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DIVIYAN KALAINATHAN

Composition du Jury :

Jean-Pierre Nadal
Directeur de Recherche au CNRS, Directeur d’Etudes à l’EHESS Président
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Professeur, TAU, LRI, Université Paris-Sud, CNRS Co-directeur de thèse
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Chapter 1

Introduction

Deep learning models have shown extraordinary predictive abilities, breaking records in com-

puter vision (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012), language

translation (Cho et al., 2014), and reinforcement learning (Silver et al., 2016). Decision

makers accordingly tend to leverage those models to not only predict, but also control phe-

nomena. However, current machine learning paradigms are blind to the distinction between

correlation and causation, which might be harmless in terms of prediction, but may have very

undesirable effects in terms of control. For example, consider the prediction of target variable

Y given features X and Z, assuming that the underlying generative process is described by

the equations:

X,EY , EZ ∼ Uniform(0, 1),

Y ← 0.5X + EY ,

Z ← Y + EZ ,

with (EY , EZ) additive noise variables. The above model states that the values of Y are

computed as a function of the values of X (we say that X causes Y ), and that the values

of Z are computed as a function of the values of Y (Y causes Z). The “assignment arrows”

emphasize the asymmetric relations between all three random variables. Accordingly, one

willing to control Y only needs to control X.

However, as Z provides a stronger signal-to-noise ratio than X for the prediction of Y ,

the best regression solution in terms of least-square error is

Ŷ = 0.25X + 0.5Z

The above regression model, a typical case of inverse regression after1 Goldberger (1984),

would wrongly predict some changes in Y as a function of changes in Z, as Z does not cause

1 In this simple linear case, there exists approaches overcoming the inverse regression mistake and uncov-

ering all true cause-effect relations (Hoyer et al., 2009). Therefore, in a feature selection setting, Z would be

selected as the main input variable to predict Y . In a more general setting, mainstream machine learning ap-

proaches fail to understand the relationships between all three distributions, and might attribute some effects

on Y to changes in Z.
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Y . This model thus suggests that the value of Y can be causally influenced (i.e., Y can be

controlled) by acting mostly on Z.

In brief, correlation-based models lead to wrong conclusions in terms of control: Mis-

taking correlation for causation can be catastrophic for agents who must plan, reason, and

decide based on observations. Thus, discovering causal structures is of crucial importance.

As detailed in Imbens and Rubin (2015), the discovery of causal relationships is at the core

of many natural sciences, aiming to understand the world and its mechanisms. The gold

standard to discover causal relations is to perform experiments (Pearl, 2003). However, ex-

periments are in many cases expensive, unethical, or impossible to realize. In these situations,

there is a need for observational causal discovery, that is, the estimation of causal relations

from observations alone (Spirtes et al., 2000; Peters et al., 2017).

To perform observational causal discovery for two or more variables, leading researchers

in causality have proposed methods that leverage conditional independences. All these meth-

ods have provable consistency, i.e., the true underlying causal model can be asymptotically

recovered (identifiability), under some assumptions (Section 2.1.3). Unfortunately, these as-

sumptions might be overly restrictive (e.g., assuming the absence of “confounding” variables

resulting from hidden or unknown causes); and most domain experts ignore whether these

assumptions hold in practice2. For both reasons, the validity of the resulting causal models

might be hard to ascertain.

In the case where only two variables are available, conditional independences cannot be

leveraged (since the conditioning set is empty); this prompted the development of new ap-

proaches, relying on the simplicity of the causal mechanisms derived from Occam’s razor

principle (Hoyer et al., 2009; Zhang and Hyvärinen, 2010; Stegle et al., 2010). More re-

cently, Guyon (2013, 2014) has proposed a machine learning challenge in cause-effect pairs

pattern recognition. In this setting, machine learning algorithms are provided with a training

set consisting of joint distributions of pairs of variables labeled with their causal relationship.

The algorithms must predict causal relationships between pairs of variables from a test set of

new joint distributions never seen before. The algorithms developed by challenge participants

produce good performance, provided that adequate training datasets are provided. Although

using Occam’s razor may also be beneficial in the case of more than two variables, few ap-

proaches have tried to mix several causal discovery principles to infer causal relationships in

a unified approach (Bühlmann et al., 2014).

Our contribution in this thesis is to exploit the modularity and expressiveness of neural

networks for causal discovery leveraging both conditional independences and simplicity of the

causal mechanisms (Occam’s razor principle).

2Although some approaches work towards alleviating these assumptions (Colombo et al., 2012)
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1.1 Outline

The main goal of this thesis is to achieve structural causal discovery from observations;

the proposed approach relies on recent machine learning techniques, chiefly neural network

architectures and adversarial learning mechanisms.

Two main algorithmic contributions are made.

A first contribution is concerned with causal structure discovery, with the development

of a neural network approach based on stochastic gradient descent capable of learning the

structure of a causal graph from domain observations only (as opposed to learning from

experimental data), using parsimony-enforcing regularization and exploiting conditional in-

dependences between variables.

A second contribution is concerned with causal model parameter fitting. Our regularized

neural networks broaden the class of causal mechanisms involved in structural equation mod-

els (beyond linear causal mechanisms and/or additive noise (Spirtes et al., 2000; Hoyer et al.,

2009; Bühlmann et al., 2014)) without adverse model over-fitting side-effects. As opposed

to restricting beforehand the complexity of the sought mechanisms, a regularization scheme

is proposed, as in Stegle et al. (2010), to adjust the trade-off between the data fit and the

model complexity.

On the theoretical side, the contribution made is an algorithm analysis establishing the iden-

tifiability of the sought causal model, under some assumptions.

The main software contribution consists in the Causal Discovery Toolbox, a Python pack-

age gathering many graph and pairwise approaches to observational causal discovery (more

details in Appendix A).

This thesis is divided in 4 chapters, two on the state of the art in causal discovery (Chap-

ter 2) and neural network architectures (Chapter 3), and two on the proposed contributions:

Chapter 4 presents the causal generative neural networks, assuming that the graph skeleton

is available and extending score-based methods to the generative neural network framework.

Chapter 5 presents the structural agnostic model, relaxing the previous assumption and

achieving the end-to-end identification of the causal graph and of the causal mechanisms

from data.

In summary, the thesis contributions are along three axes: theoretical, algorithmic, and

implementation. The theoretical and algorithmic contributions consist in two algorithms for

observational causal discovery, and their theoretical analysis. These contributions rely on

a thorough review of the state of the art on pairwise causal discovery, published as three

chapters of the Guyon et al. (2019) book.

The list of published papers is given below:

• Portraits de travailleurs,

Diviyan Kalainathan, Olivier Goudet, Philippe Caillou, Isabelle Guyon, Michèle Sebag,

Emilie Bourdu-Swzedek, Thierry Weil, 2017, La Fabrique de l’industrie.

• Learning Functional Causal Models with Generative Neural Networks,
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Olivier Goudet∗, Diviyan Kalainathan∗, Philippe Caillou, Isabelle Guyon, David Lopez-

Paz, Michèle Sebag, 2018, Chapter in ”Explainable Machine Learning”, Springer Verlag.

• Structural Agnostic Modeling: Adversarial Learning of Causal Graphs,

Diviyan Kalainathan, Olivier Goudet, Philippe Caillou, Isabelle Guyon, David Lopez-

Paz, Michèle Sebag, 2018, ArXiv.

• [Re] World Models,

Corentin Tallec, Léonard Blier, Diviyan Kalainathan, 2019, ReScience.

• Causal Discovery Toolbox: Uncover causal relationships in Python,

Diviyan Kalainathan, Olivier Goudet, 2019, Journal of Machine Learning Research -

Open Source Software.

• Evaluation methods of cause-effect pairs,

Isabelle Guyon, Olivier Goudet, Diviyan Kalainathan 2019, Chapter II in ”Cause effect

pairs”, Springer Verlag.

• Learning Bivariate Functional Causal Models,

Olivier Goudet, Diviyan Kalainathan, Michèle Sebag, Isabelle Guyon, 2019, Chapter

III in ”Cause effect pairs”, Springer Verlag.

• Predicting Pairwise Causality with Discriminative Methods,

Diviyan Kalainathan, Olivier Goudet, Michèle Sebag, Isabelle Guyon, 2019, Chapter

IV in ”Cause effect pairs”, Springer Verlag.

1.2 Synthèse en français / Summary in French

La découverte de relations causales est primordiale pour la planification, le raisonnement et

la decision basée sur des données d’observations; confondre correlation et causalité ici peut

mener à des conséquences indésirables. La référence pour la découverte de relations causales

est d’effectuer des expériences contrôlées. Mais dans la majorité des cas, ces expériences

sont coûteuses, immorales ou même impossibles à réaliser. Dans ces cas, il est nécessaire

d’effectuer la découverte causale seulement sur des données d’observations.

Dans ce contexte de causalité observationnelle, retrouver des relations causales introduit

traditionellement des hypothèses considérables sur les données et sur le modèle causal sous-

jacent, par example la Gaussianité des données, la linéarité des méchanismes causaux ou

l’absence de variables confondantes dans les données qui pourraient influencer le graphe

causal.

Quatre principales familles d’approches pour la découverte de relations causales à partir

de données observationnelles se dégagent : i) les algorithmes à recherche locale qui visent

∗Equal contribution
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à satisfaire un ensemble de contraintes locales, souvent basés sur des tests d’indépendance

conditionnelle ou sur un score pour chaque graphe candidat; ii) les approches globales, basées

sur une optimization globale du graphe, telle que la résolution de graphes causaux avec

méchanismes linéaires avec une analyse en composantes principales; iii) les méthodes ex-

ploitant les assymétries dans les distributions, souvent utilisées dans le cadre de paires de

variables; iv) les approches hybrides, tirant profit à la fois d’indépendances conditionnelles

et d’assymétries distributionnelles.

Cette thèse vise à relaxer certaines de ces hypothèses en exploitant la modularité et

l’expressivité des réseaux de neurones pour la causalité, en exploitant à la fois et indépendences

conditionnelles et la simplicité des méchanismes causaux (quatrième famille), à travers deux

algorithmes: Causal Generative Neural Networks et Structural Agnostic Model.

Causal Generative Neural Networks (CGNN) introduit les réseaux de neurones dans

la découverte de graphes causaux à partir de données observationnelles. Cet algorithme

reprend l’approche des méthodes à score qui consiste, pour chaque graphe candidat, de lui

attribuer un score qui prend en compte la simplicité du modèle et la conformité du graphe

candidat avec les données. Ici, le score utilisé est une pénalisation sur le nombre de connex-

ions du graphe additionnée à la la Maximum Mean Discrepancy, une métrique à noyaux sur

les distributions empiriques. De plus, les mécanismes causaux sont des réseaux de neurones,

replaçant les méchanismes linéaires dans la plupart des approches à score. CGNN obtient

de bonnes performances à la fois sur données synthétiques et sur des données réelles; toute-

fois, son coût de calcul contraint CGNN à être exécuté sur le squelette du graphe, laissant

seulement l’orientation des arêtes du graphe à la charge de CGNN.

Structural Agnostic Model (SAM) a été developpé pour pallier aux limites de CGNN,

en introduisant un apprentissage global du graphe directement grâce à la descente de gradient

stochastique. En effet, CGNN doit être ré-entrâıné pour chaque graphe candidat à partir

des données, tandis que SAM parallélise la résolution du graphe à l’aide formulation du

problème décomposée pour chaque variable. Chaque variable est générée par un petit réseau

de neurones dont la tâche est de retrouver les parents de la variable cible dans les données,

compte tenu d’une contrainte de sparsité et d’acyclicité globale du graphe. Ainsi, à la fin

d’un unique entrâınement de l’architecture, SAM converge vers un graphe dirigé acyclique,

correpondant à la prédiction de l’algorithme. Tous les générateurs sont entrâınés avec une

procédure antagoniste à l’aide d’un discriminateur, dont la tâche est de distinguer les données

réelles des données générées par les différents générateurs. L’approche est fondée sur une

théorie se basant sur la théorie de l’information et prouve que sous certaines hypothèses, le

graphe prédit par SAM converge vers le graphe ayant généré les données. Expérimentalement,

SAM obtient de bonnes performances et dépasse l’état de l’art sur une variété de données

synthétiques et réelles, à un coût computationnel moindre grâce à l’utilisation de ressources

de calcul graphiques.
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Ainsi, cette thèse apporte 3 contributions: i) un cadre théorique pour la découverte causale

basée sur la théorie de l’information, établissant l’optimalité des approches proposées sous

des hypothèses plus réalistes; ii) l’introduction des réseaux de neurones génératifs pour la

découverte de lien causaux à travers deux algorithmes aux performances robustes au type

de données en entrées, et aux types de méchanismes causaux; iii) une validation empirique

extensive des approches de la littérature, avec un ensemble d’outils open-source pour la

validation d’approches futures.



Chapter 2

Causal discovery and models

In this chapter, the state of the art on observational causal discovery is reviewed and dis-

cussed, referring the reader to (Spirtes et al., 2000; Peters et al., 2017; Guyon et al., 2019)

for a comprehensive survey. First, notions on causal discovery and assumptions are intro-

duced. Then, the state of the art on observational causal discovery algorithms is presented,

distinguishing local search algorithms (Section 2.3), global search algorithms (Section 2.4),

methods leveraging distributional asymmetries (Section 2.5), and finally methods combining

approaches (Section 2.6).

2.1 Observational causal discovery: Formal background

In the considered setting, we assume that data are generated from an underlying causal

model, with a well defined “true” causal graph.

Formally, let X = [X1, ..., Xd] be a vector of d real valued features and P (X) its associated

probability distribution. From P (X), an observational empirical dataset, of n samples, is

drawn (independently and identically distributed). Data with controlled interventions and

time-series data are excluded in the following.

Variables Xi are causally linked along true causal graph G. By abuse of notations, Xi

denotes a variable and its corresponding node in the causal graph. A Causal graph G is a

directed graph where an edge represents a direct causal relationship between the connected

nodes. Considering an edge Xi → Xj , Xi refers to the cause, and Xj to the effect of the

causal relationship. A d-variable causal graph can also be represented by a d × d binary

adjacency matrix A representing all the connections between all the variables: Aij = 1 if and

only if Xi causes Xj and 0 otherwise. The number of possible graphs is super-exponential in

d: O(2d×d), highlighting the difficulty of causal discovery and preventing exhaustive search

for non-toy problems.

Let intervention do(X=x) be defined as the operation on distribution obtained by clamping

variable X to value x, while the rest of the system remains unchanged (Pearl, 2009).

Using interventions, we can define the notion of causality: It is said that variable Xi is a
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cause of Xj with respect to X1, ..., Xd iff there exists different interventions on variable X

that result in different marginal distributions on Xj , everything else being equal:

PXj |do(Xi=x,X\ij=c) 6= PXj |do(Xi=x′,X\ij=c) (2.1)

with X\ij := X{1,...,d}\i,j the set of all variables except Xi and Xj , scalar values x 6= x′, and

vector value c. Distribution PXj |do(Xi=x,X\ij=c) is the resulting interventional distribution of

the variable Xj when the variable Xi is clamped to value x, while keeping all other variables

at a fixed value (Mooij et al., 2016).

Example 1. Considering the 3 variable example X → Y → Z such that:





X,EY , EZ ∼ Uniform(0, 1),

Y ← 0.5X + EY ,

Z ← Y + EZ ,

Applying the interventions Y = 1 and Y = 0 does not affect in any way the distribution of

the X variable PX|do(Y=1,Z=cst) = PX|do(Y=0,Z=cst) = U(0, 1), whereas the distribution of Z

is shifted: PZ|do(Y=1,X=cst) = U(1, 2) and PZ|do(Y=0,X=cst) = U(0, 1).

2.1.1 Functional Causal Models

A Functional Causal Model (FCM) upon a random variable vector X = [X1, . . . , Xd] is a

triplet (G, f, E), representing a set of equations:

Xi ← fi(XPa(i;G), Ei), Ei ∼ E , for i = 1, . . . , d, (2.2)

where each noise variable Ei is independent from the set of parents XPa(i;G).

Each equation characterizes the direct causal relation explaining variable Xi from the set

of its causes XPa(i;G) ⊂ {X1, . . . , Xd}, based on the so-called causal mechanism fi involving

besides XPa(i;G) some random variable Ei drawn after distribution E , meant to account for

all unobserved variables. The causal mechanism fi represents a function that takes as input

all the causes and the noise variable Ei to output the effect variable.

Letting G denote the causal graph obtained by drawing arrows from causes XPa(i;G) to-

wards their effects Xi, we restrict ourselves to directed acyclic graphs (DAG), where the

propagation of interventions to end nodes is assumed to be instantaneous. An example of

functional causal model with five variables is illustrated on Fig. 2.1.

In causal discovery, we seek a Functional Causal Model, also known as Structural Equa-

tion Model (SEM), that best matches the underlying data-generating mechanism(s) in the

following sense: under relevant manipulations/interventions/experiments the FCM would

produce data distributed similarly to the real data obtained in similar conditions.
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E1

f1

X1 E3E2 E4

f4

X4E5

f2 f3

X3

f5

X5

X2





X1 = f1(E1)

X2 = f2(X1, E2)

X3 = f3(X1, E3)

X4 = f4(E4)

X5 = f5(X3, X4, E5)

Figure 2.1: Example of a FCM on X = [X1, . . . , X5]: Left: causal graph G; right: causal

mechanisms.

2.1.2 Notations and Definitions

X\i: denotes the set of all variables but Xi.

Û: represents the approximation of a variable U.

Conditional independence : (Xi⊥⊥Xj |Xk) means that variables Xi and Xj are independent

conditionally to Xk, i.e. P (Xi, Xj |Xk) = P (Xi|Xk)P (Xj |Xk).

Markov blanket : a Markov blanket MB(Xi) of a variable Xi is a minimal subset of variables

in X\i such that any disjoint set of variables in the network is independent of Xi conditioned

on MB(Xi). In a Bayesian network, the Markov blanket of a node corresponds to its parents,

children and spouses (parents of its children), as shown in Figure 2.2.

X

MB(X)

Figure 2.2: Illustration of a Markov blanket of a node X (in red). The Markov blanket

corresponds to the nodes inside the dotted line, except from X.

V-structure : Variables {Xi, Xj , Xk} form a v-structure iff their causal structure is:

Xi → Xk ← Xj
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Confounder : Variable Z is a confounder of Xi and Xj if their causal structure is :

Xi ← Z → Xj

Z is called hidden confounder if Z /∈ X.

Skeleton of the DAG: the skeleton of the DAG is the undirected graph obtained by re-

placing all edges by undirected edges. In our setting, that corresponds to Aij = Aji = 11, A

denoting the adjacency matrix of the skeleton.

Markov equivalent DAG: two DAGs with same skeleton and same v-structures are said to

be Markov equivalent (Pearl and Verma, 1991). A Markov equivalence class is represented by

a Completed Partially Directed Acyclic Graph (CPDAG) having both directed and undirected

edges (refer to Section 2.2 for more detailed information).

Adjacent nodes: Xi and Xj are said to be adjacent according to a CPDAG iff there exists

an edge between both nodes. If directed, this edge models either the causal relationship

Xi → Xj or the opposite relation Xj → Xi. If undirected, it models a causal relationship in

either direction.

2.1.3 Causal Assumptions and Properties

In this work, the recovery of the underlying causal graph G from observational data relies on

the following assumptions:

Acyclicity: The d-variable causal graph G is assumed to be a Directed Acyclic Graph

(DAG): there exists no i ∈ [1, d], such that a causal path Xi → . . . → Xi is present in G.

This translates in terms of adjacency matrix A to Ad = 0.

Causal Markov Assumption (CMA): Noise variables Ej (Eq. (2.2)) are assumed to

be independent from each other. This assumption together with the above DAG assumption

yields the classical causal Markov property, stating that all variables are independent of

their non-effects (non descendants in the causal graph) conditionally to their direct causes

(parents) (Spirtes et al., 2000). Accordingly, the joint distribution p(x) can be factorized as

the product of the distributions of each variable conditionally on their parents in the graph:

p(x) =
d∏

j=1

p(xj |xPa(j;G)). (2.3)

Under the causal Markov assumption, the distribution described by the FCM satisfies

all conditional independence relations2 among variables in X via the notion of d-separation,

1This equation does not indicates the presence of a cycle between Xi and Xj
2It must be noted however that the data might satisfy additional independence relations beyond those in

the graph; see the faithfulness assumption.
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denoting that each variable is conditionally independent of its non-descendants, given its

parents) (Pearl, 2009).

Causal Faithfulness Assumption (CFA): The joint distribution p(x) is faithful to graph

G if every conditional independence relation that holds true according to p is entailed by G
(Spirtes and Zhang, 2016).

It follows from causal Markov and faithfulness assumptions that every causal path in the

graph corresponds to a dependency between variables, and vice versa.

Causal Sufficiency assumption (CSA): X is assumed to be causally sufficient, that

is, a pair of variables {Xi, Xj} in X has no direct common cause external to X\i,j . This

assumption is often made because of hidden confounding variables: if an external variable Z

directly causes Xi and Xj , both these variables will be dependent as they possess the same

parent. However, no edge exists between these variables. This highlights a tricky problem of

dependencies that are not explainable using only the set of observable variables.

Selection bias : The data sampling procedure introduces a bias if the samples were se-

lected from the population depending on the values of any of the variables in the data. The

assumption of having no selection bias in the data is made in all algorithms and methods

presented in this work.

2.2 How to infer causality from observational data ?

Identifying causal relationships with only observational data mainly relies on two key steps:

Conditional statistics in the data, with the identification of v-structures, and modeling the

data distribution given a constraint on the complexity of the proposed model, following the

Occam’s razor principle.

2.2.1 Notions of independence and conditional independence

Independence and conditional independence between variables are characterized by summary

statistics stemming from information theory. Letting (X,Y ) denote a pair of continuous

random variables with joint probability density p(x, y), X and Y are independent (X ⊥⊥ Y )

if and only if the p(x, y) can be decomposed into the product of marginals:

X ⊥⊥ Y ⇐⇒ p(x, y) = p(x)p(y)

. Likewise, X and Y are considered independent conditionally to a third variable Z if and

only if:

X ⊥⊥ Y |Z ⇐⇒ p(x, y|z) = p(x|z)p(y|z)

.
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The mutual information between X and Y is defined as:

I(X,Y ) =

∫

R

∫

R
p(x, y)log

p(x, y)

p(x)p(y)
dxdy. (2.4)

The mutual information measures the information shared by X and Y and how much

knowing either variable reduces uncertainty about the other one. It can be expressed in term

of entropy:

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ). (2.5)

Mutual information I(X,Y ) is equal to zero iff X and Y are independent. In the case

where X and Y follow Gaussian distributions, it holds:

I(X,Y ) = −1

2
log(1− ρ2

x,y), (2.6)

where ρx,y denotes the Pearson correlation coefficient between X and Y . Mutual infor-

mation can also be expressed with the Kullback-Leibler divergence:

I(X,Y ) = DKL(p(x, y) ‖ p(x)p(y)). (2.7)

Let us now consider a third variable Z. The conditional mutual information between the

variables X and Y conditionally to Z is:

I(X,Y |Z) =

∫

R

∫

R

∫

R
p(x, y, z)log

p(x, y|z)
p(x|z)p(y|z)dxdydz. (2.8)

Likewise, I(X,Y |Z) = 0 iff X and Y are independent conditionally to Z. The Markov

blanket MB(X) of X, defined in Section 2.1.2, can be reformulated in terms of conditional

mutual information: for every Z in X\{X} ∪MB(X), it holds:

I(X,Z|MB(X)) = 0. (2.9)

The notion of Markov blanket is used in the causal discovery literature to prune irrelevant

edges before recovering the Markov equivalence class of the DAG, see e.g. (Tsamardinos et al.,

2003).

In the field of causal feature selection (Yu et al., 2018), recovering the Markov blanket

of the target variable also is a key step in order to select relevant variables (Brown et al.,

2012; Meyer and Bontempi, 2013), and remove variables that are independent of the target

conditionally to the selected variables.

Empirically, independence between variables is evaluated with a test statistic (e.g., MI,

Pearson correlation, F-statistic, depending on the type of dependence/alternative distribu-

tion anticipated and the type of variable – continuous or categorical), and its significance is

assessed with a p-value. Likewise, there are test procedures for conditional independence,

such as the z-Fisher test:
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z-Fisher test Considering variablesX1 andX2, a set of conditioning variables S = {Xj}, j ∈
[3, d] and noting the correlation matrix of the data R, the test is computed as follows:

• Compute the partial correlation3 between X1 and X2 conditionally to S, noted r1,2|S

– If Card(S) = 0: r1,2|S = R12

– Else if Card(S) = 1: r1,2|S = R12−R1S∗R2S√
(1−R2

1S)(1−R2
2S)

– Else: Let Rinv = R−1
[12S],[12S], the inverse of the sub-matrix with the coordinates

1, 2 and S,

r1,2|S =
−Rinv

01√
Rinv

11 ∗Rinv
22

• Compute the z-value: z = 1
2

(
ln(1 + r1,2|S − ln(1− r1,2|S))

)

Replacing the traditional z-Fisher conditional independence test with better performing

and non-parametric tests has become increasingly popular. The following tests represent the

main recent contributions in the field:

Kernel Conditional Independence test (KCI) Kernel methods are popular due to

their representative power that brings improved accuracy at the cost of computational power.

Zhang et al. (2012) leverages the kernel-based Hilbert-Schmidt Independence Criterion (HSIC)

(Gretton et al., 2005b) to test conditional independence. Two alternatives are proposed to

estimate the null distribution based on which the p-value is going to be computed: Sam-

pling randomly points from the distributions to break dependencies, or using the gamma

distribution, which proves itself to be quite costly.

Randomized Conditional Independence Test (RCIT) As the KCI test is computa-

tionally expensive, Strobl et al. (2017) propose to approximate this criterion in linear time.

This approximation is made with randomized Fourier transformations, and the estimation of

the null distribution is computed with the Lindsay-Pilla-Basak approximation.

Conditional Mutual Information Test (CMIT) To tackle the issue of test accuracy

with small sample size or small conditioning set, Runge (2017) introduces a new test approx-

imating the conditional mutual information using a k-nearest neighbor criterion. The null

distribution estimation is also adapted using a nearest-neighbor random permutation.

2.2.2 Leveraging conditional statistics

Some methods to uncover the causal structure of graphs rely on Markov equivalence proper-

ties. To illustrate the principle of these methods, consider three variables X,Y, Z endowed

3The partial correlation corresponds to the correlation between two variables as if the conditioning variables

were constant. Partial correlation can be computed by regression, recursivity or matrix inversion.
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with two Markov properties (conditional dependences/independences): X⊥⊥Z|Y and X⊥6⊥Z.

The three following causal structures cannot be distinguished on the basis of such Markov

properties: 



X → Y → Z

X ← Y ← Z

X ← Y → Z

Hence they are called “Markov equivalent”. In contrast, the v-structure X → Y ← Z is

uniquely identifiable if the Markov properties X ⊥⊥ Z and X ⊥6⊥ Z|Y hold.

Leveraging conditional independences to detect v-structures allows to partially recover

the causal graph: some remaining edges can be oriented using constraints on the graph: all

the v-structures being detected, some Markov equivalent graphs are not admissible as they

would create new v-structures or cycles. After this step, some edges remain undirected. The

resulting set of admissible graphs, obtained by orienting the remaining edges with Markov

properties, represent the Markov equivalence class of the graph called Completed Partially

Directed Acyclic Graph (CPDAG) in its general formulation (Spirtes et al., 1993).

Example 2. This notion is illustrated on the 5 variables examples (Fig. 2.1): the sought DAG

G (ground truth) and graph skeleton are respectively depicted on Fig. 2.3.a and Fig. 2.3.b.

The sought DAG is unknown, but empirical data drawn using it may be used to recover

the graph skeleton (using independence tests), under the condition of having enough data.

Next, under the assumptions CSA, CMA and CFA (see Section 2.1.3), since (X3 ⊥⊥X4|X5)

does not hold, a v-structure X3 → X5 ← X4 is identified (Fig. 2.3.c).

However, since (X1 ⊥⊥X5|X3) and (X2 ⊥⊥X3|X1) hold, the DAGs depicted on Fig. 2.3.d

and Fig. 2.3.e encode the same conditional independences as the true DAG (Fig. 2.3.a).

Therefore the true DAG cannot be fully identified on the basis of independence tests, and the

edges between pairs of nodes {X1, X2} and {X1, X3} must be left undirected. The process thus

terminates with a Completed Partially Directed Acyclic Graph (CPDAG), depicted on Fig.

2.3.c.

.

2.2.3 Modeling with complexity

Complementary to methods leveraging conditional independence tests described in the pre-

vious section, score-based methods rely on a global score evaluating the relative merit of

alternative causal models to explain the empirical data, subject to complexity constraints.

Such constraints are either “hard constraints” restraining the range of acceptable causal

mechanisms (to linear models for example) or “soft constraints” such as a penalization on

the number of edges applied in the learning phase of the algorithm.

In the general multi-variate setting, irrespective of the model search space, the Occam’s ra-

zor principle has been formalized by Janzing and Scholkopf (2010) in terms of Kolmogorov

complexity (c.f. Working Hypothesis 1).
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X1

X2 X3

X5

X4

(a) The sought G DAG.

X1

X2 X3

X5

X4

(b) The skeleton of G.

X1

X2 X3

X5

X4

(c) The CPDAG of G.

X1

X2 X3

X5

X4

(d) A Markov equivalent DAG of G.

X1

X2 X3

X5

X4

(e) Another Markov equivalent DAG of G.

Figure 2.3: A Markov equivalent class: Given a graph skeleton (b), all three DAGS (a,

d, e) are consistent with independence relations holding in empirical data. The set of these

consistent graphs defines a Markov equivalent class represented as CPDAG (c).

Referring the reader to Li and Vitányi (2013) for a comprehensive introduction, the

Kolmogorov complexity of a probability distribution p of the continuous variable X defined

on its domain of definition dom(X) is the description length of the shortest program that

implements its sampling process (Grünwald et al., 2008) (Eq. 14), noted K(p) (also noted

K(p(x)) in the following by abuse of notation):

K(p) = min
s
{|s| : for all m ∈ {1, 2, ...}, x ∈ dom(X) : |U(s, x,m)− p(x)| ≤ 1/m} , (2.10)

with U a Universal Turing machine. Taking inspiration from (Janzing and Scholkopf, 2010),

the key working hypothesis for complexity-based approaches is that the sought causal models

are those with minimum Kolmogorov complexity of their conditional probabilities:

Working Hypothesis 1 (Algorithmic independence of statistical properties). (Janzing and

Scholkopf, 2010)

A necessary condition for causal model G (i.e., a DAG) to hold is that the shortest description

of the joint density p be the sum of the shortest description of its causal mechanisms, up to

a constant:

K(p(x))
+
=

d∑

j=1

K(p(xj |xPa(j;G))). (2.11)
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Minimum Description Length A tractable approximation of the Kolmogorov complex-

ity, the Minimum Description Length (MDL) is often used in practice, in particular in relation

with bivariate causal discovery (Stegle et al., 2010; Budhathoki and Vreeken, 2017).

