
HAL Id: tel-02529305
https://theses.hal.science/tel-02529305

Submitted on 2 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy and privacy aware estimation over adaptive
networks

Ibrahim El Khalil Harrane

To cite this version:
Ibrahim El Khalil Harrane. Energy and privacy aware estimation over adaptive networks. Distributed,
Parallel, and Cluster Computing [cs.DC]. COMUE Université Côte d’Azur (2015 - 2019), 2019. En-
glish. �NNT : 2019AZUR4041�. �tel-02529305�

https://theses.hal.science/tel-02529305
https://hal.archives-ouvertes.fr

Energy and privacy aware estimation

over adaptive networks

Ibrahim El Khalil Harrane
Laboratoire J.-L. LAGRANGE

Présentée en vue de l’obtention

du grade de docteur en science pour

l’ingénieur

d’Université Côte d’Azur

Dirigée par : Cédric Richard

Co-encadrée par : Rémi Flamary

Soutenue le : 21 / 06 / 2019

Devant le jury, composé de :

David Brie, PU, Université de Lorraine

Olivier Michel, PU, Grenoble-INP

Frédéric Pascal, PU, CentraleSupélec

Alain Rakotomamonjy, PU, Université de Rouen

Jean-Yves Tourneret, PU, Université de Toulouse

THÈSE DE DOCTORAT

Energy and privacy aware estimation

over adaptive networks

Jury :

Rapporteurs
David Brie, PU, Université de Lorraine, France

Olivier Michel, PU, Grenoble-INP, France

Examinateurs
Frédéric Pascal, PU, CentraleSupélec, Gif-sur-Yvette, France

Alain Rakotomamonjy, PU, Université de Rouen, France

Jean-Yves Tourneret, PU, Université de Toulouse, France

Encadrants
Cédric Richard, PU, Université Côte d’azur, France
Rémi Flamary, MCF, Université Côte d’azur, France

i

iii

Energy and privacy aware estimation over
adaptive networks

Abstract

Distributed estimation over adaptive networks takes advantage of the interconnections between agents to
perform parameter estimation from streaming data. Compared to their centralized counterparts, distributed
strategies are resilient to links and agents failures, and are scalable. However, such advantages do not
come without a cost. Distributed strategies require reliable communication between neighbouring agents,
which is a substantial burden especially for agents with a limited energy budget. In addition to this high
communication load, as for any distributed algorithm, there may be some privacy concerns particularly for
applications involving sensitive data. The aim of this dissertation is to address these two challenges.

To reduce the communication load and consequently the energy consumption, we propose two strategies. The
first one involves compression while the second one aims at limiting the communication cost by sparsifying
the network.

For the first approach, we propose a compressed version of the diffusion LMS where only some random
entries of the shared vectors are transmitted. We theoretically analyse the algorithm behaviour in the mean
and mean square sense. We also perform numerical simulations that confirm the theoretical model accuracy.
As energy consumption is the main focus, we carry out simulations with a realistic scenario where agents
turn on and off to save energy. The proposed algorithm outperforms its state of the art counterparts.

The second approach takes advantage of the multitask setting to reduce the communication cost. In a
multitask setting it is beneficial to only communicate with agents estimating similar quantities. To do so, we
consider a network with two types of agents: cluster agents estimating the network structure, and regular
agents tasked with estimating their respective objective vectors. We theoretically analyse the algorithm
behaviour under two scenarios: one where all agents are properly clustered, and a second one where some
agents are asigned to wrong clusters. We perform an extensive numerical analysis to confirm the fitness of
the theoretical models and to study the effect of the algorithm parameters on its convergence.

To address the privacy concerns, we take inspiration from differentially private Algorithms to propose a
privacy aware version of diffusion LMS. As diffusion strategies relies heavily on communication between
agents, the data are in constant jeopardy. To avoid such risk and benefit from the information exchange, we
propose to use Wishart matrices to corrupt the transmitted data. Doing so, we prevent data reconstruction
by adversary neighbours as well as external threats. We theoretically and numerically analyse the algorithm
behaviour. We also study the effect of the rank of the Wishart matrices on the convergence speed and
privacy preservation.

iv

v

Estimation distribuée respectueuse de la
consommation d’énergie et de la confidentialité

sur les réseaux adaptatifs

Résumé

L’estimation adaptative distribuée sur les réseaux tire parti des interconnexions entre agents pour effectuer
une tâche d’estimation de paramètres à partir de flux continus de donnée. Comparées aux solutions central-
isées, les stratégies distribuées sont robustes aux pertes de communications ou aux défaillances des agents.
Cependant, ces avantages engendrent de nouveaux défis. Les stratégies distribuées nécessitent une commu-
nication permanente entre agents voisins, engendrant un coût considérable, en particulier pour les agents
dont le budget énergétique est limité. Au-delà du coût de communication, comme pour tout algorithme
distribué, on peut craindre des problèmes de confidentialité, en particulier pour les applications impliquant
des données sensibles. L’objectif de cette thèse est de répondre à ces deux défis.

Pour réduire le coût de communication et par conséquent la consommation d’énergie, nous proposons deux
stratégies. La première repose sur la compression tandis que la seconde vise à limiter les coûts de commu-
nication en considérant un réseau moins dense.

Pour la première approche, nous proposons une version compressée du diffusion LMS dans laquelle seules
quelques composantes des vecteurs de données partagés, sélectionnées aléatoirement, sont transmises. Nous
effectuons une analyse théorique de l’algorithme ainsi que des simulations numériques pour confirmer la
validité du modèle théorique. Nous effectuons aussi des simulations selon un scénario réaliste dans lequel les
agents s’allument et s’éteignent pour économiser les ressources énergétiques. L’algorithme proposé surpasse
les performances des méthodes de l’ état de l’art.

La seconde approche exploite l’aspect multitâche pour réduire les coûts de communication. Dans un envi-
ronnement multitâche, il est avantageux de ne communiquer qu’avec des agents qui estiment des quantités
similaires. Pour ce faire, nous considérons un réseau avec deux types d’agents: des agents de cluster estimant
la structure du réseau et des agents réguliers chargés d’estimer leurs paramètres objectifs respectifs. Nous
analysons théoriquement le comportement de l’algorithme dans les deux scénarios: l’un dans lequel tous
les agents sont correctement groupés et l’autre dans lequel certains agents sont affectés au mauvais cluster.
Nous effectuons une analyse numérique approfondie pour confirmer la validité des modèles théoriques et
pour étudier l’effet des paramètres de l’algorithme sur sa convergence.

Pour répondre aux préoccupations en matière de confidentialité, nous nous sommes inspirés de la notion de
"differential privacy" pour proposer une version du diffusion LMS prenant en compte la confidentialité des
données. Sachant que le diffusion LMS repose sur la communication entre agents, la sécurité des données est
constamment menacée. Pour éviter ce risque et tirer profit de l’échange d’informations, nous utilisons des
matrices aléatoires de Wishart pour corrompre les données transmises. Ce faisant, nous empêchons la recon-
struction des données par les voisins adverses ainsi que les menaces externes. Nous analysons théoriquement
et numériquement le comportement de l’algorithme. Nous étudions également l’effet du rang des matrices
de Wishart sur la vitesse de convergence et la préservation de confidentialité.

vii

Acknowledgements

First of all, I wish to express my gratitude to my supervisors Cédric Richard and Rémi Flamary for
offering me the opportunity to start my academic carrier through a PhD position. Rémi, thanks to
his enthusiasm, was the first one to interest me in signal processing. I still remember the first day
of my internship with him. That day I knew that working in this field was what I always wanted
to do.

I would like to thank the Jury members: Prof. Prof. Frédéric Pascal, Prof. Alain Rakotomamonjy
and Prof. Jean-Yves Tourneret for accepting to be part of my thesis committee. I wish to express
my gratitude to David Brie, Prof. Olivier Michel for the effort and time they spent reviewing my
thesis.

During the last few years, I worked closely with Rémi and Cédric. I was fortunate to learn from
their expertise and immense knowledge. They were always present to guide me, encourage me, read
my papers and support me. I can not imagine better supervisors, and for that I am very grateful.

Throughout my PhD, I was lucky to meet and befriend two incredible women, Roula and Rita. I
am very thankful for the fun moments we had together. I would also like to thank my Phd fellow
students: Ikram, fei and Micrea for their kindness and friendship.

A very special thank you to my lab colleagues and teachers, Prof. André Ferrari, Prof. Céline
Theys, Prof. Claud aime for their support and the fun and stimulating lunch breaks. I am also
very grateful to all my teachers who taught me and inspired me.

Last but not least, I wish to thank my parents: Mohamed and Ouarda, my brother Houcem and
my sister Sihem for their continues support, encouragement and unconditional love.

ix

Contents

Abstract iii

Table of contents xi

List of Figures xvii

List of Tables xix

List of Algorithms xxi

1 Introduction 1
1.1 Distributed processes: from nature to signal processing 1
1.2 Distributed strategies . 2
1.3 Contributions . 3
1.4 Published papers . 4

2 Diffusion Least Mean Square 7
2.1 Introduction . 7
2.2 Problem Formulation . 8
2.3 Theoretical analysis . 10

2.3.1 Weight error vector recursion . 10
2.3.2 Mean error analysis . 12
2.3.3 Mean square error analysis . 13
2.3.4 Network Mean-Square Performance . 16
2.3.5 Transient State Analysis . 16

2.4 Numerical examples . 17
2.5 Recent developments of diffusion LMS . 18

3 Compressed Diffusion LMS 25
3.1 Introduction . 26

3.1.1 Problem formulation . 28
3.2 Diffusion LMS with compression . 29

3.2.1 Selection matrix probability distribution . 29
3.2.2 Compressed Diffusion LMS . 32

Mean weight behaviour analysis . 34
Mean-square error behaviour analysis . 35

x

Network Mean-Square Performance . 37
Transient State Analysis . 38

3.2.3 Doubly Compressed Diffusion LMS . 38
Mean weight behaviour analysis . 41
Mean-square error behaviour analysis . 42

3.3 Numerical analysis . 50
3.3.1 Compressed diffusion numerical analysis . 50

Theoretical model validation . 51
Algorithm performance for large networks and data sizes 51

3.3.2 Algorithm performance for energy aware networks 52
3.4 Conclusion . 54

4 Privacy aware diffusion LMS 59
4.1 Introduction . 59
4.2 Diffusion LMS with privacy-preserving capabilities 60
4.3 Theoretical analysis . 62

4.3.1 Preliminary properties of Wishart matrices 62
4.3.2 Convergence in the mean . 63
4.3.3 Mean-square stability . 64

4.4 Privacy preserving diffusion LMS numerical analysis 66
4.5 Conclusion . 68

5 Unsupervised Clustered Multitask Learning 71
5.1 Introduction . 72
5.2 Multitask Learning . 72
5.3 Unsupervised Clustered Multitask estimation . 75
5.4 Theoretical analysis with perfect clustering . 80

5.4.1 Mean error stability analysis . 82
5.4.2 Mean square error analysis . 83

5.5 Algorithm performance for imperfect clustering . 85
5.5.1 Mean error analysis . 87
5.5.2 Network Mean Performance . 87
5.5.3 Mean square error analysis . 87
5.5.4 Network Mean-Square Performance . 88
5.5.5 Transient State Analysis . 89

5.6 Numerical analysis . 90
5.6.1 Theoretical model accuracy . 90
5.6.2 Multitask performance . 91

5.7 Conclusion . 94

6 Conclusion 99
6.1 Summary of results . 99

6.1.1 Energy and network resources management 99

xi

6.1.2 Privacy preservation . 101
6.2 Future works and discussion . 101

6.2.1 Improvements related to the presented work 101
6.2.2 New research directions . 102

xiii

List of Figures

2.1 An interconnected network of N = 20 agents. Every agent k has a neighbourhood
Nk. For instance, N2 = {1, 2, 16, 19, 20} and N16 = {1, 2, 8, 11, 18}. 8

2.2 Communication between agents for diffusion LMS. At each iteration, an agent k sends
it local estimate wk,i to its neighbours. It then receives their stochastic gradients
∇̂wJ`(wk,i). Similarly the same agent k, receives its neighbours local estimates w`,i

and sends back it stochastic gradients ∇̂wJk(w`,i). 9
2.3 Comparison of the Mean square deviation (MSD) for diffusion LMS and single agent

LMS. For this comparison, we considered a two dimensional objective vector we
randomly drawn from a Gaussian distribution wo ∼ N (0, I2). The network consists
of N = 10 agents. We set step-size parameters µk = 10−2. We used Gaussian
regression data uk,i ∼ N (0, I2) and additive noise vk(i) ∼ N (0, 10−3). 17

2.4 The effect of the step-size parameter on the convergence rate and the algorithm
accuracy. For this experiment, we used the same data profile and N = 10 agents
network as in the previous experiment. However, we considered two step sizes µ =

10−2 and µ = 10−3. 18
2.5 The trajectories taken by the local estimates wk,i when converging towards the 2D

optimum parameter vector wo. We used the same setting as the previous experiment
with µk = 10−2. Note that in this experiment the agents first reached a consensus,
then this consensus converged to the optimum solution. 19

2.6 Imperfect communication links representation between a source agent ` and a sink
agent k [Sayed, 2013a]. There are four types of noises: 1) regression data noise vu`k,i,
2) reference signal noise vd`k, 3) local estimate noise vψ`k,i and weight vector noise vw`k,i. 20

2.7 A multitask network of N = 20 agents and Q = 4 tasks. The clusters are defined by
each node color. For instance the agents 1, 2, 10, 13, 17, 19 form the blue cluster. . . . 21

xiv

3.1 Illustrative representation of transmitted data for the diffusion LMS and different
approaches aiming at reducing the communication load for a node k. Part (a) repre-
sents the communication for diffusion LMS where the weighting matrices A and C
are different from the identity matrix. In part (b), we illustrate the communication
link between agents as proposed in [Lopes and Sayed, 2008]. The authors proposed
to share data with only a random subset of their neighbours. Other authors con-
sidered to limit the number of shared entries rather than agents as it is depicted in
part (c). This approaches was proposed in [Arablouei et al., 2014a]. Note that for
both parts (b) and (c) the weighting matrix C is set to the identity. Finally, part
(d) represents the approach we adopted in this study, that is, to only share partial
stochastic gradient vectors. To do so, we set the weighting matrix A = IN and use
selection matrices Hk,i and Qk,i as explained hereafter. 26

3.2 (left) Network topology. (right) Variance σ2
uk

of regressors for the theoretical model
validation where we considered a network of N = 10 (top). On the bottom part we
depict the variances σ2

uk in the case where we considered a larger network of N = 50

agents. 51
3.3 Theoretical and simulated MSD curves for diffusion LMS and its compressed versions.

We considered a network of N = 10, data dimension L = 5, step-size parameters
µk = 10−3. We chose to share M = 3 entries of the local estimate vectors, for both
versions of the compressed diffusion LMS. For the DCLMS we share M∇ = 1 entries
of the stochastic gradient vectors. 52

3.4 Evolution of the mean square deviation (MSD) as a function of the compression
ratio for compressed diffusion LMS. We have a network of N = 50 agents and data
dimension L = 50. We set the step-size parameters to µk = 10−2. We use a similar
data profile as the previous experiment. 53

3.5 Evolution of the MSD as a function of the compression ratio for doubly-compressed
diffusion LMS. We use the same parameters as the CD algorithm described in Figure 3.4. 54

3.6 Network topology for WSN experiment. We have a network of N = 80 agents
scattered of a valley. Under such setting, the agents receive different levels of solar
energy. 56

3.7 Harvested energy and sleep periods during the experimentations. On the upper half,
we illustrate the profile of the harvested energy. We considered a simplistic model
of the solar energy Eharv,k,i = max(0, E0 sin(2πfi) + n(i)). On the bottom half, we
depict the sleep periods duration for all of the compared algorithms. 56

3.8 Simulated Mean square deviation under a realistic scenario. We consider a network
of N = 80 agents and data dimension L = 540. The step-size parameters are summed
up in Table 3.5. We use a similar data profile as the previous experiments. 58

xv

4.1 Mean square deviation (MSD) comparison between diffusion LMS and its privacy-
preserving version for i.i.d. regression data. We consider a network of N = 10

agents, data dimension L = 5 and a randomly drawn objective vector wo ∼ N (0, I5).
The regression data vectors and the additive noise are also draw from a Gaussian
distribution uk,i ∼ N (0, I5), vk(i) ∼ N (0, 10−3). Finally the step-size parameters
are set to µk = 1

Mx
. 67

4.2 Mean square deviation (MSD) comparison between diffusion LMS and its privacy-
preserving version for correlated input data. For this final experiment, we use the
same parameters as the first one with different values of the parameter Mx. 68

4.3 Mean square deviation (MSD) comparison between diffusion LMS and its privacy-
preserving version for correlated input data. We use a similar setting as the previous
experiment. However, we consider the covariance matrix Ru,k defined in (4.42) for
the regression data. 69

5.1 We depict a network with N = 6 agents, Q = 2 task agents. The 6 regular agents
estimate their local estimates wk and cluster around the 2 cluster agents. The rela-
tionship between the cluster agents and regular agents is conveyed through α. The
cluster centroids w̄q and α are estimated by the cluster agents. 77

5.2 A representation of the relationships between each of the N = 9 agents and the Q
cluster agents. We represent the coefficients αkq through the width of the links. On
the left-hand side, we illustrate the links as in the beginning of the learning. At this
stage all the agents communicate with all of the cluster nodes, thus the thinness of the
links. The centre figure represents an intermediate step where the cluster agents start
to adjust their connections with the regular agents. For instance, the link between
the top regular agent and green cluster agent was severed as they do not share similar
tasks. On the right-hand side, we represent the links after the convergence of the
adjacency parameters αkq where all the unnecessary links have been cut off. Note
that at this stage, the entries of αi are on the corners of the simplex ∆N

Q 78
5.3 Theoretical and simulated mean-square deviation (MSD). For this experiment, we

consider a network of N = 10 agents, data dimension L = 2, Gaussian regression
data uk,i ∼ N (0, IL) and additive noise vk(i) ∼ N (0, 10−3). The step-size are set to
µk = 10−3, µ̄ = 10−4 and the regularisation parameter γ = 0.5. 90

5.4 Theoretical and simulated mean-square deviation (MSD) when a subset of agents is
miss-assigned. We consider two objective vectorsw0

1 ∼ N (0,Σ) andw0
2 = w0

1+10 1L,
a network of N = 5 agents N1 = 3 tasked with estimating wo

1 and N2 = 2 estimating
wo

2. The remaining parameters remains the same as in the previous experiment. . . . 91
5.5 Algorithm comparison with single task LMS. We consider a network of N = 100

and a data dimension of L = 2. The objective vector is drawn from a Gaussian
distribution wo ∼ N (0, IL) and the step-size parameters, for both algorithms, are
set to µk = 10−2. The regression data is drawn from a Gaussian distribution uk,i ∼
N (0, IL) and so are the noise scalars vk(i) ∼ N (0, 10−3). 92

xvi

5.6 Local estimates trajectories and cluster agents estimates (thick lines) and their re-
spective objective vectors. For these experiments, we considered a network of N = 30

agents, Q = 3 tasks, step-sizes µk = 10−2, µ̄ = 10−3, µα = 10−4 and a regularisation
parameter γ = 10−1. The (L×1) objective vector w0

q are set to wo
1 = col{−1.5,−1},

wo
2 = col{1.5,−1} and wo

3 = col{0, 1.5} for the left-hand side figure and wo
1′ =

col{−1.5, 1}, wo
2′ = col{1.5, 1} and wo

3 = col{0,−1.5} for the right-hand one. The
regression data uk,i and the noise scalars vk(i) are, as in the previous experiments,
drawn from Gaussian distributions. 93

5.7 The mean square deviation (MSD) for different numbers of miss-labelled tasks. We
consider a Network of N = 30 agents, L dimensioned objective vectors w0

1 and w0
2,

K is a scalar varying from K = 0 to K = 10. We kept the same step-sizes, regression
data and noise parameters as the previous experiment. 94

5.8 Local and cluster agents estimates trajectories and their respective objective vectors.
For this experiment, we consider a network of N = 30 agents, Q = 3 tasks, step-
sizes µk = 10−3, µ̄ = 10−2, µα = 10−4 and a regularisation parameter γ = 10−1.
The (L× 1) objective vector w0

q are set to wo
1 = col{−1.5, 1}, wo

2 = col{1.5, 1} and
wo

3 = col{0,−1.5}. The regression data uk,i and the noise scalars vk(i) are, as in the
previous experiments, drawn from Gaussian distributions. 95

5.9 Local and cluster agents estimates trajectories and their respective objective vectors.
For this experiment, we consider a network of N = 30 agents, Q = 3 tasks, step-
sizes µk = 10−3, µ̄ = 10−1, µα = 10−4 and a regularisation parameter γ = 10−1.
The (L× 1) objective vector w0

q are set to wo
1 = col{−1.5, 1}, wo

2 = col{1.5, 1} and
wo

3 = col{0,−1.5}. The regression data uk,i and the noise scalars vk(i) are, as in the
previous experiments, drawn from Gaussian distributions. 96

5.10 Local estimates trajectories and their respective objective vectors. We consider a
network of N = 30 agents, Q = 3 tasks, step-sizes µk = 10−3, µ̄ = 10−3, µα = 10−2

and a regularisation parameter γ = 10−1. The (L × 1) objective vector w0
q are set

to wo
1 = col{−1.5, 1}, wo

2 = col{1.5, 1} and wo
3 = col{0,−1.5}. The regression data

uk,i and the noise scalars vk(i) are drawn from Gaussian distributions. 96
5.11 The mean square deviation (MSD) for a two-stage estimation strategy. We con-

sider the same setting as in the previous experiment except for the step-size and the
regularisation parameters. In the beginning, the regularisation parameter is set to
γ = 10−8 to limit the collaboration between the cluster regular agents. After conver-
gence of the regular agents, we set γ = 8 10−1 to improve the accuracy. Note that
we set the step-size parameters to µk = 10−3

γ , µ̄ = 10−3

γ and µα = 5 10−4

γ 97

6.1 Mean square deviation (MSD) using random matrix theory for Uniform data dis-
tribution for three covariance matrices. We consider a highly connected network of
N = 4 104 agents. We set data dimension to L = 400, the step-size µ = 10−1 and
the matrix A is set to the identity matrix. We set the noise variance to σ2

v = 10−3.
We drew the regression vectors uk,i from a uniform distribution over [-2 2]. 103

xvii

6.2 Mean Square Error (MSD) using random matrix theory for Poisson data distribution
for three covariance matrices. We consider the same setting as for the uniform dis-
tribution experiment Figure 6.1. We set the rate parameter λp of the distribution to
λp = 4 and cantered and normalised the data. 104

6.3 Mean square deviation (MSD) using random matrix theory for Bernoulli data dis-
tribution for three covariance matrices. We use the same setting as for the previous
data distribution. We use two binary values −1 and 1 for the data distribution. . . . 105

xix

List of Tables

2.1 List of the symbols and notations used in chapter 2 10
2.2 List of symbols defined throughout the performance analysis chapter 2 14

3.1 List of the symbols and notations used in chapter 3 28
3.2 Moments of the selection matrix . 33
3.3 List of symbols defined throughout the performance analysis chapter 3 57
3.4 Summary of the parameters used to determine the duration of sleeping phase Ts . . 58
3.5 Step-size and compression settings for the different tested algorithms. 58

4.1 List of the symbols and notations used in chapter 4 60
4.2 List of symbols defined throughout the performance analysis chapter 4 62

5.1 List of the symbols and notations used in chapter 5 76
5.2 List of symbols defined throughout the performance analysis chapter 5 80

xxi

List of Algorithms

2.1 Local updates at node k for diffusion LMS . 12
3.1 Local updates at node k for CD . 33
3.2 Local updates at node k for DCD . 39
3.3 Local updates at node k for the modified DCD . 55
5.1 Unsupervised Clustered Multitask learning algorithm 79

xxiii

List of Abbreviations

LMS Least Mean Squares algorithm
DLMS Diffusion LMS algorithm
CD Compressed Diffusion LMS algorithm
DCD Compressed Diffusion LMS algorithm
ATC Adapt Then Combine strategy
CTA Combine Then Adapt strategy
WSN Wireless Sensor Networks
MSD Mean Square Deviation
i.i.d. independent and identically distributed
RHS right-hand side

1

1 Introduction

Contents
1.1 Distributed processes: from nature to signal processing 1

1.2 Distributed strategies . 2

1.3 Contributions . 3

1.4 Published papers . 4

In this very first chapter, we discuss distributed estimation over networks, its advantages and the
challenges resulting from the distribution process. We first give a brief introduction to distributed
strategies in the single and multitask settings. Then, we sum up the solution we proposed to tackle
the previously discussed challenges.

1.1 Distributed processes: from nature to signal processing

During this last decade, the world has witnessed a huge numerical leap. Thanks to impressive
achievements in various fields such as signal processing, machine learning and electrical engineering,
we are living in a world where powerful computers are wrapped over one’s wrist as a smart watch
or held in a palm of a hand as a smart phone; in a world where autonomous cars and smart houses
are no longer a science-fiction fantasy; a world where social networks are so powerful that they can
determine one’s carrier or an entire country’s future. Behind such evolution there is a common
thread, that is, networking. For instance autonomous cars relay on GPS signals, and smart houses
on heterogenous sensors networks.

If we take a step back to reflect on this advancement and observe nature around us, we would realise
that networking runs at a level as deep as the DNA level. Through natural selection, animals evolved
to live in groups and cooperate to survive. Observe for instance, predatorial animals hunt in packs
such as wolfs and prey herding to maximise their chances of survival against predators by relying
on their strength as a group.

This evolution can be felt, as humans evolved to live in societies and cooperate for their survival.
This biological evolution found a new expression in the numerical world as nothing else but social
networks.

With the benefits of cooperation, it was only a matter of time for scientists to take inspiration and
incorporate it in algorithms which resulted in the inception of different forms of distributed algo-
rithms. For instance [Nedic and Ozdaglar, 2009] proposed a consensus based distributed algorithm

2 Chapter 1. Introduction

where agents cooperate to minimise a common cost function and reach consensus after convergence.
Such condition seemed adequate for this sort of estimation problem since the agents are estimating
the same quantity.

1.2 Distributed strategies

Distributed strategies mainly rely on two types of communication. On the one hand, we have
strategies where each agent only communicates with one, and only one, neighbour in a circular
manner. Such strategies are known as incremental strategies. They can be attractive as they limit
the network communication. However, this advantage comes at a high cost: first of all, a cyclic
communication path needs to be determined. Such problem is NP hard. In addition, such strategy
has a glaring defect, that is link or agent failures. It takes only one severed link to bring the whole
communication path down. On the other hand, we have diffusion strategies. In this case information
is diffused to a subset of direct neighbours rather than incrementally transferred from an agent to
another. Even though such protocol increases the communication load, it also hugely increases the
algorithm resilience to links and agents failures and immensely simplifies the algorithm as it does
not deal with an NP hard estimation problem. There are mainly two types of strategies, single task
and multitask strategies.

Single task strategies Diffusion strategies consider a network of connected agents aiming to
estimate one common parameter. Those agents are usually small devices with small computational
capabilities. However, through communication and cooperation, they are able to accurately execute
complex tasks. These agents deal with a stream of information which allows them to adapt to
data statistics drifts. Such setting is highly attractive as these networks are highly scalable and
adaptable. They can be tasked with a large variety of applications ranging from target location to
power estimation in mobile networks.

Multitask strategies In many cases, there is more than one parameter to estimate, for instance,
a location system might be interested in locating different targets in different areas. In such in-
stance, we rely on multitask networks. Agents sharing the same task form clusters. Depending on
whether the agent are aware of their clusters, there are two types of scenarios, a supervised and
an unsupervised one. In the case of the later scenario, each agent needs to estimate the cluster it
belongs to.

LMS Algorithm Several algorithms have benefited from a distributed make-over. However, one
particular algorithm found a huge success among the community [Chen et al., 2016, Parreira et al.,
2012, Sayed, 2013b, Liu et al., 2008b, Narayan and Peterson, 1981]. We are referring to the Least
Mean Squares algorithm or LMS for short. This wide use is mostly due to its simple implementation
and yet high performance. The LMS algorithm belongs to the family of stochastic algorithms. It
resembles the steepest descent method where the gradient determines the descent direction. The

1.3. Contributions 3

LMS algorithm uses a stochastic gradient of the mean square error to converge towards the optimum
filter weights. Simplicity and low complexity have granted the LMS its status among the community.

1.3 Contributions

In this work, we try to improve diffusion LMS performance under different conditions. In the
following chapter, we shall begin by recalling the single task diffusion LMS and its theoretical
analysis from [Sayed, 2003]. Then, we explore the recent advances related the scope to this work.
This chapter will serve as a reference for the following chapters.

In the third chapter we address the only advantage the incremental strategies have over diffusion
strategies: the communication load. To do so, we consider a compression procedure that reduces
the communicated entries of each shared vector to a set number. We then proceed by theoreti-
cally studying the algorithm weights convergence in the mean and mean square sense. Then we
numerically verify the theoretical model accuracy. We found that such approach is highly adapted
for networks with very low energy budgets as we simulated such network with agents turning on
and off to save energy. This study can be viewed under another angle where a certain number of
communicated packets is lost. The theoretical results may prove very useful in determining the
performance loss under such conditions.

