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Abstract

Recent advances in the field of CMOS Image Sensors (CIS) tend to revisit the canonical

image acquisition and processing pipeline to enable on-chip advanced image processing

applications such as decision making. Despite the tremendous achievements made possible

thanks to technology node scaling and 3D integration, designing a CIS architecture with on-

chip decision making capabilities still a challenging task due to the amount of data to sense and

process, as well as the hardware cost to implement state-of-the-art decision making algorithms.

In this context, Compressive Sensing (CS) has emerged as an alternative signal acquisition

approach to sense the data in a compressed representation. When based on compact devices

to on-the-fly generate sensing patterns, CS enables drastic hardware saving through the

reduction of Analog to Digital conversions and data off-chip throughput while providing

a meaningful information for either signal recovery or signal processing. Traditionally, CS

has been exploited in CIS applications for compression tasks coupled with a remote signal

recovery algorithm involving high algorithmic complexity. To alleviate this complexity, signal

processing on CS provides solid theoretical guarantees to perform signal processing directly

on CS measurements without significant performance loss opening as a consequence new

ways towards the design of low-power smart sensor nodes.

Built on algorithm and hardware research axes, this thesis illustrates how Compressive Sensing

can be exploited to design low-power sensor nodes with efficient on-chip decision making

algorithms. After an overview of the fields of Compressive Sensing and Machine Learning with

a particular focus on hardware implementations, this thesis presents four main contributions

to study efficient sensing schemes and decision making approaches for the design of compact

CMOS Image Sensor architectures. First, an analytical study explores the interest of solving

basic inference tasks on CS measurements for highly constrained hardware. It aims at find-

ing the most beneficial setting to perform decision making on Compressive Sensing based

measurements. Next, a novel sensing scheme for CIS applications is presented. Designed

to meet both theoretical and hardware requirements, the proposed sensing model is shown

to be suitable for CIS applications addressing both image rendering and on-chip decision

making tasks. On the other hand, to deal with on-chip computational complexity involved

by standard decision making algorithms, new methods to construct a hierarchical inference

tree are explored to reduce MAC (Multiply-ACcumulate) operations related to an on-chip

multi-class inference task. This leads to a joint acquisition-processing optimization when

combining hierarchical inference with Compressive Sensing. Finally, all the aforementioned

contributions are brought together to propose a compact CMOS Image Sensor architecture
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enabling on-chip object recognition facilitated by the proposed CS sensing scheme, reducing

as a consequence on-chip memory needs. The proposed architecture takes advantage of a

pseudo-random data mixing circuit of reduced silicon footprint, an in-Σ∆ ±1 modulator and

a small Digital Signal Processor (DSP) to achieve on-chip inference. In addition to the data

dimensionality reduction made possible thanks to CS, several hardware optimizations are

presented to fit requirements of future ultra-low power (∼µW) CIS design. Typically, through

the reduction of CS measurements resolutions as well as digital operations resolutions at the

DSP level.

Key words: CMOS Image Sensor, compressive sensing, random permutations, random mod-

ulations, Sigma-Delta, machine learning, hierarchical inference, support vector machines,

neural networks.



Résumé

Les avancés récents dans le domaine des capteurs d’image CMOS repose sur la remise en

question du schéma classique d’acquisition et de traitement d’images, cela, afin de permettre

des traitements avancés sur puce tels que la prise de décision. Malgré les réalisations ren-

dues possibles grâce à l’utilisation des nœuds technologiques avancés et à l’intégration 3D,

la conception de capteurs avec des capacités de prise de décision reste une tâche ardue en

raison de la quantité de données acquise et à traiter, ainsi que du coût matériel que repré-

sente l’implémentation des algorithmes de prise de décisions classiques. Dans ce contexte,

l’Acquisition Compressive (AC) semble une approche alternative pour inspecter des données

en profitant de la réduction de dimensionnalité. Dans le cas où l’AC exploite des motifs géné-

rés à l’aide de structures matérielles compactes ayant un comportement pseudo-aléatoire,

il permet une réduction considérable en réduisant les conversions analogique-numérique

ainsi que du débit des données collectées, tout en conservant les informations pertinentes

intrinsèques afin de permettre à la fois la reconstruction du signal ou bien son traitement

dans sa nouvelle forme de représentation. Traditionnellement, l’AC a été exploité dans des

applications de capteurs d’image pour des tâches de compression couplées à des algorithmes

de reconstruction distants impliquant une complexité algorithmique élevée. Pour relâcher

cette complexité, il apparaît dans la littérature des garanties théoriques solides pour effectuer

le traitement du signal directement dans le domaine compressé sans perte significative de

performance, ce qui constitue donc une nouvelle piste pour concevoir des nœuds de capteurs

intelligents à basse consommation énergétique.

Basée sur des axes de recherche traitant de l’algorithmique et de l’implémentation maté-

rielle, cette thèse étudie des voies de développement exploitant l’acquisition compressive

pour concevoir des nœuds de capteurs dotés de capacités de prise de décision sur puce à

basse consommation énergétique. Après une présentation du contexte matériel et algorith-

mique lié à l’acquisition compressive et les techniques d’apprentissage machine, la thèse

présente quatre contributions principales pour optimiser les schémas d’acquisition du signal

et des traitements associés dans le contexte des capteurs d’image CMOS. Dans un premier

temps, une étude analytique explore l’intérêt de résoudre des tâches d’inférence à partir

des mesures compressées pour des applications à forte contraintes matériels. L’objectif est

d’identifier une approche pertinente en terme de complexité matérielle et algorithmique

permettant d’implémenter des traitements de prise de décisions à partir de mesures compres-

sées. Ensuite, un nouveau schéma d’acquisition compressive dédié aux applications imageurs

CMOS est présenté. Conçu pour répondre à la fois aux exigences théoriques et matérielles,
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le modèle s’avère être approprié pour les capteurs qui traitent à la fois des tâches de rendu

d’image et de prise de décision sur puce. D’autre part, pour réduire la complexité de calcul sur

puce impliquée par les algorithmes de prise de décision standard, de nouvelles méthodes de

construction d’arbres d’inférence hiérarchique sont explorées afin de réduire les opérations

MAC (Multiply-ACcumulate) liées à une tâche d’inférence pour de la classification en classes

multiples sur puce. Cela conduit à une optimisation conjointe traitement-acquisition lors

de la combinaison de l’inférence hiérarchique avec l’acquisition compressive. Enfin, une

architecture compacte d’un capteur d’image embarquant les contributions algorithmiques

susmentionnées est présentée permettant la reconnaissance d’objets sur puce à faible em-

preinte matérielle. L’architecture proposée exploite principalement un mélangeur analogique

permettant la permutation pseudo-aléatoire des pixels des lignes sélectionnées dans un mode

de lecture en rolling shutter ; un convertisseur analogique-numérique Sigma-Delta (Σ∆) incré-

mental de premier ordre pour implémenter la modulation pseudo-aléatoire, la sommation

des pixels mélangés ainsi que la conversion analogique-numérique ; et un petit processeur de

signal numérique (DSP) pour implémenter la fonction affine de prise de décision. En plus de

la réduction de dimension rendu possible grâce à l’AC, différentes optimisations matérielles

sont présentées pour répondre aux exigences de la conception des futures capteurs CMOS

dits ultra-basse consommation (∼ µW), à savoir, la réduction de la résolution des mesures

compressées extraites ainsi que la résolution des opérations logiques au niveau du DSP.

Mots clefs : Capteur d’image CMOS, acquisition compressive, permutations aléatoires, modu-

lations aléatoires, Sigma-Delta, apprentissage machine, inférence hiérarchique, machines à

vecteurs de support, réseaux de neuronnes.



Notations

x, X denotes a scalar

x denotes a vector

X denotes a matrix or a linear operator

xi denotes the i th component of a vector x

X i denotes the i th column of a matrix X

Xi j denotes the entry on the i th row and j th column

x>, X > denotes the transpose of a vector x or a matrix X

X −1 denotes the inverse of a matrix X

X † denotes the Moore-Penrose pseudoinverse of a matrix X defined as X † := (
X >X

)−1
X >

N denotes the set of all natural numbers

R denotes the set of all real numbers

[n] denotes the set of indices such that [n] := {1, . . . ,n}

I n denotes the n ×n identity matrix

1n denotes a n-dimensional vector with all entries equal to one

0n denotes a n-dimensional vector with all entries equal to zero

supp(x) denotes the support of a vector x ∈Rn , such that, supp(x) := {i ∈ [n] , xi 6= 0}

sign(x) denotes the sign function that extracts the sign of a scalar x

|x| denotes the absolute value of a scalar x

‖x‖p denotes the `p norm of a vector x defined as ‖x‖p := (∑
i |x|p

) 1
p for p > 1

‖x‖0 denotes the `0 norm of a vector x defined as the support of x , i.e., ‖x‖0 := supp(x)

‖X ‖F denotes the Frobenius norm of a matrix X defined as ‖X ‖F :=
√∑

i
∑

j |Xi j |2
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〈x , y〉 denotes the standard inner product in the Euclidean space between two vectors x, y ∈Rn

defined as y>x :=∑n
i=1 xi yi

x ∗ y denotes the convolution between two vectors x , y ∈Rn

x ◦ y denotes the Hadamard product between two vectors x, y ∈Rn

X ⊗Y denotes the Kronecker product between two matrices

C denotes a set

card(C ) denotes the cardinality of a set C , indicating the number of the elements of the set

g (x) =O
(

f (x)
)

denotes that | f (x)
g (x) | is bounded as x →∞

N
(
µ,σ2

)
denotes the Gaussian distribution with mean µ and variance σ2

U (a,b) denotes the Uniform distribution on the interval [a,b]
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Chapter 1

Introduction

The last few years have witnessed the tremendous growth of the filed of CMOS Image Sen-

sors (CIS). They are now ubiquitous in many disciplines of science and industry. Driven by

consumer electronic products (e.g., mobile phones, tablets, gaming, cameras), the overall CIS

market has reached $15.5 billion in 2018 with 12% Year-on-Year (YoY) growth as reported in

Figure 1.1. This dynamic is expected to improve significantly in the next three years with 10%

YoY growth as expected by Yole Développement, a market research and strategy consulting

company. Yet, emerging applications such as ADAS (Advanced driver-assistance systems),

drones and IP cameras could potentially reshape the current CIS landscape pushing the main

CIS’s players (e.g., Sony, Samsung, OmniVision) to suggest innovative approaches to meet the

increasing needs in terms of CIS resolution, dynamic rage, wavelengths and more recently the

ability to embed smart on-chip image processing and/or analysis, typically, with the democra-

tization of machine learning tools. As widely discussed in the CIS literature, the current trend

moves forward machine vision applications (e.g., object detection/avoidance/tracking, quality

control). In such specific tasks, signal processing is essential to extract the most significant

and interpretable information. However, designing such systems to handle large-scale data

and extract meaningful informations involves considerable amount of computational and

hardware resources limiting as a consequence their use for end-user applications. The main

challenge consists then in the design of smart low-power compact imagers that seemingly

involves to revisit the canonical image acquisition and processing pipeline.

In the conventional image acquisition and processing pipeline (cf., Figure 1.2), sensing and

analysing an observed scene is achieved through the following steps [2]. First, the light rays

reflected by the observed scene are focused on the image sensor using an imaging lens. The CIS

chip is composed of an array of pixels and peripheral circuits. Based on the photoconversion

phenomena enabled by each pixel photodiode, the accumulated charge or its equivalent

voltage or current value are read out in a rolling shutter fashion (i.e., sequential line scanning)

after a certain exposure time. Through this readout scheme, the quality of the sensed image

is influenced by technological dispersions as well as pixels response nonuniformity. This
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Figure 1.1 – CIS market dynamics by Yole Développement.

nonideality is known formally by the Fixed-Pattern Noise (FPN) and generally modeled as an

affine mapping of the pixels values. To handle the offset FPN, a Correlated Double Sampling

(CDS) circuit is typically implemented at the end-of-column circuitry [3]. Indeed, the pixel

value is readout twice, at the reset and the end of the integration. This way, the pixel value

at the reset is subtracted from the one after the integration allowing to suppress the offset

PFN induced throughout the acquisition. The CDS output is then amplified and converted

into a digital representation using an Analog-to-Digital Converter (ADC) [4]. Furthermore, an

on-chip microlens array is typically deposited on top of pixel array to collimate incident light

to the photodiode that occupies a percentage of the pixel area known as the fill-factor. On the

other hand, to perform color imaging, an on-chip Color Filter Array (CFA) is built above the

pixel array to separate colors through a certain pattern (e.g., RGB Bayer filter). To recover a full

color image, a demosaicking algorithm is typically used based on color interpolation. Further

digital processing can be done, for instance, color correction for image enhancement; and

image compression to reduce the amount of data to store or sent to a remote processing station.

Finally, to perform scene analysis (e.g., pattern recognition, decision making), State-Of-The-

Art (SOTA) machine learning algorithms can be used. However, designing compact machine

vision systems with on-chip decision making capabilities will involve high on-chip complexity

either at the hardware level (e.g., power consumption, memory needs) or algorithmic one due

to digital operations involved by SOTA heavy algorithms. A relevant approach to overcome

these limitations consists in exploring alternative signal acquisition schemes allowing to

reduce on-chip constraints and perform low-power on-chip decision making processing, for
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instance, for always-on sensor nodes that trigger signal when detecting specific patterns in

the image scene.

Figure 1.2 – Imaging system pipeline.

In the last decade, a new signal acquisition scheme called Compressive Sensing (CS) has

emerged as an alternative framework extending the classical Nyquist-Shannon sampling

theorem. In the imaging context, CS is generally presented as a Dimensionality Reduction (DR)

technique that maps a full-resolution image into a compressed vector. Since the early works in

the field of CS, a deep theoretical study has been performed to highlight the interest of CS for

sensor node applications. Based on a solid theoretical background, the CS framework provides

several tools enabling the design of CS sensing schemes (i.e., structured/non-structured

DR operators), effective original signal recovery at the decoder level and finally effective

signal processing on CS measurements. Moreover, some initial steps have been proposed to

implement CS sensing schemes in the CMOS focal plane pushing forward the design of low-

power sensor nodes. In fact, the main interest of CS is the dimensionality reduction performed

in the analog domain leading to a drastic reduction of the amount of A/D conversions which

is one of the most energy-hungry component of a CIS, in the absence of embedded digital

processing. In addition, the extracted compressed measurements allows to reduce on-chip

digital Multiply and Accumulate (MAC) operations related to machine learning algorithms. For

these reasons, CS is considered as a powerful sensing scheme for future low-power (µW ) CIS

design. In this context, this thesis explores new paths towards the design of smart low-power

CIS taking advantage of CS as a preliminary feature extraction stage combined with dedicated

machine learning algorithms for cutting-edge applications with on-chip Artificial Intelligence

(AI) capabilities.

Layout of the manuscript

This thesis explores the design of CMOS image sensors taking advantage of CS to alleviate hard-

ware constraints to perform basic on-chip inference tasks. To this end, two complementary

parts are exposed. The first one (Chapter 3, 4 and 5), identifies mathematical and algorithmic

enablers for efficient on-chip CS and inference problem solving tasks. In the second one

(Chapter 6), we study how to efficiently design a compact CIS allowing to extract CS measure-

ments and perform on-chip decision making without major modification of a canonical CIS

architecture with well optimized standard pixels taking advantage of industrial-rated pixel
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optimizations (e.g., fill factor, full well capacity density, reset and read noise) enabling as a

consequence various functioning modes (e.g., CS, features extraction, classification, standard

high resolution and low noise acquisition). The layout of the manuscript is as follows.

Chapter 2 presents an overview of the Compressive Sensing and Machine Learning landscapes.

It first introduces key theoretical concepts and fundamentals for the design and study

of CS sensing schemes. Next, it provides a non-exhaustive listing of SOTA recovery

algorithms and theoretical guarantees for efficient signal processing on compressed

measurements without major loss of the processing performance compared to signal

processing on original data. SOTA efforts to design CIS devices with on-chip CS are

reported with a focus on CMOS implementations highlighting the relevance of each

approach regarding concrete applications. On the other hand, an overview of the SOTA

of supervised machine learning techniques is presented. We finally highlight the current

efforts towards the design of CIS devices with on-chip decision making tasks as well as

dedicated System-On-Chip (SOC) for inference problem solving with either algorithmic

or hardware optimizations (e.g., binary deep learning accelerators).

Chapter 3 studies the interest of solving basic inference tasks on compressed measurements for

highly constrained hardware (e.g., always-on ultra low power vision systems). In par-

ticular, it tries to find the most beneficial setting to perform on-chip inference tasks

on compressed measurements. Based on commonly known randomly generated CS

matrices, three approaches to perform the inference on CS are presented for different

SOTA machine learning algorithms involving different levels of complexity. The rele-

vance of each approach is evaluated through the accuracy of the inference for real-world

inference tasks as well as general considerations of the hardware complexity in terms of

computing, memory needs and robustness to some hardware variations for two object

recognition applications.

Chapter 4 proposes a novel compressive sensing scheme for CIS applications. It is formally gen-

erated based on random modulation and permutation matrices enabling the use of

pseudo-random generators to extract compressed measurements and, thus, relax hard-

ware constraints to generate the CS matrix. The proposed sensing model being basically

designed to meet both theoretical (i.e., stable embedding) and hardware requirements

(i.e., power consumption, silicon footprint), is highly suitable for image sensor applica-

tions addressing both image rendering and on-chip decision making tasks. The main

contributions of this chapter are summarized as follows: we first provide theoretical

and analytical analyses of the proposed sensing scheme based on CS theoretical tools to

address inference tasks. On the other hand, we provide several numerical experiments

to highlight the improvements enabled compared to SOTA CS based CIS architectures.

Chapter 5 deals with on-chip computational complexity involved by canonical decision making

algorithms. It explores hierarchical learning in order to reduce MAC operations related

to an embedded multi-class inference task. It typically introduces new methods to
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construct the hierarchical tree in order to train a hierarchical classifier (i.e., a binary

decision tree) minimizing as a consequence the number of decision nodes, and thus,

the number of binary classifiers to perform at the inference level. Indeed, in the con-

text of limited processing and memory resources, CS is considered as a preliminary

feature extraction stage for both training and inference problem solving allowing as a

consequence a joint acquisition-processing optimization to meet highly constrained

on-chip inference tasks. Finally, several simulation are carried out to show the relevance

of the proposed methods for real-world inference tasks in terms of both decision making

accuracy and hardware saving.

Chapter 6 heart of this thesis, packs conclusions of previous chapters together to define the archi-

tecture of a compact compressive CIS with dedicated CS sensing scheme and optimized

inference strategies. It studies possible paths to implement the CS sensing scheme

proposed in Chapter 3 using passive analog routines and an optimized ADC architecture

enabling significant hardware saving. To show the relevance of the proposed architec-

ture for real-world applications, two object recognition tasks are carried out using a

dedicated Digital Signal Processing (DSP) architecture adapted to address the first stage

of various inference algorithms, compliant with the proposed architecture, and there-

fore well adapted to the context of highly limited hardware implementations. Although

being based on high-level simulations, several levers have been identified to make this

implementation hardware-friendly, typically, to reduce the number of clock cycles in

an incremental ADC (generally the most power hungry component of a CIS core in

the absence of embedded digital processing neglecting IO-ring related power); lower

extracted CS measurements resolution; and finally in-sensor memory needs.

Chapter 7 summaries, finally, the main contributions of each chapter and discusses possible

outlooks and open questions not fully addressed throughout this thesis.





Chapter 2

State Of The Art

The goal of this chapter is to provide an overview of the research area related to this thesis. At

the intersection of the fields of microelectronics, signal processing and machine learning, we

present in details the elements that are most relevant to apprehend this work and in a nutshell

the topics and tools related but not necessary to understand the contributions of this work. In

particular, we illustrate how randomness can be exploited to design efficient signal acquisition

devices and give enough theoretical guarantees to design algorithms that process random

measurements enabling a compact signal acquisition and processing pipeline.

The chapter is divided into two major sections. The first section deals with the theoreti-

cal background of Compressive Sensing (CS) and related algorithmic tools, then with the

main contributions of the CMOS Image Sensor (CIS) community regarding the design of

imaging devices and systems with a particular focus on the compressive imaging schemes

State-Of-The-Art (SOTA). The interest and guarantees of signal processing on compressed

measurements framework are then presented. This alternative signal processing paradigm

(i.e., CS) has emerged as an attractive approach to tackle hardware drawbacks related to highly

constrained embedded applications. The second section shifts the focus to the problem of

pattern recognition and machine learning. It provides a review of the commonly used ma-

chine learning techniques with a particular focus on supervised learning algorithms. It further

discusses several hardware contributions to implement SOTA inference techniques, both by

analog pre-processing and dedicated digital hardware accelerators. Finally, some initial steps

towards compressive sensing based decision making systems are presented and discussed for

specific applications.



Chapter 2. State Of The Art 8

2.1 Compressive Sensing background

2.1.1 An Invitation to Compressive Sensing

The last few years have testified a widespread of connected nodes and data specific processing

units. The trend for cost-optimized and value-added mixed IC design [5] has made consider-

able contributions in the world of Internet of Things (IoT) as well as smart sensors [6, 7]. In

this context, the amount of data to sense, store and process has grown in leaps and bounds

leading to power, multiply–accumulate (MAC) and memory hungry systems. To deal with

the complexity bottleneck involved by the data dimensionality, a compression technique is

typically introduced in the signal processing pipeline [8]. Several data compression algorithms

have been developed to tackle this issue. In particular, transform coding is widely used as a

fast and efficient compression technique, and aims typically to find sparse or compressible

representations of the signals of interest in specific bases [9]. Considering a signal x ∈ Rn

(e.g., an image with n pixels), the concept of sparse representation allows to express x us-

ing a few non-zeros coefficients [10]. Thus, given an orthonormal basisΨ ∈ Rn×n , x can be

approximated by k non-zeros coefficients in Ψ, i.e., x = Ψα, with k = ‖α‖0 = supp(α) is

the degree of sparsity of x inΨ. For compressible signals, the coefficients of x inΨ (i.e., α)

tend rapidly to 0 when sorted by decreasing order of magnitude. Sparse representations are

used in many compression standards like MP3, JPEG, JPEG 2000 and MPEG. Hopefully, the

sparsity property of the signals also involves a low entropy of the data in the sparse domain,

implying a direct possible usage of entropy coders to efficiently perform compression in terms

of bitstream. Furthermore, with the rise of advanced CIS technology nodes, several works

have focused on implementing near image sensor compression techniques [11, 12]. However,

these implementations bring high computational and memory costs mainly related to the

transform coding but also to the signal analysis needed for adaptive entropy coding.

Figure 2.1 – The canonical compression scheme (top) Compressive Sensing scheme (bottom).

On the other hand, Compressive Sensing (CS) has emerged as a powerful hardware-friendly

framework for signal acquisition and sensor design based on random measurements. In

contrast to the canonical approach where a signal is first sampled with respect to the Nyquist-

Shannon theorem, converted to a digital representation using an Analog-to-Digital Converter

(ADC) and then compressed using a compression standard (cf., Figure. 2.1), CS proposes to
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directly sense the observed signal in a compressed representation promising a large reduction

of the hardware-algorithm complexity. Indeed, CS allows to dramatically reduce the amount

of A/D conversions and digital operations and thus the power consumption of the signal ac-

quisition and processing pipeline thanks to its signal-independent dimensionality reduction.

Based on the works of E. Candès, J. Romberg, T. Tao and D. Donoho [13, 14], CS attests via a

set of theoretical results that a sparse or compressible signal can be faithfully recovered from a

small set of compressed measurements extracted based on non-adaptive linear projections

[15, 16, 17]. However, the major limitations of CS based systems are typically the processing

complexity related to the signal recovery compared to the classical approach as well as the

generation/storage of the sensing matrix at the sensor side. Mathematically, considering a sig-

nal x ∈Rn , we can express the CS acquisition scheme to extract m compressed measurements

as follows

y =Φx , (2.1)

where,Φ ∈Rm×n is the sensing matrix enabling a signal-independent dimensionality reduc-

tion mapping the signal x ∈Rn to a measurement vector y ∈Rm , with m much smaller than n

(m ¿ n).

The CS community has been concerned with two main challenges. First, defining the classes

of sensing matricesΦ enabling a stable embedding property, i.e., preserving the information

content of the signal x in the compressed domain. Second, recovering faithfully the original

signal x from the compressed vector y . The theory and applications of these two complemen-

tary research axes were elegantly developed gathering contributions from different scientific

communities(mathematics, computer science, physics . . . ).

As mentioned above, the concept of sparse representations is traditionally used in lossy image

compression to minimize the number of nonzero coefficients in the new basis. In particular,

images are sparse in a wide variety of bases (e.g., Discrete Cosine, Wavelets). In the CS context,

sparsity is exploited as a prior knowledge to recover the original signal. Indeed, when m ¿ n,

recovering x from y is an ill-posed problem becauseΦ becomes an overcomplete dictionary

instead of a basis. To tackle this issue, the CS theory takes advantage of the sparsity of the

sensed signals in an a priori known basis. Thus, given the sparsity hypothesis of the signal

x in a sparsity basisΨ, recovering x from y can be expressed by a non-convex optimization

problem aiming at finding the sparsest signal x̂ such that y is very close toΦx̂ :

x̂ = argmin
x

‖Ψ>x‖0 s.t. y =Φx . (2.2)

Unfortunately, it was shown that this optimization problem is NP-hard [18, 19] because of
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the `0 norm which is non-convex. However, because of ‖Ψ>x‖q
q approaches ‖Ψ>x‖0 as q > 0

tends to 0 [20, 21], we can approximate (2.2) by

x̂ = argmin
x

‖Ψ>x‖q s.t. y =Φx . (2.3)

In the specific case of q = 1, this relaxation becomes convex and allows therefore to solve a

much simpler `1-minimization problem rather than the `0 problem leading to the following

Basis Pursuit (BP):

x̂ = argmin
x

‖Ψ>x‖1 s.t. y =Φx . (2.4)

However, the success of exact recovery via BP is achieved with respect to a certain condi-

tion expressed by the spasity level. Indeed, the bound defining the sparsity level required

to ensure this equivalence is provided by the works of D. Donoho, X. Huo, M. Elad and A.

Bruckstein [22, 23, 24]. Furthermore, we can reformulate (2.4) alternatively to extend this opti-

mization problem to a more general `1-minimization taking measurements error as well as

compressible signals into account. In fact, due to sensors nonidealities, noisy measurements

can probably be extracted leading to a recovered signal with m nonzero components instead

of k. On the other hand, real-world images are generally compressible rather than sparse

with the existence of sparse approximations that approximate them by sparse vectors. Given

these considerations, it becomes reasonable to consider the following Basis Pursuit Denoising

(BPDN) under the assumption of an Additive white Gaussian noise (AWGN):

x̂ = argmin
x

‖Ψ>x‖1 s.t. ‖y −Φx‖2
2 ≤ ε. (2.5)

Equivalently, (2.5) can be expressed using its augmented Lagrangian form:

x̂ = argmin
x

‖Ψ>x‖1 +λ‖y −Φx‖2
2, (2.6)

where λ is an inner regularization parameter allowing to control the energy of the fidelity

term, i.e., the sparsity level on the recovered signal. There exists a wide variety of algorithms

to solve the `1-minimization problems stated in (2.4), (2.5) and (2.6). In the next section we

provide a sparse insight about the commonly used methods for sparse signal recovery or
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sparse approximation problems.

2.1.2 Basic Algorithmic Tools

Once the CS measurements extracted in the sensor side, a reconstruction algorithm is typically

needed to solve the `1-minimization problems expressed by (2.4) and (2.5). In the CS portfolio,

there exists a wide variety of algorithms that guarantee a faithful and efficient signal recovery.

Efficiency of these algorithms depends however on the complexity in terms of speed and

memory needs as well as the quality of recovery in terms of reconstruction error. Several

classifications have been proposed in the literature to group sparse recovery methods under

different categories [25, 26, 27]. Here, three major classes are considered to solve sparse

approximation problems: recast-based methods, greedy methods and non-convex methods.

In the following, we give some elementary materials related to each algorithms class.

Recast-based Methods

Before discussing recast-based methods, we note that in convex optimization [28] an optimiza-

tion problem is generally expressed as:

x̂ = argmin
x

f0 (x) s.t. fi (x) ≤ bi , i ∈ [n] , (2.7)

where f0 : Rn → R is called an objective function, fi : Rn → R, i ∈ [n] are called constraint

functions and the constants bi are called bounds for the constraints. Notice that when fi ’s

are all linear, the problem is called a linear program. If fi ’s are all convex, then the problem is

called a convex optimization problem and consequently its equivalent augmented Lagrangian

as well.

We have mentioned previously that CS signal recovery can be expressed as a convex problem

thanks to a convex relaxation leading to the `1-minimization problem (i.e., equations (2.4)

and (2.5)). In addition, it was shown that the problem in (2.4) can be recast as a linear program

by introducing slack variables [29]. This way, one can use the classical Dantzig’s Simplex

method [28] to solve (2.4). However, in the most physical-friendly approach (i.e., BPDN in

(2.5)), the signal recovery problem becomes a second-order cone problem, i.e., a problem

with quadratic constraint functions. The interior-point methods [30, 31] were among the first

methods used to solve sparse approximation problems by convex optimization [32] expressed

with a quadratic constrain (i.e., (2.5)). However, although their low complexity, they are less

competitive compared to greedy methods, specifically designed for `1-minimization. Indeed,

their performance is insensitive to the sparsity of the reconstructed signals or the value of the

regularization parameter (i.e., (2.6)).
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Greedy Methods

A greedy method refers to a step-by-step fashion to recover a sparse signal [33, 34, 35, 36, 37, 38,

39, 40, 41]. This signal recovery selection can advantageously be combined with a thresholding

routine leading to a precise tuning of the sparsity level of the estimated signal. In addition,

greedy algorithms are known to be simple to implement, fast and applicable to large-datasets.

These methods therefore provide strong theoretical guarantees for sparse signal recovery. A

non-exhaustive list of the commonly used greedy methods can be found in [42] as well as

recovery proofs and algorithms complexity in terms of computation and storage costs.

