
HAL Id: tel-02528901
https://theses.hal.science/tel-02528901

Submitted on 2 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delegation mechanisms for public key cryptographic
primitives
Xavier Bultel

To cite this version:
Xavier Bultel. Delegation mechanisms for public key cryptographic primitives. Cryptography and
Security [cs.CR]. Université Clermont Auvergne [2017-2020], 2018. English. �NNT : 2018CLFAC100�.
�tel-02528901�

https://theses.hal.science/tel-02528901
https://hal.archives-ouvertes.fr

Université Clermont Auvergne
Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS)

CNRS, UMR 6158, LIMOS, 63173 Aubière, France

Mécanismes de délégation pour les primitives
de cryptographie à clé publique

Thèse

pour obtenir le

Doctorat de L’Université Clermont Auvergne
Spécialité informatique

École Doctorale des Sciences Pour l’Ingénieur

présentée et soutenue publiquement par

XAVIER BULTEL

le 17 Mai 2018

devant le jury composé de :

M. Sébastien Canard Ingenieur de recherche Rapporteur
Orange Labs

M. Fabien Laguillaumie Professeur des universités Rapporteur
École Normale Supérieure de Lyon

Mme Céline Chevalier Maître de conférences Examinateur
Université Panthéon-Assas Paris 2

M. David Pointcheval Directeur de recherche CNRS Examinateur
Département d’Informatique de
l’École Normale Supérieure de Paris

M. Sébastien Salva Professeur des universités Examinateur
Université Clermont Auvergne

M. Pascal Lafourcade Maître de conférences Directeur de thèse
Université Clermont Auvergne

ii

Remerciements

En premier lieu, je tiens à remercier Pascal Lafourcade, mon directeur de thèse, qui m’a aidé et
soutenu tout au long de mes années de doctorat. Merci de m’avoir fait confiance, merci de m’avoir
fait découvrir le monde merveilleux de la recherche, et merci de la grande rigueur avec laquelle tu
as encadré ma thèse. Tu m’as appris énormément de choses, et ça a été un vrai plaisir de travailler
avec toi. Les moments où nous "faisions de la science", pour reprendre ton expression, devant un
tableau surchargé de symboles, resteront mes plus beaux souvenirs de ces années de thèse.

Je voudrais aussi remercier Sébastien Canard et Fabien Laguillaumie pour le sérieux et la ri-
gueur avec lesquels ils ont rapporté ma thèse. Leurs commentaires et leurs conseils m’ont permis
d’améliorer significativement la qualité du manuscrit que vous tenez entre vos mains. Je remer-
cie également Céline Chevalier, David Pointcheval et Sébastien Salva pour m’avoir fait l’honneur
d’accepter d’être les membres de mon jury.

J’adresse mes remerciements à la chair industrielle de confiance numérique qui à permis le
financement de cette thèse.

J’aimerais aussi remercier tous mes co-auteurs: Gildas Avoine, Olivier Blazy, Radu Ciucanu,
Manik Lal Das, Jannik Dreier, Jean-Guillaume Dumas, Hardik Gajera, Sébastien Gambs, Malika
More, Cristina Onete et Jean-Marc Robert. En particulier, je voudrais remercier David Gérault et
Matthieu Giraud, mes deux petits frères de thèse. Merci beaucoup David, pour l’aide et le soutien
apportés dans les moments difficiles. D’autre part, je remercie toute la petite équipe du séminaire
des doctorants pour m’avoir aidé à créer et à faire vivre ce séminaire.

J’aimerais exprimer ma gratitude à tous les membres de l’équipe réseaux et protocoles, et en
particulier à tous les doctorants avec qui j’ai partagé le bureau C6. Merci à Thérèse, Honoré et
Malick pour m’avoir fait découvrir le poulet piqué. Merci à Déthié, Rana, Hamadoun, Jinpeng, et à
tous ceux que j’oublie pour avoir contribué à la bonne ambiance qui règne dans ce bureau. Merci
à Marie-Caroline et à Gauthier, les deux stagiaires (oui, j’ai bien dit stagiaires) pour avoir redécoré
mon bureau et ma fenêtre avec autant de goût. Je n’oublie pas non plus Loukmen, qui mérite sa
place dans ces remerciements même si son bureau est à l’autre bout du couloir.

Un grand merci à tous mes amis pour l’énorme soutien qu’ils m’ont apporté, parfois sans
même en avoir conscience, tout au long de ces trois années de thèse. Merci aux jongleurs du
mardi soir, et en particulier à Raph’, Mat’, Yann, Loup et Rémi. Ce fut un plaisir de pratiquer le
passing avec vous. Merci à Kevin et à Mattias, et à toute la clientèle du Checkpoint Café. Merci
pour toutes les parties de Smash Bros et pour tout le sel, vous n’imaginez pas à quel point vous
allez me manquer. Bien sûr, merci à toi, Amandine, dite La Mèche, pour ton aide et ton soutien
dans les moments les plus difficiles.

Naturellement, je remercie mes parents et mon grand frère Jean-Paul, qui m’ont toujours sou-
tenu et encouragé tout au long de cette thèse. Enfin, je remercie chaleureusement tous ceux
que j’aurais dû mentionner dans les précédents paragraphes, mais qui n’ont pas été cités, et leur
présente mes plus plates excuses. Chers amis oubliés, je laisse volontairement un peu de place au
bas de cette page pour pouvoir y ajouter vos noms ultérieurement.

iii

iv

Contents

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 A Little History . 2
1.2 Current Challenges . 3
1.3 Public Key Cryptography . 3
1.4 Design and Security Proofs . 4
1.5 Secure Delegation in Cryptography . 5

1.5.1 Proxy Re-cryptography . 5
1.5.2 Sanitizable Signatures . 6
1.5.3 Delegation of Computation . 6

1.6 Contributions . 6
1.6.1 Proxy Re-proof of Knowledge . 7
1.6.2 Verifiable Private Function Evaluation . 8
1.6.3 Sanitizable Signatures . 8
1.6.4 A Posteriori Openable Public Key Encryption 9

1.7 Publications . 9
1.7.1 Presented in this Manuscript . 9
1.7.2 Other Publications . 10

2 Technical Introduction 13
2.1 Mathematical Background . 14
2.2 Notations . 16
2.3 Cryptographic Assumptions . 16
2.4 Hash Function . 18

2.4.1 Formal Definition . 19
2.4.2 The Random Oracle Model . 19

2.5 Public Key Encryption . 19
2.5.1 Formal Definition . 19
2.5.2 Security Against Chosen Plaintext Attack . 20
2.5.3 Additional Properties . 21
2.5.4 ElGamal Encryption Scheme . 22

2.6 Proof of Knowledge . 23
2.6.1 Formal Definitions . 23
2.6.2 Schnorr Interactive Proof System . 25
2.6.3 An Interactive Proof System For Discrete Logarithm Equality 25
2.6.4 Sigma Protocols . 25
2.6.5 The Fiat-Shamir Transformation . 26
2.6.6 The Cramer-Damgård-Schoenmakers Transformation 26

v

CONTENTS

2.7 Digital Signature . 28
2.7.1 Formal Definition . 28
2.7.2 Security Against Chosen Message Attacks . 28
2.7.3 Schnorr Signature . 29

3 Delegation of Authentication Using A Proxy 31
3.1 Introduction . 32

3.1.1 Proxy Re-Cryptography . 32
3.1.2 Functionalities . 32
3.1.3 Applications . 33
3.1.4 Some Proxy Re-Cryptography Schemes . 35
3.1.5 Related Works . 37
3.1.6 Contributions . 38

3.2 Interactive Proxy Re-Proof . 38
3.2.1 Formal Definition . 38
3.2.2 Bidirectional Interactive Scheme . 42
3.2.3 Unidirectional Interactive Scheme . 45

3.3 Non-Interactive Proxy Re-Proof . 49
3.3.1 Formal Definition . 50
3.3.2 Bidirectional Non-interactive Scheme . 51
3.3.3 Unidirectional Non-interactive Scheme . 60

3.4 Schemes comparison . 67
3.5 Conclusion . 68

4 Verifiable Private Polynomial Evaluation 69
4.1 Introduction . 70

4.1.1 Functionalities . 70
4.1.2 Security Goals . 70
4.1.3 Applications . 71
4.1.4 Contributions . 72
4.1.5 Related Works . 73

4.2 Cryptanalysis of [GFLL15] and [GND16] . 74
4.2.1 Inherent Limitation of Private Polynomial Evaluation 74
4.2.2 Cryptanalysis of [GFLL15] and [GND16] . 74

4.3 Formal Definitions . 77
4.3.1 Private Polynomial Evaluation . 77
4.3.2 Polynomial Protection . 78
4.3.3 Chosen Function Attack . 79
4.3.4 Unforgeability . 83
4.3.5 Security Against Collusion Attacks . 84

4.4 PolyCommitPed Is IND-CFA Secure . 84
4.5 PIPE: an IND-CFA Secure Verifiable Private Polynomial Evaluation Scheme 86

4.5.1 Feldman’s Verifiable Secret Sharing . 86
4.5.2 PIPE Description . 86

4.6 Security Proofs of PIPE . 87
4.6.1 Correctness . 88
4.6.2 IND-CFA Security . 88
4.6.3 Zero-Knowledge . 89
4.6.4 Unforgeability . 90
4.6.5 Security of PIPE . 90

4.7 Comparison of PIPE and PolyCommitPed . 90
4.8 CFA Security for Commitments to Polynomials . 91
4.9 Anonymous Private Polynomial Evaluation . 91

vi

CONTENTS

4.10 Conclusion . 92

5 Verifiable Ring Signature Revisited 93
5.1 Introduction . 94

5.1.1 Functionalities . 94
5.1.2 Security Goals . 94
5.1.3 Contributions . 95
5.1.4 Related Works . 95

5.2 Formal Definitions . 95
5.2.1 Verifiable Ring Signature . 95
5.2.2 Unforgeability . 96
5.2.3 Anonymity . 97
5.2.4 Accountability . 97
5.2.5 Non-seizability . 98

5.3 EVeR: an Efficient Verifiable Ring Signature Scheme 99
5.3.1 Proof of Equality of Two Discrete Logarithms Out of n Elements 99
5.3.2 Our Scheme: EVeR . 100

5.4 Security Proofs of EVeR . 101
5.4.1 Correctness . 101
5.4.2 Unforgeability . 102
5.4.3 Anonymity . 103
5.4.4 Accountability . 107
5.4.5 Non-seizability . 109
5.4.6 Security of EVeR . 112

5.5 Algorithms Complexity . 112
5.6 Conclusion . 113

6 Unlinkable Sanitizable Signatures from Verifiable Ring Signature. 115
6.1 Introduction . 116

6.1.1 Application in health Data Protection . 116
6.1.2 Functionalities . 117
6.1.3 Security Goals . 117
6.1.4 Contributions . 118
6.1.5 Related Works . 119

6.2 Formal Definitions . 119
6.2.1 Sanitizable Signature . 119
6.2.2 Immutability . 121
6.2.3 Transparency . 121
6.2.4 Unlinkablility . 122
6.2.5 Accountability . 123
6.2.6 Strong Accountability . 124

6.3 GUSS: an Unlinkable Sanitizable Signature Scheme . 125
6.4 Security proofs of GUSS . 127

6.4.1 Correctness . 127
6.4.2 Immutability . 129
6.4.3 Transparency . 130
6.4.4 Unlinkability . 131
6.4.5 Accountability . 133
6.4.6 Strong Accountability . 135
6.4.7 Security of GUSS . 137

6.5 Algorithms Complexity and Comparison . 137
6.6 Conclusion . 138

vii

CONTENTS

7 How to Delegate Decryptions on a Time Interval 141
7.1 Introduction . 142

7.1.1 Functionalities . 142
7.1.2 Security Goals . 143
7.1.3 A Naive Solution . 144
7.1.4 Contributions . 144
7.1.5 Related Works . 144

7.2 Formal Definitions . 145
7.2.1 A Posteriori Openable Encryption . 145
7.2.2 IND-CPA Security . 147
7.2.3 IND-CSPA Security . 148
7.2.4 Integrity . 149

7.3 GAPO: a Generic A Posteriori Openable Encryption Scheme 149
7.3.1 Informal Overview . 149
7.3.2 GAPO Description . 150

7.4 Security Proofs of GAPO . 151
7.4.1 Correctness . 152
7.4.2 IND-CPA Security . 153
7.4.3 IND-CSPA Security . 159
7.4.4 Integrity . 163

7.5 Conclusion . 164

8 Conclusion 165

Bibliography 167

viii

List of Figures

2.1 Protocols Proof of Schnorr (left) and LogEq (right). 25
2.2 Protocol Proof of a sigma protocol. 26
2.3 Protocol Proof of the Cramer-Damgård-Schoenmakers transformation. 27

3.1 Authentication using proofs of knowledge. 32
3.2 Delegation of authentication using a proxy. 33
3.3 Access control using a proxy. 34
3.4 Identification protocol of Blaze et al. given in [BBS98] 36
3.5 Re-identification protocol of Blaze et al. [BBS98]. 37
3.6 Protocol RProof of IBRP (Definition 40). 42
3.7 Protocol Proof of PKFapi (Definition 41). 45
3.8 Protocol RProof of IURP (Definition 42). 45
3.9 Protocol Proof of Schnorr+ (Definition 47). 52
3.10 Protocol Proof of interactive DLright (Definition 48). 53
3.11 Interactive version of NBRP (Definition 49). 58
3.12 Protocol Proof of interactive FAPIright (Definition 50). 61
3.13 Interactive version of NURP (Definition 51). 64

4.1 Illustration of a private polynomial evaluation scheme. 71
4.2 Security relations. 83
4.3 PIPE scheme used as a commitment to polynomials scheme [KZG10]. 91

6.1 Sanitizable signature for privacy in health data. 116
6.2 Attack by linkage. 117

7.1 A posteriori openable encryption mechanisme overview. 143
7.2 Opening mechanism for the interval [2,4] . 150

ix

LIST OF FIGURES

x

List of Tables

3.1 Comparison of our proxy re-proof schemes. 67

4.1 Comparison of PIPE and PolyCommitPed. 91

5.1 Complexity analysis of LogEq (Definition 65). 113
5.2 Complexity analysis of the algorithms of EVeR (Definition 66). 113
5.3 Complexity analysis of the elements of EVeR (Definition 66). 113

6.1 Complexity analysis of Schnorr (Definition 35). 138
6.2 Complexity analysis of the algorithms of GUSS (Definition 75). 138
6.3 Complexity analysis of the elements size of GUSS (Definition 75). 138
6.4 Comparison of the elements size of GUSS and the scheme of Fleischhacker et al.

[FKM+16]. 138
6.5 Comparison of the algorithms complexity of GUSS and the scheme of Fleischhacker

et al. [FKM+16]. 138

xi

LIST OF TABLES

xii

Chapter 1

Introduction

Pleasure has probably been the
main goal all along. But I hesitate
to admit it, because computer
scientists want to maintain their
image as hard-working
individuals who deserve high
salaries. Sooner or later society will
realise that certain kinds of hard
work are in fact admirable even
though they are more fun than just
about anything else.

D. E. Knuth

Contents
1.1 A Little History . 2

1.2 Current Challenges . 3

1.3 Public Key Cryptography . 3

1.4 Design and Security Proofs . 4

1.5 Secure Delegation in Cryptography . 5

1.5.1 Proxy Re-cryptography . 5

1.5.2 Sanitizable Signatures . 6

1.5.3 Delegation of Computation . 6

1.6 Contributions . 6

1.6.1 Proxy Re-proof of Knowledge . 7

1.6.2 Verifiable Private Function Evaluation . 8

1.6.3 Sanitizable Signatures . 8

1.6.4 A Posteriori Openable Public Key Encryption 9

1.7 Publications . 9

1.7.1 Presented in this Manuscript . 9

1.7.2 Other Publications . 10

In this thesis, we study the mechanisms of delegation for public key cryptography primitives.
In this first chapter, we introduce the basic concepts of cryptography, its applications and its chal-
lenges. We start with a short history of this science. Then, we informally recall some basic concepts
of cryptography, especially protocol design and delegation. Finally, we list the contributions of this
thesis.

1

CHAPTER 1. INTRODUCTION

1.1 A Little History

Cryptography is a field of computer science that deals with the protection of sensitive data. The
oldest known cryptographic systems were created during antiquity, and were encryption schemes
for military use. For example, the spartan used an encryption technique called the scytale: a strap
was wrapped around a stick, and the secret message was written on it. Then the strap was unrolled,
and randomly chosen letters were added on it. Thus, it was difficult to differentiate the letters of
the messages from those artificially added. However, somebody who has an identical stick may
wrap the strap around it, and then discover the secret message.

Since then, many other encryption systems have emerged throughout history. Until the Sec-
ond World War, encryption algorithms had to be straightforward and efficient, because without
computer, encryptions and decryptions were performed by humans. For practical reasons, it was
impossible to spend a lot of time to encrypt or decrypt a message, and any human error of en-
cryption would make the message unreadable. Encryption systems were substitution ciphers, i.e.,
each letter of the message is replaced by another in the alphabet. A well-known example is Caesar’s
cipher, used in ancient Rome, where each letter of the message was replaced by the letter which
is x places further in the alphabet. Knowing x, we can do the opposite shift and find the message.
For example, with x = 3, the message crypto will be encrypted by fubswr. Other examples of
substitution ciphers are Polybe’s square, Vigenère’s cipher, or Delastelle’s cipher.

New techniques modernized cryptography during the Second World War. The Germans used
an electro-mechanical encryption machine called Enigma to encrypt their messages. Humans no
longer encrypted the messages, the machine automated the process, so the encryption was faster
and without errors. Moreover, the encryption algorithm is more sophisticated. Breaking this en-
cryption system becomes a crucial issue for allies, who mobilize several renowned cryptographers,
including the famous Alan Turing, to study the machine. These cryptographers found how to break
the Enigma cipher, which was a decisive factor in the allies victory. The cryptography issues in the
Second World War raised awareness of the importance of this science.

The advent of computer science marks a turning point in the history of cryptography. In the
late 1940s, Shannon introduced the theoretical foundations of cryptography by formally defin-
ing two fundamental principles: secrecy and authentication. This was the beginning of so-called
modern cryptography. A few years later, in the 1970s, two major contributions revolutionized this
field. The first one was the development of a symmetric encryption standard for the companies
called Data Encryption Standard (DES) [DES77]. This encryption system was designed by IBM. Its
security was based on two principles proposed by Shanon: confusion and diffusion. It becomes
obsolete in 2000 because of the evolution of the power of computers, and it is replaced by the
Advanced Encryption Standard (AES) [AES01].

The second one is public key cryptography. Until then, encryption systems required that the
users know a unique secret key, which was used to both encrypt and decrypt the messages. This
key allows the users to both encrypt and decrypt the messages. Thus, users had to meet physically
to choose the secret key. In there pioneer paper [DH76], Diffie and Hellman give a protocol that
allows two users who share no information to securely choose a secret key, even if they communi-
cate on an insecure channel where adversaries observe the interactions. Using a similar method,
Rivest, Shamir and Adelman [RSA78] introduce the first public key encryption scheme. In this en-
cryption system, there are two different keys: the first one allows the users to encrypt messages.
This key is public, i.e., it is known by everybody, so anybody can encrypt a message. The second
key allows its owner to decrypt the ciphertexts. This key is secret, i.e., it is known only by its owner.

Since the 1970s, cryptography has become a very attractive academic research topic. Today,
the features of cryptographic systems are not just about encryption and decryption. For exam-
ple, homomorphic encryption, introduced by Gentry in 2009, allows computation on ciphertexts.
These computations can be done by somebody who does not know the secret decryption key, such
as an untrusted server. Thus, the data owner receives a ciphertext that contains only the result of
the computation. Moreover, public key cryptography has enabled the design of authentication
protocols and digital signatures, which has extend the diversity of cryptographic protocols.

2

CHAPTER 1. INTRODUCTION

1.2 Current Challenges

As it was seen before, cryptography only had military applications for several centuries. However,
the democratization of computers allows anybody to use the cryptographic tools. These new users
provide new challenges, which require development of new cryptographic protocols.

In the 1970s, some financial companies began to use encryption and authentication to protect
financial transactions. Know, most of financial transactions are digital. To this day, the protection
of these transactions is one of the main challenges in cryptography. The cryptographic systems
are even used directly by the clients of these companies in a transparent way. For example, the
bank cards or the secure payment protocols on internet use cryptography.

Advances in computing and the emergence of the Internet have led companies to automate
their services and to dematerialize their data, by replacing paper documents with digital docu-
ments. On the one hand, this "digital switchover" has many benefits for companies, but on the
other hand, their data are vulnerable to hackers. The protection of sensitive data in a dematerial-
ized world requires the creation of new appropriate cryptographic protocols. For example, cryp-
tographers designed searchable encryption protocols [BBO07], which allow to search in encrypted
databases using keywords.

In recent years, dematerialization has become everyone’s issue. More and more people are
choosing to receive their invoices or paperwork in digital format. On the other hand, cloud com-
puting services, proposed by Google among other companies, allow their users to use distant
servers to store their documents, and thus enjoy the computation power of these servers. In this
kind of application, the challenge is to protect not only the data, but also the privacy of users. Ho-
momorphic encryption [Gen09], which allows computation on ciphertext, has many applications
in this field.

Very recently, in 2013, the revelations of Edward Snowden led a renewed interest of the sci-
entific community in the privacy. He published secret information about mass surveillance pro-
grams led by the National Security Agency. Thanks to these revelations, the general public realized
the importance of protecting its privacy in a dematerialized world. Providing easy-to-use security
tools accessible to everyone, even non-specialists, to encourage people to protect their digital data
is a new challenge. For example, GnuPG1 is a tool that allows a user to encrypt and sign his email
using public key cryptography.

To summarize, cryptography was first used essentially by governments and armies, then it
was used by economic organizations and companies. Today, everyone uses it, consciously or not.
Cryptography has adapted quickly to the emergence of the Internet and the dematerialization of
data, which resulted in cryptographic protocols becoming increasingly sophisticated.

1.3 Public Key Cryptography

In this thesis, we focus on public key cryptography. This field is about cryptographic primitives
in which some operations can be done by anyone using a public key. On the other hand, the
other operations can be done only by the users who know secret keys. Public key cryptography
primitives can be classified into three basic families: encryption systems, signature systems, and
authentication protocols.

Public Key Encryption: Public key encryption is used to encrypt messages, i.e., encode messages
in order to render them unreadable. This message can be sent on an unsecured channel, since it
can not be decoded even if it is intercepted by a dishonest user. Messages are encrypted using a
public key, so anyone can encrypt a message. However, only the user who knows the correspond-
ing secret key can decrypt the message.

1https://www.gnupg.org

3

https://www.gnupg.org

CHAPTER 1. INTRODUCTION

Digital Signature: The signature is a cryptographic primitive that allows a user to authenticate a
message. This user, called the signer, has a secret key that allows him to sign messages. In concrete
terms, the signer generates a bit string, called a signature, from his secret key and the message he
wants to authenticate. Hence he is the only user who can generate valid signatures. Using the
signer public key, anyone can verify the signature by using an algorithm that decides whether the
signature was correctly built or not. This algorithm does not accept signatures that have not been
generated from the right secret key.

Authentication Protocols: In authentication protocols, a user, called the prover, interacts with
another user, called the verifier, in order to prove his or her identity. The prover uses his secret key
to authenticate, and the verifier uses the prover’s public key to verify that the prover authenticates
correctly. Such a protocol is said to be secure when it is not possible to authenticate without the
prover’s secret key.

Zero-knowledge proofs of knowledge [GMR89] are cryptographic protocols that are very close
to authentication schemes. In these protocols, a prover knows a secret solution to a computational
problem instance. He wants to prove to a verifier that he knows this secret solution. However, the
prover does not want to reveal any information about his secret to the verifier. In other words,
the verifier must be convinced that the prover knows the secret solution but he must not have
learned anything about it at the end of the protocol. Note that this cryptographic primitive can be
used as an authentication protocol: the problem instance is the public key, and its solution is the
secret key. To authenticate, the prover proves to the verifier that he knows the secret solution of
the problem instance. Since the protocol does not leak any information, a malicious observer is
not able to authenticate as the prover.

1.4 Design and Security Proofs

In this thesis, we propose new public key cryptographic protocols, i.e., new encryption, signa-
ture and authentication systems. These protocols have additional features compared to the basic
primitives we recalled in the previous section.

We focus on cryptographic protocols based on number theory. This means that the security
properties of these protocols depend on algorithmic number theory problems that are supposed
to be difficult to solve. A problem is said to be difficult if it is impossible to solve it effectively, i.e.,
in a polynomial number of operations with regards to the size of the instance of the problem.

There are two main kinds of tools that can be combined to create new cryptographic protocols.

1. Operations on mathematical objects from number theory. Protocols that only use such op-
erations are very specific, which makes them most of the time rather efficient. Their security
is based on the algorithmic problems of number theory.

2. Cryptographic protocols. By combining several different protocols, new protocols with new
properties can be obtained. These protocols can be instantiated with any cryptographic
protocols that have the required properties. Protocols that are built only from other proto-
cols are said to be generic. Their security is based on the security of the basic protocols they
use.

One of the main challenges of cryptographic protocols is security: some information must be
protected, and some operations must be impossible without the corresponding secret key. For
example, an adversary must not be able to learn encrypted messages, or must not be able to gen-
erate valid signatures. Knowing if a protocol is secure or not is not obvious, so it is necessary to
rigorously prove the security of the new protocols.

The first step is to formally model the security property that we want to prove. We first define
a security experience from this property. Specifically, we define what it means for the adversary
to break the security of a protocol, and what help he can use. Then we show that no opponent is

4

CHAPTER 1. INTRODUCTION

able to break the security of the protocol, i.e., to efficiently "succeed" the security experience. We
prove it by contraposition. We assume that there exists an adversary able to succeed the security
experience. If the protocol is based on operations from number theory, we show that a given
algorithmic problem that is supposed to be hard can then be solved effectively. If the protocol
is built from another secure protocol, we show that we can build an adversary that breaks the
security of this protocol. In both cases, there is a contradiction, which concludes the security
proof.

1.5 Secure Delegation in Cryptography

Delegation is the assignment by someone, called delegator, of some tasks to another entity, called
the delegate. Moreover, tasks performed by the delegate remain under the responsibility of the
delegator. For this reason, it is more interesting for the delegator to delegate only part of his capa-
bilities.

The simplest solution is to give all the delegator secret keys to the delegate. For example, sup-
pose that Alice wants to delegate to Bob her capability to sign messages. Alice gives her signature
secret key to Bob. Then Bob is able to sign any message on behalf of Alice. However, this solution
is obviously not secure. Indeed, Alice is responsible for all messages that Bob has signed using her
key.

There are several primitives that allow their users to delegate some cryptographic rights se-
curely. In this section, we present some of these primitives. Note that we do not give an exhaustive
list of all the cryptographic primitives that deals with delegation, we focus on the few primitives
we are working on in this thesis.

1.5.1 Proxy Re-cryptography

Proxies re-cryptography concerns primitives that allow a server to transform a cryptographic ob-
ject of a user into another cryptographic object for another user. Each of the basic primitives
mentioned above (i.e., public key encryption, signature, and authentication protocol) has been
adapted to proxy re-cryptography.

Proxy Re-encryption: Consider two users, Alice and Bob, who use a public-key encryption sys-
tem. Each of them has his own public encryption key and his own secret decryption key.
Suppose that Alice wants to delegate to Bob the ability to decrypt her ciphertexts on behalf
of herself for a given period of time. Alice uses a server to help her. She gives the server a
secret key, called a re-encryption key, that allows it to transform a ciphertext for Alice into a
ciphertext for Bob. At the end of the period of time, Alice turns off the server.

Proxy Re-signature: In this primitive, Alice and Bob use a signature scheme. Alice wants to dele-
gate to Bob the ability to sign messages on behalf of herself for a given period of time. Alice
gives to the server a secret key, called a re-signature key, that allows it to transform a signa-
ture of Bob into a signature of Alice. As in proxy re-encryption, Alice turns off the server to
remove the delegation.

Proxy re-authentication: This primitive allows Alice to delegate to Bob the ability to authenticate
on behalf of herself. As in the other proxy re-cryptography primitives, Alice gives the server
a re-authentication key that allows it to transform an authentication of Bob into an authen-
tication of Alice. Once again, the delegation is removed when Alice turns off the server.

For each of these primitives, a naive solution is to give Alice’s secret key to the server. How-
ever, this solution is not satisfying from the security point of view. The server could decrypt or
sign anything on behalf of Alice. For practical reasons, we do not want to trust the server. In the
case of the proxy re-encryption, the server must be able to transform a ciphertext for Alice into
a ciphertext for Bob, but he must not learn anything about the plaintext message. In the case of

5

CHAPTER 1. INTRODUCTION

proxy re-signature and re-authentication, the server must not be able to sign a new message alone
and authenticate on behalf of Alice.

The main advantage of proxy re-cryptography is that the delegate does not need to learn new
keys or algorithms. The server transforms ciphertexts, signatures, and authentications without
any help, and the delegate decrypts, signs, and authenticates exactly as he would for himself. Thus,
these solutions are easy to use in practice.

1.5.2 Sanitizable Signatures

Sanitizable signatures allow the signer to delegate to somebody the ability to modify the messages
without invalidating the signature. However, the delegate cannot modify the signed messages as
he wants: some parts of the messages can not be modified. For example, Alice signed the message
“my shoes are red”, and delegates to Bob the ability to change the message such that only the color
can be changed. Then Bob can produce a signature of the message “my shoes are blue” on behalf
of Alice using his sanitizer key. On the other hand, he cannot produce a signature of the message
“my pants are red”. The verifier must not be able to guess whether the signature has been modified
or not. Often, these signature schemes have a proof mechanism that allows Alice to prove whether
a signature has been modified by Bob or not. It prevents Bob from abusing his power. Sanitizable
signatures have many applications, especially in the privacy protection on health data. Using it, a
hospital can for example change the names of patients on the signed medical records in order to
anonymize them.

1.5.3 Delegation of Computation

In cryptography, the field of delegation of computation rallies primitives where a server makes
computations for users. We assume that users do not trust the server. The main challenge is to
allow the server to prove to the users that it performed the computations correctly.

Delegation of Hard Computation: Several works in this field concern the delegation of hard
computations. Users are computationally bounded, so they need the server to do some compu-
tations that are too hard for them. However, the proof of correctness of these hard computations
given by the server must be efficiently verifiable because the users are computationally bounded.

Private Function Evaluation: Another challenge in this field is the evaluation of private func-
tions by a server. To illustrate this, consider a company that knows a secret function f , and that
uses a server that evaluates the function f on the data chosen by its clients. Thus the company
delegates the computation of the function to its server. Clients learn only the points of the func-
tion they ask, and must not learn additional information about f . However, the server may returns
false values: the clients cannot check the server’s computations because they do not know the se-
cret function. To solve this problem, the company generates a secret key and a public verification
key. After each function evaluation, the server can prove to the client the correctness of its com-
putation thanks to the secret key. The clients can verify this proof thanks to the public verification
key in order to be convinced that the data they receive is correct.

1.6 Contributions

Throughout this manuscript, we focus on several cryptographic primitives ensuring the secure
delegation of rights [BDG+17, BL16, BL17a, BL17b]. We first define a new family of proxy re-
cryptography primitives called proxy re-proof of knowledge [BL17b]. These primitives have ap-
plications in the delegation of authentication. Then we focus on verifiable private function eval-
uation protocols. We show that several protocols in the literature have critical security flaws, and
we improve the existing security models [BDG+17]. In the third part of this thesis, we show how

6

CHAPTER 1. INTRODUCTION

to build a generic sanitizable signature scheme that is very efficient in terms of computation time
from a variant of ring signatures called verifiable ring signatures [BL17a]. Finally, we define a new
public key encryption primitive where a user who encrypts messages can delegate to someone
else the capability to decrypt the ciphertexts that have been encrypted within a chosen time inter-
val [BL16].

1.6.1 Proxy Re-proof of Knowledge

In Chapter 3, we extend the concept of the proxies re-cryptography to the zero-knowledge proofs
of knowledge. As mentioned before, proofs of knowledge can be used as authentication proto-
cols. These authentication protocols have stronger security properties than basic authentication
protocols: no information leaks during the protocol, and it is impossible to authenticate without
full knowledge of the secret key. Similarly, proxies re-proof of knowledge can be used as proxies
re-authentication that have stronger security properties than basic proxy re-authentication pro-
tocols.

Idea: Consider two users, Alice and Bob, who use a proof of knowledge protocol to authenticate
to some service. Alice wants to give Bob the ability to authenticate on her behalf using a proxy.
The proxy has a re-proof key that allows it to transform a proof protocol of Bob’s secret into a
proof protocol of Alice’s secret. The proxy can not authenticate on behalf of Alice or Bob with this
key only. To authenticate on behalf of Alice, Bob proves the knowledge of his secret to the proxy,
which transforms it into a proof of the knowledge of Alice’s secret. Such a protocol is said to be
zero-knowledge when its users learn nothing while it is running.

We show how to build a practical and efficient system that manages the access rights policy to
different services for a company using proxies re-proof of knowledge.

Security Flaws: There is only one proxy re-authentication in the literature. We show that it has
the following security flaws. If Bob colludes with the proxy, he can guess Alice’s secret key. If Alice
observes the interactions between the proxy and the verifier, then she can find Bob’s secret. We
show that it is possible to design protocols that prevent such attacks.

Bidirectional and Unidirectional Protocols: Proxy re-cryptography primitives are separated into
two main families: bidirectional and unidirectional. In bidirectional protocols, the proxy can
transform proofs in both directions, i.e., if he can transform Alice’s proof into Bob’s proof, then
he can transform Bob’s proof into Alice’s proof. In such a protocol, the generation of the key of
the proxy, called the re-proof key, requires the knowledge of both the delegator secret key and the
delegate secret key. Hence it requires a trusted authority that generates the secret keys of the users,
or the use of a proxy key generation protocol between the proxy, the delagate and the delegator.
On the other hand, these protocols are often much less complex than unidirectional protocols.

In unidirectional protocols, the delegator can build the re-proof key by itself, using its secret
key and the delegate’s public key. Hence, we no longer need trusted authority, which confers
stronger security properties to this kind of protocols. However, such protocols generally require
more complex mathematical computations than bidirectional ones, thus there are less efficient
than bidirectional protocols.

In this thesis, we formally define these two families of proxy re-proof protocols.

Interactive and Non-interactive Protocols: A proof of knowledge is said to be interactive when
the prover interacts with the verifier, i.e., they exchange their data one after the other. A proof of
knowledge is said to be non-interactive when the prover generates only one element which is sent
to the verifier. Depending on whether it uses interactive or non-interactive proof systems, a proxy
re-proof protocol is said to be interactive or non-interactive. In this thesis, we formally define
these two families of proxy re-proof of knowledge protocols.

7

CHAPTER 1. INTRODUCTION

Protocols Design: For each of these proxy re-proof protocol families, we give a security model.
This model is based on the security model of zero-knowledge proofs. We define an additional
security property to ensure that the re-proof key does not leak information about the delegator
secret key and the delegate secret key.

In this thesis, we give a concrete protocol for each of the families: bidirectional interactive,
unidirectional interactive, bidirectional non-interactive, and unidirectional non-interactive. We
prove the security of each of these protocols.

1.6.2 Verifiable Private Function Evaluation

In Chapter 4, we focus on the security of verifiable private function evaluation protocols. In such
protocols, a server evaluates a secret function on chosen input for users. Then the server proves
the validity of its computation to the users, who verifies this proof thanks to a public verification
key.

Cryptanalysis of Two Schemes: We first study the security of two schemes of the literature. We
show a critical security flaw of these protocols: using some properties of these protocols, we prove
that we can recover the secret function by interacting only once with the server, i.e., by evaluating
only one point of the function.

Improvement of the Security Model: Until now, the security models of this primitive assumed
that the secret function was randomly chosen. We show that this security model is not realistic
for some applications of the verifiable private function evaluation protocols. We propose a new
security model where the adversary must guess which function is used by the server among two
functions of his choice. This new model is called indistinguishability against chosen function at-
tacks. We prove that one of the protocols of the literature is secure in this model.

Protocol Design: Finally, we propose a new protocol for verifiable private function evaluation,
and we prove that this protocol is secure in our model. The advantages and disadvantages of the
protocol of the literature and our new protocol are compared in terms of efficiency, computational
complexity and security.

1.6.3 Sanitizable Signatures

In Chapter 5, we focus on a primitive called verifiable ring signature. In Chapter 6, we propose
a new unlinkable sanitizable signature scheme based on the verifiable ring signatures. A sanitiz-
able signature is said to be unlinkable when it is not possible to link the sanitized signature to the
original one.

Verifiable Ring Signatures: Ring signatures allow the user to sign a message within a group such
that the signer remains anonymous. Verification is done using all the public keys of the users who
are in the group. A verifiable ring signature is a ring signature where a user can prove a posteriori
whether he is the signer of a given message or not. We define a complete security model for this
primitive. To the best of our knowledge, no security model was proposed for this primitive in the
literature before this work. We also propose a new verifiable ring signature scheme, and we prove
its security in our model.

Efficient Sanitizable Signature Scheme: We design a new generic and efficient unlinkable sani-
tizable signature scheme based on verifiable ring signatures. We show that the best instantiation
of our scheme is twice as efficient in computational complexity as the most efficient scheme of the
literature, with an equivalent level of security.

8

CHAPTER 1. INTRODUCTION

Strong Accountability: A sanitizable signature scheme is said to be accountable when the signer
can prove whether a signature has been sanitized or not. We improve this property by defining
strong accountability. In this model, the sanitizer can also prove whether a signature has been
sanitized or not. We prove that our sanitizable signature scheme is strongly accountable.

1.6.4 A Posteriori Openable Public Key Encryption

In Chapter 7, we focus on the following problem. A user encrypts each email he sends using public
keys. This user would like to be able to delegate the ability to decrypt emails that were sent during
a chosen time period to a delegate. However, he does not want the delegate to be able to decrypt
the other emails. As encrypting emails can sometimes seem suspicious, this property allows the
user to prove that the messages he sends during the time period do not contain compromising
information. On the other hand the other messages remain protected.

New Encryption Primitive: We define a new cryptographic primitive, called a posteriori public
key encryption, which solves this problem. In this primitive, a user can generate a key that allows
a delegate to decrypt all messages generated during a period of time chosen a posteriori. We also
define a security model for this primitive that is suitable for its practical applications.

Efficient A Posteriori Public Key Encryption Scheme: The main design challenge is the size of
the key given to the delegate: if this key increases proportionally to the number of messages in the
interval, then the scheme is not practical. We first give a naïve solution where the size of this key
is linear in the number of messages. Then we design a generic and efficient a posteriori openable
public key encryption scheme where the key is of constant size, i.e., it does not depend on the size
of the interval.

1.7 Publications

In this section, we summarize our publications. First we recall the papers about the works pre-
sented in this manuscript, then we list the papers about other works that were conducted through-
out this thesis.

1.7.1 Presented in this Manuscript

The four following papers resume the works that are presented in this manuscript.

• Xavier Bultel and Pascal Lafourcade.
“Zero-Knowledge Proxy Re-Proof of Knowledge.” (In submission)

• Xavier Bultel, Manik Lal Das, Hardik Gajera, David Gérault, Matthieu Giraud and Pascal
Lafourcade.
“Verifiable Private Polynomial Evaluation.” ProvSec 2017

• Xavier Bultel and Pascal Lafourcade.
“Unlinkable and Strongly Accountable Sanitizable Signatures from Verifiable Ring Signatures.”
CANS 2017

• Xavier Bultel and Pascal Lafourcade.
“A Posteriori Openable Public Key Encryption.” IFIP SEC 2016

9

CHAPTER 1. INTRODUCTION

1.7.2 Other Publications

We list exaustively the other papers published during the thesis, and we give a short abstract for
each of them.

• Olivier Blazy, Xavier Bultel and Pascal Lafourcade.
“Two Secure Anonymous Proxy-based Data Storages.” SECRYPT 2016

Abstract: Unidirectional proxy re-encryption (PRE) can be used to realize an efficient and
secure shared storage. However, this type of storage does not yet protect its users’ privacy:
to retrieve some data a user must give his identity and his query to the proxy. We propose
two secure data storage systems that allow authorized users to anonymously get access to
the content of encrypted data on a storage. Each scheme corresponds to a certain economic
model. In the first one, a user has to pay for each downloaded file, whereas in the second
one, users pay each month a subscription to get an unlimited access to all their files. We
define the models for the anonymity and the management of the users’ rights. For our two
schemes, we also prove, in the standard model, their security considering a classical honest-
but-curious proxy.

• Olivier Blazy, Xavier Bultel and Pascal Lafourcade.
“Anonymizable Ring Signature Without Pairing.” FPS 2016

Abstract: Ring signature is a well-known cryptographic primitive that allows any user who
has a signing key to anonymously sign a message according to a group of users. Some years
ago, Hoshino et al. propose a new kind of ring signature where anybody can transform a
digital signature into an anonymous signature according to a chosen group of users; authors
present a pairing-based construction that is secure under the gap Diffie-Hellman assump-
tion in the random oracle model. However this scheme is quite inefficient for large group
since the generation of the anonymous signature requires a number of pairing computa-
tions that is linear in the size of the group. In this paper, we give a more efficient anonymiz-
able signature scheme without pairing. Our anonymization algorithm requires n exponen-
tiations in a prime order group where n is the group size. Our proposal is secure under the
discrete logarithm assumption in the random oracle model, which is a more standard as-
sumption.

• Xavier Bultel and Pascal Lafourcade.
“k-time Full Traceable Ring Signature.” ARES 2016

Abstract: Ring and group signatures allow their members to anonymously sign documents
in the name of the group. In ring signatures, members manage the group themselves in an
ad-hoc manner while in group signatures, a manager is required. Moreover, k-times trace-
able group and ring signatures [ASY06] allow anyone to publicly trace two signatures from a
same user if he exceeds the a priori authorized number of signatures. In [CSST06], Canard et
al. give a 1-time traceable ring signature where each member can only generate one anony-
mous signature. Hence, it is possible to trace any two signatures from the same user. Some
other works generalize it to the k-times case, but the traceability only concerns two signa-
tures. In this paper, we define the notion of k-times full traceable ring signature (k-times full
traceable ring signature) such that all signatures produced by the same user are traceable if
and only if he produces more than k signatures. We construct a k-times full traceable ring
signature scheme called Ktrace. We extend existing formal security models of k-times link-
able signatures to prove the security of Ktrace in the random oracle model. Our primitive
k-times full traceable ring signature can be used to construct a k-times veto scheme or a
proxy e-voting scheme that prevents denial-of-service caused by cheating users.

10

CHAPTER 1. INTRODUCTION

• Xavier Bultel, Jannik Dreier, Jean-Guillaume Dumas and Pascal Lafourcade.
“Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen.” FUN 2016

Abstract: Akari, Takuzu, Kakuro and KenKen are logic games similar to Sudoku. In Akari,
a labyrinth on a grid has to be light by placing lanterns, respecting various constraints. In
Takuzu a grid has to be filled with 0’s and 1’s, while respecting certain constraints. In Kakuro
a grid has to be filled with numbers such that the sums per row and column match given
values; similarly in KenKen a grid has to be filled with numbers such that in given areas the
product, sum, difference or quotient equals a given value. We give physical algorithms to
realize zero-knowledge proofs for these games which allow a player to show that he knows
a solution without revealing it. These interactive proofs can be realized with simple office
material as they only rely on cards and envelopes. Moreover, we formalize our algorithms
and prove their security.

• Xavier Bultel, Sébastien Gambs, David Gerault, Pascal Lafourcade, Cristina Onete and Jean-
Marc Robert.
“A Prover-Anonymous and Terrorist-Fraud Resistant Distance Bounding Protocol.” WiSec
2016

Abstract: Contactless communications have become omnipresent in our daily lives, from
simple access cards to electronic passports. Such systems are particularly vulnerable to re-
lay attacks, in which an adversary relays the messages from a prover to a verifier. Distance-
bounding protocols were introduced to counter such attacks. Lately, there has been a very
active research trend on improving the security of these protocols, but also on ensuring
strong privacy properties with respect to active adversaries and malicious verifiers.

In particular, a difficult threat to address is the terrorist fraud, in which a far-away prover
cooperates with a nearby accomplice to fool a verifier. The usual defence against this attack
is to make it impossible for the accomplice to succeed unless the prover provides him with
enough information to recover his secret key and impersonate him later on. However, the
mere existence of a long-term secret key is problematic with respect to privacy.

In this paper, we propose a novel approach in which the prover does not leak his secret key
but a reusable session key along with a group signature on it. This allows the adversary to
impersonate him even without knowing his signature key. Based on this approach, we give
the first distance-bounding protocol, called SPADE, integrating anonymity, revocability and
provable resistance to standard threat models.

• Xavier Bultel, Sébastien Gambs, David Gerault, Pascal Lafourcade, Cristina Onete and Jean-
Marc Robert.
“SPADE : un protocole délimiteur de distance anonyme et résistant à la fraude terroriste.” Al-
goTel 2017

Abstract: This paper is an extended abstract of the paper "A Prover-Anonymous and Terrorist-
Fraud Resistant Distance Bounding Protocol" at WiSec 2016 presented above.

• Gildas Avoine, Xavier Bultel, Sébastien Gambs, David Gerault, Pascal Lafourcade, Cristina
Onete and Jean-Marc Robert.
“A Terrorist-fraud Resistant and Extractor-free Anonymous Distance-Bounding Protocol.” ASIA
CCS 2017

Abstract: Distance-bounding protocols have been introduced to thwart relay attacks against
contactless authentication protocols. In this context, verifiers have to authenticate the cre-
dentials of untrusted provers. Unfortunately, these protocols are themselves subject to com-
plex threats such as terrorist-fraud attacks, in which a malicious prover helps an accom-

11

CHAPTER 1. INTRODUCTION

plice to authenticate. Provably guaranteeing the resistance of distance-bounding proto-
cols to these attacks is a complex task due to the potential interactions between the mali-
cious prover and his accomplice. The classical countermeasures usually assume that ratio-
nal provers want to protect their long-term authentication credentials, even with respect to
their accomplices. Thus, terrorist-fraud resistant protocols generally rely on artificial extrac-
tion mechanisms, ensuring that an accomplice can retrieve the credential of his partnering
prover if he is able to authenticate with a non-negligible probability. However, these artificial
mechanisms are usually required only for sake of the proofs and are complex to deploy.

• Xavier Bultel, Radu Ciucanu, Matthieu Giraud and Pascal Lafourcade.
“Secure Matrix Multiplication with MapReduce.” ARES 2017

Abstract: The MapReduce programming paradigm allows to process big data sets in par-
allel on a large cluster of commodity machines. The MapReduce users often outsource their
data and computations to a public cloud provider. We focus on the fundamental problem
of matrix multiplication, and address the inherent security and privacy concerns that oc-
cur when outsourcing to a public cloud. Our goal is to enhance the two state-of-the-art
algorithms for MapReduce matrix multiplication with privacy guarantees such as: none of
the nodes storing an input matrix can learn the other input matrix or the output matrix,
and moreover, none of the nodes computing an intermediate result can learn the input or
the output matrices. To achieve our goal, we rely on the well-known Paillier’s cryptosys-
tem and we use its partially homomorphic property to develop efficient algorithms that sat-
isfy our problem statement. We develop two different approaches called secure-Private and
Collision-Resistant-Secure-Private, and compare their trade-offs with respect to three fun-
damental criteria: computation cost, communication cost, and privacy guarantees. Finally,
we give security proofs of our protocols.

• Xavier Bultel, Jannik Dreier, Pascal Lafourcade and Malika More.
“How to explain modern security concepts to your children.” Cryptologia (2017)

Abstract: At the main cryptography conference CRYPTO in 1989, Quisquater et al. published
a paper showing how to explain the complex notion of zero-knowledge proof in a simpler
way that children can understand. In the same line of work, we present simple and intuitive
explanations of various modern security concepts and technologies, including symmetric
encryption, public key encryption, homomorphic encryption, intruder models (CPA, CCA1,
CCA2) and security properties (OW, IND, NM). The explanations given in this paper may also
serve in demystifying such complex security notions for non-expert adults.

12

Chapter 2

Technical Introduction

Contents
2.1 Mathematical Background . 14

2.2 Notations . 16

2.3 Cryptographic Assumptions . 16

2.4 Hash Function . 18

2.4.1 Formal Definition . 19

2.4.2 The Random Oracle Model . 19

2.5 Public Key Encryption . 19

2.5.1 Formal Definition . 19

2.5.2 Security Against Chosen Plaintext Attack . 20

2.5.3 Additional Properties . 21

2.5.4 ElGamal Encryption Scheme . 22

2.6 Proof of Knowledge . 23

2.6.1 Formal Definitions . 23

2.6.2 Schnorr Interactive Proof System . 25

2.6.3 An Interactive Proof System For Discrete Logarithm Equality 25

2.6.4 Sigma Protocols . 25

2.6.5 The Fiat-Shamir Transformation . 26

2.6.6 The Cramer-Damgård-Schoenmakers Transformation 26

2.7 Digital Signature . 28

2.7.1 Formal Definition . 28

2.7.2 Security Against Chosen Message Attacks . 28

2.7.3 Schnorr Signature . 29

In this chapter we recall the cryptographic notions used throughout this thesis. We begin by the
mathematical background, next we define the cryptographic assumptions used to evaluate the se-
curity of our schemes. Finally, we present some fundamental cryptographic primitives classified
in the following families: hash functions, public key encryptions, proofs of knowledge and signa-
tures. For each of them, we give a formal definition, a security model and a concrete instanciation.
When no reference is specified, the definitions and theorems given in this chapter refer to the book
Foundations of Cryptography [Gol01, Gol04].

As a preamble to this chapter, let us recall the principle of provable security. This approach
allows us to formally prove that a given cryptographic scheme have some security properties. The
first step is to formally define this property: we build an algorithm called the experiment that
proposes some challenge to a polynomial time algorithm called the adversary. The challenge can
be viewed as an algorithmic problem that the adversary tries to solve; if the adversary solves this

13

CHAPTER 2. TECHNICAL INTRODUCTION

problem, then we say that it wins the experiment. Sometimes, to help it, the adversary has access
to some black-boxes called oracles that allows it to learn some information that it cannot compute
by himself (for example, an oracle that decrypts some ciphertexts using a key that the adversary
does not know). The scheme is secure according to the property when there is no adversary that
wins the experiment with a non-negligible (i.e., significantly high) probability in polynomial time.
Often, this kind of result is demonstrated under the hypothesis that a mathematical problem is
hard to solve, or under the hypothesis that another cryptographic scheme is secure.

For example, consider an encryption scheme and a number-theory based problem. We will
show how to prove that it is not possible to decrypt a ciphertext, without the corresponding secret
key, under the hypothesis that our number-theory based problem is hard to solve. We define an
experiment where the challenge is to decrypt the encryption of a randomly picked message using
a randomly picked secret key. We then prove by reduction that if our number-theory based prob-
lem is hard to solve, then there is no adversary that wins the experiment with a non-negligible
probability. Most of the time, such a property is often proved by contraposition: if there exists
an adversary A that wins the experiment with a non-negligible probability, then we show how
to build an algorithm from A that solves the number-theory based problem with non-negligible
probability in polynomial time, which contradicts our assumption. Hence, such adversary does
not exist.

2.1 Mathematical Background

We first recall some fundamental notions of complexity.

Definition 1 (Polynomial-Time Algorithm) Let k be an integer. An algorithm A whose inputs are
generated by a function Set is said to be polynomial-time when for any input value Ik generated by
Set(k), there exists a polynomial t such that the execution time of A (Ik) is bounded by |t (k)|.
Often, if A is a cryptographic algorithm, the parameter k is said to be the security parameter.

Definition 2 (Negligible function) A function f :N→ R is negligible when for all positive polyno-
mial t there exists an integer n ∈N such that for all x > n:

| f (x)| < 1

t (x)

In the following, we recall some fundamental notions of algebra.

Definition 3 (Group) A group is a couple (G, ·) where G is a set and · is an operation of G2 →G that
combines any (a,b) ∈G2 to from an element ofG denoted a·b such that the three following properties
hold:

Associativity: For all a ∈G,b ∈G and c ∈G then (a ·b) · c = a · (b · c).
Identity element: There exists a unique element 1 ∈G called the identity element such that for all

a ∈G, 1 ·a = a ·1 = a.
Inverse element: For all a ∈G, there exists a unique element 1

a ∈G such that a · 1
a = 1

a ·a = 1.

Moreover, we say that a group is commutative when for any a ∈G and b ∈G, it holds that a ·b = b ·a.
A group is said to be finite when G has a finite number of elements. The number of elements of G is
called the order of the group and is denoted by |G|. When it is clear in the context, we denote by G
the group (G, ·)

Definition 4 (Field) A field is a triplet (G,+, ·) where G is a set and + (resp. ·) is an operation of
G2 →G that combines any (a,b) ∈G2 to from an element of G denoted a+b (resp. a ·b) such that the
three following properties hold:

Associativity: For all a ∈G,b ∈G and c ∈G then (a +b)+ c = a + (b + c) and (a ·b) · c = a · (b · c).

14

CHAPTER 2. TECHNICAL INTRODUCTION

commutativity: For all a ∈G and b ∈G then (a +b) = (b +a) and a ·b = b ·a.
Identity element: There exists two unique elements 0 ∈ G and 1 ∈ G such that for all a ∈ G, 0+a =

a +0 = a and 1 ·a = a ·1 = a.
Multiplicative inverse element: For all a ∈ G, there exists a unique element 1

a ∈ G such that a · 1
a =

1
a ·a = 1.

Additive inverse element: For all a ∈G, there exists a unique element (−a) ∈G such that a+ (−a) =
(−a)+a = 0.

Distributivity: For all a ∈G,b ∈G and c ∈G then a · (b + c) = a ·b +a · c and (a ·b) · c = a · (b · c).

Moreover, we say that a group is commutative when for any a ∈G and b ∈G, it holds that a ·b = b ·a.
A group is said to be finite when G has a finite number of elements. The number of elements of G is
called the order of the group and is denoted by |G|. When it is clear in the context, we denote by G
the group (G, ·)

Definition 5 (Generator and cyclic group) Let (G, ·) be a finite group. We denote by g x the discrete
exponentiation of g by x where g ∈G and x ∈Z:

g x = g · g · g · · ·g︸ ︷︷ ︸
x times

We say that g is a generator of (G, ·) when G = {g x |x ∈Z}. A group that admits a generator is called a
cyclic group.

Definition 6 (Homomorphism) Let (G1, ·) and (G2,×) be two groups. A group homomorphism be-
tween (G1, ·) and (G2,×) is a function f : G1 → G2 such that for all a ∈ G1 and b ∈ G2, it holds that
f (a ·b) = f (a)× f (b). If f is a bijective function, then we say that f is an isomorphism, and that
(G1, ·) and (G2,×) are isomorphic.

Property 1 We denote by Z/pZ, or Zp , the set of the integers modulo p. If (G, ·) is a cyclic group of
order p then (G, ·) is commutative, and (G, ·) and (Z/pZ,+) are isomorphic. Moreover, if p is prime
then all elements of (G, ·) except the identity element are generators.

Definition 7 (Bilinear pairing) Let (G1, ·), (G2, ·) and (GT, ·) be three groups of prime order p. A bi-
linear pairing map e :G1×G2 →GT is a function that satisfies the following properties for all g1 ∈G1

and g2 ∈G2:

Bilinearity: For all a ∈Z∗
p and b ∈Z∗

p , then e(g a
1 , g b

2) = e(g1, g2)a·b .
Non-degeneracy: (e(g1, g2) = 1) ⇒ ((g1 = 1) or (g2 = 1)).
Computability: There exists a polynomial time algorithm to compute e.

Moreover, bilinear pairings are classified in the three following families:

Type 1: G1 =G2, such a pairing is said to be symmetric.
Type 2: G1 6=G2 and there exists a polynomial time homomorphism φ :G2 →G1.
Type 3: G1 6=G2 and there is no polynomial time homomorphism between G1 and G2.

Definition 8 (Lagrange’s interpolation) Let k be an integer and F be a field. For all i ∈ �0, l�, let
(xi , yi) ∈ F2 such that for all (i1, i2) ∈ �0, l�2, xi1 6= xi2 . There exists one and only one polynomial f
of degree at most l such that for all i ∈ �0,n�, f (xi) = yi . This polynomial is given by Lagrange’s
interpolation formula:

f (x) =
l∑

i =0

(
yi ·

l∏
j =0, j 6=i

x −x j

xi −x j

)

15

CHAPTER 2. TECHNICAL INTRODUCTION

2.2 Notations

• We denote by a||b the concatenation of two bit strings a and b.

• We denote by r
$← S the random draw of r into the uniform distribution on S.

• Let X be a Probabilistic Polynomial-Time algorithm (PPT), we denote by z ← X(x;r) the ex-
ecution of X where x is the input, z is the output, and r is a random tape. When it is clear
from the context, we omit the parameter r and simply use X(x).

• POLY(k) denotes the set of all the algorithms that are polynomialy bounded in the security
parameter k.

• XY(·)(x) denotes that the algorithm X has access to the algorithm Y as a black box. Y is said
to be an oracle.

• A protocol P involves at least two entities that are modeled by probabilistic polynomial-time
algorithms interacting together. P〈X(x);Y(y)〉 denotes the execution of the protocol P be-
tween the entities X and Y using respective inputs x and y .

• outX(P〈X(x);Y(y)〉) returns the output of the entity X at the end of the execution of the proto-
col P. We also denote by viewX(P〈X(x);Y(y)〉) all the values sent and received by X through-
out the execution of the protocol P. We note that out and view can be used on several
entities, for example, outX,Z(P〈X(x);Y(y);Z(z)〉) returns the couple (oX,oZ) where oX (resp.
oZ) is the output of the entity X (resp. Z) at the end of the execution of the protocol P, and
viewX,Z(P〈X(x);Y(y);Z(z)〉) returns the couple (vX, vZ) where vX (resp. vZ) is the set of all the
values sent and received by X (resp. Z) throughout of the execution of the protocol P. Fi-
nally, trans(P〈X(x);Y(y)〉) returns the full transcript of the protocol, i.e., all the values sent
and received by all the entities.

• By convention, we use the symbol ∗ to denote a dishonest user in a protocol: for example,
P〈X(x);Y∗(y)〉 denotes that X honestly runs the protocol but Y∗ does not. If several dishonest
entities collude then each of theses entities has access to all information known by all other
dishonest entities. When it is not precised, we assume that dishonest entities do not collude.

• Let R be a binary relation, LR denotes the language defined by LR = {a|∃ b, (a,b) ∈R}.

• We denote the set of polynomials with coefficients in the field F by F[X] and we denote the
set of all f ∈ F[X] of degree l by F[X]l .

2.3 Cryptographic Assumptions

We present several number-theory based computational assumptions that are assumed to be true
throughout this thesis.

Definition 9 (Discrete Logarithm assumption [DH76]) Let p be a prime number generated accord-
ing to a security parameter k ∈N. Let G be a multiplicative group of order p, and g ∈G be a genera-
tor. The discrete logarithm assumption (DL) in (G, p, g) states that there exists a negligible function
ε such that for all A ∈ POLY(k):

Pr
[

x
$←Z∗

p ; x ′ ←A (g x) : x = x ′
]

= ε(k)

16

CHAPTER 2. TECHNICAL INTRODUCTION

Vocabulary: If there exists an algorithm A ∈ POLY(k) such that ε(k) is not negligible, then we say
that A breaks the DL assumption. If A (g x) returns x ′ such that x = x ′, we say that A wins the DL
experiments. Moreover, ε(k) is said to be the advantage of A against the DL experiment. The same
vocabulary will be used in a similar way for the other assumptions we will define in this section.

Definition 10 (Computational Diffie-Hellman assumption [DH76]) Let p be a prime number gen-
erated according to a security parameter k ∈N. Let G be a multiplicative group of order p, and g ∈G
be a generator. The Computational Diffie-Hellman assumption (CDH) in (G, p, g) states that there
exists a negligible function ε such that for all A ∈ POLY(k):

Pr
[

(x, y)
$← (Z∗

p)2;h ←A (g x , g y) : h = g x·y
]

= ε(k)

Definition 11 (Divisible Computational Diffie-Hellman assumption [BDZ03]) Let p be a prime
number generated according to a security parameter k ∈N. Let G be a multiplicative group of order
p, and g ∈ G be a generator. The Divisible Computational Diffie-Hellman assumption (DCDH) in
(G, p, g) states that there exists a negligible function ε such that for all A ∈ POLY(k):

Pr
[

(x, y)
$← (Z∗

p)2;h ←A (g x , g y) : h = g x/y
]

= ε(k)

The DCDH assumption is equivalent to the CDH assumption [BDZ03].

Definition 12 (Decisional Diffie-Hellman assumption [Bon98]) Let p be a prime number gener-
ated according to a security parameter k ∈N. Let G be a multiplicative group of order p, and g ∈ G
be a generator. The Decisional Diffie-Hellman assumption (DDH) in (G, p, g) states that there exists
a negligible function ε such that for all A ∈ POLY(k):∣∣∣∣Pr

[
(x, y, z0)

$← (Z∗
p)3; z1 = x · y ;b

$← {0,1};b′ ←A (g x , g y , g zb) : b = b′
]
− 1

2

∣∣∣∣ = ε(k)

Definition 13 (t-Strong Diffie-Hellman assumption [BB04]) Let p be a prime number generated
according to a security parameter k ∈ N. Let t ∈ N be an integer, G be a multiplicative group of
order p, and g ∈G be a generator. The t-Square Decisional Diffie-Hellman assumption (t-SDH) in
(G, p, g) states that there exists a negligible function ε such that for all A ∈ POLY(k):

Pr
[

x
$←Z∗

p ; (c,h) ←A
(
(g x i

)0≤i≤t

)
:
(
c ∈Zp \{−x}

)∧ (
h = g

1
x+c

)]
= ε(k)

Remark 1 Let G1,G2 and GT be three groups of prime order p, e :G1 ×G2 →GT be a non-degenerate
bilinear pairing of type 2 or 3 and g1 ∈G1 and g2 ∈G2 be two group elements. The DDH assumption
does not hold in both (G1, p, g1) and (G2, p, g2). We show how to break the DDH assumption when e
is a type 1 pairing, i.e., G = G1 = G2 and g = g1 = g2: knowing g x , g y and g zb , we can check whether
e(g x , g y) = e(g , g zb), which is equivalent to check whether g x·y = g zb because e(g x , g y) = e(g , g x·y).
We can show that the DDH assumption does not hold when e is a type 2 pairing in a similar way.

Definition 14 (Bilinear Computational Diffie-Hellman assumption [Jou04]) Let a prime number
p generated according to a security parameter k ∈N be. Let G1,G2 and GT be three groups of order p,
e :G1×G2 →GT be a non-degenerate bilinear pairing and g1 ∈G1 and g2 ∈G2 be two group elements.
The Bilinear Computational Diffie-Hellman assumption (BCDH) in (G1,G2,GT, p, g1, g2,e) states
that there exists a negligible function ε such that for all A ∈ POLY(k) and for all (α,β,γ) ∈ {1,2}3:

Pr
[

(x, y, z)
$← (Z∗

p)3;h ←A (g x
α , g y

β
, g z
γ) : h = e(g1, g2)x·y ·z

]
= ε(k)

Definition 15 (Bilinear Decisional Diffie-Hellman assumption [Jou04]) Let p be a prime number
generated according to a security parameter k ∈ N. Let G1, G2 and GT be three groups of order p,
e :G1×G2 →GT be a non-degenerate bilinear pairing and g1 ∈G1 and g2 ∈G2 be two group elements.

17

CHAPTER 2. TECHNICAL INTRODUCTION

The Decisional Diffie-Hellman assumption (BDDH) in (G1,G2,GT, p, g1, g2,e) states that there exists
a negligible function ε such that for all A ∈ POLY(k) and for all (α,β,γ) ∈ {1,2}3:∣∣∣∣∣Pr

[
(x, y, z)

$← (Z∗
p)3;h0

$←GT;h1 = e(g1, g2)x·y ·z ;

b
$← {0,1};b′ ←A (g x

α , g y
β

, g z
γ ,hb)

: b = b′
]
− 1

2

∣∣∣∣∣ = ε(k)

Definition 16 (Fixed Argument Pairing Inversion assumption [GHV08]) Let p be a prime num-
ber generated according to a security parameter k ∈ N. Let G1,G2 and GT be three groups of order
p, e : G1 ×G2 → GT be a non-degenerate bilinear pairing and g1 ∈ G1 and g2 ∈ G2 be two group ele-
ments.The Fixed Argument Pairing Inversion 1 assumption (FAPI1) in (G1,G2,GT, p, g1, g2,e) states
that there exists a negligible function ε such that for all A ∈ POLY(k):

Pr
[

X
$←G1;X′ ←A (e(X, g2)) : X = X′

]
= ε(k)

The Fixed Argument Pairing Inversion 2 assumption (FAPI2) in (G1,G2,GT, p, g1, g2,e) states that
there exists a negligible function ε such that for all A ∈ POLY(k):

Pr
[

X
$←G2;X′ ←A (e(g1,X)) : X = X′

]
= ε(k)

We define a variant of the DL assumption in a bilinear mapping that is computationally equiv-
alent to the DL assumption.

Definition 17 (Bilinear Discrete Logarithm Variant assumption) Let p be a prime number gen-
erated according to a security parameter k ∈ N. Let G1,G2 and GT be three groups of order p, e :
G1 ×G2 → GT be a non-degenerate type 2 bilinear pairing and g1 ∈ G1 and g2 ∈ G2 be two group el-
ements. The Bilinear Discrete Logarithm Variant (BDLV) in (G1,G2,GT, p, g1, g2,e) states that there
exists a negligible function ε such that for all A ∈ POLY(k):

Pr
[

x
$←Z∗

p ; x ′ ←A (g x
1 , g

1
x

2) : x = x ′
]
≤ ε(k)

Theorem 1 The BDLV assumption in (G1,G2,GT, p, g1, g2,e) holds under the DL assumption in
(G2, p, g2).

Proof: Let G1,G2 and GT be three groups of prime order p, e : G1 ×G2 → GT be a type 2 non-
degenerate bilinear pairing and g2 ∈ G2 be a generator. Suppose that there exists a polynomial
time algorithm A that breaks the BDLV assumption in (G1,G2,GT, g1, g2,e) for any g1 chosen in
the uniform distribution onG1. We construct the polynomial time algorithm B that breaks the DL
assumption in (G2, p, g2). B receives h2 = g x

2 as input. Since e is a type 2 pairing, there exists a com-
putationally efficient morphism φ : G2 → G1. B picks a ∈ Z∗

p and computes h1 = φ(g a
2) and g1 =

φ(ha
2) = φ((g a

2)x) = hx
1 . Thus, g 1/x

1 = h1, and (h1,h2) is an instance of BDLV in (G1,G2,GT, g1, g2,e)
with regards to the solution y = 1/x. B runs y ′ ←A (h1,h2) and returns y ′ = 1/x ′. We observe that
y ′ = y ⇔ x ′ = 1/y = x. We conclude that B breaks DL in (G2, p, g2) in polynomial time with the same
probability that A breaks BDLV in (G1,G2,GT, g1, g2,e). �

Note that this proof requires the hypothesis that e is a type 2 pairing. To the best of our knowl-
edge, there is neither known reduction to DL in (G2, g2) where e is a type 3 pairing, nor known
polynomial time algorithm that breaks BDLV.

2.4 Hash Function

In this section, we recall the definition of hash functions and the random oracle model.

18

CHAPTER 2. TECHNICAL INTRODUCTION

2.4.1 Formal Definition

A hash function transforms a given bit-string into a fixed size hash value. Such a function is secure
when it is hard to inverse it, and when it is hard to find two bit-strings that correspond to the same
hash value.

Definition 18 (Hash function) A hash function is a deterministic function H : {0,1}∗ → I . Such
a function is said to be secure for the security parameter k ∈ N when H verifies the two following
properties:

Pre-image resistance: For all algorithm A ∈ POLY(k), there exists a negligible function ε such that:

Pr
[

h
$←I ;m ←A (H,h) : H(m) = h

]
≤ ε(k)

Collusion resistance: For all algorithm A ∈ POLY(k), there exists a negligible function ε such that:

Pr [(m0,m1) ←A (H) : H(m0) = H(m1)] ≤ ε(k)

SHA-2 [Dan15] is an example of family of hash functions considered secure in practice.

