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Résumé

Cette thèse est consacrée à l'étude des propriétés des suites automatiques. Cette dernière

est une notion premièrement introduite et étudiée par les mathématiciens et les informati-

ciens théoriciens en combinatoire, notamment en théories des langages, mais elle a aussi des

applications intéressantes en théorie des nombres. Dans cette thèse, on travaille sur quatre

sujets concernant les aspects mathématiques et informatiques, liés aux suites automatiques.

Dans le Chapitre 1, on donne une introduction aux suites automatiques ainsi que

des résultats récents autour de ce sujet. Dans le Chapitre 2, on étudie le prolongement

méromorphe des séries de Dirichlet du type

f(s) =
∑
x∈Nk

ax
p(x)s

surC, avec (ax)n∈Nk une suite automatique de dimension k, et p un polynôme elliptique qui

ne s'annule pas sur Nk. Et aussi, des produits in�nis sont calculés comme conséquences

de ce résultat. Dans le Chapitre 3, on trouve une expression explicite pour toute suite

automatique complètement multiplicative. Dans le Chapitre 4, on considère les séries

formelles dé�nies par des produits in�nis du type,

∞∑
n=1

anx
n =

∞∏
i=1

p(xq
i
)

avec p un polynôme à coe�cients dans Q et p(0) = 1, et q un entier plus grand que 1.

On démontre que pour q et d �xés, il n'y a qu'un nombre �ni des polynômes de dégrée au

plus d tel que la série in�nie obtenue par la dé�nition précédente soit q-automatique. Dans

le Chapitre 5, on étudie la longueur palindromique des suites automatiques, et on trouve

toute les suites ayant la même longueur palindromique que celle de Thue-Morse.
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Abstract

In this thesis we are interested in automatic sequences, which is a notion introduced and

initially studied by combinatorists, and by people working on language theory. Meanwhile

these sequences also appear to have some interesting properties in number theory. In this

thesis, we deal with some topics in mathematics and computer science, related to automatic

sequences.

In Chapter 1, we give an introduction to automatic sequences and a brief overview of

recent works on related topics. In Chapter 2, we study the meromorphic continuation of

Dirichlet series of type

f(s) =
∑
x∈Nk

ax
p(x)s

over C, where (ax)n∈Nk is an automatic sequence of dimension k, and p is an elliptic poly-

nomial non-vanishing over Nk. And some in�nite products are calculated as consequences

of this result. In Chapter 3, we give a formal expression to all completely multiplica-

tive automatic sequences. In Chapter 4, we study formal powers series de�ned by in�nite

products of type
∞∑
n=1

anx
n =

∞∏
i=1

p(xq
i
)

where p is a polynomial with coe�cients overQ and p(0) = 1, and q is an integer larger than

1. We prove that for given integer d, there are �nitely many polynomials of degree d such

that the sequence de�ned as above is automatic. In Chapter 5, we study the palindromic

length of automatic sequences and �nd all sequences having the same palindromic length

as the one of Thue-Morse.

Keywords

Automatic sequences, completely multiplicative functions, Mahler functions, Palindromic

length.
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Chapter 0

This thesis consists of 5 chapters following this one. The last four chapter correspondent

to four articles that are either on the ArXiv or submitted (or both).
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Chapter 1

Introduction to automatic sequences

Introduction to automatic sequences

Sequence is a fundamental notion in mathematics. To describe a sequence, apart from

listing all elements one by one, we may want to �nd some relations between its elements.

Periodic sequences are good examples in this case, as they are highly ordered and easy to

describe. While there are other sequences which are more complicated but still preserve

relations between elements, they may be called as �programmable sequences�. In this thesis

we study a speci�c type of programmable sequences, called automatic sequences.

Automatic sequences can be de�ned by a �nite automaton, which is a notion from

language theory. However, there are some equivalent de�nitions from other branches of

mathematics such as combinatorics as well as number theory. In the �rst section, we will

present the related de�nitions of automatic sequences and applications in each �eld, and

show how automaticity can be used to build a link between two di�erent �elds.

At the end of each sub-section of this chapter we introduce some new results obtained

by the author. All these results are based, directly or indirectly, but strongly, on the

mechanism of substitutions (of words, functions or matrices..). It is this mechanism that

gives automatic sequences a complex but computational structure, which allows us to �nd

formal expressions for some �disordered� phenomena.

1.1 First de�nition and applications in number theory

In this section we will introduce one of the de�nitions of automatic sequences and show

why this kind of sequences are interesting in number theory.

De�nition A sequence (an)n∈N is called k-automatic if and only if the set

Ker((an)n∈N) =
{

(akln+i)n∈N|l ∈ N, 0 ≤ i < kl
}

13



14 CHAPITRE 1

is �nite. This set will be called the k-kernel of the sequence (an)n∈N.

Example Let us consider a sequence de�ned in such way: we begin with a word of one

letter 1, next step we change the letter 1 to the string 10, in the third step we change 1 to

10 and 0 to 01... At each step we change 1 to 10 and 0 to 01 letter by letter so that we

obtain an in�nite sequence. The process is presented as follows:

1

10

1001

10010110

1001011001101001...

At the end we get a sequence like

10010110011010010110...

This sequence is called the Thue-Morse sequence, and it is easy to show that this sequence

is 2-automatic. In fact, we have the following relations:

a2n = an

a2n+1 = 1− an

for all n ≥ 0. If we let (an)n∈N denote the Thue-Morse sequence, the kernel of this sequence

is Ker((an)n∈N) = {(a2n+1)n∈N, (an)n∈N}.

Example Another example is the Rudin-Shapiro sequence, which can be de�ned by the

number of the factors 11 in the binary expansion of n: the sequence (g(n))n∈N satis�es

the relation

g(n) = (−1)a2,11(n)

for each n, where a2,11(n) counts the number of 11 in the binary expansion of n. The �rst

terms of the Rudin-Shapiro sequence are

+1,+1,+1,−1,+1,+1,−1,+1,+1,+1,+1,−1,−1,−1,+1,−1, ...

Because of the de�nition, (g(n))n∈N satis�es the following recurrence:

g(2n+ 1) = (−1)ng(n)

g(2n) = g(n).
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So the 2-kernel of this sequence is

Ker(g(n)n∈N) =
{
−g(n)n∈N, g(n)n∈N, (−1)ng(n)n∈N, (−1)n+1g(n)n∈N

}
.

1.1.1 In�nite products and Dirichlet series

Thanks to the �niteness of the k-kernel, there are several in�nite sums or products as-

sociated with a k-automatic sequence presenting interesting properties. One of the most

famous results about automatic sequences is the Woods�Robbins product identity [44] [37],

which is written as: (
1

2

)(−1)a(0) (3

4

)(−1)a(1) (5

6

)(−1)a(3)

... = 2−
1
2

where (a(m))m∈N is the Thue-Morse sequence. This result can be obtained and generalized

by evaluating a function of two variables de�ned by f(a, b) =
∏
n≥1(

n+a
n+b )(−1)

an at some

rational points, and using the �niteness of Ker((an))n∈N.

Theorem 1.1. ([3]) Let us de�ne g(x) =
f(x

2
,x+1

2
)

x+1 then we have

(1 + x)g(x) =
g(x2 )

g(x+1
2 )

, x 6= −1,−2,−3...

Corollary 1.1. ∏
n≥0

(
4n+ 1

4n+ 3

)(−1)an

=
1

2

∏
n≥1

(
(2n− 1)(4n+ 1)

(2n+ 1)(4n− 1)

)(−1)an

= 2

For more results see [3]. However, the W-R identity can also be obtained by considering

the associated Dirichlet series:

f(s) =
∑
n≥1

an
(n+ 1)s

and calculating the derivative at 0. Before doing this, let us introduce an important

theorem on general automatic Dirichlet series:

Theorem 1.2. ([2]) Let (an)n≥0 be an automatic sequence with values in C. Then the

Dirichlet series
∞∑
n=0

an
(n+ 1)s

∞∑
n=1

an
(n)s

have meromorphic continuations to the whole complex plane, whose poles (if any) are lo-

cated on a �nite number of left semi-lattices.
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As a consequence, if we can calculate the derivative of those functions on some points

over their convergence domain, then we can build some equalities between an in�nite

product and a real number.

Corollary 1.2. Let q, r be two integers larger then 1, and let (sq(m))m∈N and (uj(m))m∈N

be sequences de�ned respectively assq(0) = 0

sq(qm+ a) = sq(m) + a, 0 ≤ a ≤ q − 1;

uj(m) =

r − 1 if sq(m) ≡ j mod r

−1 otherwise.

Then we have the equality

∞∏
m=0

(
m+ 1

q[m/q] + 1

)uj(m)

= qj+(1−r)/2,

where [a] represents the largest integer smaller than a. In particular, taking q = r = 2 and

j = 0, we have the W-R identity.

The Chapter 2 of this thesis aims to generalize this result to multi-index automatic

sequences, a notion generalized from De�nition 1 and studied in [40].

De�nition We let x denote an n-tuple (x1, x2...xn) and let d ≥ 2 be an integer. A sequence

(an)n≥0 with values in the set A is called d−automatic if and only if its d−kernel Nd(a) is

�nite, where the d−kernel of the sequence(ax)x≥0 is the set of subsequences de�ned by

Nd(a) =
{

(m1,m2...mn) 7−→ a(dkm1+l1,dkm2+l2,...,dkmn+ln); k ≥ 0, (0) ≤ l ≤ (dk − 1)
}
.

Remarking that constant sequences are a kind of particular automatic sequences, the

Dirichlet sequences in the form
∑

(n1,n2...nI)∈NI
+

n
µ1
1 n

µ2
2 ...n

µI
I

p(n1,n2,..nI)s
have been largely studied,

where (µ1, µ2, ...µI) ∈ NI
+ and p is a I-variable function. R.H. Mellin [34] �rstly proved

in 1900 that the functions above have a meromorphic continuation to the whole complex

plane when µi = 0 for all indexes i, then K. Mahler [32] generalized the result to the case

that µi are arbitrary positive integers when the polynomial satis�es the elliptic condition

in 1927. In 1987, P. Sargos [41] proved that the condition �lim |p(n1, n2...nI)| → ∞ when

|(n1, n2...nI)| → ∞ and p is non-degenerate� is su�cient for these Dirichlet sequences to

have a meromorphic continuation. In 1997, D. Essouabri [20] generalized the condition to

the case,
∂µp(x)

p(x) = O(1),∀µ ∈ Zn+. In Chapter 2 the author �nds a su�cient condition for

the sequences
∑

x∈Nn
ax

∏n
i=1 x

µi
i

P (x)s to have a meromorphic continuation over C. The main

result is announced as follows:
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Theorem 1.3. Let p be an elliptic polynomial of n variables and (ax)x>0 be q-automatic,

then for a given n-tuple µ, the function
∑

(x)∈Nn
+

ax
∏n
i=1 x

µi
i

p(x)s admits an abscissa of conver-

gence σ such that it converges absolutely on the half-plane <(s) > σ and has a meromorphic

continuation on the whole complex plane. Furthermore, the poles of this function (if any)

are located on a �nite number of left semi-lattices.

1.1.2 Automatic power series

Another application of the �niteness of the k-kernel is to build links between automatic

power series and functional equations.

De�nition Let
∑

n≥0 anx
n be a formal power series de�ned over a �eld F. We say it is

automatic if the sequence of its coe�cients is automatic.

It is proved that all automatic power sequences over an arbitrary �eld satisfy a func-

tional equation.

Theorem 1.4. ([4]) let f ∈ F ((x)) be a k-automatic power series, then there exist poly-

nomials a0(x), a1(x), ..., am(x) ∈ F [x] with a0(x)am(x) 6= 0 such that

m∑
i=0

ai(x)f(xk
i
) = 0.

We may ask the reversal question: given a functional equation, what does the solution

look like? This question has been widely studied in [12] [17] [11] [16]. In [12] G. Christol

answered this question for power sequences de�ned over a �nite �eld: he proved that there

is an equivalence between being a solution of such a functional equation and being an

automatic power series.

De�nition Let F be any �eld. We say that a formal power series f(x) ∈ F((x)) is algebraic

if it is algebraic over F(x), that is, if there exist d ∈ N and polynomials ai(x) ∈ F[x] for

i = 0, ..., d, such that ad(x) 6= 0 and

d∑
i=0

ai(x)f(x)i = 0.

Theorem 1.5. ([12]) Let Fq be a �nite �eld of characteristic p. A formal power series

f(x) =
∑

n≥0 anx
n ∈ F ((x)) is algebraic over the rational function �eld Fq(x) if and only

if the sequence of its coe�cients is q-automatic.

However, things are going to be complicated for an arbitrary �eld, namely for R or C,

even though the simplest equation does not lead to general conclusions:

f(x) = p(x)f(xk),
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where p is a polynomial. It is known that coe�cients of solutions of above functional

equation satisfy a more complicated structure, but it is still unknown if there are some

restrictions on p to make the solutions to be automatic. P. Dumas studied asymptotic

properties of coe�cients of solutions of above equation [17], S. Checcoli and J. Roques

found all polynomials of low degree such that the power series f de�ned by the above

functional equations are automatic [11].

De�nition Let (a(n))n≥0 be a sequence de�ned over a �eld F, it is called k-regular if the

F-module generated by

Ker((an)n∈N) =
{

(akln+i)n∈N|l ∈ N, 0 ≤ i < kl
}

is a �nitely-generated F-module. A formal power series f(x) ∈ F((x)) is called regular if

the sequence of its coe�cients is regular.

Theorem 1.6. ([17]) Let k be an integer larger then 1 and p(x) ∈ F[x], then all power

sequences f(x) =
∑

n≥0 anx
n ∈ F ((x)) satisfying equation

f(x) = p(x)f(xk)

are k-regular.

In Chapter 3 the author �nds some properties of automatic power sequence f(x) de�ned

over Q satisfying the equation above. Main results are as follows:

Theorem 1.7. For given integers q ≥ 2 and d ≥ 0, there exist �nitely many polynomials

of degree d de�ned over the �eld of rational numbers Q, say p1(x), p2(x), ...pk(x), such that∏∞
s=0 pj(x

qs) =
∑∞

i=1 cix
i is a q-automatic power series for j : 1 ≤ j ≤ k.

Theorem 1.8. If the power series F (x) =
∏∞
s=0

1
f(xqs )

=
∑∞

i=0 cix
i is q-regular, then there

exists a polynomial Q(x) such that f(x)|Q(xq)
Q(x) , Furthermore F (x) can be written as

F (x) = Q(x)

∞∏
i=1

R(xq),

where R(x) = Q(xq)
Q(x)f(x) is a polynomial.

1.2 Automatic sequence and language theory

In this section, we will give a de�nition of automatic sequence using the notion of automa-

ton. To do so, let us give �rstly a de�nition of a �nite automaton:

De�nition Let a (�nite) alphabet
∑

to be a (�nite) set of elements, we say a word a over∑
if a is a string of elements in

∑
, in particuler the empty word is a word over all

∑
, let
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us denote by
∑∗ the set of words over

∑
. We say that L is a language over

∑
if L is a

subset of
∑∗.

De�nition A deterministic �nite automaton, or DFA,M is de�ned to be a 5-tupleM =

(Q,
∑
, δ, q0,F)

where

Q is a �nite set of states,∑
is the �nite input alphabet,

δ : Q×
∑
→ Q is the transition function,

q0 ∈ Q is the initial state, and

F ⊆ Q is the set of accepting states.

A k-automatic sequence can be de�ned as an output of a k-deterministic �nite automa-

ton with output, which is denoted by k-DFAO. Comparing with a DFA, a DFAO is de�ned

to be a 6-tuple M = (Q,
∑

k, δ, q0,∆, τ). Where Q,
∑
, δ, q0 are de�ned as they were in

the previous de�nition,
∑

k = {0, 1, 2, ..., k − 1}, ∆ is the output alphabet, and τ : Q → ∆

is the output function. Such a machine M de�nes a function from
∑∗ to ∆, which we

denote as fM(w), as follows: fM(ω) = τ(δ(q0, ω)).

De�nition We say the sequence (an)n∈N over a �nite alphabet ∆ is k-automatic if there

exists a k-DFAOM = (Q,
∑

k, δ, q0,∆, τ) such that an = τ(δ(q0, ω)) for all n ≥ 0 and all

w with [w]k = n, where [w]k represents the number whose expansion in base k is w.

It is easy to see that there is a natural equivalence between this de�nition and the one

presented in Section 1. Here we rede�ne the two examples in the previous section.

Example The DFAO of the Thue-Morse sequence is as follows:

1 0

1

0

1

0

The DFAO of the Rudin-Shapiro sequence is as follows:

1 1 -1 -1

1

0

0

1

0

1

0

1

Remarking that in language theory, there is another notion related to automaton, called

regular languages.
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De�nition The set of regular languages over an alphabet
∑

is de�ned recursively as

follows:

a) The empty language and the set of empty word are regular languages.

b) For each element a ∈
∑
, the language {a} is a regular language.

c) If A and B are regular languages, then the union, the concatenation and the free monoid

generated by one of them are regular languages.

d) No other languages over
∑

are regular.

Theorem 1.9. (see,e.g.,[5]) A language is accepted by a DFA if and only if it is a regular

language.

Theorem 1.10. (see,e.g.,[5]) LetM = (Q,
∑

k, δ, q0,∆, τ) be a k-DFAO,then for all d ∈ ∆

the set Id(M) = {w ∈
∑∗ : τ(δ(q0, ω)) = d} is a regular language.

As we can see, there is a strong relation between automatic sequences and regular

languages, we may expect to use combinatorial properties of regular languages to prove

some asymptotic properties of automatic sequences. Let us �rstly recall some notion of

densities used to study asymptotic properties of sequences:

De�nition Let E be a subset of the integers. We say that the set E has an asymptotic

density or a natural density d if the limit

d = lim
x→∞

1

x
] {n ≤ x;n ∈ E}

exists.

We say that the set E has a logarithmic density δ if the limit

δ = lim
x→∞

1

log x

∑
n≤x,n∈E

1

n

exists.

We say that the set E has an analytic density δ
′
if the limit

δ
′

= lim
s→1+

(s− 1)
∑

n≥1,n∈E

1

ns

exists. We call these limits respectively asymptotic density, logarithmic density and ana-

lytic density.

Theorem 1.11. ([2]) The existence of asymptotic density implies the existence of loga-

rithmic density, and their values coincide;

The existence of logarithmic density is equivalent to the existence of analytic density, and

their values coincide.
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Theorem 1.12. (see,e.g.,[5]) Let L ⊆
∑∗ be a regular language. Then there exists a

constant n ≥ 1 such that for all words z ∈ L with length larger then n, there exists a

decomposition z = uvw, where u, v, w ∈
∑∗ and v is non-empty such that uviw ∈ L for all

i ≥ 0. Furthermore, the constant n can be taken to be the number of states in the minimal

DFA for L.