Non-convex Methods

From an optimization point of view, non-convex methods refer to sparse recovery methods

dealing with non-convex cost functions [43, 44], i.e., ‖Ψ>x‖q with 0 < q < 1 in (2.3). In [45], it

was shown that an exact recovery of sparse signals can be achieved with fewer measurements

than when q = 1 (i.e., (2.4)). Non-convex methods could probably be interesting to recover

sparse signals in the field of quantized compressive sensing [46] where non-convex constraint

functions are widely used [47]. Furthermore, we can also include under non-convex methods

Bayesian methods where a prior distribution is considered to recover the unknown coefficients

that promotes sparsity [48, 49, 50, 51]. It was shown that Bayesian methods can achieve fast

and low error recovery thanks to a prior knowledge of the sparse coefficients distribution

[52]. Finally, in some recent works Deep Neural Networks (DNN) have been explored for

signal recovery by learning structured representations from a training dataset of compressed

samples [53, 54, 55]. In fact, DNN-based methods show significant improvements in terms

of speed and quality of recovery. However, neither computational complexity nor memory

needs have been provided in these works. Indeed, the complexity involved by these kind

of algorithms could be higher compared to the commonly-used greedy methods due to the

training dependency that involves many nonliear operations.

2.1.3 CS Sensing Matrix Properties

To provide guarantees of faithful (stable) reconstruction of the observed signals, compressive

sensing theory has introduced several metrics to measure the ability of the sensing matrix

Φ to generate independent measurement and to spread out the information in the sensed

signal among the extracted measurements. In the following, we will carry out the main metrics

studied in the CS theory known as the coherence and the Restricted Isometry Property (RIP)

enabling exact recovery of k-sparse signals via the `1-minimization problems stated in (2.4)

and (2.5). These properties are basically used to study theoretical bounds of sparse signal

recovery algorithms. On the other hand, when dealing with sparse (or compressible) signals

in some bases different from the sensing basis (e.g., a selfie taken in front of the Eiffel Tower

is not sparse in the canonical basis but sparse in a wavelet basis), it turns out that we can

sense the observed signal directly in its original domain without significant loss of the sensing
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robustness thanks to the universality property.

Coherence

A simple and easy measurable metric to assess the robustness of a sensing matrix is the

coherence [56, 57]. It evaluates the cross-correlations between any two columns of the sensing

matrixΦ expressed as:

Definition 1. LetΦ ∈Rm×n be a matrix with `2-normalized columnsΦ1, . . . ,Φn , i.e., ‖Φi‖2
2 = 1

for all i ∈ [n]. The coherence µ (Φ) of the matrixΦ is defined as:

µ (Φ) = max
1≤i 6= j≤n

|〈Φi ,Φ j 〉|. (2.8)

As a general consideration, the smaller the coherence of the sensing matrix the better is

the recovery. Furthermore, it was shown that the coherence can be bounded as follows:

µ (Φ) ∈
[√

n−m
m(n−1) ,1

]
. The lower bound is known as the Welch bound [58], and for m ¿ n it

becomes µ (Φ) ' 1p
m

. Based on the coherence, sufficient conditions were carried out for exact

sparse recovery [57, 59], e.g.,

µ (Φ) < 1

2k −1
, (2.9)

with k is the sparsity level.

Restricted Isometry Property

In [60] the concept of the Restricted Isometry Property (RIP) is introduced as a powerful metric

to assess the quality of a sensing matrix and ensure the success of signal recovery in the context

of CS.

Definition 2. A matrixΦ is said to satisfy the Restricted Isometry Property (RIP) of order k if,

for all k-sparse vectorsα, there exists a constant δk ∈ (0,1) such that:

(1−δk )
∥∥α∥∥2

2 ≤
∥∥Φα∥∥2

2 ≤ (1+δk )
∥∥α∥∥2

2. (2.10)

As for the coherence, small restricted isometry constants δk are desired. In addition, when

respecting the RIP, the linear mappingΦ preserves the energy of the sensed signal and is said

to be a stable embedding. Notice that if the RIP is satisfied for a certain sparsity level k, it is

therefore satisfied for any k ′ < k with δk ′ < δk . On the other hand, respecting the RIP over

all 2k-sparse vectors implies to preserve the pairwise distances between any two k-sparse

vectors.
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The RIP has a major role to deal with noisy measurements and guarantee a stable embedding.

In fact, to tackle issues related to sensors nonidealities, the RIP ensures that noisy measure-

ments have negligible impact on the quality of recovery. Furthermore, respecting the RIP is a

sufficient condition for a wide variety of algorithms to guarantee an exact recovery [61, 62].

Finally, to establish a connection between the dimensions of the problem (i.e., n,m and k),

a certain number of measurement is necessary to achieve the RIP and can be expressed for

randomly generated sensing matrices as follows:

m >C k log
(n

k

)
, (2.11)

where C > 0 is is a universal constant (independent of k, m, and n) [26].

It is worth pointing out that the RIP property has been established for infinite sets of signals.

Furthermore, verifiyng the RIP is a NP-hard problem. For instance, the Johnson–Lindenstrauss

Lemma (JLL) [63] can simplify verifying the stable embedding of a finite set of points [64].

Lemma 1. Let 0 < t < 1. For every set X of cardX points in Rn , if m is a positive integer such

that m >O
(

log(cardX )
t 2

)
, there exists a Lipschitz mapping f (u) =Φu such that

(1− t )‖u −v‖2 ≤ ‖ f (u)− f (v )‖2 ≤ (1+ t )‖u −v‖2, (2.12)

for all u, v ∈X .

Universality

In the context of vision systems involving visible images, sparsity is generally not verified in the

canonical basis but rather in some other orthonormal basis (e.g., Fourier, Wavelets). However,

for a fixed sensing matrixΦ, the concept of universality ensures to sense any sparse signal in

any representation domain without significant loss of the sensing robustness. We emphasize,

however, that universality is not respected implicitly. For example structured matrices are not

universal as it will be discussed in next section.

2.1.4 CS Sensing Market

In this section, we turn to the problem of constructing sensing matrices that satisfy CS re-

quirements. The CS community has proved the existence of RIP matrices allowing a faithful

recovery of compressively sensed signals. These matrices can be deterministic [65, 66, 67] or

randomly generated [68, 69]. Inspired by the classification proposed in [70], here we divide

the SOTA sensing matrices into three main categories: random sub-Gaussian matrices, bases

random selection and random convolutions.



15 2.1. Compressive Sensing background

Random sub-Gaussian Matrices

Based on the the theory of concentration of measures [71], it was shown that sub-Gaussian

matrices have interesting properties leading to a wide use in the CS context [68, 72]. For

example, the sensing matrixΦ ∈Rm×n can be generated identically and independently (i.i.d.)

as a normalized Gaussian random variable of variance 1
m [69], i.e.,Φi j ∼N

(
0, 1

m

)
. In addition,

Φ can be generated as the realization of a Bernoulli distribution with probability of success
1
2 , i.e.,Φi j ∼± 1p

m
. These realizations show interesting properties from a theoretical point of

view [68], but also hardware implementations such they can be advantageously generated as

a deterministic and reproducible process taking advantage of Pseudo-Random Generators

(PRG) [73, 74].

Bases Random Selection

In the second class of CS matrices random sub-sampling of orthonormal bases can be consid-

ered to construct the sensing matrixΦ [75, 76]. In fact, given an orthonormal basis U ∈Rn×n ,

one can picks randomly m components of each n-dimensional vectors, i.e.,

Φ= SU , (2.13)

with S ∈ Rm×n represents the random selection matrix. We notice, however, that the basis

U must be sufficiently incoherent with the sparsity basisΨ. This measure can be evaluated

using the coherence of the dictionaryΦΨ as expressed in (2.8). Typical constructions can be

achieved using this framework. For instance, it was shown that the Fourier basis is incoherent

with the canonical basis [75]; and the Noiselet is highly incoherent with the wavelet one [76].

On the other hand, random Fourier basis selection can advantageously be combined with

a specific signal randomizers (e.g., random bit flips, Bernoulli distributions) to achieve the

universality [77, 78, 79]. Interestingly, this approach enables fast signal recovery, but involves

higher memory needs to store the sensing matrix for physical implementations.

Random Convolutions

In [80], a different approach to construct the sensing matrixΦ is proposed. Based on random

convolutions, this approach corresponds to pick randomly m measurements of the results of

the convolution of the observed signal x and a random complex sequence of unit amplitude.

This way, the sensing matrixΦ can be expressed as:

Φ= SF∗ΣF , (2.14)
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withΣ ∈Rn×n is a complex diagonal matrix made of unit amplitude and random phase entries;

and F ∈Rn×n is the complex discrete Fourier transform. Notice that this approach can take

advantage of simple and fast recovery algorithms based on Fast Fourier Transforms (FFTs).

2.1.5 Signal Processing in CS Domain

Despite the growing potential of CS to tackle hardware issues related to highly constrained

applications, the major limitation of CS based systems is the processing complexity related

to the signal recovery. This consideration highly restricts the use of CS to niche applications.

In fact, in most "real-world" applications we are mainly interested to extract a meaningful

information and filtering the rest. Considering any kind of computer vision problem (e.g.,

Advanced Driver-Assistance Systems), image descriptors (e.g., HOG, LBP) combined with a

proper classification algorithm (e.g., Artificial Neural Networks) are used to enable objects

detection and/or classification. In this context, some first steps have been taken to circumvent

signal recovery and bridge the gap between compressive sensing and signal processing [81, 82,

83, 84]. For instance, in [84] several theoretical bounds and experiments have been reported

to show the relevance of CS for basic signal processing tasks (e.g., detection, classification,

estimation, filtering).

Figure 2.2 – An illustration of the rare eclipse problem.

From a decision making point of view, two main approaches have been adopted for classifica-

tion in the CS (compressed) domain. First based on the RIP property, R. Calderbank et al. show

that the Euclidean distance between low complexity signals (e.g., k-sparse) is preserved in the

CS domain [85]. This allows to perform decision algorithms directly in the CS domain since

pairwise distance is a primitive operation in numerous classification and machine learning

algorithms. In particular, they provide some theoretical bounds demonstrating that the linear

Support Vector Machine (SVM) classifier in the CS domain has a classification accuracy close

to its classification accuracy in the signal domain. On the other hand, when dealing with

linearly separable convex sets, the rare eclipse problem [86, 87] provides a lower bound of the

number of measurements m required to preserve the disjointedness between two classes (e.g.,

images with n pixels) in the CS domain (cf., Figure 2.2).
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2.1.6 CS Hardware Implementations

Inspired by the potential of CS, several strategies have been explored to design sensors with

CS capability, i.e., acquiring random compressed measurements. It was shown therefore that

CS can be applied to wide variety of sensors, e.g., Magnetic Resonance Imaging (MRI) [88],

Terahertz (THz) [89], Time-of-Flight (TOF) [90], Radars [91], Hyper/Multispectral imaging

[92, 93]. In this thesis we are mainly interested by sensors in the visible electromagnetic

spectrum. In the following, we will present two major classes to implement the CS sensing

scheme either in the optical domain or in the electronic one.

CS Optical Implementations

Optically implemented CS strategies performs basically the CS linear measurements in (2.1)

using appropriate optical devices. This way, CS is performed in the analog domain enabling

considerable saving at the analog-to-digital conversion level as well as digital signal processing.

Under this category, four main contributions can be listed: Single Pixel Camera (SPC), coded

aperture, random lens, lensless imaging and the imaging with nature techniques.

Single Pixel Camera (SPC): The SPC [94, 95] was the first device to implement optical com-

pressive imaging. Based on single photodiode, the SPC uses a Digital Micromirror

Device (DMD) to sequentially capture the CS measurements. Here, the pseudo-random

projections are achieved thanks to the DMD which is electronically controlled to reflect

the incident light towards the photodiode or away. Despite the interest that shows a

SPC, this one suffers from major limitations related mainly to the amount of snapshots

to perform in order to guaranty a faithful reconstruction due to optical non perfect

characterization and nonlinear issues in general. This approach also has the drawback

of implying bulky optical elements which can be a limitation for embedded systems.

Coded aperture: Coded aperture systems basically use spatial light modulators to block or

permit the projection of the incident light onto a photosensitive element, this one can

be a 2D detector, a line-detector, or extremely, a single-pixel detector. Unlike the SPC,

CS measurements extracted using a coded aperture based system can advantageously

be parallelized leading to low latency CS systems compared to the SPC without any

additional cost at the silicon level. Up to date, several applications have been addressed

using a coded aperture approach. Non-exhaustively we can list: super resolution [96],

high speed imaging [97], spectral imaging [98], terahertz imaging [89] and depth imaging

[99].

Random lens: In the case of using an ordinary lens, the incident light rays from a point in

a geometrical space are mapped onto the same location of the sensor array. However,

using random lenses, this mapping becomes pseudo-random. In [100], this randomness

is built up taking advantage of a multi-faceted mirror. The main drawback of this set-up

is however the complex calibration needed to make the system operational limiting the
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use of this approach for end-user applications.

Imaging with nature: The concept of random lens is advantageously extended using the

natural randomness of wave propagation. Indeed, in [101] the concept of "imaging

with nature" is introduced taking advantage of a multiply scattering media. In fact, the

incident light reflected by an object is propagated through a multiply scattering medium

creating a random speckle pattern. After the propagation, the CS measurements are

extracted using a limited number of sensors (m sensors to extract m measurements).

Interestingly, this system is currently used as Optical Processing Unit (OPU) promising

accelerated random feature extraction for classification tasks [102].

Lensless imaging: Leveraging the limitations involved by lenses in cameras, an alternative

approach to acquire compressed measurements is explored using lensless imaging

systems [103]. In [104], a lensless compressive imaging architecture is proposed. It takes

advantage of a single photosensitive element and a LCD screen as an aperture array

where each element is individually controlled. Thus, each CS measurement corresponds

to all the rays modulated by a ±1 achieved thanks to the LCD screen. Although the com-

plexity of the acquisition process (as many snapshots as measurements), the imaging

device proposed in this work is more compact compared to the commercial cameras.

Furthermore, to circumvent the acquisition latency, a block-based lensless compressive

camera is proposed in a more recent work [105].

Although the interest that presents optically generated randomness, this approach still suffers

from several drawbacks as listed above limiting its use to niche applications. An appealing

approach consists in performing CS in the focal plane taking advantage of the technological

evolutions of the CMOS Image Sensor (CIS) world.

CS Electronic Implementations

Inspired by the potential of CS, the CMOS Image Sensor (CIS) community has focused on

implementing on-chip sensing schemes to deal with either hardware (Analog/Digital con-

version, fill-factor, silicon footprint) or algorithm constraints (fast and efficient recovery) for

image rendering. In the following we report some of the efforts made by the CIS community

to implement in-focal plane CS implementations. We mainly focus on two main approaches

to address this challenge: in-focal plane and end-of-column implementations.

In-focal plane implementations : In-focal plane implementations refers typically to CS CMOS

implementations performing CS at the pixel level before A/D conversions (i.e., in the

analog domain). In [106, 107] a generic implementation is proposed to implement any

separable transform in the focal plane. The main interest of this implementation is its

capability to implement the 2D separable transform (i.e., line and column projection)

Y σ = A>PσB in an overlapping block-based fashion, with A and B are the transforma-

tion matrices, Y is the output, P is the acquired image and σ is selected sub-matrix. To
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perform in-focal plane CS, this work proposes to select randomly m measurements from

each 16×16 block. Despite using analog memories to store the separable transform

in order to reduce power consumption, this work still suffers from major limitations

mainly related to the lower fill factor, the silicon-footprint and its disability to perform

on-chip CDS to deal with the Fixed Pattern Noise.

The second interesting implementation exploits the random convolution based sensing

scheme proposed in [80]. The CMOS implementation of this scheme gives the priority

to a fast and efficient image reconstruction but involving high on-chip complexity.

Indeed, as presented in [108, 109], this architecture basically requires a 2D pixels array

with in-situ memories to store a randomly generated Rademacher distribution (i.e.,

±1 entries with equal probability). In fact, to extract one CS measurement, an initial

seed is generated and stored on-chip using a Linear Feedback Shift Register (LFSR).

Then, depending on the weight sign, the output current of each pixel is conveyed either

to the positive or negative input of a transimpedance amplifier (TIA) for summation.

Finally, to extract m measurements, m shifts of the LFSR have to be done. Indeed, the

random convolution in the Fourrier domain allows to simplify the matrix-to-vector

multiplication at the reconstruction stage to some FFTs of low complexity. However,

implementing a flip-flop per pixel results in either lower fill-factor (percentage of area

occupied by the photodiode in the pixel) or larger pixel sizes.

Finally, in-focal plane coded aperture has emerged as an appealing approach for high

speed imaging. In [110], a multi-aperture CIS is proposed for compressive imaging.

Indeed, The photo-carriers generated in the photodiode are temporally modulated

with a per-block shutter pattern and accumulated in the in-pixel charge memory. The

imager has the advantage of modulating pixels values at the photodiode level, elec-

tronically, without external bulky and expensive optical components. In some recent

works [111, 112], pixelwise spatial and temporal coding are proposed allowing more

CS-friendly sensing schemes. Notice that the main drawback of such architectures

is the lower fill factor because of memory needs at each pixel design complexity. We

believe, however, that this bottleneck could advantageously be surpassed thank to the

3D stacked technology [113].

End-of-column implementations : In contrast to in-focal plane CS implementations, end-

of-column implementations take advantage of standard pixel architectures (e.g., 3T or

4T APS) and canonical rolling shutter readout while performing CS measurements at

the end-of-column circuitry. One interesting common point of end-of-column imple-

mentations is the the parallelization proposed to extract CS measurements which is

very important and the kept of standard CIS readout architecture as well. Thus, the CS

sensing scheme in (2.1) becomes:

Y =ΦX , (2.15)
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where X ∈ Rnr ×nc is the 2D representation of the observed image, Φ ∈ Rm×nr is the

sensing matrix applied in parallel to all the columns of X , and Y ∈Rm×nc is the matrix

representation of the extracted CS measurements. Notice that Bernoulli (i.e., 0/1 entries)

or Rademacher (i.e., ±1 entries) sensing matrices are preferable in this case for their

simple and compact implementations using Pseudo-Random Generators (PRG).

In one of the first end-of-column implementations, [114] takes advantage of incre-

mental Σ∆ Analog-to-Digital converters to perform summation/averaging operation

during A/D conversion to extract per-block CS measurements. This concept was first

introduced in [115] to implement a block matrix transform method for image com-

pression. In [114], a compressed sensing multiplexer (CS-MUX) controlled by a PRG

(Linear Feedback Shift Register) perform CS measurements over 16×16 pixel blocks.

Thanks to the PRG, a random scrambling is thus performed at the input of each Σ∆ ADC

enabling a per-column parallel summation and conversion of the randomly selected

pixels. This architecture has the advantage of using an optimized 4T pixel architecture

while performing end-of-column CS without major modification of a canonical sensor

design. However, although the technical breakthrough that proposes this architecture,

the reduced support dimensionality to perform per-block CS measurements can lead

to a poor theoretical bound to achieve the RIP property (or not) and have to deal with

artifacts at the reconstruction side.

An other approach to extract CS measurements is based on capacitive measurements.

The underlying motivation of this approach is the reduced power consumption thanks

to the use of small charge transfers to readout CS measurements. For instance, in [116]

a more CS-friendly scheme is proposed based on a Rademacher per-column sensing

matrix generated using an external LFSR at the expense of a more complex in-pixel

hardware. Indeed, the proposed CIS uses a local capacitor inside the pixel and two

separate column lines for column-parallel pixels readout. Thus, depending on the

LFSR’s generated bit, the pixel output is either multiplied by 1 (for a logical one) or

−1 (for a logical zero) and summed in the charge domain using a comparator-based

switched capacitor. However, this implementation have several limitations mainly

related to the reduced fill factor and the silicon footprint needed to design the end-of-

column capacitors. On the other hand, in [117] standard 3T pixels are used to mitigate

the problem of pixel fill factor in a per-block CS fashion. Indeed, a switched-capacitor is

used to perform summation of randomly selected measurements from 4×4 blocks in the

analog domain during the integration time. However, one major drawback of this set-up

is the number of connection lines to perform averaging. In fact, for the proposed block

size (i.e., 4×4), 16 readout wires are necessary for each block leading to an important

capacitive noise and matching issues.

Finally, [118] describes a scalable and low-complexity column based CS scheme using

a Cellular Automaton (CA) that shows a chaotic behavior to on-the-fly generate the

sensing matrix. Indeed, the implemented sensing scheme consists in a per-column

normalized Bernoulli distribution (i.e., 0/1 entries) where each column is measured
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according to the same random projection vector generated by demultiplexing the output

of the CA. In fact, using a 3T pixel architecture, outputs of randomly selected pixels

are accumulated in the current domain thanks to the Kirchhoff law. Moreover, the

normalization aims at keeping a constant dynamic of the final CS measurements in

order to not depend on the number of activated pixel. It is achieved thanks to tunable

Resistive Trans Impedance Amplifier (RTIA) placed in the analog domain before each

column dedicated ADC. This architecture mainly deals with some limitations related to

CS implementations in the context of CIS but still suffers from a major drawback which

is the reduced support dimensionality due to the per-column CS sensing scheme.

Figure 2.3 – A mind-map of the main compressive imaging techniques.

As summarized in Figure (2.3), a wide variety of CS-based image sensors have been proposed in

the CS SOTA. The main goal of these implementations is to relax hardware constraints mainly

related to the A/D conversions and the digital post-processing thanks to the data-independent

dimensionality reduction performed by CS. Each of the aforementioned techniques present

a breakthrough implementation towards low-power smart CIS, but unfortunately, still have

some drawbacks limiting their implementations in end-user applications. However, CS have

to be considered as a promising opportunity for revisiting the signal/image acquisition and

processing pipeline and explore new applications to circumvent the signal recovery complexity

and exploit the extracted measurement to enable in-situ data processing applications. In

fact, with the growing need for data-specific units expressed in the context of the internet

of everything and smart systems, current systems still very expensive in terms of energy

consumption and computing complexity due to the dimensionality of processed signals. In

this context, CS could be an interesting approach to reduce both hardware and algorithm

complexity in the context of smart embedded systems. Before presenting some of the SOTA

efforts towards smart systems on compressed measurements. The next section gives a brief

introduction to supervised Machine Learning (ML) algorithms and then some of the SOTA

implementations of commonly used ML techniques.
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2.2 Machine Learning background

There is no doubt that Artificial Intelligence (AI) is drawing attention in many scientific and

engineering fields. Today, AI softwares can understand and translate speech [119], interpret

images [120], assist medical diagnostics [121] and even defeat a world champion in the game

of Go [122]. In fact, AI allows machines to be intelligent by gathering knowledge by experience,

in a nutshell, machines learn by doing. This capability to learn and make decisions is what

we call explicitly Machine Learning (ML). ML has had a long and rich history, in its early

days, programmable computers were built to solve mathematical problems difficult to solve

intellectually and thus said intelligent. However, building machines that think and make

decisions involves a huge amount of mathematical operations leading to a brick wall toward

intelligent machines. Advantageously, the last decade has testified a wide development of

computing infrastructures (e.g., Cloud, GPU, TPU) making the current "AI spring" [123]. In

the rest of this section, we provide an informal introduction to the ML techniques and present

some of the current efforts to run ML algorithms in an efficient way in the edge to tackle issues

related to privacy, latency and algorithm-hardware complexity.

2.2.1 Machine Learning Algorithms Market

A machine learning algorithm is an algorithm that is able to learn from data [124]. Learning

is more precise in the definition of T. Mitchell [125]: "A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure P , if its

performance at tasks in T , as measured by P , improves with experience E." For instance,

one can build a ML algorithm to perform a classification task to decide to which category

an object belongs to; or a regression task to predict a numerical value given some inputs. A

performance measure is basically used to evaluate the robustness of a ML technique. In

general, the accuracy (i.e., ratio of correct outputs) or error rate (i.e., ratio of incorrect outputs)

are the most common performance measure used in ML. Finally, a ML algorithm generally

experience a dataset to improve its performance P on a task T. A dataset is generally defined as

a collection of data measured using a sensor (e.g., images with a certain number of pixels) or

extracted from experimental measurements (e.g., length and width).

In particular, supervised learning algorithms experience a dataset containing samples/features

associated with labels. Let’s consider a faces recognition problem. The goal is then to build

a machine that takes unknown images and decide about the identity of the faces. To learn

our ML algorithm we need first a large dataset of images X tr ai n called a training set in which

each image contains n pixels associated with labels y tr ai n which represent the identity of each

image. The result of learning a supervised ML algorithm can be expressed as a function fW (x i )

that takes a new sample x i and generate an output vector y i with respect to the learned

patterns W . During the training the weights W are tuned to minimize the empirical risk

L (W ) = 1
ns

∑ns

i L
(

fW (x i ) , yi
)
, with ns is the number of training samples. The empirical risk

L (W ) can take several forms, e.g., Mean Squared Error (MSE), `2-norm, Kullback Leibler (KL)
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Divergence, Hinge loss. Thus, the training error will measure how well is this minimization on

the training set. Note, however, that the most important error is the generalization error also

called test error that evaluates the performance of the trained algorithm on unknown samples.

The main goal is then to learn algorithms that make the training error as small as possible

while making the gap between training and test error small too. These tow goals refer to two

central challenges knows as underfitting and overfitting. In fact, underfitting occurs when the

trained algorithm is not able to obtain a sufficiently low training error. However, overfitting

occurs when the trained algorithm fits too well the training set but fails to generalize to new

samples.

To deal with overfitting and to design an algorithm that performs well on a specific task, we

can build a set of preferences to constrain the learning model. As in convex optimization

mentioned in Section 2.1.1, a regularization is typically used to constraint the algorithm design

and express the preferences for specific solutions. As defined in [124], "Regularization is any

modification we make to a learning algorithm that is intended to reduce its generalization

error but not its training error". This way, the empirical error can be expressed with respect to

a regularization term as follows:

L (W ) = 1

ns

ns∑
i

L
(

fW (x i ) , yi
)+λR (W ) , (2.16)

with λ is an inner parameter that control the impact of the regularization term.

In many practical applications the input data is typically pre-processed to extract meaningful

information and thus relax constraints related to the amount of data to process. For instance,

a data normalization stage is basically used to rescale the input data into a common range

to improve training robustness. Commonly used normalization approaches are min-max

normalization that consists in rescaling the range of data in [0,1]; or standardization which

allows to have zero-mean and unit-variance data. Pre-processing can also refer to feature

extraction that allows to project the input data into a low dimensional feature space where the

intended task is hoped to be easier to learn. For example, in computer vision a wide range of

feature extraction methods have been proposed. Non-exhaustively we can cite: Histograms

of Oriented Gradients (HOG) to extract descriptors by accumulating histograms of oriented

gradients over blocks [126]; Local Binary Patterns (LBP) that allows to recognizes pre-defined

patterns over blocks; Scale-invariant feature transform (SIFT) [127], Fast Retina Keypoint

(FREAK) [128] and Binary Robust Invariant Scalable Keypoints (BRISK) [129] to extract local

keypoints; Convolutional Neural Networks to extract shift and space invariant features [130];

and random projections shown to perform a distance-preserving embedding of the data [131].

Roughly speaking, three main classes of supervised machine learning techniques can be found

in the literature: statistical learning, dictionary learning and deep learning. The rest of this

section will give a definition to each class and present commonly used algorithms based on
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some useful textbooks written by C. Bishop [132], G. James et al. [133], B. Dumitrescu et

al. [134] and I. Goodfellow et al. [124].

Statistical Learning

Statistical learning refers to ML techniques that involve learning a statistical method for

predicting or estimating an output based on one or more inputs [133]. For instance, a Linear

Discriminant Analysis (LDA) [135] learns a function that projects a n-dimensional data that

belongs to C classes into a (C −1)-dimensional space (cf., Figure 2.4). It aims at finding the

best projections respecting the Fisher’s criteria [136], i.e., minimizing the within-class variance

SW while maximizing between classes variance SB . Although it is basically considered as a

dimensionality reduction technique for data visualization, the LDA can also be considered

as a multi-class classification technique thanks to the discriminant representation in the

low-dimensional space. To deal with classes that are nonlinearly separable, kernel tricks can

typically be used to project the data into a high-dimensional space that makes the data linearly

separable [136]. However, a major drawback of the LDA is the assumptions required about the

data limiting the use of the LDA to samples with Gaussian distributions.

Figure 2.4 – An illustration of the projection in the LDA domain for C = 3.

On the other hand, one more powerful statistical technique is the Support Vector Machine

(SVM) [137]. Initially proposed to create a binary decision boundary that maximizes the

margin between two classes associated with positive or negative labels. Here, the margin refers

to the small distance between the decision boundary and the closest sample of the dataset.

Indeed, learning a binary SVM leads to an affine function expressed as fw ,b (x) = w>x +b.

Thus, for an unknown sample x i , the binary SVM predicts a positive label if fw ,b (x) is positive

and a negative one if fw ,b (x) is negative. As for the LDA, the SVM classifier can take advantage

of kernel tricks to deal with nonlinearly separable datasets. However, one major limitation of

kernel machines is the computational cost of the training when the dataset is large.

The concept of SVM can advantageously be extended to multi-class classification problems

using a series of binary SVMs [138] (cf., Figure 2.5). Given a C -classes classification problem,

for a one-vs.-all strategy learns C binary SVMs between each class and the rest. In this case,

the inference is achieved using a winner-takes-all strategy to assign an unknown sample to

the class with the highest margin. Moreover, for one-vs.-one strategy a binary SVM is learned
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between each pair of classes i , j , with i 6= j . Thus, c(c−1)
2 binary classifiers are built. For the

inference a max-wins strategy increases the vote of each class predicted by the learned binary

SVMs. Finally, the unknown sample belongs to the class with the largest vote.

(a) One-vs.-all strategy. (b) One-vs.-one strategy.

Figure 2.5 – An illustration of the SVM classifier for c = 4: (a) One-vs.-all strategy; (b) One-vs.-
one strategy for the blue class.

Dictionary Learning

As shown in Section 2.1, sparse representations have emerged as a powerful framework for

signal/image compression and signal recovery. More recently, sparse representations have

been explored to learn sparse discriminative features. Indeed, in the "Sparse-Land" [10]

the sparsifying basis is usually called a dictionary and the signal can be approximated by a

linear combination of few elements of the dictionary called atoms [139]. In this context, a

Sparse Representation-based Classifier (SRC) was initially proposed in [140] for (robust) face

recognition. In SRC, a test sample y (e.g., face) is expressed as a sparse combination of all

the training samples represented by the dictionary D = [D1 . . .Dc ], where D i (i ∈ [c]) contains

samples of class i , i.e., y = D x , with x is the coefficients vector whose entries are zero except

those associated to the i th class, said to be the predicted class of y . This way, for a set of

samples Y = [Y 1 . . .Y c ], the coefficients matrix X will be a block diagonal sparse matrix (cf.,

Figure 2.6). However, the main disadvantages of the SRC is the complexity that depends

linearly on the size of the training set, i.e., as large dictionary dimensionality as the training

set size.