2.4.2 The Random Oracle Model

In this thesis, some security properties are proven in the random oracle model, i.e., under the as-
sumption that each hash function is replaced by an oracle that responds to a given bit-string with
a random value chosen from uniform distribution on the output domain of the hash function.
Proofs that do not use this heuristic are said in the standard model. Most of the time, a security
proof in the random oracle model is sufficient to justify the security of a cryptographic protocol
in practice, even if from a theoretical point of view, a proof of security in the standard model is
stronger (and more difficult to obtain) than a proof in the random oracle model.

Definition 19 (Random Oracle Model [BR93]) We say that a cryptographic scheme is secure in the
random oracle model (ROM) when its security proof requires the hypothesis that any hash function
H : {0,1}∗ → I can be replaced by a black box H(·) (called the random oracle) defined as follows,
where mi (resp. hi) is the i th input (resp. output) of H(·):

Random oracle H(·): On the i th input mi , if there exists j ≤ i such that m j = mi , this oracle sets

hi = h j , else it picks hi
$←I . It returns hi .

2.5 Public Key Encryption

Public key encryption allows the users to encrypt messages thanks to public keys. However, the
corresponding secret key is required to decrypt the ciphertexts.

2.5.1 Formal Definition

Definition 20 (Public Key Encryption) A Public Key Encryption scheme (PKE) is a tuple of poly-
nomial time algorithms (Set,Gen,Enc,Dec) defined as follows:

Set(k): It returns a setup set, a set of messages M and a set of random coins C .
Gen(set): It returns a public/private key pair (pk,sk).
Encpk(m,r): It returns a ciphertext c.
Decsk(c): It returns a plaintext m or the bottom symbol ⊥.

Moreover a PKE is said to be correct when the following equation holds for any k ∈N:

Pr

 (set,M ,C) ← Set(k); (pk,sk) ←Gen(set);

m
$←M ;r

$←C ;
c ←Encpk(m,r);m′ ←Decsk(c)

: m′ = m

 = 1

19

CHAPTER 2. TECHNICAL INTRODUCTION

Remark 2 In practice, the setup algorithm Set(k) is run once, and the outputted setup set is publicly
known. As it is clear from the context, we omit it in the description of both algorithms Enc and Dec,
although it is obviously used as input by these algorithms. This remark can be applied to the other
primitives defined throughout this document.

Remark 3 In Definition 20, Enc is described as a deterministic algorithm that takes as input a pub-
lic key pk, a message m and a random coin r . Most of the time, in order to make the notation
less cluttered, we assume that the algorithm is probabilistic, i.e., it is able to generate the random
value r by itself. In this thesis, we will define properties that require that public key encryptions are
formalized as in Definition 20. However, in the other cryptographic primitives we will define, all
algorithms are assumed to be probabilistic.

2.5.2 Security Against Chosen Plaintext Attack

The indistinguishability against chosen-plaintext attack is the basic security requirement for pub-
lic key encryptions. Informally, it implies that a ciphertext leaks no information about the cor-
responding plaintext. Consider an adversary that chooses two messages m0 and m1, and that
receives the encryption of one of the two messages. If such an adversary is not able to guess the
chosen message with a significant probability (i.e., significantly different to 1/2, the probability of
guessing at random), then the public key encryption scheme is said to be indistinguishable against
chosen-plaintext attack.

Definition 21 (Indistinguishability against Chosen-Plaintext Attack [GM84]) Let the tuple of al-
gorithms E = (Set,Gen, Enc, Dec) be a PKE, A = (A1,A2) be a two-party algorithm and k ∈ N be a
security parameter. We define the IND-CPA experiment for the adversary A against E as follows.

ExpIND-CPA
E,A (k):

b
$← {0,1}

(set,M ,C) ← Set(k)
(pk,sk) ←Gen(set)
(m0,m1,st) ←A1(set,pk)
r

$←C

c ←Encpk(mb ,r)
b′ ←A2(st,pk,c)
return (b = b′)

We define the IND-CPA advantage of A against E as follows:

AdvIND-CPA
E,A (k) =

∣∣∣∣Pr
[

1 ←ExpIND-CPA
E,A (k)

]
− 1

2

∣∣∣∣
We define the IND-CPA advantage against E as follows:

AdvIND-CPA
E (k) = max

A ∈POLY(k)2

{
AdvIND-CPA

E,A (k)
}

E is said to be indistinguishable against chosen-plaintext attack, or IND-CPA secure, when the ad-
vantage AdvIND-CPA

E (k) is negligible.

The indistinguishability against multiple chosen-plaintexts attack is an extension of the pre-
vious property where the adversary receives several public keys and chooses several couples of
messages (m0,m1). For each of them, the adversary receives the encryption of mb where b ∈ {0,1}
(the same b is used each time). The goal of the adversary is to guess b with a probability that is
significantly different to 1/2.

20

CHAPTER 2. TECHNICAL INTRODUCTION

Definition 22 (Indistinguishability against multiple Chosen-Plaintexts Attack [BBM00]) Let E =
(Set, Gen, Enc,Dec) be a PKE, A be an algorithm, α ∈ N and β ∈ N be two integers and k ∈ N be a
security parameter. For all i in �1,β� ,let the following oracle be:

Encpki
(LRb(·, ·),∗): On input (m0,m1), this algorithm picks r

$← C , runs c ← Encpki
(mb ,r) and

returns c. This oracle cannot be called more than α times.

We define the IND-CPAα,β experiment for the adversary A against E as follows.

ExpIND-CPAα,β

E,A (k):

b
$← {0,1}

(set,M ,C) ← Set(k)
∀i ∈ �1,β�], (pki ,ski) ←Gen(set)

b′ ←A
Encpk1 (LRb (·,·),∗),...,Encpkβ (LRb (·,·),∗)

(set,pk1, . . .pkβ)
return (b = b′)

We define the IND-CPAα,β advantage of A against E as follows:

AdvIND-CPAα,β

E,A (k) =

∣∣∣∣Pr
[

1 ←ExpIND-CPAα,β

E,A (k)
]
− 1

2

∣∣∣∣
We define the IND-CPAα,β advantage against E as follows:

AdvIND-CPAα,β

E (k) = max
A ∈POLY(k)

{
AdvIND-CPAα,β

E,A (k)
}

E is said to be (α,β)-indistinguishable against multiple chosen-plaintext attack, or IND-CPAα,β se-

cure, when AdvIND-CPAα,β

E (k) is negligible.

If β = 1, then we ommit it in the notation. we denote IND-CPAα,1 (resp. ExpIND-CPAα,1

E,A (k),

AdvIND-CPAα,1

E,A (k) and AdvIND-CPAα,1

E (k)) by IND-CPAα (resp. ExpIND-CPAα

E,A (k), AdvIND-CPAα

E,A (k) and

AdvIND-CPAα

E (k)), and we say that E is α-indistinguishable against multiple chosen-plaintext at-

tack, or IND-CPAα secure, when AdvIND-CPAα

E (k) is negligible

In [BBM00], Bellare, Boldyreva and Micali show that the indistinguishability against chosen-
plaintext attack is equivalent to the indistinguishability against multiple chosen-plaintexts attack:

Theorem 2 Let E be a PKE. E is IND-CPA secure if and only if E is IND-CPAt (k) for any polynomial
t .

2.5.3 Additional Properties

We introduce the notion of Random Coin Decryptable (RCD) public key encryption. Each cipher-
text outputted by the encryption algorithm depends to a random coin (denoted by r in Defini-
tion 33). Informally, a public key encryption scheme is said to be a RCD if it is possible to decrypt
a ciphertext using this random coin as a secret key. This primitive is a kind of PKE with double de-
cryption mechanism (DD-PKE) which is defined in [GH08]. Actually, a RCD public key encryption
is a DD-PKE where the second secret key is the random coin and where this key is used once.

Definition 23 (Random Coin Decryptable PKE) A probabilistic PKE is Random Coin Decrypt-
able (RCD) if:

1. there exists a polynomial time algorithm CDec defined as follows:

CDecr (c,pk): It returns a plaintext m or a bottom symbol ⊥.

21

CHAPTER 2. TECHNICAL INTRODUCTION

2. the following equation holds for any k ∈N:

Pr

 (set,M) ← Set(k); (pk,sk) ←Gen(set);

m
$←M ;r

$←C ;
c ←Encpk(m,r);m′ ←CDecr (c,pk)

: m′ = m

 = 1

We introduce the concepts of valid key pair and of verifiable key public key encryption. Infor-
mally, a key pair (pk,sk) is valid when any message encrypted by pk will be correctly decrypted by
sk. A public key encryption is said to be verifiable key when it is possible to check whether a key
pair is valid or not.

Definition 24 (Verifiable Key PKE) Let E = (Set,Gen,Enc,Dec) be a PKE. We say that a key pair
(pk,sk) is valid for E according to the setup (set,M ,C) when for any message m ∈ M and any ran-
dom coin r ∈C :

Pr
[
c ←Encpk(m,r);m′ ←Decsk(c) : m′ = m

]
= 1

We say that E is verifiable-key (VK) when there exists an algorithm Ver such that 1 ← Ver(pk,sk) if
and only if (pk,sk) is valid for E according to the setup (set,M ,C).

2.5.4 ElGamal Encryption Scheme

The ElGamal Cryptosystem is a well known public key encryption scheme based on the discret
logarithm problem. It is known to be IND-CPA secure under the decisional Diffie-Hellman as-
sumption.

Definition 25 (ElGamal Cryptosystem [ElG85]) The ElGamal cryptosystem scheme ElGamal = (Set,
Gen, Enc,Dec) is a PKE defined as follows:

Set(k): It generates a prime order group setup set = (G, p, g), sets M = G and C = Z∗
p , and returns

(set,M ,C).
Gen(set): It picks sk $←Z∗

p , sets pk = g sk and returns (pk,sk).
Encpk(m,r): It returns c = (g r ,pkr ·m).
Decsk(c): It parses c = (c1,c2) and returns m = c2

csk
1

.

Theorem 3 ElGamal is IND-CPA secure under the DDH assumption.

The proof is given in [Sho04]. Finally, we show that the ElGamal encryption is both random coin
decryptable and verifiable key.

Theorem 4 ElGamal is RCD and VK.

Proof: To show that ElGamal is RCD, we show how to build the algorithm CDec:

CDecr (c,pk): It parses c = (c1,c2) and returns m = c2

pkr .

Clearly, this algorithm returns the message m for any ciphertext (c1,c2) = (g r ,pkr ·m) with prob-
ability 1. On the other hand, to show that ElGamal is VK, we show how to build its verification
algorithm Ver:

Ver(pk,sk): It returns 1 if and only if g sk = pk.

For any ciphertext (c1,c2) = (g r ,pkr ·m), the equation g sk = pk implies that m = c2

csk
1

, which con-

cludes the proof. �

Many other public key encryption schemes in the literature can easily be proven to be RCD in
a similar way, e.g. [CS03, ABR98, FO13]. Moreover, in many PKE, the public key is generated from
the secret key in a deterministic way as in the ElGamal cryptosystem (for instance, [CS03, ABR98]).
It is easy to see that this kind of encryption scheme is always VK.

22

CHAPTER 2. TECHNICAL INTRODUCTION

2.6 Proof of Knowledge

A zero-knowledge proof of knowledge is a protocol that allows a prover to convince a verifier that
it knows the secret solution sk of some public instance pk of a computational problem. Such a
protocol has the following properties:

• The correctness assures that if the prover knows the solution sk, then he is able to convince
the verifier.

• The soundness assures that if pk is not a valid instance of the computational problem, then
the prover is not able to convince the verifier.

• The validity assures that if the prover does not know the secret sk, then he is not able to
convince the verifier.

• Finally, the zero-knowledge property assures that no information about the secret solution
sk leaks during the protocol.

2.6.1 Formal Definitions

Definition 26 (Interactive proof systems [GMR89]) An interactive proof system (IP) is a couple P =
(Set, Proof) defined as follows:

Set(k): It is an algorithm that returns a setup set and a binary relation R.
Proof〈P(sk);V(pk)〉: It is a two-party protocol between two probabilistic polynomial time algo-

rithms P (the prover) and V (the verifier). At the end of the protocol, P returns the bottom
symbol ⊥ and V returns a bit b.

Moreover, we define the following properties:

Completeness: An IP is complete when for any k ∈ N, (set,R) ← Set(k) and (pk,sk) ∈ R, the fol-
lowing equation holds:

Pr
[
b ← outV

(
Proof〈P(sk);V(pk)〉) : b = 1

]
= 1

Soundness: An IP is sound when for any k ∈ N, (set,R) ← Set(k) and pk∗ 6∈ LR , there exists a
negligible function ε such that for any dishonest prover P∗ ∈ POLY(k):

Pr
[
b ← outV

(
Proof〈P∗(pk∗);V(pk∗)〉) : b = 1

]≤ ε(k)

Validity [BG93]: An IP is valid, or is an interactive proof of knowledge (POK), when for any k ∈
N and (set,R) ← Set(k), there exists a polynomial time algorithm K called the knowledge
extractor such that for any (possibly dishonest and unbounded) prover P∗, any pk ∈LR and
any bit-string in ∈ {0,1}∗, there exist a negligible function ε and a polynomial t such that:

Pr
[

sk ←KP∗(in)(pk) : (pk,sk) ∈R
]
≥ t

(
Pr

[
b ← outV

(
Proof〈P∗(in);V(pk)〉) : b = 1

])−ε(k)

Zero-knowledge: An IP is Zero-Knowledge (IZKP), when for any k ∈N, any (set,R) ← Set(k), any
(pk,sk) ∈R and any (possibly dishonest) verifier V∗ ∈ POLY(k), there exists a polynomial time
algorithm Sim called the simulator such that for any α ∈ {0,1}∗, the following equation holds:

Pr
[
α∗ ← viewV∗

(
Proof〈P(sk);V∗(pk)〉) : α = α∗

]
= Pr

[
α∗ ← Sim(pk) : α = α∗

]
Honest-verifier Zero-Knowledge: This property is the same as the Zero-knowledge one except that

the verifier is honest, i.e., V correctly runs the protocol.

When there is no interaction between the prover and the verifier, such a proof system is called
non-interactive proof systems.

23

CHAPTER 2. TECHNICAL INTRODUCTION

Definition 27 (Non-interactive proof systems [GMR89]) A non-interactive proof system (NIP) is
a tuple of algorithms P = (Set,Pro,Ver) defined as follows:

Set(k): It returns a setup set and a binary relation R.
Pro(sk,pk): It returns a proof π.
Ver(pk,π): It returns a bit b.

Moreover, we define the following properties:

Completeness: A NIP is complete when for any k ∈ N, (set,R) ← Set(k) and (pk,sk) ∈ R, the fol-
lowing equation holds:

Pr
[
π←Pro(sk,pk);b ←Ver(pk,π) : b = 1

]
= 1

Soundness: An NIP is sound when for any k ∈ N and (set,R) ← Set(k), there exists a negligible
function ε such that for any algorithm A ∈ POLY(k):

Pr
[
(pk∗,π) ←A (set);b ←Ver(pk∗,π) : (b = 1)∧ (pk∗ 6∈LR)

]≤ ε(k)

(Non-Adaptive) Validity: An NIP is (non-adaptive) valid, or is a (non-adaptive) non-interactive
proof of knowledge (NIPOK), when for any k ∈N and (set,R) ← Set(k), there exists a polyno-
mial time algorithm K called the knowledge extractor such that for any (possibly unbounded)
algorithm A , and any pk ∈ LR , there exist a negligible function ε and a polynomial t such
that:

Pr
[

sk ←KA (pk)(pk) : (pk,sk) ∈R
]
≥ t

(
Pr

[
π←A (pk);b ←Ver(pk,π) : b = 1

])−ε(k)

Zero-knowledge: An NIP is Zero-Knowledge (NIZKP), when for any k ∈ N, any (set,R) ← Set(k)
and any (pk,sk) ∈R, there exists a polynomial time algorithm Sim called the simulator such
that for any α ∈ {0,1}∗, the following equation holds:

Pr
[
α∗ ←Pro(sk,pk) : α = α∗

]
= Pr

[
α∗ ← Sim(pk) : α = α∗

]

Remark 4 In Definition 27, we define the non-adaptive validity of non-interactive proofs of knowl-
edge. There exists a stronger definition of validity where the algorithm A has access to more in-
formation than pk [BPW12], especially proofs for chosen statments pk′ ∈ LR such that pk′ 6= pk.
In [BPW12], Bernhard et al. show that several cryptographic protocols are not secure because they
use non-adaptive valid proofs. However, the authors show that non-adaptive validity is sufficient
for several applications, as identification protocols, or signatures based on non-interactive proofs of
knowledge. Since in this thesis, we only focus on non-interactive proofs for such applications, then
the non-adaptive validity is sufficient for our purposes.

Note that validity implies soundness. Indead, if a proof system is valid, then for any prover
that have a non-negligible probability to success a proof on the instance pk, there is a knowldege
extractor that returns sk such that (pk,sk) ∈R with non-negligible probability, which implies that
pk ∈LR .

Theorem 5 Let P be a (N)IP. If P is valid (or is non-adaptive valid), then P is sound.

24

CHAPTER 2. TECHNICAL INTRODUCTION

Prover P Verifier V

sk pk = g sk

r
$←Z∗p

R = g r R−−−−−−→ c
$←Z∗p

α = r + sk · c
c←−−−−−−
α−−−−−−→ If gα = R ·pkc

then return 1,
else 0

Prover P Verifier V

sk pk = (h,pk1,pk2) = (h, g sk,hsk)

r
$←Z∗p

R = g r ; S = hr (R,S)−−−−−−→ c
$←Z∗p

α = r + sk · c
c←−−−−−−
α−−−−−−→ If gα = R ·pkc

1

and hα = S ·pkc
2

then return 1, else 0

Figure 2.1: Protocols Proof of Schnorr (left) and LogEq (right).

2.6.2 Schnorr Interactive Proof System

The following interactive proof system, called the Schnorr protocol, is a well known zero-knowledge
proof of knowledge that allows some prover to prove that it knows the discret logarithm of an ele-
ment of a prime order group.

Definition 28 (Schnorr interactive proof system [Sch90]) The Schnorr proof system Schnorr = (Set,
Proof) is a zero-knowledge interactive proof of knowledge system where Proof is defined as in Fig. 2.1
and where Set is defined as follows:

Set(k): It generates a prime order group setup set = (G, p, g) and returns (set,R), where (pk,sk) ∈
R ⇔ (sk ∈Z∗

p)∧ (g sk = pk).

2.6.3 An Interactive Proof System For Discrete Logarithm Equality

We show a zero-knowledge proof of knowledge, called LogEq, that allows some prover to prove
that two elements of a prime order group have the same discrete logarithm, and to prove that he
knows this discrete logarithm.

Definition 29 (LogEq interactive proof system [CP93]) The LogEq interactive proof system LogEq =
(Set,Proof) is a zero-knowledge interactive proof of knowledge system where Proof is defined as in
Fig. 2.1 and where Set is defined as follows:

Set(k): It generates a prime order group setup set = (G, p, g) and returns (set,R), where the follow-
ing equivalence holds for pk = (h,pk1,pk2):

(pk,sk) ∈R ⇔ (
pk ∈G3)∧ (

pk1 = g sk
)
∧

(
pk2 = hsk

)
2.6.4 Sigma Protocols

A sigma protocol is an interactive proof of knowledge where the proof protocol is in three steps:
the prover sends a commitment to the verifier, the verifier sends a challenge to the prover, and the
verifier sends a response to the verifier. Note that Schnorr and LogEq are simga protocols.

Definition 30 (Sigma protocol [FKI06]) An interactive proof P = (Set,Proof) is a sigma protocol
when there exist a triplet of polynomial time algorithms (Commit,Response, Check) and a challenge
set C such that the protocol Proof can be describe as in Fig. 2.2.

Theorem 6 Schnorr is a sigma protocol, moreover, it is complete, sound, valid and honest verifier
zero-knowledge.

The proof of this theorem is given in [Sch90].

Theorem 7 LogEq is a sigma protocol, moreover, it is complete, sound, valid and honest verifier
zero-knowledge.

The proof of this theorem is given in [CP93].

25

CHAPTER 2. TECHNICAL INTRODUCTION

Prover P Verifier V
sk pk

(r,R) ←Commit(set)
R−−−−−−−−−−−−−→ c

$←C

α = Response(sk,r,R,c)
c←−−−−−−−−−−−−−
α−−−−−−−−−−−−−→ b ←Check(pk,R,c,α)

Return b

Figure 2.2: Protocol Proof of a sigma protocol.

2.6.5 The Fiat-Shamir Transformation

The Fiat-Shamir transformation is a method to change a sigma protocol into a non-interactive
proof system for the same language in the random oracle model. The idea is to use the hash of the
commitment and the public statment as challenge. Since the prover can compute the challenge
by himself, he does not need to interact with the verifier.

Definition 31 (Fiat-Shamir Transformation [FS87]) Let P be a sigma protocol defined as in Def. 30.
The Fiat-Shamir Transformation (FST) of P is the non-interactive proof system PNI = (Set,Pro,Ver)
defined as follows:

Set(k): It generates (set,R) using the setup algorithm of P, generates a hash function H : {0,1}∗ →C

and returns ((set,H),R).
Pro(sk,pk): It runs (r,R) ←Commit(set) and α = Response(sk,r,R,H(R||pk)). It returns π = (R,α).
Ver(pk,π): It parses π = (R,α), runs b ←Check(pk,R,H(R||pk),α) and returns b

Theorem 8 Let P be an interactive proof system that is complete, sound, valid, honest-verifier zero-
knowledge and that is a sigma protocol, then the Fiat-Shamir transformation of P is a non-interactive
proof system that is complete, sound, valid and zero-knowledge.

The proof of this theorem is given in [FS87].

Remark 5 The Fiat-Shamir transformation achieves adaptive validity (see Remark 4). There exists
a weaker version of this transformation where the prover hashs only the commitment without the
public statment, which is non-adaptive valid but not adaptive valid [BPW12]. In the following,
we show the difference between the two versions of the Fiat-Shamir transformation on the Schnorr
protocol in term of security. We show how to build an adaptive adversary A that forges a valid
non-interactive proof of a statment pk = g sk without knowing sk in the weak version of the trans-
formation. The algorithm A chooses a scalar a and computes pk′ = pk · g a , then it receives a proof
for this statment π = (R, z) , where z = r + (sk+a) ·H(R). It sets z ′ = z −a ·H(R) and returns the proof
π′ = (R, z ′). Since z ′ = z −a ·H(R) = r + (sk+a) ·H(R)−a ·H(R) = r + sk ·H(R), then π′ is a valid proof
for the statment pk. On the other hand, this attack no longer holds when the statment pk′ is hashed
together with R.

2.6.6 The Cramer-Damgård-Schoenmakers Transformation

The following definition requires some notions of secret sharing [Sha79]. A (t ,n)-threshold secret
sharing scheme allows to share a secret into n shares such that at least t shares are required to
recover the secret. Note that less than t shares do not leak any information about the secret. A
n-secret sharing scheme is a (t ,n)-threshold secret sharing scheme where t = n, i.e., all shares are
required to recover the secret. Let p be a prime number, we show how to share a secret s ∈Z∗

p into

n shares (si)1≤i≤n ∈ (Z∗
p)n . The first n−1 shares are chosen at random: ∀ i ∈ �1,n−1�, si

$←Z∗
p . The

last share is computed as follows:

sn =

(
n−1∏
i =1

1

si

)
· s

26

CHAPTER 2. TECHNICAL INTRODUCTION

Prover P Verifier V
sk j pk = {pki }1≤i≤n

(r j ,R j) ←Commit(set)
∀ i ∈ �1,n�/{ j }, (Ri ,ci ,αi) ←Sim(pki)

R = {Ri }1≤i≤n
R−−−−−−−−−−−−−→ c

$←Z∗p

c j =

(
n∏

i =1;i 6= j

1
ci

)
· c

c←−−−−−−−−−−−−−
α j = Response(sk j ,r j ,R j ,c j)

α = {(ci ,αi)}1≤i≤n
α−−−−−−−−−−−−−→ ∀ i ∈ �1,n�,bi ←Check(pki ,Ri ,ci ,αi)

If (∀ i ∈ �1,n�,bi = 1)

and c =
n∏

i =1
ci

then return 1, else 0

Figure 2.3: Protocol Proof of the Cramer-Damgård-Schoenmakers transformation.

Since the shares are chosen at random, then less than n shares do not leaks any information about
s. On the other hand, a user that knows the n shares retrieves the secret by computing:

s =
n∏

i =1
si

The Cramer-Damgård-Schoenmakers transformation is a way to change a proof of knowledge
of the secret solution of some problem instance into a proof of knowledge of v secret solutions
out of n intances (for two given integers v and n). This transformation requires the hypothesis
that the proof system is a zero-knowledge sigma protocol. The original Transformation requires
a (n + 1− v,n) threshold secret sharing scheme, however, we present a simplified version of this
transformation where v = 1, then it only requires a n-secret sharing. Moreover, all the proofs of
knowledge we use throughout this thesis are sigma protocols where the set of challenges is the set
Z∗

p for some prime number p. The following definition recall the Cramer-Damgård-Schoenmakers
transformation in the specific case where the set of challenges isZ∗

p and the secret sharing scheme
used is the one given previously.

Definition 32 (Cramer-Damgård-Schoenmakers Transformation [CDS94]) Let P = (Set,Proof) be
a sigma protocol defined as in Def. 30 where the set of challenge C is equals to Z∗

p for some prime
number p, and n ∈ N be an integer. The n-Cramer-Damgård-Schoenmakers Transformation (n-
CDST) of P is the interactive proof system Pn = (Setn ,Proofn) where:

Setn(k): It runs (set,R) ← Set(k). Since P is zero-knowledge, there exists a polynomial time simu-
lator Sim. Let S be the following set:

S = {s|Pr [(R,c,α) ← Sim(s);b ←Check(s,R,c,α) : b = 1] = 1}

This algorithm returns (set,Rn) where the following equivalence holds for any pk = {pki }1≤i≤n :

(pk,sk j) ∈Rn ⇔ (
pk ∈S n)∧ (

∃ j ∈ �1,n�, ((pk j ,sk j) ∈R)
)

Proofn〈P(sk j);V(pk)〉: It is the protocol in Fig. 2.3, where Sim is the simulator of P.

Theorem 9 Let P be an interactive proof system that is complete, sound, valid, zero-knowledge
(resp. honest-verifier zero-knowledge) and that is a sigma protocol, then the n-Cramer-Damgård-
Schoenmakers Transformation of P is an interactive proof system that is complete, sound, valid,
zero-knowledge (resp. honest-verifier zero-knowledge) and that is a sigma protocol.

This theorem is proven in [CDS94].

27

CHAPTER 2. TECHNICAL INTRODUCTION

2.7 Digital Signature

Digital signatures are public-key cryptographic schemes of message authentication. The secret
key allows a user to sign messages, and the public key allows anybody to verify the validity of these
signatures.

2.7.1 Formal Definition

Definition 33 (Digital signature [DH76]) A Digital signature (DS) is a tuple of polynomial time al-
gorithms (Set,Gen,Sig,Ver) defined as follows:

Set(k): It returns a setup set and a set of messages M .
Gen(set): It returns a verification/signing key pair (pk,sk).
DSigsk(m): It returns a signature σ.
Verpk(m,σ): It returns a bit b.

Moreover a DS is said to be correct when the following equation holds for any k ∈N:

Pr
[

(set,M) ← Set(k); (pk,sk) ←Gen(set);m
$←M

σ←DSigsk(m);b ←Verpk(m,σ)
: b = 1

]
= 1

Finally, a DS is said to be probabilistic (resp. deteministic) when the algorithm Sig is probabilistic
(resp. deterministic).

2.7.2 Security Against Chosen Message Attacks

The unforgeability against chosen-message attack is the basic security requirement of digital sig-
natures. Consider an adversary that knows a public key pk, and that has access to an oracle that
signs chosen messages using the corresponding secret key sk, the digital signature scheme is un-
forgeable against chosen-message attack when no adversary is able to forge a valid signature of a
chosen message according to the public key pk.

Definition 34 (Existential Unforgeability against Chosen-Message Attack [GMR88]) Let S = (Set,
Gen, Sig, Ver) be a DS, A be an algorithm and k ∈N be a security parameter. Let the following oracle
be:

DSigsk(·): On input m, it runs s ←DSigsk(m) and returns s.

We define the EUF-CMA experiment for the adversary A against S as follows, whereσi is the i th sig-
nature outputted by the oracle DSigsk(·) and qSig is the number of queries asked by A to this oracle:

ExpEUF-CMA
S,A (k):

(set,M) ← Set(k)
(pk,sk) ←Gen(set)
(m,σ) ←A DSigsk(·)(set,pk)
b ←Verpk(m,σ)
if (∀ i ∈ �1, qSig�,σ 6=σi), then return b
else return 0

We define the EUF-CMA advantage of A against S as follows:

AdvEUF-CMA
S,A (k) = Pr

[
1 ←ExpEUF-CMA

S,A (k)
]

We define the EUF-CMA advantage against S as follows:

AdvEUF-CMA
S (k) = max

A ∈POLY(k)

{
AdvEUF-CMA

S,A (k)
}

S is said to be unforgeable against chosen-message attack, or EUF-CMA secure, when the advan-
tage AdvEUF-CMA

S (k) is negligible.

28

CHAPTER 2. TECHNICAL INTRODUCTION

2.7.3 Schnorr Signature

The Schnorr signature is a well known digital signature scheme that is EUF-CMA secure. As in the
ElGamal encryption, the secret key is the discrete logarithm of the public key. The signature algo-
rithm is build as the proof algorithm of the Fiat-Shamir transformation of the Schnorr interactive
proof system, except that the challenge is the hash of the message in addition to the commitment.

Definition 35 (Schnorr Signature [Sch90]) The (probabilistic) Schnorr signature scheme Schnorr =
(Set, Gen,Sig,Ver) is a DS defined as follows:

Set(k): It generates a prime order group setup (G, p, g) and a hash function H : {0,1}∗ → Z∗
p , sets

M = {0,1}∗ and set = (G, p, g ,H), and returns (set,M).
Gen(set): It picks sk $←Z∗

p , sets pk = g sk and returns (pk,sk).

DSigsk(m): It picks r
$←Z∗

p and returns σ = (g r ,r + sk ·H(g r ||m)).

Verpk(m, s): It parses σ = (R, z) and returns 1 if and only if g z = R ·pkH(R||m).

The deterministic Schnorr signature scheme Schnorr = (Set,Gen, DSig,Ver) is a deterministic DS
where Set,Gen, and Ver are defined as in the probabilistic scheme and where DSig is defined as
follows:

DSigsk(m): It computes r = H(sk||m) and Returns s = (g r ,r + sk ·H(g r ||m)).

Theorem 10 Schnorr is EUF-CMA secure under the DL assumption in the random oracle model.

The proof of this theorem is given in [PS96].

29

CHAPTER 2. TECHNICAL INTRODUCTION

30

Chapter 3

Delegation of Authentication Using A
Proxy

Contents
3.1 Introduction . 32

3.1.1 Proxy Re-Cryptography . 32

3.1.2 Functionalities . 32

3.1.3 Applications . 33

3.1.4 Some Proxy Re-Cryptography Schemes . 35

3.1.5 Related Works . 37

3.1.6 Contributions . 38

3.2 Interactive Proxy Re-Proof . 38

3.2.1 Formal Definition . 38

3.2.2 Bidirectional Interactive Scheme . 42

3.2.3 Unidirectional Interactive Scheme . 45

3.3 Non-Interactive Proxy Re-Proof . 49

3.3.1 Formal Definition . 50

3.3.2 Bidirectional Non-interactive Scheme . 51

3.3.3 Unidirectional Non-interactive Scheme . 60

3.4 Schemes comparison . 67

3.5 Conclusion . 68

Zero-Knowledge Proxies Re-Proof of Knowledge were introduced by Blaze et al. in 1998 together
with two other well known primitives of proxy re-cryptography, namely proxy re-encryption (PRE)
and proxy re-signature (PRS). A proxy re-proof of knowledge allows a proxy to transform a proof
of knowledge of Alice’s secret into proof of knowledge of Bob’s secret using a re-proof key. PRE
and PRS have been largely studied in the last decade, but surprisingly, no result about proxies re-
proof of knowledge has been published since the pioneer paper of Blaze et al.. We first show the
insecurity of this scheme: just by observing the communications, Alice can deduce Bob’s secret
key. Then we give (i) definitions of the different families of proxy re-proof of knowledge (bidirec-
tional/unidirectional and interactive/non-interactive) (i i) a formal security model for these prim-
itives and (i i i) a concrete construction for each family. Moreover, we show that proxy re-proof of
knowledge has some applications in the delegation of authentication. The proxy can be used to
efficiently and securely manage the access policy to several external services that require a public
key authentication.

31

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Verifier (pk1)Alice (sk1) Proof of
Alice’s secret
knowledge

Verifier (pk2)Bob (sk2) Proof of
Bob’s secret
knowledge

Figure 3.1: Authentication using proofs of knowledge.

3.1 Introduction

In this section, we introduce the proxy re-cryptography, and particularly Proxies Re-Proof of Knowl-
edge (PRP). We give a state of the art of this research area and the applications of PRP schemes.

3.1.1 Proxy Re-Cryptography

Proxy Re-Encryption (PRE), Proxy Re-Signature (PRS) and proxy re-Proof of knowledge (PRP), also
called proxy re-identification, are three useful cryptographic primitives that using a proxy allow a
delegator (Bob) to delegate his decryption, his signature or his proof rights to a delegate (Alice). In
PRE, the proxy transforms (i.e., it re-encrypts) a message encrypted for Bob into another one en-
crypted for Alice using a re-encryption key. In PRS, the proxy transforms (i.e., it re-signs) a message
signed by Alice into a message signed with Bob’s secret key using a re-signature key. In PRP, the
proxy transforms (i.e., it re-proves) a proof of knowledge of the secret key of Alice into another one
of the secret key of Bob using a re-proof key. These three primitives have been introduced in 1998
by Blaze, Bleumer and Strauss in [BBS98]. For all of them, a naïve solution is to give Bob’s secret
key to the proxy. For example, in the case of the proxy re-encryption, the proxy decrypts Bob’s ci-
phertext using Bob’s secret key, then it re-encrypts the plaintext using Alice’s public key. Note that
the proxy must be trusted since it can decrypt any Bob’s message. In the case of the re-proof, Alice
runs the proof protocol with the proxy using her secret key, the proxy verifies Alice’s proof, then the
proxy runs the proof algorithm with the verifier using Bob’s secret key. These naïve schemes re-
quire a fully trusted proxy, however, the aim of proxy re-cryptography is to consider a semi-trusted
proxy that does not collude with Alice or Bob but cannot act alone as Bob.

A few years later, in 2003, Ivan and Dodis revisit the proxy re-cryptography by introducing the
notion of bidirectional and unidirectional proxies, in [ID03]. All schemes given by Blaze et al. are
bidirectional in the sense that knowing the re-key that delegates Bob’s capabilities to Alice, the
proxy can easily compute a re-key to delegate Alice’s capabilities to Bob. However, this property
induces a serious security weakness, because the delegator Bob is able to recover the secret key
of Alice by colluding with the proxy. Using bilinear pairings, Ivan et al. propose unidirectional
proxy schemes in the sense that the delegator Bob is able to compute the re-key alone, i.e., using
only his secret key and the public key of Alice. Then the re-key leaks no information about the
secret key of Alice and cannot be used to delegate Alice’s power to Bob. In addition, Ivan et al.
give a formal treatment for bidirectional and unidirectional proxy re-encryptions and proxy re-
signatures. However, they do not study the case of unidirectionality in proxy re-proof.

Unidirectional PRE and PRS caused a renewed interest in the field of proxy cryptography. For a
decade, this topic has became very attractive and has led to numerous publications [BBS98, ID03,
AFGH05, LV08b, GA07, LHC10, SFZ+10, LV08a, AH05, CP08]. However, surprisingly, PRP has not
received the same attention from the community. Actually, the scheme given in [BBS98] is the only
one in the literature and there does not exist any formal model for this primitive. Moreover, this
scheme has the following security weakness: if Alice and the verifier collude then they can recover
the secret key of Bob.

32

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Verifier (pk2)Proxy (rk1→2)Alice (sk1) Proof of
Alice’s secret
knowledge

Proof of
Bob’s secret
knowledge

Figure 3.2: Delegation of authentication using a proxy.

3.1.2 Functionalities

The goal of proxy re-proof is to solve the following problem, where Alice and Bob know respectively
the secret/public keys (pk1,sk1) ∈ R1 and (pk2,sk2) ∈ R2 such that both R1 and R2 are binary
relations. Using a proof of knowledge, Alice (resp. Bob) can prove the knowledge of his (resp. her)
secret key sk1 (resp. sk2) in a zero-knowledge way to some verifier that knows the corresponding
public key pk1 (rsp. pk2), as it is shown in the schemes given in Figure 3.1. Bob does not want
to reveal his secret to Alice, but he would like to delegate Alice the power to prove the knowledge
of the secret sk2 without his help. However, it is impossible to prove the knowledge of something
we do not know. Then Bob uses a server, called the proxy, that knows a re-proof key rk1→2: Alice
and the proxy are able to prove together the knowledge of sk2 in a zero-knowledge way and Alice
uses exactly the same protocol as when she proves the knowledge of her secret. To sum up, the
proxy has to transform Alice’s proof of knowledge of sk1 into a proof of knowledge of sk2 for some
verifier. The scheme given in Figure 3.2 resumes the different interactions between Alice, the proxy
and the verifier. The proxy has no way to learn any information about Alice’s and Bob’s keys while
it does not collude with Alice or Bob. However, as in the other re-cryptographic primitives, the
proxy is not fully untrusted in the sense that we assume that the proxy and Alice does not collude,
i.e., the proxy does not give the re-proof key to Alice, and Alice does not give her secret sk1 to the
proxy. We say that the proxy is semi-trusted. Note that the semi-trust limitation is inherent to
any primitive of proxy re-cryptography for any scenario where the re-key must be protected, as in
proxy re-encryption or in proxy re-signature.

We distinguish two families of PRP, namely unidirectional and bidirectional schemes. On the
other hand, proofs of knowledge are split also into two categories: the interactive and the non-
interactive proofs. Thus, PRP are classified into the following categories:

Interactive/Non-interactive: a PRP can be interactive or non-interactive depending on the type
of the two proofs of knowledge.

Bidirectional/Unidirectional: a PRP is bidirectional when the re-proof key that delegates Bob’s
rights to Alice can be used by the proxy to delegate Alice’s rights to Bob. On the other hand,
a PRP is unidirectional when the delegator Bob is able to generate the re-proof key alone
using the public key of Alice as input.

Security requirements: We define the zero-knowledge property for our primitive: informally, a
proxy re-proof is zero-knowledge when the protocol between the delegate Alice, the proxy and
the verifier leaks no information to the different entities. More precisely, a collusion between the
proxy and the verifier leaks nothing about the secret of Alice and a collusion between Alice and the
verifier leaks nothing about the re-proof key.

3.1.3 Applications

Proxy re-proofs can be used to provide a practical mechanism of authentication delegation. To
illustrate this, we consider that Bob works for a company. In his job, he manipulates sensitive
data and he must often authenticate using his secret key. The authentication mechanism used by
the company is based on zero-knowledge proof. Bob proves that he knows his secret key from a
public key to authenticate. Although he is a hard-worker, he decides to take some holidays. He

33

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Storage (pk2)

Mail (pk1)

Software (pk3)

Proxy (rkA→1,rkA→2)Alice (skA) Alice’s
authentication

protocol

Company
authentication

protocol

Company
authentication

protocol

Figure 3.3: Access control using a proxy.

has to delegate his access rights to a colleague, called Alice. However, Bob does not want to reveal
his secret to Alice, and he wants to be able to cancel the delegation after his holidays. To solve
this problem, he uses a proxy re-proof which allows Alice to authenticate as Bob using his secret
key during the holidays. Thus, using the same algorithm and the same secret, Alice is able to
authenticate under Bob’s identity as long as she has access to the proxy.

Another possible application of proxy re-ZKP is access control management. For instance a
company has subscribed to several external services like emails, cloud storages or softwares. Each
of them requires an authentication based on proofs of knowledge. The company would like to
use a proxy to manage which employee has access to which service according to the following
constraints:

• Each employee has only one authentication key pair, and runs the same protocol to authen-
ticate to any service.

• The company has only one account to each service, i.e., each service always uses the same
verification public key to authenticate any employees.

• The proxy is not able to access to the services alone, i.e., without interacting with some em-
ployee.

• An employee cannot access to an unauthorized service, even if he colludes with the proxy.

For example, consider an employee called Alice who has access to the email server and to the cloud
storage, but who cannot access to the software. In Figure 3.3 we show how to use a proxy re-proof
of knowledge to manage the access right of Alice to the different services. The secret key of Alice
is skA and the public verification key of the email server (resp. storage, software) is pk1 (resp. pk2,
pk3). The proxy has the re-proof keys rkA→1 and rkA→2. To access to the email server, Alice runs her
authentication protocol (i.e., she proves the knowledge of skA) with the proxy, and the proxy runs
the company authentication protocol (i.e., it proves the knowledge of sk1) with the email server.
The proxy transforms Alice’s authentication protocol into the company authentication protocol
for the email server using the re-proof key rkA→1. Since the proxy also knows the key rkA→2, Alice
can access to the storage in a similar way. However, Alice cannot access to the software: neither

34

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Alice nor the proxy knows the secret key sk3, and the proxy does not know the corresponding re-
proof key that allows to transform Alice’s authentication protocol into the company authentication
protocol for the software.

The main avantage of this solution is that the company can manage its access policy alone,
without given new authentication keys to the manager of the services, and without changing the
secret/public keys of its employees. Each user just needs to know his own authentication material.
Moreover, using the logs of the proxy, the company can trace the connections to the different ser-
vices of its employees. In addition, the two interactive schemes that will be defined in this chapter
are based on Schnorr’s protocol, which is one of the most used authentication protocols in prac-
tice.

Note that we can use proxies re-signature instead of proxies re-proof for these applications: in
this case, the authentication protocol consists of signing a random message chosen by the verifier.
The main advantage of proxy re-proofs is that these security properties (validity, zero-knowledge)
are stronger than the security properties of proxy re-signatures.

3.1.4 Some Proxy Re-Cryptography Schemes

In this section, we present a simple instantiation of each of the main primitives of proxy re-crypto-
graphy. First we describe a bidirectional and a unidirectional proxy re-encryption scheme, sec-
ondly we describe a bidirectional and a unidirectional proxy re-signature scheme, and finally, we
present a bidirectional zero-knowledge proxy re-proof of knowledge scheme which is indeed the
only proxy re-proof scheme in the literature. We also show that this scheme has an insufficient
security level for practical applications.

Bidirectional proxy re-encryption. The first bidirectional proxy re-encryption scheme was pro-
posed by Blaze et al. in [BBS98]. Let Bob’s key pair (pk1,sk1) (resp. Alice’s key pair (pk2,sk2)) be
such that pk1 = g sk1 (resp. pk2 = g sk2) where g is a generator of a prime order group. Consider
the following ElGamal encryption variant: to encrypt a message for Bob (using pk1), a user picks a

random number r and computes c1 = (pkr
1, g r ·m). Bob computes (g r ·m)

(pkr
1)1/sk1

= m to decrypt the mes-

sage. The re-encryption key is rk = sk2/sk1.The proxy transforms the encrypted message of Bob c1

into an encrypted message of Alice c2 using rk by computing c2 = ((pkr
1)rk, g r ·m). We observe that:

(pkr
1)rk = g sk1·r ·rk = g sk1·r · sk2

sk1 = g sk2·r = pkr
2

Finally, Alice decrypts c2 = (pkr
2, g r ·m) by computing (g r ·m)

(pkr
2)1/sk2

= m. Note that the proxy can com-

pute rk′ = 1/rk. We remark that rk′ = sk1/sk2 is the re-proof key that allows to transform Alice’s
ciphertexts into Bob’s ciphertexts, then this scheme is bidirectional.

Unidirectional proxy re-encryption. Using bilinear pairings on the bidirectional scheme of Blaze
et al., Ivan et al. design the following unidirectional proxy re-encryption scheme [ID03]. Let
e : G×G→ GT be a bilinear pairing. Users key pairs are defined as in the previous scheme, but
the re-encryption key is rk = g sk2/sk1 . Note that Bob is able to build rk alone using Alice’s public
key pk2 = g sk2 and his secret key sk1 by computing pk1/sk1

2 = g sk2/sk1 , then the scheme is unidirec-
tional. To encrypt a message for Bob (using pk1), a user picks a random number r and computes

c1 = (pkr
1,e(g , g)r ·m). Bob computes (e(g ,g)r ·m)

(e(pkr
1,g))1/sk1

= m to decrypt the message. We show how the

proxy transforms the encrypted message of Bob c1 into an encrypted message of Alice c2 using rk:
it computes c2 = (e(pkr

1,rk),e(g , g)r ·m). We observe that:

e(pkr
1,rk) = e(g sk1·r , g

sk2
sk1) = e(g sk1·r · sk2

sk1 , g) = e(g sk2·r , g) = e(pkr
2, g)

Finally, Alice decrypts c2 = (e(pkr
2, g),e(g , g)r ·m) by computing (e(g ,g)r ·m)

(e(pkr
1,g))1/sk1

= m.

35

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Verifier V
sk pk
r

$←Z∗p
R = g r R−−−−−−−−−−−−−→ c

$← {0,1}

If c = 0

then z = r
sk

c←−−−−−−−−−−−−−
else z = r

z−−−−−−−−−−−−−→ If ((c = 1 and pkz = R)

or (c = 0 and g z = R))
then returns 1, else 0

Figure 3.4: Identification protocol of Blaze et al. given in [BBS98]

Bidirectional proxy re-signature. A simple bidirectional proxy re-signature scheme was pro-
posed by Ateniese et al. in [AH05]. This scheme is based on Boneh–Lynn–Shacham (BLS) signature
scheme [BLS04]. Let H be a hash function and e :G×G→GT be a bilinear pairing. Let Bob’s key pair
(pk1,sk1) (resp. Alice’s key pair (pk2,sk2)) be such that pk1 = g sk1 (resp. pk2 = g sk2) where g is a gen-
erator of G. To sign a message, Bob computes σ1 = H(m)sk1 . To verify this signature, a user checks
that e(σ1, g) = e(pk1,H(m)). The re-signature key is rk = sk2/sk1. The proxy transforms the signa-

ture of Bob σ1 into a signature of Alice σ2 using rk by computing σ2 =σrk
1 = H(m)sk1· sk2

sk1 = H(m)sk2 .

Unidirectional proxy re-signature. In [AH05], Ateniese et al. also propose a unidirectional proxy
re-signature scheme. Let H be a hash function and e : G×G→ GT be a bilinear pairing. Let Bob’s
key pair (pk1,sk1) (resp. Alice’s key pair (pk2,sk2)) be such that pk1 = (g sk1 ,h1/sk1) (resp. pk2 =
(g sk2 ,h1/sk2)) where g and h are two generators of G. To sign a message, Alice picks a random
value r , computes R = hr , s = sk2 · (H(m||R)+ r) and output the signature σ1 = (R, s). To verify this
signature, a user checks that e(g ,hs) = e(pk2,R ·hH(m||R)). The re-signature key is rk = hsk1/sk2 . Note
that Bob generates the re-signature key by himself by computing (h1/sk2)sk1 using Alice’s public key
pk2 = (g sk2 ,h1/sk2) and his secret key sk1. The proxy transforms the signature of Aliceσ1 = (R, s) into
a signature of Alice σ2 using rk by computing S = rks and σ2 = (R,S). We observe that:

S = rks = h
sk1
sk2

·sk2·(H(m||R)+r) = hsk1·(H(m||R)+r)

Finally, a user verifies this signature σ2 = (R,S) by checking that e(g ,S) = e(pk1,R ·hH(m||R)).
Note that this scheme has the following security weakness: knowing the second parts of σ2

(i.e., S = hsk1·(H(m||R)+r)), her secret key sk2 and the value r she uses to generate the signature σ1,
Alice computes:

S
1

sk2(H(m||R)+r = h
sk1
sk2 = rk

which is the re-signature key that allows to transform any signature of Alice into a signature of
Bob. We remark that using this key, Alice is able to sign any message on behalf of Bob. In the same
paper, authors show a way to prevent this kind of attack using proofs of knowledge.

Bidirectional Proxy Re-Proof of Knowledge. The following scheme, proposed by Blaze et al.
in [BBS98], is the only proxy re-proof of knowledge scheme in the literature.

Let Bob’s key pair (pk1,sk1) (resp. Alice’s key pair (pk2,sk2)) be such that pk1 = g sk1 (resp. pk2 =
g sk2) where g is a generator of G. The re-proof key is rk = sk1/sk2. Alice and Bob use the proof of
knowledge protocol given in Figure 3.4: the prover chooses a random element r ∈Z∗

p and sends R =
g r to the verifier. The verifier chooses a challenge c ∈ {0,1} and sends it to the prover. If c = 1 then
the prover sends z = r /sk to the verifier that checks that R = pkz . Else, the prover sends z = r and
the verifier checks that R = g z . The protocol is repeated k times, where k is the security parameter.

The re-proof protocol is given in Figure 3.5: Alice chooses a random element r ∈Z∗
p and sends

R = g r to the proxy, who forwards it to the verifier. The verifier chooses a challenge c ∈ {0,1} and

36

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover A Proxy P Verifier V
sk1 (rk,pk1,pk2) pk2

r
$←Z∗p

R = g r R−−−−−−−−−−−−−→ R−−−−−−−−−−−−−→ c
$← {0,1}

c←−−−−−−−−−−−−− c←−−−−−−−−−−−−−
If c = 0
then z = r

sk
else z = r

z−−−−−−−−−−−−−→ If c = 1

then z′ = z · rk
else z′ = z

z ′−−−−−−−−−−−−−→ If ((c = 1 and pkz ′
2 = R)

or (c = 0 and g z ′ = R))
then returns 1, else 0

Figure 3.5: Re-identification protocol of Blaze et al. [BBS98].

sends it to the proxy who forwards it to Alice. If c = 1 then Alice sends z = r /sk1 to the proxy, who
computes and sends z ′ = z · rk = r /sk2 to the verifier. Else, Alice sends z = r and the proxy sends
z ′ = z to the verifier. If c = 1 the verifier checks that R = pkz ′

2 . Else, it checks R = g z ′
. The protocol is

repeated k times. We remark that rk′ = sk2/sk1 is the re-proof key that allows to transform Alice’s
proof into Bob’s proof, so this scheme is bidirectional.

Security of this scheme. There does not exist any formal security model for proxy re-proof of
knowledge in the literature. Moreover, this scheme has the following security flaws, which makes
it unusable in practice:

• if Alice and the verifier collude, then they can recover the secret key of Bob as follows: the
verifier sends the challenge c = 1 and sends z ′ to Alice, then she can compute Bob’s secret as
follows r /z ′ = sk2.

• if Alice observes the communication and the verifier sends the challenge c = 1, then she can
also recover the secret key of Bob in a similar way.

In this chapter, we propose a security model that prevents this kind of attack, and we design the
first secure bidirectional proxy re-proof of knowledge.

3.1.5 Related Works

In the late 80’s, Okamoto and Ohta introduce the notion of divertible zero-knowledge interactive
proofs [OO90]. This notion is close to PRP: a zero-knowledge proof between a prover P and a
verifier V is divertible when a third party W can impersonate V (resp. P) during the protocol such
that P (resp. V) cannot distinguish if he interacts with V (resp. P) or W. Then W just randomizes
but does not transform a proof of a secret to the proof of another one. Thus, W has no re-key and
cannot be used to delegate the proving capability. PRP can be viewed as an extension of divertible
zero-knowledge proofs.

In [CPS14], Canard et al. show how the prover can delegate some computations to a proxy in
proofs of knowledge of discrete logarithm relations sets. In this work, the proxy performs some
computations for the prover without learning any information about his secret, but it knows no
additional secret, and it does not transform the proof of the prover’s secret knowledge into a proof
of another secret knowledge.

We can use a two-party computation [KO04] (TPC) to design a protocol that has the same pop-
erties as a proxy re-proof. The delegator shares his secret over the delegate and the proxy. Using
TPC, they can compute together the values that allow them to identify as the delegator. However,
this generic solution is not efficient, and the delegate does not use the same protocol to prove the
knowledge of his secret or to prove the knowledge of the delegator secret.

37

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

In distributed and threshold zero-knowledge proofs [KMR12] (TZKP) a secret is shared into
n shares, and these shares are distributed to n parties such that a threshold number t of shares
allows someone to recover the secret. Then t parties are able to prove the knowledge of the se-
cret together. PRP can be viewed as a particular case of TZKP since the secret of the delegator
and the re-proof key allow to compute the delegator’s secret key, and the delegate and the proxy
interact together to identify as the delegator. However, these schemes do not really transform a
proof of knowledge into another one for two different public keys. Moreover, unidirectional proxy
requires that the re-proof key is computed from the public key of the delegate and the secret of
the delegator, and the delegate and the delegator must have a way to prove the knowledge of their
secrets alone. The delegate (resp. verifier) uses the same protocol when it interacts directly with
the verifier (resp. delegator) and when it interacts with the proxy. Actually, the differences between
TZKP and PRP are analogous to the differences between proxy re-encryptions and threshold en-
cryptions, and between proxy re-signatures and threshold signatures.

To the best of our knowledge, there exists neither formal definition nor concrete scheme of
unidirectional PRP and non-interactive PRP.

PRP should not be confused with proxy zero-knowledge proof defined in [JSMM13]. In this
primitive, the proxy helps Alice to perform a proof of knowledge of the secret of the delegator
named Bob in order to identify as Bob, but the proxy does not transform the proof of Alice’s secret
knowledge into a proof of Bob’s secret knowledge. Indeed, in PRP, Alice must be able to identify
herself to use the proxy, and she uses the same protocol to identify herself (interacting with the
verifier) and to identify as Bob (interacting with the proxy). Again, it is the same difference as
between proxy encryption and PRE, and between proxy signature and PRS. Moreover, PRP should
not be confused with homomorphic proxy re-authenticators [DRS17]. This primitive is a kind of
proxy re-signature that has the following property: the proxy can evaluate arithmetic functions on
the inputs so that the re-signature corresponds to the evaluation of the function. This primitive is
not a kind of PRP, and it does not focus on soundness, validity and zero-knowledge properties.

3.1.6 Contributions

In this chapter, we revisit the concept of proxy re-proof of knowledge given in [BBS98]. The first
contribution is to give a formal treatment for PRP. We formally define several families for this prim-
itive, namely bidirectional/unidirectional and interactive/non-interactive PRP. We define com-
pletness, soundness, validity and zero-knowledge properties for PRP. We give a stronger definition
of zero-knowledge than the one given in [BBS98] since we consider collusions between the verifier
and the prover. To the best of our knowledge, it is the first time that unidirectionality and non-
interactivity are considered for PRP. Our second contribution is to design the four following PRP
schemes:

• BIRP, a bidirectional interactive PRP. This scheme does not suffer from the same security
weaknesses than the bidirectional interactive PRP proposed in [BBS98].

• UIRP, the first unidirectional interactive PRP.

• BNRP, the first bidirectional non-interactive PRP.

• UNRP, the first unidirectional non-interactive PRP.

3.2 Interactive Proxy Re-Proof

In this section, we formally define interactive proxies re-proof of knowledge and its security prop-
erties. We then instantiate this primitive with two schemes: the first one is bidirectional and the
second one is unidirectional.

38

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

3.2.1 Formal Definition

An interactive proxy re-proof allows a proxy to transform an interactive proof of knowledge of
Alice’s secret key into another one of Bob’s secret key. It contains a setup algorithm Set and three
key generation algorithms: Gen1 (resp. Gen2) generates Alice’s (resp. Bob’s) key pair, and RGen
generates the proxy re-proof key from the keys of Alice and Bob. It also contains two interactive
protocols Proof1 and Proof2 that allow Alice and Bob to prove the knowledge of their respective
secret keys. Finally, it contains the protocol RProof that allows the proxy, using the re-proof key
and interacting with Alice and a verifier, to transform the proof of Alice’s secret key knowledge into
a proof of Bob’s secret key knowledge. More precisely, during the protocol RProof, the proxy runs
Proof1 with Alice as the verifier, and it runs Proof2 with the verifier as Bob.

We then adapt the properties of interactive proofs of knowledge to proxies re-proof of knowl-
edge:

• The completness ensures that if Alice, Bob and the proxy honestly run the protocols, then
Alice is able to prove her secret knowledge using the protocol Proof1, Bob is able to prove
his secret knowledge using the protocol Proof2, and Alice and the proxy are able to prove
Bob’s secret knowledge together using the protocol RProof.

• The validity ensures that a user that does not know some secret key is not able to prove the
knowledge of this secret key. Note that in the case of the RProof protocol, neither Alice nor
the proxy knows Bob’s secret key, however, they are able to prove the knowledge of this key
because Alice’s secret key together with the proxy re-proof key are sufficient to recover Bob’s
secret key.

• The zero-knowledge property ensures that Alice, the proxy and the verifier learns nothing
during the protocol RProof. Particulary, Alice leaks nothing about her secret key, and the
proxy leaks nothing about the re-proof key. More precisely, the re-proof protocol must be
zero-knowledge for:

– The verifier, even if he has access to the transcript of the full protocol (including the
transactions between the prover and the proxy).

– The proxy colluding with the verifier, particulary, they cannot deduce the secret of the
prover.

– The prover colluding with the proxy, particulary, they cannot deduce the re-proof key
of the delegator secret key.

Note that there exists some primitives in the literature where a proxy transforms a proof of
knowledge [OO90, KO04], however, they focus on protocols where the proxy does not have
any additional secret key. Hence the computations of the proxy could be done by anybody,
including the prover and the verifier, which implies that these primitives are by essence col-
lusion resistant. Therefore, we need to define a stronger security model for proxy re-proof of
knowledge protocols.

Definition 36 (Proxy re-proof) A Proxy Re-Proof scheme (PRP) is a tupleΠ = (Set,Gen1,Gen2,RGen,
Proof1,Proof2,RProof) defined as follows:

Set(k): Is an algorithm that returns a setup set and two binary relations R1 and R2.
Gen1(set,R1): Is an algorithm that returns a public/secret key pair (pk1,sk1) ∈ R1. Optionally, it

returns an additional public key pk′1.
Gen2(set,R2): Is an algorithm that returns a public/secret key pair (pk2,sk2) ∈ R2. Optionally, it

returns an additional secret key sk′2.
RGen(sk1,sk2): Is an algorithm that returns a re-proof key rk.
Proof1〈P(sk1);V(pk1)〉: Is a two-party protocol between two entities P(sk1) (the prover) and V(pk1)

(the verifier). At the end of the protocol, P returns the bottom symbol ⊥ and V returns a bit b.

39

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Proof2〈P(sk2);V(pk2)〉: Is a two-party protocol between two entities P(sk2) (the prover) and V(pk2)
(the verifier). At the end of the protocol, P returns the bottom symbol ⊥ and V returns a bit b.

RProof〈P(sk1);Px(rk,pk1,pk2);V(pk2)〉: Is a three-party protocol between a prover P(sk1), a proxy
Px(rk,pk1,pk2) and a verifier V(pk2) such that P runs Proof1 with Px as the prover, and V
runs Proof2 with Px as the verifier. Note that P and V never interact during the protocol.

We set the two following IP schemes I1 = (Set1,Proof1) and I1 = (Set2,Proof2) where Set1 and Set2

are defined as follows:

Set1(k): Runs (set,R1,R2) ← Set(k) and returns (set,R1).
Set2(k): Runs (set,R1,R2) ← Set(k) and returns (set,R2).

I1 (resp. I2) is said to be the delegate proof system (resp. delegator proof system) of Π. Moreover, a
PRP can have the following properties:

Completeness: Π is said to be complete when:

1. I1 and I2 are complete.
2. For any honest entities P, Px and V and any k ∈N:

Pr

(set,R1,R2) ← Set(k);

(pk1,sk1,pk′1) ←Gen1(set,R1);
(pk2,sk2,sk′2) ←Gen2(set,R2);

rk←RGen(sk1,sk2);
b ← outV(RProof〈P(sk1);Px(rk,pk1,pk2);V(pk2)〉)

: b = 1

 = 1

Soundness: Π is said to be sound when I1 and I2 are sound.
Validity: Π is said to be valid, or is said to be a Proxy Re-Proof of Knowlege (PRPoK), when I1 and I2

are valid.
Zero-knowledge: Π is said to be zero-knowledge when:

1. I1 and I2 are zero-knowledge.
2. For any (possibly dishonest) verifier V∗, there exists a polynomial time simulator algo-

rithm Sim1 such that for any (set,R1,R2) ← Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1),
any (pk2,sk2,sk′2) ←Gen2(set,R2), any rk←RGen(sk1,sk2) and any α ∈ {0,1}∗:

Pr
[
α∗ ← trans(RProof〈P(sk1);Px(rk,pk1,pk2);V∗(pk1,pk2)〉) : α = α∗

]
= Pr

[
α∗ ← Sim1(pk1,pk2) : α = α∗

]
3. For any (possibly dishonest) proxy Px∗ and verifier V∗, there exists a polynomial time al-

gorithm Sim2 such that for any (set,R1,R2) ← Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1),
any (pk2,sk2,sk′2) ←Gen2(set,R2), any rk←RGen(sk1,sk2) and any α ∈ {0,1}∗:

Pr
[
α∗ ← viewPx∗,V∗(RProof〈P(sk1);Px∗(rk,pk1,pk2);V∗(rk,pk1,pk2)〉) : α = α∗

]
= Pr

[
α∗ ← Sim2(rk,pk1,pk2) : α = α∗

]
4. For any (possibly dishonest) prover P∗ and verifier V∗, there exists a polynomial time al-

gorithm Sim3 such that for any (set,R1,R2) ← Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1),
any (pk2,sk2,sk′2) ←Gen2(set,R2), any rk←RGen(sk1,sk2) and any α ∈ {0,1}∗:

Pr
[
α∗ ← viewP∗,V∗(RProof〈P∗(sk1,pk1,pk2);Px(rk,pk1,pk2);V∗(sk1,pk1,pk2)〉) : α = α∗

]
= Pr

[
α∗ ← Sim3(rk,pk1,pk2) : α = α∗

]
Honest-verifier zero-knowledge: This is a weaker notion of the zero-knowledge property where all

entities are honest, i.e., they run correctly the protocols.

40

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Remark 6 The validity of the delegate and delegator proof systems is sufficient to achieve the valid-
ity of the re-proof system, because the delegator proof system is the same as the re-proof protocol on
the verifier point of view. It implies that any entity that is able to prove the delegator secret knowl-
edge knows the delegator secret. In the case of the re-proof protocol, it implies that anybody can
efficiently compute the delegator secret sk2 from the secrets known by the prover and the proxy (i.e.,
the keys sk1 and rk).

We define some additional properties. The first one is the secret security. It ensures that no
user is able to recover the secret keys of the delegate Alice and the delegator Bob, even if it knows
both public keys of Alice and Bob and the corresponding re-proof key. This property implies that
the proxy is not able to prove the knowledge of the secret key of Alice or Bob alone.

We remark that zero-knowledge does not imply secret security. Indeed, zero-knowledge en-
sures that the proxy learns nothing during the protocol, which implies that the protocol transcript
is useless to guess the secret keys. However, it implies that the proxy is not able to deduce the
secret keys from its re-proof key.

Definition 37 (Secret security) Let Π = (Set,Gen1,Gen2,RGen, Proof1,Proof2,RProof) be a PRP,
k ∈ N be a security parameter and A ∈ POLY(k) be an algorithm. We define the secret security
advantage as follows:

AdvSS
Π,A

(k) = Pr

(set,R1,R2) ← Set(k);

(pk1,sk1,pk′1) ←Gen1(set,R1);
(pk2,sk2,sk′2) ←Gen2(set,R2);

rk←RGen(sk1,sk2);
sk∗ ←A (pk1,pk′1,pk2,rk)

: ∃ i ∈ {1,2},sk∗ = ski

Π is said to be secret secure when for any A ∈ POLY(k), there exists a negligible function ε such that:

AdvSS
Π,A

(k) ≤ ε(k)

A proxy re-proof is said to be bidirectional if a proxy that is able to transform a proof of Alice
into a proof of Bob is also able to transform a proof of Bob into a proof of Alice. This property is
formally defined as follows.

Definition 38 (Bidirectional PRP) Let Π = (Set,Gen1,Gen2,RGen, Proof1,Proof2, RProof) be a pro-
xy re-proof. Π is said to be bidirectional when there exists a polynomial time algorithm Inv such that
the following equation holds for any k ∈N:

Pr

(set,R1,R2) ← Set(k);
(pk1,sk1,pk′1) ←Gen1(set,R1);
(pk2,sk2,sk′2) ←Gen2(set,R2);

rk←RGen(sk1,sk2);
rk′ ←RGen(sk2,sk1);

rk∗ ← Inv(rk)

: rk∗ = rk′

 = 1

Finally, a proxy re-proof is said to be unidirectional if the delegator Bob is able to compute
the re-proof key alone, i.e., using his secret key and the public key of the delegate Alice. We remark
that since the secret key of Alice is not used to build the re-proof key known by the proxy, and since
her secret key is required to build the key that allows the proxy to delegate the proof capabilities
of Alice to Bob, the proxy is not able to transform a proof of Bob into a proof of Alice, then such a
scheme is not bidirectional.

Definition 39 (Unidirectional PRP) A unidirectional proxy re-proof scheme is a tuple Π = (Set,
Gen1,Gen2, RGen, Proof1,Proof2,RProof) where Set, Gen1, Gen2, Proof1, Proof2 and RProof are
defined as in Definition 36, and where RGen is defined as follows:

41

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Proxy Px Verifier V
sk1 (rk,pk1,pk2) pk2

r
$←Z∗p

R = g r R−−−−−−−−−−−−−→ s
$←Z∗p

S = Rrk · g s S−−−−−−−−−−−−−→ c
$←Z∗p

α = r + sk1 · c
c←−−−−−−−−−−−−− c←−−−−−−−−−−−−−
α−−−−−−−−−−−−−→ If gα

?
= R ·pkc

1

then β = s + rk ·α β−−−−−−−−−−−−−→ Ifgβ = S ·pkc
2

else abort then return 1, else 0

Figure 3.6: Protocol RProof of IBRP (Definition 40).

RGen(pk1,pk′1,sk2,sk′2): Is an algorithm that returns a re-proof key rk.

Moreover, the following properties are defined similarly to the definition of standard (not unidi-
rectional) PRP: completeness, soundness, validity, zero-knowledge, honest-verifier zero-knowledge,
and secret security.

Theorem 11 Let Π = (Set,Gen1,Gen2,RGen, Proof1,Proof2, RProof) be a proxy re-proof. If Π is
secret secure, valid and unidirectional, then it is not bidirectional.

Proof: Let Π = (Set,Gen1,Gen2,RGen, Proof1,Proof2, RProof) be a proxy re-proof. Assume that Π
is valid, unidirectional, and bidirectional. We show how to build a polynomial time algorithm A

that breaks the secret security of Π. A receives (pk1,pk′1,pk2,rk) as input and generates a fresh key

set (p̄k2, s̄k2, s̄k′2) ← Gen2(set,R2). It then generates the re-proof key r̄k ← RGen(pk1,pk′1, s̄k2, s̄k′2)
and inverses it using the bilinear property of Π to obtain rk∗ ← Inv(r̄k). Using the re-proof key
rk∗ and the secret key s̄k2, A is able to prove the knowledge of the secret corresponding to pk1

using the protocol RProof〈P(sk2);Px(rk∗,pk2,pk1);V(pk1)〉 with non-negligible probability. Since
the delegate proof system of Π is valid, then there exists a knowledge extractor that returns the
secret key sk1 such that (pk1,sk1) ∈ R1 using the view of the protocol RProof with non-negligible
probability, which implies that A wins its experiment with a non-negligible probability by return-
ing sk1. �

3.2.2 Bidirectional Interactive Scheme

Our first interactive proxy re-proof scheme is bidirectional. Both delegate and delegator proof
protocols are Schnorr’s protocol. Thus, this proxy re-proof can easily be implanted in any au-
thentication system already using Schnorr’s protocol. We begin this section by giving an informal
overview of this scheme.