The fourth chapter focuses on the very sensitive subject of privacy. The problem seems straight-
forward as an encryption should suffice to guaranty the privacy of the shared data. However, this
approach does not consider an adverse neighbour. For the agents to cooperate the encryption key
needs to be shared and the data are fully disclosed to the neighbouring agents. In order to take
advantage of the cooperation without compromising the data privacy, we took inspiration from
differential privacy that compromises the data set through different means so that the individual
information is preserved while the statistical trend can still be extracted. We therefore proposed
an algorithm based on this approach that takes into account the streaming nature of the data in
diffusion strategies. Furthermore, we maintain control over the data alteration through a parameter.
We then carried out a theoretical analysis where we tested the theoretical model accuracy under
different conditions. We also studied the impact of this approach on the algorithm performance. As
expected, we reached the conclusion that there is a trade-off between the privacy and the algorithm
accuracy.

The fifth chapter deals with multitask estimation. Although some authors considered unsupervised
multitask estimation problems [Nassif et al., 2016d, Chen et al., 2015a] the rest of the literature
mainly focused on the supervised counterpart. We then proposed an unsupervised distributed
algorithm that takes advantage of both centralised and distributed methods with little if none of their
drawbacks. The algorithm considers two types of agents, cluster agents tasked with stochastically
estimating the cluster objective vector and the graph adjacency matrix. The other agents estimate
their objective vector by minimizing a regularized cost function. Similarly to the previous chapters,
we theoretically analysed the algorithm. However, this time, we considered two scenarios. The first
one considers a network where all agents are correctly clustered while the second considers the case

4 Chapter 1. Introduction

where some of them are affected to wrong clusters. Finally, we conducted a numerical analysis to
confirm the fitness of the theoretical models and to test the algorithm performance when agents are
miss-assigned. We found out that, first, the theoretical models are accurate and the bias introduced
in the case of mislabelled agents is related to the difference between the wrongly affected objective
vectors and the correct ones.

Finally, we conclude the thesis by summing up the main finding and explore some future research
directions.

1.4 Published papers

• Harrane, I. E. K., Flamary, R., and Richard, C. (2019). On reducing the communication cost
of the diffusion lms algorithm. IEEE Transactions on Signal and Information Processing over
Networks, 5(1):100–112.

• Harrane, I. E. K., Flamary, R., and Richard, C. (2016a). Doubly compressed diffusion lms over
adaptive networks. In 2016 50th Asilomar Conference on Signals, Systems and Computers,
pages 987–991.

• Harrane, I. E. K., Flamary, R., and Richard, C. (2016b). Toward privacy-preserving diffusion
strategies for adaptation and learning over networks. In Proc. EUSIPCO, Budapest, Hungary.

7

2 Diffusion Least Mean Square

Contents
2.1 Introduction . 7

2.2 Problem Formulation . 8

2.3 Theoretical analysis . 10

2.3.1 Weight error vector recursion . 10

2.3.2 Mean error analysis . 12

2.3.3 Mean square error analysis . 13

2.3.4 Network Mean-Square Performance . 16

2.3.5 Transient State Analysis . 16

2.4 Numerical examples . 17

2.5 Recent developments of diffusion LMS 18

In this chapter, we give an overview of distributed estimation with a focus on diffusion LMS algo-
rithm. We start by formulating the estimation problem. Then, we present a thorough theoretical
analysis of the algorithm starting with the mean error stability. Next we analyse the convergence
in the mean square sense. We conclude the theoretical analysis with the network mean square
performance in its steady and transient states. We also provide a numerical analysis where we
demonstrate the theoretical model fitness. Finally, we take a deep dive into the literature and
explore the recent developments of diffusion LMS.

2.1 Introduction

In the recent years, we have witnessed a staggering technological development, computers have
never been as powerful, electrical chips as efficient and networks as big. With the later development
in mind, distributed processing has received a huge attention. As the world is moving towards a
connected model, many problems evolved to a networked structure such as sensor networks [Car-
mona et al., 2013, Vincent et al., 2014], energy grids, mobile phone networks, social and economical
networks and swarming behaviour in the biological realm [Tu and Sayed, 2010].

All of these networks share a similar structure. They are built from interconnected agents, usu-
ally with limited computational power and are distributed over geographical areas. Distributed
processing is based on the cooperation between agents to offer an enhanced global estimation per-
formance [Sayed, 2003]. Agents are only allowed to communicate with their direct neighbours.
They have fairly simple tasks to accomplish. However, the communication between agents allows a

8 Chapter 2. Diffusion Least Mean Square

Figure 2.1: An interconnected network of N = 20 agents. Every agent k has a
neighbourhood Nk. For instance, N2 = {1, 2, 16, 19, 20} and N16 = {1, 2, 8, 11, 18}.

more complex networks behaviour. Nature is a perfect example, for instance birds flock, ants and
micro-bacteria form colonies, sheep herd and fish form schools. All with the same objective, that
is, increasing their survival rate through cooperation [Sayed et al., 2013].

Taking inspiration from nature, many distributed algorithms have been developed and studied to
solve different kinds of problems such as inference and optimization problems. These algorithms
found application in numerous domains such as machine learning, and networked sensors. In this
kind of applications, nodes are tasked with an optimization problem to estimate a given parameter.
Furthermore, since real life data are always shifting, networks need to cope with this drift. As a
consequence, instead of learning from a finite data set, agents have to process a continuous stream
of data and adapt accordingly. This is known as online learning.

In this chapter, we start setting the basic of diffusion LMS algorithm (diffusion LMS) based
on [Sayed, 2013b]. Then we give a detailed theoretical analysis of both first and second order
moments of the mean error. Finally, we explore the different variants of the algorithm ranging from
single bit compression to multitask diffusion LMS.

2.2 Problem Formulation

In this section, we recall the Diffusion Least Mean Square algorithm as formulated in [Sayed, 2013b].
Let us consider an interconnected network of N nodes as it is depicted in Figure 2.1. Each node is
tasked with estimating an L×1 unknown vectorwo from collected measurements. Node k has access
to local streaming measurements {dk(i),uk,i} where dk(i) is a scalar zero-mean reference signal, and
uk,i is an L × 1 zero-mean regression vector with covariance matrix Ruk = E{uk,iu>k,i} � 0. The
data at agent k and time i are assumed to be related via the linear regression model:

dk(i) = u>k,iw
o + vk(i) (2.1)

2.2. Problem Formulation 9

Figure 2.2: Communication between agents for diffusion LMS. At each iteration,
an agent k sends it local estimate wk,i to its neighbours. It then receives their
stochastic gradients ∇̂wJ`(wk,i). Similarly the same agent k, receives its neighbours
local estimates w`,i and sends back it stochastic gradients ∇̂wJk(w`,i).

where wo is the unknown parameter vector to be estimated, and vk(i) is a zero-mean i.i.d. noise
with variance σ2

v,k. The noise vk(i) is assumed to be independent of any other signal. Let Jk(w) be
a differentiable convex cost function at agent k. For this chapter as well as the upcoming ones, we
shall consider the mean-square-error criterion:

Jk(w) = E{|dk(i)− u>k,iw|2}. (2.2)

Diffusion LMS strategies seek the minimizer of the following aggregate cost function:

Jglob(w) =
N∑
k=1

Jk(w) (2.3)

in a cooperative manner through online adaptation. Let wk,i denote the estimate of the minimiser
of (2.3) at node k and time instant i. The general structure of diffusion LMS in its Adapt-then-
Combine (ATC) form is given by:

ψk,i = wk,i−1 − µk
∑
`∈Nk

c`k∇̂wJ`(wk,i−1) (2.4)

wk,i =
∑
`∈Nk

a`kψ`,i (2.5)

where ∇̂wJ`(wk,i−1) = −u`,i[d`(i)−u>`,iwk,i−1], Nk denotes the neighbourhood of node k including
k, and µk is a positive step-size. Nonnegative coefficients {a`k} and {c`k} define a left-stochastic
matrix A and a right-stochastic matrix C, respectively.

We illustrate the communication between agents in Figure 2.2. In the first step each agent k adapts
its local estimate wk,i based on its observations and gradients provided by its neighbours, hence

10 Chapter 2. Diffusion Least Mean Square

Table 2.1: List of the symbols and notations used in chapter 2

Symbol Definition
L length of the parameter vectors
N network agents number
Nk neighbourhood of agent k including itself
wk,i instantaneous estimate at agent k
wo optimum parameter vector
dk(i) reference signal for agent k at time instant i
uk,i regression vector of agent k
vk(i) additive noise at agent k

the appellation of this step as the adaptation step. The second step, as its name states, consists of
combining the local estimates of the neighbouring nodes. Note that inverting the aforementioned
steps results in a second variation of diffusion LMS known as Combine-then-Adapt (CTA). It must
be noted that the Adapt-then-Combine (ATC) strategy outperforms the (CTA) as it has been
proven in [Sayed, 2008]. The ATC diffusion run is described for an agent k in 2.1.

2.3 Theoretical analysis

In this section we are interested in analysing the behaviour of diffusion LMS in the mean and mean
square sense as it has been performed in [Sayed, 2013b]. However, before proceeding with the
analysis, let us introduce the following assumption on the regression data and the additive noise.
Assumption 2.1. The regression vectors uk,i arise from a zero-mean random process that is tem-
porally white and spatially independent.
Assumption 2.2. The additive noise signals vk(i) are temporally white and spatially independent
zero-mean random variables.

A direct consequence of 2.1 is that uk,i is independent of w`,j for all ` and j < i. Let us now
proceed with the algorithm analysis.

2.3.1 Weight error vector recursion

Let us introduce the error vectors w̃k,i and ψ̃k,i as

w̃k,i = wo −wk,i (2.6)

ψ̃k,i = wo − ψk,i (2.7)

We replace the reference signal dk(i) by its definition (2.1) in the equations (2.4)–(2.5)

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`ku`,i[u
>
`,iw

o + v`(i)− u>`,iwk,i−1] (2.8)

wk,i =
∑
`∈Nk

a`kψ`,i (2.9)

2.3. Theoretical analysis 11

Subtracting wo from both sides

ψ̃k,i = w̃k,i−1 − µk
∑
`∈Nk

c`k (Ru`,i w̃k,i−1 + s`,i) (2.10)

w̃k,i =
∑
`∈Nk

a`kψ̃`,i (2.11)

where

Ru`,i = u`,iu
>
`,i (2.12)

s`,i = v`(i)u`,i (2.13)

We introduce concatenated versions of the error vectors w̃i and ψ̃i and the noise vector si

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (2.14)

ψ̃i = col{ψ̃1,i, ψ̃2,i, . . . , ψ̃N,i} (2.15)

si = col{s1,i, s2,i, . . . , sN,i} (2.16)

(2.17)

Due to the zero mean of both the regression data uk,i and the noise sk,i we have:

E{si} = 0N×L,1 (2.18)

and the covariance matrix of the vector si is an (NM ×NM) bloc diagonal matrix

S = E{s>i si} = diag{σ2
v,1Ru1 ,σ

2
v,2Ru2 , . . . ,σ

2
v,NRuN } (2.19)

where
Ruk = E{Ruk,i} (2.20)

We further introduce the following matrices

Ri = diag{R1,i,R2,i, . . . ,RN,i} (2.21)

Rk,i =
∑
`∈Nk

c`kRu`,i (2.22)

A = A⊗ IL (2.23)

M = diag{µ1IL, µ2IL, . . . , µNIL} (2.24)

C = C ⊗ IL (2.25)

12 Chapter 2. Diffusion Least Mean Square

Algorithm 2.1 Local updates at node k for diffusion LMS
1: for i do=1 . . .
2: for ` ∈ Nk \ {k} do
3: send wk,i to node `
4: receive from node ` the gradient vector: ∇̂wJ`(wk,i−1)
5: end for
6: update the intermediate estimate: ψk,i = wk,i−1 + µk

∑
`∈Nk

c`k∇̂wJ`(wk,i−1)
7: calculate the local estimate: wk,i =

∑
`∈Nk

a`k ψ`,i
8: end for

where ⊗ denotes the Kronecker product. We reformulate the equations (2.10)–(2.11) using the
newly introduced error vectors

ψ̃i = (ILN −MRi) w̃i−1 −MC>si
w̃i = A> ψ̃i

(2.26)

Finally we combine the equations (2.26) to obtain

w̃i = Biw̃i−1︸ ︷︷ ︸
Data term

− Gsi︸︷︷︸
Noise term

(2.27)

where

Bi = A> (INL −MRi) (2.28)

G = A>MC> (2.29)

The error vector w̃i has two terms, one term solely depending on the data (left term) and a noise
term (right term).

2.3.2 Mean error analysis

In this part, we are interested in studying the algorithm stability in the mean.

Taking expectation of both sides of (2.27) leads to

E{w̃i} = E{A> (INL −MRi) w̃i−1 −A>MC>si} (2.30)

using the independence between the regression data and the error vector w̃i as assumed in Assump-
tions 2.1 and 2.2, in addition to the zero mean of the noise vector si we find that:

E{w̃i} = BE{w̃i−1} (2.31)

2.3. Theoretical analysis 13

where

B = E{Bi} = A> (INL −MR) (2.32)

R = E{Ri} (2.33)

It is noteworthy that the matrix B depends on the networks topology encoded in the matrix A, the
data profile represented by the matrix R and the step-size parameters as they build up the matrix
M.

From (2.31) all the estimators across the network will converge to the optimal solution wo provided
that the matrix B is stable [Sayed, 2014] i.e.:

ρ (B) < 1 (2.34)

where ρ(·) denotes the spectral radius of its matrix argument. This condition is verified for small
enough step-sizes µk such as

0 < µk <
2

λmax(Rk) (2.35)

where λmax(.) denotes the largest eigenvalue of it matrix argument. In other words for a small
enough step-size µk, when i→∞, for all the agents k, E{wk,i} → wo.

2.3.3 Mean square error analysis

While the algorithm stability is crucial, its accuracy is of utmost importance. In order of measure
this quantity, we use the mean square deviation (MSD). For a wider study, we consider the weighted
measure ||w̃i||2Σ where Σ is a positive-definite matrix. The choice of Σ will determine the evaluated
measure. Setting it, for example, to Ru will result in the excess means square error EMSD.

The quantity of interest is the following

E||w̃i||2Σ = E{(Biw̃i−1 − Gsi)>Σ (Biw̃i−1 − Gsi)}
= E{w̃>i−1B>i ΣBiw̃i−1} − E{w̃>i−1B>i ΣGsi}
− E{s>i GΣBiw̃i−1}+ E{s>i G>ΣGsi} (2.36)

using the independence between the signals and noise, and noise zero mean, we find that:

E{||w̃i||2Σ} = E{w̃>i−1B>i ΣBiw̃i−1}︸ ︷︷ ︸
Data term

+E{s>i G>ΣGsi}︸ ︷︷ ︸
Noise term

(2.37)

We shall start with the last term of (2.37)

E{s>i G>ΣGsi} = trace
(
G>ΣGE{sis>i }

)
= trace

(
G>ΣGE{sis>i }

)
= trace

(
G>ΣGS

)
(2.38)

14 Chapter 2. Diffusion Least Mean Square

Table 2.2: List of symbols defined throughout the performance analysis chapter 2

Symbol Equation
w̃k,i = wo −wk,i (2.6)
ψ̃k,i = wo − ψk,i (2.7)

Ri = diag{R1,i,R2,i, . . . ,RN,i} (2.21)
Rk,i =

∑
`∈Nk

c`kRu`,i (2.22)

Ru`,i = u`,iu
>
`,i (2.12)

Ruk = E{Ruk,i} (2.20)

s`,i = v`(i)u`,i (2.13)
S = E{s>i si} = diag{σ2

v,1Ru1 ,σ
2
v,2Ru2 , . . . ,σ

2
v,NRuN } (2.19)

A = A⊗ IL (2.23)
M = diag{µ1IL, µ2IL, . . . , µNIL} (2.24)
C = C ⊗ IL (2.25)

Bi = A> (INL −MRi) (2.28)
G = A>MC> (2.29)

B = E{Bi} = A> (INL −MR) (2.32)
R = E{Ri} (2.33)

F = (A⊗A)− (RM⊗A)− (A⊗RM) (2.47)
Y = G>SG (2.49)

where we used the trace(.) properties. S is defined in (2.19). Regarding the first term of the
expectation (2.37), we have

E{w̃>i−1B>i ΣBiw̃i−1} =E||w̃i−1||2Σ′ (2.39)

where we introduce the new weighing matrix Σ′

Σ′ = E{B>i ΣBi}
= E{(INL −MRi)

>AΣA> (INL −MRi)}
= AΣA> −AΣA>MR−RMAΣA> +O(µ2) (2.40)

whereA, C andM are defined in (2.23)–(2.25) andR in (2.33). The term O(µ2) denotes a quantity
dependent on the squared step sizes µ2

k such as

O(µ2) = E{RiMAΣA>MRi} (2.41)

2.3. Theoretical analysis 15

While it is possible to carry on the study considering the term O(µ2), we focus on the case where
the step-sizes are small enough to ignore the terms involving their higher moments [Sayed, 2013a].
Therefore we continue the analysis with Σ′ defined as

Σ′ = AΣA> −AΣA>MR−RMAΣA> (2.42)

The weighing matrix Σ′ carries several information about the set-up. The matrix A or C defines
the network topology, the data profile is encoded with the aggregated covariance matrix R and the
step-sizes through the matrix M.

As in [Sayed et al., 2013], we express the matrix Σ under its vector form such as σ′ = vec(Σ). To
do so, we use the following properties:

vec(QΣZ) = (Z> ⊗Q)σ (2.43)

trace(ΣQ) = [vec(Q>)]>σ (2.44)

where Q and Z are arbitrary matrices of compatible sizes. Applying the vec(.) operator on both
sides of (2.42) we find that

σ′ = (A⊗A)σ − (RM⊗A)σ − (A⊗RM)σ (2.45)

which leads to

σ′ = Fσ (2.46)

where we introduce the (NL)2 × (NL)2 matrix F defined as

F = (A⊗A)− (RM⊗A)− (A⊗RM) (2.47)

Using the trace(.) and vec(.) properties on (2.38) and substituting it alongside (2.39) in (2.37) results
in

E||w̃i||2σ = E{||w̃i−1||2Fσ}+
[
vec
(
Y>
)]>

σ (2.48)

where
Y = G>SG (2.49)

From (2.48), the diffusion LMS is stable in the mean square sense if and only if the coefficient matrix
F is stable. This condition is satisfied when the step-sizes are sufficiently small

µk <
2

λmax(Rk) (2.50)

where Rk is defined in (2.22).

16 Chapter 2. Diffusion Least Mean Square

2.3.4 Network Mean-Square Performance

Using the equation (2.48), we can evaluate the network as well as every single agent accuracy. As the
algorithm is stable for sufficiently small step-sizes (2.50) we can take the limits of the equation (2.48)
as

lim
i→∞

E||w̃i||2σ = lim
i→∞

E||w̃i−1||2Fσ + vec(Y>)>σ (2.51)

Grouping terms leads to

lim
i→∞

E||w̃i||2(I−F)σ = vec(Y>)>σ︸ ︷︷ ︸
Noise term

(2.52)

Consider the mean square deviation of the network defined as follows:

MSDNetwork = 1
N ||w̃i||2 (2.53)

Estimating (2.53) can be performed by setting σ in (2.52) as follows:

σ = 1
N (I −F)−1vec(I) (2.54)

This leads to:
MSDNetwork = 1

N vec(Y>)>(I −F)−1vec(I) (2.55)

2.3.5 Transient State Analysis

To analyse the algorithm transient behaviour, we iterate the equation (2.48) from i = 0 to find

E||w̃i||2σ = E||w̃−1||2F i+1σ
+ vec(Y>)>

i∑
j=0

F jσ (2.56)

where w̃−1 is the initial condition term. Comparing the recursion (2.56) for the time instants i and
i− 1 we find

E||w̃i||2σ = E||w̃i−1||2σ + vec(Y>)>F iσ − E||w̃−1||2(I−F)F iσ
(2.57)

In order to evaluate the transient Mean-Square Deviation, the weighing vector σ needs to be set to
1
N vec(I).

Note that similar performance information can be extracted for a single agent by setting the weight-
ing matrix Σ to zeros except for the block matrix corresponding to the said agent which shall be
set to the identity matrix.

2.4. Numerical examples 17

Figure 2.3: Comparison of the Mean square deviation (MSD) for diffusion LMS
and single agent LMS. For this comparison, we considered a two dimensional objective
vector we randomly drawn from a Gaussian distribution wo ∼ N (0, I2). The network
consists of N = 10 agents. We set step-size parameters µk = 10−2. We used Gaussian
regression data uk,i ∼ N (0, I2) and additive noise vk(i) ∼ N (0, 10−3).

2.4 Numerical examples

For the sake of demonstration, we consider a network of N = 10 agents estimating wo a two
dimensional vector. The regression data is randomly drawn from a Gaussian distribution uk,i ∼
N (0, I2) and so is the additive noise vk(i) ∼ N (0, 10−3). We carry out 100 Monte-Carlo runs of
the diffusion LMS algorithm.

In Figure 2.3 we illustrate the theoretical model accuracy and the diffusion LMS performance
compared to a single agent LMS. Through collaboration, diffusion LMS algorithm achieves a better
performance than the single agent LMS. Every agent has access not only to its measurements
but also to its neighbours through the shared gradient and local estimates, which enhances the
performance N folds.

In Figure 2.4, we depict the effect of the step-size parameters on the convergence rate and accuracy.
If the steps sizes are small the accuracy is enhanced however, the algorithm converges slowly and
vice-versa. This aspect is of high importance especially when comparing algorithms. In order to
remain fair and consistent, both compared algorithms must have either the same convergence rate
or final accuracy.

Finally in Figure 2.5, we illustrate the 2D local estimates wk,i convergence trajectories towards the
optimal solution wo. Note that all agents converge toward a temporary estimate then converge
together to the right minimiser.

18 Chapter 2. Diffusion Least Mean Square

Figure 2.4: The effect of the step-size parameter on the convergence rate and the
algorithm accuracy. For this experiment, we used the same data profile and N = 10
agents network as in the previous experiment. However, we considered two step sizes
µ = 10−2 and µ = 10−3.

2.5 Recent developments of diffusion LMS

Diffusion LMS has been widely studied in the literature. Using the basic analysis provided above,
we shall explore the different aspects studied in the state of the art.

Diffusion LMS over noisy communication links Since diffusion strategies heavily rely on
communication between agents, it is of interest to study the effects of noisy communication links on
the network performance. In [Khalili et al., 2012a, Khalili et al., 2012b], the authors analysed the
steady state as well as the transient behaviour of the algorithm under these conditions. In order to
model the noisy links, they introduced an additive zero mean i.i.d. noise in the adaptation step (2.4)
so the modified version of the algorithm is formulated as such:

ψk,i = wk,i−1 − µk
∑
`∈Nk

c`k∇̂wJ`(wk,i−1) + qi (2.58)

wk,i =
∑
`∈Nk

a`kψ`,i. (2.59)

where qi is the additive i.i.d. noise. They concluded that diffusion LMS still converges toward the
optimal solution. However, due the to noisy links, the mean square performance of the algorithm
is severely impaired in comparison to diffusion LMS over perfect communication links.

In [Zhao et al., 2012], the authors went even further and considered noisy links for all the com-
munications between every two agents ` and k as it is depicted in Figure 2.6. While in [Khalili
et al., 2012b] the noisy links were introduced in the adaptation step of the algorithm, Zaho et al.

2.5. Recent developments of diffusion LMS 19

Figure 2.5: The trajectories taken by the local estimates wk,i when converging
towards the 2D optimum parameter vector wo. We used the same setting as the
previous experiment with µk = 10−2. Note that in this experiment the agents first
reached a consensus, then this consensus converged to the optimum solution.

introduced it directly in the transmitted quantities as it is shown below

w`k,i = w`,i + vw`k,i (2.60)

ψ`k,i = ψ`,i + vψ`k,i (2.61)

u`k,i = u`,i + vu`k,i (2.62)

d`k(i) = d`(i) + vd`k(i) (2.63)

where the noises vw`k,i, v
ψ
`k,i, v

u
`k,i and vd`k(i) are assumed to be temporally white and spatially

independent random processes with zero means.

After carrying out a theoretical analysis, the authors arrived to the conclusion that, as expected,
the noisy links deteriorate the algorithm performance. Furthermore, the regressor data transmission
noise vu`k,i leads to a biased solution. Other related studies have been conducted such as [Takahashi
et al., 2010] where adaptive combination rules were used to counteract the non stationarity or [Ab-
dolee et al., 2016] where the authors investigated diffusion LMS in realistic scenarios by considering
wireless networks with signal fading and path loss.

In the previous studies, the authors considered conditions where the agents respond to data syn-
chronously. However, in several application agents may not have such luxury as they can be subject
to different sources of uncertainty such as link failures or random topology changes. In [Zhao and
Sayed, 2015a, Zhao and Sayed, 2015b], the authors used a random step size to model link failures
and random combination weights to model random topology changes. As in the previous studies
the authors theoretically and numerically analysed the algorithm performance.

Sparse estimation Among the many attractive features of diffusion strategies is their versatility.
They can be adapted for different applications just by selecting an appropriate cost function or

20 Chapter 2. Diffusion Least Mean Square

Figure 2.6: Imperfect communication links representation between a source agent
` and a sink agent k [Sayed, 2013a]. There are four types of noises: 1) regression
data noise vu`k,i, 2) reference signal noise vd`k, 3) local estimate noise vψ`k,i and weight
vector noise vw`k,i.

regularisation. For instance, in [Chen and Sayed, 2012] authors considered a second-order approxi-
mation of the cost function to ease the algorithm analysis. They also provided application examples.
The first one consisted in estimating a sparse vector. To consider the data sparsity, they used a
regularisation function Ω(w) and parameter ρ such as:

Jk(w) = E||dk,i − u>k,iw||2 + ρ
NΩ(w) (2.64)

where

Ω(w) =

L∑
`

√
|[w]m|+ ε (2.65)

with ε a very small quantity. Note that Ω(w) is an approximation of ||w||1. The authors also con-
sidered the non-convex location problem. In this case the global optimization function is formulated
as

Jglob(w) = 1
4

∑N
k E{|dk(i)− ||w − xk||22|2} (2.66)

where xk is node’s k position vector.

Besides [Chen and Sayed, 2012] other authors tackled the sparse optimization problem. In [Liu et al.,
2012], the authors incorporated the `1 and `0 norms into the cost function to promote sparsity while
the set-theoretic estimation rationale was used in [Chouvardas et al., 2012] for the same purpose.
There are many other variants of cost functions and regularisers promoting data sparsity [Di Lorenzo
and Sayed, 2013, Wen and Liu, 2015]. Further details can be found in [Gharehshiran et al.,
2013, Chouvardas et al., 2011] and the references therein.

2.5. Recent developments of diffusion LMS 21

Figure 2.7: A multitask network of N = 20 agents and Q = 4 tasks. The clusters
are defined by each node color. For instance the agents 1, 2, 10, 13, 17, 19 form the
blue cluster.

Compression in diffusion LMS With the over increasing data dimension and the limitation
of communicating networks, the community took interest in data compression to avoid network
congestion and reach the full potential of diffusion strategies. There are mainly two approaches,
the first one consists of restricting the number of agents which each agent communicates with
[Lopes and Sayed, 2008, Arablouei et al., 2015] while the second approach limits the transferred
data [Sayin and Kozat, 2014, Arablouei et al., 2014b, Arablouei et al., 2014a, Vadidpour et al.,
2015]. This aspect of diffusion LMS shall be further discussed in chapter 3.

Structured Data in diffusion LMS Due to the recent surge of IOT networks, data is charac-
terised by complex structures that could sometimes be captured by a graph representation. While it
is still possible to process the data without considering their inherent structure, it is more beneficial
to consider a graph centric method where the data structure is preserved and used to fully analyse
the data. In [Nassif et al., 2017a], the authors propose a step by step method to blend concepts
from adaptive networks and graph signal processing. As a first step they propose a centralized
adaptive method for streaming graph signals based on LMS strategy. Then they provide a way to
distribute it over graph nodes using diffusion adaptation over networks concept. Finally, they carry
out a theoretical analysis of the proposed method and verify the model accuracy through numerical
experimentation.

Multitask Diffusion LMS In some cases we are interested in estimating different parameters
that are not necessarily common to all the agents. In order to accomplish that, some authors
explored diffusion LMS for networks seeking to minimize different cost functions. It seems counter
productive in the beginning as such setting will lead to a biased solution. However, in hindsight,
this approach can be beneficial when agents share similar objectives in the same network. As for

22 Chapter 2. Diffusion Least Mean Square

the single task diffusion LMS, multitask diffusion LMS has been studied under different conditions.
For instance in [Nassif et al., 2016c] the authors considered an asynchronous network and in [Nassif
et al., 2016e] used a regularization term to promote sparsity. It is worth mentioning that multitask
learning has been first considered in a single agent setting in [Caruana, 1997, Argyriou et al.,
2007, Evgeniou and Pontil, 2004a] to cite a few.

In order for multitask diffusion strategy to succeed, it is necessary for the agents to know which
neighbours share the same objective. This case has been considered in [Nassif et al., 2017b, Nassif
et al., 2016c, Nassif et al., 2016e, Hua et al., 2017, Chen and Sayed, 2013a]. Sometimes this
information is available, in this case multitask diffusion LMS converges towards an unbiased optimal
solution [Chen and Sayed, 2013b]. Otherwise a clustering strategy is needed. In the absence of such
strategy, the network will converge to a Pareto optimal solution [Chen and Sayed, 2013b]. We shall
further discuss this aspect of diffusion LMS in chapter 5.

