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Cette thèse est née en 2011 dans le cadre d'une collaboration franco-canadienne sous le nom de l'Arrangement Spécifique N o 42, dont le but était l'amélioration de la chaine de détection et classification de mines sous-marines. Cet accord a facilité un échange de chercheurs entre l'ENSTA-Bretagne et le centre de recherches de l'Atlantique du RDDC à Halifax, menant à une collaboration fructueuse dans ce domaine. Travaillant avec le centre de recherche norvégien FFI et des chercheurs des États-Unis, une expérience dans les fjords de la Norvège, près du village de Larvik, fut conçue pour tester des concepts de détection de changements par perte de cohérence avec un sonar à synthèse d'ouverture (SAS), une technique appliquée de manière assez courante dans le domaine du radar mais qui était, à cette époque, d'une nature plutôt spéculative en sonar. Ces données figurent bien en évidence dans cette thèse, étant une des premières démonstrations de la possibilité d'utiliser la différence de phase entre deux images SAS afin de détecter des changements sur le fond sous-marin qui n'étaient pas visibles dans les images en amplitude. Au cours des années, ces résultats ont piqué l'intérêt de plusieurs collaborateurs avec qui nous avons perfectionné l'état de l'art du traitement interférométrique des images SAS provenant de trajectoires répétitives. Cette thèse s'appuie fortement sur les jeux de données obtenues depuis ce réseau de collaborateurs, et je tiens à remercier les personnes suivantes, non seulement pour des données ou des images, mais aussi pour leur appui et leurs conseils au cours de ces travaux

anachroniques du 18 e siècle. J'adresse mes plus sincères remerciements à Michel Legris qui était toujours prêt à répondre longuement aux demandes que je lui ai adressées au sujet du sonar et du traitement du signal.

Finalement, je dois surtout remercier Nicole et Thomas pour leur patience en face des changements d'humeur et de mes absences occasionnés par ce travail, et sans lesquelles cette thèse aurait été achevée dix ans plut tôt mais avec beaucoup moins de bonheur. 4.8 Results of the SURF point detection process after outlier rejection. . 4.9 Computed displacements for the shipwreck images using complex cross-correlations compared to SURF points and an affine transform. The detection of changes in sets of serial images acquired at different times is a technique that has been applied across many disciplines that require monitoring of a scene. This approach is often applied to seafloor surveillance by using highfrequency imaging sonars, such as modern synthetic aperture sonar (SAS) systems, which provide range-and frequency-independent image resolution, high rates of coverage and images that have been corrected, to the extent possible, for the distortions caused by platform motion. Many SAS systems are mounted on unmanned underwater vehicles (UUVs) that have the ability to collect vast amounts of data over large areas, sometimes using multiple systems in tandem. 1 The extremely large volume of data created by SAS sensors creates a requirement for automated methods to detect scene changes, including the co-registration of images as well as the automatic detection of areas of interest and the reduction of false alarms.
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The fact that over 70% of the surface of the Earth is covered by oceans has become a ubiquitous motivating statement for any work that touches upon the use of sonar for mapping and exploration of the underwater environment. While true, it is important to consider that about 10% of this area is considered to be continental shelf which extends from the coast and hosts the majority of aquatic life as well as accessible mineral resources such as hydrocarbons and minerals. Under the United Nations Convention on the Law of the Sea (UNCLOS), nations can claim an exclusive economic zone out to 200 nautical miles from its coastline and in some cases beyond that [United Nations, 1980]. The same convention establishes requirements for the protection of the underwater environment. In addition, the United Nations' Convention on Biological Diversity aims to establish 10% of the world's oceans to be designated as Marine Protected Areas (MPAs) by the year 2020, which require monitoring in order to restore and protect the biodiversity of the zone. The applications of temporal analysis within this context range from mapping the benthic zone to determining the evolution of the population of species of shellfish in order to set fisheries quotas, enforcing and preventing illegal dumping of environmental waste, and understanding the amount of sediment transport when planning for underwater infrastructure such as tidal turbines. The use of robots for environmental monitoring is increasing and seen as a key enabler for an improved capability in this area [START_REF] Dunbabin | Robots for environmental monitoring: Significant advancements and applications[END_REF].

According to the International Maritime Organization2 , the most effective way of transporting goods en masse is through maritime shipping, with over 90% of world trade being carried out by sea through established sea lanes. These strategic channels are susceptible to disruption by both state and non-state actors through the laying of naval mines or improvised devices. In particular, choke points such as the Strait of Hormuz or the Strait of Mandeb have seen mining activity in the recent past, 3 causing significant damage and in some cases the loss of life.4 Regular monitoring of potential threat areas is often undertaken as a way to deter mining [Rios, 2005]. Monitoring of strategic channels and waterways within a nation's own territorial waters is a key naval operational activity, and many countries undertake a program of regular route survey activities with the aim of maintaining a database of historical imagery that can be used as a baseline to compare with newly acquired data [Wheatley, 2009]. This approach can also be used to inspect critical underwater infrastructure for damage or tampering.

Acoustic imaging of underwater scenes

The most effective way of sensing the underwater environment is through the use of sonar, short for Sound Navigation and Ranging, as the performance of sensors based on optics or radar are severely degraded as water, and salt water in particular, is a strong conductor and highly dissipative to electromagnetic radiation [Urick, 1997] [Lurton, 2010]. Similar to radar (Radio Detection and Ranging), an active sonar transmits acoustic pulses (or "pings") and listens for the echoes which are received as the sound is scattered back towards the receiver as it interacts with the sensed environment. In particular, high-frequency sidescan imaging sonars that create acoustic images of the seafloor offer a significant capability for monitoring and detecting small changes on the seabed, and have been employed for route survey since at least the 1960s. These systems operate in a side-looking configuration (vice forward-looking as is the case for hull-mounted sonars, or downward-looking, in the case of multi-beam echosounders), transmitting sound in a direction perpendicular to the platform track and building up an image by adding subsequent returns as lines in an image as they are received and processed.5 

There are two key performance parameters that are often used to characterize the performance of a sonar system for route survey [START_REF] Hagen | Area coverage rate of synthetic aperture sonars[END_REF]:

along-track (in the direction of travel of the platform) resolution and area coverage rate. The first one determines the scale of changes that can be detected and it is generally more difficult to obtain fine resolution in this dimension than in the across-track (perpendicular to the platform track and along the acoustic axis) dimension and is therefore considered the more limiting factor for target detection performance. Area coverage rate determines the amount of time and resources that will be required to survey an area and is determined by the velocity of the platform and the range of the sonar. A third key performance parameter for route survey systems is navigational accuracy and is specific to the host platform. It determines the ability to obtain temporally separated imagery of scene that are co-located to a precision that is suitable for the change detection application at hand.

Traditional real-aperture side-looking (or sidescan) sonars [Blondel, 2009], [START_REF] Fish | Sound underwater images. A guide to the generation and interpretation of side-scan sonar data[END_REF]] are limited in their achievable along-track resolution by the length of the physical array and wavelength of the transmitted sound, with longer arrays and smaller wavelengths providing a smaller beamwidth and therefore finer resolution. Since the size and cost of physical receive antennas quickly become prohibitive, the remaining option to improve resolution is to raise the operating frequency, which has the effect of reducing the range due to higher attenuation caused by absorption [START_REF] Fisher | Sound absorption in seawater[END_REF], [START_REF] Francois | Sound absorption based on ocean measurements: Part II: Boric acid contribution and equation for total absorption[END_REF]. This in turn reduces the corresponding coverage rate. As an angular quantity, the physical width of the sonar beam widens as a function of the distance to the sensor, resulting in an image with a range-varying resolution. 6 In addition, platform motion between As the platform travels along its trajectory, it transmits a number of pings with a footprint which depends on the transmitter size. Sidescan sonars obtain fine resolution by transmitting narrow beams, however this resolution worsens with range. SAS systems transmit wide beams in order to process the returns coherently, in a way that results in constant resolution, independent of range.

pings is not usually compensated for 7 , which introduces distortions to the image that make detection in general and change detection in particular, more difficult.

Synthetic aperture sonars, on the other hand, integrate multiple pings along the platform trajectory in order to create a synthetic array that is many times longer than the physical array [START_REF] Hansen | Introduction to Synthetic Aperture Sonar[END_REF], [Pinto, 2002], [Cutrona, 1975]. Summing a progressively larger number of pings as a function of range allows one to achieve range and frequency independent image resolution (see Section 2.1.2). An important distinction between SAS and sidescan systems is that the former exploit the coherence of the acoustic wave, meaning that they make use of the phase as well as the magnitude of the received signals, while the latter are generally 8 non-coherent, using only the amplitude envelope of the echo returns. The use of phase information in SAS necessitates knowledge and subsequent correction of the non-linear platform motion in order to create focused SAS images. The result of the SAS processing chain is an image of complex values that gives an estimate of the mean backscattered power as well as phase information for each pixel in the image. Knowledge of the phase gives one additional information for route survey ap-7 This is not always the case. The Sonardyne Solstice sidescan sonar, for instance, incorporates knowledge of the platform motion to mitigate image distortions. There are other examples that use SAS-like processing to improve real aperture sonar imagery.

8 Notwithstanding the systems with multiple receive elements described in 6. Tracks can be observed where vehicles have driven over a dirt road and disturbed the ground, changing the roughness and distribution of the scatterers, resulting in a loss of phase coherence. The track spacing can also give some information about the type of vehicle that was used. Note that trees and some areas of vegetation also appear as low coherence zones. This image is courtesy of Sandia National Laboratories, Radar Intelligence, Surveillance and Reconnaissance division in Albuquerque, New Mexico.

detected using coherent methods with SAR.

Thesis contributions

This thesis makes a number of original contributions to the field of repeat-pass SAS processing and coherent change detection.

Co-registration of SAS images -One of the main contributions of this thesis is the development of automated methods for co-registration of repeat-pass synthetic aperture sonar images for the purposes of coherent change detection. Approaches using image warping (Section 4.5) as well as re-navigation (Section 4.6) are examined. In the latter case, it is found that residual navigation errors which manifest themselves as distortions in the SAS images are found to be mostly attributed to uncompensated pitch motion. A method for estimating and subsequently correcting these errors is presented, which allows one to co-register a repeat-pass SAS image with a reference image using a linear track model to the accuracy required for interferometric processing.

False alarm reduction techniques -A consequence of the highly sensitive nature of coherent change detection methods is that they may suffer from a very high rate of false alarms. In addition, zones created by the acoustic shadow of a target are inherently incoherent, causing a high number of false positives in areas of high clutter. This thesis examines false alarms mitigation through a number of ways. The use of a reference coherence (Section 5. 1.6) obtained by exploiting the single-pass interferometric coherence is suggested and used as a mask to remove pre-existing areas of low coherence. In another approach, the use of multi-looking (Section 5. 2.4) to create N SAS images obtained through filtering of the wavenumber domain in the along-track is proposed as another method where fusing the multiple sub-aperture coherence estimates is proposed.

Statistical analysis of repeat-pass SAS images -An analytical model for the probability of detection and false alarm as a function of misregistration error is developed, which shows that CCD methods are more tolerant to slight errors in co-registration that commonly thought (Section 3.3.3). The first and second-order amplitude and phase statistics of interferometric SAS images are then examined, using well-known distributions obtained from SAR for the sampling distribution of these values. This analysis shows that the effective number of samples in the statistical estimation window can be significantly less than the actual number of samples (Section 3.4) which has implications for the bias of the coherence estimate.

Experimental validation -This thesis provides a significant amount of experimental validation of coherent change detection using data acquired during experiments at sea with several different UUV-based SAS sensors (Chapter 5). These systems offer diversity in frequency, platform stability and environmental conditions such as benign, sandy areas (Section 5.1.2), cluttered areas (Section 5. 1.3) and sand ripples (Section 5.2). An overview of the principle data collection experiments is given in Appendix B.

CCD using low frequency sonar -A GPU-based viscoelastic acoustic wave

propagation model (Section 6.3) was developed using the Finite-Difference Time-Domain (FDTD) method with the aim of better understanding the nature of changes that can be detected using the phase coherence of lower frequency sonar systems which can penetrate the sediment. This may allow for long temporal baselines as well as offer the ability to detect objects which are buried.

Thesis outline

Following this introductory chapter, the outline of the remainder of this thesis is as follows:

Chapter 2 will provide an overview of concepts required in order to understand the coherent change detection methods and analysis presented in this thesis. These include basic concepts of synthetic aperture imaging, SAS motion compensation and beamforming, and interferometric processing of complex images.

Chapter 3 presents coherent change detection within the context of repeat-pass SAS imagery. After an overview of prior work, sources of coherence loss are examined and a stochastic model for SAS images is developed. Applying models transferred from the SAR domain, first and second order joint statistics of co-registered SAS images are presented. Amplitude and phase statistics of interferometric images are also examined and validated using repeat-pass SAS images collected for this purpose. The use of the sample coherence as a change detection statistic is also examined.

Chapter 4 addresses the challenging problem of image co-registration, one of the main contributions of this thesis. Warping and re-navigation methods are both examined in detail. A co-registration approach based on a modified track registration model is presented, with an additional step to correct for residual motion errors, caused mostly by vehicle pitch. Results are presented using SAS data, where the method is applied to both raw, element-level received signals as well as on the beamformed SAS images using the lower frequency band of the AquaPix INSAS2 (f c ≈ 240 kHz).

Chapter 5 presents results of change detection experiments using different UUVbased SAS systems. In one set of experiments, data collected using the HISAS 1030 (f c = 100 kHz) is used to detect a set of objects deployed in areas of both low and high clutter. In a second experiment, the Vision 1200 SAS system (f c ≈ 150kHz) is used to detect a line of objects in an area of sand ripples. In both cases, coherent and non-coherent methods are compared. Multi-looking and the use of a reference coherence map are examined as ways to improve performance by enhancing the coherence computation and reducing false alarms. The effect of parameters such as window sizes is also examined.

Chapter 6 presents some preliminary results of coherence modeling at lower acous-tic frequencies using a viscoelastic Finite-Difference Time-Domain (FDTD) model of the wave propagation. The model was implemented in the CUDA framework to exploit the parallelism of the FDTD approach using GPUs. The gains in execution time that were obtained allowed for modeling several scenarios of interest, in particular the sensitivity of repeat-pass coherence to changes in sediment type as well as the potential to detect buried objects.

Chapter 7 makes some conclusions and provides suggestions for avenues of future research.

Appendix A gives an overview of the two-dimensional phase unwrapping method used in this thesis and a short analysis of the choice of parameters suitable for two different sonar systems is briefly given.

Appendix B gives a high-level overview of the main data collection experiments that were carried out in support of this research. The first are the Larvik and Bergen trials which took place in Norway using the Hugin UUV and the Kongsberg HISAS 1030 SAS system. The second is the ITMINEX trial, taking place near La Spezia, Italy with the Atlas Electronik SeaOtter UUV equipped with the Vision 1200 SAS system. And the third is the Nanoose trial using the Kraken Robotics AquaPix INSAS2 mounted on the Arctic Explorer UUV in British Columbia, Canada.

Appendix C gives a full list of publications that have resulted from this research. Mapping the seafloor is a common application of high-frequency 1 sonar, which is driven in large part by a requirement to produce nautical charts that are used for navigation [Lurton, 2010, Chap. 8]. Hydrographic surveys are typically done from a surface ship due to the positioning accuracy required to meet the standard set out by the International Hydrographic Organization (IHO) and employ 1 There is no accepted definition of what is considered "high-frequency" but a common standard is an operating frequency between 80 kHz to 1 MHz. A more robust definition is whether or not the acoustic scattering is driven by geometric or elastic effects. In this case, the product of the size of an object versus the wavenumber (the ka), where k = 2π λ and a ka > 50 is considered high for that particular target [Zerr, 2014, p. 22].

single or multibeam echosounders which transmit sound in a direction vertical to the host platform which intercepts the seabed at relatively steep grazing angles. 2 Multibeam sonars must trade off vertical resolution and coverage rate, as both are proportional to the water depth [de Moustier et al., 1990]. Sidescan sonars, on the other hand, are used mostly 3 to create acoustic images of the seabed by measuring the mean backscattered energy received from pulses transmitted in a direction perpendicular to the platform trajectory that intercept the seabed at shallow grazing angles. The synthetic aperture sonar systems used in this thesis are a type of sidescan sonar. Other sensing modalities such as hull-or UUV-mounted forwardlooking sonars used to create sector images in the direction of travel of the platform, commonly used for mine hunting, obstacle avoidance as well as localization [START_REF] Leonard | Stochastic mapping using forward look sonar[END_REF], [START_REF] Petillot | Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar[END_REF]. Ultra-high frequency forward-looking sonars, sometimes called acoustic cameras, are used in many water column and seabed mapping applications, typically in shallow water or in UUV-based systems due to the limited range of such sensors [START_REF] Mizuno | Three dimensional mapping of aquatic plants at shallow lakes using 1.8 MHz high-resolution acoustic imaging sonar and image processing technology[END_REF].

Sidescan sonars have been in use for several decades, having been conceived and developed in the 1950s as a sensor for detecting and classifying naval mines [START_REF] Sternlicht | SHADOWGRAPH : The navy's first high-resolution side scan sonar[END_REF]. 4 Westinghouse (now Northrup-Grumman) applied for the first patent for a synthetic aperture sonar in 1976 which was granted a year and a half later [Gilmour, 1978]. Synthetic aperture techniques were well-known by then in radar, having started in 1951 with Carl Wiley, working for the Goodyear corporation (now Lockheed-Martin), suggesting that each scatterer within the moving radar illumination beam would have a specific Doppler shift that could be used to create high-resolution images. In 1975, Cutrona [Cutrona, 1975] extended single element transmit/receive designs from SAR to the multiple-element receiver array designs in use today addressing the along-track sampling shortfall (see Section 2.1.5) [Pinto, 2002]. An excellent review of SAS state-of-the-art can be found in [START_REF] Hayes | Synthetic aperture sonar: A review of current status[END_REF] and a history of SAS development in [START_REF] Sternlicht | Historical developments of seabed mapping Synthetic Aperture Sonar[END_REF].

The methods for coherent change detection developed in this thesis make use of interferometric processing of SAS images in order to detect and classify changes in the scene that have occurred between the acquisition times, however 2 It should be noted that while multibeam sonars are able to collect data at fairly shallow grazing angles, the resulting bathymetry is generally not to IHO standards.

3 Interferometric sidescan sonars using multiple vertically displaced arrays can determine the bathymetry using a technique called swath bathymetry. It is based on the same principles explained later in Section 2.4.2.1.

4 An interesting historical note is that the first modern sidescan sonar was developed by a German scientist brought to the United States during Operation Paperclip [START_REF] Commander | Pioneers in side scan sonar: Julius Hageman and the shadowgraph[END_REF].

the more common use of interferometry is for determining the relative height of a pixel in the scene by measuring the time-delay between two received signals (see Section 2.4.2.1). The application of interferometric principles for topographic mapping from an aircraft using SAR data was developed by the US military and patented in 1971 (released publicly in 1982) [Richman, 1982], and applications of repeat-pass SAR interferometry using space-based satellites soon followed. An overview of interferometric SAR developments is given in the introduction of Chapter 3 on change detection. Interferometric synthetic aperture sonar [START_REF] Bonifant | Interferometric height estimation of the seafloor via synthetic aperture sonar in the presence of motion errors[END_REF], Griffiths et al., 1997[START_REF] Saebø | Seafloor depth estimation by means of interferometric Synthetic Aperture Sonar[END_REF] applies the same techniques for bathymetric mapping of the seafloor. The use of repeat-pass SAS for topographic mapping was examined in [START_REF] Bellec | Repeat-track SAS interferometry : feasibility study[END_REF] and continues to be developed.

Imaging systems

Many remote sensing problems can be posed as an inverse problem [Soumkeh, 1999] [ Hawkins, 1996] where one attempts to infer the properties of a scene of interest using a set of measurements obtained from a distance. In imaging systems such as real or synthetic aperture sonar, as well as radar applications, this structure is the spatial distribution and complex reflectivity (meaning both a reflection loss and a phase shift) of the set of discrete scatterers within a scene and the measurements are obtained by recording the echoed returns by these targets from active pulse transmissions, referred to here as the raw data. 5 The inversion results in a reconstructed image through the process of focusing the raw data, sometimes called synthetic aperture processing, beamforming or matched filtering.

An important distinction between satellite-based SAR systems and side-looking SAS systems is that the latter typically have antennas mounted on each side of the host platform in order to create both left and right, or port and starboard images [Blondel, 2009]. Figure 2.1 shows the geometry of sidescan sonar for one side: the platform travels along the x-axis (the along-track or azimuth direction) and transmits along the y-axis (the across-track or range direction), illuminating6 an area of the seafloor, or footprint, that is defined by the transmit directivity pattern. The platform travels at an altitude a on the z-axis, orthogonal to the x and y axes. The line-of-sight distance between the sensor and a scatterer in the scene is called the slant range (r) and can be computed using the time-delay of the The slant range r is the line-of-sight distance to the surface while the ground range is the distance along the surface from the platform position projected on the ground plane. The part of the seafloor which is imaged is shown in gray, and the footprint of the acoustic beam is shown in brown. received echo t and the wave propagation speed c using the relation:

r = c t 2 , ( 2.1) 
and the ground range coordinate y of the scatterer is related to r through the depression angle of the system which is equal to the grazing angle θ graz assuming a flat surface. Raw data is collected in slant range coordinates and the image reconstruction process creates images that are in either ground range or slant range coordinates using the relation:

y = r 2 -a 2 , (2.2)
where a is the platform altitude. As the platform moves along its trajectory, it illuminates a continuous swath in ground range in a configuration called stripmap mode.

Range resolution

Resolution in slant range is the ability to separate two scatterers of equal amplitude at different distances. The Rayleigh criterion states that this occurs when the peak response of the first scatterer falls outside the first null of the second.7 For imaging systems using a continuous waveform (CW) pulse, this is proportional to the duration of the transmit pulse t p , where t p = 1/B r with B r the pulse bandwidth and the range resolution α r is: .3) Note that systems that use two-way propagation such as sonar and radar obtain a factor of two gain in resolution. Assuming a flat seafloor, the resolution in ground range α y is the projection of α r as a function of the incidence angle θ inc :

α r = ct p 2 = c 2B r . ( 2 
α y = α r sin θ inc .
(2.4)

LFM pulse compression

Although shorter pulses give better (finer) resolution, a large amount of peak power is required to generate short duration pulses with a high enough signal-to-noise ratio (SNR) for echoes to be detected above the system noise and reverberation.8 

Limitations due to cavitation and the interaction between radiating elements in the projector can prevent this in practical sonar systems [Urick, 1997]. The SNR can be increased by increasing the average power through the transmission of longer pulses and then compressing it upon return; this technique is called pulse compression and is applied in nearly all practical sonar systems to improve the range resolution. If h(t) is the transmit pulse replica and s(t) is the received signal, the pulse is matched filtered to the signal by a correlation:

s mf (t) = ∞ -∞ s(τ )h * (τ -t)dτ. (2.5)
If the correlation is done using a convolution, then the time-reversed complex conjugate of the pulse is used

s mf (t) = s(t) ⊗ h * (-t), (2.6)
where ⊗ is the convolution operator. One of the most commonly used pulses in both sonar and radar is the linear frequency-modulated (LFM) pulse, or chirp, which is

given by [Cumming and Wong, 2005, pp. 130-131]:

s(t) = w r (t) cos 2πf c t + πK r t 2 , (2.7)
where f c is the carrier frequency, K r is the FM rate of change and w r (t) is the pulse envelope and can be approximated by a rectangular function:

w r (t) = rect t t p . (2.8)
The sign of K r determines whether the frequency increases over time (an upchirp) or decreases (a down-chirp). The bandwidth of a chirp pulse is given by [Cumming and Wong, 2005, p. 71]:

B r = |K r |t p .
(2.9)

Azimuth resolution

Real aperture sonar

At the relatively high operating frequencies considered in this thesis, the transmission of large bandwidth9 pulses is generally not a limiting factor and therefore obtaining high across-track resolution using pulse compression is not considered especially challenging. On the other hand, obtaining fine resolutions in the alongtrack (azimuth) direction is much more difficult. Using the same definition for resolution as above, the width of a transducer's main lobe in the azimuth direction is an angular measurement equal to:

θ 3dB ≈ λ D , (2.10)
where D is the size of the transducer and λ = c/f is the wavelength in water at frequency f . The resolution is a function of range r from the sonar, and for small θ 3dB :

α x = rθ 3dB , = rλ D .
( This means that resolution improves with increased frequency f or element size D.

Equation 2.11 is valid in the far field of the sonar. In the near field region, which begins at a range r nf equal to: .12) the resolution is roughly equal to half the size of the transducer:

r nf = D 2 4λ , ( 2 
α x = D/2 if r < r nf rθ 3dB otherwise (2.13)
Based on Equation 2.11, in order to improve the along-track resolution of a realaperture sidescan sonar, one must either use longer physical arrays or employ higher frequencies. However, using higher frequencies leads to a reduction in the effective range, due to higher sound absorption, and the physical size of antennas is limited by the size of the host platform. Manufacturing large physical arrays is also expensive and difficult in practice.

Synthetic Aperture Sonar

Synthetic aperture processing is a technique used to improve the along-track resolution where, as the platform moves along a nominally linear trajectory, returns from multiple pulses are summed coherently in order to form a large synthetic antenna that is much longer than the size of the physical aperture of the system. Formally, as the host platform moves along its nominally linear track at a velocity v, the sonar transmits and receives N p pulses at locations u(p) = (u x , u y , u z ), p = 1, . . . , N p with a pulse repetition interval t pri in seconds. The along-track resolution of a SAS is computed using the same principles as a real aperture sonar, however, whereas the aperture length is fixed for real arrays, the length of the synthetic array is limited only by the width of the transmit pulse. The effective beamwidth of a synthetic array of length L SAS is: .14) where the maximum extent of the synthetic array L SAS for a given range r is limited by the transmit beamwidth:

θ SAS = λ 2L SAS , ( 2 
L SAS = rθ 3dB , (2.15) = rλ D . (2.16)
This concept is illustrated in Figure 2.2. The along-track resolution at range r is obtained by applying Equation 2.11 and replacing θ 3dB with θ SAS , resulting in: .20) In this case, the theoretical resolution is half the length of the transducer and is independent of range and frequency [Cutrona, 1975]. It was this result that motivated most of the early research on synthetic aperture imaging.

α x = rθ SAS , (2.17) = rλ 2L SAS . (2.18) = rλD 2rλ , (2.19) = D 2 . ( 2 

Doppler imaging

An alternative way of arriving at the same result for along-track resolution is by examining the total band of Doppler frequencies generated by a scatterer as it is imaged by a moving platform [START_REF] Showman | Principles of Modern Radar: Synthetic Aperture Radar[END_REF]. The shift generated by a stationary target by a sonar or radar moving at velocity v is10 : .21) and the total bandwidth B d experienced by a scatterer within the beam of the sonar of width θ 3dB is:

f d = 2v λ , ( 2 
B d ≈ 2v λ θ 3dB . (2.22)
Replacing the value of θ 3dB with Equation (2.10) gives the standard equation for the Doppler bandwidth: .23) One can see that the azimuth extent at range r is α x = rθ 3dB , so replacing in Equation (2.22) gives:

B d ≈ 2v D . ( 2 
B d ≈ 2v λ α x r .
(2.24)

The dwell time t dwell is the total time that the scatterer is illuminated by the sonar, and since L SAS = vT d , Equation (2.22) can be rearranged such that: .25) and replacing the value of L SAS from Equation (2.16) gives: .26) To obtain better along-track resolution, narrow Doppler bandwidths are required.

α x = rλ 2L SAS . ( 2 
α x = D/2. ( 2 
Using Equation (2.25) and t dwell = L SAS /v = rθ 3dB /v gives: .27) This defines an along-track bandwidth: (2.28) to be consistent with the definition of resolution in the range direction from Equation (2.3). This result suggests that fine along-track resolution requires large integration angles and/or higher frequencies, however since these quantities are linked through the size of the physical antenna D, as per Equation (2.10), the result from Equation (2.20) is obtained.

α x = c 2f c θ 3dB . ( 2 
B x ≈ f c θ 3dB ,
It is more common to express the along and across-track bandwidths in the wavenumber domain, where [Soumkeh, 1999, pp. 388-397]:

B kx = 4π D , ( 2.29) 
and .30) where λ max and λ min are the wavenumbers of the maximum and minimum frequencies in the transmit pulse.

B ky = 2(k max -k min ), ( 2 
The total wavenumber bandwidths are related to the image resolution in x and y by: 

B kx = 2π/α x rad

Sampled signals in range

The coherent processing required for SAS beamforming requires that phase information be preserved while the signal is sampled. Physical quantities such as pressure or voltage are real values, however in most data acquisition systems these are converted to complex values using quadrature demodulation to record amplitude and phase information. The received SAS signal contains the carrier frequency component f c and is often removed which allows the signal to be sampled at the range bandwidth such that f s > B r (recall Eq. (2.9)) where f s is the signal sampling rate which satisfies the Nyquist condition. Since many high-frequency imaging sonars are narrowband in nature, meaning that B r f c , resulting in significantly reduced storage and sampling requirements. Signals where the carrier frequency has been removed are called baseband signals.

I/Q sampling

Removal of the carrier frequency occurs during the data acquisition phase [Cumming and Wong, 2005, pp. 160-161]. Consider a signal which is defined as: (2.33) which contains the carrier frequency f c and a phase modulation φ(t) with a bandwidth of B r . Quadrature sampling uses two channels, one which multiplies s(t) by cos(2πf c t) and a second that multiplies bysin(2πf c t), resulting in two channels s I and s Q with components at twice the carrier frequency which can be lowpass filtered resulting in s I (t) = 0.5 cos(φ(t)) (the in-phase part) and s Q (t) = 0.5 sin(φ(t))

s(t) = cos {2πf c + φ(t)} ,
(the quadrature part). These two channels are called the quadrature components of s and the complex signal: .34) which has f c removed and can be sampled at f s = LB r , where L > 1 is some oversampling factor.

s IQ (t) = s I (t) + js Q (t) = 0.5 exp(jφ(t)), ( 2 

Sampled signals in azimuth

The Nyquist condition must also be satisfied in the azimuth dimension, where the spatial sampling frequency of the synthetic array must be at least twice the maximum spatial frequency of the physical array. Just as in the range dimension, undersampling results in aliasing which in the azimuth dimension manifests as grating lobes. In the azimuth direction, it is the Doppler bandwidth that must be adequately sampled, this time by the ping rate, i.e. from Equation (2.23):

f ping > B d = 2v/D (2.35)
meaning the spatial sampling ∆ ping = vt pri , where t pri = 1/f ping is the pulse repetition interval, must be such that: .36) This along-track sampling criterion has been obtained using the 3 dB beamwidth,

∆ ping < D/2. ( 2 
whereas it has been suggested [Hawkins, 1996, pp. 74-75] that the null-to-null beamwidth (roughly twice the size of the 3 dB beamwidth) is a better constraint to use, resulting in:

∆ ping < D/4.
(2.37)

Range constraints

The maximum unambiguous range that can be therefore obtained by sonar with a ping rate of f ping is: .38) and transmitting a pulse will cause spurious echoes from targets beyond this range to appear in the subsequent pings. However f ping is severely constrained by the along-track sampling requirements from Equation (2.37) so that, for instance, a SAS array with an antenna of 4 cm in length must have a vt pri = 0.01, therefore a maximum speed of 1 m/s which results in a very modest maximum range of 7.5 m and a corresponding low rate of coverage.

r max = c 2f ping , ( 2 
To circumvent this problem, [Cutrona, 1975] (see also [Gilmour, 1978] and [Lee, 1979]) proposed the use of N d multiple receive elements (i.e. a Vernier array)

combined with a single transmitter, a now common design for most SAS systems.

The sampling constraint then becomes: (2.39) and reasonable coverage rates can be obtained. The length of the physical array -valued signals s(p, d, t) for each ping p and element d sampled at a frequency of f s which are stored and used for processing.

∆ ping < N d × D/4,
is now L = N d × D, with N d complex

Motion compensation and micronavigation

Synthetic aperture processing requires that the synthetic array be coherently sampled [START_REF] Oliver | Understanding Synthetic Aperture Radar Images[END_REF] which is achieved in SAS through the forward motion of the platform following a nominally straight line path. For narrow band systems, an uncompensated deviation from the linear path at ping p of ε p results in a residual phase error of:

exp {+j2k 0 ε p /c} (2.40)
where k 0 = 2π/λ 0 is the acoustic wavenumber at the central frequency of the transmit pulse. In order to produce focused SAS images, this residual phase error after Hayes and Gough [START_REF] Hayes | Synthetic aperture sonar: A review of current status[END_REF] classify motion compensation algorithms into three categories: Coarse motion compensation, corrections obtained from the auxiliary navigation system on the platform; Fine micronavigation obtained from the echo data itself to determine differential motion; and Autofocus algorithms that iteratively apply phase shifts to the complex image that maximize some statistic (entropy, sharpness or contrast) or until residual motion estimates exceed some threshold. While autofocus can improve the image quality to some degree, the images used in this thesis were obtained through fine motion compensation only, with corrections obtained using the DPCA micronavigation technique.

