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To my parents . . . Built on algorithm and hardware research axes, this thesis illustrates how Compressive Sensing can be exploited to design low-power sensor nodes with efficient on-chip decision making algorithms. After an overview of the fields of Compressive Sensing and Machine Learning with a particular focus on hardware implementations, this thesis presents four main contributions to study efficient sensing schemes and decision making approaches for the design of compact CMOS Image Sensor architectures. First, an analytical study explores the interest of solving basic inference tasks on CS measurements for highly constrained hardware. It aims at finding the most beneficial setting to perform decision making on Compressive Sensing based measurements. Next, a novel sensing scheme for CIS applications is presented. Designed to meet both theoretical and hardware requirements, the proposed sensing model is shown to be suitable for CIS applications addressing both image rendering and on-chip decision making tasks. On the other hand, to deal with on-chip computational complexity involved by standard decision making algorithms, new methods to construct a hierarchical inference tree are explored to reduce MAC (Multiply-ACcumulate) operations related to an on-chip multi-class inference task. This leads to a joint acquisition-processing optimization when combining hierarchical inference with Compressive Sensing. Finally, all the aforementioned contributions are brought together to propose a compact CMOS Image Sensor architecture

Résumé

Les avancés récents dans le domaine des capteurs d'image CMOS repose sur la remise en question du schéma classique d'acquisition et de traitement d'images, cela, afin de permettre des traitements avancés sur puce tels que la prise de décision. Malgré les réalisations rendues possibles grâce à l'utilisation des noeuds technologiques avancés et à l'intégration 3D, la conception de capteurs avec des capacités de prise de décision reste une tâche ardue en raison de la quantité de données acquise et à traiter, ainsi que du coût matériel que représente l'implémentation des algorithmes de prise de décisions classiques. Dans ce contexte, l'Acquisition Compressive (AC) semble une approche alternative pour inspecter des données en profitant de la réduction de dimensionnalité. Dans le cas où l'AC exploite des motifs générés à l'aide de structures matérielles compactes ayant un comportement pseudo-aléatoire, il permet une réduction considérable en réduisant les conversions analogique-numérique ainsi que du débit des données collectées, tout en conservant les informations pertinentes intrinsèques afin de permettre à la fois la reconstruction du signal ou bien son traitement dans sa nouvelle forme de représentation. Traditionnellement, l'AC a été exploité dans des applications de capteurs d'image pour des tâches de compression couplées à des algorithmes de reconstruction distants impliquant une complexité algorithmique élevée. Pour relâcher cette complexité, il apparaît dans la littérature des garanties théoriques solides pour effectuer le traitement du signal directement dans le domaine compressé sans perte significative de performance, ce qui constitue donc une nouvelle piste pour concevoir des noeuds de capteurs intelligents à basse consommation énergétique.

Basée sur des axes de recherche traitant de l'algorithmique et de l'implémentation matérielle, cette thèse étudie des voies de développement exploitant l'acquisition compressive pour concevoir des noeuds de capteurs dotés de capacités de prise de décision sur puce à basse consommation énergétique. Après une présentation du contexte matériel et algorithmique lié à l'acquisition compressive et les techniques d'apprentissage machine, la thèse présente quatre contributions principales pour optimiser les schémas d'acquisition du signal et des traitements associés dans le contexte des capteurs d'image CMOS. Dans un premier temps, une étude analytique explore l'intérêt de résoudre des tâches d'inférence à partir des mesures compressées pour des applications à forte contraintes matériels. L'objectif est d'identifier une approche pertinente en terme de complexité matérielle et algorithmique permettant d'implémenter des traitements de prise de décisions à partir de mesures compressées. Ensuite, un nouveau schéma d'acquisition compressive dédié aux applications imageurs CMOS est présenté. Conçu pour répondre à la fois aux exigences théoriques et matérielles, vi le modèle s'avère être approprié pour les capteurs qui traitent à la fois des tâches de rendu d'image et de prise de décision sur puce. D'autre part, pour réduire la complexité de calcul sur puce impliquée par les algorithmes de prise de décision standard, de nouvelles méthodes de construction d'arbres d'inférence hiérarchique sont explorées afin de réduire les opérations MAC (Multiply-ACcumulate) liées à une tâche d'inférence pour de la classification en classes multiples sur puce. Cela conduit à une optimisation conjointe traitement-acquisition lors de la combinaison de l'inférence hiérarchique avec l'acquisition compressive. Enfin, une architecture compacte d'un capteur d'image embarquant les contributions algorithmiques susmentionnées est présentée permettant la reconnaissance d'objets sur puce à faible empreinte matérielle. L'architecture proposée exploite principalement un mélangeur analogique permettant la permutation pseudo-aléatoire des pixels des lignes sélectionnées dans un mode de lecture en rolling shutter ; un convertisseur analogique-numérique Sigma-Delta (Σ∆) incrémental de premier ordre pour implémenter la modulation pseudo-aléatoire, la sommation des pixels mélangés ainsi que la conversion analogique-numérique ; et un petit processeur de signal numérique (DSP) pour implémenter la fonction affine de prise de décision. En plus de la réduction de dimension rendu possible grâce à l'AC, différentes optimisations matérielles sont présentées pour répondre aux exigences de la conception des futures capteurs CMOS dits ultra-basse consommation (∼ µW), à savoir, la réduction de la résolution des mesures compressées extraites ainsi que la résolution des opérations logiques au niveau du DSP.

Mots clefs : Capteur d'image CMOS, acquisition compressive, permutations aléatoires, modulations aléatoires, Sigma-Delta, apprentissage machine, inférence hiérarchique, machines à vecteurs de support, réseaux de neuronnes.

Notations

x, X denotes a scalar

x denotes a vector X denotes a matrix or a linear operator

x i denotes the i t h component of a vector x X i denotes the i t h column of a matrix X X i j denotes the entry on the i t h row and j t h column x , X denotes the transpose of a vector x or a matrix X X -1 denotes the inverse of a matrix X X † denotes the Moore-Penrose pseudoinverse of a matrix X defined as X † := X X -1 X N denotes the set of all natural numbers R denotes the set of all real numbers

[n] denotes the set of indices such that [n] := {1, . . . , n} I n denotes the n × n identity matrix 1 n denotes a n-dimensional vector with all entries equal to one 0 n denotes a n-dimensional vector with all entries equal to zero supp (x) denotes the support of a vector x ∈ R n , such that, supp (x) := {i ∈ [n] , x i = 0} sign (x) denotes the sign function that extracts the sign of a scalar x |x| denotes the absolute value of a scalar x

x p denotes the p norm of a vector x defined as x p := i |x| p 1 p for p 1

x 0 denotes the 0 norm of a vector x defined as the support of x, i.e., x 0 := supp (x) X F denotes the Frobenius norm of a matrix X defined as X F := 
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Chapter 1

Introduction

The last few years have witnessed the tremendous growth of the filed of CMOS Image Sensors (CIS). They are now ubiquitous in many disciplines of science and industry. Driven by consumer electronic products (e.g., mobile phones, tablets, gaming, cameras), the overall CIS market has reached $15.5 billion in 2018 with 12% Year-on-Year (YoY) growth as reported in Figure 1.1. This dynamic is expected to improve significantly in the next three years with 10% YoY growth as expected by Yole Développement, a market research and strategy consulting company. Yet, emerging applications such as ADAS (Advanced driver-assistance systems), drones and IP cameras could potentially reshape the current CIS landscape pushing the main CIS's players (e.g., Sony, Samsung, OmniVision) to suggest innovative approaches to meet the increasing needs in terms of CIS resolution, dynamic rage, wavelengths and more recently the ability to embed smart on-chip image processing and/or analysis, typically, with the democratization of machine learning tools. As widely discussed in the CIS literature, the current trend moves forward machine vision applications (e.g., object detection/avoidance/tracking, quality control). In such specific tasks, signal processing is essential to extract the most significant and interpretable information. However, designing such systems to handle large-scale data and extract meaningful informations involves considerable amount of computational and hardware resources limiting as a consequence their use for end-user applications. The main challenge consists then in the design of smart low-power compact imagers that seemingly involves to revisit the canonical image acquisition and processing pipeline.

In the conventional image acquisition and processing pipeline (cf., Figure 1.2), sensing and analysing an observed scene is achieved through the following steps [START_REF] Nakamura | Image sensors and signal processing for digital still cameras[END_REF]. First, the light rays reflected by the observed scene are focused on the image sensor using an imaging lens. The CIS chip is composed of an array of pixels and peripheral circuits. Based on the photoconversion phenomena enabled by each pixel photodiode, the accumulated charge or its equivalent voltage or current value are read out in a rolling shutter fashion (i.e., sequential line scanning) after a certain exposure time. Through this readout scheme, the quality of the sensed image is influenced by technological dispersions as well as pixels response nonuniformity. This nonideality is known formally by the Fixed-Pattern Noise (FPN) and generally modeled as an affine mapping of the pixels values. To handle the offset FPN, a Correlated Double Sampling (CDS) circuit is typically implemented at the end-of-column circuitry [START_REF] Sugiki | A 60 mW 10 b CMOS image sensor with column-tocolumn FPN reduction[END_REF]. Indeed, the pixel value is readout twice, at the reset and the end of the integration. This way, the pixel value at the reset is subtracted from the one after the integration allowing to suppress the offset PFN induced throughout the acquisition. The CDS output is then amplified and converted into a digital representation using an Analog-to-Digital Converter (ADC) [START_REF] Leñero-Bardallo | Review of ADCs for imaging. page 90220I[END_REF]. Furthermore, an on-chip microlens array is typically deposited on top of pixel array to collimate incident light to the photodiode that occupies a percentage of the pixel area known as the fill-factor. On the other hand, to perform color imaging, an on-chip Color Filter Array (CFA) is built above the pixel array to separate colors through a certain pattern (e.g., RGB Bayer filter). To recover a full color image, a demosaicking algorithm is typically used based on color interpolation. Further digital processing can be done, for instance, color correction for image enhancement; and image compression to reduce the amount of data to store or sent to a remote processing station. Finally, to perform scene analysis (e.g., pattern recognition, decision making), State-Of-The-Art (SOTA) machine learning algorithms can be used. However, designing compact machine vision systems with on-chip decision making capabilities will involve high on-chip complexity either at the hardware level (e.g., power consumption, memory needs) or algorithmic one due to digital operations involved by SOTA heavy algorithms. A relevant approach to overcome these limitations consists in exploring alternative signal acquisition schemes allowing to reduce on-chip constraints and perform low-power on-chip decision making processing, for instance, for always-on sensor nodes that trigger signal when detecting specific patterns in the image scene. In the last decade, a new signal acquisition scheme called Compressive Sensing (CS) has emerged as an alternative framework extending the classical Nyquist-Shannon sampling theorem. In the imaging context, CS is generally presented as a Dimensionality Reduction (DR) technique that maps a full-resolution image into a compressed vector. Since the early works in the field of CS, a deep theoretical study has been performed to highlight the interest of CS for sensor node applications. Based on a solid theoretical background, the CS framework provides several tools enabling the design of CS sensing schemes (i.e., structured/non-structured DR operators), effective original signal recovery at the decoder level and finally effective signal processing on CS measurements. Moreover, some initial steps have been proposed to implement CS sensing schemes in the CMOS focal plane pushing forward the design of lowpower sensor nodes. In fact, the main interest of CS is the dimensionality reduction performed in the analog domain leading to a drastic reduction of the amount of A/D conversions which is one of the most energy-hungry component of a CIS, in the absence of embedded digital processing. In addition, the extracted compressed measurements allows to reduce on-chip digital Multiply and Accumulate (MAC) operations related to machine learning algorithms. For these reasons, CS is considered as a powerful sensing scheme for future low-power (µW ) CIS design. In this context, this thesis explores new paths towards the design of smart low-power CIS taking advantage of CS as a preliminary feature extraction stage combined with dedicated machine learning algorithms for cutting-edge applications with on-chip Artificial Intelligence (AI) capabilities.

Layout of the manuscript

This thesis explores the design of CMOS image sensors taking advantage of CS to alleviate hardware constraints to perform basic on-chip inference tasks. To this end, two complementary parts are exposed. The first one (Chapter 3, 4 and 5), identifies mathematical and algorithmic enablers for efficient on-chip CS and inference problem solving tasks. In the second one (Chapter 6), we study how to efficiently design a compact CIS allowing to extract CS measurements and perform on-chip decision making without major modification of a canonical CIS architecture with well optimized standard pixels taking advantage of industrial-rated pixel optimizations (e.g., fill factor, full well capacity density, reset and read noise) enabling as a consequence various functioning modes (e.g., CS, features extraction, classification, standard high resolution and low noise acquisition). The layout of the manuscript is as follows.

Chapter 2 presents an overview of the Compressive Sensing and Machine Learning landscapes.

It first introduces key theoretical concepts and fundamentals for the design and study of CS sensing schemes. Next, it provides a non-exhaustive listing of SOTA recovery algorithms and theoretical guarantees for efficient signal processing on compressed measurements without major loss of the processing performance compared to signal processing on original data. SOTA efforts to design CIS devices with on-chip CS are reported with a focus on CMOS implementations highlighting the relevance of each approach regarding concrete applications. On the other hand, an overview of the SOTA of supervised machine learning techniques is presented. We finally highlight the current efforts towards the design of CIS devices with on-chip decision making tasks as well as dedicated System-On-Chip (SOC) for inference problem solving with either algorithmic or hardware optimizations (e.g., binary deep learning accelerators).

Chapter 3 studies the interest of solving basic inference tasks on compressed measurements for highly constrained hardware (e.g., always-on ultra low power vision systems). In particular, it tries to find the most beneficial setting to perform on-chip inference tasks on compressed measurements. Based on commonly known randomly generated CS matrices, three approaches to perform the inference on CS are presented for different SOTA machine learning algorithms involving different levels of complexity. The relevance of each approach is evaluated through the accuracy of the inference for real-world inference tasks as well as general considerations of the hardware complexity in terms of computing, memory needs and robustness to some hardware variations for two object recognition applications.

Chapter 4 proposes a novel compressive sensing scheme for CIS applications. It is formally generated based on random modulation and permutation matrices enabling the use of pseudo-random generators to extract compressed measurements and, thus, relax hardware constraints to generate the CS matrix. The proposed sensing model being basically designed to meet both theoretical (i.e., stable embedding) and hardware requirements (i.e., power consumption, silicon footprint), is highly suitable for image sensor applications addressing both image rendering and on-chip decision making tasks. The main contributions of this chapter are summarized as follows: we first provide theoretical and analytical analyses of the proposed sensing scheme based on CS theoretical tools to address inference tasks. On the other hand, we provide several numerical experiments to highlight the improvements enabled compared to SOTA CS based CIS architectures.

Chapter 5 deals with on-chip computational complexity involved by canonical decision making algorithms. It explores hierarchical learning in order to reduce MAC operations related to an embedded multi-class inference task. It typically introduces new methods to construct the hierarchical tree in order to train a hierarchical classifier (i.e., a binary decision tree) minimizing as a consequence the number of decision nodes, and thus, the number of binary classifiers to perform at the inference level. Indeed, in the context of limited processing and memory resources, CS is considered as a preliminary feature extraction stage for both training and inference problem solving allowing as a consequence a joint acquisition-processing optimization to meet highly constrained on-chip inference tasks. Finally, several simulation are carried out to show the relevance of the proposed methods for real-world inference tasks in terms of both decision making accuracy and hardware saving.

Chapter 6 heart of this thesis, packs conclusions of previous chapters together to define the architecture of a compact compressive CIS with dedicated CS sensing scheme and optimized inference strategies. It studies possible paths to implement the CS sensing scheme proposed in Chapter 3 using passive analog routines and an optimized ADC architecture enabling significant hardware saving. To show the relevance of the proposed architecture for real-world applications, two object recognition tasks are carried out using a dedicated Digital Signal Processing (DSP) architecture adapted to address the first stage of various inference algorithms, compliant with the proposed architecture, and therefore well adapted to the context of highly limited hardware implementations. Although being based on high-level simulations, several levers have been identified to make this implementation hardware-friendly, typically, to reduce the number of clock cycles in an incremental ADC (generally the most power hungry component of a CIS core in the absence of embedded digital processing neglecting IO-ring related power); lower extracted CS measurements resolution; and finally in-sensor memory needs.

Chapter 7 summaries, finally, the main contributions of each chapter and discusses possible outlooks and open questions not fully addressed throughout this thesis.

Chapter 2

State Of The Art

The goal of this chapter is to provide an overview of the research area related to this thesis. At the intersection of the fields of microelectronics, signal processing and machine learning, we present in details the elements that are most relevant to apprehend this work and in a nutshell the topics and tools related but not necessary to understand the contributions of this work. In particular, we illustrate how randomness can be exploited to design efficient signal acquisition devices and give enough theoretical guarantees to design algorithms that process random measurements enabling a compact signal acquisition and processing pipeline.

The chapter is divided into two major sections. The first section deals with the theoretical background of Compressive Sensing (CS) and related algorithmic tools, then with the main contributions of the CMOS Image Sensor (CIS) community regarding the design of imaging devices and systems with a particular focus on the compressive imaging schemes State-Of-The-Art (SOTA). The interest and guarantees of signal processing on compressed measurements framework are then presented. This alternative signal processing paradigm (i.e., CS) has emerged as an attractive approach to tackle hardware drawbacks related to highly constrained embedded applications. The second section shifts the focus to the problem of pattern recognition and machine learning. It provides a review of the commonly used machine learning techniques with a particular focus on supervised learning algorithms. It further discusses several hardware contributions to implement SOTA inference techniques, both by analog pre-processing and dedicated digital hardware accelerators. Finally, some initial steps towards compressive sensing based decision making systems are presented and discussed for specific applications.

Compressive Sensing background

An Invitation to Compressive Sensing

The last few years have testified a widespread of connected nodes and data specific processing units. The trend for cost-optimized and value-added mixed IC design [START_REF] Kahng | Scaling: More than Moore's law[END_REF] has made considerable contributions in the world of Internet of Things (IoT) as well as smart sensors [START_REF] Miraz | A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT)[END_REF][START_REF] Ernst | Sensors and related devices for IoT, medicine and s mart-living[END_REF]. In this context, the amount of data to sense, store and process has grown in leaps and bounds leading to power, multiply-accumulate (MAC) and memory hungry systems. To deal with the complexity bottleneck involved by the data dimensionality, a compression technique is typically introduced in the signal processing pipeline [START_REF] Mallat | A wavelet tour of signal processing: the sparse way[END_REF]. Several data compression algorithms have been developed to tackle this issue. In particular, transform coding is widely used as a fast and efficient compression technique, and aims typically to find sparse or compressible representations of the signals of interest in specific bases [START_REF] Elad | On the Role of Sparse and Redundant Representations in Image Processing[END_REF]. Considering a signal x ∈ R n (e.g., an image with n pixels), the concept of sparse representation allows to express x using a few non-zeros coefficients [START_REF] Elad | Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[END_REF]. Thus, given an orthonormal basis Ψ ∈ R n×n , x can be approximated by k non-zeros coefficients in Ψ, i.e., x = Ψα, with k = α 0 = supp (α) is the degree of sparsity of x in Ψ. For compressible signals, the coefficients of x in Ψ (i.e., α) tend rapidly to 0 when sorted by decreasing order of magnitude. Sparse representations are used in many compression standards like MP3, JPEG, JPEG 2000 and MPEG. Hopefully, the sparsity property of the signals also involves a low entropy of the data in the sparse domain, implying a direct possible usage of entropy coders to efficiently perform compression in terms of bitstream. Furthermore, with the rise of advanced CIS technology nodes, several works have focused on implementing near image sensor compression techniques [START_REF] Zhang | CMOS Image Sensor with On-Chip Image Compression: A Review and Performance Analysis[END_REF][START_REF] Alacoque | A small footprint, streaming compliant, versatile wavelet compression scheme for cameraphone imagers[END_REF]. However, these implementations bring high computational and memory costs mainly related to the transform coding but also to the signal analysis needed for adaptive entropy coding. On the other hand, Compressive Sensing (CS) has emerged as a powerful hardware-friendly framework for signal acquisition and sensor design based on random measurements. In contrast to the canonical approach where a signal is first sampled with respect to the Nyquist-Shannon theorem, converted to a digital representation using an Analog-to-Digital Converter (ADC) and then compressed using a compression standard (cf., Figure . 2.1), CS proposes to directly sense the observed signal in a compressed representation promising a large reduction of the hardware-algorithm complexity. Indeed, CS allows to dramatically reduce the amount of A/D conversions and digital operations and thus the power consumption of the signal acquisition and processing pipeline thanks to its signal-independent dimensionality reduction.

Based on the works of E. Candès, J. Romberg, T. Tao and D. Donoho [START_REF] Donoho | Compressed sensing[END_REF][START_REF] Candès | An Introduction To Compressive Sampling[END_REF], CS attests via a set of theoretical results that a sparse or compressible signal can be faithfully recovered from a small set of compressed measurements extracted based on non-adaptive linear projections [START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Candès | Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies[END_REF]. However, the major limitations of CS based systems are typically the processing complexity related to the signal recovery compared to the classical approach as well as the generation/storage of the sensing matrix at the sensor side. Mathematically, considering a signal x ∈ R n , we can express the CS acquisition scheme to extract m compressed measurements as follows

y = Φx, (2.1) 
where, Φ ∈ R m×n is the sensing matrix enabling a signal-independent dimensionality reduction mapping the signal x ∈ R n to a measurement vector y ∈ R m , with m much smaller than n (m n).

The CS community has been concerned with two main challenges. First, defining the classes of sensing matrices Φ enabling a stable embedding property, i.e., preserving the information content of the signal x in the compressed domain. Second, recovering faithfully the original signal x from the compressed vector y. The theory and applications of these two complementary research axes were elegantly developed gathering contributions from different scientific communities(mathematics, computer science, physics . . . ).

As mentioned above, the concept of sparse representations is traditionally used in lossy image compression to minimize the number of nonzero coefficients in the new basis. In particular, images are sparse in a wide variety of bases (e.g., Discrete Cosine, Wavelets). In the CS context, sparsity is exploited as a prior knowledge to recover the original signal. Indeed, when m n, recovering x from y is an ill-posed problem because Φ becomes an overcomplete dictionary instead of a basis. To tackle this issue, the CS theory takes advantage of the sparsity of the sensed signals in an a priori known basis. Thus, given the sparsity hypothesis of the signal

x in a sparsity basis Ψ, recovering x from y can be expressed by a non-convex optimization problem aiming at finding the sparsest signal x such that y is very close to Φ x:

x = arg min x Ψ x 0 s.t. y = Φx. (2.2)
Unfortunately, it was shown that this optimization problem is NP-hard [START_REF] Chen | Complexity of unconstrained L2-Lp minimization[END_REF][START_REF] Thi | NPhardness of l0 minimization problems: revision and extension to the non-negative setting[END_REF] because of the 0 norm which is non-convex. However, because of Ψ x q q approaches Ψ x 0 as q > 0 tends to 0 [START_REF] Tropp | Just relax: convex programming methods for identifying sparse signals in noise[END_REF][START_REF] Gribonval | Highly sparse representations from dictionaries are unique and independent of the sparseness measure[END_REF], we can approximate (2.2) by x = arg min x Ψ x q s.t. y = Φx.

(2.3)

In the specific case of q = 1, this relaxation becomes convex and allows therefore to solve a much simpler 1 -minimization problem rather than the 0 problem leading to the following Basis Pursuit (BP):

x = arg min x Ψ x 1 s.t. y = Φx. (2.4)
However, the success of exact recovery via BP is achieved with respect to a certain condition expressed by the spasity level. Indeed, the bound defining the sparsity level required to ensure this equivalence is provided by the works of D. Donoho, X. Huo, M. Elad and A.

Bruckstein [START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF][START_REF] Elad | On sparse signal representations[END_REF][START_REF] Elad | A generalized uncertainty principle and sparse representation in pairs of bases[END_REF]. Furthermore, we can reformulate (2.4) alternatively to extend this optimization problem to a more general 1 -minimization taking measurements error as well as compressible signals into account. In fact, due to sensors nonidealities, noisy measurements can probably be extracted leading to a recovered signal with m nonzero components instead of k. On the other hand, real-world images are generally compressible rather than sparse with the existence of sparse approximations that approximate them by sparse vectors. Given these considerations, it becomes reasonable to consider the following Basis Pursuit Denoising (BPDN) under the assumption of an Additive white Gaussian noise (AWGN):

x = arg min x Ψ x 1 s.t. y -Φx 2 2 ≤ . (2.5)
Equivalently, (2.5) can be expressed using its augmented Lagrangian form:

x = arg min x Ψ x 1 + λ y -Φx 2 2 , (2.6) 
where λ is an inner regularization parameter allowing to control the energy of the fidelity term, i.e., the sparsity level on the recovered signal. There exists a wide variety of algorithms to solve the 1 -minimization problems stated in (2.4), (2.5) and (2.6). In the next section we provide a sparse insight about the commonly used methods for sparse signal recovery or
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sparse approximation problems.

Basic Algorithmic Tools

Once the CS measurements extracted in the sensor side, a reconstruction algorithm is typically needed to solve the 1 -minimization problems expressed by (2.4) and (2.5). In the CS portfolio, there exists a wide variety of algorithms that guarantee a faithful and efficient signal recovery. Efficiency of these algorithms depends however on the complexity in terms of speed and memory needs as well as the quality of recovery in terms of reconstruction error. Several classifications have been proposed in the literature to group sparse recovery methods under different categories [START_REF] Tropp | Computational Methods for Sparse Solution of Linear Inverse Problems[END_REF][START_REF] Foucart | Mathematical introduction to compressive sensing[END_REF][START_REF] Crespo Marques | A Review of Sparse Recovery Algorithms[END_REF]. Here, three major classes are considered to solve sparse approximation problems: recast-based methods, greedy methods and non-convex methods.

In the following, we give some elementary materials related to each algorithms class.

Recast-based Methods

Before discussing recast-based methods, we note that in convex optimization [START_REF] Boyd | Convex optimization[END_REF] an optimization problem is generally expressed as:

x = arg min x f 0 (x) s.t. f i (x) ≤ b i , i ∈ [n] , (2.7) 
where f 0 : R n → R is called an objective function, f i : R n → R, i ∈ [n] are called constraint functions and the constants b i are called bounds for the constraints. Notice that when f i 's are all linear, the problem is called a linear program. If f i 's are all convex, then the problem is called a convex optimization problem and consequently its equivalent augmented Lagrangian as well.

We have mentioned previously that CS signal recovery can be expressed as a convex problem thanks to a convex relaxation leading to the 1 -minimization problem (i.e., equations (2.4) and (2.5)). In addition, it was shown that the problem in (2.4) can be recast as a linear program by introducing slack variables [START_REF] Joachim | On compressive sensing applied to radar[END_REF]. This way, one can use the classical Dantzig's Simplex method [START_REF] Boyd | Convex optimization[END_REF] to solve (2.4). However, in the most physical-friendly approach (i.e., BPDN in (2.5)), the signal recovery problem becomes a second-order cone problem, i.e., a problem with quadratic constraint functions. The interior-point methods [START_REF] Forsgren | Interior Methods for Nonlinear Optimization[END_REF][START_REF] Nemirovski | Interior-point methods for optimization[END_REF] were among the first methods used to solve sparse approximation problems by convex optimization [START_REF] Chen | Atomic Decomposition by Basis Pursuit[END_REF] expressed with a quadratic constrain (i.e., (2.5)). However, although their low complexity, they are less competitive compared to greedy methods, specifically designed for 1 -minimization. Indeed, their performance is insensitive to the sparsity of the reconstructed signals or the value of the regularization parameter (i.e., (2.6)).

Greedy Methods

A greedy method refers to a step-by-step fashion to recover a sparse signal [START_REF] Mallat | Adaptive time-frequency decomposition with matching pursuits[END_REF][START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF][START_REF] Donoho | Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit[END_REF][START_REF] Needell | CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[END_REF][START_REF] Dai | Subspace Pursuit for Compressive Sensing Signal Reconstruction[END_REF][START_REF] Blumensath | Iterative Thresholding for Sparse Approximations[END_REF][START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Donoho | Message Passing Algorithms for Compressed Sensing[END_REF]. This signal recovery selection can advantageously be combined with a thresholding routine leading to a precise tuning of the sparsity level of the estimated signal. In addition, greedy algorithms are known to be simple to implement, fast and applicable to large-datasets. These methods therefore provide strong theoretical guarantees for sparse signal recovery. A non-exhaustive list of the commonly used greedy methods can be found in [START_REF] Davies | Greedy algorithms for compressed sensing[END_REF] as well as recovery proofs and algorithms complexity in terms of computation and storage costs.

Non-convex Methods

From an optimization point of view, non-convex methods refer to sparse recovery methods dealing with non-convex cost functions [START_REF] Hyder | An approximate L0 norm minimization algorithm for compressed sensing[END_REF][START_REF] Kanevsky | Kalman filtering for compressed sensing[END_REF], i.e., Ψ x q with 0 < q < 1 in (2.3). In [START_REF] Chartrand | Exact Reconstruction of Sparse Signals via Nonconvex Minimization[END_REF], it was shown that an exact recovery of sparse signals can be achieved with fewer measurements than when q = 1 (i.e., (2.4)). Non-convex methods could probably be interesting to recover sparse signals in the field of quantized compressive sensing [START_REF] Petros | Quantization and Compressive Sensing[END_REF] where non-convex constraint functions are widely used [START_REF] Huang | Nonconvex penalties with analytical solutions for one-bit compressive sensing[END_REF]. Furthermore, we can also include under non-convex methods Bayesian methods where a prior distribution is considered to recover the unknown coefficients that promotes sparsity [START_REF] Wipf | Bayesian learning for sparse signal reconstruction[END_REF][START_REF] Zayyani | Bayesian Pursuit algorithm for sparse representation[END_REF][START_REF] Drémeau | Structured Bayesian Orthogonal Matching Pursuit[END_REF][START_REF] Ji | Bayesian Compressive Sensing[END_REF]. It was shown that Bayesian methods can achieve fast and low error recovery thanks to a prior knowledge of the sparse coefficients distribution [START_REF] Arjoune | Compressive Sensing: Performance Comparison Of Sparse Recovery Algorithms[END_REF]. Finally, in some recent works Deep Neural Networks (DNN) have been explored for signal recovery by learning structured representations from a training dataset of compressed samples [START_REF] Mousavi | A Deep Learning Approach to Structured Signal Recovery[END_REF][START_REF] Mousavi | Learning to Invert: Signal Recovery via Deep Convolutional Networks[END_REF][START_REF] Wu | Deep Compressed Sensing[END_REF]. In fact, DNN-based methods show significant improvements in terms of speed and quality of recovery. However, neither computational complexity nor memory needs have been provided in these works. Indeed, the complexity involved by these kind of algorithms could be higher compared to the commonly-used greedy methods due to the training dependency that involves many nonliear operations.

CS Sensing Matrix Properties

To provide guarantees of faithful (stable) reconstruction of the observed signals, compressive sensing theory has introduced several metrics to measure the ability of the sensing matrix Φ to generate independent measurement and to spread out the information in the sensed signal among the extracted measurements. In the following, we will carry out the main metrics studied in the CS theory known as the coherence and the Restricted Isometry Property (RIP) enabling exact recovery of k-sparse signals via the 1 -minimization problems stated in (2.4) and (2.5). These properties are basically used to study theoretical bounds of sparse signal recovery algorithms. On the other hand, when dealing with sparse (or compressible) signals in some bases different from the sensing basis (e.g., a selfie taken in front of the Eiffel Tower is not sparse in the canonical basis but sparse in a wavelet basis), it turns out that we can sense the observed signal directly in its original domain without significant loss of the sensing
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robustness thanks to the universality property.