Let joint distribution p be defined after a candidate causal graph G. The MDL associated

with p measured with respect to a class Q of computable probabilistic models (e.g. exponen-

tial models), and an i.i.d. n-sample drawn from p(x) denoted D = {x(1) . . .x(n)}m is defined

as (Barron and Cover, 1991):

MDLr(G, D) := min
q in Q

[
K(q(x,G)) +

n∑

`=1

log
1

q(x(`),G)

]
, (2.12)

with K(q(x,G)) the number of bits needed to describe model q (that is computable by

definition of Q) and
∑n

`=1 log 1
q(x(`),G))

the number of bits in the coding length of the dataset

with respect to q.

The MDL used in the following is the normalized MDL, divided by the size n of the

i.i.d. sample D:

MDL(G, D) := min
q in Q

[
1

n
K(q(x,G)) +

1

n

n∑

`=1

log
1

q(x(`),G)

]
. (2.13)

Causal inference with Minimum Description Length Overall, the Working Hypoth-

esis 1 states that the Kolmogorov complexity of the true graph G, and the MDL-based

approximation MDL(G, D) thereof, are minimal. If the minimal MDL is reached for a unique

DAG G∗, this graph is therefore the sought causal model under the assumptions made. Note

however that the unicity of the solution is not guaranteed.

A well-known example is the linear bivariate Gaussian model, with Y = X + E and

X ⊥⊥E with X and E Gaussian variables, illustrated on Figure 2.4. As established by Mooij

et al. (2016), there exists two models q1 and q2 such that p(x) = q1(x)q1(y|x) = q2(y)q2(x|y)

with exact same complexity (same structure and same number of parameters). In such cases,

MDL(X → Y,D) and MDL(Y → X,D) are equal in the large sample limit and the causal

graph remains undetermined.

Approximations with information criteria (AIC, BIC) However as the Kolmogorov

complexity is not computable, the fitness-complexity of a proposed model is usually estimated

using the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC):

AIC = 2k − 2 ln(L) (2.14)

BIC = ln(n)k − 2 ln(L) (2.15)

where n represents the number of samples, k represents the number of parameters of the

model (proxy for the complexity of the model), and L represents the maximum of likelihood
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Figure 2.4: Illustration of an unidentifiable case by MDL, Y = X + E, with X,E sampled

from a normal distribution and independent.

of the model:

L = L(X|θ) = max
θ

1

n

n∑

i=1

f(xi|θ), (2.16)

with θ denoting the parameters of the model and f representing the density function. The

maximum likelihood value accounts for how the model fits the data distribution.

While considering Gaussian data, practitioners compare two candidate causal graphs G
and G′ using AIC by computing those criteria in the following manner, under the additional

assumptions of model errors being i.i.d. and following a normal distribution and the derivative

of the log likelihood with respect to the true variance is zero:

• For both graphs, compute their AIC score:

(a) Compute the residual sum of squares4 for all variables following the graph:

R =
d∑

i=1

(Xi − fi(Pa(Xi)))
2

where Pa(Xi) the parents of Xi in the graph, and fi(Pa(Xi)) the approximation

of Xi learned by regression on Pa(Xi).

(b) AIC = 2k + n ln(R/n)

where k corresponds to the number of edges in the graph and n the number of

samples.

4the likelihood score is resumed to a sum of squares in the case of Gaussian data.
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• Finally, the model with minimal AIC score (between G and G′) is selected as the best

one.

2.3 Learning Markov equivalence class with local search algo-

rithms

We now move to describing state-of-the-art algorithms exploiting the principles introduced

in the first part of this chapter.

The first category of approaches relies on CSA, CMA and CFA assumptions (Section

2.1.3) and uses conditional independence (CI) relations5 in order to identify the Markov

equivalence class of the sought Directed Acyclic Graph, represented by a CPDAG. This first

family of algorithms recovering the CPDAG of a functional causal model from data includes

constraint-based methods, score-based methods, and hybrid methods (Drton and Maathuis,

2016).

2.3.1 Constraint-based methods

Constraint-based methods leverage conditional independence tests to identify a skeleton of

the graph and v-structures. Then, constraint propagation is used to gradually orient other

edges, and finally output the CPDAG of the graph as detailed in Section 2.2.2.

Spirtes-Glymour-Scheines (SGS) The SGS algorithm (Spirtes et al., 1993) is one of

the first algorithms to leverage conditional independencies for causal discovery. It is known

to be quite computationally expensive as almost all conditioning sets for all variables are

considered in the skeleton phase. This algorithm led to the PC algorithm, which represents

a computationally efficient version of SGS, thanks to its optimized arrangement of variables.

Peter-Clark (PC) Constraint-based methods are best exemplified with the celebrated PC

algorithm (Spirtes et al., 1993): under CSA, CMA and CFA, and assuming that all conditional

independences have been identified, PC returns the CPDAG of the functional causal model,

respecting all v-structures (Fig. 2.3(c)). In practice, PC uses a threshold on p-value to select

the edges in the graph (Algorithm 1).

Replacing the Pearson p-value test with non-parametric independence tests based on

machine learning such as kernel-based conditional independence tests (Zhang et al., 2012;

Strobl et al., 2017) is becoming increasingly popular. See Section 2.2.2 for more details.

Fast Causal Inference (FCI) The FCI algorithm extends PC and relaxes the causal

sufficiency assumption (Spirtes et al., 1999). FCI starts with the PC algorithm (Initial

skeleton recovery with conditional independencies and v-structure identification), but adds

5Proofs of model identifiability generally assume the existence of an “oracle” yielding the ground truth CIs.



2.3. LEARNING MARKOV EQUIVALENCE CLASS WITH LOCAL SEARCH ALGORITHMS 29

Algorithm 1: The PC algorithm

Data: Observational data X = X1, . . . , Xd sampled i.i.d. from P (X)

Input: p-value threshold α

Result: CPDAG of the Causal Graph

Start from a fully connected graph G
n = 0

while n < d− 2 // Skeleton recovery with conditional independence

do

forall i, j in [1, d] such that i < j and Xi and Xj are adjacent do

forall Subsets of variables S adjacent to Xi and Xj such that Card(S) = n do

Compute the p-value βij|S for testing the independence of Xi, Xj |S
if βij|S > α then

Remove Xi → Xj from G
Record S in SeparationSet(Xi, Xj)

end

end

end

n = n+1

end

forall i, j, k ∈ [1, d] such that (Xi, Xj) and (Xk, Xk) are adjacent but not (Xi, Xk) do

if Xj /∈ SeparationSet(Xi, Xk) // Orient v-structures

then

Orient Xi −Xj −Xk as Xi → Xj ← Xk

end

end

while Edges can be oriented // Constraint propagation phase

do
forall i, j in [1, d] such that Xi and Xj are adjacent and the edge Xi −Xj is not oriented

do

if ∃k 6= i, j ∈ [1, d] such that Xk → Xi and Xk, Xj are not adjacent in G then

Orient Xi −Xj as Xi → Xj

end

if There exists a directed path from Xi to Xj in G then

Orient Xi −Xj as Xi → Xj

end

end

end

return G

a second structure recovery phase meant to sharpen the structure by leveraging possible d-

separation sets. Finally, more rules are added in the constraint propagation phase (Zhang,

2008), taking account of the relaxation of the causal sufficiency assumption.
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Really Fast Causal Inference (RFCI) RFCI (Colombo et al., 2012) optimizes FCI for

handling larger DAGs with latent variables. Indeed, FCI can show itself quite expensive due

to the second structure recovery phase. In counterpart for weaker consistency results, RFCI

replaces this latter phase using additional testing of soundness before orienting edges in the

v-structure identification phase.

Limitations. Such constraint-based algorithms suffer from three drawbacks. First, their

dependency on conditional independence tests make them data hungry as the required data-

size exponentially increases with the number of variables in the worst case; making them

highly dependent on the complexity of the scoring function6. Secondly, the propagation rules

used to direct edges are prone to error propagation. Finally, the number of conditional inde-

pendence tests required grows exponentially with the number of variables with dense graphs,

preventing their scalability beyond small problems (a few dozen variables).

2.3.2 Score-based methods

Score-based methods aim at finding the best CPDAG in the sense of some global score: using

search heuristics, graph candidates are iteratively evaluated using a scoring criterion such as

AIC or BIC (Section 2.2.3) and compared with the best graph obtained so far.

Greedy Equivalence Search (GES) The Greedy Equivalent Search (GES) algorithm

(Chickering, 2002) aims to find the best CPDAG in the sense of the Bayesian Information

Criterion (BIC). The CPDAG space is navigated using local search operators, e.g. add edge,

remove edge, and reverse edge. GES starts with an empty graph. In a first forward phase,

edges are iteratively added to greedily improve the global score. In a second backward phase,

edges are iteratively removed to greedily improve the score (Algorithm 2). Under CSA, CMA

and CFA assumptions, GES identifies the true CPDAG in the large sample limit, if the score

used is decomposable, score-equivalent and consistent (Chickering, 2002).

Fast Greedy Equivalence Search (FGES) More recently, Ramsey (2015) proposed a

GES extension called Fast Greedy Equivalence Search (FGES) algorithm aimed to alleviate

the computational cost of GES. It leverages the decomposable structure of the graph to

optimize all the subgraphs in parallel. This optimization greatly increases the computational

efficiency of the algorithms, enabling score-based methods to run on millions of variables

which is unfeasible for constraint-based methods.

Limitations These methods rely on exploration heuristics, which hardly support the effi-

cient exploration in the graph space, as the scoring function might not be smooth according

to the distance to the true graph. Other heuristics have though been developed to explore

6having a scoring function such as kernel-based independence tests leads to having algorithms unable to

scale above 50 variables
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Algorithm 2: The GES algorithm

Data: Observational data X = X1, . . . , Xd sampled i.i.d. from P (X)

Input: Constraint parameter λ, Scoring criterion C

Result: CPDAG of the Causal Graph

Start from an empty graph G
Init score S = C(G)

while S does improve // Forward Phase

do

for i, j ∈ [1, d], i 6= j do

if Xi → Xj and is not in G and adding it does not create any cycle then

Let G′ be the graph with Xi → Xj

if S < C(G′) then

G ← G′
S = C(G

end

end

end

end

while S does improve // Backward Phase

do

for i, j ∈ [1, d] such that Xi → Xj is in G do

Let G′ be the graph without Xi → Xj

if S < C(G′) then

G ← G′
S = C(G

end

end

end

return G

more efficiently the graph space (Glover and Taillard, 1993; Tsamardinos et al., 2006; Better

et al., 2007).

2.3.3 Hybrid algorithms

Hybrid algorithms combine ideas from constraint-based and score-based algorithms. Accord-

ing to Nandy et al. (2015), such methods often use a greedy search like the GES method

on a restricted search space for the sake of computational efficiency. This restricted space is

defined using conditional independence tests.

Max-Min Hill climbing (MMHC) Tsamardinos et al. (2006) firstly build the skele-

ton of a Bayesian network using conditional independence tests (using constraint-based ap-

proaches) and then performs a Bayesian-scoring hill-climbing search to orient the edges (using
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score-based approaches). The skeleton recovery phase, called Max-min Parents and Children

(MMPC) selects for each variable its parents and children in the dataset. Note that this task

is different from recovering the Markov blanket of variables as the spouses are not selected.

The orientation phase is a hill-climbing greedy search involving 3 operators: add, delete and

reverse edges.

Greedy Fast Causal Inference (GFCI) algorithm proceeds in the other way around,

using FGES to get rapidly a first sketch of the graph (shown to be more accurate than those

obtained with constraint-based methods), then using the FCI constraint-based rules to orient

the edges in presence of potential hidden confounders (Sec. 2.1.2) (Ogarrio et al., 2016). GFCI

assumes CMA, CFA and acyclicity of the causal graph.

Limitations The hybrid algorithms try to merge both score-based and constraint-based

algorithms in order to combines the advantages from both types of approaches. This leads

to hybrid algorithms seeking linear FCMs performing better than their other non-hybrid

counterparts in the linear case.

2.4 Learning sparse linear Gaussian Bayesian Networks with

global search algorithms

Addressing the above limitation, other methods have been proposed to simultaneously learn

the causal mechanisms and the causal graph structure. These methods are restricted to linear

functional causal models and can be formulated in terms of linear algebra.

2.4.1 Matrix formulation of linear FCMs

The general formulation of the FCM (Eq. 2.2) in the case of linear causal mechanisms on

centered Gaussian variables is (Aragam et al., 2017):

Xj = βj
TX + Ej , for j = 1, . . . , d, (2.17)

with βj = (β1,j , .., βd,j) ∈ Rd, βj,j = 0 to avoid feedback loops, and Ej ∼ N(0, ω2
j ).

Letting B denote the real-valued d × d matrix (βi,j) and E the d-dimensional vector

defined from the Ej , Eq. (2.17) is rewritten as:

X = BTX + E, (2.18)

defining the so-called functional causal model (FCM) for X, with B being the weighted

adjacency matrix of the directed graph G. This linear FCM formulation has been used in

pioneering works focusing on relaxing causal assumptions such as acyclicity, causal sufficiency

(Hoyer et al., 2006, 2008; Anandkumar et al., 2013).
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2.4.2 Learning undirected graphical models with regularization

Such linear FCMs have first been solved in the literature to recover an undirected graph,

encoding conditional independence relations between variables. Let us consider the set of

random variables X = (X1, . . . , Xd). The information on conditional independence between

variables can be schematized by an undirected graph G such that Xi⊥⊥Xj |X\i,j iff there is no

edge between the nodes Xi and Xj . Now let X = (X1, . . . , Xd) be centered and multivariate

normal with positive definite covariance matrix Σ. Let the matrix K = {ki,j}i,j=1..d = Σ−1

denote the inverse, referred to as the precision matrix of the Gaussian vector X. In the

multivariate Gaussian case, a well known property is that the entry ki,j of the precision matrix

is equal to zero if and only ifXi⊥⊥Xj |X\i,j (Lauritzen, 1996) (more Section 2.2.1). Accordingly

a Gaussian conditional independence graph can be estimated by determining the zero entries

of the inverse covariance matrix. The inverse covariance matrix from the observational data

is usually recovered in the literature by minimizing the negative log-likelihood of the matrix

of observations X ∈ Rn×d, available in closed form in the multivariate Gaussian case:

L(K|X) = −n
2

log det K +
1

2
tr(K S), (2.19)

with S = XTX. Banerjee et al. (2008) proposed the graphical lasso (glasso) estimator of

the inverse covariance matrix by adding a L1 penalization term to this objective, in order to

enforce the sparsity of matrix K.

K̂gl = argmin
K

L(K|X) + λ‖K‖1, (2.20)

where ‖K‖1 corresponds to the K matrix L1 norm:

‖K‖1 =
∑

i,j

|ki,j |. (2.21)

The optimization of Eq. 2.20 leads to efficient and scalable algorithms such as the coordinate-

descent algorithm (Friedman et al., 2008), supporting computation of Kgl up to a few thou-

sand variables.

2.4.3 From undirected to directed graphs

When searching for a directed graph, Eq. (2.18) must be solved subject to acyclicity con-

straints on B, yielding a much more difficult non-convex optimization problem. Letting Ω

denote the covariance matrix of noise vector E (the diagonal matrix (ω1, . . . ωd)) and I the

d-dimensional identity matrix, the multivariate Gaussian distribution of X is N (0,Σ) with

(Aragam and Zhou, 2015):

Σ = (I −B)−1T Ω(I −B)−1. (2.22)
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The (I − B) intervenes in order to avoid self-loops, as all diagonal terms Bii are set to 0 in

this fashion.

Letting K = Σ−1 be the inverse covariance matrix of X, it follows:

K = (I −B)Ω−1(I −B)T . (2.23)

Letting S = XTX denote the empirical estimate of Σ, the likelihood estimator of this

Gaussian graphical model to be minimized is:

L(K) = −n
2

log detK +
1

2
tr(K S). (2.24)

The FCM (matrix B and variances ωj) is identified by minimizing Eq. 2.24, augmented

with a regularization term ρλ(B), set to an L1 penalty (Tibshirani, 1996), a group norm

penalty (Yuan and Lin, 2006) or an L0 penalization (Van de Geer et al., 2013; Zheng et al.,

2018b):

min
B∈B

L(K) + ρλ(B), (2.25)

where B ⊂ Rd×d is the set of weighted adjacency matrices representing directed acyclic graphs.

The L1 formulation is the classic formulation corresponding to the lasso. Its optimization is

rather smooth, but the edges have numerical values thus needing a threshold value in order

to obtain a sparse graph. Group norm penalizations allow the models to select variables by

groups and not individually, thus are more fit to variable selection problem for graphs. More

recently, L0 penalizations are becoming increasingly popular as the final state of the optimized

model corresponds directly to the proposed graph, at the cost of a harder optimization

procedure as the L0 penalization is less smooth than other proposed counterparts.

The optimization problem described by Eq. 2.25, known to be NP-hard (Chickering et al.,

2004), is tackled using either approximate or exact algorithms. Exact algorithms tackle the

combinatorial optimization problem (see e.g. the linear integer programming approach pro-

posed by Bartlett and Cussens (2017)); these hardly handle more than fifty variables even

in the linear Gaussian case. By contrast, approximate methods can scale up to thousands of

nodes (Aragam and Zhou, 2015; Scanagatta et al., 2015). Notably Zheng et al. (2018b) for-

mulate the structure learning problem as a global continuous optimization problem over real

matrices, avoiding the combinatorial search in the DAG space through a new characterization

of acyclicity for the adjacency matrix B. This approach will be detailed in Section 5.1.3 as

our proposed SAM takes inspiration from it.

Limitations. The methods based on constrained and sparse optimization mostly recover

the Markov equivalence class of the sought DAG. In some domains such as biology, where the

sought G graph is star-shaped and does not include v-structures, these methods are unable

to orient the edges. Indeed, conditional independence does not allow to distinguish causal

structures if v-structures are absent in the structure. Moreover, these methods are assuming

linear FCMs, an assumption which is often not verified in the case of real-world data.
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2.5 Exploiting asymmetry between cause and effect

New methods, taking into account the full information from the observational data (Spirtes

and Zhang, 2016) such as data asymmetries induced by the causal directions, have been

proposed and primarily applied to the bivariate DAG case7, referred to as cause-effect pair

problem (Hoyer et al., 2009; Daniusis et al., 2012; Mooij et al., 2016; Zhang and Hyvärinen,

2008). The reader is referred to Statnikov et al. (2012); Mooij et al. (2016); Guyon et al.

(2019) for a thorough presentation of the bivariate problem.

Cause-effect pair algorithms most generally achieve model selection, and determine the

best trade-off among the complexity of the model and its data fitting score. Unless mentioned

otherwise, the cause-effect pair problem assumes that given two variables X and Y , only two

outcomes are possible: X → Y and Y → X; this excudes the presence of confounding

variables8. In the most general setting, X and Y can also represent sets of variables that

are causally related, although the algorithms presented in the following do not consider

multidimensional variables. Four strategies are distinguished: i) imposing restrictions on

the sought model; ii) computing a smooth trade-off between data fitting and complexity

scores; iii) exploiting independence between cause and mechanism; iv) using machine learning

methods.

2.5.1 Restricting the class of causal mechanisms

This family of pairwise models9 rely on restricting oneself to a simple class of models, in order

to favor the identifiability of the model, that is, a single one of the two models X → Y and

Y → X is attached a good score. Otherwise, the dataset is either said to be unidentifiable

(the model fits the data in both causal directions with good quality), or does not fit in either

direction (the model does not fit the data with enough quality). These models allows for

theoretical identifiability on pairs, but the considered class of models is often too restrictive

for real-world data. This section takes inspiration from Guyon et al. (2019).

Additive Noise Model(ANM) The celebrated Additive Noise Model (Hoyer et al., 2009)

models the data generative process as

Y = f(X) + E,

with f a possibly non-linear function and E a noise independent of X. ANM is generally

identifiable (i.e. ANMs X → Y and Y → X do not fit the data equally well in the large

sample limit) except in specific cases, including linear FCMs with Gaussian distribution of

the cause and Gaussian additive noise. More precisely, for the two alternatives X → Y and

7Note that in the bivariate case, both X → Y and Y → X DAGs are Markov equivalent; the former

methods do not apply.
8thus assuming causal sufficiency
9applicable on datasets of only two variables X and Y
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Y → X, the estimated mechanisms f̂Y and f̂X are obtained via Gaussian process regressions.

These estimated regression functions are used to estimate the residuals n̂Y = y − f̂Y (x)

and n̂X = x − f̂X(y). The scores SX→Y and SY→X correspond respectively to kernel HSIC

independence test (Gretton et al., 2005a) between n̂Y and x (for X → Y ) and between n̂X
and y (for Y → X).

Example 3. Considering the pair Y = X + E, with X ∼ U(0, 1) and E ∼ U(0, .9), the

resulting joint distribution is represented on Figure 2.5.
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Figure 2.5

For each causal direction evaluated (Y → X and X → Y ), the regression of the effect

by the considered cause is performed (Fig. 2.5, red and green lines), and the independence

between the residuals and the cause are computed using an HSIC independence test (Gretton

et al., 2005a), as shown on Fig. 2.6. The residuals from the X → Y model is independent

from the cause (Fig 2.6a), compared to the Y → X model (Fig 2.6b), thus showing that the

ANM model identifies the pair as being an X → Y causal pair.

Post-Nonlinear Model (PNL) The Post-NonLinear model (PNL) generalizing ANM and

taking into account nonlinear interactions has been proposed by Zhang and Hyvärinen (2010,

2009); Zhang and Chan (2006) to handle non-additive noise and achieve identifiability for

more and more complex models, thus being able to explain a broader number of causal pairs:

Y = g(f(X) + E)

with g an invertible function on the top of the additive noise. The PNL model do possess some

cases where even though the hypotheses are verified, the causal direction is unidentifiable.

For example, the causal relationship Y = eX+E , X,E ∼ U(0, 1)2, unindentifiable with the

ANM model because of the non-linearity of the noise, is identifiable with the PNL model as

the exponential function is invertible and X + E correponds to an additive model.
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Figure 2.6: Scatter plots of residuals of the regression with the considered cause.

2.5.2 Smooth complexity/fit tradeoff

Instead of restricting the class of models, another approach is to achieve a tradeoff between

the fitness of the model and the complexity of the model. The model complexity can either

be measured in various ways, such as the number of parameters of the model, or controlled

through a regularization of the causal mechanisms. The benefit of these approaches is that

they involve assumptions that are usually weaker and implicit, as they avoid any sharp

restriction on the model search space, implicitly controlled from the complexity.

Gaussian Process Inference (GPI) GPI (Stegle et al., 2010) is a non-parametric Bayesian

approach, optimizing a sum of a data fitting term and a complexity term. Specifically two

Bayesian generative models, one for X → Y and one for Y → X, are built, where the dis-

tribution of the cause is modeled with a Gaussian mixture model, and the causal mechanism

f is a Gaussian process. The causal direction associated with the model with minimal code

length according to the Minimum Message Length principle (MML) is retained.

Classifier Two-Sample Tests (C2ST) C2ST (Lopez-Paz and Oquab, 2016) represents

a neural network follow-up of GPI: it proceeds by training conditional generative adversarial

networks in both causal directions and retain the one that best fits the observational data,

thus replacing the fit score with a neural network. Our approach SAM (Chapter 5) takes

inspiration from this approach to extend it to the graph setting.
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2.5.3 Exploiting independence between cause and mechanism

Other approaches are based on the exploitation of conditional distributions. Formally, assum-

ing that X → Y , Sgouritsa et al. (2015) conjecture that the marginal probability distribution

of the cause P (X) is independent of the causal mechanism P (Y |X); hence estimating P (Y |X)

from P (X) should be ”harder“ than estimating P (X|Y ) based on P (Y ). The same conjec-

ture underlies Mitrovic et al. (2018)’ approach, considering that the conditional distribution

{QY |X=xi}ni=1 should be less sensitive to the different values xi taken by the variable X,

compared to the conditional distribution {QX|Y=yi}ni=1 depending on the different values yi,

where the conditional distributions are estimated using conditional RBF kernel embeddings

into the Hilbert space of infinitely differentiable functions.

The concept of exogeneity has been investigated in Zhang et al. (2015b) to infer causality.

This concept relies on leveraging the identification of causal relationship without hidden

confounding variables: if X is a cause of Y and there is no common cause of X and Y , then

X is exogenous relative to Y .

2.5.4 Machine learning approaches

The two Causality challenges (Guyon, 2013, 2014) pioneered the formalization of causal in-

ference as a supervised machine learning problem. During the two challenges, 16,200 labelled

pairs of variables Si = {(Xi, Yi, `i)} = {(xij)ni
j=1, (xij)

ni
j=1, `i} were released, where each pair

is associated with the label of the associated causal relation ranging in Xi → Yi, Yi → Xi,

Xi ⊥⊥ Yi, Xi ↔ Yi (presence of a confounder). Each (Xi, Yi) pair is described by a sample

of the underlying joint distribution. The classifier trained from these examples was used to

estimate the causal relation for new pairs of variables, with good results.

Kaggle Cause-Effect Pair Challenge The Cause-Effect Pair Challenge organized in 2013

on the Kaggle platform (Guyon, 2013) is the first competition focusing on pairwise causal

discovery, pioneering the supervised learning setting for pairwise causality. The training data

involves 12,081 pairs of variables (Examples on Fig. 2.7); the test data involves 4,050 other

pairs of variables. Each pair of variables is associated its ground truth causal label, ranging

in four classes respectively corresponding to X → Y , X ← Y , X ⊥⊥ Y and ∃Z,X ← Z → Y .

The training and test pairs of variables included circa 18% real pairs and 82% artificial

pairs with continuous, categorical and binary variables.

Codalab Fast Causation Coefficient Challenge Most approaches submitted to the

Cause-Effect Pair Challenge involve a heavy feature construction process, associating to each

sample of any joint distribution P (X,Y ) a real-valued vector of feature values (up to 20,000

features), on the top of which a standard learning algorithm is used. Due to the high compu-

tational effort required to achieve this statistical feature construction, a follow-up two-month

challenge, the Fast Causation Coefficient challenge has been proposed (Guyon, 2014), aimed
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Figure 2.7: Example of bivariate causal datasets from the challenge

at algorithms achieving a reasonable trade-off between predictive causal accuracy and com-

putational efficiency. The assessment of algorithms was made possible as the Fast Causation

Coefficient challenge (with same setting as the previous challenge) was hosted on the Codalab

challenge platform. This Codalab platform allows participants to submit an executable code,

that can therefore be assessed in a fair and reproducible way.

Randomized Causation Coefficient (RCC) To leverage the representative power of ker-

nel embeddings, RCC (Lopez-Paz et al., 2015) combines kernel-based embedding for feature

construction with pairwise causal discovery. Considering the dataset of empirical distribu-

tions S = {Si}ni=1, a kernel mean embedding allows to project these empirical distributions

into the same Reproducing Kernel Hilbert Space (RKHS) Hk. To obtain a homogeneous and

low dimension embedding, Lopez-Paz et al. (2015) uses random cosine based embeddings

that approximate empirical kernel mean embeddings in low dimension:

µk,m(PSj ) =
2Ck
|S|

∑

xij ,yij∈Sj

(cos(wxj ∗ xij + wyj ∗ yij + bj))
m
j=1 ∈ Rm, (2.26)

where {wj , bj}mj=1 are the kernel parameters sampled i.i.d. in N0,2 × [0, 2π], as well as their

number m defining the number of dimensions of the output space, PS is the empirical dis-

tribution, and Ck =
∫
Z pk(w)dw, with pk : Rd 7→ R the positive and integrable Fourier

transform of the chosen kernel k, equal to 1 in this case. Next, a random forest classifier is

trained on the built features and predict the causal direction of unseen distributions. This

approach took the second place on the fast causation challenge (Guyon, 2014).

Jarfo (Fonollosa, 2016), one of the best performing algorithms over both challenges, oper-

ates as follows:
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1. A type-dependent preprocessing of the input variables is applied ; Numerical variables

are normalized and binned along 19 intervals to compute features such as discrete

mutual information or discrete entropy. Categorical variables are relabelled with sorted

probabilities to obtain numerical variables.

2. Information theoretic measures and other causally relevant features are computed; in-

cluding discrete entropy, mutual information, divergence, and standard deviation on

conditional distributions (CDS). Extra features, commonly used in conditional discov-

ery, are computed: Hilbert Schmit Independence Criterion (HSIC), moments, a number

of pairwise discovery scores (IGCI score (Janzing et al., 2012), ANM, PNL, etc), a Pear-

son correlation and a polynomial fit on the variables, and the obtained residual of the

fit.

3. The computed features are mapped from onto Rp, noting the mapping function φ(Si).

The problem is shifted from a learning problem over distributions to a regular classifi-

cation problem of data points.

4. A gradient boosting classifier based on the computed previous features is trained on the

examples {φ(Si), `i} using a 10-fold cross-validation. This approach is rather popular

due to its robust performance/computational cost ratio.

GEne Network Inference with Ensemble of trees (GENIE3) GENIE3 (Irrthum

et al., 2010) approaches the problem of network inference as a feature selection problem by

using random forests to perform the node selection: for each variable, a tree ensemble method

is performed to select the node that help to model the target variable. By combining all the

results, a final network is provided. Note that the resulting graph might contain cycles except

for self-interactions, as the tree ensembles results are simply concatenated.

Limitations. On the one hand, bivariate methods can be used to independently orient

each edge (with no propagation and thus no risk of error propagation)10. On the other hand,

bivariate methods do not have a global view of the variable set, and specifically cannot take

advantage of v-structures. Typically, when considering the v-structure X → Z ← Y , a

bivariate model based on cause-effect asymmetry would miss both causal relationships in the

linear Gaussian case (linear mechanism, Gaussian distribution of causes and noise).

10In most cases, this assumes making the causal sufficiency assumption, and assume further that the graph

skeleton is correct.
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2.6 Exploiting conditional independence and distributional asym-

metries

Most interestingly, the linear Gaussian case is the easiest one to deal with for the local and

global learning algorithms (Sections 2.3, 2.4), while it is impossible to solve for the category

of cause-effect pair algorithms (Section 2.5). On the contrary, when data employs non-linear

causal mechanisms with complex interactions, causality modeling is most generally easier for

the 3rd category and more difficult for the 1st and 2nd categories due in particular to the

complexity of evaluating log-likelihood scores for non-Gaussian data.

These remarks inspire some hybrid approaches, exploiting the complementarity of the

methods, and specifically returning partially directed graphs and exploiting the interactions

between all variables.

An extension of the bivariate post-nonlinear model (PNL) proposed by Zhang and Hyvärinen

(2009) illustrates such a hybrid approach: an FCM is trained for any plausible causal struc-

ture, and each model is tested a posteriori for the required independence between errors and

causes. Its main limitation is its super-exponential cost with the number of variables (Zhang

and Hyvärinen, 2009).

Another hybrid approach, proposed by Zhang and Hyvärinen (2009), uses a constraint

based algorithm to identify a Markov equivalence class, and thereafter uses bivariate mod-

elling to orient the remaining edges. For example, the constraint-based PC algorithm can

identify the v-structure X3 → X5 ← X4 in an FCM (Fig. 2.3), enabling the bivariate PNL

method to further infer the remaining arrows X1 → X2 and X1 → X3. Note that an effective

combination of constraint-based and bivariate approaches requires a final verification phase

to test the consistency between the v-structures and the edge orientations.

