figure 3.16 presents
similar results for robust PCA. Unfortunately, the results show that increasing
the dimension does not lead to better results (although the best result is the
one with 10 dimensions, rather than 5). Indeed, as the MSEs presented in
figure 3.17 perfectly showcase for PCA, while we improve our reconstruction
of normal samples N or normal area of abnormal samples AN, we also better
and better reconstruct the anomaly in AA (or conversely reconstruct worse
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and worse the original components in AA), therefore making it more and more
difficult to detect it.
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Figure 3.16: Performance of robust PCA over the trapezium dataset depending
on the used dimension shown in ROC curves. FPR axis in log scale.

While the IRLS layer do provide some form of improvement over the orig-
inal PCA algorithm (especially in the higher dimensions) as can be seen from
figure 3.16, it is mostly skewed by the ability of PCA to reconstruct the
anomaly and therefore unable to provide correct results on this dataset. This
is close to the previous “overfitting” of non-linear methods (that prevented
them to obtain improvement from their own IRLS) and highlighted by the
MSE scores of figure 3.17 in which it is clear that with greater dimensions,
PCA more and more reconstructs the anomaly.
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Figure 3.17: Mean-squared errors of PCA over the trapezium dataset depend-
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(AA) areas of such samples).
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3.2.4 Partial Conclusion

The trapezium dataset has provided us with a more realistic, or at least a
more similar dataset to real ones from medical image analysis. The results
we displayed from this dataset are both different and consistent with what we
experienced with the half-sphere dataset, in the sense that while the best and
worst performing methods have widely changed, it happened in a somehow
expected way.

• PCA is immensely disturbed by the non-linear distribution of the trapezi-
ums, and is unable to match the performance of non-linear methods,
even by increasing its dimensionality, as it will only result in overfitting
the anomaly.

• Except LLE, non-linear methods tend to suffer from the same
overffiting that prevents them from obtaining great improvements from
the IRLS, due to the peculiarities of this dataset and their non fully local
algorithms.

• While LLE was prone to overfitting in the half-sphere dataset, it is not
anymore the case on this dataset, thanks to the cut-off provided by the
selected number of neighbours.

• KMP equivalents of ISO and DM have stronger performances than their
counterparts performing dimension reduction, thus validating the idea
that the trouble of actually reducing dimension is either not re-
quired (at best) or penalizing (at worst).

• The best performing non-linear method (in its robust version) has been
LLE (excepted on a very specific dataset), and will still be further on.
Thus we will focus only on its performances in the rest of this work for
the sake of clarity.
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3.3 Synthesizing the Real World
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In this section, we will take a look at the medical dataset that will be used
in our real world test setting. As we mentioned before, we do not have ground
truth on the real dataset, therefore we had to make some adjustments (i.e.

not use the intended test samples as such, but rather make our owns) in order
to have one and thus obtain quantitative metrics for assessing our results.

3.3.1 MRI Dataset

The Dataset Contents

Our medical dataset consists in around 1500 MRI data extracted from multiple
bases. We had a focus on Alzheimer’s Dementia (AD) as a research interest,
and therefore looked specifically for AD MRI basis as to gather test samples
on which to test our methods; however we also looked at other non-specific
MRI bases to collect the most possible healthy, control samples to perform our
training. We finally settled on four bases:

• The CHUS database is a local basis from a dementia analysis program,
with around 200 samples split in healthy controls, diagnosed AD and
Lewy’s Bodies Disease (LBD), and Mild Cognitive Impairment (MCI)
afflicted subjects;

• Alzheimer’s Disease Neuroimaging Initiative ADNI [89] is an interna-
tional database focused on AD but which also provides control samples,
from which we extracted around 200 samples (AD and controls).

• The IXI is a database consisting in 600 “normal, healthy subjects” used
as control in a psychology study.

• The OASIS dataset provided us with over 500 samples, healthy and AD.

Multiplying bases provides us with an interesting number of samples but also
with new issues. These basis tend to have different acquisition protocols,
coupled with different set of acquisition machines, which can lead to different
contrasts between images coming from different bases. A selection bias is also
a risk, as covariables such as patient age or sex are not distributed in the
same way across bases. Overall, these four datasets provided us with nearly
1200 healthy samples and around 250 AD. Originally none of these images
are sampled from the same space, that is to say size of brains would greatly
vary, voxels and structures would not correspond from one image to another.
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We therefore had to force every image to belong to the same common space
by all registering them together. Registration was performed using an affine
registration followed by a deformable one using the diffeomorphic demons [90]
algorithm using Advanced Normalization Tools Software (ANTS) [91]. While
the affine registration captures all the isometric transformations between our
images (translations, rotations, transvections), the role of the diffeomorphic
registration is rather to capture local residual deformations that are inherent to
each individual. These deformations can bring to the light neurodegenerative
pathologies such as AD.

Registration over a common template yields for each image both a regis-
tered image than lies in the common space, and a deformation field (that also
lies in the common space) from this registered image to the original one. This
deformation field is a three-dimensional tensor that indicates for each voxel
how the corresponding structure in the registered image must be deformed in
3D to correspond to the voxel of the same structure in the original image.
This effectively means that the deformation field associates to each voxel a
3-dimensional vector. As we are not really concerned with such a precision in
what we are looking to detect in our test samples, as we do not wish to be
sensible to geometric transforms such as rotations and translations, and finally
for the sake of computation efficiency during the anomaly detection procedure,
we computed the voxel-wise Jacobian of our deformation fields. To be more
specific, we computed the determinant of the Jacobian matrices in each voxel.

Physically, this quantity corresponds to the volumetric deformation of each
voxel: how much should the volume of the structure underlying this voxel in the
registered image be increased/decreased to match the volume of this structure
in the original image. This is quite interesting in our case as AD is a disease
that strongly affects the brain’s structures volumes. To lighten up the writing,
as it is widely done in the literature, we will refer to the determinant of the
Jacobian matrix itself as the Jacobian, and we will refer to Jacobian images
for the Jacobian determinant maps we computed over our samples. As the
Jacobian is a multiplicative quantity (a Jacobian of two means we need to
double the structure’s volume) and we wish to add and subtract values to our
samples, we rather considered the log-Jacobian of our deformation fields.

Analysis of Structures Correlations

Before we start creating anomalies to introduce in our control samples, or be-
fore we start analysing the real dataset itself, there are interesting points to
be made about the multivariate correlations that exist between the volumes
of the different brain structures. To this end, we used the brain segmentation
provided by the freesurfer [92] segmentation over the template image to split
our brain into over 100 anatomical areas. We then computed for each sub-
ject the volume in each structure by summing the jacobian values inside this
structure. To observe correlations between structures, we computed linear cor-
relation scores across all subjects. These scores can then be shown in the form
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of a correlation matrix. For the sake of clarity (as one big correlation matrix
would be unreadable), we split the anatomical structures into two groups to
be analysed separately: subcortical and cortical structures.

Let us take a look at the correlation matrix obtained over the subcortical
structures from figure 3.18. One very apparent multivariate correlation that
transpires through this correlation matrix is the strong symmetry of brain
structures: left structures are highly correlated to their right counterparts. But
symmetry is not the only observable multivariate correlation: some structures
have high correlations with other structure than their associated symmetric.
While not all structures correlate together, it does appear that there are a lot
of spatial correlations in this dataset. It should be noted however that some

structures don’t have strong correlations with any of the other structures,
making these structures much harder to reconstruct for multivariate methods
using the rest of the brain: in these area, no multivariate model is going to
perform much better than a univariate one. To put some perspective to the
experiments we will conduct in the following sections, the ventricle area tends
to correlate with multiple brain structures while the white matter only does
so with a few.