Coherence

A simple and easy measurable metric to assess the robustness of a sensing matrix is the coherence [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF][START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[END_REF]. It evaluates the cross-correlations between any two columns of the sensing matrix Φ expressed as:

Definition 1. Let Φ ∈ R m×n be a matrix with 2 -normalized columns Φ 1 , . . . , Φ n , i.e., Φ i 2 2 = 1 for all i ∈ [n].
The coherence µ (Φ) of the matrix Φ is defined as:

µ (Φ) = max 1≤i = j ≤n |〈Φ i , Φ j 〉|.
(2.8)

As a general consideration, the smaller the coherence of the sensing matrix the better is the recovery. Furthermore, it was shown that the coherence can be bounded as follows:

µ (Φ) ∈ n-m m(n-1) , 1 .
The lower bound is known as the Welch bound [START_REF] Welch | Lower bounds on the maximum cross correlation of signals (Corresp.)[END_REF], and for m n it becomes µ (Φ) 1 m . Based on the coherence, sufficient conditions were carried out for exact sparse recovery [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[END_REF][START_REF] Gribonval | Sparse representations in unions of bases[END_REF], e.g.,

µ (Φ) < 1 2k -1 , (2.9) 
with k is the sparsity level.

Restricted Isometry Property

In [START_REF] Candès | Decoding by linear programming[END_REF] the concept of the Restricted Isometry Property (RIP) is introduced as a powerful metric to assess the quality of a sensing matrix and ensure the success of signal recovery in the context of CS.

Definition 2.

A matrix Φ is said to satisfy the Restricted Isometry Property (RIP) of order k if, for all k-sparse vectors α, there exists a constant δ k ∈ (0, 1) such that:

(1 -δ k ) α 2 2 ≤ Φα 2 2 ≤ (1 + δ k ) α 2 2 .
(2.10)

As for the coherence, small restricted isometry constants δ k are desired. In addition, when respecting the RIP, the linear mapping Φ preserves the energy of the sensed signal and is said to be a stable embedding. Notice that if the RIP is satisfied for a certain sparsity level k, it is therefore satisfied for any k < k with δ k < δ k . On the other hand, respecting the RIP over all 2k-sparse vectors implies to preserve the pairwise distances between any two k-sparse vectors.

The RIP has a major role to deal with noisy measurements and guarantee a stable embedding.

In fact, to tackle issues related to sensors nonidealities, the RIP ensures that noisy measurements have negligible impact on the quality of recovery. Furthermore, respecting the RIP is a sufficient condition for a wide variety of algorithms to guarantee an exact recovery [START_REF] Candès | The restricted isometry property and its implications for compressed sensing[END_REF][START_REF] Mark | Random observations on random observations: Sparse signal acquisition and processing[END_REF]. Finally, to establish a connection between the dimensions of the problem (i.e., n, m and k), a certain number of measurement is necessary to achieve the RIP and can be expressed for randomly generated sensing matrices as follows:

m C k log n k , (2.11) 
where C > 0 is is a universal constant (independent of k, m, and n) [START_REF] Foucart | Mathematical introduction to compressive sensing[END_REF].

It is worth pointing out that the RIP property has been established for infinite sets of signals.

Furthermore, verifiyng the RIP is a NP-hard problem. For instance, the Johnson-Lindenstrauss Lemma (JLL) [START_REF] Dasgupta | An elementary proof of a theorem of Johnson and Lindenstrauss[END_REF] can simplify verifying the stable embedding of a finite set of points [START_REF] Baraniuk | The Johnson-Lindenstrauss lemma meets Compressed Sensing[END_REF].

Lemma 1. Let 0 < t < 1. For every set X of card X points in R n , if m is a positive integer such that m > O log (card X ) t 2
, there exists a Lipschitz mapping f (u) = Φu such that

(1 -t ) u -v 2 ≤ f (u) -f (v ) 2 ≤ (1 + t ) u -v 2 , (2.12) 
for all u, v ∈ X .

Universality

In the context of vision systems involving visible images, sparsity is generally not verified in the canonical basis but rather in some other orthonormal basis (e.g., Fourier, Wavelets). However, for a fixed sensing matrix Φ, the concept of universality ensures to sense any sparse signal in any representation domain without significant loss of the sensing robustness. We emphasize, however, that universality is not respected implicitly. For example structured matrices are not universal as it will be discussed in next section.

CS Sensing Market

In this section, we turn to the problem of constructing sensing matrices that satisfy CS requirements. The CS community has proved the existence of RIP matrices allowing a faithful recovery of compressively sensed signals. These matrices can be deterministic [START_REF] Devore | Deterministic constructions of compressed sensing matrices[END_REF][START_REF] Amini | Deterministic Construction of Compressed Sensing Matrices using BCH Codes[END_REF][START_REF] Mohades | A General Approach for Construction of Deterministic Compressive Sensing Matrices[END_REF] or randomly generated [START_REF] Shahar Mendelson | Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles[END_REF][START_REF] Baraniuk | A Simple Proof of the Restricted Isometry Property for Random Matrices[END_REF]. Inspired by the classification proposed in [START_REF] Jacques | Compressed Sensing: "When Sparsity Meets Sampling[END_REF], here we divide the SOTA sensing matrices into three main categories: random sub-Gaussian matrices, bases random selection and random convolutions.
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Random sub-Gaussian Matrices

Based on the the theory of concentration of measures [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF], it was shown that sub-Gaussian matrices have interesting properties leading to a wide use in the CS context [START_REF] Shahar Mendelson | Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles[END_REF][START_REF] Davenport | A simple proof that random matrices are democratic[END_REF]. For example, the sensing matrix Φ ∈ R m×n can be generated identically and independently (i.i.d.) as a normalized Gaussian random variable of variance 1 m [START_REF] Baraniuk | A Simple Proof of the Restricted Isometry Property for Random Matrices[END_REF], i.e., Φ i j ∼ N 0, 1 m . In addition, Φ can be generated as the realization of a Bernoulli distribution with probability of success 1 2 , i.e., Φ i j ∼ ± 1 m . These realizations show interesting properties from a theoretical point of view [START_REF] Shahar Mendelson | Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles[END_REF], but also hardware implementations such they can be advantageously generated as a deterministic and reproducible process taking advantage of Pseudo-Random Generators (PRG) [START_REF] Wolfram | Cellular automata and complexity: collected papers[END_REF][START_REF] Keith | Pseudo-random number generation based on periodic sampling of one or more linear feedback shift registers[END_REF].

Bases Random Selection

In the second class of CS matrices random sub-sampling of orthonormal bases can be considered to construct the sensing matrix Φ [START_REF] Rudelson | Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements[END_REF][START_REF] Coifman | [END_REF]. In fact, given an orthonormal basis U ∈ R n×n , one can picks randomly m components of each n-dimensional vectors, i.e.,

Φ = SU , (2.13) 
with S ∈ R m×n represents the random selection matrix. We notice, however, that the basis U must be sufficiently incoherent with the sparsity basis Ψ. This measure can be evaluated using the coherence of the dictionary ΦΨ as expressed in (2.8). Typical constructions can be achieved using this framework. For instance, it was shown that the Fourier basis is incoherent with the canonical basis [START_REF] Rudelson | Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements[END_REF]; and the Noiselet is highly incoherent with the wavelet one [START_REF] Coifman | [END_REF].

On the other hand, random Fourier basis selection can advantageously be combined with a specific signal randomizers (e.g., random bit flips, Bernoulli distributions) to achieve the universality [START_REF] Do | Fast and Efficient Compressive Sensing Using Structurally Random Matrices[END_REF][START_REF] Gan | Fast compressive imaging using scrambled block Hadamard ensemble[END_REF][START_REF] Do | Fast compressive sampling with structurally random matrices[END_REF]. Interestingly, this approach enables fast signal recovery, but involves higher memory needs to store the sensing matrix for physical implementations.

Random Convolutions

In [START_REF] Romberg | Sensing by Random Convolution[END_REF], a different approach to construct the sensing matrix Φ is proposed. Based on random convolutions, this approach corresponds to pick randomly m measurements of the results of the convolution of the observed signal x and a random complex sequence of unit amplitude. This way, the sensing matrix Φ can be expressed as:

Φ = SF * ΣF , (2.14) 
with Σ ∈ R n×n is a complex diagonal matrix made of unit amplitude and random phase entries; and F ∈ R n×n is the complex discrete Fourier transform. Notice that this approach can take advantage of simple and fast recovery algorithms based on Fast Fourier Transforms (FFTs).

Signal Processing in CS Domain

Despite the growing potential of CS to tackle hardware issues related to highly constrained applications, the major limitation of CS based systems is the processing complexity related to the signal recovery. This consideration highly restricts the use of CS to niche applications. In fact, in most "real-world" applications we are mainly interested to extract a meaningful information and filtering the rest. Considering any kind of computer vision problem (e.g., Advanced Driver-Assistance Systems), image descriptors (e.g., HOG, LBP) combined with a proper classification algorithm (e.g., Artificial Neural Networks) are used to enable objects detection and/or classification. In this context, some first steps have been taken to circumvent signal recovery and bridge the gap between compressive sensing and signal processing [START_REF] Haupt | Compressive Sampling for Signal Classification[END_REF][START_REF] Davenport | Detection and Estimation with Compressive Measurements[END_REF][START_REF] Haupt | Compressive Sampling for Signal Detection[END_REF][START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF]. For instance, in [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF] several theoretical bounds and experiments have been reported to show the relevance of CS for basic signal processing tasks (e.g., detection, classification, estimation, filtering). From a decision making point of view, two main approaches have been adopted for classification in the CS (compressed) domain. First based on the RIP property, R. Calderbank et al. show that the Euclidean distance between low complexity signals (e.g., k-sparse) is preserved in the CS domain [START_REF] Calderbank | Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain[END_REF]. This allows to perform decision algorithms directly in the CS domain since pairwise distance is a primitive operation in numerous classification and machine learning algorithms. In particular, they provide some theoretical bounds demonstrating that the linear Support Vector Machine (SVM) classifier in the CS domain has a classification accuracy close to its classification accuracy in the signal domain. On the other hand, when dealing with linearly separable convex sets, the rare eclipse problem [START_REF] Afonso | Compressive classification and the rare eclipse problem[END_REF][START_REF] Cambareri | The rare eclipse problem on tiles: Quantised embeddings of disjoint convex sets[END_REF] provides a lower bound of the number of measurements m required to preserve the disjointedness between two classes (e.g., images with n pixels) in the CS domain (cf., Figure 2.2).
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CS Hardware Implementations

Inspired by the potential of CS, several strategies have been explored to design sensors with CS capability, i.e., acquiring random compressed measurements. It was shown therefore that CS can be applied to wide variety of sensors, e.g., Magnetic Resonance Imaging (MRI) [START_REF]Reconstruction of MRI Images based on Compressive Sensing[END_REF], Terahertz (THz) [START_REF] Watts | Terahertz compressive imaging with metamaterial spatial light modulators[END_REF], Time-of-Flight (TOF) [START_REF] Kadambi | Coded aperture compressive 3-D LIDAR[END_REF], Radars [START_REF] Zhu | Compressed Sensing Mask Feature in Time-Frequency Domain for Civil Flight Radar Emitter Recognition[END_REF], Hyper/Multispectral imaging [START_REF] Guicquero | On multiple spectral dependent blurring kernels for super-resolution and hyperspectral imaging[END_REF][START_REF] Degraux | Multispectral Compressive Imaging Strategies Using Fabry-Pérot Filtered Sensors[END_REF]. In this thesis we are mainly interested by sensors in the visible electromagnetic spectrum. In the following, we will present two major classes to implement the CS sensing scheme either in the optical domain or in the electronic one.

CS Optical Implementations

Optically implemented CS strategies performs basically the CS linear measurements in (2.1) using appropriate optical devices. This way, CS is performed in the analog domain enabling considerable saving at the analog-to-digital conversion level as well as digital signal processing. Under this category, four main contributions can be listed: Single Pixel Camera (SPC), coded aperture, random lens, lensless imaging and the imaging with nature techniques.

Single Pixel Camera (SPC):

The SPC [START_REF] Duarte | Single-pixel imaging via compressive sampling[END_REF][START_REF] Lam Chan | A single-pixel terahertz camera[END_REF] was the first device to implement optical compressive imaging. Based on single photodiode, the SPC uses a Digital Micromirror Device (DMD) to sequentially capture the CS measurements. Here, the pseudo-random projections are achieved thanks to the DMD which is electronically controlled to reflect the incident light towards the photodiode or away. Despite the interest that shows a SPC, this one suffers from major limitations related mainly to the amount of snapshots to perform in order to guaranty a faithful reconstruction due to optical non perfect characterization and nonlinear issues in general. This approach also has the drawback of implying bulky optical elements which can be a limitation for embedded systems.

Coded aperture: Coded aperture systems basically use spatial light modulators to block or permit the projection of the incident light onto a photosensitive element, this one can be a 2D detector, a line-detector, or extremely, a single-pixel detector. Unlike the SPC, CS measurements extracted using a coded aperture based system can advantageously be parallelized leading to low latency CS systems compared to the SPC without any additional cost at the silicon level. Up to date, several applications have been addressed using a coded aperture approach. Non-exhaustively we can list: super resolution [START_REF] Marcia | Compressive coded aperture superresolution image reconstruction[END_REF], high speed imaging [START_REF] Reddy | P2c2: Programmable pixel compressive camera for high speed imaging[END_REF], spectral imaging [START_REF] Rueda | Colored coded aperture compressive spectral imaging: Design and experimentation[END_REF], terahertz imaging [START_REF] Watts | Terahertz compressive imaging with metamaterial spatial light modulators[END_REF] and depth imaging [START_REF] Shedligeri | Data driven coded aperture design for depth recovery[END_REF].

Random lens: In the case of using an ordinary lens, the incident light rays from a point in a geometrical space are mapped onto the same location of the sensor array. However, using random lenses, this mapping becomes pseudo-random. In [START_REF] Fergus | Random Lens Imaging[END_REF], this randomness is built up taking advantage of a multi-faceted mirror. The main drawback of this set-up is however the complex calibration needed to make the system operational limiting the use of this approach for end-user applications.

Imaging with nature: The concept of random lens is advantageously extended using the natural randomness of wave propagation. Indeed, in [START_REF] Liutkus | Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium[END_REF] the concept of "imaging with nature" is introduced taking advantage of a multiply scattering media. In fact, the incident light reflected by an object is propagated through a multiply scattering medium creating a random speckle pattern. After the propagation, the CS measurements are extracted using a limited number of sensors (m sensors to extract m measurements). Interestingly, this system is currently used as Optical Processing Unit (OPU) promising accelerated random feature extraction for classification tasks [START_REF] Saade | Random Projections through multiple optical scattering: Approximating kernels at the speed of light[END_REF].

Lensless imaging: Leveraging the limitations involved by lenses in cameras, an alternative approach to acquire compressed measurements is explored using lensless imaging systems [START_REF] Boominathan | Lensless Imaging: A computational renaissance[END_REF]. In [START_REF] Huang | Lensless imaging by compressive sensing[END_REF], a lensless compressive imaging architecture is proposed. It takes advantage of a single photosensitive element and a LCD screen as an aperture array where each element is individually controlled. Thus, each CS measurement corresponds to all the rays modulated by a ±1 achieved thanks to the LCD screen. Although the complexity of the acquisition process (as many snapshots as measurements), the imaging device proposed in this work is more compact compared to the commercial cameras. Furthermore, to circumvent the acquisition latency, a block-based lensless compressive camera is proposed in a more recent work [START_REF] Yuan | Block-wise lensless compressive camera[END_REF].

Although the interest that presents optically generated randomness, this approach still suffers from several drawbacks as listed above limiting its use to niche applications. An appealing approach consists in performing CS in the focal plane taking advantage of the technological evolutions of the CMOS Image Sensor (CIS) world.

CS Electronic Implementations

Inspired by the potential of CS, the CMOS Image Sensor (CIS) community has focused on implementing on-chip sensing schemes to deal with either hardware (Analog/Digital conversion, fill-factor, silicon footprint) or algorithm constraints (fast and efficient recovery) for image rendering. In the following we report some of the efforts made by the CIS community to implement in-focal plane CS implementations. We mainly focus on two main approaches to address this challenge: in-focal plane and end-of-column implementations.

In-focal plane implementations :

In-focal plane implementations refers typically to CS CMOS implementations performing CS at the pixel level before A/D conversions (i.e., in the analog domain). In [START_REF] Robucci | Compressive sensing on a CMOS separable transform image sensor[END_REF][START_REF] Robucci | Compressive Sensing on a CMOS Separable-Transform Image Sensor[END_REF] a generic implementation is proposed to implement any separable transform in the focal plane. The main interest of this implementation is its capability to implement the 2D separable transform (i.e., line and column projection) Y σ = A P σ B in an overlapping block-based fashion, with A and B are the transformation matrices, Y is the output, P is the acquired image and σ is selected sub-matrix. To perform in-focal plane CS, this work proposes to select randomly m measurements from each 16 × 16 block. Despite using analog memories to store the separable transform in order to reduce power consumption, this work still suffers from major limitations mainly related to the lower fill factor, the silicon-footprint and its disability to perform on-chip CDS to deal with the Fixed Pattern Noise.

The second interesting implementation exploits the random convolution based sensing scheme proposed in [START_REF] Romberg | Sensing by Random Convolution[END_REF]. The CMOS implementation of this scheme gives the priority to a fast and efficient image reconstruction but involving high on-chip complexity. Indeed, as presented in [START_REF] Jacques | CMOS compressed imaging by Random Convolution[END_REF][START_REF] Majidzadeh | A (256x256) pixel 76.7mw CMOS imager/ compressor based on real-time In-pixel compressive sensing[END_REF], this architecture basically requires a 2D pixels array with in-situ memories to store a randomly generated Rademacher distribution (i.e., ±1 entries with equal probability). In fact, to extract one CS measurement, an initial seed is generated and stored on-chip using a Linear Feedback Shift Register (LFSR). Then, depending on the weight sign, the output current of each pixel is conveyed either to the positive or negative input of a transimpedance amplifier (TIA) for summation. Finally, to extract m measurements, m shifts of the LFSR have to be done. Indeed, the random convolution in the Fourrier domain allows to simplify the matrix-to-vector multiplication at the reconstruction stage to some FFTs of low complexity. However, implementing a flip-flop per pixel results in either lower fill-factor (percentage of area occupied by the photodiode in the pixel) or larger pixel sizes.

Finally, in-focal plane coded aperture has emerged as an appealing approach for high speed imaging. In [START_REF] Mochizuki | Single-shot 200mfps 5x3-aperture compressive CMOS imager[END_REF], a multi-aperture CIS is proposed for compressive imaging. Indeed, The photo-carriers generated in the photodiode are temporally modulated with a per-block shutter pattern and accumulated in the in-pixel charge memory. The imager has the advantage of modulating pixels values at the photodiode level, electronically, without external bulky and expensive optical components. In some recent works [START_REF] Zhang | Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure[END_REF][START_REF] Sarhangnejad | 5.5 Dual-Tap Pipelined-Code-Memory Coded-Exposure-Pixel CMOS Image Sensor for Multi-Exposure Single-Frame Computational Imaging[END_REF], pixelwise spatial and temporal coding are proposed allowing more CS-friendly sensing schemes. Notice that the main drawback of such architectures is the lower fill factor because of memory needs at each pixel design complexity. We believe, however, that this bottleneck could advantageously be surpassed thank to the 3D stacked technology [START_REF] Vivet | Advanced 3d Technologies and Architectures for 3d Smart Image Sensors[END_REF].

End-of-column implementations :

In contrast to in-focal plane CS implementations, endof-column implementations take advantage of standard pixel architectures (e.g., 3T or 4T APS) and canonical rolling shutter readout while performing CS measurements at the end-of-column circuitry. One interesting common point of end-of-column implementations is the the parallelization proposed to extract CS measurements which is very important and the kept of standard CIS readout architecture as well. Thus, the CS sensing scheme in (2.1) becomes:

Y = ΦX , (2.15) 
where X ∈ R n r ×n c is the 2D representation of the observed image, Φ ∈ R m×n r is the sensing matrix applied in parallel to all the columns of X , and Y ∈ R m×n c is the matrix representation of the extracted CS measurements. Notice that Bernoulli (i.e., 0/1 entries) or Rademacher (i.e., ±1 entries) sensing matrices are preferable in this case for their simple and compact implementations using Pseudo-Random Generators (PRG).

In one of the first end-of-column implementations, [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF] takes advantage of incremental Σ∆ Analog-to-Digital converters to perform summation/averaging operation during A/D conversion to extract per-block CS measurements. This concept was first introduced in [START_REF] Olyaei | Focal-Plane Spatially Oversampling CMOS Image Compression Sensor[END_REF] to implement a block matrix transform method for image compression. In [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF], a compressed sensing multiplexer (CS-MUX) controlled by a PRG (Linear Feedback Shift Register) perform CS measurements over 16 × 16 pixel blocks. Thanks to the PRG, a random scrambling is thus performed at the input of each Σ∆ ADC enabling a per-column parallel summation and conversion of the randomly selected pixels. This architecture has the advantage of using an optimized 4T pixel architecture while performing end-of-column CS without major modification of a canonical sensor design. However, although the technical breakthrough that proposes this architecture, the reduced support dimensionality to perform per-block CS measurements can lead to a poor theoretical bound to achieve the RIP property (or not) and have to deal with artifacts at the reconstruction side.

An other approach to extract CS measurements is based on capacitive measurements. The underlying motivation of this approach is the reduced power consumption thanks to the use of small charge transfers to readout CS measurements. For instance, in [START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF] a more CS-friendly scheme is proposed based on a Rademacher per-column sensing matrix generated using an external LFSR at the expense of a more complex in-pixel hardware. Indeed, the proposed CIS uses a local capacitor inside the pixel and two separate column lines for column-parallel pixels readout. Thus, depending on the LFSR's generated bit, the pixel output is either multiplied by 1 (for a logical one) or -1 (for a logical zero) and summed in the charge domain using a comparator-based switched capacitor. However, this implementation have several limitations mainly related to the reduced fill factor and the silicon footprint needed to design the end-ofcolumn capacitors. On the other hand, in [START_REF] Dadkhah | Block-Based CS in a CMOS Image Sensor[END_REF] standard 3T pixels are used to mitigate the problem of pixel fill factor in a per-block CS fashion. Indeed, a switched-capacitor is used to perform summation of randomly selected measurements from 4×4 blocks in the analog domain during the integration time. However, one major drawback of this set-up is the number of connection lines to perform averaging. In fact, for the proposed block size (i.e., 4 × 4), 16 readout wires are necessary for each block leading to an important capacitive noise and matching issues.

Finally, [START_REF] Guicquero | An Algorithm Architecture Co-Design for CMOS Compressive High Dynamic Range Imaging[END_REF] describes a scalable and low-complexity column based CS scheme using a Cellular Automaton (CA) that shows a chaotic behavior to on-the-fly generate the sensing matrix. Indeed, the implemented sensing scheme consists in a per-column normalized Bernoulli distribution (i.e., 0/1 entries) where each column is measured
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according to the same random projection vector generated by demultiplexing the output of the CA. In fact, using a 3T pixel architecture, outputs of randomly selected pixels are accumulated in the current domain thanks to the Kirchhoff law. Moreover, the normalization aims at keeping a constant dynamic of the final CS measurements in order to not depend on the number of activated pixel. It is achieved thanks to tunable Resistive Trans Impedance Amplifier (RTIA) placed in the analog domain before each column dedicated ADC. This architecture mainly deals with some limitations related to CS implementations in the context of CIS but still suffers from a major drawback which is the reduced support dimensionality due to the per-column CS sensing scheme. The main goal of these implementations is to relax hardware constraints mainly related to the A/D conversions and the digital post-processing thanks to the data-independent dimensionality reduction performed by CS. Each of the aforementioned techniques present a breakthrough implementation towards low-power smart CIS, but unfortunately, still have some drawbacks limiting their implementations in end-user applications. However, CS have to be considered as a promising opportunity for revisiting the signal/image acquisition and processing pipeline and explore new applications to circumvent the signal recovery complexity and exploit the extracted measurement to enable in-situ data processing applications. In fact, with the growing need for data-specific units expressed in the context of the internet of everything and smart systems, current systems still very expensive in terms of energy consumption and computing complexity due to the dimensionality of processed signals. In this context, CS could be an interesting approach to reduce both hardware and algorithm complexity in the context of smart embedded systems. Before presenting some of the SOTA efforts towards smart systems on compressed measurements. The next section gives a brief introduction to supervised Machine Learning (ML) algorithms and then some of the SOTA implementations of commonly used ML techniques.

Machine Learning background

There is no doubt that Artificial Intelligence (AI) is drawing attention in many scientific and engineering fields. Today, AI softwares can understand and translate speech [START_REF] Chiu | State-of-the-art Speech Recognition With Sequence-to-Sequence Models[END_REF], interpret images [START_REF] Chou | Privacy-Preserving Action Recognition for Smart Hospitals using Low-Resolution Depth Images[END_REF], assist medical diagnostics [START_REF] Tomasz | Brain correlates of task-load and dementia elucidation with tensor machine learning using oddball BCI paradigm[END_REF] and even defeat a world champion in the game of Go [START_REF] Silver | Mastering the game of Go without human knowledge[END_REF]. In fact, AI allows machines to be intelligent by gathering knowledge by experience, in a nutshell, machines learn by doing. This capability to learn and make decisions is what we call explicitly Machine Learning (ML). ML has had a long and rich history, in its early days, programmable computers were built to solve mathematical problems difficult to solve intellectually and thus said intelligent. However, building machines that think and make decisions involves a huge amount of mathematical operations leading to a brick wall toward intelligent machines. Advantageously, the last decade has testified a wide development of computing infrastructures (e.g., Cloud, GPU, TPU) making the current "AI spring" [START_REF] Warren | Google's artificial intelligence chief says 'we're in an AI spring[END_REF]. In the rest of this section, we provide an informal introduction to the ML techniques and present some of the current efforts to run ML algorithms in an efficient way in the edge to tackle issues related to privacy, latency and algorithm-hardware complexity.

Machine Learning Algorithms Market

A machine learning algorithm is an algorithm that is able to learn from data [START_REF] Goodfellow | Deep learning. Adaptive computation and machine learning[END_REF]. Learning is more precise in the definition of T. Mitchell [START_REF] Mitchell | Machine Learning. McGraw-Hill series in computer science[END_REF]: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P , if its performance at tasks in T , as measured by P , improves with experience E." For instance, one can build a ML algorithm to perform a classification task to decide to which category an object belongs to; or a regression task to predict a numerical value given some inputs. A performance measure is basically used to evaluate the robustness of a ML technique. In general, the accuracy (i.e., ratio of correct outputs) or error rate (i.e., ratio of incorrect outputs) are the most common performance measure used in ML. Finally, a ML algorithm generally experience a dataset to improve its performance P on a task T. A dataset is generally defined as a collection of data measured using a sensor (e.g., images with a certain number of pixels) or extracted from experimental measurements (e.g., length and width).

In particular, supervised learning algorithms experience a dataset containing samples/features associated with labels. Let's consider a faces recognition problem. The goal is then to build a machine that takes unknown images and decide about the identity of the faces. To learn our ML algorithm we need first a large dataset of images X t r ai n called a training set in which each image contains n pixels associated with labels y t r ai n which represent the identity of each image. The result of learning a supervised ML algorithm can be expressed as a function f W (x i ) that takes a new sample x i and generate an output vector y i with respect to the learned patterns W . During the training the weights W are tuned to minimize the empirical risk

L (W ) = 1 n s n s i L f W (x i )
, y i , with n s is the number of training samples. The empirical risk L (W ) can take several forms, e.g., Mean Squared Error (MSE), 2 -norm, Kullback Leibler (KL)
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Divergence, Hinge loss. Thus, the training error will measure how well is this minimization on the training set. Note, however, that the most important error is the generalization error also called test error that evaluates the performance of the trained algorithm on unknown samples. The main goal is then to learn algorithms that make the training error as small as possible while making the gap between training and test error small too. These tow goals refer to two central challenges knows as underfitting and overfitting. In fact, underfitting occurs when the trained algorithm is not able to obtain a sufficiently low training error. However, overfitting occurs when the trained algorithm fits too well the training set but fails to generalize to new samples.

To deal with overfitting and to design an algorithm that performs well on a specific task, we can build a set of preferences to constrain the learning model. As in convex optimization mentioned in Section 2.1.1, a regularization is typically used to constraint the algorithm design and express the preferences for specific solutions. As defined in [START_REF] Goodfellow | Deep learning. Adaptive computation and machine learning[END_REF], "Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error". This way, the empirical error can be expressed with respect to a regularization term as follows:

L (W ) = 1 n s n s i L f W (x i ) , y i + λR (W ) , (2.16) 
with λ is an inner parameter that control the impact of the regularization term.

In many practical applications the input data is typically pre-processed to extract meaningful information and thus relax constraints related to the amount of data to process. For instance, a data normalization stage is basically used to rescale the input data into a common range to improve training robustness. Commonly used normalization approaches are min-max normalization that consists in rescaling the range of data in [0, 1]; or standardization which allows to have zero-mean and unit-variance data. Pre-processing can also refer to feature extraction that allows to project the input data into a low dimensional feature space where the intended task is hoped to be easier to learn. For example, in computer vision a wide range of feature extraction methods have been proposed. Non-exhaustively we can cite: Histograms of Oriented Gradients (HOG) to extract descriptors by accumulating histograms of oriented gradients over blocks [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF]; Local Binary Patterns (LBP) that allows to recognizes pre-defined patterns over blocks; Scale-invariant feature transform (SIFT) [START_REF] David | Distinctive Image Features from Scale-Invariant Keypoints[END_REF], Fast Retina Keypoint (FREAK) [START_REF] Alahi | FREAK: Fast Retina Keypoint[END_REF] and Binary Robust Invariant Scalable Keypoints (BRISK) [START_REF] Leutenegger | BRISK: Binary Robust invariant scalable keypoints[END_REF] to extract local keypoints; Convolutional Neural Networks to extract shift and space invariant features [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]; and random projections shown to perform a distance-preserving embedding of the data [START_REF] Giryes | Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy[END_REF].

Roughly speaking, three main classes of supervised machine learning techniques can be found in the literature: statistical learning, dictionary learning and deep learning. The rest of this section will give a definition to each class and present commonly used algorithms based on some useful textbooks written by C. Bishop [START_REF] Bishop | Pattern recognition and machine learning[END_REF], G. James et al. [START_REF] James | An introduction to statistical learning: with applications in R. Number 103[END_REF], B. Dumitrescu et al. [START_REF] Dumitrescu | Dictionary learning algorithms and applications[END_REF] and I. Goodfellow et al. [START_REF] Goodfellow | Deep learning. Adaptive computation and machine learning[END_REF].

Statistical Learning

Statistical learning refers to ML techniques that involve learning a statistical method for predicting or estimating an output based on one or more inputs [START_REF] James | An introduction to statistical learning: with applications in R. Number 103[END_REF]. For instance, a Linear Discriminant Analysis (LDA) [START_REF] Volker | Nonlinear Discriminant Analysis using Kernel Functions[END_REF] learns a function that projects a n-dimensional data that belongs to C classes into a (C -1)-dimensional space (cf., Figure 2.4). It aims at finding the best projections respecting the Fisher's criteria [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF], i.e., minimizing the within-class variance S W while maximizing between classes variance S B . Although it is basically considered as a dimensionality reduction technique for data visualization, the LDA can also be considered as a multi-class classification technique thanks to the discriminant representation in the low-dimensional space. To deal with classes that are nonlinearly separable, kernel tricks can typically be used to project the data into a high-dimensional space that makes the data linearly separable [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF]. However, a major drawback of the LDA is the assumptions required about the data limiting the use of the LDA to samples with Gaussian distributions. On the other hand, one more powerful statistical technique is the Support Vector Machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF]. Initially proposed to create a binary decision boundary that maximizes the margin between two classes associated with positive or negative labels. Here, the margin refers to the small distance between the decision boundary and the closest sample of the dataset. Indeed, learning a binary SVM leads to an affine function expressed as f w ,b (x) = w x + b. Thus, for an unknown sample x i , the binary SVM predicts a positive label if f w ,b (x) is positive and a negative one if f w ,b (x) is negative. As for the LDA, the SVM classifier can take advantage of kernel tricks to deal with nonlinearly separable datasets. However, one major limitation of kernel machines is the computational cost of the training when the dataset is large.