In this section we gave a bird eyes view of diffusion LMS with a focus on the most relevant topics
for the scope of this thesis. However, it goes without saying that diffusion LMS field is much wider
than what it is depicted above. For instance, in [Chainais and Richard, 2013] authors considered
distributed dictionary learning and in [Chen et al., 2014a] considered multitask diffusion LMS with
node hypothesis spaces partly overlapping, to mention a few. In the following chapters we will
extend some relevant parts of the state of the art and build upon the concepts introduced in this
chapter to analyse the newly proposed algorithms.

25

3 Compressed Diffusion LMS

Contents
3.1 Introduction . 26

3.1.1 Problem formulation . 28

3.2 Diffusion LMS with compression . 29

3.2.1 Selection matrix probability distribution . 29

3.2.2 Compressed Diffusion LMS . 32

Mean weight behaviour analysis . 34

Mean-square error behaviour analysis . 35

Network Mean-Square Performance . 37

Transient State Analysis . 38

3.2.3 Doubly Compressed Diffusion LMS . 38

Mean weight behaviour analysis . 41

Mean-square error behaviour analysis . 42

3.3 Numerical analysis . 50

3.3.1 Compressed diffusion numerical analysis . 50

Theoretical model validation . 51

Algorithm performance for large networks and data sizes 51

3.3.2 Algorithm performance for energy aware networks 52

3.4 Conclusion . 54

The world has become more connected and networked as a consequence of the recent rise of digital
and mobile communications. This evolution has resulted in an unprecedented volume of data flowing
between sources, data centers, or processes. While this data may be processed in a centralized
manner, it is often more suitable to consider distributed strategies such as diffusion LMS as they
are scalable and can handle large amounts of data by distributing tasks over networked agents.
Although it is relatively simple to implement diffusion strategies over a cluster, it appears to be
challenging to deploy them in an ad-hoc network with limited energy budget for communication.
In this chapter, we introduce a diffusion LMS strategy that significantly reduces communication
costs without compromising the performance. Then, we analyse the proposed algorithm in the
mean and mean-square sense. Next, we conduct numerical experiments to verify the theoretical
findings. Finally, we perform large scale simulations to test the algorithm efficiency in a scenario
where energy is limited.

The work presented in this chapter was published in:

26 Chapter 3. Compressed Diffusion LMS

H
k,iw

k,i�
1H

k,
iw

k,
i�

1

H
k
,i
w

k
,i
�

1

k

ĝ
(̀w

k,
i�

1
)

ĝ
2 (w

k,i�
1)

ĝ
1
(w

k
,i
�

1
)

H
2,i w

2,i�
1H

`,
iw

`,
i�

1

H
1
,i
w

k
,i
�

1

kk

r̂w
J
(̀w

k,
i�

1
)

r̂
w
J

1
(w

k
,i
�

1
)

r̂
w J

2 (w
k,i�

1)w
k,

i�
1

w
k
,i
�

1

w
k,i�

1
w
2,i�

1
w

1
,i
�

1
w

`,
i�

1

k

h `
k,

i h
2k,i

h
1
k
,i

(a) Di↵usion LMS (c) Partial di↵usion LMS (d) Doubly compressed
di↵usion LMS

(b) Reduced-communication
di↵usion LMS

Figure 3.1: Illustrative representation of transmitted data for the diffusion LMS
and different approaches aiming at reducing the communication load for a node k.
Part (a) represents the communication for diffusion LMS where the weighting ma-
trices A and C are different from the identity matrix. In part (b), we illustrate the
communication link between agents as proposed in [Lopes and Sayed, 2008]. The
authors proposed to share data with only a random subset of their neighbours. Other
authors considered to limit the number of shared entries rather than agents as it is
depicted in part (c). This approaches was proposed in [Arablouei et al., 2014a]. Note
that for both parts (b) and (c) the weighting matrix C is set to the identity. Finally,
part (d) represents the approach we adopted in this study, that is, to only share par-
tial stochastic gradient vectors. To do so, we set the weighting matrix A = IN and
use selection matrices Hk,i and Qk,i as explained hereafter.

• Harrane, I. E. K., Flamary, R., and Richard, C. (2019). On reducing the communication cost
of the diffusion lms algorithm. IEEE Transactions on Signal and Information Processing over
Networks, 5(1):100–112.

• Harrane, I. E. K., Flamary, R., and Richard, C. (2016a). Doubly compressed diffusion lms over
adaptive networks. In 2016 50th Asilomar Conference on Signals, Systems and Computers,
pages 987–991.

3.1 Introduction

In the recent decade the world has witnessed an unprecedented evolution of networked devices giving
birth to what is known now as Internet of Things or IOT. Such advancement opened new horizons
to diffusion strategies. However it has also opened doors to new challenges. Indeed, as illustrated
in Figure 3.1 (a), due to constant communication required by diffusion strategies, all nodes need
to exchange information with their neighbours at each iteration. In the case of diffusion LMS, as
will be detailed in the next section, this information can be either local estimates and gradients
of local cost functions, or local estimates only. Even in the latter case, this requirement imposes
a substantial burden on communication and energy resources. Reducing the communication cost
while maintaining the benefits of cooperation is therefore of major importance for systems with
limited energy budget such as wireless sensor networks.

3.1. Introduction 27

In the recent years, several strategies were proposed to address this issue. As stated in section 2.5,
there are mainly two approaches which we illustrate in Fig. 3.1 (b) and (c). On the one hand, some
authors proposed to restrict the number of active links between neighbouring nodes at each time
instant [Lopes and Sayed, 2008, Arablouei et al., 2015]. If we take [Arablouei et al., 2015] as an
example, the equations (2.4) and (2.5) would be reformulated as:

ψk,i = wk,i−1 + µkuk,i

(
dk,i − u>k,iwk,i−1

)
wk,i = akkψk,i +

∑
`∈Nk/k

a`k
[
h`k,iψ`,i + (1− h`k,i)ψk,i

] (3.1)

where h`k is a binary random variable with the probability of it being equal to one defined as

P (h`k = 1) = M
L (3.2)

where M is the number of selected communicating neighbours. Note that such distribution does
not ensure M communicating neighbours for every iteration i. This condition is only verified in
expectation.

On the other hand, there are authors that recommend to reduce the communication load by trans-
mitting only partial parameter vectors [Arablouei et al., 2014b, Arablouei et al., 2014a, Vadidpour
et al., 2015]. Under such conditions diffusion LMS (2.4)–(2.5) is reformulated as:

ψk,i = wk,i−1 + µkuk,i

(
dk,i − u>k,iwk,i−1

)
wk,i =

∑
`∈Nk

a`k
[
H`,iψ`,i + (IL −H`,i)ψk,i

] (3.3)

in this case H`,i is a diagonal selection matrix where its entries are Bernoulli random variables
defined similarly to h`k with a slight difference as M in this case, is the number of selected entries.
Note that again, this method does not guaranty M transferred entry at each iteration i because
of the nature of the chosen distribution law for the selection matrix H`,i. Another similar method
has been adopted in [Sayin and Kozat, 2014] where the compression is accomplished by projecting
parameter vectors onto lower dimensional spaces before transmission such as:

ψk,i = wk,i−1 + µkuk,i

(
dk,i − u>k,iwk,i−1

)
wk,i = akkψk,i +

∑
`∈Nk/k

a`kγ`,i
(3.4)

where γ`,i = γ`,i−1 + η`c`,ih(ε`,i) is the constructed estimate of ψ`,i when ` 6= k, with η` a positive
step-size, c`,i a projection vector and ε`,i = c>`,i(ψ`,i − γ`,i) is the construction error. Depending of
h(ε`,i), γ`,i can be either a compressed version or a single bit representation of ψ`,i.

h(ε`,i) =

{
ε`,i for a compressed version of ψ`,i
h(ε`,i) for a single bit representation of ψ`,i

(3.5)

These ideas are related to what is known in the literature as coordinate-descent constructions for

28 Chapter 3. Compressed Diffusion LMS

Table 3.1: List of the symbols and notations used in chapter 3

Symbol Definition
L length of the parameter vectors
N network agent count
Nk neighbourhood of the agent k including it self
wk,i instantaneous estimate at the agent k
wo optimum parameter vector
dk(i) reference signal for the agent k at the time instant i
uk,i regression vector of the agent k
vk(i) additive noise at the agent k
M number of shared entries of the vector wk,i

M∇ number of shared entries of the stochastic gradient vector ∇̂wJ`(wk,i−1)

single agent optimization. Note that they have recently been extended to distributed settings
in [Necoara et al., 2017, Xi and Khan, 2017]. They have also been applied to general diffusion
networks in [Wang et al., 2018] for general convex cost functions, with a detailed analysis of the
performance and stability of the resulting network. In that paper, the authors consider the diffusion
LMS and assume that the adaptation step at each node has only access to a random subset of the
entries of the approximate gradient vector. At each node, however, all the entries of the local
estimates of the neighbouring nodes remain available for the combination step.

With the exception of some few papers such as [Wang et al., 2018], the literature mainly focused on
the case where the nodes only share a subset of the entries of their local estimates. Nevertheless, it
is also of interest to consider the case where both the local estimates and the approximate gradient
vectors of the local cost functions are partially shared. This situation may arise due to missing
entries. Such schemes are also useful, as considered in this work, in reducing communication cost
at each iteration in large scale data applications.

This chapter is structured in two parts. In the first part, we focus on the compression aspect
by defining the probability distribution function used for the entries selection. Then, as a first
step, to ease the theoretical analysis, we shall propose a partially compressed diffusion LMS where
the local estimate vectors wk,i are partially shared while the stochastic gradient vectors are fully
transmitted. To do so, we use a selection matrix (which we define in the sequel) to choose a random
subset of entries to share. Next, we introduce and theoretically analyse the fully compressed version
of diffusion LMS. This time, both local estimate and stochastic gradient vectors are partially shared.

The second part consists of a numerical analysis of both the proposed algorithms to validate the
theoretical models as a first objective and to compare them to the state of the art algorithms. We
also analyse the algorithms under a realistic scenario where energy resources are scarce.

3.1.1 Problem formulation

Consider a connected network composed of N nodes. The aim of each node is to estimate an L× 1

unknown parameter vector wo from collected measurements. Node k has access to local streaming
measurements {dk(i),uk,i} where dk(i) is a scalar zero-mean reference signal, and uk,i is an L× 1

3.2. Diffusion LMS with compression 29

zero-mean regression vector with a positive definite covariance matrix Ruk = E{uk,iu>k,i}. The data
at agent k and time i are assumed to be related via the linear regression model:

dk(i) = u>k,iw
o + vk(i) (3.6)

where wo is the unknown parameter vector to be estimated, and vk(i) is a zero-mean i.i.d. noise
with variance σ2

v,k. The noise vk(i) is assumed to be independent of any other signal. Let Jk(w) be
a differentiable convex cost function at agent k. In this chapter, we shall consider the mean-square-
error criterion, namely,

Jk(w) = E{|dk(i)− u>k,iw|2} (3.7)

This criterion is strongly convex, second-order differentiable, and minimized at wo.

We seek to collaboratively minimize the aggregate cost function in a distributed manner:

Jglob(w) =
N∑
k=1

Jk(w) (3.8)

In addition, we also require to minimise the network communication load. To do so, we consider a
compressed version of diffusion LMS that we shall introduce in upcoming section.

3.2 Diffusion LMS with compression

In this part, we shall introduce and study both the compressed versions of diffusion LMS then
theoretically analyse them. Before proceeding with the analysis, we study the moments of the
probability distribution law we shall use for the proposed algorithms. Such result will immensely
ease the theoretical study.

3.2.1 Selection matrix probability distribution

We shall now introduce and study the random selection moments which will be used later in the
theoretical analysis. The selection matrix denoted by H`,i = diag{h`,i} is a diagonal matrix with
binary entries. It can be characterized by two parameters: its dimension L and M the number of
the non zero entries in its diagonal. The entries of H`,i are assumed to be equally likely and i.i.d
over time and space. The random vector h`,i is drawn as

h`,i ∼
{
h`,i ∈ {0, 1}L,

L∑
j=1

h`,ij = M

}
(3.9)

where h`,ij is the jth entry of the vector h`,i. Definition (3.9) leads to the following results:

P (h`,i = 1) = M
L (3.10)

E{H`,i} = M
L IL (3.11)

30 Chapter 3. Compressed Diffusion LMS

Given a positive definite L× L matrix Σ we have:

• For ` 6= k: since the matrices H`,i and Hk,i are assumed to be independent we have:

E{H`,iΣHk,i} = E{H`,i}ΣE{Hk,i}
=
(
M
L

)2
Σ (3.12)

• When k = `

E{H`,iΣH`,i} = E{Σ� (h`,ih
>
`,i)}

= Σ� E{(h`,ih>`,i)}
(3.13)

where � denotes Hadamard product. Evaluating E{h`,ih>`,i} leads to:

E{h`,ih>`,i}mn =E{hmhn} (3.14)

– for m = n

E{h`,ih>`,i}mm = E{hmhm}
= P (hm = 1) + 0P (hm = 0)

=
CM−1

L−1

CM
L

= M
L (3.15)

– in the case where m 6= n

E{h`,ih>`,i}mn = E{hmhn}
= P (hn = 1|hm = 1) + 0(P (hn = 1|hm = 0) (3.16)

+ P (hn = 0|hm = 1) + P (hn = 0|hm = 0))

E{h`,ih>`,i}mn = P (hn = 1|hm = 1) =
CM−2

L−2

CM
L

= M(M−1)
L(L−1) (3.17)

using (3.15) and (3.17) in (3.13) we get:

E{H`,iΣH`,i} = 1
CM

L

(
CM−1
L−1 IL �Σ + CM−2

L−2 (Σ− IN �Σ)
)

= M
L

((
1− M−1

L−1

)
IL �Σ + M−1

L−1 Σ
)

(3.18)

Finally we can sum up the results as:

3.2. Diffusion LMS with compression 31

E{H`,iΣHk,i} =


M
L

((
1− M−1

L−1

)
IL �Σ + M−1

L−1 Σ
)

if ` = k(
M
L

)2
Σ otherwise

(3.19)

For an in depth analysis of the proposed algorithms, we will need to extend the results found
in (3.19) to block diagonal matrices following two configurations. For that, we consider an arbitrary
(NL×NL) matrix Π. Furthermore we define the block matrix Hi as follows:

Hi = diag{H1,i,H2,i, . . . ,HN,i} (3.20)

Let us start with a simple case E{HiΠHi} . We start writing the expectation in its block matrix
form:

E{HiΠHi}k` = E{Hk,i[Π]k`H`,i} (3.21)

According to (3.19), we have two cases namely k = ` and k 6= `. For the first one we have:

E{HiΠHi}kk = E{Hk,i[Π]kkHk,i}

= M
L

((
1− M−1

L−1

)
IL � [Π]kk + M−1

L−1 [Π]kk

) (3.22)

For k 6= ` we find:

E{HiΠHi}k` = E{Hk,i}[Π]k`E{H`,i}
=
(
M
L

)2
[Π]k`

(3.23)

These results can be rearranged into a compact form using Hadamard product:

E{HiΠHi} = M
L

((
1− M−1

L−1

)
INL �Π + M−1

L−1 (IN ⊗ 1LL)�Π
)

+
(
M
L

)2
(Π− (IN ⊗ 1LL)�Π)

= M
L

(
1− M−1

L−1

)
INL �Π + M

L

(
M−1
L−1 − M

L

)
(IN ⊗ 1LL)�Π +

(
M
L

)2
Π

(3.24)

For ease of use we define:

EH(Π) = E{HiΠHi}
= β1 (IN ⊗ 1LL)�Π + β2 INL �Π + β3 Π

(3.25)

where

β1 = M
L

(
M−1
L−1 − M

L

)
(3.26)

β2 = M
L

(
1− M−1

L−1

)
(3.27)

β3 =
(
M
L

)2 (3.28)

32 Chapter 3. Compressed Diffusion LMS

When analysing the algorithm, we will be confronted to a second type of expectation involving the
matrix H i which is denoted by:

[ϕH(Π)]k` = E{Hk,i[Π]k`Hk,i} (3.29)

In this case we are interested in evaluating the diagonal and non diagonal entries of each block
matrix separately regardless of the block matrix situation with regards to the diagonal :

[ϕH(Π)]k` = E{Hk,i[Π]k`Hk,i} (3.30)

For the diagonal entries of each block matrix we have:

[ϕh(Π)]k`,mm = M
L [Π]k`,mm (3.31)

where the subscript k`,mm refers to (m,m) entry of the matrix block k`. For the rest of the entries
we find:

[ϕH(Π)]k`,mn = M(M−1)
L(L−1) [Π]k`,mn (3.32)

Similarly to EH, we can rewrite the results under a compact form using Hadamard product

ϕH(Π) = M
L (1NN ⊗ ILL)�Π + M(M−1)

L(L−1) (Π− (1NN ⊗ ILL)�Π)

= M
L

(
1− M−1

L−1

)
(1NN ⊗ ILL)�Π + M(M−1)

L(L−1) Π

= β2 (1NN ⊗ ILL)�Π + (β1 + β3) Π

(3.33)

Note that in the case where the matrix Π is block diagonal the operators ϕ(.) and EH(.) are
equivalent:

[EH(Π)]kk = E{Hk,i[Π]kkHk,i} = E{H`,i[Π]kkH`,i}
= [ϕ(Π)]kk

EH(Π) = ϕ(Π)

(3.34)

In Table 3.2 we sum up the results. For Hi = diag{H1,i,H2,i, . . . ,HN,i} where H`,i = diag{h`,i},
h`,i defined in (3.9) and Σ and Π two arbitrary matrices of dimensions L×L and (L×N)×(L×N),
respectively.

3.2.2 Compressed Diffusion LMS

We shall now introduce our first version of Compressed diffusion LMS (CD) and study its stochastic
behaviour which is an intermediate step towards the Doubly Compressed Diffusion LMS (DCD).
The DC run at each node k is described in 3.1. We consider the same conditions as for diffusion
LMS except for the matrices A and C . For the sake of simplicity, we choose the matrix C to be

3.2. Diffusion LMS with compression 33

Table 3.2: Moments of the selection matrix

Moment Expression
E{H`,i} M

L IL

E{H`ΣHk}


M
L

((
1− M−1

L−1

)
IL �Σ + M−1

L−1 Σ
)

if ` = k(
M
L

)2
Σ otherwise

E{HiΠHi} = EH(Π) β1 (IN ⊗ 1LL)�Π + β2 INL �Π + β3 Π

E{Hk,i[Π]k`Hk,i} = [ϕH(Π)]k` [β2 (1NN ⊗ ILL)�Π + (β1 + β3) Π]k`

Algorithm 3.1 Local updates at node k for CD
1: for i = 1, . . . do
2: randomly generate Hk,i

3: for ` ∈ Nk \ {k} do
4: send Hk,iwk,i to node `
5: receive from node ` the gradient vector:

∇̂wJ`(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

6: end for
7: update the intermediate estimate:

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`k∇̂wJ`(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

8: calculate the local estimate:

wk,i = akkψk,i +
∑

`∈Nk\{k}

a`k
[
H`,iw`,i−1 + (IL −H`,i)ψk,i

]
9: end for

doubly stochastic. The matrix A is equal to the identity matrix IN , with the purpose of limiting
the network load. We define recursion for the CD as:

wk,i = wk,i−1 + µk
∑
`∈Nk

c`,ku`,i[d`(i)− u>`,i(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)] (3.35)

where H`,i = diag{h`,i} and h`,i is a random vector defined in (3.9). Note that node ` receives
exactly M entries from its neighbours and uses its own estimate to complete the (L−M) missing
entries.

34 Chapter 3. Compressed Diffusion LMS

We briefly recall the notation from diffusion LMS chapter 2

w̃k,i = wo −wk,i (3.36)

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (3.37)

M = diag{µ1IL, µ2IL, . . . , µNIL} (3.38)

Ri = diag

∑
`∈N1

c`,1Ru`,i, . . . ,
∑
`∈NN

c`,NRu`,i

 (3.39)

Hi = diag{H1,i,H2,i, . . . ,HN,i} (3.40)

C = C ⊗ IL (3.41)

Ru,i = diag{Ru1,i,Ru2,i, . . . ,RuN ,i} (3.42)

Ru`,i = u`,iu
>
`,i (3.43)

where we also introduce the matrix [Rm,i]k` defined as

[Rm,i]k` = c`kRu`,i(INL −Hk,i) (3.44)

Using the recursion (3.35) and the definitions (3.36), (3.37) we get:

w̃i = BCDiw̃i−1 − Gsi (3.45)

where

BCDi = INL −MRiHi −MRm,i (3.46)

G = MC> (3.47)

si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)} (3.48)

Mean weight behaviour analysis

Before delving into the theoretical analysis, let us introduce the following assumptions:
Assumption 3.1. The regression vectors uk,i arise from a zero-mean random process that is tem-
porally white and spatially independent.
Assumption 3.2. The matricesH i,k and Q`,i arise from a random process that is temporally white,
spatially independent, and independent of each other as well as any other process.

Taking expectation of both sides of recursion (3.45), using Assumptions 3.1 and 3.2, and E{si} = 0,
we find that:

E{w̃i} = (INL − E{MRiHi} − E{MRm,i})E{w̃i−1} − E{MC>si}

=
(
INL − M

L MR−
(
1− M

L

)
MC>Ru

)
E{w̃i−1} (3.49)

3.2. Diffusion LMS with compression 35

where

H = M
L INL (3.50)

R = E{Ri} = diag{R1, . . . ,RN} (3.51)

Ru = E{Ru,i} = diag{Ru1 ,Ru2 , . . . ,RuN } (3.52)

and

Rk =
∑
`∈Nk

c`,kRu` (3.53)

with Ru` being the covariance matrix of the regression vector u`,i.

From (3.49), the algorithm asymptotically converges in the mean to wo if and only if matrix(
INL − M

L MR−
(
1− M

L

)
MC>Ru

)
is stable, meaning that all its eigenvalues lie strictly inside

the unit disc. From [Sayed, 2013a] we have:

ρ
(
INL − M

L MR−
(
1− M

L

)
MC>Ru

)
≤ ||INL − M

L MR−
(
1− M

L

)
MC>Ru||b,∞

≤ N max
`,k
||INL − M

L µkRk −
(
1− M

L

)
µkc`kRu`

|| (3.54)

sinceRk andRu` are Hermitian matrices we have the following condition on the step-size parameters
µk:

µk <
2

N max
`

[
M
L λmax(Rk) +

(
1− M

L

)
c`kλmax(Ru`)]

(3.55)

where λmax(·) stands for the maximum eigenvalue of its matrix argument [Sayed et al., 2013].

Mean-square error behaviour analysis

With the aim of generality, we evaluate the weighted mean-square deviation E{||w||2Σ} where Σ

denotes a non-negative definite block diagonal matrix of L × L block entries. The choice of the
matrix Σ will determine the type of extracted information related to the network and nodes. Using
the independence 3.1 and (3.45) we find:

E‖w̃i‖2Σ = E{w̃>i−1B>CDi
ΣBCDiw̃i−1}+ E{s>i G>ΣGsi} (3.56)

The right-hand side term has already been calculated in [Sayed, 2013a] and exhibited in chapter 2.
We shall simply use the result:

E{s>i G>ΣGsi} = trace
(
G S G>Σ

)
(3.57)

with
S = diag(σ2

v,1Ru,1, . . . , σ
2
v,NRu,N) (3.58)

36 Chapter 3. Compressed Diffusion LMS

In contrast with the previous term, the left-hand side term has not been calculated in the literature
and needs to be evaluated.

E{w̃>i−1B>CD,iΣBCD,iw̃i−1} = E‖w̃i−1‖2Σ′CD
(3.59)

where the weighting matrix Σ′CDi
is defined as

Σ′CD = E{B>CDi
ΣBCDi}

= Σ− M
L ΣMR−

(
1− M

L

)
ΣMC>Ru − M

L R>MΣ−
(
1− M

L

)
RuCMΣ

+ P 1 + P 2 + P 3 + P 4 (3.60)

with

P 1 = E{HiR>i MΣMRiHi}
= EH(R>i MΣMRi) (3.61)

where EH is defined in Table 3.2. Following [Sayed, 2013a], we focus on the case of sufficiently small
step sizes {µk} where the effect of terms involving higher powers of the step-sizes can be ignored.
A reasonable approximation for sufficiently small step sizes is:

E{R>i MΣMRi} = E{R>MΣMR}

We finally get:

P 1 = EH(R>MΣMR) (3.62)

Let us now evaluate the term P 2, using the results (3.11) – (3.19) and the same approximation as
in (3.62) we get:

P 2 = E{HiR>i MΣMRm,i}
[P 2]k` = M

LRk[MΣM]kkc`kRu` − E{Hk,iRk,i[MΣM]kkc`kRu`,iHk,i}
P 2 = M

L RMΣMC>Ru −ϕH(RMΣMC>Ru) (3.63)

where ϕH is defined in Table 3.2. Note that the term P 3 is the transposed P 2, hence

P 3 = M
L RuCMΣMR−ϕH(RuCMΣMR) (3.64)

We finally express the last term, using the same steps and approximation as the previous terms we
find:

P 4 = E{R>m,iMΣMRm,i}

[P 4]k` =

N∑
m=1

E{[Rm,i]
>
km[MΣM]mm[Rm,i]m`}

3.2. Diffusion LMS with compression 37

P 4 =
(
1− 2ML

)
RuCMΣMC>Ruϕh(RuCMΣMC>Ru) (3.65)

The matrix Σ′CD defined in (3.60) can be expressed in a vector form as:

σ′CD = FCDσ (3.66)

where σ = vec(Σ) and FCD defined as:

FCD =I(NM)2 − M
L (RM⊗ INL)− (1− M

L)(RuCM⊗ INL)− M
L (INL ⊗RM)

−(1− M
L)(INL ⊗RuCM) +Z1 +Z2 −Z3 +Z4

(3.67)

where Zj are obtained by applying the vec(.) operator on P j and using the following property:

vec(ABC) = vec(C> ⊗A) vec(B) (3.68)

Replacing (3.59) and (3.57) in (3.56), and applying vec(.) operator on both sides we get:

E‖w̃i‖2σ = E‖w̃i−1‖2FCDσ
+ [vec

(
Y>
)
]>σ (3.69)

where
Y = G S G> (3.70)

Using (3.69), and depending on the weighting matrix Σ, various statistical properties of the network
can be extracted such as MSD or EMSE as it shall be demonstrated in the upcoming sections.

Network Mean-Square Performance

We use the equation (3.69) to study the network excess mean square error (EMSE). As the algorithm
is stable for sufficiently small step-sizes (3.55) we can take the limits as

lim
i→∞

E||w̃i||2σ = lim
i→∞

E||w̃i−1||2FCDσ
+ vec(Y>)>σ (3.71)

Rearranging the terms results in

lim
i→∞

E||w̃i||2(I−FCD)σ = vec(Y>)>σ (3.72)

We have
EMSDNetwork = 1

N ||w̃i||2Ru
(3.73)

which leads to
σ = 1

N (I −FCD)−1vec(Ru) (3.74)

Finally, we find
MSDNetwork = 1

N vec(Y>)>(I −FCD)−1vec(Ru) (3.75)

38 Chapter 3. Compressed Diffusion LMS

Transient State Analysis

We study the algorithm transient behaviour by iterating the equation (3.69) from i = 0. We find

E||w̃i||2σ = E||w̃−1||2F i+1
CDσ

+ vec(Y>)>
i∑

j=0

F j
CDσ (3.76)

where w̃−1 is the initial condition term. Comparing the recursion (3.76) for the time instants i and
i− 1 we find

E||w̃i||2σ = E||w̃i−1||2σ + vec(Y>)>F i
CDσ − E||w̃−1||2(I−FCD)F i

CDσ
(3.77)

In order to evaluate the transient excess mean square error (EMSE), the weighing vector σ needs
to be set to 1

N vec(Ru) where Ru is defined in (3.52).

Note that similar performance information can be extracted for a single agent by setting the weight-
ing matrix Σ to zeros except for the block matrix corresponding to the said agent k that shall be
set to the Ruk .

3.2.3 Doubly Compressed Diffusion LMS

Let un now introduce the fully compressed version of diffusion LMS: Doubly Compressed Diffusion
LMS. The DCD algorithm run at each node k is shown in 3.2. Matrices Hk,i and Qk,i are diagonal
entry-selection matrices with M and M∇ ones on their diagonal, respectively. The other diagonal
entries of these two matrices are set to zero. First, we consider the adaptation step. The matrix
Hk,i selects M entries (over L) of wk,i−1 that are sent to node ` to approximate ∇wJ`(wk,i−1)

in (2.4). Node ` fills the missing entries of Hk,iwk,i−1 by using its own entries (IL −Hk,i)w`,i−1,
and calculates the instantaneous approximation of the gradient vector at this point. Then node `
selects M∇ entries (over L) of this gradient vector using Qk,i and send them to node k. Node k fills
the missing entries by using its own local estimate. Finally, node k considers the partial parameter
vectors H`,iw`,i−1 received from its neighbours ` during the adaptation step, and fills the missing
entries by using its own local estimate ψk,i. Then it aggregates them to obtain the local estimate
wk,i.