Although it is sparser, the correlation matrix for the cortical areas is quite
similar in structure to the subcortical one, indicating that multivariate meth-
ods will tend to perform a bit better on subcortical areas than in cortical ones,
compared to the univariate model of SPM.

3.3.2 Synthetic Anomalies

To create a synthetic dataset, we had to rely only on the healthy control
samples, as if we used real test samples from our collected dataset, we could
not be sure of which area of the AD’s brain should be considered abnormal due
to the disease or not. Actually the problem is already quite hard as control
samples display a lot of variabilities, some of which might be attributed to a
form of brain affliction either benign or in an early stage. We therefore split
our control dataset into a training part (80%) and a testing one (20%). The
training part was left as such, while the testing part was split in half to keep the
same idea than in the previous experiments: one half of control testing samples,
and one half in which we introduced an anomaly (giving us 145 healthy test
samples and 145 altered ones). To create an anomaly we could not rely this
time on the noise variance as we did not introduced one as opposed to the other
synthetic datasets. We can however use the training samples inherent voxel-
wise variance as a base for our anomalies, although this will slightly favour
SPM (as this model use this exact variance to compute its Z scores). We thus
devised two experiments using this variance σ2 to create anomalies: once in
the ventricular area (consisting in 7% of the brain, see figure 3.19) where the
sample variance is great and once in the left white matter (around 17% of the
brain, see figure 3.20), a more stable region across subjects. In both cases,
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Figure 3.18: Correlation matrix of subcortical structures volumes. A larger
square represents a higher correlation in absolute value. A red colour indicates
a negative correlation, and a blue colour a positive one.

we voxel-wise added 3σ to each of our test samples. While the value of σ we
have chosen to compute might favour SPM (as we mentioned), the fact that
we add this anomaly to our voxels intensity is also sure to make SPM fail for
voxels that constitutes the “left tail” of the distribution (i.e. voxels that would
otherwise have a negative Z score with SPM if no anomaly was introduced).

3.3.3 Results

Ventricular Area

As previously stated, our first experiment focused on the ventricular area. Fig-
ure 3.21 presents the ROC curves obtained on this test for SPM, RLLE, RPCA
and the PCA-based method [1, 35] we mentioned in section 1.3.1 denoted as
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Figure 3.19: MRI template constructed as a “mean” of our registered images.
The red area corresponds to the ventricles.

Figure 3.20: MRI template constructed as a “mean” of our registered images.
The red area corresponds to the left white matter.

RMIX. All PCA based methods were set to 50 components, while RLLE was
set to 20 neighbours.

Note on RMIX: To recall, this method goes a step further than the ro-
bust PCA algorithm by modelling the linear subspace obtained by PCA on
the training set in order to correct projections for abnormal test samples by
making sure their low-dimensional components stay consistent with the train-
ing set distribution embedding. We found this method to provide a useful
improvement over RPCA on this dataset (while the difference was negligible
on the previous synthetic datasets), and therefore added it to the list of best
performing methods.

On this experiment the result provided by RPCA is widely incorrect, as
it suffers from the same overfitting as previously: by using widely different
(from the training set distribution) values for its coefficients used in the linear
combination of eigenvectors, it is able to reconstruct the anomaly that as been
introduced in the ventricles. RMIX on the other hand, performs a correct esti-
mation of the training set coefficients distribution, and therefore does not able
to reconstruct the anomaly as well as RPCA. RLLE has a similarly strong (or
even stronger) result on this test case. Both RMIX and RLLE largely outper-
form SPM, even though SPM performance is consistent with the amplitude of
the anomaly we introduced. This indicates that the multivariate correlations
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Figure 3.21: ROC curves for the best performing methods on the synthetic
dataset created over healthy samples, with an anomaly introduced in the ven-
tricle.

between the ventricle area and other parts of the brain have been correctly
captured by those multivariate methods. This can be linked to the observa-
tions of the previous section, in which we stated that the ventricle areas had
strong correlations with multiple brain structures, making it easier for multi-
variate methods to reconstruct an abnormal ventricle based on the rest of the
brain structures. Still, it is noteworthy that the performance of SPM is highly
better than in our previous synthetic datasets, which is easily explained by
the specificities of this dataset: while in other synthetic datasets the MSEs of
SPM were 4 to 5 times larger than our worst multivariate method, here the
MSEs of SPM are only 2 times larger at max. This, added to the fact that (as
we have seen on correlation matrices) many brain structures do not present
strong correlations with other brain structures (outside their symmetric peer),
makes this dataset a not so non linear one, or a very packed one, much more
suited for the univariate model of SPM than the previous ones.

White Matter Area

In this experiment, we altered the left part of the brain white matter. This is a
much larger area than the ventricles but, as mentioned before, also more stable.
Results on this area are also much more close, as showcases figure 3.22: while
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the performance of our methods are consistent with the previous experiment
(with RMIX and RLLE being the top ones, and RPCA and SPM behind), the
difference between the best and worst performing methods is now much less
pronounced.
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Figure 3.22: ROC curves for the best performing methods on the synthetic
dataset created over healthy samples, with an anomaly introduced in the left
white matter.

This is a great illustration of how widely the localisation of the abnormal
part is important for our detection results: some areas will be much easier to
detect than others, even with the same order of magnitude for the anomalies we
introduce. Just as for the ventricle result and related to the previous section,
this effect can be caused by the amount of correlation between the area we
are investigating and the rest of the brain (as an area completely uncorrelated
could have an even worse anomaly detection performance with a multivariate
method than with an univariate one).

Subsampling Experiment

Just as for geometric datasets, we can look at the influence of the number
of samples in this dataset. To this end, we greatly reduced the amount of
healthy samples available to perform the training step of each methods, from
over 1200 to just 200 (with a similar reduction for the validation set), by
random selection. To control for the variance in our data (i.e. the different
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Figure 3.23: ROC curves for the subsampled training compared to fully the
sampled one over the white matter experiment. Top left: SPM, top right:
RLLE, bottom left: RPCA, bottom right: RMIX

result we would obtain by selecting another 200 samples rather than these),
we repeated this experiment 20 times in order to compute mean ROC curves,
with 95% confidence intervals. Figure 3.23 showcases the effect of subsampling
the real dataset in the white matter area experiment.

It is quite apparent that training on the full set of healthy samples im-
proves results. But not all methods show the same improvements: multivariate
methods tend to be more impacted by the fewer number of samples, which is
intuitive: SPM will not profit much from more samples in its estimation of the
sample mean and the ensuing residual variance, but more complex, multivari-
ate models are able to capture more of the data correlations and neighbour-
hoods methods will provide closer neighbours. Now, this is obviously a drastic
experiment, in which the number of samples has been reduced by a factor of
6, and we would not have seen significant gains by “only” using 1000 samples
for training. But it does suggest that with a similar increase in factor of the
number of samples, multivariate methods could see another improvement, pro-

vided that we are not already at the plateau of the learning curve for these
methods.
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3.4 Conclusion

The whole process of creating synthetic datasets on which to test our methods
and to analyse their results has been, by far, the most challenging part of this
work. To create datasets that are interesting for us to test (i.e. non linearly
distributed, non-trivial, over which we can introduce an anomaly easily) has
provided us with as much insights on the way our methods work and what
to expect on further datasets than the results we obtained over these datasets
themselves. By gradually increasing the complexity of the model underlying
the synthetic data we generated, we have been able to find results consistent
or comparable from one test to another over more and more realistic datasets
until we reached one that is directly based on the real medical dataset that will
be the object of our study in the following chapter. Here is a brief summary
of what we learned over the course of these multiple experiments:

• Non linear methods in the sense of what we presented earlier do have a
strong interest over non linearly distributed datasets.

