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Abstract

Recent years have seen an increase of heterogeneous architectures combining multi-core CPUs
with accelerators such as GPU, FPGA and Intel Xeon Phi. GPU can achieve significant perfor-
mance for certain categories of application. Nevertheless, achieving this performance with low-
level APIs (e.g. CUDA, OpenCL) requires to rewrite the sequential code, to have a good knowledge
of GPU architecture, and to apply complex optimizations that are sometimes not portable. On the
other hand, directive-based programming models (e.g. OpenACC, OpenMP) offer a high-level
abstraction of the underlying hardware, thus simplifying the code maintenance and improving
productivity. They allow users to accelerate their sequential codes on GPU by simply inserting
directives. OpenACC/OpenMP compilers have the daunting task of applying the necessary opti-
mizations from the user-provided directives and generating efficient codes that take advantage of
the GPU architecture. Although the OpenACC / OpenMP compilers are mature and able to apply
some optimizations automatically, the generated code may not achieve the expected speedup as the
compilers do not have full view of the whole application. Thus, there is generally a significant per-
formance gap between the codes accelerated with OpenACC/OpenMP and those hand-optimized
with CUDA/OpenCL.

To help programmers for speeding up efficiently their legacy sequential codes on GPU with directive-
based models and broaden OpenMP/OpenACC impact in both academia and industry, several re-
search issues are discussed in this dissertation. We investigated OpenACC and OpenMP program-
ming models and proposed an effective application parallelization methodology with directive-
based programming approaches. Our application porting experience revealed that it is insufficient
to simply insert OpenMP/OpenACC offloading directives to inform the compiler that a particular
code region must be compiled for GPU execution. It is highly essential to combine offloading
directives with loop parallelization constructs. Although current compilers are mature and perform
several optimizations, the user may provide them more information through loop parallelization
constructs clauses in order to get an optimized code. We have also revealed the challenge of
choosing good loop schedules. The default loop schedule chosen by the compiler may not pro-
duce the best performance, so the user has to manually try different loop schedules to improve
the performance. We demonstrate that OpenMP and OpenACC programming models can achieve
best performance with lesser programming effort, but OpenMP/OpenACC compilers quickly reach
their limit when the offloaded region code is computed/memory bound and contain several nested
loops. In such cases, low-level languages may be used. We also discuss pointers aliasing problem
in GPU codes and propose two static analysis tools that perform automatically at source level type
qualifier insertion and scalar promotion to solve aliasing issues.
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Résumé

L utilisation d’architectures hétérogenes, combinant des processeurs multicoeurs avec des accéléra-
teurs tels que les GPU, FPGA et Intel Xeon Phi, a augmenté ces dernieres années. Les GPUs
peuvent atteindre des performances significatives pour certaines catégories d’applications. Néan-
moins, pour atteindre ces performances avec des API de bas niveau comme CUDA et OpenCL, il
est nécessaire de réécrire le code séquentiel, de bien connaitre I’architecture des GPUs et d’appliquer
des optimisations complexes, parfois non portables. D’autre part, les modeles de programmation
basés sur des directives (par exemple, OpenACC, OpenMP) offrent une abstraction de haut niveau
du matériel sous-jacent, simplifiant ainsi la maintenance du code et améliorant la productivité. Ils
permettent aux utilisateurs d’accélérer leurs codes séquentiels sur les GPUs en insérant simplement
des directives. Les compilateurs d’OpenACC/OpenMP ont la lourde tache d’appliquer les optimi-
sations nécessaires a partir des directives fournies par I’ utilisateur et de générer des codes exploitant
efficacement I’architecture sous-djacente. Bien que les compilateurs d’OpenACC/OpenMP soient
matures et puissent appliquer certaines optimisations automatiquement, le code généré peut ne
pas atteindre 1’accélération prévue, car les compilateurs ne disposent pas d’une vue complete
de I’ensemble de I’application. Ainsi, il existe généralement un écart de performance important
entre les codes accélérés avec OpenACC/OpenMP et ceux optimisés manuellement avec CUD-
A/OpenCL.

Afin d’aider les programmeurs a accélérer efficacement leurs codes séquentiels sur GPU avec les
modeles basés sur des directives et a élargir I'impact d’OpenMP/OpenACC dans le monde uni-
versitaire et industrielle, cette theése aborde plusieurs problématiques de recherche. Nous avons
étudié les modeles de programmation OpenACC et OpenMP et proposé une méthodologie efficace
de parallélisation d’applications avec les approches de programmation basées sur des directives.
Notre expérience de portage d’applications a révélé qu’il était insuffisant d’insérer simplement des
directives de déchargement OpenMP/OpenACC pour informer le compilateur qu’une région de
code particuliere devait étre compilée pour étre exécutéé sur la GPU. Il est essentiel de combiner
les directives de déchargement avec celles de parallélisation de boucle. Bien que les compilateurs
actuels soient matures et effectuent plusieurs optimisations, I’ utilisateur peut leur fournir davantage
d’informations par le biais des clauses des directives de parallélisation de boucle afin d’obtenir un
code mieux optimisé. Nous avons également révélé le défi consistant a choisir le bon nombre de
threads devant exécuter une boucle. Le nombre de threads choisi par défaut par le compilateur
peut ne pas produire les meilleures performances. L’utilisateur doit donc essayer manuellement
différents nombres de threads pour améliorer les performances. Nous démontrons que les modeles
de programmation OpenMP et OpenACC peuvent atteindre de meilleures performances avec un
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effort de programmation moindre, mais les compilateurs OpenMP/OpenACC atteignent rapide-
ment leur limite lorsque le code de région déchargée a une forte intensité arithmétique, nécessite
un nombre tres élevé d’acces a la mémoire globale et contient plusieurs boucles imbriquées. Dans
de tels cas, des langages de bas niveau doivent étre utilisés. Nous discutons également du probleme
d’alias des pointeurs dans les codes GPU et proposons deux outils d’analyse statiques qui perme-
ttent d’insérer automatiquement les qualificateurs de type et le remplacement par scalaire dans le
code source.
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Introduction

In the last decade, there has been a continual transition from architectures relying on multi-core
processors to those using many-core processors, often in heterogeneous architecture configura-
tions. This transition has been most prominently realized in the increasing use of Graphics Process-
ing Unit (GPU) as general-purpose computational accelerators. These accelerators offer massively
parallel computing capabilities to users.

The first processors did not have a parallel architecture. With the upcoming of Intel’s 286 architec-
ture, it became the standard architecture for several years. Thus, softwares were mainly developed
for this particular architecture. This worked for many years, as technological advances (the increas-
ing of the count of transistors on integrated circuits) allowed to improve processors’ performance
without changing the architecture significantly. This effect had been predicted by Gordon Moore
in 1965 which became too widely known as "Moore’s Law". However, these advances had slowed
down and this had caused that scaling performance with the number of transistors became a critical
objective [5, 6]. To further improve the performance of processors, other methods had been pro-
posed. One of these is parallel computation. Parallel architectures can range from several complex
processors to thousands of simpler processors operating in parallel. Currently, there are several
manufacturers of parallel systems. Thus, the market is filled with all kinds of parallel architectures
ranging from few, but fast compute cores (e.g CPUs) to processors with thousands, but rather slow
cores (e.g GPUs). Also, processors, specifically tuned for a specific purpose, are available.

Further, hardware architectures undergo constant changes and improvements, introducing new,
changed or removed functionality. NVIDIA is one of the big GPUs providers. NVIDIA’s GPUs
consist of a complex memory hierarchy with a series of different automatic and self-organized
caches that need to be efficiently used (see 1.5.2). In the last fives NVIDIA’s GPUs generations,
many significant changes to this memory hierarchy have been applied so that code written for prior
generations usually does not necessarily work as efficient as it could on newer generations. For
example, NVIDIA’s Fermi architectures [ 1] give users the ability to dynamically adjust the amount
of the self-managed shared memory and the L1 cache for each function execution. The next gen-
eration, Kepler architecture, added more trade-off options to choose. In the Maxwell Generation,
this feature was entirely removed. So in three consecutive generations of NVIDIA’s GPUs archi-
tectures, the behavior has been constantly changed. Another example is vector processing units
in CPUs. Advanced Vector Extensions (AVX) 1.0 were added in the Intel’s I7 — 2700 K CPUs
while the I7 — 47657 CPUs have the AVX 2.0. As AVX is not backward compatible, AVX 2.0
instructions cannot be used on any older CPU, so that programmers have to explicitly check for
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the capabilities of the CPU their software is running on.

Recent years have seen an increase of massively-parallel architectures that are based on heteroge-
neous architectures combining multi-core CPUs with accelerators such as GPUs, Intel Xeon Phi
processors, Digital Signal Processing (DSPs), and Field Programmable Gate Array (FPGA). The
current situation of embedded systems is marked by two important events: the explosion of par-
allelism and the rise of heterogeneous systems. For example, in the context of driver assistance
systems, the need for complex processing of environment reconstruction make several manufac-
turers propose circuits integrating different computing components. Those generally contain from
4 to 16 cores ARM-type embedded processors and accelerators of various types: one or more
GPU(s), DSPs, vector processors or specialized processors wiring image processing algorithms.
For instance, there are the NVIDIA Tegra X1 embedded card (4 ARM Cortex A57, 4 ARM Cortex
Ab3 and 1 Maxwell GPU), Texas OMAP TDA2x SoC (2 ARM Cortex Al15, 2 ARM Cortex M4,
1 DSP, 1 GPU, 1 IVA HD, and 4 EVE Analytic Processors), the Renesas RCAR H2 platform (4
ARM Cortex A57, 4 ARM Cortex A53, 1 ARM Cortex R7, 1 GPU PowerVR, 1 image recognition
processor, and 1 DSP), and the world leader MobileEye products. Thus all computing systems,
from mobile to supercomputers, are becoming heterogeneous, massively parallel computers for
higher power efficiency and computation throughput.

Although these heterogeneous architectures embedded or not provide impressive computing power
with reasonable power consumption, their programming in an efficient manner remains an open
problem [7]. The parallel processing power, provided by heterogeneous architectures, comes with
the necessity of writing efficient code that enables all processors to solve a problem together. In-
deed, the diversity of heterogeneous systems’ components and different levels of parallelism make
their programming based on tools and even paradigms totally different (SIMD intrinsics, OpenMP,
OpenACC, CUDA, OpenCL, etc.). Figure 1b shows an example of application portability problem
on heterogeneous architectures. Another challenge of heterogeneous computing is distributing the
workload among the different cores to get the best performance with the lowest power consump-
tion, as depicted in Figure la. Therefore, there is no automatic parallelization mechanism and
porting of a complex application of such systems can represent months work.

Motivations

GPUs can achieve significant performance for certain categories of application (e.g computer vi-
sion algorithms, dense linear algebra). Nevertheless, achieving this performance not relies only
on an important effort of programming and code tuning, but also good knowledge of GPUS ar-
chitecture. In order to take advantage of GPUs computing potential, significant modifications of
sequential applications are required. The existing low-level APIs such as CUDA and OpenCL
usually require users to be expert programmers and restructure the code largely. Further, CUDA
and OpenCL offer a number of features for performance optimization as the architecture is directly
accessible to the user that makes possible to obtain excellent performance but adds complexities
for application developers. Optimized CUDA and OpenCL codes are usually coupled with specific
devices. This leads to a less productive and more error-prone software development process that
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Figure 1 — Illustration of two main challenges of heterogeneous computing

is challenging to be adopted by the rapidly growing HPC and applications for intelligent vehicle
markets. With low-level APIs such as CUDA and OpenCL, programmers not only have to develop
efficient compute kernels and manage data allocation/deallocation on GPUs memory, but also data
transfers between CPUs and GPUs.

An alternative approach would be to use high-level directive-based programming models, such as
OpenACC [8] and OpenMP [4], to parallelize applications on accelerators. Directive-based pro-
gramming models allow the user to insert both directives and runtime calls into existing Fortran
or C/C++ source code, enabling a portion of their code to execute on the accelerator. Using
directives, programmers may give hints to compilers to perform certain transformations and opti-
mizations on the annotated code regions. The user can insert directives incrementally to parallelize
and optimize a program, enabling a productive migration path for legacy applications. The major
advantage of the directive-based approach is that it offers a high-level programming abstraction
thus simplifying the code maintenance and improving productivity. Further, directive-based pro-
gramming models can offer a good trade-off between productivity, portability, and performance.

OpenMP is a parallel programming interface comprising a set of compiler directives, library rou-
tines, and environment variables. It has established itself as the de facto standard for writing
parallel programs in C/C++ and Fortran on shared memory multi-core CPU systems. OpenMP
added an initial extension to its feature set for making use of accelerators in version 4.0, and fur-
ther extended its accelerator support in version 4.5. The target directive identifies the offload region
running on the accelerator, wherein a massive number of threads may be organized into teams as

prescribed by the programmer.

OpenACC, a directive-based parallel programming interface in many ways inspired by OpenMP,
was the first standardized specification released to facilitate programming of accelerators. Un-
like OpenMP which offers a primarily prescriptive interface for expressing parallelism, OpenACC
provides both prescriptive and descriptive mechanisms for this purpose. In particular, much of
OpenACC directives are intended for describing additional program information to compilers, so
that it may more effectively generate code for execution on accelerators. OpenACC’ descriptive in-
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terface allows flexibility for the compiler to interpret how to map high-level language abstractions
to the hardware layer.

The OpenMP and OpenACC accelerator models have not evolved independently from each other.
For example, OpenMP adopted unstructured data directives and asynchronous execution of offload
regions from OpenACC 2.0 into its 4.5 accelerator model specification. Conversely, OpenACC
performed semantic changes to some of its data clauses in version 2.5, resulting in consistency
with the corresponding behavior in the OpenMP 4.0 specification. In general, user experience
with OpenACC has informed the direction taken by OpenMP in its specifications for accelerators
programming.

Since the first release of OpenACC in 2011 and that of OpenMP 4.0 in July 2013, many works have
been done to evaluate their capabilities in term of performance, portability, and productivity. Many
works have also proposed new directives and clauses for addressing some features not currently
offered by OpenACC and OpenMP, but also tools to assist programmers for application accelera-

tion with these two standards. For instance, Figure 2 shows the Scopus database search results for
"OpenACC" and "OpenMP offloading".

Documents

Year

(a) OpenACC related publications per years (b) OpenACC related published papers subject
area

Documents

(c) OpenMP 4/4.5 related publications per years  (d) OpenMP related published papers sub-
ject area

Figure 2 — Scopus database search results for "OpenACC" and "OpenMP offloading"

The performance gap [9, 10, 11, 12] between programs accelerated with OpenACC and OpenMP
using their relatively high-level abstractions compared to lower-level CUDA and OpenCL versions
indicates that more optimization research is required.

Ph.D Report 4 Rokiatou DIARRA



INTRODUCTION

Contributions and Dissertation Outline

Since OpenACC and OpenMP are high-level directive-based models, the compilers usually trans-
late OpenMP/OpenACC’ directives to a low-level language (e.g. assembly, CUDA, OpenCL).
CUDA and OpenCL, two low-level languages, are flexible for the user to apply any optimization
he wants. But this requires the user to throughly understand the underlying architecture so that
the applied optimizations can utilize the architecture efficiently. OpenACC and OpenMP, therefore
require the compiler to apply those optimizations automatically. However, without enough infor-
mation, the compiler is not able to do the optimizations as well as the user who is an expert in
both the ported application and the architecture. Even though the compiler can apply some opti-
mizations automatically, it may not achieve the expected speedup as the compiler does not have a
full view of the whole application. Because of these reasons, there is generally a significant perfor-
mance gap between the codes accelerated with OpenACC/OpenMP and those hand-optimized with
CUDA/OpenCL. In summary, to help programmers for speeding up efficiently their legacy sequen-
tial codes on GPU with directive-based models and broaden OpenMP/OpenACC impact in both
academia and industry, several research issues are discussed in this dissertation. The contributions
of this dissertation are as follows:

e The first half of Chapter 1 provides the background of the research work in this dissertation,
while the second half gives an overview and a comparison of main parallel programming
approaches for GPUs. We also discuss some of the main optimization strategies for GPU
programming in this chapter.

e Chapter 2 starts with an in-depth analysis of OpenMP and OpenACC specifications ma-
jor features. Next, we review OpenMP and OpenACC standards evolution, in the last ten
years, in order to provide an overview of their pass and present status, as well as their future
directions. Although OpenMP and OpenACC are similar, they present some important dif-
ferences. Thus, an in-depth comparison of the two standards is also addressed in this chapter.
Since OpenMP and OpenACC are standards, generic and not coupled with any specific ar-
chitecture, we analyze their suitability for GPU programming and present their limitations
in terms of features in comparison to low-level languages (e.g. CUDA).

e In Chapter 3, we address problems encountered in general when parallelizing an application
and those specific to GPU programming. Next, we discuss optimization strategies and steps
to parallelize legacy sequential codes with OpenMP and OpenACC. Next, we analyze two
OpenMP and OpenACC compilers, namely LLVM/Clang and PGI compiler, in order

— to understand how these compilers interpret OpenMP/OpenACC directives,

— to see if these implementations comply with the OpenMP and OpenACC standards,
and

— to understand the behavior and the performance of OpenMP/OpenACC directives when
the targeted accelerator is a GPU.
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Next, to understand the root cause of the performance of OpenMP/OpenACC, we paral-
lelize synthetics programs, applications, and kernels taken from the Rodinia and PolyBench
benchmark suites with OpenMP, OpenACC, and CUDA and analyze the obtained results. We
present a set of optimizations, most of which must be done manually in the source code level,
to tune the application performance. We analyze a number of choices and combinations of
optimization techniques and study their impact on application performance. We learn that
poorly selected options or using system default options for optimizations may lead to perfor-
mance degradation. We also compare the OpenMP and OpenACC versions performance of
some applications to that of their well-tuned CUDA versions to present the reasoning behind
the performance gap.

e GPUs have several levels of caches and caching read-only data in the L1 cache may improve
application performance. Nevertheless, the compilers might not always be able to detect
that the read-only condition is satisfied for some data because of pointers aliasing issues. We
discuss, in Chapter 4, pointers aliasing problem in GPU codes and present available solutions
(e.g. type qualifier, compiler flags). Next, we propose two static analysis tools that perform
automatically at source level type qualifier insertion and scalar promotion to solve aliasing
issues.

e Synthetics programs and benchmarks are convenient to explore performance improvement
opportunities with OpenMP/OpenACC and to assess their performance. However, real-world
applications are more complex than those found in benchmarks in general. Thus, in Chapter
5, we use lesson learned from Chapters 3 and 4 to parallelize a visual odometry application
with OpenACC, OpenMP, and CUDA and analyze the performance results.

In this dissertation, the related work is not in a separate chapter, it is discussed in each chapter. The
Chapter 6 concludes this dissertation.
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CHAPTER 1. BACKGROUND

This chapter introduces the main notions, technologies, and methods used in this thesis. We start
with a general presentation of computer architecture and the definition of important concepts in
section 1.1. Section 1.2 explains how and why the processor’s architecture and performance have
evolved from a single processor system to massively parallel multiprocessor system. This allows us
to introduce the Graphics Processing Unit (GPU), which are the main targeted architecture in this
thesis. In section 1.3, we define the embedded systems and specify the type of embedded system
being used in this thesis. Since all computing systems, from mobile to supercomputers, tend to
become heterogeneous, massively parallel computers for higher power efficiency and computation
throughput, we introduce heterogeneous systems in section 1.4. Section 1.5 gives a more in-depth
description of GPU architecture and presents the targeted platform in this thesis. Finally, section
1.6 gives a large overview of parallel programming approaches for accelerators.

1.1 Computer Architecture

Among the most complex systems ever created by humans, we find modern microprocessors. In-
deed, a complete high-performance processor and the logic required to interface it to external
devices can fit on a single silicon chip. In terms of performance, the processors implemented on
a single chip today dwarf the room-sized supercomputers just 20 years ago. Even the embedded
processors found in everyday appliances such as smartphones, tablets, personal digital assistants
and handheld game systems are far more powerful than the early developers of computers ever
envisioned. In this section, we give a brief description of computer architecture in general. We
also describe the memory hierarchies found in modern processors.

The processor, memories, and bus system are the main components of a computer. Add to that
the input-output devices, such as monitors, keyboards, mouses, etc., to allow interaction with the
user. Although computer architecture has evolved over the years, all microprocessors designed
until today are organized globally in the same way. A modern processor usually consists of several
computing units or Processing Units including Arithmetic and Logical Units, Floating-Point Units,
Branch Predictor Unit, etc. Processors have a number of registers to save intermediate results.
They have also a Control Unit that reads and decodes the program’s instructions and the PUs’s
operations. The processor can further contain input/output interfaces to communicate with other
hardware components, such as the memory system. There are different types of memory in a
computer. Volatile memory is a form of memory that retains data only if it is receiving power while
nonvolatile memory retains data even in the absence of a power source. To distinguish between
the volatile memory used to hold data and programs while they are running and this nonvolatile
memory used to store data and programs between runs, the term main memory or primary memory
is used for the former, and secondary memory for the latter [13].

Memory is characterized by three properties: capacity, bandwidth, and latency. Capacity is the
amount of data that can be stored in a memory. Bandwidth or throughput is the rate at which
data can be read from or stored into a semiconductor memory by a processor. Latency is the
time between initiating a request for data at a particular memory address until it is retrieved by
a processor. Capacity and latency evolve together, thus when the capacity of a memory increase,
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its latency increases also. It has already been mentioned that processors have registers to store
intermediate results. Registers are extremely fast, very limited in capacity but have a very low
latency while the main memory has a very high latency and a large capacity. Chapter 4 will
provide mode details on register usage for code optimization. To hide the latency between the
main memory and processors that are faster, the caches are used. The Cache was the name chosen
to represent the level of the memory hierarchy between the processor and main memory in the
first commercial computer to have this extra level [13]. Cache memory consists of a small, fast
memory that acts as a buffer for the main memory. Every general-purpose computer built today,
from servers to low-power embedded processors, includes caches. Caches are queried first in order,
from the nearest to the farthest when a processor requires data from memory. Currently, processors
have several caches organized in levels. The closest level to a core named L1 is the smallest. The
next levels have more space being further away from the hearts, so they are getting bigger and
bigger. Figure 1.1 is a schematic illustration of the memory hierarchy of a computer.

L3 cache

Main Memory

Figure 1.1 — Memory Hierarchy of a computer. With increasing bandwidth, the latency improves
but the capacity decreases ([13])

1.2 Parallel Architecture

Massively parallel processors are an emerging class of hardware architectures primarily repre-
sented by modern Graphics Processing Units (GPUs) that have been developed to support mas-
sively data-parallel computations. In this section, we are going to see how processor performance
scaled until the early 2000s and then halted and why massively parallel processors provide a vi-
able solution to the performance scaling problem. We are also going to see parallel architectures
currently available. Furthermore, we briefly introduce the main parallelization approaches that
correspond to Flynn’s taxonomy and some metrics frequently used in performance evaluation.
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In 1965, Gordon Moore predicted the doubling of the number of transistors on integrated circuits
every 18 —24 months [14]. This prediction thus announced the advent of the silicon revolution [15].
Although Moore’s prediction was later adjusted to half the initial rate, the underlying linear trend
was soon apparent and became widely known as Moore’s law. An important observation pertaining
to Moore’s law is that increasing the transistor count of a microprocessor does not necessarily
correlate with performance. Therefore, scaling performance with the number of transistors became
a critical objective.

Initially, the first solutions were to increase clock speeds on one hand and to improve the internal
architecture of individual processors (deeper pipeline, speculative execution, etc.) on the other
hand. However, by 2000s, it had become obvious that processor performance growth was facing
two major constraints: power dissipation problem and diminishing returns of the improvements in
the internal architecture of individual processors [0]. Indeed, by 2004, the strategy of scaling down
the size of CMOS circuits, reducing the supply voltage and increasing the clock rate was becoming
infeasible. Since a chip’s power consumption is proportional to the clock speed times the supply
voltage squared, the inability to continue to lower the supply voltage halted the ability to increase
the clock speed without increasing power dissipation [ 13, 6, 5].

The power limit has forced a dramatic change in the design of microprocessors. A way around
the performance-scaling bottleneck due to the power dissipation problem was provided by Chip
Multiprocessors also called Multi-Core Microprocessors (CMP) [16]. Early in the 21nd century,
improvements in single-processor performance slowed. Furthermore, reductions in transistor size
continue apace and then, so more transistors can still be packed onto chips albeit without the
speedups seen in the past [6]. As a result, the computer-hardware industry has started building
chips with multiple processors. Current chips range from several complex processors to thou-
sands of simpler processors, and future generations will keep adding more [6]. Needless to say
that this change in hardware requires a concomitant change in the software programming model.
New parallel architectures can deliver better performance only if the software can efficiently use
them. Therefore, to efficiently use current parallel architectures, applications must use a parallel
programming model.

There are different parallel architectures. Machines with a number of processors that function in-
dependently and asynchronously are considered to be Multiple Instruction Multiple Data (MIMD)
machines. The meaning of the term MIMD is very wide, as it describes not only multi-processor,
multi-core but also any interconnected compute cluster. Simultaneous Multi-Threading (SMT)
is the process of a CPU splitting each of its physical cores into virtual cores, which are known
as threads. This is done in order to increase performance and to facilitate the change of context
between two threads. Single Instruction Multiple Data (SIMD) architectures allow concurrent ex-
ecution of the same operation on multiple data operands, what is usually called data parallelism.
SIMD machines can be exploited either by programming explicit code with SIMD instructions (e.g
SSE, AVX, NEON, etc.) or by using the auto-vectorization feature available in most compilers (e.g
gcc, icc, ...).

GPUs have been introduced in the mid-90’s. However, their design has been very rudimentary
compared to today’s GPUs. Initially, they have been specially designed for 3D rendering, but
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today they are used to solve compute-intensive problems in various fields. Nevertheless, between
their first appearances and today, their design has enormously evolved. Today, GPUs are massively
parallel processors with up to several thousand cores in a single chip.

Intel Xeon Phi processors are another approach of designing a massively parallel architecture. It
puts up to 72 cores onto a chip and is a mixture of a massively parallel GPU and a multi-core CPU,
also called Many Integrated Core (MIC) architecture [ 7]. The Intel Xeon Phi are usually intended
for use in supercomputers, servers, and high-end workstations. Unlike GPGPU like NVIDIA Tesla,
Xeon Phi can, with less modification, run software that was originally targeted to a standard x86
CPU. Although Intel Xeon Phi are massively parallel, we did not use them in this thesis because
their use in embedded systems, low-end workstations, etc. is less widespread than that of GPUs.
However, works presented in this thesis can also be applied on Xeon Phi.

In addition to these generalist accelerators, there are specialized processors such as Digital Signal
Processing (DSPs), the Epiphany-V (a 1024—core processor) [ 18] or Google’s TPU [19] that are
specially designed to operate efficiently on the operations needed for certain applications. Special-
ized processors usually provide specialized hardware processing units. Besides general purpose
processors and accelerators, there is Application Specific Integrated Circuits (ASIC) which are
customized for a particular use or application, rather than intended for general-purpose use. In
the case of ASIC, the algorithm itself is put into hardware without any means of altering after
it has been manufactured. This results in the best possible performance per energy consumption
ratio. However, the development of ASIC circuits is time consuming and expensive. Field Pro-
grammable Gate Array (FPGA) is more general. Indeed, they can be reconfigured but also translate
the program they are executed directly into hardware. Although they usually have a very low clock
frequency compared to CPUs, they can achieve much higher performance in specialized applica-
tions or when non-standard variable types are used. Table 1.1 summaries main features of CPUs,
GPUs, ASICs and FPGAs.

Modern processors can have multiple level caches. In a multi-processor system, the L1 and L2
caches are generally private for each core while the L3 cache is shared between processors of
a multiprocessors system. In this context, every cache level has to be kept synchronized with
the next higher level to ensure that cores work on right data. The same cache hierarchy can be
found in GPUs. Section 1.6 and Chapter 4 discuss about cache usage for application performance
optimization on GPU.

1.2.1 Parallel Computing

Before the mandatory switch to parallel architecture, programmers could rely on innovations in
hardware and compilers to improve the performance of their programs without having to change a
line of code. Today, for programmers to get significant improvement in response time, they need to
rewrite their programs to take advantage of parallel processors and accelerators. Moreover, to get
the historic benefit of running faster on new microprocessors, programmers will have to continue
to improve the performance of their code as the number of cores increases [ 3]. Parallelism has
always been critical to performance in computing, but it was often hidden. Indeed, pipelining
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Table 1.1 — Summary main features of CPUs, GPUs, ASICs and FPGAs

CPU GPU ASIC FPGA
Single / Thousands Application specific Configurable
Processing Multi-core of identical integrated circuit integrated circuit
processor cores
C, C++, Kernel-based, Application-specific HDL (Verilog, VHDL);
Programming | Java, Pyton, directive-based (e.g: TensorFlow) newer systems include
Assembly, etc. paradigms API C/C++ through openCL
Versatility, Massive processing Custom-designed for | Reconfigurable
multitasking, power application with accommodates massively
ease of optimum combination | parallel operation,
Strengths . . .
programming of performance and wide choice of
power consumption features: DSPs, CPUs
Optimized for | May have high power Longest development | Second-longest
sequential consumption, problems | time, high cost, development time,
Weak processing must sometime be cannot be changed poor performance for
CAKNESSES 1 \ith limited reformulated to take without redesigning sequential operations
parallelism advantage of parallelism | the silicon

(overlapping of multiple instructions execution) is one of the examples of parallelism hidden from
the programmer.

There are several ways to increase parallel computations and application performance at the same
time. Within the same application, it is possible to have multiple active separated calculations,
called threads. Note that high performance can mean high throughput for independent tasks, called
task-level parallelism or process-level parallelism [ 1 3]. These tasks are usually independent single-
threaded applications. This approach is in contrast to running a single application on multiple
processors. We will use the term parallel processing program to refer to a single program that runs
on multiple processors simultaneously.

Flynn’s taxonomy [20] classification was based on the number of instruction streams and the num-
ber of data streams. Thus, a conventional uniprocessor has a single instruction stream and a single
data stream, and a conventional multiprocessor has multiple instruction streams and multiple data
streams [ 3]. These two categories are abbreviated SISD and MIMD, respectively. Another cat-
egory is the Single Instruction, Multiple Data (SIMD) architecture. The virtues of SIMD are that
all the parallel execution units are synchronized and they all respond to a single instruction that
emanates from a single program counter (PC) [13].

1.2.2 Processor Performance

We have already seen the evolution of computer design to gain even more performance. To be
able to compare the performance of different processors, it is necessary to define performance.
Computer performance can be defined in several ways. Hence, different performance metrics
exist. Response time or execution time is a performance metric frequently used in performance
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evaluation. It means the total time required for the computer to complete a task, including memory
accesses, 1/0 activities, operating system overhead, ... [13]. Note that performance and execution
time are reciprocals, increasing performance requires decreasing execution time. The throughput
or bandwidth, another measure of performance, is the number of tasks completed per unit time.
The CPI (Cycles Per Instruction), the average number of clock cycles each instruction takes to
execute, is another performance metric. Other measures such as Instructions per Second (IPS) or
Floating Point Operations Per Second (FLOPS) are used today, depending on the application and
the architecture targeted. The main performance metrics used in this thesis is the execution time.

To compute the improvement (also called speedup (S)) of a specific application on different pro-
cessors or to determine the improvement achieved through the parallelization of a code, the ratio
between original execution time (75;4inq:) and optimized or parallelized execution time (7optimized)
can be calculated.

S = Toriginal (11)

Toptimized

In general, an application can not be entirely parallelized, hence the execution time consists always
of a serial (7. i) and a parallel (Tpq,q¢;) fraction as can be seen in the Equation 1.2. This
equation, where p is the number of parallel processors, is also called Amdhal’s law.

T arallel
Tiotal = Tseriat + pT (12)

Different applications are sensitive to different aspects of the performance of a computer system.
Therefore, the performance of a program depends on the algorithm, the language, the compiler, and
the targeted hardware. Overall we can see that the performance of an application can be limited by
three factors which are the latency, the bandwidth, and the computation.

1.3 Embedded Systems

Embedded systems are the largest class of computers and span the widest range of applications and
performance. Embedded computer systems can be found everywhere: car, smartphone, tablet, [oT
devices, the computers in a television set, the networks of processors that control a modern airplane
or cargo ship, etc. Embedded computing systems are designed to run one application or one set
of related applications that are normally integrated with the hardware and delivered as a single
system [13]. Embedded applications often have unique application requirements that combine a
minimum performance with stringent limitations on cost or power. Although Intel processors, e.g
% 86, are the most used in the desktop, personal computers and server markets, ARM processors
are one of the most popular CPUs for mobile and embedded design in IoT devices, due to its
focus on low power consumption (for longer battery life). While x86 processors are Complex
Instruction set Computer, ARM processors are Reduced Instruction Set Computer. Intel and ARM
processors have many differences, including their processing power, power consumption, software,
and applications. V. A. Rafael et al. [21] evaluated performance and power efficiency of x86 and
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ARM architectures and found that ARM systems are more power efficient for SQL and static
HTTP servers while x86 architecture is still more power efficient for floating point computation.
In this thesis, by embedded systems, we mean embedded cards or processors such as NVIDIA
Tegra K1/X1/X2 cards, OMAP systems of Texas, the RCAR platform of Renesas, etc.

1.4 Heterogeneous Systems

Today, the prevailing solution towards scalable performance comes from a class of hardware con-
figurations commonly known as heterogeneous systems. The designation "heterogeneous parallel
system" refers to parallel systems using more than one type of processor. Usually, heterogeneity in
the context of computing refers to architectures with different Instruction Set Architecture (ISA).
However, the Big.little architecture of ARM is for example an exception, because the instruction
sets are the same and the heterogeneity refers to the speed of different microarchitectures of the
same ISA [22]. The need to increase the computing power of systems without increasing energy
consumption is one of the factors driving the manufacture of these heterogeneous circuits. Today,
modern heterogeneous systems combine on the same integrated circuit different types of processors
including a host CPU, GPU, FPGA, DSP, video/audio accelerators, Intel Xeon Phi, cryptographic
accelerators, programmable network processors, etc. Parallel heterogeneous systems are present
in all areas of computing, from powerful servers to consumer products such as mobile phones and
tablets. Figure 1.2 shows a theoretical heterogeneous parallel system example. Heterogeneous
systems offer an impressive theoretical computing power with low power consumption. Recent
findings show that a heterogeneous architecture that exploits the diversity offered by multiple ISAs,
can outperform the best ISA-like architecture with 21% to 23% energy savings [23]. These systems
gain in performance and energy efficiency not only by adding the same type of processors, but also
by adding dissimilar coprocessors incorporating specialized capabilities to handle particular tasks.
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Figure 1.2 — Example of a heterogeneous computing system. Because of the cost of programma-
bility, finding a system with the level of heterogeneity shown here is unlikely. A real system will
have only a subset of these types.

Heterogeneous architectures provide impressive theoretical computing power, but their effective
exploitation remains an open problem [7]. Yet another challenge is distributing the workload
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among the different cores to get the best performance with the lowest power consumption. There-
fore, heterogeneous systems present the major disadvantage of the extreme complexity of their
programming. The heterogeneity of devices and the different levels of parallelization make the
programming of these different entities based on tools, or even paradigms, completely different. In
addition, while the computing community is racing to build tools and libraries to ease the use of
these systems, effective and confident use of these systems will always require knowledge about
low-level programming of devices consisting a heterogeneous system. If parallel programming
is hard, heterogeneous programming is that hard, squared. Defining and building a productive,
performance-portable heterogeneous programming system is hard. There are several program-
ming strategies that attempt to solve this problem, including OpenMP and OpenACC which are
the focus of this thesis. For the remainder of this thesis, the heterogeneous system will consist of
CPUs and GPUs. We choose CPU+GPU like systems as targeted hardware platform because they
are currently the most used configuration in embedded systems.

1.5 Target Architecture and Platform

As GPUs are the main target architecture used in this thesis, this section gives an introduction
to GPU and an overview of NVIDIA GPU architectures. This covers five hardware generations,
ranging from the "Fermi" up to the most recent "Volta" architecture. We terminate this section by
presenting the two platforms used in this thesis.

1.5.1 Graphics Processing Units (GPU)

Massively parallel processors, GPUs are everywhere from mobile devices to supercomputers. They
have been specifically designed to run thousands of calculations in parallel. GPUs cores are much
simpler than those of CPUs, with fewer features and a lower clock frequency but their high number
of processing cores compensates for this [13].

Although having several cores, GPUs are clearly distinguished from conventional SIMD machines
as a single high-level instruction can span millions of data elements, each one representing an
individual control path or thread. GPUs cores aim at hiding latency by having thousands of in-
structions in-flight to ensure that there will always be something executing on the available cores.
GPUs memory is oriented toward bandwidth rather than latency. There are even special graphics
DRAM chips for GPUs that are wider and have higher bandwidth than DRAM chips for CPUs [13].
GPU cores form Streaming Multiprocessors (SM) that perform the same operation in parallel, so
every single core does not require its own controlling infrastructure.

There are typically two types of GPU: integrated and dedicated. Integrated GPUs share the same
chip with the CPU, while dedicated (or discrete or attached) GPU’s are a separate piece of hardware
connected to a separate bus. Attached GPUs are equipped with their own memory. This requires
to explicitly copy data between the system memory and the GPU. This copy can become a major
bottleneck in many applications. Manufacturers such as Intel or AMD, therefore, provide CPUs
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with directly integrated GPUs. This allows the GPUs to be directly attached to the system bus and
access the main memory.

Different types of GPUs can be found in the market. Intel focuses mainly on low-end and multi-
media GPUs that require only a small amount of energy and therefore can be especially used in
low-power and mobile systems. The same applies to the Mali GPUs from ARM, which are specifi-
cally trimmed for smartphone applications. These GPUs provide only limited compute capabilities.
However, Intel plans to produce high-end graphics card for consumers. Matrox mainly provides
GPUs for multi-display setups in professional environments with advanced features, low-energy
consumption, and high reliability. AMD is mainly established in low-end and gaming GPUs, but
AMD recently released Radeon Instinct GPUs to expand onto the High-Performance Computing
(HPC) market. NVIDIA tries to provide GPUs for the entire market from low-end, over gaming,
professional up to HPC. Typically, the GPU has a two-level hierarchical architecture. It is made
of vector processors at the top level, and each vector processor contains a large number of scalar
processors at the lower level. This hierarchical architecture is found in almost all GPU regardless
of the manufacturer (NVIDIA, AMD, etc.).

1.5.2 NVIDIA GPUs

NVIDIA GPUs has developed several generations of architecture. To distinguish between its GPUs
supported functionality, NVIDIA introduced the Compute Capabilities (CC).

Fermi Generation Fermi[!] (CC = 2.x) architecture, successor of the NVIDIA’s Tesla microar-
chitecture, was introduced in 2009. It was used in GPUs of the 400, 500, low-end GPUs of the 600,
some Quadro (x000 and NVS models) and Tesla C series. Fermi was the first GPU with unified
compute cores and a true cache hierarchy. As in normal CPUs, the L1 cache serves as an addi-
tional layer between the L2 cache and the cores. Unified address space for local, shared and global
memory was introduced with the new instruction set. Fermi architecture has 64KB of RAM with
a configurable partitioning of shared memory and L1 cache. Hence, shared memory and L1 cache
sizes can be dynamically adjusted for each kernel execution and the programmer can choose either
to prefer shared memory or L1 cache. One of these is assigned 48KB and the other 16KB. The
first Fermi-based GPU features up to 512 CUDA cores which are organized in 16 Streaming Mul-
tiprocessors (SM) of 32 cores each. Figure 1.3 shows the first Fermi-based GPU architecture. A
CUDA core executes a floating point or integer instruction per clock for a thread. Each core has a
fully pipelined integer Arithmetic Logic Unit and Floating Point Unit. Fermi supports concurrent
kernel execution, where different kernels of the same application context can execute on the GPU
at the same time. Concurrent kernels execution allows programs that execute a number of small
kernels to utilize the whole GPU.

Kepler Generation The Kepler architecture (CC = [3.0, 3.2, 3.5 and 3.7]), successor of Fermi,
was released in 2012. Kepler was Nvidia’s first microarchitecture to focus on energy efficiency.
It was used in GPUs of the 600, 700, 800, low-end GPUs of the 900, Quadro K and Tesla K
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Figure 1.3 — First Fermi-based GPU architecture: 16 SM of 32 cores each [1]

series. There have been two major revisions of the Kepler architecture, starting with CC 3.0 and
3.5. GPUs with CC 3.0 introduced the shuffle functions that allow accessing memory from other
threads within the same warp (a set of 32 threads) without additional hardware registers. Further,
Kepler added a third mode to the L1 cache and shared memory, to equally distribute them to 32KB
each. The shared memory supports to adjust the size of shared memory banks either to serve 32
or 64B banks, depending on the data that is supposed to be stored. Further, the operation mode of
the L1 cache had been changed to only serve local memory accesses. Most likely this was done
to remove any synchronization between the SMs for global memory, to reduce the communication
between the SMs. With the second generation of Kepler (CC > 3.5) dynamic parallelism has been
introduced, allowing that GPUs functions (also called kernels) start other kernels directly from the
GPU.

Maxwell Generation The Maxwell architecture is the successor of Kepler. The first generation
of Maxwell GPUs or GM107/GM108 graphics, with CC = 5.0, was released in 2014 as Geforce
GTX 745, GTX 750/750 Ti, GTX 850M/860M, 830M/840M and Quadro Mxxx. The 900 series
(CC =5.2) and Jetson TX1/Tegra X1 (CC = 5.3) embedded processors were the second generation
of Maxwell. Maxwell architecture introduced significant changes to the memory system. First of
all, the shared memory no longer can be configured, neither the capacity nor the memory bank
size. Further, the L1 cache has been merged with the non-coherent cache. The L2 cache size was
increased from 256KB on Kepler to 2MB on Maxwell. Accordingly, the memory bus was reduced
from 192 bit on Kepler to 128 bit, further saving power. The SM design from Kepler was also
modified and renamed to SMM for Maxwell.

Pascal Generation The Pascal architecture (CC = [6.0,6.1 and 6.2]) is the successor of
Maxwell. It was released in 2016 with the Geforce GTX 10XX and Tesla P series. One of the
new features of Pascal is unified memory. Unified memory model allows both CPU and GPU
to access main system memory and memory on the graphics card with the help of a technology
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called "Page Migration Engine". Another new feature is NVLink, a high-bandwidth bus between
the CPU and GPU, and between multiple GPUs. NVLink allows much higher transfer speeds
than those achievable by using PCI Express. Further, the Tesla P100 features the new HBM (High
Bandwidth Memory) memory. This allows much higher memory capacities (up to 16GB) and bus
width (4096B).

Volta Generation The Volta architecture (CC = 7.0), the successor of Pascal, is the newest
NVIDIA GPU architecture. The first graphics card to use it was the data center Tesla V100 [24].
It has also been used in the Quadro GV100 and Titan V. Architectural improvements of the Volta
architecture include among others new SM architecture optimized for deep learning, the second
generation of NVLink, HBM2, a new combined L1 data cache and shared memory unit and tensor
cores. Table 1.2 summurize main features of NVIDIA GPUs architecture from Kepler to Volta.

Table 1.2 — Technical Specifications and Feature Support per Compute Capability [3]

Kepler Maxwell Pascal Volta

30 | 32| 35| 37 | 50| 52|53 |60]61|62]| 70175
Dynamic Parallelism | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes
16-bit float op No | No | No | No | No | No | Yes | Yes | Yes | Yes | Yes | Yes
Tensor Core No | No | No No No | No | No | No | No | No | Yes | Yes
Max grids / device 16 4 32 32 32 | 32 16 | 128 | 32 16 | 128 | 128
Max blocks / SM 16 16 16 16 32 | 32 | 32 32 | 32 | 32 32 16
Max warps / SM 64 | 64 | 64 64 64 | 64 | 64 | 64 | 64 | 64 | 64 16
Max threads / SM 210 210 | 210 1 910 1 910 | 910 1 910 | 910 | 210 | 910 | oll
Registers/SM 64K | 64K | 64K | 128K | 64K | 64K | 64K | 64K | 64K | 64K | 64K | 64K
Registers/block 64K | 32K | 64K | 64K | 64K | 64K | 32K | 64K | 64K | 32K | 64K | 64K
Registers/thread 63 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255 | 255
Max shared memory | 48 | 48 | 48 112 64 | 96 | 64 | 64 | 96 | 64 | 96 | 64
per/SM (in KB)

1.5.3 NVIDIA Quandro M2000M

Our first targeted platform is a laptop with an NVIDIA Quadro M2000M hosted in an Intel 17
CPU. Quadro M2000M GPU was released in 2015. It is part of Maxwell first generation and relies
on the GM107 graphics processor. It features 640 CUDA cores, 40 texture mapping units and 16
ROPs (Render Output Unit). Figure 1.4 shows the bloc diagram of this GPU. The chip has 4GB of
GDDR5 memory, which are connected using a 128 —bit memory interface. The GPU is operating
at a frequency of 1.14GHz. Quadro M2000M GPU has no display connectivity, as it is not designed
to have monitors connected to it. Table 1.3 summarizes Quadro M2000M and Tegra X1 GPU main
features.
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Figure 1.4 — NVIDIA Quadro M2000M block diagram

1.5.4 NVIDIA Tegra X1

NVIDIA Tegra X1 [2] SoC, an embedded card, is the second platform targeted in this thesis.
NVIDIA Tegra X1 SoC includes an NVIDIA Maxwell GPU and ARM CPUs. It offers the same
features as the laptop and desktop Maxwell based products. The GPU offers 256 CUDA cores.
Tegra X1 delivers class-leading performance and incredible energy efficiency while supporting all
the modern graphics and compute APIs. Figure 1.5 shows the block diagram of Tegra X1 SoC.
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Table 1.3 — Summary of Quadro M2000M and Tegra X1 GPUs main features

Quadro M2000M | Tegra X1
CC 5.0 5.3
SMM 5 2
CUDA cores per SMM 128 128
Texture mapping unit 40 16
ROPs 16 16
GPU clock rate 1.14GHz 0.07GHz
Memory clock rate 2.5GHz 13MHz
Memory Bus Width 128—bit 64—bit
Global memory 4GB 4GB
L2 Cache Size 2MB 256KB
Constant memory 65KB 65KB
Shared memory 48KB 48KB
Registers available per block 65536 32768

1.6 GPUs Programming Approaches

The diversity of massively parallel architectures leads to heterogeneous programming models. In
this section, We are going to see that parallel programming models can be low or high level.
Low-level or kernel-based languages, strongly related to architecture, are difficult to handle but
can offer good performance since they were designed for these architectures. On the other hand,
high-level languages are easier to use but can result in lower performance compared to kernel-
based languages. The diversity of programming models for massively parallel architectures poses
problems not only for development but also for portability. Thus, we present some automatic
parallelization tools that aim to automatically generate parallel code for GPUs from a sequential
program. We terminate this part with a brief presentation of some domain specific languages.

1.6.1 Kernel-Based Programming Languages

CUDA

First GPUs could only be programmed with low-level graphics-based languages (i.e. shading
languages) which discouraged non-graphics experts from using them. In 2006, NVIDIA introduced
a real change in GPUs architecture. Moreover, with the release of CUDA, GPUs became popular
and usable for general purpose computing. In addition, the first release of the OpenCL (Open
Computing Language) specification by KHRONOS GROUP in 2008 was another milestone as it
enabled software portability across different heterogeneous devices and platforms [25]. CUDA
and OpenCL are relatively similar. In order to facilitate the generality of the definitions presented
and used in the rest of the thesis, CUDA’s terminologies will be adopted.
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CUDA consists of a compute model and a programming language [3]. CUDA’s compute model
is designed for massively parallel processors. In CUDA’s compute model, threads are organized
in SIMD groups, which are called warps. A warp consisted of 32 threads. Multiple warps form a
block and blocks are grouped in grid. The current maximum is 1024 threads per block or 32 warps
per block. During kernel execution, one block of threads is mapped onto one SM on the GPU.
Figure 1.6 illustrates thread hierarchies in CUDA and how they are mapped to the GPU.
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Figure 1.6 — Schematic illustration of a CUDA program with 9 blocks and how they are scheduled

onto two different GPUs

Although hardware multithreading is used on GPU to hide latencies, if a condition (that depends on
the thread ID) is not fulfilled by all threads in a warp, a thread divergence occurs. In this situation,
only threads that fulfill the condition continue the execution until the end of the conditional block.

An example for thread divergence in a same warp is illustrated in Figure 1.7.
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Figure 1.7 — Example for thread divergence in a same warp

————————— suspended

The main memory of the GPU, called global memory or device memory, can be accessed from all

Ph.D Report

21

Rokiatou DIARRA



CHAPTER 1. BACKGROUND

threads for read and write operations. To guarantee that all threads in a warp, a block or the entire
GPU read the most recent data, special synchronization functions can be used if needed. Within a
block, data can be shared between threads of this block. To do that, data must be put in the shared
memory (visible on Figure 1.3 for example). The shared memory, a very fast on-chip memory, is
organized in memory banks. Simultaneous access to the same bank results in conflicts, that cause
a serialization of the memory access. The CUDA compute model provides another memory called
local memory, which resides in the global memory but is private to a single thread. Local memory
accesses have same high latency and low bandwidth as global memory accesses [3]. On GPUs of
compute capability 5.z, local memory accesses are always cached in L2 in the same way as global
memory accesses. Due to the limited number of registers per thread, the local memory allows
using more memory per thread. Additionally, each SM has a small but fast, read-only memory for
constant values (called constant memory). Constant memory resides in device memory and can be
written to by the host system prior to calling a kernel.