Causal Additive Models (CAM) The CAM algorithm (Bühlmann et al., 2014) lever-

ages both conditional independence relations and pairwise asymmetries. CAM extends the

pairwise additive model (ANM) (Hoyer et al., 2009) to the multi-variate setting, modeling

the FCM as:

Xi =
∑

k∈Pa(i;G)

fk(Xk) + Ei, for i = 1, . . . , d. (2.27)

CAM models the causal mechanisms with Gaussian Processes, supporting the identification

of complex mechanisms. It also involves an initial feature selection step that allows to restrict

the search space of the algorithm.

Partial Conclusion

The state of the art in observational causal discovery without interventional data relies on

the notion of simplicity: no other leverage is available from the data without experiments. It

is either considered in the structural form represented by the number of edges in the graph
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(Section 2.3, Section 2.4, Section 2.6) or in the functional form, i.e. the complexity of the

causal mechanisms (Section 2.5, Section 2.6). The approaches employ various strategies to

recover the causal graph: use a local or a global optimization procedure as a structure learn-

ing approach; or leverage the complexity of the causal functions without restricting causal

models to linear functions (Section 2.5), as above-mentioned structure learning approaches

do. Finally, more recent approaches combine structural and functional learning to increase

their predictive performance.

From a scalability the point of view, local learning methods (Section 2.3) are limited to a

few hundred variables for constraint-based methods and much more for score-based methods:

up to a million variables for FGES (Ramsey et al., 2017). Global learning methods scale

fairly well, up to a few thousand variables (Section 2.4), whereas methods only leveraging

asymmetries (Section 2.5) are limited to two variables. Finally, hybrid methods extending

these methods to graphs (Section 2.6) can usually scale up to a few hundred variables.

Most linear approaches are quite computationnally efficient, but the assumption of linear

mechanisms hurts the accuracy of the algorithms. Relaxing this assumption by allowing

for more causal mechanisms often leads to adding significant computational complexity to

the algorithms: non-linear independence tests or non-linear regressors. However, even the

recent approaches are still restrictive towards the distribution of the data and the causal

mechanisms; those assumptions often not verified nor verifiable in the case of real data.

Therefore, the performance of the algorithms may vary depending on the nature of the data.

Introducing neural networks to causal discovery allows to have a really large class of supported

causal mechanisms and data distributions; the modularity of neural networks with respect

to the modeling of complex functions allows at the same time to keep relative computational

efficiency.



Chapter 3

Artificial Neural Networks

In this thesis, one of the objective is to leverage the expressivity and modularity of neural

networks for causal discovery, not as traditional classification or regression problems, but as

generative models: the quality of a causal graph candidate is evaluated through the quality

of the data generated by the neural network modeling the causal graph. After having given a

general explanation of neural networks, this chapter introduces all the tools and techniques

that will be used in the proposed approaches.

Deep artificial Neural networks (NNs) represent the major breakthrough in recent machine

learning as highlighted in various results (Krizhevsky et al., 2012; Goodfellow et al., 2014).

Their popularity also comes from their good performance, their computational efficiency

because of their portability to Graphical Processing Units (GPUs) (Raina et al., 2009) and

their ease of use: any differentiable type of operation can be added in the computational

graph.

In a nutshell, a NN is an algorithm composed of multiple layers of weighted sums, made

out of learnable weights, and non-linear activation functions. All the learnable weights are

optimized to satisfy the objective function (typically linked to prediction accuracy) using

gradient descent. In this chapter, we will present the basics on artificial neural networks

with multilayer perceptrons (Section 3.1), explain stochastic gradient descent (Section 3.2),

describe new types of architecture in neural networks (Section 3.3), and finally present gen-

erative adversarial networks (Section 3.4).

Recent artificial neural network architectures stem from the Perceptron (Rosenblatt,

1958), a classifier linear in its paramaters, representing the simplest architecture of neural

network, with only one trainable neuron.

Considering a d dimensional input x, the output ŷ of a linear Perceptron is:

ŷ = σ(x ·W )

with σ being an activation function, such as hyperbolic tangent or the Heaviside function.

Perceptrons can be trained in a number of manners. Weight updates Wi are usually propor-

tional to the correlation between input xi and output y, as in the biologically-inspired rule
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of Hebb. One of the most successful algorithms in that family is the Widrow-Hoff algorithm,

with update rule W ′i = Wi + α ∗ (y − ŷ)xi, which can be derived as a stochastic gradient

method to minimize the mean-square-error for linear units (no σ activation function.

One of the limits of the linear Perceptron is that it is unable to solve the XOR problem,

which only non-linear classifiers can tackle. This led to the creation of non-linear neural

network architectures, namely the multilayer perceptron in the end of the 80s.

3.1 Multilayer Perceptrons

Multi-layer perceptrons (MLPs) stack several layers fi, each composed of many neurons with

learning weights Wi and separated by non-linear functions σi.

σi is called activation function of the neuron, and is the element introducing non-

linearity in the architecture. Examples of popular activation functions are the Rectified Linear

Unit (ReLU), Exponential Linear Unit (ELU), Hyperbolic Tangent (Tanh), or Sigmoid.

Given an input x, the output of a MLP with k layers ŷ is:

{
fi(z) = (σi(z ·Wi + bi)),

ŷ = fk ◦ fk−1 ◦ . . . ◦ f1(x).
(3.1)

Notice here the versatility of the neural network architecture towards the input and output

dimensions: theWi weight matrices and biases bi can have their dimensions tweaked according

to the considered problem. Figure 3.1 illustrates this architecture.

Input x

k hidden layers

Output ŷ

Figure 3.1: Illustration of a multilayer perceptron. Each node of a hidden layer represent an

activation function, and each edge represent a weight W i
kl.

Each neural network such as MLPs is endowed with hyper-parameters, i.e. parameters

that are fixed at the conception of the algorithm and that are not optimized during the

training phase of the algorithm. Examples of these hyper-parameters are the number of

hidden units of the neural network or the number of layers of the neural network. Those

hyper-parameters are often chosen by doing a hyper-parameter search, such as grid search (the
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space of hyper-parameters is tested incrementally in a given range) or a random search (where

hyper-parameters are sampled randomly in the search space). In the automatic machine

learning field of research, works have been done to learn those hyper-parameters during the

training (Gordon et al., 2018; Golovin et al., 2017; Feurer et al., 2015).

Neural networks with only a single hidden layer, called shallow networks, already pos-

sess strong representational power. Given enough neurons in the hidden layer, they can

approximate any continuous function over a compact:

Theorem 1 (Universal approximation theorem - Cybenko (1989)). Let σ : R → R be a

nonconstant, bounded, and continuous function.

For any ε > 0 and any continuous function f defined over a compact subset of Rm, there

exist an integer nh, real constants w′i, bi ∈ R and real vectors wi ∈ Rm, such that:

{
F (x) =

∑nh
i=1w

′
iσ(x · wi + b),

|F (x)− f(x)| < ε.
(3.2)

for any x defined in the compact subset of Rm.

Note that this theorem requires the activation function to be bounded, thus excluding

popular activation functions such as ReLU, in favor of others such as hyperbolic tangent.

Activation functions Activation functions introduce non-linearities into the neural net-

work architecture: all other operations are linear between inputs and the weights. They place

themselves at the end of a layer, and are represented by the neurons (circles) in Figure 3.1.

For a function to be considered as an activation function, it must be differentiable and de-

fined over the domain of the inputs. Here are some examples of activation functions used

throughout this thesis:

• Hyperbolic Tangent (Tanh) is a bounded, continuous and monotonic activation

function, defined over R:
{
tanh(x) = 2

1+e−2x − 1,

tanh′(x) = 1− tanh2(x).
(3.3)

One benefit of the Tanh function is its linearity near 0, making regularized models

on weights near-linear. However, Tanh is on the computationally expensive activation

function compared to alternatives.

• Rectified Linear Unit (ReLU) represents one of the most popular activation func-

tions ; 



ReLU(x) =

{
x if x > 0,

0 otherwise,

ReLU ′(x) =

{
1 if x > 0,

0 otherwise.

(3.4)
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ReLU is not bounded and piecewise-linear and continuous; its gradient is 0 if the in-

put is negative. However, the simplicity of the function and its derivative allows for

quick computation, making it one of the most popular activation functions. A variant,

LeakyReLU, introduces a non-constant linearity for the negative range of the input:





LeakyReLUa(x) =

{
x if x > 0,

ax otherwise, a ∈ R,

LeakyReLU ′a(x) =

{
1 if x > 0,

a otherwise,

(3.5)

with usually a ≤ 0.2. LeakyReLU is a popular alternative for neural network architec-

tures such as adversarial neural networks (Section 3.4).

• Softmax is a particular activation function as it is not traditionally used in the middle

of the neural network, but at the end of the neural network for classification tasks.

Indeed, the softmax function allows to transition from real values of the neural network

(logits) to probabilities; considering a K dimensional input x the softmax corresponds

to:

softmax(x)k =
exk

∑K
i=1 e

xi
. (3.6)

This function corresponds to the sigmoid function in the case of binary classification

with an output dimension of 1:

sigmoid(x) =
1

1 + e−x
. (3.7)

3.2 Learning with gradient descent

For a neural network to be able to learn, i.e. to be optimized, one must first define a

differentiable criterion for success: a metric that denotes how the predictions provided by the

neural network are close to the expected predictions (i.e. the labels). This metric is called

loss, as the neural network is directly trained using backpropagation on this value, thus the

need for differentiability. In this section, we will discuss the some standard losses of a neural

network, the optimizers and finally the learning procedure of a neural network. Let P (X, y)

denote the joint distribution of the data X and the corresponding labels y and let P̂ (X, f(X))

the joint distribution of the data and its output of the neural network f .



3.2. LEARNING WITH GRADIENT DESCENT 47

3.2.1 Losses

The Cross-Entropy loss is a standard loss for classification problems. It estimates the

how P̂ is different from P by computing its cross-entropy:

HP (P̂ ) = H(P ) +DKL(P ||P̂ ) (3.8)

= −
m∑

j=1

P (yj)log(P̂ (yj))), (3.9)

where H denotes the entropy, DKL denotes the Kullback-Leibler divergence and m denotes

the number of classes. In practical applications, we do not have access to the distributions

P and P̂ , but to their respective sets of samples y and ŷ. We can therefore approximate the

cross-entropy with the following loss:

LCE = − 1

n

n∑

i=1

m∑

j=1

δijlog(p̂i,j), (3.10)

where n denotes the number of samples in the dataset and δij = 1 if yi = j and 0 otherwise.

yi represents the the label of the ith sample, and p̂i,j is the probability associated with the jth

output of the neural network, obtained by applying the softmax function to the raw (logit)

output ŷ.

The Lk losses are standard regression losses, they apply the Lk norm to the difference

between the expected values and the predicted values by the NN:

Lk =
1

n

k

√√√√
n∑

i=1

|yi − ŷi|k. (3.11)

The most commonly used are the L1 and L2 losses for their stability and robustness.

The Maximum Mean Discrepancy statistic (MMD) (Gretton et al., 2007) The MMD

loss is a kernel-based loss that allows to compare predictions and expected values in distri-

bution for continous data unlike the Lk losses that operate pointwise, thus making MMD fit

for generative models (Li et al., 2015, 2017).

Let k be a real-valued symmetric kernel defined over P and P̂ , and let µk =
∫
k(x, ·)dP (x)

be the kernel mean embedding of the distribution P , according to the kernel function k(x, x′) =

〈k(x, ·), k(x′, ·)〉Hk
with associated reproducing kernel Hilbert space Hk. Therefore, µk sum-

marizes P as the expected value of the features computed by k over samples drawn from P .

Let y and ŷ samples respectively from the distributions P and P̂ with Card(y) = n1 and

Card(ŷ) = n2

MMDk(P, P̂ ) =
∥∥∥µk(P )− µk(P̂ )

∥∥∥
Hk

.



48 3.2. LEARNING WITH GRADIENT DESCENT

Then in the finite sample case, we approximate the kernel mean embedding µk(P ) by the

empirical kernel mean embedding µk(y) = 1
|y|
∑

yn∈y k(x, ·), and respectively for P̂ . Then,

the empirical MMD statistic is

M̂MDk(y, ŷ) =
1

n2
1

n∑

i,j

k(yi, yj) +
1

n2
2

n∑

i,j

k(ŷi, ŷj)−
2

n1n2

n∑

i,j

k(yi, ŷj). (3.12)

Importantly, the empirical MMD tends to zero as n → ∞ if and only if P = P̂ , as long

as k is a characteristic kernel (Gretton et al., 2007). This property makes the MMD an

excellent choice to model how close the observational distribution P is to the estimated

observational distribution P̂ . In terms of computation however, the evaluation of M̂MDk(y, ŷ)

takes O(n1n2) time, which is prohibitive for very large n.

To alleviate this issue, Lopez-Paz (2016) proposed a linear time approximation of the

MMD. When using a shift-invariant kernel1, such as the Gaussian kernel, one can invoke

Bochner’s theorem (Edwards, 1964) to obtain a linear-time approximation of the Gaussian

kernel:

µ̂mk (y) =

√
2

m

1

n1

∑

x∈D
[cos(〈w1, x〉+ b1), . . . , cos(〈wm, x〉+ bm)] , (3.13)

where wi is drawn from the normalized Fourier transform of the Gaussian kernel, and bi ∼
U [0, 2π], for i = 1, . . . ,m. It can be shown that the approximation converges pointwise as

the number of random features m→∞.

This approximation allows to approximate the empirical MMD (Lopez-Paz et al., 2015),

with complexity O(mn):

M̂MD
m

k (y, ŷ) = ‖µ̂mk (y)− µ̂mk (ŷ)‖Rm . (3.14)

3.2.2 Gradient Descent

Gradient descent is an iterative optimization method to adapt the learnable weights of an

algorithm to optimize a smooth learning criterion, i.e. the loss through backpropagation.

One main constraint for this approach is the need of a differentiable computation graph with

respect to the data. We will consider neural networks (NNs) in the following as NN are quite

well-suited to gradient descent: the gradient computation through the whole graph becomes

straightforward.

Assuming a fully differentiable computation graph, the output of the NN is evaluated

using a loss criterion L, which defines the objective function to optimize. Thus, the gradient

backpropagation algorithm retraces the algorithm backwards (in the sense of algorithmic

operations) while computing the respective gradients for each weight θi with respect to the

1kernel insensitive to translations, i.e. k(x, x′) = k(x + a, x′ + a), with a ∈ Rd
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input. Considering the following k-layer neural network:





fi(z) = (σi(z ·Wi + bi)),

ŷ = fk ◦ fk−1 ◦ . . . ◦ f1(x),

ŷi = fi ◦ fi−1 ◦ . . . ◦ f1(x), for i ∈ [1, k].

(3.15)

The gradient of the weight matrix of the ith layer is computed using the chain rule:

∇L(θi) =
∂L(ŷ,y)

∂θi

=
∂L(ŷ,y)

∂ŷk−1

∂ŷk−1

∂ŷk−2
. . .

∂ŷi+1

∂θi

(3.16)

where θi accounts for the weights Wi and biases bi. Next, the weights of the neural network

are adjusted according to the computed gradient in a linear fashion:

θi ← θi − η
1

n

n∑

j=1

∇Lj(θi), (3.17)

with Lj representing the value of the loss L for the jth example, and η denoting the learning

rate of the weights.

Training a neural network The learning procedure of an artificial neural network proce-

dure is iterative: at each epoch, the data (usually divided in mini-batches) is passed through

the network, and the gradient is computed for each weight using backpropagation of the

loss. Finally, the weights are adjusted using gradient descent. The training phase of a NN is

resumed in Algorithm 3.

Algorithm 3: Neural network learning procedure (Stochastic Gradient Descent)

for number of epochs do

for number of batches do

• Sample a batch xi out of available data

• Compute the output ŷi of the NN

• Compute the loss w.r.t the true labels yi: Li = L(ŷi,yi)

• Compute the gradients for all the weights ∇Li(θk)
• Update all the trainable weights with the gradient and the optimizer:

θk ← θk − η 1
n

∑n
j=1∇Lj(θk)

end

end
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3.3 Hyper-parameter optimization and regularization

In this section, some specific constraints and tricks that improve the learning process of

neural networks and structures that address precise needs in the computational graph will

be presented.

3.3.1 Adjusting the learning rate

The learning rate represents one of the most important hyper-parameters of a neural network.

Noted η in Algorithm 3, it controls how the gradient affects the weights: the higher the value,

the more the weights value are shifted according to the gradient, thus the learning rate sets

how quickly the model is adapted to the task defined by the loss. The impact of the learning

rate on the neural network is quite significant, as setting at a value to high refrains the

network from converging, and setting it too low refrains it from escaping local minima. In

order to solve this issue, a solution is to apply a learning rate schedule: As soon as the loss

does not decrease any more for a number of epochs at a given learning rate, the learning rate

is decreased to allow the weights to be optimized at a finer scale. Learning rate scheduling

provides a good trade-off between accuracy and computational efficiency.

Another alternative is to rely on momentum-based optimization: leveraging more mo-

ments allows the optimizer to have more context on the optimization and adapt its learning

rate. One of the most popular momentum based optimizers are Adam:

Adam (Kingma and Ba, 2014) is a momentum based optimizer based on gradient de-

scent. Instead of linearly updating the neural network’s weights with the gradient’s mean

value, it takes into account of higher order statistics of the gradient, using decaying averages

of gradients m and squared gradients v in the following fashion:





m(θi)← β1m(θi) + (1− β1)∇L(θi),

v(θi)← β2v(θi) + (1− β2)∇L(θi)
2,

m̂(θi)← m(θi)/(1− β1),

v̂(θi)← v(θi)/(1− β2).

(3.18)

θi ← θi −
η√

v̂(θi) + ε
m̂(θi), (3.19)

with β1 and β2 being the decay rate hyper-parameters of Adam.

3.3.2 Initialization of the weights

The initial state of a neural network, i.e. the initial values of the parameters do have a

strong impact on the training of the neural network, and ultimately, its final accuracy. The

initialization should not be with zeros or constant values in all the network, as the gradient

computation will be identical throughout the network, making all the weights identical. On
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the other hand setting the weights at too high values (|Wij | > 5) might disturb the training,

making it diverge or saturate. Therefore, one working heuristic is to set randomly the weights,

following a uniform or Gaussian distribution: they allow the network to possess enough

distinct values to train correctly. Other initialization heuristics have been developed, known

to improve performance, such as Xavier or He initializations (Glorot and Bengio, 2010; He

et al., 2015). In this thesis, we will be using a variant of those initializations, using a uniform

distribution:

Wi ∼ U
[
−
√

1

fan in
,

√
1

fan in

]
, (3.20)

where fan in represents the number of incoming network connections.

3.3.3 Regularization

As many machine learning models are over-parameterized2, they might content themselves

with memorizing the training data instead of generalizing, i.e. being able to handle properly

unseen data. This phenomenon, known as overfitting, has the effect of increasing the

accuracy on training data but ultimately reducing the predictive power of the model on

unseen data (ex. Figure 3.2).

In order to prevent overfitting, the regularization of the models have proved itself to be

quite effective: the idea is to limit the capacity of the models by adding constraints to the

loss. Traditional constraints for regularization are the L1 and L2 losses on the weights of the

model. For the neural network described in Eq. 3.15, this gives:

L1 :
k∑

i=1

p,q∑

j,l

|Wi,jl|+ |bi,l|, (3.21)

L2 :
k∑

i=1

p,q∑

j,l

Wi,jl
2 + bi,l

2. (3.22)

Another approach for regularization, called dropout, consists in randomly cutting off

temporarily some neural connections at each epoch during the training phase (some neurons

have their value set to 0, deactivating the neuron in both forward and backward pass).

Dropout forbids weights of the neural network to co-adapt to themselves, and is known to

efficiently reduce overfitting3.

In the setting of generative models for causality, this notion of regularization is of utmost

importance. In fact, the goal to model as closely as possible the true causal mechanisms

with our generative models; relying on Occam’s razor principle. Having overfitting models

to model the causal mechanisms might introduce biases in the model, leading ultimately to

wrong conclusions and results.

2Having much more parameters than needed to learn, more than the dataset itself (Welling, 2018).
3Dropout can be assimilated to ensemble methods, where sub-networks are trained separately towards the

same objective, to be aggregated in the end. (Hara et al., 2016; Dietterich, 2000)
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Figure 3.2: Illustration of overfitting with a underlying linear mechanism and an over-

parameterized polynomial regression where the task is to predict y from x. The over-

parameterized polynomial regression fits well the training data but has low accuracy on

new data.

3.3.4 Batch Normalization

Batch normalization (Ioffe and Szegedy, 2015) is a neural network layer leveraging batch

statistics to accelerate training of neural network. The batch-normalization layer normalizes

the incoming data following minibatch statistics with two parameters γ and β to improve the

learning process with information throughout the batch, and adjusting the variance of the

gradients. Considering x = {x1, . . . , xn} a mini-batch of data given as input and y as the

output, the batch-normalization layer computes the following:





x̄ ← 1
n

∑n
i=1 xi,

x̃ ← 1
n

∑n
i=1 x

2
i ,

σ2
x ← x̃− nx̄2,

x̂i ← xi−x̄√
σ2
x+ε

yi ← γx̂i + β.

(3.23)

with γ and β being learnable parameters.

This approach is known to increase the stability of the training procedure of the neural
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network, as well as diminishing the number of epochs required at the cost of slower epochs,

because of the computation of batch statistics.

3.3.5 Learning discrete values with the Gumbel softmax trick

Adjusting discrete hyperparameters such as the number of hidden units of a neural network

or the dropout connections can prove itself to be quite tricky : if naively done, the neural

nets must be trained anew for every considered categorical value as the argmax function is

not differentiable, thus preventing the gradient from backpropagating. Alternatively, learning

the parameters of Bernoulli distributions is infeasible as the sampling process does also break

the differentiability of the computational graph.

The Binary Concrete relaxation approach (Maddison et al., 2016; Jang et al., 2016), has

been proposed to alleviate this issue. It bases itself on an approximation of the categori-

cal distribution with the Gumbel-Max trick (Gumbel, 1954), considering class probabilities4

p1, . . . , pm:

yi =
exp (log pi + gi)/τ∑m
j=1 exp (log pj + gj)/τ

, for i ∈ [1,m], (3.24)

where the gi values are samples drawn from the Gumbel(0, 1) distribution, and τ is a tem-

perature parameter that controls the trade-off between the differentiability and the accuracy

of the approximation. Another alternative is to separate the forward pass from the backward

pass using the Gumbel trick: on the forward pass an argmax is considered (by setting τ = 0),

whereas a softmax is taken into account during the backward pass.

3.3.6 Recovering directed acyclic graphs

In the setting of graph learning, many problems require a directed acyclic graph (DAG) as

an output. However, it is often too complex to test independently all DAGs ; thus the idea of

imposing a constraint enforcing the acyclicity of the learned graph, named NOTEARS (Zheng

et al., 2018b).

Letting A denote the binary adjacency matrix of the evaluated graph (1 if an edge is

present, 0 otherwise), A represents a DAG if and only if

Ad = 0d. (3.25)

This however appears to be impractical to use as a loss for numerical reasons. Zheng et al.

(2018b) introduces a new smoother acyclicity constraint to augment the learning criterion

with:

LDAG =
d∑

k=1

tr Ak

k!
. (3.26)

Indeed, without any re-weighting of the number of cycles of size k by k!, the entries of Ak can

easily exceed machine precision for even small values of d if the graph is cyclic, which makes

4These probabilities are obtainable from logit values by using a softmax function.
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both function and gradient evaluations highly unstable. This criterion is minimal (equal to

zero) if and only if the considered graph is acyclic.

This differentiable constraint allows include a DAG regularization into the learning process

of neural network directly on the adjacency matrix of the graph. It is extensively used in the

SAM approach, described in Chapter 5.

3.4 Adversarial neural networks

Adversarial Neural Networks (Goodfellow et al., 2014) are a new paradigm for generative

neural networks: The metric used to evaluate the generation quality is also a neural network

called discriminator. This brings forward an concurrent optimization game between both the

generator and the discriminator.

Generative Adversarial Neural Networks (GANs) allows for training generative neural

networks of good quality (realistic samples and distributions) while being linear in compu-

tational complexity. GANs will be extensively used in SAM (Chapter 5) in order to train a

neural network following the predicted causal graph and evaluate the data generated with

the candidate model with respect to the real data distribution.

3.4.1 Description

As metrics for data generation are either not very relevant for high-dimensional data or

computationally expensive (such as MMD (Gretton et al., 2007)), using a neural network

as a metric proved itself to be a viable and efficient alternative, as shown by the DC-GAN

(Radford et al., 2015).

The Generative Adversarial Network (GAN) setting relies on two main blocks: the gener-

ator G and the discriminator D. The architecture is depicted on Fig. 3.3. The discriminator

has to distinguish true data from fake data coming from the generator along a binary clas-

sification scheme, and it is trained to do so during the learning process. On the opposite,

the generator has to generate data from noise to fool the generator. In other words, its loss

function corresponds to the opposite of the generator loss on fake data. Therefore, both the

generator and the discriminator evolve concurrently during the learning process, which might

lead to some instability. Considering the finite and real data x = {xi}ni=1 and noise variables

z = {zi}ni=1, the discriminator D and the generator G respective losses are the following:

LD =
1

n

n∑

i=1

[logD(xi) + log(1−D(G(zi))) , (3.27)

LG =
1

n

n∑

i=1

log (1−D(G(zi))) . (3.28)

While the GAN is quite efficient, it presents some issues:
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Noise z ∼ Pz

Generated Data G(z) ∼ Pg

True Data x ∼ Pr

True

False

Discriminator DGenerator G

Figure 3.3: Architecture of a Generative Adversarial Network

• The GAN architecture never converges: as the generator gets better, the discriminator

has better samples to train itself, and so on.

• The learning process can fail when the discriminator gets too successful as its gradient

vanishes, preventing the generator from improving itself. This phenomenon is known

as mode-collapse.

• Mode-dropping: The generator has no real incentive to reproduce all the distribution

of the data; it can manage to generate only some limited variety of samples.

• The architecture is highly sensitive to hyper-parameter settings.

3.4.2 Approximations of f-divergences using GAN

The f -divergence framework, introduced by Nguyen et al. (2010) defines the family of f -

divergence between two distributions P and Q as:

Df (P||Q) =

∫

X
q(x)f

(
p(x)

q(x)

)
dx, (3.29)

with X being the domain of x. They can be seen as a difference measure between distributions;

examples of popular f -divergences are the Kullback-Leibler Divergence (DKL), or the Jensen-

Shannon Divergence (DJS). In this section, the estimation of f -divergences with the GAN

architecture will be explained.

Estimation of the Jensen-Shannon Divergence In the traditional GAN setting, con-

sidering the optimal discriminator G∗ for any generator D, Goodfellow et al. (2014) shows

that the discriminator estimates the Jensen-Shannon Divergence (DJS) up to a constant
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between the real and generated data distributions Pr and Pg:

DJS =
1

2
DKL

(
Pr

∣∣∣∣
∣∣∣∣
Pr + Pg

2

)
+

1

2
DKL

(
Pg

∣∣∣∣
∣∣∣∣
Pr + Pg

2

)

=
1

2

(
log 2 + Ex∼Pr

[
Pr(x) log

Pr(x)

Pg(x) + Pr(x)

])

+
1

2

(
log 2 + Ex∼Pg

[
Pr(x) log

Pg(x)

Pg(x) + Pr(x)

])

= log 2 +
1

2

(
Ex∼Pr [logD∗(x)] + Ex∼Pg [logD∗(x)]

)

= log 2 +
1

2
(Ex∼Pr [logD∗(x)] + Ez∼Pz [logD∗(G(z))])

= log 2 +
1

2
(LD) ,

(3.30)

with Pz being the noise distribution.

f- GAN Considering two distributions P and Q defined over Rd and letting T denote a

set of functions defined over Rd, Nguyen et al. (2010) establishes the following bound:

DKL[P ‖Q] ≥ sup
T∈T

Ex∼P [T (x)]− Ex∼Q[eT (x)−1], (3.31)

with a tight bound for sufficiently large families T .

The idea proposed by Nowozin et al. (2016) named f-gan is then to choose T to be the

family of functions Tω : Rd → R parameterized by a deep neural network with parameter

ω ∈ Ω, and proposes new activation functions to extend the GAN framework to estimate other

f -divergences. These activation functions are resumed in Table 3.1. These various output

Table 3.1: Recommended final layer activation functions and critical variational function level defined

by f ′(1). The critical value f ′(1) can be interpreted as a classification threshold applied to T (x) to

distinguish between true and generated samples. Table taken from Nowozin et al. (2016).

Name Output activation gf domf∗ Conjugate f∗(t) f ′(1)

Kullback-Leibler (KL) v R exp(t− 1) 1

Reverse KL − exp(−v) R− −1− log(−t) −1

Pearson χ2 v R 1
4 t

2 + t 0

Squared Hellinger 1− exp(−v) t < 1 t
1−t 0

Jensen-Shannon log(2)− log(1 + exp(−v)) t < log(2) − log(2− exp(t)) 0

GAN − log(1 + exp(−v)) R− − log(1− exp(t)) − log(2)

activations allow the GAN framework to estimate traditional divergences; the discrimina-

tor of the Structural Agnostic Model (Chapter 5) approaches the reverse Kullback-Leibler

divergence in order to compare the quality of the generated data and the true data.
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Partial conclusion

The popularity of neural networks compared to traditional learning machines comes from

their adaptability: they can be easily customized, as long as the operators used are differ-

entiable (Section 3.1, 3.2). Therefore, many caveats have been circumvented with particular

architectures or operators (Section 3.3), such as Batchnorm, Adam, and so on. Moreover,

their architecture allows for portability for Graphical Processing Units (GPUs) and enables

the efficient processing of significant amounts of data. A useful particularity of neural net-

works that we will leverage throughout this thesis is the simple control of the complexity of

the neural networks: the number of hidden units and hidden layers is a direct proxy for the

complexity of the functions.

Adversarial neural networks (Section 3.4) represent a new paradigm, in which the com-

plex metric of success if replaced by a neural network; these two neural network train in

tandem, in an adversarial game. This architecture brings not only better performance, but

also computational efficiency (generally linear in the number of examples compared to other

metrics such as MMD).



Chapter 4

Generative neural networks for

score-based methods

This chapter describes the first contribution of the thesis, the Causal Generative Neural Net-

works (CGNN), published as a chapter in Goudet et al. (2018) (equal contribution). CGNN

leverages the power of neural networks to learn a generative model of the joint distribution of

the observed variables, by minimizing the Maximum Mean Discrepancy between generated

and observed data. An approximate learning criterion is proposed to scale the computational

cost of the approach to linear complexity in the number of observations. The performance of

CGNN is studied throughout three experiments. First, CGNN is applied to cause-effect infer-

ence, where the task is to identify the best causal hypothesis out of “X → Y ” and “Y → X”.

Secondly, CGNN is applied to the problem of identifying v-structures and conditional in-

dependences. Third, CGNN is applied to multivariate functional causal modeling: given a

skeleton describing the direct dependencies in a set of random variables X = [X1, . . . , Xd],

CGNN orients the edges in the skeleton to uncover the directed acyclic causal graph describ-

ing the causal structure of the random variables. On all three tasks, CGNN is extensively

assessed on both artificial and real-world data, comparing favorably to the state-of-the-art.