A straightforward approach for classification tasks is to learn dictionaries that promote spar-

sity as well as classes separability, this approach is called Dictionary Learning (DL). Thus,

assuming non-overlapped discriminant features, regularization terms are basically introduced

to promote class-specific dictionaries (i.e., atoms) independency. For instance, in [141] the

Dictionary Learning with Structured Incoherence (DLSI) takes advantage of a regularization

term that encourages the dictionaries to be as independent as possible based on a Frobenius
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Figure 2.6 – Structure of the coefficient matrix in a sparse representation.

norm between dictionaries. Moreover, the Fisher’s criterion [136] is explored in the Fisher

Discrimination Dictionary Learning (FDDL) [142] encouraging classes separability in a more

elegant way. However, in a wide range of used datasets images from different classes often

share common features. In view of this, a Low-Rank Shared Dictionary Learning (LRSDL)

technique is proposed in [143, 144] as a generalized version of the FDDL with additional

capability to learn shared features leading to better discriminative representations. Inspired

by the success of kernel tricks for canonical classification algorithms (e.g., LDA and SVM as

shown above), kernel DL techniques are used to map the data into a higher dimensional

feature space and perform linear DL in the new domain [145, 146].

To allow DL to generalize better, shift-invariance can advantageously be achieved thanks to

Convolutional Dictionary Learning (CDL) [147, 148] which replaces the linear dictionary D

by a set of linear filters d i . In this case, a signal y will be approximated by y =∑
i d m ⊗ x . In

addition, motivated by the success of Convolutional Neural Networks (CNNs), CDL have been

extended to perform multilayer sparse modeling leading to a hierarchical approximation of

the sparse coefficients [149].

It is worth pointing out that all the aforementioned DL techniques have a fundamental draw-

back however, they are unfortunately all computational and memory hungry ! In fact, although

being designed to operate by class of the training set at a time (i.e., learning class-specific dic-

tionaries), learning the desired dictionaries and their respective sparse features is performed

in an iterative manner leading to a high number of iterations to achieve the convergence.

Moreover, learning class-specific high-dimensional dictionaries using gradient based methods

makes DL approach less computational-friendly compared to SOTA classification techniques.

Notice that, in all presented works neither a complexity nor a performance analyses of DL

techniques compared to classical classification techniques have been provided.

Deep Learning

The classical machine learning techniques presented in this section work well on simple and

small datasets but fail when dealing with real-world large datasets (e.g., ImageNet [150]) even

when combined with kernel tricks and features extraction. Indeed, in 2012 an old machine

learning technique called Deep Neural Network (DNN) [151] takes advantage of hardware

acceleration made feasible thanks to Graphics Processing Units (GPUs) and outperforms
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the SOTA accuracy on the ImageNet dataset. The proposed DNN called AlexNet [152] has

inaugurated then the DNN spring. Indeed, DNNs provide a very powerful framework for

supervised learning by adding more layers and projections by layer. In fact, a DNN consists in

mapping an input vector (e.g., vectorized image with n pixels) to an output given a sufficiently

large dataset that covers all the possible realization of the desired inference task.

Basic DNN architectures are often called Multi-Layer Perceptrons (MLP), Feedforward Neu-

ral Networks (FNN)or Fully Connected Networks (FCN) [132]. For instance, the mapping

performed by a L-layer MLP is mathematically expressed as:

fW ,b (x) = f (L)
W (L),b(L)

(
. . . f (2)

W (2),b(2)

(
f (1)

W (1),b(1) (x)
))

, (2.17)

where L is the depth of the MLP; W (i )’s and b(i )’s are the weight matrices and offset vectors

respectively at each layer i ; and the functions f (i )
W (i ),b(i ) are the classification functions perform-

ing the mapping x → σ
(
W (i )x +b(i )) with σ (x) is an activation function that can be linear

or nonlinear. In this chain structure, f (1)
W (1),b(1) is called the input layer, f (L)

W (L),W (L) the output

layer and f (2...L−1)
W (2...L−1),b(2...L−1) are the hidden layers. Typical nonlinear activation functions are the

sigmoid function (i.e., σ (x) = 1
1+exp(−x) ), hyperbolic tangent function (i.e., σ (x) = tanh(x)) and

the Parametric Rectified Linear Units (PReLU) (i.e., σ (x) = max(αx , x), with α ∈R+).

A more powerful DNN is the so-called Convolutional Neural Networks (CNN) [130] (cf., Figure

2.7). In CNNs, convolutions are basically used in the first layers to learn specific filters or

kernels to extract features [124]. The main advantage of CNNs is the shift-invariance property

highly suitable for image analysis achieved thanks to the convolutions. A typical layer of a CNN

consists of three successive operations. First, the layer performs a series of convolutions to

produce a set of features followed by a classification function that performs linear/nonlinear

projections. Finally a pooling function reduces the dimension of the data by locally combining

the outputs into one neuron. A commonly used pooling approach is the max pooling that

outputs the maximum value within a rectangular neighborhood.

To learn a DNN, a gradient based algorithm is a practical approach but computationally

expensive. To circumvent this issue, the back-propagation estimates the gradient at each layer

using the chain-rule making the gradient algorithm (e.g., stochastic gradient descent) simple

and inexpensive.

In 2016, DNNs have officially outperform human ability at the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) 1. However, although the outstanding performance that

show DNNs, both the training of a DNN and the inference on unknown samples are typically

executed on power-hungry CPU servers or GPUs in the cloud. Some initial steps toward

1http://image-net.org/
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Figure 2.7 – An illustration of a CNN network from [1].

energy compliant DNNs have been explored from an algorithm point-of-view leading to some

optimization methods to relax DNNs complexity, namely, binarizing weights and activations

[153], dropping out randomly components of each layer [154, 155] or training sparse DNNs

[156]. We believe, however, that overcoming the computation-memory bottleneck in deep

learning and address challenging applications in the context of highly constrained hardware

requires a joint optimization of the algorithm and the hardware components. In this regard, in

the rest of this section we present some hardware breakthroughs toward embedded machine

learning known currently as edge AI. We briefly introduce the SOTA of AI dedicated processors

and hardware accelerators while focusing on edge AI for imaging applications in the context

of smart low power CMOS Image Sensors (CISs).

2.2.2 Edge AI

One challenge of the CIS community is proposing compact sensors with AI capabilities.

Traditionally, CIS researchers have focused on noise-reduction/suppression for image quality

enhancement [157, 158]; reducing the silicon footprint through pixel-pitch [159, 160]; and

improving power-consumption [161, 162]. Nowadays, drived by machine-sensing applications

(e.g., autonomous cars/robots, humane-machine interfaces), CMOS VIsion Sensors (CVISs)

have been introduced as CISs performing computer vision tasks in the focal plane [163]. In

this case, the output of a CVIS will not be an image but either image features or a decision

based on a spatio-temporal analysis of the sensed image. Yet, the input of the CVIS is like

the CIS, i.e., an image sensed by a pixel-array of photo-detectors. Thus, to meet machine

learning tasks, analog pre-processing as well as dedicated System-on-Chip (SoC) have been

explored to deal with inference problems in the context of low-power CVISs. Indeed, three

main contributions can be identified in the CIS/CVIS SOTA: in-focal plane feature extraction,

near CIS object recognition and embedded inference dedicated processors.
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In-Focal Plane Feature Extraction

In the last decade the trend in computer vision was to propose powerful feature extraction

techniques to extract discriminative features in order to address a classification task (cf.,

Section 2.2.1). The CIS community has then followed the trend and proposed several in-focal

plane feature extraction implementations. For instance, a 256×256 motion-triggered feature

extraction CIS is proposed in [164]. The proposed CIS has three different modes of operation:

motion-sensing, feature extraction and imaging and storing modes. Indeed, for a power

saving purpose, the sensor operates in a motion-sensing until it is triggered by motion. In the

motion-sensing mode, in-pixel capacitors serve as frame memory and the frame difference

is thus quantized to 1-b signal and compared with an adjustable threshold. Once motion

detected, the sensor wakes-up and turns into the feature extraction mode to extract 8-bit

HOG features [126]. In this mode, gradients are calculated in the digital domain in both

horizontal and vertical directions and the orientations in the analog domain using a mixed

circuit. However, although the reduced power consumption (50µW @ 15 fps) achieved by

the proposed architecture, it doesn’t take advantage of feature extraction to relax hardware

constraints (e.g., ADC clock cycles, memory needs) such features are extracted in the digital

domain. To overcome this drawback, an implementation of the BRISK feature extraction

technique [129] is proposed in [165]. In this work, the amount of data to send to an off-line

digital processor is reduced by implementing the BRISK in the analog domain before ADC

conversion. Indeed, in a canonical CIS readout (i.e., rolling shutter + CDS), an analog memory

is used to store the lines corresponding to the operand of the BRISK at each frame. Thus, using

a column-parallel mixed-signal circuit and a Successive Approximation Register (SAR) ADC, a

set of comparisons with each pixel neighbors are performed to detect corners and then BRISK

features. Finally, to achieve scale-invariance, scale-space is generated by pixels averaging and

stored in the analog line memory.

In fact, other works have implemented feature extraction techniques in the focal plane in

the context of smart CIS or CVIS, namely, the SIFT algorithm [166] in a Gaussian pyramidal

setup [167] for multi-scale feature extraction as in [168]; the LBP in [169, 170]; the SURF

[171] in [172] and log-gradients in [173]. All the aforementioned implementations can be

considered as milestones towards compact edge AI applications in the context of CIS/CVIS.

They practically all focus on reducing the amount of data to extract in the focal plane to enable

object recognition in dedicated off-line SoCs. However, to deal with privacy and latency issues,

some recent works have proposed to perform object recognition in (or near) the focal plane as

it will be presented in the rest of this section.

Near CIS Object Recognition

Unlike in-focal plane feature extraction, in a near CIS object recogntition embodiment we

are only interested by the result of the inference task. In this context, several strategies have

been explored to deal with inference problems in the context of low-power CIS. For example,

[174, 175] propose a CIS with embedded always-on face detector based on Haar-like filtering
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and a CNN processor for face recognition. More recently, an Analog Convolution (A-Conv)

processor is proposed in [176] to implement the first layer of the CNN processor in [175].

Indeed, the A-Conv consists of a weighted-sum unit which can calculate partial sum of 3×3

weight kernels, a ReLU unit, and a ternary quantizer allowing to quantize the output of the

ReLU unit and thus remove the ADC in [176]. The features extracted by the A-Conv layer serve

as input of the face detection CNN processor and if a face is detected the face recognition

CNN is triggered. On the other hand, [177] deals with memory requirements related to a face

recognition processor. The proposed processor performs first face detection using a cascaded

Viola-Jones Haar feature cascaded detectors [178] and then a Principal Component Analysis

(PCA) [179] to extract features of reduced dimensionality combined with a nonlinear SVM

for face recognition. We notice however that the listed implementations have implemented

SOTA machine learning techniques without any optimization of the algorithm component or

hardware parallelization/acceleration. In the rest of this section we present some of the SOTA

hardware accelerators for dedicated machine learning techniques (e.g., SVM, CNN).

Embedded Inference Dedicated Processors

For less constrained applications, several CNN processors have been proposed in the litera-

ture addressing the challenge of low-power and accurate embedded decision making tasks

[180]. The early implementations of edge AI have focused on implementing SOTA algorithms

without any typical optimizations, e.g., SVM [181] and DNN [182, 183]. However, to deal

with the power-consumption bottleneck, [184] introduces the concept of hierarchical recog-

nition using a hierarchy of increasingly complex individually trained CNNs and increasing

computational precision. For further hardware complexity reduction, [185] analyzed the

accuracy-energy trade-off by exploiting quantization and precision scaling to reduce CNN

processors power consumption. Following the trend for low precision CNNs, some processors

have been proposed with fixed-point weights [186] or extremely quantized weights, i.e., binary

weights [187, 188, 180]. Furthermore, a pre-defined sparse MLP is proposed in [189] to reduce

the complexity during both training and inference. In these implementations one can note

that the circuit and system community has fully taking advantange of the algorithmic opti-

mization of the CNNs presented in Section 2.2.1. More recently, hardware accelerators have

been proposed to optimize convolutions because of their computational time [190, 191, 192].

We note, however, that these works focus on optimizing circuit design to achieve low-power

processing; they do not unfortunately address design constraints related to image acquisition

such as the data dimensionality or the number of ADC clock cycles.

2.3 Conclusion and discussion

Throughout this chapter we have provided a sparse insight about the fields of Compressive

Sensing and Machine Learning. Indeed, CS relaxes hardware constraints (e.g., A/D conver-

sions) related to the data dimensionality based on pseudo-random measurements. Moreover,



31 2.3. Conclusion and discussion

supervised ML techniques allow data processing units to automate decision making tasks. In

the CS and ML SOTA, several breakthroughs have been proposed to implement near image

sensor CS or decision making tasks. Despite the important contributions in both CS and

ML literature, neither CS implementations have taken advantage of ML to perform near CIS

decision making nor viceversa. In fact, the amount of compressed measurements (features)

can dramatically be reduced to address decision making tasks leading to more hardware

relaxation in terms of A/D conversions and memory needs. Indeed, in some recent works

CS have been explored for basic feature extraction and classification tasks for biomedical

applications [193, 194] or dedicated decision making systems [195, 196]. In this thesis, we

take some initial steps towards compact compressive CMOS image sensors taken advantage

of the theoretical advances in signal processing on compressive measurements [84, 85, 86].

We propose to take the challenge of smart CIS a step further and take advantage of CS to

reduce hardware-algorithm constraints to implement on-chip decision making algorithms.

Finally, some algorithmic optimizations will be discussed to make decision making more

hardware-friendly.





Chapter 3

Inference Tasks On Compressive
Measurements

One of the main challenges in the design of compact smart CIS is the power consumption

related to the amount of data to extract (i.e., A/D conversions) and process (i.e., digital pro-

cessing and memory needs). For instance, to handle high-dimensional inference tasks, a

straightforward approach is to compress the sensed data or extract meaningful features to

make the inference task lighter. Considering any kind of computer vision problem (e.g., ADAS),

image descriptors (e.g., HOG, LBP) combined with a proper classification algorithm (e.g.,

Artificial Neural Networks) are typically used to enable objects detection and/or classifica-

tion. However, embedding such system with high dimensional data and complex algorithms

requires considerable memory and computational requirements.

Recent advances in signal processing and pattern recognition tend to deal with high-dimensional

problems by introducing new and efficient techniques in terms of computing and storage

resources. For example, Dimensionality Reduction (DR) [197] relies on the projection of a

high-dimensional data into a relevant low-dimensional feature domain that preserves data

intrinsic properties (e.g., statistical or geometrical properties). Various DR techniques can

be found in the literature, they can be either linear or nonlinear, supervised or unsupervised

[132, 198]. One can identify two distinct approaches to achieve dimensionality reduction.

First, DR can be performed by a learned projection that optimizes a regularized objective

function. These techniques are basically introduced as machine learning algorithms to per-

form decision making in low dimensional domains. However, embedding such techniques

involves dedicated hardware resources to store ex-situ signal dependent learned patterns

as presented in Chapter 2. Alternatively, DR can be signal independent and achieved by

unlearned projections. Most popular unlearned DR are pooling operations widely used in

CNN architectures as downsampling filters [199]; random drop out and structured pruning in

DNN (cf., Section 2.2.1); pixel-binning to capture low-resolution images by combining charges

of neighboring pixels in a block of pixels during the readout [200]; or either sub-sampling the
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resulting coefficients of the projection onto an orthonormal basis (e.g., DCT) under some pri-

ors (e.g., sub-sampling in a specific frequency band). However, the most theoritically studied

unlearned DR are random projections that allows to project the original data onto a subspace

of reduced dimensionality using a randomly generated matrix [71]. It represents therefore a

computationally simple DR technique that allows to preserve the Euclidean distance of any

two signals through the projection [201, 202]. Indeed, random matrices are typically used to

acquire compressed features as a universal sensing scheme for CS based systems with remote

signal recovery [17]. In this case, the design of related sensing matrices has to satisfy the RIP

property to guarantee a stable embedding property and to preserve geometrical properties

as discussed in Chapter 2. In particular, pseudo-random generators (e.g., LFSR [203], cellular

automata [73]) can advantageously be used to generate on-the-fly the sensing matrix as a

deterministic and reproducible process relaxing as a consequence design constraints, namely,

memory needs. For the sake of clarity, in the rest of this chapter we call ML-DR DR performed

by learned projections, and CS-DR DR via random projections.

In this chapter, we study the interest of using ML-DR and CS-DR for basic on-chip inference

tasks in the context of highly constrained hardware (e.g., always-on ultra low power vision

systems). In particular, we try to find the most beneficial setting to perform near CIS inference

on compressed measurements. In general, two processing stages have to be considered when

dealing with embedded inference tasks: learning ML-DR in an off-line system on labeled

data, and then performing embedded inference on compressed data whose related class is

unknown (e.g., considering embedded inference in a CS image sensor). As a comparative

study, we propose various learning and inference strategies for three ML-DR methods briefly

presented in Chapter 2, namely, Linear Discriminant Analysis (LDA) [135], Support Vector

Machine (SVM) [137] and Dictionary Learning with Structured Incoherence (DLSI) [141]. For

each technique, we present and compare three approaches to perform on-chip decision

making in the context of hardware limited systems. The first approach consists in performing

ML-DR learning and embedded inference on compressed measurements taking advantage on

CS-DR to reduce embedded resources requirements. In the second and third ones, dedicated

inference solutions are presented to deal with compressed measurements extracted using a

CS device whose sensing scheme is not necessarly a priori known (e.g., for security purposes

[204, 205] or to manage sensor non-idealities [206]). In the rest of this chapter, we first present

a mathematical description of each ML-DR technique and then present the studied inference

approaches and the inference scheme related to each ML-DR technique. The performance

of ML-DR methods is evaluated based on the inference accuracy regarding the learning

approach, as well as general considerations on memory resources, computational complexity

and robustness to some hardware variations for two object recognition applications.

3.1 ML-DR Learning Mathematical Background

Let us consider a database of n-length “vectors” in Rn (e.g., images with n pixels) composed

of C classes. This database is separated into two subsets: a “train” set X ∈ Rn×n1C , where
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each class is composed of n1 samples, associated with labels l ∈ {1, · · · ,C }n1C ; and a “test”

set Y ∈ Rn×n2C with unknown labels and composed of n2 samples per class. We refer to

X j :=
(

X j
1, · · · , X j

n1

)
∈ Rn×n1 and Y j :=

(
Y j

1, · · · ,Y j
n2

)
∈ Rn×n2 for the train and the test sets

restricted to the j th class, respectively. When we write x ∈ X or x ∈ X j , we mean that the

sample x is an arbitrary column of X or X j , respectively (and similarly for Y ). In the following,

we first describe how to learn the considered ML-DR classifiers denoted P̂ (x) := D̂ x + δ̂,

and then present the corresponding inference algorithms for each approach. Here, P̂ i (x)

represents the projection of x on the i th axis (line) of P̂ , the mean vector of each class is

expressed as m j = 1
n1

∑n1
i=1 X j

i , for 1 ≤ j ≤ C , and m = 1
C

∑C
j=1 m j is the mean vector of all

samples. Greek letters λ and η represent inner regularization parameters. Depending on the

technique, the matrix D̂ and the offset δ̂ are computed using one of the following optimization

problems.

3.1.1 LDA (Linear Discriminant Analysis)

The LDA [136] is a statistical method that aims at projecting a n-dimensional dataset composed

of C classes into a (C −1)-dimensional space in which the within-class variance is minimized

and the between class variance is maximized (Fisher’s criterion [136]). In particular, the LDA

makes the assumption that the observed data is normally distributed and that the within-

group covariance matrices are equal, it finds therefore the best projection maximizing the

ratio of between class scatter matrix SB and within class scatter matrix SW . This leads to the

following optimization problem:

D̂LDA = argmax
D∈R(C−1)×n

| DSB D> |
| DSW D> | , (3.1)

where | . | denotes the determinant operation, SB = ∑C
j=1

(
m j −m

)(
m j −m

)> and SW =∑C
j=1

∑n1
i=1

(
X j

i −m j

)(
X j

i −m j

)>
. Here, δ̂LDA = D̂LDAm ∈RC−1 represents the projected train-

ing set centroid. The column of the optimal D̂LDA corresponds thus to the C − 1 largest

eigenvectors of the eigenvalue decomposition of S−1
W SB . Besides considering the LDA as a

dimensionality reduction technique, it can also be considered as a multi-class classification

technique such the best projection D̂LDA define a linearly separable partition of the classes in

the (C −1)-dimensional feature space.

3.1.2 SVM (Support Vector Machine)

A geometrical approach to map the input data into a low dimensional feature space consists in

learning a multi-class SVM using a one-vs.-all strategy [138]. This allows to learn C binary soft

margin classifiers to construct a boundary decision for each class versus the others. Indeed,
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for the j th class C j , a 2-class SVM is learned to separate the samples that belong to C j from the

remaining samples (i.e., samples from class C j ′ with j ′ 6= j ). Thus, for each class j , a positive

margin is assigned to the sample’s class and a negative margin to the others (i.e., l j
k = 1 if the

kth sample belongs to class j , and −1 otherwise). The C binary classifiers are then combined

together to build a multi-class classifier. Mathematically speaking:

{D̂SVM, j , δ̂SVM, j , ξ̂ j } = argmin
D∈RN ,δ,ξ∈Rn1

(
‖D‖2

2 +λ
n1∑

k=1
ξk

)
s.t. l j

k (D x +δ) j ≥ 1−ξk , ξk ≥ 0, ∀1 ≤ k ≤ n1. (3.2)

We define P̂ SVM, j (x) := D̂SVM, j x + δ̂SVM, j , for 1 ≤ j ≤ C . Unlike the LDA which is sensi-

tive to outliers, the SVM introduces the matrix ξ̂ := (
ξ̂1, · · · , ξ̂C

)>
made of n1C slack vari-

ables that allow to deal with outliers, each variable is then associated to one training sam-

ple. Here D̂SVM := (
D̂1, · · · ,D̂C

)> ∈ RC×N , i.e., the vertical concatenation of D̂SVM, j ’s and

δ̂SVM := (
δ̂SVM,1, · · · , δ̂SVM,C

)> ∈RC .

3.1.3 DLSI (Dictionary Learning with Structured Incoherence)

As discussed in Section 2.2.1, dimensionality reduction can also be achieved by dictionary

learning. In contrast to the LDA and the SVM techniques, for each class a specific dictionary

can be build up to learn specific low dimensional discriminative features with tunable atoms

allowing a certain flexibility to the algorithm to deal with more or less complex datasets.

For instance, in the DLSI [141], class-intrinsic features are exploited to construct the DR

projection. This involves solving an objective function with respect to a constraint term that

encourages independency between sub-dictionaries {B̂ j ∈ RN×d1 : 1 ≤ j ≤C }, where d1 ≤ N

is the dimension induced by each B̂ j . Generally, the cost function aims at minimizing the

error between the training sample and its projection. Thus, training the DLSI corresponds to

constructing as incoherent as possible sub-dictionaries by solving:

{B̂ ,α̂} = argmin
B , α

C∑
j=1

{‖X j −B jα j‖2
F + λ‖α j‖1}+η ∑

i , j :i 6= j
‖B>

i B j‖2
F , (3.3)

with B̂ := (
B̂ 1, · · · , B̂C

) ∈ RN×d1C , α̂ := (
α̂>

1 , · · · ,α̂>
C

)> ∈ Rd1C×n1C and α j ∈ Rd1×n1C . We define

D̂DLSI, j := B̂
†
j , thus, δ̂DLSI, j = D̂DLSI, j m j ∈ Rd1 for 1 ≤ j ≤ C , and D̂DLSI can be defined as:

D̂DLSI :=
(
D̂

>
DLSI,1, · · · ,D̂

>
DLSI,C

)> ∈ Rd1C×N .
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3.2 Classification Combining ML-DR and CS-DR

Despite the milestones in the design of compressive CIS for image rendering, signal recovery is

not necessary in many computer vision problems. In fact, most current Image Signal Processor

(ISP) design efforts focus on extracting meaningful informations and solving inference prob-

lems [207]. In this section, we take an initial step towards the design of compact compressive

CIS with inference capabilities. We analyze three inference strategies to solve an inference task

given compressed measurements in the context of highly constrained hardware. We highlight

that in all the explored approaches we can take advantage of Pseudo-Random Generators

(PRGs) to generate pseudo-random CS matrices in order to extract CS measurements without

considerable on-chip supplementary materials.

In the rest of this section, three approaches to solve an inference problem on compressed

measurements will be presented. In the first approach, the ML-DR projection is learned on

compressed measurements extracted by a pseudo-random CS-DR as performed in the classi-

cal framework [84]. In this case, the inference task is performed in the compressed domain

based on the learned ML-DR affine projection. In the second approach, the ML-DR is learned

in the signal domain without the knowledge of the sensing matrix and then projected in the

CS domain using a pseudo-randomly generated sensing matrix Φ. In contrast to the first

and second approaches, the third one introduces a dedicated DSP allowing to implement a

reconstruction-like algorithm to perform the inference from compressed measurements using

a ML-DR transform learned in the signal domain. In the following, studied DR techniques will

be denoted P̂ cs−LDA, P̂ proj−LDA and P̂ sig−LDA (for the LDA using approach A, B and C respec-

tively), P̂ cs−SVM, P̂ proj−SVM and P̂ sig−SVM (for the SVM using approach A, B and C respectively)

and P̂ cs−DLSI, P̂ proj−DLSI and P̂ sig−DLSI (for the DLSI using approach A, B and C respectively).

An illustration of the projections involved by each approach is provided in Figure 3.1.

Figure 3.1 – An illustration of the projections involved by the studied inference approaches.
y and ŷ are an observed unknown sample and its projection in the CS domain using Φ
respectively; and c is the predicted class of y .
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3.2.1 Approach A: Inference Learned in The CS Domain

A desirable compressive CIS sensor property is the capability to acquire a compact signal with

a sparse representation that allows to extract its inherent information. Indeed, it was shown

that CS measurements can universally extract a meaningful information for many signal

processing tasks (e.g., inference) without requiring a strong knowledge of the sparsity basis

[84]. In this case, the number of measurements to extract depends only on the complexity

of both the inference task (e.g., number of classes) and the observed signal (e.g., sparsity

level) [84, 86]. To formulate the inference learned in the compressed domain, let us consider

X̃ =ΦX ∈ Rm×n1C and Ỹ =ΦY ∈ Rm×n2C the training and test sets observed respectively in

the compressed domain using the CS matrixΦ ∈Rm×n with m ¿ n. This implies that all the

training samples are of lowered dimensionality leading to a reduced computational complexity

for both the training and the inference (cf., Figure 3.2). Thus, the equations (3.1), (3.2) and

(3.3) can be solved in the compressed domain and the training samples from X (i.e., x) are

replaced by their projections in X̃ (i.e., x̃).

Figure 3.2 – Schematic description of "inference learned in CS domain" (Approach A).

Inference for the LDA

As the LDA clusters samples of the same class using a statistical criteria (i.e., minimize within-

class variance and maximize the between class variance), an Euclidean distance can typically

be used for the inference. Indeed, an unknown sample ỹ is assigned to the nearest class

represented by its center in the projected domain (i.e., RC−1). Thus, we can estimate the class

c of ỹ by:

c = argmin
1≤i≤C

‖P̂ cs−LDA
(

ỹ
)− P̂ cs−LDA (m̃i )‖2

2, (3.4)

where m̃i = Φmi is the mean class vector in the CS domain and P̂ cs−LDA (x) = D̂cs−LDAx +
δ̂cs−LDA. Notice that for an on-chip/embedded application P̂ cs−LDA (m̃i ) is generally computed

off-line leading to a reduced on-chip resulting complexity.
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Inference for the SVM

For an inference using a SVM classifier, a one-vs.-all strategy is used to learn C binary decision

boundaries between one class and the rest. Indeed, a one-vs.-all strategy is typically used for

its low inference complexity. In this case, the inference is achieved using a winner-takes-all

strategy to assign an unknown sample ỹ to the class with the highest margin, i.e., the predicted

class c can be expressed as:

c = argmax
1≤i≤C

P̂ cs−SVM,i
(

ỹ
)

. (3.5)

Inference for the DLSI

As explained above, the DLSI builds class-specific dictionaries to extract discriminative fea-

tures. This way, once the dictionaries have been learned, to decide to which class belongs

an unknown sample ỹ one has to first find its sparse coefficients α̂ that corresponds to the

sparse decomposition using each learned dictionary B̂ i (1 ≤ i ≤C ) independently. Then, a

min-voting strategy can be used to assign the unknown ỹ sample to the class c minimizing the

cost function ‖ỹ − B̂ iα‖2
2, i.e.,

c = argmin
1≤i≤C

(
min
α∈Rd1

‖ỹ − B̂ iα‖2
2 +λ‖α‖1

)
. (3.6)

3.2.2 Approach B: Projection Based Inference

A straightforward way to perform an inference task on unknown compressed sample is to first

reconstruct the signal using a sparsity-promoting prior (e.g., `1-norm, TV), and then solve

the inference problem in the signal domain using ML-DR learned in the signal domain too.

However, this two-step approach involves a dramatically high algorithm-hardware complexity

and require a higher number of measurements to guarantee a faithful signal recovery. Indeed,

to overcome the signal recovery bottlneck, it was shown in [85] that if we project a SVM

classifier learned in the signal domain (i.e., project its n-dimensional axes), the classification

error of the resulting classifier is close to the classification error of the classifier learned in

the signal domain thanks to the RIP property. Obviously, the Euclidean distance between

each learned hyperplane and the nearest samples is preserved in the compressed domain.

Inspired by this statement, in Approach B we propose to project the n-dimensional axes of

each studied classifier (i.e., LDA, SVM and DLSI) in the compressed domain (i.e., Rm) using

a CS matrixΦ ∈Rm×n . In fact, this approach allows to solve the inference problem without

any prior related to the sensing scheme adopted for the training. It allows thus a certain

degree of freedom to the compressive sensor to generate various sensing matrices (on-the-fly),
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for example, for data-encryption purposes and to improve the system robustness against

hardware attacks. This way, the training can be performed in the original signal domain and

can take advantage of the original features to perform the inference of unknown samples

extracted using a compact compressive sensor.

Figure 3.3 – Schematic description of "projection based inference" (Approach B).