D/ D R(p) R(p+1) T(p) T(p+1) PCA(p) η(p) ζ(p)

DPCA micronavigation

For most high-frequency SAS systems, coarse motion compensation using inertial sensors is not precise enough to produce sharp, focused imagery and therefore nearly all practical SAS implementations employ the Displaced Phase Centre Approximation (DPCA) or Redundant Phase Centre (RPC) micronavigation method [Raven, 1981] [Pinto, 2002[START_REF] Hansen | Introduction to Synthetic Aperture Sonar[END_REF]. In a SAS system composed of multiple [START_REF] Bellettini | Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna[END_REF],

creating a virtual phase center of size D/2, placed halfway between each receiver and transmitter and creating an array of length L/2 as shown in Figure 2.3. The RPC approximation holds for a scatterer at range r so long as r d 2 gap /4λ 0 . As long as the array does not move greater than a distance of L/2 between pings, then there will be at least two overlapping phase centers that can be used for motion estimation. Figure 2.3 shows three overlapping phase centers in the PCA array shaded in gray. Overlapping phase centers form the basis of the DPCA micronavigation method: time-delay estimates obtained using the cross-correlations of successive overlapping pings are used to estimate the motion that has occurred between pings and used to compute navigation corrections that are required to correct for nonlinearities in the synthetic array. Let f DPCA (p, p + 1) = [n d , τ ] be a function that returns the along-track lag n d in number of elements in the PCA that provide the maximum cross-correlation γ between pings p and p+1 as well as an estimate of the time delay τ between them. Referring to Figure 2.4 for the six degrees of freedom in UUV motion, the ping-to-ping surge (longitudinal to the direction of travel of the platform, along the x-axis) is computed as: (2.41) and the ping-to-ping sway (transverse to the motion of the platform, along the y axis) is:

η(p) = n d × D/2,
ζ(p) = τ × c. (2.42)
The ping-to-ping yaw ψ(p) [START_REF] Heremans | Motion compensation on synthetic aperture sonar images[END_REF] can also be estimated using the DPCA method, however its precision is limited by the number of overlapping phase centers, and in most cases if a high-grade INS is present then the INS yaw estimate is used. In some cases, the heave (p) can be computed by using both port and starboard side estimates to remove the ambiguities, although correcting for the effect of heave is only required at ranges near to the sonar nadir. The roll ϑ(p) and pitch φ(p) can not be estimated using this method, and systems rely on external motion sensors for these values. All available information, whether obtained through micronavigation or an inertial sensor, is used to compute the estimated sensor position u(p) at ping p. 11

In order to obtain sub-element (in the case of surge) and sub-sample (in the case of sway) values on η and ζ, the coherence values obtained from using elements d -1 and d + 1 (in the case of surge) [Denbigh, 1984] are interpolated. One common approach is to perform a three-point parabolic fit using the least-squares method, so in the case of surge: 2.43) where |γ|(n) is the magnitude coherence obtained for an estimated surge of n elements. Solving for the polynomial coefficients a, the estimated sub-resolution surge can then be computed with: .44) An excellent review of SAS motion estimation and compensation techniques can be found in [Cook, 2007].

    1 n d -1 (n d -1) 2 1 n d n 2 d 1 n d + 1 (n d + 1) 2         a 0 a 1 a 2     =     |γ|(n d -1) |γ|(n d ) |γ|(n d + 1)     ( 
η(p) = -a 1 /(2a 2 ). ( 2 
SAS image quality is especially sensitive to errors along the acoustic axis, which 11 The position obtained in this way is actually an estimate and should be denoted as such, e.g. û(p). This is omitted in this thesis for clarity of notation.

is the main component of the sway motion ζ, and the DPCA micronavigation method summarizes all the combined sources of errors as a single timing error.

Residual timing errors caused by uncompensated sway, yaw or sound speed are the principle cause of blurring in SAS images [START_REF] Cook | Analysis of phase error effects on stripmap SAS[END_REF]. These timing errors contain not only the platform motion but also errors in the sound propagation path as well as bathymetry. When processing repeat-pass data, these errors can propagate into the image and turn into distortions that must be accounted for and corrected during the co-registration process, as shall be discussed in Section 4.6.2.

For this reason, DPCA could be classified as a type of autofocus method and not a true navigation solution, an albeit powerful one which results in focused SAS images the vast majority of the time. The DPCA estimates can also be used to improve the navigation solution of UUVs [START_REF] Connors | Increasing navigation effectiveness in GPS denied environments using through-the-sensor SAS techniques[END_REF].

SAS image reconstruction

SAS image reconstruction is achieved by coherently summing individual pings along the length of the synthetic aperture, and many methods used by the SAR community [Curlander andMcDonough, 1991][Soumkeh, 1999] which compensate for significant range migration can be applied directly to motion-compensated SAS data.

The SAS systems considered here have significant range migration and approximations to the point spread response cannot be made. As a result, some of the early SAR algorithms, such as the Doppler Beam Sharpening method, cannot be applied. A popular method used in SAS, due to the improvements in computational resources in recent times, is the backprojection approach which is described next.

Backprojection

Backprojection is a time-domain reconstruction method that consists of coherently summing the SAS returns at each pixel location defined by the focal points of the reconstructed image. The concept is to beamform the raw acoustic data s to create a focused SAS image I at a grid of focal points g(i, j) = (g x , g y , g z ), i = 1, . . . , N x j = 1, . . . , N y to create a 2.5 dimensional image I = Ω(u, g, s) in ground range coordinates with N x pixels of with a resolution of α x i meters in the alongtrack and N y pixels of resolution α y i meters in the across-track. Note that the image resolutions α x i and α y i are not necessarily the same as the theoretical system resolution α x and α y , although these quantities are often very similar and therefore no distinction will be made unless required. It is possible to create images in the slant range plane, where the focal points are g(i, j) = (g x , g r ), where g r = g 2 y + g 2 z or equivalently in the time domain, where g(i, j) = (g x , g t ) where g t = 2g r /c with a resolution of α t seconds in the across-track.

Given an image focal point g(i, j) with a location in ground range coordinates (g x , g y , g z ), the backprojection method computes for each SAS signal s (p, d, t) received at location u(d, p) = (u x , u y , u z ) for ping p the total reflectivity. For discrete signals, this is defined as:

I(i, j) = Np p=1 N d d=1 Nt t=1 s(p, d, t -∆t), (2.45) 
where .46) is the time delay to the focal point and

∆ t = (u x -g x ) 2 + r 2 2 , ( 2 
r = u 2 y + (g z -u z ) 2 , ( 2.47) 
is the slant range. In this case s(p, d, t) must be interpolated to recover the signal at s(p, d, t -∆t) for ∆t = 0. For example, the interpolation method applied during the beamforming step of in processing the AquaPix data in Section 4.6 in this thesis is the polyphase filter from [Crochiere and Rabiner, 1993, pp. 157-168], which implements a filter h(m) that interpolates s(p, d, t) by a factor of 1024 with a minimum mean-square error.12 Two-dimensional interpolators are discussed in Section 4.5.1 within the context of image warping for co-registration. A good discussion on interpolating complex signals can be found in [Hawkins, 1996, pp. 48-51].

Backprojection provides an exact solution to the image reconstruction and is able to handle arbitrary array shapes; however, it is computationally expensive as it requires summation over all pixel locations and array positions in Equation (2.45). Faster versions have been proposed, such as the Fast Factorized Backprojection (FFBP) method [Banks, 2002] which decomposes the problem into approximate ones of lower resolution in order to gain some computational efficiency.

Other popular SAS image reconstruction algorithms operate in the frequency domain, such as the wavenumber algorithm (or ωk method), originally conceived from seismic imaging [Stolt, 1978], which interpolates the data in the wavenumber domain to correct for the full point spread response (or range migration) of a scatterer -the Stolt mapping or approximation -and then performs an inverse Fourier transform to obtain the reconstructed image. Another technique is to implement a frequency domain equivalent of backprojection called an along-track matched filter along the expected hyperbolic point spread response of a scatterer. Often the use of Graphical Processing Unit (GPU) cards can accelerate the computation time. A high-level overview of many common image reconstruction methods can be found in [Hunter, 2006, pp. 9-12].

Multilook processing

Multilook processing [START_REF] Curlander | Synthetic Aperture Radar Systems and Signal Processing[END_REF], [START_REF] Jakowatz | Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[END_REF] is a method commonly applied in SAR for despeckling of complex images which is achieved by segmenting the wavenumber spectrum into several subbands (each called a "look") to create N lower resolution images and summing them incoherently to create an image which suffers less from speckle noise (see Section 3.2.1

for more details about SAS image speckle statistics). Each look is obtained by filtering the two dimensional discrete Fourier transform of the complex SAS image I such that: 1) , (2.48) where k x and k y are the along-track and across-track wavenumbers. The relationships: bandwidths B kx and B ky into the desired sub-bands, however the energy in SAS images is not equally distributed over this bandwidth, as can be seen in Figure 2.5; a better method is to divide the SAS integration angle θ SAS into β x equal, non-overlapping sectors instead of B kx , thus ensuring that the wavenumbers are correctly filtered. To obtain an image with angular support from θ 1 to θ 2 it is necessary to create a mask M(θ 1 , θ 2 ) which is non-zero only in the zone defined by the wavenumbers using the relations defined in Equation (2.49) and (2.50). This thesis makes use of filtering in the along-track dimension only but it is relatively trivial to modify the mask M to filter in the across-track dimension as well. The spectrum of the look image is then: .51) and using inverse Fourier transform one obtains the filtered image:

F (k x , k y ) = F{I} = Nx-1 m=0 Ny-1 n=0 I(m, n)e -jkx(m-1) e -jky(n-
k x =
F (k x , k y ) = F (k x , k y ) × M(θ 1 , θ 2 ). ( 2 
I (x, y) = F -1 {F }.
(2.52)

Figure 2.5 shows the spectrum divided into four equal, non-overlapping bands in the along-track dimension of equal angular support spanning the entire SAS integration angle θ SAS . A simple way to create a despeckled image I despeck (x, y) is to perform an incoherent sum of the individual looks:

I despeck = N =1 |I |.
(2.53)

One may also choose to process each look individually since each image contains only the signals associated with the filtered wavenumbers, creating "squinted" images of objects which may provide additional information about shape and structure.

This is a process applied in systems such as the Thales T-SAS for improving the performance of target detection methods and is particularly useful in systems with large values of θ SAS .

Interferometric processing of SAS data

The principle of interferometric SAS (InSAS) is to exploit the phase information between two or more complex SAS images acquired at different positions or times in order to precisely measure parameters of the underlying scene. Interferometric processing of SAS images is the underlying way that coherent change detection (Chapter 3) is accomplished. The phase of the signal contains information up to a small fraction of the acoustic wavelength λ and is a very accurate measurement of the time delay and corresponding changes in range to a scatterer that can be used to detect small differences between two signals. The concept of an interferometer goes back to Michelson (1886) and is based on the superposition principle where interacting waves at the same or nearly the same frequency will create an interference pattern [Elmore and Heald, 1969, pp. 65-70]. InSAS is a type of multiplicative interferometry where the complex cross-correlation of the two signals is used to measure the interferometric phase cycle.

Interferogram formation

The interferogram I 12 between two complex SAS images I 1 and I 2 is obtained by a pixel-wise complex multiplication of the two images:

I 12 = I 1 I * 2 , (2.54) = |I 1 | exp(jφ 1 ) |I 2 | exp(jφ 1 ), (2.55) = |I 1 ||I 2 | exp(j(φ 1 -φ 2 )), (2.56) = |I 1 ||I 2 | exp(jφ), (2.57)
where φ is the interferometric phase. In order to correctly compute I 12 , the two images are required to be precisely co-registered. When I 1 and I 2 are obtained during an acquisition from two separate receiver arrays on the same platform at the same time, I 12 is called the single-pass interferogram. When it is produced using acquisitions from two separate runs at different times then it is called the repeatpass interferogram. The co-registration of I 1 and I 2 is significantly easier for the single-pass case, as there is no relative motion between the receive arrays and array offsets are usually known. The repeat-pass case is considerably more challenging and requires sophisticated algorithms to achieve the co-registration precision required to maintain the phase coherence between the images. This is discussed in greater detail along with with proposed solutions, in Chapter 4. Figure 2.6(a) shows a SAS image of shipwreck acquired with a 330 kHz SAS system which was equipped with two vertically displaced receiver arrays on the same platform (the second image is not shown) and the interferometric phase φ is shown in Figure 2.6(c). The coherence (see Section 2.4.3 below) and the unwrapped phase are also shown.

Phase unwrapping

An important aspect of the interferogram is that the observed phase φ is an estimate of the unknown true phase φ 0 which lies between [-π, π] and has been wrapped modulo 2π, i.e.: (2.58) where n is an integer number of 2π phase wraps. A 2π phase cycle caused by the pattern of constructive and destructive interference of the two signals is called an interferometric fringe and the fringe frequency f φ is related to the local bathymetry as well as the separation between the two receivers (see Section 3.3.1). Figure 2.6(c) shows a typical fringe pattern obtained from a single-pass InSAS run. Two- Figure 2.7: The principle of interferometry: In (a), the point P cannot be distinguished from point P using a single antenna as they are equidistant at range r 1 . By using a second antenna as shown in (b), the angle of arrival can be determined and the ambiguity can be resolved. In the single-pass interferometry case, the second antenna is on the same platform and data is obtained simultaneously with the first one; in the repeat-pass case, data from the second antenna is obtained by running the platform (or a different platform) over the area a second time.

φ 0 = 2πn + φ,
dimensional phase unwrapping consists in finding a value of n for each pixel in I, a complex problem which is an active area of research with many proposed solutions [START_REF] Ghiglia | Two-Dimensional Phase Unwrapping: Theory[END_REF]] that go well beyond the scope of this thesis. A qualityguided approach based on the gradient of the phase variance was implemented to support the results in this thesis, whose description along with an analysis of performance is given in Appendix A. Figures 2.6(c) and 2.6(d) shown an example of the phase of the interferogram before and after it has been unwrapped.

Applications

Bathymetry

The most common application of interferometry is to use the phase difference between the echoes received from a scatterer on the seafloor measured by two vertically displaced receivers in order to determine angle of arrival and infer its elevation [START_REF] Saebø | Seafloor depth estimation by means of interferometric Synthetic Aperture Sonar[END_REF]. It is analogous to a pair of human eyes separated by a short distance giving a person depth perception. The precise bathymetry can be used to map very small deformations of the seabed [Hansen et al., 2014a] for instance, in oil and gas applications [START_REF] Paulis | SAS multipass interferometry for monitoring seabed deformation using a high-frequency imaging sonar[END_REF]. Figure 2.7 shows a vertical cross-section of a classic interferometer configuration for measuring the height of a scatterer using two separate acquisition points, the first obtaining a range r 1 to the point on the seabed P with a height z 1 , which occurs at the same range as point P on the reference surface at z = 0, and thus these two points cannot be resolved [Hanssen, 2010, pp. 34-26]. By adding a second pass, this time separated by a baseline of length B ⊥ , the change in the angle of arrival θ can be computed from the interferometric phase difference φ, which for a path length difference r ∆ = r 1 -r 2 is equal to [START_REF] Bamler | Synthetic aperture radar interferometry[END_REF]]:

φ = 4π λ r ∆ . (2.59)
By assuming B ⊥ r, the elevation angle at pass 1 [START_REF] Dillon | Baseline estimation for repeat-pass interferometric synthetic aperture sonar[END_REF] is computed as: .60) where α tilt here is the tilt of the baseline with respect to vertical, and combining Equations (2.59) and (2.60) gives the relative depth of point P as: .62) This process can be repeated for every point on the seafloor, resulting in a map of the relative bathymetry of the seafloor. Since the phase φ is noisy some averaging is usually applied, which reduces the resolution of the bathymetric map in favour of a more accurate measure of the height. The standard deviation of the interferometric phase estimate σ φ is (derived from [START_REF] Bellettini | Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna[END_REF]): (2.63) where (assuming square pixels) β = (α x /δ xb ) 2 is the number of spatially averaged pixels used to compute the bathymetry to obtain a spatial bathymetric resolution of δ xb , and ρ is the signal-to-noise ratio. If the phase estimate from Equation (2.59) is on the order of σ φ then it will be undetectable and will result in poor estimates of z. Since r ∆ is the main component in φ, increasing the baseline B ⊥ will improve the phase estimate. In a single-pass scenario, there is a physical limit on how large one can make B ⊥ with typical distances on the order of tens of centimeters for UUV-based systems. In a repeat-pass configuration, any baseline may be achieved to within the accuracy of the navigation system and very precise bathymetric maps can potentially be obtained. Care must be taken when choosing B ⊥ , as increasing it will linearly decrease ρ (called baseline decorrelation, see Section 3.3.1) until σ φ becomes very large.

θ = α tilt + arcsin r ∆ B ⊥ . ( 2 
z 1 = r 1 sin α tilt + arcsin φλ 4πB ⊥ , (2.61) ≈ r 1 φ 4π λ B ⊥ cos α tilt . ( 2 
σ φ = 1 √ β 1 ρ + 1 2ρ 2 ,
The generation of bathymetric maps at the resolution of SAS images is problematic since in order for the SAS to be focused, the beamforming process Ω requires advance knowledge of the z-location of the image focal points g = (g x , g y , g z ) in ground range coordinates, creating a situation where multiple instances of the beamforming process must be run in order to progressively refine the depth estimates. One solution is to first use the bathymetry obtained using the lower resolution sidescan mode of the SAS to determine rough bathymetric features that can be used during the beamforming process, after which the estimate can be refined at the resolution of the SAS. Another is to assume a flat seafloor, or one whose approximate slope can be determined using the raw signal returns, and to beamform the image onto this model. Estimating depths using data obtained from repeated-passes is even more complicated as in this case the baseline B ⊥ is not known as precisely as in the single-pass case, and therefore the degree of precision of the depth estimation using Equation 2.61 may be incorrect. Baseline estimation for repeat-pass SAS interferometry remains challenging and although the track registration process proposed for co-registration in Section 4.6.1 does determine the relative displacement between two sonar passes, it is only precise in the case where the bathymetry is known. Uncertainties in sound speed calculation as well as the depth can exacerbate this problem, making accurate repeat-pass SAS interferometric depth estimation a very challenging problem.

Coherence estimation for image classification

The main topic of interest in this thesis is joint processing of two or more SAS images of the same scene in order to classify the pixels in the images as having changed or not. The zero-lag complex correlation coefficient (see Section 3.2.2), or the coherence between the images is one quantity which can be used to infer something about the properties of a scene. The coherence [START_REF] Born | Principles of Optics[END_REF] between two signals s 1 and s 2 is the complex correlation coefficient which is defined as [Papoulis, 1991]:

γ = |γ| exp(-jφ) = E[s 1 s * 2 ] E [|s 1 | 2 ] E [|s 2 | 2 ] = cov(s 1 , s 2 ) σ s 1 σ s 2 , (2.64)
where E[ ] is the mathematical expectation, cov( ) is the covariance and s * is the complex conjugate of s. One immediately notices that γ is a complex version of Pearson's correlation coefficient for zero-mean circular random variables. Although γ is a complex quantity, the modulus |γ| has the property 0 ≤ |γ| ≤ 1. If two waves are perfectly coherent then |γ| = 1 and if they are completely independent |γ| = 0 , [Hanssen, 2010, pp. 96-97]. Other values mean that the waves are partially coherent and |γ| defines their degree of coherence. The two coherent signals s 1 and s 2 can be defined as the sum of a signal part s with additive noise, such that

s 1 = σ 1 s + n 1 n 1 (2.65
)

s 2 = σ 2 s + n 2 n 2 (2.66) (2.67)
where σ i and n i are scalars and n i is a noise realization. The corresponding signalto-noise ratios are

ρ 1 = σ 2 1 n 2 1
(2.68)

ρ 2 = σ 2 2 n 2 2
(2.69) If the signal s and noise components n i are uncorrelated and assuming σ = σ 1 = σ 2 and n = n 1 = n 2 then one may rewrite Equation (2.64) as:

|γ| = σ 1 σ 2 σ 2 1 + n 2 1 σ 2 2 + n 2 2 = σ 2 σ 2 + n 2 = ρ 1 + ρ .
(2.70) Equation ( 2.70) is an important result that relates coherence to the signal-to-noise ratio. In a single-pass interferometry configuration, one of the applications of coherence is to estimate the performance of the sonar [START_REF] Synnes | Assessment of shallow water performance using interferometric sonar coherence[END_REF]. This is an effective predictor of the sonar performance, especially when combined with other metrics [START_REF] Geilhufe | Assessment of mine hunting performance evaluation parameters across multiple side-looking sonar systems and frequencies[END_REF]. Is it common for multipath (multiple acoustic arrivals) to be the cause of low SNR, especially in shallow water.

Using ensemble averages to compute γ at each pixel of a SAS image is not feasible, therefore what is done in practice is to assume ergodicity and replace the expectation in Equation (2.64) with a spatial average over an area of surrounding pixels [START_REF] Touzi | Coherence estimation for SAR imagery[END_REF]. The windowed sample coherence of two images I 1 and .71) where

I 2 is defined as: γ = k i k j I 1 I * 2 k i k j |I 1 | 2 k i k j |I 2 | 2 , ( 2 
k i = (i -N k ) . . . (i + N k ) and k j = (j -N k ) . . . (j + N k ) is a 2N k × 2N k
window centered around pixel (i, j). The indices into I 1 and I 2 have been omitted

for brevity. The coherence can be used to infer something about the scene. It can be used as a latent variable through which one can infer some properties of the seafloor, such as the rate of seabed dispersion [START_REF] Lyons | The impact of the temporal variability of seafloor roughness on synthetic aperture sonar repeat pass interferometry[END_REF]. A drop in coherence may indicate that something has changed in the scene, possibly at the sub-pixel level. Using γ in some way to detect such changes is called coherent change detection (CCD) and is the main topic of this thesis. It is discussed in greater detail in Chapter 3. An excellent discussion of repeat-pass coherence and coherent change detection with SAS can also be found in [Bonnett, 2017].

Ground wavenumber shift

An important effect to consider when processing two SAS images interferometrically which will affect the resulting scene coherence is the shift in the ground wavenumber spectrum which occurs during the data acquisition process, as shown in Figure 2.8.

This spectral shift is caused by differences in the seafloor (or target) reflectivity spectrum and the spectrum of the sonar data. While the seafloor has a spectrum which is independent of the sensing method, the spectrum of the sonar data is determined by the system characteristics, as described in the previous sections.

The ground to slant range mapping of the spectrum causes a wavenumber shift equal to (assuming a perfectly flat seafloor) [START_REF] Gatelli | The wavenumber shift in SAR interferometry[END_REF]:

k y = 4πf c sin(θ inc ). (2.72)
It is important to note that changing the incidence angle θ inc does not shift the bandwidth B r , but rather that the backscattered signal contains different spectral components of the ground reflectivity spectrum. Spectral components of the seafloor remain present but are shifted to other parts of the spectrum according to Equation appearance of interferometric fringes. When interferometrically processing two SAS images of the same area which have been obtained from different incident angles, the non-overlapping parts of the spectra act essentially as noise in Equation (2.65). It is usually recommended to filter the spectra of the two images in order to eliminate these non-overlapping parts, thus reducing the noise and increasing the repeat-pass coherence at a cost of reduced resolution in range. This step was not done in this thesis, as this effect did not appear to have a significant effect on the repeat-pass SAS coherence, which is dominated by co-registration and temporal coherence. The wavenumber shift can be used to compute the critical baseline (Section 3.3.1) which determines the total amount of difference in incident angle which can be tolerated before a complete decorrelation of the scene occurs.

Medium fluctuations

Another application of interferometric processing, one that is common in the SAR domain, is to detect fluctuations in the propagation medium, for instance performing atmospheric monitoring for meteorological information from satellite observations. Since the phase information in the complex SAR images contain information about the length of the path between the surface and the antenna, it is possible to attribute this to either height differences, surface deformations, or signal delay variability over the same area. This is equally applicable in the case of SAS. For SAR, this is mainly attributed to the spatial variation of water vapour [Hanssen, 2010, p. 199], which is useful for meteorological applications. This is not a commonly applied technique in SAS, as the uncertainties in bathymetry, navigation and sound speed, make it difficult to separate the main cause of the time delay differences.

However, in Section 4.6.1 differences in the propagation speed of sound in the water column, which may indicate changes in temperature or salinity, are estimated through the process of co-registration. While not on the same level of sophistication as SAR atmospheric monitoring programs, nor has it received the same amount of validation, it nevertheless indicates that interferometric processing of SAS images offers the possibility of monitoring the propagation medium for changes.

Summary

This chapter has presented the necessary foundational concepts of sonar, signal processing, motion compensation and synthetic aperture beamforming required to develop the ideas and concepts used in the rest of this thesis. The notion of interferometrically processing sets of SAS imagery collected over the same area at different times is essential, particularly the very precise measurement of the path length differences between two images that one obtains by exploiting the information contained in the phase of an interferometric pair of SAS images. It allows one to gain knowledge about the scene that is not captured in the signal envelope and to detect subtle scene differences that may not be visible in the intensity images. The next chapter will examine change detection in greater detail, including sources of coherence loss, and develop statistical models of the various parameters for co-registered SAS images.

Chapter 3 The detection of changes in sets of serial images acquired at different times is a widely-used approach that has been applied across many disciplines which require the surveillance and monitoring of a scene [START_REF] Radke | Image change detection algorithms: a systematic survey[END_REF], [Singh, 1988].

Change detection Contents

Change detection was initially carried out by human operators who painstakingly analyzed aerial photographs obtained from aircraft [Théau, 2008] [Adeniyi, 1980],

however with the arrival of digital image products with high spatial resolution, focus shifted in the early 1990s to the development of computer algorithms meant to improve and eventually automate much of the change detection process, reducing operator workload and improving the quality of the analysis. In the case of satellite-based surveillance systems with increasingly high revisit frequencies, automation can be necessary in order to process the large quantity of imagery being produced in a timely manner. Change detection has been successfully applied in many fields: diagnostic imaging, for instance where multiple MRI scans are analyzed in order to monitor the progress of a disease [START_REF] Bosc | Automatic change detection in multimodal serial MRI: application to multiple sclerosis lesion evolution[END_REF], [START_REF] Nika | Change detection of medical images using dictionary learning techniques and principal component analysis[END_REF]; real-time video surveillance, such as detecting people on a subway platform [START_REF] Huwer | Adaptive change detection for real-time surveillance applications[END_REF]; driver assistance tools [START_REF] Fang | Automatic change detection of driving environments in a vision-based driver assistance system[END_REF]; mobile robotics [START_REF] Sofman | Anytime online novelty and change detection for mobile robots[END_REF]; and underwater video [START_REF] Lebart | Real-time automatic sea-floor change detection from video[END_REF]. However, the field that has probably seen the most successful use of change detection techniques is the broad area of remote sensing. Optical [START_REF] Pacifici | An innovative neural-net method to detect temporal changes in highresolution optical satellite imagery[END_REF], multispectral [Mas, 1999] and hyperspectral [START_REF] Liu | Hierarchical unsupervised change detection in multitemporal hyperspectral images[END_REF] imagery has been used to monitor land cover and usage [START_REF] Hussain | Change detection from remotely sensed images: From pixel-based to object-based approaches[END_REF], as well as LIDAR for the surveillance of urban areas [START_REF] Vu | Lidar-based change detection of buildings in dense urban areas[END_REF], [START_REF] Chen | Detection of building changes from aerial images and light detection and ranging (LIDAR) data[END_REF] for regulatory purposes or earthquake monitoring [START_REF] Dell | Remote sensing and earthquake damage assessment: Experiences limits and perspectives[END_REF]. Fusion of data from different electro-optic sensors for change detection has also been considered [START_REF] Joshi | A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring[END_REF].

Change detection techniques applied to space-based synthetic aperture radar sensors [START_REF] Preiss | Coherent change detection: theoretical description and experimental results[END_REF], [Oliver and Quegan, 2004, p. 385-388] are of particular relevance to the topic of SAS change detection due to the obvious similarities between these sensing modalities. SAR change detection, both coherent and non-coherent, has been in use for several decades and the application of interferometric processing of SAR images has seen considerable success in much of the same areas where other electro-optic sensors are employed. Indeed, since SAR images can be obtained independently of atmospheric and sunlight conditions, they have been particularly useful at monitoring geophysical events [Hanssen, 2010, pp. 20-21] such as volcanic activity, earthquakes and ice motion [START_REF] Massonnet | The displacement field of the landers earthquake mapped by radar interferometry[END_REF].

The ever-increasing number of earth-observing satellite-based radar systems has led to the development of many automated or semi-automated SAR change detection approaches. What is considered the earliest non-military system was the radar antenna on-board of the Seasat satellite which was used for the most part to monitor the ocean. It was launched in 1978 with papers on change detection being published a few years later [START_REF] Bryan | Potentials for change detection using SEASAT synthetic aperture radar data[END_REF]. The program which is generally credited for having had the most significant impact on the field of interferometric SAR processing, and the related field of coherent change detection, was the European Space Agency's (ESA) European Remote Sensing Satellite (ERS-1)

whose main purpose was to monitor the polar regions. Its positioning accuracy was such that major advances in interferometric SAR were able to be made. The subsequent launch of the ERS-2 satellite, which followed the orbit of the ERS-1

in "tandem" mode with a 30 minute delay (corresponding to a one day interval between visits), led to important developments in SAR interferometry, with the shorter time frame resulting in a reduction in temporal decorrelation and coherent change detection research saw increased interest. There are now many commercial or government satellites in orbit that continue to provide data suitable for coherent change detection: the Canadian Space Agency's (CSA) RADARSAT-2 SAR [START_REF] Li | New approaches to urban area change detection using multitemporal RADARSAT-2 polarimetric synthetic aperture radar (SAR) data[END_REF], [START_REF] Gao | Change detection in SAR images based on deep semi-NMF and SVD networks[END_REF] 1 ; the Italian Space Agency's COSMO-SkyMed [START_REF] Mishra | Coherent change detection with COSMO SkyMed data-experimental results[END_REF]; the EADS-DRL TerraSAR-X [Johnsen, 2011] with its twin satellite Tandem X; and the ESA's ENVISAT [START_REF] Arciniegas | Coherence-and amplitude-based analysis of seismogenic damage in Bam, Iran, using ENVISAT ASAR data[END_REF]. Shuttle and aircraft based SAR systems have also been used for topographic mapping [START_REF] Farr | The shuttle radar topography mission[END_REF] as well as change detection [White, 1991] however this has been less prevalent.

Change detection for sonar

The development of automated change detection methods for high-frequency imaging sonars, including both the sidescan and synthetic aperture sonars described in Section 2, has been driven for the most part by military route survey requirements [START_REF] Lingsch | Sonar image change detection as a mine counter measures tactical tool[END_REF]. Since it is possible for a nation to collect and maintain a database of historical imagery and contacts in areas under its political authority, change detection offers an attractive approach for detecting threats once an area has been sanitized and deemed void of potential targets. Often, ports and harbours are highly cluttered environments with both man-made and natural objects of similar sizes and shape to targets of interest. Change detection allows one to detect objects in instances where other image analysis methods, using human operators or Automatic Target Recognition (ATR) algorithms (see for instance [START_REF] Dobeck | Automated detection/classification of sea mines in sonar imagery[END_REF], [Williams, 2015], [Myers and Fawcett, 2010], [START_REF] Reed | Automated approach to classification of mine-like objects in sidescan sonar using highlight and shadow information[END_REF]] and many others), would result in unsatisfactory detection and/or false alarm performance. In cases where the size and shape of a target are not known a priori, change detection often becomes the only viable option to detect targets. Early approaches to change detection followed largely the same path as SAR, where human operators were relied upon to sequentially examine sonar data in order to detect any changes between the acquisition times. Some automated tools were developed such as the "blink" comparison method from [Poeckert, 1991] meant to help operators identify changes by quickly alternating between two images on a computer screen to assist operators in detecting new targets. However the arrival of digitized sonar images and increased computing power made semi-automated change detection as well as completely automated algorithms possible.

This section examines previous work on change detection for both the sidescan and synthetic aperture sonar. Approaches can be separated into two broad categories: contact-based and image-based, with the latter divided into two further sub-categories, coherent and non-coherent. Figure 3.1 gives an overview of the automated change detection process.

Contact-based approaches

Contact-based methods attempt to associate historical contacts to ones detected by human operators or Automatic Target Recognition (ATR) algorithms in the newly acquired data, based on their absolute position as well as their position relative to other contacts, allowing one to determine the presence of newly inserted or removed objects in the scene. The performance of the change detection system in total is comprised of the performance of the target detection method as well as the performance of the data association step. For instance, assuming independence between passes, an ATR with a probability of detection of 0.9 for a given target has a probability of only 0.81 of detecting it on both passes. Of course, independence cannot be assumed since sonar images gathered in roughly the same conditions and position are highly correlated. Automated contact-based change detection algorithms were the first to be developed for use with the range-dependent resolution of real aperture sidescan sonar images, and research focused on creating robust data association methods such as the one proposed in [START_REF] Skea | A control point matching algorithm[END_REF].

