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Résumé

Cette these est consacrée a ’étude des propriétés des suites automatiques. Cette derniére
est une notion premiérement introduite et étudiée par les mathématiciens et les informati-
ciens théoriciens en combinatoire, notamment en théories des langages, mais elle a aussi des
applications intéressantes en théorie des nombres. Dans cette thése, on travaille sur quatre

sujets concernant les aspects mathématiques et informatiques, liés aux suites automatiques.

Dans le Chapitre 1, on doune une introduction aux suites automatiques ainsi que
des résultats récents autour de ce sujet. Dans le Chapitre 2, on étudie le prolongement

méromorphe des séries de Dirichlet du type

= pf;)s

rzENF

sur C, avec (az),cn+ Une suite automatique de dimension k, et p un polynéme elliptique qui
ne s’annule pas sur N*. Et aussi, des produits infinis sont calculés comme conséquences
de ce résultat. Dans le Chapitre 3, on trouve une expression explicite pour toute suite
automatique complétement multiplicative. Dans le Chapitre 4, on considére les séries

formelles définies par des produits infinis du type,

00 oo )
Zanmn = Hp(qu)
n=1 =1

avec p un polynome a coefficients dans Q et p(0) = 1, et ¢ un entier plus grand que 1.
On démontre que pour q et d fixés, il n’y a qu’un nombre fini des polynémes de dégrée au
plus d tel que la série infinie obtenue par la définition précédente soit g-automatique. Dans
le Chapitre 5, on étudie la longueur palindromique des suites automatiques, et on trouve

toute les suites ayant la méme longueur palindromique que celle de Thue-Morse.



Mots-clés

Suites automatiques, Fonctions complétement multiplicatives, Fonction Mahlérienne, Longueur

palindromique.



Abstract

In this thesis we are interested in automatic sequences, which is a notion introduced and
initially studied by combinatorists, and by people working on language theory. Meanwhile
these sequences also appear to have some interesting properties in number theory. In this
thesis, we deal with some topics in mathematics and computer science, related to automatic
sequences.

In Chapter 1, we give an introduction to automatic sequences and a brief overview of
recent works on related topics. In Chapter 2, we study the meromorphic continuation of

Dirichlet series of type

6= 3 5
zENF
over C, where (a;),ent 1S an automatic sequence of dimension k, and p is an elliptic poly-
nomial non-vanishing over N*. And some infinite products are calculated as consequences
of this result. In Chapter 3, we give a formal expression to all completely multiplica-
tive automatic sequences. In Chapter 4, we study formal powers series defined by infinite

products of type
o0 (o] .
Z apx" = Hp(xq")
n=1 i=1

where p is a polynomial with coefficients over Q and p(0) = 1, and ¢ is an integer larger than
1. We prove that for given integer d, there are finitely many polynomials of degree d such
that the sequence defined as above is automatic. In Chapter 5, we study the palindromic
length of automatic sequences and find all sequences having the same palindromic length

as the one of Thue-Morse.

Keywords

Automatic sequences, completely multiplicative functions, Mahler functions, Palindromic

length.






Chapter 0

This thesis consists of 5 chapters following this one. The last four chapter correspondent

to four articles that are either on the ArXiv or submitted (or both).
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Chapter 1

Introduction to automatic sequences

Introduction to automatic sequences

Sequence is a fundamental notion in mathematics. To describe a sequence, apart from
listing all elements one by one, we may want to find some relations between its elements.
Periodic sequences are good examples in this case, as they are highly ordered and easy to
describe. While there are other sequences which are more complicated but still preserve
relations between elements, they may be called as “programmable sequences”. In this thesis
we study a specific type of programmable sequences, called automatic sequences.

Automatic sequences can be defined by a finite automaton, which is a notion from
language theory. However, there are some equivalent definitions from other branches of
mathematics such as combinatorics as well as number theory. In the first section, we will
present the related definitions of automatic sequences and applications in each field, and
show how automaticity can be used to build a link between two different fields.

At the end of each sub-section of this chapter we introduce some new results obtained
by the author. All these results are based, directly or indirectly, but strongly, on the
mechanism of substitutions (of words, functions or matrices..). It is this mechanism that
gives automatic sequences a complex but computational structure, which allows us to find

formal expressions for some “disordered” phenomena.

1.1 First definition and applications in number theory

In this section we will introduce one of the definitions of automatic sequences and show

why this kind of sequences are interesting in number theory.

Definition A sequence (a,)nen is called k-automatic if and only if the set

Ker((annen) = { (@ i)nenll € N0 < i < K}

13



14 CHAPITRE 1

is finite. This set will be called the k-kernel of the sequence (a,)neN-

Example Let us consider a sequence defined in such way: we begin with a word of one
letter 1, next step we change the letter 1 to the string 10, in the third step we change 1 to
10 and 0 to 01... At each step we change 1 to 10 and 0 to 01 letter by letter so that we

obtain an infinite sequence. The process is presented as follows:

1

10

1001

10010110
1001011001101001...

At the end we get a sequence like
10010110011010010110...

This sequence is called the Thue-Morse sequence, and it is easy to show that this sequence

is 2-automatic. In fact, we have the following relations:
a2p = Qp

a1 =1—ap

for allm > 0. If we let (ap,)nen denote the Thue-Morse sequence, the kernel of this sequence

is Ker((an)nen) = {(@2n+1)neN, (an)nen}

Example Another example is the Rudin-Shapiro sequence, which can be defined by the
number of the factors 11 in the binary expansion of n: the sequence (g(n))nen satisfies

the relation

for each n, where as 11(n) counts the number of 11 in the binary expansion of n. The first

terms of the Rudin-Shapiro sequence are
1,41, 41, —1,+1, 41, =1, +1,+1, 41,41, -1, -1, 1,41, -1, ...
Because of the definition, (g(n)),en satisfies the following recurrence:
g2n+1) = (~1)"g(n)

9(2n) = g(n).
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So the 2-kernel of this sequence is

Ker(g(n)nen) = {=9(n)nen, g(n)nen; (=1)"g(n)nen, (=1)" g(n)nen} -

1.1.1 Infinite products and Dirichlet series

Thanks to the finiteness of the k-kernel, there are several infinite sums or products as-
sociated with a k-automatic sequence presenting interesting properties. One of the most

famous results about automatic sequences is the Woods-Robbins product identity [44] [37],

1\ (DO o\ (F1)0 D ey (<)@ .
G G 6 -
2 4 6

where (a(m))men is the Thue-Morse sequence. This result can be obtained and generalized

n+a
n—+b

which is written as:

by evaluating a function of two variables defined by f(a,b) = [],>;( YED at some

rational points, and using the finiteness of Ker((an))neN-

z z+1
Theorem 1.1. ([3]) Let us define g(x) = f(gj’_,?) then we have
_ 9
(L+2)g(x) = =2 # —1,-2,-3...
9(*37)

Corollary 1.1.

OG5 -

w50 dn+3 2

[ (2o tn+ DY
(2n+1)(4n — 1) B

n>1

For more results see [3]. However, the W-R identity can also be obtained by considering
the associated Dirichlet series:
anp,
Fs) =) s
= (n+1)8
and calculating the derivative at 0. Before doing this, let us introduce an important

theorem on general automatic Dirichlet series:

Theorem 1.2. (/2]) Let (an)n>0 be an automatic sequence with values in C. Then the

Dirichlet series

r;) (n+1)s ngl (n)s

have meromorphic continuations to the whole complex plane, whose poles (if any) are lo-

cated on a finite number of left semi-lattices.
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As a consequence, if we can calculate the derivative of those functions on some points
over their convergence domain, then we can build some equalities between an infinite

product and a real number.

Corollary 1.2. Let g, be two integers larger then 1, and let (sq(m))men and (uj(m))men

be sequences defined respectively as

54(0) =0

sq(gm+a) = sq(m) +a,0<a<qg—1,

(m) r—1 ifsq(m)=j modr
wi(m) =
’ -1 otherwise.

Then we have the equality

) m+1 u;(m) ' .,
1 <q[m/q1+1> =g,

m=0

where [a] represents the largest integer smaller than a. In particular, taking ¢ =r = 2 and
7 =0, we have the W-R identity.

The Chapter 2 of this thesis aims to generalize this result to multi-index automatic

sequences, a notion generalized from Definition 1 and studied in [40].

Definition We let z denote an n-tuple (x1, x3...x,) and let d > 2 be an integer. A sequence
(an)n>0 with values in the set A is called d—automatic if and only if its d—kernel Ny(a) is

finite, where the d—kernel of the sequence(az)z>0 is the set of subsequences defined by

Nala) = {(m1,m3.10) ¥ @i, 1y @t tim,st,y 2 0,(0) S LS (@ = 1)}

Remarking that constant sequences are a kind of particular automatic sequences, the
M1, K2 K1
n1 TL2 ...TLI -
n1na.np)ENT plnimarnni)® have been largely studied,

where (p1, po,...u1) € Nfr and p is a [-variable function. R.H. Mellin [34] firstly proved

Dirichlet sequences in the form >

in 1900 that the functions above have a meromorphic continuation to the whole complex
plane when p; = 0 for all indexes 7, then K. Mahler [32] generalized the result to the case
that p; are arbitrary positive integers when the polynomial satisfies the elliptic condition
in 1927. In 1987, P. Sargos [41] proved that the condition “lim [p(n1,ns...n;)| — oo when
|(n1,n2...n7)| — oo and p is non-degenerate” is sufficient for these Dirichlet sequences to
have a meromorphic continuation. In 1997, D. Essouabri [20] generalized the condition to
a;%g) = O(1),Yu € Z"}. In Chapter 2 the author finds a sufficient condition for

ag [T, =t . . . .
the sequences ) nn % to have a meromorphic continuation over C. The main

the case,

result is announced as follows:
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Theorem 1.3. Let p be an elliptic polynomial of n variables and (az)z>0 be g-automatic,
az [17—y xfz
p(z)®
gence o such that it converges absolutely on the half-plane R(s) > o and has a meromorphic

then for a given n-tuple u, the function Z(z)eNi admits an abscissa of conver-
continuation on the whole complex plane. Furthermore, the poles of this function (if any)

are located on a finite number of left semi-lattices.

1.1.2 Automatic power series

Another application of the finiteness of the k-kernel is to build links between automatic

power series and functional equations.

Definition Let ano anx” be a formal power series defined over a field F. We say it is

automatic if the sequence of its coefficients is automatic.

It is proved that all automatic power sequences over an arbitrary field satisfy a func-

tional equation.

Theorem 1.4. ([4]) let f € F((x)) be a k-automalic power series, then there exist poly-
nomials aog(z),a1(x), ..., am(x) € Flx] with ag(z)am(x) # 0 such that

We may ask the reversal question: given a functional equation, what does the solution
look like? This question has been widely studied in [12] [17] [11] [16]. In [12] G. Christol
answered this question for power sequences defined over a finite field: he proved that there
is an equivalence between being a solution of such a functional equation and being an

automatic power series.

Definition Let F be any field. We say that a formal power series f(z) € F((z)) is algebraic
if it is algebraic over F(x), that is, if there exist d € N and polynomials a;(z) € F[z] for
i =0,...,d, such that a4(x) # 0 and

d
ai(z)f(z)" = 0.

i=0

Theorem 1.5. ([12]) Let F, be a finite field of characteristic p. A formal power series

f(x) =2 50 anz™ € F((x)) is algebraic over the rational function field Fq(x) if and only

if the sequence of its coefficients is q-automatic.

However, things are going to be complicated for an arbitrary field, namely for R or C,

even though the simplest equation does not lead to general conclusions:
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where p is a polynomial. It is known that coefficients of solutions of above functional
equation satisfy a more complicated structure, but it is still unknown if there are some
restrictions on p to make the solutions to be automatic. P. Dumas studied asymptotic
properties of coefficients of solutions of above equation [17], S. Checcoli and J. Roques
found all polynomials of low degree such that the power series f defined by the above

functional equations are automatic [11].

Definition Let (a(n)),>0 be a sequence defined over a field F, it is called k-regular if the
F-module generated by

Ker((an)nen) = {(aklw)neNu eEN,0<i< kl}

is a finitely-generated F-module. A formal power series f(z) € F((x)) is called regular if

the sequence of its coefficients is regular.

Theorem 1.6. (/17]) Let k be an integer larger then 1 and p(x) € F[z|, then all power
sequences f(x) =3, 5oanx™ € F(()) satisfying equation

are k-reqular.

In Chapter 3 the author finds some properties of automatic power sequence f(x) defined

over Q satisfying the equation above. Main results are as follows:

Theorem 1.7. For given integers q > 2 and d > 0, there exist finitely many polynomials
of degree d defined over the field of rational numbers Q, say p1(x), pa(z), ...px(x), such that
[1220pi(x) = 3252, cia® is a g-automatic power series for j: 1 < j < k.

1

Theorem 1.8. If the power series F(z) = [[o2) vram = Yooep Gix" is g-reqular, then there

f(x9®)
]%(‘Zq)), Furthermore F(x) can be written as

exists a polynomial Q(x) such that f(x)

F(z) = Qz) [[ R(zY),
=1

where R(z) = % is a polynomial.

1.2 Automatic sequence and language theory

In this section, we will give a definition of automatic sequence using the notion of automa-

ton. To do so, let us give firstly a definition of a finite automaton:

Definition Let a (finite) alphabet Y to be a (finite) set of elements, we say a word a over

> if a is a string of elements in ), in particuler the empty word is a word over all >, let
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us denote by > the set of words over >_. We say that L is a language over > if L is a
subset of >_*.

Definition A deterministic finite automaton, or DFA, M is defined to be a 5-tuple M =
(Q,%, 6,40, F)

where

Q is a finite set of states,

> is the finite input alphabet,

d: Qx> — Qis the transition function,

qo € Q is the initial state, and

F C @Q is the set of accepting states.

A k-automatic sequence can be defined as an output of a k-deterministic finite automa-
ton with output, which is denoted by k-DFAQ. Comparing with a DFA, a DFAO is defined
to be a 6-tuple M = (Q,>;,0,q0,A, 7). Where Q,> ., qo are defined as they were in
the previous definition, >, = {0,1,2,...,k — 1}, A is the output alphabet, and 7: Q — A
is the output function. Such a machine M defines a function from > to A, which we
denote as fM(w), as follows: fM(w) = 7(0(q0,w)).

Definition We say the sequence (ay),enN over a finite alphabet A is k-automatic if there
exists a k-DFAO M = (Q,),,0,q0, A, 7) such that a, = 7(0(qo,w)) for all n > 0 and all

w with [w]p = n, where [w] represents the number whose expansion in base k is w.

It is easy to see that there is a natural equivalence between this definition and the one

presented in Section 1. Here we redefine the two examples in the previous section.

Example The DFAO of the Thue-Morse sequence is as follows:

1 1
0

The DFAO of the Rudin-Shapiro sequence is as follows:

0 1
1 1 1
0 0 0

Remarking that in language theory, there is another notion related to automaton, called

regular languages.
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Definition The set of regular languages over an alphabet ) is defined recursively as
follows:

a) The empty language and the set of empty word are regular languages.

b) For each element a € ), the language {a} is a regular language.

c¢) If A and B are regular languages, then the union, the concatenation and the free monoid
generated by one of them are regular languages.

d) No other languages over »_ are regular.

Theorem 1.9. (see,e.g.,[5]) A language is accepted by a DFA if and only if it is a regular

language.

Theorem 1.10. (see,e.g.,[5]) Let M = (Q,) ;. 9,90, A, T) be a k-DFAO,then for alld € A
the set Id(M) ={w € 3" : 7(6(qo,w)) = d} is a regular language.

As we can see, there is a strong relation between automatic sequences and regular
languages, we may expect to use combinatorial properties of regular languages to prove
some asymptotic properties of automatic sequences. Let us firstly recall some notion of

densities used to study asymptotic properties of sequences:

Definition Let E be a subset of the integers. We say that the set E has an asymptotic

density or a natural density d if the limit

1
d= lim —f{n<ax;ne E}

T—00 I

exists.

We say that the set E has a logarithmic density ¢ if the limit

. 1 1
0= xlggo log Z n

n<x,nckl

exists.

We say that the set E has an analytic density § if the limit

§ = lim (s—1) Z is

s—1
* n>1,nek

exists. We call these limits respectively asymptotic density, logarithmic density and ana-

lytic density.