Finally, CGNN is extended to handle the case of confounders, where latent variables are

involved in the overall causal model.

4.1 Modeling continuous functional causal models of a given

structure with CGNN

This section first presents the modeling of continuous Functional Causal Models (FCMs)1

with generative neural networks when the causal structure is given a priori,

We first show that there exists a (non necessarily unique) continuous Functional Causal

1Sometimes also referred to as Structural Equation Models or SEMs
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Model (G, f, E) such that the associated data generative process fits the distribution P of the

observational data.

Theorem 2. Existence of continuous causal mechanisms (Hyvärinen and Pajunen,

1999; Zhang et al., 2015a; Goudet et al., 2018) Let X = [X1, . . . , Xd] denote a set of

continuous random variables with joint distribution P , and further assume that the joint

density function h of P is continuous and strictly positive on a compact and convex subset of

Rd, and zero elsewhere. Letting G be a DAG such that P can be factorized along G,

P (X) =
∏

i

P (Xi|XPa(i;G)),

there exists f = (f1, . . . , fd) with fi a continuous function with compact support in R|Pa(i;G)|×
[0, 1] such that P (X) equals the generative model defined from FCM (G, f, E), with E = U [0, 1]

the uniform distribution on [0, 1].

Proof. In Appendix 4.8.1

In order to model such continuous FCM (G, f, E) on d random variables X = [X1, . . . , Xd],

we introduce the CGNN (Causal Generative Neural Network) depicted on Figure 4.1.

Definition 1. CGNN definition. A CGNN over d variables [X̂1, . . . , X̂d] is a triplet CĜ,f̂ =

(Ĝ, f̂ , E) where:

1. Ĝ is a Directed Acyclic Graph (DAG), the nodes of which are the variables X1, . . . , Xd,

and such that there exists an edge Xi → Xj iff Xi ∈ Pa(Xj), the set of parents of Xj .

2. For i ∈ J1, dK, causal mechanism f̂i is a 1-hidden layer regression neural network with

nh hidden neurons:

X̂i = f̂i(X̂Pa(i;Ĝ)
, Ei) =

nh∑

k=1

w̄ikσ


 ∑

j∈Pa(i;G)

ŵijkX̂j + wikEi + bik


+ b̄i, (4.1)

with nh ∈ N∗ the number of hidden units, w̄ik, ŵ
i
jk, w

i
k, b

i
k, b̄

i ∈ R the weights of the

neural network, and σ a continuous activation function .

3. Each noise variable Ei is independent of the cause Xi. Furthermore, all noise variables

are mutually independent and drawn after same distribution E .

It is clear from its definition that a CGNN defines a continuous FCM.

4.1.1 Generative model and interventions

A CGNN CĜ,f̂ = (Ĝ, f̂ , E) is a generative model in the sense that any sample [e1, . . . , ed]

of the “noise” random vector E = [E1, . . . , Ed] can be used as “input” to the network to

generate a data sample [x̂1, . . . , x̂d] of the estimated distribution P̂ (X̂, X̂ ∈ Rd as follows:
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E1

X̂1 E3E2 E4
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X̂5
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f̂3 f̂4

f̂5





X̂1 = f̂1(E1)

X̂2 = f̂2(X̂1, E2)

X̂3 = f̂3(X̂1, E3)

X̂4 = f̂4(E4)

X̂5 = f̂5(X̂3, X̂4, E5)

Figure 4.1: Left: Causal Generative Neural Network over variables X̂ = (X̂1, . . . , X̂5). Right:

Corresponding Functional Causal Model equations.

1. Draw n i.i.d. samples {[e1, . . . , ed]} from the joint distribution of independent noise

variables E = [E1, . . . , Ed].

2. Generate n samples {[x̂1, . . . , x̂d]}, where each estimate sample x̂i of variable X̂i is

computed as X̂i = f̂i(X̂l, Ei), l ∈ Pa(Xi))

Notice that a CGNN generates a probability distribution P̂ which is Markov with respect

to Ĝ, as the graph Ĝ is acyclic and the noise variables Ei are mutually independent.

Importantly, CGNN provides the FCM (c.f. Chapter 2), an can estimate the effects of

policies through the graph.

4.2 Model evaluation

The goal is to associate to each candidate solution CĜ,f̂ = (Ĝ, f̂ , E) a score reflecting how well

this candidate solution describes the observational data. First we define the model scoring

function (Section 4.2.1), and then we show that this model scoring function allows us to build

a CGNN generating a distribution P̂ (X̂) that approximates P (X) with arbitrary accuracy

(Section 4.2.2).

4.2.1 Scoring metric

The score to be minimized ideally is the distance between the joint distribution P associated

with the ground truth FCM, and the joint distribution P̂ defined by the CGNN candidate

CĜ,f̂ = (Ĝ, f̂ , E). A tractable approximation thereof is given by the Maximum Mean Dis-

crepancy (MMD) (Gretton et al., 2007) between the n-sample observational data D, and an
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n′-sample D̂ sampled after P̂ 2. Overall, the CGNN CĜ,f̂ is trained by minimizing

S(CĜ,f̂ ,D) = M̂MDk(D, D̂) + λ|Ĝ|, (4.2)

with M̂MDk(D, D̂) defined as:

M̂MDk(D, D̂) =
1

n2

n∑

i,j=1

k(xi, xj) +
1

n2

n∑

i,j=1

k(x̂i, x̂j)−
2

n2

n∑

i,j=1

k(xi, x̂j), (4.3)

where kernel k usually is taken as the Gaussian kernel (k(x, x′) = exp(−γ‖x − x′‖22)). The

MMD statistic, with quadratic complexity in the sample size, has the good property that as

n goes to infinity, it goes to zero iff P = P̂ (Gretton et al., 2007). For scalability, a linear

approximation of the MMD statistics based on m random features (Lopez-Paz, 2016), called

M̂MD
m

k will also be used in the experiments with m = 100 (c.f. Section 3.2.1).

Due to the Gaussian kernel being differentiable, M̂MDk and M̂MD
m

k are differentiable,

and backpropagation can be used to learn the CGNN made of networks f̂i structured along

Ĝ.

In order to compare candidate solutions with different structures in a fair manner, the

evaluation score of Equation 4.2 is augmented with a penalization term λ|Ĝ|, with |Ĝ| the

number of edges in Ĝ. Penalization weight λ is a hyper-parameter of the approach.

4.2.2 Representational power of CGNN

Let D = {[x1,j , . . . , xd,j ]}nj=1 denote the data samples independently and identically dis-

tributed after the (unknown) joint distribution P (X = [X1, . . . , Xd]), also referred to as

observational data.

Under same conditions as in Theorem 2 (P (X) being decomposable along graph G, with

continuous and strictly positive joint density function on a compact in Rd and zero elsewhere),

there exists a CGNN (Ĝ, f̂ , E), that approximates P (X) with arbitrary accuracy:

Theorem 3. CGNN consistency lemma. For m ∈ [[1, d]], let Zm denote the set of

variables with topological order less than m and let dm be its size. For any dm-dimensional

vector of noise values e(m), let zm(e(m)) (resp. ẑm(e(m))) be the vector of values computed in

topological order from the FCM (G, f, E) (resp. the CGNN (G, f̂ , E)). For any ε > 0, there

exists a set of networks f̂ with architecture G such that

∀e(m), ‖zm(e(m))− ẑm(e(m))‖ < ε. (4.4)

Proof. In Appendix 4.8.2

Using this Theorem and the M̂MDk scoring criterion presented in Equation 4.3, it is

shown that the distribution P̂ of the CGNN can estimate the true observational distribution

2In this chapter, we will consider n = n′, for computational efficiency.
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of the (unknown) FCM up to an arbitrary precision, under the assumption of an infinite

observational sample:

Theorem 4. CGNN asymptotic consistency theorem. Let D be an infinite observa-

tional sample generated from (G, f, E). With the same notations as in Prop. 2, for every

sequence εt, such that εt > 0 and goes to zero when t→∞, there exists a set f̂t = (f̂ t1 . . . f̂
t
d)

such that M̂MDk between D and an infinite size sample D̂t generated from the CGNN (G, f̂t, E)

is less than εt.

Proof. In Appendix 4.8.3

Under these assumptions, as M̂MDk(D, D̂t)→ 0, as t→∞, it implies that the sequence

of generated P̂t converges in distribution toward the distribution P of the observed sample

(Gretton et al., 2007). This result highlights the generality of this approach as we can

model any kind of continuous FCM from observational data (assuming access to infinite

observational data). Our class of model is not restricted to simplistic assumptions on the

data generative process such as the additivity of the noise or linear causal mechanisms. But

this strength comes with a new challenge relative to identifiability of such CGNNs, since the

result of Theorem 4 holds for any DAG Ĝ such that P can be factorized along G and then

for any any DAG in the Markov equivalence class of G (under classical assumption of CMA,

CFA and CSA).

In particular in the pairwise setting, when only 2 variables X and Y are observed, the

joint distribution P (X,Y ) can be factorized in two Markov equivalent DAGs X → Y or

Y → X as P (X,Y ) = P (X)P (Y |X) and P (X,Y ) = P (Y )P (X|Y ). Then the CGNN can

reproduce equally well the observational distribution in both directions (under the assumption

of Theorem 2). We refer the reader to Zhang and Hyvärinen (2009) for more details on this

problem of identifiability in the bivariate case.

As shown in Section 4.3.3, the proposed approach enforces the discovery of causal models

in the Markov equivalence class. Within this class, the non-identifiability issue is empirically

mitigated by restricting the class of CGNNs considered, and specifically limiting the number

nh of hidden neurons in each causal mechanism (Eq. 4.1). Formally, we restrict ourselves to

the sub-class of CGNNs, noted CĜ,f̂nh
= (Ĝ, f̂nh , E) with exactly nh hidden neurons in each

f̂i mechanism. Accordingly, any candidate Ĝ with number of edges |Ĝ| involves the same

number of parameters: (2d+ |Ĝ|)× nh weights and d× (nh + 1) bias parameters3. As shown

experimentally in Section 4.5, this parameter nh is crucial as it governs the CGNN ability to

model the causal mechanisms: too small nh, and data patterns may be missed; too large nh,

and overly complicated causal mechanisms may be retained.

3Note that nh do not have to change depending of the number of the parents of the variable; the number of

parameters in the input layer of the neural network scale accordingly in a linear fashion: Card(Pa(i;G))× nh
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4.3 Model optimization

Model optimization consists in finding a (nearly) optimum solution (Ĝ, f̂) in the sense of the

score defined in the previous section. The so-called parametric optimization of the CGNN,

where structure estimate Ĝ is fixed and the goal is to find the best neural estimates f̂ condi-

tionally to Ĝ is tackled in Section 4.3.1. The non-parametric optimization, aimed at finding

the best structure estimate, is considered in Section 4.3.2. In Section 4.3.3, we present an

identifiability result for CGNN up to Markov equivalence classes.

4.3.1 Parametric (weight) optimization

Given the acyclic structure estimate Ĝ, the neural networks f̂1, . . . , f̂d of the CGNN are

learned end-to-end using backpropagation with Adam optimizer (Kingma and Ba, 2014) by

minimizing losses M̂MDk (Eq. 4.3, referred to as CGNN (M̂MDk)) or M̂MD
m

k (see Sec-

tion 3.2.1), CGNN (M̂MD
m

k ).

The procedure closely follows that of supervised continuous learning (regression), except

for the fact that the loss to be minimized is the MMD loss instead of the mean squared error.

A MMD loss is preferred to a generative adversarial network (GAN) setting because of the

stability required in the training: the final value of the loss is used as the score of the graph

candidate; the fluctuating training and value of the loss of a GAN makes it unfit for this kind

of score-based approach for causality.

Neural nets f̂i, i ∈ [[1, d]] are trained during ntrain epochs, where the noise samples,

independent and identically distributed, are drawn in each epoch. In the M̂MD
m

k variant,

the parameters of the random kernel are resampled from their respective distributions in

each training epoch. After training, the score is computed and averaged over neval estimated

samples of size n. Likewise, the noise samples are re-sampled anew for each evaluation sample.

The overall process with training and evaluation is repeated nbrun times to reduce stochastic

effects relative to random initialization of neural network weights and stochastic gradient

descent. The procedure is detailed in Algorithm 4.

4.3.2 Non-parametric (structure) optimization

The number of directed acyclic graphs Ĝ over d nodes is super-exponential in d, making

the non-parametric optimization of the CGNN structure an intractable computational and

statistical problem. Taking inspiration from Tsamardinos et al. (2006); Nandy et al. (2015),

we start from a graph skeleton recovered by other methods such as feature selection (Yamada

et al., 2014). We focus on optimizing the edge orientations. Letting L denote the number

of edges in the graph, it defines a combinatorial optimization problem of complexity O(2L)

(note however that not all orientations are admissible since the eventual oriented graph must

be a DAG).

The motivation for this approach is to decouple the edge selection task and the causal

modeling (edge orientation) tasks, and enable their independent assessment.



64 4.3. MODEL OPTIMIZATION

Algorithm 4: Evaluate candidate graph using generative neural networks

Data: Observational data X = X1, . . . , Xd sampled i.i.d. from P (X), candidate acyclic graph

Ĝ
Input: Number of hidden units nh; learning rate lr
Lt =0; for number of runs nbruns do

forall Xi ∈ X // Build a hierarchical neural network

do

Create a 1-hidden layer neural network f̂i with nh hidden units, 1 output neuron and

Card(Pa(Xi; Ĝ)) + 1 inputs

end

for number of train epochs ntrain // Training phase

do

for Xi in the topological order of Ĝ do

Compute X̂i = f̂i(P̂a(Xi, Ĝ), Ei), Ei ∼ N (0, 1)

end

X̂ = {X̂1, . . . X̂d}
Compute loss L = MMD(X, X̂)

Backpropagate the loss L in the neural network

Adjust the weights with the Adam Optimizer

end

for number of test epochs neval // Test phase

do

for Xi in the topological order of Ĝ do

Compute X̂i = f̂i(P̂a(Xi, Ĝ), Ei), Ei ∼ N (0, 1)

end

X̂ = {X̂1, . . . X̂d}
Lt ← Lt +MMD(X, X̂)

end

end

return Lt/(neval ∗ nbrun)

Any Xi−Xj edge in the graph skeleton stands for a direct dependency between variables

Xi and Xj . Given Causal Markov and Faithfulness assumptions, such a direct dependency

either reflects a direct causal relationship between the two variables (Xi → Xj orXi ← Xj), or

is due to the fact that Xi and Xj admit a latent (unknown) common cause (Xi ↔ Xj). Under

the assumption of causal sufficiency, the latter does not hold. Therefore the Xi − Xj link

is associated with a causal relationship in one or the other direction. The causal sufficiency

assumption will be relaxed in Section 4.7.

The edge orientation phase proceeds as follows:

• Each Xi−Xj edge is first considered in isolation, and its orientation is evaluated using

CGNN. Both score S(C
Xi→Xj ,f̂

,Dij) and S(C
Xj→Xi,f̂

,Dij) are computed, where Dij =

{[xi,l, xj,l]}nl=1. The best orientation corresponding to a minimum score is retained.
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After this step, an initial graph is built with complexity 2L with L the number of edges

in the skeleton graph.

• The initial graph is revised to remove all cycles. Starting from a set of random nodes4,

all paths are followed iteratively until all nodes are reached; an edge pointing toward

an already visited node and forming a cycle is reversed. The resulting DAG is used as

initial DAG for the structured optimization, below.

• The optimization of the DAG structure is achieved using a hill-climbing algorithm aimed

to optimize the global score S(CĜ,f̂ ,D). Iteratively, i) an edge Xi − Xj is uniformly

randomly selected in the current graph; ii) the graph obtained by reversing this edge is

considered (if it is still a DAG and has not been considered before) and the associated

global CGNN is retrained; iii) if this graph obtains a lower global score than the former

one, it becomes the current graph and the process is iterated until reaching a (local)

optimum. More sophisticated combinatorial optimization approaches, e.g. Tabu search,

will be considered in further work. In this work, hill-climbing is used for a proof of

concept of the proposed approach, achieving a decent trade-off between computational

time and accuracy.

At the end of the process each causal edge Xi → Xj in G is associated with a score,

measuring its contribution to the global score:

SXi→Xj = S(CĜ−{Xi→Xj},f̂ ,D)− S(CĜ,f̂ ,D). (4.5)

During the structure (non-parametric) optimization, the graph skeleton is fixed; no edge

is added or removed. The penalization term λ|Ĝ| entering in the score evaluation (eq. 4.2) can

thus be neglected at this stage and only the MMD-losses are used to compare two graphs. The

penalization term will be used in Section 4.7 to compare structures with different skeletons,

as the potential confounding factors will be dealt with by removing edges.

4.3.3 Identifiability of CGNN up to Markov equivalence classes

In the large sample limit of observational data, and assuming further that the generative

distribution belongs to the CGNN class CG,f , then there exists a DAG reaching an MMD

score of 0 in the Markov equivalence class of G:

Theorem 5. CGNN Markov-equivalent structure identifiability. Let X = [X1, . . . , Xd]

denote a set of continuous random variables with joint distribution P , generated by a CGNN

CG,f = (G, f, E) with G a directed acyclic graph. Let D be an infinite observational sample

generated from this CGNN. We assume that P is Markov and faithful to the graph G, and

that every pair of variables (Xi, Xj) that are d-connected in the graph are not independent.

4This initialization introduces stochasticity in the algorithm, but all CGNN instances should converge to

the same solution if given enough exploration.
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Algorithm 5: Causal Generative Network Algorithm

Data: Observational data X = X1, . . . , Xd sampled i.i.d. from P (X), graph skeleton Ḡ
Input: Number of hidden units nh; learning rate lr
Initialize empty graph G
forall Edge (Xi, Xj) in Ḡ // Pairwise orientation

do

// Evaluate Pairwise structures using Algorithm 4

if Evaluate(Xi → Xj) < Evaluate(Xi ← Xj) then

Add edge Xi → Xj to G
else

Add edge Xi ← Xj to G
end

end

S = Evaluate(G) // Using Algorithm 4

impr ← True // Search while structure improves

while impr==True // Structure search

do

impr ← False

forall Edge Xi → Xj in G do

if Reversing Xi → Xj in G does not create any cycle then

Let G′ equal to G except for Xi ← Xj

S′ = Evaluate(G′) // Algorithm 4

if S > S′ then

S ← S′

G ← G′
impr ← True

end

end

end

end

return G

We note D̂ an infinite sample generated by a candidate CGNN, CĜ,f̂ = (Ĝ, f̂ , E). Then,

(i) If Ĝ = G and f̂ = f , then M̂MDk(D, D̂) = 0.

(ii) For any graph Ĝ characterized by the same adjacencies but not belonging to the Markov

equivalence class of G, for all f̂ , M̂MDk(D, D̂) 6= 0.

Proof. In Appendix 4.8.4

This result does not establish the CGNN identifiability within the Markov class of equiva-

lence. Although, based on the results of the experimental Section 4.4, we believe that stronger
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identifiability results could be derived, at this stage, we only have formal proof of identifia-

bility up to a Markov equivalence class. Stronger results imply making assumptions about

data generating model class and capacity of hypothesis class.5

4.4 Experimental setting

This section discusses the experimental setting in order to compare CGNN with other state

of the art algorithms. Thereafter, the results obtained in the bivariate case, where only asym-

metries in the joint distribution can be used to infer the causal relationship, are discussed.

The variable triplet case, where conditional independence can be used to uncover causal ori-

entations, and the general case of d > 2 variables are then considered. All computational

times are measured on Intel Xeon 2.7Ghz (CPU) or on Nvidia GTX 1080Ti graphics card

(GPU).

The CGNN architecture is a 1-hidden layer network with ReLU activation function. The

multi-scale Gaussian kernel used in the MMD scores has bandwidth γ ranging in {0.005, 0.05,

0.25,0.5, 1,5,50}. The number nbrun used to average the score is set to 32 for CGNN-MMD

(respectively 64 for CGNN-Fourier). In this section the distribution E of the noise variables

is set to N (0, 1). Table 4.1 summarizes all the hyperparameters chosen for CGNN.

Table 4.1: Values of the CGNN hyper-parameters

Hyper-parameter Symbol Value

MMD bandwidth γ {0.005, 0.05, 0.25,0.5, 1,5,50}
Number of bootstraps nbrun 32

Distribution of noise E N (0, 1)

Initial learning rate lr 0.01

Number of hidden units nh 20

Calibration. The number nh of neurons in the hidden layer, controlling the identifiability

of the model, is the most sensitive hyper-parameter of the presented approach. Calibration

experiments are conducted to adjust its value, as follows, using a calibration task. A 1,500

sample dataset is generated from the linear structural equation model with additive uniform

noise Y = X + U(0, 0.5), X ∼ U([−2, 2]) (Fig. 4.2). Both CGNNs associated to X → Y

and Y → X are trained until reaching convergence (nepoch = 1, 000) using Adam (Kingma

and Ba, 2014) with an initial learning rate of 0.01 and evaluated over neval = 500 generated

samples. The distributions generated from both generative models are displayed on Fig. 4.2

for nh = 2, 5, 20, 100. The associated scores (averaged on 32 runs) are displayed on Fig. 4.3a,

confirming that the model space must be restricted for the sake of identifiability (cf. Section

5In some specific cases, such as in the bivariate linear FCM with Gaussian noise and Gaussian input, even

by restricting the class of functions considered, the DAG cannot be identified from purely observational data

(Mooij et al., 2016), and additional assumptions will be needed.
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4.3.3 above). By conducting additional experiments to other cause-effect pairs, the value of

nh is set to 20 to attain optimal results; this value is dependent on the type of mechanism

underlying the data and is not sensitive to the dimensionality of the input. This property

comes from the fact that each FCM is treated and modelled separately.

Figure 4.2: Calibration data. Leftmost: Data samples. Columns 2 to 5: Estimate samples

generated from CGNN with direction X → Y (top row) and Y → X (bottom row) for number

of hidden neurons nh = 2, 5, 20, 100.
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(a) CX→Y , CY→X with various nh values.

(b) Scores CX→Y and CY→X with their

difference. ??? denotes the significance

at the 0.001 threshold with the t-test.

nh CX→Y CY→X Diff.

2 32.0 43.9 11.9???

5 29.6 35.2 5.6???

10 25.9 32.5 6.6???

20 25.7 28.3 2.6???

30 24.4 26.8 2.4???

40 25.6 25.6 0.7

50 25.0 25.0 0.6

100 24.9 24.4 −0.5

Figure 4.3: CGNN sensitivity w.r.t. the number of hidden neurons nh: Scores associated to

both causal models (average and standard deviation over 32 runs).

Metrics of success All predictions of algorithms will be compared to the ground truth

using three metrics:

• Area Under the Precision Recall curve (AUPR): This metric account for the

trade-off between the precision, the recall and the confidence score of the algorithms.

All algorithms are bootstrapped and the confidence score of an edge corresponds to the
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ratio between the number of runs in which the edge is present in the prediction and the

total number of runs.

• Structural Hamming Distance (SHD) corresponds to the traditional metric used

in graph evaluation: it sums up to the number of edges that differ from the ground

truth.

• Structural Intervention Distance: refers to an adaptation of the SHD metric for

causal graphs (Peters and Bühlmann, 2013). It counts the number of different causal

paths between connected variables.

Finally, a t-test is used to assess whether the score difference between the best methods is

statistically significant with a p-value below 0.001.

Pairwise causal discovery baselines CGNN is assessed comparatively in the pairwise

setting to the following algorithms:6 i) ANM (Mooij et al., 2016) with Gaussian process

regression and HSIC independence test of the residual; ii) a pairwise version of LiNGAM

(Shimizu et al., 2006) relying on Independent Component Analysis to identify the linear

relations between variables; iii) IGCI (Daniusis et al., 2012) with entropy estimator and

Gaussian reference measure; iv) the post-nonlinear model (PNL) with HSIC test (Zhang and

Hyvärinen, 2009); v) GPI-MML (Stegle et al., 2010); where the Gaussian process regression

with higher marginal likelihood is selected as causal direction; vi) CDS, retaining the causal

orientation with lowest variance of the conditional probability distribution; vii) Jarfo (Fonol-

losa, 2016), using a random forest causal classifier trained from the ChaLearn Cause-effect

pairs on top of 150 features including ANM, IGCI, CDS, LiNGAM, regressions, HSIC tests.

Details of the approaches are given in Section 2.5.3.

Multivariate causal discovery baselines We compare CGNN to the PC algorithm

(Spirtes et al., 1993), the score-based methods GES (Chickering, 2002), LiNGAM (Shimizu

et al., 2006), causal additive model (CAM) (Bühlmann et al., 2014) and with the pairwise

methods ANM and Jarfo. For PC, we employ the better-performing, order-independent

version of the PC algorithm proposed by (Colombo and Maathuis, 2014). PC needs the

specification of a conditional independence test. We compare PC-Gaussian, which employs a

Gaussian conditional independence test on Fisher z-transformations, and PC-HSIC (Zhang

et al., 2012), which uses the HSIC conditional independence test with the Gamma approxi-

mation (Gretton et al., 2005b). PC and GES are implemented in the pcalg package (Kalisch

et al., 2012). All hyperparameters are set on the training graphs in order to maximize the

Area Under the Precision/Recall score (AUPR). For the Gaussian conditional independence

test and the HSIC conditional independence test, the significance level achieving best result

on the training set are respectively 0.1 and 0.05 obtained by cross-validation. For GES, the

6Using the R program available at https://github.com/ssamot/causality for ANM, IGCI, PNL, GPI

and LiNGAM.

https://github.com/ssamot/causality
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penalization parameter is set to 3 on the training set. For CAM, the cutoff value is set to

0.001.

4.5 Experimental validation on toy examples

This section reports on the empirical validation of CGNNs compared to state-of-the-art algo-

rithms, under the “no confounding assumption”, following the experimental setting defined

in Section 4.4. First, we check experimentally in Section 4.5.1 that CGNNs can handle the

bivariate case, and hence do not need to rely on conditional independence to recover the

causal direction in identifiable cases. We then check in Section 4.5.2 that CGNNs can iden-

tify v-structures when only conditional independence can be relied upon to detect the causal

structure because linear Gaussian models are used (a known case in which the bivariate case

is not identifiable).

4.5.1 Learning bivariate causal structures

As said, under the causal sufficiency assumption, a dependency between variables X and Y

exists iff either X causes Y (Y = f(X,E)) or Y causes X (X = f(Y,E)). The identification

of a Bivariate Structural Causal Model is based on comparing the model scores (Section 4.2)

attached to both CGNNs.

Benchmarks. Five datasets with continuous variables are considered:7

• CE-Cha: 300 continuous variable pairs from the cause effect pair challenge (Guyon, 2013),

restricted to pairs with label +1 (X → Y ) and −1 (Y → X).

• CE-Net: 300 artificial pairs generated with a neural network initialized with random

weights and random distribution for the cause (exponential, gamma, lognormal, laplace...).

• CE-Gauss: 300 artificial pairs without confounder sampled with the generator of Mooij

et al. (2016): Y = fY (X,EY ) and X = fX(EX) with EX ∼ pEX
and EY ∼ pEY

. pEX
and

pEY
are randomly generated Gaussian mixture distributions. Causal mechanism fX and fY

are randomly generated Gaussian processes.

• CE-Multi: 300 artificial pairs generated with linear and polynomial mechanisms. The

effect variables are built with post additive noise setting (Y = f(X)+E), post multiplicative

noise (Y = f(X) × E), pre-additive noise (Y = f(X + E)) or pre-multiplicative noise (Y =

f(X × E)).

• CE-Tueb: 99 real-world cause-effect pairs from the Tuebingen cause-effect pairs dataset,

version August 2016 (Mooij et al., 2016). This version of this dataset is taken from 37 different

data sets coming from various domain: climate, census, medicine data.

7The first four datasets are available at http://dx.doi.org/10.7910/DVN/3757KX. The Tuebingen cause-

effect pairs dataset is available at https://webdav.tuebingen.mpg.de/cause-effect/

http://dx.doi.org/10.7910/DVN/3757KX
https://webdav.tuebingen.mpg.de/cause-effect/
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For all variable pairs, the size n of the data sample is set to 1,500 for the sake of an

acceptable overall computational load8.

Hyper-parameter selection. For a fair comparison, a leave-one-dataset-out procedure is

used to select the key best hyper-parameter for each algorithm. To avoid computational explo-

sion, a single hyper-parameter per algorithm is adjusted in this way; other hyper-parameters

are set to their default value.

For CGNN, nh ranges over {5, . . . , 100}. The leave-one-dataset-out procedure sets this

hyper-parameter nh to values between 20 and 40 for the different datasets. For ANM

and the bivariate fit, the kernel parameter for the Gaussian process regression ranges over

{0.01, . . . , 10}. For PNL, the threshold parameter alpha for the HSIC independence test

ranges over {0.0005, . . . , 0.5}. For CDS, the ffactor involved in the discretization step ranges

over [[1, 10]]. For GPI-MML, its many parameters are set to their default value as none of

them appears to be more critical than others. Jarfo is trained from 4,000 variable pairs

datasets with same generator used for CE-Cha-train, CE-Net-train, CE-Gauss-train

and CE-Multi-train; the causal classifier is trained on all datasets except the test set.

Empirical results. Figure 4.4 reports the area under the precision/recall curve for each

benchmark and all algorithms.
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Figure 4.4: Bivariate Causal Modelling: Area under the precision/recall curve for the five

datasets (the higher the better). A full table of the scores is given in Appendix 4.4. CGNN

manages to obtain good scores for all datasets, and attain best performance on the polynomial

and Tuebingen datasets.

Methods based on simple regression like the bivariate fit and Lingam are outperformed

as they underfit the data generative process. CDS and IGCI obtain very good results on

some datasets. Typically, IGCI takes advantage of some specific features of the dataset, (e.g.

the cause entropy being lower than the effect entropy in CE-Multi), but remains at chance

level otherwise. ANM-HSIC yields good results when the additive assumption holds (e.g.

on CE-Gauss), but fails otherwise. PNL, less restrictive than ANM, yields overall good

results compared to the former methods. Jarfo, a voting procedure, can in principle yield the

8In the case of having datasets larger than 1,500, a batch-training with batch size of 1500 is set.
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best of the above methods and does obtain good results on artificial data. However, it does

not perform well on the real dataset CE-Tueb; this counter-performance is blamed on the

differences between all five benchmark distributions and the lack of generalization / transfer

learning.

Lastly, generative methods GPI and CGNN (M̂MDk) perform well on most datasets,

including the real-world cause-effect pairs CE-Tüb, in counterpart for a higher computational

cost (resp. 32 min on CPU for GPI and 24 min on GPU for CGNN). Using the linear MMD

approximation (Lopez-Paz, 2016), CGNN (M̂MD
m

k as explained in Section 3.2.1) reduces

the cost by a factor of 5 without hindering the performance.

Overall, CGNN demonstrates competitive performance on the cause-effect inference prob-

lem, where it is necessary to discover distributional asymmetries.