With the development of higher resolution and higher SNR sidescan sonar systems, which make ATR algorithms more reliable [Myers and Pinto, 2007], the imagery itself can be exploited during the association step to further refine the contact association by matching features obtained between corresponding contacts. For instance, in [START_REF] Gendron | The automated change detection and classification real-time (ACDC-RT) system[END_REF], the positioning error of new and historical contacts are resolved through overlapping error ellipses, and the contacts are further matched using a Gabor wavelet network. It was found that the automated change detection approach outperformed operators performing the same task by 80% versus 50%. In [START_REF] Ferrand | Change detection fo MCM missions[END_REF], contacts are matched using a constellation pattern which consists of the relative position, height and direction of nearby objects and matched to historical contacts through a modified Hausdorff distance. The database contact positions are then corrected by modeling the position uncertainty as a spring network and optimizing it subject to the constraints imposed by the object pairing. In [START_REF] Coiras | Automatic change detection for the monitoring of cluttered underwater areas[END_REF] targets of interest are detected using a simple sliding template method and associated using a rigid data association approach [Coiras et al., 2007] originally developed for SLAM applications that A high-level overview of the change detection process. Historical images are retrieved from a database based on navigational alignment with newly acquired images such that they are observing the same scene. Contact-based approaches first detect targets in each image and attempt to associate them to historical ones, while image-based approaches must first co-register the images and then compare them on a pixel-by-pixel level. Both methods typically perform additional processing to reduce the number of false alarms, after which a list of contacts is created for further investigation.

matches contacts by determining a translation, scale and rotation between pairs of nearby contacts. Pairings are further refined by defining a "persistence ratio" based on the assumption that targets will consistently be detected over many survey passes while non-targets will only trigger the ATR response occasionally. This approach was able to maintain a probability of change detection of nearly 1 with a probability of false alarm of 0.1. The authors observe that change detection was not very sensitive to the survey direction, although better results were obtained from surveys in the same direction. Another detect-and-filter approach was proposed in [START_REF] Wei | An automated change detection approach for mine recognition using sidescan sonar data[END_REF] where targets are associated using their geometric position as well as the "coarseness" measure from [START_REF] Tamura | Textural features corresponding to visual perception[END_REF], which quantifies the largest scale at which texture in the image exists and is meant to characterize man-made objects.

There are two significant advantages of the contact-based approach to change detection. First, it is more robust than image-based methods to changes in the data collection geometry. It is still, however, subject to the performance of the underlying detection process, which itself may be sensitive to the aspect of the target. It also may not be able to detect all of the changes in the scene. Second, it is possible to apply contact-based methods to data collected from different sensors and therefore databases of historical contacts do not immediately go "stale" once new equipment and technology is brought into service. The same algorithms can in principle be applied to newer sensors. This was examined in [START_REF] Gendron | Automated change detection using synthetic aperture sonar imagery[END_REF],

where for that particular case, the underlying ATR designed for a sidescan did not perform well on the synthetic aperture sonar data resulting in an overall system performance which was not satisfactory.

Image-based approaches

The second category of approaches to change detection are called image-based methods. The data association step of contact-based methods are meant to compensate for distortions in the image and uncertainties in positioning, and most modern contact-based approaches will further refine the classification of the target through additional processing steps meant to reduce false alarms. In some cases, features are computed which are quasi-independent of the viewing aspect to the target: size, shape, volume, etc... and provide greater robustness against false associations. If the imagery was obtained from the same sensor at roughly the same aspect angle, one may choose to directly compare the potential targets through cross-correlations.

Image-based methods take this further by removing the target detection step and directly comparing images in a pixel-by-pixel or region-by-region way. Because sidescan sonar images are aspect-dependent, the viewing geometry of the scene during acquisition must be similar. Image-based methods also have much stricter requirements on the co-registration of the images and in the case of coherent methods, sub-pixel accuracy must be achieved. Co-registration is discussed in detail in Chapter 4.

Image-based approaches are divided into two categories: non-coherent and coherent methods. Non-coherent methods are applied to the amplitude-only images while coherent methods make use of the interferometric phase between the two images in order to determine the presence of scene changes.

Non-coherent change detection

Non-coherent change detection (NCCD) makes use of the mean backscattered power of the scene to detect changes in statistics between the two acquisitions. The images I 1 and I 2 are compared by computing a test statistic that measures the difference between them; for instance, a common test statistic is the log-amplitude

ratio Q = log(|I 1 |/|I 2 |).
Images must be co-registered to a sufficient degree that the statistics between the images are comparable. Image-based methods have seen the most success when applied to SAS images due to the constant resolution that is achievable by those systems. Image-based NCCD for a sidescan sonar (the Klein 5500 multibeam sidescan) was studied in [START_REF] Myers | An automated method for change detection in areas of high clutter density using sonar imagery[END_REF] where images were coregistered by warping them onto the same grid and simulated targets were detected using three different statistical tests, the Kolmogorov-Smirnoff distance, which is a measure of statistical divergence of the pixel distributions within a window, the Bray-Curtis distance, which is a measure of similarity between two images, and the Kullback-Leibler divergence, which is another measure of distance between probability distributions. These were compared to a simple contact-based approach, where the Kullback-Leibler divergence was deemed to perform better overall in terms of the false alarm rate. In [START_REF] Wei | A Markov Random Field approach for sidescan sonar change detection[END_REF], using the same dataset, a method is proposed where objects shadows are first extracted from mine-like detections and associated with a nearby bright echo in a matched-filter-like way and then the change and unchanged probabilities are modeled as a Markov Random Field (MRF) which makes it robust to slight co-registration errors. A likelihood function is then created where the coarseness measure mentioned previously is used as a test statistic. The results show an improvement in the false alarm rate while maintaining the same probability of detection. In [START_REF] Nicolas | Markov-based approaches for ternary change detection between two high resolution synthetic aperture sonar tracks[END_REF] the intensity ratio Q is studied in greater detail and the authors provide an analytical model for the class-conditional probabilities of three change classes (no change, object added, object removed). A number of MRF clique configurations are studied, as well as a Hidden Markov Chain method, in order to produce a change detection test statistic based on the derived probabilities. It was shown to work well on an unspecified Thales sonar, although residual co-registration errors as well as grazing angle differences caused some false alarms. In [Midtgaard, 2013] the log-amplitude ratio was used on co-registered images from the HISAS 1030 and demonstrated an ability to detect changes measured over periods ranging from a few days to two years. In [START_REF] Roberts ; G-Michael | Change detection in sonar images using independent component analysis[END_REF] the authors use a combined Principle Component / Independent Component Analysis (PCA-ICA) to reduce the false alarm rate. Snippets (small images centered on the location of the detection) are extracted from the SAS images where the (unspecified) change detection test statistic indicated a potential change and passed through a processing chain which performed PCA and then a variant of ICA where the independent components are prioritized using highorder statistics, resulting in a list of targets in order of likelihood that can be then be thresholded or further processed. In [START_REF] Matthews | Seabed change detection in challenging environments[END_REF], NCCD is performed on SAS images from the US SSAM system, where the change map is computed using median-filtered images (for removing speckle) and detections are filtered using a technique called Temporally Invariant Saliency, a measure related to the local variance of the change map.

Coherent change detection

Coherent change detection, as mentioned in the introduction of this chapter, operates on both the amplitude and phase of the returned signal in order to observe subtle or even imperceptible scene changes. In CCD, SAS images are processed interferometrically (see Section 2.4) in order to measure the phase coherence. For CCD methods to be successful, all sources of coherence loss other than those which can be attributed to changes in the scene must be minimized to the extent possible.

This places strict conditions on the collection geometry, the temporal stability of the environment and the co-registration of the images. Unfortunately, the undersea domain is an extremely challenging environment in which to maintain signal coherence over relevant time frames and developments in CCD for SAS have been slower and more difficult than in SAR. This is also the case for single-pass interferometry, and processing repeat-pass SAS data in this way is much more challenging. Co-registration is considered one of the main challenges for SAS CCD [Hansen et al., 2014a] and is the subject of Chapter 4. Sources of decorrelation are examined below in Section 3.3.

It is not possible to apply CCD methods to incoherent sidescan sonars, how-ever the development of commercial SAS systems in recent decades has opened up the possibility of applying CCD methods learned in the field of SAR to sonar in order to exploit the better resolution and phase information captured by these sensors. Much of the initial work on SAS CCD appears to have emanated from the research group at the Naval Surface Warfare Centre, in Panama City, Florida [START_REF] Sternlicht | Change detection by image correlation for synthetic aperture sonar[END_REF]. Initial coherent change detection for sonar was applied to a towed 175 kHz SAS manufactured by Applied Signal Technology (AST), now Raytheon Company [START_REF] Sternlicht | Experiments in coherent change detection for synthetic aperture sonar[END_REF], where a region-based co-registration approach failed to recover enough repeat-pass coherence for change detection purposes (although incoherent change detection was successfully demonstrated in that paper using a 120 kHz UUV-based Edgetech 4400 SAS). An example of both NCCD and CCD using the SSAM SAS system is given in [START_REF] Sternlicht | Advances in seabed change detection for port and coastal security[END_REF], again using the Temporally Invariant Saliency method from [START_REF] Matthews | Seabed change detection in challenging environments[END_REF]. In [G-Michael et al., 2014] and [G-Michael et al., 2016a] the main test statistics was the Canonical Correlation Analysis (CCA) [G- [START_REF] Tucker | Canonical correlation analusis for coherence change detection in synthetic aperture sonar imagery[END_REF] which is a multivariate statistical method that finds linear combinations of two vectors which have the maximum correlation between them [START_REF] Härdle | Applied Multivariate Statistical Analysis[END_REF] by finding the singular values of their cross-covariance matrix. The CCA values are used in order to mitigate false alarms. False alarm reduction is further studied in [G- [START_REF]Statistically normalized coherent change detection for synthetic aperture sonar imagery[END_REF],

where three (vice two) surveys over the same area are used to produce a statistically normalized coherence measure. In [START_REF] Myers | Results and analysis of coherent change detection experiments using repeat-pass synthetic aperture sonar[END_REF] CCD results using the HISAS 1030 were reported. Co-registration was performed using a relatively standard image warping method and the repeat-pass coherence for two areas where targets were deployed and recovered were given, showing that the targets were detectable as well as other changes in the seabed that are very difficult to observe in the amplitude-only image. Those results are based on the ones presented in Chapter 5.

Stochastic model for SAS images

The backscattered reflectivity in a resolution cell of a SAS image of the seafloor composed of sediments which consist of many sub-resolution scale scatterers, can be modeled as a random walk in the complex plane where the reflectivity s(x, y) at position (x, y) is the coherent sum of a large 2 number N of scatterers within that resolution cell [START_REF] Preiss | [END_REF]Stacy, 2006] [Goodman, 2000]:

s(x, y) = N k=1 a k exp jφ k , (3.1)
The amplitude a k of the kth scatterer is weighted by the sonar beampattern while the phase φ k is obtained as a phase offset and its line-of-sight distance from the sonar, as well as the sonar wavelength. Since the scatterers are randomly dis- 

Amplitude and phase distributions for complex SAS images

The in-phase and quadrature (Section 2.1.3.1) components of s are the real and imaginary parts of the signal defined as:

s r = {s} = N k=1 a k cos φ k , ( 3.2) 
and

s i = {s} = N k=1 a k sin φ k , ( 3.3) 
and are independent and identically distributed Gaussian random variables with a zero mean and a variance of σ 2 s /2. The assumptions [Goodman, 2007] are that a k and φ k are statistically independent and that φ k is uniformly distributed over the interval [-π, π]. In the case of the seafloor and sonar images, these assumptions are generally satisfied. In this case, the real and imaginary parts of s are jointly Gaussian random variables with a probability density function [Preiss and Stacy, 2006, p. 37], [Oliver and Quegan, 2004, p. 88], [Goodman, 2007, p. 10]:

p(s r , s i ; σ s ) = 1 πσ 2 s exp - s 2 r + s 2 i σ 2 s , ( 3.4) 
where σ 2 s = E{ss * } is the expected value of ss * . 3 The joint distribution of the amplitude a and phase φ is given by [Goodman, 2007, pp. 10-11]:

p(a, φ; σ s ) = p(a cos(φ), a sin(φ); σ s ) J , (3.5)
where J is the Jacobian of the transformation between the variables: (3.6) which leads to:

J = ∂sr ∂a ∂sr ∂φ ∂s i ∂a ∂s i ∂φ = a,
p(a, φ; σ s ) = a πσ 2 s exp - a 2 σ s . (3.7)
Finally, the marginal probability of (3.7) of a is obtained by integrating with respect to the phase φ:

p(a; σ s ) = π -π p(a, φ)dφ = 2a σ 2 s exp - a 2 σ 2 s , ( 3.8) 
for a > 0. Equation (3.8) is the well-known Rayleigh distribution which describes the speckle pattern observed in many sonar images [Goodman, 2007] with mode σ. The Rayleigh distribution is for the most part adequate for describing the speckle statistics of lower resolution sonar images. There are many times, particularly with SAS images, where the statistics deviate from this. It is also a common occurrence in SAR, where alternative distributions have been proposed [START_REF] Oliver | Understanding Synthetic Aperture Radar Images[END_REF], [START_REF] Jakeman | A model for non-Rayleigh sea echo[END_REF], [Ward, 1981], such as the K-distribution, to describe the amplitude statistics in areas where the assumptions of independent identically distributed scatterers does not hold, e.g. the sea surface. This has been examined to a large extent for sonar images as well [Dunlop, 1997], [START_REF] Lyons | Statistical characterization of high-frequency shallow-water seafloor backscatter[END_REF]. One interpretation proposed for sonar images is that when N is not sufficiently large then p(a) will follow a K-distribution

where the shape parameter corresponds to the effective number of scatterers within the resolution cell [START_REF] Abraham | Novel physical interpretations of K-distributed reverberation[END_REF]. In addition, the textures commonly found in the underwater domain such as corals [START_REF] Cobb | A parametric model for characterizing seabed textures in synthetic aperture sonar images[END_REF] or ripples [START_REF] Lyons | Modeling the effect of seafloor ripples on synthetic aperture sonar speckle statistics[END_REF], [Duguelay and Myers, 2010] are correlated on a scale which is larger than the resolution of the images, and modified distributions have been proposed based on the K or a modified K distribution with correlation factors.

Non-Rayleigh distributions of the amplitude statistics of SAS images will not be considered further in this chapter.

Following [Oliver and Quegan, 2004, p.96-97], since all of the information in the scattering cell is captured by the mean backscattered power σ, the complex reflectivity can be re-written as:

s = σ(n r + jn i ), (3.9) 
where n r and n i are jointly circular, zero-mean Gaussian variables with variances of 1/2, i.e.:

p(n r , n i ) = 1 π exp(-n 2 r -n 2 i ).
(3.10) so that the observed signal s is the product of the mean backscattered intensity multiplied by a noise term.

Coherence estimation

It is interesting to consider coherence from the point of view of a stochastic random process. The term coherence comes from the field of optics and much of the development from this section comes from [Papoulis, 1991, Chap. 10] and [Born and Wolf, 1999, Chap. 10].

The expected value of a random variable s is defined as [Papoulis, 1991, pp. 336-338]:

E[s] = ∞ -∞
sp(s)ds, (3.11) where p(s) is the probability density of s. The τ -lag autocorrelation of a wide-sense stationary process s(t) is defined as:

r ss (τ ) = E[s(t + τ )s * (t)]. (3.12)
The second order moment for two jointly stationary random processes s(t) and w(t)

is the cross-correlation defined by:

r sw (τ ) = E[s(t + τ )w * (t)] = r * sw (-τ ), (3.13) 
and provides a measure of the similarity between the two signals at time lag τ . The Fourier Transform of the autocorrelation function gives:

R ss (ω) = F(r ss ) = ∞ -∞
r ss (τ )e -jωτ dτ, (3.14) and is called the power spectrum of s, and the cross-spectral density (or the mutual power spectrum [Born and Wolf, 1999, p. 504]) of s and w is defined in a similar way as:

R sw (ω) = F(r sw ) = ∞ -∞ r sw (τ )e -jωτ dτ, (3.15)
The Fourier inversion formula gives:

r sw (τ ) = 1 2π ∞ -∞ R sw (ω)e -jωτ dω. (3.16)
If s and w have no shared frequencies then their cross-spectrum as well as their cross-correlation will be zero, and are said to be orthogonal. The normalized crossspectrum is defined as:

C sw = R sw (ω) R ss (ω)R ww (ω)
, (3.17) and called the complex coherence spectrum. 4 The coherence spectrum is a frequencydomain analogue of the correlation coefficient which measures correlation between the amplitudes of the exponentials of s and w as a function of frequency. Setting τ = 0, Equation (3.16) becomes [Papoulis, 1991, p. 339]:

r sw (0) = 1 2π ∞ -∞ R sw (ω)dω = E[s(τ )w * (τ )]. (3.18)
Using Equation (3.18) for the power spectra of s and w at τ = 0 in Equation (3.17) one obtains the zero-lag complex correlation coefficient [Born and Wolf, 1999, p. 507-508]: .19) with the property that 0 ≤ |γ| ≤ 1. This is called the complex degree of coherence, the coherence factor, or simply the coherence, with |γ| called the coherence magnitude. In the analysis of sampled data, such as SAS images or raw element data, the continuous time signals above are replaced by their discrete time equivalents, and the F are discrete Fourier transforms. In remote sensing applications, it is not usually possible to evaluate the expectations in Equation (3.19) using ensemble averages and therefore, assuming ergodicity, the coherence is estimated by using a number of discrete independent samples K and using the maximum-likelihood estimator:

γ sw = r sw (0) r ss (0)r ww (0) = E[s(τ )w * (τ )] E[|s(τ ) 2 |]E[|w(τ ) 2 |] , ( 3 
γ = |γ|e j φ = K i=1 sw * K i=1 |s| 2 K i=1 |w| 2 . (3.20)
In the case of a 2-dimensional SAS image, K represents a window centered on a given pixel as was given in Equation (2.71).

Sampling distribution of |γ|

The probability density function of |γ| given the number of samples K and the true coherence magnitude |γ| is [START_REF] Touzi | Estimation of the coherence function for interferometric SAR application[END_REF]:

p(|γ|; |γ|, K) = 2(K -1)(1 -|γ| 2 ) K |γ|(1 -|γ| 2 ) K-2 2 F 1 (K, K; 1; |γ| 2 |γ| 2 ), (3.21)
where p F q is the generalized hypergeometric function [Gradshteyn and Ryzhik, 1965, p. 848]. The expectation of |γ| is that the coherence estimate is biased, however by integrating more samples, the bias is reduced, as expected. In [START_REF] Touzi | Estimation of the coherence function for interferometric SAR application[END_REF], the authors claim that the bias is negligible for K > 25. The K samples (or pixels) used in Equation (3.20) must be independent for the expected value calculated using Equation (3.22) to be valid.

E[|γ|] = Γ(K)Γ(3/2) Γ(K + 1/2) 3 F 2 (3/2, K, K; K + 1/2, 1; |γ| 2 )(1 -|γ| 2 ) K . ( 3 
If this is not true, then the effective number of samples K eff is used. In practice, when complex correlation coefficients are estimated from real SAS data, since the image reconstruction process introduces correlation between the samples [START_REF] Gierull | Estimating the effective number of looks in interferometric SAR data[END_REF]. Also, the theoretical resolution achievable for SAS image reconstruction is very difficult to obtain, and diffraction-limited SAS images are unlikely to be realized. One way to estimate K eff is to examine the variance of the sample interferometric phase φ, which itself has a probability density that depends on the number of samples.5 This will be demonstrated in Section 3.4.1 to show that in fact K eff K in some cases, meaning that the coherence estimate obtained from using reasonably sized windows can suffer from a greater amount of bias than was perhaps thought. For a given value of |γ| it is possible to numerically invert Equation (3.22) and correct the estimated |γ| for |γ| depending on the number of samples K. For K sufficiently large, this is only required for low (|γ| < 0.2) coherence values.
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Probability of detection and false alarm

In its most basic form, the coherent change detection problem is to classify a pixel whose coherence has been estimated using K samples in its neighbourhood as having changed or not based only on its estimated coherence magnitude |γ|. Obviously, one may decide to also consider the image amplitudes as well to determine whether or not the size or shape of the detected pixels meet some expected target signature requirements. However, it is useful to consider the single-pixel probabilities of detection and false alarm, since they serve as an upper bound on system performance and can provide insight on the degree of change that is detectable given a source of decorrelation. For instance, the requirement for co-registration accuracy may be relaxed somewhat, as will be shown in Section 3.3.3.

In Let κ be a threshold and define g(|γ|; κ) to be the classification rule:

g(|γ|; κ) = |γ cc | if |γ| ≤ κ |γ nc | otherwise (3.23)
The classifier g makes the simple determination that when the sample coherence is less than κ, the true coherence is |γ cc | = 0 and a change is detected; otherwise, no change is called. When κ is set to the point where the probability of change is greater than the probability of no change based on the sampling distributions of |γ|, then g is the optimal classifier. An analytical solution for determining κ was not pursued; it was determined numerically here, based on the distribution defined in Equation (3.21). The probability of error is defined as

P E = P (g(|γ|; κ) = |γ|),
that is, the probability that the incorrect determination is made of the underlying true coherence [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF]. The probability P E can be broken down into two parts for the two-class (change/no change) problem defined here: In the CCD problem, it is always the case that |γ cc | ≤ |γ nc | therefore, given the shape of the probability density function in Equation (3.21) and assuming an equal prior probability of a pixel having been changed, the probability of a missed detection is the probability that |γ cc | is greater than or equal to κ [START_REF] Stork | Pattern Classification[END_REF]:

• P M D def = P (g(|γ cc |; κ) = |γ nc |),
P M D = P (|γ cc | ≥ κ) = 1 κ p(|γ cc |; |γ cc |, K) d|γ cc |, (3.24)
and the probability of false alarm is the probability that |γ nc | is less than κ:

P F A = p(|γ nc | < κ) = κ 0 p(|γ nc |; |γ nc |, K) d|γ nc |, (3.25) 
The total probability of error is simply the sum of these two individual probabilities P E = P M D + P F A . The probability of detection can be determined in a similar way: 

P D = P (|γ cc | < κ) = κ -∞ p(|γ cc |; |γ cc |, K) d|γ cc |, ( 3 

Repeat-pass coherence and sources of coherence loss

The total scene repeat-pass coherence γ total can be described as a product of its individual coherence components [Hanssen, 2010]:

γ total = γ baseline × γ temp × γ coreg × γ system × γ SNR , (3.27)
where

• γ baseline is baseline coherence attributed to the imaging geometry of the scene from the repeated-passes;

• γ temp is the temporal coherence of the environment that has been maintained between the acquisition of the images;

• γ coreg is the total coherence attributed to the co-registration of two repeat-pass images;

• γ system is the coherence attributed to the SAS processing, including micronavigation, as well as the sonar hardware, electronic noise and data acquisition process; and

• γ SNR is the amount of coherence attributed to the environmental conditions of the data acquisition.

Each of these are examined in more detail below. It should be noted that there is a certain degree of correlation between these variables, since the multiplication of Equation (3.27) would cause the inter-scene coherence to drop very quickly even if each component was individually very high (but not 1). For instance, a large temporal decorrelation or low SNR is likely to result in poor co-registration, therefore decreasing γ coreg . As a result, Equation (3.27) should be considered a lower bound on the scene coherence.

Baseline decorrelation

Baseline decorrelation [Cervenka, 2012] occurs when the scene becomes dissimilar due to differences in the incident angles on the seafloor caused by changes in the imaging geometry. The amount of decorrelation increases linearly with the wavenumber between the two acquisitions [START_REF] Gatelli | The wavenumber shift in SAR interferometry[END_REF] [START_REF] Bamler | Synthetic aperture radar interferometry[END_REF]:

f φ = 1 2π ∂φ ∂r = - 2B ⊥ λr tan(θ inc -ς) , (3.28)
where r is the slant range to the sonar, θ inc is the angle of incidence and ς is the local slope of the seabed. The amount of spectral shift caused by a baseline B ⊥ is equivalent to the fringe frequency which in slant range is equal to:

W = -c 2B ⊥ λr tan(θ inc -ς) . (3.29)
The critical baseline B ⊥,crit is the baseline where W is equal to the system bandwidth B r :

B ⊥,crit = λ (B r /c) r tan(θ inc -ς), (3.30)
The amount of decorrelation due to B ⊥ is linear as a function of the critical baseline [START_REF] Bamler | Synthetic aperture radar interferometry[END_REF]:

γ baseline =    B ⊥,crit -B ⊥ B ⊥,crit , if|B ⊥ | < B ⊥,crit 0 otherwise . (3.31)
It is possible to reduce the amount of baseline decorrelation by filtering the images so that only the overlapping parts of the spectra of the two images are kept.

This increases in coherence however comes at a cost of lowered across-track resolution. The requirements for baseline decorrelation are generally within the tolerances of modern navigation systems present on most SAS-equipped UUV systems [START_REF] Brown | Spatial coherence theory and its application to synthetic aperture systems[END_REF] for the grazing angles of most interest. Figure 3.5 gives the amount of baseline decorrelation as a function of range for a nominal altitude of 15 m for two systems representative of those used in this thesis. One will immediately notice that the decorrelation is most severe at short ranges where the steep grazing angles result in much shorter critical baselines. In addition, the critical baseline is most sensitive to shifts along the acoustic axis (in the y dimension).

Temporal decorrelation

Temporal decorrelation is caused by changes in the scene, largely as a result of the physical processes in the environment. There are several sources of temporal decorrelation for sonar when the imaged scene is the seafloor, and one of the principle This can be attributed to a change in the seafloor roughness over time due to littoral processes such as sediment transport, tidal currents and wave action, as well as by biological activity. The correlation between two signals from the same area of seafloor can be computed from the power spectrum R of the seafloor relief, evaluated at the Bragg wavenumber vector K b . For backscattering, the Bragg wavenumber for a grazing angle θ graz is defined as K b = 2k cos θ graz [START_REF] Gerig | Comparison of seafloor roughness and scattered acoustic temporal decorrelation[END_REF] where k is the acoustic wavenumber in water. In [START_REF] Jackson | Acoustic observation of the time dependence of the roughness of sandy seafloors[END_REF], a model for the evolution of the seabed roughness was given based on the diffusion equation, yielding [START_REF] Lyons | The impact of the temporal variability of seafloor roughness on synthetic aperture sonar repeat pass interferometry[END_REF] 6 :

γ temp = |C| 2 R(K b ) exp(-K 2 m D(t 2 -t 1 )), (3.32)
for a set of constants C, where K m is the magnitude of the wavenumber vector and D is the horizontal diffusion coefficient. In this model the decay constant T decay is a function of D such that:

T decay = 1/(K 2 m D). (3.33)
In [START_REF] Lyons | The impact of the temporal variability of seafloor roughness on synthetic aperture sonar repeat pass interferometry[END_REF], the authors found that seabed temporal coherence was frequency-dependent with 1/e decay times, resulting in practical SAS CCD temporal baseline requirements measured in hours to days. However, the dynamic nature of the underwater environment is such that this may vary significantly based on local conditions such as marine life, tidal activity or weather events. Figure 3.6 plots the measured decay constants T decay in days as a function of frequency, as reported in the subject literature. Also shown is the line defining Equation (3.33) for D = 10 -10 m 2 /s, which demonstrates the exponential relationship of the decay constant with frequency. The decay constants for the data shown with black dots in Figure 3.6 were determined from the average coherence values reported in [START_REF] Myers | Results and analysis of coherent change detection experiments using repeat-pass synthetic aperture sonar[END_REF] by fitting an exponential of the form:

A exp(-t ∆ /T decay ), (3.34) where t ∆ is the temporal interval between surveys and γ ∆ is the difference in coherence, found using the Nelder-Mead simplex algorithm [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF]] and implemented as the fminsearch function in Matlab. It should be noted that in the case of those points, the repeat-pass coherence is assumed to be the temporal coherence, which is not strictly correct, as there are likely other sources of coherence loss. Note that [START_REF] Jackson | Acoustic observation of the time dependence of the roughness of sandy seafloors[END_REF]] used a fixed tower-based system while [START_REF] Lyons | The impact of the temporal variability of seafloor roughness on synthetic aperture sonar repeat pass interferometry[END_REF]] used a rail system.

Changes in the seabed roughness is not the only source of temporal decorrelation. Differences in the propagation environment can also lead to coherence loss due to both small changes in the propagation paths between the sonar and the seafloor caused by the sound speed profile, some of which may be corrected through accurate co-registration, as well as the presence of sediments or other factors in the water column which may change the phase of the signal. Internal waves, for instant, can cause significant coherence loss [START_REF] Hansen | The effect of internal wave-related features on synthetic aperture sonar[END_REF] from one day to the next. While temporal decorrelation is usually attributed to naturally occurring physical processes, anthropogenic activities can also be considered as belonging to this category as well. Fishing trawls and anchor drags will have a significant negative effect on the ability to maintain the temporal coherence of a scene. These processes are not easily modeled but one may infer something about the expected level of decorrelation due to human activities based on shipping lanes and fishing zones. The amount of decorrelation may also be dependent on the season or even the time of day, with the ebb and flow of biological activity being dependent on many different variables. Empirical decay constants reported in [START_REF] Jackson | Acoustic observation of the time dependence of the roughness of sandy seafloors[END_REF], [START_REF] Lyons | The impact of the temporal variability of seafloor roughness on synthetic aperture sonar repeat pass interferometry[END_REF] and [START_REF] Myers | Results and analysis of coherent change detection experiments using repeat-pass synthetic aperture sonar[END_REF]. Thanks to A.P. Lyons from the Center for Coastal and Ocean Mapping at the University of New Hampshire, Durham, NH, for providing this data.

Misregistration decorrelation

One of the most challenging aspects of repeat-pass SAS processing is the precise co-registration of images to the degree of accuracy required for CCD. Residual misregistration errors can be modeled as a differential linear phase problem which will result in a reduction in coherence. Without loss of generality, only the range dimension is considered in this analysis, but the results are equally applicable in azimuth. If the range resolution of the images is α r , then let α be the amount of relative shift between the two images in fractions of a pixel such that the amount of misregistration in range is ∆ mis = αα r meters. The amount of decorrelation due to the misalignment of the images is therefore [START_REF] Just | Phase statistics of interferograms with applications to synthetic aperture radar[END_REF]: The objective of coherent change detection, however, is not necessarily to create interferometric height maps, but rather to detect drops in coherence between acquisitions in order to infer changes in the scene. The co-registration requirement in this case, while still sub-pixel, is not as stringent when using the coherence value as Setting a desired probability of classification of 0.95 (P E = 0.05), Figure 3.7 shows that a misregistration factor of α ≈ 0.35 can be tolerated for a window size of 3 × 3, going up to α ≈ 0.7 for a window size of 9 × 9. From this it is possible to conclude that the co-registration requirement for CCD is not as severe as the α < 0.1 requirements for interferometry. Of course, one should strive to co-register images as accurately as possible in order to mitigate any unnecessary loss of coherence, and errors in misregistration may amplify coherence loss due to other factors. For instance, since the repeat-pass coherence is expected to be lower than single-pass coherence, mostly due to the temporal decorrelation of the underwater environment, the basic |γ nc | will already start at lower values, so additional coherence loss through misregistration is undesirable. However, taken independently from other sources, CCD methods appear able to tolerate a greater amount of residual co-registration error before performance starts to degrade. 

γ coreg = sinc(α). ( 3 

SNR decorrelation

All sonars, including synthetic aperture sonars, suffer from signal loss as a natural consequence of acoustic propagation such as attenuation and spreading [Urick, 1997];

this can be mitigated through careful design choices, manufacturing and system integration. As already discussed in Section 2.4.3 (Equation (2.70)) the amount of coherence γ SNR that is expected from SNR ρ is calculated using the relationship: .36) with an infinite SNR resulting in γ SNR = 1. SNR decorrelation can be confusing since all sources of decorrelation can be related back to an SNR through this relationship, however in this thesis, γ SNR is the coherence loss that can be attributed to the features of signal levels obtained at the receiver array. Two key sources of SNR coherence loss which lead to false alarms are:

γ SNR = ρ 1 + ρ , ( 3 
• Multipath: Many areas where change detection methods are beneficial are in very shallow water, such as ports and harbours, where acoustic returns from the sea surface or secondary, multiple returns from reflections between the seafloor and surface, can lead to significant drops in SNR. SAS systems can be designed specifically to mitigate multipath effects through vertical beamforming or in some cases separate non-overlapping frequencies used at different ranges, such as the MUSCLE system described in [START_REF] Pinto | A new synthetic aperture sonar design with multipath mitigation[END_REF]. In practice, repeat-pass images collected from the same imaging geometry in the same environment will suffer from the same multipath effects 7 , causing low coherence areas in the same parts of the image. Low SNR areas in one or both of the images will result in a low repeat-pass coherence and poor detection performance.

• Shadows: In high-frequency sonar, a proud object on the seafloor will block the sound propagation from the area behind it, causing an acoustic shadow zone which is the projection of the object shape onto the seafloor at the incident angle of the sound wave. Shadows may also be caused by seabed variations such as sand ripples. These shadow zones, in theory, are completely absent of any signal and therefore have an SNR of 0. This means that, in the context of CCD,

|γ cc | = |γ nc | =
0 and CCD is not possible in these areas. In addition, since shadows appear as zones of no coherence, they will cause significant problems for CCD methods in areas with clutter objects. In amplitude-only NCCD, the low pixel intensity values are more easily discarded as they are low in both the repeatpass and reference images. Acoustic shadows give significant information about the size and shape of an object and have traditionally been a key component of feature extraction methods in ATR, e.g. [START_REF] Quidu | Automatic classification for MCM systems[END_REF].