Inference for the LDA

For the LDA, projecting the n-dimensional axes of the classifier learned in the signal domain

can be achieved by a matrix-to-matrix multiplication of the gain matrix D̂sig−LDA and the trans-

pose of the sensing matrixΦ. Mathematically the result can be expressed as P̂ proj−LDA(x) =
D̂sig−LDAΦ

>x + δ̂sig−LDA. Thus, the inference problem can be written down as follows:

c = argmin
1≤i≤C

‖P̂ proj−LDA
(

ỹ
)− P̂ proj−LDA (m̃i )‖2

2. (3.7)

Inference for the SVM

As for the LDA, the inference in the case of the SVM following Approach B can be expressed

using the affine function expressed as P̂ proj−SVM(x) = D̂sig−SVMΦ
>x+δ̂sig−SVM. Thus, to decide

to which class c belongs a unknown sample ỹ , we can solve:

c = argmax
1≤i≤C

P̂ proj−SVM,i
(

ỹ
)

. (3.8)

Inference for the DLSI

For the DLSI, projecting the classifier in the compressed domain corresponds to projecting

the n-dimensional axis of each class dictionary B̂ i (1 ≤ i ≤C ) in the compressed domain, this
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way the inference problem can be expressed as:

c = argmin
1≤i≤C

(
min
α∈Rd1

‖ỹ −ΦB̂ iα‖2
2 +λ‖α‖1

)
. (3.9)

3.2.3 Approach C: Inference in The Reconstructed Signal Domain

To perform the inference independently of the training acquisition scheme, a relevant ap-

proach can merge signal recovery and the inference. Indeed, instead of reconstructing for an

image rendering purpose, one can reconstruct to promote a discriminative criteria in order

to solve the inference task. Thus, given a compressed observation ỹ =Φy ∈ Ỹ , the inference

can be achieved by reconstructing a signal α̂ ∈ RC in the inference domain that minimizes

the Euclidean distance to the compressed signal ỹ via first a backprojection in the signal

domain (i.e., an inverse mapping from the inference domain to the signal domain); and then a

projection in the compressed domain using the sensing matrixΦ. In fact, for a signalα ∈RC

in the inference domain, its inverse mapping can be defined by minimizing the following

`2-minimization problem:

û = argmin
u∈Rn

‖u‖2
2 subject to P̂ (u) =α. (3.10)

The solution of (3.10) can be expressed as: û = P̂
†
(α), where † denotes the Moore-Penrose

pseudo-inverse operator. Thus, under a regularization term promoting classes separability

in the inference domain, the reconstructed signal α̂ minimizing the energy ‖ỹ −ΦP̂
†
(α)‖2

2

will correspond to the projection of ỹ in the inference domain. It allows as a consequence to

decide to which class an unknown compressed sample signal belongs to using advantageously

a classifier learned in the signal domain. Moreover, the regularization function can typically

take advantage of intrinsic properties of each method (e.g., statistical and geometrical). In the

following, this framework is applied for the studied ML-DR techniques (i.e., LDA, SVM and

DLSI) to perform the embedded inference on CS measurements using a reconstruction-like

algorithm involving dedicated regularization functions on the vector in the inference domain.

Inference for the LDA

For the LDA, we can typically take advantage of the Fisher’s criteria to recover the targeted

signal α̂. Thus, given the CS matrixΦ and the LDA ML-DR transform P̂ sig−LDA, we can find for

each class i the corresponding vector α̂i ∈RC−1 using a constraint encouraging the recovered

signal to be as close as possible to the class centroid. Thus, the regularization term can be

defined as RLDA,i (α) = ‖α− P̂ sig−LDA(mi )‖2
2. Finally, the vectors α̂i are used to find the class c
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Figure 3.4 – Schematic description of "inference in the reconstructed signal domain" (Ap-
proach C).

that minimizes the inference cost function as follows:

α̂i = argmin
α∈RC−1

‖ỹ −ΦP̂
†
sig−LDA (α)‖2

2 +λRLDA,i (α) , (3.11)

c = argmin
1≤i≤C

‖α̂i − P̂ sig−LDA (mi )‖2
2. (3.12)

Inference for the SVM

In a one-vs.-all SVM strategy, solving the inference problem (e.g., (3.5)) involves seeking

for the class c maximizing the positive margin of an unknown sample ỹ in the inference

domain, i.e., seeking for the argument of the largest entry of α̂. Inspired by this strategy, we

propose a regularization function that promotes a peaked response of positive margins and

force negative ones to be as small as possible, in other words, reinforce sparsity of positive

margins. Thus, the proposed regularization function can be expressed using the `1 norm

applied to the exp function as follows: RSVM (α) = ‖exp(α)‖1 (notice that the `1 norm can

be replaced by any function promoting positive margin, typically the ReLU function). To

overcome the computational cost bottleneck, a `2-relaxation can be used leading to the

following regularization function: RSVM (α) = ‖exp(α)‖2
2. Indeed, in the specific case of

the exp function the `2 norm is totally equivalent the `1 norm because of the fact that the

derivative of exp(x) is exp(x) itself. Thus, solving the inference problem of the SVM can be

expressed as recovering the vector α̂with the highest positive margin, i.e., :

α̂= argmin
α∈RC

‖ỹ −ΦP̂
†
sig−SVM (α)‖2

2 +λRSVM (α) , (3.13)
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c = argmax
1≤i≤C

α̂i . (3.14)

Inference for the DLSI

For the DLSI, one can take advantage of the sparse decomposition to recover a vector α̂

promoting a sparse decomposition of the observed signal ỹ in the inference domain. Thus,

the `1 norm constraint used in (3.9) can be preserved to solve the inference problem following

Approach C, i.e.,

α̂i = argmin
α∈Rd1

‖ỹ −ΦB̂ iα‖2
2 +λ‖α‖1, (3.15)

c = argmin
1≤i≤C

‖ỹ −ΦB̂ i α̂i‖2
2 +λ‖α̂i‖1. (3.16)

3.3 Embedded Resources Requirements Study

In the quest for the "most" hardware-friendly approach depending on the targeted application

requirements to perform on-chip decision making, we compare in this section the embedded

resources requirements of each approach. Indeed, depending on the targeted application

specifications, we evaluate memory needs in terms of the number of coefficients to store as

well as computational complexity in terms of the total number of operations (MACs) for each

approach (i.e., A, B and C).

3.3.1 Approach A: Inference Learned in CS Domain

Inference for the LDA

To solve the inference task of the LDA in (3.4), i.e.,

c = argmin
1≤i≤C

‖P̂ cs−LDA
(

ỹ
)− P̂ cs−LDA (m̃i )‖2

2, (3.17)

one has to store on-chip the ex-situ learned patterns learned on CS measurements (i.e.,

D̂cs−LDA ∈ RC−1×m and δ̂cs−LDA ∈ RC−1); and C classes centroids (i.e., P̂ cs−LDA (m̃i ) ∈ RC−1).

Thus, the total amount of coefficients to store in order to solve a LDA inference task following
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Approach A is O
(
C 2 +mC

)
.

On the other hand, to solve the inference problem in (3.4), one has to first project the extracted

CS vector ỹ in the inference domain using the affine function P̂ cs−LDA. This projection has the

complexity of a matrix-to-vector multiplication, i.e., mC . In addition, C Euclidean distances

have to be calculated (i.e., O
(
C 2

)
) as well as a search for the index of the minima in a (C −1)-

length unsorted array (i.e., O (C )). Thus, the computing complexity to solve the LDA inference

task using Approach A is O
(
C 2 +mC

)
.

Inference for the SVM

For the SVM, solving the inference task in (3.5), i.e.,

c = argmax
1≤i≤C

P̂ cs−SVM,i
(

ỹ
)

, (3.18)

involves storing the ex-situ learned patterns (i.e., D̂cs−SVM ∈ RC×m and δ̂cs−SVM ∈ RC ). Thus,

the total amount of coefficients to store in order to solve a SVM inference task following

Approach A is O (mC ). In addition, to decide to which class a compressed unknown sample

ỹ belongs to, one has to first map the compressed vector into the inference domain using

P̂ cs−SVM (i.e., C (mC )) and then search for the argument of the maxima in a C -length unsorted

array (i.e., O (C )). Finally, the computing complexity to solve the SVM inference task using

Approach A is O (mC ).

Inference for the DLSI

As for the LDA and the SVM, solving the inference task for the DLSI, i.e.,

c = argmin
1≤i≤C

(
min
α∈Rd1

‖ỹ − B̂ iα‖2
2 +λ‖α‖1

)
, (3.19)

requires storing the classes specific dictionaries learned off-line, i.e., B̂ i ∈Rm×d1 (1 ≤ i ≤C ).

Thus, the total amount of coefficients to store in order to solve the DLSI inference task following

Approach A is O (d1mC ). However, to decide to which class belongs an unknown sample ỹ ,

one has to solve an optimization problem to find a sparse decomposition of the extracted CS

vector in each class dictionary B̂ i . Once the sparse coefficients α estimated, one can then

find the class i minimizing the cost function decided to be the predicted class of ỹ . Indeed,

when the dictionary B̂ i is fixed, the sparse coefficients α for a class i can be estimated by

solving an iterative gradient based algorithm (e.g., FISTA [40]). In this case, for each iteration
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q , the most computational task is to compute B̂
>
i B̂ iα− B̂

>
i ỹ . Supposing B̂

>
i B̂ i to be pre-

computed and stored on-chip, this term can be computed with complexity d 2
1 +md1. Thus, for

C classes, estimating the sparse coefficients requires performing O
(
q

(
d 2

1 +md1
)

C
)

embedded

operations and a search for the argument of the maxima in a C -length unsorted array (i.e.,

O (C )) leading to the following complexity O
(
q

(
d 2

1 +md1
)

C
)
.

3.3.2 Approach B: Projection Based Inference

Aiming at taking advantage of the original signal domain to perform the training of the

studied classifiers (i.e., LDA, SVM and DLSI). In Approach B, a post-training projection of

the n-dimensional axes of each classifier in the compressed domain using a CS matrixΦ ∈
Rm×n is adopted to perform the embedded inference on compressive measurements. This

allows to perform the embedded inference in the compressed domain without any on-chip

supplementary complexity (i.e., memory and computing complexity) compared to Approach

A (cf., section 3.3.1). Thus, the total amount of coefficients to store following Approach B

are O
(
C 2 +mC

)
, O (mC ) and O (d1mC ) for the LDA, SVM and DLSI respectively. In addition,

solving the inference tasks in (3.7), (3.8) and (3.9) requires a computing complexity of the

order of O
(
C 2 +mC

)
, O (mC ) and O

(
q

(
d 2

1 +md1
)

C
)

for the LDA, SVM and DLSI respectively.

3.3.3 Approach C: Inference in The Reconstructed Signal Domain

In approach C, the inference is achieved by first reconstructing a signal α̂ in the inference

domain that minimizes the Euclidean distance to the compressed signal ỹ , then find the class

that fits the best with the inference criteria. The reconstruction like problem can generally

be expressed by the following optimization problem: α̂= argminα ‖ỹ −ΦP̂
†

(α)‖2
2 +λR (α),

with P̂
†

(α) = D̂
†

(α−δ) and R (α) is a regularization term promoting an inference criteria

depending on the intrinsic properties of each classification technique. This optimization

problem can be solved by using an iterative gradient based algorithm (e.g., FISTA [40]). In this

case, for each iteration q , the most computational task is to compute
(
ΦD̂

†
)>
ΦD̂

† (
α− δ̂)−(

ΦD̂
†
)>

ỹ . Two case-studies can be considered depending of the sensing matrixΦ, if it is a

priori known or not. For each inference technique we will provide the complexity analysis

depending of the two cases.

Inference for the LDA

When the sensing matrix is not a priori known, to solve the inference task using the LDA classi-

fier and Approach C (i.e., (3.11) and (3.12)), one has to store the ex-situ learned patterns learned

on original samples (i.e., D̂sig−LDA ∈ RC−1×n ; and δ̂sig−LDA ∈ RC−1) and C classes centroids.

Thus, the total amount of coefficients to store on-chip in order to solve a LDA inference task

following Approach C is O
(
C 2 +nC

)
. On the other hand, to decide to which class an unknown

compressed sample ỹ belongs to, one has to find for each class i the corresponding vector
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α̂i ∈RC−1 using a constraint function RLDA,i (α) (cf., (3.11)). In this case, to solve the aforemen-

tioned optimization problem (i.e., α̂i = argminα∈RC−1 ‖ỹ −ΦP̂
†
sig−LDA (α)‖2

2+λRLDA,i (α)), one

has to compute for each class i and iteration q the term
(
ΦD̂

†
sig−LDA

)>
ΦD̂

†
sig−LDA

(
α− δ̂sig−LDA

)−(
ΦD̂

†
sig−LDA

)>
ỹ . Supposing D̂

†
sig−LDA to be pre-computed and stored on-chip, this term in-

volves a computing complexity of the order of O
(
mC 2 +mnC

)
leading to the total computing

complexity O
(
qmC 3 +qmnC 2

)
.

Notice, however, that when the sensing matrix Φ is a priori known the memory needs and

the computing complexity can dramatically be reduced thanks to the data independent di-

mensionality reduction allowed by CS. In this case theΦD̂
†
sig−LDA can be computed off-line

and stored on-chip enabling a reduction of the memory needs, i.e., O
(
C 2 +mC

)
. In addi-

tion, supposing
(
ΦD̂

†
sig−LDA

)>
ΦD̂

†
sig−LDA ∈RC−1×C−1 to be pre-computed too, the complexity

of the term
(
ΦD̂

†
sig−LDA

)>
ΦD̂

†
sig−LDA

(
α− δ̂sig−LDA

)
becomes O

(
C 2

)
; and the complexity of(

ΦD̂
†
sig−LDA

)>
ỹ becomes O (mC ). Finally, when the sensing matrix Φ is a priori known the

computing complexity of the LDA following Approach C is O
(
qC 3 +qmC 2

)
.

Inference for the SVM

When the sensing matrix Φ is not a priori known, solving the inference task using an SVM

classifier (i.e., (3.13) and (3.14)) involves storing the ex-situ learned patterns (i.e., D̂sig−SVM ∈
RC×n and δ̂sig−SVM ∈ RC ). Thus, the total amount of coefficients to store on-chip is: O (nC ).

On the other hand, to decide to which class an unknown compressed sample ỹ belongs to, the

optimization problem in (3.13) (i.e., α̂= argminα∈RC ‖ỹ−ΦP̂
†
sig−SVM (α)‖2

2+λRSVM (α)) can be

solved using an iterative gradient method. In this case, for each iteration q , one has to compute

the term
(
ΦD̂

†
sig−SVM

)>
ΦD̂

†
sig−SVM

(
α− δ̂sig−SVM

)− (
ΦD̂

†
sig−SVM

)>
ỹ . As discussed above, this

term involves a computing complexity of the order of O
(
mC 2 +mnC

)
leading to the total

computing complexity O
(
qmC 2 +qmnC

)
. However, when the sensing matrix Φ is a priori

known, the termsΦD̂
†
sig−SVM and

(
ΦD̂

†
sig−SVM

)>
ΦD̂

†
sig−SVM ∈RC×C can be computed off-line

leading to a reduced memory needs, i.e., O (mC ); and a computing complexity O
(
qC 2 +qmC

)
.

Inference for the DLSI

As for the LDA and SVM, when the sensing matrix Φ is not a priori known, the amount of

memory to store the ex-situ learned dictionaries depends on the signal dimensionality in the

signal domain. Thus, the total amount of memory to store the dictionaries learned using the

DLSI (B̂ ∈Rn×d1C ) and following Approach C is O (d1nC ). In addition solving the optimization

problem in (3.11) (i.e., α̂i = argminα∈Rd1 ‖ỹ −ΦB̂ iα‖2
2 +λ‖α‖1) using an iterative method to

find the sparse decomposition of an unknown compressed sample ỹ involves computing

at each iteration q the term
(
ΦB̂ i

)>
ΦB̂ iα− (

ΦB̂ i
)>

ỹ . Supposing B̂ i to be stored on-chip,
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the computing complexity of the DLSI can be expressed as: O
(
qm

(
d 2

1 +nd1
)

C
)
. However,

when the sensing matrix Φ is a priori known, the terms ΦB̂ i and
(
ΦB̂ i

)>
ΦB̂ i ∈ Rd1×d1 can

be computed off-line leading to a reduced memory needs, i.e., O (d1mC ); and embedded

computing complexity O
(
q

(
d 2

1 +md1
)

C
)
.

3.3.4 Complexity Analysis

Table 3.1 summarises the study of embedded resources requirements to implement the stud-

ied inference strategies. Indeed, two main categories can be observed in Table 3.1: the affine

projection based techniques and strategies (i.e., LDA and SVM in Approach A and B); and regu-

larized based ones (i.e., LDA and SVM in Approach C, and the DLSI for all studied approaches).

Let us consider the affine projection based category, in this case memory requirements are

generally limited to the ex-situ learned patterns with an additional memory cost in the special

case of the LDA related the storage of the C classes centroids. Furthermore, this category

involves a relatively low computing complexity related to a matrix-to-vector multiplication

drastically reduced when the sensing matrixΦ is a priori known. In the second category, i.e.,

regularizing based techniques and strategies, memory needs are also limited to the ex-situ

learned patterns and advantageously reduced when considering the sensing matrixΦ as a

priori known (i.e., LDA and SVM in Approach C and the DLSI in all approaches). However,

solving the inference task using regularizing based techniques (e.g., DLSI) or strategies (e.g.,

Approach C) involves a high computing complexity mainly related to the involved iterative

gradient based algorithms that basically requires a high number of iterations q to ensure the

convergence (here, we set q = 100). Finally, the reported complexity study clearly shows that

the SVM classifier exhibits the lowest memory and computational costs when performed using

Approach A or B. However, when designing a sensor or system with unknown sensing matrix

Φ, i.e., Approach C; the DLSI exhibits the lowest computing complexity thanks to the reduced

dictionary sizes involved in each iteration.

3.4 Experimental Results

To test the relevance of the studied approaches in real-world inference tasks, we build up a

testbench composed of two databases:

AT&T faces database [208]: composed of ten different images of 40 distinct persons (classes)

with 256 gray levels per pixel. The images were taken at different times, varying the

lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details

(glasses / no glasses). Moreover, all the images were taken against a dark homogeneous

background. Each image is resized to 32×32 using a bicubic interpolation.

MNIST digits database [209]: a 10-classes handwritten digits database (0 . . . 9) composed of

60000 training images and 10000 testing images. Each digit is centered in a 28×28 image

with 256 gray levels per pixel.
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In addition, the sensing matrixΦ ∈ Rm×n is generated either as a realization of the discrete

Rademacher distribution with probability 1
2 , identically and independently (iid) for each

entry of the matrix, i.e., Φi j ∼i i d ± 1p
m

; or as the realization of a normalized Gaussian random

variable with variance 1
m , i.e., Φi j ∼i i d N

(
0, 1

m

)
.

Given this testbench, we evaluate the error rate (ratio of incorrect predictions to the total

number of test samples) and its standard deviation for an inference task using the studied

approaches (i.e., Approach A, B and C) and techniques (i.e., LDA, SVM and DLSI) over random

batches using the AT&T and MNIST databases. In addition, we also explore the robustness of

the proposed approaches in the presence of some hardware variations such as additive noise

on extracted measurements and CS matrix alterations due to hardware alterations.

First and foremost, Figure 3.5 stands for the inference accuracy of the studied approaches (i.e.,

Approach A, B and C) and techniques (i.e., LDA, SVM and DLSI) using the AT&T (i.e., 3.5a and

3.5b) and MNIST (i.e., 3.5c and 3.5d) databases. A first observation of the simulation results

attests that Approach A (blue lines) outperforms Approach B and C (green and red lines).

Indeed, it analytically demonstrates that learning the inference patterns in the CS domain

allows to achieve higher compression ratios thanks to the intrinsic properties of the sensing

matrix [84]. Despite learning the ML-DR transform on original data combined with a proper

regularization term, Approach C still exhibits a lower inference accuracy for high compression

ratios while being better than approach B for low compression ratios. Regarding considered

ML-DR techniques, Figures 3.5a and 3.5b show that the LDA classifier slightly underperforms

the SVM for the face recognition task (AT&T) even if all required assumptions are not met (i.e.,

normally distributed classes). Moreover, in the special case of the DLSI, one can see that the

inference accuracy is approximately the same for all approaches. Finally, the impact of the

sensing scheme is relatively negligible compared to the used classifier or approach.

On the other hand, one can consider the impact of hardware variations on the inference

robustness. For example, in the presence of Additive White Gaussian Noise (AWGN) implying

a certain SNR, Figure 3.6a, Figure 3.6c and Figure 3.6e report that approach A still exhibits the

best error rate while sharing the general behavior with approaches B and C, i.e., the error rate

massively increases for low SNR (i.e., below 10 Db). In the special case of the LDA, one can see

that Approach B outperform Approach A below 5 Db. In the second setting, binary alterations

of the commonly used Rademacher sensing matrix are considered. Indeed, random bit flips

can typically occurs during the sensing matrix generation because of nonideal hardware

behaviors. Unsurprisingly, Figure 3.6b, Figure 3.6d and Figure 3.6f show that Approach B and

C (green and red plain lines) are more robust to such variations when there are known as

a prior for the inference stage (green and red solid lines). Indeed, in the sensing device the

actual "on-the-fly" generated sensing matrix can be provided to the hardware component

performing the inference in order to be taken into account. However, when not considered

because of its hardware cost (dashed lines) these approaches (B and C) are still less robust

than A.
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(a) AT&T - Rademacher (b) AT&T - Gaussian

(c) MNIST - Rademacher (d) MNIST - Gaussian

Figure 3.5 – Inference accuracy for the AT&T and MNIST databases using a Rademacher and
Gaussian distributions. We set n1 = n2 = 5 for AT&T; and n1 = 5000,n2 = 1000 for MNIST. (c)
Robustness to additive noise. (d) Robustness to hardware variations. Blue, green and red lines
refer approaches A, B and C respectivelly.

3.5 Conclusion

This chapter provides some initial steps towards the design of compact sensors with embedded

inference tasks. In the context of highly constrained hardware, three algorithmic approaches

for on-chip decision making were investigated. Our experimental results (based on AT&T and

MNIST databases) show that a compression ratio of 10% can be reached while performing

an equivalent inference accuracy as traditional linear classifiers. It is worth pointing out that

the testbenches proposed in this section are based on relatively small datasets making as a

consequence the extracted measurements at a 10% compression ratio small too (e.g., only

78 measurements for MNIST involving 28×28 image resolutions). Obviously, the number

of CS measurements to extract depends linearly on the signal dimensionality (here image

resolution) for a fixed compression ratio. Thus, for commonly used image resolutions (e.g.,

640×480 VGA resolution) one can either reduce the compression ratio for further hardware
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saving or improve the inference accuracy for the same compression ratio by extracting more

CS measurements.

On the other hand, to design a on-chip decision making oriented hardware, we show that

performing the inference in the CS domain needs far less resources and MACs compared to

an inference in the signal domain. However, when dealing with specific design constraints

(e.g., for privacy purposes), one can take advantage on dedicated algorithms to perform the

inference on CS measurements while preserving a good trade-off between accuracy and

robustness to unexpected hardware variations.

To address the design of compact sensors with embedded inference tasks three main conclu-

sions can be extracted from this analytical study:

• Approach A, i.e., learning and solving the inference problem in compressed domain, ex-

hibits the best performance regarding the error rate and the robustness to additive noise.

Indeed, performing the training and the inference directly in the compressed domain

allows to drastically reduce the complexity in terms of both memory and computing

needs. Furthermore, we analytically show that this approach allows to achieve higher

compression ratios for the considered inference tasks (i.e., LDA, SVM and DLSI) joining

as a consequence the theoretical bounds presented in [84] for a specifically designed

classifier.

• When dealing with highly limited hardware resources and relatively small datasets, the

SVM classifier provides a powerful framework for embedded inference tasks limiting

embedded resources to the ex-situ learned patterns for memory needs and a matrix-to-

vector multiplication to map the acquired measurements to the inference domain.

• When designing a compressed sensor or system with specific constraints limiting the

access to the sensing matrix (e.g., for privacy purposes), Approach C presents a relevant

strategy to perform the inference on compressed measurements. Indeed, when com-

bined with a regularized inference scheme (e.g., DLSI), the bottleneck of compression

ratio encountered with the LDA and SVM can advantageously be overcame enabling a

certain trade-off between the inference accuracy and the hardware requirements.

Based on these conclusions, the next chapters deal with a new way to design a compact CIS

with embedded inference tasks capabilities. We start first by proposing a hardware-friendly CS

scheme enabling feature extraction in the focal plan with reduced dimensionality. Based on

the fact that in the SOTA of canonical CIS design no specific constraints are required (e.g., data

privacy), we will consider approach A as a straightforward strategy combined with commonly

used classifiers (e.g., SVM, Neural Networks) or optimized classification schemes to design a

compact CIS with embedded inference capabilities.
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(a) LDA - Robustness to additive noise (b) LDA - Acquisition scheme variations

(c) SVM - Robustness to additive noise (d) SVM - Acquisition scheme variations

(e) DLSI - Robustness to additive noise (f) DLSI - Acquisition scheme variations

Figure 3.6 – Robustness to additive noise and hardware alterations for the LDA, SVM and DLSI.
Blue, green and red lines refer approaches A, B and C respectivelly.



Chapter 4

Random Permutations and
Modulations for Compressive Imaging

Several hardware architectures have been proposed in the SOTA enabling the acquisition of

CS measurements in imaging systems. Indeed, the CS scheme is implemented either in the

optical level or the electronic one. This thesis mainly focus on electronic implementations.

This setting takes generally advantage of compact CMOS circuitry to extract CS measure-

ments at the pixel level or the end-of-column circuitry. As discussed in Section 2.1.6, several

breakthroughs have been proposed to deal with either on-chip hardware complexity or signal

recovery bottleneck. However, these implementations suffer from several drawbacks, namely,

the higher on-chip complexity related to the memory needs as in [106, 107, 108, 109] and the

restricted support of the CS measurements leading to correlated CS measurements (e.g., CS

per-column or block) as in [114, 116, 118].

In this chapter, we present a new compressive sensing acquisition scheme well-adapted for

highly constrained hardware implementations. The proposed sensing model being basically

designed to meet both theoretical (i.e., stable embedding) and hardware requirements (i.e.,

power consumption, silicon footprint), is highly suitable for image sensor applications ad-

dressing both image rendering and embedded decision making tasks. Furthermore, it is

formally generated based on a random modulation matrix and random permutation matrices

enabling the use of pseudo-random generators to extract compressed measurements and,

thus, relax hardware constraints to generate the CS matrix. In fact, for a given pixels array,

we first apply a random modulation to the sensed pixel values, and then perform a random

column permutation which is different for each selected row before averaging the column

output in a rolling shutter readout fashion [114]. Intuitively, the purpose of the modulation

is to build a zero expectation CS matrix enabling to center CS measurements distribution

and thus extract zero mean features, a pre-processing operation highly desirable in machine

learning algorithms. On the other hand, the permutations allow to increase the information

content (diversity) of each measurement with uncorrelated measurements supports. For
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instance, given a centred image with uniform background, applying just the modulation and

performing per-column averaging could result in correlated CS measurements, thus the inter-

est of the independent permutations. Advantageously, the proposed sensing scheme enables

the reuse of a standard rolling shutter acquisition scheme as well as an array of canonical pixel

architectures (e.g., 3T, 4T). This model is shown to be relevant as it has the same theoretical

performance as a randomly generated sensing scheme as well as a low silicon footprint for a

physical implementation. Various theoretical and numerical results as well as a discussion

on possible implementations will be presented to show the robustness and the efficiency of

the proposed model in non-canonical sparsity bases, e.g., universal bases. In the rest of this

chapter, we first describe the proposed sensing scheme and then carry out some analytical and

theoretical studies to evaluate the robustness of the proposed compressive imaging scheme

for both image rendering and decision making tasks. Finally, we provide a discussion on some

possible hardware implementations in the context of a highly constrained hardware for near

CIS embedded inference.

4.1 Proposed Sensing Scheme

Figure 4.1 – Schematic 2D representation of the proposed CS sensing scheme for one snapshot.
In particular, all the pixels sharing the same color are readout through to the same colorized
end-of-column circuitry. Each pixel of the matrix U is also being modulated by the factor ±1.

As discussed in Section 2.1.6, CS end-of-column implementations generally take advantage of

parallel processing to alleviate hardware constraints at the expense of reduced measurements

support, i.e., per-column or per-block data mixing. An ideal CS hardware implementation is

therefore a CIS that maintain parallel processing while extending the measurements support

to the overall acquired 2D image. To meet this wish-list, in this section we present a hardware-

friendly CS sensing scheme to provide more independent measurements by extending the

measurements support while still addressing highly constrained hardware design (e.g., ultra-

low power image sensor) by maintaining the parallel processing to extract the CS vector. The

proposed framework is mathematically defined as a combination of a random modulation

matrix and random permutation matrices. In the rest of this section, we first describe the

mathematical model of the proposed sensing scheme for a single image readout and then

generalize the model to enable multiple snapshots acquisition leading to various compression

ratios.
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In this chapter, U = (u1, · · · ,unr )> ∈ Rnr ×nc refers to the observed nr ×nc k-sparse or com-

pressible image in a proper sparsity basis as depicted in Figure 4.1 (nr and nc are the numbers

of rows and columns respectively). Here, ui ∈ Rnc refers to the vector containing the pixel

values of the i th row with i ∈ [nr ] := {1, · · · ,nr }. As made clear below, it is useful to denote the

per-row vectorized representation of the observed image as u = (u1
>, · · · ,u>

nr
)> ∈ Rnr nc .

For a single focal plane readout (that we will call a snapshot), our sensing model expressed

using the CS matrixΦ corresponds to applying in a rolling shutter readout the following steps:

1. Apply for each selected row of the observed nr ×nc image a random modulation by

multiplying each pixel by a ±1 weight generated as a realization of the discrete Bernoulli

distribution with probability 1
2 .

2. Apply for each nc -dimensional row a random scrambling of the modulated pixels using

nr independent realization picked in the nc ! possible permutations.

3. Averaging randomly modulated and scrambled rows to extract a compressed nc -dimensional

vector.