We can formulate the algorithm under the following form:


ψk,i = wk,i−1 + µk

∑
`∈Nk

c`kg`,i

wk,i = akkψk,i +
∑

`∈Nk\{k}

a`k
[
H`,iw`,i−1 + (IL −H`,i)ψk,i

] (3.78)

3.2. Diffusion LMS with compression 39

Algorithm 3.2 Local updates at node k for DCD
1: for i = 1, . . . do
2: randomly generate Hk,i and Qk,i

3: for ` ∈ Nk \ {k} do
4: send Hk,iwk,i to node `
5: receive from node ` the partial gradient vector:

Q`,i∇̂wJ`(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

6: complete the missing entries using those available at node k, which results in g`,i defined
in (3.79)

7: end for
8: update the intermediate estimate:

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`kg`,i

9: calculate the local estimate:

wk,i = akkψk,i +
∑

`∈Nk\{k}

a`k
[
H`,iw`,i−1 + (IL −H`,i)ψk,i

]
10: end for

with

g`,i = Q`,iu`,i
[
d`(i)− u>`,i(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

]
+(IL −Q`,i)uk,i

[
dk(i)− u>k,iwk,i−1)

]
(3.79)

where H`,i = diag{h`,i}, Q`,i = diag{q`,i}, h`,i and q`,i are binary vectors randomly drawn
following the definition (3.9) in subsection 3.2.1.

We shall now analyse the stochastic behaviour of the DCD algorithm. For the sake of simplicity,
we shall consider that matrix C is doubly stochastic. We shall also set matrix A to the identity
matrix. Focusing this way on the adaptation step and gradient vector sharing, helps simplifying the
analysis. Note that the distributed LMS with partial diffusion (3.3), which exclusively addresses
how reducing the communication load induced by the combination step, was analysed in [Arablouei
et al., 2014b]. Combining both analyses into a single general one is challenging and beyond the
scope of this study. However, in the sequel, we shall illustrate the efficiency of the DCD algorithm
in both cases A = IL and A 6= IL, and compare it with the existing strategies.

Before proceeding with the algorithm analysis, let us introduce the following assumptions on the
regression data and selection matrices.
Assumption 3.3. The matricesH i,k and Q`,i arise from a random process that is temporally white,
spatially independent, and independent of each other as well as any other process.

Following the same steps as CD algorithm we re-introduce the L× 1 concatenated error vector:

40 Chapter 3. Compressed Diffusion LMS

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (3.80)

where
w̃k,i = wo −wk,i (3.81)

We also introduce:

RQ,i = diag
{ ∑
`∈N1

c`1Q`,iRu`,i,
∑
`∈N2

c`2Q`,iRu`,i, . . . ,
∑
`∈NN

c`NQ`,iRu`,i

}
(3.82)

Q′i = diag
{ ∑
`∈N1

c`1(IL −Q`,i),
∑
`∈N2

c`1(IL −Q`,i) . . . ,
∑
`∈NN

c`N (IL −Q`,i)

}
(3.83)

Qi = diag{Q1,i,Q2,i, . . . ,QN,i} (3.84)

Finally, we introduce the N ×N block matrix RQ(I−H),i with each block (k, `) defined as:

[RQ(I−H),i]k` = c`kQ`,iRu`,i(IL −Hk,i) (3.85)

Combining recursion (3.78) and definition (3.81), and replacing dk(i) by its definition (3.6), we find:

w̃k,i = w̃k,i−1 − µk
∑
`∈Nk

c`kQ`,iu`,i
[
u>`,iw

o + v`(i)

−u>`,i(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)
]

−µk
∑
`∈Nk

c`k(IL −Q`,i)uk,i
[
u>k,iw

o + vk(i)− u>k,iwk,i−1

]
(3.86)

Note that wo = Hk,iw
o + (IL −Hk,i)w

o. Replacing wo by its new expression, and using defini-
tion (3.80), leads to:

w̃k,i = w̃k,i−1 − µk
∑
`∈Nk

c`kQ`,iu`,i
[
u>`,iHk,iw̃k,i−1 + u>`,i(IL −Hk,i)w̃`,i−1 + v`(i)

]
− µk

∑
`∈Nk

c`k(IL −Q`,i)uk,i
[
u>k,iw̃k,i−1 + vk(i)

]
(3.87)

Rearranging the terms in (3.87), and using definitions (3.80)–(3.84), leads to:

w̃i =
(
INL −MRQ,iHi −MQ′iRu,i −MRQ(I−H),i

)
w̃i−1

−
(
MC>Qi + MQ′i

)
si (3.88)

where si is defined in (3.48) as

si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)}

3.2. Diffusion LMS with compression 41

Mean weight behaviour analysis

We shall now examine the convergence in the mean for the DCD algorithm and derive a necessary
convergence condition. We start by rewriting the weight-error vector recursion (3.88) as:

w̃i = BDCDiw̃i−1 − GDCDisi (3.89)

where the coefficient matrices Bi and Gi are this time defined as:

BDCDi = INL −MRQ,iHi −MQ′iRu,i −MRQ(I−H),i (3.90)

GDCDi = MC>Qi + MQ′i (3.91)

Taking expectations of both sides of (3.89), using the Assumptions 3.1 and 3.3, and E{si} = 0, we
find:

E{w̃i} = BDCD E{w̃i−1}

where

BDCD = INL − MM∇
L2 MR−

(
1− M∇

L

)
MRu − M∇

L

(
1− M

L

)
MC>Ru (3.92)

and R, Ru and Rk are defined in (3.51) – (3.53), respectively as:

R = diag{R1, . . . ,RN}
Ru = E{Ru,i} = diag{Ru1 ,Ru2 , . . . ,RuN }
Rk =

∑
`∈Nk

c`,kRu`

From (3.92), we observe that the algorithm (3.78) asymptotically converges in the mean toward wo

if, and only if,
ρ(BDCD) < 1 (3.93)

where ρ(·) denotes the spectral radius of its matrix argument. We know that ρ(X) ≤ ‖X‖ for any
induced norm. Then:

ρ(B) ≤‖BDCD‖b,∞
≤N max

k,`
‖[BDCD]k`‖ (3.94)

where ‖·‖b,∞ denotes the block maximum norm. From (3.94) we have:

ρ(BDCD) ≤ N max
`,k

∥∥∥IL − µk[MM∇
L2 Rk + M

L

(
1− M∇

L

)
Ruk + M∇

L

(
1− M

L

)
c`kRu`

]∥∥∥ (3.95)

As a linear combination with positive coefficients of positive definite matrices Rk and Ru` , the
matrix in square brackets on the RHS of (3.95) is positive definite. Condition (3.93) then holds if

42 Chapter 3. Compressed Diffusion LMS

for all k:
µk <

2

Nλmax,k
(3.96)

with

λmax,k = MM∇
L2 λmax(Rk) + M

L

(
1− M∇

L

)
λmax(Ruk)

+ M∇
L

(
1− M

L

)
max
`∈N k

c`k λmax(Ru`)
(3.97)

where we used Jensen’s inequality with λmax(·) operator, that stands for the maximum eigenvalue
of its matrix argument. It is worth mentioning that whenM = M∇ = L we retrieve the convergence
condition of the diffusion LMS as derived in [Sayed, 2013a]:

λmax,k = λmax(Rk) (3.98)

With this setting, we also retrieve the matrices B (2.32) and G (2.29) of the diffusion LMS defined
in chapter 2.

Mean-square error behaviour analysis

As for the CD algorithm, we are now interested in providing a global solution for studying the mean
square error. With this aim, we consider the weighted square measure E{‖w̃i‖2Σ} where Σ denotes
a N ×N block diagonal weighting matrix. By setting Σ to different values, we can extract various
types of information about the nodes and the network such as the network mean square deviation
MSD, or the excess mean square error EMSE.

We start by using the independence 2.2 and (3.89) to write

E‖w̃i‖2Σ = E{w̃>i−1B>DCD,iΣBDCD,iw̃i−1}+ E{s>i G>DCD,iΣGDCD,isi} (3.99)

On the one hand, the second term on the RHS of (3.99) can be written as:

E{s>i G>DCD,iΣGDCD,isi} = trace
(
E{s>i G>DCD,iΣGDCD,isi}

)
= trace

(
E{G>DCD,iΣGDCD,i}E{sis>i }

)
= trace

(
E{G>DCD,iΣGDCD,i}S

)
(3.100)

where S is defined in (3.58) as

S = E{sis>i } = diag(σ2
v,1Ru,1, . . . , σ

2
v,NRu,N) (3.101)

and

E{G>DCD,iΣGDCD,i} = E{
(
MC>Qi + MQ′i

)>
Σ
(
MC>Qi + MQ′i

)
}

= Θ1 + Θ2 + Θ>2 + Θ3 (3.102)

3.2. Diffusion LMS with compression 43

with

Θ1 = E{QiCMΣMC>Qi} (3.103)

Θ2 = E{QiCMΣMQ′i} (3.104)

Θ3 = E{Q′iMΣMQ′i} (3.105)

We can now proceed with the evaluation of (3.103)–(3.105). Using the results from Table 3.2 we
find:

Θ1 = E{QiCMΣMC>Qi} (3.106)

= EQ(CMΣMC>) (3.107)

Consider now Θ2 in (3.102). We have:

[Θ2]k` = M∇
L [CMΣM]k` − c2

k` E{Qk,i[MΣM]``Qk,i}

−
(
M∇
L

)2 (
[CMΣM]k` − c2

k` [MΣM]``
)

(3.108)

We can use the operator ϕQ from Table 3.2 to calculate the second term in the RHS of the above
equation since MΣM is block diagonal. This yields:

Θ2 = M∇
L CMΣM− C2ϕQ(MΣM)−

(
M∇
L

)2
(CMΣM− C2MΣM) (3.109)

where
C2 = C � C (3.110)

Finally, we calculate the last term Θ3 in the RHS of (3.102). Matrix Θ3 is block diagonal, with
each diagonal block defined as follows:

[Θ3]kk = E{[Q′i]kk[MΣM]kk[Q′i]kk}

=
N∑

m,n=1

cmkcnk E{
(
IL −Qm,i

)
[MΣM]kk

(
IL −Qn,i

)
}

Using (3.11), we get:

[Θ3]kk =
(

1− 2M∇L

)
[MΣM]kk

N∑
m,n=1

cmkcnk +

N∑
m,n=1

cmkcnkE{Qm,i[MΣM]kkQn,i}

44 Chapter 3. Compressed Diffusion LMS

Applying (3.19) leads to:

[Θ3]kk =
(

1− 2M∇L

)
[MΣM]kk +

N∑
m

c2
mkE{Qm,i[MΣM]kkQm,i}

+
(
M∇
L

)2

 N∑
m,n=1

cmkcnk[MΣM]kk −
N∑
m=1

c2
mk[MΣM]kk

)
(3.111)

Finally, using (3.33), we can write (3.111) in a compact form:

Θ3 =
(

1− 2M∇L

)
MΣM + (INL � C C>)ϕQ(MΣM)

+
(
M∇
L

)2 (
MΣM− (INL � C C>)MΣM

)
(3.112)

It is interesting to notice that the second term in the RHS of (3.99) does not depend on M .
Moreover, setting M∇ = L results in cancelling Θ2 and Θ3 since Q′i = 0.

The first term on the RHS of (3.99) depends on both parameters M and M∇ and can be expressed
as:

E{w̃>i−1B>DCDi
ΣBDCDiw̃i−1} = E‖w̃i−1‖2Σ′DCD

(3.113)

where the weighting matrix Σ′ is defined as:

Σ′DCD = E{B>DCDi
ΣBDCDi} (3.114)

Replacing Bi by its definition (3.90) leads to:

Σ′DCD = Σ− MM∇
L2 ΣMR−

(
1− M∇

L

)
ΣMRu − M∇

L

(
1− M

L

)
ΣMC>Ru

− MM∇
L2 RMΣ−

(
1− M∇

L

)
RuMΣ− M∇

L

(
1− M

L

)
RuC>MΣ

+
6∑
j=1

P j + P>2 + P>3 + P>5

where

P 1 = E{HiR>Q,iMΣMRQ,iHi} (3.115)

P 2 = E{HiR>Q,iMΣMQ′iRu,i} (3.116)

P 3 = E{HiR>Q,iMΣMRQ(I−H),i} (3.117)

P 4 = E{R>u,iQ′iMΣMQ′iRu,i} (3.118)

P 5 = E{R>u,iQ′iMΣMRQ(I−H),i} (3.119)

P 6 = E{R>Q(I−H),iMΣMRQ(I−H),i} (3.120)

We shall now evaluate each one of the six terms.

3.2. Diffusion LMS with compression 45

Term P 1 calculation Matrix P 1 is a block diagonal matrix. Its k-th diagonal block is given by:

[P 1]kk = E{Hk,i[RQ,i]
>
kk[MΣM]kk[RQ,i]kkHk,i} (3.121)

Substituting RQ,i by its expression (3.82) leads to:

[P 1]kk =
N∑

m,n=1

cmkcnkE{Hk,iRum,iQm,i[MΣM]kkQn,iRun,iHk,i}

We rewrite [P 1]kk as a sum of two terms, one for m = n and one for m 6= n. Using (3.11), we get:

[P 1]kk =
N∑
m=1

c2
mkE{Hk,iRum,iQm,i[MΣM]kkQm,iRum,iHk,i}

+
(
M∇
L

)2(∑N
m,n=1 cmkcnkE{Hk,iRum,i[MΣM]kkRun,iHk,i}−

N∑
m=1

c2
mkE{Hk,iRum,i[MΣM]kkRum,iHk,i}

)
(3.122)

The terms in (3.122) depends of higher-order moments of the regression data. While we can continue
the analysis by calculating these terms, it is sufficient for the exposition to focus on the case of
sufficiently small step-sizes where a reasonable approximation is [Sayed, 2013a]:

E{Rum,i[MΣM]kkRum,i} = Rum [MΣM]kkRum (3.123)

Note that this approximation will also be used in the sequel.

Finally, using 3.3, we can reformulate P 1 as:

P 1 =

N∑
m=1

E{HiRcmϕQ(MΣM)RcmHi}

+
(
M∇
L

)2(
E{HiRMΣMRHi} −

∑N
m=1 E{HiRcmMΣMRcm}Hi

) (3.124)

where the matrices Rck are defined as:

Rck = diag{ck1Ruk , . . . , ckNRuk} (3.125)

Term P 2 calculation Using the same steps as above, we have:

[P 2]kk = E{Hk,i[RQ,i]
>
kk[MΣM]kk[Q′i]kkRuk,i}

We substitute [RQ,i]kk and [Q′i]kk by their respective definitions (3.82) and (3.83):

46 Chapter 3. Compressed Diffusion LMS

[P 2]kk =

N∑
m,n=1

cmkcnkE{Hk,iRum,iQm,i[MΣM]kk
(
IL −Qn,i

)
Ruk,i}

Using (3.11) we find that:

[P 2]kk = MM∇
L2

∑N
m=1 c

2
mkE{Rum,i[MΣM]kkRuk,i}

− M
L

∑N
m=1 c

2
mkE{Rum,iQm,i[MΣM]kkQm,iRuk,i}

+ MM∇
L2

(
1− M∇

L

)(∑N
m,n=1 cmkcnkE{Rum,i[MΣM]kkRuk,i}

−
N∑
m=1

c2
mkE{Rum,i[MΣM]kkRuk,i}

)
Finally, we write:

P 2 = M∇M
L2 R2MΣMRu − M

L R2ϕQ(MΣM)Ru

+ MM∇
L2

(
1− M∇

L

)
(RMΣMRu −R2MΣMRu)

(3.126)

where

R2 =

{
N∑
m=1

c2
m1Rum , . . . ,

N∑
m=1

c2
mNRum

}
(3.127)

Term P 3 calculation Term P 3 can be expressed as

[P 3]k` = E{Hk,i[RQ,i]
>
kk[MΣM]kk[RQ(I−H),i]k`} (3.128)

Replacing [RQ,i]kk and [RQ(I−H),i] by their definitions (3.82) and (3.85), respectively, we get:

[P 3]k` =

N∑
m=1

cmkc`kE{Hk,iRum,iQm,i[MΣM]kkQ`,iRu`,i (IL −Hk,i)}

3.2. Diffusion LMS with compression 47

Applying the results from Table 3.2 leads to:

[P 3]k` = M
L c2

`k E{Ru`Q`,i[MΣM]kkQ`,iRu`}
− c2

`k E{Hk,iRu`Q`,i[MΣM]kkQ`,iRu`Hk,i}

+
(
M∇
L

)2 (
M
L

∑N
m=1 cmkc`kRum [MΣM]kkRu`

−
N∑
m=1

cmkc`kE{Hk,iRum [MΣM]kkRu`Hk,i}

− M
L c2

`kRu` [MΣM]kkRu`

+ c2
`k E{Hk,iRu` [MΣM]kkRu`Hk,i}

)
(3.129)

We have:

c2
`kRu` [MΣM]kkRu` =

N∑
m=1

[R′umMΣMC>2 ImRu]k` (3.130)

where

R′um = IL ⊗Rum (3.131)

Im = diag{0, 0, . . . , IL, 0, . . . , 0} (3.132)

All the entries of the matrix Im are equal to zero except the (m,m)-th block which is equal to IL.

Using (3.130), we find that:

P 3 = M
L

∑N
m=1 R′umϕQ(MΣM)C>2 ImRu

−
N∑
m=1

ϕH(R′umϕQ(MΣM)C>2 ImRu)

+
(
M∇
L

)2
(
M
L RMΣMC>Ru −ϕH(RMΣMC>Ru)

− M
L

∑N
m=1 R′umMΣMC>2 ImRu

+

N∑
m=1

ϕH(R′umMΣMC>2 ImRu)

)
(3.133)

Term P 4 calculation We express P 4 as follows:

[P 4]kk = E{Ruk,i[Q
′
i]kk[MΣM]kk[Q′i]kkRuk,i}

Substituting [Q′i]kk by its definition (3.83) we get:

[P 4]kk =

N∑
m,n=1

cmkcnkE{Ruk,i

(
IL −Qm,i

)
[MΣM]kk

(
IL −Qn,i

)
Ruk,i}

48 Chapter 3. Compressed Diffusion LMS

Using (3.11) leads to

[P 4]kk =
(

1− 2M∇L

) N∑
m,n=1

cmkcnkE{Ruk,i[MΣM]kkRuk,i}

+
N∑

m,n=1

cmkcnkE{Ruk,iQm,i[MΣM]kkQn,iRuk,i}

We rearrange the sum as follows:

[P 4]kk =
(

1− 2M∇L

) N∑
m,n=1

cmkcnkE{Ruk,i[MΣM]kkRuk,i}

+

N∑
m=1

c2
mkE{Ruk,iQm,i[MΣM]kkQm,iRuk,i}

+
(
M∇
L

)2

 N∑
m,n=1

cmkcnkE{Ruk,i[MΣM]kkRuk,i}

−
N∑
m=1

c2
mkE{Ruk,i[MΣM]kkRuk,i}

)

Finally, we can write P 4 in a compact form:

P 4 =
(

1− 2M∇L

)
RuMΣMRu + Ru(INL � C C>)ϕQ(MΣM)Ru

+
(
M∇
L

)2
(RuMΣMRu −Ru(INL � C C>)MΣMRu

) (3.134)

Term P 5 calculation Expanding P 5 leads to:

P 5 = P 5,1 − P 5,2 − P 5,3 + P 5,4 (3.135)

where:

3.2. Diffusion LMS with compression 49

P 5,1 =

N∑
m=1

cmkc`kE{Ruk,i[MΣM]kkQ`,iRu`,i} (3.136)

P 5,2 =

N∑
m=1

cmkc`kE{Ruk,iQm,i[MΣM]kkQ`,iRu`,i} (3.137)

P 5,3 =

N∑
m=1

cmkc`kE{Ruk,i[MΣM]kkQ`,iRu`,iHk,i} (3.138)

P 5,4 =

N∑
m=1

cmkc`kE{Ruk,iQm,i[MΣM]kkQ`,iRu`,iHk,i} (3.139)

Following the same steps as earlier, and using the results from Table 3.2, leads to:

P 5,1 = M∇
L RuMΣMC>Ru (3.140)

P 5,2 = M
L

[
RuϕQ(MΣM)C>2 Ru

+
(
M∇
L

)2 (
RuMΣMC>Ru −RuMΣMC>2 Ru

)]
(3.141)

P 5,3 = M
L RuMΣMC>Ru (3.142)

P 5,4 = M
L ϕQ(MΣM)C>2 Ru + M

L

(
M∇
L

)2 (
RuMΣMC>Ru −RuMΣMC>2 Ru

)
Term P 6 calculation Proceeding as previously we find:

P 6 =
(
1− 2M

L

)
RuE{QiCMΣMC>Qi}Ru

+ϕH(RuE{QiCMΣMC>Qi}Ru) (3.143)

Following the same reasoning as in [Sayed, 2013a], we express Σ′ in a vector form as:

σ′DCD = FDCDσ (3.144)

where

σ = vec(Σ)

σ′DCD = vec(Σ′DCD)

50 Chapter 3. Compressed Diffusion LMS

and the coefficient matrix FDCD of size (MN)2 × (MN)2 is defined as:

FDCD = I(NM)2 − MM∇
L2 RM⊗ ILN −

(
1− M∇

L

)
RuM⊗ ILN

− M∇
L

(
1− M

L

)
RuCM⊗ ILN

− MM∇
L2 ILN ⊗RM−

(
1− M∇

L

)
ILN ⊗RuM

− M∇
L

(
1− M

L

)
ILN ⊗RuC>M +

∑6
j=1Zj +Z2> +Z3> +Z5> (3.145)

where the matrices Zj and Zj> are obtained when applying the vec(·) operator to P j and P>j ,
respectively.

Substituting (3.100) and (3.113) into (3.99), and applying the vec(·) operator to both sides, we get:

E‖w̃i‖2σ = E‖w̃i−1‖2FDCDσ
+ trace

(
E{G>DCD,iΣGDCD,i}S

)
(3.146)

Using (3.146), it is possible to extract useful information about the network or a specific node. For
instance, we calculate the network mean square deviation or excess mean square error by setting
Σ = ILN and Σ = Ru, respectively. The DCD can be seen as an extension of the diffusion LMS in
the case where the weighting matrix A is the identity matrix. Indeed, it is possible to recover the
diffusion LMS, and derive other variants such as the compressed diffusion LMS, by properly setting
matrices {Hk,i,Qk,i} and parameters {M,M∇}.

As the steady and transient states analysis of this algorithm are similar to the CD and diffusion
LMS ones from chapter 2 and [Sayed, 2013b], we chose not to repeat them.

3.3 Numerical analysis

In this section we evaluate the accuracy of the theoretical models for the proposed algorithms.
Then, we shall perform different experiments to characterise their performances. This section shall
be structured in two parts. In the first part, we will perform two experiments, where we first
evaluate the accuracy of the mean-square error behaviour models for the compressed version of
diffusion LMS namely CD and DCD. Then, we characterise the performance of the CD and DCD
algorithms for different compression ratios. Note that the compression ratios of the CD and DCD
algorithms are equal to 2L

M+L and 2L
M+M∇

. In the final part, we will consider a realistic scenario
where the compression is used as an energy preserving algorithm to address the shortage of energy
resources.

3.3.1 Compressed diffusion numerical analysis

For this part we first consider a small network to validate the theoretical model. Then, we use a
larger network and high dimensional measurements with the aim of testing the algorithm in a larger
scale setting. For both experiments, the parameter vectors wo were generated from a zero-mean

3.3. Numerical analysis 51

1 2 3 4 5 6 7 8 9 10

node k

1.2

1.4

1.6

1.8

2

σ
2 u
k

Agents input variances

0 5 10 15 20 25 30 35 40 45 50

node k

1

1.2

1.4

1.6

1.8

2

σ
2 u
k

Figure 3.2: (left) Network topology. (right) Variance σ2
uk

of regressors for the
theoretical model validation where we considered a network of N = 10 (top). On the
bottom part we depict the variances σ2

uk in the case where we considered a larger
network of N = 50 agents.

Gaussian distribution. The input data uk,i were drawn from zero-mean Gaussian distributions,
with covariance Ru,k = σ2

u,kIL reported in Figure 3.2 (right). The weighting matrices C were
generated using the Metropolis rule [Sayed, 2013a]. Noises vk(i) were zero-mean, i.i.d. and Gaussian
distributed with variance σ2

v,k = 10−3. Simulation results were averaged over 100 Monte-Carlo runs.

Theoretical model validation

We considered the network with N = 10 nodes depicted in Figure 3.2 (left). We set the parameters
as follows: µk = 10−3, L = 5, M = 3, M∇ = 1. This resulted in compression ratio of 10

8 and 10
4

for compressed diffusion and doubly compressed diffusion LMS, respectively. It can be observed in
Figure 3.3 (left) that the theoretical model accurately fits the simulated results. Unsurprisingly,
the diffusion LMS algorithm outperformed its compressed counterparts at the expense of a higher
communication load.

Algorithm performance for large networks and data sizes

Since compression is particularly relevant for relatively large data flows, we considered a network
with N = 50 agents. We set the algorithm parameters as follows: µk = 3 · 10−2 and L = 50.
Due to the high dimensionality of the matrix F (25002 × 25002), we only performed Monte-Carlo
simulations using C language scripts. Figures 3.4 and 3.5 depict the performance of the algorithms
for different compression ratios. The largest compression ratio that can be reached by the CD
algorithm equals 100

55 as it transmits the whole gradient vectors (Q`,i = IL). On the other hand,
the CDC algorithm offers more flexibility and can adapt to the network communication load by
adjusting M and M∇.

52 Chapter 3. Compressed Diffusion LMS

0 0.5 1 1.5 2 2.5 3 3.5 4

iteration i
×10

4

-70

-60

-50

-40

-30

-20

-10

0

M
S
D

(d
B
)

Method comparison

DCD LMS

CD LMS

diffusion LMS

Theoretical MSD
Simulated MSD
Steady-state MSD

Figure 3.3: Theoretical and simulated MSD curves for diffusion LMS and its
compressed versions. We considered a network of N = 10, data dimension L = 5,
step-size parameters µk = 10−3. We chose to shareM = 3 entries of the local estimate
vectors, for both versions of the compressed diffusion LMS. For the DCLMS we share
M∇ = 1 entries of the stochastic gradient vectors.

3.3.2 Algorithm performance for energy aware networks

We shall now consider a realistic scenario with respect to the energy consumption. Indeed, in a
realistic wireless sensor network (WSN) implementation, nodes have limited energy reserves and
cannot be active all the time. One of the most promising solution for this issue is to adopt an ENO
strategy, where ENO stands for Energy Neutral Operation. In other words, the agents consume at
most the amount of energy they harvest, hence achieving the neutral energy condition. Theoretically,
neutral energy condition guarantees an infinite sensor lifetime. In order to implement an ENO
strategy, nodes must be endowed with energy harvesting and storage capabilities. Agents alternate
between two phases: a brief active phase and a sleeping phase. During the active phase, each agent
k performs its assigned tasks and calculates the duration Tsk,i of the sleeping phase based on the
available energy, the consumed energy and an estimate of the energy that will be harvested [Le
et al., 2013]. For the sake of limiting energy consumption, the agents then switch to sleep mode for
a duration of Tsk,i. The corresponding DCD based algorithm is presented in 3.3.

We considered a solar energy based WSN with Bluetooth capabilities. To calculate Tsk,i, we used [Le
et al., 2013]:

Tsk,i =
eck,i−η esk,i

η (Pharv,k,i−Pleak)−Psleep
(3.147)

where eck,i and esk,i denote the consumed energy and the stored energy, respectively, η is the power
manager efficiency, Pharv,k,i is the harvested power, Pleak is the capacitor leakage power, and Psleep
is the power consumed during sleep phase. These parameters and other parameters used for the
experiment are defined in Table 3.4.

3.3. Numerical analysis 53

0 1 2 3 4 5 6

iteration i
×10

4

-60

-50

-40

-30

-20

-10

0

M
S
D

(d
B
)

Compressed diffusion LMS

Diffusion LMS
r = 1.81
r = 1.66
r = 1.43
r = 1.25

Figure 3.4: Evolution of the mean square deviation (MSD) as a function of the
compression ratio for compressed diffusion LMS. We have a network of N = 50 agents
and data dimension L = 50. We set the step-size parameters to µk = 10−2. We use
a similar data profile as the previous experiment.

Following [Le et al., 2013], we estimated eck,i as follows:

eck,i = ea + PsleepTsk,i−1 (3.148)

where ea denotes the consumed energy during the active phase, assumed to be constant and known,
and PsleepTsk,i−1 is a prediction of the consumed energy during the sleep phase i based on the
duration of the sleep phase i− 1. Quantity ea depends on the algorithm. It is essentially dictated
by the volume of transferred data because of the excessive energy consumption of the Bluetooth
module. As Psleep, it was determined based on our own measurements and an estimation of the
number of frames sent by each algorithm. See Table 3.4.

Finally, we considered the following law to simulate the amount of harvested energy:

Eharv,k,i = max(0, E0 sin(2πfi) + n(i)) (3.149)

with E0 = 0.67J , Eharv,k,i the harvested energy at node k and time i, f = 10−5 a frequency, and
nk(i) a zero-mean Gaussian noise with variance σ2

n = 10−6. Note that the additive noise was used
to diversify the amount of harvested energy during the Monte-Carlo runs. While it would have been
possible to use a constant value over time for the harvested energy, we induced periodicity through
the sin(·) function to roughly model solar energy.

We considered the network in Figure 3.6. It consists of N = 80 agents scattered over a hill with
different lighting levels. We set L to 40. To compare the algorithms, we set their compression ratio
to r = 20. One exception was made for the CD algorithm. As parameter r cannot reach such a large
value, it was set to r = 80

65 . Next the step size of each algorithm was set according to Table 3.5 in
order to reach the same steady-state MSD. When A 6= IL, matrix A was set using the Metropolis
rule [Sayed, 2013a].