• More important than the distribution in the low-dimensional space, the
embedding function between the ambient space and the embedding is
crucial for the performance of linear methods.

• A phenomenon resembling what we could call “overfitting” is afflicting
most of our methods, and breaking the idea that “the better the recon-
struction, the better the detection”.

• Non linear methods that do not rely on dimension reduction to perform
anomaly detection tend to have better results than otherwise, questioning
the interest of Nyström method associated with reducing dimension.

• The IRLS layer that provides robustness is almost always beneficial for
all of our methods.

• SPM will tend to work much better on real world datasets.

• The area in which anomalies are located has a great influence over the
confidence with which we will detect it.

• Increasing the number of samples could benefit multivariate methods,
while SPM plateaus much sooner.

Let us now introduce our work on the real medical dataset, which is de-
signed to test our methods in a volumetric analysis of dementia afflicted pa-
tients setup.
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This chapter is dedicated to the study of the real MRI dataset we intro-
duced in section 3.3. To recall, this dataset contains around 1500 healthy
control MRI and nearly 250 Alzheimer’s Disease (AD) afflicted MRI. As we
already mentioned, our greatest concern while dealing with this dataset is that
we lack a ground truth to know whether the detections that we will make us-
ing our methods are relevant or not. In fact, if a ground truth existed for
those data, it should be specific to each subject. Indeed, the dementia we are
studying can take several forms to affect the brain. Moreover, the magnitude
with which the brain will be affected will obviously be linked to the time since
the disease has been afflicting our subject. Finally, each subject can be af-
flicted with other brain diseases in addition to being affected by AD. Only a
complete medical history of each patient could allow to distinguish between
anomalies caused by AD and ones due to other diseases. An individual ground
truth would be thus extremely cumbersome to provide, and nearly impossible
to make at a voxel level. Therefore, we made the choice of detecting anomalies
on individual subjects afflicted with AD, but to present results averaged over
groups of subjects. Biomarkers for AD are relatively well known now (hip-
pocampus, amygdala, entorhinal cortex, temporal lobe, etc.), and we expect
our methods to detect them in subjects as well as areas not specific to the
disease. This way, by averaging over the population, mostly the biomarkers
should appear, as anomalies not related to AD differ from subject to subject.
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4.1 Coupled Anomaly Detection

Contents for this section

Before we showcase any of our results, we must mention that although the
diffeomorphic registration provided by ANTS has been globally quite efficient
and nearly excellent on large areas, some images showed examples of failed reg-
istration for small structures, especially for dementia afflicted patients. These
structures showing large atrophies were not correctly registered (and thus not
detected) although they can be of crucial importance for the kind of neurode-
generative disease we are interested in. Therefore, we performed our task of
anomaly detection not only on the log-jacobian images, but also directly on the
corresponding registered images: registered images of healthy samples become
our training set, over which we project the registered images of test samples.
As registered images or neither normalized inherently nor by the registration
algorithm, we performed standardization (removing the mean and dividing by
the standard deviation for each sample) of all registered images before the
anomaly detection process.

Typically, if the registration had gone perfectly for each of our images, then
registered images would be very much alike. However, in the instances where
the registration has failed in some structures, then it will most likely show over
the registered image, that will not look like the other ones. As this problem is
much more likely to happen with the abnormal subject (as they are the ones
deviating from the much larger healthy group), this provides us with another
way of detecting anomalies, complementary to the ones over log-jacobians in
area where the registration has failed. To perform our coupled anomaly de-
tection, we will effectively perform each one individually beforehand, and then
compute a “coupled” Z-score as a logical OR, which is to say that we will com-
pute the maximum absolute value between the two Z-scores and return the
corresponding Z-score. This way, when we will threshold our score to obtain
binary detections rather than quantitative Z-scores, we will make our decision
based on the one of higher magnitude. This is done with the idea that if we
did not detect anything in the log-jacobian but detected something in the reg-
istration it is probably because the registration failed, and therefore we need
to detect it.
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4.2 Alzheimer’s Dementia

4.2.1 Group Detections

As we indicated earlier on, we will start by presenting results over the whole
dataset. This means that for each subject (and each method), we will per-
form our anomaly detection by thresholding its Z-score map at a given value
common to every subject (and every method). As we are not able (due to
our coupled detection process) to detect whether an anomaly is coming from
an atrophy or an hypertrophy of the corresponding area, we will perform this
tresholding on the absolute value of our Z-score, providing us with unsigned
detections. As single subject detections are very conservative at the classical
threshold of 3, and as we are here in a group context, we will use a more per-
missive value of 2 for our threshold. This might introduce more false positives
in our detections, but those false positive should be spatially uncorrelated, and
should fade out once averaged over all our samples.

Figures 4.1 to 4.3 present the mean detection rate (MDR) over the AD
dataset for the top three methods: SPM, RMIX and RLLE. The intensity of
each voxel denotes the average number of time this voxel has been detected
across every tested AD subject. For an anatomical reference, this MDR is
superimposed to the template we computed with our registration process: the
mean of our registered images.

Figure 4.1: Mean Detection Rate of RLLE overlayed over the template image.
MDR is thresholded to appear only for values superior to 15%, and to be white
over 50%.
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Figure 4.2: Mean Detection Rate of SPM overlayed over the template image.
MDR is thresholded to appear only for values superior to 15%, and to be white
over 50%.

Figure 4.3: Mean Detection Rate of RMIX overlayed over the template image.
MDR is thresholded to appear only for values superior to 15%, and to be white
over 50%.

What is quite apparent on these figures is that, although the detection
rates may vary between the three methods, they do seem to focus (for the
most part) on the same areas, i.e. all the methods tend to agree on what has
been deemed abnormal in our test subjects. Furthermore if we take a closer
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look to the areas that have been commonly detected, we get the entorhinal
cortex, the hippocampus, the Amygdala and the insular areas, that are all
classic markers of AD (in the chronological order of evolution of the disease).
We also detect the ventricles with various degrees of MDR. Although it is not a
specific marker to AD, it is a marker of dementia in general (and elderly age).
Some additional detections are made in the white matter (near the precuneus
or the fusiform), last structure to be afflicted by the dementia (after having
afflicted the grey matter structures, the disease attacks the communication
way between these structures). Globally these detection maps are satisfying:
they prove that the three methods perform relatively well on this dataset, and
are able to identify biomarkers of the disease as abnormal components of the
brain. In more details, SPM and RLLE presents quite a bit more detections
than RMIX (that peaks at a MDR of 35% in the amygdala, while SPM and
RLLE peak at nearly 50%). RMIX pattern of detection is globally much
more diffuse. Of course, without a ground truth, we can only speculate over
the number of false positives that have been detected by each method, and
whether or not RMIX is making less of them than SPM or RLLE, but at this
threshold, detections for RLLE and SPM seem to be much more concentrated
over regions of interest than for RMIX.

If we now take a closer look at the detections of SPM and RLLE, we notice
that although their performances are very similar near some of the biomarkers
we mentioned (hippocampus, amygdala and insular area), three key differences
are noteworthy:

• First in the enthorinal cortex, which is suspected to be the first area
afflicted by AD. The MDR of RLLE is arround 1.5 to double the MDR
of SPM in this structure, SPM nearly ignoring this interesting structure.

• In the ventricle area then, that as we mentioned is not a particular
biomarker of AD, the opposite happens: SPM now detects in around
1.5 to double of the subjects that ventricle voxels are abnormal, some of
which might be false positives as AD is not supposed to have this much
effect on the ventricle area.

• SPM has very few detections in the white matter (near interesting areas
of the temporal lobe for instance), which is nevertheless known to be
afflicted by AD at some stage of the disease.