The concept of SVM can advantageously be extended to multi-class classification problems using a series of binary SVMs [START_REF] Weston | Multi-class support vector machines[END_REF] (cf., Figure 2.5). Given a C -classes classification problem, for a one-vs.-all strategy learns C binary SVMs between each class and the rest. In this case, the inference is achieved using a winner-takes-all strategy to assign an unknown sample to the class with the highest margin. Moreover, for one-vs.-one strategy a binary SVM is learned
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between each pair of classes i , j , with i = j . Thus, c(c-1) 2 binary classifiers are built. For the inference a max-wins strategy increases the vote of each class predicted by the learned binary SVMs. Finally, the unknown sample belongs to the class with the largest vote. 

Dictionary Learning

As shown in Section 2.1, sparse representations have emerged as a powerful framework for signal/image compression and signal recovery. More recently, sparse representations have been explored to learn sparse discriminative features. Indeed, in the "Sparse-Land" [START_REF] Elad | Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[END_REF] the sparsifying basis is usually called a dictionary and the signal can be approximated by a linear combination of few elements of the dictionary called atoms [START_REF] Bruckstein | From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images[END_REF]. In this context, a

Sparse Representation-based Classifier (SRC) was initially proposed in [START_REF] Wright | Robust Face Recognition via Sparse Representation[END_REF] for (robust) face recognition. In SRC, a test sample y (e.g., face) is expressed as a sparse combination of all the training samples represented by the dictionary D = [D 1 . . . D c ], where D i (i ∈ [c]) contains samples of class i , i.e., y = D x, with x is the coefficients vector whose entries are zero except those associated to the i t h class, said to be the predicted class of y. This way, for a set of samples Y = [Y 1 . . . Y c ], the coefficients matrix X will be a block diagonal sparse matrix (cf., Figure 2.6). However, the main disadvantages of the SRC is the complexity that depends linearly on the size of the training set, i.e., as large dictionary dimensionality as the training set size.

A straightforward approach for classification tasks is to learn dictionaries that promote sparsity as well as classes separability, this approach is called Dictionary Learning (DL). Thus, assuming non-overlapped discriminant features, regularization terms are basically introduced to promote class-specific dictionaries (i.e., atoms) independency. For instance, in [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF] the Dictionary Learning with Structured Incoherence (DLSI) takes advantage of a regularization term that encourages the dictionaries to be as independent as possible based on a Frobenius norm between dictionaries. Moreover, the Fisher's criterion [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF] is explored in the Fisher Discrimination Dictionary Learning (FDDL) [START_REF] Yang | Fisher Discrimination Dictionary Learning for sparse representation[END_REF] encouraging classes separability in a more elegant way. However, in a wide range of used datasets images from different classes often share common features. In view of this, a Low-Rank Shared Dictionary Learning (LRSDL) technique is proposed in [START_REF] Vu | Learning a low-rank shared dictionary for object classification[END_REF][START_REF] Vu | Fast Low-Rank Shared Dictionary Learning for Image Classification[END_REF] as a generalized version of the FDDL with additional capability to learn shared features leading to better discriminative representations. Inspired by the success of kernel tricks for canonical classification algorithms (e.g., LDA and SVM as shown above), kernel DL techniques are used to map the data into a higher dimensional feature space and perform linear DL in the new domain [START_REF] Golts | Linearized Kernel Dictionary Learning[END_REF][START_REF] Wang | Structured Kernel Dictionary Learning With Correlation Constraint for Object Recognition[END_REF].

To allow DL to generalize better, shift-invariance can advantageously be achieved thanks to

Convolutional Dictionary Learning (CDL) [START_REF] Liu | Online convolutional dictionary learning[END_REF][START_REF] Garcia-Cardona | Convolutional Dictionary Learning: A Comparative Review and New Algorithms[END_REF] which replaces the linear dictionary D by a set of linear filters d i . In this case, a signal y will be approximated by y = i d m ⊗ x. In addition, motivated by the success of Convolutional Neural Networks (CNNs), CDL have been extended to perform multilayer sparse modeling leading to a hierarchical approximation of the sparse coefficients [START_REF] Sulam | Multilayer Convolutional Sparse Modeling: Pursuit and Dictionary Learning[END_REF].

It is worth pointing out that all the aforementioned DL techniques have a fundamental drawback however, they are unfortunately all computational and memory hungry ! In fact, although being designed to operate by class of the training set at a time (i.e., learning class-specific dictionaries), learning the desired dictionaries and their respective sparse features is performed in an iterative manner leading to a high number of iterations to achieve the convergence. Moreover, learning class-specific high-dimensional dictionaries using gradient based methods makes DL approach less computational-friendly compared to SOTA classification techniques. Notice that, in all presented works neither a complexity nor a performance analyses of DL techniques compared to classical classification techniques have been provided.

Deep Learning

The classical machine learning techniques presented in this section work well on simple and small datasets but fail when dealing with real-world large datasets (e.g., ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]) even when combined with kernel tricks and features extraction. Indeed, in 2012 an old machine learning technique called Deep Neural Network (DNN) [START_REF] Lecun | Deep learning[END_REF] takes advantage of hardware acceleration made feasible thanks to Graphics Processing Units (GPUs) and outperforms
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the SOTA accuracy on the ImageNet dataset. The proposed DNN called AlexNet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] has inaugurated then the DNN spring. Indeed, DNNs provide a very powerful framework for supervised learning by adding more layers and projections by layer. In fact, a DNN consists in mapping an input vector (e.g., vectorized image with n pixels) to an output given a sufficiently large dataset that covers all the possible realization of the desired inference task.

Basic DNN architectures are often called Multi-Layer Perceptrons (MLP), Feedforward Neural Networks (FNN)or Fully Connected Networks (FCN) [START_REF] Bishop | Pattern recognition and machine learning[END_REF]. For instance, the mapping performed by a L-layer MLP is mathematically expressed as:

f W ,b (x) = f (L) W (L) ,b (L) . . . f (2) W (2) ,b (2) f (1) W (1) ,b (1) (x) , (2.17) 
where L is the depth of the MLP; W (i ) 's and b (i ) 's are the weight matrices and offset vectors respectively at each layer i ; and the functions f (i ) W (i ) ,b (i ) are the classification functions performing the mapping x → σ W (i ) x + b (i ) with σ (x) is an activation function that can be linear or nonlinear. In this chain structure, f (1) W [START_REF]Learn About Convolutional Neural Networks -MATLAB & Simulink -MathWorks France[END_REF] ,b (1) is called the input layer, f (L) 1) are the hidden layers. Typical nonlinear activation functions are the sigmoid function (i.e., σ (x) = 1 1+exp (-x) ), hyperbolic tangent function (i.e., σ (x) = tanh (x)) and the Parametric Rectified Linear Units (PReLU) (i.e., σ (x) = max (αx, x), with α ∈ R + ).

W (L) ,W (L) the output layer and f (2...L-1) W (2...L-1) ,b (2...L-
A more powerful DNN is the so-called Convolutional Neural Networks (CNN) [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] (cf., Figure 2.7). In CNNs, convolutions are basically used in the first layers to learn specific filters or kernels to extract features [START_REF] Goodfellow | Deep learning. Adaptive computation and machine learning[END_REF]. The main advantage of CNNs is the shift-invariance property highly suitable for image analysis achieved thanks to the convolutions. A typical layer of a CNN consists of three successive operations. First, the layer performs a series of convolutions to produce a set of features followed by a classification function that performs linear/nonlinear projections. Finally a pooling function reduces the dimension of the data by locally combining the outputs into one neuron. A commonly used pooling approach is the max pooling that outputs the maximum value within a rectangular neighborhood.

To learn a DNN, a gradient based algorithm is a practical approach but computationally expensive. To circumvent this issue, the back-propagation estimates the gradient at each layer using the chain-rule making the gradient algorithm (e.g., stochastic gradient descent) simple and inexpensive.

In 2016, DNNs have officially outperform human ability at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 1 . However, although the outstanding performance that show DNNs, both the training of a DNN and the inference on unknown samples are typically executed on power-hungry CPU servers or GPUs in the cloud. Some initial steps toward energy compliant DNNs have been explored from an algorithm point-of-view leading to some optimization methods to relax DNNs complexity, namely, binarizing weights and activations [START_REF] Courbariaux | Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1[END_REF], dropping out randomly components of each layer [START_REF] Srivastava | Dropout: A Simple Way to Prevent Neural Networks from Overfitting[END_REF][START_REF] Hinton | System and method for addressing overfitting in a neural network[END_REF] or training sparse DNNs [START_REF] Alford | Pruned and Structurally Sparse Neural Networks[END_REF]. We believe, however, that overcoming the computation-memory bottleneck in deep learning and address challenging applications in the context of highly constrained hardware requires a joint optimization of the algorithm and the hardware components. In this regard, in the rest of this section we present some hardware breakthroughs toward embedded machine learning known currently as edge AI. We briefly introduce the SOTA of AI dedicated processors and hardware accelerators while focusing on edge AI for imaging applications in the context of smart low power CMOS Image Sensors (CISs).

Edge AI

One challenge of the CIS community is proposing compact sensors with AI capabilities. Traditionally, CIS researchers have focused on noise-reduction/suppression for image quality enhancement [START_REF] Boukhayma | A Sub-0.5 Electron Read Noise VGA Image Sensor in a Standard CMOS Process[END_REF][START_REF] Boukhayma | Temporal Readout Noise Analysis and Reduction Techniques for Low-Light CMOS Image Sensors[END_REF]; reducing the silicon footprint through pixel-pitch [START_REF] Tournier | 1.4µm Pitch 50\% Fill-Factor 1t Charge-Modulation Pixel for CMOS Image Sensors[END_REF][START_REF] Kumagai | A 1/4-inch 3.9mpixel low-power event-driven back-illuminated stacked CMOS image sensor[END_REF]; and improving power-consumption [START_REF] Couniot | A 65 nm 0.5 V DPS CMOS Image Sensor With 17 pJ/Frame.Pixel and 42 dB Dynamic Range for Ultra-Low-Power SoCs[END_REF][START_REF] Nogier | A photovoltaic mode pixel Embedding energy harvesting capability For future self-powered image sensors[END_REF]. Nowadays, drived by machine-sensing applications (e.g., autonomous cars/robots, humane-machine interfaces), CMOS VIsion Sensors (CVISs) have been introduced as CISs performing computer vision tasks in the focal plane [START_REF] Rodríguez-Vázquez | CMOS Vision Sensors: Embedding Computer Vision at Imaging Front-Ends[END_REF]. In this case, the output of a CVIS will not be an image but either image features or a decision based on a spatio-temporal analysis of the sensed image. Yet, the input of the CVIS is like the CIS, i.e., an image sensed by a pixel-array of photo-detectors. Thus, to meet machine learning tasks, analog pre-processing as well as dedicated System-on-Chip (SoC) have been explored to deal with inference problems in the context of low-power CVISs. Indeed, three main contributions can be identified in the CIS/CVIS SOTA: in-focal plane feature extraction, near CIS object recognition and embedded inference dedicated processors.

In-Focal Plane Feature Extraction

In the last decade the trend in computer vision was to propose powerful feature extraction techniques to extract discriminative features in order to address a classification task (cf., Section 2.2.1). The CIS community has then followed the trend and proposed several in-focal plane feature extraction implementations. For instance, a 256 × 256 motion-triggered feature extraction CIS is proposed in [START_REF] Choi | A 3.4-µW Object-Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm for Motion-Triggered Object-of-Interest Imaging[END_REF]. The proposed CIS has three different modes of operation: motion-sensing, feature extraction and imaging and storing modes. Indeed, for a power saving purpose, the sensor operates in a motion-sensing until it is triggered by motion. In the motion-sensing mode, in-pixel capacitors serve as frame memory and the frame difference is thus quantized to 1-b signal and compared with an adjustable threshold. Once motion detected, the sensor wakes-up and turns into the feature extraction mode to extract 8-bit HOG features [START_REF] Dalal | Histograms of Oriented Gradients for Human Detection[END_REF]. In this mode, gradients are calculated in the digital domain in both horizontal and vertical directions and the orientations in the analog domain using a mixed circuit. However, although the reduced power consumption (50µW @ 15 fps) achieved by the proposed architecture, it doesn't take advantage of feature extraction to relax hardware constraints (e.g., ADC clock cycles, memory needs) such features are extracted in the digital domain. To overcome this drawback, an implementation of the BRISK feature extraction technique [START_REF] Leutenegger | BRISK: Binary Robust invariant scalable keypoints[END_REF] is proposed in [START_REF] Bong | An 1.61mw mixed-signal column processor for BRISK feature extraction in CMOS image sensor[END_REF]. In this work, the amount of data to send to an off-line digital processor is reduced by implementing the BRISK in the analog domain before ADC conversion. Indeed, in a canonical CIS readout (i.e., rolling shutter + CDS), an analog memory is used to store the lines corresponding to the operand of the BRISK at each frame. Thus, using a column-parallel mixed-signal circuit and a Successive Approximation Register (SAR) ADC, a set of comparisons with each pixel neighbors are performed to detect corners and then BRISK features. Finally, to achieve scale-invariance, scale-space is generated by pixels averaging and stored in the analog line memory.

In fact, other works have implemented feature extraction techniques in the focal plane in the context of smart CIS or CVIS, namely, the SIFT algorithm [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF] in a Gaussian pyramidal setup [START_REF] Oliveira | Gaussian Pyramid: Comparative Analysis of Hardware Architectures[END_REF] for multi-scale feature extraction as in [START_REF] Li | Physical computing circuit with no clock to establish Gaussian pyramid of SIFT algorithm[END_REF]; the LBP in [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF][START_REF] Zhong | A 2pj/Pixel/Direction MIMO Processing Based CMOS Image Sensor for Omnidirectional Local Binary Pattern Extraction and Edge Detection[END_REF]; the SURF [START_REF] Bay | SURF: Speeded Up Robust Features[END_REF] in [START_REF] Luo | Resource-Efficient Object-Recognition Coprocessor With Parallel Processing of Multiple Scan Windows in 65-nm CMOS[END_REF] and log-gradients in [START_REF] Young | A Data-Compressive 1.5b/2.75b Log-Gradient QVGA Image Sensor with Multi-Scale Readout for Always-On Object Detection[END_REF]. All the aforementioned implementations can be considered as milestones towards compact edge AI applications in the context of CIS/CVIS. They practically all focus on reducing the amount of data to extract in the focal plane to enable object recognition in dedicated off-line SoCs. However, to deal with privacy and latency issues, some recent works have proposed to perform object recognition in (or near) the focal plane as it will be presented in the rest of this section.

Near CIS Object Recognition

Unlike in-focal plane feature extraction, in a near CIS object recogntition embodiment we are only interested by the result of the inference task. In this context, several strategies have been explored to deal with inference problems in the context of low-power CIS. For example, [START_REF] Kim | An ultra-low-power and mixedmode event-driven face detection SoC for always-on mobile applications[END_REF][START_REF] Bong | A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on Face Detector[END_REF] propose a CIS with embedded always-on face detector based on Haar-like filtering and a CNN processor for face recognition. More recently, an Analog Convolution (A-Conv) processor is proposed in [START_REF] Kim | An Ultra-Low-Power Analog-Digital Hybrid CNN Face Recognition Processor Integrated with a CIS for Always-on Mobile Devices[END_REF] to implement the first layer of the CNN processor in [START_REF] Bong | A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on Face Detector[END_REF]. Indeed, the A-Conv consists of a weighted-sum unit which can calculate partial sum of 3 × 3 weight kernels, a ReLU unit, and a ternary quantizer allowing to quantize the output of the ReLU unit and thus remove the ADC in [START_REF] Kim | An Ultra-Low-Power Analog-Digital Hybrid CNN Face Recognition Processor Integrated with a CIS for Always-on Mobile Devices[END_REF]. The features extracted by the A-Conv layer serve as input of the face detection CNN processor and if a face is detected the face recognition CNN is triggered. On the other hand, [START_REF] Jeon | A 23-mW Face Recognition Processor with Mostly-Read 5t Memory in 40-nm CMOS[END_REF] deals with memory requirements related to a face recognition processor. The proposed processor performs first face detection using a cascaded Viola-Jones Haar feature cascaded detectors [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF] and then a Principal Component Analysis (PCA) [START_REF] Chin | Incremental Kernel Principal Component Analysis[END_REF] to extract features of reduced dimensionality combined with a nonlinear SVM for face recognition. We notice however that the listed implementations have implemented SOTA machine learning techniques without any optimization of the algorithm component or hardware parallelization/acceleration. In the rest of this section we present some of the SOTA hardware accelerators for dedicated machine learning techniques (e.g., SVM, CNN).

Embedded Inference Dedicated Processors

For less constrained applications, several CNN processors have been proposed in the literature addressing the challenge of low-power and accurate embedded decision making tasks [START_REF] Bankman | An Always-On 3.8 µJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS[END_REF]. The early implementations of edge AI have focused on implementing SOTA algorithms without any typical optimizations, e.g., SVM [START_REF] Bytyn | VLSI implementation of LS-SVM training and classification using entropy based subset-selection[END_REF] and DNN [START_REF] Park | 4.6 A1.93tops/W scalable deep learning/inference processor with tetra-parallel MIMD architecture for big-data applications[END_REF][START_REF] Sim | 14.6 A 1.42tops/W deep convolutional neural network recognition processor for intelligent IoE systems[END_REF]. However, to deal with the power-consumption bottleneck, [START_REF] Goetschalckx | Optimized Hierarchical Cascaded Processing[END_REF] introduces the concept of hierarchical recognition using a hierarchy of increasingly complex individually trained CNNs and increasing computational precision. For further hardware complexity reduction, [START_REF] Moons | Energy-Efficient ConvNets Through Approximate Computing[END_REF] analyzed the accuracy-energy trade-off by exploiting quantization and precision scaling to reduce CNN processors power consumption. Following the trend for low precision CNNs, some processors have been proposed with fixed-point weights [START_REF] Zhang | Efficient Fixed/Floating-Point Merged Mixed-Precision Multiply-Accumulate Unit for Deep Learning Processors[END_REF] or extremely quantized weights, i.e., binary weights [START_REF] Huang | A 20 TOp/s/W Binary Neural Network Accelerator[END_REF][START_REF] Moons | BinarEye: An alwayson energy-accuracy-scalable binary CNN processor with all memory on chip in 28nm CMOS[END_REF][START_REF] Bankman | An Always-On 3.8 µJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS[END_REF]. Furthermore, a pre-defined sparse MLP is proposed in [START_REF] Dey | Pre-Defined Sparse Neural Networks with Hardware Acceleration[END_REF] to reduce the complexity during both training and inference. In these implementations one can note that the circuit and system community has fully taking advantange of the algorithmic optimization of the CNNs presented in Section 2.2.1. More recently, hardware accelerators have been proposed to optimize convolutions because of their computational time [START_REF] Andri | YodaNN: An Architecture for Ultralow Power Binary-Weight CNN Acceleration[END_REF][START_REF] Biswas | Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications[END_REF][START_REF] Yue | A 3.77tops/W Convolutional Neural Network Processor With Priority-Driven Kernel Optimization[END_REF]. We note, however, that these works focus on optimizing circuit design to achieve low-power processing; they do not unfortunately address design constraints related to image acquisition such as the data dimensionality or the number of ADC clock cycles.

Conclusion and discussion

Throughout this chapter we have provided a sparse insight about the fields of Compressive Sensing and Machine Learning. Indeed, CS relaxes hardware constraints (e.g., A/D conversions) related to the data dimensionality based on pseudo-random measurements. Moreover,

Conclusion and discussion

supervised ML techniques allow data processing units to automate decision making tasks. In the CS and ML SOTA, several breakthroughs have been proposed to implement near image sensor CS or decision making tasks. Despite the important contributions in both CS and ML literature, neither CS implementations have taken advantage of ML to perform near CIS decision making nor viceversa. In fact, the amount of compressed measurements (features) can dramatically be reduced to address decision making tasks leading to more hardware relaxation in terms of A/D conversions and memory needs. Indeed, in some recent works CS have been explored for basic feature extraction and classification tasks for biomedical applications [START_REF] Rajesh | 22.4 A 172µW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data[END_REF][START_REF] Venkata Rajesh | Compressed Domain Feature Extraction[END_REF] or dedicated decision making systems [START_REF] Hollis | Compressed Learning for Tactile Object Recognition[END_REF][START_REF] Della Porta | Hyperspectral Image Classification via Compressive Sensing[END_REF]. In this thesis, we take some initial steps towards compact compressive CMOS image sensors taken advantage of the theoretical advances in signal processing on compressive measurements [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF][START_REF] Calderbank | Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain[END_REF][START_REF] Afonso | Compressive classification and the rare eclipse problem[END_REF]. We propose to take the challenge of smart CIS a step further and take advantage of CS to reduce hardware-algorithm constraints to implement on-chip decision making algorithms. Finally, some algorithmic optimizations will be discussed to make decision making more hardware-friendly.

Chapter 3 Inference Tasks On Compressive Measurements

One of the main challenges in the design of compact smart CIS is the power consumption related to the amount of data to extract (i.e., A/D conversions) and process (i.e., digital processing and memory needs). For instance, to handle high-dimensional inference tasks, a straightforward approach is to compress the sensed data or extract meaningful features to make the inference task lighter. Considering any kind of computer vision problem (e.g., ADAS), image descriptors (e.g., HOG, LBP) combined with a proper classification algorithm (e.g., Artificial Neural Networks) are typically used to enable objects detection and/or classification. However, embedding such system with high dimensional data and complex algorithms requires considerable memory and computational requirements.

Recent advances in signal processing and pattern recognition tend to deal with high-dimensional problems by introducing new and efficient techniques in terms of computing and storage resources. For example, Dimensionality Reduction (DR) [START_REF] Van Der Maaten | Dimensionality Reduction: A Comparative Review[END_REF] relies on the projection of a high-dimensional data into a relevant low-dimensional feature domain that preserves data intrinsic properties (e.g., statistical or geometrical properties). Various DR techniques can be found in the literature, they can be either linear or nonlinear, supervised or unsupervised [START_REF] Bishop | Pattern recognition and machine learning[END_REF][START_REF] Lever | Points of Significance: Principal component analysis[END_REF]. One can identify two distinct approaches to achieve dimensionality reduction. First, DR can be performed by a learned projection that optimizes a regularized objective function. These techniques are basically introduced as machine learning algorithms to perform decision making in low dimensional domains. However, embedding such techniques involves dedicated hardware resources to store ex-situ signal dependent learned patterns as presented in Chapter 2. Alternatively, DR can be signal independent and achieved by unlearned projections. Most popular unlearned DR are pooling operations widely used in CNN architectures as downsampling filters [START_REF] Lee | Generalizing Pooling Functions in CNNs: Mixed, Gated, and Tree[END_REF]; random drop out and structured pruning in DNN (cf., Section 2.2.1); pixel-binning to capture low-resolution images by combining charges of neighboring pixels in a block of pixels during the readout [START_REF] Pan | Fast Multispectral Imaging by Spatial Pixel-Binning and Spectral Unmixing[END_REF]; or either sub-sampling the resulting coefficients of the projection onto an orthonormal basis (e.g., DCT) under some priors (e.g., sub-sampling in a specific frequency band). However, the most theoritically studied unlearned DR are random projections that allows to project the original data onto a subspace of reduced dimensionality using a randomly generated matrix [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF]. It represents therefore a computationally simple DR technique that allows to preserve the Euclidean distance of any two signals through the projection [START_REF] Takiguchi | Evaluation of random-projection-based feature combination on speech recognition[END_REF][START_REF] Du | On the performance of random-projection-based dimensionality reduction for endmember extraction[END_REF]. Indeed, random matrices are typically used to acquire compressed features as a universal sensing scheme for CS based systems with remote signal recovery [START_REF] Candès | Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies[END_REF]. In this case, the design of related sensing matrices has to satisfy the RIP property to guarantee a stable embedding property and to preserve geometrical properties as discussed in Chapter 2. In particular, pseudo-random generators (e.g., LFSR [START_REF] Klein | Linear Feedback Shift Registers[END_REF], cellular automata [START_REF] Wolfram | Cellular automata and complexity: collected papers[END_REF]) can advantageously be used to generate on-the-fly the sensing matrix as a deterministic and reproducible process relaxing as a consequence design constraints, namely, memory needs. For the sake of clarity, in the rest of this chapter we call ML-DR DR performed by learned projections, and CS-DR DR via random projections.

In this chapter, we study the interest of using ML-DR and CS-DR for basic on-chip inference tasks in the context of highly constrained hardware (e.g., always-on ultra low power vision systems). In particular, we try to find the most beneficial setting to perform near CIS inference on compressed measurements. In general, two processing stages have to be considered when dealing with embedded inference tasks: learning ML-DR in an off-line system on labeled data, and then performing embedded inference on compressed data whose related class is unknown (e.g., considering embedded inference in a CS image sensor). As a comparative study, we propose various learning and inference strategies for three ML-DR methods briefly presented in Chapter 2, namely, Linear Discriminant Analysis (LDA) [START_REF] Volker | Nonlinear Discriminant Analysis using Kernel Functions[END_REF], Support Vector Machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF] and Dictionary Learning with Structured Incoherence (DLSI) [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF]. For each technique, we present and compare three approaches to perform on-chip decision making in the context of hardware limited systems. The first approach consists in performing ML-DR learning and embedded inference on compressed measurements taking advantage on CS-DR to reduce embedded resources requirements. In the second and third ones, dedicated inference solutions are presented to deal with compressed measurements extracted using a CS device whose sensing scheme is not necessarly a priori known (e.g., for security purposes [START_REF] Zhang | A Review of Compressive Sensing in Information Security Field[END_REF][START_REF] Zhang | Secure Wireless Communications Based on Compressive Sensing: A Survey[END_REF] or to manage sensor non-idealities [START_REF] Qian | Exploiting Memristors for Compressive Sampling of Sensory Signals[END_REF]). In the rest of this chapter, we first present a mathematical description of each ML-DR technique and then present the studied inference approaches and the inference scheme related to each ML-DR technique. The performance of ML-DR methods is evaluated based on the inference accuracy regarding the learning approach, as well as general considerations on memory resources, computational complexity and robustness to some hardware variations for two object recognition applications.

ML-DR Learning Mathematical Background

Let us consider a database of n-length "vectors" in R n (e.g., images with n pixels) composed of C classes. This database is separated into two subsets: a "train" set X ∈ R n×n 1 C , where

ML-DR Learning Mathematical Background

each class is composed of n 1 samples, associated with labels l ∈ {1, • • • ,C } n 1 C ; and a "test" set Y ∈ R n×n 2 C with unknown labels and composed of n 2 samples per class. We refer to 2 for the train and the test sets restricted to the j th class, respectively. When we write x ∈ X or x ∈ X j , we mean that the sample x is an arbitrary column of X or X j , respectively (and similarly for Y ). In the following, we first describe how to learn the considered ML-DR classifiers denoted P (x) := D x + δ, and then present the corresponding inference algorithms for each approach. Here, P i (x) represents the projection of x on the i t h axis (line) of P , the mean vector of each class is expressed as

X j := X j 1 , • • • , X j n 1 ∈ R n×n 1 and Y j := Y j 1 , • • • , Y j n 2 ∈ R n×n
m j = 1 n 1 n 1 i =1 X j i , for 1 ≤ j ≤ C , and m = 1 C C j =1 m j
is the mean vector of all samples. Greek letters λ and η represent inner regularization parameters. Depending on the technique, the matrix D and the offset δ are computed using one of the following optimization problems.

LDA (Linear Discriminant Analysis)

The LDA [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF] is a statistical method that aims at projecting a n-dimensional dataset composed of C classes into a (C -1)-dimensional space in which the within-class variance is minimized and the between class variance is maximized (Fisher's criterion [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF]). In particular, the LDA makes the assumption that the observed data is normally distributed and that the withingroup covariance matrices are equal, it finds therefore the best projection maximizing the ratio of between class scatter matrix S B and within class scatter matrix S W . This leads to the following optimization problem:

DLDA = arg max D∈R (C -1)×n | DS B D | | DS W D | , ( 3.1) 
where | . | denotes the determinant operation,

S B = C j =1 m j -m m j -m and S W = C j =1 n 1 i =1 X j i -m j X j i -m j .
Here, δLDA = DLDA m ∈ R C -1 represents the projected training set centroid. The column of the optimal DLDA corresponds thus to the C -1 largest eigenvectors of the eigenvalue decomposition of S -1 W S B . Besides considering the LDA as a dimensionality reduction technique, it can also be considered as a multi-class classification technique such the best projection DLDA define a linearly separable partition of the classes in the (C -1)-dimensional feature space.

SVM (Support Vector Machine)

A geometrical approach to map the input data into a low dimensional feature space consists in learning a multi-class SVM using a one-vs.-all strategy [START_REF] Weston | Multi-class support vector machines[END_REF]. This allows to learn C binary soft margin classifiers to construct a boundary decision for each class versus the others. Indeed, for the j t h class C j , a 2-class SVM is learned to separate the samples that belong to C j from the remaining samples (i.e., samples from class C j with j = j ). Thus, for each class j , a positive margin is assigned to the sample's class and a negative margin to the others (i.e., l j k = 1 if the k th sample belongs to class j , and -1 otherwise). The C binary classifiers are then combined together to build a multi-class classifier. Mathematically speaking: { DSVM,j , δSVM,j , ξj } = arg min

D∈R N ,δ,ξ∈R n 1 D 2 2 + λ n 1 k=1 ξ k s.t. l j k (D x + δ) j ≥ 1 -ξ k , ξ k ≥ 0, ∀1 ≤ k ≤ n 1 . (3.2)
We define P SVM, j (x) := DSVM,j x + δSVM,j , for 1 ≤ j ≤ C . Unlike the LDA which is sensitive to outliers, the SVM introduces the matrix ξ := ξ1 , • • • , ξC made of n 1 C slack variables that allow to deal with outliers, each variable is then associated to one training sample. Here DSVM := D1 , • • • , DC ∈ R C ×N , i.e., the vertical concatenation of DSVM,j 's and δSVM := δSVM,1 ,

• • • , δSVM,C ∈ R C .

DLSI (Dictionary Learning with Structured Incoherence)

As discussed in Section 2.2.1, dimensionality reduction can also be achieved by dictionary learning. In contrast to the LDA and the SVM techniques, for each class a specific dictionary can be build up to learn specific low dimensional discriminative features with tunable atoms allowing a certain flexibility to the algorithm to deal with more or less complex datasets. For instance, in the DLSI [START_REF] Ramirez | Classification and clustering via dictionary learning with structured incoherence and shared features[END_REF], class-intrinsic features are exploited to construct the DR projection. This involves solving an objective function with respect to a constraint term that encourages independency between sub-dictionaries { B j ∈ R N ×d 1 : 1 ≤ j ≤ C }, where d 1 ≤ N is the dimension induced by each B j . Generally, the cost function aims at minimizing the error between the training sample and its projection. Thus, training the DLSI corresponds to constructing as incoherent as possible sub-dictionaries by solving:

{ B , α} = arg min B , α C j =1 { X j -B j α j 2 F + λ α j 1 } + η i , j :i = j B i B j 2 F , (3.3) with B := B 1 , • • • , BC ∈ R N ×d 1 C , α := α 1 , • • • , α C ∈ R d 1 C ×n 1 C and α j ∈ R d 1 ×n 1 C
. We define DDLSI,j := B † j , thus, δDLSI,j = DDLSI,j m j ∈ R d 1 for 1 ≤ j ≤ C , and DDLSI can be defined as:

DDLSI := D DLSI,1 , • • • , D DLSI,C ∈ R d 1 C ×N .