This theorem is called pumping lemma, what it is saying is that if a word is long enough,

then there must be some loops on the chain from the initial state to some acceptable state,

so that all words obtained by repeating �nitely many times one of the loops are also

acceptable.

i s a
u

v

w

If we apply the same idea to study the asymptotic property of an automatic sequence

then we have the following property

Theorem 1.13. ([42]) Let (an)n∈Nbe a k-automatic sequence and q be the number of

states of a direct automaton generating (an)n∈N then for any m, y ∈ N. We have equality

between the sets
{
an|mkq! ≤ n < (m+ 1)kq!

}
=
{
an|mkyq! ≤ n < (m+ 1)kyq!

}
.

As a consequence,

Corollary 1.3. Let (an)n∈N be an automatic sequence, then there exists a integer k such

that for all couple of integers r, s such that r > k, s > 0, if there is some an not in the set

{an|s ≤ n < s+ r}, then either the element an does not have an asymptotic density or its

density is 0.

We remark that Theorem 1.13 is not announced as this form in [42], but it is an

intermediate result of the proof of Theorem 1 in [42], for which the hypothesis of complete

multiplicativity is not necessary. For more details, see Lemma 3, Theorem 1 in [42] and

Proposition 3.1 in Chapter 3.

1.3 Substitution and complexity

The de�nition of Thue-Morse sequence presented in Section 1 can be reformulated by using

a monoid endomorphism. Let φ be a monoid endomorphism of the set {0, 1}∗ such that

φ(0) = 01 and φ(1) = 10, then

φ0(1) = 1

φ1(1) = 10

φ2(1) = 1001

φ3(1) = 10010110

φ4(1) = 1001011001101001...
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So that the Thue-Morse sequence can be de�ned as limn→∞ φ
n(1) which exists. Let us

denote this limit by φ∞(1).

De�nition Let
∑

be an alphabet and k be a positive integer, A k-substitution is an

endomorphism of
∑∗ such that the image of each letter in

∑
is of length k.

So the morphism φ de�ned as above is a 2-substitution.

For the Rudin-Shapiro sequence, there is a 2-substitution over an alphabet of 4 elements

{A,B,C,D} such that

s(A) = AB

s(B) = AC

s(C) = DB

s(D) = DC

So s∞(A) = ABACABDBABACDCAC..., then the Rudin-Shapiro sequence is ob-

tained by replacing A,B by 1 and C,D by −1.

Theorem 1.14. (Cobham [19]) Let k be a positive integer and (a(n))n≥0 be a sequence.

The following conditions are equivalent:

a) The sequence (a(n))n≥0 is k-automatic.

b) The k-kernel of (a(n))n≥0 is �nite.

c) The sequence (a(n))n≥0 is the pointwise image of a �xed point of a k-substitution.

Now let us show how this kind of sequences are classi�ed between �ordered� and totally

disordered. To do so, we have to measure the �complexity" of a sequence. Here we introduce

some di�erent measures of the complexity of an in�nite sequence.

De�nition Let u be an in�nite sequence of symbols from an alphabet
∑
. We de�ne the

subword complexity pu(n) of u to be the number of di�erent words of length n in u.

This de�nition is the one most used in complexity analysis, however some other com-

plexities can be de�ned such as: Let u be an in�nite sequence of symbols from an alphabet∑
.

De�nition We de�ne the square complexity pdu(n) of u to be the number of di�erent

words of type aa of length n in u, where a ∈
∑∗.

De�nition We de�ne the cube complexity ptu(n) of u to be the number of di�erent words

of type aaa of length n in u, where a ∈
∑∗.

De�nition We de�ne the palindromic complexity ppu(n) of u to be the number of di�erent

words a of length n in u, such that a equals to its reverse, i.e., a = x0x1x2...xk−1xkxk−1...x2x1x0

or a = x0x1x2...xk−1xkxkxk−1...x2x1x0.
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De�nition We de�ne the palindromic length complexity plu(n) to be the minimal number

of decomposition in palindromic words of the pre�x of u of size n, i.e.,

plu(n) = min {k|u0u1u2...un = p1p2...pk; pi are palindromic words} .

The subword complexity varies from a constant to exponential:

Example The subword complexity of a constant sequence is constant;

The subword complexity of an ultimately periodic sequence is bounded;

The subword complexity of the Barbier in�nite word

B = 123456789101112131415161718192021...

which is the in�nite concatenation of the decimal expansions of the positive integers written

in increasing order, is exponential: pB(n) = 10n for all n ≥ 0.

Theorem 1.15. (see,e.g.,[5]) Almost all sequences w over a �nite alphabet
∑

satisfy

pw(n) = |
∑
|n for all n ≥ 0.

Theorem 1.16. (Cobham [13]) If w is an automatic sequence, then pw(n) = O(n) for all

n ≥ 0.

The last two theorems show the distinction between automatic sequences and random

sequences. Here let us consider the Thue-Morse sequences as example:

Theorem 1.17. ([31],[10],[36],[39],[9]) The Thue-Morse sequences (a(n))n≥0 satis�es

a) pa(n) ≤ 4n for all n ≥ 0,

b) all squares in (a(n))n≥0 are of the form φk(00), φk(11), φk(010010), or φk(101101) for

some k ≥ 0, as a consequence, pda(n) ≤ 4n for all n ≥ 0,

c) (a(n))n≥0 is an overlap-free sequence, i.e., it does not contain any words of type ababa

with a ∈
∑
, b ∈

∑∗, consequently pta(n) = 0 for all n ≥ 0,

d) ppa(n) is 0,2 or 4.

In Chapter 5, the author studies the palindromic length complexity of Thue-Morse

sequence and �nd all sequences which have the same palindromic length complexity as

Thue-Morse's. The main result is as follows:

Theorem 1.18. Let us de�ne a class of in�nite sequences C as follows:

Let
∑

be an alphabet which contains at least two letters and let a ∈
∑

.

Let F be the set of bijections over
∑

.

Let (fn)n∈N be a sequence over F and (wn)n∈N be a sequence of �nite words over
∑

which

are de�ned recursively as:

fi ∈ F such that fi(wi) 6= wi ∀i ≥ 0,
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and w0 = a

wn = wn−1fn−1(wn−1)fn−1(wn−1)wn−1,∀n > 0.

Then all sequences in C share the same palindromic length complexity.

1.4 Completely multiplicative functions

De�nition A function f : N→ G, where G is a group, is called completely multiplicative

if f(nm) = f(n)f(m). It is called multiplicative if f(nm) = f(n)f(m) ∀(n,m) such that

(n,m) = 1.

The motivation is to study the completely multiplicative automatic functions, and answer

the two conjectures proposed respectively in [28] and [1].

Conjecture 1.1. For any multiplicative q-automatic function f : N → C there exists an

eventually periodic function g : N→ C such that f(p) = g(p) for all primes p.

De�nition Let f : N→ G be completely multiplicative, we call f as a mock character if

there are only �nitely many primes p such that f(p) = 0.

Let f and g be two completely multiplicative functions and y be a positive integer, we de�ne

a distance D( . , . ; y) between these functions as D2(f, g; y) =
∑

p≤y,p∈p
1−<(f(p)g(p))

y .

Conjecture 1.2. For any mock character k, there exists a Dirichlet character χ such that

D(k, χ, y) is bounded. Conversely, if k : Z→ U is completely multiplicative and a bounded

distance from some Dirichlet character, then k must be a mock character. where U is the

complex unit disc.

This topic has been studied in [42] [1] [27] [30]. In article [42], the author proved that

non-vanishing completely multiplicative automatic sequences are almost periodic (de�ned

in [42]). In article [1], the authors gave a formal expression to all sequences in the non-

vanishing case and also some examples in the vanishing case. In article [27], Y. Hu studied

completely multiplicative sequences in general and extended the results under a weaker

condition. Here we prove that completely multiplicative automatic sequences are rare and

have the same expression as the one in [1]. To do so, let us begin by reviewing some

asymptotic properties of (completely) multiplicative functions.

Let G be a group and let f : N → G be a function. It was proved by I. Z. Ruzsa [38]

that, if G is an Abelian group and f is a multiplicative function, then all elements in G

have a nature density.
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Theorem 1.19. ([38]) Let G be an Abelian group and f a multiplicative function over G,

let

E =

g|g ∈ G, ∑
f(p)=g,p∈P

1

p
=∞


where P is the set of primes and G1 the subgroup of G generated by E. If

|G1| <∞,
∑

f(p) 6∈G1

1

p
<∞

then d(g) > 0 for all g ∈ Imf and the value depends only on the coset hG1 in which g lies,

otherwise d(g) = 0.

This theorem can be extended to the case G∪{0} with restriction that
∑

f(p)=0
1
p <∞

and f is completely multiplicative. A similar topic has also been studied by P. Erdös and

A. Wintner. In [19] Erdös conjectured that if f evaluates over {1,−1}, then the mean

value M(f) = limN→∞
∑N
i=1 f(i)
N exists. H. Delange [15] proved this for all real-evaluated

multiplicative functions, under the condition that
∑

p∈P
1−f(p)

p < ∞ and |f(n)| ≤ 1. In

which caseM(f) 6= 0 unless f(2k) = −1 for every k ∈ N . After that E. Wirsing [43] proved

that if the previous series diverges, then M(f) = 0. And these results were extended to

complex valued multiplicative functions by G. Halász [26].

To study the subword complexity of f , it may be useful to check also the density

of words of arbitrary length. It is conjectured by Elliott [18] that if the multiplicative

functions f1, f2, ...fl de�ned over U are aperiodic, then for all distinct integers n1, n2, ...nl
we have

lim
N→∞

1

N

N∑
m=1

f0(m)f1(m+ n1)...fl(m+ nl) = 0.

What we mean by aperiodic sequences are those sequences f satisfying M(f(ax + b)) =

0 for all couple of positive integers a, b. As a consequence, the subword complexity of

aperiodic function over a �nite alphabet is exponential. This conjecture was proved by N.

Frantzikinakis [21] with a stronger hypothesis:

Theorem 1.20. ([21]) Let p1, ..., pl be linearly independent polynomials over Z and f1, f2, ...fl
be multiplicative functions over U, at least one of which is strongly aperiodic. Then there

exists a sequence of intervals (Mk)k∈N with Mk →∞ such that

UD − lim
n→∞

1

Mk

Mk∑
m=1

f0(m)f1(m+ p1(n))...fl(m+ pl(n)) = 0.

We write UD− limn→∞ a(n) = c, if for every ε > 0 the set n ∈ Nr : |a(n)− c| ≥ ε has
uniform density 0. A multiplicative function f is called strongly aperiodic if

min|t|≤N D(f.χ, nit;N)→∞ as n→∞ for every Dirichlet character χ.
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With the same assumption of strongly aperiodic and dynamical analysis, the same

author proves that the non-zero mean value in logarithm density implies the upper linear

growth of subword complexity.

Theorem 1.21. ([22]) If the multiplicative function f : N→ U has �nite range, is strongly

aperiodic, and does not converge to zero in logarithmic density, then limn→∞
p(n)
n = ∞,

where p(n) is the subword complexity of f of length n.

Another result from dynamical analysis was obtained by M. Lema«czyk and C. Müllner

[30] in which they consider an automatic sequence de�ned by primitive uniform substitu-

tion.

Theorem 1.22. ([30]) Let δ be a primitive substitution of constant length k. Then the

numerical automatic sequence (an)n∈N generated by in�nite substitutions of an initial letter

x is orthogonal to any bounded, aperiodic, multiplicative function f : N → C i.e., if

(an)n∈N = limm→∞ δ
m(x), then

lim
n→∞

1

n

∑
i≤n

aif(i) = 0.

As we can see, most of completely multiplicative functions are aperiodic. So their

subword complexities are larger than linear, while the subword complexities of automatic

sequences are bounded by linear functions. As a consequence, the intersection of these

two classes of sequences should be rare. The main result introduced in Chapter 3 is a

classi�cation of all completely multiplicative automatic sequences.

Theorem 1.23. Let (an)n∈N be a CMAS; then, it can be written in the following form:

-either there is at most one prime p such that ap 6= 0 and aq = 0 for all other primes q

-or an = εvp(n)X( n
pvp(n)

), where (X(n))n∈N is a Dirichlet character.



Chapter 2

Generalized Dirichlet series of n

variables associated with automatic

sequences

2.1 Introduction

The propose of this article is to give a su�cient condition for the meromorphic continuation

of Dirichlet series of form
∑

x∈Nn
+

ax
∏n
i=1 x

µi
i

P (x)s , where (ax)x∈Nn
+
is a q-automatic sequence

of n parameters, µi ∈ Z+ and P : Nn → R a polynomial, such that P does not have

zeros in Qn
+. Some speci�c cases for n = 1 are studied in this article as examples to

show the possibility to have an holomorphic continuity on the whole complex plane. Some

equivalences between in�nite products are also built as consequences of these results. The

Dirichlet sequences of the form
∑∞

n=1
an
ns have been studied in [2], and our work is a natural

generalization of the results in the above article by using the same method of calculations.

2.2 Notation, de�nitions and basic properties of automatic

sequences

Here we de�ne some notation used in this article. We let x denote an n-tuple (x1, x2...xn).

We say x ≥ y (resp. x > y) if and only if x − y ∈ Rn
+(resp. x − y ∈ Rn

+), and we

have an analogue de�nition for the symbol ≤ (resp. <). We let xµ denote the n-tuple

(xµ11 , x
µ2
2 ...x

µn
n ). For a constant c, we let c denote the tuple (c, c...c) and for two tuples x

and y, we let < x, y > denote the real number
∑n

i=1 xiyi. For an n-tuple (x1, x2...xn), we

let || ||d denote the norm d and let || || or || ||2 denote the norm 2.

De�nition Let q ≥ 2 be an integer. A sequence (ax)x≥0 with values in the set A is

called q-automatic if and only if its q-kernel Nq((ax)x≥0) is �nite, where the q-kernel of the

27
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sequence (ax)x≥0 is the set of subsequences de�ned by

Nq((ax)x≥0) =
{

(m1,m2...mn) 7−→ a(qkm1+l1,qkm2+l2,...,qkmn+ln); k ≥ 0, (0) ≤ l ≤ (qk − 1)
}
.

Remark A q-automatic sequence necessarily takes �nitely many values. Hence we can

assume that the set A is �nite.

Because of the de�nition of q-automatic with n variables, there are some basic proper-

ties.

Theorem 2.1. Let q ≥ 2 be an integer and (ax)x≥0 be a sequence with values in A. Then,
the following properties are equivalent:

(i) The sequence (ax)x≥0 is q-automatic

(ii) There exists an integer t ≥ 1 and a set of t sequences N ′ =
{

(a1x)x≥0, ..., (a
t
x)x≥0

}
)

such that

- the sequence (a1x)x≥0 is equal to the sequence (ax)x≥0

- the set N ′ is closed under the maps (ax)x≥0 7−→ (aqx+y)x≥0 for 0 ≤ y ≤ q − 1

(iii) There exist an integer t ≥ 1 and a sequence (Ax)x≥0 with values in At, that we
denote as a column vector, as (A1,1...1, A2,1...1, A1,2...1...A1,1...2, A2,2...1...)

t. There exist qn

matrices of size t× t, say M1,1...1,M1,2...1...Mq,q..q , with the property that each row of each

Mi has exactly one entry equal to 1, and the other t− 1 entries equal to 0, such that:

- the �rst component of the vector (Ax)x≥0 is the sequence (ax)x≥0

- for each y such that 0 ≤ y ≤ q − 1, the equality Aqx+y = MyAx holds.

Proof. It is a natural consequence of the �niteness of the set N ′ , see for example [40].

Proposition 2.1. Let (ax)x≥0 be a q-automatic sequence and (bx)x≥0 be a periodic sequence

of period c. Then the sequence (ax × bx)x≥0 is also q-automatic and its q-kernel can

be completed in such a way that all transition matrices of the maps (ax × bx)x≥0 7−→
(aqx+y × bqx+y)x≥0 on the new set are independent on the choice of the values taken by the

sequence (bx)x≥0.

Proof. As (ax)x≥0 is a q-automatic sequence, we let

Na :
{

(a
(1)
x )x≥0, (a

(2)
x )x≥0, ..., (a

(l)
x )x≥0

}
denote its q-kernel. The sequence (bx)x≥0 is a peri-

odic sequence, thus it is also an q-automatic sequence, we letNb :
{

(b
(1)
x )x≥0, (b

(2)
x )x≥0, ..., (b

(s)
x )x≥0

}
denote the q-kernel of (bx)x≥0. As both of the q-kernel are �nite, we can conclude that the

set of Cartesian product of these two above sets is �nite:

Nab :
{

(a(i)x × b(j)x )x≥0|0 ≤ i ≤ l, 0 ≤ j ≤ s
}

which is the q-kernel of the sequence (ax × bx)x≥0.
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To the completion, we remark that there is a onto map from N ′b to Nb, where N ′b is the
q-kernel of the periodic sequence (Ix)x≥0 de�ned by

I(m1,m2,...,mn) = (y1, y2, ..., yn) where yi ≡ mi mod c, 1 ≤ i ≤ n

and the map is de�ned as

N ′b → Nb : (Ix)x≥0 → (bIx)x≥0.

So it is enough to work on the �nite set Na ×N ′b.

Let us consider the Dirichlet series f(s) =
∑

x∈Nn/0
ax
p(x)s , Where ax is q-automatic, a

necessary condition of the convergence of such series is that |p(x)| → ∞ when ||x|| → ∞,

here we want to �nd a su�cient condition.

An achievable assumption for f(s) to be meromorphic is that the polynomial p is

elliptic, which means that, if the degree of p is d then the homogeneous polynomial pd(x)

of p(x) satis�es the condition

pd(x) > 0, ∀x ∈ [0,∞[n\ {(0, 0, ...0)} .

Before announcing the main theorem, we would like to study some properties of elliptic

polynomials:

Lemma 2.1. Let (r1, r2, .., rn) be a vector on Zn+ such that
∑n

i=1 ri < d and x ∈ Rn
+ then:

xr11 x
r2
2 ...x

rn
n∑n

i=1 x
d
i

= O(||x||
∑n
i=1 ri−d), when ||x|| → ∞.

Proof. It is enough to see the following inequality:

n∑
i=1

xdi =
n∑
i=1

ri
1

ri
xdi =

n∑
i=1

ri∑
j=1

1

ri
xdi ≥ (

n∏
i=1

1

rrii
xdrii )

1∑n
i=1

ri ,

which is from the inequality of arithmetic and geometric means. With the assumption∑n
i=1 ri < d and the equivalences between norms, we conclude x

r1
1 x

r2
2 ...xrnn∑n
i=1 x

d
i

≤
∏n
i=1 r

ri
i ||x||

∑n
i=1 ri−d

d =

O(||x||
∑n
i=1 ri−d), when ||x|| → ∞.