4.5.2 Identifying v-structures

A second series of experiments is conducted to investigate the method performances on vari-

able triplets, where multivariate effects and conditional variable independence must be taken

into account to identify the Markov equivalence class of a DAG. The considered setting is

that of variable triplets (A,B,C) in the linear mechanisms and Gaussian input/noise case,

where asymmetries between cause and effect cannot be exploited (Shimizu et al., 2006) and

conditional independence tests are required. In particular strict pairwise methods can hardly

be used due to un-identifiability (as each pair involves a linear mechanism with Gaussian

input and additive Gaussian noise) (Hoyer et al., 2009).

With no loss of generality, the graph skeleton involving variables (A,B,C) is A−B −C.

All three causal models (up to variable renaming) based on this skeleton are used to generate

500-sample datasets, where the random noise variables are independent centered Gaussian

variables.

X Y Z

(a) Chain structure





X = EX

Y = X + EY

Z = Y + EZ

X Y Z

(c) reversed-V structure





Y = EY

X = Y + EX

Z = Y + EZ

X Y Z

(d) V-structure





X = EX

Z = EZ

Y = X + Z + EY

Figure 4.5: Linear Gaussian datasets generated from the three DAG configurations with

skeleton A−B − C

Given skeleton X−Y −Z, each dataset is used to model the possible four CGNN structures

(Fig. 4.5, with generative SEMs):
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• Chain structures XY Z (X = f1(E1), Y = f2(X,E2) , Z = f3(Y,E3) and ZY X (Z =

f1(E1), Y = f2(Z,E2) , X = f3(Y,E3))

• V structure: X = f1(E1), Z = f2(E2) , Y = f3(X,Z,E3)

• reversed V structure: Y = f1(E1), X = f2(Y,E2) , Z = f3(Y,E3)

Let CXY Z , CZY X , CV−structure and CreversedV denote the scores of the CGNN models

respectively attached to these structures. The scores computed on all three datasets are dis-

played in Table 4.2 (average over 64 runs; the standard deviation is indicated in parenthesis).

non V-structures V structure

Score Chain str. Reversed-V str. V-structure

CXY Z 0.122 (0.009) 0.124 (0.007) 0.172 (0.005)

CZY X 0.121 (0.006) 0.127 (0.008) 0.171 (0.004)

CreversedV 0.122 (0.007) 0.125 (0.006) 0.172 (0.004)

CV structure 0.202 (0.004) 0.180 (0.005) 0.127 (0.005)

Table 4.2: CGNN-MMD scores for all models on all datasets. Smaller scores indicate a better

match. CGNN correctly identifies V-structure vs. other structures.

CGNN scores support a clear and significant discrimination between the V-structure and

all other structures (noting that the other structures are Markov equivalent and thus can

hardly be distinguished).

This second series of experiments thus shows that CGNN can effectively detect, and take

advantage of, conditional independence between variables.

4.6 Experiments on multivariate causal modeling

This section reports on further experiments under the “no confounding assumption”, this

time investigating larger multivariate problems. Let X = [X1, ..., Xd] be a set of continuous

variables, satisfying the Causal Markov, faithfulness and causal sufficiency assumptions. In

the following, the experiments provide algorithms with the true graph skeleton, so their ability

to orient edges is compared in a fair way with state-of-the-art algorithms. This allows us to

separate the task of orienting the graph from that of uncovering the skeleton.

4.6.1 Results on artificial graphs with additive and multiplicative noises

We draw 500 samples from 20 training artificial causal graphs and 20 test artificial causal

graphs of 20 variables. Each variable has a number of parents uniformly drawn in [[0, 5]]; fis

are randomly generated polynomials involving additive/multiplicative noise.9

9The data generator is available at https://github.com/GoudetOlivier/CGNN. The datasets considered

are available at http://dx.doi.org/10.7910/DVN/UZMB69.

https://github.com/GoudetOlivier/CGNN
http://dx.doi.org/10.7910/DVN/UZMB69
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Figure 4.6 (left) displays the performance on the test set of artificial graphs of all algo-

rithms obtained by starting from the exact skeleton and measured from the AUPR (Area

Under the Precision/Recall curve), the Structural Hamming Distance (SHD, the number of

edge modifications to transform one graph into another) and the Structural Intervention Dis-

tance (SID, the number of equivalent two-variable interventions between two graphs) Peters

and Bühlmann (2013).
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Figure 4.6: Average (std. dev.) AUPR results for the orientation of 20 artificial graphs

given true skeleton (left) and artificial graphs given skeleton with 20% error (right). A full

table of the scores, including the metrics Structural Hamming Distance (SHD) and Structural

Intervention (SID) (Peters and Bühlmann, 2013) is given in Section 4.8.5.

True skeleton initialization CGNN obtains significant better results in terms of SHD

and SID compared to the other algorithms when the algorithm starts with the skeleton of

the true graph. An example of result is displayed on Figure 4.7; there are 3 mistakes on this

graph (red edges) (in lines with an SHD on average of 2.5). Constraints based method PC

with powerful HSIC conditional independence test is the second best performing method. It

highlights the fact that when the skeleton is known, exploiting the structure of the graph

leads to good results compared to pairwise methods using only local information. Notably,

as seen on Figure 4.7, this type of DAG has a lot of v-structure, as many nodes have more

than one parent in the graph, but this is not always the case as shown in the next subsection.

Overall CGNN and PC-HSIC are the most computationally expensive methods, taking an

average of 4 hours on GPU and 15 hours on CPU, respectively.

Initialization with a skeleton containing errors The robustness of the approach is

validated by randomly perturbing 20% edges in the graph skeletons provided to all algorithms

(introducing about 10 false edges over 50 in each skeleton). As shown on Table 4 (right) in

Appendix, and as could be expected, the scores of all algorithms are lower when spurious

edges are introduced. Among the least robust methods are constraint-based methods; a

tentative explanation is that they heavily rely on the graph structure to orient edges. By

comparison pairwise methods are more robust because each edge is oriented separately. As



4.6. EXPERIMENTS ON MULTIVARIATE CAUSAL MODELING 75

Figure 4.7: Orientation by CGNN of artificial graph with 20 nodes. The color indicates

whether the edge is true (green) or false (red). 3 edges are red and 42 are green. The color

brightness refers to the confidence of the algorithm.

CGNN leverages conditional independence but also distributional asymmetry like pairwise

methods, it obtains overall more robust results when there are errors in the skeleton compared

to PC-HSIC. However the best performance in terms of SHD score is obtained by CAM, on

the skeletons with 20% error. This is due to the exclusive last edge pruning step of CAM,

which removes spurious links in the skeleton. CGNN obtains overall good results on these

artificial datasets. To explore the scalability of the approach, 5 artificial graphs with 100

variables have been considered, achieving an AUPRC of 85.5± 4, in 30 hours of computation

on four NVIDIA 1080Ti GPUs.

4.6.2 Results on synthetic biological data

We now evaluate CGNN on biological networks data. First we apply it on simulated gene

expression data and then on real protein network.

Syntren artificial simulator First we apply CGNN on SynTREN (Van den Bulcke et al.,

2006) from sub-networks of E. coli (Shen-Orr et al., 2002)10. SynTREN creates synthetic

transcriptional regulatory networks and produces simulated gene expression data that ap-

proximates experimental data. Interaction kinetics are modeled by complex mechanisms

based on Michaelis-Menten and Hill kinetics (Mendes et al., 2003).

With Syntren, we simulate 20 subnetworks of 20 nodes and 5 subnetworks with 50 nodes.

For the sake of reproducibility, we use the random seeds of 0, 1 . . . 19 and 0, 1 . . . 4 for each

graph generation with respectively 20 nodes and 50 nodes. The default Syntren parameters

are used: a probability of 0.3 for complex 2-regulator interactions and a value of 0.1 for

Biological noise, experimental noise and Noise on correlated inputs. For each graph, Syntren

give us expression datasets with 500 samples.

10available publicly as a R package named GRNdata.
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Figure 4.8: Average (std. dev.) AUPR results for the orientation of 20 artificial graphs gen-

erated with the SynTReN simulator with 20 nodes (left), 50 nodes (middle), and real protein

network given true skeleton (right). A full table of the scores, including the metrics Structural

Hamming Distance (SHD) and Structural Intervention (SID) (Peters and Bühlmann, 2013)

is included in Section 4.8.5.

Figure 4.8 (left and middle) and Table 4.6 in Section 4.8.5 display the performance of

all algorithms obtained by starting from the exact skeleton of the causal graph with same

hyper-parameters as in the previous subsection11.

Constraint based methods obtain low score on this type of graph dataset. It may be

explained by the type of structure involved. Indeed as seen of Figure 4.9, there are very

few v-structures in this type of network, making impossible the orientation of an important

number of edges by using only conditional independence tests. Overall the methods CAM and

CGNN that take into account of both distributional asymmetry and multivariate interactions,

get the best scores. CGNN obtain the best results in AUPR, SHD and SID for graph with 20

nodes and 50 nodes, showing that this method can be used to infer networks having complex

distribution, complex causal mechanisms and interactions. The Figure 4.9 shows the resulting

graph obtained with CGNN. Edges with good orientation are displayed in green and edge

with false orientation in red.

4.6.3 Results on biological real-world data

CGNN is applied to the protein network problem (Sachs et al., 2005), using the Anti-

CD3/CD28 dataset with 853 observational data points corresponding to general perturba-

tions without specific interventions. All algorithms were given the skeleton of the causal

graph (Sachs et al., 2005, Fig. 2) with same hyper-parameters as in the previous subsection.

The results are measured after a 10-fold cross-validation (Detailed results in Appendix of this

chapter, Table 6).

Constraint-based algorithms obtain surprisingly low scores, because they cannot identify

many V-structures in this graph. Notably conditional independence tests for the adjacent

11Except for PC-HSIC, that had to be stopped after 50 hours of running time for a single execution
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Figure 4.9: Orientation by CGNN of E. coli subnetwork with 50 nodes and corresponding to

Syntren simulation with random seed 0. The color indicates whether the edge is true (green)

or false (red). The color brightness refers to the confidence of the algorithm.

tuples of nodes pip3 -akt-pka, pka-pmek -pkc, pka-raf -pkc and do not yield strong evidences

for V-structure. Therefore methods based on distributional asymmetry between cause and

effect seem better suited to this dataset. CGNN obtains good results compared to the other

algorithms. Notably, Figure 4.10 shows that CGNN, like CAM, is able to recover the strong

signal transduction pathway raf→mek→erk reported in Sachs et al. (2005) and corresponding

to clear direct enzyme-substrate causal effect. CGNN gives important scores for edges with

good orientation (green line), and low scores (thinnest edges) to the wrong edges (red line),

suggesting that false causal discoveries may be controlled by using the confidence scores

defined in Eq. 4.5.

4.7 Towards predicting confounding effects

In this subsection we propose an extension of our algorithm relaxing the causal sufficiency

assumption. We are still assuming the Causal Markov and faithfulness assumptions, thus

three options have to be considered for each edge (Xi, Xj) of the skeleton representing a

direct dependency: Xi → Xj , Xj → Xi and Xi ↔ Xj (both variables are consequences of

common hidden variables). This extension is not applied in the non-confounding case as it

is more computationally expensive than the regular CGNN.
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Figure 4.10: Causal protein network
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4.7.1 Principle

Hidden common causes are modeled through correlated random noise. Formally, an additional

noise variable Ei,j is associated to each Xi −Xj edge in the graph skeleton.

We use such new models with correlated noise to study the robustness of our graph

reconstruction algorithm to increasing violations of causal sufficiency, by occluding variables

from our datasets. For example, consider the FCM on X = [X1, . . . , X5] that was presented

on Figure 2.1. If variable X1 would be missing from data, the correlated noise E2,3 would be

responsible for the existence of a double headed arrow connection X2 ↔ X3 in the skeleton of

our new type of model. The resulting FCM is shown in Figure 4.11. Notice that direct causal

effects such as X3 → X5 or X4 → X5 may persist, even in presence of possible confounding

effects.

E2,3 E3E2 E4

f4

X4E5

E4,5f2 f3 E3,5

X3

f5

X5

X2





X2 = f2(E2, E2,3)

X3 = f3(E3, E2,3, E3,5)

X4 = f4(E4, E4,5)

X5 = f5(X3, X4, E5, E3,5, E4,5)

Figure 4.11: The Functional Causal Model (FCM) on X = [X1, . . . , X5] with the missing

variable X1

Formally, given a graph skeleton S, the FCM with correlated noise variables is defined as:

Xi ← fi(XPa(i;G), Ei, ENe(i;S)), (4.6)

where Ne(i;S) is the set of indices of all the variables adjacent to variable Xi in the

skeleton S.

One can notice that this model corresponds to the most general formulation of the FCM

with potential confounders for each pair of variables in a given skeleton (representing direct

dependencies) where each random variable Ei,j summarizes all the unknown influences of

(possibly multiple) hidden variables influencing the two variables Xi and Xj . In this setting,

we allow for direct causal interactions in addition to confounding effects.

Here we make a clear distinction between the directed acyclic graph denoted G and the

skeleton S. Indeed, due to the presence of confounding correlated noise, any edge in G can be

removed without altering S (by replacing an edge Xi−Xj with Xi ← Eij → Xj) if a common

noise can explain the dependencies between the variables. We use the same generative neural

network to model the new FCM presented in Equation 4.6. The difference is the new noise

variables having effect on pairs of variables simultaneously. However, since the correlated
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noise FCM is still defined over a directed acyclic graph G, the model can still be learned

end-to-end using backpropagation based on the CGNN loss.

All edges are evaluated with these correlated noises, the goal being to see whether intro-

ducing a correlated noise explains the dependence between the two variables Xi and Xj .

As mentioned before, the score used by CGNN is:

S(CĜ,f̂ ,D) = M̂MDk(D, D̂) + λ|Ĝ|, (4.7)

where |Ĝ| is the total number of edges in the DAG. In the graph search, for any given

edge, we compare the score associated to the graph considered with and without this edge,

by replacing it with connections to a correlated noise.12 If the contribution of this edge is

negligible compared to a given threshold lambda, the edge is considered as spurious.

The non-parametric optimization of the Ĝ structure is also achieved using a Hill-Climbing

algorithm; in each step an edge of S is randomly drawn and modified in Ĝ using one out of

the possible three operators: reverse the edge, add an edge and remove an edge. Other

algorithmic details are as in Section 4.3.2: the greedy search optimizes the penalized loss

function (Eq. 4.7). For CGNN, the hyperparameter λ is set to 5× 10−5 fitted on the training

graph dataset.

The algorithm stops when no improvement is obtained. Finally, each causal edge Xi → Xj

in the final graph G is associated with a score, measuring its contribution to the global score:13

SXi→Xj = S(CĜ−{Xi→Xj},f̂ ,D)− S(CĜ,f̂ ,D), (4.8)

4.7.2 Experimental validation

Benchmarks. The empirical validation of this extension of CGNN is conducted on same

benchmarks as in Section 4.6 (Gi, i ∈ [[2, 5]]), where 3 variables (causes for at least two other

variables in the graph) have been randomly removed.14 The true graph skeleton is augmented

with edge X−Y for all X, Y that are consequences of a same removed cause. All algorithms

are provided with the same graph skeleton for a fair comparison. The task is to both orient

the edges in the skeleton, and remove the spurious direct dependencies created by latent

causal variables.

Baselines. CGNN is compared with state of art methods: i) constraint-based RFCI (Colombo

et al., 2012), extending the PC method equipped with Gaussian conditional independence

test (RFCI-Gaussian) and the gamma HSIC conditional independence test (Gretton et al.,

2005b) (RFCI-HSIC). We use the order-independent constraint-based version proposed by

Colombo and Maathuis (2014) and the majority rules for the orientation of the edges. For

12The correlated noise is drawn from a Gaussian distribution, but given as input to both sides of the direct

edges; to allow for the neural network to explain the correlation with this common noise variable.
13 Edges finally not present in G are associated with a confidence score 0 .
14The datasets considered are available at http://dx.doi.org/10.7910/DVN/UZMB69

http://dx.doi.org/10.7910/DVN/UZMB69
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CGNN, we set the hyperparameter λ = 5× 10−5 fitted on the training graph dataset. Jarfo

is trained on the 16,200 pairs of the cause-effect pair challenge (Guyon, 2013, 2014) to detect

for each pair of variable if Xi → Yi, Yi → Xi or Xi ↔ Yi.

Table 4.3: AUPR (the higher the better), SHD and SID (the lower the better) on causal

discovery with confounders. Significantly better results(t-test with p-value p < 10−2) are

underlined.

method AUPR SHD SID

RFCI-Gaussian 0.22 (0.08) 21.9 (7.5) 174.9 (58.2)

RFCI-HSIC 0.41 (0.09) 17.1 (6.2) 124.6 (52.3)

Jarfo 0.54 (0.21) 20.1 (14.8) 98.2 (49.6)

CGNN (M̂MDk) 0.71 (0.13) 11.7 (5.5) 53.55 (48.1)

Results. Comparative performances are shown in Table 4.3, reporting the area under the

precision/recall curve. Overall, these results confirm the robustness of the CGNN proposed

approach w.r.t. confounders, and its competitiveness w.r.t. RFCI with powerful conditional

independence test (RFCI-HSIC). Interestingly, the effective causal relations between the vis-

ible variables are associated with a high score; spurious links due to hidden latent variables

get a low score or are removed.

Partial conclusion

This chapter introduced CGNN, a new framework and methodology for functional causal

model learning, leveraging the power and non-parametric flexibility of Generative Neural

Networks. CGNN provides good and consistent performance when starting the algorithm

with a true skeleton but also when starting with a perturbed skeleton. Once the model is

learned, the CGNNs present the advantage to be fully parametrized and may be used to

simulate interventions on one or more variables of the model and evaluate their impact on a

set of target variables. This usage is relevant in a wide variety of domains, typically among

medical and sociological domains.

CGNN seamlessly accommodates causal modeling in presence of confounders, and its

extensive empirical validation demonstrates its merits compared to the state of the art on

medium-size problems. We believe that our approach opens new avenues of research, both

from the point of view of leveraging the power of deep learning in causal discovery and from

the point of view of building deep networks with better structure interpretability.

The main limitation of CGNN is its computational cost, due to the quadratic complexity of

the CGNN learning criterion w.r.t. the data size, based on the Maximum Mean Discrepancy

between the generated and the observed data. A linear approximation thereof has been

proposed, with comparable empirical performances.
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The main perspective for further research aims at a better scalability of the approach

from medium to large problems. On the one hand, the computational scalability could

be tackled by using embedded framework for the structure optimization, inspired by Lasso

methods (Friedman et al., 2008), as studied in the next chapter.

4.8 Appendix

4.8.1 Proof of Theorem 2

Theorem 1. Let X = [X1, . . . , Xd] denote a set of continuous random variables with joint

distribution P , and further assume that the joint density function h of P is continuous and

strictly positive on a compact and convex subset of Rd, and zero elsewhere. Letting G be a

DAG such that P can be factorized along G,

P (X) =
∏

i

P (Xi|XPa(i;G))

there exists f = (f1, . . . , fd) with fi a continuous function with compact support in R|Pa(i;G)|×
[0, 1] such that P (X) equals the generative model defined from FCM (G, f, E), with E = U [0, 1]

the uniform distribution on [0, 1].

Proof. By induction on the topological order of G. Let Xi be such that |Pa(i;G)| = 0 and

consider the cumulative distribution Fi(xi) defined over the domain of Xi:

Fi(xi) = Pr(Xi < xi)

Fi is strictly monotonous as the joint density function is strictly positive therefore its inverse,

the quantile function Qi : [0, 1] 7→ dom(Xi) is defined and continuous. By construction,

Qi(ei) = F−1
i (ei) and setting Qi = fi yields the result.

Assume fi be defined for all variables Xi with topological order less than m. Let Xj with

topological order m and Z the vector of its parent variables.

For any noise vector e = (ei, i ∈ Pa(j;G)) let z = (xi, i ∈ Pa(j;G)) be the value vector

of variables in Z defined from e. The conditional cumulative distribution Fj(xj |Z = z) =

Pr(Xj < xj |Z = z) is strictly continuous and monotonous wrt xj , and can be inverted using

the same argument as above. Then we can define

fj(z, ej) = F−1
j (z, ej)

Let Kj = dom(Xj) and KPa(j;G) = dom(Z). We will show now that the function fj is

continuous on KPa(j;G) × [0, 1], a compact subset of R|Pa(j;G)| × [0, 1].

By assumption, there exists aj ∈ R such that:

F (xj |z) =

∫ xj

aj

hj(u, z)

hj(z)
du for (xj , z) ∈ Kj ×KPa(j;G),
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with hj the continuous and strictly positive joint density function. For (a, b) ∈ Kj×KPa(j;G),

as the function (u, z)→ hj(u,z)
hj(z) is continuous on the compact Kj ×KPa(j;G),

lim
xj→a

F (xj |z) =
∫ a
aj

hj(u,z)
hj(z) du uniformly on KPa(j;G)

lim
z→b

F (xj |z) =
∫ xj
aj

hj(u,b)
hj(b) on Kj

thus according to exchanging limits theorem, F is continuous on (a, b).

For any sequence zn → z, we have that F (xj |zn) → F (xj |z) uniformly in xj . Let define

two sequences un and xj,n, respectively on [0, 1] and Kj , such that:

{
un → u

xj,n → xj

As F (xj |z) = u has unique root xj = fj(z, u), the root of F (xj |zn) = un, that is, xj,n =

fj(zn, un) converge to xj . Then the function (z, u) → fj(z, u) is continuous on KPa(i;G) ×
[0, 1].

4.8.2 Proof of Theorem 3

Theorem 2. For m ∈ [[1, d]], let Zm denote the set of variables with topological order less

than m and let dm be its size. For any dm-dimensional vector of noise values e(m), let zm(e(m))

(resp. ẑm(e(m))) be the vector of values computed in topological order from the FCM (G, f, E)

(resp. the CGNN (G, f̂ , E)). For any ε > 0, there exists a set of networks f̂ with architecture

G such that

∀e(m), ‖zm(e(m))− ẑm(e(m))‖ < ε. (4.9)

Proof. By induction on the topological order of G. Let Xi be such that |Pa(i;G)| = 0.

Following the universal approximation theorem Cybenko (1989), as fi is a continuous function

over a compact of R, there exists a neural net f̂i such that

‖fi − f̂i‖∞ < ε/d1

Thus Eq. 4.4 holds for the set of networks f̂i for i ranging over variables with topological

order 0.

Let us assume that Prop. 2 holds up to m, and let us assume for brevity that there exists a

single variable Xj with topological order m+ 1. Letting f̂j be such that

‖fj − f̂j‖∞ < ε/3

based on the universal approximation property, letting δ be such that for all u

‖f̂j(u)− f̂j(u+ δ)‖ < ε/3
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by absolute continuity and letting f̂i satisfying Eq. 4.4 for i with topological order less than

m for min(ε/3, δ)/dm, it comes:

‖(zm, fj(zm, ej))− (ẑm, f̂j(ẑm, ej))‖ ≤ ‖zm − ẑm‖+ |fj(zm, ej)− f̂j(zm, ej)|
+ |f̂j(zm, ej)− f̂j(ẑm, ej)|

< ε/3 + ε/3 + ε/3.

(4.10)

4.8.3 Proof of Theorem 4

Theorem 3. Let D be an infinite observational sample generated from (G, f, E). With same

notations as in Prop. 2, for every sequence εt such that εt > 0 goes to zero when t → ∞,

there exists a set f̂t = (f̂ t1 . . . f̂
t
d) such that M̂MDk between D and an infinite size sample D̂t

generated from the CGNN (G, f̂t, E) is less than εt.

Proof. According to Prop. 3 and with same notations, letting εt > 0 go to 0 as t goes to

infinity, consider f̂t = (f̂ t1 . . . f̂
t
d) and ẑt defined from f̂t such that for all e ∈ [0, 1]d,

‖z(e)− ẑt(e)‖ < εt

Let {D̂t} denote the infinite sample generated after f̂t. The score of the CGNN (G, f̂t, E)

is

M̂MDk(D, D̂t) = Ee,e′
[
k
(
z(e), z(e′)

)
− 2k

(
z(e), ẑt(e

′)
)

+ k
(
ẑt(e), ẑt(e

′)
)]
. (4.11)

As f̂t converges towards f on the compact [0, 1]d, using the bounded convergence theorem

on a compact subset of Rd, ẑt(e) → z(e) uniformly for t → ∞, it follows from the Gaussian

kernel function being bounded and continuous that M̂MDk(D, D̂t)→ 0, when t→∞.

4.8.4 Proof of Theorem 5

Theorem 4. Let X = [X1, . . . , Xd] denote a set of continuous random variables with joint

distribution P , generated by a CGNN CG,f = (G, f, E) with G, a directed acyclic graph. And

let D be an infinite observational sample generated from this CGNN. We assume that P is

Markov and faithful to the graph G, and that every pair of variables (Xi, Xj) that are d-

connected in the graph are not independent. We note D̂ an infinite sample generated by a

candidate CGNN, CĜ,f̂ = (Ĝ, f̂ , E). Then,

(i) If Ĝ = G and f̂ = f , then M̂MDk(D, D̂) = 0.

(ii) For any graph Ĝ characterized by the same adjacencies but not belonging to the Markov

equivalence class of G, for all f̂ , M̂MDk(D, D̂) 6= 0.

Proof. The proof of (i) is obvious, as with Ĝ = G and f̂ = f , the joint distribution P̂ generated

by CĜ,f̂ = (Ĝ, f̂ , E) is equal to P , thus we have M̂MDk(D, D̂) = 0.
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(ii) Let consider Ĝ a DAG characterized by the same adjacencies but that do not belong

to the Markov equivalence class of G. According to Verma and Pearl (1991), as the DAG G
and Ĝ have the same adjacencies but are not Markov equivalent, there are not characterized

by the same v-structures.

a) First, we consider that a v-structure {X,Y, Z} exists in G, but not in Ĝ. As the

distribution P is faithful to G and X and Z are not d-separated by Y in G, we have that

(X ⊥6⊥ Z|Y ) in P . Now we consider the graph Ĝ. Let f̂ be a set of neural networks. We note

P̂ the distribution generated by the CGNN CĜ,f̂ . As Ĝ is a directed acyclic graph and the

variables Ei are mutually independent, P̂ is Markov with respect to Ĝ. As {X,Y, Z} is not

a v-structure in Ĝ, X and Z are d-separated by Y . By using the causal Markov assumption,

we obtain that (X ⊥⊥ Z|Y ) in P̂ .

b) Second, we consider that a v-structure {X,Y, Z} exists in Ĝ, but not in G. As {X,Y, Z}
is not a v-structure in G, there is an ”unblocked path” between the variables X and Z, the

variables X and Z are d-connected. By assumption, there do not exist a set D not containing

Y such that (X ⊥⊥ Z|D) in P . In Ĝ, as {X,Y, Z} is a v-structure, there exists a set D not

containing Y that d-separates X and Z. As for all CGNN CĜ,f̂ generating a distribution P̂ ,

P̂ is Markov with respect to Ĝ, we have that X ⊥⊥ Z|D in P̂ .

In the two cases a) and b) considered above, P and P̂ do not encode the same conditional

independence relations, thus are not equal. We have then M̂MDk(D,D′) 6= 0.

4.8.5 Detailed results of CGNN experiments

Table 4.4: Cause-effect relations: Area Under the Precision Recall curve on 5 benchmarks for

the cause-effect experiments (weighted accuracy in parenthesis for Tüb). Underline values

correspond to best scores.

method Cha Net Gauss Multi Tüb

Best fit 56.4 77.6 36.3 55.4 58.4 (44.9)

LiNGAM 54.3 43.7 66.5 59.3 39.7 (44.3)

CDS 55.4 89.5 84.3 37.2 59.8 (65.5)

IGCI 54.4 54.7 33.2 80.7 60.7 (62.6)

ANM 66.3 85.1 88.9 35.5 53.7 (59.5)

PNL 73.1 75.5 83.0 49.0 68.1 (66.2)

Jarfo 79.5 92.7 85.3 94.6 54.5 (59.5)

GPI 67.4 88.4 89.1 65.8 66.4 (62.6)

CGNN (M̂MDk) 73.6 89.6 82.9 96.6 79.8 (74.4)

CGNN (M̂MD
m

k ) 76.5 87.0 88.3 94.2 76.9 (72.7)
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Table 4.5: Average (std. dev.) results for the orientation of 20 artificial graphs given true

skeleton (left), artificial graphs given skeleton with 20% error (middle). ∗ denotes statistical

significance at p = 10−2. Underline values correspond to best scores.

Skeleton without error Skeleton with 20% of error

AUPR SHD SID AUPR SHD SID

Constraints

PC-Gauss 0.67 (0.11) 9.0 (3.4) 131 (70) 0.42 (0.06) 21.8 (5.5) 191.3 (73)

PC-HSIC 0.80 (0.08) 6.7 (3.2) 80.1 (38) 0.49 (0.06) 19.8 (5.1) 165.1 (67)

Pairwise

ANM 0.67 (0.11) 7.5 (3.0) 135.4 (63) 0.52 (0.10) 19.2 (5.5) 171.6 (66)

Jarfo 0.74 (0.10) 8.1 (4.7) 147.1 (94) 0.58 (0.09) 20.0 (6.8) 184.8 (88)

Score-based

GES 0.48 (0.13) 14.1 (5.8) 186.4 (86) 0.37 (0.08) 20.9 (5.5) 209 (83)

LiNGAM 0.65 (0.10) 9.6 (3.8) 171 (86) 0.53 (0.10) 20.9 (6.8) 196 (83)

CAM 0.69 (0.13) 7.0 (4.3) 122 (76) 0.51 (0.11) 15.6 (5.7) 175 (80)

CGNN (M̂MD
m

k ) 0.77 (0.09) 7.1 (2.7) 141 (59) 0.54 (0.08) 20 (10) 179 (102)

CGNN (M̂MDk) 0.89* (0.09) 2.5* (2.0) 50.45* (45) 0.62 (0.12) 16.9 (4.5) 134.0* (55)

Table 4.6: Average (std. dev.) results for the orientation of 20 and 50 artificial graphs coming

from Syntren simulator given true skeleton. ∗ denotes statistical significance at p = 10−2.

Underline values correspond to best scores.

Syntren network 20 nodes Syntren network 50 nodes

AUPR SHD SID AUPR SHD SID

Constraints

PC-Gauss 0.40 (0.16) 16.3 (3.1) 198 (57) 0.22 (0.03) 61.5 (32) 993 (546)

PC-HSIC 0.38 (0.15) 23 (1.7) 175 (16) - - -

Pairwise

ANM 0.36 (0.17) 10.1 (4.2) 138 (56) 0.35 (0.12) 29.8 (13.5) 677 (313)

Jarfo 0.42 (0.17) 10.5 (2.6) 148 (64) 0.45 (0.13) 26.2 (14) 610 (355)

Score-based

GES 0.44 (0.17) 9.8 (5.0) 116 (64) 0.52 (0.03) 21 (11) 462 (248)

LiNGAM 0.40 (0.22) 10.1 (4.4) 135 (57) 0.37 (0.28) 33.4 (19) 757 (433)

CAM 0.73 (0.08) 4.0 (2.5) 49 (24) 0.69 (0.05) 14.8 (7) 285 (136)

CGNN (M̂MD
m

k ) 0.80* (0.12) 3.2 (1.6) 45 (25) 0.82* (0.1) 10.2* (5.3) 247 (134)

CGNN (M̂MDk) 0.79 (0.12) 3.1* (2.2) 43 (26) 0.75 (0.09) 12.2 (5.5) 309 (140)
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Table 4.7: Average (std. dev.) results for the orientation of the real protein network given

true skeleton. ∗ denotes statistical significance at p = 10−2. Underline values correspond to

best scores.