Theorem 1.11. (/2]) The existence of asymptotic density implies the existence of loga-
rithmic density, and their values coincide;
The existence of logarithmic density is equivalent to the existence of analytic density, and

their values coincide.
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Theorem 1.12. (see,e.g.,[5]) Let L C >.° be a regular language. Then there exists a
constant n > 1 such that for all words z € L with length larger then n, there exists a
decomposition z = uvw, where u,v,w € >.* and v is non-empty such that uvv'w € L for all

1 > 0. Furthermore, the constant n can be taken to be the number of states in the minimal
DFA for L.

This theorem is called pumping lemma, what it is saying is that if a word is long enough,
then there must be some loops on the chain from the initial state to some acceptable state,
so that all words obtained by repeating finitely many times one of the loops are also

acceptable.

D@

If we apply the same idea to study the asymptotic property of an automatic sequence

then we have the following property

Theorem 1.13. (/42]) Let (an)nenbe a k-automatic sequence and q be the number of
states of a direct automaton generating (an)neN then for any m,y € N. We have equality
between the sets {an|mk? <n < (m+ 1)k?} = {a,/mk¥? < n < (m+1)k¥e'}.

As a consequence,

Corollary 1.3. Let (ap)nen be an automatic sequence, then there exists a integer k such
that for all couple of integers r,s such that r > k,s > 0, if there is some a, not in the set
{an|s < n < s+r}, then either the element a,, does not have an asymptotic density or its

density is 0.

We remark that Theorem 1.13 is not announced as this form in [42], but it is an
intermediate result of the proof of Theorem 1 in [42], for which the hypothesis of complete
multiplicativity is not necessary. For more details, see Lemma 3, Theorem 1 in [42] and

Proposition 3.1 in Chapter 3.

1.3 Substitution and complexity

The definition of Thue-Morse sequence presented in Section 1 can be reformulated by using
a monoid endomorphism. Let ¢ be a monoid endomorphism of the set {0,1}* such that
#»(0) =01 and ¢(1) = 10, then
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So that the Thue-Morse sequence can be defined as lim,, o, ¢™(1) which exists. Let us
denote this limit by ¢*°(1).

Definition Let Y be an alphabet and k be a positive integer, A k-substitution is an
endomorphism of Y " such that the image of each letter in >_ is of length k.

So the morphism ¢ defined as above is a 2-substitution.

For the Rudin-Shapiro sequence, there is a 2-substitution over an alphabet of 4 elements
{A, B,C, D} such that

s(A)=AB
s(B) = AC
s(C)=DB
s(D) = DC

So s*°(A) = ABACABDBABACDCAC..., then the Rudin-Shapiro sequence is ob-
tained by replacing A, B by 1 and C, D by —1.

Theorem 1.14. (Cobham [19]) Let k be a positive integer and (a(n))n>0 be a sequence.
The following conditions are equivalent:

a) The sequence (a(n))p>0 s k-automatic.

b) The k-kernel of (a(n))n>o is finite.

¢) The sequence (a(n))n>0 is the pointwise image of a fized point of a k-substitution.

Now let us show how this kind of sequences are classified between “ordered” and totally
disordered. To do so, we have to measure the “complexity" of a sequence. Here we introduce

some different measures of the complexity of an infinite sequence.

Definition Let u be an infinite sequence of symbols from an alphabet . We define the

subword complexity p,(n) of u to be the number of different words of length n in w.

This definition is the one most used in complexity analysis, however some other com-

plexities can be defined such as: Let u be an infinite sequence of symbols from an alphabet

3

Definition We define the square complexity pd,(n) of u to be the number of different
words of type aa of length n in u, where a € Y.

Definition We define the cube complexity pt,(n) of u to be the number of different words
of type aaa of length n in u, where a € >_".

Definition We define the palindromic complexity pp,(n) of u to be the number of different
words a of length n in u, such that a equals to its reverse, i.e., a = ToT1T2...Tp_1TETE_1-.-L2L1X0

or a =xror112...Lk-1TpLpTl—1...2L12(Q-
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Definition We define the palindromic length complexity pl,(n) to be the minimal number

of decomposition in palindromic words of the prefix of u of size n, i.e.,

ply(n) = min {k|uguiug...uy, = p1p2...pE; p; are palindromic words} .
The subword complexity varies from a constant to exponential:

Example The subword complexity of a constant sequence is constant;
The subword complexity of an ultimately periodic sequence is bounded;

The subword complexity of the Barbier infinite word
B =123456789101112131415161718192021...

which is the infinite concatenation of the decimal expansions of the positive integers written

in increasing order, is exponential: pg(n) = 10" for all n > 0.

Theorem 1.15. (see,e.q.,[5]) Almost all sequences w over a finite alphabet Y satisfy
pw(n) =|>|" for all n > 0.

Theorem 1.16. (Cobham [13]) If w is an automatic sequence, then p,(n) = O(n) for all
n > 0.

The last two theorems show the distinction between automatic sequences and random

sequences. Here let us consider the Thue-Morse sequences as example:

Theorem 1.17. (/31/,[10],/36],/39],[9]) The Thue-Morse sequences (a(n))n>o0 satisfies

a) pa(n) < 4n for all mn > 0,

b) all squares in (a(n))n>0 are of the form ¢*(00), ¢*(11), ¢*(010010), or ¢*(101101) for
some k >0, as a consequence, pd,(n) < 4n for all n > 0,

¢) (a(n))n>0 is an overlap-free sequence, i.c., it does not contain any words of type ababa
with a € Y.,b € Y., consequently pty(n) =0 for all n >0,

d) ppa(n) is 0,2 or 4.

In Chapter 5, the author studies the palindromic length complexity of Thue-Morse
sequence and find all sequences which have the same palindromic length complexity as

Thue-Morse’s. The main result is as follows:

Theorem 1.18. Let us define a class of infinite sequences C as follows:

Let " be an alphabet which contains at least two letters and let a € ).

Let F be the set of bijections over ) .

Let (fn)nen be a sequence over F' and (wy)neN be a sequence of finite words over Y, which

are defined recursively as:

fi € F such that f;(w;) # w; Vi > 0,
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and
wy = a

Wp = wnflfnfl(wnfl)fnfl(wnfl)wnflavn > 0.

Then all sequences in C share the same palindromic length complexity.

1.4 Completely multiplicative functions

Definition A function f: N — G, where G is a group, is called completely multiplicative
if f(nm) = f(n)f(m). It is called multiplicative if f(nm) = f(n)f(m) V(n,m) such that

(n,m) = 1.

The motivation is to study the completely multiplicative automatic functions, and answer

the two conjectures proposed respectively in [28] and [1].

Conjecture 1.1. For any multiplicative q-automatic function f : N — C there exists an

eventually periodic function g : N — C such that f(p) = g(p) for all primes p.

Definition Let f: N — G be completely multiplicative, we call f as a mock character if
there are only finitely many primes p such that f(p) = 0.

Let f and g be two completely multiplicative functions and y be a positive integer, we define

1-R(f(p)g(p))

a distance D( ., . ;) between these functions as D?(f, g;y) = > p<ypep ;

Conjecture 1.2. For any mock character k, there exists a Dirichlet character x such that
D(k, x,y) is bounded. Conversely, if k : Z — U is completely multiplicative and a bounded
distance from some Dirichlet character, then k must be a mock character. where U 1is the

complex unit disc.

This topic has been studied in [42] [1] |27] [30]. In article 42|, the author proved that
non-vanishing completely multiplicative automatic sequences are almost periodic (defined
in [42]). In article [1], the authors gave a formal expression to all sequences in the non-
vanishing case and also some examples in the vanishing case. In article [27], Y. Hu studied
completely multiplicative sequences in general and extended the results under a weaker
condition. Here we prove that completely multiplicative automatic sequences are rare and
have the same expression as the one in [1]. To do so, let us begin by reviewing some
asymptotic properties of (completely) multiplicative functions.

Let G be a group and let f: N — G be a function. It was proved by 1. Z. Ruzsa |38§]
that, if G is an Abelian group and f is a multiplicative function, then all elements in G

have a nature density.
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Theorem 1.19. (/38]) Let G be an Abelian group and f a multiplicative function over G,
let

1
E=<glg€q, Z - =00
f(p)=g,peP

where P is the set of primes and G1 the subgroup of G generated by E. If

1
Gi|l <00, Y = <o0
s

then d(g) > 0 for all g € Imf and the value depends only on the coset hGy in which g lies,
otherwise d(g) = 0.

This theorem can be extended to the case GU{0} with restriction that »_ ;g % < 00
and f is completely multiplicative. A similar topic has also been studied by P. Erdés and
A. Wintner. In [19] Erdds conjectured that if f evaluates over {1, —1}, then the mean

N .
value M (f) = limy_ 00 M exists. H. Delange [15] proved this for all real-evaluated

multiplicative functions, under the condition that 3 p l_ﬁ(p) <ooand [f(n)] < 1. In
which case M (f) # 0 unless f(2%) = —1 for every k € N. After that E. Wirsing [43] proved

that if the previous series diverges, then M(f) = 0. And these results were extended to

complex valued multiplicative functions by G. Halasz [26].

To study the subword complexity of f, it may be useful to check also the density
of words of arbitrary length. It is conjectured by Elliott [18] that if the multiplicative
functions f1, f2, ... f; defined over U are aperiodic, then for all distinct integers ny,na, ...n;

we have

Nninm% D folm) im ). film ) = 0,

What we mean by aperiodic sequences are those sequences f satisfying M (f(ax + b)) =
0 for all couple of positive integers a,b. As a consequence, the subword complexity of
aperiodic function over a finite alphabet is exponential. This conjecture was proved by N.

Frantzikinakis [21] with a stronger hypothesis:

Theorem 1.20. (/21]) Let p1, ..., p; be linearly independent polynomials over Z and fi, fa, ...fi
be multiplicative functions over U, at least one of which is strongly aperiodic. Then there

exists a sequence of intervals (My)gen with My — oo such that

n—oo

My,
UD = lim 5 folm) fi(m + pa()-w il + () = .
m=1

We write UD — limy,_,o0 a(n) = ¢, if for every € > 0 the set n € N : |a(n) — ¢| > € has
uniform density 0. A multiplicative function f is called strongly aperiodic if

miny, <y D(f.x, nit; N) — 0o as n — oo for every Dirichlet character x.
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With the same assumption of strongly aperiodic and dynamical analysis, the same
author proves that the non-zero mean value in logarithm density implies the upper linear

growth of subword complexity.

Theorem 1.21. (/22]) If the multiplicative function f : N — U has finite range, is strongly
aperiodic, and does not converge to zero in logarithmic density, then lim, &:) = 00,

where p(n) is the subword complexity of f of length n.

Another result from dynamical analysis was obtained by M. Lemariczyk and C. Miillner
[30] in which they consider an automatic sequence defined by primitive uniform substitu-

tion.

Theorem 1.22. (/30]) Let ¢ be a primitive substitution of constant length k. Then the
numerical automatic sequence (an)neN generated by infinite substitutions of an initial letter
x 1s orthogonal to any bounded, aperiodic, multiplicative function f : N — C i.e., if

(an)neN = limy, 00 6™ (), then

1
lim — > a;f(i) = 0.
nl_{goni<naf(l)

As we can see, most of completely multiplicative functions are aperiodic. So their
subword complexities are larger than linear, while the subword complexities of automatic
sequences are bounded by linear functions. As a consequence, the intersection of these
two classes of sequences should be rare. The main result introduced in Chapter 3 is a

classification of all completely multiplicative automatic sequences.

Theorem 1.23. Lel (an)nen be a CMAS; then, it can be written in the following form:
-either there is at most one prime p such that a, # 0 and aqg = 0 for all other primes q

-oT Ay, = e”P(")X(W)y where (X (n))nen is a Dirichlet character.



Chapter 2

(zeneralized Dirichlet series of n
variables associated with automatic

sequences

2.1 Introduction

The propose of this article is to give a sufficient condition for the meromorphic continuation
of Dirichlet series of form ZEEN’i %, where (a£)§€N1 is a g-automatic sequence
of n parameters, u; € Zy and P : N® — R a polynomial, such that P does not have
zeros in Q'f. Some specific cases for n = 1 are studied in this article as examples to
show the possibility to have an holomorphic continuity on the whole complex plane. Some
equivalences between infinite products are also built as consequences of these results. The

e}

Dirichlet sequences of the form ) ° ; %2 have been studied in 2], and our work is a natural

=1 ns
generalization of the results in the above article by using the same method of calculations.

2.2 Notation, definitions and basic properties of automatic

sequences

Here we define some notation used in this article. We let z denote an n-tuple (z1, z3...xy).
We say z > y (resp. z > y) if and only if z —y € Rl (resp. z —y € R'}), and we
have an analogue definition for the symbol < (resp. <). We let 2% denote the n-tuple
(i, 2h?...2h™). For a constant ¢, we let ¢ denote the tuple (c,c...c) and for two tuples z
and y, we let < z,y > denote the real number > ", z;9;. For an n-tuple (x1,z2...z,), we

let || ||¢ denote the norm d and let || || or || ||2 denote the norm 2.

Definition Let ¢ > 2 be an integer. A sequence (ag)z>p with values in the set A is
called g-automatic if and only if its g-kernel Ny ((az)z>0) is finite, where the g-kernel of the

27
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sequence (az)z>0 is the set of subsequences defined by

Nq((“z)gzg) = {(m17m2--~mn) = Q(ghmy+1,¢Fma+a,....g* M +in) k>0,(0)<l< (qk - 1)} :

Remark A g¢-automatic sequence necessarily takes finitely many values. Hence we can

assume that the set A is finite.

Because of the definition of g-automatic with n variables, there are some basic proper-

ties.

Theorem 2.1. Let ¢ > 2 be an integer and (az)z>0 be a sequence with values in A. Then,
the following properties are equivalent:

(i) The sequence (az)g>0 is q-automatic

(ii) There exists an integer t > 1 and a set of t sequences N' = {(a})z>0, -, (a})z>0})
such that

- the sequence (a})y>0 is equal to the sequence (ag)y>0

- the set N is closed under the maps (a;)z>0 — (agz+y)z>o for 0<y <gq—1

(iii) There exist an integer t > 1 and a sequence (Ay)z>o with values in A', that we
denote as a column vector, as (A11.1,A21.1,A12.1...A11.2,A22. 1...)". There exist ¢"
matrices of size t X t, say M11..1,M12..1...Myq.q , with the property that each row of each
M; has exactly one entry equal to 1, and the other t — 1 entries equal to 0, such that:

- the first component of the vector (Az)z>0 s the sequence (az)z>0

- for each y such that 0 <y < q — 1, the equality Agziy = MyA, holds.
Proof. Tt is a natural consequence of the finiteness of the set N, see for example [40]. O

Proposition 2.1. Let (az)z>0 be a g-automatic sequence and (by)g>0 be a periodic sequence
of period c. Then the sequence (ag X by)z>0 5 also q-automatic and its g-kernel can
be completed in such a way that all transition matrices of the maps (ag X by)g>0 —
(Gggty X bgzty)z>0 On the new set are independent on the choice of the values taken by the

sequence (by)z>0-

Proof. As (agz)z>0 is a g-automatic sequence, we let

N, {(ag))gzg, (a(g))gzg, s (ag))gzg} denote its g-kernel. The sequence (bg)z>0 is a peri-
odic sequence, thus it is also an g-automatic sequence, we let N : {(bg))gzg, (b(;))gzg, oy (by
denote the g-kernel of (b;)z>0. As both of the g-kernel are finite, we can conclude that the

set of Cartesian product of these two above sets is finite:
Ny : {(ag> X b)) y0l0 <0 < 1,0 < j < s}

which is the g-kernel of the sequence (az X bz)z>0-

(,))zzg}
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To the completion, we remark that there is a onto map from N} to N, where N is the
g-kernel of the periodic sequence (I;)z>0 defined by

Ity mo,.imn) = (Y1,Y2y -y Yn) where y; =m; mod c,1<i<n
and the map is defined as

Ny = No : (Ig)z>0 = (br,)z>0-

So it is enough to work on the finite set Ny x Ny. O

Let us consider the Dirichlet series f(s) = Z;eNn/Q p(aTE)S, Where a; is g-automatic, a
necessary condition of the convergence of such series is that |p(z)| — oo when ||z|| — oo,
here we want to find a sufficient condition.

An achievable assumption for f(s) to be meromorphic is that the polynomial p is
elliptic, which means that, if the degree of p is d then the homogeneous polynomial py(x)

of p(z) satisfies the condition

pa(z) > 0, Yz € [0, 00["\ {(0,0,...0)}.