There are some ways to determine the presence of low SNR [START_REF] Midtgaard | Performance assessment tool for AUV based mine hunting[END_REF], [START_REF] Geilhufe | Assessment of mine hunting performance evaluation parameters across multiple side-looking sonar systems and frequencies[END_REF]. The ping-to-ping coherence (Section 2.1.6.1) or the single pass interferometric coherence can be used to detect and eliminate pre-existing zones of low coherence. This is examined in detail in Section 5.1.6 in the context of false alarm reduction.

System decorrelation

The final source of coherence loss is caused by errors during the SAS data acquisition, signal processing or image reconstruction which introduce artifacts in the SAS imagery. These artifacts often manifest themselves as blurring, reduced contrast (SNR) or "ghost" targets -repeated images of the same target. In [START_REF] Cook | Analysis of phase error effects on stripmap SAS[END_REF], the authors examine a number of different factors which cause SAS image artifacts. Errors in sound speed or surge estimation will cause image blurring, errors in yaw estimation or fixed phase errors will cause ghost targets, while random phase errors will reduce the SNR. There are numerous sources of phase errors, such as electronic noise across the receivers, jitter in the analog-todigital conversion clock and poor micronavigation (which is itself related to SNR decorrelation from the environment above). One cause of phase errors that has been observed is when a very bright object or scatterer oversaturates the receiver circuitry which leads to clipping of the signal if levels go above the upper limit of the dynamic range of the sonar. This clipping reduces the quality of the SAS image and the phase coherence between passes cannot be recovered.

Statistics of co-registered SAS images

This section very briefly examines the joint statistics of co-registered images as well as the statistics of SAS interferograms. The theoretical development assumes that the images are free of system errors and that the images have been accurately co- given by [START_REF] Bamler | Synthetic aperture radar interferometry[END_REF]]:

p(s) = 1 π 2 |C| exp -s H C -1 s , (3.37)
where H is the Hermitian operator and C is the covariance matrix:

C = E[ss H ] = σ 2 s σ 2 s σ 2 w |γ| exp(jφ) σ 2 s σ 2 w |γ| exp(-jφ) σ 2 w . (3.38)
The values of σ 2 s and σ 2 w are the mean backscattered power of the two respective images. One will immediately notice that the off-diagonal elements of C contain the coherence measure |γ| exp(jφ), which is:

|γ| exp(jφ) = E[sw * ] E[|s| 2 ]E[|w| 2 ] , (3.39)
which is the same definition which was obtained in Equation (3.19). Equation (3.37) defines the joint distribution of the images under the "no change" condition, where |γ| = |γ nc | and φ is the nominal phase difference between the images. Recall that in the CCD case, |γ| = |γ cc | = 0 and so the off-diagonal elements in C become zero. This result was used by [START_REF] Preiss | Coherent change detection: theoretical description and experimental results[END_REF] to develop a log-likelihood test statistic based on these computed probabilities. The issue becomes finding appropriate values for σ s and σ w as well φ, as SAS systems are rarely calibrated and values for these parameters must be estimated from the co-registered images themselves.

Amplitude and phase statistics of sampled interferograms

The amplitude and phase statistics of the complex interferometric SAS image

I 12 =
|I| exp(jφ) = I 1 I * 2 are now examined. The joint probability distribution for |I| and φ can be found in [Bamler and Hartl, 1998, Equations 37-39], as well as marginal distributions for both of these quantities. This section gives the sampling marginal distributions for |I| and φ that are obtained using K samples. The latter one is of particular importance since it allows one to estimate the effective number of independent samples K eff based on the variance of the interferometric phase. The value of K eff < K will have a significant effect on all of the analytical results given in this chapter, as it will replace K in the sample coherence formulas, increasing the bias in the estimate, as well as the probabilities of detection and false alarm, resulting in potentially much lower CCD performance that one would expect given a K-sized window.

Amplitude distribution

The distribution of |I| given K samples and a coherence magnitude of |γ| was given in [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF] as:

p(|I|; |γ|, K) = 4K K+1 |I| K Γ(K)(1 -|γ| 2 )Z K+1 I 0 2|γ|K|I|/Z 1 -|γ| 2 K K-1 2K|I|/Z 1 -|γ| 2 , (3.40)
where I and K are modified Bessel functions of the first and second kind, respectively, and

Z = E[|I 1 | 2 ]E[|I 2 | 2
] is a normalization factor. While not as crucial for CCD, it should be noted that while an increase in K reduces the standard deviation of this distribution, the standard deviation in fact increases as the coherence magnitude increases.

Phase distribution

The probability density function of φ with K samples is [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF]:

p(φ; |γ|, K) = Γ(n + 1/2)(1 -|γ| 2 ) K β 2 √ πΓ(K)(1 -β 2 ) n+1/2 + (1 -|γ| 2 ) K 2π 2 F 1 (n, 1; 1/2; β 2 ), -π < φ < π, ( 3.41) 
and

β = |γ| cos(φ -φ 0 ), (3.42) 
where 2 F 1 (n, 1; 1/2; β 2 ) is the Gauss hypergeometric function and φ 0 is the mean phase offset. Equations (3.40) and (3.41) depend on the number of integrated samples K as well as the coherence magnitude |γ| and results in an increase of the variance as K or |γ| are reduced, with a peak located at the mean phase offset, when φ = φ 0 .

These distribution models were developed for polarimetric SAR imagery. Here, the pdf for the phase is applied to a pair of 240 kHz AquaPix SAS images collected during the Nanoose surveys (Appendix B.3). The images are co-registered according to the re-navigation procedure outlined in Section 4.6 and the phase is unwrapped using a K = 10 × 10 averaging window using the algorithm from Appendix A. The unwrapped phase is also detrended by performing a linear regression to the averaged phase as function of range and removing it from the data in order to mitigate the effect of bias in the phase caused by the imaging geometry. Note that the coherence estimate |γ| is used here, while the distribution defined by Equation (3.41) uses the true coherence magnitude |γ|. Since the estimate is biased, particularly at low coherence values, this should be considered when interpreting these results. Figure 3.8 shows the reference (Figure 3.8(a)) and repeat-pass (3.8(b)) images, as well as the wrapped and unwrapped phase. The repeat-pass coherence is given in Figure 3.9. Here, two zones were chosen to compare with the theoretical values of Equation (3.41): one zone demonstrates a high repeat-pass coherence (called "zone 1" with an average coherence of |γ| = 0.8021 and one with a low coherence ("zone 2" with an average coherence of |γ| = 0.3739) estimated using a 10 × 10 window. Care was taken to choose zones that were void of any targets and had the most (qualitatively)

Rayleigh-like speckle appearance. The mean phase offset φ0 is estimated using the mean phase within the window of the unwrapped and detrended interferogram: Recall that the phase was smoothed during the unwrapping by using K = 100, however the best fit of Equation (3.41) to the histograms in both cases was obtained by setting K = 10, meaning that K eff is closer to √ K for this particular pair of sonar images. This means that there is some amount of correlation between the pixels.

φ0 = 1 K K k=1 φ k . ( 3 
This can be caused by image resolutions which are smaller than the actual sonar resolution (i.e. α i x < α x ) and while some correlation is unavoidable in the process of synthetic aperture beamforming, it must be noted that this has implications for the expected performance of CCD. In particular, the affects the size of the changes that can be detected, since larger spatial averages are required to obtain a low-bias estimate of the coherence. Fortunately, the high spatial resolution of SAS systems makes it such that most changes of interest can still be captured by CCD methods. puter vision [Brown, 1992] and has been used extensively in medical image analysis [START_REF] Maintz | A survey of medical image registration[END_REF], astronomy [START_REF] Shahhosseini | Sequential image registration for astronomical images[END_REF] and many other areas which use images from different times or aspects, including many types of remote sensing imagery [START_REF] Dawn | Remote sensing image registration techniques: A survey[END_REF], [START_REF] Bentoutou | An automatic image registration for applications in remote sensing[END_REF] such as SAR [START_REF] Fornaro | Image registration in interferometric SAR processing[END_REF], [START_REF] Scheiber | Coregistration of interferometric SAR images using spectral diversity[END_REF], [START_REF] Li | Image coregistration in SAR interferometry[END_REF]. While SAS and SAR images (as well as some forms of diagnostic imagery) have many similarities, they are different in ways that make it particularly challenging for accurate co-registration, especially images obtained from separate passes. SAS images often contain artifacts caused by residual motion errors which make standard image transformations unsuitable. In addition, the reduction in signal-to-noise ratio caused by the sensing environment and temporal decorrelation results in noisier images than those found in other domains. This is made more challenging by the uncertainties in the underlying bathymetry and signal propagation velocities that cause slight image distortions which must be accounted for during the co-registration process. Finally, the well-known inaccuracies in positioning and navigation of underwater vehicles, even with high-grade INS systems, leads to a lack of repeatability of sonar tracks to the degree of accuracy required for interferometric processing. Two approaches to SAS image co-registration are considered here [START_REF] Myers | Comparison of co-registration techniques for synthetic aperture sonar images from repeatedpasses[END_REF]:

Summary

1. Warping: A process where the repeat-pass image is interpolated onto the same coordinate system (usually pixels) as the reference image. This is discussed in Section 4.5.

Re-navigation:

Where the navigational information from the repeat-pass image is corrected using control points and a SAS image reconstruction process Ω is reapplied, resulting in a co-registered image. A method for doing this based on track registration is presented in Section 4.6.

In both approaches, the goal is to create a co-registered image I cr from the repeatpass data. Each pixel in the repeat-pass image must have an associated displacement, as shown in Figure 4.1. This thesis employs an iterative approach to computing these displacements, where progressively finer estimates of the co-registration parameters are obtained at each step. Similar approaches have also been proposed

for SAR imagery, e.g. [START_REF] Preiss | Coherent change detection: theoretical description and experimental results[END_REF]]. If displacements are only available for a subset of the pixels, then shifts for the other pixels can be estimated by using a transformation model. Commonly used models are rigid, affine or piecewise linear [Goshtasby, 2012, Chap. 9] transforms whose parameters are estimated from the set of matching control points between the images. In a warping approach, Examples of papers which apply a warping approach to SAS images are [START_REF] Quidu | Subpixel image registration for coherent change detection between two high resolution sonar passes[END_REF] and [START_REF] Myers | Results and analysis of coherent change detection experiments using repeat-pass synthetic aperture sonar[END_REF]. The work in [G- Michael et al., 2016a] and [START_REF] Abiva | Towards adaptive thresholding for sub-pixel co-registration and anomaly detection[END_REF] is also closely related to image warping, however some information about the navigation solution is determined and used to correct the residual misregistration during the final co-registration stage. Some examples of the use of re-navigation methods are [START_REF] Saebø | Coregistration of synthetic aperture sonar images from repeated passes[END_REF]] [Hansen et al., 2018] where shift, rotation and dilation are estimated from the SAS images and the data is reprocessed to produce co-registered images, and [START_REF] Hunter | Repeat-pass synthetic aperture sonar micronavigation using redundant phase center arrays[END_REF] where corrections are computed directly from the raw SAS data. In [START_REF] Wang | Synthetic aperture sonar track registration using SIFT image correspondances[END_REF] a track registration method is proposed based on a least-squares method for estimating the parameters of a linear track model. They achieve a co-registration accuracy of 0.03 pixels on simulated data, well within the requirements for repeat-pass interferometry. The work presented in this thesis extends the track registration concept to also take into account residual navigation errors which are estimated from the co-registration parameters [START_REF] Myers | Synthetic aperture sonar track registration with motion compensation for coherent change detection[END_REF], [Myers et al., 2017b].

Slant range versus ground range

Recall from Section 2.2.1 that SAS images are beamformed to a grid of focal points g(i, j) whose coordinates are defined in either the ground range plane g(i, j) = (g x , g y , g z ), i = 1, . . . , N x , j = 1, . . . , N y or the slant range plane g(i, j) = (g x , g r ),

where g r = g 2 y + g 2 z . The slant range image can be equivalently defined in the time domain, where g(i, j) = (g x , g t ) and g t = 2g r /c. Note that the coordinates g x , g y , g z as well as g t and g r are all indexed into (i, j); this has been omitted for clarity of notation. Images defined in ground range plane may present some difficulties for the warping procedures due to non-linearities in the pixel spacing. In addition, when applying the track registration approach to re-navigation, the navigational corrections are simpler to calculate in the slant range plane.

Image resampling

If the SAS images are in the ground range plane, then they can be interpolated into the slant range plane as long as one has knowledge of the original ground range focal points of each image pixel (g x , g y , g z ). Ground range images are typically created on a uniform spatial grid in both the x and y dimension and it is possible to convert the image from ground range to slant range by resampling the pixels at uniformly spaced time samples. If one considers each line of the SAS image as a time series with samples at times g t = 2 g 2 y + g 2 z /c, the sample spacing in g t is not uniform due to the variations in the seafloor bathymetry g z . The signal is resampled with sample frequency f s with a new sample spacing of ∆ t = 1/f s by upsampling the non-uniform time series, applying a finite impulse response filter and then downsampling to the desired sampling frequency with new times at g t using a polyphase filter described in [START_REF] Crochiere | Multirate Digital Signal Processing[END_REF]. The complex signal must be basebanded before the resampling step, after which the carrier frequency may be reintroduced as described in [Hawkins, 1996]. Figure 4.3 shows how the resampling step works. The original image focal points g y and g z are shown for one line of a SAS image (i.e. g x is constant) by the blue dots along the estimated bathymetry line with the focal points evenly spaced in g y . The orange dots show the location of the focal points after resampling: They are now constant in g t but due to the bathymetry are no longer constant in g y . After this step, the reference and repeat-pass images are in the slant range plane with a resolution of α x in x and α r in r (or α t in t).

Coarse co-registration

Coarse co-registration consists of placing two SAS images in approximately the same geographic area. This starts with the information obtained from the vehicle navigational sensors, followed by matching control points between the two images to roughly estimate the displacements between the pixels of the two images. The objective is to place the repeat-pass image I rp to within a few pixels in co-registration with I ref .

Most feature matching methods from the computer vision field, for instance those in the popular OpenCV library [Bradski, 2000], work by first finding salient points in both images through feature descriptors. One widely-used feature descriptor is the Scale-Invariant Feature Transform (SIFT) [Lowe, 1999]. SIFT features are invariant to scaling, change in illumination and orientation and have been used to coregister SAS images at a coarse level in [Midtgaard, 2013], [START_REF] Wang | Synthetic aperture sonar track registration using SIFT image correspondances[END_REF]],

[G- Michael et al., 2016a]. They are computed by finding the min and max points of a Difference of Gaussians (DoG) operation on smoothed images at different image scales. A variation of SIFT are the Speeded Up Robust Features (SURF) descriptors [START_REF] Bay | SURF: Speeded up robust features[END_REF], which uses the sum of Haar wavelet responses around a point of interest. SURF is faster than SIFT through the use of integral images (see Section 4.3.1.1) and approximations to the Gaussian filters used in [Lowe, 1999].

There are many other detectors, such as those based on corner detection, for instance the Harris-Stephens detector. Once prominent features are found in both images, the algorithms attempt to match them using some distance metric and outliers are removed using a technique such as Random Sample Consensus (RANSAC) [START_REF] Fischer | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF] or a variant thereof, such as the M-estimator sample consensus (MSAC). The remaining inliers can be used to estimate the transform between the two images [Goshtasby, 2012].

The features described so far work on the magnitude images only, having been developed for optical images, and require strong features in order to detect salient points. In the context of SAS images, this means that there must be features that are consistent between the two images such that the descriptors are close enough in feature space that they are matched in a robust way. An analysis of the use of the SURF descriptor to find matching control points in the SAS imagery used in this thesis found that it was sensitive to many factors, including the normalization applied, the despeckling method and the thresholds used. Also, in benign areas of sandy, featureless seabed which manifest Rayleigh-like speckle, matching features was not possible as the feature association step resulted in a very noisy distribution of image displacements. In some cases, particularly in high SNR scenes such as the shipwreck images used in Section 4.5, these descriptors may perform well. However even when many matching points were found, the geometric transformation used in the warping method is often not able to accurately co-register all the pixels in I rp . This is because the true pixel displacements required to co-register the images are not well-modeled by the smoothness of common transforms. This issue is examined in more detail in Section 4.3.

The rough co-registration step proposed in this thesis instead starts with the normalized cross-correlation [Lewis, 1995] between the magnitude images |I ref | and |I rp | as a measure of similarity, which is defined as:

C(k, ) = Nx i=1 Ny j=1 |I ref (i, j)| -I ref I rp (i -k, j -)| -I rp Nx i=1 Ny j=1 |I ref (i, j)| -I ref 2 Nx i=1 Ny j=1 |I rp (i -k, j -)| -I rp 2 (4.1)
where I ref and I rp are the mean of the reference and repeat-pass images and is meant to compensate for differences in the mean intensity of the images. The peak of C can be used to determine the rough translation between the two images, however it was found to fail occasionally, particularly in areas of high clutter or when a significant shift was required. To remedy this, the gradient of the normalized crosscorrelation was used in order to better determine the peak of the function. The total gradient of C is defined as:

∇C = ∂C ∂x i ∂C ∂y j, ( 4.2) 
where i and j are unit vectors in the direction of x and y. The partial derivatives in Equation (4.2) are evaluated numerically for C using central differences in each dimension, i.e.:

∇C(k, ) = 0.5(C(k + 1, ) -C(k -1, )) + 0.5(C(k, + 1) -C(k, -1)) (4.3)
The peak of ∇C is used to find the best translation of the repeat-pass image For some SAS images, the peak of C can be difficult to find, however the gradient offers some robustness against false peaks.

that matches the reference image1 however there remains significant residual coregistration errors at this point, in particular rotational errors caused by heading differences in the tracks. After translating the repeat-pass image, it is trimmed such that only the common parts between the two images are kept. Figure 4.4 shows the normalized cross-correlation C and the gradient ∇C for two SAS images. In the case of these images, both C and ∇C are able to determine the location of the best translation, however overall the gradient offered more robust performance and as can be observed in the image, has a much more salient and therefore easily detectable peak than the normalized cross-correlation.

Fine co-registration

Fine co-registration calculates the transformation necessary to place the images to the nearest pixel and therefore a displacement for every pixel in the repeat-pass image needs to be computed such that it is placed in its estimated position in the common coordinates of the reference image. When detecting strong features using methods like SURF, only a very small number (compared to the number of pixels in the images) of keypoints will be detected and therefore a warping surface needs to be computed to estimate the displacement for the other pixels in the image. The challenge with SAS image co-registration is that the true desired displacements do not normally fit the smoothness of a polynomial warping surface or an affine transform. In addition, in areas where there are very few strong features, keypoint matches will be sparse and possibly incorrect, resulting in displacement fields that are erroneous. Therefore, the use of windowed cross-correlation as a method for detecting matching control points is proposed. Cross-correlation has the advantage of being able to work in areas where there are no strong corner or otherwise salient features present in the scene. Cross-correlation also provides a quality metric for the goodness of the match between the keypoints. It has the disadvantage of being significantly more expensive to compute than other features.

Complex cross-correlations

Pixel displacement estimates between I ref and I rp are obtained using the sample zero-lag complex cross-correlation, i.e. the coherence, for a range of offsets in both x and t. Recall from Section 3.2.2 that the windowed sample coherence between two images I ref and I rp can be computed using the maximum-likelihood estimator:

γ = k i k j I ref I rp * k i k j |I ref | 2 k i k j |I rp | 2 , ( 4.4) 
where

k i = (i -N k ) . . . (i + N k ) and k j = (j -N k ) . . . (j + N k ) is shorthand notation for a K = 2N k × 2N k
window centered around pixel (i, j) and I rp * is the complex conjugate of I rp . For simplicity, the sample coherence γ will be denoted γ. Control points are found by shifting the repeat-pass image by an integer number of pixels in the along-track and time dimensions such that I rp * m,n is I rp which has been shifted by m pixels in along-track and n pixels in the slant range (or time) dimension. For each m and n:

γ(δm, δn) = k i k j I ref I rp * m,n k i k j |I ref | 2 k i k j |I rp * m,n | 2 , (4.5)
and for each pixel, the value of δm and δn which maximizes the coherence magnitude is retained as the required shift for co-registration:

D m , D n = argmax δm,δn Γ(δm, δn). (4.6)
For the re-navigation methods in Section 4.6, shifts in number of pixels must be related back to physical quantities that can be used to compute navigation corrections. This is made relatively simple by using the along-track resolution (in meters) α x and across-track resolution (in seconds) α t such that:

D x = D m × α x , (4.7)
and

D t = D n × α t .
(4.8)

Integral images

As mentioned, the computational burden of calculating D m and D n can be significant, especially when compared to computer vision features. This burden can be reduced to some degree by using a fast method based on integral images [START_REF] Viola | Robust real-time object detection[END_REF] (see Figure 4.5 for an example of an integral image), which is used in many computational vision methods to quickly and efficiently compute sums in subsets of images. Each pixel in the integral image (or summed image) I + (i, j) of an image I consists of the sum of the pixels above and to the left of the pixel itself. Computing the integral image can be done quickly using only one pass over the image and once computed, I + can be used to compute the sum in a window of size N k surrounding pixel (i, j) using:

S(I + , i, j, N k ) = I + (i -N k , j -N k ) -I + (i -N k , j + N k ) -I + (i + N k , j -N k ) + I + (i + N k , j + N k ).
(4.9) Equation (4.9) can be computed more quickly by shifting I + rather than by indexing, as is shown in Equation (4.10) can be executed much more quickly than a traditional implementation using loops over the image at each shift. Its computational complexity is 

O(N x N y ) versus O(N x N y N 2 k ).

Magnitude cross-correlations

Using the coherence magnitude (Equations (4.5) and (4.10)) to find corresponding control points between the repeat-pass and reference images is an attractive notion for CCD applications. Finding the shifts which maximize the repeat-pass coherence should provide a better opportunity to recover any repeat-pass coherence that is present in the scene and improve the performance of the CCD system as a whole.

There are many cases, however, when coherence during the fine co-registration step is difficult to obtain even if, after the full co-registration step, the scene shows significant amounts of repeat-pass coherence. This is because at this stage of the process, only integer shifts are considered in m and n; sub-pixel shifting is not performed. The same integer shift is applied to all the pixels in the neighbourhood which leads to a high likelihood of local misregistration errors and may also violate the condition of spatial ergodicity. This is particularly detrimental to systems whose wavelength is smaller than the image resolution. The resulting shifts obtained using coherence may be very noisy and have a detrimental effect on the co-registration parameters. In these cases, it is possible to use the same method as described above but replace the single-look complex images I ref and I rp with their complex modulus |I ref | and |I rp |. Magnitude cross-correlations are more robust to sub-pixel co-registration errors and have been shown to offer similar performance to complex cross-correlations [Myers et al., 2017a]. Whether complex or magnitude-only SAS images are used during the fine co-registration process will depend on the sensor, the navigational accuracy of the host platform and environment.

Very fine co-registration

At this point in the co-registration process it is assumed that the repeat-pass image has been co-registered to the nearest pixel of the reference image, however for CCD applications the process must be taken one step further as sub-pixel accuracy is required. Often, the repeat-pass image is warped using the fine displacement estimates from above in order to create an intermediate co-registered image I cr †

(see [START_REF] Preiss | Coherent change detection: theoretical description and experimental results[END_REF]). If this is accurately done, then it is possible to apply an appropriate phase shift to each pixel in the image in order to co-register the images, as is done in [G- Michael et al., 2016a] to compensate for surge effects.

Other approaches, such as in [START_REF] Quidu | Subpixel image registration for coherent change detection between two high resolution sonar passes[END_REF] (based on the approach described in [START_REF] Guizar-Sicairos | Efficient subpixel image registration algorithms[END_REF]) upsamples I cr † by a factor of n and uses crosscorrelations of the resampled image in order to obtain the sub-pixel shift required to co-register I cr † more accurately. The resampling and cross-correlations can be efficiently implemented using FFTs. It was found in the case of SAS images, due to the correlation between neighbouring pixels (see Section 3.4.1.2 on the effective number of samples K eff ) that a misregistration of one pixel still resulted in some degree of repeat-pass coherence between the images. Therefore, referring back to Equation (4.5), if the peak coherence was γ(δm, δn) there was also some non-zero coherence obtained at γ(δ(m -1), δn) and γ(δ(m + 1), δn) in the along-track direction as well as γ(δm, δ(n + 1)) and γ(δm, δ(n -1)) in the across-track direction. This allows one to apply the principle of parabolic interpolation that was presented in Section 2.1.6.1 and used in the DPCA micronavigation method to obtain sub-resolution estimates for the ping-to-ping surge and sway. Using this approach requires one to keep track of not only the peak coherence during the calculation of the displacements, but also the coherence obtained at the pixels before and after the peak as well. The fine co-registration parameters are then found using Equations (2.43) and (2.44) fitting the coherence estimates. which reduces the number of points from 914 to 822. The dimensions of the images are 2501 × 3468 for a total of 8,673,468 pixels, meaning that only 0.0095% of the image has a direct control point match. An affine transformation is estimated using these points which computes scale, shear and rotation for each pixel, which are shown in Figures 4.9(c) and 4.9(d). Comparing those with the ones obtained using the cross-correlations in Figures 4.9(a) and 4.9(b) one can readily observe that the affine transformation is not able to account for the (presumed true) displacements obtained using the complex cross-correlations. One advantage of the SURF/affine co-registration approach, however, is that it is able to obtain displacement estimates in low-coherence areas such as the shadow zones behind the shipwreck. The maximum coherence Γ max that was obtained for each pixel during the co-registration is shown in Figure 4.10. These shadow zones show that no coherence was obtained, which is to be expected, and that the displacements shown in Figure 4.9 are essentially random in these areas. One could potentially threshold Γ max and use a different set of displacements in areas of low coherence, for instance the ones obtained using SURF features. This was not done in here. Also, the difference in computation time between SURF features and cross-correlations was significant, with the former being completed almost instantaneously while the latter took several minutes to complete on an averaged sized set of images. Most of the execution time was spent on the parabolic interpolation needed to obtain the very fine registration parameters. On very large images, this time may become prohibitive and alternative methods for determining sub-pixel displacements may be necessary. For instance, using a pre-computed look-up table for a discretized set of values for the parabolic interpolation could significantly reduce the computational burden of the sub-pixel peak location.

Warping

The last step in the co-registration process is to use the computed displacements to resample or interpolate the repeat-pass image onto to the same grid as the reference image. The warping function Ξ uses the displacements computed above, along with an interpolation function, to obtain the co-registered image I cr :

I cr (i, j) = Ξ(I rp (i, j), W x (i, j), W y (i, j)) (4.11)
where the warping surfaces W x and W y are defined as:

W x (i, j) = i + D m (i, j) (4.12) W y (i, j) = j + D n (i, j) (4.13)
The function Ξ implements a 2D interpolation, for instance the bilinear interpolator [Press et al., 1992, Chap. 3], an extension of linear interpolation in two dimensions, is one that is commonly used. This thesis implements a truncated sinc interpolator, which is similar to the Lanczos resampling method. The one-dimensional N -point sinc interpolator is a discrete function defined for a size N and a displacement dx as: 

w x (n) = sinc(n + dx) (4.
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Ξ (I rp (i, j), W x (i, j), W y (i, j)) = 0.5 N/2 n=-N/2 N/2 m=-N/2 w xy (W x (i + n, j)W y (i, j + m)) I rp (i + n, j + m).
(4.17)

The results in Section 4.5.1 were obtained using N = 11 and α w = 2.5. The truncated sinc window depends on the sub-pixel shift dx and dy and therefore Equation (4.14) needs to be recomputed at each pixel in order to obtain the correct value of w xy . In order to reduce this computation burden the value of w xy is precomputed with a range of offsets and a look-up table is used during the actual warping procedure.

The key consideration in choosing an interpolation method for complex SAS images is the need for the phase of a given image to be sufficiently sampled such that it can be correctly estimated at points in between pixels. In some cases, when the phase is relatively smooth, a simple bilinear interpolation can obtain similar performance to more computationally intensive methods such as the truncated sinc interpolator. In SAR, images are often oversampled before processing in order to improve the accuracy of the interpolation process. This is not done here, as the beamformed SAS images are already oversampled, meaning the pixel spacing in along and across-track set by the backprojection algorithm is finer than the radiometric resolution of the SAS system.

Image warping example

Results of applying the proposed warping method to the HISAS images shown in These HISAS images show an example of where a warping based approach works well and the characteristics of the HISAS sonar, such as the signal wavelength versus the resolution of the images, are such that the interpolations that are necessary to co-register the images are adequately sampled and give good estimates of the signal phase at points between the image pixels. The smoothness of the warping surfaces for this particular pair of images also makes it easier to apply a warping approach successfully. Warping approaches are simple and effective and make very little assumptions about the raw element data or the signal processing techniques used to create the SAS images. They may be performed under many different conditions and are generally fast to implement. For non-coherent change detection, which does not require sub-pixel co-registration, warping techniques may be the preferred solution due to these factors. However, warping may fail for coherent change detection when the interpolation does not, for whatever reason, result in a satisfactory estimate of the phase of the repeat-pass image at points between the beamformed image pixels.

In these cases, re-navigation approaches offer an alternative way to recover the underlying repeat-pass coherence. Although more computationally expensive, renavigation techniques co-register the repeat-pass image by reprocessing the raw data and beamforming it directly onto the focal points of the reference image. This requires no additional interpolation other than what is already performed by the beamforming process. Re-navigation is examined below.

Fringes due to vehicle trajectory

The warping approach to co-registration is able to recover, to a large degree, the repeat-pass coherence over the entire scene containing the shipwreck target. However, one immediately observes in the phase image the pattern of high-frequency fringe cycles, known in the SAR community as orbital fringes [ [START_REF] Massonnet | Radar interferometry and its application to changes in the earth's surface[END_REF], which are caused by the differences in the trajectories of the UUV during the difference passes over the area. Knowledge of those trajectories can be used to refine the position of the UUV during the survey and re-process the data in order to remove them. This is, in effect, a re-navigation approach to coregistration and is described in more detail below in Section 4.6 immediately below.

In collaboration with FFI ( [START_REF] Myers | Comparison of co-registration techniques for synthetic aperture sonar images from repeatedpasses[END_REF]), the simple re-navigation method which was described in [START_REF] Saebø | Coregistration of synthetic aperture sonar images from repeated passes[END_REF] and [START_REF] Hansen | Challenges in coregistration of repeated passes in synthetic aperture sonar[END_REF] was applied to these images in order to compare the performance of the re-navigation and warping approaches to co-registration. The approach uses the computed pixel displacements to estimate the shift, scale and rotation between the images. The residual misregistration errors are then progressively eliminated by assigning those errors to physical phenomena (i.e. an incorrect sound speed profile) and re-generating the repeat-pass image. This continues until no further improvements in co-registration are obtained. Note that as part of this thesis, a novel re-navigation approach is proposed immediately below which does not require iterating and beamforming several times.

Figure 4.14 shows the repeat-pass coherence which results from the FFI approach to re-navigation. While the repeat-pass coherence is not as high over the entire scene as that which was obtained by warping, the phase has been corrected such that the fringes caused by the trajectory differences have been removed. However, residual co-registration errors cause the magnitude of the coherence to be lower in some areas. This is thought to be caused by residual errors in bathymetry which are not corrected by the model used for the re-navigation. One way to correct this is to apply the warping method after the data has been re-navigated, thus allowing the trajectory fringes to be removed while fixing the small, local co-registration errors. These results are shown in Figure 4.15, showing better overall coherence over the entire image than either re-navigation or warping alone.

Re-navigation

The end of the previous section briefly introduced the re-navigation approach to co-registration which consists of correcting the navigational information and metadata of the raw repeat-pass SAS data in order to create a co-registered image I cr .

Recall that the reference image I ref is obtained from data s ref acquired at the sensor positions u ref and beamformed to the grid of focal points g ref such that: Similarly, the repeat-pass image I rp is defined as:

I ref = Ω(u ref , g ref , s ref ). ( 4 
I rp = Ω(u rp , g rp , s rp ). (4.19)
The concept of re-navigation methods is to compute a set of navigation corrections ∆ between I ref and I rp to correct the sensor positions u rp and reapply the beamforming process with the focal points of the reference image, resulting in a co-registered image I cr which is obtained with:

I cr = Ω(u rp + ∆, g ref , s rp ), (4.20)
by using the data from I rp and the focal points from I ref . The approach in this thesis follows a track registration approach first suggested by [START_REF] Wang | Image registration of simulated synthetic aperture sonar images using SIFT[END_REF] and [START_REF] Wang | Synthetic aperture sonar track registration using SIFT image correspondances[END_REF], which uses the following steps:

1. Initial image formation, already covered under Section 2.2.1;

2. Estimate the pixel displacements using windowed complex cross correlations on the beamformed images followed by interpolation, as discussed above in showing much more significant variations as a function of range. 2 In a warping-based approach to co-registration, these shifts would be used to compute a transformation to resample I rp onto I ref using interpolation as was done in Section 4.5. In this section they are used to compute a set of corrections ∆ which are applied to u rp to produce I cr through the registration of the track T rp to T ref using bulk acrosstrack, altitude and heading offsets as well as sound speed corrections using only the values of D t . An additional set of along-track corrections must then be applied for each u rp (p), as a single correction is not able to accurately model the resulting D x . This is attributed to residual motion and sound speed errors between the two acquisitions that must be estimated and corrected at each ping location. This is examined in Section 4.6.2.