Since global memory has a high latency, inter-thread data locality must be carefully considered
in order to optimize global memory access performance. Indeed, memory operations are issued
per warp on GPU. When a warp executes an instruction that accesses global memory, it coalesces
the memory accesses of the threads within the warp into one or more memory transactions. For
example, if threads in a warp request data from consecutive memory addresses, the data can be
ready in 4 or fewer transactions since all the data transferred is efficiently used. This is referred
to as a coalesced memory access. If on the contrary, threads in a warp request data from scattered
addresses, up to 32 memory transactions may be necessary to make the data ready for all the threads
within this warp.

The CUDA programming language consists of two different parts, one for the host system that
controls the execution and one for the device that performs the actual computation. The host sys-
tem is responsible to allocate memory, copy data to and from the device and launch kernels. Two
different host APIs are available. The first is the Runtime API that allows writing GPU and CPU
code in the same file. The second API is the Driver API. It not only supports all features of the
Runtime API but also comes with advanced features, e.g., to dynamically load kernel implemen-
tations during runtime. This allows choosing different implementations of a kernel according to
the underlying hardware without recompiling the actual application. However, the Runtime API is
tuned for usability, the Driver API is tuned for features so that it requires more programming effort
than the Runtime API.

To write a kernel, certain requirements have to be fulfilled. First, it is necessary to annotate kernel
with the __global__ keyword, so that the compiler knows that this function has to be executed on
the GPU. Every output needs to be stored into memory that is passed as a pointer to the kernel.
The kernel itself has then to be written from the perspective of a single thread, whereas all threads
execute the same code. The programmer specifies at least the number of threads per block at
kernel’s launch site. To distinguish between the threads, it is possible to acquire the ID of a thread
inside a block, or the ID of a block, as well as the sizes and counts of blocks by the variables
threadldx.x, vy, z, blockldx.x,y, z, blockDim.x, vy, z and gridDim.x, y, z.

NVIDIA also provides a pseudo-assembly language for CUDA capable devices, called PTX (Par-
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allel Thread eXecution architecture). The PTX is an intermediate assembler. Once a CUDA code
is written, nvce, a compiler from NVIDIA, translates it into PTX, and the graphics driver contains
a compiler which translates the PTX into a binary code which can be run on the GPU.

Since data transfer to and from device memory is costly, when a program uses a large array, data
copies can be overlapped in some GPUs (CC > 2.x). This is called concurrent data transfers.
Concurrent operations are managed through streams. A stream is a sequence of commands that
executes in order. Different streams may execute their commands out of order with respect to one
another or concurrently.

Listing 1.1 shows a naive implementation of Sobel filter 3 x 3 in CUDA. Lines 2 to 10 shows a
naive implementation of the Sobel filter in CUDA. On the CPU side, CUDA runtime functions
are called to allocate device memory and transfer the input image onto the device (shown between
lines 16 and 18). The numbers of thread that each block will contain is defined at the line 21 while
the total number of blocks is defined at line 23 or 26. In this configuration, each thread works on
one pixel. The Sobel filter kernel is launched on device with the defined number of threads at line
24 or 28. After the computation finishes, the data is copied back from the GPU.

1|//kernel definition

2 | __global__ void sobelCUDA(const uint8_t xinput, uint8_t xoutput_h,

3 uint8_t xoutput_v, const int H, const int W) {
4 int x=blockDim.x*blockIldx .x+threadldx .x; //get thread index in block
5 int y=blockDim.yxblockldx .y+threadldx .y;

6 if (x >>W Il y >= H) return;

7 output_h [x+ysW]=(—input [(x—1)+(y—1)*«W]—2xin [x+(y—1)*«W]—in [(x+1)+(y—1)*W]
8 +in [(X—1D)+(y+1)sW]+2xin [x+(y+1)«W]+in [(x+1)+(y+1)sxW]) /9;
9 output_v [x+ysW]=(—input [(x—1)+(y—D)«W]+in [(x+1)+y*W]—2xin [(x—1)+y*W]
10 +2xin [(x+1)+ysW]—in [(x—=1D)+(y+1D)«W]+in [(x+1)+(y+1)*xW]) /9;
11 |}

12

13 | void sobelLauncher(const uint8_t xinput, uint8_t xoutput_h,

14 uint8_t xoutput_v, const int H, const int W) {

15 int mem_size = H * W x sizeof(uint8_t);

16 uint8_t xd_input, xd_output_h, xd_output_v;

17 cudaMalloc ((void x*x) &d_input, mem_size); //allocate memory on device
18 cudaMalloc ((void x*x) &d_output_h, mem_size);

19 cudaMalloc ((void *x*) &d_output_v, mem_size);

20 //transfert input image from host to device memory

21 cudaMemcpy (d_input, input, mem_size, cudaMemcpyHostToDevice)

22 //set grid and block sizes

23 dim3 Db(DIM_THREAD_BLOCK_X, DIM_THREAD BLOCK.Y, 1);

24 dim3 Dg((size_t)(ceil (((float)W)/((float)DIM THREAD BLOCK X))),

25 (size_t)(ceil ((float)H/(( float)DIM_THREAD BLOCK_Y))), 1);

26 //kernel invocation

27 sobel CUDA <<<Dg,Db>>>(d_input , d_output_h, d_output_v, H, W);

28 //copy back results

29 cudaMemcpy (output_h, d_output_h, mem_size, cudaMemcpyDeviceToHost) ;
30 cudaMemcpy (output_v , d_output_v, mem_size, cudaMemcpyDeviceToHost) ;
31 // free device memory

32 cudaFree (d_input);

33 cudaFree (d_output_h);
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34 cudaFree (d_output_h);
35 |}

Listing 1.1 — Example of Sobel filter naive implementation in CUDA

The CUDA version of Sobel filter seen in Listing 1.1 is not optimized. Indeed, each pixel of input
image is read many times. One optimization can be to reduce the number of unnecessary data loads
by dividing the Sobel filter processing into horizontal and vertical passes. Additionally, the shared
memory can be used to store the portion of data that is used by threads in the same block and
thus reduce global memory accesses. Another optimization can be the usage of textures instead of
shared memory. Therefore, to obtain an optimized CUDA code, the programmer must understand
well both GPUs architecture and CUDA optimization strategies like memory-coalescing access,
efficient usage of shared memory, textures, kernel splitting and tiling technology. Additionally,
grid and block configurations, computing behaviors of each thread, and synchronization problems
need to carefully be tuned [26].

Performance optimization in CUDA
Generally speaking, performance optimization in CUDA may includes:

1. Maximize parallel execution by structuring the code in a way that it exposes as much par-
allelism as possible and efficiently maps this parallelism to the various components of the
GPU to keep them busy most of the time.

2. Maximize parallel execution between the host, the devices, and the bus connecting the host
to the devices, by using asynchronous functions calls and streams.

3. Minimize synchronization functions calls.
4. Avoid thread divergence.

5. Optimize memory usage to achieve maximum memory throughput by avoiding un-coalesced
memory accesses or use shared memory to reduce redundant data loads for example.

6. Caching, in the unified L1/texture cache, data that is read-only for the entire lifetime of the
kernel by marking pointers used for loading such data with both the const and __restrict__
qualifiers (see Chapter 4).

7. Consider the capabilities (maximum size of grids, blocks, warps, register, etc.) of the targeted
GPU. For example the number of registers used by a kernel can have a significant impact
on the number of resident warps and therefore on the overall performance of this kernel.
Considering the case of a kernel that uses 64 registers and each block has 512 threads and
requires very little shared memory. If we execute this kernel on a device of CC 5.z, then
two blocks can reside on the multiprocessor since they require 2 x 512 x 64 registers, which
exactly matches the number of registers available on the SM (see Table 1.2). But as soon
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as the kernel uses one more register, only one block can be resident since two blocks would
require more registers than that are available on the SM.

8. The block size should be chosen as a multiple of the warp size (32) to avoid wasting comput-
ing resources with under-populated warps as much as possible. On the other hand, the grid
size should be a multiple of the number of the targeted GPU’s SMs to avoid idle SM during
the kernel execution.

OpenCL

OpenCL (Open Computing Language) [27] is a language-based programming model for hetero-
geneous platforms including CPUs, GPUs, DSPs, FPGAs, etc. OpenCL provides an API to con-
trol the platform and program execution on the compute devices. Unlike CUDA, OpenCL has a
cross-vendor and cross-platform software portability. OpenCL execution model is similar to that
of CUDA but requires explicit use of operations such as: the creation of the device context, the
command queue, the program objects, the memory objects, etc.

SYCL

SYCL [28] is a cross-platform abstraction, shared source, C+-+ programming layer for OpenCL.
It is built on top of OpenCL 1.2 and based on standard C+ + 11. SYCL adds the ease of use
and flexibility of single-source C++ to OpenCL underlying concepts: portability and efficiency.
SYCL allows programmers to shared write an entire program in valid C+ + 11, without having
to add additional non-standard keywords to their source. During the compilation phase, compiler
separates accelerator kernels and generates code to execute them on a device. Runtime resolves
data dependencies and schedules host-device data movement. Currently, the two most mature
implementations of SYCL are triSYCL and computecpp and both have not support for NVIDIA
GPUs.

1.6.2 Directives-based approaches

A directive is a code line, typically starting by "#pragma", that tells the compiler something. Direc-
tives have been used for several years for the parallelization of code on CPU. They are easy to use
because they may not require rewriting the source code. When a compiler encounters a directive
he does not know, he simply ignores it. Thus, directives are portable. GPUs programming using
directives-based approaches is an alternative to CUDA and OpenCL. Because of their ease of use,
directive-based approaches can offer a good trade-off between productivity, portability, and perfor-
mance. However, such programming strategies impose technical challenges on compiler optimiza-
tions, which could result in lower performance than with kernel-based languages. OpenMP and
OpenACC are the two most widely used directives-based approach for accelerators programming.
Since they are the main focus of this thesis, we will take a deeper look into their specifications
in the next chapter. There are many directives-based approaches for GPU programming, besides
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OpenMP and OpenACC, that have been proposed by the parallel programming community. Here,
we give an overview of two of them.

HMPP

HMPP (Hybrid Multicore Parallel Programming) is a framework consisting of compiler directives,
tools and software runtime that supports multi-core processor parallel programming in C and For-
tran on Unix platforms [29, 30]. HMPP directives are used to annotate the original code with
instructions to execute a routine, the codelet, on a accelerator. A codelet is a pure function whose
arguments are alias-free and does not contain static/volatile variable declarations and no reference
to global variables, except variables declared as "resident” by an OpenHMPP directive. HMPP
provides several directives for device initialization, codelet execution specification, data transfer to
and from device memory and synchronization mechanisms. If the targeted device is an NVIDIA
GPU, HMPP generates CUDA code. HMPP can also generate OpenCL code for OpenCL devices.
S. Grauer-Gray et al. [31] demonstrated that the performance of auto-tuned HMPP-generated im-
plementations can approximate that of simple CUDA ans OpenCL codes. HMPP is compatible
with OpenMP and MPI. Although HMPP did not have the same success as OpenMP and is not
widely used, some works have been done around it. CAPS with some French academic partners
(e.g. INRIA, CNRS, etc.) have launched the OpenHMMP project that aims to make HMPP a
standard for accelerator programming.

#pragma hmpp sobelHMPP codelet, target=CUDA, \
args [output_h, output_v].io=inout //codelet definition
void sobelHMPP (const uint8_t *input, uint8_t =*output_h,
uint8_t =xoutput_v, const int H, const int W) {
for(int y = 1; y < H; y++)
for(int x = 1; x < W; x++) {
//lines 7 to 10 of Listing 1.1

OO\ N AW

}

=}

}

int main(int argc, char *xargv) {

—_ =
—_ O
~
N

#pragma hmpp sobelHMPP advancedload args[input] .size={W, H} //Preload data
#pragma hmpp sobelHMPP callsite //codelet invocation

sobelHMPP (input, output_h, output_v, H, W);
#pragma hmpp sgemm delegatedstore, args[output_h,output_v] //copy results

— = = =
AN N B W
~
N

—_
<

}

Listing 1.2 — Sobel filter implementation in HMPP

OmpSs

OmpSs [32] programming model, proposed by the Barcelona Supercomputing Center, is another
directive-based approach for aiding application porting to heterogeneous architectures. OmpSs,
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based on OpenMP directives, is implemented using the Mercurium compiler and the Nanos++ run-
time. The programmer must annotate his code with compiler directives specifying task-based par-
allelism. OmpSs annotations are interpreted by the Mercurium source-to-source compiler, which
supports Fortran, C, and C++ languages. For each call to the annotated functions the compiler gen-
erates a call to the Nanos++ runtime system to create a new task. If the target is a CUDA/OpenCL
device, the result is compiled by a native CUDA/OpenCL compiler. In the case of the FPGAs,
OmpSs uses the High-Level Synthesis tools from FPGA vendors to generate the IP configurations
for the FPGA. Besides performing a task-based parallelization, the runtime system moves the data
as needed between host and devices. Since the code generated by compiler can be less optimized
than a hand-optimized CUDA code, OmpSs provides an interoperability mode with CUDA. In-
deed, programmer can write the kernel code in CUDA and uses OmpSs directives to manage data.
Listing 1.3 shows the example of Sobel filter parallelization with OmpSs.

1 |#pragma omp target device(cuda) copy_deps

2 |//specify data that must copied to and from GPU memory

3 |#pragma omp taskinput(input[H;W]) output(output_h[H;W],output_v[H;W])
4 | void sobelOmpSs(const uint8_t xinput, uint8_t xoutput_h,

5 uint8_t xoutput_v, const int H, const int W) {
6 for(int y = 1; y < H; y++)

7 for(int x = 1; x <W; x++) {

8 //lines 7 to 10 of Listing 1.1

9 }

10 |} //copy back output_h and output_v

11 |int main(int argc, char xxargv)({

12 /]

13 sobelOmpSs (input, output_h, output_v, H, W);

14 /).

15 //example of using a CUDA kernel with OmpSs

16 #pragma omp target device(cuda) copy_deps

17 #pragma omp taskinput(input[H;W]) output(output_h[H;W],output_v[H;W])
18 {

19 dim3 block (DIM_THREAD_BLOCK X, DIM_THREAD BLOCK Y, 1);

20 dim3 Dg(W/DIM_THREAD_BLOCK_X, H/DIM_THREAD_BLOCK_ Y, 1);

21 sobel CUDA<<<Dg,Db>>>(d_input, d_output_h, d_output_v, H, W);
22 }//copy back output_h and output_v

23 /]

24 |}

Listing 1.3 — Sobel filter implementation in OmpSs

1.6.3 Automatic parallel code generation tools

Unlike low-level languages that require from the programmer to write parallel code and directives-
based approaches that allow the programmer to mark code portion to be parallelized with direc-
tives, automatic parallelization of sequential code has become increasingly relevant in accelerators
programming. Many works have been done in this area. Here we give a brief description of some
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of them.

Par4All

Par4All [33] is an automatic parallelizing and optimizing compiler for C and Fortran programs.
It was developed by HPC Project with the purpose of migrating existing sequential applications
to various hardware targets such as multicore systems, high-performance computers or GPUs.
Par4All takes a sequential C or Fortran program as input and creates new OpenMP < 4.0, CUDA
or OpenCL source codes. The original source codes remain mainly unchanged for well-formed
programs. The automatic transformation process is based on the Parallelization Infrastructure for
Parallel Systems, which is a framework for source-to-source program analysis, optimization, and
parallelization. Par4all does array privatization, reduction variable recognition, and induction vari-
able substitution. It also does memory data transfer optimization when the target code is CUDA or
OpenCL. Par4All is no longer maintained and tends to be obsolete.

PPCG

PPCG (Polyhedral Parallel Code Generator) [34] is a source-to-source compiler that can generate
CPU and GPU code with one or more CUDA kernels from any static affine loop nest. PPCG is
based on polyhedral compilation techniques. It combines affine transformations to extract data-
parallelism with a code generator to orchestrate it over multiple levels of parallelism and memory.
To convert a fragment of a C program to CUDA, the programmer must precede this fragment by a
line containing #pragma scop and #pragma endscop at the end of targeted code fragment, and pass
the flag —target=cuda to the PPCG compiler.

KernelGen

KernelGen [35] is a parallelization framework. It supports the major scientific programming lan-
guages including C and Fortran, and has multiple backends that can generate target code for both
X86 CPUs and NVIDIA GPUs. KernelGen aims to move onto GPU the maximum possible por-
tion of code, including memory allocations, creating efficient data layout principally for GPU
computations. In KernelGen, loops parallelism analysis is based on Polly (a high-level loop and
data-locality optimizer and optimization infrastructure for LLVM) and CLooG (a free software and
library to generate code for scanning Z-polyhedra). These analyses are complemented with GPU-
specific LLVM IR code generation. And then, LLVM IR is further lowered into PTX assembler
using NVPTX backend.

Cetus

Cetus [36] is a source-to-source compiler for ANSI C programs. Cetus uses static analyses such as
scalar and array privatization, reduction variables recognition, symbolic data dependency testing,
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and induction variable substitution. Cetus provides auto-parallelization of loops through private
and shared variables analysis and automatic insertion of OpenMP directives. Cetus can also trans-
form OpenMP code into GPGPU code [37], by identifying the regions that will be transformed
into kernels, based on the inflection points that constitute the synchronization instructions: omp
barrier, omp flush, and omp critical. Then, for work partitioning, the identified regions are replaced
with CUDA kernel calls. The distribution of the data is carried out relying on appropriate memory
transfers.

DawnCC

DawnCC [38] provides a suite compiler-related methods to insert automatically OpenACC or
OpenMP 4.0 device directives in sequential C/C++ code that can then be interpreted by com-
patible compilers to generate machine code. DawnCC is built on top of the LLVM (version 3.7)
compilation framework, whose intermediate representation is used as input for the static analyses.
DawnCC can be used stand-alone or through an online interface. Listing 1.4 shows the outputs of
DawnCC for the Sobel filter routine (lines 4 to 10 of Listing 1.3). DawnCC is easy to use since it
does not require any intervention from the user and knowledge of OpenACC and OpenMP. How-
ever, DawnCC has several limitations. First, DawnCC add supplementary instructions in order to
determine arrays that must be copied to and from the device (e.g. GPU, Intel Xeon Phi) memory
as well as the size of data that will be transfered. These instructions up to 116 for the Sobel filter
routine. These instructions can increase the execution time of the Sobel filter routine. Second,
DawnCC can not optimize data transfer between host and device memory. For instance, it is not
necessary to copy the arrays out_h and out_v to device memory since these arrays are not read.
However, DawnCC copy these arrays to and from device memory, thus increasing the time spent
in data transfer as well as the overall execution time of our Sobel filter routine. Third, DawnCC
does not insert any optimization clauses. As we will see in Chapter 3, It is insufficient to simply
insert only kernels (for OpenACC, line 8 of Listing 1.4) or target (OpenMP, line 19 of Listing 1.4).
To be clear, insert only kernels or target severely degrades code performance.

1|//the output for OpenACC

2 | void sobelDawnCCOpenACC (....) {

3 long long int AII[111]; AII[O] = 2 % w; AIl[1] = AIlL[O0] + 2;

4 AIl[2] = AII[1] x 1; AIl[3] =w + 2; AIl[4] = AIl[3] * 1;

5 AIl1[5] = AI1L[0] % 1; AIl[6] =w % 1; //... and so on

6 #pragma acc data pcopyin(in[AIl[91]:AI1[92]]) \

7 pcopy (out_h[AI1I[109]:AI1[110]],0ut_v[AIl[109]:AI1[110]]) if (!RST_AIl)
8 #pragma acc kernels if (!RST_AIl)

9 for(int y = 1; y < H; y++)

10 for(int x = 1; X <W; x++) { /xlines 7 to 10 of Listing 1.1x/ }

11 |}
12 | //the output for OpenMP

13 | void sobelDawnCCOpenMP (....) {

14 long long int AIlI[111]; AII[O] = 2 % w; AIl[1] = AIl[0] + 2;

15 All1[2] = AIlI[1] % 1; AI1[3] =w + 2; All[4] = AIl[3] * 1;

16 AIl1[5] = AI1L[0] % 1; AIl[6] =w % 1; //... and so on ..

17 #pragma omp target data map(to: in[AIlI[91]:AIl1[92]]) map(tofrom: \

Ph.D Report 29 Rokiatou DIARRA




CHAPTER 1. BACKGROUND

18 out_h[AIl1[109]:AI1[110]],0out_v[AIl1[109]:AI1[110]]) if (!RST_AIl)
19 #pragma omp target if (!RST_AII)

20 for(int y = 1; y < H; y++)

21 for(int x = 1; x <W; x++) { /xlines 7 to 10 of Listing 1.1x/ }
22 |}

Listing 1.4 — Sobel filter implementation in OmpSs

1.6.4 Domain Specific Language

Domain Specific Languages (DSL) are languages specially designed for a specific field such as
medical imaging, computer vision, HPC, etc. Generally, they require to rewrite the application
to be parallelized in the DSL language. However, they are typically very portable since the code
has to be written once and for each target architecture the compiler generates a suitable optimized
code. Many DSLs have been proposed for efficient parallelization of different fields. Here, we give
a brief description of some of them.

Halide

Halide [39], a DSL for image processing, uses a functional programming paradigm to express
kernels in a compact and concise way. Images have no explicit storage but are pure functions that
define the value of each pixel. Halide is capable of generating code for various target architectures
(multi-core CPU, GPUs, DSP, etc.). The developer needs to specify a schedule that defines how
the algorithm should be mapped onto the target architecture in order to obtain an efficient code.
Halide’s schedule can be manually specified and requires the developer to have a certain degree
of architecture and domain knowledge. However, as the schedule is evaluated dynamically by
the compiler, it can be altered or even entirely replaced at run time. Halide provides also an
auto-scheduling function which allows the compiler to choose the best parallelization strategy
according.

HIPAcc

HIPAcc (Heterogeneous Image Processing Acceleration) [40] is a framework for the automatic
parallel code generation of image processing algorithms. It consists of a DSL that is embedded
into C++ and a source-to-source compiler. Exploiting the compiler, image processing algorithms
written in DSL code can be translated into multiple target languages such as CUDA, OpenCL or
Renderscript. HIPAcc compiler is based on the Clang/LLVM 3.4 compiler infrastructure. HIPAcc
parses C/C++ code and generates an internal Abstract Syntax Tree (AST) representation. Operat-
ing on this representation, HIPAcc will generate two kinds of code: host code for managing kernel
launches and memory transfers, and device code containing the actual kernel description in the
specified target language.
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Vulkan

Vulkan [41] initially announced as "OpenGL next generation", is a cross-platform 3D graphics and
computing API. Vulkan is specially designed to target real-time 3D graphics applications such as
video games and interactive media across all platforms. Contrary to OpenGL, Vulkan is intended
to offer higher performance, more balanced CPU/GPU usage and parallel tasking.

Numerical Template Toolbox (NT2)

NT2 [42] is an open source C++ library that attempts to simplify the development, debugging
and optimization of high-performance computing applications by providing a Matlab like syntax
that eases the transition between prototype and actual application. Like with others DSL seen
above, the user must rewrite its program using NT2 syntax and data types. NT2 keeps a high
level of expressiveness by exploiting the architecture-specific information as early as possible in
the code generation process. It selects architectural features from either compiler-based options or
user-defined preprocessor. Like in Halide, with NT2 the user can test different optimizations by
setting different runtime supports for a given architecture until required performance is partially or
completely satisfied.

1.7 Summary

In this chapter, we have remembered the definitions of some key notions of parallel computing. We
talked about the two important inflection points that occurred in the computing world: the switch
to parallel processors and the rise of GPUs. GPUs are throughput-oriented devices that use hun-
dreds of cores to execute a massive number of threads and utilize hardware multithreading to hide
latency. We reviewed GPU architectures and diverse approaches for their programming. Low-level
languages, strongly related to the architecture, allow expert programmers to hand-tune their codes
to exploit the full capabilities of the GPU. However, the programmer must have substantial knowl-
edge of the hardware details of the GPU in order to achieve good performance. Directive-based
programming models, that are relevant to our research, aim to provide interfaces for exploiting the
power of GPUs in a more productive and portable manner. Table 1.4 presents a summary of par-
allel programming approaches discussed in this chapter. OpenMP and OpenACC, the main focus
of this thesis, are widely used for accelerators programming. In the next chapter, we will discuss
OpenMP and OpenACC specifications and their suitability for GPU programming.
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Table 1.4 — Summary of parallel programming approaches

Category Name Target Compiler Input Output Alive | Complexity
CUDA NVIDIA nvce, CUDA code — yes Bl
GPU LLVM/Clang
OpenCL CPU, GPUgs, | clang, clcc OpenCL - yes ok
Kernel-based FPGA ioc64 code
languages SYCL CPU, GPUs, | triSYCL SYCL code — yes ok
FPGA computeCpp
sycl-gtx
HMPP CPU, GPU, | CAPS user can annotate Annotated
FPGA C/C++ code with code
HMPP directives
OmpSs CPU, GPU, | Mercurium C/C++/Fortran yes
L. FPGA Nanos++ annotated code with
Directive . . .
based runtime OmpSs directives
ase
approaches OpenACC | CPU, GPU, | PGI, Cray cc, C/C++/Fortran Annotated yes
FPGA Intel icc, etc. code code
OpenMP CPU, GPU, | LLVM/Clang, Gec, | C/C++/Fortran Annotated yes
FPGA Intel icc, etc. code code
Pard4All CPU, GPU — C/Fortran OpenMP No —
code CUDA
OpenCL
PLUTO CPU - C code OpenMP yes —
code
PPCG CPU,GPU | — Serial code CUDA/OpenCL yes —
Automatic code
parallel AutoPar CPU - Serial C/C++ OpenMP code yes -
code ‘ code for CPUs
generation KernelGen
tools
Cetus
Dawncc GPU — Serial C/C++ C/C++ code annotated | yes —
code with OpenMP 4.0 or
OpenACC directives
Halide CPU, GPUs | Halide compiler Halide code - yes ok
FPGA, DSP
Domain HIPAcc CPU, GPUs, | — HIPAcc code CPU, CUDA, yes otk
Specific FPGA OpenCL code
Languages Vulkan
NT2 CPU, GPUgs, NT2
DSP
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CHAPTER 2. ANALYSIS OF OPENMP & OPENACC SPECIFICATIONS

Nowadays, GPUs are everywhere from mobile devices to supercomputers. As seen in Section
1.6, GPUs can be programmed with low-level models (e.g., CUDA, OpenCL), directives-based
approaches (e.g., HMPP, OmpSs, OpenACC, OpenMP, etc.), automatic parallel code generation
tools (e.g., Par4All, PPCG, DawnCC, ...), and domain-specific languages (e.g., Halide, HIPAcc,
SYCL). Unlike low-level and domain-specific languages, and automatic parallel code generation
tools, directive-based approaches allow programmers to provide simple hints, known as "direc-
tives", to the compiler, identifying which areas of code to accelerate, without requiring program-
mers to modify or adapt the underlying code itself. By exposing parallelism to the compiler, direc-
tives help the compiler perform the detailed transformation of mapping the computation onto the
accelerator. Since OpenMP and OpenACC are the main focus of this dissertation, we describe the
major features of their specifications in 2.1 and 2.2. They are categorized into four subjects: exe-
cution model, compute’s offloading directives, memory model, and data management mechanism.
Then, OpenMP and OpenACC specifications comparison is discussed in Section 2.3. As already
said, porting of legacy CPU-base code using OpenMP/OpenACC, only requires programmers to
add several lines of annotations before the sections where they need to be accelerated, without
changing code structures. However, these over-simplified parallel programming models also bring
to users limitations which may prevent full use of the available architectural resources, potentially
resulting in greatly reduced performance when compared to highly manually tuned CUDA code.
This last point is discussed in Section 2.4. The OpenMP and OpenACC specifications use generic
terms to describe the heterogeneous programming environment. In general, the host is a CPU and
the device is the accelerator (e.g., GPU).

2.1 OpenMP

OpenMP is undoubtedly the most used standard for several years for the parallel programming
for shared memory CPUs. OpenMP 4.0 [43] extended the OpenMP shared memory programming
model to support accelerators (e.x. GPUs, Intel Xeon Phi). The OpenMP fork-join model was ex-
tended with the introduction of device constructs for programming accelerators. Since the release
of OpenMP 4.0 in July 2013, OpenMP continues to evolve with the addition of new directives. The
current version is OpenMP 5.0 [4] which was released in November 2018. In this section, we will
describe OpenMP accelerator execution model, its memory model as well as compute offload and
data management directives.

2.1.1 Execution Model

OpenMP’s execution model for accelerators assumes that the main program runs on the host, which
can offload compute-intensive regions on one or more devices. The execution model chooses by
OpenMP, for accelerators programming, is host-centric. In other terms, the host device offloads
compute-intensive regions (identified using directives by the programmer) to target devices. Typi-
cally, each device has its own threads, which are distinct from host threads or other device threads.
The target devices execute the offloaded code regions in parallel. Each offloaded region usually
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becomes a kernel running on the device.

When an offloading (or a rarget) directive is encountered, a new target task is generated for execu-
tion on the target device. This new task encloses the target region code. Then, the host:

e allocates memory on the target device,

e initiates the data transfer,

o transfers the generated kernel code to the accelerator,
e passes arguments to the kernel function,

e places the kernel on the launching queue,

e waits for completion,

e transfers the results back to the host, and deallocates the memory on the target device. Figure
2.1 shows a schematic illustration of this execution model.

int main(...) {

Host
@ local host thread

I I I I I < #pragma omp target ........

¢
. TP e ===
I I I I I lltarget task —I_> “““““

— @ local host thread

Figure 2.1 — Illustration of OpenMP’s execution model for accelerators

Concerning the generated target task, it may be executed sequentially on a target device by an
initial thread as if the target region is part of an initial task region that is generated by an implicit
parallel region. Finally, OpenMP provides clauses for asynchronous execution of target regions.
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2.1.2 Compute Offloading Directives

In OpenMP 4.0 and higher, the programmer can specify the region of code to be executed in an
accelerator by using the target directive. Indeed, when the farget directive is encountered a target
task is generated for the structured-block following this directive. If data-mapping clauses are
specified, a device data environment is created and data are mapped to the device’s memory. Then
the target task is executed on that device. Results data can be copy back to the host’s memory after
the target task completion. The farget directive transfer control of device’s code execution to a
single device thread. The rarget directive accepts following clauses:

e if (optional): allows the conditional execution of the target task. To be clear, if the condition
is evaluated true, then the target task is executed on the device, otherwise, it is executed on
the host.

e device: allows choosing the device to be used if more than one accelerator is available.

e private: makes each thread has its own private copy of a variable, and modifications made
by a thread to its copy are not visible to other threads.

e firstprivate: makes each thread has its own instance of a variable, and this instance should
be initialized with the value of the variable.

e map(to | from | tofrom | alloc | release | delete): specifies how an original variable is mapped
from the current host thread’s data environment to a corresponding variable in the device
data environment.

e is_device_ptr: indicates that a list item is a device pointer already in the device data environ-
ment and that it should be used directly.

e defaultmap(to | from | tofrom | alloc | firstprivate | none | default): explicitly determines the
data-mapping attributes of variables that are referenced in a farget construct.

e allocate: allows the user to specify the memory allocator to be used to obtain storage for
private variables of the rarget construct.

e in_reduction: specifies that there is a reduction operation in the generated target task.
e nowait: allows an asynchronous execution of the target task.

e depend: to specify data dependency between different part of the program.

Listing 2.1 and Figure 2.2 show how the Sobel 3 x 3 filter seen in 1.6.1 can be offloaded on a target
device by using the target directive. From the farget directive at line 4, the compiler will generate
instructions for the target device initialization, memory allocation for in, out_h and out_v, the copy
of in in device’s memory, the launch of target task on device and the copy back of out_h and out_v
to host’s memory. The generated target task corresponds to the block of code from line 5 to 13

Ph.D Report 36 Rokiatou DIARRA



CHAPTER 2. ANALYSIS OF OPENMP & OPENACC SPECIFICATIONS

and will be executed on the target device. The number of threads participating in the target task
execution on device is implementation defined, but the target task is executed by a single device
thread in general.

1 |int main (....) {

2 S e e e e e e

3 //ofload the computation of a Sobel 3x3 filter

4 #pragma omp target map (to:in[0:wxh]) map (from:out_h[0:w+xh], out_v[0:wxh])
5 for(int x = 1; x < h - 1; x++)

6 for(int y = 1; v < w — 1; y++) {

7 out_vi[y + w * x] = —in[(y-1)+wx(x-1)] + in[y+wx (x+1)] -
8 2%in[y+ws (x-1)] + 2%in[y+w* (x+1)] — in[ (y+1)+wx (x—1)]

9 + in[ (y+1)+wx (x+1)1];

10 out_h[y + w * x] = —in[(y-1)+w* (x-1)] — 2*in[ (y-1)+w*x]
11 — in[(y=1)4wx (x+1)] + in[ (y+1)+wx (x-1)] +

12 2+«in[ (y+1)+wxx] + in[ (y+1)+w* (x+1)1;

13 }

14 S e e e e e

15 |}

Listing 2.1 — Accelerate the Sobel 3x3 filter with the target directive

int map(...) ) " | host thread
target map(to...) 3
for(int x .. Copy of in
° (intx ...
! |
inactive > § device thread
host thread - device
‘ execution | | + and otV
[ 3 opy of OV
map(from...) out_Vi-- | cop
P out M- Device |
Host

Figure 2.2 — Offloading of Sobel 3 x 3 filter computation with the farget directive. The offloaded
region is executed by a single device thread.

In addition to the target directive, OpenMP provides two other directives to describe more in detail
how the code to be offloaded must be parallelized. These two additional directives are: teams and
distribute.

The teams construct

When the device master thread encounters the teams construct, a league of thread teams is created
and the master thread in each team executes the teams region. In addition to the clauses private,
firstprivate and allocate, the teams construct accept the clauses:
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shared: makes variables in the list to be shared among all the threads in league of thread
teams. All threads access the same storage area for shared variables.

default(shared | none): allows the user to affect the data-sharing attribute of the variables
appeared in the teams construct.

reduction: specifies that a variable is used to perform some forms of recurrence calculations
in parallel.

thread_limit: allows the user to set the number of threads participating in the contention
group that each team initiates. However, the implementation, i.e. the compiler, is free to
choose another number that can be less than or equal to the value specified in the thread_limit
clause.

num_teams: can be used to set the number of teams that will be created, but the compiler
is free to choose another number that can be less than or equal to the value specified by the
user.

There is no implicit barrier at the end of a teams construct. Listing 2.2 shows the Sobel 3 x 3 (seen
in Listing 2.1) offloading with the target and teams directives. Figure 2.3 illustrates performed
operations when the device master thread encounters the teams construct.

int main (....) {

//ofload the computation of a Sobel 3x3 filter
#pragma omp target map (to:in[0:wxh]) map (from:out_h[O0:wxh], out_v[0:wxh])
#fpragma omp teams num_teams (h) thread_limit (128)

for(int x = 1; x < h - 1; x++)
for(int vy = 1; yv < w — 1; y++) {
out_viy + w x x] = —in[(y-1)+wx (x-1)] + in[yt+twx (x+1)] -
2xin[y+wx (x=1)] + 2xin[y+wx (x+1)] — in[ (y+1)+wx (x-1)]
+ in[ (y+1) +twx (x+1)1;
out_h[y + w * x] = —in[(y-1)+wx(x=-1)] — 2*xin[(y—-1)+wxx]
— in[(y=1)+wx (x+1)] + in[(y+1)+w*(x-1)] +
[(

2xin[ (y+1) twxx] + in[ (y+1) twx (x+1)];

Listing 2.2 — Accelerate the Sobel 3x3 filter with the target and teams directives

The distribute construct

The distribute construct, that must be strictly nested inside a reams directive, specifies that the
iterations of one (or more loops if they are collapsed) will be executed by the league of teams (pre-
viously created from the teams construct). The iterations of the loop(s) associated to a distribute
directive are distributed across the threads of teams that execute the reams region.
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(from the target directive at line 4)
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(from the teams construct at line 5)
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Figure 2.3 — Offloading of Sobel 3 x 3 filter computation with the farget and teams directives.
Although a league of thread teams is created, only the device master thread executes the target
task. Iterations of loops x and y are not distributed among threads.

In addition to the clauses private, firstprivate, and allocate, the distribute construct accept the
following clauses:

e lastprivate: makes a private variable is updated after the end of the distribute construct.
e collapse: can be used to specify how many loops are associated with the distribute construct.

e dist_schedule(chunk_size): may be used to specify that the iterations of associated loop(s)
will be divided into chunks of size chunk_size. Chunks will be assigned to the teams in a
round-robin fashion in the order of the team number.

As for the teams directive, there is no implicit barrier at the end of a distribute construct. Listing
2.3 shows the Sobel 3 x 3 filter, of Listing 2.2, parallelization with the distribute construct. By
adding the distribute directive with the clause collapse at line 6, iterations of loops x and y will
be collapsed and distributed among teams. However, only the master thread of each teams will
executes the teams iterations. Since, we set the number of threads within each teams to 128, the
chunk_size can also be set to 128.

int main (....) {

//ofload the computation of a Sobel 3x3 filter

#pragma omp target map(to:in[0:wxh]) map (from:out_h[0:wxh], out_v[0:wxh])
#pragma omp teams num_teams (h) thread_limit (128)

#pragma omp distribute collapse(2) dist_schedule (128)

AN A W=
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7 for(int x = 1; x < h - 1; x++)

8 for(int vy = 1; v < w — 1; y++) {

9 out_viy + w x x] = —-in[(y-1)+wx (x-1)] + in[y+twx (x+1)] -
10 2xin[y+w* (x=1)] + 2+in[y+w* (x+1)] — in[ (y+1)+w=* (x-1)]
11 + in[ (y+1)+wx (x+1)];

12 out_hly + w x x] = —in[(y-1)+w*(x-1)] — 2xin[ (y—1)+w*x]
13 — in[(y-1)4wx (x+1)] + in[ (y+1)+wx (x-1)] +

14 2+«in[ (y+1)+wxx] + in[ (y+1)+w* (x+1)];

15 }

16 S e e e e e

17 |}

Listing 2.3 — Accelerate the Sobel 3x3 filter with the target + teams + distribute constructs

In order to allow all threads within a teams participate to teams’s iterations execution, the traditional
parallel for construct must be add to the distribute directive at line 6 of Listing 2.3. Lines 1 to 7 in
Listing 2.4 illustrate this case.

1 |#pragma omp target map (to:in[0:wxh]) map (from:out_h[0:wxh], out_v[0:wxh])

2 |#pragma omp teams num_teams (h) thread_limit (128)

3 |#pragma omp distribute parallel for collapse(2) dist_schedule (128)

4 |for(int x = 1; x < h - 1; x++)

5 for(int v = 1; v < w - 1; y++) { //all threads within a teams participate
to teams region execution

6 S e e

7 }

8

9 |#pragma omp target map (to:in[0:wxh]) map (from:out_h[0:w*h], out_vI[0:wxh])
10 | #pragma omp teams num_teams (h) thread_limit (128)

11 |#pragma omp distribute dist_schedule (128)

12 [ for(int x = 1; x < h - 1; x++) {

13 //only master threads of teams execute teams’s iterations

14 S/ e

15 #pragma omp parallel for

16 for(int vy = 1; v < w — 1; y++) { //all threads within a teams execute
this loop in parallel

17 V2

18 }

19 |}

Listing 2.4 — Fully parallelization with target + teams + distribute + parallel + for

Loops are not always ready to be collapsed, in such case, the parallel for construct can be added
to nested loops. Lines 9 to 19 in Listing 2.4 shows an example of the parallelization of the nested
loop. When loops instructions are regular, they can be parallelized in a SIMD fashion by using the
simd construct instead of the parallel for directive.

OpenMP directives can be combined. Thus, any of the constructs parallel, worksharing-loop for,
simd and loop can be combined with the target, teams and distribute directives to specify how
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nested loops should be parallelized. Figure 2.4 shows different possible combination of directives,
from left to right.

target

—p | teams
loop » parallel
. loop
— P parallel -
for simd
. loop

—p simd

for simd

Figure 2.4 — Possible combinations of OpenMP construct for accelerators programming

On a combined construct that includes target and teams constructs, the values of num_teams and
thread_limit clauses are evaluated on the host device on entry to the target construct.

2.1.3 Memory Model

OpenMP’s memory model, for accelerators programming, assumes that the host and the device
may have separate memories as illustrated in Figure 2.5. Therefore, the data movement between
host and device memories may be explicitly managed. Since host and target devices are supposed
to have separate memories, each device has a device data environment that is defined by its implicit
target data region. When a target task is running on a target device, references to the host’s original
variable refer to the corresponding variable in the device data environment. In this context, if an
original variable is not currently mapped and a corresponding variable does not exist in the device
data environment then accesses to the original variable may result in an illegal access error and
lead to a segmentation fault.

OpenMP provides a large set of data mapping directives, clauses, and runtime library routines as
part of its standard. Data-mapping directives, clauses, and runtime library routines determine how
an original variable in the host’s data environment is mapped to a corresponding variable in the
device’s data environment.

2.1.4 Data-Mapping Directives, Clauses and Runtime Library Routines

Since OpenMP’s memory model assumes that the host and the device may have separate memories,
data used inside offloaded codes must be mapped into device memory. In addition to using the map
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Figure 2.5 — OpenMP memory model for accelerators programming

clause with the target directive (as seen in 2.1.2), OpenMP provides three other ways to map the
host’s data to the device’s memory.

The first way is to use the farget data directive. This directive maps variables, for the extent of the
offloaded region, to the device’s data environment depending on the data-mapping clauses used.
Listing 2.5 shows an example of using the target data directive. This directive accepts following
data-mapping clauses:

[y

OO0 N PR W=

e map(to | from | tofrom | alloc),

e use_device_ptr(ptr-list): pointers listed in this clause are privatized and the device pointers
to the corresponding list items in the device data environment are assigned into the private
versions,

e and use_device_addr(list): variable listed in this clause have the address of the correspond-
ing object in the device data environment inside the target construct.

int main (....) {

#pragma omp target data map (to:in[0:wxh]) \
map (from:out_h[0:wxh], out_v[0:wxh])
{ //in is copied from host to device
#pragma omp target teams distribute parallel for collapse(2)
for(int x = 1; x < h - 1; x++)
for(int y = 1; vy < w — 1; y++)
//Sobel 3x3 filter computation
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11 //other computation on device that uses out_h and out_v .......
12 } //out_h and out_v are copied from device to host
13 |1}

Listing 2.5 — Example of using the target data directive

The second way is to use the target enter data and target exit data directives as showed in Listing
2.6. The target enter data construct specifies that variables are mapped to a device data environ-
ment. This construct accepts the following clauses: if, device, map(to | alloc), depend, and nowait.

The target exit data construct specifies that list items are unmapped from a device data environment
according to the data-mapping clauses used. This construct accepts same clauses as the farget enter
data directive. However, the map type must be either from, release, or delete.

1 |int main (....) {
2 S e e
3 #pragma omp target enter data map(to:in[0:wxh]) //in is copied from host

to device
fpragma omp target teams distribute parallel for collapse(2)
for(int x = 1; x < h - 1; x++)
for(int y = 1; vy < w — 1; y++)
//Sobel 3x3 filter computation

//other computation on device that uses out_h and out_v .......
#pragma omp target exit data map (from:out_h[0O:wxh], out_v[0:wxh])

—_ O O 0 NN LN B

—_

Listing 2.6 — Example of using the target enter and exit data directives

Finally, the last way is to use OpenMP’s device memory routines to allocate data, to copy them to
or from device memory and to release allocated memory. A detailed description of all OpenMP’s
device memory routines available can be found in [4]. Listing 2.7 shows examples of using
OpenMP’s device memory routines.

1 |int main (....) {

2 S e e

3 int h = omp_get_initial_device(); //return the id of the current host

4 int t = omp_get_default_device(); // return the id of the default device
5 uint8_t xd_in = (uint8_tx)omp_target_alloc (wxhxsizeof (uint8_t), t);

6 uint8_t xd_out_h = (uint8_t«)omp_target_alloc(wxhxsizeof (uint8_t), t);

7 uint8_t *d_out_v = (uint8_tx)omp_target_alloc (wxh*sizeof (uint8_t), t);

8 omp_target_memcpy(d_in, idn, w » h x sizeof (uint8_t), 0, 0, t, h);

el

#pragma omp target teams distribute parallel for collapse(2) \
10 is_device_ptr(d_in, d_out_h, d_out_v)

11 for(int x = 1; x < h - 1; x++)
12 for(int vy = 1; v < w — 1; y++)
13 //Sobel 3x3 filter computation

14 //copy back data to host
15 omp_target_memcpy (d_out_h, out_h, wxhxsizeof (uint8_t), 0, 0, t, h);
16 omp_target_memcpy (d_out_v, out_v, wxhxsizeof (uint8_t), 0, 0, t, h);

Ph.D Report 43 Rokiatou DIARRA




CHAPTER 2. ANALYSIS OF OPENMP & OPENACC SPECIFICATIONS

17 omp_target_free(d_in, t); //release allocated memory
18 omp_target_free(d_out_h, t); omp_target_free(d_out_v, t);
19 |}

Listing 2.7 — Example of using OpenMP’s device memory routines

When the same data is alternately used in both the host’s code and device’s code, the target update
construct may be used to make the corresponding list items in the device data environment con-
sistent with their original list items, according to the specified motion clauses. The motion clause
must be either to or from. The target update directive has the clauses: if, device, depend, and
nowait. Listing 2.8 shows an example of using the target update directive.

) B

2 |#pragma omp target data map(to:in[O:w*h]) \

3 |map (from:out_h[0O:wxh], out_v[0O:wxh])

4|1

5 #pragma omp target teams distribute parallel for collapse(2)
6 for(int x = 1; x < h - 1; x++)

7 for(int vy = 1; v < w — 1; y++)

8 //Sobel 3x3 filter computation

9 fpragma omp target update from(out_h[0O:wxh])

10 //other computation on host that modifies out_h ......
11 #pragma omp target update to(out_h[O0:wxh])

12 //other computation on device that modifies out_h ......
13 |}

Listing 2.8 — Example of using the target update directive

OpenMP provides also the declare target directive that can be used to specify that variables or
routines are mapped to a device for later use.

2.1.5 OpenMP’s Specifications Evolution from CPU to Accelerators Pro-
gramming

The OpenMP standard is constantly evolving, according to computer systems evolution, since its
first releases. Each new version adds new directives, clauses, routines, etc. We summarize the
main evolutions of the OpenMP standard.

OpenMP 4.0

OpenMP’s releases before the 4.0 were designed for parallel processing on multi-processors host
systems. The release 4.0 extended OpenMP traditional work-sharing model to accelerator pro-
gramming, with new directives target, target data, target update, declare target, teams and dis-
tribute. Although multi-devices targeting was possible, this first release was very rudimentary. For
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example, the only way to move data between the host and the device memory was the map clause.
Therefore, data allocated with other low-level languages such as CUDA could not be used inside
a target region without first copying them with the map clause. Furthermore, only the target data
directive could create a device data environment for the extent of the offload region. In other terms,
if several regions of code had to be offloaded and that these regions have some common data, they
had to be grouped in a single structured-block following the target data directive (as seen in Listing
2.5) so that common data are copied only once.

OpenMP 4.5

The release of version 4.5 solved some of these limitations. First, the impossibility to use allocated
data on the device with other API such as CUDA has been overcome with the addition of the
clauses use_device_ptr and is_device_ptr. Moreover, OpenMP 4.5 adds device memory routines
to allocate, copy and free data on device memory (as seen in Listing 2.7). OpenMP 4.5 has also
added the target enter data and target exit data directives which allow to map (or unmap) data
to (or from) a device data environment for several offloaded regions or the whole program (see
example in Listing 2.6).

The clauses nowait and depend have been added to the target directive to allow respectively the
asynchronous execution of targets regions and the creation of dependency between offloaded re-
gions.

Finally, the composite constructs target parallel, target parallel for, target parallel for simd and
target simd were added. These constructs are shortcut for specifying a target construct containing
a parallel, a parallel for, a parallel for simd, or a simd construct and no other statements.

OpenMP 5.0

OpenMP 5.0 comes with several new features for both multi-processors CPU and accelerators.
Some of the new directives added are specific to accelerators. Among these directives, there is the
requires directive for specifying requirements for the execution of all code in a compilation unit.

It is well known that optimizing the cost of moving data between the host and the target device is
a major challenge in accelerator programming. Some accelerators manufacturers (e.x. NVIDIA)
provide an unified memory access programming model to simplify the complexities of memory
management. This technology allows applications to allocate data that can be read or written from
code running on either host or devices. The clauses unified_address and unified_shared_memory
of the requires directive allow to exploit the unified memory access programming model.

Another interesting new directive is declare mapper. With this directive, it is possible to define a
user-defined mapper for a given type for use in a map clause.

The combination of teams directive with the newly added loop directive allows to parallelize a
teams region otherwise than with the distribute directive.

Accelerators may have complex memory hierarchies as shown in GPUs architecture (with registers,
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shared memory, constant memory, texture memory, L1 and L2 caches, local memory, and global
memory) in Sections 1.5.1 and 1.6.1. OpenMP 5.0 provide predefined memory spaces to use
with the allocate directive or the two clauses allocate and uses_allocators to specify how a set of
variables would be allocated. Since OpenMP 5.0 is relatively new, it will be necessary to wait for
its first implementations to appear to know how the predefined memory spaces would be mapped
to accelerators memory hierarchies by the implementers. Table 2.1 shows the predefined memory
spaces added by the OpenMP 5.0. The third column is a proposition of the mapping of these
predefined memory spaces to NVIDIA GPU memory hierarchies.