Before announcing the main theorem, we would like to study some properties of elliptic

polynomials:

Lemma 2.1. Let (r1,r2,..,my) be a vector on ZT) such that ;" r; < d and x € R, then:

71 ,.72 Tn
T Ty ... Ty _ O(HxHZ?:l m*d)7 when HxH — Q.

>y
Proof. 1t is enough to see the following inequality:

n Ti

1 1 1 L
E = E ri—zf = E E —af > (l | ) T
, , Ti — =T Ty
=1 =1 i=1 j=1 =1t
which is from the inequality of arithmetic and geometric means. With the assumption
. a2 gin . " ori—d
S, 1 < dand the equivalences between norms, we conclude 901557;; <TTim vl |dz“1 =
=11

(9(Haz|]2?:1”_d), when ||z|| — oo. O

Lemma 2.2. If a polynomial p is elliptic of degree d and pg is the homogeneous polynomial

of degree d of p, then:
d

(i) all coefficients of terms x$, 24, ..., x4

are positive;

(1) pg(z) — oo when ||z|| — oco;

(iii) there exists a positive number o such that Yz € [0,00["\{(0,0,...0)}, pl(z) =
pa(z) — a3, o > 0;

(iv) p(z) — oo when ||x|| — oo,
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v) there exists a positive number o such that p'(z) = p(z) — o a: — 00 when
(v) —1

l|z|| = oo.

Proof. Assertion (i) is straightforward by evaluating the function at
(1,0,...,0),(0,1,...,0), ..., (0,0, ..., 1).

For (ii), let us consider the set

{pa(z)[vz € [0,00["\ {(0,0,...0)}, |lz]la = 1} ,

this set is closed because of closed map lemma and every element inside is larger then 0,
so that such a set admits a non-zero infimum, let us denote it by €. Then for an arbitrary
x, we have

E4 d
) > |lz|[ge.

pa(z) = [|zl|3pa(
[/l

IR

For (iii), Setting
n
€
Pa@) = pa(z) = 5 > af,
=1

it is easy to check p)j(z) > ||z]|9e—§ >0 2 > 0,V € [0, 00["\ {(0,0,...0)} and ||z|[s = 1,
then it follows that

Ph(a) = ||z|PLL)

Zl|q l|z|9p) (=) > 0,
|||

HwH

for all z in the set [0, co[™\ {(0,0,...0)}.

For (iv) it is enough to point out that each monomial of degree smaller then d can be
bounded above by a term of the form a ;" | «f 4 hecause of Lemma 1, and conclude by
(iii).

(v) is a direct consequence of (iii) and (iv).

O

Lemma 2.3. Let P be an elliptic polynomial of degree d and let p be a polynomial with
a degree smaller than d, then there exists un integer C' such that for all n-tuples v € N’}
with < z,1 >> C,

Proof. Let us consider the polynomial ¢ defined by ¢ = P21 — p??. We can check that ¢
is of degree 2d? — d and its homogeneous polynomial is uniquely defined by the one of P,
which is from the fact that the degree of p>? is at most 2d?> — 2d. So that ¢ is an elliptic
polynomial, thus there exists un integer C' such that P??~1(z) —p?¥(z) > 0if < 2,1 >> C.
As a result, for all z with < z,1 >> C,
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2.3 Proof of the meromorphic continuation
In this section we prove the main result.

Theorem 2.2. Let p be an elliptic polynomial of n variables and (az)z>0 be g-automatic,
az [T7 23"
p(z)®
gence o such that it converges absolutely on the half plane R(s) > o and has a meromorphic

then for a given n-tuple p, the function Z(z)eNi admits an abscissa of conver-
continuation on whole complex plane. furthermore, the poles of this function (if any) are

located on a finite number of left semi-lattices.
This result will be obtained by proving several lemmas successively:

Proposition 2.2. Let a; be a g-automatic sequence, and p(x) = ), max® be a n-variable
homogeneous elliptic polynomial of degree d, let p € N be a multi-index, for any B such

that 0 < B < q, define pé(g) = q "(p(qz + B) — p(qz)), then for any k € N, the function

azpp (2)* [T, 2 : :
Jeppu:s — Z(g)eNi @ E admits an abscissa of convergence oy g, such that

fk@ﬂ converges absolutely to an holomorphic function on the right half-plane R(s) > Ok,B,u-

Proof. We firstly prove that f0(s) converge when R(s) > n.

| fo,00(8)] =| Z p(a;)s|§ Z p(gﬁe(s)S Z (a<x|jlf|>)iﬁ(s)(*)

(z)eNY (z)eNY (z)eNT
max(|ay|) 1 1
- (a)%(s) ( Z <zl >R(s) + <z,1 >§R(s))
<z,1><n <z,1>>n
m+n—1
max(|a,|) 1 (mrrh
< 2l ot U1 )
ORI Yy e R o (2.1)
<z,1><n m>n
max(|ag|) 1 mr—1
< =" - -
max(|a,|) 1 1
< =" - - -
= (a)R) ( Z <z, 1 >R0) + Z méﬁ(s)+1—n)'
<z,1><n m>n

Inequality (x) is obtained by Lemma 2.2 (iii) and taking « as it was in the lemma; and the
sum y oo W exists and is bounded when R(s) > n.

For any f such that 0 < 8 < ¢, we remark that [} (z; + 3)" =Y Ol NEDE
with C; < ¢", which shows that all monomials of the polynomial pg have a degree not

larger than d — 1. Lemma 2.3 leads ] | <3 ) 2 for all x satisfying < z,1 >> C4, with

C1 defined in Lemma 2.3. Whlle Lemma 2.1 and Lemma 2.2 (v) yield that there exists an

integer [ such that \H

| — 0 when |z| — co. As a result, there exists Cy such that for
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all < 2,1 >> Cy, y“ 19| < 1. Taking C = max(Cy, Ca),

@)
Z ‘agpg(@ H?:l ) < Z Gy H?Zl zh ‘pg@) |k-
@k Pt T ey PTY@I @) 02)
ag [T, @ p/j k
S<le>:<0 [P (@) ‘ ‘ Jr<aclz>:>c ) H”( )
With k a constant in NT, the above function converges to a holomorphic function on the
half plane R(s) > n + 1 — 4. Furthermore, for all b > £, Ycrisa \%] is bounded
on this half plane. O

Proposition 2.3. With the same notation as above, if p is an homogeneous polynomial,
then the function F : s — Z 2)eNT % admits a meromorphic continuation on the
whole complex plane.
Proof. In this proof, we consider the g-automatic sequence (az)z>0 as itself multiplied by
a constant sequence (bg)y>0 = 1, which is a ¢-periodic sequence. Because of Proposition
2.1, the g-kernel of this sequence admits a completion, we can define a sequence of vectors
(Az)z>0 and the matrices of transition on this completion as in Theorem 2.1.

For any p € N, there exists some [ € Z such that < p,1 >< Id and a constant
Ny € N such that C' < Ngng, where C is defined as in the previous lemma.

F,(s)= Z Ag Hz 1 7 Z Ay Hz 1 7i Z Z qu+gn?:1(qzi+yi)”i
S p(z)s p(z) p*(az+y)
(z)eNT} (z)<(Noq) (¥)<(@) (z)eNn/{t<No} =
_ Z Ag [Ty = Z Z Agzy [T (g20)1
p(x)* pilaz+y)
(z)<(Nog) (¥)<(@) (z)eN™/{t<No}
quﬂ;ow,y H?=1 (qu)wi
PRy 2 p*(az+y) ’
@) <(1) (1)<(@) (2)eN"/{t<No } - =
(2.3)

where Cy, is uniquely defined by y for given . So the sequence (Cy(z))z>o defined by

Cy(z) =Cyy withz; =y; mod g, 1<i<n

is periodic as a function of z, we let Res,(s) denote the term

n i
Resu Z Z Z Aqéwcf,ynzﬂ(qzz) .

()< W<(@) (2)eN"/{t<No} P5(qz +y)

Remarking that all sequences (by(z))z>0 defined by by (z) = Agz1+yCyy if T = gz +y are

in the form of a product of a specific g-automatic sequence by a g-periodic one, because
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of Proposition 2.1, such sequences admit a unique completion the same one as (Ag)geNi
has, and the transition matrices on this completion do not depend on the choice of the
g-periodic sequences (Cy(z))z>0-

Using the transition matrices, we have:

i Agzty [Ti2 (g2 Al
F,i(s): Z AHz 1‘1 _ Z AH21 Ly z Z 7+7H (qzi +v:)

(2)eN"/(0) p(z) (z)<(Noq) p(z)’ <@ (2)eN"/{t<No} P(ezty)

y Aot vy Al

(2)<(Nog) p(&) (y)<(9) (z)eNn/{§<M} p (qg‘i’g)

A A 2 7_ Zi Hi 1
= Z pH(;)i L4 Z M Z = ljvléqug] ) |1 2@ + Res,(s)
@<Mog) PV W@ (N {1<No} 2 +5m)

p(2)
_ Z Az Hz 17 i Z M, Z WZ<S+2_1)(W)’“+R€8H(S)

@i P@ W wenemy  PE IS
A"I/’ H?: xih —ns S+ k -1 AZ H:‘: (ZZ)}M <_p (é))k
DI RA D DI M (RN I DI e
p(z) (p(2))
(z)<(Nog) (w<(a) k>0 (2)eN"/{t<No}
+ Res,(s).

(2.4)
The above equation gives:

S - z 7'7;1 Zi Ml_yg k
(Id_q<ﬁ»l>fns Z Mi)F()_q<,u1> ns Z Z( +k 1) Z A,Hz_( ) ( p ( ))

s+k
W<(@) <o) k=1 (N {t<Na]} (p(2))
Ay [Ty 2t
+ Lellimi % + Res,,
@) <Z<1:v p(z)* )
09)
2.5)
By multiplying by com!(Id — g~#1>—ns Z@qq) My) on both side, we have:

A TTE 2
det(Id — g~#A>—ns Z ME)FB(S):comt(Id—q<ﬁ’l>*”s Z My)( Z M%—Resu(s)

<@ W@ @ PO
k—1 A, i k
4 gSl>—ns Z MEZ (5 + ’ ) Z 2T E;E'Z)))Sgrkpy(z)) )
(y)<(@) k>1 (2)eNm/{t<No} -
(2.6)
Because of Proposition 2.2, the infinite sum Res,(s) converges absolutely when $(s) >
l+n— Qd, and the infinite sum Z e/ {t<no} Aél_[i:%;(z))’)‘sikpy(,)) is also convergent and

bounded when R(s) > [+n— ﬂ. Equation 2.5 shows that all terms on the right-hand side

present a meromorphic continuity for R(s) > [ —|— n — 54, S0 that F,(s) has a meromorphic

50
continuation on the half-plane R(s) > +n — 5.

To guarantee that this argument works recursively over all rational numbers of type

I+n—35 d, we have to check that the meromorphic continuity of the Res,(s) can also
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be extended in this way. Using once more the above argument over Res,(s), we can
deduce that this infinite sum can be extended as a meromorphic function on the half-plane
R(s) > l+n— 2, however, with a new term “Res,,(s)”, let us call it Res),(s). Once more,
we have to do the same thing for Resu( s). But remarking that after each operation, the
degree of the monomial at the numerator decreases strictly, so after finitely many times
of such operation, the term Res vanishes. This fact guarantees that the iteration can be
done successively to prove the meromorphic continuation of F,(s) on the whole complex

plane.

Furthermore, the poles of such a function can only be located at the zeros of the function
s —» det(Id — g~#A>—ns Z(y)<(q)

poles of function F'(s) are located in the set

M,) for an arbitrary u € N}, so we conclude that all

B l(log A 2k

_l’_
n logq loggq

- 1),

with A any eigenvalue of the matrix My, k € Z,1 € Z and log is defined as complex

(y)<(@
logarithm.

Proof of Theorem 2.2. Let us write the polynomial p(z) in the form p(z) = p4(z) + Res(z)

where py(z) is the homogeneous polynomial with maximum degree of p(z), say d. By

Lemma 1, Res(%) = O(|z|~"%). So for a given number m € R, there exist 29 € N and a

Rest(@ 117, o |<( ~). For

Pyt ()

positive integer ko such that for all |z| > xo and all k& > ko, |
any given half-plane {s|R.(s) > m, m € R}, take an integer so > max {ko, |m|}, we can

compute that

S S ()5 X e £ ()l

|z| >0 k=so+1 lz|>z0 k so+1 P
Ay X0 (—R(s)\, Res(z) [0, =
<Z(<$>>§R<sm>’2<k )! o
|z >0 PalL k=s0+1 Py (x)
Aac 1+ |S’SO+1
R Os :
< ( Z (pd(i))%(s_m)) o 9250 )
|z|>x0
The above fact shows that the function ¢(s) = le|>wo (po Zk il ( s+k) R;sz()@
o Z

admits a holomorphic continuation over the half-plane {s|R(s ) >m,m € R}. Now let us

consider the equivalence as below:
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Ay H;‘ll :nﬁ‘ Ay H;Lfl 5”5 Ay Hz 1 93 1
o =—t=1 v —== 1
D I Y D D Y e et

(z)eN% /(0) |z <zo |z|>z0
A, H Lz A [T, ot & (—5—|—k) Resk(z)
- 3 el 5 Al ot
|z|<zo ) |z|>x0 (po(g)) k=0 & (@

)
(2.7)
For each k € N,

A TT, 2! Res®(x) ACi 1T
Z 7 S k = " ; k H ‘Tz’l’ (2.8)
oy 0@ pg(e) S e (po(@) T

where C; are constants depending on k, and s — Z\x|>:fco (p(;?icﬁk I, xz are meromor-
phic functions because of the previous lemma. As there are finitely many meromorphic
function in (2.8), we can conclude that for every k>0, s — 37,1~ %Resk(g)
is meromorphic. This fact implies that for an arbitrary sp € R the function f(s) is a finite
sum of meromorphic functions on the half-plane R(s) > sg, so f(s) itself is meromorphic

on this half plane. As a result, the function s — Z 2)eEN"/(0)

e llio oi" 1s meromorphic
p(z)* p

on the whole complex plane.
O

Proposition 2.4. Lel f(s) = E@GN”/(Q) % be the function defined as in Theorem
2.2. Let sqg be its first pole on the axis of real numbers counting from plus infinity to minus

infinity. Then the function H(s) has a simple pole at this point.

Proof. We recall a classical result on matrices (see [35]): Let B be a matrix of size ¢ x ¢ over
any commutative field, pg(X) be its characteristic polynomial, and 7(X) be its monic
minimal polynomial. Let A(X) be the monic ged of the entries of (the transpose of) the
comatrix of the matrix (B — X1I), then:

pB(X) = (=1)'mp(X)A(X)

We let B denote the matrix (ng)~ Z(y oMy and by T its size. By dividing by A(g"s~D+<w1>)
both sides of Formula 2.6, we get:

Comt(qn(8_1)+<ﬁ’l>fd _ Z M. ) A,
n(s—1)+<p,1> _ (<@ ¥ Hz 1 z
m5(q BE7)H(s) = (> +R€5u( 5)
n(s—1)+<p,1> s
A(q ) (2)<(Nog) p(z)

<pl>—ns —s+k Az [T (2)M (=py (2))"
+q~F Z My;( k > Z (p(z))t* )-

(y)<(q) (z)eN"/{t<No}

(2.9)
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The right-hand side of the above function is holomorphic when R(s) > sg. As sg is the

first pole of H(s) on the real axis counting from plus infinity, it is a zero of the function

n(s=D+<m1>) associated with the eigenvalue 1 of the matrix B. On the other hand, as

n(871)+<g,l>)

75(q
B is a stochastic matrix, mp(x) has a simple root at 1, so the function 7z(gq
has a simple root at sg which concludes the proposition.

O]

2.4 Review and remarks

pa(z+p)—pa(z)\ g
-"=@ )

\ < 1. As we have to use this fact

The critical point of the above proof is the development of the term

pa(z+p)—p
pa(z)
successwely to deal with the term Res(s) in Proposition 2.3, what we need actually is

that | pd)\ is bounded by 1 for all p such that < p,1 >< d when ||z|| is large. The

assumption of ellipticity of the polynomial is a particular case of the above propriety. So

as an infinite sum, which works only if |

we may expect to achieve the same result under the assumption

0,(pa
\ﬁ()@ﬂ<Lmaﬂ<u4>§¢mzL
Pd -

We may compare this assumption with that in [20], saying

aﬁ (pa)
Dd

(z) = O0(1),z; > 1,

which is the weakest assumption known to have a meromorphic continuation of Dirichlet

: 1
series ZﬁeNi Pl

2.5 Infinite products

Let P(z) = Zgzo a;z' be a polynomial which does not have zeros on Q and P(z) be
the polynomial defined by P(z) = Z?:_ol —Z—;x”*i, by definition, we have P(z) = aqz? —
adxdﬁ(%). Let us define ¢; = g—; foralli=0,1,...,d — 1.