54 Chapter 3. Compressed Diffusion LMS

0 1 2 3 4 5 6

iteration i
×10

4

-60

-50

-40

-30

-20

-10

0

M
S
D

(d
B
)

Doubly-compressed diffusion LMS

Diffusion LMS
r = 10
r = 5
r = 3
r = 1.5

Figure 3.5: Evolution of the MSD as a function of the compression ratio for
doubly-compressed diffusion LMS. We use the same parameters as the CD algorithm
described in Figure 3.4.

We shall now discuss the simulation results. Figure 3.7 shows that the sleep phase duration de-
creases as the amount of harvested energy increases, and conversely. Also note that, for all the
algorithms, the sleep phase is longer at the beginning as a consequence of the limited amount of
stored energy that is available. Next, the sleep phase duration drops down until it reaches the
minimal sleep duration Tsmin if possible. The less energy an algorithm consumes, the faster the
super capacitors charge, and the faster the sleep phase duration of the agents drop down. As a con-
sequence, nodes can process larger amounts of data, which makes the convergence of the algorithm
faster as confirmed in Figure 3.8. This can be observed with the diffusion LMS and the DC algo-
rithm, which are outperformed by the other algorithms. Let us now focus on the partial diffusion
LMS and the DCD algorithm (A 6= IL). As their compression ratio r was set to same value for
comparison purposes, and their consumed energy during the active phase is almost the same, their
sleep phases in Figure 3.8 (centre) are superimposed. The DCD algorithm however outperformed
the partial diffusion LMS, in particular because it is endowed with a gradient sharing mechanism.
Both algorithms outperformed the reduced-communication diffusion LMS.

3.4 Conclusion

In this chapter, we tackled one of the most critical challenges brought up with the rise of the Internet
of Things and WSN, to wit: energy efficiency. To address this challenge, we investigated a technique
for diffusion LMS that consists of sharing partial data. We carried out an analysis of the stochastic
behaviour of the proposed two algorithms in the mean and mean-square sense. Furthermore, in the
last section we provided simulation results to illustrate the accuracy of the theoretical models and
considered a realistic simulation where sensor nodes alternate between active and inactive phases.
This experiment confirmed the efficiency of the proposed strategy.

Algorithm 3.3 Local updates at node k for the modified DCD
1: for i = 1, . . . do
2: randomly generate Hk,i and Qk,i

3: for ` ∈ Nk \ {k} do
4: send Hk,iwk,i to node `
5: receive from node ` the partial gradient vector:

Q`,i∇̂wJ`(Hk,iwk,i−1 + (IL −Hk,i)w`,i−1)

6: complete the missing entries using those available at node k, which results in g`,i defined
in (3.79)

7: end for
8: update the intermediate estimate:

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`kg`,i

9: calculate the local estimate:

wk,i = akkψk,i +
∑

`∈Nk\{k}

a`k
[
H`,iw`,i−1 + (IL −H`,i)ψk,i

]
10: switch and stay in sleep mode for Tsk,i seconds
11: end for

56 Chapter 3. Compressed Diffusion LMS

Figure 3.6: Network topology for WSN experiment. We have a network of N = 80
agents scattered of a valley. Under such setting, the agents receive different levels of
solar energy.

0 0.5 1 1.5 2

time (s) ×10
5

0

2

4

6

8

H
a
rv
es
te
d
en

er
g
y
(J

)

×10
-3

0 0.5 1 1.5 2

time (s) ×10
5

0

100

200

300

400

T
s

Diffusion LMS
Reduced communication Diffusion
CD LMS Qℓ,i = IL A = IN
DCD LMS A 6= IN and A = IN/ Partial Diffusion LMS

Figure 3.7: Harvested energy and sleep periods during the experimentations. On
the upper half, we illustrate the profile of the harvested energy. We considered a
simplistic model of the solar energy Eharv,k,i = max(0, E0 sin(2πfi) + n(i)). On the
bottom half, we depict the sleep periods duration for all of the compared algorithms.

3.4. Conclusion 57

Table 3.3: List of symbols defined throughout the performance analysis chapter 3

Symbol Equation
w̃k,i = wo −wk,i (3.36)
w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (3.37)

M = diag{µ1IL, µ2IL, . . . , µNIL} (3.38)
C = C ⊗ IL (3.41)
C2 = C � C (3.110)

Ri = diag
{∑

`∈N1
c`,1Ru`,i, . . . ,

∑
`∈NN

c`,NRu`,i

}
(3.39)

Ru,i = diag{Ru1,i,Ru2,i, . . . ,RuN ,i} (3.42)
Ru`,i = u`,iu

>
`,i (3.43)

[Rm,i]k` = c`kRu`,i(INL −Hk,i) (3.44)

Hi = diag{H1,i,H2,i, . . . ,HN,i} (3.40)
H = M

L INL (3.50)

BCDi = INL −MRiHi −MRm,i (3.46)
G = MC> (3.47)

si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)} (3.48)
S = diag(σ2

v,1Ru,1, . . . , σ
2
v,NRu,N) (3.58)

R = E{Ri} = diag{R1, . . . ,RN} (3.51)
Ru = E{Ru,i} = diag{Ru1 ,Ru2 , . . . ,RuN } (3.52)
Rk =

∑
`∈Nk

c`,kRu` (3.53)
R′um = IL ⊗Rum (3.131)
Im = diag{0, 0, . . . , IL, 0, . . . , 0} (3.132)

RQ,i = diag
{∑

`∈N1
c`1Q`,iRu`,i,

∑
`∈N2

c`2Q`,iRu`,i, . . . ,
∑

`∈NN
c`NQ`,iRu`,i

}
(3.82)

Q′i = diag
{∑

`∈N1
c`1(IL −Q`,i),

∑
`∈N2

c`1(IL −Q`,i) . . . ,
∑

`∈NN
c`N (IL −Q`,i)

}
(3.83)

Qi = diag{Q1,i,Q2,i, . . . ,QN,i} (3.84)
Qi = diag{Q1,i,Q2,i, . . . ,QN,i} (3.84)

BDCDi = INL −MRQ,iHi −MQ′iRu,i −MRQ(I−H),i (3.90)
GDCDi = MC>Qi + MQ′i (3.91)
BDCD = INL − MM∇

L2 MR−
(

1− M∇
L

)
MRu − M∇

L

(
1− M

L

)
MC>Ru (3.92)

FCD (3.67)
FDCD (3.145)

58 Chapter 3. Compressed Diffusion LMS

Table 3.4: Summary of the parameters used to determine the duration of sleeping
phase Ts

parameter description value
Cs super capacitor capacity 0.09 F
Pleak super capacitor leakage power 3.3 · 10−6 W
Psleep consumed power for sleep mode 3.01 · 10−5 W
Tsmin minimal sleep time duration 1 s
Tsmax maximal sleep time duration 300 s
Vref minimal required voltage 3.5 V
ea,diff consumed energy for diffusion LMS 8.58 · 10−2 J
ea,RCD consumed energy for red. comm. LMS 1.61 · 10−2 J
ea,PM consumed energy for part. dif. LMS 5.4 · 10−3 J
ea,cmp consumed energy for CD LMS 7.51 · 10−2 J
ea,dcmp consumed energy for DCD LMS 5.4 · 10−3 J

Figure 3.8: Simulated Mean square deviation under a realistic scenario. We
consider a network of N = 80 agents and data dimension L = 540. The step-size
parameters are summed up in Table 3.5. We use a similar data profile as the previous
experiments.

Table 3.5: Step-size and compression settings for the different tested algorithms.

Algorithm Step-size µk Comp. ratio

Diffusion LMS 5.4 10−3 /

Reduced communication diffusion [Arablouei et al., 2015] 1.14 · 10−2 20

Partial diffusion LMS [Arablouei et al., 2014a] 4.4 · 10−3 20

Compressed diffusion LMS 4.8 · 10−2 80
65

Doubly-compressed diffusion LMS 6 · 10−3 20

59

4 Privacy aware diffusion LMS

Contents
4.1 Introduction . 59

4.2 Diffusion LMS with privacy-preserving capabilities 60

4.3 Theoretical analysis . 62

4.3.1 Preliminary properties of Wishart matrices 62

4.3.2 Convergence in the mean . 63

4.3.3 Mean-square stability . 64

4.4 Privacy preserving diffusion LMS numerical analysis 66

4.5 Conclusion . 68

Previously, we explored the compression as a way to reduce the network load. In the present chap-
ter, we are interested in securing the transmitted data through projection onto a smaller subspace.
Indeed, adaptive networks may raise significant privacy concerns about the observations that are
collected and shared by the agents. Privacy preservation became an important issue in data mining
with the advent of social networks and recommender systems [Ramakrishnan et al., 2001]. In order
to prevent the disclosure of sensitive information during the learning process, privacy preservation
aims at protecting the individual data by making their reconstruction difficult if impossible [Fried-
man, 2011, Agrawal and Srikant, 2000].

The work presented in this chapter was published in:

• Harrane, I. E. K., Flamary, R., and Richard, C. (2016b). Toward privacy-preserving diffusion
strategies for adaptation and learning over networks. In Proc. EUSIPCO, Budapest, Hungary.

4.1 Introduction

Adaptive networks take advantage of their communication ability to collaborate and enhance their
estimation performances. However, this ability could be a double edged sword when considering
data privacy. Indeed, communicating information between multiple agents highly increases the risk
of data privacy breaches. There are several privacy preserving data mining techniques. They can be
classified according to the following five criterions [Verykios et al., 2004]: (i) availability of the data
(centralized, distributed); (ii) sanitization procedure applied to the data (encryption, corruption,
etc.); (iii) learning algorithm which the privacy preservation technique is designed for; (iv) data type
(raw data or aggregated data); (v) privacy preservation technique used for the selective modification
of the data.

60 Chapter 4. Privacy aware diffusion LMS

Table 4.1: List of the symbols and notations used in chapter 4

Symbol Definition
L length of the parameter vectors
N network agent count
Nk neighbourhood of the agent k including it self
wk,i instantaneous estimate at the agent k
wo optimum parameter vector
dk(i) reference signal for the agent k at the time instant i
uk,i regression vector of the agent k
vk(i) additive noise at the agent k
H Wishart matrix used to alter the transmitted data
Mx degree of freedom of the Wishart matrix

It is important to note that data modification results in degradation of the database performance.
This study explores a sanitization procedure for privacy preservation over adaptive networks that
consists of corrupting local raw data. Perturbation techniques include the use of additive noise
to preserve data privacy while making sure that information can still be exploited by the data
mining algorithms. It is worth mentioning that this principle was indirectly studied with diffusion
LMS in the case where the additive noise that corrupts the data is caused by noisy transmission
channels [Sayed, 2013a, Nassif et al., 2016a]. Nevertheless, it was demonstrated that in many
cases, random additive distortion preserves very little data privacy [Kargupta et al., 2005]. Efficient
alternatives that provide guarantees against privacy breaches via linear transformations exploit
multiplicative perturbations [Chen and Liu, 2011, Chen and Liu, 2005, Chen and Liu, 2008]. Finally,
an important step in the design of privacy-preserving algorithms is the identification of appropriate
evaluation criteria. Recently, ε-differential privacy has been recognized as a meaningful criterion.
It guarantees that presence or absence of an individual in a database does not affect the output of
a data mining algorithm significantly. For what concerns us here, this criterion was considered in
an online learning setting with random additive distortions [Jain et al., 2011] and in a distributed
learning setting from finite distributed datasets [Rajkumar and Agarwal, 2012].

This work is a the stepping stone for building and deriving privacy-preserving diffusion strategies
to address distributed inference problems in the case where agents are interested in preserving the
privacy of local measurements. We introduce a diffusion LMS algorithm that corrupts the local
measurements by multiplicative noise at each agent while ensuring the convergence of the algorithm
to an unbiased solution. As for the previous chapters, we will theoretically analyse the algorithm
in the mean and mean-square sense.

4.2 Diffusion LMS with privacy-preserving capabilities

Privacy preservation has become an important issue in many data mining applications. It aims at
protecting the privacy of individual data in order to prevent the disclosure of sensitive information
during the learning process. Taking inspiration from differential privacy, a possible strategy is to

4.2. Diffusion LMS with privacy-preserving capabilities 61

use the data patterns locally without directly sharing the original data, and to guarantee that the
process does not provide sufficient information to recover the original data.

This version of diffusion LMS ensures the data privacy by corrupting the local measurements
{d`(i),u`,i} in (2.4) while ensuring the algorithm convergence towards an unbiased estimate of
the solution of problem (3.8).

Let us consider the same setting as for the previous chapter 3, namely, a connected network of N
nodes. The aim is to estimate an L× 1 unknown vector from collected measurements. Each node k
has access to temporal measurement sequences {dk(i),uk,i}, with dk(i) denoting a reference signal,
and uk,i denoting an L× 1 regression vector with covariance matrix Ru,k > 0. The data at node k
are assumed to be related via the linear regression model at time i:

dk(i) = u>k,iw
o + vk(i) (4.1)

To limit the amount of shared information, we shall assume that the weighting matrix in the
combination step (2.4) A is set to the identity matrix. Diffusion LMS defined by the equations (2.4)
and (2.5) reduces to:

wk,i = wk,i−1 − µk
∑
`∈Nk

c`k∇̂wJ`(wk,i−1) (4.2)

where ∇̂wJ`(wk,i−1) = −u`,i[d`(i) − u>`,iwk,i−1] denotes, the instantaneous approximation at time
instant i of the gradient vector ∇wJ`(w) evaluated at the point wk,i−1 by node `.

In [Sayed, 2013a, Nassif et al., 2016a], an additive noise component is introduced into each step of
the diffusion strategy to model noisy links between nodes. We shall not explore this strategy for
privacy protection even though it is frequently used. It has been shown that in many situations the
original data can be closely estimated from perturbed data using spectral filtering [Kargupta et al.,
2005, Liu et al., 2008a]. We therefore propose to substitute ∇̂wJ`(wk,i−1) in (4.2) by:

H`,i∇̂wJ`(wk,i−1) (4.3)

before that node ` sends this information to node k, with H`,i an L× L matrix defined as:

H`,i = X>`,iX`,i (4.4)

whereX`,i is anMx×L matrix. Each row of matrixX`,i is independently drawn from an L-variate
Gaussian distribution with zero mean and covarianceRx,`. IfMx ≥ L,H`,i is said to be drawn from
a Wishart distribution with Mx degrees of freedom and scale matrix Rx,`. Otherwise, if Mx < L,
then the Wishart no longer has a proper density. It is a singular distribution with values in a
lower-dimension subspace of the space of Mx ×Mx matrices.

Our motivations for exploring transformation (4.3) are two-fold. Firstly, H`,i is a nonnegative
matrix. Therefore, the conditional expectation of (4.3) given H`,i and wk,i−1, namely,

E{H`,i∇̂wJ`(wk,i−1)|H`,i,wk,i−1} = H`,i∇wJ`(wk,i−1) (4.5)

62 Chapter 4. Privacy aware diffusion LMS

Table 4.2: List of symbols defined throughout the performance analysis chapter 4

Symbol Equation
w̃i = wo −wk,i (4.10)
w̃k,i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (4.11)
M = diag{µ1IM , µ2IM , . . . , µNIM} (4.12)
Ri = diag

{∑
`∈N1

c`1u`,iu
>
`,i, . . . ,

∑
`∈NN

c`Nu`,iu
>
`,i

}
(4.13)

Hp,i = diag{H1,i,H2,i, . . . ,HN,i} (4.14)
C = C ⊗ IM (4.15)

Bp,i = INL −MRH,i (4.17)
Gp,i = MHp,iC> (4.18)
RH,i = diag

{∑
`∈N1

c`1u`,iH1,iu
>
`,i, . . . ,

∑
`∈NN

c`Nu`,iH`,iu
>
`,i

}
(4.19)

S = diag(σ2
v,1Ru,1, . . . , σ

2
v,NRu,N) (4.31)

si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)} (4.20)

H = E{Hi} = diag(H1, . . . ,HN) (4.22)
Hp = E{Hp,i} = Mx σ

2
x INL (4.24)

R = E{Ri} = diag(Ru,1, . . . ,Ru,N) (4.23)

Ki = CH>p,iMΣMHp,iC> (4.27)

is a descent direction [Sayed, 2003] provided that ∇wJ`(wk,i−1) is nonzero and does not lie in the
null space ofH`,i. Secondly, the parameterMx allows to fix the rank ofH`,i. This allows to balance
the trade-off between privacy, in the case where H`,i is rank-deficient, and convergence rate.

4.3 Theoretical analysis

In this section, we shall study the stochastic behaviour of the privacy-preserving diffusion LMS
defined as:

wk,i = wk,i−1 + µk
∑
`∈Nk

c`kH`,iu`,i[d`(i)− u>`,iwk,i−1] (4.6)

We first summarize some useful properties. For the sake of conciseness and simplicity, we shall
consider that Rx,` = σ2

xIM for all `.

4.3.1 Preliminary properties of Wishart matrices

In order to analyse the algorithm, we need to recall the first and second-order moments ofH`,i. For
clarity, we drop the subscripts ` and i. Let H a random matrix drawn from a Wishart distribution
of Mx degrees of freedom and a scale matrix Rx = σ2

xIL. We then have the mean of H formulated

4.3. Theoretical analysis 63

as:
E{H} = MxRx = Mxσ

2
xIL (4.7)

Consider now two independent matrices H1 and H2 drawn from Wishart distributions with Mx

degrees of freedom and scale matrices Rx = σ2
xIL. We have:

cov{(H1)ij , (H2)k`} = M2
x σ

4
x δij δk` (4.8)

where δij stands for the Kronecker delta function. Finally, in the case H = H1 = H2, by Isserlis’
theorem we have:

cov{(H)ij ,(H)k`} = Mx σ
4
x

(
Mxδijδk` + δikδj` + δi`δjk

)
(4.9)

4.3.2 Convergence in the mean

Before proceeding with the analysis of the algorithm, let us recall some important notations:

w̃i = wo −wk,i (4.10)

w̃k,i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (4.11)

M = diag{µ1IM , µ2IM , . . . , µNIM} (4.12)

Ri = diag

∑
`∈N1

c`1u`,iu
>
`,i, . . . ,

∑
`∈NN

c`Nu`,iu
>
`,i

 (4.13)

Hp,i = diag{H1,i,H2,i, . . . ,HN,i} (4.14)

C = C ⊗ IM (4.15)

and introduce the following assumptions:
Assumption 4.1. The regression vectors uk,i arise from a zero-mean random process that is tem-
porally white and spatially independent. A direct consequence of this assumption is that uk,i is
independent of w`,j for all ` and j < i.
Assumption 4.2. The additive noise signals vk(i) are temporally white and spatially independent
zero-mean random variables.
Assumption 4.3. The rows of matrices X`,i arise from zero-mean Gaussian processes that are
temporally white, mutually independent, and independent of any other process.

Using the definitions (4.10), (4.11) and the recursion (4.6) we get:

w̃i = Bp,iw̃i−1 − Gp,isi (4.16)

64 Chapter 4. Privacy aware diffusion LMS

where

Bp,i = INL −MRH,i (4.17)

Gp,i = MHp,iC> (4.18)

RH,i = diag

∑
`∈N1

c`1u`,iH1,iu
>
`,i, . . . ,

∑
`∈NN

c`Nu`,iH`,iu
>
`,i

 (4.19)

si = col{u1,iv1(i),u2,iv2(i), . . . ,uN,ivN (i)} (4.20)

Under 4.1, uk,i is independent of w`,j for i ≥ j and for all `. This assumption is commonly
used in the adaptive filtering literature because it helps simplify the analysis. The performance
results obtained under this assumption match well the actual performance of stand-alone filters for
sufficiently small step-sizes.

Taking expectation of both sides of recursion (4.16), using Assumptions 4.1 – 4.3, and E{si} = 0,
we find that:

E{w̃i} =
(
INL −ME{RH,i}

)
E{w̃i−1}

=
(
INL −MHpR

)
E{w̃i−1} (4.21)

where

Hp = E{Hi} = diag(H1, . . . ,HN) (4.22)

R = E{Ri} = diag(Ru,1, . . . ,Ru,N) (4.23)

Let us now evaluate Hp. Since it is a block diagonal matrix, we can use the result (4.7) from the
previous section:

Hp = E{Hp,i} = Mx σ
2
x INL (4.24)

From (2.31), the algorithm asymptotically converges in the mean to wo if and only if matrix (INL−
MHpR) is stable, meaning that all its eigenvalues lie strictly inside the unit disc. This leads to
the following condition on the step-size parameters µ`:

µ` <
2

λmax(Mx σ2
xRu,`)

(4.25)

where λmax(·) stands for the maximum eigenvalue of its matrix argument [Sayed et al., 2013].

4.3.3 Mean-square stability

To analyse the mean-square-error stability, we evaluate the weighted mean-square deviation E‖w̃‖2Σ
where Σ denotes a nonnegative definite matrix with L × L block entries [Σ]k`. The freedom in
selecting Σ allows us to extract various types of information about the network. From relation

4.3. Theoretical analysis 65

(4.16) and using the Assumptions 4.1 – 4.3, we get:

E‖w̃i‖2Σ = E{w̃>i−1B>p,iΣBp,iw̃i−1}+ E{s>i G>p,iΣGp,isi} (4.26)

Observe that the analysis of (4.26) is not a direct extension of the analysis of the diffusion LMS
algorithm because of the presence of the stochastic matrix Hp,i.

Let us evaluate the last term in the right-hand side of (4.26). We introduce the following notations:

Ki = CH>p,iMΣMHp,iC> (4.27)

The last expectation of (4.26) is given by:

E{s>i Kisi} = trace
(
E{s>i Kisi}

)
(4.28)

= trace
(
E{Ki}E{sis>i }

)
(4.29)

= trace
(
E{Ki}S

)
(4.30)

with
S = diag(σ2

v,1Ru,1, . . . , σ
2
v,NRu,N) (4.31)

To evaluate E{Ki}, we consider E{H>p,iMΣMHp,i} because the matrix C is constant. Its (k, `)-th
block is given by:

E{[H>p,iMΣMHp,i]k`} = µkµ` E{Hk,i[Σ]k`H`,i} (4.32)

since Hp,i is a block diagonal matrix, see (4.14). In this expression, [·]k` denotes the (k, `)-th block
of its matrix argument. We start by expanding the matrix product:

E{(Hk,i[Σ]k`H`,i)pq} =

L∑
m=1

L∑
n=1

([Σ]k`)mn E{(Hk,i)pm(H`,i)nq} (4.33)

Let us now evaluate the expectation on the right-hand side. We have to consider the two cases
(k 6= `) and (k = `) separately. If k 6= `, we obtain from (4.8):

E{[H>p,iMΣMHp,i]k`} = µkµ`M
2
x σ

4
x [Σ]k` (4.34)

If k = `, we obtain from (4.9):

E{[H>p,iMΣMHp,i]kk} = µ2
kMx σ

4
x

(
(Mx + 1)[Σ]kk + trace([Σ]kk)IM

)
(4.35)

We denote E{Ki} by K. The (k, `)-th block of the argument of the trace operator in (4.30) reduces
to:

[KS]k` = σ2
v,`[K]k`Ru,` (4.36)

66 Chapter 4. Privacy aware diffusion LMS

since S is a block diagonal matrix. We conclude that the last expectation in the right-hand side
of (4.26) is given by:

E{s>i Ksi} =

N∑
k,`,m=1

cmk cm` σ
2
v,m trace

(
E{[H>p,iMΣMHp,i]k`}Ru,m

)
where the expectation is given by (4.34)–(4.35). This expression can be simplified making further
assumptions. For example, if the matrix Σ is block diagonal, it becomes:

E{s>i Ksi} =
N∑

k,`=1

c2
k` σ

2
v,k trace

(
E{[H>p,iMΣMHp,i]``}Ru,k

)
(4.37)

where the expectation is given by (4.35). With regards to the first expectation on the right-hand
side of (4.26), we have:

E(w̃>i−1B>p,iΣBp,iw̃i−1) = E‖w̃i−1‖2Σ′ (4.38)

where we introduced the weighting matrix

Σ′ = E(B>p,iΣBp,i)

= Σ−ΣMHpR−R>H>p MΣ +O(M2) (4.39)

where
O(M2) = E{R>H,iMΣMRH,i} (4.40)

The above expectation depends on higher order moments of the regression data, which makes its
calculation complicated. Following [Sayed, 2013a], we focus on the case of sufficiently small step
sizes {µk} where the effect of terms involving higher powers of the step-sizes can be ignored. A
reasonable approximation for O(M2) for sufficiently small step sizes is:

O(M2) = R>E{H>p,iMΣMHp,i}R (4.41)

where the expectation on the right-hand side was calculated earlier in (4.32)–(4.35).

Following a similar reasoning as in the previous chapter, we combine the results (4.37) and (4.39)
and applying the vec(.) operator we can extract several information about the network performance
such as the mean square-error of a single agent or the whole network by setting the proper metric
Σ.

4.4 Privacy preserving diffusion LMS numerical analysis

We shall now carry out a numerical analysis of the algorithm. We commence the study by testing
the accuracy of the theoretical model. We considered a connected network consisting of N = 10

nodes. The optimal parameter vector wo of length L = 5 was randomly selected from a zero-
mean Gaussian distribution with covariance I5. The regression inputs uk,i were zero-mean random

4.4. Privacy preserving diffusion LMS numerical analysis 67

Figure 4.1: Mean square deviation (MSD) comparison between diffusion LMS
and its privacy-preserving version for i.i.d. regression data. We consider a network
of N = 10 agents, data dimension L = 5 and a randomly drawn objective vector
wo ∼ N (0, I5). The regression data vectors and the additive noise are also draw
from a Gaussian distribution uk,i ∼ N (0, I5), vk(i) ∼ N (0, 10−3). Finally the step-
size parameters are set to µk = 1

Mx
.

vectors drawn from a Gaussian distribution with covariance Ru,k = I5 in a first experiment where
we considered independent entries for the regression vectors uk,i, and

Ru,k =


1 a a2 a3 a4

a 1 a a2 a3

a2 a 1 a a2

a3 a2 a 1 a

a4 a3 a2 a 1

 (4.42)

in a second experiment with a = 0.3 where the entries are correlated. The background noises vk(i)
were i.i.d. zero-mean Gaussian random variables of variance σ2

v,k = 10−3, independent of any other
signals. The matrix C was generated using the Metropolis rule [Sayed, 2013a]. The combination
matrices A1 and A2 were set to the identity for all the algorithms. The step-sizes were set to
µk = 5 · 10−3. We set the parameter σ2

x =
√

1/Mx so as to keep the same convergence rate for all
methods. P

The simulation results were obtained by averaging 100 Monte-Carlo runs. It can be observed in
Figure 4.1 that the models accurately fit the simulated results for i.i.d. regression data.

In Figure 4.1, we compared the privacy-preserving diffusion LMS in the case of a singular H`,i

where Mx = 1 a full-rank H`,i with Mx = 5, with the diffusion LMS algorithm. As expected, the
diffusion LMS algorithm outperformed its privacy-preserving counterparts. Such result is due to
the corrupted nature of the shared data.

To study the influence of Mx on the performance of the privacy-preserving diffusion LMS, we

68 Chapter 4. Privacy aware diffusion LMS

Figure 4.2: Mean square deviation (MSD) comparison between diffusion LMS and
its privacy-preserving version for correlated input data. For this final experiment, we
use the same parameters as the first one with different values of the parameter Mx.

simulated different algorithm runs with different values of the said parameter. Figure 4.2 shows
that the performance increases with Mx. Note that as Mx increases, the transformation matrices
H`,i converge to IL and the algorithm degenerates to diffusion LMS and loose its privacy-preserving
property. On the contrary, small parameter values Mx < L lead to low-rank transformations that
ensure privacy. Finally, in Figure 4.3, we report the performance obtained for correlated input data,
and confirms the models accuracy.

4.5 Conclusion

In this chapter we focus our attention towards a very sensitive aspect of distributed algorithms. We
are referring to the privacy aspect. As a first step towards a privacy preserving diffusion algorithm,
we took inspiration from differential privacy to build a distributed algorithm where agents are not
only interested in cooperating to enhance their performances but also require data privacy. Then
we theoretically analysed the proposed algorithm and verified the fitness of the models numerically.
We concluded that, a trade-off between a privacy and performance is necessary as the more secure
the algorithm the less accurate.

Figure 4.3: Mean square deviation (MSD) comparison between diffusion LMS
and its privacy-preserving version for correlated input data. We use a similar setting
as the previous experiment. However, we consider the covariance matrix Ru,k defined
in (4.42) for the regression data.

71

5 Unsupervised Clustered Multitask
Learning

Contents
5.1 Introduction . 72

5.2 Multitask Learning . 72

5.3 Unsupervised Clustered Multitask estimation 75

5.4 Theoretical analysis with perfect clustering 80

5.4.1 Mean error stability analysis . 82

5.4.2 Mean square error analysis . 83

5.5 Algorithm performance for imperfect clustering 85

5.5.1 Mean error analysis . 87

5.5.2 Network Mean Performance . 87

5.5.3 Mean square error analysis . 87

5.5.4 Network Mean-Square Performance . 88

5.5.5 Transient State Analysis . 89

5.6 Numerical analysis . 90

5.6.1 Theoretical model accuracy . 90

5.6.2 Multitask performance . 91

5.7 Conclusion . 94

In the previous chapters, we mainly focused on the single task diffusion LMS where all agents are
interested in estimating a common parameter. However, agents within the same network often
seek to estimate different parameters. Such setting is known as multitask learning. In the present
chapter, we start by a brief overview of multitask learning literature. Then we formulate the
multitask optimisation problem. Next, we introduce a clustered multitask estimation algorithm.
It relies on two types of agents, cluster agents seeking to estimate the clusters centroids as well
as the graph structure, and regular agents estimating their respective objective vectors. We then,
theoretically analyse the algorithm performance in both mean and mean square sense after the
clustering convergence. We also study it under two different scenarios. First, we consider the
algorithm under optimal conditions where the tasks are correctly clustered. Under the second
scenario, we consider a less favourable setting where some agents are miss-clustered. Such scenario
could occur, for instance, when the number of tasks is unknown. For this particular scenario, the
number of cluster agents would not match the quantity of tasks to estimate. Such setting will result

72 Chapter 5. Unsupervised Clustered Multitask Learning

in a subset of agents communicating with the wrong cluster agent. Finally, we perform numerical
analysis to verify the accuracy of the theoretical model under the previously discussed scenarios.