Table 2.1 — Predefined memory spaces added by the OpenMP 5.0 (Table 2.8 of [4])

Memory space Storage selection intent Mapping to GPU

omp_default_mem_space system default storage GPU global memory

omp_large_cap_mem_space | storage with large capacity

omp_const_mem_space storage optimized for constant variables | GPU constant memory

omp_high_bw_mem_space | storage with high bandwidth

omp_low_lat_mem_space storage with low latency

Table 2.2 summarizes OpenMP directives evolutions (by adding new directives) from version 3.1
to 5.0.

Table 2.2 — Summary of OpenMP’s concepts evolution from CPU to accelerators programming

Version New concepts

OpenMP 4.0 (2013) | - SIMD vectorization (simd variant constructs),

- Offloading a code region to an accelerator (farget variant constructs),
- Allowing tasks dependency creation (depend clause),

- Makes deep task synchronization more flexible (taskgroup construct),
- Allowing user-defined reduction (declare reduction construct),

- Allowing cancellation points creation (cancel variants constructs)

OpenMP 4.5 (2015) | - Allowing nestable parallel loops that create OpenMP tasks (taskloop variant constructs),
- Allowing asynchronous execution of farget regions (nowait and depend clauses),

- Makes all scalar variables in target regions firstprivate,

- Allowing explicit data sharing attributes to target construct (private, default-map, ...),

- Allowing mapping of global variables on device (declare target construct),

- Adding support for unstructured data mapping for devices (enter/exit data constructs),

- Allowing structures elements handling,

- Allowing device explicit allocation, deallocation, and memory transfers

OpenMP 5.0 (2018) | - Adding support for applications that require implementation-specific features,
- Allowing runtime control of the execution of device constructs,

- Adding supports for inclusive and exclusive scan computations,

- Adding support for tasks reduction,

- Adding supports for different kinds of memories,

- Allowing reverse offloading
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2.1.6 OpenMP 4.0/4.5 Implementations

There are some implementations of OpenMP for accelerators programming.

e Among the commercial compilers, there is Cray cc compiler (version 8.7) that supports all
features of OpenMP 4.5 and can target accelerators such as the NVIDIA K20X.

e IBM xI compiler (version 16.1.1) fully support OpenMP 4.5 features including the target
constructs, but can only be installed on systems whose host is IBM POWER CPU.

e Intel icc compiler (version > 17.0) has support for OpenMP 4.5 and it can target for example
Intel Xeon Phi devices.

e NVIDIA PGI pgcce/pge++ supports OpenMP 4.5 but, at the time of writing this document,
target regions are implemented with default support for the multi-core host as the target.

e Concerning non-commercial and academic compilers, there is GNU Compiler Collection
(version > 4.9) which official releases have support to target Intel Xeon Phi devices.

e The academic ROSE compiler supports some features of OpenMP 4.0 accelerator directives
to target NVIDIA GPUs, but it is not yet a mature implementation.

e The LLVM/Clang compiler fully supports OpenMP 4.5 (official release of version 7.0 and a
trunk branch of version 4.0) to target NVIDIA GPUs.

2.2 OpenACC

OpenACC [&] is a directive-based performance-portable programming model. Unlike OpenMP,
OpenACC was specifically designed for accelerators programming since its first release 1.0 in
2011. In this section, we are going to describe the OpenACC execution model, its memory model
as well as compute offload directives.

2.2.1 Execution Model

As OpenMP, OpenACC'’s execution model is a host-directed execution with an attached accelerator
(e.x., GPU, Intel Xeon Phi). The compute-intensive regions are offloaded by a host thread on an
attached accelerator or executed on the host (if the device is the host itself) under control of a host
thread. The compute-intensive regions to be offloaded are either parallel regions (or work-sharing
loops), or kernels regions (one or more distinct loops), or serial regions (blocks of sequential code).
If a compute-intensive regions must be offloaded, the host thread is responsible for:

e allocating memory on the accelerator device

e initiating data transfer
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e sending the code to the accelerator

e passing arguments to the compute region
e queuing the accelerator code

e waiting for completion

e transferring results back to the host

e deallocating memory

Figure 2.6 depicts OpenACC execution model.

int main(...) { Device

@Iocal host thread iiiii iiiii
EEEERN
Host HHHIH

#pragma acc kernels ...... |- —-||=-====

{ g ———
I I I I I #pragmaaccloop... | |Zgmm=s=llmEEE®m

EEEEE|EEEER
< for(...) EEEEE| NEEEEN
IIIII I.... EEEEE|EEEER

#pragma accloop... | |ZEZZC-Z|[E==Z=2
for(...)
Il....

}

@ local host thread

}

Figure 2.6 — Illustration of OpenACC execution model

Most current parallel systems support two or three levels of parallelism since most of them are
constituted by multiple execution units, each of which can execute multiple threads. OpenACC
provides these three levels of parallelism via gang, worker and vector parallelism.

e Gang level is coarse-grain parallelism which is fully parallel execution across execution
units.

e Worker level is fine-grain parallelism which is usually implemented as multiple threads exe-
cution within each execution unit. Workers are created by gangs.

e Vector level is for SIMD or vector operations within a worker.
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Thus, a gang may contain one or more worker which can also contain one or more vector. There-
fore, on an accelerator device, a single vector lane of a single worker of a single gang is called a
device thread.

Most accelerators support asynchronous execution with respect to the host device. Like OpenMP,
OpenACC provides clauses and directives that allowing asynchronous execution on such devices.

2.2.2 Compute Offloading Directives

OpenACC provides three offloading directives which are parallel, kernels and serial. They are
described below.

The parallel construct

The parallel construct provides a prescriptive language feature that allows the user to explicitly
control compiler translation. The entire structured-block, following the parallel directive, becomes
a single computational kernel running on the current accelerator. In fact, when a host thread en-
counters an parallel construct, a number of gangs of workers are created to execute the parallel
region on the accelerator. In addition to if, private, reduction, firstprivate, deviceptr (equivalent
of OpenMP’s is_device_ptr and use_device_ptr), and default(none | present) clauses, the parallel
construct accepts the following clauses:

e async (integer): allows the local thread continues with the code following the parallel con-
struct while the offloaded code may be processed on device asynchronously. The argument
of the async clause can be used to create different execution queues on device.

e wait (integer): in the absence of this clause, the kernel may be enqueued or launched or
executed immediately on the device. However, if this clause appears (with or without an
argument) in a parallel construct, the kernel may not be launched or executed until all opera-
tions enqueued up to this point by this thread on the associated asynchronous device activity
queues have completed. To simplify, the wait clause allow to create synchronization points.

e num_gangs: can be used to define the number of parallel gangs that will execute the parallel
region.

e num_workers: allows user to set the number of workers within each gang.
e vector_length: may be used to define the number of vector lanes.

e device_type(*) or device_type(list-of-device): allows user to specify which clauses or clause
arguments must be applied to which device. Clauses that precede any device_type are default
clauses (i.e., are applied on all devices available in the system), while clauses that follow a
device_type are device-specific clauses.
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e copy: allows to copy a variable to the device at entry to the parallel region and from the
device at exit from the region. This clause is the equivalent of OpenMP’s map(tofrom:)
clause.

e copyin: can be used to inform the compiler that a variable must be copied to the device
before starting the computation. This clause is the equivalent of OpenMP’s map(to:) clause.

e copyout: allows to inform the compiler that a variable must be copied from the device before
exiting from the parallel region. This clause is the equivalent of OpenMP’s map(from:)
clause.

e create: can be used to allocate memory on device for variables or arrays that are used only
in the parallel region. This clause is the equivalent of OpenMP’s map(alloc:) clause.

e no_create: allows the user to inform the compiler that it is not necessary to allocate memory
for a variable.

e present: allows to specify that a variable is already present in the current device memory.

e attach: can be used to attach a pointer in device memory to the device copy of the data by
initiating an update for the pointer in device memory to point to the device copy of the data.

There is an implicit barrier at the end of the parallel construct. Listing 2.9 shows an example of
offloading the Sobel 3 x 3 filter (seen in Listing 2.1) with the parallel construct.

01O\ LN AW~

—_— =
o - O O

int main (....) {

#pragma acc parallel copyin(in[O:wxh]) copyout (out_h[O:wxh],out_v[0:wxh])
{
for(int x = 1; x < h - 1; x++)
for(int y = 1; y < w - 1; y++) {
//Sobel 3x3 filter computation .......
}
//Other computation on device that may use in, out_h or out_v
} //out_h and out_v are copied to host

Listing 2.9 — Accelerate the Sobel 3x3 filter with the OpenACC parallel construct

Figure 2.7 depicts a schematic execution of the code showed in Listing 2.9. If there is not any other
directive within the structured-block (as it is the case in Listing 2.9) to specify how the offloaded
code must be parallelized, then all gangs will execute all the code within the region redundantly.
However, the implementation (i.e., compiler) will typically generate a kernel with a single gang of
a single worker if it fails to parallelize the code within the region. Thus, inner loops (lines 5 and 6
in Listing 2.9) will be executed sequentially.
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Figure 2.7 — Illustration of Sobel 3 x 3 filter computation offloading with the parallel construct.

The kernels construct

Unlike the parallel directive, kernels construct provides a descriptive capability that allows the
compiler to take more control over code translation. The compiler may split the code in the kernels
region into a sequence of accelerator kernels. Typically, each loop nest becomes a distinct kernel.
When a local thread encounters a kernels construct, it launches the sequence of kernels in order on
the device. As parallel construct, there is an implicit barrier at the end of a kernel construct. The
kernels construct has the same clauses (with the same meaning) as the parallel construct, except
the private, reduction, and firstprivate clauses. Listing 2.10 shows the kernels construct version of
code seen in Listing 2.9.

1 |int main (....) {

2 S e e

3 #pragma acc kernels copyin(in[0:w*h]) copyout (out_h[O:wxh],out_v[0:w*h])
4 {

5 for(int x = 1; x < h - 1; x++)

6 for(int y = 1; vy < w — 1; y++) {

7 //Sobel 3x3 filter computation .......

8 }

9 //Other computation on device that may use in, out_h or out_v
10 } //out_h and out_v are copied to host

11 S e e

12 |}

Listing 2.10 — Accelerate the Sobel 3x3 filter with the OpenACC kernels construct

Unlike the parallel construct if there are not any other directives on nested loops within the kernels
region, then these loops (or kernels) will be executed sequentially by a single device thread if the
compiler fails to parallelize them.
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The serial construct

The third offloading directive provided by OpenACC is the serial construct. This directive defines
a region of the program that will be executed sequentially on the current device. When the local
thread encounters a serial construct, one gang of one worker with a vector length of one is created
to execute the serial region sequentially on the current accelerator. In fact, the directive serial is
equivalent to a parallel construct whose clauses num_gangs, num_workers, vector_length have the
integer value "1" as argument. The serial construct has same the clauses as the parallel construct,
except the num_gangs, num_workers, and vector_length clauses.

The loop construct

Unlike OpenMP which has the distribute, for, simd, and loop directives to describe the paralleliza-
tion mode associated to a loop, OpenACC only has the loop construct. The OpenACC’s loop
construct describes what type of parallelism (gang, worker or vector) must be used to parallelize
the loop that immediately follows this directive. The loop directive can be combined with any of
parallel, kernel and serial constructs. In addition to reduction, collapse, private, and device_type
clauses, the loop construct accepts the following clauses:

e gang, worker, vector: their behavior depend of the parent compute construct, which can be
the parallel construct ro the kernels directive.

— If the parent of the loop construct is a parallel directive, then gang and worker clauses
specify that the iterations of the associated loop(s) must be executed in parallel by
distributing loop(s)’s iterations among gangs created by the parallel construct, and each
gang’s iterations are to be divided among this gang workers. The vector clause specifies
that the iterations of the associated loop(s) are to be executed in vector or SIMD mode.

— When the parent of the loop construct is a kernels directive, the gang clause specifies
that the iterations of the associated loop(s) are to be executed in parallel across the
gangs. The worker clause indicates that the associated loop(s)’s iterations are to be
executed in parallel across the workers within a single gang. The vector clause specifies
that the iterations of the associated loop(s) must be executed with vector or SIMD
processing.

e seq: can be used to specify that the associated loop(s) is(are) to be executed sequentially.

e auto: allows the compiler to be freedom to choose the best parallelization strategy (either
gang, or vector, or worker) for the associated loop(s).

e ftile: that the implementation should split each loop in the loop nest into two loops, with an
outer set of tile loops and an inner set of element loops.

e independent: must be used to inform the compiler that the iterations of the associated loop(s)
are data-independent with respect to each other.
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Listing 2.11 shows an example of parallelizing nested loops of the Sobel 3 x 3 filter kernel seen in
Listing 2.10.

1 |int main (....) {

2 S e e e e e e e e e

3 fpragma acc kernels copyin(in[O:wxh]) copyout (out_h[O:wxh],out_v[0:wxh])
4 {

5 #pragma acc loop independent

6 for(int x = 1; x < h - 1; x++)

7 #pragma acc loop independent

8 for(int y = 1; yv < w — 1; y++) {

9 //Sobel 3x3 filter computation .......

10 }

11 //Other computation on device that may use in, out_h or out_v
12 } //out_h and out_v are copied to host

13 S e e e e e e e e e

14 |}

Listing 2.11 — Accelerate the Sobel 3x3 filter with the OpenACC kernels and loop constructs

OpenACC also provides the declare and routine directives. The first creates a visible device copy
of the variable while the last must be used to tell the compiler to compile a given procedure for an
accelerator as well as for the host. In addition to seq and device_type clauses, the routine directive
has also the following clauses:

e gang: must be used to indicate that the procedure contains, may contain, or may call another
procedure that contains a loop construct with a gang clause.

e worker: specifies that the procedure contains, may contain, or may call another procedure
that contains a loop construct with a worker clause.

e vector: indicates that the procedure contains, may contain, or may call another procedure
that contains a loop directive with the vector clause

e bind: can be used to specify the name to use when calling the procedure.

e nohost: informs the compiler not to compile a version of this procedure for the host.
In addition to the wait clause, OpenACC provides a wait directive that causes the local thread to

wait for completion of asynchronous operations on the current device or causes one device activity
queue to synchronize with one or more other activity queues on the current device.

2.2.3 Memory Model

As OpenMP, OpenACC’s memory model assumes that host and accelerators have separate mem-
ory. Therefore, the host thread may not be able to read or write device memory directly because
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it is not mapped into the host thread’s virtual memory space. All data movement between host
memory and accelerator memory must be performed by the host thread. This goes through system
calls that explicitly move data between the separate memories. As in OpenMP, data movement can
be managed by the compiler, based on directives and clauses from the programmer.

2.2.4 Data-Mapping Directives, Clauses and Runtime Library Routines

As OpenMP, OpenACC provides directives, clauses and API for creating a device data environment
and managing data transfer between host and device memories.

The directives data, enter data, exit data and update have same behavior as their OpenMP equiva-
lents:target data, target enter data, target exit data, and target update data (see sub Section 2.1.4).
Listing 2.12 shows an example of applying the OpenACC’s data construct to Sobel 3 x 3 filter
example seen in Listing 2.10.

1 |int main (....) {

2 S e e e e e e

3 #pragma acc data copyin(in[O:wxh]) copyout (out_h[0:wxh],out_v[0:wxh])
4 { //create a device data environnement

5 fpragma acc kernels loop independent tile(128,128)

6 for(int x = 1; x < h - 1; x++)

7 for(int v = 1; yv < w — 1; y++) {

8 //Sobel 3x3 filter computation .......

9 }

10 //Other computation on device that may use in, out_h or out_v
11 } //out_h and out_v are copied to host

12 S e e e e e

13 |1}

Listing 2.12 — Example of using OpenACC data directive

Like OpenMP, OpenACC has its own runtime library routines for allocating or deallocating mem-
ory and transferring data. However, unlike OpenMP, OpenACC'’s data transfer routines are avail-
able in both asynchronous and synchronous modes. Listing 2.13 shows OpenACC version of
Listing 2.7, when OpenMP’s device memory routines are replaced by those of OpenACC.

1 |int main (....) {

2 S e e e

3 uint8_t *xd_in = (uint8_tx)acc_malloc (wxh*sizeof (uint8_t));
4 uint8_t *d_out_h = (uint8_tx)acc_malloc(wxhxsizeof (uint8_t));
5 uint8_t *d_out_v = (uint8_tx)acc_malloc (wxh*sizeof (uint8_t));
6 acc_memcpy_to_device(d_in, idn, w x h % sizeof (uint8_t));

7 #pragma acc kernels loop independent collapse (2)

8 for(int x = 1; x < h - 1; x++)

9 for(int vy = 1; v < w — 1; y++) {

10 //Sobel 3x3 filter computation .......

11 }

12 //copy back data to host
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13 acc_memcpy_from_device_async (d_out_h, out_h, wxhxsizeof (uint8_t));
14 acc_memcpy_from_device_async (d_out_v, out_v, wxh*sizeof (uint8_t));
15 //other computation on CPU that uses other data than out_h/v .....
16 acc_free(d_in); //release allocated memory

17 acc_free(d_out_h); acc_free(d_out_v);

18 |}

Listing 2.13 — Example of using OpenACC’s device memory routines

Unlike OpenMP, OpenACC provides the host_data directive. This construct must be used to make
the address of data in device memory available in host code. Furthermore, OpenACC provides the
cache directive which must be used to specify array elements or sub-arrays that should be fetched
into the "highest level" of the cache for the body of the loop. Finally, like OpenMP, OpenACC
provide atomic directive for atomic operations.

2.2.5 OpenACC'’s Specifications Evolution Since the Release 1.0

OpenACC has been specially designed for accelerators programming since its first release. Al-
though OpenACC 1.0 came with a few sets of directives, it was more complete than OpenMP
4.0.

OpenACC 1.0 initially provided the directives kernel, parallel, loop, declare, data, cache,
host_data, update, and wait.

OpenACC 2.0 clarified many notions and introduced news clauses, directives and API routines
among which:

e introduced the enter data and exit data constructs

e clarified allowable loop nesting (gang may not appear inside worker, which may not appear
within vector)

e added atomic and routine constructs

OpenACC 2.5 The most significant of changes made by OpenACC 2.5 was the profiling inter-
face introduction. The init, shutdown and set directives were introduced for device control. The
num_gangs, num_workers and vector_length clauses were allowed on the kernels construct. An
implicit presence check before any copy, copyin or copyout operation was added. Finally, asyn-
chronous versions of device memory routines were also added.

OpenACC 2.6 The most important change made by OpenACC 2.6 was the introduction of the
serial directive.
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OpenACC 2.7 did not add any new directives. However, some specifications were clarified,
the self clause was added to parallel, kernels and serial constructs, and the readonly modifier
was added to the copyin clause and cache directive. Table 2.3 summarizes the main evolution of
OpenACC features.

Table 2.3 — Summary of OpenACC’s main constructs evolution. Constructs are in rows, while
added clauses are in columns.

Construct | 1.0 (2011) 2.0 (2013) 2.5 (2015) 2.6 (2017) 2.7 (2018)
parallel if, async, num_gangs, wait, default no_create, self
num_workers, copy, create, | device_type, attach

vector_length, firstprivate, | default
reduction, copyin, copyout,
present, deviceptr, private

kernels if, async, copy, copyin, walit, default, num_gangs, | no_create, self
copyout, present, create, device_type, num_workers, attach
deviceptr default vector_length

loop collapse, gang, worker, auto, tile, — — —
vector, seq, independent, device_type

private, reduction

declare copy, copyin, copyout, link — — —
create, present, deviceptr,
device_resident

data if, copy, copyin, copyout, — — no_create, default
create, present, deviceptr attach

host_data | use_device — — if, if_present —

update host, device, if, async wait, self, if_present — —
device_type

wait — async — — —

enter data | — if, async, — attach —
wait, copyin,
create

exit data — if, async, finalize detach —
wait, copyout,
delete

routine gang, worker, vector, seq, — — —

bind, device_type, nohost

seriel — — — async, wait, if, copy, —
copyin, copyout, create,
device_type, reduction,
no_create, present,
deviceptr

2.2.6 OpenACC Implementations

There are some mature compilers that fully support OpenACC. There are also many prototypes of
OpenACC (first versions) implementation, but most of them are obsolete and not maintained.
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e Among commercial compilers, the most up to date are probably NVIDIA PGI pgcc/pge+-+
and Cray cc compilers. Indeed, OpenACC was initially developed by PGI, Cray, and
NVIDIA.

e Among compilers from academic and open source communities, there is accULL [44], a
prototype of OpenACC 1.0 implementation based on the Python library. accULL was the
first released implementation of Open ACC which had support for ARM CPU. However, their
syntax does not completely respect the OpenACC standard and it is no longer maintained
today.

e The Omni OpenACC Compiler [45] is a source-to-source translator that translates C code
with OpenACC directives to C code with the CUDA API which can be then compiled by
NVIDIA’s CUDA compiler. It supports most part of OpenACC 1.0. specifications. In Omni
OpenACC Compiler, the application cannot make use of multi-dimensional grid topologies
for NVIDIA GPUs. The generated CUDA C exhibits significant overhead due to inefficient
loop scheduling transformations. Omni OpenACC Compiler supports only C codes and has
not support for ARM CPU.

e Rose-OpenACC [46] is another implementation of OpenACC based on the ROSE compiler
framework. Rose-OpenACC can only generate OpenCL code. Furthermore, only the gang
and worker clauses are interpreted and mapped to work-group and work-item in OpenCL,
respectively. The repository of Rose-OpenACC sources on github is no longer available at
the time of this writing.

e OpenARC [47], based on the Cetus source-to-source framework, is an open-source frame-
work that supports OpenACC 1.0 and performs source-to-source transformations, targeting
devices such as GPUs. Authors proposed self-defined directives to map data to different
CUDA memory spaces, including the shared memory and texture memory. However, Ope-
nARC seems to be no longer maintained and the link to its repository no longer works at the
moment of writing this document.

e [PMACC [48] is an open source framework for source-to-source translation of C/C++ code
with OpenACC (< 2.0) directives. From OpenACC directives, it can generate OpenCL or
CUDA code. Its authors have also proposed new directives to exploit the scratched memory
in order to close the gap between the OpenACC and OpenCL/CUDA application perfor-
mance. The parallel construct, synchronization clause/APIs and 2D arrays transfer are not
supported in IPMACC. We tried to install IPMACC on an Intel I7 CPU and an ARM CPU
without success, the main reasons being that IPMACC was build with obsolete versions of
Python and XML libraries, and many instructions used in IPMACC sources are no longer
supported in recent versions of these libraries. Furthermore, IPMACC is no longer main-
tained since at least 2 years.

e The most recent OpenACC’s compiler proposed by the research community is an exten-
sion of on OpenUH that takes C/Fortran applications and targets NVIDIA GPUs and AMD
GPUs/APUs [49].
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e The GCC 7, and 8 release series fully support OpenACC’s 2.0 specification. However, the
official releases of GCC have no support to target accelerators. Therefore, to force GCC
to generate accelerators code from OpenACC directives, the offloading supports must be
enabled by trying to compile GCC from sources'. If the target device is an NVIDIA GPU, it
is necessary to build also the nvptx-tools®, which is a collection of tools for use with nvptx-
none GCC toolchains. Except configuration and Makefile files, the sources of the nvptx-tools
have not been updated since at least two years.

2.3 OpenMP and OpenACC Specifications Comparison

OpenMP and OpenACC, while similar, are still quite different in their approach. We describe some
of their differences in following paragraphs.

Philosophical Difference

One of the most significant differences between OpenMP and OpenACC is their philosophy.
OpenMP is prescriptive because the OpenMP API covers only user-directed parallelization and
not compiler-generated automatic parallelization. In OpenMP, the programmer has to explicitly
specify which regions of code must be parallelized and how this must be done. The same must
also be done for nested loops inside a parallel region. Consider the snippet of code presented in
Listing 2.14, if we use only the target directive (line 1), the loop will be offloaded on the device and
executed by a single device thread. By adding the feams construct, a league of thread teams will be
created, but it’s still the device master thread that will execute the loop. By inserting the distribute
construct, loop’s iterations will be distributed between thread teams, but only the master thread of
teams will execute the teams region. The other threads within a teams will only participate in the
teams region if we add the parallel for directive.

#fpragma omp target teams distribute parallel for is_device_ptr(...)
#pragma acc kernels loop independent deviceptr(...)
for(int x = 1; x < h - 1; x++)

ENELOVIN O

Listing 2.14 — OpenMP and OpenACC philosophical difference

On the other hand, OpenACC is descriptive. Indeed, the OpenACC programming model is user-
guided parallelism i.e. it allows the programmer to augment information (e.x., the absence of loop
iterations interdependency, guidance on the mapping of loops onto an accelerator, etc.) available
to the compilers. The basic idea of the OpenACC programming model is that it is best for the
user to describe the parallelism and data motion in a more general way via directives so that the
OpenACC compiler can have more freedom to map the parallelism to the hardware. Hence, the

lavailable on
2available on
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OpenACC compiler has more performance responsibility and the quality of the implementation
can greatly affect application performance. With OpenACC, to get the loop (of Listing 2.14, line
3) fully parallelized, we just have to add the loop independent to the kernels construct, thus the
compiler will generate gangs of workers and distribute the loop iterations between them.

Synchronization

OpenMP has a set of directives for threads synchronization on host, such as critical, barrier,
taskwait, taskgroup, flush, and ordered. OpenMP’s depend clause allows synchronization between
different rarget regions, but synchronization between threads within a teams or between different
teams is not currently available. Multiple device execution queues creation is also not available in
OpenMP current versions. On the other hand, intra gang synchronization is not currently available
in OpenACC. However, inter gangs synchronization may be possible, since there is an implicit
barrier at the end of a kernels and parallel region. OpenACC’s async clause allows multiple device
execution queues creation while the wait clause allows synchronization between different kernels
or parallel regions.

Presence Test

OpenMP learns from OpenACC and vice verse. Indeed, in OpenACC 1.0, there were two of
data motion clauses, one form for testing the presence (before transferring a data) and one for
"skipping" the presence test. OpenMP 4.0 had one form of data motion clause which always checks
for presence. Thus, since OpenACC 2.5, the form that skips the presence test was eliminated.
Concerning the update directive, OpenACC 1.0 and OpenMP 4.0 both made it an "error" to do an
update on an object that was not present on the device. OpenACC 2.0 relaxed this hindrance to
programmers and added the if_present clause. On the other hand, OpenMP > 4.0 just makes the
update a no-op if the object is not present.

Routines Calls, Global Data Access, and Scalar

OpenACC'’s routine and declare directives fill jointly the same functionality as OpenMP’s target
declare construct, but they provides most features than their OpenMP equivalent. OpenACC 1.0
made all scalars firstprivate unless overridden by the programmer, while OpenMP 4.0 made all
scalars map(inout) on target constructs. OpenMP > 4.0 makes all scalars firstprivate by default.

Host and Device Execution
Both, OpenMP and OpenACC allow the user to specify the different target for different code

regions in the same application, and within a same compilation unit. This can be done by using the
if clause for both, the device clause for OpenMP and the device_type clause for OpenACC. This is
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an important feature of these two standards since it allows the user to have a single source for both
host and accelerators and assure portability.

Memory Hierarchy Management

OpenACC provides the cache directive to specify array elements or sub-arrays that should be
fetched into the "highest level" of the cache for the body of a loop, while OpenMP 5.0 allocate
clause and directive may address this issue. Unlike OpenMP, OpenACC current version does not
provide any clause or directive to access to other memory spaces (e.X., constant memory of GPUs).

There are also many technical differences between the two specifications, the first being the par-
allel construct that starts parallel execution on the current device in OpenACC while in OpenMP
it creates a team of threads that execute the region on the host unless the construct is called inside
a target region. The OpenMP’s teams construct is equivalent to the OpenACC'’s kernels construct
only if there is a single loop nested inside the kernels region. OpenMP 5.0 introduced the loop
directive, but it will be necessary to wait for OpenMP’s 5.0 implementations to see if the two loop
directives are equivalent. Table 2.4 summarizes OpenACC and OpenMP main features.

Table 2.4 — OpenACC 2.7 vs. OpenMP 5.0 for accelerator programming

OpenACC | OpenMP
Data Directives + clauses that are not common to OpenACC and OpenMP
acc data: no_create, present, attach, default omp target data: use_device_addr, device
acc enter/exit data: attach/detach omp target enter/exit data: device
acc update: if_present, self omp target update

acc host_data —

acc cache may be feasible with omp allocate directive

acc routine and acc declare omp declare target — omp end declare target

- omp declare mapper

Possible equivalence between compute offload constructs

acc parallel (without any nested constructs) omp target (without any nested constructs)
acc kernels (without any nested constructs) omp target (without any nested constructs)
acc serial [loop] omp target (without any nested constructs)

acc parallel loop independent gang(static:chunk_size) worker | target teams distribute dist_schedule(chunk_size) parallel for

acc kernels loop gang(integer) worker target teams distribute dist_schedule(chunk_size) parallel for

Multiple device execution queues creation

async(integer) —

Inter offloaded regions synchronization
wait(integer) depend(in | out | inout: ...)
acc wait —

Asynchronous behavior
async nowait
acc_memcpy_tolfrom_device_async —
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Deep Copy

The deep copy means copy all fields in the aggregate data object (e.x., struct, std::vector) which
may include dynamically allocated memory pointed to by the fields as shown in Figure 2.8b. When
a deep copy is performed, dynamically allocated memory that are pointed by the fields are also
copied. The aggregate data type can be nested. The deep copy is to handle nested dynamic data
structures. For example, there could be an array that is used in an offloaded region and the entire
array must be copied on the device. If we suppose that this array is an array of structures, each
element of that array is a structure that has a field that is another allocatable array, and each one of
these allocatable arrays could have different sizes. It is extremely challenging for the OpenMP and
OpenACC compilers to decide how to transfer the data in this case.

Pointer_1 Device Pointer_1 Device Pointer_1
An object copy An object copy
on host of the on host of the
Pointer_2 object Pointer_2 object Pointer_2

(a) Shallow copy (b) Deep copy

Figure 2.8 — Difference between Shallow copy and Deep copy

In Fortran, all of pointer and information pointed is stored in the dope vector structure which is
initialized at the pointer initialization. This information includes the memory pointed’s location
and the size of information pointed. For Fortran applications, the compiler has the information
needed to perform a full deep copy. However, this feature is not available in C and C++-. Hence,
for C/C++ codes, the compiler can’t capture the memory size of information pointed at compile-
time. Therefore, it is necessary to define directives or clauses that give the compiler indications on
how to generate the transfers and avoid runtime errors.

Deep copy is the significant feature on which work the OpenMP and OpenACC committees for
their future releases. For example, the PGI compilers 19.1 and newer professionals editions include
an implementation of the draft OpenACC 3.0 true deep copy directives in Fortran, C, and C++-.

The current versions of OpenMP(5.0) and OpenACC (2.7) perform a shallow copy. Shallow copy
of an aggregate data object copies all of the member field values. This works well if the fields are
values. However, when the fields are pointers, this leads to runtime errors since the pointers are
copied on the device without the data that they point. Consequentially, both the object on CPU and
its copy on device point to the same memory location as shown in Figure 2.8a.

The first solution to avoid the shallow copy problem is to perform a manual deep copy. Consider
the example presented in Listing 2.15. Since the array vect is a "std::vector", it is a collection of
three-pointers. If we copy array on the device by using the copyin clause, and use it inside the
parallel region (line 13), we will get a runtime error since only the pointers have been copied,
not the data they are pointing to. Thus, it is necessary to allocate two supplementary arrays (line
3 and 4) in order to get vect available on the device. This is done by using enter data and exit
data constructs, and the instructions from 5 to 12. Although we use OpenACC directives in this
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example, the same thing can be done in OpenMP.

1 |vector<int> vect = new vector<int>[4096];

2 |//initialize vect elements

3 |int x*xtemp = new intx[4096]; //device copy of vect

4 |int *sizes = new 1int[4096]; //contains the size of each sub vector of vect
5 |#pragma acc enter data create(temp[0:4096]([0:0])

6 |[for (int 1 = 0; 1 < 4096; i++) {

7 int sze = vectl[i].size(); //get number of sub elements of vect[i]

8 sizes[1] = sze;

9 temp[i] = vectl[i].data(); //copy data on that vect[i] is pointing to
10 #fpragma acc enter data copyin(temp[i:1][:sze])

11 |}

12 |#pragma acc enter data copyin(sizes[:4096])

13 | #pragma acc parallel loop independent gang vector present (temp,sizes)

14 | for (int 1 = 0; i < 4096; i++) //iterate on elements of vect

15 for (int j=0; Jj< sizes[i]; ++]J) //iterate on sub elements of i

16 //use temp(i][F];

17 | #pragma acc exit data delete(sizes) //end of enter data of line 12

18 |#pragma acc exit data delete(temp) //end of enter data of line 5

Listing 2.15 — Manual deep copy example

The second solution is to use the unified memory access concept as introduced in 2.1.5. In OpenMP,
the user may use the newly added requires directive with its clause unified_address. Currently,
OpenACC does not provide any directive or clause to do such as thing, but some implementations
like PGI compilers have a flag that the user can use to get a program’s data available for both host
and device. As we will see in the next chapter, using this flag can degrade application performance
since it increases the data transfer traffic.

Note that for physical unified memory architectures like AMD APU and NVIDIA Tegra platforms,
deep copy support may not be necessary, though it may still in some cases be beneficial for perfor-
mance.

2.4 OpenMP/OpenACC Suitability for GPUs Programming

In the previous section, we have seen that both OpenMP and OpenACC provides a set of features
for accelerators programming without exposing a lot of details about the underlying architecture.
In this section, we discussed the suitability of OpenMP and OpenACC for GPUs programming in
comparison to CUDA.

Mapping to CUDA Thread Hierarchy

As seen in 1.6.1, GPU’s threads are organized in grid, block and warp in CUDA. OpenACC paral-
lelism levels can be mapped to this hierarchy:
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e num_gangs and gang correspond to a CUDA grid
e num_workers and worker conceptually maps to a warp in CUDA

e vector_length and vector correspond to a CUDA block

Depending on vector length, a worker can consist of multiple warps, or multiple workers can
span across a single warp. We know that a warp consisted of 32 threads. Hence, when using the
vector_length or vector clause, the value specified must be a multiple of 32 as explained in 1.6.1 -
optimization 8. As CUDA grids and blocks, gangs and vectors can be configured in 1 or 2 or 3D
dimension.

On the other hand, in OpenMP, the num_teams clause corresponds to a CUDA grid while the
thread_limit clause maps to a CUDA block. However, neither num_teams neither thread_limit
can’t be configured in 2 or 3 dimensions because it is not allowed to have a teams construct nested
inside a teams region. The CUDA warp concept does not exist in OpenMP currents versions. As
in CUDA and OpenACC, when using the thread_limit clause, it is recommended to set its value to
a multiple of 32.

When using the number of threads management clauses (num_gangs, vector_length, num_teams,
etc.), it is necessary to take into account the capabilities of the targeted GPU as explined in 1.6.1 -
optimization 7.

Remember that in CUDA, a grid consists of one or more block(s), a block consists of one or
more warp(s), and a warp is a group of 32 threads. In OpenACC, a gang consists of one or more
worker(s), a worker is a vector of threads. In OpenMP, there is a league of teams of threads. Figure
2.9 depicts the thread hierarchy in CUDA, OpenACC and OpenMP. We assume that we have a grid
of two blocks of 64 threads.

CUDA thread hierarchy OpenACC thread hierarchy OpenMP thread hierarchy
Grid 0 Gang 0 Teams 0
Block 0 (containing 64 threads) Worker 0 (= 2 warps) Teams threads (with thread_limit = 128)
Warp (32 threads) Warp (32 threads) Vector (with length = 64) Warp (32 threads) Warp (32 threads)
Block 1 (containing 64 threads) Worker 1 (= 2 warps) Warp (32 threads) Warp (32 threads)

Warp (32 threads) Warp (32 threads) Vector (with length = 64)

Figure 2.9 — Thread hierarchy illustration in CUDA, OpenACC and OpenMP

Memory fence

GPUs typically implement a weakly-ordered memory model that is the order in which a GPU
thread writes data to memory (e.x.: shared memory, L1 cache, L2 cache, global memory). This
order may not necessarily be the order in which the data is observed being written by another GPU
thread. In this context, an explicit memory fence may be used to enforce some ordering on memory
accesses. CUDA provides memory fence functions that can be used in kernel code to assure the
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consistency of threads’ (in the same block) temporal view of memory(or all memory). In OpenMP,
this can be done with the flush directive while OpenACC does not provide any construct or API
routine for this purpose.

Synchronization

CUDA provides synchronization routines to synchronize GPU threads inside a grid (e.x. sync in
CUDA Cooperative groups header), or a block (e.x. __syncthreads()), or a warp (e.x. __syncwarp).
Intra Block synchronization can be used to coordinate communication between the threads of the
same block or to make all global and shared memory accesses made by block’s threads, prior
to a certain point of the kernel, are visible to all threads in the block. On the other hand, intra
warp synchronization can be used to guaranty memory ordering among threads participating in the
barrier.

OpenMP does not provide any mechanism (either clause, directive or routines) to make inter teams
(inter blocks in CUDA terminology) synchronization. OpenMP does not also provide any mech-
anism to synchronize (directly at source level) threads in a teams (intra block and intra warp in
CUDA terminology). OpenACC also does not provide support for synchronization between threads
in the same vector or worker or gang.

CPU and GPU Asynchronous Execution Support

In order to prevent the CPU thread from waiting for the completion of a GPU operation (data
transfer or kernel execution) before executing next instructions (as explained in 1.6.1 - optimization
2), CUDA provides asynchronous versions of the data transfer routines. OpenACC also provides
asynchronous versions of its data copy routines (see an example in Listing 2.13) while OpenMP
does not. Furthermore, OpenMP nowait clause and OpenACC async clause can be used to avoid
the host thread wait for the completion of an offloaded region. If another part of code needs the
results of an offloaded code with the asynchronous clauses, then the depend clause (in OpenMP)
and the wait construct and clause (in OpenACC) can be used for synchronization purpose.

Compute and Data Transfer Overlapping - CUDA Multi-streaming

In order to efficiently use all processors in the system including host CPU and devices, some GPUs
support asynchronous memory copy to or from the device concurrently with a kernel execution
(as explained in 1.6.1 - optimization 2). In CUDA, this can be done by creating multiples devices
execution queues (or streams). A stream is a sequence of commands that execute in order. Thus,
different streams may execute their commands concurrently or out of order with respect to each
other. When using multi-streaming, it is important to consider the capabilities of the targeted GPU
otherwise, the application performance may be degraded.

The OpenACC'’s async and wait clauses allow multiple device execution queues creation when
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they have been used with an argument. Their argument identifies the stream number. Hence,
multi-streaming is feasible in OpenACC. The OpenACC’s wait clause and directive allow syn-
chronization between streams.

The OpenMP’s nowait clause, that aims to avoid the local thread wait until the completion of
the structured-block associated to a directive before executing next instructions, does not involve
stream creation. Furthermore, support to create multiple device activity queues in addition to
the default queue is not currently available in OpenMP. Therefore, CUDA multi-streaming is not
possible with current OpenMP versions. A new clause may be added to OpenMP specifications or
an argument must be allowed for the nowait clause (as it is the case in OpenACC async clause) to
permit multiple device activity queues creation. In the same way, a supplementary argument must
be added to the depend clause to permit streams synchronization.

Memory Hierarchy Management

Both OpenACC and OpenMP current versions make all scalars (used inside an offload region)
firstprivate by default and store them in registers in priority. If the available registers are not
enough, they are stored into thread local memory.

Neither OpenACC neither OpenMP does not provide support (directives, clauses or routines) to
access to GPUs’s texture memory. However, the implementation (i.e. the compiler) can choose to
put certain data (that are only read inside the offloaded region) in the texture memory.

OpenACC provides the cache directive to specify that a variable should be fetched into the "highest
level of cache". A variable appearing in a cache directive can be stored in the L1 cache, for instance,
depending on the implementation. OpenACC does not provide any support to access to the constant
memory of GPU.

Concerning OpenMP, with its newly added allocate directive and the new memory spaces (see
Table 2.1), it should be possible to access not only the constant memory but also the cache L1, the
texture cache and may be the shared memory.

Dynamic parallelism
As already mentioned in 1.5.2, NVIDIA GPUs support dynamic parallelism and it’s allowed in the
CUDA programming model. OpenMP supports dynamic parallelism but OpenACC does not. In-

deed, it is not allowed to use a kernels or parallel construct inside a routine that has been annotated
with pragma acc routine.

2.5 Summary

In this chapter, we presented an overview of the OpenMP and OpenACC programming models
which are used in our research. Both OpenMP and OpenACC provide a rich set of directives
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and APIs that allow users to annotate compute-intensive regions, explicitly manage data trans-
fers, and expose loop parallelism. These features can enable non-expert programmers to portably
and productively achieve performance for their applications. OpenMP and OpenACC directives
hide many details of the underlying device architecture, freeing a programmer’s attention for other
tasks. OpenMP and OpenACC standards continue to evolve, with features for describing com-
plex memory hierarchies, parallelism, complex data type management, support for multiple device
targeting, etc. We also have seen that OpenMP and OpenACC are quite different. However, it
is possible to translate between OpenMP and OpenACC, but the process may not be automatic.
We discussed the suitability of OpenMP and OpenACC for GPUs programming and showed that
although the two standards continually evolve and offer a large set of features, some optimizations
(shared, texture and constant memory addressing, intra block and inter block synchronization, uni-
fied memory usage, etc.) necessitate using low-level languages. In the next chapter, we will pro-
pose an effective application parallelization methodology with OpenMP and OpenACC, evaluate
directive-based programming models performance, and explore some performance optimization
opportunities with them.
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In this chapter, we propose a parallelization methodology with OpenMP/OpenACC for GPU. We
will start by making a non-exhaustive assessment of some relevant works that have been done on
OpenMP and OpenACC for accelerator programming during the last decade in 3.1. Sections 3.2
and 3.3 give respectively a short description of hardware platforms, compilers, and benchmarks
used in this work. Section 3.4 presents some problems frequently encountered in applications
parallelization either on CPU or GPU. In section 3.5, we will describe the proposed paralleliza-
tion methodology for parallelizing sequential programs with OpenMP/OpenACC for GPU. The
proposed parallelization methodology includes severals optimization strategies such as directives
combination (3.6) and loop scheduling (3.8) [12]. Next we use the proposed parallelization ap-
proach to port two well established benchmarks suites and some synthetic programs to OpenACC,
OpenMP, and CUDA. We will also use other optimization strategies such as memory coalesc-
ing and data transfer management (3.7). With rigorous experimental analysis, we will then analyze
how the performance can be incrementally tuned. Finally, we will analyze OpenMP and OpenACC
performance evolution with workload using synthetic programs in section 3.9.

3.1 Previous work on OpenACC & OpenMP

Since the release of OpenACC 1.0 and that of OpenMP 4.0 later, many works have been done to
evaluate both in term of performance, portability, and productivity. Many works have also proposed
new directives and clauses for addressing some features not offered by OpenACC and OpenMP,
but also tools to assist programmers for application acceleration with these two standards. In this
section, we present some of the previous works that are relevant to our work.

OpenACC Performance Evaluation and New Directives Proposition

e Hoshino et al. [9] did a performance comparison between CUDA and OpenACC by porting
two benchmark kernels (a matrix multiplications and a 3-D stencil) and a computational
fluid dynamics application. They found that in general OpenACC is approximately 50%
lower than CUDA, but for some memory-bound application, it can reach up to 98% with
careful manual optimizations such as loop fusion, thread mapping and register blocking.

e J. A. Herdman [50] compared OpenACC'’s "parallel" and "kernels" constructs performance
in Cray CCE 8.1.7, PGI 13.7, and CAPS 3.3.2 using the hydrodynamic mini-application
CloverLeaf. Their results indicated that CAPS’ implementation of the "parallel" construct
was deficient, CCE’s implementations of both constructs achieved the same performance and
PGI’s "kernel" construct outperformed the rest on more occasions than any other implemen-
tation. Their results also showed that a native CUDA implementation outperforms the best
OpenACC by 15% to 20% and OpenCL outperforms OpenACC by 10% to 20% on NVIDIA
GPU.

e Xuechao et al. [51] did an empirical investigation of program productivity comparison be-
tween OpenACC and CUDA. They found that the OpenACC programming time is 37%
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shorter than CUDA, but CUDA running speed is 9x faster than OpenACC and OpenACC
development work is not significantly affected by a previous CUDA experience.

Ahmad et al. [57] investigated the implementation aspect of the OpenACC cache directive
under NVIDIA GPUs and proposed optimization for the CUDA backend.

Li et al. [10] have compared OpenACC and CUDA performance focusing on programming
models, optimization technologies and underlying compilers. They measured and compared
kernel execution times and data transfer times to/from the GPU and concluded that in terms
of kernel running time, the OpenACC performance is lower than the CUDA while the data
transfer time in OpenACC programs tends to be much faster than in CUDA.

Rengan Xu [53] evaluated and compared HMPP, PGI accelerator model, and OpenACC
involving several scientific applications. He found that the performance of the evaluated
directive-based programming models is close enough to that of the CUDA. He also proposed
new directives for OpenACC to support multiple GPUs in a single node and an analytical
model-based auto-tuning framework to identify the optimal loop schedule that may be better
than the default loop schedule chosen by the compiler. Table 3.1 summarizes four of works
presented above.

Table 3.1 — Summary of relevant previous work on OpenACC performance evaluation

Authors Platform(s) Compiler(s) Application | Optimization Results
Hoshino Single node of the ~ PGI 12.10, Intel 11.1, | Mat mult, 3D | kernels, loop, manual In term of runtime CUDA
etal. [9], TSUBAME 2.0 HMPP 3.2, Cray 8.1 | stencil, CFD | loops scheduling, scalar ~ In term of runtime CUDA
2013 CUDA 4.1 replacement, loop fusion  vs. OpenACC: 50% on average
J.A. Herdman | NVIDIA GPU Cray 8.1.7, PGI 13.7, | CloverLeaf kernels vs. parallel - PGI kernels is the best;
[50], 2014 CAPS 3.3.2 kernels vs. parallel - CUDA vs. OpenACC: 15 — 20%;
- OpenCL vs. OpenACC: 10% to 20%

Applications acceleration with OpenACC/OpenMP

o Jkeda et al. |

] presented a source-to-source OpenACC optimizer that automatically op-

timizes a histogram computation code for a graphics processing unit (GPU) and concluded
that the achieved speedups over the naive method ranged from x0.7 to x3.6.

Reza et al. [55] accelerated the computation of finite difference generated time-domain
Green’s functions of layered media using OpenACC. They compared the accuracy of the
OpenACC version to that of the serial implementation on CPU and found that the accuracy
of the problem is maintained.

P. Alyson et al. [56] proposed OpenACC extensions to enable efficient code generation
and execution of stencil applications by parallel skeleton frameworks such as PSkel. They
showed that their stencil extensions may improve the performance of OpenACC in up to
28% and 45% on GPU and CPU, respectively.
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OpenMP Performance Evaluation

e Martineau et al. evaluated in [57] OpenMP 4.0 effectiveness as a heterogeneous parallel
programming model. They found that OpenMP 4.0 can achieve good performance while
decreasing development cost. They also analyzed in [58] an implementation of OpenMP
4.5 provided in the trunk branch!' of Clang 4.0 on an NVIDIA Kepler GPU. They used
synthetic programs and three mini-applications to show the majority of issues affecting the
performance of this Clang OpenMP 4.5 implementation. They suggested some potential
solutions that can improve Clang code generation performances.

e Hayashi et al. [59] evaluated and analyzed IBM XL C and LLVM/Clang compilers im-
plementation of OpenMP 4.0/4.5 on an IBM POWERS + NVIDIA Tesla K80 platform.
They used six kernels and applications taken from the PolyBench and SPEC ACCEL bench-
mark suites. They found that the OpenMP generated codes are in some cases faster, in
some cases slower than straightforward CUDA implementations written without compli-
cated hand-tuning.

e GT Bercea et al. [60] introduced an implicit allocation policy in the NVPTX backend of
LLVM to lower implicitly shared OpenMP variables to the shared memory of the device.
They evaluated the proposed scheme in cases that involve scalar variables and statically
allocated arrays. Results showed that for scalar variables the pressure on shared memory is
relatively low and does not negatively impact occupancy.

e Artem et al. [06]] explored OpenMP 4.5 performance improvement via kernels fission,
pipelining memory transfers with kernel execution and grid-geometry selection. They used
programs taken from Rodinia and PolyBench benchmark suites, the same Clang OpenMP
4.5 implementation as in [58] and two NVIDIA GPUS. As a performance metric, they used
the occupancy which is the ratio of active warps on an SM to the maximum number of ac-
tive warps supported by the SM. Their results indicate that the performance gains can be
significant especially in machines with larger page sizes.

e Graham et al. [I1] explored the performance portability of the directives provided by
OpenMP 4 and OpenACC to program various types of node architectures. Their results
show that due to the slightly different interpretations of the OpenMP 4 specification, it is
crucial to understand how the specific compiler being used implements a particular feature
on different platforms.

e Memeti et al. [62] studied empirically the characteristics of OpenMP, OpenACC, OpenCL,
and CUDA with respect to programming productivity, performance, and energy. They ob-
served that programming with OpenACC/OpenMP/CUDA requires significantly less effort
than programming with OpenCL and that OpenMP/OpenCL/CUDA have comparable per-
formance and energy consumption on Ida system.
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e B.Bastemetal. [

] introduced a tiling based programming model, implemented as a library,
for GPUs that overlaps the computation and data transfers between the CPU and the GPU.
Results showed what the library can handle cases where the device memory is not sufficient
to hold the entire application data by staging the data as tiles. Table 3.2 summarizes four of

the works presented above.