In this section we consider two Dirichlet series generated by 1-index automatic se-

quences:

where ¢ and r are two integers satisfying 2 < r < ¢ and r divides ¢, ¢ is a r-th root of

unity, such that ¢ # 1, Sy(n) is the sum of digits of n in the g-ary expansion satisfying
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S¢(0) =0 and Sy(gn +a) = Sg(n) +afor 0 <a <g-—1.

Let us define:

e Sq (n)

-> &

nO

o0

n=1
It is proved in [14] that ¢ and % have holomorphic continuations to the whole complex
plane, and ¢(s)(¢° — 1) = ¢(s)({q¢® — 1) for all s € C.

Proposition 2.5. f and g also have holomorphic continuations to the whole complex plane

if c1,ca, ... satisfy max|c;| < é.

Proof. We firstly remark that the hypotheas of max |¢;| < 3 1mphes the fact \P( 1) <1
for any n € N, . Indeed, \P(n+1)|—|zi —at (n—l—l)l q <Z \“Z| <1

B = (€)%
J(s) = 7;) (P(n+1))°

g e (€)™
=aj _
= (n+1)%(1 = P(;49))°
o (O <s+k—1) 5 L )
= ag ds Z P( )>
vt (n+1) — k n+1
00 (o) dk
s ¢)Sa(m) s+k—1 .
= % Z (n+ 1)ds Z k kal(n +1) (2.10)
n=0 k=0 =k
s (s+k—1
= aq kZ_()( k >ZZ; klz n_|_1ds+l
[e%s) dk
—s s+k—1
=ay Z< i >ka,l¢(d8—|—l)
k=0 =k
dk
_ +k—-1
=a; P(ds) + a <S > Z my p(ds + 1),
k=1 I=k
where my; = ZMkﬁlEP({cﬂlgign—l}) HciEJV[kJ ¢; and My are sets of k elements included

in {¢;]1 <i<n-—1} and the sum of indices of its elements equals I. The hypothesis
m = max |ci| < 3 shows that |Zf£;k my,| < (md)* < 1, so the right-hand side of (2.10)
converges uniformly over the half plane {s|R(s) > 0} because ¢(s) is bounded for large
|s|. By the same argument as in Theorem 2.2, we prove successively the holomorphic

continuation of f on the whole complex plane. O



38 CHAPITRE 2

It is easy to check f(0) =0, and because of the uniform convergence of the right-hand
side of (2.10) over the half-plane {s|R(s) > 0}, dividing by s and letting s tend to 0 we

have:

[e.e]

f'(0) = d¢/ (0) + az* ilﬂ%s(ﬁk )me ds +1)
k=1
= —dlogq/((—1)+ > k! ka,qu(l)
k=1 =k
1 e Sq(”)
= —dlogq/(¢ — 1) +Zk Zm Z 1)
p n= (2.11)
:—dlogq/(C—1)+Z<C Zk 12’”’”
n=0 k=1 =k
= —dlogq/(C — 1) + Y () Z o)
n=0 k=
= —dlogq/(¢ —1) +Z log(l—P(n_li_l)),

on the other hand, one has for all s, ¥(s)(¢® — 1) = ¢(s)((q® — 1).

[e.e]

ro = a i (T3 kalqs (ds+1)
k=1
= —dlogq/(¢C—1)+ Z k! ka,ﬂ/’(l)(ql - 1)/(qu —-1)
k=1 1=k
0 dk
:—dIOgQ/(C_1)+C_1Zk_1zmk,l¢(l) Zk 1kalw qu_l)'
k=1 I=k k=1

(2.12)

By the same method as above, we can deduce by calculating ¢’(0)

Zklzmw — 3O g1~ P(H)
k=1

n=1

and
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00 Sy(n)
zwzmw (==Y lzm zi)n)l >
k=1 n—=

k=1
:Z(C)_TZ( Z 1kal
oo . oo 1
=2 (O (%M og(1 — P(——).

r=1 n=1 nq
As a consequence,
Z(C)S‘Z(") log(1— P( -1 Z Sa(m) Jog(1— P ZZ Sa(m)="1og(1
n=0 r=1n=1

(2.13)
Proposition 2.6. We have the equality
o ~ 1 San T =1 San—1 San _py1—¢—1
1— ¢ 1— )¢ C Y Sl QR
[10 -~ ™ < TL0 A<« ([T TT0 - PG5
n=0 n=1 r=1n=1
Moreover, if we suppose, for any j
=L if s4(m) = j (mod r)
zj(m) = 1
—L if s,(m) # j (mod 1)
We clearly have
S a5(m) = 0.0+)
7 modr
Furthermore,
ST zi(m)¢ = ¢S (xx)
j modr
Using (%), Formula (2.13) can be reformulated as
> @Z% (log(1 - P +Zcrlog1— )=

j modr n=0

ZC”Z% (log(1 — P +Z<’“10g1— 1)))

j modr

(2.14)

Let now n be a primitive root of unity, we can apply relation (2.14) successively to { = n®
fora=1,2,...,r — 1.

Because of (xx), we also have




40 CHAPITRE 2

Z Zx] logl— +ZC "log(1 - P i)))

7 mod rn=0

3 ij (log(1 — P +Zcrlog1— (nlqr))):o.

j mod rn=1

(2.15)

Define the matrices: Mat; to be Mat; = (1) and Mats to be Maty = (n~%), i =
0,1,....,m—1;5=0,1,...,7 — 1, define A and 8 by

Zx] (log(1 — P +§j< "log(1~ P(- )
B) = 3y m)og(1 — P + 3¢ log(1 - <nlq7.>>>

Let - -
A0
L]

)\(rn— 1)
5(0)
Lo | s

S —1)

Then we have
MatlA = Math.

On the other hand, A is invertible and Mat; = Maty x Matg with

0 0 01
10 0 0
Mat3 =
01 0 0
0 0 1 0
So we have
A= Mat3 X B.

Proposition 2.7. We have the equality \(i) = f(i — 1) for i =1,2,...,r — 1 and X\(0) =
B(r — 1), which leads to, for i =1,2,...,r — 1,

le—A—f W:ﬁl— fo1—
n=1

[e.e]

[T - A

n=0

xj—l(”)’



2.6. ACKNOWLEDGEMENT 41

and fori=0,
[ =P < [T = Py = T - P < [ - P,
n=0 n r=1 nq n=1 n r=1 nq
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Chapter 3

On completely multiplicative

automatic sequences

3.1 Introduction

In this article, we describe the decomposition of completely multiplicative automatic se-
quences, which will be referred to as CMAS. In article [42], the author proves that a
non-vanishing CMAS is almost periodic (defined in [42]). In article [1], the authors give
a formal expression of all non-vanishing CMAS and also some examples in the vanishing
case (named mock characters). In article [27], the author studies completely multiplicative
sequences, which will be referred to as CMS, taking values in a general field that have
finitely many prime numbers such that a, # 1; she proves that such CMS have complexity
pa(n) = O(n¥), where k = # {p|p € P,a, # 1,0}. In this article, we prove that all com-
pletely multiplicative sequences (a,)nen defined on C, vanishing or not, can be written
in the form a, = b, xn, where (b,)nen is an almost constant sequence, and (xp)neN 1S a

Dirichlet character.

Let us consider a CMAS (ay)nen defined on C. We first prove that all CMAS are
mock characters (defined in [1]) with an exceptional case. Second, we study the CMAS

Z 1<oo,

p
plap#1,peP

satisfying the condition C":

where P is the set of prime numbers. We prove that in this case, there is at most one prime
p such that a, # 1 or 0. In the third part, we prove that all CMAS are either Dirichlet-like
sequences or strongly aperiodic sequences. Finally, we conclude by proving that a strongly

aperiodic sequence cannot be automatic.

43
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3.2 Definitions, notation and basic propositions

Let us recall the definition of automatic sequences and complete multiplicativity:

Definition Let (ay)nen be an infinite sequence and k& > 2 be an integer; we say that this
sequence is k-automatic if there is a finite set of sequences containing (a,)nen and closed
under the maps

Gp — Qkn+i,t = 0,1, ...k — 1.

There is another definition of a k-automatic sequence (ay,)neN via an automaton. An
automaton is an oriented graph with one state distinguished as the initial state, and, for
each state, there are exactly k edges pointing from this state to other states; these edges
are labeled as 0,1,...,k — 1. There is an output function f, which maps the set of states
to a set U. For an arbitrary n € N, the n-th element of the automatic sequence can be
computed as follows: writing the k-ary expansion of n, start from the initial state and
move from one state to another by taking the edge read in the k-ary expansion one by
one until stopping on some state. The value of a, is the evaluation of f on the stopping
state. If we read the expansion from right to left, then we call this automaton a reverse

automaton of the sequence; otherwise, it is called a direct automaton.

In this article, all automata considered are direct automata.

Definition We define a subword! of a sequence as a finite length string of the sequence.

We let w; denote a subword of length [.

Definition Let (a,)nen be an infinite sequence. We say that this sequence is completely

multiplicative if, for any p,q € N, we have ayay = ;4.

It is easy to see that a CMAS can only take finite many values, either 0 or a k-th root

of unity (see, for example, Lemma 1 [42]).

Definition Let (ay,)nen be a CMS. We say that a,, is a prime factor of (an)nen if p is a
prime number and a, # 1. Moreover, we say that a, is a non-trivial factor if a, # 0, and
we say that a, is a O-factor if a, = 0. We say that a sequence (a,)nen is generated by

Qp, , Gp,, . if and only if ap,, ap,, ... are the only prime factors of the sequence.

lwhat we call a subword here is also called a factor in the literature; however, we use factor with a
different meaning.
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Definition We say that a sequence is an almost-0 sequence if there is only one non-trivial

factor a, and aqy = 0 for all primes q # p.

Proposition 3.1. Let (an)nen be a k-CMAS and q be the number of states of a direct
automaton generating (an)neN; then, for any m,y € N, we have equality between the sets
{an|mk® < n < (m+1)k?} = {ap|mk¥?" <n < (m+ 1)k¥7'}.

Proof. In article [42] (Lemma 3 and Theorem 1), the author proves that, in an automaton,
every state that can be reached from a specific state, say, s, with ¢! steps, can be reached
with yq! steps for every y > 1; conversely, if a state can be reached with yq! steps for some
y > 1, then it can already be reached with ¢! steps. This proves the proposition.

O

Let us consider a CMS (ay,)nen taking values in a finite Abelian group G. We define
E=<glgeG Z 1 00
iy
ap=g,pEP
and G as the subgroup of G generated by F.

Definition Let (a,)nen be a sequence, we say that the sequence (an)nen has a mean

Zn:O an

N+1

value if and only if limy_, exists.

Proposition 3.2. Let (an)nen be a CMS taking values in a finite Abelian group G; then
all elements g € G have a non-zero natural density. Furthermore, this density depends
only on the coset rG1 on which the element g lies. The statement is still true in the case
that G is a semi-group generated by a finite group and 0 under the condition that there are

finitely many primes p such that a, = 0.

Proof. When G is an Abelien group, the proposition is proved in Theorem 3.10, [38], and
when G is a semi-group, Theorem 7.3, [38| shows that all elements in G have a natural
density. To conclude the proof, it is sufficient to consider the following fact: let fy be a
CMS such that there exists a prime p with fo(p) = 0, and let f; be another CMS such that

folq)ifgeP,q#p

1 otherwise,

filg) =

If do(g) and d1(g) denote the natural density of ¢ in the sequence (fo(n))nen and (f1(n))nenN,

respectively, then we have the equality

p
p—1

di(g) = do(g) + ;do(g) + pﬂdom)... =P ).
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Doing this iteratively until a non-vanishing sequence, we can conclude the proof by the

first part of the proposition. O

3.3 Finiteness of the numbers of 0-factors

In this section, we will prove that a CMAS is either a mock character, which means that
it has only finitely many O-factors, or an almost-0 sequence, that is, a,,, = 0 for all m that
are not a power of p, and ar = 8" for some &, where § is a root of unity or 0 and p is a

prime number.

Proposition 3.3. Let (an)nen be a p-CMAS; then, it is either a mock character or an

0-almost sequence.

Proof. If (an)nen is not a mock character, then it contains infinitely many 0O-factors. Here,
we prove that, in this case, if there is some a,, # 0, then m must be a power of p, and p must
be a prime number. Let us suppose that there are ¢ states of the automaton generating
the sequence. As there are infinitely many O-factors, it is easy to find a subword of length
p?@ such that all its elements are 0:

This is equivalent to finding some m € N and p?? 0-factors, say, Apys Apys w5 Ap g such

that
m=0 (mod pp)

m+1=0 (mod p3)
m+2=0 (mod p3)

m+p?? —-1=0 (mod Pp2at)

If m is a solution of the above system, then the subword A1 Gy p2al— is constant
to 0. Therefore, there exists an m’ such that m < m/p? < (m’ 4 1)p? < m + p??'. Because
of Proposition 3.1, for any y € N, a = 0 for all k such that m/p¥? < k < (m/ + 1)p¥?.
Taking an arbitrary prime r, if » and p are not multiplicatively dependent, then a, = 0
because there exists a power of r satisfying m/p¥?" < rt < (m/ + 1)p¥?. This inequality

holds because we can find some integers ¢ and y such that
log, m’ < tlog,r — yq! <log,(m'+1).

The above argument shows that if (a,)nen is not a sequence such that a,, = 0 for all
m > 1, then p must be a power of a prime number p’. Otherwise, as p is not multiplicatively
dependent from any other prime number, a,, = 0 for all m > 1. Furthermore, the sequence
(@n)nen can have at most one non-zero prime factor, and if it exists, it should be a,/. Using

automaticity, we can replace p’ with p. O
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3.4 CMAS satisfying condition C

From this section, we consider only the CMAS with finitely many O-factors.

In this section, we prove that all CMAS satisfying C' can have at most one non-trivial

factor, and we do this in several steps.

Proposition 3.4. Let (an)nen be a non-vanishing CMS taking values in the set G =
{¢"|r € N}, where € is a non-trivial k-th root of unity, having u prime factors ay, , ap,, ...ap, ;
then, there exist g € G (where a,, = g) and a subword W, appearing periodically in the
sequence (an)neN such that all its letters are different from g. Furthermore, the period does

not have any prime factor other than p1,pa, ..., Pu-

Proof. We prove the statement by induction. For u = 1, the above statement is trivial. It
is easy to check that the sequence (anpk+1+pk)neN is a constant sequence of 1, the period
1 1

is p’f“, and g = ap,.

Supposing that the statement is true for some u = ng, let us consider the case u = ng+1.
We first consider the sequence (al,)nen defined by a, = aﬁ, a sequence having ng
no+
pn0+1
prime factors, where vy,(n) denotes the largest integer r such that p”|n. Using the hypoth-
esis of induction, we obtain a subword Wy, satisfying the statement. Let us suppose that

the first letter of this subword appears in the sequence (a/ JneN- We can extract

M n+ln0

from this sequence a sequence of the form (a

d.
_ no J
My tng Jnen such that m,, = mn, [[;2; p;

for some d; € N* and vy, (Mpyn =+ lng + 10) = Vp, (Ing + 10) for all j < ng. In this case,

!/

et +n0)neN is a constant sequence, say, all letters equal C.
ng no

the sequence (a

Here, we consider two residue classes Ni(n) and Na(n), separately satisfying the fol-

lowing conditions:

mnéNl(n) = —lp, —no mod ppyt1
mnéNl(n) # —lp, —no mod p,2m+1

and

My Na(n) = —lp, —no  mod pTQLOH
mn/ONg(n) # —lp, —no mod pf’mﬂ

In these two cases, we have Ay Ny(n)+lngtno = C’a/pnOJrl and Uy ) No(n)+lng+n0 =
0 0

2 : 2
Cay, ., foralln € N. Because ap, , 7 1, there is at least one element of Cay,, ,, Cay,
i+1

not equal to g. If N;(n) is the associated residue class, then N;(n) = pjn +t for all
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integers n with t € N, ¢ =1 or 2.