5.1 Introduction

We previously, mainly focused on the single task diffusion LMS [Sayed, 2003, Sayed, 2008, Sayed,
2013a, Sayed, 2013a]. In this scenario, the whole network aims to minimise an aggregate cost func-
tion. Every agent, through local computation and communication, seeks to estimate the minimiser
of its cost function. However, in many cases, agents belonging to the same network are interested
in estimating different parameters. Such setting is common in mobile networks where each agent
seeks to estimate the power of the surrounding signals to determine the optimal base station to link
to. Target tracking, is another example of agents seeking different minimisers.

This chapter is structured in four parts. We start by an overview of the multitask learning literature.
Then, in the second part, we recall the optimisation problem of multitask diffusion LMS algorithm.
Next, we propose an unsupervised clustered multitask algorithm. The information exchange between
agents is carried out through a regularisation parameter promoting a clustering of agents. In the
third part, we theoretically analyse the algorithm stochastic behaviour in the mean and mean
square sense under the previously introduced scenarios. Finally, we carry out a numerical analysis
to validate the theoretical analysis and measure its performance.

5.2 Multitask Learning

In this section, we start by giving a brief examination of multitask learning literature. Then, we
discuss its extension to a multi-agent setting and its different variants. However, before delving
into the literature, it is important to introduce some basic notions. A multitask network composed
of N agents seeks to minimise N cost functions. In order to enhance the performance, agents
sharing similar objectives should collaborate, form a cluster and limit collaboration with other
agents. Depending on the setting, agents either do or do not have access to information about their
respective clusters. In the latter case the nodes need to learn their clusters to guarantee an unbiased
solution.

Multitask learning in machine learning Multitask learning aims to learn multiple classifiers
simultaneously. Such procedure takes advantage of the shared information between classifiers to
improve the learning process as argued in [Caruana, 1997]. In a multitask setting, in contrast
with single task learning, where the input signals are task specific, they are available for all the
tasks. As a consequence, using a shared representation of those signals, related tasks are jointly
learned. In [Caruana, 1997], the authors consider a neural network learning to solve multiple tasks
simultaneously. The information is shared through a hidden layer in the network connecting all of
the tasks outputs. They have also considered multitask K-nearest neighbours and kernel regression.
For all considered learning methods, multitask learning outperformed its single task counterpart.

5.2. Multitask Learning 73

While [Caruana, 1997] used a common representation to share data between tasks, other au-
thors [Evgeniou and Pontil, 2004a, Argyriou et al., 2008] proposed a regularisation approach. They
considered Q tasks, for each task q there are M input/output examples (xq1, yt1), . . . , (xqM , ytM) ∈
Rd × R. They used a regularisation cost function defined as:

min
W

Q∑
m=1

M∑
n=1

J(ymn,w
>
mxmn) + γΩ(W) (5.1)

where J(.) is a loss function, Ω(.) is a regularisation function, wm are the estimated vectors and
W = {w1,w2, . . . ,wQ}. In [Evgeniou and Pontil, 2004a], the authors considered the regularisation
function defined as:

Ω(W) =

Q∑
m=1

||wm − 1
Q

∑Q
n=1wn||2 (5.2)

Such regularisation function promotes similarity between tasks by minimising their variances. The
authors [Argyriou et al., 2008] used a similar method. However, they used the regularisation as a
mean to perform a joint feature selection through a Group Lasso approach [Yuan and Lin, 2006].
The authors considered the following regularised cost function:

min
W

Q∑
m=1

M∑
n=1

J(ymn,w
>
mxmn) + γ||W ||`1,`2 (5.3)

where wm is the m-th column of the matrix W . The (`1, `2)-norm is obtained by first calculating
the 2-norm of the rows of the matrixW then the 1-norm of the resulting vector such as ||W ||`1,`2 =
d∑
k

||[W]k||2, where [W]k denotes the k-th row of the matrix W . The (`1, `2) norm combines the

tasks and ensures the joint feature selection while promoting sparsity. In [Rakotomamonjy et al.,
2011], the authors investigated a larger class of mixed-norm penalty based on `p - `q norm with
p ≤ 1 and 1 ≤ q ≤ 2 for linear and non-linear multitask learning. It is worth mentioning that,
when p ≤ 1, the optimisation problem is no longer convex. In order to overcome this difficulty,
the authors fitted the problem into the Majorization - Minimisation framework. The authors also
provided numerical results proving the superiority of the `p - `q norm compared to `1 - `2 norm.

Still through regularisation, the authors in [Flamary et al., 2014] considered learning a graph of
tasks relation P . They considered the following regularisation term:

Ω(W , {λq},P) =

Q∑
q=1

λq||wq||22 +

Q∑
q,r=1

pqr||wq −wr||22 (5.4)

where Q is the number of tasks and pqr is the (q, r)-th entry of the adjacency matrix P . The first
term is a ridge regularisation term and the second promotes pairwise similarity between tasks as
dictated by the symmetric adjacency matrix P . The authors proposed to learn the adjacency matrix
of the task relation graph P alongside the task decision function parameters. They introduced a
bilevel optimisation problem dealing with the generalisation error and the optimisation of the task
parameters. They have also provided a numerical analysis proving the efficiency of the proposed

74 Chapter 5. Unsupervised Clustered Multitask Learning

approach.

To solve a similar problem, in other words, learning the relationship between tasks as well as
the tasks decision functions, authors in [Jacob et al., 2009] considered a convex relaxation of the
objective function defined as:

min
W∈Rd×Q,Σ∈Sr

J(W) + λtrace(WΣ−1W>) (5.5)

where Q is the number of tasks, d the data dimension, W a d × Q matrix formed by Q vectors
to be estimated, Σ encodes the graph structure and Sr is a finite set of semi-definite matrices.
The positive coefficient λ controls the trade-off between the two terms. In contrast with the other
approaches, the authors considered tasks clustered into r groups and the weight vectors w within
the same group are similar.

Multitask diffusion LMS Multitask learning has been extended to a multi-agent setting in [Chen
et al., 2015b]. The authors analysed diffusion LMS algorithm when the single task hypothesis is
violated. They also proposed a clustering method through adaptive combination weights. In a
similar approach as [Evgeniou and Pontil, 2004b, Flamary et al., 2014], the authors in [Chen et al.,
2014b], used a regularisation function that measures the similarity between tasks formulated for an
agent j as:

Ωj(W) =
∑
k∈Cj

∑
`∈Nk\Cj

ρk`||wC(k) −wC(`) ||22 (5.6)

where Cj denotes the cluster j, C(k) stands for the cluster to which node k belongs, and the notation
Nk\Ck denotes the set of neighbouring nodes of k that are not in the same cluster as k. The non-
negative coefficients ρk` locally control the strength of the regularisation. They are similar to the
adjacency matrix P in [Flamary et al., 2014]. However, the coefficients ρk` are not learned but set
dynamically following a weighting rule depending on the cluster size. Note that this regularisation
function still promotes similarity between clusters. Similarly to [Evgeniou et al., 2005], although in
a multi-agent setting, authors in [Chen et al., 2014a] considered estimating wo

k in two parts: u and
εok:

wo
k = Θu+ εok (5.7)

where the part Θu is common for all agents, εok is node specific and the matrix Θ is assumed to
be known and full rank. The authors also considered using an approximation of the mean square
deviation between agents in the regularisation function in [Chen et al., 2015a].

In [Bertrand and Moonen, 2010a, Bertrand and Moonen, 2010b], the authors studied the perfor-
mance of a fully connected sensor network. Agents have access to multi-channel observations and
the objective vectors are assumed to share a common latent signal subspace. The authors extended
the analysis to a tree network topology in [Bertrand and Moonen, 2011] and to heterogeneous and
mixed-topology wireless networks in [Szurley et al., 2015].

Some authors addressed the multitask problem in a different way. Instead of using regularisation
for conditioning the objective vectors, they proposed to add a clustering step before performing the

5.3. Unsupervised Clustered Multitask estimation 75

diffusion LMS algorithm based on the estimated clusters as it is proposed in [Plata-Chaves et al.,
2016]

Regularized Multitask Diffusion In the previously mentioned works, regularisation was mainly
used to promote similarity between tasks. However, regularisation can be used for other purposes.
For instance, in [Nassif et al., 2015] `1-norm regularisation was used to promote similarity cluster-
wise. They considered two regularisation function defined as:

Ω(W) =

N∑
k=1

∑
`∈Nk\Ck

(ρk` + ρ`k)||wC(k) −wC(`)||1 (5.8)

Ωα(W) =

N∑
k=1

∑
`∈Nk\Ck

(ρk` + ρ`k)

L∑
m=1

αm|[wC(k) −wC(`)]m| (5.9)

where C(k) denotes the cluster to which node k belongs, ρ`k are non-negative coefficients used to
locally adjusting the regularisation strength, L is the data dimension and αm are positive weights
to be dynamically adjusted. Note that the second regularisation function Ωα(.) is a weighted
formulation of the `1-norm designed to enhance the penalization of the non-zero components of its
parameter vector.

In [Nassif et al., 2016d], the authors considered minimisers sharing a large number of similar entries.
They introduced the multitask diffusion LMS with Forward-Backward splitting where they also used
an `1-norm regularisation.

Multitask diffusion through correlation Often, in a multitask setting, the tasks are similar
or share common parameters. Some authors proposed to use such correlation to build more suited
algorithms. For instance, in [Plata-Chaves et al., 2015], the authors considered the parameters to be
optimised as three parts: a common part to all the agents in the network, a shared part for a subset
of agents and a local part. Some authors proposed to use the inherent physical correlation between
tasks as they used the spatiotemporal correlation between the measurements of the nodes [Abdolee
et al., 2014]. In [Nassif et al., 2016d] the authors considered minimiser vectors sharing entries
without any prior knowledge, and in [Nassif et al., 2016b, Nassif et al., 2017b] they considered
linearly related tasks.

5.3 Unsupervised Clustered Multitask estimation

Let us consider an interconnected network of N agents. The objective is to estimate N parameters
of interest. We suppose that some agents share similar tasks. These agents ought to form a cluster
to enhance the estimation performance. In this work, we consider Q < N clusters. At each time
instant i every agent k collects zero mean quantities: the scalar reference signal dk(i) and the L
dimensioned regression vector uk,i with a covariance matrix Ruk � 0. The data at an agent k are

76 Chapter 5. Unsupervised Clustered Multitask Learning

Table 5.1: List of the symbols and notations used in chapter 5

Symbol Definition
L length of the parameter vectors
N network agent count
Q number of tasks
Nk neighbourhood of the agent k including itself
wk,i instantaneous estimate at the agent k
w̄q,i instantaneous estimate of the cluster agent q
wo optimum parameter vector
dk(i) reference signal for the agent k at the time instant i
uk,i regression vector of the agent k
vk(i) additive noise at the agent k

assumed to be related to the unknown parameter vector wo
k with a linear model:

dk(i) = u>k,iw
o
k + vk(i) (5.10)

where vk(i) a zero mean additive noise with variance σ2
vk
. Each agent seeks to minimise the local

objective cost function Jk:
Jk(w) = E{|dk(i)− u>k,iw|2} (5.11)

We further assume that some agents share the same tasks i.e. cluster. As a consequence, the N
agents form Q < N groups.

Optimisation problem We propose to solve the following optimisation problem in a distributed
manner:

min
wk,w̄q ,α∈∆N

Q

N∑
k

E{Jk(dk − u>kwk)}+ γ

N∑
k

Q∑
q

αkq||wk − w̄q||22 (5.12)

where ∆N
Q is a simplex defined as:

∆N
Q = {αk` ≥ 0,

Q∑
`

αk` = 1, ∀k = 1, . . . , N, ∀` = 1, . . . , Q} (5.13)

The first term is a data related term where Jk(.) is a convex cost function. In the scope of this work,
we consider the mean square criterion. The second term is the regularisation term. It is controlled
through the non-negative parameter γ. The regularisation term promotes similarity between tasks
which results in a clustering effect per task. Each cluster q has a cluster node tasked with estimating
two parameters: w̄q the cluster centroid and αkq positive weighting coefficients encoding the graph
structure (cluster membership of each agent).

In the following we consider two types of agents depicted in Figure 5.1. The cluster agents depicted
by filled dots in Figure 5.1. They are in charge of the second term of the cost function (5.12). They
estimate their respective centroids w̄q and the relationship between them and the regular agents.
This relationship is encoded in the N × Q matrix α. The centroids w̄q and α are then relayed

5.3. Unsupervised Clustered Multitask estimation 77

w̄1 w̄2

w1

w2 w3

wo
1

w4

w5

w6

wo
2

wo

w̄q cluster agent
wk regular agent
αkq cluster/ regular agents relationship

Figure 5.1: We depict a network with N = 6 agents, Q = 2 task agents. The
6 regular agents estimate their local estimates wk and cluster around the 2 cluster
agents. The relationship between the cluster agents and regular agents is conveyed
through α. The cluster centroids w̄q and α are estimated by the cluster agents.

to the regular agents. These regular agents depicted by the symbols "×" in Figure 5.1, are in
charge of the first term of the cost function (5.12). In other words: they estimate their respective
objective vectors using the information relayed by the cluster agents. Through this regularisation,
regular agents sharing the same tasks, cluster around their respective centroids. The group formed
by cluster and regular agents then converges to the minimiser.

In this work, we simultaneously estimate the objective vectors wo and the centroids w̄q. It is worth
mentioning that this problem is similar to [Flamary et al., 2014] in a distributed setting. However
instead of learning the relationship graph between all of the tasks resulting in a N ×N adjacency
matrix, we only learn the relationships between each Q cluster agent and the N regular agents. As
a result, we obtain a smaller Q×N matrix.

Figure 5.2 represents the relationships between the regular agents and cluster agents. Starting from
the left hand-side, we depict the evolution of the clusters along the algorithm iterations. At the
beginning, the coefficients αkq are uniformly selected as we wish that the cluster agents communicate
with all of the regular ones. Note the link width is used to represent the coefficients αkq. In the
centre, we represent an intermediate step where some links have been severed and the coefficients
αkq have been adjusted. For example, the links between the three top agents and the red cluster
agent are stronger compared to the green one. Finally, the far-right figure is a representation of
the final clusters where all of the regular agents only communicate with one cluster agent. Note
that after the convergence of the weights αkq or in the case where Q = 1 the problem is equivalent
to [Evgeniou and Pontil, 2004a] where they minimise the variance of the estimates per cluster.

Observe that the cost function (5.12) is not convex. However, for a fixed α, the function becomes
convex with respect to w̄q or wk. The cost function is also convex with respect to α when both wk

and wk are fixed. In addition, as the weights αkq are required to belong to the simplex ∆N
Q , the

proposed optimisation problem is constrained with respect to α.

78 Chapter 5. Unsupervised Clustered Multitask Learning

Figure 5.2: A representation of the relationships between each of the N = 9
agents and the Q cluster agents. We represent the coefficients αkq through the width
of the links. On the left-hand side, we illustrate the links as in the beginning of the
learning. At this stage all the agents communicate with all of the cluster nodes, thus
the thinness of the links. The centre figure represents an intermediate step where the
cluster agents start to adjust their connections with the regular agents. For instance,
the link between the top regular agent and green cluster agent was severed as they
do not share similar tasks. On the right-hand side, we represent the links after the
convergence of the adjacency parameters αkq where all the unnecessary links have
been cut off. Note that at this stage, the entries of αi are on the corners of the
simplex ∆N

Q .

Optimisation algorithm To solve the optimisation problem (5.12), we propose a distributed
stochastic approach. We consider a network of N regular agents and Q cluster agents. The proposed
algorithm run is described in 5.1. In the following we detail its run

• During the first step the Q cluster agents stochastically estimate their respective objective
vectors w̄q,i as described in the following recursion:

w̄q,i = w̄q,i−1 − γµ̄
N∑
k=1

αkq(i)(w̄q,i−1 −wk,i−1) (5.14)

where µ̄ is a non-negative step-size parameter.

• Based on those estimates, they estimate the coefficients αkq(i) where

α̃kq(i) = αkq(i− 1)− γµα||w̄q,i−1 −wk,i−1||22 (5.15)

where µα is a non-negative adaptation step-size parameter. Each row α̃k,i of the temporary
matrix α̃i is then projected on the simplex ∆N

Q

αk,i = P∆N
Q

(α̃k,i) (5.16)

where P∆N
Q

(.) is the simplex projection operator.

5.3. Unsupervised Clustered Multitask estimation 79

Algorithm 5.1 Unsupervised Clustered Multitask learning algorithm
1: initialise wi, w̄i, α,
2: for i = 1, . . . do
3: for q = 1, 2, . . . , Q do
4: update w̄q,i

w̄q,i = w̄q,i−1 − γµ̄
N∑
k=1

αkq(i)(w̄q,i−1 −wk,i−1)

5: update α̃kq(i)
α̃kq(i) = αkq(i− 1)− γµα||w̄q,i −wk,i−1||22

6: project the vector α̃k,i onto the simplex ∆Q as

αk,i = P∆N
Q

(α̃k,i)

7: send w̄q and αi to all agents
8: end for
9: for k = 1, 2, . . . , N do

10: update the local estimate wk,i

wk,i = wk,i−1 + µk

uk,i(dk(i)− u>k,iwk,i−1)− γ
Q∑
q=1

αkq(i)(wk,i−1 − w̄q,i)


11: end for
12: end for

• Finally the regular agents estimate their objective vectors wk,i using the following recursion

wk,i = wk,i−1 + µk

uk,i(dk(i)− u>k,iwk,i−1)− γ
Q∑
q=1

αkq(i)(wk,i−1 − w̄q,i−1)︸ ︷︷ ︸
Regularisation term

 (5.17)

Observe that the three parameters wk, w̄q and α are estimated through a stochastic gradient
descent. Furthermore, as the estimates updates are carried out over three stages: centroids w̄q,
local estimates wk then α, the algorithm structure resembles the block coordinate descent.

Although extensively studied, stochastic gradient descent based algorithms, because of non con-
vexity, their convergence properties for non convex optimisation remains unknown. However, for
smooth cost functions, these algorithms are guaranteed to converge to first-order optimal solu-
tions [Liu et al., 2018]. In addition, some authors [Zeng and Yin, 2018, Bianchi and Jakubowicz,
2013] successfully implemented projected stochastic gradient descent for non convex optimisation.

80 Chapter 5. Unsupervised Clustered Multitask Learning

Table 5.2: List of symbols defined throughout the performance analysis chapter 5

Symbol Equation
w̃k,i = wo −wk,i (5.23)
ŵk,i = wo − w̄k,i (5.24)
w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (5.25)
ŵi = col{ŵ1,i, ŵ2,i, . . . , ŵQ,i} (5.26)

w̃e,i =

[
w̃i

ŵi

]
(5.27)

sk,i = vk(i)uk,i (5.29)
si = col{s1,i, s2,i, . . . , sN,i} (5.32)
S = E{sis>i } = diag{σ2

v1Ru,1, σ
2
v2Ru,2, . . . , σ

2
vN
Ru,N ,0L×L} (5.49)

Bc,i =

[
INL − γM−MRu,i γM(1N×1 ⊗ IL)

µ̄(11×N ⊗ IL) (IL − µ̄N)

]
(5.37)

Bc = E{Bc,i} =

[
INL − γM−MRu γM(1N×1 ⊗ IL)

µ̄(11×N ⊗ IL) (IL − µ̄N)

]
(5.40)

Σ′ = E{B>c,iΣBc,i} (5.46)
Y = MSM (5.50)
F = B>c ⊗B>c (5.57)

x = col{x1,x2, . . . ,xN} (5.62)
xk = wo

k − w∗ (5.63)

z =

[
Mx

−µ̄(11×N ⊗ IL)x

]
(5.74)

5.4 Theoretical analysis with perfect clustering

In this section we shall analyse the algorithm performance under optimal conditions, in other words,
when all the agents are assigned to the correct cluster. However, before proceeding with the analysis,
let us introduce the following assumption on the regression data.
Assumption 5.1. The regression vectors uk,i arise from a zero-mean random process that is tem-
porally white and spatially independent.

Let us assume that the local estimates have converged to a close enough estimates wk,∞ and w̄q,∞

of their respective objectives wo
k, w

o
q as:

wk,i → wk,∞ (5.18)

w̄q,i → w̄q,∞ (5.19)

and
||w̄q,∞ −wk,∞||22 < ||w̄q,∞ −w`,∞||22 ∀q = 1, . . . , Q; k ∈ Cq; ` /∈ Cq (5.20)

5.4. Theoretical analysis with perfect clustering 81

As a result, we have:

min
αkq∈∆N

Q

γ
N∑
k=1

Q∑
q=1

αkq||wk,∞ −wq||22 (5.21)

From (5.21) it is straightforward that

αkq =

{
1 if k ∈ Cq
0 otherwise

(5.22)

where Cq denotes the q-th cluster. Such result means that, after convergence, each cluster behaves
independently of the others, thus allowing us to considerably facilitate the algorithm analysis by
considering Q = 1.

Let us now begin the algorithm analysis by introducing the error vectors

w̃k,i = wo −wk,i (5.23)

ŵq,i = wo − w̄k,i (5.24)

We also introduce their concatenated versions

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (5.25)

ŵi = col{ŵ1,i, ŵ2,i, . . . , ŵQ,i} (5.26)

and finally, the whole error vector w̃e,i defined as:

w̃e,i =

[
w̃i

ŵi

]
(5.27)

From the definition (5.23) we get:

w̃k,i = w̃k,i−1 − µk[uk,iu>k,iw̃k,i−1 + sk,i − γ
Q∑
q=1

αkq(i)(wk,i−1 − w̄q,i−1)] (5.28)

where
sk,i = vk(i)uk,i (5.29)

Since Q = 1 we can write:

w̃k,i = w̃k,i−1 − µk[Ruk,iw̃k,i−1 + sk,i − γ(wo − w̃k,i−1 − w̄i−1)] (5.30)

The equation (5.30) can be formulated for the whole network as:

w̃i = [INL − γM−MRu,i]w̃i−1 −Msi + γM(1N×1 ⊗ IL)ŵi−1 (5.31)

82 Chapter 5. Unsupervised Clustered Multitask Learning

where the L×N vector si is defined as:

si = col{s1,i, s2,i, . . . , sN,i} (5.32)

From the definition (5.24) the centroid of the cluster is expressed as:

ŵi = ŵi−1 + γµ̄

N∑
`=1

(w̄i−1 −w`,i−1) (5.33)

Using the definition (5.23) we get w`,i = wo − w̃`,i. Substituting this expression leads to:

ŵi = ŵi−1 + γµ̄
N∑
`=1

(w̄i−1 −wo︸ ︷︷ ︸
−ŵi−1

+w̃`,i−1) (5.34)

Using the definition (5.23) we find:

ŵi = (IL − γµ̄N)ŵi−1 + γµ̄

N∑
`=1

w̃`,i−1 (5.35)

Combining (5.31) and (5.35) we get:

we,i = Bc,iwe,i−1 −
[
Msi

0L×1

]
(5.36)

where

Bc,i =

[
INL − γM−MRu,i γM(1N×1 ⊗ IL)

γµ̄(11×N ⊗ IL) (1− γµ̄N)IL

]
(5.37)

5.4.1 Mean error stability analysis

Let us now study the algorithm stability in the mean error sense. From (5.36) we have:

E{we,i} = E{Bc,iwe,i−1} −
[
ME{si}

0L×1

]
(5.38)

Using the independence 5.1 and since E{si} = 0, we find:

E{we,i} = BcE{we,i−1} (5.39)

where

Bc = E{Bc,i} =

[
INL − γM−MRu γM(1N×1 ⊗ IL)

γµ̄(11×N ⊗ IL) (1− γµ̄N)IL

]
(5.40)

5.4. Theoretical analysis with perfect clustering 83

From (5.39), the algorithm asymptotically converges in the mean to wo if and only if the matrix
Bc is stable. In other words, all of its eigenvalues strictly lie inside the unite disc. We have:

ρ(Bc) ≤ ||Bc||b,∞
≤ (N + 1) max

`k
||[Bc]`k|| (5.41)

which results in the following condition on the step-size parameters:

0 < µk <
1

(N+1)(γ+λmax(Ruk
)) (5.42)

0 < µ̄ < 1
γN(N+1) (5.43)

Observe that the regularisation parameter γ does not only control the regularisation strength but
also ensures the algorithm stability.

5.4.2 Mean square error analysis

For the sake of generality, we chose to analyse the weighted mean-square deviation E||w̃i||2Σ with
the metric Σ being a nonnegative definite (N + 1)L × (N + 1)L matrix. Such approach allows
different types of studies. For instance, Σ can be set to extract the mean-square deviation of the
whole network, one single agent or the centroid error vector w̄i. The advantages of this method
are not only limited to mean-square deviation, for instance, Σ can be set the covariance matrix
diag{Ru,0L×0} to extract the excess mean-square deviation (EMSE).

From (5.36) we have:

E||we,i||2Σ = E


[
Bc,iwe,i−1} −

[
ME{si}

0L×1

]]>
Σ

[
Bc,iwe,i−1} −

[
ME{si}

0L×1

]] (5.44)

Using the independence 5.1 we find:

E||w̃e,i||2Σ = E||w̃e,i−1||2Σ′ + E{s>i MΣMsi} (5.45)

where
Σ′ = E{B>c,iΣBc,i} (5.46)

Let us start with the last term of the RHS (5.45)

E{s>i MΣMsi} = trace(E{sis>i MΣM}) (5.47)

using the trace(.) properties we have:

E{s>i MΣMsi} = trace(YΣ) (5.48)

84 Chapter 5. Unsupervised Clustered Multitask Learning

where

S = E{sis>i } = diag{σ2
v1Ru,1, σ

2
v2Ru,2, . . . , σ

2
vN
Ru,N ,0L×L} (5.49)

Y = MSM (5.50)

The analysis of the term Σ′ appearing in the RHS (5.45) is similar to the classical diffusion LMS
and can be approximated for small enough step-size by

Σ′ ' B>c ΣBc (5.51)

Indeed, replacing the matrix Bc,i from (5.37) in (5.46) would result in the same terms plus an
additional depending on the squared step-size parameters µk. For sufficiently small step-sizes, this
additional term will have a negligible effect. In this way, we shall assume that

Σ′ = B>c ΣBc (5.52)

Replacing (5.48) in (5.45) leads to

E||w̃e,i||2Σ = E||w̃e,i−1||2Σ′ + trace(YΣ) (5.53)

Proceeding as in [Sayed, 2013a], we use the vec(.) operator on (5.52)

σ′ = Fσ (5.54)

where σ and σ′ are the vectorized versions of the metric matrices Σ and Σ′, respectively

σ = vec(Σ) (5.55)

σ′ = vec(Σ′) (5.56)

and F a [(N + 1)L]2 × [(N + 1)L]2 weighing matrix defined as

F = B>c ⊗B>c (5.57)

Replacing (5.54) in (5.45) and applying the vec(.) operator on its last term leads to

E||w̃e,i||2σ = E||w̃e,i−1||2Fσ + vec(Y>)>σ (5.58)

The algorithm is stable in the mean-square sense if and only if the matrix F defined in (5.57)
is stable i.e. all of its eigenvalues strictly lie inside the unite disc. Such condition is achieved for

5.5. Algorithm performance for imperfect clustering 85

sufficiently small step-sizes µk and µ̄ such as:

0 < µk <
1

(N+1)(γ+λmax(Ruk
)) (5.59)

0 < µ̄ < 1
γN(N+1) (5.60)

The equation (5.58) allows a versatile analysis of the algorithm. Depending on the metric σ, it is
possible to extract the mean square error of a single agent the whole network or the cluster estimate
w̄. In addition, it is also possible to extract other performance measurements such as the excess
mean square error (EMSE).

Note that the steady and transient states of the Mean-Square Deviation can be studied following
the same procedure as in [Sayed, 2013a] as reported in chapter 2.

5.5 Algorithm performance for imperfect clustering

In this part, we study the algorithm behaviour when some agents are miss-clustered. As a conse-
quence, one or more agents would collaborate with the wrong cluster agents. To model this setting,
we shall consider two objective vectors wo

1 and w2. However, we consider a network with Q = 1.
Under such setting, the network has only one cluster agent. Let us consider the arbitrary vector
w∗ chosen from {wo

1, wo
2} and study the estimation error.