Lemma 2.2. If a polynomial p is elliptic of degree d and pd is the homogeneous polynomial

of degree d of p, then:

(i) all coe�cients of terms xd1, x
d
2, ..., x

d
n are positive;

(ii) pd(x)→∞ when ||x|| → ∞;

(iii) there exists a positive number α such that ∀x ∈ [0,∞[n\ {(0, 0, ...0)}, p′d(x) =

pd(x)− α
∑n

i=1 x
d
i > 0;

(iv) p(x)→∞ when ||x|| → ∞;
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(v) there exists a positive number α such that p′(x) = p(x) − α
∑n

i=1 x
d
i → ∞ when

||x|| → ∞.

Proof. Assertion (i) is straightforward by evaluating the function at

(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1).

For (ii), let us consider the set

{pd(x)|∀x ∈ [0,∞[n\ {(0, 0, ...0)} , ||x||d = 1} ,

this set is closed because of closed map lemma and every element inside is larger then 0,

so that such a set admits a non-zero in�mum, let us denote it by ε. Then for an arbitrary

x, we have

pd(x) = ||x||ddpd(
x

||x||d
) ≥ ||x||ddε.

For (iii), Setting

p′d(x) = pd(x)− ε

2

n∑
i=1

xdi ,

it is easy to check p′d(x) ≥ ||x||ddε−
ε
2

∑n
i=1 x

d
i > 0,∀x ∈ [0,∞[n\ {(0, 0, ...0)} and ||x||d = 1,

then it follows that

p′d(x) = ||x||dd
p′d(x)

||x||dd
= ||x||ddp′d(

x

||x||d
) > 0,

for all x in the set [0,∞[n\ {(0, 0, ...0)}.
For (iv) it is enough to point out that each monomial of degree smaller then d can be

bounded above by a term of the form α
∑n

i=1 x
d
i because of Lemma 1, and conclude by

(iii).

(v) is a direct consequence of (iii) and (iv).

Lemma 2.3. Let P be an elliptic polynomial of degree d and let p be a polynomial with

a degree smaller than d, then there exists un integer C such that for all n-tuples x ∈ Nn
+

with < x, 1 >> C,
|p(x)|
P (x)

<
1

P (x)
1
2d

Proof. Let us consider the polynomial q de�ned by q = P 2d−1 − p2d. We can check that q

is of degree 2d2 − d and its homogeneous polynomial is uniquely de�ned by the one of P ,

which is from the fact that the degree of p2d is at most 2d2 − 2d. So that q is an elliptic

polynomial, thus there exists un integer C such that P 2d−1(x)−p2d(x) > 0 if < x, 1 >> C.

As a result, for all x with < x, 1 >> C,

(
p(x)

P (x)
)2d =

1

P (x)

p(x)2n

P (x)2n−1
<

1

P (x)
.
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2.3 Proof of the meromorphic continuation

In this section we prove the main result.

Theorem 2.2. Let p be an elliptic polynomial of n variables and (ax)x>0 be q-automatic,

then for a given n-tuple µ, the function
∑

(x)∈Nn
+

ax
∏n
i=1 x

µi
i

p(x)s admits an abscissa of conver-

gence σ such that it converges absolutely on the half plane <(s) > σ and has a meromorphic

continuation on the whole complex plane. Furthermore, the poles of this function (if any)

are located on a �nite number of left semi-lattices.

This result will be obtained by proving several lemmas successively:

Proposition 2.2. Let ax be a q-automatic sequence, and p(x) =
∑

αmαx
α be a n-variable

homogeneous elliptic polynomial of degree d, let µ ∈ Nn
+ be a multi-index, for any β such

that 0 ≤ β ≤ q, de�ne pβ(x) = q−n(p(qx + β) − p(qx)), then for any k ∈ N, the function

fk,β,µ : s −→
∑

(x)∈Nn
+

axpβ(x)
k
∏n
i=1 x

µi
i

p(x)s+k
admits an abscissa of convergence σk,β,µ such that

fk,β,µ converges absolutely to an holomorphic function on the right half-plane <(s) > σk,β,µ.

Proof. We �rstly prove that f0,0,0(s) converge when <(s) > n.

|f0,0,0(s)| =|
∑

(x)∈Nn
+

ax
p(x)s

| ≤
∑

(x)∈Nn
+

|ax|
p(x)<(s)

≤
∑

(x)∈Nn
+

|ax|
(α < x, 1 >)<(s)

(∗)

≤
max(|ax|)

(α)<(s)
(
∑

<x,1><n

1

< x, 1 ><(s)
+

∑
<x,1>≥n

1

< x, 1 ><(s)
)

≤
max(|ax|)

(α)<(s)
(
∑

<x,1><n

1

< x, 1 ><(s)
+
∑
m≥n

(
m+n−1
n−1

)
m<(s)

)

≤
max(|ax|)

(α)<(s)
(
∑

<x,1><n

1

< x, 1 ><(s)
+
∑
m≥n

mn−1

m<(s)
)

≤
max(|ax|)

(α)<(s)
(
∑

<x,1><n

1

< x, 1 ><(s)
+
∑
m≥n

1

m<(s)+1−n ).

(2.1)

Inequality (∗) is obtained by Lemma 2.2 (iii) and taking α as it was in the lemma; and the

sum
∑

m≥n
1

m<(s)+1−n exists and is bounded when <(s) > n.

For any β such that 0 ≤ β ≤ q, we remark that
∏n
i=0(xi + βi)

ki =
∑

l≤k Cl
∏n
i=0(xi)

li

with Cl < qn, which shows that all monomials of the polynomial pβ have a degree not

larger than d− 1. Lemma 2.3 leads |pβ(x)p(x) | <
1

p(x)

1
2d for all x satisfying < x, 1 >> C1, with

C1 de�ned in Lemma 2.3. While Lemma 2.1 and Lemma 2.2 (v) yield that there exists an

integer l such that |
∏n
i=1 x

µi
i

pl(x)
| → 0 when |x| → ∞. As a result, there exists C2 such that for
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all < x, 1 >≥ C2, |
∏n
i=1 x

µi
i

pl(x)
| < 1. Taking C = max(C1, C2),

∑
(x)∈Nn

+

|
axp

k
β(x)

∏n
i=1 x

µi

i

p(x)s+k
| ≤

∑
(x)∈Nn

+

ax
∏n
i=1 x

µi

i

|p<(s)(x)|
|
pβ(x)

p(x)
|k

≤
∑

<x,1><C

ax
∏n
i=1 x

µi

i

|p<(s)(x)|
|
pβ(x)

p(x)
|k +

∑
<x,1>≥C

ax

p<(s)−l+
k
2d (x)

.

(2.2)

With k a constant in N+, the above function converges to a holomorphic function on the

half plane <(s) > n+ l − k
2d . Furthermore, for all b > k,

∑
<x,1>≥x1 |

axpbβ(x)

ps−l+b(x)
| is bounded

on this half plane.

Proposition 2.3. With the same notation as above, if p is an homogeneous polynomial,

then the function F : s −→
∑

(x)∈Nn
+

ax
∏n
i=1 x

µi
i

p(x)s admits a meromorphic continuation on the

whole complex plane.

Proof. In this proof, we consider the q-automatic sequence (ax)x≥0 as itself multiplied by

a constant sequence (bx)x≥0 = 1, which is a q-periodic sequence. Because of Proposition

2.1, the q-kernel of this sequence admits a completion, we can de�ne a sequence of vectors

(Ax)x≥0 and the matrices of transition on this completion as in Theorem 2.1.

For any µ ∈ Nn
+, there exists some l ∈ Z such that < µ, 1 >< ld and a constant

N0 ∈ N such that C < N0nq, where C is de�ned as in the previous lemma.

Fµ(s) =
∑

(x)∈Nn
+

Ax
∏n
i=1 x

µi

i

p(x)s
=

∑
(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+

∑
(y)<(q)

∑
(z)∈Nn/{t<N0}

Aqz+y
∏n
i=1(qzi + yi)

µi

ps(qz + y)

=
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+

∑
(y)<(q)

∑
(z)∈Nn/{t<N0}

Aqz+y
∏n
i=1(qzi)

µi

ps(qz + y)

+
∑

(ψ)<(µ)

∑
(y)<(q)

∑
(z)∈Nn/{t<N0}

Aqz+yCψ,y
∏n
i=1(qzi)

ψi

ps(qz + y)
,

(2.3)

where Cψ,y is uniquely de�ned by y for given ψ. So the sequence (Cψ(x))x>0 de�ned by

Cψ(x) = Cψ,y with xi ≡ yi mod q, 1 ≤ i ≤ n

is periodic as a function of x, we let Resµ(s) denote the term

Resµ(s) =
∑

(ψ)<(µ)

∑
(y)<(q)

∑
(z)∈Nn/{t<N0}

Aqz+yCψ,y
∏n
i=1(qzi)

ψi

ps(qz + y)
.

Remarking that all sequences (bψ(x))x>0 de�ned by bψ(x) = Aqz+yCψ,y if x = qz + y are

in the form of a product of a speci�c q-automatic sequence by a q-periodic one, because
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of Proposition 2.1, such sequences admit a unique completion the same one as (Ax)x∈Nn
+

has, and the transition matrices on this completion do not depend on the choice of the

q-periodic sequences (Cψ(x))x>0.

Using the transition matrices, we have:

Fµ(s) =
∑

(x)∈Nn/(0)

Ax
∏n
i=1 x

µi

i

p(x)s
=

∑
(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+

∑
(y)<(q)

∑
(z)∈Nn/{t<N0}

Aqz+y
∏n
i=1(qzi + yi)

µi

ps(qz + y)

=
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+

∑
(y)<(q)

∑
(z)∈Nn/{t<N0}

Aqz+y
∏n
i=1(qzi)

µi

ps(qz + y)
+Resµ(s)

=
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+

∑
(y)<(q)

My

∑
(z)∈Nn/{t<N0}

Aqz
∏n
i=1(qzi)

µi

ps(qz)

1

(1 +
py(z)
p(z) )s

+Resµ(s)

=
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+

∑
(y)<(q)

My

∑
(z)∈Nn/{t<N0}

Az
∏n
i=1(qzi)

µi

ps(qz)

∑
k≥0

(
s+ k − 1

k

)
(
−py(z)

p(z)
)k +Resµ(s)

=
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+ q<ζ,1>−ns

∑
(y)<(q)

My

∑
k≥0

(
s+ k − 1

k

) ∑
(z)∈Nn/{t<N0}

Az
∏n
i=1(zi)

µi(−py(z))k

(p(z))s+k

+Resµ(s).

(2.4)

The above equation gives:

(Id− q<µ,1>−ns
∑

(y)<(q)

My)Fµ(s) = q<µ,1>−ns
∑

(y)<(q)

My

∑
k≥1

(
s+ k − 1

k

) ∑
(z)∈Nn/{t<N0}

Az
∏n
i=1(zi)

µi(−py(z))k

(p(z))s+k

+
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi

i

p(x)s
+Resµ(s).

(2.5)

By multiplying by comt(Id− q<µ,1>−ns
∑

(y)<(q)My) on both side, we have:

det(Id− q<µ,1>−ns
∑

(y)<(q)

My)Fµ(s) = comt(Id− q<µ,1>−ns
∑

(y)<(q)

My)(
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi
i

p(x)s
+Resµ(s)

+ q<µ,1>−ns
∑

(y)<(q)

My

∑
k≥1

(
s+ k − 1

k

) ∑
(z)∈Nn/{t<N0}

Az
∏n
i=1(zi)

µi(−py(z))k

(p(z))s+k
).

(2.6)

Because of Proposition 2.2, the in�nite sum Resµ(s) converges absolutely when <(s) >

l+n− 1
2d , and the in�nite sum

∑
(z)∈Nn/{t<N0}

Az
∏n
i=1(zi)

µi (−py(z))k
(p(z))s+k

is also convergent and

bounded when <(s) > l+n− k
2d . Equation 2.5 shows that all terms on the right-hand side

present a meromorphic continuity for <(s) > l+ n− 1
2d , so that Fµ(s) has a meromorphic

continuation on the half-plane <(s) > l + n− 1
2d .

To guarantee that this argument works recursively over all rational numbers of type

l + n − k
2d , we have to check that the meromorphic continuity of the Resµ(s) can also
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be extended in this way. Using once more the above argument over Resµ(s), we can

deduce that this in�nite sum can be extended as a meromorphic function on the half-plane

<(s) > l+ n− 2
2d , however, with a new term �Resµ(s)�, let us call it Res′µ(s). Once more,

we have to do the same thing for Res′µ(s). But remarking that after each operation, the

degree of the monomial at the numerator decreases strictly, so after �nitely many times

of such operation, the term Res vanishes. This fact guarantees that the iteration can be

done successively to prove the meromorphic continuation of Fµ(s) on the whole complex

plane.

Furthermore, the poles of such a function can only be located at the zeros of the function

s −→ det(Id − q<µ,1>−ns
∑

(y)<(q)My) for an arbitrary µ ∈ Nn
+, so we conclude that all

poles of function F (s) are located in the set

s =
1

n
(
log λ

log q
+

2ikπ

log q
− l),

with λ any eigenvalue of the matrix
∑

(y)<(q)My, k ∈ Z, l ∈ Z and log is de�ned as complex

logarithm.

Proof of Theorem 2.2. Let us write the polynomial p(x) in the form p(x) = pd(x)+Res(x)

where pd(x) is the homogeneous polynomial with maximum degree of p(x), say d. By

Lemma 1, Res(x)pd(x)
= O(|x|−1/d). So for a given number m ∈ R, there exist x0 ∈ N+ and a

positive integer k0 such that for all |x| > x0 and all k > k0, |
Resk(x)

∏n
i=1 x

µi
i

pk+md (x)
| < ( 1

2k
). For

any given half-plane {s|Re(s) > m,m ∈ R}, take an integer s0 > max {k0, |m|}, we can

compute that

|
∑
|x|>x0

Ax
∏n
i=1 x

µi
i

(pd(x))s

∞∑
k=s0+1

(
−s
k

)
Resk(x)

pkd(x)
| = |

∑
|x|>x0

Ax
(pd(x))s−m

∞∑
k=s0+1

(
−s
k

)
Resk(x)

∏n
i=1 x

µi
i

pk+md (x)
|

<
∑
|x|>x0

Ax

(pd(x))<(s−m)
|
∞∑

k=s0+1

(
−<(s)

k

)
|
Resk(x)

∏n
i=1 x

µi
i

pk+md (x)

< (
∑
|x|>x0

Ax

(pd(x))<(s−m)
)Os0(

1 + |s|s0+1

2s0
).

The above fact shows that the function φ(s) =
∑
|x|>x0

Ax
∏n
i=1 x

µi
i

(pd(x))s
∑∞

k=s0+1

(−s+k
k

)Resk(x)
pkd(x)

admits a holomorphic continuation over the half-plane {s|<(s) > m,m ∈ R}. Now let us

consider the equivalence as below:
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∑
(x)∈Nn

+/(0)

Ax
∏n
i=1 x

µi
i

p(x)s
=
∑
|x|≤x0

Ax
∏n
i=1 x

µi
i

p(x)s
+
∑
|x|>x0

Ax
∏n
i=1 x

µi
i

(pd(x))s
1

(1 + Res(x)
pd(x)

)s

=
∑
|x|≤x0

Ax
∏n
i=1 x

µi
i

p(x)s
+
∑
|x|>x0

Ax
∏n
i=1 x

µi
i

(pd(x))s

s0∑
k=0

(
−s+ k

k

)
Resk(x)

pkd(x)
+ φ(s).

(2.7)

For each k ∈ N,

∑
|x|>x0

Ax
∏n
i=1 x

µi
i

(pd(x))s
Resk(x)

pkd(x)
=
∑
j≤kµ

∑
|x|>x0

AxCi
(pd(x))s+k

n∏
i=1

xjii , (2.8)

where Ci are constants depending on k, and s −→
∑
|x|>x0

AxCi
(pd(x))s+k

∏n
i=1 x

ji
i are meromor-

phic functions because of the previous lemma. As there are �nitely many meromorphic

function in (2.8), we can conclude that for every k > 0, s −→
∑
|x|>x0

Ax
∏n
i=1 x

µi
i

(pd(x))s
Resk(x)

is meromorphic. This fact implies that for an arbitrary s0 ∈ R the function f(s) is a �nite

sum of meromorphic functions on the half-plane <(s) > s0, so f(s) itself is meromorphic

on this half plane. As a result, the function s −→
∑

(x)∈Nn/(0)
ax

∏n
i=1 x

µi
i

p(x)s is meromorphic

on the whole complex plane.

Proposition 2.4. Let f(s) =
∑

(x)∈Nn/(0)
ax

∏n
i=1 x

µi
i

p(x)s be the function de�ned as in Theorem

2.2. Let s0 be its �rst pole on the axis of real numbers counting from plus in�nity to minus

in�nity. Then the function H(s) has a simple pole at this point.

Proof. We recall a classical result on matrices (see [35]): Let B be a matrix of size t×t over
any commutative �eld, pB(X) be its characteristic polynomial, and πB(X) be its monic

minimal polynomial. Let ∆(X) be the monic gcd of the entries of (the transpose of) the

comatrix of the matrix (B −XI), then:

pB(X) = (−1)tπB(X)∆(X)

We letB denote the matrix (nq)−1
∑

(y)<(q)My and by T its size. By dividing by ∆(qn(s−1)+<µ,1>)

both sides of Formula 2.6, we get:

πB(qn(s−1)+<µ,1>)H(s) =
comt(qn(s−1)+<µ,1>Id−

∑
(y)<(q)My)

∆(qn(s−1)+<µ,1>)
(
∑

(x)<(N0q)

Ax
∏n
i=1 x

µi
i

p(x)s
+Resµ(s)

+ q<µ,1>−ns
∑

(y)<(q)

My

∑
k≥1

(
−s+ k

k

) ∑
(z)∈Nn/{t<N0}

Az
∏n
i=1(zi)

µi(−py(z))k

(p(z))s+k
).

(2.9)
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The right-hand side of the above function is holomorphic when <(s) > s0. As s0 is the

�rst pole of H(s) on the real axis counting from plus in�nity, it is a zero of the function

πB(qn(s−1)+<µ,1>) associated with the eigenvalue 1 of the matrix B. On the other hand, as

B is a stochastic matrix, πB(x) has a simple root at 1, so the function πB(qn(s−1)+<µ,1>)

has a simple root at s0 which concludes the proposition.

2.4 Review and remarks

The critical point of the above proof is the development of the term (1− pd(x+µ)−pd(x)
pd(x)

)−s

as an in�nite sum, which works only if |pd(x+µ)−pd(x)pd(x)
| < 1. As we have to use this fact

successively to deal with the term Res(s) in Proposition 2.3, what we need actually is

that |∂µ(pd)pd
| is bounded by 1 for all µ such that < µ, 1 >≤ d when ||x|| is large. The

assumption of ellipticity of the polynomial is a particular case of the above propriety. So

we may expect to achieve the same result under the assumption

|
∂µ(pd)

pd
(x)| < 1, for all < µ, 1 >≤ d, xi ≥ 1.