Now, let us choose mp,4+1 = mnépi;g}rl and Ilny41 = Ilny + tmy, so that the sequence

neN 1s a subsequence of ( neN; thus, the subword of length n

/ !/
(am7bo+1n+ln0+l ) a’mno n+ln0 )
/ /

amno+1n+ln0+1amn0+1n+lno+1+1“'a
g because of the hypothesis of induction. Furthermore, am,, \in+i,,414n0 = Gy, o Ni(n) g 1o

5 . .
Mg 411 ng 410~ 1 18 constant, and none of its letters equal

is constant and different from g because of the choice of residue class. The properties saying
that the prime number py, 1 is larger than no+1 and pp,41 |mn/O N;(n)+ln,+no by construc-
tion imply that, for all j such that 0 < j < ng—1, ppg+1 ¥ Mng+1M+1lng+1+7. Therefore, we
conclude that, for all n, j € N such that 0 < j <ng — 1, vp, 1 (Mne+11 + lng1 + j) = 0.

This means that the subword @m,, 0,0 1 @mpg 1ntlng 1141 Gmng 110+ is a sub-

ng+1+n0
word of length ng + 1 independent of n and that none of its letters equals g; moreover,

Mpe+1 does not have any prime factor other than p1, ps...pp,. O

Proposition 3.5. Let (ap)nen be a non-vanishing CMS defined on a finite set G satisfying
condition C, and let (a))nen be another CMS generated by the first r prime factors of
(An)neN, SaY, Gp,,Apy, ..., Qp, . If there is a subword W, appearing periodically in (a),)nen
and if the period does not have any prime factors other than p1,pa, ..., pr, then this subword

appears at least once in (an)neN-

Proof. Let us denote by p1, pa... the sequence of prime numbers such that a,, # 1. Suppos-

!
myn+l,

ing that the first letter of the subword w, belongs to the sequence (a Jnen for some
m, € N, [, € N, by hypothesis, m, does not have any prime factors other than py, pa, ..., pr.
Thus, the total number of such subwords in the sequence (a,)nen can be bounded by the

inequality:

#{Cbk“{} <N, A, Q115 oy Qtr—1 = wr}

(3.1)
2#{ak|k‘Sn,k:mrk'—l—lr,k'GN;piTk‘—kj,‘v’(i,j) With0§j§r—1,i>r}

Let us consider the sequence defined by N(t) = H;Zl Pr4j; We have

#{aklkSN(t)mr—Hr,k:mrk/—Hr,k:' e Nipitk+ 4,90, 5) withogjgr—l,r<i§r+t}

—

(pr-‘rj - T)
1

J
(3.2)

This equality holds because of the Chinese reminder theorem and the fact that p,4; f m,
and py4; > r for all j > 1.
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Therefore, we have

#{ak|kgN(t)mT—HT,k::mrk/—i—lr,k/ € Nipith+5,%(i,7) with0 < j <r — 1,4 >r}
4 {ak|/~c < N@)my + by k= mek + 1,k € Nypi bk + 4,9, §) with 0 < j §r—1,r<i§r+t}
—#{akykgN(t)mrHr,k:m,,k’Hr,k’ e Nipi | k+7,%(i,5) with 0 < j gr—l,z’>r+t}
>4 {ak|k§N(t)mr+lr,k:mrk:'+lr,k/ € Nip; 1k + §,¥(4,5) with 0 < j §r—1,r<i§r+t}

= #{ak]kgN(i)mr—irlr,k::mTk/—i—lr,k, EN;pi]k—s—j,ijithogjgr—l}

i>r4t
t
N(t)
>H(pr+j_r)_r Z [ ) ]
j=1 i>r4+t,p; <N(t)+r pi
N(t
Hprﬂ_r —r Z ﬁ—’l“ﬂ(N(t)—l—T‘).
j=1 i>rt,p; <N (t)+r pi
(3.3)
where [a] represents the smallest integer larger than a and 7 is the prime counting function.
However,
! P Y ad TN
+i +i
H(pr+j —r) H Sl A H ST A . (3.4)
e =1 Pr+j j=1 Pr+j

The last formula can be approximated as [ 72, % = exp()_ ;2 10g(Pr+g f.r)) = exp(—O(X5% 55)),
T 17

and the last equality holds because log(1l — x) ~ z when x is small. Because of C, the

above quantity does not diverge to 0; we conclude that, if ¢ is sufficiently large, there exists

a ¢ with 0 < ¢ < 1 such that H§:1(pr+j —1r) > cN(t).

On the other hand, we remark that for all i > r + ¢, p! > H;:1 Pr+; = N(t); thus,
pi > N(t)%

> N(.t) < N(t) > L (3.5)

i>THtps<N(t)+r pi

1
t

The term N(¢)* can be bounded by

1 1 t t
t = Hpr_,’_j t Z Zt 1 > Zt L (36)
J=1 prj 7=l q;

where qj is the j-th prime number in N. For any =z € N, # {pilp; <z} ~ % and

log
> opi<a p ~ loglog(x); thus, N(t)% tends to infinity when ¢ tends to infinity. Because of C,

we can conclude that there exists some ¢ty € N such that, for all ¢ > ¢p, >

1
2r

1

1 ES

N(t)T <p<N(t)+r P
C.
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To conclude, for all t > tg,
#{axlk < N@E)m, + L,k = mek + 1,k € Nsk+ 51 p;,V(i,5) with 0 < j <r —1,Vi > r}
t
N(t
H Prij —T)—T Z L—7“7r(N(t)—|—7“)
j=1 k>r+t Pk

>cN(t) — §CN(t) —rm(N(t) + ).
(3.7)
When t tends to infinity, the set # {ax|k < n,ax, ars1, -, Gk1r—1 = W, } is not empty.

O

Proposition 3.6. Let (an)nen be a p-CMAS, vanishing or not, satisfying condition C.

Then, there exists at most one prime number k such that ap # 1 or 0.

Proof. Suppose that the sequence (a,)nen has infinitely many prime factors not equal to

0 or 1. Let us consider first the sequence (a),)n,en defined as follows:

= Qa n
Up (”)
HpZEZ i ‘

where Z = {p|p € P, a, = 0}; because of Proposition 3.3, this set is finite.

Using Propositions 3.4 and 3.5, there exists a subword of length p%?', say, Up2q!, appear-

ing in (a},)nen such that none of its letters equal g = @), = ap,, where ¢ is the number of

/

P1
states of the automaton generating (ay,)nen. Then, by construction, there is a subword of
the same length, say, wy2q:, appearing at the same position on the sequence (an)nen such

that none of its letters equal g. Extracting a subword w’ pat contained in Wyeq of the form

P
Qyupat Qypa 12 G(yq1)pe'—1 for some u € N and using Proposition 3.1, we have, for every y

such that y > 1 and every m such that 0 < m < pyq! —1,a

# g. In particular,

up¥4'+m

yhﬁn;o pyq'# {as = glup¥® < s < (u+1)p¥e — 1} = 0.

which contradicts the fact that g has a non-zero natural density proved by Proposition 3.2.

Therefore, we have proven that the sequence (ay)nen must have finitely many prime
factors. However, Corollary 2 of [27] proves that, in this case, the sequence (a,)nen can

have at most one prime k such that ax # 1 or 0.

O
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3.5 Classification of CMAS

In this section, we will prove that a CMAS is either strongly aperiodic or a Dirichlet-like

sequernce.

Definition A sequence (a,)nen is said to be aperiodic if and only if, for any pair of
integers (s,r), we have

Zij\io Asitr

lim =0.

N—o0

Definition Let M be the set of completely multiplicative functions. Let D : M x M x
N — [0, 00| be given by

1 — Re(f(p)9(p))
p

D(f,g,N?*= >

peEPN[N]

and M : M x N — [0,00) be given by

M(f,N) = min D(f, n', N)?

A sequence (ap)pen is said to be strongly aperiodic if and only if M(fx, N) — oo as
N — oo for every Dirichlet character .

Definition A sequence (ap)nen is said to be (trivial) Dirichlet-like if and only if there
exists a (trivial) Dirichlet character X (n),en such that there exists at most one prime

number p satisfying a, # X (p).

Proposition 3.7. Let (an)nen be a CMAS; then, either there exists a Dirichlet character
(X (n))nen such that the sequence (an X (n))neN s a trivial Dirichlet-like character or it

15 strongly aperiodic.

Proof. First, it is easy to check that there is an integer r such that a, is a r-th root of unity
for all but finitely many primes p (see Lemma 1 [42]). If (ap)nen is not strongly aperiodic,
then because of Proposition 6.1 in [21], there exists a Dirichlet character (X (n))nen such
that

lim D(a, X, N) < oo (x).

N—oo

However, the sequence (a, X (n))nen is also CMAS and satisfies condition C; the last fact is

from (x). Because of Proposition 3.6, (a, X (n))nen is a trivial Dirichlet-like character. [

Proposition 3.8. Let (an)nen be a CMAS and Xy(n)pen be a Dirichlet character (modt).
If the sequence (apX¢(n))nen is the trivial Dirichlet-like character (mod t), then (ap)neN

is either a Dirichlet character (mod t) or a Dirichlet-like character a, = EUP(”)X(]]U:(”) ),

where p is a prime divisor of t and € is a root of unity.
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Proof. Let (an)nen be a CMAS satisfying the above hypothesis; then, all possibilities for

such (ap)nen are the sequences of the form
T e () n
_ Up; (1
an_Hei X( m Um(")) ’
i=1 [T p;

for each n, where ¢; are all non-zero complex numbers and p; are all prime factors of ¢.

Let us consider the Dirichlet sequence f(s) associated with the sequence (ay,)nen, which

can be written as

m 1_%

by

f( SXt Hl aP
=1

Therefore, all the poles of f(s) can be found on

_logayp, + 2inm
log pi

)

for all 7 such that 1 <i<m and n € Z.

However, if (ay)nen 18 a k-automatic sequence for some integer k, then the poles should

be located at points
logA 2immw

- logk logk
where A is any eigenvalue of a certain matrix defined from the sequence (xn)nen, and
m € Z,l € N, and log is a branch of the complex logarithm [2|. By comparing the two
sets of possible locations of poles for the same function, we can see that there is at most
one ap, 7# 0. O

3.6 Conclusion

In this section, we conclude this article by proving that strongly aperiodic CMAS does not

exist. To do so, we recall the definition of the block complexity of sequences.

Definition Let (ay)nen be a sequence. The block complexity of (an)nen is a sequence,
which will be denoted by (p(k))ren, such that p(k) is the number of subwords of length &

that occur (as consecutive values) in (ap)neN

Proposition 3.9. If (ap)nenN is a CMAS, then it is not strongly aperiodic.

Proof. From Theorem 2 in (|22]) and the remark following this theorem, the block com-
plexity of the sequence (ay,)nen should satisfy the property that lim, @ = 00, which
contradicts the fact that the block complexity of an automatic sequence is bounded by a

linear function [13]. Therefore, the non-existence of strongly aperiodic CMAS is proved. [
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Theorem 3.1. Let (an)nen be a CMAS; then, it can be written in the following form:
-either there is at most one prime p such that a, # 0 and aqg = 0 for all other primes q

0T Qp = e“P(")X(]ﬁ), where (X (n))nenN 45 a Dirichlet character.
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We found some results in the recent literature on similar topics that have applications
to the classification of CMAS. In [30], the authors proved that all continuous observables
in a substitutional dynamical system (Xpy, S) are orthogonal to any bounded, aperiodic,
multiplicative function, where 6 represents a primitive uniform substitution and S is the
shift operator. As an application, all multiplicative and automatic sequences produced
by primitive automata are Weyl rationally almost periodic. We remark that a sequence
(bn)nen is called Weyl rationally almost periodic if it can be approximated by periodic

sequences in same alphabet in the pseudo-metric

1
dw(a,b) =limsupsup —|{{ <n <+ N :a(n)#b(n)}|
Nooo 1>1 IV
This result could probably be generated in the non-primitive case.
In [29], the authors considered general multiplicative functions with the condition
liminfy o0 |bnt1 — bn| > 0. They proved that if (b,)nen is a completely multiplicative

sequence, then most primes, at a fixed power, give the same values as a Dirichlet character.
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Chapter 4

Automatic sequences defined by
Theta functions and some infinite

products

4.1 Introduction

Let p(z) € C(x) be a rational function satisfying the condition p(0) = 1 and ¢ an integer
larger than 1, in this article we will consider the expansion in power series of the infinite

product

@) =] pa™) = e,
s=0 =0

and study when the sequence (¢;);en is g-automatic. This topic has been studied by many
authors, such as [17], [16] and [11] , using analytical approach, here we want to review this
topic by a basic algebraic approach.

The main result is that for given integers ¢ > 2 and d > 0, there exist finitely many
polynomials of degree d defined over the field of rational numbers Q, such that f(x) =

[12,p(@?) =32 cia’ is a g-automatic power series.

4.2 Definitions and generality

Definition Let (a,)nen be a sequence, we say it is g-automatic if the set

Ker((aien) = { (@ phnenll € N0 < b < o' |

is finite. This set will be called the g-kernel of (ay)neN-

95
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For every couple of integers (I,b) satisfying I € N,0 < b < ¢, let us define a relation

Ry, over the sequence space: we say Ry p((an)neN, (bn)nen) if and only if
Vn € Z,by, = agipqp-

Definition Let > 7, a;x* be a power series, we say it is g-automatic if the sequence of
coefficients (an)neN is g-automatic.

Similarly we define operators O;; over the space of power series:

oo o
Ol,b(z anpz") = g AglppT" -

Now let us consider a detailed version of a well-known theorem, see, for example, [4].

Proposition 4.1. let f € F((x)) be a k-automatic power series, then there ezist polyno-
mials ap(x), a1(x), ..., am(x) € Flx] with ag(z)am(x) # 0 such that

Furthermore, the coefficients of ap(x), a1(x), ..., az(t) depend only on Ry, relations over the

q-kernel of the sequence of the coefficients of f.

Proof. Let B denote the k-kernel of the sequence of coefficients of f, and N denote the

cardinal of B. We can then associate each element in B with a power series by

x
(an)neN — Z anx™.

n=0
Let B’ denote the image of B by the previous map. For each power series in B’, we

have

) k—1 00
E a;z’ = E :U’(E agjrix’).
1=0 1=0 7=0

Remarking that if the sequence (an)nen is in B, then (agn4j)nen is also in B, for
7=0,1,....k — 1. If we write

(o ¢] oo
E a;xrt = E Cp E bz,
=0 (bn)neN€DB’ =0

Then
xz” if Rl,i((an)nEN; (bn)nEN)

0, otherwise.
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Particularly, we can do the same thing for f(z), f(z"),..., f(:ka):

00 N+1;
f(z) = Z(bn)neNeB Cl% im0 bixk )

00 N+1;
f(xk) - Z(bn)nENGB Cg Zi:o blxk ! )

N N+1,;
f(at ):Z(bn)neNeBC{)V >t biat

with c{) defined only by R;; relations. But as the cardinal of B’ is N, the linear forms at
the right-hand side of above equalities are linearly dependent. As a result, if we neglect
the linear dependence between elements in B’, we can have a linear dependence between
f(x), f(z), ..., f(z*") such that the coefficients depend only on cz. So these coefficients
depend only on I relations. O

Here we make this proposition precise by some examples:

Example Let us consider a periodic sequence
a,b,a,b,a,b,a,b...

which is 2-automatic.

Now let us write down the associated power sequence F(z) = a + bx + ax? + bx® + ...
and two other sequences A(x) = a + azx + ax?® + ax3..., B(x) = b+ bx + bz? + ba3... with
constant coefficients.

So

so we have the following dependence:

F(z) =1+ 2%)(1+ 2 A=) + 2(1 + 23 (1 + 24 B(2®)
F(2?) = (14 2M)A(2®) 4+ 2*(1 + 2?) B(2®)
F(z*) = A(2®) + 2*B(2®)
F(z) satisfies the functional equation

(a° —a®+at —2?)(1+2?) F(2®) ~ F(2)) = (2" —2’ +2° —2) (1+2") (1 +2h) F (')~ F(2?))