Let (G, p, g) be a prime order group. We designate Alice as delegate and Bob as delegator. Alice
(resp. Bob) knows sk1 such that pk1 = g sk1 (resp. sk2 such that pk2 = g sk2), and the re-key is rk =
sk2/sk1. The scheme is bidirectional since the proxy can compute rk−1 = sk1/sk2. In the re-proof
protocol (Figure 3.6), Alice runs a Schnorr protocol as prover with the proxy, and the proxy runs a
Schnorr protocol as prover with a verifier. Alice sends her commitment R = g r , the proxy picks s in
Z∗

p and computes its commitment as follows: S = Rrk · g s . Note that since s is randomly chosen, S
comes from the uniform distribution on G. The proxy receives the challenge c and forwards it to
Alice who responds α = r + sk1 · c. The proxy computes

β = s + rk ·α = s + sk2

sk1
· (r + sk1 · c) = (r · sk2

sk1
+ s)+ sk2 · c

Since S = g (r · sk2
sk1

+s), then α is the correct response to the challenge c to prove the knowledge of sk2

using the commitment S.

42

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Definition 40 IBRP = (Set,Gen1,Gen2,RGen, Proof1,Proof2,RProof) is a PRP defined as follows:

Set(k): It generates a prime order group setup set = (G, p, g) and returns (set,R1,R2), where:

• (pk,sk) ∈R1 ⇔ (sk ∈Z∗
p)∧ (g sk = pk)

• R2 = R1

Gen1(set,R1): It picks sk1
$←Z∗

p , sets pk1 = g sk1 and returns (pk1,sk1).

Gen2(set,R2): It picks sk2
$←Z∗

p , sets pk2 = g sk2 and returns (pk2,sk2).
RGen(sk1,sk2): It sets rk = sk2/sk1 and returns it.
Proof1〈P(sk1);V(pk1)〉: It is defined as the protocol Proof of Schnorr’s proof system (Definition 28).
Proof2〈P(sk2);V(pk2)〉: It is defined as the protocol Proof of Schnorr’s proof system (Definition 28).
RProof〈P(sk1);Px(rk,pk1,pk2);V(pk2)〉: It is the protocol given in Figure 3.6.

In the following, we show that IBRP is bidirectional, complete, sound, valid and honest-verifier
zero-knowledge.

Lemma 1 IBRP is bidirectional.

Proof: Let the algorithm Inv be such that Inv(rk) returns 1/rk. For any pair of re-proof keys (rk,rk′)
such that rk ←RGen(sk1,sk2) and rk′ ←RGen(sk2,sk1) where RGen is defined as in IBRP, we have
rk = sk2/sk1 and rk′ = sk1/sk2. Thus the algorithm Inv(rk) returns 1/rk = 1/(sk2/sk1) = sk1/sk2 = rk′,
wich concludes the proof. �

Lemma 2 IBRP is complete.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of IBRP = (Set,Gen1,Gen2,
RGen, Proof1,Proof2,RProof). We remark that I1 (resp. I2) is defined as Schnorr (Definition 28),
we deduce that I1 (resp. I2) is complete (Theorem 6). Let k be an integer and sk1, pk1, pk2 and rk
be four keys generated as follows:

• (set,R1,R2) ← Set(k)

• (pk1,sk1,pk′1) ←Gen1(set,R1)

• (pk2,sk2,sk′2) ←Gen2(set,R2)

• rk←RGen(sk1,sk2)

We deduce that pk1 = g sk1 , pk2 = g sk2 and rk = sk2/sk1. Let a prover P, a proxy Px and a verifier
V be three entities that run the protocol RProof〈P(sk1);Px(rk,pk1,pk2);V(pk2)〉. We show that V
returns 1 with probability 1.

The prover sends R = g r to the proxy, the proxy sends S = Rrk · g s to the verifier, and the verifier
generates the challenge c ∈Z∗

p . Then the prover computes α = r + sk1 · c and sends it to the proxy,
and the proxy computes β = s + rk ·α and sends it to the verifier. We observe that:

gβ = g s+rk·α = g s · g rk·r · g
sk2
sk1

·sk1·c = S · (g sk2)c = S ·pk2
c

We deduce that verifier outputs 1, which concludes the proof. �

Lemma 3 IBRP is sound and valid.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of IBRP = (Set,Gen1,Gen2,
RGen, Proof1,Proof2,RProof). We remark that I1 (resp. I2) is defined as Schnorr (Definition 28),
we deduce that I1 (resp. I2) is sound and valid (Theorem 6), which concludes the proof. �

43

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Lemma 4 IBRP is honest-verifier zero-knowledge.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of IBRP = (Set,Gen1,Gen2,
RGen, Proof1,Proof2,RProof). We remark that I1 (resp. I2) is defined as Schnorr (Definition 28),
we deduce that I1 (resp. I2) is honest-verifier zero-knowledge (Theorem 6).

We show how to build a polynomial time algorithm Sim1 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), and any re-proof
key rk ← RGen(sk1,sk2), the algorithm Sim1(pk1,pk2) and trans(RProof〈P(sk1);Px(rk,pk1,pk2);
V(pk1,pk2)〉) follow the same probability distribution. We build Sim1(rk,pk1,pk2) as follows: it

picks (c,α,β)
$← (Z∗

p)3, and computes R = gα

pkc
1

and S = g β

pkc
2

. Sim1 outputs τ = ((R,c,α), (S,c,β)). The

simulator perfectly simulates the protocol and the outputs of Sim1 follow the same distribution as
the real protocol RProof.

We show how to build a polynomial time algorithm Sim2 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1), any (pk2,sk2,sk′2) ←Gen2(set,R2), and any re-proof key
rk ← RGen(sk1,sk2), the algorithm Sim2(rk,pk1,pk2) and viewPx,V(RProof〈P(sk1);Px(rk,pk1,pk2);
V(pk2)〉) follow the same probability distribution. Since I1 is honest-verifier zero-knowledge, there
exists a simulator Sim such that the outputs of viewV(Proof1〈P(sk1);V(pk1)〉) follow the same
probability distribution as the outputs of Sim(pk1) . We build Sim2(rk,pk1,pk2) as follows: it runs
(R,c,α) ← Sim(pk1), picks s

$← Z∗
p and computes S = Rrk · g s and β = s + rk ·α. Sim2 outputs τ =

((R,S,c,α,β), (S,c,β)). Knowing rk, the simulator perfectly simulates the proxy behavior and the
outputs of Sim2 follow the same distribution as the real protocol RProof.

We show how to build a polynomial time algorithm Sim3 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1), any (pk2,sk2,sk′2) ←Gen2(set,R2), and any re-proof key
rk ←RGen(sk1,sk2), the algorithm Sim3(sk1,pk1,pk2) and viewP,V(RProof〈P(sk1);Px(rk,pk1,pk2);
V(pk2)〉) follow the same probability distribution. We build Sim3(sk1,pk1,pk2) as follows: it picks

r
$←Z∗

p , c
$←Z∗

p and β
$←Z∗

p and computes R = g r , α = r +sk1 ·c and S = g β

pkc
2

. It returns the transcript

τ = ((R,c,α), (S,c,β)). It is the transcript of a valid proof since gβ = S ·pkc
2. Moreover β comes from

the uniform distribution on Z∗
p , then the outputs of Sim2 follow the same distribution as the real

protocol RProof.
Finally, we have shown that I1 and I2 are honest-verifier zero-knowledge and we have shown

how to build the algorithms Sim1, Sim2 and Sim3. We deduce that IBRP is honest-verifier zero-
knowledge, which concludes the proof. �

Lemma 5 IBRP is secret secure under the DL assumption.

Proof: Assume that there exists an adversary A ∈ POLY(k) such that ε(k) = AdvSS
IBRP,A (k) is non-

negligible. We show how to build B ∈ POLY(k) that breaks DL in (G, p, g) with the same probability
ε(k). B receives pk0 ∈G such that pk0 = g sk0 for unknown sk0 ∈Z∗

p . It picks rk0
$←Z∗

p and computes

pk1 = pkrk0
0 and rk1 = 1/rk0. It picks b

$← {0,1} and runs sk ←A (rkb ,pkb ,pk1−b). If g sk = pk0, then it
returns sk, else if g rk1·sk = pk0, then it returns rk1 · sk. Else it returns ⊥.

We set sk1 = rk0 · sk0, then rk0 = sk1/sk0, pk1 = g sk1 and rk1 = sk0/sk1. If A wins his experiment,
then it returns sk0 or sk1 with non-negligible probability ε(k). If it returns sk0, then B wins the ex-
periment since g sk0 = pk0. If it returns sk1, then B wins the experiment since g rk1·sk1 = g sk0 = pk0.
Else B returns ⊥ and it does not win the experiment. Finally, we deduce that B wins its exper-
iment if and only if A wins its experiment, hence Pr[sk0 ← B(pk0)] = ε(k), which concludes the
proof. �

Theorem 12 IBRP is bidirectional, complete, sound, valid, honest-verifier zero-knowledge and se-
cret secure under the DL assumption.

Proof: See Lemma 1, 2, 3, 11 and 5. �

44

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Verifier V
sk pk
s

$←Z∗p
S = e(g1, g2)s S−−−−−−−−−−−−−→ c

$←Z∗p
β = g s

2 · skc c←−−−−−−−−−−−−−
β−−−−−−−−−−−−−→ If e(g1,β) = S ·pkc

then returns 1, else return 0

Figure 3.7: Protocol Proof of PKFapi (Definition 41).

Prover P Proxy Px Verifier V
sk1 (rk,pk1,pk2) pk2

r
$←Z∗p s

$←Z∗p
R = g r

1
R−−−−−−−−−−−−−→ S = e(R,rk) ·e(g1, g2)s S−−−−−−−−−−−−−→ c

$←Z∗p
α = r + sk1 · c

c←−−−−−−−−−−−−− c←−−−−−−−−−−−−−
α−−−−−−−−−−−−−→ If gα1

?
= R ·pkc

1

then β = g s
2 · rkα

β−−−−−−−−−−−−−→ If e(g1,β) = S ·pkc
2

else abort then return 1, else return 0

Figure 3.8: Protocol RProof of IURP (Definition 42).

3.2.3 Unidirectional Interactive Scheme

We show how to construct a unidirectional interactive proxy re-proof scheme. As it is mentioned
in the introduction of this chapter, bilinear pairings are the key tool to design unidirectional proxy
re-cryptographic schemes. Thus we use bilinear pairings to change our bidirectional scheme into
a unidirectional one.

As in the previous scheme, the proof protocol of the delegate is the Schnorr protocol. On the
other hand, the delegator proof protocol comes from another proof system that we call PKFapi
(for Proof of Knowledge of a FAPI2 instance) and that we define in Definition 41. The detail of this
proof protocol is given in Figure 3.7. Let G1,G2 and GT be three groups of prime order p, g1 ∈ G1

and g2 ∈ G2 be two generators and e : G1 ×G2 → GT be a non-degenerate bilinear pairing. PKFapi
allows the delegator to prove the knowledge of the solution sk of a FAPI2 instance pk = e(g1,sk). It
is built using the same methodology as Schnorr’s protocol.

Definition 41 PKFapi = (Set,Proof) is an IP defined as follows:

Set(k): Generates the setup set = (G1,G2,GT, p, g1, g2,e) where G1,G2 and GT are three groups of
prime order p, g1 ∈ G1 and g2 ∈ G2, and e : G1 ×G2 → GT is a type 2 bilinear pairing. This
algorithm returns (set,R), where:

(pk,sk) ∈R ⇔ (sk ∈G2)∧ (e(g1,sk) = pk)

Proof〈P(sk);V(pk)〉: Is the protocol given in Figure 3.7.

We show that PKFapi is complete, sound, valid and honest-verifier zero-knowledge.

Lemma 6 PKFapi is complete.

Proof: Let (pk,sk) be such that (pk,sk) ∈ R, then (e(g1,sk) = pk). we show that V returns 1 at the
end of the protocol Proof〈P(sk);V(pk)〉. The prover picks s

$← Z∗
p and sends S = e(g1, g2)s to the

verifier. The verifier returns a challenge c ∈Z∗
p and the prover returns β = g s

2 · skc . We observe that:

e(g1,β) = e(g1, g s
2 · skc) = e(g1, g s

2) ·e(g1,skc) = S ·e(g1,sk)c = S ·pkc

We deduce that V returns 1, which concludes the proof. �

45

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Lemma 7 PKFapi is sound and valid.

Proof: Let k be an integer and pk be such that pk ∈ LR . Let P∗ ∈ POLY(k) be an algorithm and λ
be a function such that:

Pr
[
b ← outV

(
Proof〈P∗(in);V(pk)〉) : b = 1

]
= λ(k)

We build a knowledge extractor K(pk). This algorithm runs the oracle P∗(in) and interacts with this
oracle as follows:

1. K receives the commitment S.
2. K picks c0

$←Z∗
p , sends it to the oracle and receives β0.

3. K rewinds the oracle to its state before step 2. It picks c1
$← Z∗

p , sends it to the oracle and
receives β1.

Finally, K returns sk = (β1/β0)1/(c1−c0). If e(g1,β0) = S ·pkc0 and e(g1,β1) = S ·pkc1 and c0 6= c1 then:

e(g1,sk) = e

(
g1,

β1

β0

)1/(c1−c0)

=
e(g1,β1)

e(g1,β0)

1/(c1−c0)

=

(
S ·pkc1

S ·pkc0

)1/(c1−c0)

=
(
pk(c1−c0))1/(c1−c0)

= pk

It implies that (pk,sk) ∈R.
By hypothesis, we know that Pr

[
e(g1,β0) = S ·pkc0

] ≥ λ(k) and Pr
[
e(g1,β1) = S ·pkc1

] ≥ λ(k).
Moreover, since c0 and c1 are chosen at random in Z∗

p , we have Pr[c0 = c1] = 1/(p − 1), which is
negligible. We deduce that:

Pr
[

sk ←KP∗(in)(pk) : (pk,sk) ∈R
]
≥Pr

[
e(g1,β0) = S ·pkc0

] ·Pr
[
e(g1,β1) = S ·pkc1

]−Pr[c0 = c1]

≥ λ(k)2 − 1

p −1

which is non-negligible. We deduce that PKFapi is valid. It implies that PKFapi is sound, which
concludes the proof. �

Lemma 8 PKFapi is honest-verifier zero-knowledge.

Proof: We show how to build a polynomial time algorithm Sim such that for any k ∈ N, any
(set,R) ← Set(k) and any (pk,sk) ∈ R, the algorithm Sim(pk) and viewV(Proof〈P(sk);V(pk)〉) fol-
low the same probability distribution. Sim picks β

$←G2 and c
$←Z∗

p , computes S = e(g1,β)/pkc and
outputs τ = (S,c,β). It is the transcript of a valid proof since e(g1,β) = S ·pkc . Moreover, since β and
c comes from the uniform distribution on Z∗

p , then outputs of Sim follow the same distribution as
the real protocol. �

Theorem 13 PKFapi is complete, sound, valid and honest-verifier zero-knowledge.

Proof: See Lemma 6, 7 and 8. �

Our Interactive Unidirectional proxy Re-Proof scheme, called IURP, allows the proxy to trans-
form a proof of a discrete logarithm knowledge into a proof of a pairing inversion knowledge. The
re-proof protocol of this scheme is given in Figure 3.8. Let G1,G2 and GT be three groups of prime
order p, g1 ∈ G1 and g2 ∈ G2 be two generators and e : G1 ×G2 → GT be a non-degenerate bilinear
pairing. We consider the discrete logarithm problem in the group G1. The respective secret keys

of Alice and Bob are sk1 and sk2 = g
sk′

2
2 , and pk1 = g sk1

1 , pk′1 = g 1/sk1
2 and pk2 = e(g1,sk2) are the cor-

responding public keys. The re-key is rk = (pk′1)sk′
2 = g

(sk′
2/sk1)

2 . Note that Bob has to know pk′1 and
sk′2 to compute the re-key rk. Alice sends her commitment g r

1 , Bob picks s in Z∗
p and computes

46

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

his commitment as follows: S = e(R,rk) · e(g1, g2)s . The proxy receives the challenge c ∈ Z∗
p and

forwards it to Alice who responds α = r +x · c. The proxy computes:

β = g s
2 · rkα = g

s+ sk′2
sk1

·(r+sk1·c)

2 = g
(r · sk′2

sk1
+s)+sk′

2·c
2 = g

(r · sk′2
sk1

+s)

2 · skc
2

Since S = e(g1, g2)(r · sk′2
sk1

+s), it is the correct response to the challenge c to prove the knowledge
of sk2 using the commitment S.

Definition 42 IURP = (Set,Gen1,Gen2,RGen, Proof1,Proof2,RProof) is a unidirectional PRP de-
fined as follows:

Set(k): It generates the setup set = (G1,G2,GT, p, g1, g2,e) where G1,G2 and GT are three groups of
prime order p, g1 ∈ G1 and g2 ∈ G2, and e : G1 ×G2 → GT is a type 2 bilinear pairing. This
algorithm returns (set,R1,R2), where:

• (pk1,sk1) ∈R1 ⇔ (sk1 ∈Z∗
p)∧ (g sk1

1 = pk1)
• (pk2,sk2) ∈R2 ⇔ (sk2 ∈G2)∧ (e(g1,sk2) = pk2)

Gen1(set,R1): It picks sk1
$←Z∗

p , sets pk1 = g sk1
1 and pk′1 = g 1/sk1

2 and returns (pk1,sk1,pk′1).

Gen2(set,R2): It picks sk′2
$←Z∗

p , sets sk2 = g
sk′

2
2 and pk2 = e(g1,sk2), and returns (pk2,sk2,sk′2).

RGen(pk1,pk′1,sk2,sk′2): It sets rk = (pk′1)sk′
2 .

Proof1〈P(sk1);V(pk1)〉: It is defined as the protocol Proof of Schnorr’s proof system (Definition 28).
Proof2〈P(sk2);V(pk2)〉: It is defined as the protocol Proof of the PKFapi proof system (Definition 41).
RProof〈P(sk1);Px(rk,pk1,pk2);V(pk2)〉: It is the protocol given in Figure 3.8.

In the following, we prove that IURP is unidirectional, complete, sound, valid, honest-verifier
zero-knowledge and secret secure.

Lemma 9 IURP is complete.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of IURP = (Set,Gen1,Gen2,
RGen, Proof1,Proof2,RProof). We remark that I1 is defined as Schnorr (Definition 28) and I2 is de-
fined as PKFapi, (Definition 41). We deduce that I1 and I2 are complete (Theorem 6 and Lemma 6).
Let k be an integer and sk1, pk1, pk2 and rk be four keys generated as follows:

• (set,R1,R2) ← Set(k)

• (pk1,sk1,pk′1) ←Gen1(set,R1)

• (pk2,sk2,sk′2) ←Gen2(set,R2)

• rk←RGen(pk1,pk′1,sk2,sk′2).

We deduce that pk1 = g sk1 , pk2 = e(g1,sk2) and rk = (pk′1)sk′
2 = g

sk′
2/sk1

2 . Let a prover P, a proxy Px
and a verifier V be three entities that run the protocol RProof〈P(sk1);Px(rk,pk1,pk2);V(pk2)〉. We
show that V returns 1 with probability 1.

The prover sends R = g r
2 to the proxy, the proxy sends S = e(R,rk) · e(g1, g2)s to the verifier and

the verifier generates the challenge c. The prover receives c and computes α = r +sk1 ·c, sends it to
the proxy, and the proxy computes β = g s

2 · rkα. Finally, it sends it to the verifier. We observe that:

e(g1,β) = e(g1, g s
2 · rkα) = e(g1, g2)s ·e(g1,rk)α

= e(g1, g2)s ·e(g1,rk)r+sk1·c = e(g1, g2)s ·e(g1,rk)r ·e(g1,rksk1)c

= e(g1, g2)s ·e(g r
1 ,rk) ·e(g1, g

sk′
2

2)c = e(g1, g2)s ·e(R,rk) ·e(g1,sk2)c

= S ·pkc
2

We deduce that the verifier outputs 1, which concludes the proof. �

47

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Lemma 10 IURP is sound and valid.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of IURP = (Set,Gen1,Gen2,
RGen, Proof1,Proof2,RProof). We remark that I1 is defined as Schnorr (Definition 28) and I2 is
defined as PKFapi, (Definition 41). We deduce that I1 and I2 are sound and valid (Theorem 6 and
Lemma 7), which concludes the proof. �

Lemma 11 IURP is honest-verifier zero-knowledge.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of IURP = (Set,Gen1,Gen2,
RGen, Proof1,Proof2,RProof). We remark that I1 is defined as Schnorr (Definition 28) and I2 is
defined as PKFapi, (Definition 41). We deduce that I1 and I2 are honest-verifier zero-knowledge
(Theorem 6 and Lemma 8)

We show how to build a polynomial time algorithm Sim1 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), and any re-proof
key rk ← RGen(sk1,sk2), the algorithms Sim1(pk1,pk2) and trans(RProof〈P(sk1);Px(rk,pk1,pk2);
V(pk1,pk2)〉) follow the same probability distribution. We build Sim1(pk1,pk2) as follows: it picks

(c,α)
$← (Z∗

p)2 and β
$←G2, and computes R =

gα1
pkc

1
and S = e(g1,β)

pkc
2

. Sim1 outputs τ = ((R,c,α), (S,c,β)).

The simulator perfectly simulates the proxy behavior and the outputs of Sim1 follow the same dis-
tribution as the real protocol RProof.

We show how to build a polynomial time algorithm Sim2 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1), any (pk2,sk2,sk′2) ←Gen2(set,R2), and any re-proof key
rk←RGen(sk1,sk2), the algorithms Sim2(rk,pk1,pk2) and viewPx,V(RProof〈P(sk1);Px(rk,pk1,pk2);
V(pk2)〉) follow the same probability distribution. Since I1 is honest-verifier zero-knowledge, there
exists a simulator Sim such that the outputs of viewV(Proof1〈P(sk1);V(pk1)〉) follow the same
probability distribution as the outputs of Sim(pk1) . We build Sim2(rk,pk1,pk2) as follows: it runs
(R,S,c,α,β) ← Sim(pk1), picks s

$←Z∗
p and computes S = e(R,rk)·e(g1, g2)s and β = g s

2 ·rkα. Sim2 out-
puts τ = ((R,S,c,c,α,β), (S,c,β)). Knowing rk, the simulator perfectly simulates the proxy behavior
and the outputs of Sim2 follow the same distribution as the real protocol RProof.

We show how to build a polynomial time algorithm Sim3 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1), any (pk2,sk2,sk′2) ←Gen2(set,R2), and any re-proof key
rk←RGen(sk1,sk2), the algorithms Sim3(sk1,pk1,pk2) and viewP,V(RProof〈P(sk1);Px(rk,pk1,pk2);
V(pk2)〉) follow the same probability distribution. We build Sim3(sk1,pk1,pk2) as follows: it picks
r

$←Z∗
p , c

$←Z∗
p and β

$←G2, and computes R = g r
1 , α = r + sk1 · c and S = e(g1,β)/pkc

2. It returns the
transcript τ = ((R,c,α), (S,c,β)). Since e(g1,β) = S ·pkc

2, it is the transcript of a valid proof. More-
over, since β comes from the uniform distribution on G2, then the outputs of Sim2 follow the same
distribution as the real protocol RProof.

Finally, we have shown that I1 and I2 are honest-verifier zero-knowledge and we have shown
how to build the algorithms Sim1, Sim2 and Sim3. We deduce that IURP is honest-verifier zero-
knowledge, which concludes the proof. �

Lemma 12 IURP is secret secure under the DDH assumption.

Proof: Suppose that there exists an adversary A that breaks the secret security, i.e., AdvSS
IBRP,A (k)

is non-negligible. We first show that the probability that A outputs the delegate’s secret key sk1 is
negligible. We then show that the probability that A outputs the delegator’s secret key sk2 is also
negligible, and we conclude that A has a negligible probability to break the secret security of the
scheme, which contradicts our hypothesis. LetG1,G2 andGT be three groups of prime order p and
e :G1 ×G2 →GT be a type 2 non-degenerate bilinear pairing:

• We suppose that there exists a polynomial time algorithm A (pk1,pk′1,pk2,rk) that computes
the delegate’s secret key sk1 from his public keys pk1 and pk′1, a re-proof key rk and the public

48

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

key of the corresponding delegator pk2 with non negligible probability ε(k). Then we show
how to construct an algorithm B that breaks theBDLV assumption in (G1,G2,GT, p, g1, g2,e),
which holds under the DL assumption in (G2, p, g2). B receives (pk1,pk′1) as input. This
algorithm runs (pk2,sk2,sk′2) ←Gen2(set,R2) and rk←RGen(pk1,pk′1,sk2,sk′2). Then B runs
sk ← A (pk1,pk′1,pk2,rk) and outputs sk. Thus if A wins his experiment then pk1 = g sk

1 and
pk′1 = g 1/sk

2 , and B outputs the correct answer. Finally, B solves its BDLV instance with non-
negligible probability ε(k). It implies that B can be used to break the DL assumption, hence
B can be used to break the DDH assumption.

• We suppose that there exists a polynomial time algorithm A (pk1,pk′1,pk2,rk) that computes
the delegate’s secret key sk2 from his public keys pk1 and pk′1, a re-proof key rk and the public
key of the corresponding delegator pk2 with non negligible probability ε(k). Then we show
how to construct an algorithm B that breaks the DCDH assumption in (G2, p, g2), which
is equivalent to the DDH assumption. B receives (X,Y) as input, we set X = g x

2 and Y =

g y
2 . Since e is a type 2 pairing there exists a morphism φ : G2 → G1. Then B picks a

$← Z∗
p

and computes g1 = φ(Ya) and pk1 = φ(g a
2). He sets the additional delegate public key pk′1 =

Y, the re-proof key rk = X and the delegator public key pk2 = e(pk1,rk). Then B runs Z ←
A (pk1,pk′1,pk2,rk) and outputs Z. We set sk1 = 1/y and sk′2 = x/y , we obtain that Y = g 1/sk1

2

and X = g
sk′

2/sk1

2 . Moreover, we observe that:

– pk1 =φ(g a
2) =φ(Ya·sk1) =φ(Ya)sk1 = g sk1

1

– pk′1 = Y = g 1/sk1
2

– rk = g
sk′

2/sk1

2

– pk2 = e(pk1,rk) = e(g1, g2)x/y = e(g1, g x/y
2) = e(g1, g

sk′
2

2)

Therefore B perfectly simulates the SS experiment for A . Moreover, if A wins the experi-

ment, Z = g
sk′

2
2 = g x/y

2 and B wins its experiment with the same probability as A breaks the
secret security.

We conclude that A has a non-negligible probability to break the secret security of the scheme un-
der the DDH assumption in (G2, p, g2), which contradicts our hypothesis and concludes the proof.
�

Theorem 14 IURP is unidirectional, complete, sound, valid, honest-verifier zero-knowledge and
secret secure under the DL assumption.

Proof: IURP is unidirectional by construction. Moreover, it is complete(Lemma 9), valid, sound
(Lemma 10), honest-verifier zero-knowledge (Lemma 11) and secret secure (Lemma 12) under the
DDH assumption. �

Remark 7 IBRP and IURP are honest-verifier zero-knowledge. As in the Schnorr protocol, it is pos-
sible to design two fully zero-knowledge proxy re-proof by forcing the verifier to choose the challenge
c in {0,1} instead of Z∗

p . However, these protocols would be less practical than IBRP and IURP since
they would have to be repeated k times (for a chosen security parameter k).

3.3 Non-Interactive Proxy Re-Proof

In this section, we formally define non-interactive proxies re-proof of knowledge and their secu-
rity properties. Once again, we instantiate this primitive with two schemes: the first one is bidi-
rectional and the second one is unidirectional.

49

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

3.3.1 Formal Definition

Non-interactive proxies re-proof are defined as interactive proxies re-proof, except that the inter-
active protocols Proof1 (resp. Proof2) are replaced by two algorithms Pro1 and Ver1 (resp. Pro2

and Ver2). The first one allows the prover to generate a non-interactive proof, and the second one
allows the verifier to verify this proof. Moreover, the protocol RProof is replaced by an algorithm
RPro that transforms a non-interactive proof of the delegate into a non-interactive proof of the
delegator.

Definition 43 (Non-interactive proxy re-proof) A Non-Interactive proxy Re-Proof scheme (NIPRP)
is a tuple of algorithms Π = (Set,Gen1,Gen2,RGen, Pro1,Pro2,Ver1,Ver2,RPro) defined as follows:

Set(k): It returns a setup set and two binary relations R1 and R2.
Gen1(set,R1): It returns (pk1,sk1) ∈R1. Optionally, it returns an additional public key pk′1.
Gen2(set,R2): It returns (pk2,sk2) ∈R2. Optionally, it returns an additional secret key sk′2.
RGen(sk1,sk2): It returns a re-proof key rk.
Pro1(sk1,pk1): It returns a proof π1.
Pro2(sk2,pk2): It returns a proof π2.
Ver1(pk1,π1): It returns a bit b1.
Ver2(pk2,π2): It returns a bit b2.
RPro(rk,π1): It returns a proof π2.

We set the two followings NIP schemes I1 = (Set1,Pro1,Ver1) and I1 = (Set2,Pro2,Ver2) where Set1

and Set2 are defined as follows:

Set1(k): Runs (set,R1,R2) ← Set(k) and returns (set,R1).
Set2(k): Runs (set,R1,R2) ← Set(k) and returns (set,R2).

I1 (resp. I2) is said to be the delegate non-interactive proof system (resp. delegator non-interactive
proof system) of Π. Moreover, a NIPRP can have the following properties:

Completeness: Π is said to be complete when:

1. I1 and I2 are complete.
2. For any k ∈N:

Pr

(set,R1,R2) ← Set(k);

(pk1,sk1,pk′1) ←Gen1(set,R1);
(pk2,sk2,sk′2) ←Gen2(set,R2);

rk←RGen(sk1,sk2);π1 ←Pro1(sk1,pk1)
π2 ←RPro(rk,π1);b ←Ver2(pk2,π2)

: b = 1

 = 1

Soundness: Π is said to be sound when I1 and I2 are sound.
(Non-Adaptive) Validity: Π is said to be (non-adaptively) valid when I1 and I2 are (non-adaptively)

valid.
Zero-knowledge: Π is said to be zero-knowledge when:

1. I1 and I2 are zero-knowledge.
2. There exists a polynomial time algorithm Sim1 such that for any (set,R1,R2) ← Set(k),

any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), any re-key rk ←
RGen(sk1,sk2) and any α ∈ ({0,1}∗)2:

Pr
[
α1 ←Pro1(sk1,pk1);α2 ←RPro(rk,α1) : (α1,α2) = α∗

]
= Pr

[
α∗ ← Sim1(pk1,pk2) : α = α∗

]

50

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

3. There exists a polynomial time algorithm Sim2 such that for any (set,R1,R2) ← Set(k),
any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), any re-key rk ←
RGen(sk1,sk2) and any α ∈ {0,1}∗:

Pr
[
α∗ ←Pro1(sk1,pk1) : α = α∗

]
= Pr

[
α∗ ← Sim2(rk,pk1,pk2) : α = α∗

]
4. For any k ∈N and any polynomial time algorithm A , there exists a polynomial time al-

gorithm Sim3 such that for any (set,R1,R2) ← Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1),
any (pk2,sk2,sk′2) ←Gen2(set,R2), any rk←RGen(sk1,sk2) and any α ∈ {0,1}∗:

Pr
[
π1 ←A (sk1,pk1,pk2);α∗ ←RPro(rk,π1) : α = α∗

]
= Pr

[
α∗ ← Sim3(rk,pk1,pk2) : α = α∗

]
As in the interactive case, we define three additional properties: secret security, bidirectionality

and unidirectionality.

Definition 44 (Secret security) Let Π = (Set,Gen1,Gen2,RGen, Pro1,Pro2,Ver1,Ver2,RPro) be a NI-
PRP, k ∈N be a security parameter and A ∈ POLY(k) be an algorithm. We define the secret security
advantage as follows:

AdvSS
Π,A

(k) = Pr

(set,R1,R2) ← Set(k);

(pk1,sk1,pk′1) ←Gen1(set,R1);
(pk2,sk2,sk′2) ←Gen2(set,R2);

rk←RGen(sk1,sk2);
sk∗ ←A (pk1,pk′1,pk2,rk)

: ∃ i ∈ {1,2},sk∗ = ski

Π is said to be secret secure when for any A ∈ POLY(k), there exists a negligible function ε such that:

AdvSS
Π,A

(k) ≤ ε(k)

Definition 45 (Bidirectional NIPRP) Let Π = (Set,Gen1,Gen2,RGen, Pro1,Pro2,Ver1,Ver2,RPro)
be a NIPRP. Π is said to be bidirectional if there exists a polynomial time algorithm Inv such that the
following equation holds for any and k ∈N:

Pr

(set,R1,R2) ← Set(k);
(pk1,sk1,pk′1) ←Gen1(set,R1);
(pk2,sk2,sk′2) ←Gen2(set,R2);

rk←RGen(sk1,sk2);
rk′ ←RGen(sk2,sk1);

rk∗ ← Inv(rk)

: rk∗ = rk′

 = 1

Definition 46 (Unidirectional NIPRP) An unidirectional non-interactive proxy re-proof scheme is
a tuple Π = (Set,Gen1,Gen2,RGen, Pro1,Pro2,Ver1,Ver2,RPro) where Set,Gen1,Gen2,Pro1,Pro2,
Ver1,Ver2 and RPro are defined as in Definition 43, and where RGen is defined as follows:

RGen(pk1,pk′1,sk2,sk′2): It is an algorithm that returns a re-proof key rk.

Moreover, the following properties are defined similarly to the definition of standard (i.e., not unidi-
rectional) PRP: completeness, soundness, validity, zero-knowledge, honest-verifier zero-knowledge,
and secret security.

3.3.2 Bidirectional Non-interactive Scheme

To transform an interactive proof system into a non-interactive one, the simplest solution is to
use, when it is possible, the Fiat-Shamir transformation. The challenges randomly chosen by the
verifier are replaced by the hash of the commitments sent by the prover. This solution works in the

51

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Verifier V
sk pk
r

$←Z∗p ; u
$←Z∗p

R = g r ; U = g u (R,U)−−−−−−−−−−−−−→ c,d
$←Z∗p

z = r + sk ·d
(c,d)←−−−−−−−−−−−−−

µ = u + r · c
(z,µ)−−−−−−−−−−−−−→ If gµ = U ·Rc

and g z = R ·pkd

returns 1, else return 0

Figure 3.9: Protocol Proof of Schnorr+ (Definition 47).

random oracle model. We then would like to transform our interactive proxies re-proof in a similar
way to obtain non-interactive schemes. However, this method cannot be used on our bidirectional
interactive proxy re-proof scheme: indeed, the prover and the proxy use the same challenge c
during the re-proof protocol, but they use two different commitments R and S, then the proxy
cannot use the hash of the delegate’s commitment R instead of the hash of its commitment S
as the challenge. Therefore we need to design two interactive proof protocols where the same
commitment is used to compute the challenge. These two non-interactive proof systems, called
Schnorr+ and DLright, are built as follows:

Protocol Schnorr+ (Definition 47): The protocol of the interactive version of this proof system is
given in Figure 3.9. This protocol is the same as Schnorr protocol except that the prover must
know the discrete logarithm of his commitment R. Thus, the prover uses a second Schnorr
protocol to prove it. To do that, the prover sends a second commitment U = g u and receives
a second challenge d . The prover uses c to prove the knowledge of r using the commitment
U by computing µ = u + r · c, then it uses d to prove the knowledge of his secret sk using the
commitment R by computing z = r + sk ·d , as in the Schnorr protocol. Finally, the verifier
uses µ and z to check that gµ = U ·Rc and g z = R · pkd . To transform this protocol into a
non-interactive proof system, the prover computes the two challenges c and d by hashing
the concatenation of the two commitments R and U.

Protocol DLright (Definition 48): The protocol of the interactive version of this proof system is
given in Figure 3.10. This protocol is a proof of knowledge of a discrete logarithm in a prime
order group G. It is based on Schnorr+, but it requires that the commitment is built in a
particular way. More precisely, the prover sends a first classical commitment R = g r and
receives the challenge d . As in Schnorr+, the prover must prove the knowledge of the discrete
logarithm of his commitment R. The prover chooses two random values a and b and it
commits A = Ra and B = g b . Next the prover chooses two random values t and s in Z∗

p and
it computes S = Rt · g s . It sends the commitments A, B and S to the verifier and receives
a challenge f . It proves that he knows the two values t and s to the verifier by computing
α = a + t · f and β = b + s · f . The verifier receives α and β and checks that Rα · gβ = A ·B ·
S f . Then the prover proves the knowledge of the secret sk as in the Schnorr protocol using
the commitment S = g s+r ·t and the challenge d by computing θ = (s + r · t) + sk · d . The
verifier receives θ and checks that g θ = S ·pkd . Note that the prover receives the challenge
d before computing the commitment S, which seems contradictory to the methodology of
Schnoor-like proof systems. However, the proof remains valid because the prover receives
the challende d after he sends the commitment R to the verifier, and the prover must know
the value r · t + s (which is the discrete logarithm of S) to compute θ and succeed the proof,
which implies that it knows r the discrete logarithm of the commitment R. To transform
this protocol into a non-interactive proof system, the prover computes each challenge by
hashing the concatenation of all the commitments that he has previously computed.

We formally define the Schnorr+ non-interactive proof system.

52

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Verifier V
sk pk
a,b,r, s, t ,u

$←Z∗p
R = g r ; U = g u (R,U)−−−−−−−−−−−−−→
µ = u + r · c

(c,d)←−−−−−−−−−−−−− c,d
$←Z∗p

S = g r ·t+s µ−−−−−−−−−−−−−→
A = Ra ; B = g b (A,B,S)−−−−−−−−−−−−−→
α = a + t · f

f←−−−−−−−−−−−−− f
$←Z∗p

β = b + s · f

θ = s + r · t + sk ·d
(α,β,θ)−−−−−−−−−−−−−→ If gµ = U ·Rc

and gθ = S ·pkd

and Rα · gβ = A ·B ·S f

then return 1, else return 0

Figure 3.10: Protocol Proof of interactive DLright (Definition 48).

Definition 47 Schnorr+ = (Set,Pro,Ver) is a NIP defined as follows:

Set(k): It generates the setup set = (G, p, g ,H) where G is a group of prime order p, g ∈ G and H :
{0,1}∗ →Z∗

p is a hash function. This algorithm returns (set,R), where:

(pk,sk) ∈R ⇔ (sk ∈Z∗
p)∧ (g sk = pk)

Pro(sk,pk): It picks r
$← Z∗

p and u
$← Z∗

p , computes R = g r , U = g u , c = H(R||U||0), d = H(R||U||1),
z = r + sk ·d and µ = u + r · c, and outputs π = (R,U, z,µ).

Ver(pk,π): It computes c = H(R||U||0) and d = H(R||U||1). If gµ = U ·Rc and g z = R · pkd then it
outputs 1, else 0.

In the following, we prove that Schnorr+ is complete, sound, (non-adaptively) valid and zero-
knowledge.

Lemma 13 Schnorr+ is complete.

Proof: Let (pk,sk) be such that (pk,sk) ∈ R, then pk = g sk. We show that for any π← Pro(sk,pk)
and b ←Ver(pk,π), then b = 1. The algorithm Pro picks r,u

$←Z∗
p , sets R = g r and U = g y , computes

c = H(R||U||0), d = H(R||U||1), z = r + sk ·d and µ = u + r · c, and outputs π = (R,U, z,µ). It returns
π = (R,U, z,µ). We observe that:

gµ = g u+r ·c = g u · g r ·c = U ·Rc

g z = g r+sk·d = g r · g sk·d = R ·pkd

We deduce that Ver returns 1, which concludes the proof. �

Lemma 14 Schnorr+ is (non-adaptively) valid and sound.

Proof: We show that the interactive version of Schnorr+ is valid before to prove that the non-
interactive one is (non-adaptively) valid. Let k be an integer and pk be such that pk ∈ LR . Let
P∗ ∈ POLY(k) be an algorithm and λ be a function such that:

Pr
[
b ← outV

(
Proof〈P∗(in);V(pk)〉) : b = 1

]
= λ(k)

We build a knowledge extractor K(pk). This algorithm runs the oracle P∗(in) and interacts with it
as follows:

53

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

1. K receives the commitment (R,U).
2. K picks (c0,d0)

$←Z∗
p , sends it to the oracle and receives (z0,µ0).

3. K rewinds the oracle to its state before step 2. It picks (c1,d1)
$←Z∗

p , sends it to the oracle and
receives (z1,µ1).

Finally, K returns sk = z1−z0
d1−d0

. We show that sk is the secret key corresponding to pk. If gµ0 = U ·Rc0 ,

gµ1 = U ·Rc1 , g z0 = R ·pkd0 , g z1 = R ·pkd1 and d0 6= d1 then:

g sk = g (z1−z0)/(d1−d0) =

(
g z1

g z0

)1/(d1−d0)

=

(
R ·pkd1

R ·pkd0

)1/(d1−d0)

= pk

It implies that (pk,sk) ∈R.

By hypothesis, we know that Pr
[

g z0 = R ·pkd0

]
≥ λ(k) and Pr

[
g z1 = R ·pkd1

]
≥ λ(k). Moreover,

since d0 and d1 are chosen at random in Z∗
p , we have Pr[d0 = d1] = 1/(p −1), which is negligible.

We deduce that:

Pr
[

sk ←KP∗(in)(pk) : (pk,sk) ∈R
]
≥Pr

[
g z0 = R ·pkd0

]
·Pr

[
g z1 = R ·pkd1

]
−Pr[d0 = d1]

≥ λ(k)2 − 1

p −1

We conclude that the interactive version of Schnorr+ is valid. In the non-interactive case, the chal-
lenge d comes from a random oracle that takes as input the value (R||U||0). First note that the
adversary cannot know d before chosing the commitment (R,U) since the commitment is used
as input to the random oracle. On the other hand, the random oracle chooses the challenge d as
the verifier in the interactive proof system. We conclude that if the interactive version of Schnorr+
is valid, then the non-interactive one is (non-adaptively) valid. It implies that Schnorr+ is sound,
which concludes the proof. �

Lemma 15 Schnorr+ is zero-knowledge.

Proof: We show how to build a polynomial time algorithm Sim such that for any k ∈ N, any
(set,R) ← Set(k) and any (pk,sk) ∈ R, the algorithms Sim(pk) and Pro(sk,pk) follow the same
probability distribution. Sim picks z

$←Z∗
p , µ

$←Z∗
p , c

$←Z∗
p and d

$←Z∗
p , and computes R = g z /pkd

and U = gµ/Rc . It outputs π = (R,U, z,µ), which is a valid proof since gµ = U ·Rc and g z = R ·pkd .
Moreover, since and z and µ come from the uniform distribution on Z∗

p , then the outputs of Sim
follow the same distribution as the real protocol. �

Theorem 15 Schnorr+ is complete, sound, (non-adaptively) valid and zero-knowledge.

Proof: See Lemma 13, 14 and 15. �

The following definition describes the DLright non-interactive proof system.

Definition 48 DLright = (Set,Pro,Ver) is a NIP defined as follows:

Set(k): It generates the setup set = (G, p, g ,H) where G is a group of prime order p, g ∈ G and and
H : {0,1}∗ →Z∗

p is a hash function. This algorithm returns (set,R), where:

(pk,sk) ∈R ⇔ (pk ∈Z∗
p)∧ (g sk = pk)

Pro(sk,pk): It picks r, s, t ,u, a and b in the uniform distribution on Z∗
p . It computes:

54

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

R = g r

c = H(R||U||0)
µ = u + r · c
A = Ra

f = H(R||U||A||B||S)
β = b + s · f
U = g u

d = H(R||U||1)

S = g r ·t · g s

B = g b

α = a + t · f
θ = s + r · t + sk ·d

It outputs π = (R,U,µ,S, A,B,α,β,θ).
Ver(pk,π): It computes the values c = H(R||U||0), d = H(R||U||1) and f = H(R||U||A||B||S). If the

following equations hold, then it outputs 1, else 0:

gµ = U ·Rc Rα · gβ = A ·B ·S f g θ = S ·pkd

Lemma 16 DLright is complete.

Proof: Let (pk,sk) be such that (pk,sk) ∈ R, then pk = g sk. We show that for any π← Pro(sk,pk)
and b ←Ver(pk,π), then b = 1. We set π = (R,U,µ,S, A,B,α,β,θ), we observe that, for c = H(R||U||0),
d = H(R||U||1) and f = H(R||U||A||B||S) :

gµ = g u+r ·c = g u · g r ·c = U ·Rc

Rα · gβ = Ra · g b ·Rt · f · g s· f = A ·B · (g r ·t · g s) f = A ·B ·S f

g θ = g s+r ·t+sk·d = g r ·t · g s · g sk·d = S ·pkd

We deduce that Ver returns 1, which concludes the proof. �

Lemma 17 DLright is (non-adaptively) valid and sound.

Proof: We show that the interactive version of DLright is valid before to prove that the non-
interactive version is (non-adaptively) valid. Let k be an integer and pk be such that pk ∈ LR .
Let P∗ ∈ POLY(k) be an algorithm and λ be a function such that:

Pr
[
b ← outV

(
Proof〈P∗(in);V(pk)〉) : b = 1

]
= λ(k)

We build a knowledge extractor K(pk). This algorithm runs the oracle P∗(in) and interacts with it
as follows:

1. K receives the commitment (R,U).
2. K picks (c0,d0)

$←Z∗
p , sends it to the oracle and receives (µ0) and (A0,B0,S0).

3. K picks (f0,0)
$←Z∗

p , sends it to the oracle and receives (α0,0,β0,0,θ0,0).

4. K rewinds the oracle to its state before step 3. It picks (f0,1)
$←Z∗

p , sends it to the oracle and
receives (α0,1,β0,1,θ0,1).

5. K rewinds the oracle to its state before step 2. It picks (c1,d1)
$←Z∗

p , sends it to the oracle and
receives (µ1) and (A1,B1,S1).

6. K picks (f1,0)
$←Z∗

p , sends it to the oracle and receives (α1,0,β1,0,θ1,0).

7. K rewinds the oracle to its state before step 6. It picks (f1,1)
$←Z∗

p , sends it to the oracle and
receives (α1,1,β1,1,θ1,1).

K sets the following values:

r =
µ0 −µ1

c0 − c1

s0 = r · α0,0 −α0,1

f0,0 − f0,1
+ β0,0 −β0,1

f0,0 − f0,1

s1 = r · α1,0 −α1,1

f1,0 − f1,1
+ β1,0 −β1,1

f1,0 − f1,1

sk =
θ0,0 −θ1,1

d0 −d1
+ s1 − s0

d0 −d1

55

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Finally, K returns sk.

Suppose that:

gµ0 = U ·Rc0 (3.1)

gµ1 = U ·Rc1 (3.2)

Rα0,0 · gβ0,0 = A0 ·B0 ·S
f0,0

0 (3.3)

Rα0,1 · gβ0,1 = A0 ·B0 ·S
f0,1

0 (3.4)

Rα1,0 · gβ1,0 = A1 ·B1 ·S
f1,0

1 (3.5)

Rα1,1 · gβ1,1 = A1 ·B1 ·S
f1,1

1 (3.6)

g θ0,0 = S0 ·pkd0 (3.7)

g θ0,1 = S0 ·pkd0 (3.8)

g θ1,0 = S1 ·pkd1 (3.9)

g θ1,1 = S1 ·pkd1 (3.10)

Using equations (3.1) and (3.2), we deduce:

g r = g
µ0−µ1
c0−c1 =

(
U ·Rc0

U ·Rc1

) 1
c0−c1

= R

Using equations (3.3), (3.4), (3.5) and (3.6), we show that g s0 = S0 and g s1 = S1:

g s0 = g
r · α0,0−α0,1

f0,0− f0,1
+ β0,0−β0,1

f0,0− f0,1 = R
α0,0−α0,1
f0,0− f0,1 · g

β0,0−β0,1
f0,0− f0,1

=
(
Rα0,0−α0,1 · gβ0,0−β0,1

) 1
f0,0− f0,1 =

(
Rα0,0 · gβ0,0

Rα0,1 · gβ0,1

) 1
f0,0− f0,1

=

(
A0 ·B0 ·S

f0,0

0

A0 ·B0 ·S
f0,1

0

) 1
f0,0− f0,1

= S0

g s1 = g
r · α1,0−α1,1

f1,0− f1,1
+ β1,0−β1,1

f1,0− f1,1 = R
α1,0−α1,1
f1,0− f1,1 · g

β1,0−β1,1
f1,0− f1,1

=
(
Rα1,0−α1,1 · gβ1,0−β1,1

) 1
f1,0− f1,1 =

(
Rα1,0 · gβ1,0

Rα1,1 · gβ1,1

) 1
f1,0− f1,1

=

(
A1 ·B1 ·S

f1,0

1

A1 ·B1 ·S
f1,1

1

) 1
f1,0− f1,1

= S1

Finally, Equations (3.7) and (3.10) implies that:

g sk = g
θ0,0−θ1,1

d0−d1
+ s1−s0

d0−d1 = g
θ0,0−θ1,1

d0−d1 · g
s1−s0
d0−d1

=

(
S0 ·pkd0

S1 ·pkd1

) 1
d0−d1

·
(

S1

S0

) 1
d0−d1

=

(
S0

S1

) 1
d0−d1 ·pk ·

(
S1

S0

) 1
d0−d1

= pk

Thus, the knowledge extractor K returns sk such that (pk,sk) ∈R.

56

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

By hypothesis, we know that:

P1 = Pr
[(

gµ0 = U ·Rc0
)∧ (

Rα0,0 · gβ0,0 = A0 ·B0 ·S
f0,0

0

)
∧

(
g θ0,0 = S0 ·pkd0

)]
≥ λ(k)

P2 = Pr
[(

gµ0 = U ·Rc0
)∧ (

Rα0,1 · gβ0,1 = A0 ·B0 ·S
f0,1

0

)
∧

(
g θ0,1 = S0 ·pkd0

)]
≥ λ(k)

P3 = Pr
[(

gµ1 = U ·Rc1
)∧ (

Rα1,0 · gβ1,0 = A1 ·B1 ·S
f1,0

1

)
∧

(
g θ1,0 = S1 ·pkd1

)]
≥ λ(k)

P4 = Pr
[(

gµ1 = U ·Rc1
)∧ (

Rα1,1 · gβ1,1 = A1 ·B1 ·S
f1,1

1

)
∧

(
g θ1,1 = S1 ·pkd1

)]
≥ λ(k)

Moreover, since c0,c1,d0,d1, f0 and f1 are chosen at random in Z∗
p , we have:

P5 = Pr[c0 = c1 ∨d0 = d1 ∨ f0,0 = f1,1 ∨ f1,0 = f1,1]

≤Pr[c0 = c1]+Pr[d0 = d1]+Pr[f0,0 = f0,1]+Pr[f1,0 = f1,1]

≤ 4

(p −1)

which is negligible. We deduce that:

Pr
[

sk ←KP∗(in)(pk) : (pk,sk) ∈R
]
≥ P1 ·P2 ·P3 ·P4 −P5

≥ λ(k)4 − 4

p −1

We conclude that the interactive version of DLright is valid. In the non-interactive case, the chal-
lenge c (resp. d and f) comes from a random oracle that takes as input the value (R||U||0) (reps.
(R||U||1) and (R||U||A||B||S)). First note that the adversary cannot know (c,d) (resp. f) before
choosing the commitment (R,U) (resp. (A,B,S)) since the commitment is used as input to the ran-
dom oracle. On the other hand, the random oracle chooses the challenges c,d and f as the verifier
in the interactive proof system. We conclude that if the interactive version of DLright is valid, then
the non-interactive one is (non-adaptively) valid. It implies that DLright is sound, which con-
cludes the proof. �

Lemma 18 DLright is zero-knowledge.

Proof: We show how to build a polynomial time algorithm Sim such that for any k ∈ N, any
(set,R) ← Set(k) and any (pk,sk) ∈ R, the algorithms Sim(pk) and Pro(sk,pk) follow the same
probability distribution. Sim picks c,d , f ,µ,α,β,θ

$← Z∗
p and R, A

$← G. Then it computes S =

g θ/pkd , U = gµ/Rc and B = (Rα · gβ)/(A ·S f). It outputs the proof π = (R,U,c,d , f ,µ,S, A,B,α, β,θ)
which is a valid proof because:

gµ = U ·Rc Rα · gβ = A ·B ·S f g θ = S ·pkd

Moreover, since µ,α,β and θ come from the uniform distribution on Z∗
p , then outputs of Sim

follow the same distribution as the real protocol. �

Theorem 16 DLright is complete, sound, (non-adaptively) valid and zero-knowledge.

Proof: See Lemma 16, 17 and 18. �

Our bidirectional non-interactive proxy re-proof scheme, called NBRP, allows a proxy to trans-
form a (non-interactive) Schnorr+proof into a (non-interactive) DLright one. The re-prove method

57

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Proxy Px Verifier V
sk1 (rk,pk1,pk2) pk2

r
$←Z∗p ; u

$←Z∗p a,b, s
$←Z∗p

R = g r ; U = g u (R,U)−−−−−−−−−−−−−→ (R,U)−−−−−−−−−−−−−→ c,d
$←Z∗p

z = r + sk ·d
(c,d)←−−−−−−−−−−−−− (c,d)←−−−−−−−−−−−−−

µ = u + r · c
(z,µ)−−−−−−−−−−−−−→ A = Ra µ−−−−−−−−−−−−−→

B = g b

S = Rrk · g s (A,B,S)−−−−−−−−−−−−−→ f
$←Z∗p

α = a + rk · f
f←−−−−−−−−−−−−−

β = b + s · f

θ = s + z · rk (α,β,θ)−−−−−−−−−−−−−→ If gµ = U ·Rc

and gθ = S ·pkd
2

and Rα · gβ = A ·B ·S f

then return 1, else return 0

Figure 3.11: Interactive version of NBRP (Definition 49).

is similar to the IBRP one except that the proxy must prove that it correctly constructs the commit-
ment S (as in DLright) from the delegate commitment R. In Figure 3.11, we give the interactive ver-
sion of the re-proof algorithm of NBRP that transforms an interactive Schnorr+ proof (Figure 3.9)
into an interactive DLright one (Figure 3.10). The proxy receives R, U, z and µ from the prover, and
receives c and d from the verifier. It computes A, B and β using a chosen number s and the chal-
lenge f given by the verifier, as in DLright. Using the re-proof key sk2/sk1, it computes S = Rrk · g s ,
α = a+ rk · f and θ = s + z · rk. We claim that the verifier cannot distinguish weither it interacts with
the proxy or with the delegator because the random numbers r and s randomize the commitment
S, so the verifier cannot guess weither S is built from the re-proof key rk of not. To transform this
protocol into a non-interactive re-proof algorithm, the prover computes each challenge (c, d and
f) by hashing the concatenation of all the commitments that were previously computed. More
precisely, c and d are generated by hashing R and U, and f is generated by hashing R, U, A, B and
S.

Definition 49 NBRP = (Set,Gen1,Gen2,RGen, Pro1,Pro2,Ver1,Ver2,RPro) is a NIPRP defined as
follows:

Set(k): It generates the setup set = (G, p, g ,H) where G is a group of prime order p, g ∈ G and H :
{0,1}∗ →Z∗

p is a hash function. This algorithm returns (set,R1,R2), where:

• (pk,sk) ∈R1 ⇔ (sk ∈Z∗
p)∧ (g sk = pk)

• R2 = R1

Gen1(set,R1): It picks sk1
$←Z∗

p , sets pk1 = g sk1 and returns (pk1,sk1).

Gen2(set,R2): It picks sk2
$←Z∗

p , sets pk2 = g sk2 and returns (pk2,sk2).
RGen(sk1,sk2): It sets rk = sk2/sk1 and returns it.
Pro1(sk1,pk1): It picks r

$←Z∗
p and u

$←Z∗
p , computes R = g r , U = g u , c = H(R||U||0), d = H(R||U||1),

z = r + sk1 ·d and µ = u + r · c, and outputs π = (R,U, z,µ).
Pro2(sk2,pk2): It picks r, s, t ,u, a and b in the uniform distribution on Z∗

p . It computes:

R = g r

c = H(R||U||0)
µ = u + r · c
A = Ra

f = H(R||U||A||B||S)
β = b + s · f
U = g u

d = H(R||U||1)

S = g r ·t · g s

B = g b

α = a + t · f
θ = s + r · t + sk2 ·d

It outputs π = (R,U,µ,S, A,B,α,β,θ).

58

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Ver1(pk1,π1): Parses π1 = (R,U, z,µ), computes c = H(R||U||0) and d = H(R||U||1). If gµ = U ·Rc and
g z = R ·pkd

1 then it outputs 1, else 0.
Ver2(pk2,π2): Parses π2 = (R,U,µ, A,B,S,α,β,θ), computes the values c = H(R||U||0), d = H(R||U||1)

and f = H(R||U||A||B||S). If the following equations hold, then it outputs 1, else 0:

gµ = U ·Rc Rα · gβ = A ·B ·S f g θ = S ·pkd
2

RPro(rk,π1): Parses π1 = (R,U, z,µ), this algorithm picks s, a and b in the uniform distribution on
Z∗

p and computes:

S = Rrk · g s

A = Ra

B = g b

f = H(R,U, AB,S)
α = a + rk · f
β = b + s · f

θ = s + z · rk

It outputs π2 = (R,U,µ,S, A,B,α,β,θ).

In the following, we prove that NBRP is complete, sound, (non-adaptively) valid, zero-knowledge
and secret secure.

Lemma 19 NBRP is complete.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of NBRP = (Set,Gen1,Gen2,
RGen, Pro1,Pro2,Ver1,Ver2,RPro). We remark that I1 is defined as Schnorr+ (Definition 47) and I2

is defined as DLright (Definition 48), we deduce that I1 (resp. I2) are complete (Theorem 15 and
Theorem 16). Let k be an integer and sk1, pk1, pk2 and rk be four keys generated as follows:

• (set,R1,R2) ← Set(k)

• (pk1,sk1,pk′1) ←Gen1(set,R1)

• (pk2,sk2,sk′2) ←Gen2(set,R2)

• rk←RGen(sk1,sk2)

We deduce that pk1 = g sk1 , pk2 = g sk2 and rk = sk2/sk1. Let the two proofs π1 and π2 be generated
by π1 ← Pro1(sk1,pk1) and π2 ← RPro(rk,π1). We show that for any b ← Ver2(pk2,π2). We set π =
(R,U,µ,S, A,B,α,β,θ), we observe that, for c = H(R||U||0), d = H(R||U||1) and f = H(R||U||A||B||S):

gµ = g u+r ·c = g u · g r ·c = U ·Rc

Rα · gβ = Ra · g b ·Rrk· f · g s· f = Ra · g b ·
(
Rrk · g s

) f
= A ·B ·S f

g θ = g s+z·rk = g s+(r+sk1·d)· sk2
sk1 = g s+r ·rk+sk2·d = g s+r ·rk · g sk2·d = Rrk · g s ·pkd

2 = S ·pkd
2

We deduce that b = 1, which concludes the proof. �

Lemma 20 NBRP is sound and (non-adaptively) valid.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of NBRP = (Set,Gen1,Gen2,
RGen, Pro1,Pro2,Ver1,Ver2,RPro). We remark that I1 is defined as Schnorr+ (Definition 47) and
I2 is defined as DLright (Definition 48), we deduce that I1 and I2 are sound and (non-adaptively)
valid (Theorem 15 and Theorem 16), which concludes the proof. �

Lemma 21 NBRP is zero-knowledge.

59

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of NBRP = (Set,Gen1,Gen2,
RGen, Pro1,Pro2,Ver1,Ver2,RPro). We remark that I1 is defined as Schnorr+ (Definition 47) and
I2 is defined as DLright (Definition 48), we deduce that I1 and I2 are zero-knowledge (Theorem 15
and Theorem 16).

We show how to build a polynomial time algorithm Sim1 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), any re-proof key
rk←RGen(sk1,sk2), the algorithms Sim1(pk1,pk2) and the two algorithms α1 ←Pro1(sk1,pk1) and
α2 ←RPro(rk,α1) follow the same probability distribution. We build Sim1(pk1,pk2) as follows: this
simulator picks z,c,d , f ,µ, α,β,θ

$←Z∗
p and A

$←G. It computes R = g z /pkd
1 , S = g θ/pkd

2 , U = gµ/Rc

and B = (Rα · gβ)/(A · S f). It outputs ((R,U, z,µ), (R,U,µ,S, A,B,α,β, θ)), which is is a valid proof
because:

g z = R ·pkd
1 gµ = U ·Rc Rα · gβ = A ·B ·S f g θ = S ·pkd

Moreover, since µ,α,β, and θ come from the uniform distribution on Z∗
p , then the outputs of

Sim1 follow the same distribution as the real algorithms.
We show how to build a polynomial time algorithm Sim2 such that for any (set,R1,R2) ←

Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1), any (pk2,sk2,sk′2) ←Gen2(set,R2), and any re-proof key
rk ← RGen(sk1,sk2), the algorithms Sim2(rk,pk1,pk2) and Pro1(sk1,pk1) follow the same proba-
bility distribution. Since I1 is zero-knowledge, there exists a simulator Sim such that the outputs
of Pro1(sk1,pk1) follow the same probability distribution as the outputs of Sim(pk1). We build
Sim2(rk,pk1,pk2) as follows: it runs π1 ← Sim(pk1) and returns π1. Clearly, Sim2 follows the same
distribution as the real algorithm Pro.

We show how to build a polynomial time algorithm Sim3 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), any re-proof key
rk ← RGen(sk1,sk2), any polynomial time algorithm A ∈ POLY(k) and any π1 ← A (sk1,pk1,pk2)
where π1 = (R,U, z,µ), the algorithms Sim3(sk1,pk1,pk2) and RPro(rk,π1) follow the same proba-
bility distribution. We set c = H(R||U||0) and d = H(R||U||1). We build Sim3(sk1,pk1,pk2) as follows:
this simulator picks f , α,β,θ

$←Z∗
p and A

$← G. It computes S = g θ/pkd
2 and B = (Rα · gβ)/(A ·S f). It

outputs π2 = (R,U,µ,S, A,B,α,β, θ), which is is a valid proof because:

gµ = U ·Rc Rα · gβ = A ·B ·S f g θ = S ·pkd

Moreover, since µ,α,β, and θ come from the uniform distribution on Z∗
p , then the outputs of

Sim3 follow the same distribution as the real algorithm RPro. �

Theorem 17 NBRP is bidirectional, complete, sound, (non-adaptively) valid, zero-knowledge and
secret secure under the DL assumption.

Proof: We already show that NBRP is complet (Lemma 19), sound, (non-adaptively) valid (Lemma 20),
and zero-knowledge (Lemma 21). Since the setup and the key generation algorithms Set,Gen1,Gen2

and RGen are defined as in IBRP (Definition 40), then we can prove that NBRP is bidirectional and
secret secure as we prove that IBRP is bidirectional and secret secure in Theorem 13. �

3.3.3 Unidirectional Non-interactive Scheme

The last scheme we present in this chapter is called NURP and is both unidirectional and non-
interactive. It is obtained by merging the (non-interactive) scheme NBRP and the (unidirectional)
scheme IURP. More precisely, we use the same method than NBRP except that the delegator
proof system, which is DLright in NBRP, is replaced by a proof of knowledge of a pairing inversion
called FAPIright (Definition 50). The design of this proof system is similar to the design of DLright.
An interactive version of FAPIright is given in Figure 3.12. On the other hand, the delegate proof
system is Schnorr+, as in the bidirectional non-interactive scheme NBRP.

60

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Verifier V
sk pk
a,b,r, s, t ,u

$←Z∗p
R = g r

1 ; U = g u
1

(R,U)−−−−−−−−−−−−−→
µ = u + r · c

(c,d)←−−−−−−−−−−−−− c,d
$←Z∗p

S = e(g1, g2)r ·t+s µ−−−−−−−−−−−−−→
A = e(R, g2)a

B = e(g1, g2)b (A,B,S)−−−−−−−−−−−−−→
α = g

a+t · f
2

f←−−−−−−−−−−−−− f
$←Z∗p

β = g
b+s· f
2

θ = g s+r ·t
2 · skd (α,β,θ)−−−−−−−−−−−−−→ If g

µ
1 = U ·Rc

and e(g1,θ) = S ·pkd

and e(R,α) ·e(g1,β) = A ·B ·S f

then return 1, else 0

Figure 3.12: Protocol Proof of interactive FAPIright (Definition 50).

Definition 50 FAPIright = (Set,Pro,Ver) is a NIP defined as follows:

Set(k): It generates the setup set = (G1,G2,GT, p, g1, g2,e,H) where G1,G2 and GT are three groups of
prime order p, g1 ∈G1 and g2 ∈G2, e :G1×G2 →GT is a type 2 bilinear pairing and H : {0,1} →
Z∗

p is a hash function. This algorithm returns (set,R) such that:

(pk,sk) ∈R ⇔ (sk ∈G2)∧ (e(g1,sk) = pk)

Pro(sk,pk): It picks r, s, t ,u, a and b in the uniform distribution on Z∗
p and computes:

R = g r
1

c = H(R||U||0)
µ = u + r · c
A = e(R, g2)a

f = H(R||U||A||B||S)

β = g b+s· f
2

U = g u
1

d = H(R||U||1)

S = e(g1, g2)r ·t+s

B = e(g1, g2)b

α = g a+t · f
2

θ = g s+r ·t
2 · skd

It outputs π = (R,U,µ,S, A,B,α,β,θ).
Ver(pk,π): It computes the values c = H(R||U||0), d = H(R||U||1) and f = H(R||U||A||B||S). If the

following equations hold, then it outputs 1, else 0:

gµ1 = U ·Rc e(R,α) ·e(g1,β) = A ·B ·S f e(g1,θ) = S ·pkd

In the following, we prove that FAPIright is complete, sound, (non-adaptively) valid and zero-
knowledge.

Lemma 22 FAPIright is complete.

Proof: Let (pk,sk) be such that (pk,sk) ∈ R, then pk = g sk. we show that for any π← Pro(sk,pk)
and b ←Ver(pk,π), then b = 1. We set π = (R,U,µ,S, A,B,α,β,θ), we observe that, for c = H(R||U||0),
d = H(R||U||1) and f = H(R||U||A||B||S) :

gµ1 = g u+r ·c
1 = g u

1 · g r ·c
1 = U ·Rc

e(R,α) ·e(g1,β) = e(R, g a+t · f
2) ·e(g1, g b+s· f

2) = e(R, g2)a ·e(R, g2)t · f ·e(g1, g2)b ·e(g1, g2)s· f

= A ·B · (e(g1, g2)r ·t ·e(g1, g2)s) f
= A ·B ·S f

e(g1,θ) = e(g1, g s+r ·t
2 · skd) = e(g1, g2)s+r ·t ·e(g1,sk)d = S ·pkd

We deduce that Ver returns 1, which concludes the proof. �

61

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Lemma 23 FAPIright is (non-adaptively) valid and sound.

Proof: We show that the interactive version of FAPIright is valid before to prove that the non-
interactive version is (non-adaptively) valid. Let k be an integer and pk be such that pk ∈LR . Let
P∗ ∈ POLY(k) be an algorithm and λ be a function such that:

Pr
[
b ← outV

(
Proof〈P∗(in);V(pk)〉) : b = 1

]
= λ(k)

We build a knowledge extractor K(pk). This algorithm runs the oracle P∗(in) and interacts with it
as follows:

1. K receives the commitment (R,U).
2. K picks (c0,d0)

$←Z∗
p , sends it to the oracle and receives (µ0) and (A0,B0,S0).

3. K picks (f0,0)
$←Z∗

p , sends it to the oracle and receives (α0,0,β0,0,θ0,0).

4. K rewinds the oracle to its state before step 3. It picks (f0,1)
$←Z∗

p , sends it to the oracle and
receives (α0,1,β0,1,θ0,1).

5. K rewinds the oracle to its state before step 2. It picks (c1,d1)
$←Z∗

p , sends it to the oracle and
receives (µ1) and (A1,B1,S1).

6. K picks (f1,0)
$←Z∗

p , sends it to the oracle and receives (α1,0,β1,0,θ1,0).

7. K rewinds the oracle to its state before step 6. It picks (f1,1)
$←Z∗

p , sends it to the oracle and
receives (α1,1,β1,1,θ1,1).