We may compare this assumption with that in [20], saying

∂µ(pd)

pd
(x) = O(1), xi ≥ 1,

which is the weakest assumption known to have a meromorphic continuation of Dirichlet

series
∑

x∈Nn
+

1
P (x)s .

2.5 In�nite products

Let P (x) =
∑d

i=0 aix
i be a polynomial which does not have zeros on Q and P̃ (x) be

the polynomial de�ned by P̃ (x) =
∑d−1

i=0 −
ai
ad
xn−i, by de�nition, we have P (x) = adx

d −
adx

dP̃ ( 1x). Let us de�ne ci = ai
ad

for all i = 0, 1, ..., d− 1.

In this section we consider two Dirichlet series generated by 1-index automatic se-

quences:

f(s) =
∞∑
n=0

(ζ)Sq(n)

(P (n+ 1))s

g(s) =

∞∑
n=1

(ζ)Sq(n)

(P (n))s
,

where q and r are two integers satisfying 2 ≤ r ≤ q and r divides q, ζ is a r-th root of

unity, such that ζ 6= 1, Sq(n) is the sum of digits of n in the q-ary expansion satisfying
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Sq(0) = 0 and Sq(qn+ a) = Sq(n) + a for 0 ≤ a ≤ q − 1.

Let us de�ne:

φ(s) =
∞∑
n=0

(ζ)Sq(n)

(n+ 1)s

ψ(s) =

∞∑
n=1

(ζ)Sq(n)

(n)s
.

It is proved in [14] that φ and ψ have holomorphic continuations to the whole complex

plane, and ψ(s)(qs − 1) = φ(s)(ζqs − 1) for all s ∈ C.

Proposition 2.5. f and g also have holomorphic continuations to the whole complex plane

if c1, c2, ... satisfy max|ci| < 1
d .

Proof. We �rstly remark that the hypothesis of max |ci| < 1
d implies the fact |P̃ ( 1

n+1)| < 1

for any n ∈ N+. Indeed, |P̃ ( 1
n+1)| = |

∑d−1
i=0 −

ai
ad

(n+ 1)i−d| ≤
∑d−1

i=0 |
ai
ad
| < 1.

f(s) =
∞∑
n=0

(ζ)Sq(n)

(P (n+ 1))s

= a−sd

∞∑
n=0

(ζ)Sq(n)

(n+ 1)ds(1− P̃ ( 1
n+1))s

= a−sd

∞∑
n=0

(ζ)Sq(n)

(n+ 1)ds

∞∑
k=0

(
s+ k − 1

k

)
P̃ (

1

n+ 1
))k

= a−sd

∞∑
n=0

(ζ)Sq(n)

(n+ 1)ds

∞∑
k=0

(
s+ k − 1

k

) dk∑
l=k

mk,l(n+ 1)−l

= a−sd

∞∑
k=0

(
s+ k − 1

k

) dk∑
l=k

mk,l

∞∑
n=0

(ζ)Sq(n)

(n+ 1)ds+l

= a−sd

∞∑
k=0

(
s+ k − 1

k

) dk∑
l=k

mk,lφ(ds+ l)

= a−sd φ(ds) + asd

∞∑
k=1

(
s+ k − 1

k

) dk∑
l=k

mk,lφ(ds+ l),

(2.10)

where mk,l =
∑

Mk,l∈P({ci|1≤i≤n−1})
∏
ci∈Mk,l

ci and Mk,l are sets of k elements included

in {ci|1 ≤ i ≤ n− 1} and the sum of indices of its elements equals l. The hypothesis

m = max |ci| < 1
d shows that |

∑dk−k
l=k mk,l| ≤ (md)k < 1, so the right-hand side of (2.10)

converges uniformly over the half plane {s|<(s) > 0} because φ(s) is bounded for large

|s|. By the same argument as in Theorem 2.2, we prove successively the holomorphic

continuation of f on the whole complex plane.
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It is easy to check f(0) = 0, and because of the uniform convergence of the right-hand

side of (2.10) over the half-plane {s|<(s) > 0}, dividing by s and letting s tend to 0 we

have:

f ′(0) = dφ′(0) + a−sd

∞∑
k=1

lim
s→0

1

s

(
s+ k − 1

k

) dk∑
l=k

mk,lφ(ds+ l)

= −d log q/(ζ − 1) +
∞∑
k=1

k−1
dk∑
l=k

mk,lφ(l)

= −d log q/(ζ − 1) +
∞∑
k=1

k−1
dk∑
l=k

mk,l

∞∑
n=0

(ζ)Sq(n)

(n+ 1)l

= −d log q/(ζ − 1) +
∞∑
n=0

(ζ)Sq(n)
∞∑
k=1

k−1
dk∑
l=k

mk,l
1

(n+ 1)l

= −d log q/(ζ − 1) +
∞∑
n=0

(ζ)Sq(n)
∞∑
k=1

k−1P̃ k(
1

n+ 1
)

= −d log q/(ζ − 1) +
∞∑
n=0

(ζ)Sq(n) log(1− P̃ (
1

n+ 1
)),

(2.11)

on the other hand, one has for all s, ψ(s)(qs − 1) = φ(s)(ζqs − 1).

f ′(0) = dφ′(0) + a−sd

∞∑
k=1

lim
s→0

1

s

(
s+ k − 1

k

) dk∑
l=k

mk,lφ(ds+ l)

= −d log q/(ζ − 1) +

∞∑
k=1

k−1
dk∑
l=k

mk,lψ(l)(ql − 1)/(ζql − 1)

= −d log q/(ζ − 1) + ζ−1
∞∑
k=1

k−1
dk∑
l=k

mk,lψ(l) + (ζ−1 − 1)

∞∑
k=1

k−1
dk∑
l=k

mk,lψ(l)/(ζql − 1).

(2.12)

By the same method as above, we can deduce by calculating g′(0)

∞∑
k=1

k−1
dk∑
l=k

mk,lψ(l) =

∞∑
n=1

(ζ)Sq(n) log(1− P̃ (
1

n
))

and
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∞∑
k=1

k−1
dk∑
l=k

mk,lψ(l)/(ζql − 1) =
∞∑
k=1

k−1
dk∑
l=k

mk,l

∞∑
n=1

(ζ)Sq(n)

(n)l

∞∑
r=1

(ζql)−r

=
∞∑
r=1

(ζ)−r
∞∑
n=1

(ζ)Sq(n)
∞∑
k=1

k−1
dk∑
l=k

mk,l
1

(nqr)l

=
∞∑
r=1

(ζ)−r
∞∑
n=1

(ζ)Sq(n) log(1− P̃ (
1

nqr
)).

As a consequence,

∞∑
n=0

(ζ)Sq(n) log(1−P̃ (
1

n+ 1
)) = ζ−1

∞∑
n=1

(ζ)Sq(n) log(1−P̃ (
1

n
))+(ζ−1−1)

∞∑
r=1

∞∑
n=1

(ζ)Sq(n)−r log(1−P̃ (
1

nqr
)).

(2.13)

Proposition 2.6. We have the equality

∞∏
n=0

(1− P̃ (
1

n+ 1
))ζ

Sqn ×
∞∏
n=1

(1− P̃ (
1

n
))−ζ

Sqn−1 × (
∞∏
r=1

∞∏
n=1

(1− P̃ (
1

nqr
))ζ

Sqn−r)1−ζ
−1

= 1

Moreover, if we suppose, for any j

xj(m) =

 r−1
r if sq(m) = j (mod r)

−1
r if sq(m) 6= j (mod r)

We clearly have ∑
j mod r

xj(m) = 0.(∗)

Furthermore, ∑
j mod r

xj(m)ζj = ζSq(m).(∗∗)

Using (∗), Formula (2.13) can be reformulated as

∑
j mod r

ζj
∞∑
n=0

xj(n)(log(1− P̃ (
1

n+ 1
) +

∞∑
r=1

ζ−r log(1− P̃ (
1

nqr
))) =

∑
j mod r

ζj−1
∞∑
n=1

xj(n)(log(1− P̃ (
1

n
) +

∞∑
r=1

ζ−r log(1− P̃ (
1

nqr
))).

(2.14)

Let now η be a primitive root of unity, we can apply relation (2.14) successively to ζ = ηa

for a = 1, 2, ..., r − 1.

Because of (∗∗), we also have
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∑
j mod r

∞∑
n=0

xj(n)(log(1− P̃ (
1

n+ 1
)) +

∞∑
r=1

ζ−r log(1− P̃ (
1

nqr
))) =

∑
j mod r

∞∑
n=1

xj(n)(log(1− P̃ (
1

n
)) +

∞∑
r=1

ζ−r log(1− P̃ (
1

nqr
))) = 0.

(2.15)

De�ne the matrices: Mat1 to be Mat1 = (ηij) and Mat2 to be Mat2 = (ηij−i), i =

0, 1, ..., r − 1; j = 0, 1, ..., r − 1, de�ne λ and β by

λ(j) =

∞∑
n=0

xj(n)(log(1− P̃ (
1

n+ 1
)) +

∞∑
r=1

ζ−r log(1− P̃ (
1

nqr
)))

β(j) =

∞∑
n=1

xj(n)(log(1− P̃ (
1

n
)) +

∞∑
r=1

ζ−r log(1− P̃ (
1

nqr
))).

Let

A =


λ(0)

λ(1)

...

λ(r − 1)



B =


β(0)

β(1)

...

β(r − 1)

 .

Then we have

Mat1A = Mat2B.

On the other hand, A is invertible and Mat1 = Mat2 ×Mat3 with

Mat3 =


0 0 ... 0 1

1 0 ... 0 0

0 1 ... 0 0

0 0 ... 1 0

 .

So we have

A = Mat3 ×B.

Proposition 2.7. We have the equality λ(i) = β(i − 1) for i = 1, 2, ..., r − 1 and λ(0) =

β(r − 1), which leads to, for i = 1, 2, ..., r − 1,

∞∏
n=0

((1− P̃ (
1

n+ 1
)×

∞∏
r=1

(1− P̃ (
1

nqr
)))xj(n) =

∞∏
n=1

((1− P̃ (
1

n
)×

∞∏
r=1

(1− P̃ (
1

nqr
)))xj−1(n),
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and for i = 0,

∞∏
n=0

((1− P̃ (
1

n+ 1
)×

∞∏
r=1

(1− P̃ (
1

nqr
)))x0(n) =

∞∏
n=1

((1− P̃ (
1

n
)×

∞∏
r=1

(1− P̃ (
1

nqr
)))xr−1(n).
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Chapter 3

On completely multiplicative

automatic sequences

3.1 Introduction

In this article, we describe the decomposition of completely multiplicative automatic se-

quences, which will be referred to as CMAS. In article [42], the author proves that a

non-vanishing CMAS is almost periodic (de�ned in [42]). In article [1], the authors give

a formal expression of all non-vanishing CMAS and also some examples in the vanishing

case (named mock characters). In article [27], the author studies completely multiplicative

sequences, which will be referred to as CMS, taking values in a general �eld that have

�nitely many prime numbers such that ap 6= 1; she proves that such CMS have complexity

pa(n) = O(nk), where k = # {p|p ∈ P, ap 6= 1, 0}. In this article, we prove that all com-

pletely multiplicative sequences (an)n∈N de�ned on C, vanishing or not, can be written

in the form an = bnχn, where (bn)n∈N is an almost constant sequence, and (χn)n∈N is a

Dirichlet character.

Let us consider a CMAS (an)n∈N de�ned on C. We �rst prove that all CMAS are

mock characters (de�ned in [1]) with an exceptional case. Second, we study the CMAS

satisfying the condition C: ∑
p|ap 6=1,p∈P

1

p
<∞,

where P is the set of prime numbers. We prove that in this case, there is at most one prime

p such that ap 6= 1 or 0. In the third part, we prove that all CMAS are either Dirichlet-like

sequences or strongly aperiodic sequences. Finally, we conclude by proving that a strongly

aperiodic sequence cannot be automatic.

43
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3.2 De�nitions, notation and basic propositions

Let us recall the de�nition of automatic sequences and complete multiplicativity:

De�nition Let (an)n∈N be an in�nite sequence and k ≥ 2 be an integer; we say that this

sequence is k-automatic if there is a �nite set of sequences containing (an)n∈N and closed

under the maps

an → akn+i, i = 0, 1, ...k − 1.

There is another de�nition of a k-automatic sequence (an)n∈N via an automaton. An

automaton is an oriented graph with one state distinguished as the initial state, and, for

each state, there are exactly k edges pointing from this state to other states; these edges

are labeled as 0, 1, ..., k − 1. There is an output function f , which maps the set of states

to a set U . For an arbitrary n ∈ N, the n-th element of the automatic sequence can be

computed as follows: writing the k-ary expansion of n, start from the initial state and

move from one state to another by taking the edge read in the k-ary expansion one by

one until stopping on some state. The value of an is the evaluation of f on the stopping

state. If we read the expansion from right to left, then we call this automaton a reverse

automaton of the sequence; otherwise, it is called a direct automaton.

In this article, all automata considered are direct automata.

De�nition We de�ne a subword1 of a sequence as a �nite length string of the sequence.

We let wl denote a subword of length l.

De�nition Let (an)n∈N be an in�nite sequence. We say that this sequence is completely

multiplicative if, for any p, q ∈ N, we have apaq = apq.

It is easy to see that a CMAS can only take �nite many values, either 0 or a k-th root

of unity (see, for example, Lemma 1 [42]).

De�nition Let (an)n∈N be a CMS. We say that ap is a prime factor of (an)n∈N if p is a

prime number and ap 6= 1. Moreover, we say that ap is a non-trivial factor if ap 6= 0, and

we say that ap is a 0-factor if ap = 0. We say that a sequence (an)n∈N is generated by

ap1 , ap2 , ... if and only if ap1 , ap2 , ... are the only prime factors of the sequence.

1what we call a subword here is also called a factor in the literature; however, we use factor with a

di�erent meaning.
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De�nition We say that a sequence is an almost-0 sequence if there is only one non-trivial

factor ap and aq = 0 for all primes q 6= p.

Proposition 3.1. Let (an)n∈N be a k-CMAS and q be the number of states of a direct

automaton generating (an)n∈N; then, for any m, y ∈ N, we have equality between the sets{
an|mkq! ≤ n < (m+ 1)kq!

}
=
{
an|mkyq! ≤ n < (m+ 1)kyq!

}
.

Proof. In article [42] (Lemma 3 and Theorem 1), the author proves that, in an automaton,

every state that can be reached from a speci�c state, say, s, with q! steps, can be reached

with yq! steps for every y ≥ 1; conversely, if a state can be reached with yq! steps for some

y ≥ 1, then it can already be reached with q! steps. This proves the proposition.

Let us consider a CMS (an)n∈N taking values in a �nite Abelian group G. We de�ne

E =

g|g ∈ G, ∑
ap=g,p∈P

1

p
=∞


and G1 as the subgroup of G generated by E.

De�nition Let (an)n∈N be a sequence, we say that the sequence (an)n∈N has a mean

value if and only if limN→∞
∑N
n=0 an
N+1 exists.

Proposition 3.2. Let (an)n∈N be a CMS taking values in a �nite Abelian group G; then

all elements g ∈ G have a non-zero natural density. Furthermore, this density depends

only on the coset rG1 on which the element g lies. The statement is still true in the case

that G is a semi-group generated by a �nite group and 0 under the condition that there are

�nitely many primes p such that ap = 0.

Proof. When G is an Abelien group, the proposition is proved in Theorem 3.10, [38], and

when G is a semi-group, Theorem 7.3, [38] shows that all elements in G have a natural

density. To conclude the proof, it is su�cient to consider the following fact: let f0 be a

CMS such that there exists a prime p with f0(p) = 0, and let f1 be another CMS such that

f1(q) =

f0(q) if q ∈ P, q 6= p

1 otherwise,

If d0(g) and d1(g) denote the natural density of g in the sequence (f0(n))n∈n and (f1(n))n∈N,

respectively, then we have the equality

d1(g) = d0(g) +
1

p
d0(g) +

1

p2
d0(g)... =

p

p− 1
d0(g).
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Doing this iteratively until a non-vanishing sequence, we can conclude the proof by the

�rst part of the proposition.

3.3 Finiteness of the numbers of 0-factors

In this section, we will prove that a CMAS is either a mock character, which means that

it has only �nitely many 0-factors, or an almost-0 sequence, that is, am = 0 for all m that

are not a power of p, and apk = δk for some δ, where δ is a root of unity or 0 and p is a

prime number.

Proposition 3.3. Let (an)n∈N be a p-CMAS; then, it is either a mock character or an

0-almost sequence.

Proof. If (an)n∈N is not a mock character, then it contains in�nitely many 0-factors. Here,

we prove that, in this case, if there is some am 6= 0, thenmmust be a power of p, and pmust

be a prime number. Let us suppose that there are q states of the automaton generating

the sequence. As there are in�nitely many 0-factors, it is easy to �nd a subword of length

p2q! such that all its elements are 0:

This is equivalent to �nding some m ∈ N and p2q! 0-factors, say, ap1 , ap2 , ..., app2q! , such

that 

m ≡ 0 (mod p1)

m+ 1 ≡ 0 (mod p2)

m+ 2 ≡ 0 (mod p3)

...

m+ p2q! − 1 ≡ 0 (mod pp2q!)

If m is a solution of the above system, then the subword amam+1...am+p2q!−1 is constant

to 0. Therefore, there exists an m′ such that m ≤ m′pq! < (m′+ 1)pq! ≤ m+ p2q!. Because

of Proposition 3.1, for any y ∈ N, ak = 0 for all k such that m′pyq! ≤ k < (m′ + 1)pyq!.

Taking an arbitrary prime r, if r and p are not multiplicatively dependent, then ar = 0

because there exists a power of r satisfying m′pyq! ≤ rt < (m′ + 1)pyq!. This inequality

holds because we can �nd some integers t and y such that

logpm
′ ≤ t logp r − yq! < logp(m

′ + 1).

The above argument shows that if (an)n∈N is not a sequence such that am = 0 for all

m > 1, then pmust be a power of a prime number p′. Otherwise, as p is not multiplicatively

dependent from any other prime number, am = 0 for all m > 1. Furthermore, the sequence

(an)n∈N can have at most one non-zero prime factor, and if it exists, it should be ap′ . Using

automaticity, we can replace p′ with p.
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3.4 CMAS satisfying condition C

From this section, we consider only the CMAS with �nitely many 0-factors.

In this section, we prove that all CMAS satisfying C can have at most one non-trivial

factor, and we do this in several steps.