Causal protein network

AUPR SHD SID

Constraints

PC-Gauss 0.19 (0.07) 16.4 (1.3) 91.9 (12.3)

PC-HSIC 0.18 (0.01) 17.1 (1.1) 90.8 (2.6)

Pairwise

ANM 0.34 (0.05) 8.6 (1.3) 85.9 (10.1)

Jarfo 0.33 (0.02) 10.2 (0.8) 92.2 (5.2)

Score-based

GES 0.26 (0.01) 12.1 (0.3) 92.3 (5.4)

LiNGAM 0.29 (0.03) 10.5 (0.8) 83.1 (4.8)

CAM 0.37 (0.10) 8.5 (2.2) 78.1 (10.3)

CGNN (M̂MD
m

k ) 0.68 (0.07) 5.7 (1.7) 56.6 (10.0)

CGNN (M̂MDk) 0.74* (0.09) 4.3* (1.6) 46.6* (12.4)



Chapter 5

Learning a graph end-to-end

This chapter, inspired from Kalainathan et al. (2019), presents the Structural Agnostic Model

(SAM). It aims at addressing the computational limitation of CGNN, presented in Chapter 4.

An open-source implementation is available at https://github.com/Diviyan-Kalainathan/

SAM. Leveraging both conditional independencies and distributional asymmetries in the data,

the Structural Agnostic Model (SAM) aims at recovering full causal models from continuous

observational data along a multivariate non-parametric setting. The approach is based on a

game between d players estimating each variable distribution conditionally to the others as

a neural net, and an adversary aimed at discriminating the overall joint conditional distri-

bution, and that of the original data. An original learning criterion combining distribution

estimation, sparsity and acyclicity constraints is used to enforce the end-to-end optimization

of the graph structure and parameters through stochastic gradient descent. Besides the theo-

retical analysis of the approach in the large sample limit, SAM is extensively experimentally

validated on synthetic and real-world datasets.

5.1 The Structural Agnostic Model (SAM)

This section presents the Structural Agnostic Model (SAM), implementing the MDL frame-

work presented in Section 2.2.3 within the space of generative neural networks (NN). The

originality of the approach is to implement an end-to-end search for a Functional Causal

Model (FCM, Eq. 2.2) with no restrictive assumption on the underlying causal mech-

anisms and data distributions. Specifically, SAM searches for the generative model of

every Xi from X−i (all variables from X but Xi itself), such that:

Xi = fi(X−i, Ei). (5.1)

https://github.com/Diviyan-Kalainathan/SAM
https://github.com/Diviyan-Kalainathan/SAM
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The sparsity of the structure is sought using a Lasso-inspired mechanism (Friedman et al.,

2008) with binary coefficients aij defining the connection between Xj and Xi, such as :

Xi = fi(ai1X1, . . . , aidXd, Ei) (5.2)

= fi(ai �X, Ei), (5.3)

with aii = 0 to avoid Xi from generating itself. These aij coefficients are either set to aij = 1

if the variable Xj is a parent of Xi or aij = 0 otherwise. Allowing aij to take either of

these values refrains the following neural network to still compensate the coefficient and still

leverage information from Xj if aij is set to 0.

5.1.1 Modeling causal mechanisms with conditional generative neural net-

works

The model search space includes all joint distributions q(x) defined from a DAG Ĝ and causal

mechanisms f̂ = (f̂1, . . . , f̂d), with f̂j a 1-hidden layer NN yielding a generative model of Xj

from all other variables in X (Fig. 5.1). Formally:

• The d-dimensional vector of variables X is elementwise multiplied with binary vector

aj = (a1,j , . . . ad,j) named structural gate. Coefficient ai,j is 1 iff variable Xi is used to

generate Xj (with ai,i set to 0 to avoid self-loops), that is, edge Xi → Xj is present

in graph Ĝ, and Xi is considered to be a cause of Xj . Otherwise, ai,j is set to 0. A

regularization term on aj enforces the graph sparsity.

• The number of active hidden units in neural network f̂j is controlled by a Boolean

vector zj of size nh named functional gate, where the h-th entry noted zh,j ∈ {0, 1}
corresponds to the activation of the h-th hidden unit of the neural network. Likewise, a

regularization on the functional gates is used to limit the complexity of the functional

mechanisms.

• At every evaluation of noise variable Ej , a value is drawn anew from distribution

N (0, 1). As already mentioned, the restriction to Gaussian noise is not a limitation

in terms of expressivity of the model.

As said, f̂j is implemented as a 1-hidden layer NN, i.e. a linear combination of non-linear

features φi,k:

Xj = f̂j(X, Ej) =

nh∑

k=1

mj,kφj,k(X, Ej)zj,k +mj,0

with φj,k(X, Ej) = tanh

(
d∑

i=1

Wj,ikaijXi + bj,k +Wj,d+1Ej

)
.

(5.4)

For notational simplicity, each f̂j is associated with a parameter vector θj = (θj,1, . . . , θj,pj )
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a1jX1

a(j−1)jXj−1

a(j+1)jXj+1

adjXd

1Ej

z1j

z2j

z3j

z4j

z5j

z6j

z7j

X̂j

X−j

Structural gates Functional gates

Figure 5.1: Example diagram of the conditional generative neural network modeling the

causal mechanism Xj = f̂j(X, Ej) with nh = 7.

(including vectors mj and Wj,· but excluding the aj and zj gates). With Ej a Gaussian noise

variable, each f̂j thus encodes a generative model of Xj conditionally to variables in x
Pa(j;Ĝ)

,

with Pa(j; Ĝ) = {i ∈ [1, . . . , d] s.t. ai,j = 1}.
Under the assumptions that noise variables Ej are independent of each other (Causal

Sufficiency Assumption), and graph Ĝ is acyclic1, noting θ the concatenation of parameters

θ1, . . . , θd and Z = {zh,j} the functional gate nh × d matrix, the candidate model (Ĝ, f̂)

defines a multivariate distribution q(x, Ĝ, θ, Z) after the global Markov property:

q(x, Ĝ, θ, Z) =
d∏

j=1

q(xj |xPa(j;Ĝ)
, θj , zj). (5.5)

Moreover, as the conditional densities q(xj |xPa(j;Ĝ)
, θj , zj) can be computed indepen-

dently,

K(q(x, Ĝ, θ, Z))
+
=

d∑

j=1

K(q(xj |xPa(j;Ĝ)
, θj , zj)).

The normalized MDL for a candidate graph Ĝ (Eq. (2.12)) thus is rewritten as a sum of

d local scores:

MDL(Ĝ, θ∗, D) = min
θ,Z




1

n

d∑

j=1

K(q(xj |xPa(j;Ĝ)
, θj , zj))

︸ ︷︷ ︸
model complexity

+
1

n

d∑

j=1

n∑

`=1

log
1

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θj , zj)

︸ ︷︷ ︸
fit loss



,

(5.6)

with θ∗ the optimal set of parameters for the considered model.

1Ĝ must be acyclic for the distribution decomposition to hold; the general case with cyclic graphs will be

studied in further work
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5.1.2 SAM learning criterion

This section derives a principled loss function from the model complexity and data fitting

terms in Eq. (5.6), defining SAM learning criterion.

Model complexity While K(q(xj |xPa(j;Ĝ)
, θj , zj)) could be estimated using the Akaike

Information or the Bayesian Information Criterion, the complexity of the graph structure and

of the causal mechanisms can by construction be assessed and controlled through respectively

the L0 norm of the structural and functional gates aj and zj (that is, the number of parents

of Xj and the number of effective neurons in f̂j):

K(q(xj |xPa(j;Ĝ)
, θj , zj))

def
= λS |Pa(j; Ĝ)|+ λF

nh∑

h=1

zh,j , (5.7)

with λS > 0 and λF > 0 the regularization weights. For notational simplicity we write

q(xj |xPa(j;Ĝ)
, θj) instead of q(xj |xPa(j;Ĝ)

, θj , zj) in the following. These two constraints are

additive in order to be able to fine-tune SAM according to the domain knowledge of the user:

the complexity of the graph and the complexity of the causal mechanisms.

Data fitting loss As said, when the number of samples x(`) goes to infinity, the data fitting

term goes to data log-likelihood expectation under the sought generative distribution:

lim
n→∞

1

n

n∑

`=1

log
1

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θj)

= − Ep log q(xj |xPa(j;Ĝ)
, θj). (5.8)

For j = 1 . . . d, for x = (x1, . . . , xd) let x−j be defined as (x1, . . . xj−1, xj+1, . . . , xd). The

distribution of xj conditionally to x−j is denoted as q(xj |x−j). Considering FCM (Ĝ, f̂),

as variable Xj only depends on X
Pa(j;Ĝ)

, it follows that q(xj |xPa(j;Ĝ)
, θj) = q(xj |x−j , θj).

Therefore:

lim
n→∞

1

n

n∑

`=1

log
1

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θj)

= Ep log
1

q(xj |x−j , θj)
(5.9)

= Ep log
p(xj |x−j)

q(xj |x−j , θj)
− Ep log p(xj |x−j) (5.10)

= DKL[p(xj |x−j) ‖ q(xj |x−j , θj)] +H(Xj |X−j), (5.11)

with DKL[p(xj |x−j) ‖ q(xj |x−j , θj)] the Kullback-Leibler divergence between the true con-

ditional distribution p(xj |x−j) and q(xj |x−j , θj), and H(Xj |X−j) the constant, domain-

dependent entropy of Xj conditionally to X−j (neglected in the following).

Taking inspiration from Nguyen et al. (2010); Nowozin et al. (2016), DKL[p(xj |x−j) ‖ q(xj |x−j , θj)]
is estimated using an adversarial approach. Formally, for j = 1 to d, for each initial sam-

ple x(`) let pseudo-sample x̃
(`)
j be defined from x(`) by replacing its j-th coordinate by
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f̂j(x
(`), e

(`)
j ), with e

(`)
j drawn from N (0, 1). Let dataset D̃j denote the set of all pseudo

x̃
(`)
j for ` = 1 to n.

Let Tω be a neural net trained to discriminate between the original dataset D and the

dataset D̃ =
⋃d
j=1 D̃j , with ω ranging in the parameter space Ω. Then, the scaled log-

likelihood of the data in the large sample limit can be approximated after Nguyen et al.

(2010):

1

n

d∑

j=1

n∑

`=1

log
1

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θj)

≈ sup
ω∈Ω


d

n

n∑

`=1

Tω(x(`)) +
1

n

d∑

j=1

n∑

`=1

[− exp(Tω(x̃j
(`))− 1)]




+ constant (5.12)

By reintroducing this result into Eq. 5.11, this gives for each generator/discriminator set

considering Xj , X−j :

DKL[p(xj ,x−j) ‖ q(xj ,x−j , θj)] ≈ sup
ω∈Ω

(
1

n

n∑

`=1

[T jω(x(`)) ]

+
1

n

n∑

`=1

[− exp(T jω(x̃j
(`))− 1) ]

)
(5.13)

Note that using a single discriminator Tω to discriminate among D and D̃ is more compu-

tationally efficient than building d discriminators (among D and each D̃j) and yields a more

stable algorithm.2

Evaluation of the global loss min-max penalized optimization problem with SAM

Overall, SAM is trained by solving a min-max penalized optimization problem (Eqs (5.7) for

the model complexity and (5.12) for the data fitting term):

MDL(Ĝ, θ∗, D) = min
Z,A,θ

(
λS
n

∑

i,j

ai,j +
λF
n

∑

h,j

zh,j

︸ ︷︷ ︸
model complexity

+

max
ω∈Ω


d

n

n∑

`=1

Tω(x(`)) +
1

n

d∑

j=1

n∑

`=1

[− exp(Tω(x̃j
(`))− 1)]




︸ ︷︷ ︸
fit loss

)
, (5.14)

where the minimization is carried over the set of parameters θ = (θ1, . . . , θd) of the generators

and over the matrices A and Z representing the structural and functional gates.

2It avoids the gradient vanishing phenomena that were empirically observed when building d discriminators.
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Figure 5.2: A four-variable example: Diagram of the SAM structure for variables X1, . . . , X4

Fig. 5.2 illustrates a 4-variable SAM: on the left are the four generators corresponding

to the causal mechanisms f̂
θj ,aj ,zj
j , for j = 1 . . . 4. On the right is the shared neural network

discriminator Tω evaluating the global fit loss corresponding to the sum of the estimated fit

terms DKL[p(xj ,x−j) ‖ q(xj ,x−j , θj)] for j = 1 . . . 4.

5.1.3 Enforcing the acyclicity of the causal graph

Note that Eq. (5.14) does not ensure that the optimal Ĝ be a DAG: the sparsity constraint

without any acyclicty contraint on Ĝ through the model complexity term (minimizing ‖aj‖0)

leads to independently identify the Markov blanket of each variable Xj , selecting all causes,

effects and spouses thereof (Yu et al., 2018). Indeed, optimizing Eq. (5.14) under the as-

sumption of acyclicity does result in finding the set of parents Pa(j;G) for each variable

Xj .

In order to ensure that the solution is a DAG and avoid the associated combinatorial

optimization issues (Section 2.3), it is proposed to augment the learning criterion with an

acyclicity term inspired from Zheng et al. (2018a). The use of other acyclicity characterizing

criteria (Zheng et al., 2018a) is left for further work. Letting A denote the structural gate

matrix (the adjacency matrix of the graph), Ĝ is a DAG iff

d∑

k=1

tr Ak

k!
= 0



94 5.2. THEORETICAL ANALYSIS OF SAM

Accordingly, the learning criterion is augmented with an acyclicity term, with:

MDL(Ĝ∗, θ∗, D) = min
A,Z,θ

max
ω∈Ω

(
1

n

n∑

`=1

d∑

j=1

[Tω(x(`))− exp(Tω(x̃
(`)
j − 1)]

+
λS
n

∑

i,j

ai,j +
λF
n

∑

j,h

zh,j + λD

d∑

k=1

tr Ak

k!

)
,

(5.15)

with λD > 0 a penalization weight. In practice, λD is small at the initialization and

increases along time; in this way, the structural penalization term λS
∑

i,j ai,j can operate

and prune the less relevant edges before considering the DAG constraint. As the training

goes on, the graph converges to a DAG, as the penalty given by the increasing λD is too high.

This acyclicity constraint creates a coupling among the d feature selection problems,

implying that at most one arrow between pairs of variables can be selected, and more generally

leading to remove effect variables from the set of parents of any Xi; the removal of effect

variables in turn leads to removing spouse variables as well (section 5.2.1).

As the use of the L0 norms of as and zs, if naively done, could entail computational issues

(retraining the network from scratch for every new graph structure or neural architecture),

an approach based on the Bernoulli reparameterization trick is proposed to end-to-end train

the SAM architecture and weights using stochastic gradient descent (Srivastava et al., 2014;

Louizos et al., 2017) and the Binary Concrete relaxation approach (Maddison et al., 2016;

Jang et al., 2016). This solution corresponds to a learned dropout of edges and hidden units

of the neural network.

Overall, the optimization of the learning criterion in Eq.(5.15) with the acyclicity and

sparsity constraints defines the Structural Agnostic Model SAM (Alg. 6, Fig. 5.2).

5.2 Theoretical Analysis of SAM

This section analyzes the MDL learning criterion, decomposed into two terms: a structural

loss and a parametric loss. It is finally shown that under some mild assumptions SAM recovers

the true underlying graph G.

Using Eq. (5.7), Eq. (5.6) can be rewritten as:

MDL(Ĝ, θ∗, D) =
λS
n
|Ĝ|+ λF

n

d∑

j=1

‖zj‖0 +
1

n

d∑

j=1

n∑

`=1

log
1

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θ∗j )

. (5.16)

According to (Brown et al., 2012), each scaled conditional log-likelihood term can be

decomposed into three terms as:
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Algorithm 6: Structural Agnostic Modeling Algorithm

bullet Initialize a′ij = 2, z′ij = 0, for i, j ∈ [1, d]2

for number of iterations do

for j = 1, . . . , d do
• sample the structural gate vector aj : for i = 1, . . . , d,

ai,j = cst(H(li,j + a′i,j))− cst(sigmoid(li,j + a′i,j)) + sigmoid(li,j + a′i,j) with li,j drawn

from logistic distribution and H the Heaviside step function; cst() represents the copy

by value without gradient operator (aii = 0,∀i ∈ [1, d])

• sample the functional gate vector zj : for h = 1, . . . , nh,

zh,j = cst(H(lh,j + z′h,j))− cst(sigmoid(lh,j + z′h,j)) + sigmoid(lh,j + z′h,j) with lh,j

drawn from logistic distribution

• sample noise variables, e
(`)
j ∼ N (0, 1) for ` = 1 . . . n, j = 1 . . . d

• generate n samples {x̃(`)
j }nl=1 such that for ` = 1 . . . , n :

x̃
(`)
j = f̂

θj ,aj ,zj
j (x

(`)
−j , e

(`)
j )

=

nh∑

k=1

mj,ktanh

(
d∑

i=1

Wj,ikaijXi + bj,k +Wj,d+1Ej

)
+mj,0

end

• update the discriminator by ascending its stochastic gradient:

∇ω


 d
n

n∑

`=1

Tω(x(`)) +
1

n

d∑

j=1

n∑

`=1

[− exp(Tω(x̃
(`)
j ,x

(`)
−j)− 1) ]




for j = 1, . . . , d do
• update the generator by descending its stochastic gradients w.r.t the set of

parameters θj = (mj ,Wj , nj , bj , βj), the set of parameters a′j of the structural gates

aj and the set of parameters z′j of the functional gates zj :

∇j =∇θj

[
1

n

n∑

`=1

[− exp(Tω(x̃
(`)
j ,x

(`)
−j)− 1) ]

]

+∇a′
j


 1

n

n∑

`=1

[− exp(Tω(x̃
(`)
j ,x

(`)
−j)− 1) ] +

λS
n

∑

i,j

ai,j + λD

d∑

k=1

tr Ak

k!




+∇z′
j


 1

n

n∑

`=1

[− exp(Tω(x̃
(`)
j ,x

(`)
−j)− 1) ] +

λF
n

∑

j,h

zh,j




end

end

return A and f̂1, . . . , f̂d
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1

n

n∑

`=1

log
1

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θ∗j )

=
1

n

n∑

`=1

log
p(x

(`)
j |x

(`)

Pa(j;Ĝ)
)

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θ∗j )

+
1

n

n∑

`=1

log
p(x

(`)
j |x

(`)
−j)

p(x
(`)
j |x

(`)

Pa(j;Ĝ)
)

+
1

n

n∑

`=1

log
1

p(x
(`)
j |x

(`)
−j)

(5.17)

Note that term 1
n

∑n
`=1 log p(x

(`)
j |x

(`)
−j) is a domain-dependent constant, converging toward

H(Xj |X−j), the negative entropy of Xj conditionally to X−j when n goes toward infinity.

This term is neglected in the following.

Let X
Pa(j;Ĝ)

denote the complementary set of Xj and its parent nodes in Ĝ. Then, after

Brown et al. (2012), 1
n

∑n
`=1 log

p(x
(`)
j |x

(`)
−j)

p(x
(`)
j |x

(`)

Pa(j;Ĝ)
)

is equal to:

În(Xj , XPa(j;Ĝ)
|X

Pa(j;Ĝ)
) =

1

n

n∑

`=1

log
p(x

(`)
j , x

(`)

Pa(j;Ĝ)
|x(`)

Pa(j;Ĝ)
)

p(x
(`)
j |x

(`)

Pa(j;Ĝ)
)p(x

(`)

Pa(j;Ĝ)
|x(`)

Pa(j;Ĝ)
)
, (5.18)

the estimated conditional mutual information term between Xj and X
Pa(j;Ĝ)

, conditioned

on the estimated parent variables X
Pa(j;Ĝ)

.

From Eqs (5.17) and (5.18) the global loss (Eq. (5.16)) can be decomposed into a structural

loss LS(Ĝ, D) and a parametric loss LF (Ĝ, θ∗, D):

MDL(Ĝ, θ∗, D) = LS(Ĝ, D) + LF (Ĝ, θ∗, D). (5.19)

with: 



LS(Ĝ, D) =
∑d

j=1

[
În(Xj , XPa(j;Ĝ)

|X
Pa(j;Ĝ)

)
]

+ λS
n |Ĝ|

LF (Ĝ, θ∗, D) =
∑d

j=1

[
1
n

∑n
`=1 log

p(x
(`)
j |x

(`)

Pa(j;Ĝ)
)

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
,θ∗j )

] + λF
n ‖zj‖0

]

The structural loss LS(Ĝ, D), akin to local learning approaches (Section 2.3), aims to

identify the Markov equivalence class of the true G (Spirtes et al., 2000; Chickering, 2002):

its goal is to minimize the mutual information between a variable and the non-parent variables

given the parent variables, as conditional independence tests would do (Theorem 5). The

parametric loss LF (Ĝ, θ∗, D) instead exploits distribution asymmetries, akin cause effect pair

methods (Hoyer et al., 2009; Stegle et al., 2010).

5.2.1 Identification of the Markov equivalence class with the structural

loss

Within the structural loss LS(Ĝ, D), the minimization of În(Xj , XPa(j;Ĝ)
|X

Pa(j;Ĝ)
) exploits

the conditional independence relations in the candidate structure. Let us first consider the
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case when În(Xj , XPa(j;Ĝ)
|X

Pa(j;Ĝ)
) is minimized independently for each variable Xj (without

considering the acyclicity term on Ĝ). In the large sample limit and under classical faithful-

ness and Markov assumptions, Brown et al. (2012) show that the optimum is obtained for

X
Pa(j;Ĝ)

= MB(Xj), the Markov Blanket of Xj in G. Note that MB(Xj) usually contains

spurious edges compared to the true parents XPa(j;G); it contains the effect and also the so-

called spouses of Xj : if a child of Xj is retained in X
Pa(j;Ĝ)

, then its parents (spouses) are

dependent on Xj conditionally to this child, and are retained in X
Pa(j;Ĝ)

.

When enforcing the acyclicity of the candidate graph on Ĝ and minimizing the structural

fitting loss LS(Ĝ, D) with a regularization term on the total number of edges, spurious edges

tend to be removed and the Markov equivalence class of the true DAG (CPDAG) can be

identified. The intuition is that the acyclicity constraint prevents the children nodes from

being selected as parents, hence the spouse nodes do not need be selected either.

In the SAM framework, the CPDAG identification classically relies on the Causal Markov

and Faithfulness assumptions (any independence constraint holds in p(x) iff it is present in

G); it also relies on a third assumption on the estimated conditional mutual information

bounds.

Theorem 5 (DAG identification up to the Markov equivalence class).

Besides CMA and CFA, let us further assume that for any fixed number of samples n:

a) for any pair of variables Xi, Xj and any disjoint subset of variables V ⊂ X, such that

I(Xj , Xi|XV ) = 0, one has În(Xj , Xi|XV ) < λS
n .

b) for any pair of variables Xi, Xj and any disjoint subset of variables V ⊂ X, such that

I(Xj , Xi|XV ) 6= 0, one has În(Xj , Xi|XV ) > λS
n .

Then in the limit of large n:

i) For every Ĝ in the equivalence class of G, LS(Ĝ, D) = LS(G, D).

ii) For every Ĝ not in the equivalence class of G, LS(Ĝ, D) > LS(G, D).

Proof. in Appendix 5.5.1

5.2.2 Identification within Markov equivalence class of DAGs with the

parametric loss

The parametric loss LF (Ĝ, θ∗, D) aims to retrieve the true causal model within its Markov

equivalence class. Each term

1

n

n∑

`=1

log
p(x

(`)
j |x

(`)

Pa(j;Ĝ)
)

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θ∗j )

measures the ability of f̂j to fit the conditional distribution of Xj based on its parents

XPa(j; Ĝ). In the large sample limit, this term converges towards Ep
[
log

p(xj |xPa(j;Ĝ))

q(xj |xPa(j;Ĝ),θ
∗
j )

]
.
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Note that when considering sufficiently powerful causal mechanisms, this term goes to 0

in the large sample limit even if Ĝ 6= G: as shown by Hyvärinen and Pajunen (1999), it is

always possible to find a function f̂j such that Xj = f̂j(XPa(j;Ĝ)
, Ej), with Ej⊥⊥XPa(j;Ĝ)

, cor-

responding to a probabilistic conditional model q such that q(xj |xPa(j;Ĝ)
, θ∗j ) = p(xj |xPa(j;Ĝ)

)

(hence Ep
[
log

p(xj |xPa(j;Ĝ))

q(xj |xPa(j;Ĝ),θ
∗
j )

]
= 0).

However, when restricting the capacity of the causal mechanism space, this parametric fit-

ting term may support model identification within the Markov equivalence class of the DAG.

Following (Stegle et al., 2010)’ pioneering work, SAM uses a soft constraint (a regularization

term) to restrict the capacity of the considered mechanism, specifically the number of active

neurons involved in f̂j :

LF (Ĝ, θ∗, D) =
1

n

∑

j

n∑

`=1

log
p(x

(`)
j |x

(`)

Pa(j;Ĝ)
)

q(x
(`)
j |x

(`)

Pa(j;Ĝ)
, θ∗j )

+ λz‖zj‖0

Theorem 6. For every DAG Ĝ 6= G in the Markov equivalence class of G, given the Working

Hypothesis 1 and the causal Markov and faithfulness assumptions:

d∑

j=1

K(p(xj |xPa(j;G)))
+
≤

d∑

j=1

K(p(xj |xPa(j;Ĝ)
)). (5.20)

Proof. in Appendix 5.5.2

Following (Janzing and Scholkopf, 2010; Marx and Vreeken, 2017) and approximating

the Kolmogorov complexity with the Minimum Description Length (section 2.2.3), for every

DAG Ĝ 6= G in the Markov equivalence class of G:

MDL(G, θ∗, D) ≤MDL(Ĝ, θ∗, D). (5.21)

According to equation (5.19):

LS(G, D) + LF (G, θ∗, D) ≤ LS(Ĝ, D) + LF (Ĝ, θ∗, D). (5.22)

Under the conditions given in Theorem 1, for DAGs in the Markov equivalence class of G
in the large sample limit the structural score LS(Ĝ, D) is minimal and equal to LS(G, D). It

yields:

LF (G, θ∗, D) ≤ LF (Ĝ, θ∗, D). (5.23)

Within the Markov equivalence class, the parametric loss can disambiguate the differ-

ent structures and support the identification of the true G. An illustration is presented in

Appendix 5.5.2.
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5.3 Experimental setting

The goal of the validation is to experimentally answer two questions. The first one concerns

SAM’s performance compared to the state of the art, depending on whether the underlying

joint distribution complies with usual assumptions (Gaussian distributions for the variables

and the noise, linear causal mechanisms). The second question concerns the merits and draw-

backs of SAM’s strategy of learning non-linear causal mechanisms, and relying on adversarial

learning.

This section first describes the SAM configurations and hyper-parameter settings used

in the experiments, followed by the detail of the synthetic,3 realistic and real-world datasets

involved in the experiments. The baseline algorithms and their hyper-parameter settings,

and the performance indicators are last described.

For convenience and reproducibility, all considered algorithms have been integrated in the

publicly available CausalDiscovery Toolbox,4 including the most recent baseline versions at

the time of the experiments.

5.3.1 SAM configurations

Each causal mechanism f̂j is sought as a 1-hidden layer NN with ngh = 200 neurons, using tanh

activation. Note that this activation function enables to represent linear mechanisms when

deemed appropriate. The discriminator is a 2-hidden layer NN with nDh = 200 LeakyReLU

units on each layer and batch normalization (Ioffe and Szegedy, 2015). Structural gates ai,j
and functional gates zh,j are initialized to 0 with probability 1/2, except for the self-loop

terms ai,i set to 0. SAM is trained for niter = 10, 000 epochs using Adam (Kingma and

Ba, 2014) with initial learning rate 0.01. SAM hyper-parameters are calibrated using 10

synthetic datasets (five of 20 variables and five of 100 variables) of type VI (section 5.3.2).

In all experiments, λS = 5, λF = 0.005, and

λD =

{
0 if t < 5, 000

1 otherwise

with t the number of epochs: the first half of the run does not take into account the acyclicity

constraint and focuses on the identification of the Markov blankets for each variable; the

acyclicity constraint intervenes in the second half of the run.

Four variants have been considered: the full SAM (Alg. 6) and three lesioned variants

designed to examine the benefits of non-linear mechanisms and adversarial training.

Specifically, SAM-lin desactivates the non-linear option and only implements linear

3The codes for generating the synthetic datasets are available at https://github.com/

Diviyan-Kalainathan.
4https://github.com/diviyan-kalainathan/causaldiscoverytoolbox.

https://github.com/Diviyan-Kalainathan
https://github.com/Diviyan-Kalainathan
https://github.com/diviyan-kalainathan/causaldiscoverytoolbox


100 5.3. EXPERIMENTAL SETTING

causal mechanisms (with no functional gates), replacing Eq (5.4) with:

X̂j =
d∑

i=1

Wj,iaj,iXi +Wj,d+1Ej +Wj,0. (5.24)

A second variant, SAM-mse, replaces the adversarial loss with a standard mean-square

error loss, replacing the f-gan term in Eq. (5.13) with 1
n

∑d
j=1

∑n
`=1(x

(`)
j − x̃

(`)
j )2.

A third variant, SAM-lin-mse, involves both linear mechanisms and mean square error

losses.

5.3.2 Benchmarks

The synthetic datasets include 10 DAGs with 20 variables and 10 DAGs with 100 variables.

1. The DAG structure is such that the number of parents for each variable is uniformly

drawn in {0, . . . , 5};

2. For the i-th DAG, the mean µi and variance σi of the noise variables are drawn as

µi ∼ U(−2, 2) and σi ∼ U(0, 0.4) and the distribution of the noise variables is set to

N (µi, σi);

3. For each graph, a 500 sample-dataset is i.i.d. generated following the topological order

of the graph, with for ` = 1 to 500:

x(`) = (x
(`)
1 , . . . , x

(`)
d ), x

(`)
i ∼ fi(XPa(i), Ei), with Ei ∼ N (µi, σi)

All variables are normalized to zero mean and unit variance.

Six categories of causal mechanisms have been considered: besides those considered for

the experimental validation of the CAM algorithm (Peters et al., 2014), a more complex one

is considered, leveraging the non-linearity of neural nets:

I Linear : Xi =
∑

j∈Pa(i) ai,jXj + Ei, where ai,j ∼ N (0, 1)

II Sigmoid AM : Xi =
∑

j∈Pa(i) fi,j(Xj) + Ei, where fi,j(xj) = a · b·(xj+c)
1+|b·(xj+c)| with a ∼

Exp(4) + 1, b ∼ U([−2,−0.5] ∪ [0.5, 2]) and c ∼ U([−2, 2]).

III Sigmoid Mix : Xi = fi(
∑

j∈Pa(i)Xj + Ei), where fi is as in the previous bullet-point.