K sets the following values:

r =
µ0 −µ1

c0 − c1

s0 =

(
α0,0

α0,1

) r
f0,0− f0,1 ·

(
β0,0

β0,1

) 1
f0,0− f0,1

s1 =

(
α1,0

α1,1

) r
f1,0− f1,1 ·

(
β1,0

β1,1

) 1
f1,0− f1,1

sk =

(
θ0,0 · s1

θ1,1 · s0

) 1
d0−d1

Finally, K returns sk.
Assume that:

gµ0

1 = U ·Rc0 (3.11)

gµ1

1 = U ·Rc1 (3.12)

e(R,α0,0) ·e(g1,β0,0) = A0 ·B0 ·S
f0,0

0 (3.13)

e(R,α0,1) ·e(g1,β0,1) = A0 ·B0 ·S
f0,1

0 (3.14)

e(R,α1,0) ·e(g1,β1,0) = A1 ·B1 ·S
f1,0

1 (3.15)

e(R,α1,1) ·e(g1,β1,1) = A1 ·B1 ·S
f1,1

1 (3.16)

e(g1,θ0,0) = S0 ·pkd0 (3.17)

e(g1,θ0,1) = S0 ·pkd0 (3.18)

e(g1,θ1,0) = S1 ·pkd1 (3.19)

e(g1,θ1,1) = S1 ·pkd1 (3.20)

Using equations (3.11) and (3.12), we deduce:

g r
1 = g

µ0−µ1
c0−c1

1 =

(
U ·Rc0

U ·Rc1

) 1
c0−c1

= R

62

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Using equations (3.13), (3.14), (3.15) and (3.16), we show that e(g1, s0) = S0 and e(g1, s1) = S1:

e(g1, s0) = e

(
g1,

(
α0,0

α0,1

) r
f0,0− f0,1 ·

(
β0,0

β0,1

) 1
f0,0− f0,1

)
= e

(
g1,

(
α0,0

α0,1

) r
f0,0− f0,1

)
·e

(
g1,

(
β0,0

β0,1

) 1
f0,0− f0,1

)

=

(
e

(
g r

1 ,
α0,0

α0,1

)
·e

(
g1,

β0,0

β0,1

)) 1
f0,0− f0,1

=

(
e
(
R,α0,0

) ·e
(
g1,β0,0

)
e
(
R,α0,1

) ·e
(
g1,β0,1

)) 1
f0,0− f0,1

=

(
A0 ·B0 ·S

f0,0

0

A0 ·B0 ·S
f0,1

0

) 1
f0,0− f0,1

= S0

e(g1, s1) = e

(
g1,

(
α1,0

α1,1

) r
f1,0− f1,1 ·

(
β1,0

β1,1

) 1
f1,0− f1,1

)
= e

(
g1,

(
α1,0

α1,1

) r
f1,0− f1,1

)
·e

(
g1,

(
β1,0

β1,1

) 1
f1,0− f1,1

)

=

(
e

(
g r

1 ,
α1,0

α1,1

)
·e

(
g1,

β1,0

β1,1

)) 1
f1,0− f1,1

=

(
e
(
R,α1,0

) ·e
(
g1,β1,0

)
e
(
R,α1,1

) ·e
(
g1,β1,1

)) 1
f1,0− f1,1

=

(
A1 ·B1 ·S

f1,1

1

A1 ·B1 ·S
f1,1

1

) 1
f1,0− f1,1

= S1

Finally, Equations (3.17) and (3.20) implie that:

e(g1,sk) = e

(
g1,

(
θ0,0 · s1

θ1,1 · s0

)) 1
d0−d1

=

(
e(g1,θ0,0) ·e(g1, s1)

e(g1,θ1,1) ·e(g1, s0)

) 1
d0−d1

=

(
S0 ·pkd0 ·S1

S1 ·pkd1 ·S0

) 1
d0−d1

= pk

Thus, the knowledge extractor K returns sk such that (pk,sk) ∈R.
By hypothesis, we know that:

P1 = Pr
[(

gµ0

1 = U ·Rc0
)∧ (

e(R,α0,0) ·e(g1,β0,0) = A0 ·B0 ·S
f0,0

0

)
∧

(
e(g1,θ0,0) = S0 ·pkd0

)]
≥ λ(k)

P2 = Pr
[(

gµ0

1 = U ·Rc0
)∧ (

e(R,α0,1) ·e(g1,β0,1) = A0 ·B0 ·S
f0,1

0

)
∧

(
e(g1,θ0,1) = S0 ·pkd0

)]
≥ λ(k)

P3 = Pr
[(

gµ1

1 = U ·Rc1
)∧ (

e(R,α1,0) ·e(g1,β1,0) = A1 ·B1 ·S
f1,0

1

)
∧

(
e(g1,θ1,0) = S1 ·pkd1

)]
≥ λ(k)

P4 = Pr
[(

gµ1

1 = U ·Rc1
)∧ (

e(R,α1,1) ·e(g1,β1,1) = A1 ·B1 ·S
f1,1

1

)
∧

(
e(g1,θ1,1) = S1 ·pkd1

)]
≥ λ(k)

Moreover, since c0,c1,d0,d1, f0 and f1 are chosen at random in Z∗
p , we have:

P5 = Pr[c0 = c1 ∨d0 = d1 ∨ f0,0 = f1,1 ∨ f1,0 = f1,1]

≤Pr[c0 = c1]+Pr[d0 = d1]+Pr[f0,0 = f0,1]+Pr[f1,0 = f1,1]

≤ 4

(p −1)

which is negligible. We deduce that:

Pr
[

sk ←KP∗(in)(pk) : (pk,sk) ∈R
]
≥ P1 ·P2 ·P3 ·P4 −P5

≥ λ(k)4 − 4

p −1

We conclude that the interactive version of FAPIright is valid. In the non-interactive case, the
challenge c (resp. d and f) comes from a random oracle that takes as input the value (R||U||0)
(reps. (R||U||1) and (R||U||A||B||S)). First note that the adversary cannot know (c,d) (resp. f) be-
fore choosing the commitment (R,U) (resp. (A,B,S)) since the commitment is used as input to the
random oracle. On the other hand, the random oracle chooses the challenges c,d and f as the

63

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Prover P Proxy Px Verifier V
sk1 (rk,pk1,pk2) pk2

r
$←Z∗p ; u

$←Z∗p a,b, s
$←Z∗p

R = g r
1 ; U = g u

1
(R,U)−−−−−−−−−−−−−→ (R,U)−−−−−−−−−−−−−→ c,d

$←Z∗p
z = r + sk ·d

(c,d)←−−−−−−−−−−−−− (c,d)←−−−−−−−−−−−−−
µ = u + r · c

(z,µ)−−−−−−−−−−−−−→ A = e(R, g2)a µ−−−−−−−−−−−−−→
B = e(g1, g2)b

S = e(R,rk) ·e(g1, g2)s (A,B,S)←−−−−−−−−−−−−− f
$←Z∗p

α = g a
2 · rk f f←−−−−−−−−−−−−−

β = g
b+s· f
2

θ = g s
2 · rkz (α,β,θ)←−−−−−−−−−−−−− If g

µ
1 = U ·Rc

and e(g1,θ) = S ·pkd
2

and e(R,α) ·e(g1,β) = A ·B ·S f

then return 1, else 0

Figure 3.13: Interactive version of NURP (Definition 51).

verifier in the interactive proof system. We conclude that if the interactive version of FAPIright is
valid, then the non-interactive one is (non-adaptively) valid. It implies that FAPIright is sound,
which concludes the proof. �

Lemma 24 FAPIright is zero-knowledge.

Proof: We show how to build a polynomial time algorithm Sim such that for any k ∈ N, any
(set,R) ← Set(k) and any (pk,sk) ∈ R, the algorithms Sim(pk) and Pro(sk,pk) follow the same
probability distribution. Sim picks c,d , f ,µ,α,β,θ

$←Z∗
p and R, A

$←G1. Then it computes:

S = e(g1,θ)

pkd U =
gµ1
Rc

B = e(R,α)·e(g1,β)
A·S f

It outputs π = (R,U,c,d , f ,µ, S, A,B,α,β,θ), which is a valid proof because:

gµ1 = U ·Rc e(R,α) ·e(g1,β) = A ·B ·S f e(g1,θ) = S ·pkd

Moreover, since µ,α,β and θ come from uniform distributions on Z∗
p , then outputs of Sim fol-

low the same distribution as the real algorithm Pro. �

Theorem 18 FAPIright is complete, sound, (non-adaptively) valid and zero-knowledge.

Proof: See Lemma 22, 23 and 24. �

The construction of our unidirectional and non-interactive scheme NURP is given in the fol-
lowing definition. Moreover, we give the interactive version of its re-proof algorithm in Figure 3.13.

Definition 51 NURP = (Set,Gen1,Gen2,RGen, Pro1,Pro2,Ver1,Ver2,RPro) is a NIPRP defined as
follows:

Set(k): It generates the setup set = (G1,G2,GT, p, g1, g2,e,H) where G1,G2 and GT are three groups
of prime order p, g1 ∈ G1 and g2 ∈ G2, e : G1 ×G2 → GT is a type 2 bilinear pairing and H :
{0,1}∗ →Z∗

p . This algorithm returns (set,R1,R2), where:

• (pk1,sk1) ∈R1 ⇔ (sk1 ∈Z∗
p)∧ (g sk1

1 = pk1)

64

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

• (pk2,sk2) ∈R2 ⇔ (sk2 ∈G2)∧ (e(g1,sk2) = pk2)

Gen1(set,R1): It picks sk1
$←Z∗

p , sets pk1 = g sk1
1 and pk′1 = g 1/sk1

2 and returns (pk1,sk1,pk′1).

Gen2(set,R2): It picks sk′2
$←Z∗

p , sets sk2 = g
sk′

2
2 and pk2 = e(g1,sk2), and returns (pk2,sk2,sk′2).

RGen(pk1,pk′1,sk2,sk′2): It sets rk = (pk′1)sk′
2 .

Pro1(sk1,pk1): It picks r
$←Z∗

p and u
$←Z∗

p , computes R = g r
1 , U = g u

1 , c = H(R||U||0), d = H(R||U||1),
z = r + sk1 ·d and µ = u + r · c, and outputs π = (R,U, z,µ).

Pro2(sk2,pk2): It picks r, s, t ,u, a and b in the uniform distribution on Z∗
p and computes:

R = g r
1

c = H(R||U||0)
µ = u + r · c
A = e(R, g2)a

f = H(R||U||A||B||S)

β = g b+s· f
2

U = g u
1

d = H(R||U||1)

S = e(g1, g2)r ·t+s

B = e(g1, g2)b

α = g a+t · f
2

θ = g s+r ·t
2 · skd

2

It outputs π = (R,U,µ,S, A,B,α,β,θ).
Ver1(pk1,π1): Parses π1 = (R,U, z,µ), computes c = H(R||U||0) and d = H(R||U||1). If gµ1 = U ·Rc and

g z
1 = R ·pkd

1 then it outputs 1, else 0.
Ver2(pk2,π2): Computes the values c = H(R||U||0), d = H(R||U||1) and f = H(R||U||A||B||S). If the

following equations hold, then it outputs 1, else 0:

gµ1 = U ·Rc e(R,α) ·e(g1,β) = A ·B ·S f e(g1,θ) = S ·pkd

RPro(rk,π1): Parses π1 = (R,U, z,µ), this algorithm picks s, a and b in the uniform distribution on
Z∗

p and computes:

S = e(R,rk) ·e(g1, g2)s

A = e(R, g2)a

B = e(g1, g2)b

f = H(R||U||A||B||S)
α = g a

2 · rk f
β = g b+s· f

2
θ = g s

2 · rkz

It outputs π2 = (R,U,µ,S, A,B,α,β,θ).

In the following, we prove that NURP is unidirectional, complete, sound, (non-adaptively) valid,
zero-knowledge and secret secure.

Lemma 25 NURP is complete.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of NURP = (Set,Gen1,Gen2,
RGen, Pro1,Pro2,Ver1,Ver2,RPro). We remark that I1 is defined as Schnorr+ (Definition 47) and I2

is defined as FAPIright (Definition 50), we deduce that I1 (resp. I2) are complete (Theorem 15 and
Theorem 18). Let k be an integer and sk1, pk1, pk2 and rk be four keys generated as follows:

• (set,R1,R2) ← Set(k)

• (pk1,sk1,pk′1) ←Gen1(set,R1)

• (pk2,sk2,sk′2) ←Gen2(set,R2)

• rk←RGen(pk1,pk′1,sk2,sk′2)

We deduce that pk1 = g sk1
1 , pk2 = e(g1,sk2, sk2 = g

sk′
2

2 and rk = g
sk′

2/sk1

2 . Let the two proofs π1

and π2 be generated by π1 ← Pro1(sk1,pk1) and π2 ← RPro(rk,π1). We show that for any b ←

65

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

Ver2(pk2,π2). We set π = (R,U,µ,S, A,B,α,β,θ), we observe that, for c = H(R||U||0), d = H(R||U||1)
and f = H(R||U||A||B||S):

gµ1 = g u+r ·c
1 = g u

1 · g r ·c
1 = U ·Rc

e(R,α) ·e(g1,β) = e(R, g a
2 · rk f) ·e(g1, g b+s· f

2) = e(R, g a
2) ·e(R,rk) f ·e(g1, g2)b ·e(g1, g s

2) f

= A ·B · (e(R,rk) ·e(g1, g2)s) f = A ·B ·S f

e(g1,θ) = e(g1, g s
2 · rkz) = e(g1, g s

2 · rkr+sk1·d) = e(g1, g s
2) ·e(g1,rkr) ·e(g1,rksk1·d)

=
(
e(g r

1 ,rk) ·e(g1, g2)s) ·e(g1, g
sk′2
sk1

·sk1

2)d =
(
e(R,rk) ·e(g1, g2)s) ·e(g1, g

sk′
2

2)d

= S ·pkd
2

We deduce that b = 1, which concludes the proof. �

Lemma 26 NURP is sound and (non-adaptively) valid.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of NURP = (Set,Gen1,Gen2,
RGen, Pro1,Pro2,Ver1,Ver2,RPro). We remark that I1 is defined as Schnorr+ (Definition 47) and I2

is defined as FAPIright (Definition 50), we deduce that I1 (resp. I2) are sound and (non-adaptively)
valid (Theorem 15 and Theorem 18), which concludes the proof. �

Lemma 27 NURP is zero-knowledge.

Proof: I1 (resp. I2) denotes the delegate (resp. delegator) proof system of NURP = (Set,Gen1,Gen2,
RGen, Pro1,Pro2,Ver1,Ver2,RPro). We remark that I1 is defined as Schnorr+ (Definition 47) and
I2 is defined as FAPIright (Definition 50), we deduce that I1 (resp. I2) are zero-knowledge (Theo-
rem 15 and Theorem 18).

We show how to build a polynomial time algorithm Sim1 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), any re-proof key
rk←RGen(sk1,sk2), the algorithms Sim1(pk1,pk2) and the two algorithms α1 ←Pro1(sk1,pk1) and
α2 ←RPro(rk,α1) follow the same probability distribution. We build Sim1(pk1,pk2) as follows: this
simulator picks z,c,d , f ,µ,α,β, θ

$←Z∗
p and A

$←GT. It computes:

R =
g z

1

pkd
1

S = e(g1,θ)

pkd
2

U =
gµ1
Rc

B = e(R,α)·e(g1,β)
A·S f

It outputs ((R,U, z,µ), (R,U,µ,S, A,B, ,α,β,θ)), which are valid proofs because:

g z
1 = R ·pkd

1
gµ1 = U ·Rc

e(R,α) ·e(g1,β) = A ·B ·S f

e(g1,θ) = S ·pkd

Moreover, since µ,α,β and θ come from uniform distributions, then the outputs of Sim1 follow the
same distribution as the real algorithms.

We show how to build a polynomial time algorithm Sim2 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ←Gen1(set,R1), any (pk2,sk2,sk′2) ←Gen2(set,R2), and any re-proof key
rk ← RGen(sk1,sk2), the algorithms Sim2(rk,pk1,pk2) and Pro1(sk1,pk1) follow the same proba-
bility distribution. Since I1 is zero-knowledge, there exists a simulator Sim such that the outputs
of Pro1(sk1,pk1) follow the same probability distribution as the outputs of Sim(pk1). We build
Sim2(rk,pk1,pk2) as follows: it runs π1 ← Sim(pk1) and returns π1. Clearly, Sim2 follows the same
distribution as the real algorithm Pro.

We show how to build a polynomial time algorithm Sim3 such that for any (set,R1,R2) ←
Set(k), any (pk1,sk1,pk′1) ← Gen1(set,R1), any (pk2,sk2,sk′2) ← Gen2(set,R2), any re-proof key
rk ← RGen(sk1,sk2), any polynomial time algorithm A ∈ POLY(k) and any π1 ← A (sk1,pk1,pk2)

66

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

where π1 = (R,U, z,µ), the algorithms Sim3(sk1,pk1,pk2) and RPro(rk,π1) follow the same proba-
bility distribution. We build Sim3(sk1,pk1,pk2) as follows: this simulator sets c = H(R||U||0) and
d = H(R||U||1), and picks f ,α,β, θ

$←Z∗
p and A

$←GT. It computes:

S = e(g1,θ)

pkd
2

B = e(R,α)·e(g1,β)
A·S f

It outputs π2 = (R,U,c,d ,µ, z,S, A,B, f ,α,β,θ), which is a valid proof because:

gµ1 = U ·Rc e(R,α) ·e(g1,β) = A ·B ·S f e(g1,θ) = S ·pkd

Moreover, since µ,α,β and θ come from uniform distributions, then the outputs of Sim2 follow the
same distribution as the real algorithms RPro. �

Theorem 19 NURP is unidirectional, complete, sound, (non-adaptively) valid, zero-knowledge and
secret secure under the DL assumption.

Proof: NURP is unidirectional by construction. We showed that NBRP is complete (Lemma 25),
sound, (non-adaptively) valid (Lemma 26), and zero-knowledge (Lemma 27). Since the setup and
the key generation algorithms Set,Gen1,Gen2 and RGen are defined as in IURP (Definition 42),
then we can proof that NURP is secret secure as we proove that IURP is secret secure in Theo-
rem 14. �

3.4 Schemes comparison

Table 3.1 compares the properties and the efficiency of the insecure scheme of Blaze et al. [BBS98]
and our four schemes. The first columns give the properties of each scheme, namely unidirec-
tional, non-interactive and pairing free. The last columns give the computation cost for each en-
tities: the delegate P1, the delegator P2, and the respective verifiers V1 and V2. The last column
gives the computation cost for the proxy. We only evaluate the number of exponentiations and
pairing computations. We denote by e (resp. p) the computation time of an exponentiation (resp.
a pairing computation). All our schemes can be used for the applications that we propose in Intro-
duction. However, each of them allows a different compromise between security and efficiency.

Security: Bidirectional schemes require mutual confidence between Alice and Bob. Moreover, if
the proxy and the delegator collude then they can deduce the secret key of the delegate. In
a practical scenario, the delegate could refuse to reveal his secret key to the trusted re-proof
key manager. In unidirectional schemes, the delegator computes the re-proof key with the
public key of the delegate, then the secret key of the delegate is protected.

Efficency: The efficiency is evaluated by two different properties: the number of interactions and
the number of pairing computations. Thus, our two non-interactive schemes are optimal
for the number of interactions (only one interaction), and our two bidirectional schemes
are pairing free.

Scheme Uni. Non-in. P. free P1 P2 V1 V2 Proxy

Blaze et al. [BBS98] no no yes 1e 1e 1e 1e 0
IBRP no no yes 1e 1e 2e 2e 4e
IURP yes no no 1e 1p +3e 2e 1p +1e 2p +5e
NBRP no yes yes 2e 5e 4e 7e 4e
NURP yes yes no 2e 2p +9e 4e 3p +4e 3p +8e

Table 3.1: Comparison of our proxy re-proof schemes.

67

CHAPTER 3. DELEGATION OF AUTHENTICATION USING A PROXY

3.5 Conclusion

In this chapter, we give a formal treatment for proxies re-proof. Particularly, we define bidirec-
tional/unidirectional and interactive/non-interactive schemes. We design four schemes with dif-
ferent properites:

• BIRP, a bidirectional interactive scheme.

• UIRP, the first unidirectional interactive scheme.

• BNRP, the first bidirectional non-interactive scheme.

• UNRP, the first unidirectional non-interactive scheme.

Future works will concern the design of multi-hop proxies re-proof: a scheme is said to be
multi-hop when several different proxies transform the same proof successively. For example, a
first proxy transforms Alice’s proof into Bob’s proof, and a second proxy re-transforms this proof
into a Carol’s proof. Our bidirectional interactive scheme BIRP is multi-hop by construction. How-
ever, designing a multi-hop unidirectional proxy re-proof, or a multi-hop non-interactive proxy
re-proof, seems to be non-trivial, and is an interessant open problem.

Also it should be interesting to investigate the case of proxies re-proof using proofs systems
for other langages, such as some NP-complete langage, or some other well know cryptographic
assumption.

Finally, we let as open problems the design of non-interactive proxy re-proof protocols that are
adaptively valid and in the standard model.

68

Chapter 4

Verifiable Private Polynomial Evaluation

Contents
4.1 Introduction . 70

4.1.1 Functionalities . 70

4.1.2 Security Goals . 70

4.1.3 Applications . 71

4.1.4 Contributions . 72

4.1.5 Related Works . 73

4.2 Cryptanalysis of [GFLL15] and [GND16] . 74

4.2.1 Inherent Limitation of Private Polynomial Evaluation 74

4.2.2 Cryptanalysis of [GFLL15] and [GND16] . 74

4.3 Formal Definitions . 77

4.3.1 Private Polynomial Evaluation . 77

4.3.2 Polynomial Protection . 78

4.3.3 Chosen Function Attack . 79

4.3.4 Unforgeability . 83

4.3.5 Security Against Collusion Attacks . 84

4.4 PolyCommitPed Is IND-CFA Secure . 84

4.5 PIPE: an IND-CFA Secure Verifiable Private Polynomial Evaluation Scheme . . 86

4.5.1 Feldman’s Verifiable Secret Sharing . 86

4.5.2 PIPE Description . 86

4.6 Security Proofs of PIPE . 87

4.6.1 Correctness . 88

4.6.2 IND-CFA Security . 88

4.6.3 Zero-Knowledge . 89

4.6.4 Unforgeability . 90

4.6.5 Security of PIPE . 90

4.7 Comparison of PIPE and PolyCommitPed . 90

4.8 CFA Security for Commitments to Polynomials . 91

4.9 Anonymous Private Polynomial Evaluation . 91

4.10 Conclusion . 92

Delegating the computation of a polynomial to a server in a verifiable way is challenging. An
even more challenging problem is ensuring that this polynomial remains hidden to clients who

69

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

are able to query such a server. In this chapter, we formally define the notion of Private Polyno-
mial Evaluation (PPE). Our main contribution is to design a rigorous security model along with
relations between the different security properties for this primitive. We define polynomial pro-
tection (PP), proof unforgeability (UNF), and indistinguishability against chosen function attack
(IND-CFA), which formalizes the resistance of a private polynomial evaluation scheme against at-
tackers trying to guess which polynomial is used among two polynomials of their choice. As a
second contribution, we give a cryptanalysis of two private polynomial evaluation schemes of the
literature. Finally, we design a private polynomial evaluation scheme called PIPE and we prove
that it is PP, UNF and IND-CFA secure under the decisional Diffie-Hellman assumption in the
random oracle model. This work has been conducted in collaboration with Manik Lal Das, Hardik
Gajera, David Gérault, Matthieu Giraud and Pascal Lafourcade and has been published in the pa-
per “Verifiable Private Polynomial Evaluation" at the ProvSec 2017 conference.

4.1 Introduction

Private Polynomial Evaluation (PPE), introduced by Kate et al. in [KZG10], is a cryptographic prim-
itive where a server evalutes some points of a secret polynomial f for a client. The client does not
know the polynomial, but he must be convinced that the points (x, y) computed by the server are
valid, i.e., f (x) = y . In order to achieve this property, the primitive provides a mechanism that
allows the server to prove the validity of a point, according to a verifiable key generated from the
polynomial. Such a scheme is secure when the polynomial remains secret for the client, and when
the server cannot prove that a point is valid when it is not.

4.1.1 Functionalities

A Private Polynomial Evaluation (PPE) scheme is composed of the four following algorithms:

System initialization: The algorithm Set initializes the setup of the scheme. The algorithm Gen
is run by the company and returns a verification key pk and a server secret key sk from a
chosen polynomial f .

Computation: The algorithm Compute is run by the server. It takes as input a value x chosen by
the client and the secret key sk, and returns a value y together with a proof π that y = f (x).

Verification: The algorithm Verify is run by the client. It decides whether a proof π is valid ac-
cording to the verification key pk.

Figure 4.1 illustrates the interaction between the different entities that use a private polyno-
mial evaluation scheme. The company computes the verification key pk and the server secret key
sk from the function f using the algorithm Gen, then he sends f and sk to the server and pk to the
client. In order to evaluate the point (x, f (x)), the client sends x to the server. The server uses the
algorithm Compute that outputs f (x) together with the proof π. It sends these two values to the
client, who uses the verification algorithm Verify to verify the proof π.

4.1.2 Security Goals

A private polynomial evaluation scheme requires two security properties:

Unforgeability of the proof: The server is not able to convince the client that a point (x, y) is valid
according to the polynomial f if f (x) 6= y .

Polynomial Protection: The client has no information about the polynomial f except the points
evaluated by the server. In their security model [KZG10], Kate et al. consider only the at-
tacks where the secret polynomial is randomly chosen. In this model, the scheme is secure
when the client is not able to guess the secret polynomial with non-negligible probability.

70

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Client

Server

Company

x (f (x),π) (f ,sk)

vk

Figure 4.1: Illustration of a private polynomial evaluation scheme.

However, this definition of polynomial protection is too weak for the application we con-
sider in this chapter. Moreover, the two other schemes of the literature [GFLL15, GND16]
consider applications where the secret polynomial has small coefficients and degree, so the
set of possible secret polynomials is very small. In a realistic scenario, the client knows this
set. Thus, the client has non-negligible probability to find the secret polynomial by picking
randomly a polynomial in this set. In this chapter, we consider a stronger notion of poly-
nomial protection. We consider a scenario where the client tries to distinguish what is the
polynomial used by the server among two polynomials of his choice. The scheme is secure
when the client has no significant advantage comparing to an algorithm that tries to guess
this polynomial at random. This kind of attack is called Indistinguishability against Cho-
sen Function Attack (IND-CFA). Note that in such an attack, we have the following inherent
restriction: the client cannot evaluate the points that are different between the two polyno-
mials. Indeed, if the client evaluates a point that is different between the two polynomials,
then he can easily deduce what is the polynomial used by the server.

4.1.3 Applications

In their papers, Kate et al. [KZG10] and Guo et al. [GFLL15] give several applications of private
polynomial evaluations. We recall them in this section. Moreover, we show that the security model
of Kate et al. does not provide a sufficient security level for some applications. Finally, we give a
new application that requires IND-CFA security.

Verifiable secret sharing. Kate et al. show that private polynomial evaluation schemes can be
used as verifiable secret sharing schemes [KZG10]. In a secret sharing scheme, a dealer shares
a secret into n shares, such that a threshold number l of shares allows the users to recover the
secret. In verifiable secret sharing schemes, the dealer commits the secret such that the users can
check whether a share is valid or not. The polynomial of a private polynomial evaluation scheme
can be viewed as the secret of a verifiable secret sharing scheme, where each share is a point of the
polynomial, and where users can verify that the points are valid according to the secret polynomial
using the verification key. Moreover, for a polynomial of degree l , a user that receives more than l
points is able to recover the secret polynomial using Lagrange’s interpolation.

Zero-knowledge elementary database. In this primitive, introduced by Micali et al. in [MRK03],
a server sends some data to a client together with a proof that this data comes from a given
database such that no information about the other data is leaked. Kate et al. show that private
polynomial evaluation schemes can be used as zero-knowledge elementary database schemes.
All couples (x, y) of index/data in the database are used to build the secret polynomial using La-

71

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

grange’s interpolation, and a trusted party generates the verification key from this polynomial.
Then the database proves that couples (x, y) of index/data it sends are points of the polynomials
according to this verification key.

In practice, the database is not randomly generated, and clients should have some informa-
tion about the database, so this application requires a security model where the polynomial is not
randomly chosen. Hence the model of Kate et al. is not sufficient for zero-knowledge elementary
databases. This application requires the indistinguishability against chosen function attack.

Heals monitoring. In [GFLL15], Guo et al. propose an application where a server receives med-
ical data collected by sensors worn by the clients, and provides the clients with an evaluation of
their health status. More precisely, the company defines a polynomial f which returns meaningful
information, such as potential diseases. Then, it uploads this polynomial to the server, and sells
to the end clients the ability to query that function with their own medical data. The function that
evaluates the health status of the clients is secret, and the company does not want the clients to be
able to recover it.

Note that a scheme that is not secure in the chosen function attack model cannot be used for
this application. As it is mentioned in the previous section, Guo et al. consider that the function
that evaluates the health status is a polynomial with small coefficients and degree, so the set of
possible secret polynomials is very small, which does not fit with the model of Kate et al. where
the polynomial is randomly chosen in a very large set.

Evaluation of secret prediction function. Mathematical models are powerful tools that are used
to make predictions about a system’s behavior. The idea is to collect a large set of data for a period
of time and use it to build a function predicting the evolution of the system in the future. This
topic has many applications, for instance, meteorology or economics. It can be used to predict the
weather or the behavior of stock exchange.

Consider a company that collects and stores a very large set of data, for example about the
state of the soil, such as humidity, acidity, temperature and mineral content. Using it, it computes
some function that predicts the state of the soil for next years. The clients are farmers who want
to anticipate the state of the soil during the sowing periods to determine how much seeds to buy
and when to plant them. The company gives its client access to the prediction function through a
cloud server. A paying client can then interact with the server to evaluate the function on his own
data. For economic reasons, the company does not want that the clients are able to recover the
prediction function. Moreover, the clients do not trust the server: it might be corrupted to produce
incorrect results. Hence, the server should provide a proof that its output is correct with regards to
the secret prediction function.

The private polynomial evaluation primitive solves this problem because it ensures that: (i)
the polynomial f is protected as much as possible, and (ii) the client is able to verify the result
given by the server.

Consider a company using a private polynomial evaluation scheme for prediction functions.
An attacker wants to guess which prediction function is used by the company. Assume this at-
tacker gains access to some data used to build the prediction function, for instance by corrupting
a technician. Thus, the attacker can build several prediction functions by using different mathe-
matical models and the collected data, and try to distinguish which of these functions is used by
the company. Intuitively, in a secure private polynomial evaluation scheme, this task should be as
hard as if the server only returns f (x), and no additional information for verification. Hence, this
application requires indistinguishability against chosen function attack security.

4.1.4 Contributions

• We give a cryptanalysis of two private polynomial evaluation schemes, the first one pre-
sented by Guo et al. [GFLL15] and the second one presented by Gajera et al. [GND16]. Our
attack allows an adversary to recover the secret polynomial in a single query.

72

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

• We provide a formal definition and security framework for private polynomial evaluation
schemes. We define two one-way notions, Weak Polynomial Protection (WPP) and Polyno-
mial Protection (PP), stating that a client limited to l queries cannot recover the polynomial,
where l is the degree of the polynomial. Additionally, we define the IND-CFA security which
formalizes the idea that no adversary can guess which of two polynomials of his choice is
used. In essence, the proof of a correct computation should not reveal any information
about the polynomial. We finally study the relations between these notions.

• We prove that a private polynomial evaluation scheme proposed by Kate et al. [KZG10] is
secure in our model (i.e., it is IND-CFA secure).

• We design PIPE (for Private IND-CFA Polynomial Evaluation), an efficient IND-CFA secure
private polynomial evaluation scheme. This scheme combines the Verifiable Secret Sharing
introduced by Feldman [Fel87] and the ElGamal encryption scheme (definition 25) in order
to achieve verifiability and IND-CFA security. We also formally prove its security under the
DDH assumption in the random oracle model. Finally we compare PIPE with the scheme
of Kate et al. [KZG10].

4.1.5 Related Works

Verifiable Computation (VC) refers to the cryptographic primitives where an untrusted server can
prove the correctness of its output. It was introduced in [GGP10]. The aim of such a primitive
is to allow a client with limited computational power to delegate difficult computations. Primi-
tives where everyone can check the correctness of the computation are said to be publicly verifi-
able [PRV12]. This subject has led to a dense literature [PST13, CRR12, FG12, CKKC13, PHGR13].
In 2012, Canetti et al. [CRR12] proposed formal security models for VC. Fiore and Gennaro [FG12]
propose a scheme for polynomial evaluations and matrix computations. Unlike ours, these works
consider that the polynomial used by the server is public.

To the best of our knowledge, only four papers study how to hide the function used by the
server [GFLL15, GND16, KZG10, NP99].

Kate et al. define a primitive called commitment to polynomials (CTP) [KZG10]. In this primi-
tive, a user commits to a hidden polynomial f and reveals some points (x, y) together with a proof
that f (x) = y . The user can open the commitment a posteriori to reveal the polynomial. CTP
is close to PPE: the verification key in a PPE scheme can be viewed as a commitment in a CTP
scheme, the main difference is that this verification key is computed by a trusted party (the com-
pany) and the points are evaluated by an untrusted party (the server). The authors formalize the
hardness of guessing the polynomial knowing less than l points. In this model, the polynomial is
randomly chosen. Hence they do not consider the case where the adversary tries to distinguish
the committed polynomial between two chosen polynomials, as in our IND-CFA model. More-
over, Kate et al. design two CTP schemes in [KZG10]. The first one is not IND-CFA since the com-
mitment algorithm is deterministic. We prove that the second scheme is IND-CFA secure in this
chapter. Moreover, we show that our scheme PIPE can be used as a CTP scheme, and we compare
it to the scheme of Kate et al.. We show that our scheme solves an open problem described by Kate
et al.: designing a scheme that is secure under a weaker assumption than the t-SDH assumption
(Definition 13).

Independently of Kate et al., Guo et al. [GFLL15] propose a scheme with similar security prop-
erties to delegate the computation of a secret health related function on the users’ health record.
The polynomials are explicitly assumed to have low coefficients and degree, which greatly reduces
their randomness. However, the authors give neither security models nor proof. Later, Gajera et
al. [GND16] show that any user can guess the polynomial using the Lagrange’s interpolation on
several points. They propose a scheme where the degree l is hidden and claim that it does not
suffer from this kind of attack. We show that hiding the degree l is useless and that no scheme can

73

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

be secure when a user queries more than l points to the server. Moreover, we give a cryptanalysis
on these both schemes which requires only one query to the server.

Finally, there has been lots of work done on a similar but slightly different topic, Oblivious
Polynomial Evaluation (OPE), introduced by Naor and Pinkas [NP99]. In OPE, there are two par-
ties. One party A holds a polynomial f and another party B holds an element x. The aim of OPE
is that the party B receives f (x) in such a way that A learns nothing about x and B learns nothing
about f , except f (x). Researchers have studied OPE extensively and shown that it can be used
to solve various cryptographic problems, such as set membership, oblivious keyword search, data
entanglement, set-intersection and more [FIPR05, FNP04, LP02]. Despite the similarities between
OPE and PPE, they are different in nature. In particular, OPE does not consider the verifiability of
f (x), whereas it is a crucial point in PPE. Additionally, in a PPE, the requirement that the server
does not learn anything about x is relaxed. Since OPE does not consider verifying computation,
we feel that it is not fair to compare the performances.

4.2 Cryptanalysis of [GFLL15] and [GND16]

We start by presenting an inherent limitation of PPE schemes, then we explain how to break both
schemes presented by Guo et al. [GFLL15] and by Gajera et al. [GND16].

4.2.1 Inherent Limitation of Private Polynomial Evaluation

In the private polynomial evaluation scheme of Guo et al. [GFLL15], the degree l of the polynomial
is public. Gajera et al. [GND16] use this property to mount the following attack: a client queries l+1
points to guess the polynomial using Lagrange’s interpolation. To fix this weakness, they propose a
scheme where l is secret. However, we show that any client can guess l and f after l+1 interactions
with the server. To do so, the attacker chooses an input x0 and sends it to the server. He receives y0

and computes the polynomial f0 of degree 0 using Lagrange’s interpolation on (x0, y0). Next, the
attacker chooses a second and a different input x1 and asks y1 = f (x1) to the server. He computes
the polynomial f1 of degree 1 using Lagrange’s interpolation on {(x0, y0), (x1, y1)}. By repeating this
process until the interpolation gives the same polynomial fi = fi+1 for two consecutive iterations,
it recovers the degree and the polynomial. Actualy this problem is an inherent limitation of PPE
schemes and was already considered in the security model of Kate et al. [KZG10]. Thus, to pre-
serve the protection of the polynomial, the server must refuse to evaluate more than l points for
each client and we must assume that clients do not collude to collect more than l points. This
limitiation implies that the the degree of the polynomial must be quite high in practice.

4.2.2 Cryptanalysis of [GFLL15] and [GND16]

We show how the client can recover the secret polynomial in a single query in both verifiable pri-
vate polynomial evaluation schemes [GFLL15] and [GND16]. In addition to the protection of f , the
scheme [GFLL15] requires that the client’s data x is encrypted. The server evaluates the function
on the encrypted data, and proves the validity of the result, but it learns nothing about it. More
formally, the client uses an encryption algorithm Enc to compute x ′ = Enc(x) and sends it to the
server which returns y ′. Then, the client computes y = Dec(y ′) such that y = f (x) where f is the
secret polynomial. The encryption scheme is based on the discrete logarithm assumption. The
decryption algorithm works in two steps: first the client computes a value h such that h = g f (x)

where g is a generator of a multiplicative group of large prime order p, next he computes the dis-
crete logarithm of h in base g using Pollard’s lambda method [Pol78]. The authors assume that
the size of f (x) is reasonable: more formally, they define a set of possible inputs X and an integer
M ∈N such that ∀x ∈ X ,0 ≤ f (x) < M. The authors assume that the clients are able to efficiently
execute Pollard’s lambda algorithm on any h = g y where y < M. Actually, for practical reasons,
since h = g f (x) mod p and logg (h) = f (x), we assume that 0 ≤ f (x) < p for any input x of reasonable

74

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

size, i.e., x ¿ p. Hence, the authors of [GFLL15] consider f as a positive polynomial in Z with
sufficiently small coefficients.

It is easy to evaluate a small M′ such that M′ > M by choosing M′ such that Pollard’s lambda
algorithm on g M′

is computable by a powerful server but is too slow for a practical application. For
example, if Pollard’s lambda algorithm takes less than one minute for the server but several hours
for the client’s computer, we can assume that M′ > M, because if M > M′, then the decryption
algorithm is too slow for the client for some x ∈ X , so the scheme is not practical. On the other
hand, any attack that is polynomial in M′ is practical using the powerful server. To sum up, our
attacker has the following tools:

• M′ ∈ N such that ∀x ∈ X , 0 ≤ f (x) < M′ and such that algorithms that require t (M′) opera-
tions (where t is a polynomial) are easily computable.

• A server which returns y = f (x) for any input x. This server can be used at most l times
where l is the degree of the polynomial.

Finally, note that the authors assume that 0 ≤ f (x) for any x and that X ⊂N. We show that any
client can guess the secret polynomial during his first interaction with the server.

We first show some useful properties starting with the factor theorem.

Theorem 20 (Factor theorem) Let f ∈Z[X] be a polynomial. f (x) has a factor (x −α) if and only if
f (α) = 0.

Using this theorem we prove the following two properties:

Property 2 For any polynomial f ∈Z[X] and any integers x and y, there exists P ∈Z such that:

f (x + y) = f (x)+ y ·P

Proof: For any polynomial f ∈ Z[X] and any integer x, the polynomial g (y) = f (x + y)− f (x) has
a root at 0. By the Factor Theorem (Theorem 20) y −0 divides g (y), so y divides f (x + y)− f (x).
Hence, there exists P ∈Z such that f (x + y)− f (x) = y ·P, i.e., f (x + y) = f (x)+ y ·P. �

Note that for any positive integers a and b such that a < b, we have a mod b = a. Then, we
can deduce the following property from Property 2.

Property 3 For any polynomial f ∈ Z[X] and any integers x and y such that 0 ≤ f (x) < y and 0 ≤
f (x + y), we have:

f (x + y) mod y = f (x)

Proof: From the previous property, we have f (x + y) = f (x)+ y ·P, where P is an integer. Assume
P < 0, we define P′ = −P > 0, then f (x + y) = f (x)− y ·P′ ≥ 0. Hence we have f (x) ≥ y ·P′ > f (x) ·P′.

• If f (x) > 0 then we deduce f (x)/ f (x) > P′, so 1 > P′.

• If f (x) = 0 then 0 ≥ y ·P′ > 0.

In both cases, we obtain a contradiction. We conclude that P ≥ 0. Finally, we deduce f (x + y)
mod y = f (x)+ y ·P mod y = f (x). �

Our attack on [GFLL15] works as follows. The attacker chooses a vector of l integers (x1, . . . , xl)
such that, for all 0 < i ≤ l :

i∑
j =1

x j ∈X

For all 1 ≤ i ≤ l , we set:

x ′
i =

i∑
j =1

x j

For the sake of clarity, we first show the attack in the particular case where {1, . . . , l } ⊂ X , then we
show the generalized case for any set X where |X | ≥ l .

75

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Simple Case ({1, . . . , l } ⊂X)

The attacker chooses the vector (x1, x2, . . . , xl) = (1,1, . . . ,1) and sends x = l+M′ to the server that re-
turns the encryption of y = f (x). Pollard’s lambda algorithm complexity [Pol78] on M′ is O(M′1/2).
We consider that l ¿ M′ (for instance l ≈ 10 as in [GFLL15]), thus x < 2 ·M′, the complexity of
the decryption with Pollard’s lambda algorithm is O(f (2M′)1/2) ≈ O(M′l /2). For all 1 ≤ i ≤ l , the
attacker computes:

M′
i = l − i +M′

yi = y mod M′
i

Since for all a ∈X ,M′ > f (a), then we have for all 1 ≤ i ≤ l :

M′
i = l − i +M′ ≥ M′ > f (a)

Using Property 3 and since i ∈X , we deduce that:

yi = f (x) mod M′
i

= f (l +M′) mod M′
i

= f (l − i + i +M′) mod M′
i

= f
(
i +M′

i

)
mod M′

i = f (i)

Hence, the attacker obtains l + 1 points from one single queried point and uses Lagrange’s in-
terpolation on ((1, y1), (2, y2), . . . , (l , yl), (x, y)) to guess f . Then, the attacker can compute f with
reasonable computation time.

General Case

In the following we present the attack for any set X where |X | ≥ l . The attacker chooses a vector
of l integers (x1, . . . , xl) such that, for all 1 ≤ i ≤ l , xi > 0 and:

i∑
j =1

x j ∈X

For all 1 ≤ i ≤ l , we set:

x ′
i =

i∑
j =1

x j

Then the attacker sends the query:

x =

(
l∑

j =1
x j

)
+M′

The attacker receives the encryption of y = f (x).
As in the simple case, the complexity of the decryption with Pollard’s lambda algorithm is

O(f (2M′)1/2) ≈ O(M′l /2).
The attacker computes for all 1 ≤ i ≤ l :

M′
i =

(
l∑

j =i+1
x j

)
+M′

For all 1 ≤ i ≤ l we set yi = y mod M′
i . Since for all a ∈ X ,M′ > f (a), we have for all 1 ≤ i ≤ l

and for all a ∈X :

M′
i =

(
l∑

j =i+1
x j

)
+M′ ≥ M′ > f (a)

76

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Since x ′
i ∈X , we deduce, using Properties 2 and 3:

yi = f (x) mod M′
i

= f

((
l∑

j =1
x j

)
+M′

)
mod M′

i

= f

((
l∑

j =i+1
x j

)
+

(
i∑

j =1
x j

)
+M′

)
mod M′

i

= f

((
l∑

j =i+1
x j

)
+x ′

i +M′
)

mod M′
i

= f
(
x ′

i +M′
i

)
mod M′

i

= f (x ′
i)

It is possible to attack the scheme of Gajera et al. [GND16] in a similar way. Indeed, as in the
scheme in [GFLL15], the client knows a value M such that ∀x ∈ X , f (x) < M. A simple counter-
measure could be to not allow the client to evaluate inputs that are not in X . Unfortunally, this is
not possible in these two schemes since the client encrypts his data x. Hence, the server does not
know whether x ∈X or not.

4.3 Formal Definitions

We first formally define the private polynomial evaluation primitive.

4.3.1 Private Polynomial Evaluation

Definition 52 A Private Polynomial Evaluation (PPE) scheme is a tuple of polynomial time algo-
rithms (Set,Gen,Compute,Verify) defined as follows:

Set(l ,k): It returns a ring F and a public setup set.
Gen(f): It returns a server key sk and a verification key pk according to the polynomial f ∈ F[X].
Compute(pk, x,sk, f): It returns y and a proof π that y = f (x).
Verify(pk, x, y,π): It returns 1 if the proof π is “accepted”, otherwise 0.

Moreover, such a scheme must have the following property: for any positive integer l and any positive
polynomial t , there exists k0 ∈N such that for any integer k ≥ k0 and any (set,F) ← Set(l ,k), we have
|F| ≥ t (k). A PPE is said to be correct when the following equation holds for any l ∈N and k ∈N:

Pr

(set,F) ← Set(l ,k); f

$← F[X]l ;

(pk,sk) ←Gen(f); x
$← F;

(y,π) ←Compute(pk, x,sk, f);
b ←Verify(pk, x, y,π);

: (b = 1)∧ (y = f (x))

 = 1

We revisit the formal security model of PPE schemes for two main reasons: (i) Kate et al. [KZG10]
propose a model where the secret polynomial is randomly chosen. However, they present sev-
eral practical applications where the polynomial is not actually randomly chosen, and were some
information can be infered easily from the context. Their models are clearly not sufficient for
analysing the security of this kind of applications. (ii) The schemes presented by Guo et al. [GFLL15]
and Gajera et al. [GND16] consider polynomials that are not randomly chosen. The authors give
neither security models nor security proofs. We show previously a practical attack on these two
schemes where a client exploits some public information. To avoid such attacks, we need a model
where public information does not give significant advantage to an adversary.

77

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Our goal is to design a model where the public parameters and the server’s proofs of validity
give no advantage to an attacker. Ideally, we would like the attacker to have no more chances to
guessing the polynomial than if it only had access to a server reliably returning polynomial evalu-
ations with no proof of validity. Our security model considers an attacker that tries to determine
which polynomial is used by a PPE among two polynomials of his choice. This model is inspired
by the IND-CPA model used in public key cryptography (Definition 21).

We start be redefining the notion of weak security presented in the literature. We then intro-
duce the notion of chosen function attack and the natural notion of unforgeability.

4.3.2 Polynomial Protection

We introduce the Polynomial Protection (PP) security. A PPE is PP secure if no adversary can out-
put a new point (not computed by the server) of the secret polynomial f with a better probability
than by guessing it. In this model, the polynomial is randomly chosen and the adversary cannot
use the server more than l times, where l is the degree of f . This security model is similar to the
Hiding Model [KZG10] except that the adversary chooses the points to be evaluated. We define
the Weak Polynomial Protection (WPP) as the same model as PP except that the adversary has no
access to the server.

Definition 53 (PP and WPP security) Let Π = (Set,Gen,Compute,Verify) be a PPE, k ∈ N be an
integer and and A be a probabilistic polynomial time adversary. Let the following oracle be:

COPP(·): On input x, this algorithm runs (y,π) ← Compute(pk, x,sk, fb). and increments c ← c +1
and Σ←Σ∪ {(x, y)}. If c = l +1, then it returns ⊥, else it returns (y,π).

For any l ∈N, the l-Polynomial Protection (l -PP) experiment for A againstΠdenoted by Expl -PP
Π,A

(k)

is defined as follows.

Expl -PP
Π,A

(k):

(set,F) ← Set(l ,k)
f

$← F[X]l

Σ←;
c ← 0
(pk,sk) ←Gen(f)
(x∗, y∗) ←A COPP(·)(set,pk,F, l)
If (x∗, y∗) 6∈Σ and f (x∗) = y∗ then return 1
else return 0

We define the l -PP advantage of the adversary A against Π as follows:

Advl -PP
Π,A

(k) = Pr
[

1 ←Expl -PP
Π,A

(k)
]

We define the l -PP advantage against Π as follows:

Advl -PP
Π (k) = max

A ∈POLY(k)

{
Advl -PP

Π,A
(k)

}
Π is said to be l -PP secure when the advantage Advl -PP

Π
(k) negligible. Π is said to be PP secure

when it is t (k)-PP for any plynomial t .
We define the l-Weak Polynomial Protection (l -WPP) experiment as the l -PP experiment except

that A does not have access to the oracle COPP(·). In a similar way, we define the WPP advantage
and security.

The following theorem shows that the PP security implies the WPP security

Theorem 21 For any Π and l , if Π is l -PP secure then Π is l -WPP secure.

78

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Proof: The only difference between thePP experiment andWPP experiment is that the adversary
has no access to the oracle in WPP, so PP security implies the WPP security. �

4.3.3 Chosen Function Attack

We define a model for indistinguishability against chosen function attack. In this model, the ad-
versary chooses two polynomials (f0, f1) and tries to guess the polynomial fb used by the server,
where b ∈ {0,1}. The adversary has access to a server that evaluates and proves the validity of the
point (x, fb(x)) only if f0(x) = f1(x). This is an inherent limitation: if the adversary can evaluate
another point (x, y) such that f0(x) 6= f1(x), then it can compare y with f0(x) and f1(x) and recover
b. In practice, an adversary chooses (f0, f1) such that f0 6= f1, but with l points (xi , yi) such that
f0(xi) = f1(xi). It allows the adversary to maximize its oracle calls in order to increase its chances
of success. We remark that schemes [GFLL15] and [GND16] are not IND-CFA secure: clients know
a value M and the set of inputs X such that ∀x ∈ X , f (x) < M. An attacker may choose two poly-
nomials f0 and f1 such that for a chosen a, f0(a) < M and f1(a) > M. Since X is public, the attacker
returns f0 if and only if a ∈X .

Definition 54 (IND-CFA security) Let Π = (Set,Gen,Compute,Verify) be a PPE, l ∈N and k ∈N be
two integers and A = (A1,A2) be a two-party PPT adversary. Let the following oracle be:

COCFA(·): On input x, this algorithm runs (y,π) ← Compute(pk, x,sk, fb). If f0(x) 6= f1(x), then it
returns ⊥, else it returns (y,π).

The l -Indistinguishability against Chosen Function Attack (l -IND-CFA) experiment for A against
Π is defined as follows.
,

Expl -IND-CFA
Π,A

(k):

b
$← {0,1}∗

(set,F) ← Set(l ,k)
(f0, f1,st) ←A1(set,F, l)
(pk,sk) ←Gen(fb)
b∗ ←A

COCFA(·)
2 (set,pk,F, l ,st)

If f0 6∈ F[X]l or f1 6∈ F[X]l then return 0
else return (b = b∗)

We define the l -IND-CFA advantage of the adversary A against the Π as follows:

Advl -IND-CFA
Π,A

(k) =

∣∣∣∣1

2
−Pr

[
1 ←Expl -IND-CFA

Π,A
(k)

]∣∣∣∣
We define the l -IND-CFA advantage against Π as follows:

Advl -IND-CFA
Π (k) = max

A ∈POLY(k)2

{
Advl -IND-CFA

Π,A
(k)

}
Π is said to be l-IND-CFA secure if this advantage is negligible for any A ∈ POLY(k)2. Π is said to be
IND-CFA secure if it is t (k)-IND-CFA for any polynomial t .

In Theorem 22, we prove that IND-CFA security implies WPP security: if there exists an adver-
sary A against the WPP experiment that is able to decrypt a random polynomial from the pub-
lic values, then we can use it to guess fb in an IND-CFA experiment for any chosen polynomials
(f0, f1). However, surprisingly, it is not true for the PP security (Theorem 23). The reason is that
the oracle of the IND-CFA experiment has restriction, so it cannot be used to simulate the oracle
of the PP experiment in a security reduction.

79

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Theorem 22 If Π is a l -IND-CFA secure PPE, then it is l -WPP secure.

Proof: Let l be an integer and Π be a PPE. Suppose that there exists A ∈ POLY(k) such that
λ(k) = Advl -WPP

Π,A
(k) is non-negligible. We show how to build B = (B1,B2) ∈ POLY(k)2 such that

Advl-IND-CFA
B,Π

(k) is non-negligible, then we conclude the proof by contraposition. Algorithm B

works as follows:

B1(set,F, l): B1 picks f0
$← F[X]l and r

$← F∗, and builds f1 such that f1(x) = f0(x)+ r . Remark that
∀x, f0(x) 6= f1(x). B1 returns (f0, f1,⊥).

B2(set,pk,F, l ,⊥): It runs (x∗, y∗) ← A (set,pk,F, l). If ∃ b∗ ∈ {0,1} such that y∗ = fb∗(x∗) then it

returns b∗, else it returns b∗
$← {0,1}.

We evaluate the probability that B wins the experiment, i.e., b∗ = b. First, we remark that if A

wins its experiment, then b∗ = b with probability 1. On the other hand, if A does not win the
experiment, we consider two different cases:

1. A returns (x∗, y∗) such that f1−b(x∗) = y∗. The probability that A returns such a point is at
most 1/|F| and is negligible. Indeed, since A has no information about f1−b , its best strategy
to guess a point of f1−b is to randomly pick a point in F2. In this case, B wins the experiment
with probability 0.

2. A returns (x∗, y∗) such that f1−b(x∗) 6= y∗. The probability that A returns such a point is at
least 1− (1/|F|). In this case, B wins the experiment with probability 1/2.

We set ε(k) = Pr[f1−b(x∗) = y∗], hence we have ε(k) ≤ 1
|F| , which is negligible. We have:

Pr[b = b∗] = Pr[fb(x∗) = y∗] ·Pr[b = b∗| fb(x∗) = y∗]+Pr[fb(x∗) 6= y∗] ·Pr[b = b∗| fb(x∗) 6= y∗]

= λ(k) ·1+ (1−λ(k)).Pr[b = b∗| fb(x∗) 6= y∗]

= λ(k)+ (1−λ(k)) · (Pr[f1−b(x∗) = y∗] ·Pr[b = b∗| f1−b(x∗) = y∗]

+Pr[f1−b(x∗) 6= y∗] ·Pr[b = b∗| fb(x∗) 6= y∗ and f1−b(x∗) 6= y∗])

= λ(k)+ (1−λ(k)) ·
(
0+ (1−ε(k)) · 1

2

)
= λ(k)+ 1

2
− ε(k)

2
− λ(k)

2
+ λ(k) ·ε(k)

2

=
1

2
+ λ(k)

2
+ ε(k) · (λ(k)−1)

2

We deduce the advantage of B:

Advl-IND-CFA
B,Π (k) =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣
=

∣∣∣∣1

2
− 1

2
+ λ(k)

2
+ ε(k) · (λ(k)−1)

2

∣∣∣∣
≥ λ(k)

2
−ε(k) · 1−λ(k)

2

Since λ(k) is non negligible, then ε(k) · 1−λ(k)
2 is negligible. Finally, the advantage Advl -IND-CFA

B,Π
(k)

is non-negligible, which concludes the proof. �

Theorem 23 Let Π be a l-IND-CFA secure PPE, it does not imply that Π is l -PP.

80

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Proof: Let l be an integer and let Π = (Set,Gen,Compute,Verify) be a PPE that is l-PP and that is
l-IND-CFA secure. Let Π′ = (Set′,Gen′,Compute′,Verify′) be a tuple of polynomial time algorithms
defined as follows:

Set′(l): It returns (set,F) ← Set(l ,k).
Gen′(f): It runs (pk,sk) ←Gen(f), picks α

$← F and returns (pk′,sk′) = ((pk,α),sk).
Compute′(pk′, x,sk′, f): This algorithm runs (y,π) ← Compute(pk, x,sk, f). If x 6= α then sets π′ =

(π,⊥) else π′ = (π, f). It returns (y,π′).
Verify′(pk′, x, y,π′): It returns b ←Verify(pk, x, y,π).

To prove the theorem, we show that (i) Π′ is l-IND-CFA secure and (i i) Π′ is not l-PP secure.

i) We prove it by contraposition. Assume that there exists A ∈ POLY(k)2 such that the advan-
tage λ(k) = Advl -IND-CFA

Π′
,A

(k) is non-negligible. We show how to build B ∈ POLY(k)2 such that

Advl-IND-CFA
Π,B

(k) is non-negligible. The adversary B = (B1,B2) works as follows:

B1(set,F, l): It runs (f0, f1, σ̃) ←A1(set,F, l) and returns (f0, f1, σ̃).

B2(set,pk,F, l , σ̃): It picks α
$← F.

– If f0(α) = f1(α) then B2 picks b∗
$← {0,1} and returns b∗.

– If f0(α) 6= f1(α) then B2 runs b∗ ← A2(set, (pk,α),F, l , σ̃). While A2 is running, B2

forwards the queries of A2 to the oracle COCFA(·). Finally, B2 returns b∗.

We remark that during the IND-CFA experiment, the adversary A chooses its two polynomi-
als (f0, f1) before α is chosen. Since f0 and f1 have at most l common points, the probability
that f0(α) = f1(α) is negligible. We set:

ε(k) = Pr[f0(α) = f1(α)] ≤ l

|F|
We deduce that ε(k) is negligible. When f0(α) 6= f1(α), α is randomly chosen and gives no
additional information to A . A cannot call the oracle COCFA(·) usingα as input since f0(α) 6=
f1(α). Thus α is useless and the CFA experiment is perfectly simulated by B. Below, we
evaluate the probability that B wins the experiment:

Pr
[

1 ←Expl-IND-CFA
Π,B

(k)
]

= Pr[b = b∗]

= Pr[f0(α) = f1(α)] ·Pr[b = b∗| f0(α) = f1(α)]

+Pr[f0(α) 6= f1(α)] ·Pr[b = b∗| f0(α) 6= f1(α)]

= ε(k) · 1

2
+ (1−ε(k)) ·Pr

[
1 ←Expl -IND-CFA

Π′
,A

(k)
]

= ε(k) ·
(

1

2
−Pr

[
1 ←Expl -IND-CFA

Π′
,A

(k)
])

+Pr
[

1 ←Expl -IND-CFA

Π′
,A

(k)
]

We then show that the advantage of B is non-negligible:

Advl -IND-CFA
Π,B

(k) =

∣∣∣∣Pr
[

1 ←Expl -IND-CFA
Π,B

(k)
]
− 1

2

∣∣∣∣
=

∣∣∣∣ε(k) ·
(

1

2
−Pr

[
1 ←Expl -IND-CFA

Π′
,A

(k)
])

+Pr
[

1 ←Expl -IND-CFA

Π′
,A

(k)
]
− 1

2

∣∣∣∣
≥ λ(k)−ε(k) ·λ(k)

It contradicts that Π is l-IND-CFA.

i i) We construct A ∈ POLY(k) such that Advl-PP
Π′

,A
(k) is non-negligible: A receives (set, (pk,α),F, l)

as input and uses α as input for the oracle COCFA(.) that returns (f (α), (π, f)). A chooses
x ∈ F and returns (x, f (x)). Thus, Advl -PP

Π′
,A

(k) = 1.

81

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

We have (i) Π′ is l-IND-CFA secure and (i i) Π′ is not l-PP secure. We conclude that l-IND-CFA
security it does not imply l-PP security. �

We just prove that l-IND-CFA security does not imply l-PP security, however, we would like to
have a simple and sufficient condition under which the IND-CFA security implies the PP security.
For this, we define the proof induced by a PPE which is the proof algorithm used by the algorithm
Compute. We show that if this proof system is zero-knowledge, then the IND-CFA security implies
the PP security.

Definition 55 Let Π = (Set,Gen,Compute,Verify) be a PPE, the non-interactive proof inducted by
Π, denoted PΠ = (SetΠ,ProΠ,VerΠ) is defined as follows.

SetΠ(k): It runs (set,F) ← Set(l ,k), sets set′ = (set,F) and generates the relation R such that:

((f ,sk), (pk, x, y)) ∈R ⇔ (f ∈ F[X]l)∧ ((x, y) ∈ F2)∧ (f (x) = y)∧ ((pk,sk) ←Gen(f))

It returns (set′,R).
ProΠ((f ,sk), (pk, x, y)): It runs (y ′,π) ←Compute(pk, x,sk, f) and returns π.
VerΠ((pk, x, y),π): It runs b ←Verify(pk, x, y,π) and returns it.

We say that Π is Zero-Knowledge (ZK) if PΠ is Zero-Knowledge.

Theorem 24 Let Π be a ZK and l-IND-CFA secure PPE, then Π is l -PP secure.

Proof: Let Π be a PPE that is zero-knowledge. ∀l ∈ N, we assume that there exists A ∈ POLY(k)
such thatλ(k) = Advl-PP

Π,A
(k) is non negligible and that for any A ∈ POLY(k)2, Advl-IND-CFA

Π,A
(k) is neg-

ligible. We show that there exists B ∈ POLY(k)2 such that Advl-IND-CFA
Π,B

(k) is non-negligible. We ob-

tain a contradiction, then we deduce that for any zero-knowledge PPEΠ such that Advl -IND-CFA
Π

(k)

is negligible, then Advl-PP
Π

(k) is negligible.
By hypothesis Π is zero-knowledge, so there exists an algorithm Sim such that the outputs of

proofΠ((set,pk, x, y), (f ,sk)) and Sim((set,pk, x, y)) follow the same probability distribution for any
(set,pk, x, y), (f ,sk). We build the following adversary B = (B1,B2):

B1(set,F, l): It picks (f0, f1)
$← F[X]2

l and returns (f0, f1,⊥).

B2(set,pk,F, l ,⊥): It picks b′ $← {0,1}:

• It runs (x∗, y∗) ← A (set,pk,F) and simulates the oracle COPP(·) as follows: on input
x, B2 computes y = fb′(x) and runs π← Sim((set,pk, x, y)). It then returns (y,π) to A .
Note that B cannot directly use the oracle COCFA(·) to answer the query because f0(x)
may be different than f1(x).

• If fb′(x∗) = y∗, then B2 returns b∗ = b′, else it picks b∗
$← {0,1} and returns b∗.

We evaluate the probability that B wins the experiment, i.e., b∗ = b where b is the challenge of
B:

• if b′ = b, then the PP experiment is perfectly simulated and A returns (x∗, y∗) such that
fb′(x∗) = y∗ with non negligible probability λ(k). Then B wins the experiment with non-
negligible advantage. Remark that in this case, the probability that b∗ = b is the same as in
the proof of Theorem 22:

Pr
[
b∗ = b|b′ = b

]
=
λ(k)

2
+ε(k) · 1−λ(k)

2
+ 1

2

where ε(k) = Pr[f1−b(x∗) = y∗] ≤ 1/|F|.

82

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

• If b′ 6= b, then the probability that A returns (x∗, y∗) such that fb′(x∗) = y∗ is negligible: A

knows at most l points of the polynomial fb′ , then its best strategy to find another point is to
pick (x∗, y∗) randomly in F2. Then B wins the experiment with negligible advantage. More
formally, we have:

Pr
[
b∗ = b|b′ 6= b

]
= Pr[fb(x∗) = y∗] ·Pr[b = b∗|b′ 6= b and fb(x∗) = y∗]

+Pr[fb(x∗) 6= y∗] ·Pr[b = b∗|b′ 6= b and fb(x∗) 6= y∗]

= 0+ (1−ε(k)) · 1

2
=

1

2
− ε(k)

2

Finally, we have:

Pr[b∗ = b] = Pr
[
b′ = b

] ·Pr
[
b∗ = b|b′ = b

]+Pr
[
b′ 6= b

] ·Pr
[
b∗ = b|b′ 6= b

]
=

1

2
·
(
λ(k)

2
+ε(k) · 1−λ(k)

2
+ 1

2

)
+ 1

2

(
1

2
− ε(k)

2

)
=

1

2
·
(
λ(k)

2
+ε(k) · 1−λ(k)

2
+ 1

2
+ 1

2
− ε(k)

2

)
=
λ(k)

4
−ε(k) · λ(k)

4
+ 1

2

Finally, we show that B has a non-negligible advantage:

Advl -IND-CFA
Π,B

(k) =

∣∣∣∣Pr[b∗ = b]− 1

2

∣∣∣∣
=
λ(k)

4
−ε(k) · λ(k)

4

≥ λ(k)

4
− λ(k)

4 · |F|

It contradicts our hypothesis, which concludes the proof. �

In Figure 7.2, we recall all relations between our security properties.

l-IND-CFA l-WPP

andZK l-PP

Figure 4.2: Security relations.

4.3.4 Unforgeability

Finally, we define the unforgeability. A PPE is unforgeable when it is not possible to produce a
valid proof on the point (x, y) when f (x) 6= y . The adversary is a dishonest server that chooses a
polynomial f and that receives a pair of verification/secret key generated by the key generation al-
gorithm from the polynomial f . The adversary returns a point (x, y) and a proof π, and it succeeds
the attack if the proof π is valid and f (x) 6= y .

Definition 56 Let Π be a PPE, l ∈N and k ∈N be two integers and A = (A1,A2) be a two-party PPT
adversary. The Unforgeability (UNF) experiment for A against Π is defined as follows.

83

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Expl-UNF
Π,A

(k):

(set,F) ← Set(l ,k)
(f ,st) ←A1(set,F)
(pk,sk) ←Gen(f)
(x∗, y∗,π∗) ←A2(set,sk,pk,F, f ,st)
If f (x∗) 6= y∗ and Verify(pk, x∗, y∗,π∗) then return 1
else return 0

We define the advantage of the adversary A against the l -UNF experiment by:

Advl-UNF
Π,A

(k) = Pr
[

1 ←Expl-UNF
Π,A

(k)
]

We define the advantage against the l -UNF experiment by:

Advl -UNF
Π (k) = max

A ∈POLY(k)

{
Advl -UNF

Π,A
(k)

}
A scheme Π is l -UNF secure if this advantage is negligible for any A ∈ POLY(k)2. A scheme Π is
unforgeable, or UNF secure, if it is t (k)-UNF secure for any polynomial t .

4.3.5 Security Against Collusion Attacks

Until know, we did not take into account the collusion attacks, however, we show this kind of
attacks are implicitly prevented in our model. The reason is that the clients have no secret infor-
mation, so a dishonest party that colludes with a client learns nothing else than the public values.
There are two kinds of collusion attack scenarios:

A client colludes with the server: If a client colludes with the server, then it can obviously give
him the secret polynomial. This limitation is inherent and cannot be prevented. On the
other hand, all keys known by the clients are known to the server, the server has no advan-
tage in colluding with a client. In particular, the collusion does not allow the server to forge
fake validity proofs for other clients.

Several clients collude together: All clients have the same verification keys. Thus, a client gains
no advantage by colluding with other clients, as long as the total number of known points is
less than l after collusion. Obviously the inherent limitation of PPE still holds: if the collu-
sion of clients learn more than l points, then they can guess the polynomial.

4.4 PolyCommitPed Is IND-CFA Secure

In their paper, Kate et al. introduce two PPE schemes [KZG10]. The first one, called PolyCommitDL,
is not IND-CFA secure since the algorithm that generates the verification key from the polynomial
is deterministic. A client who tries to distiguish what is the polynomial used by the server has
just to compute the verification key for the two chosen polynomials. The second scheme, called
PolyCommitPed, is proven UNF and PP secure. In this section, we recall this scheme, and we show
that it is also IND-CFA secure.

Definition 57 PolyCommitPed = (setup, init,compute,verif) is a PPE scheme such that:

Set(l ,k): It generates two groupsG andGT of prime order p and a symmetric bilinear pairing e : G×
G→ GT. Moreover, it chooses two generators g and h of G and picks α← Z∗

p . It sets F = Z∗
p ,

set = (G,GT, p,e, g ,h, (gα, . . . , gα
l
), (hα, . . . ,hα

l
)) and returns (set,F).