Table 3.2 — Summary of relevant previous work on OpenMP evaluation

Authors Platform(s) Compiler(s) | Application Optimization Results
Martineau NVIDIA LLVM/Clang | Synthetic Combined rarget + teams - CUDA is faster than OpenMP,
etal. [58], K40m and programs, + distribute + parallel + - FMA, non-coherent loads, and
2016 K40c GPUs SNAP, Tealeaf, for, loop fusion, FMA?, num_teams setting may improve
CloverLeaf manual loops scheduling OpenMP performance,
- LLVM/Clang uses many registers
which can reduce performance
Hayashi IBM POWERS | IBM XL C, 6 kernels taken Combined and non-combined - OpenMP codes performance >
etal. [59], -+ NVIDIA LLVM/Clang | from PolyBench constructs, loop permutation, straightforward CUDA versions
2016 Tesla K80 and SPEC ACCEL | fusion, and unrolling, FMA, - Added new constructs fo shared
dist_schedule, schedule(static,1) | memory and read-only cache
Artem et al. | NVIDIA Titan | LLVM/Clang | Kernels taken kernels fission, overlapping Kernels fission, asynchronous
[61],2018 X Pascal and as in [58] from PolyBench data transfer and computation, execution, and loop scheduling
P100 GPUs and Rodinia loop scheduling can significantly improve OpenMP
applications performance
Graham et al. | NVIDIA Cray 8.5, Dense linear Combining and un-combining - Compilers interpret differently
[11], 2016 K20X GPUs, PGI 16.5, algebra kernels, target, teams, OpenMP target constructs
Xeon Phi 7210 Intel 16 Jacobi, HACCmk | distribute, parallel for, - The simd construct is portable
and simd - OpenACC is usually simpler
to use than OpenMP
- Compilers have same
interpretation of OpenACC
- Intel does not support combined
OpenMP target directives

OpenACC and OpenMP Programing Models Comparison

e Guido et al. [

] ported the SPEC ACCEL benchmarks from OpenACC to OpenMP 4.5

to show how an application can be programmed with directive-based languages in a perfor-
mance portable style that lets the compiler make platform-specific optimizations to achieve
good performance on a variety of systems.

Sergio et al. [65] explored the similarities and the functionality gaps between OpenACC and
OpenMP programming models and presented insights into the translation process of con-
structs from OpenMP to OpenACC. They also presented an empirical study of performance
and portability across multicore platforms and GPU accelerators for varying workload sizes.

Wienke et al. [66] compared OpenACC and OpenMP programming models with respect to
their programmability. They evaluated OpenACC and OpenMP expressiveness by pattern-
based comparison. The patterns covered were map, stencil, reduction, fork-join, superscalar
sequence, nesting parallelism, and geometric decomposition. They concluded that the two
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standards are equivalent but OpenMP would likely achieve the best adoption in the long-term
because it is such a prominent standard.

Multi-GPUs targeting with OpenACC/OpenMP

e Komoda et al. [67] presented an OpenACC compiler with the capability to execute single
GPU OpenACC programs on multiple GPUs. They proposed some directives that allow
programmers to express the patterns of memory accesses in the parallel loops to be offloaded.

e Kazuaki et al. [68] proposed an OpenACC transpiler to automatically use multiple GPUs.
They evaluated this transpiler on four benchmarks to quantify its performance. They showed
that for some applications the proposed transpiler can compete with hand written MPI code.

e Yonghong et al. [69] explored support of multiple accelerators in high-level programming
models by designing extensions to OpenMP to support offloading data and computation
regions to multiple devices. The proposed extensions allow for distributing data and compu-
tation among a list of devices.

Autotuner for OpenACC/OpenMP

e Montgomery et al. [70] presented an autotuner that can assist the programmer in selecting
high-quality values for OpenACC num_gangs and vector_length clauses. The autotuner was
evaluated on a suite of 36 OpenACC kernels and results showed that it identified values
within the top 5% for 29 kernels, within the top 10% for five kernels, and within the top 25%
for the remaining two. Eleven of the kernels achieved a speedup greater than 2x over the
compiler’s defaults while the autotuner required only 7 — 11 runs of the target program, on
average.

e Makoto et al. [71] discussed the performance tunabilities of OpenACC and OpenCL. Since
OpenACC cannot synchronize threads running on GPUs, they designed an additional com-
piler directive for thread synchronization. The additional directive can allow OpenACC to
describe more tuning techniques in the same approach as OpenCL.

As can be seen, many works have been done on OpenMP and OpenACC. The work presented in
this chapter brings to the state of the art the following contributions:

e We propose an effective application parallelization methodology with OpenACC and
OpenMP. The proposed approach will be used to parallelize synthetics kernels and sever-
als applications taken from well established benchmark suites.

e We analyze two OpenMP and OpenACC compilers, namely LLVM/Clang and PGI compiler,
in order to understand how these compilers interpret OpenMP/OpenACC directives, the be-
havior, and the performance of OpenMP/OpenACC directives when the targeted accelerator
is a GPU.
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e We give feedback on the parallelization strategy adopted based on code patterns.

e We study the performance evolution according to kernels’ workload and compare the perfor-
mance of three data management methods.

3.2 Hardware platforms & compilers

As seen in Section 1.5, the two platforms used in this thesis are a laptop with an NVIDIA Quadro
M2000M hosted in an Intel 17 CPU and an NVIDIA Tegra X1 SoC. However, only the Quadro
M2000M GPU will be used in this chapter. Although there are many more or less mature compilers
with OpenACC support (seen in 2.2.6), it is the PGI’s 18.10.1 which we will use for our experiment
since it is the most mature (supports all features of OpenACC 2.6 and includes an implementation
of the draft OpenACC 3.0).

Concerning OpenMP, we will use the official release of LLVM/Clang 7.0 which supports all fea-
tures of OpenMP 4.5. We will use the CUDA toolkit version 9.1 for CUDA versions. In this thesis,
performance data will be collected on GPU with the NVIDIA profiler nvprof and the chronos li-
brary on CPU. Finally, CPU versions will be compiled with GCC 8.1. Table 3.3 presents main
compilation flags used in our work.

Table 3.3 — Compilers flags used in our experiments

Compilers Flags

nvce -use_fast_math -Xptxas -dlcm=cg -O3 -gencode
arch=compute_50,code=sm_50

Clang -O3 -v -ffast-math -ffp-contract=fast -fopenmp -fopenmp-targets=nvptx64
-Xopenmp-target -march=sm_50

PGI (for targetting CPU) -mp -Minform=warn -fast -O3 -acc -Minfo=accel -ta=multicore

PGI (for targetting GPU) -mp -Minform=warn -fast -O3 -acc -Minfo=accel
-ta=nvidia,maxwell,cc50,fastmath,fma,lineinfo,unroll,loadcache:L1

Gee -mavx -Wall -fopenmp -fopenacc -funroll-loops -O3
-ftree-loop-vectorize -fopt-info-vec

3.2.1 Performance Metrics

In order to collect performance data on the GPU, we will use the NVIDIA profiler called nvprof.
The following performance metrics will be used:

e Execution time
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e [nstructions executed

e GPU occupancy: gives the ratio of the average active warps per active cycle to the maximum
number of warps supported on a multiprocessor

e SM efficiency: corresponds to the percentage of time at least one warp is active on a multi-
processor

3.3 Benchmarks

For our experiments, we have considered a number of different applications from the Rodinia
and PolyBench benchmark suites. We have also used applications from for image processing and
synthetic programs.

The Rodinia benchmark suite, designed for performance evaluation in the context of heterogeneous
parallel computing [72]; is implemented for both multi-core CPUs and GPUs using OpenMP (for
CPU), CUDA, and OpenCL. Rodinia benchmark suite covers different types of application be-
haviors according to the Berkeley’s dwarfs. Therefore they exhibit various types of computations,
data access patterns, problem partitions, and optimizations. While Rodinia® benchmark suite pro-
vides in total 23 CUDA, 21 OpenCL and 19 OpenMP applications, we have selected 9 OpenMP
and CUDA applications for our experimentation. The inclusion criteria during the selection pro-
cess of applications are (1) the need to have the same application implemented in both CUDA
and OpenMP, and (2) applications that are compilable and executable in our systems. Table 3.4
summarizes applications taken from the Rodinia benchmark suite.

The PolyBench collection of benchmarks contains codes for linear algebra computations, physics
simulation, data-mining, stencils, etc. [73]. Although the suite consists of 30 kernels, we have se-
lected 18 that seem relevant for our experience. Table 3.5 shows selected kernels in the PolyBench
benchmark suite.

In addition to applications and kernels taken from Rodinia and PolyBench benchmarks suites, we
have also selected 4 applications from the computer vision domain since our use case is an image
processing algorithm. These 4 applications include a stereo disparity (SDisp) computation (taken
from NVIDIA CUDA 10.0 Samples), Canny filter (Canny) [74], Harris Corner Detector (HCD)
[75], and Horn & Schunck (H&S) optical flow estimation algorithm [76].

3.4 General Parallel Programming Problems

In general, parallelizing an application leads to a performance improvement. However, a program-
mer must consider certain problem when parallelizing an application. We describe bellow some
difficulties encountered when parallelizing a code.

3version 3.1, available at , ac-

cessed 04,/03/2019

Ph.D Report 74 Rokiatou DIARRA


http://lava.cs.virginia.edu/Rodinia/download_links.htm

CHAPTER 3. APPLICATION PARALLELIZATION METHODOLOGY WITH OPENACC &

OPENMP
Table 3.4 — Applications taken from the Rodinia benchmark suite
Application Dwarf Domain Inner loops | Description
BFS: Graph Graph K1:1 Breadth-First Search algorithm traverses all the
2 kernels Traversal Algorithms connected components in a graph.
Back-Propagation | Unstructured | Pattern KI: 1 A machine-learning algorithm that trains the weights
(BP): 2 kernels Grid Recognition K2:1 of connecting nodes on a layered neural network.
HotSpot (HS): Structured Physics 4 A 2D transient thermal modeling kernel which
1 kernel Grid Simulation computes the final state of a grid of cells.
HotSpot 3D Structured Physics 2 Same as HS but in 3D.
(HS3D): 1 kernel | Grid Simulation
LavaMD 3 Calculates the potential and relocation of particles
(LMD): 1 kernel within a large 3D space.
Lud (LUD): K1: 4 An algorithm to decompose a matrix
3 kernels K2: 8 as the product of a lower triangular matrix
K3: 6 and an upper triangular matrix.
Needleman Dynamic Bio- KI1: 2 A dynamic programming algorithm for sequence
-Wunsch Programming | informatics K2: 2 alignments, which builds up the best alignment by
(NW): 2 kernels using optimal alignments of smaller subsequences.
SRAD Structured Image A diffusion method used in ultrasonic and radar
Grid Processing imaging applications.
Heartwall
(HW)
Table 3.5 — Applications taken from the PolyBench benchmark suite
Application | Domain Number of inner loops || Application | Domain Number of inner loops
2mm Linear algebra 2 mvt Linear algebra 1
3mm Linear algebra 2 symm Linear algebra 2
atax Linear algebra 1 syr2k Linear algebra 2
bicg Linear algebra 1 trmm Linear algebra 2
correlation | Data-mining 1 adi Stencil 2
covariance | Data-mining 1 durbin Linear algebra 2
fdtd-2d Stencil 1 gramschmidt | Linear algebra 3
gemm Linear algebra 2 seidel-2d Stencil 2
gemver Linear algebra 1 trisolv Linear algebra 1
gesumv Linear algebra 1

Data sharing

When parallelizing a code region, variables (global or local) can be either shared or private. If
a variable is shared, then there exists one instance of this variable which is shared among all
threads. Instead, if a variable is private, then each thread has its own local copy of this variable.
For example, function arguments are by default shared either in CUDA, OpenACC or OpenMP.
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Variables declared outside of OpenMP/OpenACC offloading regions are also shared. On the other
hand, variables declared locally in a CUDA kernel or an OpenACC/OpenMP offloading region are
private. Loop iteration variables are also private.

1 |void dataSharing(int &sum, int N, int *Tab, std::vector<int> new_list) {
2 sum = O,

3 #pragma omp parallel for

4 for(int i = 0; 1 < N; i++) { //i is private by default
5 int a = 0; //a is private

6 //instructions using a ....

7 sum += Tabl[i]; //Tab, sum, and new_list are shared

8 new_list.push_back (i) ;

9 Y

10 }

11 |}

Listing 3.1 — Data sharing example

Concurrent accesses to variables that are shared among all threads require synchronization mech-
anisms in order to avoid the crash of the program at runtime, data race, hazards, etc. Consider the
example of Listing 3.1. Parallelizing the loop of line 4 with OpenMP (pragma of line 3) leads to a
runtime crash due to the instruction of line 8. Lists from the szd library being safe by construction,
we should not have more than one thread trying to add a new element to new_list as it is the case
in Listing 3.1. One solution can be to protect the push_back instruction with a critical section.
However, we should get any speedup from OpenMP in this case because there will be contention
for the critical section. A faster solution would be for every thread to have its own list, and get
those lists merged after the loop finishes.

A data race may occur when two threads access concurrently to the same memory location (at least
one in writing) and there is no synchronization that is mandating any particular order among these
accesses. For example the instruction of line 7, which sums 7ab elements, may produce a wrong
result. Since the order of loop iterations execution may change for each call of dataSharing, the
value of sum also may be different. A solution can be to force the updates of sum to be mutually
exclusive, by using the OpenMP/OpenACC atomic clause. However, as for critical, using atomic
can hurt performance due to the cost of synchronization. Another simplest and efficient solution
should be to use the reduction clause of OpenMP/OpenACC.

Hazards occur when data is accessed in parallel. These may or may not be problematic. For
example, when multiple threads write data to the same memory cell, it is undetermined, which
data will be stored in the end. However, if all threads write the same value, it does not matter as
the result is always the same. To prevent hazards efficiently, atomic operations can be used.

Dependency

Cases where data is read from a cell that was previously overwritten by another thread can be
problematic. Typically loops can have two types of dependence : loop-carried dependency and
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loop-independent dependency. In loop-carried dependency, dependence exists across iterations.
Therefore, if the loop is removed the dependence no longer exists. On the other hand, depen-
dence exists within an iteration in loop-independent dependency. Thus, if the loop is removed, the
dependence still exists.

3.4.1 Problems Specific to GPU Programming

General parallel programming problems discussed above are independent of the parallelization
paradigm used as well as the architecture targeted. However, there are certain problem that are
specific to GPU programming. We briefly present bellow five of them.

1. Reduction — The reduction of Listing 3.1 can be parallelized on GPU with OpenACC,
OpenMP, and CUDA. Listing 3.2 shows the OpenMP/OpenACC and CUDA versions. As
can be seen in this example, with OpenMP and OpenACC the reduction is managed by the
compiler. On the other hand, the reduction is entirely programmed by the programmer. First,
input data are loaded from global memory to shared memory. Next, the reduction is done in
shared memory, and then the result of each block in saved in global memory. After copying
back g_odata, the last step is to sum partial sums from each block on CPU.

1 |sum = 0;

2 | #pragma omp target parallel for reduction (+: sum) map (sum)

3 |#pragma acc kernels loop independent reduction (+: sum) copy (sum)

4 |for(int 1 = 0; i < N; 1i++)

5 sum += Tab[i];

6 | //CUDA version

7 |_global__ void reductionCUDA (int =*g_idata, int =xg_odata, int N) {
8 cg::thread_block cta = cg::this_thread block();

9 _ _shared__ int sdatal];

10 int tid = threadldx.x; //index in shared mem

11 int i = blockIdx.x*blockDim.x + threadIdx.x; //index in global mem
12 sdata[tid] = (1 < n) ? g_idatali] : 0; //laod to shared mem

13 cg::sync(cta); //synchronize threads

14 for (int s = blockDim.x / 2; s > 0; s >>= 1) {

15 if (tid < s) sdatal[tid] += sdatal[tid + s];

16 cg::sync(cta);

17 }

18 // write result for this block to global mem

19 if (tid == 0) g_odatal[blockIdx.x] = sdatal0];

20 |}

Listing 3.2 — Data sharing example

2. Scan — A scan operation can be inclusive or exclusive. The inclusive scan takes a binary
operator ¢ and an array of N elements [Ag, A1, ..., Ay_1] and returns the array [Ag, (Ay &
Ai)y ey (Ag® A1 ®...® Ax_1)|. Exclusive scan is defined similarly, but shifts the output and
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uses an identity value I as the first element. A loop containing a scan operation has a loop-
independent dependency. OpenMP 5.0 provides the scan directive. However, OpenACC has
not any construct for scan operation purpose.

3. Extern library routines calls can not be used inside OpenMP/OpenACC and CUDA kernels.
Consider the vector new_list of Listing 3.1. In addition to the problem of concurrent accesses
to new_list, the routine push_back is not available to CUDA/OpenMP/OpenACC.

4. Recursive routines are not allowed in CUDA/OpenMP/OpenACC.

5. SIMD intrinsics (e.g. SSE, AVX, NEON) are not portable. For instance, if the serial version
of the code to be offloaded contains SSE instructions, then it is necessary to rewrite these
SSE instructions in pure scalar instruction before adding OpenMP/OpenACC directives.

3.5 Methodology of Parallelizing with OpenMP and OpenACC

The main benefits of programming GPUs using a directive-based programming model are achiev-
ing performance by simply adding directives to parallel code regions in an existing program. For
applications taken in Rodinia, we ported them in OpenACC and OpenMP from their CPU OpenMP
versions. Concerning the CUDA versions, we used the optimized CUDA codes already available
in Rodinia. For kernels that come from PolyBench, Canny, HCD, and H&S we consider the CPU C
version as the starting point to develop the OpenACC, OpenMP and CUDA versions. Since SDisp
comes from NVIDIA, we ported their CPU C++ version to OpenACC and OpenMP. We propose
the following methodology for parallelizing sequential code with OpenMP/OpenACC:

1. Profile the sequential code in order to identify compute-intensive parts which are typically
loops. When performance bottlenecked regions have been identified, verify if loops’ bounds
are countable. If they are not countable, perform necessary modification to make them count-
able. If loops iterators are not allowed in OpenMP/OpenACC, for example the std::vector
iterator, replace them by classic allowed iterators.

2. Inventory all data, such scalar variables, arrays, and pointers, used in these performance bot-
tlenecked regions. Analyze the type of arrays and pointers inventoried. If some of these
arrays/pointers have a complex type like structures containing dynamic allocated arrays of
another structure, then it is necessary to add the required instructions to perform a man-
ual deep copy as seen in 2.3. The instructions for the manual deep copy must be inserted
before the performance bottlenecked region, and replace all references to the old variables
(arrays/pointers) by their device copies.

3. Optimize data structures and array access pattern to efficiently use the device memory (sub-
section 1.6.1 - Optimization 5). For instance, accessing data in the global memory in a
coalesced way, i.e. consecutive threads should access consecutive memory address. This
may require some loop optimizations like loop permutation, or transforming the data layout
that will change the memory access pattern.
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4. Remove data dependency in compute-intensive parts issue by restructuring the code and
making private scalar variables as much as possible. However, the programmer must take
care of data race situations (as explained in above in Section 3.4).

5. Once all modifications of the target code region have be done, the next step is the data
management. As explained in Sections 2.1.4 and 2.2.4, there are three ways to manage data
in OpenACC/OpenMP: copy clauses, data directives, and memory management routines
(either those of OpenMP/OpenACC or those of CUDA API).

e If arrays/pointers used in the code region to be parallelized do not require a manual
deep copy and are not permanent, i.e. they are only used inside the routine were they
have been declared, then a single device data environment must be created by using
a data directive (e.g. omp target data, acc data, and enter data — exit data) or the
copy clauses if there is a single structured block code to be offloaded. By creating a
single device data environment, redundant data movement is avoided. If there are some
arrays/pointers that must be updated on the host as illustrated in the Listing 3.3, the
update directive can be used.

1 |int main (....) {

2 //variables declarations and instanciation ....

3 #pragma acc data copyin(..... ) I

4 {

5 fpragma acc kernels ......

6 for(..... Y (/e */}

7 #fpragma acc update ......... //update some data on the host
8 //use them on the host

9 #pragma acc update ......... //update them on the device
10 fpragma acc kernels ......

11 for(..... ) {/*reuse them ........... */}

12 }

13 S

14 |}

Listing 3.3 — Example of device data environment containing code executed on CPU

e [f arrays/pointers used in the code region to be parallelized do not require a manual
deep copy and are permanent, i.e. they are used across several routines, then:

— if these data are members of a C+-+ class, allocated in the class constructor, and
released in the class destructor, then the enter data and exit data directives must be
privileged to coy them to and from the GPU. Indeed, this solution does not require
for instance to replace a host variable reference by its equivalent on the device
since both refer to the same variable. The update directive can be used if these
data must be updated on the host.

— Whether these data are members of a class or not, OpenACC/OpenMP memory
management routines can also be used.
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e [f arrays/pointers used in the code region to be parallelized require a manual deep copy,
the only solution currently available is to perform the manual deep copy through the
enter data and exit data directives (an example can be seen in Listing 2.15) or memory
management routines.

Depending on the application to be parallelized, one of these three methods may be privi-
leged. Of course, it is also possible to use them jointly in the same application. However, the
time consumed by copy clauses, data directives, and memory management routines must be
considered. We will analyze this question in Section 3.7.

6. Once the necessary actions for data management have been done and the required modi-
fications to ensure that the code region to be parallelized exhibits the most parallelism (as
recommended in subsection 1.6.1 - Optimization 1), the next step is to insert compute of-
floading directives. The directive to insert depend on the pattern of the target code region
as well as the signification of the directive itself (or action performed by the compiler when
it encounters this directive). We will analyze the interpretation of OpenMP/OpenACC di-
rectives by two compilers and the impact of the directive used on the offloaded code region
performance in Section 3.6.

7. Both OpenACC and OpenMP provide clauses to set the total number of threads, i.e. the
sizes of the grid and the block, that will execute the offloaded regions. It can happen that
the grid and block sizes choose by OpenACC/OpenMP compilers is not optimal, in that
case the programmer should optimize the threads number manually by using these clauses.
This should lead to improvement in speedup. However, the programmer must consider the
capacity of the targeted GPU as recommended in subsection 1.6.1 - Optimization 7 and 8.

8. Advanced optimization can be use:

(a) Loops fusion — When loop are perfectly nested, using the collapse clause can improve
the offloaded code region performance. If the directive-based parallelization method
used is OpenACC, the tile clause can also be used.

(b) Kernels fusion — It can happen that the offloaded code regions, taken individually, do
not contain enough computation. In such case, it may be beneficial to merge these
offloaded code regions into one big kernel.

(c) Overlapping computation and data transfer — It can happen that the application to be
parallelized contains several sequential part that can be execution on the host concur-
rently with the regions offloaded on the GPU. Asynchronous clauses, directives and
memory routines can be used in such situation. This may improve application overall
performance by avoiding of blocking the host execution (as recommended in subsection
1.6.1 - Optimization 2).

(d) Multiple device execution queues — If the application to be parallelized contains mul-
tiples regions that can be executed concurrently on the GPU, then two or more streams
(or device execution queues) can be created with the OpenACC’ async(integer) clause.
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Profile the sequential code: identify compute-intensive loops and
perform necessary modification to make them accountable if they are not

If necessary, modify the compute-intensive code regions in order to expose
as much parallelism as possible: remove data-dependency, lists, deeply
complex data types, optimize data accesses patterns, etc.
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asynchronous memory
routines if possible

Figure 3.1 — Main steps of the methodology of parallelizing with OpenMP and OpenACC

Figure 3.1 summarizes the parallelization approach discussed above. Some of the above steps
need to be applied repeatedly along with profiling and feedback information provided by compilers
and profilers. The practices and optimization techniques applied vary depending on the original
structure of an application. Some of those techniques are developed in the following sections.
While some points (1, 3, 4) discussed above have been used for optimizing parallel program on
CPUs, applying them on GPUs pose different challenges, particularly when using them in large
code bases.
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3.6 OpenMP and OpenACC constructs impact on performance

Both OpenMP and OpenACC provides a rich set of directives for computation offloading on an
accelerator (e.g., GPU), which allows a user to gradually increase its application performance by
testing difference constructs combination. We have seen in Section 2.3 that OpenMP is prescrip-
tive, 1.e. the compiler only parallelizes if the user requests it. On the other hand, OpenACC compil-
ers are supposed to do the necessary parallelization from the general information provided by the
programmer. OpenMP directives can be used separately or grouped to form combined constructs
(see Figure 2.4). In the same way, OpenACC directives can also be uncombined or combined.
According to the structure of the code to be offloaded, the user can test severals combination of
OpenMP/OpenACC directives.

In this section, we deepen the work presented in our paper [!2]. First, we will analyze PGI im-
plementation of OpenACC 2.7 and LLVM/Clang implementation of OpenMP 4.5 by evaluating
the performance of the Sobel 3 x 3 filter (used in previous Chapters) parallelized with different
OpenACC/OpenMP directives. The performance used for this evaluation are the kernel execution
time, the number of registers used per thread, the number of executed instruction, the number of
line of code (LOC) in the generated PTX file, the occupancy, and the SM efficiency. We also re-
port the grid and block sizes generated by the compilers. To be sure that the observed results are
independent of the input image size, we use four images of different sizes. Next, we will present
the main results for applications seen in Section 3.3. Note that, in this section, we do not optimize
the loop scheduling, we let the compiler choose the optimal grid and block sizes.

Analysis of PGI implementation of OpenACC
In order to analyze the PGI implementation of OpenACC, we parallelize the Sobel 3 x 3 filter with

12 configuration of OpenACC directives. Listing 3.4 shows the parallel construct variants while
Listing 3.5 presents the different cases for the kernels directive.

1 | #pragma acc parallel deviceptr(in,...) //will be called Par

2 |[for(int x = 1; x < h — 1; x++)

3 for(int vy = 1; v < w — 1; y++) {/#Sobel 3x3 filter computation ...x/}
4 |#pragma acc parallel deviceptr(in,...) //will be called ParLpUnc

5 |#pragma acc loop

6 |for(int x = 1; x < h - 1; x++)

7 #pragma acc loop

8 for(int vy = 1; v < w — 1; y++) {/#Sobel 3x3 filter computation ...x/}
9 | #pragma acc parallel loop deviceptr(in,...) //will be called ParLp

10 |for(int x = 1; x < h - 1; x++)

11 #pragma acc loop

12 for(int v = 1; v < w — 1; y++) {/*Sobel 3x3 filter computation ...=*/}
13| //will be called ParLpInd

14 |#pragma acc parallel loop independent deviceptr (in,...)

15 |for(int x = 1; x < h - 1; x++)

16 #pragma acc loop independent

17 for(int vy = 1; yv < w - 1; y++) {/#Sobel 3x3 filter computation ...x*/}
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//will be called ParLpIndCol

#pragma acc parallel loop independent collapse(2) deviceptr (in, ...

for(int x = 1; x < h - 1; xt++)

for(int vy = 1; y < w — 1; y++) {/#Sobel 3x3 filter computation . x/}
//will be called ParLpIndTil
#pragma acc parallel loop independent tile (32, 32) deviceptr(in,...)
for(int x = 1; x < h - 1; x++)

for(int v = 1; v < w — 1; y++) {/*Sobel 3x3 filter computation . +/}

Listing 3.4 — OpenACC parallel construcs

#pragma acc kernels deviceptr(in,...) //will be called Krn
for(int x = 1; x < h - 1; x++)

for(int vy = 1; v < w - 1; y++) {/*Sobel 3x3 filter computation . x/}
#pragma acc kernels deviceptr(in,...) //will be called KrnLpUnc
#pragma acc loop
for(int x = 1; x < h - 1; xt+)

#pragma acc loop

for(int vy = 1; v < w - 1; y++) {/*Sobel 3x3 filter computation . *x/}
#pragma acc kernels loop deviceptr(in,...) //will be called KrnLp
for(int x = 1; x < h - 1; xt++)

#pragma acc loop

for(int vy = 1; y < w — 1; y++) {/#Sobel 3x3 filter computation . x/}
//will be called KrnLpInd
#pragma acc kernels loop independent deviceptr (in,...)
for(int x = 1; x < h - 1; x++)

#fpragma acc loop independent

for(int vy = 1; y < w — 1; y++) {/#Sobel 3x3 filter computation . x/}
//will be called KrnLpIndCol
#pragma acc kernels loop independent collapse(2) deviceptr (in, ...
for(int x = 1; x < h - 1; x++)

for(int v = 1; v < w — 1; y++) {/#Sobel 3x3 filter computation . */}
//will be called KrnLpIndTil
#pragma acc kernels loop independent tile (32, 32) deviceptr(in,...
for(int x = 1; x < h - 1; x++)

for(int v = 1; v < w - 1; y++) {/*Sobel 3x3 filter computation . %/}

Listing 3.5 — OpenACC kernels construcs

Table 3.6 shows the Sobel 3 x 3 filter execution time obtained for OpenACC parallel and kernels
constructs variants on the Quadro M2000M GPU. Colored cells shows the best execution time for
parallel and kernels variants. Table 3.7 presents related performances to the PGI generated code

properties while Table 3.8 shows the PGI compiler default formula for thread mapping.

For the Sobel 3 x 3 filter, globally we observe that:

e Parallelizing a code region with the OpenACC’s parallel (Par, lines 1 — 3 of Listing 3.4)
and kernels (Krn, lines 1 — 3 of Listing 3.5) directives, used in this way, have the same
performance (execution time, number of registers used per thread, grid and block sizes,
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Table 3.6 — Sobel 3 x 3 filter execution time (in millisecond) for various OpenACC directives

parallel 512 x 512 | 640 x 480 | 1344 x 372 | 1342 x 1110 || kernels 512 x 512 | 640 x 480 | 1344 x 372 | 1342 x 1110
Par 93.258 109.2 177.48 536.64 Krn 93.407 109.07 1777 536.72
ParLpUnc 0.04388 0.05159 0.08157 0.25714 KrnLpUnc 93.613 109.49 178.33 537.17
ParLp 0.04195 0.04965 0.08082 0.25276 KrnLp 0.22098 0.221 0.17248 0.64291
ParLpInd 0.04198 0.04959 0.0802 0.25168 KrnLpInd 0.04753 0.05622 0.09028 0.26805
ParLpIndCol | 0.06087 0.0699 0.11333 0.33721 KrnLpIndCol | 0.05988 0.06992 0.11361 0.33571
ParLpIndTil 0.06932 0.08022 0.13185 0.39206 KrnLpIndTil 0.06892 0.08037 0.13214 0.39228
Table 3.7 — Sobel 3 x 3 filter performance for various OpenACC directives
Executed instructions
Configuration | Registers | Occupancy (%) | SM efficiency (%) | 512 x 512 | 640 x 480 | 1344 x 372 | 1342 x 1110 | PTX LOC
Par 32 1.563 20 8597593 | 10077209 | 16396193 49026797 451
ParLpUnc 31 92.97 86.52 485520 548744 830280 2486352 118
ParLp 32 91.965 84.34 485520 548744 830280 2486352 118
ParLpInd 31 92.139 86.81 485520 548744 830280 2486352 118
ParLpIndCol 23 89.441 85.15 894253 1048431 1706933 5103822 102
ParLpIndTil 29 83.899 91.04 1054912 1236080 2046408 6038928 121
Krn 32 1.563 20 8597593 | 10077209 | 16396193 49026797 451
KrnLpUnc 32 1.563 20 8598611 | 10078163 | 16396931 49029011 450
KrnLp 29 8.535 89.57 314688 368720 599718 1793064 517
KrnLpInd 29 86.966 8654 768608 900600 1464876 4374384 127
KrnLpIndCol 23 90.364 87.18 894253 1048431 1706933 5103822 102
KrnLpIndTil 29 83.913 91.56 1054912 1236080 2046408 6038928 121
Table 3.8 — OpenACC directives default loop scheduling for Sobel 3 x 3 filter
Constructs Grid[z,y, 2] Block|[z, v, 2] Sobel filter loops parallelization
Par, Krn, KrnLpUnc [1,1,1] [1,1,1] no loop is parallelized
ParLpUnc, [OutLoopSize,1,1] [128,1,1] outer loop: gang
ParLp, ParLpInd inner loop: vector(128)
ParLpIndCol, [OutLoopSizex [128,1,1] outer loop: gang, vector(128)
KrnLpIndCol InnLoopSize/Block.x,1,1] inner loop: collapsed
ParLpIndTil, [Out LoopSizex [tileH * tileW, 1, 1] | outer loop: gang, vector(128)
KrnLpIndTil InnLoopSize/Block.x,1,1] inner loop: tiled
KrnLp [InnLoopSize/Block.x,1,1] [128,1,1] outer loop: sequential
inner loop: gang vector(128)
KrnLplnd [InnLoopSize/Block.z, (32,4,1] outer loop: gang, vector(4)
OutLoopSize/Block.y, 1] inner loop: gang, vector(32)

GPU occupancy, SMs efficiency, executed instructions, and PTX code). However, if they are
applied to a structured block containing nested loops as can be seen in Listing 3.6, then they
may not have the same GPU occupancy, SMs efficiency, and executed instructions count. Of
course, the PTX code and the number of registers used per thread will be different.
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1 | #pragma acc parallel deviceptr(...)
2|
3 for(int x = 1; x < h - 1; x++) {/#may contains inner loops...x*/}
4 for(int x = 1; x < h - 1; x++) {/#may contains inner loops...#*/}
501}

Listing 3.6 — Structured block of code

e Parallelizing a code region with the OpenACC’s parallel and loop constructs in two inde-
pendent directives (ParLpUnc, lines 4 — 5 of Listing 3.4), or in a combined mode (ParLp,
line 9 of Listing 3.4), and adding the independent clause (ParLplnd, lines 14 — 17 of Listing
3.4) have approximatively same performance. This induces two important remarks:

— whether parallel and loop are combined or not, we get the same performance,

— if we are not sure that our loops are data independent, we do not have to take the risk of
having data races by adding the independent clause since PGI compiler can determine
the absence of data dependency by itself.

By simply adding the loop construct, instead of having a single thread, we have now
(ImageHeight — 2) x 128 threads (as can be seen in Table 3.8) that execute the offloaded
code. As a consequence, the Sobel filter is speeding up by a factor of 2126.19x compared
to the Par version.

e Loops collapsed with the OpenACC'’s parallel loop independent collapse(n) (ParLpIndCol,
line 19 of Listing 3.4) and kernels loop independent collapse(n) (KrnLpIndCol, line 19 of
Listing 3.5) composite constructs produce the same performance. Thus these two directives
are interchangeable. However, if we remove the independent clause, they will no longer be
equivalent. Indeed, the PGI compiler fails to parallelize the kernels variant in that case, it
generates only a single device thread. By collapsing the Sobel filter loops, we get a speedup
factor of 1562.94 x with respect to the Par/Krn version.

e Loop(s) tiled with the OpenACC’s parallel loop independent tile(n, n) (ParLpIndTil, line
23 of Listing 3.4) and kernels loop independent tile(n, n) (KrnLpIndTil, line 23 of Listing
3.5) composite constructs have the same performance. In the absence of the independent
clause, the kernels version is not parallelized. The PGI compiler fails to compile the code
when (128, 128) is used as tile size for both parallel and kernels variants, while (64, 64)
produce erroneous results. By tiling by (32, 32), the execution time is improved by a factor
of 1355.74x compared to the Par/Krn version.

e The OpenACC'’s kernels directive (Krn) and kernels plus loop constructs used in a non-
combined fashion (KrmLpUnc, lines 4 — 5 of Listing 3.5) are equivalent. Thus the kernels
and loop constructs (without any other loop clauses) must be combined in order to get a
parallelized code.
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e Combining kernels and loop (KrnLp, line 9 of Listing 3.5) improves the execution time by a
factor of 695.33 x with respect to the Par/Krn version.

e Using the OpenACC'’s kernels loop independent composite construct (KrnLpInd, lines 14 —
17 of Listing 3.5) improves more the Sobel filter execution time due to the independent
clause. Indeed, the PGI compiler parallelizes both the outer and the inner loops of the Sobel
filter, thus we get one thread per pixel. The speedup factor is 1968.98 x compared to the
Par/Krn version.

e KrnlLplInd and ParLpInd have approximatively the same execution time. Indeed the speedup
between KrnLplInd and ParLplnd versions of the Sobel 3 x 3 filter is 1.114 X on average.

e The collapse and tile clauses reduce the number of registers used per thread.

Analysis of LLVM/Clang implementation of OpenMP 4.5

In order to analyze the LLVM/Clang implementation of OpenMP 4.5, we offloaded the Sobel 3 x 3
filter with 12 configurations of OpenMP directives. Listing 3.7 shows the target parallel variants
while Listing 3.8 presents the different cases for the rarget teams directive.

1 |#pragma omp target is_device_ptr(in,...) //will be called Tgt

2 |[for(int x = 1; x < h - 1; x++)

3 for(int v = 1; v < w — 1; y++) {/#Sobel 3x3 filter computation ...#*/}
4 |#pragma omp target is_device_ptr(in,...) //will be called TgtPrUnc

5 |#pragma omp parallel

6 |for(int x = 1; x < h - 1; x++)

7 for(int vy = 1; v < w - 1; y++) {/*Sobel 3x3 filter computation ...#*/}
8 | #pragma omp target parallel is_device_ptr(in,...) //will be called TgtPr
9 |for(int x = 1; x < h — 1; x++)

10 |[for(int v = 1; v < w — 1; y++) {/#Sobel 3x3 filter computation ...#*/}

11 |//will be called TgtPrFr

12 |#pragma omp target parallel for is_device_ptr(in,...)

13 |for(int x = 1; x < h - 1; x++)

14 for(int v = 1; v < w — 1; y++) {/*Sobel 3x3 filter computation ...#*/}
15 | //will be called TgtPrFrIO

16 | #pragma omp target parallel for is_device_ptr (in,...)

17 |for(int x = 1; x < h - 1; x++)

18 #pragma omp parallel for

19 for(int v = 1; v < w — 1; y++) {/#Sobel 3x3 filter computation ...#*/}
20 | //will be called TgtPrFrIOSch

21 | #pragma omp target parallel for schedule(static,1l) is_device_ptr(in,...)
22 |for(int x = 1; x < h - 1; x++)

23 #pragma omp parallel for schedule(static,1)

24 for(int y = 1; yv < w - 1; y++) {/*Sobel 3x3 filter computation ...x*/}
25 |//will be called TgtPrFrCol

26 | #pragma omp target parallel for collapse(2) schedule(static,1) \

27 |is_device_ptr(in, ...)

28 |for(int x = 1; x < h - 1; x++)

29 for(int vy = 1; yv < w - 1; y++) {/#Sobel 3x3 filter computation ...x*/}
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Listing 3.7 — OpenMP target parallel variants

1 | #pragma omp target teams is_device_ptr(in,...) //will be called TgtTm

2 |[for(int x = 1; x < h - 1; x++)

3 for(int vy = 1; v < w — 1; y++) {/#*Sobel 3x3 filter computation ...#*/}

4| //will be called TgtTmDs

5 |#pragma omp target teams distribute is_device_ptr (in,...)

6 |for(int x = 1; x < h - 1; x++)

7 for(int vy = 1; v < w - 1; y++) {/*Sobel 3x3 filter computation ...*/}

8 |//will be called TgtTmDsPrFr

9 |#pragma omp target teams distribute is_device_ptr(in,...)

10 |for(int x = 1; x < h - 1; x++)

11 #pragma omp parallel for

12 for(int vy = 1; yv < w - 1; y++) {/#Sobel 3x3 filter computation . x/}

13 | //will be called TgtTmDsPrFrSch

14 | #pragma omp target teams distribute is_device_ptr(in,...)

15 |for(int x = 1; x < h - 1; x++)

16 #pragma omp parallel for schedule(static,1)

17 for(int y = 1; vy < w - 1; y++) {/#Sobel 3x3 filter computation . x/}

18 | //will be called TgtTmDsPrFrIO

19 |#pragma omp target teams distribute parallel for is_device_ptr(in,...)

20 |for(int x = 1; x < h - 1; x++)

21 #pragma omp parallel for

22 for(int v = 1; v < w — 1; y++) {/*Sobel 3x3 filter computation . */}

23 | //will be called TgtTmDsPrFrCol in the remaining

24 |#pragma omp target teams distribute parallel for collapse(2) schedule (

static,1l) is_device_ptr(in,...)
25 |for(int x = 1; x < h - 1; x++)
26 for(int y = 1; y < w - 1; y++) {/*Sobel 3x3 filter computation .x/}
Listing 3.8 — OpenMP target teams variants
Table 3.9 — Sobel 3 x 3 filter execution time (in millisecond) for various OpenMP directives

Directives 512 x 512 | 640 x 480 | 1344 x 372 | 1342 x 1110 || Directives 512 x 512 | 640 x 480 | 1344 x 372 | 1342 x 1110
Tgt 130.83 153.26 249.41 746.4 TgtTmUnc 272.5 319.17 521.24 951.5
TgtPrUnc 166.8 195.44 318.22 1553.85 TgtTm 271.5 318.04 518.26 1548.4
TgtPr 138.17 161.94 263.78 789.61 TgtTmDs 2.0866 2.2692 3.9265 11.661
TgtPrFr 2.1634 2.71 4.6391 13.896 TgtTmDsPrFr 0.148 0.1505 0.182 0.584
TgtPrFrIO 2.971 3.5712 5.1383 17.277 TgtTmDsPrFrSch 0.144 0.1469 0.177 0.581
TgtPrFriOSch | 2.9632 3.5622 5.1275 17.281 TetTmDsPrFrIO 0.764 0.921 1.7344 2.2745
TgtPrFrCol 1.3111 1.537 2.5072 8.913 TgtTmDsPrFrCol | 0.395 0.472 0.701 2.1451

Table 3.9 shows the Sobel 3 x 3 filter execution time obtained for OpenMP farget parallel and target
teams constructs variants on the Quadro M2000M GPU. Colored cells shows the best execution
time for target tparallel and target tteams variants. Table 3.10 presents related performances to the
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LLVM/Clang generated code properties while Table 3.11 shows the LLVM/Clang compiler default

formula for thread mapping.

Table 3.10 — Sobel 3 x 3 filter performance for various OpenMP directives

Directives Registers | Occupancy (%) | SM efficiency (%) | PTX LOC || Directives Registers | Occupancy (%) | SM efficiency (%) | PTX LOC
Tgt 32 6.25 20.00 174 TgtTmUnc 32 79.94 98.97 177
TgtPrUnc 32 6.25 20.00 435 TgtTm 32 84.84 94.03 174
TgtPr 32 6.24 20.00 115 TgtTmDs 32 98.36 99.58 275
TegtPrFr 39 6.09 19.99 236 TetTmDsPrFr 47 60.68 98.84 640
TgtPrFrlO 70 6.24 19.99 485 TetTmDsPrFrSch | 47 60.64 98.84 643
TgtPrFrlOSch | 70 6.24 19.99 485 TetTmDsPrFrIO 70 11.36 95.87 486
TgtPrFrCol 32 6.24 19.99 239 TetTmDsPrFrCol 32 89.25 99.67 242
Table 3.11 — LLVM/Clang default loop scheduling for Sobel 3 x 3 filter
Constructs Grid[z, y, 2] Block[z, y, 2] | Sobel filter loops parallelization
Tgt [1,1,1] [128,1,1] no loop is parallelized
TgtPrUnc [1,1,1] [128,1,1] | no loop is parallelized
TgtPr [1,1,1] [128,1,1] | no loop is parallelized
TgtPrFr 1,1,1] [128,1,1] | inner loop iterations are distributed across the 128
threads of the Block
TgtPrFrIO [1,1,1] [128,1,1] loops iterations are distributed across the single thread
of the Grid (outer loop) and the 128 threads of the Block
TgtPrFrIOSch 1,1,1] [128,1,1] | make each thread of the TgtPrFrIO case must execute
only one iteration in a round robin fashion way
TgtPrFrCol [1,1,1] [128,1,1] | outer and inner loops are merged to form
a single iteration space which is distributed
across the 128 thread of the Block
TgtTmUnc [128,1,1] [128,1,1] no loop is parallelized, outer and inner loops
iterations are excuted by the device master thread
TgtTm [128,1,1] [128,1,1] | no loop is parallelized, outer and inner loops
iterations are excuted by the device master thread
TgtTmDs [OutLoopSize,1,1] [128,1,1] outer loop iterations are distributed teams, and only
the teams master thread executes them
TgtTmDsPrFr [OutLoopSize,1,1] [128,1,1] | outer loop: same thing as in TgtTmDs, inner loop
iterations are executed by teams threads (128)
TgtTmDsPrFrSch [OutLoopSize, 1,1] [128,1,1] inner loop: each teams thread execute one iteration
TgtTmDsPrFrIO | [OutLoopSize/Block.x,1,1] [128,1,1]
TgtTmDsPrFrCol [OutLoopSizex [128,1,1] outer and inner loops are merged, the iterations
InnLoopSize/Block.x,1,1] are distributed across teams, and each teams thread
executes one iteration in a round robin fashion way

For the Sobel 3 x 3 filter, globally we observe that:

e The OpenMP’s target (Tgt, line 1 of Listing 3.7) directive must not be used alone.

e The OpenMP’s target directive used with the parallel construct in a non-combined fashion
(TgtPrUnc, lines 4 — 5 of Listing 3.7) or a combined mode (TgtPr, line 8 of Listing 3.7):
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their using must be avoided. They decrease the application performance because the of-
floaded code is not parallelized and the OpenMP parallel directive has an additional cost
when it is used in combination with the farget construct. Indeed, by inspecting the PTX
file, we found that LLVM/Clang implementation of OpenMP 4.5 for accelerators program-
ming uses internal routines (e.g. __kmpc_kernel_prepare_parallel, __kmpc_kernel_parallel,
__kmpc_for_static_fini, etc.). In fact, for each OpenMP construct LLVM/Clang has an in-
ternal routine. The instructions for computing the parameters of these routines as well as
their calls are included in the PTX code of the offloaded region. These routines are used
by LLVM/Clang for preparing the offloaded code, sending its parameters to device master
thread, threads creation and their management, adding the kernel code to device execution
queue, synchronization, etc. These routines (depending on the constructs used) are system-
atically called in each kernel.

e The OpenMP’s target parallel for composite construct (TgtPrFr, line 12 of Listing 3.7) is
better than Tgt, TgtPrUnc, and TgtPr. With TgtPrFr the inner loop is parallelized. As result,
the Sobel filter is speeding up by a factor of 56.13 x compared to the Tgt version.

e Using the parallel for construct on both outer and inner loop at the same time ( as it is the
case in TgtPrFrlO, TgtPrFrIOSch, and TgtTmDsPrFrIO) must be avoided since this leads to
a performance loss.

e The OpenMP’s target parallel for collapse(n) composite construct (TgtPrFrCol, line 26 of
Listing 3.7) must be used instead of TgtPrFr when loops can be collapsed. By using, Tgt-
PrFrCol, both outer and inner loops parallelized. TgtPrFrCol improves the Sobel filter per-
formance with a factor of 95.68 x compared to the Tgt version.

e The teams directive (TgtTm, line 1 of Listing 3.8) must not be used alone. Always add to it
the distribute construct (TgtTmDs, line 5 of Listing 3.8). By adding the distribute directive,
the iterations of the associated loop(s) are distributed across teams master threads. As a
results, TgtTm and TgtTmUnc decrease the Sobel filter performance while TgtTmDs speeds
up it by a factor of 64.44x with respect to the Tgt version.

e The inner loop(s) of a target teams distribute construct may be parallelized with the parallel
Jor directive (TgtTmDsPrFr). Thus, TgtTmDsPrFr speeds up the Sobel filter performance
with a factor of 1137x compared to the the Tgt version.

e Adding the clause schedule(static, 1) to a parallel for directive inside a teams region pre-
vents feams threads from having un-coalesced memory accesses. Having coalesced memory
accesses can improve GPU applications performance (as seen in Chapter 1: 1.6.1 — Opti-
mization 5).

e LLVM/Clang implementation uses 128 as default block size.
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3.6.1 Obtained Results

From lesson learned by porting the Sobel 3 x 3 to OpenACC and OpenMP, we used the paral-
lelization methodology discussed in Section 3.5 (steps 1 — 6 and 8a) to parallelize on GPU the
applications presented in 3.3. We used the following directives:

e OpenACC
— parallel loop independent (on outer loop and loop independent on inner loop):
ParLpInd
— parallel loop independent collapse(n): ParLpIndCol
— parallel loop independent tile(n, n): ParLpIndTil

— kernels loop independent (on outer loop and loop independent on inner loop):
KrnLpInd

— kernels loop independent collapse(n): KrnLpIndCol
— kernels loop independent tile(n, n): KrnLpIndTil

e OpenMP

target parallel for: TgtPrFr

target parallel for collapse(n) : TgtPrFrCol

target teams distribute (on outer loop) plus parallel for on inner loop : TgtTmDsPrFr

TgtTmDsPrFr plus the schedule clause : TgtTmDsPrFrSch

target teams distribute parallel for collapse(n) : TgtTmDsPrFrCol

OpenACC

Table 3.12 summarizes main optimization used in CUDA versions and those of OpenACC. The
CUDA versions of kernels taken from PolyBench benchmark suite are straightforward implemen-
tations without any complicated optimization.