Track registration

The track registration approach is similar to the approach of [START_REF] Wang | Synthetic aperture sonar track registration using SIFT image correspondances[END_REF] where the time delays 

T rp ∆ =     cos ∆ θ -sin ∆ θ 0 sin ∆ θ cos ∆ θ 0 1 0 0     T ref +     0 0 ∆ y ∆ y ∆ z ∆ z     .
(4.21) The expected time delay τ rp for an image focal point g(i, j) with intercept point w = (w x , w y , w z ) on T rp ∆ is:

τ rp = 2 g(i, j) -w c + ∆ c . (4.22)
The expected time to the reference track τ ref can be found in a similar way and for a given value of ∆, the expected time delay difference for g(i, j) is τ = τ rpτ ref .

The function f i,j (∆) uses the computed time delay differences from D t such that:

f i,j (∆) = τ -D t (i, j), (4.23)
which is used to formulate a least squares problem of the form:

min ∆ f (∆) 2 = min ∆   Nx 1 Ny 1 f i,j (∆) 2   . (4.24)
A non-linear least squares solver [Moré, 1977] is used to optimize ∆ using central finite differences which improves the estimate. The optimization attempts to compensate for all of the across-track errors using only the four parameters in ∆. In particular, if one does not have accurate information about the bathymetry, and therefore the z-location of the focal points, then these will lead to additional residual errors. This would be the case when beamforming the images on a presumed-flat seafloor. In addition, if no information on z is used and the images have been beamformed completely in slant range (i.e. with a zero-altitude and g z = 0 for all focal points) then ∆ y will encompass the entire correction in slant range, and ∆ z will be zero.

Track registration results

In order to determine the effectiveness of the track registration approach, a pair of images with a known track offset ∆ is examined. The images are obtained from the fixed pair of interferometric receivers of the Kraken AquaPix INSAS2 system during the Nanoose Harbour trials in 2017. The experiment and SAS system is described in detail in Appendix B. In this case of single-pass interferometry, the upper and lower receiver arrays are separated by an interferometric baseline B ≈ 0.12 m and are in the same horizontal plane, meaning the true value of ∆ in this case is ∆ = [0 m, 0.12 m, 0 • , 0 m/s]. Figures 4.17 applied by using only the D t values in Figure 4.17(a). As both arrays are on the same platform, the track registration should be able to recover the value of ∆. In order to do this, the z position of each pixel is required. These images were created in the slant range plane using a nominal value of 17.3 m over the entire area, which is the mean value of the altimeter readings over the run. By using this value and applying the track registration algorithm, a value of ∆ = [0.0195 m, 0.1001 m, 0.0008 • , 0 m/s] was obtained, which is very near to the true value ∆ given the precision of the measurements and the assumed bathymetry. Of interest is that the arrays seem to be slightly misaligned, less than a thousandth of a degree, however this value was consistent over several tests for this system. Although not used for track registration, it is interesting to examine the displacements in across-track in Figure 4.17(b). As the arrays are on the same platform, one would expect these values to be 0 everywhere. This is not the case and some banding in along-track is observed. This is likely caused by pitch motion and suggests that a method for estimating pitch motion could be developed using interferometric SAS data. This idea is used in the next section to estimate and correct for residual along-track errors.

Residual motion compensation

The linear track model is able to acceptably model the observed D t values, however a single along-track displacement (∆ x ) is not able to account for the observed D x such as the ones shown in Figure 4.16(b). A plan view of the co-registration geometry is shown in Figure 4.18. For two perfectly overlapping tracks, the value of D x (i, j) will be constant and equal to the navigation offset in x between T ref and T rp . A non-zero value of ∆ θ introduces an additional range-dependent change in D x . Correcting the navigation solution u rp using the parameters from ∆ should naturally account for these shifts and result in pixels being in the desired location in I cr . However, what is being observed is a situation like the one shown in Figure 4.18, where in order for two pixels at points g rp (i, j 1 ) and g rp (i, j 2 ) to both be co-registered according to the observed D x (i, j 1 ) and D x (i, j 2 ), the sonar must have moved (assuming no other platform attitude changes) from the position on the repeat-pass track corresponding to w rp to w rp on T rp ∆ . The time delays τ 1 and τ 2 can be used to compute an equivalent velocity correction:

∆ v = w rp -w rp τ 2 -τ 1 , (4.25)
that can be applied to u rp , which results in co-registered pixels. Unfortunately, a constant ∆ v is not able to model D x such as that shown in In this example, one would expect the maximum coherence to occur between focal points g rp (2, 1) and g ref (2,[START_REF]United Nations Convention on the Law of the Sea[END_REF] as well as g rp (2, 7) and g ref (3,7). What is observed in this case is that maximum coherence is occurring between g rp (2, 7) and g ref (5, 7), due to residual motion errors in the images. The gray line is T rp when referenced from g rp and T rp ∆ when referenced from g ref .

This is due to residual navigation errors that cause a pixel to be placed in an incorrect location in the x dimension while being at the correct t (or r) location. Errors in velocity estimation are one possible reason for an incorrect along-track location. The ping-to-ping surge η(p) is determined by computing the distance between two maximally correlated elements of the receive arrays [START_REF] Heremans | Motion compensation on synthetic aperture sonar images[END_REF] combined with an interpolation step using the correlation of neighbouring elements in order to obtain sub-element precision. This uses the principle of the spatial Correlation Velocity Log (CVL) [Denbigh, 1984] with the ping-to-ping velocity v(p) = η(p)/t pri . In [START_REF] Dickey | Velocity measurement using correlation sonar[END_REF] a model for the standard deviation for the estimated surge is proposed:

σ η = 1 4 √ π d √ N s 1 + 1/ρ, (4.26)
where N s is the number of samples in the correlation window and ρ is the signalto-noise ratio (SNR). For an infinite SNR, σ η is on the order of 0.2 to 0.5 mm, giving a σ v on the order of 0.02 m/s for the systems considered in this paper. Bias [START_REF] Nguyen | Correlation bias analysis-a novel method of sinus cardinal model for least squares estimation in cross-correlation[END_REF] and drift are unlikely to have a significant effect due to the small distances involved in making SAS images. Another source of along-track error is uncompensated platform attitude motion, in particular pitch motion. An uncompensated pitch angle of φ causes an apparent surge error equal to η φ = a sin φ or equivalently as a speed correction:

v φ = η φ /t pri , (4.27)
where a is the platform altitude. Pitch cannot be estimated using standard micronavigation methods however inertial sensors can usually measure pitch to a high degree of fidelity. To co-register images, the ping-to-ping surge must be corrected for each u(p), which can be achieved by applying a velocity correction ∆ v (p) to compensate for all of these residual along-track errors. for each of the N x rows of I rp in order to obtain corrections to the sensor position.

These in turn can be used to interpolate the corrected ping locations u(p) when beamforming I cr . Let x rp ∆ (τ ) = x 0 + τ v be the position at time τ of a point moving at velocity v in the direction of T rp ∆ with initial position x 0 , where v ≈ (∆ v , 0, 0) and x 0 ≈ (∆ x , 0, 0) for small ∆ θ . The value of D x (i, j) gives the required alongtrack shift between T ref and T rp for g rp (i, j), which has an intercept point w rp and time delay τ rp . For each of the i rows in I rp , consider a discrete number N v and N u point at the required time delay: i.e:

χ g rp (i, j), ∆ v , ∆ x = 1 if x rp ∆ (τ rp ) -w rp ≤ D x (i, j) ± α x /2 0 otherwise (4.28)
The function Ψ keeps track of the total number of focal points consistent with each candidate pair of speed and position:

Ψ i ( ∆ v , ∆ x ) = j χ g rp (i, j), ∆ v , ∆ x . (4.29) for k = 1 . . . N k and = 1 . . . N u .
The estimated velocity and along-track corrections for row i are the ones which provide the best fit:

∆ v (i), ∆ x (i) = argmax ∆v, ∆x Ψ i ( ∆ v , ∆ x ). (4.30)
The values of ∆ v (i) and ∆ x (i) are then used to correct the velocity for each transmit 

Motion compensation results

The method described above has been tested on data obtained from the Aquapix INSAS2 sonar manufactured by Kraken Robotics during the Nanoose experiments.

Three repeat-pass runs were acquired over the same area, two at a constant velocity (roughly 2 m/s for the first one and 1.85 m/s for the second) followed by a third where the velocity was set to vary between 2 ± 0.1 m/s in an attempt to induce distortions in the SAS images to study image co-registration. the flat seabed assumption made when beamforming the images, as well as some residual sound speed errors. Overall, the re-navigation technique was deemed to be successful at recovering the repeat-pass coherence between these two runs despite the significant residual motion errors. More importantly, as will be shown in Section 4.6.4, it offers a way of co-registering SAS images when warping methods fail. In fact, previous attempts to co-register images from this system using warping had not resulted in significant repeat-pass coherence (see Figure 4.27 below).

Re-navigation when the raw data is not available

In practice, it is not always possible or even desirable to access the raw element data to perform the re-navigation and beamforming, as is done here. Due to commercial or other sensitivities, only the beamformed, single-look complex data and pixel locations may be available, which is the case with the change detection data from the Kongsberg HISAS used in the warping analysis in Section 4.5.1, as well as in the following chapter on coherent change detection. It is still possible to apply the re-navigation method in this case by considering each row i of I rp as time series data from an equivalent Redundant Phase Centre at location u rp (i) = (g rp x (i, 1), 0, 0) as long as I rp is a slant range image. The same co-registration steps can then be applied by replacing u rp with u rp . In this case, when reapplying Ω u rp + ∆ + , g ref , s rp , the data s rp are the N x interpolated rows of I rp and the beamwidth of the sonar is kept constant in size at roughly the along-track resolution of the beamformed SAS image. The repeat-pass coherence obtained using this approach is shown in Figure 4.25. Compared to the results obtained using the full re-navigation solution, there is no noticeable drop in coherence and the mean coherence is slightly improved over the full re-navigation approach, from 0.71 to 0.74. Examining the distribution of the coherence over the entire area in Figure 4.26, which shows a more narrowly concentrated peak around the mode, it can be concluded that this approach has indeed improved the repeat-pass coherence. The re-navigation method in this case can be considered as a hybrid warping and re-navigation technique. The repeat-pass image is essentially being warped onto the same pixel locations as the reference image with a warping function Ξ which performs the interpolation using the delay-and-sum routine of the beamforming function Ω. This in turn uses knowledge of the image focal points and element positions to correctly carry out the interpolation step. It appears to have an advantage over both the re-navigation and warping methods (as discussed further below) in terms of maximizing the repeat-pass coherence for this sensor.

Comparison of warping and re-navigation

Finally, Figure 4.27 shows the results of using the warping approach of Section 4.5 to the AquaPix images from the Nanoose experiment in order to assess its effectiveness in co-registering the AquaPix images. The results show poor repeat-pass coherence over the area with an average coherence over the area of 0.49. Examining Figure 4.27 more closely, one observes banding in the along-track direction which is similar in nature to the one seen in Figure 4.17(b). It is possible that the severe motion errors in one or both of these images causes the 2D interpolation to incorrectly estimate the phase. It is surprising that the results of warping are not better given that there is a significant amount of repeat-pass coherence present in this scene. However, since 2D warping using bilinear or truncated sinc interpolation uses information from neighboring pixels to determine the value of the warped pixel I cr (i, j) it is possible that it fails when there is severe along-track motion.

Summary

This section has examined the precise co-registration of SAS images, a challenging step of the coherent change detection processing chain. Two approaches were considered to create a co-registered image from the repeat-pass image: warping, where the repeat-pass image is directly interpolated onto the same pixel locations as the reference image; and re-navigation, where navigational corrections are applied to the raw repeat-pass data and the full beamforming process is carried out again. For both processes, the pixel displacements are obtained by computing a number of windowed cross-correlations between the reference and repeat-pass images. For the warping approach, these displacements are used directly to perform an interpolation of the repeat-pass image, while in the re-navigation approach they are used to carry out a track registration procedure. It was found that residual along-track motion errors, attributed to uncorrected pitch, needed to be estimated and accounted for during the re-navigation process. A simple numerical method for estimating all of these residual along-track errors was developed and applied to a pair of high-frequency SAS images. The method was deemed to outperform the warping approach for this particular sensor.

The following conclusions are offered with respect to SAS image co-registration:

• Both warping and re-navigation methods can be considered as co-registration tools to be applied as appropriate. In some cases, a fast warping approach may displacement fields in across-track show that SAS images are well modeled using linear tracks and that the track registration approach is appropriate for co-registration.

• Pitch motion is the likely cause of the unusual along-track displacements that are being observed which are not correctly modeled by the linear track, although one cannot completely rule out the effect of incorrect velocity estimation.

• Finally, it was shown that it is possible to apply a re-navigation approach to SAS images where the raw sensor data is not available. In fact, for the AquaPix images shown in this chapter, it slightly outperformed re-navigation of the raw data, while re-navigation in general outperformed the warping approach on the same data. This was a somewhat surprising result as one would expect returning as close as possible to the raw data would lead to better results in terms of co-registration accuracy and repeat-pass coherence. However, this may be explained by considering the re-navigation approach using the image data directly is simply a very sophisticated warping method with a better interpolation kernel. The backprojection beamforming method used in this thesis essentially carries out an interpolation (followed by a summation). This interpolation is based solely on the signal returns and the estimated time de-lay to the pixel in the image. In the co-registration method, these time delays are computed using the pixels displacements and the linear track model. This offers a plausible explanation as to why the warping method using bilinear, truncated sinc or some other two-dimensional interpolation kernel can fail on some images: neighbouring pixels are not linearly spaced (because of pitch or other motion) or the wavelength is short compared to the size of the pixel and the phase is not adequately sampled, leading to interpolation errors. This also suggests that warping, along with a properly constructed kernel, may very well outperform re-navigation for co-registration purposes.

The next section will discuss techniques and experimental results for both noncoherent and coherent SAS change detection, including false alarm reduction, using the co-registration techniques presented here.

Chapter 5 Nevertheless, the experimental results in this chapter show that coherent change detection using repeat-pass SAS is indeed possible for time intervals of operational relevance for the systems under consideration. 1 The results in this chapter represent one of the very few demonstrations of successful coherent change detection as most published results are from simulations (e.g. [Bonnett, 2017]). Since simulations rarely capture all of the subtleties and challenges present in field data, the results presented in this chapter show that coherent change detection methods are indeed applicable to repeat-pass SAS data if one is able to overcome the challenges of track repetition, resurvey frequency and perhaps more importantly, co-registration.

Change detection experiments

The application of CCD methods developed in the SAR field were once thought to be of limited applicability to SAS, especially high-resolution high-frequency SAS systems, due to the dynamic nature of the underwater environment and the stringent co-registration requirements. However, as has been demonstrated in SAR, the ability to detect very subtle or visually imperceptible changes in a scene motivated the SAS community to pursue CCD techniques (as well as the related field of repeat-pass interferometry) and as such, while the underwater environment still poses a significant challenge for CCD methods, the results in this chapter show that the application of these methods do in fact reveal changes which may be considered "invisible" to NCCD methods.

The co-registration and change detection statistics developed in the previous chapters are applied in the present chapter to two sets of repeat-pass SAS images collected for the purpose of CCD performance analysis. The principle set of data used was collected for the results presented in Section 5.1 [START_REF] Myers | Synthetic aperture sonar track registration with motion compensation for coherent change detection[END_REF], [START_REF] Abiva | False alarms reduction techniques for synthetic aperture sonar change detection: A comparative study[END_REF], [START_REF] Midtgaard | Change detection using synthetic aperture sonar: Preliminary results from the Larvik trial[END_REF] during an experiment which was carried out using the HUGIN UUV equipped with a Kongsberg HISAS 1030 SAS in the Oslofjord near the town of Larvik, Norway. Two separate areas, one with a low level of clutter and one with high clutter, were surveyed several times at different aspects in order to obtain passes over several time intervals such that the 1 While it is difficult to quantify what resurvey time intervals are considered of "operational relevance", for CCD systems this should be considered to be at least 24 hours and preferably longer.

temporal coherence of the environment could be studied. Four targets were deployed and removed from the areas in order to provide significant changes for CCD as well as NCCD methods with temporal baselines varying from 2 to 8 days. The re-navigation method from Section 4.6 was applied to this data in order to perform the co-registration necessary for interferometric processing and coherent change detection. In addition, a false alarm reduction method was developed in order to deal with areas which suffer from inherently low SNR such as the acoustic shadows cast by objects, a significant problem for CCD methods in high-clutter areas.

Section 5.2 [Myers et al., 2017a] uses SAS imagery obtained during a second experiment which was part of the Italian Minehunting Exercise (ITMINEX) carried out in 2014 in the Mediterranean Sea near the town of Framura, Italy, using the SeaOtter UUV equipped with the Vision 1200 SAS, both manufactured by Atlas Electronik. Seven mine-like targets where deployed on an area of sand ripples which was surveyed, then the targets were removed and the area was re-surveyed roughly 24 hours after. The warping approach to co-registration from Section 4.5.1 was applied and the use of multi-look processing is examined in order to improve the change detection performance. Multi-looking has recently become a topic of investigation in SAS [START_REF] Lyons | On using multilook synthetic aperture sonar analysis for the investigation of scattering mechanisms[END_REF], [START_REF] Williams | Multi-look processing of high-resolution SAS data for improved target detection perfor[END_REF]] and here it is used to improve the performance of the CCD processing chain by processing each of the N looks separately and fusing the results. More detailed descriptions of the experimental conditions during both the Larvik and ITMINEX experiments are given in Appendix B.

Larvik experiments

Overview

The first data set was collected during the Larvik experiments which made use of the HISAS 1030 Synthetic Aperture Sonar. This system operates at a center frequency of f c = 100 kHz with a bandwidth B r = 30 kHz, and images were beamformed at a resolution of better than 3 × 3 cm using the time domain backprojection approach. The re-navigation method for co-registration was applied and since the raw sensor data would not be made available due to commercial sensitivities, the variant of the re-navigation method described in Section 4.6.3 was applied. During the experiment, two areas were selected: Table 5.1: Sediment analysis from the two experimental sites expressed as percentages of the samples. The mean and standard deviations of the grain size are also shown. Grain size is given in the Φ-scale [Krumbein, 1938] which is Φ = -log 2 (ϕ) where ϕ is the particle diameter in millimeters.

for typical co-registration approaches. A large scour mark appears to cross the zone and the water depth is between 20 and 30 meters.

• Area 2: A much more cluttered zone of gravel, sand and mud. Many clutter objects were present, meant to test the supposition that change detection can result in a reduction of false alarms compared to traditional ATR approaches.

The water depth was also between 20 and 30 meters. This area was also very near to the shoreline.

Four objects were deployed on the seafloor for change detection experiments and the area was surveyed multiple times and from multiple angles. These objects were: a torpedo-shaped underwater glider (roughly 1.8 meters in length), two concrete cubes of 0.4 m 3 (one with a smooth finish and the other rough) and a "water bag", a heavy woven vinyl/nylon mesh bladder 1.2 m × 1.4 m × 0.07 m in size that was filled with water. Photos of the deployed targets obtained using the Hugin UUV underwater camera can be found in Appendix B.1. Each run over the targets consisted of 3 passes: in Area 1, the second and third passes were 5 and 8 days after the first one and in Area 2, the passes were 2 and 5 days after the first one.

The targets were first deployed in Area 1 and were removed following the first pass and re-deployed in Area 2. Representative SAS images for each area, with the location of the targets marked, are shown in Figure 5.1. Sediment samples were taken from both areas and analyzed by the Bedford Institute of Oceanography in Halifax, Canada, for grain size distribution with the results given in Table 5.1, where the samples were taken near the "rough cube" target in both zones.

Area 1 repeat-pass coherence (Run 6)

The co-registration procedure was performed on the three passes from Run number 6 of Area 1 (Figure 5.1(a)), where coherence estimates are used in Equation (4.5) with a window size of 9 × 9 to compute the pixel displacements. This window size was chosen to be the same as the one used in the repeat-pass and the reference interferometric coherence, described in more detail in Section 5.1.6 for reducing false 2 (complex). The sediment samples were taken near the rough cube in both cases. The smooth cube is not visible in the second image as it was imaged near the nadir of the sonar so its position is marked based on its expected deployed position. alarms. In that case, the window size is a trade-off between the resolution and the precision of the bathymetry estimate [START_REF] Saebø | Coregistration of synthetic aperture sonar images from repeated passes[END_REF]. The resulting displacements for one set of passes from Area 1 are shown in Figure 5.2. It should be noted that the pattern of the along-track displacements D x show the characteristics of uncompensated pitch, which requires the application of the motion compensation procedure described in Section 4.6.2. For this run in particular, the UUV appears to have been contending with a strong tidal current, which required adjustments to the thruster motors causing pitch and speed variations, in order to maintain the set mission velocity. The results of the track optimization are shown in Table 5.2. Here, the computed values of ∆ can be seen to be consistent with each other, with the first pair of passes of Run 6 (6.1 and 6.2) approximately equal to the third pair of passes (6.1 and 6.3) minus the second pair (6.2 and 6.3). The most important factor in determining the quality of the co-registration is an accurate determination of the differential heading ∆ θ , and track differences on the order of one tenth to one twentieth of a degree can cause significant changes to the computed displacements D t .

The speed of sound corrections ∆ c are less consistent but represent about an error of 0.01% of the measured sound velocities (approximately 1450 m/s). Accounting for corrections in c does give better fits for D t , especially at long ranges.

The repeat-pass coherence magnitude Γ rp , also over a 9 × 9 pixel square moving window (representing an area of about 0.18 m×0.18 m on the seafloor) for three pair of runs are shown in Figure 5.3, where the temporal baseline varies from 3 to 8 days.

The sediment analysis from Table 5.1 shows that this area is generally homogeneous and consists of over 90% mud (here defined as silt + clay on the Wentworth scale, with a mean grain size of 8.55 µm in the collected sample). This type of seafloor maintained an average coherence of approximately 0.6 over all 3 possible temporal baselines of 3, 5 and 8 days, with no significant degradation over that time period.

Multi-pass coherence fusion (Run 6)

Since the Larvik experiment was designed with three passes over each area, it is interesting to consider the exploitation of multiple instances of the repeat-pass coherence Γ rp in order to improve the overall coherence estimation. In particular, for Area 1, there are two runs where no targets are present (Runs 2 and 3) and one with targets (Run 1) creating a set of Γ i,j rp where i and j represent the run indices and i = j since this would be the single-pass interferometric coherence, introduced below as Γ ref . The repeat-pass coherence for the three combinations of i and j is shown in Figures 5. 3(a) to 5.3(c), where Γ 2,3 rp shows no targets, as expected. This pair also represents the shortest temporal separation between runs. By fixing i = 1 as the reference run, one may create a fused multi-pass coherence is defined as:

Γ fused rp = max j=2,3 Γ 1,j rp (5.1)
The resulting Γ fused rp is shown in Figure 5. 3(d) where, as one would expect, the use of all available passes with targets has improved the overall repeat-pass coherence. It should also be noted that in order to perform the max operation as defined above, all the passes must be co-registered to the same reference image, in this case Pass 1.

∆ y (m) ∆ z (m) ∆ θ (degs) ∆ c (m/s) Passes 6.1-6. 

Area 2 repeat-pass coherence (Run 23)

The more cluttered Area 2 is analyzed next, with the track optimization results

shown in Table 5.2. As was the case in Area 1, the values of ∆ are consistent between passes, with the exception of ∆ θ . The coherence in general is poorer for Runs 23.1-23.3 therefore one would expect the quality of the co-registration to degrade, since coherence is used in finding matching control points. Here, the seabed is composed of a mix of many sediments-recall that sediment grabs by divers were taken near the "rough cube" which corresponds to the higher reflectivity zone in Area 2-a nearly equal mix of gravel, sand and mud with a larger average grain size.

The repeat-pass coherence also shows many small zones of low coherence which are caused by the acoustic shadows of the proud objects on the seafloor, for both the deployed targets and surrounding clutter, as well as large zones of low coherence at longer ranges. Residual co-registration errors (also present in the Area 1 data) are also observed and correspond mostly to the pattern of the along-track displacements 

Sources of decorrelation (Run 19)

Before proceeding to the analysis of the change detection method, it is worth considering in more detail the repeat-pass coherence Γ rp and the various sources of coherence loss that were discussed in Section 3.3. Figure 5.5 shows the repeat-pass coherence Γ rp for passes 2 and 4 and the reference image I ref for pass 2 of Run 19, with several areas of generally low coherence identified in boxes. The causes of these drops in coherence are examined to determine the likely source as well as the effect on the expected coherent change detection performance.

• Zone 1 corresponds to an area very near to the nadir of the sonar, where low coherence is caused by baseline decorrelation, which is expected to be seabed in zone 2a is more cohesive and thus less subject to reworking by the overlying fluid, and therefore this area has a larger time constant T decay ; the sediments in zone 2b are more easily affected by currents and ocean dynamics, causing the roughness of the seabed to change more quickly over time and decorrelate more quickly between passes.

• Zone 3 highlights "scalloping" pattern which is present throughout most of the image and is due to residual errors in co-registration causing misregistration decorrelation. The pixel displacements for this pair of images followed much the same pattern as those shown in Figure 5.2 and in particular, the along-track displacements D x showed forward motion errors likely caused by uncompensated pitch. The filtered velocity estimates leave some residual errors in along-track co-registration which are manifested as these patterns.

These errors are not so severe as to cause a complete decorrelation in these areas, and in fact would not likely have an effect on resulting coherent change detection performance.

• Zone 4 has lower coherence caused by the introduction of a target between the two passes, in this case the "water bag" target. This is in fact another instance of temporal decorrelation, however in the present application it is precisely the kind of coherence loss that one wants to enhance in order to be able to detect relevant seabed changes.

• Zone 5 is a large zone of coherence loss that is likely caused by two effects:

SNR decorrelation caused by the propagation conditions, which in turn causes the SAS processing to produce lower quality imagery in this area, leading to system decorrelation. Multipath reflections or perhaps internal waves in this area is assumed through the "ghostly" pattern of refraction which can be observed in the reference image. In fact, in the far bottom right hand corner of the image, the very bright area of high reflectivity is probably caused by the reflection from one of the steep rock faces present in Area 2. In addition, the upward-refracting sound speed profile measured during the Larvik trial, caused by spring runoff, resulted in higher than normal surface reflections.

The conditions mean that SNR decorrelation is likely to be caused by some form of multipath refraction effect.

• Zone 6 highlights three out of a multitude of patches of decorrelation which are caused by the shadows of proud objects on the seafloor, in this case rocks and boulders. Shadow zones are an example of SNR decorrelation and are to be expected in areas with clutter objects such as this. However, in contrast to the target designated in Zone 4, these drops in coherence are nuisance events and will cause false alarms since, based solely on the repeat-pass coherence, they are indistinguishable from the target characteristics and there is therefore no way to discriminate between these without additional information.

In an ideal coherent change detection scenario the only source of decorrelation would be the kind described in Zone 4, i.e. temporal decorrelation caused by the introduction or removal of objects or scene changes that are of interest to the application at hand. But, as has been shown in the Larvik experiment, many other sources of decorrelation are common and to be expected and therefore false alarms will need to be mitigated in any practical CCD system. This means using additional information or assuming some general signature characteristics to eliminate spurious detections. Other sources of decorrelation, such as baseline decorrelation and SNR reduction caused by propagation, may be predicted or accounted for and removed.

Larvik change detection results

The environmental conditions in the area of the Larvik experiment area were such that enough repeat-pass coherence could be maintained for sensors operating at the HISAS frequencies over survey intervals of up to 8 days. It is therefore possible to examine the performance of various change detection statistics in detecting the deployed and recovered targets. In order to compare the various capabilities of both approaches, both coherent and non-coherent methods are considered.

Change detection test statistics

The repeat-pass coherence magnitude Γ rp can be used directly as a test statistic for finding pixel-by-pixel changes between I ref and I cr . This statistic is expected to follow the sampling distribution p(|γ|; |γ|, K) from Equation (3.21) where K = 9×9 was used to obtain the results given in this section. While it is possible to correct for the bias of the coherence estimate using Equation (3.22) this was not done because: a) the effective K eff was not estimated for the HISAS, and b) ultimately, the objective is to threshold Γ rp therefore bias correction will not have any effect since the thresholds are determined empirically.

For comparison with non-coherent approaches, the absolute log intensity ratio [Preiss and Stacy, 2006, p. 41] is used as a test statistic, which is defined here as:

Q = log |I ref | 2 |I cr | 2 , (5.2)
and is computed with amplitude images that have been despeckled using a 25 × 25 pixel moving average. The absolute value is used to detect both shadows and target echoes using a single test statistic. The value of Q over the entire scene for Area 1 and Area 2 is shown in Figure 5.6.

For both statistics, an empirical threshold κ ε is determined for both Q and Γ rp such that the total number of pixels which exceed (in the case of Q) or are less than (in the case of Γ rp ) κ over the entire image is a constant proportion ε (i.e.

the 100 -(ε × 100) percentile of the values). In this way, the threshold acts as an empirical constant false alarm rate (CFAR) detector which assumes that the number of changed pixels in the image is much less than the total number of pixels in the image.

Area 1 detections

The benign, low clutter seafloor of Area 1 is such that both NCCD and CCD approaches are effective at detecting targets of the size and shape as those deployed during the Larvik experiment. A detailed analysis for Run 6, Passes 1 and 2 (shown in Figure 5.3(a)) is given here. In this particular set of runs, the glider target is located in the nadir region of the sensor and not imaged. The series of images shown in Figures 5.7 to 5.10 shows zoomed-in snapshots of a 12 m × 12 m area surrounding each target. The reference and repeat-pass SAS images are followed by the output of the detector statistics Γ rp and Q then finally the thresholded detector outputs.

In this case, the value of ε = 0.025, meaning that 2.5% of the image pixels are flagged as detections.

Smooth cube: Figure 5.7 shows the results of the change detection processing chain for the smooth cube in Area 1. Since the targets were first surveyed and then removed, the repeat-pass image is in fact the earlier run however this was done to maintain a consistent language with the reference image being free of objects. It is not surprising that this target can be detected using both the intensity ratio as well as the coherence approach. Of note, however, is an area of low coherence that is observable in the coherence image that is not detected (or perhaps faintly) in the intensity ratio image. This could be attributed to many factors, such as dragging of the target or other seabed disturbance during recovery or currents in the area causing scouring.

Water bag:

The water bag shows similar results in Figure 5.8, where both the coherent and non-coherent methods are able to detect the target, however the coherence image also shows a pair of linear features connected to or emanating from the target. While this disturbance is also evident in the intensity ratio (and also slightly observable in the reference image), it is very clear in the drop in coherence caused by its presence. This change is thought to be caused by lines used by the divers to retrieve the object during the recovery, as it was a large and awkward target that required a more significant recovery procedure than the two cubes or the glider.

Rough cube:

The rough cube, shown in Figure 5.9, is also easily detectable by both approaches. The coherence image shows some disturbance manifested as a drop in coherence, in the area surrounding the object. Although not significant enough to be below the threshold, it is likely to have been caused by the divers taking sediment samples near this object.

Unknown detection: Figure 5.10 shows a fourth detection (not the glider) which is located directly in the center of the square created by the object deployment locations. This unknown detection was present in all the repeat-pass coherence runs over this area, with a similar size and shape. It is not known what caused the drop in coherence in this exact location but it is thought to be a result of the deployment and recovery of the targets. There is no visible evidence of anything in this area in either the reference or repeat-pass intensity images. The intensity ratio, when one is alerted to the presence of a possible detection by examining the coherence, appears to also show slight changes in intensity but not enough that it would be called a detection by a human operator. Its position in the center of the target locations suggest it may have been due to the deployment or recovery operation, such as an anchor or marker from the dive boat.

False alarm mitigation

Area 2 was considerably more challenging, with a great deal of clutter objects on the surrounding seabed consisting of small pebbles and large rocks. Clutter of this kind should not be problematic since one of the main drivers for using change detection methods is their resilience to persistent clutter, however as was shown in Section 5.1.4, the acoustic shadows cast by proud objects are inherently non-coherent, causing drops in coherence when no change has occurred. NCCD methods are robust to this effect, but it will cause false alarms for CCD methods and therefore methods to mitigate false alarms are required. Before discussing individual detections in Area 2, some strategies for false alarm mitigation are considered.

False alarm mitigation methods for change detection is currently an active area of research, for instance [START_REF] Abiva | Towards adaptive thresholding for sub-pixel co-registration and anomaly detection[END_REF], [START_REF] Abiva | False alarms reduction techniques for synthetic aperture sonar change detection: A comparative study[END_REF],

[G- [START_REF] Tucker | Canonical correlation analusis for coherence change detection in synthetic aperture sonar imagery[END_REF], [G-Michael et al., 2016a]. To reduce the effect of acoustic shadows from pre-existing objects, as well as other low SNR zones, par- The same targets which were deployed in Area 1 were recovered and re-deployed into Area 2. They are examined again here, this time in a more cluttered environment. This time it was the smooth cube which was in the nadir of the sonar and thus not imaged during this set of runs.