84

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Gen(f): It picks a random polynomial r
$← F[X]l . We denote by ai (resp. ri) the i th coefficient of f

(resp. r):

f (x) =
l∑

i =0
ai · xi

r (x) =
l∑

i =0
ri · xi

It sets sk = r and computes:

C =
l∏

i =0
(gα

i
)ai · (hα

i
)ri

It sets pk = C . Finally, it returns (pk,sk).
Compute(pk, xi ,sk, f): Using pk = C and sk = r , this algorithm computes the two following polyno-

mials:

ψi (x) =
f (x)− f (xi)

x −xi

ψ̂i (x) =
r (x)− r (xi)

x −xi

Let (γ0, . . . ,γl) and (γ̂0, . . . , γ̂l) be two tuples such that:

ψi (x) =
l∑

j =0
γ j · x j and ψ̂i (x) =

l∑
j =0
γ̂ j · x j

This algorithm computes

wi =
l∏

j =0
(gα

j
)γ j · (hα

j
)γ̂ j

It sets π = (xi ,r (xi), wi) and returns (f (xi),π).
Verify(pk, xi , yi ,π): It parses π = (xi ,r (xi), wi) and pk = C . If the following equation holds:

e(C , g) = e

(
wi ,

gα

g xi

)
·e(g f (xi) ·hr (xi), g)

then it outputs 1, else it outputs 0.

We show that PolyCommitPed is l-IND-CFA secure.

Theorem 25 For any l ∈N, PolyCommitPed (is inconditionally) l -IND-CFA secure.

Proof: Let A = (A1,A2) ∈ POLY(k)2 be a two party algorithm. We build an algorithm B ∈ POLY(k)
that perfectly simulates the experiment Expl -IND-CFA

PolyCommitPed,A (k) for any l ∈N, and we show that the
probability that A wins the experiment is 1/2. Our algorithm B(k, l) works as follows:

• B picks randomly b
$← {0,1}.

• B generates two groups G and GT of prime order p and a symmetric bilinear pairing e : G×
G→ GT. Moreover, it chooses two generators g and h of G and picks α← Z∗

p . It sets F = Z∗
p

and set = (G,GT, p,e, g ,h, (gα, . . . , gα
l
), (hα, . . . ,hα

l
)).

• B runs (f0, f1,st) ←A1(set,Zp , l).

• If f0(α) 6= f1(α), then B picks a random element C ∈G. Since G is a cyclic group, there exists
rα ∈ Zp such that C = g fb (α) ·hrα for b ∈ {0,1}. Otherwise, if f0(α) = f1(α), B picks a random
rα ∈Zp and sets C = g f0(α) ·hrα . B sets pk = C .

85

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

• B runs b∗ ←A2(set,pk,Zp , l ,st). To simulate the oracle COCFA(·) on xi to A2, the algorithm
B computes yi = f0(xi). If yi = f1(xi), it picks randomly ri ∈ Zp and sets wi = (C · g−y ·
h−ri (xi))

1
α−xi . Then, it sets π = (xi , y,ri , wi) and returns (y,π) to A2. Else it returns ⊥.

rα denotes the element of Z∗
p that verifies the following equation: C = g f0(α) ·hrα . First remark

that since C is chosen in the uniform distribution on G, then rα comes from the uniform distribu-
tion on Z∗

p . Moreover, we remark that there exists at least one ploynomial r (x) ∈Zp [x] of degree l
such that r (xi) = ri for 1 ≤ i ≤ l and r (α) = rα. Since all ri are randomly generated, we can consider
that r was picked in the uniform distribution on Z∗

p [X]l . Since r (α) = rα, we have C = g fb (α)hr (α)

and for all 1 ≤ i ≤ l :

e(wi , gα−xi) ·e(g y ·hr (xi), g) = e((C · g−y ·h−r (xi))
1

α−xi , gα−xi) ·e(g y ·hr (xi), g)

= e(C · g−y ·h−r (xi), g) ·e(g y ·hr (xi), g)

= e(C · g−y ·h−r (xi) · g y ·hr (xi), g)

= e(C , g)

We deduce that the simulation does not depend on the chosen b and the experiment l-IND-CFA
is perfectly simulated for A . Also, A cannot do better than the random to guess the value of the
chosen b. Hence, for any A ∈ POLY(k)2:

Pr[1 ←Expl-IND-CFA
PolyCommitPed,A (k)] = Pr[b = b∗] =

1

2

Finally, we have that Advl-IND-CFA
PolyCommitPed

(k) = 0 which concludes the proof.
�

4.5 PIPE: an IND-CFA Secure Verifiable Private Polynomial Evalua-
tion Scheme

In this section we present a new construction of PPE. We recall Feldman’s Verifiable Secret Sharing
(VSS) scheme and we show how to build a simple PPE scheme from Feldman’s VSS that is PP
secure but not IND-CFA secure. Then, using the ElGamal encryption scheme, we modificate our
PPE scheme in order to design a second PPE scheme, called PIPE, that is IND-CFA secure. We
analyse its security and compare it with the scheme of Kate et al. [KZG10].

4.5.1 Feldman’s Verifiable Secret Sharing

Feldman’s VSS [Fel87] is based on Shamir’s Secret Sharing [Sha79], where each share is a point (x, y)
of a secret polynomial f of degree l . Knowing more than l shares, one can guess the polynomial f
and can compute the secret s = f (0). In Feldman’s VSS, there is a public value that allows anybody
to check the validity of a share. For any point (x, y), anybody can check whether y = f (x) or not.
This scheme works as follows. Let G be a multiplicative group of prime order p where discrete
logarithm assumption is hard. Let f ∈ Z∗

p [X] be the secret polynomial and ai ∈ F be a coefficient
for all 0 ≤ i ≤ l such that:

f (x) =
l∑

i =0
ai · xi

Let g ∈ G be a generator. For all i ∈ {0, . . . , l }, we set hi = g ai . Values g and {hi }0≤i≤l are public,
however, the coefficients ai are hidden under the discret logarithm hypothesis. We remark that

f (x) = y if and only if g y =
l∏

i =0
hx i

i . Indeed, (f (x) = y) ⇔ (g f (x) = g y) and
l∏

i =0
hx i

i = g f (x):

l∏
i =0

hx i

i =
l∏

i =0
g ai ·x i

= g
∑l

i =0 ai ·x i
= g f (x)

Then, we can use this equation to check whether (x, y) is a valid share.

86

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

4.5.2 PIPE Description

Let f (x) =
l∑

i =0
ai · xi be a polynomial. We show how to use Feldman’s VSS to design a PPE scheme

that is l-PP secure: using the public values g and {hi }0≤i≤l such that ∀i ∈ {0, . . . , l },hi = g ai , any
client can check that the point (x, y) computed by the server is a point of f . However, in practice,
the polynomial f is not randomly chosen in a large set.

In the IND-CFA experiment, the attacker knows that f = f0 or f = f1 for two polynomials (f0, f1)
of its choice. Moreover, since it knows the coefficients {a0,i }0≤i≤l and {a1,i }0≤i≤l of these two poly-
nomials, it can compute the values {g a0,i }0≤i≤l and {g a1,i }0≤i≤l , so it can compare it with the public
set {hi }0≤i≤l .

In order to construct an IND-CFA scheme, we give an ElGamal key pair (pk,sk) to the server.
We set pk = h where h = g sk and we encrypt all the hi . Then for all i ∈ {0, . . . , l }, the clients do not
know hi = g ai but they know the ElGamal ciphertext (ci ,di) such that ci = g ri and di = hri ·hi where
ri is the random coin used during the ElGamal encryption. Since ElGamal is IND-CPA secure, for
all 0 ≤ i ≤ l the attacker cannot distinguish whether the ciphertext (ci ,di) encrypts a coefficient of
f0 or of f1. The attacks on the previous scheme are no longer possible.

Moreover, for any point (x, y) we show how a client can check whether f (x) = y using the values

{(ci ,di)}0≤i≤l . We set r (x) =
l∑

i =0
ri · xi . The client computes:

c =
l∏

i =0
cx i

i =
l∏

i =0
g ri ·x i

= g

l∑
i =0

ri ·x i

= g r (x)

On the other hand, he computes:

d ′ =
l∏

i =0
d x i

i =

(
l∏

i =0
hri ·x i

)
·
(

l∏
i =0

g ai ·x i

)
= h

l∑
i =0

ri ·x i

· g

l∑
i =0

ai ·x i

= hr (x) · g f (x)

Finally, (c,d ′) = (g r (x),hr (x) · g f (x)) is an ElGamal ciphertext of g f (x). Then, to convince the client
that y = f (x), the server proves that (c,d ′) is a ciphertext of g y using a non-interactive zero-knowledge
proof system. On the other words, he proves that logg (h) = logc (d ′/g y) thanks to the proof system
LogEq (Definition 29). This leads us to the following formal definition of our scheme PIPE.

Definition 58 Let PIPE = (Set,Gen,Compute,Verify) be a PPE defined by:

Set(l ,k): Using the security parameter l , it generates G a group of prime order p and a generator
g ∈G. It chooses a hash function H : {0,1}∗ →Z∗

p and it sets F =Z∗
p . It sets set = (G, p, g ,H) and

returns (set,F).

Gen(f): We set f (x) =
l∑

i =0
ai ·xi . This algorithm picks sk $←Z∗

p and computes h = g sk. For all i ∈ �0, l�,

it picks ri
$←Z∗

p and computes ci = g ri and di = pkri · g ai . Finally, it sets pk = ({(ci ,di)}0≤i≤l ,h)
and returns (pk,sk).

Compute(pk, x,sk, f): This algorithm parses pk = ({(ci ,di)}0≤i≤l ,h), then it picks θ
$← Z∗

p and com-
putes:

c =
l∏

i =0
cx i

i

π = (g θ,cθ,θ+H(g θ||cθ) · sk)

Finally, it returns (f (x),π).

87

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

Verify(pk, x, y,π): Using pk = ({(ci ,di)}0≤i≤l ,h) and π = (A,B,ω), this algorithm computes:

c =
l∏

i =0
cx i

i

d =

(
l∏

i =0
d x i

i

)
g y

If gω = A ·hH(A||B) and cω = B ·d H(A||B), then the algorithm returns 1, else it returns 0.

4.6 Security Proofs of PIPE
In this section we prove the security of PIPE.

4.6.1 Correctness

We first show that PIPE is correct.

Lemma 28 PIPE is correct.

Proof: For any l ∈N, any k ∈N, any (set,Z∗
p) ← Set(l ,k) such that set = (G, p, g ,H), any f

$← F[X]l

denoted by f (x) =
l∑

i =0
ai ·xi and any (pk,sk) ←Gen(f), there exists (ci ,di) ∈G2 for all i in �0, l� such

that:

pk = ({(ci ,di)}0≤i≤l ,h)

h = g sk

∀i ∈ �0, l�,ci = g ri

∀i ∈ �0, l�,di = hri · g ai

We set:

c =
l∏

i =0
cx i

i

d =

(
l∏

i =0
d x i

i

)
g y

For any x ∈Z∗
p and (y,π) ←Compute(pk, x,sk, f), there exists A, B, θ and ω such that:

π = (A,B,ω)

A = g θ

B = cθ

ω = θ+H(A||B) · sk
We have:

d =

l∏
i =0

d x i

i

g y =

l∏
i =0

hri ·x i · g ai ·x i

g y =

(
l∏

i =0

(
g ri ·x i

)sk
)
· g f (x)

g y =
csk · g y

g y = csk

�
On the other hand:

gω = g θ+H(A||B)·sk = g θ ·
(
g sk

)H(A||B)
= A ·hH(A||B)

cω = cθ+H(A||B)·sk = cθ ·
(
csk

)H(A||B)
= B ·d H(A||B)

We deduce that Verify(pk, x, y,π) = 1, which conclude the proof.

88

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

4.6.2 IND-CFA Security

In this section we show that PIPE is IND-CFA secure.

Lemma 29 PIPE is IND-CFA secure under the DDH assumption in the random oracle model.

Proof: For any l ∈N, we suppose that there exists A = (A1,A2) ∈ POLY(k)2 such that the advantage
Advl -IND-CFA

PIPE,A (k) is non-negligible and we show that there exists an algorithm B ∈ POLY(k) such

that AdvIND-CPAl

ElGamal,B(k) is non-negligible. B is built as follows:

• B receives ((G, p, g),h) as input and runs (f0, f1,st) ←A1((G, p, g),Z∗
p , l).

• For all i ∈ �0, l�, let (a0,i , a1,i) be the respective i th coefficients of f0 and f1. B runs the oracle
Encpk(LRb(·, ·),∗) on input (g a0,i , g a1,i) and obtains the ElGamal ciphertext (ci ,di) of g ab,i .

• B runs b∗ ←A2((G, p, g), ({(ci ,di)}0≤i≤l ,h),Z∗
p , l ,st). To simulate the oracle COCFA(·) on x to

A2, the algorithm B computes:

c =
l∏

i =0
cx i

i

d =

(
l∏

i =0
d x i

i

)
· 1

g f0(x)

In the real experiment, the proof π is computed as in LogEq (Definition 29). Since this pro-
tocol is ZK, there exists a polynomial time simulator Sim in the random oracle model such
that the outputs of the simulator come from the same distribution that the outputs of the
real proof algorithm. Then B computes y = f0(x). If y = f1(x) it uses Sim((h,c,d)) to com-
pute π and returns (y,π) to A2. Else it returns ⊥.

• Finally, B outputs b∗.

We observe that:

1. The l-IND-CFA experiment is perfectly simulated for A .

2. B wins the IND-CPAl experiment if and only if A wins the l-IND-CFA experiment.

Since Advl -IND-CFA
PIPE,A (k) is non-negligible, then AdvIND-CPAl

ElGamal,B(k) is non-negligible. Since ElGamal
cryptosystem is IND-CPA secure under the DDH assumption, B can be used to break the DDH
assumption, which contradicts our hypothesis and concludes the proof. �

4.6.3 Zero-Knowledge

In this section we show that PIPE is zero-knowledge.

Lemma 30 PIPE is unconditionally zero-knowledge in the random oracle model.

Proof: Let PPIPE the proof inducted by PIPE. We show that for any l ,k ∈ N, (set,F) ← Set(l ,k),
f ∈ F[X]l and (pk,sk) ← Gen(f) such that pk = ({(ci ,di)}0≤i≤l ,h), there exists a simulator denoted
Sim(pk, x, y) that outputs values in the same distribution as the algorithm ProPIPE((f ,sk), (pk, x, y)).

• sim picks (ω,ψ)
$← (Z∗

p)2 and computes:

A =
gω

hψ

B =

(
l∏

i =0
cx i

i

)ω
((

l∏
i =0

d x i

i

)
· 1

g y

)ψ

89

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

• It adds the pair of input/output ((A||B),ψ) to the table of the random oracle H and it returns
(A,B,ω).

Since ω and ψ come from the uniform distribution on Z∗
p , then Sim and ProPIPE induct similar

distributions. �

4.6.4 Unforgeability

In this section we show that PIPE is unforgeable.

Lemma 31 PIPE is unconditionally UNF secure in the random oracle model.

Proof: The proof π is computed as in LogEq (Definition 29). This NIZKP scheme is uncondition-
ally sound, then there exists no polynomial time algorithm that forges a valid proof on false state-
ment with non-negligible probability, i.e., a statement (h,c,d) where logg (h) 6= logc (d). We show

that if there exists A = (A1,A2) ∈ POLY(k)2 such that λ(k) = AdvUNF
PIPE,A (k) is non negligible, then

there exists B ∈ POLY(k) that forges a valid proof of an statment (h,c,d) where logg (h) 6= logc (d). It
contradicts the soundness of LogEq, which concludes the proof. B(G, p, g) works as follows:

• It chooses a hash functipon H, sets set = (G, p, g ,H) and F = Z∗
p , runs (f ,st) ← A1(set,F),

(pk,sk) ←Gen(f) where pk = ({(ci ,di)}0≤i≤l ,h) and (x, y,π) ←A2(set,sk,pk,F, f ,st) where π =
(A,B,ω).

• B computes:

c =
l∏

i =0
cx i

i

d =

(
l∏

i =0
d x i

i

)
· 1

g y

Then it builds the statement pk∗ = (h,c,d). It returns pk∗ together with the proof π.

We observe that since AdvUNF
PIPE,A (k) is non negligible then the probability that f (x) 6= y and 1 ←

Verify(pk, x, y,π) is non-negligible. Moreover:

i) f (x) 6= y ⇒ d =

(
l∏

i =0
d x i

i

)
· 1

g y = csk · g f (x)−y 6= csk. Then logg (h) 6= logc (d).

ii) 1 ←Verify(pk, x, y,π) ⇒ gω = A ·hH(A||B) and cω = B ·d H(A||B). Then π is a valid proof.

Then B returns a valid proof of a false statment with non-negligible probability λ(k). �

4.6.5 Security of PIPE

Finally, we have the following theorem.

Theorem 26 PIPE is is ZK, IND-CFA, PP, WPP and UNF secure under the DDH assumption in the
random oracle model.

Proof: Lemma 29 show that PIPE is IND-CFA, and Lemma 30 show that PIPE is ZK. Using The-
orem 24, we deduce that PIPE is PP secure, and using Theorem 21, we deduce that PIPE is WPP
secure. Finally, Lemma 31 show that PIPE is UNF secure, which concludes the proof. �

90

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

4.7 Comparison of PIPE and PolyCommitPed

We compare the advantages and the disadvantages of PIPE and PolyCommitPed [KZG10]. Table 4.1
resumes our comparison.

The PIPE verification algorithm is in O (k) and the PolyCommitPed one is in constant time.
However, the PolyCommitPed verification algorithm requires several pairing computations which
are significantly costly in terms of computation time whereas PIPE only requires exponentiations
and multiplications in a prime order group. Consequently, PIPE is more efficient than PolyCommitPed
for polynomial of sufficiently small degree.

The main advantage of PolyCommitPed is the constant size of the verification key, whereas the
size of the verification key of PIPE is in O (k). However, the size of the public setup of the scheme
PolyCommitPed is in O (k) whereas the PIPE one is in constant size. Since the client knows both
the verification key and the public setup, PolyCommitPed is advantageous only if each client has
access to several polynomials simultaneously.

PIPE is secure under the DDH assumption whereas PolyCommitPed is secure under the t-SDH
assumption. Note that finding a scheme that is secure under a weaker assumption than t-SDH
was left as an open problem by Kate et al. [KZG10]. Finally, note that PolyCommitPed is secure
in the standard model whereas PIPE is secure in the random oracle model only. A simple way to
obtain a version of PIPE in the standard model is to use the interactive version of LogEq. In return,
it requires an interaction between the client and the server during the evaluation algorithm.

Setup size Key size Verif. cost Pairing Assumption
PIPE O (1) O (k) O (k) Pairing free DDH

PolyCommitPed [KZG10] O (k) O (1) O (1) Pairing based t-SDH

Table 4.1: Comparison of PIPE and PolyCommitPed.

4.8 CFA Security for Commitments to Polynomials

Our scheme can be used as a commitment to polynomials scheme [KZG10] that is IND-CFA se-
cure. This primitive, introduced by Kate et al., is very close to the private polynomial evaluation
primitive. The only difference is that the polynomial is committed by the server, and the server
can reveal a posteriori the polynomial to the clients by opening the commitment. We give an
overview of such a scheme in Figure 4.3. To commit a polynomial f , the committer computes
(pk,sk) ←Gen(f) and returns the commitment pk to the client corresponding to the encryption of
coefficients of the polynomial f . Then, the client sends his data to the committer (x in Figure 4.3)
and receives the results with validity proof ((f (x),π) in Figure 4.3). To open the commitment, the
committer reveals to the client the key sk together with f (open(pk,sk, f) in Figure 4.3), then the
client can open all the ElGamal ciphertexts of pk and check they encrypt g ai , where ai are the
coefficients of f .

Alice Committer
vk = commit(f)

x

(f (x),π)
. . .

open(vk,sk, f)

Figure 4.3: PIPE scheme used as a commitment to polynomials scheme [KZG10].

91

CHAPTER 4. VERIFIABLE PRIVATE POLYNOMIAL EVALUATION

4.9 Anonymous Private Polynomial Evaluation

In practice, the company does not allow anybody to interact freely with the computation server.
The company distributes authentication keys to the clients, and the server uses a protocol to au-
thenticate the client at the beginning of each interaction. It allows the server to verify that a client
does not evaluate more than l points, where l is the degree of the polynomial. However, for a lot
of applications, preserving the privacy of the clients is important. Guo et al. [GFLL15] propose an
anonymous authentication mechanism for their scheme, which is broken and fixed by Gajera et
al. [GND16].

We remark that anonymous authentication for PPE prevents the server from knowing how
much points of the polynomial it gives to each client, leading to security issues. To solve this
problem, we suggest that the server uses l -times anonymous authentication [TFS04]: this primi-
tive allows a client to anonymously authenticate l times. If a client exceeds this limit, the server
can identify him. Using such a scheme, the server can refuse to respond if the client asks more
points than allowed, and the privacy of honest clients is preserved.

4.10 Conclusion

In this chapter, we gave a formal definition for a primitive called private polynomial evaluation.
This primitive allows a company to delegate computations on a secret polynomial for clients in a
verifiable way. In essence, the client sends x and receives y from the server along with a proof of
y = f (x), even though he does not know the polynomial f .

We first gave a critical cryptanalysis of two schemes of the literature. Then we proposed a se-
curity model including a new security property called indistinguishability against chosen function
attack (IND-CFA). We built a private polynomial evaluation scheme called PIPE which is secure
in this model. We showed that the scheme PolyCommitPed proposed in [KZG10] also is IND-CFA-
secure, and we compared it with PIPE.

In the future, we aim at designing a scheme combining the advantages of both PIPE and
PolyCommitPed, i.e., that is pairing free and that uses constant size verification keys.

Another possible extension is to add practical privacy mechanism to protect the data sent by
the clients. In their paper [GFLL15, GND16], Guo et al. and Gajera et al. investigate this problem
and propose schemes where the client data is encrypted such that the server learns nothing about
it. Unfortunately, in this chapter we showed these schemes have critical security weaknesses: we
propose an attack that allows the client to recover the secret polynomial in a single query. We aim
at extending our security model to capt the privacy of the client data and designing a scheme that
will be secure in this model.

92

Chapter 5

Verifiable Ring Signature Revisited

Contents
5.1 Introduction . 94

5.1.1 Functionalities . 94

5.1.2 Security Goals . 94

5.1.3 Contributions . 95

5.1.4 Related Works . 95

5.2 Formal Definitions . 95

5.2.1 Verifiable Ring Signature . 95

5.2.2 Unforgeability . 96

5.2.3 Anonymity . 97

5.2.4 Accountability . 97

5.2.5 Non-seizability . 98

5.3 EVeR: an Efficient Verifiable Ring Signature Scheme 99

5.3.1 Proof of Equality of Two Discrete Logarithms Out of n Elements 99

5.3.2 Our Scheme: EVeR . 100

5.4 Security Proofs of EVeR . 101

5.4.1 Correctness . 101

5.4.2 Unforgeability . 102

5.4.3 Anonymity . 103

5.4.4 Accountability . 107

5.4.5 Non-seizability . 109

5.4.6 Security of EVeR . 112

5.5 Algorithms Complexity . 112

5.6 Conclusion . 113

A Verifiable Ring Signature scheme allows their users to sign messages anonymously within a
group such that a user can prove a posteriori to a verifier whether it is the author of a given signa-
ture or not. In this chapter, we revisit this primitive. We improve the proof capabilities of the users,
we give a complete security model and we design an efficient and secure scheme called EVeR. Fi-
nally, we prove its security under the Decisional Diffie-Hellman assumption in the random oracle
model. This work has been conducted in collaboration with Pascal Lafourcade and has been pub-
lished in the paper "Unlinkable and Strongly Accountable Sanitizable Signatures from Verifiable
Ring Signatures" at the CANS 2017 conference.

93

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

5.1 Introduction

Ring signature is a well-studied cryptographic primitive introduced by Rivest et al. in [RST01],
where some users can sign anonymously within a group of users. Such a scheme is said to be veri-
fiable [LW03] when any user of the group can prove a posteriori he is the signer of a ring signature.
However, existing schemes do not allow the user to prove he is not the signer of the signature. In
this chapter, we fill this gap by given a new definition of verifiable ring signature where the user
can prove whether he is the signer of the signature or not.

In there paper [RST01], Rivest et al. give the following application to ring signatures. A member
of a national agency, such as a high-ranking White House official, sends an official document to
the press on behalf of the agency, but does not want to reveal his identity within the agency. Using
the public keys of all the agency members, he uses a ring signature scheme to authenticate the
document on behalf of the agency. Now we consider that the agency employs inspectors whose
job is to verify the information revealed on behalf of the agency. Using verifiable ring signature,
this inspector can ask to the members who signed the document to reveal his identity and to prove
that he his the signer. Nonetheless, if the real signer does not reveal his identity, the inspector risks
to suspect another member of the agency. Until know, existing verifiable ring signature schemes
did not allow this member to prove his innocence. However, using our stronger definition, this
member can also prove to the inspecter that he is not the signer of the message.

Moreover, we present another application of this primitive in the next chapter: we show how
to build a generic sanitizable signature scheme from any verifiable ring signature scheme.

5.1.1 Functionalities

A verifiable ring signature scheme has the following functionalities:

System initialization: A user generates the public setup. As in ring signatures, each user of the
group generates his own public and private key using the key generation algorithm.

Signature and verification: Any user can anonymously sign a message within a group of users
using his secret key and the signature algorithm. This signature can be verified by anyone
using the set of the public keys of the group users and the verification algorithm.

Proof and judgment: A user can prove that he is (resp. is not) the signer of a given signature using
his secret key and the proof algorithm. This proof can be verified by anyone using the user
public key and the judge algorithm

5.1.2 Security Goals

Verifiable ring signatures require the same security properties as the ring signatures, i.e., the un-
forgeability and the anonymity. Furthermore, it requires two additional security properties to as-
sure the soundness of the proofs produced by the users, namely the accountability and the non-
seizability.

Unforgeability: A verifiable ring signature scheme is said to be unforgeable when a user who is
not in a group cannot forge a valid signature for this group.

Anonymity: A verifiable ring signature scheme is said to be anonymous when nobody can dis-
tinguish who is the signer of a given message within the group of users.

Accountability: A verifiable ring signature scheme is said to be accountable when no user can
sign a message and prove that he is not the signer.

Non-seizability: A verifiable ring signature scheme is said to be non-seizable when no user can
prove that he is the signer of a signature if it is not true, and no user can forge a signature
such that somebody else can prove he is the signer instead of the user.

94

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

5.1.3 Contributions

We extend this definition of verifiable ring signature to allow any user to prove that he is not the
signer of a message. We then give the first formal security model for verifiable ring signatures.
Finally, We design an efficient and secure verifiable ring signature scheme called EVeR under the
DDH assumption in the random oracle model.

5.1.4 Related Works

Ring signatures [RST01] were introduced by Rivest et al. and their security models were defined
in [BKM06]. This primitive allows the users to sign anonymously within a group. Verifiable ring
signatures [LW03] were introduced by Lv and Wang. This primitive is the same as the ring signa-
ture, except that a user can prove whether he is the signer of a ring signature. The author of [LW03]
gives a scheme that is based on the discrete logarithm problem. Two other schemes were pro-
posed by Wand et al. [WMZW11] and by Changlung et al. [CYD06]. The first one is based on the
Nyberg-Rueppel signature scheme and the second one is a generic construction based on multi-
variate public key cryptosystems. In these three schemes, a user can prove that he is the signer
of a signature, however, he has no way to prove that he is not the signer, and it seems to be non-
trivial to add this property to these schemes. Convertible ring signatures [LWH05] are very close to
verifiable ring signatures: they allow the signer of an anonymous (ring) signature to transform it
into a standard signature (i.e., a desanonymized signature). It can be used as a verifiable ring sig-
nature because the desanonymized signature can be viewed as a proof that the user is the signer
of a given message. However, in this chapter we propose a stronger definition of verifiable ring
signature where a user also can prove he is not the signer of a message, and this property cannot
be achieved using convertible signatures.

A Revocable-iff-Linked Ring Signature [ASY06] (also called List Signature [CSST06]) is a kind of
ring signature that has the following property: if a user signs two messages for the same event-id,
then it is possible to link these signatures and the user’s identity is publicly revealed. It can be used
to design a verifiable ring signature scheme in our model: to prove whether he is the signer of a
given message, the user signs a second message using the same event-id. If the two signatures are
linked, then the judge is convinced that the user is the signer, else he is convinced that the user
is not the signer. However, revocable-iff-linked ring signatures require security properties that
are too strong for verifiable ring signatures (linkability and traceability) and it would result in less
efficient schemes.

5.2 Formal Definitions

In this section, we formally define the Verifiable Ring Signatures (VRS) and their security proper-
ties.

5.2.1 Verifiable Ring Signature

A VRS is composed of six algorithms. Init,Gen, Sig andVer are defined as in the usual ring signature
definitions: Gen generates public and private keys, Sig anonymously signs a message according to
a set of public keys and Ver verifies the soundness of a signature. On the other hand, the algorithm
Proof allows a user to prove whether he is the signer of a message or not, and the algorithm Judge
allows anybody to verify the proofs outputted by Proof.

Definition 59 (Verifiable Ring Signature (VRS)) A Verifiable Ring Signature (VRS) scheme is a tu-
ple of six algorithms V = (Init,Gen,Sig,Ver,Proof,Judge) defined by:

Init(k): It returns a setup value set.
Gen(set): It returns a pair of signer public/private keys (pk,sk).
Sig(sk,L,m): It returns a signature σ of the message m according to the set of public keys L.

95

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Ver(L,m,σ): It returns a bit b.
Proof(L,m,σ,pk,sk): It returns a proof π.
Judge(L,m,σ,pk,π): It returns a bit b or the bottom symbol ⊥: if b = 1 (resp. 0) then π proves that

σ was (resp. was not) generated by the signer corresponding to the public key pk. It outputs ⊥
when the proof is not well formed.

Moreover a VRS is said to be correct when the following equations hold for any k ∈N, any number
of users n ∈N, any l ∈ �1,n�, any l ′ ∈ �1,n�\{l }, and any m ∈ {0,1}∗:

Pr

 set← Init(k);∀i ∈ �1,n�, (pki ,ski) ←Gen(set);
σ← Sig(skl , {pki }1≤i≤n ,m);
b ←Ver({pki }1≤i≤n ,m,σ);

: b = 1

 = 1

Pr

set← Init(k);∀i ∈ �1,n�, (pki ,ski) ←Gen(set);
σ← Sig(skl , {pki }1≤i≤n ,m);
π←Proof({pki }1≤i≤n ,m,σ,pkl ,skl);
b ← Judge({pki }1≤i≤n ,m,σ,pkl ,π);

: b = 1

 = 1

Pr

set← Init(k);∀i ∈ �1,n�, (pki ,ski) ←Gen(set);
σ← Sig(skl , {pki }1≤i≤n ,m);
π←Proof({pki }1≤i≤n ,m,σ,pkl ′ ,skl ′);
b ← Judge({pki }1≤i≤n ,m,σ,pkl ′ ,π);

: b = 0

 = 1

5.2.2 Unforgeability

We first adapt the unforgeability property of ring signatures to verifiable ring signatures. Infor-
mally, a VRS is unforgeable when no adversary is able to forge a signature without any secret key
corresponding to one of the public keys in the group of users. In this model, the adversary has ac-
cess to a signature oracle Sig(·, ·, ·) (that outputs signatures of chosen messages for chosen users in
the ring) and a proof oracle Proof(·, ·, ·, ·, ·) (that outputs proofs as the algorithm V.Proof for chosen
signatures and chosen users). The adversary succeeds when it outputs a valid signature that was
not already generated by the signature oracle.

Definition 60 (Unforgeability) Let Π be a VRS, n and k be two integers and A ∈ POLY(k) be an
algorithm. Let the two following oracles be:

Sig(·, ·, ·): On input (L, l ,m), if 1 ≤ l ≤ n then it runs σ← Sig(m,L,skl) and returns σ, else it returns
⊥.

Proof(·, ·, ·, ·, ·): On input (L,m,σ, l), if 1 ≤ l ≤ n then it runs π←Proof(L,m,σ,pkl ,skl) and returns
π, else it returns ⊥.

We define the n-EUF-CMA experiment as follows, where qS is the number of calls to the oracle
Sig(·, ·, ·) and σi is the i th signature outputted by the oracle Sig(·, ·, ·):

Expn-EUF-CMA
Π,A

(k):

set← Init(k)
∀1 ≤ i ≤ n, (pki ,ski) ←Gen(set)
(L∗,σ∗,m∗) ←A Sig(·,·,·),Proof(·,·,·,·,·)({pki }1≤i≤n)
if Ver(L∗,σ∗,m∗) = 1 and L∗ ⊆ {pki }1≤i≤n and ∀ i ∈ �1, qS�, σi 6=σ∗
then return 1, else 0

We define the n-EUF-CMA advantage of A against Π as follows:

Advn-EUF-CMA
Π,A

(k) = Pr
[

1 ←Expn-EUF-CMA
Π,A

(k)
]

96

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

We define the n-EUF-CMA advantage against Π as follows:

Advn-EUF-CMA
Π (k) = max

A ∈POLY(k)

{
Advn-EUF-CMA

Π,A
(k)

}
Π is said to be n-EUF-CMA secure when the n-EUF-CMA advantage against Π is negligible. Π is
said to be unforgeable when it is t (k)-EUF-CMA secure for any polynomial t .

5.2.3 Anonymity

We adapt the anonymity property of ring signatures to verifiable ring signatures. Informally, a
VRS is anonymous when no adversary is able to link a signature to the corresponding user. The
adversary has access to the signature oracle and the proof oracle. During a first phase, it chooses
two honest users in the ring, and in the second phase, it has access to a challenge oracle denoted
LRSOb(d0,d1, ·, ·) that outputs signatures of chosen messages using the secret key of one of the two
chosen users. The adversary succeeds if he guesses which user is chosen by the challenge oracle.
Note that if the adversary uses the proof oracle on the signatures generated by the challenge oracle
then he loses the experiment.

Definition 61 (Anonymity) Let Π be a VRS, n and k be two integers and A = (A1,A2) ∈ POLY(k)2

be a two-party algorithm. Let the following oracle be:

LRSOb(d0,d1, ·, ·): On input (m,L), if {pkd0
,pkd1

} ⊆ L then this oracle runs σ← Sig(m,L,skdb) and
returns σ, else it returns ⊥.

We define the n-ano experiment as follows, where Sig(·, ·, ·) and Proof(·, ·, ·, ·, ·) are defined as in
Def. 60 and where qS (resp. qP) is the number of calls to the oracle Sig(·, ·, ·) (resp. Proof(·, ·, ·, ·, ·)),
(Li ,mi ,σi , li) is the i th query sent to oracle Proof(·, ·, ·, ·, ·) and σ′

j is the j th signature outputted by
the oracle LRSOb(d0,d1, ·, ·):

Expn-ano
Π,A

(k):

set← Init(k)
∀1 ≤ i ≤ n, (pki ,ski) ←Gen(set)

(d0,d1,st) ←A
Sig(·,·,·),Proof(·,·,·,·,·)

1 ({pki }1≤i≤n)

b
$← {0,1}

b∗ ←A
Sig(·,·,·),Proof(·,·,·,·,·),LRSOb(d0,d1,·,·)

2 (st, {pki }1≤i≤n)
if (b = b∗) and (∀ i , j ∈ �1,max(qS , qP)�, (σi 6=σ′

j) or (li 6= d0 and li 6= d1))
then return 1, else 0

We define the n-ano advantage of A against Π as follows:

Advn-ano
Π,A

(k) =

∣∣∣∣1

2
−Pr

[
1 ←Expn-ano

Π,A
(k)

]∣∣∣∣
We define the n-ano advantage against Π as follows:

Advn-ano
Π (k) = max

A ∈POLY(k)2

{
Advn-ano

Π,A
(k)

}
Π is said to be n-ano secure when the n-ano advantage against Π is negligible. Π is said to be
anonymous when it is t (k)-ano secure for any polynomial t .

5.2.4 Accountability

We consider an adversary that has access to a proof oracle and a signature oracle. A VRS is ac-
countable when no adversary is able to forge a signature σ (that was not outputted by the signa-
ture oracle) together with a proof that it is not the signer of σ. Note that the ring used to generate
σ must contain at most one public key that does not come from a honest user, thus the adversary
knows at most one secret key that corresponds to a public key in the ring.

97

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Definition 62 (Accountability) Let Π be a VRS, n and k be two integers and A ∈ POLY(k) be an al-
gorithm. We define the n-acc experiment as follows, where Sig(·, ·, ·) and Proof(·, ·, ·, ·, ·) are defined
as in Def. 60 and where qS is the number of calls to the oracle Sig(·, ·, ·) and σi is the i th signature
outputted by the oracle Sig(·, ·, ·):

Expn-acc
Π,A

(k):

set← Init(k)
∀1 ≤ i ≤ n, (pki ,ski) ←Gen(set)
(L∗,m∗,σ∗,pk∗,π∗) ←A Sig(·,·,·),Proof(·,·,·,·,·)({pki }1≤i≤n)
if (L ⊆ {pki }1≤i≤n ∪ {pk∗}) and (Ver(L∗,σ∗,m∗) = 1) and (Judge(L∗,m∗,σ∗,pk∗,π∗) = 0)

and (∀ i ∈ �1, qS�, σi 6=σ∗)
then return 1, else 0

We define the n-acc advantage of A against Π as follows:

Advn-acc
Π,A

(k) = Pr
[

1 ←Expn-acc
Π,A

(k)
]

We define the n-acc advantage against Π as follows:

Advn-acc
Π (k) = max

A ∈POLY(k)

{
Advn-acc

Π,A
(k)

}
Π is said to be n-acc secure when the n-acc advantage against Π is negligible. Π is said to be ac-
countable when it is t (k)-acc secure for any polynomial t .

5.2.5 Non-seizability

We distinguish two experiments for this property: the first experiment, denoted non-sei-1, consid-
ers an adversary that has access to a proof oracle and a signature oracle. Its goal is to forge a valid
signature with a proof that the signer is another user in the ring.

Definition 63 (n-non-sei-1 security) Let Π be a VRS, n and k be two integers and A ∈ POLY(k) be
an algorithm. We define the n-non-sei-1 experiment as follows, where the oracles Sig(·, ·, ·) are de-
fined as in Def. 60 and Proof(·, ·, ·, ·, ·) and where qS is the number of calls to the oracle Sig(·, ·, ·) and
(Li , li ,mi) (resp. σi) is the i th query to the oracle Sig(·, ·, ·) (resp. signature outputted by this oracle):

Expn-non-sei-1
Π,A

(k):

set← Init(k)
∀1 ≤ i ≤ n, (pki ,ski) ←Gen(set)
(L∗,m∗,σ∗, l∗,π∗) ←A Sig(·,·,·),Proof(·,·,·,·,·)({pki }1≤i≤n)
if (Ver(L∗,σ∗,m∗) = 1) and (Judge(L∗,m∗,σ∗,pkl∗ ,π∗) = 1) and

(∀ i ∈ �1, qS�, σi 6=σ∗)
then return 1, else 0

We define the n-non-sei-1 advantage of A against Π as follows:

Advn-non-sei-1
Π,A

(k) = Pr
[

1 ←Expn-non-sei-1
Π,A

(k)
]

We define the n-non-sei-1 advantage against Π as follows:

Advn-non-sei-1
Π (k) = max

A ∈POLY(k)

{
Advn-non-sei-1

Π,A
(k)

}
Π is said to be n-non-sei-1 secure when the n-non-sei-1 advantage against Π is negligible. Π is said
to be non-sei-1 secure when it is t (k)-non-sei-1 secure for any polynomial t .

98

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

The second experiment, denoted non-sei-2, considers an adversary that has access to a proof
oracle and a signature oracle and that receives the public key of a honest user as input. The goal of
the adversary is to forge a signature σ such that the proof algorithm ran by the honest user returns
a proof that σ was computed by the honest user (i.e., the judge algorithm returns 1) or a non-valid
proof (i.e., the judge algorithm returns ⊥). Moreover, the signature σ must not come from the
signature orale.

Definition 64 (Non-seizability) Let Π be a VRS, n and k be two integers and A ∈ POLY(k) be an
algorithm. We define the n-non-sei-2 experiment as follows, where Sig(·, ·, ·) and Proof(·, ·, ·, ·, ·) are
defined as in Def. 60 and where qS is the number of calls to the oracle Sig(·, ·, ·) and σi is the i th sig-
nature outputted by the oracle Sig(·, ·, ·):

Expn-non-sei-2
Π,A

(k):

set← Init(k)
(pk,sk) ←Gen(set)
(L∗,m∗,σ∗) ←A Sig(·,·,·),Proof(·,·,·,·,·)(pk)
π←Proof(L∗,m∗,σ∗,pk,sk)
if (Ver(L∗,σ∗,m∗) = 1) and (Judge(L∗,m∗,σ∗,pk∗,π∗) 6= 0) and (∀ i ∈ �1, qS�, σi 6=σ∗)
then return 1, else 0

We define the n-non-sei-2 advantage of A against Π as follows:

Advn-non-sei-2
Π,A

(k) = Pr
[

1 ←Expn-non-sei-2
Π,A

(k)
]

We define the n-non-sei-2 advantage against Π as follows:

Advn-non-sei-2
Π (k) = max

A ∈POLY(k)

{
Advn-non-sei-2

Π,A
(k)

}
Π is said to be n-non-sei-2 secure when the n-non-sei-2 advantage against Π is negligible. Π is said
to be non-sei-2 secure when it is t (k)-non-sei-2 secure for any polynomial t . Π is non-seizable when
it is both non-sei-1 and non-sei-2 secure.

5.3 EVeR: an Efficient Verifiable Ring Signature Scheme

We present our verifiable ring signature scheme called EVeR (for Efficient VErifiable Ring signa-
ture). It works as follows: the signer produces an anonymous commitment from his secret key
and the message (i.e., a commitment that leaks no information about the user public key), then he
proves that this commitment was produced from a secret key corresponding to one of the public
keys of the group members using a zero-knowledge proof system. Note that the same method-
ology was used to design several ring signature schemes of the literature [ASY06, CL06, HKS10,
CSST06]. Moreover, to prove that he is (resp. he is not) the signer of a message, the user proves
that the commitment was (resp. was not) produced from the secret corresponding to his public
key using a zero-knowledge proof system. Our scheme is based on the DDH assumption and uses
a non-interactive zero-knowledge proof of equality of two discrete logarithms out of n elements.
In this section, we first show how to build such a proof system, then we give our scheme EVeR.

5.3.1 Proof of Equality of Two Discrete Logarithms Out of n Elements

Let G be a group of prime order p, g ∈ G be a generator and n be an integer, and let the binary
relation Rn be such that for any statement pk∗ = {(hi , yi , zi)}1≤i≤n :

(pk∗,sk) ∈Rn ⇔ (∀i ∈ �1,n�, (hi , yi , zi) ∈G3)∧ (∃i ∈ �1,n�, (g sk = yi)∧ (hsk
i = zi))

99

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Firstly, we remark that R1 is the same relation as in the proof system LogEq (Definition 29). To
transform this proof system into a generic one for any relation Rn , we use the Cramer-Damgård-
Schoenmakers transformation (Definition 32). The final step is to transform it into a non-interac-
tive proof system. To do that, we use the Fiat-Shamir transformation (Definition 31). We obtain
the following proof system.

Definition 65 (LogEqn non-interactive proof system) Let n be an integer. The LogEqn non-inter-
active proof system LogEqn = (L.Setn ,L.Pron ,L.Vern) is defined as follows:

L.Setn(k): It generates a prime order group setup (G, p, g), a hash function H : {0,1}∗ → Z∗
p and

sets set = (G, p, g ,H), then it generates the binary relation Rn such that for any statement
pk∗ = {(hi , yi , zi)}1≤i≤n :

(pk∗,sk) ∈Rn ⇔ (∀i ∈ �1,n�, (hi , yi , zi) ∈G3)∧ (∃i ∈ �1,n�, (g sk = yi)∧ (hsk
i = zi))

It returns (set,Rn).
L.Pron(sk,pk∗). It parses pk∗ = {(hi , yi , zi)}1≤i≤n . We denote by j the integer that verifies sk = logg (y j)

= logh j
(z j). This algorithm picks r j

$← Z∗
p , and computes R j = g r j and S j = h

r j

j . For all

i ∈ �1,n�\{ j }, it picks ci
$←Z∗

p and γi
$←Z∗

p , and computes:

Ri =
gγi

yci

i

Si =
hγi

i

zci

i

It sets R = (Ri)1≤i≤n and computes c = H(R||pk∗). It then computes:

c j =
c

n∏
i =1;i 6= j

ci

It computes γ j = r j + c j · sk and outputs π = {(Ri ,Si ,ci ,γi)}1≤i≤n .
L.Vern(pk∗,π). It parses pk∗ = {(hi , yi , zi)}1≤i≤n and π = {(Ri ,Si ,ci ,γi)}1≤i≤n . It sets R = (Ri)1≤i≤n . If:

H(R||pk∗) 6=
n∏

i =1;i 6= j
ci

then it returns 0. Else if there exists i ∈ �1,n� such that gγi

i 6= Ri · yci

i or hγi

i 6= Si · zci

i then it
returns 0, else it returns 1.

Theorem 27 The non-interactive proof system LogEqn is a proof of knowledge, moreover it is com-
plete, sound, and zero-knowledge in the random oracle model.

Proof: LogEq is a sigma protocol, moreover, it is complete, sound, valid and honest verifier zero-
knowledge (Theorem 7), so the n-Cramer-Damgård-Schoenmakers Transformation of LogEq is
an interactive proof system that is complete, sound, valid and honest-verifier zero-knowledge,
and it is a sigma protocol (Theorem 9). We deduce that its Fiat-Shamir transformation is a non-
interactive proof system that is complete, sound, valid and zero-knowledge (Theorem 8), which
concludes the proof. �

5.3.2 Our Scheme: EVeR

Using LogEqn , we build our verifiable ring signature scheme called EVeR. Each user Ui has an
ElGamal pair of public/secret keys (pki ,ski). To sign a message m, a user U j hashes it in h and
computes z = hsk j , then it proves that logh(z) = logg (pk) for one public key pk out of the n public
keys of the group {pki }1≤i≤n using LogEqn . To prove that it is (resp. it is not) the signer of some
signature, the user Ui proves that logh(z) = logg (pki) (resp. logh(z) 6= logg (pki)) using LogEq1.

100

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Definition 66 (Efficient VRS (EVeR)) Let LogEqn = (L.Setn ,L.Pron ,L.Vern) be the proof defined in
Definition 65 for any n ∈N. EVeR = (Init,Gen,Sig, Ver, Proof,Judge) is a VRS defined by:

Init(k): It generates a prime order group setup (G, p, g) and a hash function H : {0,1}∗ →G. It returns
the setup set = (G, p, g ,H).

Gen(set): It picks sk $←Z∗
p , computes pk = g sk and returns (pk,sk).

Sig(sk,L,m): This algorithm picks r
$←Z∗

p and computes h = H(m||r ||L). Then it computes z = hsk,
runs P ← L.Pro|L|(sk, {(h,pkl , z)}pkl∈L) and returns σ = (r, z,P).

Ver(L,m,σ): This algorithm parses σ = (r, z,P) and computes h = H(m||r ||L). Then this algorithm
runs b ← L.Ver|L|({(h,pkl , z)}pkl∈L,P) and returns b.

Proof(L,m,σ,pk,sk): It parses σ = (r, z,P) and computes h = H(m||r ||L). Then it computes z̄ = hsk,
runs P̄ ← L.Pro1(sk, {(h,pk, z̄)}) and returns π = (z̄, P̄).

Judge(L,m,σ,pk,π): It parses σ = (r, z,P) and π = (z̄, P̄). Then it computes h = H(m||r ||L) and runs
b ← L.Ver1({(h,pk, z̄)}, P̄). If b 6= 1 then it returns ⊥, else, if z = z̄ then it returns 1, else it returns
0.

5.4 Security Proofs of EVeR

In this section, we show that EVeR is secure in our model by proving that it is correct, unforge-
able, anonymous, accountable and non-seizable. In the following, we informally show why EVeR
achieves these properties.

Unforgeability: The scheme is unforgeable since for any pk ∈ L, nobody can prove that logg (pk) =
logh(z) without the knowledge of sk = logg (pk).

Anonymity: Break the anonymity of such a signature is equivalent to break the DDH assumption.
Indeed, to link a signature z = hsk with the corresponding public key of Alice pk = g sk, an
attacker must solve the DDH problem on the instance (pk,h, z). Moreover, note that since
the value r randomizes the signature, it is not possible to link two signatures of the same
message produced by Alice.

Accountability: In order to break the accountability, an adversary must forge a valid signature
(i.e., must prove that there exists pkl in the group L such that logg (pkl) 6= logh(z)) and prove
that he is not the signer (i.e., logg (pk) 6= logh(z) where pk is the public key chosen by the ad-
versary). However, since the adversary does not know the secret keys of the other members
of the group, he would have to break the DL assumption to win the experiment, which is
assumed to be difficult.

Non-seizable: (non-sei-1) no adversary is able to forge a proof that he is the signer of a signature
produced by another user since it is equivalent to prove a false statement using a sound
proof system. (non-sei-2) the proof algorithm ran by a honest user with the public key pk
returns a proof that this user is the signer only if logg (pk) = logh(z). Since no adversary is
able to compute z such that logg (pk) = logh(z) without the corresponding secret key, no
adversary is able to break the non-seizability of EvER under the DL assumption.

5.4.1 Correctness

In this section we show the correctness of EVeR.

Lemma 32 EVeR is correct.

Proof: Let k ∈N, n ∈N, l ∈ �1,n�, l ′ ∈ �1,n�\{l }, and m ∈ {0,1}∗ be. For any set generated by Init(k),
(pki ,ski) generated by Gen(set) for all i in �1,n�, any σ generated by Sig(skl , {pki }1≤i≤n ,m), any π
generated by the algorithm Proof({pki }1≤i≤n ,m,σ,pkl ,skl) and any π′ generated by the algorithm
Proof({pki }1≤i≤n ,m,σ,pkl ′ ,skl ′), We show the three following properties.

101

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

1. We parse σ = (r, z,P). Using h = H(m||r ||L), we have z = hskl and P was generated by the algo-
rithm L.Pron(skl , {(h,pki , z)}1≤i≤n). Since the proof LogEqn is complete, then the algorithm
L.Vern({(h,pki , z)}1≤i≤n ,P) always returns 1, which implies that Ver({pki }1≤i≤n ,m,σ) returns
1 with probability 1.

2. We parse σ = (r, z,P) and π = (z̄, P̄). Using h = H(m||r ||L), we have z = hskl and P was gen-
erated by L.Pron(sk, {(h,pki , z)}1≤i≤n). On the other hand, z̄ = hskl and P̄ was generated
by the algorithm L.Pron(skl , {(h,pkl , z̄)}). We note that z = z̄. Since Log Eqn is complete,
then the algorithm L.Vern({(h,pkl , z)}, P̄) always returns 1, which implies that the algorithm
Judge({pki }1≤i≤n ,m,σ,pkl ,π) returns 1 with probability 1.

3. We parse σ = (r, z,P) and π′ = (z̄, P̄). Using h = H(m||r ||L), we have z = hskl and P was gen-
erated by L.Pron(sk, {(h,pki , z)}1≤i≤n). On the other hand, z̄ = hskl ′ and P̄ was generated
by the algorithm L.Pron(skl ′ , {(h,pkl ′ , z̄)}). We note that z 6= z̄. Since Log Eqn is complete,
then the algorithm L.Vern({(h,pkl ′ , z)}, P̄) always returns 1, which implies that the algorithm
Judge({pki }1≤i≤n ,m,σ,pkl ,π) returns 0 with probability 1.

These three properties implies that EVeR is correct. �

5.4.2 Unforgeability

In this section we show that EVeR is unforgeable.

Lemma 33 EVeR is unforgeable under the DL assumption in the random oracle model.

Proof: We recall that since for any n ∈ N, LogEqn is valid, then for any pk∗ ∈ LRn and any al-
gorithm A (pk∗), there exists a knowledge extractor K such that the probability that KA (pk∗)(k)
outputs sk such that (pk∗,sk) ∈ Rn given access to the oracle A (pk∗) is equivalent to the proba-
bility that A (pk∗) outputs a proof π such that L.Vern(pk∗,π) outputs 1. Moreover, since LogEqn is
zero-knowledge there exists a polynomial time algorithm Simn (called the simulator) such that the
outputs of L.Pron(sk,pk∗) and the outputs of Simn(pk∗) follow the same probability distribution.

Assume that there exists an algorithm A ∈ POLY(k) such that λ(k) = Advn-EUF-CMA
EVeR,A (k) is non-

negligible. We show how to build an algorithm B ∈ POLY(k) that solves the DL problem in a prime
order group (G, p, g) with non-negligible probability.

Algorithm B(y): For all i ∈ �1,n�, it picks xi
$←Z∗

p and sets pki = y xi . B runs x ′ ←KA ′({pki }1≤i≤n)(k)
where A ′ is the following algorithm:

Algorithm A ′({pki }1≤i≤n): It runs (L∗,σ∗,m∗) ← A ({pki }1≤i≤n). It simulates the oracles to
A as follows:

Random oracle H(.): On the i th input Mi , if there exists j ∈N such that j < i and M j =

Mi , then it sets u j = ui . Else it picks ui
$←Z∗

p . Finally, it returns g ui .

Oracle Sig(·, ·, ·): On the i th input (Li , li ,mi), it picks ri
$← Z∗

p . Using the oracle H(.), it
computes hi = H(mi ||ri ||Li), then there exists j such that mi ||ri ||Li = M j . It com-

putes zi = pku j

li
and it runs Pi ← Sim|Li |({(hi ,pkl , zi)}pkl∈Li

). It returns (ri , zi ,Pi) to
A .

Oracle Proof(·, ·, ·, ·, ·): On the i th input (L′
i ,m′

i ,σ′
i , l ′i), it parsesσ′

i = (r ′
i , z ′

i ,P′
i). Using the

oracle H(.), it computes h′
i = H(m′

i ||r ′
i ||L′

i), then there exists j such that m′
i ||r ′

i ||L′
i =

M j It computes z̄i = pku j

l ′i
and it runs P̄i ← Sim1({(h′

i ,pkl ′i
, z̄i)}). It returns (z̄i , P̄i) to

A .

Finally, A ′ parses σ∗ = (r∗, z∗,P∗) and returns P∗.

If there exists i ∈ �1,n� such that pki = g
x′
xi , then B returns x = x ′

xi
, else it returns ⊥.

102

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Analysis: First note that the experiment n-EUF-CMA is perfectly simulated for A . Assume that it
wins its experiment, then it returns the tuple (L∗,σ∗,m∗) whereσ∗ = (r∗, z∗,P∗) and h∗ = H(m∗||r∗||L∗)
such that:

L.Ver|L∗|({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1 (5.1)

L∗ ⊂ {pki }1≤i≤n (5.2)

∀ i ∈ �1, qS�,σi 6=σ∗ (5.3)

where qS is the number of queries to the oracle Sig(·, ·, ·). Moreover, equation (5.3) implies that
∀ i ∈ �1, qS�, Pi 6= P∗, then P∗ was not generated by the simulator Sim|L∗|. We deduce the following
equation from (5.1):

L.Ver|L∗|({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

Thus A returns a valid proof with non negligible probability λ(k) at least:

Pr
[
L.Ver1({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

]≥Pr
[

1 ←Expn-EUF-CMA
EVeR,A (k)

]
≥ λ(k)

Since LogEqn is valid and K is an extractor for LogEqn , there exists a polynomial t and a negligible
function ε′ such that:

λ′(k) = Pr
[
∃ pk ∈ L∗, x ′ = logg (pk) = logh∗(z∗)

]
= Pr

[
({(h∗,pkl , z∗)}pkl∈L∗ , x ′) ∈R|L∗|

]
≥ t

(
Pr

[
L.Ver1({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

])−ε′(k)

≥ t (λ(k))−ε′(k)

Note that λ′(k) is non-negligible because λ(k) is non-negligible.
Assume that A ′ returns a valid proof, since for all i ∈ �1,n�, pki = y xi , and since L∗ ⊂ {pki }1≤i≤n ,

then there exists j ∈ �1,n� such that pk j = g x ′
, which implies that discrete logarithm of y is x ′/x j .

We deduce that B returns the discrete logarithm of y with probability at lest λ′(k). This function
is non-negligible, which concludes the proof. �

5.4.3 Anonymity

In this section we show that EVeR is anonymous.

Lemma 34 EVeR is anonymous under the DDH assumption in the random oracle model.

Proof: Since LogEqn is zero-knowledge, then there exists a polynomial time algorithm Simn

(called the simulator) such that the outputs of L.Pron(sk,pk∗) and the outputs of Simn(pk∗) follow
the same probability distribution. Let the n-anoψ experiment be the same experiment as n-ano
except that the oracle LRSOb is called at most ψ times. We prove the two following claims:

Claim 1 If there exists A ∈ POLY(k)2 such that Advn-ano1

EVeR,A (k) is non-negligible, then there exists
B ∈ POLY(k) that breaks the DDH problem with non-negligible probability. Note that it im-
plies that Advn-ano1

EVeR (k) is negligible under the DDH assumption.

Claim 2 Letψ≥ 1 be an integer, assume that Advn-anoψ
EVeR (k) is negligible. If there exists A ∈ POLY(k)2

such that Advn-anoψ+1

EVeR,A (k) is non-negligible, then there exists B ∈ POLY(k) that breaks the DDH

problem with non-negligible probability. Note that it implies that Advn-anoψ+1

EVeR (k) is negligi-
ble under the DDH assumption.

By induction, this two claims imply that Advn-anoψ
EVeR (k) is negligible for any n and any ψ≥ 1 inN.

103

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Proof of Claim 1: Firstly, we show how to build the algorithm B(X,Y,Z) in the group (G, p, g).
This algorithm picks d

$←�1,n�. For all i ∈ �1,n�:

• If i = d then it sets pki = X

• Else, it runs (pki ,ski) ←Gen(set) where set = (G, p, g ,H).

B runs (d0,d1) ←A1({pki }1≤i≤n). During the experiment, it simulates the oracle for A1 as follows:

Random oracle H(.): On the i th input Mi , if there exists j ∈N such that j < i and M j = Mi , then it

sets u j = ui . Else it picks ui
$←Z∗

p . Finally, it returns g ui .

Oracle Sig(·, ·, ·): On the i th input (Li , li ,mi), it picks ri
$← Z∗

p and it computes hi = H(mi ||ri ||Li)
using the oracle H(.). Then there exists j ∈N such that mi ||ri ||Li = M j .

• If li = d then it computes zi = Xu j and it runs Pi ← Sim|Li |({(hi ,pkl , zi)}pkl∈Li
). It returns

σi = (ri , zi ,Pi) to A1.

• Else it runs and returns σi ← Sig(mi ,Li ,skli)

Oracle Proof(·, ·, ·, ·, ·): On the i th input (L′
i ,m′

i ,σ′
i , l ′i), it parses σ′

i = (r ′
i , z ′

i ,P′
i). It computes h′

i =
H(m′

i ||r ′
i ||L′

i) using the oracle H(.), then there exists j ∈ N such that m′
i ||r ′

i ||L′
i = M j It com-

putes z̄i = pku j

l ′i
and it runs P̄i ← Sim1({(h′

i ,pkl ′i
, z̄i)}). It returns (z̄i , P̄i) to A1.

B runs b∗ ←A2({pki }1≤i≤n). During the experiment, B simulates the oracle Sig(·, ·, ·) as in the
first phase. It simlulates the three other oracles as follows:

Oracle LRSOb(d0,d1, ·, ·): On input (m′′,L′′), it picks r ′′ $← Z∗
p . If there exists i ∈ N such that ri =

r ′′ then B aborts the experiment and returns b′∗
$← {0,1}, else it runs the simulator P′′ ←

Sim|L′′|({(Y,pkl ,Z)}pkl∈L′′) and returns (r ′′,Z,P′′) to A2.

Oracle Proof(·, ·, ·, ·, ·): On the i th input (L′
i ,m′

i ,σ′
i , l ′i), if LRSOb has been already called andσ′

i =σ′′

and (l ′i = d0 or l ′i = d1), then it returns ⊥ to A2. Else, it process as in first phase.

Random oracle H(.): On the i th input Mi , if LRSOb have been already called and Mi = (m′′||r ′′||L′′),
then it returns Y to A2. Else, it process as in first phase.

If d0 6= d and d1 6= d then B returns b′∗
$← {0,1}, else, let b′ be the bit that verifies db′ = d . If b′ = b∗

then B returns b′∗ = 1, else b′∗ = 0.

Analysis: Let qS be the number of queries asked to Sig(·, ·, ·) and let E be the event “B picks b′∗ at
random". We have:

Pr[E] = Pr
[
(∃i ∈ �1, qS�,ri = r ′′)∨ (d0 6= d ∧d1 6= d)

]
≤Pr

[∃i ∈ �1, qS�,ri = r ′′]+Pr [d0 6= d ∧d1 6= d]

≤
qS∑

i =1
Pr

[
ri = r ′′]+ (1−Pr [d0 = d ∨d1 = d])

≤ qS

|G| +1−Pr [d0 = d]−Pr [d1 = d]

≤ qS

|G| +1−Pr [d0 = d]

≤ qS

|G| +1− 1

n

≤ qS

p
+ n −1

n

104

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

We deduce that:

Pr[¬E] ≥ 1−
(

qS

p
+ n −1

n

)
≥ 1

n
− qS

p

Let α and β be two elements of Z∗
p such that X = gα and Y = gβ. Let b be a bit such that b = 1 ⇔ Z =

gα·β. If B picks b′∗ at random, then it wins the experiment with probability 1/2:

Pr[b′
∗ = b|E] =

1

2

If B does not pick b′∗ at random and Z = gα·β the experiment is perfectly simulated for A , then
B wins its experiment with the same probability as A , i.e., there exists a non-negligible function
λ1(k) such that: ∣∣∣∣Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
− 1

2

∣∣∣∣ = λ1(k)

If B does not pick b′∗ at random and Z 6= gα·β, then the query to the oracle LRSOb gives no infor-
mation about b to A , so:

Pr
[

b′
∗ = b|¬E∧

(
Z 6= gα·β

)]
=

1

2
We deduce:

Pr
[
b′
∗ = b|¬E

]
= Pr

[
Z = gα·β

]
·Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+Pr

[
Z 6= gα·β

]
·Pr

[
b′
∗ = b|¬E∧

(
Z 6= gα·β

)]
=

1

2
·Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+ 1

2
· 1

2

=
1

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+ 1

2

)
We evaluate the probability that B wins its DDH experiment:

Pr[b′
∗ = b] = Pr[¬E] ·Pr

[
b′
∗ = b|¬E

]+ (1−Pr[¬E]) ·Pr
[
b′
∗ = b| E

]
= Pr[¬E] · (Pr

[
b′
∗ = b|¬E

]−Pr
[
b′
∗ = b|E])+Pr

[
b′
∗ = b|E]

= Pr[¬E] ·
(
Pr

[
b′
∗ = b|¬E

]− 1

2

)
+ 1

2

= Pr[¬E] ·
(

1

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+ 1

2

)
+ 1

2
· (−1)

)
+ 1

2

=
Pr[¬E]

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
− 1

2

)
+ 1

2

Finally, we deduce the advantage of B against the DDH problem:∣∣∣∣Pr[b′
∗ = b]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[¬E]

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
− 1

2

)
+ 1

2
− 1

2

∣∣∣∣
=

Pr[¬E]

2
·
∣∣∣∣Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
− 1

2

∣∣∣∣
=

(
1

2 ·n
− qS

2 ·p

)
·λ1(k)

=
λ1(k)

2 ·n
− λ1(k) ·qS

2 ·p

This advantage is non-negligible, which conclude the proof of Claim 1.

Proof of Claim 2: We show how to build the algorithm B(X,Y,Z). It runs the same reduction as in
claim 1, except that the algorithm B simulates the oracles LRSOb(d0,d1, ·, ·) and Proof(·, ·, ·, ·, ·) to
A2 as follows:

105

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Oracle LRSOb(d0,d1, ·, ·): On the i th input (m′′
i ,L′′

i), if i = 1 then this oracle is defined as in the
reduction of Claim 1. Else it calls the oracle Sig(·, ·, ·) on the input (m′′

i ,d ,L′′
i) and returns the

resulted signature σ′′
i to A2.

Oracle Proof(·, ·, ·, ·, ·): On the i th input (L′
i ,m′

i ,σ′
i , l ′i), if LRSOb has been already called and there

exists j ∈N such that σ′
i =σ′′

j and (l ′i = d0 or l ′i = d1), then it returns ⊥ to A2. Else, it processes
as in the reduction of Claim 1.

Analysis: Let qS be the number of queries asked to Sig(·, ·, ·) and let E be the event “B picks b′∗ at
random". As in Claim 1, we have:

Pr[¬E] ≥ 1

n
− qS

p

Let α and β be two elements of Z∗
p such that X = gα and Y = gβ. Let b be the solution to the DDH

problem, i.e., b = 1 ⇔ Z = gα·β. If B picks b′∗ at random, it wins the experiment with probability
1/2:

Pr[b′
∗ = b|E] =

1

2

If B does not pick b′∗ at random and Z = gα·β the experiment is perfectly simulated for A , then
B wins its experiment with the same probability as A , i.e., there exists a non-negligible function
λψ+1(k) such that: ∣∣∣∣Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
− 1

2

∣∣∣∣ = λψ+1(k)

If B does not pick b′∗ at random and Z 6= gα·β, then the first query to the oracle LRSOb is useless
since it gives no information about b to A , so B simulates an experiment that is similar to the
n-anoψ one to A , and there exists a negligible function εψ(k) such that:

∣∣∣∣Pr
[

b′
∗ = b|¬E∧

(
Z 6= gα·β

)]
− 1

2

∣∣∣∣ = εψ(k)

We deduce:

Pr
[
b′
∗ = b|¬E

]
= Pr

[
Z = gα·β

]
·Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+Pr

[
Z 6= gα·β

]
·Pr

[
b′
∗ = b|¬E∧

(
Z 6= gα·β

)]
=

1

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+Pr

[
b′
∗ = b|¬E∧

(
Z 6= gα·β

)])
We compute the probability that B wins its DDH experiment:

Pr[b′
∗ = b] = Pr[¬E] ·Pr

[
b′
∗ = b|¬E

]+ (1−Pr[¬E]) ·Pr
[
b′
∗ = b| E

]
= Pr[¬E] · (Pr

[
b′
∗ = b|¬E

]−Pr
[
b′
∗ = b|E])+Pr

[
b′
∗ = b|E]

= Pr[¬E] ·
(
Pr

[
b′
∗ = b|¬E

]− 1

2

)
+ 1

2

= Pr[¬E] ·
(

1

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+Pr

[
b′
∗ = b|¬E∧

(
Z 6= gα·β

)])
− 1

2

)
+ 1

2

=
Pr[¬E]

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+Pr

[
b′
∗ = b|¬E∧

(
Z 6= gα·β

)]
−1

)
+ 1

2

106

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Finally, we deduce the advantage of B against the DDH problem:∣∣∣∣Pr[b′
∗ = b]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[¬E]

2
·
(
Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
+Pr

[
b′
∗ = b|¬E∧

(
Z 6= gα·β

)]
−1

)
+ 1

2
− 1

2

∣∣∣∣
=

Pr[¬E]

2
·
∣∣∣∣(Pr

[
b′
∗ = b|¬E∧

(
Z = gα·β

)]
− 1

2

)
+

(
Pr

[
b′
∗ = b|¬E∧

(
Z 6= gα·β

)]
− 1

2

)∣∣∣∣
=

(
1

2 ·n
− qS

2 ·p

)
· (λψ+1(k)−εψ+1(k)

)
=
λψ+1(k)

2 ·n
−

(
qS

2 ·p
·λψ+1(k)+εψ+1(k) ·

(
1

2 ·n
− qS

2 ·p

))

This advantage is non-negligible, which concludes the proof of Claim 2 and the proof of the lemma.
�

5.4.4 Accountability

In this section, we show that EVeR is accountable.

Lemma 35 EVeR is accontable under the DL assumption in the random oracle model.

Proof: For any n ∈N, let K (resp. Simn) be the knowledge extractor (resp. simulator) of LogEqn .
Assume that there exists an adversary A ∈ POLY(k) such that the advantage λ(k) = Advn-acc

EVeR,A (k) is
non-negligible. We show how to build an algorithm B ∈ POLY(k) that solves the DL problem with
non-negligible probability.

Algorithm B(y): For all i ∈ �1,n�, it picks xi
$←Z∗

p and sets pki = y xi . B runs x ′ ←KA ′({pki }1≤i≤n)(k)
where A ′ is the following algorithm:

Algorithm A ′({pki }1≤i≤n): It runs (L∗,m∗,σ∗,pk∗,π∗) ←A ({pki }1≤i≤n). It simulates the or-
acles to A as follows:

Random oracle H(.): On the i th input Mi , if there exists j ∈N such that j < i and M j =

Mi , then it sets u j = ui . Else it picks ui
$←Z∗

p . Finally, it returns g ui .