Figures 3.2a, 3.2c, and 3.2b present OpenACC versions execution time speed-down with respect
to CUDA codes on the Quadro M2000M GPU. On all these three figures, the speed-down is great
than 1.65x. As previously observations made on the Sobel 3 x 3 filter:

e ParLpIndCol and KrnLpIndCol versions have same execution time for 28 of the 31 ap-
plications we used for our performance evaluation. For the remaining three applications
(namely SDisp, Canny, and H&S), the KrnLpIndCol version is at least 2.6 x slower than the
ParLpIndCol variant.
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Table 3.12 — Optimization made in CUDA version vs. OpenACC
Application | CUDA ParLpInd/KrnLplInd Par/KrnLpIndCol | Par/KrnLpIndTil
BP Shared memory | parallel/kernels + loop independent collapse(2) tile(n, m)
BFS parallel/kernels + loop independent tile(n)
HS Shared memory | parallel/kernels + loop independent collapse(2)
HS3D parallel/kernels + loop independent collapse(3)
LMD Shared memory | parallel/kernels + loop independent tile(n)
LUD Shared memory | parallel/kernels + loop independent
NW Shared memory | parallel/kernels + loop independent
SRAD Shared memory | parallel/kernels + loop independent collapse(2) tile(n, m)
HW Shared memory | parallel/kernels + loop independent collapse(2)
SDisp Shared memory | parallel/kernels + loop independent collapse(2) tile(n, m)
Texture, SIMD
Canny Shared memory | parallel/kernels + loop independent collapse(2) tile(n, m)
HCD Shared memory | parallel/kernels + loop independent collapse(2) tile(n, m)
H&D Shared memory | parallel/kernels + loop independent collapse(2) tile(n, m)

e ParLpIndTil and KrnLpIndTil produce approximatively the same execution time for 29 of the
31 applications we used for our performance evaluation. For the remaining two applications
(namely SDisp and H&S), the parallel variant performance is best than tat of the kernels
version.

As can be seen on Figures 3.2a, 3.2c, and 3.2b, OpenACC codes speed down compared to CUDA
hand optimized codes (applications of Table 3.12 except BP and SRAD) can be low as 1.115x, but
also hight as 30.357x. However, for the SDisp kernel where CUDA version is optimized with the
shared and texture memory but also SIMD instructions, OpenACC speed down reaches 125.572x.
On the other hand, OpenACC codes speed down compared to unoptimized CUDA codes (kernels
coming from the PolyBench benchmark suites) can be low as 1.048 x, but also hight as 241.435x.

Concerning the comparison between the kernels and parallel composite constructs (ParLpInd and
KrnLpInd):

e As our previous observations for the Sobel 3 x 3 filter, ParLpInd and KrnLpInd have approx-
imatively the same execution time for 18 of the 31 applications used for this performance
evaluation. Listing 3.9 presents some patterns corresponding to these 19 applications. PGI
compiler performs the same optimization for codes pattern described in Listing 3.9.

//pattern 1 (e.g HS, HW, HCD, SRAD)
#pragma acc kernels/parallel loop independent ...
for(int i = ...; 1 < ...; 1...) {

#pragma acc loop independent

for(int 3 = ...; 3 < ...; J...)

wn AW =
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Figure 3.2 — OpenACC speed down with respect to CUDA on the Quadro M2000M GPU

6 {/*window based operations with no other nested loops*/}
71}

8 | //pattern 2 (e.g fdtd-2d, adi, gemm, LUD)

9 | #pragma acc kernels/parallel loop independent
10 |for(int 1 = ...; 1 < ...; 1...) {

11 #pragma acc loop independent

12 for(int § = ...; 3 < ...; F...) {/*...%/}
13 fpragma acc loop independent

14 for(int 7 = ...; 3 < ...; J...) |

15 //may be some other instructions

16 #pragma acc loop independent

17 for(int j = ...; 3 < ...; J...) {/*...%/}
18 }

19 IV oooo

20 |}

21 | //pattern 3 (e.g syr2k, trmm, covariance, LMD)
22 | #pragma acc kernels/parallel loop independent

23 |[for(int 1 = ...; 1 < ...; 1...) {

24 #pragma acc loop independent

25 for(int j = ...; J < ...; J...) {

26 // somes instructions

27 for(int k = ...; k < ...; k... {/H*c... .. */'}
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28 /Y oo0co000
29 }
30 |}

Listing 3.9 — Code pattern type for which ParLpInd and KrnLplInd have same runtime

e For the remaining 13 applications, KrnLplnd is faster than ParLplnd. Listing 3.10 shows
three examples of code patterns for which the KrnLplInd version has a lower execution time
than the ParLpInd variant. Consider pattern 1 (lines 2 to 8) of the code below, the PGI
compiler parallelizes this pattern according to whether the parent directive is parallel or
kernels:

//pattern 1 (e.g first and second kernels of correlation, BFS)
#pragma acc kernels/parallel loop independent
for(int 1 = ...; 1 < ...; i...) { //somes instructions
#pragma acc loop independent //(may be reduction(....))
for(int J = ...; J < ...; J...)
{/#may be a reduction operation, a atomic operation, ...#*/}
//somes instructions but no other nested loops
}
9 |//pattern 2 (e.g third kernel of correlation)
10 | #pragma acc kernels/parallel loop independent

0NN N kW=

11 |[for(int 1 = ...; 1 < ...; i...)
12 #fpragma acc loop independent
13 for(int 3 = ...; 3 < ...; J...) {/#some point to point operationsx*/}

14 | //pattern 3 (e.g Canny, HCD, SDisp)
15 | #pragma acc kernels/parallel loop independent

16 |for(int 1 = ...; 1 < ...; i...)

17 fpragma acc loop independent

18 for(int 3 = ...; 3 < ...; J...) { //....

19 for(int k = ...; k < ...; k...) { //may contain some atomic operation
20 #pragma acc loop independent collapse(2)

21 for(int 1 = ...; 1 < ...; 1...)

22 for(int m = ...; m < ...; m...) {/#+window based operations...=*/}
23 }

24 }

Listing 3.10 — Code pattern type for which ParLpInd and KrnLplnd have not same
performance

— parallel — the outer loop is parallelized with gang; the inner loop is parallelized with
vector; if the inner loop contains some reduction operations, then an implicit reduction
is generated.

— kernels — outer loop is parallelized with gang and vector; the inner loop remains se-
quential.
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For the second pattern presented in Listing 3.10 (lines 10 to 13), when the parent construct
is the kernels construct, PGI compiler parallelizes both outer and inner loops with gang and
vector.

e When there are multiple nested loops, as it is the case in the pattern 3 of Listing 3.10 (lines
15 to 24), the PGI compiler optimizes KrnLplInd and ParLplnd codes differently:

— parallel — outer loop is optimized as gang, loops of line 18 and 19 remain sequential,
and the collapsed loops of lines 21 and 22 are optimized as vector.
— kernels — both outer and inner loops (line 16 and 18) are optimized as gang and vector,

loops of line 19, 21, and 22 remain sequential.

For the 13 applications for which KrnLplnd is faster than ParLplnd, parallel typically re-
quires 3.376 % the execution time of kernels on average.
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Figure 3.3 — OpenACC speed up with respect to CUDA on the Quadro M2000M GPU

Figure 3.3 shows the 9 kernels for that OpenACC execution time is less than that of CUDA. Al-
though BP and SRAD CUDA versions have been optimized by using the shared memory, they are
slower than the OpenACC variants.

In summary, the speed down factor between OpenACC codes and CUDA versions (optimized or
not) can be very high for certain applications. These applications are generally either memory
bound or have several nested loops which prevent the compiler from properly parallelizing them.
Results obtained with this performance evaluation are consistent with observations made in [Y],
[50], and [53]. The kernels loop independent construct may outperform the parallel loop indepen-
dent construct for some code patterns.
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OpenMP

In order to evaluate OpenMP offloading features performance we parallelized the applications pre-
sented in 3.3 with OpenMP. We used the steps 1 to 6 seen in Section 3.5. The optimizations
presented in Table 3.12 for CUDA versions remain unchanged in the experiment made here. The
CUDA versions of kernels taken from PolyBench benchmark suite are straightforward implemen-
tations without any complicated optimization.
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Figure 3.4 — OpenMP speed down with respect to CUDA on the Quadro M2000M GPU
Figures 3.4a, 3.4b, and 3.4c present OpenMP versions execution time speed-down with respect to

CUDA codes on the Quadro M2000M GPU. On all these three figures, the speed-down is great
than 1.777x. As previously observations made on the Sobel 3 x 3 filter:

e TgtPrFrCol is fast than TgtPrFr. TgtPrFrCol improves applications performance with a
speed up factor of 1.44x on average. Thus, TgtPrFrCol must be used instead of TgtPrFr
when loops can be collapsed.

e Using the schedule(static, 1) clause on a parallel for directive inside a teams region prevents
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teams threads from having un-coalesced memory accesses. However, the performance gain
is really not significant.

As can be seen on Figures 3.4a, 3.4b, and 3.4c, OpenMP codes speed down compared to CUDA
hand optimized codes (applications of Table 3.12 except BP) can be low as 1.777x, but also hight
as 57.94x. However, for the SDisp kernel where CUDA version is optimized with the shared and
texture memory but also SIMD instructions, OpenMP (TgtPrFrCol) speed down reaches 245.39 .
On the other hand, OpenMP codes speed down compared to unoptimized CUDA codes (kernels
coming from the PolyBench benchmark suites) can be low as 1.385 %, but also hight as 249.689 x.

Unlike OpenACC, OpenMP feams variants have a significant speedup with respect to CUDA only
for the HS application as can be seen on Figure 3.5.

W TgtPrFr M TgtPrFrCol TgtTmDsPrFr
B TgtTmDsPrFrSch ®m TgtTmDsPrFrCol

[

OpenMP speedup with respect to CUDA

0 I I I I

BP HS gesumv mvt durbin

Figure 3.5 — OpenMP speedup with respect to CUDA on the Quadro M2000M GPU

In summary, the speed down factor between OpenMP codes and CUDA versions (optimized or not)
can be very high for certain applications. As for OpenACC, these applications are generally either
memory bound or have several nested loops. Results obtained with this performance evaluation are
consistent with observations made in [9], [59]. The target teams distribute construct combined with
the parallel for directive typically provides best performance than the target parallel for construct.

3.7 Memory allocation methods performance comparison

As discussed in Section 3.5 — step 5, there are three ways to manage data transfer between host and
device memory in both OpenMP and OpenACC. The three ways may have not the same execution
time. In this section, we are going to evaluate the performance of these three ways to manage data
transfer. As both OpenMP and OpenACC provide interoperability with CUDA API, we will also
use CUDA memory management routines. The data management operations measured in this part
are:
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e memory allocation (e.g. create, map(alloc:), acc_malloc, cudaMalloc, ...),
e memory deallocation (e.g. acc_free, cudaFree, omp_target_free),

e data transfer from host to device (e.g. copyin, map(to:), acc_memcpy_to_device, cudaMem-

cpy, etc.),
e data transfer from device to host (e.g. copyout, map(from:), acc_memcpy_to_device, cud-
aMemcpy, ...)
OpenACC

Figures 3.6a and 3.6b shows the speed down of the OpenACC memory routines, the CUDA mem-
ory management routines, and the tesla:managed option of PGI compiler with respect to OpenACC
copy clauses. Note that the tesla:managed option of PGI compiler allows the usage of CUDA Man-
aged Memory by making all data used inside offloaded codes available on both host and device (e.g
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Figure 3.6 — OpenACC memory allocation methods performance on the Quadro M2000M GPU

We observed that OpenACC copy clauses and memory routines are replaced at runtime by many
other low-level CUDA memory routines. However, as can be seen in Figures 3.6a and 3.6b, Ope-
nACC memory routines have the same execution time as the copy clauses. CUDA memory man-
agement routines require 4.372x of the copy clauses (or OpenACC memory routines) runtime on
average. On the other hand, the tesla:managed option of PGI compiler takes 3.135x the runtime
of copy clauses.

In summary, OpenACC copy clauses, as well as its memory routines, have a lower execution time
than CUDA memory management routines and the tesla:managed option of PGI compiler. The
programmer may use either copy clauses or OpenACC memory routines as much as possible in-
stead of CUDA routines. The tesla:managed option of PGI compiler must be used with precaution
since this unified memory feature is not a part of OpenACC standard and other OpenACC imple-
mentations may not have this feature.
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OpenMP

Figures 3.7a and 3.7b shows the speed down of the OpenMP memory routines and the CUDA
memory management routines. As it is the case with OpenACC, we observed that OpenMP copy
clauses and memory routines are replaced at runtime by many other low-level CUDA memory
routines. However, as can be seen in Figures 3.7a and 3.7b, CUDA memory management routines
require 18.165x of the copy clauses runtime on average.
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Figure 3.7 — OpenMP memory allocation methods performance on the Quadro M2000M GPU

Unlike OpenACC, OpenMP memory routines have not the same execution time as the copy clauses.
Indeed, OpenMP copy clauses requires 1.261x OpenMP memory routines execution time. On the
other hand, OpenMP copy clauses and memory management routines have a lower execution time
than those of OpenACC.

3.8 Optimization via work distribution: thread mapping

As seen in Chapter 2, both OpenACC and OpenMP provides clauses allowing the user to manually
set the number of thread to execute an offloaded code. However, it may happen that the number
chosen by the compiler is not the most optimal. In this case, the programmer should adjust the
number of threads using the clauses provided for this purpose (e.g. gang, vector, num_teams, etc.).

We have seen in Table 3.11 that LLVM/Clang chooses always 128 as block size regardless of the
code and the directives used. For kernels where threads used many registers, this default block size
can cause performance loss by causing the register splitting phenomena. In that case, the user must
reduce the number of threads per block by setting the thread_limit clause.

Figures 3.8a and 3.8a show the obtained results when we manually set the grid and block sizes in
OpenMP. In general, assisting the compiler in the choice of the grid and block sizes in OpenMP
may improve applications performance. This performance improvement factor can be really sig-
nificant when the collapse clause is used.
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Figure 3.8 — Setting grid and block sizes: OpenMP speed down with respect to CUDA on the
Quadro M2000M GPU

3.9 OpenACC and OpenMP performance Evolution with
Workload

Code generation quality and cost, global memory access pattern and workload are factors which
can affect OpenACC and OpenMP performance. Benchmark suites (e.g Rodinia, PolyBench) are
good for general performance evaluation. However, they not allow to distinguish the time spent
in the management of the kernel (eg placement in device execution queue, threads management,
loop index management, ...) of the time devoted to the kernel execution (eg computation, memory
accesses, etc.). In order to analysis OpenMP and OpenACC compilers code generation quality and
cost, global memory access pattern and kernel workload impact on performance, we will use two
simple synthetics kernels: vectors and matrix additions. We are going to gradually increase the
number of instructions in the offloaded region loops. In order to prevent the compiler from using
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temporal variables, we will use different memory addresses. Listing 3.11 shows the macro used to
gradually increase the number of instructions to be executed in loops and the CUDA, OpenACC,
and OpenMP versions of the vectors addition kernel.

1|//vector addition, "i" is the loop index, "u" is the address offset
2 |#define instr (u) *(C+ 1+ (u) =*«A+ 1+ (u) + (B + 1+ (u));
3 |#define LOOP (i) \

4 | LOOPO (1) \

5 |LOOP1 (1) \

6 |LOOP2 (1) \

7 | LOOP3 (1)

8 |#define LOOPO (1) f(i&0x1) instr(0);

9 | #define LOOP1 (1) f(1&0x2) {instr(-1); instr(l);}

10 | #define LOOP2 (1) f(i&0x4) {instr (- 3) instr(-2); instr(2); instr(3);}
11 |#define LOOP3 (i) f(1&0x8) {instr(-7); instr(—-6);instr(-5); instr(-4); \
12 instr(7); 1nstr(6) instr(5); instr(4);}
13 | //CUDA version

14 | __global__ void vectCUDA (intx A, intx B, int* C) {

15 int i=blockDim.x*blockIdx.x+threadIdx.x;

16 if(i < 7 || i > (N - 7)) return;

17 LOOP (NOMBRE) ;

18 |}

19 | //OpenACC version

20 |void vectOpenACC (int* A, intx B, intx C) {

21 #fpragma acc kernels loop independent deviceptr (A, B, C)

22 for(int 1 = 7; i < N = 7; 1i++4) {

23 LOOP (NOMBRE) ;

24 }

25 |}

26 | //OpenMP version

27 |void vectOpenMP (int* A, intx B, intx C) {

28 #pragma omp target teams distribute parallel for is_device_ptr (A, B, C)
29 for(int 1 = 7; i < N - 7; 1i++) {

30 LOOP (NOMBRE) ;

31 }

32 |}

Listing 3.11 — The vectors addition kernel with the macro used for workload evaluation

Figures 3.9b and 3.9a show the vectors and matrix addition kernels compute time and executed
instructions evolution with workload. In results presented here, vectors and matrix sizes are 4096 X
4096 and data type is float.

In terms of execution time, we found that the speedup between the access in 1D and that 2D is
on average 0.524 for OpenMP, 0.907 for OpenACC and 0.526 for CUDA. On the other hand, for
the executed instructions count, this speedup is worth 0.324 for OpenMP, 0.609 for OpenACC
and 0.355 for CUDA. We note that these results are independent of data type and arrays size.
Compute time and executed instructions count evolution with the workload is fairly stable for
both OpenACC, OpenMP and CUDA. This confirms that the additional cost associated with code
generation is not significant.
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Figure 3.9 — Evaluation of workload impact on performance on the Quadro M2000M GPU

As can be seen in Figure 3.9b and 3.9a, local memory access pattern does not affect performance
for OpenACC if there is enough work in the kernel. In CUDA data access in 2D instead of 1D
can have a significant impact on performance as the workload in the kernel increases. On the other
hand, in OpenMP, accessing global memory data in a 2D fashion has a significant impact on kernel
performance compared to 1D access.

As said in 3.6 and as can be seen in the figure 3.9a, OpenMP versions execute 2 to 8 X instructions
more than CUDA versions and 2 to 6 x more than OpenACC versions. This shows that the current
implementation of OpenMP in LLVM/Clang still needs improvement in order to generate better
PTX code.

3.10 Conclusion

In this chapter, we analyzed PGI compiler implementation of OpenACC and OpenMP 4.5 support
in LLVM/Clang. Our results show that both OpenACC/OpenMP’ support, in PGI/Clang compiler,
comply with the official specifications of OpenACC and OpenMP standards. We proposed an effi-
ciently parallelization methodology with OpenACC/OpenM. The proposed methodology has been
used to parallelize kernels and applications taken from publics benchmark suites. The obtained
results indicate that:

e The directives can be combined in various ways and this has a significant impact on the final
performance of the offloaded code.

e It is insufficient to simply insert kernels or parallel or target to inform the compiler that that
a particular code region must be compiled for execution on a device (e.g. GPU).

e [t is highly essential to combine offloading directives (ie kernels, parallel, serial, and tar-
get) with loop parallelization constructs (eg loop, teams distribute, parallel for). Although
current compilers are mature and perform several optimizations, the user may provide them
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more information through loop parallelization constructs’ clauses (eg collapse, tile, indepen-
dent, etc.) in order to obtain an optimized code.

e Exploring optimization techniques, several of those discussed in this chapter, to not only give
the compiler adequate information to perform the necessary transformations, but also per-
form transformations that can exploit the target hardware efficiently. Other optimization (eg
caching read-only data, asynchronous execution, multi-streaming), which will be discussed
in the next chapters, may be helpful to improve the performance of an OpenMP/OpenACC
application.

e There is, in general, a systematic overhead in the kernel launch for OpenMP, but for most
applications, it’s not a big issue provided the kernel has a sufficient workload.

Programmability and Code Portability

Programming heterogeneous systems can be simplified using OpenACC or OpenMP. Their main
advantages are that they do not require significant changes to the original source code, the develop-
ment time is relatively low, they can target multiples devices from different platform manufacturers,
leading to considerably lesser code maintenance. However, in order to achieve good performance,
the user’s intervention is required to manually apply certain code transformations. This is because
the compiler is not intelligent enough yet to determine certain information (e.g. absolute absence
of data dependency, optimal loop scheduling, data movement optimization, etc.). Furthermore, the
OpenMP API does not cover compiler-generated automatic parallelization, so the user must give
the compiler as many hints as possible. Currently, there is no compiler support that can effectively
utilize the registers and shared memory in GPU that play an important role in GPUs. There is also
no to access to the texture memory. Data movement can be costly, it has been the user’s responsi-
bility to choose the necessary data management method in order to get the best performance.

Performance Portability

Achieving performance portability can be quite delicate. Different architectures (whether or not
from the same manufacturers) may demand distinct programming requirements. Merely consider-
ing the two NVIDIA GPUs used in this thesis (see their description in Sections 1.5.3 and 1.5.4).
To avoid having inactive SMs and thus exploit all available computing resources on the GPU, the
grid size must be a multiple of 5 because the Quadro M2000M GPU have five SMs. However, the
optimal size of the grid on the Tegra X1 GPU must be a multiple of 2. As seen in Table 1.3, the
Quadro M2000M GPU have more cores, higher memory capacity, and bandwidth than the Tegra
X1 GPU. Thus, transferring a large data once and having a single kernel that has a significant
workload may be suitable for the Quadro M2000M GPU but not for the Tegra X1 GPU. Instead, it
may be preferable to split the large data and the kernels into data chunks and small kernels in order
to overlap data transfer and computation.
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Performance portability is not only an issue with just the architecture but also an issue that differ-
ent compilers can provide a different implementation for an OpenACC/OpenMP directive/clause.
Moreover, the quality of the compilation matters significantly. This is especially true for Ope-
nACC because as seen in 2.3, the basic principle of the OpenACC programming model is the user
describes the parallelism and data motion in a more general and the compiler must perform nec-
essary optimization to map parallelism to the underlying hardware. For example, the OpenACC
kernels directive allows the compiler to choose the loop-scheduling technique to be applied i.e.
analyze and schedule each loop level to gang/worker/vector. A compiler can use its own technique
to schedule the loop nest to nested gang, worker, and vector, and this is typically not part of Ope-
nACC standard. As a result, the performance obtained using the kernels directive can be different
for different compilers. On the contrary, the code that uses parallel directive is more portable since
this allows the user to have control over explicitly adopting the loop scheduling. Another example
if the number of teams created by an OpenMP compiler. Typically, LLVM/Clang generates a grid
size of 128 for a feams construct, but when adding the distribute directive, the grid size depends
on the size(s) of the loop(s) associated to the distribute directive. On the other hand, whether the
distribute directive is added to the feams construct or not, the Cray compiler generates a grid size
equal to the size of the outer loop.

Caches Optimization

We have already seen that NVIDIA GPUs have several types of memory (global, constant, shared,
L1 and L2 caches, texture, registers, ...) and that caches and registers are faster than the global
memory. On Maxwell GPUs, L2 cache is used to cache accesses to local or global memory,
including temporary register spills. Global memory accesses are always cached in L2. However,
data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/texture
cache. Caching read-only data in L1 may improve application performance. Nevertheless, the
compilers might not always be able to detect that the read-only condition is satisfied for some data
because of pointers aliasing issues. Although the usage of both L1 and L2 is controlled by the
hardware and they are not manageable by the programmer, it can mark pointers used for loading
read-only data with both the const and the __restrict__ qualifiers. In the next chapter, we will
discuss the __restrict__ qualifier and another code optimization method in order to help compilers
to cache read-only data into the L1 cache.
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CHAPTER 4. TOWARDS POINTER ALIASING ON GPU

NVIDIA GPUs have several types of memory (global, constant, shared, L1 and L2 caches, tex-
ture, registers, ...). We have already mentioned that caches and registers are faster than the global
memory. Data that are read-only for the entire lifetime of the kernel can be cached in the unified
L1/texture cache of the GPU in order to improve application performance by reducing global mem-
ory accesses. Although PGI, LLVM/Clang and NVIDIA compilers are mature and powerful, they
sometimes fail to detect that the read-only condition is satisfied for some data due to the presence
of pointers. Thus, pointers can hinder compiler optimization. Indeed, it is hard to know where
pointers are pointing and compilers must be conservative in their presence. As result, the program-
mer’s intervention is often required to help compiler for loading read-only data in the L1 cache. In
this chapter, we will start by giving an introduction to pointer aliasing and it’s impact on compiler
optimization and therefore on application performance (Section 4.1.). Next, we will present ex-
isting solutions in Section 4.2. Since many works had been done on pointer aliasing problem, we
will present some of them in Section 4.3. In order to help GPU programmer to optimize their code
and tell the compiler that the pointers are not aliased, we propose two static analysis tools in this
chapter. Since our tools are based on a static analyzer framework, namely Frama-C, we will give
a brief introduction on this environment in Section 4.4. The next sections 4.6 and 4.5 explain the
design of our two statics analysis tools published in our works [77, 78]. We evaluate our tools in
Section 4.7 and present the obtained results.

4.1 Pointer Aliasing

The major difficulty of the C-like languages (e.x. C, C++, CUDA, etc.) comes from the freedom
they offer developers to manipulate memory by the means of pointers. These memory manip-
ulations through the pointers must be analyzed in order to be able to determine read and write
accesses. Determining statically (at compile-time) for each pointer the list of locations to which it
will point at the runtime is an undecidable problem [79]. The difficulty comes from the different
execution paths that can not be predicted as well as the dynamic memory allocation whose success
can only be verified at runtime. At runtime, a pair of pointers may have the following behaviors,
depicted in Figure 4.1.

e No Alias: p; and p- are disjoint. They do not reference overlapping memory regions (Sub
Figure 4.1a).

e Alias: p; and p, reference regions that overlap. In this case, we can distinguish between
partial alias (Sub Figure 4.1b) where p; and p, overlap in some way but do not start at the
same address and must alias (Sub Figure 4.1c) where p; and p, alias and start at the same
address.

Although pointers are powerful and convenient, their presence in a program creates a real uncer-
tainty about the data accessed by the instructions. Variables are modified by dereferencing pointers.
In the absence of information on the memory location to which the pointer points, it is necessary to
analyze the program under the assumption that all the variables of the program can be read or writ-
ten by each dereference. This uncertainty on pointer targets can hinder several code optimizations
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Figure 4.1 — Simple representation of memory regions in case of no, partial and must aliasing.
Each [ represents a memory slot

made by compilers like code motion, instruction rescheduling, dead code suppression, constant
propagation, etc.

Code motion consists of interchanging some statements or moving others. This optimization is
beneficial especially in loops where loop invariant code motion allows removing unchanged state-
ments from the loop by hoisting or sinking them and therefore to avoid useless executions. Code
motion is also used to improve data locality that optimizes memory and cache accesses. Listing 4.1
shows an example for possible loop invariant code motion. In this example, there is a read from
ptr and a write in ptr_2 in the while loop. It is obvious that ptr is never changed inside the loop
since there is no writing in ptr, and ptr and ptr_2 access disjoint pieces of memory. Therefore, if
the compiler knows this information, it can move out the line 8 of the loop.

int xptr = (int*)malloc(4 * N x sizeof (int));
int xptr_1, xptr_2, x*a;
*ptr = 255;
*a = 128;
ptr_1 = ptr + N;
ptr_2 = ptr + 4 % N;
while (ptr_2 > ptr_1) {
a = xptr;
*ptr_2 = 4;
PEE_2==8

— O 00 IO N AW

—_

}

Listing 4.1 — Example for possible loop invariant code motion

Instruction rescheduling means interchanging some program statements. This option can be prof-
itable to improve data locality or to enable further optimizations. Listing 4.2 presents an example
where instruction can be rescheduled. If the compiler knows that A and B are not alias, it can
interchange the first and second loop to improve data locality since B is written in the first loop
(line 2) and then read in the third loop (line 6). It also can merge, in a second pass, the filling of B
and C in the same loop.

1|//original version

2 |for(int 1 = 0; 1 < N; 1i++)

3 B[i] = initVar;

4 |for(int i = 0; 1 < (3 * N); i++)
5 Ali]l = ....;

6 |[for(int 1 = 0; 1 < N; i++)
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7 C[i] = BIlil;
8 | //interchanging the first and second loop to improve data locality
9 |for(int 1 = 0; 1 < (3 * N); i++)

10 Ali] = ....;

11 |for(int 1 = 0; 1 < N; 1i++)
12 B[i] = initVar;

13 [for(int 1 = 0; 1 < N; i++)
14 Cl[i] = B[i];

15 | //rescheduling by merging the second and third loop
16 |[for(int 1 = 0; 1 < (3 % N); 1i++)

17 A[i] = ....;

18 |for(int 1 = 0; 1 < N; 1i++)
19 B[i] = initVar;

20 C[i] = initVar;

Listing 4.2 — Example for possible instruction reschduling

Dead code suppression consists of remove useless statements (generally assignments) such as over-
written variables or writes that are never read. For example, let us consider again the code provided
in Listing 4.2. If B and C start at the same location and therefore must alias, thus there is no need
to fill in table C at line 7 because it is already done in the first loop at line 3 which fills table B.
Loop at line 7 could be removed.

Constant propagation consists of substitute the values of known constants in expressions at compile
time. Considering the example provided in Listing 4.3, to determine the effect of executing the
instruction at line 3, the compiler needs to know where variable ptr might point. For example, if
compiler has precise information and knows that p#r points to x, then it can determine that x has
the constant value 100 at line 4. Similarly, if the compiler is certain that ptr does not point to x,
then it can determine that x has the constant value 0 at line 4. By contrast, if the compiler has no
precise information, then it must assume that pfr might or might not point to x. In this last case,
the compiler can not determine the value of x at statement 4.

int32_t x = 0;
int32_t *ptr;

*ptr = 100;
write (x);

O O I S
~
N

Listing 4.3 — Example for possible constant propagation

4.1.1 Problem Statement

Let us consider the CPU C++ code of the gesummy kernel (from PolyBench benchmark suite)
provided in Listing 4.4. Without further knowledge or special hardware support, the compiler
must assume that A, B, x, y and tmp might refer to the same memory region or overlapping
regions. Hence, the loop cannot be parallelized or software-pipelined because it has to be ensured
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that an update of tmp]i] is performed before the next value of x[j + 1] is loaded for example. This
constraint also prevents the compiler from generating loads for multiple array elements of A, B
and x at the same time since the subsequent store to ¢mp[i] might modify elements of arrays A, B
or x. Therefore, the compiler will compile this code inefficiently because it must conservatively
assume the pointers alias.

}

1 |void gesummvCPU (float =*A, float *B, float *x, float *tmp, float =*y) {
2 for (int i1 = 0; i < NI; i++) {

3 for (int j = 0; j < NJ; j++) {

4 tmp[i] += A[i * NJ + J] *» x[7J];

5 yI[i] += B[1 » NJ + J] = x[]J];

6 }

7 y[i] = ALPHA x tmp[i] + BETA x y[il];

8

9

Listing 4.4 — Gesumv kernel CPU C++ code

Listing 4.5 shows a simple implementation of gesummy kernel in CUDA (lines 1 to 9), OpenMP
(lines 10 to 20) and OpenACC (lines 21 to 30) of the CPU C++ version seen in Listing 4.4.
Now let’s evaluate the performance of the CPU’version on an Intel I7 CPU and GPU’versions
on the Quadro M2000M GPU by considering two cases: (1) calling gesummyv kernel with five
distinct pointers (A, B, x, tmp, y); (2) calling gesummy kernel with the same pointer for its last two
arguments (A, B, x, y, y). Of course the two calls will not give the same computation results, but
it does not matter in the present case. Compilers as well as compilation flags being used are those
presented in Table 3.3 in Chapter 3. For each version, the execution time presented on Figure 4.2
is the average of 100 executions.

1|_global__ void gesummvCUDA (float =*A, float xB, float =xx,
2 float xtmp, float =*y) {

3 int i = blockIdx.x * blockDim.x + threadIdx.x;

4 if (i > NI) return;

5 for(int j = 0; j < NJ; J++) {

6 tmp[i] += A[i » N + 3] * x[j];

7 y[i] += B[i = N + j] * x[3J];

8 }

9 y[i] = ALPHA % tmp[i] + BETA * y[i];

10 |}

11 |void gesummvMP (float =*A, float *B, float *x, float *tmp, float =*y) {
12 #fpragma omp target teams distribute parallel for schedule(static, 1) \
13 is_device_ptr (A, B, x, tmp, V)

14 for (int 1 = 0; 1 < NI; i++) {

15 for (int j = 0; J < NJ; Jj++) {

16 tmp[i] += A[i » NJ + j] *» x[J];

17 v[i] += B[1 * NJ + j] * x[7J];

18 }

19 y[i] = ALPHA % tmp[i] + BETA x y[i];
20 }

21 |}
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22 |void gesummvACC (float A, float *B, float =*x, float *tmp, float =y) {
23 #pragma acc kernels loop independent deviceptr (A, B, x, tmp, V)

24 for (int 1 = 0; 1 < NI; i++) {

25 for (int j = 0; j < NJ; J++) {

26 tmp[i] += A[i * NJ + J] *» x[J];

27 y[i] += B[1i » NJ + j] = x[J];

28 }

29 y[i] = ALPHA % tmp[i] + BETA x y[il];

30 }

31 |}

Listing 4.5 — Simple implementation of gesummyv kernel in CUDA/OpenACC/OpenMP
Size 1 = 1024 x 1024 - Size 2 = 2000 * 2000 - Size 3 = 4000 * 4000
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Figure 4.2 — Execution time of calling the gesummy kernel with ABxtmp and ABxyy

We can see in Figure 4.2a that when Gcee or PGI compiler is used, calling gesummy kernel with
the same pointer for #mp and y requires on average 1.96x the execution time of the case where it
is called with five distinct pointers. On the other hand, when the compiler used is Clang, the two
call contexts have the same execution time. By inspecting assembly files generated by the three
compilers we discovered that Gee and PGI unroll the j loop 8 times, but PGI uses Fused Multiply-
Add (FMA) instructions in j loop while Gce does not. ON the other hand, Clang does not unroll
the j loop. None of the three keep tmp/[i] and y[i] in temporary registers for the duration of the
loop .

Unlike the CPU case, as we can see in Figure 4.2b, the call context of the gesummy kernel has no
impact on its performance on GPU whether with CUDA or OpenACC or OpenMP. By inspecting
the PTX generated for CUDA, OpenACC and OpenMP we found that the j loop is not unrolled
and thereby for each iteration of this loop, the current thread must load from global memory A[i
*NJ + j], B[i * NJ + j], tmp[i], y[i], and x[j] (two times); make two FMA operations; and store
tmp[i] and y[i] to global memory. For line 8 (see Listing 4.5), tmp[i] and y[i] are reloaded again
from global memory to perform an FMA operation and then save y/i] to global memory.

As result, calling a GPU kernel with aliased or non aliased pointers produce the same compute
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time. Thus, it may be useful in the absence of aliasing to inform the compiler that kernel pointers
arguments are not aliased, so that it can generate more optimized code.

4.2 Existing Solutions

To mitigate the problem posed by pointers, many solutions have been proposed. The first solution
consists of alias analyzing which is performed by compilers. When compiling a code, alias analysis
is typically performed many times by the compiler. In this section, we give a brief introduction to
alias analysis. The two other solutions discussed in this section must be done by the programmer
at source level.

4.2.1 Alias Analysis

To ensure that the correct code is generated in the presence of aliases, compilers have to perform
an alias analysis to determine the aliases in the program. Alias analysis (or "pointer analysis" or
"points-to analyses") attempts to discover, statically (at compile-time), the possible values of a
pointer at runtime. Typically, this information is used to optimize programs or prove their correct-
ness, which can be done by eliminating dead code and null pointers, parallelizing, rescheduling,
code motion, detecting bugs due to array out-of-bounds accesses, etc. Many approaches that trade
precision for speed, speed for precision, or even attempt to balance between both, have been pro-
posed and improved in time and space.

Although the literature of alias analysis is abundant and many works (e.g: [80, 81, 82]) have been
done in the last few decades, the research community has not yet solved pointer alias analysis
satisfactorily. Many alias analyzer are implemented in mainstream compilers, but the results of
these analyzers are often inaccurate. Pointer analysis imprecision is a severe problem while it
prevents the compiler from optimizing some code where there is no aliasing. There are many
challenges for alias analysis including:

e Complexity that is huge in space and time. Indeed, every pointer should be compared with
every other pointer at every program point and potentially considering all program paths to
that point.

e Accuracy, how few pairs of pointers are reported while remaining correct.
e Coding corner cases, pointer arithmetic (*p++), casting, function pointers, long-jumps, etc.

e Deciding if analyze the whole program, library code or not, optimizing at link-time only or
not, ....

Alias analysis can be classified as flow-sensitive or flow-insensitive, depending on whether state-
ments order information is used during the analysis. A flow-insensitive analysis produces sets of
memory locations that pointers may points to at any point of the program. For sequence of code
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from line 1 to line 3 of Listing 4.6, the output of a flow-insensitive analyzer can be: p may points to
a or b. On the other hand, a flow-sensitive analysis computes alias information at every point of the
program. For example, a flow-sensitive approach is capable to determine that between line 2 and 3
of Listing 4.6, p points to a, and after line 3, p points b. By not considering the order of statements,
and therefore computing a conservative summary, a flow-insensitive analysis can be more efficient,
but less accurate than a flow-sensitive analysis [83, 84].

In addition to flow-sensitivity, there are several other design options including context sensitiv-
ity and aggregate modeling. If different calling contexts are considered, the analysis is context-
sensitive otherwise it is context-insensitive. Context-sensitive analysis considers the calling con-
text (caller) when analyzing the target of a function call (callee). A context-sensitive alias analyzer
needs to have a way to create an abstract description for f (in Listing 4.6, line 5), so that every
time it is called, it can apply the calling context to the abstract description. Context-sensitive alias
analyzer provides a finer grain model of the static code hence results in higher precision.

1 |int a, b, =*p;

2 |lp = &a;

3 |p = &b;

4 |int ¢, d, =*x;

5 |void £() { *x++; }
6 |void main() {

7 X = &C;

8 £0);

9 x = &d;

10 £0);

11 |}

12 | struct { int a; b; } x, y;
13 |int A[107];

Listing 4.6 — Example code for alias analyzer property

Another property is the filed modeling. If structures or arrays elements are treated as individual
locations, the analysis is field-sensitive otherwise it is field-insensitive. Field-sensitive approach
models each field of each struct variable. Considering Listing 4.6, for the structure defined at
line 12, a field-sensitive alias analyzer create four nodes (pointer, variable or memory location):
x.a, x.b, y.a and y.b. The same principle applies when dealing with arrays, for instance the array
defined at line 13, field-sensitive approach creates 10 nodes: A[0], A[1], ..., A[10]. On the other
hand, field-insensitive approach models each struct variable (e.x. 2 nodes x.x and y.* for the struct
defined at line 12 of Listing 4.6) but does not model their fields.

4.2.2 Languages Supports

To palliate the problem posed by pointers, some programming languages furnish developers with
high-level constructs that they can use to tell compilers that variables do not alias each other.
Therefore the C programming language, since the C99 Standard, features the restrict keyword,
that can be used by the programmer to give the compiler information about aliasing. In fact, it is
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applied to a pointer p to say that only p or a pointer derived from it can access that memory region
during its lifetime. Hence, if p is a restricted pointer then, any access to p through any other means
may result in undefined behavior. Therefore, if the arguments of gesummy routine, as showing
in 4.7, have been annotated with the restrict qualifier, thereby allowing the compiler to perform
more aggressive optimization, such as instructions scheduling, loop invariant code motion, register
promotion, redundant load/store elimination, etc. The same thing can be applied to GPU variants
since NVCC, PGI and Clang compilers support the restrict keyword.

}

1 |void gesummvRestrict (float *__ restrict_ A, float *_ restrict__ B,

2 |float *__restrict_  x, float *_ _restrict__ tmp, float %__restrict__ vy) {
3 for (int 1 = 0; 1 < NI; i++) {

4 for (int J = 0; j < NJ; j++) {

5 tmp[i] += A[i » NJ + j] *» x[J];

6 y[i]  += B[i * NJ + 3] * x[3];

7 }

8 y[i] = ALPHA % tmp[i] + BETA * yI[i];

9

0

—_—

Listing 4.7 — A simple example of gesumv kernel

Figure 4.3 presents the performance result when using restrict keyword as seen in Listing 4.7. We
can observe that informing the compiler that kernel arguments do not alias through the restrict
keyword has no significant impact on execution time globally.

However, there is an exception when using PGI compiler on CPU code (without any directives for
parallelization as seen on Listing 4.7). Indeed, by inspecting the assembly file and the feedback
given by PGI during the compilation, we found that in addition to j loop unrolling and using
FMA operations, PGI generated 2 prefetches instructions, and it is thanks to these prefetching
instructions that we obtained a speedup of 1.89x on average. When using clang as compiler and
working on large array (e.x. size 3), the performance gain with the restrict type qualifier can be
significant (1.45x for size 3).

4.2.3 Scalar Replacement

Another solution is to perform, at the source code level, a scalar replacement either manually or
automatically. The goal of scalar replacement or register promotion is to identify repeated accesses
made to the same memory address, either within an iteration or across iterations, and to remove
the redundant accesses by keeping the data in registers. This is done by identifying sections of
the code in which it is safe to place the redundantly accessed data in a register [85, 86, 87, 88].
Thus, before entering such section, the value redundantly accessed data is promoted (i.e. loaded)
from its memory location to a register. Within the section, references to this value are rewritten to
refer to the register. Upon exit from the section, the value is demoted (i.e. stored) to a memory
location. By doing this, the compiler strongly reduces or completely eliminates partial redundant
loads and stores, and thereby improve code performance. Hence, register promotion is among the
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Figure 4.3 — Execution time of the gesummyv kernel when the restrict keyword is added to its
pointers arguments. Note that the kernel is called with distinct pointers, otherwise we will get an
undefined behavior.

most important functions performed by an optimizing compiler. Scalar replacement as well as
pointer alias analysis is widely used in compiler optimization.

During compilation, the compiler makes several decisions of which one of the most important
relates to the storage of values. Indeed, the compiler must determine, for each value, where it
will reside at run-time. For simplicity, suppose there are only two choices: in memory and in a
register. As already mentioned in 1.1, registers accesses are much faster than memory accesses, so
it is generally desirable to keep values in registers. Thus, modern compilers try to keep as many
values in registers as possible. However, the presence of pointers can prevent retention of a value
in a register across statement boundaries. Indeed, in the absence of specific knowledge about the
set of variables that can be referenced by each pointer, the compiler is forced to treat references to
any storage that the pointer might possibly address in this conservative fashion. Therefore, it can
be interesting to aid compiler by performing scalar replacement at the source level.

Considering the gesummy routine showed in 4.4, given that rmp/[i] and y/i] are independent of the j
loop, they can be move out and replaced by a scalar without consequences on the reliability of the
computation results (assuming that gesummy will never be called with aliased pointers). Listing
4.8 shows a new version of gesummy kernel when scalar replacement is applied.

void gesummvScalarRep (float %A, float *B, float *x, float xtmp, float =xy) {
for (int 1 = 0; i < NI; i++) {
float yy = yl[il;
float tmptmp = tmpl[il];
for (int j = 0; j < NJ; Jj++) |
Alid
B

tmptmp += A[i * NJ + 3] » x[J];
Yy i« NJ + J] » x[J];
}
y[i] = ALPHA * tmptmp + BETA * yy;

}

— O 000 JON N AW~

—_
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Listing 4.8 — A simple example of gesumv kernel

Figure 4.4 shows performance results obtained when tmp[i] and y[i] are replaced by scalar in j
loop in order to remove redundant loand and store of them. When performing scalar replacement
in source code, we obtain the same performance as using the restrict keyword except for PGI
compiled versions. By inspecting Gce, Clang and NVCC generated assemble and PTX, we found
that there are the same as those generated for restrict variants. Concerning PGI compiler, when
performing scalar replacement in source code: (1) On CPU, it vectorizes the j loop, generates 3
prefetch instructions and uses FMA. The speedup, with respect to the initial version reported on
Figure 4.2, is 7x on average. (2) On GPU, it parallelizes the j loop and generates implicit reduction
for tmptmp and yy and the obtnaid speedup is 4.94 X on average.
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Figure 4.4 — Execution time gesummy kernel when using scalar replacement in source code.

4.2.4 Summary

Pointers are very important in C-like languages, particularly in GPU programming paradigms since
the only way to recover the output result of a GPU kernel is to pass it to him as a pointer. One or
more pointers might point to the same memory location at runtime and determine at compile time
the precise location of each variable of a program is an undecidable problem. Many works were
being done on pointer aliasing problem and many alias analyzers are implemented in mainstream
compilers, and despite all this, the presence of pointers in a program can prevent some optimization
of the compiler. Indeed, pointers introduce a degree of uncertainty into the results of static analysis.
This uncertainty, coupled with separate compilation (as it is the case with GPU codes compilers),
forces compilers to treat variables with potentially exposed addresses quite conservatively. As a
result, compilers need more information to be able to compile efficiency codes where pointers are
used.
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The restrict type qualifier can be used by the programmer to give the compiler information about
aliasing. However, programmers must use this keyword with precaution, to avoid data race, since
the compilers will assume that marked pointers with this type qualifier are never aliased in the
program and thereby does not perform any verification to ensure that the aliasing information
received is true. Although the restrict keyword has been available for several years already, it
remains less used by programmers and its insertion is left to the programmer. The task of inserting
the restrict qualifier is, in general, tedious and prone to errors especially since the C does not
perform any verification to ensure that restrict keyword is not misplaced.

Scalar replacement, or register promotion, attends to reduce memory accesses by keeping in reg-
isters reused data for a certain part of a program, and thereby improve code performance. Unlike
CPUs, to support massively parallel computations, accelerators such as GPGPUs offer an expan-
sive set of registers, larger than even the L1 cache, to hold the temporary state of each thread. Scalar
variables are the most likely candidates to be assigned to these registers by the compiler. As sug-
gested by the observed performance gain on scalar replacement version with OpenACC, register
promotion can be a key enabling optimization for effectively improving the utilization of register
files on accelerator devices and thereby substantially reducing the cost of memory operations.

Our preliminary evaluation of restrict keyword and scalar replacement on the gesummy kernel
example showed that the performance gain when adding restrict keyword to kernel pointers argu-
ments is not really significant for CPU code when the used compiler if Gee and Clang, and for
CUDA and OpenMP versions. However, PGI compiled code and OpenACC version results are
interesting, particularly when applying scalar replacement. Since the release of the OpenACC and
OpenMP 4.0 standards as seen in 3.1, many works (e.x. [9, 10, 57, 58, 11, 62]) have been done to
evaluate their performance against those of CUDA and OpenCL. Other works (e.g. [52, 59, 56])
suggested some optimizations, but these optimizations were essentially based on the implementa-
tion of new directives. Moreover, many efforts have been done to improve OpenACC and OpenMP
compilers in order to generate more optimized code. However, like other mainstream compilers,
they still fail to recognize even the simplest opportunities for reuse of subscripted variables in the
absence of precise pointer aliasing information. All this motivated us to develop a static analysis
tool for the automatic insertion of the restrict keyword and automatic scalar replacement in source
level. In next sections, we present our static analysis tool and evaluate the performance of the re-
strict type qualifier on both CPU and GPU, and those of scalar replacement also on the PolyBench
benchmark suite.

4.3 Previous work

In this section we are going to provide a brief revue of the works that have been done on alias
analysis as well as scalar replacement.
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4.3.1 Alias Analysis

Alias analysis is one of the most used techniques that aim to optimize languages with pointers.
It is no surprise that this topic has received much attention in many fields including compilation
and program verification. The literature of alias analysis is abundant. For a quite exhaustive
bibliography, see for instance [$9]. In this dissertation, we shall be limited to related works that
are the most relevant for our study of interest.

The most popular algorithm for context-insensitive, flow-insensitive, iterative and constraints-
based points-to analysis is known as inclusion-based or Andersen-style analysis [80]. For every
pointer variable, it computes the set of abstract locations the pointer may point to. The represen-
tation used in Andersen’s algorithm is such that one points-to graph represents the entire program
and each node represents exactly one location. Within this analysis, the assignments of the cur-
rent program are seen as constraints. For functions, Andersen’s analysis generates constraints for
the formal and actual parameters. Table 4.1 shows Andersen constraints while Listing 4.9 shows
a simple example code for these constraints. The complexity of Andersen’s points-to analysis is
O(n?®) where n is the number of nodes or pointers. The time required to run Andersen’s points-to
analysis grows exponentially as the program size grows since the number of nodes tends to grow
as program size increases [90]. Many works have been done to improve Andersen’s algorithm and
many of them, for instance, Steensgaard’s algorithm, are implemented in mainstream compilers
(e.x. LLVM, Gcc). Like Andersen’s analysis, Steensgaard [9 1] analysis is unification-based, inter-
procedural, flow-insensitive, context-insensitive and field-insensitive. It also transforms programs
into constraints and solves the sets of constraints to obtain points-to results. The main difference is
that instead of collecting subset constraints, it collects equivalence constraints. These constraints
are much simpler, but produce less precise model.

Table 4.1 — Four Andersen constraint types

Type Assignment | Constraint | Meaning
Base a=&b a2b loc(b) € pts(a)
Simple |a=10 a2b pts(a) 2 pts(b)
Complex | a = *b a D xb Vv € pts(b), pts(a) D pts(v)
Complex | xa =10 xa 2 b Vv € pts(a), pts(v) 2 pts(b)
1 |int*x foo(int =*x) {
2 x = malloc (4xsizeof (int));
3 return x;
41}
5 |int main() {
6 int *p’ *ql j" j;
701 i=1; 3= 2;
8 p = \&i; V) Ge===== pOi
9 g = \&J; [/ <mmmmmm= q27
10| p=g; 70 i P29
11 int %A, *B; //<——————~ p21,]
12 A = foo(B); //<——————- BADEB=
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13 return 0; V) emmmmmm aDdxr=a==
14 |}

Listing 4.9 — Example for Andersen constraints

Sperle et al. presented in [92] three different techniques to disambiguate pointers used as arguments
of functions. Their first technique relies on the static alias analysis already available in mainstream
compilers to perform pointer disambiguation and the others combine static bound inference with
code cloning, hence, extending the reach of pointer disambiguation. Maalej et al. introduced in
[82] a new technique to disambiguate pointers, which relies on a less-than analysis. Their alias
analysis uses the observation that if p1 and p2 are two pointers, such that pl+ size of array pointed
< p2, then they cannot alias. They designed in [93] another alias analysis algorithm that uses a
combination of less-than analysis and classical range analysis to show that two pointers cannot
dereference the same memory location.