Classification Combining ML-DR and CS-DR

Classification Combining ML-DR and CS-DR

Despite the milestones in the design of compressive CIS for image rendering, signal recovery is not necessary in many computer vision problems. In fact, most current Image Signal Processor (ISP) design efforts focus on extracting meaningful informations and solving inference problems [START_REF] Park | Ultra-low Power Always-On Computer Vision[END_REF]. In this section, we take an initial step towards the design of compact compressive CIS with inference capabilities. We analyze three inference strategies to solve an inference task given compressed measurements in the context of highly constrained hardware. We highlight that in all the explored approaches we can take advantage of Pseudo-Random Generators (PRGs) to generate pseudo-random CS matrices in order to extract CS measurements without considerable on-chip supplementary materials.

In the rest of this section, three approaches to solve an inference problem on compressed measurements will be presented. In the first approach, the ML-DR projection is learned on compressed measurements extracted by a pseudo-random CS-DR as performed in the classical framework [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF]. In this case, the inference task is performed in the compressed domain based on the learned ML-DR affine projection. In the second approach, the ML-DR is learned in the signal domain without the knowledge of the sensing matrix and then projected in the CS domain using a pseudo-randomly generated sensing matrix Φ. In contrast to the first and second approaches, the third one introduces a dedicated DSP allowing to implement a reconstruction-like algorithm to perform the inference from compressed measurements using a ML-DR transform learned in the signal domain. In the following, studied DR techniques will be denoted P cs-LDA , P proj-LDA and P sig-LDA (for the LDA using approach A, B and C respectively), P cs-SVM , P proj-SVM and P sig-SVM (for the SVM using approach A, B and C respectively) and P cs-DLSI , P proj-DLSI and P sig-DLSI (for the DLSI using approach A, B and C respectively). An illustration of the projections involved by each approach is provided in Figure 3.1. 

Approach A: Inference Learned in The CS Domain

A desirable compressive CIS sensor property is the capability to acquire a compact signal with a sparse representation that allows to extract its inherent information. Indeed, it was shown that CS measurements can universally extract a meaningful information for many signal processing tasks (e.g., inference) without requiring a strong knowledge of the sparsity basis [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF]. In this case, the number of measurements to extract depends only on the complexity of both the inference task (e.g., number of classes) and the observed signal (e.g., sparsity level) [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF][START_REF] Afonso | Compressive classification and the rare eclipse problem[END_REF]. To formulate the inference learned in the compressed domain, let us consider X = ΦX ∈ R m×n 

Inference for the LDA

As the LDA clusters samples of the same class using a statistical criteria (i.e., minimize withinclass variance and maximize the between class variance), an Euclidean distance can typically be used for the inference. Indeed, an unknown sample ỹ is assigned to the nearest class represented by its center in the projected domain (i.e., R C -1 ). Thus, we can estimate the class c of ỹ by:

c = arg min 1≤i ≤C P cs-LDA ỹ -P cs-LDA ( mi ) 2 2 , (3.4) 
where mi = Φm i is the mean class vector in the CS domain and P cs-LDA (x) = Dcs-LDA x + δcs-LDA . Notice that for an on-chip/embedded application P cs-LDA ( mi ) is generally computed off-line leading to a reduced on-chip resulting complexity.

Inference for the SVM

For an inference using a SVM classifier, a one-vs.-all strategy is used to learn C binary decision boundaries between one class and the rest. Indeed, a one-vs.-all strategy is typically used for its low inference complexity. In this case, the inference is achieved using a winner-takes-all strategy to assign an unknown sample ỹ to the class with the highest margin, i.e., the predicted class c can be expressed as:

c = arg max 1≤i ≤C P cs-SVM,i ỹ . (3.5)

Inference for the DLSI

As explained above, the DLSI builds class-specific dictionaries to extract discriminative features. This way, once the dictionaries have been learned, to decide to which class belongs an unknown sample ỹ one has to first find its sparse coefficients α that corresponds to the sparse decomposition using each learned dictionary B i (1 ≤ i ≤ C ) independently. Then, a min-voting strategy can be used to assign the unknown ỹ sample to the class c minimizing the cost function ỹ

-B i α 2 2 , i.e., c = arg min 1≤i ≤C min α∈R d 1 ỹ -B i α 2 2 + λ α 1 .
(3.6)

Approach B: Projection Based Inference

A straightforward way to perform an inference task on unknown compressed sample is to first reconstruct the signal using a sparsity-promoting prior (e.g., 1 -norm, TV), and then solve the inference problem in the signal domain using ML-DR learned in the signal domain too. However, this two-step approach involves a dramatically high algorithm-hardware complexity and require a higher number of measurements to guarantee a faithful signal recovery. Indeed, to overcome the signal recovery bottlneck, it was shown in [START_REF] Calderbank | Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain[END_REF] that if we project a SVM classifier learned in the signal domain (i.e., project its n-dimensional axes), the classification error of the resulting classifier is close to the classification error of the classifier learned in the signal domain thanks to the RIP property. Obviously, the Euclidean distance between each learned hyperplane and the nearest samples is preserved in the compressed domain.

Inspired by this statement, in Approach B we propose to project the n-dimensional axes of each studied classifier (i.e., LDA, SVM and DLSI) in the compressed domain (i.e., R m ) using a CS matrix Φ ∈ R m×n . In fact, this approach allows to solve the inference problem without any prior related to the sensing scheme adopted for the training. It allows thus a certain degree of freedom to the compressive sensor to generate various sensing matrices (on-the-fly), for example, for data-encryption purposes and to improve the system robustness against hardware attacks. This way, the training can be performed in the original signal domain and can take advantage of the original features to perform the inference of unknown samples extracted using a compact compressive sensor. 

Inference for the SVM

As for the LDA, the inference in the case of the SVM following Approach B can be expressed using the affine function expressed as P proj-SVM (x) = Dsig-SVM Φ x + δsig-SVM . Thus, to decide to which class c belongs a unknown sample ỹ, we can solve:

c = arg max 1≤i ≤C P proj-SVM,i ỹ . (3.8)

Inference for the DLSI

For the DLSI, projecting the classifier in the compressed domain corresponds to projecting the n-dimensional axis of each class dictionary B i (1 ≤ i ≤ C ) in the compressed domain, this
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way the inference problem can be expressed as:

c = arg min 1≤i ≤C min α∈R d 1 ỹ -Φ B i α 2 2 + λ α 1 .
(3.9)

Approach C: Inference in The Reconstructed Signal Domain

To perform the inference independently of the training acquisition scheme, a relevant approach can merge signal recovery and the inference. Indeed, instead of reconstructing for an image rendering purpose, one can reconstruct to promote a discriminative criteria in order to solve the inference task. Thus, given a compressed observation ỹ = Φy ∈ Ỹ , the inference can be achieved by reconstructing a signal α ∈ R C in the inference domain that minimizes the Euclidean distance to the compressed signal ỹ via first a backprojection in the signal domain (i.e., an inverse mapping from the inference domain to the signal domain); and then a projection in the compressed domain using the sensing matrix Φ. In fact, for a signal α ∈ R C in the inference domain, its inverse mapping can be defined by minimizing the following 2 -minimization problem:

û = arg min u∈R n u 2 2 subject to P (u) = α. (3.10)
The solution of (3.10) can be expressed as: û = P † (α), where † denotes the Moore-Penrose pseudo-inverse operator. Thus, under a regularization term promoting classes separability in the inference domain, the reconstructed signal α minimizing the energy ỹ -Φ P † (α) 2 2 will correspond to the projection of ỹ in the inference domain. It allows as a consequence to decide to which class an unknown compressed sample signal belongs to using advantageously a classifier learned in the signal domain. Moreover, the regularization function can typically take advantage of intrinsic properties of each method (e.g., statistical and geometrical). In the following, this framework is applied for the studied ML-DR techniques (i.e., LDA, SVM and DLSI) to perform the embedded inference on CS measurements using a reconstruction-like algorithm involving dedicated regularization functions on the vector in the inference domain.

Inference for the LDA

For the LDA, we can typically take advantage of the Fisher's criteria to recover the targeted signal α. Thus, given the CS matrix Φ and the LDA ML-DR transform P sig-LDA , we can find for each class i the corresponding vector αi ∈ R C -1 using a constraint encouraging the recovered signal to be as close as possible to the class centroid. Thus, the regularization term can be defined as R LDA,i (α) = α -P sig-LDA (m i ) 2 2 . Finally, the vectors αi are used to find the class c that minimizes the inference cost function as follows:

αi = arg min α∈R C -1 ỹ -Φ P † sig-LDA (α) 2 2 + λR LDA,i (α) , (3.11) 
c = arg min 1≤i ≤C αi -P sig-LDA (m i ) 2 2 .
(3.12)

Inference for the SVM

In a one-vs.-all SVM strategy, solving the inference problem (e.g., (3.5)) involves seeking for the class c maximizing the positive margin of an unknown sample ỹ in the inference domain, i.e., seeking for the argument of the largest entry of α. Inspired by this strategy, we propose a regularization function that promotes a peaked response of positive margins and force negative ones to be as small as possible, in other words, reinforce sparsity of positive margins. Thus, the proposed regularization function can be expressed using the 1 norm applied to the exp function as follows: R SVM (α) = exp (α) 1 (notice that the 1 norm can be replaced by any function promoting positive margin, typically the ReLU function). To overcome the computational cost bottleneck, a 2 -relaxation can be used leading to the following regularization function: R SVM (α) = exp (α) 2 2 . Indeed, in the specific case of the exp function the 2 norm is totally equivalent the 1 norm because of the fact that the derivative of exp (x) is exp (x) itself. Thus, solving the inference problem of the SVM can be expressed as recovering the vector α with the highest positive margin, i.e., : 

α = arg min α∈R C ỹ -Φ P † sig-SVM (α) 2 2 + λR SVM (α) , (3.13 

Inference for the DLSI

For the DLSI, one can take advantage of the sparse decomposition to recover a vector α promoting a sparse decomposition of the observed signal ỹ in the inference domain. Thus, the 1 norm constraint used in (3.9) can be preserved to solve the inference problem following Approach C, i.e., αi = arg min

α∈R d 1 ỹ -Φ B i α 2 2 + λ α 1 , (3.15 
)

c = arg min 1≤i ≤C ỹ -Φ B i αi 2 2 + λ αi 1 .
(3.16)

Embedded Resources Requirements Study

In the quest for the "most" hardware-friendly approach depending on the targeted application requirements to perform on-chip decision making, we compare in this section the embedded resources requirements of each approach. Indeed, depending on the targeted application specifications, we evaluate memory needs in terms of the number of coefficients to store as well as computational complexity in terms of the total number of operations (MACs) for each approach (i.e., A, B and C). Thus, the total amount of coefficients to store in order to solve a LDA inference task following

Approach

Approach A is O C 2 + mC .
On the other hand, to solve the inference problem in (3.4), one has to first project the extracted CS vector ỹ in the inference domain using the affine function P cs-LDA . This projection has the complexity of a matrix-to-vector multiplication, i.e., mC . In addition, C Euclidean distances have to be calculated (i.e., O C 2 ) as well as a search for the index of the minima in a (C -1)length unsorted array (i.e., O (C )). Thus, the computing complexity to solve the LDA inference task using Approach A is O C 2 + mC .

Inference for the SVM

For the SVM, solving the inference task in (3.5), i.e., c = arg max 1≤i ≤C P cs-SVM,i ỹ , (3.18) involves storing the ex-situ learned patterns (i.e., Dcs-SVM ∈ R C ×m and δcs-SVM ∈ R C ). Thus, the total amount of coefficients to store in order to solve a SVM inference task following Approach A is O (mC ). In addition, to decide to which class a compressed unknown sample ỹ belongs to, one has to first map the compressed vector into the inference domain using P cs-SVM (i.e., C (mC )) and then search for the argument of the maxima in a C -length unsorted array (i.e., O (C )). Finally, the computing complexity to solve the SVM inference task using Approach A is O (mC ).

Inference for the DLSI

As for the LDA and the SVM, solving the inference task for the DLSI, i.e., c = arg min 1≤i ≤C min

α∈R d 1 ỹ -B i α 2 2 + λ α 1 , (3.19) 
requires storing the classes specific dictionaries learned off-line, i.e.,

B i ∈ R m×d 1 (1 ≤ i ≤ C ).
Thus, the total amount of coefficients to store in order to solve the DLSI inference task following Approach A is O (d 1 mC ). However, to decide to which class belongs an unknown sample ỹ, one has to solve an optimization problem to find a sparse decomposition of the extracted CS vector in each class dictionary B i . Once the sparse coefficients α estimated, one can then find the class i minimizing the cost function decided to be the predicted class of ỹ. Indeed, when the dictionary B i is fixed, the sparse coefficients α for a class i can be estimated by solving an iterative gradient based algorithm (e.g., FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]). In this case, for each iteration q, the most computational task is to compute B i B i α -B i ỹ. Supposing B i B i to be precomputed and stored on-chip, this term can be computed with complexity d 2 1 +md 1 . Thus, for C classes, estimating the sparse coefficients requires performing O q d 2 1 + md 1 C embedded operations and a search for the argument of the maxima in a C -length unsorted array (i.e., O (C )) leading to the following complexity O q d 2 1 + md 1 C .

Approach B: Projection Based Inference

Aiming at taking advantage of the original signal domain to perform the training of the studied classifiers (i.e., LDA, SVM and DLSI). In Approach B, a post-training projection of the n-dimensional axes of each classifier in the compressed domain using a CS matrix Φ ∈ R m×n is adopted to perform the embedded inference on compressive measurements. This allows to perform the embedded inference in the compressed domain without any on-chip supplementary complexity (i.e., memory and computing complexity) compared to Approach A (cf., section 3.3.1). Thus, the total amount of coefficients to store following Approach B are O C 2 + mC , O (mC ) and O (d 1 mC ) for the LDA, SVM and DLSI respectively. In addition, solving the inference tasks in (3.7), (3.8) and (3.9) requires a computing complexity of the order of O C 2 + mC , O (mC ) and O q d 2 1 + md 1 C for the LDA, SVM and DLSI respectively.

Approach C: Inference in The Reconstructed Signal Domain

In approach C, the inference is achieved by first reconstructing a signal α in the inference domain that minimizes the Euclidean distance to the compressed signal ỹ, then find the class that fits the best with the inference criteria. The reconstruction like problem can generally be expressed by the following optimization problem: α = arg min α ỹ -Φ P † (α) 2 2 + λR (α), with P † (α) = D † (α -δ) and R (α) is a regularization term promoting an inference criteria depending on the intrinsic properties of each classification technique. This optimization problem can be solved by using an iterative gradient based algorithm (e.g., FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]). In this case, for each iteration q, the most computational task is to compute

Φ D † Φ D † α -δ - Φ D † ỹ.
Two case-studies can be considered depending of the sensing matrix Φ, if it is a priori known or not. For each inference technique we will provide the complexity analysis depending of the two cases.

Inference for the LDA

When the sensing matrix is not a priori known, to solve the inference task using the LDA classifier and Approach C (i.e., (3.11) and (3.12)), one has to store the ex-situ learned patterns learned on original samples (i.e., Dsig-LDA ∈ R C -1×n ; and δsig-LDA ∈ R C -1 ) and C classes centroids. Thus, the total amount of coefficients to store on-chip in order to solve a LDA inference task following Approach C is O C 2 + nC . On the other hand, to decide to which class an unknown compressed sample ỹ belongs to, one has to find for each class i the corresponding vector αi ∈ R C -1 using a constraint function R LDA,i (α) (cf., (3.11)). In this case, to solve the aforementioned optimization problem (i.e., αi = arg min α∈R C -1 ỹ -Φ P † sig-LDA (α) 2 2 + λR LDA,i (α)), one has to compute for each class i and iteration q the term Φ

D † sig-LDA Φ D † sig-LDA α -δsig-LDA - Φ D † sig-LDA
ỹ. Supposing D † sig-LDA to be pre-computed and stored on-chip, this term involves a computing complexity of the order of O mC 2 + mnC leading to the total computing complexity O qmC 3 + qmnC 2 .

Notice, however, that when the sensing matrix Φ is a priori known the memory needs and the computing complexity can dramatically be reduced thanks to the data independent dimensionality reduction allowed by CS. In this case the Φ D † sig-LDA can be computed off-line and stored on-chip enabling a reduction of the memory needs, i. 

Inference for the SVM

When the sensing matrix Φ is not a priori known, solving the inference task using an SVM classifier (i.e., (3.13) and (3.14)) involves storing the ex-situ learned patterns (i.e., Dsig-SVM ∈ R C ×n and δsig-SVM ∈ R C ). Thus, the total amount of coefficients to store on-chip is: O (nC ).

On the other hand, to decide to which class an unknown compressed sample ỹ belongs to, the optimization problem in (3.13) (i.e., α = arg min α∈R C ỹ -Φ P † sig-SVM (α) 2 2 +λR SVM (α)) can be solved using an iterative gradient method. In this case, for each iteration q, one has to compute 

Inference for the DLSI

As for the LDA and SVM, when the sensing matrix Φ is not a priori known, the amount of memory to store the ex-situ learned dictionaries depends on the signal dimensionality in the signal domain. Thus, the total amount of memory to store the dictionaries learned using the DLSI ( B ∈ R n×d 1 C ) and following Approach C is O (d 1 nC ). In addition solving the optimization problem in (3.11) (i.e., αi = arg min α∈R d 1 ỹ -Φ B i α 2 2 + λ α 1 ) using an iterative method to find the sparse decomposition of an unknown compressed sample ỹ involves computing at each iteration q the term Φ B i Φ B i α -Φ B i ỹ. Supposing B i to be stored on-chip,
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the computing complexity of the DLSI can be expressed as: O qm d 2 1 + nd 1 C . However, when the sensing matrix Φ is a priori known, the terms Φ B i and Φ B i Φ B i ∈ R d 1 ×d 1 can be computed off-line leading to a reduced memory needs, i.e., O (d 1 mC ); and embedded computing complexity O q d 2 1 + md 1 C .

Complexity Analysis

Table 3.1 summarises the study of embedded resources requirements to implement the studied inference strategies. Indeed, two main categories can be observed in Table 3.1: the affine projection based techniques and strategies (i.e., LDA and SVM in Approach A and B); and regularized based ones (i.e., LDA and SVM in Approach C, and the DLSI for all studied approaches).

Let us consider the affine projection based category, in this case memory requirements are generally limited to the ex-situ learned patterns with an additional memory cost in the special case of the LDA related the storage of the C classes centroids. Furthermore, this category involves a relatively low computing complexity related to a matrix-to-vector multiplication drastically reduced when the sensing matrix Φ is a priori known. In the second category, i.e., regularizing based techniques and strategies, memory needs are also limited to the ex-situ learned patterns and advantageously reduced when considering the sensing matrix Φ as a priori known (i.e., LDA and SVM in Approach C and the DLSI in all approaches). However, solving the inference task using regularizing based techniques (e.g., DLSI) or strategies (e.g., Approach C) involves a high computing complexity mainly related to the involved iterative gradient based algorithms that basically requires a high number of iterations q to ensure the convergence (here, we set q = 100). Finally, the reported complexity study clearly shows that the SVM classifier exhibits the lowest memory and computational costs when performed using Approach A or B. However, when designing a sensor or system with unknown sensing matrix Φ, i.e., Approach C; the DLSI exhibits the lowest computing complexity thanks to the reduced dictionary sizes involved in each iteration.

Experimental Results

To test the relevance of the studied approaches in real-world inference tasks, we build up a testbench composed of two databases:

AT&T faces database [208]: composed of ten different images of 40 distinct persons (classes)

with 256 gray levels per pixel. The images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). Moreover, all the images were taken against a dark homogeneous background. Each image is resized to 32 × 32 using a bicubic interpolation.

MNIST digits database [209]: a 10-classes handwritten digits database (0 . . . 9) composed of 60000 training images and 10000 testing images. Each digit is centered in a 28×28 image with 256 gray levels per pixel.

In addition, the sensing matrix Φ ∈ R m×n is generated either as a realization of the discrete Rademacher distribution with probability 1 2 , identically and independently (iid) for each entry of the matrix, i.e., Φ i j ∼ i i d ± 1 m ; or as the realization of a normalized Gaussian random variable with variance 1 m , i.e., Φ i j

∼ i i d N 0, 1 m .
Given this testbench, we evaluate the error rate (ratio of incorrect predictions to the total number of test samples) and its standard deviation for an inference task using the studied approaches (i.e., Approach A, B and C) and techniques (i.e., LDA, SVM and DLSI) over random batches using the AT&T and MNIST databases. In addition, we also explore the robustness of the proposed approaches in the presence of some hardware variations such as additive noise on extracted measurements and CS matrix alterations due to hardware alterations.

First and foremost, Figure 3.5 stands for the inference accuracy of the studied approaches (i.e., Approach A, B and C) and techniques (i.e., LDA, SVM and DLSI) using the AT&T (i.e., 3.5a and 3.5b) and MNIST (i.e., 3.5c and 3.5d) databases. A first observation of the simulation results attests that Approach A (blue lines) outperforms Approach B and C (green and red lines). Indeed, it analytically demonstrates that learning the inference patterns in the CS domain allows to achieve higher compression ratios thanks to the intrinsic properties of the sensing matrix [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF]. Despite learning the ML-DR transform on original data combined with a proper regularization term, Approach C still exhibits a lower inference accuracy for high compression ratios while being better than approach B for low compression ratios. Regarding considered ML-DR techniques, Figures 3.5a and 3.5b show that the LDA classifier slightly underperforms the SVM for the face recognition task (AT&T) even if all required assumptions are not met (i.e., normally distributed classes). Moreover, in the special case of the DLSI, one can see that the inference accuracy is approximately the same for all approaches. Finally, the impact of the sensing scheme is relatively negligible compared to the used classifier or approach.

On the other hand, one can consider the impact of hardware variations on the inference robustness. For example, in the presence of Additive White Gaussian Noise (AWGN) implying a certain SNR, Figure 3.6a, Figure 3.6c and Figure 3.6e report that approach A still exhibits the best error rate while sharing the general behavior with approaches B and C, i.e., the error rate massively increases for low SNR (i.e., below 10 Db). In the special case of the LDA, one can see that Approach B outperform Approach A below 5 Db. In the second setting, binary alterations of the commonly used Rademacher sensing matrix are considered. Indeed, random bit flips can typically occurs during the sensing matrix generation because of nonideal hardware behaviors. Unsurprisingly, Figure 3.6b, Figure 3.6d and Figure 3.6f show that Approach B and C (green and red plain lines) are more robust to such variations when there are known as a prior for the inference stage (green and red solid lines). Indeed, in the sensing device the actual "on-the-fly" generated sensing matrix can be provided to the hardware component performing the inference in order to be taken into account. However, when not considered because of its hardware cost (dashed lines) these approaches (B and C) are still less robust than A. 

Conclusion

This chapter provides some initial steps towards the design of compact sensors with embedded inference tasks. In the context of highly constrained hardware, three algorithmic approaches for on-chip decision making were investigated. Our experimental results (based on AT&T and MNIST databases) show that a compression ratio of 10% can be reached while performing an equivalent inference accuracy as traditional linear classifiers. It is worth pointing out that the testbenches proposed in this section are based on relatively small datasets making as a consequence the extracted measurements at a 10% compression ratio small too (e.g., only 78 measurements for MNIST involving 28 × 28 image resolutions). Obviously, the number of CS measurements to extract depends linearly on the signal dimensionality (here image resolution) for a fixed compression ratio. Thus, for commonly used image resolutions (e.g., 640 × 480 VGA resolution) one can either reduce the compression ratio for further hardware saving or improve the inference accuracy for the same compression ratio by extracting more CS measurements.

On the other hand, to design a on-chip decision making oriented hardware, we show that performing the inference in the CS domain needs far less resources and MACs compared to an inference in the signal domain. However, when dealing with specific design constraints (e.g., for privacy purposes), one can take advantage on dedicated algorithms to perform the inference on CS measurements while preserving a good trade-off between accuracy and robustness to unexpected hardware variations.

To address the design of compact sensors with embedded inference tasks three main conclusions can be extracted from this analytical study:

• Approach A, i.e., learning and solving the inference problem in compressed domain, exhibits the best performance regarding the error rate and the robustness to additive noise. Indeed, performing the training and the inference directly in the compressed domain allows to drastically reduce the complexity in terms of both memory and computing needs. Furthermore, we analytically show that this approach allows to achieve higher compression ratios for the considered inference tasks (i.e., LDA, SVM and DLSI) joining as a consequence the theoretical bounds presented in [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF] for a specifically designed classifier.

• When dealing with highly limited hardware resources and relatively small datasets, the SVM classifier provides a powerful framework for embedded inference tasks limiting embedded resources to the ex-situ learned patterns for memory needs and a matrix-tovector multiplication to map the acquired measurements to the inference domain.

• When designing a compressed sensor or system with specific constraints limiting the access to the sensing matrix (e.g., for privacy purposes), Approach C presents a relevant strategy to perform the inference on compressed measurements. Indeed, when combined with a regularized inference scheme (e.g., DLSI), the bottleneck of compression ratio encountered with the LDA and SVM can advantageously be overcame enabling a certain trade-off between the inference accuracy and the hardware requirements.

Based on these conclusions, the next chapters deal with a new way to design a compact CIS with embedded inference tasks capabilities. We start first by proposing a hardware-friendly CS scheme enabling feature extraction in the focal plan with reduced dimensionality. Based on the fact that in the SOTA of canonical CIS design no specific constraints are required (e.g., data privacy), we will consider approach A as a straightforward strategy combined with commonly used classifiers (e.g., SVM, Neural Networks) or optimized classification schemes to design a compact CIS with embedded inference capabilities. Chapter 4
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Random Permutations and Modulations for Compressive Imaging

Several hardware architectures have been proposed in the SOTA enabling the acquisition of CS measurements in imaging systems. Indeed, the CS scheme is implemented either in the optical level or the electronic one. This thesis mainly focus on electronic implementations. This setting takes generally advantage of compact CMOS circuitry to extract CS measurements at the pixel level or the end-of-column circuitry. As discussed in Section 2.1.6, several breakthroughs have been proposed to deal with either on-chip hardware complexity or signal recovery bottleneck. However, these implementations suffer from several drawbacks, namely, the higher on-chip complexity related to the memory needs as in [START_REF] Robucci | Compressive sensing on a CMOS separable transform image sensor[END_REF][START_REF] Robucci | Compressive Sensing on a CMOS Separable-Transform Image Sensor[END_REF][START_REF] Jacques | CMOS compressed imaging by Random Convolution[END_REF][START_REF] Majidzadeh | A (256x256) pixel 76.7mw CMOS imager/ compressor based on real-time In-pixel compressive sensing[END_REF] and the restricted support of the CS measurements leading to correlated CS measurements (e.g., CS per-column or block) as in [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF][START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF][START_REF] Guicquero | An Algorithm Architecture Co-Design for CMOS Compressive High Dynamic Range Imaging[END_REF].

In this chapter, we present a new compressive sensing acquisition scheme well-adapted for highly constrained hardware implementations. The proposed sensing model being basically designed to meet both theoretical (i.e., stable embedding) and hardware requirements (i.e., power consumption, silicon footprint), is highly suitable for image sensor applications addressing both image rendering and embedded decision making tasks. Furthermore, it is formally generated based on a random modulation matrix and random permutation matrices enabling the use of pseudo-random generators to extract compressed measurements and, thus, relax hardware constraints to generate the CS matrix. In fact, for a given pixels array, we first apply a random modulation to the sensed pixel values, and then perform a random column permutation which is different for each selected row before averaging the column output in a rolling shutter readout fashion [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF]. Intuitively, the purpose of the modulation is to build a zero expectation CS matrix enabling to center CS measurements distribution and thus extract zero mean features, a pre-processing operation highly desirable in machine learning algorithms. On the other hand, the permutations allow to increase the information content (diversity) of each measurement with uncorrelated measurements supports. For instance, given a centred image with uniform background, applying just the modulation and performing per-column averaging could result in correlated CS measurements, thus the interest of the independent permutations. Advantageously, the proposed sensing scheme enables the reuse of a standard rolling shutter acquisition scheme as well as an array of canonical pixel architectures (e.g., 3T, 4T). This model is shown to be relevant as it has the same theoretical performance as a randomly generated sensing scheme as well as a low silicon footprint for a physical implementation. Various theoretical and numerical results as well as a discussion on possible implementations will be presented to show the robustness and the efficiency of the proposed model in non-canonical sparsity bases, e.g., universal bases. In the rest of this chapter, we first describe the proposed sensing scheme and then carry out some analytical and theoretical studies to evaluate the robustness of the proposed compressive imaging scheme for both image rendering and decision making tasks. Finally, we provide a discussion on some possible hardware implementations in the context of a highly constrained hardware for near CIS embedded inference. In particular, all the pixels sharing the same color are readout through to the same colorized end-of-column circuitry. Each pixel of the matrix U is also being modulated by the factor ±1.

Proposed Sensing Scheme

As discussed in Section 2.1.6, CS end-of-column implementations generally take advantage of parallel processing to alleviate hardware constraints at the expense of reduced measurements support, i.e., per-column or per-block data mixing. An ideal CS hardware implementation is therefore a CIS that maintain parallel processing while extending the measurements support to the overall acquired 2D image. To meet this wish-list, in this section we present a hardwarefriendly CS sensing scheme to provide more independent measurements by extending the measurements support while still addressing highly constrained hardware design (e.g., ultralow power image sensor) by maintaining the parallel processing to extract the CS vector. The proposed framework is mathematically defined as a combination of a random modulation matrix and random permutation matrices. In the rest of this section, we first describe the mathematical model of the proposed sensing scheme for a single image readout and then generalize the model to enable multiple snapshots acquisition leading to various compression ratios.

In this chapter, U = (u 1 , • • • , u n r ) ∈ R n r ×n c refers to the observed n r × n c k-sparse or compressible image in a proper sparsity basis as depicted in Figure 4.1 (n r and n c are the numbers of rows and columns respectively). Here, u i ∈ R n c refers to the vector containing the pixel values of the i th row with i ∈ [n r ] := {1, • • • , n r }. As made clear below, it is useful to denote the per-row vectorized representation of the observed image as u

= (u 1 , • • • , u n r ) ∈ R n r n c .
For a single focal plane readout (that we will call a snapshot), our sensing model expressed using the CS matrix Φ corresponds to applying in a rolling shutter readout the following steps:

1. Apply for each selected row of the observed n r × n c image a random modulation by multiplying each pixel by a ±1 weight generated as a realization of the discrete Bernoulli distribution with probability 1 2 .

2. Apply for each n c -dimensional row a random scrambling of the modulated pixels using n r independent realization picked in the n c ! possible permutations.