Oracle Sig(·, ·, ·): On the i th input (Li , li ,mi), it picks ri
$← Z∗

p . Using the oracle H(.), it
computes hi = H(mi ||ri ||Li) , then there exists j ∈N such that j < i and mi ||ri ||Li =
M j . It computes zi = pku j

li
and it runs Pi ← Sim|Li |({(hi ,pkl , zi)}pkl∈Li

). It returns
σi = (ri , zi ,Pi) to A .

Oracle Proof(·, ·, ·, ·, ·): On the i th input (L′
i ,m′

i ,σ′
i , l ′i), it parses σ′

i = (r ′
i , z ′

i ,P′
i). It com-

putes h′
i = H(m′

i ||r ′
i ||L′

i) using the oracle H(.), then there exists j ∈ N such that

m′
i ||r ′

i ||L′
i = M j . It computes z̄i = pku j

l ′i
and it runs P̄i ← Sim1({(h′

i ,pkl ′i
, z̄i)}). It re-

turns (z̄i , P̄i) to A .

Finally, A ′ computes h∗ = H(m∗||r∗||L∗) using the random oracle H(·), then it parses
σ∗ = (r∗, z∗,P∗) and returns P∗.

If there exists i ∈ �1,n� such that pki = g
x′
xi , then B returns x = x ′

xi
, else it returns ⊥.

Analysis: We parse σ∗ = (r∗, z∗,P∗) and π∗ = (z̄∗, P̄∗). Assume that A wins the experiment, we
have:

L∗ ⊆ {pki }1≤i≤n ∪ {pk∗} (5.4)

Ver(L∗,σ∗,m∗) = 1 (5.5)

Judge(L∗,m∗,σ∗,pk∗,π∗) = 0 (5.6)

∀ i ∈ �1, qS�,σi 6=σ∗ (5.7)

107

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

where qS is the number of queries to the oracle Sig(·, ·, ·). Moreover, equation (5.7) implies that
∀ i ∈ �1, qS�, Pi 6= P∗, then P∗ was not generated by the simulator Sim|L∗|. We deduce the following
equation from (5.5):

L.Ver|L∗|({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

Thus A returns a valid proof with non negligible probability λ(k) at least:

Pr
[
L.Ver1({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

]≥Pr
[

1 ←Expn-acc
EVeR,A (k)

]
≥ λ(k)

Since LogEqn is valid and K is an extractor for LogEqn , there exists a polynomial t and a negligible
function ε′ such that:

λ′(k) = Pr
[
∃ pk ∈ L∗, x ′ = logg (pk) = logh∗(z∗)

]
= Pr

[
({(h∗,pkl , z∗)}pkl∈L∗ , x ′) ∈R|L∗|

]
≥ t

(
Pr

[
L.Ver1({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

])−ε′(k)

≥ t (λ(k))−ε′(k) (5.8)

Note that λ′(k) is non-negligible because λ(k) is non-negligible. We deduce the following equa-
tions from (5.6):

z̄∗ 6= z∗
L.Ver1({(h∗,pk∗, z̄∗)}, P̄∗) = 1

We deduce the following equation:

Pr
[
L.Ver1({(h∗,pk∗, z̄∗)}, P̄∗) = 1

]≥Advn-acc
EVeR,A (k) = λ(k)

Since LogEqn is sound, there exists a negligible function ε′ such that:

Pr
[
(L.Ver1({(h∗,pk∗, z̄∗)}, P̄∗) = 1)∧ ({(h∗,pk∗, z̄∗)} 6∈LR1)

]≤ ε′(k)

⇒Pr
[
L.Ver1({(h∗,pk∗, z̄∗)}, P̄∗) = 1

] ·Pr
[
{(h∗,pk∗, z̄∗)} 6∈LR1

]≤ ε′(k)

⇒Pr
[
{(h∗,pk∗, z̄∗)} 6∈LR1

]≤ ε′(k)

Pr
[
L.Ver1({(h∗,pk∗, z̄∗)}, P̄∗) = 1

]
⇒Pr

[
{(h∗,pk∗, z̄∗)} 6∈LR1

]≤ ε′(k)

λ(k)

⇒Pr
[

logg (pk∗) 6= logh∗(z̄∗)
]
≤ ε′(k)

λ(k)

⇒Pr
[

logg (pk∗) = logh∗(z∗)
]
≤ ε′(k)

λ(k)
(5.9)

Finally, from (5.4), (5.8) and (5.9) we deduce the probability that B wins the experiment:

Pr
[
∃ pk ∈ L∗, x ′ = logg (pk) = logh∗(z∗)

]
≥ λ′(k)

⇒Pr
[
∃ pk ∈ L∗\{pk∗}, x ′ = logg (pk) = logh∗(z∗)

]
+Pr

[
x ′ = logg (pk∗) = logh∗(z∗)

]
≥ λ′(k)

⇒Pr
[

y = g x]+Pr
[

x ′ = logg (pk∗) = logh∗(z∗)
]
≥ λ′(k)

⇒Pr
[

y = g x]≥ λ′(k)−Pr
[

logg (pk∗) = logh∗(z∗)
]

⇒Pr
[

y = g x]≥ λ′(k)− ε′(k)

λ(k)

Sinceλ′(k)− ε′(k)
λ(k) is non negligible then B solve the DL problem with non-negligible probability. �

108

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

5.4.5 Non-seizability

In this section we show that EVeR is non-sei-1 and non-sei-2 secure, which implies that it is non-
seizable.

Lemma 36 EVeR is n-non-sei-1 secure for any polynomially bounded n under the DL assumption
in the random oracle model.

Proof: For any n ∈N, let K (resp. Simn) be the knowledge extractor (resp. simulator) of LogEqn .
Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = Advn-non-sei-1

EVeR,A (k) is non-
negligible. We show how to build an algorithm B ∈ POLY(k) that solves the DL problem with non-
negligible probability.

Algorithm B(y): For all i ∈ �1,n�, it picks xi
$←Z∗

p and sets pki = y xi . B runs x ′ ←KA ′({pki }1≤i≤n)(k)
where A ′ is the following algorithm:

Algorithm A ′({pki }1≤i≤n): It runs (L∗,m∗,σ∗, l∗,π∗) ←A ({pki }1≤i≤n). It simulates the ora-
cles to A as follows:

Random oracle H(.): On the i th input Mi , if there exists j ∈N such that j < i and M j =

Mi , then it sets u j = ui . Else it picks ui
$←Z∗

p . Finally, it returns g ui .

Oracle Sig(·, ·, ·): On the i th input (Li , li ,mi), it picks ri
$← Z∗

p . Using the oracle H(.), it
computes hi = H(mi ||ri ||Li), then there exists j ∈N such that j < i and mi ||ri ||Li =
M j . It computes zi = pku j

li
and it runs Pi ← Sim|Li |({(hi ,pkl , zi)}pkl∈Li

). It returns
σi = (ri , zi ,Pi) to A .

Oracle Proof(·, ·, ·, ·, ·): On the i th input (L′
i ,m′

i ,σ′
i , l ′i), it parses σ′

i = (r ′
i , z ′

i ,P′
i). It com-

putes h′
i = H(m′

i ||r ′
i ||L′

i) using the oracle H(.), then there exists j ∈ N such that

m′
i ||r ′

i ||L′
i = M j . It computes z̄i = pku j

l ′i
and it runs P̄i ← Sim1({(h′

i ,pkl ′i
, z̄i)}). It re-

turns (z̄i , P̄i) to A .

Finally, A ′ computes h∗ = H(m∗||r∗||L∗) using the random oracle H(·), then it parses
σ∗ = (r∗, z∗,P∗) and returns P∗.

Finally B returns x = x ′
xl∗

.

Analysis: We parse σ∗ = (r∗, z∗,P∗) and π∗ = (z̄∗, P̄∗). Assume that A wins the experiment, then
we have:

Ver(L∗,σ∗,m∗) = 1 (5.10)

Judge(L∗,m∗,σ∗,pkl∗ ,π∗) = 1 (5.11)

∀ i ∈ �1, qS�,σi 6=σ∗ (5.12)

where qS is the number of queries to the oracle Sig(·, ·, ·). Moreover, equation (5.12) implies that
∀ i ∈ �1, qS�,Pi 6= P∗, then P∗ was not generated by the simulator Sim|L∗|. Equation (5.11) implies:

L.Ver1({(h∗,pkl∗ , z∗)},π∗) = 1 (5.13)

z∗ = z̄∗ (5.14)

Equation (5.10) implies:

L.Ver|L∗|({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

We deduce that:

Pr
[
L.Ver1({(h∗,pkl∗ , z∗)},π∗) = 1

]≥Pr
[

1 ←Expn-non-sei-1
EVeR,A (k)

]
≥ λ(k)

Pr
[
L.Ver1({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

]≥Pr
[

1 ←Expn-non-sei-1
EVeR,A (k)

]
≥ λ(k)

109

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Since LogEqn is sound, there exists a negligible function ε such that:

Pr
[
(L.Ver1({(h∗,pkl∗ , z∗)}, P̄∗) = 1)∧ ({(h∗,pkl∗ , z∗)} 6∈LR1)

]≤ ε(k)

⇒Pr
[
L.Ver1({(h∗,pkl∗ , z∗)}, P̄∗) = 1

] ·Pr
[
{(h∗,pkl∗ , z∗)} 6∈LR1

]≤ ε(k)

⇒Pr
[
{(h∗,pkl∗ , z∗)} 6∈LR1

]≤ ε(k)

Pr
[
L.Ver1({(h∗,pkl∗ , z∗)}, P̄∗) = 1

]
⇒Pr

[
{(h∗,pkl∗ , z∗)} 6∈LR1

]≤ ε(k)

λ(k)

⇒Pr
[

logg (pkl∗) 6= logh∗(z∗)
]
≤ ε(k)

λ(k)

⇒Pr
[

logg (pkl∗) = logh∗(z∗)
]
≥ 1− ε(k)

λ(k)

Assume that A wins the experiment and that logg (pkl∗) = logh∗(z̄∗). Equation (5.14) implies logg (pkl∗) =
logh∗(z̄∗) = logh∗(z∗). We set:

λ′(k) = Pr
[

x ′ = logg (pkl∗) = logh∗(z̄∗)
]

Since LogEqn is valid and K is an extractor for LogEqn , there exists a polynomial t and a negligible
function ε′ such that:

λ′(k) = Pr
[

x ′ = logg (pkl∗) = logh∗(z̄∗)
]

= Pr
[
({(h∗,pkl , z∗)}pkl∈L∗ , x ′) ∈R|L∗|

]
≥ t

(
Pr

[
L.Ver1({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

])−ε′(k)

≥ t (λ(k))−ε′(k)

Note that x ′ = logg (pkl∗) = logh∗(z̄∗) ⇒ x = logg (y), indeed, since x ′ = x
xl∗

:

x ′ = logg (pkl∗) = logh∗(z̄∗) ⇒ g x ′
= pkl∗

⇒ g
x′

xl∗ = pk
1

xl∗
l∗

⇒ g x =
(
y xl∗

) 1
xl∗

⇒ g x = y

⇒ x = logg (y)

Finally, the probability that B breaks the DL problem is:

Pr
[

x = logg (y)
]
≥Pr

[
logg (pkl∗) = logh∗(z̄∗)

]
·Pr

[
x = logg (y)| logg (pkl∗) = logh∗(z̄∗)

]
≥Pr

[
logg (pkl∗) = logh∗(z̄∗)

]
·Pr

[
x ′ = logg (pkl∗) = logh∗(z̄∗)| logg (pkl∗) = logh∗(z̄∗)

]
≥

(
1− ε(k)

λ(k)

)
·λ′(k)

≥ λ′(k)−ε(k)

(
λ′(k)

λ(k)

)

Since λ′(k)−ε(k)
(
λ′(k)
λ(k)

)
is non negligible then B solve the DL problem with non-negligible proba-

bility. �

Lemma 37 EVeR is n-non-sei-2 secure for any polynomially bounded n under the DL assumption
in the random oracle model.

110

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Proof: For any n ∈N, let K (resp. Simn) be the knowledge extractor (resp. simulator) of LogEqn .
Assume that there exists an adversary A ∈ POLY(k) such the advantage λ(k) = Advn-non-sei-2

EVeR,A (k) is
non-negligible. We show how to build an algorithm B ∈ POLY(k) that solves the DL problem with
non-negligible probability.

Algorithm B(y): For all i ∈ �1,n�, it picks xi
$←Z∗

p and sets pki = y xi . B runs x ′ ←KA ′({pki }1≤i≤n)(k)
where A ′ is the following algorithm:

Algorithm A ′({pki }1≤i≤n): It runs (L∗,m∗,σ∗) ← A ({pki }1≤i≤n). It simulates the oracles to
A as follows:

Random oracle H(.): On the i th input Mi , if there exists j ∈N such that j < i and M j =

Mi , then it sets u j = ui . Else it picks ui
$←Z∗

p . Finally, it returns g ui .

Oracle Sig(·, ·, ·): On the i th input (Li , li ,mi), it picks ri
$← Z∗

p . Using the oracle H(.), it
computes hi = H(mi ||ri ||Li), then there exists j ∈N such that j < i and mi ||ri ||Li =
M j . It computes zi = pku j

li
and it runs Pi ← Sim|Li |({(hi ,pkl , zi)}pkl∈Li

). It returns
σi = (ri , zi ,Pi) to A .

Oracle Proof(·, ·, ·, ·, ·): On the i th input (L′
i ,m′

i ,σ′
i , l ′i), it parses σ′

i = (r ′
i , z ′

i ,P′
i). It com-

putes h′
i = H(m′

i ||r ′
i ||L′

i) using the oracle H(.), then there exists j ∈ N such that

m′
i ||r ′

i ||L′
i = M j . It computes z̄i = pku j

l ′i
and it runs P̄i ← Sim1({(h′

i ,pkl ′i
, z̄i)}). It re-

turns (z̄i , P̄i) to A .

Finally, A ′ computes h∗ = H(m∗||r∗||L∗) using the random oracle H(·), then it parses
σ∗ = (r∗, z∗,P∗) and returns P∗.

If there exists i ∈ �1,n� such that pki = g
x′
xi , then B returns x = x ′

xi
, else it returns ⊥.

Analysis: We parse σ∗ = (r∗, z∗,P∗). Assume that A wins the experiment, then we have, for any
π∗ ←Proof(L∗,m∗,σ∗,pk,sk) where π∗ = (z̄∗, P̄∗):

Ver(L∗,σ∗,m∗) = 1 (5.15)

Judge(L∗,m∗,σ∗,pk,π∗) = 1 (5.16)

∀ i ∈ �1, qS�,σi 6=σ∗ (5.17)

where qS is the number of queries to the oracle Sig(·, ·, ·). Moreover, equation (5.17) implies that
∀ i ∈ �1, qS�,Pi 6= P∗, then P∗ was not generated by the simulator Sim. We deduce the following
equation from (5.15):

L.Ver|L∗|({(h∗,pkl , z∗)}pkl∈L∗ ,P∗) = 1

Thus A returns a valid proof with non negligible probability λ(k). We set:

λ′(k) = Pr
[
∃ pkl ∈ L∗, x = logg (pkl) = logh∗(z∗)

]
(5.18)

Since K is an extractor for LogEqn , it implies that:

λ′(k) ≥ t (λ(k))−ε(k)

We deduce the following equation from (5.16):

z̄∗ = z∗
L.Ver1({(h∗,pk, z∗)}, P̄∗) = 1

We deduce the following equation:

Pr
[
L.Ver1({(h∗,pk∗, z∗)}, P̄∗) = 1

]≥Advn-non-sei-2
EVeR,A (k) = λ(k)

111

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

Since LogEqn is sound, there exists a negligible function ε′ such that:

Pr
[
(L.Ver1({(h∗,pk∗, z∗)}, P̄∗) = 1)∧ ({(h∗,pk∗, z∗)} 6∈LR1)

]≤ ε′(k)

⇒Pr
[
L.Ver1({(h∗,pk∗, z∗)}, P̄∗) = 1

] ·Pr
[
{(h∗,pk∗, z∗)} 6∈LR1

]≤ ε′(k)

⇒Pr
[
{(h∗,pk∗, z∗)} 6∈LR1

]≤ ε′(k)

Pr
[
L.Ver1({(h∗,pk∗, z∗)}, P̄∗) = 1

]
⇒Pr

[
{(h∗,pk∗, z∗)} 6∈LR1

]≤ ε′(k)

λ(k)

⇒Pr
[

logg (pk∗) 6= logh∗(z∗)
]
≤ ε′(k)

λ(k)
(5.19)

We note the following implication:

∃ pkl ∈ L∗\{pk}, x = logg (pkl) = logh∗(z∗) ⇒ logg (pk∗) 6= logh∗(z∗)

We deduce that:

Pr
[
∃ pkl ∈ L∗\{pk}, x = logg (pkl) = logh∗(z∗)

]
≤Pr

[
logg (pk∗) 6= logh∗(z∗)

]
≤ ε′(k)

λ(k)
(5.20)

Finally, from (5.18), (5.19) and (5.20) we deduce the probability that B wins the experiment:

Pr
[
∃ pkl ∈ L∗, x = logg (pkl) = logh∗(z∗)

]
≥ λ′(k)

⇒Pr
[

x = logg (pk) = logh∗(z∗)
]
+Pr

[
∃ pkl ∈ L∗\{pk}, x = logg (pkl) = logh∗(z∗)

]
≥ λ′(k)

⇒Pr
[

x = logg (pk) = logh∗(z∗)
]
≥ λ′(k)−Pr

[
∃ pkl ∈ L∗\{pk}, x = logg (pkl) = logh∗(z∗)

]
⇒Pr

[
y = g x]≥ λ′(k)−Pr

[
logg (pk) 6= logh∗(z∗)

]
⇒Pr

[
y = g x]≥ λ′(k)− ε′(k)

λ(k)

Sinceλ′(k)− ε′(k)
λ(k) is non negligible then B solve the DL problem with non-negligible probability. �

5.4.6 Security of EVeR

Finally, we conclude this section with the following theorem.

Theorem 28 EVeR is correct, unforgeable, anonymous, accountable and non-seizable under the
DDH assumption in the random oracle model.

Proof: The theorem resumes the properties proved in 32, 33, 34, 35, 36 and 37. �

5.5 Algorithms Complexity

In this section, we give the complexity of the algorithms of our scheme EVeR. We give the number
of exponentiations in a prime order group for each algorithm. Moreover, we give the size of some
values outputted by these algorithms (keys, signatures and proofs). This size is given in the num-
ber of group elements. For the sake of clarity, we do not distinguish between elements of a group
G of prime order p where the DDH assumption is hard and elements of Z∗

p .
We give the complexity analysis for a ring of n users, where n is any positive integer. Moreover,

we give the complexity analysis in the particular case where the ring contains only two users. We
focus on this case because the generic sanitizable signature we present in the next chapter uses
verifiable ring signatures for two users.

112

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

In Table 5.1, we give the number of exponentiations of each algorithm of the LogEqn proof
system and the size of a proof πLE

n depending to the number n. The first line corresponds to the
general case, the two other lines correspond to the case where n = 1 and n = 2.

In Table 5.2 ande 5.3 , we give the number of exponentiations for each algorithm of EVeR and
the size of the secret/public keys skEV and pkEV, the signature σEV

n and the size of the proof πEV
n .

These values depend on the size n of the ring. The first line corresponds to the generic case, where
the values depend on the chosen proof system. The second line corresponds to the case where
n = 2 and where the proof system is LogEq2.

LogEqn LEproven LEverifn πLE
n

n 2+4 · (n −1) 4 ·n 4 ·n
n = 1 2 4 4
n = 2 6 8 8

Table 5.1: Complexity analysis of LogEq (Definition 65).

EVeR V.Gen V.Sign V.Vern V.Proof V.Judge

n (generic) 1 1+LEproven LEverifn 1+LEprove1 LEverif1

n = 2 (with LogEqn) 1 7 8 3 4

Table 5.2: Complexity analysis of the algorithms of EVeR (Definition 66).

EVeR skEV pkEV σEV
n πEV

n

n (generic) 1 1 2+πLE
n 1+πLE

1
n = 2 (with LogEqn) 1 1 10 5

Table 5.3: Complexity analysis of the elements of EVeR (Definition 66).

5.6 Conclusion

In this chapter, we revisit the notion of verifiable ring signature. We improve its properties of
verifiability, we give a security model and we design a simple, efficient and secure scheme named
EVeR. In the next chapter, we show that this primitive can be used to design sanitizable signature
schemes that are very efficient. In the future, it will be interesting to find other applications to
verifiable ring signatures that are secure in our model. Moreover, we will aim to design a scheme
that is secure in the standard model.

113

CHAPTER 5. VERIFIABLE RING SIGNATURE REVISITED

114

Chapter 6

Unlinkable Sanitizable Signatures from
Verifiable Ring Signature.

Contents
6.1 Introduction . 116

6.1.1 Application in health Data Protection . 116

6.1.2 Functionalities . 117

6.1.3 Security Goals . 117

6.1.4 Contributions . 118

6.1.5 Related Works . 119

6.2 Formal Definitions . 119

6.2.1 Sanitizable Signature . 119

6.2.2 Immutability . 121

6.2.3 Transparency . 121

6.2.4 Unlinkablility . 122

6.2.5 Accountability . 123

6.2.6 Strong Accountability . 124

6.3 GUSS: an Unlinkable Sanitizable Signature Scheme 125

6.4 Security proofs of GUSS . 127

6.4.1 Correctness . 127

6.4.2 Immutability . 129

6.4.3 Transparency . 130

6.4.4 Unlinkability . 131

6.4.5 Accountability . 133

6.4.6 Strong Accountability . 135

6.4.7 Security of GUSS . 137

6.5 Algorithms Complexity and Comparison . 137

6.6 Conclusion . 138

An Unlinkable Sanitizable Signature scheme allows a sanitizer to modify some parts of a signed
message such that nobody can link the modified signature to the original one. In this chapter, we
design an unlinkable sanitizable signature scheme called GUSS (Generic Unlinkable Sanitizable
Signature). This scheme is generic, and is based on verifiable ring signatures. We show that GUSS
instantiated with EVeR and Schnorr’s signature is twice as efficient as the most efficient scheme of
the literature. Moreover, we improve the definition of accountable sanitizable signature. A saniti-
zable signature scheme is said to be accountable when the signer can prove whether a signature

115

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

is sanitized or not. We formally define the notion of strong accountability where the sanitizer can
also prove the origin of a signature. We show that this security property is required in practice.
Finally, we prove the security properties of GUSS, including strong accountability. This work has
been conducted in collaboration with Pascal Lafourcade and has been published in the paper “Un-
linkable and Strongly Accountable Sanitizable Signatures from Verifiable Ring Signature” at CANS
2017 conference.

6.1 Introduction

Sanitizable Signatures were introduced by Ateniese et al. [ACdMT05], but similar primitives were
independently proposed in [SBZ02]. In this primitive, a signer allows a proxy (called the sanitizer)
to modify some parts of a signed message. For example, a magistrate wishes to delegate the power
to summon someone to the court to his secretary. He signs the message “Franz is summoned
to court for an interrogation on Monday” [Kaf06] and gives the signature to his secretary, where
“Franz” and “Monday” are sanitizable and the other parts are fixed. Hence, in order to summon
Joseph K. on Saturday in the name of the magistrate, the secretary can change the signed message
into “Joseph K. is summoned to the court for an interrogation on Saturday”.

Ateniese et al. in [ACdMT05] proposed some applications of this primitive in privacy of health
data, authenticated media streams and reliable routing information.

6.1.1 Application in health Data Protection

We show how this primitive can be used to protect the patients privacy in health data. Consider a
hospital where each physician signs a report on the pathology of each of his patient. Then the re-
ports are sent by the hospital to a medical research center which compiles them into its database.
However, for the sake of privacy, the hospital cannot reveal the identity of the patients. Using sani-
tizable signatures, the physician signs the report such that the hospital can change the confidential
data about the patient (i.e., his name and his address). Thus, the medical research center uses the
sanitized report without learning any private information about the patient. Figure 6.1 illustrates
this application: the physician signs the message “Alice has lupus” using his secret key sk and the
public key of the hospital spk where the sanitizable part of the message is Alice (in bold and red)
and the fixed part is has lupus (in blue). Then, in order to hide the identity of Alice, the hospital
sanitizes the signature using its secret key ssk and the physician public key pk such that the mes-
sage becomes “Bob has lupus”. Finally, the research center verifies the signature that authenticates
the physician on the message “Bob has lupus”.

Research center
Verifier (pk,spk)

Ver(pk,spk,σ′)

Hospital
Sanitizer (ssk,pk)

σ′ = Sanssk(σ,“Bob has lupus”)

Physician
Signer (sk,spk)

σ = Sigsk(“Alice has lupus”)

σ σ′

Figure 6.1: Sanitizable signature for privacy in health data.

Some years later, Brzuska et al. [BFLS10] points a non studied property called unlinkability:
a sanitizable signature scheme is said to be unlinkable when it is not possible to link two sani-
tized signatures produced from the same signature. To illustrate the relevance of this property,
we consider the following scenario. The physician signs a medical report containing the sentence
“Alice has lupus”, where Alice and lupus are sanitizable and has is fixed. The hospital sanitizes
it in σ′

1 with the message “Bob has lupus” and sends it to the medical research center, as in the
previous paragraph. On the other hand, the hospital would like to send the report to the patient

116

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

mutual health insurance, but it wants to hide some private information about the pathology of
the patient, so it sanitizes the report a second times in σ′

2 with the message “Alice has a cold” and
sends it to the mutual insurance. We consider a malicious hospital employee who recovers the two
signaturesσ′

1 andσ′
2. If the scheme is not unlinkable, then the adversary knows that these two sig-

natures was produced from the same signature, so he can try to recover the original message by
compiling the information in the two messages. He deduces that the original message is probably
“Alice has lupus" or “Bob has a cold”. Figure 6.2 resumes this attack scenario.

Adversary (pk,spk)

“Alice has lupus” or

“Bob has a cold” ?

Sanitizer (ssk,pk)
Hospital

σ′
1 = Sanssk(σ,“Bob has lupus”)

σ′
2 = Sanssk(σ,“Alice has a cold”)

Signer (sk,spk)
Physician

σ = Sigsk(“Alice has lupus”)

σ (σ′1,σ′2)

Figure 6.2: Attack by linkage.

6.1.2 Functionalities

We are going to explain in more details how a sanitizable signature scheme works. A sanitizable
signature scheme has the following features:

System initialization: A user generates the public setup. Then, the signer and the sanitizer gen-
erate their public/private keys using the key generation algorithms.

Signature and verification: The signer chooses a message and an admissible function that de-
cides how the message can be modified by the sanitizer, then he signs this message accord-
ing to the admissible function using his secret key, the sanitizer public key and the signature
algorithm. Anybody can verify the validity of this signature using the verification algorithm
with the public keys of both the signer and the sanitizer.

Sanitization: The sanitizer sanitizes the message according to the admissible function, i.e., he
produces a new signature of a new valid message using the original signature, his secret key,
the public key of the signer and the sanitize algorithm. Anybody can verify the validity of
this signature using the verification algorithm (the same as for the original signature) with
the public keys of both the signer and the sanitizer.

Proof and judgment: The signer or the sanitizer can prove whether he produced a given signa-
ture using his secret key and his proof algorithm. This proof can be verified by anyone using
the judge algorithms with the public keys of both the signer and the sanitizer.

6.1.3 Security Goals

In their pioneer paper, Ateniese et al. [ACdMT05] introduced five security properties for sanitizable
signature: accountability, immutability, privacy, transparency and accountability. They were later
formalized by Brzuska et al. in [BFF+09]. In [BFLS10], Brzuska et al. point a non-studied but
relevant property called unlinkability.

In this chapter we introduce a new security definition called the strong accountability, that
improves the notion of accountability defined by Brzuska et al. in [BFF+09].

These security properties are informally defined as follows.

117

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Unfogeability: A sanitizable signature scheme is said to be unforgeable when no unauthorized
user can generate a valid signature.

Immutability: A sanitizable signature scheme is said to be immutable when the sanitizer cannot
transform a signature from an unauthorized message.

Privacy: A sanitizable signature scheme is said to be private when no information about the orig-
inal message is leaked by a sanitized signature.

Transparency: A sanitizable signature scheme is said to be transparent when nobody can guess
whether a signature is sanitized or not.

Unlinkability: A sanitizable signature scheme is said to be unlinkable when it is not possible to
link the sanitized signature to the original one.

Accountability: A sanitizable signature scheme is said to be accountable when the signer can
prove the origin of a signature (signer or sanitizer) using the proof algorithm such that:

1. The signer cannot forge a signature and a proof that this signature has been forged by
the sanitizer.

2. The sanitizer cannot forge a signature such that the proof algorithm blames the signer.

The proof algorithm requires the secret key of the signer.

Strong accountability: To show that the accountability definition is too weak in a practical use,
we consider the following scenario. The signer claims that he lost his secret key because of
problems with his hard drive. Therefore he cannot prove the origin of a litigious signature.
Unfortunately, there is no way to verify whether the signer is lying or not. Indeed, without his
secret key, the signer cannot generate the proof for the litigious signature, hence nobody can
judge whether the signature is sanitized or not. Depending on whether the signer is lying,
there is a risk of accusing the sanitizer wrongly. To solve this problem, we add a second
proof algorithm that allows the sanitizer to prove the origin of a signature. A sanitizable
signature scheme is said to be strongly accountable when it has the two following properties
in addition to accountability.

1. The sanitizer cannot sanitize a signature σ and prove that σ is not sanitized.

2. The signer cannot forge a signature such that the sanitizer proof algorithm accuses the
sanitizer.

Note that these two properties are built in the same way as the two properties of account-
ability, except that they consider a dishonest sanitizer instead of a dishonest signer.

6.1.4 Contributions

Our first contribution is to formally define strong accountability. Our second contribution is to
propose an efficient and generic unlinkable sanitizable signature scheme called GUSS. It is in-
stantiated by a verifiable ring signature scheme and an unforgeable signature scheme. It is the
first sanitizable signature scheme that achieves strong accountability. In the following, we com-
pare the efficiency of our scheme GUSS with the other unlinkable sanitizable signature schemes
of the literature.

Brzuska et al. [BFLS10]. This scheme is based on group signatures. Our scheme is build on the
same idea, but it uses ring signatures instead of group signatures. For small groups, ring sig-
natures are usually much more efficient than group signatures. Since the scheme of Brzuska
et al. and GUSS uses group/ring signatures for groups of two users, GUSS is much more
practicale.

118

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Canardet al. [CJL12]. This work focus on sanitizable signatures with several signers and sanitiz-
ers. The scheme proposed in [CJL12] achieves unlinkability in the same way as Brzuska et
al. [BFLS10], i.e., using group signatures. Hence it suffers from the same weaknesses of effi-
ciency.

Fleischhacker et al. [FKM+16]. This scheme is based on signatures with re-randomizable keys. It
is generic, however it uses different tools that must have special properties to be compatible
with each other. To the best of our knowledge, it is the most efficient unlinkable scheme of
the literature. GUSS instantiated with EVeR and the Schnorr’s signature is in average twice
as efficient as the best instantiation of this scheme given in [FKM+16].

Lai et al. [LZCS16]. Recently, Lai et al. proposed an unlinkable sanitizable signature scheme that
is secure in the standard model, however it uses pairing and it is much less efficient than
the scheme of Fleischhacker et al. that is in the random oracle model, thus it is much less
efficient than our scheme. In their paper [LZCS16], Lai et al. give a detailed comparison of
the efficiency of the three schemes of the literature.

6.1.5 Related Works

Sanitizable Signatures were first introduced by Ateniese et al. [ACdMT05]. Later, Brzuska et al.
gave formal security definitions [BFF+09] for unfogeability, immutability, privacy, transparency
and accountability. Unlinkability was also introduced and formally defined by Brzuska et al.
in [BFLS10]. In [BPS13], Brzuska et al. introduce an alternative definition of accountability called
non-interactive public accountability where the proofs of the origin of the signatures are gener-
ated by a third party. One year later, the same authors propose a stronger definition of unlinka-
bility [BPS14] and design a scheme that is both strongly unlinkable and non-interactive public ac-
countable. However, non-interactive public accountability is not compatible with transparency.
In this chapter, we focus on schemes that are unlinkable, transparent and interactive account-
able. To the best of our knowledge, there are only four schemes with these three properties,
i.e., [BFLS10, FKM+16, LZCS16, CJL12].

Some works focus on other properties of sanitizable signature schemes that we do not consider
here, as schemes with multiple sanitizers [CJL12], or schemes where the capability of the sanitizer
is limited [CJ10]. Finally, there exist other primitives that solve related but different problems as
homomorphic signatures [JMSW02], redactable signatures [BBD+10] or proxy signatures [FP08].
Differences between these primitives and sanitizable signatures have been detailed in [FKM+16].

6.2 Formal Definitions

In this section, we give the formal definition and the security properties of the sanitizable signa-
tures. Our definition introduces new algorithms that allow the sanitizer to prove the origin of a
signature. Moreover, in addition to the usual security models of [BFF+09], we improve the defini-
tion of accountability by introducing two new security experiments.

As it is mentioned in Introduction, the sanitizable signature schemes have the following secu-
rity properties: unforgeability, immutability, privacy, transparency and accountability. In [BFF+09]
authors show that if a scheme has the immutability, the transparency and the accountability prop-
erties, then it has the unforgeability and the privacy properties. Hence we do not need to prove
these two properties, so we do not recall their formal definitions in this section.

6.2.1 Sanitizable Signature

A sanitisable signature scheme (SS) contains 10 algorithms denoted Init, SiGen, SaGen, Sig, San,
Ver, SiProof, SaProof, SiJudge and SaJudge. Init outputs the setup values. SiGen and SaGen gener-
ate respectively the signer and the sanitizer public/private keys. As in classical signature schemes,

119

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

the algorithms Sig andVer allow the users to sign a message and to verify a signature. However, the
signatures are computed using a sanitizer public key and an admissible function ADM. The algo-
rithm San allows the sanitizer to transform a signature of a message m according to a modification
function MOD: if MOD is admissible according to the admissible function (i.e., ADM(MOD)) = 1)
this algorithm returns a signature of the message m′ = MOD(m).

Concretely, the admissible function ADM allows the sanitizer to modify some parts of the mes-
sage m. The part of the message that cannot be modified is called the fixed part of the message. We
define a function FIX that returns the fixed part of a message given an admissible function ADM.
More formally, we denote by FIXADM(m) the fixed part of the message m according to ADM. Note
that for any admissible function ADM, any message m and any modification function MOD such
that ADM(MOD) = 1, we have FIXADM(m) = FIXADM(MOD(m)) since the fixed part of the message
remains the same after modification.

Finally, SiProof allows the signer to prove whether a signature is sanitized or not. Proofs out-
putted by this algorithm can be verified by anybody using the algorithm SiJudge. The algorithms
SaProof and SaJudge have the same functionalities as SiProof and SiJudge, but the proofs are
computed from the secret parameters of the sanitizer instead of the signer.

Definition 67 (Sanitizable Signature (SS)) A Sanitizable Signature (SS) scheme is a tuple of 10 al-
gorithms Π = (Init,SiGen,SaGen,Sig,San,Ver,SiProof,SaProof,SiJudge,SaJudge) defined by:

Init(k): It returns a setup value set.
SiGen(set): It returns a pair of signer public/private keys (pk,sk).
SaGen(set): It returns a pair of sanitizer public/private keys (spk,ssk).
Sig(m,sk,spk, ADM): This algorithm computes a signature σ from the message m using the secret

key sk, the sanitizer public key spk and the admissible function ADM. Note that we assume
that ADM can be efficiently recovered from any signature as in the definition of Fleischhacker
et al. [FKM+16].

San(m, MOD,σ,pk,ssk): Let the admissible function ADM of the signature σ. If ADM(MOD) = 1 then
this algorithm returns a signature σ′ of the message m′ = MOD(m) using the signature σ, the
signer public key pk and the sanitizer secret key ssk. Else it returns ⊥.

Ver(m,σ,pk,spk): It returns a bit b.
SiProof(sk,m,σ,spk): It returns a signer proof πsi for the signature σ of m.
SaProof(ssk,m,σ,pk): It returns a sanitizer proof πsa for the signature σ of m.
SiJudge(m,σ,pk,spk,πsi): It returns a bit d or the bottom symbol ⊥: if πsi proves that σ comes from

the signer corresponding to the public key pk, then d = 1, else if πsi proves that σ comes from
the sanitizer corresponding to the public key spk, then d = 0, else the algorithm outputs ⊥.

SaJudge(m,σ,pk,spk,πsa): It returns a bit d or the bottom symbol ⊥: if πsa proves that σ comes
from the signer corresponding to the public key pk then d = 1, else if πsa proves that σ comes
from the sanitizer corresponding to the public key spk then d = 0, else the algorithm outputs
⊥.

Moreover a SS is said to be correct when the following equations hold for any k ∈N, any m ∈ {0,1}∗,
any admissible function ADM and any modification function MOD such that ADM(MOD) = 1:

Pr

 set← Init(k); (pk,sk) ← SiGen(set); (spk,ssk) ← SaGen(set);
σ← Sig(m,sk,spk, ADM);σ′ ← San(m, MOD,σ,pk,ssk);
b1 ←Ver(m,σ,pk,spk);b2 ←Ver(MOD(m),σ′,pk,spk);

: (b1 = 1)∧ (b2 = 1)

 = 1

Pr

set← Init(k); (pk,sk) ← SiGen(set); (spk,ssk) ← SaGen(set);
σ← Sig(m,sk,spk, ADM);
πsa ← SaProof(ssk,m,σ,pk);πsi ← SiProof(sk,m,σ,spk);
d1 ← SaJudge(m,σ,pk,spk,πsa);d2 ← SiJudge(m,σ,pk,spk,πsi);

: (d1 = 1)∧ (d2 = 1)

 = 1

120

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Pr

set← Init(k); (pk,sk) ← SiGen(set); (spk,ssk) ← SaGen(set);
σ← Sig(m,sk,spk, ADM);σ′ ← San(m, MOD,σ,pk,ssk);
πsa ← SaProof(ssk, MOD(m),σ′,pk);
πsi ← SiProof(sk, MOD(m),σ′,spk);
d1 ← SaJudge(MOD(m),σ′,pk,spk,πsa);
d2 ← SiJudge(MOD(m),σ′,pk,spk,πsi);

: (d1 = 0)∧ (d2 = 0)

 = 1

6.2.2 Immutability

A SS is immutable when no adversary is able to sanitize a signature without the corresponding
sanitizer secret key or to sanitize a signature using a modification function that is not admissible
(i.e., ADM(MOD) = 0). To help him, the adversary has access to a signature oracle Sig(.,sk, ., .) that
signs chosen messages and a proof oracle SiProof(sk, ., ., .) that computes signer proofs for given
signatures. Note that to win the experiment, the adversary must not return a signature that was
outputted by the signature oracle.

Definition 68 (Immutability [BFF+09]) Let Π be a SS, k be an integer and A ∈ POLY(k) be an al-
gorithm. Let the two following oracles be:

Sig(.,sk, ., .): On input (m, ADM,spk), this oracle runs σ← Sig(m,sk, ADM,spk) and returns σ.
SiProof(sk, ., ., .): On input (m,σ,spk), this oracle runs πsi ← SiProof(sk,m,σ,spk) and returns πsi.

We define the Immut experiment as follows, where qSig is the number of calls to the oracleSig(.,sk, ., .),
(mi , ADMi ,spki) is the i th query asked to the oracle Sig(.,sk, ., .) andσi is the corresponding response:

ExpImmut
Π,A

(k):

set← Init(k)
(pk,sk) ← SiGen(set)
(spk∗,m∗,σ∗) ←A Sig(.,sk,.,.),SiProof(sk,.,.,.)(pk)
if (Ver(m∗,σ∗,pk,spk∗) = 1) and (∀ i ∈ �1, qSig�, (spk∗ 6= spki) or

(∀ MOD such that ADMi (MOD) = 1,m∗ 6= MOD(mi)))
then return 1, else 0

We define the Immut advantage of A against Π as follows:

AdvImmut
Π,A

(k) = Pr
[

1 ←ExpImmut
Π,A

(k)
]

We define the Immut advantage against Π as follows:

AdvImmut
Π (k) = max

A ∈POLY(k)

{
AdvImmut

Π,A
(k)

}
Π is said to be Immut secure, or Immutable, when the Immut advantage against Π is negligible.

6.2.3 Transparency

The transparency ensures that no adversary is able to distinguish whether a signature is sanitized
or not. In addition to the signature oracle and the signer proof oracle, the adversary has access
to a sanitize oracle San(., ., ., .,ssk) that sanitizes chosen signatures and a sanitizer proof oracle
SaProof(ssk, ., ., .) that computes sanitizer proofs for given signatures. Moreover the adversary has
access to a challenge oracle Sa/Si(b,pk,spk,sk,ssk, ., ., .) that depends on a randomly chosen bit b:
this oracle signs a given message and sanitizes it, if b = 0 then it outputs the original signature,
otherwise it outputs the sanitized signature. The adversary cannot use the proof oracles on the
signatures outputted by the challenge oracle, i.e., (SSa/Si∩ (SSiProof∪SSaProof) = ;) where SSa/Si

121

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

(resp. SSiProof and SSaProof) corresponds to the set of all signatures outputted by the oracle Sa/Si
(resp. sent to the oracles SiProof and SaProof). To succeed the experiment, the adversary must
guess b.

Definition 69 (Transparency [BFF+09]) Let Π be a SS, k be an integer and A ∈ POLY(k) be an
algorithm. Let the two following oracles be:

San(., ., ., .,ssk): On input (m, MOD,σ,pk), it runs σ′ ← San(m, MOD,σ,pk,ssk) and returns σ′.
SaProof(ssk, ., ., .): On input (m,σ,pk), this oracle runsπsa ← SaProof(ssk,m,σ,pk) and returnsπsa.
Sa/Si(b,pk,spk,sk,ssk, ., ., .): On input (m, ADM, MOD), if ADM(MOD) = 0, this oracle returns ⊥. Else

if b = 0, this oracle runs σ ← Sig(MOD(m),sk,spk, ADM), else if b = 1, this oracle runs σ ←
San(m, MOD,Sig(m,sk,spk, ADM),pk,ssk). It returns σ.

We define the Trans experiment as follows, where Sig(.,sk, ., .) and SiProof(sk, ., ., .) are defined as in
Definition 68, and where SSa/Si (resp. SSiProof and SSaProof) corresponds to the set of all signatures
outputted by the oracle Sa/Si (resp. sent to the oracles SiProof and SaProof):

ExpTransΠ,A
(k):

set← Init(k)
(pk,sk) ← SiGen(set)
(spk,ssk) ← SaGen(set)
b

$← {0,1}

b′ ←A

Sig(.,sk,.,.),San(.,.,.,.,ssk),SiProof(sk,.,.,.)

SaProof(ssk,.,.,.),Sa/Si(b,pkk,spk,sk,ssk,.,.,.) (pk,spk)
if (b = b′) and (SSa/Si∩ (SSiProof∪SSaProof) = ;)
then return 1, else 0

We define the Trans advantage of A against Π as follows:

AdvTransΠ,A
(k) =

∣∣∣∣Pr
[

1 ←ExpTransΠ,A
(k)

]
− 1

2

∣∣∣∣
We define the Trans advantage against Π as follows:

AdvTransΠ (k) = max
A ∈POLY(k)

{
AdvTransΠ,A

(k)
}

Π is said to be Trans secure, or transparent, when the Trans advantage against Π is negligible.

6.2.4 Unlinkablility

The unlinkablility property ensures that a sanitized signature cannot be linked to the original one.
We consider an adversary that has access to the signature oracle, the sanitize oracle, and both
the signer and the sanitizer proof oracles. Moreover, the adversary has access to a challenge oracle
LRSan(b,pk,ssk, ., .) that depends on a bit b: this oracle takes as input two signaturesσ0 andσ1, the
two corresponding messages m0 and m1 and two modification functions MOD0 and MOD1 chosen
by the adversary. If the two signatures have the same admissible function ADM, and if MOD0 and
MOD1 are admissible according to ADM and if MOD0(m0) = MOD1(m1) then the challenge oracle
sanitizes σb using MODb and returns it. The goal of the adversary is to guess the bit b.

Definition 70 (Unlinkability [BFF+09]) Let Π be a SS, k be an integer and A ∈ POLY(k) be an al-
gorithm. Let the two following oracles be:

LRSan(b,pk,ssk, ., .): On input ((m0, MOD0,σ0)(m1, MOD1,σ1)), if for i ∈ {0,1},Ver(mi ,σi ,pk,spk) =
1 and ADM0 = ADM1 and ADM0(MOD0) = 1 and ADM1(MOD1) = 1 and MOD0(m0) = MOD1(m1),
then this oracle runs σ′ ← San(mb , MODb ,σb ,pk,ssk) and returns σ′, else it returns 0.

122

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

We define the Unlink experiment as follows, where Sig(.,sk, ., .) and SiProof(sk, ., ., .) are defined as in
Definition 68 and San(., ., ., .,ssk) and SaProof(ssk, ., ., .) are defined as in Definition 69:

ExpUnlink
Π,A

(k):

set← Init(k)
(pk,sk) ← SiGen(set)
(spk,ssk) ← SaGen(set)
b

$← {0,1}

b′ ←A

Sig(.,sk,.,.),San(.,.,.,.,ssk)

SiProof(sk,.,.,.),SaProof(ssk,.,.,.),LRSan(b,pkk,spk,.,.) (pk,spk)
if (b = b′) then return 1, else 0

We define the Unlink advantage of A against Π as follows:

AdvUnlinkΠ,A
(k) =

∣∣∣∣Pr
[

1 ←ExpUnlinkΠ,A
(k)

]
− 1

2

∣∣∣∣
We define the Unlink advantage against Π as follows:

AdvUnlinkΠ (k) = max
A ∈POLY(k)

{
AdvUnlinkΠ,A

(k)
}

Π is said to be Unlink secure, or unlinkable, when the Unlink advantage against Π is negligible.

6.2.5 Accountability

Standard defintion of accountability is splited into two security experiments: the sanitizer ac-
countability and the signer accountability. In the sanitizer accountability experiment, the adver-
sary has access to the signature oracle and the signer proof oracle. Its goal is to forge a signature
such that the signer proof algorithm returns a proof that this signature is not sanitized. To succeed
the experiment, this signature must not come from the signature oracle.

Definition 71 (Sanitizer Accountability [BFF+09]) Let Π be a SS, k be an integer and A ∈ POLY(k)
be an algorithm. We define the SaAcc-1 experiment as follows, where the oracles Sig(.,sk, ., .) and
SiProof(sk, ., ., .) are defined as in Definition 68, qSig is the number of calls to the oracle Sig(.,sk, ., .),
the tuple (mi , ADMi ,spki) is the i th query asked to the oracle Sig(.,sk, ., .) and σi is the corresponding
response:

ExpSaAcc-1Π,A
(k):

set← Init(k)
(pk,sk) ← SiGen(set)
(spk∗,m∗,σ∗) ←A Sig(.,sk,.,.),SiProof(sk,.,.,.)(pk)
π∗
si ← SiProof(sk,m∗,σ∗,spk∗)

if ∀ i ∈ �1, qSig�, (σ∗ 6=σi) and (Ver(m∗,σ∗,pk,spk∗) = 1)
and (SiJudge(m∗,σ∗,pk,spk∗,π∗

si) 6= 0)
then return 1, else0

We define the SaAcc-1 advantage of A against Π as follows:

AdvSaAcc-1Π,A
(k) = Pr

[
1 ←ExpSaAcc-1Π,A

(k)
]

We define the SaAcc-1 advantage against Π as follows:

AdvSaAcc-1Π (k) = max
A ∈POLY(k)

{
AdvSaAcc-1Π,A

(k)
}

Π is said to be SaAcc-1 secure, or sanitizer accountable, when the SaAcc-1 advantage against Π is
negligible.

123

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

In the signer accountability experiment, the adversary knows the public key of the sanitizer
and has access to the sanitize oracle and the sanitizer proof oracle. Its goal is to forge a signature
together with a proof that this signature is sanitized. To succeed the experiment, this signature
must not come from the sanitize oracle.

Definition 72 (Signer Accountability [BFF+09]) Let Π be a SS, k be an integer and A ∈ POLY(k)
be an algorithm. We define the SiAcc-1 experiment as follows, where the oracle San(., ., ., .,ssk) and
SaProof(ssk, ., ., .) are defined as in Definition 69 and where qSan is the number of calls to the oracle
San(., ., ., .,ssk), (mi , MODi ,σi ,pki) is the i th query asked to the oracle San(., ., ., .,ssk) and σ′

i is the
corresponding response:

ExpSiAcc-1Π,A
(k):

set← Init(k)
(spk,ssk) ← SaGen(set)
(pk∗,m∗,σ∗,π∗

si) ←A San(.,.,.,.,ssk),SaProof(ssk,.,.,.)(spk)
if ∀ i ∈ �1, qSan�, (σ∗ 6=σ′

i) and (Ver(m∗,σ∗,pk∗,spk) = 1)
and (SiJudge(m∗,σ∗,pk∗,spk,π∗

si) = 0)
then return 1, else 0

We define the SiAcc-1 advantage of A against Π as follows:

AdvSiAcc-1Π,A
(k) = Pr

[
1 ←ExpSiAcc-1Π,A

(k)
]

We define the SiAcc-1 advantage against Π as follows:

AdvSiAcc-1Π (k) = max
A ∈POLY(k)

{
AdvSiAcc-1Π,A

(k)
}

Π is said to be SiAcc-1 secure, or signer accountable, when the SiAcc-1 advantage against Π is
negligible.

6.2.6 Strong Accountability

Since our definition of sanitizable signature provides a second proof algorithm for the sanitizer, we
define two additional security experiments (for signer and sanitizer accountability) to ensure the
soundness of the proofs computed by this algorithm. We say that a scheme is strongly accountable
when it is signer and sanitizer accountable for both the signer and the sanitizer proof algorithms.

Thus, in our second signer accountability experiment, we consider an adversary that has ac-
cess to the sanitize oracle and the sanitizer proof oracle. Its goal is to forge a signature such that the
sanitizer proof algorithm returns a proof that this signature is sanitized. To win the experiment,
this signature must not come from the sanitize oracle.

Definition 73 (Strong Signer Accountability) Let Π be a SS, k be an integer and A ∈ POLY(k) be
an algorithm. We define the SiAcc-2 experiment as follows, where qSan is the number of calls to the
oracle San(., ., ., .,ssk), (mi , MODi ,σi ,pki) is the i th query asked to the oracle San(., ., ., .,ssk) and σ′

i is
the corresponding response:

ExpSiAcc-2Π,A
(k):

set← Init(k)
(spk,ssk) ← SaGen(set)
(pk∗,m∗,σ∗) ←A San(.,.,.,.,ssk),SaProof(ssk,.,.,.)(spk)
π∗
sa ← SaProof(ssk,m∗,σ∗,pk∗)

if ∀ i ∈ �1, qSan�, (σ∗ 6=σ′
i) and (Ver(m∗,σ∗,pk∗,spk) = 1)

and (SaJudge(m∗,σ∗,pk∗,spk,π∗
sa) 6= 1)

then return 1, else 0

124

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

We define the SiAcc-2 advantage of A against Π as follows:

AdvSiAcc-2Π,A
(k) = Pr

[
1 ←ExpSiAcc-2Π,A

(k)
]

We define the SiAcc-2 advantage against Π as follows:

AdvSiAcc-2Π (k) = max
A ∈POLY(k)

{
AdvSiAcc-2Π,A

(k)
}

Π is said to be SiAcc-2 secure when the SiAcc-2 advantage against Π is negligible. Π is said to be
strong signer accountable when it is both SiAcc-1 and SiAcc-2 secure.

Finally, in our second sanitizer accountability experiment, we consider an adversary that knows
the public key of the signer and has access to the signer oracle and the signer proof oracle. Its goal
is to sanitize a signature with a proof that this signature is not sanitized. To win the experiment,
this signature must not come from the signer oracle.

Definition 74 (Strong Sanitizer Accountability) Let Π be a SS, k be an integer and A ∈ POLY(k) be
an algorithm. We define the SaAcc-2 experiment as follows, where Sig(.,sk, ., .) and SiProof(sk, ., ., .)
are defined as in Definition 68, qSig is the number of calls to the oracle Sig(.,sk, ., .), (mi , ADMi ,spki)
is the i th query asked to the oracle Sig(.,sk, ., .) and σi is the corresponding response:

ExpSaAcc-2Π,A
(k):

set← Init(k)
(pk,sk) ← SaGen(set)
(spk∗,m∗,σ∗,π∗

sa) ←A Sig(.,sk,.,.),SiProof(sk,.,.,.)(pk)
if ∀ i ∈ �1, qSig�, (σ∗ 6=σi) and (Ver(m∗,σ∗,pk,spk∗) = 1)

and (SaJudge(m∗,σ∗,pk,spk∗,π∗
sa) = 1)

then return 1, else return 0

We define the SaAcc-2 advantage of A against Π as follows:

AdvSaAcc-2Π,A
(k) = Pr

[
1 ←ExpSaAcc-2Π,A

(k)
]

We define the SaAcc-2 advantage against Π as follows:

AdvSaAcc-2Π (k) = max
A ∈POLY(k)

{
AdvSaAcc-2Π,A

(k)
}

Π is said to be SaAcc-2 secure when the SaAcc-2 advantage against Π is negligible. Π is said to be
strong sanitizer accountable when it is both SaAcc-1 and SaAcc-2 secure.

6.3 GUSS: an Unlinkable Sanitizable Signature Scheme

We present our generic sanitizable signature scheme called GUSS. It is instantiated by a digital
signature scheme (DS) and a verifiable ring signature scheme (VRS). This scheme works as fol-
lows: the signer signs the fixed part of the message using the DS, and signs the full message using
the VRS within the group that contains the signer and the sanitizer. Then, to modify the signed
message, the sanitizer reuses the digital signature of the fixed part and he signs the full modified
message using the VRS. For any signature (sanitized or not), a user verifies its validity by using the
verification algorithm of the DS on the signature of the fixed part and the verification algorithm
of the VRS on the signature of the full message. The scheme is immutable because the sanitizer
cannot modify the fixed part without the signer secret key. It is transparent since the signature of
the full message is anonymous in a group containing the signer and the sanitizer. Moreover, it is
unlinkable because the sanitized signature contains no information about the original message
except its fixed parts. Finally, it is accountable because the signer and the sanitizer can prove the
origine of the signature using the proof algorithm of the VRS.

125

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Definition 75 (Generic Unlinkable Sanitizable Signature (GUSS)) Let D = (D.Init, D.Gen, D.Sig,
D.Ver) be a deterministic digital signature scheme and V = (V.Init,V.Gen,V.Sig, V.Ver,V.Proof,
V.Judge) be a verifiable ring signature scheme. GUSS = (Init, SiGen, SaGen, Sig, San, Ver, SiProof,
SaProof, SiJudge, SaJudge) instantiated by (D,V) is a sanitizable signature scheme defined by:

Init(k): It runs:

setd ←D.Init(k)

setv ←V.Init(k)

Then it returns the setup set = (setd ,setv).
SiGen(set): This algorithm parses set = (setd ,setv), then it runs:

(pkd ,skd) ←D.Gen(setd)

(pkv ,skv) ←V.Gen(setv)

It returns (pk,sk) where pk = (pkd ,pkv) and sk = (skd ,skv).
SaGen(set): It parses set = (setd ,setv) and runs (spk,ssk) ←V.Gen(setv). It returns (spk,ssk).
Sig(m,sk,spk, ADM): It parses sk = (skd ,skv) and computes the fixed message part M ← FIXADM(m).

Then it runs:

σ1 ←D.Sig(skd , (M||ADM||pk||spk))

σ2 ←V.Sig((σ1||m)), {pkv ,spk},skv)

It returns σ = (σ1,σ2, ADM).
San(m, MOD,σ,pk,ssk): It parses σ = (σ1,σ2, ADM) and pk = (pkd ,pkv), and computes the modified

message m′ ← MOD(m). Then it runs:

σ′
2 ←V.Sig((σ1||m′), {pkv ,spk},ssk)

It returns σ′ = (σ1,σ′
2, ADM).

Ver(m,σ,pk,spk): It parsesσ = (σ1,σ2, ADM) and computes the fixed message part M ← FIXADM(m).
Then it runs:

b1 ←D.Ver(pkd , (M||ADM||pk||spk),σ1)

b2 ←V.Ver({pkd ,spk}, (σ1||m),σ2)

It returns b = (b1 ∧b2).
SiProof(sk,m,σ,spk): It parses σ = (σ1,σ2, ADM) and sk = (skd ,skv). Then it runs:

πsi ←V.Proof({pkv ,spk}, (m||σ1),σ2,pkv ,skv)

It returns πsi.
SaProof(ssk,m,σ,pk): It parses the signature σ = (σ1,σ2, ADM). Then it runs:

πsa ←V.Proof({pkv ,spk}, (m||σ1),σ2,spk,ssk)

It returns πsa.
SiJudge(m,σ,pk,spk,πsi): It parses σ = (σ1,σ2, ADM) and pk = (pkd ,pkv). Then it runs:

b ←V.Judge({pkv ,spk}, (m||σ1),σ2,pkv ,πsi)

It returns b.
SaJudge(m,σ,pk,spk,πsa): It parses σ = (σ1,σ2, ADM) and pk = (pkd ,pkv). Then it runs:

b ←V.Judge({pkv ,spk}, (m||σ1),σ2,spk,πsa)

It returns (1−b).

126

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

The signer secret key sk = (skd ,skv) contains a secret key skd compatible with the DS scheme
and a secret key skv compatible with the VRS scheme. The signer public key pk = (pkd ,pkv) con-
tains the two corresponding public keys. The sanitizer public/secret key pair (spk,ssk) is generated
as in the VRS scheme.

Let m be a message and M be the fixed part chosen by the signer according to the admissible
function ADM. To sign m, the signer first signs M together with the public key of the sanitizer spk
and the admissible function ADM using the DS scheme. We denote this signature byσ1. The signer
then generates σ2, which is the signature of the full message m together with σ1 using the VRS
scheme for the set of public keys L = {pkv ,spk}. Informally, he anonymously signs (σ1||m) within a
group of two users: the signer and the sanitizer. The final sanitizable signature is σ = (σ1,σ2). The
verification algorithm works in two steps: it verifies the signatureσ1 and it verifies the anonymous
signature σ2.

To sanitize this signature σ = (σ1,σ2), the sanitizer chooses an admissible message m′ accord-
ing to ADM (i.e., m and m′ have the same fixed part). Then he anonymously signs m′ together
with σ1 using the VRS for the group L = {pkv ,spk} using the secret key ssk. We denote by σ′

2 this
signature. The final sanitized signature is σ′ = (σ1,σ′

2).

6.4 Security proofs of GUSS

In this section, we analyze the security of GUSS. We first informally explain why our scheme is
secure before detailing its formal security proofs.

Immutability: Since it is produced by an unforgeable DS scheme, nobody can forge the signa-
ture σ1 of the fixed part M without the signer secret key. Thus the sanitizer cannot change
the fixed part of the signatures. Moreover, since σ1 signs the public key of the sanitizer in
addition to M, the other users cannot forge a signature of an admissible message using σ1.

Transparency: According to the anonymity of σ2 and σ′
2, nobody can guess if a signature comes

from the signer or the sanitizer, and since both signatures have the same structure, nobody
can guess whether a signature is sanitized or not.

Unlinkability: Assume that an adversary knows (i) two signatures σ0 and σ1 that have the same
fixed part M according to the same function ADM for the same sanitizer and (i i) the san-
itized signature σ′ = (σ′

1,σ′
2) computed from σb for a given admissible message m′ and an

unknown bit b. To achieve unlinkability, it must be hard to guess b. Since the DS scheme is
deterministic, the two signatures σ0 = (σ0

1,σ0
2) and σ1 = (σ1

1,σ1
2) have the same first part (i.e.,

σ0
1 = σ1

1). As it was shown before, the signature σ′ has the same first part σ′
1 as the original

one, thus σ′
1 = σ0

1 = σ1
1 and σ′

1 leaks no information about b. On the other hand, the second
part of the sanitized signature σ′

2 is computed from the modified message m′ and the first
part of the original signature. Since σ0

1 = σ1
1, we deduce that σ′

2 leaks no information about
b. Finally, the best strategy of the adversary is to randomly guess b.

(Strong) Accountability: the signer must be able to prove the provenance of a signature. It is
equivalent to break the anonymity of the second parts σ2 of this signature: if it was created
by the signer then it is the original signature, else it was created by the sanitizer and it is a
sanitized signature. By definition, the VRS scheme used to generate σ2 provides a way to
prove whether a user is the author of a signature or not. GUSS uses it in its proof algorithm
to achieve accountability. Note that since the sanitizer uses the same VRS scheme to sanitize
a signature, he can also prove the origin of a given signature to achieve the strong account-
ability.

6.4.1 Correctness

In this section we show that GUSS is correct.

127

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Lemma 38 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If D and V are correct, then GUSS instanciated by (D,V) is correct.

Proof: For any k ∈N, any m ∈ {0,1}∗, any admissible function ADM and any modification function
MOD such that ADM(MOD) = 1, any set ← Init(k), any (pk,sk) ← SiGen(set) and any (spk,ssk) ←
SaGen(set) we have the following properties:

1. Using set = (setd ,setv), pk = (pkd ,pkv) and sk = (skd ,skv), we have:

(pkd ,skd) ←D.Gen(setd)

(pkv ,skv) ←V.Gen(setv)

(spk,ssk) ←V.Gen(setv)

For anyσ← Sig(m,sk,spk, ADM) andσ′ ← San(m, MOD,σ,pk,ssk) such thatσ = (σ1,σ2, ADM)
and σ = (σ′

1,σ′
2, ADM′) we have:

M ← FIXADM(m)

σ1 ←D.Sig(skd , (M||ADM||pk||spk))

σ2 ←V.Sig((σ1||m)), {pkv ,spk},skv)

σ′
1 =σ1

σ′
2 ←V.Sig((σ1||m′), {pkv ,spk},ssk)

ADM′ = ADM

Since D is correct then:

D.Ver(pkd , (M||ADM||pk||spk),σ1) = 1

Since V is correct then:

V.Ver({pkd ,spk}, (σ1||m),σ2) = 1

V.Ver({pkd ,spk}, (σ′
1||MOD(m)),σ′

2) = 1

We deduce:

Ver(m,σ,pk,spk) = 1

Ver(MOD(m),σ′,pk,spk) = 1

2. Using set = (setd ,setv), pk = (pkd ,pkv) and sk = (skd ,skv), we have:

(pkd ,skd) ←D.Gen(setd)

(pkv ,skv) ←V.Gen(setv)

(spk,ssk) ←V.Gen(setv)

For any σ← Sig(m,sk,spk, ADM) such that σ = (σ1,σ2, ADM) we have:

M ← FIXADM(m)

σ1 ←D.Sig(skd , (M||ADM||pk||spk))

σ2 ←V.Sig((σ1||m)), {pkv ,spk},skv)

For any πsi ← SiProof(sk,m,σ,spk) and πsa ← SaProof(ssk,m,σ,pk) we have:

πsi ←V.Proof({pkv ,spk}, (m||σ1),σ2,pkv ,skv)

πsa ←V.Proof({pkv ,spk}, (m||σ1),σ2,spk,ssk)

128

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Since V is correct we have:

V.Judge({pkv ,spk}, (m||σ1),σ2,pkv ,πsi) = 1

V.Judge({pkv ,spk}, (m||σ1),σ2,spk,πsa) = 0

We deduce:

SiJudge(m,σ,pk,spk,πsi) = 1

SaJudge(m,σ,pk,spk,πsa) = 1

3. Using set = (setd ,setv), pk = (pkd ,pkv) and sk = (skd ,skv), we have:

(pkd ,skd) ←D.Gen(setd)

(pkv ,skv) ←V.Gen(setv)

(spk,ssk) ←V.Gen(setv)

For anyσ← Sig(m,sk,spk, ADM) andσ′ ← San(m, MOD,σ,pk,ssk) such thatσ = (σ1,σ2, ADM)
and σ = (σ′

1,σ′
2, ADM′) we have:

M ← FIXADM(m)

σ1 ←D.Sig(skd , (M||ADM||pk||spk))

σ2 ←V.Sig((σ1||m)), {pkv ,spk},skv)

σ′
1 =σ1

σ′
2 ←V.Sig((σ1||m′), {pkv ,spk},ssk)

ADM′ = ADM

For any πsi ← SiProof(sk, MOD(m),σ′,spk) and πsa ← SaProof(ssk, MOD(m),σ′,pk) we have:

πsi ←V.Proof({pkv ,spk}, (MOD(m)||σ′
1),σ′

2,pkv ,skv)

πsa ←V.Proof({pkv ,spk}, (MOD(m)||σ′
1),σ′

2,spk,ssk)

Since V is correct we have:

V.Judge({pkv ,spk}, (MOD(m)||σ′
1),σ′

2,pkv ,πsi) = 0

V.Judge({pkv ,spk}, (MOD(m)||σ′
1),σ′

2,spk,πsa) = 1

We deduce:

SiJudge(MOD(m),σ′,pk,spk,πsi) = 0

SaJudge(MOD(m),σ′,pk,spk,πsa) = 0

These three properties implies that GUSS is correct, which concludes the proof. �

6.4.2 Immutability

In this section, we show that GUSS instanciated by an unforgeable digital signature scheme is
immutable.

Lemma 39 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If D is EUF-CMA secure, then GUSS instanciated by (D,V) is immutable.

129

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Proof: Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = AdvImmut
GUSS,A (k) is non-

negligible. We show how to build an algorithm B ∈ POLY(k) such that AdvEUF-CMA
D,B (k) is non-

negligible. B works as follows.

Algorithm B(pkd): This algorithm runs initv ← V.Init(1k) and (pkv , skv) ← V.Gen(initv). It sets
pk = (pkd ,pkv) and runs (spk∗,m∗,σ∗) ← A (pk). During the experiment, B simulates the
two oracles Sig(.,sk, ., .) and SiProof(sk, ., ., .) to A as follows:

Sig(.,sk, ., .): On the i th input (mi , ADMi ,spki), B computes the fixed part M ← FIXADMi (mi)
and sends (Mi ||ADMi ||pk||spki) to the oracle D.Sig(skd , ·). It receives the signature σi ,1,
then it runs σi ,2 ←V.Sig((σi ,1||mi)), {pkv ,spki },skv) and returns σi = (σi ,1,σi ,2, ADMi).

SiProof(sk, ., ., .): On the i th input (m′
i ,σ′

i ,spk′i), it parses σ′
i = (σ′

i ,1,σ′
i ,2, ADM′

i). Then it runs
π′
si,i ←V.Proof({pkv ,spk′i }, (m′

i ||σ′
i ,1

),σ′
i ,2,pkv ,skv) and returns it.

Finally, B parses σ∗ = (σ1,∗,σ2,∗, ADM∗), computes M∗ ← FIXADM∗(m∗) and returns the couple
((M∗||ADM∗||pk||spk∗),σ1,∗).

Analysis: We show that if A wins its Immut experiment, then B wins its EUF-CMA experiment.
Assume that A wins its experiment, then the following equations hold:

Ver(m∗,σ∗,pk,spk∗) = 1 (6.1)

∀ i ∈ �1, qSig�, (spk∗ 6= spki) or (FIXADM∗(m∗) 6= FIXADMi (mi)) (6.2)

(6.1) implies the following equation:

D.Ver(pkd , (M∗||ADM∗||pk||spk∗),σ1,∗) = 1

Moreover, (6.2) implies that:

∀ i ∈ �1, qSig�, (M∗||ADM∗||pk||spk∗) 6= (Mi ||ADMi ||pk||spki)

We deduce that B never sends the message (M∗||ADM∗||pk||spk∗) to the oracle Sig(.,sk, ., .). We
remark that the experiment is perfectly simulated for A . Finally if A wins its Immut experiment,
then B wins its EUF-CMA experiment. We deduce:

AdvEUF-CMA
D,B (k) ≥AdvImmut

GUSS,A (k) = λ(k)

which concludes the proof. �

6.4.3 Transparency

In this section, we show that GUSS instanciated by a 2-ano secure verifiable ring signature scheme
is transparent.