Water bag: The water bag in Area 2, shown in Figure 5.12, is in a position which demonstrates most significantly the benefit of using a reference coherence map as a way to reduce false alarms from acoustic shadows of other objects. As can be seen by comparing the reference and repeat-pass images, it was deployed very near a rock of roughly the same size and shape as the water bag, casting an acoustic shadow in its vicinity (the rock is the object below and to the right). drop in coherence caused by the shadow of the nearby rock has almost been entirely eliminated. In this area, a κ 0.05 is used for Γ rp however κ 0.025 is used for both Q and Γ m , meaning a lower percentile was required for Γ rp in order to detect the target at the cost of doubling the number of pixels detected over the image. Also of note is once that again a line is connected to this target, similar to the situation in Figure 5.8. This is evidence that the deployment mechanism for this target disturbed the seafloor enough to result in coherent changes that are not detected by either visual inspection of the intensity images or the non-coherent test statistic Q.

Rough cube: Figure 5.13 shows the rough cube target in Area 2 along with the non-coherent and coherent (using the masked coherence) change detection test statistics. One can observe that in the area of this target, the contrast of the repeatpass image is not as good as in the reference image however it does not appear to affect the repeat-pass coherence. The object itself is detectable using both test statistics, however the coherence image shows three, possibly four, distinct spots of reduced coherence surrounding the object. As was the case in Area 1, these are likely attributable to the sediment grabs taken by the divers near this object. There is, however, no visible indication of these disturbances in either the SAS images or the intensity ratio.

Glider: Figure 5.14 shows the glider target, which was deployed in an area of lower reflectivity (presumed mud) zone of Area 2. It is easily detectable by both coherent and non-coherent methods. In addition, an anchoring mechanism near the target, meant to keep this object from drifting away in currents, is also detectable in the top right-hand part of the image. This anchor is roughly a few centimeters in size, demonstrating the significant capability of change detection methods in being able to identify very small scale changes between images. The precise co-registration of the two images is what makes this possible for both CCD and NCCD approaches.

Summary of the Larvik experiment results

The Larvik experiment was one of the first designed specifically to validate coherent approaches to change detection and was deemed very successful in doing so. The development of CCD algorithms was aided by the multiple runs over the targets, at different aspect angles, and with different temporal baseline over different environments. This also enabled the development of co-registration and false alarm reduction techniques that are needed to make practical CCD systems robust in different environments, as well as providing a greater understanding of the various sources of decorrelation likely to be encountered in practice. The accurate co-registration of images remains a key challenge for interferometric processing of repeat-pass SAS data. While the track registration method described in this thesis offers a practical approach to this problem, a significant amount of processing was required to correct for all of the distortions in the images in order to co-register them. As discussed in Chapter 4, pitch motion is the most likely cause of the large scale distortions in the images and a relatively trivial modification to the beamforming process could be made to incorporate platform attitude information from auxiliary navigation sensors so that these are removed as much as possible before attempting to co-register SAS images. If the track parameters are to be used for reasons other than co-registration, for instance in computing the baseline offset between the passes for repeat-pass bathymetry, then it will be necessary to separate and validate the values of ∆.

In the HISAS images, residual co-registration errors can be seen in Figures 5.3 The coherent change detection approach was capable of detecting very subtle and in some cases visually imperceptible changes in the Larvik data set. Several examples (Figs 5.8,5.7,5.13) are given where Q is not able to detect some changes seen in the coherence magnitude Γ rp . The use of the single-pass interferometric coherence as a reference mask was also able to eliminate low coherence zones caused by the acoustic shadows of existing objects which would otherwise be detected by CCD algorithms, and the detection threshold could be raised in the masked coherence Γ m while still detecting the targets in the high-clutter area. It was possible to achieve coherence over temporal baselines that are of operational relevance for monitoring and surveillance of sensitive channels. The experiment also showed that non-coherent methods are extremely effective at detecting changes in images that are manifested as differences in the mean backscattered energy.

Practical change detection systems should further refine the detections through filtering based on size and shape and could also employ additional image or statistical analysis methods in order to further reduce the false alarm rate. Consider the images shown in Figure 5.15: These were created through a collaboration between FFI and NSWC-PC to examine the effectiveness of the reference coherence as proposed in this chapter in improving false alarm reduction for CCD, extracted from [START_REF] Abiva | False alarms reduction techniques for synthetic aperture sonar change detection: A comparative study[END_REF]. et al., 2018] showing detections using the PCA-ICA detection method from [START_REF] Abiva | Towards adaptive thresholding for sub-pixel co-registration and anomaly detection[END_REF] on the Larvik SAS data from Area 2. (a) shows the repeat-pass coherence Γ rp and (b) shows the masked coherence Γ m . By using the masked coherence, false alarms are reduced and the deployed targets are detected.

in [START_REF] Abiva | Towards adaptive thresholding for sub-pixel co-registration and anomaly detection[END_REF] applied to it. None correspond to the deployed targets. 3 By applying the same method to Γ m , the detections now correspond to the deployed targets, along with a few false alarms.

ITMINEX experimental results

Overview

The Larvik experiment validated the use of interferometric processing of repeat-pass SAS data and that detecting changes through the reduction in coherence caused by the introduction of objects was achievable under the environmental conditions present in the Olsofjord. In 2014, a second data set of repeat-pass SAS data in which objects were at first present and subsequently removed was collected, this time in the Mediterranean Sea in an area which was covered in sand ripples. The system used in this experiment was the Atlas Electronik Vision 1200 which operates at a center frequency of f c = 150 kHz with a processed bandwidth of 30 kHz and was mounted on the SeaOtter UUV. The beamformed SAS image resolution is better than 3 × 3 cm, similar to the HISAS system. The experiment took place near the town of Framura, Italy, in the Western Mediterranean during the month of May. A standard "lawn mower" pattern was run over the area containing seven mine-like targets, after which the targets were removed and the area surveyed again approximately 22 hours later. The experiment was part of scientific studies taking place under the auspices of an international mine countermeasures exercise called the Italian Minehunting Exercise, or ITMINEX [START_REF] Couillard | IT-MINEX'14: experimental description and preliminary results[END_REF]. Figure 5.16

shows the reference and repeat-pass images that are used in this section, showing the targets present in a straight line at roughly 105 meters in ground range.

The repeat-pass image shows that the targets have been removed, and the sand ripples have already reformed. Detecting targets in sand ripples can be challenging [Williams, 2015], [START_REF] Chapple | Detection of mine-like objects and change detection using sonar imagery from autonomous underwater vehicles[END_REF], particularly when the ripple size is on the order of the target shape, and may require special processing in these zones [START_REF] Picard | Seafloor description in sonar images using the monogenic signal and the intrinsic dimensionality[END_REF], [START_REF] Daniell | Unsupervised seafloor classification for automatic target recognition[END_REF] or a change in aspect to reduce the effect on the target signature. Details of the ITMINEX experiment can be found in Appendix B.4.

3 Interestingly, detection #6 in both panels corresponds roughly to the location of the deployed "smooth cube" target, in the nadir region of the sonar. It is not visible in the SAS image. for shadow zones adequately. It was expected that using amplitude-only images would provide more robust co-registration parameters in areas of low coherence, however this does not appear to be the case. Based on these results, the estimates using the complex images with a window size of K = 64 × 64 pixels were selected.

The computed displacements (in pixels) are shown in Figure 5.17. These show that in range D m , the images are nearly co-registered with only slight adjustments needed, likely caused by residual uncertainties in the bathymetry estimation. However, the along-track displacements D n are significantly larger with more variation.

A general trend from smaller displacements at the beginning of the track to larger displacements at the end is observed.

Framura experiment repeat-pass coherence

The log-intensity ratio Q and repeat-pass coherence Γ rp for the Vision 1200 images are shown in Figure 5.18. To compute the intensity ratio, the images are despeckled and normalized using the mean pixel value as function of range. This acts as an empirical TVG and compensates for residual beam pattern, grazing angle and spreading effects. Looking at the intensity ratio (Figure 5.18(a)), the seven targets are clearly identified along a deployment line. Some areas show faint indications of having changed -notably the zone at x ≈ 100 m in along-track and y ≈ 120 m in across-track. This could be due to the migration of the sand ripples in these areas, however the fact that it appears to get worse with across-track distance suggests that another effect is at work. erator. There are also what appear to be horizontal strips of low coherence that may be artifacts of the SAS processing. It was not expected that a great deal of repeat-pass coherence could be maintained in this area, as the presence of sand ripples implies the presence sediment transport processes which give rise to them [START_REF] Crawford | Linear transition ripple migration and wave orbital velocity skewness: Observations[END_REF]. One should anticipate that these processes will be detrimental to maintaining the temporal coherence necessary to be able to perform CCD.

Multi-look processing

The application of the co-registration and coherent change detection method developed thus far did not result in high enough repeat-pass coherence such that one could reliably detect the removal of the targets during the ITMINEX experiment.

Multi-look processing offers the possibility of extracting information from the coregistered images which may improve the detectability of the targets. The concept was to create a number of "squinted" SAS images of the scene by filtering the along-track bandwidth of the images. With the sand ripples seen at these different aspects it was thought that perhaps each individual look could slightly improve the coherence of the scene in these particular environmental conditions.

Recall from Section 2. The relatively narrow beamwidth of this sonar means that the target signature does not vary drastically from one squinted image to the next. The angular sector for the images spans from -6 • to +6 • . As much of the acoustic energy is concentrated in the centre of the beam, the edge images, looks 1 and 4, appear to suffer from greater resolution loss.

It is now possible to create N repeat-pass coherence maps Γ rp and combine the results in order to improve the overall detectability of the targets. Since the idea was that some looks would provide better coherence than others in the sand ripple zone, the maximum coherence value for each of the pixels is selected:

Γ ml rp = max Γ rp .
(5.7)

This multi-look repeat-pass coherence can then used for CCD purposes.

Bias correction

Multi-look processing reduces the effective resolution, in the present case in the along-track direction, by a factor of N . As was discussed in Section 3.2.2.1, this will increase the bias in the coherence estimate by reducing the number of samples K. When comparing the multi-look coherence Γ ml rp with the standard repeat-pass coherence Γ rp , it is important to mitigate this bias effect since the multi-look coherence will show an increase in coherence as a result of this bias and one may erroneously conclude that the repeat-pass coherence has been improved. In order to reduce the bias in Γ ml rp the non-multi-look images are sub-sampled in the alongtrack dimension by a factor of N and a K/N × K window is used in the coherence estimate in order to maintain approximately the same total number of samples K for both techniques. This was done in producing the results shown in Figure 5.18(b).

CCD results

In Figure 5.20, the results of the multi-look processing are shown for N = 4. One would expect that the overall coherence would be increased by using the maximum fusion rule in Equation (5.7) which is in fact observed. There are also areas which were not coherent in the full resolution images which show an increase in repeat-pass coherence in at least one of the multi-look images, resulting in a better discrimination of the targets.

Figure 5.21 shows the multi-look coherence of the complex images and the intensity ratio from Figure 5.18(a), zoomed in to the fourth and fifth targets. Also shown are the corresponding co-registered repeat-pass and reference images. The drop in both coherence and intensity ratio caused by the removal of the targets in the scene are clearly visible. While the intensity ratio focuses on the changes in the scene reflectivity caused by the physical presence of the targets, the coherence also indicates changes that are not visible in the magnitude images (shown on the right). While it is not possible to determine the exact cause of this change, as this was not controlled in this experiment, two hypotheses are offered:

• The presence of sand ripples implies the presence of underwater currents or surface wave driving sediment transport. By placing these objects in the current, a vortex may be created behind the objects which could have disturbed or otherwise reconfigured the speckle pattern behind the target. As the drop in coherence is roughly perpendicular to the ripple direction -the main direction of the creating these ripples -this may be interpreted as evidence that supports this possibility.

• The targets may have been dragged during recovery, and the ripples were reformed by the underwater currents. These new ripples would have different speckle patterns, causing a drop in coherence.

In both cases, the drop in coherence is attributed to the effect of ocean processes on the seabed over large areas but at sub-resolution scales, which are then detectable through CCD means.

Comment on the use of multi-look processing

Finally, it is worth considering how the use of multi-look processing increases the overall repeat-pass coherence of the scene. Figure 5.22 shows which look of the N = 4 looks was selected by having the maximum value to be used in Γ ml rp . Looks = 2 and = 3, where most of the energy is concentrated due to the sonar beamwidth, are the dominant values in this image. The values, however, appear to follow horizontal bands which suggest that the multi-look processing is correcting some residual along-track co-registration errors rather than exploiting some kind of directionality in the sand ripple field as was originally intended. The qualitative improvement in the CCD performance against the targets, as well as the revelation of changes not visible in the amplitude-only images, through the use of multi-look processing motivates additional research on this topic -it suggests that it could provide additional information which could be exploited for the co-registration of SAS images.

Summary of the ITMINEX experiment

The experimental conditions at the ITMINEX experiment site in Framura were considered more challenging than at the Larvik experiment site due to the high temporal decorrelation expected in this area. This was mitigated by the short temporal baseline between surveys. In addition, the slightly shorter wavelength of the Vision 1200's mid-frequency band made co-registration of images from this sensor more demanding in terms of precision. However, even given these challenges, the removal of the targets was detected, although several large zones of low coherence remained. The intensity ratio also performed well, highlighting all of the targets. The most interesting result of the ITMINEX experiment was the ability of repeat-pass coherence to identify changes in the scene not seen in the amplitude images. In particular, the long "tail" of coherence loss behind the target which do not appear in the images or the intensity ratio are possibly caused by ocean processes operating at a sub-resolution level. If this is in fact the case, then repeatpass SAS offers the possibility of remotely sensing the ocean environment to not only detect targets but also observe natural phenomena (e.g. biological activity)

occurring at a very small scale and over very wide areas.

Summary

This section presented results derived from data collected using two different commercial SAS systems during experiments at sea that were designed to validate the concept of coherent change detection using repeat-pass synthetic aperture sonar. In both experiments, the co-registration methods from Chapter 4 (both warping and re-navigation) were successful in mitigating decorrelation caused by misregistration errors, however the presence of residual misregistration errors are highly likely, as evidenced by the scalloping pattern present in the repeat-pass coherence in the Larvik areas. Because CCD is more resilient to those errors than other applications of repeat-pass interferometry, the detection of coherent changes is still possible.

Non-coherent change detection, achieved in the present case through the use of the log-intensity ratio, is still a powerful approach to change detection, particularly when applied to images which have been precisely co-registered using the approaches described in this thesis. NCCD is likely to be more robust against a greater set of environmental conditions than CCD and even in the challenging case of the ITMINEX scenario, where the deployed objects were difficult to detect visually due to the presence of sand ripples, the NCCD approach was able to successfully locate them. In the Larvik data, even in the high-clutter area, NCCD applied to the co-registered images resulted in no false alarms [START_REF] Abiva | False alarms reduction techniques for synthetic aperture sonar change detection: A comparative study[END_REF]. The appeal of CCD remains the possibility of detecting scene changes that are not perceivable by the NCCD approach. As was shown in both the Larvik and ITMINEX experiments, it is indeed possible for changes in the distribution of scatterers or the roughness of the seabed, caused by human intervention or natural ocean processes, to be detected by the loss of repeat-pass coherence. Several examples were shown where pixels in the scene that were flagged as coherent changes showed no indication of such in either the intensity ratio image or through visual inspection by a human operator.

The principle challenge of both the Larvik and the ITMINEX experiments was the range of environmental conditions not under control, resulting in an inability to ground-truth off of the coherent changes being observed in the data. While there is strong evidence that some of the coherent changes that cannot be attributed to the presence of new targets are due to natural processes (e.g. currents changing the subresolution configuration of the scatterers) or human intervention (e.g. deployment and recovery of the target by divers), it is not possible to confirm their exact cause.

Future data collection experiments should emphasize the creation of purely coherent changes and determining what kind of changes one can expect to be able to detect using CCD. While this is to some degree easier for SAR experiments-mowing an area of grass or driving through a field-doing so in the underwater environment is considerably more difficult.

Chapter 6

Modeling and future work given a robust and accurate co-registration method, the repeat-pass coherence of an underwater scene could be recovered and changes could then be detected by exploiting the interferometric phase between the images. Some of these changes were not visible using non-coherent approaches which use only the image intensities. One key property that all of the SAS systems analyzed until now have in common1 is that they are all high-frequency systems, operating with a center frequency f c from 100 kHz up to 330 kHz. The acoustic scattering at these frequencies is typically dominated by geometric effects, with little to no penetration into the sediment and the temporal coherence of the seafloor (as shown experimentally in the previous chapters) is in large part due to changes in the seabed roughness caused by physical, biological or anthropogenic activities. The diffusion equation in the model by [START_REF] Jackson | Acoustic observation of the time dependence of the roughness of sandy seafloors[END_REF] predicts the temporal coherence using this assumption,

showing an exponential relationship between temporal decorrelation and system frequency. Repeat-pass coherence for high-frequency SAS has already been examined through modeling, notably in [Bonnett, 2017] and [START_REF] Johnson | Simulation of rippled-sand seafloor evolution for synthetic SAS imagery[END_REF] as well as others. Most high-frequency SAS simulators (e.g. the Shallow Water Acoustic Toolkit (SWAT) [START_REF] Sammelmann | Synthetic images of proud targets[END_REF]] [Sammelmann, 2003]) use a mixture of analytical solutions for simple shapes with either point scattering or smooth/rough facet scattering for more complex shapes, i.e. using the Kirchhoff approximation for facets. Propagation is usually modeled using some variation on ray tracing [Hunter, 2006]. However, one of the effects that was observed during the Larvik experiment was that areas with low reflectivity, presumed to be a finer sediment based on the grain size analysis of sediment grabs (c.f. Figure 5.1), showed a higher degree of temporal coherence. While this is likely due to a combination of effects, one contributing factor may be that the more favourable impedance match at the water / sediment interface allows for greater penetration of the signal into the sediment, where the temporal decorrelation is less affected by ocean processes.

This suggests that using lower frequency, longer wavelength sonars which penetrate into the sediment could offer the attractive possibility of performing coherent change detection over longer temporal baselines. They may also offer a solution to detecting targets that have been buried into the sediment. Low-frequency Synthetic Aperture Sonar systems remains an active area of research with many challenges to be overcome. Projects currently underway, such as CMRE's High-Resolution Low-Frequency SAS [Pailhas, 2018] aim to develop the next generation of these sensors.

There are many questions that come to mind when considering future coherent change detection research, for instance:

• Which sensor characteristics, such as frequencies and pulse lengths, offer the best tradeoff between robustness against temporal decorrelation and target detection performance, and how can one best design a future SAS system specifically for coherent change detection applications? This question becomes more interesting in light of the current development of multi-frequency systems, such as the US SSAM system as well as others, which are becoming increasingly available.

• What type of changes can be detected using a coherent change detection approach as a function of these sensor characteristics?

• Can data from low-frequency systems be accurately co-registered?

The preliminary work presented in this chapter is meant to examine the possibility of CCD using lower frequency SAS systems through modeling using a viscoelastic Finite-Difference Time-Domain (FDTD) model of the wave propagation. It is an implementation of the seismic wave propagation model from [START_REF] Robertsson | Viscoelastic finite-difference modeling[END_REF] [ [START_REF] Blanch | Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique[END_REF] (see also [START_REF] Fawcett | Finite difference modeling of scattering by objects in the seabed[END_REF]) into the CUDA programming language for computational efficiency which allowed the simulation of problems of relevant size. The simulations were performed in 2D as per the original papers, although the extension of the equations to 3D is also provided at the end of this chapter. The objective here is not to simulate low-frequency SAS images.

The computational requirements of a full 3D simulation for realistic SAS imaging geometries using the FDTD method did not allow for this. In addition, much of the theoretical development of the basic principles of acoustic wave propagation modeling and theories of viscoelasticity are omitted. The objective of this chapter is rather to present results from the use of the viscoelastic model in order to provide motivation for future research in this area.

The wave equation

The wave equation for acoustic propagation in an ideal fluid are derived from the laws of fluid mechanics [Medwin and Clay, 1998, p. 38-39] using what are known collectively as the Navier-Stokes equations. The derivation of the wave equation from these basic principles is omitted here as it has been done elsewhere (see [Hunter, 2006], [START_REF] Jensen | Computational Ocean Acoustics[END_REF]). Only the parts needed to define the FDTD model developed in this chapter are stated. The development used here closely follows the one found in [Zerr, 2014]. Through a number of linear approximation to Navier-Stokes equations, one obtains the following system which governs the change in pressure p as a function of space and time in an ideal fluid with a constant density ρ in kg/m 3 is:

- ∂p ∂x = ρ ∂u ∂t (6.1) β T ∂p ∂t = - ∂u ∂x (6.2)
where u is the particle velocity and β T is the compressibility coefficient of the fluid:

β T = 1 ρ δρ δp 0 T , ( 6.3) 
for a constant temperature T and p 0 is the pressure equilibrium of the medium. β T is a measure of the relative change in volume that the fluid undergoes in response to pressure, and is the inverse of the bulk modulus K = 1 β T . Equation (6.1) indicates that a pressure gradient produces an acceleration of the fluid and Equation (6.2) indicates that a velocity gradient compresses the fluid. By spatially differentiating Equation (6.1) and temporally differentiating Equation (6.2), this system can be placed into a single 2nd order equation:

∂ 2 p ∂x 2 = ρβ T ∂ 2 p ∂t 2 = 1 c 2 ∂ 2 p ∂t 2 .
(6.4) Equation (6.4) is the standard form of the what is well-known as the wave equation. One may also pose the wave equation as a function of the particle velocity u or density ρ, however this is much less common in practice as most underwater sensing instruments are designed to detect changes in pressure. Note that the FDTD method developed below uses the first order Equations (6.1) and (6.2) to compute the wave propagation.

These equations allows the definition of the speed of propagation of the acoustic wave:

c = 1 √
ρβ T (6.5)

Extension to three dimensions

Equations (6.1) and (6.2) can be extended to three dimensions to define the wave propagation with:

-∇p = ρ ∂u ∂t (6.6)

β T ∂p ∂t = -∇u (6.7)
where ∇ is the gradient and u is the particle velocity vector. The 3D wave equation then becomes:

∇.∇p = ∇ 2 p = ρβ T ∂ 2 p ∂t 2 = 1 c 2 ∂ 2 p ∂t 2 , (6.8)
where ∇ 2 p is the Laplacian of p.

The FDTD approach

The principle behind the FDTD approach is to discretize the problem space into a uniformly sampled grid and to approximate the partial derivatives in Equations (6.6) and (6.7) using finite differences in the time domain [START_REF] Taflove | Computational Electrodynamics: The Finite-Difference Time-Domain Method[END_REF]. This approach was first applied to solving Maxwell's equations in the field of electromagnetics by [Yee, 1966]. This section will very briefly describe the FDTD method for acoustic wave modeling, starting with an ideal fluid and then adding terms to model the viscoelastic properties of sediments and solids.

Using central finite differences, the spatial variation of the pressure p in one dimension (along the y axis) at time step n, at time t = n∆ t , can be written as: .9) where in this section ∆ t is the time discretization factor and ∆ y is the spatial sampling in the y-dimension (y = i∆ y ). Similarly, the particle velocity u x can be written as:

∇p = ∂p ∂y → p| n i+1 -p| n i ∆ y , ( 6 
∂u y ∂t → u y | n+0.5 i+0.5 -u y | n-0.5 i+0.5
∆ t , (6.10) with u y along the y-axis. In order for the variation in particle velocity to coincide with the pressure value p n i its values are taken at time index i -0.5 and i + 0.5 and its spatial samples are offset by 1/2 sample. Using these definitions of the finite difference approximation, Equation(6.7) can be evaluated as (recalling that K = 1/β T = ρc 2 ): .11) and Equation (6.6) becomes

p| n+1 i = p| n i -∆ t K u y | n+0.5 i+0.5 -u y | n-0.5 i+0.5 ∆ y , ( 6 
u y | n+0.5 i+0.5 = u y | n-0.5 i+0.5 - ∆ t ρ∆ y p| n i+1 -p| n i .
(6.12)

The FDTD method, therefore, estimates the pressure and particle velocities at each point in discretized space at each time step by first estimating u followed by p, having decomposed the wave equation into its two components.

2D fluid model

Passing from 1D to 2D requires the addition of the z component of the particle velocity which results in the following set of equations: The expression of these equations using finite differences is then:

∂u y ∂t = - 1 
u y | n i,j = u y | n-2 i,j - ∆ t ρ∆ y ∆ z p| n-1 i+1,j -p| n-1 i-1,j (6.16) u z | n i,j = u z | n-2 i,j - ∆ t ρ∆ y ∆ z p| n-1 i,j+1 -p| n-1 i,j-1
(6.17)

p| n i,j = p| n-2 i,j - ρc 2 ∆ t ∆ y ∆ z u y | n-1 i+1,j -u y | n-1 i-1,j + u z | n-1 i,j+1 -u z | n-1 i,j-1 (6.18) (6.19)
where j indexes the z-dimension.

2D viscoelastic model

In order to be able to model sediments and solid objects, one must add a viscoelasticity component to the ideal fluid model developed thus far. In a fluid, the wave propagates in the direction of the particle velocity -this is called the compressional wave. In solids, because of the interactions between its elementary particles, a second type of wave which propagates in the direction perpendicular to the particle velocity is created -these are called shear waves. The measure of elastic deformation of a material to expand in a direction perpendicular to the application of a compressional force (such as acoustic pressure) is called the Poisson ratio ν. The bulk modulus K for a solid is expressed by the Lamé parameters2 :

Λ = Eν (1 + ν)(1 -2ν) (6.20) µ = E 2(1 + ν) (6.21)
where E is Young's modulus, a measure of the stiffness of a material and µ is the shear modulus. The bulk modulus K can be expressed in terms of these parameters as K = Λ + (2/3)µ. The equations governing the acoustic propagation are then: This set of equations require different values for the compressional sound velocity (now denoted c p ) and shear velocity (c s ) and if the shear modulus µ = 0, the equations revert back to the ones for an ideal fluid. Also note the addition of a pressure cross-term p yz . The viscosity is computed by a time-domain convolution of the pressure with an attenuation factor which requires significant computational resources. A finite-difference approach to modeling wave propagation with spatially varying compressional and shear attenuation for seismic waves was developed by [START_REF] Robertsson | Viscoelastic finite-difference modeling[END_REF], where the authors propose the use of memory variables in order to avoid the explicit calculation of the temporal convolution. In the simplified attenuation model used in this section, three variables r yy , r zz and r yz are required, thus trading off additional memory requirements for computational efficiency. Associated with these variables are three parameters: the compressional strain relaxation time τ p ε ; the shear strain relaxation time τ s ε and the stress relaxation time τ σ which is set here to be the same for both compressional and shear waves. The set of equations that need to be solved are now: 

∂u y ∂t = - 1 
∂r yy ∂t = - 1 τ σ r yy + η τ p ε τ σ -1 ∂u y ∂y + ∂u z ∂z -2µ τ s ε τ σ -1 ∂u z ∂z (6.32) ∂r zz ∂t = - 1 τ σ r zz + η τ p ε τ σ -1 ∂u z ∂z + ∂u y ∂y -2µ τ s ε τ σ -1 ∂u y ∂y (6.33) ∂r yz ∂t = - 1 τ σ r yz + µ τ s ε τ σ -1 ∂u y ∂z + ∂u z ∂y (6.34)
In the case of no attenuation, τ p ε /τ s ε and τ s ε /τ σ become one and r yy , r zz and r yz all become zero, thus reducing to the standard equations of elasticity. The FDTD method discretizes these differential equations in both space and time to obtain a set of discrete equations. Pseudo-code for this is given in Algorithm 6.1 where fourth-order-accurate spatial difference scheme is used, derived by a Taylor series expansion, defined as [Taflove and Hagness, 2005, p. 139-140] (recalling that the temporal derivatives are taken at ±0.5 samples, i.e. Equation (6.10)) for a function f :

f | n+0.5 i+0.5 -f | n-0.5 i+0.5 ∆ t = f | n i+2 + 27f | n i+1 -27f | n i + f | n i-1
24∆ y . (6.35)

The quality factor

Although a thorough development of viscoelastic modeling is beyond the scope of this chapter (an excellent description is given in [START_REF] Blanch | Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique[END_REF] as well

as [START_REF] Fawcett | Finite difference modeling of scattering by objects in the seabed[END_REF]), the compressional and shear strain relaxation times τ p ε and τ s ε as well as the stress relaxation time τ σ are key parameters in the attenuation model developed above. The attenuation in solids is captured by the quality factor Q which is defined as the number of wavelengths over which a harmonic plane wave must propagate before its amplitude decreases by a factor of exp(-π). The quality factor as a function of angular frequency ω may be written in terms of the strain and stress relaxation times as: .36) where τ ε equals τ s ε or τ p ε depending on whether the shear or compressional quality factor is being determined. Define (6.37) and replacing into Equation (6.36) one obtains:

Q(ω) = 1 + ω 2 τ ε τ σ ω(τ ε τ σ ) . ( 6 
τ γ = τ ε τ σ - 1. 
Q(ω) -1 = ωτ σ τ γ 1 + ω 2 τ 2 σ (1 + τ γ ) , (6.38)
It is possible to solve for τ γ for a range of angular frequencies and a desired quality Q 0 by numerically integrating [START_REF] Blanch | Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique[END_REF]: where

τ γ = ωmax ω min F (ω, τ σ )dω ωmax ω min (F (ω, τ σ ))
F (ω, τ σ ) = ωτ σ 1 + ω 2 τ 2 σ , ( 6.40) 
and τ σ = 1/(2πf c ). At high quality factors, the Q values are too low, particularly at lower frequencies in the band. For the simulations in this chapter this dispersive effect will be ignored meaning that a single value for Q will be used for all frequencies and therefore lower frequencies will be attenuated more than they would be in reality. Table 6.1

gives estimated quality factors for both compressional and shear waves as well as other properties for materials used in the following simulations. The quality factor is found by inverting the estimated attenuation coefficient, typically expressed as dB/λ or dB/m.

Incident field

The model in this thesis uses excitations at source grid points in order to generate an incident field. Since the source is always in the fluid medium, the viscoelastic terms can be ignored. Setting the pressure field (in 2D) at source index point (i s , j s ) for a pulse defined by s p (t) is done using: 

p is,js yy = p is,js yy + t 0 s p (t)dt ∆ t ∆ y ∆ z (6.41)
= p is,js zz + t 0 s p (t)dt ∆ t ∆ y ∆ z (6.42)
Two pulses are considered here: a Ricker pulse defined as:

s p (t) = (1 -2π 2 f 2 c t 2 )e π 2 f 2 c t 2 (6.43)
and the chirp pulse previously defined in Equation (2.7): (6.44) where K r is the FM sweep rate. The main issue with using a point source is that in general, for the SAS CCD problem under analysis, the source may be very far away (in terms of the number of wavelengths) of the seabed and target under consideration. Because FD modeling requires on the order of 10 to 20 grid points per λ, this can add significant memory requirements in addition to computation time as the wave propagates through the water column from the source to the seabed.

s p (t) = w r (t) cos 2πf c t + πK r t 2 ,
It is possible to model an incident field from a distant source if the waveguide between the source and the object is simple (as is the case of the simulations in this chapter) by analytically computing the incident field at the edges of the grid. These approaches were not implemented for the modeling results presented here but are likely to be necessary for any extensions of the FDTD approach to the 3D case.

Boundary attenuation

The finite nature of the FDTD computation means that boundary conditions must be imposed on the acoustic field at the edges of the grid. When the acoustic waves reach the edge of the grid, the zone outside acts as a vacuum which reflects the wave back into the scene and becomes a parasitic source which degrades the quality of simulation. The true conditions are such that the scattered field should only be outgoing. Several methods to attenuate the wave when it reaches the edges of the grid have been proposed, such as the Absorbing Boundary Conditions (ABC) or Perfectly Matched Layer (PML) approaches. The approach used here is to define an absorbing layer which surrounds the computation space and gradually attenuates the wave in order to mitigate any spurious bounces. One way to define this layer is to choose a very low Q factor at the end of the grid and to gradually transition from the Q at the boundary to the lower value over a set number of grid points. The method chosen here is implemented by multiplying the wave field [START_REF] Fawcett | Finite difference modeling of scattering by objects in the seabed[END_REF]] by an attenuation factor ς a at each time step. This constant is 1 at the grid / boundary interface and tapered to a smaller value ς min at the edges of the grid. The tapering function used here is defined as: (6.45) where N is the number of grid points used in the boundary and essentially defines a sigmoid function from 1 to ς min . Values of N = 100 and ς min = 0.98 were used in the following simulations.

ς a (i) = (1 -ς min ) 1 + cos(iπ/N ) 2 2 + ς min ,

CUDA implementation

The FDTD code was implemented in the CUDA [START_REF] Nickolls | Scalable parallel programming with CUDA[END_REF] the number of required time steps due to the small ∆ t that is needed to accurately simulate scenes of interest for the problem under consideration, the use of GPUs is the not only better but in fact necessary to achieve reasonable execution times. As an example, using the averages for a 1200 × 1200 grid from Table 6.2, simulating the two-way travel time to 20 m slant range (40 m total distance) with a time step of ∆ t = 5 × 10 -9 seconds requires 5,333,333 iterations, the MATLAB version would need nearly 11 days of estimated execution time to complete versus 88 minutes using a GPU. It is interesting to note that the use of for loops in C is slower than native MATLAB code. This is likely due to highly efficient MATLAB subroutines for performing circular shifts and dot products of matrices. Also note that the CUDA implementation is not optimized in any way to better exploit the spatial compute capability of the graphics cards.

2D model validation

The FDTD model was first tested in order to assess its accuracy in modeling the elastic response of a known object for which an analytical solution was available.