This functional equation does not depend on the values of a and b.
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Example Let us consider the Thue-Morse sequence
a,b,b,a,b,a,a,b,b,a,a,b,a,b,b,a...

which is 2-automatic.
Now let us write down the associated power sequence F(z) = a + bx + bx? + ax® + ...
and another sequence G(x) = b+ ax + ax?® + bx>..., by changing a to b and b to a:
So
F(z) = F(2?) 4+ 2G(2?)

and
G(z) = G(2?) + zF (2?)

so we have the following dependence:

F(x) satisfies the functional equation
(' = 1D)F@Y) + (1 +2)F(z®) —zF(x) =0
This functional equation does not depend on the values of a and b.

Proposition 4.2. For a given functional equation F : Y 1*  as(t)f(t*") = 0, there exist
finitely many polynomials p1,pa, ..., pr with p;(0) = 1,Vi € [0,7], such that the associated
theta functions G, (z) = [[22o pr(x?) satisfying equation F.

Proof. If p(x) is a such polynomial satisfying p(0) = 1. Let us denote by G(z) the associ-

ated power series. By hypothesis, it satisfies the functional equation F"

> ay(x)G(a”) =0.

s=0

On the other hand, the power series GG satisfies another functional equation:
G(z) = p(z)G(27).

Plugging the second equation into the first one, we get
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An observation is that all terms in the sum contain a factor p(:nqmil) except the last one.

So we have
m—1
p(z?)|am(z)

with p(0) = 1, so there are finitely many choices for p(x). O

Proposition 4.3. For a fized number k, there are finitely many polynomials p1,p2, ..., pr
such that the theta functions Gj(x) = [[52,pj(x?) are q-automatic and the sizes of their
q-kernels are bounded by k.

Proof. Fixing the size of the g-kernel, we fix the number of possibilities of R;; relations,
so the possible functional equations, and we conclude by Proposition 4.2. O
4.3 Infinite product of polynomials

Let p=>1", a;xz' be a polynomial with coefficients in C and ¢ be an integer larger than

1. It is known that the coefficients of the power series
o0

f@) =] p")
s=0

form a g-regular sequence [17], here we want to study when this sequence is g-automatic.
Firstly, let us suppose that the degree of p, noted deg(p), satisfies ¢* =1 < deg(p) < ¢"

for some k € N and write

flz) = Hp(xqs) = Z cix'.
5=0 i=1

Then the coefficients ¢; satisfy a recurrence relation:

Cng+r = E ajanr’;j 11
0<5<q") (4-1)
j=r (mod q)

for all r such that 0 <7 < ¢ —1 and ¢, = 0 for all negative indices.

Lemma 4.1. The sequences (Cgn+i—j)neN, for all i and j such that 0 <i < qg—1 and 0 <

§ < 2¢*, can be represented as linear combinations of sequences {(cn_i)neN|0 <i< qu}.

Proof. Because of the previous equality, we have

Cng+i—j = E : AsCppyizi=s
q
0<s<q"
s=i—j (mod q)
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for all n,i,j defined as above. Now let us check that all sequences appearing on the
right-hand side of these equalities are in the set defined in the statement. It is enough to

calculate the shifting indices and we have the bounds as follows,

1—j—S
q

which proves the statement. O

<0

_ogF < —3gF 1 <

Example Let us consider the case where p(z) = 1 + 2 + 22 + 23 + 2* and ¢ = 2, the
sequence of coefficients of the power series F(z) = [[32,p(z?) is denoted by (¢y)nenN, 50
we have

p(x) = 1+ z+2° +2° + 2" F(a?)

from which we can deduce

Conp = Cp + Cp—1 + Cn—2,
Con+1 = Cn + Cp—1.

Using the above lemma, we get

Con 111000000 Cn
Con—1 01 1.000O0O0ODO Cn—1
Con—2 01 1100000 Cn—2
Con—3 001 100O0O0DO Cn—3
cona| =10 0 1 1 1 0 0 0 O Crn—4
Con—5 0001 10O0O0ODO0 Cn—5
Con—6 000111000 Cn_6
Con—7 00001 1O0O0O0O0 Cn—7
Con—_8 000011100 Cn_8

and
Coni1 110000000 Cn

Con 111000000 Cn—1
Con—1 01 1.000O0O0ODO Cn_2
Con—2 01 1100000 Cn—3
comn-3| =10 0 1 1 0 0 0 0 O Cn—4
Con—4 001 1 100O00O0 Cn—5
Con—5 0001 10O0OO0ODO0 Cn—6
Con—6 0001 11000 Cn—7
Con—7 00001 10O00O0 Cn—8

Because of the previous fact, we can introduce some transition matrices: for all integers r



4.3. INFINITE PRODUCT OF POLYNOMIALS 61

such that 0 < r < g — 1 let us define I';. as a square matrix of size qu + 1 satisfying

Cn an+r
Cn—1 Cqn+r—1
L, =1
Cn—2gk Can+r—2¢F

for all n € N.
Let us denote by G the semi-group generated by all I, and multiplication.

Proposition 4.4. a € {c,|n € N} if and only if there exists a matriz g € G such that a is
the first element in the first row of the matriz g, in other words, a = g(1,1). Furthermore,

(cn)neN is automatic if and only if G is a finite semi-group.

Proof. The first part of this proposition is trivial, for any r € N, let us consider its g-ary

expansion r = 5, S, —1...50. Using Lemma 4.1, we have

¢

_ 0
Cr—1 —T, T r ’

Skq—1°"" 80
CT‘—qu 0

which proves the first part of the statement.

For the second part, let us define maps =, for all integers r by ~v,(n) = ¢(q(...q(g(n) +
50)...) + Sky—1) + sk, for all n € N if r = 5,5, —1.--50. Then there is an equality for all r:

Cy,.(0) Crp(1) Cryp(24%) ap a1 ... Qggk
Cy,.(0)—1 Crp()=1 - Cy(2gh)—2¢% | r.r r 0 ag .. Aggk_1
T TSk Sky—1""" SO
Cyr(0)—2¢%  Cyp(1)—2¢k -+ Cyp(2¢F)—24* 0 0 .. aop

But the the last matrix in the above equality is constant and invertible, so each element
of a matrix g € G is a finite linear composition of elements in the sequence (¢, )neN, SO
the finiteness of elements in (¢y,)neN is equivalent to the finiteness of elements in G. And

using the fact that (c,)nen is an automatic sequence, we conclude the statement. O

Proposition 4.5. For given integers g > 2 and d > 0, there exist finitely many polynomials
of degree d defined over the field of rational numbers Q, such that [[52, p(z?) = Yoy c;xt

1S a q-automatic power series.

Proof. Suppose that the sequence (¢, )nen generated by [[02, p(@?) = 0%, ¢zt is auto-

matic. Let us consider a sequence of matrices (I'y)nen, such that I'; are defined as above



62 CHAPITRE 4

fori=0,1,..,g —1land I'y;y; =I;I'; foralli > 1 and j = 0,1,...,q — 1.

It is easy to see that this matrix sequence is automatic because G is finite. And also the
automata of this matrix sequence is the same as the one of (¢, )nenN, because ¢, is exactly
the element at the position (1,1) of the matrix I',,. To conclude the statement, we have
to prove two things: firstly the number of automata generating the sequences (I'y)nen is
finite, secondly, the output functions for each automaton are also finite.

For the first point, it is enough to show that |G| is bounded by a function depending
only on d and ¢, which is proved by Theorem 1.3 of [33|. It says that given naturals n and
k, there exist, up to semi-group isomorphism, only a finite number of finite sub-semi-groups
of M, (F) generated by at most k elements.

For the second point, it is a consequence of Proposition 4.3. 0l

Proposition 4.6. Let f be a polynomial satisfying the hypothesis in Proposition 4.5, then
all its coefficients belong to Z.

Proof. Let us denote by d the degree of f and write down all coefficients of f in the form

a; = Z—Z_' such that (p;, ¢;) = 1, and similarly for all coefficient of F', let us write down ¢; = ;—:
with (r,¢;) = 1. If there are some coefficients of f which are rational numbers but not

integers, then there exist a prime p and two integers d; and ds satisfying :
d; = max {t!t e N, Elqi,pt]qi}

and
doy = max{t\t € N, Elti,pt|ti}

with di > 0,ds > 0. In fact, because of the hypothesis, there exists a; = q—? with ¢; # 1.

So there exists a prime p such that p|g;, thus d; # 0. Let us suppose a; = Z—j with the

smallest index such that p® |gj. Now let us check

c; =aj + E agCg-

qk+s=73,k>0

If ¢; = % with plt; then dy > 1; otherwise, there are some ay, c; such that pdl\qktj, but
with the assumption of smallest index, p? { ¢, so p|t; thus dy > 1.
Let I3 be the smallest index such that p®|q, and similarly let Iy be the smallest index

such that p®|s;,. Now let us consider the coefficient cj,q+1,, which can be calculated as

Clag+ly = § : a;Cj.

0<i<d,qj+i=l2g+l1

Let us consider the sum at the right-hand side, for any couple of (a;,¢;), if ¢ < t1, then

p® 1 ¢;, the maximality of dy leads to p?1+d2 ¢ qitj; similarly, if ¢ > t1, then j < to thus
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p® 1 t;, so that ph+d2 t gt but if 4 = ¢, then j = to, so p¥|g; and p®|t;. As a result,

pitd2|ey, 1y, contradicts the maximality of da. O

4.4 Rational functions generated by infinite products

Here we consider the following question: for a given polynomial p and an integer ¢, when
does F(z) = [[32,p(z?) equal a rational function. This question has already been studies
in [16] when restricting the polynomial to the cyclotomic case, this section can be considered

as a generalization of the previous work.

Proposition 4.7. Let p be a polynomial taking coefficients over C and q be an integer
larger than 1, then there is an equivalence between:

(1) TIZ o p(z9°) is a rational function.

(2) there exists a polynomial Q(x) such that p(x) = %(éq)) and all roots of Q(x) are
roots of unity, if § is a root of Q(x) then 87 s a root of Q for all t € N.

Proof. (2) implies (1) is straightforward, let us check (1) implies (2).
Let F(z) = [[22,p(z9") be a rational function, say F(z) = %, where P(z) and Q(x)
are coprime, using the functional equation F'(x) = p(z)F(z9), we get

P(z)Q(z?)
P(x9)Q(x)

As deg(p(x)) > 0, so that deg(Q(x)) > deg(P(x)), and P(z?)|P(z)Q(z?) if deg(P(zx)) > 0,

then P(z9) and Q(x?) should have at least one common root, which contradicts that P(x)

= p(x).

and Q(x) are coprime, so we have

1
Fo) = 0w
and ()
p(z) o)

Now let us study the roots of Q(z), let us suppose 0 < |r1| < |ra| < ... < |rp| where
r; are the roots of Q(x) and |r;| is the modulus of r;. Firstly |r,,| can not be too large, if
|rm| > 1 then each root of Q(z?) should have a modulus strictly smaller than |ry,|, on the
other hand Q(x)|Q(x?), which is impossible. For the same reason, |r1| can not be a real
number between 0 and 1. So |r;| are either 0 or 1, but if z|Q(x), the infinite product of
p(z) will not converge, so |r;| = 1 for all roots of Q(x). Using once more Q(z)|Q(x9), if §
is a root of Q(x) then it is a root of Q(x%) which implies 67 is a root of Q(x), we can do
it recursively and we obtain 67" is a root of Q for all t € N, as a corollary, J can only be a

root of unity. So we prove (2) using (1).
O
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4.5 Infinite product of inverse of polynomials

In this section, we consider the power sequence defined as follows:

o0
5 Zciajz,

p(x =0

~
&
I
8
I

s=0

where ¢ is an integer larger than 1 and p = Y 1, bz’ is a polynomial such that p(0) = 1
defined as before.

Such a sequence satisfies the functional equation

Fz) = p(lx)p(g;q).

If we write ﬁ = >0y a;x’, then

n
Con+i = E QAgj+iCn—j,
Jj=0

for all n € N and 7 such that 0 <7 <g¢g—1.

Proposition 4.8. If the coefficients of the power series F(x) = [[.2, p(mlqs) =Y, et

take finitely many values in C, then the roots of f are all of modulus 1.

Proof. Firstly, let us prove that the moduli of all roots of p are not smaller than 1. Other-
wise, let us chose one of those which have smallest modulus, say «, because of the above

definition, we can conclude that

p(a¥) #0

for all k£ larger than 1.

Let us consider the equality,

oo 1 ) .
II;0m = 2 e
=0

o b))«

the right-hand side converges when = tends to o while the left-hand side diverges, in fact

[132, -1+ converges to a non-zero value because
5=1 p(a?”)

o0

log(]T p(;(f)) =— Z:llog(p(of’s))

s=1

which converges, however, has a pole at = = a.

1
p(z?®)

Secondly, let us prove that the moduli of all roots of p are not larger than 1. Otherwise,
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let us chose one of them, say 3, and an integer ¢ such that |8|¢ > |a|/|b] + 1, where |a]
is the largest modulus of the sequence (¢;);en and |b] is the smallest non-zero modulus of

this sequence. Now consider the following series

1 =~ 1 >
l—ng(mqs):;dix'

It is easy to see that {d;|¢ € N} is finite, because such a series can be obtained by multi-

plying a polynomial to F'(x), but on the other hand, we have the inequality,

i i—1
t; ‘s y
ldgril = 1> BT gl = —lal > 1877] + [b]|B77] > 0
§=0 §=0

which diverges. This contradicts the fact that {d;|: € N} is finite. In conclusion, the roots
of f are all of modulus 1.

O
Proposition 4.9. If the power series F(x) = Hioﬁ = Y X,z is a g-regular
sequence, then the roots of p are all roots of unity, furthermore, the order of each root is
multiple of q.

Proof. If F(x) = []o2, ﬁ = >, ciz' is a g-regular sequence, then F'(x) = > 50, cjiz'™!

is also g-regular. On the other hand, we know ﬁ = [12,p(z?) is g-regular, so

F'(x
F(z)

is g-regular. In the same way we have (log F'(2?))’) is g-regular so that

~—

= (log F(z))'

,_P'(x)
p(x)

is g-regular, then we conclude by Theorem 3.3 [4] that all roots are roots of unity.

(log F(x))" — (log F'(x7))

To prove the second part, we use a method introduced in [8]. We firstly define some

notation. Let us denote by A;; the operator of power series:
o0 o0
, L
A aal) = agey I
§=0 §=0
for all 4 such that 0 < i < ¢* — 1.
If there exists a root of p which’s order is not a multiple of ¢, say «, then for all formal

power series f, let us define ord(f(x)) to be the order of pole of f at point a. It is easy
to check that there exists a t € N such that for all f € F[[z]], ord(f(z)) = ord(f(z9")) so
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there are some ¢ such that ord(f(x)) < ord(A:i(f(x))).

Now let us define a sequence of power series (s;);en and a sequence of integer (I;)ien
such that sp = 1, 0 < [; < ¢' — 1,Vi and ord(A;,(=5)) > ord(pf;)) and we define

p(z)
sit1 = Ar, (=7 e )) 80 we can easily check

") F(x) = s Fla),

Alz(SZF(:B)) = AL;(p ZL‘)

and by induction

A Ap, A (F(z)) = siv1 F(z).

However,

ord(s;) < ord(sit+1),
the sequence s; are linearly independent, so F'(x) can not be a regular sequence. O

Theorem 4.1. If the power series F(x) = [[o2, p(mlqs = > 20 cix’ is a g-regular sequence,
|

)
%(( q)), so F(x) can be written as

) [ R=9),
=1

where R(x) = Qgc()g?()x), which 1s a polynomial.

then there exists a polynomial Q(x) such that p(x)

4.6 Applications

In this section we will consider some examples of automatic power series of type

)
IR
i=1

where p is a polynomial of degree d with coefficients in Q and [ > 2. It has been proved
by Proposition 4.5 that the number of such polynomials p is fixed once given the degree d
of the polynomial and . But when [ and d are both large, it will be difficult to compute
the semi-group of matrix discussed in Section 4.2. Here we show a method applied on a
particular example to generate the couples (p,1) such that [[22,p(z") = Y22, ¢zt is an
automatic power sequence.