Lemma 40 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If V is 2-ano secure, then GUSS instanciated by (D,V) is transparent.

Proof: Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = AdvTransGUSS,A (k) is

non-negligible. We show how to build an algorithm B ∈ POLY(k)2 such that Adv2-ano
V,B (k) is non-

negligible. B = (B1,B2) works as follows.

Algorithm B1({spk,pkv }): It returns (1,2,st).

Algorithm B2(st, {spk,pkv }): It runs (pkd ,skd) ← D.Gen(D.Init(1k)) and sets pk = (pkd ,pkv). It
runs b′ ←A (pk,spk) and returns b′. During the experiment, B2 simulates the oracles to A

as follows:

130

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Sig(.,sk, ., .): On the i th input (mi , ADMi ,spki), B2 first computes the fixed message part
Mi ← FIXADMi (mi) and runs σi ,1 ←D.Sig(skd , (Mi ||ADMi ||pk||spki)). Then it sends the
tuple ({pkv ,spki },1, (mi ||σi ,1)) to the oracle V.Sig(., ., .) which returns the signature σi ,2.
B2 returns σi = (σi ,1,σi ,2, ADMi) to A .

San(., ., ., .,ssk): On the i th input (m′
i , MOD′

i ,σ′
i ,pk′i), it parses σ′

i = (σ′
i ,1,σ′

i ,2, ADM′
i) and pk′i =

(pk′d ,i ,pk′v,i). This algorithm first computes the modified message m̄′
i ← MOD′

i (m′
i) and

it sends ({pk′v,i ,spk},2, (m̄′
i ||σ′

i ,1)) to the oracle V.Sig(., ., .) which returns the signature
σ̄′

i ,2. B2 returns σ̄′
i = (σ′

i ,1, σ̄′
i ,2, ADM′

i) to A .

SiProof(sk, ., ., .): On the i th input (m′′
i ,σ′′

i ,spk′′i), B2 parses σ′′
i = (σ′′

i ,1,σ′′
i ,2, ADM′′

i). It sends
({pkv ,spk′′i }, (m′′

i ||σ′′
i ,1),σ′′

i ,2,pkv ,1) to the oracleV.Proof(., ., ., ., .) which returns the proof
π′′
si,i . Finally, B2 returns π′′

si,i .

SaProof(ssk, ., ., .): On the i th input (m′′′
i ,σ′′′

i ,pk′′′i), B parsesσ′′′
i = (σ′′′

i ,1,σ′′′
i ,2, ADM′′′

i) and pk′′′i =

(pk′′′d ,i ,pk′′′v,i). It sends ({pk′′′v,i ,spk}, (m′′′
i ||σ′′′

i ,1),σ′′′
i ,2,spk,2) to the oracle V.Proof(., ., ., ., .)

which returns the proof π′′′
sa,i . Finally, B2 returns π′′′

sa,i .

Sa/Si(b,pk,spk,sk,ssk, ., ., .): On the i th input (m′′′′
i , ADM′′′′

i , MOD′′′′
i), if ADM′′′′

i (MOD′′′′
i) = 0,

then B2 returns ⊥. Else, B2 computes M′′′′
i ← FIXADM′′′′

i
(m′′′′

i). Then B2 runs σ′′′′
i ,1 ←

D.Sig(skd , (M′′′′
i ||ADM′′′′

i ||pk||spk)) and it sends ((MOD′′′′(m′′′′
i)||σ′′′′

i ,1), {pkv ,skp}) to the
oracle LRSOb(1,2, ·, ·) which returns the signatureσ′′′′

i ,2. Finally, B2 returns the signature
σ′′′′

i = (σ′′′′
i ,1,σ′′′′

i ,2, ADM′′′′
i) to A .

Analysis: Assume that A wins its experiment, then b = b′ and:

SSa/Si∩ (SSiProof∪SSaProof) = ;

where SSa/Si (resp. SSiProof and SSaProof) corresponds to the set of all signatures outputted by the
oracle Sa/Si (resp. sending to the oracles SiProof and SaProof). It implies that the messages sent
to the oracle V.Proof(., ., ., ., .) was not already signed by LRSOb(1,2, ·, ·). More formally, we have:

∀ i , j ∈ �1,max(qS , qP)�, (σi 6=σ′
j)

where qS (resp. qP) is the number of calls to the oracle V.Sig(·, ·, ·) (resp. V.Proof(·, ·, ·, ·, ·)). Finally,
the probability that B wins its experiment is the same as the probability that A wins its experi-
ments:

Adv2-ano
V,B (k) ≥AdvTransGUSS,A (k) = λ(k)

which conclude the proof. �

6.4.4 Unlinkability

We show that GUSS instanciated by an unforgeable digital signature is unlinkable.

Lemma 41 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If D is EUF-CMA secure, then GUSS instanciated by (D,V) is unlinkable.

Proof: Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = AdvUnlinkGUSS,A (k) is non-

negligible. We show how to build an algorithm B ∈ POLY(k) such that AdvEUF-CMA
D,B (k) is non-

negligible. B works as follows.

Algorithm B(pkd): It runs (pkv ,skv) ← D.Gen(V.Init(k)) and (spk,ssk) ← D.Gen(V.Init(k)), then

it sets pk = (pkd ,pkv). It chooses b
$← {0,1} and runs b′ ←A (pk,spk). During the experiment,

B simulates the oracles to A as follows:

131

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Sig(.,sk, ., .): On the i th input (mi , ADMi ,spki), it computes M ← FIXADMi (mi) and sends the
tuple (Mi ||ADMi ||pk||spki) to the oracle D.Sig(skd , ·) and receives the signature σi ,1.
Then it runs σ2 ← V.Sig((σi ,1||mi)), {pkv ,spki },skv) and returns σi = (σi ,1,σi ,2, ADMi)
to A .

SiProof(sk, ., ., .): On the i th input (m′
i ,σ′

i ,spk′i), it parses σ′
i = (σ′

i ,1,σ′
i ,2, ADM′

i). Then it runs
π′
si,i ←V.Proof({pkv ,spk′i }, (m′

i ||σ′
i ,1

),σ′
i ,2,pkv ,skv) and returns π′ to A ..

San(., ., ., .,ssk): On the i th input (m′′
i , MOD′′

i ,σ′′
i ,pk′′i), the adversary B runs the algorithm

σ̄′′
i ← San(m′′

i , MOD′′
i ,σ′′

i ,pk′′i ,ssk) and returns σ̄′′
i to A .

SaProof(ssk, ., ., .): On the i th input (m′′′
i ,σ′′′

i ,pk′′′i), the adversary B runs the algorithmπ′′′
sa,i ←

SaProof(ssk,m′′′
i ,σ′′′

i ,pk′′′i) and returns πsa to A .

LRSan(b,pk,ssk, ., .): On the i th input ((m′′′′
0,i , MOD′′′′

0,i ,σ′′′′
0,i)(m′′′′

1,i , MOD′′′′
1,i ,σ′′′′

1,i)), if for all j in
{0,1}, Ver(m′′′′

j ,i ,σ′′′′
j ,i ,pk,spk) = 1 and ADM′′′′

0,i = ADM′′′′
1,i and MOD′′′′

0,i (m′′′′
0,i) = MOD′′′′

1,i (m′′′′
1,i)

and ADM′′′′
j ,i (MOD′′′′

j ,i) = 1, then it runs σ̂i ← San(m′′′′
b,i , MOD′′′′

b,i ,σ′′′′
b,i ,pk,ssk) and returns

σ̂i to A where σ̂i = (σ̂1,b,i , σ̂2,b,i , �admb,i). Else it returns ⊥ to A . Moreover, if for
j ∈ {0,1}, Ver(m′′′′

j ,i ,σ′′′′
j ,i ,pk,spk) = 1 and ADM′′′′

0,i = ADM′′′′
1,i and ADM′′′′

j ,i (MOD′′′′
j ,i) = 1 and

MOD′′′′
0,i (m′′′′

0,i) = MOD′′′′
1,i (m′′′′

1,i), and if there exists x such that σ′′′′
x,i was not already out-

putted by the oracle D.Sig(skd , ·), then B aborts the experiment for A and returns
((FIXADM′′′′

x,i
(m′′′′

x,i)||ADM′′′′
x,i ||pk||spk),σ′′′′

x,i) to the challenger.

Finally, if B has not already aborted the experiment, then it returns ⊥.

Analysis: We first observe that for any integer i ∈ �1, q� where q is the number of queries to the
oracle LRSan(b,pk,ssk, ., .) and for j ∈ {0,1}, if Ver(m′′′′

j ,i ,σ′′′′
j ,i ,pk,spk) = 1 and ADM′′′′

0,i = ADM′′′′
1,i and

ADM′′′′
j ,i (MOD′′′′

j ,i) = 1 and MOD′′′′
0,i (m′′′′

0,i) = MOD′′′′
1,i (m′′′′

1,i), andσ′′′′
j ,i was already outputted by the oracle

D.Sig(skd , ·), then we have:

FIXADM′′′′
0,i

(m′′′′
0,i)||ADM′′′′

0,i ||pk||spk = FIXADM′′′′
1,i

(m′′′′
1,i)||ADM′′′′

1,i ||pk||spk

Since D is deterministic, we deduce that σ̂1,b,i = σ′′′′
0,i = σ′′′′

1,i . On the other hand, the second part

of the outputted signature σ̂2,b,i does not depend on b. Finally, �ADMb,i = ADM′′′′
0,i = ADM′′′′

1,i , then�ADMb,i does not depend on b. We deduce that the outputted signature σ̂b,i leaks no information
about b. In this case, the best strategy of A to wins the experiment is to randomly guess the bit b′.

On the other hand, if there exists i ∈ �1, q� and j ∈ {0,1} such that Ver(m′′′′
j ,i ,σ′′′′

j ,i ,pk,spk) = 1 and

ADM′′′′
0,i = ADM′′′′

1,i and ADM′′′′
j ,i (MOD′′′′

j ,i) = 1 and MOD′′′′
0,i (m′′′′

0,i) = MOD′′′′
1,i (m′′′′

1,i) and there exists x such

thatσ′′′′
x,i was not already outputted by the oracle D.Sig(skd , ·), then B returns to the challenger the

tuple ((FIXADM′′′′
x,i

(m′′′′
x,i)||ADM′′′′

x,i ||pk||spk),σ′′′′
x,i) and wins its experiment. We denote this event by E.

We have:
Pr

[
1 ←ExpEUF-CMA

D,B (k)
]
≥Pr[E]

On the other hand, we have:

Pr
[

1 ←ExpUnlinkGUSS,A (k)
]

= Pr[E] ·Pr
[

1 ←ExpUnlinkGUSS,A (k)|E
]
+ (1−Pr[E]) ·Pr

[
1 ←ExpUnlinkGUSS,A (k)|¬E

]
= Pr[E] ·Pr

[
1 ←ExpUnlinkGUSS,A (k)|E

]
+ 1

2
− 1

2
·Pr[E]

= Pr[E] ·
(
Pr

[
1 ←ExpUnlinkGUSS,A (k)|E

]
− 1

2

)
+ 1

2

We deduce: (
Pr

[
1 ←ExpUnlinkGUSS,A (k)

]
− 1

2

)
= Pr[E] ·

(
Pr

[
1 ←ExpUnlinkGUSS,A (k)|E

]
− 1

2

)

132

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

It implies that:

Pr[E] =
Pr

[
1 ←ExpUnlinkGUSS,A (k)

]
− 1

2

Pr
[

1 ←ExpUnlinkGUSS,A (k)|E
]
− 1

2

=

∣∣∣Pr
[
ExpUnlinkGUSS,A (k)

]
− 1

2

∣∣∣∣∣∣Pr
[
ExpUnlinkGUSS,A (k)|E

]
− 1

2

∣∣∣
=

λ(k)∣∣∣Pr
[
ExpUnlinkGUSS,A (k)|E

]
− 1

2

∣∣∣
≥ λ(k)

Finally, we deduce that:

Pr
[

1 ←ExpEUF-CMA
D,B (k)

]
≥ λ(k)

which concludes the proof. �

6.4.5 Accountability

We show that GUSS instanciated by an accountable and non-seizable verifiable ring signature
scheme is accountable.

Lemma 42 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If V is 1-acc secure, then GUSS instanciated by (D,V) is SiAcc-1 secure.

Proof: Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = AdvSiAcc-1GUSS,A (k) is non-

negligible. We show how to build an algorithm B ∈ POLY(k) such that Adv1-acc
V,B (k) is non-negligible.

Algorithm B(spk): It runs (pk∗,m∗,σ∗,πsi ,∗) ←A (spk). During the experiment, B simulates the
oracles to A as follows:

San(., ., ., .,ssk): On the i th input (mi , MODi ,σi ,pki), it parses σi = (σi ,1,σi ,2, ADMi) and pki =
(pkd ,i ,pkv,i). Then it computes m̄i ← MODi (mi) and it sends ({pkv,i ,spk},1, (m̄i ||σi ,1))
to the oracleV.Sig(., ., .) that returns the signature σ̄i ,2. B2 returns σ̄i = (σi ,1, σ̄i ,2, ADMi)
to A .

SaProof(ssk, ., ., .): On the i th input (m′
i ,σ′

i ,pk′i), B parses σ′
i = (σ′

i ,1,σ′
i ,2, ADM′

i) and pk′i =

(pk′d ,i ,pk′v,i). It sends ({pk′v,i ,spk}, (m′
i ||σ′

i ,1),σ′
i ,2,spk,1) to the oracle V.Proof(., ., ., ., .)

that returns the proof π′
sa,i . Finally, B returns π′

sa,i to A .

Finally, B parses pk∗ = (pkd ,∗,pkv,∗) and σ∗ = (σ1,∗,σ2,∗, ADM∗), then it returns the tuple
({spk,pkv,∗},m∗||σ1,∗,σ2,∗,pkv,∗,πsi ,∗).

Analysis: First note that the experiment is perfectly simulated for A . Assume that A wins its
experiment, then:

∀ i ∈ �1, qSan�, (σ∗ 6= σ̄i) (6.3)

Ver(m∗,σ∗,pk∗,spk) = 1 (6.4)

SiJudge(m∗,σ∗,pk∗,spk,πsi,∗) = 0 (6.5)

where qSan is the number of calls to the oracle San(., ., ., .,ssk). First note that:

{spk,pkv,∗} ⊂ {spk}∪ {pkv,∗}

133

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

(6.3) implies that:
∀ i ∈ �1, qS�,σ∗,2 6= σ̄i ,2

where qS is the number of queries to V.Sig(., ., .). Indeed, if (σ∗ 6= σ′
i) then σ1,∗ 6= σ1,i or σ2,∗ 6= σ2,i

or ADM∗ 6= ADMi : if ADM∗ 6= ADMi then σ1,∗ 6= σ1,i because σ1,∗ (resp. σ1,i) is a signature of ADM∗
(resp. ADMi). If σ1,∗ 6=σ1,i then σ2,∗ 6=σ2,i because σ2,∗ (resp. σ2,i) is a signature of σ1,∗ (resp. σ1,i).
Finally, in all cases σ∗,2 6= σ̄i ,2.

On the other hand, (6.4) implies that:

V.Ver({spk,pkv,∗},σ2,∗,m∗||σ1,∗) = 1

Finally, (6.5) implies that:

V.Judge({spk,pkv,∗},m∗||σ1,∗,σ2,∗,pkv,∗,πsi ,∗) = 0

We deduce that the probability that B wins its experiment is the same as the probability that A

wins its experiments:
Adv1-acc

V,B (k) ≥AdvSiAcc-1GUSS,A (k) = λ(k)

which concludes the proof. �

Lemma 43 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If V is 1-non-sei-2 secure, then GUSS instanciated by (D,V) is SaAcc-1 secure.

Proof: Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = AdvSaAcc-1GUSS,A (k) is non-

negligible. We show how to build an algorithm B ∈ POLY(k) such that Adv1-non-sei-2
V,B (k) is non-

negligible.

Algorithm B(pkv): It generates (pkd ,skd) ← D.Gen(initd) and sets pk = (pkd ,pkv). Then it runs
(spk∗,m∗,σ∗) ←A (pk). During the experiment, B simulates the oracles to A as follows:

Sig(.,sk, ., .): On the i th input (mi , ADMi ,spki), B first computes Mi ← FIXADMi (mi) and runs
σi ,1 ← D.Sig(skd , (Mi ||ADMi ||pk||spki)). Then it sends ({pkv ,spki },1, (mi ||σi ,1)) to the
oracle V.Sig(., ., .) that returns the signature σi ,2. B returns σi = (σi ,1,σi ,2, ADMi) to A .

SiProof(sk, ., ., .): On the i th input (m′
i ,σ′

i ,spk′i), B parses σ′
i = (σ′

i ,1,σ′
i ,2, ADM′

i). It sends
({pkv ,spk′i }, (m′

i ||σ′
i ,1),σ′

i ,2,pkv ,1) to the oracle V.Proof(., ., ., ., .) that returns the proof
π′
si,i . Finally, B returns π′

si,i .

Finally, B parses σ∗ = (σ1,∗,σ2,∗, ADM∗) and returns ({spk∗,pkv }, (m∗||σ1,∗),σ2,∗).

Analysis: First note that the experiment is perfectly simulated for A . Assume that A wins its
experiment, then, for any πsi,∗ ← SiProof(sk,m∗,σ∗,spk∗):

∀ i ∈ �1, qSig�, (σ∗ 6=σi) (6.6)

Ver(m∗,σ∗,pk,spk∗) = 1 (6.7)

SiJudge(m∗,σ∗,pk,spk∗,πsi,∗) 6= 0 (6.8)

where qSan is the number of calls to the oracle San(., ., ., .,ssk). First note that (6.6) implies that:

∀ i ∈ �1, qS�,σ∗,2 6=σi ,2

where qS is the number of queries to V.Sig(., ., .). Indeed, if (σ∗ 6= σi), then σ1,∗ 6= σ1,i or σ2,∗ 6= σ2,i

or ADM∗ 6= ADMi : if ADM∗ 6= ADMi , then σ1,∗ 6= σ1,i because σ1,∗ (resp. σ1,i) is a signature of ADM∗
(resp. ADMi). If σ1,∗ 6= σ1,i , then σ2,∗ 6= σ2,i because σ2,∗ (resp. σ2,i) is a signature of σ1,∗ (resp.
σ1,i). Finally, in all cases σ∗,2 6=σi ,2.

134

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

On the other hand, (6.7) implies that:

V.Ver({spk∗,pkv },σ2,∗,m∗||σ1,∗) = 1

Moreover, (6.8) implies that:

SaJudge(m∗,σ∗,pk,spk∗,πsi,∗) = 1

Indeed, πsi,∗ cannot be equal to ⊥ since it is computed by the proof algorithm from a valid signa-
ture. It implies that:

V.Judge({spk∗,pkv },m∗||σ1,∗,σ2,∗,pkv ,πsi ,∗) = 0

Finally, note that since πsi,∗ ← SiProof(sk,m∗,σ∗,spk∗), then:

πsi,∗ ←V.Proof({spk∗,pkv },m∗||σ1,∗,σ2,∗,pkv ,skv)

We deduce that the probability that B wins its experiment is the same as the probability that A

wins its experiments:

Adv1-non-sei-2
V,B (k) ≥AdvSaAcc-1GUSS,A (k) = λ(k)

which concludes the proof. �

6.4.6 Strong Accountability

In this section, we show that GUSS instanciated by an accountable and non-seizable verifiable
ring signature scheme is strong accountable.

Lemma 44 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If V is 1-acc secure, then GUSS instanciated by (D,V) is SaAcc-2 secure.

Proof: Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = AdvSaAcc-2GUSS,A (k) is non-

negligible. We show how to build an algorithm B ∈ POLY(k) such that Adv1-acc
V,B (k) is non-negligible.

Algorithm B(pkv): It generates (pkd ,skd) ← D.Gen(initd) and sets pk = (pkd ,pkv). Then it runs
(spk∗,m∗,σ∗,πsa,∗) ← A (pk). During the experiment, B simulates the oracles to A as fol-
lows:

Sig(.,sk, ., .): On the i th input (mi , ADMi ,spki), B first computes the fixed message part Mi ←
FIXADMi (mi) and runs σi ,1 ←D.Sig(skd , (Mi ||ADMi ||pk||spki)). Then it sends the tuple
({pkv ,spki },1, (mi ||σi ,1)) to the oracle V.Sig(., ., .) which returns the signature σi ,2. It
returns σi = (σi ,1,σi ,2, ADMi) to A .

SiProof(sk, ., ., .): On the i th input (m′
i ,σ′

i ,spk′i), B parses σ′
i = (σ′

i ,1,σ′
i ,2, ADM′

i). Then it

sends ({pk′v,i ,spk}, (m′
i ||σ′

i ,1),σ′
i ,2,spk,1) to the oracle V.Proof(., ., ., ., .) that returns the

proof π′
si,i . Finally, B returns π′

si,i to A .

Finally, B parses σ∗ = (σ1,∗,σ2,∗, ADM∗) and returns ({spk∗,pkv },m∗||σ1,∗,σ2,∗,spk∗,πsa,∗).

Analysis: We first note that the experiment is perfectly simulated for A . Assume that A wins its
experiment, then:

∀ i ∈ �1, qSig�, (σ∗ 6=σi) (6.9)

Ver(m∗,σ∗,pk,spk∗) = 1 (6.10)

SaJudge(m∗,σ∗,pk,spk∗,πsa,∗) = 1 (6.11)

135

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

where qSig is the number of calls to the oracle Sig(.,sk, ., .). We note that:

{spk∗,pkv } ⊂ {spk∗}∪ {pkv }

(6.9) implies that:
∀ i ∈ �1, qS�,σ∗,2 6=σi ,2

where qS is the number of queries to V.Sig(., ., .). Indeed, if (σ∗ 6= σi) then σ1,∗ 6= σ1,i or σ2,∗ 6= σ2,i

or ADM∗ 6= ADMi : if ADM∗ 6= ADMi then σ1,∗ 6= σ1,i because σ1,∗ (resp. σ1,i) is a signature of ADM∗
(resp. ADMi). If σ1,∗ 6=σ1,i then σ2,∗ 6=σ2,i because σ2,∗ (resp. σ2,i) is a signature of σ1,∗ (resp. σ1,i).
Finally, in all cases σ∗,2 6=σi ,2.

On the other hand, (6.10) implies that:

V.Ver({spk∗,pkv },σ2,∗,m∗||σ1,∗) = 1

Finally, (6.11) implies that:

V.Judge({spk∗,pkv },m∗||σ1,∗,σ2,∗,spk∗,πsa,∗) = 0

We deduce that the probability that B wins its experiment is the same as the probability that A

wins its experiments:
Adv1-acc

V,B (k) ≥AdvSaAcc-2GUSS,A (k) = λ(k)

which concludes the proof. �

Lemma 45 Let D be a deterministic digital signature scheme and V be a verifiable ring signature
scheme. If V is 1-non-sei-2 secure, then GUSS instanciated by (D,V) is SiAcc-2 secure.

Proof: Assume that there exists A ∈ POLY(k) such that the advantage λ(k) = AdvSiAcc-2GUSS,A (k) is non-

negligible. We show how to build an algorithm B ∈ POLY(k) such that Adv1-non-sei-2
V,B (k) is non-

negligible.

Algorithm B(spk): It runs (pk∗,m∗,σ∗) ← A (spk). During the experiment, B simulates the ora-
cles to A as follows:

San(., ., ., .,ssk): On the i th input (mi , MODi ,σi ,pki), it parses σi = (σi ,1,σi ,2, ADMi) and pki =
(pkd ,i ,pkv,i). Then it computes m̄i ← MODi (mi) and it sends ({pkv,i ,spk},1, (m̄i ||σi ,1))
to the oracleV.Sig(., ., .) that returns the signature σ̄i ,2. B2 returns σ̄i = (σi ,1, σ̄i ,2, ADMi)
to A .

SaProof(ssk, ., ., .): On the i th input (m′
i ,σ′

i ,pk′i), B parses σ′
i = (σ′

i ,1,σ′
i ,2, ADM′

i) and pk′i =

(pk′d ,i ,pk′v,i). It sends ({pk′v,i ,spk}, (m′
i ||σ′

i ,1),σ′
i ,2,spk,1) to the oracle V.Proof(., ., ., ., .)

that returns the proof π′
sa,i . Finally, B returns π′

sa,i to A .

Finally, B parses pk∗ = (pkd ,∗,pkv,∗) and σ∗ = (σ1,∗,σ2,∗, ADM∗), then it returns the tuple
({spk,pkv,∗}, (m∗||σ1,∗),σ2,∗).

Analysis: We first note that the experiment is perfectly simulated for A . Assume that A wins its
experiment, then, for any πsa,∗ ← SaProof(ssk,m∗,σ∗,pk∗):

∀ i ∈ �1, qSan�, (σ∗ 6=σi) (6.12)

Ver(m∗,σ∗,pk∗,spk) = 1 (6.13)

SaJudge(m∗,σ∗,pk∗,spk,πsa,∗) 6= 1 (6.14)

where qSan is the number of calls to the oracle San(., ., ., .,ssk). First note that (6.12) implies that:

∀ i ∈ �1, qS�,σ∗,2 6= σ̄i ,2

136

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

where qS is the number of queries to V.Sig(., ., .). Indeed, if (σ∗ 6= σi), then σ1,∗ 6= σ1,i or σ2,∗ 6= σ̄2,i

or ADM∗ 6= ADMi : if ADM∗ 6= ADMi , then σ1,∗ 6= σ1,i because σ1,∗ (resp. σ1,i) is a signature of ADM∗
(resp. ADMi). If σ1,∗ 6= σ1,i , then σ2,∗ 6= σ̄2,i because σ2,∗ (resp. σ̄2,i) is a signature of σ1,∗ (resp.
σ1,i). Finally, in all cases σ∗,2 6= σ̄i ,2.

On the other hand, (6.13) implies that:

V.Ver({spk,pkv,∗},σ2,∗,m∗||σ1,∗) = 1

Moreover, (6.14) implies that:

SaJudge(m∗,σ∗,pk∗,spk,πsa,∗) = 0

Indeed, πsa,∗ cannot be equal to ⊥ since it is computed by the proof algorithm from a valid signa-
ture. It implies that:

V.Judge({spk,pkv,∗},m∗||σ1,∗,σ2,∗,spk,πsa,∗) = 1

Finally, note that since πsa,∗ ← SaProof(ssk,m∗,σ∗,pk∗), then:

πsa,∗ ←V.Proof({spk,pkv,∗},m∗||σ1,∗,σ2,∗,spk,ssk)

We deduce that the probability that B wins its experiment is the same as the probability that A

wins its experiments:
Adv1-non-sei-2

V,B (k) ≥AdvSiAcc-2GUSS,A (k) = λ(k)

which concludes the proof. �

6.4.7 Security of GUSS

Theorem 29 For any correct, deterministic and unforgeable DS scheme D and any correct, anony-
mous, accountable and non-usurpable VRS scheme V, GUSS instantiated by (D,V) is correct, im-
mutable, transparent, strongly accountable and unlinkable.

Proof: For any deterministic and unforgeable DS scheme D and any anonymous, accountable and
non-usurpable VRS scheme V, we have already shown that GUSS instantiated by (D,V) is correct
(Lemma 38), immutable (Lemma 39), transparent (Lemma 40), strongly accountable (Lemma 42,
43, 44 and 45) and unlinkable (Lemma 41). �

6.5 Algorithms Complexity and Comparison

In this section, we give the complexity of the algorithms of our scheme GUSS. We give the number
of exponentiations in a prime order group for each algorithm. Moreover, we give the size of some
values outputted by these algorithms (keys, signatures and proofs). This size is given in the num-
ber of group elements. For the sake of clarity, we do not distinguish between elements of a group
G of prime order p where the DDH assumption is hard and elements of Z∗

p . Finally, we compare
our scheme with the scheme of Fleischhacker et al. [FKM+16]

Efficiency: In Table 6.1, we recall the number of exponentiations of each algorithm of (determin-
istic) Schnorr’s signature (Definition 35), and we give the size in number of group elements of the
secret/public keys skSh and pkSh and the size of a signature σSh.

In Table 6.2, we give the number of exponentiations of each algorithm of GUSS. In Table 6.3,
we give the size of the secret/public keys of the signer (sk,pk), and the sanitizer (ssk,spk), the size
of a signature σ and the size of a proof π. The first line corresponds to the generic case, where the
values depend on the chosen signature scheme and the chosen verifiable ring signature scheme.
The second line corresponds to the case where GUSS is instantiated by Schnorr and EVeR.

137

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

Schnorr D.Gen D.Sig D.Ver skSh pkSh σSh
exp/size 1 1 2 1 1 2

Table 6.1: Complexity analysis of Schnorr (Definition 35).

GUSS SiGen SaGen Sig San Ver

generic D.Gen + V.Gen V.Gen D.Sig + V.Sig2 V.Sig2 D.Ver + V.Ver2

EvER and Schnorr 2 1 8 7 10

GUSS SiProof SiJudge SaProof SaJudge

generic V.Proof V.Judge V.Proof V.Judge

EvER and Schnorr 3 4 3 4

Table 6.2: Complexity analysis of the algorithms of GUSS (Definition 75).

GUSS sk pk ssk spk σ π

generic skEV + skSh pkEV + pkSh skEV pkEV σEV
2 + σSc πEV

2
EvER and Schnorr 2 2 1 1 12 5

Table 6.3: Complexity analysis of the elements size of GUSS (Definition 75).

SiGen SaGen Sig San Ver SiProof SiJudge Total
Fleischhacker et al. [FKM+16] 7 1 15 14 17 23 6 83

GUSS 2 1 8 7 10 3 4 35

Table 6.4: Comparison of the elements size of GUSS and the scheme of Fleischhacker et al. [FKM+16].

pk spk sk ssk σ π Total
Fleischhacker et al. [FKM+16] 7 1 14 1 14 4 41

GUSS 2 1 2 1 12 5 23

Table 6.5: Comparison of the algorithms complexity of GUSS and the scheme of Fleischhacker et al.
[FKM+16].

Comparison with Fleischhacker et al. [FKM+16]: In Table 6.4 and Table 6.5 we compare GUSS
and the scheme of Fleischhacker et al. which is the most efficient unlinkable scheme of the litera-
ture. The first table compares the number of exponentiations of each algorithms of both schemes,
namely the key generation algorithm of the signer (SiGen) and the sanitizer (SaGen), the signature
algorithm (Sig), the verification algorithm (Ver), the sanitize algorithm (San), the proof algorithm
(SiProof) and the judge algorithm (SiJudge). The second table compares the size of the public keys
of the signer (pk) and the sanitizer (spk), the size of the secret keys of the signer (sk) and the san-
itizer (ssk), the size of a signature (σ) and the size of a proof (π) outputted by SiProof. This size is
measured in elements of a group G of prime order. As in [FKM+16], for the sake of clarity, we do
not distinguish between elements of G and elements of Z∗

p . We consider the best instantiation of
the scheme of Fleischhacker et al. given in [FKM+16].

6.6 Conclusion

In this chapter, we revisited the notion of unlinkable sanitizable signature. We added a proof algo-
rtihm to this primitive that allows the sanitizer to prove the origine of a signature, and we extended
the security model of accountability. Finally, we designed a generic unlinkable sanitizable signa-
ture scheme, named GUSS, based on verifiable ring signatures, which is twice as efficient as the
best scheme of the literature. However, since there does not exist any secure verifiable ring signa-
ture scheme in the standard model, GUSS cannot be instantiated in the standard model. In the fu-

138

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

ture, we will aim to design an efficient and secure unlinkable sanitizable signature in the standard
model, either by designing a secure verifiable ring signature scheme in the standard model, or by
designing a new generic scheme based on the same idea but that uses another kind of group/ring
signature.

139

CHAPTER 6. UNLINKABLE SANITIZABLE SIGNATURES FROM VERIFIABLE
RING SIGNATURE.

140

Chapter 7

How to Delegate Decryptions on a Time
Interval

Contents
7.1 Introduction . 142

7.1.1 Functionalities . 142

7.1.2 Security Goals . 143

7.1.3 A Naive Solution . 144

7.1.4 Contributions . 144

7.1.5 Related Works . 144

7.2 Formal Definitions . 145

7.2.1 A Posteriori Openable Encryption . 145

7.2.2 IND-CPA Security . 147

7.2.3 IND-CSPA Security . 148

7.2.4 Integrity . 149

7.3 GAPO: a Generic A Posteriori Openable Encryption Scheme 149

7.3.1 Informal Overview . 149

7.3.2 GAPO Description . 150

7.4 Security Proofs of GAPO . 151

7.4.1 Correctness . 152

7.4.2 IND-CPA Security . 153

7.4.3 IND-CSPA Security . 159

7.4.4 Integrity . 163

7.5 Conclusion . 164

In this chapter, we focus on the following problem: Alice, who sent encrypted messages to dif-
ferent people, wants to allow Bob to decrypt some of its. More precisely, she would like to allow
Bob to decrypt messages that have been sent in a time interval chosen a posteriori by Alice, i.e.,
after she sent the messages. Such a functionality can be used to partially reveal to a judge the con-
tent of the encrypted emails sending by Alice during a trial. We formally define a primitive called
A Posteriori Openable Public Key Encryption (APO-PKE) that have these properties. Moreover we
define security models for this primitive. We present a naive scheme where the size of Bob’s key
(i.e., that opens the interval of ciphertexts) is proportional to the number of ciphertexts, then we
design an efficient scheme with keys of constant size. Our construction is generic and can be in-
stantiated with most conventional public key encryption schemes. Finally, we prove the security
of our scheme in the random oracle model. This work has been conducted in collaboration with

141

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Pascal Lafourcade and has been published in the paper "A Posteriori Openable Public Key Encryp-
tion" at the IFIP SEC 2016 conference.

7.1 Introduction

Email privacy is an important computer security topic. Usually, plaintext messages are sent and
stored by the mail server without any protection. There exists many straightforward softwares
that allow everyone to encrypt and sign emails using public key cryptography, such as the well
known GnuPG1 tool. Unfortunately, these softwares are rarely used [WT99], consequently en-
crypted emails may be considered as a suspect behavior. Hence as P. Zimmermann, the designer
of PGP, said:“If privacy is outlawed, only outlaws will have privacy”.

Our motivation is based on the following scenario, where Alice is suspected during a trial: she
could have sent some crucial information to an accomplice by email during a specified time pe-
riod. To find some clues, the judge Oliver needs to read these emails. The judge uses his authority
to obtain from the server all emails sent by Alice (including dates of dispatch and receiver identi-
ties). Depending to the security policy used by Alice, we distinguish two cases:

• If the messages are not encrypted then the judge can read emails without relation to the
investigation, which is a privacy violation.

• If messages are encrypted with the receivers public keys then the judge can suspect Alice to
hide crucial information for the investigation. Moreover, without the receivers’ private keys,
Alice has no solution to prove her innocence and cannot reveal her correspondence to the
judge.

Neither of these two cases is advantageous to Alice. To solve this problem, Alice needs a mech-
anism to give to the judge a possibility to open all messages sent during a specified time period. In
this chapter, we introduce a new cryptographic primitive called A Posteriori Openable Public Key
Encryption (APO-PKE) where Alice can generate an interval key for the judge. With this key, he
can only read the encrypted messages sent during this specific interval of time, because this key
does not allow him to open other encrypted messages stored on the email server. The goal of this
chapter is to propose a practical and efficient APO-PKE scheme to solve this problem.

7.1.1 Functionalities

A posteriori openable public key encryptions are public key encryptions with some additional
functionalities. Therefore it offers its conventional functionalities: the generation of the pub-
lic/secret keys of each users, the encryption of a plaintext using a public key, and the decryption of
a ciphertext using a secret key. Furthermore, it provides a way to extract a special key, called the in-
terval key, from two ciphertexts Ci and C j . This key allows a user, called the opener, to decrypts all
the messages that have been encrypted between the two ciphertexts Ci and C j . The functionalities
can be classified into three categories:

System initialisation: Each user generates his own public and private key. Moreover, each user
initialises his secret state, i.e., a secret value that is updated after each encryption.

Encryption and decryption: Consider two users called Alice and Bob. Using her secret state and
Bob’s public key, Alice encrypts a message and updates her secret state. Then Bob decrypts
it using his secret key.

Interval key extraction and interval opening: Consider a third user called Oliver. Using his
global state and Oliver’s public key, Alice generates an interval key from two ciphertexts Ci

and C j she produced previously. Then using this interval key and his secret key, Oliver de-
crypts all the ciphertexts produced by Alice after Ci and before C j .

1https://www.gnupg.org

142

https://www.gnupg.org

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Bob

David

Bob

Carol

David

C1

C2

C3

C4

C5

K2→4

Alice

Oliver

Figure 7.1: A posteriori openable encryption mechanisme overview.

To differentiate the two decryption mechanisms, we say that Bob decrypts a ciphertext and Oliver
opens a ciphertexts interval. Figure 7.1 gives an illustration of the different functionalities of our
primitive. Alice has three contacts Bob, Carol and David, and she sends successively five cipher-
texts denoted C1, C2, C3, C4 and C5 to respectively Bob, David, Bob, Carol and David. Then she
generates the interval key K2→4 and she gives it to Oliver. Using this key, Oliver can open C2, C3

and C4 (in bold and blue), but he cannot decrypts C1 and C5.

7.1.2 Security Goals

We first extend the IND-CPA security to a posteriori openable encryption schemes. However, this
primitive allows the users to decrypt messages in two different ways, hence we consider two dif-
ferent kinds of chosen plaintext attack. Moreover, in our application, the judge must be convinced
that the messages that he opens and the messages that the users decrypt are the same. Therefore,
we define a security model called the integrity that formalizes this property.

Chosen plaintext attack: This property assures that messages that are not in the interval remain
protected. Consider that the opener and some contacts of Alice collude. An APO-PKE
scheme must prevent these adversaries to guess any message sending to a honest user that
is not in the interval of time.

Chosen set of plaintext attack: This property assures that the interval key is useless without the
opener secret key. The adversaries are several dishonest contacts of Alice that collude and
that try to guess the messages encrypted in the time interval. These adversaries know the
corresponding interval key generated with the public key of a honest opener.

Integrity: This property ensures that the decryption algorithm and the opening algorithm return
the same plaintext for any ciphertext. For example, assume that Alice sends to Bob the mes-
sage "Bob, can you whittle my money? I have problems with the tax...". During his tax evasion
trial, Alice gives an interval key to the judge. The compromising message is in the interval,

143

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

however, when the judge opens it, he reads "Bob, I am the most honest person in the world!".
To achieve the integrity, an APO-PKE must prevent this kind of attack.

7.1.3 A Naive Solution

In Random Coin Decryptable Public key encryption (RCD-PKE) schemes (Definition 23), the ran-
dom coin used to encrypt a message can be used as an alternative secret key to decrypt it. Based
on such encryption schemes, we show how to construct a naïve APO-PKE scheme. Alice uses
the RCD-PKE scheme to encrypt each message, and she gives to the Opener n random coins that
correspond to the n ciphertexts of the chosen interval. Then the opener can decrypt all these mes-
sages. However, this method presents an inherent limitation when the number n is large, and Alice
has to store all the random elements used to encrypt all the messages.

To illustrate the impact of this limitation, consider the following scenario. After each transac-
tion, a company uses encrypted mails to send the invoice to its client. A tax inspector would like
to check all the transactions carried out by the company over a period of ten years. During this
period, the company sent thousands of invoices. However, using our naïve solution, the company
sends as much keys as the number of invoices in these ten years to the tax inspector.

The aim of this chapter is to propose a practical scheme where the size of the key, the stored
information and the complexity of the key generation algorithm are constant, i.e., they do not
increase with the number of ciphertexts.

7.1.4 Contributions

We define a new primitive called A Posteriori Openable Public Key Encryption (APO-PKE). It allows
an opener to decrypt all messages sent by a user between two given dates. Our scheme is generic
since it relies on any IND-CPA secure random coin decryptable public key encryption scheme and
hash functions.

The generation of the interval-key and its size are independent to the number of messages in
the interval. There is no restriction neither about the total number of ciphertexts nor about the
number of ciphertexts in an interval. We provide security models for our primitive and we prove
the security of our scheme in the Random Oracle Model (ROM).

In our scheme, the extraction algorithm is used only once per opener (or per set of encrypted
mails). We give a restriction in our security model that captures this situation. It is not going
against our motivation as long as we consider that two judges having an interval key in two dif-
ferent court cases (for the same set of mails) do not collude. To avoid this drawback, we need to
reinitialize the secret values stored by a user after the generation of an interval-key, in order to
be able to produce a new interval-key on the next encrypted mails. We leave the construction of
a scheme with interval keys of constant size allowing to securly open two distinct intervals as an
open problem.

7.1.5 Related Works

Functional encryption [SW05] is a public-key encryption primitive that allows a user to evaluate
a function on the plaintext message using a key and a ciphertext. This cryptographic primitive
was formalized in [BSW11]. It generalizes many well know cryptographic primitives such iden-
tity based encryption [BF01] or attribute based encryption [SW05]. Moreover, some schemes that
evaluate an arbitrary function have been proposed in [GKP+13b, GKP+13a]. A posteriori openable
encryption can be seen as a functional encryption, where all ciphertexts (resp. plaintexts) that are
encrypted by one user correspond to a unique large ciphertext (resp. plaintext). Then the interval-
keys allow a user to find only some parts of the corresponding plaintext. Our proposal scheme is
an efficient solution for this kind of functional encryption.

Deniable encryption [CDNO97, KKK08] is an encryption primitive where there are two plain
messages (an original and a hidden one) in the same ciphertext. Using his secret key, the receiver

144

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

retrieves the original message. Using another shared secret key, the receiver also decrypts the
hidden message. It is not possible for the sender to prove whether a ciphertext contains a hidden
message or not. In a posteriori openable encryption, the judge is only convinced that the plaintext
that he decrypts is the same message that the plaintext decrypted by the secret key of the receiver.
This notion differs from undeniability since the judge is convinced that a message he decrypts
using an interval key has actually been sent and received, but does not deal with messages sent on
another channel (including different way to decrypt a message in the same ciphertext).

Some cryptographic primitives deal with time in decryption mechanism or rights delegation.
Timed-Release Encryption (TRE), proposed in [May93], is a public key encryption where encrypted
messages cannot be opened before a release-time chosen by the user who encrypted the messages.
In this primitive, it is a time server that allows the receiver to decrypt the message in the future at
a given date. Several TRE with diverse security properties have been proposed [CLQ05, CHKO06,
BC05]. More recently, an extension of TRE, called Time-Specific Encryption (TSE), has been pro-
posed in [PQ10] and deals with time intervals. Somehow these primitives are close to our because
APO-PKE allows somebody to give decryption capabilities in the future, after that encrypted mes-
sages has been sent. However, TRE and TSE cannot be used to achieve APO-PKE, because TRE
ciphertexts are intended to only one user and decryption capabilities cannot be delegated to an-
other party. Moreover, in TRE, the time of decryption must be chosen during the encryption phase
(a priori), while in our primitive it can be chosen at any time (a posteriori).

It is interesting to note that some TRE possess a pre-open mechanism [HYL05] that allows
the sender to give decryption capabilities before the pre-specified release-time. In this case, a
security requirement (called binding property) ensures that the decrypted message from the pre-
open mechanism is the message decrypted by the receiver after the release-time [DT07]. For our
primitive, we define a similar property, called integrity, that assures that the open algorithm and
the decryption algorithm returns the same plaintext on the same ciphertext.

Finally, Key-Insulated Encryption (KIE) [DKXY02, LQY07, HW10] is a public key encryption
primitive where messages are encrypted from a tag corresponding to a time period and a pub-
lic key. At each time period corresponds a partial secret key computed from a master key and
the previous partial secret key. Moreover, the public key is never changed. The motivation of this
primitive is to provide secret keys that can be stored in an untrusted device without compromising
the master key. Indeed, the leakage of a secret key only compromises the messages received in a
specified time interval, and future encryptions remain secure. In the motivation of [DKXY02], the
authors give another interesting application of this primitive based on [GPR98]: the secure dele-
gation of decryption rights in a time period. However, this kind of delegation requires pre-defined
time period. For example, if the time period corresponds to one month, then the delegation can-
not be restricted to the last week of a first month and the first week of the following one. Moreover,
the delegator must give a different secret key to each time period, so the decryption keys size is
proportional to the number of time periods contained in the interval. Finally, our goal is that the
sender of the encrypted messages delegates the decryption capabilities, while KIE focuses on del-
egations that are provided by the receiver. Thus this primitive cannot solve our problem.

7.2 Formal Definitions

In this section, we formally define our primitive and the related security properties.

7.2.1 A Posteriori Openable Encryption

An a posteriori openable encryption scheme is a kind of public key encryption scheme with some
additional features: Alice may use some secret data she updates after each encryption, called the
secret state and denoted sst, to construct a key to a posteriori open a sequence of messages that
she had encrypted during an interval of time. We do not consider real time but a sequence of n
successive ciphertexts {cl }1≤l≤n . This key allows a user, called the opener, to open all the messages

145

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

between two ciphertexts ci and c j , where 1 ≤ i < j ≤ n. This key is called the interval-key, and is
denoted by Ki→ j .

This primitive is formally described in Definition 76. In addition to the usual public key en-
cryption algorithms, it contains an algorithm Ini that initializes a new secret state, an algorithm
Ext that generates the interval key from the first and the last message of the interval and the public
key of the opener, and an algorithm Ope that allows the opener to decrypt the messages in the
interval using his secret key and the interval key.

Note that all the key pairs (pk,sk) come from the same algorithm Gen. However, for the sake of
clarity, the keys of the opener are denote by (pko,sko) .

Definition 76 (A Posteriori Openable Public Key Encryption scheme) An A Posteriori Openable
Public Key Encryption (APO-PKE) scheme is a tuple of polynomial time algorithms (Set,Gen, Ini,
Enc,Dec, Ext,Ope) defined as follows:

Set(k): It returns a setup set and a messages set M .
Gen(set): It returns a public/private key pair (pk,sk).
Ini(set): It initializes a global state sst and returns it.
Encsst

pk (m): It returns a ciphertext c and updates sst.
Decsk(c): It returns a plaintext m.
Extsst

pko(ci ,c j): It generates an interval key Ki→ j .
Opesko(Ki→ j , {cl }i≤l≤ j , {pkl }i≤l≤ j): Inputs of this algorithm contain a set of ciphertexts {cl }i≤l≤ j and

the set of the corresponding public keys {pkl }i≤l≤ j . It returns a set of plaintexts {ml }i≤l≤ j .

Moreover an APO-PKE is said to be correct when the following equations hold for any k,n, w, i , j ∈
N such that 1 ≤ i ≤ j ≤ n and any n-uple t = (t1, . . . , tn) ∈ �1, w�n :

Pr

(set,M) ← Set(k);∀l ∈ �1,n�, (pkl ,skl) ←Gen(set);

sst←Gen(set); (m1, . . . ,mw)
$←M w ;

∀l ∈ �1, w�,cl ←Encsst
pktl

(ml);

∀l ∈ �1, w�,m′
l ←Decsktl

(cl);

: ∀l ∈ �1, w�,m′
l = ml

 = 1

Pr

(set,M) ← Set(k);∀l ∈ �1,n�, (pkl ,skl) ←Gen(set);

(pko,sko) ←Gen(set);sst←Gen(set); (m1, . . . ,mw)
$←M w ;

∀l ∈ �1, w�,cl ←Encsst
pktl

(ml);Ki→ j ←Extsst
pko(ci ,c j);

{m′
l }i≤l≤ j ←Opesko(Ki→ j , {cl }i≤l≤ j , {pkl }i≤l≤ j);

: ∀l ∈ �i , j �,m′
l = ml

 = 1

As in classical public key encryption schemes, we define verifiable key APO-PKE. Informally,
a key pair (pk,sk) is valid when any message encrypted by pk will be correctly decrypted by sk. An
APO-PKE is said to be verifiable key when there is a way to check whether a key pair is valid or
not.

Definition 77 (Verifiable Key APO-PKE) Let E = (Set,Gen, Ini,Enc,Dec,Ext,Ope) be anAPO-PKE.
We say that a key pair (pk,sk) is valid for E according to the setup (set,M) when for any message
m ∈M and any state sst:

Pr
[

c ←Encsst
pk (m);m′ ←Decsk(c) : m′ = m

]
= 1

We say that E is verifiable-key (VK) when there exists a key pair verification algorithm Ver such that
1 ←Ver(pk,sk) if and only if (pk,sk) is valid for E according to the setup (set,M).

146

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

7.2.2 IND-CPA Security

This security property concerns the resistance of an a posteriori openable encryption scheme
against chosen-plaintext attacks. We consider an opener that receives an interval-key and that
colludes with dishonest users that receives encrypted messages from Alice. Adversaries choose
two messages m0 and m1, and Alice encrypts one of these two messages mb using the public key
of a honest user. The opener cannot have a key that opens some interval that contains this cipher-
text. The goal of the adversaries is to guess b.

IND-CPA Security vs one-time IND-CPA Security: During the IND-CPA experiment, the ad-
versary has access to an extraction oracle that returns interval keys on intervals that do not con-
tain the challenge ciphertext. Ideally, the adversary should be able to request several interval keys
to the oracle. However, as shown previously, the scheme that we propose in this chapter do not
achieve this property, because two interval keys allow the judge to open all the messages between
the two intervals. Hence we define a weaker property, called one-time IND-CPA (OT-IND-CPA)
security where the adversary can ask the extraction oracle only once. We define both IND-CPA
and OT-IND-CPA security in the following definition, but we left the design of a (not one-time)
IND-CPA secure scheme as an open problem.

Definition 78 (One-Time Indistinguishability against Chosen Plaintext Attack) Let E = (Set,Gen,
Ini,Enc,Dec,Ext,Ope) be an APO-PKE, let k ∈N be a security parameter, and let A = (A1,A2) be a
couple of polynomial time algorithms. Let the following oracles be:

Encsst∗· (·): This oracle takes as input a public key pk and a message m. On the first call to this oracle,
it initializes two counters l = 1 and n = 1. On the first call to this oracle in the second phase
(i.e., the first call of A2), it increments the counter l . Only in the first phase (i.e., while A1 is
running), it increments the counter n. In any case, it runs cl ← Encsst∗

pk (m) and it increments
the counter l . Finally, it returns cl

Extsst∗· (·, ·): This oracle can be used only one time during the experiment. It takes as input a public
key pko and two ciphertexts c ′ and c ′′. In the second phase, if there exists ci = c ′ and c j = c ′′

such that i ≤ n ≤ j then the oracle returns ⊥. Else it runs Ki→ j ← Extsst∗
pko (c ′,c ′′) and returns

Ki→ j .

We define the One-Time Indistinguishability against Chosen Plaintext Attack (OT-IND-CPA) ex-
periment for the adversary A against E as follows:

ExpOT-IND-CPA
E,A (k):

b
$← {0,1}

(set,M) ← Set(k)
(pk∗,sk∗) ←Gen(set)
sst∗ ← Ini(set)

(m0,m1,st) ←A
Encsst∗· (·),Extsst∗· (·,·)

1 (set,pk∗)
c∗ ←Encsst∗

pk∗
(mb)

b′ ←A
Encsst∗· (·),Extsst∗· (·,·)

2 (st,pk∗,c∗)
Return (b = b′)

We define the IND-CPA experiment as the OT-IND-CPA experiment except that the adversary can
ask the oracle Extsst∗· (·, ·) several times. We define the OT-IND-CPA advantage of A against E as
follows:

AdvOT-IND-CPA
E,A (k) =

∣∣∣∣Pr
[

1 ←ExpOT-IND-CPA
E,A (k)

]
− 1

2

∣∣∣∣
We define the OT-IND-CPA advantage against E as follows:

AdvOT-IND-CPA
E (k) = max

A ∈POLY(k)2

{
AdvOT-IND-CPA

E,A (k)
}

147

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

We define the IND-CPA advantages in a similar way. E is said to be OT-IND-CPA (resp. IND-CPA)
secure when AdvOT-IND-CPA

E (k) (resp. AdvIND-CPA
E (k)) is negligible.

7.2.3 IND-CSPA Security

An interval of ciphertexts coupled with the corresponding interval key can be seen as a unique
ciphertext that encrypts a sequence of plaintexts. Thus, we define an indistinguishability based
security model where several dishonest users, who collude, choose two sequences of plaintexts,
and where the challenger encrypts successively each message of one of the two sequences. The
adversaries receive the interval key of an honest opener who opens the interval that contains all
these ciphertexts. The adversaries try to guess what is the sequence of plaintexts used by the chal-
lenger. They can use some oracles to create new honest users, to encrypt messages, and to extract
interval keys for the honest opener.

Definition 79 (Indistinguishability against Chosen Set of Plaintexts Attack) Let E = (Set,Gen, Ini,
Enc,Dec,Ext,Ope) be an APO-PKE, let k ∈N be a security parameter, let A = (A1,A2) be a couple
of polynomial time algorithms, and let µ ∈N be an integer. Let the following oracles be:

Gen(set): On the first call to this oracle, it creates an empty list of public key K . In any case, it runs
(pk,sk) ← Gen(set) and adds pk to K . Then it returns pk. This oracle can be called only µ
times during the experiment.

Encsst∗· (·): This oracle takes as input a public key pk and a message m. On the first call to this oracle,
it initializes a counter n = 1. Only in the first phase (i.e., while A1 is running), it increments
the counter n. In any case, it runs cl ←Encsst∗

pk (m) and it returns cl

Extsst∗
pko∗

(·, ·): This oracle takes as input two ciphertexts c ′ and c ′′. It runs Ki→ j ← Extsst∗
pko (c ′,c ′′) and

returns Ki→ j .

We define the µ-Indistinguishability against Chosen Set of Plaintexts Attack (µ-IND-CSPA) experi-
ment for the adversary A against E as follows:

Expµ-IND-CSPA
E,A (k):

(b,d)
$← {0,1}2

(set,M) ← Set(k)
(pko∗,sko∗) ←Gen(set)
sst∗ ← Ini(set)

(q, {m0,l }n<l≤n+q , {m1,l }n<l≤n+q , {pkl }n<l≤n+q ,st) ←A
Gen(set),Encsst∗· (·),Extsst∗

pko∗ (·,·)
1 (set,pko∗)

For all l ∈ �n +1,n +q�:
If pkl = pko∗ or pkl ∈K , then c∗l ←Encsst∗

pkl
(mb,l)

else,c∗l ←Encsst∗
pkl

(md ,l)

K(n+1)→(n+q) ←Extsst∗
pko∗

(cn+1,cn+q)

b′ ←A
Gen(set),Encsst∗· (·),Extsst∗

pko∗ (·,·)
2 (st,pko∗, {c∗l }n<l≤n+q ,K(n+1)→(n+q))

Return (b = b′)

We define the µ-IND-CSPA advantage of A against E as follows:

Advµ-IND-CSPA
E,A (k) =

∣∣∣∣Pr
[

1 ←Expµ-IND-CSPA
E,A (k)

]
− 1

2

∣∣∣∣
We define the µ-IND-CSPA advantage against E as follows:

Advµ-IND-CSPA
E (k) = max

A ∈POLY(k)2

{
Advµ-IND-CSPA

E,A (k)
}

E is said to be IND-CSPA secure when Advt (k)-IND-CSPA
E (k) is negligible for any polynomial t .

148

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Note that the adversary can choose the public key used to encrypt the messages of the se-
quence of plaintexts. Moreover, it can send the public keys of some dishonest users, i.e., public
keys that were not generated by the oracle Gen(set). However, the challenger does not really en-
crypt the message of the chosen sequence for the public keys of the dishonest users. More for-
mally, the challenger picks two random bits b and d . The bit b determines the chosen sequence
{mb,l }n<l≤n+q . For all l ∈ �n+1,n+q�, if pkl corresponds to a honest user, then the challenger com-
putes c∗l = Encsst∗

pkl
(mb,l). Else it computes c∗l = Encsst∗

pkl
(md ,l). In this case, c∗l leaks no information

about b.

7.2.4 Integrity

The last security property that we define is the integrity. It ensures that the decryption algorithm
and the open algorithm return the same plaintext when there are used to decrypt the same cipher-
text. We consider an adversary that generates several ciphertexts for different keys and an interval
key. It wins its attack if one of these ciphertexts give two different plaintexts depending to the
algorithm that the challenger uses to decrypt it.

Definition 80 (Integrity) Let E = (Set,Gen, Ini, Enc,Dec,Ext,Ope) be a verifiable key APO-PKE, let
k ∈N be a security parameter and let A be a polynomial time algorithm. We denote by Ver the key
pair verification algorithm of E. We define the integrity experiment for the adversary A against E
as follows:

ExpIntegrityE,A (k):
(set,M) ← Set(k)
(pko∗,sko∗) ←Gen(set)
(N,{cl }1≤l≤N, {pkl }1≤l≤N, x,skx , i , j ,Ki→ j) ←A (set,pk∗)
{ml }i≤l≤ j ←Opesko∗(Ki→ j , {cl }i≤l≤ j , {pkl }i≤l≤ j)
if ml 6= Decskx

(cx) and 1 ←Ver(pkx ,skx),
then return 1, else 0.

We define the integrity advantage of A against E as follows:

AdvIntegrityE,A (k) = Pr
[

1 ←ExpIntegrityE,A (k)
]

We define the integrity advantage against E as follows:

AdvIntegrityE (k) = max
A ∈POLY(k)

{
AdvIntegrityE,A (k)

}
E is said to have the integrity property when AdvIntegrityE (k) is negligible.

7.3 GAPO: a Generic A Posteriori Openable Encryption Scheme

In this section, we show how to build an efficient and generic a posteriori openable encryption
scheme, were the interval key is in constant size (i.e., it does not depend on the size of the interval).
We first present the idea of our construction, then we formally describe our scheme.

7.3.1 Informal Overview

Our scheme uses a generic random coin decryptable public key encryption scheme (Definition 23).
To encrypt the i th message mi , Alice shares it in two parts m̃i and m̂i such that mi = m̃i ⊕ m̂i .
Then she encrypts m̃i in c̃i and m̂i in ĉi using the public key of Bob and two random coins. She
sends ci = (c̃i , ĉi) to Bob. To recover mi , Bob decrypts c̃i and ĉi to find m̃i and m̂i and computes
mi = m̃i ⊕m̂i .

149

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Consider that Alice successively generates 6 ciphertexts denoted ci = (c̃i , ĉi) for all i ∈ �1,6�
using the method given in the previous paragraph. She wants to give a key that allows Oliver to
decrypt the messages c2, c3 and c4.

First, Alice gives to Oliver the random coin that was used to encrypt ĉ2. This random coin allows
Oliver to decrypt ĉ2. Moreover, using this coin, Oliver extracts from ĉ2 the random coin that allows
him to decrypt ĉ3. Then Oliver repeats this operation until decrypting ĉ6. Finally, Oliver knows m̂2,
m̂3, m̂4, m̂5 and m̂6.

Secondly, Alice gives the random coin that allows him to decrypt c̃4 to Oliver. Moreover, using
this coin, Oliver extracts from c̃4 the random coin that allows him to decrypt c̃3. Then Oliver repeats
this operation until decrypting c̃1. Finally, Oliver knows m̃4, m̃3, m̃2 and m̃1.

Figure 7.2 illustrates these two steps. Finally, Oliver computes mi = m̃i ⊕ m̂i for all i ∈ �2,4�,
however, he learns nothing about m1 since he does not know m̂1, and he learns nothing about m5

and m6 since he does not know m̃5 and m̃6.
Note that to prevent attacks where Bob and Oliver collude, the secret key of Bob must not allow

him to extract the keys that open c̃i−1 and ĉi+1 when he decrypts ci = (c̃i , ĉi). In practice, the keys
that Alice gives to Oliver are the random coins of ĉ2 and c̃4. Note that using this method, Alice gives
two keys to Oliver regardless of the number of ciphertexts in the interval.

c̃1 c̃2 c̃3 c̃4 c̃5 c̃6

ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6

m̃1 ⊕ ? m̃2 ⊕m̂2 m̃3 ⊕m̂3 m̃4 ⊕m̂4 ? ⊕m̂5 ? ⊕m̂6

Figure 7.2: Opening mechanism for the interval [2,4]

7.3.2 GAPO Description

We give a generic a posteriori openable encryption scheme based on the idea given in the previous
section.

Scheme 1 (GAPO) Let RE = (RSet,RGen,REnc,RDec) be a random coin decryptable (Definition 23)
and verifiable key (Definition 24) public key encryption scheme, and let RCDec be the random coin
decryption algorithm of RE. GAPO = (Set,Gen, Ini,Enc,Dec,Ext,Ope) is an a posteriori openable
encryption scheme defined as follows:

Set(k): It runs (set′,M ′,C) ← RSet(k) and choses three hash functions F, G and H defined as fol-
lows:

• F : {0,1}∗ → {0,1}k

• G : {0,1}∗ →C

• H : {0,1}∗ → {0,1}2k

Let M = {LB(|m|−k)(m)}m∈M ′ be a set of messages where the function LBx (m) returns the x first
left bits of the bit-string m. This algorithm returns the setup set = (set′,F,G,H) and the set of
messages M .

Gen(set): It runs (pk,sk) ←RGen(set′) and returns (pk,sk).
Ini(1k): It picks σ̂

$← {0,1}k , σ̃
$← {0,1}k and s

$← {0,1}k , and it returns the secret state sst = (s, σ̂, σ̃).
Encsst

pk (m): This algorithm parses sst = (s, σ̂, σ̃). It picks m̂ ← {0,1}|m| and computes m̃ = m̂ ⊕m. It

picks σ̂′ $← {0,1}k and σ̃′ $← {0,1}k , and it computes α̂ = (m̂||(σ̂′⊕F(σ̂))) and α̃ = (m̃||(σ̃⊕F(σ̃′))).
Then it computes ĉ ← REncpk(α̂,G(σ̂)), c̃ ← REncpk(α̃,G(σ̃′)) and d = (σ̂||σ̃′)⊕H(s||ĉ||c̃). Fi-
nally it updates the state sst = (s, σ̂′, σ̃′) and returns c = (ĉ, c̃,d).

150

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Decsk(c): This algorithm parses c = (ĉ, c̃,d), then it runs (m̂||x̂) ←RDecsk(ĉ) and (m̃||x̃) ←RDecsk(c̃).
It computes m = m̂ ⊕m̃ and returns it.

Extsst
pko(ci ,c j): This algorithm parses sst = (s, σ̂, σ̃), ci = (ĉi , c̃i ,di) and c j = (ĉ j , c̃ j ,d j). Then it com-

putes (σ̂i−1||σ̃i) = di ⊕H(s||ĉi ||c̃i) and (σ̂ j−1||σ̃ j) = d j ⊕H(s||ĉ j ||c̃ j). It picks r
$←C and returns

Ki→ j ←REncpko((σ̂i−1||σ̃ j),r).
Opesko(Ki→ j , {cl }i≤l≤ j , {pkl }i≤l≤ j): This algorithm parses cl = (ĉl , c̃l ,dl) for all l ∈ �i , j �. Then it runs

(σ̂i−1||σ̃ j) ←RDecsko(Ki→ j).

• For all l in {i , i +1, . . . , j }, it computes r̂l = G(σ̂l−1) and runs (m̂l ||x̂l) ←RCDecr̂l (ĉl ,pkl).
It computes σ̂l = x̂l ⊕F(σ̂l−1). If REncpkl

((m̂l ||x̂l),G(σ̂l−1)) 6= ĉl then it returns ⊥.
• For all l in { j , j −1, . . . , i }, it computes r̃l = G(σ̃l) and runs (m̃l ||x̃l−1) ←RCDecr̃l (c̃l ,pkl).

It computes σ̃l−1 = x̃l−1 ⊕F(σ̃l). If REncpkl
((m̃l ||x̃l−1),G(σ̃l)) 6= c̃l then it returns ⊥. It

computes ml = m̂l ⊕m̃l .

Finally, it returns {ml }i≤l≤ j .

The encryption algorithm shares the l th plaintext ml in two parts m̂l and m̃l such that m =
m̂l ⊕ m̂l . It generates two random values σ̂l and σ̃l , and it recovers the two values σ̂l−1 and σ̃l−1

stored in the state sst (they were generated during the previous encryption). Using the random
coin decryptable encryption scheme, it encrypts m̂l ||(σ̂l ⊕F(σ̂l−1)) in ĉl with the random coin
G(σ̂l−1), and m̃l ||(σ̃l−1 ⊕F(σ̃l)) in c̃l with the random coin G(σ̃l). Finally it masks the random
elements σ̂l−1 and σ̃l with H(s||ĉ||c̃) in dl . The ciphertext is the triplet cl = (ĉl , c̃l ,dl).

Knowing the secret key it is possible to recover m̂l and m̃l by decrypting ĉl and c̃l , and to
recover the plaintext ml by computing ml = m̂l ⊕m̂l .

The interval key generated from ci and c j is the encryption of σ̂i−1 and σ̃ j . These two values are
hidden in the third part of the ciphertexts ci and c j , i.e., di and d j . These values can be recovered
using the secret s stored in sst by computing di ⊕H(s||ĉi ||c̃i) and d j ⊕H(s||ĉ j ||c̃ j).

Since the encryption scheme is random coin decryptable, the opener uses the random coin
G(σ̂i−1) to open ĉi . It obtains m̂i and (σ̂i ⊕F(σ̂i−1)). It recovers σ̂i by computing (σ̂i ⊕F(σ̂i−1))⊕
F(σ̂i−1). Then it opens ĉi+1 using G(σ̂i). Using recursively this algorithm, it is possible to decrypt
all the ciphertexts in {ĉl }i≤l≤n , where n is the number of ciphertexts.

Using a similar method, the opener uses σ̃ j to decrypt all the ciphertexts in {c̃l }1≤l≤ j . Finally,
the opener knows m̂l and m̃l for all l ∈ �i , j �, then it recovers the set of messages {ml }i≤l≤ j .

7.4 Security Proofs of GAPO

In this section, we analyze the security of GAPO. We first informally explain why our scheme is
secure before detailing the security proofs. We prove that GAPO is correct, OT-IND-CPA secure,
IND-CSPA secure, and has the integrity property. Note that GAPO is not IND-CPA secure: if an
opener has two interval keys for two disjoint intervals, then it opens all messages between the two
intervals.

OT-IND-CPA security: The interval key allows the opener to decrypt all the messages in the in-
terval. Moreover, this key also allows the opener to decrypt the first part ĉ of each ciphertext
produced after the interval, and the second part c̃ of each ciphertext produced before the in-
terval. The random coins used to encrypt the other parts of these ciphertexts remain secret.
So an adversary who has an interval key has no information about the messages that are not
in the interval. If a message was sent before the interval, then the first part of the ciphertext
ĉ was encrypted by an IND-CPA encryption scheme, so the adversary has no information
about m̂, which implies that he has no information about m. On the other hand, if some
message was sent after the interval, then the second part of the ciphertext c̃ was encrypted
by an IND-CPA encryption scheme, so the adversary has no information about m̃, which
implies that he has no information about m.

151

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

IND-CSPA security: The interval keys are encrypted using the public key of the opener, so with-
out the secret key of the opener, the interval keys are useless. It implies that without the
secret key of the opener, an adversary has no information about the bit-strings σ used to
generate the random coins, because these bit-strings are always hashed or hiden by a one-
time pad. Moreover, the messages in the interval are encrypted by an IND-CPA encryption
scheme, so adversaries cannot guess what set of messages is encrypted in the IND-CSPA
experiment.

Integrity: Since the public key encryption scheme is correct and verifiable key, then messages
encrypted with the public key of a user are correctly decrypted with the corresponding se-
cret key. Moreover, when he opens an interval of ciphertexts, the opener verifies that each
message he opens is correctly encrypted: using the public key and the random coin, he
re-encrypts the message. Since the encryption algorithm is deterministic, then he should
obtain the same ciphertext. If so, then he is convinced that the recipient decrypts the same
plaintext, else he aborts the algorithm.

7.4.1 Correctness

First, we show that GAPO is correct.

Theorem 30 For any public key encryption scheme RE that is correct, random coin decryptable and
verifiable key, GAPO instanciated with RE is correct.

Proof: Let RE = (RSet,RGen,REnc,RDec) be a random coin decryptable and verifiable key pub-
lic key encryption scheme, and let RCDec be the random coin decryption algorithm of RE. Let
GAPO = (Set,Gen, Ini,Enc,Dec,Ext,Ope) instanciated with RE. Let (k,n, w, i , j) ∈ N5 be five inte-
gers such that 1 ≤ i ≤ j ≤ n and let t = (t1, . . . , tn) ∈ �1, w�n be a n-uple.