The aforementioned steps can formally be described by first applying a pointwise prod-

uct of the matrix U by the modulation matrix whose entries are the realization of the dis-

crete Bernoulli distribution, i.e., ±1; and then apply a matrix-to-vector multiplication of the

per-row vectorized image u by the horizontal concatenation of nr permutation matrices to

accumulate randomly selected pixels from each modulated row and therefore extract the

compressed vector y ∈ Rnc composed of nc measurements as depicted in Figure 4.2. Fur-

thermore, to extract further measurements, s different snapshots can be performed using

different modulations and permutations to extract m = snc CS measurements. Mathemat-

ically speaking, let P (i ) =
(

p (i )
1 , · · · , p (i )

nr

)
∈ {0,1}nc×nc nr be the horizontal concatenation of nr

permutation matrices, where p (i )
j ∈ {0,1}nc×nc is a random permutation matrix applied to

the j th row of U at snapshot i (1 ≤ i ≤ s). Indeed, each p (i )
j ∈ {0,1}nc×nc is picked up inde-

pendently and uniformly at random among the nc ! possible permutations of {1, . . . ,nc }. We

also consider M (i ) = diag
(
ϕ(i )

1 , · · · ,ϕ(i )
nr

)
∈ Rnr nc×nr nc a random modulation diagonal matrix

and ϕ(i ) =
(
ϕ(i )

1
>

, · · · ,ϕ(i )
nr

>)>
the vertical concatenation of ϕ(i )

j ’s, where ϕ(i )
j ∈ {±1}nc is the

modulation vector applied to the j th row of U at snapshot i and whose entries are generated as

a realization of the discrete Bernoulli distribution with probability 1
2 . Written M (i )

k = diagϕ(i )
k ,

the sensing model can be described for the i th snapshot by:

y (i ) =
nr∑

k=1
p (i )

k M (i )
k uk ∈Rnc . (4.1)
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Therefore,

y (i ) = P (i )M (i )u =
(

p (i )
1 M (i )

1 , · · · , p (i )
nr

M (i )
nr

)
u. (4.2)

For a multi-snapshot model, the proposed sensing matrixΦ corresponds then to the vertical

concatenation of s matrix multiplications of P (i )’s by their correspondent modulation matrices

M (i )’s (1 ≤ i ≤ s). Thus,Φ ∈Rsnc×nr nc can be compactly expressed with a normalization factor
1p

s
as:

Φ= 1p
s

((
P (1)M (1))> , · · · ,

(
P (s)M (s))>)>

. (4.3)

Equivalently, to allow more flexibility for hardware implementations, one can commute the

modulation and permutation operations, i.e., perform first the per-row scrambling and then

apply the modulations before averaging the resulting output. Thus, Φ ∈ Rsnc×nr nc can be

expressed as follows:

Φ= 1p
s

(((
1nc ⊗ϕ(1)>

)
◦P (1)

)>
, · · · ,

((
1nc ⊗ϕ(s)>

)
◦P (s)

)>)>
. (4.4)

We stress that for i 6= j , with probability close to 1, P (i ) 6= P ( j ) and M (i ) 6= M ( j ); and for k 6= l ,

p (i )
k 6= p (i )

l and ϕ(i )
k 6=ϕ(i )

l . We note finally n = nr nc and m = snc . In addition, one can show

thatΦ is column normalized. Indeed, for a column i ofΦwe have:

‖Φi‖2
2 =

1

s

snc∑
j=1

Φ2
i j =

1

s

∑
j∈suppΦi

Φ2
i j .

Because of eachΦi contains exactly s ’±1’, suppΦi = s, leading to

‖Φi‖2
2 = 1. (4.5)
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4.2 CS Properties Verification

As discussed in Chapter 2, several quality of measure have been proposed in the CS literature

to analyse the efficiency of a CS matrix for signal recovery and signal processing tasks. A

key concept to evaluate the robustness of a CS sensing scheme is the RIP property that

guarantees a stable embedding of the sensed signal. Typically, a sensing matrix A is said

to respect the RIP of order k if for all k-sparse vectors u there exists δk ∈ (0,1) such that:

(1−δk )‖u‖2
2 ≤ ‖Au‖2

2 ≤ (1+δk )‖α‖2
2. When respecting the RIP, the mapping A preserves the

energy of the sensed signal and thus is said to be a stable embedding. Consequently, respecting

the RIP over all 2k-sparse vectors implies to preserve the pairwise distance between any two

k-sparse vectors u and v , i.e., (1−δ2k )‖u −v‖2
2 ≤ ‖Au − Av‖2

2 ≤ (1+δ2k )‖u −v‖2
2.

Despite being of crucial importance for the design of CS based systems, designing structured

RIP matrices is actually a challenging task that involves a deep mathematical background.

For the proposed sensing scheme we gradually evaluate its efficiency by first proving thatΦ

cannot respect the RIP in the canonical basis and thus cannot be universal. Then, a numerical

estimation is carried out to numerically estimating the RIP constant δ2k for a specific sparsity

structure and sparsity bases. After that, we dive into the theoretical analysis to show the

relevance of the proposed sensing scheme to deal with inference tasks. As we are going to

see, our matrixΦ cannot satisfies the RIP by itself, i.e., for images sparse in the focal-plane

(i.e., the canonical basis). However, we will prove that it can be, with high probability, in the

Fourier/DCT domain.

4.2.1 On The Non-Universality of The Proposed CS Model

A non negligible difference between random CS matrices and structured ones is their uni-

versality property. The universality refers to the ability to sense a signal without any prior

knowledge of the sparsity basis needed only for signal recovery. For instance, this attractive

phenomenon is well verified for sub-Gaussian matrices (e.g., Gaussian, Bernoulli distributions)

known to be insensitive to the basis in which the sparsity occurs thanks to their concentration

properties [69]. However, for structured CS matrices this is in general no longer the case. To

illustrate this for the proposed sensing scheme, let us consider the sensing matrixΦ for one

snapshot, i.e.,Φ= P M , with P = (
p1, · · · , pnr

)
, M = diag

(
ϕ1, · · · ,ϕnr

)
, and M i = diag

(
ϕi

)
. We

consider also two images U and V sparse in the canonical basis, defined as:

U =
((

M 1p>
1 a

)
,
(
M 2p>

2 b
)

,0, . . . ,0
)> ∈Rnr ×nc

and

V =
((

M 1p>
1 b

)
,
(
M 2p>

2 a
)

,0, . . . ,0
)> ∈Rnr ×nc ,
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with a and b ∈ Rnc sparse vectors in the canonical basis. Considering u and v , the per-row

vectorization of U and V respectively, we have:

Φu =
nr∑

k=1
pk M k uk

= p1M 1M 1p>
1 a +p2M 2M 2p>

2 b

= a +b.

Φv =
nr∑

k=1
pk M k v k

= p1M 1M 1p>
1 b +p2M 2M 2p>

2 a

= a +b.

Based on this example, we have shown that there exists at least two images sparse in the

canonical basis such that their measurements are the same, i.e., one cannot distinguish the

observed images for an image rendering or classification tasks. Thus,Φ cannot respect the

RIP with respect to the canonical basis, at least for one snapshot. Notice that this conclusion

can be extended to all support reduction based CS sensing schemes, i.e., CS sensing schemes

performing projections sequentially or in parallel in disjoint subsets of the observed image (e.g.,

per-column or block-based Bernoulli projections) following the same approach to provide

counter-examples of the universality. Hopefully, it is not an issue in practice since we can

reasonably expect that natural images are not sparse in their original domain but rather

sparse in specific frequency domains. Moreover, the nature of this sensing scheme seems

well adapted for images that exhibit a 2D-separable sparsity for which the "structure" when

projected on 1D disappear. In the following the robustness of the proposed sensing model is

analyzed following a Monte-Carlo simulation to estimate numerically the RIP constant, and

then, following a theoretical analysis to estimate the coherence of the mathematical model

and its Johnson and Lindenstrauss Lemma (JLL) (i.e., ability to preserve Euclidean distances

in the compressed domain). First, as in the addressed applications the probability to observe

images with the same properties as the counter-example mentioned above is very small, the

Monte-Carlo simulation is performed considering the canonical basis as a sparsity basis (i.e.,

acquiring images sparse in the focal-plane). Next, to fit the intrinsic properties of the images

observed in the context of CMOS image sensor, a DCT basis is considered as a sparsity basis. It

allows to alleviate the limitations regarding the RIP in the canonical basis due to the existence

of counter-examples. Finally, a theoretical analysis is provided to estimate the coherence of

the mathematical model of the proposed CS sensing scheme as well as its JLL property.
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4.2.2 Analytical Study

(a) Concentration of pairwise distances
(canonical basis).

(b) Distances to the bisector axis (canonical
basis).

(c) Concentration of pairwise distances (DCT
basis).

(d) Distances to the bisector axis (DCT basis).

Figure 4.3 – An analytical proof of the compressive embedding of the proposed sensing
scheme in (4.3). (a) shows concentration of pairwise distances of our model and a Bernoulli
distribution in the canonical basis around the pairwise distances in the signal domain (bisector
axis) for n = 1024, k = 10 and m = 128 (s = 4); (b) report the histogram of distances to the
bisector axis of our model and a Bernoulli distribution; (c) and (d) report the extracted plots in
the DCT basis.

To numerically approximate the RIP constant δ2k , Let’s consider a dataset of 1000 10-sparse

signals in the canonical basis. Each generated vector is of length 1024 (i.e., nc = nr = 32) and

has k = 10 non-zero coefficients normally generated on its support (i.e., subset of nonzero

entries). Because of the fact that generating normalized vectors with disjoint supports leads

to a constant Euclidean distance equal to 2, an overlap parameter is considered to randomly

overlap the supports of the generated vectors. Furthermore, it is worth pointing out that this

simulation cannot easily generate the counter-examples mentioned in Section 4.2.1 as they

are rare according to the adopted testbench.

The generated dataset is projected in the CS domain using either the proposed sensing scheme

in (4.3) or a full Bernoulli ±1 random matrix to extract m = 128 measurements (i.e., performing

4 snapshots). The main idea behind this study is to show that the embedding performed by
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our model preserves the pairwise distance between any two k-sparse vectors of the generated

dataset as well as the Bernoulli random matrix with respect to a constant δ2k . Thus, to

evaluate the distortion of the projected distances, Figure 4.3a exhibits a point cloud mapping

the pairwise distances between the generated samples in the signal domain (X axis) to the

distances computed in compressed domain (Y axis) using either the proposed sensing scheme

or the Bernoulli random matrix over 100 trials to generate the sensing matrices. As it can

be seen in Figure 4.3a, the point cloud of the proposed sensing scheme is well concentrated

around the bisector axis (blue line) and its regression line perfectly fits the Bernoulli’s one. We

can therefore qualitatively validate the fact that our model preserve the pairwise distances

with respect to a distortion constant, expressed as the RIP constant δ2k .

In fact, the RIP constant δ2k can be approximated in this analytical study as the aperture

of the cone defined by the point cloud related to the proposed sensing scheme. In Figure

4.3b we establish the histogram of distances to the bisector axis for every point of Figure

4.3a to get an estimation of the RIP constant of our model and compare it to the Bernoulli

random matrix. For instance in the canonical basis at 3σ, δ2k = 0.044 for our model and

δ2k = 0.044 for the Bernoulli matrix. In the DCT, δ2k = 0.049 for our model and δ2k = 0.046

for the Bernoulli matrix. This means that we can reasonably attest that the proposed model

respects the RIP with a small distortion constant, and guarantee to recover signals with specific

sparsity structures or sensed in non-canonical bases.

In the rest of this chapter, we will study the robustness of our sensing scheme from a theoretical

point of view. Indeed, we will study the robustness of our sensing scheme using the CS matrices

properties presented in Chapter 2 known as the coherence and the Johnson and Lindenstrauss

Lemma (JLL). Before that, we first present some useful tools from probability that will be used

in the different mathematical proofs that we will provide.

4.2.3 Coherence Analysis

Useful Tools from Probability

The major SOTA contributions in analysing efficiency of CS matrices are generally obtained

using random matrices and thus involves tools from probability theory to measure concen-

tration [69, 77]. In this section, we recall the necessary materials related to the theoretical

analysis carried out in this chapter. For more mathematical background related to the CS

theory the reader can refer back to chapters 7 and 8 of [26].

Union bound: Also known as Bonferroni’s inequality or Boole’s inequality, states that for a

collection of events Bl , l ∈ [n] the probability that at least one of the events happens is
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no greater than the sum of the probabilities of the individual events, i.e., we have

P
(∪n

l=1Bl
)≤ n∑

l=1
P (Bl ) . (4.6)

Hoeffding’s Concentration Inequality: It provides an upper bound on the probability that

the sum of bounded independent random variables deviates from its expected value

by more than a certain threshold [210]. Let X1, . . . , Xm be a sequence of independent

random variables such that EXl = 0 and |Xl | ≤ Bl almost surely, l ∈ [m], then for all t > 0,

P

(
|

m∑
l=1

Xl | ≥ t

)
≤ 2exp

(
− t 2

2
∑m

l=1 B 2
l

)
. (4.7)

Coherence

A simple and easy measurable metric to assess the robustness of a sensing matrix is the

coherence [56, 57]. It provides a metric to evaluate the ability of a sensing matrixΦ to gen-

erate as independent (uncorrelated) as possible measurements. Indeed, it evaluates the

cross-correlations between any two columns of the sensing matrixΦ expressed as: µ (Φ) =
max1≤i 6= j≤n |〈Φi ,Φ j 〉|. As a general consideration, the smaller the coherence of the sensing

matrix the more suitable is the matrix and therefore the better is the recovery. Indeed, it was

shown that the quality of recovery of numerous reconstruction algorithms can be analysed

using the coherence and therfore establish sufficient conditions for exact recovery based

on this CS matrix intrinsic property [26]. Furthermore, it was shown that the coherence of

a column normalized sensing model can be bounded as follows: µ (Φ) ∈
[√

n−m
m(n−1) ,1

]
. The

lower bound is known as the Welch bound [58], and for m ¿ n it becomes µ (Φ) ' 1p
m

.

To evaluate the coherence of the proposed sensing scheme described in (4.3), let us consider

images sparse per-row in a universal basis (e.g., Fourier transform or Hadamard transform).

The sparsity basis can be described as Ψ̂= diag
(
Ψ(1), . . . ,Ψ(nr )

) ∈Rnr nc×nr nc , with |Ψ(k)
i j | ≤

p
Kp
nc

for all i , j ,k and K independent of nc . In this case, one can evaluate the coherence of the

dictionaryΦΨ̂ reported in the following proposition.

Proposition 1. GivenΦ in (4.3) and a sparsity basis Ψ̂= diag
(
Ψ(1), . . . ,Ψ(nr )

)
such that |Ψ(k)

i j | ≤p
Kp
nc

for all i , j ∈ [nc ], k ∈ [nr ] and K > 0 a constant independent of nc , then with probability at

least 1−δ, the coherence µ
(
ΦΨ̂

)
ofΦΨ̂ is upper bounded by O

(√
K log

(
m
δ

)
m

)
, with m = snc .

Proof. To find an upper bound of the cross-correlations between any two columns of the

sensing matrixΦΨ̂we note µi j := 〈(ΦΨ̂)
i ,

(
ΦΨ̂

)
j 〉, with

(
ΦΨ̂

)
i =ΦΨ̂i and

(
ΦΨ̂

)
j =ΦΨ̂ j are
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two distinct columns ofΦΨ̂ (i.e., i 6= j ). In fact, Ψ̂= diag
(
Ψ(1), . . . ,Ψ(nr )

)
, thus, Ψ̂i = eb ⊗Ψ(b)

a ,

with a = [(i −1) mod nc ]+1 and b = b i−1
nc

c+1. Therefore, µi j can be then expressed as follows:

µi j =
s∑

l=1

1

s
〈
(

p (l )
1 M (l )

1 , . . . , p (l )
nr

M (l )
nr

)(
eb(i ) ⊗Ψ(b(i ))

a(i )

)
,(

p (l )
1 M (l )

1 , . . . , p (l )
nr

M (l )
nr

)(
eb( j ) ⊗Ψ(b( j ))

a( j )

)
〉

=
s∑

l=1

1

s
〈p (l )

b(i )M (l )
b(i )Ψ

(b(i ))
a(i ) , p (l )

b( j )M (l )
b( j )Ψ

(b( j ))
a( j ) 〉.

Therefore, if b(i ) = b( j ), we have a(i ) 6= a( j ) since i 6= j , then:

µi j =
s∑

l=1

1

s
〈Ψ(b(i ))

a(i ) ,Ψ(b(i ))
a( j ) 〉

= 〈Ψ(b(i ))
a(i ) ,Ψ(b(i ))

a( j ) 〉
= 0.

For b(i ) 6= b( j ), we have:

µi j =
s∑

l=1

1

s
〈p (l )

b(i )M (l )
b(i )Ψ

(b(i ))
a(i ) , p (l )

b( j )M (l )
b( j )Ψ

(b( j ))
a( j ) 〉

=
s∑

l=1

s∑
k=1

1

s

(
e>

k p (l )
b(i )M (l )

b(i )Ψ
(b(i ))
a(i )

)(
e>

k p (l )
b( j )M (l )

b( j )Ψ
(b( j ))
a( j )

)
=

s∑
l=1

s∑
k=1

Zk,l
(
i , j

)
,

with Zk,l
(
i , j

)= 1
s

(
e>

k p (l )
b(i )M (l )

b(i )Ψ
(b(i ))
a(i )

)(
e>

k p (l )
b( j )M (l )

b( j )Ψ
(b( j ))
a( j )

)
. By independence of M (l )

b(i ) and

M (l )
b( j ) (generated by construction as the realization of a Bernoulli random variable identically

and independently), Zk,l
(
i , j

)
are independent too. Furthermore, Zk,l

(
i , j

)
is bounded in

absolute value by K
snc

(since |Ψ(q)
i j | ≤

p
Kp
nc

for all i , j , q). Therefore, By Hoeffding’s inequality in

(4.7) we can write:
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P
(|µi j | ≥ t

)≤ 2exp

− t 2

2
∑s

l=1

∑nc

l ′=1

(
K

snc

)2


≤ 2exp

(
− snc t 2

2K

)
.

By union bound in (4.7) we have:

P

(
max

1≤i 6= j≤snc

|µi j | ≥ t

)
=P(∃i , j /|µi j | ≥ t

)
≤∑

i j
P

(|µi j | ≥ t
)

≤
snc∑
i=1

snc∑
j=1

2exp

(
− snc t 2

2K

)

≤ 2s2n2
c exp

(
− snc t 2

2K

)
.

We choose δ= 2s2n2
c exp

(
− snc t 2

2K

)
, thus t =

√
2K log

(
2s2n2

c
δ

)
snc

, leading to the following:

P

 max
1≤i 6= j≤snc

|µi j | ≤

√√√√2K log
(

2s2n2
c

δ

)
snc

≥ 1−δ.

Therefore, with probability at least 1−δ the mutual coherence ofΦ in a universal basis (i.e.,

µ (ΦΨ)) is upper bounded by O

(√
K log

(
m
δ

)
m

)
(m = snc ), which is close to the optimal bound,

i.e., 1p
m

.

4.2.4 Compressive Embedding Analysis

Compressive embedding refers to a stable embedding property allowing to preserve distances

between low-complexity samples in the compressed domain up to a distortion factor using a

sensing matrixΦ. This statement is explicitely stated by the Johnson–Lindenstrauss Lemma

(JLL) for finite sets of vectors [64]. As preserving pairwise distances is the cornerstone in

numerous machine learning tasks, in this section we focus on verifying when the proposed

sensing scheme preserves the separability of k-sparse images. Thus, let us consider the
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following JLL:

Proposition 2. Given 0 < t < 1 , a set X of r points in Rn , the linear mapping f (u) =ΦΨ̂u such

that

(1− t )‖u −v‖2 ≤ ‖ f (u)− f (v )‖2 ≤ (1+ t )‖u −v‖2, (4.8)

holds for all u, v ∈ X with probability at least 1− r 2 exp
(
−c st 2

nr

)
.

To show that our CS modelΦ in (4.3) respects the JLL in the DCT basis, we will first find a con-

centration property of the proposed model, i.e., showing that ‖ΦΨ̂u‖2
2 is highly concentrated

around ‖u‖2
2 and then extend the concentration property to show that the JLL holds with high

probability in the case of the proposed sensing scheme in (4.3).

Concentration property

Without loss of generality let us consider a unit vector u ∈ Rnr nc and the sensing scheme

in (4.3) defined as Φ = 1p
s

((
P (1)M (1)

)>
, · · · ,

(
P (s)M (s)

)>)>
, and the sparsity basis defined as

Ψ̂= diag
(
Ψ(1), . . . ,Ψ(nr )

)
. We have:

∥∥ΦΨ̂u
∥∥2

2∥∥u
∥∥2

2

= 1

s

s∑
i=1

∥∥P (i )M (i )Ψ̂u
∥∥2

2

= 1

s

s∑
i=1

∥∥ nr∑
j=1

p (i )
j diag

(
ϕ(i )

j

)
Ψ( j )u j

∥∥2
2

= 1

s

s∑
i=1

∥∥ nr∑
j=1

p (i )
j M (i )

j Ψ
( j )u j

∥∥2
2

= 1

s

s∑
i=1

nr∑
j k
〈p (i )

j M (i )
j Ψ

( j )u j , p (i )
k M (i )

k Ψ
(k)uk〉

= 1+ 1

s

s∑
i=1

nr∑
j 6=k

〈p (i )
j M (i )

j Ψ
( j )u j , p (i )

k M (i )
k Ψ

(k)uk〉

Thus,

∥∥ΦΨ̂u
∥∥2

2 −
∥∥u

∥∥2
2 =

s∑
i=1

Zi ,

with Zi = 1
s

∑nr

j 6=k〈p (i )
j M (i )

j Ψ
( j )u j , p (i )

k M (i )
k Ψ

(k)uk〉.
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To find a concentration property of
∥∥ΦΨ̂u

∥∥2
2−

∥∥u
∥∥2

2 around 0, we can use Hoeffding’s inequality

in (4.7). To do that, we have to show that Zi ’s are zero-mean and bounded in absolute value.

First, because the main diagonal entries of M (i )
j are Bernoulli variables with E

(
diag M (i )

j

)
= 0,

with M (i )
j and M (k)

l independent if i 6= k and j 6= l , we can show that E (Zi ) = 0. Indeed,

E (Zi ) = E
(

1

s
∥∥u

∥∥2
2

nr∑
j 6=k

〈p (i )
j M (i )

j Ψ
( j )u j , p (i )

k M (i )
k Ψ

(k)uk〉
)

= 1

s
∥∥u

∥∥2
2

nr∑
j 6=k

E

((
p (i )

j M (i )
j Ψ

( j )u j

)> (
p (i )

k M (i )
k Ψ

(k)uk

))

= 1

s
∥∥u

∥∥2
2

nr∑
j 6=k

u j
>Ψ( j )>E

((
M (i )

j

)>)
E

((
p (i )

j

)>)
E
(

p (i )
k

)
E
(

M (i )
k

)
ukΨ

(k)

= 0

On the other hand, by Cauchy-Shwarz we have

Zi = 1

s
∥∥u

∥∥2
2

nr∑
j 6=k

〈p (i )
j M (i )

j Ψ
( j )u j , p (i )

k M (i )
k Ψ

(k)uk〉

≤ 1

s
∥∥u

∥∥2
2

nr∑
j 6=k

∥∥p (i )
j M (i )

j Ψ
( j )u j

∥∥∥∥p (i )
k M (i )

k Ψ
(k)uk

∥∥.

Because p (i )
j , M (i )

j andΨ( j ) are orthonormal matrices,
∥∥p (i )

j M (i )
j Ψ

( j )u j
∥∥= ∥∥u j

∥∥. Thus,

Zi ≤ 1

s

nr∑
j 6=k

∥∥u j
∥∥∥∥uk

∥∥
≤ 1

s

(
nr∑

j=1

∥∥u j
∥∥)2

≤ nr

s
‖u‖2 = nr

s

Finally we can apply Hoeffding’s inequality in (4.7) to find the following concentration prop-

erty:

P
(
|∥∥ΦΨ̂u

∥∥2
2 −

∥∥u
∥∥2

2| ≤ t
∥∥u

∥∥2
2

)
≥ 1−2exp

(
−c

st 2

nr

)
, (4.9)
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with c = 1
2 .

Johnson-Lindenstrauss Lemma

To show that our modelΦ in (4.3) respects the JLL in (4.8), we consider the set E defined as:

E = {ui −u j : 1 ≤ i < j ≤ r }, (4.10)

with card(E) ≤ r (r−1)
2 .

For any fixed v ∈ E our model Φ respects the concentration inequality in (4.9). Thus, it is

enough to show that the concentration inequality holds for all v ∈ E . One can see that thanks

to union bound, (4.8) holds for all v ∈ E with probability at least 1− r 2 exp
(
−c st 2

nr

)
. Thus, with

r 2 exp
(
−c st 2

nr

)
≤ 1, we need s ≥ nr t−2 log(r ), i.e., we need approximately to sense the hole

image to ensure the JLL which is unfortunately not realistic. To handle this issue, the JLL

analysis have to benefit of the structure of the sparsity basisΨ (e.g., |Ψi j | ≤
p

Kp
nc

) by restricting

the set of images to those that are sparse in Ψ only. This will maybe have only to respect

s ≥ t−2 log(r ) which is realistic.

4.3 Signal Recovery Using the Proposed Sensing Scheme

4.3.1 Reconstruction of Sparse Signals

Although verifying the ability to preserve pairwise distances, it is relevant to analyze the ef-

ficiency of signal recovery for image rendering tasks. Our testbench is mainly composed of

the commonly used images, i.e., Barbara, Monkey, Boat, Cameraman and Lena as depicted

in Figure 4.4. These images are resized to 128×128 for simulation purposes (speed of con-

vergence). As already discussed, natural images are generally compressible and not really

sparse (i.e., most components are practically of small magnitudes but not zero). Indeed, to

ensure the sparsity of our testbench for phase-transition diagnosis purposes, each image is

first projected in the wavelet domain and small magnitude are then zeroed with respect to a

pre-computed threshold enabling a certain sparsity level. Finally, each image is backprojected

in the canonical basis using the wavelet inverse transform.

Signal recovery is achieved using the Daubechies-6 wavelet basis as a sparsity basisΨ [211].

The signal recovery can then be expressed as:

x̂ = argmin
x

‖Ψ (x)‖1 +λ‖y −Φx‖2
2, (4.11)
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(a) Barbara. (b) Monkey. (c) Boat.

(d) Cameraman. (e) Lena.

Figure 4.4 – Testbench for sparse image recovery.

withΨ is the Daubechies-6 operator, and the sensing matrixΦ is either the proposed sens-

ing scheme in (4.3) or a diagonal concatenation of Bernoulli matrices with ±1 entries with

probability 1
2 leading to the per-column Bernoulli projections as performed in [116]. Thus,

the UnLocBox 1 is used to solve the problem stated in (4.11) with a very small regularization

parameter λ.

In Figure 4.5, we plot the average PSNR in dB for different sparsity levels (i.e., k
1282 ) in function

of the number of snapshots (i.e., for each snapshot we extract 128 measurements). It reports

the required amount of snapshots to perform (i.e., minimum number of measurements to

extract) to successfully recover the signal under the constraint of a certain PSNR using a per-

column Bernoulli (denoted "Col-Bern") sensing scheme as used in [116], our sensing scheme

without permutations (denoted "W/o perm") and with permutations (denoted "modPerm").

Indeed, one could logically attest that a signal is properly reconstructed if the reconstruction

error is lower than 10−4, i.e., a PSNR higher than 40 dB . Regarding the reported quality of

recovery, we can see that the proposed sensing scheme in the two settings (without and

with permutations) clearly outperforms the most compact and hardware efficient CS sensing

scheme implemented in the CIS focal plane (e.g., ±1 Bernoulli) [116]. Furthermore, we can

also validate the interest of permutations to extract uncorrelated measurements leading to a

better signal recovery performances.

4.3.2 Reconstruction of Compressible Signals

In this section, we propose to recover a real world image, i.e., compressible. Here, for the sake

of simplicity, the only considered image is the Cameraman image of size 512×512 (because

1https://epfl-lts2.github.io/unlocbox-html/
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(a) Col-Bern. (b) W/o perm. (c) modPerm.

Figure 4.5 – Phase-transition diagrams. Black, red and magenta lines show the transitions to a
success reconstruction above 40 dB for per-column Bernoulli (Col-Bern), our model without
permutations (W/o perm) and our model sensing schemes (modPerm) respectivelly.

of its intrinsic image characteristics). Two regularization operators are used to recover this

image instead of a simple `1-constraint in a wavelet basis:

1. The anisotropic Total Variation (TV) operator defined using the horizontal and vertical

gradients (respectively ∇h and ∇v ) as:

TV(x) = ‖∇v x‖1 +‖∇h x‖1. (4.12)

Thus, the signal recovery problem can be expressed as:

x̂ = argmin
x

TV(x)+λ‖y −Φx‖2
2, (4.13)

2. the mDWT-TV operator defined as the sum of the `1 norm of the components (horizontal

and vertical) of the gradient of the image in multiple wavelet transforms (denoted as

matricesΨi ) [212, 118]:

mDWT-TV(x) =
3∑

i=1
‖Ψi∇v x‖1 +‖Ψi∇h x‖1. (4.14)

Indeed, natural images generally involve several structures with sparse representations

in different basis. It turns out therefore that promoting average sparsity over multiple

bases rather than a single one represents a powerful prior [213]. Thus, the signal recovery

problem can be expressed using three wavelet transforms known as Db-2 (Ψ1), Db-6
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(Ψ2) and Db-10 (Ψ3). Thus:

x̂ = argmin
x

mDWT-TV(x)+λ‖y −Φx‖2
2. (4.15)

The reconstruction from CS measurements is performed thanks to the FISTA algorithm [40]

using our model and a per-column Bernoulli sensing [116] over 10 batches of sensing matrices

generation using the signal recovery algorithms in (4.13) and (4.15). Notice that a sweep over

several λ values has been done to pick proper regularization coefficients. As it is clearly seen

in Figure 4.8, our sensing scheme outperforms the sensing scheme implemented in [116].

Indeed, in Figure 4.6 and Figure 4.7 artefacts are less obvious using the proposed sensing

scheme even with a high compression ratio, i.e., ≈ 5% (2560 measurements). Furthermore, the

quality of recovery is significantly improved when using suitable sparsity prior promoting the

sparsity in different bases, i.e., the mDWT-TV operator.

Figure 4.8 – Quality of reconstruction of our sensing model compared to a per-column
Bernoulli acquisition scheme over 10 batches.