3. Averaging randomly modulated and scrambled rows to extract a compressed n c -dimensional vector.

The aforementioned steps can formally be described by first applying a pointwise product of the matrix U by the modulation matrix whose entries are the realization of the discrete Bernoulli distribution, i.e., ±1; and then apply a matrix-to-vector multiplication of the per-row vectorized image u by the horizontal concatenation of n r permutation matrices to accumulate randomly selected pixels from each modulated row and therefore extract the compressed vector y ∈ R n c composed of n c measurements as depicted in Figure 4.2. Furthermore, to extract further measurements, s different snapshots can be performed using different modulations and permutations to extract m = sn c CS measurements. Mathematically speaking, let

P (i ) = p (i ) 1 , • • • , p (i )
n r ∈ {0, 1} n c ×n c n r be the horizontal concatenation of n r permutation matrices, where p (i ) j ∈ {0, 1} n c ×n c is a random permutation matrix applied to the j t h row of U at snapshot i (1 ≤ i ≤ s). Indeed, each p (i ) j ∈ {0, 1} n c ×n c is picked up independently and uniformly at random among the n c ! possible permutations of {1, . . . , n c }. We also consider

M (i ) = diag ϕ (i ) 1 , • • • , ϕ (i ) n r ∈ R n r n c ×n r n c a random modulation diagonal matrix and ϕ (i ) = ϕ (i ) 1 , • • • , ϕ (i ) n r
the vertical concatenation of ϕ (i ) j 's, where ϕ (i ) j ∈ {±1} n c is the modulation vector applied to the j t h row of U at snapshot i and whose entries are generated as a realization of the discrete Bernoulli distribution with probability 1 2 . Written M (i ) k = diag ϕ (i ) k , the sensing model can be described for the i t h snapshot by:

y (i ) = n r k=1 p (i ) k M (i ) k u k ∈ R n c . (4.1)
Therefore,

y (i ) = P (i ) M (i ) u = p (i ) 1 M (i ) 1 , • • • , p (i ) n r M (i ) n r u. (4.2)
For a multi-snapshot model, the proposed sensing matrix Φ corresponds then to the vertical concatenation of s matrix multiplications of P (i ) 's by their correspondent modulation matrices

M (i ) 's (1 ≤ i ≤ s).
Thus, Φ ∈ R sn c ×n r n c can be compactly expressed with a normalization factor 1 s as:

Φ = 1 s P (1) M (1) , • • • , P (s) M (s) . ( 4.3) 
Equivalently, to allow more flexibility for hardware implementations, one can commute the modulation and permutation operations, i.e., perform first the per-row scrambling and then apply the modulations before averaging the resulting output. Thus, Φ ∈ R sn c ×n r n c can be expressed as follows:

Φ = 1 s
1 n c ⊗ ϕ (1) • P (1) , • • • , 1 n c ⊗ ϕ (s) • P (s) . (4.4)

We stress that for i = j , with probability close to 1, P (i ) = P ( j ) and M (i ) = M ( j ) ; and for k = l ,

p (i ) k = p (i )
l and ϕ (i ) k = ϕ (i ) l . We note finally n = n r n c and m = sn c . In addition, one can show that Φ is column normalized. Indeed, for a column i of Φ we have:

Φ i 2 2 = 1 s sn c j =1 Φ 2 i j = 1 s j ∈supp Φ i Φ 2 i j .
Because of each Φ i contains exactly s '±1', supp Φ i = s, leading to 

Φ i 2 2 = 1. ( 4 

CS Properties Verification

As discussed in Chapter 2, several quality of measure have been proposed in the CS literature to analyse the efficiency of a CS matrix for signal recovery and signal processing tasks. A key concept to evaluate the robustness of a CS sensing scheme is the RIP property that guarantees a stable embedding of the sensed signal. Typically, a sensing matrix A is said to respect the RIP of order k if for all k-sparse vectors u there exists δ k ∈ (0, 1) such that:

(1 -δ k ) u 2 2 ≤ Au 2 2 ≤ (1 + δ k ) α 2 2 .
When respecting the RIP, the mapping A preserves the energy of the sensed signal and thus is said to be a stable embedding. Consequently, respecting the RIP over all 2k-sparse vectors implies to preserve the pairwise distance between any two k-sparse vectors u and v , i.e., (1 -

δ 2k ) u -v 2 2 ≤ Au -Av 2 2 ≤ (1 + δ 2k ) u -v 2 2 .
Despite being of crucial importance for the design of CS based systems, designing structured RIP matrices is actually a challenging task that involves a deep mathematical background. For the proposed sensing scheme we gradually evaluate its efficiency by first proving that Φ cannot respect the RIP in the canonical basis and thus cannot be universal. Then, a numerical estimation is carried out to numerically estimating the RIP constant δ 2k for a specific sparsity structure and sparsity bases. After that, we dive into the theoretical analysis to show the relevance of the proposed sensing scheme to deal with inference tasks. As we are going to see, our matrix Φ cannot satisfies the RIP by itself, i.e., for images sparse in the focal-plane (i.e., the canonical basis). However, we will prove that it can be, with high probability, in the Fourier/DCT domain.

On The Non-Universality of The Proposed CS Model

A non negligible difference between random CS matrices and structured ones is their universality property. The universality refers to the ability to sense a signal without any prior knowledge of the sparsity basis needed only for signal recovery. For instance, this attractive phenomenon is well verified for sub-Gaussian matrices (e.g., Gaussian, Bernoulli distributions) known to be insensitive to the basis in which the sparsity occurs thanks to their concentration properties [START_REF] Baraniuk | A Simple Proof of the Restricted Isometry Property for Random Matrices[END_REF]. However, for structured CS matrices this is in general no longer the case. To illustrate this for the proposed sensing scheme, let us consider the sensing matrix Φ for one snapshot, i.e., Φ = P M, with

P = p 1 , • • • , p n r , M = diag ϕ 1 , • • • , ϕ n r
, and M i = diag ϕ i . We consider also two images U and V sparse in the canonical basis, defined as:

U = M 1 p 1 a , M 2 p 2 b , 0, . . . , 0 ∈ R n r ×n c and V = M 1 p 1 b , M 2 p 2 a , 0, . . . , 0 ∈ R n r ×n c ,
with a and b ∈ R n c sparse vectors in the canonical basis. Considering u and v , the per-row vectorization of U and V respectively, we have:

Φu = n r k=1 p k M k u k = p 1 M 1 M 1 p 1 a + p 2 M 2 M 2 p 2 b = a + b. Φv = n r k=1 p k M k v k = p 1 M 1 M 1 p 1 b + p 2 M 2 M 2 p 2 a = a + b.
Based on this example, we have shown that there exists at least two images sparse in the canonical basis such that their measurements are the same, i.e., one cannot distinguish the observed images for an image rendering or classification tasks. Thus, Φ cannot respect the RIP with respect to the canonical basis, at least for one snapshot. Notice that this conclusion can be extended to all support reduction based CS sensing schemes, i.e., CS sensing schemes performing projections sequentially or in parallel in disjoint subsets of the observed image (e.g., per-column or block-based Bernoulli projections) following the same approach to provide counter-examples of the universality. Hopefully, it is not an issue in practice since we can reasonably expect that natural images are not sparse in their original domain but rather sparse in specific frequency domains. Moreover, the nature of this sensing scheme seems well adapted for images that exhibit a 2D-separable sparsity for which the "structure" when projected on 1D disappear. In the following the robustness of the proposed sensing model is analyzed following a Monte-Carlo simulation to estimate numerically the RIP constant, and then, following a theoretical analysis to estimate the coherence of the mathematical model and its Johnson and Lindenstrauss Lemma (JLL) (i.e., ability to preserve Euclidean distances in the compressed domain). First, as in the addressed applications the probability to observe images with the same properties as the counter-example mentioned above is very small, the Monte-Carlo simulation is performed considering the canonical basis as a sparsity basis (i.e., acquiring images sparse in the focal-plane). Next, to fit the intrinsic properties of the images observed in the context of CMOS image sensor, a DCT basis is considered as a sparsity basis. It allows to alleviate the limitations regarding the RIP in the canonical basis due to the existence of counter-examples. Finally, a theoretical analysis is provided to estimate the coherence of the mathematical model of the proposed CS sensing scheme as well as its JLL property. To numerically approximate the RIP constant δ 2k , Let's consider a dataset of 1000 10-sparse signals in the canonical basis. Each generated vector is of length 1024 (i.e., n c = n r = 32) and has k = 10 non-zero coefficients normally generated on its support (i.e., subset of nonzero entries). Because of the fact that generating normalized vectors with disjoint supports leads to a constant Euclidean distance equal to 2, an overlap parameter is considered to randomly overlap the supports of the generated vectors. Furthermore, it is worth pointing out that this simulation cannot easily generate the counter-examples mentioned in Section 4.2.1 as they are rare according to the adopted testbench.

Analytical Study

The generated dataset is projected in the CS domain using either the proposed sensing scheme in (4.3) or a full Bernoulli ±1 random matrix to extract m = 128 measurements (i.e., performing 4 snapshots). The main idea behind this study is to show that the embedding performed by our model preserves the pairwise distance between any two k-sparse vectors of the generated dataset as well as the Bernoulli random matrix with respect to a constant δ 2k . Thus, to evaluate the distortion of the projected distances, Figure 4.3a exhibits a point cloud mapping the pairwise distances between the generated samples in the signal domain (X axis) to the distances computed in compressed domain (Y axis) using either the proposed sensing scheme or the Bernoulli random matrix over 100 trials to generate the sensing matrices. As it can be seen in Figure 4.3a, the point cloud of the proposed sensing scheme is well concentrated around the bisector axis (blue line) and its regression line perfectly fits the Bernoulli's one. We can therefore qualitatively validate the fact that our model preserve the pairwise distances with respect to a distortion constant, expressed as the RIP constant δ 2k .

In fact, the RIP constant δ 2k can be approximated in this analytical study as the aperture of the cone defined by the point cloud related to the proposed sensing scheme. In Figure 4.3b we establish the histogram of distances to the bisector axis for every point of Figure 4.3a to get an estimation of the RIP constant of our model and compare it to the Bernoulli random matrix. For instance in the canonical basis at 3σ, δ 2k = 0.044 for our model and δ 2k = 0.044 for the Bernoulli matrix. In the DCT, δ 2k = 0.049 for our model and δ 2k = 0.046 for the Bernoulli matrix. This means that we can reasonably attest that the proposed model respects the RIP with a small distortion constant, and guarantee to recover signals with specific sparsity structures or sensed in non-canonical bases.

In the rest of this chapter, we will study the robustness of our sensing scheme from a theoretical point of view. Indeed, we will study the robustness of our sensing scheme using the CS matrices properties presented in Chapter 2 known as the coherence and the Johnson and Lindenstrauss Lemma (JLL). Before that, we first present some useful tools from probability that will be used in the different mathematical proofs that we will provide.

Coherence Analysis

Useful Tools from Probability

The major SOTA contributions in analysing efficiency of CS matrices are generally obtained using random matrices and thus involves tools from probability theory to measure concentration [START_REF] Baraniuk | A Simple Proof of the Restricted Isometry Property for Random Matrices[END_REF][START_REF] Do | Fast and Efficient Compressive Sensing Using Structurally Random Matrices[END_REF]. In this section, we recall the necessary materials related to the theoretical analysis carried out in this chapter. For more mathematical background related to the CS theory the reader can refer back to chapters 7 and 8 of [START_REF] Foucart | Mathematical introduction to compressive sensing[END_REF].

Union bound: Also known as Bonferroni's inequality or Boole's inequality, states that for a collection of events B l , l ∈ [n] the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events, i.e., we have

P ∪ n l =1 B l ≤ n l =1 P (B l ) . (4.6)
Hoeffding's Concentration Inequality: It provides an upper bound on the probability that the sum of bounded independent random variables deviates from its expected value by more than a certain threshold [START_REF] Hoeffding | Probability Inequalities for Sums of Bounded Random Variables[END_REF]. Let X 1 , . . . , X m be a sequence of independent random variables such that EX l = 0 and |X l | ≤ B l almost surely, l ∈ [m], then for all t > 0,

P | m l =1 X l | ≥ t ≤ 2 exp - t 2 2 m l =1 B 2 l . ( 4 

.7)

Coherence

A simple and easy measurable metric to assess the robustness of a sensing matrix is the coherence [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF][START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[END_REF]. It provides a metric to evaluate the ability of a sensing matrix Φ to generate as independent (uncorrelated) as possible measurements. Indeed, it evaluates the cross-correlations between any two columns of the sensing matrix Φ expressed as: µ (Φ) = max 1≤i = j ≤n |〈Φ i , Φ j 〉|. As a general consideration, the smaller the coherence of the sensing matrix the more suitable is the matrix and therefore the better is the recovery. Indeed, it was shown that the quality of recovery of numerous reconstruction algorithms can be analysed using the coherence and therfore establish sufficient conditions for exact recovery based on this CS matrix intrinsic property [START_REF] Foucart | Mathematical introduction to compressive sensing[END_REF]. Furthermore, it was shown that the coherence of a column normalized sensing model can be bounded as follows: µ (Φ) ∈ n-m m(n-1) , 1 . The lower bound is known as the Welch bound [START_REF] Welch | Lower bounds on the maximum cross correlation of signals (Corresp.)[END_REF], and for m n it becomes µ (Φ) 1 m .

To evaluate the coherence of the proposed sensing scheme described in (4.3), let us consider images sparse per-row in a universal basis (e.g., Fourier transform or Hadamard transform). The sparsity basis can be described as Ψ = diag Ψ (1) , . . . ,

Ψ (n r ) ∈ R n r n c ×n r n c , with |Ψ (k) i j | ≤ K n c
for all i , j , k and K independent of n c . In this case, one can evaluate the coherence of the dictionary Φ Ψ reported in the following proposition.

Proposition 1. Given Φ in (4.3) and a sparsity basis Ψ = diag Ψ (1) , . . . ,

Ψ (n r ) such that |Ψ (k) i j | ≤ K n c for all i , j ∈ [n c ], k ∈ [n r ] and K > 0 a constant independent of n c , then with probability at least 1 -δ, the coherence µ Φ Ψ of Φ Ψ is upper bounded by O K log m δ m
, with m = sn c .

Proof. To find an upper bound of the cross-correlations between any two columns of the sensing matrix Φ Ψ we note

µ i j := 〈 Φ Ψ i , Φ Ψ j 〉, with Φ Ψ i = Φ Ψi and Φ Ψ j = Φ Ψj are
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two distinct columns of Φ Ψ (i.e., i = j ). In fact, Ψ = diag Ψ (1) , . . . , Ψ (n r ) , thus, Ψi = e b ⊗ Ψ (b) a , with a = [(i -1) mod n c ]+1 and b = i -1 n c +1. Therefore, µ i j can be then expressed as follows:

µ i j = s l =1 1 s 〈 p (l ) 1 M (l ) 1 , . . . , p (l ) n r M (l ) n r e b(i ) ⊗ Ψ (b(i )) a(i ) , p (l ) 1 M (l ) 1 , . . . , p (l ) n r M (l ) n r e b( j ) ⊗ Ψ (b( j )) a( j ) 〉 = s l =1 1 s 〈p (l ) b(i ) M (l ) b(i ) Ψ (b(i )) a(i ) , p (l ) b( j ) M (l ) b( j ) Ψ (b( j )) a( j ) 〉.
Therefore, if b(i ) = b( j ), we have a (i ) = a ( j ) since i = j , then:

µ i j = s l =1 1 s 〈Ψ (b(i )) a(i ) , Ψ (b(i )) a( j ) 〉 = 〈Ψ (b(i )) a(i ) , Ψ (b(i )) a( j ) 〉 = 0.
For b(i ) = b( j ), we have:

µ i j = s l =1 1 s 〈p (l ) b(i ) M (l ) b(i ) Ψ (b(i )) a(i ) , p (l ) b( j ) M (l ) b( j ) Ψ (b( j )) a( j ) 〉 = s l =1 s k=1 1 s e k p (l ) b(i ) M (l ) b(i ) Ψ (b(i )) a(i ) e k p (l ) b( j ) M (l ) b( j ) Ψ (b( j )) a( j ) = s l =1 s k=1 Z k,l i , j , with Z k,l i , j = 1 s e k p (l ) b(i ) M (l ) b(i ) Ψ (b(i )) a(i ) e k p (l ) b( j ) M (l ) b( j ) Ψ (b( j ))
a( j ) . By independence of M (l ) b(i ) and M (l ) b( j ) (generated by construction as the realization of a Bernoulli random variable identically and independently), Z k,l i , j are independent too. Furthermore, Z k,l i , j is bounded in absolute value by K sn c (since

|Ψ (q) i j | ≤ K n c
for all i , j , q). Therefore, By Hoeffding's inequality in (4.7) we can write:

P |µ i j | ≥ t ≤ 2 exp   - t 2 2 s l =1 n c l =1 K sn c 2    ≤ 2 exp - sn c t 2 2K .
By union bound in (4.7) we have:

P max 1≤i = j ≤sn c |µ i j | ≥ t = P ∃i , j /|µ i j | ≥ t ≤ i j P |µ i j | ≥ t ≤ sn c i =1 sn c j =1 2 exp - sn c t 2 2K ≤ 2s 2 n 2 c exp - sn c t 2 2K . We choose δ = 2s 2 n 2 c exp -sn c t 2 2K , thus t = 2K log 2s 2 n 2 c δ sn c
, leading to the following:

P     max 1≤i = j ≤sn c |µ i j | ≤ 2K log 2s 2 n 2 c δ sn c     ≥ 1 -δ.
Therefore, with probability at least 1 -δ the mutual coherence of Φ in a universal basis (i.e., µ (ΦΨ)) is upper bounded by O K log m δ m (m = sn c ), which is close to the optimal bound, i.e., 1 m .

Compressive Embedding Analysis

Compressive embedding refers to a stable embedding property allowing to preserve distances between low-complexity samples in the compressed domain up to a distortion factor using a sensing matrix Φ. This statement is explicitely stated by the Johnson-Lindenstrauss Lemma (JLL) for finite sets of vectors [START_REF] Baraniuk | The Johnson-Lindenstrauss lemma meets Compressed Sensing[END_REF]. As preserving pairwise distances is the cornerstone in numerous machine learning tasks, in this section we focus on verifying when the proposed sensing scheme preserves the separability of k-sparse images. Thus, let us consider the

CS Properties Verification

following JLL:

Proposition 2. Given 0 < t < 1 , a set X of r points in R n , the linear mapping f (u) = Φ Ψu such that (1 -t ) u -v 2 ≤ f (u) -f (v ) 2 ≤ (1 + t ) u -v 2 , (4.8)
holds for all u, v ∈ X with probability at least 1r 2 exp -c st 2 n r .

To show that our CS model Φ in (4.3) respects the JLL in the DCT basis, we will first find a concentration property of the proposed model, i.e., showing that Φ Ψu 2 2 is highly concentrated around u 2 2 and then extend the concentration property to show that the JLL holds with high probability in the case of the proposed sensing scheme in (4.3).

Concentration property

Without loss of generality let us consider a unit vector u ∈ R n r n c and the sensing scheme in (4.3) defined as Φ = 1 s P (1) M (1) , • • • , P (s) M (s) , and the sparsity basis defined as Ψ = diag Ψ (1) , . . . , Ψ (n r ) . We have:

Φ Ψu 2 2 u 2 2 = 1 s s i =1 P (i ) M (i ) Ψu 2 2 = 1 s s i =1 n r j =1 p (i ) j diag ϕ (i ) j Ψ ( j ) u j 2 2 = 1 s s i =1 n r j =1 p (i ) j M (i ) j Ψ ( j ) u j 2 2 = 1 s s i =1 n r j k 〈 p (i ) j M (i ) j Ψ ( j ) u j , p (i ) k M (i ) k Ψ (k) u k 〉 = 1 + 1 s s i =1 n r j =k 〈 p (i ) j M (i ) j Ψ ( j ) u j , p (i ) k M (i ) k Ψ (k) u k 〉 Thus, Φ Ψu 2 2 -u 2 2 = s i =1 Z i , with Z i = 1 s n r j =k 〈 p (i ) j M (i ) j Ψ ( j ) u j , p (i ) k M (i ) k Ψ (k) u k 〉.
To find a concentration property of Φ Ψu 2 2u 2 2 around 0, we can use Hoeffding's inequality in (4.7). To do that, we have to show that Z i 's are zero-mean and bounded in absolute value.

First, because the main diagonal entries of M (i ) j are Bernoulli variables with E diag M (i ) j = 0, with M (i ) j and M (k) l independent if i = k and j = l , we can show that E (Z i ) = 0. Indeed,

E (Z i ) = E 1 s u 2 2 n r j =k 〈 p (i ) j M (i ) j Ψ ( j ) u j , p (i ) k M (i ) k Ψ (k) u k 〉 = 1 s u 2 2 n r j =k E p (i ) j M (i ) j Ψ ( j ) u j p (i ) k M (i ) k Ψ (k) u k = 1 s u 2 2 n r j =k u j Ψ ( j ) E M (i ) j E p (i ) j E p (i ) k E M (i ) k u k Ψ (k) = 0
On the other hand, by Cauchy-Shwarz we have

Z i = 1 s u 2 2 n r j =k 〈 p (i ) j M (i ) j Ψ ( j ) u j , p (i ) k M (i ) k Ψ (k) u k 〉 ≤ 1 s u 2 2 n r j =k p (i ) j M (i ) j Ψ ( j ) u j p (i ) k M (i ) k Ψ (k) u k .
Because p (i ) j , M (i ) j and Ψ ( j ) are orthonormal matrices, p (i ) j M (i ) j Ψ ( j ) u j = u j . Thus,

Z i ≤ 1 s n r j =k u j u k ≤ 1 s n r j =1 u j 2 ≤ n r s u 2 = n r s
Finally we can apply Hoeffding's inequality in (4.7) to find the following concentration property: 

P | Φ Ψu 2 2 -u 2 2 | ≤ t u 2 2 ≥ 1 -2 exp -c st 2 n r , ( 4 

Johnson-Lindenstrauss Lemma

To show that our model Φ in (4.3) respects the JLL in (4.8), we consider the set E defined as:

E = {u i -u j : 1 ≤ i < j ≤ r }, (4.10) 
with card(E ) ≤ r (r -1) 2 .

For any fixed v ∈ E our model Φ respects the concentration inequality in (4.9). Thus, it is enough to show that the concentration inequality holds for all v ∈ E . One can see that thanks to union bound, (4.8) holds for all v ∈ E with probability at least 1r 2 exp -c st 2 n r . Thus, with r 2 exp -c st 2 n r ≤ 1, we need s ≥ n r t -2 log (r ), i.e., we need approximately to sense the hole image to ensure the JLL which is unfortunately not realistic. To handle this issue, the JLL analysis have to benefit of the structure of the sparsity basis Ψ (e.g.,

|Ψ i j | ≤ K n c
) by restricting the set of images to those that are sparse in Ψ only. This will maybe have only to respect s ≥ t -2 log (r ) which is realistic.

Signal Recovery Using the Proposed Sensing Scheme

Reconstruction of Sparse Signals

Although verifying the ability to preserve pairwise distances, it is relevant to analyze the efficiency of signal recovery for image rendering tasks. Our testbench is mainly composed of the commonly used images, i.e., Barbara, Monkey, Boat, Cameraman and Lena as depicted in Figure 4.4. These images are resized to 128 × 128 for simulation purposes (speed of convergence). As already discussed, natural images are generally compressible and not really sparse (i.e., most components are practically of small magnitudes but not zero). Indeed, to ensure the sparsity of our testbench for phase-transition diagnosis purposes, each image is first projected in the wavelet domain and small magnitude are then zeroed with respect to a pre-computed threshold enabling a certain sparsity level. Finally, each image is backprojected in the canonical basis using the wavelet inverse transform.

Signal recovery is achieved using the Daubechies-6 wavelet basis as a sparsity basis Ψ [START_REF] Kessler | Wavelet Notes[END_REF]. The signal recovery can then be expressed as: with Ψ is the Daubechies-6 operator, and the sensing matrix Φ is either the proposed sensing scheme in (4.3) or a diagonal concatenation of Bernoulli matrices with ±1 entries with probability1 2 leading to the per-column Bernoulli projections as performed in [START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF]. Thus, the UnLocBox 1 is used to solve the problem stated in (4.11) with a very small regularization parameter λ.

x = arg min x Ψ (x) 1 + λ y -Φx 2 2 , ( 4 
In Figure 4.5, we plot the average PSNR in dB for different sparsity levels (i.e., k 128 2 ) in function of the number of snapshots (i.e., for each snapshot we extract 128 measurements). It reports the required amount of snapshots to perform (i.e., minimum number of measurements to extract) to successfully recover the signal under the constraint of a certain PSNR using a percolumn Bernoulli (denoted "Col-Bern") sensing scheme as used in [START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF], our sensing scheme without permutations (denoted "W/o perm") and with permutations (denoted "modPerm"). Indeed, one could logically attest that a signal is properly reconstructed if the reconstruction error is lower than 10 -4 , i.e., a PSNR higher than 40 d B . Regarding the reported quality of recovery, we can see that the proposed sensing scheme in the two settings (without and with permutations) clearly outperforms the most compact and hardware efficient CS sensing scheme implemented in the CIS focal plane (e.g., ±1 Bernoulli) [START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF]. Furthermore, we can also validate the interest of permutations to extract uncorrelated measurements leading to a better signal recovery performances.

Reconstruction of Compressible Signals

In this section, we propose to recover a real world image, i.e., compressible. Here, for the sake of simplicity, the only considered image is the Cameraman image of size 512 × 512 (because of its intrinsic image characteristics). Two regularization operators are used to recover this image instead of a simple 1 -constraint in a wavelet basis:

1. The anisotropic Total Variation (TV) operator defined using the horizontal and vertical gradients (respectively ∇ h and ∇ v ) as:

TV (x) = ∇ v x 1 + ∇ h x 1 . (4.12)
Thus, the signal recovery problem can be expressed as:

x = arg min x TV (x) + λ y -Φx 2 2 , (4.13) 
2. the mDWT-TV operator defined as the sum of the 1 norm of the components (horizontal and vertical) of the gradient of the image in multiple wavelet transforms (denoted as matrices Ψ i ) [START_REF] Carrillo | Sparsity Averaging for Compressive Imaging[END_REF][START_REF] Guicquero | An Algorithm Architecture Co-Design for CMOS Compressive High Dynamic Range Imaging[END_REF]:

mDWT-TV (x) = 3 i =1 Ψ i ∇ v x 1 + Ψ i ∇ h x 1 . (4.14)
Indeed, natural images generally involve several structures with sparse representations in different basis. It turns out therefore that promoting average sparsity over multiple bases rather than a single one represents a powerful prior [START_REF] Carrillo | Sparsity Averaging Reweighted Analysis (SARA): a novel algorithm for radio-interferometric imaging[END_REF]. Thus, the signal recovery problem can be expressed using three wavelet transforms known as Db-2 (Ψ 1 ), Db-6 The reconstruction from CS measurements is performed thanks to the FISTA algorithm [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] using our model and a per-column Bernoulli sensing [START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF] over 10 batches of sensing matrices generation using the signal recovery algorithms in (4.13) and (4.15). Notice that a sweep over several λ values has been done to pick proper regularization coefficients. As it is clearly seen in Figure 4.8, our sensing scheme outperforms the sensing scheme implemented in [START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF]. Indeed, in Figure 4.6 and Figure 4.7 artefacts are less obvious using the proposed sensing scheme even with a high compression ratio, i.e., ≈ 5% (2560 measurements). Furthermore, the quality of recovery is significantly improved when using suitable sparsity prior promoting the sparsity in different bases, i.e., the mDWT-TV operator. 

Inference Using the Proposed Sensing Scheme

Leveraging the cost of signal recovery, signal processing on compressed measurements [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF] allows to perform signal processing (e.g., filtering, detection and inference) in the CS domain thanks to the RIP property as discussed in Section 2. case of the MNIST (small and low variable samples), we can achieve a no-loss classification compared to a no-CS setting from 10 snapshots, (i.e., ≈ 35% compression ratio and 320 measurements). However, with more variability and informational content (i.e., AT&T), we achieve the same performance from approximatively 10 snapshots, (i.e., ≈ 5% compression ratio and 520 measurements). It is finally clear that what practically matter is the number of CS measurements (or its equivalent number of snapshots) to extract and not the compression ratio.

Figure 4.9 -Classification accuracy for the AT&T and MNIST databases.

Dedicated Hardware Implementations and Conclusion

A system overview of possible physical implementations of the proposed sensing scheme is illustrated in Figure 4.10. Indeed, several possible embodiments can be proposed to perform on-chip pseudo-random modulations and permutations. To perform permutations, one can design a dedicated pseudo-random generator to generate a pseudo-randomly permuted sequence to address the columns leading to pseudo-random shuffle of each selected row. Furthermore, this task can also be achieved thanks to a butterfly network [START_REF] Hilewitz | A New Basis for Shifters in General-Purpose Processors for Existing and Advanced Bit Manipulations[END_REF] controlled by a pseudo-random generator (PRG) (e.g., LFSR [START_REF] Klein | Linear Feedback Shift Registers[END_REF] or Cellular automata [START_REF] Wolfram | Cellular automata and complexity: collected papers[END_REF]). On the other hand, the pseudo-random modulations and the sum can be achieved using either a CTIA [START_REF] Katic | Column-separated compressive sampling scheme for low power CMOS image sensors[END_REF] combined with a classical ADC (e.g., SAR) or design dedicated ADC that takes advantage of a canonical incremental Σ∆ converter enabling pseudo-random modulations, averaging and A/D conversions [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF]. It is worth pointing out that all the cited possible implementations can be implemented at the end-of-column circuitry in the analog domain or during A/D conversions allowing to alleviate hardware resources and keeping standard pixel architectures (e.g., 3T or 4T) with canonical image readout enabling CDS operation to deal with FPN resulting noise. For multiple snapshots, our scheme requires non-destructive pixel readout both in the case of rolling shutter and global shutter acquisitions thanks to relaxed constraints on ADC speed.

In conclusion, in this chapter we propose a new CS sensing scheme based on random modulations & permutations to meet highly constrained hardware tasks while respecting theoretical properties of a CS matrix. Several analytical, theoretical and simulation results have been presented to show the efficiency of the proposed sensing scheme for both image rendering and inference tasks. Indeed, the proposed sensing scheme clearly outperforms the most compact implementation of a CS sensing scheme in both signal recovery and inference. Furthermore, the main advantage of the proposed sensing scheme is its relevance in terms of hardware implementation such it can be advantageously implemented at the end-of-column circuitry without major additional materials compared to a canonical CIS architecture [START_REF] Gamal | CMOS image sensors[END_REF] while reducing the total amount of data to extract and convert to the digital domain leading to a significant power consumption save and enabling advanced signal processing tasks, e.g., on-chip decision making as it will be discussed in Chapter 6.

Chapter 5

Hierarchical Decision Making

As discussed in Section 2.2, the trend in smart CIS consists in designing computational-friendly, always-on compact CIS with on-chip AI capabilities. The design of this new devices tends to take advantage of recent advances in signal acquisition schemes and inference algorithms, well optimized for low-power systems. Moreover, the design of this kind of informationretrieval signal processing architectures have to deal with on-chip constraints related to the data dimensionality and algorithms complexity. Throughout this thesis, we aim at providing some initial steps towards the design of smart compact CIS with on-chip inference capabilities. As seen in Chapter 4, compressive sensing has been explored to reduce data dimensionality during the image acquisition process without heavy additional materials leading to drastic hardware resources saving. However, achieving our goal, i.e., on-chip inference, is still limited by the algorithm complexity at the device level when implementing standard machine learning algorithms.

To deal with the on-chip computational complexity bottleneck related to a canonical inference algorithm, hierarchical machine learning algorithms [START_REF] Chakraborty | Hierarchical learning for automated malware classification[END_REF][START_REF] Vural | A hierarchical method for multi-class support vector machines[END_REF][START_REF] Yoon | A hierarchical-structured dictionary learning for image classification[END_REF][START_REF] Qu | Joint Hierarchical Category Structure Learning and Large-Scale Image Classification[END_REF] can significantly reduce memory and computational requirements related to an embedded decision making algorithm. Considering a multi-class image classification system based on binary classifiers such as SVMs, three popular strategies are usually adopted with different levels of complexity.

The complexity of such systems is generally expressed based on the number of binary classifiers involved during the inference. The first approach called one-vs.-all, involves the training of C classifiers for a C classes problem. The second one is the one-vs.-one strategy and trains C (C -1)/2 classifiers for the same C classes problem. Finally, for more flexibility to define the number of classifiers and the depth width (i.e., cascading many classification layers), the DNN took over the reins of multi-class image classification by learning αC classifiers in the first layer (α > 1) combined with nonlinear activation functions and adaptive depth width depending on the complexity of the classification task. However, thanks to its intrinsic nature, a hierarchical inference dynamically requires to run only O (log 2 C ) cascaded binary classifiers lowering as a consequence the number of binary operations (i.e., multiplication and accumulation) as well as memory needs required for on-chip applications. Thus, for a highly constrained embedded system (e.g., smart always-on sensor), it seems relevant to investigate hierarchical strategies on CS measurements to relax hardware requirements related to signal acquisition (e.g., A/D conversion, power consumption) and data processing (e.g., memory needs) to perform embedded multi-class inference.