Let us consider firstly the power series Fy(x) defined by pi(z) = 1 + 2 — 23 — 2* and
[ =2, it is easy to check that

o [e.e]

=[[em@®) =]]a+2*) [Ja - ).
s=0

s=0 s=0
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And it is well known that []32(1+2%) = -1 =30, 2f and [[22,(1—2%) = 3272, bua?,
where (by,)nen is the Thue-Morse sequence beginning with 1, —1. So the coefficient of term

2™ in Fy(z), say fi(n), can be calculated by

filn) =) b

3i<n

The sequence (f1(n))nen is bounded because of the fact that ba,41 + bey, = 0, so Fi(x) is
a 2-automatic power sequence. Moreover the transition matrices I'y and I'g can be defined
by

Con Cn 1 0 —1 Cn
Con—1 Cn-1 01 -1 Cn—1
Con—2 Cn—2 01 0 -1 Cn—2
Con—3 Cn—3 00 1 -1 Cn—3

Con+1 Cnp 1 -1 0 0 Cnp
Con Cn—1 1 0 -1 0 Cn—1
Con—1 Cn—2 0 1 -1 0 Cn—2
Con—2 Cn—3 0 1 0 -1 Cn—3
Remarking that
1 -1 -1 1 1 -1 0 0
O 0 -1 1 1 -1 -1 1
I§= Thlo = ;
o 1 -2 1 0o 0 -1 1
0O 1 -1 0 0 -2 1
1 -2 0 0O -1 1 0
1 -1 0 O 1 -2 1 0
Ll = %= :
1 -1 -1 1 1 -1 0 O
0O 0 -11 1 -1 -1 1

let us consider the the power series Fy(z) defined by pa(z) =1+ + 2% — 2 — 25 — 226 —
27— a8+ 210+ 2 4+ 212 = (22 4+ 24+ 1) (2% — 1)(2? — 1) and | = 4, the transition matrices

of this polynomial are

1 -1 -1 1 0 1 -1 0 00
0O 0 -1 1 0 1 -1 -1 1 0
ap=|0 1 -2 1 Ofag=1]0 0 -1 1 O
0 1 -1 0 O 0 1 -2 120
0o 1 -1 -1 1 0 1 -1 00
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1 -2 1 00 0 -1 1 00
1 -1 0 00 1 -2 1 00
a=11 -1 -1 1 0jJaz=1]1 -1 0 0 O
0 0 -1 1 0 1 -1 -1 10
0 1 =210 0 0 -1 10

If we define a sequence of matrices (ap)neN by Quanti = ana;, 0 < i < 3, then the n-th

coefficient of Fy(z) is fa(n) = an(1,1). However the matrices oy for ¢ = 0,1,2,3 are all
A; 0

of form ! with A; of size 4 x 4, B; of size 4 x 1, C; of size 1 x 1 and 0 the 0-
i G

matrix of size 1 x 4, so a,(1,1) can be calculated only by the multiplications between A;.

Remarking that this four matrices are nothing else then F%,Flf’o, F0F1,F(2), we conclude

that the sequence (f2(n))nen is bounded so 4-automatic.
By the same method, the power series F3(z) defined by p3(z) = 1+ 4+ 22 —2* — 2% +
27+ 28— 20 — 2™ 212 = (22 4 2+ 1) (2% 4+ 1)(1 — 2%) and [ = 4 is also 4-automatic. In

fact, its transition matrices are

1 -1 1 -1 0 1 -1 0 0 0
0o 0 1 -1 0 1 -1 1 -1 0
Bo=]10 1 0O -1 O |[Bi=]0 0 1 =10
0 1 -1 0 O 0 0 -1 0
o 1 -1 1 -1 0O 1 -1 0 0
1 0 -1 0 0 0o 1 -1 0
1 -1 0 0 O 1 0 -1 0 0
Bo=11 -1 1 -1 0]|B3=1|1 -1 0O 0O 0
0 0 1 -1 0 1 -1 1 -1 0
0 1 0 -10 0 0 1 =10
and once more they are of form <gz CO' ) with Ag = —T'gl'oI' Iy, A1 = —T'1 ToI'glg, Ao =

Lol Toly, Az = I'1 T Tpl.

Furthermore, as

00 , . AV e
81;[()(@2)‘” +1) (=" +1) 251;[0 (xfs - 11 - 1ix
we have
B = s s s (xhH)* —1 B = s s s
(1-)Ba(e) = [L () ) (@ D e e = L@ =607 @) 41

s=0 s=0
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R T s (zH)* —1 R s - s
(1—z)F3(z) = Sl;[()(($2)4 +2t 1) (%) +1)((x2)45 D@D SZO—(w9)4 @) = ()" 1.
Proposition 4.10. The power series

By(x) = [T(@)" + 2% + (@) - ()" - 1)
s=0
and -
Fy(x) = [T(@)" + 2% + D))" + )(= " +1)
s=0

are 4-automatic.
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Chapter 5

Palindromic length complexity and a
generalization of Thue-Morse

sequelnces

5.1 Introduction

The notion of palindromic length of a finite word as well as an infinite word was first
introduced by Frid, Puzynina and Zamboni [25]. They conjectured that if the palindromic
length of an infinite word is bounded, then this sequence is eventually periodic. This
conjecture is widely studied in [25][23][6], and the palindromic length of some specific
sequences are studied as well: Frid [23] showed that Sturmian words have an unbounded
palindromic length PL, and Ambroz and Pelantova 6] showed that PL,, grows arbitrarily
slowly. |7] studied palindromic lengths of fixed points of a specific class of morphisms and
gave upper bounds for the Fibonacci word and the Thue-Morse word. In this article, we
give a formal expression of the palindromic length of Thue-Morse sequence and find all
sequences which have the same palindromic length as Thue-Morse’s. After writing a first
version of this paper, we found that some results in the same direction were obtained by
Frid |24] for Thue-Morse sequences. However, we will indicate how our results can be

applied for a type of generalization of Thue-Morse sequences.

5.2 Definitions and notation

Let (an)nen be a sequence and let us define a (finite) word, or a factor, of a sequence to

be a (finite) string of the sequence. Let wy(x,y) denote the factor of the sequence (an)nen

beginning with a, and of length y, in other words wq(z,y) = @zGz11---Grry—1-

Let w denote the reversal of w, that is to say, if w = wowy...wy then w = Wrwg_1...wo,

71
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we say a word w is palindromic if w = w. Let Pal denote the set of all palindromic words.

We define the palindromic length of a word w, which will be denoted by |w|pq, to be:

|W|par = min {k|w = p1pa...pk, p;i € Pal, Vi € [1,k]},

in this case we say w = p1p2...pk, p; is an optimal palindromic decomposition of w.

Let us define the palindromic length sequence (ply(n))nen of the sequence (ay)nen to
be

pla(n) = ’wa(ov n) |palv

in other words, pl,(n) is the palindromic length of the word apai---a,—1.

Now let us define a class of infinite sequences C which can be considered as a general-
ization of the Thue-Morse sequence:
Let )" be an alphabet which contains at least two letters and let a € > .
Let F' be the set of bijections over » .
Let (fn)nen be a sequence over F' and (wy,)nenN be a sequence of finite words over > which

are defined recursively as:
fi € F such that fz(wz) # w; Vi >0,
and
Wy = a
Wy, = Wp—1 fn—1(Wn—1) fn—1(Wn—1)wp—1,Vn > 0.

Let f(a) be the limit of the sequence (wy,),en Which exists because of the definition.
The class C is the set of all infinite limits defined as above. It is easy to see that, if the
size of ) is equal to 2, say Y = {a, b}, then all sequences in C are Thue-Morse sequences,

they may be written as
a,b,b,a,b,a,a,b,b,a,a,b,a,b,b,a...

and the one by changing a to b and b to a. Let (pl(n)),en be the palindromic length

sequence of Thue-Morse, the first elements of this sequence are

1,2,2,1,2,3,3,2,3,4,3,2,3,3,2,1...
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5.3 Palindromic length of sequences in C

In this section we will study palindromic lengths of sequences in C and prove that they all

have the same palindromic length, as the one of Thue-Morse.

Let (an)nen be a sequence in C, we will begin with some properties of palindromic

factors of this sequence.

Lemma 5.1. For any integer x, wq(4x,4) is of type abba such that a # b.
As a corollary, a(2n + 1) # a(2n).

Proof. This lemma is trivial because of the definition. O

Lemma 5.2. Let wy(x,y) be a palindromic factor of a sequence in C such that y is odd,

then y is either 1 or 3.

Proof. If we(z,y) is of size larger than 3, then it contains at least one palindromic word
in the center of size 5, however a word of size 5 should be inside a word of type zyyxzyyx
or xyyxf(x)f(y)f(y)f(x),where f is a bijection over the alphabet defined as above, but

none of them contains a palindromic word of such a size. O

Lemma 5.3. Let wy(x,y) be a palindromic word of (an)nen such that y is even, then
either there exist z,r € N such that wq(x,y) is embedded into the center of palindromic
word we(4z,4r), that is to say 4z < x,x+y < 4dz+4r and v —4z =4z +4r —x —y, or
=3 mod4 and y =2 mod 4.

Proof. We first prove that x+y/2—1 is odd, otherwise z+y/2—1 = 2t and x+y/2 = 2t+1

for some t, so that ag; = a1 contradicts to Lemma 5.1. This fact implies that

ifr=0 mod4thenxz+y—1=3 mod 4
fr=1 mod4thenx+y—1=2 mod 4
ifr=2 mod4thenx+y—1=1 mod 4

\ifl‘E?) mod 4thenz+y—1=0 mod 4.

For the last case, we have x =3 mod 4 and y = 2 mod 4. Now let us check that, for other
cases, the word wy(x,y) can be embedded into the center of a palindromic word of type
wq(4z,4r). Let wg(4z,4r) be the shortest factor of above type including w,(x,y), here
we prove that this factor is palindromic. It is easy to see that w,(x,y) is at the center of
weq (42, 4r) and the word w,(4(z+1),4(r —1)) is palindromic because of the palindromicity
of wq(x,y); furthermore we have the fact that w,(42,4) = we(4(z +r —1),4) when = # 3
mod 4, because these two words of length 4 are both palindromic and uniquely defined
by respectively a prefix or a suffix of w,(x,y) of size smaller than 4 but larger than 1. In

conclusion, the word w,(4z,4r) is palindromic. O]
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Lemma 5.4. Let w,(0,s) be a prefic of (an)nen in C, and let wq(0,s) = p1p2...pr be an
optimal palindromic decomposition such that for all i : 1 < ¢ <r, p; is either singleton or
can be embedded into the center of palindromic word of type wqa(4z,4t), then there exists at

least one optimal palindromic decomposition of wq(0,s) of following forms:

= q1q2...¢;;5 =0 mod 4;
=q1q2...q¢r—1t1;8 =1 mod 4;

= q1G2...¢r_ot1l1;s =3 mod 4;

(0,s)
(0,s)
wa(0, ) = q1q2...qr—2tit2; s =2 mod 4;
(0,s)
(0,s)

= q1q2---qr—3t1t2l1;5 =2 mod 4;

where q; are palindromes of length 4k;, t; are singletons and 11 are palindromes of length
2k.

Proof. Let us consider a factor of (ay)nen of type rqige..qy where 1 < |r| < 2 beginning
at some position 4x where g; are palindromic words of even size and can be embedded into
the center of palindromic word of type w,(4z,4r). Here we prove that there exists an other

palindromic decomposition of same length such that

rq142..921 = q/1q/2--féﬂ’7

where all ¢, are of size 4k;.

As ¢ is palindromic, because of Lemma 5.3, rq17 is also palindromic, let us denote this
word by ¢, its size is multiple of 4. By excluding the case that |r| = |g2| = 2, ¢2 can be
written as rghr, where ¢} is either a palindromic word of size 4m or empty, so we have the
equality rq1q2 = ¢|¢5r and the last r begins at some position 4z. We do it recursively and

we end up with the expression 7¢1¢2..g21 = ¢1¢5.-d);7

In such a way we can accumulate the singletons in the decomposition wg,(0,s) =
p1p2...pr and push them to the end. An easy observation is that there are at most two
singletons in an optimal decomposition, since once there are three singletons, they will
meet each other by the above algorithm in a block w,(4k, 41) hence two of them will create

a palindromic word of length 2 which contradicts the optimality. The above process ends



5.3. PALINDROMIC LENGTH OF SEQUENCES IN C 75

up with five possibilities:

= q192---9r;
= q192---Gr-1t1;

= q1q2..-qr—2t1l1;
= q1G2...qr—3t1t2ly;

(0,s)
(0,s)
we (0, 8) = q1G2...qr—2t1t2;
(0,s)
(0,s)

where ¢; are palindromes whose lengths are multiple of 4, ; are singletons and [; are
palindromes whose lengths are multiple of 2.

The first case leads to s = 0 mod 4; the second one leads to s = 1 mod 4 and the
third one leads to s = 2 mod 4; for the fourth one we can check that |l;| # 0 mod 4
because of Lemma 5.3, so that s = 3 mod 4; the fifth case, |l;| must be a multiple of 4,
80 s =2 mod 4.

O

Corollary 5.1. Let (pl(n))nen be the palindromic length of a sequence in C such that all
its prefizes admit an optimal palindromic decomposition satisfying the constrains listed as
in the previous lemma, then for all k > 0:

pl(4k + i) > pl(4k 4+ 3) + 1 for i = 1,2 and pl(4k) > pl(4k + 3).

Proof. For i = 0, we(0,4k + 1) is of the form ¢ig2...q-t1. Using Lemma 5.1 we have
wq(0,4k + 4) = q1q2...q-q is a palindromic decomposition, not necessarily optimal, with
q = we(4k,4), so pl(4k + 3) < r + 1 = pl(4k)

For i = 1, there are 2 cases: if w,(0,4k+2) is of the form ¢1¢2...q,t1t2, then using Lemma
5.1 once more we have w,(0,4k + 4) = q1¢2...qrq is a palindromic decomposition, with
q = we(4k,4) = titataty; if wy(0,4k + 2) is of the form ¢1qs...qrt1t2l1, using the hypothesis
we have w,(0,4k + 4) = q1¢2...grq is a palindromic decomposition, with ¢ = t1talitat;.

For i = 2, wy(0,4k + 3) = q1g2...qrt1l1, using the hypothesis we have w,(0,4k 4+ 4) =
q192---Grq is a palindromic decomposition, with ¢ = t1l1t;.

So all inequalities as above are proved.

O

Lemma 5.5. Let w,(0,k) be a prefix of (an)nenN, then there is an optimal decomposition
we (0, k) = p1p2...ps such that none of these palindromes is of length 3, furthermore, if p; is

of even size then it can be embedded into the center of palindromic word of type wq(4z,4r).

Proof. Let us suppose that k is the smallest number such that w,(0, k) does not satisfy
one of the two constrains above, then either the last palindromic factor in all optimal
compositions is of length 3, or it can not be embedded into the center of palindromic

word of type wg(4z,4r). If it is in the first case, then the last factor can be either
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G4t—104t04¢+1 OF Ggz—aaq—1a4¢- 1f kK = 4t + 2, use the hypothesis that the last factors
in all optimal decompositions of w, (0, k) are the same, which is Ggz—1asaa:11, we can de-
compose wq (0,4t + 2) as wq (0,4t + 2) = we (0,4t — 1)p with p = agz_1a4¢a41+1, S0 that the
palindromic length is pl(4t + 1) = 1+ pl(4t — 2). However, if we decompose the same word
as we (0,4t + 2) = we(0, 4t)agraq+1, we have a length pl(4t — 1) 4 2, so that

pl(At+1) = 14 pl(4t — 2) < pl(4t — 1) + 2.

Similarly for the case that k = 4t + 1, by considering the decomposition w, (0,4t + 1) =

wq (0, 4t)aqy, we have
pl(4k) = 1+ pl(4k — 3) < pl(4k — 1) + 1,

Both inequalities contradict the previous corollary.

If the last factor can not be embedded into the center of a palindromic word of type
wq(4z,4r), then because of Lemma 5.3 it can be found at some position Ggz_1aa¢...aq;, SO
the optimal decomposition is wg (0, 41) = we (0, 4t — 1)ag;_1a4..-a4;. However, if we consider

another composition wy(0,4l) = we (0, 4t)agas..-az—1a4;, we have
pl(4t —2) +1 < pl(4t — 1) + 2,

which contradicts the previous corollary.

Corollary 5.2. Corollary 5.1 is valid for all sequences in C.

Lemma 5.6. The palindromic length sequence (pl(n))nen satisfies for k > 0:
pl(4k + 1) < pl(4k + 3) + 2,

when i =0 or 1; and
pl(4k +2) < pl(4k + 3) + 1.

Proof. Let wy(0,4k + 4) = p1ps...ps be an optimal palindromic decomposition such that
all p; are of size 4r; which exists because of Lemma 5.5.
If the size of p, is larger than 4, then for ¢ = 1,2 or 3, we can write p; = aba where a

is the prefix of p, of length 4 — ¢ so in this case
wq(0,4k + i) = p1p2...ps—1ab

and |alpe = 2 when ¢ = 3 and |a|pq = 1 otherwise.