4.4 Inference Using the Proposed Sensing Scheme

Leveraging the cost of signal recovery, signal processing on compressed measurements [84]

allows to perform signal processing (e.g., filtering, detection and inference) in the CS domain

thanks to the RIP property as discussed in Section 2.1.5. In this section, we address an object

recognition problem to evaluate the performance of our model on two object recognition

databases: the MNIST handwritten database (10 classes, 28×28 pixels) [209] and the AT&T

face recognition database (40 classes, 92×112 pixels) [208]. Figure 4.9 reports the classification

accuracy of a one-vs.-all SVM classifier learned on CS measurements sensed either by the

proposed sensing scheme or a full Bernoulli matrix. It shows the accuracy in terms of the

ratio of correct predictions to the total number of test samples and its standard deviation

over 10 randomly selected batches of the testset. By comparing the plots, one can draw

out the following conclusions regarding the data variability. First, one can see that in the
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case of the MNIST (small and low variable samples), we can achieve a no-loss classification

compared to a no-CS setting from 10 snapshots, (i.e., ≈ 35% compression ratio and 320

measurements). However, with more variability and informational content (i.e., AT&T), we

achieve the same performance from approximatively 10 snapshots, (i.e., ≈ 5% compression

ratio and 520 measurements). It is finally clear that what practically matter is the number of

CS measurements (or its equivalent number of snapshots) to extract and not the compression

ratio.

Figure 4.9 – Classification accuracy for the AT&T and MNIST databases.

4.5 Dedicated Hardware Implementations and Conclusion

A system overview of possible physical implementations of the proposed sensing scheme is

illustrated in Figure 4.10. Indeed, several possible embodiments can be proposed to perform

on-chip pseudo-random modulations and permutations. To perform permutations, one

can design a dedicated pseudo-random generator to generate a pseudo-randomly permuted

sequence to address the columns leading to pseudo-random shuffle of each selected row.

Furthermore, this task can also be achieved thanks to a butterfly network [214] controlled

by a pseudo-random generator (PRG) (e.g., LFSR [203] or Cellular automata [73]). On the

other hand, the pseudo-random modulations and the sum can be achieved using either a

CTIA [116] combined with a classical ADC (e.g., SAR) or design dedicated ADC that takes

advantage of a canonical incremental Σ∆ converter enabling pseudo-random modulations,

averaging and A/D conversions [114]. It is worth pointing out that all the cited possible

implementations can be implemented at the end-of-column circuitry in the analog domain or

during A/D conversions allowing to alleviate hardware resources and keeping standard pixel

architectures (e.g., 3T or 4T) with canonical image readout enabling CDS operation to deal

with FPN resulting noise. For multiple snapshots, our scheme requires non-destructive pixel

readout both in the case of rolling shutter and global shutter acquisitions thanks to relaxed

constraints on ADC speed.

In conclusion, in this chapter we propose a new CS sensing scheme based on random modula-

tions & permutations to meet highly constrained hardware tasks while respecting theoretical

properties of a CS matrix. Several analytical, theoretical and simulation results have been
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Figure 4.10 – Top-level architecture of a pseudo-random modulations & permutations com-
pressive image sensor.

presented to show the efficiency of the proposed sensing scheme for both image rendering and

inference tasks. Indeed, the proposed sensing scheme clearly outperforms the most compact

implementation of a CS sensing scheme in both signal recovery and inference. Furthermore,

the main advantage of the proposed sensing scheme is its relevance in terms of hardware

implementation such it can be advantageously implemented at the end-of-column circuitry

without major additional materials compared to a canonical CIS architecture [215] while

reducing the total amount of data to extract and convert to the digital domain leading to

a significant power consumption save and enabling advanced signal processing tasks, e.g.,

on-chip decision making as it will be discussed in Chapter 6.



Chapter 5

Hierarchical Decision Making

As discussed in Section 2.2, the trend in smart CIS consists in designing computational-friendly,

always-on compact CIS with on-chip AI capabilities. The design of this new devices tends to

take advantage of recent advances in signal acquisition schemes and inference algorithms,

well optimized for low-power systems. Moreover, the design of this kind of information-

retrieval signal processing architectures have to deal with on-chip constraints related to the

data dimensionality and algorithms complexity. Throughout this thesis, we aim at providing

some initial steps towards the design of smart compact CIS with on-chip inference capabilities.

As seen in Chapter 4, compressive sensing has been explored to reduce data dimensionality

during the image acquisition process without heavy additional materials leading to drastic

hardware resources saving. However, achieving our goal, i.e., on-chip inference, is still limited

by the algorithm complexity at the device level when implementing standard machine learning

algorithms.

To deal with the on-chip computational complexity bottleneck related to a canonical inference

algorithm, hierarchical machine learning algorithms [216, 217, 218, 219] can significantly

reduce memory and computational requirements related to an embedded decision making

algorithm. Considering a multi-class image classification system based on binary classifiers

such as SVMs, three popular strategies are usually adopted with different levels of complexity.

The complexity of such systems is generally expressed based on the number of binary classi-

fiers involved during the inference. The first approach called one-vs.-all, involves the training

of C classifiers for a C classes problem. The second one is the one-vs.-one strategy and trains

C (C −1)/2 classifiers for the same C classes problem. Finally, for more flexibility to define

the number of classifiers and the depth width (i.e., cascading many classification layers),

the DNN took over the reins of multi-class image classification by learning αC classifiers

in the first layer (α > 1) combined with nonlinear activation functions and adaptive depth

width depending on the complexity of the classification task. However, thanks to its intrinsic

nature, a hierarchical inference dynamically requires to run only O (log2 C ) cascaded binary

classifiers lowering as a consequence the number of binary operations (i.e., multiplication and
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accumulation) as well as memory needs required for on-chip applications. Thus, for a highly

constrained embedded system (e.g., smart always-on sensor), it seems relevant to investigate

hierarchical strategies on CS measurements to relax hardware requirements related to signal

acquisition (e.g., A/D conversion, power consumption) and data processing (e.g., memory

needs) to perform embedded multi-class inference.

In this chapter, we mainly focus on hierarchical learning in the context of highly constrained

hardware in order to reduce hardware requirements related to an embedded multi-class

inference. We introduce new methods to construct the hierarchical tree to train a hierarchical

classifier (i.e., a binary decision tree) minimizing as a consequence the number of decision

nodes, end thus, the number of binary classifiers to perform at the inference level. Indeed,

as already discussed in the previous section, a powerful binary classifier is the so-called

2-classes SVM thanks to its ability to handle outliers. Using classes centroids and sample

labels of a training database, three methods have been investigated to create two clusters at

each node that are balanced in terms of number of classes: (Method 1): sequential C -means

clustering, (Method 2): SVM-based clustering and (Method 3): a clustering based on the

Principal Component Analysis (PCA). Each proposed method assumes specific priors on intra-

class & inter-class data distribution to construct the decision tree. In Method 1, we propose a

K-means-inspired [220] algorithm to construct two balanced clusters limiting the decision

tree depth. In Method 2, we construct balanced clusters that directly maximize the soft margin

of a SVM performed on samples data belonging to each class-clusters. Finally, Method 3

takes advantage of a new basis estimated from a PCA [221] that better represents the classes

centroids variability to define a separation threshold identifying two classes clusters. In the

following, we will present our proposed clustering methods as well as general considerations

on hardware and an evaluation of classification accuracy for a basic inference problem. In the

context of limited processing and memory resources, we consider CS measurements as raw

data for both training and testing.

5.1 Hierarchical Classification on CS: Key Concepts

In the SOTA, several works have addressed hierarchical classification each proposing a different

criteria to construct the decision tree. For example, [217] describes statistical criteria to

hierarchically cluster similar classes in a multi-class classification problem. In addition, a

binary SVM is trained to geometrically separate clusters at each level. More recently, with

the rise of dictionary learning techniques for image representation and classification, various

constrained dictionary learning methods were proposed to learn discriminative class-specific

dictionaries allowing images classification. As for [217], a hierarchical dictionary learning

approach provide a coarse-to-fine representation to describe patterns of different level of

similarities. For instance, [218] proposes a hierarchical dictionary learned such that the

upper-level dictionaries represent common patterns of high level classes while lower-level

dictionaries describe specific patterns of a set of classes. On the other hand, [222] proposes a

hierarchical-structured dictionary learning method based on a Fisher criterion [136]. Hence,
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a constrained dictionary is learned at each level and described as a concatenation of the

shared dictionary of the upper level and the class-specific dictionary. Indeed, to construct the

hierarchical tree, [223] uses a K-means algorithm [224]. In this work, the sparse coefficients

extracted at each node are then used to train a multi-class SVM to classify the images. Finally,

[219] addresses the problem of hierarchical tree construction using classes similarity based on

an inter-class distance metric, combining clustering on data variability with path-searching

for the inference.

On the other hand, hierarchical learning on CS measurements refers to constructing the hier-

archical decision tree directly in the compressed domain. Indeed, as mentioned in previous

sections, based on the outstanding results in the field of signal processing on compressive

measurements [84, 85, 87], we can advantageously take advantage of the stable embedding

of a CS sensing scheme to preserve the distance between the two subsets learned at each

node of the binary decision tree. In the rest of this chapter, we will first present the proposed

hierarchical algorithms and then present the results of combining the proposed methods with

a CS sensing matrix.

5.2 Proposed Hierarchical Learning Methods

5.2.1 Notations

Let us consider a database of n-length “vectors” in Rn (e.g., signals with n samples, or images

with n pixels) composed of C classes. This database is separated into two databases: a

“train” set X ∈ Rn×n1C , where each class is composed of n1 samples, associated with labels

l ∈ {1, · · · ,C }n1C ; and a “test” set Y ∈Rn×n2C with unknown labels and composed of n2 samples

per class. We refer to X j = (X j
1, · · · , X j

n1
) ∈ Rn×n1 and Y j = (Y j

1, · · · ,Y j
n2

) ∈ Rn×n2 for the train

and the test sets restricted to the j th class, respectively. The notation x ∈ X or x ∈ X j , means

that the sample x is an arbitrary column of X or X j , respectively (and similarly for Y ). The

mean vectors of each class (i.e., class centroids) are expressed as µ j = 1
n1

∑n1
i=1 X j

i , for 1 ≤ j ≤C .

Moreover, we denote by the distance matrix the matrix containing the euclidean distances

between the mean vectors defined as:

D = (
∥∥µp −µq

∥∥
2)1≤(p,q)≤C . (5.1)

5.2.2 Binary SVM

A binary (2-class) SVM refers to learning a hyperplane separating the n-dimensional space

between two classes. Obviously, the best separation is achieved by the hyperplane maximizing

the distance to the nearest training sample of any class, i.e., maximum margin. Thus, given

{(x1, l1) , . . . , (xk , lk ) , . . . ,
(
x2n1 , l2n1

)
} ⊂ RN × {−1,1} samples of two different classes in X . The
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optimization problem allowing to learn a binary SVM between these two classes can then be

expressed as:

{ω̂, b̂, ξ̂} = argmin
ω∈Rn ,b,ξ∈R2n1

(
1
2

∥∥ω∥∥2
2 +λ

∑2n1

k=1 ξk

)
s.t. lk (ω>xk +b) ≥ 1−ξk , ξk ≥ 0,1 ≤ k ≤ 2n1, (5.2)

with ω̂ is the weights vector, b̂ the bias scalar, ξ the vertical concatenation of 2n2 slack variables

and λ an inner regularization parameter. Once the binary classifier constructed, the canonical

SVM inference can be expressed as an affine transformation. Thus, for a test sample y ∈ Y the

inferred class cy is given by:

cy = sign(ω>y +b) (5.3)

Notice that in the context of an embedded classification system based on supervised learning,

we generally consider two stages: i ) learning the classifier parameters on a training set, off-line,

i i ) performing embedded in-line inference on sensed data. Moreover, in the special case of a

binary SVM, solving the inference problem in (5.3) involves only one projection and a sign

operator that can typically be achieved by recovering the bit sign of the resulting scalar of

the projection. In this section, we will first present the proposed algorithms to construct a

hierarchical tree, the inference algorithm and finally a discussion on hardware requirements

for a basic inference application on original and compressed data.

5.2.3 Training the Hierarchical Classifier

Different approaches can be investigated for hierarchical learning. Here, we consider the

division step as a clustering problem of classes centroids. As depicted in Figure 5.1, the main

idea is to divide a set of classes into two subsets at every hierarchical node. Indeed, given a

multi-class dataset at Level 0, a first balanced clustering is performed at Level 1, i.e., creating 2

balanced clusters each associated to the same number of classes. A binary classifier is then

trained to separate the created clusters. This process is repeated for each cluster until each

terminal node cluster represents a single class. A straightforward method is to use the K-means

clustering as presented in [217]. On the other hand, to create balanced clusters a sequential

clustering can be adopted (method 1). A second method consists in maximizing the margin

between clusters based on a binary SVM (method 2). Finally, we can explore orthogonal

transformation (e.g., Principal Component Analysis (PCA) [225]) to find a system coordinate

that describes the best data variability (method 3). In the rest of this subsection we will first

present our proposed methods to create two balanced clusters at a hierarchical node given a
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Figure 5.1 – An illustration of the hierarchical learning. The input multi-class dataset to be
classified is presented at Level 0. A first balanced clustering (2 clusters, each associated to
the same number of classes) is performed at Level 1, then a binary classifier is trained. This
process is repeated for each cluster until the construction of a single-class cluster at each

terminal node. Here, C ( j)
i represents j th cluster at level i .

set of classes (Algorithm 1-3). Secondly, we describe the algorithm used to create the decision

tree (Figure 5.2), then used for the inference (Algorithm 4).

Sequential C -means Clustering (Method 1)

Algorithm 1 Sequential C-means clustering (Method 1)

1: Input µ ∈Rn×C centroids of C classes in X and D
2: {m1,m2} ← argmaxi , j D i j ;
3: c 1 ← µm1

; c 2 ← µm2
;

4: C1 ← {c 1}; C2 ← {c 2};
5: µ←µr {µm1

,µm2
};

6: while µ 6= {ø} do
7: m1 ← argmin j

∥∥c 1 −µ j

∥∥
2 ;

8: m2 ← argmin j

∥∥c 2 −µ j

∥∥
2 ;

9: c 1 ← µm1
; c 2 ← µm2

;
10: C1 ←C1 ∪ {c 1}; C2 ←C2 ∪ {c 2} ;
11: µ←µr {µm1

,µm2
};

12: c 1 ← centroid of C1; c 2 ← centroid of C1 ;
13: end while
14: return C1 and C2

The hierarchical learning proposed in Method 1 is typically inspired by the K -means cluster-

ing technique known also as the Lloyd’s algorithm. The K -means algorithm is a canonical

clustering technique that aims at minimizing the average squared distance between samples

in the same cluster [226]. Indeed, the K -means first chooses K arbitrary samples chosen
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randomly from the input dataset as initial centroids. Each point is then assigned to the nearest

centroid, and each centroid is recomputed as the mean vector of all samples assigned to it.

These last two steps are repeated until the process stabilizes, i.e., when the assignments no

longer change. Thus, given centroids of a C -classes dataset represented by the matrixµ ∈Rn×C

and their corresponding distance matrix D ∈RC×C , Method 1 aims at creating two balanced

clusters based on classes centroids too. Inspired by the K -means, the algorithm of Method 1 is

first initialized to the centroids maximizing the Euclidean constrained distances, i.e., centroids

separated with the highest Euclidean distance that we will denote c 1 and c 2. Then, at each

iteration we sequentially assign to each cluster the centroid minimizing the Euclidean distance

to their centers. In addition, c 1 and c 2 are recomputed at each iteration, i.e., we calculate the

mean vector of their clusters, respectively. This process is repeated until the assignment of all

initial centroids. Finally, the algorithm returns two clusters C1 and C2 allowing to cluster a set

of centroids at a given node as described in Algorithm 1.

SVM Based Balanced Clustering (Method 2)

Algorithm 2 SVM based clustering (Method 2)

1: Input C classes in X , centroids µ ∈Rn×C and D
2: {m1,m2} ← argmaxi , j D i j ;
3: c 1 ← µm1

; c 2 ← µm2
;

4: C1 ← {X m1 }; C2 ← {X m2 };
5: µ=µr {µm1

,µm2
};

6: while µ 6= {ø} do
7: associate C1 to {1}n1card(C1);
8: associate C2 to {−1}n1card(C2);
9: for all xk ∈C1 ∪C2 :

{ω̂, b̂, ξ̂} = argminω,b,ξ

(
1
2

∥∥ω∥∥2
2 +λ

∑
k ξk

)
s.t. lk (ω>xk +b) ≥ 1−ξk , ξk ≥ 0,
1 ≤ k ≤ n1card(C1)+n1card(C2).

10: m1 = argmax j ω̂
>µ j + b̂ ;

11: m2 = argmin j ω̂
>µ j + b̂ ;

12: c 1 ← µm1
; c 2 ← µm2

;
13: C1 ←C1 ∪ {X m1 }; C2 ←C2 ∪ {X m2 };
14: µ=µr {µm1

,µm2
};

15: end while
16: return C1 and C2

Method 2 takes advantage of the intrinsic properties of the SVM classifier to directly learn

the hierarchical decision tree. In this second method, the algorithm is also initialized to the

centroids maximizing the Euclidean distance (i.e., c 1 and c 2) as described in Algorithm 2.

Indeed, at the first iteration the binary SVM is trained on the samples associated to the classes

whose centroids are c 1 and c 2, i.e., centroids maximizing the Euclidean distance (in matrix

D). For the second step, Method 2 assigns the class centroid µm1
maximizing the positive
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margin to the first cluster C1 and the class centroidµm2
minimizing the negative margin to C2

using the affine function presented in (5.3). An update of the binary SVM hyperplane is then

performed by relearning it but this time on all the data samples associated to the centroids

of each cluster. The last two steps are repeated until the assignment of all centroids with a

SVM decision boundary learned on the finally generated clusters. The main advantage of this

approach is the ability to update the decision boundary at each iteration taken into account

the new assigned centroids and thus samples associated to each cluster.

PCA Based Balanced Clustering (Method 3)

Algorithm 3 PCA based clustering (Method 3)

1: Input µ ∈Rn×C centroids of C classes in X
2: SVD [227] : µ=UΣV > s.t. U = [u1 . . .uC−1].
3: θ← median value of u1

>µ ;
4: C1 ← (µ) j s.t. u1

>µ j < θ ;

5: C2 ← (µ) j s.t. u1
>µ j ≥ θ ;

6: return C1 and C2

The main idea of Method 3 is to find a new basis that best describes data variability of class

centroids enabling then the construction of two balanced half-spaces. Indeed, dimensionality

reduction techniques [197] provide a powerful framework to find new bases that preserve

intrinsic properties of the processed data. A widely used technique is the Principal Compo-

nent Analysis (PCA) that seeks to project the observed data into a set of linearly uncorrelated

vectors called principal components. The new basis is constructed such that the first prin-

cipal component has the largest variance of the data, and each succeeding component is

constructed under the constraint that it is orthogonal to the preceding components with

decreasing variance. The PCA decomposition is usually achieved via eigendecomposition of

the covariance matrix or by Singular Value Decomposition (SVD) [227]. Thus, to create two

balanced clusters, a promising approach consists in projecting the centroids into the first

principal component of the matrix µ ∈Rn×C composed of the mean vectors of each class of

the C -classes dataset. This way, once the projection is learned, one can construct two clusters

such that the centroids bellow the median of the projection in the PCA domain are assigned to

the first cluster and the ones above this threshold are assigned to the second. This way, the

median enables a balanced clustering.

5.2.4 Testing the Hierarchical-Based Inference

Given the balanced clustering methods presented in Section 5.2, the binary decision tree is

recursively constructed using one of the aforementioned balanced methods at each node.

Indeed, in each node two balanced clusters are typically constructed allowing to train a binary

SVM (i.e., (5.2)) on the created clusters as described formally in Algorithm 4.
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Algorithm 4 Decision tree construction

1: Input training set X
2: level ← 1 and node ← 1
3: create two balanced clusters C (1)

1 ; C (2)
1 on X ;

4: solve (5.2) on C (1)
1 and C (2)

1 to learn SV M (1)
1 classifier

5: while level 6= ceil(log2 C )−1 do
6: level ← l evel +1 and node ← 2l evel−1

7: for n in 1 to node do
8: if card(C (n)

level ) 6= n1 then

9: Create two balanced clusters C (2n−1)
level+1

and C (2n)
level+1 on C (n)

level

10: solve (5.2) on C (2n−1)
l evel+1 and C (2n)

level+1 to learn

SV M (n)
level+1 classifier

11: end if
12: end for
13: end while

Figure 5.2 – The inference process in the case of a binary hierarchical tree for an unknown
sample (represented by the blue square in this figure).

As previously mentioned, training the hierarchical tree allows to construct a binary decision

tree where each path from a root to a leaf is associated to a decision rule defined by the binary

inference of the learned SVM presented in (5.3). Therefore, for an unknown test sample y ∈ Y ,

a decision rule (i.e., (5.3)) is applied at every node where the margin sign is used to decide to

which next branch the sample belongs to. Thus, the predicted class is provided by the path

indicated by the successive decisions (cf., Figure 5.2).

5.2.5 Embedded Resources Requirements Analysis

To show the relevence of solving an embedded inference task using a hierarchical classifier,

Table 5.1 summarizes embedded resources requirements related to a one-vs.-all approach,

a one-vs.-one approach and the proposed binary hierarchical learning approach for a n-

dimensional C -classes classification problem. Indeed, in the context of an embedded system,
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since the training is performed in an off-line system, we are mainly interested by the require-

ments related to the inference part, i.e., memory needs to store ex-situ learned patterns and

computing complexity related to the inference. In fact, in the case of the one-vs.-all, C classi-

fiers are learned and thus have to be stored to perform C n-dimensional projections. For a

one-vs.-one, C (C −1)/2 classifiers are learned. However, when using a hierarchical approach,

the number of classifiers to learn is reduced to C −1 to perform only dlog2 Ce n-dimensional

projections (m-dimensional in the CS case). It is worth pointing out that although needing

to store C −1 classifier, only dlog2 Ce memory accesses are needed leading to a drastic power

consumption saving as the most energy-hungry component of a digital circuit is the amount

of memory accesses involved to read the data from local memories.

Let us now consider the sensing matrixΦ ∈Rm×n composed of m ¿ n measurement vectors

that are properly designed to perform CS. It allows, for a n-length vector x ∈Rn , to acquire a

CS measurement vector using the sensing model described as x̃ =Φx ∈Rm . Table 5.1 exhibits

the underlying motivations related to the proposed hierarchical approach. Indeed, it clearly

shows the interest of hierarchical learning, in particular, when combined with compressed

measurements in a CS based system. In fact, when learning the hierarchical classifier on

compressed measurements, hardware requirements are dramatically reduced thanks to the

signal independent dimensionality reduction performed by CS as well as the computing

complexity reduced thanks to the hierarchical approach leading to a joint optimization at both

the signal acquisition level (i.e., the focal plane for a CMOS image sensor) and the inference

one. Making this approach (i.e., hierarchical learning on compressed measurements) highly

suitable for wearable devices with limited energy and memory budgets.

Learning Memory Computing
One-vs.-all nC O (nC )

One-vs.-one nC (C −1)/2 O (nC (C −1)/2)
Hierarchical n(C −1) O (n log2 C )

Hierarchical+CS m(C −1) O (m log2 C )

Table 5.1 – A comparison of embedded resources requirements of hierarchical learning ap-
proach compared to the one-vs.-all and one-vs.-one strategies.

5.3 Simulation Results

To test the relevance of the proposed hierarchical methods for real-world inference tasks, we

build up a testbench composed of two databases:

AT&T faces database [208]: composed of ten different images of 40 distinct persons (classes)

with 256 gray levels per pixel. The images were taken at different times, varying the

lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details

(glasses / no glasses). Moreover, all the images were taken against a dark homogeneous

background.
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COIL-100 database [228]: Composed of 7,200 images of 100 objects. Each object was turned

on a turntable through 360 degrees to vary object pose with respect to a fixed color

camera. Images of the objects were taken at pose intervals of 5 degrees. This corresponds

to 72 poses per object. There images were then size normalized. Objects have a wide

variety of complex geometric and reflectance characteristics.

In addition, each image is resized to a n = 32×32 resolution via bicubic interpolation and

standardized using the feature scaling method [229] to stay in the scope of a highly constrained

image sensor hardware. Two setups are proposed. In the first one, simulations are performed

in the signal domain using the original training and test sets (i.e., X ∈Rn×n1C and Y ∈Rn×n1C

respectively). In the second one, simulations are performed in the compressed domain

using the sensing matrix Φ ∈ Rm×n to simulate feature extraction of CS based system (e.g.,

compressive CIS). In this case, the training and test sets are acquired using the matrix Φ

and the hierarchical algorithms are learned directly in the compressed domain using the

compressed training and test sets (i.e., X̃ =ΦX ∈Rm×n1C and Ỹ =ΦY ∈Rm×n1C respectively).

For the sake of simplicity, simulations are performed using a sensing matrixΦ generated as

the realization of a discrete Bernoulli distribution with probability 1
2 composed of m = 128

projection vector enabling a compression ratio of 25% (i.e., m = n/4). We stress that for an

embedded application the sensing matrix can be generated "on-the-fly" thanks to digital

pseudo-random generators (e.g., LFSR, cellular automaton) as discussed in the previous and

next sections.

Based on the AT&T and COIL-100 databases, our results show the relevance of the hierar-

chical learning associated to the proposed clustering methods compared to the alternative

approaches as summarized in Table 5.2. Indeed, in terms of classification accuracy, hier-

archical learning yet reduces the average algorithm accuracy by ≈ 3% on original data and

≈ 4% on compressed data compared to a straight linear SVM. On the other hand, regarding

the decision tree depth (i.e., number of decisions to compute at the inference), our methods

deeply outperform the one-vs.-all method, and even more the one-vs.-one. Indeed, in the

case of the AT&T, the number of projections to be performed is divided by ≈ 6.6 (6.4 for COIL-

100) compared to a one-vs.-all strategy. Finally, it means an equivalent reduction in terms of

algorithm complexity and thus power consumption, considering hardware implementation.

Note that, the impact of CS is twofold, reducing the size of the SVM coefficients to store and

the total amount of multiply-accumulate (MAC) operations to perform on-chip.

5.4 Conclusion

In this chapter, we have proposed three balanced clustering methods allowing the training of

hierarchical classifiers based on a binary SVM with linear kernel. Indeed, simulation results

based on two databases as well as hardware complexity analysis show the great interest of the

proposed methods in terms of hardware requirements (computing complexity and memory

access needs) with an acceptable impact on the classification accuracy. In addition, when
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combined with Compressive Sensing, the overall memory and on-chip MAC operation needs

can even be lowered thanks to the signal-independent dimensionality reduction enabled

by CS. This chapter have thus demonstrated that decision making algorithms can fully take

advantage of the hierarchical learning approach combined with CS to tackle issues related

to hardware needs if the classification accuracy doesn’t require to be excessively high (e.g.,

low-power sensing nodes). It allows then a joint acquisition-processing optimization to meet

highly constrained on-chip inference tasks. Finally, although involving basic classification

algorithms (i.e., SVM), this approach can take advantage of more powerful algorithm tools

such as deep neural networks or dictionary learning methods to improve the classification

accuracy. Furthermore, for more classification efficiency one can also adapt the number of

the CS measurements to extract in function of the depth of the binary decision tree such as

the complexity of the inference depends on the data variability at each node. Thus, one can

first extract semantic features at each node (e.g., variance [230]) and adapt the number of CS

measurements taking into account the feedback of the first data variability evaluation stage,

enabling therefore a tunable compression ratio depending on the complexity of the inference

task. On the other hand, a possible extension of hierarchical inference could create inter-class

clusters to reduce inter-class data variability to its minimum and allows therefore to tackle

outliers. Finally, it is worth pointing out that the main interest of hierarchical inference is its

simple hardware implementation that can take advantage of iterative projections involving as

a consequence tiny digital processing block circuits as it will be discussed in the next section.
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Hardware implementations

The market of CMOS image sensors has testified an increasing growth in the last years due to

the rapid deployment of image sensors in wearable devices. Moreover, the trend to design high

resolution [231] and high frame rate [232] sensors makes the design of CIS more challenging.

As widely mentioned in the CIS literature, the most energy-hungry components are the A/D

conversions and I/O ring. The power consumption and the bandwidth of the CIS increase

as the resolution and frame rate increase as well. In this context, the main advantage of

Compressive Sensing based CIS is the power consumption saving thanks to the reduced

amount of A/D conversions and therefore the output readout. Moreover, acquiring the image

in a compressed representation leads to a (standard) compression-free system, and thus,

further power and silicon saving.

Throughout this thesis we have discussed current efforts to tackle issues related to hard-

ware/algorithm constraints (e.g., A/D conversions, memory needs, computing complexity)

in the context of smart CIS. However, most of the SOTA CIS architectures lack the ability to

enable low-power on-chip inference tasks due to either the hardware complexity (additional

heavy circuitry in the focal plane) or computing complexity involved by canonical machine

learning techniques. To remedy these shortcomings, in Chapter 3 we have shown the interest

of solving an inference problem on compressed measurements leading to a drastic reduction

of memory needs and computing complexity at both the training and inference sides. On the

other hand, to extract compressed measurements in the focal plane, several strategies have

been proposed in the SOTA but unfortunately suffer from some limitations mainly related to

the higher on-chip complexity or reduced measurements support for column/block based

parallel implementations. To enable a better on-chip data mixing while taking advantage

of parallel processing and pseudo-random generators to generate the CS sensing matrix, in

Chapter 4 we have proposed a novel CS sensing scheme based on random modulations and

permutations and provided a preliminary theoretical study to show its relevance for both

image rendering and inference tasks. Finally, to achieve low-power on-chip inference, in

Chapter 5 we have discussed the interest of hierarchical techniques to reduce the amount of
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MAC operations and memory accesses especially when combined with Compressive Sensing.

All the previous contributions lay algorithmic and mathematical foundations for designing

compact low-power CIS with on-chip inference capabilities. Indeed, they can be considered

as the key driver to take the challenge of smart low-power CIS a step further. These consid-

erations bring us as a consequence to the final chapter of this thesis where we propose to

pack conclusions of previous chapters together to define the architecture of a compact com-

pressive CIS with dedicated CS sensing scheme and optimized (tuned) inference strategies.

This chapter is organized as follows: first, a top level view of the proposed CIS architecture is

presented underlining the basic block circuits to implement the CS sensing scheme presented

in Chapter 4. Second, the proposed compressive CIS architecture is presented in detail with

the main motivations related to each block circuit. Then, a set of optimizations to reduce the

number of clock cycles in an incremental ADC, lower measurements resolution and memory

needs are presented to enable further hardware saving. Finally, to show the relevance of the

proposed architecture for real-world applications, two object recognition tasks are carried

out using an optimized Digital Signal Processing (DSP) architecture adapted to solve three

inference problems with different complexities, compliant with the proposed architecture,

and therefore well adapted to the context of highly limited hardware implementations.