These observations are quite satisfying for both RLLE and SPM, with a
bit of a disappointing result for RMIX. RLLE has some arguments over SPM,
but is not completely ahead as a top contender.

4.2.2 Clustering Detections

One interesting way of further analysing the detections we made over our
test subjects is to try to cluster them in smaller groups that maximise the
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closeness of Z score maps. Indeed, by doing so we will aggregate together all
samples that have similar patterns of neurodegeneration, therefore hopefully
constituting quite different groups with even more contrasted MDR maps (very
high MDR in some structures and very low elsewhere). This idea is motivated
by the suspected medical hypothesis of there being not just one form of AD,
but at least three different kinds, affecting differently the brains with some
common patterns.

Therefore, for each of our three methods, we used agglomerative clustering
(a form of hierarchical clustering that minimizes a linkage distance inside and
between the obtained clusters) to provide for each of them three clusters based
on similarities between Z score maps. We then computed the cluster-wise
MDRs in the same fashion than for the global AD dataset to test the previous
hypothesis. Obviously these clusters have no cause to be similar across our
three methods, nor to be balanced in sample size. Thus we chose to order
them by decreasing size for each methods (we will specify their respective sizes
in our analysis.)

To present results for three methods, over three clusters on a 3D images
dataset would involve the analysis of at least 9 slices of MDR overlayed to
the template image, which would be very cumbersome. We instead chose to
visually inspect our MDR scores in terms of areas afflicted as to synthesize
the informations inside each of our cluster MDR map, and to present them in
table 4.1. This table reads as such: for each method (vertically), clusters are
represented in cells (horizontally) in which the structures showing up in MDR
maps are listed with the MDR ranges found for these structures.
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Method Cluster 1 Cluster 2 Cluster 3
• Ventricles (0.4-0.5) • Ventricles (0.7-0.8) • Amygdala (0.3-0.4)
• Amygdala (0.4-0.5) • Amygdala (0.4-0.5)

SPM • Parahippocampal region (0.3-0.4) • Parahippocampal region (0.4-0.5)
• Insula (0.2-0.3)

Size • 114 • 79 • 55
• Ventricles (0.5-0.7) • Hippocampus (0.4,0.5) • Amygdala (0.4-0.5)
• Amygdala (0.3-0.4) • Amygdala (0.4-0.5) • Hippocampus (0.4,0.5)

RLLE • Entorhinal Cortex (0.3) • Anterior insula (0.3-0.4) • Entorhinal Cortex (0.3)
• Hippocampus (0.3)
• White matter (0.3)

Size • 147 • 66 • 35
• Ventricles (0.4-0.6) • Hippocampus (0.3,0.4) • Amygdala (0.3-0.4)

RMIX • Amygdala (0.4-0.5) • Entorhinal Cortex (0.3)
• Hippocampus (0.4)

Size • 133 • 63 • 52

Table 4.1: Clusters obtained for each methods on the AD dataset with most afflicted
structures and associated MDR listed.
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By analysing the results from table 4.1, we notice immediately that even
though clusters do not fully match between methods, there is a clear intersec-
tion between them that is confirmed numerically (up to 90% of correspondence
between the clusters of RLLE and RMIX, and between 50% and 70% between
SPM and RLLE). On the sample size matter, we also notice that SPM clus-
tering is much more uniform than the ones from RLLE and RMIX. Let us now
look into each method individually:

SPM

The first cluster for SPM is a bit disturbing at first sight, with most detections
made in ventricles and the amygdala. While the affliction of the amygdala is
consistent with AD, the ventricles detections are probably not all related to the
disease. Although we detect parahippocampal areas, few detections are made
in the hippocampus or its direct vicinity, although it is the most biomarker
for AD. No detections either are made in the entorhinal cortex, which is one
the first structures affected by AD. All of this would suggest a rather bad
detection of these individuals by SPM, coupled with subjects that have been
afflicted by AD for a long time. Some detections have also been made around
the whole insula, which usually rather is a biomarker of Dementia with Lewy
Bodies (and therefore a bit surprising here).

The second cluster is mostly constituted of detections in the hippocampus
or parahippocampal areas, amygdalae and the anterior insula, which is very
consistent with AD in an hippocampal form.

The last cluster only presents detections for around a third of the subjects
in the amygdala, which is not consistent with any form of AD as at least the
hippocampus or the entorhinal cortex should also be afflicted.

RLLE

The first cluster for RLLE is consistent with subjects that have suffering from
AD for a long time: all of the structures near the temporal lobe have been
afflicted (entorhinal cortex, hippocampus, amygdala), with a progression of
the disease even in the white matter near the temporal lobe, the precuneus
and the fusiform, where detections have also been made. All these biomarkers
are consistent with a long- term set AD.

The second cluster is restricted to the hippocampus, amygdala and anterior
insula, again strongly consistent with an hippocampal form of AD, centred
around the medial temporal lobe.

The last cluster is consistent with early and near-prodromal forms of AD,
with detections in the entorhinal cortex, the amygdala and the hippocampus,
representing the chronological progression of the disease.
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RMIX

Unfortunately, even by clustering, MDRs are still quite low for RMIX. The
first cluster is focused on amygdalas and hippocampi, that could represent an
already developed stage of AD. The second one is closer to an early stage of
the disease with detection of the entorhinal cortex along the hippocampus.
Lastly, as for SPM, the last cluster only detects amygdalas, which is not quite
consistent with any form of AD.
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4.3 Conclusion

The real dataset has shown results widely different from what we saw on syn-
thetic datasets, although the experiments we conducted over these datasets
have helped us get a better understanding of what is happening now.

• SPM has a good performance on real data (which is no surprise
given how frequently it is used for medical purposes), but is very focus
shifted on the ventricles, that are not of peculiar interest for us.

• No method is detecting consistent anomalies in a given area, although we
are dealing with a dataset of abnormal subjects only. This suggests that
being afflicted by AD does not always imply strongly abnormal
brain volumetry.

• RMIX has quite an underwhelming performance on the dataset,
with very few detections. This suggests that anomalies are distributed
in a different way than in our synthetic tests which makes the linear
projection harder.

• The differences between SPM and RLLE, albeit small in global,
are somehow located on areas that are biomarkers of the disease
(where RLLE was a clear winner), and therefore of strong interest in our
analysis.

• Our clustering experiment was not really successful for SPM and RMIX,
probably because it was skewed by the low detection rates of these meth-
ods for the regions of interest. For RLLE, however, it seemed to show a
chronology of the disease progression, that even if it was not the
primary focus, was very interesting.



136



Chapter 5

Conclusion

137



138

5.1 Conclusion and Future Work

5.1.1 General Conclusion

Overview

The work presented in this document is the direct continuation of several other
theses conducted in the research group that hosted me. Although we mainly
focused on the excellent work of Torbjørn Vik [1], we had to mention all of
them for their contributions, without which we would not have had points of
comparison nor the source of inspiration from which many of our methods
stemmed.

This thesis had several objectives when it started, some of which we had
to give up or adapt a bit throughout the years to account for the difficulties
we had to face. It originally had a strong focus on medical images application,
and while we sometimes had to divert our attention from the medical perspec-
tives to further investigate the methods we created and modified, we always
kept in mind that they should have to serve the purpose of helping doctors
in their medical image analysis. To this end, our main goal was to devise
non-linear models in order to perform anomaly detection via statistical anal-
ysis, over medical image datasets. Furthermore, this anomaly detection was
to be a voxel-wise, multivariate one, that should have the strongest possible
performance at low specificity scores.