To do this, the propagation from an acoustic wave is modeled from a point source towards an infinite elastic aluminum cylinder whose analytical response can be computed in the frequency domain and then created in the time domain using the analytical solution based upon the method of using compressional and shear potentials as outlined in [START_REF] Doolittle | Sound scattering by elastic cylinders[END_REF]] and [Zitron, 1967] 3 and is shown in Figure 6.3, where the received pressure has been scaled to match the analytical solution. Here one can observe excellent agreement between the FDTD response to the one obtained using the analytical approach, including the incident pulse (peak at roughly 2 ms) as well as the elastic response of the target (starting at roughly 4.1 ms). Note that there is no attenuation modeling in this simulation meaning r ij = 0. This was done to facilitate the comparison between the analytical and numerical results. 

Coherent change detection simulations

The viscoelastic FDTD model can be used to evaluate the possibility of using lower frequency acoustic waves in order to coherently detect changes in a scene of interest. Due to limited computational resources a full 3D SAS simulation was not possible using this approach and therefore the results in this section are in two dimensions only. This will limit the applicability of these results, particularly as it applies to the spatial correlation of the seafloor, however as this chapter is meant to motivate future work in this area, two dimensional model results should be sufficient in this respect.

The simulation parameters of this section are intended to better model more realistic system settings for a hypothetical low-frequency SAS system. The transmit pulse used is the chirp function defined in Equation ( 2 A method for generating 3D fractal surfaces obtained from Aalto University [Kanafi, 2017] was used to create an artificial rough seabed. The method uses two parameters to generate the surface: the root-mean-square of the surface roughness σ rms and the Hurst exponent H q which defines the roughness or complexity of the surface. It is related to the fractal dimension D by D = 3 -H q and lies between 0 and 1, with 0 being less rough and 1 being the most rough. The surfaces generated here used σ rms = 3λ = 4.5 cm and H q = 0.3. As these are 2D simulations, only a single cross section along the x axis is used from the artificially generated surface.

Three different sediment types are considered, whose properties are defined above in Table 6.1: Clay, sand and basalt. Clay is meant to simulate a situation where there is greater penetration of the acoustic wave into the seabed, whereas basalt, a very hard sediment, is meant to better simulate a more high-frequency scenario, with less sound being transmitted into the seafloor. Sand is another very common sediment type found in many areas around the world.

After the simulation is complete, the modeled pressure values are basebanded and sampled using the in-phase and quadrature sampling technique from Section 2.1.3.1 in order to simulate the signal processing chain of a real sonar system which results in a time series of complex values. This signal is then match filtered in the Fourier domain using a baseband replica of the transmit pulse as was described in Section 2.1.1.1. These signals are stored and can be used to study the repeat-pass coherence.

Sensitivity to seabed roughness changes

The FDTD method was first used to model the loss of coherence caused by a change in the seabed roughness as a function of the sediment type. Two seabeds were generated using the fractal surface generator with the same parameters for σ rms and H q but different seeds for the random number generator. Then, the profile of After basebanding and match filtering, the zero-lag coherence of the signal returns was computed using a 100-sample moving window. As the reference and repeat-pass returns from the seafloor were obtained at exactly the same position, the signals are considered perfectly co-registered. The results are shown in Figure 6.7, again for the three sediment types. Here the change in the sediment roughness can clearly be observed with the harder basalt suffering from greater coherence loss. This is also an expected result as the backscattered energy for this sediment is much more dependent on geometric effects than elastic ones. The softer sand and clay sediment suffer from less coherence loss however the change in roughness is still detectable.

CCD detection of a buried object

The next simulation was to place a target into the grid to determine whether or not it could be detected by a loss of coherence between repeated-passes. This time, the same fractal surface is used for both the reference and repeat-pass simulations, however the aluminum cylinder from the benchmark tests was placed in a position where it was buried into the sediment at a depth of 1 m and at a ground range of 3.5 m from the transmitter/receiver location as shown in Figure 6.8. In this case, the sediment type was clay which provides greater sound penetration and in a realistic scenario would provide higher risk of the impact burial of an object than the other sediment types under consideration. The repeat-pass coherence, computed the same way as in the seabed roughness simulations above and are shown in Figure 6.9. A drop in coherence caused by the buried target can be observed and compared with the roughness change for the clay sediment in Figure 6.7, the loss of repeat-pass coherence is much more significant even though the target is buried at a depth of one meter.

Extensions to 3D

In order to accurately assess the potential of a low-frequency SAS to carry out coherent change detection to detect buried target or over longer time scales, it will be necessary to perform a full three dimensional simulation to correctly model the spatial coherence of the seafloor. Adding x dimension to the set of partial differential equations (Equations (6.27) to (6.34)) the addition of the variables to measure the pressure p xx and particle velocity u x as well as all of the viscoelastic cross-terms.

The following set of equations model the full three-dimensional viscoelastic wave Implementing these equations using the FDTD method is straightforward and follows the same steps as in Algorithm 6.1. In addition to these additional 9 variables which must be stored in memory and computed at each iteration, it also requires the addition of another for loop to compute these quantities in the x dimension.

That being the case, it is unlikely that the FDTD method would be used to simulate large scenes such as the ones simulated above in the near future, given current GPU hardware limitations, in particular storage capacity. However, the ability to inject of a plane wave from a distant source combined with a more efficient CUDA implementation could provide the ability to model a small scene and gain a better insight into performing CCD at these frequencies.

Summary

This chapter has provided initial research ideas into the use of lower frequency SAS systems to potentially detect coherence changes in a larger set of environments and over longer time scales. Such systems may be useful when a target is buried or otherwise obscured by the sediment. The FDTD model developed in this section is able to model the viscoelastic properties of arbitrary seabeds and objects, however this capability comes at a high computational cost. Ways to reduce this burden should be sought, such as more efficient use of GPUs and a better ability to model the incoming and scattered field without the use of point sources. This is a wellstudied problem in computational physics with many proposed solutions.

As mentioned in the introduction to this chapter, the results here are meant to motivate future work in this area, whether using the proposed viscoelastic model or not. The barrier to adoption of CCD methods in operational systems will certainly be the temporal stability of the undersea environment and one way to improve this is to lower the operating frequency of the system. As shown in these results, it may also offer some capability for detecting a wider variety of changes. Combined low and high frequency systems, or systems with very wide bandwidths, may offer the best possibility for coherently detecting changes in the underwater environment. Exploiting the frequency diversity of these systems for CCD is an area that may provide significant opportunities for future research. For instance, one could conceivably co-register the reference and repeat-pass data using the higher frequency data where landmarks and surficial seabed feature are easily associated, while performing CCD using the lower frequencies.

that coherent change detection methods could be applied, there were cases where one was better than the other, and vice versa, depending on the sensor and environment. Based on the results obtained from applying the re-navigation approach directly to the beamformed image (without using the raw sensor data), one may conclude that the warping approach may be the preferred solution in a practical change detection system, since used in this way, the re-navigation approach can be considered a sophisticated warping approach where position information is used to correctly interpolate the phase of the pixel. As can be seen by the so-called orbital fringes which were observed after using a naive warping approach, some corrections using navigational information as well as sensor characteristics will be required in any co-registration process.

The re-navigation method also offers the interesting possibility of automatically determining the interferometric baseline between the two sonar passes. This is a required quantity for creating high-resolution bathymetric maps of an area through repeat-pass interferometry or for correcting the navigation solution of the platform, for instance during long transits. However, the limitations of the track registration approach were apparent when processing images which have been beamformed onto a presumed flat seafloor. In this case, the incorrect bathymetry is manifested as localized across-track pixel shifts that cannot be corrected using the results of the global optimization used in the track registration approach. In such cases, it may be useful to follow up the re-navigation with a final warping step in order to compensate for the localized residual errors caused by the local bathymetry or speed errors.

A number of processing techniques were developed for false alarm reduction, from the use of a reference coherence and multi-look processing of the SAS images, with varying degrees of success. The appeal of change detection methods is the reduced false alarm rate that one obtains by effectively subtracting pre-existing targets from consideration by using the historical reference image. In the case of traditional non-coherent change detection, the accurate co-registration method developed in this thesis made this approach so successful at change detection that for targets on the scale of the objects deployed during the data collection experiments, no false alarms were produced even in complex and high-clutter environments. However, one of the consequences of the increased sensitivity of coherent methods to scene changes is that false alarms can once again become problematic. Non-coherent methods are inherently robust to false alarms caused by low coherence, for instance the shadow zones cast by proud objects, as they do not make use of the interferometric phase. The use of a reference coherence map to remove pre-existing low coherence zones was the most effective at reducing the false alarm rate, however it did appear to suffer from range dependence, i.e. target shadows were not as non-coherent as one would expect at near ranges.

The sampling distributions for the coherence magnitude were used to develop probabilities of coherent change detection and false alarms for SAS CCD. They were also used to show that CCD methods are more robust to errors in co-registration than for other interferometric processing applications. It was shown that the effective number of independent samples within a coherence estimation window is less than the number of pixels in the window. While some of this is expected as the SAS processing chain introduces some inevitable correlation between pixels, it also means that SAS images are not at the diffraction limit and that perhaps further improvements in resolution can still be obtained.

Based on the experimental data used in this thesis, the main barrier to operational use of CCD appears to be the temporal coherence of the environment.

The FDTD modeling from Chapter 6 demonstrated the potential of using lower frequency sonar systems to detect changes over longer temporal baselines since, particularly in softer sediments, the decorrelation caused by changes in the seabed surface roughness is less severe. It was also shown that the CCD approach on a low-frequency system could be used to detect a target which has been buried, as long as the sediment is such that the signal attenuation it causes is low enough to allow acoustic waves to propagate to the target and back.

Recommendations for future research

Many areas for the improvement or validation of the methods and techniques developed in this thesis could be topics of future research. In some cases, such as the statistics and resolution of SAS images, the topic has been looked at superficially and requires greater attention. In addition, interferometric processing of SAS images as well as the capabilities and limitations of coherent change detection remain far from being solved problems, with a number of areas which hold promise for significant developments in underwater sensing and surveillance.

Robust warping methods -For CCD, image warping is the simplest and fastest way to co-register two SAS images. If one does not require the navigation corrections obtained from the track registration step, then warping is the obvious choice for a practical CCD system, for example if one were to run on-board of a UUV with real-time processing. Warping was quite successful in co-registering the 100 kHz HISAS data while less so with the 300 kHz AquaPix data. This is likely due to the shorter wavelength of the latter system, causing phase interpolation errors during the warping step. Also, building in corrections during the warping stage to remove orbital fringes in the interferometric image should also be performed. Finally, a thorough comparative study between the warping and re-navigation approaches is highly recommended.

Ground-truth experiments -

The main issue with the data collection experiments which supported this thesis was one of ground truth. While it is relatively easy to obtain ground truth for non-coherent change detection approaches, this is considerably more difficult for coherent change detection. As can be surmised by the results from Chapter 5, some detected changes in the CCD results were attributed to diver intervention during deployment or recovery of the targets, or presumed to be caused by ocean processes such as currents. However, this cannot be verified in an absolute way. In one case, a detection was simply labeled as "unknown". While very difficult to carry out under realistic experimental conditions, attempts should be made to control coherent changes more precisely, be it through instrumentation such as video cameras or current monitors, or generating purely coherent changes at a known time and of a known nature.

Improved beamforming / micronavigation methods -Co-registration becomes much easier when the image pixels are in their correct position in the image.

This was not the case with the images used in this thesis, where distortions caused by uncompensated pitch motion caused pixels to be in a correct relative position but an incorrect absolute position within the image. It is much easier to correct for these errors during the initial motion compensation and beamforming process rather than to try to compensate for them afterward during co-registration. Including pitch during all steps of the beamforming process is a relatively trivial change to the time-domain backprojection algorithm used in this thesis. Methods to estimate and correct for other possible errors such as heave motion should be pursued.

Statistical models for these estimates would also be desirable in order to better determine the co-registration requirements.

CCD performance prediction -Predicting the performance of a coherent change detection system will be an important future development for any practical implementation. For example, operators will need to understand the resurvey frequency requirements in order to plan for operations and a tactical decision aid will likely be required. As a result, continued research into modeling SAS data at high frequencies for CCD applications is recommended as there remain many open questions about the limitations of CCD performance and high-fidelity models of high-frequency SAS images are paramount in validating co-registration methods as well as predicting the performance of a coherent change detection system.

A.2 Results

Two pairs of SAS images are used in this Section in order to empirically analyze the performance of the quality-guided method in determining the unwrapped phase.

The effect of two parameters are examined: The choice of the quality metric Q and the choice of the phase averaging window size K φ . In both instances, the size of the windows K var = K coh = 9. The first pair of images are from the AquaPix INSAS2 which were used in Section 3.4.1.2 and the re-navigation approach to coregistration (Section 4.6). It contains areas with both low and high coherence, which is expected in the case of repeat-pass SAS, and thus a realistic benchmark for phase unwrapping. The second are the HISAS images of the shipwreck given in Section 4.5.1. In this case the repeat-pass coherence is very high, however the large shadow area behind the ship provides is expected to pose a challenge to the method.

In addition, the shipwreck target itself results in a quickly varying bathymetry and correspondingly faster localized phase wraps.

A.2.1 Flat seafloor

The results of the AquaPix images are shown in The coherence quality metric, on the other hand, shows some areas where the phase has not been unwrapped correctly, particularly at far range in the area of low coherence at roughly 33 m in along-track and 135 m in across-track. When using K φ = 3 (bottom row), the coherence metric has completely failed to recover the phase, while the variance metric still manages to unwrap the phase in many parts of the image, except at far range (>120 m) where the quality is low. Recall that when performing interferometry, K φ determines the spatial resolution of the resulting bathymetry map and therefore being able to use a smaller K φ while still successfully unwrapping the phase is advantageous.

A.2.2 Shipwreck

The results for the HISAS images are shown in Figure A.2. Here, the repeat-pass coherence is very high and therefore one would expect that both quality metrics have values closer to 0, which is in fact the case, with the exception of the shadow zone cast by the shipwreck. For both K φ = 3 and K φ = 9, the variance quality metric results in a successfully unwrapped phase. For the coherence metric and window size of K φ = 9 is able to recover the unwrapped phase while using K φ = 3 results in occasional unwrapping errors.

In practice, it is not strictly necessary to choose K φ beforehand. It is common practice to iteratively apply the smoothing operation with progressively larger values of K φ until a threshold is reached, for instance the noise in the interferometric phase. This was not done here in order to study the effect of K φ on the success of the phase unwrapping method. The outcome of this small numerical study is that the variance-based quality metric results in consistently better phase unwrapping than the coherence-based metric and is also more robust to smaller values of K φ and was chosen for the analysis in Section 3.4.1.2. The spring time frame of this experiment meant that there was run-off which created a freshwater layer on the surface and a high particulate concentration in the water column. These conditions resulted an upward refracting sound speed profile and higher than normal surface reflections. Tidal currents in the area were strong enough to create a vehicle crabbing motion. Additional details of this experiment can be found in [START_REF] Midtgaard | Change detection using synthetic aperture sonar: Preliminary results from the Larvik trial[END_REF]. With the growing availability of commercial synthetic aperture sonar (SAS) systems it becomes possible to exploit the phase coherence between two complex SAS images in order to detect scene changes which are subtle or even invisible to approaches using only the amplitude of the images. This thesis examines the concept of coherent change detection (CCD) using SAS imagery obtained from separate, repeated passes over the same area.

B.2 Bergen

As the images must be processed interferometrically, the challenging problem of co-registration is addressed, with approaches based on image warping as well as renavigation / re-imaging. False alarm reduction techniques are also examined in order to mitigate detections caused by coherence losses which are not attributed to the insertion or removal of targets of interest. The proposed methods are tested on several repeat-pass SAS images collected during experiments at sea, spanning multiple frequency bands and environmental conditions, and show that SAS CCD is not only possible, but also able to detect very subtle scene changes that not observable using standard approaches
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  Principle of synthetic aperture sonar.

Figure 1 . 1 :

 11 Figure 1.1: Illustration of the principles of (a) real (sidescan) and (b) synthetic aperture sonar.As the platform travels along its trajectory, it transmits a number of pings with a footprint which depends on the transmitter size. Sidescan sonars obtain fine resolution by transmitting narrow beams, however this resolution worsens with range. SAS systems transmit wide beams in order to process the returns coherently, in a way that results in constant resolution, independent of range.
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 1 comparing the SAS and sidescan transmitter characteristics, while Figure 1.2 gives an example of SAS versus traditional sidescan processing for the same target at different ranges.

  (a) Sidescan image of a rope at 50 meters range. (b) SAS image of the same rope at 50 meters range. (c) Sidescan image of the rope at 100 meters range. (d) SAS image of the rope at 100 meters range.

Figure 1 . 2 :

 12 Figure 1.2: A simulation of SAS and sidescan image resolutions obtained using the Kraken Robotics MINSAS 120 system showing the resolution degradation as a function of range for a rope on the seafloor at 50 meters and 100 meters in range for both normal sidescan and SAS processing of the same data. While the along-track resolution of the sidescan image has considerably worsened at 100 meters, the SAS images are nearly identical. It should be noted that these images are for illustrative purposes, and that one would not design a sidescan sonar in the same way as a synthetic aperture sonar (see Section 2.1 and Figure 1.1 for more details). Images courtesy of Kraken Robotics and reprinted with permission.
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 21 Figure 2.1: Synthetic aperture imaging geometry in the single-pass case. Ping locations are marked with the circles along the platform trajectory in the x direction.The slant range r is the line-of-sight distance to the surface while the ground range is the distance along the surface from the platform position projected on the ground plane. The part of the seafloor which is imaged is shown in gray, and the footprint of the acoustic beam is shown in brown.
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 22 Figure 2.2: A top view of the SAS imaging geometry: By using a constant integration angle of θ SAS , the effective synthetic aperture length L SAS increases as a function of range. This allows the SAS to maintain a range-independent resolution.
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 23 Figure 2.3: The Phase Centre Approximation (PCA) for a SAS array with N d = 7 and a single transmitter. A phase center is placed halfway between each receiver and the transmitter, which has a size of D/2, at locations for ping p and p + 1. The overlapping phase centers of the PCA array are indicated in shaded gray. The same elements are also shaded in the original sonar array as well. The indices of the overlapping elements allows one to determine the ping-to-ping surge η(p) and the time delays between the elements is used to calculate the sway ζ(p). The ping-to-ping yaw ψ(p) is zero for this particular case.
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 24 Figure 2.4: The six degrees of freedom of UUV motion are indicated in this figure. The translational motions, surge (longitudinal x), sway (transverse y) and heave (vertical z) as well as the rotational motions, pitch (about the lateral axis), roll (about the longitudinal axis), yaw (about the vertical axis) are indicated in the frame of reference of the vehicle.
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 25 Figure 2.5: Wavenumber spectrum of a SAS image with the support area for four non-overlapping looks in the along-track dimension only i.e. β x = 4 and β y = 1 for a total of N = 4.
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 2 Figure 2.6: (a) A SAS image of a shipwreck acquired with the Kraken AquaPix INSAS2. (b) The sampled coherence in a 10 × 10 sized window (c) The interferogram from the two vertically displaced arrays on the system showing a pattern of interferometric fringes. (c) The unwrapped interferogram which can be used to compute the bathymetry.
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 228 Figure 2.8: The wavenumber shift as a function of the incidence angle θ inc for two passes over the same area.

  Figure 3.1:A high-level overview of the change detection process. Historical images are retrieved from a database based on navigational alignment with newly acquired images such that they are observing the same scene. Contact-based approaches first detect targets in each image and attempt to associate them to historical ones, while image-based approaches must first co-register the images and then compare them on a pixel-by-pixel level. Both methods typically perform additional processing to reduce the number of false alarms, after which a list of contacts is created for further investigation.

  tributed, the phase values φ k are completely random. If one was to disturb the scene in some way it would result in a change in the distribution of the scatterers which in turn can lead to a significant change in the returned phase φ k within a resolution cell as it changes the random walk of Equation (3.1). On the other hand, the amplitude of the individual scatterers a k could remain the same and thus not provoke any change in the magnitude of s(x, y). Coherent change detection methods exploit this variation in the phase of the returned signals between survey passes in order to detect the kind of changes which are not detectable by looking for noncoherent changes in a k . As discussed previously in Section 3.1.2.1, non-coherent change detection methods for imaging sonars which employ only the |s(x, y)| values are widely applied in practice and can often detect changes over much longer time intervals than coherent methods.
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 2232 Figure 3.2 plots the expected value of |γ| given the true coherence magnitude |γ| as a function of the number of samples K used in the estimate. One can observe
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 32 Figure 3.2: The bias of the sample coherence magnitude |γ| as a function of the true coherence magnitude |γ| for different numbers of independent samples (or size of the spatial average) K

  the context of SAS CCD, a purely coherent change means that the true coherence magnitude |γ cc | is 0. When no change has occurred, the true coherence magnitude (the unchanged coherence) is denoted |γ nc |. The value of |γ nc | is generally less than 1 in repeat-pass SAS and this can be caused by any number of reasons (see the sources of coherence loss in Section 3.3 below). Since it is not possible to know the real repeat-pass coherence, the values of |γ cc | and |γ nc | will be estimated using their K-sampled values |γ cc | and |γ nc | and will suffer from the bias of Equation (3.22) and follow the distribution of Equation (3.21). This defines a two-class classification problem which aims to determine whether or not a given value of |γ| was obtained from the change distribution or the no change distribution. Obviously, higher values of |γ nc | will make this determination easier as the class distributions are more easily separated and there is less overlap between them. Figure 3.3 shows the probability density function of |γ| for three different values of |γ|. The red line gives the case when |γ| = 0 = |γ cc |, while the other two are for |γ| = 0.5 and |γ| = 0.9, representing cases where no change has occurred but other sources of loss of coherence have resulted in these possible values of |γ nc |. It is easy to separate the distribution of |γ cc | when |γ nc | = 0.9 but there is some ambiguity when |γ nc | = 0.5.
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 33 Figure 3.3: Probability density function for |γ| for true |γ| of 0, 0.5 and 0.9 using a 5 × 5 pixel spatial window.

  the probability that a change has occurred but no change is called (a missed detection) • P F A def = P (g(|γ nc |; κ) = |γ cc |), the probability no change has occurred but a change is called (a false alarm).

Figure 3

 3 Figure 3.4: Receiver Operating Characteristic (ROC) curves for coherent change detection given the underlying repeat-pass coherence |γ nc |. With |γ nc | = 0.2 the probability of detection is only slightly better than guessing, whereas |γ nc | = 0.75 gives very good performance.

  .26) resulting in the Receiver-Operating Characteristic (ROC) curves given in Figure 3.4 for three different values of |γ nc | obtained by varying the value of κ between 0 and 1. The following section describes sources of coherence loss which result in |γ nc | = 1, leading to a reduction in performance of CCD methods.

Figure 3

 3 Figure 3.5: Critical baseline as a function of range using at a nominal altitude of 15 m for a range of system parameters representative of those used in this thesis.

  Figure 3.6:Empirical decay constants reported in[START_REF] Jackson | Acoustic observation of the time dependence of the roughness of sandy seafloors[END_REF],[START_REF] Lyons | The impact of the temporal variability of seafloor roughness on synthetic aperture sonar repeat pass interferometry[END_REF] and[START_REF] Myers | Results and analysis of coherent change detection experiments using repeat-pass synthetic aperture sonar[END_REF]. Thanks to A.P. Lyons from the Center for Coastal and Ocean Mapping at the University of New Hampshire, Durham, NH, for providing this data.

  .35)The sinc operator in Equation(3.35) is essentially a sigmoid function, where α = 0 gives perfect correlation and α = 1 gives complete decorrelation. A consequence of the misregistration is to increase the standard deviation σ φ of the interferometric phase. The frequently-cited requirement for co-registration accuracy of SAS and SAR images, typically on the order of one eighth to one tenth of a pixel, are obtained from Equation(3.35) and are imposed by the requirements for the interferometric phase accuracy. A high phase variance will directly translate into less precise height estimates and thus will require averaging over more samples (recall Equation (2.63)), reducing the spatial resolution of the resulting bathymetric or topographic map. It will also make the phase more difficult to unwrap.

  a test statistic for change detection. Recall from Section 3.2.3 that the probability of coherent change detection and the probability of false alarm are dependent on the underlying repeat-pass coherence |γ nc | and the number of integrated samples in the coherence estimate K. Using Equation 3.35 to compute the expected drop in coherence for varying values of α and setting |γ nc | = γ coreg and |γ cc | = 0, the probability of error P E (the sum of Equations (3.24) and (3.25)) can be plotted as a function of α, as seen in Figure 3.7. Three different windows of size K are examined for α, varying from 0 (perfect co-registration) to 1 (complete misregistration).

Figure 3 . 7 :

 37 Figure 3.7: Probability of classification error P E versus misregistration factor α for three different window sizes.

  registered. The coherence γ between two signals s and w has already been presented in Section 3.2.2 and in the case of CCD, s and w are obtained from two co-registered SAS images, s ∈ I 1 and w ∈ I 2 . Since the two SAS images are assumed to be jointly circular Gaussian, the joint probability density function of s and w, s = [s, w] , is

  Co-registered repeat-pass SAS image.

Figure 3 .

 3 Figure 3.8: Samples of SAS data from the Nanoose experiment using the Kraken AquaPix sonar. (a) and (b) are the two SAS images used in the phase analysis, while (c) and (d) are the wrapped and unwrapped interferogram.

Figure 3

 3 Figure 3.9: Repeat-pass coherence for the images in Figure 3.8 showing two zones that are used for the analysis of variance in Figure 3.10.
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 3111 Figure 3.10: Modeled and measured phase distributions for (a) Zone 1 and (b) Zone 2, shown in Figure 3.9.

Figure 4 . 1 :

 41 Figure 4.1: The concept of co-registration of SAS images is illustrated, where the reference image focal points, linear track and coordinate system are shown in blue and the repeat-pass is shown in gray. Estimated displacements for each of the pixels in the repeat-pass image are shown from the centers of the focal points to the centers of the best corresponding focal points of the reference image. The displacements to the nearest pixel are for illustrative purposes only and not necessarily accurate.

  ∆ y , ∆ z , ∆ θ , ∆ c ] 5b. Residual motion compensation 5c. Beamform Ω(u rp + ∆, g ref , s rp )

Figure 4 . 2 :

 42 Figure 4.2: Warping versus re-navigation methods described in this chapter. Green indicates the warping approach and purple highlights the steps in the re-navigation approach.

Figure 4 . 3 :

 43 Figure 4.3: Resampling from ground range to slant range. The original sampled locations are at constant y locations (shown in blue) while the resampled slant range image is constant in r (shown in orange), or equivalently, t.

Figure 4

 4 Figure 4.4: The normalized cross-correlation C (left) and its gradient (right) are given for a pair of SAS images, with the peak indicated with a small box in each.For some SAS images, the peak of C can be difficult to find, however the gradient offers some robustness against false peaks.

  Figure 4.5. Let I ref + be the integral image of the reference SAS image and I rp * m,n + be the integral image of the shifted repeat-pass image. For a candidate shift (δm, δn), Equation (4.5) becomes: γ(δm, δn) = S(I ref + I rp *

Figure 4

 4 Figure 4.5: Integral images. The value of the pixel in the integral image indicated by the red box is the sum of all the pixels in the blue box of the original image. The sum of the pixels in the gray box is determined by the pixels at the four corners of the box (A, B, C, D) obtained using I + (A) -I + (B) -I + (C) + I + (D).

  Figure 4.6 shows an example of this interpolation and how it is used to estimate the sub-pixel shift given the peak and off-peak coherence estimates. The result is a new set of shifts D m and D n which are at the sub-pixel level, for each pixel in the repeat-pass image. The advantage of this method is that the fine shifts are computed directly from the rough co-registered images and do not require one to create the intermediate image I cr † , which requires additional interpolations and can lead to additional system decorrelation. As an example, Figure 4.7 shows the reference and repeat-pass images of a shipwreck collected by the HUGIN UUV equipped with the HISAS Synthetic Aper-

Figure 4

 4 Figure4.6: Three point parabolic interpolation for sub-pixel registration. For this particular pixel, the peak coherence of 0.88 was obtained with a shift of 2 pixels. A shift of one pixel achieved a coherence of 0.87 and a shift of three pixels resulted in a coherence of 0.73. The parabolic interpolation curve (shown in orange) fit through these three points shows that a shift of 1.55 pixels would result in an expected peak coherence of 0.9.

Figure 4 .

 4 Figure 4.9 shows the interpolated displacements D m and D n computed using complex cross-correlations. Also shown are the estimated displacements obtained by applying an affine transformation computed from the corresponding SURF features shown in Figure 4.8. The SURF points indicated are those which remain after application of the MSAC outlier rejection technique ([Torr and Zisserman, 2000])

  14) = sin(n + dx) n + dx w a (N, α w ) (4.15)

Figure 4

 4 Figure 4.7: HISAS (a) reference and (b) repeat-pass images of a shipwreck obtained during the Bergen MAREX17 experiment.
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 42 Figure 4.8: Corresponding SURF points for the shipwreck images after MSAC outlier rejection. There are 822 matching points between the images.

Figure 4

 4 Figure 4.9: Displacements for the images in Figure 4.7 with (a) D m in along-track and (b) D n in across-track for the cross-correlation method and (c) and (d) using the SURF correspondences and an affine transformation.

Figure 4

 4 Figure 4.10: Maximum achieved coherence during co-registration step. Note that the shadow zone behind the shipwreck exhibits a low degree of coherence between passes and therefore the displacement estimates in this area are not reliable.

Figure 4 .

 4 Figure 4.7 are now presented. Figures 4.11 to 4.13 show the repeat-pass coherence magnitude as well as the interferometric phase between the co-registered image I cr and the reference image I ref as the warping process goes through the coarse, fine and very fine co-registration stages. The initial coarse registration (Figure 4.11) showsonly a few areas exhibiting some repeat-pass coherence. This is to be expected as the coarse co-registration step is only meant to place the repeat-pass image in approximately the same location as the reference image coordinates and therefore any repeat-pass coherence is limited to the zones where the images overlap. The fine co-registration step (Figure4.12) has now placed the repeat-pass image to the nearest pixel of the reference image and shows a significantly higher repeat-pass coherence. Of note, however, are distinct lines of somewhat low coherence that

Figure 4

 4 Figure 4.11: Coherence magnitude and phase after coarse registration.
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 412 Figure 4.12: Coherence magnitude and phase after fine registration.

Figure 4 . 13 :

 413 Figure 4.13: Coherence magnitude and phase after very fine registration.

Figure 4

 4 Figure 4.14: Coherence magnitude and phase after re-navigation.

Figure 4

 4 Figure 4.15: Coherence magnitude and phase after re-navigation and warping.

  registration through optimization of across-track offset, altitude, heading and sound speed differences; 4. Estimation of residual motion errors between the two acquisitions; 5. Correcting the repeat-pass navigation data and re-application of the beamforming process onto the same focal points as the reference image. The re-navigation technique is based on the concept of an ideal linear track T of a beamformed SAS image I. Recall from Section 2.2 that motion compensation is required during SAS beamforming in order to correct from deviations from a nominally linear track that the platform is following while imaging a scene as well as ping-to-ping sound speed fluctuations. The DPCA micronavigation technique is the most widely used technique for this in practice and results in a SAS image I which has effectively been motion compensated to a line after the corrections have been applied. The ideal track T = a T , b T of the beamformed image I is defined as the line segment with start and end points a = (x 1 , 0, 0) and b = (x 2 , 0, 0), where x 1 and x 2 are minimum and maximum along-track values of g. The concept of track registration is to compute the set of navigation corrections ∆ between the reference image I ref with track T ref and the repeat-pass image I rp with track T rp through the optimization of a repeat-pass track T rp ∆ which is positioned from the focal points of I ref . Note that in this section, slant time images are used for computing corrections but can produce I cr in either ground or slant range. The process starts with the same initial coarse, fine and very fine co-registration estimates explained above. However, since corrections are computed from physical quantities, Equations (4.7) and (4.8) are applied to D m and D n in order to obtain a pair of displacements D x and D t which are measured in meters (for the along-track shifts) and seconds (for the across-track shifts). Examples of pixel displacements were already given for the HISAS shipwreck images in Figure 4.9. This section uses a pair of AquaPix INSAS2 images, already shown in Chapter 3, Figures 3.8(a) and 3.8(b). These are used due to the availability of raw sonar data for this system which was not available for the HISAS system. The displacements D x and D t are shown in Figure 4.16. Although both the HISAS and AquaPix images represent a scene of roughly the same size (approximately 50 m × 50 m) the estimated displacements, particularly in the along-track dimension, exhibit very different characteristics, with the AquaPix

  D t are used to determine parameters which best model the observed shifts between T rp and T ref . Using the end points a and b on T ref the registered repeat-pass track T rp ∆ with corrections ∆ = [∆ y , ∆ z , ∆ θ , ∆ c ] is defined as:

Figure 4 .

 4 Figure 4.16: Time delay (D t ) and along-track displacements (D x ) estimates for a pair of SAS images.

  (a) and 4.17(b) show the displacements in time D t and range D x for the images that were formed using the upper and lower interferometric arrays. The track registration approach was then Along-track displacement estimates for single pass

Figure 4 .

 4 Figure 4.17: (a) Time delay (D t ) and (b) along-track displacements (D x ) estimates for the upper and lower interferometric arrays on a single pass of the AquaPix INSAS2.

  Figure 4.16(b), as it appears to vary during the acquisition process.