IV GP AM : Xi =
∑

j∈Pa(i) fi,j(Xj) + Ei where fi,j is an univariate Gaussian process with

a Gaussian kernel of unit bandwidth.

V GP Mix : Xi = fi([XPa(i), Ei]), where fi is a multivariate Gaussian process with a

Gaussian kernel of unit bandwidth.

VI NN : Xi = fi(XPa(i), Ei), with fi a 1-hidden layer neural network with 20 tanh units,

with all neural weights sampled from N (0, 1).
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5.3.3 Baseline algorithms

The following algorithms have been used, with their default parameters: the score-based

methods GES (Chickering, 2002) and GIES (Hauser and Bühlmann, 2012) with Gaussian

scores; the hybrid method MMHC (Tsamardinos et al., 2006), the L1 penalized method for

causal discovery CCDr (Aragam and Zhou, 2015), the LiNGAM algorithm (Shimizu et al.,

2006) and the causal additive model CAM (Peters et al., 2014). Lastly, the PC algorithm

(Spirtes et al., 2000) has been considered with four conditional independence tests in the

Gaussian and non-parametric settings:

• PC-Gauss: using a Gaussian conditional independence test on z-scores;

• PC-HSIC: using the KCI independence test (Zhang et al., 2012) with a Gamma null

distribution (Gretton et al., 2005b);

• PC-RCIT: using the Randomized Conditional Independence Test (RCIT) with random

Fourier features (Strobl et al., 2017);

• PC-RCOT: the Randomized conditional Correlation Test (RCOT) (Strobl et al., 2017).

PC,5 GES and LINGAM versions are those of the pcalg package (Kalisch et al., 2012).

MMHC is implemented with the bnlearn package (Scutari, 2009). CCDr is implemented with

the sparsebn package (Aragam et al., 2017).

The GENIE3 algorithm (Irrthum et al., 2010) is also considered, though it does not focus

on DAG discovery per se as it achieves feature selection, retains the Markov Blanket of each

variable using random forest algorithms. Nevertheless, this method won the DREAM4 In

Silico Multifactorial challenge (Marbach et al., 2009), and is therefore included in the baseline

algorithms (using the GENIE3 R package).

5.3.4 Performance indicators

For the sake of robustness, 16 independent runs have been launched for each dataset-algorithm

pair. The average causation score ci,j for each edge Xi → Xj is measured as the fraction of

runs where this edge belongs to Ĝ. When an edge is left undirected, e.g with PC algorithm,

it is counted as appearing with both orientations with weight 1/2. A t-test is used to assess

whether the score difference between any two methods is statistically significant with a p-value

below 0.001.

Precision-recall A true positive is an edge i → j of the true DAG G which is correctly

recovered by the algorithm; Tp is the number of true positive. A false negative is an edge

of G which is missing in Ĝ; Fn is the number of false negatives. A false positive is an edge

5The better-performing, order-independent version of the PC algorithm proposed by Colombo and Maathuis

(2014) is used.
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in Ĝ which is not in G (reversed edges and edges which are not in the skeleton of G); Fp
is the number of false positives. The precision-recall curve, showing the tradeoff between

precision (Tp/(Tp + Fp)) and recall (Tp/(Tp + Fn)) for different causation thresholds (Fig.

5.6), is summarized by the Area under the Precision Recall Curve (AuPR), ranging

in [0,1], with 1 being the best.6

Structural Hamming Distance Another performance indicator used in the causal graph

discovery framework is the Structural Hamming Distance (SHD) (Tsamardinos et al., 2006),

set to the number of missing edges and redundant edges in the found structure. This SHD

score is computed in the following by considering all edges i→ j with ci,j > .5. Note that a

reversal error (retaining j → i while G includes edge i→ j) is counted as a single mistake.

SHD(Â, A) =
∑

i,j

|Âi,j −Ai,j | −
1

2

∑

i,j

(1−max(1, Âi,j +Aj,i)), (5.25)

with A (respectively Â) the adjacency matrix of G (resp. the found causal graph Ĝ).

Structural Intervention Distance refers to an adaptation of the SHD metric for causal

graphs (Peters and Bühlmann, 2013). It counts the number of wrong causal paths between

connected variables. The lower the value, the better: having a value of 0 corresponds to

correct causal relationships between each pairs of connected variables in the true graph.

5.4 Experiments

This section first reports on the experimental results obtained on synthetic datasets. Realistic

biological data coming from the SynTREN simulator (Van den Bulcke et al., 2006) on 20- and

100-node graphs, and from GeneNetWeaver (Schaffter et al., 2011) on the DREAM4 challenge

are thereafter considered (section 5.4.2), and we last consider the extensively studied flow

cytometry dataset (Sachs et al., 2005) (section 5.4.3).

The detail of all results is given in Appendix 5.5.3, reporting the average performance

indicators, standard deviation, and computational cost of all considered algorithms.

5.4.1 Synthetic datasets

20 variable-graphs The comparative results (Fig. 5.3) demonstrate SAM’s robustness in

term of Area under the Precision Recall Curve (AUPR) on all categories of 20-node graphs.

Specifically, SAM is dominated by GES and GIES on linear mechanisms and by CAM for

Gaussian univariate mechanisms, reminding that GES and GIES (resp. CAM) specifically

aim at linear mechanisms (resp. Gaussian univariate mechanisms). Note that, while the

whole ranking of the algorithms may depend on the considered performance indicator, the

6Using the scikit-learn v0.20.1 library (Pedregosa et al., 2011).
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Figure 5.3: Performance of causal graph discovery methods on 20-node synthetic graphs

measured by the Area under the Precision Recall Curve (the higher, the better). SAM ranks

among the top-three methods, being only dominated by GES and GIES for linear mechanisms

and by CAM for univariate mechanisms (better seen in color).

best performing algorithm is most often the same regardless of whether the AUPR or the

Structural Hamming distance is considered. For non-linear cases with complex interactions

(the Sigmoid Mix and NN cases), SAM significantly outperforms other non-parametric meth-

ods such as PC-HSIC, PC-RCOT and PC-RCIT. In the linear Gaussian setting, SAM aims

to the Markov equivalence class of the true graph (under causal Markov and faithfulness

assumptions) and performs less well than for e.g. the GP mix where SAM can exploit both

conditional independence relations and distribution asymmetries. Though seemingly counter-

intuitive, a graph with more complex interactions between noise and variables may be actually

easier to recover than a graph generated with simple mechanisms (see also Wang and Blei

(2018)).

SAM’s computational cost is one order of magnitude higher than that of the other methods

(all measured on a single CPU core Intel Xeon 2.7Ghz).7 The lesioned versions, SAM-lin,

SAM-mse and SAM-line-mse have significantly worse performances than SAM (except for

the linear mechanism and additive Gaussian noise cases), demonstrating the merits of the

NN-based and adversarial learning approach in the general case.

7A speed up factor of 25 can be obtained for SAM using a GPU environment with single graphic card

GeForce GTX 1080Ti, particularly beneficial for the GAN training.



104 5.4. EXPERIMENTS

Linear GP AM GP Mix Sigmoid AM Sigmoid Mix NN
0.0

0.2

0.4

0.6

0.8

A
U

P
R

PC-Gauss

PC-HSIC

PC-RCOT

PC-RCIT

GES

GIES

LiNGAM

MMHC

CCDr

CAM

GENIE3

SAM-mse-linear

SAM

Figure 5.4: Performance of causal graph discovery methods on 100-node synthetic graphs

measured by the Area under the Precision Recall Curve (the higher, the better). On datasets

relying on Gaussian processes, CAM tops the leaderboard by a significant margin as its search

space matches the sought causal mechanisms. SAM demonstrates its robustness with respect

to the underlying generative models (better seen in color).

100-variable graphs The comparative results on the 100-node graphs (Fig. 5.4) confirm

the good overall robustness of SAM. As could have been expected, SAM is dominated by CAM

on the GP AM, GP Mix and Sigmoid AM; indeed, focusing on the proper causal mechanism

space yields a significant advantage, all the more so as the number of variables increases.

Nevertheless, SAM does never face a catastrophic failure, and it even performs quite well on

linear datasets. A tentative explanation is based on the fact that the tanh activation function

enables to capture linear mechanisms; another explanation is based on the adversarial loss,

empirically more robust than the MSE loss in high-dimensional problems.

In terms of computational cost, SAM scales well at d = 100 variables, particularly when

compared to its best competitor CAM, that uses a combinatorial graph search. The PC-HSIC

algorithm had to be stopped after 50 hours; more generally, constraint-based methods based

on the PC algorithm do not scale well w.r.t. the number of variables.

5.4.2 Simulated biological datasets

As said, the SynTREN (Van den Bulcke et al., 2006) and GeneNetWeaver (GNW) (Schaffter

et al., 2011) simulators of genetic regulatory networks have been used to generate obser-

vational data reflecting realistic complex regulatory mechanisms, high-order conditional de-

pendencies between expression patterns and potential feedback cycles, based on an available
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Figure 5.5: Performance of causal graph discovery methods on SynTREN graphs measured

by the Area under the Precision Recall Curve (the higher, the better). Left: 20 nodes. Right:

100 nodes (better seen in color).

.

causal model.

SynTREN simulator Sub-networks of E. coli (Shen-Orr et al., 2002) have been consid-

ered, where interaction kinetics are based on Michaelis-Menten and Hill kinetics (Mendes

et al., 2003). Overall, ten 10-nodes and ten 100-nodes graphs have been considered.8 For

each graph, 500-sample datasets are generated by SynTREN.

Likewise, the comparative results on all SynTREN graphs (Fig. 5.5) demonstrate the good

performances of SAM. Overall, the best performing methods take into account both distribu-

tion asymmetry and multivariate interactions. Constraint-based methods are hampered by

the lack of v-structures, preventing the orientation of many edges to be based on CI tests only

(PC-HSIC algorithm was stopped after 50 hours and LiNGAM did not converge on one of the

datasets). The benefits of using non-linear mechanisms on such problems are evidenced by

the difference between SAM-lin-mse and SAM-mse (Appendix 5.5.3). The Precision-Recall

curve is displayed on Fig. 5.6 for representative 20-node and 100-node graphs, confirming that

SAM can be used to infer networks having complex distributions, complex causal mechanisms

and interactions.

8Random seeds set to 1. . .10 are used for the sake of reproducibility. SynTREN hyper-parameters include

a probability of 1.0 (resp. 0.1) for complex 2-regulator interactions (resp. for biological noise, experimental

noise and noise on correlated inputs).
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Figure 5.6: Precision/Recall curve for two SynTREN graphs: Left, 20 nodes; Right, 100

nodes (better seen in color).

NET1 NET2 NET3 NET4 NET5
0.00

0.05

0.10

0.15

0.20

A
U

P
R

PC-Gauss

PC-HSIC

PC-RCOT

PC-RCIT

GES

GIES

MMHC

CCDr

CAM

GENIE3

SAM-mse-linear

SAM

Figure 5.7: Performance of causal graph discovery methods on 5 artificial datasets of the

Dream4 In Silico Multifactorial Challenge measured by the Area under the Precision Recall

Curve (the higher, the better). GENIE3 achieves the best performance on 4 datasets, with

SAM close second (better seen in color).

GeneNetWeaver simulator - DREAM4 Five 100-nodes graphs generated using the

GeneNetWeaver simulator define the In Silico Size 100 Multifactorial challenge track of the

Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative. These

graphs are subnetworks of transcriptional regulatory networks of E. coli and S. cerevisiae and

their dynamics are simulated using a kinetic gene regulation model, where noise is added both

in the dynamics of the networks and on the measurement of expression data. Multifactorial

perturbations are simulated by slightly increasing or decreasing the basal activation of all

genes of the network simultaneously by different random amounts. In total, the number of

expression conditions for each network is set to 100.

The comparative results on these five graphs (Fig. 5.7) show that GENIE3 outperforms
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Figure 5.8: Precision/Recall curve for the Dream4 In Silico Multifactorial Challenge (better

seen in color).

all other methods, with SAM ranking second. A tentative explanation for GENIE3 excellent

performance is that it does not enforce the discovery of acyclic graphs, which is appropriate

as regulatory networks involve feedback loops. The Precision/Recall curves (Fig. 5.8)

demonstrate that SAM matches GENIE3 performances in the low recall region. Overall,

on such complex problem domains, it appears relevant to make few assumptions on the

underlying generative model (like GENIE3 and SAM), while being able to capture high-

order conditional dependencies between variables. As said, LiNGAM did not converge on

one of these datasets.

5.4.3 Real-world biological data

The well-studied protein network problem (Sachs et al., 2005) is associated with observational

data including 7,466 observational samples. Same experimental setting is used as for the

other problem, with a bootstrap ratio of 0.8. According to both performance indicators (Fig.

5.9), SAM significantly outperforms the other methods. The precision/recall curve (Fig.

5.10) shows that SAM is particularly accurate when its confidence score is high, showing

that for critical applications where false negatives are to be avoided, using SAM with a

threshold is a viable option. Notably, SAM recovers the transduction pathway raf→mek→erk

corresponding to direct enzyme-substrate causal effect (Sachs et al., 2005).
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Figure 5.9: Performance of causal graph discovery methods on the protein network problem

(Sachs et al., 2005). Left, Area under the Precision Recall curve (the higher the better);

Right, Structural Hamming distance (the lower, the better). SAM significantly outperforms

all other methods on this dataset (better seen in color).

Figure 5.10: Precision/Recall curve for the curve protein network (better seen in color).

Partial conclusion

The main contribution of the paper is a unifying causal discovery framework, exploiting both

structural independence and distributional asymmetries through optimizing well-founded
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structural and functional criteria. This framework is implemented in the SAM algorithm9,

leveraging the non-parametric power of Generative Adversarial Neural networks (GANs) to

capture a faithful generative model and enforce the discovery of acyclic causal graphs through

sparsity and algebraic regularizations, using stochastic gradient descent.

Extensive empirical evidence is gathered to show SAM robustness across diverse synthetic,

realistic and real-world problems. Lesion studies are conducted to assess whether and when

it is beneficial to learn non-linear mechanisms and to rely on adversarial learning as opposed

to MSE minimization.

As could have been expected, in particular settings SAM is dominated by algorithms specif-

ically designed for this setting, such as CAM (Bühlmann et al., 2014) in the case of additive

noise model and Gaussian process mechanisms, and GENIE3 when facing causal graphs with

feedback loops. Nevertheless, SAM most often ranks first and always avoids catastrophic

failures. The main limitation of SAM is its computational cost, higher by an order of mag-

nitude than other approaches on 20-variable problems. On 100-variable problems however,

SAM catches up with the other approaches as it avoids the combinatorial exploration of the

graph space.

5.5 Appendix

5.5.1 Structural loss: Proof of Theorem 5

Theorem 5. DAG identification up to the Markov equivalence class

It is assumed, besides causal Markov ad faithfulness assumptions, that there exists some

integer n0 such that for any n > n0,

a) for any pair of variables Xi, Xj and any disjoint set of variables V ⊂ X such that

I(Xj , Xi|XV ) = 0

its empirical estimate satisfies:

În(Xj , Xi|XV ) <
λS
n

b) likewise, for any pair of variables Xi, Xj and any disjoint set of variables V ⊂ X,

I(Xj , Xi|XV ) > 0⇒ În(Xj , Xi|XV ) >
λS
n

Then as n goes to ∞, the minimum of the structural loss (Eq. (5.19)) is reached on the

equivalence class of G:

i) For every Ĝ in the equivalence class of G, LS(Ĝ, D) = LS(G, D).

ii) For every Ĝ not in the equivalence class of G, LS(Ĝ, D) > LS(G, D).

9Available at https://github.com/Diviyan-Kalainathan/SAM.

https://github.com/Diviyan-Kalainathan/SAM
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Proof. Let Ĝ be a DAG, and let Ĝ′ be defined from Ĝ by adding a single edge Xk → Xj such

that Ĝ′ is still a DAG. Let us compare the structural losses of Ĝ and Ĝ′:

∆LS = LS(Ĝ′, D)− LS(Ĝ, D)

= În(X
Pa(j;Ĝ′), Xj |XPa(j;Ĝ′))− Î

n(X
Pa(j;Ĝ)

, Xj |XPa(j;Ĝ)
) +

λS
n
.

From

În(Xj , X−j) = În(Xj , XPa(j;Ĝ′)) + În(X
Pa(j;Ĝ′), Xj |XPa(j;Ĝ′)), (5.26)

and

În(Xj , X−j) = În(Xj , XPa(j;Ĝ)
) + În(X

Pa(j;Ĝ)
, Xj |XPa(j;Ĝ)

), (5.27)

it follows:

∆LS = −În(Xj , XPa(j;Ĝ′)) + În(Xj , XPa(j;Ĝ)
) +

λS
n

= −În(Xj , XPa(j;Ĝ)
∪Xk) + În(Xj , XPa(j;Ĝ)

) +
λS
n

= −În(Xj , Xk|XPa(j;Ĝ)
) +

λS
n
.

• If Xj ⊥⊥Xk|XPa(j;Ĝ)
, then I(Xj , Xk|XPa(j;Ĝ)

) = 0 and according to assumption a), for

n > n0 Î
n(Xj , Xk|XPa(j;Ĝ)

) < λS
n and ∆LS > 0.

In other words, for n > n0 the loss increases when adding any irrelevant edge.

• If Xj ⊥6⊥Xk|XPa(j;Ĝ)
, then I(Xj , Xk|XPa(j;Ĝ)

) 6= 0. It follows from assumption b) that

În(Xj , Xk|XPa(j;Ĝ)
) > λS

n and therefore ∆LS < 0.

Likewise, the loss decreases for large n when adding any edge that removes an irrelevant

conditional independence.

Both results establish the consistency of the structural loss LS (Chickering (2002), Prop

8).

5.5.2 Parametric loss : Proof of Theorem 6

Theorem 6. For every DAG Ĝ 6= G in the Markov equivalence class of G, under the causal

Markov and faithfulness assumptions and Working Hypothesis 1:

d∑

j=1

K(p(xj |xPa(j;G)))
+
≤

d∑

j=1

K(p(xj |xPa(j;Ĝ)
)), (5.28)

Proof. Under the Working Hypothesis, the shortest description of p is given by the sum of

descriptions of the conditional probability distributions :

K(p(x))
+
=

d∑

j=1

K(p(xj |xPa(j;G))), (5.29)
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where the equality holds if conditionals p(xj |xPa(j;G)) are algorithmically independent (Janz-

ing and Scholkopf, 2010).

Thus for any DAG Ĝ in the Markov equivalence class of the G s.t. Ĝ 6= G:

p(x) =
d∏

j=1

p(xj |xPa(j;Ĝ)
). (5.30)

After Lemeire and Steenhaut (2010), the sum of the description of the conditionals

p(xj |xPa(j;Ĝ)
) is always greater than the description of their product, therefore,

K(p(x))
+
≤

d∑

j=1

K(p(xj |xPa(j;Ĝ)
)), (5.31)

Thus:

d∑

j=1

K(p(xj |xPa(j;G)))
+
≤

d∑

j=1

K(p(xj |xPa(j;Ĝ)
)), (5.32)

which concludes the proof.

5.5.3 Details of SAM experiments results

This appendix reports the detail of the experimental results summarized in section 5.4. Com-

putational time are measured on a 48-core Intel(R) Xeon(R) CPU E5-2650 CPU (between

parentheses, on a Nvidia GTX 1080 GPU).

20-variable artificial graphs Tables 5.1 and 5.2 show the robustness of SAM w.r.t. di-

verse types of mechanisms. In terms of average precision (Table 5.1) SAM is respectively

dominated by GES on linear (resp. CAM on GP AM) mechanisms, which is explained as GES

(resp. CAM) is specifically designed to identify linear (resp. Gaussian) causal mechanisms.

In terms of Average Structural Hamming distance (Table 5.2), SAM is likewise dominated by

algorithms specifically tailored to the considered type of mechanisms (LiNGAM, CAM and

CCDr), while yielding globally good performances. SAM main weakness is its computational

cost (second higher cost over all considered algorithms).

100-variable artificial graphs Tables 5.3 and 5.4 show the scalability of SAM w.r.t. the

number of variables. In terms of average precision (Table 5.3), SAM is only dominated by

CAM on the GP AM, GP Mix and Sigmoid AM causal mechanisms (noting that CAM is tai-

lored to Gaussian Processes). Most interestingly, its computational time favorably compares

to that of CAM on 100-variable problems. Note that PC-HSIC had to be stopped after 50

hours.
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Table 5.1: Artificial graphs with 20 variables: Average Precision (std. dev.) of all compared

algorithms over all six types of distributions (the higher the better). Significantly better

results (t-test with p-value 0.001) are underlined. The computational time is per graph.

AP Linear GP AM GP Mix Sigmoid AM Sigmoid Mix NN Global Time in s.

PC-Gauss 0.33 (0.06) 0.31 (0.07) 0.25 (0.10) 0.45 (0.10) 0.23 (0.06) 0.23 (0.05) 0.30 (0.07) 1

PC-HSIC 0.31 (0.07) 0.40 (0.06) 0.37 (0.07) 0.42 (0.08) 0.28 (0.08) 0.27 (0.03) 0.34 (0.06) 46 523

PC-RCOT 0.30 (0.04) 0.42 (0.06) 0.34 (0.06) 0.36 (0.05) 0.25 (0.05) 0.27 (0.03) 0.32 (0.05) 356

PC-RCIT 0.31(0.05 ) 0.37 (0.04) 0.31 (0.05) 0.35 (0.05) 0.25 (0.06) 0.27 (0.04) 0.30 (0.04) 181

GES 0.52 (0.07) 0.27 (0.06) 0.27 (0.07) 0.44 (0.14) 0.26 (0.11) 0.23 (0.07) 0.33 (0.10) 1

GIES 0.50 (0.09) 0.28 (0.07) 0.27 (0.10) 0.46 (0.14) 0.27 (0.10) 0.26 (0.09) 0.34 (0.12) 1

MMHC 0.29 (0.05) 0.23 (0.03) 0.20 (0.04) 0.31 (0.03) 0.23 (0.03) 0.25 (0.03) 0.25 (0.03) 1

LiNGAM 0.37 (0.05) 0.13 (0.03) 0.11 (0.02) 0.15 (0.06) 0.12 (0.02) 0.13 (0.03) 0.17 (0.03) 2

CAM 0.23 (0.07) 0.80 (0.07) 0.64 (0.12) 0.55 (0.11) 0.19 (0.04) 0.31 (0.10) 0.45 (0.08) 2 880

CCDr 0.33 (0.06) 0.31 (0.07) 0.25 (0.09) 0.45 (0.10) 0.23 (0.06) 0.23 (0.05) 0.30 (0.07) 2

GENIE3 0.27 (0.05) 0.47 (0.04) 0.46 (0.08) 0.40 (0.05) 0.24 (0.02) 0.31 (0.04) 0.36 (0.05) 54

SAM-lin-mse 0.31 (0.04) 0.29 (0.05) 0.29 (0.05) 0.32 (0.06) 0.28 (0.04) 0.32 (0.08) 0.30 (0.07) 332 (70)

SAM-mse 0.29 (0.04) 0.43 (0.04) 0.46 (0.10) 0.40 (0.08) 0.26 (0.05) 0.33 (0.07) 0.36 (0.05) 2 984 (91)

SAM-lin 0.49 (0.10) 0.28 (0.04) 0.29 (0.03) 0.41 (0.09) 0.35 (0.08) 0.34 (0.08) 0.30 (0.07) 14 812 (645)

SAM 0.39 (0.08) 0.67 (0.08) 0.74 (0.12) 0.58 (0.13) 0.53 (0.06) 0.45 (0.09) 0.56 (0.09) 17 388 (676)

Table 5.2: Artificial graphs with 20 variables: Average Structural Hamming Distance (std.

dev.) of all compared algorithms over all six types of distributions (the lower the better).

Significantly better results (t-test with p-value 0.001) are underlined.

SHD Linear GP AM GP Mix Sigmoid AM Sigmoid Mix NN

PC-Gauss 42.80 (6.74) 46.65 (4.68) 45.60 (5.45) 38.95 (9.93) 52.15 (6.46) 48.35 (7.37)

PC-HSIC 43.15 (5.04) 42.85 (7.05) 40.65 (5.16) 41.05 (9.23) 47.35 (9.32) 44.85 (6.83)

PC-RCOT 42.40 (4.42) 40.65 (6.16) 40.40 (6.38) 42.90 (8.52) 46.35 (7.49) 43.30 (6.68)

PC-RCIT 42.35 (5.09) 44.05 (5.85) 41.00 (6.24) 42.70 (9.41) 46.45 (6.37) 42.80 (7.05)

GES 43.05 (18.5) 72.20 (9.60) 57.45 (8.21) 46.55 (15.9) 75.60 (16.8) 78.05 (17.5)

GIES 42.70 (17.7) 70.45 (8.64) 57.65 (10.1) 47.55 (15.0) 57.65 (10.1) 75.25 (15.0)

MMHC 45.5 (5.25) 62.3 (4.67) 64.0 (6.85) 54.80 (9.59) 56.3 (7.16) 50.30 (7.36)

LiNGAM 36.50 (4.99) 46.70 (5.23) 43.20 (6.80) 45.80 (8.72) 52.10 (5.82) 54.80 (10.2)

CAM 71.15 (6.47) 26.80 (6.68) 42.65 (10.2) 50.90 (9.63) 75.45 (11.5) 70.50 (10.1)

CCDr 42.80 (6.40) 46.65 (4.44) 45.60 (5.17) 38.90 (9.42) 52.15 (6.12) 48.35 (6.99)

GENIE3 40.3 (6.96) 43.7 (5.81) 38.9 (7.14) 44.5 (8.41) 42.4 (5.80) 40.9 (7.23)

SAM-lin-mse 43,00 (7.29) 47.56 (6.70) 41.56 (6.31) 48.22 (9.61) 45.44 (5.56) 42.89 (7.68)

SAM-mse 46.78 (6.03) 41.00 (5.42) 36.11 (3.93) 44.33 (11.6) 49.56 (4.69) 44.89 (7.43)

SAM-lin 39.00 (6.46) 54.33 (6.29) 46.11 (4.25) 45.33 (8.86) 47.11 (6.37) 44.56 (8.69)

SAM 45.40 (5.32) 31.90 (8.53) 25.20 (4.54) 40.10 (11.7) 39.00 (4.40) 40.80 (6.05)

Realistic problems (SynTReN, GENIE3, and Cyto) Tables 5.5 and 5.6 show the

robustness of SAM on realistic problems generated with the SynTReN simulator (20 graphs

of 20 nodes and 100 nodes) and on the so-called Sachs problem (Sachs et al., 2005) (Cyto)

in terms of average precision (the higher the better) and structural Hamming distance (the

lower the better). SAM yields significantly better results in all cases except on the SynTReN

100 nodes, where it is dominated by GENIE3 in terms of structural Hamming distance.
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Table 5.3: Artificial graphs with 100 variables: Average Precision (std. dev.) of all compared

algorithms over all six types of distributions (the higher the better). Significantly better

results (t-test with p-value 0.001) are underlined. The computational time is per graph.

AP Linear GP AM GP Mix Sigmoid AM Sigmoid Mix NN Global Time in s.

PC-Gauss 0.20 (0.03) 0.24 (0.03) 0.23 (0.03) 0.54 (0.04) 0.21 (0.04) 0.19 (0.03) 0.27 (0.03) 13

PC-HSIC - - - - - - - -

PC-RCOT 0.20 (0.03) 0.24 (0.03) 0.23 (0.02) 0.54 (0.04) 0.21 (0.04) 0.19 (0.03) 0.27 (0.03) 31 320

PC-RCIT 0.17 (0.03) 0.27 (0.03) 0.21 (0.02) 0.36 (0.03) 0.19 (0.02) 0.17 (0.01) 0.23 (0.02) 46 440

GES 0.38 (0.08) 0.28 (0.05) 0.23 (0.02) 0.58 (0.06) 0.37 (0.06) 0.34 (0.06) 0.36 (0.05) 1

GIES 0.38 (0.08) 0.27 (0.05) 0.23 (0.03) 0.59 (0.04) 0.38 (0.07) 0.33 (0.06) 0.36 (0.05) 5

MMHC 0.18 (0.02) 0.16 (0.01) 0.17 (0.01) 0.31 (0.02) 0.17 (0.02) 0.16 (0.01) 0.19 (0.01) 5

LiNGAM 0.22 (0.05) 0.03 (0.01) 0.03 (0.01) 0.07 (0.02) 0.05 (0.01) 0.07 (0.01) 0.08 (0.02) 5

CAM 0.28 (0.05) 0.90 (0.03) 0.66 (0.03) 0.66 (0.03) 0.22 (0.03) 0.31 (0.04) 0.50 (0.03) 45 899

CCDr 0.20 (0.03) 0.24 (0.03) 0.23 (0.02) 0.54 (0.04) 0.21 (0.04) 0.19 (0.03) 0.27 (0.03) 3

GENIE3 0.14 (0.02) 0.39 (0.02) 0.34 (0.02) 0.32 (0.02) 0.18 (0.02) 0.19 (0.01) 0.26 (0.02) 511

SAM-lin-mse 0.15 (0.02) 0.14 (0.01) 0.09 (0.01) 0.16 (0.03) 0.16 (0.02) 0.18 (0.02) 0.15 (0.02) 3 076 (74)

SAM-mse 0.15 (0.02) 0.25 (0.02) 0.11 (0.02) 0.18 (0.02) 0.18 (0.02) 0.19 (0.01) 0.18 (0.02) 18 180 (118)

SAM-lin 0.51 (0.09) 0.29 (0.04) 0.18 (0.01) 0.51 (0.04) 0.50 (0.04) 0.44 (0.07) 0.41 (0.02) 24 844 (1 980)

SAM 0.53 (0.08) 0.58 (0.04) 0.46 (0.05) 0.63 (0.04) 0.60 (0.07) 0.45 (0.09) 0.54 (0.06) 24 844 (2 041)

Table 5.4: Artificial graphs with 100 variables: Average Structural Hamming Distance (std.

dev.) of all compared algorithms over all six types of distributions (the lower the better).

Significantly better results (t-test with p-value 0.001) are underlined.