4.3.2 Scalar Replacement

The original scalar replacement algorithm was proposed by Carr-Kennedy in [85] more than 20
years ago. Carr-Kennedy’s algorithm finds opportunities for reuse of subscripted variables and re-
places the references involved by references to temporary scalar variables. This algorithm handles
two special instances of the scalar replacement problem very well: (1) repeated accesses made
within the same loop iteration in code having arbitrary conditional control-flow, and (2) code with
repeated accesses made across iterations in the absence of conditional control-flow. For the first
problem, Carr-Kennedy’s algorithm relies on Partial Redundancy Elimination (PRE), while for
the second algorithm, it relies on dependence analysis and rotating scalar values (see example
in Listing 4.10). Carr-Kennedy’s algorithm steps are: (1) Dependence graph construction, (2)
Control flow analysis, (3) Availability analysis, (4) Reachability analysis, (5) Potential generator
selection, (6) Anticipability analysis, (7) Dependence graph marking, (8) Name partitioning, (9)
Register pressure moderation, (10) Reference replacement, (11) Statement insertion analysis, (12)
Register copying, (13) Code motion, and (14) Initialization of temporary variables.

The algorithm is complex, requires perfect dependence information to be applicable and operates
only on loop bodies without any backward conditional flow. Further, the algorithm performs its
profitability analysis on name partitions, where a name partition consists of references that share
values. If a name partition is selected for scalar replacement, all the memory references in that
name partition will get scalar replaced, otherwise, none of the accesses in the name partition is
scalar replaced.

1 |//original loop before scalar replacement

2 |for (int 1 = 2; 1 < NI; 1i++)

3 X[i] += X[1i-2];

4 |//loop becomes after optimization with scalar replacement
5 |int x0 = X[0]; //invariant x0 = X[1-2]

6 |int x1 = X[1]1; //invariant x1 = X[1i-1]

7

for (int 1 = 2; i < NI; i++) {
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8 int x2 = X[i];

9 x2 += x0;

10 X[1i] = x2;

11 x0 = x1; //rotate scalar values
12 xl = x2;

13 |}

Listing 4.10 — Example for scalar replacement with Carr-Kennedy’s algorithm

Since then, several works have been done to improve Carr-Kennedy’s algorithm in many aspects.
Surendran et al. presented in [94] new algorithms for scalar replacement and dead store elimina-
tion based on Array SSA (Static Single Assignment) form. Byoungro et al. described in [87] an
algorithm for scalar replacement that can exploit reuse opportunities across multiple loops. Budiu
et al. presented in [86] a simplified Carr-Kennedy inter-iteration register promotion algorithm to
handle a number of dynamically executed memory accesses. In their approach, the compiler gen-
erates a flag represented by a single bit that is associated with each value to be scalarized, as well
as code that dynamically updates the flag. The flag can be inspected at run time to avoid redundant
load operations, and their algorithm ensures that only the first load and last store take place. The
fact that this algorithm inserts additional control flow statements in the code could lead a thread
divergence if running on GPU. Their approach is not suitable for GPU codes.

Andion et al. presented in [95] a scalar replacement algorithm (based on standard compiler trans-
formations) for optimizing computation regions specified using the HMPP directive interface. Tian
et al. presented in [96] an extension to the classical scalar replacement algorithm for optimizing
registers usage in OpenACC codes. Their approach is based on feedback information regarding
register utilization and a memory latency-based cost model to select which array references should
be replaced by scalar references.

4.4 Frama-C

Frama-C! is a static analyzer for C code. It provides its users with a collection of plug-ins that per-
form static analysis, deductive verification, and testing, for safety- and security-critical software
[97]. The Frama-C platform gathers several analysis techniques into a single collaborative extensi-
ble framework. The platform is based on a common kernel, which hosts analyzers as collaborating
plug-ins. The Frama-C plug-ins are programming in the OCaml language.

Frama-C kernel is based on a modified version of the C Intermediate Language (CIL). CIL is a
front-end for C that parses ISO C99 programs into a normalized representation. For instance, for
loops are replaced by equivalent while loops (with additional conditional and break statements
to leave the loop body), normalized expressions have no side-effects, conditional statements with
compound conditions are unfolded into multiple conditionals (with one non-compound condition
each), etc. Listing 4.11 shows the gesummy kernel in CIL normalized representation (which is the

1
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output of the command frama-c -print gesummvy.c).

1 |void gesummvCILNorm(float *A, float *B, float xx, float *tmp, float xy) {
2 int i;

3 int j;

4 i = 0g

5 while (1 < n) {

6 i = 0;

7 while (j < n) {

8 *(tmp + i) += * (A + (1L » n + J)) * *(x + J);

9 x(y + 1) 4= x(B + (1 * n + J)) * *x(x + J);

10 Jj ++;

11 }

12 x(y + 1) = alpha * *(tmp + 1) + beta * x(y + 1);
13 i ++;

14 }

15 return;

16 |}

Listing 4.11 — CIL normalized version of gesummy kernel

Frama-C extends CIL to support other features such as ACSL (ANSI/ISO-C Specification Lan-
guage) annotations. This modified CIL front-end produces the C + ACSL Abstract Syntax Tree
(AST), an abstract view of the program shared among all analyzers (or plug-ins). The AST assigns
unique identifiers for statements and blocks that can be used for the program counter, it also keeps
line numbers which is very useful for us to perform modifications in the source file after the analy-
sis. Frama-C uses, in general, the default C compiler available on the host system (usually gcc) to
pre-process the input C files before normalizing it and generating the AST.

In addition to the AST, the kernel provides several general services for helping plug-in develop-
ment and providing convenient features to Frama-C’s end-user. For example, it provides a visitor
mechanism facilitates crawling through the AST. In general, writing a Frama-C plug-in requires
to visit the AST to compute information for some C constructs. There are two different ways to
do that in Frama-C: through a direct recursive descent or by using the Frama-C visitor. It is the
latter that we will use in the design of our static analyzer tool. A visitor is a class with one method
per type of the AST, whose default behavior is to just call the method corresponding to each of
its children. By inheriting from the visitor, and redefining some of the methods, one can perform
actions on selected parts of the AST, without the need to traverse the AST explicitly.

Frama-C includes several ready-to-use plug-ins for the static analysis of C code. We use the results
of value plug-in in our analyzer. The Value Analysis (in short value) plug-in is a forward data-flow
analysis based on the principles of abstract interpretation. For each instruction of the program, the
information inferred by the plug-in are twofold: a flag indicating the possibility that the execution
of the instruction may fail at runtime or at least invoke an undefined behavior; and for each memory
location, an over-approximation of the values it may contain.
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4.5 Design of a Scalar Replacement Tool: RPromF

As introduced in 4.2.3, scalar replacement or register promotion improves program performance
by identifying sections of the code in which it is safe to place the redundantly accessed data in
a register. Furthermore, scalar replacement can be a key enabling optimization for effectively
improving the utilization of register files and shared memory on GPUs and thereby substantially
reducing the number of redundant memory accesses. Thus, we decided to design a static analysis
tool named RPromF, for Register Promotion with a Frama-C plug-in, that automatically performs
register promotion at source code level without requiring any intervention from the programmer.

Note that static alias analysis result might not be true at runtime and that an optimized function
with register promotion and the original version (e.x. Listing 4.4 and Listing 4.8) are equivalent
and produce the same computation result only in absence of alias. Thus, it would be prudent to
keep the original version of the function unchanged and to make optimization in a clone of this
function. In this way, the clone version will be called if actuals pointers arguments don’t point to
overlapping memory regions, otherwise, the original version is called.

RPromF, based on Frama-C, includes six main steps: (i) identification of the function to be opti-
mized; (i1) analyze identified functions to check that there is no alias in their body; (iii) if there is
no alias then clone them, analyze clone’s instructions to retrieve data reuse information and per-
form scalar replacement; (iv) analyze callers of functions that have been cloned and optimized in
order to verify if they are called with aliased pointers; (v) and if their actuals parameters are free
of alias, add instruction to be able to used the clone whenever possible.

To simplify the analysis, we make following assumptions:

e For OpenACC/OpenMP codes: (1) Offloaded region codes are in separate functions of the
main for example. (2) Devices pointers are defined in the caller of functions containing
offloading regions. (3) Device memory management is make either with copy clauses or
runtime library routines. In all cases, pointers appearing in offloaded code regions are not
defined, allocated or initialized in the body of the current function, instead they are its’ formal
arguments.

e For CUDA codes: Device pointers are defined, allocated and initialized (if data transfer is
needed) in the function calling the CUDA kernels.

e Concerning CPU code (without any #pragma acc or #pragma omp), as for CUDA, OpenACC
and OpenMP codes, the loops in which the register promotion must be performed are in a
separate function of the main. All variables appearing in the body of such function are formal
arguments.

e For GPU codes, there is no dynamic parallelism (CUDA global kernel launching another
global kernel) or call to device routines (defined with #pragma acc routine or #prama omp
target declare).

e There is a single source file, with extension .c for OpenMP/OpenACC/CPU versions or .cu
for CUDA codes, for the whole program.
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Since Frama-C is a static analyzer for C code,it does not support any keyword or type that is not
part of the C standard. There is a Frama-C plug-in in development so that Frama-C can analyze
C++ codes. However, at the moment of this writing, Frama-C does not support either CUDA
specific keyword and types, either OpenACC and OpenMP directives. As already said, Frama-C
normalizes, the code to be analyzed, in CIL representation, for example, all for loops are turned in
while loops thus denaturing the source code. Hence, to analyze CUDA, OpenACC and OpenMP
codes, it is necessary to do some text processing tasks on the source file before and after the analysis
with Frama-C. RPromF can be divided into three parts: the pre-processing, the analysis, and the
post-processing. In the following subsections, we present these three parts.

4.5.1 Pre-Processing Module

The pre-processing task, performed by a script programmed in Perl, consist of:

e creating a copy, named source_name_copy.c, of the input file thus source file remains un-
changed,

e if the input file is a C file, finding functions that contain lines beginning with #pragma omp
target or #pragma acc kernels or #pragma acc parallel, and then adding the suffix _acc (for
OpenACC codes) or _mp (for OpenMP versions) at the end of identified functions’s names.

e if the input file is a CUDA file, identifying CUDA kernels while searching lines containing
__global__ void, and then removing __global__ and adding the suffix _cud at the end of
kernels’s names,

e commenting all lines beginning with #pragma acc or #pragma omp if input file is a C file,

e if the input file is a CUDA file, hiding all CUDA specific keywords, types or API func-
tions. For instance, comment lines containing grid and bloc sizes definition, turn all cud-
aMalloc/cudaFree into C malloc/free, remove all «...», replace thread position computations
formulas by constant values, ...

e and commenting all lines where non common libraries are included (e.x. openacc.h, accel-
math.h, cuda_runtime.h, etc.).

Note that the pre-processing task conserves the original program structure and line number
information, no line addition or deletion. This is very important so that post-processing can make
the necessary changes in the right places in the original version of the code.

4.5.2 Analysis module

Because the optimized version of a function with the scalar replacement is equivalent to its original
version only if there is no alias and marking aliased pointers as restricted may result in undefined

Ph.D Report 122 Rokiatou DIARRA



CHAPTER 4. TOWARDS POINTER ALIASING ON GPU

behavior, we run an alias analysis before making any changes in the source code. For that purpose,
we implemented in Frama-C a simple and fast alias analyzer inspired by the Andersen-style anal-
ysis [80] and the concepts of the basicaa pass of LLVMZ. In our implementation, we considered
two pointers operations: taking the address of a variable (e.g.: p = &wal) and assignments (e.g.:
p = q, p = Tab where p and ¢ are pointers and Tab a constant array). Algorithm 1 shows the
pseudo-code of the alias analyzer.

Algorithm 1 Alias analyzer plug-in

1: for each kernel definition do

2 get its’ formal parameters list

3 for each instruction where I-value is pointer do

4 if r-value match with pointer assignments or address taking then

5 if I-value is a formal parameter or there is a formal in the r-value then
6: increment the counter of aliased formal argument pointers

7 else if I-value is a global var then

8 if its address is not taken and there is a formal in the r-value then
9: increment the counter of aliased formal argument pointers
10: end if

11: end if

12: end if

13: end for

14: if the counter of aliased formal argument pointers is equal to zero then

15: add this kernel with its’ callers list to an hash table that will be queried later
16: end if

17: for each formal parameter of this kernel do

18: if current formal parameter is not a l-value in any instruction then

19: save this kernels name and formal parameter information into an hash table
20: end if

21: end for

22: end for

To implement the alias analyzer plug-in, we redefined two visitors available in Frama-C. The first
is the vglob_aux visitor which allows us to analyze functions definition. The second is the instruc-
tion visitor called vinstr with which we can analyze all instructions of a program. Note that our
implementation does not use any control flow or dependence graph information, it only uses the
AST and the results of the value plug-in.

As can be seen in Algorithm 1, each kernel definition is analyzed. We start by tracking all point-
ers assignment and address taking instructions. If any formal parameter does not appear in such
instructions, then this kernel arguments are alias free. Next, we go through the formal parameters
list of each kernel and check if there are read-only data. The informations of the kernels that for-
mal parameters are not aliased and the pointers that are only read are saved into two hash tables.

2
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Next, for each kernel, we analysis its’ callers to verify if actual parameters are alias free. If the
parameters passed to a kernel are not aliased in all callers of this kernel, then we can start the next
step that consist of identifying redundant memory accesses.

In order to retrieve repetitive accesses made to the same memory location, we implemented a
simplified version of Carr-Kennedy’ algorithm [85]. We start by computing the Control Flow
Graph (CFG) in order to be able to determine loops informations (e.g. loop identifier, beginning
and ending lines’s numbers, nested loops, ...). We redefined the Frama-C’s statements visitor to
analyze only the loops. Thus we compute the CFG and analyze loops, next we redefined the Frama-
C left-value visitor to analyze only left-values that are pointers. We also redefined the Frama-C’
expression visitor to analyze the right-values. Next, we re-analyze statements which are loops
in order to find the loop index variable name, type and initialization value. In the next step, we
redefined the Frama’C instructions visitor the instructions which are neither loops nor conditional
control-flow (e.g. if-else and switch case statements). The goal of this instructions visitor is to
find loop-invariant addresses for stores, but also for loads. Once we have the results of previous
redefined visitors, we can generate the necessary instructions that will allow the post-processing
module to perform the scalar replacements. Consider the example of the gesumv kernel seen in
Listing 4.4, the output of the analysis looks like instructions showed in Listing 4.12. Figure 4.5
summarizes all operations performed during the analysis step.

Add before 3 declare float tmptmp

Add before 3 declare float yy

Add before 3 assignment tmptmp tmp[i]
3

0O O\ AW

Add before assignment yy yI[i]

Change line 4 substitute tmp[i] tmptmp
Change line 5 substitute y[i] vy
Change line 7 substitute tmp[i] tmptmp
Change line 7 substitute y[i] vy

Listing 4.12 — Partial output of the analysis module

4.5.3 Post-processing module

According to the results of the analysis made with Frama-C on the file generated by the pre-
processing step (described in 4.5.1), changes must be made to the source code. These changes are
performed by another Perl program. This program takes as input the output file of our Frama-C
plug-in and the initial source file. It starts by generating a copy of the source file and then performs
the requested modifications (see example in Listing 4.12) in the the output file of our Frama-C
plug-in. For example, if the source file is a CUDA program then the output file of the RECKA
plug-in is used and the changes made to the source file are: (i) clone a CUDA kernel whose formal
parameters (as well as actual parameters) are not aliased; (ii) add a suffix to the clone’s name;
perform necessary modifications (declare new scalar variables, initialize them, comment lines,
replace old redundant accessed addresses references by new variable, ...); and (iii) change this
kernel call site by adding an if statement allowing to call either the clone or the original version
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[ Normalized source code ]

‘ Hash table — Key: function name
Function definition analysis -~ —»  (list of formal parameters, list of

* callers, location)
‘ ‘ Hash table — Key: function name

‘ Callers analysis - f—b‘ (list of actual parameters, calling  —
function’'s name, call site’s location)

‘ Hash table - Key function name
Left-values analysis - -~ (pointer, first offset, second offset, —
r-value)

Statements analysis (only
assignment instructions)

Hash table — function name (actual
parameter, its type, its position, <V
allocated data size) Hash tables - Key statement
Declare(line’s number, var type, var name)
o Comment line(line’s number)

Generate indications ’ Assignment(line’s number, var name, expression)

for post-processing step Substitute(line’s number, var, new var name)

A Reassignment(line’s number, |-value, r-value)

|

Figure 4.5 — Functional diagram of the scalar replacement tool’s analysis module

depending on the runtime less-than check result. For the runtime less-than check test, we used the
methods described in [82, 93].

4.6 Design of an Automatic Restrict Keyword Insertion Tool

As introduced in 4.2.2, adding the restrict and const type qualifiers can improve the GPU kernels’
performance by caching read-only data in the L1 cache, removing redundant loads, and allowing
the compiler to perform more aggressive optimizations. In this section, we present the main step
of the design of a static analysis tool named RECKA (REstrictification of CUDA Kernel pointers
Arguments) that can insert the restrict keyword in the source code without requiring any interven-
tion from the programmer. Note that it can also analyze OpenMP and OpenACC programs. More
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specifically, RECKA works as follows: (i) an alias analysis is performed on the kernels; (ii) if
the kernel’s formal parameters are alias free, then this kernel instructions are analyzed in order to
identify data that are read-only; (ii1) the kernel’s callers are analyzed in order to determine if the
kernels actual parameters are also alias free; (iv) if the kernel actual parameters are alias free, then
the indications are generated to clone the kernel, rename the clone, add the restrict keyword to
formal parameters pointers that are not read-only or const restrict otherwise.

Normalized source code

Hash table — Key: function name
Function definition analysis —— 1 (list of formal parameters, list of
callers, location)

Instructions analysis <

Callers analysis

v

Function definition analysis -

Hash table — Key: function name
(name of non-aliased formal
parameter, its type, its position,
Is-it read-only?)

Hash table — Key: function name
(name of non-aliased actual
parameter, its type, its position,
location of its declaration, size of
allocated memory, call site’ location)

A

Output file: contains indications
for __restrict__ insertion or
const__restrict__ (for read-only
data) and runtime verification

| A

Figure 4.6 — Functional diagram of the restrict keyword insertion tool’s analysis module

As did for the scalar replacement tool, we start by performing a preprocessing task. We use the
module described in Subsection 4.5.1 for that purpose. Next, the analysis is performed by a Frama-
C plug-in. As depicted in Figure 4.6, we redefined the Frama-C’ function definition visitor to
analyze kernels body. This analyze consist of verifying that no formal argument has its address
taken or is accessed through another pointer. We have also redefined the Frama’C’ instruction
visitor. This visitor allow us to analyze all instructions and determine read-only data. Once we
have verified that the kernel formal parameters are alias free and determined read-only data, we
analyze this kernel callers. The goal of analyzing the kernel’s callers is to be sure that the actuals
arguments of this kernel are also alias free. In last step, we re-analyze kernel definition by using
the results of previous analysis in order to generate instructions to perform the restrict as well as
const restrict type qualifiers insertion. The post-processing step (See Subsection 4.5.3) is done
by the same Perl program that we have used in the scalar replacement tool. Figure 4.7 shows an
overview of the restrict keyword insertion tool.
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! i
i __global__ | __global__ void vectMat(float* A, float* x, float*y) {
i void vectMat(float* A, float* x, float* y) { RECKA pl \ | inti=blockldx.x * blockDim.x + threadldx.x;
: . . ug-in e

int i = blockIdx.x * blockDim.x + threadIdx.x; \ piug Cif (i <N){

if (i< N) { | intj

int j; |Find CUDA kernelsl—»'Alias analysis in CUDA kernels I for(j = 05 j < N; j++)

for( = 0;j < N; j++) Dyl += AL N+ *

ylil += Al * N+ ] * (il ]
} \
|

}
__global__ void vectMat_rest(float *__restrict__ A,

)

Print messages to estimate device pointers |
bounds, insert instructions for the runtime |
less-than check and change kernel call site

[ L Alias analysis in kernels launchers float *_restrict__ x, float *__restrict__ y) {
: void main(int argc, char** argv | ' L el — —
; ( 8% gV { | int i = blockIdx.x * blockDim.x + threadIdx.x;
. - | ifG<N){
vectMat<<< grid, block>>>(A, x, y); Print messages to clone, rename and | it
add __restrict__ to clone’s arguments ) . .
H ) fOl’(_l: ;J(N;J++)
i 'yl +=Al* N+ 1% x[j);
}

i void main(int arge, char** argv) {

- Normalized ‘
C file | if ((A+size_a <=x || x +size_xy <=A) &&
. (A+size_a <=y ||y +size_xy <=A) &&
OU.tpUt | (x + size_xy <=y || y + size_xy <= x)) {
file B | vectMat_rest<<< grid, block>>>(A, x, y);
I }else {

4 vectMat<<< grid, block>>>(A, x, y);
Post-processing } }
y

Figure 4.7 — An overview of RECKA

4.7 Tools Evaluation

In order to assess the performance improvement factor du to the restrict keyword insertion and
scalar replacement we used the two static analysis tools described above to analyze kernels taken
from the PolyBench benchmark suite. The generated codes have been compiled with compilers
seen in Table 3.3.

Sub-figures of Figures 4.8 show the speedup of the generated codes with respect to original ver-
sions. First, we showed that our two scalar analysis tools are successfully able to perform the
necessary analysis as well as to insert the needed modifications (the restrict keyword or scalar re-
placement) without any misplacement. Since both the restrict keyword and scalar replacement can
be applied to a same kernel, we manually insert the restrict type qualifier and performed the scalar
replacement in a third version. Since our goal is to evaluate the impact of the restrict keyword
and scalar replacement on application performances, we did not compare OpenACC or OpenMP
against CUDA.

With OpenACC, we observed that adding the restrict keyword can improve the application per-
formance with a speedup factor of 1.42x on average in comparison to original version. However,
this speedup factor is relatively high for the correlation kernel where it is 27.71x. Indeed, this
kernel has several false pointers aliasing issues. Thus, by indicating to the compiler that pointers
are free alias, it can perform more aggressive optimizations. On the other hand, the scalar re-
placement performed at source level leads to a performance improvement with a speedup factor of
3.19x on average. However, this speedup factor is more interesting for the gesumv, mvt, and syr2k
kernels where severals memory addresses are redundantly accessed. The versions where both the
restrict keyword and the scalar replacement have been applied produce the best results. Indeed,
the speedup factor for this last case is 4.79x on average with respect to the original version.

Unlike OpenACC, we observed that both the restrict keyword as well as the scalar replacement
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Figure 4.8 — Quadro M2000M: Speedup with respect to original versions

do not improve significantly the application performance in OpenMP and CUDA. In OpenMP,
the speedup factor is 1.03x on average for the restrict type qualifier and 1.41x for the scalar
replacement as well as the third version (combination of restrict and scalar replacement). On the
other hand, with CUDA the speedup factor is 1.64x on average for the restrict keyword and 1.71 x
for the scalar replacement.

4.8 Conclusion

In this chapter, we discussed the pointer aliasing issues and its impact on application performance
on GPU. We have implemented two new static analysis tools based on the Frama-C framework.
These two tools have been designed in order to insert the restrict keyword and to perform scalar
replacement at source code level. We evaluated the two static analysis tools as well as the impact of
the restrict type qualifier and the scalar replacement optimization on application performance. The
results show that the performance gain with the restrict keyword as well as the scalar replacement
is not really significant in general. However, since these two optimization do not degrade applica-

Ph.D Report 128 Rokiatou DIARRA



CHAPTER 4. TOWARDS POINTER ALIASING ON GPU

tion performance, the programmer may use them in order to help compilers in their optimization
steps.
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CHAPTER 5. USE CASE: A STEREO-VISION BASED VISUAL ODOMETRY
APPLICATION

Benchmarks used in previous chapters allowed us to explore performance improvement opportu-
nities with OpenMP and OpenACC, but also to assess their performance. However, real-world
applications are more complex than those found in benchmarks in general. Thus, we will applicate
the parallelization methodology proposed in Chapter 3 to a visual odometry application. First, we
give a brief background on visual odometry in general in Section 5.1. Next, we describe the use
case application accelerated in this chapter in Sections 5.2, 5.3, and 5.4. As explained in Section
3.5 — Strategy 1, before parallelizing an application, it is necessary to profile and analysis it in
order to identify most time consuming codes. Thus, the use case is profiled in Section 5.5. Next
we analyze the CPU based implementation of identified compute-intensive region codes is order to
determine the changes needed 5.6 to adapt these codes for parallelization 5.7. After adapting them
for parallelization, we describe the acceleration strategies (Sections 5.8 and 5.9) and evaluate their
performance (Section 5.10).

5.1 Visual Odometry

Knowledge of the ego-vehicle’s motion state is essential for assessing the collision risk in Ad-
vanced Driver Assistance Systems (ADASs) or autonomous driving. Vision Odometry (VO) is
one of the robust techniques used for vehicle localization [958, 99]. VO consists of estimating the
pose of an agent (e.g., vehicle, human, and robot) by using only a stream of images acquired from
a single or from multiple cameras attached to this agent [100]. Indeed, images contain a suffi-
cient amount of meaningful information (color, texture, shape, etc.) to estimate the movement of a
camera in a static environment.

VO applications VO has a wide range of applications including robotics, automotive, and wear-
able computing [100]. VO is applied in many types of mobile robotic systems, such as ground,
underwater, aerial, and space robots. VO is mainly used for navigation and to reach targets ef-
ficiently as well as to avoid obstacles while driving. Moreover, VO plays a significant role in
autonomous underwater vehicles and coral-reef inspection systems given that the GPS signal de-
grades or becomes unavailable in underwater environments [99]. In the automotive industry, VO
also plays a big role since it is widely used in numerous ADAS systems, such as vision-based
assisted braking systems [101, 99].

VO systems classification VO can be classified according to the type of camera used. Stereo,
monocular, stereo or monocular omnidirectional, and RGB-D cameras, can be used for VO pur-
poses. Systems using a binocular camera are considered stereo VO systems while those using a
monocular camera are considered monocular VO systems. A binocular camera has, in general, two
lenses with a separate image sensor for each lens. Given that information on the third dimension
(i.e., depth) can be extracted from a single frame, the image scale can be immediately and instan-
taneously retrieved because the size of the stereo baseline is fixed and known, thereby resulting in
an efficient and accurate triangulation process. However, binocular cameras require more calibra-
tion effort than monocular cameras, and errors in calibration directly affect the motion estimation
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process. Using a monocular camera mitigates the effect of calibration errors in motion estimation.
Low cost and easy deployment are generally the main motivations for using the monocular camera
in a VO application. Monocular VO systems, compared with stereo VO systems, are essentially
good for small robotics because they conserve the space of the baseline between the pair of stereo
cameras [99].

VO challenges The main challenges in VO systems are mainly related to computational cost
and light and imaging conditions [99]. For VO to work efficiently, sufficient illumination and a
static scene with enough texture should be present in the environment to allow an apparent mo-
tion to be extracted [100]. Furthermore, consecutive frames should be captured by ensuring that
they have sufficient scene overlap. In areas that have a smooth and low-textured surface floor,
directional sunlight and lighting conditions are highly considered, leading to non-uniform scene
lighting. Moreover, shadows from static or dynamic objects or from the vehicle itself can disturb
the computation of pixel displacement and thus result in erroneous displacement estimation. In
monocular VO system, if the surface is uneven, the image scale will fluctuate, and the image scal-
ing factor will be difficult to estimate. The accuracy of real-time stereo VO is a function of image
resolution, meaning the resolution is typically reduced to achieve faster performance [99, ].

Approaches of Visual Odometry

Estimating the position of an agent (e.x., mobile robot, vehicle, etc.) with VO can generally be
approached in three ways: through a feature-based approach, an appearance-based approach, or a
hybrid of feature- and appearance-based approach [99].

Feature-based approach involves extracting image features (such as corners, lines, and curves)
between sequential image frames, matching or tracking the distinctive ones among the extracted
features, and finally estimating the motion. In this approach, matching an image with a previous
one is accomplished by comparing each feature in both images. Afterward, the displacement is
obtained by calculating the velocity vector between the identified pairs of points. In the case of
stereo VO system, the extracted features from the first frame are matched with the corresponding
points in the second frame, thus providing the 3D position of the points in space. The camera mo-
tion is estimated based on feature displacement where relative pose of the camera can be estimated
by finding the geometric transformation between two images acquired by the camera using a set of
corresponding feature points.

Appearance-based or Texture-based approach tracks the changes in the appearance of ac-
quired images and the intensity of pixel information therein. It focuses on the information ex-
tracted from the pixel intensity. The camera motion and vehicle speed can be estimated using
optical flow. Optical flow algorithm uses the intensity values of the neighboring pixels to compute
the displacement of brightness patterns from one image frame to another.
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Hybrid of feature- and appearance-based approach The feature-based approach is suitable
for textured scenarios. However, this approach fails to deal with low-textured environments of a
single pattern (e.g., sandy soil, asphalt, and concrete). The few salient features that can be detected
and tracked in these low-textured environments make the feature-based approach inefficient in
such environments. By contrast, the appearance-based approach is more robust and superior to
feature tracking methods in low-textured. Hence, in some scenarios, the hybrid approach is the
best solution which is a combination of feature- and appearance- based approaches.

5.1.1 Stereo Matching

Stereo matching denotes the problem of finding dense correspondences in pairs of images in order
to perform the 3D reconstruction. In general, stereo matching approaches can be divided into two
broad categories: global approaches and local approaches [103]. At the border of these two ap-
proaches, we find semi-global approaches which are a combination of global and local approaches.
Semi-global methods do a complete search while using local methods.

Global approaches treat disparity assignment as a problem of minimizing a global energy func-
tion for all disparity values. A global approach is typically formulated as an energy minimization
process with two terms in the objective function. The first term, called "data term", penalizes solu-
tions that are inconsistent with the target data. On the hand, the second term, called "smoothness
term", which enforces the piecewise smoothing assumption with neighboring pixels. The disparity
map is produced by assigning similar depth values to neighboring pixels. Although global ap-
proaches provide a dense and accurate disparity map, optimizing global methods is a complex N P
problem, making it very difficult to use these methods in a real-time application [103].

Local approaches or region-based approaches perform the matching by searching for the ho-
mologous pixel in a window centered on the current pixel in both left and right images. The cor-
responding cost is calculated either by minimization or by maximization over the disparity range
according to the cost function. In these approaches, the quality of the resulting disparity map is
highly dependent on the proper choice of the size of the search window. A small window would
cause bad mapping and a large window would increase computing time and memory consumption.
In the following equations, we give three examples of cost functions used in local approaches. Note
that (z,y, d) represent the coordinates in the disparity map, (z,y) the coordinates of the current
pixel, d the disparity value, and w the size of the search window:

e The Absolute Difference (AD) aggregates the difference in intensity value between a pixel
in the left image (/;) and the corresponding pixel in the right image (/). A formulation of
AD is given by equation 5.1.
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e The Square Difference (SD) aggregates the square of the differences between a reference
pixel in the left image (/;) and the candidate pixel in the right image (/,.). SD is formulated
bu the equation 5.2.

AD(CL’,y,d) = |Ig(x7y) _Id<x_d7y)‘2 (52)

e Sum of Absolute Differences (SAD) sums the absolute difference between the intensity of
each pixel in a given window and that of the target pixel in the window. Its expression is
provided by the equation.

SAD(z,y,d) = Y |I,(z,y) — Ly(x — d,y)] (5.3)

(z,y)Ew

e Sum of Squared Differences (SSD) sum the squares of the differences between the center
pixel in the search window and all other pixels in the same window. It has a computing
complexity higher than that of the SAD and is more sensitive to outliers and noise. Its
formulation is the following:

(z,y)Ew

5.2 Use Case Presentation

Our use case is a VO algorithm for dense 3D reconstruction in real time [102]. We chose this
algorithm based on two important criteria. First, it is considered as one of the most efficient
and robust VO algorithms which has been widely cited in the literature. Indeed, this algorithm
citation count is estimated to 745 on Google Scholar and 345 on IEEE Xplore at the moment of
this writing. Second, the algorithm is compute bound and memory bound. As depicted in Figure
5.1, this algorithm’s pipeline consists of four stages: scene flow, egomotion estimation, dense
stereo matching and 3D reconstruction. The VO part of this algorithm consists of the two stages:
scene flow and egomotion estimation.

First, in order to obtain the scene flow, features are matched between four images, namely the left
and right images of two consecutive frames. Next, from the features matched, the egomotion or
camera motion is computed by minimizing the sum of re-projection errors.

For obtaining dense disparity maps, the ELAS [104] method is used. ELAS algorithm computes
first a sparse disparity map providing the disparity of some pixels (which can be robustly matched
due to their texture and uniqueness), and then uses the fist sparse disparity map computed to esti-
mate the disparity of all pixels in order to generate a dense disparity map at the end.

The 3D reconstruction step is done by re-projecting reconstructed 3d points of the previous frame
into the image plane of the current frame. In case a point falls onto a valid disparity, both 3D points
are fused by computing their 3D mean. Since this last step is relatively simple and is not compute
intensive, we do not study it in this work. Instead, we focus our work on the first two stages, i.e.
the scene flow computation and egomotion estimation. They will be described in detail in sections
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Figure 5.1 — The use case algorithm overview

5.3 and 5.4 respectively. Note that, the VO method proposed by authors of [102] can be applied
in both monocular and stereo VO systems. However, in this work, we present only the stereo VO
system case.

5.3 Scene Flow Description

The scene flow, computed from the left and right images of two consecutive frames, includes two
main part: features detection and description (5.3.1) and features matching (5.3.2). Note that, for
accuracy and reduction of the computational cost purpose, authors have chosen to perform features
detection and their matching in two passes, but they can also be done in a single pass. However,
we will consider that they are being done in two passes in the remainder of this work. Features
detection and their matching are described below.

5.3.1 Feature Detection and Description

Feature detection and description are essential components of various computer vision algorithms,
thus they have received considerable attention in the last decades. Several feature detectors and
descriptors (e.g. Speeded-Up Robust Features Descriptor (SURF) [105], Harris detector [75]) have
been proposed in the literature with a variety of definitions for what kind of points in an image is
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potentially interesting [ 106]. Despite a large number of efficient features detectors and descriptors,
authors chose to use a much simpler method. Indeed, for detecting features, input images (current
left and right images) are first filtered with 5 x 5 blob and corner masks, as given in Figure 5.2.

- - = = iy
[ I A S
N N o [ [
Bl Bs ok |k

(a) Blob (b) Corner

Figure 5.2 — Blob and Corner masks

Next, a non-maximum- and non-minimum-suppression algorithm is applied on filters images in
order to find feature candidates which belong to one of four classes (i.e., blob max, blob min, corner
max, corner min). The non-maximum- and non-minimum-suppression algorithm used corresponds
to the algorithm 4 described in [107]. Algorithm 2 shows the pseudo code for non-maximum
suppression. Since featured detection and description is done in two passes, authors chose for the
first pass the value of 9 as neighborhood size while 4 is used for the second pass. A greater value is
used for the first pass in order to get a small set features candidates which will be matched during
the first step of the matching.

Once features candidates are detected, a descriptor is associated with each feature. Since these
descriptors are based on Sobel filter results, 5 x 5 horizontal and vertical Sobel masks are used to
filter input images as depicted in Figure 5.3a.

Features candidates descriptors are computed by concatenating Sobel filter responses using the
layout given in 5.3b. In fact, for each feature candidate, 16 pixels from Sobel horizontal gradient
and 16 pixels for the vertical gradient are chosen in a window of size 11 x 11. The colored cells
on Figure 5.3b correspond to the positions of these 16 pixels to be chosen in the 11 x 11 window
while the window’s center corresponds to the coordinates of the current feature candidate. The
number (32) and the position of chosen pixels in Sobel gradient images have been empirically
determined by authors [102]. For speed-up the matching, the Sobel responses are computed on 8
bits. Hence 32 x 8 bits is required for each feature to store its descriptors. For facilitating next step
implementation, the 32 descriptors of each feature are grouped by 4 and stored in an integer (of
size 4 bytes) variable named d; as depicted on Figure 5.4.

Figure 5.5 shows the complete schematic block diagram of features detection and description. Note
that all computations performed in this block diagram are done twice: for the current left image and
for the current right image. Features candidates spare and dense lists and Sobel gradients images
of previous left and rights images must be stored in order to be used in the matching phase.
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Algorithm 2 Non-maximum suppression pseudo code (algorithm 4 in [107])
I: forall(i,j) en,2n+1,..2N[0,W —n] x [0,H —n]do  >H & W are input image sizes

2 (mi, mj) <— (i, J);
3 for all (i2, j2) € [i,i + n] x [j,j + n] do > n is the neighborhood size
4 if image(i2, j2) > image(mi, mj) then
5: (mi, mj) <— (i2, j2);
6 end if
7 end for
8 for all (i2, j2) € [mi — n, mi + n|x
9: [mj —n,mj+n] —[i,i+n] x[j,j+n|do
10: if image(i2, j2) > image(mi, mj) then
11: goto failed;
12: end if
13: end for
14: MaximumAt (mi,mj); > A maximum has been found, save it
15: failed:
16: end for

LBl ]o| N |k
Al o |O| ®|»

._\
N
BlbA || b~

Horizontal Sobel mask Vertical Sobel mask -
(a) Sobel filter masks (b) Feature descriptor

Figure 5.3 — Sobel filter mask and the layout used for computing feature descriptor

5.3.2 Feature Matching

After features candidates have been detected and their descriptors have been computed, the next
step is their matching between left and right images two consecutive frames. This is done in six
steps described below.
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Figure 5.5 — Complete work flow of features detection and description
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Step 1: Matching first pass

It is achieved by matching features candidates in a circle. Formally, this consists by starting from all
feature candidates (detected during the first pass of non-maximum and non-minimum suppression)
in the current left image:

1. find the best match in the previous left image within a M x M search window,
2. in the previous right image,
3. in the current right image,

4. in the current left image again.

If the last feature coincides with the first feature, then the circle match is accepted. The matching
cost function used to find the best match is the SAD (5.3). This first matching provides a sparse set
of features matched.

Step 2: First rejection of outliers

Taking the sparse set of features matched, sporadic outliers are removed by establishing neighbor-
hood relations as edges of a 2D Delaunay triangulation on the feature locations in the current left
image. The Delaunay triangulation [108] is a type of partitioning of a set of points positioned in a
plane formed of triangles whose vertices are objects, and which together constitute a partition of
the convex envelope of these objects. The condition to retain a match during Delaunay triangu-
lation is that the match must be supported by at least two neighboring matches, where a match is
supporting another match if its disparity falls within some threshold 7).

Step 3: Build statistics

After the rejection of outliers, some statistics are build in order to speed up the second pass of
matching. This is achieved by assigning each feature in the current left image to a 50 x 50 pixel
bin of an equally spaced grid. Given all sparse feature matches, the minimum and maximum
displacements for each bin are computed. Those statistics are used to locally narrow down the
final search space, leading to faster matching and a higher number of matches at the same time.

Step 4: Matching second pass

Taking the search spaces computed in the previous step, match features candidates (detecting dur-
ing the second pass of non-maximum and non-minimum suppression)) in the current left image.
As for the first pass, the matching is done in a circle and a feature is considered to be matched only
if the last feature coincides with the first feature. This matching provides a dense set of features
matched.
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Step 5: Second rejection of outliers

Again, sporadic outliers are removed by the mean of a 2D Delaunay triangulation.

Step 6: Refinement

Once rejection of outliers is completed, post-processing, naming refinement can be applied. The
goal of refinement is to further improve feature localization. To do that, for each feature matched,
four descriptors are computed from the left and right Sobel gradient images of two consecutive
frames. Unlike, the descriptor used in 5.3.1, the descriptor used here is a subset of 16 pixels
empirically localized in Sobel gradients images within a 5 X< 5 window as depicted in Figure 5.6.
Once descriptors are computed, a simply matching (using the SAD as a cost function) is performed
for each feature matched between current left image and previous left image; next between the
current left image and current right image; and current left image and previous right image. If a
minimal disparity is found, the feature matched is updated.

Sobel Horizontal gradient Sobel Vertical gradient
1
2 3 4 13
5 6,7 8 14 15
9 10 11 16
12

Figure 5.6 — Descriptor used for refinement

5.4 Egomotion Estimation Description

Given all circular features matched from the feature matching step, the camera motion is computed
by minimizing the sum of re-projection errors and refining the obtained velocity estimates by
means of a Kalman filter. First, bucketing is used to reduce the number of features and spread
them uniformly over the image domain. Next, feature points are projected from the previous frame
into 3D via triangulation using the calibration parameters of the stereo camera rig. Assuming
squared pixels and zero skew, the re-projection into the current image is given by:

u f 0 ¢ v s
v ]l=(0f e | |[(®BM Z —[ o (5.5)
1 00 1 . 0
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with

e homogeneous image coordinates (u v 1)T

e focal length f

e principal point (¢, ¢,)

e rotation matrix R(r) = R,(ry)R,(ry)R.(r>)
e translation vector t = (¢, t, t,)"

e 3d point coordinates X = (x y z)7

e and shift s = 0 (left image), s =baseline (right image).

Let now 7 (X;r,t) : R — R? denote the projection implied by Equation 5.5, which takes a
3D point X and maps it to a pixel xgl) € 12 on the left image plane. Similarly, let 7™ (X;r,¢)
be the projection onto the right image plane. Using Gauss-Newton optimization, Expression 5.6 is
iteratively minimized with respect to the transformation parameters (7, ).

N
Do lal? =m0 P+ |2 = 20O | (5.6)
i=1

Here xgl) and xgr) denote the feature locations in the current left and right images respectively. The
required Jacobians J ¢ are readily derived from Equation 5.5. To be robust against outliers, the
estimation approach is wrapped into a RANSAC (RANdom SAmple Consensus) [109] scheme,
by first estimating (7, ¢) for 50 times independently using 3 randomly drawn correspondences. All
inliers of the winning iteration are then used for refining the parameters, yielding the final trans-
formation (r,¢). On top of this estimation procedure a standard Kalman filter is placed, assuming
constant acceleration. To this end, first the velocity vector v = (rt)T /A, is obtained as the trans-
formation parameters divided by the time between frames 4,. The state equation is given by

(t) (t=1)
v (1 AT v
() (0 7)(0) = o

and the output equation reduces to

(®) (t)
L))

since v is directly observed. Here, a denotes acceleration, I is the 6 X 6 identity matrix and € and
v represent Gaussian process and measurement noise, respectively.
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5.5 Profiling and Analysis of Original Authors Version

The authors of the VO algorithm described in [102] provided a CPU based implementation. The
source code is available on their web site!. In previous sections, we have seen that this VO algo-
rithm consists of two part: the scene flow and the egomotion estimation.

In order to identify the most time-consuming functions, we profiled authors” CPU based implemen-
tation (as discussed in Section 3.5 — Step 1). In the remaining, original CPU based version will
also means authors’ CPU based implementation. We use the C++ chrono library to retrieve the
execution times of all functions. Profiling data are collected on the Intel I7 CPU. Codes are com-
piled with the Gee/++—8.1 compiler with same flags as those seen in Table 3.3. Additionally, we
also use the flag -msse3 since author’s version includes SSE 2/3 instructions. In our experiment
and for the remaining, we use the sequence 2010_03_09_drive_0019 of the Karlsruhe dataset?.
This sequence consists of 372 pairs of stereo images of size 1344 x 372. Figure 5.7 presents the
performance of the VO algorithm. Note that we run the algorithm on the entire sequence and take
the average of functions’ execution time.

140 W SceneFlow M EgomotionEstimation © Others 100.00%
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Figure 5.7 — Performance of the original CPU based implementation on Intel 17

As can be seen in Figure 5.7, the VO algorithm requires 132.466 milliseconds per frame on average
on our Intel I7 CPU. On the other hand, this same algorithm takes 466.91 milliseconds on the
Tegra X1 ARM CPU. This performance may not meet the real-time requirements found in most
ADAS systems for example. Sub Figure 5.7b shows that the most time-consuming part of this
VO algorithm is the scene flow part. Indeed, 95% of the global execution time corresponds to
the scene flow part. In Sub Figure 5.7b, we means by Others, input images loading, memory
allocation/deallocation, etc.

Looking in detail at the scene flow part as depicted on sub Figure 5.7c, we find that non-
maximum- and non-minimum-suppression, feature matching, and refinement are the three most
time-consuming routines. Here, Others corresponds to memory allocation and deallocation opera-
tions. Hence, it is these three functions that we will seek to parallelize in order to accelerate the VO
algorithm. The time consuming by filters (Sobel, blob, and corner) computation is not significant.

1
2

Ph.D Report 143 Rokiatou DIARRA


http://www.cvlibs.net/software/libviso/
http://www.cvlibs.net/datasets/karlsruhe_sequences/

CHAPTER 5. USE CASE: A STEREO-VISION BASED VISUAL ODOMETRY
APPLICATION

However, we will also parallelize them later since they are the input of the non-maximum- and
non-minimum-suppression.

5.6 Original CPU Based Scene Flow Implementation

Authors chose to implement Sobel and corner filters using SSE instruction while the blob filter is
in pure C++. Sobel gradients are computed on 8—bit in order to speed up the matching and the
refinement. Algorithm 3 shows the authors’ CPU based pseudo-code for the non-maximum- and
non-minimum-suppression algorithm. As we can see, loops of lines 1 and 2 iterate over blob (If1)
and corner (If2) filters results images.

Once maximums and minimums of blob and corner filters results have been found, the next step
is the computation of their descriptors. Algorithm 4 shows the pseudo code of the function that
computes features candidates descriptors. In fact, there are no computation in this function, only
load (from Sobel gradients) and store (in d;) memory operations.

After the computation of features candidates descriptors, features candidates are copied from the
spare and dense vectors of features candidates to integer arrays as depicted on Algorithm 5.

Algorithm 6 shows the pseudo code corresponding to the work flow of features detection and
description (as seen on Figure 5.5). Note that, this sequence of operations is done twice : one for
the current left image and one for the current right image.

As explained in Subsection 5.3.2, each feature candidate is matched in a circle. Algorithm 7 shows
the pseudo of the matching cost function used. The main computation part is from line 8 to 22 and
the most computation instruction is SAD. Authors chose to implement it using SSE instructions
as shown in Listing 5.1. Since Sobel responses are quantized on 8—bit and SSE registers are on
128—bits, only two instructions (lines 5 and 6) are needed for the SAD computation.