With such specifications in mind, our work was successful: we actually sup-
plied several methods with these characteristics, that presented good enough
results on synthetic datasets to be tested over a real one. Although some of
the presented methods lacked originality as they already had been developed
in different ways and with other problematics, we did provide new, original
ones as fresh contributions to the field that we linked to the previous ones in
a framework that had not been considered before. Moreover as another con-
tribution, we transposed the robust layer that had been well established and
documented on linear methods to non-linear ones, in an unprecedented move.

Contributions

Our main contribution was to fuse together the paradigm of multivariate pro-
jection and statistical testing with the main hypothesis that we made during
this thesis and that is globally accepted in the image community, i.e. the
manifold hypothesis. As this hypothesis underlines the idea that images lie
upon non-linear manifolds, we introduced non-linear algorithms to perform
our projection.

Non-linear algorithms however, do not have the nice properties of linear
ones for out-of-sample extension or reconstruction problems. Therefore we
had to provide extensions and reconstructions using the most accepted tools
from the literature. By this mean, we created new methods for manifold pro-
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jection. Using Isomap or the Diffusion Maps in such fashion had not really
been done before, although some experiments had been done with close meth-
ods. Borrowing the statistical testing used with linear methods of projection to
perform an anomaly detection, we completed the first algorithms that fulfilled
the main objective of our thesis.

In an effort to improve upon this early non-linear methods of anomaly
detection, we went a step further in our manifold projection quest by cutting
out the dimension reduction step. To do so, we designed a kernel-based method
of projection that relied on the non-linear kernels that are computed with our
dimension reduction methods. The projection was then performed as a linear
combination of training samples, with weights computed in a non-linear fashion
using the different kernels. This was the second step in our work, that somehow
united both paradigms and all kernel-based methods of dimension reduction
in a new framework.

Finally, as we had noticed all the improvements brought to linear methods
by the robust layer the IRLS algorithm provides, we managed to adapt it to
our non-linear methods, as to be able to deal with the same widely abnor-
mal images that linear methods can deal with, and see the same gains. This
completed our efforts to supply non-linear methods of anomaly detection on
images, providing us with multiple robust algorithms that are more suited to
non-linearly distributed datasets.

The last part of the thesis was dedicated to providing numeric results that
could bring informations on each of our methods performances and how well
they fare compared to linear ones. Indeed, the real medical dataset we had a
focus on since the beginning of the thesis lacked a ground truth that would
bring this to light. We thus designed several well controlled synthetic datasets
in a first time, that provided plenty informations about our methods and how
that would transpose to the real dataset, whose analysis we developed in a
second time. The final results were investigated with the help of doctors, and
while not reaching a definitive conclusion, they were largely optimistic.

5.1.2 Insights Gained Through This Work

We now take a look back to what we learned throughout this thesis. We knew
from the start and section 1.2 that linear methods such as PCA and SPM
would be disturbed by non-linear datasets and that we could strongly bene-
fit from using multivariate methods upon spatially correlated datasets. But
we also learned in this section that although non-linear methods of dimension
reduction are the most efficient for retrieving the correct geometry of the un-
derlying manifold, PCA will be able to provide a good dimension reduction
given enough intrinsic dimensions. This finding somehow reopened the debate
on linear methods of dimension reduction being as efficient as non-linear ones
for non-linearly distributed data. In the rest of chapter 1, we learned that
it would be more difficult for non-linear dimension reduction algorithms to
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be “completed” into manifold projection ones, or rather less elegant than the
inherent ones from PCA and SPM, reinforcing this sentiment.

However, from chapter 2 we did manage to assemble several of those non-
linear manifold projection methods, and started to notice some similarities (the
space of optimization, or the form of the reconstruction for instance) between
them, paving the way for a more elegant framework unifying the non-linear
methods. This resulted in a split of non-linear methods into two categories:
ones using dimension reduction and others which do not. The latter ones
proved to be much more easily transformed into robust ones with the help of
IRLS.

We learned a lot from chapter 3, which was made for this purpose. The mul-
tiple synthetic datasets and the different parameters we could change to test
our methods allowed us to gather crucial informations about the comportment
of all methods. At first, we learned that PCA was definitely able to modelize
non-linear datasets depending on the projection between the inherent mani-
fold and the ambient space. Moreover, the dimension of the inherent manifold
was confirmed to be the dimension of the space we need to correctly sample
(rather than the ambient one, which was also confirmed to be of very little
importance). The idea that to perform a better anomaly detection one should
provide a better reconstruction was quickly debunked by our MSE analysis.
Thereby robust versions of non-linear methods (which provide even worse re-
constructions) presented very significant improvements, much alike the RPCA
one. We also learned that the dimension reduction step was either not required
or even penalizing, which suggested that for our purposes, it was better to not
perform it, even though the obtained embedding was of great quality. All of
these results were asserted with the real world-like synthetic dataset, with a
kernel manifold projection method being (again) the strongest contender for
non-linear algorithms. The most important lesson from this chapter therefore
is that as we do not use the dimension reduction embedding, we also do not
need to compute it. LLE being the strongest performing method is also a good
indication that the datasets we tested (including the real one) are sampled cor-

rectly enough so that for our test subjects we can find a set of good enough

neighbours. However the distribution of these samples is not uniform enough
for methods with a more complex modelization (such as the KMP versions of
ISO or DM) to perform better than LLE.

The last chapter 4, where we looked at results on the real dataset corrobo-
rated with these findings, with RLLE being more coherent in group detections
than SPM or any PCA based methods. This suggested that we did have non-
linearities in our dataset, and that multivariate methods were better able to
capture the spatial correlations than univariate ones. Globally, all that we
have learned with those methods and datasets makes a good case in favour
of multivariate, non-linear methods for adequate datasets, provided that they
are correctly sampled: the better the sampling, the more complex the model
we can use.
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5.1.3 Perspectives

Short-Term Perspectives

One of the focuses of the thesis was the ability to incorporate covariables to
our non-linear models as it can already be done with some of the linear ones.
Although we tried very immediate approaches to perform this task, such as
including covariables in our distances computations, or introducing an inter-
mediate layer on our dimension reduction corresponding to some of them, these
ideas did not improve our algorithms results. Obviously that is not to say that
nothing can be done in order to provide a useful incorporation of covariables
in our model. One short-term perspective could be to perform a more elegant,
in-depth modelization of the covariables effects on our data (which is known
to be non-linear), as to perform a regression of our dataset corresponding to
this model, therefore eliminating the influence of said covariables.

As we have very different results for several methods, that all bring dif-
ferent types of information, we could issue another one that gathers most of
the interesting features of these methods, and few of the drawbacks by using
ensemble techniques, which group all results together in some sort of majority
voting to deliver a supposedly better performing one.

A last short-term perspective would be to reduce a bit the difficulty of the
task we are faced with. Doctors are as interested in what structures of the
brain is afflicted as having a complete voxel-wise anomaly detection. There-
fore, based on the results of our projection, we could provide a structure-wise
anomaly detection (indicating for each structure whether it is abnormal with
a confidence score) by either computing MSE in each of these structures and
statistically comparing them to ones from healthy samples, or we could com-
pare the number of detections in each structure to the number of detections
we should have under the null hypothesis.

Long-Term Perspectives

On the topic of long-term perspectives, one time-consuming task would be
to constitute an even larger database than the one we already gathered. We
already collected around 2000 samples, but new database are set up every few
months or years, with hundreds (or thousands) of new available samples. A
database of 10000 samples, although computationally more expensive to train,
could improve the performances of the more complex, non-linear methods. It
could also help with covariables such as age or sex by having enough samples to
train our models only on samples close to our tests subjects on these parameters
(of which we had too few).