Proposition 3.4. Let (an)n∈N be a non-vanishing CMS taking values in the set G =

{ζr|r ∈ N}, where ζ is a non-trivial k-th root of unity, having u prime factors ap1 , ap2 , ...apu;

then, there exist g ∈ G (where ap1 = g) and a subword wu appearing periodically in the

sequence (an)n∈N such that all its letters are di�erent from g. Furthermore, the period does

not have any prime factor other than p1, p2, ..., pu.

Proof. We prove the statement by induction. For u = 1, the above statement is trivial. It

is easy to check that the sequence (anpk+1
1 +pk1

)n∈N is a constant sequence of 1, the period

is pk+1
1 , and g = ap1 .

Supposing that the statement is true for some u = n0, let us consider the case u = n0+1.

We �rst consider the sequence (a′n)n∈N de�ned by a′n = a n

p
vpn0+1(n)

n0+1

, a sequence having n0

prime factors, where vp(n) denotes the largest integer r such that pr|n. Using the hypoth-

esis of induction, we obtain a subword wn0 satisfying the statement. Let us suppose that

the �rst letter of this subword appears in the sequence (a′mn0n+ln0
)n∈N. We can extract

from this sequence a sequence of the form (a′mn′0
n+ln0

)n∈N such that mn′0
= mn0

∏n0
j=1 p

dj
j

for some dj ∈ N+ and vpj (mn′0
n + ln0 + n0) = vpj (ln0 + n0) for all j ≤ n0. In this case,

the sequence (a′mn′0
n+ln0+n0

)n∈N is a constant sequence, say, all letters equal C.

Here, we consider two residue classes N1(n) and N2(n), separately satisfying the fol-

lowing conditions:

mn′0
N1(n) ≡ −ln0 − n0 mod pn0+1

mn′0
N1(n) 6≡ −ln0 − n0 mod p2n0+1

and

mn′0
N2(n) ≡ −ln0 − n0 mod p2n0+1

mn′0
N2(n) 6≡ −ln0 − n0 mod p3n0+1

In these two cases, we have am
n
′
0
N1(n)+ln0+n0

= Capn0+1 and am
n
′
0
N2(n)+ln0+n0

=

Ca2pn0+1
for all n ∈ N. Because apn0+1 6= 1, there is at least one element of Capn0+1 , Ca

2
pn0+1

not equal to g. If Ni(n) is the associated residue class, then Ni(n) = pi+1
n0+1n + t for all
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integers n with t ∈ N, i = 1 or 2.

Now, let us choose mn0+1 = mn′0
pi+1
n0+1 and ln0+1 = ln0 + tmn′0

so that the sequence

(a′mn0+1n+ln0+1
)n∈N is a subsequence of (a′mn0n+ln0

)n∈N; thus, the subword of length n

a′mn0+1n+ln0+1
a′mn0+1n+ln0+1+1...a

′
mn0+1n+ln0+1+n0−1 is constant, and none of its letters equal

g because of the hypothesis of induction. Furthermore, amn0+1n+ln0+1+n0 = am′n0Ni(n)+ln0+n0

is constant and di�erent from g because of the choice of residue class. The properties saying

that the prime number pn0+1 is larger than n0+1 and pn0+1|mn′0
Ni(n)+ln0+n0 by construc-

tion imply that, for all j such that 0 ≤ j ≤ n0−1, pn0+1 - mn0+1n+ln0+1+j. Therefore, we

conclude that, for all n, j ∈ N such that 0 ≤ j ≤ n0 − 1, vpn0+1(mn0+1n+ ln0+1 + j) = 0.

This means that the subword amn0+1n+ln0+1amn0+1n+ln0+1+1...amn0+1n+ln0+1+n0 is a sub-

word of length n0 + 1 independent of n and that none of its letters equals g; moreover,

mn0+1 does not have any prime factor other than p1, p2...pn0 .

Proposition 3.5. Let (an)n∈N be a non-vanishing CMS de�ned on a �nite set G satisfying

condition C, and let (a′n)n∈N be another CMS generated by the �rst r prime factors of

(an)n∈N, say, ap1 , ap2 , ..., apr . If there is a subword wr appearing periodically in (a′n)n∈N

and if the period does not have any prime factors other than p1, p2, ..., pr, then this subword

appears at least once in (an)n∈N.

Proof. Let us denote by p1, p2... the sequence of prime numbers such that api 6= 1. Suppos-

ing that the �rst letter of the subword wr belongs to the sequence (a′mrn+lr)n∈N for some

mr ∈ N, lr ∈ N, by hypothesis, mr does not have any prime factors other than p1, p2, ..., pr.

Thus, the total number of such subwords in the sequence (an)n∈N can be bounded by the

inequality:

#{ak|k ≤ n, ak, ak+1, ..., ak+r−1 = wr}

≥ #
{
ak|k ≤ n, k = mrk

′ + lr, k
′ ∈ N; pi - k + j,∀(i, j) with 0 ≤ j ≤ r − 1, i > r

} (3.1)

Let us consider the sequence de�ned by N(t) =
∏t
j=1 pr+j ; we have

#
{
ak|k ≤ N(t)mr + lr, k = mrk

′
+ lr, k

′ ∈ N; pi - k + j,∀(i, j) with 0 ≤ j ≤ r − 1, r < i ≤ r + t
}

=
t∏

j=1

(pr+j − r)

(3.2)

This equality holds because of the Chinese reminder theorem and the fact that pr+j - mr

and pr+j > r for all j ≥ 1.
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Therefore, we have

#
{
ak|k ≤ N(t)mr + lr, k = mrk

′
+ lr, k

′ ∈ N; pi - k + j,∀(i, j) with 0 ≤ j ≤ r − 1, i > r
}

>#
{
ak|k ≤ N(t)mr + lr, k = mrk

′
+ lr, k

′ ∈ N; pi - k + j,∀(i, j) with 0 ≤ j ≤ r − 1, r < i ≤ r + t
}

−#
{
ak|k ≤ N(t)mr + lr, k = mrk

′
+ lr, k

′ ∈ N; pi | k + j,∀(i, j) with 0 ≤ j ≤ r − 1, i > r + t
}

>#
{
ak|k ≤ N(t)mr + lr, k = mrk

′
+ lr, k

′ ∈ N; pi - k + j,∀(i, j) with 0 ≤ j ≤ r − 1, r < i ≤ r + t
}

−
∑
i>r+t

#
{
ak|k ≤ N(i)mr + lr, k = mrk

′
+ lr, k

′ ∈ N; pi | k + j,∀j with 0 ≤ j ≤ r − 1
}

>

t∏
j=1

(pr+j − r)− r
∑

i>r+t,pi<N(t)+r

[
N(t)

pi
]

>

t∏
j=1

(pr+j − r)− r
∑

i>r+t,pi<N(t)+r

N(t)

pi
− rπ(N(t) + r).

(3.3)

where [a] represents the smallest integer larger than a and π is the prime counting function.

However,
t∏

j=1

(pr+j − r) =

t∏
j=1

pr+j − r
pr+j

N(t) ≥
∞∏
j=1

pr+j − r
pr+j

N(t). (3.4)

The last formula can be approximated as
∏∞
j=1

pr+j−r
pr+j

= exp(
∑∞

j=1 log(
pr+j−r
pr+j

)) = exp(−Θ(
∑∞

j=1
r

pr+j
)),

and the last equality holds because log(1 − x) ∼ x when x is small. Because of C, the

above quantity does not diverge to 0; we conclude that, if t is su�ciently large, there exists

a c with 0 < c < 1 such that
∏t
j=1(pr+j − r) > cN(t).

On the other hand, we remark that for all i > r + t, pti >
∏t
j=1 pr+j = N(t); thus,

pi > N(t)
1
t

∑
i>r+t,pi<N(t)+r

N(t)

pi
< N(t)

∑
N(t)

1
t <p<N(t)+r

1

p
. (3.5)

The term N(t)
1
t can be bounded by

N(t)
1
t = (

t∏
j=1

pr+j)
1
t ≥ t∑t

j=1
1

pr+j

>
t∑t

j=1
1
qj

. (3.6)

where qj is the j-th prime number in N. For any x ∈ N, # {pi|pi ≤ x} ∼ x
log(x) and∑

pi≤x
1
pi
∼ log log(x); thus, N(t)

1
t tends to in�nity when t tends to in�nity. Because of C,

we can conclude that there exists some t0 ∈ N such that, for all t > t0,
∑

N(t)
1
t <p<N(t)+r

1
p <

1
2r c.
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To conclude, for all t > t0,

#
{
ak|k ≤ N(t)mr + lr, k = mrk

′ + lr, k
′ ∈ N; k + j - pi,∀(i, j) with 0 ≤ j ≤ r − 1,∀i > r

}
>

t∏
j=1

(pr+j − r)− r
∑
k>r+t

N(t)

pk
− rπ(N(t) + r)

>cN(t)− 1

2
cN(t)− rπ(N(t) + r).

(3.7)

When t tends to in�nity, the set # {ak|k ≤ n, ak, ak+1, ..., ak+r−1 = wr} is not empty.

Proposition 3.6. Let (an)n∈N be a p-CMAS, vanishing or not, satisfying condition C.

Then, there exists at most one prime number k such that ak 6= 1 or 0.

Proof. Suppose that the sequence (an)n∈N has in�nitely many prime factors not equal to

0 or 1. Let us consider �rst the sequence (a′n)n∈N de�ned as follows:

a′n = a n∏
pi∈Z p

vpi (n)

i

,

where Z = {p|p ∈ P, ap = 0}; because of Proposition 3.3, this set is �nite.

Using Propositions 3.4 and 3.5, there exists a subword of length p2q!, say, vp2q! , appear-

ing in (a′n)n∈N such that none of its letters equal g = a′p1 = ap1 , where q is the number of

states of the automaton generating (an)n∈N. Then, by construction, there is a subword of

the same length, say, wp2q! , appearing at the same position on the sequence (an)n∈N such

that none of its letters equal g. Extracting a subword w′pq! contained in wp2q! of the form

aupq!aupq!+2...a(u+1)pq!−1 for some u ∈ N and using Proposition 3.1, we have, for every y

such that y ≥ 1 and every m such that 0 ≤ m ≤ pyq! − 1, aupyq!+m 6= g. In particular,

lim
y→∞

1

pyq!
#
{
as = g|upyq! ≤ s < (u+ 1)pyq! − 1

}
= 0.

which contradicts the fact that g has a non-zero natural density proved by Proposition 3.2.

Therefore, we have proven that the sequence (an)n∈N must have �nitely many prime

factors. However, Corollary 2 of [27] proves that, in this case, the sequence (an)n∈N can

have at most one prime k such that ak 6= 1 or 0.
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3.5 Classi�cation of CMAS

In this section, we will prove that a CMAS is either strongly aperiodic or a Dirichlet-like

sequence.

De�nition A sequence (an)n∈N is said to be aperiodic if and only if, for any pair of

integers (s, r), we have

lim
N→∞

∑N
i=0 asi+r
N

= 0.

De�nition LetM be the set of completely multiplicative functions. Let D :M×M×
N→ [0,∞] be given by

D(f, g,N)2 =
∑

p∈P∩[N ]

1−Re(f(p)g(p))

p

and M :M×N→ [0,∞) be given by

M(f,N) = min
|t|≤N

D(f, nit, N)2

A sequence (an)n∈N is said to be strongly aperiodic if and only if M(fχ,N) → ∞ as

N →∞ for every Dirichlet character χ.

De�nition A sequence (an)n∈N is said to be (trivial) Dirichlet-like if and only if there

exists a (trivial) Dirichlet character X(n)n∈N such that there exists at most one prime

number p satisfying ap 6= X(p).

Proposition 3.7. Let (an)n∈N be a CMAS; then, either there exists a Dirichlet character

(X(n))n∈N such that the sequence (anX(n))n∈N is a trivial Dirichlet-like character or it

is strongly aperiodic.

Proof. First, it is easy to check that there is an integer r such that ap is a r-th root of unity

for all but �nitely many primes p (see Lemma 1 [42]). If (an)n∈N is not strongly aperiodic,

then because of Proposition 6.1 in [21], there exists a Dirichlet character (X(n))n∈N such

that

lim
N→∞

D(a,X,N) <∞ (∗).

However, the sequence (anX(n))n∈N is also CMAS and satis�es condition C; the last fact is
from (∗). Because of Proposition 3.6, (anX(n))n∈N is a trivial Dirichlet-like character.

Proposition 3.8. Let (an)n∈N be a CMAS and Xt(n)n∈N be a Dirichlet character (mod t).

If the sequence (anXt(n))n∈N is the trivial Dirichlet-like character (mod t), then (an)n∈N

is either a Dirichlet character (mod t) or a Dirichlet-like character an = εvp(n)X( n
pvp(n)

),

where p is a prime divisor of t and ε is a root of unity.
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Proof. Let (an)n∈N be a CMAS satisfying the above hypothesis; then, all possibilities for

such (an)n∈N are the sequences of the form

an =

m∏
i=1

ε
vpi (n)
i X

(
n∏m

i=1 p
vpi (n)
i

)
,

for each n, where εi are all non-zero complex numbers and pi are all prime factors of t.

Let us consider the Dirichlet sequence f(s) associated with the sequence (an)n∈N, which

can be written as

f(s) = L(s,Xt)
m∏
i=1

1− 1
psi

1− api
psi

.

Therefore, all the poles of f(s) can be found on

s =
log api + 2inπ

log pi
,

for all i such that 1 ≤ i ≤ m and n ∈ Z.

However, if (an)n∈N is a k-automatic sequence for some integer k, then the poles should

be located at points

s =
log λ

log k
+

2imπ

log k
− l + 1,

where λ is any eigenvalue of a certain matrix de�ned from the sequence (χn)n∈N, and

m ∈ Z, l ∈ N, and log is a branch of the complex logarithm [2]. By comparing the two

sets of possible locations of poles for the same function, we can see that there is at most

one api 6= 0.

3.6 Conclusion

In this section, we conclude this article by proving that strongly aperiodic CMAS does not

exist. To do so, we recall the de�nition of the block complexity of sequences.

De�nition Let (an)n∈N be a sequence. The block complexity of (an)n∈N is a sequence,

which will be denoted by (p(k))k∈N, such that p(k) is the number of subwords of length k

that occur (as consecutive values) in (an)n∈N

Proposition 3.9. If (an)n∈N is a CMAS, then it is not strongly aperiodic.

Proof. From Theorem 2 in ([22]) and the remark following this theorem, the block com-

plexity of the sequence (an)n∈N should satisfy the property that limn→∞
p(n)
n =∞, which

contradicts the fact that the block complexity of an automatic sequence is bounded by a

linear function [13]. Therefore, the non-existence of strongly aperiodic CMAS is proved.
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Theorem 3.1. Let (an)n∈N be a CMAS; then, it can be written in the following form:

-either there is at most one prime p such that ap 6= 0 and aq = 0 for all other primes q

-or an = εvp(n)X( n
pvp(n)

), where (X(n))n∈N is a Dirichlet character.

3.7 Acknowledgement

We found some results in the recent literature on similar topics that have applications

to the classi�cation of CMAS. In [30], the authors proved that all continuous observables

in a substitutional dynamical system (Xθ, S) are orthogonal to any bounded, aperiodic,

multiplicative function, where θ represents a primitive uniform substitution and S is the

shift operator. As an application, all multiplicative and automatic sequences produced

by primitive automata are Weyl rationally almost periodic. We remark that a sequence

(bn)n∈N is called Weyl rationally almost periodic if it can be approximated by periodic

sequences in same alphabet in the pseudo-metric

dW (a, b) = lim sup
N→∞

sup
l≥1

1

N
| {l ≤ n < l +N : a(n) 6= b(n)} |.

This result could probably be generated in the non-primitive case.

In [29], the authors considered general multiplicative functions with the condition

lim infN→∞ |bn+1 − bn| > 0. They proved that if (bn)n∈N is a completely multiplicative

sequence, then most primes, at a �xed power, give the same values as a Dirichlet character.
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Chapter 4

Automatic sequences de�ned by

Theta functions and some in�nite

products

4.1 Introduction

Let p(x) ∈ C(x) be a rational function satisfying the condition p(0) = 1 and q an integer

larger than 1, in this article we will consider the expansion in power series of the in�nite

product

f(x) =
∞∏
s=0

p(xq
s
) =

∞∑
i=0

cix
i,

and study when the sequence (ci)i∈N is q-automatic. This topic has been studied by many

authors, such as [17], [16] and [11] , using analytical approach, here we want to review this

topic by a basic algebraic approach.

The main result is that for given integers q ≥ 2 and d ≥ 0, there exist �nitely many

polynomials of degree d de�ned over the �eld of rational numbers Q, such that f(x) =∏∞
s=0 p(x

qs) =
∑∞

i=0 cix
i is a q-automatic power series.

4.2 De�nitions and generality

De�nition Let (an)n∈N be a sequence, we say it is q-automatic if the set

Ker((ai)i∈N) =
{

(aqln+b)n∈N|l ∈ N, 0 ≤ b < ql
}

is �nite. This set will be called the q-kernel of (an)n∈N.

55
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For every couple of integers (l, b) satisfying l ∈ N, 0 ≤ b < ql, let us de�ne a relation

Rl,b over the sequence space: we say Rl,b((an)n∈N, (bn)n∈N) if and only if

∀n ∈ Z, bn = aqln+b.

De�nition Let
∑∞

i=0 aix
i be a power series, we say it is q-automatic if the sequence of

coe�cients (an)n∈N is q-automatic.

Similarly we de�ne operators Ol,b over the space of power series:

Ol,b(

∞∑
n=0

anx
n) =

∞∑
n=0

aqln+bx
n.

Now let us consider a detailed version of a well-known theorem, see, for example, [4].

Proposition 4.1. let f ∈ F ((x)) be a k-automatic power series, then there exist polyno-

mials a0(x), a1(x), ..., am(x) ∈ F [x] with a0(x)am(x) 6= 0 such that

m∑
i=0

ai(x)f(xk
i
) = 0.

Furthermore, the coe�cients of a0(x), a1(x), ..., ax(t) depend only on Rl,b relations over the

q-kernel of the sequence of the coe�cients of f .

Proof. Let B denote the k-kernel of the sequence of coe�cients of f , and N denote the

cardinal of B. We can then associate each element in B with a power series by

(an)n∈N →
∞∑
n=0

anx
n.

Let B′ denote the image of B by the previous map. For each power series in B′, we

have

∞∑
i=0

aix
i =

k−1∑
i=0

xi(
∞∑
j=0

akj+ix
kj).