If the size of py is 4, then for i = 1,2 or 3, we can write p;, = ab where a is the prefix
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of ps of length ¢ so in this case
wa(0> 4k + Z) = p1p2---Ps—1a

and |a|pg = 1 when @ = 1 and |a|pq = 2 otherwise. In both cases the above inequalities
hold. O

Lemma 5.7. Let (an)nen be a sequence in C defined over the alphabet Y, let f be a
bijection from 24 to a new alphabet >_', then the sequence (by)nen defined as

by, = f(@anGant10an+20an+3) Vn € N

is also in C. As a consequence, wy(0,4t) = pipe2...px is an optimal palindromic decom-
position of wq(0,4t) if and only if wp(0,t) = f(p1)f(p2)...f (k) is an optimal palindromic
decomposition of wy(0,t) and the palindromic length sequence (pl(n))neN satisfies for k > 0:

pl(4k + 3) = pl(k)

Proof. The first part is easy to check by induction. For the second part, applying the
algorithm introduced in Lemma 5.3 to w,(0,4k + 4), we get an optimal decomposition
such that all palindromic words in the optimal decomposition are of size 4k; and begin at
some position 4r;. Applying f to w,(0,4k + 4) as well as each palindromic factor, we get
a decomposition of a word of length k + 1, which is a prefix of the sequence (b, )nen, this

decomposition is optimal because of the bijectivity of f. O

Corollary 5.3. The palindromic length sequence (pl(n))nen satisfies for k> 0:
pl(4k + 3) = pl(k)

pl(4k +2) = (4k +3)+1;

pl(4k + 1) = pl(4k + 3) + 1 or pl(4k + 3) + 2;

pl(4k) = pl(4k + 3), pl(4k +3) + 1 or pl(4k + 3) + 2

Proposition 5.1. The palindromic length sequence (pl(n))nen satisfies for k > 0:
pl(4k +1) = pl(4k +3) + 1 if k =0 mod 4;
pl(4k +1) = pl(4k +3) + 2 if k = 2,3 mod 4;
pl(4k + 1) — pl(4k + 3) = pl(k) — pl(k +2) if k=1 mod 4;
pI(AE) = pl(k— 1) + 1.

Proof. If £k = 0 mod 4, applying the bijection introduced in Lemma 5.7, the optimal

decomposition of wq(0,4k + 4) is we(0,4k)a1,0a% 110461204813, SO that w,(0,4k + 2) =
wq (0, 4k)aag a1 is a decomposition of w,(0,4k + 2). As a result, pl(4k + 1) < pl(4k —
1) +2 = pl(dk + 3) + 1.
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If k=2,3 mod 4, it is enough to prove that the last factor in any optimal palindromic
decompositions of wg(0,4k + 4) is of length larger than 4. This is trivial by applying the
bijection f to wy(0,4k + 4) and concluding by the classification in Lemma 5.4.

If k=1 mod 4, applying the bijection introduced in Lemma 5.7 and Lemma 5.4, the
optimal decomposition of w, (0, 4k+4) is either of type p1pa...pxt1te or of type pipa...prtital,
with p; and [ of length 16r; and ¢; of length 4. The first case implies pl(4k+1)—pl(4k+3) =1
while the second case implies pl(4k + 1) — pl(4k + 3) = 2. However, if we apply f to
we(0,4k + 4) we get a word of length k + 1 and pl(k) — pl(k + 2) = 1 in the first case and
pl(k) — pl(k +2) = 2 in the second case.

The last equality is a consequence of Lemma 5.4 and Lemma 5.7. O

Proposition 5.2. All sequences in C share the same palindromic length sequence (pl(n))neN-

Furthermore, this palindromic length sequence is 4-regular.

Proof. The 4-kernel of (pl(n)),eN is generated by the elements in

{(Pl(n))nen, (PU(n = 1))nen, (P12 + 1))nen; (0(12) JneN, (Dnen} ,

where the sequence (b(n)),en is defined by b(n) = pl(4n + 1) — pl(4n + 3). By definition,
the sequence (b(n))nen satisfies relations b(4n) = 1, b(4n + 1) = b(n) and b(4dn + 2) =
b(4n + 3) = 2. Les us define matrices I'; by

(pl(4n+i—1))nen (pl(n —1))nen
(pl(4n +))nen (pl(n))nen
(pl(dn+i+1))nen | = Li | (pl(n +1))nen
(b(4n + i) )nen (b(n))nen

(l)neN (1)neN

for ¢ = 0,1, 2,3. Using relations determined in Corollary 5.3 and Proposition 5.1, we have
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So that the I'; can be determined as follows:

Proposition 5.3. Let k be a positive integer, then for any integer i = 0,1, 2, ...

10 000 10001
10001 01010
I'p=10 1 0 1 0|I'=]0 10 10
00001 00010
0 0001 00 001
01010 01001
01001 0100O0
'y=10 100 0]I's=|0 10 0 1
0 000 2 00 0 0 2
0 0001 00001

In(n)

i) < pl(16k — 1) + 3. As a consequence, limsup pl(n) = 31n(16)'

Proof. Using Proposition 5.1 and Corollary 5.3, we have: pl(16k—1)
pl(k —

1), furthermore,

pl(16k)
pl(16k + 1)
pl(16k + 2)
pl(16k + 3)
pl(16k +4)
pl(16k + 5)
pl(16k + 6)
pl(16k +7)
pl(16k + 8)
pl(16k + 9)
(
(
(
(
(
(

pl(16k + 10
pl(16k + 11
pl(16k + 12
pl(16k + 13
pl(16k + 14
pl(16k + 15

= pl(4k — 1)+ 1 = pl(k —
— pl(16k 4+ 3) + 1 = pl
= pl(16k 4+ 3) + 1 = pl
= pl(4k) =
:pl(16k+3)+1—pl(k—1)+2
< pl(16k +4) +1 < pl(k —1) +
(
(
(
(

~— ~— ~— ~— ~— ~~—

1) +1
k) + 1 = pl(k —
k—1)+2

( 1) +2
(

pl(k —1)+1

= pl(16k +7) +1—pl(4k+1)+1<pl(4k)+2—pl(k:
= pl(dk +1) < pl(k — 1) +
=pl(4k +1) < pl(k — 1) +
= pl(dk +2) =

pl(k)+1<pl(k—1)+1

= pl(16k + 11) + 1 = pl(4k + 2) + 1 = pl(k) + 2 < pl(k —
pl(4k +2) < pl(k — 1) +2

pl(4k +2) +1 < pl(k —1)+3

pU(16k + 15) + 2 = pl(k) + 2 < pl(k — 1) + 3

pl(16k +15) +1=pl(k)+ 1 <pl(k—1)+2

pIR) < pllk— 1) + 1.
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O

15, pl(16k+

= pl(16(k—1)+15) =

1)+3

1) +3
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The first part of the statement is a straightforward consequence of above equations, fur-
thermore, we have lim sup pl(n) < 311;11((1%)).

On the other hand, if we define a sequence (k(i));en by k(1) =5, k(i+1) = k(i) x 16+9,
In(n)

In(16

then we can get easily pl(k(i)) = 3i. consequently lim sup pl(n) = 3

R

O

Remark Lemma 5.7 and Proposition 5.1 are critical in the proof because they show the
importance of the hypothesis that f,(w,) # w,. Because of this hypothesis, we can
guarantee that the set C is closed under bijections (and their inverses) defined in Lemma
5.5, and do not have factors like aaaa in the sequence. So that we can apply some inductive
properties by saying that wg (0, 4k+4) and wy(0, k+1) share the “same” optimal palindromic

decomposition, which is the key point to make Proposition 5.1 work.

Corollary 5.4. pl(n) +1 > pl(n +1);

if there exists an integer n satisfying pl(n) +2 = pl(n + 1) + 1 = pl(n + 2), then n = 3
mod 4;

if pl(4k) = pl(4k + 3) then pl(4k + 1) = pl(4k + 2) = pl(4k + 3) + 1;

if pl(4k) = pl(4k + 1) then pl(4k) = pl(4k + 1) = pl(4k + 3) + 2.

Proof. The first statement is trivial because of a decomposition w,(0,n + 2) = we(0,n +

1)an+1.

For the second statement, remarking the fact that pl(4k + 3) = pl(dk + 2) — 1, we
have either n = 3 mod 4 or n +3 = 3 mod 4, but if we are in the last case, then
pl(n)+2 =pl(n+2) = pl(n+3) + 1 so that pl(n+3) > pl(n) which contradicts Corollary
5.3.

For the last two statements, pl(4k) = pl(4k+3) implies that the last palindromic factor

in optimal decompositions of wg (0, 4k+4) is Ga;Gak+10ak+20ak+3 Which proves pl(4dk+1) =
pl(4k+2) = pl(4k+3)+1. On the contrary, if pl(4k) = pl(4k+1) then pl(4k) # pl(4k+3),
so that the last palindromic factor in optimal decompositions of wg (0, 4k + 4) is of length
larger than 4, which leads to the fact pl(4k) = pl(4k + 1) = pl(4k + 3) + 2. O]

5.4 All sequences sharing (pl(n)),en

In this section, we are going to prove that all sequences sharing the same palindromic

length (pl(n)),en defined in the previous section are exactly the sequences in C.

Lemma 5.8. Let (by)nen be a sequence such that all words wy(4k,4) are of form zyyx,
then
1) if wy(a,b) is a palindromic word and b is odd, then b < 3, furthermore, if b = 3, then
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a=3o0r0 mod 4.
2) if wp(a,b) is a palindromic word and b is even, then a +b/2 — 1 is odd.

Proof. Tt is analogous to Lemma 5.2 and Lemma 5.3. O

Lemma 5.9. Let (by)nen be a sequence such that its palindromic length sequence coincides

with (pl(n))nen, then all word wy(4k,4) are of form xyyx with x # y.

Proof. We prove the statement by induction:

Firstly the statement holds for s = 0. Suppose that this statement is true for all s < s,

we will prove it for s = sg + 1.

Let us consider a decomposition wy(0,4s9 + 4) = p1pa...p, such that r = pl(4dsg + 4),
and let n denote the length of p,.
Firstly n can not be too small: if n < 4 then pl(4so+3) = 1+ pl(4so+3—n) > pl(4so+3)
which contradicts Corollary 5.2.
Secondly, if n is odd then it can not be too large: if n = 2ng + 1 and ng > 4 then
wp(4sp + 6 — 2ng, 2ng — 7) is a palindrome of odd size larger or equal to 3 and finishing at
the position 4sy — 1, which does not exist because of the Lemma 5.8.
Thirdly, if n is even and large enough: if n = 2ng and ng > 4, then, because of Lemma
5.8, n is a multiple of 4 and wy(4sp — 1,4) is the inverse of some word zyyz.

So there are 5 other cases to study: n =4,5,6,7,9.

When n = 4, wy(4s0,4) is either of type xxzx or xyyzx, and pl(4so—1)+1 = pl(4so+3),
if wy(4s0,4) is of type xaxzz then wy(0,4s0 + 3) = wy(0,4s0)zzrr so pl(dsy + 2) <
pl(4sg — 1) + 1 = pl(4sp + 3), contradicting Corollary 5.2.

When n = 5 or 6, pl(4so +3) = pl(4so +3 —n) + 1 > pl(4sg — 1) + 1, however,
pl(4s0 + 3) < pl(4sg — 1) + 1, contradiction.

When n = 7, pl(4so + 3) = pl(4dso — 4) + 1 = pl(4sp — 5) + 2. On the other hand,
pl(4sp — 1) < pl(4sp — 5) + 1 and pl(4so + 3) < pl(4sp — 1) + 1, so

pl(4sg +3) = pl(4sg — 1) + 1 = pl(4so — 5) + 2. (*)
After Corollary 5.4, 4sp —4 =0 mod 16 and
pl(4so +7) = pl(4so + 3) or pl(4dsp + 7) = pl(4sp + 3) — 1 (xx).

If we write wp(0,4s0 + 4) = wy(0,4s9 — 4)abbazxabdb let us consider the last palindromic
factor of wy(0,4s0 + 8):
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1) The length can not be smaller than 4, otherwise pl(4so+7) = pl(4so+i)+1 > pl(4so+7)
with 3 < ¢ < 6, contradicting Corollary 5.3.

2) The length can not be 4, 5,6, 7, otherwise pl(4sg+7) = pl(4sg+1i) + 1 with —1 < i < 3,
but pl(4so + 1) > pl(4so + 3), so that pl(4sg + 7) > pl(4sp + 3) + 1, contradicting (xx).

3) The length can not be 8, otherwise wy(0,4sp + 8) = wyp(0,4s¢9 — 4)abbaxabbbbazr and
pl(4s0+7) = pl(4s0—1)+1 = pl(4s0+3). But on the other hand, pl(4sp+4) = pl(4sp+3)+1
and pl(4so+6) = pl(4so+7)+1 = pl(4so+3) + 1 because of Proposition 5.1; pl(4so+5) =
pl(4sg + 3) + 1 because of the decomposition wy(0,4s9 + 6) = wy(0,4s9 + 4)bb so that
pl(4so +4) = pl(4so + 5) = pl(4so + 6) which contradicts Corollary 5.4.

4) The length can not be 9,10, otherwise pl(4sg + 7) = pl(4so — i) + 1 with i = 2,3, but
pl(4sg — i) > pl(4sg — 1) + 1 so that pi(4sop + 7) > pl(4dsg — 1) + 1 = pl(4sp) + 3, which
contradicts (k).

5) The length can not be 11,12,13,14,16,17, because the last factor can not be palin-
dromic.

6) The length can not be 15, otherwise, wy(0,4s¢ + 8) = wy(0, 459 — 8)cddcabbaxabbacdd,
with a # b, ¢ # d. Let us check a decomposition wy(0,4sg + 5) = wy(0,4s9 — 4)abbaxabba,
so that pl(4so +4) < pl(4so — 5) + 1, but pl(4dsg + 4) = pl(4sg + 3) + 1 which implies
pl(4so + 3) < pl(4so — 5), which contradicts (x).

7) The length can not be an odd number larger than 15, otherwise, there is a palindromic
factor of odd size larger than 3 in wg(0,4sp) finishing at position 4sy — 1, contradicting
Lemma 5.8.

8) The length can not be an even number larger than 14, otherwise, because of Lemma
5.8, the length is a multiple of 4, which implies the factor w,(4s0,4) is the symmetrical of
some words w,(4x,4), by hypothesis, it is of type abba but not xabb.

In conclusion, the last palindromic factor of wg(0,4sp + 4) can not be 7.

When n =9, pl(4s0+3) = pl(4so—6)+1 = pl(4sp—5)+2 > pl(4sp—1)+1. On the other
hand, pl(4so+3) < pl(4dso — 1) + 1, so pl(4so + 3) = pl(4so — 1) + 1; another observation is
that pl(4so+2) < pl(4so — 5) + 1 because basy—4, basy—3, Dasg—2, basg—1, Dasg, Daso+1, Dasg+2 18
palindromic, but pl(4so+2) = pl(4so+3)+1 so pl(4so+3)+2 < pl(4so—5)+2 = pl(4so+3),

contradiction.

In conclusion, for all possible cases wy(4sg,4) is of type xyyz.
O

Proposition 5.4. Let w be a finite word of length 4%, such that its palindromic length

sequence coincides with a prefiz of (pl(n))neN, then w is a prefix of a sequence in C.

Proof. Let us prove it by induction. The statement is trivially true when k£ = 0. Now

suppose the statement is true for k = sg, let us consider the case k = sg + 1:
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Remarking that Lemma 5.2, 5.3, 5.4, 5.5 work under the weaker condition on sequences
announced in previous proposition, we can apply the same arguments to prove each prefix
of w of length 4k admits an optimal palindromic decomposition of type pips..p, such that
the length of all this factors are multiples of 4. Using Lemma 5.7 there is another alphabet
¥1 and a bijection f : ¥* — ¥y such that f(w) is still a word which palindromic length
sequence coincides with a prefix of (pl(n))nen, however the length of f(w) is 4%, using the
hypothesis of induction, it is a prefix of a sequence in C, so w is also a prefix of a sequence
in C, by applying the inverse of f.

O

Theorem 5.1. All sequences such that their palindromic length sequences coincide with

the one of Thue-Morse’s are in C.
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