A closely related long-term perspective is the use of even more complex non-
linear methods, such as the recent trend of deep learning methods. Generative
Adversarial Networks have had impressive results on texture synthesis and
even in some anomaly detection related task (albeit in biological image fields



142

rather than medical ones) and it is only a question of time (research and GPU
computing power are still needed) before a 3D, convolutional GAN is set up
to perform on MRI datasets. However, as I did mention in one of the earlier
sections, it is my personal belief that these deep learning algorithms will only
perform strongly better than ours given a large enough number of samples.

Finally, a very obvious but difficult perspective would be to look for other
applications to our methods, as our contributions are mostly methodological:
any of our methods could be applied to a dataset of registered images for in-
stance, or to any “machine learning” dataset as long as features “corresponds”
from sample to sample. Of course such methods would only be of interest on
non-linear datasets, but fortunately they are the most common ones.
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Appendix

Manifold

Smoothness: Let V ∈ R
N , a ∈ V , and d ∈ N. We say that V is smooth at

point a of dimension d if and only if there exists F , a C1-diffeomorphism from
U ∈ V(a) ⊂ R

N to F (U) ∈ V(0) ⊂ R
N that transforms V into a d-dimensional

vector space. F (V ∩ U) = V ′ ∩ F (U), with V ′ = R
d × {0} ∈ R

N

Manifold [93]: V is a d-dimensional manifold if it is smooth in all of its
points. A Riemannian manifold is one that includes a differential structure
and a Riemannian metric to allow for functional analysis over the manifold.

Figure 1: Illustration of a manifold [93]. The diffeomorphism F allows for local
areas around manifold points to become linear.

Figure 1 provides an illustration of the definition of a manifold with the
previous notations, while figure 2 presents an illustration of the manifold hy-
pothesis and of our paradigm for a dataset of satellite images coming from the
same area.
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Figure 2: 3D representation of a manifold of satellite images lying in high-
dimension, and projection of a new data point over this manifold. Credit goes
to V.Vidal.
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Modèles statistiques sur des variétés pour la

détection d’anomalies dans les images médicales

Introduction

L’objectif de cette thèse est de traiter le problème de détection des anomalies
dans les images neurologiques, dans un contexte de comparaison entre un sujet
et un groupe contrôle. Bien que la plupart des algorithmes de l’état de l’art de
la détection d’anomalies se concentrent sur la détection de données aberrantes
par techniques dites "un-contre-N", notre but ici est plutôt de fournir une
localisation spatiale des motifs aberrants au sein du sujet testé (s’il y a lieu).

Cette localisation est obtenue en créant un modèle de normalité appris
sur les échantillons du groupe contrôle, qui est ensuite appliqué aux images
test dans le but d’évaluer si celles-ci se conforment ou non au modèle. Cette
tâche peut être effectuée par des experts, mais la taille des images testées
et la précision (voxellique) du résultat demandé motivent grandement l’usage
d’algorithmes pour les guider dans leur diagnostic.

La figure 1 illustre le type de détection qeu l’on cherche à réaliser sur une
image IRM.

Figure 1: Illustration de la détection d’anomalies obtenue sur une image IRM
(coupe sagittale). Les zones en rouge ou jaunes sont détectées comme anor-
males.
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Cette thèse s’appuie principalement sur les travaux d’un précédent doctor-
ant de l’équipe, Vik Torbjørn, et cherche à développer une extension de ses
méthodes. Durant sa thèse, il a développé plusieurs méthodes de détection
d’anomalies basées sur des modèles linéaires multivariés comme l’Analyse en
Composantes Principales (ACP), avec le même type d’applications médicales.

Tout comme à l’époque de Torbjørn, un autre algorithme sera un concur-
rent notoire de nos méthodes : le modèle linéaire général, dont l’implémentation
Statistical Parametric Mapping (SPM) est encore aujourd’hui extrêmement
répandue dans le milieu médical. Le modèle linéaire général est un modèle
univarié et linéaire qui fait de plus des hypothèses fortes sur la distribution
des données analysées. La popularité de l’algorithme SPM s’explique par sa
capacité à fournir une détection rapide et fiable sur de larges jeux de données,
basée sur de solides fondations statistiques.

Les méthodes que nous avons cherché à développer au cours de cette thèse
suivent le “cahier des charges” suivant : il s’agit de méthodes non-linéaires,
multivariées (exploitant les corrélations spatiales au sein de nos données) ne
faisant pas d’hypothèse supplémentaire sur la distribution des échantillons.

Méthodes

Paradigme

La plupart des méthodes de détection élaborées dans cette thèse s’appuient
sur un paradigme que l’on peut exprimer comme suit :

Étant donné un jeu de donné X représentant la normalité contre laquelle
on souhaite confronter un sujet test Y , la détection d’anomalies se ramène
à trouver l’image la plus proche de Y appartenant à la structure géométrique
sous-jacente à X.

La “normalisation” d’un sujet test Y s’apparente dans notre méthodologie
à trouver une fonction de projection µ dans l’espace image de grande dimension
associant à un point test son point le plus proche appartenant à la structure
géométrique de X. Il s’agit dans notre cas d’établir un modèle qui soit glob-
alement cohérent avec le jeu de données contrôle. Cette tâche a été effectuée
à l’aide d’algorithmes d’apprentissage statistique utilisant le jeu de données
contrôle comme données d’entraînement pour l’apprentissage de leur modèle.

Les algorithmes classiques d’apprentissage statistique étant malheureuse-
ment perturbés par la grande dimensionnalité des données auxquelles on souhaite
les appliquer (du à la malédiction de la dimension), nous nous sommes appuyés
sur l’hypothèse de variété pour compléter ce paradigme. En effet, celle-ci
stipule que les images naturelles (et par conséquent les images médicales) ne
sont pas distribuées aléatoirement dans l’espace vectoriel ambiant auquel elles
appartiennent, mais forment en réalité un sous-espace géométrique structuré,
non-linéaire, appelé variété. Ces variétés ont la propriété d’être des espaces
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localement linéaires possédant leur propre dimension, bien plus faible que celle
de l’espace ambiant.

Une fois la projection (ou normalisation) obtenue, la détection d’anomalie
s’effectue par test statistique univarié: le résidu entre un individu test et sa
projection est confronté statistiquement en chaque voxel à celui d’individus
témoins extraits du groupe contrôle X au préalable. On calcule la variance
des résidus contrôle au voxel i : σ2

i , puis l’on compare le résidu test à cette
variance par le test suivant: T (Yi) = µ(Yi)−Yi

σi

.

Réduction de dimension

Les méthodes de réduction de dimension linéaire sont les plus établies de l’état
de l’art, l’ACP en étant la principale représentante. Vik Torbjørn a dans
ses travaux mis à profit les capacités de l’ACP à compresser l’information
pour établir un algorithme de normalisation des données. Sa méthode la plus
aboutie modifie la réduction de dimension de l’ACP en remplaçant la projection
orthogonale aux moindres carrés par une version pondérée, tout en rajoutant
une modélisation de la distribution dans le sous-espace qui contraint d’avantage
encore la projection d’un sujet test à respecter celle des projections d’individus
témoins.

Les méthodes élaborées durant cette thèse mettent en avant les deux pro-
priétés intrinsèques aux variétés. En effet, dans le but d’obtenir une fonction
de projection µ qui associe à chaque image test Y sa version “normalisée”
(i.e. la plus proche de Y pouvant appartenir à la variété des données contrôle
-comme motivé par le paradigme utilisé-), nous avons en effet utilisé des algo-
rithmes de réduction de dimension non-linéaires. Ces algorithmes modélisent la
géométrie de l’ensemble contrôle X dans une première phase d’apprentissage,
en associant à chaque point de X dans l’espace d’origine de grande dimension
un point dans un espace de dimension réduite (ou espace réduit), choisie par
l’utilisateur (pour correspondre au mieux à celle de la variété de X).