We redefine the cluster error vector as:

ŵi = w∗ − w̄i (5.61)

We also introduce the vector xk and its concatenated version x

x = col{x1,x2, . . . ,xN} (5.62)

xk = wo
k −w∗ (5.63)

From the definition (5.23) we have:

w̃k,i = wo
k −wk,i−1︸ ︷︷ ︸
w̃k,i−1

−µk
[
uk,i(dk(i)− u>k,iwk,i−1)− γ(wk,i−1 − w̄i−1)

]
(5.64)

Replacing dk(i) by its definition (5.10) results in:

w̃k,i = w̃k,i−1 − µk [Ruk,iw̃k,i−1 + sk(i)− γ(wk,i−1 − w̄i−1)] (5.65)

Using the vector error definition (5.23) we find:

w̃k,i = w̃k,i−1 − µk

Ruk,iw̃k,i−1 + sk(i)− γ(wo
k −w∗︸ ︷︷ ︸
xk

−w̃k,i−1 +w∗ − w̄i−1︸ ︷︷ ︸
ŵi

)

 (5.66)

86 Chapter 5. Unsupervised Clustered Multitask Learning

Similarly to the previous analysis, we rewrite the error vector under a compact form

w̃i = (INL − γM−MRu,i) w̃i−1 −Msi + γM(1N×1 ⊗ IL)ŵi−1︸ ︷︷ ︸
weights convergence term

+ γMx︸ ︷︷ ︸
Bias term

(5.67)

In the case where all agents share the same task i.e. wo
k = w∗ ∀ k, we retrieve the error term (5.31)

where the bias term is equal to zero. It is noteworthy that the bias term depends on the regularisation
parameter γ. Such result allows control over the estimation error through the said parameter.

From (5.61) the newly redefined cluster error vector is expressed as:

ŵi = w∗ − w̄i (5.68)

which results in the following expression:

ŵi = ŵi−1 + γµ̄

N∑
`=1

(w̄i−1 −w`,i−1) (5.69)

From the definition (5.23) we have w`,i = w∗ − w̃`,i. Using this expression leads to:

ŵi = ŵi−1 + γµ̄
N∑
`=1

(w̄i−1 −w∗︸ ︷︷ ︸
−ŵi−1

+w̃`,i−1 +w∗ −wo
k︸ ︷︷ ︸

−xk

) (5.70)

Using the definition (5.68) we have:

ŵi = (IL − γµ̄N)ŵi−1 + γµ̄

N∑
`=1

w̃`,i−1︸ ︷︷ ︸
clustering term

− γµ̄
N∑
`=1

xk︸ ︷︷ ︸
Bias term

(5.71)

Compared to (5.35), there is an additional term that only depends on the difference between the
shared minimiser w∗ and local minimisers wo

k. This term is equal to zero when all agents share the
same task.

Combining the results (5.67) and (5.71) we find:

we,i = Bc,iwe,i−1︸ ︷︷ ︸
Data term

−
[
Msi

0L×1

]
︸ ︷︷ ︸
Noise term

+ γ

[
Mx

−µ̄(11×N ⊗ IL)x

]
︸ ︷︷ ︸

bias term

(5.72)

where the matrix Bc,i remains unchanged, as defined in (5.37). As in (5.36), we have a data term
and a noise term. However in addition, there is a third term depending the regularisation term
γ and the difference between the common minimiser w∗ and agents minimisers wo

k. This term is
equal to zero if all the agents seek the same objective vector i.e. wo

k = w∗ ∀ k.

5.5. Algorithm performance for imperfect clustering 87

5.5.1 Mean error analysis

Similarly to the previous theoretical analysis, in this part we study the algorithm in the mean error
sense in the case where some agents are miss-clustered. From (5.72) we have:

E{we,i} = E{Bc,i}E{we,i−1} −
[
ME{si}

0L×1

]
+ γE

{[
Mx

−µ̄(11×N ⊗ IL)x

]}
︸ ︷︷ ︸

z

(5.73)

where

z =

[
Mx

−µ̄(11×N ⊗ IL)x

]
(5.74)

We have E{si} = 0 and using the independence 5.1, we find:

E{we,i} = Bc E{we,i−1}+ γz (5.75)

where Bc is defined in (5.40). Note that the convergence condition remains the same, namely:

0 < µk <
1

(N+1)(γ+λmax(Ruk
)) (5.76)

0 < µ̄ < 1
γN(N+1) (5.77)

5.5.2 Network Mean Performance

Let us study the algorithm mean performance. As the algorithm is stable for sufficiently small
step-sizes we can write:

lim
i→∞

E{we,i} = lim
i→∞

Bc E{we,i−1}+ γz (5.78)

Grouping terms leads to:
lim
i→∞

E{we,i} = γ(I −Bc)
−1z (5.79)

From (5.79), the error vector does not converge towards the vector 0(N+1)L but towards a bias term
proportional to the vector z. It is worth mentioning that this error term can be controlled through
the regularisation parameter γ. In the case where γ = 0 we retrieve an unbiased solution, this case
corresponds to single agent LMS.

5.5.3 Mean square error analysis

Similarly to the previous mean square error analysis, we shall consider a general case by using a
weighting (N + 1)L× (N + 1)L matrix Σ. From (5.72) we have:

E||we,i||2Σ = E

{[
Bc,iwe,i−1 −

[
Msi

0L×1

]
+ γz

]>
Σ

[
Bc,iwe,i−1 −

[
Msi

0L×1

]
+ γz

]}
(5.80)

88 Chapter 5. Unsupervised Clustered Multitask Learning

with Σ′ defined in (5.52). Using the independence 5.1 we get:

E||w̃e,i||2Σ = E||w̃e,i−1||2Σ′ + E{s>i MΣMsi}+ γ2||z||2Σ + 2 γE{w>e,i−1}B>c Σz (5.81)

where Bc is defined in (5.40).

The first two terms of the RHS (5.81) remain unchanged and are calculated in the previous sec-
tion (5.52) and (5.48), respectively and the third term is constant. The final term depends on the
difference between the shared objective vector x∗ and each agent minimiser wo

k.

Proceeding as we did in the previous section, we rewrite (5.81) using the vectorised version of the
weighting matrix Σ leading to

E||w̃e,i||2σ = E||w̃e,i−1||2Fσ︸ ︷︷ ︸
Data term

+ vec(Y>)>σ︸ ︷︷ ︸
Noise term

+ γ2||z||2σ + 2 γ(z> ⊗ E{w>e,i−1}B>c)σ︸ ︷︷ ︸
Bias term

(5.82)

where σ, F and Y are defined in (5.52), (5.57) and (5.50), respectively. Compared to (5.58), we
have two additional terms that would rather be equal to zero if all the agents were to estimate the
same vector w∗.

It is worth mentioning that the bias term is depending on the regularisation parameter. Such result
allows control over the mean square deviation.

The algorithm stability in the mean-square sense is achieved if and only if the matrix F defined
in (5.57) is stable i.e. all of its eigenvalues strictly lie inside the unite disc. Such condition is verified
for sufficiently small step-sizes µk and µ̄ such as:

0 < µk <
1

(N+1)(γ+λmax(Ruk
))

0 < µ̄ < 1
γN(N+1)

(5.83)

Note that the algorithm stability conditions remain the same under this scenario. However, its
Mean Square Deviation (MSD) is greater as we shall demonstrate in the sequel.

5.5.4 Network Mean-Square Performance

Using the equation (5.82), we can evaluate the network as well as every single agent accuracy. As the
algorithm is stable for sufficiently small step-sizes (5.83) we can take the limits of the equation (5.82)
as:

lim
i→∞

E||w̃e,i||2σ = lim
i→∞

E||w̃e,i−1||2Fσ + vec(Y>)>σ + γ2||z||2σ + 2γ lim
i→∞

(z> ⊗ E{w>e,i−1}B>c)σ

(5.84)

Grouping terms leads to:

lim
i→∞

E||w̃e,i||2(I−F)σ = vec(Y>)>σ + γ2||z||2σ + 2γ lim
i→∞

(z> ⊗ E{w>e,i−1}B>c)σ (5.85)

5.5. Algorithm performance for imperfect clustering 89

Replacing the term lim
i→∞

E{w>e,i−1} by (5.79) results in:

lim
i→∞

E||w̃e,i||2(I−F)σ = vec(Y>)>σ︸ ︷︷ ︸
Noise term

+ γ2||z||2σ + 2γ (z> ⊗ (I −Bc)
−1z>B>c)σ︸ ︷︷ ︸

Bias term
(5.86)

It is worth mentioning that, compared to (5.45), an additional bias term is introduced leading to a
greater MSD. The bias term is highly dependent on the difference between the vectors to estimate
and the regularisation parameter γ. As a consequence, in the case where all agents are estimating
the right task, the vector z would be equal to 0(N+1)L which leads to the same unbiased MSD
expressed in (5.45).

5.5.5 Transient State Analysis

The algorithm transient behaviour can be easily studied under optimal conditions i.e. when all the
agents are properly clustered by following the same procedure as [Sayed et al., 2013]. However, the
analysis is slightly different when the some of agents are not. To analyse the algorithm under this
unfavourable condition, we iterate the equation (5.82) from i = 0 to find:

E||w̃e,i||2σ = E||w̃e,−1||2F i+1σ
+ vec(Y>)>

i∑
j=0

F jσ + γ2
i∑

j=0

||z||2Fjσ

+ 2γ

i∑
j=0

(z> ⊗ E{w>e,j−1}B>c)F i−jσ

(5.87)

From (5.75) we have:

E{w̃e,i} = Bi+1
c E{w̃e,−1}+ γ

i∑
j=1

Bj
cz (5.88)

Replacing w̃e,i−1 by its recursion (5.88) leads to:

E||w̃e,i||2σ =

Data term︷ ︸︸ ︷
E||w̃e,−1||2F i+1σ

+

Noise term︷ ︸︸ ︷
vec(Y>)>

i∑
j=0

F jσ

+ γ2
i∑

j=0

||z||2Fjσ
+ 2γ

i+1∑
j=1

(z> ⊗ E{w>e,−1B>c
j})F i−j+1σ + 2γ

i∑
j=1

j−1∑
k=0

(z> ⊗ z>B>c
k
)F i−jσ︸ ︷︷ ︸

Bias term

(5.89)

From (5.89) we observe that the mean square error is degraded compared to the case where all the
agents are correctly labelled. This is due to the introduced bias term that depends on the distance
between the miss-assigned objective vectors and the correct ones, and the regularisation parameter
γ. It is interesting to notice that the bias term not only affects the steady state performance as
stated in (5.86) but also the transient behaviour of the algorithm.

90 Chapter 5. Unsupervised Clustered Multitask Learning

0 0.5 1 1.5 2 2.5 3

iteration i ×104

-70

-60

-50

-40

-30

-20

-10

0

10

M
S
D

(d
B
)

Mean square deviation MSD

Theoretical MSD
Simulated MSD
Steady-state MSD

Figure 5.3: Theoretical and simulated mean-square deviation (MSD). For this
experiment, we consider a network of N = 10 agents, data dimension L = 2, Gaussian
regression data uk,i ∼ N (0, IL) and additive noise vk(i) ∼ N (0, 10−3). The step-size
are set to µk = 10−3, µ̄ = 10−4 and the regularisation parameter γ = 0.5.

5.6 Numerical analysis

This section shall be divided into three parts. The first part consists of confirming the theoretical
models fitness for both previously described scenarios. In the second part, we shift the focus to the
algorithm performance compared to a single agent LMS and assess the effect of the miss-clustered
agents for various ratios of clustered/miss-clustered agents. Finally, we study the effect of the
step-size parameters on the algorithm convergence.

5.6.1 Theoretical model accuracy

For this first experiment we consider a network of N = 10 agents and an L = 2 objective vector
wo. The regression data is drawn from a Gaussian distribution uk,i ∼ N (0, IL) and so are the noise
scalars vk(i) ∼ N (0, 10−3). We set the step sizes to µk = 10−3, µ̄ = 10−4 and the regularisation
parameter γ = 0.5. The simulated results are averaged over 100 Monte-Carlo runs. The Figure 5.3
clearly confirms the theoretical model accuracy.

In the previous experiment we considered the algorithm under optimal conditions where every agent
is assigned the right cluster. Let us now consider the case where some agents are wrongly assigned.
We consider a network of N = 5 agents with one cluster agent. However, instead of estimating one
objective vector, we estimate two w0

1 ∼ N (0,Σ) and w0
2 = w0

1 + 101L. We assign the first one
to N1 = 3 agents and the second task to the two remaining agents (N2 = 2). We used the same
step-size parameters and data profile as the previous experiment. Note that in the absence of a
second cluster agent, all the weights αkq are set to 1 leading to the formation of one cluster instead

5.6. Numerical analysis 91

0 100 200 300 400 500 600 700 800 900 1000

iteration i

10

12

14

16

18

20

22

M
S
D

(d
B
)

Mean-square deviation MSD

Theoretical MSD
Simulated MSD
Steady-state MSD

Figure 5.4: Theoretical and simulated mean-square deviation (MSD) when a
subset of agents is miss-assigned. We consider two objective vectors w0

1 ∼ N (0,Σ)
and w0

2 = w0
1 + 10 1L, a network of N = 5 agents N1 = 3 tasked with estimating wo

1

and N2 = 2 estimating wo
2. The remaining parameters remains the same as in the

previous experiment.

of two. In the Figure 5.4, we can observe that the theoretical model correctly fits the simulated
results. Note that the theoretical model correctly fits the inertia resulting from a high step-size
parameter µk.

5.6.2 Multitask performance

Now that the theoretical models are verified, let us assess the algorithm performance. We first
compare it with the single agent LMS. For this part of the experiment we considered a larger
network of N = 100, step-sizes µk = 10−2. Note that we did not carry out the theoretical analysis
because of its high numerical complexity. As it is illustrated in Figure 5.5 the proposed algorithm
outperforms its single agent counterpart as it takes advantage of the shared data through the
regularisation term.

Next, we investigate the algorithm weights convergence trajectories. To do so, we consider a network
ofN = 30 andQ = 3 tasks with two sets of objective vectorswo

1 = col{−1.5,−1}, wo
2 = col{1.5,−1}

and wo
3 = col{0, 1.5} and wo

1′ = col{−1.5, 1}, wo
2′ = col{1.5, 1} and wo

3′ = col{0,−1.5}. We set
the adaptation step-size parameters to µ = µα = µ̄ = 10−3 and γ = 10−1. Figure 5.6 depicts
the trajectories followed by the local estimates wk,i for different objective vectors and initial local
estimates. We can indeed confirm that the local estimates converge to their respective objective
vectors wo

q. Furthermore, we can observe the clustering effect as the trajectories get tighter the
more they approach the objective vector. Note that having uniform initial weights αkq tends to
shrink the cluster and regular agents estimates to the centre. This behaviour is expected as such
initial condition drives the estimate towards a common minimiser for all tasks.

92 Chapter 5. Unsupervised Clustered Multitask Learning

0 1000 2000 3000 4000 5000

iteration i

-70

-60

-50

-40

-30

-20

-10

0

10

20

M
S
D

(d
B
)

Mean square deviation MSD

Proposed algorithm
Single agent LMS

Figure 5.5: Algorithm comparison with single task LMS. We consider a net-
work of N = 100 and a data dimension of L = 2. The objective vector is drawn
from a Gaussian distribution wo ∼ N (0, IL) and the step-size parameters, for both
algorithms, are set to µk = 10−2. The regression data is drawn from a Gaussian
distribution uk,i ∼ N (0, IL) and so are the noise scalars vk(i) ∼ N (0, 10−3).

Let us assess the effect of miss-labelled agents. We consider a network of N = 30 agents with one
cluster agent. We affect two different objective vectors w0

1 and w0
2 to two subsets of agents N1 and

N2 of varying sizes, where

wo
1 = wt (5.90)

wo
2 = wt +K12 (5.91)

and wt ∼ N (0, I2). The bigger subset determines the main objective vector w∗. For instance, if
the vector wo

1 is assigned to N1 = 20 agents then w∗ = wo
1. We considered various ratios N1

N2
. The

parameter K is used to control the distance between the two objective vectors. We used different
values of K ranging from K = 0 to K = 10. The Figure 5.7, illustrates the mean square deviation
for various ratios of miss-labelled agents. Note that the ratio N1

N2
can reach a maximum of only 50%

due to the definition of w∗.

We can observe a rise of the mean-square deviation with the ratio of miss-labelled agents as it
reaches a peak at 50% and a minimum when N1 = N or N2 = N . These two cases correspond to
the correct behaviour of the algorithm or when the parameter k = 0. Note that the performance
suffers the most for high values of the coefficient K. This result was expected as the bias term is
highly dependent on the distance between the objective vectors.

In this final part, we investigate the effect of the step-size parameters on the algorithm convergence.
We consider the same setting as in the previous experiment, namely a network of N = 30 agents and
Q = 3, we also consider the same data profile. In Figure 5.8, we depict the trajectories of the local
(left hand-side) and centroids (right hand-side) estimates, for a large cluster step-size parameter

5.6. Numerical analysis 93

Figure 5.6: Local estimates trajectories and cluster agents estimates (thick lines)
and their respective objective vectors. For these experiments, we considered a network
of N = 30 agents, Q = 3 tasks, step-sizes µk = 10−2, µ̄ = 10−3, µα = 10−4 and a
regularisation parameter γ = 10−1. The (L × 1) objective vector w0

q are set to
wo

1 = col{−1.5,−1}, wo
2 = col{1.5,−1} and wo

3 = col{0, 1.5} for the left-hand side
figure and wo

1′ = col{−1.5, 1}, wo
2′ = col{1.5, 1} and wo

3 = col{0,−1.5} for the right-
hand one. The regression data uk,i and the noise scalars vk(i) are, as in the previous
experiments, drawn from Gaussian distributions.

µ̄ = 10−2. Surprisingly, the algorithm does converge to the right objective vectors. However, the
regular agents reach consensus quicker compared to the previous experiment. Such behaviour is due
to the quick convergence of the centroids which end up leading the agents towards the minimisers.

Note that a larger centroid step-size µ̄ would eventually lead to the algorithm divergence as it can
be observed in Figure 5.9. Only the blue cluster converged to the right vector. The remaining
agents were not clustered and could not reach their respective objectives.

We now repeat the same experiment. However, this time we use a larger step-size for the coefficients
αkq. Considering a similar setting as previously except for µ̄ that is set this time to µ̄ = 10−3 and
µα = 10−2. As expected, the algorithm does not converge to the right minimisers as the clustering
task failed to estimate the clusters. Note that, in contrast with the previous experiment, all the
agents were assigned to a cluster but not necessarily the correct one. In order to converge properly,
the algorithm must be correctly set up. The local estimates must have a head start over the centroids
estimate, and the centroids estimates over the clustering coefficients.

With the previously discussed step-size parameter in mind, in Figure 5.11, we consider a two-stage
estimation strategy. To do so, we use two different regularisation parameters. We begin with a very
small one γ = 10−8. Such small value allows the agents to converge towards an accurate estimate
of their objective vectors, which reduces the chances of miss-clustering agents. In the next phase,
we use a larger regularisation parameter γ = 8 10−1. Such increase of the regularisation parameter
γ allows more collaboration which leads to a more accurate estimate. Note that such strategy also
allows a more accurate estimation of the clusters.

94 Chapter 5. Unsupervised Clustered Multitask Learning

0 10 20 30 40 50

Ratio of mis-labelled agents

-60

-50

-40

-30

-20

-10

0

10

20

30

40

M
S
D

(d
B
)

Mean square deviation MSD

K = 0
K = 0.5
K = 1
K = 10

Figure 5.7: The mean square deviation (MSD) for different numbers of miss-
labelled tasks. We consider a Network of N = 30 agents, L dimensioned objective
vectors w0

1 and w0
2, K is a scalar varying from K = 0 to K = 10. We kept the same

step-sizes, regression data and noise parameters as the previous experiment.

5.7 Conclusion

As a result of data segmentation over networks, multitask optimisation has become a necessary tool
to infer information. In order to solve this sort of optimisation problems, in an unsupervised manner,
we first proposed an unsupervised clustered multitask algorithm where the information exchange
is carried out through a stochastically estimated regularisation parameter. Then we performed a
theoretical analysis in the mean and mean-square sense under two scenarios. One considering a
perfect clustering of the agents and a second where some of them were miss-clustered. Finally, we
performed several numerical experiments to validate the theoretical models for both scenarios and
to quantify the algorithm performance.

Figure 5.8: Local and cluster agents estimates trajectories and their respective
objective vectors. For this experiment, we consider a network of N = 30 agents,
Q = 3 tasks, step-sizes µk = 10−3, µ̄ = 10−2, µα = 10−4 and a regularisation
parameter γ = 10−1. The (L × 1) objective vector w0

q are set to wo
1 = col{−1.5, 1},

wo
2 = col{1.5, 1} and wo

3 = col{0,−1.5}. The regression data uk,i and the noise
scalars vk(i) are, as in the previous experiments, drawn from Gaussian distributions.

96 Chapter 5. Unsupervised Clustered Multitask Learning

Figure 5.9: Local and cluster agents estimates trajectories and their respective
objective vectors. For this experiment, we consider a network of N = 30 agents,
Q = 3 tasks, step-sizes µk = 10−3, µ̄ = 10−1, µα = 10−4 and a regularisation
parameter γ = 10−1. The (L × 1) objective vector w0

q are set to wo
1 = col{−1.5, 1},

wo
2 = col{1.5, 1} and wo

3 = col{0,−1.5}. The regression data uk,i and the noise
scalars vk(i) are, as in the previous experiments, drawn from Gaussian distributions.

Figure 5.10: Local estimates trajectories and their respective objective vectors.
We consider a network ofN = 30 agents, Q = 3 tasks, step-sizes µk = 10−3, µ̄ = 10−3,
µα = 10−2 and a regularisation parameter γ = 10−1. The (L×1) objective vector w0

q

are set to wo
1 = col{−1.5, 1}, wo

2 = col{1.5, 1} and wo
3 = col{0,−1.5}. The regression

data uk,i and the noise scalars vk(i) are drawn from Gaussian distributions.

5.7. Conclusion 97

0 0.5 1 1.5 2 2.5 3

iteration i ×104

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

M
S
D

(d
B
)

Mean square deviation MSD

γ = 10−8

γ = 810−1

MSD

Figure 5.11: The mean square deviation (MSD) for a two-stage estimation strat-
egy. We consider the same setting as in the previous experiment except for the
step-size and the regularisation parameters. In the beginning, the regularisation pa-
rameter is set to γ = 10−8 to limit the collaboration between the cluster regular
agents. After convergence of the regular agents, we set γ = 8 10−1 to improve the
accuracy. Note that we set the step-size parameters to µk = 10−3

γ , µ̄ = 10−3

γ and

µα = 5 10−4

γ .

99

6 Conclusion

Contents
6.1 Summary of results . 99

6.1.1 Energy and network resources management 99

6.1.2 Privacy preservation . 101

6.2 Future works and discussion . 101

6.2.1 Improvements related to the presented work 101

6.2.2 New research directions . 102

As the world gets more connected and networked, distributed estimation becomes more and more
attractive, as it takes advantage of this interconnection to enhance its performance. However,
as a result of this high connectivity, we are now confronted by unprecedented data quantities.
With such quantities, new challenges were raised. First, transferring such colossal amounts of data
without risking a network congestion. Next, processing the data without breaching its privacy. As
a consequence of this growth, more parameters need to be inferred requiring autonomous multitask
networks able to find their respective clusters without any supervision. Throughout this dissertation,
we tried to address each of these concerns. In this ultimate chapter, we shall summarise and discuss
the main contributions and solutions we proposed to tackle these challenges. We then follow up
that summary by a reflection on the findings and discuss future research directions.

6.1 Summary of results

Diffusion strategies offer many advantages compared to their centralised counterparts such as link
and agent failures. However, these advantages come with a substantial burden on network resources.
Indeed, diffusion strategies require constant communication between neighbouring agents. As these
agents usually communicate wirelessly, it is sometimes hard to maintain such constant communi-
cation especially for agents with limited energy budgets as it is the case for most WSN networks.
As many applications require some aspects of privacy preservation such as in hospitals and banks,
data privacy also became a critical aspect for any distributed strategy. In the following, we sum up
the methods and algorithms proposed to tackle these highly critical challenges.

6.1.1 Energy and network resources management

As the radio communication is the bottleneck for both energy and network resources management,
we decided to tackle these challenges from two different angles: through compression and network

100 Chapter 6. Conclusion

sparsification. We then proposed an algorithm where the gradient vectors are fully transmitted
while the local estimates are partially shared. The missing entries are compensated by the local
ones. In [Arablouei et al., 2014b], at every iteration, due to the entry selection method, the number
of transmitted entries could potentially reach L (data dimension). In this case the network must
be over-dimensioned to avoid congestions. In contrast, with CD we guarantee a set number M
of transmitted entries which allows a more efficient network resources allocation. The theoretical
analysis of this first algorithm served as a basis for the rather challenging analysis of the fully
compressed version of the algorithm. This fully compressed version added a second compression
layer as the gradient vectors are also compressed.

As both algorithms rely on a random selection matrix, we preceded the algorithms theoretical
analysis by a study of the selection matrix first and second order moments. Using these moments,
we analysed both algorithms in the mean and mean-square sense. Finally, we conducted an extensive
numerical analysis. We began by testing the fitness of the theoretical models. Then we tested the
algorithms performance for different compression ratios for large networks and high dimensional
data. As expected, high compression ratios yield less accurate estimates. This is due to the limited
quantity of shared information. We concluded the numerical analysis with a scenario considering
the scarcity of the energy resources. We considered agents endowed with batteries and solar energy
harvesting capabilities. As the batteries sizes are limited, the nodes turn on and off for a pre-
calculated duration to save energy. The newly introduced version of the algorithm outperformed
all of its state of the art counterparts.

While the first approach considers compression in a single task setting, for this second one, we
take advantage of the multitask setting to limit the communication load and thus reducing energy
consumption. In this scenario, it is beneficial to sparisify the network graph in a way where only
agents sharing similar tasks are connected. For this approach, we considered a slightly different
network structure with two types of agents: cluster agents and regular ones. The cluster agents
seek to estimate two parameters: the cluster centroids and the network structure. The regular
agents estimate their local estimates through a regularised cost function. The quantities estimated
by the cluster agents are used in the regularisation function.

In order to quantify the algorithm performance, we first theoretically analysed it under two scenar-
ios. First, we considered the algorithm under optimal conditions where all the agents are correctly
clustered. In this case, the algorithm converges toward the correct minimiser provided some condi-
tions on the step-sizes. The second scenario considered the case where some agents are assigned to
the wrong clusters. Under this scenario, the algorithm converged towards a biased solution. The
bias depends on two factors: the distances between each wrongly assigned objective vector and the
correct ones. In contrast with the first factor, the second one, the regularisation parameter γ, can
be controlled to limit the estimation error. We also derived stability conditions in both mean and
mean-square sense.

In addition to the theoretical study, we numerically analysed the algorithm under the two previously
mentioned scenarios. We first verified both theoretical models accuracies. Then we tested the
algorithm performance for different ratios of miss-clustered agents. We also studied the effect of

6.2. Future works and discussion 101

different adaptation step-sizes of the estimates on the algorithm convergence. Based on these studies,
we proposed a two-stage estimation strategy to enhance the algorithm performance.

More details about the compression and network sparsification methods can be found in the Com-
pressed Diffusion LMS and Unsupervised clustered multitask learning chapters.

6.1.2 Privacy preservation

While network and energy resources management is critical for diffusion strategies, data privacy
may be even more critical for some applications. To address this concern, we proposed to limit
the amount of shared information by setting the weighing matrix A to the identity. To secure the
information carried through the gradients, we took inspiration from the differential privacy principle.
The main idea behind this technic is to corrupt the information so the statistical structure of data is
conserved while the individual information privacy is preserved. To do so, we used random Wishart
matrices to corrupt the transmitted gradient vectors while preserving the descent direction.

Similarly to the previous work on the compression aspect, we started by studying different moments
of the Wishart matrix to ease the theoretical analysis of the algorithm. We then went on to
theoretically analysing the algorithm both in the mean and mean-square sense. This analysis
allowed us to derive convergence conditions for the first and second order moments of the error
vectors. Unsurprisingly, both these conditions depend on the eigenvalues and rank of the Wishart
matrix used to corrupt the data. We finally performed a numerical analysis. We first confirmed
the theoretical model accuracy. Then, we tested the algorithm performance for various degrees of
freedom of the Wishart matrix. We noticed that higher orders of corruption matrix lead to a low
mean-square deviation. However, this same condition facilitates the reconstruction of the data. We
also found out that the most secure option is to consider a singular Wishart matrix to corrupt the
data as such matrix is irreversible. However, this option yields the largest mean square deviation
as the data are projected onto a one dimensional space. We detail the method and its analysis in
Privacy aware diffusion LMS chapter.

6.2 Future works and discussion

In this very last section, we first discuss some ways to improve and build upon the proposed methods
and algorithms. Then we explore some new research directions related to the field.

6.2.1 Improvements related to the presented work

Starting with Compressed diffusion LMS, we set the weighing matrix A to identity matrix to limit
the communication cost. However, it would be interesting to formulate a general theoretical model
that would include the partial diffusion LMS introduced in [Arablouei et al., 2014b]. Furthermore,
even if the matrix A is set to the identity, the local estimate vector would still be transmitted
for the estimation of the stochastic gradients. Although we numerically studied a version of the

102 Chapter 6. Conclusion

algorithm that takes advantage of this information in the numerical analysis, it would be of interest
to carry out an in-depth theoretical analysis. Such analysis would give an insight into the algorithm
behaviour and help derive important quantities such convergence conditions.

In Privacy aware diffusion LMS, we took inspiration from the differential privacy principle that is
usually applied to finite data-sets to a stream of data. While it is possible to quantify an algorithm
privacy for finite data-sets, we were not able to achieve such quantification in the case of the proposed
distributed algorithm. Studying this aspect of the algorithm would be a good future direction. As
a mean to reduce the quantity of exchanged information, we set the weighting matrix A to the
identity. It would be interesting to consider an ATC version of the algorithm and derive a global
theoretical model. It would be also of interest to consider different matrices to alter the data instead
of a Wishart matrix and quantify their induced privacy.