SHD Linear GP AM GP Mix Sigmoid AM Sigmoid Mix NN

PC-Gauss 262.65 (19.87) 255.35 (12.99) 250.00 (10.85) 170.55 (12.05) 258.30 (16.49) 260.80 (15.79)

PC-HSIC - - - - - -

PC-RCOT 262.65 (19.87) 255.35 (12.99) 250.00 (10.85) 170.55 (12.05) 258.30 (16.49) 260.80 (15.79)

PC-RCIT 253.05 (18.87) 246.30 (17.58) 246.95 (9.950) 208.75 (16.11) 244.80 (17.30) 246.05 (10.00)

GES 292.10 (38.00) 412.40 (31.04) 326.15 (17.91) 206.30 (21.39) 365.85 (32.54) 391.95 (43.10)

GIES 288.40 (34.29) 417.00 (30.76) 322.10 (18.24) 202.95 (15.75) 371.45 (29.28) 385.75 (42.37)

MMHC 275.12 (13.54) 372.41 (18.6) 345.15 (15.2) 296.51 (15.3) 315.01 (12.7) 284.93 (14.05)

LiNGAM 230.00 (12.11) 251.00 (21.76) 252.00 (10.85) 241.10 (16.78) 251.44 (17.42) 250.60 (15.69)

CAM 309.25 (26.91) 94.60 (11.20) 170.70 (11.99) 159.85 (12.39) 354.25 (18.32) 333.20 (28.84)

CCDr 262.65 (19.87) 255.35 (12.99) 250.00 (10.85) 170.55 (12.05) 258.30 (16.49) 260.80 (15.79)

GENIE3 240.2 (17.62) 252.4 (18.33) 247.0 (10.66) 238.5 (19.46) 238.3 (16.66) 237.3 (13.16)

SAM-lin-mse 238.56 (16.84) 256.78 (12.02) 247.89 (10.28) 239.67 (19.10) 238.44 (16.65) 234.11 (8.45)

SAM-mse 269.89 (20.82) 238.89 (13.08) 249.67 (11.01) 238.33 (17.57) 256.89 (19.83) 243.67 (11.02)

SAM-lin 193.89 (24.94) 251.89 (13.05) 265.67 (11.41) 196.78 (12.53) 195.67 (14.26) 199.78 (20.71)

SAM 182.30 (26.38) 186.10 (13.05) 211.60 (19.22) 158.00 (17.74) 167.60 (17.40) 186.89 (18.96)

The Dream4 In Silico Multifactorial Challenge. Tables 5.7 and 5.8 show the robust-

ness of SAM on 5 artificial graphs of the Dream4 In Silico Multifactorial Challenge, respec-

tively in terms of average precision and structural Hamming distance. GENIE3 achieves the

best performance overall, and SAM is second.
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Table 5.5: Realistic problems: Average precision (std dev.) over 20 graphs (the higher the

better). Left: 20 nodes. Middle: 100 nodes. Right: real protein network.. Significantly

better results (t-test with p-value 0.001) are underlined.

AP SynTREN 20 nodes SynTREN 100 nodes Cyto

PC-Gauss 0.16 (0.06) 0.06 (0.01) 0.16

PC-HSIC 0.06 (0.01) - -

PC-RCOT 0.16 (0.05) 0.07 (0.02) 0.39

PC-RCIT 0.16 (0.05) 0.07 (0.01) 0.41

GES 0.14 (0.06) 0.06 (0.01) 0.14

GIES 0.12 (0.04) 0.06 (0.01) 0.22

MMHC 0.14 (0.05) 0.07 (0.01) 0.25

LiNGAM - - 0.16

CAM 0.21 (0.08) 0.19 (0.04) 0.28

CCDr 0.18 (0.12) 0.21 (0.05) 0.22

GENIE3 0.23 (0.07) 0.13 (0.02) 0.32

SAM-lin-mse 0.19 (0.08) 0.09 (0.02) 0.26

SAM-mse 0.40 (0.14) 0.17 (0.02) 0.28

SAM-lin 0.24 (0.23) 0.13 (0.03) 0.23

SAM 0.59 (0.15) 0.35 (0.06) 0.45

Table 5.6: Realistic problems: Structural Hamming distance (std. dev.) over 20 graphs

(the higher the better). Left: 20 nodes. Middle: 100 nodes. Right: real protein network..

Significantly better results (t-test with p-value 0.001) are underlined.

SHD SynTREN 20 nodes SynTREN 100 nodes Cyto

PC-Gauss 53.42 (6.13) 262.65 (19.87) 28

PC-HSIC 24.13 (4.08) - -

PC-RCOT 34.21 (7.99) 213.51 (8.60) 22

PC-RCIT 33.20 (7.54) 204.95 (8.77) 23

GES 67.26 (12.26) 436.02 (18.99) 38

GIES 69.31 (12.55) 430.55 (22.80) 41

MMHC 67.2 (8.42) 346 (14.44) 38

LiNGAM - - 23

CAM 57.85 (9.10) 222.9 (12.38) 28

CCDr 54.97 (16.68) 228.8 (21.15) 35

GENIE3 23.6 (4.14) 153.2 (4.59) 20

SAM-lin-mse 25.44 (4.97) 240.1 (3.92) 19

SAM-mse 25.67 (6.96) 173.78 (6.36) 22

SAM-lin 30.45 (8.09) 168.89 (5.63) 20

SAM 19.02 (5.83) 160.21 (13.03) 14
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Table 5.7: Precision on 5 artificial graphs of the Dream4 In Silico Multifactorial Challenge

(the higher, the better). The best results are in bold..

AP NET1 NET2 NET3 NET4 NET5

PC-Gauss 0.113 0.072 0.144 0.130 0.136

PC-HSIC 0.116 0.070 0.151 0.121 0.127

PC-RCOT 0.094 0.054 0.113 0.097 0.079

PC-RCIT 0.084 0.046 0.104 0.083 0.086

GES 0.051 0.053 0.061 0.080 0.081

GIES 0.047 0.062 0.065 0.076 0.073

MMHC 0.116 0.073 0.148 0.133 0.141

LiNGAM - - - - -

CAM 0.116 0.080 0.210 0.147 0.121

CCDr 0.088 0.099 0.114 0.119 0.165

GENIE3 0.154 0.155 0.231 0.208 0.197

SAM-lin-mse 0.108 0.136 0.204 0.159 0.111

SAM-mse 0.095 0.066 0.188 0.145 0.136

SAM-lin 0.080 0.077 0.190 0.170 0.134

SAM 0.133 0.129 0.222 0.200 0.210

Table 5.8: Structural Hamming distance on 5 artificial graphs of the Dream4 In Silico Mul-

tifactorial Challenge (the lower, the better). The best results are in bold.

AP NET1 NET2 NET3 NET4 NET

PC-Gauss 183 261 200 223 203

PC-HSIC 170 249 193 210 192

PC-RCOT 174 248 193 211 191

PC-RCIT 172 248 193 211 191

GES 252 333 279 286 266

GIES 261 314 281 304 274

MMHC 188 263 206 223 203

LiNGAM - - - - -

CAM 178 250 182 213 196

CCDr 187 248 209 227 189

GENIE3 172 245 190 208 193

SAM-lin-mse 176 249 195 211 193

SAM-mse 171 253 197 211 192

SAM-lin 175 249 190 204 191

SAM 176 251 191 209 192



Chapter 6

Conclusions

Causal discovery represents a crucial domain of machine learning to understand models and to

be able to predict effects of interventions, of modifications in a given system, which is needed

for decision makers and practitioners. Traditionnally, causal discovery in the graph setting

is performed leveraging structural information in the data, namely conditional dependencies

and independencies (Spirtes et al., 2000; Chickering, 2002). In the pairwise setting, as the

structural information is limited, methods leverage distributional asymmetries to indentify

causality (Hoyer et al., 2009; Zhang and Hyvärinen, 2010). Our approach extends the works

of Stegle et al. (2010); Janzing et al. (2012); Bühlmann et al. (2014), using neural networks

to leverage both structural and distributional information.

6.1 Discussion

The main contribution of this thesis is threefold: i) a principled framework for causal discov-

ery based on information theory is presented together with a theoretical analysis, establishing

the optimality of the proposed approach under mild assumptions; ii) two algorithms, imple-

menting the proposed approach, have been presented; both non linear and leveraging the

representative power of neural networks; iii) a throughout experimental validation of these

algorithms, along with open-source tools used to evaluate algorithms.

The first algorithm, Causal Generative Neural Networks (CGNN) (Goudet et al.,

2018), assuming the existence of an causal graph skeleton shows how to find the optimal

solution, expressed as a constructive description of the underlying data distribution: A hill-

climbing search in performed in the 2L possibilities of graphs in the graph skeleton such as

score based-methods, L representing the number of edges. The originality is to propose an

evaluation score that can be optimized within the neural network, based on the Maximum

Mean Discrepancy (MMD) distance (Gretton et al., 2007) between the original distribution

and the generated one. This score inherits a good property of MMD: the unique optimum

in the large sample limit. The value of this metric at convergence of the neural network also
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represents the score of the candidate graph. Once learned, the CGNN model can be used to

generate data and simulate interventions in the causal graph.

Limitations The main limitation of CGNN resides in its computational complexity: score

is quadratic in the number of samples because of the MMD metric, and requires to retrain

a neural network for each new candidate graph. Such complex score is not well suited to

score-based methods, that heuristically explore the graph space and test numerous graph

candidates. Considering the cost of evaluating a candidate graph, only the greediest graph

search heuristics are applicable to CGNN, thus preventing an efficient exploration of the

graph space to provide optimal solutions. The proposed CGNN algorithm does also possess a

significant amount of hyperparameters, such as the learning rate of the neural network, or the

number of epochs of training. However, the parameter controlling the number of hidden units

of the generators is the most crucial parameter: it controls the class of admissible functions

as causal mechanisms. Set too high, all kinds of functions are accepted, which allows the

generators to generate variables from noise variables. On the opposite, the predictions can

also be biased if the this parameter is set too low, as the neural network saturates. In

CGNN, this parameter corresponds directly to the number of hidden units in the neural

network. While setting these hyperparameters, an equilibrium must be found. In practice,

the use of artificial datasets allows to set properly their values by performing a grid-search.

Addressing these limitations, the Structural Agnostic Model (SAM) (Kalainathan

et al., 2019) represents the second algorithmic contribution of this thesis. In contrast, SAM

is a global learning method, leveraging gradient descent to learn its graph; the candidate

graph graph is broken down into a set of generators, one for each variable.

A generator’s task is to find the parents of the target variable.

Since the computational graph is differenciable up to the set of parents of each variable,

the variable selection is learned through automatic differentiation.

The metric for variable generation is a adversarial neural network (Goodfellow et al.,

2014), comparing between the true observational data and the data generated by the set of

networks. This GAN setting leads to a linear computational cost with respect to data size,

compared to CGNN, which is quadratic because of the MMD. SAM allows us to infer a causal

graph in a single learning phase of the neural network, thus reducing drastically the computa-

tional cost compared to CGNN. The optimization of the structure to obtain a causal graph,

made of binary values translating the presence or absence of edges in the graph, is made

directly using the Gumbel softmax trick (Jang et al., 2016; Maddison et al., 2016), allow-

ing backpropagation through discrete variables (Section 3.3.5). This allows us to formulate

the super-exponential graph-search as a optimization problem that can be resolved through

backpropagation, allowing SAM to be run on hundreds of variables. In SAM, the issue of

fixing the number of hidden units of the generators is remediated with a soft constraint: the

number of hidden units is learned using the Gumbel Softmax binary optimization, similar to
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the one used for learning the structure. This yields a smoother regulation of the number of

hidden units, thus making the structure less sensitive to this hyperparameter.

Limitations The consequence of using a adversarial neural network in the SAM architec-

ture is the relative instability of training. Although a mode collapse of the GAN was never

noticed during all experiments, there is no indication of the progress of the training and the

quality of the current model.

At the cost of computational complexity, a more stable alternative would be to replace

the discriminator with a MMD (Gretton et al., 2007) metric.

Applications of SAM and CGNN

The algorithms proposed in this thesis are already being used in real-world applications in

various domains such as social sciences or bio-informatics. A first application is based of two

datasets on quality of life at work (QWL) collected by the French Ministry of work (Kalainathan

et al. (2018), in french). The datasets are composed of a 500 feature survey on quality of life

at work of 30000 workers and financial results of hundreds of thousands of French companies.

The goal of the study is to evaluate the impact of QWL on the productivity of a company.

An initial study of the data was made on the survey dataset, published in (Kalainathan

et al. (2018), in french); it consisted of analyzing the various types of profiles identified in the

dataset with a principal component analysis and a K-means clustering. Afterwards, a causal

discovery application has been done on the financial data of the French companies, as it is

all numerical data, well suited for neural network based algorithms. After selecting groups

of companies from a same activity sector, the causal discovery experiments highlighted some

interesting causal links, such as the access to training programs for employees tending to

reduce accidents at work and occupational diseases.

A second application of SAM is on the detection of genetic regulation effect (Bothorel

et al. (2019), in french): the study focuses on the interactions of genes and the underlying

mechanisms, to provide a better understanding of problems in health, agronomy and much

more. The objective of this application is to represent the various interactions of a given

cellular system to understand the various regulation mechanisms and their related illnesses

through the deregulation of some phenomena due to external/environmental factors. This

study complements Zaag et al. (2014), based on the clustering and analysis of the 26374 genes

of interest of the plant Arabidopsis thaliana; causal discovery is applied only on a single cluster

of interest. The use of SAM allowed to highlight some possible causal links between genes, to

be validated by performing real-world experiments while reporting consistency with already

known causal links. Further work consist in extending SAM to apply it on the whole database

of 26374 genes.
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Finally, a third application of SAM and CGNN focuses on the generation of data: as the

model is a generative neural network, it also can be used to generate data after training.

The main objective of the MediChal (Yale et al., 2018) project is to provide means to gen-

erate realistic data given private data, while keeping the privacy of the data. The study

concerns the MIMIC dataset (Johnson et al., 2016) which contains private medical data,

which is unpractical for scientific studies and teaching purposes. Therefore, SAM provides a

causal graph on data along with open-source generated data. The causal graph allows the

practitioners to have insight on the generation of the data and on its structure and virtually

perform experiments through the generators.

Finally, SAM and CGNN did impact the machine learning research community, which

produced either extensions (Yu et al., 2019; Lachapelle et al., 2019) or models for time-series

(Nauta, 2018) or for feature selection (Doquet and Sebag, 2019) by leveraging SAM and

CGNN’s unique structures.

Limitations of the proposed approaches

The proposed SAM and CGNN algorithms both possess a significant amount of hyperparam-

eters, such as the learning rate of the neural network, or the number of epochs of training.

While setting these hyperparameters, an equilibrium must be found. In practice, the use of

artificial datasets allows to set properly their values by performing a grid-search.

CGNN’s main limitation is its inability to scale up to hundreds of variables due to its

scoring function. SAM tackles this issue by leveraging gradient descent and fully using the

parallel computation in GPUs. A downside is its memory consumption as SAM stores for

each variable a neural network; during the forward phase of SAM, the dataset has to be

fed into each generator thus making the memory consumption grow quadratically with the

number of variables. This refrains from using SAM on datasets of thousands of variables on

modern GPUs.

Generative neural networks are known to perform well with numerical data, but not with

mixed data. CGNN and SAM do possess the same flaws: they are not supporting categorical

data directly, as the evaluation has to be adapted depending on which kind of data is given:

the marginal distribution of a categorical value is composed of spikes at each category, which

can be considered as highly complex if it is considered as a numerical value. This limitation

is preventing CGNN and SAM from being used on mixed-type datasets, which represent the

majority of datasets for causal discovery.

Finally, the causal sufficiency assumption is made in SAM, such as in many other causal

discovery methods. Making this assumption is rather tricky when dealing with real data,

where the presence of hidden confounding variables is not known, which might ultimately

lead to wrong conclusions. Indeed, hidden confounding variables introduce dependencies

between variables in the data without any direct causal relationship. CGNN does provide

an extension for dealing with hidden confounders: by introducing shared noise between each

pair of variables, it allows for explaining the dependencies with the presence of a common
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noise variable.

Unlike other approaches, methods involving neural networks are exposed to instability:

the stochasticity of the learning procedure or the initialization of the neural networks af-

fect their final performance and predictions. This phenomenon is also present in SAM and

CGNN, making the predictions vary in independent runs while considering the same data

and parameters. This instability is alleviated by computing independently multiple runs on

the same setting, and then averaging the results. The averaging procedure is usually done

with 16 runs, as the experiments highlighted that running more does not improve predictive

performance.

6.2 Research perspectives

In this section, we will discuss the improvements and extensions on the Structural Agnostic

Model (SAM) algorithm, as it represents a more computationally efficient and better per-

forming alternative to CGNN. The potential developments of SAM will allow it to extend

its usability in the most general cases, thus freeing the practitioner from checking all the

assumptions on the data before performing causal discovery.

6.2.1 Reducing the computational cost

SAM can scale up to few hundreds of variables with the modern GPU architectures, which is

enough for many applications; in order for it to accept more variables efficiently, revising the

architecture of the neural network is needed. The main memory consumption of SAM comes

from the generative neural networks in parallel for each variable. A way to refrain from

initializing one generator for each variable is to merge the generators in an auto-encoder

fashion, while adding rules to prevent a variable to generate itself (Figure 6.1).
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False
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Figure 6.1: Proposed architecture of the auto-encoder SAM on an example of 5 variables, the

binary coefficients aik and bik define the causal graph, and possess a constraint such that a

variable cannot generate itself
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Let {Zi}Ki=1 be sets of k neurons of the only hidden layer of the structure, and A =

aik,B = bik represent binary structural gates, as in SAM. aik represents the connection of

the inputs with the sets of hidden units, and bki represents the connection of the sets to the

output. In order to refrain a variable from generating itself, a set taking a variable Xi as

input cannot be used to generate Xi, which corresponds to : aik ∗ bki = 0. On a global scale,

this constraint becomes:

A ◦Bt = 0, (6.1)

with ◦ corresponding to the Hadamard product. Finally, the graph structure would be

obtained by matrix product between the two gate matrices1:

A = A ·B, (6.2)

where A corresponds to the adjacency matrix of the graph. This new formulation of SAM

allows to compress its structure and have more efficient generators that share data and

weights.

6.2.2 Confounding variables

As mentioned previously, providing a solution to the hidden confounding variables issue is of

significant importance when SAM is to be used in real-world applications. However, unlike

linear methods where analytic resolutions of the linear FCMs are possible (Hoyer et al., 2006,

2008; Salehkaleybar et al., 2019), it is nearly impossible to solve analytically the FCMs for

complex causal mechanisms in the case of hidden confounding variables.

A possible alternative to alleviate causal sufficiency is to introduce and learn correlated

noise between variables in the model, such as in CGNN. Instead of introducing a noise variable

between each pair of variables, a handy way to formulate this correlated noise is through a

correlation matrix: Let Σ be a correlation between d noise variables Ei, d being the number of

variables in the dataset. At each epoch, d independent noise variables εi are drawn from the

N (0, 1) distribution; these noises are fed into the correlation matrix, producing the correlated

noises Ei given as input to the generators:

{E1, . . . , Ed}nj=1 = {ε1, . . . , εd}nj=1 · Σ. (6.3)

The introduction of differenciable parameters in the correlation matrix allows the SAM struc-

ture to automatically leverage correlation between variables in an efficient manner, and thus

provides SAM with means to explain dependencies in the data originating from hidden vari-

ables.

6.2.3 Time series

Causal discovery and time series are often closely related: in many domains such as economet-

rics, bio-informatics, time-series datasets allow practitioners to detect causalities of phenom-

ena more accurately than cross-sectional observational data. Indeed, the delays between the

1cropping values to 1 is necessary to obtain a binary adjacency matrix
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causes and the effects highlights the causal mechanisms, and can be exploited by algorithms

to infer causal relationships. Traditionally, practitioners leverage Granger causality to reveal

causal relationships; Let Xt and Yt two temporal series, Granger causality states that:

X
g→ Y if [X0, . . . , Xt] allows to predict Yt+1

An adaptation of the SAM architecture to support time series would be to introduce

recurrent neural networks (RNNs) in the generators, such as in the C-RNN-GAN (Mogren,

2016). This new structure would allow SAM to detect dependencies in time because of the

memory in the RNN structure.

6.2.4 Adaptation for discrete and mixed-type data

For neural network architectures to seamlessly support the usage of discrete or mixed type

data, an adaptation of the structure of the neural network is often needed. Usually, this

adaptation is made using the one-hot encoding of variables and adding a softmax or sigmoid

function at the output. However, applying those changes directly to SAM is not possible

because of the generators and the GAN architecture: the output of the generators should be

discrete variables and not logit values nor probabilities (output of the sigmoid/softmax func-

tion). This is due to the adversarial setting that will easily distinguish generated numerical

data from true discrete data.

One solution to circumvent this issue is to use both a one-hot encoding along with the

Gumbel-Softmax trick (Maddison et al., 2016; Jang et al., 2016) at the output of the gen-

erators: it will allow for seamless generation of discrete variables. However, adding a one

hot encoding to the already memory-heavy SAM does penalize its computational complexity;

other approaches for encoding discrete data such as auto-encoding might bring more efficient

solutions to this problem.

6.2.5 Cyclic graphs

Most of the causal discovery algorithms seek directed acyclic graphs (DAG), and few attempts

have been made to recover cyclic graphs without assuming linear mechanisms (Forré and

Mooij, 2018). Making this acyclicity assumption proves itself to be non-realistic in some real

cases such as protein regulation, where feedback loops intervene to regulate the production

or inhibition of a protein. This problem proves itself to be tricky, as the removal of the DAG

constraint in SAM (Zheng et al., 2018b), does shift the parent-children recovery objective to

a Markov blanket recovery problem (c.f. Section 5.2.1). Indeed, the spouses of the variables

will be taken into account as they are not independent conditionally to the children variables.

An alternative to this DAG constraint would be another constraint, specifically targeting V-

structures and spouses. This constraint should be a soft constraint, as structures such as the

one depicted on Fig. 6.2 should also be allowed.
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X1

X2

X3

Figure 6.2: Causal structure where the spouse is directly causally related

Another alternative to the DAG constraint would be to add another constraint such as

Forré and Mooij (2018) that checks the global and local consistency of the graph at each

epoch, at the cost of computational complexity.

6.3 Long-term perspectives

Modeling and leveraging interventions and experiments Interventions and experi-

ments represent the gold standard to infer causal relationships: they provide reliable guaran-

tees on the causal directions. However, these are often hard to obtain or very costly, making

this data quite sparse. Implementing and adapting algorithms to take account for these new

kinds of data allow for more robust causal discovery.

On the opposite, having a model that could predict the causal effect of a variable given

another could provide decision makers crucial information: being able to predict accurately

counterfactual effects with certainty and error margins in order to make optimal decisions.

Domain adaptation for the cause-effect problem The algorithms developed for the

cause-effect pair challenges (Guyon, 2013, 2014) have introduced a new paradigm of consider-

ing the pairwise causal discovery problem as a pattern recognition problem. These algorithms

managed to achieve strong performance on the challenges, attaining AUROC scores of 0.8.

However, practitioners soon noticed that these algorithm had their performance quite de-

pendent of the pairs given as training and the test pairs, more specifically dependent on the

difference between those sets of data. This issue can be associated with a domain adapta-

tion problem, where the source domain consists in artificial pairs, and the target domain

corresponds to real data, or test data. Introducing domain adaptation through a GAN set-

ting (Ganin et al., 2016) for causal discovery would allow algorithms such as RCC or NCC

(Lopez-Paz et al., 2015, 2016) to cope with the difference between the sets of data during the

training phase of the neural network architecture.
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Appendix A

Causal discovery toolbox

Causal modeling is key to understand physical or artificial phenomena and to guide inter-

ventions. Most softwares for causal discovery have been developed in the R programming

language (Kalisch et al., 2018; Scutari, 2018), and a few causal discovery algorithms are avail-

able in Python e.g. RCC (Lopez-Paz et al., 2015), CGNN (Goudet et al., 2018) and SAM

(Kalainathan et al., 2019), while Python supports many current machine learning frameworks

such as PyTorch (Paszke et al., 2017).

The Causal Discovery Toolbox (Cdt) is an open-source Python package concerned

with observational causal discovery, aimed at learning both the causal graph and the as-

sociated causal mechanisms from samples of the joint probability distribution of the data.

Cdt includes many state-of-the-art causal modeling algorithms (some of which are imported

from R), that supports GPU hardware acceleration and automatic hardware detection. A

main goal of Cdtis to provide the users with guidance towards end-to-end experiments, by

including scoring metrics, and standard benchmark datasets such as the ”Sachs” dataset

(Sachs et al., 2005).

Compared to other causal discovery packages, Cdt unifies pairwise and score-based multi-

variate approaches within a single package, implementing an step-by-step pipeline approach

(Fig. A.1).

Graph recovery

algorithms
Data

Undirected

Graph

Causal Discovery

algorithms

Directed

Graph

Figure A.1: The Cdt causal modeling package: General pipeline

Cdt also provides an intuitive approach for including R-based algorithms, facilitating the

task of extending the toolkit with additional R packages. The package revolves around the

usage of networkx.Graph classes, mainly for recovering (un)directed graphs from observational

data. Cdt currently includes 17 algorithms for graph skeleton identification: 7 methods based

on independence tests, and 10 methods aimed at directly recovering the skeleton graph.
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It further includes 20 algorithms aimed at causal directed graph prediction, including 11

graphical and 9 pairwise approaches.

A.1 Original contributions of the package

The causal pairwise setting considers a pair of variables and aims to determine the causal

relationship between both variables. This setting implicitly assumes that both variables are

already conditioned on other covariates, or readjusted with a propensity score (Rosenbaum

and Rubin, 1983), and that the remaining latent covariates have little or no influence and can

be considered as “noise”. The pairwise setting is also relevant to complete a partially directed

graph resulting from other causal discovery methods. In the 2010s, the pairwise setting was

investigated by Hoyer et al. (2009) among others, who proposed the Additive Noise Model

(ANM). Later on, Guyon (2013) on Cause-Effect pair (CEP) problems; CEP formulates

bivariate causal identification as a supervised machine learning task, where a classifier is

trained from examples (Ai, Bi, `i), where the variable pair (Ai, Bi) is represented by samples

of their joint distribution and label `i indicates the type of causal relationship between both

variables (independent, Ai → Bi, Bi → Ai). CDT is the only package in any language to

include causal pairwise discovery algorithms. These algorithms, mostly implemented using

Python or Matlab are often left unmaintained. Therefore, many algorithms that are known

to be quite efficient (such as Jarfo (Fonollosa, 2016), first and first in the cause-effect pairs

challenges, coded in Python 2.7) are outdated and require a substantial amount of work to

fix and update. Cdt implements 9 pairwise algorithms, all coded in Python, 5 of them being

new implementations (NCC, GNN, CDS, RECI and a baseline method based on regression

error).

The graph setting, extensively studied in the literature, is supported by many packages.

Bayesian approaches rely either on conditional independence tests named constraint-based

methods, such as PC or FCI (Spirtes et al., 2000; Strobl et al., 2017), or on score-based

methods, involving finding the graph that maximizes a likelihood score through graph search

heuristics, like GES (Chickering, 2002) or CAM (Bühlmann et al., 2014). Other approaches

leverage the Generative Network setting, such as CGNN or SAM (Goudet et al., 2018;

Kalainathan et al., 2019). Graph setting methods output either a directed acyclic graph

or a partially directed acyclic graph. Most approaches in the graph setting are imported

from R packages, with the exception of CGNN and SAM.

A.2 Comparison with other packages

To our best knowledge, Causality and Py-Causal are the only alternatives to Cdt for

causal discovery in Python. However, the only overlap with Cdt concerns the PC-algorithm,

common to Py-Causal and Cdt. Akin to Cdt, Py-Causal is a wrapper package but around
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the Tetrad Java package. Fig. A.2 compares the runtimes of the two PC implementations

on synthetic graphs with of varying size, connectivity, and number of data points, showing

a constant gap in with respect to the number of data points and connectivity of the graph.

This gap is due to the creation of the subprocess and the data transfer, that are not taken

into account in the PyCausal execution runtime. The gap with respect to the number of

nodes is due to different implementations and computational complexity. Further effort will

be devoted to imposing the efficiency of our Python-Numba implementation of PC.
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Figure A.2: Runtimes of implementations of PC on various graphs

A.3 Implementation and utilities

R integration. As said, the Cdt package integrate 10 algorithms coded in R and 17 coded

in Python. The Cdt package integrates all of them, using Wrapper functions in Python

to enable the user to launch any R script and to control its arguments; the R scripts are

executed in a temporary folder with a subprocess to avoid the limitations of the Python GIL.

The results are retrieved through output files back into the main Python process. The whole

procedure is modular and allows contributors to easily add new R functions to the package.

Sustainability and deployment. In order for the package to be easily extended, fostering

the integration of further community contributions, special care is given to the quality of tests.

Specifically, a Continuous Integration tool added to the git repository, allows to sequentially

execute tests on new commits and pull request: i) Test all functionalities of the new version

on the package on toy data sets; ii) Build docker images and push them to hub.docker.com

; iii) Push the new version on pypi ; iv) Update the documentation website. This procedure

also allows to test the proper functioning of the package with its dependencies.

A.4 Conclusion and future developments

The Causal Discovery Toolbox (Cdt) package allows Python users to apply many causal

discovery or graph modeling algorithms on observational data. It is already used in research

hub.docker.com
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projects, such as (Yale et al., 2018; Kalainathan et al., 2019). As the output graphs are

networkx.Graph classes, these are easily exportable into various formats for visualization

softwares, using e.g. Graphviz or Gephi. At the package import, tests are realized to pinpoint

the configuration of the user: availability of GPUs and R packages and number of CPUs on

the host machine.

The package promotes an end-to-end, step-by-step approach: the undirected graph (bi-

variate dependencies) is first identified, before applying causal discovery algorithms; the latter

are constrained from the undirected graph, with significant computational gains.

Future extensions of the package include: i) reimplementing the R algorithms in Python

- Numba and reimplement the Pytorch algorithms in Chainer to drop all heavy dependencies

and to integrate Cdt in the Python community with a Numpy-API ; ii) developing GPU-

compliant implementation of new algorithms; iii) handling interventional data and time-series

data (e.g. for neuroimaging and weather forecast). In the longer term, our priority is to

provide the user with tests to whether the standard assumptions (e.g. causal sufficiency

assumption) hold and assess the risk of applying methods out of their intended scope.

networkx.Graph
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Résumé : La découverte de relations causales est
primordiale pour la planification, le raisonnement et
la decision basée sur des données d’observations;
confondre correlation et causalité ici peut mener à
des conséquences indésirables. La référence pour
la découverte de relations causales est d’effectuer
des expériences contrôlées. Mais dans la majorité
des cas, ces expériences sont coûteuses, immo-
rales ou même impossibles à réaliser. Dans ces cas,
il est nécessaire d’effectuer la découverte causale
seulement sur des données d’observations. Dans ce
contexte de causalité observationnelle, retrouver des
relations causales introduit traditionellement des hy-

pothèses considérables sur les données et sur le
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Cette thèse vise à relaxer certaines de ces hy-
pothèses en exploitant la modularité et l’expressivité
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ploitant à la fois et indépendences conditionnelles
et la simplicité des méchanismes causaux, à travers
deux algorithmes. Des expériences extensives sur
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proposées.
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Abstract : Causal discovery is of utmost importance
for agents who must plan, reason and decide ba-
sed on observations; where mistaking correlation with
causation might lead to unwanted consequences. The
gold standard to discover causal relations is to per-
form experiments. However, experiments are in many
cases expensive, unethical, or impossible to realize.
In these situations, there is a need for observatio-
nal causal discovery, that is, the estimation of causal
relations from observations alone. Causal discovery
in the observational data setting traditionally involves

making significant assumptions on the data and on
the underlying causal model. This thesis aims to al-
leviate some of the assumptions made on the causal
models by exploiting the modularity and expressive-
ness of neural networks for causal discovery, levera-
ging both conditional independences and simplicity of
the causal mechanisms through two algorithms. Ex-
tensive experiments on both simulated and real-world
data and a throughout theoretical anaylsis prove the
good performance and the soundness of the propo-
sed approaches.
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