La réduction de dimension sert dans notre méthodologie à effectuer une
première étape de “compression” de l’information visant à extraire de nos
données à grande dimensionnalité l’information nécessaire à la prise en compte
de la structure géométrique de l’espace contrôle. Toutefois, une seconde étape
d’extension de la réduction de dimension à n’importe quel point test Y , ainsi
qu’une reconstruction de l’image (i.e. un passage de la dimension réduite à
l’espace image d’origine) sont nécessaires pour obtenir la fonction de projection
µ souhaitée (voir la figure de synthèse 2).
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Figure 2: Synthèse de la méthodologie proposée. Les échantillons contrôle
(en bleu), sur la variété M sont “réduits” dans le sous-espace E par π. Un
nouvel échantillon (en rouge) est lui aussi réduit (en vert olive) via l’extension
π̃. Enfin, un point de la variété M (en cyan) correspondant au point test est
trouvé par la reconstruction ρ.

Nous avons sélectionné plusieurs algorithmes de réduction de dimension
classiques pour nos besoins: notamment Isometric feature Mapping (ISOMAP),
et Locally Linear Embedding (LLE). ISOMAP est une méthode globale fondé
sur la constitution d’un noyau géodésique (longueur du plus court chemin en-
tre deux points de M restant sur la variété) entre chacun des points de X; la
réduction de dimension associée est alors fondée sur le calcul des vecteurs pro-
pres du noyau constitué. L’algorithme LLE se base sur la propriété de linéar-
ité locale pour effectuer une réduction de dimension qui respecte les relations
(barycentre euclidien) entre un point de l’espace de grande dimension et ses
voisins dans l’espace d’origine en les transposant dans un espace de dimension
réduite. À la différence de leur contrepartie linéaire l’analyse en composante
principale, ces méthodes ne permettent pas, une fois la réduction de dimension
π effectuée sur X de l’étendre naturellement à de nouveaux points, ni de re-
construire les points de dimension réduite. Il a donc été nécessaire d’introduire
une extension pour ces méthodes, ainsi qu’une méthode de reconstruction.

Extensions

Pour la méthode ISOMAP, nous avons utilisé l’extension de Nyström afin
d’étendre notre réduction de dimension à tout point test. La méthode de
Nyström est une méthode de l’état de l’art visant à l’origine à trouver des
solutions numériques aux équations intégrales. Elle a depuis été étendue aux
problèmes d’échantillonnage ou d’approximation de noyaux. Dans notre cas,
elle permet d’apporter une extension à la réduction π de l’algorithme ISOMAP
en deux étapes : une première consiste à étendre le noyau géodésique K utilisé
par ISOMAP, la seconde à formuler la réduction de dimension d’un point test
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Y comme une combinaison linéaire de celles des réductions des points de X :

∀k ∈ J1, mK, π̃k(Y ) =
1

λk

N
∑

i=1

πk(Xi)K̃(Y, Xi) (1)

Où les λi sont les valeurs propres du noyau géodésique K constitué sur X.
Pour la reconstruction ρ, nous avons utilisé une méthode classique de l’état

de l’art de régression à noyaux, dite de Nadaraya-Watson. Celle-ci se base sur
les relations entre la réduction de dimension d’un point test et celles des points
de l’ensemble d’apprentissage X. Affectées par un noyau gaussien, ces relations
servent de coefficient d’une combinaison linéaire (et convexe) des points de X

pour effectuer la reconstruction :

ρ(y) =

∑N
i=1 Kg(Xi, y)Xi

∑N
i=1 Kg(Xi, y)

(2)

Avec

Kg(Xi, y) = exp

(

−
‖π(Xi) − y‖2

σ

)

(3)

Dans le cas de LLE, une solution combinant à la fois l’extension et la
reconstruction a été proposée dans la liste des contributions, énumérées dans
la section suivante.

Contributions

Outre le fait d’utiliser une méthode de projection associant la réduction de
dimension d’ISOMAP, l’extension de Nyström et la reconstruction par régres-
sion de Nadaraya-Watson, qui n’a à notre connaissance pas été préalablement
développé dans l’état de l’art (et encore moins dans un contexte de détection
d’anomalies), nous avons développé plusieurs méthodes originales dans cette
thèse.

Locally Linear Projection

La première concerne l’extension de LLE : pour cette méthode, il nous a paru
plus adapté, plutôt qu’effectuer le même processus que pour ISOMAP (bien
que cela eut été possible), d’exploiter les spécificités de LLE pour répondre à
nos besoins. Pour obtenir sa réduction de dimension, LLE calcule des “coor-
données barycentrique” dans l’espace d’origine qui sont alors reproduites au
mieux dans l’espace réduit. Ces coordonnées sont exploitables pour effectuer
une projection directe dans l’espace d’origine : ce sont les coordonnées op-
timales (au sens d’un critère L2) d’une projection de l’individu test sur la
“base” de ses voisins dans l’ensemble d’apprentissage. Cette projection, par
la propriété de linéarité locale des variétés, correspond bien à celle que l’on
souhaite obtenir dans notre paradigme de normalisation de l’individu test.
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Figure 3: Une représentation de la projection basée sur LLE : un point test
(en rouge) est projeté sur M en utilisant les poids wi appris sur ses voisins
dans l’ensemble d’apprentissage (points bleus). La projection en résultant est
illustrée en cyan.

Ainsi, notre projection s’affranchit de la réduction de dimension calculée par
LLE, et de ce fait ne nécessite pas non plus de reconstruction depuis l’espace
réduit. Cette méthode de projection par la suite été baptisée Locally Linear
Projection (LLP).

Robustesse

Une autre part importante de nos contributions traite le problème de la ro-
bustesse de nos méthodes de projection. En effet dans le cadre de la détection
d’anomalies dans des images, nos méthodes sont amenées à devoir traiter des
images de sujets pathologiques, qui n’appartiennent donc pas à la variété des
contrôles M. Dans ce cas, la pathologie peut profondément modifier l’image
test originale (saine), modifiant les relations entre celle-ci et les échantillons
contrôle par rapport aux relations originales. Ces relations étant au cœur
de nos méthodes de projection, il a fallu développer un moyen de les rendre
robustes aux potentielles perturbations induites par les pathologies.

Pour rendre nos méthodes non-linéaires robustes aux anomalies, nous nous
sommes inspirés des extensions robustes existantes pour les méthodes linéaires.
Celles- ci visent à résoudre une formulation robuste du problème d’optimisation
du maximum de vraisemblance, mettant en jeu une fonction de coût pénal-
isant moins fortement les voxels pour lesquels la reconstruction ne suit pas la
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distribution des reconstructions effectuées sur des contrôles. Dans le cas de
l’ACP, une solution analytique à ce problème d’optimisation existe et permet
d’obtenir une solution robuste d’une manière analogue à la solution classique.
Pour les méthodes dérivées de l’ACP rajoutant une modélisation dans le sous-
espace telle que celle développée par Torbjørn, une solution analytique n’existe
plus. Dans ce cas, des méthodes itératives (IRLS) sont utilisées pour résoudre
l’optimisation du maximum de vraisemblance associé.