Remarking that if the sequence (an)n∈N is in B, then (akn+j)n∈N is also in B, for

j = 0, 1, ..., k − 1. If we write

∞∑
i=0

aix
i =

∑
(bn)n∈N∈B′

cb

∞∑
i=0

bix
ki,

Then

cb =

xi, if R1,i((an)n∈N, (bn)n∈N)

0, otherwise.
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Particularly, we can do the same thing for f(x), f(xk), ..., f(xk
N

):

f(x) =
∑

(bn)n∈N∈B c
1
b

∑∞
i=0 bix

kN+1i,

f(xk) =
∑

(bn)n∈N∈B c
2
b

∑∞
i=0 bix

kN+1i,

...

f(xk
N

) =
∑

(bn)n∈N∈B c
N
b

∑∞
i=0 bix

kN+1i;

with cjb de�ned only by Rl,b relations. But as the cardinal of B′ is N , the linear forms at

the right-hand side of above equalities are linearly dependent. As a result, if we neglect

the linear dependence between elements in B′, we can have a linear dependence between

f(x), f(xk), ..., f(xk
N

) such that the coe�cients depend only on cjb. So these coe�cients

depend only on Rl,b relations.

Here we make this proposition precise by some examples:

Example Let us consider a periodic sequence

a, b, a, b, a, b, a, b...

which is 2-automatic.

Now let us write down the associated power sequence F (x) = a+ bx+ ax2 + bx3 + ...

and two other sequences A(x) = a+ ax+ ax2 + ax3..., B(x) = b+ bx+ bx2 + bx3... with

constant coe�cients.

So

F (x) = A(x2) + xB(x2)

A(x) = (1 + x)A(x2)

B(x) = (1 + x)B(x2)

so we have the following dependence:

F (x) = (1 + x2)(1 + x4)A(x8) + x(1 + x2)(1 + x4)B(x8)

F (x2) = (1 + x4)A(x8) + x2(1 + x4)B(x8)

F (x4) = A(x8) + x4B(x8)

F (x) satis�es the functional equation

(x8−x6+x4−x2)((1+x2)F (x2)−F (x)) = (x4−x3+x2−x)(1+x4)((1+x4)F (x4)−F (x2))

This functional equation does not depend on the values of a and b.
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Example Let us consider the Thue-Morse sequence

a, b, b, a, b, a, a, b, b, a, a, b, a, b, b, a...

which is 2-automatic.

Now let us write down the associated power sequence F (x) = a+ bx+ bx2 + ax3 + ...

and another sequence G(x) = b+ ax+ ax2 + bx3..., by changing a to b and b to a:

So

F (x) = F (x2) + xG(x2)

and

G(x) = G(x2) + xF (x2)

so we have the following dependence:

G(x2) = G(x4) + x2F (x4)

x2G(x4) = F (x2)− F (x4)

x2G(x2) = x2G(x4) + x4F (x4)

F (x) satis�es the functional equation

(x4 − 1)F (x4) + (1 + x)F (x2)− xF (x) = 0

This functional equation does not depend on the values of a and b.

Proposition 4.2. For a given functional equation F :
∑m

s=0 as(t)f(tk
s
) = 0, there exist

�nitely many polynomials p1, p2, ..., pr with pi(0) = 1, ∀i ∈ [0, r], such that the associated

theta functions Gr(x) =
∏∞
s=0 pr(x

qs) satisfying equation F .

Proof. If p(x) is a such polynomial satisfying p(0) = 1. Let us denote by G(x) the associ-

ated power series. By hypothesis, it satis�es the functional equation F :

m∑
s=0

as(x)G(xq
s
) = 0.

On the other hand, the power series G satis�es another functional equation:

G(x) = p(x)G(xq).

Plugging the second equation into the �rst one, we get

m∑
s=0

as(x)
m∏
r=s

p(xq
m−r

) = 0.
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An observation is that all terms in the sum contain a factor p(xq
m−1

) except the last one.

So we have

p(xq
m−1

)|am(x)

with p(0) = 1, so there are �nitely many choices for p(x).

Proposition 4.3. For a �xed number k, there are �nitely many polynomials p1, p2, ..., pr
such that the theta functions Gj(x) =

∏∞
s=0 pj(x

qs) are q-automatic and the sizes of their

q-kernels are bounded by k.

Proof. Fixing the size of the q-kernel, we �x the number of possibilities of Rl,b relations,

so the possible functional equations, and we conclude by Proposition 4.2.

4.3 In�nite product of polynomials

Let p =
∑n

i=1 aix
i be a polynomial with coe�cients in C and q be an integer larger than

1. It is known that the coe�cients of the power series

f(x) =
∞∏
s=0

p(xq
s
)

form a q-regular sequence [17], here we want to study when this sequence is q-automatic.

Firstly, let us suppose that the degree of p, noted deg(p), satis�es qk−1 < deg(p) ≤ qk

for some k ∈ N and write

f(x) =
∞∏
s=0

p(xq
s
) =

∞∑
i=1

cix
i.

Then the coe�cients ci satisfy a recurrence relation:

cnq+r =
∑

0≤j≤qk)
j≡r (mod q)

ajcn+ r−j
q (4.1)

for all r such that 0 ≤ r ≤ q − 1 and cn = 0 for all negative indices.

Lemma 4.1. The sequences (cqn+i−j)n∈N, for all i and j such that 0 ≤ i ≤ q− 1 and 0 ≤
j ≤ 2qk, can be represented as linear combinations of sequences

{
(cn−i)n∈N|0 ≤ i < 2qk

}
.

Proof. Because of the previous equality, we have

cnq+i−j =
∑

0≤s≤qk
s≡i−j (mod q)

ascn+ i−j−s
q
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for all n, i, j de�ned as above. Now let us check that all sequences appearing on the

right-hand side of these equalities are in the set de�ned in the statement. It is enough to

calculate the shifting indices and we have the bounds as follows,

−2qk < −3qk−1 ≤ i− j − s
q

≤ 0

which proves the statement.

Example Let us consider the case where p(x) = 1 + x + x2 + x3 + x4 and q = 2, the

sequence of coe�cients of the power series F (x) =
∏∞
s=0 p(x

qs) is denoted by (cn)n∈N, so

we have

p(x) = (1 + x+ x2 + x3 + x4)F (x2)

from which we can deduce

c2n = cn + cn−1 + cn−2,

c2n+1 = cn + cn−1.

Using the above lemma, we get

c2n

c2n−1

c2n−2

c2n−3

c2n−4

c2n−5

c2n−6

c2n−7

c2n−8


=



1 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 1 1 1 0 0





cn

cn−1

cn−2

cn−3

cn−4

cn−5

cn−6

cn−7

cn−8


and 

c2n+1

c2n

c2n−1

c2n−2

c2n−3

c2n−4

c2n−5

c2n−6

c2n−7


=



1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 0 0 0





cn

cn−1

cn−2

cn−3

cn−4

cn−5

cn−6

cn−7

cn−8


Because of the previous fact, we can introduce some transition matrices: for all integers r
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such that 0 ≤ r ≤ q − 1 let us de�ne Γr as a square matrix of size 2qk + 1 satisfying

Γr


cn

cn−1

...

cn−2qk

 =


cqn+r

cqn+r−1

...

cqn+r−2qk


for all n ∈ N.

Let us denote by G the semi-group generated by all Γr and multiplication.

Proposition 4.4. a ∈ {cn|n ∈ N} if and only if there exists a matrix g ∈ G such that a is

the �rst element in the �rst row of the matrix g, in other words, a = g(1, 1). Furthermore,

(cn)n∈N is automatic if and only if G is a �nite semi-group.

Proof. The �rst part of this proposition is trivial, for any r ∈ N, let us consider its q-ary

expansion r = sk1sk1−1...s0. Using Lemma 4.1, we have
cr

cr−1

...

cr−2qk

 = Γsk1Γsk1−1
..Γs0


1

0

...

0

 ,

which proves the �rst part of the statement.

For the second part, let us de�ne maps γr for all integers r by γr(n) = q(q(...q(q(n) +

s0)...) + sk1−1) + sk1 for all n ∈ N if r = sk1sk1−1...s0. Then there is an equality for all r:


cγr(0) cγr(1) ... cγr(2qk)

cγr(0)−1 cγr(1)−1 ... cγr(2qk)−2qk

...

cγr(0)−2qk cγr(1)−2qk ... cγr(2qk)−2qk

 = Γsk1Γsk1−1
..Γs0


a0 a1 ... a2qk

0 a0 ... a2qk−1

...

0 0 ... a0

 .

But the the last matrix in the above equality is constant and invertible, so each element

of a matrix g ∈ G is a �nite linear composition of elements in the sequence (cn)n∈N, so

the �niteness of elements in (cn)n∈N is equivalent to the �niteness of elements in G. And

using the fact that (cn)n∈N is an automatic sequence, we conclude the statement.

Proposition 4.5. For given integers q ≥ 2 and d ≥ 0, there exist �nitely many polynomials

of degree d de�ned over the �eld of rational numbers Q, such that
∏∞
s=0 p(x

qs) =
∑∞

i=1 cix
i

is a q-automatic power series.

Proof. Suppose that the sequence (cn)n∈N generated by
∏∞
s=0 p(x

qs) =
∑∞

i=1 cix
i is auto-

matic. Let us consider a sequence of matrices (Γn)n∈N, such that Γi are de�ned as above
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for i = 0, 1, .., q − 1 and Γqi+j = ΓiΓj for all i ≥ 1 and j = 0, 1, ..., q − 1.

It is easy to see that this matrix sequence is automatic because G is �nite. And also the

automata of this matrix sequence is the same as the one of (cn)n∈N, because cn is exactly

the element at the position (1, 1) of the matrix Γn. To conclude the statement, we have

to prove two things: �rstly the number of automata generating the sequences (Γn)n∈N is

�nite, secondly, the output functions for each automaton are also �nite.

For the �rst point, it is enough to show that |G| is bounded by a function depending

only on d and q, which is proved by Theorem 1.3 of [33]. It says that given naturals n and

k, there exist, up to semi-group isomorphism, only a �nite number of �nite sub-semi-groups

of Mn(F ) generated by at most k elements.

For the second point, it is a consequence of Proposition 4.3.

Proposition 4.6. Let f be a polynomial satisfying the hypothesis in Proposition 4.5, then

all its coe�cients belong to Z.

Proof. Let us denote by d the degree of f and write down all coe�cients of f in the form

ai = pi
qi
such that (pi, qi) = 1, and similarly for all coe�cient of F , let us write down ci = ri

ti

with (ri, ti) = 1. If there are some coe�cients of f which are rational numbers but not

integers, then there exist a prime p and two integers d1 and d2 satisfying :

d1 = max
{
t|t ∈ N,∃qi, pt|qi

}
and

d2 = max
{
t|t ∈ N, ∃ti, pt|ti

}
with d1 > 0, d2 > 0. In fact, because of the hypothesis, there exists ai = pi

qi
with qi 6= 1.

So there exists a prime p such that p|qi, thus d1 6= 0. Let us suppose aj =
pj
qj

with the

smallest index such that pd1 |qj . Now let us check

cj = aj +
∑

qk+s=j,k>0

akcs.

If cj =
rj
tj

with p|tj then d2 ≥ 1; otherwise, there are some ak, cj such that pd1 |qktj , but
with the assumption of smallest index, pd1 - qk, so p|tj thus d2 ≥ 1.

Let l1 be the smallest index such that pd1 |ql1 and similarly let l2 be the smallest index

such that pd2 |sl2 . Now let us consider the coe�cient cl2q+l1 , which can be calculated as

cl2q+l1 =
∑

0≤i≤d,qj+i=l2q+l1

aicj .

Let us consider the sum at the right-hand side, for any couple of (ai, cj), if i < t1, then

pd1 - qi, the maximality of d2 leads to pd1+d2 - qitj ; similarly, if i > t1, then j < t2 thus
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pd2 - tj , so that pd1+d2 - qitj ; but if i = t1, then j = t2, so pd1 |qi and pd2 |ti. As a result,

pd1+d2 |ct2q+t1 , contradicts the maximality of d2.

4.4 Rational functions generated by in�nite products

Here we consider the following question: for a given polynomial p and an integer q, when

does F (x) =
∏∞
s=0 p(x

qs) equal a rational function. This question has already been studies

in [16] when restricting the polynomial to the cyclotomic case, this section can be considered

as a generalization of the previous work.

Proposition 4.7. Let p be a polynomial taking coe�cients over C and q be an integer

larger than 1, then there is an equivalence between:

(1)
∏∞
s=0 p(x

qs) is a rational function.

(2) there exists a polynomial Q(x) such that p(x) = Q(xq)
Q(x) and all roots of Q(x) are

roots of unity, if δ is a root of Q(x) then δq
t
is a root of Q for all t ∈ N.

Proof. (2) implies (1) is straightforward, let us check (1) implies (2).

Let F (x) =
∏∞
s=0 p(x

qs) be a rational function, say F (x) = P (x)
Q(x) , where P (x) and Q(x)

are coprime, using the functional equation F (x) = p(x)F (xq), we get

P (x)Q(xq)

P (xq)Q(x)
= p(x).

As deg(p(x)) > 0, so that deg(Q(x)) > deg(P (x)), and P (xq)|P (x)Q(xq) if deg(P (x)) > 0,

then P (xq) and Q(xq) should have at least one common root, which contradicts that P (x)

and Q(x) are coprime, so we have

F (x) =
1

Q(x)

and

p(x) =
Q(xq)

Q(x)

Now let us study the roots of Q(x), let us suppose 0 ≤ |r1| ≤ |r2| ≤ ... ≤ |rm| where
ri are the roots of Q(x) and |ri| is the modulus of ri. Firstly |rm| can not be too large, if

|rm| > 1 then each root of Q(xq) should have a modulus strictly smaller than |rm|, on the

other hand Q(x)|Q(xq), which is impossible. For the same reason, |r1| can not be a real

number between 0 and 1. So |ri| are either 0 or 1, but if x|Q(x), the in�nite product of

p(x) will not converge, so |ri| = 1 for all roots of Q(x). Using once more Q(x)|Q(xq), if δ

is a root of Q(x) then it is a root of Q(xq) which implies δq is a root of Q(x), we can do

it recursively and we obtain δq
t
is a root of Q for all t ∈ N, as a corollary, δ can only be a

root of unity. So we prove (2) using (1).
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4.5 In�nite product of inverse of polynomials

In this section, we consider the power sequence de�ned as follows:

F (x) =
∞∏
s=0

1

p(xqs)
=
∞∑
i=0

cix
i,

where q is an integer larger than 1 and p =
∑n

i=0 bix
i is a polynomial such that p(0) = 1

de�ned as before.

Such a sequence satis�es the functional equation

F (x) =
1

p(x)
F (xq).

If we write 1
p(x) =

∑∞
i=0 aix

i, then

cqn+i =
n∑
j=0

aqj+icn−j ,

for all n ∈ N and i such that 0 ≤ i ≤ q − 1.

Proposition 4.8. If the coe�cients of the power series F (x) =
∏∞
s=0

1
p(xqs )

=
∑∞

i=0 cix
i

take �nitely many values in C, then the roots of f are all of modulus 1.

Proof. Firstly, let us prove that the moduli of all roots of p are not smaller than 1. Other-

wise, let us chose one of those which have smallest modulus, say α, because of the above

de�nition, we can conclude that

p(αk) 6= 0

for all k larger than 1.

Let us consider the equality,

∞∏
s=0

1

p(xqs)
=
∞∑
i=0

cix
i,

the right-hand side converges when x tends to α while the left-hand side diverges, in fact∏∞
s=1

1
p(αqs )

converges to a non-zero value because

log(
∞∏
s=1

1

p(αqs)
) = −

∞∑
s=1

log(p(αq
s
))

which converges, however, 1
p(xqs )

has a pole at x = α.

Secondly, let us prove that the moduli of all roots of p are not larger than 1. Otherwise,
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let us chose one of them, say β, and an integer t such that |β|qt > |a|/|b| + 1, where |a|
is the largest modulus of the sequence (ci)i∈N and |b| is the smallest non-zero modulus of

this sequence. Now consider the following series

1

1− β

∞∏
s=t

1

p(xqs)
=

∞∑
i=0

dix
i.

It is easy to see that {di|i ∈ N} is �nite, because such a series can be obtained by multi-

plying a polynomial to F (x), but on the other hand, we have the inequality,

|dqti| = |
i∑

j=0

βq
tjcqt(i−j)| ≥ −|a|

i−1∑
j=0

|βqtj |+ |b||βqti| > 0

which diverges. This contradicts the fact that {di|i ∈ N} is �nite. In conclusion, the roots

of f are all of modulus 1.

Proposition 4.9. If the power series F (x) =
∏∞
s=0

1
p(xq

s
)

=
∑∞

i=0 cix
i is a q-regular

sequence, then the roots of p are all roots of unity, furthermore, the order of each root is

multiple of q.

Proof. If F (x) =
∏∞
s=0

1
p(xqs )

=
∑∞

i=0 cix
i is a q-regular sequence, then F ′(x) =

∑∞
i=1 ciix

i−1

is also q-regular. On the other hand, we know 1
F (x) =

∏∞
s=0 p(x

qs) is q-regular, so

F ′(x)

F (x)
= (logF (x))′

is q-regular. In the same way we have (logF (xq))′) is q-regular so that

(logF (x))′ − (logF (xq))′ =
p′(x)

p(x)

is q-regular, then we conclude by Theorem 3.3 [4] that all roots are roots of unity.

To prove the second part, we use a method introduced in [8]. We �rstly de�ne some

notation. Let us denote by At,i the operator of power series:

At,i(

∞∑
j=0

ajx
j) =

∞∑
j=0

aqtj+ix
qtj+i

for all i such that 0 ≤ i ≤ qt − 1.

If there exists a root of p which's order is not a multiple of q, say α, then for all formal

power series f , let us de�ne ord(f(x)) to be the order of pole of f at point α. It is easy

to check that there exists a t ∈ N such that for all f ∈ F [[x]], ord(f(x)) = ord(f(xq
t
)) so
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there are some i such that ord(f(x)) ≤ ord(At,i(f(x))).

Now let us de�ne a sequence of power series (si)i∈N and a sequence of integer (Ii)i∈N

such that s0 = 1, 0 ≤ Ii ≤ qt − 1, ∀i and ord(AIi(
si
p(x))) ≥ ord( si

p(x)) and we de�ne

si+1 = AIi(
si
p(x)), so we can easily check

AIi(siF (x)) = AIi(
si
p(x)

)F (x) = si+1F (x),

and by induction

AIiAIi−1 ...AI0(F (x)) = si+1F (x).

However,

ord(si) < ord(si+1),

the sequence si are linearly independent, so F (x) can not be a regular sequence.

Theorem 4.1. If the power series F (x) =
∏∞
s=0

1
p(xqs )

=
∑∞

i=0 cix
i is a q-regular sequence,

then there exists a polynomial Q(x) such that p(x)|Q(xq)
Q(x) , so F (x) can be written as

F (x) = Q(x)
∞∏
i=1

R(xq),

where R(x) = Q(xq)
Q(x)F (x) , which is a polynomial.