6.1 Proposed image sensor architecture

Before presenting a top level view of the proposed compressive CIS architecture, let us recall

the proposed sensing scheme presented in Chapter 4. Indeed, for an observed nr ×nc image in

the focal plane denoted U = (u1, · · · ,unr )> ∈Rnr ×nc , the proposed sensing scheme consists in

applying for each selected row a random modulation by multiplying each pixel by a ±1 weight

generated as the realization of a Bernoulli distribution with probability 1
2 , randomly permuting

the pixels of each selected row and finally averaging the output of each column to extract

a compressed vector. This process can be repeated to extract more measurements using

different modulations and permutations at each snapshot. Mathematically, the proposed

sensing matrixΦ ∈Rsnc×nr nc can be expressed using the vertical concatenation of s randomly

generated permutation matrices P (i ) modulated by a random diagonal modulation matrix

M (i ) as: Φ= 1p
s

((
P (1)M (1)

)>
, · · · ,

(
P (s)M (s)

)>)>
.

Under the constraint of keeping a standard pixel architecture (e.g., 3T or 4T) and a canonical

rolling shutter readout, the proposed architecture extracts CS measurements by performing

operations during A/D conversions and via basic analog routings before the ADC. It takes

advantage of specifically designed circuits to perform pseudo-random permutations and

modulations as presented in the previous section. As depicted in Figure 6.1, the proposed

architecture is mainly composed of:

• A (nr = 480)× (nc = 640) array of canonical pixels enabling a non-destructive readout.

• A Shift Register (SR) for sequential row select in a rolling shutter readout fashion com-
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bined with digital circuitry for timing and control management.

• A Pseudo Random-Permutations (PRP) circuit controlled by a Pseudo-Random Genera-

tor (PRG) for per-row data mixing.

• A column parallel dedicated first order incremental pseudo-Random Modulation Σ∆

(RMΣ∆) for pseudo-random modulation, pixel averaging and A/D conversations.

• An optimized DSP for on-chip inference on CS measurements (using pseudo-random

realization of P and M) combined with an on-chip memory to store off-line learned

patterns related to an inference solving problem.

Finally, it is worth pointing out that the additional circuitry to extract CS measurements has

limited impact on the overall CIS design as it will be detailed in the next sections. In the

rest of this section, explored avenues to implement the aforementioned block circuits will

be presented as well as hardware optimisations to fit with constraints related to low-power

vision systems. Notice that the most challenging tasks are the per-row data mixing and the

pseudo-random modulations seldomly used in imaging applications.

Figure 6.1 – Image sensor top-level architecture.

6.1.1 Dedicated PRG for the PRP

In the proposed CS sensing scheme presented in Chapter 4, the random permutations are

of particular interest to overcome issues related to support dimensionality reduction as in
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column/block parallel CS implementations [114, 233, 118] and thus intuitivelly allows a non-

structured sensing scheme incoherent with typical sparse basis. Indeed, the main task of the

PRP is to perform a pseudo-random pixel mixing of each sequentially-selected row. This task

can typically be achieved by pseudo-randomly addressing columns of the selected rows. Thus,

for an nc -dimensional (nc pixels) row, one has to generate nc codes in the range (0,nc −1) to

address each pixel only once. In the SOTA, Pseudo-Random Generators (PRG) have emerged

as practical devices to generate a sequence of numbers that shows a random behavior [234].

Driven by cryptographic applications and technological advances in digital circuits, several

devices and systems have been proposed. For instance, a simple PRG architecture is the

so-called Linear Feedback Shift Register (LFSR) [203]. It basically uses a shift register and a

linear function (generally a XOR gate) of some bits of the register to generate successive logic

states (0 and 1) that show a random behavior (cf., Figure 6.2).

(a) Topologie of a 8-bit LFSR. (b) Register outputs for 255 clock cycles.

Figure 6.2 – A 8-bit LFSR: (a) Architecture; (b) Generated outputs.

Unlike the LFSR that needs n clock cycles to update a n-length vector because of the shift

operations, a cellular automata [73] needs only one clock cycle to update a n-length register

(cf., Figure 6.3). It advantageously evolves in parallel at discrete time steps following transition

functions defined using local neighborhood. It consists practically of a set of discrete cells

with a finite number of states. At each step time t , each cell at
i is updated using a transition

function that is the same for each cell defining as a consequence the general behavior of the

cellular automata using only two neighbors of each cell (cf., Figure 6.3).

However, although the breakthrough that enabled LFSRs and cellulars automata, they suffer

from some shortcomings limiting their use for data mixing applications, namely, the high

number of clock cycles needed in the case of the LFSR (i.e., O
(
n2

)
for a n-length codes genera-

tion); and the disability to cover all the possible values in a desirable range in the case of the

rule 30 cellular automata (i.e., some values are generated many times and others not generated

at all!). To overcome these issues, several patented devices and systems have been proposed
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(a) A 8-bit cellular automata follow-
ing the Wolfram rule 30.

(b) Register outputs for 255 clock cycles.

Figure 6.3 – A 8-bit cellular automata: (a) Architecture; (b) Generated outputs.

but unfortunately involve higher hardware-algorithm complexity limiting their use for on-chip

applications (e.g., low-power CIS) [235, 236, 237]. To tackle these limitations, we propose in

the next section a hardware-friendly solution to generate pseudo-random sequences and

therefore enable pseudo-random permutation of a given vector of analog/digital values. This

solution is deemed to be simple, implementable and scalable and could be considered as a

consequence the keystone towards an efficient implementation of per-row pixel mixing.

Proposed PRG

The proposed dedicated pseudo-random codes generator basically takes advantage of pre-

defined bits swapping and a simple bijective mapping. As depicted in Figure 6.4, for a given

initial seed, the process of codes generation consists in first performing a pre-defined bits

swapping of some Most Significant Bits (MSB) and Least Significant Bits (LSB), and then apply

a Gray coding using basic XOR logical gates to reinforce the chaotic behavior of the generated

codes (output after each pre-defined bits swapping and Gray coding iteration). This way, after

2n −1 iteration, a sequence of pseudo-random codes is generated to address the indexes of a

given n-length vector.

To quantify the chaotic behavior of the proposed patented solution (cf., Figure 6.5), the

autocorrelation of the generated sequence is adopted as a basic measure of similarity of the

sequence with shifted representations of itself. Figure 6.6 reports the autocorrelation of a n-bit

(n ∈ {7,8,9,14,15,16}) generated sequence using the proposed PRG and a sequence generated

using the MATLAB random permutations algorithm. Indeed, one can see that the generated

sequences have regular autocorrelations with few picks of approximatively high correlation

compared to small fluctuations of the MATLAB algorithm. However, regarding the mean over
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Figure 6.4 – Process of codes generation performed by the proposed PRG.

2n −1 , the mean autocorrelation is approximatively the same for both techniques. This way,

we can validate the relevance of the proposed pseudo-random codes generator in terms of

both hardware compactness and chaotic behavior.

Figure 6.5 – Register outputs for 255 clock cycles of the proposed codes generator.

A practical implementation of the proposed solution is presented in Figure 6.7 for a 8-bit

codes generation. Indeed, for a given 8-bit seed in the input register, the architecture swap

the two MSBs and LSBs and then apply a Gray coding to the resulting word. This process is

repeated at each clock cycle until the generation of 255 (28 −1) codes. In the specific case of

this code length, bits swapping is applied to two MSB and LSB bits. However, for other code

lengths, Table 6.1 report the number of MSB and LSB bits to swap for a given code length

between 4 and 16 bits, i.e., to generate pseudo-random sequences in the ranges (1,15) and
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(1,65535) respectively. Notice that numerous bits swapping patterns can be performed as

reported in Table 6.2. For the sake of simulation issues, these patterns were validated for codes

generation with lengths between 4 and 10 bits through an exhaustive sweep of all the possible

permutation patterns. However, swapping only MSB and LSB bits still the most compact

solution, allowing to avoid crossed connections between each successive registers.

Number of bits to swap
1 2 3 4 5 6 7

Code lengths

4 x
5 x
6 x
7 x x
8 x
9 x

10
11 x x
12 x
13 x x
14 x
15 x
16 x

Table 6.1 – Number of MSB and LSB bits to swap in function of the desired code length.

Code lengths 4 5 6 7 8 9 10
Number of possible 2 24 66 600 2213 30329 165828

bits swapping (8%) (20%) (9%) (11%) (5%) (8%) (4%)

Table 6.2 – Number of possible bits swapping over the n! possible permutations of a n-length
register.

To summarize, the proposed pseudo-random codes generator has compact hardware im-

plementation in terms of both clock cycles and the covered generated codes while showing

a chaotic behavior making it a relevant choice to address data mixing tasks compared to

commonly used PRGs used in the CS SOTA (i.e., LFSR [108, 114], Cellular Automata [118, 238]).

It can be therefore considered as the keydriver of the possible PRP architectures that we will

discuss in the next section in order to perform per-row pixel scrambling to extract compressed

measurements using the proposed CS sensing scheme.

6.1.2 Pseudo Random-Permutations (PRP)

Based on the proposed pseudo-random codes generator, three possible implementations have

been explored to achieve per-row pixel mixing with different hardware complexity, namely,

a fully connected pseudo-random multiplexer based PRP, a block-parallel pseudo-random

multiplexer based PRP and a Benes̃ network based PRP. These three architectures will be
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detailed in the rest of this section with basic consideration of the hardware complexity in

terms of additional silicon footprint and readout power consumption.

Fully connected pseudo-random multiplexer based PRP

A straightforward approach to perform pseudo-random permutations may introduces a nc

to nc fully connected multiplexer (MUX) (cf., Figure 6.9) controlled by the proposed pseudo-

random codes generator (cf., Section 6.1.1), with nc is the number of columns. Indeed, using

a column decoder, each MUX output can pseudo-randomly selects one and only one pixel

output from the selected row. As depicted in Figure 6.8, in the first embodiment a pseudo-

randomly permuted sequence is generated to address the columns of the selected row in a

serial fashion using the pseudo-random codes generator initialized using a pseudo-random

seed as presented in the previous section. It is updated for each row select leading to a set of

independent permutation matrices p j (1 ≤ j ≤ nr ). This way, a pseudo-randomly permuted

sequence in the range (1, . . . ,nc ) is generated to pseudo-randomly address the readout voltage

values
(
V1, . . . ,Vnc

)
leading to the permuted output

(
Vp1 , . . . ,Vpnc

)
.

Figure 6.8 – Fully connected pseudo-random multiplexer based PRP.

Figure 6.9 – Analog ransmission gate.

Despite generating low correlated sequences thanks to the dedicated pseudo-random codes

generator, this PRP architecture involves a heavy MUX to connect each output to all the
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input voltage values leading to n2
c needed interconnect buses to perform the permutation

task. These additional interconnect buses will introduce a non-negligible effect on the CIS

performance (i.e., silicon footprint, power consumption and parasitic noise). To evaluate the

additional cost related to the interconnect buses, let us suppose that for a given pitch pixel (e.g.,

3µm ×3µm), the silicon thickness of 10 interconnect buses is approximatively equivalent to

one pixel width denoted Wpi x . Through this assumption, an approximation of the additional

hardware cost of the fully connected pseudo-random multiplexer based PRP architecture can

be performed. Indeed, as depicted in Figure 6.10, the silicon footprint of the PRP involved by

the interconnect wires is approximatively:

ncWpi x

10
×Lar r ay ≈ 0.1War r ay Lar r ay = 0.1S, (6.1)

with Lar r ay and War r ay are the pixel array silicon length and width respectively; and S is the

pixel array silicon area. Notice, however, that this approximation doesn’t take into account the

silicon footprint related to the digital control (select switches in Figure 6.10). Obviously, it will

introduce an offset silicon cost depending on the shape of the transmission gate layout.

Figure 6.10 – Equivalent silicon footprint involved by the interconnect wires of the fully
connected pseudo-random multiplexer based PRP

On the other hand, this PRP topology has an impact in terms of parasitic noise and power

consumption too. Indeed, under the assumption that the length of each interconnect wire is

equivalent to the column bus length, the capacitance of the bus will be at least two times the

capacitance of the column bus. Therefore, the parasitic noise and power consumption relative
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to voltage readout will be doubled using the fully connected pseudo-random multiplexer

based PRP. Finally, given the aforementioned drawbacks, we can conclude that this topology

can not be adopted for a low-power CIS application.

Block-parallel pseudo-random multiplexer based PRP

To tackle hardware issues due to the important number of connection lines to establish in

the case of a fully connected pseudo-random multiplexer based PRP (e.g., silicon footprint,

parasitic capacitance), an alternative approach can deploy a two-level PRP composed of a

fixed pseudo-random scrambling and a set of block-parallel MUXs controlled by the proposed

pseudo-random codes generator presented in Section 6.1.1. Indeed, for the purpose of inter-

connect wires saving, the fixed-scrambling layer aims at applying a fixed permutation pattern

to each selected row similarly. Furthermore, to generate independent permutations with , a

set of parallel nblk to nbl k pseudo-random MUXs that share the same b-bit (b = log2 (nbl k ))

pseudo-random codes generator are used to perform a pseudo-random pixel mixing for each

block of size nbl k in a block-parallel fashion (cf., Figure 6.11).

Figure 6.11 – Block-parallel pseudo-random multiplexer based PRP.

In fact, as depicted in Figure 6.12, the fixed scrambling layer needs nc buses to connect each

output to a pre-defined voltage input. Thus, under the assumption that the silicon thickness

of 10 interconnect buses is approximatively equivalent to one pixel width denoted Wpi x , the

additional silicon footprint of the fixed scrambling layer is approximatively:

ncWpi x

10
×Lar r ay ≈ 0.1War r ay Lar r ay = 0.1S. (6.2)

This additional silicon to implement the fixed scrambling layer is therefore equivalent to

approximatively 10% of the silicon footprint of the pixel array. On the other hand, the block

parallel MUXs will involve the following silicon area:

nblkWpi x

10
×Lar r ay ≈ 0.1

nc

B
Wpi x Lar r ay = 0.1

B
S, (6.3)
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with B is the total number of block-parallel MUXs. This estimation clearly shows the interest

of this approach to reduce the silicon footprint compared to a fully connected pseudo-random

MUX. In addition, the number of select switches is reduced by a factor B . This way, we can

reasonably target to put the block-parallel MUXs on the bottom of the fixed scrambling.

Figure 6.12 – Equivalent silicon footprint involved by the interconnect wires of the fixed
scrambling layer.

Benes̃ network based PRP

For more hardware-friendly pseudo-random permutations in terms of both silicon footprint

involved by the number of interconnect wires, i.e., the silicon footprint as well as the parasitic

capacitance, a relevant approach consists in spreading out the permutation over a multi-

level set-up with limited interconnect wires involved at each level. This task can typically be

achieved using a Benes̃ network [239]. As depicted in Figure 6.14 a Benes̃ network consists in

a concatenation of a butterfly and an inverse butterfly networks based on a 2 : 1 digital multi-

plexer at each node with dedicated control bit. Benes̃ networks are basically used in digital

circuits for bits permutations as presented in [214]. In the special case of a Benes̃ network

based PRP, the multiplexers are analog and can be implemented using analog transmission

gates as presented in Figure 6.9.

Although the interest that shows the Benes̃ network to reduce the interconnect wires to

perform a desired permutation, its use is limited to vectors of length expressed as power

of two. However, customized architectures can be implemented depending on the given

CIS resolution. For instance, for a VGA resolution (i.e., (nr = 480)× (nc = 640)), 10 Benes̃

network can be used for each block of 64 columns combined with a fixed pseudo-random
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Figure 6.13 – A 8×8 Benes̃ network.

scrambling to extend the support of permutations. Figure 6.14 stands for a pseudo-random

columns permutation of a selected row using a multi-level permutation process composed

of a fixed pseudo-random scrambling and a 9-stages Benes̃ network. It consists basically in

the concatenation of a butterfly network, a fixed pseudo-random scrambling and an inverse

butterfly network allowing to generate permutations of the nc input voltage values. For each

butterfly or inverse butterfly level, voltage values are partitioned into blocks and swapped -or

not- via a series of 2 : 1 MUX circuits (i.e., Btfly_64. . . Ibtfly_16 in Figure 6.15). Indeed, block

sizes vary from 64 (Btfly_64) to 2 (Btfly_2) for the butterfly network; and from 4 (Ibtfly_4) to

16 (Ibtfly_16) for the inverse butterfly network. Here, for further silicon saving, each layer

of the Benes̃ network is controlled by an unique binary signal, leading to a 9-bit input code

(9 = d(log2(480)
)e).

On the other hand, to generate low-correlated permutations, a 9-bit PRG can be designed

based on the proposed pseudo-random codes generator presented in Section 6.1.1 to on-

the-fly generate control codes with the longest cycle length and the lowest circuit impacts as

presented Figure 6.16. Figure 6.17, shows the enumerations of selections for each input column

corresponding to an output one. We can observe that each 64-block of column outputs are

therefore mapped to 64 randomly distributed input ones thanks to the fixed pseudo-random

scrambling. In addition, each PRP output selects a pixel from the same column at most four

times for a fixed snapshot. This means that desired task, i.e., mixing non-uniform pixels zone,

is achievable with high probability. Moreover, if we want to build a matrix full of ones, one can

increases the size of the first Benẽs level at the expense of an additional hardware overload.

On the other hand, to show that the proposed PRP generates independent permutations,

Figure 6.18 stands for the enumeration of similar generated sequences based on an Euclidean

distance metric between each pair of the generated sequences. Indeed, one can clearly see

that except the main entries (i.e., distance between the sequence and itself), the entries of the

matrix are equal to zero and therefore each permutation is generated once and only once.

Regarding the silicon footprint of the Benes̃ network based PRP, the additional silicon footprint
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Figure 6.14 – Benes̃ network based PRP.

Figure 6.15 – Various examples of Butterfly circuits.

of each Benes̃ network level is approximatively:

nd Wpi x

10
×Lar r ay , (6.4)

with nd ∈ {2, . . . ,64} is the block size of the Butterfly circuit (i.e., B t f l y and I bt f l y in Figure
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Figure 6.16 – A 9-bit PRG.

6.14) at each Benes̃ network level. Thus, for the proposed 10 levels Benes̃ network in Figure

6.14, the silicon footprint of the Benes̃ network based PRP is approximatively:

(64+32+16+8+4+2+4+8+16)Wpi x

10
×Lar r ay ≈ 15Wpi x Lar r ay , (6.5)

i.e., approximatively 15 rows of the CIS focal plane. Finally, despite the drastic saving compared

to the previous architectures, deep optimization of the silicon footprint can only be done at

simulation level given the design rules and using advanced layout generation and common

digital design tools and to implement the Benes̃ network under the fixed scrambling layer that

could be easily implemented using only top metal layers.

6.1.3 RMΣ∆

Inspired by the incremental Σ∆ [240, 241] that simultaneously performs both averaging and

quantization [114, 242, 243], a dedicated incremental RMΣ∆ is proposed to perform pseudo-

random modulations, per-column averaging and A/D conversions. Indeed, each column

of the PRP is connected to one RMΣ∆ allowing a column-parallel processing. Furthermore,

the main advantage of the proposed architecture is its ability to deal with pseudo-random

±1 modulations, highly desirable in many CS applications. Two possible embodiments are

presented to deal with ±1 modulations using an incremental Σ∆. The first one is implemented

using a switched-capacitor circuit as presented in [115] and the second one is implemented

using a double-path Σ∆with double-path integration (one integrator for each sign) controlled

by a nc -bit SR (each cell control one RMΣ∆). In the rest of this section, we will first present

some basic concepts related to the incremental Σ∆ ADC and then present the proposed

operational block to implement ±1 modulations, averaging and A/D conversions.
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Figure 6.17 – Enumerations of each mapping input/output performed by the PRP for a single
snapshot.

Figure 6.18 – Enumerations of similar generated sequences.

Unsigned Incremental Σ∆ ADC

The main advantage of an incremental Σ∆ ADC is its capability to perform simultaneously

averaging and quantization. As depicted in Figure 6.19, the incremental Σ∆ ADC comprises

basically an integrator, a single-bit comparator and a decimating counter. The averaging

and quantization operations are achieved as follows: the integrator, counter and Digital-to-

Analog Converter (DAC) are first reseted. Then, for a set of analog input values (in our case

the permuted pixels Vpi ), the inputs are sequentially integrated and compared to a certain

threshold (generally half the dynamic range). Depending on the comparator output, an

analog value is subtracted to the input. The subtraction is achieved thanks to the DAC that

is controlled by the output of the comparator. The output of the comparator is therefore a

bitstream composed of OSR (Over-Sampling Ratio) bits. The output from the modulator is
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finally decimated using a digital filter (generally a counter) to obtain a digital representation

of the average of the integrated voltage values, in our case the permuted pixels Vpi . After nr

cycles of the rolling shutter SR (i.e., nr integration of nr rows), 640 (i.e., 1/480 compression

ratio) 9-bits (9 = log2(nr )) CS measurements are produced with only one clock cycle for each

row, meaning that we can dramatically reduce power consumption to perform the inference.

Figure 6.19 – Incremental Σ∆ ADC.

Figure 6.20 shows simulation results for an ideal first-order Σ∆ ADC with 64 sampling cycles

corresponding to a 6-bit quantization. On the right, we plot the output of the modulator and

its decimated value when a set of input voltage values in the range (Vmi n = 0.7V ,Vmax = 2.7V )

is applied to the Σ∆ ADC. On the left, we plot the output of the modulator and its decimated

value for a constant input equals to the average of the variable inputs. Finally, one can see that

the final integrator voltages and their respective decimated values (i.e., counter outputs) are

equal in both cases (i.e., variable inputs and constant one). This illustrates that the incremental

Σ∆ ADC performs simultaneously averaging and quantization when a set of voltage values are

sequentially applied to it.

However, although the interest that presents an incremental Σ∆ ADC in terms of simultaneous

averaging and quantization, implementing the ±1 modulations is still a challenging task

towards an efficient hardware implementation of the proposed sensing scheme based on

pseudo-random permutations and modulations. As depicted in Figure 6.21, the main idea

of the RMΣ∆ is to multiply the input voltage values by pseudo-random ±1 modulations. In

fact, two possible embodiments can be explored to apply a pseudo-random ±1 modulations

to the outputs of the PRP, i.e., Vpi : the first one is based on switched-capacitors at the input of

each Σ∆. The second one deals with a double-path Σ∆ with an up/down counter as it will be

discussed in the rest of this section.

Switched-capacitor based RMΣ∆

A possible implementation of the multiplication by ±1 is to create a virtual zero in the dynamic

range of the pixel outputs defined by the reset voltage (i.e., Vmi n) and the minimum voltage

value achievable at the end of the integration time (i.e., Vmax ). Indeed, the virtual zero can

be defined at the half of the dynamic range (Vmi n ,Vmax ), i.e., Vr e f = Vmax+Vmi n
2 , by limiting
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Figure 6.20 – Averaging and quantization through an incrementalΣ∆ ADC. (Top): input signals;
(Middle): integrator output; (Bottom): counter output highlighting the fact that the output of
the signal and its average is the same.

Figure 6.21 – System level concept of the RMΣ∆.

the integration time to achieve at most Vr e f . This way, for a positive modulation one can

bypass the input voltage and for a negative one performs a mapping of the input in the range(
Vmi n ,Vr e f

)
with respect to the virtual zero voltage (i.e., Vr e f ). This mapping can practically
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be defined as:

f
(
Vpi

)= 2Vr e f −Vpi , (6.6)

with Vpi is the input voltage value in the range
(
Vr e f ,Vmax

)
. This operation can advanta-

geously be implemented using active switched capacitors [244] as proposed in several SOTA

systems with dedicated circuits for analog computing [115, 245, 246]. Such active circuits

offer a practical implementation to perform subtractions based on charge/discharge of inner

capacitors but rely on active circuits that can suffer from stability and sensitivity problems. To

tackle this issue, passive switched capacitors can be explored to implement the subtraction

operation [247]. However, one has still to handle the generation of complex non-overlapped

digital control signals to charge/discharge inner capacitors and to manage carefully with re-

spect to gain accuracy, residual charges and noise in general. Furthermore, the main limitation

involved by switched-capacitors based RMΣ∆ is the restricted dynamic range if we set the

virtual zero at half the possible dynamic range enabled by the CIS. To overcome this limitation,

an alternative approach can mutualise two incremental Σ∆ converters that share the same

DAC but using an up/down counter as a decimation filter as discussed in the next section.

Double-path integration based RMΣ∆

To take advantage of the full dynamic range enabled by the CIS, a double-path RMΣ∆ can be

proposed. In fact, as depicted in Figure 6.22, a double-path integration based RMΣ∆ is mainly

composed of two modulators that share the analog comparator and the Digital-to-Analog

Converter (DAC). Indeed, for a column i , the integrators and the DAC are first reseted and the

voltage outputs Vpi ’s of the PRP are sequentially applied to the input of the dedicated RMΣ∆.

Following the SRi bit control generated by the PRG, Vpi is either integrated in the first or the

second integrator. Indeed, for a positive modulation (i.e., multiplication by +1), the voltage

input is integrated in the first path and the ↑↓ counter is incremented if the comparator is

activated. However, for a negative modulation (i.e., multiplication by −1), the voltage input is

integrated in the second path and the ↑↓ counter is decremented if the comparator is activated.

Finally, the ↑↓ counter output will represent a digital representation of the averaged integrated

Vpi ’s.

Now, let us take a closer look on the internal behavior of the proposed RMΣ∆. In Figure

6.23, we plot the outputs of a RMΣ∆ after 64 cycles for two different input signals leading to

6-bit quantization and averaging of voltage inputs with the same means; with and without

modulation. On the left, we plot the output of the counter outputs when a set of input voltage

values in the range (Vmi n = 0.7V ,Vmax = 2.7V ) is applied to the RMΣ∆ ADC with and without

modulation (middle and bottom plots respectively). On the right, we plot the output of the

counter outputs when a constant input equals to the average of the variable inputs is applied
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Figure 6.22 – Double-path integration based RMΣ∆.

to the RMΣ∆ ADC with and without modulation too (middle and bottom plots respectively).

Finally, one can clearly see that the final decimated values are equal in both cases (i.e., variable

inputs and constant one), this means that the RMΣ∆ ADC performs simultaneously averaging

and quantization when a set of modulated voltage values are sequentially applied to it.

6.1.4 On-Chip Inference (DSP)

A key operation in numerous inference strategies [248] is affine projections applied to the

extracted features (measurements). It is generally expressed as a matrix-to-vector multipli-

cation with an additional offset vector. The main goal of these projections is to map the

high dimensional features into a proper low dimensional space (generally of dimensionality

proportional to the number of classes C ) enabling as a consequence the inference with a lower

complexity (cf., Figure 6.24). Indeed, for an on-chip inference application, the weights and

offsets of the affine projections, that we will denote Ŵ and b̂ respectively, are generally learned

off-line (e.g., GPU, cloud) remotely and stored locally for an on-chip use. Now, consider the

case of a single projection, the nc extracted CS measurements are first multiplied by the ex-situ

learned weights (i.e., Ŵ ). The weighted measurements are then accumulated and added to

the ex-situ learned bias terms (i.e., b̂). With multiple projections, each projection is applied

independently to the extracted CS measurements to produce one component of the mapping

into the inference space. Three main strategies can be proposed to implement the affine

function applied to the extracted CS measurements at the output of the RMΣ∆, namely, a

parallel DSP, a conditional DSP with iterative accumulations an finally an iterative DSP.

Parallel DSP

A basic approach to implement the affine function on CS measurements consists in applying

each m-dimensional weights vector (i.e., ŵ i ∈Rm=640 with 1 ≤ i ≤C ) to the extracted vector

at the output of the parallel RMΣ∆’s (i.e., ω ∈ Rm=640) in a parallel fashion, i.e., perform all

the ŵ iω+bi affine projection in parallel. As depicted in Figure 6.25, each RMΣ∆ output is
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Figure 6.23 – Evolution of RMΣ∆ counter output with respect to various types of inputs
demonstrating modulation-averaging operations. (Top): input signals; (Middle): counter
output of the modulated inputs; (Bottom): counter output without modulation of the input
signal.

first multiplied by the weights of the correspondent column of Ŵ (the j th measurement is

multiplied by the weights of column j in parallel) leading to C weighted CS measurements.

The outputs of the i th multipliers (1 ≤ i ≤C ) are then accumulated to extract C components of

the low-dimensional vector, i.e., m1, . . . ,mC . Although the interest that shows this approach, it

unfortunately involves a non negligible number of computing gates (i.e., adder and multipliers)

that depends on the number of classes C , leading therefore to high silicon footprint.
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Figure 6.24 – Schematic representation of the affine function performed by the DSP.

Figure 6.25 – Parallel DSP

Conditional DSP

To reduce the impact of the additional digital circuitry in terms of silicon footprint, a condi-

tional DSP with iterative accumulations can be explored. The main idea behind this hardware

optimization is to replace the multiplication operation by an OSR times repeated addition. As

shown in Figure 6.26, the output βk of each RMΣ∆ comparator is connected to C dΣ adders,

each one corresponds to the coefficient of the Ŵ matrix at the i th row (16 i 6C ). The interest

of the bitstream generated by the RMΣ∆ arises at this stage: since a row is selected, the bit

generated by each RMΣ∆ allows to increment or decrement the C adders by the correspond-

ing value in the matrix Ŵ . Thus, for a logical "1" bit, the adder is incremented (+ŵk
i ), and

decremented for a logical "0" bit (−ŵk
i ). Finally, at the end of the rolling shutter readout (i.e.,

one snapshot), the i th adder output of each column is added to the corresponding offset in b̂.
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Figure 6.26 – Conditional DSP

Iterative DSP with block parallel processing

The key operation to implement an unique or multiple projections is the multiply-accumulate

(MAC). In order to guarantee a certain agility to the proposed architecture, a dedicated MAC

is developed to deal with a tunable number of projections depending on the inference algo-

rithm strategy. To this end, a multi-level precision MAC topology is proposed. As depicted in

Figure 6.27, at the first level, the pointwise multiplication is implemented. At the second one,

weighted CS measurements are partitioned into distinct blocks and accumulated allowing par-

allel computing. A set of optimizations of the bit-resolution of all the pipelined digital adders

can be done to cap the silicon footprint. It can consists in limiting the binary dynamic range,

keeping only relevant bits by removing insignificant bits and thresholding under unreached

highly significant bits. Finally, as a last stage, the bias term is added to the accumulated

weighted CS measurements in order to output a proper scalar value, being usable for decision

making. This way, a single projection is performed at a time, with highly limited hardware.

This generic approach allows the architecture to sequentially compute an adaptable number

of projections.