Figure 4

 4 Figure 4.18: Diagram showing co-registration geometry for two grids of focal points of size N x × N y = 5 × 7 with g ref in blue and g rp in gray and the Cartesian axes aligned to the reference track. Intercept points w on the tracks for a given focal point are also shown. The expected intercept points w rp have been slightly offset for better visualization.In this example, one would expect the maximum coherence to occur between focal points g rp (2, 1) and g ref(2,[START_REF]United Nations Convention on the Law of the Sea[END_REF] as well as g rp (2, 7) and g ref(3, 7). What is observed in this case is that maximum coherence is occurring between g rp (2, 7) and gref (5, 7), due to residual motion errors in the images. The gray line is T rp when referenced from g rp and T rp ∆ when referenced from g ref .

Figure 4 .

 4 Figure 4.19 shows how errors in along-track position are manifested in the computed along-track displacements. In Figure 4.19(a) the modeled along-track displacements was shown for two tracks separated by a ∆ = [0.1 m, 0.2 m, 0.5 • , 0 m/s] and no along-track positioning errors. The stripes in the along-track direction, increasing as a function of range, are expected for a non-zero and positive value of ∆ θ .

Figure 4 .

 4 Figure4.19(b) shows the modeled along-track displacements with an along-track positioning error which varies in a sinusoidal fashion over 6 cycles for the entire track from between ±0.02 m. The pattern is immediately visible in the modeled displacements, which is a modulated version of the non-error case. Knowledge of ∆ allows one to determine the along-track positioning errors. Therefore, a numerical method was developed in order to estimate the velocity ∆ v (i) and along-track offset ∆ x (i)

Figure 4 .Figure 4

 44 Figure 4.19: The effect of along-track motion errors on the computed displacements.

Figure 4 Figure 4 . 22 :

 4422 Figure 4.21: Speed estimation function Ψ i for one line in the repeat-pass frame of reference. The function has been normalized by the total number of possible points so that it represents a proportion.

  Figure 4.20 shows the pitch, velocity and yaw reported by the vehicle's on-board INS system. The displacements D t and D x for Runs 1 and 3 were already shown in Figure 4.16, where magnitude-only cross-correlations in a K = 12 × 12 window were used in Equation (4.5). An example of Ψ i for one line of the image corresponding to i = 200 is given in Figure 4.21. The velocity estimation ∆ v results are given in Figure 4.22 along with the estimated velocity differences calculated from the pitch angles from the inertial navigation system and altimeter data, showing good agreement with the general trend, although some bias is present perhaps due to an imprecise value of the altitude a over the entire image. The resulting repeat-pass coherence and interferometric phase obtained by applying Ω u rp + ∆ + , g ref , s rp , where ∆ + indicates that the corrections include ∆ as well as ∆ v and ∆ x , is shown in Figure 4.23. A mean repeat-pass coherence value of 0.71 was obtained over the entire area, and the mode of the distribution of the coherence is roughly 0.8. The temporal baseline between passes is 30 minutes. Residual co-registration errors in D t are shown in Figure 4.24. Roughly 10% of the pixels are placed to less than one tenth of a pixel of their desired location, while half are placed to within one fourth of a pixel. Zones of residual misregistration, highlighted as bright yellow or white in the heat map of Figure 4.24 are likely caused by significant deviations from
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 4234 Figure 4.23: Repeat-pass coherence magnitude and phase obtained by re-navigation of raw data from the AquaPix INSAS2 system.

Figure 4 . 25 :Figure 4 . 27 :

 425427 Figure 4.25: Repeat-pass coherence magnitude and phase by re-navigating the image data of the AquaPix INSAS2 data.
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Figure 5 . 1 :

 51 Figure5.1: Representative images from Area 1 (benign) and Area 2 (complex). The sediment samples were taken near the rough cube in both cases. The smooth cube is not visible in the second image as it was imaged near the nadir of the sonar so its position is marked based on its expected deployed position.

  Dt for Area 1, Runs 6.1-6.2.
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 52 Figure 5.2: The pixel displacements for Run 6.1 and 6.2 from Area 1 of the Larvik experiment.
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 53 Figure 5.3: Repeat-pass scene coherence for all the passes of Run 6 in Area 1. The temporal baseline in each case was (a) 8 days (b) 5 days and (c) 3 days, and (d) shows the fused coherence Γ fused rp .

D

  x . The repeat-pass coherence Γ rp for Run 23 Pass 1 and Pass 3 is shown in Figure 5.4.

Figure 5

 5 Figure 5.4: The repeat-pass coherence for Area 2 (more complex seabed) of the Larvik experiment.

Figure 5

 5 Figure 5.5: Repeat-pass coherence Γ rp for Run 19 Passes 2 and 4 in the complex Area 2 and reference image from Pass 2. Refer to the text in Section 5.1.4 for an analysis of the source of the decorrelation in each of the zones indicated in (a).
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 56 Figure 5.6: The log ratio Q in the (a) benign and (b) complex areas of the Larvik experiment.

  Figure 5.7: Results of NCCD and CCD on the smooth cube in Area 1.

  Figure 5.8: Results of NCCD and CCD on the water bag in Area 1.

  Figure 5.9: Results of NCCD and CCD on the rough cube in Area 1.

Figure 5

 5 Figure 5.11: The reference single-pass coherence Γ ref and masked coherence Γ m for Area 2.

Figure 5 . 12 :

 512 Figure 5.12: Results of NCCD and CCD methods on the water bag in Area 2. The water bag is the top-right object, while the rock is on the bottom-left.

  Thresholded Q with κ0.025 = 0.95.

Figure 5 .

 5 Figure 5.14: Results of NCCD and CCD methods on the glider in Area 2.

  (a)-5.3(c) as well as 5.4. They appear to be related to the D x values, and could be caused by a smoothing operation that is applied to the speed calculations, as was shown in Figure4.22. For the pair of HISAS images in Area 1, over half of the pixels were placed to within one tenth of the desired pixel location and 75% are within one fourth of a pixel. As a comparison, for the AquaPix data used in Chapter 4, 25% are within one fourth of a pixel and 75% are within one half. This difference is due to the HISAS images having bathymetric information available for each pixel in the reference and repeat-pass images, which allows for much more accurate co-registration.

  Figure 5.15(a) shows the repeat-pass coherence Γ rp from the Larvik Area 2 (the same is shown in Figure 5.4 using a different color scale), with the top 6 detections as ranked by the PCA-ICA algorithm described(a) Detections using the repeat-pass coherence. (b) Detections using the masked coherence.

Figure 5 .

 5 Figure 5.15: Results from[START_REF] Abiva | False alarms reduction techniques for synthetic aperture sonar change detection: A comparative study[END_REF] showing detections using the PCA-ICA detection method from[START_REF] Abiva | Towards adaptive thresholding for sub-pixel co-registration and anomaly detection[END_REF] on the Larvik SAS data from Area 2. (a) shows the repeat-pass coherence Γ rp and (b) shows the masked coherence Γ m . By using the masked coherence, false alarms are reduced and the deployed targets are detected.

Figure 5 .

 5 Figure 5.16: (a) The original Vision 1200 SAS image showing an area of sand ripples and six of the seven deployed targets indicated. In (b) the repeat-pass image is shown, with the targets removed. The temporal baseline between the repeat-pass and original image is roughly one day (22 hours).

Figure 5 .

 5 Figure 5.18(b) shows the repeat-pass coherence Γ rp for the same scene. Patches of the scene have maintained very little temporal coherence during the intervening time interval between surveys. It is also possible to distinguish areas of low coherence caused by the removal of the targets, however they are mostly lost within larger areas of low coherence and are unlikely to be detected by an un-alerted op-

Figure 5 .

 5 Figure 5.17: Estimated displacements in pixels for the Vision 1200 SAS images from the ITMINEX experiments.

  3 that multi-look processing is a process which creates a number of reduced-resolution SAS images by band-limiting the spectrum of F (k x , k y ) of a SAS image I into a number of sub-bands β x in azimuth and β y in range and applying the inverse Fourier transform. This results in an image I with a resolution that has been degraded by factors of β x and β y in the respective dimensions for a total number of looks N = β x × β y . The most common application is to incoherently sum the N images in order to reduce the effect of speckle noise. Here, the N images are processed separately in order to improve the performance of the CCD process. The along-track wavenumber bandwidth of the reference I ref and repeat-pass I rp images was filtered (see Figure 2.5 for an example) into N = 4 bands to create the images I ref and I rp , with = 1 . . . 4. Figure 5.19 shows an example of the reference image for the third target from the top of the image shown in Figure 5.16.

  Single-look log intensity ratio.

Figure 5 .

 5 Figure 5.18: The intensity ratio Q and repeat-pass coherence Γ rp for the ITMINEX images.

Figure 5

 5 Figure 5.19: Multi-look images of the third target of the ITMINEX experiment.

Figure 5

 5 Figure 5.20: Multi-look repeat-pass coherence Γ ml rp for N = 4.

Figure 5 .

 5 Figure 5.21: The intensity ratio and multi-look coherence zoomed in around Targets 4 and 5. Also shown are the repeat-pass (no targets) and reference images (with targets).
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 522 Figure 5.22: Look with maximum value of Γ ml rp .
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 1 -frequency domain . . . . . . . . . . . . . . . . . . . . . 161 6.1.2 Low-frequency domain . . . . . . . . . . . . . . . . . . . . . . 161 6.2 The wave equation . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.3 Visco-elsatic model . . . . . . . . . . . . . . . . . . . . . . Infinite aluminum cylinder . . . . . . . . . . . . . . . . . . . . 162 The focus of the work in this thesis thus far has been on developing signal processing methods in order to carry out coherent change detection using synthetic aperture sonar. The experimental results shown in Chapter 5 demonstrated that
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 61 Figure 6.1 shows the computed quality factor over the band of 5kHz to 15kHz for Q 0 = 20, Q 0 = 50 and Q 0 = 100, showing that for lower quality factors the single Q is reasonably well modeled by a constant over the entire frequency band.
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 61 Figure 6.1: Q quality factor as a function of frequency for Q values of 20, 50 and 100 for f c = 5kHz to 15 kHz.

Fourier

  analysis. The transmitter was first placed at z = 13.5 m and y = 15 m and the center of the cylinder was z = 18 m and y = 15 m, directly in line with the transmitter at a distance of 4.5 m in z. The receiver was placed in a backscatter position, between the transmitter and the target, at a distance of 2 m from the cylinder. The Ricker pulse defined in Equation (6.43) is used to generate the incident field, with the frequency of the pulse f c = 5 kHz. Using c p = 1500 m/s, the reference wavelength of this simulation is λ = 30 cm. The grid spacing ∆ y = ∆ z = 1 cm or λ/30 and a 30 m × 30 m grid is simulated, or 3000 × 3000 grid points. The time step ∆ t = 0.0001 ms and the total simulation time is 8 ms. The shape of the transmit pulse is shown in Figure 6.2. The numerical solution is compared to

Figure 6 .

 6 Figure 6.4 shows the progression of the model at discrete time steps of the simulation: At 1.5 ms (a) the incident pulse can be seen propagating in all directions from the indicated point source location. By 3.2 ms (b) the pulse has reached the target, where the faster propagation velocity inside the cylinder can be observed. Note that the asymmetry of Equation (6.35) causes the wave to propagate slightly towards one side of the target. At 3.5 ms (c) the main reflection from the cylinder can be observed propagating back towards the receiver. At 4 ms (d) various elastic scattering effects from the cylinder can be observed. After 5 ms (e) these secondary waves have reached the receiver location and finally at 6 ms (f) the wave fields are past the original transmit location and the receiver has returned to the equilibrium state.
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 62 Figure 6.2: The 5 kHz Ricker pulse used in the benchmark simulation.
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 63 Figure 6.3: Numerical versus analytical response from an infinite aluminum cylinder.

  (a) Simulation after 1.5 ms. (b) Simulation after 3.2 ms (c) Simulation after 3.5 ms. (d) Simulation after 4 ms. (e) Simulation after 5 ms. (f) Simulation after 6 ms.

Figure 6

 6 Figure 6.4: Simulation progress for simulating an infinite cylinder.

  .7) with f c = 10kHz and a bandwidth of 10kHz. The pulse length T = 1 ms in length using an up-chirp with FM rate K r = 10 MHz/s. A scene of z = 10 m by y = 10 m in size is simulated with a grid spacing of ∆ z = ∆ y = 5 mm for a total grid size of 2000 × 2000 elements. The time step size is ∆ t = 0.5 × 10 -8 . The source and receiver are co-located at grid point z = 1 m, y = 1 m. The mean seabed depth is 8 m.

  the seabed / water interface was changed in the interval from y = 2 m to y = 4 m only in the first surface, replacing it with values from the second surface in order to simulate a change in roughness specifically in this zone. The simulation setup is shown in Figure6.5. The model was run for both surface for a total of3,259,999 iterations which corresponds to a simulation time approximately equal to the twoway travel time from the transmitter to the maximum ground range of 10 m. Each simulation took roughly 5 hours to complete. The result obtained of the reference and repeat-pass pressure returns for each of the sediment types are shown in Figure6.6. The signals are only shown from about 9 ms to 16 ms, which corresponds to the returns from nadir to the maximum ground range of 10 m. Here the basalt returns show a higher amplitude than the other sediments, an expected result since the hard sediment scatters most of the energy, with very little being transmitted into the sediment, while the softer clay sediment has less energy backscattered towards the receiver as more energy penetrates into the seafloor. It is also possible to observe the differences in the signals were the sediment roughness has been changed (starting at about 10.7 ms); this is more evident in the harder sediments.
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 65667 Figure 6.5: The simulated scene, indicating the water / seabed interface and where it has been changed from 4 m to 6 m.
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 68 Figure 6.8: The simulated scene with the buried target location highlighted. The same seabed is used for both simulations and therefore the only change present in the scene is the the aluminum cylinder.

  Figure A.1 for smoothing windows of size K φ = 3 and K φ = 9 for the variance and coherence-based quality metrics.Both quality maps (top row) clearly show the same areas of low quality, where the values are closer to 1, however Q σ 2 had marked more areas as being of low quality. For K φ = 9 (middle row), when the flood-fill algorithm is guided by the variance quality metric the resulting unwrapped phase shows no isolated areas of discontinuities and the phase has been unwrapped successfully over the entire area.
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 1 Figure A.1: Phase unwrapping results for the Aquapix repeat-pass images.

Figure A. 2 :

 2 Figure A.2: Phase unwrapping results for the HISAS repeat-pass images.

Figure B. 1 :Figure B. 2 :

 12 Figure B.1: The Larvik trial area is indicated in the rectangular area of the large scale map of the Scagerrak Strait which runs between the southeastern coast of Norway, Sweden and the Jutland peninsula of Denmark. The inset map is zoomed in to show the two areas and the survey patterns that were carried out with the HISAS.
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  Figure B.4: The Hugin UUV during the Bergen trials.

Figure B. 5 :

 5 Figure B.5: The Nanoose experimental trial area is located on the eastern side of Vancouver Island on the Georgia Strait. The inset map shows the UUV mission tracks inside Nanoose Harbour. The images used in this thesis were obtained from the four survey lines on the rightmost part of the mission.

  Figure B.6: (a) The Arctic Explorer UUV equipped with the AquaPix INSAS 2 during trials at CFMETR; and (b) the AquaPix INSAS1 configuration. Note that a longer INSAS2 system was installed in this UUV, which simply has another set of receiver arrays to make the sensor longer and allow for additional range or faster survey speeds (recall Equation (2.39)).

  Figure B.7: The ITMINEX location in the Mediterranean Sea off the western coast of Italy. While ITMINEX was a large, multi-national exercise, the data used in this thesis was collected near the small town of Deiva Marina in an area of sand ripples. The tracks of the SeaOtter UUV are indicated on the inset map.
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  Area 1: A relatively benign area with homogeneous muddy sediment, with very little clutter. It was meant to serve as a baseline for change detection experiments however a lack of strong landmarks can prove to be challenging

		Gravel (%) Sand (%) Mud (%) µ Φ	σ Φ
	Site 1	0.02	6.82	93.16	6.87 2.10
	Site 2	26.19	38.15	35.65	2.53 4.35

Table 6 .

 6 1: Sediment and material properties used in these simulations from[Jensen et al., 2011, p. 38]. These values were compiled from the literature and are not necessarily validated for frequencies modeled here. They are therefore considered as guidelines only within the context of this chapter. Note that the quality factors for aluminum are not real but simply indicate that this material is modeled here as essentially causing no signal attenuation.

	2 dω	(6.39)

Table 6 .

 6 2: Benchmarking results for the FDTD code comparing MATLAB, C and CUDA implementations for varying grid sizes. The execution time is for 5000 iterations of the respective FDTD code along with the average per iteration in parentheses. of device memory. The workstation was a Hewlett-Packard Z840 with dual Intel Zeon 2.20 GHz processors and 64 GB of RAM. To the extent possible, the MATLAB code was written in order to maximize the use of optimized MATLAB routines such as the circshift function to compute the partial derivatives similar to what was done for computing the integral images in Section 4.3.1.1. Also part of the benchmark testing is a C version which computes the partial derivatives using explicit for loops exactly as shown in the pseudo-code in Algorithm 6.1. The results of the benchmark testing are shown in Table6.2 where the CUDA implementation demonstrates a speed up of 55 times over the MATLAB implementation for a 400 × 400 grid to over 156 times for a 1200 × 1200 grid. Considering the grid sizes and particularly

	development

  Figure 6.9: Simulated repeat-pass coherence magnitude |γ| for the buried cylinder.
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A fantastical ship has set out to seek Malaysian Airlines flight 370, The Economist, Jan

2nd, 2018 (https://tinyurl.com/ydb6lmbj).

United Nations IMO profile https://business.un.org/en/entities/13.

The Day Frigate Samuel B. Roberts Was Mined, United States Naval Institute News, May 22, 2015 (https://tinyurl.com/yast424m).

Suspected rebel-planted mine hits Yemeni ship, kills 2, Associated Press, March 10, 2017 (https://apnews.com/974c700d4e3d4ed9a0ff161dc721c3e2).

The term "waterfall" display comes from the continuous scrolling of the sonar image as it is created and displayed to the operator, typically in towed systems.

This applies to the far field of the antenna. Although some systems attempt to maintain a constant image resolution by using a multi-element physical array (for instance, the Klein 5000 multibeam), eventually one runs out of array real estate and resolution degrades as usual past a certain range.

For reference, in SAR this is often called the phase history or the video phase history.

Although in the context of imaging the word "illuminate" implies the use of electromagnetic radiation and is not applicable to sonar, it is used here in the broad sense of revealing an area through the use of an active source, instead of the term "ensonify".

Note that the -3dB beamwidth rather than the null-to-null beamwidth in this thesis is used, which is a good approximation.

The term reverberation is often confusing when discussing high-frequency sidescan sonars versus other forms of active sonar. For instance, in the latter case the seabed is usually considered to be a source of reverberation whereas for the seafloor mapping sonars discussed in this thesis, this is not the case. Here, reverberation is defined as returns from non-desired sources, which include the sea surface and volume, but not necessarily the bottom.

Note that the bandwidth remains small relative to the carrier frequency and the high-frequency SAS systems considered in this thesis are still considered to be relatively narrowband systems.

This analysis assumes that the squint angle ψsquint, which defines the angular offset from the normal of the sonar array, is zero. If this was not the case then a factor of sin ψsquint would be added.

Thanks to Reg Hollett of CMRE for his implementation.

The next-generation RADARSAT Constellation is expected to provide even greater capability for monitoring and change detection

Generally, large here means that N >

Note that the standard definition of σ 2 s , notably[Goodman, 2000, p. 

47], is E{ss * }2. The definition here is used to link σ 2 with the mean backscattered power and thus the amplitude distributions contains a factor of 2 difference from the usual form found in optics texts.

The magnitude squared coherence is often used, which is defined asCsw(ω) = |Rsw (ω)| 2 √ Rss(ω)Rww (ω)This is not used here but is noted for its widespread usage as a coherence measure.

In SAR terminology, K eff is called the equivalent number of looks, which is not be confused with the number of looks N when performing multilooking as was explained in Section 2.3

This model is based on perturbation theory, which is valid for SAS grazing angles of interest.

Note that in theory the peaks of C and ∇C are not exactly the same, but they are sufficiently close for the purposes of rough co-registration.

These AquaPix images were collected specifically to study co-registration and severe motion effects were introduced deliberately.

It is possible to conceive a pathological case where this is not true, however this relation will hold for the vast majority of the time.

Besides being UUV-based.

Note that the usual symbol for the first Lamé parameter is λ however Λ is used here to avoid confusion with the acoustic wavelength.
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Repeat-pass coherence distribution

be sufficient to provide the desired coherent or non-coherent change detection performance. In some cases, a re-navigation technique may offer additional information that can be used for other purposes: e.g. the navigation corrections and track registration parameters may offer a solution to the baseline estimation problem (see [START_REF] Dillon | Baseline estimation for repeat-pass interferometric synthetic aperture sonar[END_REF]) in repeat-pass interferometry.

• During the SAS image reconstruction process, compensation for all known motion errors, including pitch, is key to creating SAS images that are as free of distortion as possible. This will result in better co-registration performance and in turn, better estimation of the repeat-pass coherence in the scene.

• The linear track model is in fact an appropriate representation for SAS images. Notwithstanding the residual along-track errors, the optimization process was able to correctly determine the mean heading differences measured by the INS of the UUV platform during the two runs. In addition, the pixel 

Co-registration parameter analysis

As neither navigation information nor raw element data was available for the Vision 1200 images, a warping approach was chosen to co-register the images. Once again, the displacements were computed using the method described in Section 4.3 and since the images appeared to have been already co-registered to some degree by the manufacturer, thus only fine/very fine co-registration was required. For the Vision 1200 images, an analysis of the effect of the size of the window K and the use of complex or intensity-only images was undertaken to empirically determine the parameter values which should be used for this sensor by examining the quality of the co-registration.

Recall from Section 2.4.1 that the interferogram I is formed from two coregistered images by a pixel-wise multiplication of the reference image and the co-registered repeat-pass image:

The interferometric image can be used to evaluate the quality of the resulting coregistration through statistical analysis of several metrics, two of which are contrast and sharpness [START_REF] Marston | Semiparametric statistical stripmap synthetic aperture autofocusing[END_REF], [START_REF] Fienup | Aberration correction by maximizing generalized sharpness metrics[END_REF]] defined as:

and

where β = 2 for the results in this section. An analysis of both complex and magnitude images for the displacement estimation as well as the size of the window K in pixels was performed. The averages of Q c and Q s are reported in Table 5.3 as well as the mean coherence. For the images of sand ripples, the coherence estimates result in a consistently higher sharpness and coherence values for I. An examination of the computed shifts shows greater noise providing evidence that the shifts obtained using the magnitude-only images for small values of K are more robust and provide better estimates of the true co-registration parameters, however as K gets larger, the performance deteriorates. The same is true for the amplitudeonly cross-correlation estimate. Q c is perhaps a better estimate of image quality in the case of an image with large areas of shadow and it has been noted that Q s [START_REF] Fienup | Aberration correction by maximizing generalized sharpness metrics[END_REF] 

end for end for Now compute the pressure for i do = 1:n y for j do = 1:n z u yy ← -u

end for end for end function

Chapter 7

Conclusions

This thesis has studied interferometric processing of SAS images obtained from repeated-passes over the same area in order to detect changes on the seafloor. Interferometric processing allows one to exploit the phase between two complex SAS images to potentially detect very subtle changes in the scene by examining the complex cross-correlation, or coherence, between them. In principle, and as was shown experimentally in this thesis, it is in some cases possible to detect changes that are not visible using the magnitude of the images alone. This has important implications for surveillance and reconnaissance of the seabed in areas such as a choke point or a strategic waterway, in cases where not only the target signatures may be unknown but that they may not be detectable by conventional means.

Interferometric processing of SAS images comes at a cost of stricter requirements on the acquisition geometry, the temporal stability of the environment and the precision of the image co-registration than in the case of traditional change detection approaches which do not use the phase of the images. Of these requirements, image co-registration is arguably the most challenging parts of the coherent change detection signal processing chain for repeat-pass SAS. The use of windowed complex cross-correlations between the two images to find the required pixel displacements between the images revealed distortions in the images that were not expected and did not conform to the linear trajectory model of the track registration approach.

It was found that these distortions can be attributed to uncompensated vehicle motion, most likely pitch, during the two acquisitions. Pitch motion can cause significant along-track positioning errors in the location of the pixels, however the resulting SAS image quality is still satisfactory. It is only when processing images interferometrically that they are manifested.

Two approaches to SAS image co-registration were presented: one based on image warping, where the repeat-pass image is directly interpolated onto the reference image, and the other based on re-navigation, where corrections are applied to the position and meta-data of the repeat-pass data in order to produce an image onto the same focal points as the reference image. While both of these methods were able to accurately co-register pairs of SAS images to a degree of accuracy such Modeling CCD at low frequencies -One of the more interesting avenues for future research is the use of lower frequency systems to perform CCD. Chapter 6 was devoted to this topic and extending the FDTD model (or another appropriate model) to generate sonar data suitable for CCD studies is likely to yield results which are relevant for future system development. A number of recommendations were made in that chapter, including injection of plane wave from a distant source, further validation of the model and extensions to three dimensions.

A promising direction for future research would be to focus on inverting the performance curve of CCD methods, meaning instead of asking if one is able to perform CCD given a certain sensor and set of operational conditions, a more meaningful and useful question is: under a given set of operational conditions, which sensor characteristics must one have in order to reliably detect meaningful coherent changes?

Appendix A

2D phase unwrapping A.1 Overview

One of the more challenging aspects of interferometric SAS processing is that of twodimensional unwrapping of the phase φ of the interferogram [START_REF] Hansen | Signal processing for AUV based interferometric synthetic aperture sonar[END_REF], [START_REF] Saebø | Wideband interferometry in synthetic aperture sonar[END_REF]. This is made even more challenging in the case of repeat-pass processing of SAS images, since the coherence of the images is generally lower, meaning that the variance σ φ of the phase is higher, i.e. the phase measurements are noisier and therefore more difficult to unwrap than in the single-pass case. For the coherent change detection approach developed in this thesis, phase unwrapping is less important as only the magnitude of the coherence is used. However, in practice unwrapping the phase can increase the overall coherence (a topic not explored in this thesis) and for the statistical analysis in Section 3.4, phase unwrapping is needed in order to remove the 2π wraps which may affect the distribution of the phase values. More generally, the topic of phase unwrapping, and in particular the size of the windows used to estimate the coherence and smooth the phase, is of interest to interferometric processing of repeat-pass SAS images. The method used in this thesis is very briefly presented in this appendix for completeness, along with a small analysis of the effect of some of the tunable parameters, specifically the size of the phase smoothing window and the choice of the quality metric used in the phase unwrapping algorithm. The approach is essentially the quality-guided floodfill algorithm described in [Ghiglia and Pritt, 1998, p. 122-126]. As introduced in Section 2.4.1.1, the observed two-dimensional interferometric phase φ is the unknown true phase φ 0 which lies between [π . . . π) and has been wrapped modulo 2π i.e.:

where n is an integer number of 2π phase wraps and φ w is the wrapped phase. The wrapped phase can be expressed using a wrapping operator W where:

The objective of the 2D phase unwrapping is to determine the wrapping operator W for each pixel in the image. Phase unwrapping algorithms have been developed by the SAR community for decades [Gens, 2003] and is still an active area of research in SAS, in particular for situations where the seabed bathymetry changes very rapidly or in the presence of objects [START_REF] Lorentzen | Local probability-based phase unwrapping for synthetic aperture sonar interferometry[END_REF].

A.1.1 Branch cuts and Goldstein's method

There are two general approaches to phase unwrapping, path following and normminimization. Path following algorithms depend on the path independence of line integrals. Assuming that the phase gradients are known as well as the phase at an initial point (i 0 , j 0 ), one can obtain the phase at any other point by following the path integral [Ghiglia and Pritt, 1998, p. 26-27]:

where C is any path in an N -dimensional space connecting points (i, j) and (i 0 , j 0 ) and ∇φ is the phase gradient, i.e. the phase at (i, j) is independent of the path C and any pixel in an image can be unwrapped based on the previous result. Noise as well as other factors can make the integration path in Equation (A.3) dependent on C and 2D phase unwrappers are concerned with selecting an appropriate integration path. The classic method for this is Goldstein's branch-cut method [START_REF] Goldstein | Satellite radar interferometry: Two-dimensional phase unwrapping[END_REF] which is based on the concept of residues, where the residue r of a pixel (i, j) is computed in a 2 × 2 neighbhourhood [Hanssen, 2010, p. 55], [Ghiglia and Pritt, 1998, p. 46-49]:

+W (φ w (i, j + 1) -φ w (i + 1, j + 1)) + W (φ w (i, j) -φ w (i, j + 1)), (A.4) where φ w is the 2D wrapped phase of the interferometric image I. Equation (A.4) defines a line integral around the pixel (i, j) and array of charges C where:

Goldstein's method connects neighboring positive and negative charges to each other through a mechanism called a branch cut. The branch cut defines a path between charges and is found by progressively increasing the size of a search neighbourhood which surrounds the positive or negative charge. Once the branch cuts are found, a flood-fill method is used to unwrap the phase. An initial pixel is selected and unwrapped, after which its four neighbors are also unwrapped, while avoiding branch cut pixels. After all the pixels reachable from the initial point are unwrapped, the branch cut pixels which are next to an unwrapped pixel are also unwrapped in order to avoid areas which are completely isolated with branch cuts.

This method was applied to SAS data by [START_REF] Saebø | Wideband interferometry in synthetic aperture sonar[END_REF].

A.1.2 Quality guided phase unwrapping

Goldstein's method was found to be time consuming and did not offer satisfactory performance on the SAS data presented in Chapter 3. Instead, a quality-guided path integration approach was selected [Ghiglia and Pritt, 1998, p. 122-124], where the path is determined by some quality measure Q and where the best quality pixels are unwrapped first. The quality-guided method is a region-growing approach, starting with high-quality pixels (as defined by Q) and only moving onto the low-quality pixels once none are left and another high-quality region is found. The first step in this procedure is to smooth the wrapped phase φ w to reduce the noise by averaging

where J K φ is the unit matrix of size K φ . The size of the smoothing window K φ has a significant effect on the resulting unwrapped phase and should be chosen as a compromise between noise and resolution. The quality map Q is thresholded at a value κ Q in order to identify pixels which are deemed to be of "good" quality; κ Q is determined numerically as two standard deviations above the mean quality value over the entire image. A morphological dilation of size 5 is applied to grown the thresholded quality mask [Bone, 1991]. The best quality pixel on this list is chosen as the initial point, its neighbours are placed on the list of pixels to be unwrapped (called the adjoin list). The algorithm then proceeds to choose the best quality pixel on the adjoin list, unwraps its phase by applying the principle of Equation (A.2), e.g. for the pixel located to the right of the current pixel (i, j):

The procedure continues until no pixels are left on the adjoin list, after which κ Q is reduced to allow for more pixels to be unwrapped. This procedure continues until all of the pixels have been unwrapped. Pseudo-code for the quality-guided phase unwrapper can be found in [Ghiglia and Pritt, 1998, p. 124-126], where some steps that have been omitted here, such as controlling the size of the adjoin list and maintaining a list of pixels that are marked as "postponed", are given in greater detail.

A.1.2.1 Phase derivative variance quality metric

The main performance factor in the quality-guided phase unwrapper is the choice of the quality metric Q. The first quality metric considered here is the phase derivative variance, defined as:

where δ x (i, j) and δ y (i, j) are the discrete partial derivatives of the wrapped phase φ w in x and y:

and the summation is done over an K var × K var pixel window. This choice of Q offers some benefits for the present problem, as the spots where the interferometric fringes wrap will cause a high value of Q. 1

A.1.2.2 Coherence quality metric

Another obvious quality metric is the image coherence magnitude within a window of size K coh between the two images v and w (recall Equation (4.4)):

where Equation (A.11) a modified coherence that has low values when the coherence is high, in order to be consistent with the phase variance quality metric in Equation (A.8).

1 Note that for this choice of Q, low values mean high quality phase estimates.

Appendix B

Overview of data collection experiments

The research in this thesis relies on experimental data collected during four experiments at sea by various agencies using three different UUV-based SAS sensors which were run in different parts of the world and provide valuable validation of the methods and approaches that were developed. This validation on real sensor data is one of the main contributions of this thesis and allows one to better appreciate the challenges that need to be addressed when applying theoretical concepts from repeat-pass interferometry, much of which comes from the satellite-based SAR literature, to UUV-based SAS data. Difficult problems such as co-registration and coherent change detection are made more challenging due to the platform instability, the relatively slow speed of propagation of sound and the correspondingly short acoustic wavelengths. This appendix gives an overview of the experiments, the characteristics of the systems that were employed, the geographic location and when available, the deployed targets.

B.1 Larvik

The main data set used in this thesis was collected in 2011 by the Forsvarets forskn- A second receiver array is placed in an interferometric pair configuration 30 cm apart [START_REF] Fossum | HISAS 1030 -high resolution interferometric synthetic aperture sonar[END_REF]. It was part of a collaborative The data used in this thesis was collected in a highly dynamic area containing sand ripples which was surveyed with and without targets after a period of roughly 24

hours. An overview of ITMINEX can be found in [START_REF] Couillard | IT-MINEX'14: experimental description and preliminary results[END_REF].
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