4.6 Applications

In this section we will consider some examples of automatic power series of type

F (x) =
∞∏
s=0

p(xl
s
) =

∞∑
i=1

cix
i,

where p is a polynomial of degree d with coe�cients in Q and l ≥ 2. It has been proved

by Proposition 4.5 that the number of such polynomials p is �xed once given the degree d

of the polynomial and l. But when l and d are both large, it will be di�cult to compute

the semi-group of matrix discussed in Section 4.2. Here we show a method applied on a

particular example to generate the couples (p, l) such that
∏∞
s=0 p(x

ls) =
∑∞

i=1 cix
i is an

automatic power sequence.

Let us consider �rstly the power series F1(x) de�ned by p1(x) = 1 + x − x3 − x4 and

l = 2, it is easy to check that

F1(x) =
∞∏
s=0

p1(x
2s) =

∞∏
s=0

(1 + x2
s
)
∞∏
s=0

(1− (x3)2
s
).
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And it is well known that
∏∞
s=0(1+x2

s
) = 1

1−x =
∑∞

i=1 x
i and

∏∞
s=0(1−x2

s
) =

∑∞
i=1 bnx

i,

where (bn)n∈N is the Thue-Morse sequence beginning with 1,−1. So the coe�cient of term

xn in F1(x), say f1(n), can be calculated by

f1(n) =
∑
3i≤n

bi.

The sequence (f1(n))n∈N is bounded because of the fact that b2n+1 + b2n = 0, so F1(x) is

a 2-automatic power sequence. Moreover the transition matrices Γ1 and Γ0 can be de�ned

by


c2n

c2n−1

c2n−2

c2n−3

 = Γ1


cn

cn−1

cn−2

cn−3

 =


1 0 −1 0

0 1 −1 0

0 1 0 −1

0 0 1 −1




cn

cn−1

cn−2

cn−3



c2n+1

c2n

c2n−1

c2n−2

 = Γ0


cn

cn−1

cn−2

cn−3

 =


1 −1 0 0

1 0 −1 0

0 1 −1 0

0 1 0 −1




cn

cn−1

cn−2

cn−3

 .

Remarking that

Γ2
0 =


1 −1 −1 1

0 0 −1 1

0 1 −2 1

0 1 −1 0

 ,Γ1Γ0 =


1 −1 0 0

1 −1 −1 1

0 0 −1 1

0 1 −2 1

 ,

Γ0Γ1 =


1 −2 1 0

1 −1 0 0

1 −1 −1 1

0 0 −1 1

 ,Γ2
1 =


0 −1 1 0

1 −2 1 0

1 −1 0 0

1 −1 −1 1

 ,

let us consider the the power series F2(x) de�ned by p2(x) = 1 + x+ x2 − x4 − x5 − 2x6 −
x7− x8 + x10 + x11 + x12 = (x2 + x+ 1)(x6− 1)(x4− 1) and l = 4, the transition matrices

of this polynomial are

α0 =


1 −1 −1 1 0

0 0 −1 1 0

0 1 −2 1 0

0 1 −1 0 0

0 1 −1 −1 1

α1 =


1 −1 0 0 0

1 −1 −1 1 0

0 0 −1 1 0

0 1 −2 1 0

0 1 −1 0 0


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α2 =


1 −2 1 0 0

1 −1 0 0 0

1 −1 −1 1 0

0 0 −1 1 0

0 1 −2 1 0

α3 =


0 −1 1 0 0

1 −2 1 0 0

1 −1 0 0 0

1 −1 −1 1 0

0 0 −1 1 0


If we de�ne a sequence of matrices (αn)n∈N by α4n+i = αnαi, 0 ≤ i ≤ 3, then the n-th

coe�cient of F2(x) is f2(n) = αn(1, 1). However the matrices αi for i = 0, 1, 2, 3 are all

of form

(
Ai 0

Bi Ci

)
with Ai of size 4 × 4, Bi of size 4 × 1, Ci of size 1 × 1 and 0 the 0-

matrix of size 1× 4, so αn(1, 1) can be calculated only by the multiplications between Ai.

Remarking that this four matrices are nothing else then Γ2
0,Γ1Γ0,Γ0Γ1,Γ

2
0, we conclude

that the sequence (f2(n))n∈N is bounded so 4-automatic.

By the same method, the power series F3(x) de�ned by p3(x) = 1 + x+ x2− x4− x5 +

x7 + x8 − x10 − x11 − x12 = (x2 + x+ 1)(x6 + 1)(1− x4) and l = 4 is also 4-automatic. In

fact, its transition matrices are

β0 =


1 −1 1 −1 0

0 0 1 −1 0

0 1 0 −1 0

0 1 −1 0 0

0 1 −1 1 −1

β1 =


1 −1 0 0 0

1 −1 1 −1 0

0 0 1 −1 0

0 1 0 −1 0

0 1 −1 0 0



β2 =


1 0 −1 0 0

1 −1 0 0 0

1 −1 1 −1 0

0 0 1 −1 0

0 1 0 −1 0

β3 =


0 1 −1 0 0

1 0 −1 0 0

1 −1 0 0 0

1 −1 1 −1 0

0 0 1 −1 0


and once more they are of form

(
Ai 0

Bi Ci

)
with A0 = −Γ0Γ0Γ1Γ1, A1 = −Γ1Γ0Γ0Γ0, A2 =

Γ0Γ1Γ0Γ0, A3 = Γ1Γ1Γ0Γ0.

Furthermore, as

∞∏
s=0

((x2)4
s

+ 1)(x4
s

+ 1) =
∞∏
s=0

(x4)4
s − 1

x4s − 1
=

1

1− x

we have

(1−x)F2(x) =

∞∏
s=0

((x2)4
s
+x4

s
+1)((x6)4

s−1)
(x4)4

s − 1

((x2)4s + 1)(x4s + 1)
=
∞∏
s=0

(x9)4
s−(x6)4

s−(x3)4
s
+1,



4.6. APPLICATIONS 69

(1−x)F3(x) =

∞∏
s=0

((x2)4
s
+x4

s
+1)((x6)4

s
+1)

(x4)4
s − 1

((x2)4s + 1)(x4s + 1)
=

∞∏
s=0

−(x9)4
s
+(x6)4

s−(x3)4
s
+1.

Proposition 4.10. The power series

F2(x) =
∞∏
s=0

((x2)4
s

+ x4
s

+ 1)((x6)4
s − 1)((x4)4

s − 1)

and

F3(x) =

∞∏
s=0

((x2)4
s

+ x4
s

+ 1)((x6)4
s

+ 1)(−(x4)4
s

+ 1)

are 4-automatic.
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Chapter 5

Palindromic length complexity and a

generalization of Thue-Morse

sequences

5.1 Introduction

The notion of palindromic length of a �nite word as well as an in�nite word was �rst

introduced by Frid, Puzynina and Zamboni [25]. They conjectured that if the palindromic

length of an in�nite word is bounded, then this sequence is eventually periodic. This

conjecture is widely studied in [25][23][6], and the palindromic length of some speci�c

sequences are studied as well: Frid [23] showed that Sturmian words have an unbounded

palindromic length PLu and Ambroº and Pelantová [6] showed that PLu grows arbitrarily

slowly. [7] studied palindromic lengths of �xed points of a speci�c class of morphisms and

gave upper bounds for the Fibonacci word and the Thue-Morse word. In this article, we

give a formal expression of the palindromic length of Thue-Morse sequence and �nd all

sequences which have the same palindromic length as Thue-Morse's. After writing a �rst

version of this paper, we found that some results in the same direction were obtained by

Frid [24] for Thue-Morse sequences. However, we will indicate how our results can be

applied for a type of generalization of Thue-Morse sequences.

5.2 De�nitions and notation

Let (an)n∈N be a sequence and let us de�ne a (�nite) word, or a factor, of a sequence to

be a (�nite) string of the sequence. Let wa(x, y) denote the factor of the sequence (an)n∈N

beginning with ax and of length y, in other words wa(x, y) = axax+1...ax+y−1.

Let w̃ denote the reversal of w, that is to say, if w = w0w1...wk then w̃ = wkwk−1...w0,

71
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we say a word w is palindromic if w = w̃. Let Pal denote the set of all palindromic words.

We de�ne the palindromic length of a word w, which will be denoted by |w|pal, to be:

|w|pal = min {k|w = p1p2...pk, pi ∈ Pal, ∀i ∈ [1, k]} ,

in this case we say w = p1p2...pk, pi is an optimal palindromic decomposition of w.

Let us de�ne the palindromic length sequence (pla(n))n∈N of the sequence (an)n∈N to

be

pla(n) = |wa(0, n)|pal,

in other words, pla(n) is the palindromic length of the word a0a1...an−1.

Now let us de�ne a class of in�nite sequences C which can be considered as a general-

ization of the Thue-Morse sequence:

Let
∑

be an alphabet which contains at least two letters and let a ∈
∑
.

Let F be the set of bijections over
∑
.

Let (fn)n∈N be a sequence over F and (wn)n∈N be a sequence of �nite words over
∑

which

are de�ned recursively as:

fi ∈ F such that fi(wi) 6= wi ∀i ≥ 0,

and w0 = a

wn = wn−1fn−1(wn−1)fn−1(wn−1)wn−1,∀n > 0.

Let f(a) be the limit of the sequence (wn)n∈N which exists because of the de�nition.

The class C is the set of all in�nite limits de�ned as above. It is easy to see that, if the

size of
∑

is equal to 2, say
∑

= {a, b}, then all sequences in C are Thue-Morse sequences,

they may be written as

a, b, b, a, b, a, a, b, b, a, a, b, a, b, b, a...

and the one by changing a to b and b to a. Let (pl(n))n∈N be the palindromic length

sequence of Thue-Morse, the �rst elements of this sequence are

1, 2, 2, 1, 2, 3, 3, 2, 3, 4, 3, 2, 3, 3, 2, 1...
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5.3 Palindromic length of sequences in C

In this section we will study palindromic lengths of sequences in C and prove that they all

have the same palindromic length, as the one of Thue-Morse.

Let (an)n∈N be a sequence in C, we will begin with some properties of palindromic

factors of this sequence.

Lemma 5.1. For any integer x, wa(4x, 4) is of type abba such that a 6= b.

As a corollary, a(2n+ 1) 6= a(2n).

Proof. This lemma is trivial because of the de�nition.

Lemma 5.2. Let wa(x, y) be a palindromic factor of a sequence in C such that y is odd,

then y is either 1 or 3.

Proof. If wa(x, y) is of size larger than 3, then it contains at least one palindromic word

in the center of size 5, however a word of size 5 should be inside a word of type xyyxxyyx

or xyyxf(x)f(y)f(y)f(x),where f is a bijection over the alphabet de�ned as above, but

none of them contains a palindromic word of such a size.

Lemma 5.3. Let wa(x, y) be a palindromic word of (an)n∈N such that y is even, then

either there exist z, r ∈ N such that wa(x, y) is embedded into the center of palindromic

word wa(4z, 4r), that is to say 4z < x, x + y < 4z + 4r and x − 4z = 4z + 4r − x − y, or
x ≡ 3 mod 4 and y ≡ 2 mod 4.

Proof. We �rst prove that x+y/2−1 is odd, otherwise x+y/2−1 = 2t and x+y/2 = 2t+1

for some t, so that a2t = a2t+1 contradicts to Lemma 5.1. This fact implies that

if x ≡ 0 mod 4 then x+ y − 1 ≡ 3 mod 4

if x ≡ 1 mod 4 then x+ y − 1 ≡ 2 mod 4

if x ≡ 2 mod 4 then x+ y − 1 ≡ 1 mod 4

if x ≡ 3 mod 4 then x+ y − 1 ≡ 0 mod 4.

.

For the last case, we have x ≡ 3 mod 4 and y ≡ 2 mod 4. Now let us check that, for other

cases, the word wa(x, y) can be embedded into the center of a palindromic word of type

wa(4z, 4r). Let wa(4z, 4r) be the shortest factor of above type including wa(x, y), here

we prove that this factor is palindromic. It is easy to see that wa(x, y) is at the center of

wa(4z, 4r) and the word wa(4(z+1), 4(r−1)) is palindromic because of the palindromicity

of wa(x, y); furthermore we have the fact that wa(4z, 4) = w̃a(4(z + r − 1), 4) when x 6≡ 3

mod 4, because these two words of length 4 are both palindromic and uniquely de�ned

by respectively a pre�x or a su�x of wa(x, y) of size smaller than 4 but larger than 1. In

conclusion, the word wa(4z, 4r) is palindromic.
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Lemma 5.4. Let wa(0, s) be a pre�x of (an)n∈N in C, and let wa(0, s) = p1p2...pr be an

optimal palindromic decomposition such that for all i : 1 ≤ i ≤ r, pi is either singleton or

can be embedded into the center of palindromic word of type wa(4z, 4t), then there exists at

least one optimal palindromic decomposition of wa(0, s) of following forms:

wa(0, s) = q1q2...qr; s ≡ 0 mod 4;

wa(0, s) = q1q2...qr−1t1; s ≡ 1 mod 4;

wa(0, s) = q1q2...qr−2t1t2; s ≡ 2 mod 4;

wa(0, s) = q1q2...qr−2t1l1; s ≡ 3 mod 4;

wa(0, s) = q1q2...qr−3t1t2l1; s ≡ 2 mod 4;

where qi are palindromes of length 4ki, ti are singletons and l1 are palindromes of length

2k.

Proof. Let us consider a factor of (an)n∈N of type rq1q2..q2l where 1 ≤ |r| ≤ 2 beginning

at some position 4x where qi are palindromic words of even size and can be embedded into

the center of palindromic word of type wa(4z, 4r). Here we prove that there exists an other

palindromic decomposition of same length such that

rq1q2..q2l = q′1q
′
2..q
′
2lr,

where all q′i are of size 4ki.

As q1 is palindromic, because of Lemma 5.3, rq1r̃ is also palindromic, let us denote this

word by q′1, its size is multiple of 4. By excluding the case that |r| = |q2| = 2, q2 can be

written as r̃q′2r, where q
′
2 is either a palindromic word of size 4m or empty, so we have the

equality rq1q2 = q′1q
′
2r and the last r begins at some position 4x. We do it recursively and

we end up with the expression rq1q2..q2l = q′1q
′
2..q
′
2lr.

In such a way we can accumulate the singletons in the decomposition wa(0, s) =

p1p2...pr and push them to the end. An easy observation is that there are at most two

singletons in an optimal decomposition, since once there are three singletons, they will

meet each other by the above algorithm in a block wa(4k, 4l) hence two of them will create

a palindromic word of length 2 which contradicts the optimality. The above process ends
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up with �ve possibilities: 

wa(0, s) = q1q2...qr;

wa(0, s) = q1q2...qr−1t1;

wa(0, s) = q1q2...qr−2t1t2;

wa(0, s) = q1q2...qr−2t1l1;

wa(0, s) = q1q2...qr−3t1t2l1;

where qi are palindromes whose lengths are multiple of 4, ti are singletons and li are

palindromes whose lengths are multiple of 2.

The �rst case leads to s ≡ 0 mod 4; the second one leads to s ≡ 1 mod 4 and the

third one leads to s ≡ 2 mod 4; for the fourth one we can check that |l1| 6≡ 0 mod 4

because of Lemma 5.3, so that s ≡ 3 mod 4; the �fth case, |l1| must be a multiple of 4,

so s ≡ 2 mod 4.

Corollary 5.1. Let (pl(n))n∈N be the palindromic length of a sequence in C such that all

its pre�xes admit an optimal palindromic decomposition satisfying the constrains listed as

in the previous lemma, then for all k ≥ 0:

pl(4k + i) ≥ pl(4k + 3) + 1 for i = 1, 2 and pl(4k) ≥ pl(4k + 3).

Proof. For i = 0, wa(0, 4k + 1) is of the form q1q2...qrt1. Using Lemma 5.1 we have

wa(0, 4k + 4) = q1q2...qrq is a palindromic decomposition, not necessarily optimal, with

q = wa(4k, 4), so pl(4k + 3) ≤ r + 1 = pl(4k)

For i = 1, there are 2 cases: if wa(0, 4k+2) is of the form q1q2...qrt1t2, then using Lemma

5.1 once more we have wa(0, 4k + 4) = q1q2...qrq is a palindromic decomposition, with

q = wa(4k, 4) = t1t2t2t1; if wa(0, 4k+ 2) is of the form q1q2...qrt1t2l1, using the hypothesis

we have wa(0, 4k + 4) = q1q2...qrq is a palindromic decomposition, with q = t1t2l1t2t1.

For i = 2, wa(0, 4k + 3) = q1q2...qrt1l1, using the hypothesis we have wa(0, 4k + 4) =

q1q2...qrq is a palindromic decomposition, with q = t1l1t1.

So all inequalities as above are proved.

Lemma 5.5. Let wa(0, k) be a pre�x of (an)n∈N, then there is an optimal decomposition

wa(0, k) = p1p2...ps such that none of these palindromes is of length 3, furthermore, if pi is

of even size then it can be embedded into the center of palindromic word of type wa(4z, 4r).

Proof. Let us suppose that k is the smallest number such that wa(0, k) does not satisfy

one of the two constrains above, then either the last palindromic factor in all optimal

compositions is of length 3, or it can not be embedded into the center of palindromic

word of type wa(4z, 4r). If it is in the �rst case, then the last factor can be either
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a4t−1a4ta4t+1 or a4t−2a4t−1a4t. If k = 4t + 2, use the hypothesis that the last factors

in all optimal decompositions of wa(0, k) are the same, which is a4t−1a4ta4t+1, we can de-

compose wa(0, 4t+ 2) as wa(0, 4t+ 2) = wa(0, 4t− 1)p with p = a4t−1a4ta4t+1, so that the

palindromic length is pl(4t+ 1) = 1 + pl(4t− 2). However, if we decompose the same word

as wa(0, 4t+ 2) = wa(0, 4t)a4ta4t+1, we have a length pl(4t− 1) + 2, so that

pl(4t+ 1) = 1 + pl(4t− 2) < pl(4t− 1) + 2.

Similarly for the case that k = 4t + 1, by considering the decomposition wa(0, 4t + 1) =

wa(0, 4t)a4t, we have

pl(4k) = 1 + pl(4k − 3) < pl(4k − 1) + 1,

Both inequalities contradict the previous corollary.

If the last factor can not be embedded into the center of a palindromic word of type

wa(4z, 4r), then because of Lemma 5.3 it can be found at some position a4t−1a4t...a4l, so

the optimal decomposition is wa(0, 4l) = wa(0, 4t−1)a4t−1a4t...a4l. However, if we consider

another composition wa(0, 4l) = wa(0, 4t)a4ta4t...a4l−1a4l, we have

pl(4t− 2) + 1 < pl(4t− 1) + 2,

which contradicts the previous corollary.

Corollary 5.2. Corollary 5.1 is valid for all sequences in C.