Figure 6.27 – Iterative DSP

For more efficiency in terms of power consumption and silicon footprint, various optimiza-
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tions of the proposed hardware will be reported and discussed in Section 6.3. The following

section yet presents three approaches to perform the inference with different algorithmic

complexity using the proposed architecture, in particular, using this DSP block at variable

computational loads. Notice that the functional behavior are all simulated in MATLAB taken

into consideration the hardware constraints (e.g., silicon footprint, measurements resolution,

memory needs, ADC clock cycles).

6.2 Inference with tunable algorithmic complexity

Considering a multi-class image classification system based on successive projections as it

may be performed by the proposed architecture, three popular strategies can be customized

as presented in Section 2.2. The first one is a one-vs.-all and involves the training of C distinct

linear classifiers for a C classes problem. The second one is a hierarchical classifier dynamically

requires to run only O (log2 C ) cascaded binary linear classifiers (cf., Chapter 5). These first

two approaches are particularly relevant for on-chip applications with highly constrained

hardware since they involve only a limited number of projections. here, each linear classifier of

those strategies takes the form of a 2-class Support Vector Machine (SVM) with a linear kernel.

However, those two first strategies show limited performances in terms of accuracy when

dealing with more inter-class and between-classes variability. Artificial Neural Networks (ANN)

with hidden-layers now have demonstrated good recognition accuracy for numerous object

recognition databases, for that specific reason. Note that in the basic Multi-Layer Perceptron

(MLP) case, the most memory and MAC hungry layer is the first one. It motivates to propose

a third strategy based on a ANN description. Indeed, the first layer, that basically performs

multiple projections (here αC with α> 1), fits within the definition of the iterative DSP with

block parallel processing when combined with nonlinear activation functions. In this section,

three inference strategies are explored to show the adaptability of the proposed architecture

with different complexity degrees. These strategies are the one-vs.-all SVM, hierarchical SVM

and an ANN (Figure 6.28) as will be detailed in the rest of this section.

(a) Support Vector Machines. (b) Hierarchical SVM. (c) Neural network.

Figure 6.28 – Three presented approaches, dashed lines represents projector-orthogonal
hyperplanes: (a) SVM; (b) Hierarchical SVM; (c) First layer of the proposed neural network.
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6.2.1 Notations

Let us consider a database of m-length “vectors” inRm acquired using the proposed CS sensing

scheme presented in Chapter 4 (i.e., Φ= 1p
s

((
P (1)M (1)

)>
, · · · ,

(
P (s)M (s)

)>)>
) and composed

of C classes. This database is separated into two databases: a “train” set X̃ ∈Rm×n1C , where

each class is composed of n1 samples, associated with labels l ∈ {1, · · · ,C }n1C ; and a “test” set

Ỹ ∈ Rm×n2C with unknown labels and composed of n2 samples per class. To perform our

supervised embedded inference, two-stages have to be considered: First, training the patterns

in an off-line system on the compressed training set X̃ . Second, the embedded inference is

performed on a compressed test set Ỹ . Here, both the training and test sets are acquired by

the proposed architecture using the specific sensing matrixΦ. Thus, the proposed inference

strategies are as follows.

6.2.2 One-vs.-all SVM

As discussed in Section 6.1, learning a one-vs-all SVM implies solving the following problem:

{ŵ i , b̂i , ξ̂i } = argmin
w∈Rm ,b,ξ∈Rn1

(
1
2

∥∥w
∥∥2

2 +λ
∥∥ξ∥∥1

)
s.t. l i

j (d>x̃ i
j +b) ≥ 1−ξ j , ξ j ≥ 0,1 ≤ j ≤ n1. (6.7)

Let us define the gain matrix Ŵ := (ŵ 1, · · · , ŵC )>, i.e., the vertical concatenation of ŵ i and

b̂ := (
b̂1, · · · , b̂C

)>
the offset vector. Once the C classifiers are off-line learned, W̃ and b̂ can

be stored on-chip. Thus, a winner-takes-all strategy allows to assign a compressed sample

ỹ ∈Rnc to the class c maximizing the margin, i.e.,

c = argmax1≤i≤C ŵ>
i ỹ + b̂i . (6.8)

From a hardware point of view, the CS measurements vector ỹ is successively multiplied

by the weight matrices ŵ i and added to the offset scalars b̂i to iteratively extract a vector

of length C using the DSP presented in Section 6.1. Finally, the argmax operation can be

implemented following an iterative approach using a single 2 : 1 multiplexer controlled by a

bitwise comparator [249]. As depicted in Figure 6.29, at each iteration, the resulting output

consist in the current max value and its index (i.e., max and argmax).
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Figure 6.29 – Iterative Argmax circuit.

6.2.3 Hierarchical SVM

As discussed in Chapter 5, the main idea of a hierarchical learning is to divide a set of

classes into two subsets at every hierarchical node in order to construct a binary decision

tree. Thus, using the balanced clustering method in Algorithm 2 presented in Section 5.2.3,

a decision tree is recursively constructed, training a binary SVM at each node, i.e., given

{(x̃1, l1) , . . . , (x̃k , lk ) , . . . ,
(
x̃2n1 , l2n1

)
} ⊂ Rm × {−1,1} samples of two different classes in X̃ . The

binary SVM optimization problem between this two classes is written as:

{ŵ , b̂, ξ̂} = argmin
w∈RN ,b,ξ∈R2n1

(
1
2

∥∥w
∥∥2

2 +λ
∑2n1

k=1 ξk

)
s.t. lk (w>x̃k +b) ≥ 1−ξk , ξk ≥ 0,1 ≤ k ≤ 2n1, (6.9)

Thus, for a test sample ỹ ∈ Ỹ the inferred class c is given by:

c = sign
(
w> ỹ +b

)
. (6.10)

Training the hierarchical tree allows to construct a binary decision tree where each path from

a root to a leaf is associated to a decision rule defined by the binary test referred in (6.10)

and being learned by a binary SVM. Thus, for a new test sample ỹ ∈ Ỹ , a decision rule (cf.,

(6.10)) is applied at every node where the margin sign is used to decide to which next branch

the sample belongs to. Thus, the predicted class is provided by the path indicated by the

successive decisions running only O (log2 C ) projections.

At the hardware side, the CS measurements vector ỹ is first multiplied by weights and then

added to the bias of the first decision rule (cf., (6.10)) at level 1 of the decision tree). The margin

sign (i.e., sign bit at the output of the DSP) is then used to decide which weights and bias load

from the local memory in order to apply the second decision rule. This is repeated until the

last node to decide to which class the sample ỹ belongs.
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6.2.4 Neural Network

When dealing with databases with higher inter-class and between-classes variability, a Neural

Network can advantageously improve the recognition accuracy but using a higher number

of projections (αC with α > 1). In this section a simple topology is proposed to perform

parametric projections combined with nonlinear functions. As depicted in Figure 6.30, the

proposed topology is composed first by a fully-connected layer combined with an activation

function to perform αC projections, where α > 1 is an inner adjustable parameter. Here,

a ReLU activation function ( f (x) = max(0, x)) is adopted for the simplicity of its hardware

implementation. It allows to introduce nonlinearity to enhance the separability between

classes. A 1D max-pooling function over each α projections is then introduced to reduce the

dimensionality of the extracted αC -length extracted vector. Finally, a C fully-connected layer

with softmax activation extracts a C -length vector allowing the decision making. We stress

that the quantization of weights and biases of the topology is performed at the training stage

[250], namely in order to alleviate over-sized needs both in terms of memory and computing.

Figure 6.30 – Topology of the proposed Neural Network.

The hardware implementation of this topology can hopefully take advantage of the proposed

DSP in Section 6.1.4 and the argmax circuit (Figure 6.29). Indeed, the CS measurements

vector ỹ is successively multiplied by the weight matrices ŵ i and added to the offset scalars

b̂i learned at the first layer to extract a vector of length αC . With proper initializations and

resets, the argmax structure can be used to perform 1D max pooling sequentially outputting

C values used as inputs for the second (and output) layer.

6.2.5 Complexity analysis

Table 6.3 stands for embedded resources requirements related to a one-vs.-all inference

strategy, a hierarchical SVM and the proposed Neural Network for a m-dimensional C -classes

inference problem. In the context of an embedded system, we only consider the case where

first a supervised training stage is performed outside the chip using a remote computer station

and then the sensor is programmed using those learned patterns. This way, the sensor can
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be reprogrammed as wanted, with a somehow generic hardware that could address various

image recognition tasks. Indeed, the computationally-intensive operation that represents the

learning, do not need to be done by the sensor device itself. Therefore, here, we are mainly

interested into the requirements related to the inference part, i.e., memory needs to store

ex-situ learned patterns and computational complexity related to the inference. In fact, in

the case of the one-vs.-all, C classifiers are learned and thus have to be stored to perform C

m-dimensional projections. For a hierarchical approach, the number of classifiers to learn is

reduced to C −1 to perform only dlog2 Ce m-dimensional projections. However, when using

our Neural Network, O (αC ) "SVM-equivalent" classifiers are learned and thus have to be

stored to perform O (αC ) projections.

Table 6.3 exhibits the underlying motivations related to the proposed DSP architecture. It

clearly demonstrates the interest of hierarchical learning to reduce the amount of MAC op-

erations for highly limited hardware. Moreover, it also shows the ability of the proposed

architecture to deal with a higher number of projections to fit within algorithmic needs (i.e.,

one-vs.-all and Neural Network strategies) with respect to an increase of the local memory

budget required to store ex-situ learned patterns.

Learning Memory Computing
One-vs.-all mC O (mC )

Hierarchical m(C −1) O (m log2 C )
ANN O (αC ) O (αmC +αC 2)

Table 6.3 – A comparison of embedded resources requirements of a one-vs.all SVM, hierarchical
SVM and Neural Network inference strategies.

6.3 Simulations and performance optimization

6.3.1 Background

To demonstrate the efficiency of the proposed architecture, two object classification databases

have been used for the hardware top-level simulations:

Georgia Tech face database (GIT) [251]: contains images of 50 people. All people in the

database are represented by 15 color images with cluttered background taken at resolu-

tion 640×480 pixels. The average size of the faces in these images is 150×150 pixels.

The pictures show frontal and/or tilted faces with different facial expressions, lighting

conditions and scale.

COIL-100 database [228]: composed of 7,200 images of 100 objects. Each object was turned

on a turntable through 360 degrees to vary object pose with respect to a fixed color

camera. Images of the objects were taken at pose intervals of 5 degrees. This corresponds

to 72 poses per object. There images were then size normalized. Objects have a wide

variety of complex geometric and reflectance characteristics.
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To fit within specifications of the proposed architecture, each image is resized to a VGA resolu-

tion via bicubic interpolation and then subsampled using a simulated RGB Bayer filter. In this

section, we will first present a set of optimizations to reduce silicon footprint, CS measure-

ments and DSP resolutions, and then summarize inference accuracy for the aforementioned

databases with different numbers of classes. For the sake of clarity, the presented hardware

optimizations have been done based on C = 10 randomly selected classes of the GIT database

and for the one-vs.-all SVM inference strategy.

6.3.2 PRP optimization

As mentioned in Section 6.1.2, the most hardware-friendly solution takes advantage of a fixed

pseudo-random scrambling and a 9-stages Benes̃ network. The goal of the fixed scrambling

is to reinforce pseudo-random permutation before addressing the Benes̃ network. Figure

6.31 shows the inference accuracy achieved with different scrambling block sizes for the GIT

(C = 10) database. The simulated sizes varies between 1 (i.e., without fixed scrambling) and

640 (i.e., scrambling all columns of the selected row). In addition, for each size, the fixed

pseudo-random scrambling is selected as the realization minimizing the autocorrelation

peak amongst 100 realizations generated using the randperm MATLAB function. Figure 6.31,

clearly exhibits the interest of the fixed scrambling over all the selected row. This could be

explained by the fact that a larger support of mixing allows to deal with uniform zones (i.e.,

low frequencies), and thus, a better diversity of the extracted CS measurements.

Figure 6.31 – PRP fixed scrambing.

6.3.3 RMΣ∆ optimization

As the proposed CIS is designed to meet requirements of highly constrained hardware, its

performance can typically be optimized thanks to the prior knowledge on the distribution

of the CS measurements (Figure 6.32a), the entries of Ŵ (Figure 6.32b) and the components

of b̂ (Figure 6.32c). Thus, given the distribution of CS measurements (range = [−20,20] ),
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the resolution of the RMΣ∆ can advantageously be reduced by saturating the ↑↓ counter in

Figure 6.22 to a lower number of bits instead of 9-bits (log2(nv )) by benefiting of the intrinsic

property of the incremental Σ∆ [114]. Figure 6.32d, stands for the probability of error at the

output of the RMΣ∆ for different resolutions (from 2-bit to 9-bit). Here, the error refers to

the difference between the original output without saturation and the quantized one. Thus,

as shown in Figure 6.32d, the probability of error at the output of the RMΣ∆ tends to 0 for a

resolution of 5-bit of the CS measurements. Moreover, the trade-off between CS measurements

resolution and the classification accuracy is also taken into account in Figure 6.32e. It shows

the classification error for different counter resolution, i.e., CS measurements resolution. We

clearly observe that the classification error floors to 4% from a 5-bit resolution, i.e., we can

advantageously reduce the resolution of the CS measurement to 5-bit without any loss in

terms of the classification accuracy.
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(a) Real data disribution at the output of the column parallel

Sigma-Delta.

(b) Distribution of the entries of Ŵ .

(c) Distribution of b̂ values. (d) Probability of error at the output of each RMΣ∆.

(e) Probability of error vs. classification accuracy.

Figure 6.32 – Performance optimization of the RMΣ∆.



119 6.3. Simulations and performance optimization

Figure 6.33 illustrates how a single input (in our case the output βi of the incremental Σ∆

comparator) can be used to control the behavior of a 5-bit counter. Depending on the logic

state of the SR i input (high/down logic state), the counter can be set up as an up/down

counter using JK flip-flops. In this case, the inputs of each JK are permanently connected

to the Q output of the previous flip-flops except the first one which permanently connected

to a logic 1. Typically, when both J and K inputs of a given flip-flops are logic 1, the output

toggles at each clock pulse. This way Q0 toggles at each clock pulse; Q1 toggles only when Q0

is high; Q2, Q3 and Q4 toggle when all the previous flip-flops Q outputs are high using AN D

gates. On the other hand, for the down counter setup each flip-flops inputs are wired to the

complement output of the previous one (i.e., Q̄), except the first one which still connected to a

logic 1 allowing to reverse the count of the counter. To switch between the two operational

modes, a signal control (i.e., SR i ) combined with a set of AN D and OR gates can be used to

enable either the up or down modes.

Figure 6.33 – A 5-bit up/down conditional counter (↑↓ counter).

6.3.4 DSP optimization

As mentioned above, to perform embedded inference, the matrix Ŵ and the offset vector b̂

have to be stored within an on-chip memory. Thus, as the histogram of the matrix Ŵ have

a centred, peaked, Gaussian-like distribution (cf., Figure 6.32b), we have chosen a uniform

quantizer using a dynamic range limited to 2/3 of the whole dynamic of the matrix. However,

as the offset vector b̂ has a flattened distribution, the uniform quantizer is applied on the

whole range covered by the components b̂. Thus, regarding the distribution and the dynamic

range of Ŵ and b̂, we have empirically chosen to set a signed 4-bit resolution for the entries of

Ŵ and a signed 14-bit for b̂. Finally, the memory requirements to store the ex-situ learned

weights and biases in order to perform object recognition on the GIT database (10 classes)

is limited to 10×640×5+10×15 bits ' 32 kbit for one snapshot readout while achieving a

satisfactory accuracy (' 97%, Table 6.4).

Given the 5-bit CS measurements and the quantized on-chip stored patterns, the DSP basically

requires 640 10-bit (output) multipliers and one iterative 20-bit adder. As presented in Section
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6.1.4, the proposed MAC performs multi-level processing allowing low resolutions. Thus, at

the first level, the pointwise operation is implemented using 640 10-bit parallel multipliers.

At the second one, weighted CS measurements are partitioned into blocks and accumulated

to reduce the resolution of the digital adder needed to perform the accumulation operation.

Figure 6.34, shows the optimized resolution in function of the block size at the first and second

adder levels. It exhibits the interest of reducing the block size and parallel processing to reduce

the resolution related to MACs operations at the expense of increasing the number of adders.

Thus, as depicted in Figure 6.35, a iterative DSP with 32-block parallel adders is finally adopted

as optimized DSP for the proposed CIS because the trade-off that it enables in terms of adders

resolution and the total number of blocks (reported between brackets in Figure 6.34)

Figure 6.34 – DSP MAC

Figure 6.35 – Optimized iterative DSP

6.3.5 Simulation results

Figure 6.36 reports the classification accuracy as a function of the number of measurements

(equivalent to a ratio of a number of snapshots) for C = 10 randomly selected classes of the

GIT database and for the one-vs.-all SVM inference strategy. It shows that in this setup the
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accuracy is equals to ' 97.2% from 640 measurements (i.e., a single snapshot). We can stress

that for only 64 measurements (i.e., randomly sub-sampling a single snapshot acquisition at a

1/10 ratio), the accuracy still reaches ' 80% for the 10-class inference problem.

Figure 6.36 – DSP MAC

Table 6.5 gathers the accuracy achieved by the proposed architecture for two databases and

the three inference strategies. The accuracy reported here corresponds to the ratio of correctly

classified test samples over all test samples. All the simulations have been performed using

balanced databases (i.e., the same number of samples per class for both the training and

the test sets). Those numerical results are obtained by averaging 10 experimental draws

from different sample random sub-selections for the training set versus the test set. As

expected, One-vs.all SVM exhibits a better accuracy than Hierarchical SVM for all the inference

problem setups. Note that in the case of COIL (C = 100) the Hierarchical SVM approach is

still competitive with ' 90.5% of accuracy compared to the One-vs.all SVM (' 91.4%). On

the other hand, ANN provides a far better accuracy ' 98.8%, i.e., only ' 1.2% error rate, ' 7

times less than the two othe techniques. Regarding ANN results, an important issue is related

to overfitting, the learning in the case of the GIT database is indeed performed on a too

small number of samples (especially for α ≥ 3). In practice, it leads to a ' 100% accuracy

over the training set reducing the efficiency of the inference on the test set (even far below

the Hierarchical SVM approach). For further developments and tests, this problem can be

easily bypassed by extending the dataset using image distortions for example to produce new

synthetic samples to increase training database diversity.

6.4 Conclusion

As it has been shown in this chapter, the CS sensing scheme presented in Chapter 3 can ad-

vantageously be implemented using analog routines as well as a dedicated ADC architecture.

Indeed, the data dimensionality reduction on-the-fly performed using a dedicated pseudo-
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Dataset One-vs.all SVM Hierarchical SVM ANN (α= 3)
GIT (C = 10) 97.2 % 95.8 % 80.8 %
GIT (C = 50) 85.0 % 75.6 % 85.3 %

COIL (C = 32) 99.2 % 99.0 % 99.3 %
COIL (C = 100) 91.4 % 90.5 % 98.8 %

Table 6.5 – Recognition accuracy for different datasets and infrence strategies using the pro-
posed architecture.

random permutations circuit and a one-clock cycle low resolution (5-bit) RMΣ∆ enables to

relax constraints on Digital Signal Processing afterwards. Indeed, the signal-independent

dimensionality reduction of CS (here reaching 1
480 compression ratio) leads to an important

memory reduction required to perform the three algorithmic approaches depicted throughout

this chapter. The Digital Signal Processing enables an optimized resolution-scalable compu-

tations for the first stage of each presented inference algorithm (i.e., affine projections). For

example, a tiny ANN topology with 1-D max-pooling achieves to reach ≈ 1.2% of classification

error rate on the COIL-100 database. In addition, the proposed architecture can advanta-

geously reuse a canonical rolling-shutter readout scheme and a conventional well optimized

4T pixel architecture (possibly tuned for global shutter acquisition). Interestingly, the pro-

posed architecture can even reduce the number of extracted measurements by subsampling

the one-snapshot measurements while still achieving a reasonable accuracy. Furthermore,

thanks to the averaging operation performed during the A/D conversion, the presented CIS

architecture can handle the offset-PFN as shown in Table 6.4, leading potentially to a CDS-free

architecture.

Indeed, three main block circuits have been presented to perform on-chip decision making

on compressed measurements extracted based on random modulations and permutations.

First, a Pseudo-Random Permutation (PRP) circuit to perform per-row pixel mixing. Second, a

Random-Modulation Σ∆ (RMΣ∆) ADC to perform pseudo-random modulation and averaging

of the outputs of the PRP during A/D conversions in a column parallel fashion. Finally a

generic optimized DSP allowing to perform the inference with different algorithmic complex-

ities (e.g., SVM, hierarchical and ANN). Several enablers have been identified to make this

implementation more hardware-friendly and can be summarized as follows:

1. PRP: to reduce the number of interconnect buses, a dedicated pseudo-random codes

generator combined with a Benes̃ network was adopted as the most compact imple-

mentation to perform per-row pixel mixing. However, although the drastic reduction of

the silicon footprint compared to a fully connected pseudo-random MUX and block-

parallel pseudo-random MUXs, some specific optimizations can be performed at the

layout level using dedicated CAD tools for further silicon saving taken into account the

technological node and the design rules, namely, to put the fixed scrambling on top of

the Benes̃ network.

2. RMΣ∆: to perform per-column pseudo-random modulations, averaging and A/D con-
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version, a double-path incremental Σ∆ fits highly with constraints of low-power CIS

applications. Indeed, in contrast to a standard Σ∆ ADC that needs 29 = 512 clock cy-

cles per-row to extract 9-bit measurements, the proposed RMΣ∆ ADC needs only one

clock cycle per-row leading to drastic power-consumption saving related to the ADC

which represents generally the most power hungry component of a CIS. Moreover, for

further digital design relaxation, the resolution of the extracted CS measurements can

advantageously be reduced to 5-bit by saturating the RMΣ∆ counter thanks to the prior

knowledge of the data distribution at the training stage. However, some specific opti-

mizations can be performed at the transistor level, e.g., mismatch of the integrators of

the RMΣ∆.

3. DSP: to enable on-chip inference, an optimized resolution-scalable DSP architecture is

proposed to implement the first stage of each presented inference algorithm (i.e., affine

projections). Indeed, pipelined MAC operations as well as reduced weights/biases and

computing unit (i.e., digital adders and multipliers) resolutions have been identified as

compact enablers to reduce memory needs and logical gates needed to solve the infer-

ence problem on CS measurements with negligible impact on the inference accuracy.

Finally, to handle classification tasks with higher inter-class and between-classes vari-

ability, Neural Networks provide a flexible framework to adapt the number of projections

and nonlinear layers to the complexity of the classification tasks. As discussed in Section

6.2, the first layer of an ANN topology (most MAC hungry layer) can advantageously be

implemented using low hardware complexity routines.
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Conclusions

In this thesis, we have explored new paths to extract compressed features enabling on-chip

decision making in the context of CMOS Image Sensor design. We have presented a number

of algorithm/hardware methods that take advantage of the concept of Compressed Sensing

as a data agnostic dimensionality reduction technique allowing as a consequence to reduce

the amount of data to process/store, and thus, relax hardware constraints related to basic

inference tasks. All the contributions presented throughout this thesis lay algorithmic and

hardware foundations for efficient design of future ultra-low power CMOS Image Sensor

applications (µW ). In particular, we have focused on:

• Inference on compressive measurements (Chapter 3): among the state-of-the-art di-

mensionality reduction techniques, Compressive Sensing has emerged as the most

hardware-friendly framework to extract compressed features taking advantage of pseudo-

random generators. Based on this statement, three algorithmic approaches for on-chip

decision making on compressed measurements have been investigated. Indeed, based

on an analytical study, the simulation results highlight significant improvement of the

approach involving a learning and inference problem solving in the compressed domain.

It exhibits the best performance regarding the quality of the inference as well as the

robustness to additive noise. Furthermore, performing the training and the inference

directly in the compressed domain allows to drastically reduce the complexity in terms

of both memory and computing needs.

However, although covering different inference algorithms, this analytical study is lim-

ited to inference tasks dealing with linearly separable datasets. A first interesting outlook

could investigate the interest of CS for nonlinearly separable datasets, even analytically

using synthetic datasets. It can take advantage of commonly known nonlinear acti-

vation function as performed in Artificial Neural Networks to find the best setting to

deal with more challenging inference tasks. On the other hand, the concept of signal

processing on CS measurements can be extended to signal processing on quantized
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CS measurements as quantization allows to reduce the resolution of CS measurements,

and thus, further saving at the digital signal processing level. This might be interesting

in the context of binary neural networks that show interesting properties for on-chip

applications in order to extract cascaded binary features. Typically, CS can be used as a

dimensionality reduction layer of the activation layer outputs of a Deep Neural Network

architecture.

• Random modulations & permutations for compressive imaging (Chapter 4): in Chap-

ter 4, a novel Compressive Sensing scheme has been presented for compressive imaging

applications. Based on random modulations and permutations this CS model allows

to circumvent shortcomings of SOTA CIS architectures implementing CS on-chip by

extending measurements support leading as a consequence to low correlated CS mea-

surements. This property enables to solve inference tasks with few CS measurements

(i.e., achieving high compression ratios, e.g., 1 ‰of the observed image), and thus

allows to relax hardware needs to solve the inference problem. In addition, random

modulations leads to a zero expectation CS matrix enabling to center CS measurements

distribution and thus extract zero mean features, a pre-processing operation highly

desirable in machine learning algorithms. Through theoretical, analytical and exper-

imental results, we have shown that the proposed CS framework is able to address

both image rendering and inference tasks and finally outperforms SOTA CS based CIS

architectures.

The proposed CS sensing scheme highlights the interest of in-focal plane data mixing for

on-chip inference tasks. Being basically designed based on experimental observations,

an immediate future work related to this axis would focus on providing stronger theo-

retical guarantees for both image recovery and inference problems. Although we have

proven that the proposed sensing model cannot respect the RIP in the canonical basis,

numerical and theoretical analyses show that exploring specific sparsity structures and

sparsity bases can fortunately circumvent this issue. It seems then that proving the JLL

in a specific sparsity basis is an immediate extension to study the robustness of the

proposed sensing scheme. A final research axis related to this chapter, would extend the

theoretical analysis to quantized version of the JLL such all hardware implementations

in the context of CIS applications deal typically with quantized CS measurements.

• Hierarchical learning for on-chip inference (Chapter 5): at the inference level, hierar-

chical learning have been explored as a practical approach to reduce the amount of MAC

operations needed to solve the inference problem thanks to the reduction of the number

of binary projections by a log factor. In this context, three new methods have been

proposed to construct the hierarchical tree to train a hierarchical classifier based on

binary decision rules (2-classes SVM) minimizing as a consequence the number of deci-

sion nodes, and thus, the number of binary classifiers to perform at the inference level.

Simulation results show the great interest of the proposed methods in terms of hard-

ware requirements (computing complexity and memory access needs), especially, when

combined with Compressive Sensing. The overall memory and on-chip MAC operations
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needs can advantageously be lowered thanks to the signal-independent dimensionality

reduction enabled by CS leading to a joint acquisition-processing optimization to fit

hardware needs involved by highly constrained on-chip inference tasks.

Although involving basic classification algorithms (i.e., SVM) hierarchical learning ap-

proach can take advantage of more powerful algorithm tools such as Deep Neural

Networks or dictionary learning methods to improve the classification accuracy taking

advantage of nonlinear kernels (or activation functions in the deep learning jargon).

Some initial steps combining hierarchical learning and neural networks, not reported in

this thesis, have been done and show significant improvements compared to hierarchi-

cal algorithms involving 2-classes SVMs. The main idea consists in replacing each node

binary decision rule by a tiny neural network or even learn the binary decision tree using

the commonly used forward-backward algorithm. This way one can take advantage

of nonlinear activation functions and tune the number of projections to the inference

complexity. Furthermore, one can also adapt the number of CS measurements to extract

in function of the depth of the binary decision tree based on semantic features at each

node. From a hardware point of view, hierarchical learning represents an appropriate

candidate for cascaded systems with multi-stage wake-up levels [184]. This approach

is deemed to minimize energy consumption such the digital processing is customized

depending on the inference task complexity (generally of increasingly complexity).

• Compact image sensor architecture with on-chip inference capabilities (Chapter 6):

the heart of this thesis is the study of a compact CMOS Image Sensor architecture tak-

ing advantage of the proposed CS sensing scheme based on random modulations and

permutations to extract compressed features enabling on-chip inference with lower

hardware complexity. Indeed, through passive analog routines and optimized ADC

architecture, the data dimensionality reduction is achieved using low-footprint pseudo-

random permutation circuit and a one-clock cycle low resolution (5-bit) RMΣ∆. It

enables thus to relax constraints on Digital Signal Processing afterwards. Indeed, the

signal-independent dimensionality reduction of CS (reaching 1
480 compression ratio)

leads to an important memory reduction required to perform the inference approaches

reported in Chapter 5. The digital processing enables an optimized resolution-scalable

computations for the first stage of each presented inference algorithm. Interestingly,

the proposed architecture can advantageously reuse a canonical rolling-shutter readout

scheme and a conventional well optimized 4T pixel architecture. The top-level architec-

ture of the proposed CIS has been validated based on high-level simulations of unitary

components functional behavior.

Although being based on high-level simulations, several enablers have been identified

to make this implementation more hardware friendly. An immediate continuity of the

study of this architecture would be to design the additional block circuits compared to a

canonical CIS architecture, i.e., Pseudo-Random Permutation (PRP) circuit and double-

path Σ∆ (RMΣ∆) ADC. Indeed, several optimizations can be done at the electrical and

layout levels, typically to properly estimate the silicon-footprint of the PRP and handle
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the gain mismatch that can be involved by the RMΣ∆. Related to the preliminary study,

several mid-term perspectives can be explored. In particular, to extend the inference

capability to deal with shifted non-centred patterns, multi-scale pattern detection and

recognition can advantageously be investigated to perform multi-resolution searches in

the focal plane. At the system level, cascaded wake-up processing can advantageously

be explored for end-user always-on applications. For instance, one can imagine a first

motion-detection event based on basic inter-frame binary differences triggering a first

decision making level enabling or not the dedicated inference task. This approach is

deemed to be highly suitable for ultra-low power applications, e.g., IoT sensor nodes.

For future ultra-low power (µW) CIS, the aforementioned conclusions and perspectives pro-

vide some initial algorithm-hardware enablers for the design of compact CIS with on-chip

decision making capabilities. This kind of targeted IoT-like application has been proven to be

relevant in terms of power budget for customer handheld devices.
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