La solution du problème d’optimisation non-convexe associé au maximum
de vraisemblance robuste suivant:

π̃robust(Yn) = arg max
x∈Rm

exp

(

−
1

2

∑

s

f

(

(Yn)s − ρP CA(x)s

σLS

))

(4)

Mettant en jeu la fonction robuste f et la variance obtenue par la reconstruc-
tion des moindres carrées σ2

LS, implique de résoudre à chaque étape de l’IRLS
le sous-problème:

π̃(Y ) = arg min
y

‖B(Y − X − Wy)‖2
2 (5)

Dont la solution est analytique.
Bien que nos méthodes n’aient pas de problème d’optimisation simple à

mettre en évidence, et ne soient pas directement reliées à un maximum de
vraisemblance, nous nous sommes inspirés de cette solution itérative pour
résoudre notre problème de robustesse. Dans nos méthodes, la détection
d’anomalies basée sur la reconstruction effectuée à une étape permet de cal-
culer des poids pondérant l’influence des voxels de l’individu test lors de la re-
construction de l’étape suivante (la reconstruction initiale étant celle de notre
méthode non-robuste) avec itération jusqu’à convergence.

Autres contributions

D’autres contributions sont mises en avant dans ces travaux, mais ont eu moins
de portée ou ont été plus difficiles à exploiter pour obtenir des résultats sur
données réelles.

Une partie se concentre sur l’utilisation d’une autre méthode de réduc-
tion de dimension, appelée Diffusion Maps (DM). Cette technique apporte
une modélisation intéressante par rapport à ISOMAP et permet d’obtenir une
reconstruction par une méthode d’optimisation, plus spécifique à la méthode
de réduction de dimension que la régression à noyaux. Cependant cette méth-
ode de reconstruction étant très coûteuse en temps de calcul, elle a dû être
abandonnée sur données réelles.

Une autre contribution originale est une méthode adaptée de la projection
obtenue par ISOMAP. Plutôt que d’obtenir l’extension de réduction de dimen-
sion par l’extension de Nyström, on l’obtient ici par une optimisation. La re-
construction étant toujours assurée par la régression à noyaux, l’extension d’un
point test Y est celle garantissant une reconstruction par Nadaraya-Watson
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aussi proche de Y que possible (au sens d’un critère L2). Cette méthode est
malheureusement elle- aussi très coûteuse en temps de calcul.

Résultats

Les résultats obtenus lors de cette thèse sont séparés en deux catégories: ceux
obtenus sur données synthétiques et ceux sur données réelles. En effet, bien
qu’étant au cœur de l’application de nos méthodes et les plus intéressantes
d’un point de vue scientifique, les données réelles ne disposent pas d’une vérité
terrain, à laquelle nous pourrions confronter les résultats de nos algorithmes.
Nous avons donc du nous rabattre dans un premier temps sur l’élaboration de
données synthétiques afin de tester les performances des méthodes développées
face aux méthodes préexistantes (SPM et méthode deTorbjørn).

Données synthétiques

Pour élaborer des données synthétiques, nous avons créé des jeux de données
non-linéaires, dans lesquels nous contrôlions la distribution et les différents
paramètres importants pour nos algorithmes : nombre d’échantillons, nombre
de dimensions de la variété intrinsèque aux données, et pourcentage d’anomalie
introduite chez les individus tests.

Le premier jeu de données élaboré de ce type consistait à échantilloner
des points sur une demi- sphère de dimension plus ou moins grande, et à
introduire une anomalie additive représentant un multiple de l’écart-type de la
distribution des individus contrôles dans certaines composantes des individus
tests. Toutes les méthodes (excepté SPM) ont eu des performances excellentes
sur ce jeu de données, linéaires comme non-linéaires. Dès lors, nous avons
créé une succession de données synthétiques, à la complexité et au réalisme
croissants, afin de se rapprocher au plus des données réelles et avoir une idée
des résultats qu’il serait possible d’obtenir dessus.

De points sur une demi-sphère, nous nous sommes tournées vers des images
de trapèzes (contrôlées par 3 paramètres) de taille 40 par 40 dans lesquelles
une partie de l’image était mise en hyper- intensité chez les données test, puis
nous avons utilisé le jeu de données réelles afin de constituer des données syn-
thétiques à partir de véritables IRM. Seules les IRM de sujets témoins étaient
alors utilisées, et des sujets tests étaient créés par ajout d’une perturbation
dans certaines zones bien choisies.

Les données synthétiques ont permis de confirmer l’intérêt des méthodes
non-linéaires développées durant cette thèse sur des jeux de données non-
linéaires : en effet, les différents tests réalisés en détection d’anomalies mon-
trent que nos méthodes sont capables d’égaler, voir de surpasser les méthodes
linéaires sur ces données. Des tests de robustesse mettent aussi en évidence
le fort intérêt des extensions robustes développées lors de cette thèse, dont le
gain s’accroît avec l’ampleur de la pathologie .
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Données réelles

Bien que ne disposant pas d’une vérité terrain permettant une analyse quanti-
tative des résultats, les données réelles sont exploitables pour une analyse vi-
suelle qualitative avec l’aide d’experts médicaux. Au cours de cette thèse nous
avons constitué une base de données regroupant plus de 2000 IRM provenant de
plusieurs bases de données internationales ainsi qu’une base de données locale.
Environ 200 de ces IRM ont été diagnostiquées par les experts comme souffrant
de la maladie d’Alzheimer (les autres étant classifiées comme “témoin”). Ces
IRM ont toutes été recalées sur un template commun, et le log-jacobien du
champ de déformation issu du recalage entre chaque IRM et le template a été
calculé. La base de données finalement utilisée dans la détection d’anomalies
est ainsi celle des log-jacobiens de chaque individu, permettant une analyse de
tous les sujets dans un espace commun ne mettant en jeu que les déformations
de volumes des structures (l’effet principal de la maladie d’Alzheimer étant
une régression volumique de certaines zones du cerveau).

L’analyse des résultats de nos méthodes sur données réelles est très sat-
isfaisante. Celles-ci sont capables de pointer dans les jacobiens les zones qui
sont le plus classiquement liées à la pathologie par les médecins. Vis-à-vis
des méthodes linéaires concurrentes, nos méthodes offent un taux de détection
intra-sujets plus important dans les organes les plus souvent atteints par la
maladie, ou en détectent certaines que les méthodes linéaires ne détectent pas.

Figure 4: Taux de détection moyen (au sein des sujets) sur la base des données
réelles pour l’algorithme de projection par LLE robuste. le taux de détection
es seuillé pour ne pas apparaître en dessous de 15% et apparaître blanc au
dessus de 50%.
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Figure 5: Résultat individuel obtenu par la méthode de projection par LLE ro-
buste. Les dilatations de volumes sont superposées en rouge, et les régressions
en bleu.
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Conclusion

Cette thèse a permis l’élaboration de plusieurs méthodes originales de détec-
tion d’anomalies multivariées et non-linéaires basées sur un paradigme et des
techniques de réduction de dimension. Ces méthodes se sont de plus vues aug-
mentées d’une extension robuste cruciale pour traiter des données déviant de
la distribution des individus témoin du fait de leur pathologie. Nous avons
pu tester extensivement ces nouvelles méthodes sur différents jeux de données
synthétiques non-linéaires de notre conception, où l’avantage des méthodes
non-linéaires s’est rapidement fait sentir, ainsi que sur un jeu de données médi-
cal lui aussi assemblé par nos soins et expertisé par un médecin, sur lequel nos
méthodes ont eu de bonnes performances face à leurs contreparties linéaires.

Les suites possibles de ces travaux sont multiples : introduire les dif-
férentes covariables liées aux données (âge, sexe, base, etc.), regrouper méth-
odes linéaires et non-linéaires dans des techniques ensemblistes, ou encore ré-
duire la difficulté du problème en augmentant l’échelle à laquelle se fait la dé-
tection (passer des voxels aux organes par exemple), dans un premier temps.
Dans un second temps, explorer la piste des techniques d’apprentissage profond
très prometteuses, étendre d’avantage notre base de données déjà conséquente,
ou bien utiliser nos méthodes sur d’autres bases ayant d’autres applications.