Lemma 5.6. The palindromic length sequence (pl(n))n∈N satis�es for k ≥ 0:

pl(4k + i) ≤ pl(4k + 3) + 2,

when i = 0 or 1; and

pl(4k + 2) ≤ pl(4k + 3) + 1.

Proof. Let wa(0, 4k + 4) = p1p2...ps be an optimal palindromic decomposition such that

all pj are of size 4rj which exists because of Lemma 5.5.

If the size of ps is larger than 4, then for i = 1, 2 or 3, we can write ps = abã where a

is the pre�x of ps of length 4− i so in this case

wa(0, 4k + i) = p1p2...ps−1ab

and |a|pal = 2 when i = 3 and |a|pal = 1 otherwise.

If the size of ps is 4, then for i = 1, 2 or 3, we can write ps = ab where a is the pre�x
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of ps of length i so in this case

wa(0, 4k + i) = p1p2...ps−1a

and |a|pal = 1 when i = 1 and |a|pal = 2 otherwise. In both cases the above inequalities

hold.

Lemma 5.7. Let (an)n∈N be a sequence in C de�ned over the alphabet
∑

, let f be a

bijection from
∑4 to a new alphabet

∑′, then the sequence (bn)n∈N de�ned as

bn = f(a4na4n+1a4n+2a4n+3) ∀n ∈ N

is also in C. As a consequence, wa(0, 4t) = p1p2...pk is an optimal palindromic decom-

position of wa(0, 4t) if and only if wb(0, t) = f(p1)f(p2)...f(pk) is an optimal palindromic

decomposition of wb(0, t) and the palindromic length sequence (pl(n))n∈N satis�es for k ≥ 0:

pl(4k + 3) = pl(k)

Proof. The �rst part is easy to check by induction. For the second part, applying the

algorithm introduced in Lemma 5.3 to wa(0, 4k + 4), we get an optimal decomposition

such that all palindromic words in the optimal decomposition are of size 4ki and begin at

some position 4ri. Applying f to wa(0, 4k + 4) as well as each palindromic factor, we get

a decomposition of a word of length k + 1, which is a pre�x of the sequence (bn)n∈N, this

decomposition is optimal because of the bijectivity of f .

Corollary 5.3. The palindromic length sequence (pl(n))n∈N satis�es for k ≥ 0:

pl(4k + 3) = pl(k);

pl(4k + 2) = pl(4k + 3) + 1;

pl(4k + 1) = pl(4k + 3) + 1 or pl(4k + 3) + 2;

pl(4k) = pl(4k + 3), pl(4k + 3) + 1 or pl(4k + 3) + 2.

Proposition 5.1. The palindromic length sequence (pl(n))n∈N satis�es for k ≥ 0:

pl(4k + 1) = pl(4k + 3) + 1 if k ≡ 0 mod 4;

pl(4k + 1) = pl(4k + 3) + 2 if k ≡ 2, 3 mod 4;

pl(4k + 1)− pl(4k + 3) = pl(k)− pl(k + 2) if k ≡ 1 mod 4;

pl(4k) = pl(k − 1) + 1.

Proof. If k ≡ 0 mod 4, applying the bijection introduced in Lemma 5.7, the optimal

decomposition of wa(0, 4k + 4) is wa(0, 4k)a4ka4k+1a4k+2a4k+3, so that wa(0, 4k + 2) =

wa(0, 4k)a4ka4k+1 is a decomposition of wa(0, 4k + 2). As a result, pl(4k + 1) ≤ pl(4k −
1) + 2 = pl(4k + 3) + 1.
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If k ≡ 2, 3 mod 4, it is enough to prove that the last factor in any optimal palindromic

decompositions of wa(0, 4k + 4) is of length larger than 4. This is trivial by applying the

bijection f to wa(0, 4k + 4) and concluding by the classi�cation in Lemma 5.4.

If k ≡ 1 mod 4, applying the bijection introduced in Lemma 5.7 and Lemma 5.4, the

optimal decomposition of wa(0, 4k+4) is either of type p1p2...pkt1t2 or of type p1p2...pkt1t2l,

with pi and l of length 16ri and ti of length 4. The �rst case implies pl(4k+1)−pl(4k+3) = 1

while the second case implies pl(4k + 1) − pl(4k + 3) = 2. However, if we apply f to

wa(0, 4k + 4) we get a word of length k + 1 and pl(k)− pl(k + 2) = 1 in the �rst case and

pl(k)− pl(k + 2) = 2 in the second case.

The last equality is a consequence of Lemma 5.4 and Lemma 5.7.

Proposition 5.2. All sequences in C share the same palindromic length sequence (pl(n))n∈N.

Furthermore, this palindromic length sequence is 4-regular.

Proof. The 4-kernel of (pl(n))n∈N is generated by the elements in

{(pl(n))n∈N, (pl(n− 1))n∈N, (pl(n+ 1))n∈N, (b(n))n∈N, (1)n∈N} ,

where the sequence (b(n))n∈N is de�ned by b(n) = pl(4n+ 1)− pl(4n+ 3). By de�nition,

the sequence (b(n))n∈N satis�es relations b(4n) = 1, b(4n + 1) = b(n) and b(4n + 2) =

b(4n+ 3) = 2. Les us de�ne matrices Γi by
(pl(4n+ i− 1))n∈N

(pl(4n+ i))n∈N

(pl(4n+ i+ 1))n∈N

(b(4n+ i))n∈N

(1)n∈N

 = Γi


(pl(n− 1))n∈N

(pl(n))n∈N

(pl(n+ 1))n∈N

(b(n))n∈N

(1)n∈N


for i = 0, 1, 2, 3. Using relations determined in Corollary 5.3 and Proposition 5.1, we have

pl(4n− 1) = pl(4(n− 1) + 3) = pl(n− 1)

pl(4n) = pl(n− 1) + 1

pl(4n+ 1) = b(n) + pl(4n+ 3) = b(n) + pl(n)

pl(4n+ 2) = pl(4n+ 3) + 1 = pl(n) + 1

pl(4n+ 3) = pl(n)

pl(4n+ 4) = pl(n) + 1
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So that the Γi can be determined as follows:

Γ0 =


1 0 0 0 0

1 0 0 0 1

0 1 0 1 0

0 0 0 0 1

0 0 0 0 1

Γ1 =


1 0 0 0 1

0 1 0 1 0

0 1 0 1 0

0 0 0 1 0

0 0 0 0 1



Γ2 =


0 1 0 1 0

0 1 0 0 1

0 1 0 0 0

0 0 0 0 2

0 0 0 0 1

Γ3 =


0 1 0 0 1

0 1 0 0 0

0 1 0 0 1

0 0 0 0 2

0 0 0 0 1



Proposition 5.3. Let k be a positive integer, then for any integer i = 0, 1, 2, ...15, pl(16k+

i) ≤ pl(16k − 1) + 3. As a consequence, lim sup pl(n) = 3 ln(n)
ln(16) .

Proof. Using Proposition 5.1 and Corollary 5.3, we have: pl(16k−1) = pl(16(k−1)+15) =

pl(k − 1), furthermore,

pl(16k) = pl(4k − 1) + 1 = pl(k − 1) + 1

pl(16k + 1) = pl(16k + 3) + 1 = pl(4k) + 1 = pl(k − 1) + 2

pl(16k + 2) = pl(16k + 3) + 1 = pl(k − 1) + 2

pl(16k + 3) = pl(4k) = pl(k − 1) + 1

pl(16k + 4) = pl(16k + 3) + 1 = pl(k − 1) + 2

pl(16k + 5) ≤ pl(16k + 4) + 1 ≤ pl(k − 1) + 3

pl(16k + 6) = pl(16k + 7) + 1 = pl(4k + 1) + 1 ≤ pl(4k) + 2 = pl(k − 1) + 3

pl(16k + 7) = pl(4k + 1) ≤ pl(k − 1) + 2

pl(16k + 8) = pl(4k + 1) ≤ pl(k − 1) + 2

pl(16k + 9) = pl(4k + 2) = pl(k) + 1 ≤ pl(k − 1) + 1

pl(16k + 10) = pl(16k + 11) + 1 = pl(4k + 2) + 1 = pl(k) + 2 ≤ pl(k − 1) + 3

pl(16k + 11) = pl(4k + 2) ≤ pl(k − 1) + 2

pl(16k + 12) = pl(4k + 2) + 1 ≤ pl(k − 1) + 3

pl(16k + 13) = pl(16k + 15) + 2 = pl(k) + 2 ≤ pl(k − 1) + 3

pl(16k + 14) = pl(16k + 15) + 1 = pl(k) + 1 ≤ pl(k − 1) + 2

pl(16k + 15) = pl(k) ≤ pl(k − 1) + 1.
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The �rst part of the statement is a straightforward consequence of above equations, fur-

thermore, we have lim sup pl(n) ≤ 3 ln(n)
ln(16) .

On the other hand, if we de�ne a sequence (k(i))i∈N by k(1) = 5, k(i+1) = k(i)×16+9,

then we can get easily pl(k(i)) = 3i. consequently lim sup pl(n) = 3 ln(n)
ln(16) .

Remark Lemma 5.7 and Proposition 5.1 are critical in the proof because they show the

importance of the hypothesis that fn(wn) 6= wn. Because of this hypothesis, we can

guarantee that the set C is closed under bijections (and their inverses) de�ned in Lemma

5.5, and do not have factors like aaaa in the sequence. So that we can apply some inductive

properties by saying that wa(0, 4k+4) and wb(0, k+1) share the �same� optimal palindromic

decomposition, which is the key point to make Proposition 5.1 work.

Corollary 5.4. pl(n) + 1 ≥ pl(n+ 1);

if there exists an integer n satisfying pl(n) + 2 = pl(n + 1) + 1 = pl(n + 2), then n ≡ 3

mod 4;

if pl(4k) = pl(4k + 3) then pl(4k + 1) = pl(4k + 2) = pl(4k + 3) + 1;

if pl(4k) = pl(4k + 1) then pl(4k) = pl(4k + 1) = pl(4k + 3) + 2.

Proof. The �rst statement is trivial because of a decomposition wa(0, n + 2) = wa(0, n +

1)an+1.

For the second statement, remarking the fact that pl(4k + 3) = pl(4k + 2) − 1, we

have either n ≡ 3 mod 4 or n + 3 ≡ 3 mod 4, but if we are in the last case, then

pl(n) + 2 = pl(n+ 2) = pl(n+ 3) + 1 so that pl(n+ 3) > pl(n) which contradicts Corollary

5.3.

For the last two statements, pl(4k) = pl(4k+3) implies that the last palindromic factor

in optimal decompositions of wa(0, 4k+4) is a4ka4k+1a4k+2a4k+3 which proves pl(4k+1) =

pl(4k+2) = pl(4k+3)+1. On the contrary, if pl(4k) = pl(4k+1) then pl(4k) 6= pl(4k+3),

so that the last palindromic factor in optimal decompositions of wa(0, 4k + 4) is of length

larger than 4, which leads to the fact pl(4k) = pl(4k + 1) = pl(4k + 3) + 2.

5.4 All sequences sharing (pl(n))n∈N

In this section, we are going to prove that all sequences sharing the same palindromic

length (pl(n))n∈N de�ned in the previous section are exactly the sequences in C.

Lemma 5.8. Let (bn)n∈N be a sequence such that all words wb(4k, 4) are of form xyyx,

then

1) if wb(a, b) is a palindromic word and b is odd, then b ≤ 3, furthermore, if b = 3, then
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a ≡ 3 or 0 mod 4.

2) if wb(a, b) is a palindromic word and b is even, then a+ b/2− 1 is odd.

Proof. It is analogous to Lemma 5.2 and Lemma 5.3.

Lemma 5.9. Let (bn)n∈N be a sequence such that its palindromic length sequence coincides

with (pl(n))n∈N, then all word wb(4k, 4) are of form xyyx with x 6= y.

Proof. We prove the statement by induction:

Firstly the statement holds for s = 0. Suppose that this statement is true for all s ≤ s0,
we will prove it for s = s0 + 1.

Let us consider a decomposition wb(0, 4s0 + 4) = p1p2...pr such that r = pl(4s0 + 4),

and let n denote the length of pr.

Firstly n can not be too small: if n < 4 then pl(4s0 + 3) = 1 +pl(4s0 + 3−n) > pl(4s0 + 3)

which contradicts Corollary 5.2.

Secondly, if n is odd then it can not be too large: if n = 2n0 + 1 and n0 > 4 then

wb(4s0 + 6− 2n0, 2n0 − 7) is a palindrome of odd size larger or equal to 3 and �nishing at

the position 4s0 − 1, which does not exist because of the Lemma 5.8.

Thirdly, if n is even and large enough: if n = 2n0 and n0 ≥ 4, then, because of Lemma

5.8, n is a multiple of 4 and wb(4s0 − 1, 4) is the inverse of some word xyyx.

So there are 5 other cases to study: n = 4, 5, 6, 7, 9.

When n = 4, wb(4s0, 4) is either of type xxxx or xyyx, and pl(4s0−1)+1 = pl(4s0+3),

if wb(4s0, 4) is of type xxxx then wb(0, 4s0 + 3) = wb(0, 4s0)xxxx so pl(4s0 + 2) ≤
pl(4s0 − 1) + 1 = pl(4s0 + 3), contradicting Corollary 5.2.

When n = 5 or 6, pl(4s0 + 3) = pl(4s0 + 3 − n) + 1 > pl(4s0 − 1) + 1, however,

pl(4s0 + 3) ≤ pl(4s0 − 1) + 1, contradiction.

When n = 7, pl(4s0 + 3) = pl(4s0 − 4) + 1 = pl(4s0 − 5) + 2. On the other hand,

pl(4s0 − 1) ≤ pl(4s0 − 5) + 1 and pl(4s0 + 3) ≤ pl(4s0 − 1) + 1, so

pl(4s0 + 3) = pl(4s0 − 1) + 1 = pl(4s0 − 5) + 2. (∗)

After Corollary 5.4, 4s0 − 4 ≡ 0 mod 16 and

pl(4s0 + 7) = pl(4s0 + 3) or pl(4s0 + 7) = pl(4s0 + 3)− 1 (∗∗).

If we write wb(0, 4s0 + 4) = wb(0, 4s0 − 4)abbaxabb let us consider the last palindromic

factor of wb(0, 4s0 + 8):
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1) The length can not be smaller than 4, otherwise pl(4s0+7) = pl(4s0+i)+1 > pl(4s0+7)

with 3 < i < 6, contradicting Corollary 5.3.

2) The length can not be 4, 5, 6, 7, otherwise pl(4s0 + 7) = pl(4s0 + i) + 1 with −1 < i ≤ 3,

but pl(4s0 + i) ≥ pl(4s0 + 3), so that pl(4s0 + 7) > pl(4s0 + 3) + 1, contradicting (∗∗).
3) The length can not be 8, otherwise wb(0, 4s0 + 8) = wb(0, 4s0 − 4)abbaxabbbbax and

pl(4s0+7) = pl(4s0−1)+1 = pl(4s0+3). But on the other hand, pl(4s0+4) = pl(4s0+3)+1

and pl(4s0 +6) = pl(4s0 +7)+1 = pl(4s0 +3)+1 because of Proposition 5.1; pl(4s0 +5) =

pl(4s0 + 3) + 1 because of the decomposition wb(0, 4s0 + 6) = wb(0, 4s0 + 4)bb so that

pl(4s0 + 4) = pl(4s0 + 5) = pl(4s0 + 6) which contradicts Corollary 5.4.

4) The length can not be 9, 10, otherwise pl(4s0 + 7) = pl(4s0 − i) + 1 with i = 2, 3, but

pl(4s0 − i) ≥ pl(4s0 − 1) + 1 so that pl(4s0 + 7) > pl(4s0 − 1) + 1 = pl(4s0) + 3, which

contradicts (∗∗).
5) The length can not be 11, 12, 13, 14, 16, 17, because the last factor can not be palin-

dromic.

6) The length can not be 15, otherwise, wb(0, 4s0 + 8) = wb(0, 4s0 − 8)cddcabbaxabbacdd,

with a 6= b, c 6= d. Let us check a decomposition wb(0, 4s0 + 5) = wb(0, 4s0 − 4)abbaxabba,

so that pl(4s0 + 4) ≤ pl(4s0 − 5) + 1, but pl(4s0 + 4) = pl(4s0 + 3) + 1 which implies

pl(4s0 + 3) ≤ pl(4s0 − 5), which contradicts (∗).
7) The length can not be an odd number larger than 15, otherwise, there is a palindromic

factor of odd size larger than 3 in wa(0, 4s0) �nishing at position 4s0 − 1, contradicting

Lemma 5.8.

8) The length can not be an even number larger than 14, otherwise, because of Lemma

5.8, the length is a multiple of 4, which implies the factor wa(4s0, 4) is the symmetrical of

some words wa(4x, 4), by hypothesis, it is of type abba but not xabb.

In conclusion, the last palindromic factor of wa(0, 4s0 + 4) can not be 7.

When n = 9, pl(4s0+3) = pl(4s0−6)+1 = pl(4s0−5)+2 ≥ pl(4s0−1)+1. On the other

hand, pl(4s0 + 3) ≤ pl(4s0− 1) + 1, so pl(4s0 + 3) = pl(4s0− 1) + 1; another observation is

that pl(4s0 + 2) ≤ pl(4s0− 5) + 1 because b4s0−4, b4s0−3, b4s0−2, b4s0−1, b4s0 , b4s0+1, b4s0+2 is

palindromic, but pl(4s0+2) = pl(4s0+3)+1 so pl(4s0+3)+2 ≤ pl(4s0−5)+2 = pl(4s0+3),

contradiction.

In conclusion, for all possible cases wb(4s0, 4) is of type xyyx.

Proposition 5.4. Let w be a �nite word of length 4k, such that its palindromic length

sequence coincides with a pre�x of (pl(n))n∈N, then w is a pre�x of a sequence in C.

Proof. Let us prove it by induction. The statement is trivially true when k = 0. Now

suppose the statement is true for k = s0, let us consider the case k = s0 + 1:
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Remarking that Lemma 5.2, 5.3, 5.4, 5.5 work under the weaker condition on sequences

announced in previous proposition, we can apply the same arguments to prove each pre�x

of w of length 4k admits an optimal palindromic decomposition of type p1p2..pr such that

the length of all this factors are multiples of 4. Using Lemma 5.7 there is another alphabet

Σ1 and a bijection f : Σ4 → Σ1 such that f(w) is still a word which palindromic length

sequence coincides with a pre�x of (pl(n))n∈N, however the length of f(w) is 4s0 , using the

hypothesis of induction, it is a pre�x of a sequence in C, so w is also a pre�x of a sequence

in C, by applying the inverse of f .

Theorem 5.1. All sequences such that their palindromic length sequences coincide with

the one of Thue-Morse's are in C.
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