In this chapter, we mainly focus on hierarchical learning in the context of highly constrained hardware in order to reduce hardware requirements related to an embedded multi-class inference. We introduce new methods to construct the hierarchical tree to train a hierarchical classifier (i.e., a binary decision tree) minimizing as a consequence the number of decision nodes, end thus, the number of binary classifiers to perform at the inference level. Indeed, as already discussed in the previous section, a powerful binary classifier is the so-called 2-classes SVM thanks to its ability to handle outliers. Using classes centroids and sample labels of a training database, three methods have been investigated to create two clusters at each node that are balanced in terms of number of classes: (Method 1): sequential C -means clustering, (Method 2): SVM-based clustering and (Method 3): a clustering based on the Principal Component Analysis (PCA). Each proposed method assumes specific priors on intraclass & inter-class data distribution to construct the decision tree. In Method 1, we propose a K-means-inspired [START_REF] Har | How Fast Is the k-Means Method?[END_REF] algorithm to construct two balanced clusters limiting the decision tree depth. In Method 2, we construct balanced clusters that directly maximize the soft margin of a SVM performed on samples data belonging to each class-clusters. Finally, Method 3 takes advantage of a new basis estimated from a PCA [START_REF] Jolliffe | Principal component analysis[END_REF] that better represents the classes centroids variability to define a separation threshold identifying two classes clusters. In the following, we will present our proposed clustering methods as well as general considerations on hardware and an evaluation of classification accuracy for a basic inference problem. In the context of limited processing and memory resources, we consider CS measurements as raw data for both training and testing.

Hierarchical Classification on CS: Key Concepts

In the SOTA, several works have addressed hierarchical classification each proposing a different criteria to construct the decision tree. For example, [START_REF] Vural | A hierarchical method for multi-class support vector machines[END_REF] describes statistical criteria to hierarchically cluster similar classes in a multi-class classification problem. In addition, a binary SVM is trained to geometrically separate clusters at each level. More recently, with the rise of dictionary learning techniques for image representation and classification, various constrained dictionary learning methods were proposed to learn discriminative class-specific dictionaries allowing images classification. As for [START_REF] Vural | A hierarchical method for multi-class support vector machines[END_REF], a hierarchical dictionary learning approach provide a coarse-to-fine representation to describe patterns of different level of similarities. For instance, [START_REF] Yoon | A hierarchical-structured dictionary learning for image classification[END_REF] proposes a hierarchical dictionary learned such that the upper-level dictionaries represent common patterns of high level classes while lower-level dictionaries describe specific patterns of a set of classes. On the other hand, [START_REF] Chuang | Hierarchical Structured Dictionary Learning for image categorization[END_REF] proposes a hierarchical-structured dictionary learning method based on a Fisher criterion [START_REF] Mika | Fisher discriminant analysis with kernels[END_REF]. Hence, a constrained dictionary is learned at each level and described as a concatenation of the shared dictionary of the upper level and the class-specific dictionary. Indeed, to construct the hierarchical tree, [START_REF] Chuang | Hierarchical Structured Dictionary Learning for image categorization[END_REF] uses a K-means algorithm [START_REF] Keriven | Compressive K-means[END_REF]. In this work, the sparse coefficients extracted at each node are then used to train a multi-class SVM to classify the images. Finally, [START_REF] Qu | Joint Hierarchical Category Structure Learning and Large-Scale Image Classification[END_REF] addresses the problem of hierarchical tree construction using classes similarity based on an inter-class distance metric, combining clustering on data variability with path-searching for the inference.

On the other hand, hierarchical learning on CS measurements refers to constructing the hierarchical decision tree directly in the compressed domain. Indeed, as mentioned in previous sections, based on the outstanding results in the field of signal processing on compressive measurements [START_REF] Davenport | Signal Processing With Compressive Measurements[END_REF][START_REF] Calderbank | Compressed learning: Universal sparse dimensionality reduction and learning in the measurement domain[END_REF][START_REF] Cambareri | The rare eclipse problem on tiles: Quantised embeddings of disjoint convex sets[END_REF], we can advantageously take advantage of the stable embedding of a CS sensing scheme to preserve the distance between the two subsets learned at each node of the binary decision tree. In the rest of this chapter, we will first present the proposed hierarchical algorithms and then present the results of combining the proposed methods with a CS sensing matrix.

Proposed Hierarchical Learning Methods

Notations

Let us consider a database of n-length "vectors" in R n (e.g., signals with n samples, or images with n pixels) composed of C classes. This database is separated into two databases: a "train" set X ∈ R n×n 1 C , where each class is composed of n 1 samples, associated with labels

l ∈ {1, • • • ,C } n 1 C
; and a "test" set Y ∈ R n×n 2 C with unknown labels and composed of n 2 samples per class. We refer to X j = (X

j 1 , • • • , X j n 1 ) ∈ R n×n 1 and Y j = (Y j 1 , • • • , Y j n 2 ) ∈ R n×n 2
for the train and the test sets restricted to the j th class, respectively. The notation x ∈ X or x ∈ X j , means that the sample x is an arbitrary column of X or X j , respectively (and similarly for Y ). The mean vectors of each class (i.e., class centroids) are expressed as

µ j = 1 n 1 n 1 i =1 X j i , for 1 ≤ j ≤ C .
Moreover, we denote by the distance matrix the matrix containing the euclidean distances between the mean vectors defined as: D = ( µ p -µ q 2 ) 1≤(p,q)≤C .

(5.1)

Binary SVM

A binary (2-class) SVM refers to learning a hyperplane separating the n-dimensional space between two classes. Obviously, the best separation is achieved by the hyperplane maximizing the distance to the nearest training sample of any class, i.e., maximum margin. Thus, given {(x 1 , l 1 ) , . . . , (x k , l k ) , . . . , x 2n 1 , l 2n 1 } ⊂ R N × {-1, 1} samples of two different classes in X . The optimization problem allowing to learn a binary SVM between these two classes can then be expressed as:

{ ω, b, ξ} = arg min

ω∈R n ,b,ξ∈R 2n 1 1 2 ω 2 2 + λ 2n 1 k=1 ξ k s.t. l k (ω x k + b) ≥ 1 -ξ k , ξ k ≥ 0, 1 ≤ k ≤ 2n 1 , (5.2)
with ω is the weights vector, b the bias scalar, ξ the vertical concatenation of 2n 2 slack variables and λ an inner regularization parameter. Once the binary classifier constructed, the canonical SVM inference can be expressed as an affine transformation. Thus, for a test sample y ∈ Y the inferred class c y is given by:

c y = sign(ω y + b) (5.3)
Notice that in the context of an embedded classification system based on supervised learning, we generally consider two stages: i ) learning the classifier parameters on a training set, off-line, i i ) performing embedded in-line inference on sensed data. Moreover, in the special case of a binary SVM, solving the inference problem in (5.3) involves only one projection and a sign operator that can typically be achieved by recovering the bit sign of the resulting scalar of the projection. In this section, we will first present the proposed algorithms to construct a hierarchical tree, the inference algorithm and finally a discussion on hardware requirements for a basic inference application on original and compressed data.

Training the Hierarchical Classifier

Different approaches can be investigated for hierarchical learning. Here, we consider the division step as a clustering problem of classes centroids. As depicted in Figure 5.1, the main idea is to divide a set of classes into two subsets at every hierarchical node. Indeed, given a multi-class dataset at Level 0, a first balanced clustering is performed at Level 1, i.e., creating 2 balanced clusters each associated to the same number of classes. A binary classifier is then trained to separate the created clusters. This process is repeated for each cluster until each terminal node cluster represents a single class. A straightforward method is to use the K-means clustering as presented in [START_REF] Vural | A hierarchical method for multi-class support vector machines[END_REF]. On the other hand, to create balanced clusters a sequential clustering can be adopted (method 1). A second method consists in maximizing the margin between clusters based on a binary SVM (method 2). Finally, we can explore orthogonal transformation (e.g., Principal Component Analysis (PCA) [START_REF] Ulfarsson | Sparse variable noisy PCA using l0 penalty[END_REF]) to find a system coordinate that describes the best data variability (method 3). In the rest of this subsection we will first present our proposed methods to create two balanced clusters at a hierarchical node given a set of classes (Algorithm 1-3). Secondly, we describe the algorithm used to create the decision tree (Figure 5.2), then used for the inference (Algorithm 4).

Sequential C -means Clustering (Method 1)

Algorithm 1 Sequential C-means clustering (Method 1)

1: Input µ ∈ R n×C centroids of C classes in X and D 2: {m 1 , m 2 } ← arg max i , j D i j ; 3: c 1 ← µ m 1 ; c 2 ← µ m 2 ; 4: C 1 ← {c 1 }; C 2 ← {c 2 }; 5: µ ← µ {µ m 1 , µ m 2 }; 6: while µ = {ø} do 7:
m 1 ← arg min j c 1 -µ j 2 ;

8:

m 2 ← arg min j c 2 -µ j 2 ;

9:

c 1 ← µ m 1 ; c 2 ← µ m 2 ;
10:

C 1 ← C 1 ∪ {c 1 }; C 2 ← C 2 ∪ {c 2 } ; 11: µ ← µ {µ m 1 , µ m 2 }; 12: c 1 ← centroid of C 1 ; c 2 ← centroid of C 1 ; 13: end while 14: return C 1 and C 2
The hierarchical learning proposed in Method 1 is typically inspired by the K -means clustering technique known also as the Lloyd's algorithm. The K -means algorithm is a canonical clustering technique that aims at minimizing the average squared distance between samples in the same cluster [START_REF] Arthur | k-means++: The Advantages of Careful Seeding[END_REF]. Indeed, the K -means first chooses K arbitrary samples chosen randomly from the input dataset as initial centroids. Each point is then assigned to the nearest centroid, and each centroid is recomputed as the mean vector of all samples assigned to it. These last two steps are repeated until the process stabilizes, i.e., when the assignments no longer change. Thus, given centroids of a C -classes dataset represented by the matrix µ ∈ R n×C and their corresponding distance matrix D ∈ R C ×C , Method 1 aims at creating two balanced clusters based on classes centroids too. Inspired by the K -means, the algorithm of Method 1 is first initialized to the centroids maximizing the Euclidean constrained distances, i.e., centroids separated with the highest Euclidean distance that we will denote c 1 and c 2 . Then, at each iteration we sequentially assign to each cluster the centroid minimizing the Euclidean distance to their centers. In addition, c 1 and c 2 are recomputed at each iteration, i.e., we calculate the mean vector of their clusters, respectively. This process is repeated until the assignment of all initial centroids. Finally, the algorithm returns two clusters C 1 and C 2 allowing to cluster a set of centroids at a given node as described in Algorithm 1.

SVM Based Balanced Clustering (Method 2)

Algorithm 2 SVM based clustering (Method 2) 

1: Input C classes in X , centroids µ ∈ R n×C and D 2: {m 1 , m 2 } ← arg max i , j D i j ; 3: c 1 ← µ m 1 ; c 2 ← µ m 2 ; 4: C 1 ← {X m 1 }; C 2 ← {X m 2 }; 5: µ = µ {µ m 1 , µ m 2 }; 6: while µ = {ø} do 7: associate C 1 to {1} n 1 card(C 1 ) ; 8: associate C 2 to {-1} n 1 card(C 2 ) ; 9: for all x k ∈ C 1 ∪ C 2 : { ω, b, ξ} = arg min ω,b,ξ 1 2 ω 2 2 + λ k ξ k s.t. l k (ω x k + b) ≥ 1 -ξ k , ξ k ≥ 0, 1 ≤ k ≤ n 1 card(C 1 ) + n 1 card(C 2 ).
c 1 ← µ m 1 ; c 2 ← µ m 2 ; 13: C 1 ← C 1 ∪ {X m 1 }; C 2 ← C 2 ∪ {X m 2 }; 14: µ = µ {µ m 1 , µ m 2 };
15: end while 16: return C 1 and C 2 Method 2 takes advantage of the intrinsic properties of the SVM classifier to directly learn the hierarchical decision tree. In this second method, the algorithm is also initialized to the centroids maximizing the Euclidean distance (i.e., c 1 and c 2 ) as described in Algorithm 2. Indeed, at the first iteration the binary SVM is trained on the samples associated to the classes whose centroids are c 1 and c 2 , i.e., centroids maximizing the Euclidean distance (in matrix D). For the second step, Method 2 assigns the class centroid µ m 1 maximizing the positive margin to the first cluster C 1 and the class centroid µ m 2 minimizing the negative margin to C 2 using the affine function presented in (5.3). An update of the binary SVM hyperplane is then performed by relearning it but this time on all the data samples associated to the centroids of each cluster. The last two steps are repeated until the assignment of all centroids with a SVM decision boundary learned on the finally generated clusters. The main advantage of this approach is the ability to update the decision boundary at each iteration taken into account the new assigned centroids and thus samples associated to each cluster.

PCA Based Balanced Clustering (Method 3)

Algorithm 3 PCA based clustering (Method 3)

1: Input µ ∈ R n×C centroids of C classes in X 2: SVD [227] : µ = U ΣV s.t. U = [u 1 . . . u C -1 ]. 3: θ ← median value of u 1 µ ; 4: C 1 ← (µ) j s.t. u 1 µ j < θ ; 5: C 2 ← (µ) j s.t. u 1 µ j ≥ θ ; 6: return C 1 and C 2
The main idea of Method 3 is to find a new basis that best describes data variability of class centroids enabling then the construction of two balanced half-spaces. Indeed, dimensionality reduction techniques [START_REF] Van Der Maaten | Dimensionality Reduction: A Comparative Review[END_REF] provide a powerful framework to find new bases that preserve intrinsic properties of the processed data. A widely used technique is the Principal Component Analysis (PCA) that seeks to project the observed data into a set of linearly uncorrelated vectors called principal components. The new basis is constructed such that the first principal component has the largest variance of the data, and each succeeding component is constructed under the constraint that it is orthogonal to the preceding components with decreasing variance. The PCA decomposition is usually achieved via eigendecomposition of the covariance matrix or by Singular Value Decomposition (SVD) [START_REF] Howland | Generalizing discriminant analysis using the generalized singular value decomposition[END_REF]. Thus, to create two balanced clusters, a promising approach consists in projecting the centroids into the first principal component of the matrix µ ∈ R n×C composed of the mean vectors of each class of the C -classes dataset. This way, once the projection is learned, one can construct two clusters such that the centroids bellow the median of the projection in the PCA domain are assigned to the first cluster and the ones above this threshold are assigned to the second. This way, the median enables a balanced clustering.

Testing the Hierarchical-Based Inference

Given the balanced clustering methods presented in Section 5.2, the binary decision tree is recursively constructed using one of the aforementioned balanced methods at each node. Indeed, in each node two balanced clusters are typically constructed allowing to train a binary SVM (i.e., (5.2)) on the created clusters as described formally in Algorithm 4.

Algorithm 4 Decision tree construction

1: Input training set X 2: l evel ← 1 and nod e ← 1 3: create two balanced clusters C (1) 1 ; C (2) 1 on X ; 4: solve (5.2) on C (1) 1 and C (2) 1 to learn SV M (1) 1 classifier 5: while level = ceil(log 2 C ) -1 do 6:

l evel ← l evel + 1 and nod e ← 2 l evel -1 7:

for n in 1 to nod e do 8:

if card(C (n) l evel ) = n 1 then 9:
Create two balanced clusters C (2n-1)

l evel +1
and C (2n) l evel +1 on C (n) l evel 10:

solve (5.2) on C (2n-1) l evel +1 and C (2n) l evel +1 to learn SV M (n) l evel +1 classifier 11:

end if 12:
end for 13: end while As previously mentioned, training the hierarchical tree allows to construct a binary decision tree where each path from a root to a leaf is associated to a decision rule defined by the binary inference of the learned SVM presented in (5.3). Therefore, for an unknown test sample y ∈ Y , a decision rule (i.e., (5.3)) is applied at every node where the margin sign is used to decide to which next branch the sample belongs to. Thus, the predicted class is provided by the path indicated by the successive decisions (cf., Figure 5.2).

Embedded Resources Requirements Analysis

To show the relevence of solving an embedded inference task using a hierarchical classifier, Table 5.1 summarizes embedded resources requirements related to a one-vs.-all approach, a one-vs.-one approach and the proposed binary hierarchical learning approach for a ndimensional C -classes classification problem. Indeed, in the context of an embedded system,

Simulation Results

since the training is performed in an off-line system, we are mainly interested by the requirements related to the inference part, i.e., memory needs to store ex-situ learned patterns and computing complexity related to the inference. In fact, in the case of the one-vs.-all, C classifiers are learned and thus have to be stored to perform C n-dimensional projections. For a one-vs.-one, C (C -1)/2 classifiers are learned. However, when using a hierarchical approach, the number of classifiers to learn is reduced to C -1 to perform only log 2 C n-dimensional projections (m-dimensional in the CS case). It is worth pointing out that although needing to store C -1 classifier, only log 2 C memory accesses are needed leading to a drastic power consumption saving as the most energy-hungry component of a digital circuit is the amount of memory accesses involved to read the data from local memories.

Let us now consider the sensing matrix Φ ∈ R m×n composed of m n measurement vectors that are properly designed to perform CS. It allows, for a n-length vector x ∈ R n , to acquire a CS measurement vector using the sensing model described as x = Φx ∈ R m . Table 5.1 exhibits the underlying motivations related to the proposed hierarchical approach. Indeed, it clearly shows the interest of hierarchical learning, in particular, when combined with compressed measurements in a CS based system. In fact, when learning the hierarchical classifier on compressed measurements, hardware requirements are dramatically reduced thanks to the signal independent dimensionality reduction performed by CS as well as the computing complexity reduced thanks to the hierarchical approach leading to a joint optimization at both the signal acquisition level (i.e., the focal plane for a CMOS image sensor) and the inference one. Making this approach (i.e., hierarchical learning on compressed measurements) highly suitable for wearable devices with limited energy and memory budgets.

Learning

Memory Computing One-vs.-all nC O (nC ) One-vs.-one

nC (C -1)/2 O (nC (C -1)/2) Hierarchical n(C -1) O (n log 2 C ) Hierarchical+CS m(C -1) O (m log 2 C )
Table 5.1 -A comparison of embedded resources requirements of hierarchical learning approach compared to the one-vs.-all and one-vs.-one strategies.

Simulation Results

To test the relevance of the proposed hierarchical methods for real-world inference tasks, we build up a testbench composed of two databases: 5.2 -Classification accuracy of our methods compared to one-vs.-all approach, one-vs.-one approach and the K-means based hierarchical learning. with a Compression Ratio of 25%. Number of projections to perform at the inference stage.

AT&T

COIL-100 database [228]:

Composed of 7,200 images of 100 objects. Each object was turned on a turntable through 360 degrees to vary object pose with respect to a fixed color camera. Images of the objects were taken at pose intervals of 5 degrees. This corresponds to 72 poses per object. There images were then size normalized. Objects have a wide variety of complex geometric and reflectance characteristics.

In addition, each image is resized to a n = 32 × 32 resolution via bicubic interpolation and standardized using the feature scaling method [START_REF] Stolcke | Nonparametric feature normalization for SVMbased speaker verification[END_REF] to stay in the scope of a highly constrained image sensor hardware. Two setups are proposed. In the first one, simulations are performed in the signal domain using the original training and test sets (i.e., X ∈ R n×n 1 C and Y ∈ R n×n 1 C respectively). In the second one, simulations are performed in the compressed domain using the sensing matrix Φ ∈ R m×n to simulate feature extraction of CS based system (e.g., compressive CIS). In this case, the training and test sets are acquired using the matrix Φ and the hierarchical algorithms are learned directly in the compressed domain using the compressed training and test sets (i.e., X = ΦX ∈ R m×n 1 C and Ỹ = ΦY ∈ R m×n 1 C respectively).

For the sake of simplicity, simulations are performed using a sensing matrix Φ generated as the realization of a discrete Bernoulli distribution with probability 1 2 composed of m = 128 projection vector enabling a compression ratio of 25% (i.e., m = n/4). We stress that for an embedded application the sensing matrix can be generated "on-the-fly" thanks to digital pseudo-random generators (e.g., LFSR, cellular automaton) as discussed in the previous and next sections.

Based on the AT&T and COIL-100 databases, our results show the relevance of the hierarchical learning associated to the proposed clustering methods compared to the alternative approaches as summarized in Table 5.2. Indeed, in terms of classification accuracy, hierarchical learning yet reduces the average algorithm accuracy by ≈ 3% on original data and ≈ 4% on compressed data compared to a straight linear SVM. On the other hand, regarding the decision tree depth (i.e., number of decisions to compute at the inference), our methods deeply outperform the one-vs.-all method, and even more the one-vs.-one. Indeed, in the case of the AT&T, the number of projections to be performed is divided by ≈ 6.6 (6.4 for COIL-100) compared to a one-vs.-all strategy. Finally, it means an equivalent reduction in terms of algorithm complexity and thus power consumption, considering hardware implementation. Note that, the impact of CS is twofold, reducing the size of the SVM coefficients to store and the total amount of multiply-accumulate (MAC) operations to perform on-chip.

Conclusion

In this chapter, we have proposed three balanced clustering methods allowing the training of hierarchical classifiers based on a binary SVM with linear kernel. Indeed, simulation results based on two databases as well as hardware complexity analysis show the great interest of the proposed methods in terms of hardware requirements (computing complexity and memory access needs) with an acceptable impact on the classification accuracy. In addition, when combined with Compressive Sensing, the overall memory and on-chip MAC operation needs can even be lowered thanks to the signal-independent dimensionality reduction enabled by CS. This chapter have thus demonstrated that decision making algorithms can fully take advantage of the hierarchical learning approach combined with CS to tackle issues related to hardware needs if the classification accuracy doesn't require to be excessively high (e.g., low-power sensing nodes). It allows then a joint acquisition-processing optimization to meet highly constrained on-chip inference tasks. Finally, although involving basic classification algorithms (i.e., SVM), this approach can take advantage of more powerful algorithm tools such as deep neural networks or dictionary learning methods to improve the classification accuracy. Furthermore, for more classification efficiency one can also adapt the number of the CS measurements to extract in function of the depth of the binary decision tree such as the complexity of the inference depends on the data variability at each node. Thus, one can first extract semantic features at each node (e.g., variance [START_REF] Guicquero | Nonuniform sampling with adaptive expectancy based on local variance[END_REF]) and adapt the number of CS measurements taking into account the feedback of the first data variability evaluation stage, enabling therefore a tunable compression ratio depending on the complexity of the inference task. On the other hand, a possible extension of hierarchical inference could create inter-class clusters to reduce inter-class data variability to its minimum and allows therefore to tackle outliers. Finally, it is worth pointing out that the main interest of hierarchical inference is its simple hardware implementation that can take advantage of iterative projections involving as a consequence tiny digital processing block circuits as it will be discussed in the next section.

Chapter 6

Hardware implementations

The market of CMOS image sensors has testified an increasing growth in the last years due to the rapid deployment of image sensors in wearable devices. Moreover, the trend to design high resolution [START_REF] Oike | 8.3 M-Pixel 480-fps Global-Shutter CMOS Image Sensor with Gain-Adaptive Column ADCs and Chip-on-Chip Stacked Integration[END_REF] and high frame rate [START_REF] Millet | A 5 Million Frames Per Second 3d Stacked Image Sensor With In-Pixel Digital Storage[END_REF] sensors makes the design of CIS more challenging. As widely mentioned in the CIS literature, the most energy-hungry components are the A/D conversions and I/O ring. The power consumption and the bandwidth of the CIS increase as the resolution and frame rate increase as well. In this context, the main advantage of Compressive Sensing based CIS is the power consumption saving thanks to the reduced amount of A/D conversions and therefore the output readout. Moreover, acquiring the image in a compressed representation leads to a (standard) compression-free system, and thus, further power and silicon saving.

Throughout this thesis we have discussed current efforts to tackle issues related to hardware/algorithm constraints (e.g., A/D conversions, memory needs, computing complexity) in the context of smart CIS. However, most of the SOTA CIS architectures lack the ability to enable low-power on-chip inference tasks due to either the hardware complexity (additional heavy circuitry in the focal plane) or computing complexity involved by canonical machine learning techniques. To remedy these shortcomings, in Chapter 3 we have shown the interest of solving an inference problem on compressed measurements leading to a drastic reduction of memory needs and computing complexity at both the training and inference sides. On the other hand, to extract compressed measurements in the focal plane, several strategies have been proposed in the SOTA but unfortunately suffer from some limitations mainly related to the higher on-chip complexity or reduced measurements support for column/block based parallel implementations. To enable a better on-chip data mixing while taking advantage of parallel processing and pseudo-random generators to generate the CS sensing matrix, in Chapter 4 we have proposed a novel CS sensing scheme based on random modulations and permutations and provided a preliminary theoretical study to show its relevance for both image rendering and inference tasks. Finally, to achieve low-power on-chip inference, in Chapter 5 we have discussed the interest of hierarchical techniques to reduce the amount of MAC operations and memory accesses especially when combined with Compressive Sensing.

All the previous contributions lay algorithmic and mathematical foundations for designing compact low-power CIS with on-chip inference capabilities. Indeed, they can be considered as the key driver to take the challenge of smart low-power CIS a step further. These considerations bring us as a consequence to the final chapter of this thesis where we propose to pack conclusions of previous chapters together to define the architecture of a compact compressive CIS with dedicated CS sensing scheme and optimized (tuned) inference strategies. This chapter is organized as follows: first, a top level view of the proposed CIS architecture is presented underlining the basic block circuits to implement the CS sensing scheme presented in Chapter 4. Second, the proposed compressive CIS architecture is presented in detail with the main motivations related to each block circuit. Then, a set of optimizations to reduce the number of clock cycles in an incremental ADC, lower measurements resolution and memory needs are presented to enable further hardware saving. Finally, to show the relevance of the proposed architecture for real-world applications, two object recognition tasks are carried out using an optimized Digital Signal Processing (DSP) architecture adapted to solve three inference problems with different complexities, compliant with the proposed architecture, and therefore well adapted to the context of highly limited hardware implementations.

Proposed image sensor architecture

Before presenting a top level view of the proposed compressive CIS architecture, let us recall the proposed sensing scheme presented in Chapter 4. Indeed, for an observed n r ×n c image in the focal plane denoted U = (u 1 , • • • , u n r ) ∈ R n r ×n c , the proposed sensing scheme consists in applying for each selected row a random modulation by multiplying each pixel by a ±1 weight generated as the realization of a Bernoulli distribution with probability 1 2 , randomly permuting the pixels of each selected row and finally averaging the output of each column to extract a compressed vector. This process can be repeated to extract more measurements using different modulations and permutations at each snapshot. Mathematically, the proposed sensing matrix Φ ∈ R sn c ×n r n c can be expressed using the vertical concatenation of s randomly generated permutation matrices P (i ) modulated by a random diagonal modulation matrix M (i ) as: Φ = 1 s P (1) M (1) , • • • , P (s) M (s) .

Under the constraint of keeping a standard pixel architecture (e.g., 3T or 4T) and a canonical rolling shutter readout, the proposed architecture extracts CS measurements by performing operations during A/D conversions and via basic analog routings before the ADC. It takes advantage of specifically designed circuits to perform pseudo-random permutations and modulations as presented in the previous section. As depicted in Figure 6.1, the proposed architecture is mainly composed of:

• A (n r = 480) × (n c = 640) array of canonical pixels enabling a non-destructive readout.

• A Shift Register (SR) for sequential row select in a rolling shutter readout fashion com-bined with digital circuitry for timing and control management.

• A Pseudo Random-Permutations (PRP) circuit controlled by a Pseudo-Random Generator (PRG) for per-row data mixing.

• A column parallel dedicated first order incremental pseudo-Random Modulation Σ∆ (RMΣ∆) for pseudo-random modulation, pixel averaging and A/D conversations.

• An optimized DSP for on-chip inference on CS measurements (using pseudo-random realization of P and M) combined with an on-chip memory to store off-line learned patterns related to an inference solving problem.

Finally, it is worth pointing out that the additional circuitry to extract CS measurements has limited impact on the overall CIS design as it will be detailed in the next sections. In the rest of this section, explored avenues to implement the aforementioned block circuits will be presented as well as hardware optimisations to fit with constraints related to low-power vision systems. Notice that the most challenging tasks are the per-row data mixing and the pseudo-random modulations seldomly used in imaging applications. 

Dedicated PRG for the PRP

In the proposed CS sensing scheme presented in Chapter 4, the random permutations are of particular interest to overcome issues related to support dimensionality reduction as in column/block parallel CS implementations [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF][START_REF] Katic | Power-efficient CMOS image acquisition system based on compressive sampling[END_REF][START_REF] Guicquero | An Algorithm Architecture Co-Design for CMOS Compressive High Dynamic Range Imaging[END_REF] and thus intuitivelly allows a nonstructured sensing scheme incoherent with typical sparse basis. Indeed, the main task of the PRP is to perform a pseudo-random pixel mixing of each sequentially-selected row. This task can typically be achieved by pseudo-randomly addressing columns of the selected rows. Thus, for an n c -dimensional (n c pixels) row, one has to generate n c codes in the range (0, n c -1) to address each pixel only once. In the SOTA, Pseudo-Random Generators (PRG) have emerged as practical devices to generate a sequence of numbers that shows a random behavior [START_REF] Lan | A random number generator for low power cryptographic application[END_REF].

Driven by cryptographic applications and technological advances in digital circuits, several devices and systems have been proposed. For instance, a simple PRG architecture is the so-called Linear Feedback Shift Register (LFSR) [START_REF] Klein | Linear Feedback Shift Registers[END_REF]. It basically uses a shift register and a linear function (generally a X OR gate) of some bits of the register to generate successive logic states (0 and 1) that show a random behavior (cf., Figure 6.2). Unlike the LFSR that needs n clock cycles to update a n-length vector because of the shift operations, a cellular automata [START_REF] Wolfram | Cellular automata and complexity: collected papers[END_REF] needs only one clock cycle to update a n-length register (cf., Figure 6.3). It advantageously evolves in parallel at discrete time steps following transition functions defined using local neighborhood. It consists practically of a set of discrete cells with a finite number of states. At each step time t , each cell a t i is updated using a transition function that is the same for each cell defining as a consequence the general behavior of the cellular automata using only two neighbors of each cell (cf., Figure 6.3).

However, although the breakthrough that enabled LFSRs and cellulars automata, they suffer from some shortcomings limiting their use for data mixing applications, namely, the high number of clock cycles needed in the case of the LFSR (i.e., O n 2 for a n-length codes generation); and the disability to cover all the possible values in a desirable range in the case of the rule 30 cellular automata (i.e., some values are generated many times and others not generated at all!). To overcome these issues, several patented devices and systems have been proposed but unfortunately involve higher hardware-algorithm complexity limiting their use for on-chip applications (e.g., low-power CIS) [START_REF] Wary | Method for the generation of pseudo-random permutation of an N-digit word[END_REF][START_REF] Takahashi | Pipelined digital randomizer based on permutation and substitution using data sampling with variable frequency and non-coherent clock sources[END_REF][START_REF] Yang | Partially random permutation sequence generator[END_REF]. To tackle these limitations, we propose in the next section a hardware-friendly solution to generate pseudo-random sequences and therefore enable pseudo-random permutation of a given vector of analog/digital values. This solution is deemed to be simple, implementable and scalable and could be considered as a consequence the keystone towards an efficient implementation of per-row pixel mixing.