• For any (set,M) ← Set(k) such that set = (set′,F,G,H), any (pkl ,skl) ← Gen(set) for l ∈ �1,n�,
any sst←Gen(set) such that sst = (s, σ̂0, σ̂0), at each encryption Encsst

pktl
(ml) for all l ∈ �1, w�,

we have:

σ̂l
$← {0,1}k ; σ̃l

$← {0,1}k

m̂
$← {0,1}|m|;m̃ = m̂ ⊕m

x̂l = (m̂l ||(σ̂l ⊕F(σ̂l−1)))

x̃l = (m̃l ||(σ̃l−1 ⊕F(σ̃l)))

ĉl = REncpkl
(x̂l ,G(σ̂l−1))

c̃l = REncpkl
(x̃l ,G(σ̃l))

cl = (ĉl , c̃l ,dl)

At each decryption m′
l ←Decsktl

(cl) for all l ∈ �1, w�, we have:

(m̂l ||x̂l) ←RDecskl
(ĉl)

(m̃l ||x̃l) ←RDecskl
(c̃l)

because RE is correct. Finally, ml = m̂l ⊕m̃l .

• for any (set,M) ← Set(k) such that set = (set′,F,G,H), any (pkl ,skl) ← Gen(set) for l ∈ �1,n�,
any sst←Gen(set) such that sst = (s, σ̂0, σ̂0), at each encryption Encsst

pktl
(ml) for all l ∈ �1, w�,

152

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

we have:

σ̂l
$← {0,1}k ; σ̃l

$← {0,1}k

m̂
$← {0,1}|m|;m̃ = m̂ ⊕m

x̂l = (m̂l ||(σ̂l ⊕F(σ̂l−1)))

x̃l = (m̃l ||(σ̃l−1 ⊕F(σ̃l)))

ĉl ←REncpkl
(x̂l ,G(σ̂l−1))

c̃l ←REncpkl
(x̃l ,G(σ̃l))

cl = (ĉl , c̃l ,dl)

After these encryptions, it holds that sst = (s, σ̂w , σ̂w). For any Ki→ j ←Extsst
pko(ci ,c j):

Ki→ j ←REncpko((σ̂i−1||σ̃ j),r)

For some random coin r . Moreover, we observe that:

(σ̂i−1||σ̃ j) ←RDecsko(Ki→ j)

because RE is correct. For any {m′
l }i≤l≤ j ←Opesko(Ki→ j , {cl }i≤l≤ j , {pkl }i≤l≤ j), we have for all

l ∈ �i , j �:

r̂l = G(σ̂l−1); r̃l = G(σ̃l)

(m̂l ||x̂l) ←RCDecr̂l (ĉl ,pkl)

(m̃l ||x̃l−1) ←RCDecr̃l (c̃l ,pkl)

because RE is random coin decryptable. Finally, for all l ∈ �i , j �, m′
l = m̂l ⊕m̃l = ml

These two properties conclude the proof. �

7.4.2 IND-CPA Security

Before proving that GAPO is OT-IND-CPA secure, we need to prove the two following technical
lemmas.

Lemma 46 Let k ∈N be a security parameter, let F be a hash function, and let A be a pair of poly-
nomial time algorithms. We define the following experiment for any q ∈N:

Expq-lstring
F,A (k):

∀ i ∈ �0, q�,σi
$← {0,1}k

{θi }1≤i≤n ←A ((σi ⊕F(σi−1))1≤i≤q)
If ∃ i ≤ n such that σq = θi then return 1
Else return 0

Then Pr
[

1 ←Expq-lstring
F,A (k)

]
is negligible for any q ∈N and any A ∈ POLY(k) in the random oracle

model.

Proof: We proof this lemma by induction.

• Let A ∈ POLY(k) be an adversary that runs the 1-lstring experiment. Since q = 1, the adver-
sary receivesσ1⊕F(σ0) and try to guessσ1 . Note that the adversary does not knowσ0. Since
F is a random oracle, F(σ0) is random from the adversary point of view. F(σ0) acts as a one
time pad on σ1, so the best strategy of A is to picks each θi at random. The adversary re-
turns a set of n values {θi }1≤i≤n , so the probability that he wins the experiment is lower than
n/(2k −n), which is negligible.

153

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

• Assume that there exists a negligible function ε such that Pr
[

1 ←Expq-lstring
F,A (k)

]
≤ ε(k) for

any A ∈ POLY(k), we show that Pr
[

1 ←Exp(q+1)-lstring
F,A (k)

]
is negligible for any A ∈ POLY(k).

We prove it by contraposition: assume that there exists an adversary A ∈ POLY(k) such that

Pr
[
Exp(q+1)-lstring

F,A (k) = 1
]

= λ(k) is non-negligible, we show how to build B ∈ POLY(k) such

that Pr
[

1 ←Exp(q+1)-lstring
F,A (k)

]
is non negligible. B receives the tuple (σi ⊕F(σi−1))1≤i≤q . We

set σ′
i for all i ∈ �2, q+1� such that σ′

i =σi−1, then (σi ⊕F(σi−1))1≤i≤q = (σ′
i ⊕F(σ′

i−1))2≤i≤q+1.

The adversary B picks σ∗ $← {0,1}k and runs:

{θi }1≤i≤n ←A ((σ∗, (σ′
2 ⊕F(σ1)), . . . , (σ′

q+1 ⊕F(σ′
q))))

If there exists σ′
0 ∈ {0,1}k such that σ∗ = (σ′

1 ⊕F(σ′
0)), then B perfectly simulates the experi-

ment for A . We calculate the following probability:

Pr
[
∃σ′

0 ∈ {0,1}k ,σ∗ = (σ′
1 ⊕F(σ′

0))
]

= 1−
(

k −1

k

)k

≥ 1

2

Moreover, if A wins the experiment, then there exists i ∈N such that σq = σ′
q+1 = θi , which

implies that B wins its experiment. We deduce:

Pr
[

1 ←Exp(q+1)-lstring
F,A (k)

]
= Pr

[∃i ∈N,σq = θi
]

≥Pr
[
∃σ′

0 ∈ {0,1}k ,σ∗ = (σ′
1 ⊕F(σ′

0))
]
·Pr

[
∃i ∈N,σ′

q+1 = θi |∃σ′
0 ∈ {0,1}k ,σ∗ = (σ′

1 ⊕F(σ′
0))

]
≥ 1

2
·Pr

[
1 ←Exp(q+1)-lstring

F,A (k)
]

≥ 1

2
·λ(k)

We deduce that Pr
[

1 ←Exp(q+1)-lstring
F,A (k)

]
is non negligible.

Finally, we conclude that Pr
[

1 ←Expq-lstring
F,A (k)

]
is negligible for any q ∈N and any A ∈ POLY(k) in

the random oracle model. �

Lemma 47 Let k ∈N be a security parameter, let F be a hash function, and let A be a pair of poly-
nomial time algorithms. We define the following experiment for any q ∈N:

Expq-rstring
F,A (k):

∀ i ∈ �0, q�,σi
$← {0,1}k

{θi }1≤i≤n ←A ((σi−1 ⊕F(σi))1≤i≤q)
If ∃ i ≤ n such that σ0 = θi then return 1
Else return 0

Then Pr
[

1 ←Expq-rstring
F,A (k)

]
is negligible for any q ∈N and any A ∈ POLY(k) in the random oracle

model.

Proof: We proof this lemma by induction.

• Let A ∈ POLY(k) be an adversary that runs the 1-rstring experiment. Since q = 1, the adver-
sary receives σ0 ⊕F(σ1) and tries to guess σ0 . Note that the adversary does not know σ1.
Since F is a random oracle, F(σ1) is random from the adversary point of view. F(σ1) acts as
a one time pad on σ0, so the best strategy of A is to picks each θi at random. The adversary
returns a set of n values {θi }1≤i≤n , so the probability that he wins the experiment is lower
than n/(2k −n), which is negligible.

154

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

• Assume that there exists a negligible function ε such that Pr
[

1 ←Expq-rstring
F,A (k)

]
≤ ε(k) for

any A ∈ POLY(k), we show that Pr
[

1 ←Exp(q+1)-rstring
F,A (k)

]
is negligible for any A ∈ POLY(k).

We prove it by contraposition: assume that there exists an adversary A ∈ POLY(k) such that

Pr
[

1 ←Exp(q+1)-rstring
F,A (k)

]
= λ(k) is non-negligible, we show how to build B ∈ POLY(k) such

that Pr
[

1 ←Exp(q+1)-rstring
F,A (k) =

]
is non negligible. B receives the tuple (σi−1 ⊕F(σi))1≤i≤q .

The adversary B picks σ∗ $← {0,1}k and runs:

{θi }1≤i≤n ←A (((σ0 ⊕F(σ1)), . . . , (σq−1 ⊕F(σq),σ∗)))

If there exists σq+1 ∈ {0,1}k such that σ∗ = (σq ⊕F(σq+1)), then B perfectly simulates the
experiment for A . We bound the following probability:

Pr
[
∃σq+1 ∈ {0,1}k ,σ∗ = (σq ⊕F(σq+1))

]
= 1−

(
k −1

k

)k

≥ 1

2

Moreover, if A wins the experiment, then there exists i ∈N such that σ0 = θi , which implies
that B wins its experiment. We deduce:

Pr
[

1 ←Exp(q+1)-rstring
F,A (k)

]
= Pr [∃i ∈N,σ0 = θi]

≥Pr
[
∃σq+1 ∈ {0,1}k ,σ∗ =σq ⊕F(σq+1)

]
·Pr

[
∃i ∈N,σ0 = θi |∃σq+1 ∈ {0,1}k ,σ∗ =σq ⊕F(σq+1)

]
≥ 1

2
·λ(k)

We deduce that Pr
[

1 ←Exp(q+1)-rstring
F,A (k)

]
is non negligible.

Finally, we conclude that Pr
[

1 ←Expq-rstring
F,A (k)

]
is negligible for any q ∈N and any A ∈ POLY(k) in

the random oracle model. �

In the following, we show that the OT-IND-CPA advantage of GAPO is negligible when the
adversary uses the oracle Extsst∗· (·, ·) before it receives the challenge (Lemma 48) and after it re-
ceives the challenge (Lemma 49). We deduce that GAPO is OT-IND-CPA secure (Theorem 31)
from Lemma 48 and Lemma 49.

Lemma 48 Let ExpOT-IND-CPA′
E,A (k) be the same experiment as ExpOT-IND-CPA

E,A (k) except that A1 does

not have access to the oracle Extsst∗· (·, ·). If RE is IND-CPA then for all A ∈ POLY(k)2 there exists a
negligible function ε(k) such that:∣∣∣∣Pr

[
1 ←ExpOT-IND-CPA′

GAPO,A (k)
]
− 1

2

∣∣∣∣ = ε(k)

Proof: We assume there exists a polynomial time adversary A and a non negligible function λ

such that: ∣∣∣∣Pr
[

1 ←ExpOT-IND-CPA′
GAPO,A (k)

]
− 1

2

∣∣∣∣ = λ(k)

We show how to construct an adversary B = (B1,B2) ∈ POLY(k)2 such that AdvIND-CPA
RE,B (k) is non

negligible:

Algorithm B1(set,pk∗): It runs sst∗ ← Ini(set) and parses sst∗ = (s, σ̂0, σ̃0). It initializes two coun-
ters n = 1 and l = 1, and three empty lists FLIST, GLIST and HLIST. It then runs (st,m0,m1) ←
A1(set,pk∗). While A1 is running, B1 simulates the oracles as follows:

Random oracle F(.): B1 receives the input x. If there exists (x ′,X′) ∈ FLIST such that x = x ′

then it returns X′. Else it picks X
$← {0,1}k , adds (x,X) to the list FLIST and returns X.

155

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Random oracle G(.): B1 receives the input y . If there exists (y ′,Y′) ∈ GLIST such that y = y ′

then it returns Y′. Else it picks Y
$←C , adds (y,Y) to the list GLIST and returns Y.

Random oracle H(.): B1 receives the input z. If z is queried by A1 and there exists a bit
string α such that z = s||α, then B1 aborts the experiment. Else, if there exists (z ′,Z′) ∈
HLIST such that z = z ′ then it returns Z′. Else it picks Z

$← {0,1}2·k , adds (z,Z) to the list
HLIST and returns Z.

Oracle Encsst∗· (·): Using the input (pk,m) and the random oracles F(.), G(.) and H(.), B1 runs
the algorithm Encsst∗

pk (m) to compute cl . It increments l and n and returns cl .

Oracle Extsst∗· (·, ·): Using the input (pko,c ′i ,c ′j) and the oracle H(.), B2 runs the algorithm

Ki→ j ←Extsst∗
pko (c ′i ,c ′j) and returns Ki→ j .

B1 picks σ̂n , σ̃n
$← {0,1}k and m̂

$← {0,1}|m0|. It computes m̃0 = m0 ⊕ m̂ and m̃1 = m1 ⊕ m̂.
Using sst∗ = (s, σ̂n−1, σ̃n−1) and the random oracles F(.) and G(.), it sets M0 = m̃0||(σ̃n−1 ⊕
F(σ̃n)) and M1 = m̃1||(σ̃n−1 ⊕F(σ̃n)). It runs ĉn ← REncpk∗(m̂||(σ̂n ⊕F(σ̂n−1)),G(σ̂n−1)) and
returns (st,M0,M1) to the challenger.

Algorithm B2(st, c̃n): If there does not exist (z∗,Z∗) ∈ HLIST such that z∗ = (s||ĉn ||c̃n), then B2 picks
Z∗

$← {0,1}2·k , sets z∗ = (s||ĉn ||c̃n) and adds (z∗,Z∗) to the list HLIST. It then computes dn =
(σ̂n−1||σ̃n)⊕Z and cn = (ĉn , c̃n ,dn), and it increments l . B2 runs b′ ← A2(st,pk∗,cn) While
A2 is running, B2 simulates the oracles as follows:

Random oracle F(.): B2 simulates this oracle as B1 did.

Random oracle G(.): B2 receives the input y . If y = σ̃n then B2 returns b∗
$← {0,1} and

aborts the experiment. Else, if there exists (y ′,Y′) ∈ GLIST such that y = y ′ then it re-
turns Y′. Else it picks Y

$←C , adds (y,Y) to the list GLIST and returns Y.

Random oracle H(.): B2 receives the input z. If z is queried by A2 and there exists a bit
string α such that z = s||α, then B2 returns b∗

$← {0,1} and aborts the experiment. Else,
if there exists (z ′,Z′) ∈ HLIST such that z = z ′ then it returns Z′. Else it picks Z

$← {0,1}2·k ,
adds (z,Z) to the list HLIST and returns Z.

Oracle Encsst∗· (·): Using the input (pk,m) and the random oracles F(.), G(.) and H(.), B1 runs
the algorithm Encsst∗

pk (m) to compute cl . It increments l and returns cl .

Finally, B2 returns b∗ = b′.

Analysis: We remark that if B does not abort the experiment, then this experiment is perfectly
simulated for A . In this case, B wins its experiment if and only if A wins its experiment. Let E1

and E2 be the two following events:

• E1 = "B2 aborts during the simulation of the oracle H(.)"

• E2 = "B2 aborts during the simulation of the oracle G(.)"

The probability that A2 sends the query z = s||α to the oracle H(.) is lower than the probability
that it guesses s. Since A does not know any information about s, this probability is lower than
the probability that it guesses s at random. Let qH be the number of queries to H(.), we deduce
that:

Pr[E1] ≤ qH

2k −qH

We observe that E2 ⇒¬E1: if B2 aborts on H(.) then it does not abort on G(.). ¬E1 implies that all
di for all i < l are random elements from A point of view. In this case, the values {σ̃i−1⊕F(σ̃i)}n<i≤l

are the only one information about σ̃n that A knows. Lemma 46 claims that for any integer n and

156

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

l , and for any polynomialy bounded number of queries to the random oracle G(.), the probability
ε(k) to guess σ̃n using {σ̃i−1 ⊕F(σ̃i)}n<i≤l is negligible . We deduce that:

Pr[E2] ≤ ε(k)

We set E = "B does not abort". We set ε′(k) = Pr[E]. Note that E = (E1 or E2). We deduce:

ε′(k) = Pr [E] ≤Pr [E1]+Pr [E2] ≤ qH

2k −qH
+ε(k)

We deduce that ε′(k) is negligible. From previous results, we observe:

Pr
[

1 ←ExpIND-CPA
RE,B (k)

]
= Pr[b = b∗]

= Pr[E] ·Pr[b = b∗|E]+Pr[¬E] ·Pr[b = b∗|¬E]

= Pr[E] ·Pr[b = b∗|E]+ (1−Pr[E]) ·Pr[b = b ∗|¬E]

= ε′(k) · 1

2
+ (

1−ε′(k)
) ·Pr[1 ←ExpOT-IND-CPA′

GAPO,A (k)]

= ε′(k) ·
(

1

2
−Pr[1 ←ExpOT-IND-CPA′

GAPO,A (k)]

)
+Pr[1 ←ExpOT-IND-CPA′

GAPO,A (k)]

Finally:

AdvIND-CPA
RE,B (k) =

∣∣∣∣Pr
[

1 ←ExpIND-CPA
RE,B (k)

]
− 1

2

∣∣∣∣
=

∣∣∣∣ε′(k) ·
(

1

2
−Pr[1 ←ExpOT-IND-CPA′

GAPO,A (k)]

)
+Pr[1 ←ExpOT-IND-CPA′

GAPO,A (k)]− 1

2

∣∣∣∣
≥ λ(k)−ε′(k) ·λ(k)

This advantage is non-negligible, which contradicts our hypothesis and concludes the proof. �

Lemma 49 Let ExpOT-IND-CPA′′
E,A (k) be the same experiment as ExpOT-IND-CPA

E,A (k) except that A2 does

not access to the oracle Extsst∗· (·, ·). If RE is IND-CPA then for all A ∈ POLY(k)2 there exists a negligible
function ε(k) such that: ∣∣∣∣Pr

[
1 ←ExpOT-IND-CPA′′

GAPO,A (k)
]
− 1

2

∣∣∣∣ = ε(k)

Proof: We assume there exists a polynomial time adversary A and a non negligible function λ

such that: ∣∣∣∣Pr
[

1 ←ExpOT-IND-CPA′′
GAPO,A (k)

]
− 1

2

∣∣∣∣ = λ(k)

We show how to construct an adversary B = (B1,B2) ∈ POLY(k)2 such that AdvIND-CPA
RE,B (k) is non

negligible:

Algorithm B1(set,pk∗): It runs sst∗ ← Ini(set) and parses sst∗ = (s, σ̂0, σ̃0). It initializes two coun-
ters n = 1 and l = 1, and three empty lists FLIST, GLIST and HLIST. Then it runs (st,m0,m1) ←
A1(set,pk∗). While A1 is running, B1 simulates the oracles as follows:

Random oracle F(.): B1 receives the input x. If there exists (x ′,X′) ∈ FLIST such that x = x ′

then it returns X′. Else it picks X
$← {0,1}k , adds (x,X) to the list FLIST and returns X.

Random oracle G(.): B1 receives the input y . If there exists (y ′,Y′) ∈ GLIST such that y = y ′

then it returns Y′. Else it picks Y
$←C , adds (y,Y) to the list GLIST and returns Y.

Random oracle H(.): B1 receives the input z. If z is queried by A1 and there exists a bit
string α such that z = s||α, then B1 aborts the experiment. Else, if there exists (z ′,Z′) ∈
HLIST such that z = z ′ then it returns Z′. Else it picks Z

$← {0,1}2·k , adds (z,Z) to the list
HLIST and returns Z.

157

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Oracle Encsst∗· (·): Using the input (pk,m) and the random oracles F(.), G(.) and H(.), B1 runs
the algorithm Encsst∗

pk (m) to compute cl . It increments l and n and returns cl .

B1 picks σ̂n , σ̃n
$← {0,1}k and m̂

$← {0,1}|m0|. It computes m̃0 = m0 ⊕m̂ and m̃1 = m1 ⊕m̂. Us-
ing sst∗ = (s, σ̂n−1, σ̃n−1) and the random oracles F(.) and G(.), it sets M0 = m̂0||(σ̂n ⊕F(σ̂n−1))
and M1 = m̃1||(σ̂n ⊕F(σ̂n−1)). It runs c̃n ← REncpk∗(m̂||(σ̃n−1 ⊕F(σ̃n)),G(σ̃n)) and returns
(st,M0,M1) to the challenger.

Algorithm B2(st, ĉn): If there does not exist (z∗,Z∗) ∈ HLIST such that z∗ = (s||ĉn ||c̃n), then B2 picks
Z∗

$← {0,1}2·k , sets z∗ = (s||ĉn ||c̃n) and adds (z∗,Z∗) to the list HLIST. It then computes dn =
(σ̂n−1||σ̃n)⊕Z and cn = (ĉn , c̃n ,dn), and it increments l . B2 then runs b′ ← A1(st,pk∗,cn)
While A1 is running, B2 simulates the oracles as follows:

Random oracle F(.): B2 simulates this oracle as B1 did.

Random oracle G(.): B2 receives the input y . If y = σ̂n−1 then B2 picks b∗
$← {0,1} returns

b∗ and aborts the experiment. Else, if there exists (y ′,Y′) ∈ GLIST such that y = y ′ then it
returns Y′. Else it picks Y

$←C , adds (y,Y) to the list GLIST and returns Y.

Random oracle H(.): B2 receives the input z. If z is queried by A2 and there exists a bit
string α such that z = s||α, then B2 picks b∗

$← {0,1} returns b∗ and aborts the experi-
ment. Else, if there exists (z ′,Z′) ∈ HLIST such that z = z ′ then it returns Z′. Else it picks
Z

$← {0,1}2·k , adds (z,Z) to the list HLIST and returns Z.

Oracle Encsst∗· (·): Using the input (pk,m) and the random oracles F(.), G(.) and H(.), B1 runs
the algorithm Encsst∗

pk (m) to compute cl . It increments l and returns cl .

Oracle Extsst∗· (·, ·): Using the input (pko,c ′i ′ ,c ′j ′) and the oracle H(.), if there exists i , j ∈ N
such that i ≤ n ≤ j and ci = c ′i ′ and c j = c ′j ′ , then B2 returns ⊥, else B2 runs the algo-

rithm Ki ′→ j ′ ←Extsst∗
pko (c ′i ′ ,c ′j ′) and returns Ki ′→ j ′ .

Finally, B2 returns b∗ = b′.

Analysis: We remark that if B does not abort the experiment, then this experiment is perfectly
simulated for A . In this case, B wins its experiment if and only if A wins its experiment. Let E1

and E2 be the two following events:

• E1 = "B2 aborts during the simulation of the oracle H(.)"

• E2 = "B2 aborts during the simulation of the oracle G(.)"

The probability that A2 sends the query z = s||α to the oracle H(.) is lower than the probability
that it guesses s. Since A does not know any information about s, this probability is lower than
the probability that it guesses s at random. Let qH be the number of queries to H(.), we deduce
that:

Pr[E1] ≤ qH

2k −qH

We observe that E2 ⇒¬E1: if B2 aborts on H(.) then it does not abort on G(.). ¬E1 implies that all
di for all i < l are random elements from A point of view. In this case, the values {σ̂i⊕F(σ̂i−1)}1≤i<n

are the only one information about σ̂n−1 that A knows. Lemma 47 claims that for any integer n
and l , and for any polynomialy bounded number of queries to the random oracle G(.), the proba-
bility ε(k) to guess σ̂n−1 using {σ̂i ⊕F(σ̂i−1)}1≤i<n is negligible . We deduce that:

Pr[E2] ≤ ε(k)

We set E = "B does not abort". We set ε′(k) = Pr[E]. We have E = (E1 or E2). We deduce:

ε′(k) = Pr [E] ≤Pr [E1]+Pr [E2] ≤ qH

2k −qH
+ε(k)

158

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

We deduce that ε′(k) is negligible. From previous results, we deduce:

Pr
[

1 ←ExpIND-CPA
RE,B (k)

]
= Pr[b = b∗]

= Pr[E] ·Pr[b = b∗|E]+Pr[¬E] ·Pr[b = b∗|¬E]

= Pr[E] ·Pr[b = b∗|E]+ (1−Pr[E]) ·Pr[b = b ∗|¬E]

= ε′(k) · 1

2
+ (

1−ε′(k)
) ·Pr[1 ←ExpOT-IND-CPA′′

GAPO,A (k)]

= ε′(k) ·
(

1

2
−Pr[1 ←ExpOT-IND-CPA′′

GAPO,A (k)]

)
+Pr[1 ←ExpOT-IND-CPA′′

GAPO,A (k)]

Finally:

AdvIND-CPA
RE,B (k) =

∣∣∣∣Pr
[

1 ←ExpIND-CPA
RE,B (k)

]
− 1

2

∣∣∣∣
=

∣∣∣∣ε′(k) ·
(

1

2
−Pr[1 ←ExpOT-IND-CPA′′

GAPO,A (k)]

)
+Pr[1 ←ExpOT-IND-CPA′′

GAPO,A (k)]− 1

2

∣∣∣∣
≥ λ(k)−ε′(k) ·λ(k)

This advantage is non-negligible, which contradicts our hypothesis and concludes the proof.
�

Theorem 31 Let RE be an IND-CPA secureRCD-PKE, thenGAPO instantiated by RE isOT-IND-CPA
secure in the random oracle model.

Proof: This theorem is a direct consequence of Lemma 48 and 49: Let A be an adversary against
APO-PKE. During the experiment ExpOT-IND-CPA

APO-PKE,A (k), if A chooses to call oracle OCPA
ext in the first

phase then his advantage is negligible. However, if A chooses to call oracle OCPA
ext in the second

phase then his advantage is also negligible. Thus, we can conclude that AdvOT-IND-CPA
APO-PKE,A (k) is neg-

ligible.
�

7.4.3 IND-CSPA Security

In this section we show that GAPO is IND-CSPA secure.

Lemma 50 Let k be a security parameter, and µ be a positive integer. Let RE = (RSet,RGen,REnc,
RDec) be a random coin decryptable public key encryption that is IND-CPAt (k) secure for any poly-

nomial t . We instanciate GAPO by RE. For any algorithm A , let the experiment Expµ-IND-CSPA′

GAPO,A (k)

(resp. the advantage Advµ-IND-CSPA′

GAPO,A (k) and the advantage Advµ-IND-CSPA′

GAPO (k)) be the same expermi-

ment as Expµ-IND-CSPA
GAPO,A (k) (resp. the same advantages as Advµ-IND-CSPA

GAPO,A (k) and Advµ-IND-CSPA
GAPO (k))

except that:

• K(n+1)→(n+q) is computed as follows: the experiment picks γ
$← M and r

$← C , and runs
K(n+1)→(n+q) ←REncpko(γ,r).

• Extsst∗
pko∗

(·, ·) is replaced by the following oracle:

R−Extsst∗
pko∗

(·, ·): This oracle takes as input a public key pko and two ciphertexts c ′ and c ′′. It

picks γ
$←M and r

$←C , and runs K ←REncpko(γ,r). It returns K.

If Advµ-IND-CSPA′

GAPO (k) is negligible then Advµ-IND-CSPA
GAPO (k) is negligible.

159

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Proof: Let k be a security parameter, and µ be a positive integer. Assume that there exists an
algorithm A ∈ POLY(k)2, a negligible function ε and a non-negligible function λ such that:

Advµ-IND-CSPA′

GAPO (k) ≤ ε(k)

Advµ-IND-CSPA
GAPO,A (k) ≥ λ(k)

We show how to build an algorithm B ∈ POLY(k) such that AdvIND-CPAt (k)

RE,B (k) is non-negligible for a
polynomial t .

Algorithm B(set,pko∗): It initializes three hash function F, G and G and sets set∗ = (set,F,G,H). It
runs sst∗ ← Ini(set) and runs:

(q, {m0,l }n<l≤n+q , {m1,l }n<l≤n+q , {pkl }n<l≤n+q ,st) ←A1(set∗,pko∗)

While A1 is running, B simulates the following oracles to A1.

Oracle Gen(set): On the first call to this oracle, it creates an empty list of public key K . In
any case, it runs (pk,sk) ←Gen(set∗) and adds pk to K . Then it returns pk. This oracle
can be called only µ times during the experiment.

Oracle Encsst∗
pko∗

(·): This oracle takes as input a public key pk and a message m. On the first

call to this oracle, it initializes a counter n := 1. Only in the first phase (i.e., while A1

is running), it increments the counter n. In any case, it runs cl ← Encsst∗
pk (m) and it

returns cl

Oracle Extsst∗· (·, ·): At the l th call, this oracle takes as input two ciphertexts c ′ and c ′′. This
algorithm parses sst∗ = (s, σ̂, σ̃), c ′ = (ĉi , c̃i ,di) and c ′′ = (ĉ j , c̃ j ,d j). Then it computes
(σ̂i−1||σ̃i) = di ⊕H(s||ĉi ||c̃i) and (σ̂ j−1||σ̃ j) = d j ⊕H(s||ĉ j ||c̃ j). It sets Ml ,0 = (σ̂i−1||σ̃ j) and

picks Ml ,1
$←M . B then sends (Ml ,0,Ml ,1) to the encryption oracle Encpko∗(LRb(·, ·),∗)

and receives Kl . It returns Kl to A1.

B then picks (b′,d)
$← {0,1}2. For all l ∈ �n +1,n +q�:

• If pkl = pko∗ or pkl ∈K , then it runs c∗l ←Encsst∗
pkl

(mb,l).

• Else, it runs ,c∗l ←Encsst∗
pkl

(md ,l).

B parses sst∗ = (s, σ̂n+q , σ̃n+q), cn+1 = (ĉn+1, c̃n+1,dn+1) and cn+q = (ĉn+q , c̃n+q ,dn+q), then it
computes:

(σ̂n ||σ̃n+1) = dn+1 ⊕H(s||ĉn+1||c̃n+1)

(σ̂n+q−1||σ̃n+q) = dn+q ⊕H(s||ĉn+q ||c̃n+q)

It sets M∗,0 = (σ̂n ||σ̃n+q) and picks Ml ,1
$← M . B sends (Ml ,0,Ml ,1) to the encryption oracle

Encpko∗(LRb(·, ·),∗) and receives K(n+1)→(n+q). Finally, B runs:

b′ ←A2(st,pko∗, {c∗l }n<l≤n+q ,K(n+1)→(n+q))

While A2 is running, B simulates the oracles as for A1. If (b′′ = b′), then B returns b∗ = 0,
else it returns b∗ = 1.

Analysis: B wins the experiment if and only if b∗ = b. Let qext be the number of calls to the oracle

160

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Extsst∗· (·, ·):

Pr
[

1 ←ExpIND-CPAqext+1

RE,B (k)
]

= Pr[b∗ = b]

= Pr[b = 0] ·Pr[b∗ = b|b = 0]+Pr[b = 1] ·Pr[b∗ = b|b = 1]

=
1

2
· (Pr[b∗ = b|b = 0]+Pr[b∗ = b|b = 1])

=
1

2
· (Pr[b∗ = 0|b = 0]+Pr[b∗ = 1|b = 1])

=
1

2
· (Pr[b′′ = b′|b = 0]+Pr[b′′ = b′|b = 1]

)
=

1

2
·
(
Pr

[
1 ←Expµ-IND-CSPA

GAPO,A (k)
]
+

[
1 ←Expµ-IND-CSPA′

GAPO,A (k)
])

We deduce the advantage of B:

AdvIND-CPAqext+1

RE,B (k) =

∣∣∣∣1

2
− 1

2
·
(
Pr

[
1 ←Expµ-IND-CSPA

GAPO,A (k)
]
+

[
1 ←Expµ-IND-CSPA′

GAPO,A (k)
])∣∣∣∣

≥ λ(k)−ε(k)

2

This advantage is non-negligible, which concludes the proof. �

Lemma 51 Let k be a security parameter, and µ be a positive integer. Let RE = (RSet,RGen,REnc,
RDec) be a random coin decryptable public key encryption. We instanciate GAPO by RE. If RE is

IND-CPA(t (k),µ+1) secure for any polynomial t , then Advµ-IND-CSPA′

GAPO (k) is negligible in the random
oracle model.

Proof: Assume that there exists A ∈ POLY(k)2 such that λ(k) = Advµ-IND-CSPA′

GAPO,A (k) is negligible. We

show how to build B ∈ POLY(k) such that there exists a polynomial t such that AdvIND-CPA(t (k),µ+1)

RE,B (k)
is negligible.

Algorithm B(set,pk0, . . .pkµ): B initializes three random oracles F, G and H. It sets set′ = (set,F,G,H)
and pko∗ = pk0. It runs sst∗ ← Ini(set′). It initializes an empty set S := ;, a counter θ := 0 and
three empty lists FLIST, GLIST and HLIST. It runs:

(q, {m0,l }n<l≤n+q , {m1,l }n<l≤n+q , {pk′l }n<l≤n+q ,st) ←A1(set,pko∗)

It simulates the oracles to A1 as follows:

Random oracle F(.): B receives the input x. If there exists (x ′,X′) ∈ FLIST such that x = x ′

then it returns X′. Else it picks X
$← {0,1}k , adds (x,X) to the list FLIST and returns X. If

the oracle has been called by A1, then B updates S := S ∪ {x}.

Random oracle G(.): B receives the input y . If there exists (y ′,Y′) ∈ GLIST such that y = y ′

then it returns Y′. Else it picks Y
$← C , adds (y,Y) to the list GLIST and returns Y. If the

oracle has been called by A1, then B updates S := S ∪ {y}.

Random oracle H(.): B receives the input z. If there exists (z ′,Z′) ∈ HLIST such that z = z ′

then it returns Z′. Else it picks Z
$← {0,1}2·k , adds (z,Z) to the list HLIST and returns Z. If

the oracle has been called by A1, then B updates S := S ∪ {z}.

Oracle Gen(set): At the l th call, it returns pkl .

Oracle Encsst∗
pko∗

(·): This oracle takes as input a public key pk and a message m. It parses

sst∗ = (s, σ̂θ, σ̃θ). It picks m̂ ← {0,1}|m| and computes m̃ = m̂ ⊕m. It picks σ̂θ+1
$← {0,1}k

161

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

and σ̃θ+1
$← {0,1}k . Using the random oracles F, G and H, it computes:

x̂ = (m̂||(σ̂thet a+1 ⊕F(σ̂θ)))

x̃ = (m̃||(σ̃θ⊕F(σ̃thet a+1)))

ĉ ←REncpk(x̂,G(σ̂θ))

c̃ ←REncpk(x̃,G(σ̃θ+1))

d = (σ̂θ||σ̃θ+1)⊕H(s||ĉ||c̃)

It updates sst∗ = (s, σ̂θ+1, σ̃θ+1). It returns c = (ĉ, c̃,d).

Oracle R−Extsst∗· (·, ·): It takes as input a public key pko and two ciphertexts c ′ and c ′′. It

picks γ
$←M and r

$←C , and runs K ←REncpko∗(γ,r). It returns K.

B picks d
$← {0,1}. For all l ∈ �n +1,n +q�, it parses sst∗ = (s, σ̂θ, σ̃θ). It picks m̂l ← {0,1}|ml |

and computes m̃l = m̂l ⊕ml . It picks σ̂θ+1
$← {0,1}k and σ̃θ+1

$← {0,1}k :

• If pk′l ∈ {pkl ′}0≤l ′≤µ, then it computes, using the random oracles F, G and H:

x̂l = (m̂l ||(σ̂θ+1 ⊕F(σ̂θ)))

x̃l = (m̃l ||(σ̃θ⊕F(σ̃θ+1)))

It sends x̂l to the oracle Encpk′
l
(LRb(·, ·),∗) and receives ĉl , then it sends x̃l to the oracle

Encpk′
l
(LRb(·, ·),∗) and receives c̃l . It computes dl = (σ̂θ||σ̃θ+1)⊕H(s||ĉl ||c̃l). It sets c∗l =

(ĉl , c̃l ,dl) and updates θ := θ+1.

• Else, it uses the oracle Encsst∗
pko∗

(·) on (pk′l ,ml) and obtains c∗l .

B picks γ
$←M and r

$←C , and runs K(n+1)→(n+q) ←REncpko∗(γ,r). B then runs:

b′ ←A2(st,pko∗, {c∗l }n<l≤n+q ,K(n+1)→(n+q))

While A2 is running, B simulates the oracles as for A1. If there exists l ∈ �0,θ�, β ∈ {0,1}∗

and α ∈S such that α = σ̂l or α = σ̃l or α = s||β, then B picks b∗
$← {0,1}. Else it sets b∗ = b′. If

(b′′ = b′) then B returns b∗ = 0, else it returns b∗ = 1.

Analysis: Let the following event be:

E = "∃l ∈ �0,θ� and β ∈ {0,1}∗ and α ∈S such that α = σ̂l or α = σ̃l or α = s||β"

We set ε(k) = Pr[E]. Let qRO be the number of calls to the three random oracles.
The probability that A2 sends the query α = s||β to the random oracles is lower than the prob-

ability that it guesses s. Since A does not know any information about s, this probability is lower
than the probability that it guesses s at random in qRO queries. We deduce that:

Pr[∃β ∈ {0,1}∗ and α ∈S such that α = s||β] ≤ qRO

2k −qRO

For any l ∈ �0,θ�, since A does not know any information about σ̂l (resp. σ̃l) then the proba-
bility that A2 sends the query σ̂l (resp. σ̃l) to the random oracles is lower than the probability that
it guesses σ̂l (resp. σ̃l) at random in qRO queries. We deduce that:

Pr[∃α ∈S such that α = σ̂l] ≤ qRO

2k −qRO

Pr[∃α ∈S such that α = σ̃l] ≤ qRO

2k −qRO

162

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Using these equations, we evaluate ε(k).

ε(k) = Pr[E]

≤Pr[∃β ∈ {0,1}∗ and α ∈S such that α = s||β]

+Pr[∃l ∈ �0,θ� and α ∈S such that α = σ̂l]

+Pr[∃l ∈ �0,θ� and α ∈S such that α = σ̃l]

≤Pr[∃β ∈ {0,1}∗ and α ∈S such that α = s||β]

+
θ∑

l =0
Pr[∃α ∈S such that α = σ̂l]+

θ∑
l =0

Pr[∃α ∈S such that α = σ̃l]

≤ θ · qRO

2k −qRO
+θ · qRO

2k −qRO
+ qRO

2k −qRO

≤ (2 ·θ+1) ·qRO

2k −qRO

It implies that ε(k) is negligible. We evaluate the probability that B wins the experiment:

Pr
[

1 ←ExpIND-CPA(q,µ+1)

RE,B (k)
]

= Pr[b∗ = b]

= Pr[E] ·Pr[b∗ = b|E]+Pr[¬E] ·Pr[b∗ = b|¬E]

= Pr[E] ·Pr[b∗ = b|E]+ (1−Pr[E]) ·Pr[b∗ = b|¬E]

= Pr[b∗ = b|¬E]+Pr[E] · (Pr[b∗ = b|E]−Pr[b∗ = b|¬E])

= Pr
[

1 ←Expµ-IND-CSPA′

GAPO,A (k)
]
+ε(k) ·

(
1

2
−Pr

[
1 ←Expµ-IND-CSPA′

GAPO,A (k)
])

We deduce the advantage of B:

AdvIND-CPA(q,µ+1)

RE,B (k) =

∣∣∣∣1

2
−Pr

[
1 ←ExpIND-CPA(q,µ+1)

RE,B (k)
]∣∣∣∣

=

∣∣∣∣1

2
−Pr[b∗ = b]

∣∣∣∣
≥ λ(k)−ε(k) ·λ(k)

This advantage is non-negligible, which concules the proof. �

Finally, we have the following theorem.

Theorem 32 Let k be a security parameter, and let RE be a random coin decryptable and IND-CPAt (k),t (k)

secure public key encryption scheme for any polynomials t and t ′. GAPO instantiated by RE is
IND-CSPA secure in the random oracle model.

Proof: Let k be a security parameter, and µ be a positive integer. Let RE be a random coin de-
cryptable and IND-CPAt (k),t (k) secure public key encryption scheme for any polynomials t and t ′.
We instanciate GAPO by RE. Lemma 51 show that Advµ-IND-CSPA′

GAPO (k) is negligible in the random
oracle model. We deduce that GAPO instantiated by RE is IND-CSPA secure in the random oracle
model using Lemma 50. �

7.4.4 Integrity

We show that GAPO satisfies the integrity property.

Theorem 33 Let RE be a RCD and VK PKE. GAPO instantiated by RE satisfies the integrity prop-
erty.

163

CHAPTER 7. HOW TO DELEGATE DECRYPTIONS ON A TIME INTERVAL

Proof: Assume that AdvIntegrityGAPO (k) 6= 0 then there exists an adversary that breaks the integrity of
GAPO with non-null probability. It implies that there exists a setup set and a tuple

(N,{cl }1≤l≤N, {pkl }1≤l≤N, x,skx , i , j ,Ki→ j)

such that there exists a tuple (mi , . . . ,m j) such that:

{ml }i≤l≤ j = Opesk∗(K
pk∗
i→ j , {cl }i≤l≤ j , {pkl }i≤l≤ j)

Ver(pkx ,skx) = 1

mx 6= Decskx
(Cx)

We parse cl = (ĉx ||c̃x ||dx). There exists R̂, R̃, m̃x , m̂x , α̃ and α̂ such that:

mx = m̃x ⊕m̂x

(m̂x ||α̂) ←RCDecR̂(ĉx ,pkx)

(m̃x ||α̃) ←RCDecR̃x
(c̃x ,pkx)

ĉx ←REncpkx
((m̂x ||α̂), R̂)

c̃x ←REncpkx
((m̃x ||α̃), R̃)

Thus, for any m′
x ←Decskx

(cx), we have:

(m̂x ||σ̂x) ←Decskx
(ĉx)

(m̃x ||σ̃x) ←Decskx
(c̃x)

because RE is correct and (pkx ,skx) is a valid key pair. Finally, m′
x = m̂x ⊕ m̃x = mx , which contra-

dicts that mx 6= Decskx
(Cx). We conclude that AdvIntegrityGAPO (k) = 0, thus GAPO instantiated with any

verifiable key public key encryption satisfies the integrity property.
�

7.5 Conclusion

We introduce the notion of RCD-PKE. Based on this notion, we propose an a posteriori open-
able PKE (APO-PKE) scheme. Our scheme allows a user to prove his innocence by showing to a
judge the content of his encrypted communication with several PKE during a period of time. Our
construction preserves the privacy of the others communications, meaning that the judge cannot
learn any information concerning the other encrypted messages. Moreover the receivers of the
encrypted messages cannot collude in order to learn more information that is contained in the
received messages. Our construction is proven secure in the Random Oracle Model and is generic
because it only requires RCD-PKE and hash functions.

In the future, we aim at proving that is not possible to have a secure construction that sup-
ports several generations of interval key with constant size interval-key and stored data (state).
Another future work is to design a security model for chosen-ciphertext security of APO-PKE and
to provide a generic construction that achieves this higher security. Finally, it may be interesting
to design such a scheme in the standard model.

164

Chapter 8

Conclusion

In this thesis, we presented several new cryptographic protocols. These protocols have innovative
mechanisms for secure delegation of rights. They have practical applications in the protection of
sensitive dematerialized data and in the protection of the user’s privacy. Each studied primitive
and each studied security property was formally modelized. Using these models, we rigorously
proved the security properties of our protocols.

Our first contribution was to define security models and protocols for proxy re-proof primi-
tives. This primitive allows a server to transform a proof of the delegator secret knowledge into a
proof of the delegate secret knowledge. We showed that this primitive allows a company to manage
the access rights of its employees to different services in a practical, simple, efficient and secure
way.

We first showed that the security of the only proxy re-proof protocol of the literature is inad-
equate for practical use. We then formally defined four proxy re-proof families: bidirectional inter-
active, unidirectional interactive, bidirectional non-interactive, and unidirectional non-interactive.
Each of these families gives a different trade-off in terms of efficiency, communication cost and
security. We defined five security properties for these primitives: correctness, soundness, validity,
zero-knowledge and secret security. Finally, each of these families was instantiated with a concrete
protocol.

Our second contribution was about verifiable private polynomial evaluations. We first gave
a cryptanalysis of two protocols of the literature. We then showed that the security models of
this primitive were not realistic for some applications. Particularly, these models assumed that
the polynomial was chosen randomly, which is not always true. We gave an application for this
primitive to private evaluations of prediction functions where the security models of literature
were insufficient. We defined a security model for verifiable private polynomial evaluation that
are more realistic for such applications. In these models, an opponent must distinguish which
polynomial is used by the server among two polynomials of his choice. Finally, we designed a
scheme that is secure in these models.

We then defined a security model for verifiable ring signatures. In this primitive, any user can
sign messages anonymously within a group. Moreover, this user can prove whether he is the signer
of a given message. We added the following property to this primitive: a user can also prove that
he is not the signer of a given message. We then defined formal security models for verifiable ring
signatures. Finally, we designed a scheme based on the decisional Diffie-Hellman assumption.

Our fourth contribution was the design of a sanitizable signature scheme. This scheme is
generic and uses verifiable ring signatures. This scheme is unlinkable, which means that it is not
possible to link the sanitized signature to the original one. Our scheme is the most efficient of the
literature in terms of computation time.

Finally, we defined a primitive called a posteriori openable public key encryption. This prim-
itive allows the user who encrypts the messages to generate an interval key, which allows a dele-
gate to open all messages that was encrypted during a chosen interval of time. We showed that
this primitive can be used during a trial to reveal some of the emails sent by the accused without

165

CHAPTER 8. CONCLUSION

compromising other emails.
Throughout this thesis, we proposed several problems that have not been solved yet. At the

end of each chapter, we highlighted these open problems.
First, some protocols proposed in this thesis are in the random oracle model: the non-interactive

proxy re-proof protocols, the verifiable private polynomial evaluation protocol, the verifiable ring
signature scheme, and the a posteriori openable public key encryption scheme. This security
model is not optimal, so we would like, in the future, to design equivalent protocols in the standard
model.

The proxies re-proof provide new challenges in the field of proxy re-cryptography. In this the-
sis, we focused on proofs of knowledge based on number-theory based algorithmic problems. In
the future, it would be interesting to design proxies re-proof from proofs of knowledge based on
other algorithmic problems. For example, we know how to build proofs of knowledge for any NP
problem, hence it would be interesting to show if it is possible to design proxies re-proof that
transform a proof of knowledge for some NP problem into another proof for another NP problem.

In the chapter about verifiable private polynomial evaluation, we showed two schemes that
are secure in the chosen function attack model. In the first scheme, the size of the verification key
and the complexity of the verification algorithm are constant, however, this scheme uses bilinear
pairings, which require time-consuming operations. Moreover, this scheme is based on a non-
standard assumption. The second scheme does not use pairings and is based on the decisional
Diffie-Hellman assumption, however, the size of the verification key and the complexity of the
verification algorithm are linear in the degree of the polynomial. We let as an open problem the
design of a scheme based on a standard assumption, without pairing and where the size of the
keys and the computational complexity are constant.

Another open problem is the design of a scheme that supports the multiple generation of in-
terval keys for a posteriori openable public key encryption. The scheme that we proposed in this
thesis allows the user to generate only one key interval. Indeed, if the user generates two interval
keys for two disjoint intervals, the opener will be able to decrypt all the messages sent between
these two intervals. In the future, we would like to design a scheme that remains secure even if the
user generates several interval keys.

Finally, we would like to investigate the design of anonymous proxy re-signature protocols. In
this thesis we showed how to build a zero-knowledge proof of knowledge of the discrete logarithm
of an element among a set of n elements. We showed how to use such a proof to design ring
signature schemes. It would be interesting to design proxy re-proof protocols for this kind of proof
of knowledge. These proxies re-proof protocols would be used to transform a proof of knowledge
of one element among a set of n elements into a proof of knowledge of one element among another
set of m elements for two integers n and m possibly different. Such a proxy re-proof protocol could
be used to design ring proxy re-signature protocols: the proxy would transform an anonymous
signature within a users group into another anonymous signature within another group. This new
primitive could be used in the cases where a user group wants to delegate its ability to sign to
another group.

In conclusion, the works presented in this manuscript solve some concrete problems of secure
delegation of rights in public key cryptography primitives. Nevertheless, some protocols can still
be improved in terms of functionality, security and efficiency. Thereby, this thesis leaves some
open problems and future works perspectives in the field of cryptography applied to the delega-
tion of rights.

166

Bibliography

[ABR98] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHIES: an encryption scheme
based on the Diffie-Hellman problem. Contributions to IEEE P1363a, 1998. 22

[ACdMT05] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable
signatures. In ESORICS 2005. LNCS. Springer, 2005. 116, 117, 119

[AES01] Advanced encryption standard (aes). National Institute of Standards and Technology
(NIST), FIPS PUB 197, U.S. Department of Commerce, 2001. 2

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. In
NDSS 2005. The Internet Society, 2005. 32

[AH05] Giuseppe Ateniese and Susan Hohenberger. Proxy re-signatures: New definitions,
algorithms, and applications. In ACM CCS 05. ACM Press, 2005. 32, 35, 36

[ASY06] Man Ho Au, Willy Susilo, and Siu-Ming Yiu. Event-oriented k-times revocable-iff-
linked group signatures. In ACISP 06. LNCS. Springer, 2006. 10, 95, 99

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EURO-
CRYPT 2004, LNCS. Springer, 2004. 17

[BBD+10] Christina Brzuska, Heike Busch, Oezguer Dagdelen, Marc Fischlin, Martin Franz, Ste-
fan Katzenbeisser, Mark Manulis, Cristina Onete, Andreas Peter, Bertram Poettering,
and Dominique Schröder. Redactable signatures for tree-structured data: Definitions
and constructions. In ACNS 2010. LNCS. Springer, 2010. 119

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a
multi-user setting: Security proofs and improvements. In EUROCRYPT 2000, LNCS.
Springer, 2000. 21

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently
searchable encryption. In CRYPTO 2007, LNCS. Springer, 2007. 3

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT’98, LNCS. Springer, 1998. ix, 32, 35, 36, 37, 38, 67

[BC05] Ian F. Blake and Aldar C-F. Chan. Scalable, server-passive, user-anonymous timed
release public key encryption from bilinear pairing. ICDS, IEEE Computer Society
Press, 2005. 145

[BDG+17] Xavier Bultel, Manik Lal Das, Hardik Gajera, David Gérault, Matthieu Giraud, and
Pascal Lafourcade. Verifiable private polynomial evaluation. In ProvSec 17. LNCS.
Springer, 2017. 6

[BDZ03] Feng Bao, Robert H. Deng, and HuaFei Zhu. Variations of diffie-hellman problem. In
ICICS 03, 2003. 17

167

BIBLIOGRAPHY

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pair-
ing. In CRYPTO 2001, LNCS. Springer, 2001. 144

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page,
Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable sig-
natures revisited. In PKC 2009, LNCS. Springer, 2009. 117, 119, 121, 122, 123, 124

[BFLS10] Christina Brzuska, Marc Fischlin, Anja Lehmann, and Dominique Schröder. Unlink-
ability of sanitizable signatures. In PKC 2010, LNCS. Springer, 2010. 116, 117, 118,
119

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In CRYPTO 1992
[CRY93]. 23

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger defini-
tions, and constructions without random oracles. In TCC 2006, LNCS. Springer, 2006.
95

[BL16] Xavier Bultel and Pascal Lafourcade. A posteriori openable public key encryption. In
ICT Systems Security and Privacy Protection. LNCS. Springer, 2016. 6, 7

[BL17a] Xavier Bultel and Pascal Lafourcade. Unlinkable and strongly accountable sanitizable
signatures from verifiable ring signatures. In CANS 2017. LNCS. Springer, 2017. 6, 7

[BL17b] Xavier Bultel and Pascal Lafourcade. Zero-knowledge proxy re-identification revis-
ited. Cryptology ePrint Archive, Report 2017/112, 2017. https://eprint.iacr.

org/2017/112. 6

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, Vol. 17(4), 2004. 35

[Bon98] Dan Boneh. The decision diffie-hellman problem. In ANTS-III. LNCS. Springer, 1998.
17

[BPS13] Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. Non-interactive public ac-
countability for sanitizable signatures. In EuroPKI, 2013. 119

[BPS14] Christina Brzuska, Henrich C. Pöhls, and Kai Samelin. Efficient and perfectly un-
linkable sanitizable signatures without group signatures. In EuroPKI 2013. LNCS.
Springer, 2014. 119

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the fiat-shamir heuristic and applications to helios. In ASIACRYPT 2012.
LNCS. Springer, 2012. 24, 26

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93. ACM Press, 1993. 19

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC 2011, LNCS. Springer, 2011. 144

[CDNO97] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In CRYPTO’97.
LNCS. Springer, 1997. 144

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO’94, LNCS. Springer,
1994. 27

168

https://eprint.iacr.org/2017/112
https://eprint.iacr.org/2017/112

BIBLIOGRAPHY

[CHKO06] Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Timed-release
and key-insulated public key encryption. In FC 2006, LNCS. Springer, 2006. 145

[CJ10] Sébastien Canard and Amandine Jambert. On extended sanitizable signature
schemes. In CT-RSA 10. LNCS. Springer, 2010. 119

[CJL12] Sébastien Canard, Amandine Jambert, and Roch Lescuyer. Sanitizable signatures
with several signers and sanitizers. In AFRICACRYPT 12. LNCS. Springer, 2012. 119

[CKKC13] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable
computation. In TCC 2013. LNCS. Springer, 2013. 73

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In CRYPTO 2006.
LNCS. Springer, 2006. 99

[CLQ05] J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and non-interactive timed-release
encryption. In ICICS 05. LNCS. Springer, 2005. 145

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO
1992 [CRY93]. 25

[CP08] Sherman S. M. Chow and Raphael C.-W. Phan. Proxy re-signatures in the standard
model. In ISC 2008, LNCS. Springer, 2008. 32

[CPS14] Sébastien Canard, David Pointcheval, and Olivier Sanders. Efficient delegation of
zero-knowledge proofs of knowledge in a pairing-friendly setting. In PKC 2014, LNCS.
Springer, 2014. 37

[CRR12] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two protocols for delegation of com-
putation. In ICITS 2012 [ICI12]. 73

[CRY93] CRYPTO’92, LNCS. Springer, 1993. 168, 169

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, Vol. 33(1), 2003. 22

[CSST06] Sébastien Canard, Berry Schoenmakers, Martijn Stam, and Jacques Traoré. List sig-
nature schemes. Discrete Applied Mathematics, vol. 154(2), 2006. 10, 95, 99

[CYD06] Z. Changlun, L. Yun, and H. Dequan. A new verifiable ring signature scheme based
on nyberg-rueppel scheme. In Signal Processing 2006, 2006. 95

[Dan15] Quynh H. Dang. Secure hash standard. In Federal Inf. Process. Stds. (NIST FIPS). NIST
Pubs, 2015. 19

[DES77] Data encryption standard. National Bureau of Standards, NBS FIPS PUB 46, U.S. De-
partment of Commerce, 1977. 2

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, Vol. 22(6), 1976. 2, 16, 17, 28

[DKXY02] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems. In
EUROCRYPT 2002. LNCS. Springer, 2002. 145

[DRS17] David Derler, Sebastian Ramacher, and Daniel Slamanig. Homomorphic proxy re-
authenticators and applications to verifiable multi-user data aggregation. Cryptology
ePrint Archive, Report 2017/086, 2017. http://eprint.iacr.org/2017/086.pdf.
38

169

http://eprint.iacr.org/2017/086.pdf

BIBLIOGRAPHY

[DT07] Alexander W. Dent and Qiang Tang. Revisiting the security model for timed-release
encryption with pre-open capability. In ISC 2007, LNCS. Springer, 2007. 145

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, Vol. 31, 1985. 22

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th FOCS. IEEE Computer Society Press, 1987. 73, 86

[FG12] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and ma-
trix computations, with applications. In ACM CCS 12. ACM Press, 2012. 73

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In TCC 2005. LNCS. Springer, 2005. 74

[FKI06] Jun Furukawa, Kaoru Kurosawa, and Hideki Imai. An efficient compiler from sigma-
protocol to 2-move deniable zero-knowledge. In ICALP 2006, Part II, LNCS. Springer,
2006. 25

[FKM+16] N. Fleischhacker, J. Krupp, G. Malavolta, J. Schneider, D. Schröder, and M. Simkin. Ef-
ficient unlinkable sanitizable signatures from signatures with re-randomizable keys.
In PKC 2016. LNCS. Springer, 2016. xi, 119, 120, 137, 138

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In EUROCRYPT 04. LNCS. Springer, 2004. 74

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. Journal of Cryptology, Vol. 26(1), 2013. 22

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In SCN 08.
LNCS. Springer, 2008. 119

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO’86, LNCS. Springer, 1987. 26

[GA07] Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In ACNS
07, LNCS. Springer, 2007. 32

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC.
ACM Press, 2009. 3

[GFLL15] Linke Guo, Yuguang Fang, Ming Li, and Pan Li. Verifiable privacy-preserving moni-
toring for cloud-assisted mhealth systems. In INFOCOM. IEEE, 2015. vi, 69, 71, 72,
73, 74, 75, 76, 77, 79, 91, 92

[GGP10] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In CRYPTO 2010. LNCS. Springer, 2010. 73

[GH08] David Galindoa and Javier Herranz. On the security of public key cryptosystems with
a double decryption mechanism. Information Processing Letters, 108(5), November
2008. 21

[GHV08] Steven D. Galbraith, Florian Hess, and Frederik Vercauteren. Aspects of pairing inver-
sion. In Information Theory, IEEE Transactions, volume Vol. 54. IEEE, 2008. 18

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich:. How to run turing machines on encrypted data. In CRYPTO
2013. LNCS. Springer, 2013. 144

170

BIBLIOGRAPHY

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich:. Reusable garbled circuits and succinct functional encryption.
In 45th ACM STOC. ACM Press, 2013. 144

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, Vol. 28(2), 1984. 20

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing, Vol.
17(2), 1988. 28

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, Vol. 18(1), 1989. 4, 23, 24

[GND16] Hardik Gajera, Shruti Naik, and Manik Lal Das. On the security of “verifiable privacy-
preserving monitoring for cloud-assisted mhealth systems”. In ICISS. LNCS. Springer,
2016. vi, 69, 71, 72, 73, 74, 77, 79, 91, 92

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001. 13

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge, UK, 2004. 13

[GPR98] Oded Goldreich, Birgit Pfitzmann, and Ronald L. Rivest. Self-delegation with con-
trolled propagation - or - what if you lose your laptop. In CRYPTO’98, LNCS. Springer,
1998. 145

[HKS10] Fumitaka Hoshino, Tetsutaro Kobayashi, and Koutarou Suzuki. Anonymizable signa-
ture and its construction from pairings. In Pairing 2010. LNCS. Springer, 2010. 99

[HW10] Goichiro Hanaoka and Jian Weng. Generic constructions of parallel key-insulated
encryption. In SCN’10, 2010. 145

[HYL05] Y. H. Hwang, D. H. Yum, and P. J. Lee. Timed-release encryption with pre-open capa-
bility and its application to certified e-mail system. In ISC 2005. LNCS. Springer, 2005.
145

[ICI12] ICITS 12, LNCS. Springer, 2012. 169, 171

[ID03] Anca Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In NDSS 2003. The
Internet Society, 2003. 32, 35

[JMSW02] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic sig-
nature schemes. In CT-RSA 02. LNCS. Springer, 2002. 119

[Jou04] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptol-
ogy, Vol. 17(4), 2004. 17

[JSMM13] Hoda Jannati1, Mahmoud Salmasizadeh, Amir Javad Mohajeri, and Amir Moradi. In-
troducing proxy zero-knowledge proof and utilization in anonymous credential sys-
tems. In SCN 2013. LNCS. Springer, 2013. 38

[Kaf06] Franz Kafka. Der prozess. In Der Prozess. Anaconda Verlag, 2006. 116

[KKK08] Marek Klonowski, Przemysław Kubiak, and Mirosław Kutyłowski. Practical deniable
encryption. In SOFSEM 2008. LNCS. Springer, 2008. 144

171

BIBLIOGRAPHY

[KMR12] Marcel Keller, Gert Læssøe Mikkelsen, and Andy Rupp. Efficient threshold zero-
knowledge with applications to user-centric protocols. In ICITS 2012 [ICI12]. 37

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In CRYPTO 2004, LNCS. Springer, 2004. 37, 39

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomi-
als and their applications. In ASIACRYPT 2010. LNCS. Springer, 2010. ix, 70, 71, 73, 74,
77, 78, 84, 86, 90, 91, 92

[LHC10] Song Luo, Jian-bin Hu, and Zhong Chen. Ciphertext policy attribute-based proxy re-
encryption. In ICICS 10, LNCS. Springer, 2010. 32

[LP02] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Journal of Cryp-
tology, Vol. 15(3), 2002. 74

[LQY07] Benoît Libert, Jean-Jacques Quisquater, and Moti Yung. Parallel key-insulated public
key encryption without random oracles. In PKC 2007, LNCS. Springer, 2007. 145

[LV08a] Benoît Libert and Damien Vergnaud. Multi-use unidirectional proxy re-signatures. In
ACM CCS 08. ACM Press, 2008. 32

[LV08b] Benoît Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy
re-encryption. In PKC 2008, LNCS. Springer, 2008. 32

[LW03] Jiqiang Lv and Xinmei Wang. Verifiable ring signature. In CANS’03. DMS Proceedings,
2003. 94, 95

[LWH05] Kuo-Chang Lee Lee, Hsiang-An Wen, and Tzonelih Hwang. Convertible ring signa-
ture. IEEE Proceedings - Communications, Vol. 152(4), Aug 2005. 95

[LZCS16] Russell W. F. Lai, Tao Zhang, Sherman S. M. Chow, and Dominique Schröder. Efficient
sanitizable signatures without random oracles. In ESORICS 2016. LNCS. Springer,
2016. 119

[May93] T. May. Time-release crypto. Manuscript, 1993. 145

[MRK03] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th FOCS.
IEEE Computer Society Press, 2003. 71

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In STOC
’99. ACM, 1999. 73, 74

[OO90] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge interactive proofs and
commutative random self-reducibility. In EUROCRYPT’89, LNCS. Springer, 1990. 37,
39

[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable
computation. In 2013 IEEE S&P. IEEE, 2013. 73

[Pol78] John M. Pollard. A monte carlo method for index computation (mod p). In Mathe-
matics of Computation, volume Vol. 32. LNCS. Springer, 1978. 74, 76

[PQ10] Kenneth G. Paterson and Elizabeth A. Quaglia. Time-specific encryption. In SCN’10,
2010. 145

[PRV12] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in pub-
lic: Verifiable computation from attribute-based encryption. In TCC 2012. LNCS.
Springer, 2012. 73

172

BIBLIOGRAPHY

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In EU-
ROCRYPT’96, LNCS. Springer, 1996. 29

[PST13] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In TCC
2013. LNCS. Springer, 2013. 73

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining dig-
ital signature and public-key cryptosystems. Communications of the Association for
Computing Machinery, Vol. 21(2), 1978. 2

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In ASI-
ACRYPT 2001, LNCS. Springer, 2001. 94, 95

[SBZ02] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In
ICISC 2001. LNCS. Springer, 2002. 116

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO’89, LNCS. Springer, 1990. 25, 29

[SFZ+10] Jun Shao, Min Feng, Bin Zhu, Zhenfu Cao, and Peng Liu. The security model of
unidirectional proxy re-signature with private re-signature key. In ACISP 10, LNCS.
Springer, 2010. 32

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, Vol. 22(11), 1979. 26, 86

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/

2004/332. 22

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In EURO-
CRYPT 2005, LNCS. Springer, 2005. 144

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-times anonymous authentication
(extended abstract). LNCS. Springer, 2004. 92

[WMZW11] Shangping Wang, Rui Ma, Yaling Zhang, and Xiaofeng Wang. Ring signature scheme
based on multivariate public key cryptosystems. Computers and Mathematics with
Applications, vol. 62(10), 2011. 95

[WT99] Alma Whitten and J. D. Tygar. Why johnny can’t encrypt: A usability evaluation of pgp
5.0. In USENIX Security Symposium. USENIX Association, 1999. 142

173

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

	Contents
	List of Figures
	List of Tables
	Introduction
	A Little History
	Current Challenges
	Public Key Cryptography
	Design and Security Proofs
	Secure Delegation in Cryptography
	Proxy Re-cryptography
	Sanitizable Signatures
	Delegation of Computation

	Contributions
	Proxy Re-proof of Knowledge
	Verifiable Private Function Evaluation
	Sanitizable Signatures
	A Posteriori Openable Public Key Encryption

	Publications
	Presented in this Manuscript
	Other Publications

	Technical Introduction
	Mathematical Background
	Notations
	Cryptographic Assumptions
	Hash Function
	Formal Definition
	The Random Oracle Model

	Public Key Encryption
	Formal Definition
	Security Against Chosen Plaintext Attack
	Additional Properties
	ElGamal Encryption Scheme

	Proof of Knowledge
	Formal Definitions
	Schnorr Interactive Proof System
	An Interactive Proof System For Discrete Logarithm Equality
	Sigma Protocols
	The Fiat-Shamir Transformation
	The Cramer-Damgård-Schoenmakers Transformation

	Digital Signature
	Formal Definition
	Security Against Chosen Message Attacks
	Schnorr Signature

	Delegation of Authentication Using A Proxy
	Introduction
	Proxy Re-Cryptography
	Functionalities
	Applications
	Some Proxy Re-Cryptography Schemes
	Related Works
	Contributions

	Interactive Proxy Re-Proof
	Formal Definition
	Bidirectional Interactive Scheme
	Unidirectional Interactive Scheme

	Non-Interactive Proxy Re-Proof
	Formal Definition
	Bidirectional Non-interactive Scheme
	Unidirectional Non-interactive Scheme

	Schemes comparison
	Conclusion

	Verifiable Private Polynomial Evaluation
	Introduction
	Functionalities
	Security Goals
	Applications
	Contributions
	Related Works

	Cryptanalysis of GuoINFOCOM and GajeraICISS
	Inherent Limitation of Private Polynomial Evaluation
	Cryptanalysis of GuoINFOCOM and GajeraICISS

	Formal Definitions
	Private Polynomial Evaluation
	Polynomial Protection
	Chosen Function Attack
	Unforgeability
	Security Against Collusion Attacks

	PolyCommitPed Is IND-CFA Secure
	PIPE: an IND-CFA Secure Verifiable Private Polynomial Evaluation Scheme
	Feldman's Verifiable Secret Sharing
	 PIPE Description

	Security Proofs of PIPE
	Correctness
	IND-CFA Security
	Zero-Knowledge
	Unforgeability
	Security of PIPE

	Comparison of PIPE and PolyCommitPed
	CFA Security for Commitments to Polynomials
	Anonymous Private Polynomial Evaluation
	Conclusion

	Verifiable Ring Signature Revisited
	Introduction
	Functionalities
	Security Goals
	Contributions
	Related Works

	Formal Definitions
	Verifiable Ring Signature
	Unforgeability
	Anonymity
	Accountability
	Non-seizability

	EVeR: an Efficient Verifiable Ring Signature Scheme
	Proof of Equality of Two Discrete Logarithms Out of n Elements
	Our Scheme: EVeR

	Security Proofs of EVeR
	Correctness
	Unforgeability
	Anonymity
	Accountability
	Non-seizability
	Security of EVeR

	Algorithms Complexity
	Conclusion

	Unlinkable Sanitizable Signatures from Verifiable Ring Signature.
	Introduction
	Application in health Data Protection
	Functionalities
	Security Goals
	 Contributions
	 Related Works

	Formal Definitions
	Sanitizable Signature
	Immutability
	Transparency
	Unlinkablility
	Accountability
	Strong Accountability

	GUSS: an Unlinkable Sanitizable Signature Scheme
	Security proofs of GUSS
	Correctness
	Immutability
	Transparency
	Unlinkability
	Accountability
	Strong Accountability
	Security of GUSS

	Algorithms Complexity and Comparison
	Conclusion

	How to Delegate Decryptions on a Time Interval
	Introduction
	Functionalities
	Security Goals
	A Naive Solution
	Contributions
	Related Works

	Formal Definitions
	A Posteriori Openable Encryption
	IND-CPA Security
	IND-CSPA Security
	Integrity

	GAPO: a Generic A Posteriori Openable Encryption Scheme
	Informal Overview
	GAPO Description

	Security Proofs of GAPO
	Correctness
	IND-CPA Security
	IND-CSPA Security
	Integrity

	Conclusion

	Conclusion
	Bibliography