1|_ml28i xmml = _mm_load_sil28((__ml28ix) (ml+step_sizexil+4));

2 |__ml28i xmm2 = _mm_load_sil28((__ml28i*) (ml+step_sizex11+8));
3|_ml28i xmm3 = _mm_load_si128((__ml28ix) (m2+step_sizex (*12_1it)+4));

4 |__ml28i xmm4 = _mm_load_sil28((_ml28ix*) (m2+step_sizex (x1i2_1it)+8));

5 |xmm3 = _mm_sad_epu8 (xmml,xmm3) ;

6 |xmm4 = _mm_sad_epu8 (xmm2,xmmé) ;

7 |xmm4 = _mm_add_epil6 (xmm3, xmm4) ;

8 |cost = (double) (_mm_extract_epil6 (xmmd, 0)+_mm_extract_epil6 (xmm4,4));

Listing 5.1 — SAD implementation in SSE

Algorithm 8 shows the function that performs features matching. Before to match features candi-
dates, a search range is computed for each of them. Thus, four std::vector arrays are allocated (line
1), one for each features candidates list. These arrays are filled in line 2 computing minimal row
and column of the bin to which each feature candidate belongs. Next, by iterating over all features
candidates of the previous left image, each feature is matched in a circle from line 6 to line 9. As
explained in 5.3.2, a feature is retained only if the last feature coincides with the first feature (line
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Algorithm 3 Non-maximum and non-minimum suppression: Original CPU based pseudo code

Require: Ifl, If2, W, H, n, threshold, feature_list > feature_list is a C++ std vector
1: for alli =n + margin;i < W — n — margin; i+ =n +1 do > margin = 9
2: for all j = n + margin; j < H — n — margin; j + =n +1 do
3: flmini = 1; flminj = j; flmaxi =1; flmaxj =j; > f1 denotes blob while
4: f2mini = 1; 2minj = j; 2maxi = 1; f2maxj =j; > f2 corresponds to corner
5: for alli2 =1;i2 <= (i + n); i24++ do
6: for all j2 =j; j2 <= ( + n); j2++ do
7 > Instructions of lines 4 to 6 of Algorithm 2 four times
8: end for
9: end for

10: for all i2 = f1mini — n; i2 <= min(flmini + n, W —1— margin); i24++ do

11: for all j2 = f1minj — n; j2 <= min(flminj + n, H —1— margin); j2++ do

12: if If1(12, j2) < If1(f1mini, f1minj) then goto failed;

13: end for

14: end for

15: if If1(fImini, fIminj) < — threshold then > the threshold is set to 50

16: feature_list.push_back(f1mini, f1minj, If1(fImini, f1minj), 0);

17: end if

18: failed:

19: for all i2 = flmaxi — n; 12 <= max(flmaxi + n, W —1— margax); i2++ do

20: for all j2 = flmaxj — n; j2 <= max(flmaxj + n, H —1— margax); j2++ do

21: if If1(12, j2) < If1(f1maxi, flmaxj) then goto failed;

22: end for

23: end for

24: if If1(f1maxi, flmaxj) > — threshold then

25: feature_list.push_back(flmaxi, flmaxj, If1(flmaxi, flmaxj), 1);

26: end if

27: failed:

28: Same code from line 10 to 14, replace f1 by {2

29: if If2(f2mini, f2minj) < — threshold then

30: feature_list.push_back(f2mini, f2minj, [f2(f2mini, f2minj), 2);

31: end if

32: Same code from line 19 to 23, replace replace f1 by {2

33: if If2(f2maxi, f2maxj) > — threshold then

34: feature_list.push_back(f2maxi, f2maxj, If2(f2maxi, f2maxj), 3);

35: end if

36: end for

37: end for

Ensure: feature list
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Algorithm 4 Descriptors Computation: Original CPU based pseudo code
Require: feature_list, I_du, I_dv, H, W > du: horizontal and dv: vertical Sobel gradients
1: for all vector<feature_strt>::iterator it = feature_list.begin(); it | = feature_list.end(); it++ do
2: Extract current feature candidate coordinates i and j from feature_list;
3: Compute d to d; as depicted on Figure 5.4
4: end for

Ensure: feature_list

Algorithm 5 Copying features candidates to a classic array : Original CPU based pseudo code

Require: spare_feature_list, dense_feature_list

1:
2
3
4
5:
6
7
8

: Allocate an array of integer type and size sizeof( feature_str) x spare_feature_list.size();
. Allocate an array of integer type and size sizeof( feature_str) x dense_feature_list.size();
. for all vector<feature_strt>::iterator it iterating over spare_feature_list do

Copy current feature candidate from spare_feature_list to array allocated on line 2;
end for

: for all vector<feature_strt>::iterator it iterating over dense_feature_list do

Copy current feature candidate from dense_feature_list to array allocated on line 3;

. end for

Ensure: arrays of line 2 and 3

Algorithm 6 Features detection and description work flow: Original CPU based pseudo code

Require: Current left image (I1), H, W

1:

R U

10:

sobel_SSE > Sobel 5 x 5 SSE2/3 based implementation
corner_SSE > Corner 5 x 5 SSE2/3 based implementation
blob > Blob 5 x 5 pure C++ based implementation

vector<feature_strt> spare_feature_list;
vector<feature_strt> dense_feature_list;

feature_list_spare = Algorithm 3 > first pass of non-max/min suppression withn =9
feature_list_spare = Algorithm 4 > compute features descriptors
feature_list_dense = Algorithm 3 > second pass of non-max/min suppression with n = 3
feature_list_dense = Algorithm 4 > compute features descriptors

feature_list_spare, feature_list_dense = Algorithm 5

Ensure: feature_list_spare, feature_list_dense, Sobel gradients images
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Algorithm 7 Matching cost function: Original CPU based pseudo code

Require: feature_list_1, current feature candidate, feature_list_2, index_list, minimal_disp_index

1:
2:
3:
4.
5:
6:
7
8:
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:

> and search_ranges if second pass of matching
Initialize minimal_cost to 10000000;
Extract current feature candidate coordinates (ul, v1) from feature_list_1;
Load feature descriptors from feature_list_1 into two SSE 128 —bit registers;
Compute disparity search range for feature to be matched;
if it’s the second matching pass then
Restrict disparity search range; > using search_ranges (computed by Build statistics step)
end if
for all u_bin = u_bin_min; u_bin < u_bin_max; u_bin++ do
for all v_bin = v_bin_min; v_bin < v_bin_max; v_bin++ do
Extract from index_list the index corresponding to this feature;
for all iterate over std::vector index_list[index] do
Extract current feature candidate coordinates (u2, v2) from feature_list_2;
if u2 and v2 are in disparity search range then
Load feature descriptors from feature_list_2 into two SSE 128—bit registers;
cost = Compute SAD between descriptors of first registers (line 4) and second
registers (line 10); > SAD is implemented using SSE instructions
if cost < minimal_cost then
minimal_cost = cost; minimal_disp_index = index;
end if
end if
end for
end for
end for

Ensure: minimal_disp_index
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10 to line 15).
Algorithm 8 Features Matching: Original CPU based pseudo code
Require: feature_list_sparse (4) of previous and currents left and right images > instead,

feature_list_dense if it is the second pass of features matching
1: Allocates 4 arrays of type std::vector for storing bin index vectors of the 4 feature_list_sparse
element;

2: Fill the four precedent allocated arrays;
3: forallilp = 0;ilp < nlp;ilp++ do > nlp = size of previous left image’s feature_list_sparse
4: Extract current feature coordinates from previous left image’s feature_list_sparse
5: Compute row and column of statistics bin to which current feature belongs;
6: Algorithm 7; > find best match between previous left and right images
7 Algorithm 7, > find best match between previous and current right images
8: Algorithm 7; > find best match between current left and right images
9: Algorithm 7; > find best match between current and previous left images
10: if match found in line 6 = match found in line 9 then
11: Extract coordinates corresponding to best matches found in line 7 and 8;
12: if if those of line 7 are greater than those of line 8 then > means disparities are positive
13: spare_points_matched_list.push_back(4 couples of (u, v, feature index));
14: > couples correspond to best matches found from line 6 to 9
15: end if
16: end if
17: end for

Ensure: spare_points_matched_list > instead, dense_points_matched_list if it is the second pass
of features matching

During the refinement, matched points are matched again in order to improve features localization,
i.e. features coordinates in previous left, current right and previous right images. For that purpose,
the SAD is computed within a window of size 5 X 5 as shown in Algorithm 9.

Algorithm 10 shows the pseudo code of the function that performs the refinement. The computa-
tional part, here, is the matching instructions from line 2 to line 4.

5.7 Scene Flow Adaptation for Parallelization

In order to parallelize the scene flow either on CPU or GPU, we have to make some changes (as
discussed in Section 3.5 — Step 1). We present the main modifications made in the following
subsections.
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Algorithm 9 Refinement cost function: Original CPU based pseudo code

Require: point matched coordinates (ul, v1, u2, v2), Sobel gradients for Imgl and Img2
Check if point matched coordinates are within margin;
Compute descriptors of (ul, v1) in Sobel gradients of Img1 as depicted on Figure 5.6;
Load previous descriptors computed into an SSE 128 —bit register;
Create a static array of size 25 for storing cost values;
for alldv=0to 5 do
for alldu=0to 5 do
Compute descriptors of (u2+du—2, vl+dv—2) in Sobel gradients of Img2;
Load previous descriptors computed into an SSE 128 —bit register;
cost[dv*5+du] = Compute SAD between descriptors of line 3 and those of line 8;
> SAD is implemented using SSE instructions

—_— =
IS A 2 e R AR R e

end for

: end for

: for alli = 0to 25 do

Find minimum cost and corresponding index;
15: end for

16: Update u2 and v2;

Ensure: updated u2 and v2

—_ = =
& W N

Algorithm 10 Refinement: Original CPU based pseudo code

Require: dense_points_matched_list, Sobel gradients of previous and currents left and right im-

ages
1: for all std::vector iterator ite = 0 to size of dense_points_matched_list do
2 Algorithm 9; > Imgl and Img2 = current and previous left images
3: Algorithm 9; > Imgl and Img2 = current left and right images
4 Algorithm 9; > Img]1 current left image and Img2 = previous right image
5: dense_points_matched_list.push_back(ite);
6: end for

Ensure: dense_points_matched_list
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Remove Lists

We have already seen in Section 3.4 that the parallelization of a code containing operations of
adding new elements to a list requires the use of atomic operations. We also know that critical
sections and atomic operations degrade performance, especially when there is not enough workload
in loops. Therefore, we first replace all lists by classic arrays (as discussed in Section 3.5 — Step 2)
allocated dynamically. We can’t use static arrays since we do not know in advance the number of
features candidates that will be found or that of points that will be matched. Replacing std::vector
by classics arrays will allow us to perform the manual deep copy (as discussed in Section 3.5 —
Step 1) when we will parallelize our application on GPU, but also the problem due to the push_back
routine’ call (as discussed in Sections 3.4 — Problem 3).

Rewrite Filters

Although Sobel and corner filters are vectorized using SSE instructions, this can run only on an
Intel CPU. The SIMD intrinsics (e.g. SSE, AVX) have the disadvantage of not being portable.
Therefore, we have to port Sobel and corner filters from SSE instructions to those of NEON in
order to run our use case on the Tegra X1 CPU. NEON is the SIMD intrinsics for ARM CPUs.
We must also rewrite Sobel and corner filters in pure C++-, which can be parallelized later with
OpenMP/OpenACC and ported to CUDA for GPU execution.

Non-maximum and non-minimum suppression Algorithm Adaptation

The non-maximum and non-minimum suppression algorithm can be parallelized in several ways.
We are going to present two strategies in which the features description part (Algorithm 4) is
integrated.

First way to parallelize the non-maximum and non-minimum suppression algorithm

In this first strategy, we use two arrays that have the same sizes as input images and will replace the
lists (sparse_feature_list and dense_feature_list in Algorithm 3) used in the original version. Since
features candidates are a small subset of the pixels constituting the input images, we change the
set of features classes from {0, 1, 2,3} to {10, 11, 22,23} which will allow us to determine later
which element of these arrays corresponds to a feature. Since the feature description algorithm (4)
1s memory bound, we compute descriptors in the same loops (lines 1 and 2 of Algorithm 3) where
they were detected. Once features are detected and described, we go through the features arrays to
count the total number of features candidates. Next, features candidates are copied into new arrays
as seen in Algorithm 5. Listing 5.2 resumes this first strategy implementation.

1|//allocate Tab, an array of size W+H and initialize it to O
2 |for(int i = n+margin; i < H-n-margin; i += n+1)
3 for(int j = n+margin; j < W-n-margin; j += n+l) {
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

//set min and max to current i and j (lines 3-4 of Algorithm 3)
//find min and max in I21 and If2 within a window (5-9 of Algorithm 3)
//1f there is no other min arround in Ifl (10-14 of Algorithm 3)
if(Ifl[flmini+W+flminj] < — threshold) //a feature candidate is found {
//compute descriptors (line 3 of Algorithm 4)
Tab[i*W+j] «— {10, Ifl[flmini*W+flminj], flmini, flminj, do,..,ds}
}
//1f there is no other maximum arround in Ifl (19-23 of Algorithm 3)
if(Ifl[flmaxi+W+flmaxj] > — threshold) {//a feature candidate is found
//compute descriptors (line 3 of Algorithm 4)
Tab[i*W+j+1] «— {11, Ifl[flmaxi*W+flmaxj], flmaxi, flmaxij, dy,..,dsg}
}
//do the same thing for minumax and maximum in If2
}
int sum_features = 0;
for(int i = 0; i < H; i++)
for(int j = 0; Jj < W; J++)

if (Tab[ixW+3j] != 0) sum_features++;
features_list = new array of integers, sizeof (feature_str) x sum_features
for(int i = 0; 1 < H; i++)
for(int 3 = 0; 3 < W; Jj++)
if (Tab[i*xW+J] != 0) //copy features from Tab to features_list

Listing 5.2 — First version of features detection and description

Second way to parallelize the non-maximum and non-minimum suppression algorithm

The second strategy goal is to maximize parallel execution by structuring the code in a way that it
exposes as much parallelism as possible. This strategy allows also to reduce our use case memory
footprint. Thus, we start by allocating a simple unsigned char array which has the same size as
input images. As can be seen in Listing 5.3 (lines 4, 7, 9 and 11), features candidate index are set
either to 10, or 11, or 22, or 23. Next, we compute the number of features per line and save it in a
temporal short array (from lines 14 to 17 of Listing 5.3). As in the first strategy, the total number
of features candidate is computed. We also compute the addresses range to features candidate per
line (from lines 18 to 24 of Listing 5.3). Last, we compute descriptors of each feature candidate
and save features data into the features array (from lines 25 to 36 of Listing 5.3).

— O 00O N AW~

—_

uint8_t xTab = new array of size WxH and initialize its elements with O

for(int 1 = n+margin; i < H-n-margin; i += n+1)
for(int j = n+margin; j < W-n-margin; j += n+1l) {
//lines 4 to 6 of Listing 5.2
if(Ifl1[flmini*W+flminj] < — threshold) Tab[flmini*«W+flminj] = 10;
//1line 11 of Listing 5.2
if(Ifl[flmaxixW+flmaxj] > — threshold) Tab[flmini«W+flminj] = 11;

//lines 4 to 6 of Listing 5.2 (Ifl is replaced by IfZ2)

if(If2[f2mini*W+f2minj] < — threshold) Tab[f2mini+W+f2minj] = 22;
//1line 11 of Listing 5.2 (Ifl is replaced by If2)
1if(If2[f2maxi*xW+f2maxj] > — threshold) Tab[f2mini*W+f2minj] = 23;
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12 |}
13 | //get the number of features candidate per line
14 | short xlineSum = new array of size H and initialize it to O
15 |for(int 1 = 0; 1 < H; 1i++)
16 for(int j = 0; J < W; Jj++)
17 if(Tab[i*W+3] !'= 0) lineSum[i]++;
18 | //compute the addresses range to features candidate per line
19 |access_range = array of type (struct{int bing, ind}), size H*sizeof (struct)
20 |int sum_features = 0;
21 |for(int 1 = 0; 1 < H; i++) {
22 //compute beginning and ending of addresses of features in this line
23 sum_features += lineSum[i];
24 |}
25 |features_list = new array of integers, sizeof (feature_str) x sum_features
26 |for(int 1 = 0; 1 < H; i++) {
27 if(lineSum[i] != 0) {
28 //get addresses range to features cadidate in current line
29 for(int j = 0; J < W; Jj++) {
30 if (Tab[i*W+j] != 0) {
31 //compute this feature descriptors
32 //save the feature data into features_list
33 }
34 }
35 }
36 |}

Listing 5.3 — Second version of features detection and description

This second implementation consumes less memory than the first, and unlike the first version (from
lines 23 to 25 of Listing 5.2), feature data storage (from lines 25 to 36 of Listing 5.3) can be done
in parallel since we know the starting and ending access addresses to features per line.

Feature Matching Algorithm Adaptation

We make the following modification in the feature matching algorithm:

e Allocate a new array of size features candidate list of the current left image. This new array
has the same type as the point matched structure. However, we added a supplementary
boolean variable which must be set to true if a feature has been matched.

e The index vectors allocated and filled on lines 1 and 2 of Algorithm 8 must be copied in
classic arrays for two main reasons. First, most sub-vectors of these index vectors are empty.
Thus, by copying only non-empty sub-vectors of these index vectors in classic arrays, we
can speed up the matching cost computation (loop of the line 11 in Algorithm 7). Second,
this will allow us to avoid the problem of shallow copy (seen in 2.3) when we will parallelize
the matching on GPU.
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e As we did with the Sobel and corner filters, we port the SAD cost function computation (line
15 of Algorithm 7) from SSE to NEON for execution on ARM CPU. Note that the SAD
instruction (line 5 of Listing 5.1) is not available in NEON. Therefore, we must explicitly
implement the SAD in NEON. We have also rewritten the SAD in scalar C+4+ in order to
parallelize it with OpenACC/OpenMP and CUDA for execution on GPU. Listing 5.4 shows
the corresponding C++ version of the SAD seen in Listing 5.1.

uint8_t xdesc_temp_ml = (uint8_t*) (ml + step_size » il + 4);
uint8_t xdesc_temp_m2 = (uint8_tx) (m2 + step_size x new_k[i2_it] + 4);
double cost = 0.0;
for (int j = 0; J < 32; j++)
cost += (double)abs(desc_temp_ml[j] - desc_temp_m2[7j]);

Listing 5.4 — Pure C++ implementation of SAD

Therefore, our adapted implementation of matching cost function (Algorithm 7) is the same
as the original except:

— Lines 3 and 14 are changed to declaring and initializing two char pointers to the first
descriptor (dj) of each feature (lines 1 and 2 of Listing 5.4).

— Line 15 is replaced by lines 3 to 5 of Listing 5.4.

Algorithm 11 Adapted implementation of features matching function

Require: feature_list_sparse (4) of previous and currents left and right images > instead,

\©

AN I

feature_list_dense if it is the second pass of features matching

Lines 1 and 2 of Algorithm 8;

Allocate new array, and fill them with the index vectors;

feature_array = array having same size and type as feature_list_sparse of previous left image;

Initialize feature_array to zero;

for allilp = 0; ilp < nlp; ilp++ do > nlp = size of previous left image’s feature_list_sparse
Lines 4 to 9 of Algorithm 8;
feature_array = lines 10 to 15 of Algorithm 8;

end for

Copy valid elements of feature_array into the spare_points_matched_list vector;

Ensure: spare_points_matched_list > instead, dense_points_matched_list if it is the second pass

of features matching

Note that, after the matching step we copy matched points into lists (std::vector). This is required
since the next steps (build statistics, outliers removal, and egomotion estimation) use them and
we will no longer modify them. Algorithm 11 shows our adapted implementation of the features
matching function.
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Refinement Algorithm Adaptation

As for the matching cost function, the instructions for loading descriptors and computing the SAD
(lines 3, 8 and 9 of Algorithm 9) have to be programmed in scalar C++- instead of SSE for exe-
cution on GPU, and in NEON in order to target NVIDIA Tegra X1 CPU. Furthermore, we copy
points matched into a classic array of the same type and size as dense_points_matched_list. Thus it
is this new array that will be used in line 5 of Algorithm 10. Then, after the refinement is done, we
copy back points matched into the dense_points_matched_list vector, which will be used during
the egomotion estimation phase.

5.8 Scene Flow Parallelization on CPU

The scene flow pipeline can be parallelized on CPU in several ways. We present three of them in
the following paragraphs.

Parallelization of Authors CPU based implementation Since the inputs images are indepen-
dent, the workflow depicted in Algorithm 6 can be run in parallel on both images. This is done
by exploiting task parallelism through OpenMP parallel sections construct. We will call this par-
allelized version OriginalOMP for the remaining of this chapter. Filters, features detection and
matching will be parallelized as follow:

e Filters — They are in SSE for Intel CPU and NEON for ARM CPU. Filters results of left
and right images are computed in parallel by creating two OpenMP section as can be seen in
Listing 5.5.

fpragma omp parallel sections num_thread(2)
{
#pragma omp section
{/#+compute filters results for current left imagex/}
#pragma omp section
{/*compute filters results for current right imagex*/}

~N OB

}

Listing 5.5 — Filters parallelization with OpenMP sections

e Features detection and description — This corresponds to the Algorithm 3. Since features
detection and description is performed twice (spare and dense) for both current left and right
images, we create two OpenMP parallel sections in order to balance the workload. Thus, the
pseudo code of Listing 5.6 is run twice.

fpragma omp parallel sections num_threads (2)

{

#pragma omp section //for current left image

{

S W N =
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//do non-maximum and non-minimum suppression (Algorithm 3)
//compute descriptors (Algorithm 4)
//copy features to feature array (Algorithm 5)

}

#pragma omp section

{/#same thing as describing in above section for right imagex*/}

—_ O O 00 N O\ W

—_—

}

Listing 5.6 — Fllters parallelization with OpenMP sections

e Features matching — The matching cost (SAD) is in SSE for Intel CPU and NEON for
ARM CPU. We parallelize the main loop of Algorithm 8 (line 3) with the OpenMP parallel
for construct. Since matched points are stored in a list, the instruction of line 13 must be
mutually exclusive (as seen in Section 3.4) by using OpenMP critical section construct. We
can’t use the atomic directive since the push_back operation is not implemented in OpenMP.

e Refinement — This step remains sequential since the main loop (line 1 of Algorithm 10) it-
erate on the points matched vector and std::vector::iterator is not allowed in OpenMP loop.
Figure 5.8 depicts the work flow of the parallelized version of authors CPU based implemen-
tation.

Parallelization of our Adapted Version with OpenMP Feature detection, description, and
matching present severals instruction level parallelism. Our adapted versions will be parallelized
with OpenMP as follow. OpenMP versions will be called C++OMP and C++SimdOMP (for
matching and refinement where the SAD is implemented with SIMD intrinsics).

e Filters — are parallelized with the OpenMP work-sharing parallel for constructs.
e Features detection and description — we parallelized the two versions presented in 5.7:

— First version (Listing 5.2): the loops of lines 2 and 3 are parallelized with the OpenMP
work-sharing parallel for constructs. We do not parallelize the other nested loops be-
cause they contain atomic operations and excessive use of the atomic construct may
hurt performance. Loops at lines 19 and 20 are parallelized with the OpenMP parallel
for collapse(2) reduction(+:) composite construct. The last two loops (lines 23 — 24)
that copy features candidates from a large array into a small array remain sequential.

— Second version (Listing 5.3): loops of lines 2 and 3 are parallelized with the OpenMP
work-sharing parallel for constructs. The loops of lines 15 — 16 that compute the
total number of features detected are parallelized with parallel for collapse(2) reduc-
tion(+:). Loop of line 21 remains sequential because the compute of addresses range
of features candidate per line present a loop-independent dependency (seen 3.4). We
also parallelized the loop of line 26 with the OpenMP parallel for directive.
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First thread Second thread
Left image Right image
- Sobel filter 5x5 (SSE) - Sobel filter 5x5 (SSE)
- Blob filter 5x5 - Blob filter 5x5
- Corner filter 5x5 (SSE) - Corner filter 5x5 (SSE)
- Sparse features - Sparse features
candidates detection candidates detection
and description and description
- Dense features - Dense features
candidates detection candidates detection
and description Y ¥ and description
| |
[ |
v

Sparse features candidates matching: main loop parallelization
with OpenMP parallel for construct + critical section (SAD in SSE)

v

Delaunay triangulation of matched points (remains sequential)

v

Build statistics to constrain search ranges during the dense
matching step (remains sequential)

Dense features candidates matching: main loop parallelization
with OpenMP parallel for construct + critical section (SAD in SSE)

v

Delaunay triangulation of matched points (remains sequential)

v

Refinement (main loop remains sequential, SAD in SSE)

Figure 5.8 — Work flow of the parallelized version of authors CPU based implementation

e Featuring matching (Algorithm 11) — line 2 is parallelized using OpenMP parallel sections.
Loops of lines 4 — 5 are parallelized with the OpenMP parallel for directive. The copy of
points matched (line 9) from an array to a std::vector is done sequentially because the copy
is done through a push_back operation which is atomic. The scalar C++ version of SAD
computation (lines 4 — 5 of Listing 5.4) is parallelized with the parallel for reduction(+:)
construct.

e Refinement (Algorithm 10) — the main loop (at line 1) is parallelized with the OpenMP
parallel for directive. Figure 5.9 depicts the work flow of our adapted version parallelized
with OpenMP.

Parallelization of our Adapted Version with OpenACC Feature detection, description, and
matching are parallelized with OpenACC using the same approaches (described above) that we
used with OpenMP. We replaced the omp parallel for by acc kernels loop independent and acc
parallel loop independent composite constructs. OpenACC versions will be called as fellow:

e C++SimdACCKr and C++SimdACCPr for matching and refinement where the SAD is
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// for left image

- Sobel filter 5x5 is parallelized with OpenMP parallel for

- Blob filter 5x5 is parallelized with OpenMP parallel for

- Corner filter 5x5 is parallelized with OpenMP parallel for

// for right image

- Sobel filter 5x5 is parallelized with OpenMP parallel for

- Blob filter 5x5 is parallelized with OpenMP parallel for

- Corner filter 5x5 is parallelized with OpenMP parallel for \

v

Call two times for left images and two times for right image:

- Features candidates detection and description (omp parallel for)
- Get total number of features detected (omp parallel for reduction)
- Copy sequentially the features candidates in small array (in our
first implementation) or

- The computation of the address ranges of features candidates
per line is done in sequential while the copy is parallelized

Sparse features candidates matching: main loop is parallelized
with OpenMP parallel for (SAD is in SIMD intrinsics)

v

Delaunay triangulation of matched points + constraining search
ranges during the dense matching step (remains sequential)

v

Dense features candidates matching: main loop is parallelized
with OpenMP parallel for (SAD is in SIMD intrinsics)

v

Delaunay triangulation of matched points (remains sequential)

Refinement: main loop is parallelized with OpenMP parallel for
(SAD is in SIMD intrinsics)

Figure 5.9 — Work flow of the parallelized version of authors CPU based implementation

implemented with SIMD intrinsics;

o C++ACCKr and C++ACCPr for C++ scalar versions. The "Kr" is for kernels variants and
"Pr" for those of parallel.

5.8.1 Obtained Results

We evaluate the performance of new versions of scene flow on CPUs (Intel I7 and NVIDIA Tegra
X1 CPU). The GCC compiler version 8.1 is used to compile the OpenMP. Both GCC and PGI
(community version 18.11.1) compilers are used on OpenACC versions except the SIMD variants
that are compiled only with Gee because our version of PGI has not support for SSE instructions.
We used the flags seen in Table 3.3. However, the flag -mcpu=cortex-a57+simd+fp has been added
to GCC flags for the NVIDIA Tegra X1 CPU.

Figures 5.10a and 5.10b show the performance speedup obtained on Intel I7 and NVIDIA Tegra
X1 CPUs for the scene flow computation. We make following observations:

e Filters — C++ variants have a speed-down factor of 2.129x on average in comparison to
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Figure 5.10 — Scene flow performance on CPU: Speedup with respect to authors’ version

authors version. This result is not surprising because as already mentioned Sobel and corner
filters are fully implemented in SIMD intrinsics (SSE for Intel CPU and NEON for ARM
CPU) the authors’ version. Although the auto-vectorization capability of compilers has im-
proved, writing a vectorized code with SIMD intrinsics remains more effective. Combining
task parallelism with manual vectorization improves filters performance with a factor of
1.48x on average.

e Features detection and description — The authors’ version combined with OpenMP task
parallelism produces the best performance with a speedup factor of 1.489x on average. Au-
thors’ version, where a std::vector is used to store features candidates, has a lower execution
time than our adapted versions because we store features candidates in an array of the same
size as input images. Note that features candidates represent only at most 4% of the elements
of the array containing them. Thus, we spend a significant in the step of copying features
candidate from a larger array to a smaller one. Our first parallelization strategy (Listing 5.2)
is less efficient than the second strategy since this last is entirely parallelized as explained in
Section 5.7.

o Features matching — Although the OriginalOMP version contains a mutually exclusive in-
struction, we obtained a speedup factor of 2.087x on average. This is due to the fact that
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there is sufficient work inside the loop containing the critical section, which makes it possible
to hide the latencies due to the synchronization. Our adapted C++ version combined with
SIMD intrinsics (for the matching cost computation) and parallelized with OpenMP pro-
duces the same performance as the OriginalOMP version. The most interesting result is the
speedup (1.826x) obtained with our adapted C++ version parallelized with the OpenACC
kernels loop independent construct and compiled with PGI compiler. Note that this last ver-
sion does not contain any SIMD instructions. As seen in Chapter 3 (Subsection 3.6.1), when
there are multiples nested loops, the OpenACC parallel loop independent is less efficient
than the kernels variant (see an example pattern 3 in Listing 3.10). The performance speed
down between the parallel and the kernels versions is 3.106x. This factor is consistent with
those obtained in Subsection 3.6.1, which was 3.376 x.

e Refinement — The scalar C++4- version as well as the SIMD variant have same performance.
This result can be explained by:

— the SAD is computed for only 16 elements (using two 128—bit register for SSE version
or two static arrays for the scalar variant), and

— the sizes of loops containing the SAD computation (lines 5 — 6 of Algorithm 9) are
known at compile time.

As a result, GCC compiler vectorizes by itself the scalar version and unroll the outer loops,
which leads to the achievement of performance equal to that of the SIMD version of the
SAD computation. In the same way, the scalar versions parallelized with OpenACC and
compiled by PGI produce also the same performance as the SIMD variant. In comparison to
the author version the speedup factor obtained, with our adapted C++ variant parallelized
with OpenMP and OpenACC (compiled with PGI), is 3.116x on average on the Intel 17
CPU. On the other hand, this speedup factor for C++ variant parallelized with OpenMP on
the Tegra X1 CPU is 2.087x.

e GCC compiler implementation of OpenACC is not yet mature. When targeting CPU and the
used compiler is GCC, OpenMP should be used instead of OpenACC.

Figure 5.10c presents the overall performance speedup obtained on Intel I7 and NVIDIA Tegra
X1 CPU for the VO algorithm presented in 5.2. Our adapted C++ version combined with SIMD
intrinsics (C++SimdOMP) produces the best performance gain. The pure scalar C++ version,
i.e. C++ACCKIrPGI, parallelized with OpenACC kernels loop independent composite construct
and compiled with PGI compiler produces also an interesting result. Note that in general, Intel x86
processor outperform ARM processors in term of execution time [ 10, ]. We observed a speed
down factor of 2.75x between the Tegra X1 CPU and the Intel 17 CPU.

5.9 Scene Flow Parallelization on GPU

The parallelization of scene flow on CPU allowed us to improve the overall performance of the VO
algorithm presented in 5.2 with a speedup factor of 1.57 x on average without significant impact on
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computation result accuracy. However, parallelizing features detection, description, and matching
algorithms on GPU should allow us to further improve the overall performance of our use case
application. This will also allow us to see if we obtain the same results and observations as those
previously obtained in Chapters 3 and 4 when OpenMP and OpenACC are used to accelerate a
complex application. We have already seen in Section 5.7 all necessary algorithmic modifications
in order to adapt features detection, description, and matching algorithms for parallelization. In this
section, we will parallelize our adapted scalar C++ version with OpenMP, OpenACC, and CUDA
for GPU execution. Note that there is no redundant same memory address accesses in the scene
flow algorithm. Thus, the scalar replacement optimization can not be used here. Although, the
performance improvement factor obtained by adding the restrict keyword is not really significant
as seen in Chapter 4, we will add the restrict type qualifier to pointers that are alias free. We will
also use the const type qualifier for read-only data.

5.9.1 Offloading Scene Flow on GPU with OpenMP

In order to offload the scene flow computation, we use our adapted C++OMP version. We have
already seen in Section 3.5 usual optimization strategies to use for offloading an application with
OpenMP/OpenACC. Since we use the C++OMP version, steps 1 — 4 (finding compute-intensive
parts, removing lists and deeply complex data types, removing data dependency, optimizing data
accesses patterns) of the parallelization methodology proposed in Section 3.5 have already been
done in Section 5.8. Passing from our C++ version parallelized with OpenMP parallel for con-
struct for CPU execution to an OpenMP offloaded version does not requires many code changes.

First, we have to manage data transfer between the CPU and the GPU by using either data-mapping
clauses, or OpenMP device memory routines, or CUDA API routines ( as discussed in Section 3.5
— Step 5). We have seen in Section 5.3 that Sobel filter results of current left and right images are
used for features description, but they are also used, just like Sobel results of previous left and right
images, in the refinement step. In the same way, features candidates lists of previous and current
images are used in the feature matching step. Thus, in order to optimize data transfer and keep the
code readable, we use OpenMP device memory routines for permanent data while map clauses are
used for temporal data management. Figure 5.11 shows an example of the parallelization of the
VO algorithm on GPU.

Second, We have to replace all parallel for construct by OpenMP offloading directives (as dis-
cussed in Section 3.5 — Step 6). We present in following paragraphs, different implementations of
scene flow offloading on GPU with OpenMP.

Basic Implementations As first implementations, we parallelize filters, features detection and
description, matching, and refinement with the TgtPrFr, TgtTmDsPrFr, and TgtTmDsPrFrSch
composite constructs (as we did in Section 3.6.1):

e Filters — Outer and inner loops are both parallelized in the TgtTmDsPrFr and TgtTmD-
sPrFrSch versions, while only outer loop is parallelized in the TgtPrFr version.
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Figure 5.11 — Work flow of the parallelized version of authors CPU based implementation

e Features detection and description:

— First version — Only the outer loop (line 2 of Listing 5.2) is parallelized in all versions
(TgtPrFr, TgtTmDsPrFr, and TgtTmDsPrFrSch) because the LLVM/Clang compiler
fails to compile the code when parallelizing the inner loop (line 3 of Listing 5.2). As
in the CPU version, the other nested loops remain sequential. The computation of the
total numbers of features detected remains unchanged as in the CPU version. The copy
of features candidates from a large array to a smaller one (lines 18 to 25 of Listing 5.2)
is also done on CPU sequentially (as explained in Section 5.8).

— Second version — As in the first implementation, Only the outer loop (line 2 of Listing
5.3) is parallelized in all versions (TgtPrFr, TgtTmDsPrFr, and TgtTmDsPrFrSch). The
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other nested loops remain sequential. In the computation of the number of features
per line (lines 13 to 17 of Listing 5.3), we parallelized only the outer loop. We can
parallelize the inner loop with the parallel for reduction construction but, as seen in
the Subsection 3.6, this degrades application performance. As in the CPU version, the
loop of line 21 remains sequential because the compute of addresses range of features
candidate per line present a loop-independent dependency. Thus, this step is done on
CPU. The copy of features candidates from a large array to a smaller one (lines 25 to
36) step is also offloaded by parallelizing the outer loop.

e Features matching — We use the declare target directive to inform the compiler that the
matching cost computation routine (Algorithm 7, with the SAD implemented in scalar C++-)
will be called inside a rarget region. Thus, the compiler will generate a device version of this
routine. In Algorithm 11, we offload only the loop of line 3 which is the main compute-
intensive part.

e Refinement — As in the feature matching step, the declare target directive is used to tell
LLVM/Clang that it must generate a device version for the cost computation routine (Algo-
rithm 9). We parallelize the loop at line 1 of our adapted version of Algorithm 10.

Loop Fusion Optimization We have seen in Chapter 3 that loop collapsing combined with man-
ual setting of grid and block sizes improves OpenMP offloaded code performance. Thus, we par-
allelize filters and first kernel in both first and second implementation of feature detection and
description with the TgtPrFrCol_Set and TgtTmDsPrFrCol_Set combined directives (Section 3.5
— Step 8a).

Kernels Fusion Optimization As seen in Section 3.9, there is an additional cost related to the
launch of OpenMP offloaded code. However, this additional cost is negligible when there is a
significant workload in the kernel. Thus, we merge the Sobel, corner and blob filters kernels into
one kernel (Section 3.5 — Step 8b). This may also reduce memory traffic (i.e. loads from global
memory) since the three filters are applied to the same image in the same iteration, thus data are
loaded once. We can also perform features detection and description for left and right images in
the same loops in order to increase the workload. However, this increases also memory traffic.
Thus, the performance gain in the features detection and description can be low. We will call
kernels fusion optimization versions KernFusOpt afterward. Concerning the features matching
kernel, we move the matching cost computation routine (Algorithm 7) inside the matching kernel
and completely unroll the SAD loop (lines 4 — 5 of Listing 5.4).

Asynchronous Execution Optimization We know that features detection and description is
done in two steps for both left and right images. Given that our adapted implementations of fea-
tures detection and description contain sequential part executed on CPU, we use OpenMP nowait
and depend clauses to overlap CPU and GPU executions. Note that these two clauses do not create
new device execution queue, they only allow us to avoid waiting for GPU execution ends before
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executing CPU part (Section 3.5 — Step 8c). Listing 5.7 a pseudo for asynchronous execution
optimization applied to our firs implementation of features detection and description (Listing 5.2).
The depend clause used at line 6, 14, and 16 ensure that the three first kernels (lines 2 to 6) have
finished before starting any work on sparse features candidates arrays on the CPU. We do not need
to add a depend clause to lines 21 and 23 since there is an implicit barrier at the end of the single
region, this leaves enough time for the last two kernels to finish. Features matching and refinement
routines also can be optimized by combining kernel splitting with asynchronous execution since
the points matched are copied into a std::vector after the end computations.

1 |int wvar;

2 |#pragma omp target ...... nowait ......

3 | {/#compute filters results for current left imagex*/}

4 |#pragma omp target ...... nowait ......

5 | {/*compute filters results for current right imagex*/}

6 | fpragma omp target ...... nowait ......

7 | {/#sparse features detection and description for left images#*/}
8 | #pragma omp target ...... nowait ...... depend (out: wvar)

9 | {/#sparse features detection and description for right imagesx*/}
10 | #pragma omp target ...... nowait ......

11 | { /*dense features detection and description for left images#*/}
12 |#pragma omp target ...... nowait ......

13 | { /*dense features detection and description for right imagesx*/}
14 | #pragma omp single

15 |{ //compute sparse features total number and copy them into a small array
16 fpragma omp task depend(in: var)

17 {/+left images lines 19-25 of Listing 5.2/}

18 fpragma omp task depend(in: var)

19 {/#*right images lines 19-25 of Listing 5.2x/}

20 |}

21 |#pragma parallel sections nowait num_threads (2)

22 |{ //compute dense features total number and copy them into a small array
23 #pragma omp section

24 {/*..... */'}

25 #pragma omp section

26 {/*..... %/}

27 |}

Listing 5.7 — Asynchronous execution with first version of features detection and description

5.9.2 Offloading Scene Flow on GPU with OpenACC

As we did with OpenMP, we must add data management instructions by using either data-mapping
clauses, or OpenACC device memory routines, or CUDA API routines, or the tesla:managed flag
of PGI compiler. We use the OpenACC device memory routines for the same reasons evoked above
for OpenMP. Apart from adding device memory allocations and data transfer instructions, the CPU
C++ACCKr/C+4ACCPr versions remain unchanged. We present in the following paragraphs,
different implementations of scene flow offloading on GPU with OpenACC.
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Basic Implementation corresponds to the C++ACCKr (or KrnLpInd) and C++4ACCPr (or
ParLplnd) versions:

e Filters — We adopt the same approach used in OpenMP (parallelizing outer and inner loops).

e Features detection and description — Unlike in OpenMP, outer and inner loops of the first
kernel of our two implementations (line 2 — 3 of Listing 5.2 and 5.3) are parallelized. The
others nested loops remain sequential but we add to them the loop independent seq direc-
tive to avoid that the PGI compiler thinks there are dependencies and abstains from making
certain optimizations like loop unrolling.

o Feature matching and refinement — As we did with OpenMP, the costs routines (Algorithms
7 and 9) are declared as device routines by using the acc routine construct. However, instead
in OpenMP, we parallelize inner loops of these routines with the loop independent seq con-
struct for the matching cost routine and the loop independent collapse(2) for the refinement
cost function.

Loop Fusion Optimization As for OpenMP, loop collapsing combined with manual grid and
block sizes setting may improve performance. Thus we can fuse outer and inner loops of filters, and
those of the first kernel in both first and second implementation of feature detection and description
(Section 3.5 — Step 8a). This optimization versions are called ParLpIndCol and KrnLpIndCol.

Loop Tiling Optimization Instead of merging outer and inner loops in filters and the first kernel
in our two implementations of feature detection and description, we can tile them (Section 3.5 —
Step 8a). The tiled versions are called ParLpIndTil and KrnLpIndTil.

Kernels Fusion Optimization Although there is not overhead in kernel launch in OpenACC,
kernels fusion may improve overall performance by reducing global memory accesses. Thus, we
merging filters into one kernel (Section 3.5 — Step 8b). We also merge the feature detection and
description kernel using the same approach that is used with OpenMP.

Multi-Streaming Optimization Unlike OpenMP, OpenACC async and wait clauses allow mul-
tiple device execution queues creation. This is also called multi-streaming in CUDA. We optimize
filters and features detection and description routines by creating multiple devices execution queues
in order to overlap data transfer with concurrent kernels execution (Section 3.5 — Step 8d). List-
ing 5.8 shows OpenACC multi-streaming implementation of the feature detection and description
example seen in Listing 5.7.

1 |#pragma acc ............ async(l) .....

2 | {/*compute filters results for current left imagex/}
3 |#pragma acc ............ async(2) .....

4 | {/#+compute filters results for current right imagex*/}
5 |#pragma acc ......0..0... async(l) .....
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6 | {/*sparse features detection and description for left images#*/}
7 |#pragma acc ............ async(2) .....

8 | {/#sparse features detection and description for right imagesx*/}
9 |#pragma acc ............ async(l) .....

10 | { /*dense features detection and description for left images#*/}
11 |#pragma acc .....oueu.o... async(2) .....

12 | { /*dense features detection and description for right images#*/}
13 |#pragma parallel sections nowait num_threads (2)

14 | { //compute sparse and dense features total number and copy them into a
small arrays

15 #pragma omp section

16 {

17 #pragma acc wait (1)

18 S e left images

19 }

20 #pragma omp section

21 {

22 #pragma acc wait (2)

23 Ve right images

24 }

25 |}

Listing 5.8 — OpenACC multi-streaming example

5.9.3 Parallelizing Scene Flow with CUDA

Unlike OpenMP and OpenACC where we simply add few instructions to the CPU scalar C+4+
version, accelerating scene flow on GPU with CUDA requires an important rewriting effort. In-
deed, in addition to data transfer management, we must port filters, features detection, description,
matching, and refinement routines from C++ to CUDA. We present in the following paragraphs,
different implementations of scene flow offloading on GPU with CUDA.

Basic Implementation As first implementation, we port the CPU C++OMP version to CUDA.
The Sobel, corner, and blob filters basic implementations are similar to those of the Sobel filter
3 x 3 seen in Section 1.6 - Listing 1.1. In the same way, we port our two implementations (Listing
5.2 and Listing 5.3) of features detection and description algorithms to CUDA. Since the nom-
minimum nom-maximum suppression (Algorithm 3) is done only for a few subset pixels of blob
and corner filters results, we must add supplementary instruction in the kernel code to determine
the index of threads that must perform the computation. As in OpenMP and OpenACC, the cost
functions in matching and refinement are translated to CUDA device callable kernels by using the
__device___identifier.

First Optimization We use shared memory optimization since there are many data reuse in
Sobel, corner, and blob filters. CUDA API provides a SIMD intrinsic implementation of the SAD
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computation, thus we use this instruction instead the scalar version of SAD (lines 4 — 5 of Listing
5.4). Since there is no data reuse in the matching main loop, we do not use the shared memory
here. Unlike the features matching kernel, the Sobel filter results of the current left image are
reused three times, we store the 16 descriptors of each point matched into an array allocated in the
shared memory. This prevents the current thread from reloading this data from the global memory.
Note, however, that there is no reuse of data between threads.

Kernels Fusion Optimization As we did with OpenMP and OpenACC, we merge the shared
memory versions of filters into one kernel. In this new version, pixels of input image are loaded
once into the shared memory and reused by threads in the same block to compute the three filters’
results. We modify the feature detection and description implementations in order to compute
results for left and right image in the same kernel. This results in an increase in the amount of
computation performed but also in the number of the global memory’ accesses since we process 8
inputs (filters’ results of current left and right image) in the same kernel.

Multi-Streaming Optimization We have already mentioned that CUDA API provides routines
that allows the programmer to create multiples device execution queue or streams. As has been
explained in 1.6.1 - optimization 2, concurrent kernels execution may improve application perfor-
mance. Thus, we optimize filters and features detection and description routines by using multi-
streaming as we did with OpenACC.

5.10 Performance Results on GPU

We discussed, in the previous Section 5.9, different options to parallelize the scene flow computa-
tion on GPU with OpenMP, OpenACC, and CUDA. In this section, we present the obtained results
on the Quadro M2000M GPU and the NVIDIA Tegra X1 GPU. We use compilers as well as com-
pilation flags seen in Table 3.3. Note that, all read-only data are marked with the const __restrict__
type qualifier, the scalar replacement has been used as much as possible, and not read-only arrays
are marked with the __restrict__ keyword. The performance, reported on the figures below, in-
clude kernels execution time, temporary GPU memory allocation and deallocation, as well as data
transfer between device and host.

Figures 5.12a, 5.12b, and 5.12c¢ present the performance results obtained on the NVIDIA Quadro
M2000M GPU for OpenMP, OpenACC and CUDA respectively. On the other hand, Figures 5.13a
and 5.13b present the results obtained on the NVIDIA Tegra X1 GPU. We make the following
observations:

e Filters — As previously observed in Chapter 3 (subsection 3.6.1, Listing 3.9), the OpenACC’
parallel and kernels directives have approximatively the same performance. The perfor-
mance gap between OpenMP’ target parallel for variants and its farget teams versions is
really significant.
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Figure 5.12 — Scene flow performance on the NVIDIA Quadro M2000M GPU
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Figure 5.13 — Scene flow performance on the NVIDIA Tegra X1 GPU

— OpenMP — Loops collapsing (Section 3.5 — Step 8a) combined with the manual setting
of the grid and block sizes produce a best performance than the non-collapsed version.
Computing the results of the Sobel, blob, and corner filters in the same loops (Section
3.5 — Step 8b) improve significantly the performance in comparison to the collapsed
and non-collapsed versions. Note that loops are collapsed and the grid and block sizes
have been setted in the filters merged version. Asynchronous execution does not sig-
nificantly improve the overall performance. This result is not surprising since all GPU
operations are simply queuing in a single device execution queue and are executed one
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by one. Typically, optimized parallelization with OpenMP requires 1.34 x the perfor-
mance of the hand-optimized CUDA code for convolution type applications.

— OpenACC — Loop collapsing (Section 3.5 — Step 8a) combined with the manual set-
ting of the grid and block sizes produces typically the same performance as the non-
collapsed version for window-based operations. Thus, we do not plot the results for
the collapsed and tiled versions on the Figure 5.12b. The performance gain with ker-
nels fusion (Section 3.5 — Step 8b) is less significant than with OpenMP. On the other
hand, the multi-streaming (Section 3.5 — Step 8d) significantly improves the overall
performance. Optimized parallelization with OpenACC requires on average 1.13x the
performance of the hand-optimized CUDA code for convolution type applications.

— CUDA — Using shared memory improve significantly the performance of filters. As we
observed with OpenACC, the performance gain with kernels fusion is less significant
than with OpenMP. On the other hand, concurrent kernels execution through multiple
device execution queues creation leads to an improvement of the overall performance.

e Features detection and description — This routine is essentially memory bound. The overall
speedup obtained is not significant with OpenMP while those obtained with OpenACC and
CUDA is great than 1.5x.

— OpenMP — The TgtPrFr version does not produce any speedup, instead it significantly
degrade the kernel performance. The TgtTmDsPrFr also does not produce any speedup
here due to the fact that LLVM/Clang fails to compile the code when both outer and in-
ner loops of the features detection kernel (lines 1 — 2 of Listing 5.3) are parallelized. As
result, only the outer loop is parallelized as we discussed in Section 5.9.1. Surprisingly,
the TgtPrFrCol_Set and TgtTmDsPrFrCol_Set versions produce approximatively the
same performance. Unlike the result observed with filters, kernels fusion does not sig-
nificantly improve the overall performance. This result is not surprising since the kernel
itself is very memory bound, thus the speedup gain can not compensate the latencies
due to memory accesses.

— OpenACC — As previously observed with filters, kernels fusion improve the appli-
cation performance, but the performance gain is not significant for the same reasons
mentioned above. The multi-streaming used with the parallel directive produce the
best performance. However, the performance gap between the multi-streaming ver-
sions of parallel and kernels is not really significant.

— CUDA — In opposite of results observed with filters, kernels fusion significantly im-
proves the overall performance. The multi-streaming also improves the global perfor-
mance. Typically, for memory-bound kernel, OpenMP requires 1.77x of the CUDA
version runtime while OpenACC requires 1.18x on average.

e Matching — The OpenMP’ versions do not produce any significant speedup. This result is
due to the fact that the features matching routine contains several deeply nested loops. This
routine has also many irregular memory access. As result, the LLVM/Clang compiler fails to
generate an efficient code for this kernels. The PGI compiler also fails to generate optimized
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code for this routine despite the fact that we used all optimization clauses provided by the
OpenACC’ standard. We obtained a performance improvement with the CUDA’s version
which uses the CUDA API’ SIMD intrinsic for the SAD computation. For the matching
routine, optimized OpenMP code requires on average 1.66x simple CUDA version runtime
while OpenACC requires 1.16x.

e Refinement — The performance gain with the simple CUDA version is great than optimized
versions of OpenMP and OpenACC. As previously observed with the features matching ker-
nel, using the CUDA API” SIMD intrinsic for the SAD computation improves significantly
this routine performance. For the refinement routine, optimized OpenMP code requires on
average 1.93 x simple CUDA version runtime while OpenACC requires 1.88x. Figure 5.14
shows the best OpenMP, OpenACC, and CUDA speedup with respect to the best CPU per-
formance.

H OpenMP m OpenACC © CUDA
4

3.5
3

2.5

2
15
1
0.5
0

Filters FeatDetecDescrVv2 Matching Refinement

Speedup with respect to the best CPU performance

Figure 5.14 — Best OpenMP, OpenACC, and CUDA speedup with respect to the best CPU perfor-
mance

5.11 Conclusion

In this chapter, we used the parallelization strategy presented in Section 3.5 to parallelize a com-
plex application with OpenMP and OpenACC. We have also ported this application to CUDA. As
previously observed in Chapter 3, OpenACC and OpenMP directives can be combined in various
ways and this has a significant impact on the final performance of the offloaded code. This is spe-
cially true for OpenMP where the farget teams variants are more efficient than the target parallel
for versions in general.
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Programmability

Code parallelization with OpenMP and OpenACC requires less development time than with CUDA
since they do not require to rewrite the CPU code and they are easier to learn and use. However,
these three parallelization approaches have some points in common:

e Code restructuring is necessary in order to maximize parallel execution, reduce latency, and
optimize memory accesses performance.

e Manual true deep copy must be programmed by the user when complex data structures and
lists are used in CPU version.

OpenACC/OpenMP interoperability with CUDA can be useful in some case. For example, the
asynchronous versions of OpenMP data transfer routines are not yet available. When a pro-
gram contains several consecutive data transfers to/from the GPU, memory can be allocated with
OpenMP memory allocation routines while cudaMemcpyAsync can be used for transferring data to
GPU memory. Another example is the setting to zero of all elements of an array. Currents versions
of OpenACC and OpenMP do not provide a memset routine. Thus, the array can be allocated with
OpenMP/OpenACC memory routine and the initialization can be done with cudaMemset instead
of allocating and initializing data on CPU and then copy them to GPU.