Proposed PRG

The proposed dedicated pseudo-random codes generator basically takes advantage of predefined bits swapping and a simple bijective mapping. As depicted in Figure 6.4, for a given initial seed, the process of codes generation consists in first performing a pre-defined bits swapping of some Most Significant Bits (MSB) and Least Significant Bits (LSB), and then apply a Gray coding using basic X OR logical gates to reinforce the chaotic behavior of the generated codes (output after each pre-defined bits swapping and Gray coding iteration). This way, after 2 n -1 iteration, a sequence of pseudo-random codes is generated to address the indexes of a given n-length vector.

To quantify the chaotic behavior of the proposed patented solution (cf., Figure 6.5), the autocorrelation of the generated sequence is adopted as a basic measure of similarity of the sequence with shifted representations of itself. Figure 6.6 reports the autocorrelation of a n-bit (n ∈ {7, 8, 9, 14, 15, 16}) generated sequence using the proposed PRG and a sequence generated using the MATLAB random permutations algorithm. Indeed, one can see that the generated sequences have regular autocorrelations with few picks of approximatively high correlation compared to small fluctuations of the MATLAB algorithm. However, regarding the mean over 2 n -1 , the mean autocorrelation is approximatively the same for both techniques. This way, we can validate the relevance of the proposed pseudo-random codes generator in terms of both hardware compactness and chaotic behavior. A practical implementation of the proposed solution is presented in Figure 6.7 for a 8-bit codes generation. Indeed, for a given 8-bit seed in the input register, the architecture swap the two MSBs and LSBs and then apply a Gray coding to the resulting word. This process is repeated at each clock cycle until the generation of 255 (2 8 -1) codes. In the specific case of this code length, bits swapping is applied to two MSB and LSB bits. However, for other code lengths, Table 6.1 report the number of MSB and LSB bits to swap for a given code length between 4 and 16 bits, i.e., to generate pseudo-random sequences in the ranges [START_REF]Learn About Convolutional Neural Networks -MATLAB & Simulink -MathWorks France[END_REF][START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF] (1, 65535) respectively. Notice that numerous bits swapping patterns can be performed as reported in Table 6.2. For the sake of simulation issues, these patterns were validated for codes generation with lengths between 4 and 10 bits through an exhaustive sweep of all the possible permutation patterns. However, swapping only MSB and LSB bits still the most compact solution, allowing to avoid crossed connections between each successive registers. To summarize, the proposed pseudo-random codes generator has compact hardware implementation in terms of both clock cycles and the covered generated codes while showing a chaotic behavior making it a relevant choice to address data mixing tasks compared to commonly used PRGs used in the CS SOTA (i.e., LFSR [START_REF] Jacques | CMOS compressed imaging by Random Convolution[END_REF][START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF], Cellular Automata [START_REF] Guicquero | An Algorithm Architecture Co-Design for CMOS Compressive High Dynamic Range Imaging[END_REF][START_REF] Trevisi | Compressive Imaging using RIP-compliant CMOS Imager Architecture and Landweber Reconstruction[END_REF]).

Number of bits

It can be therefore considered as the keydriver of the possible PRP architectures that we will discuss in the next section in order to perform per-row pixel scrambling to extract compressed measurements using the proposed CS sensing scheme.

Pseudo Random-Permutations (PRP)

Based on the proposed pseudo-random codes generator, three possible implementations have been explored to achieve per-row pixel mixing with different hardware complexity, namely, a fully connected pseudo-random multiplexer based PRP, a block-parallel pseudo-random multiplexer based PRP and a Benes network based PRP. These three architectures will be 

Fully connected pseudo-random multiplexer based PRP

A straightforward approach to perform pseudo-random permutations may introduces a n c to n c fully connected multiplexer (MUX) (cf., Figure 6.9) controlled by the proposed pseudorandom codes generator (cf., Section 6.1.1), with n c is the number of columns. Indeed, using a column decoder, each MUX output can pseudo-randomly selects one and only one pixel output from the selected row. As depicted in Figure 6.8, in the first embodiment a pseudorandomly permuted sequence is generated to address the columns of the selected row in a serial fashion using the pseudo-random codes generator initialized using a pseudo-random seed as presented in the previous section. It is updated for each row select leading to a set of independent permutation matrices p j (1 ≤ j ≤ n r ). This way, a pseudo-randomly permuted sequence in the range (1, . . . , n c ) is generated to pseudo-randomly address the readout voltage values V 1 , . . . ,V n c leading to the permuted output V p 1 , . . . ,V p nc . Despite generating low correlated sequences thanks to the dedicated pseudo-random codes generator, this PRP architecture involves a heavy MUX to connect each output to all the input voltage values leading to n 2 c needed interconnect buses to perform the permutation task. These additional interconnect buses will introduce a non-negligible effect on the CIS performance (i.e., silicon footprint, power consumption and parasitic noise). To evaluate the additional cost related to the interconnect buses, let us suppose that for a given pitch pixel (e.g., 3µm × 3µm), the silicon thickness of 10 interconnect buses is approximatively equivalent to one pixel width denoted W pi x . Through this assumption, an approximation of the additional hardware cost of the fully connected pseudo-random multiplexer based PRP architecture can be performed. Indeed, as depicted in Figure 6.10, the silicon footprint of the PRP involved by the interconnect wires is approximatively:

n c W pi x 10
× L ar r a y ≈ 0.1W ar r a y L ar r a y = 0.1S, (6.1)

with L ar r a y and W ar r a y are the pixel array silicon length and width respectively; and S is the pixel array silicon area. Notice, however, that this approximation doesn't take into account the silicon footprint related to the digital control (select switches in Figure 6.10). Obviously, it will introduce an offset silicon cost depending on the shape of the transmission gate layout. On the other hand, this PRP topology has an impact in terms of parasitic noise and power consumption too. Indeed, under the assumption that the length of each interconnect wire is equivalent to the column bus length, the capacitance of the bus will be at least two times the capacitance of the column bus. Therefore, the parasitic noise and power consumption relative to voltage readout will be doubled using the fully connected pseudo-random multiplexer based PRP. Finally, given the aforementioned drawbacks, we can conclude that this topology can not be adopted for a low-power CIS application.

Block-parallel pseudo-random multiplexer based PRP

To tackle hardware issues due to the important number of connection lines to establish in the case of a fully connected pseudo-random multiplexer based PRP (e.g., silicon footprint, parasitic capacitance), an alternative approach can deploy a two-level PRP composed of a fixed pseudo-random scrambling and a set of block-parallel MUXs controlled by the proposed pseudo-random codes generator presented in Section 6.1.1. Indeed, for the purpose of interconnect wires saving, the fixed-scrambling layer aims at applying a fixed permutation pattern to each selected row similarly. Furthermore, to generate independent permutations with , a set of parallel n bl k to n bl k pseudo-random MUXs that share the same b-bit (b = log 2 (n bl k )) pseudo-random codes generator are used to perform a pseudo-random pixel mixing for each block of size n bl k in a block-parallel fashion (cf., Figure 6.11). In fact, as depicted in Figure 6.12, the fixed scrambling layer needs n c buses to connect each output to a pre-defined voltage input. Thus, under the assumption that the silicon thickness of 10 interconnect buses is approximatively equivalent to one pixel width denoted W pi x , the additional silicon footprint of the fixed scrambling layer is approximatively:

n c W pi x 10
× L ar r a y ≈ 0.1W ar r a y L ar r a y = 0.1S. (6.2) This additional silicon to implement the fixed scrambling layer is therefore equivalent to approximatively 10% of the silicon footprint of the pixel array. On the other hand, the block parallel MUXs will involve the following silicon area:

n bl k W pi x 10 × L ar r a y ≈ 0.1 n c B W pi x L ar r a y = 0.1 B S, (6.3)
with B is the total number of block-parallel MUXs. This estimation clearly shows the interest of this approach to reduce the silicon footprint compared to a fully connected pseudo-random MUX. In addition, the number of select switches is reduced by a factor B . This way, we can reasonably target to put the block-parallel MUXs on the bottom of the fixed scrambling.

Figure 6.12 -Equivalent silicon footprint involved by the interconnect wires of the fixed scrambling layer.

Benes network based PRP

For more hardware-friendly pseudo-random permutations in terms of both silicon footprint involved by the number of interconnect wires, i.e., the silicon footprint as well as the parasitic capacitance, a relevant approach consists in spreading out the permutation over a multilevel set-up with limited interconnect wires involved at each level. This task can typically be achieved using a Benes network [START_REF] Beneš | Optimal rearrangeable multistage connecting networks[END_REF]. As depicted in Figure 6.14 a Benes network consists in a concatenation of a butterfly and an inverse butterfly networks based on a 2 : 1 digital multiplexer at each node with dedicated control bit. Benes networks are basically used in digital circuits for bits permutations as presented in [START_REF] Hilewitz | A New Basis for Shifters in General-Purpose Processors for Existing and Advanced Bit Manipulations[END_REF]. In the special case of a Benes network based PRP, the multiplexers are analog and can be implemented using analog transmission gates as presented in Figure 6.9.

Although the interest that shows the Benes network to reduce the interconnect wires to perform a desired permutation, its use is limited to vectors of length expressed as power of two. However, customized architectures can be implemented depending on the given CIS resolution. For instance, for a VGA resolution (i.e., (n r = 480) × (n c = 640)), 10 Benes network can be used for each block of 64 columns combined with a fixed pseudo-random scrambling to extend the support of permutations. Figure 6.14 stands for a pseudo-random columns permutation of a selected row using a multi-level permutation process composed of a fixed pseudo-random scrambling and a 9-stages Benes network. It consists basically in the concatenation of a butterfly network, a fixed pseudo-random scrambling and an inverse butterfly network allowing to generate permutations of the n c input voltage values. For each butterfly or inverse butterfly level, voltage values are partitioned into blocks and swapped -or not-via a series of 2 : 1 MUX circuits (i.e., Btfly_64. . . Ibtfly_16 in Figure 6.15). Indeed, block sizes vary from 64 (Btfly_64) to 2 (Btfly_2) for the butterfly network; and from 4 (Ibtfly_4) to 16 (Ibtfly_16) for the inverse butterfly network. Here, for further silicon saving, each layer of the Benes network is controlled by an unique binary signal, leading to a 9-bit input code (9 = log 2 (480) ).

On the other hand, to generate low-correlated permutations, a 9-bit PRG can be designed based on the proposed pseudo-random codes generator presented in Section 6.1.1 to onthe-fly generate control codes with the longest cycle length and the lowest circuit impacts as presented Figure 6.16. Figure 6.17, shows the enumerations of selections for each input column corresponding to an output one. We can observe that each 64-block of column outputs are therefore mapped to 64 randomly distributed input ones thanks to the fixed pseudo-random scrambling. In addition, each PRP output selects a pixel from the same column at most four times for a fixed snapshot. This means that desired task, i.e., mixing non-uniform pixels zone, is achievable with high probability. Moreover, if we want to build a matrix full of ones, one can increases the size of the first Benẽs level at the expense of an additional hardware overload.

On the other hand, to show that the proposed PRP generates independent permutations, Figure 6.18 stands for the enumeration of similar generated sequences based on an Euclidean distance metric between each pair of the generated sequences. Indeed, one can clearly see that except the main entries (i.e., distance between the sequence and itself), the entries of the matrix are equal to zero and therefore each permutation is generated once and only once.

Regarding the silicon footprint of the Benes network based PRP, the additional silicon footprint of each Benes network level is approximatively:

n d W pi x 10 × L ar r a y , (6.4) 
with n d ∈ {2, . . . , 64} is the block size of the Butterfly circuit (i.e., B t f l y and I bt f l y in Figure 

i.e., approximatively 15 rows of the CIS focal plane. Finally, despite the drastic saving compared to the previous architectures, deep optimization of the silicon footprint can only be done at simulation level given the design rules and using advanced layout generation and common digital design tools and to implement the Benes network under the fixed scrambling layer that could be easily implemented using only top metal layers.

RMΣ∆

Inspired by the incremental Σ∆ [START_REF] Boufounos | Sigma Delta Quantization for Compressive Sensing[END_REF][START_REF] Wang | An incremental sigma delta converter for compressive sensing applications[END_REF] that simultaneously performs both averaging and quantization [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF][START_REF] Guicquero | High-order incremental sigma-delta for compressive sensing and its application to image sensors[END_REF][START_REF] Lee | A Compressive Sensing-Based CMOS Image Sensor With Second-Order $\Sigma \Delta$ ADCs[END_REF], a dedicated incremental RMΣ∆ is proposed to perform pseudorandom modulations, per-column averaging and A/D conversions. Indeed, each column of the PRP is connected to one RMΣ∆ allowing a column-parallel processing. Furthermore, the main advantage of the proposed architecture is its ability to deal with pseudo-random ±1 modulations, highly desirable in many CS applications. Two possible embodiments are presented to deal with ±1 modulations using an incremental Σ∆. The first one is implemented using a switched-capacitor circuit as presented in [START_REF] Olyaei | Focal-Plane Spatially Oversampling CMOS Image Compression Sensor[END_REF] and the second one is implemented using a double-path Σ∆ with double-path integration (one integrator for each sign) controlled by a n c -bit SR (each cell control one RMΣ∆). In the rest of this section, we will first present some basic concepts related to the incremental Σ∆ ADC and then present the proposed operational block to implement ±1 modulations, averaging and A/D conversions. Figure 6.17 -Enumerations of each mapping input/output performed by the PRP for a single snapshot.

Figure 6.18 -Enumerations of similar generated sequences.

Unsigned Incremental Σ∆ ADC

The main advantage of an incremental Σ∆ ADC is its capability to perform simultaneously averaging and quantization. As depicted in Figure 6.19, the incremental Σ∆ ADC comprises basically an integrator, a single-bit comparator and a decimating counter. The averaging and quantization operations are achieved as follows: the integrator, counter and Digital-to-Analog Converter (DAC) are first reseted. Then, for a set of analog input values (in our case the permuted pixels V p i ), the inputs are sequentially integrated and compared to a certain threshold (generally half the dynamic range). Depending on the comparator output, an analog value is subtracted to the input. The subtraction is achieved thanks to the DAC that is controlled by the output of the comparator. The output of the comparator is therefore a bitstream composed of OSR (Over-Sampling Ratio) bits. The output from the modulator is finally decimated using a digital filter (generally a counter) to obtain a digital representation of the average of the integrated voltage values, in our case the permuted pixels V p i . After n r cycles of the rolling shutter SR (i.e., n r integration of n r rows), 640 (i.e., 1/480 compression ratio) 9-bits (9 = log 2 (n r )) CS measurements are produced with only one clock cycle for each row, meaning that we can dramatically reduce power consumption to perform the inference. Figure 6.20 shows simulation results for an ideal first-order Σ∆ ADC with 64 sampling cycles corresponding to a 6-bit quantization. On the right, we plot the output of the modulator and its decimated value when a set of input voltage values in the range (V mi n = 0.7V,V max = 2.7V ) is applied to the Σ∆ ADC. On the left, we plot the output of the modulator and its decimated value for a constant input equals to the average of the variable inputs. Finally, one can see that the final integrator voltages and their respective decimated values (i.e., counter outputs) are equal in both cases (i.e., variable inputs and constant one). This illustrates that the incremental Σ∆ ADC performs simultaneously averaging and quantization when a set of voltage values are sequentially applied to it.

However, although the interest that presents an incremental Σ∆ ADC in terms of simultaneous averaging and quantization, implementing the ±1 modulations is still a challenging task towards an efficient hardware implementation of the proposed sensing scheme based on pseudo-random permutations and modulations. As depicted in Figure 6.21, the main idea of the RMΣ∆ is to multiply the input voltage values by pseudo-random ±1 modulations. In fact, two possible embodiments can be explored to apply a pseudo-random ±1 modulations to the outputs of the PRP, i.e., V p i : the first one is based on switched-capacitors at the input of each Σ∆. The second one deals with a double-path Σ∆ with an up/down counter as it will be discussed in the rest of this section.

Switched-capacitor based RMΣ∆

A possible implementation of the multiplication by ±1 is to create a virtual zero in the dynamic range of the pixel outputs defined by the reset voltage (i.e., V mi n ) and the minimum voltage value achievable at the end of the integration time (i.e., V max ). Indeed, the virtual zero can be defined at the half of the dynamic range (V mi n ,V max ), i.e., V r e f = V max +V mi n the integration time to achieve at most V r e f . This way, for a positive modulation one can bypass the input voltage and for a negative one performs a mapping of the input in the range V mi n ,V r e f with respect to the virtual zero voltage (i.e., V r e f ). This mapping can practically be defined as:

f V p i = 2V r e f -V p i , (6.6) 
with V p i is the input voltage value in the range V r e f ,V max . This operation can advantageously be implemented using active switched capacitors [START_REF] Razavi | The Switched-Capacitor Integrator [A Circuit for All Seasons[END_REF] as proposed in several SOTA systems with dedicated circuits for analog computing [START_REF] Olyaei | Focal-Plane Spatially Oversampling CMOS Image Compression Sensor[END_REF][START_REF] Moutault | A universal switched capacitors operator for the automatic synthesis of analog computation circuits[END_REF][START_REF] Chacon-Rodriguez | Low power switched capacitor implementation of discrete Haar wavelet transform[END_REF]. Such active circuits offer a practical implementation to perform subtractions based on charge/discharge of inner capacitors but rely on active circuits that can suffer from stability and sensitivity problems. To tackle this issue, passive switched capacitors can be explored to implement the subtraction operation [START_REF] Boukhayma | A correlated multiple sampling passive switched capacitor circuit for low light CMOS image sensors[END_REF]. However, one has still to handle the generation of complex non-overlapped digital control signals to charge/discharge inner capacitors and to manage carefully with respect to gain accuracy, residual charges and noise in general. Furthermore, the main limitation involved by switched-capacitors based RMΣ∆ is the restricted dynamic range if we set the virtual zero at half the possible dynamic range enabled by the CIS. To overcome this limitation, an alternative approach can mutualise two incremental Σ∆ converters that share the same DAC but using an up/down counter as a decimation filter as discussed in the next section.

Double-path integration based RMΣ∆

To take advantage of the full dynamic range enabled by the CIS, a double-path RMΣ∆ can be proposed. In fact, as depicted in Figure 6.22, a double-path integration based RMΣ∆ is mainly composed of two modulators that share the analog comparator and the Digital-to-Analog Converter (DAC). Indeed, for a column i , the integrators and the DAC are first reseted and the voltage outputs V p i 's of the PRP are sequentially applied to the input of the dedicated RMΣ∆. Following the SR i bit control generated by the PRG, V p i is either integrated in the first or the second integrator. Indeed, for a positive modulation (i.e., multiplication by +1), the voltage input is integrated in the first path and the ↑↓ counter is incremented if the comparator is activated. However, for a negative modulation (i.e., multiplication by -1), the voltage input is integrated in the second path and the ↑↓ counter is decremented if the comparator is activated. Finally, the ↑↓ counter output will represent a digital representation of the averaged integrated

V p i 's.
Now, let us take a closer look on the internal behavior of the proposed RMΣ∆. In Figure 6.23, we plot the outputs of a RMΣ∆ after 64 cycles for two different input signals leading to 6-bit quantization and averaging of voltage inputs with the same means; with and without modulation. On the left, we plot the output of the counter outputs when a set of input voltage values in the range (V mi n = 0.7V,V max = 2.7V ) is applied to the RMΣ∆ ADC with and without modulation (middle and bottom plots respectively). On the right, we plot the output of the counter outputs when a constant input equals to the average of the variable inputs is applied to the RMΣ∆ ADC with and without modulation too (middle and bottom plots respectively). Finally, one can clearly see that the final decimated values are equal in both cases (i.e., variable inputs and constant one), this means that the RMΣ∆ ADC performs simultaneously averaging and quantization when a set of modulated voltage values are sequentially applied to it.

On-Chip Inference (DSP)

A key operation in numerous inference strategies [START_REF] Camus | Survey of Precision-Scalable Multiply-Accumulate Units for Neural-Network Processing[END_REF] is affine projections applied to the extracted features (measurements). It is generally expressed as a matrix-to-vector multiplication with an additional offset vector. The main goal of these projections is to map the high dimensional features into a proper low dimensional space (generally of dimensionality proportional to the number of classes C ) enabling as a consequence the inference with a lower complexity (cf., Figure 6.24). Indeed, for an on-chip inference application, the weights and offsets of the affine projections, that we will denote Ŵ and b respectively, are generally learned off-line (e.g., GPU, cloud) remotely and stored locally for an on-chip use. Now, consider the case of a single projection, the n c extracted CS measurements are first multiplied by the ex-situ learned weights (i.e., Ŵ ). The weighted measurements are then accumulated and added to the ex-situ learned bias terms (i.e., b). With multiple projections, each projection is applied independently to the extracted CS measurements to produce one component of the mapping into the inference space. Three main strategies can be proposed to implement the affine function applied to the extracted CS measurements at the output of the RMΣ∆, namely, a parallel DSP, a conditional DSP with iterative accumulations an finally an iterative DSP.

Parallel DSP

A basic approach to implement the affine function on CS measurements consists in applying each m-dimensional weights vector (i.e., ŵ i ∈ R m=640 with 1 ≤ i ≤ C ) to the extracted vector at the output of the parallel RMΣ∆'s (i.e., ω ∈ R m=640 ) in a parallel fashion, i.e., perform all the ŵ i ω + b i affine projection in parallel. As depicted in Figure 6.25, each RMΣ∆ output is first multiplied by the weights of the correspondent column of Ŵ (the j t h measurement is multiplied by the weights of column j in parallel) leading to C weighted CS measurements. The outputs of the i t h multipliers (1 ≤ i ≤ C ) are then accumulated to extract C components of the low-dimensional vector, i.e., m 1 , . . . , m C . Although the interest that shows this approach, it unfortunately involves a non negligible number of computing gates (i.e., adder and multipliers) that depends on the number of classes C , leading therefore to high silicon footprint. 

Conditional DSP

To reduce the impact of the additional digital circuitry in terms of silicon footprint, a conditional DSP with iterative accumulations can be explored. The main idea behind this hardware optimization is to replace the multiplication operation by an OSR times repeated addition. As shown in Figure 6.26, the output β k of each RMΣ∆ comparator is connected to C d Σ adders, each one corresponds to the coefficient of the Ŵ matrix at the i t h row (1 i C ). The interest of the bitstream generated by the RMΣ∆ arises at this stage: since a row is selected, the bit generated by each RMΣ∆ allows to increment or decrement the C adders by the corresponding value in the matrix Ŵ . Thus, for a logical "1" bit, the adder is incremented (+ ŵk i ), and decremented for a logical "0" bit (-ŵk i ). Finally, at the end of the rolling shutter readout (i.e., one snapshot), the i t h adder output of each column is added to the corresponding offset in b. 

Iterative DSP with block parallel processing

The key operation to implement an unique or multiple projections is the multiply-accumulate (MAC). In order to guarantee a certain agility to the proposed architecture, a dedicated MAC is developed to deal with a tunable number of projections depending on the inference algorithm strategy. To this end, a multi-level precision MAC topology is proposed. As depicted in Figure 6.27, at the first level, the pointwise multiplication is implemented. At the second one, weighted CS measurements are partitioned into distinct blocks and accumulated allowing parallel computing. A set of optimizations of the bit-resolution of all the pipelined digital adders can be done to cap the silicon footprint. It can consists in limiting the binary dynamic range, keeping only relevant bits by removing insignificant bits and thresholding under unreached highly significant bits. Finally, as a last stage, the bias term is added to the accumulated weighted CS measurements in order to output a proper scalar value, being usable for decision making. This way, a single projection is performed at a time, with highly limited hardware. This generic approach allows the architecture to sequentially compute an adaptable number of projections. For more efficiency in terms of power consumption and silicon footprint, various optimiza-tions of the proposed hardware will be reported and discussed in Section 6.3. The following section yet presents three approaches to perform the inference with different algorithmic complexity using the proposed architecture, in particular, using this DSP block at variable computational loads. Notice that the functional behavior are all simulated in MATLAB taken into consideration the hardware constraints (e.g., silicon footprint, measurements resolution, memory needs, ADC clock cycles).

Inference with tunable algorithmic complexity

Considering a multi-class image classification system based on successive projections as it may be performed by the proposed architecture, three popular strategies can be customized as presented in Section 2.2. The first one is a one-vs.-all and involves the training of C distinct linear classifiers for a C classes problem. The second one is a hierarchical classifier dynamically requires to run only O (log 2 C ) cascaded binary linear classifiers (cf., Chapter 5). These first two approaches are particularly relevant for on-chip applications with highly constrained hardware since they involve only a limited number of projections. here, each linear classifier of those strategies takes the form of a 2-class Support Vector Machine (SVM) with a linear kernel. However, those two first strategies show limited performances in terms of accuracy when dealing with more inter-class and between-classes variability. Artificial Neural Networks (ANN) with hidden-layers now have demonstrated good recognition accuracy for numerous object recognition databases, for that specific reason. Note that in the basic Multi-Layer Perceptron (MLP) case, the most memory and MAC hungry layer is the first one. It motivates to propose a third strategy based on a ANN description. Indeed, the first layer, that basically performs multiple projections (here αC with α > 1), fits within the definition of the iterative DSP with block parallel processing when combined with nonlinear activation functions. In this section, three inference strategies are explored to show the adaptability of the proposed architecture with different complexity degrees. These strategies are the one-vs.-all SVM, hierarchical SVM and an ANN (Figure 6.28) as will be detailed in the rest of this section. 

Notations

Let us consider a database of m-length "vectors" in R m acquired using the proposed CS sensing scheme presented in Chapter 4 (i.e., Φ = 1 s P (1) M (1) , • • • , P (s) M (s) ) and composed of C classes. This database is separated into two databases: a "train" set X ∈ R m×n 1 C , where each class is composed of n 1 samples, associated with labels l ∈ {1, • • • ,C } n 1 C ; and a "test" set Ỹ ∈ R m×n 2 C with unknown labels and composed of n 2 samples per class. To perform our supervised embedded inference, two-stages have to be considered: First, training the patterns in an off-line system on the compressed training set X . Second, the embedded inference is performed on a compressed test set Ỹ . Here, both the training and test sets are acquired by the proposed architecture using the specific sensing matrix Φ. Thus, the proposed inference strategies are as follows.

One-vs.-all SVM

As discussed in Section 6.1, learning a one-vs-all SVM implies solving the following problem: From a hardware point of view, the CS measurements vector ỹ is successively multiplied by the weight matrices ŵ i and added to the offset scalars bi to iteratively extract a vector of length C using the DSP presented in Section 6.1. Finally, the arg max operation can be implemented following an iterative approach using a single 2 : 1 multiplexer controlled by a bitwise comparator [START_REF] Yuce | Fast and Efficient Circuit Topologies forFinding the Maximum of n k-Bit Numbers[END_REF]. As depicted in Figure 6.29, at each iteration, the resulting output consist in the current max value and its index (i.e., max and arg max).

{ ŵ i , bi , ξi } = arg min w ∈R m ,b,ξ∈R n 1 1 2 w 2 2 + λ ξ 1 s.t. l i j (d xi j + b) ≥ 1 -ξ j , ξ j ≥ 0, 1 ≤ j ≤ n 1 . ( 6 
Figure 6.29 -Iterative Argmax circuit.

Hierarchical SVM

As discussed in Chapter 5, the main idea of a hierarchical learning is to divide a set of classes into two subsets at every hierarchical node in order to construct a binary decision tree. Thus, using the balanced clustering method in Algorithm 2 presented in Section 5. Training the hierarchical tree allows to construct a binary decision tree where each path from a root to a leaf is associated to a decision rule defined by the binary test referred in (6.10) and being learned by a binary SVM. Thus, for a new test sample ỹ ∈ Ỹ , a decision rule (cf., (6.10)) is applied at every node where the margin sign is used to decide to which next branch the sample belongs to. Thus, the predicted class is provided by the path indicated by the successive decisions running only O (log 2 C ) projections.

At the hardware side, the CS measurements vector ỹ is first multiplied by weights and then added to the bias of the first decision rule (cf., (6.10)) at level 1 of the decision tree). The margin sign (i.e., sign bit at the output of the DSP) is then used to decide which weights and bias load from the local memory in order to apply the second decision rule. This is repeated until the last node to decide to which class the sample ỹ belongs.

Neural Network

When dealing with databases with higher inter-class and between-classes variability, a Neural Network can advantageously improve the recognition accuracy but using a higher number of projections (αC with α > 1). In this section a simple topology is proposed to perform parametric projections combined with nonlinear functions. As depicted in Figure 6.30, the proposed topology is composed first by a fully-connected layer combined with an activation function to perform αC projections, where α > 1 is an inner adjustable parameter. Here, a ReLU activation function ( f (x) = max (0, x)) is adopted for the simplicity of its hardware implementation. It allows to introduce nonlinearity to enhance the separability between classes. A 1D max-pooling function over each α projections is then introduced to reduce the dimensionality of the extracted αC -length extracted vector. Finally, a C fully-connected layer with softmax activation extracts a C -length vector allowing the decision making. We stress that the quantization of weights and biases of the topology is performed at the training stage [START_REF] Krishnamoorthi | Quantizing deep convolutional networks for efficient inference: A whitepaper[END_REF], namely in order to alleviate over-sized needs both in terms of memory and computing. The hardware implementation of this topology can hopefully take advantage of the proposed DSP in Section 6.1.4 and the arg max circuit (Figure 6.29). Indeed, the CS measurements vector ỹ is successively multiplied by the weight matrices ŵ i and added to the offset scalars bi learned at the first layer to extract a vector of length αC . With proper initializations and resets, the arg max structure can be used to perform 1D max pooling sequentially outputting C values used as inputs for the second (and output) layer.

Complexity analysis

Table 6.3 stands for embedded resources requirements related to a one-vs.-all inference strategy, a hierarchical SVM and the proposed Neural Network for a m-dimensional C -classes inference problem. In the context of an embedded system, we only consider the case where first a supervised training stage is performed outside the chip using a remote computer station and then the sensor is programmed using those learned patterns. This way, the sensor can be reprogrammed as wanted, with a somehow generic hardware that could address various image recognition tasks. Indeed, the computationally-intensive operation that represents the learning, do not need to be done by the sensor device itself. Therefore, here, we are mainly interested into the requirements related to the inference part, i.e., memory needs to store ex-situ learned patterns and computational complexity related to the inference. In fact, in the case of the one-vs.-all, C classifiers are learned and thus have to be stored to perform C m-dimensional projections. For a hierarchical approach, the number of classifiers to learn is reduced to C -1 to perform only log 2 C m-dimensional projections. However, when using our Neural Network, O (αC ) "SVM-equivalent" classifiers are learned and thus have to be stored to perform O (αC ) projections. 

COIL-100 database [228]

: composed of 7,200 images of 100 objects. Each object was turned on a turntable through 360 degrees to vary object pose with respect to a fixed color camera. Images of the objects were taken at pose intervals of 5 degrees. This corresponds to 72 poses per object. There images were then size normalized. Objects have a wide variety of complex geometric and reflectance characteristics.

To fit within specifications of the proposed architecture, each image is resized to a VGA resolution via bicubic interpolation and then subsampled using a simulated RGB Bayer filter. In this section, we will first present a set of optimizations to reduce silicon footprint, CS measurements and DSP resolutions, and then summarize inference accuracy for the aforementioned databases with different numbers of classes. For the sake of clarity, the presented hardware optimizations have been done based on C = 10 randomly selected classes of the GIT database and for the one-vs.-all SVM inference strategy.

PRP optimization

As mentioned in Section 6.1.2, the most hardware-friendly solution takes advantage of a fixed pseudo-random scrambling and a 9-stages Benes network. The goal of the fixed scrambling is to reinforce pseudo-random permutation before addressing the Benes network. Figure 6.31 shows the inference accuracy achieved with different scrambling block sizes for the GIT (C = 10) database. The simulated sizes varies between 1 (i.e., without fixed scrambling) and 640 (i.e., scrambling all columns of the selected row). In addition, for each size, the fixed pseudo-random scrambling is selected as the realization minimizing the autocorrelation peak amongst 100 realizations generated using the randperm MATLAB function. Figure 6.31, clearly exhibits the interest of the fixed scrambling over all the selected row. This could be explained by the fact that a larger support of mixing allows to deal with uniform zones (i.e., low frequencies), and thus, a better diversity of the extracted CS measurements. 