The Unsupervised clustered multitask learning chapter dealt with a multi-task optimisation prob-
lem. We proposed to use two types of agents: cluster and regular agents. The regular agents only
communicated with the cluster ones. It would be interesting to study the case where the agents are
allowed to communicate with their neighbours within the same cluster. As the algorithm learns the
clusters structure, it could be used a pre-processing phase for multi-task diffusion LMS to estimate
the clusters. Such study would be an interesting lead.

In the entirety of this dissertation, we considered that the data are related to the collected measure-
ment through a linear regression model. However, most phenomenon cannot be linearly modelled.
It would therefore be important to consider non-linear models such as kernel-based and polyno-
mial models. It would be also interesting to consider a graph-signal approach study for the future
diffusion algorithms such as [Nassif et al., 2017a].

6.2.2 New research directions

Random matrix theory was used in various applications [Couillet et al., 2015, Couillet and McKay,
2014, Couillet et al., 2016]. However, it has not been applied in a distributed online setting.
Although It is relatively simple to theoretically study diffusion strategies, they might be extremely
challenging to analyse when considering large networks and high dimensional data. We are currently
working on using random matrix theory to theoretically analyse diffusion LMS algorithm for large
networks and large scale data.

While the theoretical results developed in [Sayed, 2013a] remain valid for large networks and high
dimensional data, they happen to be tricky to implement. They require enormous amount of mem-
ory and a phenomenal computational power. The traditional theoretical analysis as it is featured
in [Sayed, 2013a] has a numerical complexity of O((L × N)4), albeit, with a more sophisticated
implementation, it can be reduced to O(N × L2 × Nm2

), where Nm denotes the mean number of
neighbours. Random matrix theory allows an even better improvement by L folds utilizing the
diagonal nature of the blocks constructing the metric F . It is of course possible to use that same
strategy for the traditional method but the cost of the diagonalisation outweighs its benefits as

6.2. Future works and discussion 103

0 50 100 150 200 250 300 350 400 450 500

iterations i

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

M
S
D

(
d
B

)

Mean square deviation for Uniform data distribution

Theoretical MSD
Simulated MSD
Steady-state MSD

Figure 6.1: Mean square deviation (MSD) using random matrix theory for Uni-
form data distribution for three covariance matrices. We consider a highly connected
network of N = 4 104 agents. We set data dimension to L = 400, the step-size
µ = 10−1 and the matrix A is set to the identity matrix. We set the noise variance
to σ2

v = 10−3. We drew the regression vectors uk,i from a uniform distribution over
[-2 2].

it drastically increases the complexity. It is worth mentioning that in the special case where the
weighing matrix A = IN the computational complexity drops to O(N × L).

In addition to the computational efficiency enhancement, random matrix theory allows a complete
independence of the data model probability law. For instance, Marcenko-Pastur theorem does not
have any requirement related to the probability distribution other than the independence condition.
It is a very powerful tool as it allows theoretical analysis for numerous data model that would be
rather challenging if not impossible.

Considering a very large network and high dimensional data, we have some preliminary results for
different data distribution laws, namely: Uniform, Poisson and Bernoulli distributions, depicted
respectively, in Figures 6.1, 6.2, 6.3.

While random matrix theory seems promising for diffusion LMS, optimal transport is the way
forward in the multitask setting. For instance, in [Courty et al., 2017], the authors use optimal
transport to solve a domain adaptation task. Such method could be adapted for a heterogenous
multitask network, where agents estimate similar tasks but do not necessarily agree on the data
representation. Using domain adaptation in a way where each agent adapts to its neighbours data
representation might yield better estimation performance.

While a theoretical study of any algorithm is of high importance, it would be interesting and
refreshing to consider physical implementations. For instance, diffusion LMS could be implemented
for different drone applications such as target location in a rescue situation [Câmara, 2014, Rabta
et al., 2018] or for modelling a flock behaviour as a way to verify the theoretical models. Physical
implementations might raise new challenges. For instance, for a fleet of drones, to preserve energy
resources, it is beneficial to limits unnecessary movements rather than radio communication.

104 Chapter 6. Conclusion

0 50 100 150 200 250 300 350 400 450 500

iterations i

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

M
S
D

(
d
B

)

Mean square deviation for Poisson data distribution

Theoretical MSD
Simulated MSD
Steady-state MSD

Figure 6.2: Mean Square Error (MSD) using random matrix theory for Poisson
data distribution for three covariance matrices. We consider the same setting as for
the uniform distribution experiment Figure 6.1. We set the rate parameter λp of the
distribution to λp = 4 and cantered and normalised the data.

Furthermore, multitask adaptive networks can be used for astrophysics applications such as sky
mapping where information is processed on networks clustered on a distance criteria as telescopes
in close areas are likely to capture similar signals. Diffusion strategies could also be used in Ge-
nomic Signal Processing (GSP) [Anastassiou, 2001]. Indeed, DNA sequences are encoded by four
nitrogenated bases: adenine, thymine, cytosine. These bases can be transcribed into a binary code
before being numerically processed. One of the most challenging tasks of GSP is finding the rela-
tionship between DNA structures and the function of genomic sequences. To do so, it is necessary
to find the similarity of DNA sequences. This problem can be formulated as an unsupervised dis-
tributed problem where agents need to learn the graph structure based on the similarity with their
neighbours.

Evolution tree mapping is also an interesting application. In this case each agent has access to a
complete DNA sequence of a species. Agents need to learn the graph structure. However, this time,
it is a constrained problem where the graph needs to have a tree structure. This resulting tree is
known as the tree of life [Puigbò et al., 2012].

6.2. Future works and discussion 105

0 50 100 150 200 250 300 350 400 450 500

iterations i

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

M
S
D

(
d
B

)

Mean square deviation for Bernoulli data distribution

Theoretical MSD
Simulated MSD
Steady-state MSD

Figure 6.3: Mean square deviation (MSD) using random matrix theory for
Bernoulli data distribution for three covariance matrices. We use the same setting as
for the previous data distribution. We use two binary values −1 and 1 for the data
distribution.

107

Bibliography

[Abdolee et al., 2014] Abdolee, R., Champagne, B., and Sayed, A. H. (2014). Estimation of space-
time varying parameters using a diffusion lms algorithm. IEEE Transactions on Signal Processing,
62(2):403–418.

[Abdolee et al., 2016] Abdolee, R., Champagne, B., and Sayed, A. H. (2016). Diffusion adapta-
tion over multi-agent networks with wireless link impairments. IEEE Transactions on Mobile
Computing, 15(6):1362–1376.

[Agrawal and Srikant, 2000] Agrawal, R. and Srikant, R. (2000). Privacy-preserving data mining.
In ACM Sigmod Record, volume 29, pages 439–450.

[Anastassiou, 2001] Anastassiou, D. (2001). Genomic signal processing. IEEE signal processing
magazine, 18(4):8–20.

[Arablouei et al., 2014a] Arablouei, R., Doğançay, K., Werner, S., and Huang, Y.-F. (2014a). Adap-
tive distributed estimation based on recursive least-squares and partial diffusion. IEEE Transac-
tions on Signal Processing, 62(14):3510–3522.

[Arablouei et al., 2015] Arablouei, R., Werner, S., Doğançay, K., and Huang, Y.-F. (2015). Analysis
of a reduced-communication diffusion LMS algorithm. Signal Processing, 117:355–361.

[Arablouei et al., 2014b] Arablouei, R., Werner, S., Huang, Y.-F., and Doğançay, K. (2014b). Dis-
tributed least mean-square estimation with partial diffusion. IEEE Transactions on Signal Pro-
cessing, 62(2):472–484.

[Argyriou et al., 2007] Argyriou, A., Evgeniou, T., and Pontil, M. (2007). Multi-task feature learn-
ing. In Advances in neural information processing systems, pages 41–48.

[Argyriou et al., 2008] Argyriou, A., Evgeniou, T., and Pontil, M. (2008). Convex multi-task feature
learning. Machine Learning, 73(3):243–272.

[Bertrand and Moonen, 2010a] Bertrand, A. and Moonen, M. (2010a). Distributed adaptive node-
specific signal estimation in fully connected sensor networksâĂŤpart i: Sequential node updating.
IEEE Transactions on Signal Processing, 58(10):5277–5291.

[Bertrand and Moonen, 2010b] Bertrand, A. and Moonen, M. (2010b). Distributed adaptive node-
specific signal estimation in fully connected sensor networksâĂŤpart ii: Simultaneous and asyn-
chronous node updating. IEEE Transactions on Signal Processing, 58(10):5292–5306.

108 BIBLIOGRAPHY

[Bertrand and Moonen, 2011] Bertrand, A. and Moonen, M. (2011). Distributed adaptive estima-
tion of node-specific signals in wireless sensor networks with a tree topology. IEEE Transactions
on Signal Processing, 59(5):2196–2210.

[Bianchi and Jakubowicz, 2013] Bianchi, P. and Jakubowicz, J. (2013). Convergence of a multi-
agent projected stochastic gradient algorithm for non-convex optimization. IEEE Transactions
on Automatic Control, 58(2):391–405.

[Câmara, 2014] Câmara, D. (2014). Cavalry to the rescue: Drones fleet to help rescuers operations
over disasters scenarios. In 2014 IEEE Conference on Antenna Measurements & Applications
(CAMA), pages 1–4. IEEE.

[Carmona et al., 2013] Carmona, M., Michel, O., Lacoume, J. L., Sprynski, N., and Nicolas, B.
(2013). An analytical solution for the complete sensor network attitude estimation problem.
Signal Processing, 93(4):652–660.

[Caruana, 1997] Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

[Chainais and Richard, 2013] Chainais, P. and Richard, C. (2013). Learning a common dictionary
over a sensor network. In Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pages 1–4, Saint Martin, France.

[Chen et al., 2014a] Chen, J., Richard, C., Hero, A. O., and Sayed, A. H. (2014a). Diffusion lms
for multitask problems with overlapping hypothesis subspaces. In Machine Learning for Signal
Processing (MLSP), 2014 IEEE International Workshop on, pages 1–6. IEEE.

[Chen et al., 2014b] Chen, J., Richard, C., and Sayed, A. H. (2014b). Multitask diffusion adaptation
over networks. IEEE Transactions on Signal Processing, 62(16):4129–4144.

[Chen et al., 2015a] Chen, J., Richard, C., and Sayed, A. H. (2015a). Adaptive clustering for
multitask diffusion networks. In Signal Processing Conference (EUSIPCO), 2015 23rd European,
pages 200–204. IEEE.

[Chen et al., 2015b] Chen, J., Richard, C., and Sayed, A. H. (2015b). Diffusion LMS over multitask
networks. IEEE Transactions on Signal Processing, 63(11):2733–2748.

[Chen et al., 2016] Chen, J., Richard, C., Song, Y., and Brie, D. (2016). Transient performance
analysis of zero-attracting lms. IEEE Signal Processing Letters, 23(12):1786–1790.

[Chen and Sayed, 2012] Chen, J. and Sayed, A. H. (2012). Diffusion adaptation strategies for dis-
tributed optimization and learning over networks. IEEE Transactions on Signal Processing,
60(8):4289–4305.

[Chen and Sayed, 2013a] Chen, J. and Sayed, A. H. (2013a). Distributed Pareto optimization via
diffusion strategies. IEEE Journal of Selected Topics in Signal Processing, 7(2):205–220.

[Chen and Sayed, 2013b] Chen, J. and Sayed, A. H. (2013b). Distributed pareto optimization via
diffusion strategies. IEEE Journal of Selected Topics in Signal Processing, 7(2):205–220.

BIBLIOGRAPHY 109

[Chen and Liu, 2005] Chen, K. and Liu, L. (2005). Privacy preserving data classification with
rotation perturbation. In Proc. IEEE ICDM.

[Chen and Liu, 2008] Chen, K. and Liu, L. (2008). A survey of multiplicative perturbation for
privacy-preserving data mining. In Privacy-Preserving Data Mining, pages 157–181. Springer.

[Chen and Liu, 2011] Chen, K. and Liu, L. (2011). Geometric data perturbation for privacy pre-
serving outsourced data mining. Knowledge and Information Systems, 29(3):657–695.

[Chouvardas et al., 2012] Chouvardas, S., Slavakis, K., Kopsinis, Y., and Theodoridis, S. (2012).
A sparsity-promoting adaptive algorithm for distributed learning. IEEE Transactions on Signal
Processing, 60(10):5412–5425.

[Chouvardas et al., 2011] Chouvardas, S., Slavakis, K., and Theodoridis, S. (2011). Adaptive ro-
bust distributed learning in diffusion sensor networks. IEEE Transactions on Signal Processing,
59(10):4692–4707.

[Couillet et al., 2016] Couillet, R., Benaych-Georges, F., et al. (2016). Kernel spectral clustering of
large dimensional data. Electronic Journal of Statistics, 10(1):1393–1454.

[Couillet and McKay, 2014] Couillet, R. and McKay, M. (2014). Large dimensional analysis and
optimization of robust shrinkage covariance matrix estimators. Journal of Multivariate Analysis,
131:99–120.

[Couillet et al., 2015] Couillet, R., Pascal, F., and Silverstein, J. W. (2015). The random matrix
regime of maronnaâĂŹs m-estimator with elliptically distributed samples. Journal of Multivariate
Analysis, 139:56–78.

[Courty et al., 2017] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017). Optimal
transport for domain adaptation. IEEE transactions on pattern analysis and machine intelligence,
39(9):1853–1865.

[Di Lorenzo and Sayed, 2013] Di Lorenzo, P. and Sayed, A. H. (2013). Sparse distributed learning
based on diffusion adaptation. IEEE Transactions on Signal Processing, 61(6):1419–1433.

[Evgeniou et al., 2005] Evgeniou, T., Micchelli, C. A., and Pontil, M. (2005). Learning multiple
tasks with kernel methods. Journal of Machine Learning Research, 6(Apr):615–637.

[Evgeniou and Pontil, 2004a] Evgeniou, T. and Pontil, M. (2004a). Regularized multi–task learning.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 109–117. ACM.

[Evgeniou and Pontil, 2004b] Evgeniou, T. and Pontil, M. (2004b). Regularized multi-task learning.
In Proc. ACM SIGKDD int. Conf. Knowledge Discovery and Data Mining, Seattle, WA, USA.

[Flamary et al., 2014] Flamary, R., Rakotomamonjy, A., and Gasso, G. (2014). Learning con-
strained task similarities in graphregularized multi-task learning. Regularization, Optimization,
Kernels, and Support Vector Machines, 103.

110 BIBLIOGRAPHY

[Friedman, 2011] Friedman, A. (2011). Privacy preserving data mining. PhD thesis, Technion-Israel
Institute of Technology.

[Gharehshiran et al., 2013] Gharehshiran, O. N., Krishnamurthy, V., and Yin, G. (2013). Dis-
tributed energy-aware diffusion least mean squares: Game-theoretic learning. IEEE Journal of
Selected Topics in Signal Processing, 7(5):1–16.

[Harrane et al., 2016a] Harrane, I. E. K., Flamary, R., and Richard, C. (2016a). Doubly compressed
diffusion lms over adaptive networks. In 2016 50th Asilomar Conference on Signals, Systems and
Computers, pages 987–991.

[Harrane et al., 2016b] Harrane, I. E. K., Flamary, R., and Richard, C. (2016b). Toward privacy-
preserving diffusion strategies for adaptation and learning over networks. In Proc. EUSIPCO,
Budapest, Hungary.

[Harrane et al., 2019] Harrane, I. E. K., Flamary, R., and Richard, C. (2019). On reducing the
communication cost of the diffusion lms algorithm. IEEE Transactions on Signal and Information
Processing over Networks, 5(1):100–112.

[Hua et al., 2017] Hua, F., Nassif, R., Richard, C., and Wang, H. (2017). Penalty-based multitask
estimation with non-local linear equality constraints. In Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2017 IEEE 7th International Workshop on, pages 1–5. IEEE.

[Jacob et al., 2009] Jacob, L., Vert, J.-p., and Bach, F. R. (2009). Clustered multi-task learning:
A convex formulation. In Advances in neural information processing systems, pages 745–752.

[Jain et al., 2011] Jain, P., Kothari, P., and Thakurta, A. (2011). Differentially private online
learning. arXiv preprint arXiv:1109.0105.

[Kargupta et al., 2005] Kargupta, H., Datta, S., Wang, Q., and Sivakumar, K. (2005). Random-
data perturbation techniques and privacy-preserving data mining. Knowledge and Information
Systems, 7(4):387–414.

[Khalili et al., 2012a] Khalili, A., Tinati, M. A., Rastegarnia, A., and Chambers, J. A. (2012a).
Steady-state analysis of diffusion LMS adaptive networks with noisy links. IEEE Transaction on
Signal Processing, 60(2):974–979.

[Khalili et al., 2012b] Khalili, A., Tinati, M. A., Rastegarnia, A., and Chambers, J. A. (2012b).
Transient analysis of diffusion least-mean squares adaptive networks with noisy channels. Inter-
national Journal of Adaptive Control and Signal Processing, 26(2):171–180.

[Le et al., 2013] Le, T. N., Pegatoquet, A., Berder, O., and Sentieys, O. (2013). Multi-source power
manager for super-capacitor based energy harvesting WSN. In Proc. ACM ENSSys’13, pages
19:1–19:2, Rome, Italy.

[Liu et al., 2008a] Liu, K., Giannella, C., and Kargupta, H. (2008a). A survey of attack techniques
on privacy-preserving data perturbation methods. In Privacy-Preserving Data Mining, pages
359–381. Springer.

BIBLIOGRAPHY 111

[Liu et al., 2018] Liu, T., Chen, Z., Zhou, E., and Zhao, T. (2018). Toward deeper understanding
of nonconvex stochastic optimization with momentum using diffusion approximations. arXiv
preprint arXiv:1802.05155.

[Liu et al., 2008b] Liu, W., Pokharel, P. P., and Principe, J. C. (2008b). The kernel least-mean-
square algorithm. IEEE Transactions on Signal Processing, 56(2):543–554.

[Liu et al., 2012] Liu, Y., Li, C., and Zhang, Z. (2012). Diffusion sparse least-mean squares over
networks. IEEE Transactions on Signal Processing, 60(8):4480–4485.

[Lopes and Sayed, 2008] Lopes, C. G. and Sayed, A. H. (2008). Diffusion adaptive networks with
changing topologies. In Proc. IEEE ICASSP’08, pages 3285–3288, Las Vegas, USA.

[Narayan and Peterson, 1981] Narayan, S. S. and Peterson, A. (1981). Frequency domain least-
mean-square algorithm. Proceedings of the IEEE, 69(1):124–126.

[Nassif et al., 2016a] Nassif, R., Richard, C., Chen, J., Ferrari, A., and Sayed, A. H. (2016a). Dif-
fusion LMS over multitask networks with noisy links. In Proc. IEEE ICASSP.

[Nassif et al., 2017a] Nassif, R., Richard, C., Chen, J., and Sayed, A. H. (2017a). A graph diffusion
lms strategy for adaptive graph signal processing. In Signals, Systems, and Computers, 2017 51st
Asilomar Conference on, pages 1973–1976. IEEE.

[Nassif et al., 2015] Nassif, R., Richard, C., Ferrari, A., and Sayed, A. H. (2015). Multitask diffusion
lms with sparsity-based regularization. In Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, pages 3516–3520. IEEE.

[Nassif et al., 2016b] Nassif, R., Richard, C., Ferrari, A., and Sayed, A. H. (2016b). Distributed
learning over multitask networks with linearly related tasks. In Signals, Systems and Computers,
2016 50th Asilomar Conference on, pages 1390–1394. IEEE.

[Nassif et al., 2016c] Nassif, R., Richard, C., Ferrari, A., and Sayed, A. H. (2016c). Multitask
diffusion adaptation over asynchronous networks. IEEE Transactions on Signal Processing,
64(11):2835–2850.

[Nassif et al., 2016d] Nassif, R., Richard, C., Ferrari, A., and Sayed, A. H. (2016d). Proximal
multitask learning over networks with sparsity-inducing coregularization. IEEE Transactions on
Signal Processing, 64(23):6329–6344.

[Nassif et al., 2016e] Nassif, R., Richard, C., Ferrari, A., and Sayed, A. H. (2016e). Proximal
multitask learning over networks with sparsity-inducing coregularization. IEEE Transactions on
Signal Processing, 64(23):6329–6344.

[Nassif et al., 2017b] Nassif, R., Richard, C., Ferrari, A., and Sayed, A. H. (2017b). Diffusion
lms for multitask problems with local linear equality constraints. IEEE Transactions on Signal
Processing, 65(19):4979–4993.

[Necoara et al., 2017] Necoara, I., Nesterov, Y., and Glineur, F. (2017). Random block coordinate
descent methods for linearly constrained optimization over networks. Journal of Optimization
Theory and Applications, 173(1):227–254.

112 BIBLIOGRAPHY

[Nedic and Ozdaglar, 2009] Nedic, A. and Ozdaglar, A. (2009). Distributed subgradient methods
for multi-agent optimization. IEEE Trans. Autom. Control, 54(1):48–61.

[Parreira et al., 2012] Parreira, W. D., Bermudez, J. C. M., Richard, C., and Tourneret, J.-Y.
(2012). Stochastic behavior analysis of the gaussian kernel least-mean-square algorithm. IEEE
Transactions on Signal Processing, 60(5):2208–2222.

[Plata-Chaves et al., 2016] Plata-Chaves, J., Bahari, M. H., Moonen, M., and Bertrand, A. (2016).
Unsupervised diffusion-based lms for node-specific parameter estimation over wireless sensor net-
works. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Confer-
ence on, pages 4159–4163. IEEE.

[Plata-Chaves et al., 2015] Plata-Chaves, J., Bogdanović, N., and Berberidis, K. (2015). Dis-
tributed diffusion-based lms for node-specific adaptive parameter estimation. IEEE Transactions
on Signal Processing, 63(13):3448–3460.

[Puigbò et al., 2012] Puigbò, P., Wolf, Y. I., and Koonin, E. V. (2012). Genome-wide comparative
analysis of phylogenetic trees: the prokaryotic forest of life. In Evolutionary Genomics, pages
53–79. Springer.

[Rabta et al., 2018] Rabta, B., Wankmüller, C., and Reiner, G. (2018). A drone fleet model for last-
mile distribution in disaster relief operations. International Journal of Disaster Risk Reduction,
28:107–112.

[Rajkumar and Agarwal, 2012] Rajkumar, A. and Agarwal, S. (2012). A differentially private
stochastic gradient descent algorithm for multiparty classification. In International Conference
on Artificial Intelligence and Statistics, pages 933–941.

[Rakotomamonjy et al., 2011] Rakotomamonjy, A., Flamary, R., Gasso, G., and Canu, S. (2011). `p
- `−q penalty for sparse linear and sparse multiple kernel multitask learning. IEEE Transactions
on Neural Networks, 22(8):1307–1320.

[Ramakrishnan et al., 2001] Ramakrishnan, N., Keller, B. J., Mirza, B. J., Grama, A. Y., and
Karypis, G. (2001). Privacy risks in recommender systems. IEEE Internet Computing, 5(6):54.

[Sayed, 2003] Sayed, A. H. (2003). Fundamentals of adaptive filtering. J. Wiley & Sons, Hoboken,
NJ.

[Sayed, 2008] Sayed, A. H. (2008). Adaptive Filters. John Wiley & Sons, NJ.

[Sayed, 2013b] Sayed, A. H. (2013b). Diffusion adaptation over networks. Academic Press Library
in Signal Processing, 3:323–454.

[Sayed, 2014] Sayed, A. H. (2014). Adaptation, learning, and optimization over networks. In Foun-
dations and Trends in Machine Learning, volume 7, pages 311–801. NOW Publishers, Boston-
Delft.

[Sayed, 2013a] Sayed, A. H. (2014. Also available as arXiv:1205.4220 [cs.MA], May 2013a). Diffusion
adaptation over networks. In Chellapa, R. and Theodoridis, S., editors, Academic Press Libraray
in Signal Processing, pages 322–454. Elsevier.

BIBLIOGRAPHY 113

[Sayed et al., 2013] Sayed, A. H., Tu, S.-Y., Chen, J., Zhao, X., and Towfic, Z. J. (2013). Diffusion
strategies for adaptation and learning over networks: an examination of distributed strategies
and network behavior. IEEE Signal Processing Magazine, 30(3):155–171.

[Sayin and Kozat, 2014] Sayin, M. O. and Kozat, S. S. (2014). Compressive diffusion strategies over
distributed networks for reduced communication load. IEEE Transactions on Signal Processing,
62(20):5308–5323.

[Szurley et al., 2015] Szurley, J., Bertrand, A., and Moonen, M. (2015). Distributed adaptive node-
specific signal estimation in heterogeneous and mixed-topology wireless sensor networks. Signal
Processing, 117:44–60.

[Takahashi et al., 2010] Takahashi, N., Yamada, Y., and Sa (2010). Diffusion least-mean squares
with adaptive combiners: Formulation and performance analysis. IEEE Trans. Signal Processing,
58(9):4795–4810. Diffusion LMS 3: more general, adpative combination.

[Tu and Sayed, 2010] Tu, S.-Y. and Sayed, A. H. (2010). Foraging behavior of fish schools via dif-
fusion adaptation. In Cognitive Information Processing (CIP), 2010 2nd International Workshop
on, pages 63–68. IEEE.

[Vadidpour et al., 2015] Vadidpour, V., Rastegarnia, A., Khalili, A., and Sanei, S. (2015). Partial-
diffusion least mean-square estimation over networks under noisy information exchange. arXiv
preprint arXiv:1511.09044.

[Verykios et al., 2004] Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y., and
Theodoridis, Y. (2004). State-of-the-art in privacy preserving data mining. ACM Sigmod Record,
33(1):50–57.

[Vincent et al., 2014] Vincent, R., Carmona, M., Michel, O., and Lacoume, J.-L. (2014). A lower
bound for passive sensor-network auto-localization. In 2014 22nd European Signal Processing
Conference (EUSIPCO), pages 1965–1969. IEEE.

[Wang et al., 2018] Wang, C., Zhang, Y., Ying, B., and Sayed, A. H. (2018). Coordinate-descent
diffusion learning by networked agents. IEEE Transactions on Signal Processing, 66(2):352–367.

[Wen and Liu, 2015] Wen, F. and Liu, W. (2015). Diffusion least mean square algorithms with zero-
attracting adaptive combiners. In Proc. IEEE CIT–IUCC–DASC–PICOM’15, pages 252–256.

[Xi and Khan, 2017] Xi, C. and Khan, U. A. (2017). Distributed subgradient projection algorithm
over directed graphs. IEEE Transactions on Automatic Control, 62(8):3986–3992.

[Yuan and Lin, 2006] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 68(1):49–67.

[Zeng and Yin, 2018] Zeng, J. and Yin, W. (2018). On nonconvex decentralized gradient descent.
IEEE Transactions on signal processing, 66(11):2834–2848.

114 BIBLIOGRAPHY

[Zhao and Sayed, 2015a] Zhao, X. and Sayed, A. H. (2015a). Asynchronous adaptation and learning
over networksâĂŤpart i: Modeling and stability analysis. IEEE Transactions on Signal Process-
ing, 63(4):811–826.

[Zhao and Sayed, 2015b] Zhao, X. and Sayed, A. H. (2015b). Asynchronous adaptation and learn-
ing over networksâĂŤpart ii: Performance analysis. IEEE Transactions on Signal Processing,
63(4):827–842.

[Zhao et al., 2012] Zhao, X., Tu, S.-Y., and Sayed, A. H. (2012). Diffusion adaptation over networks
under imperfect information exchange and non-stationary data. IEEE Transactions on Signal
Processing, 60(7):3460–3475.

	Abstract
	Table of contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Distributed processes: from nature to signal processing
	Distributed strategies
	Contributions
	Published papers

	Diffusion Least Mean Square
	Introduction
	Problem Formulation
	Theoretical analysis
	Weight error vector recursion
	Mean error analysis
	Mean square error analysis
	Network Mean-Square Performance
	Transient State Analysis

	Numerical examples
	Recent developments of diffusion LMS

	Compressed Diffusion LMS
	Introduction
	Problem formulation

	Diffusion LMS with compression
	Selection matrix probability distribution
	Compressed Diffusion LMS
	Mean weight behaviour analysis
	Mean-square error behaviour analysis
	Network Mean-Square Performance
	Transient State Analysis

	Doubly Compressed Diffusion LMS
	Mean weight behaviour analysis
	Mean-square error behaviour analysis

	Numerical analysis
	Compressed diffusion numerical analysis
	Theoretical model validation
	Algorithm performance for large networks and data sizes

	Algorithm performance for energy aware networks

	Conclusion

	Privacy aware diffusion LMS
	Introduction
	Diffusion LMS with privacy-preserving capabilities
	Theoretical analysis
	Preliminary properties of Wishart matrices
	Convergence in the mean
	Mean-square stability

	Privacy preserving diffusion LMS numerical analysis
	Conclusion

	Unsupervised Clustered Multitask Learning
	Introduction
	Multitask Learning
	Unsupervised Clustered Multitask estimation
	Theoretical analysis with perfect clustering
	Mean error stability analysis
	Mean square error analysis

	Algorithm performance for imperfect clustering
	Mean error analysis
	Network Mean Performance
	Mean square error analysis
	Network Mean-Square Performance
	Transient State Analysis

	Numerical analysis
	Theoretical model accuracy
	Multitask performance

	Conclusion

	Conclusion
	Summary of results
	Energy and network resources management
	Privacy preservation

	Future works and discussion
	Improvements related to the presented work
	New research directions