Data management can be tricky with OpenMP and OpenACC when using copy clauses in some
situations. Typically OpenMP/OpenACC data motion clauses indicate two things to the compiler:
the number of bytes (generally equal to array size multiply by the size of the array in byte) to
be copied/allocated, and the starting address. The compiler only needs to know the type of the
pointer/array. Consider the array allocated at the line 2 in Listing 5.9. The first kernel (line 4 to
6) will fail at runtime due to an out of bound memory access since only number_of_features x
sizeof(int) bytes have been copied on GPU. The compiler does not generate any warning or error
message to alert the programmer, and this kind of error is often difficult to identify, especially if
the array has been allocated to another function elsewhere. The second kernel (line 7 to 9) not fails
at runtime since we copying the required size.

int data_size = sizeof (features_struct) * number_of features;
int *array = (int*)malloc(data_size); /#fill array on CPU*/
#pragma acc kernels loop copyin(array[O:number_of_ features])
for(int i = 0; 1 < number_of_ features; i++)

{/*use features_candidate_array*/}
#pragma acc kernels loop copyin(array[0: (data_size/sizeof (int))])
for(int i = 0; 1 < number_of_ features; i++)

{/+use features_candidate_array+*/}

0NN N kW=

Listing 5.9 — Example of common user error with OpenMP/OpenACC copy clauses
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Performance

OpenMP and OpenACC programs can achieve performance comparable to that of non-complicated
optimized CUDA codes. However, when the offloaded region code is computed/memory bound
and contain several nested loops (e.g the stereo disparity SDisp kernel seen in Chapter 3, the
features matching kernel), LLVM/Clang and PGI compiler quickly reach their limit. In such cases,
CUDA must be used. We observed that OpenACC provides the best performance than OpenMP in
general.

Ph.D Report 171 Rokiatou DIARRA



CHAPTER 5. USE CASE: A STEREO-VISION BASED VISUAL ODOMETRY
APPLICATION

Ph.D Report 172 Rokiatou DIARRA



Chapter 6

Conclusion

For higher power efficiency and computation throughput purpose, all computing systems, from
mobile to supercomputers, are becoming increasingly heterogeneous and massively parallel. Mod-
ern heterogeneous systems combine on the same integrated circuit different types of processors
including a host CPU, one or more GPUs, and others accelerators. GPUs can achieve significant
performance. However, achieving this performance requires to fully exploit the underlying archi-
tecture. In order to take advantage of GPUs computing potential, legacy sequential applications
must be modified to expose as much parallelism as possible.

Parallelizing an application on GPU requires to find the best trade-off between the programming
cost, the final code’s portability and the speedup gain. Low-level languages, strongly related to
the architecture, allow expert programmers to hand-tune their codes to exploit the full capabilities
of the GPU. However, the programmer must have substantial knowledge of GPUs architecture in
order to achieve good performance. On the other hand, directive-based programming models aim
to provide interfaces for exploiting the power of GPUs in a more productive and portable manner.
Theoretically, OpenMP and OpenACC allow programmers to provide directives to the compiler
without requiring significant modification or adaptation of underlying code itself. It happens from
our experiments that without enough information, the compiler is not able to do the optimizations
as well as the user who is an expert in both the ported application and the architecture. Even though
the compiler can apply some optimizations automatically, it may not achieve the expected speedup
as the compiler does not have a full view of the whole application. Because of these reasons, there
is generally a performance gap between the codes accelerated with OpenACC/OpenMP and those
hand-optimized with CUDA/OpenCL. Therefore, more optimization research is required in order
to achieve competitive performance with OpenMP and OpenACC. The main contribution of this
work is to provide feedback that will help programmers for speeding up efficiently their legacy
sequential codes on GPU with OpenMP and OpenACC. To reach this goal, several research issues
have been discussed in this work. The contributions of this dissertation are summarized as follows:

1. We analyzed and compared the main features of OpenMP and OpenACC. This allows us
to provide a clearer understanding of these two standards. Indeed, it is very important to
understand what each directive does so that the programmer can give as many information
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as possible to the compiler, especially when using OpenMP. We also saw that although being
similar, OpenMP and OpenACC are quite different. However, it is possible to translate
between them, but the process may not be automatic.

2. We studied the suitability of OpenMP and OpenACC for GPUs programming in compar-
ison to features available in CUDA. We saw that basics optimizations available in CUDA
(e.g. thread management, asynchronous execution, and dynamic parallelism) can be done
with OpenMP/OpenACC. However, low-level threads inter-synchronization is not currently
available neither in OpenACC nor in OpenMP. Although both OpenACC and OpenMP con-
tinue to evolve and offer a large set of features, some optimizations (e.g. shared, texture and
constant memory accesses, SIMD intrinsics, etc.) still require the use of low-level languages.

3. We analyzed the PGI compiler implementation of OpenACC and the OpenMP 4.5 support
in LLVM/Clang in order to understand how these two compilers interpret OpenACC and
OpenMP features. We explored different performance improvement opportunities with Ope-
nACC and OpenMP by parallelizing synthetic kernels, and thirty applications with Ope-
nACC, OpenMP, and CUDA. It has been shown the directives can be combined in various
ways and this has a significant impact on the final performance of the offloaded code. This is
specially true for OpenMP where the target teams variants are more efficient than the rarget
parallel for versions. It is highly recommended to combine offloading directives with loop
parallelization constructs and to explore optimization techniques (e.g. loop fusion, tiling, and
scheduling, kernels fusion, asynchronous execution, etc.) in order to achieve the best per-
formance. We compared OpenACC parallel and kernels construct and identified some code
patterns where the kernels directive must be used instead of parallel and vice versa. Data
movement between CPU and GPU memory can be costly, it is the user’s responsibility to
choose the necessary data management method (copy clauses, OpenMP/OpenACC memory
routines, or CUDA APIs) in order to optimize data transfer cost.

4. Caching read-only data in the L1 cache may improve GPU application performance. Since
the compilers might not always be able to detect that the read-only condition is satisfied
for some data because of pointers aliasing issues, we proposed two static analysis tools that
perform automatically at source level type qualifier (restrict keyword) insertion and scalar
promotion to solve aliasing issues and help compilers to put more data in L1 cache and
registers. We evaluated our tools on the PolyBench benchmark suite.

5. We accelerated a visual odometry application with OpenMP, OpenACC, and CUDA. We saw
that code parallelization with OpenMP and OpenACC requires less development time than
with CUDA since they do not require to rewrite the CPU code and they are easier to learn
and use. However, these three parallelization approaches have some points in common: code
restructuring is necessary in order to maximize parallel execution, reduce latency, and op-
timize memory accesses performance; manual true deep copy must be programmed by the
user when complex data structures and lists are used in CPU version. OpenACC/OpenMP
interoperability with CUDA is useful in some cases (e.g. setting all elements of an array
to a specific value and asynchronous data transfer). OpenMP and OpenACC programs can
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achieve performance comparable to that of non-complicated optimized CUDA codes. How-
ever, when the offloaded region code is computed/memory bound and contain several nested
loops, LLVM/Clang and PGI compiler, as well as OpenMP and OpenACC, features quickly
reach their limit. In such cases, CUDA must be used. We observed that OpenACC provides
the best performance than OpenMP in general.

In the future work, based on our application porting experiences, lots of research still can be done to
further simplify GPU programming and improve the performance using OpenMP and OpenACC.
Currently, it is the user’s responsibility to specify which computation regions are offloaded to the
device. We plan to extend our static analysis tools to do some analysis for all loop nests and then
calculate the computational intensity for each of the loop nests, and finally decide whether it is
profitable to offload those loop nests. We plan to add to our static analysis tools a supplementary
module that should be able to indicate to the user with parallelization strategy should be used based
on the code pattern analysis. Currently, our tools can analyze only C code, the C++ frontend for
Frama-C is under development, thus in future work, we can update our tools in order to be able
to analyze C++ code. Concerning the data part, the programmer’s burden can be further reduced
if the compiler can analyze the definition and use of all data and give some hints to the user on
how the data directives should be added. In addition, since one of the goals of OpenACC and
OpenMP is the portability among different types of accelerators, the current directives set does not
fully utilize all hardware features of GPU. Therefore the compiler may perform some GPU specific
optimizations when applying the loop transformation underneath.
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Appendix A

Résumé Substanciel en Francais

Dans le présent chapitre, nous fournissons une synthese de notre travail en francais. Nous com-
mencons par introduire la problématique adressée dans ce travail ainsi que nos motivations. Nous
discuterons également des objectifs de ce travail de recherche. Ensuite, nous présenterons les
grandes lignes des différents travaux réalisés au cours de cette these. Nous présenterons également
un récapitulatif des principaux résultats obtenus ainsi que quelques conclusions.

A.1 Contexte, Problématique et Motivations

Les premiers ordinateurs n’avaient pas de processeurs massivement parallele. Ainsi pendant
plusieurs années, les logiciels avaient été principalement développés pour les architectures de type
286 d’Intel. Cela a fonctionné pendant de nombreuses années, car les progres technologiques per-
mettaient d’améliorer les performances des processeurs sans modifier 1’architecture de maniere
significative. Cependant, ces progres avaient ralenti et I’obtention de gain de performance en fonc-
tion du nombre de transistors intégrés était devenue un objectif critique [5, 6]. Ainsi d’autres méth-
odes avaient été proposées pour continuer a améliorer les performances des processeurs. L'une de
ces propositions était le calcul parallele. Les architectures paralleéles peuvent aller de plusieurs pro-
cesseurs complexes a des milliers de processeurs plus simples fonctionnant en parallele. De nos
jours il existe plusieurs fabricants d’architectures paralleles. Ainsi, le marché regorge de toutes
sortes processeurs, allant de cceurs de calcul peu nombreux mais rapides (comme c’est le cas
dans les CPU) aux processeurs dotés de milliers de cceurs plutot lents (par exemple les GPU). On
retrouve également des processeurs spécialement congus pour un objectif spécifique. Ainsi cours
de la derniere décennie, il y a eu une transition continue des processeurs multicceurs vers des archi-
tectures massivement paralleles. Cette transition a ét€ mise en évidence par I’utilisation croissante
des processeurs graphiques (appelés GPU) en tant qu’accélérateurs de calcul a usage général.

En outre, les architectures matérielles sont constamment modifiées et améliorées, introduisant de
nouvelles fonctionnalités, des fonctionnalités modifiées ou supprimées. NVIDIA est I’'un des gros
fournisseurs de GPU. Les GPU NVIDIA ont une hiérarchie de mémoire complexe avec une série
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de différents caches. Au cours des cinq dernieres générations de GPU NVIDIA, de nombreux
changements importants ont été appliqués a cette hiérarchie de mémoire, de sorte que le code écrit
pour les générations précédentes ne fonctionne généralement pas aussi efficacement que sur les
générations plus récentes. Par exemple, les architectures Fermi de NVIDIA permettent aux util-
isateurs d’ajuster de maniere dynamique la quantité de mémoire dédiée au cache L1 pour chaque
fonction (ou kernel) s’exécutant sur la GPU. L’architecture Kepler avait ajouté plus d’options pour
I’ajustement de la taille de ce cache LL1. Dans la génération Maxwell, cette fonctionnalité a été
entiecrement supprimée. Ainsi, dans trois générations consécutives des GPU NVIDIA, le com-
portement a été constamment modifié. Un autre exemple est celui des processeurs vectoriel dans
les CPU. Des extensions vectorielles avancées (AVX) 1.0 ont été ajoutées dans les processeurs
Intel I7 — 2700 K tandis que les processeurs 17 — 47657 ont le format AVX 2.0. AVX n’étant pas
compatible avec les versions antérieures, les instructions AVX 2.0 ne peuvent pas €tre utilisées sur
des processeurs plus anciens. Les programmeurs doivent donc vérifier explicitement les capacités
du processeur sur lequel leur logiciel est exécuté.

Les architectures massivement paralleles regroupant un ou plusieurs accélérateurs (par exemple les
GPU, les Xeon Phi d’Intel, les DSP, les FPGA, ...) en plus du CPU sur une méme puce sont de plus
en plus utilisées. La situation actuelle des systemes embarqués est marquée par deux événements
importants: 1’explosion du parallélisme et la montée en puissance de systemes hétérogenes. Par
exemple, dans le contexte des systemes d’aide a la conduite, la nécessité d’un traitement complexe
de la reconstitution de I’environnement amene plusieurs fabricants a proposer des circuits intégrant
différents processeurs. Ceux-ci contiennent généralement entre 4 et 16 processeurs ARM, un ou
plusieurs GPU, DSP, processeur vectoriel et processeur spécialisé. Par exemple, la carte intégrée
NVIDIA Tegra X1 contient une GPU et 8 processeurs ARM (dont 4 Cortex A57 et 4 Cortex Ad3),
le Soc TDA?2 de Texas OMAP contient 4 processeurs ARM (dont 2 Cortex A15 et 2 Cortex M4), un
DSP, une GPU IVA HD et 4 processeurs analytiques EVE. Ainsi, tous les systemes informatiques,
du mobile au super calculateur, deviennent des ordinateurs massivement paralleles et hétérogenes
pour une efficacité énergétique et un débit de calcul supérieurs.

Bien que les architectures hétérogenes ont théoriquement une puissance de calcul impressionnante
avec une consommation électrique raisonnable, leur programmation de maniere efficace reste un
probleme ouvert [7]. La puissance de traitement parallele fournie par des architectures hétérogenes
s’accompagne de la nécessité d’écrire un code efficace permettant a tous les processeurs de ré-
soudre un probleme ensemble. En effet, la diversité des composants de systemes hétérogenes et
les différents niveaux de parallélisme rendent leur programmation basée sur des outils et méme des
paradigmes totalement différents (intrinsics SIMD, OpenMP, OpenACC, CUDA, OpenCL, etc.).
Un autre défi de I’informatique hétérogene consiste a répartir la charge de travail entre les différents
ceeurs afin d’obtenir les meilleures performances avec la plus faible consommation d’énergie. 11
n’existe pas de mécanisme de parallélisation automatique et le portage d’une application complexe
sur de tels systemes peut représenter des mois de travail.

Les GPU peuvent atteindre des performances significatives pour certaines catégories d’applications
(par exemple les algorithmes de vision par ordinateur et 1’algebre linéaire dense). Néanmoins, cette
performance ne repose pas seulement sur un effort important de programmation et d’analyse du
code, mais également sur une bonne connaissance de 1’architecture des GPUS. Afin de tirer parti
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du potentiel informatique des GPUs, des modifications importantes doivent €tre apportées aux
applications séquentielles. Les API de bas niveau existantes telles que CUDA et OpenCL obligent
généralement les utilisateurs a étre des programmeurs experts et a restructurer le code en grande
partie. De plus, CUDA et OpenCL offrent un certain nombre de fonctionnalités d’optimisation des
performances, car I’architecture est directement accessible a I’utilisateur, ce qui permet d’obtenir
d’excellentes performances, mais ajoute de la complexité pour les développeurs d’applications.
Les codes CUDA et OpenCL sont généralement optimisés pour une architecture spécifique. Cela
conduit a un processus de développement logiciel moins productif et plus sujet aux erreurs qu’il
est difficile d’adopter par le HPC et les applications en croissance rapide pour les marchés des
véhicules intelligents.

Une autre approche consisterait a utiliser des modeles de programmation de haut niveau basés
sur des directives, tels qu’OpenACC [£] et OpenMP[4], pour paralléliser des applications sur des
accélérateurs. Ce genre de modeles de programmation permettent a I’ utilisateur d’insérer les direc-
tives dans un code source Fortran ou C/C++- existant, permettant ainsi a une partie de leur code de
s’exécuter sur I’accélérateur. A ’aide de directives, les programmeurs peuvent indiquer aux com-
pilateurs d’effectuer certaines transformations et optimisations sur les régions de code annotées.
L utilisateur peut insérer des directives de maniere graduelle pour paralléliser et optimiser un pro-
gramme, permettant ainsi une migration productive pour les applications héritées. Le principal
avantage de 1’approche basée sur les directives est qu’elle offre une abstraction de programmation
de haut niveau simplifiant ainsi la maintenance du code et améliorant la productivité. En outre,
les modeles de programmation basés sur des directives peuvent offrir un bon compromis entre la
productivité, la portabilité et la performance.

Depuis I’apparition de la premiere version d’OpenACC dans 2011 et de celle d’OpenMP 4.0 en
juillet 2013, de nombreux travaux ont été réalisés pour les évaluer en termes de performance, de
portabilité et de productivité. De nombreux travaux ont également proposé de nouvelles direc-
tives et clauses pour aborder certaines fonctionnalités qui ne sont actuellement pas proposées par
OpenACC et OpenMP, mais également des outils pour aider les programmeurs a paralléliser leurs
applications avec ces deux standards. Cependant, 1’écart de performances entre les programmes
accélérés avec OpenACC et OpenMP et ceux parallélisés avec les langages de bas-niveau comme
CUDA et OpenCL indique qu’il est nécessaire de poursuivre les travaux de recherches afin de
réduire cet écart.

A.2 Objectifs

OpenACC et OpenMP étant des modeles de haut niveau, les compilateurs traduisent générale-
ment les directives d’OpenMP/OpenACC en un langage de bas niveau (par exemple 1I’assembleur,
le PTX, CUDA, ou OpenCL). CUDA et OpenCL, deux langages de bas niveau, permettent a
I’utilisateur d’appliquer 1’optimisation de son choix. Mais cela nécessite que 1’utilisateur com-
prenne parfaitement 1’architecture sous-jacente afin que les optimisations appliquées puissent
utiliser efficacement I’architecture. OpenACC et OpenMP nécessitent donc que le compilateur
applique ces optimisations automatiquement. Toutefois, faute d’informations suffisantes, le com-
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pilateur n’est pas en mesure d’effectuer les optimisations qu’un utilisateur expert (de 1’application
a paralléliser et de I’architecture architecture cible) pourrait le faire. Méme si le compilateur peut
appliquer automatiquement certaines optimisations, il peut ne pas atteindre 1’accélération prévue,
car il n’a pas une vue complete de I’application. Pour toutes ces raisons 1a, il existe générale-
ment un écart de performance important entre les codes accélérés avec OpenACC/OpenMP et
ceux optimisés manuellement avec CUDA/OpenCL. Ainsi, I’objectif principale de notre travail est
d’identifier les principales causes de ces écarts de performance et d’indiquer un certain nombre
d’optimisations permettant de réduire ces écarts de performance. Cela permettrait aux futurs pro-
grammeurs d’accélérer efficacement leurs applications sur GPU en utilisant les modeles de haut
niveau basés sur des directives. Pour atteindre cet objectif, plusieurs travaux de recherche ont été
effectués dans le cadre de cette these. Nous décrivons dans les sections les grandes lignes de ces
travaux.

A.3 Analyse des Standards OpenMP et OpenACC

Pour aboutir a des gains de performance intéressants avec OpenMP et OpenACC, il est crucial de
bien comprendre les implications de chaque directive. Ainsi, nous allons analyser dans cette sec-
tion les deux standards. Nous les comparerons également pour bien comprendre les différences et
similarités existant entre OpenMP et OpenACC afin d’aider les utilisateurs de ces deux standards a
porter efficacement leurs programmes d’OpenMP vers OpenACC et inversement. Nous étudierons
également la question de leur adaptabilité pour la programmation des GPUs.

OpenMP

OpenMP est sans aucun doute le standard le plus utilis€ depuis plusieurs années pour la program-
mation parallele des processeurs a mémoire partagée. OpenMP 4.0[43] a étendu le modele de
programmation de mémoire partagée OpenMP pour prendre en charge les accélérateurs (GPU, In-
tel Xeon Phi, ...) en introduisant de nouvelles directives permettant de balancer une tache sur un
accélérateur. Depuis la publication d’OpenMP 4.0 en juillet 2013, OpenMP n’a cessé d’évoluer.
La version actuelle est la 5.0[4] qui a été publiée en novembre 2018.

Dans le modele d’exécution d’OpenMP pour les accélérateurs, le programme principal s’exécute
sur I’hote CPU et ce dernier peut déléguer I’exécution de certaines parties a I’accélérateur. En regle
générale, chaque périphérique possede ses propres fils d’exécution (ou threads), qui sont distincts
des threads hotes ou de ceux des autres accélérateurs. Concretement, lorsque le thread local du
CPU rencontre une directive target, il crée une nouvelle tache qui sera exécutée sur I’accélérateur
cible. Cette nouvelle tiche englobe le bloc code qui vient juste apres la directive. Ensuite, le
thread local du CPU alloue de la mémoire sur I’accélérateur cible, initie le transfert des données,
transfere le code de la générés a 1’accélérateur, passe les arguments de la tiche générée (ou ker-
nel), place le kernel dans la file d’attente de 1’accélérateur cible, puis attends que ce dernier ait fini
d’exécuter la tache, puis rapatrie les résultats sur la CPU et libere la mémoire allouée. Le program-
meur peut donner plus de détails (comme I’identifiant de 1’accélérateur cible, comment est-ce que

Ph.D Report 180 Rokiatou DIARRA



APPENDIX A. RESUME SUBSTANCIEL EN FRANCAIS

les variables scalaires doivent étre copiées sur 1’accélérateur, les tableaux a copier sur ou depuis
I’accélérateur, s’il faut bloquer ou non le thread local CPU jusqu’a la fin de I’exécution de la tache
sur ’accélérateur, etc.) au compilateur au travers des clauses que la directive farget accepte.

La directive target implique la création d’un seul thread sur 1’accélérateur et cela n’a évidem-
ment pas de sens étant donné que I’accélérateur a des centaines de processeurs disponibles. Ainsi,
OpenMP fournit d’autres directives que le programmeur peut utiliser pour indiquer au compilateur
de créer plusieurs threads et comment repartir le travail entre ces threads. Les principales directives
sont reams, distribute, et le traditionnel parallel for. La directive feams indique au compilateur de
créer un certain nombre de groupe de threads. La directive distribute informe le compilateur qu’il
doit repartir de facon égale les iterations de la boucle, associée a cette direction, entre les groupes
de threads qu’il a créé a partir de la directive teams. Enfin la directive parallel for indique que tous
les threads de tous les groupes doivent participer a I’exécution de la tiche générée.

Le modele de mémoire adoptée par OpenMP pour la programmation des accélérateurs suppose que
I’hote CPU et I’accélérateur peuvent avoir des mémoires distinctes. Par conséquent, le transfert de
données entre les mémoires de I’hote CPU et de 1’accélérateur peut étre explicitement géré. Ainsi,
lorsque le thread local CPU rencontre la directive farget il crée un environnement mémoire qui
couvre le bloc de code suivant cette directive. Lorsqu’une tache est générée pour un périphérique
cible, les références a la variable d’origine de 1’hdte font référence a la variable correspondante
dans I’environnement de données du périphérique. Dans ce contexte, si une variable d’origine n’est
pas actuellement mappée et qu’aucune variable correspondante n’existe dans 1’environnement de
données du périphérique, I’acces a la variable d’origine peut entrainer une erreur d’acces mémoire
et entrainer le crash du programme. OpenMP fournit un certain nombre de directives, clauses et
appels de fonctions pour la copie des données vers ou depuis la mémoire de I’accélérateur cible.

OpenACC

OpenACC|&] est lui aussi un modele de programmation parallele basé sur des directives. Con-
trairement 2 OpenMP, OpenACC a été spécialement congu des la base pour la programmation des
accélérateurs. Sa premiere version 1.0 est sortie en 2011. La version actuelle est le 2.7. Ope-
nACC utilise le méme modele d’exécution et de mémoire qu’OpenMP. Contrairement a OpenMP
ou seule la directive target permet le balancement d’une tache sur I’accélérateur, Open ACC fournit
trois directives permettant de générer des taches pour le périphérique cible.

La premiere directive qu’OpenACC fournit pour le balancement d’une tache sur 1’accélérateur
est parallel. Avec cette directive, le programmeur peut prescrire explicitement les optimisations
a faire lors de la génération de la tache a balancer sur I’accélérateur. Par contre avec la directive
kernels, le compilateur est seul maitre du choix de la meilleure stratégie d’optimisation pour le bloc
de code auquel s’applique la directive. Enfin, avec la troisieme directive serial, le programmeur
indique au compilateur de générer une tache qui sera exécutée par un seul thread sur I’accélérateur.
Tout comme les directives d’OpenMP, kernels, parellel et serial acceptent un certains nombres de
clauses que le programmeur peut utiliser pour fournir davantage d’information au compilateur.

En plus des directives kernels, parellel et serial qui permettent d’indiquer au compilateur les parties
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qui doivent étre exécutées sur un accélérateur, OpenACC fournit également la directive loop qui
permet de fournir au compilateur des informations sur les boucles imbriquées dans la tache cible
et I’aider dans leur parallélisation.

OpenACC fournit lui aussi de nombreuses directives, clauses et appels de fonctions pour copier
des données dans ou depuis la mémoire de 1’accélérateur cible.

Comparaison entre OpenMP et OpenACC

OpenMP et OpenACC, bien que similaires, sont encore tres différents dans leur approche. L’'une
des différences les plus significatives entre OpenMP et OpenACC est leur philosophie. OpenMP
est prescriptive car I’API OpenMP couvre uniquement la parallélisation dirigée par 1’utilisateur et
non la parallélisation automatique entreprise par le compilateur. Dans OpenMP, le programmeur
doit spécifier explicitement quelles régions de code doivent étre parallélisées et comment cela doit
étre effectué. La méme chose doit également étre faite pour les boucles imbriquées dans une
région parallele. Considérons le fragment de code présenté dans Listing A.1. Si nous utilisons
uniquement farget (a la ligne 1), la boucle sera exécutée par un seul thread sur I’accélérateur. En
ajoutant feams, un certain nombre de groupe de threads sera créé, mais seul le thread principal
de 1’accélérateur exécutera la boucle. En insérant distribution, les itérations de la boucle seront
réparties entre les différents groupes de threads créés, mais seul le thread chef de chaque groupe
exécutera les itérations assignées a son groupe. Les autres threads d’un groupe ne participeront a
I’éxécution que si nous ajoutons la directive parallel for.

1 | #pragma omp target teams distribute parallel for is_device_ptr(...)
2 |#pragma acc kernels loop independent deviceptr(...)
3 |for(int x = 1; x < h — 1; x++) {/*........ */}

Listing A.1 — OpenMP and OpenACC philosophical difference

Par contre, OpenACC est descriptive. En effet, le modele de programmation OpenACC est un
parallélisme guidé par I’utilisateur, c’est-a-dire qu’il permet au programmeur de donner le plus
d’information possible au compilateur pour I’aider a choisir la stratégie de parallélisation adéquate.
L’idée de base du modele de programmation OpenACC est qu’il est préférable que 1’utilisateur
décrive le parallélisme et le mouvement des données de maniere plus générale via des directives
afin que le compilateur OpenACC puisse avoir plus de liberté pour mapper le parallélisme sur le
matériel. Par conséquent, le compilateur OpenACC a davantage de responsabilités en termes de
performances et la qualité du compilateur peut grandement affecter les performances des applica-
tions. Avec OpenACC, pour que la boucle de Listing A.1 soit completement parallélisée, il suffit
d’ajouter le loop independent a la directive kernels.

OpenMP et OpenACC permettent a I'utilisateur de spécifier I’accélérateur cible pour différentes
régions de code dans la méme application et au sein d’une méme unité de compilation. Cela
peut étre fait en utilisant la clause if pour les deux, la clause device pour OpenMP et la clause
device_type pour OpenACC. C’est une caractéristique importante de ces deux standards car elle
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permet a 'utilisateur d’avoir une source unique pour 1’hote et les accélérateurs et d’assurer la
portabilité.

OpenACC fournit la directive textit cache pour spécifier des éléments de tableau ou des sous-
tableaux a charger dans le cache le plus proche des coeurs de calcul pour le corps d’une boucle,
tandis que la clause/directive allocate d’OpenMP 5.0 devrait permettre d’accomplir cette méme
fontionalité. Contrairement a OpenMP, la version actuelle d’OpenACC ne fournit aucune clause
ou directive permettant d’accéder a d’autres espaces mémoire (mémoire constante des GPU, par
exemple).

Il existe également de nombreuses différences techniques entre les deux spécifications, la premiere
étant la directive parallel qui lance une exécution parallele sur un accélérateur dans OpenACC,
tandis que dans OpenMP, il crée une équipe de threads qui exécutent une region de code sur 1’hote
sauf si elle est appelé a I’intérieur d’une directive target. La directive teams d’OpenMP est équiv-
alente a la construction kernels d’OpenACC uniquement s’il existe une boucle unique imbriquée
dans la kernels region. OpenMP 5.0 a introduit la directive loop, mais il faudra attendre les implé-
mentations d’OpenMP 5.0 pour voir si les deux directives loop sont équivalentes.

A.3.1 Adaptabilit¢é d’OpenMP et OpenACC pour la programmation des
GPUs

Correspondance avec I’hiérarchie des threads en CUDA En CUDA les threads sont d’abord
regroupés par groupe de 32, appelé warp. Les warp forment des blocs et les bocs des grilles. En
OpenACC aussi il y a trois niveaux dans 1’hiérarchie des threads a savoir gang, vector et worker.
Ainsi, en OpenACC, gang correspond a la grille en CUDA, vector au bloc et worker au warp. Par
contre en OpenMP, il n’y a que deux niveaux dans I’hiérarchie des threads a savoir num_teams
et thread_limit. Ainsi en OpenMP num_teams correspond a la grille en CUDA et thread_limit au
block. Tout comme en CUDA, les gang, vector et worker en OpenACC peuvent étre configurés
en 1D, 2D ou 3D. Mais cela n’est pas possible avec OpenMP ol num_teams et thread_limit ne
peuvent étre configurés qu’en 1D.

Synchronisation OpenMP dispose d’un ensemble de directives pour la synchronisation des
threads sur I’hdte CPU, telles que critical, barrier, taskwait, taskgroup, flush, and ordered. La
clause depend d’OpenMP permet la synchronisation entre différentes kernels, mais la synchro-
nisation entre les threads au sein d’un groupe de threads ou entre différents groupes n’est pas
disponible. La création de multiples files d’attente d’exécution de I’accélérateur n’est pas non plus
disponible dans les versions actuelles d’OpenMP. OpenACC non plus ne fournit pas de mécanisme
de synchronisation intra-groupe. Cependant, la synchronisation entre les groupes peut €tre possi-
ble, car il existe une barriere implicite a la fin d’une région kernels ou parallel. La clause async
d’OpenACC permet la création de multiples files d’attente d’exécution de périphériques tandis que
la clause wait permet de synchroniser différentes régions kernels ou parallel. Concretement, ni
OpenMP ni OpenACC ne fournissent a ce jour de directives, ou clauses ou appels de fonctions
correspondant aux fonctions de synchronisations (ex: __syncthreads(), __syncwarp) disponibles
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dans CUDA.

Exécution asynchrone entre I’h6te CPU et la GPU Afin d’empécher le thread d’attendre la
fin d’une opération GPU (transfert de données ou exécution d’un kernel) avant d’exécuter les in-
structions suivantes, CUDA fournit des versions asynchrones de ces fonctions de transfert de don-
nées. OpenACC fournit également des versions asynchrones de ses routines de copie de données,
contrairement a OpenMP. De plus, les clauses OpenMP nowait et OpenACC async peuvent &tre
utilisées pour éviter que le thread de I’hote n’attende 1’achevement d’une tiche GPU. Si une autre
partie du code nécessite les résultats d’un code déchargé avec les clauses asynchrones, la clause
depend (en OpenMP) et la directive/clause wait (en OpenACC) peuvent étre utilisées a des fins de
synchronisation.

Création de plusieurs file d’attente d’exécution sur la GPU  Egalement appelé multi-streaming
en CUDA, la clause async d’OpenACC permettent de créer plusieurs files d’attentes d’exécution et
la directive/clause wait permet de les synchroniser. Par contre en OpenMP, le multi-streming n’est
pas possible avec les versions actuelles.

A.4 Méthodologie de parallélisation avec OpenMP/OpenACC

Nous avons proposé une approche de parallélisation avec OpenMP et OpenACC pour aider les
programmeurs a tirer profit de ces deux standards. Nous avons appliqué la méthodologie pro-
posée sur 30 applications et kernels pris dand les suites de benchmark Rodinia et PolyBench afin
d’évaluer les performances d’OpenACC et OpenMP en comparaison de celles de CUDA. Les ver-
sions OpenACC ont été compilées avec le compilateur de PGI tandis que les versions OpenMP
ont été compilées avec le compilateur LLVM/Clang. Quand aux versions CUDA, nous avons ut-
lisé le CUDA toolkit version 9.1. Nous avons effectué nos évaluations de performance sur deux
cibles: un PC portable ayant une CPU Intel I7 et une GPU NVIDIA Quadro M2000M; un carte
embarqué NVIDIA Tegra X1 ayant 8 processeurs ARM regroupé par lot de 4 et une GPU NIVDIA
de génération Maxwell. Nous avons essayé plusieurs combinaisons des directives d’OpenACC et
OpenMP afin de voir quel impact la maniere d’utiliser les directive peut avoir sur les performances
d’une application.

Suite aux résultats obtenus nous avons fait les constats suivant:

e Avec OpenMP ou OpenACC, les directives peuvent étre combinées de plusieurs manieres et
cela a un impact significatif sur les performance du code exécuté sur la GPU.

e C’est insuffisant d’insérer simplement les kernels or parallel or target pour indiquer au com-
pilateur d’une zone de code sera exécuté sur la GPU.

e Bien que les compilateurs actuels sont efficace, il est crucial que 1’utilisateur leurs fournisse
le plus d’information possible afin de les aider a paralléliser le code au mieux. Les directives
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de balancement sur GPU (ex: kernels, parallel, serial, and target) doivent €étre combinées
avec les directives relatives a la parallélisation des boucles (ex: loop, teams distribute, par-
allel for).

e [’exploration de plusieurs stratégies d’optimisation (ex: privatisation des variables, indiquer
I’absence de dépendence de données en OpenACC, fusion des boucles, fusion des kernels,
division des boucles en plus petites, exécution asynchrone, indiquer le nombre de threads a
créer, ...) permet d’aboutir a de meilleures performance avec OpenMP et OpenACC.

e Il y a généralement un surcofit 1ié au lancement des taches sur la GPU avec OpenMP, mais
pour la plupart des applications, ce n’est pas un gros probleme si le kernel a une charge de
travail suffisante.

e Les clauses de copies de méme que les appels de fonctions de transfer de données en
OpenMP et OpenACC consomment moins de temps que les fonctions CUDA. Ainsi,
I’utilisateur doit utiliser de préférence les clauses de copies ou a défaut les fonctions de
gestion de mémoire fournies par OpenMP et OpenACC.

e Un code manuellement bien optimisé en CUDA reste en général plus performant que les
versions OpenMP et OpenACC. Cela est spécialement vrai pour les taches ayant une forte
intensité arithmétique et contenant plusieurs boucles profondement imbriquées. Dans ce
genre de cas les compilateurs d’OpenMP et OpenACC ne réussit qu’a paralléliser les boucles
les plus externes.

A.5 Propostion de deux outils d’analyse statique pour opti-
miser I’utilisation des caches

Les GPUS ont plusieurs types de mémoires (ex: mémoire globale, cache L1, cache L2, mémoire
partagée, les registres, ...). Sur les GPU Maxwell, les acces a la mémoire locale ou globale, y com-
pris les débordements de registre temporaires sont mis en cache L2. Les accés mémoire globaux
sont toujours mis en cache dans la L2. Toutefois, les données en lecture seule pour toute la durée
de vie du kernel peuvent également &tre mises en cache dans le cache unifié L1/texture. La mise
en cache des données en lecture seule dans la L1 peut améliorer les performances des applica-
tions. Néanmoins, les compilateurs ne peuvent pas toujours détecter que la condition de lecture
seule est satisfaite pour certaines données en raison du probleme d’aliasing des pointeurs. Bien
que I'utilisation de L1 et de L2 soit contrdlée par le matériel et que le programmeur ne puisse pas
la gérer, il peut marquer les pointeurs utilisés pour charger des données en lecture seule avec les
qualificatifs const et __restrict__. Nous avons ainsi développé deux outils d’analyse statique, I’un
permettant I’insertion automatique du mot clé __restrict__ et I’autre effectuant le remplacement
par scalaire. Nous avons évaluer les performances des deux outils sur le benchmark PolyBench.
Les résultats indiquent:
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A.6 Application d’OpenMP et OpenACC sur une application
complexe d’odométrie visuelle

Les suites de benchmarks ne sont en général pas aussi complexes que les applications réelles.
Ainsi nous avons appliqué la méthodologie de parallélisation proposée a une application réelle
d’odométrie visuelle. La connaissance de I’état de mouvement d’un véhicule est essentielle pour
évaluer le risque de collision dans les systemes avancés d’aide a la conduite (ADAS) ou la conduite
autonome. L’odométrie visuelle (VO) est I'une des techniques robustes utilisées pour la localisa-
tion de véhicules [98, 99]. La VO consiste a estimer la position d’un agent (par exemple, un
véhicule, un humain ou un robot) en utilisant uniquement un flux d’images acquis a partir d’une ou
de plusieurs caméras embarquées sur cet agent [ 00]. En effet, les images contiennent une quantité
suffisante d’informations significatives (couleur, texture, forme, etc.) pour permettre 1’estimation
du mouvement d’une caméra dans un environnement statique.

L’algorithme d’odométrie visuelle [102] que nous avons choisi de paralléliser comporte plusieurs
regions de codes a forte intensité arithmétique. Cet algorithme est considéré comme I'un des
algorithmes VO les plus efficaces et les plus robustes, largement cité dans la littérature. En effet,
le nombre de citations de cet algorithme est estimé a 745 sur Google Scholar et a 345 sur IEEE
Xplore au moment de la rédaction de cet document. Le pipeline de cet algorithme comprend quatre
étapes: le calcul du flux de scene, I’estimation de mouvement, la mise en correspondance stéréo et
la reconstruction 3D. Nous avons profilé cet algorithme et découvert que les parties qui prennent le
plus de temps sont le calcul du flux de scene et la mise en correspondance stéréo. Par conséquent,
ce sont ces deux €tapes que nous avons parallélisé.

A.7 Conclusions et perspectives

Le portage d’une application sur une GPU nécessite de trouver le meilleur compromis entre les
colits de programmation, la portabilité¢ du code final et le gain de performance. Les langages de
bas niveau, étroitement li€s a 1’architecture, permettent aux programmeurs experts d’ajuster leurs
codes a la main pour exploiter toutes les capacités du GPU. Cependant, le programmeur doit avoir
une connaissance approfondie de 1’architecture des GPU pour obtenir de bonnes performances.
D’autre part, les modeles de programmation basés sur des directives visent a fournir des inter-
faces permettant d’exploiter la puissance des GPU de maniere plus productive et plus portable.
Théoriquement, OpenMP et OpenACC permettent aux programmeurs de fournir des directives au
compilateur sans nécessiter de modification ou d’adaptation importante du code sous-jacent. Il
résulte de nos expériences que sans informations suffisantes, le compilateur n’est pas en mesure
de faire les optimisations aussi bien que ’utilisateur qui est un expert a la fois de 1’application
portée et de I’architecture cible. Méme si le compilateur peut appliquer automatiquement certaines
optimisations, il peut ne pas atteindre 1’accélération prévue, car il n’a pas une vue complete de
I’application. Pour ces raisons, il existe généralement un écart de performance entre les codes
accélérés avec OpenACC / OpenMP et ceux optimisés manuellement avec CUDA / OpenCL. Par
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conséquent, davantage de recherches d’optimisation sont nécessaires pour atteindre des perfor-
mances compétitives avec OpenMP et OpenACC. La principale contribution de ce travail est de
fournir un retour d’information qui aidera les programmeurs a accélérer efficacement leurs codes
sur GPU avec OpenMP et OpenACC. Pour atteindre cet objectif, plusieurs questions de recherche
ont été abordées dans ce travail. Les contributions de cette these sont résumées comme suit:

e Nous avons analysé et comparé€ les principales fonctionnalités d’OpenMP et d’OpenACC.
Cela nous a permis de montrer que la compréhension des actions de chaque directive
est nécessaire pour donner le plus d’informations possible au compilateur, en particulier
lorsqu’il utilise OpenMP. Nous avons montré que, bien qu’étant similaires, OpenMP et Ope-
nACC sont assez différents et que le passage d’un code OpenACC a un code OpenMP né-
cessite plus qu’un simple changement des directives.

e Nous avons étudié 1’adéquation d’OpenMP et d’OpenACC pour la programmation de GPU
par rapport aux fonctionnalités disponibles dans CUDA. Nous avons vu que les optimisa-
tions de base disponibles dans CUDA (ex: la gestion des threads, I’exécution asynchrone et
le parallélisme dynamique) peuvent étre effectuées avec OpenMP/OpenACC. Toutefois, la
synchronisation des threads de bas niveau n’est actuellement disponible ni dans OpenACC
ni dans OpenMP. Bien que OpenACC et OpenMP continuent d’évoluer et offrent un grand
nombre de fonctionnalités, certaines optimisations (acces partagés, acces a la mémoire de
texture et a la mémoire constante, instructions SIMD, etc.) nécessitent toujours 1'utilisation
de langages de bas niveau.

e Nous avons exploré différentes possibilités d’amélioration des performances avec OpenACC
et OpenMP en parallélisant des kernels synthétiques et trente applications avec OpenACC,
OpenMP et CUDA. 11 a été démontré que les directives peuvent étre combinées de différentes
manieres, ce qui a un impact significatif sur les performances finales du code déchargé. Ceci
est spécialement vrai pour OpenMP ou les variantes de target temas sont plus efficaces que
les versions de target parallel for. 1l est vivement recommandé de combiner les directives
de déchargement avec les directives de parallélisation de boucle et d’explorer des techniques
d’optimisation (ex: fusion de boucle, division de boucle, fusion de kernels, exécution asyn-
chrone, etc.) afin d’obtenir les meilleures performances. Nous avons comparé les diretives
parallel et kernels d’OpenACC et identifié certains modeles de code dans lesquels la direc-
tive kernels doit étre privilégiée et inversement. Le transfert de données entre la CPU et
la mémoire du GPU peut étre cofliteux, il appartient a I’utilisateur de choisir la méthode de
gestion de données nécessaire (clauses de copie, routines de mémoire OpenMP / OpenACC
ou API CUDA) afin d’optimiser les colts de transfert de données.

e Charger les données en lecture seule dans le cache L1 peut améliorer les performances d’une
application GPU. Etant donné que les compilateurs ne sont pas toujours en mesure de dé-
tecter qu’un tableau est en lecture seule en raison du probleme de 1’aliasing des pointeurs,
nous avons propos€ deux outils d’analyse statiques qui permettent d’insérer automatique-
ment le mot clé restrict et le remplacement par scalaire pour résoudre les problemes d’alias
et aider les compilateurs a mettre plus de données dans le cache L1 et les registres.
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e Nous avons accéléré une application visuelle d’odométrie avec OpenMP, OpenACC et
CUDA. Nous avons vu que la parallélisation du code avec OpenMP et OpenACC nécessite
moins de temps de développement qu’avec CUDA, car ils ne nécessitent pas de réécrire le
code séquentiel et sont plus faciles a apprendre et a utiliser. Cependant, ces trois approches de
parallélisation ont des points communs: la restructuration du code est nécessaire pour max-
imiser I’exécution en parallele, réduire le temps de latence et optimiser les performances des
acces mémoire; la copie profonde manuelle doit étre programmée par 1'utilisateur lorsque
des structures de données complexes et des listes sont utilisées dans la version séquentielle.
L’interopérabilité OpenACC/OpenMP avec CUDA est utile dans certains cas (par exemple
lors de la mise a zéro de tous les éléments d’un tableau). Les programmes parallélisés avec
OpenMP et OpenACC peuvent atteindre des performances comparables a celles des codes
CUDA moyennement optimisés. Cependant, lorsque le bloc de code a parallélisé a une forte
intensité de calcul, beaucoup d’acces mémoire et contient plusieurs boucles imbriquées, le
compilateur LLVM/Clang et PGI, ainsi que les fonctionnalit€és OpenMP et OpenACC, at-
teignent rapidement leur limite. Dans de tels cas, CUDA doit étre utilisé. Nous avons ob-
servé que OpenACC fournit les meilleures performances que OpenMP en général.

Dans les travaux futurs, sur la base de nos expériences de portage d’applications, il reste encore
beaucoup a faire pour simplifier davantage la programmation GPU et améliorer les performances
avec OpenMP et OpenACC. Actuellement, il incombe a I"utilisateur de spécifier les régions de code
qui doivent étre parallélisées sur GPU. Nous prévoyons d’étendre nos outils d’analyse statiques afin
d’effectuer une analyse de toutes les boucles, puis de calculer I’intensité arithmétique pour chaque
boucle afin d’indiquer au programmeur s’il est rentable de balancer ces boucles que la GPU. Nous
prévoyons d’ajouter a nos outils d’analyse statique un module supplémentaire qui devrait pouvoir
indiquer a I’utilisateur quelle stratégie de parallélisation devrait étre utilis€ en fonction de I’analyse
des patterns de code. Actuellement, nos outils ne peuvent analyser que du code C, I’interface C++
de Frama-C étant en cours de développement, nous pourrons ainsi mettre a jour nos outils afin de
pouvoir analyser le code C++.
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PARIS-SACLAY

Titre : Parallélisation Automatique pour Systemes Hétérogenes Embarqués

Mots clés : Architecture hétérogéne, programmation paralléle, optimisation, analyse static, traitement d'image

Résumé : Lutilisation d’architectures hétérogenes,
combinant des processeurs multicoeurs avec des
accélérateurs tels que les GPU, FPGA et Intel
Xeon Phi, a augmenté ces derniéres années. Les
GPUs peuvent atteindre des performances significa-
tives pour de nombreuses applications. Néanmoins,
pour atteindre ces performances avec des API de
bas niveau comme CUDA, il est nécessaire de
bien connaitre l'architecture des GPUs et d'appli-
quer des optimisations complexes, parfois non por-
tables. D’autre part, les modeles de parallélisation
a base directives offrent une abstraction de haut
niveau du matériel sous-jacent, simplifiant ainsi la
maintenance du code et améliorant la producti-
vité. lls permettent aux utilisateurs d’accélérer leurs
codes séquentiels sur les GPUs en insérant sim-
plement des directives. Les compilateurs d'Ope-
nACC/OpenMP ont la lourde tache d’appliquer les
transformations et optimisations nécessaires pour
générer des codes paralleles. Bien que ces com-
pilateurs soient matures, le code généré peut ne
pas atteindre I'accélération prévue. Ainsi, il existe
généralement un écart de performance important
entre les codes accélérés avec OpenACC/OpenMP et

ceux optimisés manuellement avec CUDA/OpenCL.
Afin d’aider les programmeurs a accélérer effica-
cement leurs codes séquentiels avec les modéles
basés sur des directives, cette thése aborde plu-
sieurs problématiques de recherche. Nous avons
étudié les modeles de parallélisation OpenACC et
OpenMP et proposé une méthodologie efficace de pa-
rallélisation d’applications avec OpenACC/OpenMP.
Notre expérience de portage d’applications a révélé
gu’il était insuffisant d’insérer simplement des direc-
tives de déchargement OpenMP/OpenACC pour in-
former le compilateur qu’une région de code parti-
culiere devait étre compilée pour étre exécutéé sur un
accélérateur. Il est essentiel de combiner les direc-
tives de déchargement avec celles de parallélisation
de boucle. Nous démontrons que les modeles de
parallélisation OpenMP/OpenACC peuvent atteindre
de meilleures performances avec un effort de pro-
grammation moindre. Nous discutons également du
probléme d’alias des pointeurs dans les codes GPU
et proposons deux outils d’analyse statiques qui per-
mettent d’'insérer automatiquement les qualificateurs
de type et le remplacement par scalaire dans le code
source.
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Abstract : The use of heterogeneous architectures,
combining multi-core processors with accelerators
such as GPUs, FPGAs and Intel Xeon Phi, has in-
creased in recent years. GPUs can achieve signi-
ficant performance for many applications. However,
to achieve this performance with low level APls like
CUDA, it is necessary to know the architecture of
GPUs and apply complex optimizations, sometimes
not portable. On the other hand, directive-based pro-
gramming models provide high-level abstraction of the
underlying hardware, simplifying code maintenance
and improving productivity. They allow users to paral-
lelize their sequential codes by simply inserting direc-
tives. The OpenACC/OpenMP compilers have the dif-
ficult task of applying the transformations and optimi-
zations needed to generate parallel codes. Although
these compilers are mature, the generated code may
not achieve the expected acceleration. Thus, there
is usually a significant performance gap between ac-
celerated codes with OpenACC/OpenMP and those
optimized manually with CUDA/OpenCL. In order to
help programmers effectively accelerate their sequen-
tial codes with directive-based models, this thesis ad-

dresses several research issues. We studied Ope-
nACC and OpenMP programming models and propo-
sed an efficient methodology for application paralleli-
zation with directive-based programming approaches.
Our experience of porting applications revealed that it
was not enough to simply insert OpenMP/OpenACC
unload directives to inform the compiler that a par-
ticular code region needed to be compiled to run
on an accelerator. It is essential to combine the un-
loading directives with those of loop parallelization.
We demonstrate that OpenMP/OpenACC paralleliza-
tion models can achieve better performance with less
programming effort, but OpenMP/OpenACC compi-
lers quickly reach their limit when the downloaded re-
gion code has a high arithmetic intensity, requires a
very high number of access to global memory and
contains several nested loops. In such cases, low le-
vel languages should be used. We also discuss the
problem of pointers aliasing in GPU codes and pro-
pose two static analysis tools that automatically insert
the restrict keyword and perform scalar replacement
in source code.
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