RMΣ∆ optimization

As the proposed CIS is designed to meet requirements of highly constrained hardware, its performance can typically be optimized thanks to the prior knowledge on the distribution of the CS measurements (Figure 6.32a), the entries of Ŵ (Figure 6.32b) and the components of b (Figure 6.32c). Thus, given the distribution of CS measurements (range = [-20, 20] ), the resolution of the RMΣ∆ can advantageously be reduced by saturating the ↑↓ counter in Figure 6.22 to a lower number of bits instead of 9-bits (log 2 (n v )) by benefiting of the intrinsic property of the incremental Σ∆ [START_REF] Oike | CMOS Image Sensor With Per-Column Sigma-Delta ADC and Programmable Compressed Sensing[END_REF]. Figure 6.32d, stands for the probability of error at the output of the RMΣ∆ for different resolutions (from 2-bit to 9-bit). Here, the error refers to the difference between the original output without saturation and the quantized one. Thus, as shown in Figure 6.32d, the probability of error at the output of the RMΣ∆ tends to 0 for a resolution of 5-bit of the CS measurements. Moreover, the trade-off between CS measurements resolution and the classification accuracy is also taken into account in Figure 6.32e. It shows the classification error for different counter resolution, i.e., CS measurements resolution. We clearly observe that the classification error floors to 4% from a 5-bit resolution, i.e., we can advantageously reduce the resolution of the CS measurement to 5-bit without any loss in terms of the classification accuracy. 

DSP optimization

As mentioned above, to perform embedded inference, the matrix Ŵ and the offset vector b have to be stored within an on-chip memory. Thus, as the histogram of the matrix Ŵ have a centred, peaked, Gaussian-like distribution (cf., Figure 6.32b), we have chosen a uniform quantizer using a dynamic range limited to 2/3 of the whole dynamic of the matrix. However, as the offset vector b has a flattened distribution, the uniform quantizer is applied on the whole range covered by the components b. Thus, regarding the distribution and the dynamic range of Ŵ and b, we have empirically chosen to set a signed 4-bit resolution for the entries of Ŵ and a signed 14-bit for b. Finally, the memory requirements to store the ex-situ learned weights and biases in order to perform object recognition on the GIT database (10 classes) is limited to 10 × 640 × 5 + 10 × 15 bits 32 kbit for one snapshot readout while achieving a satisfactory accuracy ( 97%, Table 6.4).

Given the 5-bit CS measurements and the quantized on-chip stored patterns, the DSP basically requires 640 10-bit (output) multipliers and one iterative 20-bit adder. As presented in Section Table 6.4 -GIT-10 SVM recognition accuracy for different levels of description of our architecture. # measurements are reported between parentheses.

6.1.4, the proposed MAC performs multi-level processing allowing low resolutions. Thus, at the first level, the pointwise operation is implemented using 640 10-bit parallel multipliers. At the second one, weighted CS measurements are partitioned into blocks and accumulated to reduce the resolution of the digital adder needed to perform the accumulation operation. Figure 6.34, shows the optimized resolution in function of the block size at the first and second adder levels. It exhibits the interest of reducing the block size and parallel processing to reduce the resolution related to MACs operations at the expense of increasing the number of adders. Thus, as depicted in Figure 6.35, a iterative DSP with 32-block parallel adders is finally adopted as optimized DSP for the proposed CIS because the trade-off that it enables in terms of adders resolution and the total number of blocks (reported between brackets in Figure 6.34) -all SVM inference strategy. It shows that in this setup the accuracy is equals to 97.2% from 640 measurements (i.e., a single snapshot). We can stress that for only 64 measurements (i.e., randomly sub-sampling a single snapshot acquisition at a 1/10 ratio), the accuracy still reaches 80% for the 10-class inference problem. Figure 6.36 -DSP MAC Table 6.5 gathers the accuracy achieved by the proposed architecture for two databases and the three inference strategies. The accuracy reported here corresponds to the ratio of correctly classified test samples over all test samples. All the simulations have been performed using balanced databases (i.e., the same number of samples per class for both the training and the test sets). Those numerical results are obtained by averaging 10 experimental draws from different sample random sub-selections for the training set versus the test set. As expected, One-vs.all SVM exhibits a better accuracy than Hierarchical SVM for all the inference problem setups. Note that in the case of COIL (C = 100) the Hierarchical SVM approach is still competitive with 90.5% of accuracy compared to the One-vs.all SVM ( 91.4%). On the other hand, ANN provides a far better accuracy 98.8%, i.e., only 1.2% error rate, 7 times less than the two othe techniques. Regarding ANN results, an important issue is related to overfitting, the learning in the case of the GIT database is indeed performed on a too small number of samples (especially for α ≥ 3). In practice, it leads to a 100% accuracy over the training set reducing the efficiency of the inference on the test set (even far below the Hierarchical SVM approach). For further developments and tests, this problem can be easily bypassed by extending the dataset using image distortions for example to produce new synthetic samples to increase training database diversity.

Conclusion

As it has been shown in this chapter, the CS sensing scheme presented in Chapter 3 can advantageously be implemented using analog routines as well as a dedicated ADC architecture. Indeed, the data dimensionality reduction on-the-fly performed using a dedicated pseudo- 6.5 -Recognition accuracy for different datasets and infrence strategies using the proposed architecture.

random permutations circuit and a one-clock cycle low resolution (5-bit) RMΣ∆ enables to relax constraints on Digital Signal Processing afterwards. Indeed, the signal-independent dimensionality reduction of CS (here reaching 1 480 compression ratio) leads to an important memory reduction required to perform the three algorithmic approaches depicted throughout this chapter. The Digital Signal Processing enables an optimized resolution-scalable computations for the first stage of each presented inference algorithm (i.e., affine projections). For example, a tiny ANN topology with 1-D max-pooling achieves to reach ≈ 1.2% of classification error rate on the COIL-100 database. In addition, the proposed architecture can advantageously reuse a canonical rolling-shutter readout scheme and a conventional well optimized 4T pixel architecture (possibly tuned for global shutter acquisition). Interestingly, the proposed architecture can even reduce the number of extracted measurements by subsampling the one-snapshot measurements while still achieving a reasonable accuracy. Furthermore, thanks to the averaging operation performed during the A/D conversion, the presented CIS architecture can handle the offset-PFN as shown in Table 6.4, leading potentially to a CDS-free architecture.

Indeed, three main block circuits have been presented to perform on-chip decision making on compressed measurements extracted based on random modulations and permutations. First, a Pseudo-Random Permutation (PRP) circuit to perform per-row pixel mixing. Second, a Random-Modulation Σ∆ (RMΣ∆) ADC to perform pseudo-random modulation and averaging of the outputs of the PRP during A/D conversions in a column parallel fashion. Finally a generic optimized DSP allowing to perform the inference with different algorithmic complexities (e.g., SVM, hierarchical and ANN). Several enablers have been identified to make this implementation more hardware-friendly and can be summarized as follows:

1. PRP: to reduce the number of interconnect buses, a dedicated pseudo-random codes generator combined with a Benes network was adopted as the most compact implementation to perform per-row pixel mixing. However, although the drastic reduction of the silicon footprint compared to a fully connected pseudo-random MUX and blockparallel pseudo-random MUXs, some specific optimizations can be performed at the layout level using dedicated CAD tools for further silicon saving taken into account the technological node and the design rules, namely, to put the fixed scrambling on top of the Benes network.

2. RMΣ∆: to perform per-column pseudo-random modulations, averaging and A/D con-version, a double-path incremental Σ∆ fits highly with constraints of low-power CIS applications. Indeed, in contrast to a standard Σ∆ ADC that needs 2 9 = 512 clock cycles per-row to extract 9-bit measurements, the proposed RMΣ∆ ADC needs only one clock cycle per-row leading to drastic power-consumption saving related to the ADC which represents generally the most power hungry component of a CIS. Moreover, for further digital design relaxation, the resolution of the extracted CS measurements can advantageously be reduced to 5-bit by saturating the RMΣ∆ counter thanks to the prior knowledge of the data distribution at the training stage. However, some specific optimizations can be performed at the transistor level, e.g., mismatch of the integrators of the RMΣ∆.

3. DSP: to enable on-chip inference, an optimized resolution-scalable DSP architecture is proposed to implement the first stage of each presented inference algorithm (i.e., affine projections). Indeed, pipelined MAC operations as well as reduced weights/biases and computing unit (i.e., digital adders and multipliers) resolutions have been identified as compact enablers to reduce memory needs and logical gates needed to solve the inference problem on CS measurements with negligible impact on the inference accuracy. Finally, to handle classification tasks with higher inter-class and between-classes variability, Neural Networks provide a flexible framework to adapt the number of projections and nonlinear layers to the complexity of the classification tasks. As discussed in Section 6.2, the first layer of an ANN topology (most MAC hungry layer) can advantageously be implemented using low hardware complexity routines.

Chapter 7

Conclusions

In this thesis, we have explored new paths to extract compressed features enabling on-chip decision making in the context of CMOS Image Sensor design. We have presented a number of algorithm/hardware methods that take advantage of the concept of Compressed Sensing as a data agnostic dimensionality reduction technique allowing as a consequence to reduce the amount of data to process/store, and thus, relax hardware constraints related to basic inference tasks. All the contributions presented throughout this thesis lay algorithmic and hardware foundations for efficient design of future ultra-low power CMOS Image Sensor applications (µW ). In particular, we have focused on:

• Inference on compressive measurements (Chapter 3): among the state-of-the-art dimensionality reduction techniques, Compressive Sensing has emerged as the most hardware-friendly framework to extract compressed features taking advantage of pseudorandom generators. Based on this statement, three algorithmic approaches for on-chip decision making on compressed measurements have been investigated. Indeed, based on an analytical study, the simulation results highlight significant improvement of the approach involving a learning and inference problem solving in the compressed domain.

It exhibits the best performance regarding the quality of the inference as well as the robustness to additive noise. Furthermore, performing the training and the inference directly in the compressed domain allows to drastically reduce the complexity in terms of both memory and computing needs.

However, although covering different inference algorithms, this analytical study is limited to inference tasks dealing with linearly separable datasets. A first interesting outlook could investigate the interest of CS for nonlinearly separable datasets, even analytically using synthetic datasets. It can take advantage of commonly known nonlinear activation function as performed in Artificial Neural Networks to find the best setting to deal with more challenging inference tasks. On the other hand, the concept of signal processing on CS measurements can be extended to signal processing on quantized CS measurements as quantization allows to reduce the resolution of CS measurements, and thus, further saving at the digital signal processing level. This might be interesting in the context of binary neural networks that show interesting properties for on-chip applications in order to extract cascaded binary features. Typically, CS can be used as a dimensionality reduction layer of the activation layer outputs of a Deep Neural Network architecture.

• Random modulations & permutations for compressive imaging (Chapter 4): in Chapter 4, a novel Compressive Sensing scheme has been presented for compressive imaging applications. Based on random modulations and permutations this CS model allows to circumvent shortcomings of SOTA CIS architectures implementing CS on-chip by extending measurements support leading as a consequence to low correlated CS measurements. This property enables to solve inference tasks with few CS measurements (i.e., achieving high compression ratios, e.g., 1 ‰of the observed image), and thus allows to relax hardware needs to solve the inference problem. In addition, random modulations leads to a zero expectation CS matrix enabling to center CS measurements distribution and thus extract zero mean features, a pre-processing operation highly desirable in machine learning algorithms. Through theoretical, analytical and experimental results, we have shown that the proposed CS framework is able to address both image rendering and inference tasks and finally outperforms SOTA CS based CIS architectures.

The proposed CS sensing scheme highlights the interest of in-focal plane data mixing for on-chip inference tasks. Being basically designed based on experimental observations, an immediate future work related to this axis would focus on providing stronger theoretical guarantees for both image recovery and inference problems. Although we have proven that the proposed sensing model cannot respect the RIP in the canonical basis, numerical and theoretical analyses show that exploring specific sparsity structures and sparsity bases can fortunately circumvent this issue. It seems then that proving the JLL in a specific sparsity basis is an immediate extension to study the robustness of the proposed sensing scheme. A final research axis related to this chapter, would extend the theoretical analysis to quantized version of the JLL such all hardware implementations in the context of CIS applications deal typically with quantized CS measurements.

• Hierarchical learning for on-chip inference (Chapter 5): at the inference level, hierarchical learning have been explored as a practical approach to reduce the amount of MAC operations needed to solve the inference problem thanks to the reduction of the number of binary projections by a log factor. In this context, three new methods have been proposed to construct the hierarchical tree to train a hierarchical classifier based on binary decision rules (2-classes SVM) minimizing as a consequence the number of decision nodes, and thus, the number of binary classifiers to perform at the inference level. Simulation results show the great interest of the proposed methods in terms of hardware requirements (computing complexity and memory access needs), especially, when combined with Compressive Sensing. The overall memory and on-chip MAC operations needs can advantageously be lowered thanks to the signal-independent dimensionality reduction enabled by CS leading to a joint acquisition-processing optimization to fit hardware needs involved by highly constrained on-chip inference tasks.

Although involving basic classification algorithms (i.e., SVM) hierarchical learning approach can take advantage of more powerful algorithm tools such as Deep Neural Networks or dictionary learning methods to improve the classification accuracy taking advantage of nonlinear kernels (or activation functions in the deep learning jargon). Some initial steps combining hierarchical learning and neural networks, not reported in this thesis, have been done and show significant improvements compared to hierarchical algorithms involving 2-classes SVMs. The main idea consists in replacing each node binary decision rule by a tiny neural network or even learn the binary decision tree using the commonly used forward-backward algorithm. This way one can take advantage of nonlinear activation functions and tune the number of projections to the inference complexity. Furthermore, one can also adapt the number of CS measurements to extract in function of the depth of the binary decision tree based on semantic features at each node. From a hardware point of view, hierarchical learning represents an appropriate candidate for cascaded systems with multi-stage wake-up levels [START_REF] Goetschalckx | Optimized Hierarchical Cascaded Processing[END_REF]. This approach is deemed to minimize energy consumption such the digital processing is customized depending on the inference task complexity (generally of increasingly complexity).

• Compact image sensor architecture with on-chip inference capabilities (Chapter 6): the heart of this thesis is the study of a compact CMOS Image Sensor architecture taking advantage of the proposed CS sensing scheme based on random modulations and permutations to extract compressed features enabling on-chip inference with lower hardware complexity. Indeed, through passive analog routines and optimized ADC architecture, the data dimensionality reduction is achieved using low-footprint pseudorandom permutation circuit and a one-clock cycle low resolution (5-bit) RMΣ∆. It enables thus to relax constraints on Digital Signal Processing afterwards. Indeed, the signal-independent dimensionality reduction of CS (reaching 1 480 compression ratio) leads to an important memory reduction required to perform the inference approaches reported in Chapter 5. The digital processing enables an optimized resolution-scalable computations for the first stage of each presented inference algorithm. Interestingly, the proposed architecture can advantageously reuse a canonical rolling-shutter readout scheme and a conventional well optimized 4T pixel architecture. The top-level architecture of the proposed CIS has been validated based on high-level simulations of unitary components functional behavior.

Although being based on high-level simulations, several enablers have been identified to make this implementation more hardware friendly. An immediate continuity of the study of this architecture would be to design the additional block circuits compared to a canonical CIS architecture, i.e., Pseudo-Random Permutation (PRP) circuit and doublepath Σ∆ (RMΣ∆) ADC. Indeed, several optimizations can be done at the electrical and layout levels, typically to properly estimate the silicon-footprint of the PRP and handle the gain mismatch that can be involved by the RMΣ∆. Related to the preliminary study, several mid-term perspectives can be explored. In particular, to extend the inference capability to deal with shifted non-centred patterns, multi-scale pattern detection and recognition can advantageously be investigated to perform multi-resolution searches in the focal plane. At the system level, cascaded wake-up processing can advantageously be explored for end-user always-on applications. For instance, one can imagine a first motion-detection event based on basic inter-frame binary differences triggering a first decision making level enabling or not the dedicated inference task. This approach is deemed to be highly suitable for ultra-low power applications, e.g., IoT sensor nodes.

For future ultra-low power (µW) CIS, the aforementioned conclusions and perspectives provide some initial algorithm-hardware enablers for the design of compact CIS with on-chip decision making capabilities. This kind of targeted IoT-like application has been proven to be relevant in terms of power budget for customer handheld devices.
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 31 Figure 3.1 -An illustration of the projections involved by the studied inference approaches. y and ŷ are an observed unknown sample and its projection in the CS domain using Φ respectively; and c is the predicted class of y.

  1 C and Ỹ = ΦY ∈ R m×n 2 C the training and test sets observed respectively in the compressed domain using the CS matrix Φ ∈ R m×n with m n. This implies that all the training samples are of lowered dimensionality leading to a reduced computational complexity for both the training and the inference (cf., Figure3.2). Thus, the equations (3.1), (3.2) and (3.3) can be solved in the compressed domain and the training samples from X (i.e., x) are replaced by their projections in X (i.e., x).
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 32 Figure 3.2 -Schematic description of "inference learned in CS domain" (Approach A).
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 33 Figure 3.3 -Schematic description of "projection based inference" (Approach B).
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 34 Figure 3.4 -Schematic description of "inference in the reconstructed signal domain" (Approach C).

  A: Inference Learned in CS Domain Inference for the LDA To solve the inference task of the LDA in (3.4), i.e., c = arg min 1≤i ≤CP cs-LDA ỹ -P cs-LDA ( mi ) store on-chip the ex-situ learned patterns learned on CS measurements (i.e., Dcs-LDA ∈ R C -1×m and δcs-LDA ∈ R C -1 ); and C classes centroids (i.e., P cs-LDA ( mi ) ∈ R C -1 ).

  e., O C 2 + mC . In addition, supposing Φ D † sig-LDA Φ D † sig-LDA ∈ R C -1×C -1 to be pre-computed too, the complexity of the term Φ D † sig-LDA Φ D † sig-LDA αδsig-LDA becomes O C 2 ; and the complexity of Φ D † sig-LDA ỹ becomes O (mC ). Finally, when the sensing matrix Φ is a priori known the computing complexity of the LDA following Approach C is O qC 3 + qmC 2 .

  αδsig-SVM -Φ D † sig-SVM ỹ. As discussed above, this term involves a computing complexity of the order of O mC 2 + mnC leading to the total computing complexity O qmC 2 + qmnC . However, when the sensing matrix Φ is a priori known, the terms Φ D † sig-SVM and Φ D † sig-SVM Φ D † sig-SVM ∈ R C ×C can be computed off-line leading to a reduced memory needs, i.e., O (mC ); and a computing complexity O qC 2 + qmC .
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 35 Figure 3.5 -Inference accuracy for the AT&T and MNIST databases using a Rademacher and Gaussian distributions. We set n 1 = n 2 = 5 for AT&T; and n 1 = 5000, n 2 = 1000 for MNIST. (c) Robustness to additive noise. (d) Robustness to hardware variations. Blue, green and red lines refer approaches A, B and C respectivelly.
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 36 Figure 3.6 -Robustness to additive noise and hardware alterations for the LDA, SVM and DLSI. Blue, green and red lines refer approaches A, B and C respectivelly.
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 41 Figure 4.1 -Schematic 2D representation of the proposed CS sensing scheme for one snapshot.In particular, all the pixels sharing the same color are readout through to the same colorized end-of-column circuitry. Each pixel of the matrix U is also being modulated by the factor ±1.
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 42 Figure 4.2 -Matrix representation of the proposed CS sensing scheme for a single snapshot.
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 a Concentration of pairwise distances (canonical basis). (b) Distances to the bisector axis (canonical basis). (c) Concentration of pairwise distances (DCT basis).(d) Distances to the bisector axis (DCT basis).
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 43 Figure 4.3 -An analytical proof of the compressive embedding of the proposed sensing scheme in (4.3). (a) shows concentration of pairwise distances of our model and a Bernoulli distribution in the canonical basis around the pairwise distances in the signal domain (bisector axis) for n = 1024, k = 10 and m = 128 (s = 4); (b) report the histogram of distances to the bisector axis of our model and a Bernoulli distribution; (c) and (d) report the extracted plots in the DCT basis.
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 44 Figure 4.4 -Testbench for sparse image recovery.

  (a) Col-Bern. (b) W/o perm. (c) modPerm.
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 45 Figure 4.5 -Phase-transition diagrams. Black, red and magenta lines show the transitions to a success reconstruction above 40 d B for per-column Bernoulli (Col-Bern), our model without permutations (W/o perm) and our model sensing schemes (modPerm) respectivelly.

  (a) TV | Col-Bern (25 snapshots). (b) mDWT-TV | Col-Bern (25 snapshots). (c) TV | modPerm (25 snapshots). (d) mDWT-TV | modPerm (25 snapshots). (e) TV | Col-Bern (50 snapshots). (f ) mDWT-TV | Col-Bern (50 snapshots). (g) TV | modPerm (50 snapshots). (h) mDWT-TV | modPerm (50 snapshots).
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 46 Figure 4.6 -Quality of reconstruction of our sensing compared to a per-column Bernoulli acquisition scheme: (top) 25 snapshots, i.e., 20.48 compression ratio (bottom) 50 snapshots, i.e., 10.24 compression ratio.

  (a) TV | Col-Bern (75 snapshots). (b) mDWT-TV | Col-Bern (75 snapshots). (c) TV | modPerm (75 snapshots). (d) mDWT-TV | modPerm (75 snapshots). (e) TV | Col-Bern (100 snapshots). (f) mDWT-TV | Col-Bern (100 snapshots). (g) TV | modPerm (100 snapshots). (h) mDWT-TV | modPerm (100 snapshots).
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 47 Figure 4.7 -Quality of reconstruction of our sensing compared to a per-column Bernoulli acquisition scheme: (top) 75 snapshots, i.e., 6.82 compression ratio (bottom) 100 snapshots, i.e., 5.12 compression ratio
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 48 Figure 4.8 -Quality of reconstruction of our sensing model compared to a per-column Bernoulli acquisition scheme over 10 batches.
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 15 In this section, we address an object recognition problem to evaluate the performance of our model on two object recognition databases: the MNIST handwritten database (10 classes, 28 × 28 pixels) [209] and the AT&T face recognition database (40 classes, 92×112 pixels) [208].
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 445 9 reports the classification accuracy of a one-vs.-all SVM classifier learned on CS measurements sensed either by the proposed sensing scheme or a full Bernoulli matrix. It shows the accuracy in terms of the ratio of correct predictions to the total number of test samples and its standard deviation over 10 randomly selected batches of the testset. By comparing the plots, one can draw out the following conclusions regarding the data variability. First, one can see that in the Dedicated Hardware Implementations and Conclusion
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 4 Figure 4.10 -Top-level architecture of a pseudo-random modulations & permutations compressive image sensor.
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 51 Figure 5.1 -An illustration of the hierarchical learning. The input multi-class dataset to be classified is presented at Level 0. A first balanced clustering (2 clusters, each associated to the same number of classes) is performed at Level 1, then a binary classifier is trained. This process is repeated for each cluster until the construction of a single-class cluster at each terminal node. Here, C (j) i represents j t h cluster at level i .
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 52 Figure 5.2 -The inference process in the case of a binary hierarchical tree for an unknown sample (represented by the blue square in this figure).
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 61 Figure 6.1 -Image sensor top-level architecture.

  (a) Topologie of a 8-bit LFSR. (b) Register outputs for 255 clock cycles.
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 62 Figure 6.2 -A 8-bit LFSR: (a) Architecture; (b) Generated outputs.

  (a) A 8-bit cellular automata following the Wolfram rule 30. (b) Register outputs for 255 clock cycles.
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 6 Figure 6.3 -A 8-bit cellular automata: (a) Architecture; (b) Generated outputs.
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 64 Figure 6.4 -Process of codes generation performed by the proposed PRG.
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 65 Figure 6.5 -Register outputs for 255 clock cycles of the proposed codes generator.
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 66 Figure 6.6 -Autocorrelation of the generated sequence using the proposed pseudo-random codes generator and the MATLAB random permutations algorithm for different code lengths.
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 167 Figure 6.7 -An illustration of the hardware implementation of the proposed pseudo-random sequences generator for 8-bit codes
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 68 Figure 6.8 -Fully connected pseudo-random multiplexer based PRP.
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 69 Figure 6.9 -Analog ransmission gate.
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 610 Figure 6.10 -Equivalent silicon footprint involved by the interconnect wires of the fully connected pseudo-random multiplexer based PRP

Figure 6 .

 6 Figure 6.11 -Block-parallel pseudo-random multiplexer based PRP.

Figure 6 .

 6 Figure 6.13 -A 8 × 8 Benes network.
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 614 Figure 6.14 -Benes network based PRP.
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 615 Figure 6.15 -Various examples of Butterfly circuits.

Figure 6 .( 64 + 32 + 16 + 8 + 4 + 2 + 4 + 8 + 16 )W pi x 10 ×

 6643216842481610 Figure 6.16 -A 9-bit PRG.
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 6 Figure 6.19 -Incremental Σ∆ ADC.

Figure 6 . 20 -

 620 Figure 6.20 -Averaging and quantization through an incremental Σ∆ ADC. (Top): input signals; (Middle): integrator output; (Bottom): counter output highlighting the fact that the output of the signal and its average is the same.

Figure 6 . 21 -

 621 Figure 6.21 -System level concept of the RMΣ∆.

Figure 6 .

 6 Figure 6.22 -Double-path integration based RMΣ∆.

Figure 6 . 23 -

 623 Figure 6.23 -Evolution of RMΣ∆ counter output with respect to various types of inputs demonstrating modulation-averaging operations. (Top): input signals; (Middle): counter output of the modulated inputs; (Bottom): counter output without modulation of the input signal.
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 624 Figure 6.24 -Schematic representation of the affine function performed by the DSP.

Figure 6 .

 6 Figure 6.25 -Parallel DSP

Figure 6 .

 6 Figure 6.26 -Conditional DSP

Figure 6 .

 6 Figure 6.27 -Iterative DSP

  (a) Support Vector Machines. (b) Hierarchical SVM. (c) Neural network.

Figure 6 . 28 -

 628 Figure 6.28 -Three presented approaches, dashed lines represents projector-orthogonal hyperplanes: (a) SVM; (b) Hierarchical SVM; (c) First layer of the proposed neural network.

. 7 )

 7 Let us define the gain matrix Ŵ := ( ŵ 1 , • • • , ŵC ) , i.e., the vertical concatenation of ŵ i and b := b1 , • • • , bC the offset vector. Once the C classifiers are off-line learned, W and b can be stored on-chip. Thus, a winner-takes-all strategy allows to assign a compressed sample ỹ ∈ R n c to the class c maximizing the margin, i.e., c = arg max 1≤i ≤C ŵ i ỹ + bi .(6.8) 

  2.3, a decision tree is recursively constructed, training a binary SVM at each node, i.e., given {( x1 , l 1 ) , . . . , ( xk , l k ) , . . . , x2n 1 , l 2n 1 } ⊂ R m × {-1, 1} samples of two different classes in X . The binary SVM optimization problem between this two classes is written as: { ŵ , b, ξ} = arg min w ∈R N ,b,ξ∈R 2n . l k (w xk + b) ≥ 1 -ξ k , ξ k ≥ 0, 1 ≤ k ≤ 2n 1 , (6.9) Thus, for a test sample ỹ ∈ Ỹ the inferred class c is given by: c = sign w ỹ + b . (6.10)

Figure 6 . 30 -

 630 Figure 6.30 -Topology of the proposed Neural Network.

6. 3 Simulations and performance optimization 6 . 3 . 1 Background

 3631 To demonstrate the efficiency of the proposed architecture, two object classification databases have been used for the hardware top-level simulations:GeorgiaTech face database (GIT) [251]: contains images of 50 people. All people in the database are represented by 15 color images with cluttered background taken at resolution 640 × 480 pixels. The average size of the faces in these images is 150 × 150 pixels. The pictures show frontal and/or tilted faces with different facial expressions, lighting conditions and scale.

Figure 6 . 31 -

 631 Figure 6.31 -PRP fixed scrambing.

  (a) Real data disribution at the output of the column parallel Sigma-Delta. (b) Distribution of the entries of Ŵ . (c) Distribution of b values. (d) Probability of error at the output of each RMΣ∆. (e) Probability of error vs. classification accuracy.

Figure 6 . 32 -

 632 Figure 6.32 -Performance optimization of the RMΣ∆.

Figure 6 .

 6 Figure 6.33 illustrates how a single input (in our case the output β i of the incremental Σ∆ comparator) can be used to control the behavior of a 5-bit counter. Depending on the logic state of the SR i input (high/down logic state), the counter can be set up as an up/down counter using J K flip-flops. In this case, the inputs of each J K are permanently connected to the Q output of the previous flip-flops except the first one which permanently connected to a logic 1. Typically, when both J and K inputs of a given flip-flops are logic 1, the output toggles at each clock pulse. This way Q 0 toggles at each clock pulse; Q 1 toggles only when Q 0 is high; Q 2 , Q 3 and Q 4 toggle when all the previous flip-flops Q outputs are high using AN D gates. On the other hand, for the down counter setup each flip-flops inputs are wired to the complement output of the previous one (i.e., Q), except the first one which still connected to a logic 1 allowing to reverse the count of the counter. To switch between the two operational modes, a signal control (i.e., SR i ) combined with a set of AN D and OR gates can be used to enable either the up or down modes.

Figure 6 .

 6 Figure 6.33 -A 5-bit up/down conditional counter (↑↓ counter).

Figure 6 Figure 6 .

 66 Figure 6.34 -DSP MAC

  

  

  

Table 3 .

 3 1 -Embedded resources requirements to perform near sensor decision making for the studied inference approaches (A, B and C) and techniques (LDA, SVM and DLSI).

Table 6 .

 6 1 -Number of MSB and LSB bits to swap in function of the desired code length.

					to swap		
			1 2 3 4 5 6 7		
			4 x					
			5	x				
			6	x				
			7 x x				
			8	x				
			9	x				
	Code lengths	10					
			11		x x			
			12	x				
			13	x	x			
			14		x			
			15 x					
			16			x		
	Code lengths	4	5	6	7	8	9	10
	Number of possible	2	24	66	600	2213 30329 165828
	bits swapping	(8%) (20%) (9%) (11%) (5%)	(8%)	(4%)

Table 6 .

 6 2 -Number of possible bits swapping over the n! possible permutations of a n-length register.

Table 6 .

 6 3 exhibits the underlying motivations related to the proposed DSP architecture. It clearly demonstrates the interest of hierarchical learning to reduce the amount of MAC operations for highly limited hardware. Moreover, it also shows the ability of the proposed architecture to deal with a higher number of projections to fit within algorithmic needs (i.e., one-vs.-all and Neural Network strategies) with respect to an increase of the local memory budget required to store ex-situ learned patterns.

	Learning	Memory	Computing
	One-vs.-all	mC	O (mC )
	Hierarchical m(C -1) ANN O (αC )	O (m log 2 C ) O (αmC + αC 2 )

Table 6 . 3

 63 

-A comparison of embedded resources requirements of a one-vs.all SVM, hierarchical SVM and Neural Network inference strategies.

123 6 .4. Conclusion

 6 

	Dataset	One-vs.all SVM Hierarchical SVM ANN (α = 3)
	GIT (C = 10)	97.2 %	95.8 %	80.8 %
	GIT (C = 50)	85.0 %	75.6 %	85.3 %
	COIL (C = 32)	99.2 %	99.0 %	99.3 %
	COIL (C = 100)	91.4 %	90.5 %	98.8 %
	Table			
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